diff --git a/MagicQuill/.DS_Store b/MagicQuill/.DS_Store deleted file mode 100644 index 92f255efe283219850b962b09db1053a14ccd5ca..0000000000000000000000000000000000000000 Binary files a/MagicQuill/.DS_Store and /dev/null differ diff --git a/MagicQuill/brushnet/brushnet.json b/MagicQuill/brushnet/brushnet.json deleted file mode 100644 index 65713bfcd0113271496bd06fe6b57299822e0f76..0000000000000000000000000000000000000000 --- a/MagicQuill/brushnet/brushnet.json +++ /dev/null @@ -1,58 +0,0 @@ -{ - "_class_name": "BrushNetModel", - "_diffusers_version": "0.27.0.dev0", - "_name_or_path": "runs/logs/brushnet_randommask/checkpoint-100000", - "act_fn": "silu", - "addition_embed_type": null, - "addition_embed_type_num_heads": 64, - "addition_time_embed_dim": null, - "attention_head_dim": 8, - "block_out_channels": [ - 320, - 640, - 1280, - 1280 - ], - "brushnet_conditioning_channel_order": "rgb", - "class_embed_type": null, - "conditioning_channels": 5, - "conditioning_embedding_out_channels": [ - 16, - 32, - 96, - 256 - ], - "cross_attention_dim": 768, - "down_block_types": [ - "DownBlock2D", - "DownBlock2D", - "DownBlock2D", - "DownBlock2D" - ], - "downsample_padding": 1, - "encoder_hid_dim": null, - "encoder_hid_dim_type": null, - "flip_sin_to_cos": true, - "freq_shift": 0, - "global_pool_conditions": false, - "in_channels": 4, - "layers_per_block": 2, - "mid_block_scale_factor": 1, - "mid_block_type": "MidBlock2D", - "norm_eps": 1e-05, - "norm_num_groups": 32, - "num_attention_heads": null, - "num_class_embeds": null, - "only_cross_attention": false, - "projection_class_embeddings_input_dim": null, - "resnet_time_scale_shift": "default", - "transformer_layers_per_block": 1, - "up_block_types": [ - "UpBlock2D", - "UpBlock2D", - "UpBlock2D", - "UpBlock2D" - ], - "upcast_attention": false, - "use_linear_projection": false -} diff --git a/MagicQuill/brushnet/brushnet.py b/MagicQuill/brushnet/brushnet.py deleted file mode 100644 index aed1cfde30b1ab27286066746058b7b1afcd8a84..0000000000000000000000000000000000000000 --- a/MagicQuill/brushnet/brushnet.py +++ /dev/null @@ -1,949 +0,0 @@ -from dataclasses import dataclass -from typing import Any, Dict, List, Optional, Tuple, Union - -import torch -from torch import nn -from torch.nn import functional as F - -from diffusers.configuration_utils import ConfigMixin, register_to_config -from diffusers.utils import BaseOutput, logging -from diffusers.models.attention_processor import ( - ADDED_KV_ATTENTION_PROCESSORS, - CROSS_ATTENTION_PROCESSORS, - AttentionProcessor, - AttnAddedKVProcessor, - AttnProcessor, -) -from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps -from diffusers.models.modeling_utils import ModelMixin - -from .unet_2d_blocks import ( - CrossAttnDownBlock2D, - DownBlock2D, - UNetMidBlock2D, - UNetMidBlock2DCrossAttn, - get_down_block, - get_mid_block, - get_up_block, - MidBlock2D -) - -from .unet_2d_condition import UNet2DConditionModel - - -logger = logging.get_logger(__name__) # pylint: disable=invalid-name - - -@dataclass -class BrushNetOutput(BaseOutput): - """ - The output of [`BrushNetModel`]. - - Args: - up_block_res_samples (`tuple[torch.Tensor]`): - A tuple of upsample activations at different resolutions for each upsampling block. Each tensor should - be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be - used to condition the original UNet's upsampling activations. - down_block_res_samples (`tuple[torch.Tensor]`): - A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should - be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be - used to condition the original UNet's downsampling activations. - mid_down_block_re_sample (`torch.Tensor`): - The activation of the midde block (the lowest sample resolution). Each tensor should be of shape - `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`. - Output can be used to condition the original UNet's middle block activation. - """ - - up_block_res_samples: Tuple[torch.Tensor] - down_block_res_samples: Tuple[torch.Tensor] - mid_block_res_sample: torch.Tensor - - -class BrushNetModel(ModelMixin, ConfigMixin): - """ - A BrushNet model. - - Args: - in_channels (`int`, defaults to 4): - The number of channels in the input sample. - flip_sin_to_cos (`bool`, defaults to `True`): - Whether to flip the sin to cos in the time embedding. - freq_shift (`int`, defaults to 0): - The frequency shift to apply to the time embedding. - down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): - The tuple of downsample blocks to use. - mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): - Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or - `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped. - up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): - The tuple of upsample blocks to use. - only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`): - block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`): - The tuple of output channels for each block. - layers_per_block (`int`, defaults to 2): - The number of layers per block. - downsample_padding (`int`, defaults to 1): - The padding to use for the downsampling convolution. - mid_block_scale_factor (`float`, defaults to 1): - The scale factor to use for the mid block. - act_fn (`str`, defaults to "silu"): - The activation function to use. - norm_num_groups (`int`, *optional*, defaults to 32): - The number of groups to use for the normalization. If None, normalization and activation layers is skipped - in post-processing. - norm_eps (`float`, defaults to 1e-5): - The epsilon to use for the normalization. - cross_attention_dim (`int`, defaults to 1280): - The dimension of the cross attention features. - transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1): - The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for - [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], - [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. - encoder_hid_dim (`int`, *optional*, defaults to None): - If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` - dimension to `cross_attention_dim`. - encoder_hid_dim_type (`str`, *optional*, defaults to `None`): - If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text - embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. - attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8): - The dimension of the attention heads. - use_linear_projection (`bool`, defaults to `False`): - class_embed_type (`str`, *optional*, defaults to `None`): - The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None, - `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. - addition_embed_type (`str`, *optional*, defaults to `None`): - Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or - "text". "text" will use the `TextTimeEmbedding` layer. - num_class_embeds (`int`, *optional*, defaults to 0): - Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing - class conditioning with `class_embed_type` equal to `None`. - upcast_attention (`bool`, defaults to `False`): - resnet_time_scale_shift (`str`, defaults to `"default"`): - Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`. - projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`): - The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when - `class_embed_type="projection"`. - brushnet_conditioning_channel_order (`str`, defaults to `"rgb"`): - The channel order of conditional image. Will convert to `rgb` if it's `bgr`. - conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`): - The tuple of output channel for each block in the `conditioning_embedding` layer. - global_pool_conditions (`bool`, defaults to `False`): - TODO(Patrick) - unused parameter. - addition_embed_type_num_heads (`int`, defaults to 64): - The number of heads to use for the `TextTimeEmbedding` layer. - """ - - _supports_gradient_checkpointing = True - - @register_to_config - def __init__( - self, - in_channels: int = 4, - conditioning_channels: int = 5, - flip_sin_to_cos: bool = True, - freq_shift: int = 0, - down_block_types: Tuple[str, ...] = ( - "DownBlock2D", - "DownBlock2D", - "DownBlock2D", - "DownBlock2D", - ), - mid_block_type: Optional[str] = "UNetMidBlock2D", - up_block_types: Tuple[str, ...] = ( - "UpBlock2D", - "UpBlock2D", - "UpBlock2D", - "UpBlock2D", - ), - only_cross_attention: Union[bool, Tuple[bool]] = False, - block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), - layers_per_block: int = 2, - downsample_padding: int = 1, - mid_block_scale_factor: float = 1, - act_fn: str = "silu", - norm_num_groups: Optional[int] = 32, - norm_eps: float = 1e-5, - cross_attention_dim: int = 1280, - transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1, - encoder_hid_dim: Optional[int] = None, - encoder_hid_dim_type: Optional[str] = None, - attention_head_dim: Union[int, Tuple[int, ...]] = 8, - num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None, - use_linear_projection: bool = False, - class_embed_type: Optional[str] = None, - addition_embed_type: Optional[str] = None, - addition_time_embed_dim: Optional[int] = None, - num_class_embeds: Optional[int] = None, - upcast_attention: bool = False, - resnet_time_scale_shift: str = "default", - projection_class_embeddings_input_dim: Optional[int] = None, - brushnet_conditioning_channel_order: str = "rgb", - conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), - global_pool_conditions: bool = False, - addition_embed_type_num_heads: int = 64, - ): - super().__init__() - - # If `num_attention_heads` is not defined (which is the case for most models) - # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. - # The reason for this behavior is to correct for incorrectly named variables that were introduced - # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 - # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking - # which is why we correct for the naming here. - num_attention_heads = num_attention_heads or attention_head_dim - - # Check inputs - if len(down_block_types) != len(up_block_types): - raise ValueError( - f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." - ) - - if len(block_out_channels) != len(down_block_types): - raise ValueError( - f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." - ) - - if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): - raise ValueError( - f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." - ) - - if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): - raise ValueError( - f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." - ) - - if isinstance(transformer_layers_per_block, int): - transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) - - # input - conv_in_kernel = 3 - conv_in_padding = (conv_in_kernel - 1) // 2 - self.conv_in_condition = nn.Conv2d( - in_channels+conditioning_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding - ) - - # time - time_embed_dim = block_out_channels[0] * 4 - self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) - timestep_input_dim = block_out_channels[0] - self.time_embedding = TimestepEmbedding( - timestep_input_dim, - time_embed_dim, - act_fn=act_fn, - ) - - if encoder_hid_dim_type is None and encoder_hid_dim is not None: - encoder_hid_dim_type = "text_proj" - self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) - logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") - - if encoder_hid_dim is None and encoder_hid_dim_type is not None: - raise ValueError( - f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." - ) - - if encoder_hid_dim_type == "text_proj": - self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) - elif encoder_hid_dim_type == "text_image_proj": - # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much - # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use - # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)` - self.encoder_hid_proj = TextImageProjection( - text_embed_dim=encoder_hid_dim, - image_embed_dim=cross_attention_dim, - cross_attention_dim=cross_attention_dim, - ) - - elif encoder_hid_dim_type is not None: - raise ValueError( - f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." - ) - else: - self.encoder_hid_proj = None - - # class embedding - if class_embed_type is None and num_class_embeds is not None: - self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) - elif class_embed_type == "timestep": - self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) - elif class_embed_type == "identity": - self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) - elif class_embed_type == "projection": - if projection_class_embeddings_input_dim is None: - raise ValueError( - "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" - ) - # The projection `class_embed_type` is the same as the timestep `class_embed_type` except - # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings - # 2. it projects from an arbitrary input dimension. - # - # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. - # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. - # As a result, `TimestepEmbedding` can be passed arbitrary vectors. - self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) - else: - self.class_embedding = None - - if addition_embed_type == "text": - if encoder_hid_dim is not None: - text_time_embedding_from_dim = encoder_hid_dim - else: - text_time_embedding_from_dim = cross_attention_dim - - self.add_embedding = TextTimeEmbedding( - text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads - ) - elif addition_embed_type == "text_image": - # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much - # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use - # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)` - self.add_embedding = TextImageTimeEmbedding( - text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim - ) - elif addition_embed_type == "text_time": - self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) - self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) - - elif addition_embed_type is not None: - raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") - - self.down_blocks = nn.ModuleList([]) - self.brushnet_down_blocks = nn.ModuleList([]) - - if isinstance(only_cross_attention, bool): - only_cross_attention = [only_cross_attention] * len(down_block_types) - - if isinstance(attention_head_dim, int): - attention_head_dim = (attention_head_dim,) * len(down_block_types) - - if isinstance(num_attention_heads, int): - num_attention_heads = (num_attention_heads,) * len(down_block_types) - - # down - output_channel = block_out_channels[0] - - brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) - brushnet_block = zero_module(brushnet_block) - self.brushnet_down_blocks.append(brushnet_block) - - for i, down_block_type in enumerate(down_block_types): - input_channel = output_channel - output_channel = block_out_channels[i] - is_final_block = i == len(block_out_channels) - 1 - - down_block = get_down_block( - down_block_type, - num_layers=layers_per_block, - transformer_layers_per_block=transformer_layers_per_block[i], - in_channels=input_channel, - out_channels=output_channel, - temb_channels=time_embed_dim, - add_downsample=not is_final_block, - resnet_eps=norm_eps, - resnet_act_fn=act_fn, - resnet_groups=norm_num_groups, - cross_attention_dim=cross_attention_dim, - num_attention_heads=num_attention_heads[i], - attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, - downsample_padding=downsample_padding, - use_linear_projection=use_linear_projection, - only_cross_attention=only_cross_attention[i], - upcast_attention=upcast_attention, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - self.down_blocks.append(down_block) - - for _ in range(layers_per_block): - brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) - brushnet_block = zero_module(brushnet_block) - self.brushnet_down_blocks.append(brushnet_block) - - if not is_final_block: - brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) - brushnet_block = zero_module(brushnet_block) - self.brushnet_down_blocks.append(brushnet_block) - - # mid - mid_block_channel = block_out_channels[-1] - - brushnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1) - brushnet_block = zero_module(brushnet_block) - self.brushnet_mid_block = brushnet_block - - self.mid_block = get_mid_block( - mid_block_type, - transformer_layers_per_block=transformer_layers_per_block[-1], - in_channels=mid_block_channel, - temb_channels=time_embed_dim, - resnet_eps=norm_eps, - resnet_act_fn=act_fn, - output_scale_factor=mid_block_scale_factor, - resnet_time_scale_shift=resnet_time_scale_shift, - cross_attention_dim=cross_attention_dim, - num_attention_heads=num_attention_heads[-1], - resnet_groups=norm_num_groups, - use_linear_projection=use_linear_projection, - upcast_attention=upcast_attention, - ) - - # count how many layers upsample the images - self.num_upsamplers = 0 - - # up - reversed_block_out_channels = list(reversed(block_out_channels)) - reversed_num_attention_heads = list(reversed(num_attention_heads)) - reversed_transformer_layers_per_block = (list(reversed(transformer_layers_per_block))) - only_cross_attention = list(reversed(only_cross_attention)) - - output_channel = reversed_block_out_channels[0] - - self.up_blocks = nn.ModuleList([]) - self.brushnet_up_blocks = nn.ModuleList([]) - - for i, up_block_type in enumerate(up_block_types): - is_final_block = i == len(block_out_channels) - 1 - - prev_output_channel = output_channel - output_channel = reversed_block_out_channels[i] - input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] - - # add upsample block for all BUT final layer - if not is_final_block: - add_upsample = True - self.num_upsamplers += 1 - else: - add_upsample = False - - up_block = get_up_block( - up_block_type, - num_layers=layers_per_block+1, - transformer_layers_per_block=reversed_transformer_layers_per_block[i], - in_channels=input_channel, - out_channels=output_channel, - prev_output_channel=prev_output_channel, - temb_channels=time_embed_dim, - add_upsample=add_upsample, - resnet_eps=norm_eps, - resnet_act_fn=act_fn, - resolution_idx=i, - resnet_groups=norm_num_groups, - cross_attention_dim=cross_attention_dim, - num_attention_heads=reversed_num_attention_heads[i], - use_linear_projection=use_linear_projection, - only_cross_attention=only_cross_attention[i], - upcast_attention=upcast_attention, - resnet_time_scale_shift=resnet_time_scale_shift, - attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, - ) - self.up_blocks.append(up_block) - prev_output_channel = output_channel - - for _ in range(layers_per_block+1): - brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) - brushnet_block = zero_module(brushnet_block) - self.brushnet_up_blocks.append(brushnet_block) - - if not is_final_block: - brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) - brushnet_block = zero_module(brushnet_block) - self.brushnet_up_blocks.append(brushnet_block) - - - @classmethod - def from_unet( - cls, - unet: UNet2DConditionModel, - brushnet_conditioning_channel_order: str = "rgb", - conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), - load_weights_from_unet: bool = True, - conditioning_channels: int = 5, - ): - r""" - Instantiate a [`BrushNetModel`] from [`UNet2DConditionModel`]. - - Parameters: - unet (`UNet2DConditionModel`): - The UNet model weights to copy to the [`BrushNetModel`]. All configuration options are also copied - where applicable. - """ - transformer_layers_per_block = ( - unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1 - ) - encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None - encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None - addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None - addition_time_embed_dim = ( - unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None - ) - - brushnet = cls( - in_channels=unet.config.in_channels, - conditioning_channels=conditioning_channels, - flip_sin_to_cos=unet.config.flip_sin_to_cos, - freq_shift=unet.config.freq_shift, - down_block_types=["DownBlock2D" for block_name in unet.config.down_block_types], - mid_block_type='MidBlock2D', - up_block_types=["UpBlock2D" for block_name in unet.config.down_block_types], - only_cross_attention=unet.config.only_cross_attention, - block_out_channels=unet.config.block_out_channels, - layers_per_block=unet.config.layers_per_block, - downsample_padding=unet.config.downsample_padding, - mid_block_scale_factor=unet.config.mid_block_scale_factor, - act_fn=unet.config.act_fn, - norm_num_groups=unet.config.norm_num_groups, - norm_eps=unet.config.norm_eps, - cross_attention_dim=unet.config.cross_attention_dim, - transformer_layers_per_block=transformer_layers_per_block, - encoder_hid_dim=encoder_hid_dim, - encoder_hid_dim_type=encoder_hid_dim_type, - attention_head_dim=unet.config.attention_head_dim, - num_attention_heads=unet.config.num_attention_heads, - use_linear_projection=unet.config.use_linear_projection, - class_embed_type=unet.config.class_embed_type, - addition_embed_type=addition_embed_type, - addition_time_embed_dim=addition_time_embed_dim, - num_class_embeds=unet.config.num_class_embeds, - upcast_attention=unet.config.upcast_attention, - resnet_time_scale_shift=unet.config.resnet_time_scale_shift, - projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim, - brushnet_conditioning_channel_order=brushnet_conditioning_channel_order, - conditioning_embedding_out_channels=conditioning_embedding_out_channels, - ) - - if load_weights_from_unet: - conv_in_condition_weight=torch.zeros_like(brushnet.conv_in_condition.weight) - conv_in_condition_weight[:,:4,...]=unet.conv_in.weight - conv_in_condition_weight[:,4:8,...]=unet.conv_in.weight - brushnet.conv_in_condition.weight=torch.nn.Parameter(conv_in_condition_weight) - brushnet.conv_in_condition.bias=unet.conv_in.bias - - brushnet.time_proj.load_state_dict(unet.time_proj.state_dict()) - brushnet.time_embedding.load_state_dict(unet.time_embedding.state_dict()) - - if brushnet.class_embedding: - brushnet.class_embedding.load_state_dict(unet.class_embedding.state_dict()) - - brushnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(),strict=False) - brushnet.mid_block.load_state_dict(unet.mid_block.state_dict(),strict=False) - brushnet.up_blocks.load_state_dict(unet.up_blocks.state_dict(),strict=False) - - return brushnet - - @property - # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors - def attn_processors(self) -> Dict[str, AttentionProcessor]: - r""" - Returns: - `dict` of attention processors: A dictionary containing all attention processors used in the model with - indexed by its weight name. - """ - # set recursively - processors = {} - - def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): - if hasattr(module, "get_processor"): - processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) - - for sub_name, child in module.named_children(): - fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) - - return processors - - for name, module in self.named_children(): - fn_recursive_add_processors(name, module, processors) - - return processors - - # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor - def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): - r""" - Sets the attention processor to use to compute attention. - - Parameters: - processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): - The instantiated processor class or a dictionary of processor classes that will be set as the processor - for **all** `Attention` layers. - - If `processor` is a dict, the key needs to define the path to the corresponding cross attention - processor. This is strongly recommended when setting trainable attention processors. - - """ - count = len(self.attn_processors.keys()) - - if isinstance(processor, dict) and len(processor) != count: - raise ValueError( - f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" - f" number of attention layers: {count}. Please make sure to pass {count} processor classes." - ) - - def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): - if hasattr(module, "set_processor"): - if not isinstance(processor, dict): - module.set_processor(processor) - else: - module.set_processor(processor.pop(f"{name}.processor")) - - for sub_name, child in module.named_children(): - fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) - - for name, module in self.named_children(): - fn_recursive_attn_processor(name, module, processor) - - # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor - def set_default_attn_processor(self): - """ - Disables custom attention processors and sets the default attention implementation. - """ - if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): - processor = AttnAddedKVProcessor() - elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): - processor = AttnProcessor() - else: - raise ValueError( - f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" - ) - - self.set_attn_processor(processor) - - # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice - def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None: - r""" - Enable sliced attention computation. - - When this option is enabled, the attention module splits the input tensor in slices to compute attention in - several steps. This is useful for saving some memory in exchange for a small decrease in speed. - - Args: - slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): - When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If - `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is - provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` - must be a multiple of `slice_size`. - """ - sliceable_head_dims = [] - - def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): - if hasattr(module, "set_attention_slice"): - sliceable_head_dims.append(module.sliceable_head_dim) - - for child in module.children(): - fn_recursive_retrieve_sliceable_dims(child) - - # retrieve number of attention layers - for module in self.children(): - fn_recursive_retrieve_sliceable_dims(module) - - num_sliceable_layers = len(sliceable_head_dims) - - if slice_size == "auto": - # half the attention head size is usually a good trade-off between - # speed and memory - slice_size = [dim // 2 for dim in sliceable_head_dims] - elif slice_size == "max": - # make smallest slice possible - slice_size = num_sliceable_layers * [1] - - slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size - - if len(slice_size) != len(sliceable_head_dims): - raise ValueError( - f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" - f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." - ) - - for i in range(len(slice_size)): - size = slice_size[i] - dim = sliceable_head_dims[i] - if size is not None and size > dim: - raise ValueError(f"size {size} has to be smaller or equal to {dim}.") - - # Recursively walk through all the children. - # Any children which exposes the set_attention_slice method - # gets the message - def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): - if hasattr(module, "set_attention_slice"): - module.set_attention_slice(slice_size.pop()) - - for child in module.children(): - fn_recursive_set_attention_slice(child, slice_size) - - reversed_slice_size = list(reversed(slice_size)) - for module in self.children(): - fn_recursive_set_attention_slice(module, reversed_slice_size) - - def _set_gradient_checkpointing(self, module, value: bool = False) -> None: - if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): - module.gradient_checkpointing = value - - def forward( - self, - sample: torch.FloatTensor, - encoder_hidden_states: torch.Tensor, - brushnet_cond: torch.FloatTensor, - timestep = None, - time_emb = None, - conditioning_scale: float = 1.0, - class_labels: Optional[torch.Tensor] = None, - timestep_cond: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.Tensor] = None, - added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - guess_mode: bool = False, - return_dict: bool = True, - debug = False, - ) -> Union[BrushNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]: - """ - The [`BrushNetModel`] forward method. - - Args: - sample (`torch.FloatTensor`): - The noisy input tensor. - timestep (`Union[torch.Tensor, float, int]`): - The number of timesteps to denoise an input. - encoder_hidden_states (`torch.Tensor`): - The encoder hidden states. - brushnet_cond (`torch.FloatTensor`): - The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. - conditioning_scale (`float`, defaults to `1.0`): - The scale factor for BrushNet outputs. - class_labels (`torch.Tensor`, *optional*, defaults to `None`): - Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. - timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): - Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the - timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep - embeddings. - attention_mask (`torch.Tensor`, *optional*, defaults to `None`): - An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask - is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large - negative values to the attention scores corresponding to "discard" tokens. - added_cond_kwargs (`dict`): - Additional conditions for the Stable Diffusion XL UNet. - cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): - A kwargs dictionary that if specified is passed along to the `AttnProcessor`. - guess_mode (`bool`, defaults to `False`): - In this mode, the BrushNet encoder tries its best to recognize the input content of the input even if - you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended. - return_dict (`bool`, defaults to `True`): - Whether or not to return a [`~models.brushnet.BrushNetOutput`] instead of a plain tuple. - - Returns: - [`~models.brushnet.BrushNetOutput`] **or** `tuple`: - If `return_dict` is `True`, a [`~models.brushnet.BrushNetOutput`] is returned, otherwise a tuple is - returned where the first element is the sample tensor. - """ - - # check channel order - channel_order = self.config.brushnet_conditioning_channel_order - - if channel_order == "rgb": - # in rgb order by default - ... - elif channel_order == "bgr": - brushnet_cond = torch.flip(brushnet_cond, dims=[1]) - else: - raise ValueError(f"unknown `brushnet_conditioning_channel_order`: {channel_order}") - - # prepare attention_mask - if attention_mask is not None: - attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 - attention_mask = attention_mask.unsqueeze(1) - - if timestep is None and time_emb is None: - raise ValueError(f"`timestep` and `emb` are both None") - - #print("BN: sample.device", sample.device) - #print("BN: TE.device", self.time_embedding.linear_1.weight.device) - - if timestep is not None: - # 1. time - timesteps = timestep - if not torch.is_tensor(timesteps): - # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can - # This would be a good case for the `match` statement (Python 3.10+) - is_mps = sample.device.type == "mps" - if isinstance(timestep, float): - dtype = torch.float32 if is_mps else torch.float64 - else: - dtype = torch.int32 if is_mps else torch.int64 - timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) - elif len(timesteps.shape) == 0: - timesteps = timesteps[None].to(sample.device) - - # broadcast to batch dimension in a way that's compatible with ONNX/Core ML - timesteps = timesteps.expand(sample.shape[0]) - - t_emb = self.time_proj(timesteps) - - # timesteps does not contain any weights and will always return f32 tensors - # but time_embedding might actually be running in fp16. so we need to cast here. - # there might be better ways to encapsulate this. - t_emb = t_emb.to(dtype=sample.dtype) - - #print("t_emb.device =",t_emb.device) - - emb = self.time_embedding(t_emb, timestep_cond) - aug_emb = None - - #print('emb.shape', emb.shape) - - if self.class_embedding is not None: - if class_labels is None: - raise ValueError("class_labels should be provided when num_class_embeds > 0") - - if self.config.class_embed_type == "timestep": - class_labels = self.time_proj(class_labels) - - class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) - emb = emb + class_emb - - if self.config.addition_embed_type is not None: - if self.config.addition_embed_type == "text": - aug_emb = self.add_embedding(encoder_hidden_states) - - elif self.config.addition_embed_type == "text_time": - if "text_embeds" not in added_cond_kwargs: - raise ValueError( - f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" - ) - text_embeds = added_cond_kwargs.get("text_embeds") - if "time_ids" not in added_cond_kwargs: - raise ValueError( - f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" - ) - time_ids = added_cond_kwargs.get("time_ids") - time_embeds = self.add_time_proj(time_ids.flatten()) - time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) - - add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) - add_embeds = add_embeds.to(emb.dtype) - aug_emb = self.add_embedding(add_embeds) - - #print('text_embeds', text_embeds.shape, 'time_ids', time_ids.shape, 'time_embeds', time_embeds.shape, 'add__embeds', add_embeds.shape, 'aug_emb', aug_emb.shape) - - emb = emb + aug_emb if aug_emb is not None else emb - else: - emb = time_emb - - # 2. pre-process - - brushnet_cond=torch.concat([sample,brushnet_cond],1) - sample = self.conv_in_condition(brushnet_cond) - - # 3. down - down_block_res_samples = (sample,) - for downsample_block in self.down_blocks: - if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: - sample, res_samples = downsample_block( - hidden_states=sample, - temb=emb, - encoder_hidden_states=encoder_hidden_states, - attention_mask=attention_mask, - cross_attention_kwargs=cross_attention_kwargs, - ) - else: - sample, res_samples = downsample_block(hidden_states=sample, temb=emb) - - down_block_res_samples += res_samples - - # 4. PaintingNet down blocks - brushnet_down_block_res_samples = () - for down_block_res_sample, brushnet_down_block in zip(down_block_res_samples, self.brushnet_down_blocks): - down_block_res_sample = brushnet_down_block(down_block_res_sample) - brushnet_down_block_res_samples = brushnet_down_block_res_samples + (down_block_res_sample,) - - - # 5. mid - if self.mid_block is not None: - if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: - sample = self.mid_block( - sample, - emb, - encoder_hidden_states=encoder_hidden_states, - attention_mask=attention_mask, - cross_attention_kwargs=cross_attention_kwargs, - ) - else: - sample = self.mid_block(sample, emb) - - # 6. BrushNet mid blocks - brushnet_mid_block_res_sample = self.brushnet_mid_block(sample) - - # 7. up - up_block_res_samples = () - for i, upsample_block in enumerate(self.up_blocks): - is_final_block = i == len(self.up_blocks) - 1 - - res_samples = down_block_res_samples[-len(upsample_block.resnets) :] - down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] - - # if we have not reached the final block and need to forward the - # upsample size, we do it here - if not is_final_block: - upsample_size = down_block_res_samples[-1].shape[2:] - - if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: - sample, up_res_samples = upsample_block( - hidden_states=sample, - temb=emb, - res_hidden_states_tuple=res_samples, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - upsample_size=upsample_size, - attention_mask=attention_mask, - return_res_samples=True - ) - else: - sample, up_res_samples = upsample_block( - hidden_states=sample, - temb=emb, - res_hidden_states_tuple=res_samples, - upsample_size=upsample_size, - return_res_samples=True - ) - - up_block_res_samples += up_res_samples - - # 8. BrushNet up blocks - brushnet_up_block_res_samples = () - for up_block_res_sample, brushnet_up_block in zip(up_block_res_samples, self.brushnet_up_blocks): - up_block_res_sample = brushnet_up_block(up_block_res_sample) - brushnet_up_block_res_samples = brushnet_up_block_res_samples + (up_block_res_sample,) - - # 6. scaling - if guess_mode and not self.config.global_pool_conditions: - scales = torch.logspace(-1, 0, len(brushnet_down_block_res_samples) + 1 + len(brushnet_up_block_res_samples), device=sample.device) # 0.1 to 1.0 - scales = scales * conditioning_scale - - brushnet_down_block_res_samples = [sample * scale for sample, scale in zip(brushnet_down_block_res_samples, scales[:len(brushnet_down_block_res_samples)])] - brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * scales[len(brushnet_down_block_res_samples)] - brushnet_up_block_res_samples = [sample * scale for sample, scale in zip(brushnet_up_block_res_samples, scales[len(brushnet_down_block_res_samples)+1:])] - else: - brushnet_down_block_res_samples = [sample * conditioning_scale for sample in brushnet_down_block_res_samples] - brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * conditioning_scale - brushnet_up_block_res_samples = [sample * conditioning_scale for sample in brushnet_up_block_res_samples] - - - if self.config.global_pool_conditions: - brushnet_down_block_res_samples = [ - torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_down_block_res_samples - ] - brushnet_mid_block_res_sample = torch.mean(brushnet_mid_block_res_sample, dim=(2, 3), keepdim=True) - brushnet_up_block_res_samples = [ - torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_up_block_res_samples - ] - - if not return_dict: - return (brushnet_down_block_res_samples, brushnet_mid_block_res_sample, brushnet_up_block_res_samples) - - return BrushNetOutput( - down_block_res_samples=brushnet_down_block_res_samples, - mid_block_res_sample=brushnet_mid_block_res_sample, - up_block_res_samples=brushnet_up_block_res_samples - ) - - -def zero_module(module): - for p in module.parameters(): - nn.init.zeros_(p) - return module diff --git a/MagicQuill/brushnet/brushnet_ca.py b/MagicQuill/brushnet/brushnet_ca.py deleted file mode 100644 index 780a87b23f30e2192a19469c506a22056ea52ba7..0000000000000000000000000000000000000000 --- a/MagicQuill/brushnet/brushnet_ca.py +++ /dev/null @@ -1,983 +0,0 @@ -from dataclasses import dataclass -from typing import Any, Dict, List, Optional, Tuple, Union - -import torch -from torch import nn - -from diffusers.configuration_utils import ConfigMixin, register_to_config -from diffusers.utils import BaseOutput, logging -from diffusers.models.attention_processor import ( - ADDED_KV_ATTENTION_PROCESSORS, - CROSS_ATTENTION_PROCESSORS, - AttentionProcessor, - AttnAddedKVProcessor, - AttnProcessor, -) -from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps -from diffusers.models.modeling_utils import ModelMixin - -from .unet_2d_blocks import ( - CrossAttnDownBlock2D, - DownBlock2D, - UNetMidBlock2D, - UNetMidBlock2DCrossAttn, - get_down_block, - get_mid_block, - get_up_block, - MidBlock2D -) - -from .unet_2d_condition import UNet2DConditionModel - - -logger = logging.get_logger(__name__) # pylint: disable=invalid-name - - -@dataclass -class BrushNetOutput(BaseOutput): - """ - The output of [`BrushNetModel`]. - - Args: - up_block_res_samples (`tuple[torch.Tensor]`): - A tuple of upsample activations at different resolutions for each upsampling block. Each tensor should - be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be - used to condition the original UNet's upsampling activations. - down_block_res_samples (`tuple[torch.Tensor]`): - A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should - be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be - used to condition the original UNet's downsampling activations. - mid_down_block_re_sample (`torch.Tensor`): - The activation of the midde block (the lowest sample resolution). Each tensor should be of shape - `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`. - Output can be used to condition the original UNet's middle block activation. - """ - - up_block_res_samples: Tuple[torch.Tensor] - down_block_res_samples: Tuple[torch.Tensor] - mid_block_res_sample: torch.Tensor - - -class BrushNetModel(ModelMixin, ConfigMixin): - """ - A BrushNet model. - - Args: - in_channels (`int`, defaults to 4): - The number of channels in the input sample. - flip_sin_to_cos (`bool`, defaults to `True`): - Whether to flip the sin to cos in the time embedding. - freq_shift (`int`, defaults to 0): - The frequency shift to apply to the time embedding. - down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): - The tuple of downsample blocks to use. - mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): - Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or - `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped. - up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): - The tuple of upsample blocks to use. - only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`): - block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`): - The tuple of output channels for each block. - layers_per_block (`int`, defaults to 2): - The number of layers per block. - downsample_padding (`int`, defaults to 1): - The padding to use for the downsampling convolution. - mid_block_scale_factor (`float`, defaults to 1): - The scale factor to use for the mid block. - act_fn (`str`, defaults to "silu"): - The activation function to use. - norm_num_groups (`int`, *optional*, defaults to 32): - The number of groups to use for the normalization. If None, normalization and activation layers is skipped - in post-processing. - norm_eps (`float`, defaults to 1e-5): - The epsilon to use for the normalization. - cross_attention_dim (`int`, defaults to 1280): - The dimension of the cross attention features. - transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1): - The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for - [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], - [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. - encoder_hid_dim (`int`, *optional*, defaults to None): - If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` - dimension to `cross_attention_dim`. - encoder_hid_dim_type (`str`, *optional*, defaults to `None`): - If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text - embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. - attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8): - The dimension of the attention heads. - use_linear_projection (`bool`, defaults to `False`): - class_embed_type (`str`, *optional*, defaults to `None`): - The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None, - `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. - addition_embed_type (`str`, *optional*, defaults to `None`): - Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or - "text". "text" will use the `TextTimeEmbedding` layer. - num_class_embeds (`int`, *optional*, defaults to 0): - Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing - class conditioning with `class_embed_type` equal to `None`. - upcast_attention (`bool`, defaults to `False`): - resnet_time_scale_shift (`str`, defaults to `"default"`): - Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`. - projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`): - The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when - `class_embed_type="projection"`. - brushnet_conditioning_channel_order (`str`, defaults to `"rgb"`): - The channel order of conditional image. Will convert to `rgb` if it's `bgr`. - conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`): - The tuple of output channel for each block in the `conditioning_embedding` layer. - global_pool_conditions (`bool`, defaults to `False`): - TODO(Patrick) - unused parameter. - addition_embed_type_num_heads (`int`, defaults to 64): - The number of heads to use for the `TextTimeEmbedding` layer. - """ - - _supports_gradient_checkpointing = True - - @register_to_config - def __init__( - self, - in_channels: int = 4, - conditioning_channels: int = 5, - flip_sin_to_cos: bool = True, - freq_shift: int = 0, - down_block_types: Tuple[str, ...] = ( - "CrossAttnDownBlock2D", - "CrossAttnDownBlock2D", - "CrossAttnDownBlock2D", - "DownBlock2D", - ), - mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", - up_block_types: Tuple[str, ...] = ( - "UpBlock2D", - "CrossAttnUpBlock2D", - "CrossAttnUpBlock2D", - "CrossAttnUpBlock2D", - ), - only_cross_attention: Union[bool, Tuple[bool]] = False, - block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), - layers_per_block: int = 2, - downsample_padding: int = 1, - mid_block_scale_factor: float = 1, - act_fn: str = "silu", - norm_num_groups: Optional[int] = 32, - norm_eps: float = 1e-5, - cross_attention_dim: int = 1280, - transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1, - encoder_hid_dim: Optional[int] = None, - encoder_hid_dim_type: Optional[str] = None, - attention_head_dim: Union[int, Tuple[int, ...]] = 8, - num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None, - use_linear_projection: bool = False, - class_embed_type: Optional[str] = None, - addition_embed_type: Optional[str] = None, - addition_time_embed_dim: Optional[int] = None, - num_class_embeds: Optional[int] = None, - upcast_attention: bool = False, - resnet_time_scale_shift: str = "default", - projection_class_embeddings_input_dim: Optional[int] = None, - brushnet_conditioning_channel_order: str = "rgb", - conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), - global_pool_conditions: bool = False, - addition_embed_type_num_heads: int = 64, - ): - super().__init__() - - # If `num_attention_heads` is not defined (which is the case for most models) - # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. - # The reason for this behavior is to correct for incorrectly named variables that were introduced - # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 - # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking - # which is why we correct for the naming here. - num_attention_heads = num_attention_heads or attention_head_dim - - # Check inputs - if len(down_block_types) != len(up_block_types): - raise ValueError( - f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." - ) - - if len(block_out_channels) != len(down_block_types): - raise ValueError( - f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." - ) - - if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): - raise ValueError( - f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." - ) - - if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): - raise ValueError( - f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." - ) - - if isinstance(transformer_layers_per_block, int): - transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) - - # input - conv_in_kernel = 3 - conv_in_padding = (conv_in_kernel - 1) // 2 - self.conv_in_condition = nn.Conv2d( - in_channels + conditioning_channels, - block_out_channels[0], - kernel_size=conv_in_kernel, - padding=conv_in_padding, - ) - - # time - time_embed_dim = block_out_channels[0] * 4 - self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) - timestep_input_dim = block_out_channels[0] - self.time_embedding = TimestepEmbedding( - timestep_input_dim, - time_embed_dim, - act_fn=act_fn, - ) - - if encoder_hid_dim_type is None and encoder_hid_dim is not None: - encoder_hid_dim_type = "text_proj" - self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) - logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") - - if encoder_hid_dim is None and encoder_hid_dim_type is not None: - raise ValueError( - f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." - ) - - if encoder_hid_dim_type == "text_proj": - self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) - elif encoder_hid_dim_type == "text_image_proj": - # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much - # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use - # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)` - self.encoder_hid_proj = TextImageProjection( - text_embed_dim=encoder_hid_dim, - image_embed_dim=cross_attention_dim, - cross_attention_dim=cross_attention_dim, - ) - - elif encoder_hid_dim_type is not None: - raise ValueError( - f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." - ) - else: - self.encoder_hid_proj = None - - # class embedding - if class_embed_type is None and num_class_embeds is not None: - self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) - elif class_embed_type == "timestep": - self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) - elif class_embed_type == "identity": - self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) - elif class_embed_type == "projection": - if projection_class_embeddings_input_dim is None: - raise ValueError( - "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" - ) - # The projection `class_embed_type` is the same as the timestep `class_embed_type` except - # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings - # 2. it projects from an arbitrary input dimension. - # - # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. - # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. - # As a result, `TimestepEmbedding` can be passed arbitrary vectors. - self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) - else: - self.class_embedding = None - - if addition_embed_type == "text": - if encoder_hid_dim is not None: - text_time_embedding_from_dim = encoder_hid_dim - else: - text_time_embedding_from_dim = cross_attention_dim - - self.add_embedding = TextTimeEmbedding( - text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads - ) - elif addition_embed_type == "text_image": - # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much - # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use - # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)` - self.add_embedding = TextImageTimeEmbedding( - text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim - ) - elif addition_embed_type == "text_time": - self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) - self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) - - elif addition_embed_type is not None: - raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") - - self.down_blocks = nn.ModuleList([]) - self.brushnet_down_blocks = nn.ModuleList([]) - - if isinstance(only_cross_attention, bool): - only_cross_attention = [only_cross_attention] * len(down_block_types) - - if isinstance(attention_head_dim, int): - attention_head_dim = (attention_head_dim,) * len(down_block_types) - - if isinstance(num_attention_heads, int): - num_attention_heads = (num_attention_heads,) * len(down_block_types) - - # down - output_channel = block_out_channels[0] - - brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) - brushnet_block = zero_module(brushnet_block) - self.brushnet_down_blocks.append(brushnet_block) - - for i, down_block_type in enumerate(down_block_types): - input_channel = output_channel - output_channel = block_out_channels[i] - is_final_block = i == len(block_out_channels) - 1 - - down_block = get_down_block( - down_block_type, - num_layers=layers_per_block, - transformer_layers_per_block=transformer_layers_per_block[i], - in_channels=input_channel, - out_channels=output_channel, - temb_channels=time_embed_dim, - add_downsample=not is_final_block, - resnet_eps=norm_eps, - resnet_act_fn=act_fn, - resnet_groups=norm_num_groups, - cross_attention_dim=cross_attention_dim, - num_attention_heads=num_attention_heads[i], - attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, - downsample_padding=downsample_padding, - use_linear_projection=use_linear_projection, - only_cross_attention=only_cross_attention[i], - upcast_attention=upcast_attention, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - self.down_blocks.append(down_block) - - for _ in range(layers_per_block): - brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) - brushnet_block = zero_module(brushnet_block) - self.brushnet_down_blocks.append(brushnet_block) - - if not is_final_block: - brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) - brushnet_block = zero_module(brushnet_block) - self.brushnet_down_blocks.append(brushnet_block) - - # mid - mid_block_channel = block_out_channels[-1] - - brushnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1) - brushnet_block = zero_module(brushnet_block) - self.brushnet_mid_block = brushnet_block - - self.mid_block = get_mid_block( - mid_block_type, - transformer_layers_per_block=transformer_layers_per_block[-1], - in_channels=mid_block_channel, - temb_channels=time_embed_dim, - resnet_eps=norm_eps, - resnet_act_fn=act_fn, - output_scale_factor=mid_block_scale_factor, - resnet_time_scale_shift=resnet_time_scale_shift, - cross_attention_dim=cross_attention_dim, - num_attention_heads=num_attention_heads[-1], - resnet_groups=norm_num_groups, - use_linear_projection=use_linear_projection, - upcast_attention=upcast_attention, - ) - - # count how many layers upsample the images - self.num_upsamplers = 0 - - # up - reversed_block_out_channels = list(reversed(block_out_channels)) - reversed_num_attention_heads = list(reversed(num_attention_heads)) - reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) - only_cross_attention = list(reversed(only_cross_attention)) - - output_channel = reversed_block_out_channels[0] - - self.up_blocks = nn.ModuleList([]) - self.brushnet_up_blocks = nn.ModuleList([]) - - for i, up_block_type in enumerate(up_block_types): - is_final_block = i == len(block_out_channels) - 1 - - prev_output_channel = output_channel - output_channel = reversed_block_out_channels[i] - input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] - - # add upsample block for all BUT final layer - if not is_final_block: - add_upsample = True - self.num_upsamplers += 1 - else: - add_upsample = False - - up_block = get_up_block( - up_block_type, - num_layers=layers_per_block + 1, - transformer_layers_per_block=reversed_transformer_layers_per_block[i], - in_channels=input_channel, - out_channels=output_channel, - prev_output_channel=prev_output_channel, - temb_channels=time_embed_dim, - add_upsample=add_upsample, - resnet_eps=norm_eps, - resnet_act_fn=act_fn, - resolution_idx=i, - resnet_groups=norm_num_groups, - cross_attention_dim=cross_attention_dim, - num_attention_heads=reversed_num_attention_heads[i], - use_linear_projection=use_linear_projection, - only_cross_attention=only_cross_attention[i], - upcast_attention=upcast_attention, - resnet_time_scale_shift=resnet_time_scale_shift, - attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, - ) - self.up_blocks.append(up_block) - prev_output_channel = output_channel - - for _ in range(layers_per_block + 1): - brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) - brushnet_block = zero_module(brushnet_block) - self.brushnet_up_blocks.append(brushnet_block) - - if not is_final_block: - brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) - brushnet_block = zero_module(brushnet_block) - self.brushnet_up_blocks.append(brushnet_block) - - @classmethod - def from_unet( - cls, - unet: UNet2DConditionModel, - brushnet_conditioning_channel_order: str = "rgb", - conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), - load_weights_from_unet: bool = True, - conditioning_channels: int = 5, - ): - r""" - Instantiate a [`BrushNetModel`] from [`UNet2DConditionModel`]. - - Parameters: - unet (`UNet2DConditionModel`): - The UNet model weights to copy to the [`BrushNetModel`]. All configuration options are also copied - where applicable. - """ - transformer_layers_per_block = ( - unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1 - ) - encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None - encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None - addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None - addition_time_embed_dim = ( - unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None - ) - - brushnet = cls( - in_channels=unet.config.in_channels, - conditioning_channels=conditioning_channels, - flip_sin_to_cos=unet.config.flip_sin_to_cos, - freq_shift=unet.config.freq_shift, - # down_block_types=['DownBlock2D','DownBlock2D','DownBlock2D','DownBlock2D'], - down_block_types=[ - "CrossAttnDownBlock2D", - "CrossAttnDownBlock2D", - "CrossAttnDownBlock2D", - "DownBlock2D", - ], - # mid_block_type='MidBlock2D', - mid_block_type="UNetMidBlock2DCrossAttn", - # up_block_types=['UpBlock2D','UpBlock2D','UpBlock2D','UpBlock2D'], - up_block_types=["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"], - only_cross_attention=unet.config.only_cross_attention, - block_out_channels=unet.config.block_out_channels, - layers_per_block=unet.config.layers_per_block, - downsample_padding=unet.config.downsample_padding, - mid_block_scale_factor=unet.config.mid_block_scale_factor, - act_fn=unet.config.act_fn, - norm_num_groups=unet.config.norm_num_groups, - norm_eps=unet.config.norm_eps, - cross_attention_dim=unet.config.cross_attention_dim, - transformer_layers_per_block=transformer_layers_per_block, - encoder_hid_dim=encoder_hid_dim, - encoder_hid_dim_type=encoder_hid_dim_type, - attention_head_dim=unet.config.attention_head_dim, - num_attention_heads=unet.config.num_attention_heads, - use_linear_projection=unet.config.use_linear_projection, - class_embed_type=unet.config.class_embed_type, - addition_embed_type=addition_embed_type, - addition_time_embed_dim=addition_time_embed_dim, - num_class_embeds=unet.config.num_class_embeds, - upcast_attention=unet.config.upcast_attention, - resnet_time_scale_shift=unet.config.resnet_time_scale_shift, - projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim, - brushnet_conditioning_channel_order=brushnet_conditioning_channel_order, - conditioning_embedding_out_channels=conditioning_embedding_out_channels, - ) - - if load_weights_from_unet: - conv_in_condition_weight = torch.zeros_like(brushnet.conv_in_condition.weight) - conv_in_condition_weight[:, :4, ...] = unet.conv_in.weight - conv_in_condition_weight[:, 4:8, ...] = unet.conv_in.weight - brushnet.conv_in_condition.weight = torch.nn.Parameter(conv_in_condition_weight) - brushnet.conv_in_condition.bias = unet.conv_in.bias - - brushnet.time_proj.load_state_dict(unet.time_proj.state_dict()) - brushnet.time_embedding.load_state_dict(unet.time_embedding.state_dict()) - - if brushnet.class_embedding: - brushnet.class_embedding.load_state_dict(unet.class_embedding.state_dict()) - - brushnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False) - brushnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False) - brushnet.up_blocks.load_state_dict(unet.up_blocks.state_dict(), strict=False) - - return brushnet.to(unet.dtype) - - @property - # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors - def attn_processors(self) -> Dict[str, AttentionProcessor]: - r""" - Returns: - `dict` of attention processors: A dictionary containing all attention processors used in the model with - indexed by its weight name. - """ - # set recursively - processors = {} - - def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): - if hasattr(module, "get_processor"): - processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) - - for sub_name, child in module.named_children(): - fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) - - return processors - - for name, module in self.named_children(): - fn_recursive_add_processors(name, module, processors) - - return processors - - # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor - def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): - r""" - Sets the attention processor to use to compute attention. - - Parameters: - processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): - The instantiated processor class or a dictionary of processor classes that will be set as the processor - for **all** `Attention` layers. - - If `processor` is a dict, the key needs to define the path to the corresponding cross attention - processor. This is strongly recommended when setting trainable attention processors. - - """ - count = len(self.attn_processors.keys()) - - if isinstance(processor, dict) and len(processor) != count: - raise ValueError( - f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" - f" number of attention layers: {count}. Please make sure to pass {count} processor classes." - ) - - def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): - if hasattr(module, "set_processor"): - if not isinstance(processor, dict): - module.set_processor(processor) - else: - module.set_processor(processor.pop(f"{name}.processor")) - - for sub_name, child in module.named_children(): - fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) - - for name, module in self.named_children(): - fn_recursive_attn_processor(name, module, processor) - - # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor - def set_default_attn_processor(self): - """ - Disables custom attention processors and sets the default attention implementation. - """ - if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): - processor = AttnAddedKVProcessor() - elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): - processor = AttnProcessor() - else: - raise ValueError( - f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" - ) - - self.set_attn_processor(processor) - - # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice - def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None: - r""" - Enable sliced attention computation. - - When this option is enabled, the attention module splits the input tensor in slices to compute attention in - several steps. This is useful for saving some memory in exchange for a small decrease in speed. - - Args: - slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): - When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If - `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is - provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` - must be a multiple of `slice_size`. - """ - sliceable_head_dims = [] - - def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): - if hasattr(module, "set_attention_slice"): - sliceable_head_dims.append(module.sliceable_head_dim) - - for child in module.children(): - fn_recursive_retrieve_sliceable_dims(child) - - # retrieve number of attention layers - for module in self.children(): - fn_recursive_retrieve_sliceable_dims(module) - - num_sliceable_layers = len(sliceable_head_dims) - - if slice_size == "auto": - # half the attention head size is usually a good trade-off between - # speed and memory - slice_size = [dim // 2 for dim in sliceable_head_dims] - elif slice_size == "max": - # make smallest slice possible - slice_size = num_sliceable_layers * [1] - - slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size - - if len(slice_size) != len(sliceable_head_dims): - raise ValueError( - f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" - f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." - ) - - for i in range(len(slice_size)): - size = slice_size[i] - dim = sliceable_head_dims[i] - if size is not None and size > dim: - raise ValueError(f"size {size} has to be smaller or equal to {dim}.") - - # Recursively walk through all the children. - # Any children which exposes the set_attention_slice method - # gets the message - def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): - if hasattr(module, "set_attention_slice"): - module.set_attention_slice(slice_size.pop()) - - for child in module.children(): - fn_recursive_set_attention_slice(child, slice_size) - - reversed_slice_size = list(reversed(slice_size)) - for module in self.children(): - fn_recursive_set_attention_slice(module, reversed_slice_size) - - def _set_gradient_checkpointing(self, module, value: bool = False) -> None: - if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): - module.gradient_checkpointing = value - - def forward( - self, - sample: torch.FloatTensor, - timestep: Union[torch.Tensor, float, int], - encoder_hidden_states: torch.Tensor, - brushnet_cond: torch.FloatTensor, - conditioning_scale: float = 1.0, - class_labels: Optional[torch.Tensor] = None, - timestep_cond: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.Tensor] = None, - added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - guess_mode: bool = False, - return_dict: bool = True, - debug=False, - ) -> Union[BrushNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]: - """ - The [`BrushNetModel`] forward method. - - Args: - sample (`torch.FloatTensor`): - The noisy input tensor. - timestep (`Union[torch.Tensor, float, int]`): - The number of timesteps to denoise an input. - encoder_hidden_states (`torch.Tensor`): - The encoder hidden states. - brushnet_cond (`torch.FloatTensor`): - The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. - conditioning_scale (`float`, defaults to `1.0`): - The scale factor for BrushNet outputs. - class_labels (`torch.Tensor`, *optional*, defaults to `None`): - Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. - timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): - Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the - timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep - embeddings. - attention_mask (`torch.Tensor`, *optional*, defaults to `None`): - An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask - is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large - negative values to the attention scores corresponding to "discard" tokens. - added_cond_kwargs (`dict`): - Additional conditions for the Stable Diffusion XL UNet. - cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): - A kwargs dictionary that if specified is passed along to the `AttnProcessor`. - guess_mode (`bool`, defaults to `False`): - In this mode, the BrushNet encoder tries its best to recognize the input content of the input even if - you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended. - return_dict (`bool`, defaults to `True`): - Whether or not to return a [`~models.brushnet.BrushNetOutput`] instead of a plain tuple. - - Returns: - [`~models.brushnet.BrushNetOutput`] **or** `tuple`: - If `return_dict` is `True`, a [`~models.brushnet.BrushNetOutput`] is returned, otherwise a tuple is - returned where the first element is the sample tensor. - """ - # check channel order - channel_order = self.config.brushnet_conditioning_channel_order - - if channel_order == "rgb": - # in rgb order by default - ... - elif channel_order == "bgr": - brushnet_cond = torch.flip(brushnet_cond, dims=[1]) - else: - raise ValueError(f"unknown `brushnet_conditioning_channel_order`: {channel_order}") - - if debug: print('BrushNet CA: attn mask') - - # prepare attention_mask - if attention_mask is not None: - attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 - attention_mask = attention_mask.unsqueeze(1) - - if debug: print('BrushNet CA: time') - - # 1. time - timesteps = timestep - if not torch.is_tensor(timesteps): - # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can - # This would be a good case for the `match` statement (Python 3.10+) - is_mps = sample.device.type == "mps" - if isinstance(timestep, float): - dtype = torch.float32 if is_mps else torch.float64 - else: - dtype = torch.int32 if is_mps else torch.int64 - timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) - elif len(timesteps.shape) == 0: - timesteps = timesteps[None].to(sample.device) - - # broadcast to batch dimension in a way that's compatible with ONNX/Core ML - timesteps = timesteps.expand(sample.shape[0]) - - t_emb = self.time_proj(timesteps) - - # timesteps does not contain any weights and will always return f32 tensors - # but time_embedding might actually be running in fp16. so we need to cast here. - # there might be better ways to encapsulate this. - t_emb = t_emb.to(dtype=sample.dtype) - - emb = self.time_embedding(t_emb, timestep_cond) - aug_emb = None - - if self.class_embedding is not None: - if class_labels is None: - raise ValueError("class_labels should be provided when num_class_embeds > 0") - - if self.config.class_embed_type == "timestep": - class_labels = self.time_proj(class_labels) - - class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) - emb = emb + class_emb - - if self.config.addition_embed_type is not None: - if self.config.addition_embed_type == "text": - aug_emb = self.add_embedding(encoder_hidden_states) - - elif self.config.addition_embed_type == "text_time": - if "text_embeds" not in added_cond_kwargs: - raise ValueError( - f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" - ) - text_embeds = added_cond_kwargs.get("text_embeds") - if "time_ids" not in added_cond_kwargs: - raise ValueError( - f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" - ) - time_ids = added_cond_kwargs.get("time_ids") - time_embeds = self.add_time_proj(time_ids.flatten()) - time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) - - add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) - add_embeds = add_embeds.to(emb.dtype) - aug_emb = self.add_embedding(add_embeds) - - emb = emb + aug_emb if aug_emb is not None else emb - - if debug: print('BrushNet CA: pre-process') - - - # 2. pre-process - brushnet_cond = torch.concat([sample, brushnet_cond], 1) - sample = self.conv_in_condition(brushnet_cond) - - if debug: print('BrushNet CA: down') - - # 3. down - down_block_res_samples = (sample,) - for downsample_block in self.down_blocks: - if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: - if debug: print('BrushNet CA (down block with XA): ', type(downsample_block)) - sample, res_samples = downsample_block( - hidden_states=sample, - temb=emb, - encoder_hidden_states=encoder_hidden_states, - attention_mask=attention_mask, - cross_attention_kwargs=cross_attention_kwargs, - debug=debug, - ) - else: - if debug: print('BrushNet CA (down block): ', type(downsample_block)) - sample, res_samples = downsample_block(hidden_states=sample, temb=emb, debug=debug) - - down_block_res_samples += res_samples - - if debug: print('BrushNet CA: PP down') - - # 4. PaintingNet down blocks - brushnet_down_block_res_samples = () - for down_block_res_sample, brushnet_down_block in zip(down_block_res_samples, self.brushnet_down_blocks): - down_block_res_sample = brushnet_down_block(down_block_res_sample) - brushnet_down_block_res_samples = brushnet_down_block_res_samples + (down_block_res_sample,) - - if debug: print('BrushNet CA: PP mid') - - # 5. mid - if self.mid_block is not None: - if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: - sample = self.mid_block( - sample, - emb, - encoder_hidden_states=encoder_hidden_states, - attention_mask=attention_mask, - cross_attention_kwargs=cross_attention_kwargs, - ) - else: - sample = self.mid_block(sample, emb) - - if debug: print('BrushNet CA: mid') - - # 6. BrushNet mid blocks - brushnet_mid_block_res_sample = self.brushnet_mid_block(sample) - - if debug: print('BrushNet CA: PP up') - - # 7. up - up_block_res_samples = () - for i, upsample_block in enumerate(self.up_blocks): - is_final_block = i == len(self.up_blocks) - 1 - - res_samples = down_block_res_samples[-len(upsample_block.resnets) :] - down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] - - # if we have not reached the final block and need to forward the - # upsample size, we do it here - if not is_final_block: - upsample_size = down_block_res_samples[-1].shape[2:] - - if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: - sample, up_res_samples = upsample_block( - hidden_states=sample, - temb=emb, - res_hidden_states_tuple=res_samples, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - upsample_size=upsample_size, - attention_mask=attention_mask, - return_res_samples=True, - ) - else: - sample, up_res_samples = upsample_block( - hidden_states=sample, - temb=emb, - res_hidden_states_tuple=res_samples, - upsample_size=upsample_size, - return_res_samples=True, - ) - - up_block_res_samples += up_res_samples - - if debug: print('BrushNet CA: up') - - # 8. BrushNet up blocks - brushnet_up_block_res_samples = () - for up_block_res_sample, brushnet_up_block in zip(up_block_res_samples, self.brushnet_up_blocks): - up_block_res_sample = brushnet_up_block(up_block_res_sample) - brushnet_up_block_res_samples = brushnet_up_block_res_samples + (up_block_res_sample,) - - if debug: print('BrushNet CA: scaling') - - # 6. scaling - if guess_mode and not self.config.global_pool_conditions: - scales = torch.logspace( - -1, - 0, - len(brushnet_down_block_res_samples) + 1 + len(brushnet_up_block_res_samples), - device=sample.device, - ) # 0.1 to 1.0 - scales = scales * conditioning_scale - - brushnet_down_block_res_samples = [ - sample * scale - for sample, scale in zip( - brushnet_down_block_res_samples, scales[: len(brushnet_down_block_res_samples)] - ) - ] - brushnet_mid_block_res_sample = ( - brushnet_mid_block_res_sample * scales[len(brushnet_down_block_res_samples)] - ) - brushnet_up_block_res_samples = [ - sample * scale - for sample, scale in zip( - brushnet_up_block_res_samples, scales[len(brushnet_down_block_res_samples) + 1 :] - ) - ] - else: - brushnet_down_block_res_samples = [ - sample * conditioning_scale for sample in brushnet_down_block_res_samples - ] - brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * conditioning_scale - brushnet_up_block_res_samples = [sample * conditioning_scale for sample in brushnet_up_block_res_samples] - - if self.config.global_pool_conditions: - brushnet_down_block_res_samples = [ - torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_down_block_res_samples - ] - brushnet_mid_block_res_sample = torch.mean(brushnet_mid_block_res_sample, dim=(2, 3), keepdim=True) - brushnet_up_block_res_samples = [ - torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_up_block_res_samples - ] - - if debug: print('BrushNet CA: finish') - - if not return_dict: - return (brushnet_down_block_res_samples, brushnet_mid_block_res_sample, brushnet_up_block_res_samples) - - return BrushNetOutput( - down_block_res_samples=brushnet_down_block_res_samples, - mid_block_res_sample=brushnet_mid_block_res_sample, - up_block_res_samples=brushnet_up_block_res_samples, - ) - - -def zero_module(module): - for p in module.parameters(): - nn.init.zeros_(p) - return module diff --git a/MagicQuill/brushnet/brushnet_xl.json b/MagicQuill/brushnet/brushnet_xl.json deleted file mode 100644 index c1a3c655549879fb2e9d7441ec71eef5167eac12..0000000000000000000000000000000000000000 --- a/MagicQuill/brushnet/brushnet_xl.json +++ /dev/null @@ -1,63 +0,0 @@ -{ - "_class_name": "BrushNetModel", - "_diffusers_version": "0.27.0.dev0", - "_name_or_path": "runs/logs/brushnetsdxl_randommask/checkpoint-80000", - "act_fn": "silu", - "addition_embed_type": "text_time", - "addition_embed_type_num_heads": 64, - "addition_time_embed_dim": 256, - "attention_head_dim": [ - 5, - 10, - 20 - ], - "block_out_channels": [ - 320, - 640, - 1280 - ], - "brushnet_conditioning_channel_order": "rgb", - "class_embed_type": null, - "conditioning_channels": 5, - "conditioning_embedding_out_channels": [ - 16, - 32, - 96, - 256 - ], - "cross_attention_dim": 2048, - "down_block_types": [ - "DownBlock2D", - "DownBlock2D", - "DownBlock2D" - ], - "downsample_padding": 1, - "encoder_hid_dim": null, - "encoder_hid_dim_type": null, - "flip_sin_to_cos": true, - "freq_shift": 0, - "global_pool_conditions": false, - "in_channels": 4, - "layers_per_block": 2, - "mid_block_scale_factor": 1, - "mid_block_type": "MidBlock2D", - "norm_eps": 1e-05, - "norm_num_groups": 32, - "num_attention_heads": null, - "num_class_embeds": null, - "only_cross_attention": false, - "projection_class_embeddings_input_dim": 2816, - "resnet_time_scale_shift": "default", - "transformer_layers_per_block": [ - 1, - 2, - 10 - ], - "up_block_types": [ - "UpBlock2D", - "UpBlock2D", - "UpBlock2D" - ], - "upcast_attention": null, - "use_linear_projection": true -} diff --git a/MagicQuill/brushnet/powerpaint.json b/MagicQuill/brushnet/powerpaint.json deleted file mode 100644 index 4d7c73e9f5654cd775db99a0d77234765f808e6c..0000000000000000000000000000000000000000 --- a/MagicQuill/brushnet/powerpaint.json +++ /dev/null @@ -1,57 +0,0 @@ -{ - "_class_name": "BrushNetModel", - "_diffusers_version": "0.27.2", - "act_fn": "silu", - "addition_embed_type": null, - "addition_embed_type_num_heads": 64, - "addition_time_embed_dim": null, - "attention_head_dim": 8, - "block_out_channels": [ - 320, - 640, - 1280, - 1280 - ], - "brushnet_conditioning_channel_order": "rgb", - "class_embed_type": null, - "conditioning_channels": 5, - "conditioning_embedding_out_channels": [ - 16, - 32, - 96, - 256 - ], - "cross_attention_dim": 768, - "down_block_types": [ - "CrossAttnDownBlock2D", - "CrossAttnDownBlock2D", - "CrossAttnDownBlock2D", - "DownBlock2D" - ], - "downsample_padding": 1, - "encoder_hid_dim": null, - "encoder_hid_dim_type": null, - "flip_sin_to_cos": true, - "freq_shift": 0, - "global_pool_conditions": false, - "in_channels": 4, - "layers_per_block": 2, - "mid_block_scale_factor": 1, - "mid_block_type": "UNetMidBlock2DCrossAttn", - "norm_eps": 1e-05, - "norm_num_groups": 32, - "num_attention_heads": null, - "num_class_embeds": null, - "only_cross_attention": false, - "projection_class_embeddings_input_dim": null, - "resnet_time_scale_shift": "default", - "transformer_layers_per_block": 1, - "up_block_types": [ - "UpBlock2D", - "CrossAttnUpBlock2D", - "CrossAttnUpBlock2D", - "CrossAttnUpBlock2D" - ], - "upcast_attention": false, - "use_linear_projection": false -} diff --git a/MagicQuill/brushnet/powerpaint_utils.py b/MagicQuill/brushnet/powerpaint_utils.py deleted file mode 100644 index bcbb1f715bd33ef79064361be41c99309a176424..0000000000000000000000000000000000000000 --- a/MagicQuill/brushnet/powerpaint_utils.py +++ /dev/null @@ -1,496 +0,0 @@ -import copy -import random - -import torch -import torch.nn as nn -from transformers import CLIPTokenizer -from typing import Any, List, Optional, Union - -class TokenizerWrapper: - """Tokenizer wrapper for CLIPTokenizer. Only support CLIPTokenizer - currently. This wrapper is modified from https://github.com/huggingface/dif - fusers/blob/e51f19aee82c8dd874b715a09dbc521d88835d68/src/diffusers/loaders. - py#L358 # noqa. - - Args: - from_pretrained (Union[str, os.PathLike], optional): The *model id* - of a pretrained model or a path to a *directory* containing - model weights and config. Defaults to None. - from_config (Union[str, os.PathLike], optional): The *model id* - of a pretrained model or a path to a *directory* containing - model weights and config. Defaults to None. - - *args, **kwargs: If `from_pretrained` is passed, *args and **kwargs - will be passed to `from_pretrained` function. Otherwise, *args - and **kwargs will be used to initialize the model by - `self._module_cls(*args, **kwargs)`. - """ - - def __init__(self, tokenizer: CLIPTokenizer): - self.wrapped = tokenizer - self.token_map = {} - - def __getattr__(self, name: str) -> Any: - if name in self.__dict__: - return getattr(self, name) - #if name == "wrapped": - # return getattr(self, 'wrapped')#super().__getattr__("wrapped") - - try: - return getattr(self.wrapped, name) - except AttributeError: - raise AttributeError( - "'name' cannot be found in both " - f"'{self.__class__.__name__}' and " - f"'{self.__class__.__name__}.tokenizer'." - ) - - def try_adding_tokens(self, tokens: Union[str, List[str]], *args, **kwargs): - """Attempt to add tokens to the tokenizer. - - Args: - tokens (Union[str, List[str]]): The tokens to be added. - """ - num_added_tokens = self.wrapped.add_tokens(tokens, *args, **kwargs) - assert num_added_tokens != 0, ( - f"The tokenizer already contains the token {tokens}. Please pass " - "a different `placeholder_token` that is not already in the " - "tokenizer." - ) - - def get_token_info(self, token: str) -> dict: - """Get the information of a token, including its start and end index in - the current tokenizer. - - Args: - token (str): The token to be queried. - - Returns: - dict: The information of the token, including its start and end - index in current tokenizer. - """ - token_ids = self.__call__(token).input_ids - start, end = token_ids[1], token_ids[-2] + 1 - return {"name": token, "start": start, "end": end} - - def add_placeholder_token(self, placeholder_token: str, *args, num_vec_per_token: int = 1, **kwargs): - """Add placeholder tokens to the tokenizer. - - Args: - placeholder_token (str): The placeholder token to be added. - num_vec_per_token (int, optional): The number of vectors of - the added placeholder token. - *args, **kwargs: The arguments for `self.wrapped.add_tokens`. - """ - output = [] - if num_vec_per_token == 1: - self.try_adding_tokens(placeholder_token, *args, **kwargs) - output.append(placeholder_token) - else: - output = [] - for i in range(num_vec_per_token): - ith_token = placeholder_token + f"_{i}" - self.try_adding_tokens(ith_token, *args, **kwargs) - output.append(ith_token) - - for token in self.token_map: - if token in placeholder_token: - raise ValueError( - f"The tokenizer already has placeholder token {token} " - f"that can get confused with {placeholder_token} " - "keep placeholder tokens independent" - ) - self.token_map[placeholder_token] = output - - def replace_placeholder_tokens_in_text( - self, text: Union[str, List[str]], vector_shuffle: bool = False, prop_tokens_to_load: float = 1.0 - ) -> Union[str, List[str]]: - """Replace the keywords in text with placeholder tokens. This function - will be called in `self.__call__` and `self.encode`. - - Args: - text (Union[str, List[str]]): The text to be processed. - vector_shuffle (bool, optional): Whether to shuffle the vectors. - Defaults to False. - prop_tokens_to_load (float, optional): The proportion of tokens to - be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0. - - Returns: - Union[str, List[str]]: The processed text. - """ - if isinstance(text, list): - output = [] - for i in range(len(text)): - output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=vector_shuffle)) - return output - - for placeholder_token in self.token_map: - if placeholder_token in text: - tokens = self.token_map[placeholder_token] - tokens = tokens[: 1 + int(len(tokens) * prop_tokens_to_load)] - if vector_shuffle: - tokens = copy.copy(tokens) - random.shuffle(tokens) - text = text.replace(placeholder_token, " ".join(tokens)) - return text - - def replace_text_with_placeholder_tokens(self, text: Union[str, List[str]]) -> Union[str, List[str]]: - """Replace the placeholder tokens in text with the original keywords. - This function will be called in `self.decode`. - - Args: - text (Union[str, List[str]]): The text to be processed. - - Returns: - Union[str, List[str]]: The processed text. - """ - if isinstance(text, list): - output = [] - for i in range(len(text)): - output.append(self.replace_text_with_placeholder_tokens(text[i])) - return output - - for placeholder_token, tokens in self.token_map.items(): - merged_tokens = " ".join(tokens) - if merged_tokens in text: - text = text.replace(merged_tokens, placeholder_token) - return text - - def __call__( - self, - text: Union[str, List[str]], - *args, - vector_shuffle: bool = False, - prop_tokens_to_load: float = 1.0, - **kwargs, - ): - """The call function of the wrapper. - - Args: - text (Union[str, List[str]]): The text to be tokenized. - vector_shuffle (bool, optional): Whether to shuffle the vectors. - Defaults to False. - prop_tokens_to_load (float, optional): The proportion of tokens to - be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0 - *args, **kwargs: The arguments for `self.wrapped.__call__`. - """ - replaced_text = self.replace_placeholder_tokens_in_text( - text, vector_shuffle=vector_shuffle, prop_tokens_to_load=prop_tokens_to_load - ) - - return self.wrapped.__call__(replaced_text, *args, **kwargs) - - def encode(self, text: Union[str, List[str]], *args, **kwargs): - """Encode the passed text to token index. - - Args: - text (Union[str, List[str]]): The text to be encode. - *args, **kwargs: The arguments for `self.wrapped.__call__`. - """ - replaced_text = self.replace_placeholder_tokens_in_text(text) - return self.wrapped(replaced_text, *args, **kwargs) - - def decode(self, token_ids, return_raw: bool = False, *args, **kwargs) -> Union[str, List[str]]: - """Decode the token index to text. - - Args: - token_ids: The token index to be decoded. - return_raw: Whether keep the placeholder token in the text. - Defaults to False. - *args, **kwargs: The arguments for `self.wrapped.decode`. - - Returns: - Union[str, List[str]]: The decoded text. - """ - text = self.wrapped.decode(token_ids, *args, **kwargs) - if return_raw: - return text - replaced_text = self.replace_text_with_placeholder_tokens(text) - return replaced_text - - def __repr__(self): - """The representation of the wrapper.""" - s = super().__repr__() - prefix = f"Wrapped Module Class: {self._module_cls}\n" - prefix += f"Wrapped Module Name: {self._module_name}\n" - if self._from_pretrained: - prefix += f"From Pretrained: {self._from_pretrained}\n" - s = prefix + s - return s - - -class EmbeddingLayerWithFixes(nn.Module): - """The revised embedding layer to support external embeddings. This design - of this class is inspired by https://github.com/AUTOMATIC1111/stable- - diffusion-webui/blob/22bcc7be428c94e9408f589966c2040187245d81/modules/sd_hi - jack.py#L224 # noqa. - - Args: - wrapped (nn.Emebdding): The embedding layer to be wrapped. - external_embeddings (Union[dict, List[dict]], optional): The external - embeddings added to this layer. Defaults to None. - """ - - def __init__(self, wrapped: nn.Embedding, external_embeddings: Optional[Union[dict, List[dict]]] = None): - super().__init__() - self.wrapped = wrapped - self.num_embeddings = wrapped.weight.shape[0] - - self.external_embeddings = [] - if external_embeddings: - self.add_embeddings(external_embeddings) - - self.trainable_embeddings = nn.ParameterDict() - - @property - def weight(self): - """Get the weight of wrapped embedding layer.""" - return self.wrapped.weight - - def check_duplicate_names(self, embeddings: List[dict]): - """Check whether duplicate names exist in list of 'external - embeddings'. - - Args: - embeddings (List[dict]): A list of embedding to be check. - """ - names = [emb["name"] for emb in embeddings] - assert len(names) == len(set(names)), ( - "Found duplicated names in 'external_embeddings'. Name list: " f"'{names}'" - ) - - def check_ids_overlap(self, embeddings): - """Check whether overlap exist in token ids of 'external_embeddings'. - - Args: - embeddings (List[dict]): A list of embedding to be check. - """ - ids_range = [[emb["start"], emb["end"], emb["name"]] for emb in embeddings] - ids_range.sort() # sort by 'start' - # check if 'end' has overlapping - for idx in range(len(ids_range) - 1): - name1, name2 = ids_range[idx][-1], ids_range[idx + 1][-1] - assert ids_range[idx][1] <= ids_range[idx + 1][0], ( - f"Found ids overlapping between embeddings '{name1}' " f"and '{name2}'." - ) - - def add_embeddings(self, embeddings: Optional[Union[dict, List[dict]]]): - """Add external embeddings to this layer. - - Use case: - - >>> 1. Add token to tokenizer and get the token id. - >>> tokenizer = TokenizerWrapper('openai/clip-vit-base-patch32') - >>> # 'how much' in kiswahili - >>> tokenizer.add_placeholder_tokens('ngapi', num_vec_per_token=4) - >>> - >>> 2. Add external embeddings to the model. - >>> new_embedding = { - >>> 'name': 'ngapi', # 'how much' in kiswahili - >>> 'embedding': torch.ones(1, 15) * 4, - >>> 'start': tokenizer.get_token_info('kwaheri')['start'], - >>> 'end': tokenizer.get_token_info('kwaheri')['end'], - >>> 'trainable': False # if True, will registry as a parameter - >>> } - >>> embedding_layer = nn.Embedding(10, 15) - >>> embedding_layer_wrapper = EmbeddingLayerWithFixes(embedding_layer) - >>> embedding_layer_wrapper.add_embeddings(new_embedding) - >>> - >>> 3. Forward tokenizer and embedding layer! - >>> input_text = ['hello, ngapi!', 'hello my friend, ngapi?'] - >>> input_ids = tokenizer( - >>> input_text, padding='max_length', truncation=True, - >>> return_tensors='pt')['input_ids'] - >>> out_feat = embedding_layer_wrapper(input_ids) - >>> - >>> 4. Let's validate the result! - >>> assert (out_feat[0, 3: 7] == 2.3).all() - >>> assert (out_feat[2, 5: 9] == 2.3).all() - - Args: - embeddings (Union[dict, list[dict]]): The external embeddings to - be added. Each dict must contain the following 4 fields: 'name' - (the name of this embedding), 'embedding' (the embedding - tensor), 'start' (the start token id of this embedding), 'end' - (the end token id of this embedding). For example: - `{name: NAME, start: START, end: END, embedding: torch.Tensor}` - """ - if isinstance(embeddings, dict): - embeddings = [embeddings] - - self.external_embeddings += embeddings - self.check_duplicate_names(self.external_embeddings) - self.check_ids_overlap(self.external_embeddings) - - # set for trainable - added_trainable_emb_info = [] - for embedding in embeddings: - trainable = embedding.get("trainable", False) - if trainable: - name = embedding["name"] - embedding["embedding"] = torch.nn.Parameter(embedding["embedding"]) - self.trainable_embeddings[name] = embedding["embedding"] - added_trainable_emb_info.append(name) - - added_emb_info = [emb["name"] for emb in embeddings] - added_emb_info = ", ".join(added_emb_info) - print(f"Successfully add external embeddings: {added_emb_info}.", "current") - - if added_trainable_emb_info: - added_trainable_emb_info = ", ".join(added_trainable_emb_info) - print("Successfully add trainable external embeddings: " f"{added_trainable_emb_info}", "current") - - def replace_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: - """Replace external input ids to 0. - - Args: - input_ids (torch.Tensor): The input ids to be replaced. - - Returns: - torch.Tensor: The replaced input ids. - """ - input_ids_fwd = input_ids.clone() - input_ids_fwd[input_ids_fwd >= self.num_embeddings] = 0 - return input_ids_fwd - - def replace_embeddings( - self, input_ids: torch.Tensor, embedding: torch.Tensor, external_embedding: dict - ) -> torch.Tensor: - """Replace external embedding to the embedding layer. Noted that, in - this function we use `torch.cat` to avoid inplace modification. - - Args: - input_ids (torch.Tensor): The original token ids. Shape like - [LENGTH, ]. - embedding (torch.Tensor): The embedding of token ids after - `replace_input_ids` function. - external_embedding (dict): The external embedding to be replaced. - - Returns: - torch.Tensor: The replaced embedding. - """ - new_embedding = [] - - name = external_embedding["name"] - start = external_embedding["start"] - end = external_embedding["end"] - target_ids_to_replace = [i for i in range(start, end)] - ext_emb = external_embedding["embedding"] - - # do not need to replace - if not (input_ids == start).any(): - return embedding - - # start replace - s_idx, e_idx = 0, 0 - while e_idx < len(input_ids): - if input_ids[e_idx] == start: - if e_idx != 0: - # add embedding do not need to replace - new_embedding.append(embedding[s_idx:e_idx]) - - # check if the next embedding need to replace is valid - actually_ids_to_replace = [int(i) for i in input_ids[e_idx : e_idx + end - start]] - assert actually_ids_to_replace == target_ids_to_replace, ( - f"Invalid 'input_ids' in position: {s_idx} to {e_idx}. " - f"Expect '{target_ids_to_replace}' for embedding " - f"'{name}' but found '{actually_ids_to_replace}'." - ) - - new_embedding.append(ext_emb) - - s_idx = e_idx + end - start - e_idx = s_idx + 1 - else: - e_idx += 1 - - if e_idx == len(input_ids): - new_embedding.append(embedding[s_idx:e_idx]) - - return torch.cat(new_embedding, dim=0) - - def forward(self, input_ids: torch.Tensor, external_embeddings: Optional[List[dict]] = None): - """The forward function. - - Args: - input_ids (torch.Tensor): The token ids shape like [bz, LENGTH] or - [LENGTH, ]. - external_embeddings (Optional[List[dict]]): The external - embeddings. If not passed, only `self.external_embeddings` - will be used. Defaults to None. - - input_ids: shape like [bz, LENGTH] or [LENGTH]. - """ - assert input_ids.ndim in [1, 2] - if input_ids.ndim == 1: - input_ids = input_ids.unsqueeze(0) - - if external_embeddings is None and not self.external_embeddings: - return self.wrapped(input_ids) - - input_ids_fwd = self.replace_input_ids(input_ids) - inputs_embeds = self.wrapped(input_ids_fwd) - - vecs = [] - - if external_embeddings is None: - external_embeddings = [] - elif isinstance(external_embeddings, dict): - external_embeddings = [external_embeddings] - embeddings = self.external_embeddings + external_embeddings - - for input_id, embedding in zip(input_ids, inputs_embeds): - new_embedding = embedding - for external_embedding in embeddings: - new_embedding = self.replace_embeddings(input_id, new_embedding, external_embedding) - vecs.append(new_embedding) - - return torch.stack(vecs) - - - -def add_tokens( - tokenizer, text_encoder, placeholder_tokens: list, initialize_tokens: list = None, num_vectors_per_token: int = 1 -): - """Add token for training. - - # TODO: support add tokens as dict, then we can load pretrained tokens. - """ - if initialize_tokens is not None: - assert len(initialize_tokens) == len( - placeholder_tokens - ), "placeholder_token should be the same length as initialize_token" - for ii in range(len(placeholder_tokens)): - tokenizer.add_placeholder_token(placeholder_tokens[ii], num_vec_per_token=num_vectors_per_token) - - # text_encoder.set_embedding_layer() - embedding_layer = text_encoder.text_model.embeddings.token_embedding - text_encoder.text_model.embeddings.token_embedding = EmbeddingLayerWithFixes(embedding_layer) - embedding_layer = text_encoder.text_model.embeddings.token_embedding - - assert embedding_layer is not None, ( - "Do not support get embedding layer for current text encoder. " "Please check your configuration." - ) - initialize_embedding = [] - if initialize_tokens is not None: - for ii in range(len(placeholder_tokens)): - init_id = tokenizer(initialize_tokens[ii]).input_ids[1] - temp_embedding = embedding_layer.weight[init_id] - initialize_embedding.append(temp_embedding[None, ...].repeat(num_vectors_per_token, 1)) - else: - for ii in range(len(placeholder_tokens)): - init_id = tokenizer("a").input_ids[1] - temp_embedding = embedding_layer.weight[init_id] - len_emb = temp_embedding.shape[0] - init_weight = (torch.rand(num_vectors_per_token, len_emb) - 0.5) / 2.0 - initialize_embedding.append(init_weight) - - # initialize_embedding = torch.cat(initialize_embedding,dim=0) - - token_info_all = [] - for ii in range(len(placeholder_tokens)): - token_info = tokenizer.get_token_info(placeholder_tokens[ii]) - token_info["embedding"] = initialize_embedding[ii] - token_info["trainable"] = True - token_info_all.append(token_info) - embedding_layer.add_embeddings(token_info_all) diff --git a/MagicQuill/brushnet/unet_2d_blocks.py b/MagicQuill/brushnet/unet_2d_blocks.py deleted file mode 100644 index 4a083673867f2568d499480f7dcec1480b20ead0..0000000000000000000000000000000000000000 --- a/MagicQuill/brushnet/unet_2d_blocks.py +++ /dev/null @@ -1,3907 +0,0 @@ -# Copyright 2024 The HuggingFace Team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from typing import Any, Dict, Optional, Tuple, Union - -import numpy as np -import torch -import torch.nn.functional as F -from torch import nn - -from diffusers.utils import deprecate, is_torch_version, logging -from diffusers.utils.torch_utils import apply_freeu -from diffusers.models.activations import get_activation -from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0 -from diffusers.models.normalization import AdaGroupNorm -from diffusers.models.resnet import ( - Downsample2D, - FirDownsample2D, - FirUpsample2D, - KDownsample2D, - KUpsample2D, - ResnetBlock2D, - ResnetBlockCondNorm2D, - Upsample2D, -) -from diffusers.models.transformers.dual_transformer_2d import DualTransformer2DModel -from diffusers.models.transformers.transformer_2d import Transformer2DModel - - -logger = logging.get_logger(__name__) # pylint: disable=invalid-name - - -def get_down_block( - down_block_type: str, - num_layers: int, - in_channels: int, - out_channels: int, - temb_channels: int, - add_downsample: bool, - resnet_eps: float, - resnet_act_fn: str, - transformer_layers_per_block: int = 1, - num_attention_heads: Optional[int] = None, - resnet_groups: Optional[int] = None, - cross_attention_dim: Optional[int] = None, - downsample_padding: Optional[int] = None, - dual_cross_attention: bool = False, - use_linear_projection: bool = False, - only_cross_attention: bool = False, - upcast_attention: bool = False, - resnet_time_scale_shift: str = "default", - attention_type: str = "default", - resnet_skip_time_act: bool = False, - resnet_out_scale_factor: float = 1.0, - cross_attention_norm: Optional[str] = None, - attention_head_dim: Optional[int] = None, - downsample_type: Optional[str] = None, - dropout: float = 0.0, -): - # If attn head dim is not defined, we default it to the number of heads - if attention_head_dim is None: - logger.warning( - f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." - ) - attention_head_dim = num_attention_heads - - down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type - if down_block_type == "DownBlock2D": - return DownBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - downsample_padding=downsample_padding, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif down_block_type == "ResnetDownsampleBlock2D": - return ResnetDownsampleBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - resnet_time_scale_shift=resnet_time_scale_shift, - skip_time_act=resnet_skip_time_act, - output_scale_factor=resnet_out_scale_factor, - ) - elif down_block_type == "AttnDownBlock2D": - if add_downsample is False: - downsample_type = None - else: - downsample_type = downsample_type or "conv" # default to 'conv' - return AttnDownBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - downsample_padding=downsample_padding, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - downsample_type=downsample_type, - ) - elif down_block_type == "CrossAttnDownBlock2D": - if cross_attention_dim is None: - raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D") - return CrossAttnDownBlock2D( - num_layers=num_layers, - transformer_layers_per_block=transformer_layers_per_block, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - downsample_padding=downsample_padding, - cross_attention_dim=cross_attention_dim, - num_attention_heads=num_attention_heads, - dual_cross_attention=dual_cross_attention, - use_linear_projection=use_linear_projection, - only_cross_attention=only_cross_attention, - upcast_attention=upcast_attention, - resnet_time_scale_shift=resnet_time_scale_shift, - attention_type=attention_type, - ) - elif down_block_type == "SimpleCrossAttnDownBlock2D": - if cross_attention_dim is None: - raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D") - return SimpleCrossAttnDownBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - cross_attention_dim=cross_attention_dim, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - skip_time_act=resnet_skip_time_act, - output_scale_factor=resnet_out_scale_factor, - only_cross_attention=only_cross_attention, - cross_attention_norm=cross_attention_norm, - ) - elif down_block_type == "SkipDownBlock2D": - return SkipDownBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - downsample_padding=downsample_padding, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif down_block_type == "AttnSkipDownBlock2D": - return AttnSkipDownBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif down_block_type == "DownEncoderBlock2D": - return DownEncoderBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - downsample_padding=downsample_padding, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif down_block_type == "AttnDownEncoderBlock2D": - return AttnDownEncoderBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - downsample_padding=downsample_padding, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif down_block_type == "KDownBlock2D": - return KDownBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - ) - elif down_block_type == "KCrossAttnDownBlock2D": - return KCrossAttnDownBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - dropout=dropout, - add_downsample=add_downsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - cross_attention_dim=cross_attention_dim, - attention_head_dim=attention_head_dim, - add_self_attention=True if not add_downsample else False, - ) - raise ValueError(f"{down_block_type} does not exist.") - - -def get_mid_block( - mid_block_type: str, - temb_channels: int, - in_channels: int, - resnet_eps: float, - resnet_act_fn: str, - resnet_groups: int, - output_scale_factor: float = 1.0, - transformer_layers_per_block: int = 1, - num_attention_heads: Optional[int] = None, - cross_attention_dim: Optional[int] = None, - dual_cross_attention: bool = False, - use_linear_projection: bool = False, - mid_block_only_cross_attention: bool = False, - upcast_attention: bool = False, - resnet_time_scale_shift: str = "default", - attention_type: str = "default", - resnet_skip_time_act: bool = False, - cross_attention_norm: Optional[str] = None, - attention_head_dim: Optional[int] = 1, - dropout: float = 0.0, -): - if mid_block_type == "UNetMidBlock2DCrossAttn": - return UNetMidBlock2DCrossAttn( - transformer_layers_per_block=transformer_layers_per_block, - in_channels=in_channels, - temb_channels=temb_channels, - dropout=dropout, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - output_scale_factor=output_scale_factor, - resnet_time_scale_shift=resnet_time_scale_shift, - cross_attention_dim=cross_attention_dim, - num_attention_heads=num_attention_heads, - resnet_groups=resnet_groups, - dual_cross_attention=dual_cross_attention, - use_linear_projection=use_linear_projection, - upcast_attention=upcast_attention, - attention_type=attention_type, - ) - elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn": - return UNetMidBlock2DSimpleCrossAttn( - in_channels=in_channels, - temb_channels=temb_channels, - dropout=dropout, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - output_scale_factor=output_scale_factor, - cross_attention_dim=cross_attention_dim, - attention_head_dim=attention_head_dim, - resnet_groups=resnet_groups, - resnet_time_scale_shift=resnet_time_scale_shift, - skip_time_act=resnet_skip_time_act, - only_cross_attention=mid_block_only_cross_attention, - cross_attention_norm=cross_attention_norm, - ) - elif mid_block_type == "UNetMidBlock2D": - return UNetMidBlock2D( - in_channels=in_channels, - temb_channels=temb_channels, - dropout=dropout, - num_layers=0, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - output_scale_factor=output_scale_factor, - resnet_groups=resnet_groups, - resnet_time_scale_shift=resnet_time_scale_shift, - add_attention=False, - ) - elif mid_block_type == "MidBlock2D": - return MidBlock2D( - in_channels=in_channels, - temb_channels=temb_channels, - dropout=dropout, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - output_scale_factor=output_scale_factor, - resnet_time_scale_shift=resnet_time_scale_shift, - resnet_groups=resnet_groups, - use_linear_projection=use_linear_projection, - ) - elif mid_block_type is None: - return None - else: - raise ValueError(f"unknown mid_block_type : {mid_block_type}") - - -def get_up_block( - up_block_type: str, - num_layers: int, - in_channels: int, - out_channels: int, - prev_output_channel: int, - temb_channels: int, - add_upsample: bool, - resnet_eps: float, - resnet_act_fn: str, - resolution_idx: Optional[int] = None, - transformer_layers_per_block: int = 1, - num_attention_heads: Optional[int] = None, - resnet_groups: Optional[int] = None, - cross_attention_dim: Optional[int] = None, - dual_cross_attention: bool = False, - use_linear_projection: bool = False, - only_cross_attention: bool = False, - upcast_attention: bool = False, - resnet_time_scale_shift: str = "default", - attention_type: str = "default", - resnet_skip_time_act: bool = False, - resnet_out_scale_factor: float = 1.0, - cross_attention_norm: Optional[str] = None, - attention_head_dim: Optional[int] = None, - upsample_type: Optional[str] = None, - dropout: float = 0.0, -) -> nn.Module: - # If attn head dim is not defined, we default it to the number of heads - if attention_head_dim is None: - logger.warning( - f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." - ) - attention_head_dim = num_attention_heads - - up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type - if up_block_type == "UpBlock2D": - return UpBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - prev_output_channel=prev_output_channel, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif up_block_type == "ResnetUpsampleBlock2D": - return ResnetUpsampleBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - prev_output_channel=prev_output_channel, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - resnet_time_scale_shift=resnet_time_scale_shift, - skip_time_act=resnet_skip_time_act, - output_scale_factor=resnet_out_scale_factor, - ) - elif up_block_type == "CrossAttnUpBlock2D": - if cross_attention_dim is None: - raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D") - return CrossAttnUpBlock2D( - num_layers=num_layers, - transformer_layers_per_block=transformer_layers_per_block, - in_channels=in_channels, - out_channels=out_channels, - prev_output_channel=prev_output_channel, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - cross_attention_dim=cross_attention_dim, - num_attention_heads=num_attention_heads, - dual_cross_attention=dual_cross_attention, - use_linear_projection=use_linear_projection, - only_cross_attention=only_cross_attention, - upcast_attention=upcast_attention, - resnet_time_scale_shift=resnet_time_scale_shift, - attention_type=attention_type, - ) - elif up_block_type == "SimpleCrossAttnUpBlock2D": - if cross_attention_dim is None: - raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D") - return SimpleCrossAttnUpBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - prev_output_channel=prev_output_channel, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - cross_attention_dim=cross_attention_dim, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - skip_time_act=resnet_skip_time_act, - output_scale_factor=resnet_out_scale_factor, - only_cross_attention=only_cross_attention, - cross_attention_norm=cross_attention_norm, - ) - elif up_block_type == "AttnUpBlock2D": - if add_upsample is False: - upsample_type = None - else: - upsample_type = upsample_type or "conv" # default to 'conv' - - return AttnUpBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - prev_output_channel=prev_output_channel, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - upsample_type=upsample_type, - ) - elif up_block_type == "SkipUpBlock2D": - return SkipUpBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - prev_output_channel=prev_output_channel, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif up_block_type == "AttnSkipUpBlock2D": - return AttnSkipUpBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - prev_output_channel=prev_output_channel, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - ) - elif up_block_type == "UpDecoderBlock2D": - return UpDecoderBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - resnet_time_scale_shift=resnet_time_scale_shift, - temb_channels=temb_channels, - ) - elif up_block_type == "AttnUpDecoderBlock2D": - return AttnUpDecoderBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - resnet_groups=resnet_groups, - attention_head_dim=attention_head_dim, - resnet_time_scale_shift=resnet_time_scale_shift, - temb_channels=temb_channels, - ) - elif up_block_type == "KUpBlock2D": - return KUpBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - ) - elif up_block_type == "KCrossAttnUpBlock2D": - return KCrossAttnUpBlock2D( - num_layers=num_layers, - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - resolution_idx=resolution_idx, - dropout=dropout, - add_upsample=add_upsample, - resnet_eps=resnet_eps, - resnet_act_fn=resnet_act_fn, - cross_attention_dim=cross_attention_dim, - attention_head_dim=attention_head_dim, - ) - - raise ValueError(f"{up_block_type} does not exist.") - - -class AutoencoderTinyBlock(nn.Module): - """ - Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU - blocks. - - Args: - in_channels (`int`): The number of input channels. - out_channels (`int`): The number of output channels. - act_fn (`str`): - ` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`. - - Returns: - `torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to - `out_channels`. - """ - - def __init__(self, in_channels: int, out_channels: int, act_fn: str): - super().