from _typeshed import OpenBinaryModeUpdating from types import resolve_bases import requests import gradio as gr import torch from timm import create_model from tim.data import reslove_data_config from timm.data.transformer import create_transform IMAGENET_1k_URL = "https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt" LABELS = requests.get(IMAGENET_1k_URL).text.strip().split('\n') model = create_model('restnet50',pretrained=True) transofrm = create_transform(**resolve_data_config{}, model=model) model.eval() def predict_fn(img): img = img.convert('RGB') img = transofrm(img).unsqueez(0) with torch.no_grad(): out = model(img) probabilites = torch.nn.functional.softmax(out[0], dim=0) values , indices = torch.topk(probabilites, k=5) # return