Spaces:
AIR-Bench
/
Running on CPU Upgrade

leaderboard / app.py
nan's picture
feat: add versioning for the qa retrieval
23b3543
raw
history blame
23.9 kB
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from src.about import (
INTRODUCTION_TEXT,
TITLE
)
from src.benchmarks import (
QABenchmarks,
LongDocBenchmarks
)
from src.display.css_html_js import custom_css
from src.envs import (
API,
EVAL_RESULTS_PATH,
REPO_ID, DEFAULT_METRIC_QA, DEFAULT_METRIC_LONG_DOC, METRIC_LIST, LATEST_BENCHMARK_VERSION, COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL, BM25_LINK
)
from src.loaders import (
load_eval_results
)
from src.utils import (
update_metric,
set_listeners,
reset_rank,
remove_html
)
from src.display.gradio_formatting import (
get_version_dropdown,
get_search_bar,
get_reranking_dropdown,
get_noreranking_dropdown,
get_metric_dropdown,
get_domain_dropdown,
get_language_dropdown,
get_anonymous_checkbox,
get_revision_and_ts_checkbox,
get_leaderboard_table
)
def restart_space():
API.restart_space(repo_id=REPO_ID)
# try:
# snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
# token=TOKEN
# )
# except Exception as e:
# print(f'failed to download')
# restart_space()
global data
data = load_eval_results(EVAL_RESULTS_PATH)
global datastore
datastore = data[LATEST_BENCHMARK_VERSION]
def update_metric_qa(
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
show_anonymous: bool,
show_revision_and_timestamp: bool,
):
return update_metric(datastore, 'qa', metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp)
# def update_metric_long_doc(
# metric: str,
# domains: list,
# langs: list,
# reranking_model: list,
# query: str,
# show_anonymous: bool,
# show_revision_and_timestamp,
# ):
# return update_metric(datastore.raw_data, "long-doc", metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp)
def update_datastore(version):
global datastore
global data
datastore = data[version]
selected_domains = get_domain_dropdown(QABenchmarks[datastore.slug])
selected_langs = get_language_dropdown(QABenchmarks[datastore.slug])
selected_rerankings = get_reranking_dropdown(datastore.reranking_models)
leaderboard_table = get_leaderboard_table(
datastore.raw_df_qa, datastore.types_qa)
hidden_leaderboard_table_for_search = get_leaderboard_table(
datastore.raw_df_qa, datastore.types_qa, visible=False)
return selected_domains, selected_langs, selected_rerankings, leaderboard_table, hidden_leaderboard_table_for_search
# DOMAIN_COLS_LONG_DOC = list(frozenset([c.value.domain for c in list(LongDocBenchmarks)]))
# LANG_COLS_LONG_DOC = list(frozenset([c.value.lang for c in list(LongDocBenchmarks)]))
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("Results", elem_id="results-tab-table"):
with gr.Row():
selected_version = get_version_dropdown()
with gr.TabItem("QA", elem_id="qa-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column(min_width=320):
# select domain
with gr.Row():
selected_domains = get_domain_dropdown(QABenchmarks[datastore.slug])
# select language
with gr.Row():
selected_langs = get_language_dropdown(QABenchmarks[datastore.slug])
with gr.Column():
# select the metric
selected_metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC_QA)
with gr.Row():
show_anonymous = get_anonymous_checkbox()
with gr.Row():
show_revision_and_timestamp = get_revision_and_ts_checkbox()
with gr.Tabs(elem_classes="tab-buttons") as sub_tabs:
with gr.TabItem("Retrieval + Reranking", id=10):
with gr.Row():
# search retrieval models
with gr.Column():
search_bar = get_search_bar()
# select reranking models
with gr.Column():
selected_rerankings = get_reranking_dropdown(datastore.reranking_models)
# shown_table
lb_table = get_leaderboard_table(
datastore.leaderboard_df_qa, datastore.types_qa)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_lb_table = get_leaderboard_table(
datastore.raw_df_qa, datastore.types_qa, visible=False)
selected_version.change(
update_datastore,
[selected_version,],
[selected_domains, selected_langs, selected_rerankings, lb_table, hidden_lb_table]
)
set_listeners(
"qa",
lb_table,
hidden_lb_table,
search_bar,
selected_version,
selected_domains,
selected_langs,
selected_rerankings,
show_anonymous,
show_revision_and_timestamp,
)
# set metric listener
selected_metric.change(
update_metric_qa,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings,
search_bar,
show_anonymous,
show_revision_and_timestamp,
],
lb_table,
queue=True
)
with gr.TabItem("Retrieval Only", id=11):
with gr.Row():
