import gradio as gr import torch from PIL import Image from diffusers import AutoPipelineForText2Image, DDIMScheduler from transformers import CLIPVisionModelWithProjection import numpy as np import spaces image_encoder = CLIPVisionModelWithProjection.from_pretrained( "h94/IP-Adapter", subfolder="models/image_encoder", torch_dtype=torch.float16, ) pipeline = AutoPipelineForText2Image.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, image_encoder=image_encoder, ) pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"]) pipeline.set_ip_adapter_scale([0.7, 0.5]) pipeline.enable_model_cpu_offload() @spaces.GPU def transform_image(face_image): generator = torch.Generator(device="cpu").manual_seed(0) # Check if the input is already a PIL Image if isinstance(face_image, Image.Image): processed_face_image = face_image # If the input is a NumPy array, convert it to a PIL Image elif isinstance(face_image, np.ndarray): processed_face_image = Image.fromarray(face_image) else: raise ValueError("Unsupported image format") # Load the style image from the local path style_image_path = "examples/soyjak2.jpg" style_image = Image.open(style_image_path) # Perform the transformation image = pipeline( prompt="soyjak", ip_adapter_image=[style_image, processed_face_image], negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality", num_inference_steps=30, generator=generator, ).images[0] return image # Gradio interface setup demo = gr.Interface( fn=transform_image, inputs=gr.Image(label="Upload your face image"), outputs=gr.Image(label="Your Soyjak"), title="InstaSoyjak - turn anyone into a Soyjak", description="All you need to do is upload an image. Please use responsibly. Please follow me on Twitter if you like this space: https://twitter.com/angrypenguinPNG. Idea from Yacine, please give him a follow: https://twitter.com/yacineMTB.", ) demo.queue(max_size=20) # Configures the queue with a maximum size of 20 demo.launch()