AIEcosystem commited on
Commit
57333a9
·
verified ·
1 Parent(s): d5ff91c

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +30 -38
src/streamlit_app.py CHANGED
@@ -1,6 +1,3 @@
1
- import os
2
- os.environ['HF_HOME'] = '/tmp'
3
-
4
  import os
5
  import time
6
  import streamlit as st
@@ -18,6 +15,9 @@ import hashlib
18
  # Set up environment variables
19
  os.environ['HF_HOME'] = '/tmp'
20
 
 
 
 
21
  st.markdown(
22
  """
23
  <style>
@@ -69,10 +69,9 @@ st.markdown(
69
  unsafe_allow_html=True
70
  )
71
 
72
- # --- Page Configuration and UI Elements ---
73
- st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
74
  st.subheader("HR.ai", divider="green")
75
  st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
 
76
  expander = st.expander("**Important notes**")
77
  expander.write("""**Named Entities:** This HR.ai predicts thirty-five (35) labels: "Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"
78
  Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
@@ -98,7 +97,6 @@ COMET_API_KEY = os.environ.get("COMET_API_KEY")
98
  COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
99
  COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
100
  comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
101
-
102
  if not comet_initialized:
103
  st.warning("Comet ML not initialized. Check environment variables.")
104
 
@@ -122,7 +120,7 @@ category_mapping = {
122
  }
123
 
124
  # --- Model Loading ---
125
- @st.cache_resource
126
  def load_ner_model():
127
  """Loads the GLiNER model and caches it."""
128
  try:
@@ -170,34 +168,34 @@ if st.button("Results"):
170
  )
171
  experiment.log_parameter("input_text", text)
172
  experiment.log_table("predicted_entities", df_ner)
173
-
174
- st.subheader("Grouped Entities by Category", divider="green")
175
- category_names = sorted(list(category_mapping.keys()))
176
- category_tabs = st.tabs(category_names)
177
- for i, category_name in enumerate(category_names):
178
- with category_tabs[i]:
179
- df_category_filtered = df_ner[df_ner['category'] == category_name]
180
- if not df_category_filtered.empty:
181
- st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
182
- else:
183
- st.info(f"No entities found for the '{category_name}' category.")
184
-
185
- with st.expander("See Glossary of tags"):
186
- st.write('''
187
- - **text**: ['entity extracted from your text data']
188
- - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
189
- - **label**: ['label (tag) assigned to a given extracted entity']
190
- - **category**: ['the high-level category for the label']
191
- - **start**: ['index of the start of the corresponding entity']
192
- - **end**: ['index of the end of the corresponding entity']
193
- ''')
194
  else:
195
  st.warning("No entities were found in the provided text.")
196
  if 'df_ner' in st.session_state:
197
  del st.session_state.df_ner
198
 
199
- # --- Treemap Display Section ---
200
  if 'df_ner' in st.session_state and not st.session_state.df_ner.empty:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
  st.divider()
202
  st.subheader("Candidate Card", divider="green")
203
  fig_treemap = px.treemap(st.session_state.df_ner, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
@@ -215,6 +213,7 @@ def load_gliner_model():
215
  st.stop()
216
 
217
  qa_model = load_gliner_model()
 
218
  st.subheader("Question-Answering", divider="green")
219
 
220
  if 'user_labels' not in st.session_state:
@@ -235,6 +234,7 @@ if st.button("Add Question"):
235
 
236
  st.markdown("---")
237
  st.subheader("Record of Questions", divider="green")
 
238
  if st.session_state.user_labels:
239
  for i, label in enumerate(st.session_state.user_labels):
240
  col_list, col_delete = st.columns([0.9, 0.1])
@@ -271,19 +271,16 @@ if st.button("Extract Answers"):
271
  end_time = time.time()
272
  elapsed_time = end_time - start_time
273
  st.info(f"Processing took **{elapsed_time:.2f} seconds**.")
274
-
275
  if entities:
276
  df_qa = pd.DataFrame(entities)
277
  df_qa = df_qa[['label', 'text', 'score']].rename(columns={'label': 'question', 'text': 'answer'})
278
  st.session_state.df_qa = df_qa # Store QA results in session state
279
-
280
  st.subheader("Extracted Answers", divider="green")
281
  st.dataframe(df_qa, use_container_width=True)
282
  else:
283
  st.warning("No answers were found for the provided questions.")
284
  if 'df_qa' in st.session_state:
285
  del st.session_state.df_qa
286
-
287
  except Exception as e:
288
  st.error(f"An error occurred during answer extraction: {e}")
289
  if 'df_qa' in st.session_state:
@@ -292,7 +289,6 @@ if st.button("Extract Answers"):
292
  # --- Download Button Section ---
293
  def create_zip_file_and_get_bytes():
294
  """Generates a zip file in memory with all available dataframes."""
295
-
296
  # Define the glossary DataFrame here to ensure it's always available
297
  dfa = pd.DataFrame(
298
  data={
@@ -307,10 +303,8 @@ def create_zip_file_and_get_bytes():
307
  ]
308
  }
309
  )
310
-
311
  if 'df_ner' not in st.session_state and 'df_qa' not in st.session_state:
312
  return None, None
313
-
314
  buf = io.BytesIO()
315
  with zipfile.ZipFile(buf, "w") as myzip:
316
  if 'df_ner' in st.session_state and not st.session_state.df_ner.empty:
@@ -318,7 +312,6 @@ def create_zip_file_and_get_bytes():
318
  if 'df_qa' in st.session_state and not st.session_state.df_qa.empty:
319
  myzip.writestr("Extracted_Answers.csv", st.session_state.df_qa.to_csv(index=False))
320
  myzip.writestr("Glossary_of_tags.csv", dfa.to_csv(index=False))
321
-
322
  return buf.getvalue(), "nlpblogs_results.zip"
323
 
