# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ TensorFlow, Keras and TFLite versions of YOLOv5 Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127 Usage: $ python models/tf.py --weights yolov5s.pt Export: $ python export.py --weights yolov5s.pt --include saved_model pb tflite tfjs """ import argparse import sys from copy import deepcopy from pathlib import Path FILE = Path(__file__).resolve() ROOT = FILE.parents[1] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH # ROOT = ROOT.relative_to(Path.cwd()) # relative import numpy as np import tensorflow as tf import torch import torch.nn as nn from tensorflow import keras from models.common import ( C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv, DWConvTranspose2d, Focus, autopad, ) from models.experimental import MixConv2d, attempt_load from models.yolo import Detect, Segment from utils.activations import SiLU from utils.general import LOGGER, make_divisible, print_args class TFBN(keras.layers.Layer): # TensorFlow BatchNormalization wrapper def __init__(self, w=None): super().__init__() self.bn = keras.layers.BatchNormalization( beta_initializer=keras.initializers.Constant(w.bias.numpy()), gamma_initializer=keras.initializers.Constant(w.weight.numpy()), moving_mean_initializer=keras.initializers.Constant( w.running_mean.numpy() ), moving_variance_initializer=keras.initializers.Constant( w.running_var.numpy() ), epsilon=w.eps, ) def call(self, inputs): return self.bn(inputs) class TFPad(keras.layers.Layer): # Pad inputs in spatial dimensions 1 and 2 def __init__(self, pad): super().__init__() if isinstance(pad, int): self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]]) else: # tuple/list self.pad = tf.constant( [[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]] ) def call(self, inputs): return tf.pad(inputs, self.pad, mode="constant", constant_values=0) class TFConv(keras.layers.Layer): # Standard convolution def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): # ch_in, ch_out, weights, kernel, stride, padding, groups super().__init__() assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding) # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch conv = keras.layers.Conv2D( filters=c2, kernel_size=k, strides=s, padding="SAME" if s == 1 else "VALID", use_bias=not hasattr(w, "bn"), kernel_initializer=keras.initializers.Constant( w.conv.weight.permute(2, 3, 1, 0).numpy() ), bias_initializer="zeros" if hasattr(w, "bn") else keras.initializers.Constant(w.conv.bias.numpy()), ) self.conv = ( conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv]) ) self.bn = TFBN(w.bn) if hasattr(w, "bn") else tf.identity self.act = activations(w.act) if act else tf.identity def call(self, inputs): return self.act(self.bn(self.conv(inputs))) class TFDWConv(keras.layers.Layer): # Depthwise convolution def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None): # ch_in, ch_out, weights, kernel, stride, padding, groups super().__init__() assert ( c2 % c1 == 0 ), f"TFDWConv() output={c2} must be a multiple of input={c1} channels" conv = keras.layers.DepthwiseConv2D( kernel_size=k, depth_multiplier=c2 // c1, strides=s, padding="SAME" if s == 1 else "VALID", use_bias=not hasattr(w, "bn"), depthwise_initializer=keras.initializers.Constant( w.conv.weight.permute(2, 3, 1, 0).numpy() ), bias_initializer="zeros" if hasattr(w, "bn") else keras.initializers.Constant(w.conv.bias.numpy()), ) self.conv = ( conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv]) ) self.bn = TFBN(w.bn) if hasattr(w, "bn") else tf.identity self.act = activations(w.act) if act else tf.identity def call(self, inputs): return self.act(self.bn(self.conv(inputs))) class TFDWConvTranspose2d(keras.layers.Layer): # Depthwise ConvTranspose2d def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None): # ch_in, ch_out, weights, kernel, stride, padding, groups super().__init__() assert ( c1 == c2 ), f"TFDWConv() output={c2} must be equal to input={c1} channels" assert k == 4 and p1 == 1, "TFDWConv() only valid for k=4 and p1=1" weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy() self.c1 = c1 self.conv = [ keras.layers.Conv2DTranspose( filters=1, kernel_size=k, strides=s, padding="VALID", output_padding=p2, use_bias=True, kernel_initializer=keras.initializers.Constant( weight[..., i : i + 1] ), bias_initializer=keras.initializers.Constant(bias[i]), ) for i in range(c1) ] def call(self, inputs): return tf.concat( [m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3 )[:, 1:-1, 1:-1] class TFFocus(keras.layers.Layer): # Focus wh information into c-space def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): # ch_in, ch_out, kernel, stride, padding, groups super().