__init__() - act_fn = get_activation(act_fn) - self.conv = nn.Sequential( - nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), - act_fn, - nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), - act_fn, - nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), - ) - self.skip = ( - nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) - if in_channels != out_channels - else nn.Identity() - ) - self.fuse = nn.ReLU() - - def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: - return self.fuse(self.conv(x) + self.skip(x)) - - -class UNetMidBlock2D(nn.Module): - """ - A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks. - - Args: - in_channels (`int`): The number of input channels. - temb_channels (`int`): The number of temporal embedding channels. - dropout (`float`, *optional*, defaults to 0.0): The dropout rate. - num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. - resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. - resnet_time_scale_shift (`str`, *optional*, defaults to `default`): - The type of normalization to apply to the time embeddings. This can help to improve the performance of the - model on tasks with long-range temporal dependencies. - resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. - resnet_groups (`int`, *optional*, defaults to 32): - The number of groups to use in the group normalization layers of the resnet blocks. - attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. - resnet_pre_norm (`bool`, *optional*, defaults to `True`): - Whether to use pre-normalization for the resnet blocks. - add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. - attention_head_dim (`int`, *optional*, defaults to 1): - Dimension of a single attention head. The number of attention heads is determined based on this value and - the number of input channels. - output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. - - Returns: - `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, - in_channels, height, width)`. - - """ - - def __init__( - self, - in_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", # default, spatial - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - attn_groups: Optional[int] = None, - resnet_pre_norm: bool = True, - add_attention: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = 1.0, - ): - super().__init__() - resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) - self.add_attention = add_attention - - if attn_groups is None: - attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None - - # there is always at least one resnet - if resnet_time_scale_shift == "spatial": - resnets = [ - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm="spatial", - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - ) - ] - else: - resnets = [ - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ] - attentions = [] - - if attention_head_dim is None: - logger.warning( - f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." - ) - attention_head_dim = in_channels - - for _ in range(num_layers): - if self.add_attention: - attentions.append( - Attention( - in_channels, - heads=in_channels // attention_head_dim, - dim_head=attention_head_dim, - rescale_output_factor=output_scale_factor, - eps=resnet_eps, - norm_num_groups=attn_groups, - spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, - residual_connection=True, - bias=True, - upcast_softmax=True, - _from_deprecated_attn_block=True, - ) - ) - else: - attentions.append(None) - - if resnet_time_scale_shift == "spatial": - resnets.append( - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm="spatial", - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - ) - ) - else: - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: - hidden_states = self.resnets[0](hidden_states, temb) - for attn, resnet in zip(self.attentions, self.resnets[1:]): - if attn is not None: - hidden_states = attn(hidden_states, temb=temb) - hidden_states = resnet(hidden_states, temb) - - return hidden_states - - -class UNetMidBlock2DCrossAttn(nn.Module): - def __init__( - self, - in_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - transformer_layers_per_block: Union[int, Tuple[int]] = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - num_attention_heads: int = 1, - output_scale_factor: float = 1.0, - cross_attention_dim: int = 1280, - dual_cross_attention: bool = False, - use_linear_projection: bool = False, - upcast_attention: bool = False, - attention_type: str = "default", - ): - super().__init__() - - self.has_cross_attention = True - self.num_attention_heads = num_attention_heads - resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) - - # support for variable transformer layers per block - if isinstance(transformer_layers_per_block, int): - transformer_layers_per_block = [transformer_layers_per_block] * num_layers - - # there is always at least one resnet - resnets = [ - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ] - attentions = [] - - for i in range(num_layers): - if not dual_cross_attention: - attentions.append( - Transformer2DModel( - num_attention_heads, - in_channels // num_attention_heads, - in_channels=in_channels, - num_layers=transformer_layers_per_block[i], - cross_attention_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - use_linear_projection=use_linear_projection, - upcast_attention=upcast_attention, - attention_type=attention_type, - ) - ) - else: - attentions.append( - DualTransformer2DModel( - num_attention_heads, - in_channels // num_attention_heads, - in_channels=in_channels, - num_layers=1, - cross_attention_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - ) - ) - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - self.gradient_checkpointing = False - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - if cross_attention_kwargs is not None: - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - hidden_states = self.resnets[0](hidden_states, temb) - for attn, resnet in zip(self.attentions, self.resnets[1:]): - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - attention_mask=attention_mask, - encoder_attention_mask=encoder_attention_mask, - return_dict=False, - )[0] - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), - hidden_states, - temb, - **ckpt_kwargs, - ) - else: - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - attention_mask=attention_mask, - encoder_attention_mask=encoder_attention_mask, - return_dict=False, - )[0] - hidden_states = resnet(hidden_states, temb) - - return hidden_states - - -class UNetMidBlock2DSimpleCrossAttn(nn.Module): - def __init__( - self, - in_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = 1.0, - cross_attention_dim: int = 1280, - skip_time_act: bool = False, - only_cross_attention: bool = False, - cross_attention_norm: Optional[str] = None, - ): - super().__init__() - - self.has_cross_attention = True - - self.attention_head_dim = attention_head_dim - resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) - - self.num_heads = in_channels // self.attention_head_dim - - # there is always at least one resnet - resnets = [ - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - ) - ] - attentions = [] - - for _ in range(num_layers): - processor = ( - AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() - ) - - attentions.append( - Attention( - query_dim=in_channels, - cross_attention_dim=in_channels, - heads=self.num_heads, - dim_head=self.attention_head_dim, - added_kv_proj_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - bias=True, - upcast_softmax=True, - only_cross_attention=only_cross_attention, - cross_attention_norm=cross_attention_norm, - processor=processor, - ) - ) - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - ) - ) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - if attention_mask is None: - # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. - mask = None if encoder_hidden_states is None else encoder_attention_mask - else: - # when attention_mask is defined: we don't even check for encoder_attention_mask. - # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. - # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. - # then we can simplify this whole if/else block to: - # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask - mask = attention_mask - - hidden_states = self.resnets[0](hidden_states, temb) - for attn, resnet in zip(self.attentions, self.resnets[1:]): - # attn - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - attention_mask=mask, - **cross_attention_kwargs, - ) - - # resnet - hidden_states = resnet(hidden_states, temb) - - return hidden_states - - -class MidBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - output_scale_factor: float = 1.0, - use_linear_projection: bool = False, - ): - super().__init__() - - self.has_cross_attention = False - resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) - - # there is always at least one resnet - resnets = [ - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ] - - for i in range(num_layers): - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=in_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - self.gradient_checkpointing = False - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - lora_scale = 1.0 - hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) - for resnet in self.resnets[1:]: - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), - hidden_states, - temb, - **ckpt_kwargs, - ) - else: - hidden_states = resnet(hidden_states, temb, scale=lora_scale) - - return hidden_states - - -class AttnDownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = 1.0, - downsample_padding: int = 1, - downsample_type: str = "conv", - ): - super().__init__() - resnets = [] - attentions = [] - self.downsample_type = downsample_type - - if attention_head_dim is None: - logger.warning( - f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." - ) - attention_head_dim = out_channels - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - attentions.append( - Attention( - out_channels, - heads=out_channels // attention_head_dim, - dim_head=attention_head_dim, - rescale_output_factor=output_scale_factor, - eps=resnet_eps, - norm_num_groups=resnet_groups, - residual_connection=True, - bias=True, - upcast_softmax=True, - _from_deprecated_attn_block=True, - ) - ) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if downsample_type == "conv": - self.downsamplers = nn.ModuleList( - [ - Downsample2D( - out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" - ) - ] - ) - elif downsample_type == "resnet": - self.downsamplers = nn.ModuleList( - [ - ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - down=True, - ) - ] - ) - else: - self.downsamplers = None - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - upsample_size: Optional[int] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: - cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - output_states = () - - for resnet, attn in zip(self.resnets, self.attentions): - hidden_states = resnet(hidden_states, temb) - hidden_states = attn(hidden_states, **cross_attention_kwargs) - output_states = output_states + (hidden_states,) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - if self.downsample_type == "resnet": - hidden_states = downsampler(hidden_states, temb=temb) - else: - hidden_states = downsampler(hidden_states) - - output_states += (hidden_states,) - - return hidden_states, output_states - - -class CrossAttnDownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - transformer_layers_per_block: Union[int, Tuple[int]] = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - num_attention_heads: int = 1, - cross_attention_dim: int = 1280, - output_scale_factor: float = 1.0, - downsample_padding: int = 1, - add_downsample: bool = True, - dual_cross_attention: bool = False, - use_linear_projection: bool = False, - only_cross_attention: bool = False, - upcast_attention: bool = False, - attention_type: str = "default", - ): - super().__init__() - resnets = [] - attentions = [] - - self.has_cross_attention = True - self.num_attention_heads = num_attention_heads - if isinstance(transformer_layers_per_block, int): - transformer_layers_per_block = [transformer_layers_per_block] * num_layers - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - if not dual_cross_attention: - attentions.append( - Transformer2DModel( - num_attention_heads, - out_channels // num_attention_heads, - in_channels=out_channels, - num_layers=transformer_layers_per_block[i], - cross_attention_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - use_linear_projection=use_linear_projection, - only_cross_attention=only_cross_attention, - upcast_attention=upcast_attention, - attention_type=attention_type, - ) - ) - else: - attentions.append( - DualTransformer2DModel( - num_attention_heads, - out_channels // num_attention_heads, - in_channels=out_channels, - num_layers=1, - cross_attention_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - ) - ) - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if add_downsample: - self.downsamplers = nn.ModuleList( - [ - Downsample2D( - out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" - ) - ] - ) - else: - self.downsamplers = None - - self.gradient_checkpointing = False - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - additional_residuals: Optional[torch.FloatTensor] = None, - down_block_add_samples: Optional[torch.FloatTensor] = None, - debug = False, - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: - - if debug: print(' XAD2: forward') - - if cross_attention_kwargs is not None: - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - output_states = () - - blocks = list(zip(self.resnets, self.attentions)) - - for i, (resnet, attn) in enumerate(blocks): - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), - hidden_states, - temb, - **ckpt_kwargs, - ) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - attention_mask=attention_mask, - encoder_attention_mask=encoder_attention_mask, - return_dict=False, - )[0] - else: - if debug: print(' XAD2: resnet hs #', i, hidden_states.shape) - if debug and temb is not None: print(' XAD2: resnet temb #', i, temb.shape) - - hidden_states = resnet(hidden_states, temb) - - if debug: print(' XAD2: attn hs #', i, hidden_states.shape) - if debug and encoder_hidden_states is not None: print(' XAD2: attn ehs #', i, encoder_hidden_states.shape) - - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - attention_mask=attention_mask, - encoder_attention_mask=encoder_attention_mask, - return_dict=False, - )[0] - - # apply additional residuals to the output of the last pair of resnet and attention blocks - if i == len(blocks) - 1 and additional_residuals is not None: - - if debug: print(' XAD2: add res', additional_residuals.shape) - - hidden_states = hidden_states + additional_residuals - - if down_block_add_samples is not None: - - if debug: print(' XAD2: add samples', down_block_add_samples.shape) - - hidden_states = hidden_states + down_block_add_samples.pop(0) - - if debug: print(' XAD2: output', hidden_states.shape) - - output_states = output_states + (hidden_states,) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states) - - if down_block_add_samples is not None: - hidden_states = hidden_states + down_block_add_samples.pop(0) # todo: add before or after - - output_states = output_states + (hidden_states,) - - if debug: - print(' XAD2: finish') - for st in output_states: - print(' XAD2: ',st.shape) - - return hidden_states, output_states - - -class DownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - output_scale_factor: float = 1.0, - add_downsample: bool = True, - downsample_padding: int = 1, - ): - super().__init__() - resnets = [] - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_downsample: - self.downsamplers = nn.ModuleList( - [ - Downsample2D( - out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" - ) - ] - ) - else: - self.downsamplers = None - - self.gradient_checkpointing = False - - def forward( - self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, - down_block_add_samples: Optional[torch.FloatTensor] = None, *args, **kwargs - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - output_states = () - - if kwargs.get("debug", False): print(' D2: forward', hidden_states.shape) - - for resnet in self.resnets: - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - - return custom_forward - - if is_torch_version(">=", "1.11.0"): - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb, use_reentrant=False - ) - else: - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb - ) - else: - - if kwargs.get("debug", False): print(' D2: resnet', hidden_states.shape) - - hidden_states = resnet(hidden_states, temb) - - if down_block_add_samples is not None: - hidden_states = hidden_states + down_block_add_samples.pop(0) - - output_states = output_states + (hidden_states,) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states) - - if down_block_add_samples is not None: - hidden_states = hidden_states + down_block_add_samples.pop(0) # todo: add before or after - - output_states = output_states + (hidden_states,) - - if kwargs.get("debug", False): print(' D2: finish', hidden_states.shape) - - return hidden_states, output_states - - -class DownEncoderBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - output_scale_factor: float = 1.0, - add_downsample: bool = True, - downsample_padding: int = 1, - ): - super().__init__() - resnets = [] - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - if resnet_time_scale_shift == "spatial": - resnets.append( - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=None, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm="spatial", - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - ) - ) - else: - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=None, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_downsample: - self.downsamplers = nn.ModuleList( - [ - Downsample2D( - out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" - ) - ] - ) - else: - self.downsamplers = None - - def forward(self, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - for resnet in self.resnets: - hidden_states = resnet(hidden_states, temb=None) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states) - - return hidden_states - - -class AttnDownEncoderBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = 1.0, - add_downsample: bool = True, - downsample_padding: int = 1, - ): - super().__init__() - resnets = [] - attentions = [] - - if attention_head_dim is None: - logger.warning( - f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." - ) - attention_head_dim = out_channels - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - if resnet_time_scale_shift == "spatial": - resnets.append( - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=None, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm="spatial", - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - ) - ) - else: - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=None, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - attentions.append( - Attention( - out_channels, - heads=out_channels // attention_head_dim, - dim_head=attention_head_dim, - rescale_output_factor=output_scale_factor, - eps=resnet_eps, - norm_num_groups=resnet_groups, - residual_connection=True, - bias=True, - upcast_softmax=True, - _from_deprecated_attn_block=True, - ) - ) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if add_downsample: - self.downsamplers = nn.ModuleList( - [ - Downsample2D( - out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" - ) - ] - ) - else: - self.downsamplers = None - - def forward(self, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - for resnet, attn in zip(self.resnets, self.attentions): - hidden_states = resnet(hidden_states, temb=None) - hidden_states = attn(hidden_states) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states) - - return hidden_states - - -class AttnSkipDownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = np.sqrt(2.0), - add_downsample: bool = True, - ): - super().__init__() - self.attentions = nn.ModuleList([]) - self.resnets = nn.ModuleList([]) - - if attention_head_dim is None: - logger.warning( - f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." - ) - attention_head_dim = out_channels - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - self.resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min(in_channels // 4, 32), - groups_out=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - self.attentions.append( - Attention( - out_channels, - heads=out_channels // attention_head_dim, - dim_head=attention_head_dim, - rescale_output_factor=output_scale_factor, - eps=resnet_eps, - norm_num_groups=32, - residual_connection=True, - bias=True, - upcast_softmax=True, - _from_deprecated_attn_block=True, - ) - ) - - if add_downsample: - self.resnet_down = ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - use_in_shortcut=True, - down=True, - kernel="fir", - ) - self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) - self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) - else: - self.resnet_down = None - self.downsamplers = None - self.skip_conv = None - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - skip_sample: Optional[torch.FloatTensor] = None, - *args, - **kwargs, - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - output_states = () - - for resnet, attn in zip(self.resnets, self.attentions): - hidden_states = resnet(hidden_states, temb) - hidden_states = attn(hidden_states) - output_states += (hidden_states,) - - if self.downsamplers is not None: - hidden_states = self.resnet_down(hidden_states, temb) - for downsampler in self.downsamplers: - skip_sample = downsampler(skip_sample) - - hidden_states = self.skip_conv(skip_sample) + hidden_states - - output_states += (hidden_states,) - - return hidden_states, output_states, skip_sample - - -class SkipDownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_pre_norm: bool = True, - output_scale_factor: float = np.sqrt(2.0), - add_downsample: bool = True, - downsample_padding: int = 1, - ): - super().__init__() - self.resnets = nn.ModuleList([]) - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - self.resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min(in_channels // 4, 32), - groups_out=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - if add_downsample: - self.resnet_down = ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - use_in_shortcut=True, - down=True, - kernel="fir", - ) - self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) - self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) - else: - self.resnet_down = None - self.downsamplers = None - self.skip_conv = None - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - skip_sample: Optional[torch.FloatTensor] = None, - *args, - **kwargs, - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - output_states = () - - for resnet in self.resnets: - hidden_states = resnet(hidden_states, temb) - output_states += (hidden_states,) - - if self.downsamplers is not None: - hidden_states = self.resnet_down(hidden_states, temb) - for downsampler in self.downsamplers: - skip_sample = downsampler(skip_sample) - - hidden_states = self.skip_conv(skip_sample) + hidden_states - - output_states += (hidden_states,) - - return hidden_states, output_states, skip_sample - - -class ResnetDownsampleBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - output_scale_factor: float = 1.0, - add_downsample: bool = True, - skip_time_act: bool = False, - ): - super().__init__() - resnets = [] - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_downsample: - self.downsamplers = nn.ModuleList( - [ - ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - down=True, - ) - ] - ) - else: - self.downsamplers = None - - self.gradient_checkpointing = False - - def forward( - self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, *args, **kwargs - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - output_states = () - - for resnet in self.resnets: - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - - return custom_forward - - if is_torch_version(">=", "1.11.0"): - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb, use_reentrant=False - ) - else: - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb - ) - else: - hidden_states = resnet(hidden_states, temb) - - output_states = output_states + (hidden_states,) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states, temb) - - output_states = output_states + (hidden_states,) - - return hidden_states, output_states - - -class SimpleCrossAttnDownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - cross_attention_dim: int = 1280, - output_scale_factor: float = 1.0, - add_downsample: bool = True, - skip_time_act: bool = False, - only_cross_attention: bool = False, - cross_attention_norm: Optional[str] = None, - ): - super().__init__() - - self.has_cross_attention = True - - resnets = [] - attentions = [] - - self.attention_head_dim = attention_head_dim - self.num_heads = out_channels // self.attention_head_dim - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - resnets.append( - ResnetBlock2D( - in_channels=in_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - ) - ) - - processor = ( - AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() - ) - - attentions.append( - Attention( - query_dim=out_channels, - cross_attention_dim=out_channels, - heads=self.num_heads, - dim_head=attention_head_dim, - added_kv_proj_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - bias=True, - upcast_softmax=True, - only_cross_attention=only_cross_attention, - cross_attention_norm=cross_attention_norm, - processor=processor, - ) - ) - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if add_downsample: - self.downsamplers = nn.ModuleList( - [ - ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - down=True, - ) - ] - ) - else: - self.downsamplers = None - - self.gradient_checkpointing = False - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: - cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - output_states = () - - if attention_mask is None: - # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. - mask = None if encoder_hidden_states is None else encoder_attention_mask - else: - # when attention_mask is defined: we don't even check for encoder_attention_mask. - # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. - # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. - # then we can simplify this whole if/else block to: - # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask - mask = attention_mask - - for resnet, attn in zip(self.resnets, self.attentions): - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - attention_mask=mask, - **cross_attention_kwargs, - ) - else: - hidden_states = resnet(hidden_states, temb) - - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - attention_mask=mask, - **cross_attention_kwargs, - ) - - output_states = output_states + (hidden_states,) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states, temb) - - output_states = output_states + (hidden_states,) - - return hidden_states, output_states - - -class KDownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - dropout: float = 0.0, - num_layers: int = 4, - resnet_eps: float = 1e-5, - resnet_act_fn: str = "gelu", - resnet_group_size: int = 32, - add_downsample: bool = False, - ): - super().__init__() - resnets = [] - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - groups = in_channels // resnet_group_size - groups_out = out_channels // resnet_group_size - - resnets.append( - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=out_channels, - dropout=dropout, - temb_channels=temb_channels, - groups=groups, - groups_out=groups_out, - eps=resnet_eps, - non_linearity=resnet_act_fn, - time_embedding_norm="ada_group", - conv_shortcut_bias=False, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_downsample: - # YiYi's comments- might be able to use FirDownsample2D, look into details later - self.downsamplers = nn.ModuleList([KDownsample2D()]) - else: - self.downsamplers = None - - self.gradient_checkpointing = False - - def forward( - self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, *args, **kwargs - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - output_states = () - - for resnet in self.resnets: - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - - return custom_forward - - if is_torch_version(">=", "1.11.0"): - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb, use_reentrant=False - ) - else: - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb - ) - else: - hidden_states = resnet(hidden_states, temb) - - output_states += (hidden_states,) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states) - - return hidden_states, output_states - - -class KCrossAttnDownBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - cross_attention_dim: int, - dropout: float = 0.0, - num_layers: int = 4, - resnet_group_size: int = 32, - add_downsample: bool = True, - attention_head_dim: int = 64, - add_self_attention: bool = False, - resnet_eps: float = 1e-5, - resnet_act_fn: str = "gelu", - ): - super().__init__() - resnets = [] - attentions = [] - - self.has_cross_attention = True - - for i in range(num_layers): - in_channels = in_channels if i == 0 else out_channels - groups = in_channels // resnet_group_size - groups_out = out_channels // resnet_group_size - - resnets.append( - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=out_channels, - dropout=dropout, - temb_channels=temb_channels, - groups=groups, - groups_out=groups_out, - eps=resnet_eps, - non_linearity=resnet_act_fn, - time_embedding_norm="ada_group", - conv_shortcut_bias=False, - ) - ) - attentions.append( - KAttentionBlock( - out_channels, - out_channels // attention_head_dim, - attention_head_dim, - cross_attention_dim=cross_attention_dim, - temb_channels=temb_channels, - attention_bias=True, - add_self_attention=add_self_attention, - cross_attention_norm="layer_norm", - group_size=resnet_group_size, - ) - ) - - self.resnets = nn.ModuleList(resnets) - self.attentions = nn.ModuleList(attentions) - - if add_downsample: - self.downsamplers = nn.ModuleList([KDownsample2D()]) - else: - self.downsamplers = None - - self.gradient_checkpointing = False - - def forward( - self, - hidden_states: torch.FloatTensor, - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: - cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - output_states = () - - for resnet, attn in zip(self.resnets, self.attentions): - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), - hidden_states, - temb, - **ckpt_kwargs, - ) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - emb=temb, - attention_mask=attention_mask, - cross_attention_kwargs=cross_attention_kwargs, - encoder_attention_mask=encoder_attention_mask, - ) - else: - hidden_states = resnet(hidden_states, temb) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - emb=temb, - attention_mask=attention_mask, - cross_attention_kwargs=cross_attention_kwargs, - encoder_attention_mask=encoder_attention_mask, - ) - - if self.downsamplers is None: - output_states += (None,) - else: - output_states += (hidden_states,) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states) - - return hidden_states, output_states - - -class AttnUpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - prev_output_channel: int, - out_channels: int, - temb_channels: int, - resolution_idx: int = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = 1.0, - upsample_type: str = "conv", - ): - super().__init__() - resnets = [] - attentions = [] - - self.upsample_type = upsample_type - - if attention_head_dim is None: - logger.warning( - f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." - ) - attention_head_dim = out_channels - - for i in range(num_layers): - res_skip_channels = in_channels if (i == num_layers - 1) else out_channels - resnet_in_channels = prev_output_channel if i == 0 else out_channels - - resnets.append( - ResnetBlock2D( - in_channels=resnet_in_channels + res_skip_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - attentions.append( - Attention( - out_channels, - heads=out_channels // attention_head_dim, - dim_head=attention_head_dim, - rescale_output_factor=output_scale_factor, - eps=resnet_eps, - norm_num_groups=resnet_groups, - residual_connection=True, - bias=True, - upcast_softmax=True, - _from_deprecated_attn_block=True, - ) - ) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if upsample_type == "conv": - self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) - elif upsample_type == "resnet": - self.upsamplers = nn.ModuleList( - [ - ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - up=True, - ) - ] - ) - else: - self.upsamplers = None - - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - upsample_size: Optional[int] = None, - *args, - **kwargs, - ) -> torch.FloatTensor: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - for resnet, attn in zip(self.resnets, self.attentions): - # pop res hidden states - res_hidden_states = res_hidden_states_tuple[-1] - res_hidden_states_tuple = res_hidden_states_tuple[:-1] - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - - hidden_states = resnet(hidden_states, temb) - hidden_states = attn(hidden_states) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - if self.upsample_type == "resnet": - hidden_states = upsampler(hidden_states, temb=temb) - else: - hidden_states = upsampler(hidden_states) - - return hidden_states - - -class CrossAttnUpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - prev_output_channel: int, - temb_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - transformer_layers_per_block: Union[int, Tuple[int]] = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - num_attention_heads: int = 1, - cross_attention_dim: int = 1280, - output_scale_factor: float = 1.0, - add_upsample: bool = True, - dual_cross_attention: bool = False, - use_linear_projection: bool = False, - only_cross_attention: bool = False, - upcast_attention: bool = False, - attention_type: str = "default", - ): - super().__init__() - resnets = [] - attentions = [] - - self.has_cross_attention = True - self.num_attention_heads = num_attention_heads - - if isinstance(transformer_layers_per_block, int): - transformer_layers_per_block = [transformer_layers_per_block] * num_layers - - for i in range(num_layers): - res_skip_channels = in_channels if (i == num_layers - 1) else out_channels - resnet_in_channels = prev_output_channel if i == 0 else out_channels - - resnets.append( - ResnetBlock2D( - in_channels=resnet_in_channels + res_skip_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - if not dual_cross_attention: - attentions.append( - Transformer2DModel( - num_attention_heads, - out_channels // num_attention_heads, - in_channels=out_channels, - num_layers=transformer_layers_per_block[i], - cross_attention_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - use_linear_projection=use_linear_projection, - only_cross_attention=only_cross_attention, - upcast_attention=upcast_attention, - attention_type=attention_type, - ) - ) - else: - attentions.append( - DualTransformer2DModel( - num_attention_heads, - out_channels // num_attention_heads, - in_channels=out_channels, - num_layers=1, - cross_attention_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - ) - ) - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if add_upsample: - self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) - else: - self.upsamplers = None - - self.gradient_checkpointing = False - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - upsample_size: Optional[int] = None, - attention_mask: Optional[torch.FloatTensor] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - return_res_samples: Optional[bool]=False, - up_block_add_samples: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - if cross_attention_kwargs is not None: - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - is_freeu_enabled = ( - getattr(self, "s1", None) - and getattr(self, "s2", None) - and getattr(self, "b1", None) - and getattr(self, "b2", None) - ) - if return_res_samples: - output_states=() - - for resnet, attn in zip(self.resnets, self.attentions): - # pop res hidden states - res_hidden_states = res_hidden_states_tuple[-1] - res_hidden_states_tuple = res_hidden_states_tuple[:-1] - - # FreeU: Only operate on the first two stages - if is_freeu_enabled: - hidden_states, res_hidden_states = apply_freeu( - self.resolution_idx, - hidden_states, - res_hidden_states, - s1=self.s1, - s2=self.s2, - b1=self.b1, - b2=self.b2, - ) - - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), - hidden_states, - temb, - **ckpt_kwargs, - ) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - attention_mask=attention_mask, - encoder_attention_mask=encoder_attention_mask, - return_dict=False, - )[0] - else: - hidden_states = resnet(hidden_states, temb) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - attention_mask=attention_mask, - encoder_attention_mask=encoder_attention_mask, - return_dict=False, - )[0] - if return_res_samples: - output_states = output_states + (hidden_states,) - if up_block_add_samples is not None: - hidden_states = hidden_states + up_block_add_samples.pop(0) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states, upsample_size) - if return_res_samples: - output_states = output_states + (hidden_states,) - if up_block_add_samples is not None: - hidden_states = hidden_states + up_block_add_samples.pop(0) - - if return_res_samples: - return hidden_states, output_states - else: - return hidden_states - -class UpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - prev_output_channel: int, - out_channels: int, - temb_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - output_scale_factor: float = 1.0, - add_upsample: bool = True, - ): - super().__init__() - resnets = [] - - for i in range(num_layers): - res_skip_channels = in_channels if (i == num_layers - 1) else out_channels - resnet_in_channels = prev_output_channel if i == 0 else out_channels - - resnets.append( - ResnetBlock2D( - in_channels=resnet_in_channels + res_skip_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_upsample: - self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) - else: - self.upsamplers = None - - self.gradient_checkpointing = False - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - upsample_size: Optional[int] = None, - return_res_samples: Optional[bool]=False, - up_block_add_samples: Optional[torch.FloatTensor] = None, - *args, - **kwargs, - ) -> torch.FloatTensor: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - is_freeu_enabled = ( - getattr(self, "s1", None) - and getattr(self, "s2", None) - and getattr(self, "b1", None) - and getattr(self, "b2", None) - ) - if return_res_samples: - output_states = () - - for resnet in self.resnets: - # pop res hidden states - res_hidden_states = res_hidden_states_tuple[-1] - res_hidden_states_tuple = res_hidden_states_tuple[:-1] - - # FreeU: Only operate on the first two stages - if is_freeu_enabled: - hidden_states, res_hidden_states = apply_freeu( - self.resolution_idx, - hidden_states, - res_hidden_states, - s1=self.s1, - s2=self.s2, - b1=self.b1, - b2=self.b2, - ) - - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - - return custom_forward - - if is_torch_version(">=", "1.11.0"): - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb, use_reentrant=False - ) - else: - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb - ) - else: - hidden_states = resnet(hidden_states, temb) - - if return_res_samples: - output_states = output_states + (hidden_states,) - if up_block_add_samples is not None: - hidden_states = hidden_states + up_block_add_samples.pop(0) # todo: add before or after - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states, upsample_size) - - if return_res_samples: - output_states = output_states + (hidden_states,) - if up_block_add_samples is not None: - hidden_states = hidden_states + up_block_add_samples.pop(0) # todo: add before or after - - if return_res_samples: - return hidden_states, output_states - else: - return hidden_states - - -class UpDecoderBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", # default, spatial - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - output_scale_factor: float = 1.0, - add_upsample: bool = True, - temb_channels: Optional[int] = None, - ): - super().__init__() - resnets = [] - - for i in range(num_layers): - input_channels = in_channels if i == 0 else out_channels - - if resnet_time_scale_shift == "spatial": - resnets.append( - ResnetBlockCondNorm2D( - in_channels=input_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm="spatial", - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - ) - ) - else: - resnets.append( - ResnetBlock2D( - in_channels=input_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_upsample: - self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) - else: - self.upsamplers = None - - self.resolution_idx = resolution_idx - - def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: - for resnet in self.resnets: - hidden_states = resnet(hidden_states, temb=temb) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states) - - return hidden_states - - -class AttnUpDecoderBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = 1.0, - add_upsample: bool = True, - temb_channels: Optional[int] = None, - ): - super().__init__() - resnets = [] - attentions = [] - - if attention_head_dim is None: - logger.warning( - f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}." - ) - attention_head_dim = out_channels - - for i in range(num_layers): - input_channels = in_channels if i == 0 else out_channels - - if resnet_time_scale_shift == "spatial": - resnets.append( - ResnetBlockCondNorm2D( - in_channels=input_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm="spatial", - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - ) - ) - else: - resnets.append( - ResnetBlock2D( - in_channels=input_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - attentions.append( - Attention( - out_channels, - heads=out_channels // attention_head_dim, - dim_head=attention_head_dim, - rescale_output_factor=output_scale_factor, - eps=resnet_eps, - norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None, - spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, - residual_connection=True, - bias=True, - upcast_softmax=True, - _from_deprecated_attn_block=True, - ) - ) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if add_upsample: - self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) - else: - self.upsamplers = None - - self.resolution_idx = resolution_idx - - def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: - for resnet, attn in zip(self.resnets, self.attentions): - hidden_states = resnet(hidden_states, temb=temb) - hidden_states = attn(hidden_states, temb=temb) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states) - - return hidden_states - - -class AttnSkipUpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - prev_output_channel: int, - out_channels: int, - temb_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - output_scale_factor: float = np.sqrt(2.0), - add_upsample: bool = True, - ): - super().__init__() - self.attentions = nn.ModuleList([]) - self.resnets = nn.ModuleList([]) - - for i in range(num_layers): - res_skip_channels = in_channels if (i == num_layers - 1) else out_channels - resnet_in_channels = prev_output_channel if i == 0 else out_channels - - self.resnets.append( - ResnetBlock2D( - in_channels=resnet_in_channels + res_skip_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min(resnet_in_channels + res_skip_channels // 4, 32), - groups_out=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - if attention_head_dim is None: - logger.warning( - f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}." - ) - attention_head_dim = out_channels - - self.attentions.append( - Attention( - out_channels, - heads=out_channels // attention_head_dim, - dim_head=attention_head_dim, - rescale_output_factor=output_scale_factor, - eps=resnet_eps, - norm_num_groups=32, - residual_connection=True, - bias=True, - upcast_softmax=True, - _from_deprecated_attn_block=True, - ) - ) - - self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) - if add_upsample: - self.resnet_up = ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min(out_channels // 4, 32), - groups_out=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - use_in_shortcut=True, - up=True, - kernel="fir", - ) - self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) - self.skip_norm = torch.nn.GroupNorm( - num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True - ) - self.act = nn.SiLU() - else: - self.resnet_up = None - self.skip_conv = None - self.skip_norm = None - self.act = None - - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - skip_sample=None, - *args, - **kwargs, - ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - for resnet in self.resnets: - # pop res hidden states - res_hidden_states = res_hidden_states_tuple[-1] - res_hidden_states_tuple = res_hidden_states_tuple[:-1] - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - - hidden_states = resnet(hidden_states, temb) - - hidden_states = self.attentions[0](hidden_states) - - if skip_sample is not None: - skip_sample = self.upsampler(skip_sample) - else: - skip_sample = 0 - - if self.resnet_up is not None: - skip_sample_states = self.skip_norm(hidden_states) - skip_sample_states = self.act(skip_sample_states) - skip_sample_states = self.skip_conv(skip_sample_states) - - skip_sample = skip_sample + skip_sample_states - - hidden_states = self.resnet_up(hidden_states, temb) - - return hidden_states, skip_sample - - -class SkipUpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - prev_output_channel: int, - out_channels: int, - temb_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_pre_norm: bool = True, - output_scale_factor: float = np.sqrt(2.0), - add_upsample: bool = True, - upsample_padding: int = 1, - ): - super().__init__() - self.resnets = nn.ModuleList([]) - - for i in range(num_layers): - res_skip_channels = in_channels if (i == num_layers - 1) else out_channels - resnet_in_channels = prev_output_channel if i == 0 else out_channels - - self.resnets.append( - ResnetBlock2D( - in_channels=resnet_in_channels + res_skip_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min((resnet_in_channels + res_skip_channels) // 4, 32), - groups_out=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - ) - ) - - self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) - if add_upsample: - self.resnet_up = ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=min(out_channels // 4, 32), - groups_out=min(out_channels // 4, 32), - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - use_in_shortcut=True, - up=True, - kernel="fir", - ) - self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) - self.skip_norm = torch.nn.GroupNorm( - num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True - ) - self.act = nn.SiLU() - else: - self.resnet_up = None - self.skip_conv = None - self.skip_norm = None - self.act = None - - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - skip_sample=None, - *args, - **kwargs, - ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - for resnet in self.resnets: - # pop res hidden states - res_hidden_states = res_hidden_states_tuple[-1] - res_hidden_states_tuple = res_hidden_states_tuple[:-1] - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - - hidden_states = resnet(hidden_states, temb) - - if skip_sample is not None: - skip_sample = self.upsampler(skip_sample) - else: - skip_sample = 0 - - if self.resnet_up is not None: - skip_sample_states = self.skip_norm(hidden_states) - skip_sample_states = self.act(skip_sample_states) - skip_sample_states = self.skip_conv(skip_sample_states) - - skip_sample = skip_sample + skip_sample_states - - hidden_states = self.resnet_up(hidden_states, temb) - - return hidden_states, skip_sample - - -class ResnetUpsampleBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - prev_output_channel: int, - out_channels: int, - temb_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - output_scale_factor: float = 1.0, - add_upsample: bool = True, - skip_time_act: bool = False, - ): - super().__init__() - resnets = [] - - for i in range(num_layers): - res_skip_channels = in_channels if (i == num_layers - 1) else out_channels - resnet_in_channels = prev_output_channel if i == 0 else out_channels - - resnets.append( - ResnetBlock2D( - in_channels=resnet_in_channels + res_skip_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_upsample: - self.upsamplers = nn.ModuleList( - [ - ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - up=True, - ) - ] - ) - else: - self.upsamplers = None - - self.gradient_checkpointing = False - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - upsample_size: Optional[int] = None, - *args, - **kwargs, - ) -> torch.FloatTensor: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - for resnet in self.resnets: - # pop res hidden states - res_hidden_states = res_hidden_states_tuple[-1] - res_hidden_states_tuple = res_hidden_states_tuple[:-1] - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - - return custom_forward - - if is_torch_version(">=", "1.11.0"): - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb, use_reentrant=False - ) - else: - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb - ) - else: - hidden_states = resnet(hidden_states, temb) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states, temb) - - return hidden_states - - -class SimpleCrossAttnUpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - prev_output_channel: int, - temb_channels: int, - resolution_idx: Optional[int] = None, - dropout: float = 0.0, - num_layers: int = 1, - resnet_eps: float = 1e-6, - resnet_time_scale_shift: str = "default", - resnet_act_fn: str = "swish", - resnet_groups: int = 32, - resnet_pre_norm: bool = True, - attention_head_dim: int = 1, - cross_attention_dim: int = 1280, - output_scale_factor: float = 1.0, - add_upsample: bool = True, - skip_time_act: bool = False, - only_cross_attention: bool = False, - cross_attention_norm: Optional[str] = None, - ): - super().__init__() - resnets = [] - attentions = [] - - self.has_cross_attention = True - self.attention_head_dim = attention_head_dim - - self.num_heads = out_channels // self.attention_head_dim - - for i in range(num_layers): - res_skip_channels = in_channels if (i == num_layers - 1) else out_channels - resnet_in_channels = prev_output_channel if i == 0 else out_channels - - resnets.append( - ResnetBlock2D( - in_channels=resnet_in_channels + res_skip_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - ) - ) - - processor = ( - AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() - ) - - attentions.append( - Attention( - query_dim=out_channels, - cross_attention_dim=out_channels, - heads=self.num_heads, - dim_head=self.attention_head_dim, - added_kv_proj_dim=cross_attention_dim, - norm_num_groups=resnet_groups, - bias=True, - upcast_softmax=True, - only_cross_attention=only_cross_attention, - cross_attention_norm=cross_attention_norm, - processor=processor, - ) - ) - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - if add_upsample: - self.upsamplers = nn.ModuleList( - [ - ResnetBlock2D( - in_channels=out_channels, - out_channels=out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=resnet_groups, - dropout=dropout, - time_embedding_norm=resnet_time_scale_shift, - non_linearity=resnet_act_fn, - output_scale_factor=output_scale_factor, - pre_norm=resnet_pre_norm, - skip_time_act=skip_time_act, - up=True, - ) - ] - ) - else: - self.upsamplers = None - - self.gradient_checkpointing = False - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - upsample_size: Optional[int] = None, - attention_mask: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - if attention_mask is None: - # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. - mask = None if encoder_hidden_states is None else encoder_attention_mask - else: - # when attention_mask is defined: we don't even check for encoder_attention_mask. - # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. - # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. - # then we can simplify this whole if/else block to: - # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask - mask = attention_mask - - for resnet, attn in zip(self.resnets, self.attentions): - # resnet - # pop res hidden states - res_hidden_states = res_hidden_states_tuple[-1] - res_hidden_states_tuple = res_hidden_states_tuple[:-1] - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - attention_mask=mask, - **cross_attention_kwargs, - ) - else: - hidden_states = resnet(hidden_states, temb) - - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - attention_mask=mask, - **cross_attention_kwargs, - ) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states, temb) - - return hidden_states - - -class KUpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - resolution_idx: int, - dropout: float = 0.0, - num_layers: int = 5, - resnet_eps: float = 1e-5, - resnet_act_fn: str = "gelu", - resnet_group_size: Optional[int] = 32, - add_upsample: bool = True, - ): - super().__init__() - resnets = [] - k_in_channels = 2 * out_channels - k_out_channels = in_channels - num_layers = num_layers - 1 - - for i in range(num_layers): - in_channels = k_in_channels if i == 0 else out_channels - groups = in_channels // resnet_group_size - groups_out = out_channels // resnet_group_size - - resnets.append( - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=k_out_channels if (i == num_layers - 1) else out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=groups, - groups_out=groups_out, - dropout=dropout, - non_linearity=resnet_act_fn, - time_embedding_norm="ada_group", - conv_shortcut_bias=False, - ) - ) - - self.resnets = nn.ModuleList(resnets) - - if add_upsample: - self.upsamplers = nn.ModuleList([KUpsample2D()]) - else: - self.upsamplers = None - - self.gradient_checkpointing = False - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - upsample_size: Optional[int] = None, - *args, - **kwargs, - ) -> torch.FloatTensor: - if len(args) > 0 or kwargs.get("scale", None) is not None: - deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." - deprecate("scale", "1.0.0", deprecation_message) - - res_hidden_states_tuple = res_hidden_states_tuple[-1] - if res_hidden_states_tuple is not None: - hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) - - for resnet in self.resnets: - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - - return custom_forward - - if is_torch_version(">=", "1.11.0"): - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb, use_reentrant=False - ) - else: - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), hidden_states, temb - ) - else: - hidden_states = resnet(hidden_states, temb) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states) - - return hidden_states - - -class KCrossAttnUpBlock2D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - temb_channels: int, - resolution_idx: int, - dropout: float = 0.0, - num_layers: int = 4, - resnet_eps: float = 1e-5, - resnet_act_fn: str = "gelu", - resnet_group_size: int = 32, - attention_head_dim: int = 1, # attention dim_head - cross_attention_dim: int = 768, - add_upsample: bool = True, - upcast_attention: bool = False, - ): - super().__init__() - resnets = [] - attentions = [] - - is_first_block = in_channels == out_channels == temb_channels - is_middle_block = in_channels != out_channels - add_self_attention = True if is_first_block else False - - self.has_cross_attention = True - self.attention_head_dim = attention_head_dim - - # in_channels, and out_channels for the block (k-unet) - k_in_channels = out_channels if is_first_block else 2 * out_channels - k_out_channels = in_channels - - num_layers = num_layers - 1 - - for i in range(num_layers): - in_channels = k_in_channels if i == 0 else out_channels - groups = in_channels // resnet_group_size - groups_out = out_channels // resnet_group_size - - if is_middle_block and (i == num_layers - 1): - conv_2d_out_channels = k_out_channels - else: - conv_2d_out_channels = None - - resnets.append( - ResnetBlockCondNorm2D( - in_channels=in_channels, - out_channels=out_channels, - conv_2d_out_channels=conv_2d_out_channels, - temb_channels=temb_channels, - eps=resnet_eps, - groups=groups, - groups_out=groups_out, - dropout=dropout, - non_linearity=resnet_act_fn, - time_embedding_norm="ada_group", - conv_shortcut_bias=False, - ) - ) - attentions.append( - KAttentionBlock( - k_out_channels if (i == num_layers - 1) else out_channels, - k_out_channels // attention_head_dim - if (i == num_layers - 1) - else out_channels // attention_head_dim, - attention_head_dim, - cross_attention_dim=cross_attention_dim, - temb_channels=temb_channels, - attention_bias=True, - add_self_attention=add_self_attention, - cross_attention_norm="layer_norm", - upcast_attention=upcast_attention, - ) - ) - - self.resnets = nn.ModuleList(resnets) - self.attentions = nn.ModuleList(attentions) - - if add_upsample: - self.upsamplers = nn.ModuleList([KUpsample2D()]) - else: - self.upsamplers = None - - self.gradient_checkpointing = False - self.resolution_idx = resolution_idx - - def forward( - self, - hidden_states: torch.FloatTensor, - res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], - temb: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - upsample_size: Optional[int] = None, - attention_mask: Optional[torch.FloatTensor] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - res_hidden_states_tuple = res_hidden_states_tuple[-1] - if res_hidden_states_tuple is not None: - hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) - - for resnet, attn in zip(self.resnets, self.attentions): - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module, return_dict=None): - def custom_forward(*inputs): - if return_dict is not None: - return module(*inputs, return_dict=return_dict) - else: - return module(*inputs) - - return custom_forward - - ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(resnet), - hidden_states, - temb, - **ckpt_kwargs, - ) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - emb=temb, - attention_mask=attention_mask, - cross_attention_kwargs=cross_attention_kwargs, - encoder_attention_mask=encoder_attention_mask, - ) - else: - hidden_states = resnet(hidden_states, temb) - hidden_states = attn( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - emb=temb, - attention_mask=attention_mask, - cross_attention_kwargs=cross_attention_kwargs, - encoder_attention_mask=encoder_attention_mask, - ) - - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states) - - return hidden_states - - -# can potentially later be renamed to `No-feed-forward` attention -class KAttentionBlock(nn.Module): - r""" - A basic Transformer block. - - Parameters: - dim (`int`): The number of channels in the input and output. - num_attention_heads (`int`): The number of heads to use for multi-head attention. - attention_head_dim (`int`): The number of channels in each head. - dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. - cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. - attention_bias (`bool`, *optional*, defaults to `False`): - Configure if the attention layers should contain a bias parameter. - upcast_attention (`bool`, *optional*, defaults to `False`): - Set to `True` to upcast the attention computation to `float32`. - temb_channels (`int`, *optional*, defaults to 768): - The number of channels in the token embedding. - add_self_attention (`bool`, *optional*, defaults to `False`): - Set to `True` to add self-attention to the block. - cross_attention_norm (`str`, *optional*, defaults to `None`): - The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. - group_size (`int`, *optional*, defaults to 32): - The number of groups to separate the channels into for group normalization. - """ - - def __init__( - self, - dim: int, - num_attention_heads: int, - attention_head_dim: int, - dropout: float = 0.0, - cross_attention_dim: Optional[int] = None, - attention_bias: bool = False, - upcast_attention: bool = False, - temb_channels: int = 768, # for ada_group_norm - add_self_attention: bool = False, - cross_attention_norm: Optional[str] = None, - group_size: int = 32, - ): - super().__init__() - self.add_self_attention = add_self_attention - - # 1. Self-Attn - if add_self_attention: - self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) - self.attn1 = Attention( - query_dim=dim, - heads=num_attention_heads, - dim_head=attention_head_dim, - dropout=dropout, - bias=attention_bias, - cross_attention_dim=None, - cross_attention_norm=None, - ) - - # 2. Cross-Attn - self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) - self.attn2 = Attention( - query_dim=dim, - cross_attention_dim=cross_attention_dim, - heads=num_attention_heads, - dim_head=attention_head_dim, - dropout=dropout, - bias=attention_bias, - upcast_attention=upcast_attention, - cross_attention_norm=cross_attention_norm, - ) - - def _to_3d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor: - return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1) - - def _to_4d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor: - return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight) - - def forward( - self, - hidden_states: torch.FloatTensor, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - # TODO: mark emb as non-optional (self.norm2 requires it). - # requires assessing impact of change to positional param interface. - emb: Optional[torch.FloatTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} - if cross_attention_kwargs.get("scale", None) is not None: - logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") - - # 1. Self-Attention - if self.add_self_attention: - norm_hidden_states = self.norm1(hidden_states, emb) - - height, weight = norm_hidden_states.shape[2:] - norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) - - attn_output = self.attn1( - norm_hidden_states, - encoder_hidden_states=None, - attention_mask=attention_mask, - **cross_attention_kwargs, - ) - attn_output = self._to_4d(attn_output, height, weight) - - hidden_states = attn_output + hidden_states - - # 2. Cross-Attention/None - norm_hidden_states = self.norm2(hidden_states, emb) - - height, weight = norm_hidden_states.shape[2:] - norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) - attn_output = self.attn2( - norm_hidden_states, - encoder_hidden_states=encoder_hidden_states, - attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask, - **cross_attention_kwargs, - ) - attn_output = self._to_4d(attn_output, height, weight) - - hidden_states = attn_output + hidden_states - - return hidden_states diff --git a/MagicQuill/brushnet/unet_2d_condition.py b/MagicQuill/brushnet/unet_2d_condition.py deleted file mode 100644 index 088e0efdba9f481c57137e5413e795fcca74c6a5..0000000000000000000000000000000000000000 --- a/MagicQuill/brushnet/unet_2d_condition.py +++ /dev/null @@ -1,1355 +0,0 @@ -# Copyright 2024 The HuggingFace Team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from dataclasses import dataclass -from typing import Any, Dict, List, Optional, Tuple, Union - -import torch -import torch.nn as nn -import torch.utils.checkpoint - -from diffusers.configuration_utils import ConfigMixin, register_to_config -from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin -from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers -from diffusers.models.activations import get_activation -from diffusers.models.attention_processor import ( - ADDED_KV_ATTENTION_PROCESSORS, - CROSS_ATTENTION_PROCESSORS, - Attention, - AttentionProcessor, - AttnAddedKVProcessor, - AttnProcessor, -) -from diffusers.models.embeddings import ( - GaussianFourierProjection, - GLIGENTextBoundingboxProjection, - ImageHintTimeEmbedding, - ImageProjection, - ImageTimeEmbedding, - TextImageProjection, - TextImageTimeEmbedding, - TextTimeEmbedding, - TimestepEmbedding, - Timesteps, -) -from diffusers.models.modeling_utils import ModelMixin -from .unet_2d_blocks import ( - get_down_block, - get_mid_block, - get_up_block, -) - - -logger = logging.get_logger(__name__) # pylint: disable=invalid-name - - -@dataclass -class UNet2DConditionOutput(BaseOutput): - """ - The output of [`UNet2DConditionModel`]. - - Args: - sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): - The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. - """ - - sample: torch.FloatTensor = None - - -class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin): - r""" - A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample - shaped output. - - This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented - for all models (such as downloading or saving). - - Parameters: - sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): - Height and width of input/output sample. - in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample. - out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. - center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. - flip_sin_to_cos (`bool`, *optional*, defaults to `True`): - Whether to flip the sin to cos in the time embedding. - freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. - down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): - The tuple of downsample blocks to use. - mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): - Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or - `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped. - up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): - The tuple of upsample blocks to use. - only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`): - Whether to include self-attention in the basic transformer blocks, see - [`~models.attention.BasicTransformerBlock`]. - block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): - The tuple of output channels for each block. - layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. - downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. - mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. - dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. - act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. - norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. - If `None`, normalization and activation layers is skipped in post-processing. - norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. - cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): - The dimension of the cross attention features. - transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): - The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for - [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], - [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. - reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None): - The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling - blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for - [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], - [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. - encoder_hid_dim (`int`, *optional*, defaults to None): - If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` - dimension to `cross_attention_dim`. - encoder_hid_dim_type (`str`, *optional*, defaults to `None`): - If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text - embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. - attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. - num_attention_heads (`int`, *optional*): - The number of attention heads. If not defined, defaults to `attention_head_dim` - resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config - for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`. - class_embed_type (`str`, *optional*, defaults to `None`): - The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`, - `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. - addition_embed_type (`str`, *optional*, defaults to `None`): - Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or - "text". "text" will use the `TextTimeEmbedding` layer. - addition_time_embed_dim: (`int`, *optional*, defaults to `None`): - Dimension for the timestep embeddings. - num_class_embeds (`int`, *optional*, defaults to `None`): - Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing - class conditioning with `class_embed_type` equal to `None`. - time_embedding_type (`str`, *optional*, defaults to `positional`): - The type of position embedding to use for timesteps. Choose from `positional` or `fourier`. - time_embedding_dim (`int`, *optional*, defaults to `None`): - An optional override for the dimension of the projected time embedding. - time_embedding_act_fn (`str`, *optional*, defaults to `None`): - Optional activation function to use only once on the time embeddings before they are passed to the rest of - the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`. - timestep_post_act (`str`, *optional*, defaults to `None`): - The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`. - time_cond_proj_dim (`int`, *optional*, defaults to `None`): - The dimension of `cond_proj` layer in the timestep embedding. - conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. - conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer. - projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when - `class_embed_type="projection"`. Required when `class_embed_type="projection"`. - class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time - embeddings with the class embeddings. - mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`): - Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If - `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the - `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False` - otherwise. - """ - - _supports_gradient_checkpointing = True - - @register_to_config - def __init__( - self, - sample_size: Optional[int] = None, - in_channels: int = 4, - out_channels: int = 4, - center_input_sample: bool = False, - flip_sin_to_cos: bool = True, - freq_shift: int = 0, - down_block_types: Tuple[str] = ( - "CrossAttnDownBlock2D", - "CrossAttnDownBlock2D", - "CrossAttnDownBlock2D", - "DownBlock2D", - ), - mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", - up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), - only_cross_attention: Union[bool, Tuple[bool]] = False, - block_out_channels: Tuple[int] = (320, 640, 1280, 1280), - layers_per_block: Union[int, Tuple[int]] = 2, - downsample_padding: int = 1, - mid_block_scale_factor: float = 1, - dropout: float = 0.0, - act_fn: str = "silu", - norm_num_groups: Optional[int] = 32, - norm_eps: float = 1e-5, - cross_attention_dim: Union[int, Tuple[int]] = 1280, - transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, - reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None, - encoder_hid_dim: Optional[int] = None, - encoder_hid_dim_type: Optional[str] = None, - attention_head_dim: Union[int, Tuple[int]] = 8, - num_attention_heads: Optional[Union[int, Tuple[int]]] = None, - dual_cross_attention: bool = False, - use_linear_projection: bool = False, - class_embed_type: Optional[str] = None, - addition_embed_type: Optional[str] = None, - addition_time_embed_dim: Optional[int] = None, - num_class_embeds: Optional[int] = None, - upcast_attention: bool = False, - resnet_time_scale_shift: str = "default", - resnet_skip_time_act: bool = False, - resnet_out_scale_factor: float = 1.0, - time_embedding_type: str = "positional", - time_embedding_dim: Optional[int] = None, - time_embedding_act_fn: Optional[str] = None, - timestep_post_act: Optional[str] = None, - time_cond_proj_dim: Optional[int] = None, - conv_in_kernel: int = 3, - conv_out_kernel: int = 3, - projection_class_embeddings_input_dim: Optional[int] = None, - attention_type: str = "default", - class_embeddings_concat: bool = False, - mid_block_only_cross_attention: Optional[bool] = None, - cross_attention_norm: Optional[str] = None, - addition_embed_type_num_heads: int = 64, - ): - super().__init__() - - self.sample_size = sample_size - - if num_attention_heads is not None: - raise ValueError( - "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." - ) - - # If `num_attention_heads` is not defined (which is the case for most models) - # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. - # The reason for this behavior is to correct for incorrectly named variables that were introduced - # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 - # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking - # which is why we correct for the naming here. - num_attention_heads = num_attention_heads or attention_head_dim - - # Check inputs - self._check_config( - down_block_types=down_block_types, - up_block_types=up_block_types, - only_cross_attention=only_cross_attention, - block_out_channels=block_out_channels, - layers_per_block=layers_per_block, - cross_attention_dim=cross_attention_dim, - transformer_layers_per_block=transformer_layers_per_block, - reverse_transformer_layers_per_block=reverse_transformer_layers_per_block, - attention_head_dim=attention_head_dim, - num_attention_heads=num_attention_heads, - ) - - # input - conv_in_padding = (conv_in_kernel - 1) // 2 - self.conv_in = nn.Conv2d( - in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding - ) - - # time - time_embed_dim, timestep_input_dim = self._set_time_proj( - time_embedding_type, - block_out_channels=block_out_channels, - flip_sin_to_cos=flip_sin_to_cos, - freq_shift=freq_shift, - time_embedding_dim=time_embedding_dim, - ) - - self.time_embedding = TimestepEmbedding( - timestep_input_dim, - time_embed_dim, - act_fn=act_fn, - post_act_fn=timestep_post_act, - cond_proj_dim=time_cond_proj_dim, - ) - - self._set_encoder_hid_proj( - encoder_hid_dim_type, - cross_attention_dim=cross_attention_dim, - encoder_hid_dim=encoder_hid_dim, - ) - - # class embedding - self._set_class_embedding( - class_embed_type, - act_fn=act_fn, - num_class_embeds=num_class_embeds, - projection_class_embeddings_input_dim=projection_class_embeddings_input_dim, - time_embed_dim=time_embed_dim, - timestep_input_dim=timestep_input_dim, - ) - - self._set_add_embedding( - addition_embed_type, - addition_embed_type_num_heads=addition_embed_type_num_heads, - addition_time_embed_dim=addition_time_embed_dim, - cross_attention_dim=cross_attention_dim, - encoder_hid_dim=encoder_hid_dim, - flip_sin_to_cos=flip_sin_to_cos, - freq_shift=freq_shift, - projection_class_embeddings_input_dim=projection_class_embeddings_input_dim, - time_embed_dim=time_embed_dim, - ) - - if time_embedding_act_fn is None: - self.time_embed_act = None - else: - self.time_embed_act = get_activation(time_embedding_act_fn) - - self.down_blocks = nn.ModuleList([]) - self.up_blocks = nn.ModuleList([]) - - if isinstance(only_cross_attention, bool): - if mid_block_only_cross_attention is None: - mid_block_only_cross_attention = only_cross_attention - - only_cross_attention = [only_cross_attention] * len(down_block_types) - - if mid_block_only_cross_attention is None: - mid_block_only_cross_attention = False - - if isinstance(num_attention_heads, int): - num_attention_heads = (num_attention_heads,) * len(down_block_types) - - if isinstance(attention_head_dim, int): - attention_head_dim = (attention_head_dim,) * len(down_block_types) - - if isinstance(cross_attention_dim, int): - cross_attention_dim = (cross_attention_dim,) * len(down_block_types) - - if isinstance(layers_per_block, int): - layers_per_block = [layers_per_block] * len(down_block_types) - - if isinstance(transformer_layers_per_block, int): - transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) - - if class_embeddings_concat: - # The time embeddings are concatenated with the class embeddings. The dimension of the - # time embeddings passed to the down, middle, and up blocks is twice the dimension of the - # regular time embeddings - blocks_time_embed_dim = time_embed_dim * 2 - else: - blocks_time_embed_dim = time_embed_dim - - # down - output_channel = block_out_channels[0] - for i, down_block_type in enumerate(down_block_types): - input_channel = output_channel - output_channel = block_out_channels[i] - is_final_block = i == len(block_out_channels) - 1 - - down_block = get_down_block( - down_block_type, - num_layers=layers_per_block[i], - transformer_layers_per_block=transformer_layers_per_block[i], - in_channels=input_channel, - out_channels=output_channel, - temb_channels=blocks_time_embed_dim, - add_downsample=not is_final_block, - resnet_eps=norm_eps, - resnet_act_fn=act_fn, - resnet_groups=norm_num_groups, - cross_attention_dim=cross_attention_dim[i], - num_attention_heads=num_attention_heads[i], - downsample_padding=downsample_padding, - dual_cross_attention=dual_cross_attention, - use_linear_projection=use_linear_projection, - only_cross_attention=only_cross_attention[i], - upcast_attention=upcast_attention, - resnet_time_scale_shift=resnet_time_scale_shift, - attention_type=attention_type, - resnet_skip_time_act=resnet_skip_time_act, - resnet_out_scale_factor=resnet_out_scale_factor, - cross_attention_norm=cross_attention_norm, - attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, - dropout=dropout, - ) - self.down_blocks.append(down_block) - - # mid - self.mid_block = get_mid_block( - mid_block_type, - temb_channels=blocks_time_embed_dim, - in_channels=block_out_channels[-1], - resnet_eps=norm_eps, - resnet_act_fn=act_fn, - resnet_groups=norm_num_groups, - output_scale_factor=mid_block_scale_factor, - transformer_layers_per_block=transformer_layers_per_block[-1], - num_attention_heads=num_attention_heads[-1], - cross_attention_dim=cross_attention_dim[-1], - dual_cross_attention=dual_cross_attention, - use_linear_projection=use_linear_projection, - mid_block_only_cross_attention=mid_block_only_cross_attention, - upcast_attention=upcast_attention, - resnet_time_scale_shift=resnet_time_scale_shift, - attention_type=attention_type, - resnet_skip_time_act=resnet_skip_time_act, - cross_attention_norm=cross_attention_norm, - attention_head_dim=attention_head_dim[-1], - dropout=dropout, - ) - - # count how many layers upsample the images - self.num_upsamplers = 0 - - # up - reversed_block_out_channels = list(reversed(block_out_channels)) - reversed_num_attention_heads = list(reversed(num_attention_heads)) - reversed_layers_per_block = list(reversed(layers_per_block)) - reversed_cross_attention_dim = list(reversed(cross_attention_dim)) - reversed_transformer_layers_per_block = ( - list(reversed(transformer_layers_per_block)) - if reverse_transformer_layers_per_block is None - else reverse_transformer_layers_per_block - ) - only_cross_attention = list(reversed(only_cross_attention)) - - output_channel = reversed_block_out_channels[0] - for i, up_block_type in enumerate(up_block_types): - is_final_block = i == len(block_out_channels) - 1 - - prev_output_channel = output_channel - output_channel = reversed_block_out_channels[i] - input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] - - # add upsample block for all BUT final layer - if not is_final_block: - add_upsample = True - self.num_upsamplers += 1 - else: - add_upsample = False - - up_block = get_up_block( - up_block_type, - num_layers=reversed_layers_per_block[i] + 1, - transformer_layers_per_block=reversed_transformer_layers_per_block[i], - in_channels=input_channel, - out_channels=output_channel, - prev_output_channel=prev_output_channel, - temb_channels=blocks_time_embed_dim, - add_upsample=add_upsample, - resnet_eps=norm_eps, - resnet_act_fn=act_fn, - resolution_idx=i, - resnet_groups=norm_num_groups, - cross_attention_dim=reversed_cross_attention_dim[i], - num_attention_heads=reversed_num_attention_heads[i], - dual_cross_attention=dual_cross_attention, - use_linear_projection=use_linear_projection, - only_cross_attention=only_cross_attention[i], - upcast_attention=upcast_attention, - resnet_time_scale_shift=resnet_time_scale_shift, - attention_type=attention_type, - resnet_skip_time_act=resnet_skip_time_act, - resnet_out_scale_factor=resnet_out_scale_factor, - cross_attention_norm=cross_attention_norm, - attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, - dropout=dropout, - ) - self.up_blocks.append(up_block) - prev_output_channel = output_channel - - # out - if norm_num_groups is not None: - self.conv_norm_out = nn.GroupNorm( - num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps - ) - - self.conv_act = get_activation(act_fn) - - else: - self.conv_norm_out = None - self.conv_act = None - - conv_out_padding = (conv_out_kernel - 1) // 2 - self.conv_out = nn.Conv2d( - block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding - ) - - self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim) - - def _check_config( - self, - down_block_types: Tuple[str], - up_block_types: Tuple[str], - only_cross_attention: Union[bool, Tuple[bool]], - block_out_channels: Tuple[int], - layers_per_block: Union[int, Tuple[int]], - cross_attention_dim: Union[int, Tuple[int]], - transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]], - reverse_transformer_layers_per_block: bool, - attention_head_dim: int, - num_attention_heads: Optional[Union[int, Tuple[int]]], - ): - if len(down_block_types) != len(up_block_types): - raise ValueError( - f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." - ) - - if len(block_out_channels) != len(down_block_types): - raise ValueError( - f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." - ) - - if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): - raise ValueError( - f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." - ) - - if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): - raise ValueError( - f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." - ) - - if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): - raise ValueError( - f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." - ) - - if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): - raise ValueError( - f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." - ) - - if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): - raise ValueError( - f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." - ) - if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None: - for layer_number_per_block in transformer_layers_per_block: - if isinstance(layer_number_per_block, list): - raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.") - - def _set_time_proj( - self, - time_embedding_type: str, - block_out_channels: int, - flip_sin_to_cos: bool, - freq_shift: float, - time_embedding_dim: int, - ) -> Tuple[int, int]: - if time_embedding_type == "fourier": - time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 - if time_embed_dim % 2 != 0: - raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.") - self.time_proj = GaussianFourierProjection( - time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos - ) - timestep_input_dim = time_embed_dim - elif time_embedding_type == "positional": - time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 - - self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) - timestep_input_dim = block_out_channels[0] - else: - raise ValueError( - f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." - ) - - return time_embed_dim, timestep_input_dim - - def _set_encoder_hid_proj( - self, - encoder_hid_dim_type: Optional[str], - cross_attention_dim: Union[int, Tuple[int]], - encoder_hid_dim: Optional[int], - ): - if encoder_hid_dim_type is None and encoder_hid_dim is not None: - encoder_hid_dim_type = "text_proj" - self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) - logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") - - if encoder_hid_dim is None and encoder_hid_dim_type is not None: - raise ValueError( - f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." - ) - - if encoder_hid_dim_type == "text_proj": - self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) - elif encoder_hid_dim_type == "text_image_proj": - # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much - # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use - # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)` - self.encoder_hid_proj = TextImageProjection( - text_embed_dim=encoder_hid_dim, - image_embed_dim=cross_attention_dim, - cross_attention_dim=cross_attention_dim, - ) - elif encoder_hid_dim_type == "image_proj": - # Kandinsky 2.2 - self.encoder_hid_proj = ImageProjection( - image_embed_dim=encoder_hid_dim, - cross_attention_dim=cross_attention_dim, - ) - elif encoder_hid_dim_type is not None: - raise ValueError( - f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." - ) - else: - self.encoder_hid_proj = None - - def _set_class_embedding( - self, - class_embed_type: Optional[str], - act_fn: str, - num_class_embeds: Optional[int], - projection_class_embeddings_input_dim: Optional[int], - time_embed_dim: int, - timestep_input_dim: int, - ): - if class_embed_type is None and num_class_embeds is not None: - self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) - elif class_embed_type == "timestep": - self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) - elif class_embed_type == "identity": - self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) - elif class_embed_type == "projection": - if projection_class_embeddings_input_dim is None: - raise ValueError( - "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" - ) - # The projection `class_embed_type` is the same as the timestep `class_embed_type` except - # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings - # 2. it projects from an arbitrary input dimension. - # - # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. - # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. - # As a result, `TimestepEmbedding` can be passed arbitrary vectors. - self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) - elif class_embed_type == "simple_projection": - if projection_class_embeddings_input_dim is None: - raise ValueError( - "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set" - ) - self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) - else: - self.class_embedding = None - - def _set_add_embedding( - self, - addition_embed_type: str, - addition_embed_type_num_heads: int, - addition_time_embed_dim: Optional[int], - flip_sin_to_cos: bool, - freq_shift: float, - cross_attention_dim: Optional[int], - encoder_hid_dim: Optional[int], - projection_class_embeddings_input_dim: Optional[int], - time_embed_dim: int, - ): - if addition_embed_type == "text": - if encoder_hid_dim is not None: - text_time_embedding_from_dim = encoder_hid_dim - else: - text_time_embedding_from_dim = cross_attention_dim - - self.add_embedding = TextTimeEmbedding( - text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads - ) - elif addition_embed_type == "text_image": - # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much - # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use - # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)` - self.add_embedding = TextImageTimeEmbedding( - text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim - ) - elif addition_embed_type == "text_time": - self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) - self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) - elif addition_embed_type == "image": - # Kandinsky 2.2 - self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) - elif addition_embed_type == "image_hint": - # Kandinsky 2.2 ControlNet - self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) - elif addition_embed_type is not None: - raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") - - def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int): - if attention_type in ["gated", "gated-text-image"]: - positive_len = 768 - if isinstance(cross_attention_dim, int): - positive_len = cross_attention_dim - elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list): - positive_len = cross_attention_dim[0] - - feature_type = "text-only" if attention_type == "gated" else "text-image" - self.position_net = GLIGENTextBoundingboxProjection( - positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type - ) - - @property - def attn_processors(self) -> Dict[str, AttentionProcessor]: - r""" - Returns: - `dict` of attention processors: A dictionary containing all attention processors used in the model with - indexed by its weight name. - """ - # set recursively - processors = {} - - def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): - if hasattr(module, "get_processor"): - processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) - - for sub_name, child in module.named_children(): - fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) - - return processors - - for name, module in self.named_children(): - fn_recursive_add_processors(name, module, processors) - - return processors - - def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): - r""" - Sets the attention processor to use to compute attention. - - Parameters: - processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): - The instantiated processor class or a dictionary of processor classes that will be set as the processor - for **all** `Attention` layers. - - If `processor` is a dict, the key needs to define the path to the corresponding cross attention - processor. This is strongly recommended when setting trainable attention processors. - - """ - count = len(self.attn_processors.keys()) - - if isinstance(processor, dict) and len(processor) != count: - raise ValueError( - f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" - f" number of attention layers: {count}. Please make sure to pass {count} processor classes." - ) - - def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): - if hasattr(module, "set_processor"): - if not isinstance(processor, dict): - module.set_processor(processor) - else: - module.set_processor(processor.pop(f"{name}.processor")) - - for sub_name, child in module.named_children(): - fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) - - for name, module in self.named_children(): - fn_recursive_attn_processor(name, module, processor) - - def set_default_attn_processor(self): - """ - Disables custom attention processors and sets the default attention implementation. - """ - if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): - processor = AttnAddedKVProcessor() - elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): - processor = AttnProcessor() - else: - raise ValueError( - f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" - ) - - self.set_attn_processor(processor) - - def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"): - r""" - Enable sliced attention computation. - - When this option is enabled, the attention module splits the input tensor in slices to compute attention in - several steps. This is useful for saving some memory in exchange for a small decrease in speed. - - Args: - slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): - When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If - `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is - provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` - must be a multiple of `slice_size`. - """ - sliceable_head_dims = [] - - def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): - if hasattr(module, "set_attention_slice"): - sliceable_head_dims.append(module.sliceable_head_dim) - - for child in module.children(): - fn_recursive_retrieve_sliceable_dims(child) - - # retrieve number of attention layers - for module in self.children(): - fn_recursive_retrieve_sliceable_dims(module) - - num_sliceable_layers = len(sliceable_head_dims) - - if slice_size == "auto": - # half the attention head size is usually a good trade-off between - # speed and memory - slice_size = [dim // 2 for dim in sliceable_head_dims] - elif slice_size == "max": - # make smallest slice possible - slice_size = num_sliceable_layers * [1] - - slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size - - if len(slice_size) != len(sliceable_head_dims): - raise ValueError( - f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" - f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." - ) - - for i in range(len(slice_size)): - size = slice_size[i] - dim = sliceable_head_dims[i] - if size is not None and size > dim: - raise ValueError(f"size {size} has to be smaller or equal to {dim}.") - - # Recursively walk through all the children. - # Any children which exposes the set_attention_slice method - # gets the message - def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): - if hasattr(module, "set_attention_slice"): - module.set_attention_slice(slice_size.pop()) - - for child in module.children(): - fn_recursive_set_attention_slice(child, slice_size) - - reversed_slice_size = list(reversed(slice_size)) - for module in self.children(): - fn_recursive_set_attention_slice(module, reversed_slice_size) - - def _set_gradient_checkpointing(self, module, value=False): - if hasattr(module, "gradient_checkpointing"): - module.gradient_checkpointing = value - - def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): - r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497. - - The suffixes after the scaling factors represent the stage blocks where they are being applied. - - Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that - are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. - - Args: - s1 (`float`): - Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to - mitigate the "oversmoothing effect" in the enhanced denoising process. - s2 (`float`): - Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to - mitigate the "oversmoothing effect" in the enhanced denoising process. - b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. - b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. - """ - for i, upsample_block in enumerate(self.up_blocks): - setattr(upsample_block, "s1", s1) - setattr(upsample_block, "s2", s2) - setattr(upsample_block, "b1", b1) - setattr(upsample_block, "b2", b2) - - def disable_freeu(self): - """Disables the FreeU mechanism.""" - freeu_keys = {"s1", "s2", "b1", "b2"} - for i, upsample_block in enumerate(self.up_blocks): - for k in freeu_keys: - if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: - setattr(upsample_block, k, None) - - def fuse_qkv_projections(self): - """ - Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) - are fused. For cross-attention modules, key and value projection matrices are fused. - - - - This API is 🧪 experimental. - - - """ - self.original_attn_processors = None - - for _, attn_processor in self.attn_processors.items(): - if "Added" in str(attn_processor.__class__.__name__): - raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") - - self.original_attn_processors = self.attn_processors - - for module in self.modules(): - if isinstance(module, Attention): - module.fuse_projections(fuse=True) - - def unfuse_qkv_projections(self): - """Disables the fused QKV projection if enabled. - - - - This API is 🧪 experimental. - - - - """ - if self.original_attn_processors is not None: - self.set_attn_processor(self.original_attn_processors) - - def unload_lora(self): - """Unloads LoRA weights.""" - deprecate( - "unload_lora", - "0.28.0", - "Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().", - ) - for module in self.modules(): - if hasattr(module, "set_lora_layer"): - module.set_lora_layer(None) - - def get_time_embed( - self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int] - ) -> Optional[torch.Tensor]: - timesteps = timestep - if not torch.is_tensor(timesteps): - # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can - # This would be a good case for the `match` statement (Python 3.10+) - is_mps = sample.device.type == "mps" - if isinstance(timestep, float): - dtype = torch.float32 if is_mps else torch.float64 - else: - dtype = torch.int32 if is_mps else torch.int64 - timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) - elif len(timesteps.shape) == 0: - timesteps = timesteps[None].to(sample.device) - - # broadcast to batch dimension in a way that's compatible with ONNX/Core ML - timesteps = timesteps.expand(sample.shape[0]) - - t_emb = self.time_proj(timesteps) - # `Timesteps` does not contain any weights and will always return f32 tensors - # but time_embedding might actually be running in fp16. so we need to cast here. - # there might be better ways to encapsulate this. - t_emb = t_emb.to(dtype=sample.dtype) - return t_emb - - def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]: - class_emb = None - if self.class_embedding is not None: - if class_labels is None: - raise ValueError("class_labels should be provided when num_class_embeds > 0") - - if self.config.class_embed_type == "timestep": - class_labels = self.time_proj(class_labels) - - # `Timesteps` does not contain any weights and will always return f32 tensors - # there might be better ways to encapsulate this. - class_labels = class_labels.to(dtype=sample.dtype) - - class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) - return class_emb - - def get_aug_embed( - self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any] - ) -> Optional[torch.Tensor]: - aug_emb = None - if self.config.addition_embed_type == "text": - aug_emb = self.add_embedding(encoder_hidden_states) - elif self.config.addition_embed_type == "text_image": - # Kandinsky 2.1 - style - if "image_embeds" not in added_cond_kwargs: - raise ValueError( - f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" - ) - - image_embs = added_cond_kwargs.get("image_embeds") - text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) - aug_emb = self.add_embedding(text_embs, image_embs) - elif self.config.addition_embed_type == "text_time": - # SDXL - style - if "text_embeds" not in added_cond_kwargs: - raise ValueError( - f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" - ) - text_embeds = added_cond_kwargs.get("text_embeds") - if "time_ids" not in added_cond_kwargs: - raise ValueError( - f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" - ) - time_ids = added_cond_kwargs.get("time_ids") - time_embeds = self.add_time_proj(time_ids.flatten()) - time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) - add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) - add_embeds = add_embeds.to(emb.dtype) - aug_emb = self.add_embedding(add_embeds) - elif self.config.addition_embed_type == "image": - # Kandinsky 2.2 - style - if "image_embeds" not in added_cond_kwargs: - raise ValueError( - f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" - ) - image_embs = added_cond_kwargs.get("image_embeds") - aug_emb = self.add_embedding(image_embs) - elif self.config.addition_embed_type == "image_hint": - # Kandinsky 2.2 - style - if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: - raise ValueError( - f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" - ) - image_embs = added_cond_kwargs.get("image_embeds") - hint = added_cond_kwargs.get("hint") - aug_emb = self.add_embedding(image_embs, hint) - return aug_emb - - def process_encoder_hidden_states( - self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any] - ) -> torch.Tensor: - if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": - encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) - elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": - # Kandinsky 2.1 - style - if "image_embeds" not in added_cond_kwargs: - raise ValueError( - f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" - ) - - image_embeds = added_cond_kwargs.get("image_embeds") - encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) - elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": - # Kandinsky 2.2 - style - if "image_embeds" not in added_cond_kwargs: - raise ValueError( - f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" - ) - image_embeds = added_cond_kwargs.get("image_embeds") - encoder_hidden_states = self.encoder_hid_proj(image_embeds) - elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj": - if "image_embeds" not in added_cond_kwargs: - raise ValueError( - f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" - ) - image_embeds = added_cond_kwargs.get("image_embeds") - image_embeds = self.encoder_hid_proj(image_embeds) - encoder_hidden_states = (encoder_hidden_states, image_embeds) - return encoder_hidden_states - - def forward( - self, - sample: torch.FloatTensor, - timestep: Union[torch.Tensor, float, int], - encoder_hidden_states: torch.Tensor, - class_labels: Optional[torch.Tensor] = None, - timestep_cond: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.Tensor] = None, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, - down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, - mid_block_additional_residual: Optional[torch.Tensor] = None, - down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, - encoder_attention_mask: Optional[torch.Tensor] = None, - return_dict: bool = True, - down_block_add_samples: Optional[Tuple[torch.Tensor]] = None, - mid_block_add_sample: Optional[Tuple[torch.Tensor]] = None, - up_block_add_samples: Optional[Tuple[torch.Tensor]] = None, - ) -> Union[UNet2DConditionOutput, Tuple]: - r""" - The [`UNet2DConditionModel`] forward method. - - Args: - sample (`torch.FloatTensor`): - The noisy input tensor with the following shape `(batch, channel, height, width)`. - timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. - encoder_hidden_states (`torch.FloatTensor`): - The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. - class_labels (`torch.Tensor`, *optional*, defaults to `None`): - Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. - timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`): - Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed - through the `self.time_embedding` layer to obtain the timestep embeddings. - attention_mask (`torch.Tensor`, *optional*, defaults to `None`): - An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask - is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large - negative values to the attention scores corresponding to "discard" tokens. - cross_attention_kwargs (`dict`, *optional*): - A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under - `self.processor` in - [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). - added_cond_kwargs: (`dict`, *optional*): - A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that - are passed along to the UNet blocks. - down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*): - A tuple of tensors that if specified are added to the residuals of down unet blocks. - mid_block_additional_residual: (`torch.Tensor`, *optional*): - A tensor that if specified is added to the residual of the middle unet block. - down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*): - additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s) - encoder_attention_mask (`torch.Tensor`): - A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If - `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, - which adds large negative values to the attention scores corresponding to "discard" tokens. - return_dict (`bool`, *optional*, defaults to `True`): - Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain - tuple. - - Returns: - [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: - If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned, - otherwise a `tuple` is returned where the first element is the sample tensor. - """ - # By default samples have to be AT least a multiple of the overall upsampling factor. - # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). - # However, the upsampling interpolation output size can be forced to fit any upsampling size - # on the fly if necessary. - default_overall_up_factor = 2**self.num_upsamplers - - # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` - forward_upsample_size = False - upsample_size = None - - for dim in sample.shape[-2:]: - if dim % default_overall_up_factor != 0: - # Forward upsample size to force interpolation output size. - forward_upsample_size = True - break - - # ensure attention_mask is a bias, and give it a singleton query_tokens dimension - # expects mask of shape: - # [batch, key_tokens] - # adds singleton query_tokens dimension: - # [batch, 1, key_tokens] - # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: - # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) - # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) - if attention_mask is not None: - # assume that mask is expressed as: - # (1 = keep, 0 = discard) - # convert mask into a bias that can be added to attention scores: - # (keep = +0, discard = -10000.0) - attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 - attention_mask = attention_mask.unsqueeze(1) - - # convert encoder_attention_mask to a bias the same way we do for attention_mask - if encoder_attention_mask is not None: - encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 - encoder_attention_mask = encoder_attention_mask.unsqueeze(1) - - # 0. center input if necessary - if self.config.center_input_sample: - sample = 2 * sample - 1.0 - - # 1. time - t_emb = self.get_time_embed(sample=sample, timestep=timestep) - emb = self.time_embedding(t_emb, timestep_cond) - aug_emb = None - - class_emb = self.get_class_embed(sample=sample, class_labels=class_labels) - if class_emb is not None: - if self.config.class_embeddings_concat: - emb = torch.cat([emb, class_emb], dim=-1) - else: - emb = emb + class_emb - - aug_emb = self.get_aug_embed( - emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs - ) - if self.config.addition_embed_type == "image_hint": - aug_emb, hint = aug_emb - sample = torch.cat([sample, hint], dim=1) - - emb = emb + aug_emb if aug_emb is not None else emb - - if self.time_embed_act is not None: - emb = self.time_embed_act(emb) - - encoder_hidden_states = self.process_encoder_hidden_states( - encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs - ) - - # 2. pre-process - sample = self.conv_in(sample) - - # 2.5 GLIGEN position net - if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: - cross_attention_kwargs = cross_attention_kwargs.copy() - gligen_args = cross_attention_kwargs.pop("gligen") - cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} - - # 3. down - # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated - # to the internal blocks and will raise deprecation warnings. this will be confusing for our users. - if cross_attention_kwargs is not None: - cross_attention_kwargs = cross_attention_kwargs.copy() - lora_scale = cross_attention_kwargs.pop("scale", 1.0) - else: - lora_scale = 1.0 - - if USE_PEFT_BACKEND: - # weight the lora layers by setting `lora_scale` for each PEFT layer - scale_lora_layers(self, lora_scale) - - is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None - # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets - is_adapter = down_intrablock_additional_residuals is not None - # maintain backward compatibility for legacy usage, where - # T2I-Adapter and ControlNet both use down_block_additional_residuals arg - # but can only use one or the other - is_brushnet = down_block_add_samples is not None and mid_block_add_sample is not None and up_block_add_samples is not None - if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: - deprecate( - "T2I should not use down_block_additional_residuals", - "1.3.0", - "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ - and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ - for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", - standard_warn=False, - ) - down_intrablock_additional_residuals = down_block_additional_residuals - is_adapter = True - - down_block_res_samples = (sample,) - - if is_brushnet: - sample = sample + down_block_add_samples.pop(0) - - for downsample_block in self.down_blocks: - if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: - # For t2i-adapter CrossAttnDownBlock2D - additional_residuals = {} - if is_adapter and len(down_intrablock_additional_residuals) > 0: - additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) - - i = len(down_block_add_samples) - - if is_brushnet and len(down_block_add_samples)>0: - additional_residuals["down_block_add_samples"] = [down_block_add_samples.pop(0) - for _ in range(len(downsample_block.resnets)+(downsample_block.downsamplers !