# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ YOLO-specific modules Usage: $ python models/yolo.py --cfg yolov5s.yaml """ import argparse import contextlib import os import platform import sys from copy import deepcopy from pathlib import Path FILE = Path(__file__).resolve() ROOT = FILE.parents[1] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH if platform.system() != "Windows": ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import * from models.experimental import * from utils.autoanchor import check_anchor_order from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args from utils.plots import feature_visualization from utils.torch_utils import ( fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device, time_sync, ) try: import thop # for FLOPs computation except ImportError: thop = None class Detect(nn.Module): # YOLOv5 Detect head for detection models stride = None # strides computed during build dynamic = False # force grid reconstruction export = False # export mode def __init__( self, nc=80, anchors=(), ch=(), inplace=True ): # detection layer super().__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.empty(0) for _ in range(self.nl)] # init grid self.anchor_grid = [ torch.empty(0) for _ in range(self.nl) ] # init anchor grid self.register_buffer( "anchors", torch.tensor(anchors).float().view(self.nl, -1, 2) ) # shape(nl,na,2) self.m = nn.ModuleList( nn.Conv2d(x, self.no * self.na, 1) for x in ch ) # output conv self.inplace = inplace # use inplace ops (e.g. slice assignment) def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = ( x[i] .view(bs, self.na, self.no, ny, nx) .permute(0, 1, 3, 4, 2) .contiguous() ) if not self.training: # inference if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i], self.anchor_grid[i] = self._make_grid( nx, ny, i ) if isinstance(self, Segment): # (boxes + masks) xy, wh, conf, mask = x[i].split( (2, 2, self.nc + 1, self.no - self.nc - 5), 4 ) xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[ i ] # xy wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, conf.sigmoid(), mask), 4) else: # Detect (boxes only) xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4) xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, conf), 4) z.append(y.view(bs, self.na * nx * ny, self.no)) return ( x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x) ) def _make_grid( self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, "1.10.0"), ): d = self.anchors[i].device t = self.anchors[i].dtype shape = 1, self.na, ny, nx, 2 # grid shape y, x = torch.arange(ny, device=d, dtype=t), torch.arange( nx, device=d, dtype=t ) yv, xv = ( torch.meshgrid(y, x, indexing="ij") if torch_1_10 else torch.meshgrid(y, x) ) # torch>=0.7 compatibility grid = ( torch.stack((xv, yv), 2).expand(shape) - 0.5 ) # add grid offset, i.e. y = 2.0 * x - 0.5 anchor_grid = ( (self.anchors[i] * self.stride[i]) .view((1, self.na, 1, 1, 2)) .expand(shape) ) return grid, anchor_grid class Segment(Detect): # YOLOv5 Segment head for segmentation models def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True): super().__init__(nc, anchors, ch, inplace) self.nm = nm # number of masks self.npr = npr # number of protos self.no = 5 + nc + self.nm # number of outputs per anchor self.m = nn.ModuleList( nn.Conv2d(x, self.no * self.na, 1) for x in ch ) # output conv self.proto = Proto(ch[0], self.npr, self.nm) # protos self.detect = Detect.forward def forward(self, x): p = self.proto(x[0]) x = self.detect(self, x) return ( (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1]) ) class BaseModel(nn.Module): # YOLOv5 base model def forward(self, x, profile=False, visualize=False): return self._forward_once( x, profile, visualize ) # single-scale inference, train def _forward_once(self, x, profile=False, visualize=False): y, dt = [], [] # outputs for m in self.model: if m.f != -1: # if not from previous layer x = ( y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] ) # from earlier layers if profile: self._profile_one_layer(m, x, dt) x = m(x) # run y.append(x if m.i in self.save else None) # save output if visualize: feature_visualization(x, m.type, m.i, save_dir=visualize) return x def _profile_one_layer(self, m, x, dt): c = m == self.model[-1] # is final layer, copy input as inplace fix o = ( thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1e9 * 2 if thop else 0 ) # FLOPs t = time_sync() for _ in range(10): m(x.copy() if c else