Spaces:
Running
on
Zero
Running
on
Zero
from glob import glob | |
from torch.utils.data import Dataset | |
import numpy as np | |
import pandas as pd | |
class TSVDataset(Dataset): | |
def __init__(self, tsv_path, spec_crop_len=None): | |
super().__init__() | |
self.batch_max_length = spec_crop_len | |
self.batch_min_length = 50 | |
df = pd.read_csv(tsv_path,sep='\t') | |
df = self.add_name_num(df) | |
self.dataset = df | |
print('dataset len:', len(self.dataset)) | |
def add_name_num(self,df): | |
"""each file may have different caption, we add num to filename to identify each audio-caption pair""" | |
name_count_dict = {} | |
change = [] | |
for t in df.itertuples(): | |
name = getattr(t,'name') | |
if name in name_count_dict: | |
name_count_dict[name] += 1 | |
else: | |
name_count_dict[name] = 0 | |
change.append((t[0],name_count_dict[name])) | |
for t in change: | |
df.loc[t[0],'name'] = df.loc[t[0],'name'] + f'_{t[1]}' | |
return df | |
def __getitem__(self, idx): | |
data = self.dataset.iloc[idx] | |
item = {} | |
spec = np.load(data['mel_path']) # mel spec [80, 624] | |
if spec.shape[1] <= self.batch_max_length: | |
spec = np.pad(spec, ((0, 0), (0, self.batch_max_length - spec.shape[1]))) # [80, 624] | |
item['image'] = spec | |
item["caption"] = data['caption'] | |
item["f_name"] = data['name'] | |
return item | |
def __len__(self): | |
return len(self.dataset) | |
class TSVDatasetStruct(TSVDataset): | |
def __getitem__(self, idx): | |
data = self.dataset.iloc[idx] | |
item = {} | |
spec = np.load(data['mel_path']) # mel spec [80, 624] | |
if spec.shape[1] <= self.batch_max_length: | |
spec = np.pad(spec, ((0, 0), (0, self.batch_max_length - spec.shape[1]))) # [80, 624] | |
item['image'] = spec[:,:self.batch_max_length] | |
item["caption"] = {'ori_caption':data['ori_cap'],'struct_caption':data['caption']} | |
item["f_name"] = data['name'] | |
return item | |
class TSVDatasetTestFake(TSVDataset): | |
def __init__(self, specs_dataset_cfg): | |
super().__init__(phase='test', **specs_dataset_cfg) | |
self.dataset = [self.dataset[0]] | |