Spaces:
Running
on
Zero
Running
on
Zero
怀羽
commited on
Commit
·
a67e7e4
1
Parent(s):
4dca14c
change to hf decode
Browse files- app.py +105 -29
- requirements.txt +3 -2
app.py
CHANGED
|
@@ -1,30 +1,80 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
# --------------------------------------------------------------------------
|
| 5 |
# 1. 配置和加载模型 (在应用启动时执行一次)
|
| 6 |
# --------------------------------------------------------------------------
|
| 7 |
|
| 8 |
-
#
|
|
|
|
| 9 |
model_id = "AIDC-AI/Marco-MT-Algharb"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
| 12 |
try:
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
| 15 |
except Exception as e:
|
| 16 |
-
print(f"
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
source_lang_name_map = {
|
| 29 |
"en": "english",
|
| 30 |
"ja": "japanese",
|
|
@@ -46,14 +96,14 @@ target_lang_name_map = {
|
|
| 46 |
"de": "german",
|
| 47 |
}
|
| 48 |
# --------------------------------------------------------------------------
|
| 49 |
-
# 2. 定义核心翻译函数
|
| 50 |
# --------------------------------------------------------------------------
|
| 51 |
def translate(source_text, source_lang_code, target_lang_code):
|
| 52 |
"""
|
| 53 |
-
接收用户输入并返回翻译结果
|
| 54 |
"""
|
| 55 |
-
if
|
| 56 |
-
return "
|
| 57 |
|
| 58 |
# 简单的输入验证
|
| 59 |
if not source_text or not source_text.strip():
|
|
@@ -62,23 +112,50 @@ def translate(source_text, source_lang_code, target_lang_code):
|
|
| 62 |
source_language_name = source_lang_name_map.get(source_lang_code, "the source language")
|
| 63 |
target_language_name = target_lang_name_map.get(target_lang_code, "the target language")
|
| 64 |
|
|
|
|
| 65 |
prompt = (
|
| 66 |
f"Human: Please translate the following text into {target_language_name}: \n"
|
| 67 |
f"{source_text}<|im_end|>\n"
|
| 68 |
f"Assistant:"
|
| 69 |
)
|
|
|
|
| 70 |
print(prompt)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
# --------------------------------------------------------------------------
|
| 78 |
-
# 3. 创建并配置 Gradio 界面 (
|
| 79 |
# --------------------------------------------------------------------------
|
| 80 |
|
| 81 |
-
# <---
|
| 82 |
css = """
|
| 83 |
/* --- 1. 整体背景 (改为更高级的浅灰蓝渐变) --- */
|
| 84 |
.gradio-container {
|
|
@@ -188,7 +265,6 @@ with gr.Blocks(
|
|
| 188 |
)
|
| 189 |
|
| 190 |
# --- (新位置) 支持的语向卡片 ---
|
| 191 |
-
# <--- 修改 3: 此处HTML将自动继承新的全局字体 --->
|
| 192 |
gr.HTML(f"""
|
| 193 |
<div style="color: #444; font-size: 16px; margin-top: 30px; padding: 20px 25px; background-color: #FFFFFF; border-radius: 15px; max-width: 900px; margin-left: auto; margin-right: auto; box-shadow: 0 4px 20px rgba(0,0,0,0.05);">
|
| 194 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
| 4 |
+
import sys
|
| 5 |
+
import os
|
| 6 |
|
| 7 |
# --------------------------------------------------------------------------
|
| 8 |
# 1. 配置和加载模型 (在应用启动时执行一次)
|
| 9 |
# --------------------------------------------------------------------------
|
| 10 |
|
| 11 |
+
# 确保这里是你的本地模型路径
|
| 12 |
+
# model_id = "/mnt/workspace/wanghao/model_saved/Marco-MT-WMT"
|
| 13 |
model_id = "AIDC-AI/Marco-MT-Algharb"
|
| 14 |
+
# 将模型目录添加到 Python 路径 (修复 Qwen3ForCausalLM 导入问题)
|
| 15 |
+
if os.path.isdir(model_id):
|
| 16 |
+
sys.path.insert(0, model_id)
|
| 17 |
+
print(f"已将模型目录添加到 sys.path: {model_id}")
|
| 18 |
|
| 19 |
+
print(f"正在加载 Tokenizer: {model_id}...")
|
| 20 |
+
tokenizer = None
|
| 21 |
+
model = None
|
| 22 |
+
device = "cuda"
|
| 23 |
try:
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 25 |
+
model_id,
|
| 26 |
+
trust_remote_code=True
|
| 27 |
+
)
|
| 28 |
+
print("Tokenizer 加载成功!")
|
| 29 |
except Exception as e:
|
| 30 |
+
print(f"Tokenizer 加载失败: {e}")
|
| 31 |
+
|
| 32 |
+
if tokenizer:
|
| 33 |
+
print(f"正在加载模型: {model_id}...")
|
| 34 |
+
try:
|
| 35 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 36 |
+
model_id,
|
| 37 |
+
trust_remote_code=True
|
| 38 |
+
).to(device).eval()
|
| 39 |
+
|
| 40 |
+
print("模型加载成功!")