=None))] - - sample, res_samples = downsample_block( - hidden_states=sample, - temb=emb, - encoder_hidden_states=encoder_hidden_states, - attention_mask=attention_mask, - cross_attention_kwargs=cross_attention_kwargs, - encoder_attention_mask=encoder_attention_mask, - **additional_residuals, - ) - else: - additional_residuals = {} - - i = len(down_block_add_samples) - - if is_brushnet and len(down_block_add_samples)>0: - additional_residuals["down_block_add_samples"] = [down_block_add_samples.pop(0) - for _ in range(len(downsample_block.resnets)+(downsample_block.downsamplers !=None))] - - sample, res_samples = downsample_block(hidden_states=sample, temb=emb, **additional_residuals) - if is_adapter and len(down_intrablock_additional_residuals) > 0: - sample += down_intrablock_additional_residuals.pop(0) - - down_block_res_samples += res_samples - - if is_controlnet: - new_down_block_res_samples = () - - for down_block_res_sample, down_block_additional_residual in zip( - down_block_res_samples, down_block_additional_residuals - ): - down_block_res_sample = down_block_res_sample + down_block_additional_residual - new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) - - down_block_res_samples = new_down_block_res_samples - - # 4. mid - if self.mid_block is not None: - if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: - sample = self.mid_block( - sample, - emb, - encoder_hidden_states=encoder_hidden_states, - attention_mask=attention_mask, - cross_attention_kwargs=cross_attention_kwargs, - encoder_attention_mask=encoder_attention_mask, - ) - else: - sample = self.mid_block(sample, emb) - - # To support T2I-Adapter-XL - if ( - is_adapter - and len(down_intrablock_additional_residuals) > 0 - and sample.shape == down_intrablock_additional_residuals[0].shape - ): - sample += down_intrablock_additional_residuals.pop(0) - - if is_controlnet: - sample = sample + mid_block_additional_residual - - if is_brushnet: - sample = sample + mid_block_add_sample - - # 5. up - for i, upsample_block in enumerate(self.up_blocks): - is_final_block = i == len(self.up_blocks) - 1 - - res_samples = down_block_res_samples[-len(upsample_block.resnets) :] - down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] - - # if we have not reached the final block and need to forward the - # upsample size, we do it here - if not is_final_block and forward_upsample_size: - upsample_size = down_block_res_samples[-1].shape[2:] - - if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: - additional_residuals = {} - - i = len(up_block_add_samples) - - if is_brushnet and len(up_block_add_samples)>0: - additional_residuals["up_block_add_samples"] = [up_block_add_samples.pop(0) - for _ in range(len(upsample_block.resnets)+(upsample_block.upsamplers !=None))] - - sample = upsample_block( - hidden_states=sample, - temb=emb, - res_hidden_states_tuple=res_samples, - encoder_hidden_states=encoder_hidden_states, - cross_attention_kwargs=cross_attention_kwargs, - upsample_size=upsample_size, - attention_mask=attention_mask, - encoder_attention_mask=encoder_attention_mask, - **additional_residuals, - ) - else: - additional_residuals = {} - - i = len(up_block_add_samples) - - if is_brushnet and len(up_block_add_samples)>0: - additional_residuals["up_block_add_samples"] = [up_block_add_samples.pop(0) - for _ in range(len(upsample_block.resnets)+(upsample_block.upsamplers !=None))] - - sample = upsample_block( - hidden_states=sample, - temb=emb, - res_hidden_states_tuple=res_samples, - upsample_size=upsample_size, - **additional_residuals, - ) - - # 6. post-process - if self.conv_norm_out: - sample = self.conv_norm_out(sample) - sample = self.conv_act(sample) - sample = self.conv_out(sample) - - if USE_PEFT_BACKEND: - # remove `lora_scale` from each PEFT layer - unscale_lora_layers(self, lora_scale) - - if not return_dict: - return (sample,) - - return UNet2DConditionOutput(sample=sample) diff --git a/MagicQuill/brushnet_nodes.py b/MagicQuill/brushnet_nodes.py deleted file mode 100644 index 1b7a4175380d7c3fbe6ae869a19c4b359161dc27..0000000000000000000000000000000000000000 --- a/MagicQuill/brushnet_nodes.py +++ /dev/null @@ -1,1094 +0,0 @@ -import os -import types -from typing import Tuple - -import torch -import torchvision.transforms as T -import torch.nn.functional as F -from accelerate import init_empty_weights, load_checkpoint_and_dispatch -import sys - -import comfy.sd -import comfy.utils -import comfy.model_management -import comfy.sd1_clip -import comfy.ldm.models.autoencoder -import comfy.supported_models - -import folder_paths - -from .model_patch import add_model_patch_option, patch_model_function_wrapper -from .brushnet.brushnet import BrushNetModel -from .brushnet.brushnet_ca import BrushNetModel as PowerPaintModel -from .brushnet.powerpaint_utils import TokenizerWrapper, add_tokens - -current_directory = os.path.dirname(os.path.abspath(__file__)) -brushnet_config_file = os.path.join(current_directory, 'brushnet', 'brushnet.json') -brushnet_xl_config_file = os.path.join(current_directory, 'brushnet', 'brushnet_xl.json') -powerpaint_config_file = os.path.join(current_directory,'brushnet', 'powerpaint.json') - -sd15_scaling_factor = 0.18215 -sdxl_scaling_factor = 0.13025 - -print(sys.path) -ModelsToUnload = [comfy.sd1_clip.SD1ClipModel, - comfy.ldm.models.autoencoder.AutoencoderKL - ] - - -class BrushNetLoader: - @classmethod - def INPUT_TYPES(self): - self.inpaint_files = get_files_with_extension('inpaint') - return {"required": - { - "brushnet": ([file for file in self.inpaint_files], ), - "dtype": (['float16', 'bfloat16', 'float32', 'float64'], ), - }, - } - - CATEGORY = "inpaint" - RETURN_TYPES = ("BRMODEL",) - RETURN_NAMES = ("brushnet",) - - FUNCTION = "brushnet_loading" - - def brushnet_loading(self, brushnet, dtype): - brushnet_file = os.path.join(self.inpaint_files[brushnet], brushnet) - print('BrushNet model file:', brushnet_file) - is_SDXL = False - is_PP = False - sd = comfy.utils.load_torch_file(brushnet_file) - brushnet_down_block, brushnet_mid_block, brushnet_up_block, keys = brushnet_blocks(sd) - del sd - if brushnet_down_block == 24 and brushnet_mid_block == 2 and brushnet_up_block == 30: - is_SDXL = False - if keys == 322: - is_PP = False - print('BrushNet model type: SD1.5') - else: - is_PP = True - print('PowerPaint model type: SD1.5') - elif brushnet_down_block == 18 and brushnet_mid_block == 2 and brushnet_up_block == 22: - print('BrushNet model type: Loading SDXL') - is_SDXL = True - is_PP = False - else: - raise Exception("Unknown BrushNet model") - - with init_empty_weights(): - if is_SDXL: - brushnet_config = BrushNetModel.load_config(brushnet_xl_config_file) - brushnet_model = BrushNetModel.from_config(brushnet_config) - elif is_PP: - brushnet_config = PowerPaintModel.load_config(powerpaint_config_file) - brushnet_model = PowerPaintModel.from_config(brushnet_config) - else: - brushnet_config = BrushNetModel.load_config(brushnet_config_file) - brushnet_model = BrushNetModel.from_config(brushnet_config) - - if is_PP: - print("PowerPaint model file:", brushnet_file) - else: - print("BrushNet model file:", brushnet_file) - - if dtype == 'float16': - torch_dtype = torch.float16 - elif dtype == 'bfloat16': - torch_dtype = torch.bfloat16 - elif dtype == 'float32': - torch_dtype = torch.float32 - else: - torch_dtype = torch.float64 - - brushnet_model = load_checkpoint_and_dispatch( - brushnet_model, - brushnet_file, - device_map="sequential", - max_memory=None, - offload_folder=None, - offload_state_dict=False, - dtype=torch_dtype, - force_hooks=False, - ) - - if is_PP: - print("PowerPaint model is loaded") - elif is_SDXL: - print("BrushNet SDXL model is loaded") - else: - print("BrushNet SD1.5 model is loaded") - - return ({"brushnet": brushnet_model, "SDXL": is_SDXL, "PP": is_PP, "dtype": torch_dtype}, ) - - -class PowerPaintCLIPLoader: - - @classmethod - def INPUT_TYPES(self): - self.inpaint_files = get_files_with_extension('inpaint', ['.bin']) - self.clip_files = get_files_with_extension('clip') - return {"required": - { - "base": ([file for file in self.clip_files], ), - "powerpaint": ([file for file in self.inpaint_files], ), - }, - } - - CATEGORY = "inpaint" - RETURN_TYPES = ("CLIP",) - RETURN_NAMES = ("clip",) - - FUNCTION = "ppclip_loading" - - def ppclip_loading(self, base, powerpaint): - base_CLIP_file = os.path.join(self.clip_files[base], base) - pp_CLIP_file = os.path.join(self.inpaint_files[powerpaint], powerpaint) - - pp_clip = comfy.sd.load_clip(ckpt_paths=[base_CLIP_file]) - - print('PowerPaint base CLIP file: ', base_CLIP_file) - - pp_tokenizer = TokenizerWrapper(pp_clip.tokenizer.clip_l.tokenizer) - pp_text_encoder = pp_clip.patcher.model.clip_l.transformer - - add_tokens( - tokenizer = pp_tokenizer, - text_encoder = pp_text_encoder, - placeholder_tokens = ["P_ctxt", "P_shape", "P_obj"], - initialize_tokens = ["a", "a", "a"], - num_vectors_per_token = 10, - ) - - pp_text_encoder.load_state_dict(comfy.utils.load_torch_file(pp_CLIP_file), strict=False) - - print('PowerPaint CLIP file: ', pp_CLIP_file) - - pp_clip.tokenizer.clip_l.tokenizer = pp_tokenizer - pp_clip.patcher.model.clip_l.transformer = pp_text_encoder - - return (pp_clip,) - - -class PowerPaint: - - @classmethod - def INPUT_TYPES(s): - return {"required": - { - "model": ("MODEL",), - "vae": ("VAE", ), - "image": ("IMAGE",), - "mask": ("MASK",), - "powerpaint": ("BRMODEL", ), - "clip": ("CLIP", ), - "positive": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "fitting" : ("FLOAT", {"default": 1.0, "min": 0.3, "max": 1.0}), - "function": (['text guided', 'shape guided', 'object removal', 'context aware', 'image outpainting'], ), - "scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}), - "start_at": ("INT", {"default": 0, "min": 0, "max": 10000}), - "end_at": ("INT", {"default": 10000, "min": 0, "max": 10000}), - "save_memory": (['none', 'auto', 'max'], ), - }, - } - - CATEGORY = "inpaint" - RETURN_TYPES = ("MODEL","CONDITIONING","CONDITIONING","LATENT",) - RETURN_NAMES = ("model","positive","negative","latent",) - - FUNCTION = "model_update" - - def model_update(self, model, vae, image, mask, powerpaint, clip, positive, negative, fitting, function, scale, start_at, end_at, save_memory): - - is_SDXL, is_PP = check_compatibilty(model, powerpaint) - if not is_PP: - raise Exception("BrushNet model was loaded, please use BrushNet node") - - # Make a copy of the model so that we're not patching it everywhere in the workflow. - model = model.clone() - - # prepare image and mask - # no batches for original image and mask - masked_image, mask = prepare_image(image, mask) - - batch = masked_image.shape[0] - #width = masked_image.shape[2] - #height = masked_image.shape[1] - - if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'): - scaling_factor = model.model.model_config.latent_format.scale_factor - else: - scaling_factor = sd15_scaling_factor - - torch_dtype = powerpaint['dtype'] - - # prepare conditioning latents - conditioning_latents = get_image_latents(masked_image, mask, vae, scaling_factor) - conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(powerpaint['brushnet'].device) - conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(powerpaint['brushnet'].device) - - # prepare embeddings - - if function == "object removal": - promptA = "P_ctxt" - promptB = "P_ctxt" - negative_promptA = "P_obj" - negative_promptB = "P_obj" - print('You should add to positive prompt: "empty scene blur"') - #positive = positive + " empty scene blur" - elif function == "context aware": - promptA = "P_ctxt" - promptB = "P_ctxt" - negative_promptA = "" - negative_promptB = "" - #positive = positive + " empty scene" - print('You should add to positive prompt: "empty scene"') - elif function == "shape guided": - promptA = "P_shape" - promptB = "P_ctxt" - negative_promptA = "P_shape" - negative_promptB = "P_ctxt" - elif function == "image outpainting": - promptA = "P_ctxt" - promptB = "P_ctxt" - negative_promptA = "P_obj" - negative_promptB = "P_obj" - #positive = positive + " empty scene" - print('You should add to positive prompt: "empty scene"') - else: - promptA = "P_obj" - promptB = "P_obj" - negative_promptA = "P_obj" - negative_promptB = "P_obj" - - tokens = clip.tokenize(promptA) - prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False) - - tokens = clip.tokenize(negative_promptA) - negative_prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False) - - tokens = clip.tokenize(promptB) - prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False) - - tokens = clip.tokenize(negative_promptB) - negative_prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False) - - prompt_embeds_pp = (prompt_embedsA * fitting + (1.0 - fitting) * prompt_embedsB).to(dtype=torch_dtype).to(powerpaint['brushnet'].device) - negative_prompt_embeds_pp = (negative_prompt_embedsA * fitting + (1.0 - fitting) * negative_prompt_embedsB).to(dtype=torch_dtype).to(powerpaint['brushnet'].device) - - # unload vae and CLIPs - del vae - del clip - for loaded_model in comfy.model_management.current_loaded_models: - if type(loaded_model.model.model) in ModelsToUnload: - comfy.model_management.current_loaded_models.remove(loaded_model) - loaded_model.model_unload() - del loaded_model - - # apply patch to model - - brushnet_conditioning_scale = scale - control_guidance_start = start_at - control_guidance_end = end_at - - if save_memory != 'none': - powerpaint['brushnet'].set_attention_slice(save_memory) - - add_brushnet_patch(model, - powerpaint['brushnet'], - torch_dtype, - conditioning_latents, - (brushnet_conditioning_scale, control_guidance_start, control_guidance_end), - negative_prompt_embeds_pp, prompt_embeds_pp, - None, None, None, - False) - - latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], device=powerpaint['brushnet'].device) - - return (model, positive, negative, {"samples":latent},) - - -class BrushNet: - - @classmethod - def INPUT_TYPES(s): - return {"required": - { - "model": ("MODEL",), - "vae": ("VAE", ), - "image": ("IMAGE",), - "mask": ("MASK",), - "brushnet": ("BRMODEL", ), - "positive": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}), - "start_at": ("INT", {"default": 0, "min": 0, "max": 10000}), - "end_at": ("INT", {"default": 10000, "min": 0, "max": 10000}), - }, - } - - CATEGORY = "inpaint" - RETURN_TYPES = ("MODEL","CONDITIONING","CONDITIONING","LATENT",) - RETURN_NAMES = ("model","positive","negative","latent",) - - FUNCTION = "model_update" - - def model_update(self, model, vae, image, mask, brushnet, positive, negative, scale, start_at, end_at): - - is_SDXL, is_PP = check_compatibilty(model, brushnet) - - if is_PP: - raise Exception("PowerPaint model was loaded, please use PowerPaint node") - - # Make a copy of the model so that we're not patching it everywhere in the workflow. - model = model.clone() - - # prepare image and mask - # no batches for original image and mask - masked_image, mask = prepare_image(image, mask) - - batch = masked_image.shape[0] - width = masked_image.shape[2] - height = masked_image.shape[1] - - if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'): - scaling_factor = model.model.model_config.latent_format.scale_factor - elif is_SDXL: - scaling_factor = sdxl_scaling_factor - else: - scaling_factor = sd15_scaling_factor - - torch_dtype = brushnet['dtype'] - - # prepare conditioning latents - conditioning_latents = get_image_latents(masked_image, mask, vae, scaling_factor) - conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(brushnet['brushnet'].device) - conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(brushnet['brushnet'].device) - - # unload vae - del vae - for loaded_model in comfy.model_management.current_loaded_models: - if type(loaded_model.model.model) in ModelsToUnload: - comfy.model_management.current_loaded_models.remove(loaded_model) - loaded_model.model_unload() - del loaded_model - - # prepare embeddings - - prompt_embeds = positive[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device) - negative_prompt_embeds = negative[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device) - - max_tokens = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1]) - if prompt_embeds.shape[1] < max_tokens: - multiplier = max_tokens // 77 - prompt_embeds.shape[1] // 77 - prompt_embeds = torch.concat([prompt_embeds] + [prompt_embeds[:,-77:,:]] * multiplier, dim=1) - print('BrushNet: negative prompt more than 75 tokens:', negative_prompt_embeds.shape, 'multiplying prompt_embeds') - if negative_prompt_embeds.shape[1] < max_tokens: - multiplier = max_tokens // 77 - negative_prompt_embeds.shape[1] // 77 - negative_prompt_embeds = torch.concat([negative_prompt_embeds] + [negative_prompt_embeds[:,-77:,:]] * multiplier, dim=1) - print('BrushNet: positive prompt more than 75 tokens:', prompt_embeds.shape, 'multiplying negative_prompt_embeds') - - if len(positive[0]) > 1 and 'pooled_output' in positive[0][1] and positive[0][1]['pooled_output'] is not None: - pooled_prompt_embeds = positive[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device) - else: - print('BrushNet: positive conditioning has not pooled_output') - if is_SDXL: - print('BrushNet will not produce correct results') - pooled_prompt_embeds = torch.empty([2, 1280], device=brushnet['brushnet'].device).to(dtype=torch_dtype) - - if len(negative[0]) > 1 and 'pooled_output' in negative[0][1] and negative[0][1]['pooled_output'] is not None: - negative_pooled_prompt_embeds = negative[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device) - else: - print('BrushNet: negative conditioning has not pooled_output') - if is_SDXL: - print('BrushNet will not produce correct results') - negative_pooled_prompt_embeds = torch.empty([1, pooled_prompt_embeds.shape[1]], device=brushnet['brushnet'].device).to(dtype=torch_dtype) - - time_ids = torch.FloatTensor([[height, width, 0., 0., height, width]]).to(dtype=torch_dtype).to(brushnet['brushnet'].device) - - if not is_SDXL: - pooled_prompt_embeds = None - negative_pooled_prompt_embeds = None - time_ids = None - - # apply patch to model - - brushnet_conditioning_scale = scale - control_guidance_start = start_at - control_guidance_end = end_at - - add_brushnet_patch(model, - brushnet['brushnet'], - torch_dtype, - conditioning_latents, - (brushnet_conditioning_scale, control_guidance_start, control_guidance_end), - prompt_embeds, negative_prompt_embeds, - pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids, - False) - - latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], device=brushnet['brushnet'].device) - - return (model, positive, negative, {"samples":latent},) - - -class BlendInpaint: - - @classmethod - def INPUT_TYPES(s): - return {"required": - { - "inpaint": ("IMAGE",), - "original": ("IMAGE",), - "mask": ("MASK",), - "kernel": ("INT", {"default": 10, "min": 1, "max": 1000}), - "sigma": ("FLOAT", {"default": 10.0, "min": 0.01, "max": 1000}), - }, - "optional": - { - "origin": ("VECTOR",), - }, - } - - CATEGORY = "inpaint" - RETURN_TYPES = ("IMAGE","MASK",) - RETURN_NAMES = ("image","MASK",) - - FUNCTION = "blend_inpaint" - - def blend_inpaint(self, inpaint: torch.Tensor, original: torch.Tensor, mask, kernel: int, sigma:int, origin=None) -> Tuple[torch.Tensor]: - - original, mask = check_image_mask(original, mask, 'Blend Inpaint') - - if len(inpaint.shape) < 4: - # image tensor shape should be [B, H, W, C], but batch somehow is missing - inpaint = inpaint[None,:,:,:] - - if inpaint.shape[0] < original.shape[0]: - print("Blend Inpaint gets batch of original images (%d) but only (%d) inpaint images" % (original.shape[0], inpaint.shape[0])) - original= original[:inpaint.shape[0],:,:] - mask = mask[:inpaint.shape[0],:,:] - - if inpaint.shape[0] > original.shape[0]: - # batch over inpaint - count = 0 - original_list = [] - mask_list = [] - origin_list = [] - while (count < inpaint.shape[0]): - for i in range(original.shape[0]): - original_list.append(original[i][None,:,:,:]) - mask_list.append(mask[i][None,:,:]) - if origin is not None: - origin_list.append(origin[i][None,:]) - count += 1 - if count >= inpaint.shape[0]: - break - original = torch.concat(original_list, dim=0) - mask = torch.concat(mask_list, dim=0) - if origin is not None: - origin = torch.concat(origin_list, dim=0) - - if kernel % 2 == 0: - kernel += 1 - transform = T.GaussianBlur(kernel_size=(kernel, kernel), sigma=(sigma, sigma)) - - ret = [] - blurred = [] - for i in range(inpaint.shape[0]): - if origin is None: - blurred_mask = transform(mask[i][None,None,:,:]).to(original.device).to(original.dtype) - blurred.append(blurred_mask[0]) - - result = torch.nn.functional.interpolate( - inpaint[i][None,:,:,:].permute(0, 3, 1, 2), - size=( - original[i].shape[0], - original[i].shape[1], - ) - ).permute(0, 2, 3, 1).to(original.device).to(original.dtype) - else: - # got mask from CutForInpaint - height, width, _ = original[i].shape - x0 = origin[i][0].item() - y0 = origin[i][1].item() - - if mask[i].shape[0] < height or mask[i].shape[1] < width: - padded_mask = F.pad(input=mask[i], pad=(x0, width-x0-mask[i].shape[1], - y0, height-y0-mask[i].shape[0]), mode='constant', value=0) - else: - padded_mask = mask[i] - blurred_mask = transform(padded_mask[None,None,:,:]).to(original.device).to(original.dtype) - blurred.append(blurred_mask[0][0]) - - result = F.pad(input=inpaint[i], pad=(0, 0, x0, width-x0-inpaint[i].shape[1], - y0, height-y0-inpaint[i].shape[0]), mode='constant', value=0) - result = result[None,:,:,:].to(original.device).to(original.dtype) - - ret.append(original[i] * (1.0 - blurred_mask[0][0][:,:,None]) + result[0] * blurred_mask[0][0][:,:,None]) - - return (torch.stack(ret), torch.stack(blurred), ) - - -class CutForInpaint: - - @classmethod - def INPUT_TYPES(s): - return {"required": - { - "image": ("IMAGE",), - "mask": ("MASK",), - "width": ("INT", {"default": 512, "min": 64, "max": 2048}), - "height": ("INT", {"default": 512, "min": 64, "max": 2048}), - }, - } - - CATEGORY = "inpaint" - RETURN_TYPES = ("IMAGE","MASK","VECTOR",) - RETURN_NAMES = ("image","mask","origin",) - - FUNCTION = "cut_for_inpaint" - - def cut_for_inpaint(self, image: torch.Tensor, mask: torch.Tensor, width: int, height: int): - - image, mask = check_image_mask(image, mask, 'BrushNet') - - ret = [] - msk = [] - org = [] - for i in range(image.shape[0]): - x0, y0, w, h = cut_with_mask(mask[i], width, height) - ret.append((image[i][y0:y0+h,x0:x0+w,:])) - msk.append((mask[i][y0:y0+h,x0:x0+w])) - org.append(torch.IntTensor([x0,y0])) - - return (torch.stack(ret), torch.stack(msk), torch.stack(org), ) - - -#### Utility function - -def get_files_with_extension(folder_name, extension=['.safetensors']): - - try: - folders = folder_paths.get_folder_paths(folder_name) - except: - folders = [] - - if not folders: - folders = [os.path.join(folder_paths.models_dir, folder_name)] - if not os.path.isdir(folders[0]): - folders = [os.path.join(folder_paths.base_path, folder_name)] - if not os.path.isdir(folders[0]): - return {} - - filtered_folders = [] - for x in folders: - if not os.path.isdir(x): - continue - the_same = False - for y in filtered_folders: - if os.path.samefile(x, y): - the_same = True - break - if not the_same: - filtered_folders.append(x) - - if not filtered_folders: - return {} - - output = {} - for x in filtered_folders: - files, folders_all = folder_paths.recursive_search(x, excluded_dir_names=[".git"]) - filtered_files = folder_paths.filter_files_extensions(files, extension) - - for f in filtered_files: - output[f] = x - - return output - - -# get blocks from state_dict so we could know which model it is -def brushnet_blocks(sd): - brushnet_down_block = 0 - brushnet_mid_block = 0 - brushnet_up_block = 0 - for key in sd: - if 'brushnet_down_block' in key: - brushnet_down_block += 1 - if 'brushnet_mid_block' in key: - brushnet_mid_block += 1 - if 'brushnet_up_block' in key: - brushnet_up_block += 1 - return (brushnet_down_block, brushnet_mid_block, brushnet_up_block, len(sd)) - - -# Check models compatibility -def check_compatibilty(model, brushnet): - is_SDXL = False - is_PP = False - if isinstance(model.model.model_config, comfy.supported_models.SD15): - print('Base model type: SD1.5') - is_SDXL = False - if brushnet["SDXL"]: - raise Exception("Base model is SD15, but BrushNet is SDXL type") - if brushnet["PP"]: - is_PP = True - elif isinstance(model.model.model_config, comfy.supported_models.SDXL): - print('Base model type: SDXL') - is_SDXL = True - if not brushnet["SDXL"]: - raise Exception("Base model is SDXL, but BrushNet is SD15 type") - else: - print('Base model type: ', type(model.model.model_config)) - raise Exception("Unsupported model type: " + str(type(model.model.model_config))) - - return (is_SDXL, is_PP) - - -def check_image_mask(image, mask, name): - if len(image.shape) < 4: - # image tensor shape should be [B, H, W, C], but batch somehow is missing - image = image[None,:,:,:] - - if len(mask.shape) > 3: - # mask tensor shape should be [B, H, W] but we get [B, H, W, C], image may be? - # take first mask, red channel - mask = (mask[:,:,:,0])[:,:,:] - elif len(mask.shape) < 3: - # mask tensor shape should be [B, H, W] but batch somehow is missing - mask = mask[None,:,:] - - if image.shape[0] > mask.shape[0]: - print(name, "gets batch of images (%d) but only %d masks" % (image.shape[0], mask.shape[0])) - if mask.shape[0] == 1: - print(name, "will copy the mask to fill batch") - mask = torch.cat([mask] * image.shape[0], dim=0) - else: - print(name, "will add empty masks to fill batch") - empty_mask = torch.zeros([image.shape[0] - mask.shape[0], mask.shape[1], mask.shape[2]]) - mask = torch.cat([mask, empty_mask], dim=0) - elif image.shape[0] < mask.shape[0]: - print(name, "gets batch of images (%d) but too many (%d) masks" % (image.shape[0], mask.shape[0])) - mask = mask[:image.shape[0],:,:] - - return (image, mask) - - -# Prepare image and mask -def prepare_image(image, mask): - - image, mask = check_image_mask(image, mask, 'BrushNet') - - print("BrushNet image.shape =", image.shape, "mask.shape =", mask.shape) - - if mask.shape[2] != image.shape[2] or mask.shape[1] != image.shape[1]: - raise Exception("Image and mask should be the same size") - - # As a suggestion of inferno46n2 (https://github.com/nullquant/ComfyUI-BrushNet/issues/64) - mask = mask.round() - - masked_image = image * (1.0 - mask[:,:,:,None]) - - return (masked_image, mask) - - -# Get origin of the mask -def cut_with_mask(mask, width, height): - iy, ix = (mask == 1).nonzero(as_tuple=True) - - h0, w0 = mask.shape - - if iy.numel() == 0: - x_c = w0 / 2.0 - y_c = h0 / 2.0 - else: - x_min = ix.min().item() - x_max = ix.max().item() - y_min = iy.min().item() - y_max = iy.max().item() - - if x_max - x_min > width or y_max - y_min > height: - raise Exception("Masked area is bigger than provided dimensions") - - x_c = (x_min + x_max) / 2.0 - y_c = (y_min + y_max) / 2.0 - - width2 = width / 2.0 - height2 = height / 2.0 - - if w0 <= width: - x0 = 0 - w = w0 - else: - x0 = max(0, x_c - width2) - w = width - if x0 + width > w0: - x0 = w0 - width - - if h0 <= height: - y0 = 0 - h = h0 - else: - y0 = max(0, y_c - height2) - h = height - if y0 + height > h0: - y0 = h0 - height - - return (int(x0), int(y0), int(w), int(h)) - - -# Prepare conditioning_latents -@torch.inference_mode() -def get_image_latents(masked_image, mask, vae, scaling_factor): - processed_image = masked_image.to(vae.device) - image_latents = vae.encode(processed_image[:,:,:,:3]) * scaling_factor - processed_mask = 1. - mask[:,None,:,:] - interpolated_mask = torch.nn.functional.interpolate( - processed_mask, - size=( - image_latents.shape[-2], - image_latents.shape[-1] - ) - ) - interpolated_mask = interpolated_mask.to(image_latents.device) - - conditioning_latents = [image_latents, interpolated_mask] - - print('BrushNet CL: image_latents shape =', image_latents.shape, 'interpolated_mask shape =', interpolated_mask.shape) - - return conditioning_latents - - -# Main function where magic happens -@torch.inference_mode() -def brushnet_inference(x, timesteps, transformer_options, debug): - if 'model_patch' not in transformer_options: - print('BrushNet inference: there is no model_patch key in transformer_options') - return ([], 0, []) - mp = transformer_options['model_patch'] - if 'brushnet' not in mp: - print('BrushNet inference: there is no brushnet key in mdel_patch') - return ([], 0, []) - bo = mp['brushnet'] - if 'model' not in bo: - print('BrushNet inference: there is no model key in brushnet') - return ([], 0, []) - brushnet = bo['model'] - if not (isinstance(brushnet, BrushNetModel) or isinstance(brushnet, PowerPaintModel)): - print('BrushNet model is not a BrushNetModel class') - return ([], 0, []) - - torch_dtype = bo['dtype'] - cl_list = bo['latents'] - brushnet_conditioning_scale, control_guidance_start, control_guidance_end = bo['controls'] - pe = bo['prompt_embeds'] - npe = bo['negative_prompt_embeds'] - ppe, nppe, time_ids = bo['add_embeds'] - - #do_classifier_free_guidance = mp['free_guidance'] - do_classifier_free_guidance = len(transformer_options['cond_or_uncond']) > 1 - - x = x.detach().clone() - x = x.to(torch_dtype).to(brushnet.device) - - timesteps = timesteps.detach().clone() - timesteps = timesteps.to(torch_dtype).to(brushnet.device) - - total_steps = mp['total_steps'] - step = mp['step'] - - added_cond_kwargs = {} - - if do_classifier_free_guidance and step == 0: - print('BrushNet inference: do_classifier_free_guidance is True') - - sub_idx = None - if 'ad_params' in transformer_options and 'sub_idxs' in transformer_options['ad_params']: - sub_idx = transformer_options['ad_params']['sub_idxs'] - - # we have batch input images - batch = cl_list[0].shape[0] - # we have incoming latents - latents_incoming = x.shape[0] - # and we already got some - latents_got = bo['latent_id'] - if step == 0 or batch > 1: - print('BrushNet inference, step = %d: image batch = %d, got %d latents, starting from %d' \ - % (step, batch, latents_incoming, latents_got)) - - image_latents = [] - masks = [] - prompt_embeds = [] - negative_prompt_embeds = [] - pooled_prompt_embeds = [] - negative_pooled_prompt_embeds = [] - if sub_idx: - # AnimateDiff indexes detected - if step == 0: - print('BrushNet inference: AnimateDiff indexes detected and applied') - - batch = len(sub_idx) - - if do_classifier_free_guidance: - for i in sub_idx: - image_latents.append(cl_list[0][i][None,:,:,:]) - masks.append(cl_list[1][i][None,:,:,:]) - prompt_embeds.append(pe) - negative_prompt_embeds.append(npe) - pooled_prompt_embeds.append(ppe) - negative_pooled_prompt_embeds.append(nppe) - for i in sub_idx: - image_latents.append(cl_list[0][i][None,:,:,:]) - masks.append(cl_list[1][i][None,:,:,:]) - else: - for i in sub_idx: - image_latents.append(cl_list[0][i][None,:,:,:]) - masks.append(cl_list[1][i][None,:,:,:]) - prompt_embeds.append(pe) - pooled_prompt_embeds.append(ppe) - else: - # do_classifier_free_guidance = 2 passes, 1st pass is cond, 2nd is uncond - continue_batch = True - for i in range(latents_incoming): - number = latents_got + i - if number < batch: - # 1st pass, cond - image_latents.append(cl_list[0][number][None,:,:,:]) - masks.append(cl_list[1][number][None,:,:,:]) - prompt_embeds.append(pe) - pooled_prompt_embeds.append(ppe) - elif do_classifier_free_guidance and number < batch * 2: - # 2nd pass, uncond - image_latents.append(cl_list[0][number-batch][None,:,:,:]) - masks.append(cl_list[1][number-batch][None,:,:,:]) - negative_prompt_embeds.append(npe) - negative_pooled_prompt_embeds.append(nppe) - else: - # latent batch - image_latents.append(cl_list[0][0][None,:,:,:]) - masks.append(cl_list[1][0][None,:,:,:]) - prompt_embeds.append(pe) - pooled_prompt_embeds.append(ppe) - latents_got = -i - continue_batch = False - - if continue_batch: - # we don't have full batch yet - if do_classifier_free_guidance: - if number < batch * 2 - 1: - bo['latent_id'] = number + 1 - else: - bo['latent_id'] = 0 - else: - if number < batch - 1: - bo['latent_id'] = number + 1 - else: - bo['latent_id'] = 0 - else: - bo['latent_id'] = 0 - - cl = [] - for il, m in zip(image_latents, masks): - cl.append(torch.concat([il, m], dim=1)) - cl2apply = torch.concat(cl, dim=0) - - conditioning_latents = cl2apply.to(torch_dtype).to(brushnet.device) - - # print("BrushNet CL: conditioning_latents shape =", conditioning_latents.shape) - # print("BrushNet CL: x shape =", x.shape) - - prompt_embeds.extend(negative_prompt_embeds) - prompt_embeds = torch.concat(prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device) - - if ppe is not None: - added_cond_kwargs = {} - added_cond_kwargs['time_ids'] = torch.concat([time_ids] * latents_incoming, dim = 0).to(torch_dtype).to(brushnet.device) - - pooled_prompt_embeds.extend(negative_pooled_prompt_embeds) - pooled_prompt_embeds = torch.concat(pooled_prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device) - added_cond_kwargs['text_embeds'] = pooled_prompt_embeds - else: - added_cond_kwargs = None - - if x.shape[2] != conditioning_latents.shape[2] or x.shape[3] != conditioning_latents.shape[3]: - if step == 0: - print('BrushNet inference: image', conditioning_latents.shape, 'and latent', x.shape, 'have different size, resizing image') - conditioning_latents = torch.nn.functional.interpolate( - conditioning_latents, size=( - x.shape[2], - x.shape[3], - ), mode='bicubic', - ).to(torch_dtype).to(brushnet.device) - - if step == 0: - print('BrushNet inference: sample', x.shape, ', CL', conditioning_latents.shape, 'dtype', torch_dtype) - - if debug: print('BrushNet: step =', step) - - if step < control_guidance_start or step > control_guidance_end: - cond_scale = 0.0 - else: - cond_scale = brushnet_conditioning_scale - - return brushnet(x, - encoder_hidden_states=prompt_embeds, - brushnet_cond=conditioning_latents, - timestep = timesteps, - conditioning_scale=cond_scale, - guess_mode=False, - added_cond_kwargs=added_cond_kwargs, - return_dict=False, - debug=debug, - ) - - -# This is main patch function -def add_brushnet_patch(model, brushnet, torch_dtype, conditioning_latents, - controls, - prompt_embeds, negative_prompt_embeds, - pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids, - debug): - - is_SDXL = isinstance(model.model.model_config, comfy.supported_models.SDXL) - - if is_SDXL: - input_blocks = [[0, comfy.ops.disable_weight_init.Conv2d], - [1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], - [2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], - [3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], - [4, comfy.ldm.modules.attention.SpatialTransformer], - [5, comfy.ldm.modules.attention.SpatialTransformer], - [6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], - [7, comfy.ldm.modules.attention.SpatialTransformer], - [8, comfy.ldm.modules.attention.SpatialTransformer]] - middle_block = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock] - output_blocks = [[0, comfy.ldm.modules.attention.SpatialTransformer], - [1, comfy.ldm.modules.attention.SpatialTransformer], - [2, comfy.ldm.modules.attention.SpatialTransformer], - [2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], - [3, comfy.ldm.modules.attention.SpatialTransformer], - [4, comfy.ldm.modules.attention.SpatialTransformer], - [5, comfy.ldm.modules.attention.SpatialTransformer], - [5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], - [6, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], - [7, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], - [8, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]] - else: - input_blocks = [[0, comfy.ops.disable_weight_init.Conv2d], - [1, comfy.ldm.modules.attention.SpatialTransformer], - [2, comfy.ldm.modules.attention.SpatialTransformer], - [3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], - [4, comfy.ldm.modules.attention.SpatialTransformer], - [5, comfy.ldm.modules.attention.SpatialTransformer], - [6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], - [7, comfy.ldm.modules.attention.SpatialTransformer], - [8, comfy.ldm.modules.attention.SpatialTransformer], - [9, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], - [10, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], - [11, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]] - middle_block = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock] - output_blocks = [[0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], - [1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], - [2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], - [2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], - [3, comfy.ldm.modules.attention.SpatialTransformer], - [4, comfy.ldm.modules.attention.SpatialTransformer], - [5, comfy.ldm.modules.attention.SpatialTransformer], - [5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], - [6, comfy.ldm.modules.attention.SpatialTransformer], - [7, comfy.ldm.modules.attention.SpatialTransformer], - [8, comfy.ldm.modules.attention.SpatialTransformer], - [8, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], - [9, comfy.ldm.modules.attention.SpatialTransformer], - [10, comfy.ldm.modules.attention.SpatialTransformer], - [11, comfy.ldm.modules.attention.SpatialTransformer]] - - def last_layer_index(block, tp): - layer_list = [] - for layer in block: - layer_list.append(type(layer)) - layer_list.reverse() - if tp not in layer_list: - return -1, layer_list.reverse() - return len(layer_list) - 1 - layer_list.index(tp), layer_list - - def brushnet_forward(model, x, timesteps, transformer_options, control): - if 'brushnet' not in transformer_options['model_patch']: - input_samples = [] - mid_sample = 0 - output_samples = [] - else: - # brushnet inference - input_samples, mid_sample, output_samples = brushnet_inference(x, timesteps, transformer_options, debug) - - # give additional samples to blocks - for i, tp in input_blocks: - idx, layer_list = last_layer_index(model.input_blocks[i], tp) - if idx < 0: - print("BrushNet can't find", tp, "layer in", i,"input block:", layer_list) - continue - model.input_blocks[i][idx].add_sample_after = input_samples.pop(0) if input_samples else 0 - - idx, layer_list = last_layer_index(model.middle_block, middle_block[1]) - if idx < 0: - print("BrushNet can't find", middle_block[1], "layer in middle block", layer_list) - model.middle_block[idx].add_sample_after = mid_sample - - for i, tp in output_blocks: - idx, layer_list = last_layer_index(model.output_blocks[i], tp) - if idx < 0: - print("BrushNet can't find", tp, "layer in", i,"outnput block:", layer_list) - continue - model.output_blocks[i][idx].add_sample_after = output_samples.pop(0) if output_samples else 0 - - patch_model_function_wrapper(model, brushnet_forward) - - to = add_model_patch_option(model) - mp = to['model_patch'] - if 'brushnet' not in mp: - mp['brushnet'] = {} - bo = mp['brushnet'] - - bo['model'] = brushnet - bo['dtype'] = torch_dtype - bo['latents'] = conditioning_latents - bo['controls'] = controls - bo['prompt_embeds'] = prompt_embeds - bo['negative_prompt_embeds'] = negative_prompt_embeds - bo['add_embeds'] = (pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids) - bo['latent_id'] = 0 - - # patch layers `forward` so we can apply brushnet - def forward_patched_by_brushnet(self, x, *args, **kwargs): - h = self.original_forward(x, *args, **kwargs) - if hasattr(self, 'add_sample_after') and type(self): - to_add = self.add_sample_after - if torch.is_tensor(to_add): - # interpolate due to RAUNet - if h.shape[2] != to_add.shape[2] or h.shape[3] != to_add.shape[3]: - to_add = torch.nn.functional.interpolate(to_add, size=(h.shape[2], h.shape[3]), mode='bicubic') - h += to_add.to(h.dtype).to(h.device) - else: - h += self.add_sample_after - self.add_sample_after = 0 - return h - - for i, block in enumerate(model.model.diffusion_model.input_blocks): - for j, layer in enumerate(block): - if not hasattr(layer, 'original_forward'): - layer.original_forward = layer.forward - layer.forward = types.MethodType(forward_patched_by_brushnet, layer) - layer.add_sample_after = 0 - - for j, layer in enumerate(model.model.diffusion_model.middle_block): - if not hasattr(layer, 'original_forward'): - layer.original_forward = layer.forward - layer.forward = types.MethodType(forward_patched_by_brushnet, layer) - layer.add_sample_after = 0 - - for i, block in enumerate(model.model.diffusion_model.output_blocks): - for j, layer in enumerate(block): - if not hasattr(layer, 'original_forward'): - layer.original_forward = layer.forward - layer.forward = types.MethodType(forward_patched_by_brushnet, layer) - layer.add_sample_after = 0 diff --git a/MagicQuill/comfy/.DS_Store b/MagicQuill/comfy/.DS_Store deleted file mode 100644 index 6929da02147a717f7f4ec1fa0a6d2f0a967729d3..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/.DS_Store and /dev/null differ diff --git a/MagicQuill/comfy/checkpoint_pickle.py b/MagicQuill/comfy/checkpoint_pickle.py deleted file mode 100644 index 206551d3c1cf0d654c907534629a800196ba138b..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/checkpoint_pickle.py +++ /dev/null @@ -1,13 +0,0 @@ -import pickle - -load = pickle.load - -class Empty: - pass - -class Unpickler(pickle.Unpickler): - def find_class(self, module, name): - #TODO: safe unpickle - if module.startswith("pytorch_lightning"): - return Empty - return super().find_class(module, name) diff --git a/MagicQuill/comfy/cldm/__pycache__/cldm.cpython-310.pyc b/MagicQuill/comfy/cldm/__pycache__/cldm.cpython-310.pyc deleted file mode 100644 index 9607a6650170ea6563fd708ba990c622b63f0e78..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/cldm/__pycache__/cldm.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/cldm/cldm.py b/MagicQuill/comfy/cldm/cldm.py deleted file mode 100644 index 28076dd9251e12f050a280337eaf3b7504710ce0..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/cldm/cldm.py +++ /dev/null @@ -1,313 +0,0 @@ -#taken from: https://github.com/lllyasviel/ControlNet -#and modified - -import torch -import torch as th -import torch.nn as nn - -from ..ldm.modules.diffusionmodules.util import ( - zero_module, - timestep_embedding, -) - -from ..ldm.modules.attention import SpatialTransformer -from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample -from ..ldm.util import exists -import comfy.ops - -class ControlledUnetModel(UNetModel): - #implemented in the ldm unet - pass - -class ControlNet(nn.Module): - def __init__( - self, - image_size, - in_channels, - model_channels, - hint_channels, - num_res_blocks, - dropout=0, - channel_mult=(1, 2, 4, 8), - conv_resample=True, - dims=2, - num_classes=None, - use_checkpoint=False, - dtype=torch.float32, - num_heads=-1, - num_head_channels=-1, - num_heads_upsample=-1, - use_scale_shift_norm=False, - resblock_updown=False, - use_new_attention_order=False, - use_spatial_transformer=False, # custom transformer support - transformer_depth=1, # custom transformer support - context_dim=None, # custom transformer support - n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model - legacy=True, - disable_self_attentions=None, - num_attention_blocks=None, - disable_middle_self_attn=False, - use_linear_in_transformer=False, - adm_in_channels=None, - transformer_depth_middle=None, - transformer_depth_output=None, - attn_precision=None, - device=None, - operations=comfy.ops.disable_weight_init, - **kwargs, - ): - super().__init__() - assert use_spatial_transformer == True, "use_spatial_transformer has to be true" - if use_spatial_transformer: - assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' - - if context_dim is not None: - assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' - # from omegaconf.listconfig import ListConfig - # if type(context_dim) == ListConfig: - # context_dim = list(context_dim) - - if num_heads_upsample == -1: - num_heads_upsample = num_heads - - if num_heads == -1: - assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' - - if num_head_channels == -1: - assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' - - self.dims = dims - self.image_size = image_size - self.in_channels = in_channels - self.model_channels = model_channels - - if isinstance(num_res_blocks, int): - self.num_res_blocks = len(channel_mult) * [num_res_blocks] - else: - if len(num_res_blocks) != len(channel_mult): - raise ValueError("provide num_res_blocks either as an int (globally constant) or " - "as a list/tuple (per-level) with the same length as channel_mult") - self.num_res_blocks = num_res_blocks - - if disable_self_attentions is not None: - # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not - assert len(disable_self_attentions) == len(channel_mult) - if num_attention_blocks is not None: - assert len(num_attention_blocks) == len(self.num_res_blocks) - assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) - - transformer_depth = transformer_depth[:] - - self.dropout = dropout - self.channel_mult = channel_mult - self.conv_resample = conv_resample - self.num_classes = num_classes - self.use_checkpoint = use_checkpoint - self.dtype = dtype - self.num_heads = num_heads - self.num_head_channels = num_head_channels - self.num_heads_upsample = num_heads_upsample - self.predict_codebook_ids = n_embed is not None - - time_embed_dim = model_channels * 4 - self.time_embed = nn.Sequential( - operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), - nn.SiLU(), - operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), - ) - - if self.num_classes is not None: - if isinstance(self.num_classes, int): - self.label_emb = nn.Embedding(num_classes, time_embed_dim) - elif self.num_classes == "continuous": - print("setting up linear c_adm embedding layer") - self.label_emb = nn.Linear(1, time_embed_dim) - elif self.num_classes == "sequential": - assert adm_in_channels is not None - self.label_emb = nn.Sequential( - nn.Sequential( - operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device), - nn.SiLU(), - operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), - ) - ) - else: - raise ValueError() - - self.input_blocks = nn.ModuleList( - [ - TimestepEmbedSequential( - operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device) - ) - ] - ) - self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)]) - - self.input_hint_block = TimestepEmbedSequential( - operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device), - nn.SiLU(), - operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device), - nn.SiLU(), - operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device), - nn.SiLU(), - operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device), - nn.SiLU(), - operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device), - nn.SiLU(), - operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device), - nn.SiLU(), - operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device), - nn.SiLU(), - operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device) - ) - - self._feature_size = model_channels - input_block_chans = [model_channels] - ch = model_channels - ds = 1 - for level, mult in enumerate(channel_mult): - for nr in range(self.num_res_blocks[level]): - layers = [ - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=mult * model_channels, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - dtype=self.dtype, - device=device, - operations=operations, - ) - ] - ch = mult * model_channels - num_transformers = transformer_depth.pop(0) - if num_transformers > 0: - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - if exists(disable_self_attentions): - disabled_sa = disable_self_attentions[level] - else: - disabled_sa = False - - if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: - layers.append( - SpatialTransformer( - ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, - disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, - use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations - ) - ) - self.input_blocks.append(TimestepEmbedSequential(*layers)) - self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)) - self._feature_size += ch - input_block_chans.append(ch) - if level != len(channel_mult) - 1: - out_ch = ch - self.input_blocks.append( - TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - down=True, - dtype=self.dtype, - device=device, - operations=operations - ) - if resblock_updown - else Downsample( - ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations - ) - ) - ) - ch = out_ch - input_block_chans.append(ch) - self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)) - ds *= 2 - self._feature_size += ch - - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - mid_block = [ - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - dtype=self.dtype, - device=device, - operations=operations - )] - if transformer_depth_middle >= 0: - mid_block += [SpatialTransformer( # always uses a self-attn - ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, - disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, - use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations - ), - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - dtype=self.dtype, - device=device, - operations=operations - )] - self.middle_block = TimestepEmbedSequential(*mid_block) - self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device) - self._feature_size += ch - - def make_zero_conv(self, channels, operations=None, dtype=None, device=None): - return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device)) - - def forward(self, x, hint, timesteps, context, y=None, **kwargs): - t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) - emb = self.time_embed(t_emb) - - guided_hint = self.input_hint_block(hint, emb, context) - - outs = [] - - hs = [] - if self.num_classes is not None: - assert y.shape[0] == x.shape[0] - emb = emb + self.label_emb(y) - - h = x - for module, zero_conv in zip(self.input_blocks, self.zero_convs): - if guided_hint is not None: - h = module(h, emb, context) - h += guided_hint - guided_hint = None - else: - h = module(h, emb, context) - outs.append(zero_conv(h, emb, context)) - - h = self.middle_block(h, emb, context) - outs.append(self.middle_block_out(h, emb, context)) - - return outs - diff --git a/MagicQuill/comfy/cli_args.py b/MagicQuill/comfy/cli_args.py deleted file mode 100644 index fb0d37ce75081e3f4f38350cd6131c290a3fdd48..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/cli_args.py +++ /dev/null @@ -1,143 +0,0 @@ -import argparse -import enum -import comfy.options - -class EnumAction(argparse.Action): - """ - Argparse action for handling Enums - """ - def __init__(self, **kwargs): - # Pop off the type value - enum_type = kwargs.pop("type", None) - - # Ensure an Enum subclass is provided - if enum_type is None: - raise ValueError("type must be assigned an Enum when using EnumAction") - if not issubclass(enum_type, enum.Enum): - raise TypeError("type must be an Enum when using EnumAction") - - # Generate choices from the Enum - choices = tuple(e.value for e in enum_type) - kwargs.setdefault("choices", choices) - kwargs.setdefault("metavar", f"[{','.join(list(choices))}]") - - super(EnumAction, self).__init__(**kwargs) - - self._enum = enum_type - - def __call__(self, parser, namespace, values, option_string=None): - # Convert value back into an Enum - value = self._enum(values) - setattr(namespace, self.dest, value) - - -parser = argparse.ArgumentParser() - -parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)") -parser.add_argument("--port", type=int, default=8188, help="Set the listen port.") -parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function") -parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function") -parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.") -parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.") - -parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.") -parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.") -parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).") -parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory.") -parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.") -parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.") -parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.") -cm_group = parser.add_mutually_exclusive_group() -cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).") -cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.") - - -fp_group = parser.add_mutually_exclusive_group() -fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).") -fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.") - -fpunet_group = parser.add_mutually_exclusive_group() -fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the UNET in bf16. This should only be used for testing stuff.") -fpunet_group.add_argument("--fp16-unet", action="store_true", help="Store unet weights in fp16.") -fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.") -fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.") - -fpvae_group = parser.add_mutually_exclusive_group() -fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.") -fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.") -fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.") - -parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.") - -fpte_group = parser.add_mutually_exclusive_group() -fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).") -fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).") -fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.") -fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.") - -parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.") - -parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.") - -parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.") - -class LatentPreviewMethod(enum.Enum): - NoPreviews = "none" - Auto = "auto" - Latent2RGB = "latent2rgb" - TAESD = "taesd" - -parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction) - -attn_group = parser.add_mutually_exclusive_group() -attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.") -attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.") -attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.") - -parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.") - -upcast = parser.add_mutually_exclusive_group() -upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.") -upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.") - - -vram_group = parser.add_mutually_exclusive_group() -vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).") -vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.") -vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.") -vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.") -vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.") -vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).") - - -parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.") -parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.") - -parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.") -parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.") -parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).") - -parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.") - -parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.") - -parser.add_argument("--verbose", action="store_true", help="Enables more debug prints.") - - -if comfy.options.args_parsing: - args = parser.parse_args() -else: - args = parser.parse_args([]) - -if args.windows_standalone_build: - args.auto_launch = True - -if args.disable_auto_launch: - args.auto_launch = False - -import logging -logging_level = logging.INFO -if args.verbose: - logging_level = logging.DEBUG - -logging.basicConfig(format="%(message)s", level=logging_level) diff --git a/MagicQuill/comfy/clip_config_bigg.json b/MagicQuill/comfy/clip_config_bigg.json deleted file mode 100644 index 32d82ff39ba66ba0be15ec101993e1c46cc3f7ab..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/clip_config_bigg.json +++ /dev/null @@ -1,23 +0,0 @@ -{ - "architectures": [ - "CLIPTextModel" - ], - "attention_dropout": 0.0, - "bos_token_id": 0, - "dropout": 0.0, - "eos_token_id": 2, - "hidden_act": "gelu", - "hidden_size": 1280, - "initializer_factor": 1.0, - "initializer_range": 0.02, - "intermediate_size": 5120, - "layer_norm_eps": 1e-05, - "max_position_embeddings": 77, - "model_type": "clip_text_model", - "num_attention_heads": 20, - "num_hidden_layers": 32, - "pad_token_id": 1, - "projection_dim": 1280, - "torch_dtype": "float32", - "vocab_size": 49408 -} diff --git a/MagicQuill/comfy/clip_model.py b/MagicQuill/comfy/clip_model.py deleted file mode 100644 index 14f43c5687cb19c62fbaea3481a66f11f3b186c6..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/clip_model.py +++ /dev/null @@ -1,194 +0,0 @@ -import torch -from comfy.ldm.modules.attention import optimized_attention_for_device - -class CLIPAttention(torch.nn.Module): - def __init__(self, embed_dim, heads, dtype, device, operations): - super().__init__() - - self.heads = heads - self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) - self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) - self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) - - self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) - - def forward(self, x, mask=None, optimized_attention=None): - q = self.q_proj(x) - k = self.k_proj(x) - v = self.v_proj(x) - - out = optimized_attention(q, k, v, self.heads, mask) - return self.out_proj(out) - -ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a), - "gelu": torch.nn.functional.gelu, -} - -class CLIPMLP(torch.nn.Module): - def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations): - super().__init__() - self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device) - self.activation = ACTIVATIONS[activation] - self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device) - - def forward(self, x): - x = self.fc1(x) - x = self.activation(x) - x = self.fc2(x) - return x - -class CLIPLayer(torch.nn.Module): - def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations): - super().__init__() - self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device) - self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations) - self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device) - self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations) - - def forward(self, x, mask=None, optimized_attention=None): - x += self.self_attn(self.layer_norm1(x), mask, optimized_attention) - x += self.mlp(self.layer_norm2(x)) - return x - - -class CLIPEncoder(torch.nn.Module): - def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations): - super().__init__() - self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)]) - - def forward(self, x, mask=None, intermediate_output=None): - optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True) - - if intermediate_output is not None: - if intermediate_output < 0: - intermediate_output = len(self.layers) + intermediate_output - - intermediate = None - for i, l in enumerate(self.layers): - x = l(x, mask, optimized_attention) - if i == intermediate_output: - intermediate = x.clone() - return x, intermediate - -class CLIPEmbeddings(torch.nn.Module): - def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None): - super().__init__() - self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device) - self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device) - - def forward(self, input_tokens): - return self.token_embedding(input_tokens) + self.position_embedding.weight - - -class CLIPTextModel_(torch.nn.Module): - def __init__(self, config_dict, dtype, device, operations): - num_layers = config_dict["num_hidden_layers"] - embed_dim = config_dict["hidden_size"] - heads = config_dict["num_attention_heads"] - intermediate_size = config_dict["intermediate_size"] - intermediate_activation = config_dict["hidden_act"] - - super().__init__() - self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device) - self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) - self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device) - - def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): - x = self.embeddings(input_tokens) - mask = None - if attention_mask is not None: - mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) - mask = mask.masked_fill(mask.to(torch.bool), float("-inf")) - - causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1) - if mask is not None: - mask += causal_mask - else: - mask = causal_mask - - x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output) - x = self.final_layer_norm(x) - if i is not None and final_layer_norm_intermediate: - i = self.final_layer_norm(i) - - pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),] - return x, i, pooled_output - -class CLIPTextModel(torch.nn.Module): - def __init__(self, config_dict, dtype, device, operations): - super().__init__() - self.num_layers = config_dict["num_hidden_layers"] - self.text_model = CLIPTextModel_(config_dict, dtype, device, operations) - embed_dim = config_dict["hidden_size"] - self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device) - self.text_projection.weight.copy_(torch.eye(embed_dim)) - self.dtype = dtype - - def get_input_embeddings(self): - return self.text_model.embeddings.token_embedding - - def set_input_embeddings(self, embeddings): - self.text_model.embeddings.token_embedding = embeddings - - def forward(self, *args, **kwargs): - x = self.text_model(*args, **kwargs) - out = self.text_projection(x[2]) - return (x[0], x[1], out, x[2]) - - -class CLIPVisionEmbeddings(torch.nn.Module): - def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, dtype=None, device=None, operations=None): - super().__init__() - self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device)) - - self.patch_embedding = operations.Conv2d( - in_channels=num_channels, - out_channels=embed_dim, - kernel_size=patch_size, - stride=patch_size, - bias=False, - dtype=dtype, - device=device - ) - - num_patches = (image_size // patch_size) ** 2 - num_positions = num_patches + 1 - self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device) - - def forward(self, pixel_values): - embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2) - return torch.cat([self.class_embedding.to(embeds.device).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight.to(embeds.device) - - -class CLIPVision(torch.nn.Module): - def __init__(self, config_dict, dtype, device, operations): - super().__init__() - num_layers = config_dict["num_hidden_layers"] - embed_dim = config_dict["hidden_size"] - heads = config_dict["num_attention_heads"] - intermediate_size = config_dict["intermediate_size"] - intermediate_activation = config_dict["hidden_act"] - - self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=torch.float32, device=device, operations=operations) - self.pre_layrnorm = operations.LayerNorm(embed_dim) - self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) - self.post_layernorm = operations.LayerNorm(embed_dim) - - def forward(self, pixel_values, attention_mask=None, intermediate_output=None): - x = self.embeddings(pixel_values) - x = self.pre_layrnorm(x) - #TODO: attention_mask? - x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output) - pooled_output = self.post_layernorm(x[:, 0, :]) - return x, i, pooled_output - -class CLIPVisionModelProjection(torch.nn.Module): - def __init__(self, config_dict, dtype, device, operations): - super().__init__() - self.vision_model = CLIPVision(config_dict, dtype, device, operations) - self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False) - - def forward(self, *args, **kwargs): - x = self.vision_model(*args, **kwargs) - out = self.visual_projection(x[2]) - return (x[0], x[1], out) diff --git a/MagicQuill/comfy/clip_vision.py b/MagicQuill/comfy/clip_vision.py deleted file mode 100644 index acc86be855667e2945d39d991783f4fcb707339d..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/clip_vision.py +++ /dev/null @@ -1,117 +0,0 @@ -from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace -import os -import torch -import json -import logging - -import comfy.ops -import comfy.model_patcher -import comfy.model_management -import comfy.utils -import comfy.clip_model - -class Output: - def __getitem__(self, key): - return getattr(self, key) - def __setitem__(self, key, item): - setattr(self, key, item) - -def clip_preprocess(image, size=224): - mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype) - std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype) - image = image.movedim(-1, 1) - if not (image.shape[2] == size and image.shape[3] == size): - scale = (size / min(image.shape[2], image.shape[3])) - image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True) - h = (image.shape[2] - size)//2 - w = (image.shape[3] - size)//2 - image = image[:,:,h:h+size,w:w+size] - image = torch.clip((255. * image), 0, 255).round() / 255.0 - return (image - mean.view([3,1,1])) / std.view([3,1,1]) - -class ClipVisionModel(): - def __init__(self, json_config): - with open(json_config) as f: - config = json.load(f) - - self.load_device = comfy.model_management.text_encoder_device() - offload_device = comfy.model_management.text_encoder_offload_device() - self.dtype = comfy.model_management.text_encoder_dtype(self.load_device) - self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast) - self.model.eval() - - self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) - - def load_sd(self, sd): - return self.model.load_state_dict(sd, strict=False) - - def get_sd(self): - return self.model.state_dict() - - def encode_image(self, image): - comfy.model_management.load_model_gpu(self.patcher) - pixel_values = clip_preprocess(image.to(self.load_device)).float() - out = self.model(pixel_values=pixel_values, intermediate_output=-2) - - outputs = Output() - outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device()) - outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device()) - outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device()) - return outputs - -def convert_to_transformers(sd, prefix): - sd_k = sd.keys() - if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k: - keys_to_replace = { - "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding", - "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight", - "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight", - "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias", - "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight", - "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias", - "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight", - } - - for x in keys_to_replace: - if x in sd_k: - sd[keys_to_replace[x]] = sd.pop(x) - - if "{}proj".format(prefix) in sd_k: - sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1) - - sd = transformers_convert(sd, prefix, "vision_model.", 48) - else: - replace_prefix = {prefix: ""} - sd = state_dict_prefix_replace(sd, replace_prefix) - return sd - -def load_clipvision_from_sd(sd, prefix="", convert_keys=False): - if convert_keys: - sd = convert_to_transformers(sd, prefix) - if "vision_model.encoder.layers.47.layer_norm1.weight" in sd: - json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json") - elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd: - json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json") - elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd: - json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json") - else: - return None - - clip = ClipVisionModel(json_config) - m, u = clip.load_sd(sd) - if len(m) > 0: - logging.warning("missing clip vision: {}".format(m)) - u = set(u) - keys = list(sd.keys()) - for k in keys: - if k not in u: - t = sd.pop(k) - del t - return clip - -def load(ckpt_path): - sd = load_torch_file(ckpt_path) - if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd: - return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True) - else: - return load_clipvision_from_sd(sd) diff --git a/MagicQuill/comfy/clip_vision_config_g.json b/MagicQuill/comfy/clip_vision_config_g.json deleted file mode 100644 index 708e7e21ac3513a719d6a49e88e756f5ef7e2c8d..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/clip_vision_config_g.json +++ /dev/null @@ -1,18 +0,0 @@ -{ - "attention_dropout": 0.0, - "dropout": 0.0, - "hidden_act": "gelu", - "hidden_size": 1664, - "image_size": 224, - "initializer_factor": 1.0, - "initializer_range": 0.02, - "intermediate_size": 8192, - "layer_norm_eps": 1e-05, - "model_type": "clip_vision_model", - "num_attention_heads": 16, - "num_channels": 3, - "num_hidden_layers": 48, - "patch_size": 14, - "projection_dim": 1280, - "torch_dtype": "float32" -} diff --git a/MagicQuill/comfy/clip_vision_config_h.json b/MagicQuill/comfy/clip_vision_config_h.json deleted file mode 100644 index bb71be419a4be0ad5c8c157850de032a65593cb9..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/clip_vision_config_h.json +++ /dev/null @@ -1,18 +0,0 @@ -{ - "attention_dropout": 0.0, - "dropout": 0.0, - "hidden_act": "gelu", - "hidden_size": 1280, - "image_size": 224, - "initializer_factor": 1.0, - "initializer_range": 0.02, - "intermediate_size": 5120, - "layer_norm_eps": 1e-05, - "model_type": "clip_vision_model", - "num_attention_heads": 16, - "num_channels": 3, - "num_hidden_layers": 32, - "patch_size": 14, - "projection_dim": 1024, - "torch_dtype": "float32" -} diff --git a/MagicQuill/comfy/clip_vision_config_vitl.json b/MagicQuill/comfy/clip_vision_config_vitl.json deleted file mode 100644 index c59b8ed5a4c1f41fbcc9e6811d2c7dfe44273de7..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/clip_vision_config_vitl.json +++ /dev/null @@ -1,18 +0,0 @@ -{ - "attention_dropout": 0.0, - "dropout": 0.0, - "hidden_act": "quick_gelu", - "hidden_size": 1024, - "image_size": 224, - "initializer_factor": 1.0, - "initializer_range": 0.02, - "intermediate_size": 4096, - "layer_norm_eps": 1e-05, - "model_type": "clip_vision_model", - "num_attention_heads": 16, - "num_channels": 3, - "num_hidden_layers": 24, - "patch_size": 14, - "projection_dim": 768, - "torch_dtype": "float32" -} diff --git a/MagicQuill/comfy/conds.py b/MagicQuill/comfy/conds.py deleted file mode 100644 index 660690af8425209e6cc8d8b3e17185065e269a47..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/conds.py +++ /dev/null @@ -1,83 +0,0 @@ -import torch -import math -import comfy.utils - - -def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9) - return abs(a*b) // math.gcd(a, b) - -class CONDRegular: - def __init__(self, cond): - self.cond = cond - - def _copy_with(self, cond): - return self.__class__(cond) - - def process_cond(self, batch_size, device, **kwargs): - return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device)) - - def can_concat(self, other): - if self.cond.shape != other.cond.shape: - return False - return True - - def concat(self, others): - conds = [self.cond] - for x in others: - conds.append(x.cond) - return torch.cat(conds) - -class CONDNoiseShape(CONDRegular): - def process_cond(self, batch_size, device, area, **kwargs): - data = self.cond - if area is not None: - dims = len(area) // 2 - for i in range(dims): - data = data.narrow(i + 2, area[i + dims], area[i]) - - return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device)) - - -class CONDCrossAttn(CONDRegular): - def can_concat(self, other): - s1 = self.cond.shape - s2 = other.cond.shape - if s1 != s2: - if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen - return False - - mult_min = lcm(s1[1], s2[1]) - diff = mult_min // min(s1[1], s2[1]) - if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much - return False - return True - - def concat(self, others): - conds = [self.cond] - crossattn_max_len = self.cond.shape[1] - for x in others: - c = x.cond - crossattn_max_len = lcm(crossattn_max_len, c.shape[1]) - conds.append(c) - - out = [] - for c in conds: - if c.shape[1] < crossattn_max_len: - c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result - out.append(c) - return torch.cat(out) - -class CONDConstant(CONDRegular): - def __init__(self, cond): - self.cond = cond - - def process_cond(self, batch_size, device, **kwargs): - return self._copy_with(self.cond) - - def can_concat(self, other): - if self.cond != other.cond: - return False - return True - - def concat(self, others): - return self.cond diff --git a/MagicQuill/comfy/controlnet.py b/MagicQuill/comfy/controlnet.py deleted file mode 100644 index 8cf4a61a683392e51665a1d41906b3ab22885506..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/controlnet.py +++ /dev/null @@ -1,554 +0,0 @@ -import torch -import math -import os -import logging -import comfy.utils -import comfy.model_management -import comfy.model_detection -import comfy.model_patcher -import comfy.ops - -import comfy.cldm.cldm -import comfy.t2i_adapter.adapter -import comfy.ldm.cascade.controlnet - - -def broadcast_image_to(tensor, target_batch_size, batched_number): - current_batch_size = tensor.shape[0] - #print(current_batch_size, target_batch_size) - if current_batch_size == 1: - return tensor - - per_batch = target_batch_size // batched_number - tensor = tensor[:per_batch] - - if per_batch > tensor.shape[0]: - tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0) - - current_batch_size = tensor.shape[0] - if current_batch_size == target_batch_size: - return tensor - else: - return torch.cat([tensor] * batched_number, dim=0) - -class ControlBase: - def __init__(self, device=None): - self.cond_hint_original = None - self.cond_hint = None - self.strength = 1.0 - self.timestep_percent_range = (0.0, 1.0) - self.global_average_pooling = False - self.timestep_range = None - self.compression_ratio = 8 - self.upscale_algorithm = 'nearest-exact' - - if device is None: - device = comfy.model_management.get_torch_device() - self.device = device - self.previous_controlnet = None - - def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)): - self.cond_hint_original = cond_hint - self.strength = strength - self.timestep_percent_range = timestep_percent_range - return self - - def pre_run(self, model, percent_to_timestep_function): - self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1])) - if self.previous_controlnet is not None: - self.previous_controlnet.pre_run(model, percent_to_timestep_function) - - def set_previous_controlnet(self, controlnet): - self.previous_controlnet = controlnet - return self - - def cleanup(self): - if self.previous_controlnet is not None: - self.previous_controlnet.cleanup() - if self.cond_hint is not None: - del self.cond_hint - self.cond_hint = None - self.timestep_range = None - - def get_models(self): - out = [] - if self.previous_controlnet is not None: - out += self.previous_controlnet.get_models() - return out - - def copy_to(self, c): - c.cond_hint_original = self.cond_hint_original - c.strength = self.strength - c.timestep_percent_range = self.timestep_percent_range - c.global_average_pooling = self.global_average_pooling - c.compression_ratio = self.compression_ratio - c.upscale_algorithm = self.upscale_algorithm - - def inference_memory_requirements(self, dtype): - if self.previous_controlnet is not None: - return self.previous_controlnet.inference_memory_requirements(dtype) - return 0 - - def control_merge(self, control_input, control_output, control_prev, output_dtype): - out = {'input':[], 'middle':[], 'output': []} - - if control_input is not None: - for i in range(len(control_input)): - key = 'input' - x = control_input[i] - if x is not None: - x *= self.strength - if x.dtype != output_dtype: - x = x.to(output_dtype) - out[key].insert(0, x) - - if control_output is not None: - for i in range(len(control_output)): - if i == (len(control_output) - 1): - key = 'middle' - index = 0 - else: - key = 'output' - index = i - x = control_output[i] - if x is not None: - if self.global_average_pooling: - x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3]) - - x *= self.strength - if x.dtype != output_dtype: - x = x.to(output_dtype) - - out[key].append(x) - if control_prev is not None: - for x in ['input', 'middle', 'output']: - o = out[x] - for i in range(len(control_prev[x])): - prev_val = control_prev[x][i] - if i >= len(o): - o.append(prev_val) - elif prev_val is not None: - if o[i] is None: - o[i] = prev_val - else: - if o[i].shape[0] < prev_val.shape[0]: - o[i] = prev_val + o[i] - else: - o[i] += prev_val - return out - -class ControlNet(ControlBase): - def __init__(self, control_model=None, global_average_pooling=False, device=None, load_device=None, manual_cast_dtype=None): - super().__init__(device) - self.control_model = control_model - self.load_device = load_device - if control_model is not None: - self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device()) - - self.global_average_pooling = global_average_pooling - self.model_sampling_current = None - self.manual_cast_dtype = manual_cast_dtype - - def get_control(self, x_noisy, t, cond, batched_number): - control_prev = None - if self.previous_controlnet is not None: - control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) - - if self.timestep_range is not None: - if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: - if control_prev is not None: - return control_prev - else: - return None - - dtype = self.control_model.dtype - if self.manual_cast_dtype is not None: - dtype = self.manual_cast_dtype - - output_dtype = x_noisy.dtype - if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]: - if self.cond_hint is not None: - del self.cond_hint - self.cond_hint = None - self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio, self.upscale_algorithm, "center").to(dtype).to(self.device) - if x_noisy.shape[0] != self.cond_hint.shape[0]: - self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number) - - context = cond.get('crossattn_controlnet', cond['c_crossattn']) - y = cond.get('y', None) - if y is not None: - y = y.to(dtype) - timestep = self.model_sampling_current.timestep(t) - x_noisy = self.model_sampling_current.calculate_input(t, x_noisy) - - control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y) - return self.control_merge(None, control, control_prev, output_dtype) - - def copy(self): - c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype) - c.control_model = self.control_model - c.control_model_wrapped = self.control_model_wrapped - self.copy_to(c) - return c - - def get_models(self): - out = super().get_models() - out.append(self.control_model_wrapped) - return out - - def pre_run(self, model, percent_to_timestep_function): - super().pre_run(model, percent_to_timestep_function) - self.model_sampling_current = model.model_sampling - - def cleanup(self): - self.model_sampling_current = None - super().cleanup() - -class ControlLoraOps: - class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp): - def __init__(self, in_features: int, out_features: int, bias: bool = True, - device=None, dtype=None) -> None: - factory_kwargs = {'device': device, 'dtype': dtype} - super().__init__() - self.in_features = in_features - self.out_features = out_features - self.weight = None - self.up = None - self.down = None - self.bias = None - - def forward(self, input): - weight, bias = comfy.ops.cast_bias_weight(self, input) - if self.up is not None: - return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias) - else: - return torch.nn.functional.linear(input, weight, bias) - - class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp): - def __init__( - self, - in_channels, - out_channels, - kernel_size, - stride=1, - padding=0, - dilation=1, - groups=1, - bias=True, - padding_mode='zeros', - device=None, - dtype=None - ): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.kernel_size = kernel_size - self.stride = stride - self.padding = padding - self.dilation = dilation - self.transposed = False - self.output_padding = 0 - self.groups = groups - self.padding_mode = padding_mode - - self.weight = None - self.bias = None - self.up = None - self.down = None - - - def forward(self, input): - weight, bias = comfy.ops.cast_bias_weight(self, input) - if self.up is not None: - return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups) - else: - return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups) - - -class ControlLora(ControlNet): - def __init__(self, control_weights, global_average_pooling=False, device=None): - ControlBase.__init__(self, device) - self.control_weights = control_weights - self.global_average_pooling = global_average_pooling - - def pre_run(self, model, percent_to_timestep_function): - super().pre_run(model, percent_to_timestep_function) - controlnet_config = model.model_config.unet_config.copy() - controlnet_config.pop("out_channels") - controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1] - self.manual_cast_dtype = model.manual_cast_dtype - dtype = model.get_dtype() - if self.manual_cast_dtype is None: - class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init): - pass - else: - class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast): - pass - dtype = self.manual_cast_dtype - - controlnet_config["operations"] = control_lora_ops - controlnet_config["dtype"] = dtype - self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config) - self.control_model.to(comfy.model_management.get_torch_device()) - diffusion_model = model.diffusion_model - sd = diffusion_model.state_dict() - cm = self.control_model.state_dict() - - for k in sd: - weight = sd[k] - try: - comfy.utils.set_attr_param(self.control_model, k, weight) - except: - pass - - for k in self.control_weights: - if k not in {"lora_controlnet"}: - comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device())) - - def copy(self): - c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling) - self.copy_to(c) - return c - - def cleanup(self): - del self.control_model - self.control_model = None - super().cleanup() - - def get_models(self): - out = ControlBase.get_models(self) - return out - - def inference_memory_requirements(self, dtype): - return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype) - -def load_controlnet(ckpt_path, model=None): - controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) - if "lora_controlnet" in controlnet_data: - return ControlLora(controlnet_data) - - controlnet_config = None - supported_inference_dtypes = None - - if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format - controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data) - diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config) - diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight" - diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias" - - count = 0 - loop = True - while loop: - suffix = [".weight", ".bias"] - for s in suffix: - k_in = "controlnet_down_blocks.{}{}".format(count, s) - k_out = "zero_convs.{}.0{}".format(count, s) - if k_in not in controlnet_data: - loop = False - break - diffusers_keys[k_in] = k_out - count += 1 - - count = 0 - loop = True - while loop: - suffix = [".weight", ".bias"] - for s in suffix: - if count == 0: - k_in = "controlnet_cond_embedding.conv_in{}".format(s) - else: - k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s) - k_out = "input_hint_block.{}{}".format(count * 2, s) - if k_in not in controlnet_data: - k_in = "controlnet_cond_embedding.conv_out{}".format(s) - loop = False - diffusers_keys[k_in] = k_out - count += 1 - - new_sd = {} - for k in diffusers_keys: - if k in controlnet_data: - new_sd[diffusers_keys[k]] = controlnet_data.pop(k) - - leftover_keys = controlnet_data.keys() - if len(leftover_keys) > 0: - logging.warning("leftover keys: {}".format(leftover_keys)) - controlnet_data = new_sd - - pth_key = 'control_model.zero_convs.0.0.weight' - pth = False - key = 'zero_convs.0.0.weight' - if pth_key in controlnet_data: - pth = True - key = pth_key - prefix = "control_model." - elif key in controlnet_data: - prefix = "" - else: - net = load_t2i_adapter(controlnet_data) - if net is None: - logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path)) - return net - - if controlnet_config is None: - model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True) - supported_inference_dtypes = model_config.supported_inference_dtypes - controlnet_config = model_config.unet_config - - load_device = comfy.model_management.get_torch_device() - if supported_inference_dtypes is None: - unet_dtype = comfy.model_management.unet_dtype() - else: - unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes) - - manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device) - if manual_cast_dtype is not None: - controlnet_config["operations"] = comfy.ops.manual_cast - controlnet_config["dtype"] = unet_dtype - controlnet_config.pop("out_channels") - controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1] - control_model = comfy.cldm.cldm.ControlNet(**controlnet_config) - - if pth: - if 'difference' in controlnet_data: - if model is not None: - comfy.model_management.load_models_gpu([model]) - model_sd = model.model_state_dict() - for x in controlnet_data: - c_m = "control_model." - if x.startswith(c_m): - sd_key = "diffusion_model.{}".format(x[len(c_m):]) - if sd_key in model_sd: - cd = controlnet_data[x] - cd += model_sd[sd_key].type(cd.dtype).to(cd.device) - else: - logging.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.") - - class WeightsLoader(torch.nn.Module): - pass - w = WeightsLoader() - w.control_model = control_model - missing, unexpected = w.load_state_dict(controlnet_data, strict=False) - else: - missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False) - - if len(missing) > 0: - logging.warning("missing controlnet keys: {}".format(missing)) - - if len(unexpected) > 0: - logging.debug("unexpected controlnet keys: {}".format(unexpected)) - - global_average_pooling = False - filename = os.path.splitext(ckpt_path)[0] - if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling - global_average_pooling = True - - control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype) - return control - -class T2IAdapter(ControlBase): - def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None): - super().__init__(device) - self.t2i_model = t2i_model - self.channels_in = channels_in - self.control_input = None - self.compression_ratio = compression_ratio - self.upscale_algorithm = upscale_algorithm - - def scale_image_to(self, width, height): - unshuffle_amount = self.t2i_model.unshuffle_amount - width = math.ceil(width / unshuffle_amount) * unshuffle_amount - height = math.ceil(height / unshuffle_amount) * unshuffle_amount - return width, height - - def get_control(self, x_noisy, t, cond, batched_number): - control_prev = None - if self.previous_controlnet is not None: - control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) - - if self.timestep_range is not None: - if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: - if control_prev is not None: - return control_prev - else: - return None - - if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]: - if self.cond_hint is not None: - del self.cond_hint - self.control_input = None - self.cond_hint = None - width, height = self.scale_image_to(x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio) - self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, self.upscale_algorithm, "center").float().to(self.device) - if self.channels_in == 1 and self.cond_hint.shape[1] > 1: - self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True) - if x_noisy.shape[0] != self.cond_hint.shape[0]: - self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number) - if self.control_input is None: - self.t2i_model.to(x_noisy.dtype) - self.t2i_model.to(self.device) - self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype)) - self.t2i_model.cpu() - - control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input)) - mid = None - if self.t2i_model.xl == True: - mid = control_input[-1:] - control_input = control_input[:-1] - return self.control_merge(control_input, mid, control_prev, x_noisy.dtype) - - def copy(self): - c = T2IAdapter(self.t2i_model, self.channels_in, self.compression_ratio, self.upscale_algorithm) - self.copy_to(c) - return c - -def load_t2i_adapter(t2i_data): - compression_ratio = 8 - upscale_algorithm = 'nearest-exact' - - if 'adapter' in t2i_data: - t2i_data = t2i_data['adapter'] - if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format - prefix_replace = {} - for i in range(4): - for j in range(2): - prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j) - prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2) - prefix_replace["adapter."] = "" - t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace) - keys = t2i_data.keys() - - if "body.0.in_conv.weight" in keys: - cin = t2i_data['body.0.in_conv.weight'].shape[1] - model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4) - elif 'conv_in.weight' in keys: - cin = t2i_data['conv_in.weight'].shape[1] - channel = t2i_data['conv_in.weight'].shape[0] - ksize = t2i_data['body.0.block2.weight'].shape[2] - use_conv = False - down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys)) - if len(down_opts) > 0: - use_conv = True - xl = False - if cin == 256 or cin == 768: - xl = True - model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl) - elif "backbone.0.0.weight" in keys: - model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.0.weight'].shape[1], proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63]) - compression_ratio = 32 - upscale_algorithm = 'bilinear' - elif "backbone.10.blocks.0.weight" in keys: - model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.weight'].shape[1], bottleneck_mode="large", proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63]) - compression_ratio = 1 - upscale_algorithm = 'nearest-exact' - else: - return None - - missing, unexpected = model_ad.load_state_dict(t2i_data) - if len(missing) > 0: - logging.warning("t2i missing {}".format(missing)) - - if len(unexpected) > 0: - logging.debug("t2i unexpected {}".format(unexpected)) - - return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm) diff --git a/MagicQuill/comfy/diffusers_convert.py b/MagicQuill/comfy/diffusers_convert.py deleted file mode 100644 index ed2a45fea586284c7b881a2a7ab46983cd4baafb..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/diffusers_convert.py +++ /dev/null @@ -1,281 +0,0 @@ -import re -import torch -import logging - -# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py - -# =================# -# UNet Conversion # -# =================# - -unet_conversion_map = [ - # (stable-diffusion, HF Diffusers) - ("time_embed.0.weight", "time_embedding.linear_1.weight"), - ("time_embed.0.bias", "time_embedding.linear_1.bias"), - ("time_embed.2.weight", "time_embedding.linear_2.weight"), - ("time_embed.2.bias", "time_embedding.linear_2.bias"), - ("input_blocks.0.0.weight", "conv_in.weight"), - ("input_blocks.0.0.bias", "conv_in.bias"), - ("out.0.weight", "conv_norm_out.weight"), - ("out.0.bias", "conv_norm_out.bias"), - ("out.2.weight", "conv_out.weight"), - ("out.2.bias", "conv_out.bias"), -] - -unet_conversion_map_resnet = [ - # (stable-diffusion, HF Diffusers) - ("in_layers.0", "norm1"), - ("in_layers.2", "conv1"), - ("out_layers.0", "norm2"), - ("out_layers.3", "conv2"), - ("emb_layers.1", "time_emb_proj"), - ("skip_connection", "conv_shortcut"), -] - -unet_conversion_map_layer = [] -# hardcoded number of downblocks and resnets/attentions... -# would need smarter logic for other networks. -for i in range(4): - # loop over downblocks/upblocks - - for j in range(2): - # loop over resnets/attentions for downblocks - hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." - sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0." - unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) - - if i < 3: - # no attention layers in down_blocks.3 - hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." - sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1." - unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) - - for j in range(3): - # loop over resnets/attentions for upblocks - hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." - sd_up_res_prefix = f"output_blocks.{3 * i + j}.0." - unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) - - if i > 0: - # no attention layers in up_blocks.0 - hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." - sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1." - unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) - - if i < 3: - # no downsample in down_blocks.3 - hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." - sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op." - unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) - - # no upsample in up_blocks.3 - hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." - sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}." - unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) - -hf_mid_atn_prefix = "mid_block.attentions.0." -sd_mid_atn_prefix = "middle_block.1." -unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) - -for j in range(2): - hf_mid_res_prefix = f"mid_block.resnets.{j}." - sd_mid_res_prefix = f"middle_block.{2 * j}." - unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) - - -def convert_unet_state_dict(unet_state_dict): - # buyer beware: this is a *brittle* function, - # and correct output requires that all of these pieces interact in - # the exact order in which I have arranged them. - mapping = {k: k for k in unet_state_dict.keys()} - for sd_name, hf_name in unet_conversion_map: - mapping[hf_name] = sd_name - for k, v in mapping.items(): - if "resnets" in k: - for sd_part, hf_part in unet_conversion_map_resnet: - v = v.replace(hf_part, sd_part) - mapping[k] = v - for k, v in mapping.items(): - for sd_part, hf_part in unet_conversion_map_layer: - v = v.replace(hf_part, sd_part) - mapping[k] = v - new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} - return new_state_dict - - -# ================# -# VAE Conversion # -# ================# - -vae_conversion_map = [ - # (stable-diffusion, HF Diffusers) - ("nin_shortcut", "conv_shortcut"), - ("norm_out", "conv_norm_out"), - ("mid.attn_1.", "mid_block.attentions.0."), -] - -for i in range(4): - # down_blocks have two resnets - for j in range(2): - hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}." - sd_down_prefix = f"encoder.down.{i}.block.{j}." - vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) - - if i < 3: - hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0." - sd_downsample_prefix = f"down.{i}.downsample." - vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) - - hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." - sd_upsample_prefix = f"up.{3 - i}.upsample." - vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) - - # up_blocks have three resnets - # also, up blocks in hf are numbered in reverse from sd - for j in range(3): - hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}." - sd_up_prefix = f"decoder.up.{3 - i}.block.{j}." - vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) - -# this part accounts for mid blocks in both the encoder and the decoder -for i in range(2): - hf_mid_res_prefix = f"mid_block.resnets.{i}." - sd_mid_res_prefix = f"mid.block_{i + 1}." - vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) - -vae_conversion_map_attn = [ - # (stable-diffusion, HF Diffusers) - ("norm.", "group_norm."), - ("q.", "query."), - ("k.", "key."), - ("v.", "value."), - ("q.", "to_q."), - ("k.", "to_k."), - ("v.", "to_v."), - ("proj_out.", "to_out.0."), - ("proj_out.", "proj_attn."), -] - - -def reshape_weight_for_sd(w): - # convert HF linear weights to SD conv2d weights - return w.reshape(*w.shape, 1, 1) - - -def convert_vae_state_dict(vae_state_dict): - mapping = {k: k for k in vae_state_dict.keys()} - for k, v in mapping.items(): - for sd_part, hf_part in vae_conversion_map: - v = v.replace(hf_part, sd_part) - mapping[k] = v - for k, v in mapping.items(): - if "attentions" in k: - for sd_part, hf_part in vae_conversion_map_attn: - v = v.replace(hf_part, sd_part) - mapping[k] = v - new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()} - weights_to_convert = ["q", "k", "v", "proj_out"] - for k, v in new_state_dict.items(): - for weight_name in weights_to_convert: - if f"mid.attn_1.{weight_name}.weight" in k: - logging.debug(f"Reshaping {k} for SD format") - new_state_dict[k] = reshape_weight_for_sd(v) - return new_state_dict - - -# =========================# -# Text Encoder Conversion # -# =========================# - - -textenc_conversion_lst = [ - # (stable-diffusion, HF Diffusers) - ("resblocks.", "text_model.encoder.layers."), - ("ln_1", "layer_norm1"), - ("ln_2", "layer_norm2"), - (".c_fc.", ".fc1."), - (".c_proj.", ".fc2."), - (".attn", ".self_attn"), - ("ln_final.", "transformer.text_model.final_layer_norm."), - ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), - ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), -] -protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} -textenc_pattern = re.compile("|".join(protected.keys())) - -# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp -code2idx = {"q": 0, "k": 1, "v": 2} - -# This function exists because at the time of writing torch.cat can't do fp8 with cuda -def cat_tensors(tensors): - x = 0 - for t in tensors: - x += t.shape[0] - - shape = [x] + list(tensors[0].shape)[1:] - out = torch.empty(shape, device=tensors[0].device, dtype=tensors[0].dtype) - - x = 0 - for t in tensors: - out[x:x + t.shape[0]] = t - x += t.shape[0] - - return out - -def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""): - new_state_dict = {} - capture_qkv_weight = {} - capture_qkv_bias = {} - for k, v in text_enc_dict.items(): - if not k.startswith(prefix): - continue - if ( - k.endswith(".self_attn.q_proj.weight") - or k.endswith(".self_attn.k_proj.weight") - or k.endswith(".self_attn.v_proj.weight") - ): - k_pre = k[: -len(".q_proj.weight")] - k_code = k[-len("q_proj.weight")] - if k_pre not in capture_qkv_weight: - capture_qkv_weight[k_pre] = [None, None, None] - capture_qkv_weight[k_pre][code2idx[k_code]] = v - continue - - if ( - k.endswith(".self_attn.q_proj.bias") - or k.endswith(".self_attn.k_proj.bias") - or k.endswith(".self_attn.v_proj.bias") - ): - k_pre = k[: -len(".q_proj.bias")] - k_code = k[-len("q_proj.bias")] - if k_pre not in capture_qkv_bias: - capture_qkv_bias[k_pre] = [None, None, None] - capture_qkv_bias[k_pre][code2idx[k_code]] = v - continue - - text_proj = "transformer.text_projection.weight" - if k.endswith(text_proj): - new_state_dict[k.replace(text_proj, "text_projection")] = v.transpose(0, 1).contiguous() - else: - relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k) - new_state_dict[relabelled_key] = v - - for k_pre, tensors in capture_qkv_weight.items(): - if None in tensors: - raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") - relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) - new_state_dict[relabelled_key + ".in_proj_weight"] = cat_tensors(tensors) - - for k_pre, tensors in capture_qkv_bias.items(): - if None in tensors: - raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") - relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) - new_state_dict[relabelled_key + ".in_proj_bias"] = cat_tensors(tensors) - - return new_state_dict - - -def convert_text_enc_state_dict(text_enc_dict): - return text_enc_dict - - diff --git a/MagicQuill/comfy/diffusers_load.py b/MagicQuill/comfy/diffusers_load.py deleted file mode 100644 index 98b888a19399d5ea847d90e443737c89c9787cce..