AudioLCM / ldm /data /tsvdataset.py
liuhuadai's picture
Upload 340 files
6efc863 verified
raw
history blame
2.23 kB
from glob import glob
from torch.utils.data import Dataset
import numpy as np
import pandas as pd
class TSVDataset(Dataset):
def __init__(self, tsv_path, spec_crop_len=None):
super().__init__()
self.batch_max_length = spec_crop_len
self.batch_min_length = 50
df = pd.read_csv(tsv_path,sep='\t')
df = self.add_name_num(df)
self.dataset = df
print('dataset len:', len(self.dataset))
def add_name_num(self,df):
"""each file may have different caption, we add num to filename to identify each audio-caption pair"""
name_count_dict = {}
change = []
for t in df.itertuples():
name = getattr(t,'name')
if name in name_count_dict:
name_count_dict[name] += 1
else:
name_count_dict[name] = 0
change.append((t[0],name_count_dict[name]))
for t in change:
df.loc[t[0],'name'] = df.loc[t[0],'name'] + f'_{t[1]}'
return df
def __getitem__(self, idx):
data = self.dataset.iloc[idx]
item = {}
spec = np.load(data['mel_path']) # mel spec [80, 624]
if spec.shape[1] <= self.batch_max_length:
spec = np.pad(spec, ((0, 0), (0, self.batch_max_length - spec.shape[1]))) # [80, 624]
item['image'] = spec
item["caption"] = data['caption']
item["f_name"] = data['name']
return item
def __len__(self):
return len(self.dataset)
class TSVDatasetStruct(TSVDataset):
def __getitem__(self, idx):
data = self.dataset.iloc[idx]
item = {}
spec = np.load(data['mel_path']) # mel spec [80, 624]
if spec.shape[1] <= self.batch_max_length:
spec = np.pad(spec, ((0, 0), (0, self.batch_max_length - spec.shape[1]))) # [80, 624]
item['image'] = spec[:,:self.batch_max_length]
item["caption"] = {'ori_caption':data['ori_cap'],'struct_caption':data['caption']}
item["f_name"] = data['name']
return item
class TSVDatasetTestFake(TSVDataset):
def __init__(self, specs_dataset_cfg):
super().__init__(phase='test', **specs_dataset_cfg)
self.dataset = [self.dataset[0]]