x) dt.append((time_sync() - t) * 100) if m == self.model[0]: LOGGER.info( f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module" ) LOGGER.info(f"{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}") if c: LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total") def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers LOGGER.info("Fusing layers... ") for m in self.model.modules(): if isinstance(m, (Conv, DWConv)) and hasattr(m, "bn"): m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv delattr(m, "bn") # remove batchnorm m.forward = m.forward_fuse # update forward self.info() return self def info(self, verbose=False, img_size=640): # print model information model_info(self, verbose, img_size) def _apply(self, fn): # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers self = super()._apply(fn) m = self.model[-1] # Detect() if isinstance(m, (Detect, Segment)): m.stride = fn(m.stride) m.grid = list(map(fn, m.grid)) if isinstance(m.anchor_grid, list): m.anchor_grid = list(map(fn, m.anchor_grid)) return self class DetectionModel(BaseModel): # YOLOv5 detection model def __init__( self, cfg="yolov5s.yaml", ch=3, nc=None, anchors=None ): # model, input channels, number of classes super().__init__() if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg, encoding="ascii", errors="ignore") as f: self.yaml = yaml.safe_load(f) # model dict # Define model ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels if nc and nc != self.yaml["nc"]: LOGGER.info( f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}" ) self.yaml["nc"] = nc # override yaml value if anchors: LOGGER.info( f"Overriding model.yaml anchors with anchors={anchors}" ) self.yaml["anchors"] = round(anchors) # override yaml value self.model, self.save = parse_model( deepcopy(self.yaml), ch=[ch] ) # model, savelist self.names = [str(i) for i in range(self.yaml["nc"])] # default names self.inplace = self.yaml.get("inplace", True) # Build strides, anchors m = self.model[-1] # Detect() if isinstance(m, (Detect, Segment)): s = 256 # 2x min stride m.inplace = self.inplace forward = ( lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x) ) m.stride = torch.tensor( [s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))] ) # forward check_anchor_order(m) m.anchors /= m.stride.view(-1, 1, 1) self.stride = m.stride self._initialize_biases() # only run once # Init weights, biases initialize_weights(self) self.info() LOGGER.info("") def forward(self, x, augment=False, profile=False, visualize=False): if augment: return self._forward_augment(x) # augmented inference, None return self._forward_once( x, profile, visualize ) # single-scale inference, train def _forward_augment(self, x): img_size = x.shape[-2:] # height, width s = [1, 0.83, 0.67] # scales f = [None, 3, None] # flips (2-ud, 3-lr) y = [] # outputs for si, fi in zip(s, f): xi = scale_img( x.flip(fi) if fi else x, si, gs=int(self.stride.max()) ) yi = self._forward_once(xi)[0] # forward # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save yi = self._descale_pred(yi, fi, si, img_size) y.append(yi) y = self._clip_augmented(y) # clip augmented tails return torch.cat(y, 1), None # augmented inference, train def _descale_pred(self, p, flips, scale, img_size): # de-scale predictions following augmented inference (inverse operation) if self.inplace: p[..., :4] /= scale # de-scale if flips == 2: p[..., 1] = img_size[0] - p[..., 1] # de-flip ud elif flips == 3: p[..., 0] = img_size[1] - p[..., 0] # de-flip lr else: x, y, wh = ( p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale, ) # de-scale if flips == 2: y = img_size[0] - y # de-flip ud elif flips == 3: x = img_size[1] - x # de-flip lr p = torch.cat((x, y, wh, p[..., 4:]), -1) return p def _clip_augmented(self, y): # Clip YOLOv5 augmented inference tails nl = self.model[-1].nl # number of detection layers (P3-P5) g = sum(4**x for x in range(nl)) # grid points e = 1 # exclude layer count i = (y[0].shape[1] // g) * sum(4**x for x in range(e)) # indices y[0] = y[0][:, :-i] # large i = (y[-1].shape[1] // g) * sum( 4 ** (nl - 1 - x) for x in range(e) ) # indices y[-1] = y[-1][:, i:] # small return y def _initialize_biases( self, cf=None ): # initialize biases into Detect(), cf is class frequency # https://arxiv.org/abs/1708.02002 section 3.3 # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. m = self.model[-1] # Detect() module for mi, s in zip(m.m, m.stride): # from b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) b.data[:, 4] += math.log( 8 / (640 / s) ** 2 ) # obj (8 objects per 640 image) b.data[:, 5 : 5 + m.nc] += ( math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum()) ) # cls mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) Model = ( DetectionModel # retain YOLOv5 'Model' class for backwards compatibility ) class SegmentationModel(DetectionModel): # YOLOv5 segmentation model def __init__(self, cfg="yolov5s-seg.yaml", ch=3, nc=None, anchors=None): super().