__init__() self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv) def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c) # inputs = inputs / 255 # normalize 0-255 to 0-1 inputs = [ inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :], ] return self.conv(tf.concat(inputs, 3)) class TFBottleneck(keras.layers.Layer): # Standard bottleneck def __init__( self, c1, c2, shortcut=True, g=1, e=0.5, w=None ): # ch_in, ch_out, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2) self.add = shortcut and c1 == c2 def call(self, inputs): return ( inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) ) class TFCrossConv(keras.layers.Layer): # Cross Convolution def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None): super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1) self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2) self.add = shortcut and c1 == c2 def call(self, inputs): return ( inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) ) class TFConv2d(keras.layers.Layer): # Substitution for PyTorch nn.Conv2D def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None): super().__init__() assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" self.conv = keras.layers.Conv2D( filters=c2, kernel_size=k, strides=s, padding="VALID", use_bias=bias, kernel_initializer=keras.initializers.Constant( w.weight.permute(2, 3, 1, 0).numpy() ), bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, ) def call(self, inputs): return self.conv(inputs) class TFBottleneckCSP(keras.layers.Layer): # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, number, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2) self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3) self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4) self.bn = TFBN(w.bn) self.act = lambda x: keras.activations.swish(x) self.m = keras.Sequential( [ TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n) ] ) def call(self, inputs): y1 = self.cv3(self.m(self.cv1(inputs))) y2 = self.cv2(inputs) return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3)))) class TFC3(keras.layers.Layer): # CSP Bottleneck with 3 convolutions def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, number, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2) self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3) self.m = keras.Sequential( [ TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n) ] ) def call(self, inputs): return self.cv3( tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3) ) class TFC3x(keras.layers.Layer): # 3 module with cross-convolutions def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, number, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2) self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3) self.m = keras.Sequential( [ TFCrossConv( c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j] ) for j in range(n) ] ) def call(self, inputs): return self.cv3( tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3) ) class TFSPP(keras.layers.Layer): # Spatial pyramid pooling layer used in YOLOv3-SPP def __init__(self, c1, c2, k=(5, 9, 13), w=None): super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2) self.m = [ keras.layers.MaxPool2D(pool_size=x, strides=1, padding="SAME") for x in k ] def call(self, inputs): x = self.cv1(inputs) return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3)) class TFSPPF(keras.layers.Layer): # Spatial pyramid pooling-Fast layer def __init__(self, c1, c2, k=5, w=None): super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2) self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding="SAME") def call(self, inputs): x = self.cv1(inputs) y1 = self.m(x) y2 = self.m(y1) return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3)) class TFDetect(keras.layers.Layer): # TF YOLOv5 Detect layer def __init__( self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None ): # detection layer super().__init__() self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32) self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [tf.zeros(1)] * self.nl # init grid self.anchors = tf.convert_to_tensor( w.anchors.numpy(), dtype=tf.float32 ) self.anchor_grid = tf.reshape( self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2], ) self.m = [ TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch) ] self.training = False # set to False after building model self.imgsz = imgsz for i in range(self.nl): ny, nx = ( self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i], ) self.grid[i] = self._make_grid(nx, ny) def call(self, inputs): z = [] # inference output x = [] for i in range(self.nl): x.append(self.m[i](inputs[i])) # x(bs,20,20,255) to x(bs,3,20,20,85) ny, nx = ( self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i], ) x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no]) if not self.training: # inference y = x[i] grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5 anchor_grid = ( tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4 ) xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[ i ] # xy wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid # Normalize xywh to 0-1 to reduce calibration error xy /= tf.constant( [[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32 ) wh /= tf.constant( [[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32 ) y = tf.concat( [ xy, wh, tf.sigmoid(y[..., 4 : 5 + self.nc]), y[..., 5 + self.nc :], ], -1, ) z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no])) return ( tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),) ) @staticmethod def _make_grid(nx=20, ny=20): # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny)) return tf.cast( tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32, ) class TFSegment(TFDetect): # YOLOv5 Segment head for segmentation models def __init__( self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None, ): super().__init__(nc, anchors, ch, imgsz, w) self.nm = nm # number of masks self.npr = npr # number of protos self.no = 5 + nc + self.nm # number of outputs per anchor self.m = [ TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch) ] # output conv self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto) # protos self.detect = TFDetect.call def call(self, x): p = self.proto(x[0]) # p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0])) # (optional) full-size protos p = tf.transpose( p, [0, 3, 1, 2] ) # from shape(1,160,160,32) to shape(1,32,160,160) x = self.detect(self, x) return (x, p) if self.training else (x[0], p) class TFProto(keras.layers.Layer): def __init__(self, c1, c_=256, c2=32, w=None): super().__init__() self.cv1 = TFConv(c1, c_, k=3, w=w.cv1) self.upsample = TFUpsample(None, scale_factor=2, mode="nearest") self.cv2 = TFConv(c_, c_, k=3, w=w.cv2) self.cv3 = TFConv(c_, c2, w=w.cv3) def call(self, inputs): return self.cv3(self.cv2(self.upsample(self.cv1(inputs)))) class TFUpsample(keras.layers.Layer): # TF version of torch.nn.Upsample() def __init__( self, size, scale_factor, mode, w=None ): # warning: all arguments needed including 'w' super().__init__() assert scale_factor % 2 == 0, "scale_factor must be multiple of 2" self.upsample = lambda x: tf.image.resize( x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode ) # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode) # with default arguments: align_corners=False, half_pixel_centers=False # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x, # size=(x.shape[1] * 2, x.shape[2] * 2)) def call(self, inputs): return self.upsample(inputs) class TFConcat(keras.layers.Layer): # TF version of torch.concat() def __init__(self, dimension=1, w=None): super().__init__() assert dimension == 1, "convert only NCHW to NHWC concat" self.d = 3 def call(self, inputs): return tf.concat(inputs, self.d) def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3) LOGGER.info( f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}" ) anchors, nc, gd, gw = ( d["anchors"], d["nc"], d["depth_multiple"], d["width_multiple"], ) na = ( (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors ) # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate( d["backbone"] + d["head"] ): # from, number, module, args m_str = m m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a # eval strings except NameError: pass n = max(round(n * gd), 1) if n > 1 else n # depth gain if m in [ nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3x, ]: c1, c2 = ch[f], args[0] c2 = make_divisible(c2 * gw, 8) if c2 != no else c2 args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3, C3x]: args.insert(2, n) n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum(ch[-1 if x == -1 else x + 1] for x in f) elif m in [Detect, Segment]: args.append([ch[x + 1] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) if m is Segment: args[3] = make_divisible(args[3] * gw, 8) args.append(imgsz) else: c2 = ch[f] tf_m = eval("TF" + m_str.replace("nn.", "")) m_ = ( keras.Sequential( [tf_m(*args, w=model.model[i][j]) for j in range(n)] ) if n > 1 else tf_m(*args, w=model.model[i]) ) # module torch_m_ = ( nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) ) # module t = str(m)[8:-2].replace("__main__.", "") # module type np = sum(x.numel() for x in torch_m_.parameters()) # number params m_.i, m_.f, m_.type, m_.np = ( i, f, t, np, ) # attach index, 'from' index, type, number params LOGGER.info( f"{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}" ) # print save.extend( x % i for x in ([f] if isinstance(f, int) else f) if x != -1 ) # append to savelist layers.append(m_) ch.append(c2) return keras.Sequential(layers), sorted(save) class TFModel: # TF YOLOv5 model def __init__( self, cfg="yolov5s.yaml", ch=3, nc=None, model=None, imgsz=(640, 640) ): # model, channels, classes super().