# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Experimental modules """ import math import numpy as np import torch import torch.nn as nn from utils.downloads import attempt_download class Sum(nn.Module): # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, n, weight=False): # n: number of inputs super().__init__() self.weight = weight # apply weights boolean self.iter = range(n - 1) # iter object if weight: self.w = nn.Parameter( -torch.arange(1.0, n) / 2, requires_grad=True ) # layer weights def forward(self, x): y = x[0] # no weight if self.weight: w = torch.sigmoid(self.w) * 2 for i in self.iter: y = y + x[i + 1] * w[i] else: for i in self.iter: y = y + x[i + 1] return y class MixConv2d(nn.Module): # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595 def __init__( self, c1, c2, k=(1, 3), s=1, equal_ch=True ): # ch_in, ch_out, kernel, stride, ch_strategy super().__init__() n = len(k) # number of convolutions if equal_ch: # equal c_ per group i = torch.linspace(0, n - 1e-6, c2).floor() # c2 indices c_ = [(i == g).sum() for g in range(n)] # intermediate channels else: # equal weight.numel() per group b = [c2] + [0] * n a = np.eye(n + 1, n, k=-1) a -= np.roll(a, 1, axis=1) a *= np.array(k) ** 2 a[0] = 1 c_ = np.linalg.lstsq(a, b, rcond=None)[ 0 ].round() # solve for equal weight indices, ax = b self.m = nn.ModuleList( [ nn.Conv2d( c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False, ) for k, c_ in zip(k, c_) ] ) self.bn = nn.BatchNorm2d(c2) self.act = nn.SiLU() def forward(self, x): return self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) class Ensemble(nn.ModuleList): # Ensemble of models def __init__(self): super().__init__() def forward(self, x, augment=False, profile=False, visualize=False): y = [module(x, augment, profile, visualize)[0] for module in self] # y = torch.stack(y).max(0)[0] # max ensemble # y = torch.stack(y).mean(0) # mean ensemble y = torch.cat(y, 1) # nms ensemble return y, None # inference, train output def attempt_load(weights, device=None, inplace=True, fuse=True): # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a from models.yolo import Detect, Model model = Ensemble() for w in weights if isinstance(weights, list) else [weights]: ckpt = torch.load(attempt_download(w), map_location="cpu") # load ckpt = ( (ckpt.get("ema") or ckpt["model"]).to(device).float() ) # FP32 model # Model compatibility updates if not hasattr(ckpt, "stride"): ckpt.stride = torch.tensor([32.0]) if hasattr(ckpt, "names") and isinstance(ckpt.names, (list, tuple)): ckpt.names = dict(enumerate(ckpt.names)) # convert to dict model.append( ckpt.fuse().eval() if fuse and hasattr(ckpt, "fuse") else ckpt.eval() ) # model in eval mode # Module compatibility updates for m in model.modules(): t = type(m) if t in ( nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model, ): m.inplace = inplace # torch 1.7.0 compatibility if t is Detect and not isinstance(m.anchor_grid, list): delattr(m, "anchor_grid") setattr(m, "anchor_grid", [torch.zeros(1)] * m.nl) elif t is nn.Upsample and not hasattr(m, "recompute_scale_factor"): m.recompute_scale_factor = None # torch 1.11.0 compatibility # Return model if len(model) == 1: return model[-1] # Return detection ensemble print(f"Ensemble created with {weights}\n") for k in "names", "nc", "yaml": setattr(model, k, getattr(model[0], k)) model.stride = model[ torch.argmax(torch.tensor([m.stride.max() for m in model])).int() ].stride # max stride assert all( model[0].nc == m.nc for m in model ), f"Models have different class counts: {[m.nc for m in model]}" return model