import torch import os class TTSInference: def __init__(self, device=None): print("Initializing TTS model to %s" % device) from .tasks.tts.tts_utils import load_data_preprocessor from .utils.commons.hparams import set_hparams if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' self.hparams = set_hparams("text_to_speech/checkpoints/ljspeech/ps_adv_baseline/config.yaml") self.device = device self.data_dir = 'text_to_speech/checkpoints/ljspeech/data_info' self.preprocessor, self.preprocess_args = load_data_preprocessor() self.ph_encoder, self.word_encoder = self.preprocessor.load_dict(self.data_dir) self.spk_map = self.preprocessor.load_spk_map(self.data_dir) self.model = self.build_model() self.model.eval() self.model.to(self.device) self.vocoder = self.build_vocoder() self.vocoder.eval() self.vocoder.to(self.device) print("TTS loaded!") def build_model(self): from .utils.commons.ckpt_utils import load_ckpt from .modules.tts.portaspeech.portaspeech import PortaSpeech ph_dict_size = len(self.ph_encoder) word_dict_size = len(self.word_encoder) model = PortaSpeech(ph_dict_size, word_dict_size, self.hparams) load_ckpt(model, 'text_to_speech/checkpoints/ljspeech/ps_adv_baseline', 'model') model.to(self.device) with torch.no_grad(): model.store_inverse_all() model.eval() return model def forward_model(self, inp): sample = self.input_to_batch(inp) with torch.no_grad(): output = self.model( sample['txt_tokens'], sample['word_tokens'], ph2word=sample['ph2word'], word_len=sample['word_lengths'].max(), infer=True, forward_post_glow=True, spk_id=sample.get('spk_ids') ) mel_out = output['mel_out'] wav_out = self.run_vocoder(mel_out) wav_out = wav_out.cpu().numpy() return wav_out[0] def build_vocoder(self): from .utils.commons.hparams import set_hparams from .modules.vocoder.hifigan.hifigan import HifiGanGenerator from .utils.commons.ckpt_utils import load_ckpt base_dir = 'text_to_speech/checkpoints/hifi_lj' config_path = f'{base_dir}/config.yaml' config = set_hparams(config_path, global_hparams=False) vocoder = HifiGanGenerator(config) load_ckpt(vocoder, base_dir, 'model_gen') return vocoder def run_vocoder(self, c): c = c.transpose(2, 1) y = self.vocoder(c)[:, 0] return y def preprocess_input(self, inp): """ :param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)} :return: """ preprocessor, preprocess_args = self.preprocessor, self.preprocess_args text_raw = inp['text'] item_name = inp.get('item_name', '') spk_name = inp.get('spk_name', '') ph, txt, word, ph2word, ph_gb_word = preprocessor.txt_to_ph( preprocessor.txt_processor, text_raw, preprocess_args) word_token = self.word_encoder.encode(word) ph_token = self.ph_encoder.encode(ph) spk_id = self.spk_map[spk_name] item = {'item_name': item_name, 'text': txt, 'ph': ph, 'spk_id': spk_id, 'ph_token': ph_token, 'word_token': word_token, 'ph2word': ph2word, 'ph_words':ph_gb_word, 'words': word} item['ph_len'] = len(item['ph_token']) return item def input_to_batch(self, item): item_names = [item['item_name']] text = [item['text']] ph = [item['ph']] txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device) txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device) word_tokens = torch.LongTensor(item['word_token'])[None, :].to(self.device) word_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device) ph2word = torch.LongTensor(item['ph2word'])[None, :].to(self.device) spk_ids = torch.LongTensor(item['spk_id'])[None, :].to(self.device) batch = { 'item_name': item_names, 'text': text, 'ph': ph, 'txt_tokens': txt_tokens, 'txt_lengths': txt_lengths, 'word_tokens': word_tokens, 'word_lengths': word_lengths, 'ph2word': ph2word, 'spk_ids': spk_ids, } return batch def postprocess_output(self, output): return output def infer_once(self, inp): inp = self.preprocess_input(inp) output = self.forward_model(inp) output = self.postprocess_output(output) return output