|
| 41 |
+
except Exception as e:
|
| 42 |
+
print(f"模型加载失败: {e}")
|
| 43 |
+
model = None
|
| 44 |
+
else:
|
| 45 |
+
print("因 Tokenizer 加载失败,跳过模型加载。")
|
| 46 |
+
model = None
|
| 47 |
+
|
| 48 |
+
# --- ★★★ 关键修复: 正确设置 Qwen 的停止 Token ★★★ ---
|
| 49 |
+
if tokenizer:
|
| 50 |
+
# 1. 获取 <|im_end|> 的 ID (通常是 151645)
|
| 51 |
+
im_end_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
| 52 |
+
|
| 53 |
+
# 2. 获取 <|endoftext|> 的 ID (通常是 151643)
|
| 54 |
+
eot_id = tokenizer.eos_token_id
|
| 55 |
+
|
| 56 |
+
print(f"设置停止 IDs: <|im_end|_id={im_end_id}, <|endoftext|_id={eot_id}")
|
| 57 |
+
|
| 58 |
+
# 3. 创建 GenerationConfig
|
| 59 |
+
generation_config = GenerationConfig(
|
| 60 |
+
do_sample=False,
|
| 61 |
+
max_new_tokens=512,
|
| 62 |
+
|
| 63 |
+
# 关键(1): 告诉 generate() 遇到 *这两个* token 中的任何一个都要停止
|
| 64 |
+
eos_token_id=[im_end_id, eot_id],
|
| 65 |
+
|
| 66 |
+
# 关键(2): 告诉 generate() 在批处理(batching)时使用哪个 token 进行填充
|
| 67 |
+
# (我们使用 <|endoftext|>)
|
| 68 |
+
pad_token_id=eot_id
|
| 69 |
+
)
|
| 70 |
+
else:
|
| 71 |
+
# 备用配置,以防 tokenizer 加载失败
|
| 72 |
+
generation_config = GenerationConfig(
|
| 73 |
+
do_sample=False,
|
| 74 |
+
max_new_tokens=512
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# 语言代码到全名的映射 (保持不变)
|
| 78 |
source_lang_name_map = {
|
| 79 |
"en": "english",
|
| 80 |
"ja": "japanese",
|
|
|
|
| 96 |
"de": "german",
|
| 97 |
}
|
| 98 |
# --------------------------------------------------------------------------
|
| 99 |
+
# 2. 定义核心翻译函数 (修改版)
|
| 100 |
# --------------------------------------------------------------------------
|
| 101 |
def translate(source_text, source_lang_code, target_lang_code):
|
| 102 |
"""
|
| 103 |
+
接收用户输入并返回翻译结果 (使用 Transformers)
|
| 104 |
"""
|
| 105 |
+
if model is None or tokenizer is None:
|
| 106 |
+
return "错误:模型或 Tokenizer 未能成功加载,请检查 Space 日志。"
|
| 107 |
|
| 108 |
# 简单的输入验证
|
| 109 |
if not source_text or not source_text.strip():
|
|
|
|
| 112 |
source_language_name = source_lang_name_map.get(source_lang_code, "the source language")
|
| 113 |
target_language_name = target_lang_name_map.get(target_lang_code, "the target language")
|
| 114 |
|
| 115 |
+
# 构建与 vLLM 版本相同的提示
|
| 116 |
prompt = (
|
| 117 |
f"Human: Please translate the following text into {target_language_name}: \n"
|
| 118 |
f"{source_text}<|im_end|>\n"
|
| 119 |
f"Assistant:"
|
| 120 |
)
|
| 121 |
+
print("--- Prompt ---")
|
| 122 |
print(prompt)
|
| 123 |
+
print("--------------")
|
| 124 |
+
|
| 125 |
+
try:
|
| 126 |
+
# 1. 编码 (Tokenize)
|
| 127 |
+
# CausalLM 需要将 "Human: ... Assistant:" 整个作为输入
|
| 128 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 129 |
+
|
| 130 |
+
# 2. 将输入张量移动到模型所在的设备
|
| 131 |
+
# (当使用 device_map="auto" 时, model.device 指向第一个设备)
|
| 132 |
+
inputs = inputs.to(model.device)
|
| 133 |
+
|
| 134 |
+
# 3. 生成 (Generate)
|
| 135 |
+
with torch.no_grad(): # 推理时不需要计算梯度
|
| 136 |
+
outputs = model.generate(
|
| 137 |
+
**inputs,
|
| 138 |
+
generation_config=generation_config
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
# 4. 解码 (Decode)
|
| 142 |
+
# outputs[0] 包含了 "input_ids + generated_ids"
|
| 143 |
+
# 我们需要从 "input_ids" 之后开始解码
|
| 144 |
+
input_length = inputs.input_ids.shape[1]
|
| 145 |
+
generated_ids = outputs[0][input_length:]
|
| 146 |
+
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True).strip()
|
| 147 |
+
|
| 148 |
+
return generated_text
|
| 149 |
+
|
| 150 |
+
except Exception as e:
|
| 151 |
+
print(f"翻译过程中出错: {e}")
|
| 152 |
+
return f"翻译时发生错误: {e}"
|
| 153 |
|
| 154 |
# --------------------------------------------------------------------------
|
| 155 |
+
# 3. 创建并配置 Gradio 界面 (这部分保持不变)
|
| 156 |
# --------------------------------------------------------------------------
|
| 157 |
|
| 158 |
+
# <--- 定义自定义 CSS 样式 --->
|
| 159 |
css = """
|
| 160 |
/* --- 1. 整体背景 (改为更高级的浅灰蓝渐变) --- */
|
| 161 |
.gradio-container {
|
|
|
|
| 265 |
)
|
| 266 |
|
| 267 |
# --- (新位置) 支持的语向卡片 ---
|
|
|
|
| 268 |
gr.HTML(f"""
|
| 269 |
<div style="color: #444; font-size: 16px; margin-top: 30px; padding: 20px 25px; background-color: #FFFFFF; border-radius: 15px; max-width: 900px; margin-left: auto; margin-right: auto; box-shadow: 0 4px 20px rgba(0,0,0,0.05);">
|
| 270 |
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
-
|
| 2 |
-
gradio==5.49.1
|
|
|
|
|
|
| 1 |
+
Transformers==4.55.0
|
| 2 |
+
gradio==5.49.1
|
| 3 |
+
tomli
|