# -*- coding: utf-8 -*- """gpt_dev.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1zxxLfIi8_EDLqYODY8TyNLpr8RTxV-Ct ## Building a GPT Companion notebook to the [Zero To Hero](https://karpathy.ai/zero-to-hero.html) video on GPT. """ # We always start with a dataset to train on. Let's download the tiny shakespeare dataset !wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt # read it in to inspect it with open('input.txt', 'r', encoding='utf-8') as f: text = f.read() print("length of dataset in characters: ", len(text)) # let's look at the first 1000 characters print(text[:1000]) # here are all the unique characters that occur in this text chars = sorted(list(set(text))) vocab_size = len(chars) print(''.join(chars)) print(vocab_size) # create a mapping from characters to integers stoi = { ch:i for i,ch in enumerate(chars) } itos = { i:ch for i,ch in enumerate(chars) } encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string print(encode("hii there")) print(decode(encode("hii there"))) # let's now encode the entire text dataset and store it into a torch.Tensor import torch # we use PyTorch: https://pytorch.org data = torch.tensor(encode(text), dtype=torch.long) print(data.shape, data.dtype) print(data[:1000]) # the 1000 characters we looked at earier will to the GPT look like this # Let's now split up the data into train and validation sets n = int(0.9*len(data)) # first 90% will be train, rest val train_data = data[:n] val_data = data[n:] block_size = 8 train_data[:block_size+1] x = train_data[:block_size] y = train_data[1:block_size+1] for t in range(block_size): context = x[:t+1] target = y[t] print(f"when input is {context} the target: {target}") torch.manual_seed(1337) batch_size = 4 # how many independent sequences will we process in parallel? block_size = 8 # what is the maximum context length for predictions? def get_batch(split): # generate a small batch of data of inputs x and targets y data = train_data if split == 'train' else val_data ix = torch.randint(len(data) - block_size, (batch_size,)) x = torch.stack([data[i:i+block_size] for i in ix]) y = torch.stack([data[i+1:i+block_size+1] for i in ix]) return x, y xb, yb = get_batch('train') print('inputs:') print(xb.shape) print(xb) print('targets:') print(yb.shape) print(yb) print('----') for b in range(batch_size): # batch dimension for t in range(block_size): # time dimension context = xb[b, :t+1] target = yb[b,t] print(f"when input is {context.tolist()} the target: {target}") print(xb) # our input to the transformer import torch import torch.nn as nn from torch.nn import functional as F torch.manual_seed(1337) class BigramLanguageModel(nn.Module): def __init__(self, vocab_size): super().__init__() # each token directly reads off the logits for the next token from a lookup table self.token_embedding_table = nn.Embedding(vocab_size, vocab_size) def forward(self, idx, targets=None): # idx and targets are both (B,T) tensor of integers logits = self.token_embedding_table(idx) # (B,T,C) if targets is None: loss = None else: B, T, C = logits.shape logits = logits.view(B*T, C) targets = targets.view(B*T) loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, idx, max_new_tokens): # idx is (B, T) array of indices in the current context for _ in range(max_new_tokens): # get the predictions logits, loss = self(idx) # focus only on the last time step logits = logits[:, -1, :] # becomes (B, C) # apply softmax to get probabilities probs = F.softmax(logits, dim=-1) # (B, C) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) # append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) return idx m = BigramLanguageModel(vocab_size) logits, loss = m(xb, yb) print(logits.shape) print(loss) print(decode(m.generate(idx = torch.zeros((1, 1), dtype=torch.long), max_new_tokens=100)[0].tolist())) # create a PyTorch optimizer optimizer = torch.optim.AdamW(m.parameters(), lr=1e-3) batch_size = 32 for steps in range(100): # increase number of steps for good results... # sample a batch of data xb, yb = get_batch('train') # evaluate the loss logits, loss = m(xb, yb) optimizer.zero_grad(set_to_none=True) loss.backward() optimizer.step() print(loss.item()) print(decode(m.generate(idx = torch.zeros((1, 1), dtype=torch.long), max_new_tokens=500)[0].tolist())) """## The mathematical trick in self-attention""" # toy example illustrating how matrix multiplication can be used for a "weighted aggregation" torch.manual_seed(42) a = torch.tril(torch.ones(3, 3)) a = a / torch.sum(a, 1, keepdim=True) b = torch.randint(0,10,(3,2)).float() c = a @ b print('a=') print(a) print('--') print('b=') print(b) print('--') print('c=') print(c) # consider the following toy example: torch.manual_seed(1337) B,T,C = 4,8,2 # batch, time, channels x = torch.randn(B,T,C) x.shape # We want x[b,t] = mean_{i<=t} x[b,i] xbow = torch.zeros((B,T,C)) for b in range(B): for t in range(T): xprev = x[b,:t+1] # (t,C) xbow[b,t] = torch.mean(xprev, 0) # version 2: using matrix multiply for a weighted aggregation wei = torch.tril(torch.ones(T, T)) wei = wei / wei.sum(1, keepdim=True) xbow2 = wei @ x # (B, T, T) @ (B, T, C) ----> (B, T, C) torch.allclose(xbow, xbow2) # version 3: use Softmax tril = torch.tril(torch.ones(T, T)) wei = torch.zeros((T,T)) wei = wei.masked_fill(tril == 0, float('-inf')) wei = F.softmax(wei, dim=-1) xbow3 = wei @ x torch.allclose(xbow, xbow3) # version 4: self-attention! torch.manual_seed(1337) B,T,C = 4,8,32 # batch, time, channels x = torch.randn(B,T,C) # let's see a single Head perform self-attention head_size = 16 key = nn.Linear(C, head_size, bias=False) query = nn.Linear(C, head_size, bias=False) value = nn.Linear(C, head_size, bias=False) k = key(x) # (B, T, 16) q = query(x) # (B, T, 16) wei = q @ k.transpose(-2, -1) # (B, T, 16) @ (B, 16, T) ---> (B, T, T) tril = torch.tril(torch.ones(T, T)) #wei = torch.zeros((T,T)) wei = wei.masked_fill(tril == 0, float('-inf')) wei = F.softmax(wei, dim=-1) v = value(x) out = wei @ v #out = wei @ x out.shape wei[0] """Notes: - Attention is a **communication mechanism**. Can be seen as nodes in a directed graph looking at each other and aggregating information with a weighted sum from all nodes that point to them, with data-dependent weights. - There is no notion of space. Attention simply acts over a set of vectors. This is why we need to positionally encode tokens. - Each example across batch dimension is of course processed completely independently and never "talk" to each other - In an "encoder" attention block just delete the single line that does masking with `tril`, allowing all tokens to communicate. This block here is called a "decoder" attention block because it has triangular masking, and is usually used in autoregressive settings, like language modeling. - "self-attention" just means that the keys and values are produced from the same source as queries. In "cross-attention", the queries still get produced from x, but the keys and values come from some other, external source (e.g. an encoder module) - "Scaled" attention additional divides `wei` by 1/sqrt(head_size). This makes it so when input Q,K are unit variance, wei will be unit variance too and Softmax will stay diffuse and not saturate too much. Illustration below """ k = torch.randn(B,T,head_size) q = torch.randn(B,T,head_size) wei = q @ k.transpose(-2, -1) * head_size**-0.5 k.var() q.var() wei.var() torch.softmax(torch.tensor([0.1, -0.2, 0.3, -0.2, 0.5]), dim=-1) torch.softmax(torch.tensor([0.1, -0.2, 0.3, -0.2, 0.5])*8, dim=-1) # gets too peaky, converges to one-hot class LayerNorm1d: # (used to be BatchNorm1d) def __init__(self, dim, eps=1e-5, momentum=0.1): self.eps = eps self.gamma = torch.ones(dim) self.beta = torch.zeros(dim) def __call__(self, x): # calculate the forward pass xmean = x.mean(1, keepdim=True) # batch mean xvar = x.var(1, keepdim=True) # batch variance xhat = (x - xmean) / torch.sqrt(xvar + self.eps) # normalize to unit variance self.out = self.gamma * xhat + self.beta return self.out def parameters(self): return [self.gamma, self.beta] torch.manual_seed(1337) module = LayerNorm1d(100) x = torch.randn(32, 100) # batch size 32 of 100-dimensional vectors x = module(x) x.shape x[:,0].mean(), x[:,0].std() # mean,std of one feature across all batch inputs x[0,:].mean(), x[0,:].std() # mean,std of a single input from the batch, of its features # French to English translation example: # <--------- ENCODE ------------------><--------------- DECODE -----------------> # les réseaux de neurones sont géniaux! neural networks are awesome! """### Full finished code, for reference You may want to refer directly to the git repo instead though. """ import torch import torch.nn as nn from torch.nn import functional as F # hyperparameters batch_size = 16 # how many independent sequences will we process in parallel? block_size = 32 # what is the maximum context length for predictions? max_iters = 5000 #00 eval_interval = 100 learning_rate = 1e-3 device = 'cuda' if torch.cuda.is_available() else 'cpu' eval_iters = 200 n_embd = 64 n_head = 4 n_layer = 4 dropout = 0.0 # ------------ torch.manual_seed(1337) # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt with open('input.txt', 'r', encoding='utf-8') as f: text = f.read() # here are all the unique characters that occur in this text chars = sorted(list(set(text))) vocab_size = len(chars) # create a mapping from characters to integers stoi = { ch:i for i,ch in enumerate(chars) } itos = { i:ch for i,ch in enumerate(chars) } encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string # Train and test splits data = torch.tensor(encode(text), dtype=torch.long) n = int(0.9*len(data)) # first 90% will be train, rest val train_data = data[:n] val_data = data[n:] # data loading def get_batch(split): # generate a small batch of data of inputs x and targets y data = train_data if split == 'train' else val_data ix = torch.randint(len(data) - block_size, (batch_size,)) x = torch.stack([data[i:i+block_size] for i in ix]) y = torch.stack([data[i+1:i+block_size+1] for i in ix]) x, y = x.to(device), y.to(device) return x, y @torch.no_grad() def estimate_loss(): out = {} model.eval() for split in ['train', 'val']: losses = torch.zeros(eval_iters) for k in range(eval_iters): X, Y = get_batch(split) logits, loss = model(X, Y) losses[k] = loss.item() out[split] = losses.mean() model.train() return out class Head(nn.Module): """ one head of self-attention """ def __init__(self, head_size): super().