__init__() if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg) as f: self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict # Define model if nc and nc != self.yaml["nc"]: LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}") self.yaml["nc"] = nc # override yaml value self.model, self.savelist = parse_model( deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz ) def predict( self, inputs, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, ): y = [] # outputs x = inputs for m in self.model.layers: if m.f != -1: # if not from previous layer x = ( y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] ) # from earlier layers x = m(x) # run y.append(x if m.i in self.savelist else None) # save output # Add TensorFlow NMS if tf_nms: boxes = self._xywh2xyxy(x[0][..., :4]) probs = x[0][:, :, 4:5] classes = x[0][:, :, 5:] scores = probs * classes if agnostic_nms: nms = AgnosticNMS()( (boxes, classes, scores), topk_all, iou_thres, conf_thres ) else: boxes = tf.expand_dims(boxes, 2) nms = tf.image.combined_non_max_suppression( boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False, ) return (nms,) return x # output [1,6300,85] = [xywh, conf, class0, class1, ...] # x = x[0] # [x(1,6300,85), ...] to x(6300,85) # xywh = x[..., :4] # x(6300,4) boxes # conf = x[..., 4:5] # x(6300,1) confidences # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes # return tf.concat([conf, cls, xywh], 1) @staticmethod def _xywh2xyxy(xywh): # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1) return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1) class AgnosticNMS(keras.layers.Layer): # TF Agnostic NMS def call(self, input, topk_all, iou_thres, conf_thres): # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450 return tf.map_fn( lambda x: self._nms(x, topk_all, iou_thres, conf_thres), input, fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32), name="agnostic_nms", ) @staticmethod def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS boxes, classes, scores = x class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32) scores_inp = tf.reduce_max(scores, -1) selected_inds = tf.image.non_max_suppression( boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres, ) selected_boxes = tf.gather(boxes, selected_inds) padded_boxes = tf.pad( selected_boxes, paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]], mode="CONSTANT", constant_values=0.0, ) selected_scores = tf.gather(scores_inp, selected_inds) padded_scores = tf.pad( selected_scores, paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], mode="CONSTANT", constant_values=-1.0, ) selected_classes = tf.gather(class_inds, selected_inds) padded_classes = tf.pad( selected_classes, paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], mode="CONSTANT", constant_values=-1.0, ) valid_detections = tf.shape(selected_inds)[0] return padded_boxes, padded_scores, padded_classes, valid_detections def activations(act=nn.SiLU): # Returns TF activation from input PyTorch activation if isinstance(act, nn.LeakyReLU): return lambda x: keras.activations.relu(x, alpha=0.1) elif isinstance(act, nn.Hardswish): return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667 elif isinstance(act, (nn.SiLU, SiLU)): return lambda x: keras.activations.swish(x) else: raise Exception( f"no matching TensorFlow activation found for PyTorch activation {act}" ) def representative_dataset_gen(dataset, ncalib=100): # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays for n, (path, img, im0s, vid_cap, string) in enumerate(dataset): im = np.transpose(img, [1, 2, 0]) im = np.expand_dims(im, axis=0).astype(np.float32) im /= 255 yield [im] if n >= ncalib: break def run( weights=ROOT / "yolov5s.pt", # weights path imgsz=(640, 640), # inference size h,w batch_size=1, # batch size dynamic=False, # dynamic batch size ): # PyTorch model im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image model = attempt_load( weights, device=torch.device("cpu"), inplace=True, fuse=False ) _ = model(im) # inference model.info() # TensorFlow model im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) _ = tf_model.predict(im) # inference # Keras model im = keras.Input( shape=(*imgsz, 3), batch_size=None if dynamic else batch_size ) keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im)) keras_model.summary() LOGGER.info( "PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export." ) def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument( "--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path" ) parser.add_argument( "--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w", ) parser.add_argument("--batch-size", type=int, default=1, help="batch size") parser.add_argument( "--dynamic", action="store_true", help="dynamic batch size" ) opt = parser.parse_args() opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand print_args(vars(opt)) return opt def main(opt): run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)