# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Run YOLOv5 segmentation inference on images, videos, directories, streams, etc. Usage - sources: $ python segment/predict.py --weights yolov5s-seg.pt --source 0 # webcam img.jpg # image vid.mp4 # video screen # screenshot path/ # directory list.txt # list of images list.streams # list of streams 'path/*.jpg' # glob 'https://youtu.be/Zgi9g1ksQHc' # YouTube 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream Usage - formats: $ python segment/predict.py --weights yolov5s-seg.pt # PyTorch yolov5s-seg.torchscript # TorchScript yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn yolov5s-seg_openvino_model # OpenVINO yolov5s-seg.engine # TensorRT yolov5s-seg.mlmodel # CoreML (macOS-only) yolov5s-seg_saved_model # TensorFlow SavedModel yolov5s-seg.pb # TensorFlow GraphDef yolov5s-seg.tflite # TensorFlow Lite yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU yolov5s-seg_paddle_model # PaddlePaddle """ import argparse import os import platform import sys from pathlib import Path import torch FILE = Path(__file__).resolve() ROOT = FILE.parents[1] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import DetectMultiBackend from utils.dataloaders import ( IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams, ) from utils.general import ( LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, increment_path, non_max_suppression, print_args, scale_boxes, scale_segments, strip_optimizer, ) from utils.plots import Annotator, colors, save_one_box from utils.segment.general import masks2segments, process_mask, process_mask_native from utils.torch_utils import select_device, smart_inference_mode @smart_inference_mode() def run( weights=ROOT / "yolov5s-seg.pt", # model.pt path(s) source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam) data=ROOT / "data/coco128.yaml", # dataset.yaml path imgsz=(640, 640), # inference size (height, width) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project=ROOT / "runs/predict-seg", # save results to project/name name="exp", # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference vid_stride=1, # video frame-rate stride retina_masks=False, ): source = str(source) save_img = not nosave and not source.endswith( ".txt" ) # save inference images is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) is_url = source.lower().startswith( ("rtsp://", "rtmp://", "http://", "https://") ) webcam = ( source.isnumeric() or source.endswith(".streams") or (is_url and not is_file) ) screenshot = source.lower().startswith("screen") if is_url and is_file: source = check_file(source) # download # Directories save_dir = increment_path( Path(project) / name, exist_ok=exist_ok ) # increment run (save_dir / "labels" if save_txt else save_dir).mkdir( parents=True, exist_ok=True ) # make dir # Load model device = select_device(device) model = DetectMultiBackend( weights, device=device, dnn=dnn, data=data, fp16=half ) stride, names, pt = model.stride, model.names, model.pt imgsz = check_img_size(imgsz, s=stride) # check image size # Dataloader bs = 1 # batch_size if webcam: view_img = check_imshow(warn=True) dataset = LoadStreams( source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride, ) bs = len(dataset) elif screenshot: dataset = LoadScreenshots( source, img_size=imgsz, stride=stride, auto=pt ) else: dataset = LoadImages( source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride, ) vid_path, vid_writer = [None] * bs, [None] * bs # Run inference model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) for path, im, im0s, vid_cap, s in dataset: with dt[0]: im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim # Inference with dt[1]: visualize = ( increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False ) pred, proto = model(im, augment=augment, visualize=visualize)[:2] # NMS with dt[2]: pred = non_max_suppression( pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=32, ) # Second-stage classifier (optional) # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) # Process predictions for i, det in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count s += f"{i}: " else: p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # im.jpg txt_path = str(save_dir / "labels" / p.stem) + ( "" if dataset.mode == "image" else f"_{frame}" ) # im.txt s += "%gx%g " % im.shape[2:] # print string imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator( im0, line_width=line_thickness, example=str(names) ) if len(det): if retina_masks: # scale bbox first the crop masks det[:, :4] = scale_boxes( im.shape[2:], det[:, :4], im0.shape ).round() # rescale boxes to im0 size masks = process_mask_native( proto[i], det[:, 6:], det[:, :4], im0.shape[:2] ) # HWC else: masks = process_mask( proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True, ) # HWC det[:, :4] = scale_boxes( im.shape[2:], det[:, :4], im0.shape ).round() # rescale boxes to im0 size # Segments if save_txt: segments = [ scale_segments( im0.shape if retina_masks else im.shape[2:], x, im0.shape, normalize=True, ) for x in reversed(masks2segments(masks)) ] # Print results