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/diffusers_load.py +++ /dev/null @@ -1,36 +0,0 @@ -import os - -import comfy.sd - -def first_file(path, filenames): - for f in filenames: - p = os.path.join(path, f) - if os.path.exists(p): - return p - return None - -def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None): - diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"] - unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names) - vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names) - - text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"] - text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names) - text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names) - - text_encoder_paths = [text_encoder1_path] - if text_encoder2_path is not None: - text_encoder_paths.append(text_encoder2_path) - - unet = comfy.sd.load_unet(unet_path) - - clip = None - if output_clip: - clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory) - - vae = None - if output_vae: - sd = comfy.utils.load_torch_file(vae_path) - vae = comfy.sd.VAE(sd=sd) - - return (unet, clip, vae) diff --git a/MagicQuill/comfy/extra_samplers/__pycache__/uni_pc.cpython-310.pyc b/MagicQuill/comfy/extra_samplers/__pycache__/uni_pc.cpython-310.pyc deleted file mode 100644 index aa06b36d34bc3c37015864c481aa43477d2f19ae..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/extra_samplers/__pycache__/uni_pc.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/extra_samplers/uni_pc.py b/MagicQuill/comfy/extra_samplers/uni_pc.py deleted file mode 100644 index a30d1d03f2e1001f462ce0fa2422a9a16ed279d8..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/extra_samplers/uni_pc.py +++ /dev/null @@ -1,875 +0,0 @@ -#code taken from: https://github.com/wl-zhao/UniPC and modified - -import torch -import torch.nn.functional as F -import math - -from tqdm.auto import trange, tqdm - - -class NoiseScheduleVP: - def __init__( - self, - schedule='discrete', - betas=None, - alphas_cumprod=None, - continuous_beta_0=0.1, - continuous_beta_1=20., - ): - """Create a wrapper class for the forward SDE (VP type). - - *** - Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. - We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. - *** - - The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). - We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). - Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: - - log_alpha_t = self.marginal_log_mean_coeff(t) - sigma_t = self.marginal_std(t) - lambda_t = self.marginal_lambda(t) - - Moreover, as lambda(t) is an invertible function, we also support its inverse function: - - t = self.inverse_lambda(lambda_t) - - =============================================================== - - We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). - - 1. For discrete-time DPMs: - - For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: - t_i = (i + 1) / N - e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. - We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. - - Args: - betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) - alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) - - Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. - - **Important**: Please pay special attention for the args for `alphas_cumprod`: - The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that - q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). - Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have - alpha_{t_n} = \sqrt{\hat{alpha_n}}, - and - log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). - - - 2. For continuous-time DPMs: - - We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise - schedule are the default settings in DDPM and improved-DDPM: - - Args: - beta_min: A `float` number. The smallest beta for the linear schedule. - beta_max: A `float` number. The largest beta for the linear schedule. - cosine_s: A `float` number. The hyperparameter in the cosine schedule. - cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. - T: A `float` number. The ending time of the forward process. - - =============================================================== - - Args: - schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, - 'linear' or 'cosine' for continuous-time DPMs. - Returns: - A wrapper object of the forward SDE (VP type). - - =============================================================== - - Example: - - # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): - >>> ns = NoiseScheduleVP('discrete', betas=betas) - - # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): - >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) - - # For continuous-time DPMs (VPSDE), linear schedule: - >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) - - """ - - if schedule not in ['discrete', 'linear', 'cosine']: - raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule)) - - self.schedule = schedule - if schedule == 'discrete': - if betas is not None: - log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) - else: - assert alphas_cumprod is not None - log_alphas = 0.5 * torch.log(alphas_cumprod) - self.total_N = len(log_alphas) - self.T = 1. - self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)) - self.log_alpha_array = log_alphas.reshape((1, -1,)) - else: - self.total_N = 1000 - self.beta_0 = continuous_beta_0 - self.beta_1 = continuous_beta_1 - self.cosine_s = 0.008 - self.cosine_beta_max = 999. - self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s - self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.)) - self.schedule = schedule - if schedule == 'cosine': - # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. - # Note that T = 0.9946 may be not the optimal setting. However, we find it works well. - self.T = 0.9946 - else: - self.T = 1. - - def marginal_log_mean_coeff(self, t): - """ - Compute log(alpha_t) of a given continuous-time label t in [0, T]. - """ - if self.schedule == 'discrete': - return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1)) - elif self.schedule == 'linear': - return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 - elif self.schedule == 'cosine': - log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.)) - log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 - return log_alpha_t - - def marginal_alpha(self, t): - """ - Compute alpha_t of a given continuous-time label t in [0, T]. - """ - return torch.exp(self.marginal_log_mean_coeff(t)) - - def marginal_std(self, t): - """ - Compute sigma_t of a given continuous-time label t in [0, T]. - """ - return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) - - def marginal_lambda(self, t): - """ - Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. - """ - log_mean_coeff = self.marginal_log_mean_coeff(t) - log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) - return log_mean_coeff - log_std - - def inverse_lambda(self, lamb): - """ - Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. - """ - if self.schedule == 'linear': - tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) - Delta = self.beta_0**2 + tmp - return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) - elif self.schedule == 'discrete': - log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb) - t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1])) - return t.reshape((-1,)) - else: - log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) - t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s - t = t_fn(log_alpha) - return t - - -def model_wrapper( - model, - noise_schedule, - model_type="noise", - model_kwargs={}, - guidance_type="uncond", - condition=None, - unconditional_condition=None, - guidance_scale=1., - classifier_fn=None, - classifier_kwargs={}, -): - """Create a wrapper function for the noise prediction model. - - DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to - firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. - - We support four types of the diffusion model by setting `model_type`: - - 1. "noise": noise prediction model. (Trained by predicting noise). - - 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). - - 3. "v": velocity prediction model. (Trained by predicting the velocity). - The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. - - [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." - arXiv preprint arXiv:2202.00512 (2022). - [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." - arXiv preprint arXiv:2210.02303 (2022). - - 4. "score": marginal score function. (Trained by denoising score matching). - Note that the score function and the noise prediction model follows a simple relationship: - ``` - noise(x_t, t) = -sigma_t * score(x_t, t) - ``` - - We support three types of guided sampling by DPMs by setting `guidance_type`: - 1. "uncond": unconditional sampling by DPMs. - The input `model` has the following format: - `` - model(x, t_input, **model_kwargs) -> noise | x_start | v | score - `` - - 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. - The input `model` has the following format: - `` - model(x, t_input, **model_kwargs) -> noise | x_start | v | score - `` - - The input `classifier_fn` has the following format: - `` - classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) - `` - - [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," - in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. - - 3. "classifier-free": classifier-free guidance sampling by conditional DPMs. - The input `model` has the following format: - `` - model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score - `` - And if cond == `unconditional_condition`, the model output is the unconditional DPM output. - - [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." - arXiv preprint arXiv:2207.12598 (2022). - - - The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) - or continuous-time labels (i.e. epsilon to T). - - We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: - `` - def model_fn(x, t_continuous) -> noise: - t_input = get_model_input_time(t_continuous) - return noise_pred(model, x, t_input, **model_kwargs) - `` - where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. - - =============================================================== - - Args: - model: A diffusion model with the corresponding format described above. - noise_schedule: A noise schedule object, such as NoiseScheduleVP. - model_type: A `str`. The parameterization type of the diffusion model. - "noise" or "x_start" or "v" or "score". - model_kwargs: A `dict`. A dict for the other inputs of the model function. - guidance_type: A `str`. The type of the guidance for sampling. - "uncond" or "classifier" or "classifier-free". - condition: A pytorch tensor. The condition for the guided sampling. - Only used for "classifier" or "classifier-free" guidance type. - unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. - Only used for "classifier-free" guidance type. - guidance_scale: A `float`. The scale for the guided sampling. - classifier_fn: A classifier function. Only used for the classifier guidance. - classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. - Returns: - A noise prediction model that accepts the noised data and the continuous time as the inputs. - """ - - def get_model_input_time(t_continuous): - """ - Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. - For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. - For continuous-time DPMs, we just use `t_continuous`. - """ - if noise_schedule.schedule == 'discrete': - return (t_continuous - 1. / noise_schedule.total_N) * 1000. - else: - return t_continuous - - def noise_pred_fn(x, t_continuous, cond=None): - if t_continuous.reshape((-1,)).shape[0] == 1: - t_continuous = t_continuous.expand((x.shape[0])) - t_input = get_model_input_time(t_continuous) - output = model(x, t_input, **model_kwargs) - if model_type == "noise": - return output - elif model_type == "x_start": - alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) - dims = x.dim() - return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims) - elif model_type == "v": - alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) - dims = x.dim() - return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x - elif model_type == "score": - sigma_t = noise_schedule.marginal_std(t_continuous) - dims = x.dim() - return -expand_dims(sigma_t, dims) * output - - def cond_grad_fn(x, t_input): - """ - Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). - """ - with torch.enable_grad(): - x_in = x.detach().requires_grad_(True) - log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) - return torch.autograd.grad(log_prob.sum(), x_in)[0] - - def model_fn(x, t_continuous): - """ - The noise predicition model function that is used for DPM-Solver. - """ - if t_continuous.reshape((-1,)).shape[0] == 1: - t_continuous = t_continuous.expand((x.shape[0])) - if guidance_type == "uncond": - return noise_pred_fn(x, t_continuous) - elif guidance_type == "classifier": - assert classifier_fn is not None - t_input = get_model_input_time(t_continuous) - cond_grad = cond_grad_fn(x, t_input) - sigma_t = noise_schedule.marginal_std(t_continuous) - noise = noise_pred_fn(x, t_continuous) - return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad - elif guidance_type == "classifier-free": - if guidance_scale == 1. or unconditional_condition is None: - return noise_pred_fn(x, t_continuous, cond=condition) - else: - x_in = torch.cat([x] * 2) - t_in = torch.cat([t_continuous] * 2) - c_in = torch.cat([unconditional_condition, condition]) - noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) - return noise_uncond + guidance_scale * (noise - noise_uncond) - - assert model_type in ["noise", "x_start", "v"] - assert guidance_type in ["uncond", "classifier", "classifier-free"] - return model_fn - - -class UniPC: - def __init__( - self, - model_fn, - noise_schedule, - predict_x0=True, - thresholding=False, - max_val=1., - variant='bh1', - ): - """Construct a UniPC. - - We support both data_prediction and noise_prediction. - """ - self.model = model_fn - self.noise_schedule = noise_schedule - self.variant = variant - self.predict_x0 = predict_x0 - self.thresholding = thresholding - self.max_val = max_val - - def dynamic_thresholding_fn(self, x0, t=None): - """ - The dynamic thresholding method. - """ - dims = x0.dim() - p = self.dynamic_thresholding_ratio - s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) - s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims) - x0 = torch.clamp(x0, -s, s) / s - return x0 - - def noise_prediction_fn(self, x, t): - """ - Return the noise prediction model. - """ - return self.model(x, t) - - def data_prediction_fn(self, x, t): - """ - Return the data prediction model (with thresholding). - """ - noise = self.noise_prediction_fn(x, t) - dims = x.dim() - alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) - x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims) - if self.thresholding: - p = 0.995 # A hyperparameter in the paper of "Imagen" [1]. - s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) - s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims) - x0 = torch.clamp(x0, -s, s) / s - return x0 - - def model_fn(self, x, t): - """ - Convert the model to the noise prediction model or the data prediction model. - """ - if self.predict_x0: - return self.data_prediction_fn(x, t) - else: - return self.noise_prediction_fn(x, t) - - def get_time_steps(self, skip_type, t_T, t_0, N, device): - """Compute the intermediate time steps for sampling. - """ - if skip_type == 'logSNR': - lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) - lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) - logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) - return self.noise_schedule.inverse_lambda(logSNR_steps) - elif skip_type == 'time_uniform': - return torch.linspace(t_T, t_0, N + 1).to(device) - elif skip_type == 'time_quadratic': - t_order = 2 - t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device) - return t - else: - raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)) - - def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device): - """ - Get the order of each step for sampling by the singlestep DPM-Solver. - """ - if order == 3: - K = steps // 3 + 1 - if steps % 3 == 0: - orders = [3,] * (K - 2) + [2, 1] - elif steps % 3 == 1: - orders = [3,] * (K - 1) + [1] - else: - orders = [3,] * (K - 1) + [2] - elif order == 2: - if steps % 2 == 0: - K = steps // 2 - orders = [2,] * K - else: - K = steps // 2 + 1 - orders = [2,] * (K - 1) + [1] - elif order == 1: - K = steps - orders = [1,] * steps - else: - raise ValueError("'order' must be '1' or '2' or '3'.") - if skip_type == 'logSNR': - # To reproduce the results in DPM-Solver paper - timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device) - else: - timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)] - return timesteps_outer, orders - - def denoise_to_zero_fn(self, x, s): - """ - Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. - """ - return self.data_prediction_fn(x, s) - - def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs): - if len(t.shape) == 0: - t = t.view(-1) - if 'bh' in self.variant: - return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs) - else: - assert self.variant == 'vary_coeff' - return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs) - - def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True): - print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)') - ns = self.noise_schedule - assert order <= len(model_prev_list) - - # first compute rks - t_prev_0 = t_prev_list[-1] - lambda_prev_0 = ns.marginal_lambda(t_prev_0) - lambda_t = ns.marginal_lambda(t) - model_prev_0 = model_prev_list[-1] - sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) - log_alpha_t = ns.marginal_log_mean_coeff(t) - alpha_t = torch.exp(log_alpha_t) - - h = lambda_t - lambda_prev_0 - - rks = [] - D1s = [] - for i in range(1, order): - t_prev_i = t_prev_list[-(i + 1)] - model_prev_i = model_prev_list[-(i + 1)] - lambda_prev_i = ns.marginal_lambda(t_prev_i) - rk = (lambda_prev_i - lambda_prev_0) / h - rks.append(rk) - D1s.append((model_prev_i - model_prev_0) / rk) - - rks.append(1.) - rks = torch.tensor(rks, device=x.device) - - K = len(rks) - # build C matrix - C = [] - - col = torch.ones_like(rks) - for k in range(1, K + 1): - C.append(col) - col = col * rks / (k + 1) - C = torch.stack(C, dim=1) - - if len(D1s) > 0: - D1s = torch.stack(D1s, dim=1) # (B, K) - C_inv_p = torch.linalg.inv(C[:-1, :-1]) - A_p = C_inv_p - - if use_corrector: - print('using corrector') - C_inv = torch.linalg.inv(C) - A_c = C_inv - - hh = -h if self.predict_x0 else h - h_phi_1 = torch.expm1(hh) - h_phi_ks = [] - factorial_k = 1 - h_phi_k = h_phi_1 - for k in range(1, K + 2): - h_phi_ks.append(h_phi_k) - h_phi_k = h_phi_k / hh - 1 / factorial_k - factorial_k *= (k + 1) - - model_t = None - if self.predict_x0: - x_t_ = ( - sigma_t / sigma_prev_0 * x - - alpha_t * h_phi_1 * model_prev_0 - ) - # now predictor - x_t = x_t_ - if len(D1s) > 0: - # compute the residuals for predictor - for k in range(K - 1): - x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k]) - # now corrector - if use_corrector: - model_t = self.model_fn(x_t, t) - D1_t = (model_t - model_prev_0) - x_t = x_t_ - k = 0 - for k in range(K - 1): - x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1]) - x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1]) - else: - log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) - x_t_ = ( - (torch.exp(log_alpha_t - log_alpha_prev_0)) * x - - (sigma_t * h_phi_1) * model_prev_0 - ) - # now predictor - x_t = x_t_ - if len(D1s) > 0: - # compute the residuals for predictor - for k in range(K - 1): - x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k]) - # now corrector - if use_corrector: - model_t = self.model_fn(x_t, t) - D1_t = (model_t - model_prev_0) - x_t = x_t_ - k = 0 - for k in range(K - 1): - x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1]) - x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1]) - return x_t, model_t - - def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True): - # print(f'using unified predictor-corrector with order {order} (solver type: B(h))') - ns = self.noise_schedule - assert order <= len(model_prev_list) - dims = x.dim() - - # first compute rks - t_prev_0 = t_prev_list[-1] - lambda_prev_0 = ns.marginal_lambda(t_prev_0) - lambda_t = ns.marginal_lambda(t) - model_prev_0 = model_prev_list[-1] - sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) - log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) - alpha_t = torch.exp(log_alpha_t) - - h = lambda_t - lambda_prev_0 - - rks = [] - D1s = [] - for i in range(1, order): - t_prev_i = t_prev_list[-(i + 1)] - model_prev_i = model_prev_list[-(i + 1)] - lambda_prev_i = ns.marginal_lambda(t_prev_i) - rk = ((lambda_prev_i - lambda_prev_0) / h)[0] - rks.append(rk) - D1s.append((model_prev_i - model_prev_0) / rk) - - rks.append(1.) - rks = torch.tensor(rks, device=x.device) - - R = [] - b = [] - - hh = -h[0] if self.predict_x0 else h[0] - h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 - h_phi_k = h_phi_1 / hh - 1 - - factorial_i = 1 - - if self.variant == 'bh1': - B_h = hh - elif self.variant == 'bh2': - B_h = torch.expm1(hh) - else: - raise NotImplementedError() - - for i in range(1, order + 1): - R.append(torch.pow(rks, i - 1)) - b.append(h_phi_k * factorial_i / B_h) - factorial_i *= (i + 1) - h_phi_k = h_phi_k / hh - 1 / factorial_i - - R = torch.stack(R) - b = torch.tensor(b, device=x.device) - - # now predictor - use_predictor = len(D1s) > 0 and x_t is None - if len(D1s) > 0: - D1s = torch.stack(D1s, dim=1) # (B, K) - if x_t is None: - # for order 2, we use a simplified version - if order == 2: - rhos_p = torch.tensor([0.5], device=b.device) - else: - rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]) - else: - D1s = None - - if use_corrector: - # print('using corrector') - # for order 1, we use a simplified version - if order == 1: - rhos_c = torch.tensor([0.5], device=b.device) - else: - rhos_c = torch.linalg.solve(R, b) - - model_t = None - if self.predict_x0: - x_t_ = ( - expand_dims(sigma_t / sigma_prev_0, dims) * x - - expand_dims(alpha_t * h_phi_1, dims)* model_prev_0 - ) - - if x_t is None: - if use_predictor: - pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s) - else: - pred_res = 0 - x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res - - if use_corrector: - model_t = self.model_fn(x_t, t) - if D1s is not None: - corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s) - else: - corr_res = 0 - D1_t = (model_t - model_prev_0) - x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) - else: - x_t_ = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0 - ) - if x_t is None: - if use_predictor: - pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s) - else: - pred_res = 0 - x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res - - if use_corrector: - model_t = self.model_fn(x_t, t) - if D1s is not None: - corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s) - else: - corr_res = 0 - D1_t = (model_t - model_prev_0) - x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) - return x_t, model_t - - - def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform', - method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver', - atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False - ): - # t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end - # t_T = self.noise_schedule.T if t_start is None else t_start - device = x.device - steps = len(timesteps) - 1 - if method == 'multistep': - assert steps >= order - # timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) - assert timesteps.shape[0] - 1 == steps - # with torch.no_grad(): - for step_index in trange(steps, disable=disable_pbar): - if step_index == 0: - vec_t = timesteps[0].expand((x.shape[0])) - model_prev_list = [self.model_fn(x, vec_t)] - t_prev_list = [vec_t] - elif step_index < order: - init_order = step_index - # Init the first `order` values by lower order multistep DPM-Solver. - # for init_order in range(1, order): - vec_t = timesteps[init_order].expand(x.shape[0]) - x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True) - if model_x is None: - model_x = self.model_fn(x, vec_t) - model_prev_list.append(model_x) - t_prev_list.append(vec_t) - else: - extra_final_step = 0 - if step_index == (steps - 1): - extra_final_step = 1 - for step in range(step_index, step_index + 1 + extra_final_step): - vec_t = timesteps[step].expand(x.shape[0]) - if lower_order_final: - step_order = min(order, steps + 1 - step) - else: - step_order = order - # print('this step order:', step_order) - if step == steps: - # print('do not run corrector at the last step') - use_corrector = False - else: - use_corrector = True - x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector) - for i in range(order - 1): - t_prev_list[i] = t_prev_list[i + 1] - model_prev_list[i] = model_prev_list[i + 1] - t_prev_list[-1] = vec_t - # We do not need to evaluate the final model value. - if step < steps: - if model_x is None: - model_x = self.model_fn(x, vec_t) - model_prev_list[-1] = model_x - if callback is not None: - callback({'x': x, 'i': step_index, 'denoised': model_prev_list[-1]}) - else: - raise NotImplementedError() - # if denoise_to_zero: - # x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0) - return x - - -############################################################# -# other utility functions -############################################################# - -def interpolate_fn(x, xp, yp): - """ - A piecewise linear function y = f(x), using xp and yp as keypoints. - We implement f(x) in a differentiable way (i.e. applicable for autograd). - The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) - - Args: - x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). - xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. - yp: PyTorch tensor with shape [C, K]. - Returns: - The function values f(x), with shape [N, C]. - """ - N, K = x.shape[0], xp.shape[1] - all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) - sorted_all_x, x_indices = torch.sort(all_x, dim=2) - x_idx = torch.argmin(x_indices, dim=2) - cand_start_idx = x_idx - 1 - start_idx = torch.where( - torch.eq(x_idx, 0), - torch.tensor(1, device=x.device), - torch.where( - torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, - ), - ) - end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) - start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) - end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) - start_idx2 = torch.where( - torch.eq(x_idx, 0), - torch.tensor(0, device=x.device), - torch.where( - torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, - ), - ) - y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) - start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) - end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) - cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) - return cand - - -def expand_dims(v, dims): - """ - Expand the tensor `v` to the dim `dims`. - - Args: - `v`: a PyTorch tensor with shape [N]. - `dim`: a `int`. - Returns: - a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. - """ - return v[(...,) + (None,)*(dims - 1)] - - -class SigmaConvert: - schedule = "" - def marginal_log_mean_coeff(self, sigma): - return 0.5 * torch.log(1 / ((sigma * sigma) + 1)) - - def marginal_alpha(self, t): - return torch.exp(self.marginal_log_mean_coeff(t)) - - def marginal_std(self, t): - return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) - - def marginal_lambda(self, t): - """ - Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. - """ - log_mean_coeff = self.marginal_log_mean_coeff(t) - log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) - return log_mean_coeff - log_std - -def predict_eps_sigma(model, input, sigma_in, **kwargs): - sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1)) - input = input * ((sigma ** 2 + 1.0) ** 0.5) - return (input - model(input, sigma_in, **kwargs)) / sigma - - -def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'): - timesteps = sigmas.clone() - if sigmas[-1] == 0: - timesteps = sigmas[:] - timesteps[-1] = 0.001 - else: - timesteps = sigmas.clone() - ns = SigmaConvert() - - noise = noise / torch.sqrt(1.0 + timesteps[0] ** 2.0) - model_type = "noise" - - model_fn = model_wrapper( - lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs), - ns, - model_type=model_type, - guidance_type="uncond", - model_kwargs=extra_args, - ) - - order = min(3, len(timesteps) - 2) - uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=variant) - x = uni_pc.sample(noise, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable) - x /= ns.marginal_alpha(timesteps[-1]) - return x - -def sample_unipc_bh2(model, noise, sigmas, extra_args=None, callback=None, disable=False): - return sample_unipc(model, noise, sigmas, extra_args, callback, disable, variant='bh2') \ No newline at end of file diff --git a/MagicQuill/comfy/gligen.py b/MagicQuill/comfy/gligen.py deleted file mode 100644 index 592522767e98bbe11b6e5e9411b1f734cbf92b9b..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/gligen.py +++ /dev/null @@ -1,343 +0,0 @@ -import torch -from torch import nn -from .ldm.modules.attention import CrossAttention -from inspect import isfunction -import comfy.ops -ops = comfy.ops.manual_cast - -def exists(val): - return val is not None - - -def uniq(arr): - return{el: True for el in arr}.keys() - - -def default(val, d): - if exists(val): - return val - return d() if isfunction(d) else d - - -# feedforward -class GEGLU(nn.Module): - def __init__(self, dim_in, dim_out): - super().__init__() - self.proj = ops.Linear(dim_in, dim_out * 2) - - def forward(self, x): - x, gate = self.proj(x).chunk(2, dim=-1) - return x * torch.nn.functional.gelu(gate) - - -class FeedForward(nn.Module): - def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): - super().__init__() - inner_dim = int(dim * mult) - dim_out = default(dim_out, dim) - project_in = nn.Sequential( - ops.Linear(dim, inner_dim), - nn.GELU() - ) if not glu else GEGLU(dim, inner_dim) - - self.net = nn.Sequential( - project_in, - nn.Dropout(dropout), - ops.Linear(inner_dim, dim_out) - ) - - def forward(self, x): - return self.net(x) - - -class GatedCrossAttentionDense(nn.Module): - def __init__(self, query_dim, context_dim, n_heads, d_head): - super().__init__() - - self.attn = CrossAttention( - query_dim=query_dim, - context_dim=context_dim, - heads=n_heads, - dim_head=d_head, - operations=ops) - self.ff = FeedForward(query_dim, glu=True) - - self.norm1 = ops.LayerNorm(query_dim) - self.norm2 = ops.LayerNorm(query_dim) - - self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) - self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) - - # this can be useful: we can externally change magnitude of tanh(alpha) - # for example, when it is set to 0, then the entire model is same as - # original one - self.scale = 1 - - def forward(self, x, objs): - - x = x + self.scale * \ - torch.tanh(self.alpha_attn) * self.attn(self.norm1(x), objs, objs) - x = x + self.scale * \ - torch.tanh(self.alpha_dense) * self.ff(self.norm2(x)) - - return x - - -class GatedSelfAttentionDense(nn.Module): - def __init__(self, query_dim, context_dim, n_heads, d_head): - super().__init__() - - # we need a linear projection since we need cat visual feature and obj - # feature - self.linear = ops.Linear(context_dim, query_dim) - - self.attn = CrossAttention( - query_dim=query_dim, - context_dim=query_dim, - heads=n_heads, - dim_head=d_head, - operations=ops) - self.ff = FeedForward(query_dim, glu=True) - - self.norm1 = ops.LayerNorm(query_dim) - self.norm2 = ops.LayerNorm(query_dim) - - self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) - self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) - - # this can be useful: we can externally change magnitude of tanh(alpha) - # for example, when it is set to 0, then the entire model is same as - # original one - self.scale = 1 - - def forward(self, x, objs): - - N_visual = x.shape[1] - objs = self.linear(objs) - - x = x + self.scale * torch.tanh(self.alpha_attn) * self.attn( - self.norm1(torch.cat([x, objs], dim=1)))[:, 0:N_visual, :] - x = x + self.scale * \ - torch.tanh(self.alpha_dense) * self.ff(self.norm2(x)) - - return x - - -class GatedSelfAttentionDense2(nn.Module): - def __init__(self, query_dim, context_dim, n_heads, d_head): - super().__init__() - - # we need a linear projection since we need cat visual feature and obj - # feature - self.linear = ops.Linear(context_dim, query_dim) - - self.attn = CrossAttention( - query_dim=query_dim, context_dim=query_dim, dim_head=d_head, operations=ops) - self.ff = FeedForward(query_dim, glu=True) - - self.norm1 = ops.LayerNorm(query_dim) - self.norm2 = ops.LayerNorm(query_dim) - - self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) - self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) - - # this can be useful: we can externally change magnitude of tanh(alpha) - # for example, when it is set to 0, then the entire model is same as - # original one - self.scale = 1 - - def forward(self, x, objs): - - B, N_visual, _ = x.shape - B, N_ground, _ = objs.shape - - objs = self.linear(objs) - - # sanity check - size_v = math.sqrt(N_visual) - size_g = math.sqrt(N_ground) - assert int(size_v) == size_v, "Visual tokens must be square rootable" - assert int(size_g) == size_g, "Grounding tokens must be square rootable" - size_v = int(size_v) - size_g = int(size_g) - - # select grounding token and resize it to visual token size as residual - out = self.attn(self.norm1(torch.cat([x, objs], dim=1)))[ - :, N_visual:, :] - out = out.permute(0, 2, 1).reshape(B, -1, size_g, size_g) - out = torch.nn.functional.interpolate( - out, (size_v, size_v), mode='bicubic') - residual = out.reshape(B, -1, N_visual).permute(0, 2, 1) - - # add residual to visual feature - x = x + self.scale * torch.tanh(self.alpha_attn) * residual - x = x + self.scale * \ - torch.tanh(self.alpha_dense) * self.ff(self.norm2(x)) - - return x - - -class FourierEmbedder(): - def __init__(self, num_freqs=64, temperature=100): - - self.num_freqs = num_freqs - self.temperature = temperature - self.freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs) - - @torch.no_grad() - def __call__(self, x, cat_dim=-1): - "x: arbitrary shape of tensor. dim: cat dim" - out = [] - for freq in self.freq_bands: - out.append(torch.sin(freq * x)) - out.append(torch.cos(freq * x)) - return torch.cat(out, cat_dim) - - -class PositionNet(nn.Module): - def __init__(self, in_dim, out_dim, fourier_freqs=8): - super().__init__() - self.in_dim = in_dim - self.out_dim = out_dim - - self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs) - self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy - - self.linears = nn.Sequential( - ops.Linear(self.in_dim + self.position_dim, 512), - nn.SiLU(), - ops.Linear(512, 512), - nn.SiLU(), - ops.Linear(512, out_dim), - ) - - self.null_positive_feature = torch.nn.Parameter( - torch.zeros([self.in_dim])) - self.null_position_feature = torch.nn.Parameter( - torch.zeros([self.position_dim])) - - def forward(self, boxes, masks, positive_embeddings): - B, N, _ = boxes.shape - masks = masks.unsqueeze(-1) - positive_embeddings = positive_embeddings - - # embedding position (it may includes padding as placeholder) - xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C - - # learnable null embedding - positive_null = self.null_positive_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1) - xyxy_null = self.null_position_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1) - - # replace padding with learnable null embedding - positive_embeddings = positive_embeddings * \ - masks + (1 - masks) * positive_null - xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null - - objs = self.linears( - torch.cat([positive_embeddings, xyxy_embedding], dim=-1)) - assert objs.shape == torch.Size([B, N, self.out_dim]) - return objs - - -class Gligen(nn.Module): - def __init__(self, modules, position_net, key_dim): - super().__init__() - self.module_list = nn.ModuleList(modules) - self.position_net = position_net - self.key_dim = key_dim - self.max_objs = 30 - self.current_device = torch.device("cpu") - - def _set_position(self, boxes, masks, positive_embeddings): - objs = self.position_net(boxes, masks, positive_embeddings) - def func(x, extra_options): - key = extra_options["transformer_index"] - module = self.module_list[key] - return module(x, objs.to(device=x.device, dtype=x.dtype)) - return func - - def set_position(self, latent_image_shape, position_params, device): - batch, c, h, w = latent_image_shape - masks = torch.zeros([self.max_objs], device="cpu") - boxes = [] - positive_embeddings = [] - for p in position_params: - x1 = (p[4]) / w - y1 = (p[3]) / h - x2 = (p[4] + p[2]) / w - y2 = (p[3] + p[1]) / h - masks[len(boxes)] = 1.0 - boxes += [torch.tensor((x1, y1, x2, y2)).unsqueeze(0)] - positive_embeddings += [p[0]] - append_boxes = [] - append_conds = [] - if len(boxes) < self.max_objs: - append_boxes = [torch.zeros( - [self.max_objs - len(boxes), 4], device="cpu")] - append_conds = [torch.zeros( - [self.max_objs - len(boxes), self.key_dim], device="cpu")] - - box_out = torch.cat( - boxes + append_boxes).unsqueeze(0).repeat(batch, 1, 1) - masks = masks.unsqueeze(0).repeat(batch, 1) - conds = torch.cat(positive_embeddings + - append_conds).unsqueeze(0).repeat(batch, 1, 1) - return self._set_position( - box_out.to(device), - masks.to(device), - conds.to(device)) - - def set_empty(self, latent_image_shape, device): - batch, c, h, w = latent_image_shape - masks = torch.zeros([self.max_objs], device="cpu").repeat(batch, 1) - box_out = torch.zeros([self.max_objs, 4], - device="cpu").repeat(batch, 1, 1) - conds = torch.zeros([self.max_objs, self.key_dim], - device="cpu").repeat(batch, 1, 1) - return self._set_position( - box_out.to(device), - masks.to(device), - conds.to(device)) - - -def load_gligen(sd): - sd_k = sd.keys() - output_list = [] - key_dim = 768 - for a in ["input_blocks", "middle_block", "output_blocks"]: - for b in range(20): - k_temp = filter(lambda k: "{}.{}.".format(a, b) - in k and ".fuser." in k, sd_k) - k_temp = map(lambda k: (k, k.split(".fuser.")[-1]), k_temp) - - n_sd = {} - for k in k_temp: - n_sd[k[1]] = sd[k[0]] - if len(n_sd) > 0: - query_dim = n_sd["linear.weight"].shape[0] - key_dim = n_sd["linear.weight"].shape[1] - - if key_dim == 768: # SD1.x - n_heads = 8 - d_head = query_dim // n_heads - else: - d_head = 64 - n_heads = query_dim // d_head - - gated = GatedSelfAttentionDense( - query_dim, key_dim, n_heads, d_head) - gated.load_state_dict(n_sd, strict=False) - output_list.append(gated) - - if "position_net.null_positive_feature" in sd_k: - in_dim = sd["position_net.null_positive_feature"].shape[0] - out_dim = sd["position_net.linears.4.weight"].shape[0] - - class WeightsLoader(torch.nn.Module): - pass - w = WeightsLoader() - w.position_net = PositionNet(in_dim, out_dim) - w.load_state_dict(sd, strict=False) - - gligen = Gligen(output_list, w.position_net, key_dim) - return gligen diff --git a/MagicQuill/comfy/k_diffusion/__pycache__/sampling.cpython-310.pyc b/MagicQuill/comfy/k_diffusion/__pycache__/sampling.cpython-310.pyc deleted file mode 100644 index d73f59b875871a8131a0b5a885cc7db4ac962567..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/k_diffusion/__pycache__/sampling.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/k_diffusion/__pycache__/utils.cpython-310.pyc b/MagicQuill/comfy/k_diffusion/__pycache__/utils.cpython-310.pyc deleted file mode 100644 index 43a20158030f452a5e5ba9c92b00d33f7d3c4aa0..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/k_diffusion/__pycache__/utils.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/k_diffusion/sampling.py b/MagicQuill/comfy/k_diffusion/sampling.py deleted file mode 100644 index 5bb991e76a35d49157464731d993772b2cdfb013..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/k_diffusion/sampling.py +++ /dev/null @@ -1,843 +0,0 @@ -import math - -from scipy import integrate -import torch -from torch import nn -import torchsde -from tqdm.auto import trange, tqdm - -from . import utils - - -def append_zero(x): - return torch.cat([x, x.new_zeros([1])]) - - -def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'): - """Constructs the noise schedule of Karras et al. (2022).""" - ramp = torch.linspace(0, 1, n, device=device) - min_inv_rho = sigma_min ** (1 / rho) - max_inv_rho = sigma_max ** (1 / rho) - sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho - return append_zero(sigmas).to(device) - - -def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'): - """Constructs an exponential noise schedule.""" - sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp() - return append_zero(sigmas) - - -def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'): - """Constructs an polynomial in log sigma noise schedule.""" - ramp = torch.linspace(1, 0, n, device=device) ** rho - sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min)) - return append_zero(sigmas) - - -def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'): - """Constructs a continuous VP noise schedule.""" - t = torch.linspace(1, eps_s, n, device=device) - sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1) - return append_zero(sigmas) - - -def to_d(x, sigma, denoised): - """Converts a denoiser output to a Karras ODE derivative.""" - return (x - denoised) / utils.append_dims(sigma, x.ndim) - - -def get_ancestral_step(sigma_from, sigma_to, eta=1.): - """Calculates the noise level (sigma_down) to step down to and the amount - of noise to add (sigma_up) when doing an ancestral sampling step.""" - if not eta: - return sigma_to, 0. - sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5) - sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 - return sigma_down, sigma_up - - -def default_noise_sampler(x): - return lambda sigma, sigma_next: torch.randn_like(x) - - -class BatchedBrownianTree: - """A wrapper around torchsde.BrownianTree that enables batches of entropy.""" - - def __init__(self, x, t0, t1, seed=None, **kwargs): - self.cpu_tree = True - if "cpu" in kwargs: - self.cpu_tree = kwargs.pop("cpu") - t0, t1, self.sign = self.sort(t0, t1) - w0 = kwargs.get('w0', torch.zeros_like(x)) - if seed is None: - seed = torch.randint(0, 2 ** 63 - 1, []).item() - self.batched = True - try: - assert len(seed) == x.shape[0] - w0 = w0[0] - except TypeError: - seed = [seed] - self.batched = False - if self.cpu_tree: - self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed] - else: - self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed] - - @staticmethod - def sort(a, b): - return (a, b, 1) if a < b else (b, a, -1) - - def __call__(self, t0, t1): - t0, t1, sign = self.sort(t0, t1) - if self.cpu_tree: - w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign) - else: - w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign) - - return w if self.batched else w[0] - - -class BrownianTreeNoiseSampler: - """A noise sampler backed by a torchsde.BrownianTree. - - Args: - x (Tensor): The tensor whose shape, device and dtype to use to generate - random samples. - sigma_min (float): The low end of the valid interval. - sigma_max (float): The high end of the valid interval. - seed (int or List[int]): The random seed. If a list of seeds is - supplied instead of a single integer, then the noise sampler will - use one BrownianTree per batch item, each with its own seed. - transform (callable): A function that maps sigma to the sampler's - internal timestep. - """ - - def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False): - self.transform = transform - t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max)) - self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu) - - def __call__(self, sigma, sigma_next): - t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next)) - return self.tree(t0, t1) / (t1 - t0).abs().sqrt() - - -@torch.no_grad() -def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): - """Implements Algorithm 2 (Euler steps) from Karras et al. (2022).""" - extra_args = {} if extra_args is None else extra_args - s_in = x.new_ones([x.shape[0]]) - for i in trange(len(sigmas) - 1, disable=disable): - if s_churn > 0: - gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. - sigma_hat = sigmas[i] * (gamma + 1) - else: - gamma = 0 - sigma_hat = sigmas[i] - - if gamma > 0: - eps = torch.randn_like(x) * s_noise - x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 - denoised = model(x, sigma_hat * s_in, **extra_args) - d = to_d(x, sigma_hat, denoised) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) - dt = sigmas[i + 1] - sigma_hat - # Euler method - x = x + d * dt - return x - - -@torch.no_grad() -def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): - """Ancestral sampling with Euler method steps.""" - extra_args = {} if extra_args is None else extra_args - noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler - s_in = x.new_ones([x.shape[0]]) - for i in trange(len(sigmas) - 1, disable=disable): - denoised = model(x, sigmas[i] * s_in, **extra_args) - sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) - d = to_d(x, sigmas[i], denoised) - # Euler method - dt = sigma_down - sigmas[i] - x = x + d * dt - if sigmas[i + 1] > 0: - x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up - return x - - -@torch.no_grad() -def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): - """Implements Algorithm 2 (Heun steps) from Karras et al. (2022).""" - extra_args = {} if extra_args is None else extra_args - s_in = x.new_ones([x.shape[0]]) - for i in trange(len(sigmas) - 1, disable=disable): - if s_churn > 0: - gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. - sigma_hat = sigmas[i] * (gamma + 1) - else: - gamma = 0 - sigma_hat = sigmas[i] - - sigma_hat = sigmas[i] * (gamma + 1) - if gamma > 0: - eps = torch.randn_like(x) * s_noise - x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 - denoised = model(x, sigma_hat * s_in, **extra_args) - d = to_d(x, sigma_hat, denoised) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) - dt = sigmas[i + 1] - sigma_hat - if sigmas[i + 1] == 0: - # Euler method - x = x + d * dt - else: - # Heun's method - x_2 = x + d * dt - denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) - d_2 = to_d(x_2, sigmas[i + 1], denoised_2) - d_prime = (d + d_2) / 2 - x = x + d_prime * dt - return x - - -@torch.no_grad() -def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): - """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022).""" - extra_args = {} if extra_args is None else extra_args - s_in = x.new_ones([x.shape[0]]) - for i in trange(len(sigmas) - 1, disable=disable): - if s_churn > 0: - gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. - sigma_hat = sigmas[i] * (gamma + 1) - else: - gamma = 0 - sigma_hat = sigmas[i] - - if gamma > 0: - eps = torch.randn_like(x) * s_noise - x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 - denoised = model(x, sigma_hat * s_in, **extra_args) - d = to_d(x, sigma_hat, denoised) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) - if sigmas[i + 1] == 0: - # Euler method - dt = sigmas[i + 1] - sigma_hat - x = x + d * dt - else: - # DPM-Solver-2 - sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() - dt_1 = sigma_mid - sigma_hat - dt_2 = sigmas[i + 1] - sigma_hat - x_2 = x + d * dt_1 - denoised_2 = model(x_2, sigma_mid * s_in, **extra_args) - d_2 = to_d(x_2, sigma_mid, denoised_2) - x = x + d_2 * dt_2 - return x - - -@torch.no_grad() -def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): - """Ancestral sampling with DPM-Solver second-order steps.""" - extra_args = {} if extra_args is None else extra_args - noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler - s_in = x.new_ones([x.shape[0]]) - for i in trange(len(sigmas) - 1, disable=disable): - denoised = model(x, sigmas[i] * s_in, **extra_args) - sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) - d = to_d(x, sigmas[i], denoised) - if sigma_down == 0: - # Euler method - dt = sigma_down - sigmas[i] - x = x + d * dt - else: - # DPM-Solver-2 - sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp() - dt_1 = sigma_mid - sigmas[i] - dt_2 = sigma_down - sigmas[i] - x_2 = x + d * dt_1 - denoised_2 = model(x_2, sigma_mid * s_in, **extra_args) - d_2 = to_d(x_2, sigma_mid, denoised_2) - x = x + d_2 * dt_2 - x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up - return x - - -def linear_multistep_coeff(order, t, i, j): - if order - 1 > i: - raise ValueError(f'Order {order} too high for step {i}') - def fn(tau): - prod = 1. - for k in range(order): - if j == k: - continue - prod *= (tau - t[i - k]) / (t[i - j] - t[i - k]) - return prod - return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0] - - -@torch.no_grad() -def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4): - extra_args = {} if extra_args is None else extra_args - s_in = x.new_ones([x.shape[0]]) - sigmas_cpu = sigmas.detach().cpu().numpy() - ds = [] - for i in trange(len(sigmas) - 1, disable=disable): - denoised = model(x, sigmas[i] * s_in, **extra_args) - d = to_d(x, sigmas[i], denoised) - ds.append(d) - if len(ds) > order: - ds.pop(0) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) - cur_order = min(i + 1, order) - coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)] - x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds))) - return x - - -class PIDStepSizeController: - """A PID controller for ODE adaptive step size control.""" - def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8): - self.h = h - self.b1 = (pcoeff + icoeff + dcoeff) / order - self.b2 = -(pcoeff + 2 * dcoeff) / order - self.b3 = dcoeff / order - self.accept_safety = accept_safety - self.eps = eps - self.errs = [] - - def limiter(self, x): - return 1 + math.atan(x - 1) - - def propose_step(self, error): - inv_error = 1 / (float(error) + self.eps) - if not self.errs: - self.errs = [inv_error, inv_error, inv_error] - self.errs[0] = inv_error - factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3 - factor = self.limiter(factor) - accept = factor >= self.accept_safety - if accept: - self.errs[2] = self.errs[1] - self.errs[1] = self.errs[0] - self.h *= factor - return accept - - -class DPMSolver(nn.Module): - """DPM-Solver. See https://arxiv.org/abs/2206.00927.""" - - def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None): - super().__init__() - self.model = model - self.extra_args = {} if extra_args is None else extra_args - self.eps_callback = eps_callback - self.info_callback = info_callback - - def t(self, sigma): - return -sigma.log() - - def sigma(self, t): - return t.neg().exp() - - def eps(self, eps_cache, key, x, t, *args, **kwargs): - if key in eps_cache: - return eps_cache[key], eps_cache - sigma = self.sigma(t) * x.new_ones([x.shape[0]]) - eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t) - if self.eps_callback is not None: - self.eps_callback() - return eps, {key: eps, **eps_cache} - - def dpm_solver_1_step(self, x, t, t_next, eps_cache=None): - eps_cache = {} if eps_cache is None else eps_cache - h = t_next - t - eps, eps_cache = self.eps(eps_cache, 'eps', x, t) - x_1 = x - self.sigma(t_next) * h.expm1() * eps - return x_1, eps_cache - - def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None): - eps_cache = {} if eps_cache is None else eps_cache - h = t_next - t - eps, eps_cache = self.eps(eps_cache, 'eps', x, t) - s1 = t + r1 * h - u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps - eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1) - x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps) - return x_2, eps_cache - - def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None): - eps_cache = {} if eps_cache is None else eps_cache - h = t_next - t - eps, eps_cache = self.eps(eps_cache, 'eps', x, t) - s1 = t + r1 * h - s2 = t + r2 * h - u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps - eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1) - u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps) - eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2) - x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps) - return x_3, eps_cache - - def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None): - noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler - if not t_end > t_start and eta: - raise ValueError('eta must be 0 for reverse sampling') - - m = math.floor(nfe / 3) + 1 - ts = torch.linspace(t_start, t_end, m + 1, device=x.device) - - if nfe % 3 == 0: - orders = [3] * (m - 2) + [2, 1] - else: - orders = [3] * (m - 1) + [nfe % 3] - - for i in range(len(orders)): - eps_cache = {} - t, t_next = ts[i], ts[i + 1] - if eta: - sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta) - t_next_ = torch.minimum(t_end, self.t(sd)) - su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5 - else: - t_next_, su = t_next, 0. - - eps, eps_cache = self.eps(eps_cache, 'eps', x, t) - denoised = x - self.sigma(t) * eps - if self.info_callback is not None: - self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised}) - - if orders[i] == 1: - x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache) - elif orders[i] == 2: - x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache) - else: - x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache) - - x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next)) - - return x - - def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None): - noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler - if order not in {2, 3}: - raise ValueError('order should be 2 or 3') - forward = t_end > t_start - if not forward and eta: - raise ValueError('eta must be 0 for reverse sampling') - h_init = abs(h_init) * (1 if forward else -1) - atol = torch.tensor(atol) - rtol = torch.tensor(rtol) - s = t_start - x_prev = x - accept = True - pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety) - info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0} - - while s < t_end - 1e-5 if forward else s > t_end + 1e-5: - eps_cache = {} - t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h) - if eta: - sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta) - t_ = torch.minimum(t_end, self.t(sd)) - su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5 - else: - t_, su = t, 0. - - eps, eps_cache = self.eps(eps_cache, 'eps', x, s) - denoised = x - self.sigma(s) * eps - - if order == 2: - x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache) - x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache) - else: - x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache) - x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache) - delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs())) - error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5 - accept = pid.propose_step(error) - if accept: - x_prev = x_low - x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t)) - s = t - info['n_accept'] += 1 - else: - info['n_reject'] += 1 - info['nfe'] += order - info['steps'] += 1 - - if self.info_callback is not None: - self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info}) - - return x, info - - -@torch.no_grad() -def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None): - """DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927.""" - if sigma_min <= 0 or sigma_max <= 0: - raise ValueError('sigma_min and sigma_max must not be 0') - with tqdm(total=n, disable=disable) as pbar: - dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update) - if callback is not None: - dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info}) - return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler) - - -@torch.no_grad() -def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False): - """DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927.""" - if sigma_min <= 0 or sigma_max <= 0: - raise ValueError('sigma_min and sigma_max must not be 0') - with tqdm(disable=disable) as pbar: - dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update) - if callback is not None: - dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info}) - x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler) - if return_info: - return x, info - return x - - -@torch.no_grad() -def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): - """Ancestral sampling with DPM-Solver++(2S) second-order steps.""" - extra_args = {} if extra_args is None else extra_args - noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler - s_in = x.new_ones([x.shape[0]]) - sigma_fn = lambda t: t.neg().exp() - t_fn = lambda sigma: sigma.log().neg() - - for i in trange(len(sigmas) - 1, disable=disable): - denoised = model(x, sigmas[i] * s_in, **extra_args) - sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) - if sigma_down == 0: - # Euler method - d = to_d(x, sigmas[i], denoised) - dt = sigma_down - sigmas[i] - x = x + d * dt - else: - # DPM-Solver++(2S) - t, t_next = t_fn(sigmas[i]), t_fn(sigma_down) - r = 1 / 2 - h = t_next - t - s = t + r * h - x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised - denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args) - x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2 - # Noise addition - if sigmas[i + 1] > 0: - x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up - return x - - -@torch.no_grad() -def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2): - """DPM-Solver++ (stochastic).""" - if len(sigmas) <= 1: - return x - - sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() - seed = extra_args.get("seed", None) - noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler - extra_args = {} if extra_args is None else extra_args - s_in = x.new_ones([x.shape[0]]) - sigma_fn = lambda t: t.neg().exp() - t_fn = lambda sigma: sigma.log().neg() - - for i in trange(len(sigmas) - 1, disable=disable): - denoised = model(x, sigmas[i] * s_in, **extra_args) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) - if sigmas[i + 1] == 0: - # Euler method - d = to_d(x, sigmas[i], denoised) - dt = sigmas[i + 1] - sigmas[i] - x = x + d * dt - else: - # DPM-Solver++ - t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) - h = t_next - t - s = t + h * r - fac = 1 / (2 * r) - - # Step 1 - sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta) - s_ = t_fn(sd) - x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised - x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su - denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args) - - # Step 2 - sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta) - t_next_ = t_fn(sd) - denoised_d = (1 - fac) * denoised + fac * denoised_2 - x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d - x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su - return x - - -@torch.no_grad() -def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None): - """DPM-Solver++(2M).""" - extra_args = {} if extra_args is None else extra_args - s_in = x.new_ones([x.shape[0]]) - sigma_fn = lambda t: t.neg().exp() - t_fn = lambda sigma: sigma.log().neg() - old_denoised = None - - for i in trange(len(sigmas) - 1, disable=disable): - denoised = model(x, sigmas[i] * s_in, **extra_args) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) - t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) - h = t_next - t - if old_denoised is None or sigmas[i + 1] == 0: - x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised - else: - h_last = t - t_fn(sigmas[i - 1]) - r = h_last / h - denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised - x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d - old_denoised = denoised - return x - -@torch.no_grad() -def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'): - """DPM-Solver++(2M) SDE.""" - if len(sigmas) <= 1: - return x - - if solver_type not in {'heun', 'midpoint'}: - raise ValueError('solver_type must be \'heun\' or \'midpoint\'') - - seed = extra_args.get("seed", None) - sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() - noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler - extra_args = {} if extra_args is None else extra_args - s_in = x.new_ones([x.shape[0]]) - - old_denoised = None - h_last = None - h = None - - for i in trange(len(sigmas) - 1, disable=disable): - denoised = model(x, sigmas[i] * s_in, **extra_args) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) - if sigmas[i + 1] == 0: - # Denoising step - x = denoised - else: - # DPM-Solver++(2M) SDE - t, s = -sigmas[i].log(), -sigmas[i + 1].log() - h = s - t - eta_h = eta * h - - x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised - - if old_denoised is not None: - r = h_last / h - if solver_type == 'heun': - x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised) - elif solver_type == 'midpoint': - x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised) - - if eta: - x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise - - old_denoised = denoised - h_last = h - return x - -@torch.no_grad() -def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): - """DPM-Solver++(3M) SDE.""" - - if len(sigmas) <= 1: - return x - - seed = extra_args.get("seed", None) - sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() - noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler - extra_args = {} if extra_args is None else extra_args - s_in = x.new_ones([x.shape[0]]) - - denoised_1, denoised_2 = None, None - h, h_1, h_2 = None, None, None - - for i in trange(len(sigmas) - 1, disable=disable): - denoised = model(x, sigmas[i] * s_in, **extra_args) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) - if sigmas[i + 1] == 0: - # Denoising step - x = denoised - else: - t, s = -sigmas[i].log(), -sigmas[i + 1].log() - h = s - t - h_eta = h * (eta + 1) - - x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised - - if h_2 is not None: - r0 = h_1 / h - r1 = h_2 / h - d1_0 = (denoised - denoised_1) / r0 - d1_1 = (denoised_1 - denoised_2) / r1 - d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1) - d2 = (d1_0 - d1_1) / (r0 + r1) - phi_2 = h_eta.neg().expm1() / h_eta + 1 - phi_3 = phi_2 / h_eta - 0.5 - x = x + phi_2 * d1 - phi_3 * d2 - elif h_1 is not None: - r = h_1 / h - d = (denoised - denoised_1) / r - phi_2 = h_eta.neg().expm1() / h_eta + 1 - x = x + phi_2 * d - - if eta: - x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise - - denoised_1, denoised_2 = denoised, denoised_1 - h_1, h_2 = h, h_1 - return x - -@torch.no_grad() -def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): - if len(sigmas) <= 1: - return x - - sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() - noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler - return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler) - -@torch.no_grad() -def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'): - if len(sigmas) <= 1: - return x - - sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() - noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler - return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type) - -@torch.no_grad() -def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2): - if len(sigmas) <= 1: - return x - - sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() - noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler - return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r) - - -def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler): - alpha_cumprod = 1 / ((sigma * sigma) + 1) - alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1) - alpha = (alpha_cumprod / alpha_cumprod_prev) - - mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt()) - if sigma_prev > 0: - mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev) - return mu - -def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None): - extra_args = {} if extra_args is None else extra_args - noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler - s_in = x.new_ones([x.shape[0]]) - - for i in trange(len(sigmas) - 1, disable=disable): - denoised = model(x, sigmas[i] * s_in, **extra_args) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) - x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler) - if sigmas[i + 1] != 0: - x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0) - return x - - -@torch.no_grad() -def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): - return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step) - -@torch.no_grad() -def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): - extra_args = {} if extra_args is None else extra_args - noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler - s_in = x.new_ones([x.shape[0]]) - for i in trange(len(sigmas) - 1, disable=disable): - denoised = model(x, sigmas[i] * s_in, **extra_args) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) - - x = denoised - if sigmas[i + 1] > 0: - x = model.inner_model.inner_model.model_sampling.noise_scaling(sigmas[i + 1], noise_sampler(sigmas[i], sigmas[i + 1]), x) - return x - - - -@torch.no_grad() -def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): - # From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/ - extra_args = {} if extra_args is None else extra_args - s_in = x.new_ones([x.shape[0]]) - s_end = sigmas[-1] - for i in trange(len(sigmas) - 1, disable=disable): - gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. - eps = torch.randn_like(x) * s_noise - sigma_hat = sigmas[i] * (gamma + 1) - if gamma > 0: - x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 - denoised = model(x, sigma_hat * s_in, **extra_args) - d = to_d(x, sigma_hat, denoised) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) - dt = sigmas[i + 1] - sigma_hat - if sigmas[i + 1] == s_end: - # Euler method - x = x + d * dt - elif sigmas[i + 2] == s_end: - - # Heun's method - x_2 = x + d * dt - denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) - d_2 = to_d(x_2, sigmas[i + 1], denoised_2) - - w = 2 * sigmas[0] - w2 = sigmas[i+1]/w - w1 = 1 - w2 - - d_prime = d * w1 + d_2 * w2 - - - x = x + d_prime * dt - - else: - # Heun++ - x_2 = x + d * dt - denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) - d_2 = to_d(x_2, sigmas[i + 1], denoised_2) - dt_2 = sigmas[i + 2] - sigmas[i + 1] - - x_3 = x_2 + d_2 * dt_2 - denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args) - d_3 = to_d(x_3, sigmas[i + 2], denoised_3) - - w = 3 * sigmas[0] - w2 = sigmas[i + 1] / w - w3 = sigmas[i + 2] / w - w1 = 1 - w2 - w3 - - d_prime = w1 * d + w2 * d_2 + w3 * d_3 - x = x + d_prime * dt - return x diff --git a/MagicQuill/comfy/k_diffusion/utils.py b/MagicQuill/comfy/k_diffusion/utils.py deleted file mode 100644 index a644df2f3cf82b32ac6e9bf2cb7bfc70c95e05f9..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/k_diffusion/utils.py +++ /dev/null @@ -1,313 +0,0 @@ -from contextlib import contextmanager -import hashlib -import math -from pathlib import Path -import shutil -import urllib -import warnings - -from PIL import Image -import torch -from torch import nn, optim -from torch.utils import data - - -def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'): - """Apply passed in transforms for HuggingFace Datasets.""" - images = [transform(image.convert(mode)) for image in examples[image_key]] - return {image_key: images} - - -def append_dims(x, target_dims): - """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" - dims_to_append = target_dims - x.ndim - if dims_to_append < 0: - raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') - expanded = x[(...,) + (None,) * dims_to_append] - # MPS will get inf values if it tries to index into the new axes, but detaching fixes this. - # https://github.com/pytorch/pytorch/issues/84364 - return expanded.detach().clone() if expanded.device.type == 'mps' else expanded - - -def n_params(module): - """Returns the number of trainable parameters in a module.""" - return sum(p.numel() for p in module.parameters()) - - -def download_file(path, url, digest=None): - """Downloads a file if it does not exist, optionally checking its SHA-256 hash.""" - path = Path(path) - path.parent.mkdir(parents=True, exist_ok=True) - if not path.exists(): - with urllib.request.urlopen(url) as response, open(path, 'wb') as f: - shutil.copyfileobj(response, f) - if digest is not None: - file_digest = hashlib.sha256(open(path, 'rb').read()).hexdigest() - if digest != file_digest: - raise OSError(f'hash of {path} (url: {url}) failed to validate') - return path - - -@contextmanager -def train_mode(model, mode=True): - """A context manager that places a model into training mode and restores - the previous mode on exit.""" - modes = [module.training for module in model.modules()] - try: - yield model.train(mode) - finally: - for i, module in enumerate(model.modules()): - module.training = modes[i] - - -def eval_mode(model): - """A context manager that places a model into evaluation mode and restores - the previous mode on exit.""" - return train_mode(model, False) - - -@torch.no_grad() -def ema_update(model, averaged_model, decay): - """Incorporates updated model parameters into an exponential moving averaged - version of a model. It should be called after each optimizer step.""" - model_params = dict(model.named_parameters()) - averaged_params = dict(averaged_model.named_parameters()) - assert model_params.keys() == averaged_params.keys() - - for name, param in model_params.items(): - averaged_params[name].mul_(decay).add_(param, alpha=1 - decay) - - model_buffers = dict(model.named_buffers()) - averaged_buffers = dict(averaged_model.named_buffers()) - assert model_buffers.keys() == averaged_buffers.keys() - - for name, buf in model_buffers.items(): - averaged_buffers[name].copy_(buf) - - -class EMAWarmup: - """Implements an EMA warmup using an inverse decay schedule. - If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are - good values for models you plan to train for a million or more steps (reaches decay - factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models - you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at - 215.4k steps). - Args: - inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1. - power (float): Exponential factor of EMA warmup. Default: 1. - min_value (float): The minimum EMA decay rate. Default: 0. - max_value (float): The maximum EMA decay rate. Default: 1. - start_at (int): The epoch to start averaging at. Default: 0. - last_epoch (int): The index of last epoch. Default: 0. - """ - - def __init__(self, inv_gamma=1., power=1., min_value=0., max_value=1., start_at=0, - last_epoch=0): - self.inv_gamma = inv_gamma - self.power = power - self.min_value = min_value - self.max_value = max_value - self.start_at = start_at - self.last_epoch = last_epoch - - def state_dict(self): - """Returns the state of the class as a :class:`dict`.""" - return dict(self.__dict__.items()) - - def load_state_dict(self, state_dict): - """Loads the class's state. - Args: - state_dict (dict): scaler state. Should be an object returned - from a call to :meth:`state_dict`. - """ - self.__dict__.update(state_dict) - - def get_value(self): - """Gets the current EMA decay rate.""" - epoch = max(0, self.last_epoch - self.start_at) - value = 1 - (1 + epoch / self.inv_gamma) ** -self.power - return 0. if epoch < 0 else min(self.max_value, max(self.min_value, value)) - - def step(self): - """Updates the step count.""" - self.last_epoch += 1 - - -class InverseLR(optim.lr_scheduler._LRScheduler): - """Implements an inverse decay learning rate schedule with an optional exponential - warmup. When last_epoch=-1, sets initial lr as lr. - inv_gamma is the number of steps/epochs required for the learning rate to decay to - (1 / 2)**power of its original value. - Args: - optimizer (Optimizer): Wrapped optimizer. - inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1. - power (float): Exponential factor of learning rate decay. Default: 1. - warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable) - Default: 0. - min_lr (float): The minimum learning rate. Default: 0. - last_epoch (int): The index of last epoch. Default: -1. - verbose (bool): If ``True``, prints a message to stdout for - each update. Default: ``False``. - """ - - def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., min_lr=0., - last_epoch=-1, verbose=False): - self.inv_gamma = inv_gamma - self.power = power - if not 0. <= warmup < 1: - raise ValueError('Invalid value for warmup') - self.warmup = warmup - self.min_lr = min_lr - super().__init__(optimizer, last_epoch, verbose) - - def get_lr(self): - if not self._get_lr_called_within_step: - warnings.warn("To get the last learning rate computed by the scheduler, " - "please use `get_last_lr()`.") - - return self._get_closed_form_lr() - - def _get_closed_form_lr(self): - warmup = 1 - self.warmup ** (self.last_epoch + 1) - lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power - return [warmup * max(self.min_lr, base_lr * lr_mult) - for base_lr in self.base_lrs] - - -class ExponentialLR(optim.lr_scheduler._LRScheduler): - """Implements an exponential learning rate schedule with an optional exponential - warmup. When last_epoch=-1, sets initial lr as lr. Decays the learning rate - continuously by decay (default 0.5) every num_steps steps. - Args: - optimizer (Optimizer): Wrapped optimizer. - num_steps (float): The number of steps to decay the learning rate by decay in. - decay (float): The factor by which to decay the learning rate every num_steps - steps. Default: 0.5. - warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable) - Default: 0. - min_lr (float): The minimum learning rate. Default: 0. - last_epoch (int): The index of last epoch. Default: -1. - verbose (bool): If ``True``, prints a message to stdout for - each update. Default: ``False``. - """ - - def __init__(self, optimizer, num_steps, decay=0.5, warmup=0., min_lr=0., - last_epoch=-1, verbose=False): - self.num_steps = num_steps - self.decay = decay - if not 0. <= warmup < 1: - raise ValueError('Invalid value for warmup') - self.warmup = warmup - self.min_lr = min_lr - super().__init__(optimizer, last_epoch, verbose) - - def get_lr(self): - if not self._get_lr_called_within_step: - warnings.warn("To get the last learning rate computed by the scheduler, " - "please use `get_last_lr()`.") - - return self._get_closed_form_lr() - - def _get_closed_form_lr(self): - warmup = 1 - self.warmup ** (self.last_epoch + 1) - lr_mult = (self.decay ** (1 / self.num_steps)) ** self.last_epoch - return [warmup * max(self.min_lr, base_lr * lr_mult) - for base_lr in self.base_lrs] - - -def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32): - """Draws samples from an lognormal distribution.""" - return (torch.randn(shape, device=device, dtype=dtype) * scale + loc).exp() - - -def rand_log_logistic(shape, loc=0., scale=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32): - """Draws samples from an optionally truncated log-logistic distribution.""" - min_value = torch.as_tensor(min_value, device=device, dtype=torch.float64) - max_value = torch.as_tensor(max_value, device=device, dtype=torch.float64) - min_cdf = min_value.log().sub(loc).div(scale).sigmoid() - max_cdf = max_value.log().sub(loc).div(scale).sigmoid() - u = torch.rand(shape, device=device, dtype=torch.float64) * (max_cdf - min_cdf) + min_cdf - return u.logit().mul(scale).add(loc).exp().to(dtype) - - -def rand_log_uniform(shape, min_value, max_value, device='cpu', dtype=torch.float32): - """Draws samples from an log-uniform distribution.""" - min_value = math.log(min_value) - max_value = math.log(max_value) - return (torch.rand(shape, device=device, dtype=dtype) * (max_value - min_value) + min_value).exp() - - -def rand_v_diffusion(shape, sigma_data=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32): - """Draws samples from a truncated v-diffusion training timestep distribution.""" - min_cdf = math.atan(min_value / sigma_data) * 2 / math.pi - max_cdf = math.atan(max_value / sigma_data) * 2 / math.pi - u = torch.rand(shape, device=device, dtype=dtype) * (max_cdf - min_cdf) + min_cdf - return torch.tan(u * math.pi / 2) * sigma_data - - -def rand_split_log_normal(shape, loc, scale_1, scale_2, device='cpu', dtype=torch.float32): - """Draws samples from a split lognormal distribution.""" - n = torch.randn(shape, device=device, dtype=dtype).abs() - u = torch.rand(shape, device=device, dtype=dtype) - n_left = n * -scale_1 + loc - n_right = n * scale_2 + loc - ratio = scale_1 / (scale_1 + scale_2) - return torch.where(u < ratio, n_left, n_right).exp() - - -class FolderOfImages(data.Dataset): - """Recursively finds all images in a directory. It does not support - classes/targets.""" - - IMG_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp'} - - def __init__(self, root, transform=None): - super().__init__() - self.root = Path(root) - self.transform = nn.Identity() if transform is None else transform - self.paths = sorted(path for path in self.root.rglob('*') if path.suffix.lower() in self.IMG_EXTENSIONS) - - def __repr__(self): - return f'FolderOfImages(root="{self.root}", len: {len(self)})' - - def __len__(self): - return len(self.paths) - - def __getitem__(self, key): - path = self.paths[key] - with open(path, 'rb') as f: - image = Image.open(f).convert('RGB') - image = self.transform(image) - return image, - - -class CSVLogger: - def __init__(self, filename, columns): - self.filename = Path(filename) - self.columns = columns - if self.filename.exists(): - self.file = open(self.filename, 'a') - else: - self.file = open(self.filename, 'w') - self.write(*self.columns) - - def write(self, *args): - print(*args, sep=',', file=self.file, flush=True) - - -@contextmanager -def tf32_mode(cudnn=None, matmul=None): - """A context manager that sets whether TF32 is allowed on cuDNN or matmul.""" - cudnn_old = torch.backends.cudnn.allow_tf32 - matmul_old = torch.backends.cuda.matmul.allow_tf32 - try: - if cudnn is not None: - torch.backends.cudnn.allow_tf32 = cudnn - if matmul is not None: - torch.backends.cuda.matmul.allow_tf32 = matmul - yield - finally: - if cudnn is not None: - torch.backends.cudnn.allow_tf32 = cudnn_old - if matmul is not None: - torch.backends.cuda.matmul.allow_tf32 = matmul_old diff --git a/MagicQuill/comfy/latent_formats.py b/MagicQuill/comfy/latent_formats.py deleted file mode 100644 index 4b4a9eda2ca513adf3f6a55db063bb4289be96a3..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/latent_formats.py +++ /dev/null @@ -1,141 +0,0 @@ -import torch - -class LatentFormat: - scale_factor = 1.0 - latent_channels = 4 - latent_rgb_factors = None - taesd_decoder_name = None - - def process_in(self, latent): - return latent * self.scale_factor - - def process_out(self, latent): - return latent / self.scale_factor - -class SD15(LatentFormat): - def __init__(self, scale_factor=0.18215): - self.scale_factor = scale_factor - self.latent_rgb_factors = [ - # R G B - [ 0.3512, 0.2297, 0.3227], - [ 0.3250, 0.4974, 0.2350], - [-0.2829, 0.1762, 0.2721], - [-0.2120, -0.2616, -0.7177] - ] - self.taesd_decoder_name = "taesd_decoder" - -class SDXL(LatentFormat): - scale_factor = 0.13025 - - def __init__(self): - self.latent_rgb_factors = [ - # R G B - [ 0.3920, 0.4054, 0.4549], - [-0.2634, -0.0196, 0.0653], - [ 0.0568, 0.1687, -0.0755], - [-0.3112, -0.2359, -0.2076] - ] - self.taesd_decoder_name = "taesdxl_decoder" - -class SDXL_Playground_2_5(LatentFormat): - def __init__(self): - self.scale_factor = 0.5 - self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1) - self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1) - - self.latent_rgb_factors = [ - # R G B - [ 0.3920, 0.4054, 0.4549], - [-0.2634, -0.0196, 0.0653], - [ 0.0568, 0.1687, -0.0755], - [-0.3112, -0.2359, -0.2076] - ] - self.taesd_decoder_name = "taesdxl_decoder" - - def process_in(self, latent): - latents_mean = self.latents_mean.to(latent.device, latent.dtype) - latents_std = self.latents_std.to(latent.device, latent.dtype) - return (latent - latents_mean) * self.scale_factor / latents_std - - def process_out(self, latent): - latents_mean = self.latents_mean.to(latent.device, latent.dtype) - latents_std = self.latents_std.to(latent.device, latent.dtype) - return latent * latents_std / self.scale_factor + latents_mean - - -class SD_X4(LatentFormat): - def __init__(self): - self.scale_factor = 0.08333 - self.latent_rgb_factors = [ - [-0.2340, -0.3863, -0.3257], - [ 0.0994, 0.0885, -0.0908], - [-0.2833, -0.2349, -0.3741], - [ 0.2523, -0.0055, -0.1651] - ] - -class SC_Prior(LatentFormat): - latent_channels = 16 - def __init__(self): - self.scale_factor = 1.0 - self.latent_rgb_factors = [ - [-0.0326, -0.0204, -0.0127], - [-0.1592, -0.0427, 0.0216], - [ 0.0873, 0.0638, -0.0020], - [-0.0602, 0.0442, 0.1304], - [ 0.0800, -0.0313, -0.1796], - [-0.0810, -0.0638, -0.1581], - [ 0.1791, 0.1180, 0.0967], - [ 0.0740, 0.1416, 0.0432], - [-0.1745, -0.1888, -0.1373], - [ 0.2412, 0.1577, 0.0928], - [ 0.1908, 0.0998, 0.0682], - [ 0.0209, 0.0365, -0.0092], - [ 0.0448, -0.0650, -0.1728], - [-0.1658, -0.1045, -0.1308], - [ 0.0542, 0.1545, 0.1325], - [-0.0352, -0.1672, -0.2541] - ] - -class SC_B(LatentFormat): - def __init__(self): - self.scale_factor = 1.0 / 0.43 - self.latent_rgb_factors = [ - [ 0.1121, 0.2006, 0.1023], - [-0.2093, -0.0222, -0.0195], - [-0.3087, -0.1535, 0.0366], - [ 0.0290, -0.1574, -0.4078] - ] - -class SD3(LatentFormat): - latent_channels = 16 - def __init__(self): - self.scale_factor = 1.5305 - self.shift_factor = 0.0609 - self.latent_rgb_factors = [ - [-0.0645, 0.0177, 0.1052], - [ 0.0028, 0.0312, 0.0650], - [ 0.1848, 0.0762, 0.0360], - [ 0.0944, 0.0360, 0.0889], - [ 0.0897, 0.0506, -0.0364], - [-0.0020, 0.1203, 0.0284], - [ 0.0855, 0.0118, 0.0283], - [-0.0539, 0.0658, 0.1047], - [-0.0057, 0.0116, 0.0700], - [-0.0412, 0.0281, -0.0039], - [ 0.1106, 0.1171, 0.1220], - [-0.0248, 0.0682, -0.0481], - [ 0.0815, 0.0846, 0.1207], - [-0.0120, -0.0055, -0.0867], - [-0.0749, -0.0634, -0.0456], - [-0.1418, -0.1457, -0.1259] - ] - self.taesd_decoder_name = "taesd3_decoder" - - def process_in(self, latent): - return (latent - self.shift_factor) * self.scale_factor - - def process_out(self, latent): - return (latent / self.scale_factor) + self.shift_factor - -class StableAudio1(LatentFormat): - latent_channels = 64 diff --git a/MagicQuill/comfy/ldm/.DS_Store b/MagicQuill/comfy/ldm/.DS_Store deleted file mode 100644 index d0da439dffcc3253b60c3efbd08401ed8b1d1bf9..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/.DS_Store and /dev/null differ diff --git a/MagicQuill/comfy/ldm/__pycache__/util.cpython-310.pyc b/MagicQuill/comfy/ldm/__pycache__/util.cpython-310.pyc deleted file mode 100644 index 4d31ebda5f4eae344a83438bacec2896e5d6c7b9..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/__pycache__/util.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/audio/__pycache__/autoencoder.cpython-310.pyc b/MagicQuill/comfy/ldm/audio/__pycache__/autoencoder.cpython-310.pyc deleted file mode 100644 index 597f928a2baedd77d407f298208acd1c321f97e1..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/audio/__pycache__/autoencoder.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/audio/__pycache__/dit.cpython-310.pyc b/MagicQuill/comfy/ldm/audio/__pycache__/dit.cpython-310.pyc deleted file mode 100644 index 1320d3d9a7caeaa211721822f32ee98ed9369ea6..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/audio/__pycache__/dit.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/audio/__pycache__/embedders.cpython-310.pyc b/MagicQuill/comfy/ldm/audio/__pycache__/embedders.cpython-310.pyc deleted file mode 100644 index 0e6022d868f4f6a4b121fe3aa48d2c4c1582104e..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/audio/__pycache__/embedders.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/audio/autoencoder.py b/MagicQuill/comfy/ldm/audio/autoencoder.py deleted file mode 100644 index 8123e66a50074d63bea45591f48e44723dbe5ebf..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/audio/autoencoder.py +++ /dev/null @@ -1,282 +0,0 @@ -# code adapted from: https://github.com/Stability-AI/stable-audio-tools - -import torch -from torch import nn -from typing import Literal, Dict, Any -import math -import comfy.ops -ops = comfy.ops.disable_weight_init - -def vae_sample(mean, scale): - stdev = nn.functional.softplus(scale) + 1e-4 - var = stdev * stdev - logvar = torch.log(var) - latents = torch.randn_like(mean) * stdev + mean - - kl = (mean * mean + var - logvar - 1).sum(1).mean() - - return latents, kl - -class VAEBottleneck(nn.Module): - def __init__(self): - super().__init__() - self.is_discrete = False - - def encode(self, x, return_info=False, **kwargs): - info = {} - - mean, scale = x.chunk(2, dim=1) - - x, kl = vae_sample(mean, scale) - - info["kl"] = kl - - if return_info: - return x, info - else: - return x - - def decode(self, x): - return x - - -def snake_beta(x, alpha, beta): - return x + (1.0 / (beta + 0.000000001)) * pow(torch.sin(x * alpha), 2) - -# Adapted from https://github.com/NVIDIA/BigVGAN/blob/main/activations.py under MIT license -class SnakeBeta(nn.Module): - - def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True): - super(SnakeBeta, self).__init__() - self.in_features = in_features - - # initialize alpha - self.alpha_logscale = alpha_logscale - if self.alpha_logscale: # log scale alphas initialized to zeros - self.alpha = nn.Parameter(torch.zeros(in_features) * alpha) - self.beta = nn.Parameter(torch.zeros(in_features) * alpha) - else: # linear scale alphas initialized to ones - self.alpha = nn.Parameter(torch.ones(in_features) * alpha) - self.beta = nn.Parameter(torch.ones(in_features) * alpha) - - # self.alpha.requires_grad = alpha_trainable - # self.beta.requires_grad = alpha_trainable - - self.no_div_by_zero = 0.000000001 - - def forward(self, x): - alpha = self.alpha.unsqueeze(0).unsqueeze(-1).to(x.device) # line up with x to [B, C, T] - beta = self.beta.unsqueeze(0).unsqueeze(-1).to(x.device) - if self.alpha_logscale: - alpha = torch.exp(alpha) - beta = torch.exp(beta) - x = snake_beta(x, alpha, beta) - - return x - -def WNConv1d(*args, **kwargs): - try: - return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs)) - except: - return torch.nn.utils.weight_norm(ops.Conv1d(*args, **kwargs)) #support pytorch 2.1 and older - -def WNConvTranspose1d(*args, **kwargs): - try: - return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) - except: - return torch.nn.utils.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) #support pytorch 2.1 and older - -def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module: - if activation == "elu": - act = torch.nn.ELU() - elif activation == "snake": - act = SnakeBeta(channels) - elif activation == "none": - act = torch.nn.Identity() - else: - raise ValueError(f"Unknown activation {activation}") - - if antialias: - act = Activation1d(act) - - return act - - -class ResidualUnit(nn.Module): - def __init__(self, in_channels, out_channels, dilation, use_snake=False, antialias_activation=False): - super().__init__() - - self.dilation = dilation - - padding = (dilation * (7-1)) // 2 - - self.layers = nn.Sequential( - get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels), - WNConv1d(in_channels=in_channels, out_channels=out_channels, - kernel_size=7, dilation=dilation, padding=padding), - get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels), - WNConv1d(in_channels=out_channels, out_channels=out_channels, - kernel_size=1) - ) - - def forward(self, x): - res = x - - #x = checkpoint(self.layers, x) - x = self.layers(x) - - return x + res - -class EncoderBlock(nn.Module): - def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False): - super().__init__() - - self.layers = nn.Sequential( - ResidualUnit(in_channels=in_channels, - out_channels=in_channels, dilation=1, use_snake=use_snake), - ResidualUnit(in_channels=in_channels, - out_channels=in_channels, dilation=3, use_snake=use_snake), - ResidualUnit(in_channels=in_channels, - out_channels=in_channels, dilation=9, use_snake=use_snake), - get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels), - WNConv1d(in_channels=in_channels, out_channels=out_channels, - kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)), - ) - - def forward(self, x): - return self.layers(x) - -class DecoderBlock(nn.Module): - def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False, use_nearest_upsample=False): - super().__init__() - - if use_nearest_upsample: - upsample_layer = nn.Sequential( - nn.Upsample(scale_factor=stride, mode="nearest"), - WNConv1d(in_channels=in_channels, - out_channels=out_channels, - kernel_size=2*stride, - stride=1, - bias=False, - padding='same') - ) - else: - upsample_layer = WNConvTranspose1d(in_channels=in_channels, - out_channels=out_channels, - kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)) - - self.layers = nn.Sequential( - get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels), - upsample_layer, - ResidualUnit(in_channels=out_channels, out_channels=out_channels, - dilation=1, use_snake=use_snake), - ResidualUnit(in_channels=out_channels, out_channels=out_channels, - dilation=3, use_snake=use_snake), - ResidualUnit(in_channels=out_channels, out_channels=out_channels, - dilation=9, use_snake=use_snake), - ) - - def forward(self, x): - return self.layers(x) - -class OobleckEncoder(nn.Module): - def __init__(self, - in_channels=2, - channels=128, - latent_dim=32, - c_mults = [1, 2, 4, 8], - strides = [2, 4, 8, 8], - use_snake=False, - antialias_activation=False - ): - super().__init__() - - c_mults = [1] + c_mults - - self.depth = len(c_mults) - - layers = [ - WNConv1d(in_channels=in_channels, out_channels=c_mults[0] * channels, kernel_size=7, padding=3) - ] - - for i in range(self.depth-1): - layers += [EncoderBlock(in_channels=c_mults[i]*channels, out_channels=c_mults[i+1]*channels, stride=strides[i], use_snake=use_snake)] - - layers += [ - get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[-1] * channels), - WNConv1d(in_channels=c_mults[-1]*channels, out_channels=latent_dim, kernel_size=3, padding=1) - ] - - self.layers = nn.Sequential(*layers) - - def forward(self, x): - return self.layers(x) - - -class OobleckDecoder(nn.Module): - def __init__(self, - out_channels=2, - channels=128, - latent_dim=32, - c_mults = [1, 2, 4, 8], - strides = [2, 4, 8, 8], - use_snake=False, - antialias_activation=False, - use_nearest_upsample=False, - final_tanh=True): - super().__init__() - - c_mults = [1] + c_mults - - self.depth = len(c_mults) - - layers = [ - WNConv1d(in_channels=latent_dim, out_channels=c_mults[-1]*channels, kernel_size=7, padding=3), - ] - - for i in range(self.depth-1, 0, -1): - layers += [DecoderBlock( - in_channels=c_mults[i]*channels, - out_channels=c_mults[i-1]*channels, - stride=strides[i-1], - use_snake=use_snake, - antialias_activation=antialias_activation, - use_nearest_upsample=use_nearest_upsample - ) - ] - - layers += [ - get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[0] * channels), - WNConv1d(in_channels=c_mults[0] * channels, out_channels=out_channels, kernel_size=7, padding=3, bias=False), - nn.Tanh() if final_tanh else nn.Identity() - ] - - self.layers = nn.Sequential(*layers) - - def forward(self, x): - return self.layers(x) - - -class AudioOobleckVAE(nn.Module): - def __init__(self, - in_channels=2, - channels=128, - latent_dim=64, - c_mults = [1, 2, 4, 8, 16], - strides = [2, 4, 4, 8, 8], - use_snake=True, - antialias_activation=False, - use_nearest_upsample=False, - final_tanh=False): - super().__init__() - self.encoder = OobleckEncoder(in_channels, channels, latent_dim * 2, c_mults, strides, use_snake, antialias_activation) - self.decoder = OobleckDecoder(in_channels, channels, latent_dim, c_mults, strides, use_snake, antialias_activation, - use_nearest_upsample=use_nearest_upsample, final_tanh=final_tanh) - self.bottleneck = VAEBottleneck() - - def encode(self, x): - return self.bottleneck.encode(self.encoder(x)) - - def decode(self, x): - return self.decoder(self.bottleneck.decode(x)) - diff --git a/MagicQuill/comfy/ldm/audio/dit.py b/MagicQuill/comfy/ldm/audio/dit.py deleted file mode 100644 index 1c1112c5e562c7bdef8e8a795f26803a3d398dd1..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/audio/dit.py +++ /dev/null @@ -1,888 +0,0 @@ -# code adapted from: https://github.com/Stability-AI/stable-audio-tools - -from comfy.ldm.modules.attention import optimized_attention -import typing as tp - -import torch - -from einops import rearrange -from torch import nn -from torch.nn import functional as F -import math - -class FourierFeatures(nn.Module): - def __init__(self, in_features, out_features, std=1., dtype=None, device=None): - super().__init__() - assert out_features % 2 == 0 - self.weight = nn.Parameter(torch.empty( - [out_features // 2, in_features], dtype=dtype, device=device)) - - def forward(self, input): - f = 2 * math.pi * input @ self.weight.T.to(dtype=input.dtype, device=input.device) - return torch.cat([f.cos(), f.sin()], dim=-1) - -# norms -class LayerNorm(nn.Module): - def __init__(self, dim, bias=False, fix_scale=False, dtype=None, device=None): - """ - bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less - """ - super().__init__() - - self.gamma = nn.Parameter(torch.empty(dim, dtype=dtype, device=device)) - - if bias: - self.beta = nn.Parameter(torch.empty(dim, dtype=dtype, device=device)) - else: - self.beta = None - - def forward(self, x): - beta = self.beta - if self.beta is not None: - beta = beta.to(dtype=x.dtype, device=x.device) - return F.layer_norm(x, x.shape[-1:], weight=self.gamma.to(dtype=x.dtype, device=x.device), bias=beta) - -class GLU(nn.Module): - def __init__( - self, - dim_in, - dim_out, - activation, - use_conv = False, - conv_kernel_size = 3, - dtype=None, - device=None, - operations=None, - ): - super().__init__() - self.act = activation - self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim_in, dim_out * 2, conv_kernel_size, padding = (conv_kernel_size // 2), dtype=dtype, device=device) - self.use_conv = use_conv - - def forward(self, x): - if self.use_conv: - x = rearrange(x, 'b n d -> b d n') - x = self.proj(x) - x = rearrange(x, 'b d n -> b n d') - else: - x = self.proj(x) - - x, gate = x.chunk(2, dim = -1) - return x * self.act(gate) - -class AbsolutePositionalEmbedding(nn.Module): - def __init__(self, dim, max_seq_len): - super().__init__() - self.scale = dim ** -0.5 - self.max_seq_len = max_seq_len - self.emb = nn.Embedding(max_seq_len, dim) - - def forward(self, x, pos = None, seq_start_pos = None): - seq_len, device = x.shape[1], x.device - assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}' - - if pos is None: - pos = torch.arange(seq_len, device = device) - - if seq_start_pos is not None: - pos = (pos - seq_start_pos[..., None]).clamp(min = 0) - - pos_emb = self.emb(pos) - pos_emb = pos_emb * self.scale - return pos_emb - -class ScaledSinusoidalEmbedding(nn.Module): - def __init__(self, dim, theta = 10000): - super().__init__() - assert (dim % 2) == 0, 'dimension must be divisible by 2' - self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5) - - half_dim = dim // 2 - freq_seq = torch.arange(half_dim).float() / half_dim - inv_freq = theta ** -freq_seq - self.register_buffer('inv_freq', inv_freq, persistent = False) - - def forward(self, x, pos = None, seq_start_pos = None): - seq_len, device = x.shape[1], x.device - - if pos is None: - pos = torch.arange(seq_len, device = device) - - if seq_start_pos is not None: - pos = pos - seq_start_pos[..., None] - - emb = torch.einsum('i, j -> i j', pos, self.inv_freq) - emb = torch.cat((emb.sin(), emb.cos()), dim = -1) - return emb * self.scale - -class RotaryEmbedding(nn.Module): - def __init__( - self, - dim, - use_xpos = False, - scale_base = 512, - interpolation_factor = 1., - base = 10000, - base_rescale_factor = 1. - ): - super().__init__() - # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning - # has some connection to NTK literature - # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ - base *= base_rescale_factor ** (dim / (dim - 2)) - - inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) - self.register_buffer('inv_freq', inv_freq) - - assert interpolation_factor >= 1. - self.interpolation_factor = interpolation_factor - - if not use_xpos: - self.register_buffer('scale', None) - return - - scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) - - self.scale_base = scale_base - self.register_buffer('scale', scale) - - def forward_from_seq_len(self, seq_len, device, dtype): - # device = self.inv_freq.device - - t = torch.arange(seq_len, device=device, dtype=dtype) - return self.forward(t) - - def forward(self, t): - # device = self.inv_freq.device - device = t.device - dtype = t.dtype - - # t = t.to(torch.float32) - - t = t / self.interpolation_factor - - freqs = torch.einsum('i , j -> i j', t, self.inv_freq.to(dtype=dtype, device=device)) - freqs = torch.cat((freqs, freqs), dim = -1) - - if self.scale is None: - return freqs, 1. - - power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base - scale = self.scale.to(dtype=dtype, device=device) ** rearrange(power, 'n -> n 1') - scale = torch.cat((scale, scale), dim = -1) - - return freqs, scale - -def rotate_half(x): - x = rearrange(x, '... (j d) -> ... j d', j = 2) - x1, x2 = x.unbind(dim = -2) - return torch.cat((-x2, x1), dim = -1) - -def apply_rotary_pos_emb(t, freqs, scale = 1): - out_dtype = t.dtype - - # cast to float32 if necessary for numerical stability - dtype = t.dtype #reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32)) - rot_dim, seq_len = freqs.shape[-1], t.shape[-2] - freqs, t = freqs.to(dtype), t.to(dtype) - freqs = freqs[-seq_len:, :] - - if t.ndim == 4 and freqs.ndim == 3: - freqs = rearrange(freqs, 'b n d -> b 1 n d') - - # partial rotary embeddings, Wang et al. GPT-J - t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:] - t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) - - t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype) - - return torch.cat((t, t_unrotated), dim = -1) - -class FeedForward(nn.Module): - def __init__( - self, - dim, - dim_out = None, - mult = 4, - no_bias = False, - glu = True, - use_conv = False, - conv_kernel_size = 3, - zero_init_output = True, - dtype=None, - device=None, - operations=None, - ): - super().__init__() - inner_dim = int(dim * mult) - - # Default to SwiGLU - - activation = nn.SiLU() - - dim_out = dim if dim_out is None else dim_out - - if glu: - linear_in = GLU(dim, inner_dim, activation, dtype=dtype, device=device, operations=operations) - else: - linear_in = nn.Sequential( - Rearrange('b n d -> b d n') if use_conv else nn.Identity(), - operations.Linear(dim, inner_dim, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device), - Rearrange('b n d -> b d n') if use_conv else nn.Identity(), - activation - ) - - linear_out = operations.Linear(inner_dim, dim_out, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(inner_dim, dim_out, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device) - - # # init last linear layer to 0 - # if zero_init_output: - # nn.init.zeros_(linear_out.weight) - # if not no_bias: - # nn.init.zeros_(linear_out.bias) - - - self.ff = nn.Sequential( - linear_in, - Rearrange('b d n -> b n d') if use_conv else nn.Identity(), - linear_out, - Rearrange('b n d -> b d n') if use_conv else nn.Identity(), - ) - - def forward(self, x): - return self.ff(x) - -class Attention(nn.Module): - def __init__( - self, - dim, - dim_heads = 64, - dim_context = None, - causal = False, - zero_init_output=True, - qk_norm = False, - natten_kernel_size = None, - dtype=None, - device=None, - operations=None, - ): - super().__init__() - self.dim = dim - self.dim_heads = dim_heads - self.causal = causal - - dim_kv = dim_context if dim_context is not None else dim - - self.num_heads = dim // dim_heads - self.kv_heads = dim_kv // dim_heads - - if dim_context is not None: - self.to_q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) - self.to_kv = operations.Linear(dim_kv, dim_kv * 2, bias=False, dtype=dtype, device=device) - else: - self.to_qkv = operations.Linear(dim, dim * 3, bias=False, dtype=dtype, device=device) - - self.to_out = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) - - # if zero_init_output: - # nn.init.zeros_(self.to_out.weight) - - self.qk_norm = qk_norm - - - def forward( - self, - x, - context = None, - mask = None, - context_mask = None, - rotary_pos_emb = None, - causal = None - ): - h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None - - kv_input = context if has_context else x - - if hasattr(self, 'to_q'): - # Use separate linear projections for q and k/v - q = self.to_q(x) - q = rearrange(q, 'b n (h d) -> b h n d', h = h) - - k, v = self.to_kv(kv_input).chunk(2, dim=-1) - - k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = kv_h), (k, v)) - else: - # Use fused linear projection - q, k, v = self.to_qkv(x).chunk(3, dim=-1) - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) - - # Normalize q and k for cosine sim attention - if self.qk_norm: - q = F.normalize(q, dim=-1) - k = F.normalize(k, dim=-1) - - if rotary_pos_emb is not None and not has_context: - freqs, _ = rotary_pos_emb - - q_dtype = q.dtype - k_dtype = k.dtype - - q = q.to(torch.float32) - k = k.to(torch.float32) - freqs = freqs.to(torch.float32) - - q = apply_rotary_pos_emb(q, freqs) - k = apply_rotary_pos_emb(k, freqs) - - q = q.to(q_dtype) - k = k.to(k_dtype) - - input_mask = context_mask - - if input_mask is None and not has_context: - input_mask = mask - - # determine masking - masks = [] - final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account - - if input_mask is not None: - input_mask = rearrange(input_mask, 'b j -> b 1 1 j') - masks.append(~input_mask) - - # Other masks will be added here later - - if len(masks) > 0: - final_attn_mask = ~or_reduce(masks) - - n, device = q.shape[-2], q.device - - causal = self.causal if causal is None else causal - - if n == 1 and causal: - causal = False - - if h != kv_h: - # Repeat interleave kv_heads to match q_heads - heads_per_kv_head = h // kv_h - k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v)) - - out = optimized_attention(q, k, v, h, skip_reshape=True) - out = self.to_out(out) - - if mask is not None: - mask = rearrange(mask, 'b n -> b n 1') - out = out.masked_fill(~mask, 0.) - - return out - -class ConformerModule(nn.Module): - def __init__( - self, - dim, - norm_kwargs = {}, - ): - - super().__init__() - - self.dim = dim - - self.in_norm = LayerNorm(dim, **norm_kwargs) - self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False) - self.glu = GLU(dim, dim, nn.SiLU()) - self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False) - self.mid_norm = LayerNorm(dim, **norm_kwargs) # This is a batch norm in the original but I don't like batch norm - self.swish = nn.SiLU() - self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False) - - def forward(self, x): - x = self.in_norm(x) - x = rearrange(x, 'b n d -> b d n') - x = self.pointwise_conv(x) - x = rearrange(x, 'b d n -> b n d') - x = self.glu(x) - x = rearrange(x, 'b n d -> b d n') - x = self.depthwise_conv(x) - x = rearrange(x, 'b d n -> b n d') - x = self.mid_norm(x) - x = self.swish(x) - x = rearrange(x, 'b n d -> b d n') - x = self.pointwise_conv_2(x) - x = rearrange(x, 'b d n -> b n d') - - return x - -class TransformerBlock(nn.Module): - def __init__( - self, - dim, - dim_heads = 64, - cross_attend = False, - dim_context = None, - global_cond_dim = None, - causal = False, - zero_init_branch_outputs = True, - conformer = False, - layer_ix = -1, - remove_norms = False, - attn_kwargs = {}, - ff_kwargs = {}, - norm_kwargs = {}, - dtype=None, - device=None, - operations=None, - ): - - super().