import gradio as gr import pickle as pkl from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input from tensorflow.keras.models import Model import tensorflow as tf from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences # Feature Extracting model vgg_model = VGG16() vgg_model.trainable = False img_model = Model(inputs=vgg_model.input, outputs=vgg_model.layers[-2].output) # Caption genartion model model = tf.keras.models.load_model('caption_genaration_model.h5') # load Tokenizer with open('tokenizer.pkl','rb') as f: tokenizer = pkl.load(f) # convert index to word from prediction def index_to_word(word_idx): return tokenizer.index_word[word_idx] # Resize layer resize_img = tf.keras.layers.Resizing(height=224, width=224) # Preprocces input Image def img_preprocces(img): img = tf.expand_dims(img,axis=0) resized_image = resize_img(img) img = preprocess_input(resized_image) feature = vgg_model.predict(img,verbose=False) return feature def genarate_caption(img): seq_in = 'startseq' feature_img = img_preprocces(img) for _ in range(30): # Tokenization & Padding seq_in_sequence = tokenizer.texts_to_sequences([seq_in])[0] seq_in_padded = pad_sequences([seq_in_sequence], padding='post',maxlen=30) # Predict next word y_hat = model.predict([feature_img,seq_in_padded],verbose=False) word_index = y_hat.argmax(axis=1) predicted_word = index_to_word(word_index[0]) if predicted_word == 'endseq': break seq_in = seq_in + ' ' + predicted_word return seq_in[9:] app = gr.Interface( fn=genarate_caption, inputs=['image'], outputs=['text'] ) app.launch()