for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Mask plotting annotator.masks( masks, colors=[colors(x, True) for x in det[:, 5]], im_gpu=torch.as_tensor(im0, dtype=torch.float16) .to(device) .permute(2, 0, 1) .flip(0) .contiguous() / 255 if retina_masks else im[i], ) # Write results for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])): if save_txt: # Write to file seg = segments[j].reshape(-1) # (n,2) to (n*2) line = ( (cls, *seg, conf) if save_conf else (cls, *seg) ) # label format with open(f"{txt_path}.txt", "a") as f: f.write(("%g " * len(line)).rstrip() % line + "\n") if save_img or save_crop or view_img: # Add bbox to image c = int(cls) # integer class label = ( None if hide_labels else ( names[c] if hide_conf else f"{names[c]} {conf:.2f}" ) ) annotator.box_label(xyxy, label, color=colors(c, True)) # annotator.draw.polygon(segments[j], outline=colors(c, True), width=3) if save_crop: save_one_box( xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True, ) # Stream results im0 = annotator.result() if view_img: if platform.system() == "Linux" and p not in windows: windows.append(p) cv2.namedWindow( str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO ) # allow window resize (Linux) cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) cv2.imshow(str(p), im0) if cv2.waitKey(1) == ord("q"): # 1 millisecond exit() # Save results (image with detections) if save_img: if dataset.mode == "image": cv2.imwrite(save_path, im0) else: # 'video' or 'stream' if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[ i ].release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path = str( Path(save_path).with_suffix(".mp4") ) # force *.mp4 suffix on results videos vid_writer[i] = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h), ) vid_writer[i].write(im0) # Print time (inference-only) LOGGER.info( f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms" ) # Print results t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image LOGGER.info( f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t ) if save_txt or save_img: s = ( f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else "" ) LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") if update: strip_optimizer( weights[0] ) # update model (to fix SourceChangeWarning) def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument( "--weights", nargs="+", type=str, default=ROOT / "yolov5s-seg.pt", help="model path(s)", ) parser.add_argument( "--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)", ) parser.add_argument( "--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path", ) parser.add_argument( "--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w", ) parser.add_argument( "--conf-thres", type=float, default=0.25, help="confidence threshold" ) parser.add_argument( "--iou-thres", type=float, default=0.45, help="NMS IoU threshold" ) parser.add_argument( "--max-det", type=int, default=1000, help="maximum detections per image", ) parser.add_argument( "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu" ) parser.add_argument("--view-img", action="store_true", help="show results") parser.add_argument( "--save-txt", action="store_true", help="save results to *.txt" ) parser.add_argument( "--save-conf", action="store_true", help="save confidences in --save-txt labels", ) parser.add_argument( "--save-crop", action="store_true", help="save cropped prediction boxes", ) parser.add_argument( "--nosave", action="store_true", help="do not save images/videos" ) parser.add_argument( "--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3", ) parser.add_argument( "--agnostic-nms", action="store_true", help="class-agnostic NMS" ) parser.add_argument( "--augment", action="store_true", help="augmented inference" ) parser.add_argument( "--visualize", action="store_true", help="visualize features" ) parser.add_argument( "--update", action="store_true", help="update all models" ) parser.add_argument( "--project", default=ROOT / "runs/predict-seg", help="save results to project/name", ) parser.add_argument( "--name", default="exp", help="save results to project/name" ) parser.add_argument( "--exist-ok", action="store_true", help="existing project/name ok, do not increment", ) parser.add_argument( "--line-thickness", default=3, type=int, help="bounding box thickness (pixels)", ) parser.add_argument( "--hide-labels", default=False, action="store_true", help="hide labels" ) parser.add_argument( "--hide-conf", default=False, action="store_true", help="hide confidences", ) parser.add_argument( "--half", action="store_true", help="use FP16 half-precision inference" ) parser.add_argument( "--dnn", action="store_true", help="use OpenCV DNN for ONNX inference" ) parser.add_argument( "--vid-stride", type=int, default=1, help="video frame-rate stride" ) parser.add_argument( "--retina-masks", action="store_true", help="whether to plot masks in native resolution", ) opt = parser.parse_args() opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand print_args(vars(opt)) return opt def main(opt): check_requirements(exclude=("tensorboard", "thop")) run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)