__init__() - self.dim = dim - self.dim_heads = dim_heads - self.cross_attend = cross_attend - self.dim_context = dim_context - self.causal = causal - - self.pre_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity() - - self.self_attn = Attention( - dim, - dim_heads = dim_heads, - causal = causal, - zero_init_output=zero_init_branch_outputs, - dtype=dtype, - device=device, - operations=operations, - **attn_kwargs - ) - - if cross_attend: - self.cross_attend_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity() - self.cross_attn = Attention( - dim, - dim_heads = dim_heads, - dim_context=dim_context, - causal = causal, - zero_init_output=zero_init_branch_outputs, - dtype=dtype, - device=device, - operations=operations, - **attn_kwargs - ) - - self.ff_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity() - self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, dtype=dtype, device=device, operations=operations,**ff_kwargs) - - self.layer_ix = layer_ix - - self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None - - self.global_cond_dim = global_cond_dim - - if global_cond_dim is not None: - self.to_scale_shift_gate = nn.Sequential( - nn.SiLU(), - nn.Linear(global_cond_dim, dim * 6, bias=False) - ) - - nn.init.zeros_(self.to_scale_shift_gate[1].weight) - #nn.init.zeros_(self.to_scale_shift_gate_self[1].bias) - - def forward( - self, - x, - context = None, - global_cond=None, - mask = None, - context_mask = None, - rotary_pos_emb = None - ): - if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None: - - scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(global_cond).unsqueeze(1).chunk(6, dim = -1) - - # self-attention with adaLN - residual = x - x = self.pre_norm(x) - x = x * (1 + scale_self) + shift_self - x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb) - x = x * torch.sigmoid(1 - gate_self) - x = x + residual - - if context is not None: - x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask) - - if self.conformer is not None: - x = x + self.conformer(x) - - # feedforward with adaLN - residual = x - x = self.ff_norm(x) - x = x * (1 + scale_ff) + shift_ff - x = self.ff(x) - x = x * torch.sigmoid(1 - gate_ff) - x = x + residual - - else: - x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb) - - if context is not None: - x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask) - - if self.conformer is not None: - x = x + self.conformer(x) - - x = x + self.ff(self.ff_norm(x)) - - return x - -class ContinuousTransformer(nn.Module): - def __init__( - self, - dim, - depth, - *, - dim_in = None, - dim_out = None, - dim_heads = 64, - cross_attend=False, - cond_token_dim=None, - global_cond_dim=None, - causal=False, - rotary_pos_emb=True, - zero_init_branch_outputs=True, - conformer=False, - use_sinusoidal_emb=False, - use_abs_pos_emb=False, - abs_pos_emb_max_length=10000, - dtype=None, - device=None, - operations=None, - **kwargs - ): - - super().__init__() - - self.dim = dim - self.depth = depth - self.causal = causal - self.layers = nn.ModuleList([]) - - self.project_in = operations.Linear(dim_in, dim, bias=False, dtype=dtype, device=device) if dim_in is not None else nn.Identity() - self.project_out = operations.Linear(dim, dim_out, bias=False, dtype=dtype, device=device) if dim_out is not None else nn.Identity() - - if rotary_pos_emb: - self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32)) - else: - self.rotary_pos_emb = None - - self.use_sinusoidal_emb = use_sinusoidal_emb - if use_sinusoidal_emb: - self.pos_emb = ScaledSinusoidalEmbedding(dim) - - self.use_abs_pos_emb = use_abs_pos_emb - if use_abs_pos_emb: - self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length) - - for i in range(depth): - self.layers.append( - TransformerBlock( - dim, - dim_heads = dim_heads, - cross_attend = cross_attend, - dim_context = cond_token_dim, - global_cond_dim = global_cond_dim, - causal = causal, - zero_init_branch_outputs = zero_init_branch_outputs, - conformer=conformer, - layer_ix=i, - dtype=dtype, - device=device, - operations=operations, - **kwargs - ) - ) - - def forward( - self, - x, - mask = None, - prepend_embeds = None, - prepend_mask = None, - global_cond = None, - return_info = False, - **kwargs - ): - batch, seq, device = *x.shape[:2], x.device - - info = { - "hidden_states": [], - } - - x = self.project_in(x) - - if prepend_embeds is not None: - prepend_length, prepend_dim = prepend_embeds.shape[1:] - - assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension' - - x = torch.cat((prepend_embeds, x), dim = -2) - - if prepend_mask is not None or mask is not None: - mask = mask if mask is not None else torch.ones((batch, seq), device = device, dtype = torch.bool) - prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), device = device, dtype = torch.bool) - - mask = torch.cat((prepend_mask, mask), dim = -1) - - # Attention layers - - if self.rotary_pos_emb is not None: - rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device) - else: - rotary_pos_emb = None - - if self.use_sinusoidal_emb or self.use_abs_pos_emb: - x = x + self.pos_emb(x) - - # Iterate over the transformer layers - for layer in self.layers: - x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs) - # x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs) - - if return_info: - info["hidden_states"].append(x) - - x = self.project_out(x) - - if return_info: - return x, info - - return x - -class AudioDiffusionTransformer(nn.Module): - def __init__(self, - io_channels=64, - patch_size=1, - embed_dim=1536, - cond_token_dim=768, - project_cond_tokens=False, - global_cond_dim=1536, - project_global_cond=True, - input_concat_dim=0, - prepend_cond_dim=0, - depth=24, - num_heads=24, - transformer_type: tp.Literal["continuous_transformer"] = "continuous_transformer", - global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend", - audio_model="", - dtype=None, - device=None, - operations=None, - **kwargs): - - super().__init__() - - self.dtype = dtype - self.cond_token_dim = cond_token_dim - - # Timestep embeddings - timestep_features_dim = 256 - - self.timestep_features = FourierFeatures(1, timestep_features_dim, dtype=dtype, device=device) - - self.to_timestep_embed = nn.Sequential( - operations.Linear(timestep_features_dim, embed_dim, bias=True, dtype=dtype, device=device), - nn.SiLU(), - operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device), - ) - - if cond_token_dim > 0: - # Conditioning tokens - - cond_embed_dim = cond_token_dim if not project_cond_tokens else embed_dim - self.to_cond_embed = nn.Sequential( - operations.Linear(cond_token_dim, cond_embed_dim, bias=False, dtype=dtype, device=device), - nn.SiLU(), - operations.Linear(cond_embed_dim, cond_embed_dim, bias=False, dtype=dtype, device=device) - ) - else: - cond_embed_dim = 0 - - if global_cond_dim > 0: - # Global conditioning - global_embed_dim = global_cond_dim if not project_global_cond else embed_dim - self.to_global_embed = nn.Sequential( - operations.Linear(global_cond_dim, global_embed_dim, bias=False, dtype=dtype, device=device), - nn.SiLU(), - operations.Linear(global_embed_dim, global_embed_dim, bias=False, dtype=dtype, device=device) - ) - - if prepend_cond_dim > 0: - # Prepend conditioning - self.to_prepend_embed = nn.Sequential( - operations.Linear(prepend_cond_dim, embed_dim, bias=False, dtype=dtype, device=device), - nn.SiLU(), - operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device) - ) - - self.input_concat_dim = input_concat_dim - - dim_in = io_channels + self.input_concat_dim - - self.patch_size = patch_size - - # Transformer - - self.transformer_type = transformer_type - - self.global_cond_type = global_cond_type - - if self.transformer_type == "continuous_transformer": - - global_dim = None - - if self.global_cond_type == "adaLN": - # The global conditioning is projected to the embed_dim already at this point - global_dim = embed_dim - - self.transformer = ContinuousTransformer( - dim=embed_dim, - depth=depth, - dim_heads=embed_dim // num_heads, - dim_in=dim_in * patch_size, - dim_out=io_channels * patch_size, - cross_attend = cond_token_dim > 0, - cond_token_dim = cond_embed_dim, - global_cond_dim=global_dim, - dtype=dtype, - device=device, - operations=operations, - **kwargs - ) - else: - raise ValueError(f"Unknown transformer type: {self.transformer_type}") - - self.preprocess_conv = operations.Conv1d(dim_in, dim_in, 1, bias=False, dtype=dtype, device=device) - self.postprocess_conv = operations.Conv1d(io_channels, io_channels, 1, bias=False, dtype=dtype, device=device) - - def _forward( - self, - x, - t, - mask=None, - cross_attn_cond=None, - cross_attn_cond_mask=None, - input_concat_cond=None, - global_embed=None, - prepend_cond=None, - prepend_cond_mask=None, - return_info=False, - **kwargs): - - if cross_attn_cond is not None: - cross_attn_cond = self.to_cond_embed(cross_attn_cond) - - if global_embed is not None: - # Project the global conditioning to the embedding dimension - global_embed = self.to_global_embed(global_embed) - - prepend_inputs = None - prepend_mask = None - prepend_length = 0 - if prepend_cond is not None: - # Project the prepend conditioning to the embedding dimension - prepend_cond = self.to_prepend_embed(prepend_cond) - - prepend_inputs = prepend_cond - if prepend_cond_mask is not None: - prepend_mask = prepend_cond_mask - - if input_concat_cond is not None: - - # Interpolate input_concat_cond to the same length as x - if input_concat_cond.shape[2] != x.shape[2]: - input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest') - - x = torch.cat([x, input_concat_cond], dim=1) - - # Get the batch of timestep embeddings - timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None]).to(x.dtype)) # (b, embed_dim) - - # Timestep embedding is considered a global embedding. Add to the global conditioning if it exists - if global_embed is not None: - global_embed = global_embed + timestep_embed - else: - global_embed = timestep_embed - - # Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer - if self.global_cond_type == "prepend": - if prepend_inputs is None: - # Prepend inputs are just the global embed, and the mask is all ones - prepend_inputs = global_embed.unsqueeze(1) - prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool) - else: - # Prepend inputs are the prepend conditioning + the global embed - prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1) - prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)], dim=1) - - prepend_length = prepend_inputs.shape[1] - - x = self.preprocess_conv(x) + x - - x = rearrange(x, "b c t -> b t c") - - extra_args = {} - - if self.global_cond_type == "adaLN": - extra_args["global_cond"] = global_embed - - if self.patch_size > 1: - x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size) - - if self.transformer_type == "x-transformers": - output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, **extra_args, **kwargs) - elif self.transformer_type == "continuous_transformer": - output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, return_info=return_info, **extra_args, **kwargs) - - if return_info: - output, info = output - elif self.transformer_type == "mm_transformer": - output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask, **extra_args, **kwargs) - - output = rearrange(output, "b t c -> b c t")[:,:,prepend_length:] - - if self.patch_size > 1: - output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size) - - output = self.postprocess_conv(output) + output - - if return_info: - return output, info - - return output - - def forward( - self, - x, - timestep, - context=None, - context_mask=None, - input_concat_cond=None, - global_embed=None, - negative_global_embed=None, - prepend_cond=None, - prepend_cond_mask=None, - mask=None, - return_info=False, - control=None, - transformer_options={}, - **kwargs): - return self._forward( - x, - timestep, - cross_attn_cond=context, - cross_attn_cond_mask=context_mask, - input_concat_cond=input_concat_cond, - global_embed=global_embed, - prepend_cond=prepend_cond, - prepend_cond_mask=prepend_cond_mask, - mask=mask, - return_info=return_info, - **kwargs - ) diff --git a/MagicQuill/comfy/ldm/audio/embedders.py b/MagicQuill/comfy/ldm/audio/embedders.py deleted file mode 100644 index 82a3210c60de10b4294335cd0001cb3e72b68bd6..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/audio/embedders.py +++ /dev/null @@ -1,108 +0,0 @@ -# code adapted from: https://github.com/Stability-AI/stable-audio-tools - -import torch -import torch.nn as nn -from torch import Tensor, einsum -from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union -from einops import rearrange -import math -import comfy.ops - -class LearnedPositionalEmbedding(nn.Module): - """Used for continuous time""" - - def __init__(self, dim: int): - super().__init__() - assert (dim % 2) == 0 - half_dim = dim // 2 - self.weights = nn.Parameter(torch.empty(half_dim)) - - def forward(self, x: Tensor) -> Tensor: - x = rearrange(x, "b -> b 1") - freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * math.pi - fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1) - fouriered = torch.cat((x, fouriered), dim=-1) - return fouriered - -def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module: - return nn.Sequential( - LearnedPositionalEmbedding(dim), - comfy.ops.manual_cast.Linear(in_features=dim + 1, out_features=out_features), - ) - - -class NumberEmbedder(nn.Module): - def __init__( - self, - features: int, - dim: int = 256, - ): - super().__init__() - self.features = features - self.embedding = TimePositionalEmbedding(dim=dim, out_features=features) - - def forward(self, x: Union[List[float], Tensor]) -> Tensor: - if not torch.is_tensor(x): - device = next(self.embedding.parameters()).device - x = torch.tensor(x, device=device) - assert isinstance(x, Tensor) - shape = x.shape - x = rearrange(x, "... -> (...)") - embedding = self.embedding(x) - x = embedding.view(*shape, self.features) - return x # type: ignore - - -class Conditioner(nn.Module): - def __init__( - self, - dim: int, - output_dim: int, - project_out: bool = False - ): - - super().__init__() - - self.dim = dim - self.output_dim = output_dim - self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity() - - def forward(self, x): - raise NotImplementedError() - -class NumberConditioner(Conditioner): - ''' - Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings - ''' - def __init__(self, - output_dim: int, - min_val: float=0, - max_val: float=1 - ): - super().__init__(output_dim, output_dim) - - self.min_val = min_val - self.max_val = max_val - - self.embedder = NumberEmbedder(features=output_dim) - - def forward(self, floats, device=None): - # Cast the inputs to floats - floats = [float(x) for x in floats] - - if device is None: - device = next(self.embedder.parameters()).device - - floats = torch.tensor(floats).to(device) - - floats = floats.clamp(self.min_val, self.max_val) - - normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val) - - # Cast floats to same type as embedder - embedder_dtype = next(self.embedder.parameters()).dtype - normalized_floats = normalized_floats.to(embedder_dtype) - - float_embeds = self.embedder(normalized_floats).unsqueeze(1) - - return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)] diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/common.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/common.cpython-310.pyc deleted file mode 100644 index 3a9ea796d0c4086f3ebb206a54854854753acbfa..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/cascade/__pycache__/common.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/controlnet.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/controlnet.cpython-310.pyc deleted file mode 100644 index 5c8f72c9827aba12665b962386139aeee28c951c..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/cascade/__pycache__/controlnet.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_a.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_a.cpython-310.pyc deleted file mode 100644 index 7eed682b6a5f0bde97d31a7b300f630b7d5bbd78..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_a.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_b.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_b.cpython-310.pyc deleted file mode 100644 index 91226e7ab8aabee452a15165b1a37cc686a5e539..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_b.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c.cpython-310.pyc deleted file mode 100644 index 0daa227d63a708765dd499be35082dcef1212d56..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c_coder.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c_coder.cpython-310.pyc deleted file mode 100644 index 1a556f78558b85c7299efc4575c471d1e076ceef..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c_coder.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/cascade/common.py b/MagicQuill/comfy/ldm/cascade/common.py deleted file mode 100644 index 124902c09a4599e97a4e4c80f9d83b9d44eab22e..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/cascade/common.py +++ /dev/null @@ -1,161 +0,0 @@ -""" - This file is part of ComfyUI. - Copyright (C) 2024 Stability AI - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . -""" - -import torch -import torch.nn as nn -from comfy.ldm.modules.attention import optimized_attention - -class Linear(torch.nn.Linear): - def reset_parameters(self): - return None - -class Conv2d(torch.nn.Conv2d): - def reset_parameters(self): - return None - -class OptimizedAttention(nn.Module): - def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None): - super().__init__() - self.heads = nhead - - self.to_q = operations.Linear(c, c, bias=True, dtype=dtype, device=device) - self.to_k = operations.Linear(c, c, bias=True, dtype=dtype, device=device) - self.to_v = operations.Linear(c, c, bias=True, dtype=dtype, device=device) - - self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device) - - def forward(self, q, k, v): - q = self.to_q(q) - k = self.to_k(k) - v = self.to_v(v) - - out = optimized_attention(q, k, v, self.heads) - - return self.out_proj(out) - -class Attention2D(nn.Module): - def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None): - super().__init__() - self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations) - # self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device) - - def forward(self, x, kv, self_attn=False): - orig_shape = x.shape - x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4 - if self_attn: - kv = torch.cat([x, kv], dim=1) - # x = self.attn(x, kv, kv, need_weights=False)[0] - x = self.attn(x, kv, kv) - x = x.permute(0, 2, 1).view(*orig_shape) - return x - - -def LayerNorm2d_op(operations): - class LayerNorm2d(operations.LayerNorm): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - def forward(self, x): - return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) - return LayerNorm2d - -class GlobalResponseNorm(nn.Module): - "from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105" - def __init__(self, dim, dtype=None, device=None): - super().__init__() - self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device)) - self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device)) - - def forward(self, x): - Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) - Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) - return self.gamma.to(device=x.device, dtype=x.dtype) * (x * Nx) + self.beta.to(device=x.device, dtype=x.dtype) + x - - -class ResBlock(nn.Module): - def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0, dtype=None, device=None, operations=None): # , num_heads=4, expansion=2): - super().__init__() - self.depthwise = operations.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c, dtype=dtype, device=device) - # self.depthwise = SAMBlock(c, num_heads, expansion) - self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.channelwise = nn.Sequential( - operations.Linear(c + c_skip, c * 4, dtype=dtype, device=device), - nn.GELU(), - GlobalResponseNorm(c * 4, dtype=dtype, device=device), - nn.Dropout(dropout), - operations.Linear(c * 4, c, dtype=dtype, device=device) - ) - - def forward(self, x, x_skip=None): - x_res = x - x = self.norm(self.depthwise(x)) - if x_skip is not None: - x = torch.cat([x, x_skip], dim=1) - x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) - return x + x_res - - -class AttnBlock(nn.Module): - def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, dtype=None, device=None, operations=None): - super().__init__() - self.self_attn = self_attn - self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.attention = Attention2D(c, nhead, dropout, dtype=dtype, device=device, operations=operations) - self.kv_mapper = nn.Sequential( - nn.SiLU(), - operations.Linear(c_cond, c, dtype=dtype, device=device) - ) - - def forward(self, x, kv): - kv = self.kv_mapper(kv) - x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn) - return x - - -class FeedForwardBlock(nn.Module): - def __init__(self, c, dropout=0.0, dtype=None, device=None, operations=None): - super().__init__() - self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.channelwise = nn.Sequential( - operations.Linear(c, c * 4, dtype=dtype, device=device), - nn.GELU(), - GlobalResponseNorm(c * 4, dtype=dtype, device=device), - nn.Dropout(dropout), - operations.Linear(c * 4, c, dtype=dtype, device=device) - ) - - def forward(self, x): - x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2) - return x - - -class TimestepBlock(nn.Module): - def __init__(self, c, c_timestep, conds=['sca'], dtype=None, device=None, operations=None): - super().__init__() - self.mapper = operations.Linear(c_timestep, c * 2, dtype=dtype, device=device) - self.conds = conds - for cname in conds: - setattr(self, f"mapper_{cname}", operations.Linear(c_timestep, c * 2, dtype=dtype, device=device)) - - def forward(self, x, t): - t = t.chunk(len(self.conds) + 1, dim=1) - a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1) - for i, c in enumerate(self.conds): - ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1) - a, b = a + ac, b + bc - return x * (1 + a) + b diff --git a/MagicQuill/comfy/ldm/cascade/controlnet.py b/MagicQuill/comfy/ldm/cascade/controlnet.py deleted file mode 100644 index 5dac5939409a3c9851e768f412eb42a97a9a4381..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/cascade/controlnet.py +++ /dev/null @@ -1,93 +0,0 @@ -""" - This file is part of ComfyUI. - Copyright (C) 2024 Stability AI - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . -""" - -import torch -import torchvision -from torch import nn -from .common import LayerNorm2d_op - - -class CNetResBlock(nn.Module): - def __init__(self, c, dtype=None, device=None, operations=None): - super().__init__() - self.blocks = nn.Sequential( - LayerNorm2d_op(operations)(c, dtype=dtype, device=device), - nn.GELU(), - operations.Conv2d(c, c, kernel_size=3, padding=1), - LayerNorm2d_op(operations)(c, dtype=dtype, device=device), - nn.GELU(), - operations.Conv2d(c, c, kernel_size=3, padding=1), - ) - - def forward(self, x): - return x + self.blocks(x) - - -class ControlNet(nn.Module): - def __init__(self, c_in=3, c_proj=2048, proj_blocks=None, bottleneck_mode=None, dtype=None, device=None, operations=nn): - super().__init__() - if bottleneck_mode is None: - bottleneck_mode = 'effnet' - self.proj_blocks = proj_blocks - if bottleneck_mode == 'effnet': - embd_channels = 1280 - self.backbone = torchvision.models.efficientnet_v2_s().features.eval() - if c_in != 3: - in_weights = self.backbone[0][0].weight.data - self.backbone[0][0] = operations.Conv2d(c_in, 24, kernel_size=3, stride=2, bias=False, dtype=dtype, device=device) - if c_in > 3: - # nn.init.constant_(self.backbone[0][0].weight, 0) - self.backbone[0][0].weight.data[:, :3] = in_weights[:, :3].clone() - else: - self.backbone[0][0].weight.data = in_weights[:, :c_in].clone() - elif bottleneck_mode == 'simple': - embd_channels = c_in - self.backbone = nn.Sequential( - operations.Conv2d(embd_channels, embd_channels * 4, kernel_size=3, padding=1, dtype=dtype, device=device), - nn.LeakyReLU(0.2, inplace=True), - operations.Conv2d(embd_channels * 4, embd_channels, kernel_size=3, padding=1, dtype=dtype, device=device), - ) - elif bottleneck_mode == 'large': - self.backbone = nn.Sequential( - operations.Conv2d(c_in, 4096 * 4, kernel_size=1, dtype=dtype, device=device), - nn.LeakyReLU(0.2, inplace=True), - operations.Conv2d(4096 * 4, 1024, kernel_size=1, dtype=dtype, device=device), - *[CNetResBlock(1024, dtype=dtype, device=device, operations=operations) for _ in range(8)], - operations.Conv2d(1024, 1280, kernel_size=1, dtype=dtype, device=device), - ) - embd_channels = 1280 - else: - raise ValueError(f'Unknown bottleneck mode: {bottleneck_mode}') - self.projections = nn.ModuleList() - for _ in range(len(proj_blocks)): - self.projections.append(nn.Sequential( - operations.Conv2d(embd_channels, embd_channels, kernel_size=1, bias=False, dtype=dtype, device=device), - nn.LeakyReLU(0.2, inplace=True), - operations.Conv2d(embd_channels, c_proj, kernel_size=1, bias=False, dtype=dtype, device=device), - )) - # nn.init.constant_(self.projections[-1][-1].weight, 0) # zero output projection - self.xl = False - self.input_channels = c_in - self.unshuffle_amount = 8 - - def forward(self, x): - x = self.backbone(x) - proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)] - for i, idx in enumerate(self.proj_blocks): - proj_outputs[idx] = self.projections[i](x) - return proj_outputs diff --git a/MagicQuill/comfy/ldm/cascade/stage_a.py b/MagicQuill/comfy/ldm/cascade/stage_a.py deleted file mode 100644 index ca8867eaf35cbc57eb5d925082b7e2bb7b36932d..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/cascade/stage_a.py +++ /dev/null @@ -1,255 +0,0 @@ -""" - This file is part of ComfyUI. - Copyright (C) 2024 Stability AI - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . -""" - -import torch -from torch import nn -from torch.autograd import Function - -class vector_quantize(Function): - @staticmethod - def forward(ctx, x, codebook): - with torch.no_grad(): - codebook_sqr = torch.sum(codebook ** 2, dim=1) - x_sqr = torch.sum(x ** 2, dim=1, keepdim=True) - - dist = torch.addmm(codebook_sqr + x_sqr, x, codebook.t(), alpha=-2.0, beta=1.0) - _, indices = dist.min(dim=1) - - ctx.save_for_backward(indices, codebook) - ctx.mark_non_differentiable(indices) - - nn = torch.index_select(codebook, 0, indices) - return nn, indices - - @staticmethod - def backward(ctx, grad_output, grad_indices): - grad_inputs, grad_codebook = None, None - - if ctx.needs_input_grad[0]: - grad_inputs = grad_output.clone() - if ctx.needs_input_grad[1]: - # Gradient wrt. the codebook - indices, codebook = ctx.saved_tensors - - grad_codebook = torch.zeros_like(codebook) - grad_codebook.index_add_(0, indices, grad_output) - - return (grad_inputs, grad_codebook) - - -class VectorQuantize(nn.Module): - def __init__(self, embedding_size, k, ema_decay=0.99, ema_loss=False): - """ - Takes an input of variable size (as long as the last dimension matches the embedding size). - Returns one tensor containing the nearest neigbour embeddings to each of the inputs, - with the same size as the input, vq and commitment components for the loss as a touple - in the second output and the indices of the quantized vectors in the third: - quantized, (vq_loss, commit_loss), indices - """ - super(VectorQuantize, self).__init__() - - self.codebook = nn.Embedding(k, embedding_size) - self.codebook.weight.data.uniform_(-1./k, 1./k) - self.vq = vector_quantize.apply - - self.ema_decay = ema_decay - self.ema_loss = ema_loss - if ema_loss: - self.register_buffer('ema_element_count', torch.ones(k)) - self.register_buffer('ema_weight_sum', torch.zeros_like(self.codebook.weight)) - - def _laplace_smoothing(self, x, epsilon): - n = torch.sum(x) - return ((x + epsilon) / (n + x.size(0) * epsilon) * n) - - def _updateEMA(self, z_e_x, indices): - mask = nn.functional.one_hot(indices, self.ema_element_count.size(0)).float() - elem_count = mask.sum(dim=0) - weight_sum = torch.mm(mask.t(), z_e_x) - - self.ema_element_count = (self.ema_decay * self.ema_element_count) + ((1-self.ema_decay) * elem_count) - self.ema_element_count = self._laplace_smoothing(self.ema_element_count, 1e-5) - self.ema_weight_sum = (self.ema_decay * self.ema_weight_sum) + ((1-self.ema_decay) * weight_sum) - - self.codebook.weight.data = self.ema_weight_sum / self.ema_element_count.unsqueeze(-1) - - def idx2vq(self, idx, dim=-1): - q_idx = self.codebook(idx) - if dim != -1: - q_idx = q_idx.movedim(-1, dim) - return q_idx - - def forward(self, x, get_losses=True, dim=-1): - if dim != -1: - x = x.movedim(dim, -1) - z_e_x = x.contiguous().view(-1, x.size(-1)) if len(x.shape) > 2 else x - z_q_x, indices = self.vq(z_e_x, self.codebook.weight.detach()) - vq_loss, commit_loss = None, None - if self.ema_loss and self.training: - self._updateEMA(z_e_x.detach(), indices.detach()) - # pick the graded embeddings after updating the codebook in order to have a more accurate commitment loss - z_q_x_grd = torch.index_select(self.codebook.weight, dim=0, index=indices) - if get_losses: - vq_loss = (z_q_x_grd - z_e_x.detach()).pow(2).mean() - commit_loss = (z_e_x - z_q_x_grd.detach()).pow(2).mean() - - z_q_x = z_q_x.view(x.shape) - if dim != -1: - z_q_x = z_q_x.movedim(-1, dim) - return z_q_x, (vq_loss, commit_loss), indices.view(x.shape[:-1]) - - -class ResBlock(nn.Module): - def __init__(self, c, c_hidden): - super().__init__() - # depthwise/attention - self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6) - self.depthwise = nn.Sequential( - nn.ReplicationPad2d(1), - nn.Conv2d(c, c, kernel_size=3, groups=c) - ) - - # channelwise - self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6) - self.channelwise = nn.Sequential( - nn.Linear(c, c_hidden), - nn.GELU(), - nn.Linear(c_hidden, c), - ) - - self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True) - - # Init weights - def _basic_init(module): - if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): - torch.nn.init.xavier_uniform_(module.weight) - if module.bias is not None: - nn.init.constant_(module.bias, 0) - - self.apply(_basic_init) - - def _norm(self, x, norm): - return norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) - - def forward(self, x): - mods = self.gammas - - x_temp = self._norm(x, self.norm1) * (1 + mods[0]) + mods[1] - try: - x = x + self.depthwise(x_temp) * mods[2] - except: #operation not implemented for bf16 - x_temp = self.depthwise[0](x_temp.float()).to(x.dtype) - x = x + self.depthwise[1](x_temp) * mods[2] - - x_temp = self._norm(x, self.norm2) * (1 + mods[3]) + mods[4] - x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5] - - return x - - -class StageA(nn.Module): - def __init__(self, levels=2, bottleneck_blocks=12, c_hidden=384, c_latent=4, codebook_size=8192): - super().__init__() - self.c_latent = c_latent - c_levels = [c_hidden // (2 ** i) for i in reversed(range(levels))] - - # Encoder blocks - self.in_block = nn.Sequential( - nn.PixelUnshuffle(2), - nn.Conv2d(3 * 4, c_levels[0], kernel_size=1) - ) - down_blocks = [] - for i in range(levels): - if i > 0: - down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1)) - block = ResBlock(c_levels[i], c_levels[i] * 4) - down_blocks.append(block) - down_blocks.append(nn.Sequential( - nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False), - nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1 - )) - self.down_blocks = nn.Sequential(*down_blocks) - self.down_blocks[0] - - self.codebook_size = codebook_size - self.vquantizer = VectorQuantize(c_latent, k=codebook_size) - - # Decoder blocks - up_blocks = [nn.Sequential( - nn.Conv2d(c_latent, c_levels[-1], kernel_size=1) - )] - for i in range(levels): - for j in range(bottleneck_blocks if i == 0 else 1): - block = ResBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4) - up_blocks.append(block) - if i < levels - 1: - up_blocks.append( - nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2, - padding=1)) - self.up_blocks = nn.Sequential(*up_blocks) - self.out_block = nn.Sequential( - nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1), - nn.PixelShuffle(2), - ) - - def encode(self, x, quantize=False): - x = self.in_block(x) - x = self.down_blocks(x) - if quantize: - qe, (vq_loss, commit_loss), indices = self.vquantizer.forward(x, dim=1) - return qe, x, indices, vq_loss + commit_loss * 0.25 - else: - return x - - def decode(self, x): - x = self.up_blocks(x) - x = self.out_block(x) - return x - - def forward(self, x, quantize=False): - qe, x, _, vq_loss = self.encode(x, quantize) - x = self.decode(qe) - return x, vq_loss - - -class Discriminator(nn.Module): - def __init__(self, c_in=3, c_cond=0, c_hidden=512, depth=6): - super().__init__() - d = max(depth - 3, 3) - layers = [ - nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)), - nn.LeakyReLU(0.2), - ] - for i in range(depth - 1): - c_in = c_hidden // (2 ** max((d - i), 0)) - c_out = c_hidden // (2 ** max((d - 1 - i), 0)) - layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1))) - layers.append(nn.InstanceNorm2d(c_out)) - layers.append(nn.LeakyReLU(0.2)) - self.encoder = nn.Sequential(*layers) - self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1) - self.logits = nn.Sigmoid() - - def forward(self, x, cond=None): - x = self.encoder(x) - if cond is not None: - cond = cond.view(cond.size(0), cond.size(1), 1, 1, ).expand(-1, -1, x.size(-2), x.size(-1)) - x = torch.cat([x, cond], dim=1) - x = self.shuffle(x) - x = self.logits(x) - return x diff --git a/MagicQuill/comfy/ldm/cascade/stage_b.py b/MagicQuill/comfy/ldm/cascade/stage_b.py deleted file mode 100644 index 7c3d8feabd826accc702b6e6e598b61b4a739194..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/cascade/stage_b.py +++ /dev/null @@ -1,256 +0,0 @@ -""" - This file is part of ComfyUI. - Copyright (C) 2024 Stability AI - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . -""" - -import math -import torch -from torch import nn -from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock - -class StageB(nn.Module): - def __init__(self, c_in=4, c_out=4, c_r=64, patch_size=2, c_cond=1280, c_hidden=[320, 640, 1280, 1280], - nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]], - block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]], level_config=['CT', 'CT', 'CTA', 'CTA'], c_clip=1280, - c_clip_seq=4, c_effnet=16, c_pixels=3, kernel_size=3, dropout=[0, 0, 0.0, 0.0], self_attn=True, - t_conds=['sca'], stable_cascade_stage=None, dtype=None, device=None, operations=None): - super().__init__() - self.dtype = dtype - self.c_r = c_r - self.t_conds = t_conds - self.c_clip_seq = c_clip_seq - if not isinstance(dropout, list): - dropout = [dropout] * len(c_hidden) - if not isinstance(self_attn, list): - self_attn = [self_attn] * len(c_hidden) - - # CONDITIONING - self.effnet_mapper = nn.Sequential( - operations.Conv2d(c_effnet, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device), - nn.GELU(), - operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device), - LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - ) - self.pixels_mapper = nn.Sequential( - operations.Conv2d(c_pixels, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device), - nn.GELU(), - operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device), - LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - ) - self.clip_mapper = operations.Linear(c_clip, c_cond * c_clip_seq, dtype=dtype, device=device) - self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - - self.embedding = nn.Sequential( - nn.PixelUnshuffle(patch_size), - operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device), - LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - ) - - def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True): - if block_type == 'C': - return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations) - elif block_type == 'A': - return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations) - elif block_type == 'F': - return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations) - elif block_type == 'T': - return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations) - else: - raise Exception(f'Block type {block_type} not supported') - - # BLOCKS - # -- down blocks - self.down_blocks = nn.ModuleList() - self.down_downscalers = nn.ModuleList() - self.down_repeat_mappers = nn.ModuleList() - for i in range(len(c_hidden)): - if i > 0: - self.down_downscalers.append(nn.Sequential( - LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device), - operations.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2, dtype=dtype, device=device), - )) - else: - self.down_downscalers.append(nn.Identity()) - down_block = nn.ModuleList() - for _ in range(blocks[0][i]): - for block_type in level_config[i]: - block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i]) - down_block.append(block) - self.down_blocks.append(down_block) - if block_repeat is not None: - block_repeat_mappers = nn.ModuleList() - for _ in range(block_repeat[0][i] - 1): - block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device)) - self.down_repeat_mappers.append(block_repeat_mappers) - - # -- up blocks - self.up_blocks = nn.ModuleList() - self.up_upscalers = nn.ModuleList() - self.up_repeat_mappers = nn.ModuleList() - for i in reversed(range(len(c_hidden))): - if i > 0: - self.up_upscalers.append(nn.Sequential( - LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device), - operations.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2, dtype=dtype, device=device), - )) - else: - self.up_upscalers.append(nn.Identity()) - up_block = nn.ModuleList() - for j in range(blocks[1][::-1][i]): - for k, block_type in enumerate(level_config[i]): - c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0 - block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i], - self_attn=self_attn[i]) - up_block.append(block) - self.up_blocks.append(up_block) - if block_repeat is not None: - block_repeat_mappers = nn.ModuleList() - for _ in range(block_repeat[1][::-1][i] - 1): - block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device)) - self.up_repeat_mappers.append(block_repeat_mappers) - - # OUTPUT - self.clf = nn.Sequential( - LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device), - operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device), - nn.PixelShuffle(patch_size), - ) - - # --- WEIGHT INIT --- - # self.apply(self._init_weights) # General init - # nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings - # nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings - # nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings - # nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings - # nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings - # torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs - # nn.init.constant_(self.clf[1].weight, 0) # outputs - # - # # blocks - # for level_block in self.down_blocks + self.up_blocks: - # for block in level_block: - # if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock): - # block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0])) - # elif isinstance(block, TimestepBlock): - # for layer in block.modules(): - # if isinstance(layer, nn.Linear): - # nn.init.constant_(layer.weight, 0) - # - # def _init_weights(self, m): - # if isinstance(m, (nn.Conv2d, nn.Linear)): - # torch.nn.init.xavier_uniform_(m.weight) - # if m.bias is not None: - # nn.init.constant_(m.bias, 0) - - def gen_r_embedding(self, r, max_positions=10000): - r = r * max_positions - half_dim = self.c_r // 2 - emb = math.log(max_positions) / (half_dim - 1) - emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp() - emb = r[:, None] * emb[None, :] - emb = torch.cat([emb.sin(), emb.cos()], dim=1) - if self.c_r % 2 == 1: # zero pad - emb = nn.functional.pad(emb, (0, 1), mode='constant') - return emb - - def gen_c_embeddings(self, clip): - if len(clip.shape) == 2: - clip = clip.unsqueeze(1) - clip = self.clip_mapper(clip).view(clip.size(0), clip.size(1) * self.c_clip_seq, -1) - clip = self.clip_norm(clip) - return clip - - def _down_encode(self, x, r_embed, clip): - level_outputs = [] - block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers) - for down_block, downscaler, repmap in block_group: - x = downscaler(x) - for i in range(len(repmap) + 1): - for block in down_block: - if isinstance(block, ResBlock) or ( - hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, - ResBlock)): - x = block(x) - elif isinstance(block, AttnBlock) or ( - hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, - AttnBlock)): - x = block(x, clip) - elif isinstance(block, TimestepBlock) or ( - hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, - TimestepBlock)): - x = block(x, r_embed) - else: - x = block(x) - if i < len(repmap): - x = repmap[i](x) - level_outputs.insert(0, x) - return level_outputs - - def _up_decode(self, level_outputs, r_embed, clip): - x = level_outputs[0] - block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers) - for i, (up_block, upscaler, repmap) in enumerate(block_group): - for j in range(len(repmap) + 1): - for k, block in enumerate(up_block): - if isinstance(block, ResBlock) or ( - hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, - ResBlock)): - skip = level_outputs[i] if k == 0 and i > 0 else None - if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)): - x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear', - align_corners=True) - x = block(x, skip) - elif isinstance(block, AttnBlock) or ( - hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, - AttnBlock)): - x = block(x, clip) - elif isinstance(block, TimestepBlock) or ( - hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, - TimestepBlock)): - x = block(x, r_embed) - else: - x = block(x) - if j < len(repmap): - x = repmap[j](x) - x = upscaler(x) - return x - - def forward(self, x, r, effnet, clip, pixels=None, **kwargs): - if pixels is None: - pixels = x.new_zeros(x.size(0), 3, 8, 8) - - # Process the conditioning embeddings - r_embed = self.gen_r_embedding(r).to(dtype=x.dtype) - for c in self.t_conds: - t_cond = kwargs.get(c, torch.zeros_like(r)) - r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1) - clip = self.gen_c_embeddings(clip) - - # Model Blocks - x = self.embedding(x) - x = x + self.effnet_mapper( - nn.functional.interpolate(effnet, size=x.shape[-2:], mode='bilinear', align_corners=True)) - x = x + nn.functional.interpolate(self.pixels_mapper(pixels), size=x.shape[-2:], mode='bilinear', - align_corners=True) - level_outputs = self._down_encode(x, r_embed, clip) - x = self._up_decode(level_outputs, r_embed, clip) - return self.clf(x) - - def update_weights_ema(self, src_model, beta=0.999): - for self_params, src_params in zip(self.parameters(), src_model.parameters()): - self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta) - for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()): - self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta) diff --git a/MagicQuill/comfy/ldm/cascade/stage_c.py b/MagicQuill/comfy/ldm/cascade/stage_c.py deleted file mode 100644 index c85da1f01c1d862de5906e73fc746fc92eb51304..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/cascade/stage_c.py +++ /dev/null @@ -1,273 +0,0 @@ -""" - This file is part of ComfyUI. - Copyright (C) 2024 Stability AI - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . -""" - -import torch -from torch import nn -import math -from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock -# from .controlnet import ControlNetDeliverer - -class UpDownBlock2d(nn.Module): - def __init__(self, c_in, c_out, mode, enabled=True, dtype=None, device=None, operations=None): - super().__init__() - assert mode in ['up', 'down'] - interpolation = nn.Upsample(scale_factor=2 if mode == 'up' else 0.5, mode='bilinear', - align_corners=True) if enabled else nn.Identity() - mapping = operations.Conv2d(c_in, c_out, kernel_size=1, dtype=dtype, device=device) - self.blocks = nn.ModuleList([interpolation, mapping] if mode == 'up' else [mapping, interpolation]) - - def forward(self, x): - for block in self.blocks: - x = block(x) - return x - - -class StageC(nn.Module): - def __init__(self, c_in=16, c_out=16, c_r=64, patch_size=1, c_cond=2048, c_hidden=[2048, 2048], nhead=[32, 32], - blocks=[[8, 24], [24, 8]], block_repeat=[[1, 1], [1, 1]], level_config=['CTA', 'CTA'], - c_clip_text=1280, c_clip_text_pooled=1280, c_clip_img=768, c_clip_seq=4, kernel_size=3, - dropout=[0.0, 0.0], self_attn=True, t_conds=['sca', 'crp'], switch_level=[False], stable_cascade_stage=None, - dtype=None, device=None, operations=None): - super().__init__() - self.dtype = dtype - self.c_r = c_r - self.t_conds = t_conds - self.c_clip_seq = c_clip_seq - if not isinstance(dropout, list): - dropout = [dropout] * len(c_hidden) - if not isinstance(self_attn, list): - self_attn = [self_attn] * len(c_hidden) - - # CONDITIONING - self.clip_txt_mapper = operations.Linear(c_clip_text, c_cond, dtype=dtype, device=device) - self.clip_txt_pooled_mapper = operations.Linear(c_clip_text_pooled, c_cond * c_clip_seq, dtype=dtype, device=device) - self.clip_img_mapper = operations.Linear(c_clip_img, c_cond * c_clip_seq, dtype=dtype, device=device) - self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - - self.embedding = nn.Sequential( - nn.PixelUnshuffle(patch_size), - operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device), - LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6) - ) - - def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True): - if block_type == 'C': - return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations) - elif block_type == 'A': - return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations) - elif block_type == 'F': - return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations) - elif block_type == 'T': - return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations) - else: - raise Exception(f'Block type {block_type} not supported') - - # BLOCKS - # -- down blocks - self.down_blocks = nn.ModuleList() - self.down_downscalers = nn.ModuleList() - self.down_repeat_mappers = nn.ModuleList() - for i in range(len(c_hidden)): - if i > 0: - self.down_downscalers.append(nn.Sequential( - LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6), - UpDownBlock2d(c_hidden[i - 1], c_hidden[i], mode='down', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations) - )) - else: - self.down_downscalers.append(nn.Identity()) - down_block = nn.ModuleList() - for _ in range(blocks[0][i]): - for block_type in level_config[i]: - block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i]) - down_block.append(block) - self.down_blocks.append(down_block) - if block_repeat is not None: - block_repeat_mappers = nn.ModuleList() - for _ in range(block_repeat[0][i] - 1): - block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device)) - self.down_repeat_mappers.append(block_repeat_mappers) - - # -- up blocks - self.up_blocks = nn.ModuleList() - self.up_upscalers = nn.ModuleList() - self.up_repeat_mappers = nn.ModuleList() - for i in reversed(range(len(c_hidden))): - if i > 0: - self.up_upscalers.append(nn.Sequential( - LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6), - UpDownBlock2d(c_hidden[i], c_hidden[i - 1], mode='up', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations) - )) - else: - self.up_upscalers.append(nn.Identity()) - up_block = nn.ModuleList() - for j in range(blocks[1][::-1][i]): - for k, block_type in enumerate(level_config[i]): - c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0 - block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i], - self_attn=self_attn[i]) - up_block.append(block) - self.up_blocks.append(up_block) - if block_repeat is not None: - block_repeat_mappers = nn.ModuleList() - for _ in range(block_repeat[1][::-1][i] - 1): - block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device)) - self.up_repeat_mappers.append(block_repeat_mappers) - - # OUTPUT - self.clf = nn.Sequential( - LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device), - operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device), - nn.PixelShuffle(patch_size), - ) - - # --- WEIGHT INIT --- - # self.apply(self._init_weights) # General init - # nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) # conditionings - # nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02) # conditionings - # nn.init.normal_(self.clip_img_mapper.weight, std=0.02) # conditionings - # torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs - # nn.init.constant_(self.clf[1].weight, 0) # outputs - # - # # blocks - # for level_block in self.down_blocks + self.up_blocks: - # for block in level_block: - # if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock): - # block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0])) - # elif isinstance(block, TimestepBlock): - # for layer in block.modules(): - # if isinstance(layer, nn.Linear): - # nn.init.constant_(layer.weight, 0) - # - # def _init_weights(self, m): - # if isinstance(m, (nn.Conv2d, nn.Linear)): - # torch.nn.init.xavier_uniform_(m.weight) - # if m.bias is not None: - # nn.init.constant_(m.bias, 0) - - def gen_r_embedding(self, r, max_positions=10000): - r = r * max_positions - half_dim = self.c_r // 2 - emb = math.log(max_positions) / (half_dim - 1) - emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp() - emb = r[:, None] * emb[None, :] - emb = torch.cat([emb.sin(), emb.cos()], dim=1) - if self.c_r % 2 == 1: # zero pad - emb = nn.functional.pad(emb, (0, 1), mode='constant') - return emb - - def gen_c_embeddings(self, clip_txt, clip_txt_pooled, clip_img): - clip_txt = self.clip_txt_mapper(clip_txt) - if len(clip_txt_pooled.shape) == 2: - clip_txt_pooled = clip_txt_pooled.unsqueeze(1) - if len(clip_img.shape) == 2: - clip_img = clip_img.unsqueeze(1) - clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.c_clip_seq, -1) - clip_img = self.clip_img_mapper(clip_img).view(clip_img.size(0), clip_img.size(1) * self.c_clip_seq, -1) - clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1) - clip = self.clip_norm(clip) - return clip - - def _down_encode(self, x, r_embed, clip, cnet=None): - level_outputs = [] - block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers) - for down_block, downscaler, repmap in block_group: - x = downscaler(x) - for i in range(len(repmap) + 1): - for block in down_block: - if isinstance(block, ResBlock) or ( - hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, - ResBlock)): - if cnet is not None: - next_cnet = cnet.pop() - if next_cnet is not None: - x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear', - align_corners=True).to(x.dtype) - x = block(x) - elif isinstance(block, AttnBlock) or ( - hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, - AttnBlock)): - x = block(x, clip) - elif isinstance(block, TimestepBlock) or ( - hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, - TimestepBlock)): - x = block(x, r_embed) - else: - x = block(x) - if i < len(repmap): - x = repmap[i](x) - level_outputs.insert(0, x) - return level_outputs - - def _up_decode(self, level_outputs, r_embed, clip, cnet=None): - x = level_outputs[0] - block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers) - for i, (up_block, upscaler, repmap) in enumerate(block_group): - for j in range(len(repmap) + 1): - for k, block in enumerate(up_block): - if isinstance(block, ResBlock) or ( - hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, - ResBlock)): - skip = level_outputs[i] if k == 0 and i > 0 else None - if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)): - x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear', - align_corners=True) - if cnet is not None: - next_cnet = cnet.pop() - if next_cnet is not None: - x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear', - align_corners=True).to(x.dtype) - x = block(x, skip) - elif isinstance(block, AttnBlock) or ( - hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, - AttnBlock)): - x = block(x, clip) - elif isinstance(block, TimestepBlock) or ( - hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, - TimestepBlock)): - x = block(x, r_embed) - else: - x = block(x) - if j < len(repmap): - x = repmap[j](x) - x = upscaler(x) - return x - - def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, **kwargs): - # Process the conditioning embeddings - r_embed = self.gen_r_embedding(r).to(dtype=x.dtype) - for c in self.t_conds: - t_cond = kwargs.get(c, torch.zeros_like(r)) - r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1) - clip = self.gen_c_embeddings(clip_text, clip_text_pooled, clip_img) - - if control is not None: - cnet = control.get("input") - else: - cnet = None - - # Model Blocks - x = self.embedding(x) - level_outputs = self._down_encode(x, r_embed, clip, cnet) - x = self._up_decode(level_outputs, r_embed, clip, cnet) - return self.clf(x) - - def update_weights_ema(self, src_model, beta=0.999): - for self_params, src_params in zip(self.parameters(), src_model.parameters()): - self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta) - for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()): - self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta) diff --git a/MagicQuill/comfy/ldm/cascade/stage_c_coder.py b/MagicQuill/comfy/ldm/cascade/stage_c_coder.py deleted file mode 100644 index 0cb7c49fc90c434553954772cbf522e1f4a88955..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/cascade/stage_c_coder.py +++ /dev/null @@ -1,95 +0,0 @@ -""" - This file is part of ComfyUI. - Copyright (C) 2024 Stability AI - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . -""" -import torch -import torchvision -from torch import nn - - -# EfficientNet -class EfficientNetEncoder(nn.Module): - def __init__(self, c_latent=16): - super().__init__() - self.backbone = torchvision.models.efficientnet_v2_s().features.eval() - self.mapper = nn.Sequential( - nn.Conv2d(1280, c_latent, kernel_size=1, bias=False), - nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1 - ) - self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406])) - self.std = nn.Parameter(torch.tensor([0.229, 0.224, 0.225])) - - def forward(self, x): - x = x * 0.5 + 0.5 - x = (x - self.mean.view([3,1,1])) / self.std.view([3,1,1]) - o = self.mapper(self.backbone(x)) - return o - - -# Fast Decoder for Stage C latents. E.g. 16 x 24 x 24 -> 3 x 192 x 192 -class Previewer(nn.Module): - def __init__(self, c_in=16, c_hidden=512, c_out=3): - super().__init__() - self.blocks = nn.Sequential( - nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels - nn.GELU(), - nn.BatchNorm2d(c_hidden), - - nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1), - nn.GELU(), - nn.BatchNorm2d(c_hidden), - - nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32 - nn.GELU(), - nn.BatchNorm2d(c_hidden // 2), - - nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1), - nn.GELU(), - nn.BatchNorm2d(c_hidden // 2), - - nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64 - nn.GELU(), - nn.BatchNorm2d(c_hidden // 4), - - nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1), - nn.GELU(), - nn.BatchNorm2d(c_hidden // 4), - - nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128 - nn.GELU(), - nn.BatchNorm2d(c_hidden // 4), - - nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1), - nn.GELU(), - nn.BatchNorm2d(c_hidden // 4), - - nn.Conv2d(c_hidden // 4, c_out, kernel_size=1), - ) - - def forward(self, x): - return (self.blocks(x) - 0.5) * 2.0 - -class StageC_coder(nn.Module): - def __init__(self): - super().__init__() - self.previewer = Previewer() - self.encoder = EfficientNetEncoder() - - def encode(self, x): - return self.encoder(x) - - def decode(self, x): - return self.previewer(x) diff --git a/MagicQuill/comfy/ldm/models/__pycache__/autoencoder.cpython-310.pyc b/MagicQuill/comfy/ldm/models/__pycache__/autoencoder.cpython-310.pyc deleted file mode 100644 index 81d431efe1ab89c23b0df5fa48cb159c51a23e6c..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/models/__pycache__/autoencoder.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/models/autoencoder.py b/MagicQuill/comfy/ldm/models/autoencoder.py deleted file mode 100644 index f5f4de2883078dadee058aef437901069588321b..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/models/autoencoder.py +++ /dev/null @@ -1,226 +0,0 @@ -import torch -from contextlib import contextmanager -from typing import Any, Dict, List, Optional, Tuple, Union - -from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution - -from comfy.ldm.util import instantiate_from_config -from comfy.ldm.modules.ema import LitEma -import comfy.ops - -class DiagonalGaussianRegularizer(torch.nn.Module): - def __init__(self, sample: bool = True): - super().__init__() - self.sample = sample - - def get_trainable_parameters(self) -> Any: - yield from () - - def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: - log = dict() - posterior = DiagonalGaussianDistribution(z) - if self.sample: - z = posterior.sample() - else: - z = posterior.mode() - kl_loss = posterior.kl() - kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] - log["kl_loss"] = kl_loss - return z, log - - -class AbstractAutoencoder(torch.nn.Module): - """ - This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators, - unCLIP models, etc. Hence, it is fairly general, and specific features - (e.g. discriminator training, encoding, decoding) must be implemented in subclasses. - """ - - def __init__( - self, - ema_decay: Union[None, float] = None, - monitor: Union[None, str] = None, - input_key: str = "jpg", - **kwargs, - ): - super().__init__() - - self.input_key = input_key - self.use_ema = ema_decay is not None - if monitor is not None: - self.monitor = monitor - - if self.use_ema: - self.model_ema = LitEma(self, decay=ema_decay) - logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") - - def get_input(self, batch) -> Any: - raise NotImplementedError() - - def on_train_batch_end(self, *args, **kwargs): - # for EMA computation - if self.use_ema: - self.model_ema(self) - - @contextmanager - def ema_scope(self, context=None): - if self.use_ema: - self.model_ema.store(self.parameters()) - self.model_ema.copy_to(self) - if context is not None: - logpy.info(f"{context}: Switched to EMA weights") - try: - yield None - finally: - if self.use_ema: - self.model_ema.restore(self.parameters()) - if context is not None: - logpy.info(f"{context}: Restored training weights") - - def encode(self, *args, **kwargs) -> torch.Tensor: - raise NotImplementedError("encode()-method of abstract base class called") - - def decode(self, *args, **kwargs) -> torch.Tensor: - raise NotImplementedError("decode()-method of abstract base class called") - - def instantiate_optimizer_from_config(self, params, lr, cfg): - logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config") - return get_obj_from_str(cfg["target"])( - params, lr=lr, **cfg.get("params", dict()) - ) - - def configure_optimizers(self) -> Any: - raise NotImplementedError() - - -class AutoencodingEngine(AbstractAutoencoder): - """ - Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL - (we also restore them explicitly as special cases for legacy reasons). - Regularizations such as KL or VQ are moved to the regularizer class. - """ - - def __init__( - self, - *args, - encoder_config: Dict, - decoder_config: Dict, - regularizer_config: Dict, - **kwargs, - ): - super().__init__(*args, **kwargs) - - self.encoder: torch.nn.Module = instantiate_from_config(encoder_config) - self.decoder: torch.nn.Module = instantiate_from_config(decoder_config) - self.regularization: AbstractRegularizer = instantiate_from_config( - regularizer_config - ) - - def get_last_layer(self): - return self.decoder.get_last_layer() - - def encode( - self, - x: torch.Tensor, - return_reg_log: bool = False, - unregularized: bool = False, - ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: - z = self.encoder(x) - if unregularized: - return z, dict() - z, reg_log = self.regularization(z) - if return_reg_log: - return z, reg_log - return z - - def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor: - x = self.decoder(z, **kwargs) - return x - - def forward( - self, x: torch.Tensor, **additional_decode_kwargs - ) -> Tuple[torch.Tensor, torch.Tensor, dict]: - z, reg_log = self.encode(x, return_reg_log=True) - dec = self.decode(z, **additional_decode_kwargs) - return z, dec, reg_log - - -class AutoencodingEngineLegacy(AutoencodingEngine): - def __init__(self, embed_dim: int, **kwargs): - self.max_batch_size = kwargs.pop("max_batch_size", None) - ddconfig = kwargs.pop("ddconfig") - super().__init__( - encoder_config={ - "target": "comfy.ldm.modules.diffusionmodules.model.Encoder", - "params": ddconfig, - }, - decoder_config={ - "target": "comfy.ldm.modules.diffusionmodules.model.Decoder", - "params": ddconfig, - }, - **kwargs, - ) - self.quant_conv = comfy.ops.disable_weight_init.Conv2d( - (1 + ddconfig["double_z"]) * ddconfig["z_channels"], - (1 + ddconfig["double_z"]) * embed_dim, - 1, - ) - self.post_quant_conv = comfy.ops.disable_weight_init.Conv2d(embed_dim, ddconfig["z_channels"], 1) - self.embed_dim = embed_dim - - def get_autoencoder_params(self) -> list: - params = super().get_autoencoder_params() - return params - - def encode( - self, x: torch.Tensor, return_reg_log: bool = False - ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: - if self.max_batch_size is None: - z = self.encoder(x) - z = self.quant_conv(z) - else: - N = x.shape[0] - bs = self.max_batch_size - n_batches = int(math.ceil(N / bs)) - z = list() - for i_batch in range(n_batches): - z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs]) - z_batch = self.quant_conv(z_batch) - z.append(z_batch) - z = torch.cat(z, 0) - - z, reg_log = self.regularization(z) - if return_reg_log: - return z, reg_log - return z - - def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor: - if self.max_batch_size is None: - dec = self.post_quant_conv(z) - dec = self.decoder(dec, **decoder_kwargs) - else: - N = z.shape[0] - bs = self.max_batch_size - n_batches = int(math.ceil(N / bs)) - dec = list() - for i_batch in range(n_batches): - dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs]) - dec_batch = self.decoder(dec_batch, **decoder_kwargs) - dec.append(dec_batch) - dec = torch.cat(dec, 0) - - return dec - - -class AutoencoderKL(AutoencodingEngineLegacy): - def __init__(self, **kwargs): - if "lossconfig" in kwargs: - kwargs["loss_config"] = kwargs.pop("lossconfig") - super().__init__( - regularizer_config={ - "target": ( - "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer" - ) - }, - **kwargs, - ) diff --git a/MagicQuill/comfy/ldm/modules/__pycache__/attention.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/__pycache__/attention.cpython-310.pyc deleted file mode 100644 index a44f34018795428c0803f163f12305f415c521d4..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/modules/__pycache__/attention.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/modules/__pycache__/ema.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/__pycache__/ema.cpython-310.pyc deleted file mode 100644 index 9493eaf691ef0d4ad636b42cdeecb41fdc9019cf..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/modules/__pycache__/ema.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/modules/__pycache__/sub_quadratic_attention.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/__pycache__/sub_quadratic_attention.cpython-310.pyc deleted file mode 100644 index 916aeaa3d201ae74b5e06ece945c57697af20981..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/modules/__pycache__/sub_quadratic_attention.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/modules/attention.py b/MagicQuill/comfy/ldm/modules/attention.py deleted file mode 100644 index 65a8bcf42b81c318e87f4ed19b4f9a43d8f4d610..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/modules/attention.py +++ /dev/null @@ -1,865 +0,0 @@ -import math -import torch -import torch.nn.functional as F -from torch import nn, einsum -from einops import rearrange, repeat -from typing import Optional -import logging - -from .diffusionmodules.util import AlphaBlender, timestep_embedding -from .sub_quadratic_attention import efficient_dot_product_attention - -from comfy import model_management - -if model_management.xformers_enabled(): - import xformers - import xformers.ops - -from comfy.cli_args import args -import comfy.ops -ops = comfy.ops.disable_weight_init - -FORCE_UPCAST_ATTENTION_DTYPE = model_management.force_upcast_attention_dtype() - -def get_attn_precision(attn_precision): - if args.dont_upcast_attention: - return None - if FORCE_UPCAST_ATTENTION_DTYPE is not None: - return FORCE_UPCAST_ATTENTION_DTYPE - return attn_precision - -def exists(val): - return val is not None - - -def uniq(arr): - return{el: True for el in arr}.keys() - - -def default(val, d): - if exists(val): - return val - return d - - -def max_neg_value(t): - return -torch.finfo(t.dtype).max - - -def init_(tensor): - dim = tensor.shape[-1] - std = 1 / math.sqrt(dim) - tensor.uniform_(-std, std) - return tensor - - -# feedforward -class GEGLU(nn.Module): - def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops): - super().__init__() - self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) - - def forward(self, x): - x, gate = self.proj(x).chunk(2, dim=-1) - return x * F.gelu(gate) - - -class FeedForward(nn.Module): - def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops): - super().__init__() - inner_dim = int(dim * mult) - dim_out = default(dim_out, dim) - project_in = nn.Sequential( - operations.Linear(dim, inner_dim, dtype=dtype, device=device), - nn.GELU() - ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations) - - self.net = nn.Sequential( - project_in, - nn.Dropout(dropout), - operations.Linear(inner_dim, dim_out, dtype=dtype, device=device) - ) - - def forward(self, x): - return self.net(x) - -def Normalize(in_channels, dtype=None, device=None): - return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) - -def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): - attn_precision = get_attn_precision(attn_precision) - - if skip_reshape: - b, _, _, dim_head = q.shape - else: - b, _, dim_head = q.shape - dim_head //= heads - - scale = dim_head ** -0.5 - - h = heads - if skip_reshape: - q, k, v = map( - lambda t: t.reshape(b * heads, -1, dim_head), - (q, k, v), - ) - else: - q, k, v = map( - lambda t: t.unsqueeze(3) - .reshape(b, -1, heads, dim_head) - .permute(0, 2, 1, 3) - .reshape(b * heads, -1, dim_head) - .contiguous(), - (q, k, v), - ) - - # force cast to fp32 to avoid overflowing - if attn_precision == torch.float32: - sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale - else: - sim = einsum('b i d, b j d -> b i j', q, k) * scale - - del q, k - - if exists(mask): - if mask.dtype == torch.bool: - mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention - max_neg_value = -torch.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) - sim.masked_fill_(~mask, max_neg_value) - else: - if len(mask.shape) == 2: - bs = 1 - else: - bs = mask.shape[0] - mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1]) - sim.add_(mask) - - # attention, what we cannot get enough of - sim = sim.softmax(dim=-1) - - out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v) - out = ( - out.unsqueeze(0) - .reshape(b, heads, -1, dim_head) - .permute(0, 2, 1, 3) - .reshape(b, -1, heads * dim_head) - ) - return out - - -def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False): - attn_precision = get_attn_precision(attn_precision) - - if skip_reshape: - b, _, _, dim_head = query.shape - else: - b, _, dim_head = query.shape - dim_head //= heads - - scale = dim_head ** -0.5 - - if skip_reshape: - query = query.reshape(b * heads, -1, dim_head) - value = value.reshape(b * heads, -1, dim_head) - key = key.reshape(b * heads, -1, dim_head).movedim(1, 2) - else: - query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head) - value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head) - key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1) - - - dtype = query.dtype - upcast_attention = attn_precision == torch.float32 and query.dtype != torch.float32 - if upcast_attention: - bytes_per_token = torch.finfo(torch.float32).bits//8 - else: - bytes_per_token = torch.finfo(query.dtype).bits//8 - batch_x_heads, q_tokens, _ = query.shape - _, _, k_tokens = key.shape - qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens - - mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True) - - kv_chunk_size_min = None - kv_chunk_size = None - query_chunk_size = None - - for x in [4096, 2048, 1024, 512, 256]: - count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0) - if count >= k_tokens: - kv_chunk_size = k_tokens - query_chunk_size = x - break - - if query_chunk_size is None: - query_chunk_size = 512 - - if mask is not None: - if len(mask.shape) == 2: - bs = 1 - else: - bs = mask.shape[0] - mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1]) - - hidden_states = efficient_dot_product_attention( - query, - key, - value, - query_chunk_size=query_chunk_size, - kv_chunk_size=kv_chunk_size, - kv_chunk_size_min=kv_chunk_size_min, - use_checkpoint=False, - upcast_attention=upcast_attention, - mask=mask, - ) - - hidden_states = hidden_states.to(dtype) - - hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2) - return hidden_states - -def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): - attn_precision = get_attn_precision(attn_precision) - - if skip_reshape: - b, _, _, dim_head = q.shape - else: - b, _, dim_head = q.shape - dim_head //= heads - - scale = dim_head ** -0.5 - - h = heads - if skip_reshape: - q, k, v = map( - lambda t: t.reshape(b * heads, -1, dim_head), - (q, k, v), - ) - else: - q, k, v = map( - lambda t: t.unsqueeze(3) - .reshape(b, -1, heads, dim_head) - .permute(0, 2, 1, 3) - .reshape(b * heads, -1, dim_head) - .contiguous(), - (q, k, v), - ) - - r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) - - mem_free_total = model_management.get_free_memory(q.device) - - if attn_precision == torch.float32: - element_size = 4 - upcast = True - else: - element_size = q.element_size() - upcast = False - - gb = 1024 ** 3 - tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size - modifier = 3 - mem_required = tensor_size * modifier - steps = 1 - - - if mem_required > mem_free_total: - steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) - # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " - # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") - - if steps > 64: - max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 - raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' - f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free') - - if mask is not None: - if len(mask.shape) == 2: - bs = 1 - else: - bs = mask.shape[0] - mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1]) - - # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size) - first_op_done = False - cleared_cache = False - while True: - try: - slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] - for i in range(0, q.shape[1], slice_size): - end = i + slice_size - if upcast: - with torch.autocast(enabled=False, device_type = 'cuda'): - s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale - else: - s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale - - if mask is not None: - if len(mask.shape) == 2: - s1 += mask[i:end] - else: - s1 += mask[:, i:end] - - s2 = s1.softmax(dim=-1).to(v.dtype) - del s1 - first_op_done = True - - r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) - del s2 - break - except model_management.OOM_EXCEPTION as e: - if first_op_done == False: - model_management.soft_empty_cache(True) - if cleared_cache == False: - cleared_cache = True - logging.warning("out of memory error, emptying cache and trying again") - continue - steps *= 2 - if steps > 64: - raise e - logging.warning("out of memory error, increasing steps and trying again {}".format(steps)) - else: - raise e - - del q, k, v - - r1 = ( - r1.unsqueeze(0) - .reshape(b, heads, -1, dim_head) - .permute(0, 2, 1, 3) - .reshape(b, -1, heads * dim_head) - ) - return r1 - -BROKEN_XFORMERS = False -try: - x_vers = xformers.__version__ - # XFormers bug confirmed on all versions from 0.0.21 to 0.0.26 (q with bs bigger than 65535 gives CUDA error) - BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20") -except: - pass - -def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): - if skip_reshape: - b, _, _, dim_head = q.shape - else: - b, _, dim_head = q.shape - dim_head //= heads - - disabled_xformers = False - - if BROKEN_XFORMERS: - if b * heads > 65535: - disabled_xformers = True - - if not disabled_xformers: - if torch.jit.is_tracing() or torch.jit.is_scripting(): - disabled_xformers = True - - if disabled_xformers: - return attention_pytorch(q, k, v, heads, mask) - - if skip_reshape: - q, k, v = map( - lambda t: t.reshape(b * heads, -1, dim_head), - (q, k, v), - ) - else: - q, k, v = map( - lambda t: t.reshape(b, -1, heads, dim_head), - (q, k, v), - ) - - if mask is not None: - pad = 8 - q.shape[1] % 8 - mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device) - mask_out[:, :, :mask.shape[-1]] = mask - mask = mask_out[:, :, :mask.shape[-1]] - - out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask) - - if skip_reshape: - out = ( - out.unsqueeze(0) - .reshape(b, heads, -1, dim_head) - .permute(0, 2, 1, 3) - .reshape(b, -1, heads * dim_head) - ) - else: - out = ( - out.reshape(b, -1, heads * dim_head) - ) - - return out - -def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): - if skip_reshape: - b, _, _, dim_head = q.shape - else: - b, _, dim_head = q.shape - dim_head //= heads - q, k, v = map( - lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2), - (q, k, v), - ) - - out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) - out = ( - out.transpose(1, 2).reshape(b, -1, heads * dim_head) - ) - return out - - -optimized_attention = attention_basic - -if model_management.xformers_enabled(): - logging.info("Using xformers cross attention") - optimized_attention = attention_xformers -elif model_management.pytorch_attention_enabled(): - logging.info("Using pytorch cross attention") - optimized_attention = attention_pytorch -else: - if args.use_split_cross_attention: - logging.info("Using split optimization for cross attention") - optimized_attention = attention_split - else: - logging.info("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention") - optimized_attention = attention_sub_quad - -optimized_attention_masked = optimized_attention - -def optimized_attention_for_device(device, mask=False, small_input=False): - if small_input: - if model_management.pytorch_attention_enabled(): - return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases - else: - return attention_basic - - if device == torch.device("cpu"): - return attention_sub_quad - - if mask: - return optimized_attention_masked - - return optimized_attention - - -class CrossAttention(nn.Module): - def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=ops): - super().__init__() - inner_dim = dim_head * heads - context_dim = default(context_dim, query_dim) - self.attn_precision = attn_precision - - self.heads = heads - self.dim_head = dim_head - - self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device) - self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) - self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) - - self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)) - - def forward(self, x, context=None, value=None, mask=None): - q = self.to_q(x) - context = default(context, x) - k = self.to_k(context) - if value is not None: - v = self.to_v(value) - del value - else: - v = self.to_v(context) - - if mask is None: - out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision) - else: - out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision) - return self.to_out(out) - - -class BasicTransformerBlock(nn.Module): - def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None, - disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, attn_precision=None, dtype=None, device=None, operations=ops): - super().__init__() - - self.ff_in = ff_in or inner_dim is not None - if inner_dim is None: - inner_dim = dim - - self.is_res = inner_dim == dim - self.attn_precision = attn_precision - - if self.ff_in: - self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device) - self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations) - - self.disable_self_attn = disable_self_attn - self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout, - context_dim=context_dim if self.disable_self_attn else None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn - self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations) - - if disable_temporal_crossattention: - if switch_temporal_ca_to_sa: - raise ValueError - else: - self.attn2 = None - else: - context_dim_attn2 = None - if not switch_temporal_ca_to_sa: - context_dim_attn2 = context_dim - - self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2, - heads=n_heads, dim_head=d_head, dropout=dropout, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) # is self-attn if context is none - self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) - - self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) - self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) - self.n_heads = n_heads - self.d_head = d_head - self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa - - def forward(self, x, context=None, transformer_options={}): - extra_options = {} - block = transformer_options.get("block", None) - block_index = transformer_options.get("block_index", 0) - transformer_patches = {} - transformer_patches_replace = {} - - for k in transformer_options: - if k == "patches": - transformer_patches = transformer_options[k] - elif k == "patches_replace": - transformer_patches_replace = transformer_options[k] - else: - extra_options[k] = transformer_options[k] - - extra_options["n_heads"] = self.n_heads - extra_options["dim_head"] = self.d_head - extra_options["attn_precision"] = self.attn_precision - - if self.ff_in: - x_skip = x - x = self.ff_in(self.norm_in(x)) - if self.is_res: - x += x_skip - - n = self.norm1(x) - if self.disable_self_attn: - context_attn1 = context - else: - context_attn1 = None - value_attn1 = None - - if "attn1_patch" in transformer_patches: - patch = transformer_patches["attn1_patch"] - if context_attn1 is None: - context_attn1 = n - value_attn1 = context_attn1 - for p in patch: - n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options) - - if block is not None: - transformer_block = (block[0], block[1], block_index) - else: - transformer_block = None - attn1_replace_patch = transformer_patches_replace.get("attn1", {}) - block_attn1 = transformer_block - if block_attn1 not in attn1_replace_patch: - block_attn1 = block - - if block_attn1 in attn1_replace_patch: - if context_attn1 is None: - context_attn1 = n - value_attn1 = n - n = self.attn1.to_q(n) - context_attn1 = self.attn1.to_k(context_attn1) - value_attn1 = self.attn1.to_v(value_attn1) - n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options) - n = self.attn1.to_out(n) - else: - n = self.attn1(n, context=context_attn1, value=value_attn1) - - if "attn1_output_patch" in transformer_patches: - patch = transformer_patches["attn1_output_patch"] - for p in patch: - n = p(n, extra_options) - - x += n - if "middle_patch" in transformer_patches: - patch = transformer_patches["middle_patch"] - for p in patch: - x = p(x, extra_options) - - if self.attn2 is not None: - n = self.norm2(x) - if self.switch_temporal_ca_to_sa: - context_attn2 = n - else: - context_attn2 = context - value_attn2 = None - if "attn2_patch" in transformer_patches: - patch = transformer_patches["attn2_patch"] - value_attn2 = context_attn2 - for p in patch: - n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options) - - attn2_replace_patch = transformer_patches_replace.get("attn2", {}) - block_attn2 = transformer_block - if block_attn2 not in attn2_replace_patch: - block_attn2 = block - - if block_attn2 in attn2_replace_patch: - if value_attn2 is None: - value_attn2 = context_attn2 - n = self.attn2.to_q(n) - context_attn2 = self.attn2.to_k(context_attn2) - value_attn2 = self.attn2.to_v(value_attn2) - n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options) - n = self.attn2.to_out(n) - else: - n = self.attn2(n, context=context_attn2, value=value_attn2) - - if "attn2_output_patch" in transformer_patches: - patch = transformer_patches["attn2_output_patch"] - for p in patch: - n = p(n, extra_options) - - x += n - if self.is_res: - x_skip = x - x = self.ff(self.norm3(x)) - if self.is_res: - x += x_skip - - return x - - -class SpatialTransformer(nn.Module): - """ - Transformer block for image-like data. - First, project the input (aka embedding) - and reshape to b, t, d. - Then apply standard transformer action. - Finally, reshape to image - NEW: use_linear for more efficiency instead of the 1x1 convs - """ - def __init__(self, in_channels, n_heads, d_head, - depth=1, dropout=0., context_dim=None, - disable_self_attn=False, use_linear=False, - use_checkpoint=True, attn_precision=None, dtype=None, device=None, operations=ops): - super().__init__() - if exists(context_dim) and not isinstance(context_dim, list): - context_dim = [context_dim] * depth - self.in_channels = in_channels - inner_dim = n_heads * d_head - self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) - if not use_linear: - self.proj_in = operations.Conv2d(in_channels, - inner_dim, - kernel_size=1, - stride=1, - padding=0, dtype=dtype, device=device) - else: - self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device) - - self.transformer_blocks = nn.ModuleList( - [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], - disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations) - for d in range(depth)] - ) - if not use_linear: - self.proj_out = operations.Conv2d(inner_dim,in_channels, - kernel_size=1, - stride=1, - padding=0, dtype=dtype, device=device) - else: - self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device) - self.use_linear = use_linear - - def forward(self, x, context=None, transformer_options={}): - # note: if no context is given, cross-attention defaults to self-attention - if not isinstance(context, list): - context = [context] * len(self.transformer_blocks) - b, c, h, w = x.shape - x_in = x - x = self.norm(x) - if not self.use_linear: - x = self.proj_in(x) - x = x.movedim(1, 3).flatten(1, 2).contiguous() - if self.use_linear: - x = self.proj_in(x) - for i, block in enumerate(self.transformer_blocks): - transformer_options["block_index"] = i - x = block(x, context=context[i], transformer_options=transformer_options) - if self.use_linear: - x = self.proj_out(x) - x = x.reshape(x.shape[0], h, w, x.shape[-1]).movedim(3, 1).contiguous() - if not self.use_linear: - x = self.proj_out(x) - return x + x_in - - -class SpatialVideoTransformer(SpatialTransformer): - def __init__( - self, - in_channels, - n_heads, - d_head, - depth=1, - dropout=0.0, - use_linear=False, - context_dim=None, - use_spatial_context=False, - timesteps=None, - merge_strategy: str = "fixed", - merge_factor: float = 0.5, - time_context_dim=None, - ff_in=False, - checkpoint=False, - time_depth=1, - disable_self_attn=False, - disable_temporal_crossattention=False, - max_time_embed_period: int = 10000, - attn_precision=None, - dtype=None, device=None, operations=ops - ): - super().__init__( - in_channels, - n_heads, - d_head, - depth=depth, - dropout=dropout, - use_checkpoint=checkpoint, - context_dim=context_dim, - use_linear=use_linear, - disable_self_attn=disable_self_attn, - attn_precision=attn_precision, - dtype=dtype, device=device, operations=operations - ) - self.time_depth = time_depth - self.depth = depth - self.max_time_embed_period = max_time_embed_period - - time_mix_d_head = d_head - n_time_mix_heads = n_heads - - time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads) - - inner_dim = n_heads * d_head - if use_spatial_context: - time_context_dim = context_dim - - self.time_stack = nn.ModuleList( - [ - BasicTransformerBlock( - inner_dim, - n_time_mix_heads, - time_mix_d_head, - dropout=dropout, - context_dim=time_context_dim, - # timesteps=timesteps, - checkpoint=checkpoint, - ff_in=ff_in, - inner_dim=time_mix_inner_dim, - disable_self_attn=disable_self_attn, - disable_temporal_crossattention=disable_temporal_crossattention, - attn_precision=attn_precision, - dtype=dtype, device=device, operations=operations - ) - for _ in range(self.depth) - ] - ) - - assert len(self.time_stack) == len(self.transformer_blocks) - - self.use_spatial_context = use_spatial_context - self.in_channels = in_channels - - time_embed_dim = self.in_channels * 4 - self.time_pos_embed = nn.Sequential( - operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device), - nn.SiLU(), - operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device), - ) - - self.time_mixer = AlphaBlender( - alpha=merge_factor, merge_strategy=merge_strategy - ) - - def forward( - self, - x: torch.Tensor, - context: Optional[torch.Tensor] = None, - time_context: Optional[torch.Tensor] = None, - timesteps: Optional[int] = None, - image_only_indicator: Optional[torch.Tensor] = None, - transformer_options={} - ) -> torch.Tensor: - _, _, h, w = x.shape - x_in = x - spatial_context = None - if exists(context): - spatial_context = context - - if self.use_spatial_context: - assert ( - context.ndim == 3 - ), f"n dims of spatial context should be 3 but are {context.ndim}" - - if time_context is None: - time_context = context - time_context_first_timestep = time_context[::timesteps] - time_context = repeat( - time_context_first_timestep, "b ... -> (b n) ...", n=h * w - ) - elif time_context is not None and not self.use_spatial_context: - time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w) - if time_context.ndim == 2: - time_context = rearrange(time_context, "b c -> b 1 c") - - x = self.norm(x) - if not self.use_linear: - x = self.proj_in(x) - x = rearrange(x, "b c h w -> b (h w) c") - if self.use_linear: - x = self.proj_in(x) - - num_frames = torch.arange(timesteps, device=x.device) - num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) - num_frames = rearrange(num_frames, "b t -> (b t)") - t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype) - emb = self.time_pos_embed(t_emb) - emb = emb[:, None, :] - - for it_, (block, mix_block) in enumerate( - zip(self.transformer_blocks, self.time_stack) - ): - transformer_options["block_index"] = it_ - x = block( - x, - context=spatial_context, - transformer_options=transformer_options, - ) - - x_mix = x - x_mix = x_mix + emb - - B, S, C = x_mix.shape - x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps) - x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options - x_mix = rearrange( - x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps - ) - - x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator) - - if self.use_linear: - x = self.proj_out(x) - x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) - if not self.use_linear: - x = self.proj_out(x) - out = x + x_in - return out - - diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__init__.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index e7c31affcb019acd38bbc538a44747fad8231bc8..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/mmdit.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/mmdit.cpython-310.pyc deleted file mode 100644 index f3c8582fa5c185ebccd289c3687b04917e7111ff..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/mmdit.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc deleted file mode 100644 index 6f91913a653281d8642a907da39f9681fcde0c51..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc deleted file mode 100644 index 5162ad8678d12de4dc426b24543352bf01285156..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc deleted file mode 100644 index 5e8398c7590e2c08b248b2693d27a87dbb04a647..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc deleted file mode 100644 index bbaaa651179daa5ae5f0908873ddeb1587b88572..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/mmdit.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/mmdit.py deleted file mode 100644 index 20d3a321a02ae36943022ba0b831c45d49f6b15d..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/modules/diffusionmodules/mmdit.py +++ /dev/null @@ -1,962 +0,0 @@ -import logging -import math -from typing import Dict, Optional - -import numpy as np -import torch -import torch.nn as nn -from .. import attention -from einops import rearrange, repeat - -def default(x, y): - if x is not None: - return x - return y - -class Mlp(nn.Module): - """ MLP as used in Vision Transformer, MLP-Mixer and related networks - """ - def __init__( - self, - in_features, - hidden_features=None, - out_features=None, - act_layer=nn.GELU, - norm_layer=None, - bias=True, - drop=0., - use_conv=False, - dtype=None, - device=None, - operations=None, - ): - super().__init__() - out_features = out_features or in_features - hidden_features = hidden_features or in_features - drop_probs = drop - linear_layer = partial(operations.Conv2d, kernel_size=1) if use_conv else operations.Linear - - self.fc1 = linear_layer(in_features, hidden_features, bias=bias, dtype=dtype, device=device) - self.act = act_layer() - self.drop1 = nn.Dropout(drop_probs) - self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() - self.fc2 = linear_layer(hidden_features, out_features, bias=bias, dtype=dtype, device=device) - self.drop2 = nn.Dropout(drop_probs) - - def forward(self, x): - x = self.fc1(x) - x = self.act(x) - x = self.drop1(x) - x = self.norm(x) - x = self.fc2(x) - x = self.drop2(x) - return x - -class PatchEmbed(nn.Module): - """ 2D Image to Patch Embedding - """ - dynamic_img_pad: torch.jit.Final[bool] - - def __init__( - self, - img_size: Optional[int] = 224, - patch_size: int = 16, - in_chans: int = 3, - embed_dim: int = 768, - norm_layer = None, - flatten: bool = True, - bias: bool = True, - strict_img_size: bool = True, - dynamic_img_pad: bool = True, - dtype=None, - device=None, - operations=None, - ): - super().__init__() - self.patch_size = (patch_size, patch_size) - if img_size is not None: - self.img_size = (img_size, img_size) - self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)]) - self.num_patches = self.grid_size[0] * self.grid_size[1] - else: - self.img_size = None - self.grid_size = None - self.num_patches = None - - # flatten spatial dim and transpose to channels last, kept for bwd compat - self.flatten = flatten - self.strict_img_size = strict_img_size - self.dynamic_img_pad = dynamic_img_pad - - self.proj = operations.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias, dtype=dtype, device=device) - self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() - - def forward(self, x): - B, C, H, W = x.shape - # if self.img_size is not None: - # if self.strict_img_size: - # _assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).") - # _assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).") - # elif not self.dynamic_img_pad: - # _assert( - # H % self.patch_size[0] == 0, - # f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})." - # ) - # _assert( - # W % self.patch_size[1] == 0, - # f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})." - # ) - if self.dynamic_img_pad: - pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0] - pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1] - x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode='reflect') - x = self.proj(x) - if self.flatten: - x = x.flatten(2).transpose(1, 2) # NCHW -> NLC - x = self.norm(x) - return x - -def modulate(x, shift, scale): - if shift is None: - shift = torch.zeros_like(scale) - return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) - - -################################################################################# -# Sine/Cosine Positional Embedding Functions # -################################################################################# - - -def get_2d_sincos_pos_embed( - embed_dim, - grid_size, - cls_token=False, - extra_tokens=0, - scaling_factor=None, - offset=None, -): - """ - grid_size: int of the grid height and width - return: - pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) - """ - grid_h = np.arange(grid_size, dtype=np.float32) - grid_w = np.arange(grid_size, dtype=np.float32) - grid = np.meshgrid(grid_w, grid_h) # here w goes first - grid = np.stack(grid, axis=0) - if scaling_factor is not None: - grid = grid / scaling_factor - if offset is not None: - grid = grid - offset - - grid = grid.reshape([2, 1, grid_size, grid_size]) - pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) - if cls_token and extra_tokens > 0: - pos_embed = np.concatenate( - [np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0 - ) - return pos_embed - - -def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): - assert embed_dim % 2 == 0 - - # use half of dimensions to encode grid_h - emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) - emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) - - emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) - return emb - - -def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): - """ - embed_dim: output dimension for each position - pos: a list of positions to be encoded: size (M,) - out: (M, D) - """ - assert embed_dim % 2 == 0 - omega = np.arange(embed_dim // 2, dtype=np.float64) - omega /= embed_dim / 2.0 - omega = 1.0 / 10000**omega # (D/2,) - - pos = pos.reshape(-1) # (M,) - out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product - - emb_sin = np.sin(out) # (M, D/2) - emb_cos = np.cos(out) # (M, D/2) - - emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) - return emb - -def get_1d_sincos_pos_embed_from_grid_torch(embed_dim, pos, device=None, dtype=torch.float32): - omega = torch.arange(embed_dim // 2, device=device, dtype=dtype) - omega /= embed_dim / 2.0 - omega = 1.0 / 10000**omega # (D/2,) - pos = pos.reshape(-1) # (M,) - out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product - emb_sin = torch.sin(out) # (M, D/2) - emb_cos = torch.cos(out) # (M, D/2) - emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D) - return emb - -def get_2d_sincos_pos_embed_torch(embed_dim, w, h, val_center=7.5, val_magnitude=7.5, device=None, dtype=torch.float32): - small = min(h, w) - val_h = (h / small) * val_magnitude - val_w = (w / small) * val_magnitude - grid_h, grid_w = torch.meshgrid(torch.linspace(-val_h + val_center, val_h + val_center, h, device=device, dtype=dtype), torch.linspace(-val_w + val_center, val_w + val_center, w, device=device, dtype=dtype), indexing='ij') - emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype) - emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype) - emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D) - return emb - - -################################################################################# -# Embedding Layers for Timesteps and Class Labels # -################################################################################# - - -class TimestepEmbedder(nn.Module): - """ - Embeds scalar timesteps into vector representations. - """ - - def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None): - super().__init__() - self.mlp = nn.Sequential( - operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device), - nn.SiLU(), - operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), - ) - self.frequency_embedding_size = frequency_embedding_size - - @staticmethod - def timestep_embedding(t, dim, max_period=10000): - """ - Create sinusoidal timestep embeddings. - :param t: a 1-D Tensor of N indices, one per batch element. - These may be fractional. - :param dim: the dimension of the output. - :param max_period: controls the minimum frequency of the embeddings. - :return: an (N, D) Tensor of positional embeddings. - """ - half = dim // 2 - freqs = torch.exp( - -math.log(max_period) - * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) - / half - ) - args = t[:, None].float() * freqs[None] - embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) - if dim % 2: - embedding = torch.cat( - [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 - ) - if torch.is_floating_point(t): - embedding = embedding.to(dtype=t.dtype) - return embedding - - def forward(self, t, dtype, **kwargs): - t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype) - t_emb = self.mlp(t_freq) - return t_emb - - -class VectorEmbedder(nn.Module): - """ - Embeds a flat vector of dimension input_dim - """ - - def __init__(self, input_dim: int, hidden_size: int, dtype=None, device=None, operations=None): - super().__init__() - self.mlp = nn.Sequential( - operations.Linear(input_dim, hidden_size, bias=True, dtype=dtype, device=device), - nn.SiLU(), - operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), - ) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - emb = self.mlp(x) - return emb - - -################################################################################# -# Core DiT Model # -################################################################################# - - -def split_qkv(qkv, head_dim): - qkv = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, -1, head_dim).movedim(2, 0) - return qkv[0], qkv[1], qkv[2] - -def optimized_attention(qkv, num_heads): - return attention.optimized_attention(qkv[0], qkv[1], qkv[2], num_heads) - -class SelfAttention(nn.Module): - ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug") - - def __init__( - self, - dim: int, - num_heads: int = 8, - qkv_bias: bool = False, - qk_scale: Optional[float] = None, - proj_drop: float = 0.0, - attn_mode: str = "xformers", - pre_only: bool = False, - qk_norm: Optional[str] = None, - rmsnorm: bool = False, - dtype=None, - device=None, - operations=None, - ): - super().__init__() - self.num_heads = num_heads - self.head_dim = dim // num_heads - - self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) - if not pre_only: - self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) - self.proj_drop = nn.Dropout(proj_drop) - assert attn_mode in self.ATTENTION_MODES - self.attn_mode = attn_mode - self.pre_only = pre_only - - if qk_norm == "rms": - self.ln_q = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) - self.ln_k = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) - elif qk_norm == "ln": - self.ln_q = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) - self.ln_k = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) - elif qk_norm is None: - self.ln_q = nn.Identity() - self.ln_k = nn.Identity() - else: - raise ValueError(qk_norm) - - def pre_attention(self, x: torch.Tensor) -> torch.Tensor: - B, L, C = x.shape - qkv = self.qkv(x) - q, k, v = split_qkv(qkv, self.head_dim) - q = self.ln_q(q).reshape(q.shape[0], q.shape[1], -1) - k = self.ln_k(k).reshape(q.shape[0], q.shape[1], -1) - return (q, k, v) - - def post_attention(self, x: torch.Tensor) -> torch.Tensor: - assert not self.pre_only - x = self.proj(x) - x = self.proj_drop(x) - return x - - def forward(self, x: torch.Tensor) -> torch.Tensor: - qkv = self.pre_attention(x) - x = optimized_attention( - qkv, num_heads=self.num_heads - ) - x = self.post_attention(x) - return x - - -class RMSNorm(torch.nn.Module): - def __init__( - self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6, device=None, dtype=None - ): - """ - Initialize the RMSNorm normalization layer. - Args: - dim (int): The dimension of the input tensor. - eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. - Attributes: - eps (float): A small value added to the denominator for numerical stability. - weight (nn.Parameter): Learnable scaling parameter. - """ - super().__init__() - self.eps = eps - self.learnable_scale = elementwise_affine - if self.learnable_scale: - self.weight = nn.Parameter(torch.empty(dim, device=device, dtype=dtype)) - else: - self.register_parameter("weight", None) - - def _norm(self, x): - """ - Apply the RMSNorm normalization to the input tensor. - Args: - x (torch.Tensor): The input tensor. - Returns: - torch.Tensor: The normalized tensor. - """ - return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) - - def forward(self, x): - """ - Forward pass through the RMSNorm layer. - Args: - x (torch.Tensor): The input tensor. - Returns: - torch.Tensor: The output tensor after applying RMSNorm. - """ - x = self._norm(x) - if self.learnable_scale: - return x * self.weight.to(device=x.device, dtype=x.dtype) - else: - return x - - -class SwiGLUFeedForward(nn.Module): - def __init__( - self, - dim: int, - hidden_dim: int, - multiple_of: int, - ffn_dim_multiplier: Optional[float] = None, - ): - """ - Initialize the FeedForward module. - - Args: - dim (int): Input dimension. - hidden_dim (int): Hidden dimension of the feedforward layer. - multiple_of (int): Value to ensure hidden dimension is a multiple of this value. - ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None. - - Attributes: - w1 (ColumnParallelLinear): Linear transformation for the first layer. - w2 (RowParallelLinear): Linear transformation for the second layer. - w3 (ColumnParallelLinear): Linear transformation for the third layer. - - """ - super().__init__() - hidden_dim = int(2 * hidden_dim / 3) - # custom dim factor multiplier - if ffn_dim_multiplier is not None: - hidden_dim = int(ffn_dim_multiplier * hidden_dim) - hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) - - self.w1 = nn.Linear(dim, hidden_dim, bias=False) - self.w2 = nn.Linear(hidden_dim, dim, bias=False) - self.w3 = nn.Linear(dim, hidden_dim, bias=False) - - def forward(self, x): - return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x)) - - -class DismantledBlock(nn.Module): - """ - A DiT block with gated adaptive layer norm (adaLN) conditioning. - """ - - ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug") - - def __init__( - self, - hidden_size: int, - num_heads: int, - mlp_ratio: float = 4.0, - attn_mode: str = "xformers", - qkv_bias: bool = False, - pre_only: bool = False, - rmsnorm: bool = False, - scale_mod_only: bool = False, - swiglu: bool = False, - qk_norm: Optional[str] = None, - dtype=None, - device=None, - operations=None, - **block_kwargs, - ): - super().__init__() - assert attn_mode in self.ATTENTION_MODES - if not rmsnorm: - self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - else: - self.norm1 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6) - self.attn = SelfAttention( - dim=hidden_size, - num_heads=num_heads, - qkv_bias=qkv_bias, - attn_mode=attn_mode, - pre_only=pre_only, - qk_norm=qk_norm, - rmsnorm=rmsnorm, - dtype=dtype, - device=device, - operations=operations - ) - if not pre_only: - if not rmsnorm: - self.norm2 = operations.LayerNorm( - hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device - ) - else: - self.norm2 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6) - mlp_hidden_dim = int(hidden_size * mlp_ratio) - if not pre_only: - if not swiglu: - self.mlp = Mlp( - in_features=hidden_size, - hidden_features=mlp_hidden_dim, - act_layer=lambda: nn.GELU(approximate="tanh"), - drop=0, - dtype=dtype, - device=device, - operations=operations - ) - else: - self.mlp = SwiGLUFeedForward( - dim=hidden_size, - hidden_dim=mlp_hidden_dim, - multiple_of=256, - ) - self.scale_mod_only = scale_mod_only - if not scale_mod_only: - n_mods = 6 if not pre_only else 2 - else: - n_mods = 4 if not pre_only else 1 - self.adaLN_modulation = nn.Sequential( - nn.SiLU(), operations.Linear(hidden_size, n_mods * hidden_size, bias=True, dtype=dtype, device=device) - ) - self.pre_only = pre_only - - def pre_attention(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: - if not self.pre_only: - if not self.scale_mod_only: - ( - shift_msa, - scale_msa, - gate_msa, - shift_mlp, - scale_mlp, - gate_mlp, - ) = self.adaLN_modulation(c).chunk(6, dim=1) - else: - shift_msa = None - shift_mlp = None - ( - scale_msa, - gate_msa, - scale_mlp, - gate_mlp, - ) = self.adaLN_modulation( - c - ).chunk(4, dim=1) - qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa)) - return qkv, ( - x, - gate_msa, - shift_mlp, - scale_mlp, - gate_mlp, - ) - else: - if not self.scale_mod_only: - ( - shift_msa, - scale_msa, - ) = self.adaLN_modulation( - c - ).chunk(2, dim=1) - else: - shift_msa = None - scale_msa = self.adaLN_modulation(c) - qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa)) - return qkv, None - - def post_attention(self, attn, x, gate_msa, shift_mlp, scale_mlp, gate_mlp): - assert not self.pre_only - x = x + gate_msa.unsqueeze(1) * self.attn.post_attention(attn) - x = x + gate_mlp.unsqueeze(1) * self.mlp( - modulate(self.norm2(x), shift_mlp, scale_mlp) - ) - return x - - def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: - assert not self.pre_only - qkv, intermediates = self.pre_attention(x, c) - attn = optimized_attention( - qkv, - num_heads=self.attn.num_heads, - ) - return self.post_attention(attn, *intermediates) - - -def block_mixing(*args, use_checkpoint=True, **kwargs): - if use_checkpoint: - return torch.utils.checkpoint.checkpoint( - _block_mixing, *args, use_reentrant=False, **kwargs - ) - else: - return _block_mixing(*args, **kwargs) - - -def _block_mixing(context, x, context_block, x_block, c): - context_qkv, context_intermediates = context_block.pre_attention(context, c) - - x_qkv, x_intermediates = x_block.pre_attention(x, c) - - o = [] - for t in range(3): - o.append(torch.cat((context_qkv[t], x_qkv[t]), dim=1)) - qkv = tuple(o) - - attn = optimized_attention( - qkv, - num_heads=x_block.attn.num_heads, - ) - context_attn, x_attn = ( - attn[:, : context_qkv[0].shape[1]], - attn[:, context_qkv[0].shape[1] :], - ) - - if not context_block.pre_only: - context = context_block.post_attention(context_attn, *context_intermediates) - - else: - context = None - x = x_block.post_attention(x_attn, *x_intermediates) - return context, x - - -class JointBlock(nn.Module): - """just a small wrapper to serve as a fsdp unit""" - - def __init__( - self, - *args, - **kwargs, - ): - super().