# Copyright (c) 2019 Shigeki Karita # 2020 Mobvoi Inc (Binbin Zhang) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Decoder self-attention layer definition.""" from typing import Dict, Optional, Tuple import torch from torch import nn from wenet.transformer.attention import T_CACHE from wenet.utils.class_utils import WENET_NORM_CLASSES class DecoderLayer(nn.Module): """Single decoder layer module. Args: size (int): Input dimension. self_attn (torch.nn.Module): Self-attention module instance. `MultiHeadedAttention` instance can be used as the argument. src_attn (torch.nn.Module): Inter-attention module instance. `MultiHeadedAttention` instance can be used as the argument. If `None` is passed, Inter-attention is not used, such as CIF, GPT, and other decoder only model. feed_forward (torch.nn.Module): Feed-forward module instance. `PositionwiseFeedForward` instance can be used as the argument. dropout_rate (float): Dropout rate. normalize_before (bool): True: use layer_norm before each sub-block. False: to use layer_norm after each sub-block. """ def __init__( self, size: int, self_attn: nn.Module, src_attn: Optional[nn.Module], feed_forward: nn.Module, dropout_rate: float, normalize_before: bool = True, layer_norm_type: str = 'layer_norm', norm_eps: float = 1e-5, ): """Construct an DecoderLayer object.""" super().__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward assert layer_norm_type in ['layer_norm', 'rms_norm'] self.norm1 = WENET_NORM_CLASSES[layer_norm_type](size, eps=norm_eps) self.norm2 = WENET_NORM_CLASSES[layer_norm_type](size, eps=norm_eps) self.norm3 = WENET_NORM_CLASSES[layer_norm_type](size, eps=norm_eps) self.dropout = nn.Dropout(dropout_rate) self.normalize_before = normalize_before def forward( self, tgt: torch.Tensor, tgt_mask: torch.Tensor, memory: torch.Tensor, memory_mask: torch.Tensor, cache: Optional[Dict[str, Optional[T_CACHE]]] = None ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """Compute decoded features. Args: tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size). tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out). memory (torch.Tensor): Encoded memory (#batch, maxlen_in, size). memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in). cache (torch.Tensor): cached tensors. (#batch, maxlen_out - 1, size). Returns: torch.Tensor: Output tensor (#batch, maxlen_out, size). torch.Tensor: Mask for output tensor (#batch, maxlen_out). torch.Tensor: Encoded memory (#batch, maxlen_in, size). torch.Tensor: Encoded memory mask (#batch, maxlen_in). """ if cache is not None: att_cache = cache['self_att_cache'] cross_att_cache = cache['cross_att_cache'] else: att_cache, cross_att_cache = None, None residual = tgt if self.normalize_before: tgt = self.norm1(tgt) if att_cache is None: tgt_q = tgt tgt_q_mask = tgt_mask att_cache = (torch.empty(0, 0, 0, 0), torch.empty(0, 0, 0, 0)) else: tgt_q = tgt[:, -1:, :] residual = residual[:, -1:, :] tgt_q_mask = tgt_mask[:, -1:, :] x, new_att_cache = self.self_attn( tgt_q, tgt_q, tgt_q, tgt_q_mask, cache=att_cache, ) if cache is not None: cache['self_att_cache'] = new_att_cache x = residual + self.dropout(x) if not self.normalize_before: x = self.norm1(x) if self.src_attn is not None: residual = x if self.normalize_before: x = self.norm2(x) if cross_att_cache is None: cross_att_cache = (torch.empty(0, 0, 0, 0), torch.empty(0, 0, 0, 0)) x, new_cross_cache = self.src_attn(x, memory, memory, memory_mask, cache=cross_att_cache) if cache is not None: cache['cross_att_cache'] = new_cross_cache x = residual + self.dropout(x) if not self.normalize_before: x = self.norm2(x) residual = x if self.normalize_before: x = self.norm3(x) x = residual + self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm3(x) return x, tgt_mask, memory, memory_mask