import numpy as np class NoneSchedule(object): def __init__(self, optimizer, lr): self.optimizer = optimizer self.constant_lr = lr self.step(0) def step(self, num_updates): self.lr = self.constant_lr for param_group in self.optimizer.param_groups: param_group['lr'] = self.lr return self.lr def get_lr(self): return self.optimizer.param_groups[0]['lr'] def get_last_lr(self): return self.get_lr() class RSQRTSchedule(NoneSchedule): def __init__(self, optimizer, lr, warmup_updates, hidden_size): self.optimizer = optimizer self.constant_lr = lr self.warmup_updates = warmup_updates self.hidden_size = hidden_size self.lr = lr for param_group in optimizer.param_groups: param_group['lr'] = self.lr self.step(0) def step(self, num_updates): constant_lr = self.constant_lr warmup = min(num_updates / self.warmup_updates, 1.0) rsqrt_decay = max(self.warmup_updates, num_updates) ** -0.5 rsqrt_hidden = self.hidden_size ** -0.5 self.lr = max(constant_lr * warmup * rsqrt_decay * rsqrt_hidden, 1e-6) for param_group in self.optimizer.param_groups: param_group['lr'] = self.lr return self.lr class WarmupSchedule(NoneSchedule): def __init__(self, optimizer, lr, warmup_updates): self.optimizer = optimizer self.constant_lr = self.lr = lr self.warmup_updates = warmup_updates for param_group in optimizer.param_groups: param_group['lr'] = self.lr self.step(0) def step(self, num_updates): constant_lr = self.constant_lr warmup = min(num_updates / self.warmup_updates, 1.0) self.lr = max(constant_lr * warmup, 1e-7) for param_group in self.optimizer.param_groups: param_group['lr'] = self.lr return self.lr class CosineSchedule(NoneSchedule): def __init__(self, optimizer, lr, warmup_updates, total_updates): self.optimizer = optimizer self.constant_lr = lr self.warmup_updates = warmup_updates self.total_updates = total_updates self.lr = lr self.assign_learning_rate(self.optimizer, self.lr) self.step(0) def assign_learning_rate(self, optimizer, new_lr): for param_group in optimizer.param_groups: param_group["lr"] = new_lr def _warmup_lr(self, base_lr, warmup_length, step): return base_lr * (step + 1) / warmup_length def step(self, num_updates): if num_updates < self.warmup_updates: lr = self._warmup_lr(self.lr, self.warmup_updates, num_updates) else: e = num_updates - self.warmup_updates es = self.total_updates - self.warmup_updates lr = 0.5 * (1 + np.cos(np.pi * e / es)) * self.lr self.assign_learning_rate(self.optimizer, lr) return lr if __name__ == '__main__': import numpy as np import matplotlib.pyplot as plt import torch def plot_scheduler(scheduler, label=None): y = np.array([scheduler.step(x) for x in range(0,160000, 10)]) x = np.arange(0,160000, 10) plt.plot(x, y, label=label) dummy_model = torch.nn.Linear(10,10) dummy_optimizer = torch.optim.Adam(dummy_model.parameters()) rsqrt = CosineSchedule(dummy_optimizer, lr=0.0005, warmup_updates=10000, total_updates=160000) plot_scheduler(rsqrt, "8000") plt.savefig("0.png")