__init__() - pre_only = kwargs.pop("pre_only") - qk_norm = kwargs.pop("qk_norm", None) - self.context_block = DismantledBlock(*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs) - self.x_block = DismantledBlock(*args, pre_only=False, qk_norm=qk_norm, **kwargs) - - def forward(self, *args, **kwargs): - return block_mixing( - *args, context_block=self.context_block, x_block=self.x_block, **kwargs - ) - - -class FinalLayer(nn.Module): - """ - The final layer of DiT. - """ - - def __init__( - self, - hidden_size: int, - patch_size: int, - out_channels: int, - total_out_channels: Optional[int] = None, - dtype=None, - device=None, - operations=None, - ): - super().__init__() - self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.linear = ( - operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) - if (total_out_channels is None) - else operations.Linear(hidden_size, total_out_channels, bias=True, dtype=dtype, device=device) - ) - self.adaLN_modulation = nn.Sequential( - nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device) - ) - - def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: - shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) - x = modulate(self.norm_final(x), shift, scale) - x = self.linear(x) - return x - -class SelfAttentionContext(nn.Module): - def __init__(self, dim, heads=8, dim_head=64, dtype=None, device=None, operations=None): - super().__init__() - dim_head = dim // heads - inner_dim = dim - - self.heads = heads - self.dim_head = dim_head - - self.qkv = operations.Linear(dim, dim * 3, bias=True, dtype=dtype, device=device) - - self.proj = operations.Linear(inner_dim, dim, dtype=dtype, device=device) - - def forward(self, x): - qkv = self.qkv(x) - q, k, v = split_qkv(qkv, self.dim_head) - x = optimized_attention((q.reshape(q.shape[0], q.shape[1], -1), k, v), self.heads) - return self.proj(x) - -class ContextProcessorBlock(nn.Module): - def __init__(self, context_size, dtype=None, device=None, operations=None): - super().__init__() - self.norm1 = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.attn = SelfAttentionContext(context_size, dtype=dtype, device=device, operations=operations) - self.norm2 = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.mlp = Mlp(in_features=context_size, hidden_features=(context_size * 4), act_layer=lambda: nn.GELU(approximate="tanh"), drop=0, dtype=dtype, device=device, operations=operations) - - def forward(self, x): - x += self.attn(self.norm1(x)) - x += self.mlp(self.norm2(x)) - return x - -class ContextProcessor(nn.Module): - def __init__(self, context_size, num_layers, dtype=None, device=None, operations=None): - super().__init__() - self.layers = torch.nn.ModuleList([ContextProcessorBlock(context_size, dtype=dtype, device=device, operations=operations) for i in range(num_layers)]) - self.norm = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - - def forward(self, x): - for i, l in enumerate(self.layers): - x = l(x) - return self.norm(x) - -class MMDiT(nn.Module): - """ - Diffusion model with a Transformer backbone. - """ - - def __init__( - self, - input_size: int = 32, - patch_size: int = 2, - in_channels: int = 4, - depth: int = 28, - # hidden_size: Optional[int] = None, - # num_heads: Optional[int] = None, - mlp_ratio: float = 4.0, - learn_sigma: bool = False, - adm_in_channels: Optional[int] = None, - context_embedder_config: Optional[Dict] = None, - compile_core: bool = False, - use_checkpoint: bool = False, - register_length: int = 0, - attn_mode: str = "torch", - rmsnorm: bool = False, - scale_mod_only: bool = False, - swiglu: bool = False, - out_channels: Optional[int] = None, - pos_embed_scaling_factor: Optional[float] = None, - pos_embed_offset: Optional[float] = None, - pos_embed_max_size: Optional[int] = None, - num_patches = None, - qk_norm: Optional[str] = None, - qkv_bias: bool = True, - context_processor_layers = None, - context_size = 4096, - dtype = None, #TODO - device = None, - operations = None, - ): - super().__init__() - self.dtype = dtype - self.learn_sigma = learn_sigma - self.in_channels = in_channels - default_out_channels = in_channels * 2 if learn_sigma else in_channels - self.out_channels = default(out_channels, default_out_channels) - self.patch_size = patch_size - self.pos_embed_scaling_factor = pos_embed_scaling_factor - self.pos_embed_offset = pos_embed_offset - self.pos_embed_max_size = pos_embed_max_size - - # hidden_size = default(hidden_size, 64 * depth) - # num_heads = default(num_heads, hidden_size // 64) - - # apply magic --> this defines a head_size of 64 - self.hidden_size = 64 * depth - num_heads = depth - - self.num_heads = num_heads - - self.x_embedder = PatchEmbed( - input_size, - patch_size, - in_channels, - self.hidden_size, - bias=True, - strict_img_size=self.pos_embed_max_size is None, - dtype=dtype, - device=device, - operations=operations - ) - self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations) - - self.y_embedder = None - if adm_in_channels is not None: - assert isinstance(adm_in_channels, int) - self.y_embedder = VectorEmbedder(adm_in_channels, self.hidden_size, dtype=dtype, device=device, operations=operations) - - if context_processor_layers is not None: - self.context_processor = ContextProcessor(context_size, context_processor_layers, dtype=dtype, device=device, operations=operations) - else: - self.context_processor = None - - self.context_embedder = nn.Identity() - if context_embedder_config is not None: - if context_embedder_config["target"] == "torch.nn.Linear": - self.context_embedder = operations.Linear(**context_embedder_config["params"], dtype=dtype, device=device) - - self.register_length = register_length - if self.register_length > 0: - self.register = nn.Parameter(torch.randn(1, register_length, self.hidden_size, dtype=dtype, device=device)) - - # num_patches = self.x_embedder.num_patches - # Will use fixed sin-cos embedding: - # just use a buffer already - if num_patches is not None: - self.register_buffer( - "pos_embed", - torch.empty(1, num_patches, self.hidden_size, dtype=dtype, device=device), - ) - else: - self.pos_embed = None - - self.use_checkpoint = use_checkpoint - self.joint_blocks = nn.ModuleList( - [ - JointBlock( - self.hidden_size, - num_heads, - mlp_ratio=mlp_ratio, - qkv_bias=qkv_bias, - attn_mode=attn_mode, - pre_only=i == depth - 1, - rmsnorm=rmsnorm, - scale_mod_only=scale_mod_only, - swiglu=swiglu, - qk_norm=qk_norm, - dtype=dtype, - device=device, - operations=operations - ) - for i in range(depth) - ] - ) - - self.final_layer = FinalLayer(self.hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations) - - if compile_core: - assert False - self.forward_core_with_concat = torch.compile(self.forward_core_with_concat) - - def cropped_pos_embed(self, hw, device=None): - p = self.x_embedder.patch_size[0] - h, w = hw - # patched size - h = (h + 1) // p - w = (w + 1) // p - if self.pos_embed is None: - return get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=device) - assert self.pos_embed_max_size is not None - assert h <= self.pos_embed_max_size, (h, self.pos_embed_max_size) - assert w <= self.pos_embed_max_size, (w, self.pos_embed_max_size) - top = (self.pos_embed_max_size - h) // 2 - left = (self.pos_embed_max_size - w) // 2 - spatial_pos_embed = rearrange( - self.pos_embed, - "1 (h w) c -> 1 h w c", - h=self.pos_embed_max_size, - w=self.pos_embed_max_size, - ) - spatial_pos_embed = spatial_pos_embed[:, top : top + h, left : left + w, :] - spatial_pos_embed = rearrange(spatial_pos_embed, "1 h w c -> 1 (h w) c") - # print(spatial_pos_embed, top, left, h, w) - # # t = get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, 7.875, 7.875, device=device) #matches exactly for 1024 res - # t = get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, 7.5, 7.5, device=device) #scales better - # # print(t) - # return t - return spatial_pos_embed - - def unpatchify(self, x, hw=None): - """ - x: (N, T, patch_size**2 * C) - imgs: (N, H, W, C) - """ - c = self.out_channels - p = self.x_embedder.patch_size[0] - if hw is None: - h = w = int(x.shape[1] ** 0.5) - else: - h, w = hw - h = (h + 1) // p - w = (w + 1) // p - assert h * w == x.shape[1] - - x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) - x = torch.einsum("nhwpqc->nchpwq", x) - imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) - return imgs - - def forward_core_with_concat( - self, - x: torch.Tensor, - c_mod: torch.Tensor, - context: Optional[torch.Tensor] = None, - ) -> torch.Tensor: - if self.register_length > 0: - context = torch.cat( - ( - repeat(self.register, "1 ... -> b ...", b=x.shape[0]), - default(context, torch.Tensor([]).type_as(x)), - ), - 1, - ) - - # context is B, L', D - # x is B, L, D - for block in self.joint_blocks: - context, x = block( - context, - x, - c=c_mod, - use_checkpoint=self.use_checkpoint, - ) - - x = self.final_layer(x, c_mod) # (N, T, patch_size ** 2 * out_channels) - return x - - def forward( - self, - x: torch.Tensor, - t: torch.Tensor, - y: Optional[torch.Tensor] = None, - context: Optional[torch.Tensor] = None, - ) -> torch.Tensor: - """ - Forward pass of DiT. - x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) - t: (N,) tensor of diffusion timesteps - y: (N,) tensor of class labels - """ - - if self.context_processor is not None: - context = self.context_processor(context) - - hw = x.shape[-2:] - x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device) - c = self.t_embedder(t, dtype=x.dtype) # (N, D) - if y is not None and self.y_embedder is not None: - y = self.y_embedder(y) # (N, D) - c = c + y # (N, D) - - if context is not None: - context = self.context_embedder(context) - - x = self.forward_core_with_concat(x, c, context) - - x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W) - return x[:,:,:hw[-2],:hw[-1]] - - -class OpenAISignatureMMDITWrapper(MMDiT): - def forward( - self, - x: torch.Tensor, - timesteps: torch.Tensor, - context: Optional[torch.Tensor] = None, - y: Optional[torch.Tensor] = None, - **kwargs, - ) -> torch.Tensor: - return super().forward(x, timesteps, context=context, y=y) - diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/model.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/model.py deleted file mode 100644 index 04eb83b2181253e3a88f7945f75e017060e02ebf..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/modules/diffusionmodules/model.py +++ /dev/null @@ -1,650 +0,0 @@ -# pytorch_diffusion + derived encoder decoder -import math -import torch -import torch.nn as nn -import numpy as np -from typing import Optional, Any -import logging - -from comfy import model_management -import comfy.ops -ops = comfy.ops.disable_weight_init - -if model_management.xformers_enabled_vae(): - import xformers - import xformers.ops - -def get_timestep_embedding(timesteps, embedding_dim): - """ - This matches the implementation in Denoising Diffusion Probabilistic Models: - From Fairseq. - Build sinusoidal embeddings. - This matches the implementation in tensor2tensor, but differs slightly - from the description in Section 3.5 of "Attention Is All You Need". - """ - assert len(timesteps.shape) == 1 - - half_dim = embedding_dim // 2 - emb = math.log(10000) / (half_dim - 1) - emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) - emb = emb.to(device=timesteps.device) - emb = timesteps.float()[:, None] * emb[None, :] - emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) - if embedding_dim % 2 == 1: # zero pad - emb = torch.nn.functional.pad(emb, (0,1,0,0)) - return emb - - -def nonlinearity(x): - # swish - return x*torch.sigmoid(x) - - -def Normalize(in_channels, num_groups=32): - return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) - - -class Upsample(nn.Module): - def __init__(self, in_channels, with_conv): - super().__init__() - self.with_conv = with_conv - if self.with_conv: - self.conv = ops.Conv2d(in_channels, - in_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - try: - x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") - except: #operation not implemented for bf16 - b, c, h, w = x.shape - out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device) - split = 8 - l = out.shape[1] // split - for i in range(0, out.shape[1], l): - out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype) - del x - x = out - - if self.with_conv: - x = self.conv(x) - return x - - -class Downsample(nn.Module): - def __init__(self, in_channels, with_conv): - super().__init__() - self.with_conv = with_conv - if self.with_conv: - # no asymmetric padding in torch conv, must do it ourselves - self.conv = ops.Conv2d(in_channels, - in_channels, - kernel_size=3, - stride=2, - padding=0) - - def forward(self, x): - if self.with_conv: - pad = (0,1,0,1) - x = torch.nn.functional.pad(x, pad, mode="constant", value=0) - x = self.conv(x) - else: - x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) - return x - - -class ResnetBlock(nn.Module): - def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, - dropout, temb_channels=512): - super().__init__() - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - self.use_conv_shortcut = conv_shortcut - - self.swish = torch.nn.SiLU(inplace=True) - self.norm1 = Normalize(in_channels) - self.conv1 = ops.Conv2d(in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - if temb_channels > 0: - self.temb_proj = ops.Linear(temb_channels, - out_channels) - self.norm2 = Normalize(out_channels) - self.dropout = torch.nn.Dropout(dropout, inplace=True) - self.conv2 = ops.Conv2d(out_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = ops.Conv2d(in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - else: - self.nin_shortcut = ops.Conv2d(in_channels, - out_channels, - kernel_size=1, - stride=1, - padding=0) - - def forward(self, x, temb): - h = x - h = self.norm1(h) - h = self.swish(h) - h = self.conv1(h) - - if temb is not None: - h = h + self.temb_proj(self.swish(temb))[:,:,None,None] - - h = self.norm2(h) - h = self.swish(h) - h = self.dropout(h) - h = self.conv2(h) - - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - x = self.conv_shortcut(x) - else: - x = self.nin_shortcut(x) - - return x+h - -def slice_attention(q, k, v): - r1 = torch.zeros_like(k, device=q.device) - scale = (int(q.shape[-1])**(-0.5)) - - mem_free_total = model_management.get_free_memory(q.device) - - gb = 1024 ** 3 - tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() - modifier = 3 if q.element_size() == 2 else 2.5 - mem_required = tensor_size * modifier - steps = 1 - - if mem_required > mem_free_total: - steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) - - while True: - try: - slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] - for i in range(0, q.shape[1], slice_size): - end = i + slice_size - s1 = torch.bmm(q[:, i:end], k) * scale - - s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1) - del s1 - - r1[:, :, i:end] = torch.bmm(v, s2) - del s2 - break - except model_management.OOM_EXCEPTION as e: - model_management.soft_empty_cache(True) - steps *= 2 - if steps > 128: - raise e - logging.warning("out of memory error, increasing steps and trying again {}".format(steps)) - - return r1 - -def normal_attention(q, k, v): - # compute attention - b,c,h,w = q.shape - - q = q.reshape(b,c,h*w) - q = q.permute(0,2,1) # b,hw,c - k = k.reshape(b,c,h*w) # b,c,hw - v = v.reshape(b,c,h*w) - - r1 = slice_attention(q, k, v) - h_ = r1.reshape(b,c,h,w) - del r1 - return h_ - -def xformers_attention(q, k, v): - # compute attention - B, C, H, W = q.shape - q, k, v = map( - lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(), - (q, k, v), - ) - - try: - out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) - out = out.transpose(1, 2).reshape(B, C, H, W) - except NotImplementedError as e: - out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W) - return out - -def pytorch_attention(q, k, v): - # compute attention - B, C, H, W = q.shape - q, k, v = map( - lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(), - (q, k, v), - ) - - try: - out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False) - out = out.transpose(2, 3).reshape(B, C, H, W) - except model_management.OOM_EXCEPTION as e: - logging.warning("scaled_dot_product_attention OOMed: switched to slice attention") - out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W) - return out - - -class AttnBlock(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - - self.norm = Normalize(in_channels) - self.q = ops.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k = ops.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v = ops.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out = ops.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - if model_management.xformers_enabled_vae(): - logging.info("Using xformers attention in VAE") - self.optimized_attention = xformers_attention - elif model_management.pytorch_attention_enabled(): - logging.info("Using pytorch attention in VAE") - self.optimized_attention = pytorch_attention - else: - logging.info("Using split attention in VAE") - self.optimized_attention = normal_attention - - def forward(self, x): - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - h_ = self.optimized_attention(q, k, v) - - h_ = self.proj_out(h_) - - return x+h_ - - -def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): - return AttnBlock(in_channels) - - -class Model(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): - super().__init__() - if use_linear_attn: attn_type = "linear" - self.ch = ch - self.temb_ch = self.ch*4 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - - self.use_timestep = use_timestep - if self.use_timestep: - # timestep embedding - self.temb = nn.Module() - self.temb.dense = nn.ModuleList([ - ops.Linear(self.ch, - self.temb_ch), - ops.Linear(self.temb_ch, - self.temb_ch), - ]) - - # downsampling - self.conv_in = ops.Conv2d(in_channels, - self.ch, - kernel_size=3, - stride=1, - padding=1) - - curr_res = resolution - in_ch_mult = (1,)+tuple(ch_mult) - self.down = nn.ModuleList() - for i_level in range(self.num_resolutions): - block = nn.ModuleList() - attn = nn.ModuleList() - block_in = ch*in_ch_mult[i_level] - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - down = nn.Module() - down.block = block - down.attn = attn - if i_level != self.num_resolutions-1: - down.downsample = Downsample(block_in, resamp_with_conv) - curr_res = curr_res // 2 - self.down.append(down) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # upsampling - self.up = nn.ModuleList() - for i_level in reversed(range(self.num_resolutions)): - block = nn.ModuleList() - attn = nn.ModuleList() - block_out = ch*ch_mult[i_level] - skip_in = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks+1): - if i_block == self.num_res_blocks: - skip_in = ch*in_ch_mult[i_level] - block.append(ResnetBlock(in_channels=block_in+skip_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - up = nn.Module() - up.block = block - up.attn = attn - if i_level != 0: - up.upsample = Upsample(block_in, resamp_with_conv) - curr_res = curr_res * 2 - self.up.insert(0, up) # prepend to get consistent order - - # end - self.norm_out = Normalize(block_in) - self.conv_out = ops.Conv2d(block_in, - out_ch, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x, t=None, context=None): - #assert x.shape[2] == x.shape[3] == self.resolution - if context is not None: - # assume aligned context, cat along channel axis - x = torch.cat((x, context), dim=1) - if self.use_timestep: - # timestep embedding - assert t is not None - temb = get_timestep_embedding(t, self.ch) - temb = self.temb.dense[0](temb) - temb = nonlinearity(temb) - temb = self.temb.dense[1](temb) - else: - temb = None - - # downsampling - hs = [self.conv_in(x)] - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](hs[-1], temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - hs.append(h) - if i_level != self.num_resolutions-1: - hs.append(self.down[i_level].downsample(hs[-1])) - - # middle - h = hs[-1] - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block]( - torch.cat([h, hs.pop()], dim=1), temb) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h) - if i_level != 0: - h = self.up[i_level].upsample(h) - - # end - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - def get_last_layer(self): - return self.conv_out.weight - - -class Encoder(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", - **ignore_kwargs): - super().__init__() - if use_linear_attn: attn_type = "linear" - self.ch = ch - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - - # downsampling - self.conv_in = ops.Conv2d(in_channels, - self.ch, - kernel_size=3, - stride=1, - padding=1) - - curr_res = resolution - in_ch_mult = (1,)+tuple(ch_mult) - self.in_ch_mult = in_ch_mult - self.down = nn.ModuleList() - for i_level in range(self.num_resolutions): - block = nn.ModuleList() - attn = nn.ModuleList() - block_in = ch*in_ch_mult[i_level] - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - down = nn.Module() - down.block = block - down.attn = attn - if i_level != self.num_resolutions-1: - down.downsample = Downsample(block_in, resamp_with_conv) - curr_res = curr_res // 2 - self.down.append(down) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # end - self.norm_out = Normalize(block_in) - self.conv_out = ops.Conv2d(block_in, - 2*z_channels if double_z else z_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - # timestep embedding - temb = None - # downsampling - h = self.conv_in(x) - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](h, temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - if i_level != self.num_resolutions-1: - h = self.down[i_level].downsample(h) - - # middle - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # end - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - -class Decoder(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, - conv_out_op=ops.Conv2d, - resnet_op=ResnetBlock, - attn_op=AttnBlock, - **ignorekwargs): - super().__init__() - if use_linear_attn: attn_type = "linear" - self.ch = ch - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - self.give_pre_end = give_pre_end - self.tanh_out = tanh_out - - # compute in_ch_mult, block_in and curr_res at lowest res - in_ch_mult = (1,)+tuple(ch_mult) - block_in = ch*ch_mult[self.num_resolutions-1] - curr_res = resolution // 2**(self.num_resolutions-1) - self.z_shape = (1,z_channels,curr_res,curr_res) - logging.debug("Working with z of shape {} = {} dimensions.".format( - self.z_shape, np.prod(self.z_shape))) - - # z to block_in - self.conv_in = ops.Conv2d(z_channels, - block_in, - kernel_size=3, - stride=1, - padding=1) - - # middle - self.mid = nn.Module() - self.mid.block_1 = resnet_op(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = attn_op(block_in) - self.mid.block_2 = resnet_op(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # upsampling - self.up = nn.ModuleList() - for i_level in reversed(range(self.num_resolutions)): - block = nn.ModuleList() - attn = nn.ModuleList() - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks+1): - block.append(resnet_op(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(attn_op(block_in)) - up = nn.Module() - up.block = block - up.attn = attn - if i_level != 0: - up.upsample = Upsample(block_in, resamp_with_conv) - curr_res = curr_res * 2 - self.up.insert(0, up) # prepend to get consistent order - - # end - self.norm_out = Normalize(block_in) - self.conv_out = conv_out_op(block_in, - out_ch, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, z, **kwargs): - #assert z.shape[1:] == self.z_shape[1:] - self.last_z_shape = z.shape - - # timestep embedding - temb = None - - # z to block_in - h = self.conv_in(z) - - # middle - h = self.mid.block_1(h, temb, **kwargs) - h = self.mid.attn_1(h, **kwargs) - h = self.mid.block_2(h, temb, **kwargs) - - # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block](h, temb, **kwargs) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h, **kwargs) - if i_level != 0: - h = self.up[i_level].upsample(h) - - # end - if self.give_pre_end: - return h - - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h, **kwargs) - if self.tanh_out: - h = torch.tanh(h) - return h diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/openaimodel.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/openaimodel.py deleted file mode 100644 index ba8fc2c4a0626456256b474049580f597f4e9ca6..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/modules/diffusionmodules/openaimodel.py +++ /dev/null @@ -1,892 +0,0 @@ -from abc import abstractmethod - -import torch as th -import torch.nn as nn -import torch.nn.functional as F -from einops import rearrange -import logging - -from .util import ( - checkpoint, - avg_pool_nd, - zero_module, - timestep_embedding, - AlphaBlender, -) -from ..attention import SpatialTransformer, SpatialVideoTransformer, default -from comfy.ldm.util import exists -import comfy.ops -ops = comfy.ops.disable_weight_init - -class TimestepBlock(nn.Module): - """ - Any module where forward() takes timestep embeddings as a second argument. - """ - - @abstractmethod - def forward(self, x, emb): - """ - Apply the module to `x` given `emb` timestep embeddings. - """ - -#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index" -def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None): - for layer in ts: - if isinstance(layer, VideoResBlock): - x = layer(x, emb, num_video_frames, image_only_indicator) - elif isinstance(layer, TimestepBlock): - x = layer(x, emb) - elif isinstance(layer, SpatialVideoTransformer): - x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options) - if "transformer_index" in transformer_options: - transformer_options["transformer_index"] += 1 - elif isinstance(layer, SpatialTransformer): - x = layer(x, context, transformer_options) - if "transformer_index" in transformer_options: - transformer_options["transformer_index"] += 1 - elif isinstance(layer, Upsample): - x = layer(x, output_shape=output_shape) - else: - x = layer(x) - return x - -class TimestepEmbedSequential(nn.Sequential, TimestepBlock): - """ - A sequential module that passes timestep embeddings to the children that - support it as an extra input. - """ - - def forward(self, *args, **kwargs): - return forward_timestep_embed(self, *args, **kwargs) - -class Upsample(nn.Module): - """ - An upsampling layer with an optional convolution. - :param channels: channels in the inputs and outputs. - :param use_conv: a bool determining if a convolution is applied. - :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - upsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - if use_conv: - self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device) - - def forward(self, x, output_shape=None): - assert x.shape[1] == self.channels - if self.dims == 3: - shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2] - if output_shape is not None: - shape[1] = output_shape[3] - shape[2] = output_shape[4] - else: - shape = [x.shape[2] * 2, x.shape[3] * 2] - if output_shape is not None: - shape[0] = output_shape[2] - shape[1] = output_shape[3] - - x = F.interpolate(x, size=shape, mode="nearest") - if self.use_conv: - x = self.conv(x) - return x - -class Downsample(nn.Module): - """ - A downsampling layer with an optional convolution. - :param channels: channels in the inputs and outputs. - :param use_conv: a bool determining if a convolution is applied. - :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - downsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - stride = 2 if dims != 3 else (1, 2, 2) - if use_conv: - self.op = operations.conv_nd( - dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device - ) - else: - assert self.channels == self.out_channels - self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) - - def forward(self, x): - assert x.shape[1] == self.channels - return self.op(x) - - -class ResBlock(TimestepBlock): - """ - A residual block that can optionally change the number of channels. - :param channels: the number of input channels. - :param emb_channels: the number of timestep embedding channels. - :param dropout: the rate of dropout. - :param out_channels: if specified, the number of out channels. - :param use_conv: if True and out_channels is specified, use a spatial - convolution instead of a smaller 1x1 convolution to change the - channels in the skip connection. - :param dims: determines if the signal is 1D, 2D, or 3D. - :param use_checkpoint: if True, use gradient checkpointing on this module. - :param up: if True, use this block for upsampling. - :param down: if True, use this block for downsampling. - """ - - def __init__( - self, - channels, - emb_channels, - dropout, - out_channels=None, - use_conv=False, - use_scale_shift_norm=False, - dims=2, - use_checkpoint=False, - up=False, - down=False, - kernel_size=3, - exchange_temb_dims=False, - skip_t_emb=False, - dtype=None, - device=None, - operations=ops - ): - super().__init__() - self.channels = channels - self.emb_channels = emb_channels - self.dropout = dropout - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.use_checkpoint = use_checkpoint - self.use_scale_shift_norm = use_scale_shift_norm - self.exchange_temb_dims = exchange_temb_dims - - if isinstance(kernel_size, list): - padding = [k // 2 for k in kernel_size] - else: - padding = kernel_size // 2 - - self.in_layers = nn.Sequential( - operations.GroupNorm(32, channels, dtype=dtype, device=device), - nn.SiLU(), - operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device), - ) - - self.updown = up or down - - if up: - self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device) - self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device) - elif down: - self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device) - self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device) - else: - self.h_upd = self.x_upd = nn.Identity() - - self.skip_t_emb = skip_t_emb - if self.skip_t_emb: - self.emb_layers = None - self.exchange_temb_dims = False - else: - self.emb_layers = nn.Sequential( - nn.SiLU(), - operations.Linear( - emb_channels, - 2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device - ), - ) - self.out_layers = nn.Sequential( - operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device), - nn.SiLU(), - nn.Dropout(p=dropout), - operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device) - , - ) - - if self.out_channels == channels: - self.skip_connection = nn.Identity() - elif use_conv: - self.skip_connection = operations.conv_nd( - dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device - ) - else: - self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device) - - def forward(self, x, emb): - """ - Apply the block to a Tensor, conditioned on a timestep embedding. - :param x: an [N x C x ...] Tensor of features. - :param emb: an [N x emb_channels] Tensor of timestep embeddings. - :return: an [N x C x ...] Tensor of outputs. - """ - return checkpoint( - self._forward, (x, emb), self.parameters(), self.use_checkpoint - ) - - - def _forward(self, x, emb): - if self.updown: - in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] - h = in_rest(x) - h = self.h_upd(h) - x = self.x_upd(x) - h = in_conv(h) - else: - h = self.in_layers(x) - - emb_out = None - if not self.skip_t_emb: - emb_out = self.emb_layers(emb).type(h.dtype) - while len(emb_out.shape) < len(h.shape): - emb_out = emb_out[..., None] - if self.use_scale_shift_norm: - out_norm, out_rest = self.out_layers[0], self.out_layers[1:] - h = out_norm(h) - if emb_out is not None: - scale, shift = th.chunk(emb_out, 2, dim=1) - h *= (1 + scale) - h += shift - h = out_rest(h) - else: - if emb_out is not None: - if self.exchange_temb_dims: - emb_out = emb_out.movedim(1, 2) - h = h + emb_out - h = self.out_layers(h) - return self.skip_connection(x) + h - - -class VideoResBlock(ResBlock): - def __init__( - self, - channels: int, - emb_channels: int, - dropout: float, - video_kernel_size=3, - merge_strategy: str = "fixed", - merge_factor: float = 0.5, - out_channels=None, - use_conv: bool = False, - use_scale_shift_norm: bool = False, - dims: int = 2, - use_checkpoint: bool = False, - up: bool = False, - down: bool = False, - dtype=None, - device=None, - operations=ops - ): - super().__init__( - channels, - emb_channels, - dropout, - out_channels=out_channels, - use_conv=use_conv, - use_scale_shift_norm=use_scale_shift_norm, - dims=dims, - use_checkpoint=use_checkpoint, - up=up, - down=down, - dtype=dtype, - device=device, - operations=operations - ) - - self.time_stack = ResBlock( - default(out_channels, channels), - emb_channels, - dropout=dropout, - dims=3, - out_channels=default(out_channels, channels), - use_scale_shift_norm=False, - use_conv=False, - up=False, - down=False, - kernel_size=video_kernel_size, - use_checkpoint=use_checkpoint, - exchange_temb_dims=True, - dtype=dtype, - device=device, - operations=operations - ) - self.time_mixer = AlphaBlender( - alpha=merge_factor, - merge_strategy=merge_strategy, - rearrange_pattern="b t -> b 1 t 1 1", - ) - - def forward( - self, - x: th.Tensor, - emb: th.Tensor, - num_video_frames: int, - image_only_indicator = None, - ) -> th.Tensor: - x = super().forward(x, emb) - - x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) - x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) - - x = self.time_stack( - x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames) - ) - x = self.time_mixer( - x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator - ) - x = rearrange(x, "b c t h w -> (b t) c h w") - return x - - -class Timestep(nn.Module): - def __init__(self, dim): - super().__init__() - self.dim = dim - - def forward(self, t): - return timestep_embedding(t, self.dim) - -def apply_control(h, control, name): - if control is not None and name in control and len(control[name]) > 0: - ctrl = control[name].pop() - if ctrl is not None: - try: - h += ctrl - except: - logging.warning("warning control could not be applied {} {}".format(h.shape, ctrl.shape)) - return h - -class UNetModel(nn.Module): - """ - The full UNet model with attention and timestep embedding. - :param in_channels: channels in the input Tensor. - :param model_channels: base channel count for the model. - :param out_channels: channels in the output Tensor. - :param num_res_blocks: number of residual blocks per downsample. - :param dropout: the dropout probability. - :param channel_mult: channel multiplier for each level of the UNet. - :param conv_resample: if True, use learned convolutions for upsampling and - downsampling. - :param dims: determines if the signal is 1D, 2D, or 3D. - :param num_classes: if specified (as an int), then this model will be - class-conditional with `num_classes` classes. - :param use_checkpoint: use gradient checkpointing to reduce memory usage. - :param num_heads: the number of attention heads in each attention layer. - :param num_heads_channels: if specified, ignore num_heads and instead use - a fixed channel width per attention head. - :param num_heads_upsample: works with num_heads to set a different number - of heads for upsampling. Deprecated. - :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. - :param resblock_updown: use residual blocks for up/downsampling. - :param use_new_attention_order: use a different attention pattern for potentially - increased efficiency. - """ - - def __init__( - self, - image_size, - in_channels, - model_channels, - out_channels, - num_res_blocks, - dropout=0, - channel_mult=(1, 2, 4, 8), - conv_resample=True, - dims=2, - num_classes=None, - use_checkpoint=False, - dtype=th.float32, - num_heads=-1, - num_head_channels=-1, - num_heads_upsample=-1, - use_scale_shift_norm=False, - resblock_updown=False, - use_new_attention_order=False, - use_spatial_transformer=False, # custom transformer support - transformer_depth=1, # custom transformer support - context_dim=None, # custom transformer support - n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model - legacy=True, - disable_self_attentions=None, - num_attention_blocks=None, - disable_middle_self_attn=False, - use_linear_in_transformer=False, - adm_in_channels=None, - transformer_depth_middle=None, - transformer_depth_output=None, - use_temporal_resblock=False, - use_temporal_attention=False, - time_context_dim=None, - extra_ff_mix_layer=False, - use_spatial_context=False, - merge_strategy=None, - merge_factor=0.0, - video_kernel_size=None, - disable_temporal_crossattention=False, - max_ddpm_temb_period=10000, - attn_precision=None, - device=None, - operations=ops, - ): - super().__init__() - - if context_dim is not None: - assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' - # from omegaconf.listconfig import ListConfig - # if type(context_dim) == ListConfig: - # context_dim = list(context_dim) - - if num_heads_upsample == -1: - num_heads_upsample = num_heads - - if num_heads == -1: - assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' - - if num_head_channels == -1: - assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' - - self.in_channels = in_channels - self.model_channels = model_channels - self.out_channels = out_channels - - if isinstance(num_res_blocks, int): - self.num_res_blocks = len(channel_mult) * [num_res_blocks] - else: - if len(num_res_blocks) != len(channel_mult): - raise ValueError("provide num_res_blocks either as an int (globally constant) or " - "as a list/tuple (per-level) with the same length as channel_mult") - self.num_res_blocks = num_res_blocks - - if disable_self_attentions is not None: - # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not - assert len(disable_self_attentions) == len(channel_mult) - if num_attention_blocks is not None: - assert len(num_attention_blocks) == len(self.num_res_blocks) - - transformer_depth = transformer_depth[:] - transformer_depth_output = transformer_depth_output[:] - - self.dropout = dropout - self.channel_mult = channel_mult - self.conv_resample = conv_resample - self.num_classes = num_classes - self.use_checkpoint = use_checkpoint - self.dtype = dtype - self.num_heads = num_heads - self.num_head_channels = num_head_channels - self.num_heads_upsample = num_heads_upsample - self.use_temporal_resblocks = use_temporal_resblock - self.predict_codebook_ids = n_embed is not None - - self.default_num_video_frames = None - - time_embed_dim = model_channels * 4 - self.time_embed = nn.Sequential( - operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), - nn.SiLU(), - operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), - ) - - if self.num_classes is not None: - if isinstance(self.num_classes, int): - self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device) - elif self.num_classes == "continuous": - logging.debug("setting up linear c_adm embedding layer") - self.label_emb = nn.Linear(1, time_embed_dim) - elif self.num_classes == "sequential": - assert adm_in_channels is not None - self.label_emb = nn.Sequential( - nn.Sequential( - operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device), - nn.SiLU(), - operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), - ) - ) - else: - raise ValueError() - - self.input_blocks = nn.ModuleList( - [ - TimestepEmbedSequential( - operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device) - ) - ] - ) - self._feature_size = model_channels - input_block_chans = [model_channels] - ch = model_channels - ds = 1 - - def get_attention_layer( - ch, - num_heads, - dim_head, - depth=1, - context_dim=None, - use_checkpoint=False, - disable_self_attn=False, - ): - if use_temporal_attention: - return SpatialVideoTransformer( - ch, - num_heads, - dim_head, - depth=depth, - context_dim=context_dim, - time_context_dim=time_context_dim, - dropout=dropout, - ff_in=extra_ff_mix_layer, - use_spatial_context=use_spatial_context, - merge_strategy=merge_strategy, - merge_factor=merge_factor, - checkpoint=use_checkpoint, - use_linear=use_linear_in_transformer, - disable_self_attn=disable_self_attn, - disable_temporal_crossattention=disable_temporal_crossattention, - max_time_embed_period=max_ddpm_temb_period, - attn_precision=attn_precision, - dtype=self.dtype, device=device, operations=operations - ) - else: - return SpatialTransformer( - ch, num_heads, dim_head, depth=depth, context_dim=context_dim, - disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer, - use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations - ) - - def get_resblock( - merge_factor, - merge_strategy, - video_kernel_size, - ch, - time_embed_dim, - dropout, - out_channels, - dims, - use_checkpoint, - use_scale_shift_norm, - down=False, - up=False, - dtype=None, - device=None, - operations=ops - ): - if self.use_temporal_resblocks: - return VideoResBlock( - merge_factor=merge_factor, - merge_strategy=merge_strategy, - video_kernel_size=video_kernel_size, - channels=ch, - emb_channels=time_embed_dim, - dropout=dropout, - out_channels=out_channels, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - down=down, - up=up, - dtype=dtype, - device=device, - operations=operations - ) - else: - return ResBlock( - channels=ch, - emb_channels=time_embed_dim, - dropout=dropout, - out_channels=out_channels, - use_checkpoint=use_checkpoint, - dims=dims, - use_scale_shift_norm=use_scale_shift_norm, - down=down, - up=up, - dtype=dtype, - device=device, - operations=operations - ) - - for level, mult in enumerate(channel_mult): - for nr in range(self.num_res_blocks[level]): - layers = [ - get_resblock( - merge_factor=merge_factor, - merge_strategy=merge_strategy, - video_kernel_size=video_kernel_size, - ch=ch, - time_embed_dim=time_embed_dim, - dropout=dropout, - out_channels=mult * model_channels, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - dtype=self.dtype, - device=device, - operations=operations, - ) - ] - ch = mult * model_channels - num_transformers = transformer_depth.pop(0) - if num_transformers > 0: - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - if exists(disable_self_attentions): - disabled_sa = disable_self_attentions[level] - else: - disabled_sa = False - - if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: - layers.append(get_attention_layer( - ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, - disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint) - ) - self.input_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - input_block_chans.append(ch) - if level != len(channel_mult) - 1: - out_ch = ch - self.input_blocks.append( - TimestepEmbedSequential( - get_resblock( - merge_factor=merge_factor, - merge_strategy=merge_strategy, - video_kernel_size=video_kernel_size, - ch=ch, - time_embed_dim=time_embed_dim, - dropout=dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - down=True, - dtype=self.dtype, - device=device, - operations=operations - ) - if resblock_updown - else Downsample( - ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations - ) - ) - ) - ch = out_ch - input_block_chans.append(ch) - ds *= 2 - self._feature_size += ch - - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - mid_block = [ - get_resblock( - merge_factor=merge_factor, - merge_strategy=merge_strategy, - video_kernel_size=video_kernel_size, - ch=ch, - time_embed_dim=time_embed_dim, - dropout=dropout, - out_channels=None, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - dtype=self.dtype, - device=device, - operations=operations - )] - - self.middle_block = None - if transformer_depth_middle >= -1: - if transformer_depth_middle >= 0: - mid_block += [get_attention_layer( # always uses a self-attn - ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, - disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint - ), - get_resblock( - merge_factor=merge_factor, - merge_strategy=merge_strategy, - video_kernel_size=video_kernel_size, - ch=ch, - time_embed_dim=time_embed_dim, - dropout=dropout, - out_channels=None, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - dtype=self.dtype, - device=device, - operations=operations - )] - self.middle_block = TimestepEmbedSequential(*mid_block) - self._feature_size += ch - - self.output_blocks = nn.ModuleList([]) - for level, mult in list(enumerate(channel_mult))[::-1]: - for i in range(self.num_res_blocks[level] + 1): - ich = input_block_chans.pop() - layers = [ - get_resblock( - merge_factor=merge_factor, - merge_strategy=merge_strategy, - video_kernel_size=video_kernel_size, - ch=ch + ich, - time_embed_dim=time_embed_dim, - dropout=dropout, - out_channels=model_channels * mult, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - dtype=self.dtype, - device=device, - operations=operations - ) - ] - ch = model_channels * mult - num_transformers = transformer_depth_output.pop() - if num_transformers > 0: - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - if exists(disable_self_attentions): - disabled_sa = disable_self_attentions[level] - else: - disabled_sa = False - - if not exists(num_attention_blocks) or i < num_attention_blocks[level]: - layers.append( - get_attention_layer( - ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, - disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint - ) - ) - if level and i == self.num_res_blocks[level]: - out_ch = ch - layers.append( - get_resblock( - merge_factor=merge_factor, - merge_strategy=merge_strategy, - video_kernel_size=video_kernel_size, - ch=ch, - time_embed_dim=time_embed_dim, - dropout=dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - up=True, - dtype=self.dtype, - device=device, - operations=operations - ) - if resblock_updown - else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations) - ) - ds //= 2 - self.output_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - - self.out = nn.Sequential( - operations.GroupNorm(32, ch, dtype=self.dtype, device=device), - nn.SiLU(), - zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)), - ) - if self.predict_codebook_ids: - self.id_predictor = nn.Sequential( - operations.GroupNorm(32, ch, dtype=self.dtype, device=device), - operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device), - #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits - ) - - def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): - """ - Apply the model to an input batch. - :param x: an [N x C x ...] Tensor of inputs. - :param timesteps: a 1-D batch of timesteps. - :param context: conditioning plugged in via crossattn - :param y: an [N] Tensor of labels, if class-conditional. - :return: an [N x C x ...] Tensor of outputs. - """ - transformer_options["original_shape"] = list(x.shape) - transformer_options["transformer_index"] = 0 - transformer_patches = transformer_options.get("patches", {}) - - num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames) - image_only_indicator = kwargs.get("image_only_indicator", None) - time_context = kwargs.get("time_context", None) - - assert (y is not None) == ( - self.num_classes is not None - ), "must specify y if and only if the model is class-conditional" - hs = [] - t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) - emb = self.time_embed(t_emb) - - if self.num_classes is not None: - assert y.shape[0] == x.shape[0] - emb = emb + self.label_emb(y) - - h = x - for id, module in enumerate(self.input_blocks): - transformer_options["block"] = ("input", id) - h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) - h = apply_control(h, control, 'input') - if "input_block_patch" in transformer_patches: - patch = transformer_patches["input_block_patch"] - for p in patch: - h = p(h, transformer_options) - - hs.append(h) - if "input_block_patch_after_skip" in transformer_patches: - patch = transformer_patches["input_block_patch_after_skip"] - for p in patch: - h = p(h, transformer_options) - - transformer_options["block"] = ("middle", 0) - if self.middle_block is not None: - h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) - h = apply_control(h, control, 'middle') - - - for id, module in enumerate(self.output_blocks): - transformer_options["block"] = ("output", id) - hsp = hs.pop() - hsp = apply_control(hsp, control, 'output') - - if "output_block_patch" in transformer_patches: - patch = transformer_patches["output_block_patch"] - for p in patch: - h, hsp = p(h, hsp, transformer_options) - - h = th.cat([h, hsp], dim=1) - del hsp - if len(hs) > 0: - output_shape = hs[-1].shape - else: - output_shape = None - h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) - h = h.type(x.dtype) - if self.predict_codebook_ids: - return self.id_predictor(h) - else: - return self.out(h) diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/upscaling.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/upscaling.py deleted file mode 100644 index f5ac7c2f9138d6d34cda735d2201225d46831154..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/modules/diffusionmodules/upscaling.py +++ /dev/null @@ -1,85 +0,0 @@ -import torch -import torch.nn as nn -import numpy as np -from functools import partial - -from .util import extract_into_tensor, make_beta_schedule -from comfy.ldm.util import default - - -class AbstractLowScaleModel(nn.Module): - # for concatenating a downsampled image to the latent representation - def __init__(self, noise_schedule_config=None): - super(AbstractLowScaleModel, self).__init__() - if noise_schedule_config is not None: - self.register_schedule(**noise_schedule_config) - - def register_schedule(self, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): - betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, - cosine_s=cosine_s) - alphas = 1. - betas - alphas_cumprod = np.cumprod(alphas, axis=0) - alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) - - timesteps, = betas.shape - self.num_timesteps = int(timesteps) - self.linear_start = linear_start - self.linear_end = linear_end - assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' - - to_torch = partial(torch.tensor, dtype=torch.float32) - - self.register_buffer('betas', to_torch(betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) - - def q_sample(self, x_start, t, noise=None, seed=None): - if noise is None: - if seed is None: - noise = torch.randn_like(x_start) - else: - noise = torch.randn(x_start.size(), dtype=x_start.dtype, layout=x_start.layout, generator=torch.manual_seed(seed)).to(x_start.device) - return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start + - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise) - - def forward(self, x): - return x, None - - def decode(self, x): - return x - - -class SimpleImageConcat(AbstractLowScaleModel): - # no noise level conditioning - def __init__(self): - super(SimpleImageConcat, self).__init__(noise_schedule_config=None) - self.max_noise_level = 0 - - def forward(self, x): - # fix to constant noise level - return x, torch.zeros(x.shape[0], device=x.device).long() - - -class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel): - def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False): - super().__init__(noise_schedule_config=noise_schedule_config) - self.max_noise_level = max_noise_level - - def forward(self, x, noise_level=None, seed=None): - if noise_level is None: - noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long() - else: - assert isinstance(noise_level, torch.Tensor) - z = self.q_sample(x, noise_level, seed=seed) - return z, noise_level - - - diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/util.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/util.py deleted file mode 100644 index ce14ad5e18cf1c8f821878f395cc1bab50fad476..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/modules/diffusionmodules/util.py +++ /dev/null @@ -1,306 +0,0 @@ -# adopted from -# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py -# and -# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py -# and -# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py -# -# thanks! - - -import os -import math -import torch -import torch.nn as nn -import numpy as np -from einops import repeat, rearrange - -from comfy.ldm.util import instantiate_from_config - -class AlphaBlender(nn.Module): - strategies = ["learned", "fixed", "learned_with_images"] - - def __init__( - self, - alpha: float, - merge_strategy: str = "learned_with_images", - rearrange_pattern: str = "b t -> (b t) 1 1", - ): - super().__init__() - self.merge_strategy = merge_strategy - self.rearrange_pattern = rearrange_pattern - - assert ( - merge_strategy in self.strategies - ), f"merge_strategy needs to be in {self.strategies}" - - if self.merge_strategy == "fixed": - self.register_buffer("mix_factor", torch.Tensor([alpha])) - elif ( - self.merge_strategy == "learned" - or self.merge_strategy == "learned_with_images" - ): - self.register_parameter( - "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) - ) - else: - raise ValueError(f"unknown merge strategy {self.merge_strategy}") - - def get_alpha(self, image_only_indicator: torch.Tensor, device) -> torch.Tensor: - # skip_time_mix = rearrange(repeat(skip_time_mix, 'b -> (b t) () () ()', t=t), '(b t) 1 ... -> b 1 t ...', t=t) - if self.merge_strategy == "fixed": - # make shape compatible - # alpha = repeat(self.mix_factor, '1 -> b () t () ()', t=t, b=bs) - alpha = self.mix_factor.to(device) - elif self.merge_strategy == "learned": - alpha = torch.sigmoid(self.mix_factor.to(device)) - # make shape compatible - # alpha = repeat(alpha, '1 -> s () ()', s = t * bs) - elif self.merge_strategy == "learned_with_images": - if image_only_indicator is None: - alpha = rearrange(torch.sigmoid(self.mix_factor.to(device)), "... -> ... 1") - else: - alpha = torch.where( - image_only_indicator.bool(), - torch.ones(1, 1, device=image_only_indicator.device), - rearrange(torch.sigmoid(self.mix_factor.to(image_only_indicator.device)), "... -> ... 1"), - ) - alpha = rearrange(alpha, self.rearrange_pattern) - # make shape compatible - # alpha = repeat(alpha, '1 -> s () ()', s = t * bs) - else: - raise NotImplementedError() - return alpha - - def forward( - self, - x_spatial, - x_temporal, - image_only_indicator=None, - ) -> torch.Tensor: - alpha = self.get_alpha(image_only_indicator, x_spatial.device) - x = ( - alpha.to(x_spatial.dtype) * x_spatial - + (1.0 - alpha).to(x_spatial.dtype) * x_temporal - ) - return x - - -def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): - if schedule == "linear": - betas = ( - torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 - ) - - elif schedule == "cosine": - timesteps = ( - torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s - ) - alphas = timesteps / (1 + cosine_s) * np.pi / 2 - alphas = torch.cos(alphas).pow(2) - alphas = alphas / alphas[0] - betas = 1 - alphas[1:] / alphas[:-1] - betas = torch.clamp(betas, min=0, max=0.999) - - elif schedule == "squaredcos_cap_v2": # used for karlo prior - # return early - return betas_for_alpha_bar( - n_timestep, - lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, - ) - - elif schedule == "sqrt_linear": - betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) - elif schedule == "sqrt": - betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 - else: - raise ValueError(f"schedule '{schedule}' unknown.") - return betas - - -def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True): - if ddim_discr_method == 'uniform': - c = num_ddpm_timesteps // num_ddim_timesteps - ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) - elif ddim_discr_method == 'quad': - ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int) - else: - raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"') - - # assert ddim_timesteps.shape[0] == num_ddim_timesteps - # add one to get the final alpha values right (the ones from first scale to data during sampling) - steps_out = ddim_timesteps + 1 - if verbose: - print(f'Selected timesteps for ddim sampler: {steps_out}') - return steps_out - - -def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): - # select alphas for computing the variance schedule - alphas = alphacums[ddim_timesteps] - alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) - - # according the the formula provided in https://arxiv.org/abs/2010.02502 - sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)) - if verbose: - print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}') - print(f'For the chosen value of eta, which is {eta}, ' - f'this results in the following sigma_t schedule for ddim sampler {sigmas}') - return sigmas, alphas, alphas_prev - - -def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): - """ - Create a beta schedule that discretizes the given alpha_t_bar function, - which defines the cumulative product of (1-beta) over time from t = [0,1]. - :param num_diffusion_timesteps: the number of betas to produce. - :param alpha_bar: a lambda that takes an argument t from 0 to 1 and - produces the cumulative product of (1-beta) up to that - part of the diffusion process. - :param max_beta: the maximum beta to use; use values lower than 1 to - prevent singularities. - """ - betas = [] - for i in range(num_diffusion_timesteps): - t1 = i / num_diffusion_timesteps - t2 = (i + 1) / num_diffusion_timesteps - betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) - return np.array(betas) - - -def extract_into_tensor(a, t, x_shape): - b, *_ = t.shape - out = a.gather(-1, t) - return out.reshape(b, *((1,) * (len(x_shape) - 1))) - - -def checkpoint(func, inputs, params, flag): - """ - Evaluate a function without caching intermediate activations, allowing for - reduced memory at the expense of extra compute in the backward pass. - :param func: the function to evaluate. - :param inputs: the argument sequence to pass to `func`. - :param params: a sequence of parameters `func` depends on but does not - explicitly take as arguments. - :param flag: if False, disable gradient checkpointing. - """ - if flag: - args = tuple(inputs) + tuple(params) - return CheckpointFunction.apply(func, len(inputs), *args) - else: - return func(*inputs) - - -class CheckpointFunction(torch.autograd.Function): - @staticmethod - def forward(ctx, run_function, length, *args): - ctx.run_function = run_function - ctx.input_tensors = list(args[:length]) - ctx.input_params = list(args[length:]) - ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(), - "dtype": torch.get_autocast_gpu_dtype(), - "cache_enabled": torch.is_autocast_cache_enabled()} - with torch.no_grad(): - output_tensors = ctx.run_function(*ctx.input_tensors) - return output_tensors - - @staticmethod - def backward(ctx, *output_grads): - ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] - with torch.enable_grad(), \ - torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): - # Fixes a bug where the first op in run_function modifies the - # Tensor storage in place, which is not allowed for detach()'d - # Tensors. - shallow_copies = [x.view_as(x) for x in ctx.input_tensors] - output_tensors = ctx.run_function(*shallow_copies) - input_grads = torch.autograd.grad( - output_tensors, - ctx.input_tensors + ctx.input_params, - output_grads, - allow_unused=True, - ) - del ctx.input_tensors - del ctx.input_params - del output_tensors - return (None, None) + input_grads - - -def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): - """ - Create sinusoidal timestep embeddings. - :param timesteps: a 1-D Tensor of N indices, one per batch element. - These may be fractional. - :param dim: the dimension of the output. - :param max_period: controls the minimum frequency of the embeddings. - :return: an [N x dim] Tensor of positional embeddings. - """ - if not repeat_only: - half = dim // 2 - freqs = torch.exp( - -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half - ) - args = timesteps[:, None].float() * freqs[None] - embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) - if dim % 2: - embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) - else: - embedding = repeat(timesteps, 'b -> b d', d=dim) - return embedding - - -def zero_module(module): - """ - Zero out the parameters of a module and return it. - """ - for p in module.parameters(): - p.detach().zero_() - return module - - -def scale_module(module, scale): - """ - Scale the parameters of a module and return it. - """ - for p in module.parameters(): - p.detach().mul_(scale) - return module - - -def mean_flat(tensor): - """ - Take the mean over all non-batch dimensions. - """ - return tensor.mean(dim=list(range(1, len(tensor.shape)))) - - -def avg_pool_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D average pooling module. - """ - if dims == 1: - return nn.AvgPool1d(*args, **kwargs) - elif dims == 2: - return nn.AvgPool2d(*args, **kwargs) - elif dims == 3: - return nn.AvgPool3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -class HybridConditioner(nn.Module): - - def __init__(self, c_concat_config, c_crossattn_config): - super().__init__() - self.concat_conditioner = instantiate_from_config(c_concat_config) - self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) - - def forward(self, c_concat, c_crossattn): - c_concat = self.concat_conditioner(c_concat) - c_crossattn = self.crossattn_conditioner(c_crossattn) - return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]} - - -def noise_like(shape, device, repeat=False): - repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) - noise = lambda: torch.randn(shape, device=device) - return repeat_noise() if repeat else noise() diff --git a/MagicQuill/comfy/ldm/modules/distributions/__init__.py b/MagicQuill/comfy/ldm/modules/distributions/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/MagicQuill/comfy/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 6d1e54b91ddc4820f3d7ff25864bd0c77a9ed401..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc deleted file mode 100644 index 1ec2f27d8b30129ef1b7ff9967ee0ecfcfa4ac82..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/modules/distributions/distributions.py b/MagicQuill/comfy/ldm/modules/distributions/distributions.py deleted file mode 100644 index f2b8ef901130efc171aa69742ca0244d94d3f2e9..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/modules/distributions/distributions.py +++ /dev/null @@ -1,92 +0,0 @@ -import torch -import numpy as np - - -class AbstractDistribution: - def sample(self): - raise NotImplementedError() - - def mode(self): - raise NotImplementedError() - - -class DiracDistribution(AbstractDistribution): - def __init__(self, value): - self.value = value - - def sample(self): - return self.value - - def mode(self): - return self.value - - -class DiagonalGaussianDistribution(object): - def __init__(self, parameters, deterministic=False): - self.parameters = parameters - self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) - self.logvar = torch.clamp(self.logvar, -30.0, 20.0) - self.deterministic = deterministic - self.std = torch.exp(0.5 * self.logvar) - self.var = torch.exp(self.logvar) - if self.deterministic: - self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) - - def sample(self): - x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) - return x - - def kl(self, other=None): - if self.deterministic: - return torch.Tensor([0.]) - else: - if other is None: - return 0.5 * torch.sum(torch.pow(self.mean, 2) - + self.var - 1.0 - self.logvar, - dim=[1, 2, 3]) - else: - return 0.5 * torch.sum( - torch.pow(self.mean - other.mean, 2) / other.var - + self.var / other.var - 1.0 - self.logvar + other.logvar, - dim=[1, 2, 3]) - - def nll(self, sample, dims=[1,2,3]): - if self.deterministic: - return torch.Tensor([0.]) - logtwopi = np.log(2.0 * np.pi) - return 0.5 * torch.sum( - logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, - dim=dims) - - def mode(self): - return self.mean - - -def normal_kl(mean1, logvar1, mean2, logvar2): - """ - source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12 - Compute the KL divergence between two gaussians. - Shapes are automatically broadcasted, so batches can be compared to - scalars, among other use cases. - """ - tensor = None - for obj in (mean1, logvar1, mean2, logvar2): - if isinstance(obj, torch.Tensor): - tensor = obj - break - assert tensor is not None, "at least one argument must be a Tensor" - - # Force variances to be Tensors. Broadcasting helps convert scalars to - # Tensors, but it does not work for torch.exp(). - logvar1, logvar2 = [ - x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) - for x in (logvar1, logvar2) - ] - - return 0.5 * ( - -1.0 - + logvar2 - - logvar1 - + torch.exp(logvar1 - logvar2) - + ((mean1 - mean2) ** 2) * torch.exp(-logvar2) - ) diff --git a/MagicQuill/comfy/ldm/modules/ema.py b/MagicQuill/comfy/ldm/modules/ema.py deleted file mode 100644 index bded25019b9bcbcd0260f0b8185f8c7859ca58c4..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/modules/ema.py +++ /dev/null @@ -1,80 +0,0 @@ -import torch -from torch import nn - - -class LitEma(nn.Module): - def __init__(self, model, decay=0.9999, use_num_upates=True): - super().__init__() - if decay < 0.0 or decay > 1.0: - raise ValueError('Decay must be between 0 and 1') - - self.m_name2s_name = {} - self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) - self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates - else torch.tensor(-1, dtype=torch.int)) - - for name, p in model.named_parameters(): - if p.requires_grad: - # remove as '.'-character is not allowed in buffers - s_name = name.replace('.', '') - self.m_name2s_name.update({name: s_name}) - self.register_buffer(s_name, p.clone().detach().data) - - self.collected_params = [] - - def reset_num_updates(self): - del self.num_updates - self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int)) - - def forward(self, model): - decay = self.decay - - if self.num_updates >= 0: - self.num_updates += 1 - decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates)) - - one_minus_decay = 1.0 - decay - - with torch.no_grad(): - m_param = dict(model.named_parameters()) - shadow_params = dict(self.named_buffers()) - - for key in m_param: - if m_param[key].requires_grad: - sname = self.m_name2s_name[key] - shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) - shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) - else: - assert not key in self.m_name2s_name - - def copy_to(self, model): - m_param = dict(model.named_parameters()) - shadow_params = dict(self.named_buffers()) - for key in m_param: - if m_param[key].requires_grad: - m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) - else: - assert not key in self.m_name2s_name - - def store(self, parameters): - """ - Save the current parameters for restoring later. - Args: - parameters: Iterable of `torch.nn.Parameter`; the parameters to be - temporarily stored. - """ - self.collected_params = [param.clone() for param in parameters] - - def restore(self, parameters): - """ - Restore the parameters stored with the `store` method. - Useful to validate the model with EMA parameters without affecting the - original optimization process. Store the parameters before the - `copy_to` method. After validation (or model saving), use this to - restore the former parameters. - Args: - parameters: Iterable of `torch.nn.Parameter`; the parameters to be - updated with the stored parameters. - """ - for c_param, param in zip(self.collected_params, parameters): - param.data.copy_(c_param.data) diff --git a/MagicQuill/comfy/ldm/modules/encoders/__init__.py b/MagicQuill/comfy/ldm/modules/encoders/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/MagicQuill/comfy/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index a566ac9a9493be54bc741558ef231673d52b1e0c..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/modules/encoders/__pycache__/noise_aug_modules.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/encoders/__pycache__/noise_aug_modules.cpython-310.pyc deleted file mode 100644 index 48a940aead8f17d74a707a5b918592276ae4dbb9..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/ldm/modules/encoders/__pycache__/noise_aug_modules.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/ldm/modules/encoders/noise_aug_modules.py b/MagicQuill/comfy/ldm/modules/encoders/noise_aug_modules.py deleted file mode 100644 index a5d8660301636fde75808cba50afa539cf1162e0..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/modules/encoders/noise_aug_modules.py +++ /dev/null @@ -1,35 +0,0 @@ -from ..diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation -from ..diffusionmodules.openaimodel import Timestep -import torch - -class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation): - def __init__(self, *args, clip_stats_path=None, timestep_dim=256, **kwargs): - super().__init__(*args, **kwargs) - if clip_stats_path is None: - clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim) - else: - clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu") - self.register_buffer("data_mean", clip_mean[None, :], persistent=False) - self.register_buffer("data_std", clip_std[None, :], persistent=False) - self.time_embed = Timestep(timestep_dim) - - def scale(self, x): - # re-normalize to centered mean and unit variance - x = (x - self.data_mean.to(x.device)) * 1. / self.data_std.to(x.device) - return x - - def unscale(self, x): - # back to original data stats - x = (x * self.data_std.to(x.device)) + self.data_mean.to(x.device) - return x - - def forward(self, x, noise_level=None, seed=None): - if noise_level is None: - noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long() - else: - assert isinstance(noise_level, torch.Tensor) - x = self.scale(x) - z = self.q_sample(x, noise_level, seed=seed) - z = self.unscale(z) - noise_level = self.time_embed(noise_level) - return z, noise_level diff --git a/MagicQuill/comfy/ldm/modules/sub_quadratic_attention.py b/MagicQuill/comfy/ldm/modules/sub_quadratic_attention.py deleted file mode 100644 index 1bc4138c318125047bf7a58237fd8cbf45f2ed72..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/modules/sub_quadratic_attention.py +++ /dev/null @@ -1,274 +0,0 @@ -# original source: -# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py -# license: -# MIT -# credit: -# Amin Rezaei (original author) -# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks) -# implementation of: -# Self-attention Does Not Need O(n2) Memory": -# https://arxiv.org/abs/2112.05682v2 - -from functools import partial -import torch -from torch import Tensor -from torch.utils.checkpoint import checkpoint -import math -import logging - -try: - from typing import Optional, NamedTuple, List, Protocol -except ImportError: - from typing import Optional, NamedTuple, List - from typing_extensions import Protocol - -from torch import Tensor -from typing import List - -from comfy import model_management - -def dynamic_slice( - x: Tensor, - starts: List[int], - sizes: List[int], -) -> Tensor: - slicing = [slice(start, start + size) for start, size in zip(starts, sizes)] - return x[slicing] - -class AttnChunk(NamedTuple): - exp_values: Tensor - exp_weights_sum: Tensor - max_score: Tensor - -class SummarizeChunk(Protocol): - @staticmethod - def __call__( - query: Tensor, - key_t: Tensor, - value: Tensor, - ) -> AttnChunk: ... - -class ComputeQueryChunkAttn(Protocol): - @staticmethod - def __call__( - query: Tensor, - key_t: Tensor, - value: Tensor, - ) -> Tensor: ... - -def _summarize_chunk( - query: Tensor, - key_t: Tensor, - value: Tensor, - scale: float, - upcast_attention: bool, - mask, -) -> AttnChunk: - if upcast_attention: - with torch.autocast(enabled=False, device_type = 'cuda'): - query = query.float() - key_t = key_t.float() - attn_weights = torch.baddbmm( - torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), - query, - key_t, - alpha=scale, - beta=0, - ) - else: - attn_weights = torch.baddbmm( - torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), - query, - key_t, - alpha=scale, - beta=0, - ) - max_score, _ = torch.max(attn_weights, -1, keepdim=True) - max_score = max_score.detach() - attn_weights -= max_score - if mask is not None: - attn_weights += mask - torch.exp(attn_weights, out=attn_weights) - exp_weights = attn_weights.to(value.dtype) - exp_values = torch.bmm(exp_weights, value) - max_score = max_score.squeeze(-1) - return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score) - -def _query_chunk_attention( - query: Tensor, - key_t: Tensor, - value: Tensor, - summarize_chunk: SummarizeChunk, - kv_chunk_size: int, - mask, -) -> Tensor: - batch_x_heads, k_channels_per_head, k_tokens = key_t.shape - _, _, v_channels_per_head = value.shape - - def chunk_scanner(chunk_idx: int, mask) -> AttnChunk: - key_chunk = dynamic_slice( - key_t, - (0, 0, chunk_idx), - (batch_x_heads, k_channels_per_head, kv_chunk_size) - ) - value_chunk = dynamic_slice( - value, - (0, chunk_idx, 0), - (batch_x_heads, kv_chunk_size, v_channels_per_head) - ) - if mask is not None: - mask = mask[:,:,chunk_idx:chunk_idx + kv_chunk_size] - - return summarize_chunk(query, key_chunk, value_chunk, mask=mask) - - chunks: List[AttnChunk] = [ - chunk_scanner(chunk, mask) for chunk in torch.arange(0, k_tokens, kv_chunk_size) - ] - acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks))) - chunk_values, chunk_weights, chunk_max = acc_chunk - - global_max, _ = torch.max(chunk_max, 0, keepdim=True) - max_diffs = torch.exp(chunk_max - global_max) - chunk_values *= torch.unsqueeze(max_diffs, -1) - chunk_weights *= max_diffs - - all_values = chunk_values.sum(dim=0) - all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0) - return all_values / all_weights - -# TODO: refactor CrossAttention#get_attention_scores to share code with this -def _get_attention_scores_no_kv_chunking( - query: Tensor, - key_t: Tensor, - value: Tensor, - scale: float, - upcast_attention: bool, - mask, -) -> Tensor: - if upcast_attention: - with torch.autocast(enabled=False, device_type = 'cuda'): - query = query.float() - key_t = key_t.float() - attn_scores = torch.baddbmm( - torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), - query, - key_t, - alpha=scale, - beta=0, - ) - else: - attn_scores = torch.baddbmm( - torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), - query, - key_t, - alpha=scale, - beta=0, - ) - - if mask is not None: - attn_scores += mask - try: - attn_probs = attn_scores.softmax(dim=-1) - del attn_scores - except model_management.OOM_EXCEPTION: - logging.warning("ran out of memory while running softmax in _get_attention_scores_no_kv_chunking, trying slower in place softmax instead") - attn_scores -= attn_scores.max(dim=-1, keepdim=True).values - torch.exp(attn_scores, out=attn_scores) - summed = torch.sum(attn_scores, dim=-1, keepdim=True) - attn_scores /= summed - attn_probs = attn_scores - - hidden_states_slice = torch.bmm(attn_probs.to(value.dtype), value) - return hidden_states_slice - -class ScannedChunk(NamedTuple): - chunk_idx: int - attn_chunk: AttnChunk - -def efficient_dot_product_attention( - query: Tensor, - key_t: Tensor, - value: Tensor, - query_chunk_size=1024, - kv_chunk_size: Optional[int] = None, - kv_chunk_size_min: Optional[int] = None, - use_checkpoint=True, - upcast_attention=False, - mask = None, -): - """Computes efficient dot-product attention given query, transposed key, and value. - This is efficient version of attention presented in - https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements. - Args: - query: queries for calculating attention with shape of - `[batch * num_heads, tokens, channels_per_head]`. - key_t: keys for calculating attention with shape of - `[batch * num_heads, channels_per_head, tokens]`. - value: values to be used in attention with shape of - `[batch * num_heads, tokens, channels_per_head]`. - query_chunk_size: int: query chunks size - kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens) - kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done). - use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference) - Returns: - Output of shape `[batch * num_heads, query_tokens, channels_per_head]`. - """ - batch_x_heads, q_tokens, q_channels_per_head = query.shape - _, _, k_tokens = key_t.shape - scale = q_channels_per_head ** -0.5 - - kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens) - if kv_chunk_size_min is not None: - kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min) - - if mask is not None and len(mask.shape) == 2: - mask = mask.unsqueeze(0) - - def get_query_chunk(chunk_idx: int) -> Tensor: - return dynamic_slice( - query, - (0, chunk_idx, 0), - (batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head) - ) - - def get_mask_chunk(chunk_idx: int) -> Tensor: - if mask is None: - return None - chunk = min(query_chunk_size, q_tokens) - return mask[:,chunk_idx:chunk_idx + chunk] - - summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention) - summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk - compute_query_chunk_attn: ComputeQueryChunkAttn = partial( - _get_attention_scores_no_kv_chunking, - scale=scale, - upcast_attention=upcast_attention - ) if k_tokens <= kv_chunk_size else ( - # fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw) - partial( - _query_chunk_attention, - kv_chunk_size=kv_chunk_size, - summarize_chunk=summarize_chunk, - ) - ) - - if q_tokens <= query_chunk_size: - # fast-path for when there's just 1 query chunk - return compute_query_chunk_attn( - query=query, - key_t=key_t, - value=value, - mask=mask, - ) - - # TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance, - # and pass slices to be mutated, instead of torch.cat()ing the returned slices - res = torch.cat([ - compute_query_chunk_attn( - query=get_query_chunk(i * query_chunk_size), - key_t=key_t, - value=value, - mask=get_mask_chunk(i * query_chunk_size) - ) for i in range(math.ceil(q_tokens / query_chunk_size)) - ], dim=1) - return res diff --git a/MagicQuill/comfy/ldm/modules/temporal_ae.py b/MagicQuill/comfy/ldm/modules/temporal_ae.py deleted file mode 100644 index 2992aeafc35ae8ca9e4ecac236810fa5a1fb84ad..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/modules/temporal_ae.py +++ /dev/null @@ -1,245 +0,0 @@ -import functools -from typing import Callable, Iterable, Union - -import torch -from einops import rearrange, repeat - -import comfy.ops -ops = comfy.ops.disable_weight_init - -from .diffusionmodules.model import ( - AttnBlock, - Decoder, - ResnetBlock, -) -from .diffusionmodules.openaimodel import ResBlock, timestep_embedding -from .attention import BasicTransformerBlock - -def partialclass(cls, *args, **kwargs): - class NewCls(cls): - __init__ = functools.partialmethod(cls.__init__, *args, **kwargs) - - return NewCls - - -class VideoResBlock(ResnetBlock): - def __init__( - self, - out_channels, - *args, - dropout=0.0, - video_kernel_size=3, - alpha=0.0, - merge_strategy="learned", - **kwargs, - ): - super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs) - if video_kernel_size is None: - video_kernel_size = [3, 1, 1] - self.time_stack = ResBlock( - channels=out_channels, - emb_channels=0, - dropout=dropout, - dims=3, - use_scale_shift_norm=False, - use_conv=False, - up=False, - down=False, - kernel_size=video_kernel_size, - use_checkpoint=False, - skip_t_emb=True, - ) - - self.merge_strategy = merge_strategy - if self.merge_strategy == "fixed": - self.register_buffer("mix_factor", torch.Tensor([alpha])) - elif self.merge_strategy == "learned": - self.register_parameter( - "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) - ) - else: - raise ValueError(f"unknown merge strategy {self.merge_strategy}") - - def get_alpha(self, bs): - if self.merge_strategy == "fixed": - return self.mix_factor - elif self.merge_strategy == "learned": - return torch.sigmoid(self.mix_factor) - else: - raise NotImplementedError() - - def forward(self, x, temb, skip_video=False, timesteps=None): - b, c, h, w = x.shape - if timesteps is None: - timesteps = b - - x = super().forward(x, temb) - - if not skip_video: - x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) - - x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) - - x = self.time_stack(x, temb) - - alpha = self.get_alpha(bs=b // timesteps).to(x.device) - x = alpha * x + (1.0 - alpha) * x_mix - - x = rearrange(x, "b c t h w -> (b t) c h w") - return x - - -class AE3DConv(ops.Conv2d): - def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs): - super().__init__(in_channels, out_channels, *args, **kwargs) - if isinstance(video_kernel_size, Iterable): - padding = [int(k // 2) for k in video_kernel_size] - else: - padding = int(video_kernel_size // 2) - - self.time_mix_conv = ops.Conv3d( - in_channels=out_channels, - out_channels=out_channels, - kernel_size=video_kernel_size, - padding=padding, - ) - - def forward(self, input, timesteps=None, skip_video=False): - if timesteps is None: - timesteps = input.shape[0] - x = super().forward(input) - if skip_video: - return x - x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) - x = self.time_mix_conv(x) - return rearrange(x, "b c t h w -> (b t) c h w") - - -class AttnVideoBlock(AttnBlock): - def __init__( - self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned" - ): - super().__init__(in_channels) - # no context, single headed, as in base class - self.time_mix_block = BasicTransformerBlock( - dim=in_channels, - n_heads=1, - d_head=in_channels, - checkpoint=False, - ff_in=True, - ) - - time_embed_dim = self.in_channels * 4 - self.video_time_embed = torch.nn.Sequential( - ops.Linear(self.in_channels, time_embed_dim), - torch.nn.SiLU(), - ops.Linear(time_embed_dim, self.in_channels), - ) - - self.merge_strategy = merge_strategy - if self.merge_strategy == "fixed": - self.register_buffer("mix_factor", torch.Tensor([alpha])) - elif self.merge_strategy == "learned": - self.register_parameter( - "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) - ) - else: - raise ValueError(f"unknown merge strategy {self.merge_strategy}") - - def forward(self, x, timesteps=None, skip_time_block=False): - if skip_time_block: - return super().forward(x) - - if timesteps is None: - timesteps = x.shape[0] - - x_in = x - x = self.attention(x) - h, w = x.shape[2:] - x = rearrange(x, "b c h w -> b (h w) c") - - x_mix = x - num_frames = torch.arange(timesteps, device=x.device) - num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) - num_frames = rearrange(num_frames, "b t -> (b t)") - t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False) - emb = self.video_time_embed(t_emb) # b, n_channels - emb = emb[:, None, :] - x_mix = x_mix + emb - - alpha = self.get_alpha().to(x.device) - x_mix = self.time_mix_block(x_mix, timesteps=timesteps) - x = alpha * x + (1.0 - alpha) * x_mix # alpha merge - - x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) - x = self.proj_out(x) - - return x_in + x - - def get_alpha( - self, - ): - if self.merge_strategy == "fixed": - return self.mix_factor - elif self.merge_strategy == "learned": - return torch.sigmoid(self.mix_factor) - else: - raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}") - - - -def make_time_attn( - in_channels, - attn_type="vanilla", - attn_kwargs=None, - alpha: float = 0, - merge_strategy: str = "learned", -): - return partialclass( - AttnVideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy - ) - - -class Conv2DWrapper(torch.nn.Conv2d): - def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor: - return super().forward(input) - - -class VideoDecoder(Decoder): - available_time_modes = ["all", "conv-only", "attn-only"] - - def __init__( - self, - *args, - video_kernel_size: Union[int, list] = 3, - alpha: float = 0.0, - merge_strategy: str = "learned", - time_mode: str = "conv-only", - **kwargs, - ): - self.video_kernel_size = video_kernel_size - self.alpha = alpha - self.merge_strategy = merge_strategy - self.time_mode = time_mode - assert ( - self.time_mode in self.available_time_modes - ), f"time_mode parameter has to be in {self.available_time_modes}" - - if self.time_mode != "attn-only": - kwargs["conv_out_op"] = partialclass(AE3DConv, video_kernel_size=self.video_kernel_size) - if self.time_mode not in ["conv-only", "only-last-conv"]: - kwargs["attn_op"] = partialclass(make_time_attn, alpha=self.alpha, merge_strategy=self.merge_strategy) - if self.time_mode not in ["attn-only", "only-last-conv"]: - kwargs["resnet_op"] = partialclass(VideoResBlock, video_kernel_size=self.video_kernel_size, alpha=self.alpha, merge_strategy=self.merge_strategy) - - super().__init__(*args, **kwargs) - - def get_last_layer(self, skip_time_mix=False, **kwargs): - if self.time_mode == "attn-only": - raise NotImplementedError("TODO") - else: - return ( - self.conv_out.time_mix_conv.weight - if not skip_time_mix - else self.conv_out.weight - ) diff --git a/MagicQuill/comfy/ldm/util.py b/MagicQuill/comfy/ldm/util.py deleted file mode 100644 index 8c09ca1c72f7ceb3f9d7f9546aae5561baf62b13..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ldm/util.py +++ /dev/null @@ -1,197 +0,0 @@ -import importlib - -import torch -from torch import optim -import numpy as np - -from inspect import isfunction -from PIL import Image, ImageDraw, ImageFont - - -def log_txt_as_img(wh, xc, size=10): - # wh a tuple of (width, height) - # xc a list of captions to plot - b = len(xc) - txts = list() - for bi in range(b): - txt = Image.new("RGB", wh, color="white") - draw = ImageDraw.Draw(txt) - font = ImageFont.truetype('data/DejaVuSans.ttf', size=size) - nc = int(40 * (wh[0] / 256)) - lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) - - try: - draw.text((0, 0), lines, fill="black", font=font) - except UnicodeEncodeError: - print("Cant encode string for logging. Skipping.") - - txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 - txts.append(txt) - txts = np.stack(txts) - txts = torch.tensor(txts) - return txts - - -def ismap(x): - if not isinstance(x, torch.Tensor): - return False - return (len(x.shape) == 4) and (x.shape[1] > 3) - - -def isimage(x): - if not isinstance(x,torch.Tensor): - return False - return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) - - -def exists(x): - return x is not None - - -def default(val, d): - if exists(val): - return val - return d() if isfunction(d) else d - - -def mean_flat(tensor): - """ - https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 - Take the mean over all non-batch dimensions. - """ - return tensor.mean(dim=list(range(1, len(tensor.shape)))) - - -def count_params(model, verbose=False): - total_params = sum(p.numel() for p in model.parameters()) - if verbose: - print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") - return total_params - - -def instantiate_from_config(config): - if not "target" in config: - if config == '__is_first_stage__': - return None - elif config == "__is_unconditional__": - return None - raise KeyError("Expected key `target` to instantiate.") - return get_obj_from_str(config["target"])(**config.get("params", dict())) - - -def get_obj_from_str(string, reload=False): - module, cls = string.rsplit(".", 1) - if reload: - module_imp = importlib.import_module(module) - importlib.reload(module_imp) - return getattr(importlib.import_module(module, package=None), cls) - - -class AdamWwithEMAandWings(optim.Optimizer): - # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298 - def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using - weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code - ema_power=1., param_names=()): - """AdamW that saves EMA versions of the parameters.""" - if not 0.0 <= lr: - raise ValueError("Invalid learning rate: {}".format(lr)) - if not 0.0 <= eps: - raise ValueError("Invalid epsilon value: {}".format(eps)) - if not 0.0 <= betas[0] < 1.0: - raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) - if not 0.0 <= betas[1] < 1.0: - raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) - if not 0.0 <= weight_decay: - raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) - if not 0.0 <= ema_decay <= 1.0: - raise ValueError("Invalid ema_decay value: {}".format(ema_decay)) - defaults = dict(lr=lr, betas=betas, eps=eps, - weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay, - ema_power=ema_power, param_names=param_names) - super().__init__(params, defaults) - - def __setstate__(self, state): - super().__setstate__(state) - for group in self.param_groups: - group.setdefault('amsgrad', False) - - @torch.no_grad() - def step(self, closure=None): - """Performs a single optimization step. - Args: - closure (callable, optional): A closure that reevaluates the model - and returns the loss. - """ - loss = None - if closure is not None: - with torch.enable_grad(): - loss = closure() - - for group in self.param_groups: - params_with_grad = [] - grads = [] - exp_avgs = [] - exp_avg_sqs = [] - ema_params_with_grad = [] - state_sums = [] - max_exp_avg_sqs = [] - state_steps = [] - amsgrad = group['amsgrad'] - beta1, beta2 = group['betas'] - ema_decay = group['ema_decay'] - ema_power = group['ema_power'] - - for p in group['params']: - if p.grad is None: - continue - params_with_grad.append(p) - if p.grad.is_sparse: - raise RuntimeError('AdamW does not support sparse gradients') - grads.append(p.grad) - - state = self.state[p] - - # State initialization - if len(state) == 0: - state['step'] = 0 - # Exponential moving average of gradient values - state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) - # Exponential moving average of squared gradient values - state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) - if amsgrad: - # Maintains max of all exp. moving avg. of sq. grad. values - state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) - # Exponential moving average of parameter values - state['param_exp_avg'] = p.detach().float().clone() - - exp_avgs.append(state['exp_avg']) - exp_avg_sqs.append(state['exp_avg_sq']) - ema_params_with_grad.append(state['param_exp_avg']) - - if amsgrad: - max_exp_avg_sqs.append(state['max_exp_avg_sq']) - - # update the steps for each param group update - state['step'] += 1 - # record the step after step update - state_steps.append(state['step']) - - optim._functional.adamw(params_with_grad, - grads, - exp_avgs, - exp_avg_sqs, - max_exp_avg_sqs, - state_steps, - amsgrad=amsgrad, - beta1=beta1, - beta2=beta2, - lr=group['lr'], - weight_decay=group['weight_decay'], - eps=group['eps'], - maximize=False) - - cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power) - for param, ema_param in zip(params_with_grad, ema_params_with_grad): - ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay) - - return loss \ No newline at end of file diff --git a/MagicQuill/comfy/lora.py b/MagicQuill/comfy/lora.py deleted file mode 100644 index 082a8b3cba49572b6360539a3ac4fa3660fb7725..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/lora.py +++ /dev/null @@ -1,266 +0,0 @@ -import comfy.utils -import logging - -LORA_CLIP_MAP = { - "mlp.fc1": "mlp_fc1", - "mlp.fc2": "mlp_fc2", - "self_attn.k_proj": "self_attn_k_proj", - "self_attn.q_proj": "self_attn_q_proj", - "self_attn.v_proj": "self_attn_v_proj", - "self_attn.out_proj": "self_attn_out_proj", -} - - -def load_lora(lora, to_load): - patch_dict = {} - loaded_keys = set() - for x in to_load: - alpha_name = "{}.alpha".format(x) - alpha = None - if alpha_name in lora.keys(): - alpha = lora[alpha_name].item() - loaded_keys.add(alpha_name) - - dora_scale_name = "{}.dora_scale".format(x) - dora_scale = None - if dora_scale_name in lora.keys(): - dora_scale = lora[dora_scale_name] - loaded_keys.add(dora_scale_name) - - regular_lora = "{}.lora_up.weight".format(x) - diffusers_lora = "{}_lora.up.weight".format(x) - diffusers2_lora = "{}.lora_B.weight".format(x) - diffusers3_lora = "{}.lora.up.weight".format(x) - transformers_lora = "{}.lora_linear_layer.up.weight".format(x) - A_name = None - - if regular_lora in lora.keys(): - A_name = regular_lora - B_name = "{}.lora_down.weight".format(x) - mid_name = "{}.lora_mid.weight".format(x) - elif diffusers_lora in lora.keys(): - A_name = diffusers_lora - B_name = "{}_lora.down.weight".format(x) - mid_name = None - elif diffusers2_lora in lora.keys(): - A_name = diffusers2_lora - B_name = "{}.lora_A.weight".format(x) - mid_name = None - elif diffusers3_lora in lora.keys(): - A_name = diffusers3_lora - B_name = "{}.lora.down.weight".format(x) - mid_name = None - elif transformers_lora in lora.keys(): - A_name = transformers_lora - B_name ="{}.lora_linear_layer.down.weight".format(x) - mid_name = None - - if A_name is not None: - mid = None - if mid_name is not None and mid_name in lora.keys(): - mid = lora[mid_name] - loaded_keys.add(mid_name) - patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale)) - loaded_keys.add(A_name) - loaded_keys.add(B_name) - - - ######## loha - hada_w1_a_name = "{}.hada_w1_a".format(x) - hada_w1_b_name = "{}.hada_w1_b".format(x) - hada_w2_a_name = "{}.hada_w2_a".format(x) - hada_w2_b_name = "{}.hada_w2_b".format(x) - hada_t1_name = "{}.hada_t1".format(x) - hada_t2_name = "{}.hada_t2".format(x) - if hada_w1_a_name in lora.keys(): - hada_t1 = None - hada_t2 = None - if hada_t1_name in lora.keys(): - hada_t1 = lora[hada_t1_name] - hada_t2 = lora[hada_t2_name] - loaded_keys.add(hada_t1_name) - loaded_keys.add(hada_t2_name) - - patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale)) - loaded_keys.add(hada_w1_a_name) - loaded_keys.add(hada_w1_b_name) - loaded_keys.add(hada_w2_a_name) - loaded_keys.add(hada_w2_b_name) - - - ######## lokr - lokr_w1_name = "{}.lokr_w1".format(x) - lokr_w2_name = "{}.lokr_w2".format(x) - lokr_w1_a_name = "{}.lokr_w1_a".format(x) - lokr_w1_b_name = "{}.lokr_w1_b".format(x) - lokr_t2_name = "{}.lokr_t2".format(x) - lokr_w2_a_name = "{}.lokr_w2_a".format(x) - lokr_w2_b_name = "{}.lokr_w2_b".format(x) - - lokr_w1 = None - if lokr_w1_name in lora.keys(): - lokr_w1 = lora[lokr_w1_name] - loaded_keys.add(lokr_w1_name) - - lokr_w2 = None - if lokr_w2_name in lora.keys(): - lokr_w2 = lora[lokr_w2_name] - loaded_keys.add(lokr_w2_name) - - lokr_w1_a = None - if lokr_w1_a_name in lora.keys(): - lokr_w1_a = lora[lokr_w1_a_name] - loaded_keys.add(lokr_w1_a_name) - - lokr_w1_b = None - if lokr_w1_b_name in lora.keys(): - lokr_w1_b = lora[lokr_w1_b_name] - loaded_keys.add(lokr_w1_b_name) - - lokr_w2_a = None - if lokr_w2_a_name in lora.keys(): - lokr_w2_a = lora[lokr_w2_a_name] - loaded_keys.add(lokr_w2_a_name) - - lokr_w2_b = None - if lokr_w2_b_name in lora.keys(): - lokr_w2_b = lora[lokr_w2_b_name] - loaded_keys.add(lokr_w2_b_name) - - lokr_t2 = None - if lokr_t2_name in lora.keys(): - lokr_t2 = lora[lokr_t2_name] - loaded_keys.add(lokr_t2_name) - - if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None): - patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale)) - - #glora - a1_name = "{}.a1.weight".format(x) - a2_name = "{}.a2.weight".format(x) - b1_name = "{}.b1.weight".format(x) - b2_name = "{}.b2.weight".format(x) - if a1_name in lora: - patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale)) - loaded_keys.add(a1_name) - loaded_keys.add(a2_name) - loaded_keys.add(b1_name) - loaded_keys.add(b2_name) - - w_norm_name = "{}.w_norm".format(x) - b_norm_name = "{}.b_norm".format(x) - w_norm = lora.get(w_norm_name, None) - b_norm = lora.get(b_norm_name, None) - - if w_norm is not None: - loaded_keys.add(w_norm_name) - patch_dict[to_load[x]] = ("diff", (w_norm,)) - if b_norm is not None: - loaded_keys.add(b_norm_name) - patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,)) - - diff_name = "{}.diff".format(x) - diff_weight = lora.get(diff_name, None) - if diff_weight is not None: - patch_dict[to_load[x]] = ("diff", (diff_weight,)) - loaded_keys.add(diff_name) - - diff_bias_name = "{}.diff_b".format(x) - diff_bias = lora.get(diff_bias_name, None) - if diff_bias is not None: - patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,)) - loaded_keys.add(diff_bias_name) - - for x in lora.keys(): - if x not in loaded_keys: - logging.warning("lora key not loaded: {}".format(x)) - - return patch_dict - -def model_lora_keys_clip(model, key_map={}): - sdk = model.state_dict().keys() - - text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}" - clip_l_present = False - for b in range(32): #TODO: clean up - for c in LORA_CLIP_MAP: - k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) - if k in sdk: - lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) - key_map[lora_key] = k - lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) - key_map[lora_key] = k - lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora - key_map[lora_key] = k - - k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) - if k in sdk: - lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) - key_map[lora_key] = k - lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base - key_map[lora_key] = k - clip_l_present = True - lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora - key_map[lora_key] = k - - k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) - if k in sdk: - if clip_l_present: - lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base - key_map[lora_key] = k - lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora - key_map[lora_key] = k - else: - lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner - key_map[lora_key] = k - lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora - key_map[lora_key] = k - lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config - key_map[lora_key] = k - - - k = "clip_g.transformer.text_projection.weight" - if k in sdk: - key_map["lora_prior_te_text_projection"] = k #cascade lora? - # key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too - # key_map["lora_te_text_projection"] = k - - return key_map - -def model_lora_keys_unet(model, key_map={}): - sd = model.state_dict() - sdk = sd.keys() - - for k in sdk: - if k.startswith("diffusion_model.") and k.endswith(".weight"): - key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_") - key_map["lora_unet_{}".format(key_lora)] = k - key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config - - diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config) - for k in diffusers_keys: - if k.endswith(".weight"): - unet_key = "diffusion_model.{}".format(diffusers_keys[k]) - key_lora = k[:-len(".weight")].replace(".", "_") - key_map["lora_unet_{}".format(key_lora)] = unet_key - - diffusers_lora_prefix = ["", "unet."] - for p in diffusers_lora_prefix: - diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_")) - if diffusers_lora_key.endswith(".to_out.0"): - diffusers_lora_key = diffusers_lora_key[:-2] - key_map[diffusers_lora_key] = unet_key - - if isinstance(model, comfy.model_base.SD3): #Diffusers lora SD3 - for i in range(model.model_config.unet_config.get("depth", 0)): - k = "transformer.transformer_blocks.{}.attn.".format(i) - qkv = "diffusion_model.joint_blocks.{}.x_block.attn.qkv.weight".format(i) - proj = "diffusion_model.joint_blocks.{}.x_block.attn.proj.weight".format(i) - if qkv in sd: - offset = sd[qkv].shape[0] // 3 - key_map["{}to_q".format(k)] = (qkv, (0, 0, offset)) - key_map["{}to_k".format(k)] = (qkv, (0, offset, offset)) - key_map["{}to_v".format(k)] = (qkv, (0, offset * 2, offset)) - key_map["{}to_out.0".format(k)] = proj - - return key_map diff --git a/MagicQuill/comfy/model_base.py b/MagicQuill/comfy/model_base.py deleted file mode 100644 index f45b375dee5aac1475686828acfada038799b046..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/model_base.py +++ /dev/null @@ -1,629 +0,0 @@ -import torch -import logging -from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep -from comfy.ldm.cascade.stage_c import StageC -from comfy.ldm.cascade.stage_b import StageB -from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation -from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation -from comfy.ldm.modules.diffusionmodules.mmdit import OpenAISignatureMMDITWrapper -import comfy.ldm.audio.dit -import comfy.ldm.audio.embedders -import comfy.model_management -import comfy.conds -import comfy.ops -from enum import Enum -from . import utils -import comfy.latent_formats -import math - -class ModelType(Enum): - EPS = 1 - V_PREDICTION = 2 - V_PREDICTION_EDM = 3 - STABLE_CASCADE = 4 - EDM = 5 - FLOW = 6 - V_PREDICTION_CONTINUOUS = 7 - - -from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV - - -def model_sampling(model_config, model_type): - s = ModelSamplingDiscrete - - if model_type == ModelType.EPS: - c = EPS - elif model_type == ModelType.V_PREDICTION: - c = V_PREDICTION - elif model_type == ModelType.V_PREDICTION_EDM: - c = V_PREDICTION - s = ModelSamplingContinuousEDM - elif model_type == ModelType.FLOW: - c = comfy.model_sampling.CONST - s = comfy.model_sampling.ModelSamplingDiscreteFlow - elif model_type == ModelType.STABLE_CASCADE: - c = EPS - s = StableCascadeSampling - elif model_type == ModelType.EDM: - c = EDM - s = ModelSamplingContinuousEDM - elif model_type == ModelType.V_PREDICTION_CONTINUOUS: - c = V_PREDICTION - s = ModelSamplingContinuousV - - class ModelSampling(s, c): - pass - - return ModelSampling(model_config) - - -class BaseModel(torch.nn.Module): - def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel): - super().__init__() - - unet_config = model_config.unet_config - self.latent_format = model_config.latent_format - self.model_config = model_config - self.manual_cast_dtype = model_config.manual_cast_dtype - - if not unet_config.get("disable_unet_model_creation", False): - if self.manual_cast_dtype is not None: - operations = comfy.ops.manual_cast - else: - operations = comfy.ops.disable_weight_init - self.diffusion_model = unet_model(**unet_config, device=device, operations=operations) - if comfy.model_management.force_channels_last(): - self.diffusion_model.to(memory_format=torch.channels_last) - logging.debug("using channels last mode for diffusion model") - self.model_type = model_type - self.model_sampling = model_sampling(model_config, model_type) - - self.adm_channels = unet_config.get("adm_in_channels", None) - if self.adm_channels is None: - self.adm_channels = 0 - - self.concat_keys = () - logging.info("model_type {}".format(model_type.name)) - logging.debug("adm {}".format(self.adm_channels)) - - def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs): - sigma = t - xc = self.model_sampling.calculate_input(sigma, x) - if c_concat is not None: - xc = torch.cat([xc] + [c_concat], dim=1) - - context = c_crossattn - dtype = self.get_dtype() - - if self.manual_cast_dtype is not None: - dtype = self.manual_cast_dtype - - xc = xc.to(dtype) - t = self.model_sampling.timestep(t).float() - context = context.to(dtype) - extra_conds = {} - for o in kwargs: - extra = kwargs[o] - if hasattr(extra, "dtype"): - if extra.dtype != torch.int and extra.dtype != torch.long: - extra = extra.to(dtype) - extra_conds[o] = extra - - model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float() - return self.model_sampling.calculate_denoised(sigma, model_output, x) - - def get_dtype(self): - return self.diffusion_model.dtype - - def is_adm(self): - return self.adm_channels > 0 - - def encode_adm(self, **kwargs): - return None - - def extra_conds(self, **kwargs): - out = {} - if len(self.concat_keys) > 0: - cond_concat = [] - denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) - concat_latent_image = kwargs.get("concat_latent_image", None) - if concat_latent_image is None: - concat_latent_image = kwargs.get("latent_image", None) - else: - concat_latent_image = self.process_latent_in(concat_latent_image) - - noise = kwargs.get("noise", None) - device = kwargs["device"] - - if concat_latent_image.shape[1:] != noise.shape[1:]: - concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") - - concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0]) - - if denoise_mask is not None: - if len(denoise_mask.shape) == len(noise.shape): - denoise_mask = denoise_mask[:,:1] - - denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1])) - if denoise_mask.shape[-2:] != noise.shape[-2:]: - denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center") - denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0]) - - for ck in self.concat_keys: - if denoise_mask is not None: - if ck == "mask": - cond_concat.append(denoise_mask.to(device)) - elif ck == "masked_image": - cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space - else: - if ck == "mask": - cond_concat.append(torch.ones_like(noise)[:,:1]) - elif ck == "masked_image": - cond_concat.append(self.blank_inpaint_image_like(noise)) - data = torch.cat(cond_concat, dim=1) - out['c_concat'] = comfy.conds.CONDNoiseShape(data) - - adm = self.encode_adm(**kwargs) - if adm is not None: - out['y'] = comfy.conds.CONDRegular(adm) - - cross_attn = kwargs.get("cross_attn", None) - if cross_attn is not None: - out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) - - cross_attn_cnet = kwargs.get("cross_attn_controlnet", None) - if cross_attn_cnet is not None: - out['crossattn_controlnet'] = comfy.conds.CONDCrossAttn(cross_attn_cnet) - - c_concat = kwargs.get("noise_concat", None) - if c_concat is not None: - out['c_concat'] = comfy.conds.CONDNoiseShape(c_concat) - - return out - - def load_model_weights(self, sd, unet_prefix=""): - to_load = {} - keys = list(sd.keys()) - for k in keys: - if k.startswith(unet_prefix): - to_load[k[len(unet_prefix):]] = sd.pop(k) - - to_load = self.model_config.process_unet_state_dict(to_load) - m, u = self.diffusion_model.load_state_dict(to_load, strict=False) - if len(m) > 0: - logging.warning("unet missing: {}".format(m)) - - if len(u) > 0: - logging.warning("unet unexpected: {}".format(u)) - del to_load - return self - - def process_latent_in(self, latent): - return self.latent_format.process_in(latent) - - def process_latent_out(self, latent): - return self.latent_format.process_out(latent) - - def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None): - extra_sds = [] - if clip_state_dict is not None: - extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict)) - if vae_state_dict is not None: - extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict)) - if clip_vision_state_dict is not None: - extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict)) - - unet_state_dict = self.diffusion_model.state_dict() - unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict) - - if self.model_type == ModelType.V_PREDICTION: - unet_state_dict["v_pred"] = torch.tensor([]) - - for sd in extra_sds: - unet_state_dict.update(sd) - - return unet_state_dict - - def set_inpaint(self): - self.concat_keys = ("mask", "masked_image") - def blank_inpaint_image_like(latent_image): - blank_image = torch.ones_like(latent_image) - # these are the values for "zero" in pixel space translated to latent space - blank_image[:,0] *= 0.8223 - blank_image[:,1] *= -0.6876 - blank_image[:,2] *= 0.6364 - blank_image[:,3] *= 0.1380 - return blank_image - self.blank_inpaint_image_like = blank_inpaint_image_like - - def memory_required(self, input_shape): - if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention(): - dtype = self.get_dtype() - if self.manual_cast_dtype is not None: - dtype = self.manual_cast_dtype - #TODO: this needs to be tweaked - area = input_shape[0] * math.prod(input_shape[2:]) - return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024) - else: - #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory. - area = input_shape[0] * math.prod(input_shape[2:]) - return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024) - - -def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None): - adm_inputs = [] - weights = [] - noise_aug = [] - for unclip_cond in unclip_conditioning: - for adm_cond in unclip_cond["clip_vision_output"].image_embeds: - weight = unclip_cond["strength"] - noise_augment = unclip_cond["noise_augmentation"] - noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) - c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device), seed=seed) - adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight - weights.append(weight) - noise_aug.append(noise_augment) - adm_inputs.append(adm_out) - - if len(noise_aug) > 1: - adm_out = torch.stack(adm_inputs).sum(0) - noise_augment = noise_augment_merge - noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) - c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device)) - adm_out = torch.cat((c_adm, noise_level_emb), 1) - - return adm_out - -class SD21UNCLIP(BaseModel): - def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None): - super().