import numpy as np import torch import torch.nn as nn class Discriminator2DFactory(nn.Module): def __init__(self, time_length, freq_length=80, kernel=(3, 3), c_in=1, hidden_size=128, norm_type='bn', reduction='sum'):# if reduction = 'sum', return shape (B,1),else reduction shape(B,T) super(Discriminator2DFactory, self).__init__() padding = (kernel[0] // 2, kernel[1] // 2) def discriminator_block(in_filters, out_filters, first=False): """ Input: (B, in, 2H, 2W) Output:(B, out, H, W) """ conv = nn.Conv2d(in_filters, out_filters, kernel, (2, 2), padding) if norm_type == 'sn': conv = nn.utils.spectral_norm(conv) block = [ conv, # padding = kernel//2 nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25) ] if norm_type == 'bn' and not first: block.append(nn.BatchNorm2d(out_filters, 0.8)) if norm_type == 'in' and not first: block.append(nn.InstanceNorm2d(out_filters, affine=True)) block = nn.Sequential(*block) return block self.model = nn.ModuleList([ discriminator_block(c_in, hidden_size, first=True), discriminator_block(hidden_size, hidden_size), discriminator_block(hidden_size, hidden_size), ]) self.reduction = reduction ds_size = (time_length // 2 ** 3, (freq_length + 7) // 2 ** 3) if reduction != 'none': # The height and width of downsampled image self.adv_layer = nn.Linear(hidden_size * ds_size[0] * ds_size[1], 1) else: self.adv_layer = nn.Linear(hidden_size * ds_size[1], 1) def forward(self, x): """ :param x: [B, C, T, n_bins] :return: validity: [B, 1], h: List of hiddens """ h = [] for l in self.model: x = l(x) h.append(x) if self.reduction != 'none': x = x.view(x.shape[0], -1) validity = self.adv_layer(x) # [B, 1] else: B, _, T_, _ = x.shape x = x.transpose(1, 2).reshape(B, T_, -1) validity = self.adv_layer(x)[:, :, 0] # [B, T] return validity, h class MultiWindowDiscriminator(nn.Module): def __init__(self, time_lengths, cond_size=0, freq_length=80, kernel=(3, 3), c_in=1, hidden_size=128, norm_type='bn', reduction='sum'): super(MultiWindowDiscriminator, self).__init__() self.win_lengths = time_lengths self.reduction = reduction self.conv_layers = nn.ModuleList() if cond_size > 0: self.cond_proj_layers = nn.ModuleList() self.mel_proj_layers = nn.ModuleList() for time_length in time_lengths: conv_layer = [ Discriminator2DFactory( time_length, freq_length, kernel, c_in=c_in, hidden_size=hidden_size, norm_type=norm_type, reduction=reduction) ] self.conv_layers += conv_layer if cond_size > 0: self.cond_proj_layers.append(nn.Linear(cond_size, freq_length)) self.mel_proj_layers.append(nn.Linear(freq_length, freq_length)) def forward(self, x, x_len, cond=None, start_frames_wins=None): ''' Args: x (tensor): input mel, (B, c_in, T, n_bins). x_length (tensor): len of per mel. (B,). Returns: tensor : (B). ''' validity = [] if start_frames_wins is None: start_frames_wins = [None] * len(self.conv_layers) h = [] for i, start_frames in zip(range(len(self.conv_layers)), start_frames_wins): x_clip, c_clip, start_frames = self.clip( x, cond, x_len, self.win_lengths[i], start_frames) # x_clip:(B, 1, win_length, C) start_frames_wins[i] = start_frames if x_clip is None: continue if cond is not None: x_clip = self.mel_proj_layers[i](x_clip) # (B, 1, win_length, C) c_clip = self.cond_proj_layers[i](c_clip)[:, None] # (B, 1, win_length, C) x_clip = x_clip + c_clip x_clip, h_ = self.conv_layers[i](x_clip) h += h_ validity.append(x_clip) if len(validity) != len(self.conv_layers): return None, start_frames_wins, h if self.reduction == 'sum': validity = sum(validity) # [B] elif self.reduction == 'stack': validity = torch.stack(validity, -1) # [B, W_L] elif self.reduction == 'none': validity = torch.cat(validity, -1) # [B, W_sum] return validity, start_frames_wins, h def clip(self, x, cond, x_len, win_length, start_frames=None): '''Ramdom clip x to win_length. Args: x (tensor) : (B, c_in, T, n_bins). cond (tensor) : (B, T, H). x_len (tensor) : (B,). win_length (int): target clip length Returns: (tensor) : (B, c_in, win_length, n_bins). ''' T_start = 0 T_end = x_len.max() - win_length # if x_len < win_length. None will be returned if T_end < 0: return None, None, start_frames T_end = T_end.item() if start_frames is None: start_frame = np.random.randint(low=T_start, high=T_end + 1) start_frames = [start_frame] * x.size(0) else: start_frame = start_frames[0] x_batch = x[:, :, start_frame: start_frame + win_length] c_batch = cond[:, start_frame: start_frame + win_length] if cond is not None else None return x_batch, c_batch, start_frames class Discriminator(nn.Module): def __init__(self, time_lengths=[32, 64, 128], freq_length=80, cond_size=0, kernel=(3, 3), c_in=1, hidden_size=128, norm_type='bn', reduction='sum', uncond_disc=True): super(Discriminator, self).__init__() self.time_lengths = time_lengths self.cond_size = cond_size self.reduction = reduction self.uncond_disc = uncond_disc if uncond_disc: self.discriminator = MultiWindowDiscriminator( freq_length=freq_length, time_lengths=time_lengths, kernel=kernel, c_in=c_in, hidden_size=hidden_size, norm_type=norm_type, reduction=reduction ) if cond_size > 0: self.cond_disc = MultiWindowDiscriminator( freq_length=freq_length, time_lengths=time_lengths, cond_size=cond_size, kernel=kernel, c_in=c_in, hidden_size=hidden_size, norm_type=norm_type, reduction=reduction ) def forward(self, x, cond=None,x_len=None, start_frames_wins=None): """ :param x: [B, T, 80] :param cond: [B, T, cond_size] :param return_y_only: :return: """ if len(x.shape) == 3: x = x[:, None, :, :] if x_len == None: # print("注意这里x_len的统计方式有问题这里假设padvalue是0,此外reconstruction注意传入之前就要处理好mask") x_len = x.sum([1, -1]).ne(0).int().sum([-1]) # shape(B,) ret = {'y_c': None, 'y': None} if self.uncond_disc: ret['y'], start_frames_wins, ret['h'] = self.discriminator( x, x_len, start_frames_wins=start_frames_wins) if self.cond_size > 0 and cond is not None: ret['y_c'], start_frames_wins, ret['h_c'] = self.cond_disc( x, x_len, cond, start_frames_wins=start_frames_wins) ret['start_frames_wins'] = start_frames_wins return ret