import os
os.environ['HF_HOME'] = '/tmp'
import time
import streamlit as st
import pandas as pd
import io
import plotly.express as px
import zipfile
import json
from cryptography.fernet import Fernet
from streamlit_extras.stylable_container import stylable_container
from typing import Optional
from gliner import GLiNER
from comet_ml import Experiment
st.markdown(
"""
""",
unsafe_allow_html=True
)
# --- Page Configuration and UI Elements ---
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
st.subheader("Multilingual", divider="green")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes**")
expander.write("""**Named Entities:** This Multilingual web app predicts fourteen (14) labels: "Person", "First_name", "Last_name", "Title", "Job_title", "Affiliation", "Gender", "Age", "Date", "Nationality", "Location", "Country", "Role", "Relationship"
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
**Usage Limits:** You can request results unlimited times for one (1) month.
**Supported Languages:** European, Asian, Indian, Arabic, African
**Language settings:** Please check and adjust the language settings in your computer, so the characters of your chosen language are handled properly in your downloaded file.
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
For any errors or inquiries, please contact us at info@nlpblogs.com""")
with st.sidebar:
st.write("Use the following code to embed the Multilingual web app on your website. Feel free to adjust the width and height values to fit your page.")
code = '''
'''
st.code(code, language="html")
st.text("")
st.text("")
st.divider()
st.subheader("🚀 Ready to build your own AI Web App?", divider="orange")
st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary")
# --- Comet ML Setup ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
if not comet_initialized:
st.warning("Comet ML not initialized. Check environment variables.")
# --- Label Definitions ---
labels = [
"PERSON",
"FIRST_NAME",
"LAST_NAME",
"TITLE",
"JOB_TITLE",
"AFFILIATION",
"GENDER",
"AGE",
"DATE",
"NATIONALITY",
"LOCATION",
"COUNTRY",
"ROLE",
"RELATIONSHIP"
]
# Create a mapping dictionary for labels to categories
category_mapping = {
"Identity": [
"PERSON",
"FIRST_NAME",
"LAST_NAME",
"TITLE"
],
"Professional": [
"JOB_TITLE",
"AFFILIATION"
],
"Demographic": [
"GENDER",
"AGE",
"DATE",
"NATIONALITY",
"LOCATION",
"COUNTRY"
],
"Relational": [
"ROLE",
"RELATIONSHIP"
]
}
# --- Model Loading ---
@st.cache_resource
def load_ner_model():
"""Loads the GLiNER model and caches it."""
try:
return GLiNER.from_pretrained("urchade/gliner_multi", nested_ner=True, num_gen_sequences=2, gen_constraints=labels)
except Exception as e:
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
st.stop()
model = load_ner_model()
# Flatten the mapping to a single dictionary
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
# --- Session State Initialization ---
if 'show_results' not in st.session_state:
st.session_state.show_results = False
if 'last_text' not in st.session_state:
st.session_state.last_text = ""
if 'results_df' not in st.session_state:
st.session_state.results_df = pd.DataFrame()
if 'elapsed_time' not in st.session_state:
st.session_state.elapsed_time = 0.0
# --- Text Input and Clear Button ---
word_limit = 200
text = st.text_area(f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter", height=250, key='my_text_area')
word_count = len(text.split())
st.markdown(f"**Word count:** {word_count}/{word_limit}")
def clear_text():
"""Clears the text area and hides results."""
st.session_state['my_text_area'] = ""
st.session_state.show_results = False
st.session_state.last_text = ""
st.session_state.results_df = pd.DataFrame()
st.session_state.elapsed_time = 0.0
st.button("Clear text", on_click=clear_text)
# --- Results Section ---
if st.button("Results"):
if not text.strip():
st.warning("Please enter some text to extract entities.")
st.session_state.show_results = False
elif word_count > word_limit:
st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.")
st.session_state.show_results = False
else:
# Check if the text is different from the last time
if text != st.session_state.last_text:
st.session_state.show_results = True
st.session_state.last_text = text
start_time = time.time()
with st.spinner("Extracting entities...", show_time=True):
entities = model.predict_entities(text, labels)
df = pd.DataFrame(entities)
st.session_state.results_df = df
if not df.empty:
df['category'] = df['label'].map(reverse_category_mapping)
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_text", text)
experiment.log_table("predicted_entities", df)
experiment.end()
end_time = time.time()
st.session_state.elapsed_time = end_time - start_time
else:
# If the text is the same, just show the cached results without re-running
st.session_state.show_results = True
# Display results if the state variable is True
if st.session_state.show_results:
df = st.session_state.results_df
if not df.empty:
# Re-map categories for display
df['category'] = df['label'].map(reverse_category_mapping)
st.subheader("Grouped Entities by Category", divider="green")
# Create tabs for each category
category_names = sorted(list(category_mapping.keys()))
category_tabs = st.tabs(category_names)
for i, category_name in enumerate(category_names):
with category_tabs[i]:
df_category_filtered = df[df['category'] == category_name]
if not df_category_filtered.empty:
st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
else:
st.info(f"No entities found for the '{category_name}' category.")
with st.expander("See Glossary of tags"):
st.write('''
- **text**: ['entity extracted from your text data']
- **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
- **label**: ['label (tag) assigned to a given extracted entity']
- **category**: ['the high-level category for the label']
- **start**: ['index of the start of the corresponding entity']
- **end**: ['index of the end of the corresponding entity']
''')
st.divider()
# Tree map
st.subheader("Tree map", divider="green")
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F0F2F5', plot_bgcolor='#F0F2F5')
st.plotly_chart(fig_treemap)
# Pie and Bar charts
grouped_counts = df['category'].value_counts().reset_index()
grouped_counts.columns = ['category', 'count']
col1, col2 = st.columns(2)
with col1:
st.subheader("Pie chart", divider="green")
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
fig_pie.update_layout(
paper_bgcolor='#F0F2F5',
plot_bgcolor='#F0F2F5'
)
st.plotly_chart(fig_pie)
with col2:
st.subheader("Bar chart", divider="green")
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
fig_bar.update_layout(
paper_bgcolor='#F0F2F5',
plot_bgcolor='#F0F2F5'
)
st.plotly_chart(fig_bar)
# Most Frequent Entities
st.subheader("Most Frequent Entities", divider="green")
word_counts = df['text'].value_counts().reset_index()
word_counts.columns = ['Entity', 'Count']
repeating_entities = word_counts[word_counts['Count'] > 1]
if not repeating_entities.empty:
st.dataframe(repeating_entities, use_container_width=True)
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'},
paper_bgcolor='#F0F2F5',
plot_bgcolor='#F0F2F5')
st.plotly_chart(fig_repeating_bar)
else:
st.warning("No entities were found that occur more than once.")
# Download Section
st.divider()
dfa = pd.DataFrame(
data={
'Column Name': ['text', 'label', 'score', 'start', 'end', 'category'],
'Description': [
'entity extracted from your text data',
'label (tag) assigned to a given extracted entity',
'accuracy score; how accurately a tag has been assigned to a given entity',
'index of the start of the corresponding entity',
'index of the end of the corresponding entity',
'the broader category the entity belongs to',
]
}
)
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: #6495ED; border: 1px solid black; padding: 5px; color: white; }""",
):
st.download_button(
label="Download results and glossary (zip)",
data=buf.getvalue(),
file_name="nlpblogs_results.zip",
mime="application/zip",
)
st.text("")
st.text("")
st.info(f"Results processed in **{st.session_state.elapsed_time:.2f} seconds**.")
else: # If df is empty after the button click
st.warning("No entities were found in the provided text.")