__init__(model_config, model_type, device=device) - self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config) - - def encode_adm(self, **kwargs): - unclip_conditioning = kwargs.get("unclip_conditioning", None) - device = kwargs["device"] - if unclip_conditioning is None: - return torch.zeros((1, self.adm_channels)) - else: - return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10) - -def sdxl_pooled(args, noise_augmentor): - if "unclip_conditioning" in args: - return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor, seed=args.get("seed", 0) - 10)[:,:1280] - else: - return args["pooled_output"] - -class SDXLRefiner(BaseModel): - def __init__(self, model_config, model_type=ModelType.EPS, device=None): - super().__init__(model_config, model_type, device=device) - self.embedder = Timestep(256) - self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280}) - - def encode_adm(self, **kwargs): - clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) - width = kwargs.get("width", 768) - height = kwargs.get("height", 768) - crop_w = kwargs.get("crop_w", 0) - crop_h = kwargs.get("crop_h", 0) - - if kwargs.get("prompt_type", "") == "negative": - aesthetic_score = kwargs.get("aesthetic_score", 2.5) - else: - aesthetic_score = kwargs.get("aesthetic_score", 6) - - out = [] - out.append(self.embedder(torch.Tensor([height]))) - out.append(self.embedder(torch.Tensor([width]))) - out.append(self.embedder(torch.Tensor([crop_h]))) - out.append(self.embedder(torch.Tensor([crop_w]))) - out.append(self.embedder(torch.Tensor([aesthetic_score]))) - flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) - return torch.cat((clip_pooled.to(flat.device), flat), dim=1) - -class SDXL(BaseModel): - def __init__(self, model_config, model_type=ModelType.EPS, device=None): - super().__init__(model_config, model_type, device=device) - self.embedder = Timestep(256) - self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280}) - - def encode_adm(self, **kwargs): - clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) - width = kwargs.get("width", 768) - height = kwargs.get("height", 768) - crop_w = kwargs.get("crop_w", 0) - crop_h = kwargs.get("crop_h", 0) - target_width = kwargs.get("target_width", width) - target_height = kwargs.get("target_height", height) - - out = [] - out.append(self.embedder(torch.Tensor([height]))) - out.append(self.embedder(torch.Tensor([width]))) - out.append(self.embedder(torch.Tensor([crop_h]))) - out.append(self.embedder(torch.Tensor([crop_w]))) - out.append(self.embedder(torch.Tensor([target_height]))) - out.append(self.embedder(torch.Tensor([target_width]))) - flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) - return torch.cat((clip_pooled.to(flat.device), flat), dim=1) - -class SVD_img2vid(BaseModel): - def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None): - super().__init__(model_config, model_type, device=device) - self.embedder = Timestep(256) - - def encode_adm(self, **kwargs): - fps_id = kwargs.get("fps", 6) - 1 - motion_bucket_id = kwargs.get("motion_bucket_id", 127) - augmentation = kwargs.get("augmentation_level", 0) - - out = [] - out.append(self.embedder(torch.Tensor([fps_id]))) - out.append(self.embedder(torch.Tensor([motion_bucket_id]))) - out.append(self.embedder(torch.Tensor([augmentation]))) - - flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0) - return flat - - def extra_conds(self, **kwargs): - out = {} - adm = self.encode_adm(**kwargs) - if adm is not None: - out['y'] = comfy.conds.CONDRegular(adm) - - latent_image = kwargs.get("concat_latent_image", None) - noise = kwargs.get("noise", None) - device = kwargs["device"] - - if latent_image is None: - latent_image = torch.zeros_like(noise) - - if latent_image.shape[1:] != noise.shape[1:]: - latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") - - latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0]) - - out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image) - - cross_attn = kwargs.get("cross_attn", None) - if cross_attn is not None: - out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) - - if "time_conditioning" in kwargs: - out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"]) - - out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0]) - return out - -class SV3D_u(SVD_img2vid): - def encode_adm(self, **kwargs): - augmentation = kwargs.get("augmentation_level", 0) - - out = [] - out.append(self.embedder(torch.flatten(torch.Tensor([augmentation])))) - - flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0) - return flat - -class SV3D_p(SVD_img2vid): - def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None): - super().__init__(model_config, model_type, device=device) - self.embedder_512 = Timestep(512) - - def encode_adm(self, **kwargs): - augmentation = kwargs.get("augmentation_level", 0) - elevation = kwargs.get("elevation", 0) #elevation and azimuth are in degrees here - azimuth = kwargs.get("azimuth", 0) - noise = kwargs.get("noise", None) - - out = [] - out.append(self.embedder(torch.flatten(torch.Tensor([augmentation])))) - out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(90 - torch.Tensor([elevation])), 360.0)))) - out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(torch.Tensor([azimuth])), 360.0)))) - - out = list(map(lambda a: utils.resize_to_batch_size(a, noise.shape[0]), out)) - return torch.cat(out, dim=1) - - -class Stable_Zero123(BaseModel): - def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None): - super().__init__(model_config, model_type, device=device) - self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device) - self.cc_projection.weight.copy_(cc_projection_weight) - self.cc_projection.bias.copy_(cc_projection_bias) - - def extra_conds(self, **kwargs): - out = {} - - latent_image = kwargs.get("concat_latent_image", None) - noise = kwargs.get("noise", None) - - if latent_image is None: - latent_image = torch.zeros_like(noise) - - if latent_image.shape[1:] != noise.shape[1:]: - latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") - - latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0]) - - out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image) - - cross_attn = kwargs.get("cross_attn", None) - if cross_attn is not None: - if cross_attn.shape[-1] != 768: - cross_attn = self.cc_projection(cross_attn) - out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) - return out - -class SD_X4Upscaler(BaseModel): - def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None): - super().__init__(model_config, model_type, device=device) - self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350) - - def extra_conds(self, **kwargs): - out = {} - - image = kwargs.get("concat_image", None) - noise = kwargs.get("noise", None) - noise_augment = kwargs.get("noise_augmentation", 0.0) - device = kwargs["device"] - seed = kwargs["seed"] - 10 - - noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment) - - if image is None: - image = torch.zeros_like(noise)[:,:3] - - if image.shape[1:] != noise.shape[1:]: - image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") - - noise_level = torch.tensor([noise_level], device=device) - if noise_augment > 0: - image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed) - - image = utils.resize_to_batch_size(image, noise.shape[0]) - - out['c_concat'] = comfy.conds.CONDNoiseShape(image) - out['y'] = comfy.conds.CONDRegular(noise_level) - return out - -class IP2P: - def extra_conds(self, **kwargs): - out = {} - - image = kwargs.get("concat_latent_image", None) - noise = kwargs.get("noise", None) - device = kwargs["device"] - - if image is None: - image = torch.zeros_like(noise) - - if image.shape[1:] != noise.shape[1:]: - image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") - - image = utils.resize_to_batch_size(image, noise.shape[0]) - - out['c_concat'] = comfy.conds.CONDNoiseShape(self.process_ip2p_image_in(image)) - adm = self.encode_adm(**kwargs) - if adm is not None: - out['y'] = comfy.conds.CONDRegular(adm) - return out - -class SD15_instructpix2pix(IP2P, BaseModel): - def __init__(self, model_config, model_type=ModelType.EPS, device=None): - super().__init__(model_config, model_type, device=device) - self.process_ip2p_image_in = lambda image: image - -class SDXL_instructpix2pix(IP2P, SDXL): - def __init__(self, model_config, model_type=ModelType.EPS, device=None): - super().__init__(model_config, model_type, device=device) - if model_type == ModelType.V_PREDICTION_EDM: - self.process_ip2p_image_in = lambda image: comfy.latent_formats.SDXL().process_in(image) #cosxl ip2p - else: - self.process_ip2p_image_in = lambda image: image #diffusers ip2p - - -class StableCascade_C(BaseModel): - def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None): - super().__init__(model_config, model_type, device=device, unet_model=StageC) - self.diffusion_model.eval().requires_grad_(False) - - def extra_conds(self, **kwargs): - out = {} - clip_text_pooled = kwargs["pooled_output"] - if clip_text_pooled is not None: - out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled) - - if "unclip_conditioning" in kwargs: - embeds = [] - for unclip_cond in kwargs["unclip_conditioning"]: - weight = unclip_cond["strength"] - embeds.append(unclip_cond["clip_vision_output"].image_embeds.unsqueeze(0) * weight) - clip_img = torch.cat(embeds, dim=1) - else: - clip_img = torch.zeros((1, 1, 768)) - out["clip_img"] = comfy.conds.CONDRegular(clip_img) - out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,))) - out["crp"] = comfy.conds.CONDRegular(torch.zeros((1,))) - - cross_attn = kwargs.get("cross_attn", None) - if cross_attn is not None: - out['clip_text'] = comfy.conds.CONDCrossAttn(cross_attn) - return out - - -class StableCascade_B(BaseModel): - def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None): - super().__init__(model_config, model_type, device=device, unet_model=StageB) - self.diffusion_model.eval().requires_grad_(False) - - def extra_conds(self, **kwargs): - out = {} - noise = kwargs.get("noise", None) - - clip_text_pooled = kwargs["pooled_output"] - if clip_text_pooled is not None: - out['clip'] = comfy.conds.CONDRegular(clip_text_pooled) - - #size of prior doesn't really matter if zeros because it gets resized but I still want it to get batched - prior = kwargs.get("stable_cascade_prior", torch.zeros((1, 16, (noise.shape[2] * 4) // 42, (noise.shape[3] * 4) // 42), dtype=noise.dtype, layout=noise.layout, device=noise.device)) - - out["effnet"] = comfy.conds.CONDRegular(prior) - out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,))) - return out - - -class SD3(BaseModel): - def __init__(self, model_config, model_type=ModelType.FLOW, device=None): - super().__init__(model_config, model_type, device=device, unet_model=OpenAISignatureMMDITWrapper) - - def encode_adm(self, **kwargs): - return kwargs["pooled_output"] - - def extra_conds(self, **kwargs): - out = super().extra_conds(**kwargs) - cross_attn = kwargs.get("cross_attn", None) - if cross_attn is not None: - out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) - return out - - def memory_required(self, input_shape): - if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention(): - dtype = self.get_dtype() - if self.manual_cast_dtype is not None: - dtype = self.manual_cast_dtype - #TODO: this probably needs to be tweaked - area = input_shape[0] * input_shape[2] * input_shape[3] - return (area * comfy.model_management.dtype_size(dtype) * 0.012) * (1024 * 1024) - else: - area = input_shape[0] * input_shape[2] * input_shape[3] - return (area * 0.3) * (1024 * 1024) - - -class StableAudio1(BaseModel): - def __init__(self, model_config, seconds_start_embedder_weights, seconds_total_embedder_weights, model_type=ModelType.V_PREDICTION_CONTINUOUS, device=None): - super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.audio.dit.AudioDiffusionTransformer) - self.seconds_start_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512) - self.seconds_total_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512) - self.seconds_start_embedder.load_state_dict(seconds_start_embedder_weights) - self.seconds_total_embedder.load_state_dict(seconds_total_embedder_weights) - - def extra_conds(self, **kwargs): - out = {} - - noise = kwargs.get("noise", None) - device = kwargs["device"] - - seconds_start = kwargs.get("seconds_start", 0) - seconds_total = kwargs.get("seconds_total", int(noise.shape[-1] / 21.53)) - - seconds_start_embed = self.seconds_start_embedder([seconds_start])[0].to(device) - seconds_total_embed = self.seconds_total_embedder([seconds_total])[0].to(device) - - global_embed = torch.cat([seconds_start_embed, seconds_total_embed], dim=-1).reshape((1, -1)) - out['global_embed'] = comfy.conds.CONDRegular(global_embed) - - cross_attn = kwargs.get("cross_attn", None) - if cross_attn is not None: - cross_attn = torch.cat([cross_attn.to(device), seconds_start_embed.repeat((cross_attn.shape[0], 1, 1)), seconds_total_embed.repeat((cross_attn.shape[0], 1, 1))], dim=1) - out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) - return out diff --git a/MagicQuill/comfy/model_detection.py b/MagicQuill/comfy/model_detection.py deleted file mode 100644 index 4843e6a4a27409fe31b5a3758961169124ed0dfe..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/model_detection.py +++ /dev/null @@ -1,433 +0,0 @@ -import comfy.supported_models -import comfy.supported_models_base -import math -import logging - -def count_blocks(state_dict_keys, prefix_string): - count = 0 - while True: - c = False - for k in state_dict_keys: - if k.startswith(prefix_string.format(count)): - c = True - break - if c == False: - break - count += 1 - return count - -def calculate_transformer_depth(prefix, state_dict_keys, state_dict): - context_dim = None - use_linear_in_transformer = False - - transformer_prefix = prefix + "1.transformer_blocks." - transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys))) - if len(transformer_keys) > 0: - last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}') - context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1] - use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2 - time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict - time_stack_cross = '{}1.time_stack.0.attn2.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn2.to_q.weight'.format(prefix) in state_dict - return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross - return None - -def detect_unet_config(state_dict, key_prefix): - state_dict_keys = list(state_dict.keys()) - - if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model - unet_config = {} - unet_config["in_channels"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[1] - patch_size = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[2] - unet_config["patch_size"] = patch_size - unet_config["out_channels"] = state_dict['{}final_layer.linear.weight'.format(key_prefix)].shape[0] // (patch_size * patch_size) - - unet_config["depth"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] // 64 - unet_config["input_size"] = None - y_key = '{}y_embedder.mlp.0.weight'.format(key_prefix) - if y_key in state_dict_keys: - unet_config["adm_in_channels"] = state_dict[y_key].shape[1] - - context_key = '{}context_embedder.weight'.format(key_prefix) - if context_key in state_dict_keys: - in_features = state_dict[context_key].shape[1] - out_features = state_dict[context_key].shape[0] - unet_config["context_embedder_config"] = {"target": "torch.nn.Linear", "params": {"in_features": in_features, "out_features": out_features}} - num_patches_key = '{}pos_embed'.format(key_prefix) - if num_patches_key in state_dict_keys: - num_patches = state_dict[num_patches_key].shape[1] - unet_config["num_patches"] = num_patches - unet_config["pos_embed_max_size"] = round(math.sqrt(num_patches)) - - rms_qk = '{}joint_blocks.0.context_block.attn.ln_q.weight'.format(key_prefix) - if rms_qk in state_dict_keys: - unet_config["qk_norm"] = "rms" - - unet_config["pos_embed_scaling_factor"] = None #unused for inference - context_processor = '{}context_processor.layers.0.attn.qkv.weight'.format(key_prefix) - if context_processor in state_dict_keys: - unet_config["context_processor_layers"] = count_blocks(state_dict_keys, '{}context_processor.layers.'.format(key_prefix) + '{}.') - return unet_config - - if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade - unet_config = {} - text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix) - if text_mapper_name in state_dict_keys: - unet_config['stable_cascade_stage'] = 'c' - w = state_dict[text_mapper_name] - if w.shape[0] == 1536: #stage c lite - unet_config['c_cond'] = 1536 - unet_config['c_hidden'] = [1536, 1536] - unet_config['nhead'] = [24, 24] - unet_config['blocks'] = [[4, 12], [12, 4]] - elif w.shape[0] == 2048: #stage c full - unet_config['c_cond'] = 2048 - elif '{}clip_mapper.weight'.format(key_prefix) in state_dict_keys: - unet_config['stable_cascade_stage'] = 'b' - w = state_dict['{}down_blocks.1.0.channelwise.0.weight'.format(key_prefix)] - if w.shape[-1] == 640: - unet_config['c_hidden'] = [320, 640, 1280, 1280] - unet_config['nhead'] = [-1, -1, 20, 20] - unet_config['blocks'] = [[2, 6, 28, 6], [6, 28, 6, 2]] - unet_config['block_repeat'] = [[1, 1, 1, 1], [3, 3, 2, 2]] - elif w.shape[-1] == 576: #stage b lite - unet_config['c_hidden'] = [320, 576, 1152, 1152] - unet_config['nhead'] = [-1, 9, 18, 18] - unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]] - unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]] - return unet_config - - if '{}transformer.rotary_pos_emb.inv_freq'.format(key_prefix) in state_dict_keys: #stable audio dit - unet_config = {} - unet_config["audio_model"] = "dit1.0" - return unet_config - - unet_config = { - "use_checkpoint": False, - "image_size": 32, - "use_spatial_transformer": True, - "legacy": False - } - - y_input = '{}label_emb.0.0.weight'.format(key_prefix) - if y_input in state_dict_keys: - unet_config["num_classes"] = "sequential" - unet_config["adm_in_channels"] = state_dict[y_input].shape[1] - else: - unet_config["adm_in_channels"] = None - - model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0] - in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1] - - out_key = '{}out.2.weight'.format(key_prefix) - if out_key in state_dict: - out_channels = state_dict[out_key].shape[0] - else: - out_channels = 4 - - num_res_blocks = [] - channel_mult = [] - attention_resolutions = [] - transformer_depth = [] - transformer_depth_output = [] - context_dim = None - use_linear_in_transformer = False - - video_model = False - video_model_cross = False - - current_res = 1 - count = 0 - - last_res_blocks = 0 - last_channel_mult = 0 - - input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.') - for count in range(input_block_count): - prefix = '{}input_blocks.{}.'.format(key_prefix, count) - prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1) - - block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys))) - if len(block_keys) == 0: - break - - block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys))) - - if "{}0.op.weight".format(prefix) in block_keys: #new layer - num_res_blocks.append(last_res_blocks) - channel_mult.append(last_channel_mult) - - current_res *= 2 - last_res_blocks = 0 - last_channel_mult = 0 - out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) - if out is not None: - transformer_depth_output.append(out[0]) - else: - transformer_depth_output.append(0) - else: - res_block_prefix = "{}0.in_layers.0.weight".format(prefix) - if res_block_prefix in block_keys: - last_res_blocks += 1 - last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels - - out = calculate_transformer_depth(prefix, state_dict_keys, state_dict) - if out is not None: - transformer_depth.append(out[0]) - if context_dim is None: - context_dim = out[1] - use_linear_in_transformer = out[2] - video_model = out[3] - video_model_cross = out[4] - else: - transformer_depth.append(0) - - res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output) - if res_block_prefix in block_keys_output: - out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) - if out is not None: - transformer_depth_output.append(out[0]) - else: - transformer_depth_output.append(0) - - - num_res_blocks.append(last_res_blocks) - channel_mult.append(last_channel_mult) - if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys: - transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}') - elif "{}middle_block.0.in_layers.0.weight".format(key_prefix) in state_dict_keys: - transformer_depth_middle = -1 - else: - transformer_depth_middle = -2 - - unet_config["in_channels"] = in_channels - unet_config["out_channels"] = out_channels - unet_config["model_channels"] = model_channels - unet_config["num_res_blocks"] = num_res_blocks - unet_config["transformer_depth"] = transformer_depth - unet_config["transformer_depth_output"] = transformer_depth_output - unet_config["channel_mult"] = channel_mult - unet_config["transformer_depth_middle"] = transformer_depth_middle - unet_config['use_linear_in_transformer'] = use_linear_in_transformer - unet_config["context_dim"] = context_dim - - if video_model: - unet_config["extra_ff_mix_layer"] = True - unet_config["use_spatial_context"] = True - unet_config["merge_strategy"] = "learned_with_images" - unet_config["merge_factor"] = 0.0 - unet_config["video_kernel_size"] = [3, 1, 1] - unet_config["use_temporal_resblock"] = True - unet_config["use_temporal_attention"] = True - unet_config["disable_temporal_crossattention"] = not video_model_cross - else: - unet_config["use_temporal_resblock"] = False - unet_config["use_temporal_attention"] = False - - return unet_config - -def model_config_from_unet_config(unet_config, state_dict=None): - for model_config in comfy.supported_models.models: - if model_config.matches(unet_config, state_dict): - return model_config(unet_config) - - logging.error("no match {}".format(unet_config)) - return None - -def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False): - unet_config = detect_unet_config(state_dict, unet_key_prefix) - model_config = model_config_from_unet_config(unet_config, state_dict) - if model_config is None and use_base_if_no_match: - return comfy.supported_models_base.BASE(unet_config) - else: - return model_config - -def unet_prefix_from_state_dict(state_dict): - if "model.model.postprocess_conv.weight" in state_dict: #audio models - unet_key_prefix = "model.model." - else: - unet_key_prefix = "model.diffusion_model." - return unet_key_prefix - -def convert_config(unet_config): - new_config = unet_config.copy() - num_res_blocks = new_config.get("num_res_blocks", None) - channel_mult = new_config.get("channel_mult", None) - - if isinstance(num_res_blocks, int): - num_res_blocks = len(channel_mult) * [num_res_blocks] - - if "attention_resolutions" in new_config: - attention_resolutions = new_config.pop("attention_resolutions") - transformer_depth = new_config.get("transformer_depth", None) - transformer_depth_middle = new_config.get("transformer_depth_middle", None) - - if isinstance(transformer_depth, int): - transformer_depth = len(channel_mult) * [transformer_depth] - if transformer_depth_middle is None: - transformer_depth_middle = transformer_depth[-1] - t_in = [] - t_out = [] - s = 1 - for i in range(len(num_res_blocks)): - res = num_res_blocks[i] - d = 0 - if s in attention_resolutions: - d = transformer_depth[i] - - t_in += [d] * res - t_out += [d] * (res + 1) - s *= 2 - transformer_depth = t_in - transformer_depth_output = t_out - new_config["transformer_depth"] = t_in - new_config["transformer_depth_output"] = t_out - new_config["transformer_depth_middle"] = transformer_depth_middle - - new_config["num_res_blocks"] = num_res_blocks - return new_config - - -def unet_config_from_diffusers_unet(state_dict, dtype=None): - match = {} - transformer_depth = [] - - attn_res = 1 - down_blocks = count_blocks(state_dict, "down_blocks.{}") - for i in range(down_blocks): - attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}') - res_blocks = count_blocks(state_dict, "down_blocks.{}.resnets.".format(i) + '{}') - for ab in range(attn_blocks): - transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}') - transformer_depth.append(transformer_count) - if transformer_count > 0: - match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1] - - attn_res *= 2 - if attn_blocks == 0: - for i in range(res_blocks): - transformer_depth.append(0) - - match["transformer_depth"] = transformer_depth - - match["model_channels"] = state_dict["conv_in.weight"].shape[0] - match["in_channels"] = state_dict["conv_in.weight"].shape[1] - match["adm_in_channels"] = None - if "class_embedding.linear_1.weight" in state_dict: - match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1] - elif "add_embedding.linear_1.weight" in state_dict: - match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1] - - SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, - 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, - 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384, - 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4, - 'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0], - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], - 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, - 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, - 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, - 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, - 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, - 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None, - 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], - 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8, - 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, - 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1, - 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1], - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, - 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0, - 'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0], - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320, - 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, - 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - SDXL_diffusers_ip2p = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 8, 'model_channels': 320, - 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, - 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, - 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4], - 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, - 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2], - 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - KOALA_700M = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, - 'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 5], 'transformer_depth_output': [0, 0, 2, 2, 5, 5], - 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - KOALA_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, - 'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 6], 'transformer_depth_output': [0, 0, 2, 2, 6, 6], - 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 6, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - SD09_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1], - 'transformer_depth': [1, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, - 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1], - 'use_temporal_attention': False, 'use_temporal_resblock': False, 'disable_self_attentions': [True, False, False]} - - SD_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1], - 'transformer_depth': [0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': False, - 'context_dim': 768, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 1, 1, 1, 1], - 'use_temporal_attention': False, 'use_temporal_resblock': False} - - - supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p] - - for unet_config in supported_models: - matches = True - for k in match: - if match[k] != unet_config[k]: - matches = False - break - if matches: - return convert_config(unet_config) - return None - -def model_config_from_diffusers_unet(state_dict): - unet_config = unet_config_from_diffusers_unet(state_dict) - if unet_config is not None: - return model_config_from_unet_config(unet_config) - return None diff --git a/MagicQuill/comfy/model_management.py b/MagicQuill/comfy/model_management.py deleted file mode 100644 index 047193290fa27199431300679b1dcfc64383ab85..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/model_management.py +++ /dev/null @@ -1,957 +0,0 @@ -import psutil -import logging -from enum import Enum -from comfy.cli_args import args -import torch -import sys -import platform - -class VRAMState(Enum): - DISABLED = 0 #No vram present: no need to move models to vram - NO_VRAM = 1 #Very low vram: enable all the options to save vram - LOW_VRAM = 2 - NORMAL_VRAM = 3 - HIGH_VRAM = 4 - SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both. - -class CPUState(Enum): - GPU = 0 - CPU = 1 - MPS = 2 - -# Determine VRAM State -vram_state = VRAMState.NORMAL_VRAM -set_vram_to = VRAMState.NORMAL_VRAM -cpu_state = CPUState.GPU - -total_vram = 0 - -lowvram_available = True -xpu_available = False - -if args.deterministic: - logging.info("Using deterministic algorithms for pytorch") - torch.use_deterministic_algorithms(True, warn_only=True) - -directml_enabled = False -if args.directml is not None: - import torch_directml - directml_enabled = True - device_index = args.directml - if device_index < 0: - directml_device = torch_directml.device() - else: - directml_device = torch_directml.device(device_index) - logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index))) - # torch_directml.disable_tiled_resources(True) - lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default. - -try: - import intel_extension_for_pytorch as ipex - if torch.xpu.is_available(): - xpu_available = True -except: - pass - -try: - if torch.backends.mps.is_available(): - cpu_state = CPUState.MPS - import torch.mps -except: - pass - -if args.cpu: - cpu_state = CPUState.CPU - -def is_intel_xpu(): - global cpu_state - global xpu_available - if cpu_state == CPUState.GPU: - if xpu_available: - return True - return False - -def get_torch_device(): - global directml_enabled - global cpu_state - if directml_enabled: - global directml_device - return directml_device - if cpu_state == CPUState.MPS: - return torch.device("mps") - if cpu_state == CPUState.CPU: - return torch.device("cpu") - else: - if is_intel_xpu(): - return torch.device("xpu", torch.xpu.current_device()) - else: - return torch.device(torch.cuda.current_device()) - -def get_total_memory(dev=None, torch_total_too=False): - global directml_enabled - if dev is None: - dev = get_torch_device() - - if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): - mem_total = psutil.virtual_memory().total - mem_total_torch = mem_total - else: - if directml_enabled: - mem_total = 1024 * 1024 * 1024 #TODO - mem_total_torch = mem_total - elif is_intel_xpu(): - stats = torch.xpu.memory_stats(dev) - mem_reserved = stats['reserved_bytes.all.current'] - mem_total_torch = mem_reserved - mem_total = torch.xpu.get_device_properties(dev).total_memory - else: - stats = torch.cuda.memory_stats(dev) - mem_reserved = stats['reserved_bytes.all.current'] - _, mem_total_cuda = torch.cuda.mem_get_info(dev) - mem_total_torch = mem_reserved - mem_total = mem_total_cuda - - if torch_total_too: - return (mem_total, mem_total_torch) - else: - return mem_total - -total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) -total_ram = psutil.virtual_memory().total / (1024 * 1024) -logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) - -try: - logging.info("pytorch version: {}".format(torch.version.__version__)) -except: - pass - -try: - OOM_EXCEPTION = torch.cuda.OutOfMemoryError -except: - OOM_EXCEPTION = Exception - -XFORMERS_VERSION = "" -XFORMERS_ENABLED_VAE = True -if args.disable_xformers: - XFORMERS_IS_AVAILABLE = False -else: - try: - import xformers - import xformers.ops - XFORMERS_IS_AVAILABLE = True - try: - XFORMERS_IS_AVAILABLE = xformers._has_cpp_library - except: - pass - try: - XFORMERS_VERSION = xformers.version.__version__ - logging.info("xformers version: {}".format(XFORMERS_VERSION)) - if XFORMERS_VERSION.startswith("0.0.18"): - logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.") - logging.warning("Please downgrade or upgrade xformers to a different version.\n") - XFORMERS_ENABLED_VAE = False - except: - pass - except: - XFORMERS_IS_AVAILABLE = False - -def is_nvidia(): - global cpu_state - if cpu_state == CPUState.GPU: - if torch.version.cuda: - return True - return False - -ENABLE_PYTORCH_ATTENTION = False -if args.use_pytorch_cross_attention: - ENABLE_PYTORCH_ATTENTION = True - XFORMERS_IS_AVAILABLE = False - -VAE_DTYPES = [torch.float32] - -try: - if is_nvidia(): - torch_version = torch.version.__version__ - if int(torch_version[0]) >= 2: - if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False: - ENABLE_PYTORCH_ATTENTION = True - if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8: - VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES - if is_intel_xpu(): - if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: - ENABLE_PYTORCH_ATTENTION = True -except: - pass - -if is_intel_xpu(): - VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES - -if args.cpu_vae: - VAE_DTYPES = [torch.float32] - - -if ENABLE_PYTORCH_ATTENTION: - torch.backends.cuda.enable_math_sdp(True) - torch.backends.cuda.enable_flash_sdp(True) - torch.backends.cuda.enable_mem_efficient_sdp(True) - -if args.lowvram: - set_vram_to = VRAMState.LOW_VRAM - lowvram_available = True -elif args.novram: - set_vram_to = VRAMState.NO_VRAM -elif args.highvram or args.gpu_only: - vram_state = VRAMState.HIGH_VRAM - -FORCE_FP32 = False -FORCE_FP16 = False -if args.force_fp32: - logging.info("Forcing FP32, if this improves things please report it.") - FORCE_FP32 = True - -if args.force_fp16: - logging.info("Forcing FP16.") - FORCE_FP16 = True - -if lowvram_available: - if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): - vram_state = set_vram_to - - -if cpu_state != CPUState.GPU: - vram_state = VRAMState.DISABLED - -if cpu_state == CPUState.MPS: - vram_state = VRAMState.SHARED - -logging.info(f"Set vram state to: {vram_state.name}") - -DISABLE_SMART_MEMORY = args.disable_smart_memory - -if DISABLE_SMART_MEMORY: - logging.info("Disabling smart memory management") - -def get_torch_device_name(device): - if hasattr(device, 'type'): - if device.type == "cuda": - try: - allocator_backend = torch.cuda.get_allocator_backend() - except: - allocator_backend = "" - return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend) - else: - return "{}".format(device.type) - elif is_intel_xpu(): - return "{} {}".format(device, torch.xpu.get_device_name(device)) - else: - return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) - -try: - logging.info("Device: {}".format(get_torch_device_name(get_torch_device()))) -except: - logging.warning("Could not pick default device.") - - -current_loaded_models = [] - -def module_size(module): - module_mem = 0 - sd = module.state_dict() - for k in sd: - t = sd[k] - module_mem += t.nelement() * t.element_size() - return module_mem - -class LoadedModel: - def __init__(self, model): - self.model = model - self.device = model.load_device - self.weights_loaded = False - self.real_model = None - self.currently_used = True - - def model_memory(self): - return self.model.model_size() - - def model_memory_required(self, device): - if device == self.model.current_device: - return 0 - else: - return self.model_memory() - - def model_load(self, lowvram_model_memory=0, force_patch_weights=False): - patch_model_to = self.device - - self.model.model_patches_to(self.device) - self.model.model_patches_to(self.model.model_dtype()) - - load_weights = not self.weights_loaded - - try: - if lowvram_model_memory > 0 and load_weights: - self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights) - else: - self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights) - except Exception as e: - self.model.unpatch_model(self.model.offload_device) - self.model_unload() - raise e - - if is_intel_xpu() and not args.disable_ipex_optimize: - self.real_model = ipex.optimize(self.real_model.eval(), graph_mode=True, concat_linear=True) - - self.weights_loaded = True - return self.real_model - - def should_reload_model(self, force_patch_weights=False): - if force_patch_weights and self.model.lowvram_patch_counter > 0: - return True - return False - - def model_unload(self, unpatch_weights=True): - self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights) - self.model.model_patches_to(self.model.offload_device) - self.weights_loaded = self.weights_loaded and not unpatch_weights - self.real_model = None - - def __eq__(self, other): - return self.model is other.model - -def minimum_inference_memory(): - return (1024 * 1024 * 1024) - -def unload_model_clones(model, unload_weights_only=True, force_unload=True): - to_unload = [] - for i in range(len(current_loaded_models)): - if model.is_clone(current_loaded_models[i].model): - to_unload = [i] + to_unload - - if len(to_unload) == 0: - return True - - same_weights = 0 - for i in to_unload: - if model.clone_has_same_weights(current_loaded_models[i].model): - same_weights += 1 - - if same_weights == len(to_unload): - unload_weight = False - else: - unload_weight = True - - if not force_unload: - if unload_weights_only and unload_weight == False: - return None - - for i in to_unload: - logging.debug("unload clone {} {}".format(i, unload_weight)) - current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight) - - return unload_weight - -def free_memory(memory_required, device, keep_loaded=[]): - unloaded_model = [] - can_unload = [] - - for i in range(len(current_loaded_models) -1, -1, -1): - shift_model = current_loaded_models[i] - if shift_model.device == device: - if shift_model not in keep_loaded: - can_unload.append((sys.getrefcount(shift_model.model), shift_model.model_memory(), i)) - shift_model.currently_used = False - - for x in sorted(can_unload): - i = x[-1] - if not DISABLE_SMART_MEMORY: - if get_free_memory(device) > memory_required: - break - current_loaded_models[i].model_unload() - unloaded_model.append(i) - - for i in sorted(unloaded_model, reverse=True): - current_loaded_models.pop(i) - - if len(unloaded_model) > 0: - soft_empty_cache() - else: - if vram_state != VRAMState.HIGH_VRAM: - mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True) - if mem_free_torch > mem_free_total * 0.25: - soft_empty_cache() - -def load_models_gpu(models, memory_required=0, force_patch_weights=False): - global vram_state - - inference_memory = minimum_inference_memory() - extra_mem = max(inference_memory, memory_required) - - models = set(models) - - models_to_load = [] - models_already_loaded = [] - for x in models: - loaded_model = LoadedModel(x) - loaded = None - - try: - loaded_model_index = current_loaded_models.index(loaded_model) - except: - loaded_model_index = None - - if loaded_model_index is not None: - loaded = current_loaded_models[loaded_model_index] - if loaded.should_reload_model(force_patch_weights=force_patch_weights): #TODO: cleanup this model reload logic - current_loaded_models.pop(loaded_model_index).model_unload(unpatch_weights=True) - loaded = None - else: - loaded.currently_used = True - models_already_loaded.append(loaded) - - if loaded is None: - if hasattr(x, "model"): - logging.info(f"Requested to load {x.model.__class__.__name__}") - models_to_load.append(loaded_model) - - if len(models_to_load) == 0: - devs = set(map(lambda a: a.device, models_already_loaded)) - for d in devs: - if d != torch.device("cpu"): - free_memory(extra_mem, d, models_already_loaded) - return - - logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}") - - total_memory_required = {} - for loaded_model in models_to_load: - if unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) == True:#unload clones where the weights are different - total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device) - - for device in total_memory_required: - if device != torch.device("cpu"): - free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded) - - for loaded_model in models_to_load: - weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded - if weights_unloaded is not None: - loaded_model.weights_loaded = not weights_unloaded - - for loaded_model in models_to_load: - model = loaded_model.model - torch_dev = model.load_device - if is_device_cpu(torch_dev): - vram_set_state = VRAMState.DISABLED - else: - vram_set_state = vram_state - lowvram_model_memory = 0 - if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM): - model_size = loaded_model.model_memory_required(torch_dev) - current_free_mem = get_free_memory(torch_dev) - lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 )) - if model_size <= (current_free_mem - inference_memory): #only switch to lowvram if really necessary - lowvram_model_memory = 0 - - if vram_set_state == VRAMState.NO_VRAM: - lowvram_model_memory = 64 * 1024 * 1024 - - cur_loaded_model = loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights) - current_loaded_models.insert(0, loaded_model) - return - - -def load_model_gpu(model): - return load_models_gpu([model]) - -def loaded_models(only_currently_used=False): - output = [] - for m in current_loaded_models: - if only_currently_used: - if not m.currently_used: - continue - - output.append(m.model) - return output - -def cleanup_models(keep_clone_weights_loaded=False): - to_delete = [] - for i in range(len(current_loaded_models)): - if sys.getrefcount(current_loaded_models[i].model) <= 2: - if not keep_clone_weights_loaded: - to_delete = [i] + to_delete - #TODO: find a less fragile way to do this. - elif sys.getrefcount(current_loaded_models[i].real_model) <= 3: #references from .real_model + the .model - to_delete = [i] + to_delete - - for i in to_delete: - x = current_loaded_models.pop(i) - x.model_unload() - del x - -def dtype_size(dtype): - dtype_size = 4 - if dtype == torch.float16 or dtype == torch.bfloat16: - dtype_size = 2 - elif dtype == torch.float32: - dtype_size = 4 - else: - try: - dtype_size = dtype.itemsize - except: #Old pytorch doesn't have .itemsize - pass - return dtype_size - -def unet_offload_device(): - if vram_state == VRAMState.HIGH_VRAM: - return get_torch_device() - else: - return torch.device("cpu") - -def unet_inital_load_device(parameters, dtype): - torch_dev = get_torch_device() - if vram_state == VRAMState.HIGH_VRAM: - return torch_dev - - cpu_dev = torch.device("cpu") - if DISABLE_SMART_MEMORY: - return cpu_dev - - model_size = dtype_size(dtype) * parameters - - mem_dev = get_free_memory(torch_dev) - mem_cpu = get_free_memory(cpu_dev) - if mem_dev > mem_cpu and model_size < mem_dev: - return torch_dev - else: - return cpu_dev - -def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): - if args.bf16_unet: - return torch.bfloat16 - if args.fp16_unet: - return torch.float16 - if args.fp8_e4m3fn_unet: - return torch.float8_e4m3fn - if args.fp8_e5m2_unet: - return torch.float8_e5m2 - if should_use_fp16(device=device, model_params=model_params, manual_cast=True): - if torch.float16 in supported_dtypes: - return torch.float16 - if should_use_bf16(device, model_params=model_params, manual_cast=True): - if torch.bfloat16 in supported_dtypes: - return torch.bfloat16 - return torch.float32 - -# None means no manual cast -def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): - if weight_dtype == torch.float32: - return None - - fp16_supported = should_use_fp16(inference_device, prioritize_performance=False) - if fp16_supported and weight_dtype == torch.float16: - return None - - bf16_supported = should_use_bf16(inference_device) - if bf16_supported and weight_dtype == torch.bfloat16: - return None - - if fp16_supported and torch.float16 in supported_dtypes: - return torch.float16 - - elif bf16_supported and torch.bfloat16 in supported_dtypes: - return torch.bfloat16 - else: - return torch.float32 - -def text_encoder_offload_device(): - if args.gpu_only: - return get_torch_device() - else: - return torch.device("cpu") - -def text_encoder_device(): - if args.gpu_only: - return get_torch_device() - elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: - if should_use_fp16(prioritize_performance=False): - return get_torch_device() - else: - return torch.device("cpu") - else: - return torch.device("cpu") - -def text_encoder_dtype(device=None): - if args.fp8_e4m3fn_text_enc: - return torch.float8_e4m3fn - elif args.fp8_e5m2_text_enc: - return torch.float8_e5m2 - elif args.fp16_text_enc: - return torch.float16 - elif args.fp32_text_enc: - return torch.float32 - - if is_device_cpu(device): - return torch.float16 - - return torch.float16 - - -def intermediate_device(): - if args.gpu_only: - return get_torch_device() - else: - return torch.device("cpu") - -def vae_device(): - if args.cpu_vae: - return torch.device("cpu") - return get_torch_device() - -def vae_offload_device(): - if args.gpu_only: - return get_torch_device() - else: - return torch.device("cpu") - -def vae_dtype(device=None, allowed_dtypes=[]): - global VAE_DTYPES - if args.fp16_vae: - return torch.float16 - elif args.bf16_vae: - return torch.bfloat16 - elif args.fp32_vae: - return torch.float32 - - for d in allowed_dtypes: - if d == torch.float16 and should_use_fp16(device, prioritize_performance=False): - return d - if d in VAE_DTYPES: - return d - - return VAE_DTYPES[0] - -def get_autocast_device(dev): - if hasattr(dev, 'type'): - return dev.type - return "cuda" - -def supports_dtype(device, dtype): #TODO - if dtype == torch.float32: - return True - if is_device_cpu(device): - return False - if dtype == torch.float16: - return True - if dtype == torch.bfloat16: - return True - return False - -def supports_cast(device, dtype): #TODO - if dtype == torch.float32: - return True - if dtype == torch.float16: - return True - if is_device_mps(device): - return False - if directml_enabled: #TODO: test this - return False - if dtype == torch.bfloat16: - return True - if dtype == torch.float8_e4m3fn: - return True - if dtype == torch.float8_e5m2: - return True - return False - -def device_supports_non_blocking(device): - if is_device_mps(device): - return False #pytorch bug? mps doesn't support non blocking - if is_intel_xpu(): - return False - if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews) - return False - if directml_enabled: - return False - return True - -def device_should_use_non_blocking(device): - if not device_supports_non_blocking(device): - return False - return False - # return True #TODO: figure out why this causes memory issues on Nvidia and possibly others - -def force_channels_last(): - if args.force_channels_last: - return True - - #TODO - return False - -def cast_to_device(tensor, device, dtype, copy=False): - device_supports_cast = False - if tensor.dtype == torch.float32 or tensor.dtype == torch.float16: - device_supports_cast = True - elif tensor.dtype == torch.bfloat16: - if hasattr(device, 'type') and device.type.startswith("cuda"): - device_supports_cast = True - elif is_intel_xpu(): - device_supports_cast = True - - non_blocking = device_should_use_non_blocking(device) - - if device_supports_cast: - if copy: - if tensor.device == device: - return tensor.to(dtype, copy=copy, non_blocking=non_blocking) - return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) - else: - return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) - else: - return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking) - -def xformers_enabled(): - global directml_enabled - global cpu_state - if cpu_state != CPUState.GPU: - return False - if is_intel_xpu(): - return False - if directml_enabled: - return False - return XFORMERS_IS_AVAILABLE - - -def xformers_enabled_vae(): - enabled = xformers_enabled() - if not enabled: - return False - - return XFORMERS_ENABLED_VAE - -def pytorch_attention_enabled(): - global ENABLE_PYTORCH_ATTENTION - return ENABLE_PYTORCH_ATTENTION - -def pytorch_attention_flash_attention(): - global ENABLE_PYTORCH_ATTENTION - if ENABLE_PYTORCH_ATTENTION: - #TODO: more reliable way of checking for flash attention? - if is_nvidia(): #pytorch flash attention only works on Nvidia - return True - if is_intel_xpu(): - return True - return False - -def force_upcast_attention_dtype(): - upcast = args.force_upcast_attention - try: - if platform.mac_ver()[0] in ['14.5']: #black image bug on OSX Sonoma 14.5 - upcast = True - except: - pass - if upcast: - return torch.float32 - else: - return None - -def get_free_memory(dev=None, torch_free_too=False): - global directml_enabled - if dev is None: - dev = get_torch_device() - - if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): - mem_free_total = psutil.virtual_memory().available - mem_free_torch = mem_free_total - else: - if directml_enabled: - mem_free_total = 1024 * 1024 * 1024 #TODO - mem_free_torch = mem_free_total - elif is_intel_xpu(): - stats = torch.xpu.memory_stats(dev) - mem_active = stats['active_bytes.all.current'] - mem_reserved = stats['reserved_bytes.all.current'] - mem_free_torch = mem_reserved - mem_active - mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved - mem_free_total = mem_free_xpu + mem_free_torch - else: - stats = torch.cuda.memory_stats(dev) - mem_active = stats['active_bytes.all.current'] - mem_reserved = stats['reserved_bytes.all.current'] - mem_free_cuda, _ = torch.cuda.mem_get_info(dev) - mem_free_torch = mem_reserved - mem_active - mem_free_total = mem_free_cuda + mem_free_torch - - if torch_free_too: - return (mem_free_total, mem_free_torch) - else: - return mem_free_total - -def cpu_mode(): - global cpu_state - return cpu_state == CPUState.CPU - -def mps_mode(): - global cpu_state - return cpu_state == CPUState.MPS - -def is_device_type(device, type): - if hasattr(device, 'type'): - if (device.type == type): - return True - return False - -def is_device_cpu(device): - return is_device_type(device, 'cpu') - -def is_device_mps(device): - return is_device_type(device, 'mps') - -def is_device_cuda(device): - return is_device_type(device, 'cuda') - -def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): - global directml_enabled - - if device is not None: - if is_device_cpu(device): - return False - - if FORCE_FP16: - return True - - if device is not None: - if is_device_mps(device): - return True - - if FORCE_FP32: - return False - - if directml_enabled: - return False - - if mps_mode(): - return True - - if cpu_mode(): - return False - - if is_intel_xpu(): - return True - - if torch.version.hip: - return True - - props = torch.cuda.get_device_properties("cuda") - if props.major >= 8: - return True - - if props.major < 6: - return False - - fp16_works = False - #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled - #when the model doesn't actually fit on the card - #TODO: actually test if GP106 and others have the same type of behavior - nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"] - for x in nvidia_10_series: - if x in props.name.lower(): - fp16_works = True - - if fp16_works or manual_cast: - free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) - if (not prioritize_performance) or model_params * 4 > free_model_memory: - return True - - if props.major < 7: - return False - - #FP16 is just broken on these cards - nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"] - for x in nvidia_16_series: - if x in props.name: - return False - - return True - -def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): - if device is not None: - if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow - return False - - if device is not None: #TODO not sure about mps bf16 support - if is_device_mps(device): - return False - - if FORCE_FP32: - return False - - if directml_enabled: - return False - - if cpu_mode() or mps_mode(): - return False - - if is_intel_xpu(): - return True - - if device is None: - device = torch.device("cuda") - - props = torch.cuda.get_device_properties(device) - if props.major >= 8: - return True - - bf16_works = torch.cuda.is_bf16_supported() - - if bf16_works or manual_cast: - free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) - if (not prioritize_performance) or model_params * 4 > free_model_memory: - return True - - return False - -def soft_empty_cache(force=False): - global cpu_state - if cpu_state == CPUState.MPS: - torch.mps.empty_cache() - elif is_intel_xpu(): - torch.xpu.empty_cache() - elif torch.cuda.is_available(): - if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda - torch.cuda.empty_cache() - torch.cuda.ipc_collect() - -def unload_all_models(): - free_memory(1e30, get_torch_device()) - - -def resolve_lowvram_weight(weight, model, key): #TODO: remove - print("WARNING: The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.") - return weight - -#TODO: might be cleaner to put this somewhere else -import threading - -class InterruptProcessingException(Exception): - pass - -interrupt_processing_mutex = threading.RLock() - -interrupt_processing = False -def interrupt_current_processing(value=True): - global interrupt_processing - global interrupt_processing_mutex - with interrupt_processing_mutex: - interrupt_processing = value - -def processing_interrupted(): - global interrupt_processing - global interrupt_processing_mutex - with interrupt_processing_mutex: - return interrupt_processing - -def throw_exception_if_processing_interrupted(): - global interrupt_processing - global interrupt_processing_mutex - with interrupt_processing_mutex: - if interrupt_processing: - interrupt_processing = False - raise InterruptProcessingException() diff --git a/MagicQuill/comfy/model_patcher.py b/MagicQuill/comfy/model_patcher.py deleted file mode 100644 index 44b82795f3000afe134cdbafb3e8ab918982ae0c..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/model_patcher.py +++ /dev/null @@ -1,541 +0,0 @@ -import torch -import copy -import inspect -import logging -import uuid - -import comfy.utils -import comfy.model_management -from comfy.types import UnetWrapperFunction - - -def weight_decompose(dora_scale, weight, lora_diff, alpha, strength): - dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32) - lora_diff *= alpha - weight_calc = weight + lora_diff.type(weight.dtype) - weight_norm = ( - weight_calc.transpose(0, 1) - .reshape(weight_calc.shape[1], -1) - .norm(dim=1, keepdim=True) - .reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1)) - .transpose(0, 1) - ) - - weight_calc *= (dora_scale / weight_norm).type(weight.dtype) - if strength != 1.0: - weight_calc -= weight - weight += strength * (weight_calc) - else: - weight[:] = weight_calc - return weight - - -def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None): - to = model_options["transformer_options"].copy() - - if "patches_replace" not in to: - to["patches_replace"] = {} - else: - to["patches_replace"] = to["patches_replace"].copy() - - if name not in to["patches_replace"]: - to["patches_replace"][name] = {} - else: - to["patches_replace"][name] = to["patches_replace"][name].copy() - - if transformer_index is not None: - block = (block_name, number, transformer_index) - else: - block = (block_name, number) - to["patches_replace"][name][block] = patch - model_options["transformer_options"] = to - return model_options - -class ModelPatcher: - def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False): - self.size = size - self.model = model - self.patches = {} - self.backup = {} - self.object_patches = {} - self.object_patches_backup = {} - self.model_options = {"transformer_options":{}} - self.model_size() - self.load_device = load_device - self.offload_device = offload_device - if current_device is None: - self.current_device = self.offload_device - else: - self.current_device = current_device - - self.weight_inplace_update = weight_inplace_update - self.model_lowvram = False - self.lowvram_patch_counter = 0 - self.patches_uuid = uuid.uuid4() - - def model_size(self): - if self.size > 0: - return self.size - self.size = comfy.model_management.module_size(self.model) - return self.size - - def clone(self): - n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update) - n.patches = {} - for k in self.patches: - n.patches[k] = self.patches[k][:] - n.patches_uuid = self.patches_uuid - - n.object_patches = self.object_patches.copy() - n.model_options = copy.deepcopy(self.model_options) - n.backup = self.backup - n.object_patches_backup = self.object_patches_backup - return n - - def is_clone(self, other): - if hasattr(other, 'model') and self.model is other.model: - return True - return False - - def clone_has_same_weights(self, clone): - if not self.is_clone(clone): - return False - - if len(self.patches) == 0 and len(clone.patches) == 0: - return True - - if self.patches_uuid == clone.patches_uuid: - if len(self.patches) != len(clone.patches): - logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.") - else: - return True - - def memory_required(self, input_shape): - return self.model.memory_required(input_shape=input_shape) - - def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False): - if len(inspect.signature(sampler_cfg_function).parameters) == 3: - self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way - else: - self.model_options["sampler_cfg_function"] = sampler_cfg_function - if disable_cfg1_optimization: - self.model_options["disable_cfg1_optimization"] = True - - def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False): - self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function] - if disable_cfg1_optimization: - self.model_options["disable_cfg1_optimization"] = True - - def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction): - self.model_options["model_function_wrapper"] = unet_wrapper_function - - def set_model_denoise_mask_function(self, denoise_mask_function): - self.model_options["denoise_mask_function"] = denoise_mask_function - - def set_model_patch(self, patch, name): - to = self.model_options["transformer_options"] - if "patches" not in to: - to["patches"] = {} - to["patches"][name] = to["patches"].get(name, []) + [patch] - - def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None): - self.model_options = set_model_options_patch_replace(self.model_options, patch, name, block_name, number, transformer_index=transformer_index) - - def set_model_attn1_patch(self, patch): - self.set_model_patch(patch, "attn1_patch") - - def set_model_attn2_patch(self, patch): - self.set_model_patch(patch, "attn2_patch") - - def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None): - self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index) - - def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None): - self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index) - - def set_model_attn1_output_patch(self, patch): - self.set_model_patch(patch, "attn1_output_patch") - - def set_model_attn2_output_patch(self, patch): - self.set_model_patch(patch, "attn2_output_patch") - - def set_model_input_block_patch(self, patch): - self.set_model_patch(patch, "input_block_patch") - - def set_model_input_block_patch_after_skip(self, patch): - self.set_model_patch(patch, "input_block_patch_after_skip") - - def set_model_output_block_patch(self, patch): - self.set_model_patch(patch, "output_block_patch") - - def add_object_patch(self, name, obj): - self.object_patches[name] = obj - - def get_model_object(self, name): - if name in self.object_patches: - return self.object_patches[name] - else: - if name in self.object_patches_backup: - return self.object_patches_backup[name] - else: - return comfy.utils.get_attr(self.model, name) - - def model_patches_to(self, device): - to = self.model_options["transformer_options"] - if "patches" in to: - patches = to["patches"] - for name in patches: - patch_list = patches[name] - for i in range(len(patch_list)): - if hasattr(patch_list[i], "to"): - patch_list[i] = patch_list[i].to(device) - if "patches_replace" in to: - patches = to["patches_replace"] - for name in patches: - patch_list = patches[name] - for k in patch_list: - if hasattr(patch_list[k], "to"): - patch_list[k] = patch_list[k].to(device) - if "model_function_wrapper" in self.model_options: - wrap_func = self.model_options["model_function_wrapper"] - if hasattr(wrap_func, "to"): - self.model_options["model_function_wrapper"] = wrap_func.to(device) - - def model_dtype(self): - if hasattr(self.model, "get_dtype"): - return self.model.get_dtype() - - def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): - p = set() - model_sd = self.model.state_dict() - for k in patches: - offset = None - if isinstance(k, str): - key = k - else: - offset = k[1] - key = k[0] - - if key in model_sd: - p.add(k) - current_patches = self.patches.get(key, []) - current_patches.append((strength_patch, patches[k], strength_model, offset)) - self.patches[key] = current_patches - - self.patches_uuid = uuid.uuid4() - return list(p) - - def get_key_patches(self, filter_prefix=None): - comfy.model_management.unload_model_clones(self) - model_sd = self.model_state_dict() - p = {} - for k in model_sd: - if filter_prefix is not None: - if not k.startswith(filter_prefix): - continue - if k in self.patches: - p[k] = [model_sd[k]] + self.patches[k] - else: - p[k] = (model_sd[k],) - return p - - def model_state_dict(self, filter_prefix=None): - sd = self.model.state_dict() - keys = list(sd.keys()) - if filter_prefix is not None: - for k in keys: - if not k.startswith(filter_prefix): - sd.pop(k) - return sd - - def patch_weight_to_device(self, key, device_to=None): - if key not in self.patches: - return - - weight = comfy.utils.get_attr(self.model, key) - - inplace_update = self.weight_inplace_update - - if key not in self.backup: - self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update) - - if device_to is not None: - temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True) - else: - temp_weight = weight.to(torch.float32, copy=True) - out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype) - if inplace_update: - comfy.utils.copy_to_param(self.model, key, out_weight) - else: - comfy.utils.set_attr_param(self.model, key, out_weight) - - def patch_model(self, device_to=None, patch_weights=True): - for k in self.object_patches: - old = comfy.utils.set_attr(self.model, k, self.object_patches[k]) - if k not in self.object_patches_backup: - self.object_patches_backup[k] = old - - if patch_weights: - model_sd = self.model_state_dict() - for key in self.patches: - if key not in model_sd: - logging.warning("could not patch. key doesn't exist in model: {}".format(key)) - continue - - self.patch_weight_to_device(key, device_to) - - if device_to is not None: - self.model.to(device_to) - self.current_device = device_to - - return self.model - - def patch_model_lowvram(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False): - self.patch_model(device_to, patch_weights=False) - - logging.info("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024))) - class LowVramPatch: - def __init__(self, key, model_patcher): - self.key = key - self.model_patcher = model_patcher - def __call__(self, weight): - return self.model_patcher.calculate_weight(self.model_patcher.patches[self.key], weight, self.key) - - mem_counter = 0 - patch_counter = 0 - for n, m in self.model.named_modules(): - lowvram_weight = False - if hasattr(m, "comfy_cast_weights"): - module_mem = comfy.model_management.module_size(m) - if mem_counter + module_mem >= lowvram_model_memory: - lowvram_weight = True - - weight_key = "{}.weight".format(n) - bias_key = "{}.bias".format(n) - - if lowvram_weight: - if weight_key in self.patches: - if force_patch_weights: - self.patch_weight_to_device(weight_key) - else: - m.weight_function = LowVramPatch(weight_key, self) - patch_counter += 1 - if bias_key in self.patches: - if force_patch_weights: - self.patch_weight_to_device(bias_key) - else: - m.bias_function = LowVramPatch(bias_key, self) - patch_counter += 1 - - m.prev_comfy_cast_weights = m.comfy_cast_weights - m.comfy_cast_weights = True - else: - if hasattr(m, "weight"): - self.patch_weight_to_device(weight_key, device_to) - self.patch_weight_to_device(bias_key, device_to) - m.to(device_to) - mem_counter += comfy.model_management.module_size(m) - logging.debug("lowvram: loaded module regularly {} {}".format(n, m)) - - self.model_lowvram = True - self.lowvram_patch_counter = patch_counter - return self.model - - def calculate_weight(self, patches, weight, key): - for p in patches: - strength = p[0] - v = p[1] - strength_model = p[2] - offset = p[3] - - old_weight = None - if offset is not None: - old_weight = weight - weight = weight.narrow(offset[0], offset[1], offset[2]) - - if strength_model != 1.0: - weight *= strength_model - - if isinstance(v, list): - v = (self.calculate_weight(v[1:], v[0].clone(), key), ) - - if len(v) == 1: - patch_type = "diff" - elif len(v) == 2: - patch_type = v[0] - v = v[1] - - if patch_type == "diff": - w1 = v[0] - if strength != 0.0: - if w1.shape != weight.shape: - logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) - else: - weight += strength * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype) - elif patch_type == "lora": #lora/locon - mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32) - mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32) - dora_scale = v[4] - if v[2] is not None: - alpha = v[2] / mat2.shape[0] - else: - alpha = 1.0 - - if v[3] is not None: - #locon mid weights, hopefully the math is fine because I didn't properly test it - mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32) - final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] - mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) - try: - lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape) - if dora_scale is not None: - weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength) - else: - weight += ((strength * alpha) * lora_diff).type(weight.dtype) - except Exception as e: - logging.error("ERROR {} {} {}".format(patch_type, key, e)) - elif patch_type == "lokr": - w1 = v[0] - w2 = v[1] - w1_a = v[3] - w1_b = v[4] - w2_a = v[5] - w2_b = v[6] - t2 = v[7] - dora_scale = v[8] - dim = None - - if w1 is None: - dim = w1_b.shape[0] - w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32), - comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32)) - else: - w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32) - - if w2 is None: - dim = w2_b.shape[0] - if t2 is None: - w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32), - comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32)) - else: - w2 = torch.einsum('i j k l, j r, i p -> p r k l', - comfy.model_management.cast_to_device(t2, weight.device, torch.float32), - comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32), - comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32)) - else: - w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32) - - if len(w2.shape) == 4: - w1 = w1.unsqueeze(2).unsqueeze(2) - if v[2] is not None and dim is not None: - alpha = v[2] / dim - else: - alpha = 1.0 - - try: - lora_diff = torch.kron(w1, w2).reshape(weight.shape) - if dora_scale is not None: - weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength) - else: - weight += ((strength * alpha) * lora_diff).type(weight.dtype) - except Exception as e: - logging.error("ERROR {} {} {}".format(patch_type, key, e)) - elif patch_type == "loha": - w1a = v[0] - w1b = v[1] - if v[2] is not None: - alpha = v[2] / w1b.shape[0] - else: - alpha = 1.0 - - w2a = v[3] - w2b = v[4] - dora_scale = v[7] - if v[5] is not None: #cp decomposition - t1 = v[5] - t2 = v[6] - m1 = torch.einsum('i j k l, j r, i p -> p r k l', - comfy.model_management.cast_to_device(t1, weight.device, torch.float32), - comfy.model_management.cast_to_device(w1b, weight.device, torch.float32), - comfy.model_management.cast_to_device(w1a, weight.device, torch.float32)) - - m2 = torch.einsum('i j k l, j r, i p -> p r k l', - comfy.model_management.cast_to_device(t2, weight.device, torch.float32), - comfy.model_management.cast_to_device(w2b, weight.device, torch.float32), - comfy.model_management.cast_to_device(w2a, weight.device, torch.float32)) - else: - m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32), - comfy.model_management.cast_to_device(w1b, weight.device, torch.float32)) - m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32), - comfy.model_management.cast_to_device(w2b, weight.device, torch.float32)) - - try: - lora_diff = (m1 * m2).reshape(weight.shape) - if dora_scale is not None: - weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength) - else: - weight += ((strength * alpha) * lora_diff).type(weight.dtype) - except Exception as e: - logging.error("ERROR {} {} {}".format(patch_type, key, e)) - elif patch_type == "glora": - if v[4] is not None: - alpha = v[4] / v[0].shape[0] - else: - alpha = 1.0 - - dora_scale = v[5] - - a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32) - a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32) - b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32) - b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32) - - try: - lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)).reshape(weight.shape) - if dora_scale is not None: - weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength) - else: - weight += ((strength * alpha) * lora_diff).type(weight.dtype) - except Exception as e: - logging.error("ERROR {} {} {}".format(patch_type, key, e)) - else: - logging.warning("patch type not recognized {} {}".format(patch_type, key)) - - if old_weight is not None: - weight = old_weight - - return weight - - def unpatch_model(self, device_to=None, unpatch_weights=True): - if unpatch_weights: - if self.model_lowvram: - for m in self.model.modules(): - if hasattr(m, "prev_comfy_cast_weights"): - m.comfy_cast_weights = m.prev_comfy_cast_weights - del m.prev_comfy_cast_weights - m.weight_function = None - m.bias_function = None - - self.model_lowvram = False - self.lowvram_patch_counter = 0 - - keys = list(self.backup.keys()) - - if self.weight_inplace_update: - for k in keys: - comfy.utils.copy_to_param(self.model, k, self.backup[k]) - else: - for k in keys: - comfy.utils.set_attr_param(self.model, k, self.backup[k]) - - self.backup.clear() - - if device_to is not None: - self.model.to(device_to) - self.current_device = device_to - - keys = list(self.object_patches_backup.keys()) - for k in keys: - comfy.utils.set_attr(self.model, k, self.object_patches_backup[k]) - - self.object_patches_backup.clear() diff --git a/MagicQuill/comfy/model_sampling.py b/MagicQuill/comfy/model_sampling.py deleted file mode 100644 index 6bd3a5d79a5ad466d31fcae278d4f1a94a1b6645..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/model_sampling.py +++ /dev/null @@ -1,272 +0,0 @@ -import torch -from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule -import math - -class EPS: - def calculate_input(self, sigma, noise): - sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1)) - return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 - - def calculate_denoised(self, sigma, model_output, model_input): - sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) - return model_input - model_output * sigma - - def noise_scaling(self, sigma, noise, latent_image, max_denoise=False): - if max_denoise: - noise = noise * torch.sqrt(1.0 + sigma ** 2.0) - else: - noise = noise * sigma - - noise += latent_image - return noise - - def inverse_noise_scaling(self, sigma, latent): - return latent - -class V_PREDICTION(EPS): - def calculate_denoised(self, sigma, model_output, model_input): - sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) - return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 - -class EDM(V_PREDICTION): - def calculate_denoised(self, sigma, model_output, model_input): - sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) - return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 - -class CONST: - def calculate_input(self, sigma, noise): - return noise - - def calculate_denoised(self, sigma, model_output, model_input): - sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) - return model_input - model_output * sigma - - def noise_scaling(self, sigma, noise, latent_image, max_denoise=False): - return sigma * noise + (1.0 - sigma) * latent_image - - def inverse_noise_scaling(self, sigma, latent): - return latent / (1.0 - sigma) - -class ModelSamplingDiscrete(torch.nn.Module): - def __init__(self, model_config=None): - super().__init__() - - if model_config is not None: - sampling_settings = model_config.sampling_settings - else: - sampling_settings = {} - - beta_schedule = sampling_settings.get("beta_schedule", "linear") - linear_start = sampling_settings.get("linear_start", 0.00085) - linear_end = sampling_settings.get("linear_end", 0.012) - - self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3) - self.sigma_data = 1.0 - - def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): - if given_betas is not None: - betas = given_betas - else: - betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) - alphas = 1. - betas - alphas_cumprod = torch.cumprod(alphas, dim=0) - - timesteps, = betas.shape - self.num_timesteps = int(timesteps) - self.linear_start = linear_start - self.linear_end = linear_end - - # self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32)) - # self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32)) - # self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32)) - - sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 - self.set_sigmas(sigmas) - - def set_sigmas(self, sigmas): - self.register_buffer('sigmas', sigmas.float()) - self.register_buffer('log_sigmas', sigmas.log().float()) - - @property - def sigma_min(self): - return self.sigmas[0] - - @property - def sigma_max(self): - return self.sigmas[-1] - - def timestep(self, sigma): - log_sigma = sigma.log() - dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] - return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device) - - def sigma(self, timestep): - t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1)) - low_idx = t.floor().long() - high_idx = t.ceil().long() - w = t.frac() - log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx] - return log_sigma.exp().to(timestep.device) - - def percent_to_sigma(self, percent): - if percent <= 0.0: - return 999999999.9 - if percent >= 1.0: - return 0.0 - percent = 1.0 - percent - return self.sigma(torch.tensor(percent * 999.0)).item() - -class ModelSamplingDiscreteEDM(ModelSamplingDiscrete): - def timestep(self, sigma): - return 0.25 * sigma.log() - - def sigma(self, timestep): - return (timestep / 0.25).exp() - -class ModelSamplingContinuousEDM(torch.nn.Module): - def __init__(self, model_config=None): - super().__init__() - if model_config is not None: - sampling_settings = model_config.sampling_settings - else: - sampling_settings = {} - - sigma_min = sampling_settings.get("sigma_min", 0.002) - sigma_max = sampling_settings.get("sigma_max", 120.0) - sigma_data = sampling_settings.get("sigma_data", 1.0) - self.set_parameters(sigma_min, sigma_max, sigma_data) - - def set_parameters(self, sigma_min, sigma_max, sigma_data): - self.sigma_data = sigma_data - sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp() - - self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers - self.register_buffer('log_sigmas', sigmas.log()) - - @property - def sigma_min(self): - return self.sigmas[0] - - @property - def sigma_max(self): - return self.sigmas[-1] - - def timestep(self, sigma): - return 0.25 * sigma.log() - - def sigma(self, timestep): - return (timestep / 0.25).exp() - - def percent_to_sigma(self, percent): - if percent <= 0.0: - return 999999999.9 - if percent >= 1.0: - return 0.0 - percent = 1.0 - percent - - log_sigma_min = math.log(self.sigma_min) - return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min) - - -class ModelSamplingContinuousV(ModelSamplingContinuousEDM): - def timestep(self, sigma): - return sigma.atan() / math.pi * 2 - - def sigma(self, timestep): - return (timestep * math.pi / 2).tan() - - -def time_snr_shift(alpha, t): - if alpha == 1.0: - return t - return alpha * t / (1 + (alpha - 1) * t) - -class ModelSamplingDiscreteFlow(torch.nn.Module): - def __init__(self, model_config=None): - super().__init__() - if model_config is not None: - sampling_settings = model_config.sampling_settings - else: - sampling_settings = {} - - self.set_parameters(shift=sampling_settings.get("shift", 1.0)) - - def set_parameters(self, shift=1.0, timesteps=1000): - self.shift = shift - ts = self.sigma(torch.arange(1, timesteps + 1, 1)) - self.register_buffer('sigmas', ts) - - @property - def sigma_min(self): - return self.sigmas[0] - - @property - def sigma_max(self): - return self.sigmas[-1] - - def timestep(self, sigma): - return sigma * 1000 - - def sigma(self, timestep): - return time_snr_shift(self.shift, timestep / 1000) - - def percent_to_sigma(self, percent): - if percent <= 0.0: - return 1.0 - if percent >= 1.0: - return 0.0 - return 1.0 - percent - -class StableCascadeSampling(ModelSamplingDiscrete): - def __init__(self, model_config=None): - super().__init__() - - if model_config is not None: - sampling_settings = model_config.sampling_settings - else: - sampling_settings = {} - - self.set_parameters(sampling_settings.get("shift", 1.0)) - - def set_parameters(self, shift=1.0, cosine_s=8e-3): - self.shift = shift - self.cosine_s = torch.tensor(cosine_s) - self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 - - #This part is just for compatibility with some schedulers in the codebase - self.num_timesteps = 10000 - sigmas = torch.empty((self.num_timesteps), dtype=torch.float32) - for x in range(self.num_timesteps): - t = (x + 1) / self.num_timesteps - sigmas[x] = self.sigma(t) - - self.set_sigmas(sigmas) - - def sigma(self, timestep): - alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod) - - if self.shift != 1.0: - var = alpha_cumprod - logSNR = (var/(1-var)).log() - logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift)) - alpha_cumprod = logSNR.sigmoid() - - alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999) - return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5 - - def timestep(self, sigma): - var = 1 / ((sigma * sigma) + 1) - var = var.clamp(0, 1.0) - s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device) - t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s - return t - - def percent_to_sigma(self, percent): - if percent <= 0.0: - return 999999999.9 - if percent >= 1.0: - return 0.0 - - percent = 1.0 - percent - return self.sigma(torch.tensor(percent)) diff --git a/MagicQuill/comfy/ops.py b/MagicQuill/comfy/ops.py deleted file mode 100644 index 0f1ceb5746356a2c7cc3cd6107449a2ee65fe820..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/ops.py +++ /dev/null @@ -1,204 +0,0 @@ -""" - This file is part of ComfyUI. - Copyright (C) 2024 Stability AI - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . -""" - -import torch -import comfy.model_management - -def cast_bias_weight(s, input): - bias = None - non_blocking = comfy.model_management.device_should_use_non_blocking(input.device) - if s.bias is not None: - bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) - if s.bias_function is not None: - bias = s.bias_function(bias) - weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) - if s.weight_function is not None: - weight = s.weight_function(weight) - return weight, bias - -class CastWeightBiasOp: - comfy_cast_weights = False - weight_function = None - bias_function = None - -class disable_weight_init: - class Linear(torch.nn.Linear, CastWeightBiasOp): - def reset_parameters(self): - return None - - def forward_comfy_cast_weights(self, input): - weight, bias = cast_bias_weight(self, input) - return torch.nn.functional.linear(input, weight, bias) - - def forward(self, *args, **kwargs): - if self.comfy_cast_weights: - return self.forward_comfy_cast_weights(*args, **kwargs) - else: - return super().forward(*args, **kwargs) - - class Conv1d(torch.nn.Conv1d, CastWeightBiasOp): - def reset_parameters(self): - return None - - def forward_comfy_cast_weights(self, input): - weight, bias = cast_bias_weight(self, input) - return self._conv_forward(input, weight, bias) - - def forward(self, *args, **kwargs): - if self.comfy_cast_weights: - return self.forward_comfy_cast_weights(*args, **kwargs) - else: - return super().forward(*args, **kwargs) - - class Conv2d(torch.nn.Conv2d, CastWeightBiasOp): - def reset_parameters(self): - return None - - def forward_comfy_cast_weights(self, input): - weight, bias = cast_bias_weight(self, input) - return self._conv_forward(input, weight, bias) - - def forward(self, *args, **kwargs): - if self.comfy_cast_weights: - return self.forward_comfy_cast_weights(*args, **kwargs) - else: - return super().forward(*args, **kwargs) - - class Conv3d(torch.nn.Conv3d, CastWeightBiasOp): - def reset_parameters(self): - return None - - def forward_comfy_cast_weights(self, input): - weight, bias = cast_bias_weight(self, input) - return self._conv_forward(input, weight, bias) - - def forward(self, *args, **kwargs): - if self.comfy_cast_weights: - return self.forward_comfy_cast_weights(*args, **kwargs) - else: - return super().forward(*args, **kwargs) - - class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp): - def reset_parameters(self): - return None - - def forward_comfy_cast_weights(self, input): - weight, bias = cast_bias_weight(self, input) - return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps) - - def forward(self, *args, **kwargs): - if self.comfy_cast_weights: - return self.forward_comfy_cast_weights(*args, **kwargs) - else: - return super().forward(*args, **kwargs) - - - class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp): - def reset_parameters(self): - return None - - def forward_comfy_cast_weights(self, input): - if self.weight is not None: - weight, bias = cast_bias_weight(self, input) - else: - weight = None - bias = None - return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps) - - def forward(self, *args, **kwargs): - if self.comfy_cast_weights: - return self.forward_comfy_cast_weights(*args, **kwargs) - else: - return super().forward(*args, **kwargs) - - class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp): - def reset_parameters(self): - return None - - def forward_comfy_cast_weights(self, input, output_size=None): - num_spatial_dims = 2 - output_padding = self._output_padding( - input, output_size, self.stride, self.padding, self.kernel_size, - num_spatial_dims, self.dilation) - - weight, bias = cast_bias_weight(self, input) - return torch.nn.functional.conv_transpose2d( - input, weight, bias, self.stride, self.padding, - output_padding, self.groups, self.dilation) - - def forward(self, *args, **kwargs): - if self.comfy_cast_weights: - return self.forward_comfy_cast_weights(*args, **kwargs) - else: - return super().forward(*args, **kwargs) - - class ConvTranspose1d(torch.nn.ConvTranspose1d, CastWeightBiasOp): - def reset_parameters(self): - return None - - def forward_comfy_cast_weights(self, input, output_size=None): - num_spatial_dims = 1 - output_padding = self._output_padding( - input, output_size, self.stride, self.padding, self.kernel_size, - num_spatial_dims, self.dilation) - - weight, bias = cast_bias_weight(self, input) - return torch.nn.functional.conv_transpose1d( - input, weight, bias, self.stride, self.padding, - output_padding, self.groups, self.dilation) - - def forward(self, *args, **kwargs): - if self.comfy_cast_weights: - return self.forward_comfy_cast_weights(*args, **kwargs) - else: - return super().forward(*args, **kwargs) - - @classmethod - def conv_nd(s, dims, *args, **kwargs): - if dims == 2: - return s.Conv2d(*args, **kwargs) - elif dims == 3: - return s.Conv3d(*args, **kwargs) - else: - raise ValueError(f"unsupported dimensions: {dims}") - - -class manual_cast(disable_weight_init): - class Linear(disable_weight_init.Linear): - comfy_cast_weights = True - - class Conv1d(disable_weight_init.Conv1d): - comfy_cast_weights = True - - class Conv2d(disable_weight_init.Conv2d): - comfy_cast_weights = True - - class Conv3d(disable_weight_init.Conv3d): - comfy_cast_weights = True - - class GroupNorm(disable_weight_init.GroupNorm): - comfy_cast_weights = True - - class LayerNorm(disable_weight_init.LayerNorm): - comfy_cast_weights = True - - class ConvTranspose2d(disable_weight_init.ConvTranspose2d): - comfy_cast_weights = True - - class ConvTranspose1d(disable_weight_init.ConvTranspose1d): - comfy_cast_weights = True diff --git a/MagicQuill/comfy/options.py b/MagicQuill/comfy/options.py deleted file mode 100644 index f7f8af41ebd8b9669ef0ef21827ea6195bcb4752..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/options.py +++ /dev/null @@ -1,6 +0,0 @@ - -args_parsing = False - -def enable_args_parsing(enable=True): - global args_parsing - args_parsing = enable diff --git a/MagicQuill/comfy/sa_t5.py b/MagicQuill/comfy/sa_t5.py deleted file mode 100644 index 37be5287e22d6e9c458f543beaaba5729a775d13..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/sa_t5.py +++ /dev/null @@ -1,22 +0,0 @@ -from comfy import sd1_clip -from transformers import T5TokenizerFast -import comfy.t5 -import os - -class T5BaseModel(sd1_clip.SDClipModel): - def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None): - textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_base.json") - super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.t5.T5, enable_attention_masks=True, zero_out_masked=True) - -class T5BaseTokenizer(sd1_clip.SDTokenizer): - def __init__(self, embedding_directory=None): - tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") - super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128) - -class SAT5Tokenizer(sd1_clip.SD1Tokenizer): - def __init__(self, embedding_directory=None): - super().__init__(embedding_directory=embedding_directory, clip_name="t5base", tokenizer=T5BaseTokenizer) - -class SAT5Model(sd1_clip.SD1ClipModel): - def __init__(self, device="cpu", dtype=None, **kwargs): - super().__init__(device=device, dtype=dtype, clip_name="t5base", clip_model=T5BaseModel, **kwargs) diff --git a/MagicQuill/comfy/sample.py b/MagicQuill/comfy/sample.py deleted file mode 100644 index 98dcaca7f38e76754bdce7fffaccf620fd0ba497..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/sample.py +++ /dev/null @@ -1,50 +0,0 @@ -import torch -import comfy.model_management -import comfy.samplers -import comfy.utils -import numpy as np -import logging - -def prepare_noise(latent_image, seed, noise_inds=None): - """ - creates random noise given a latent image and a seed. - optional arg skip can be used to skip and discard x number of noise generations for a given seed - """ - generator = torch.manual_seed(seed) - if noise_inds is None: - return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") - - unique_inds, inverse = np.unique(noise_inds, return_inverse=True) - noises = [] - for i in range(unique_inds[-1]+1): - noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") - if i in unique_inds: - noises.append(noise) - noises = [noises[i] for i in inverse] - noises = torch.cat(noises, axis=0) - return noises - -def fix_empty_latent_channels(model, latent_image): - latent_channels = model.get_model_object("latent_format").latent_channels #Resize the empty latent image so it has the right number of channels - if latent_channels != latent_image.shape[1] and torch.count_nonzero(latent_image) == 0: - latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_channels, dim=1) - return latent_image - -def prepare_sampling(model, noise_shape, positive, negative, noise_mask): - logging.warning("Warning: comfy.sample.prepare_sampling isn't used anymore and can be removed") - return model, positive, negative, noise_mask, [] - -def cleanup_additional_models(models): - logging.warning("Warning: comfy.sample.cleanup_additional_models isn't used anymore and can be removed") - -def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): - sampler = comfy.samplers.KSampler(model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) - - samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed) - samples = samples.to(comfy.model_management.intermediate_device()) - return samples - -def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None): - samples = comfy.samplers.sample(model, noise, positive, negative, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) - samples = samples.to(comfy.model_management.intermediate_device()) - return samples diff --git a/MagicQuill/comfy/sampler_helpers.py b/MagicQuill/comfy/sampler_helpers.py deleted file mode 100644 index a18abd9e9c7e82ad3e3b0ca014b2dadcb2127e92..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/sampler_helpers.py +++ /dev/null @@ -1,76 +0,0 @@ -import torch -import comfy.model_management -import comfy.conds - -def prepare_mask(noise_mask, shape, device): - """ensures noise mask is of proper dimensions""" - noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear") - noise_mask = torch.cat([noise_mask] * shape[1], dim=1) - noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0]) - noise_mask = noise_mask.to(device) - return noise_mask - -def get_models_from_cond(cond, model_type): - models = [] - for c in cond: - if model_type in c: - models += [c[model_type]] - return models - -def convert_cond(cond): - out = [] - for c in cond: - temp = c[1].copy() - model_conds = temp.get("model_conds", {}) - if c[0] is not None: - model_conds["c_crossattn"] = comfy.conds.CONDCrossAttn(c[0]) #TODO: remove - temp["cross_attn"] = c[0] - temp["model_conds"] = model_conds - out.append(temp) - return out - -def get_additional_models(conds, dtype): - """loads additional models in conditioning""" - cnets = [] - gligen = [] - - for k in conds: - cnets += get_models_from_cond(conds[k], "control") - gligen += get_models_from_cond(conds[k], "gligen") - - control_nets = set(cnets) - - inference_memory = 0 - control_models = [] - for m in control_nets: - control_models += m.get_models() - inference_memory += m.inference_memory_requirements(dtype) - - gligen = [x[1] for x in gligen] - models = control_models + gligen - return models, inference_memory - -def cleanup_additional_models(models): - """cleanup additional models that were loaded""" - for m in models: - if hasattr(m, 'cleanup'): - m.cleanup() - - -def prepare_sampling(model, noise_shape, conds): - device = model.load_device - real_model = None - models, inference_memory = get_additional_models(conds, model.model_dtype()) - comfy.model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory) - real_model = model.model - - return real_model, conds, models - -def cleanup_models(conds, models): - cleanup_additional_models(models) - - control_cleanup = [] - for k in conds: - control_cleanup += get_models_from_cond(conds[k], "control") - - cleanup_additional_models(set(control_cleanup)) diff --git a/MagicQuill/comfy/samplers.py b/MagicQuill/comfy/samplers.py deleted file mode 100644 index 656e0a28f4a41406420b4182220ec9d7055dd185..