324
  st.divider()
@@ -336,5 +329,4 @@ if ('df_ner' in st.session_state and not st.session_state.df_ner.empty) or \
336
  data=zip_data,
337
  file_name=file_name,
338
  mime="application/zip",
339
- )
340
-
 
 
 
 
1
  import os
2
  import time
3
  import streamlit as st
 
15
  # Set up environment variables
16
  os.environ['HF_HOME'] = '/tmp'
17
 
18
+ # --- Page Configuration and UI Elements ---
19
+ st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
20
+
21
  st.markdown(
22
  """
23
  <style>
 
69
  unsafe_allow_html=True
70
  )
71
 
 
 
72
  st.subheader("HR.ai", divider="green")
73
  st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
74
+
75
  expander = st.expander("**Important notes**")
76
  expander.write("""**Named Entities:** This HR.ai predicts thirty-five (35) labels: "Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"
77
  Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
 
97
  COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
98
  COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
99
  comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
 
100
  if not comet_initialized:
101
  st.warning("Comet ML not initialized. Check environment variables.")
102
 
 
120
  }
121
 
122
  # --- Model Loading ---
123
+ @st.cache_resourced
124
  def load_ner_model():
125
  """Loads the GLiNER model and caches it."""
126
  try:
 
168
  )
169
  experiment.log_parameter("input_text", text)
170
  experiment.log_table("predicted_entities", df_ner)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
  else:
172
  st.warning("No entities were found in the provided text.")
173
  if 'df_ner' in st.session_state:
174
  del st.session_state.df_ner
175
 
176
+ # --- Display Sections based on Session State ---
177
  if 'df_ner' in st.session_state and not st.session_state.df_ner.empty:
178
+ st.subheader("Grouped Entities by Category", divider="green")
179
+ category_names = sorted(list(category_mapping.keys()))
180
+ category_tabs = st.tabs(category_names)
181
+ for i, category_name in enumerate(category_names):
182
+ with category_tabs[i]:
183
+ df_category_filtered = st.session_state.df_ner[st.session_state.df_ner['category'] == category_name]
184
+ if not df_category_filtered.empty:
185
+ st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
186
+ else:
187
+ st.info(f"No entities found for the '{category_name}' category.")
188
+
189
+ with st.expander("See Glossary of tags"):
190
+ st.write('''
191
+ - **text**: ['entity extracted from your text data']
192
+ - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
193
+ - **label**: ['label (tag) assigned to a given extracted entity']
194
+ - **category**: ['the high-level category for the label']
195
+ - **start**: ['index of the start of the corresponding entity']
196
+ - **end**: ['index of the end of the corresponding entity']
197
+ ''')
198
+
199
  st.divider()
200
  st.subheader("Candidate Card", divider="green")
201
  fig_treemap = px.treemap(st.session_state.df_ner, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
 
213
  st.stop()
214
 
215
  qa_model = load_gliner_model()
216
+
217
  st.subheader("Question-Answering", divider="green")
218
 
219
  if 'user_labels' not in st.session_state:
 
234
 
235
  st.markdown("---")
236
  st.subheader("Record of Questions", divider="green")
237
+
238
  if st.session_state.user_labels:
239
  for i, label in enumerate(st.session_state.user_labels):
240
  col_list, col_delete = st.columns([0.9, 0.1])
 
271
  end_time = time.time()
272
  elapsed_time = end_time - start_time
273
  st.info(f"Processing took **{elapsed_time:.2f} seconds**.")
 
274
  if entities:
275
  df_qa = pd.DataFrame(entities)
276
  df_qa = df_qa[['label', 'text', 'score']].rename(columns={'label': 'question', 'text': 'answer'})
277
  st.session_state.df_qa = df_qa # Store QA results in session state
 
278
  st.subheader("Extracted Answers", divider="green")
279
  st.dataframe(df_qa, use_container_width=True)
280
  else:
281
  st.warning("No answers were found for the provided questions.")
282
  if 'df_qa' in st.session_state:
283
  del st.session_state.df_qa
 
284
  except Exception as e:
285
  st.error(f"An error occurred during answer extraction: {e}")
286
  if 'df_qa' in st.session_state:
 
289
  # --- Download Button Section ---
290
  def create_zip_file_and_get_bytes():
291
  """Generates a zip file in memory with all available dataframes."""
 
292
  # Define the glossary DataFrame here to ensure it's always available
293
  dfa = pd.DataFrame(
294
  data={
 
303
  ]
304
  }
305
  )
 
306
  if 'df_ner' not in st.session_state and 'df_qa' not in st.session_state:
307
  return None, None
 
308
  buf = io.BytesIO()
309
  with zipfile.ZipFile(buf, "w") as myzip:
310
  if 'df_ner' in st.session_state and not st.session_state.df_ner.empty:
 
312
  if 'df_qa' in st.session_state and not st.session_state.df_qa.empty:
313
  myzip.writestr("Extracted_Answers.csv", st.session_state.df_qa.to_csv(index=False))
314
  myzip.writestr("Glossary_of_tags.csv", dfa.to_csv(index=False))
 
315
  return buf.getvalue(), "nlpblogs_results.zip"
316
 
317
  st.divider()
 
329
  data=zip_data,
330
  file_name=file_name,
331
  mime="application/zip",
332
+ )