# app cơ bản để demo RAG chatbot, sử dụng streamlit để đơn giản hoá phần frontend/U import sys import os import streamlit as st from time import time import logging os.environ['ROOT_PATH'] = os.path.dirname(os.path.abspath(os.path.dirname(__file__))) from api.engine import ChatEngine logging.basicConfig(stream=sys.stdout, level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') st.title("Smart Chabot for Organic Crop powered by Eco Footprint") @st.cache_resource def initialize(): return ChatEngine(vector_index="chroma", force_new_db=False) engine = initialize() if "messages" not in st.session_state: st.session_state.messages = [] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if user_input := st.chat_input("Bạn muốn hỏi điều gì?"): st.session_state.messages.append({"role": "user", "content": user_input}) with st.chat_message("user"): st.markdown(user_input) with st.chat_message("assistant"): message_placeholder = st.empty() response_content = "" with st.spinner("Thinking..."): start = time() streaming_response = engine.query_streaming(user_input) # Stream kết quả và cập nhật lên giao diện query_end = time() print(f"Query time calculated: {round(query_end-start,4)}") for chunk in streaming_response.response_gen: response_content += chunk message_placeholder.markdown(f"{response_content} ▌") end = time() print(f"Response time calculated: {round(end-start,4)}") message_placeholder.markdown(response_content) st.session_state.messages.append({"role": "assistant", "content": response_content})