with gr.Column(scale=1):
search_bar_retriever = get_search_bar()
with gr.Column(scale=1):
selected_noreranker = get_noreranking_dropdown()
lb_df_retriever = datastore.leaderboard_df_qa[datastore.leaderboard_df_qa[COL_NAME_RERANKING_MODEL] == "NoReranker"]
lb_df_retriever = reset_rank(lb_df_retriever)
lb_table_retriever = get_leaderboard_table(lb_df_retriever, datastore.types_qa)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_lb_df_retriever = datastore.raw_df_qa[datastore.raw_df_qa[COL_NAME_RERANKING_MODEL] == "NoReranker"]
hidden_lb_df_retriever = reset_rank(hidden_lb_df_retriever)
hidden_lb_table_retriever = get_leaderboard_table(hidden_lb_df_retriever, datastore.types_qa, visible=False)
selected_version.change(
update_datastore,
[selected_version,],
[selected_domains, selected_langs, selected_rerankings, lb_table_retriever, hidden_lb_table_retriever]
)
set_listeners(
"qa",
lb_table_retriever,
hidden_lb_table_retriever,
search_bar_retriever,
selected_version,
selected_domains,
selected_langs,
selected_noreranker,
show_anonymous,
show_revision_and_timestamp,
)
# set metric listener
selected_metric.change(
update_metric_qa,
[
selected_metric,
selected_domains,
selected_langs,
selected_noreranker,
search_bar_retriever,
show_anonymous,
show_revision_and_timestamp,
],
lb_table_retriever,
queue=True
)
with gr.TabItem("Reranking Only", id=12):
lb_df_reranker = datastore.leaderboard_df_qa[datastore.leaderboard_df_qa[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK]
lb_df_reranker = reset_rank(lb_df_reranker)
reranking_models_reranker = lb_df_reranker[COL_NAME_RERANKING_MODEL].apply(remove_html).unique().tolist()
with gr.Row():
with gr.Column(scale=1):
selected_rerankings_reranker = get_reranking_dropdown(reranking_models_reranker)
with gr.Column(scale=1):
search_bar_reranker = gr.Textbox(show_label=False, visible=False)
lb_table_reranker = get_leaderboard_table(lb_df_reranker, datastore.types_qa)
hidden_lb_df_reranker = datastore.raw_df_qa[datastore.raw_df_qa[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK]
hidden_lb_df_reranker = reset_rank(hidden_lb_df_reranker)
hidden_lb_table_reranker = get_leaderboard_table(
hidden_lb_df_reranker, datastore.types_qa, visible=False
)
selected_version.change(
update_datastore,
[selected_version,],
[selected_domains, selected_langs, selected_rerankings_reranker, lb_table_reranker, hidden_lb_table_reranker]
)
set_listeners(
"qa",
lb_table_reranker,
hidden_lb_table_reranker,
search_bar_reranker,
selected_version,
selected_domains,
selected_langs,
selected_rerankings_reranker,
show_anonymous,
show_revision_and_timestamp,
)
# set metric listener
selected_metric.change(
update_metric_qa,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings_reranker,
search_bar_reranker,
show_anonymous,
show_revision_and_timestamp,
],
lb_table_reranker,
queue=True
)
"""
with gr.TabItem("Long Doc", elem_id="long-doc-benchmark-tab-table", id=1):
with gr.Row():
with gr.Column(min_width=320):
# select domain
with gr.Row():
selected_domains = get_domain_dropdown(DOMAIN_COLS_LONG_DOC, DOMAIN_COLS_LONG_DOC)
# select language
with gr.Row():
selected_langs = get_language_dropdown(
LANG_COLS_LONG_DOC, LANG_COLS_LONG_DOC
)
with gr.Column():
# select the metric
with gr.Row():
selected_metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC_LONG_DOC)
with gr.Row():
show_anonymous = get_anonymous_checkbox()
with gr.Row():
show_revision_and_timestamp = get_revision_and_ts_checkbox()
with gr.Tabs(elem_classes="tab-buttons") as sub_tabs:
with gr.TabItem("Retrieval + Reranking", id=20):
with gr.Row():
with gr.Column():
search_bar = get_search_bar()
# select reranking model
with gr.Column():
selected_rerankings = get_reranking_dropdown(data["AIR-Bench_24.04"].reranking_models)
lb_table = get_leaderboard_table(
data["AIR-Bench_24.04"].leaderboard_df_long_doc, data["AIR-Bench_24.04"].types_long_doc
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_lb_table_for_search = get_leaderboard_table(
data["AIR-Bench_24.04"].raw_df_long_doc, data["AIR-Bench_24.04"].types_long_doc, visible=False
)
set_listeners(
"long-doc",
lb_table,
hidden_lb_table_for_search,
search_bar,
selected_domains,
selected_langs,
selected_rerankings,
show_anonymous,
show_revision_and_timestamp,
)
# set metric listener
selected_metric.change(
update_metric_long_doc,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings,
search_bar,
show_anonymous,
show_revision_and_timestamp
],
lb_table,
queue=True
)
