AbhinavKrishnan36 commited on
Commit
35f14de
·
verified ·
1 Parent(s): 27c7d7d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -17
app.py CHANGED
@@ -1,34 +1,26 @@
1
  import gradio as gr
2
  import torch
3
- import os
4
  from diffusers import StableDiffusion3Pipeline
5
- from huggingface_hub import InferenceApi
6
 
 
7
  hf_api_key = os.getenv("PRODIGY_GA_02")
8
  if hf_api_key is None:
9
  raise ValueError("Hugging Face API key 'PRODIGY_GA_02' not found. Ensure it is set as a secret.")
10
 
11
- # Initialize the Hugging Face API with the restricted model and token
12
- inference = InferenceApi(repo_id="stabilityai/stable-diffusion-3.5-medium", token=hf_api_key)
13
-
14
- # Example inference request
15
- response = inference(inputs="Your input text here")
16
- print(response)
17
-
18
- # Load model
19
- model_id = "stabilityai/stable-diffusion-3.5-medium"
20
- pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium")
21
 
22
- pipe.to("cuda")# If you have GPU access; otherwise, use "cpu"
 
 
23
 
24
-
25
-
26
- # Define Gradio interface
27
  def generate_image(prompt):
28
  images = pipe(prompt).images
29
  return images[0]
30
 
31
-
32
  # Create Gradio UI
33
  iface = gr.Interface(
34
  fn=generate_image,
 
1
  import gradio as gr
2
  import torch
 
3
  from diffusers import StableDiffusion3Pipeline
4
+ import os
5
 
6
+ # Retrieve Hugging Face API key from environment variables
7
  hf_api_key = os.getenv("PRODIGY_GA_02")
8
  if hf_api_key is None:
9
  raise ValueError("Hugging Face API key 'PRODIGY_GA_02' not found. Ensure it is set as a secret.")
10
 
11
+ # Load model with authentication token
12
+ model_id = "stabilityai/stable-diffusion-3.5-large"
13
+ pipe = StableDiffusion3Pipeline.from_pretrained(model_id, use_auth_token=hf_api_key)
 
 
 
 
 
 
 
14
 
15
+ # Move model to the correct device
16
+ device = "cuda" if torch.cuda.is_available() else "cpu"
17
+ pipe.to(device)
18
 
19
+ # Define Gradio interface function
 
 
20
  def generate_image(prompt):
21
  images = pipe(prompt).images
22
  return images[0]
23
 
 
24
  # Create Gradio UI
25
  iface = gr.Interface(
26
  fn=generate_image,