# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc. Usage - sources: $ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam img.jpg # image vid.mp4 # video screen # screenshot path/ # directory list.txt # list of images list.streams # list of streams 'path/*.jpg' # glob 'https://youtu.be/Zgi9g1ksQHc' # YouTube 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream Usage - formats: $ python classify/predict.py --weights yolov5s-cls.pt # PyTorch yolov5s-cls.torchscript # TorchScript yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn yolov5s-cls_openvino_model # OpenVINO yolov5s-cls.engine # TensorRT yolov5s-cls.mlmodel # CoreML (macOS-only) yolov5s-cls_saved_model # TensorFlow SavedModel yolov5s-cls.pb # TensorFlow GraphDef yolov5s-cls.tflite # TensorFlow Lite yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU yolov5s-cls_paddle_model # PaddlePaddle """ import argparse import os import platform import sys from pathlib import Path import torch import torch.nn.functional as F FILE = Path(__file__).resolve() ROOT = FILE.parents[1] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import DetectMultiBackend from utils.augmentations import classify_transforms from utils.dataloaders import ( IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams, ) from utils.general import ( LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, increment_path, print_args, strip_optimizer, ) from utils.plots import Annotator from utils.torch_utils import select_device, smart_inference_mode @smart_inference_mode() def run( weights=ROOT / "yolov5s-cls.pt", # model.pt path(s) source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam) data=ROOT / "data/coco128.yaml", # dataset.yaml path imgsz=(224, 224), # inference size (height, width) device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt nosave=False, # do not save images/videos augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project=ROOT / "runs/predict-cls", # save results to project/name name="exp", # save results to project/name exist_ok=False, # existing project/name ok, do not increment half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference vid_stride=1, # video frame-rate stride ): source = str(source) save_img = not nosave and not source.endswith( ".txt" ) # save inference images is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) is_url = source.lower().startswith( ("rtsp://", "rtmp://", "http://", "https://") ) webcam = ( source.isnumeric() or source.endswith(".streams") or (is_url and not is_file) ) screenshot = source.lower().startswith("screen") if is_url and is_file: source = check_file(source) # download # Directories save_dir = increment_path( Path(project) / name, exist_ok=exist_ok ) # increment run (save_dir / "labels" if save_txt else save_dir).mkdir( parents=True, exist_ok=True ) # make dir # Load model device = select_device(device) model = DetectMultiBackend( weights, device=device, dnn=dnn, data=data, fp16=half ) stride, names, pt = model.stride, model.names, model.pt imgsz = check_img_size(imgsz, s=stride) # check image size # Dataloader bs = 1 # batch_size if webcam: view_img = check_imshow(warn=True) dataset = LoadStreams( source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride, ) bs = len(dataset) elif screenshot: dataset = LoadScreenshots( source, img_size=imgsz, stride=stride, auto=pt ) else: dataset = LoadImages( source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride, ) vid_path, vid_writer = [None] * bs, [None] * bs # Run inference model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) for path, im, im0s, vid_cap, s in dataset: with dt[0]: im = torch.Tensor(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 if len(im.shape) == 3: im = im[None] # expand for batch dim # Inference with dt[1]: results = model(im) # Post-process with dt[2]: pred = F.softmax(results, dim=1) # probabilities # Process predictions for i, prob in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count s += f"{i}: " else: p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # im.jpg txt_path = str(save_dir / "labels" / p.stem) + ( "" if dataset.mode == "image" else f"_{frame}" ) # im.txt s += "%gx%g " % im.shape[2:] # print string annotator = Annotator(im0, example=str(names), pil=True) # Print results top5i = prob.argsort(0, descending=True)[ :5 ].tolist() # top 5 indices s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, " # Write results text = "\n".join(f"{prob[j]:.2f} {names[j]}" for j in top5i) if save_img or view_img: # Add bbox to image annotator.text((32, 32), text, txt_color=(255, 255, 255)) if save_txt: # Write to file with open(f"{txt_path}.txt", "a") as f: f.write(text + "\n") # Stream results im0 = annotator.result() if view_img: if platform.system() == "Linux" and p not in windows: windows.append(p) cv2.namedWindow( str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO ) # allow window resize (Linux) cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_img: if dataset.mode == "image": cv2.imwrite(save_path, im0) else: # 'video' or 'stream' if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[ i ].release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path = str( Path(save_path).with_suffix(".mp4") ) # force *.mp4 suffix on results videos vid_writer[i] = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h), ) vid_writer[i].write(im0) # Print time (inference-only) LOGGER.info(f"{s}{dt[1].dt * 1E3:.1f}ms") # Print results t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image LOGGER.info( f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t ) if save_txt or save_img: s = ( f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else "" ) LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") if update: strip_optimizer( weights[0] ) # update model (to fix SourceChangeWarning) def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument( "--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model path(s)", ) parser.add_argument( "--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)", ) parser.add_argument( "--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path", ) parser.add_argument( "--imgsz", "--img", "--img-size", nargs="+", type=int, default=[224], help="inference size h,w", ) parser.add_argument( "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu" ) parser.add_argument("--view-img", action="store_true", help="show results") parser.add_argument( "--save-txt", action="store_true", help="save results to *.txt" ) parser.add_argument( "--nosave", action="store_true", help="do not save images/videos" ) parser.add_argument( "--augment", action="store_true", help="augmented inference" ) parser.add_argument( "--visualize", action="store_true", help="visualize features" ) parser.add_argument( "--update", action="store_true", help="update all models" ) parser.add_argument( "--project", default=ROOT / "runs/predict-cls", help="save results to project/name", ) parser.add_argument( "--name", default="exp", help="save results to project/name" ) parser.add_argument( "--exist-ok", action="store_true", help="existing project/name ok, do not increment", ) parser.add_argument( "--half", action="store_true", help="use FP16 half-precision inference" ) parser.add_argument( "--dnn", action="store_true", help="use OpenCV DNN for ONNX inference" ) parser.add_argument( "--vid-stride", type=int, default=1, help="video frame-rate stride" ) opt = parser.parse_args() opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand print_args(vars(opt)) return opt def main(opt): check_requirements(exclude=("tensorboard", "thop")) run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)