__init__(cfg, ch, nc, anchors) class ClassificationModel(BaseModel): # YOLOv5 classification model def __init__( self, cfg=None, model=None, nc=1000, cutoff=10 ): # yaml, model, number of classes, cutoff index super().__init__() self._from_detection_model( model, nc, cutoff ) if model is not None else self._from_yaml(cfg) def _from_detection_model(self, model, nc=1000, cutoff=10): # Create a YOLOv5 classification model from a YOLOv5 detection model if isinstance(model, DetectMultiBackend): model = model.model # unwrap DetectMultiBackend model.model = model.model[:cutoff] # backbone m = model.model[-1] # last layer ch = ( m.conv.in_channels if hasattr(m, "conv") else m.cv1.conv.in_channels ) # ch into module c = Classify(ch, nc) # Classify() c.i, c.f, c.type = ( m.i, m.f, "models.common.Classify", ) # index, from, type model.model[-1] = c # replace self.model = model.model self.stride = model.stride self.save = [] self.nc = nc def _from_yaml(self, cfg): # Create a YOLOv5 classification model from a *.yaml file self.model = None def parse_model(d, ch): # model_dict, input_channels(3) # Parse a YOLOv5 model.yaml dictionary LOGGER.info( f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}" ) anchors, nc, gd, gw, act = ( d["anchors"], d["nc"], d["depth_multiple"], d["width_multiple"], d.get("activation"), ) if act: Conv.default_act = eval( act ) # redefine default activation, i.e. Conv.default_act = nn.SiLU() LOGGER.info(f"{colorstr('activation:')} {act}") # print na = ( (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors ) # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate( d["backbone"] + d["head"] ): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): with contextlib.suppress(NameError): args[j] = eval(a) if isinstance(a, str) else a # eval strings n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain if m in { Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, }: c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum(ch[x] for x in f) # TODO: channel, gw, gd elif m in {Detect, Segment}: args.append([ch[x] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) if m is Segment: args[3] = make_divisible(args[3] * gw, 8) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 else: c2 = ch[f] m_ = ( nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) ) # module t = str(m)[8:-2].replace("__main__.", "") # module type np = sum(x.numel() for x in m_.parameters()) # number params m_.i, m_.f, m_.type, m_.np = ( i, f, t, np, ) # attach index, 'from' index, type, number params LOGGER.info( f"{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}" ) # print save.extend( x % i for x in ([f] if isinstance(f, int) else f) if x != -1 ) # append to savelist layers.append(m_) if i == 0: ch = [] ch.append(c2) return nn.Sequential(*layers), sorted(save) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--cfg", type=str, default="yolov5s.yaml", help="model.yaml" ) parser.add_argument( "--batch-size", type=int, default=1, help="total batch size for all GPUs", ) parser.add_argument( "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu" ) parser.add_argument( "--profile", action="store_true", help="profile model speed" ) parser.add_argument( "--line-profile", action="store_true", help="profile model speed layer by layer", ) parser.add_argument( "--test", action="store_true", help="test all yolo*.yaml" ) opt = parser.parse_args() opt.cfg = check_yaml(opt.cfg) # check YAML print_args(vars(opt)) device = select_device(opt.device) # Create model im = torch.rand(opt.batch_size, 3, 640, 640).to(device) model = Model(opt.cfg).to(device) # Options if opt.line_profile: # profile layer by layer model(im, profile=True) elif opt.profile: # profile forward-backward results = profile(input=im, ops=[model], n=3) elif opt.test: # test all models for cfg in Path(ROOT / "models").rglob("yolo*.yaml"): try: _ = Model(cfg) except Exception as e: print(f"Error in {cfg}: {e}") else: # report fused model summary model.fuse()