import gradio as gr from huggingface_hub import InferenceClient import os from threading import Event hf_token = os.getenv("HF_TOKEN") stop_event = Event() models = { "deepseek-ai/DeepSeek-Coder-V2-Instruct": "(한국회사)DeepSeek-Coder-V2-Instruct", "meta-llama/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct", "mistralai/Mixtral-8x7B-Instruct-v0.1": "Mixtral-8x7B-Instruct-v0.1", "CohereForAI/c4ai-command-r-plus": "Cohere Command-R Plus" } def get_client(model): return InferenceClient(model=model, token=hf_token) MAX_HISTORY_LENGTH = 5 # 히스토리에 유지할 최대 대화 수 def truncate_history(history): return history[-MAX_HISTORY_LENGTH:] if len(history) > MAX_HISTORY_LENGTH else history def respond(message, system_message, max_tokens, temperature, top_p, selected_model): stop_event.clear() client = InferenceClient(model=selected_model, token=hf_token) messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": message} ] try: response = "" for chunk in client.text_generation( prompt="\n".join([f"{m['role']}: {m['content']}" for m in messages]), max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True ): if stop_event.is_set(): break if chunk: response += chunk yield [(message, response)] except Exception as e: yield [(message, f"오류 발생: {str(e)}")] def stop_generation(): stop_event.set() return "생성이 중단되었습니다." def stop_generation(): stop_event.set() return "생성이 중단되었습니다." def regenerate(chat_history, system_message, max_tokens, temperature, top_p, selected_model): if not chat_history: return "대화 내역이 없습니다." last_user_message = chat_history[-1][0] return respond(last_user_message, chat_history[:-1], system_message, max_tokens, temperature, top_p, selected_model) def continue_writing(last_response, system_message, max_tokens, temperature, top_p, selected_model): stop_event.clear() client = InferenceClient(model=selected_model, token=hf_token) prompt = f"이전 응답을 이어서 작성해주세요. 이전 응답: {last_response}" messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": prompt} ] try: response = last_response for chunk in client.text_generation( prompt="\n".join([f"{m['role']}: {m['content']}" for m in messages]), max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True ): if stop_event.is_set(): break if chunk: response += chunk yield [("계속 작성", response)] except Exception as e: yield [("계속 작성", f"오류 발생: {str(e)}")] # Gradio 인터페이스 수정 with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox(label="메시지 입력") with gr.Row(): send = gr.Button("전송") continue_btn = gr.Button("계속 작성") stop = gr.Button("🛑 생성 중단") clear = gr.Button("🗑️ 대화 내역 지우기") with gr.Accordion("추가 설정", open=True): system_message = gr.Textbox( value="너는 나의 최고의 비서이다.\n내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.\n반드시 한글로 답변할것.", label="시스템 메시지", lines=5 ) max_tokens = gr.Slider(minimum=1, maximum=2000, value=500, step=100, label="최대 새 토큰 수") temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="온도") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.90, step=0.05, label="Top-p (핵 샘플링)") model = gr.Radio(list(models.keys()), value=list(models.keys())[0], label="언어 모델 선택", info="사용할 언어 모델을 선택하세요") # Event handlers send.click(respond, inputs=[msg, system_message, max_tokens, temperature, top_p, model], outputs=[chatbot]) msg.submit(respond, inputs=[msg, system_message, max_tokens, temperature, top_p, model], outputs=[chatbot]) continue_btn.click(continue_writing, inputs=[lambda: chatbot[-1][1] if chatbot else "", system_message, max_tokens, temperature, top_p, model], outputs=[chatbot]) stop.click(stop_generation, outputs=[msg]) clear.click(lambda: None, outputs=[chatbot]) if __name__ == "__main__": if not hf_token: print("경고: HF_TOKEN 환경 변수가 설정되지 않았습니다. 일부 모델에 접근할 수 없을 수 있습니다.") demo.launch()