__init__() self.key = nn.Linear(n_embd, head_size, bias=False) self.query = nn.Linear(n_embd, head_size, bias=False) self.value = nn.Linear(n_embd, head_size, bias=False) self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) self.dropout = nn.Dropout(dropout) def forward(self, x): B,T,C = x.shape k = self.key(x) # (B,T,C) q = self.query(x) # (B,T,C) # compute attention scores ("affinities") wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T) wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T) wei = F.softmax(wei, dim=-1) # (B, T, T) wei = self.dropout(wei) # perform the weighted aggregation of the values v = self.value(x) # (B,T,C) out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C) return out class MultiHeadAttention(nn.Module): """ multiple heads of self-attention in parallel """ def __init__(self, num_heads, head_size): super().__init__() self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) self.proj = nn.Linear(n_embd, n_embd) self.dropout = nn.Dropout(dropout) def forward(self, x): out = torch.cat([h(x) for h in self.heads], dim=-1) out = self.dropout(self.proj(out)) return out class FeedFoward(nn.Module): """ a simple linear layer followed by a non-linearity """ def __init__(self, n_embd): super().__init__() self.net = nn.Sequential( nn.Linear(n_embd, 4 * n_embd), nn.ReLU(), nn.Linear(4 * n_embd, n_embd), nn.Dropout(dropout), ) def forward(self, x): return self.net(x) class Block(nn.Module): """ Transformer block: communication followed by computation """ def __init__(self, n_embd, n_head): # n_embd: embedding dimension, n_head: the number of heads we'd like super().__init__() head_size = n_embd // n_head self.sa = MultiHeadAttention(n_head, head_size) self.ffwd = FeedFoward(n_embd) self.ln1 = nn.LayerNorm(n_embd) self.ln2 = nn.LayerNorm(n_embd) def forward(self, x): x = x + self.sa(self.ln1(x)) x = x + self.ffwd(self.ln2(x)) return x # super simple bigram model class BigramLanguageModel(nn.Module): def __init__(self): #super().__init__() super(BigramLanguageModel, self).__init__() # each token directly reads off the logits for the next token from a lookup table self.token_embedding_table = nn.Embedding(vocab_size, n_embd) self.position_embedding_table = nn.Embedding(block_size, n_embd) self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]) self.ln_f = nn.LayerNorm(n_embd) # final layer norm self.lm_head = nn.Linear(n_embd, vocab_size) def forward(self, idx, targets=None): B, T = idx.shape # idx and targets are both (B,T) tensor of integers tok_emb = self.token_embedding_table(idx) # (B,T,C) pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C) x = tok_emb + pos_emb # (B,T,C) x = self.blocks(x) # (B,T,C) x = self.ln_f(x) # (B,T,C) logits = self.lm_head(x) # (B,T,vocab_size) if targets is None: loss = None else: B, T, C = logits.shape logits = logits.view(B*T, C) targets = targets.view(B*T) loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, idx, max_new_tokens): # idx is (B, T) array of indices in the current context for _ in range(max_new_tokens): # crop idx to the last block_size tokens idx_cond = idx[:, -block_size:] # get the predictions logits, loss = self(idx_cond) # focus only on the last time step logits = logits[:, -1, :] # becomes (B, C) # apply softmax to get probabilities probs = F.softmax(logits, dim=-1) # (B, C) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) # append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) return idx model = BigramLanguageModel() m = model.to(device) # print the number of parameters in the model print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters') torch.save(model, 'transformer_model.pth') # create a PyTorch optimizer optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) for iter in range(max_iters): # every once in a while evaluate the loss on train and val sets if iter % eval_interval == 0 or iter == max_iters - 1: losses = estimate_loss() print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") # sample a batch of data xb, yb = get_batch('train') # evaluate the loss logits, loss = model(xb, yb) optimizer.zero_grad(set_to_none=True) loss.backward() optimizer.step() # Load the saved weights into the model #model.load_state_dict(torch.load('transformer_weights.pth')) torch.save(model.state_dict(), 'transformer_weights.pth') print("Model weights loaded successfully.") import torch # Load the entire model model = torch.load('transformer_model.pth') model.eval() # Set the model to evaluation mode print("Entire model loaded successfully.") # generate from the model context = torch.zeros((1, 1), dtype=torch.long, device=device) print(decode(m.generate(context, max_new_tokens=2000)[0].tolist()))