with gr.TabItem("Retrieval Only", id=21):
with gr.Row():
with gr.Column(scale=1):
search_bar_retriever = get_search_bar()
with gr.Column(scale=1):
selected_noreranker = get_noreranking_dropdown()
lb_df_retriever_long_doc = data["AIR-Bench_24.04"].leaderboard_df_long_doc[
data["AIR-Bench_24.04"].leaderboard_df_long_doc[COL_NAME_RERANKING_MODEL] == "NoReranker"
]
lb_df_retriever_long_doc = reset_rank(lb_df_retriever_long_doc)
hidden_lb_db_retriever_long_doc = data["AIR-Bench_24.04"].raw_df_long_doc[
data["AIR-Bench_24.04"].raw_df_long_doc[COL_NAME_RERANKING_MODEL] == "NoReranker"
]
hidden_lb_db_retriever_long_doc = reset_rank(hidden_lb_db_retriever_long_doc)
lb_table_retriever_long_doc = get_leaderboard_table(
lb_df_retriever_long_doc, data["AIR-Bench_24.04"].types_long_doc)
hidden_lb_table_retriever_long_doc = get_leaderboard_table(
hidden_lb_db_retriever_long_doc, data["AIR-Bench_24.04"].types_long_doc, visible=False
)
set_listeners(
"long-doc",
lb_table_retriever_long_doc,
hidden_lb_table_retriever_long_doc,
search_bar_retriever,
selected_domains,
selected_langs,
selected_noreranker,
show_anonymous,
show_revision_and_timestamp,
)
selected_metric.change(
update_metric_long_doc,
[
selected_metric,
selected_domains,
selected_langs,
selected_noreranker,
search_bar_retriever,
show_anonymous,
show_revision_and_timestamp,
],
lb_table_retriever_long_doc,
queue=True
)
with gr.TabItem("Reranking Only", id=22):
lb_df_reranker_ldoc = data["AIR-Bench_24.04"].leaderboard_df_long_doc[
data["AIR-Bench_24.04"].leaderboard_df_long_doc[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK
]
lb_df_reranker_ldoc = reset_rank(lb_df_reranker_ldoc)
reranking_models_reranker_ldoc = lb_df_reranker_ldoc[COL_NAME_RERANKING_MODEL].apply(remove_html).unique().tolist()
with gr.Row():
with gr.Column(scale=1):
selected_rerankings_reranker_ldoc = get_reranking_dropdown(reranking_models_reranker_ldoc)
with gr.Column(scale=1):
search_bar_reranker_ldoc = gr.Textbox(show_label=False, visible=False)
lb_table_reranker_ldoc = get_leaderboard_table(lb_df_reranker_ldoc, data["AIR-Bench_24.04"].types_long_doc)
hidden_lb_df_reranker_ldoc = data["AIR-Bench_24.04"].raw_df_long_doc[data["AIR-Bench_24.04"].raw_df_long_doc[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK]
hidden_lb_df_reranker_ldoc = reset_rank(hidden_lb_df_reranker_ldoc)
hidden_lb_table_reranker_ldoc = get_leaderboard_table(
hidden_lb_df_reranker_ldoc, data["AIR-Bench_24.04"].types_long_doc, visible=False
)
set_listeners(
"long-doc",
lb_table_reranker_ldoc,
hidden_lb_table_reranker_ldoc,
search_bar_reranker_ldoc,
selected_domains,
selected_langs,
selected_rerankings_reranker_ldoc,
show_anonymous,
show_revision_and_timestamp,
)
selected_metric.change(
update_metric_long_doc,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings_reranker_ldoc,
search_bar_reranker_ldoc,
show_anonymous,
show_revision_and_timestamp,
],
lb_table_reranker_ldoc,
queue=True
)
with gr.TabItem("🚀Submit here!", elem_id="submit-tab-table", id=2):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("## ✉️Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name = gr.Textbox(label="Retrieval Method name")
with gr.Column():
model_url = gr.Textbox(label="Retrieval Method URL")
with gr.Row():
with gr.Column():
reranking_model_name = gr.Textbox(
label="Reranking Model name",
info="Optional",
value="NoReranker"
)
with gr.Column():
reranking_model_url = gr.Textbox(
label="Reranking Model URL",
info="Optional",
value=""
)
with gr.Row():
with gr.Column():
benchmark_version = gr.Dropdown(
BENCHMARK_VERSION_LIST,
value=LATEST_BENCHMARK_VERSION,
interactive=True,
label="AIR-Bench Version")
with gr.Row():
upload_button = gr.UploadButton("Click to upload search results", file_count="single")
with gr.Row():
file_output = gr.File()
with gr.Row():
is_anonymous = gr.Checkbox(
label="Nope. I want to submit anonymously 🥷",
value=False,
info="Do you want to shown on the leaderboard by default?")
with gr.Row():
submit_button = gr.Button("Submit")
with gr.Row():
submission_result = gr.Markdown()
upload_button.upload(
upload_file,
[
upload_button,
],
file_output)
submit_button.click(
submit_results,
[
file_output,
model_name,
model_url,
reranking_model_name,
reranking_model_url,
benchmark_version,
is_anonymous
],
submission_result,
show_progress="hidden"
)
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text")
"""
if __name__ == "__main__":
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40)
demo.launch()