import gradio as gr import joblib # Function to load your model (adjust the path and method if needed) def load_model(): # This path is relative to the root of your Hugging Face Space model_path = "./random_forest_model_3labels2.joblib" model = joblib.load(model_path) return model # Function to predict hate speech from text input def predict_hate_speech(text): model = load_model() # Load your model prediction = model.predict([text]) # Assuming your model outputs integers representing classes, you might want to convert # these to more readable labels. Adjust these labels according to your model's output. labels = {0: 'Neutral or Ambiguous', 1: 'Not Hate', 2: 'Offensive or Hate Speech'} return labels[prediction[0]] # Adjusted Gradio interface to take text input and output model predictions iface = gr.Interface(fn=predict_hate_speech, inputs=gr.inputs.Textbox(lines=2, placeholder="Enter Text Here..."), outputs="text", description="Detects hate speech in text. Outputs 'No Hate Speech', 'Offensive Language', or 'Hate Speech'.") iface.launch() """ import gradio as gr def greet(name): return "Hello " + name + "!!" iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch() """