import gradio as gr import torch from model.models import UNet from scripts.test_functions import process_image, process_video window_size = 512 stride = 256 steps = 18 frame_count = 0 def get_model(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") unet_model = UNet().to(device) unet_model.load_state_dict(torch.load("model/best_unet_model.pth", map_location=device)) unet_model.eval() return unet_model unet_model = get_model() def block_img(image, source_age, target_age): from PIL import Image as PILImage import numpy as np if isinstance(image, str): image = PILImage.open(image).convert('RGB') elif isinstance(image, np.ndarray) and image.dtype == object: image = image.astype(np.uint8) return process_image(unet_model, image, video=False, source_age=source_age, target_age=target_age, window_size=window_size, stride=stride) def block_img_vid(image, source_age): from PIL import Image as PILImage import numpy as np if isinstance(image, str): image = PILImage.open(image).convert('RGB') elif isinstance(image, np.ndarray) and image.dtype == object: image = image.astype(np.uint8) return process_image(unet_model, image, video=True, source_age=source_age, target_age=0, window_size=window_size, stride=stride, steps=steps) def block_vid(video_path, source_age, target_age): return process_video(unet_model, video_path, source_age, target_age, window_size=window_size, stride=stride, frame_count=frame_count) demo_img = gr.Interface( fn=block_img, inputs=[ gr.Image(type="pil"), gr.Slider(10, 90, value=20, step=1, label="Current age", info="Choose your current age"), gr.Slider(10, 90, value=80, step=1, label="Target age", info="Choose the age you want to become") ], outputs="image", examples=[ ['assets/gradio_example_images/1.png', 20, 80], ['assets/gradio_example_images/2.png', 75, 40], ['assets/gradio_example_images/3.png', 30, 70], ['assets/gradio_example_images/4.png', 22, 60], ['assets/gradio_example_images/5.png', 28, 75], ['assets/gradio_example_images/6.png', 35, 15] ], description="Input an image of a person and age them from the source age to the target age." ) demo_img_vid = gr.Interface( fn=block_img_vid, inputs=[ gr.Image(type="pil"), gr.Slider(10, 90, value=20, step=1, label="Current age", info="Choose your current age"), ], outputs=gr.Video(), examples=[ ['assets/gradio_example_images/1.png', 20], ['assets/gradio_example_images/2.png', 75], ['assets/gradio_example_images/3.png', 30], ['assets/gradio_example_images/4.png', 22], ['assets/gradio_example_images/5.png', 28], ['assets/gradio_example_images/6.png', 35] ], description="Input an image of a person and a video will be returned of the person at different ages." ) demo_vid = gr.Interface( fn=block_vid, inputs=[ gr.Video(), gr.Slider(10, 90, value=20, step=1, label="Current age", info="Choose your current age"), gr.Slider(10, 90, value=80, step=1, label="Target age", info="Choose the age you want to become") ], outputs=gr.Video(), examples=[ ['assets/gradio_example_images/orig.mp4', 35, 60], ], description="Input a video of a person, and it will be aged frame-by-frame." ) demo = gr.TabbedInterface([demo_img, demo_img_vid, demo_vid], tab_names=['Image inference demo', 'Image animation demo', 'Video inference demo'], title="Face Re-Aging Demo", ) if __name__ == "__main__": demo.launch()