# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Loss functions """ import torch import torch.nn as nn from utils.metrics import bbox_iou from utils.torch_utils import de_parallel def smooth_BCE( eps=0.1, ): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 # return positive, negative label smoothing BCE targets return 1.0 - 0.5 * eps, 0.5 * eps class BCEBlurWithLogitsLoss(nn.Module): # BCEwithLogitLoss() with reduced missing label effects. def __init__(self, alpha=0.05): super().__init__() self.loss_fcn = nn.BCEWithLogitsLoss( reduction="none" ) # must be nn.BCEWithLogitsLoss() self.alpha = alpha def forward(self, pred, true): loss = self.loss_fcn(pred, true) pred = torch.sigmoid(pred) # prob from logits dx = pred - true # reduce only missing label effects # dx = (pred - true).abs() # reduce missing label and false label effects alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) loss *= alpha_factor return loss.mean() class FocalLoss(nn.Module): # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super().__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = ( "none" # required to apply FL to each element ) def forward(self, pred, true): loss = self.loss_fcn(pred, true) # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = torch.sigmoid(pred) # prob from logits p_t = true * pred_prob + (1 - true) * (1 - pred_prob) alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = (1.0 - p_t) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == "mean": return loss.mean() elif self.reduction == "sum": return loss.sum() else: # 'none' return loss class QFocalLoss(nn.Module): # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super().__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = ( "none" # required to apply FL to each element ) def forward(self, pred, true): loss = self.loss_fcn(pred, true) pred_prob = torch.sigmoid(pred) # prob from logits alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = torch.abs(true - pred_prob) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == "mean": return loss.mean() elif self.reduction == "sum": return loss.sum() else: # 'none' return loss class ComputeLoss: sort_obj_iou = False # Compute losses def __init__(self, model, autobalance=False): device = next(model.parameters()).device # get model device h = model.hyp # hyperparameters # Define criteria BCEcls = nn.BCEWithLogitsLoss( pos_weight=torch.tensor([h["cls_pw"]], device=device) ) BCEobj = nn.BCEWithLogitsLoss( pos_weight=torch.tensor([h["obj_pw"]], device=device) ) # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 self.cp, self.cn = smooth_BCE( eps=h.get("label_smoothing", 0.0) ) # positive, negative BCE targets # Focal loss g = h["fl_gamma"] # focal loss gamma if g > 0: BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) m = de_parallel(model).model[-1] # Detect() module self.balance = {3: [4.0, 1.0, 0.4]}.get( m.nl, [4.0, 1.0, 0.25, 0.06, 0.02] ) # P3-P7 self.ssi = ( list(m.stride).index(16) if autobalance else 0 ) # stride 16 index self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = ( BCEcls, BCEobj, 1.0, h, autobalance, ) self.na = m.na # number of anchors self.nc = m.nc # number of classes self.nl = m.nl # number of layers self.anchors = m.anchors self.device = device def __call__(self, p, targets): # predictions, targets lcls = torch.zeros(1, device=self.device) # class loss lbox = torch.zeros(1, device=self.device) # box loss lobj = torch.zeros(1, device=self.device) # object loss tcls, tbox, indices, anchors = self.build_targets( p, targets ) # targets # Losses for i, pi in enumerate(p): # layer index, layer predictions b, a, gj, gi = indices[i] # image, anchor, gridy, gridx tobj = torch.zeros( pi.shape[:4], dtype=pi.dtype, device=self.device ) # target obj n = b.shape[0] # number of targets if n: # pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0 pxy, pwh, _, pcls = pi[b, a, gj, gi].split( (2, 2, 1, self.nc), 1 ) # target-subset of predictions # Regression pxy = pxy.sigmoid() * 2 - 0.5 pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i] pbox = torch.cat((pxy, pwh), 1) # predicted box iou = bbox_iou( pbox, tbox[i], CIoU=True ).squeeze() # iou(prediction, target) lbox += (1.0 - iou).mean() # iou loss # Objectness iou = iou.detach().clamp(0).type(tobj.dtype) if self.sort_obj_iou: j = iou.argsort() b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j] if self.gr < 1: iou = (1.0 - self.gr) + self.gr * iou tobj[b, a, gj, gi] = iou # iou ratio # Classification if self.nc > 1: # cls loss (only if multiple classes) t = torch.full_like( pcls, self.cn, device=self.device ) # targets t[range(n), tcls[i]] = self.cp lcls += self.BCEcls(pcls, t) # BCE # Append targets to text file # with open('targets.txt', 'a') as file: # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] obji = self.BCEobj(pi[..., 4], tobj) lobj += obji * self.balance[i] # obj loss if self.autobalance: self.balance[i] = ( self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() ) if self.autobalance: self.balance = [x / self.balance[self.ssi] for x in self.balance] lbox *= self.hyp["box"] lobj *= self.hyp["obj"] lcls *= self.hyp["cls"] bs = tobj.shape[0] # batch size return (lbox + lobj + lcls) * bs, torch.cat( (lbox, lobj, lcls) ).detach() def build_targets(self, p, targets): # Build targets for compute_loss(), input targets(image,class,x,y,w,h) na, nt = self.na, targets.shape[0] # number of anchors, targets tcls, tbox, indices, anch = [], [], [], [] gain = torch.ones( 7, device=self.device ) # normalized to gridspace gain ai = ( torch.arange(na, device=self.device) .float() .view(na, 1) .repeat(1, nt) ) # same as .repeat_interleave(nt) targets = torch.cat( (targets.repeat(na, 1, 1), ai[..., None]), 2 ) # append anchor indices g = 0.5 # bias off = ( torch.tensor( [ [0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm ], device=self.device, ).float() * g ) # offsets for i in range(self.nl): anchors, shape = self.anchors[i], p[i].shape gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain # Match targets to anchors t = targets * gain # shape(3,n,7) if nt: # Matches r = t[..., 4:6] / anchors[:, None] # wh ratio j = ( torch.max(r, 1 / r).max(2)[0] < self.hyp["anchor_t"] ) # compare # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) t = t[j] # filter # Offsets gxy = t[:, 2:4] # grid xy gxi = gain[[2, 3]] - gxy # inverse j, k = ((gxy % 1 < g) & (gxy > 1)).T l, m = ((gxi % 1 < g) & (gxi > 1)).T j = torch.stack((torch.ones_like(j), j, k, l, m)) t = t.repeat((5, 1, 1))[j] offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] else: t = targets[0] offsets = 0 # Define bc, gxy, gwh, a = t.chunk( 4, 1 ) # (image, class), grid xy, grid wh, anchors a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class gij = (gxy - offsets).long() gi, gj = gij.T # grid indices # Append indices.append( (b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1)) ) # image, anchor, grid tbox.append(torch.cat((gxy - gij, gwh), 1)) # box anch.append(anchors[a]) # anchors tcls.append(c) # class return tcls, tbox, indices, anch