Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import torch | |
from peft import PeftModel | |
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer | |
from alpaca.utils.prompter import Prompter | |
if torch.cuda.is_available(): | |
device = "cuda" | |
else: | |
device = "cpu" | |
try: | |
if torch.backends.mps.is_available(): | |
device = "mps" | |
except: # noqa: E722 | |
pass | |
class AlpacaLora: | |
def __init__(self, load_8bit: bool = True, | |
base_model: str = "decapoda-research/llama-7b-hf", | |
lora_weights: str = "tloen/alpaca-lora-7b", | |
prompt_template: str = ""): | |
base_model = base_model or os.environ.get("BASE_MODEL", "") | |
assert ( | |
base_model | |
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'" | |
self.prompter = Prompter(prompt_template) | |
self.tokenizer = LlamaTokenizer.from_pretrained(base_model) | |
if device == "cuda": | |
self.model = LlamaForCausalLM.from_pretrained( | |
base_model, | |
load_in_8bit=load_8bit, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
) | |
self.model = PeftModel.from_pretrained( | |
self.model, | |
lora_weights, | |
torch_dtype=torch.float16, | |
) | |
elif device == "mps": | |
self.model = LlamaForCausalLM.from_pretrained( | |
base_model, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
self.model = PeftModel.from_pretrained( | |
self.model, | |
lora_weights, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
else: | |
self.model = LlamaForCausalLM.from_pretrained( | |
base_model, device_map={"": device}, low_cpu_mem_usage=True | |
) | |
self.model = PeftModel.from_pretrained( | |
self.model, | |
lora_weights, | |
device_map={"": device}, | |
) | |
# unwind broken decapoda-research config | |
self.model.config.pad_token_id = self.tokenizer.pad_token_id = 0 # unk | |
self.model.config.bos_token_id = 1 | |
self.model.config.eos_token_id = 2 | |
if not load_8bit: | |
self.model.half() # seems to fix bugs for some users. | |
self.model.eval() | |
if torch.__version__ >= "2" and sys.platform != "win32": | |
model = torch.compile(self.model) | |
def lora_generate(self, instruction, input): | |
# evaluate | |
temperature = 0 | |
top_p = 0.75 | |
top_k = 40 | |
num_beams = 4 | |
max_new_tokens = 128 | |
stream_output = False | |
prompt = self.prompter.generate_prompt(instruction, input) | |
inputs = self.tokenizer(prompt, return_tensors="pt") | |
input_ids = inputs["input_ids"].to(device) | |
generation_config = GenerationConfig( | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
num_beams=num_beams, | |
) | |
generate_params = { | |
"input_ids": input_ids, | |
"generation_config": generation_config, | |
"return_dict_in_generate": True, | |
"output_scores": True, | |
"max_new_tokens": max_new_tokens, | |
} | |
with torch.no_grad(): | |
generation_output = self.model.generate( | |
input_ids=input_ids, | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=True, | |
max_new_tokens=max_new_tokens, | |
) | |
s = generation_output.sequences[0] | |
output = self.tokenizer.decode(s) | |
return self.prompter.get_response(output), prompt | |
# PARAMS | |
load_8bit: bool = True | |
base_model: str = "decapoda-research/llama-7b-hf" | |
lora_weights: str = "./lora-alpaca" # "tloen/alpaca-lora-7b" | |
prompt_template: str = "" | |
server_name: str = "0.0.0.0" | |
share_gradio: bool = False | |