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/samplers.py +++ /dev/null @@ -1,794 +0,0 @@ -from .k_diffusion import sampling as k_diffusion_sampling -from .extra_samplers import uni_pc -import torch -import collections -from comfy import model_management -import math -import logging -import comfy.sampler_helpers - -def get_area_and_mult(conds, x_in, timestep_in): - dims = tuple(x_in.shape[2:]) - area = None - strength = 1.0 - - if 'timestep_start' in conds: - timestep_start = conds['timestep_start'] - if timestep_in[0] > timestep_start: - return None - if 'timestep_end' in conds: - timestep_end = conds['timestep_end'] - if timestep_in[0] < timestep_end: - return None - if 'area' in conds: - area = list(conds['area']) - if 'strength' in conds: - strength = conds['strength'] - - input_x = x_in - if area is not None: - for i in range(len(dims)): - area[i] = min(input_x.shape[i + 2] - area[len(dims) + i], area[i]) - input_x = input_x.narrow(i + 2, area[len(dims) + i], area[i]) - - if 'mask' in conds: - # Scale the mask to the size of the input - # The mask should have been resized as we began the sampling process - mask_strength = 1.0 - if "mask_strength" in conds: - mask_strength = conds["mask_strength"] - mask = conds['mask'] - assert(mask.shape[1:] == x_in.shape[2:]) - - mask = mask[:input_x.shape[0]] - if area is not None: - for i in range(len(dims)): - mask = mask.narrow(i + 1, area[len(dims) + i], area[i]) - - mask = mask * mask_strength - mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1) - else: - mask = torch.ones_like(input_x) - mult = mask * strength - - if 'mask' not in conds and area is not None: - rr = 8 - for i in range(len(dims)): - if area[len(dims) + i] != 0: - for t in range(rr): - m = mult.narrow(i + 2, t, 1) - m *= ((1.0/rr) * (t + 1)) - if (area[i] + area[len(dims) + i]) < x_in.shape[i + 2]: - for t in range(rr): - m = mult.narrow(i + 2, area[i] - 1 - t, 1) - m *= ((1.0/rr) * (t + 1)) - - conditioning = {} - model_conds = conds["model_conds"] - for c in model_conds: - conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area) - - control = conds.get('control', None) - - patches = None - if 'gligen' in conds: - gligen = conds['gligen'] - patches = {} - gligen_type = gligen[0] - gligen_model = gligen[1] - if gligen_type == "position": - gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device) - else: - gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device) - - patches['middle_patch'] = [gligen_patch] - - cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches']) - return cond_obj(input_x, mult, conditioning, area, control, patches) - -def cond_equal_size(c1, c2): - if c1 is c2: - return True - if c1.keys() != c2.keys(): - return False - for k in c1: - if not c1[k].can_concat(c2[k]): - return False - return True - -def can_concat_cond(c1, c2): - if c1.input_x.shape != c2.input_x.shape: - return False - - def objects_concatable(obj1, obj2): - if (obj1 is None) != (obj2 is None): - return False - if obj1 is not None: - if obj1 is not obj2: - return False - return True - - if not objects_concatable(c1.control, c2.control): - return False - - if not objects_concatable(c1.patches, c2.patches): - return False - - return cond_equal_size(c1.conditioning, c2.conditioning) - -def cond_cat(c_list): - c_crossattn = [] - c_concat = [] - c_adm = [] - crossattn_max_len = 0 - - temp = {} - for x in c_list: - for k in x: - cur = temp.get(k, []) - cur.append(x[k]) - temp[k] = cur - - out = {} - for k in temp: - conds = temp[k] - out[k] = conds[0].concat(conds[1:]) - - return out - -def calc_cond_batch(model, conds, x_in, timestep, model_options): - out_conds = [] - out_counts = [] - to_run = [] - - for i in range(len(conds)): - out_conds.append(torch.zeros_like(x_in)) - out_counts.append(torch.ones_like(x_in) * 1e-37) - - cond = conds[i] - if cond is not None: - for x in cond: - p = get_area_and_mult(x, x_in, timestep) - if p is None: - continue - - to_run += [(p, i)] - - while len(to_run) > 0: - first = to_run[0] - first_shape = first[0][0].shape - to_batch_temp = [] - for x in range(len(to_run)): - if can_concat_cond(to_run[x][0], first[0]): - to_batch_temp += [x] - - to_batch_temp.reverse() - to_batch = to_batch_temp[:1] - - free_memory = model_management.get_free_memory(x_in.device) - for i in range(1, len(to_batch_temp) + 1): - batch_amount = to_batch_temp[:len(to_batch_temp)//i] - input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:] - if model.memory_required(input_shape) < free_memory: - to_batch = batch_amount - break - - input_x = [] - mult = [] - c = [] - cond_or_uncond = [] - area = [] - control = None - patches = None - for x in to_batch: - o = to_run.pop(x) - p = o[0] - input_x.append(p.input_x) - mult.append(p.mult) - c.append(p.conditioning) - area.append(p.area) - cond_or_uncond.append(o[1]) - control = p.control - patches = p.patches - - batch_chunks = len(cond_or_uncond) - input_x = torch.cat(input_x) - c = cond_cat(c) - timestep_ = torch.cat([timestep] * batch_chunks) - - if control is not None: - c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond)) - - transformer_options = {} - if 'transformer_options' in model_options: - transformer_options = model_options['transformer_options'].copy() - - if patches is not None: - if "patches" in transformer_options: - cur_patches = transformer_options["patches"].copy() - for p in patches: - if p in cur_patches: - cur_patches[p] = cur_patches[p] + patches[p] - else: - cur_patches[p] = patches[p] - transformer_options["patches"] = cur_patches - else: - transformer_options["patches"] = patches - - transformer_options["cond_or_uncond"] = cond_or_uncond[:] - transformer_options["sigmas"] = timestep - - c['transformer_options'] = transformer_options - - if 'model_function_wrapper' in model_options: - output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) - else: - output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks) - - for o in range(batch_chunks): - cond_index = cond_or_uncond[o] - a = area[o] - if a is None: - out_conds[cond_index] += output[o] * mult[o] - out_counts[cond_index] += mult[o] - else: - out_c = out_conds[cond_index] - out_cts = out_counts[cond_index] - dims = len(a) // 2 - for i in range(dims): - out_c = out_c.narrow(i + 2, a[i + dims], a[i]) - out_cts = out_cts.narrow(i + 2, a[i + dims], a[i]) - out_c += output[o] * mult[o] - out_cts += mult[o] - - for i in range(len(out_conds)): - out_conds[i] /= out_counts[i] - - return out_conds - -def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove - logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.") - return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options)) - -def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}, cond=None, uncond=None): - if "sampler_cfg_function" in model_options: - args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep, - "cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options} - cfg_result = x - model_options["sampler_cfg_function"](args) - else: - cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale - - for fn in model_options.get("sampler_post_cfg_function", []): - args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred, - "sigma": timestep, "model_options": model_options, "input": x} - cfg_result = fn(args) - - return cfg_result - -#The main sampling function shared by all the samplers -#Returns denoised -def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None): - if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False: - uncond_ = None - else: - uncond_ = uncond - - conds = [cond, uncond_] - out = calc_cond_batch(model, conds, x, timestep, model_options) - return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_) - - -class KSamplerX0Inpaint: - def __init__(self, model, sigmas): - self.inner_model = model - self.sigmas = sigmas - def __call__(self, x, sigma, denoise_mask, model_options={}, seed=None): - if denoise_mask is not None: - if "denoise_mask_function" in model_options: - denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas}) - latent_mask = 1. - denoise_mask - x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask - out = self.inner_model(x, sigma, model_options=model_options, seed=seed) - if denoise_mask is not None: - out = out * denoise_mask + self.latent_image * latent_mask - return out - -def simple_scheduler(model_sampling, steps): - s = model_sampling - sigs = [] - ss = len(s.sigmas) / steps - for x in range(steps): - sigs += [float(s.sigmas[-(1 + int(x * ss))])] - sigs += [0.0] - return torch.FloatTensor(sigs) - -def ddim_scheduler(model_sampling, steps): - s = model_sampling - sigs = [] - ss = max(len(s.sigmas) // steps, 1) - x = 1 - while x < len(s.sigmas): - sigs += [float(s.sigmas[x])] - x += ss - sigs = sigs[::-1] - sigs += [0.0] - return torch.FloatTensor(sigs) - -def normal_scheduler(model_sampling, steps, sgm=False, floor=False): - s = model_sampling - start = s.timestep(s.sigma_max) - end = s.timestep(s.sigma_min) - - if sgm: - timesteps = torch.linspace(start, end, steps + 1)[:-1] - else: - timesteps = torch.linspace(start, end, steps) - - sigs = [] - for x in range(len(timesteps)): - ts = timesteps[x] - sigs.append(s.sigma(ts)) - sigs += [0.0] - return torch.FloatTensor(sigs) - -def get_mask_aabb(masks): - if masks.numel() == 0: - return torch.zeros((0, 4), device=masks.device, dtype=torch.int) - - b = masks.shape[0] - - bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int) - is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool) - for i in range(b): - mask = masks[i] - if mask.numel() == 0: - continue - if torch.max(mask != 0) == False: - is_empty[i] = True - continue - y, x = torch.where(mask) - bounding_boxes[i, 0] = torch.min(x) - bounding_boxes[i, 1] = torch.min(y) - bounding_boxes[i, 2] = torch.max(x) - bounding_boxes[i, 3] = torch.max(y) - - return bounding_boxes, is_empty - -def resolve_areas_and_cond_masks_multidim(conditions, dims, device): - # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes. - # While we're doing this, we can also resolve the mask device and scaling for performance reasons - for i in range(len(conditions)): - c = conditions[i] - if 'area' in c: - area = c['area'] - if area[0] == "percentage": - modified = c.copy() - a = area[1:] - a_len = len(a) // 2 - area = () - for d in range(len(dims)): - area += (max(1, round(a[d] * dims[d])),) - for d in range(len(dims)): - area += (round(a[d + a_len] * dims[d]),) - - modified['area'] = area - c = modified - conditions[i] = c - - if 'mask' in c: - mask = c['mask'] - mask = mask.to(device=device) - modified = c.copy() - if len(mask.shape) == len(dims): - mask = mask.unsqueeze(0) - if mask.shape[1:] != dims: - mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=dims, mode='bilinear', align_corners=False).squeeze(1) - - if modified.get("set_area_to_bounds", False): #TODO: handle dim != 2 - bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0) - boxes, is_empty = get_mask_aabb(bounds) - if is_empty[0]: - # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway) - modified['area'] = (8, 8, 0, 0) - else: - box = boxes[0] - H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0]) - H = max(8, H) - W = max(8, W) - area = (int(H), int(W), int(Y), int(X)) - modified['area'] = area - - modified['mask'] = mask - conditions[i] = modified - -def resolve_areas_and_cond_masks(conditions, h, w, device): - logging.warning("WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.") - return resolve_areas_and_cond_masks_multidim(conditions, [h, w], device) - -def create_cond_with_same_area_if_none(conds, c): #TODO: handle dim != 2 - if 'area' not in c: - return - - c_area = c['area'] - smallest = None - for x in conds: - if 'area' in x: - a = x['area'] - if c_area[2] >= a[2] and c_area[3] >= a[3]: - if a[0] + a[2] >= c_area[0] + c_area[2]: - if a[1] + a[3] >= c_area[1] + c_area[3]: - if smallest is None: - smallest = x - elif 'area' not in smallest: - smallest = x - else: - if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]: - smallest = x - else: - if smallest is None: - smallest = x - if smallest is None: - return - if 'area' in smallest: - if smallest['area'] == c_area: - return - - out = c.copy() - out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied? - conds += [out] - -def calculate_start_end_timesteps(model, conds): - s = model.model_sampling - for t in range(len(conds)): - x = conds[t] - - timestep_start = None - timestep_end = None - if 'start_percent' in x: - timestep_start = s.percent_to_sigma(x['start_percent']) - if 'end_percent' in x: - timestep_end = s.percent_to_sigma(x['end_percent']) - - if (timestep_start is not None) or (timestep_end is not None): - n = x.copy() - if (timestep_start is not None): - n['timestep_start'] = timestep_start - if (timestep_end is not None): - n['timestep_end'] = timestep_end - conds[t] = n - -def pre_run_control(model, conds): - s = model.model_sampling - for t in range(len(conds)): - x = conds[t] - - timestep_start = None - timestep_end = None - percent_to_timestep_function = lambda a: s.percent_to_sigma(a) - if 'control' in x: - x['control'].pre_run(model, percent_to_timestep_function) - -def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func): - cond_cnets = [] - cond_other = [] - uncond_cnets = [] - uncond_other = [] - for t in range(len(conds)): - x = conds[t] - if 'area' not in x: - if name in x and x[name] is not None: - cond_cnets.append(x[name]) - else: - cond_other.append((x, t)) - for t in range(len(uncond)): - x = uncond[t] - if 'area' not in x: - if name in x and x[name] is not None: - uncond_cnets.append(x[name]) - else: - uncond_other.append((x, t)) - - if len(uncond_cnets) > 0: - return - - for x in range(len(cond_cnets)): - temp = uncond_other[x % len(uncond_other)] - o = temp[0] - if name in o and o[name] is not None: - n = o.copy() - n[name] = uncond_fill_func(cond_cnets, x) - uncond += [n] - else: - n = o.copy() - n[name] = uncond_fill_func(cond_cnets, x) - uncond[temp[1]] = n - -def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs): - for t in range(len(conds)): - x = conds[t] - params = x.copy() - params["device"] = device - params["noise"] = noise - default_width = None - if len(noise.shape) >= 4: #TODO: 8 multiple should be set by the model - default_width = noise.shape[3] * 8 - params["width"] = params.get("width", default_width) - params["height"] = params.get("height", noise.shape[2] * 8) - params["prompt_type"] = params.get("prompt_type", prompt_type) - for k in kwargs: - if k not in params: - params[k] = kwargs[k] - - out = model_function(**params) - x = x.copy() - model_conds = x['model_conds'].copy() - for k in out: - model_conds[k] = out[k] - x['model_conds'] = model_conds - conds[t] = x - return conds - -class Sampler: - def sample(self): - pass - - def max_denoise(self, model_wrap, sigmas): - max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max) - sigma = float(sigmas[0]) - return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma - -KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", - "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", - "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"] - -class KSAMPLER(Sampler): - def __init__(self, sampler_function, extra_options={}, inpaint_options={}): - self.sampler_function = sampler_function - self.extra_options = extra_options - self.inpaint_options = inpaint_options - - def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False): - extra_args["denoise_mask"] = denoise_mask - model_k = KSamplerX0Inpaint(model_wrap, sigmas) - model_k.latent_image = latent_image - if self.inpaint_options.get("random", False): #TODO: Should this be the default? - generator = torch.manual_seed(extra_args.get("seed", 41) + 1) - model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device) - else: - model_k.noise = noise - - noise = model_wrap.inner_model.model_sampling.noise_scaling(sigmas[0], noise, latent_image, self.max_denoise(model_wrap, sigmas)) - - k_callback = None - total_steps = len(sigmas) - 1 - if callback is not None: - k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps) - - samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options) - samples = model_wrap.inner_model.model_sampling.inverse_noise_scaling(sigmas[-1], samples) - return samples - - -def ksampler(sampler_name, extra_options={}, inpaint_options={}): - if sampler_name == "dpm_fast": - def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable): - if len(sigmas) <= 1: - return noise - - sigma_min = sigmas[-1] - if sigma_min == 0: - sigma_min = sigmas[-2] - total_steps = len(sigmas) - 1 - return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable) - sampler_function = dpm_fast_function - elif sampler_name == "dpm_adaptive": - def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable, **extra_options): - if len(sigmas) <= 1: - return noise - - sigma_min = sigmas[-1] - if sigma_min == 0: - sigma_min = sigmas[-2] - return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable, **extra_options) - sampler_function = dpm_adaptive_function - else: - sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name)) - - return KSAMPLER(sampler_function, extra_options, inpaint_options) - - -def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None): - for k in conds: - conds[k] = conds[k][:] - resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device) - - for k in conds: - calculate_start_end_timesteps(model, conds[k]) - - if hasattr(model, 'extra_conds'): - for k in conds: - conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed) - - #make sure each cond area has an opposite one with the same area - for k in conds: - for c in conds[k]: - for kk in conds: - if k != kk: - create_cond_with_same_area_if_none(conds[kk], c) - - for k in conds: - pre_run_control(model, conds[k]) - - if "positive" in conds: - positive = conds["positive"] - for k in conds: - if k != "positive": - apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), conds[k], 'control', lambda cond_cnets, x: cond_cnets[x]) - apply_empty_x_to_equal_area(positive, conds[k], 'gligen', lambda cond_cnets, x: cond_cnets[x]) - - return conds - -class CFGGuider: - def __init__(self, model_patcher): - self.model_patcher = model_patcher - self.model_options = model_patcher.model_options - self.original_conds = {} - self.cfg = 1.0 - - def set_conds(self, positive, negative): - self.inner_set_conds({"positive": positive, "negative": negative}) - - def set_cfg(self, cfg): - self.cfg = cfg - - def inner_set_conds(self, conds): - for k in conds: - self.original_conds[k] = comfy.sampler_helpers.convert_cond(conds[k]) - - def __call__(self, *args, **kwargs): - return self.predict_noise(*args, **kwargs) - - def predict_noise(self, x, timestep, model_options={}, seed=None): - return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed) - - def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed): - if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image. - latent_image = self.inner_model.process_latent_in(latent_image) - - self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed) - - extra_args = {"model_options": self.model_options, "seed":seed} - - samples = sampler.sample(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar) - return self.inner_model.process_latent_out(samples.to(torch.float32)) - - def sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None): - if sigmas.shape[-1] == 0: - return latent_image - - self.conds = {} - for k in self.original_conds: - self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k])) - - self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds) - device = self.model_patcher.load_device - - if denoise_mask is not None: - denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device) - - noise = noise.to(device) - latent_image = latent_image.to(device) - sigmas = sigmas.to(device) - - output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) - - comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models) - del self.inner_model - del self.conds - del self.loaded_models - return output - - -def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None): - cfg_guider = CFGGuider(model) - cfg_guider.set_conds(positive, negative) - cfg_guider.set_cfg(cfg) - return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) - - -SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"] -SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"] - -def calculate_sigmas(model_sampling, scheduler_name, steps): - if scheduler_name == "karras": - sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max)) - elif scheduler_name == "exponential": - sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max)) - elif scheduler_name == "normal": - sigmas = normal_scheduler(model_sampling, steps) - elif scheduler_name == "simple": - sigmas = simple_scheduler(model_sampling, steps) - elif scheduler_name == "ddim_uniform": - sigmas = ddim_scheduler(model_sampling, steps) - elif scheduler_name == "sgm_uniform": - sigmas = normal_scheduler(model_sampling, steps, sgm=True) - else: - logging.error("error invalid scheduler {}".format(scheduler_name)) - return sigmas - -def sampler_object(name): - if name == "uni_pc": - sampler = KSAMPLER(uni_pc.sample_unipc) - elif name == "uni_pc_bh2": - sampler = KSAMPLER(uni_pc.sample_unipc_bh2) - elif name == "ddim": - sampler = ksampler("euler", inpaint_options={"random": True}) - else: - sampler = ksampler(name) - return sampler - -class KSampler: - SCHEDULERS = SCHEDULER_NAMES - SAMPLERS = SAMPLER_NAMES - DISCARD_PENULTIMATE_SIGMA_SAMPLERS = set(('dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2')) - - def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}): - self.model = model - self.device = device - if scheduler not in self.SCHEDULERS: - scheduler = self.SCHEDULERS[0] - if sampler not in self.SAMPLERS: - sampler = self.SAMPLERS[0] - self.scheduler = scheduler - self.sampler = sampler - self.set_steps(steps, denoise) - self.denoise = denoise - self.model_options = model_options - - def calculate_sigmas(self, steps): - sigmas = None - - discard_penultimate_sigma = False - if self.sampler in self.DISCARD_PENULTIMATE_SIGMA_SAMPLERS: - steps += 1 - discard_penultimate_sigma = True - - sigmas = calculate_sigmas(self.model.get_model_object("model_sampling"), self.scheduler, steps) - - if discard_penultimate_sigma: - sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) - return sigmas - - def set_steps(self, steps, denoise=None): - self.steps = steps - if denoise is None or denoise > 0.9999: - self.sigmas = self.calculate_sigmas(steps).to(self.device) - else: - if denoise <= 0.0: - self.sigmas = torch.FloatTensor([]) - else: - new_steps = int(steps/denoise) - sigmas = self.calculate_sigmas(new_steps).to(self.device) - self.sigmas = sigmas[-(steps + 1):] - - def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): - if sigmas is None: - sigmas = self.sigmas - - if last_step is not None and last_step < (len(sigmas) - 1): - sigmas = sigmas[:last_step + 1] - if force_full_denoise: - sigmas[-1] = 0 - - if start_step is not None: - if start_step < (len(sigmas) - 1): - sigmas = sigmas[start_step:] - else: - if latent_image is not None: - return latent_image - else: - return torch.zeros_like(noise) - - sampler = sampler_object(self.sampler) - - return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) diff --git a/MagicQuill/comfy/sd.py b/MagicQuill/comfy/sd.py deleted file mode 100644 index cfbf8fa4d201cee3f8ee04b662fe35a99d60677b..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/sd.py +++ /dev/null @@ -1,624 +0,0 @@ -import torch -from enum import Enum -import logging - -from comfy import model_management -from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine -from .ldm.cascade.stage_a import StageA -from .ldm.cascade.stage_c_coder import StageC_coder -from .ldm.audio.autoencoder import AudioOobleckVAE -import yaml - -import comfy.utils - -from . import clip_vision -from . import gligen -from . import diffusers_convert -from . import model_detection - -from . import sd1_clip -from . import sd2_clip -from . import sdxl_clip -from . import sd3_clip -from . import sa_t5 - -import comfy.model_patcher -import comfy.lora -import comfy.t2i_adapter.adapter -import comfy.supported_models_base -import comfy.taesd.taesd - -def load_model_weights(model, sd): - m, u = model.load_state_dict(sd, strict=False) - m = set(m) - unexpected_keys = set(u) - - k = list(sd.keys()) - for x in k: - if x not in unexpected_keys: - w = sd.pop(x) - del w - if len(m) > 0: - logging.warning("missing {}".format(m)) - return model - -def load_clip_weights(model, sd): - k = list(sd.keys()) - for x in k: - if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."): - y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.") - sd[y] = sd.pop(x) - - if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd: - ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] - if ids.dtype == torch.float32: - sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() - - sd = comfy.utils.clip_text_transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.") - return load_model_weights(model, sd) - - -def load_lora_for_models(model, clip, lora, strength_model, strength_clip): - key_map = {} - if model is not None: - key_map = comfy.lora.model_lora_keys_unet(model.model, key_map) - if clip is not None: - key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map) - - loaded = comfy.lora.load_lora(lora, key_map) - if model is not None: - new_modelpatcher = model.clone() - k = new_modelpatcher.add_patches(loaded, strength_model) - else: - k = () - new_modelpatcher = None - - if clip is not None: - new_clip = clip.clone() - k1 = new_clip.add_patches(loaded, strength_clip) - else: - k1 = () - new_clip = None - k = set(k) - k1 = set(k1) - for x in loaded: - if (x not in k) and (x not in k1): - logging.warning("NOT LOADED {}".format(x)) - - return (new_modelpatcher, new_clip) - - -class CLIP: - def __init__(self, target=None, embedding_directory=None, no_init=False): - if no_init: - return - params = target.params.copy() - clip = target.clip - tokenizer = target.tokenizer - - load_device = model_management.text_encoder_device() - offload_device = model_management.text_encoder_offload_device() - params['device'] = offload_device - dtype = model_management.text_encoder_dtype(load_device) - params['dtype'] = dtype - - self.cond_stage_model = clip(**(params)) - - for dt in self.cond_stage_model.dtypes: - if not model_management.supports_cast(load_device, dt): - load_device = offload_device - - self.tokenizer = tokenizer(embedding_directory=embedding_directory) - self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device) - self.layer_idx = None - logging.debug("CLIP model load device: {}, offload device: {}".format(load_device, offload_device)) - - def clone(self): - n = CLIP(no_init=True) - n.patcher = self.patcher.clone() - n.cond_stage_model = self.cond_stage_model - n.tokenizer = self.tokenizer - n.layer_idx = self.layer_idx - return n - - def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): - return self.patcher.add_patches(patches, strength_patch, strength_model) - - def clip_layer(self, layer_idx): - self.layer_idx = layer_idx - - def tokenize(self, text, return_word_ids=False): - return self.tokenizer.tokenize_with_weights(text, return_word_ids) - - def encode_from_tokens(self, tokens, return_pooled=False): - self.cond_stage_model.reset_clip_options() - - if self.layer_idx is not None: - self.cond_stage_model.set_clip_options({"layer": self.layer_idx}) - - if return_pooled == "unprojected": - self.cond_stage_model.set_clip_options({"projected_pooled": False}) - - self.load_model() - cond, pooled = self.cond_stage_model.encode_token_weights(tokens) - if return_pooled: - return cond, pooled - return cond - - def encode(self, text): - tokens = self.tokenize(text) - return self.encode_from_tokens(tokens) - - def load_sd(self, sd, full_model=False): - if full_model: - return self.cond_stage_model.load_state_dict(sd, strict=False) - else: - return self.cond_stage_model.load_sd(sd) - - def get_sd(self): - return self.cond_stage_model.state_dict() - - def load_model(self): - model_management.load_model_gpu(self.patcher) - return self.patcher - - def get_key_patches(self): - return self.patcher.get_key_patches() - -class VAE: - def __init__(self, sd=None, device=None, config=None, dtype=None): - if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format - sd = diffusers_convert.convert_vae_state_dict(sd) - - self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower) - self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype) - self.downscale_ratio = 8 - self.upscale_ratio = 8 - self.latent_channels = 4 - self.output_channels = 3 - self.process_input = lambda image: image * 2.0 - 1.0 - self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0) - self.working_dtypes = [torch.bfloat16, torch.float32] - - if config is None: - if "decoder.mid.block_1.mix_factor" in sd: - encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} - decoder_config = encoder_config.copy() - decoder_config["video_kernel_size"] = [3, 1, 1] - decoder_config["alpha"] = 0.0 - self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"}, - encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config}, - decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config}) - elif "taesd_decoder.1.weight" in sd: - self.latent_channels = sd["taesd_decoder.1.weight"].shape[1] - self.first_stage_model = comfy.taesd.taesd.TAESD(latent_channels=self.latent_channels) - elif "vquantizer.codebook.weight" in sd: #VQGan: stage a of stable cascade - self.first_stage_model = StageA() - self.downscale_ratio = 4 - self.upscale_ratio = 4 - #TODO - #self.memory_used_encode - #self.memory_used_decode - self.process_input = lambda image: image - self.process_output = lambda image: image - elif "backbone.1.0.block.0.1.num_batches_tracked" in sd: #effnet: encoder for stage c latent of stable cascade - self.first_stage_model = StageC_coder() - self.downscale_ratio = 32 - self.latent_channels = 16 - new_sd = {} - for k in sd: - new_sd["encoder.{}".format(k)] = sd[k] - sd = new_sd - elif "blocks.11.num_batches_tracked" in sd: #previewer: decoder for stage c latent of stable cascade - self.first_stage_model = StageC_coder() - self.latent_channels = 16 - new_sd = {} - for k in sd: - new_sd["previewer.{}".format(k)] = sd[k] - sd = new_sd - elif "encoder.backbone.1.0.block.0.1.num_batches_tracked" in sd: #combined effnet and previewer for stable cascade - self.first_stage_model = StageC_coder() - self.downscale_ratio = 32 - self.latent_channels = 16 - elif "decoder.conv_in.weight" in sd: - #default SD1.x/SD2.x VAE parameters - ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} - - if 'encoder.down.2.downsample.conv.weight' not in sd and 'decoder.up.3.upsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE - ddconfig['ch_mult'] = [1, 2, 4] - self.downscale_ratio = 4 - self.upscale_ratio = 4 - - self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1] - if 'quant_conv.weight' in sd: - self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4) - else: - self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"}, - encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig}, - decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig}) - elif "decoder.layers.0.weight_v" in sd: - self.first_stage_model = AudioOobleckVAE() - self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype) - self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype) - self.latent_channels = 64 - self.output_channels = 2 - self.upscale_ratio = 2048 - self.downscale_ratio = 2048 - self.process_output = lambda audio: audio - self.process_input = lambda audio: audio - self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32] - else: - logging.warning("WARNING: No VAE weights detected, VAE not initalized.") - self.first_stage_model = None - return - else: - self.first_stage_model = AutoencoderKL(**(config['params'])) - self.first_stage_model = self.first_stage_model.eval() - - m, u = self.first_stage_model.load_state_dict(sd, strict=False) - if len(m) > 0: - logging.warning("Missing VAE keys {}".format(m)) - - if len(u) > 0: - logging.debug("Leftover VAE keys {}".format(u)) - - if device is None: - device = model_management.vae_device() - self.device = device - offload_device = model_management.vae_offload_device() - if dtype is None: - dtype = model_management.vae_dtype(self.device, self.working_dtypes) - self.vae_dtype = dtype - self.first_stage_model.to(self.vae_dtype) - self.output_device = model_management.intermediate_device() - - self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device) - logging.debug("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype)) - - def vae_encode_crop_pixels(self, pixels): - dims = pixels.shape[1:-1] - for d in range(len(dims)): - x = (dims[d] // self.downscale_ratio) * self.downscale_ratio - x_offset = (dims[d] % self.downscale_ratio) // 2 - if x != dims[d]: - pixels = pixels.narrow(d + 1, x_offset, x) - return pixels - - def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16): - steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap) - steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap) - steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap) - pbar = comfy.utils.ProgressBar(steps) - - decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float() - output = self.process_output( - (comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) + - comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) + - comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar)) - / 3.0) - return output - - def decode_tiled_1d(self, samples, tile_x=128, overlap=64): - output = torch.empty((samples.shape[0], self.output_channels) + tuple(map(lambda a: a * self.upscale_ratio, samples.shape[2:])), device=self.output_device) - - for j in range(samples.shape[0]): - for i in range(0, samples.shape[-1], tile_x - overlap): - f = i - t = i + tile_x - output[j:j+1,:,f * self.upscale_ratio:t * self.upscale_ratio] = self.first_stage_model.decode(samples[j:j+1,:,f:t].to(self.vae_dtype).to(self.device)).float() - - return output - - def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): - steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap) - steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap) - steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap) - pbar = comfy.utils.ProgressBar(steps) - - encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float() - samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar) - samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar) - samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar) - samples /= 3.0 - return samples - - def decode(self, samples_in): - try: - memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype) - model_management.load_models_gpu([self.patcher], memory_required=memory_used) - free_memory = model_management.get_free_memory(self.device) - batch_number = int(free_memory / memory_used) - batch_number = max(1, batch_number) - - pixel_samples = torch.empty((samples_in.shape[0], self.output_channels) + tuple(map(lambda a: a * self.upscale_ratio, samples_in.shape[2:])), device=self.output_device) - for x in range(0, samples_in.shape[0], batch_number): - samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device) - pixel_samples[x:x+batch_number] = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float()) - except model_management.OOM_EXCEPTION as e: - logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.") - if len(samples_in.shape) == 3: - pixel_samples = self.decode_tiled_1d(samples_in) - else: - pixel_samples = self.decode_tiled_(samples_in) - - pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1) - return pixel_samples - - def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16): - model_management.load_model_gpu(self.patcher) - output = self.decode_tiled_(samples, tile_x, tile_y, overlap) - return output.movedim(1,-1) - - def encode(self, pixel_samples): - pixel_samples = self.vae_encode_crop_pixels(pixel_samples) - pixel_samples = pixel_samples.movedim(-1,1) - try: - memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) - model_management.load_models_gpu([self.patcher], memory_required=memory_used) - free_memory = model_management.get_free_memory(self.device) - batch_number = int(free_memory / memory_used) - batch_number = max(1, batch_number) - samples = torch.empty((pixel_samples.shape[0], self.latent_channels) + tuple(map(lambda a: a // self.downscale_ratio, pixel_samples.shape[2:])), device=self.output_device) - for x in range(0, pixel_samples.shape[0], batch_number): - pixels_in = self.process_input(pixel_samples[x:x+batch_number]).to(self.vae_dtype).to(self.device) - samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float() - - except model_management.OOM_EXCEPTION as e: - logging.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.") - samples = self.encode_tiled_(pixel_samples) - - return samples - - def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): - pixel_samples = self.vae_encode_crop_pixels(pixel_samples) - model_management.load_model_gpu(self.patcher) - pixel_samples = pixel_samples.movedim(-1,1) - samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap) - return samples - - def get_sd(self): - return self.first_stage_model.state_dict() - -class StyleModel: - def __init__(self, model, device="cpu"): - self.model = model - - def get_cond(self, input): - return self.model(input.last_hidden_state) - - -def load_style_model(ckpt_path): - model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) - keys = model_data.keys() - if "style_embedding" in keys: - model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8) - else: - raise Exception("invalid style model {}".format(ckpt_path)) - model.load_state_dict(model_data) - return StyleModel(model) - -class CLIPType(Enum): - STABLE_DIFFUSION = 1 - STABLE_CASCADE = 2 - SD3 = 3 - STABLE_AUDIO = 4 - -def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION): - clip_data = [] - for p in ckpt_paths: - clip_data.append(comfy.utils.load_torch_file(p, safe_load=True)) - - class EmptyClass: - pass - - for i in range(len(clip_data)): - if "transformer.resblocks.0.ln_1.weight" in clip_data[i]: - clip_data[i] = comfy.utils.clip_text_transformers_convert(clip_data[i], "", "") - else: - if "text_projection" in clip_data[i]: - clip_data[i]["text_projection.weight"] = clip_data[i]["text_projection"].transpose(0, 1) #old models saved with the CLIPSave node - - clip_target = EmptyClass() - clip_target.params = {} - if len(clip_data) == 1: - if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]: - if clip_type == CLIPType.STABLE_CASCADE: - clip_target.clip = sdxl_clip.StableCascadeClipModel - clip_target.tokenizer = sdxl_clip.StableCascadeTokenizer - else: - clip_target.clip = sdxl_clip.SDXLRefinerClipModel - clip_target.tokenizer = sdxl_clip.SDXLTokenizer - elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]: - clip_target.clip = sd2_clip.SD2ClipModel - clip_target.tokenizer = sd2_clip.SD2Tokenizer - elif "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in clip_data[0]: - dtype_t5 = clip_data[0]["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"].dtype - clip_target.clip = sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, dtype_t5=dtype_t5) - clip_target.tokenizer = sd3_clip.SD3Tokenizer - elif "encoder.block.0.layer.0.SelfAttention.k.weight" in clip_data[0]: - clip_target.clip = sa_t5.SAT5Model - clip_target.tokenizer = sa_t5.SAT5Tokenizer - else: - clip_target.clip = sd1_clip.SD1ClipModel - clip_target.tokenizer = sd1_clip.SD1Tokenizer - elif len(clip_data) == 2: - if clip_type == CLIPType.SD3: - clip_target.clip = sd3_clip.sd3_clip(clip_l=True, clip_g=True, t5=False) - clip_target.tokenizer = sd3_clip.SD3Tokenizer - else: - clip_target.clip = sdxl_clip.SDXLClipModel - clip_target.tokenizer = sdxl_clip.SDXLTokenizer - elif len(clip_data) == 3: - clip_target.clip = sd3_clip.SD3ClipModel - clip_target.tokenizer = sd3_clip.SD3Tokenizer - - clip = CLIP(clip_target, embedding_directory=embedding_directory) - for c in clip_data: - m, u = clip.load_sd(c) - if len(m) > 0: - logging.warning("clip missing: {}".format(m)) - - if len(u) > 0: - logging.debug("clip unexpected: {}".format(u)) - return clip - -def load_gligen(ckpt_path): - data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) - model = gligen.load_gligen(data) - if model_management.should_use_fp16(): - model = model.half() - return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device()) - -def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None): - logging.warning("Warning: The load checkpoint with config function is deprecated and will eventually be removed, please use the other one.") - model, clip, vae, _ = load_checkpoint_guess_config(ckpt_path, output_vae=output_vae, output_clip=output_clip, output_clipvision=False, embedding_directory=embedding_directory, output_model=True) - #TODO: this function is a mess and should be removed eventually - if config is None: - with open(config_path, 'r') as stream: - config = yaml.safe_load(stream) - model_config_params = config['model']['params'] - clip_config = model_config_params['cond_stage_config'] - scale_factor = model_config_params['scale_factor'] - - if "parameterization" in model_config_params: - if model_config_params["parameterization"] == "v": - m = model.clone() - class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingDiscrete, comfy.model_sampling.V_PREDICTION): - pass - m.add_object_patch("model_sampling", ModelSamplingAdvanced(model.model.model_config)) - model = m - - layer_idx = clip_config.get("params", {}).get("layer_idx", None) - if layer_idx is not None: - clip.clip_layer(layer_idx) - - return (model, clip, vae) - -def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True): - sd = comfy.utils.load_torch_file(ckpt_path) - sd_keys = sd.keys() - clip = None - clipvision = None - vae = None - model = None - model_patcher = None - clip_target = None - - diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd) - parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix) - load_device = model_management.get_torch_device() - - model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix) - unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes) - manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) - model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) - - if model_config is None: - raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path)) - - if model_config.clip_vision_prefix is not None: - if output_clipvision: - clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True) - - if output_model: - inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype) - offload_device = model_management.unet_offload_device() - model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device) - model.load_model_weights(sd, diffusion_model_prefix) - - if output_vae: - vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True) - vae_sd = model_config.process_vae_state_dict(vae_sd) - vae = VAE(sd=vae_sd) - - if output_clip: - clip_target = model_config.clip_target(state_dict=sd) - if clip_target is not None: - clip_sd = model_config.process_clip_state_dict(sd) - if len(clip_sd) > 0: - clip = CLIP(clip_target, embedding_directory=embedding_directory) - m, u = clip.load_sd(clip_sd, full_model=True) - if len(m) > 0: - m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m)) - if len(m_filter) > 0: - logging.warning("clip missing: {}".format(m)) - else: - logging.debug("clip missing: {}".format(m)) - - if len(u) > 0: - logging.debug("clip unexpected {}:".format(u)) - else: - logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.") - - left_over = sd.keys() - if len(left_over) > 0: - logging.debug("left over keys: {}".format(left_over)) - - if output_model: - model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device) - if inital_load_device != torch.device("cpu"): - logging.info("loaded straight to GPU") - model_management.load_model_gpu(model_patcher) - - return (model_patcher, clip, vae, clipvision) - - -def load_unet_state_dict(sd): #load unet in diffusers format - parameters = comfy.utils.calculate_parameters(sd) - unet_dtype = model_management.unet_dtype(model_params=parameters) - load_device = model_management.get_torch_device() - - if "input_blocks.0.0.weight" in sd or 'clf.1.weight' in sd: #ldm or stable cascade - model_config = model_detection.model_config_from_unet(sd, "") - if model_config is None: - return None - new_sd = sd - - else: #diffusers - model_config = model_detection.model_config_from_diffusers_unet(sd) - if model_config is None: - return None - - diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config) - - new_sd = {} - for k in diffusers_keys: - if k in sd: - new_sd[diffusers_keys[k]] = sd.pop(k) - else: - logging.warning("{} {}".format(diffusers_keys[k], k)) - - offload_device = model_management.unet_offload_device() - unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes) - manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) - model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) - model = model_config.get_model(new_sd, "") - model = model.to(offload_device) - model.load_model_weights(new_sd, "") - left_over = sd.keys() - if len(left_over) > 0: - logging.info("left over keys in unet: {}".format(left_over)) - return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device) - -def load_unet(unet_path): - sd = comfy.utils.load_torch_file(unet_path) - model = load_unet_state_dict(sd) - if model is None: - logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path)) - raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path)) - return model - -def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}): - clip_sd = None - load_models = [model] - if clip is not None: - load_models.append(clip.load_model()) - clip_sd = clip.get_sd() - - model_management.load_models_gpu(load_models, force_patch_weights=True) - clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None - sd = model.model.state_dict_for_saving(clip_sd, vae.get_sd(), clip_vision_sd) - for k in extra_keys: - sd[k] = extra_keys[k] - - comfy.utils.save_torch_file(sd, output_path, metadata=metadata) diff --git a/MagicQuill/comfy/sd1_clip.py b/MagicQuill/comfy/sd1_clip.py deleted file mode 100644 index 911af0a7e8c4501cbb9d55d1b43debd43a21ccbd..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/sd1_clip.py +++ /dev/null @@ -1,530 +0,0 @@ -import os - -from transformers import CLIPTokenizer -import comfy.ops -import torch -import traceback -import zipfile -from . import model_management -import comfy.clip_model -import json -import logging - -def gen_empty_tokens(special_tokens, length): - start_token = special_tokens.get("start", None) - end_token = special_tokens.get("end", None) - pad_token = special_tokens.get("pad") - output = [] - if start_token is not None: - output.append(start_token) - if end_token is not None: - output.append(end_token) - output += [pad_token] * (length - len(output)) - return output - -class ClipTokenWeightEncoder: - def encode_token_weights(self, token_weight_pairs): - to_encode = list() - max_token_len = 0 - has_weights = False - for x in token_weight_pairs: - tokens = list(map(lambda a: a[0], x)) - max_token_len = max(len(tokens), max_token_len) - has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x)) - to_encode.append(tokens) - - sections = len(to_encode) - if has_weights or sections == 0: - to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len)) - - out, pooled = self.encode(to_encode) - if pooled is not None: - first_pooled = pooled[0:1].to(model_management.intermediate_device()) - else: - first_pooled = pooled - - output = [] - for k in range(0, sections): - z = out[k:k+1] - if has_weights: - z_empty = out[-1] - for i in range(len(z)): - for j in range(len(z[i])): - weight = token_weight_pairs[k][j][1] - if weight != 1.0: - z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j] - output.append(z) - - if (len(output) == 0): - return out[-1:].to(model_management.intermediate_device()), first_pooled - return torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled - -class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): - """Uses the CLIP transformer encoder for text (from huggingface)""" - LAYERS = [ - "last", - "pooled", - "hidden" - ] - def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77, - freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel, - special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False, - return_projected_pooled=True): # clip-vit-base-patch32 - super().__init__() - assert layer in self.LAYERS - - if textmodel_json_config is None: - textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json") - - with open(textmodel_json_config) as f: - config = json.load(f) - - self.transformer = model_class(config, dtype, device, comfy.ops.manual_cast) - self.num_layers = self.transformer.num_layers - - self.max_length = max_length - if freeze: - self.freeze() - self.layer = layer - self.layer_idx = None - self.special_tokens = special_tokens - - self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055)) - self.enable_attention_masks = enable_attention_masks - self.zero_out_masked = zero_out_masked - - self.layer_norm_hidden_state = layer_norm_hidden_state - self.return_projected_pooled = return_projected_pooled - - if layer == "hidden": - assert layer_idx is not None - assert abs(layer_idx) < self.num_layers - self.set_clip_options({"layer": layer_idx}) - self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled) - - def freeze(self): - self.transformer = self.transformer.eval() - #self.train = disabled_train - for param in self.parameters(): - param.requires_grad = False - - def set_clip_options(self, options): - layer_idx = options.get("layer", self.layer_idx) - self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled) - if layer_idx is None or abs(layer_idx) > self.num_layers: - self.layer = "last" - else: - self.layer = "hidden" - self.layer_idx = layer_idx - - def reset_clip_options(self): - self.layer = self.options_default[0] - self.layer_idx = self.options_default[1] - self.return_projected_pooled = self.options_default[2] - - def set_up_textual_embeddings(self, tokens, current_embeds): - out_tokens = [] - next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1 - embedding_weights = [] - - for x in tokens: - tokens_temp = [] - for y in x: - if isinstance(y, int): - if y == token_dict_size: #EOS token - y = -1 - tokens_temp += [y] - else: - if y.shape[0] == current_embeds.weight.shape[1]: - embedding_weights += [y] - tokens_temp += [next_new_token] - next_new_token += 1 - else: - logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(y.shape[0], current_embeds.weight.shape[1])) - while len(tokens_temp) < len(x): - tokens_temp += [self.special_tokens["pad"]] - out_tokens += [tokens_temp] - - n = token_dict_size - if len(embedding_weights) > 0: - new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype) - new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1] - for x in embedding_weights: - new_embedding.weight[n] = x - n += 1 - new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding - self.transformer.set_input_embeddings(new_embedding) - - processed_tokens = [] - for x in out_tokens: - processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one - - return processed_tokens - - def forward(self, tokens): - backup_embeds = self.transformer.get_input_embeddings() - device = backup_embeds.weight.device - tokens = self.set_up_textual_embeddings(tokens, backup_embeds) - tokens = torch.LongTensor(tokens).to(device) - - attention_mask = None - if self.enable_attention_masks: - attention_mask = torch.zeros_like(tokens) - end_token = self.special_tokens.get("end", -1) - for x in range(attention_mask.shape[0]): - for y in range(attention_mask.shape[1]): - attention_mask[x, y] = 1 - if tokens[x, y] == end_token: - break - - outputs = self.transformer(tokens, attention_mask, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state) - self.transformer.set_input_embeddings(backup_embeds) - - if self.layer == "last": - z = outputs[0].float() - else: - z = outputs[1].float() - - if self.zero_out_masked and attention_mask is not None: - z *= attention_mask.unsqueeze(-1).float() - - pooled_output = None - if len(outputs) >= 3: - if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None: - pooled_output = outputs[3].float() - elif outputs[2] is not None: - pooled_output = outputs[2].float() - - return z, pooled_output - - def encode(self, tokens): - return self(tokens) - - def load_sd(self, sd): - return self.transformer.load_state_dict(sd, strict=False) - -def parse_parentheses(string): - result = [] - current_item = "" - nesting_level = 0 - for char in string: - if char == "(": - if nesting_level == 0: - if current_item: - result.append(current_item) - current_item = "(" - else: - current_item = "(" - else: - current_item += char - nesting_level += 1 - elif char == ")": - nesting_level -= 1 - if nesting_level == 0: - result.append(current_item + ")") - current_item = "" - else: - current_item += char - else: - current_item += char - if current_item: - result.append(current_item) - return result - -def token_weights(string, current_weight): - a = parse_parentheses(string) - out = [] - for x in a: - weight = current_weight - if len(x) >= 2 and x[-1] == ')' and x[0] == '(': - x = x[1:-1] - xx = x.rfind(":") - weight *= 1.1 - if xx > 0: - try: - weight = float(x[xx+1:]) - x = x[:xx] - except: - pass - out += token_weights(x, weight) - else: - out += [(x, current_weight)] - return out - -def escape_important(text): - text = text.replace("\\)", "\0\1") - text = text.replace("\\(", "\0\2") - return text - -def unescape_important(text): - text = text.replace("\0\1", ")") - text = text.replace("\0\2", "(") - return text - -def safe_load_embed_zip(embed_path): - with zipfile.ZipFile(embed_path) as myzip: - names = list(filter(lambda a: "data/" in a, myzip.namelist())) - names.reverse() - for n in names: - with myzip.open(n) as myfile: - data = myfile.read() - number = len(data) // 4 - length_embed = 1024 #sd2.x - if number < 768: - continue - if number % 768 == 0: - length_embed = 768 #sd1.x - num_embeds = number // length_embed - embed = torch.frombuffer(data, dtype=torch.float) - out = embed.reshape((num_embeds, length_embed)).clone() - del embed - return out - -def expand_directory_list(directories): - dirs = set() - for x in directories: - dirs.add(x) - for root, subdir, file in os.walk(x, followlinks=True): - dirs.add(root) - return list(dirs) - -def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None): - if isinstance(embedding_directory, str): - embedding_directory = [embedding_directory] - - embedding_directory = expand_directory_list(embedding_directory) - - valid_file = None - for embed_dir in embedding_directory: - embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name)) - embed_dir = os.path.abspath(embed_dir) - try: - if os.path.commonpath((embed_dir, embed_path)) != embed_dir: - continue - except: - continue - if not os.path.isfile(embed_path): - extensions = ['.safetensors', '.pt', '.bin'] - for x in extensions: - t = embed_path + x - if os.path.isfile(t): - valid_file = t - break - else: - valid_file = embed_path - if valid_file is not None: - break - - if valid_file is None: - return None - - embed_path = valid_file - - embed_out = None - - try: - if embed_path.lower().endswith(".safetensors"): - import safetensors.torch - embed = safetensors.torch.load_file(embed_path, device="cpu") - else: - if 'weights_only' in torch.load.__code__.co_varnames: - try: - embed = torch.load(embed_path, weights_only=True, map_location="cpu") - except: - embed_out = safe_load_embed_zip(embed_path) - else: - embed = torch.load(embed_path, map_location="cpu") - except Exception as e: - logging.warning("{}\n\nerror loading embedding, skipping loading: {}".format(traceback.format_exc(), embedding_name)) - return None - - if embed_out is None: - if 'string_to_param' in embed: - values = embed['string_to_param'].values() - embed_out = next(iter(values)) - elif isinstance(embed, list): - out_list = [] - for x in range(len(embed)): - for k in embed[x]: - t = embed[x][k] - if t.shape[-1] != embedding_size: - continue - out_list.append(t.reshape(-1, t.shape[-1])) - embed_out = torch.cat(out_list, dim=0) - elif embed_key is not None and embed_key in embed: - embed_out = embed[embed_key] - else: - values = embed.values() - embed_out = next(iter(values)) - return embed_out - -class SDTokenizer: - def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True, min_length=None): - if tokenizer_path is None: - tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") - self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path) - self.max_length = max_length - self.min_length = min_length - - empty = self.tokenizer('')["input_ids"] - if has_start_token: - self.tokens_start = 1 - self.start_token = empty[0] - self.end_token = empty[1] - else: - self.tokens_start = 0 - self.start_token = None - self.end_token = empty[0] - self.pad_with_end = pad_with_end - self.pad_to_max_length = pad_to_max_length - - vocab = self.tokenizer.get_vocab() - self.inv_vocab = {v: k for k, v in vocab.items()} - self.embedding_directory = embedding_directory - self.max_word_length = 8 - self.embedding_identifier = "embedding:" - self.embedding_size = embedding_size - self.embedding_key = embedding_key - - def _try_get_embedding(self, embedding_name:str): - ''' - Takes a potential embedding name and tries to retrieve it. - Returns a Tuple consisting of the embedding and any leftover string, embedding can be None. - ''' - embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key) - if embed is None: - stripped = embedding_name.strip(',') - if len(stripped) < len(embedding_name): - embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key) - return (embed, embedding_name[len(stripped):]) - return (embed, "") - - - def tokenize_with_weights(self, text:str, return_word_ids=False): - ''' - Takes a prompt and converts it to a list of (token, weight, word id) elements. - Tokens can both be integer tokens and pre computed CLIP tensors. - Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens. - Returned list has the dimensions NxM where M is the input size of CLIP - ''' - if self.pad_with_end: - pad_token = self.end_token - else: - pad_token = 0 - - text = escape_important(text) - parsed_weights = token_weights(text, 1.0) - - #tokenize words - tokens = [] - for weighted_segment, weight in parsed_weights: - to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ') - to_tokenize = [x for x in to_tokenize if x != ""] - for word in to_tokenize: - #if we find an embedding, deal with the embedding - if word.startswith(self.embedding_identifier) and self.embedding_directory is not None: - embedding_name = word[len(self.embedding_identifier):].strip('\n') - embed, leftover = self._try_get_embedding(embedding_name) - if embed is None: - logging.warning(f"warning, embedding:{embedding_name} does not exist, ignoring") - else: - if len(embed.shape) == 1: - tokens.append([(embed, weight)]) - else: - tokens.append([(embed[x], weight) for x in range(embed.shape[0])]) - #if we accidentally have leftover text, continue parsing using leftover, else move on to next word - if leftover != "": - word = leftover - else: - continue - #parse word - tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]]) - - #reshape token array to CLIP input size - batched_tokens = [] - batch = [] - if self.start_token is not None: - batch.append((self.start_token, 1.0, 0)) - batched_tokens.append(batch) - for i, t_group in enumerate(tokens): - #determine if we're going to try and keep the tokens in a single batch - is_large = len(t_group) >= self.max_word_length - - while len(t_group) > 0: - if len(t_group) + len(batch) > self.max_length - 1: - remaining_length = self.max_length - len(batch) - 1 - #break word in two and add end token - if is_large: - batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]]) - batch.append((self.end_token, 1.0, 0)) - t_group = t_group[remaining_length:] - #add end token and pad - else: - batch.append((self.end_token, 1.0, 0)) - if self.pad_to_max_length: - batch.extend([(pad_token, 1.0, 0)] * (remaining_length)) - #start new batch - batch = [] - if self.start_token is not None: - batch.append((self.start_token, 1.0, 0)) - batched_tokens.append(batch) - else: - batch.extend([(t,w,i+1) for t,w in t_group]) - t_group = [] - - #fill last batch - batch.append((self.end_token, 1.0, 0)) - if self.pad_to_max_length: - batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch))) - if self.min_length is not None and len(batch) < self.min_length: - batch.extend([(pad_token, 1.0, 0)] * (self.min_length - len(batch))) - - if not return_word_ids: - batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens] - - return batched_tokens - - - def untokenize(self, token_weight_pair): - return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair)) - - -class SD1Tokenizer: - def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer): - self.clip_name = clip_name - self.clip = "clip_{}".format(self.clip_name) - setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory)) - - def tokenize_with_weights(self, text:str, return_word_ids=False): - out = {} - out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids) - return out - - def untokenize(self, token_weight_pair): - return getattr(self, self.clip).untokenize(token_weight_pair) - - -class SD1ClipModel(torch.nn.Module): - def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, **kwargs): - super().__init__() - self.clip_name = clip_name - self.clip = "clip_{}".format(self.clip_name) - setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs)) - - self.dtypes = set() - if dtype is not None: - self.dtypes.add(dtype) - - def set_clip_options(self, options): - getattr(self, self.clip).set_clip_options(options) - - def reset_clip_options(self): - getattr(self, self.clip).reset_clip_options() - - def encode_token_weights(self, token_weight_pairs): - token_weight_pairs = token_weight_pairs[self.clip_name] - out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs) - return out, pooled - - def load_sd(self, sd): - return getattr(self, self.clip).load_sd(sd) diff --git a/MagicQuill/comfy/sd1_clip_config.json b/MagicQuill/comfy/sd1_clip_config.json deleted file mode 100644 index 0158a1fd52727adf22359238285afafb150f66f2..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/sd1_clip_config.json +++ /dev/null @@ -1,25 +0,0 @@ -{ - "_name_or_path": "openai/clip-vit-large-patch14", - "architectures": [ - "CLIPTextModel" - ], - "attention_dropout": 0.0, - "bos_token_id": 0, - "dropout": 0.0, - "eos_token_id": 2, - "hidden_act": "quick_gelu", - "hidden_size": 768, - "initializer_factor": 1.0, - "initializer_range": 0.02, - "intermediate_size": 3072, - "layer_norm_eps": 1e-05, - "max_position_embeddings": 77, - "model_type": "clip_text_model", - "num_attention_heads": 12, - "num_hidden_layers": 12, - "pad_token_id": 1, - "projection_dim": 768, - "torch_dtype": "float32", - "transformers_version": "4.24.0", - "vocab_size": 49408 -} diff --git a/MagicQuill/comfy/sd1_tokenizer/merges.txt b/MagicQuill/comfy/sd1_tokenizer/merges.txt deleted file mode 100644 index 76e821f1b6f0a9709293c3b6b51ed90980b3166b..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/sd1_tokenizer/merges.txt +++ /dev/null @@ -1,48895 +0,0 @@ -#version: 0.2 -i n -t h -a n -r e -a r -e r -th e -in g -o u -o n -s t -o r -e n -o n -a l -a t -e r -i t -i n -t o -r o -i s -l e -i c -a t -an d -e d -o f -c h -o r -e s -i l -e l -s t -a c -o m -a m -l o -a n -a y -s h -r i -l i -t i -f or -n e -ð Ł -r a -h a -d e -o l -v e -s i -u r -a l -s e -' s -u n -d i -b e -l a -w h -o o -d ay -e n -m a -n o -l e -t o -ou r -i r -g h -w it -i t -y o -a s -s p -th is -t s -at i -yo u -wit h -a d -i s -a b -l y -w e -th e -t e -a s -a g -v i -p p -s u -h o -m y -. . -b u -c om -s e -er s -m e -m e -al l -c on -m o -k e -g e -ou t -en t -c o -f e -v er -a r -f ro -a u -p o -c e -gh t -ar e -s s -fro m -c h -t r -ou n -on e -b y -d o -t h -w or -er e -k e -p ro -f or -d s -b o -t a -w e -g o -h e -t er -in g -d e -b e -ati on -m or -a y -e x -il l -p e -k s -s c -l u -f u -q u -v er -ðŁ ĺ -j u -m u -at e -an d -v e -k ing -m ar -o p -h i -.. . -p re -a d -r u -th at -j o -o f -c e -ne w -a m -a p -g re -s s -d u -no w -y e -t ing -y our -it y -n i -c i -p ar -g u -f i -a f -p er -t er -u p -s o -g i -on s -g r -g e -b r -p l -' t -m i -in e -we e -b i -u s -sh o -ha ve -to day -a v -m an -en t -ac k -ur e -ou r -â Ģ -c u -l d -lo o -i m -ic e -s om -f in -re d -re n -oo d -w as -ti on -p i -i r -th er -t y -p h -ar d -e c -! ! -m on -mor e -w ill -t ra -c an -c ol -p u -t e -w n -m b -s o -it i -ju st -n ing -h ere -t u -p a -p r -bu t -wh at -al ly -f ir -m in -c a -an t -s a -t ed -e v -m ent -f a -ge t -am e -ab out -g ra -no t -ha pp -ay s -m an -h is -ti me -li ke -g h -ha s -th an -lo ve -ar t -st e -d ing -h e -c re -w s -w at -d er -it e -s er -ac e -ag e -en d -st r -a w -st or -r e -c ar -el l -al l -p s -f ri -p ho -p or -d o -a k -w i -f re -wh o -sh i -b oo -s on -el l -wh en -il l -ho w -gre at -w in -e l -b l -s si -al i -som e -ðŁ Ĵ -t on -d er -le s -p la -ï ¸ -e d -s ch -h u -on g -d on -k i -s h -an n -c or -. . -oun d -a z -in e -ar y -fu l -st u -ou ld -st i -g o -se e -ab le -ar s -l l -m is -b er -c k -w a -en ts -n o -si g -f e -fir st -e t -sp e -ac k -i f -ou s -' m -st er -a pp -an g -an ce -an s -g ood -b re -e ver -the y -t ic -com e -of f -b ack -as e -ing s -ol d -i ght -f o -h er -happ y -p ic -it s -v ing -u s -m at -h om -d y -e m -s k -y ing -the ir -le d -r y -u l -h ar -c k -t on -on al -h el -r ic -b ir -vi e -w ay -t ri -d a -p le -b ro -st o -oo l -ni ght -tr u -b a -re ad -re s -ye ar -f r -t or -al s -c oun -c la -t ure -v el -at ed -le c -en d -th ing -v o -ic i -be st -c an -wor k -la st -af ter -en ce -p ri -p e -e s -i l -âĢ ¦ -d re -y s -o ver -i es -ðŁ ij -com m -t w -in k -s un -c l -li fe -t t -a ch -l and -s y -t re -t al -p ol -s m -du c -s al -f t -' re -ch e -w ar -t ur -ati ons -ac h -m s -il e -p m -ou gh -at e -st ar -wee k -! !! -c lu -th ere -n er -t om -s el -ï¸ ı -wor ld -v es -c am -go t -in ter -of f -u m -ton ight -o ther -h ou -loo k -j e -i d -si on -be au -at t -el i -or t -re c -f f -st er -su pp -g en -be en -il y -te am -m m -i c -pe op -it t -at s -on ly -mb er -en g -b ri -m p -k now -b ur -b ar -in s -lo w -sh e -ro w -â Ŀ -t ro -peop le -vi a -lo w -ag a -be t -x t -f ac -ch ar -e ar -w al -s en -f am -b le -n ati -is h -n or -g ame -li ve -s co -le y -d on -ic k -b all -ver y -the se -p an -i a -at ing -c r -a re -g ir -ma ke -st re -sho w -. " -f l -u p -d r -than ks -il li -w om -st s -i g -s ur -ever y -c ur -vie w -le t -in to -mo st -n a -in di -g ar -ha d -s ou -v ed -an t -iti on -ma de -f ol -un i -it ed -ðŁ ı -ic al -th r -read y -ch ec -d ra -k es -boo k -e p -si c -mor ning -ne ws -c au -c t -w ell -an c -pho to -th an -or s -bir th -g g -ou t -ne xt -som e -en ing -stor y -ch ri -do wn -hom e -f fe -fre e -d a -b or -f il -ci al -than k -si de -le ar -qu e -l ine -t en -at es -ye ars -m y -pho to -beau ti -ri ght -n u -for m -shi p -b an -th er -d ays -g am -as on -g y -ðŁ İ -birth day -se t -ic k -e t -st ill -com ing -ta ke -ðŁ ĩ -b b -s ol -s on -d en -e p -mu sic -the m -de n -wh y -f oo -c ra -am az -w n -h ol -t ting -w r -u e -ma g -c ro -l an -c lo -b ra -a k -s ing -c al -re ad -' ve -jo h -b ab -d ri -b lo -bi g -er ic -in t -t or -tr y -l a -le g -hou se -m ic -v al -beauti ful -l itt -chec k -ne w -ver s -s w -ar i -pla y -h er -âĢ ĵ -w in -m a -con gr -sch ool -f un -. @ -he al -ic h -d el -wh ere -l on -ke t -tw o -mu ch -wat ch -v en -d ed -a st -k ed -b as -go ing -m p -e ver -w ays -ro o -de sig -l y -s ed -to p -l in -ch an -to o -it ing -d ent -gh ts -t y -sp o -ne ed -b lu -in st -be ing -âĿ ¤ -w el -l s -hi m -m ay -st ing -n a -el y -litt le -g a -n at -tom or -m c -h on -w ant -a ir -pi c -am eric -p er -le ss -wee k -ve l -a h -c ap -ch am -g er -ti m -tomor row -ne ss -st ate -h al -ser v -z e -o s -p at -v is -ex c -s in -f f -c ity -c en -an y -b el -su mm -t in -w ould -loo king -k o -ce le -fam ily -m er -po w -hel p -bu s -c o -c le -sel f -en s -ic s -th o -an i -ch o -le ad -b s -t wee -th ink -for e -ch il -vi de -di d -al e -ch i -v il -en ds -w ing -p as -' ll -v ol -s a -g s -man y -j ec -be fore -gra ph -n y -ur ing -w il -d d -bu il -f av -st ed -tr an -l ing -ou d -d ge -fi el -nati onal -st a -c er -w ere -in a -se ason -c ou -n ed -amaz ing -ti ons -cele br -n s -a th -he ad -s day -d ar -lo c -v in -an other -g oo -s at -n y -jo in -pre s -s es -s ing -an a -in ing -.. .. -c our -ï¸ ı -ac t -cau se -li ght -am s -t a -b al -f c -hi gh -off ici -t t -chri st -d ic -d ay -ra l -h or -: ) -vi si -n am -o b -ma s -gh t -re ally -t un -fin d -thr ough -por t -u t -ti ve -st y -n e -or e -ðŁĺ Ĥ -supp ort -ne ver -ev en -ðŁ Ķ -h a -y a -l d -u k -r an -j am -wi th -me di -d es -ne y -ch ing -al e -h y -k in -! ! -d y -pl ace -al so -b le -wh ich -bl ack -b li -s ay -par k -pl ay -ir e -vide o -week end -a il -ke y -p t -w ard -fri day -d in -ine ss -g ro -b en -al ways -t ball -ag o -m il -c y -pro duc -di sc -un der -ple ase -sp or -fu ll -e y -ðŁ Ļ -is e -iti es -c at -k no -u se -fo re -k er -ar t -hi gh -op en -s an -e f -our s -sh ed -st ri -d ro -aga in -i m -ðŁ ĵ -en jo -fu n -ge tting -p en -g er -c li -an y -ever y -e u -wom en -â ľ -e st -c ould -r y -" @ -th ou -sh a -comm un -b er -d ents -di s -wh ile -aw ay -di o -h am -g la -d ate -k a -mis s -un ch -w on -in f -roo m -g a -re al -ex per -di rec -sh ould -sp r -g ol -l ong -bet ter -or i -e y -i ence -il s -z z -h an -f ound -v s -â Ļ -po st -ti c -par t -m en -ren ce -ce ss -v ic -s il -sho p -ðŁĺ Ĥ -f ood -v al -sti c -y ou -s ays -e lec -st ar -o c -l and -i d -c tion -fiel d -s of -st art -wat er -fri ends -on es -ðŁ Į -f la -f ar -wh ite -par ty -in st -gr ou -t v -every one -m ent -j a -ch a -pr in -an ts -d uring -l at -l ar -we st -th en -k a -y oun -in sp -in te -we en -visi t -aga inst -re le -he ad -c es -to wn -loo ks -th re -re gi -ren t -pro jec -gir l -se ar -w o -m om -c ar -h un -pu bli -d i -p le -c all -c ri -u m -for d -per fe -fri end -h ard -ssi on -te st -pla ying -ar ound -be cause -ke ts -me et -sat ur -ar ti -wor k -j un -v en -r un -me mber -por t -su per -t wit -s am -el s -t ly -ad v -ati ve -at h -s ure -av ail -la r -s qu -ar ds -ev ent -m en -l l -o ver -lo gy -it al -tim es -m al -b ack -c oo -ma king -st ru -â ģ -it u -sh ar -g an -c as -s n -summ er -pic ture -f an -h in -christ mas -c y -pr oud -cham pi -desig n -pp ing -ho pe -c a -avail able -ma y -we d -photo graph -spe cial -sal e -sto p -er y -a we -al ity -hi story -am a -pre si -b ru -wor king -d one -d r -k en -fe at -w ood -ate st -sun day -mo vi -vel y -s le -f ace -sp ec -stu dents -b y -ha m -sp on -bus iness -d at -i e -i p -so ci -g lo -h and -re cor -r s -me e -ke ep -p ur -heal th -sh e -com ple -go d -da vi -col lec -li st -r a -clu b -t ers -in clu -th ings -pl an -â ĺ -joh n -sh ing -at ul -so on -blu e -g or -satur day -w on -congr atul -se e -âĿ¤ ï¸ı -tho se -ðŁĺ į -fin al -d ou -it h -o wn -ro ad -t our -a st -indi a -ti l -n d -f er -fav or -su l -lear n -fir e -ju st -grou p -a h -r ac -bo dy -u r -c are -à ¸ -p lo -o h -po s -gi ve -te ch -su b -c ent -er ing -y m -il ity -f ic -lon don -v ir -gu ys -b a -ðŁ ¤ -bab y -sc re -ðŁĺ į -tru mp -un der -chan ge -i an -col le -ss es -l er -ss ed -n ice -ann oun -pow er -s ar -a king -min i -s li -s wee -k ar -fu l -c ru -ac tion -a ther -) . -st and -de vel -a a -g an -le ft -lo l -re l -tran s -m ents -in t -e f -man ag -di g -gen er -do wn -p au -ti v -k u -th ur -k en -st on -f ans -tal k -twee t -t oo -sty le -pro te -se con -fr on -awe some -g l -p al -ne t -s or -la u -g on -sin ce -t ty -ser ies -me mor -b eli -fil m -di d -di es -o t -congratul ations -p ra -e ve -w oo -offici al -su c -in cre -b on -par t -pp ed -cla ss -si ve -bo y -cu l -perfe ct -t ou -d am -wel come -foo tball -h i -p ap -wa it -ad a -congr ats -youn g -exc ited -re ce -j an -v a -re d -st ra -medi a -' d -do es -le t -mu l -ill s -gre en -m el -to ge -fu ture -ye ster -vers ity -for m -ta in -i de -ch es -ki ds -qu i -ha ha -de ta -bi g -favor ite -gir ls -con tin -do m -sear ch -u al -a ir -d ers -mon th -c er -yester day -commun ity -ad e -do g -vil le -ic es -d eli -sy ste -ru n -is m -he art -c up -en ti -fe w -presi dent -e ds -un til -fe sti -o k -f lo -sa id -ol e -me d -tra vel - £ -ph one -toge ther -fa st -lo t -gam es -sh ir -bet ween -y es -th ers -do ing -m ac -at or -b and -fol low -projec t -devel op -di ffe -con fe -spe ci -ca st -y s -bo ard -r d -i al -sh oo -r am -ha ving -sh are -fol low -on e -n ame -m r -pu t -disc u -or y -c ame -ou s -s ite -twit ter -t b -t it -fin ally -z ed -su per -com pan -us ing -all s -li st -r is -sho t -g al -t ar -de l -joh n -âĢ Ķ -some thing -ra m -inte re -wh e -b it -ðŁ į -stre et -oun d -a i -tic kets -movi e -re al -k y -ta king -o pp -c c -l am -m oun -in ve -bl ack -us ed -on line -y or -loc al -gu e -c ks -o w -ge st -bo ys -illi on -con t -re ci -in ed -eu ro -no w -se en -p h -te ach -de f -sou th -su ch -aw ard -mu st -is su -ca re -fe el -p lu -l atest -spor ts -we b -te x -e ment -s k -fi c -w an -te ch -o t -bo x -n er -fre e -t al -a sh -c ase -ho t -won der -mee ting -er a -ch all -ðŁ IJ -jo b -il i -c ool -j our -th s -m o -f el -di e -mic ha -e le -te am -serv ice -st and -ma kes -p ing -ear ly -com es -e k -ho li -v ers -ag ue -s au -thre e -mon day -fa shi -some one -th ro -se a -b ad -supp or -tur n -ur y -m ing -photograph y -n ic -mar k -pre tty -ss ing -wat ching -me mb -ar ri -coun ty -be ach -fr an -cen ter -pol ice -b at -publi c -t an -pre ss -s af -s y -ge ts -ro y -n ers -y our -bu y -st ers -sho w -as ed -chil dre -af ric -in es -sp ace -sc ri -h all -pa in -ar ing -hom e -m ur -heal th -ch ed -s and -rece i -gu y -e a -americ an -re si -childre n -- - -i ri -ing ton -coun try -ro ss -le n -ann a -boo ks -b c -e ce -d om -lo vely -k h -pe t -g y -g ri -st age -off ice -ro ck -m on -b ay -t able -su n -m ed -th in -l or -f low -( @ -uni versity -stor e -fron t -goo d -z a -vo te -nor th -he y -an im -or der -mi d -with out -a de -re member -mar ket -? ? -mu s -tra ining -e duc -bu t -co ver -st an -sc en -b la -bre ak -l ou -s ame -g old -a in -o s -bo th -l it -ver n -a i -al bu -p a -enjo y -be g -ell ing -thur sday -inf o -s an -americ a -ha ir -te l -mar ch -con cer -colle ge -confe rence -ap p -h our -ch ang -â ļ -s our -ol s -we ather -w ar -p hi -festi val -secon d -cu te -pr ac -en er -str y -le a -pol it -s av -se n -o w -m i -ne ar -ou ght -z e -co ffe -w illi -d an -se y -davi d -e se -f an -de ci -the at -no v -ati on -tr ac -sc i -re view -c el -e m -u n -ju ly -or ig -ti on -d ru -form er -st ay -af ter -in v -too k -dat a -b al -tu es -d an -ev ening -ðŁĺĤ ðŁĺĤ -d ol -u res -pro vi -t s -e st -sig n -j ac -u k -s ong -ye t -bo w -in du -j ap -h oo -po int -any one -z y -i st -h ur -it al -buil ding -wom an -ch ur -j er -per for -co ach -le ague -ce ss -ne t -i mag -nati on -br it -qu e -aw ards -ag es -wor ks -c ed -man ce -l ate -ig n -mon ey -tru e -i i -t ell -pl ac -p ac -as y -wor ld -be hin -im port -read ing -gra m -gi ving -me t -h it -for ward -st om -pres ent -jun e -so cial -no on -mar t -hal f -s we -go vern -k er -deta ils -li sh -_ _ -ac y -si a -ber t -f all -! !!! -) , -th i -d iti -sp ort -k ing -f it -st af -c at -mu se -cen tr -y er -con tro -b loo -wal k -ac tu -did n -li m -lear ning -re search -wed ne -au th -h ours -k y -f ar -h en -.. .. -it ch -ri l -str ong -sk y -que sti -jam es -r on -d g -f ur -c in -do es -app ro -mar ke -tu res -ful ly -ch at -behin d -te m -fin i -mis sion -b att -fe el -he av -every thing -b ar -w ish -pre mi -i ma -exper ience -e ach -re port -swee t -tic s -spr ing -re spon -syste m -vic tor -l in -sa w -al ready -gh ter -f le -ã ĥ -br ing -albu m -- - -ell s -st an -to m -inter national -w ent -an ni -mat ch -pp er -st one -sm all -ra in -fashi on -are a -v an -ag ram -k o -thou ght -wor th -v an -m er -coffe e -it es -g n -arti st -c on -ar ch -c ir -se cre -gr ound -is o -h and -co m -bri dge -h s -x i -l ink -pu l -sp l -r ace -f li -ri ver -g as -di sco -d al -play er -f it -photo s -it y -o k -j or -tr a -ap ril -ad s -a di -sol u -beau ty -do or -me ss -up date -ali a -sch o -en ed -mom ent -sco t -sc ience -i or -ti es -ac ross -ous ly -sh es -does n -p age -wat er -m illion -cla ssi -l ic -ca st -form ation -micha el -ell o -s mo -in ts -vi sion -op ening -ld n -au str -tues day -win ner -po ssi -r ound -shir t -di t -b o -u es -il led -al ong -tri p -star ting -im pro -k an -per son -no t -re co -ne eds -c le -li e -re st -r ing -win ter -si mp -mo m -be er -fac e -tor s -us a -collec tion -ge or -se ssion -tr ying -la s -la ke -j en -orig in -stu dent -se cur -v in -pic s -ex pe -com p -gon na -e qu -b ad -le y -a u -memb ers -bre ak -w all -gi c -din ner -bu l -insp ir -r i -min d -ic a -win ning -tal king -t ren -s is -t en -wonder ful -s now -he ar -th om -no thing -gu i -st in -blo g -fe st -b un -le e -war ds -ch ance -dre ss -re n -pau l -p es -tech no -ru ssi -c ard -e ast -mar i -w ine -t i -la w -str ic -k i -ap e -au gu -pro fe -as h -cour se -ma il -ren tly -d un -m un -lo ve -is land -dri ve -s l -end ed -ma in -lo st -nat ure -âĿ¤ ï¸ı -ch ic -re por -p in -pr o -st ation -ce p -ta kes -compan y -go es -on d -ma ch -ra dio -d ad -ro ck -j a -p ay -champi on -e e -in de -tt a -ati c -t ab -beli eve -ener gy -z i -t at -wor d -on ce -re sul -y l -and re -an o -inst agram -clo se -t am -cu stom -w a -con om -sho ws -li fe -k in -ro b -t age -n ation -al most -list en -sa ve -re li -ac e -mar y -tre e -for get -j ack -wa iting -direc tor -h ill -bor n -te mp -f l -st e -on a -sing le -wedne sday -un ited -in o -@ _ -ne l -celebr ate -en ding -de al -j i -can ada -hu ge -tr ack -âĢ ¢ -f y -fan ta -an g -yor k -rele ase -p un -ep iso -wor ds -t our -p ack -i gh -classi c -perfor mance -ke t -after noon -recor d -win s -pro ble -âĿ ¤ -f our -b ed -ban k -d ance -s la -cal led -mi ght -a p -pa st -ðŁ ļ -diffe rent -it e -gi ft -ssi ve -chur ch -c us -pro gram -ho tel -ic e -ma d -secur ity -en ge -d c -en ough -st a -e ty -de ad -g un -he ar -m ir -hu man -gre ss -oun ds -pi ece -bre aking -gar den -fi ght -vie ws -f ish -star ted -run ning -gre en -ser i -s m -as k -d or -de ath -e conom -er i -ir d -s er -l unch -âģ ¦ -bo x -nat u -ba se -b an -f al -glo bal -wil d -wo w -out side -mo ve -le ad -an al -muse um -on g -ha w -pow er -than k -b ac -char ac -cam pa -dig ital -r o -op er -de v -w ol -p ati -f a -m ale -pap er -ill ing -c s -â ĥ -educ ation -ta ken -e ffe -m ou -s ad -" . -bas ed -staf f -inclu ding -li ving -a c -ch ina -mo b -stor m -lu ck -ph il -o o -y n -tra vel -k el -ti al -pr ice -boo k -import ant -bi o -p ool -ny c -f ab -lo ad -? ! -chall enge -cr y -ser ve -we ar -bu s -ta in -nu mber -ro r -k at -i z -th ough -ho sp -m m -fa ir -ut es -ho t -po p -fi ed -cam p -develop ment -li br -c ali -em s -âģ¦ @ -b ol -is ed -stand ing -mo del -it a -g le -bro wn -ima ge -ve red -for ce -o il -par tic -sh u -da ily -la w -se c -cla ss -cam p -holi day -cl in -k ers -pres ent -gam e -incre di -er ship -inter view -b ill -du e -and y -ab o -in nov -ke y -ac ade -p il -mo der -st ars -br and -f er -wee ks -con si -pr e -sa fe -wr it -di um -la unch -marke ting -ann ual -as si -cour t -la dy -c ted -and a -in side -chil d -opp or -sm ith -centr e -gu e -âģ © -f ren -st y -for t -ent ly -is n -ke ep -to ber -on y -bo y -al d -col la -de mo -le vel -com pet -ad o -b our -fanta stic -m ate -s u -sou th -oppor tun -vers ary -lat er -bu d -face book -la un -ster n -p it -! " -ma j -gr am -tb t -fi re -happ y -a ks -wh ole -actu ally -ill er -ell a -lo ts -al ex -an ge -lan ds -ðŁĺ Ń -en ter -r ou -episo de -p ed -in ten -sh ire -wh o -pl an -h o -ca ke -we st -mag az -fre sh -c c -n ar -ch ris -wr iting -w er -n om -l o -mi dd -dre am -o l -ti onal -de b -> > -be come -s i -gr and -all ing -hi stor -ri de -i red -saf e -que en -ci l -in tro -vi l -d ani -.. . -ar tic -st at -sh ort -or ing -sel fi -mis si -do c -b it -g all -b om -i re -se lec -d ition -ðŁĶ ¥ -fri end -be at -gh ting -ðŁĺ Ĭ -pe ace -ex hi -ant a -ab ility -il lu -j on -qu ality -tri bu -m es -play ers -fa ir -cu t -c ab -suc cess -b i -su s -pro mo -sch e -an ge -ic o -comm it -cat ch -ill a -kin d -feel ing -qu o -s ay -anni versary -spo t -mo ther -an e -p end -your self -op s -app le -min utes -p o -gr and -ri es -ha ha -care er -ed ition -de c -ric k -am i -concer t -iti ve -ge ous -d ly -t te -adv ent -i g -li ghts -ak er -sk y -âĥ £ -r ay -fini shed -w ay -s d -ac coun -ðŁĴ ķ -ck y -ch el -lit er -pain ting -lo s -st un -techno logy -n as -ma r -b il -afric a -ki e -ey es -gol f -plu s -ni a -it ec -serv ices -wed ding -kno wn -te le -.. ... -star ts -pa ren -w ants -ati onal -mon ths -win do -fav our -er t -magaz ine -ex clu -re ve -b c -origin al -e ss -n al -an ti -st ro -t ice -stu dy -à ¤ -v ac -nation al -fi ve -ra in -ve ment -u te -ver se -em er -ar my -possi ble -gue ss -val ley -ther n -cro w -m r -col or -on to -pic k -cle ar -dar k -t ac -wan ted -it ting -can cer -govern ment -di e -ri se -z ing -col d -f oun -stu dio -str ation -bro ther -a head -sh el -mic ro -ic ally -d au -sig ned -vi ol -a x -as se -i o -w re -spl ay -ch ick -augu st -pl at -ti ps -sp i -hu man -e asy -lo gi -mi ke -gro w -ag re -w w -sh ad -mo tiv -wi de -tur ns -om g -v ar -de fin -su g -j im -ðŁĶ ¥ -t d -campa ign -nam ed -re tweet -co p -t v -le av -k is -dou ble -s mar -issu e -vil la -in formation -li es -sto ck -n t -di stric -sh or -mi x -er o -se p -me x -see ing -li ve -re min -co de -g ur -s c -wil d -l un -h ood -spo t -fa ther -fore ver -up d -tra f -f ly -ne ed -gra du -tra in -ma ke -s ab -be y -si ze -lead er -tal ks -e u -lo g -fo x -gor geous -le ss -le ts -sur pri -my self -no te -li ves -f ru -lo ved -se ver -de m -j i -so c -h old -do gs -n i -â ŀ -lea ve -air port -ben ef -ex pl -shi ps -comple te -ach i -gre at -vin tage -j ack -ro c -woo d -pri v -off er -ey e -ver sion -te a -co ach -off ic -w ell -g en -s at -h h -you th -o x -? " -m t -mi x -g g -d le -natu ral -buil d -break fast -thin king -theat re -mo on -ber g -go als -geor ge -en e -exc ell -il ing -tun e -y ed -g ate -m it -net work -jo e -h ello -f b -tu be -we aring -ath le -stru c -har d -gla ss -g ers -thro w -g es -b t -indu stry -manag ement -ali st -go al -stre am -y el -a vi -ici ous -o thers -s ki -chri sti -bir d -e sc -m in -tr o -l t -j an -im p -ri ghts -sh a -or gan -cent ral -ar a -ro ll -favour ite -che ster -el se -p ay -car s -m ine -ste p -prac tice -maj or -h ang -ðŁĺ ĺ -n on -v ari -eng ine -vol un -di a -i led -arch itec -p ink -d s -th y -wa sh -web site -ba g -contro l -el li -f ra -an sw -d ence -y u -r on -ol a -g in -dr in -li c -cou ple -sp ar -g on -cre ate -c t -celebr ating -de ep -e at -te e -vo ice -dro p -vis it -at ors -sta dium -f t -w is -ro l -gra de -fam il -po ints -re pre -w as -traf fic -jap an -or g -hon or -tex as -man u -âĻ ¥ -safe ty -re r -b ag -em plo -rele ased -re gu -ak a -n av -ro le -sen ior -spec t -cro ss -lin es -be st -p ack -s in -ti e -mis sing -sun set -li ber -is ing -j ay -sk i -champion ship -ac tiv -la dies -play ed -y y -pu bl -al o -pri de -s r -pa ki -lu x -sur vi -ck ed -e ts -cho col -austr alia -par is -mi les -h at -ment al -al a -me an -mob ile -en a -in si -f ound -chi ef -t ag -incredi ble -re turn -à © -goo gle -fren ch -cre w -hal lo -ali an -j az -ch er -sil ver -nor th -eng lish -base ball -c af -lim ited -follow ing -app reci -ear th -k ir -ve mber -w ed -p tion -g ed -oc tober -fl ori -c r -en cy -ga ve -lor d -stu ff -ber ry -po st -sm ile -bro ad -st ate -gg er -me ans -ic y -gu n -y o -ma ster -bur g -han ds -ni e -/ / -uni on -brit ish -big gest -distric t -am ing -h il -o ce -per son -pas s -en vir -scho ols -arri ved -anc es -insp ired -ex pla -be n -libr ary -bo tt -am p -ste ph -cont act -b ang -m s -cali for -t old -batt le -b b -chic ago -âľ ¨ -str ate -sh i -de ce -- ) -ad d -la b -j ones -leg end -cast le -ing er -st ance -be l -ur a -re fu -lead ers -po t -se x -h ic -artic le -ki d -fr ance -x x -ex e -gui de -volun te -pr int -al i -ce o -twee ts -w x -scen e -vol u -ant i -h an -as soci -shar ing -ro se -mini ster -sh er -in ste -cle an -demo cr -po ster -sk in -p sy -pro per -cra zy -i am -o re -in i -any thing -po d -mo ving -cl ick -ex plo -com b -cra ft -f i -bloo d -is ra -publ ic -d ent -ol ym -eng land -a si -ch er -fac t -envir on -har ry -g one -me dic -enjo ying -just ice -j r -indi an -wi fe -s ound -t es -dra wing -p al -ide a -cr it -ju li -il er -war m -cl ar -thou ghts -def en -coun cil -intro duc -di ed -jan u -an i -s end -li er -m l -intere sting -tra de -win d -b ay -s ac -anc y -sour ce -b es -org ani -ar ly -lar ge -ff ici -ta g -u t -de sp -o es -tit le -sy m -pic tures -op en -wom en -sho wing -ri a -le ast -lead ership -cur rent -elec tr -val ent -list ening -c key -gener al -de ser -du ce -; ) -c ent -ðŁĺį ðŁĺį -sco tt -po or -selfi e -ev ents -i on -wr ong -de v -h ill -sep te -cul ture -l ine -sor ry -s ent -si ster -ce pt -k ri -no vember -ar i -announ ce -z ation -br an -g ent -d u -l en -per s -f m -mart in -o p -e mb -om e -midd le -suc cess -pe ter -janu ary -f lu -rac ing -d av -bi ke -ðŁı » -pe t -shoo t -profe ssi -feat uring -septe mber -now playing -sta ur -z a -on ic -qu ick -bas ke -spe aking -mil it -z er -chick en -b ell -s ad -co ast -lo ving -y ers -d j -pan el -ver age -s wit -ic ks -b ou -califor nia -s am -paren ts -er o -k illed -ph ys -jo bs -mi gr -an th -e mo -hallo ween -and er -c m -compet ition -e ag -s ket -sp ir -may be -exclu sive -app e -jour ney -scre en -for d -i o -h ate -u g -sou l -her o -soci ety -sy n -gu it -n h -d j -as es -im pre -ti me -sal es -d d -f ts -summ it -stun ning -om s -tur ned -cle an -sof t -be at -re staur -de red -en ces -ma gic -di o -sh ine -gu est -health y -exhi b -stor ies -po pu -n is -el a -bel ow -fun ny -resul ts -s ne -cur rently -ar d -down load -f light -m al -f ine -p ad -ch u -ent ed -h at -ðŁij ı -ste ve -j o -mar k -r at -b all -p c -p on -b by -o li -ar ts -as ure -bow l -att ack -mi c -de ar -ran ge -en ter -chocol ate -br illi -ac cess -, " -? ?? -ch ap -con st -t n -mat ter -blu e -gall ery -em p -work shop -lead ing -y ours -baske tball -w anna -th u -_ _ -mar ri -sle ep -bi a -ch e -ma d -imp act -o wn -si r -chan nel -euro pe -e sp -k itch -hosp ital -w ra -roy al -f s -ne u -qu ar -ne y -ac ks -ch ase -pp y -st al -at ely -ti m -dece mber -r are -per form -cre am -we ight -ch oo -ni ght -ha ven -fr anc -kh an -buil t -hel ping -tru st -ty pe -gol den -ta x -s now -s wi -di sa -questi ons -ve y -li ght -c n -cl oud -thom as -ag ed -sh ou -te ams -gr an -re ason -a a -you tube -v p -pi zz -manag er -bur y -cre dit -tre at -ma x -i k -ma in -g ing -de ad -pro bab -ye ah -ã Ĥ -br and -so li -pl ant -ta yl -gir l -ðŁĺ Ń -nam ent -au to -mess age -ko re -n ur -ter r -ag u -ma p -sen ting -lo ves -gi ves -g ab -z en -ro bert -con fir -w ars -o m -sta in -cam era -and er -won der -a b -ca p -s old -su it -wal king -contin ue -effe c -dau ghter -d anc -cha in -mul ti -ki d -y an -champi on -v o -ta ins -ho st -min i -mis sed -re sc -ly n -fin ish -del icious -s as -tayl or -i b -pro mis -produc ts -moun tain -flori da -regi ster -tre at -rec ent -fe male -boo th -mat t -ve hic -s op -mo tor -suppor ting -phi c -ex tre -dr ink -lan e -th ird -p s -con stru -ce re -far m -ðŁİ ī -tu red -ðŁij ī -c ats -a j -gi e -shoo ting -as ked -paki stan -am e -m b -g il -leg al -squ are -in vol -dra w -oo oo -!! !! -opportun ity -p y -e i -b ts -teach er -charac ter -john son -br on -ly wood -ch ine -c ing -c ine -d ge -gam ing -russi a -ci a -quo te -ric h -go v -flow ers -sp iri -st in -grow th -ðŁı ¼ -comm er -j uni -mu m -r an -s na -a ren -c b -ac tor -col or -si t -pa ir -ch i -bo w -acade my -hel d -r ang -me tal -y l -ac tive -probab ly -t ch -need ed -spe e -cho ice -ital y -ry an -ðŁĩ º -flow er -v it -m n -found ation -b ak -si ons -ne igh -f loo -he ard -re mo -fre sh -ing ing -re f -to wn -cl ou -je sus -spiri t -cou ldn -z es -ðŁĴ Ļ -willi ams -pro ce -moder n -pro cess -sho es -cre ated -tri c -issu es -ann e -att en -de but -h r -n it -sti g -a po -e ps -z u -ã Ģ -si x -car ds -lan gu -fam ous -tour nament -se l -e bay -y n -st on -k ick -announ ced -k am -vo c -brilli ant -hou se -che ese -war ri -mus ic -ho ckey -ðŁĺĤ ðŁĺĤ -sk ills -au tom -smar t -med ical -mon y -e x -gu ar -gi ve -pers onal -ven tion -al li -pre ss -flo or -m c -victor y -hi m -simp le -th or -ðŁĩº ðŁĩ -ta il -lu cky -ale x -qu ite -bo t -ssi ons -chall eng -c ann -amaz on -h ell -b ought -) : -ed y -secre t -produc tion -inde pend -de fe -ad ded -p r -p ag -be d -gre atest -with in -j ay -ðŁ ¥ -ire land -re ly -s d -te xt -dri ving -pro gram -spe ed -col um -str on -à © -fore st -â ĸ -mach ine -co in -sc ar -oun t -bi e -¡ ï¸ı -por tra -comm on -wre st -recei ved -kno w -inve st -pl ans -ac cor -ad op -ter y -re ali -p p -k al -art work -me an -go d -inste ad -an ci -motiv ation -as ing -inspir ation -up coming -polit ical -euro pe -m ers -heav y -ðŁij į -fe bru -scot land -ou gh -b t -bo ss -sche du -spe ak -n ick -u red -in o -e k -ri sk -tor y -pres ents -b on -ru g -st ates -exhib ition -il o -m ill -br ought -: -) -tou ri -com e -offici ally -champi ons -do ors -re p -po se -ex tra -k ings -soc cer -squ ad -app lic -at a -some times -t ari -excell ent -ðŁĺ ĺ -stra ight -car ol -ri p -âĢ į -gra phic -m ol -elec tion -febru ary -as ons -l i -di r -m t -n ick -u su -m rs -com ics -inst itu -cor por -v i -ðŁĻ ı -tu ral -di se -ac ci -we are -am ong -sho pping -t ill -wh at -cha ir -sp an -chine se -innov ation -jo y -k it -cent ury -ob ama -ph ili -f c -re ach -c iti -ul ous -n on -d ang -happ ening -bur n -p el -or ange -d v -k ick -cla im -ing ham -ph y -no v -pod cast -wh i -ni ghts -ear lier -be ar -la h -exc iting -or a -gi ven -s lo -memor ies -contin ues -produc t -gh o -c d -kno ws -ðŁİ ī -publi shed -discu ss -y ard -i phone -tri es -w all -fe b -are n -tru th -win ners -tu re -diti onal -milit ary -proble m -m and -do g -lo ss -c ric -can adi -ve ter -villa ge -" , -y r -un g -don ald -ag ing -bir ds -sci enti -le s -th is -regi on -tic al -itt en -il a -ðŁĺ İ -d ad -di am -abo ve -st ren -li t -p ir -la b -fo cus -bus y -d ur -app ly -s ma -auth or -ac i -exe cu -dom in -re la -jack son -at o -wash ington -ðŁĻ Į -k ill -popu lar -ce ment -ro ad -e ating -loc ation -v ent -ar re -n an -cu sto -advent ure -or din -spor t -ul t -lo ck -questi on -dri ver -land sc -on i -k ins -p d -jor dan -te red -k k -a f -chil d -s p -just in -en i -s elling -z o -wh it -bo ston -partic ip -sig ning -happ ened -he at -m am -dre ams -lo ws -gra ph -the day -head ing -br o -ble ssed -vi c -ve gas -h d -in ning -ro man -and ro -den ti -u se -c it -pro gress -writ er -bo b -ff s -gro wing -b ly -aw are -ex am -sp ent -be t -sc ore -bey ond -do cu -ad el -s f -cou ra -colla bor -in c -priv ate -bo at -* * -z one -p ha -b ill -to tal -plan ning -to wards -plac es -pre view -cre ative -dam n -ide as -se ems -po ten -say ing -di splay -s w -a qu -lou is -by e -li l -e mail -we stern -ger many -ell er -re s -f ant -ment ary -de als -ric hard -jer sey -stren g -ra d -pizz a -mon d -w are -l ac -g i -ar chi -c d -yel low -rec ently -re ach -à ¹ -kitch en -desig ned -tr y -g al -restaur ant -at ure -w w -j as -l ma -ðŁij Į -pa in -av o -min ute -sch ol -ther ap -tic ket -d ry -jap an -diti ons -ter ri -sel ves -happ en -t up -ma g -cop y -sh er -free dom -f ile -speci ally -tor onto -lo ad -g ary -re y -answ er -lo y -cau ght -pri ze -u ne -fic ation -ni ger -sy d -tou ch -feat ure -jaz z -recor ds -him self -di sh -ro ber -spot ted -ma ster -wa ve -fin als -bu ll -for um -al d -re comm -ch a -a e -d oo -inst ru -tru ly -l g -in k -bro thers -de st -j im -m it -clo sed -is on -tri ed -s anta -af fe -w an -hor se -g row -camp us -rel ation -nati ve -jour n -go v -o ct -k it -b ound -part ner -re ma -crow d -! ) -c alls -ra il -qu ali -solu tion -con test -con vers -sn ap -b ase -in iti -ta x -y e -ent repre -it or -constru ction -foo d -present ed -n ings -cli mate -k m -mo del -b j -blo ck -present ation -dre am -fi x -c alling -bus ine -con gress -under stand -we b -val ue -ï¸ı âĥ£ -mex ico -it ely -ki m -char ity -ref lec -bl an -fl ying -anal y -famil ies -b and -reci pe -celebr ation -ac cep -ar y -to t -g b -intere sted -cap tain -âĻ ¥ -ti p -ab sol -bra z -inve stig -o logy -de c -tru ck -ver ing -c lear -don t -go tta -ad vis -beg ins -ma ss -de scri -blo ck -k im -davi d -son gs -memor ial -feat ures -su stain -' . -gra b -jo se -v a -con serv -se ts -man chester -fi ghting -de gre -ag a -in d -sle ep -pos ition -ha ir -sig ns -pol icy -it o -al ert -st am -sp end -w y -absol ut -d m -anim al -my ster -success ful -proble ms -ro bo -k ay -gar den -p d -may or -d ale -t ol -off ers -vis iting -friend ly -tre es -offic er -accoun t -ke vin -ðŁij į -gi ant -contin u -con su -tr act -n fl -ðŁĺ Ĭ -h q -b ility -a ar -dis ney -te en -on ed -wh ite -tra iler -de dic -al one -absolut ely -dig ital -willi am -in ation -s wa -e e -enti re -ger man -ro ll -h its -co st -st ay -th a -ali ve -accor ding -co t -liter ally -her it -re ti -haha ha -exper i -li kes -g t -ste el -__ __ -ch air -christi an -to wer -diffe rence -m d -tre ss -mi d -prin ce -afric an -fe der -foo t -car ri -ser ved -r ice -sh all -feat ured -ck er -rec ru -po e -sen se -ni fic -com edy -cont ent -f at -po sted -con tribu -tim ate -li ver -mb le -inter net -ag e -europe an -cl ing -gla d -ff ic -sc o -ak es -el le -ter min -ton y -p ale -col our -seri ous -pat ri -movi es -b m -professi onal -ad o -al u -br inging -f alls -isra el -ter m -langu age -bro ok -man n -commun ic -can not -ac ti -p he -y an -entrepre ne -tur key -log ical -lon g -ar m -ur s -work ers -ing ly -gg s -ri c -tu al -recei ve -op ens -ge ar -soci al -fe et -c king -ad ver -fin an -fe els -sp la -h r -ea ster -bra in -ã ģ -fi g -le dge -ne arly -prote ct -ma ssive -e th -aw a -ðŁĺ ģ -y rs -aware ness -defin itely -k n -imag ine -k u -syste ms -ðŁij ı -f as -li k -provi de -am o -disco ver -inf lu -ma ker -g az -fit ness -stre et -er s -te d -w c -ys is -pos itive -hel ped -que st -andre w -bra d -b in -hang ing -l ing -bri ght -se ction -ma ss -ðŁĻ Į -follow ers -ho sting -tem por -fla g -a ve -let ter -k ur -re qui -of ten -cry p -su ff -âļ ½ -russi an -treat ment -al le -ha y -l an -keep ing -hol y -power ful -pre dic -fun d -e specially -windo w -je wel -il y -ðŁĴ ľ -gener ation -app a -seri ously -o d -ðŁĺĤðŁĺĤ ðŁĺĤ -cer ti -iri sh -ðŁij Į -mi ami -be th -v ity -se cu -che f -cri me -graph y -ma x -arti sts -re volu -gu ard -spee ch -u c -upd ates -fac es -st ant -chang ed -repor ts -low er -pe ar -n c -k il -loo ked -spe aker -s f -re spect -ok ay -oce an -s itting -architec ture -tra il -se at -i ra -le g -japan ese -d am -u lar -sw im -polit ics -finan cial -ol d -mou th -at temp -de stin -fi shing -atten tion -me m -chang es -deci ded -reli gi -g in -c av -z z -ad am -ma c -wr ite -beg in -sc ul -al ter -is s -ath on -imag es -m oo -jo ined -ðŁĺ ī -âŀ ¡ï¸ı -pas sed -mu sli -h ir -lar gest -cam er -com ic -gh ted -rug by -bur gh -gg ing -te sting -pre par -lau gh -al ed -impro ve -beli ev -adv ice -sha res -he art -tur ning -s b -t el -caf e -n es -dani el -pat ter -t z -se tt -par k -c and -st ick -happ ens -bri an -ne west -e pic -ad or -ki es -war ning -anim als -custo m -ar c -di an -gol d -cor e -t f -c ity -pan ts -re ality -con fi -in ju -fo x -gu il -k new -âĺ º -cor rec -itu de -d den -. # -re duc -pas s -f on -y a -ow ner -re turns -n c -e ast -ap ol -in sur -th o -si m -juni or -be e -ang el -att le -elec tric -hor ror -cra sh -e ye -pat h -sou thern -emplo ye -ge o -t an -ha z -r ally -ðŁı » -proper ty -was n -enjo yed -gre y -g as -bre w -nor thern -hol ding -g p -ta ke -ch art -ly n -dr ama -z o -pa id -throw back -cu p -discu ssion -down town -w ill -le w -b is -t ary -bre ad -up on -r ate -teach ers -it ation -anc ed -cy cle -choo se -d c -ir an -co w -da ve -ra ise -prin cess -fa ith -- > -indu stri -sp ain -guit ar -fac ts -m n -sp en -cour te -go tt -projec ts -au di -o sc -pe ter -s and -intere st -happ iness -ven ue -sol di -surpri se -poten tial -per io -custom er -i i -g ni -manu fac -e co -bro ken -sing er -vel s -wal es -hu s -in j -f our -tal ent -d ying -mat the -fil m -jo ining -s ell -j ar -lma o -sur ger -bb c -sour ces -au stin -ni k -char les -f am -prin ci -ange l -cas h -lo t -o red -pla ys -pl ate -don e -memor y -br ings -n ba -solu tions -teach ing -gr ace -cir cu -hel ps -foun der -mar y -expl ore -de cor -par ts -ch o -inte gr -ha u -is es -pu tting -in er -r it -v y -mic hel -blu es -every day -for ms -bi o -ye ar -p in -t ter -spr ing -) ) -po t -al ing -perform ing -sh an -plan et -mus ical -head s -it alian -stru gg -âĢį âĻ -w ings -pu mp -h h -tr ou -a id -pri me -ear th -pa int -mon t -am y -bb c -fab ulous -fru it -andro id -bour ne -cere mony -enti al -? ? -deb ate -on ing -dra ft -sol ar -t x -j am -cor n -!! !!! -bro o -mil k -po sed -o hi -mo vement -b ren -part ner -p g -et te -ar ies -sh out -n g -leav ing -t ells -sen s -ta ste -kel ly -wor l -gy m -ric h -e gy -pi d -ma s -â Ĥ -courte sy -fran k -incre ase -wr itten -pp ers -re l -ha i -s as -s ound -tt i -w ich -ri ver -.. ." -a g -fel low -ro me -sm all -gen cy -ic an -lux ury -pro of -me t -wild life -mom ents -ra ther -cor ner -com pe -canadi an -lik ely -therap y -li am -econom ic -indi e -rou te -fi ght -ho pe -se tting -ant ly -cro ss -fant asy -de e -sket ch -comp li -ym i -ru les -engine ering -fig ure -ro w -. , -f w -syd ney -w ou -t ation -dre w -us es -the re -sp read -struc ture -pat rick -appa rently -ro s -h ills -w we -ann y -com mission -di v -f ying -con sul -anal ysis -ex i -ten nis -vehic le -ðŁĺŃ ðŁĺŃ -as s -high ly -op ened -b ann -ðŁĴ Ļ -mp h -wi shing -v or -fi f -give away -r r -ra y -je ss -g at -ic ymi -x it -high est -yor k -pi e -invol ved -high er -ri e -mal ay -int elli -desp ite -che e -sar ah -be an -reco gni -ar sen -tal ented -pas sion -ic h -ab c -lead s -dise ase -v is -se c -pre senting -m illi -hol e -sho ts -de part -surger y -gov t -b in -du al -e vi -lon ger -ev ol -scre en -portra it -et c -lo se -ch at -p en -p i -om a -s ick -er c -compan ies -en try -plan e -gr y -ven e -liver pool -premi ere -sha red -a red -fil ms -ir a -holi days -cric ket -ici an -v ing -. ) -ul timate -di vision -con duc -se pt -for ces -mon t -s mart -disa pp -sun shine -in d -b less -ma de -col ors -fran k -ir on -bott le -s go -m ood -j ason -er ic -bir th -te en -respon se -tar get -state ment -fe ar -th el -al um -ar ab -bl in -direc tion -ste ps -er ial -wor ked -at l -ðŁĴ ķ -fel t -pol i -scen es -hom es -b ell -e at -ate ful -t in -l ace -fol ks -p se -an n -wis dom -fa v -but ter -s r -are as -sm oo -bi z -dg es -app o -mo re -the m -effe ct -windo ws -sun ny -cap ital -tot ally -c ities -gr ant -mb ers -s low -au tu -il ities -w ro -ri sing -st ics -viol ence -i gh -qu ot -h it -t c -herit age -bu ff -ne s -z ar -den tial -ex ac -ed ge -de ep -aren a -be came -benef its -mar ks -mb er -a z -am es -pre ci -dra gon -re g -d ings -do s -ðŁĴ ª -n el -s ity -me al -di st -leg end -pur chase -pic al -st ick -f at -du ba -profe ss -car to -pro f -coun tries -respon si -se qu -fa b -tribu te -hon ored -prac tic -pur ple -an ton -pa red -t ough -summ er -environ ment -s ons -ðŁĻ ı -m ps -gi es -her oes -t elling -hen ry -f en -know ledge -Ģ ï¸ı -f r -ne g -u re -ac king -hear ts -s oo -hol lywood -ju mp -sau ce -schedu le -tur n -yo ga -cre ating -c ket -cre ek -â Ń -custom ers -ma dri -gu l -asse mb -moun t -c ell -to p -st al -dav is -t wi -sig n -premi er -iti ons -he aring -un k -pati ents -app ear -heav en -al ty -doc tor -a e -plat form -je ff -ðŁĵ · -regi onal -bi d -box ing -ex ten -or ity -a w -w ise -il le -sever al -bi e -s itu -sy ria -âľ ħ -remin der -enter tain -li on -part ners -in n -ph ar -f au -pl s -expe cted -sug ar -deci sion -s b -ch ron -associ ation -leav es -vis ited -sh ap -ðŁĴ ĸ -fur ther -h ann -w i -run s -l er -fun ding -fil led -.. .... -tin y -han g -or g -co ol -se min -ðŁı Ĩ -spon s -nav y -sa int -dru g -d al -r oun -co vered -tra ditional -invest ment -de te -al ism -f low -n is -sun rise -fe at -f ted -we ird -je re -ve gan -medic ine -an o -ac cu -deli very -temp le -chang ing -wil son -phili pp -re fe -n d -is er -g ay -r and -ati ves -t ely -p and -intelli g -g are -am bas -de mon -commit tee -strate gy -refu ge -bud get -prote c -pi er -ex press -nom in -econom y -al low -ic on -gal ax -o h -indi vi -dem and -vir gin -lu ke -ali sts -man i -s mi -ju dge -ent y -mic hi -resul t -am ed -spe aks -' , -hou ston -sh in -b ing -fl y -ch em -au to -v as -ge t -ar m -thank s -d in -gan g -x x -si on -loc ated -p l -jo sh -in fo -jo ins -adver ti -ot d -el d -si e -re asons -v ent -ðŁĩºðŁĩ ¸ -â ł -convers ation -stu di -ðŁĶ¥ ðŁĶ¥ -go s -s ounds -un it -mu sc -ge l -ack ed -pac i -co s -de re -u u -a o -la m -inspir ing -ar ms -tw are -mat ters -ad dic -du de -ex t -cri sis -b ath -me et -sing h -expe ct -del hi -resc ue -wor st -au g -shi pping -ser ving -st o -dar k -ac es -histor ic -landsc ape -desig ner -b illion -gr ateful -wa ke -e ve -m iller -hou sing -dy nam -is co -be ha -sh op -pr ou -e as -a sia -e ding -k on -depart ment -aw ar -mar ine -in ci -photograph er -ta pe -lo go -r ings -d it --- -- -vin yl -w c -vo ting -se ven -ambas sad -dal las -t u -com ment -k ra -b les -w ag -u d -au dio -stri ke -offici al -o ts -me tho -to ols -ra di -al an -hun t -wat ched -a ke -fa ke -drin king -mer ry -m l -b day -ri o -ni ke -c ant -re pe -co stu -mur der -ak ers -ch ers -ou ts -beg inning -so s -ad es -n in -not es -wro te -sol o -c i -li ghting -ur ban -bre xit -att end -shir ts -pla yo -ac tress -pl ic -stand ard -quot es -par ade -anci ent - © -tur ing -re e -pri mary -fla sh -citi z -mat es -ste in -z i -clin ton -sk in -gen e -hu m -g ar -t le -y i -fo cu -de an -pl ants -cy ber -b u -om e -ho p -ad dress -ti x -gi fts -relation ship -sub scri -fe ed -exac tly -haw ks -ex o -stre ss -s n -arre sted -an e -sof tware -z ero -the me -mu mb -im migr -mi a -make up -ple asure -uni vers -har b -eng ine -ap er -r in -br a -institu te -le ather -al th -sing ing -co s -gh ty -me as -st ic -si de -insur ance -co t -pit ch -moun tains -cri min -su pre -valent ine -at er -wou ldn -sc ale -rel ated -re gar -star tup -pack ed -mi ke -week ly -p ts -coun t -ha r -gott en -min d -ber lin -con ditions -swit ch -cor n -sa ve -g li -emer gency -tun ed -sto ck -discu ssing -every body -s day -whe ther -wrest ling -ec es -gen der -ch en -ðŁij Ģ -madri d -mar athon -e gg -i er -th x -as king -kore a -wol f -ay a -g m -g au -at ory -v r -gra ss -k illing -b ble -ur o -un i -e th -sh ore -th en -re ale -bot tom -ex erc -k ar -or ies -ad ri -san ds -se x -. ' -volunte ers -per form -par liam -inclu de -deli ghted -execu tive -fu el -kis s -ã ħ -char ge -h u -ca kes -ve t -g lu -agre e -pr ices -n au -h l -g ru -ra j -streng th -b ic -sp ending -al es -av en -b last -: ( -yo f -nor mal -si x -qu ick -se a -d aw -mee ts -lo vers -upd ated -po tat -comple ted -coo k -opportun ities -p ure -organ ic -tem per -c am -avo id -par king -duba i -and o -di stri -to y -comple tely -don ald -tri al -bas s -b oun -back ground -v as -mar vel -lu m -ru s -t ool -com missi -throw back -fin ding -is lam -! ? -st op -e vil -or al -resi dents -i denti -o ak -ðŁİ ¶ -l il -span ish -chap ter -sto pped -direc t -ho sted -pic ked -lab our -lew is -defen se -à ® -health care -wh is -mat h -pe ak -ra ised -fi x -bu ll -th ir -chel sea -fol k -tr e -can di -pau l -ei ther -ad am -poe try -jewel ry -ðŁ ¦ -pr ay -Ø § -g c -o z -wi shes -fore ign -sun g -lear ned -en e -n ing -micha el -illu stration -legend ary -w av -b au -ðŁļ ¨ -cal end -stre ets -â Ĩ -mon ster -bu ck -g r -scho ol -ba th -wa ste -ne ck -ha wa -be ach -re plac -jec t -on er -fac tory -coun t -ðŁĵ ¸ -mor gan -der ing -se an -steph en -de p -no vel -vide os -ic al -press ure -arsen al -ex pre -ir s -tren ding -ss a -fla sh -re sear -thr ough -profess or -scul p -to s -gg ed -mm a -be e -a pe -hun ter -am i -he i -pla stic -bu cks -uni verse -le gen -niger ia -ple ased -ri s -thin ks -autu mn -i ds -d is -anth ony -ðŁı ½ -ak ed -gla sses -fin ance -z er -k as -con tract -nu mbers -sh aw -partner ship -t il -laun ched -s al -victor ia -theat er -usu al -nam es -perio d -eli za -i th -bar cel -ro cks -bag s -mat e -distri bu -j on -di ffic -ali zed -cur ren -sco red -b ha -du blin -ro se -in ted -soli d -beha vi -wal ker -simp ly -garden s -head ed -in i -ohi o -we ap -f o -gl en -e state -ran dom -th under -thr u -k ill -jac ket -it i -entertain ment -thanks giving -ent al -en coura -el o -a ther -tan k -high lights -f ting -ru le -model s -bor der -bj p -hus band -in done -ken ya -be ars -al o -n inten -pi x -str o -or ders -sal ad -ro ads -n or -l ation -sop hi -ðŁı ¼ -pi eces -b one -min s -inclu des -nu tr -phi l -s ent -fun dra -ga in -bor ough -n ad -mon day -activ ity -it ems -be coming -ken ne -de tro -car di -gue sts -u x -world wide -sever e -new s -thank ful -fic tion -ve ge -m all -si an -er al -inj ury -le e -men u -danc ing -scot ti -exam ple -( # -na i -studi os -ba i -ðŁĴ Ľ -j av -diam ond -vin ce -ric k -prote ction -lin col -cham ps -appro ach -d ar -m ile -clou ds -je ff -in fin -l ers -p les -pe ace -go p -âĻ ¡ -tech n -str a -a verage -ef fort -introduc ing -di versity -austr alian -am p -boo st -s ke -pati ent -appreci ate -ici ans -pu r -f ell -woo ds -illu str -ðŁ ĸ -ag ency -ac tions -brit ain -under way -se attle -el and -ag o -f ill -stre aming -pro test -challeng es -ky o -et sy -coo king -exper t -ru ss -rain bow -commer cial -sp in -be ats -c ry -val u -el i -th row -gr ams -le vels -michi gan -c ad -ador able -const itu -w s -pu b -mid night -th at -net fli -braz il -die go -regu lar -jo y -âĤ ¬ -li qu -ea stern -k ni -fl at -n p -bro wn -w er -se y -tt ers -ac ting -v anc -cy cling -program me -ra w -comple x -tat too -throwback thursday -se ssions -ro oms -si ght -speci es -bom b -lau gh -ke eps -mo on -offic ers -con ver -t r -ha sh -t ack -ri ous -ad ap -a j -reco gn -ex po -sug ge -confir med -rol ling -dre ssing -ic t -fri day -ph ones -ri dge -con cept -ro y -ke ys -ef for -c ate -k ne -ev en -l ay -commun ities -mo d -n az -every where -al ab -bit coin -ban ks -out door -feder al -sto res -h p -c al -m ely -sig nific -be ar -re public -clo ser -al lah -pic k -x d -pal ace -ch ill -b am -er ous -un a -al len -out standing -olym pic -supp ly -fi gu -v au -l p -char lie -un es -> >> -legen ds -ici al -co ast -benef it -mul ti -f its -far mers -am ount -si sters -har ve -hon ey -que en -b ers -pl ann -âŃ IJ -m u -barcel ona -al ber -stat us -re main -ex tra -c andy -vi ous -âľ Į -o v -warri ors --- > -ju mp -am ar -x mas -stu dies -i ors -k or -don ate -pre p -fi sh -im a -pain ted -ad mini -co splay -spor ts -dro ps -fi ghter -evi dence -ðŁĴ ª -la ke -ro b -cine ma -pro file -à ± -stan ds -leg acy -sh ape -ro of -ci vil -i ans -sy l -sh am -vo ted -re tail -ph illi -li sted -du ty -n b -th es -f are -au ction -ffici al -stor ms -d p -l oun -sh ops -al y -ani me -multi ple -ðŁĺį ðŁĺį -psy cho -je an -ap art -candi date -gg y -con f -jose ph -w ick -me at -fr ame -c l -for got -ph y -f ing -li ed -re p -se ed -f all -u fc -nu t -lin d -mo de -fiel ds -en ce -s ley -ðŁ¤ Ķ -ch ill -follow ed -announ ces -cor ru -tro phy -them selves -ac le -al du -k ong -l on -s v -bro ke -ander son -ta i -stor y -tempor ary -activ ities -k ati -ari z -cry stal -spo ke -extre mely -tra ding -ðŁĴ ļ -à ¼ -in ch -ed in -out fit -equ ip -ma di -form ed -be ef -po p -ti ger -this day -ti red -neigh b -re tro -is a -un t -t as -kan sas -de st -secon ds -ta y -hur ric -o u -galax y -dad dy -bro w -bur ger -en ced -de sk -ac cur -secre tary -el ite -k ab -ch in -touri sm -bud dy -ici de -dre ssed -u d -vac ation -che ers -com for -charac ters -j et -bu ying -l ins -n ap -reale state -li e -af c -i ii -f ame -n r -b at -ag ent -ma kers -âĢ ¼ -sec tor -op ti -le on -di et -pra yer -hi p -mi r -le x -br y -an a -pas sing -w en -reco very -ak i -po pul -res ort -mar ia -stu ck -read s -ti er -perfe c -netfli x -p oo -cham p -o c -re duce -we red -comm ents -cla im -acci dent -s ag -h ack -sal t -kin da -k iller -i os -z y -ex change -lec ture -eng er -ic king -t au -reve als -pri son -z om -gh an -u l -jour nal -i ot -tr in -jon a -govern or -cap e -quar ter -spec tive -impre ssive -bab ies -t x -m ill -o y -har ri -jo int -su e -collabor ation -tren d -revolu tion -re new -alum ni -ge tt -sh ell -sun day -ent u -ni c -donald trump -block chain -paci fic -expla ins -sp y -ad voc -par adi -to f -star ring -p av -fe ed -br ac -smo ke -ham p -y am -to kyo -si mon -d h -e ffici -phys ical -n j -ell i -s low -gradu ate -americ ans -ti fy -f red -ap ore -fin ds -rob in -we t -not ice -se mi -un ve -k om -pil ot -scre ening -da ily -ðŁĴ Ĺ -roy al -sp a -vo tes -n ag -wh ate -att ending -exper im -ad dition -k ate -sto l -m ali -foo t -chri st -ch an -de e -lic en -glo bal -mo ore -ti a -bri gh -myster y -y ay -âĿ¤ï¸ı âĿ¤ï¸ı -cre ati -me chan -clo ck -di c -âĢ Ķ -pp er -al ph -through out -al low -re sources -selec tion -ham il -bb q -aa aa -virgin ia -dis ney -en g -so red -drin ks -f ancy -consi der -end a -jan e -hand made -du l -on tari -i us -s ville -color ado -whate ver -whe el -promis e -ne ver -desig ns -ab ly -sex ual -vanc ou -at i -con vention -cul tural -sing apore -pro mo -load ed -gla sgo -pp l -n oo -ke e -ste m -men tion -i do -cru ise -ri ding -be comes -be y -âļ½ ï¸ı -tw in -dedic ated -na sh -de si -work out -jen ni -i v -grou ps -rela x -pho eni -li ft -mix ed -m ck -p c -mu st -me tro -ci es -y ar -a im -ang er -i e -rec y -marri ed -dro pped -eng ag -le st -ambassad or -op h -de s -w ick -assi stant -nat ur -fa il -l td -shor t -k ap -sha w -bi gger -rema ins -crit ical -sur vey -co verage -er son -win d -n b -bil ly -let es -ac ts -jim my -at lan -al and -t c -import ance -dam age -f g -stor age -tw t -bon d -bal ance -cr ying -pu ppy -vo te -pu sh -ðŁĴ ľ -pol y -me l -lon don -terr ori -effec tive -corpor ate -atl anta -jac o -nas a -gre ek -sen ate -i sh -ev a -intellig ence -effor ts -al co -k un -h all -di ag -claim s -fir st -h b -ba e -v ul -pu ll - ° -se par -spe ed -vic ti -on thisday -audi ence -r ates -te ach -fil ming -bu sh -son g -y um -br un -ra ine -aw a -par ks -ð Ŀ -ra bb -ra ch -ra id -reach ed -ra il -mo ves -selec ted -fr i -ra ising -om y -st ones -su k -franc isco -cas es -cap it -con fu -w tf -po ke -equip ment -gre g -ess ential -off ering -ne x -pi es -be c -cre ation -chair man -cro wn -w al -john ny -shi ft -ne ck -ban g -bir d -ðŁĺ ı -du ck -re serve -de pu -ma sters -over all -no tic -ju ice -sne ak -che er -cla sses -eag les -n ca -car pet -ci vil -coach es -har ris -u ps -b alls -dec or -mar tin -ro s -v ice -announ cement -who se -ti gers -ste red -c ts -dr am -ste el -youn g -inst all -supp o -recor ding -de ck -se ats -l der -ang le -bo t -sty les -elec tions -for tun -n ab -but ter -ari an -ka sh -in ner -ou red -be ast -we i -ic onic -exper ts -ne cess -b eng -jam es -li a -gre ece -ðŁĵ · -ðŁĺ ģ -good bye -m itch -tw ice -mumb ai -ste am -ru sh -med al -ne tt -fashi on -t ar -r s -sav ing -ric ul -l m -sleep ing -brook lyn -mis s -sen ding -disco vered -sp here -of theday -k icks -missi ons -w right -er n -ght ly -i ous -mel bourne -star tu -mo ved -car ry -d ak -ag ues -bel gi -e ma -way ne -do t -er ie -pe l -it unes -matthe w -no body -est ab -cal m -win ds -lu c -prep are -tren ds -exerc ise -adv ant -ðŁĴ ¯ -athle tics -app s -c tions -adv ance -laun ches -litt le -real donaldtrump -eliza beth -carol ina -hu b -hi dden -n w -us er -pol l -great er -mo st -f ed -p at -life style -s ati -sco res -marri age -l r -aven ue -de serve -ri f -ðŁ Ĺ -wat ch -champion ships -gr ay -en ni -cot ton -g om -whe re -pack age -su m -ab solu -new ly -foo ds -ty ler -assemb ly -musli m -ban k -re memb -op tions -produc er -land o -fun ds -u pper -shad ow -pro gre -co p -ing e -leg s -detro it -hill ary -jo se -gi ants -sou p -sustain able -t us -clo thes -roc king -n z -min ne -mat eri -bru ce -ear t -ca sting -independ ent -thou sands -ta h -de cl -veter ans -li ons -wra p -âĢ ¦ -de ss -bl ing -st ine -e ggs -o on -clo sing -z ay -at t -bac on -fa il -ariz ona -de pre -gho st -new sp -w ers -vi p -li ked -id ent -volunte er -ad ult -pu pp -cir cle -mat erial -degre e -gro wn -boo m -calend ar -su r -vie wing -ath letes -ch and -re ll -asi an -en tr -vol ley -victi ms -bo dy -m ama -trans fer -ge ek -in dic -sav ed -ma i -g ent -it s -loun ge -k ol -the ory -situ ation -is lands -ar th -z oo -floo d -vi ously -show ed -parliam ent -ch ev -el ine -at trac -ab ad -ta il -h rs -lu s -por tu -gor y -provi des -to ys -de ath -in fe -an ce -g le -li am -lo ver -hu d -dv d -reve aled -g w -re ment -ca the -l ying -ra dio -der by -stor s -che mi -hosp it -âľ ¨ -' : -ilo ve -le mon -re public -s ni -ne ss -do or -re action -pre gn -fla v -schol ar -spo tify -is ation -vis ual -aw are -spon sored -jo ke -less ons -leg is -lo ck -si mil -ðŁĺ ĭ -kin d -la y -ma h -ho ping -vancou ver -as er -clean ing -gal a -thre at -la p -ach e -ro mance -ex pen -re post -z am -e pi -mir ror -o ak -ad ul -bat man -s lu -l c -vie wed -re views -d ates -indone sia -acti vi -off en -lea f -i si -ag ricul -costu me -s ites -spir itu -appear ance -ir y -st air -applic ation -spec tac -ic ity -ski es -hand le -pun k -paradi se -t n -de al -provi ding -do c -recei ving -bre w -micro soft -à ¶ -fer r -me tro -th ail -y um -car ter -à ¡ -gent le -bre aks -coo per -show case -cu tting -egy pt -bab y -semin ar -gl ori -ss on -fa ve -re hear -lo tte -la dy -al as -pre p -deli vered -nu clear -ir o -engag ement -at ta -con ven -z an -gl ory -hol ds -busine sses -str ange -sch e -it self -gra d -mar kets -f alling -st ats -ge on -bu dd -li s -she et -thi si -co lo -deser t -regi stration -ig n -expla in -inter ior -la ws -writ ers -spr ings -k r -fri ed -blo om -inf ra -a o -cre d -pa st -line up -bo o -bre a -boo ts -celebr ity -att acks -bro ok -ev es -ex cu -cher ry -oo p -fas cin -boy friend -se as -n ine -effec ts -po wered -k ha -ðŁĺ Ģ -sh out -con dition -i j -her o -enter pri -win ter -applic ations -sho e -g el -batt le -pro grams -w art -ðŁĴ ¥ -ra p -ho l -dang erous -di a -coun ter -ric s -i or -k night -co at -emo tional -at ures -d as -whe el -fore cast -tran sport -glasgo w -king dom -prepar ing -im medi -ff in -awar ded -prin ting -ro man -fight ers -any more -bel t -p ine -win e -x i -employe es -logi es -al led -de mo -birth day -ange les -lo g -dri vers -neck lace -k ath -s it -athle te -ef s -s burg -pur pose -resi stance -rele ases -t is -vari ous -deli ver -ch al -s anc -opp o -cra w -neu ro -dr a -suppor ters -sna p -diffic ult -swe ar -logi st -pa th -attemp t -à ¥ -swim ming -ste ve -hur t -inclu ded -b ap -wa re -ðŁĴ ĭ -end ers -ja ke -le eds -cli mb -l b -im ple -li sa -clo thing -ðŁĺ İ -d t -com pla -sw ing -stra w -v als -k le -us ers -stor m -cu ts -ontari o -p an -hand some -i ow -ar gu -chec king -scotti sh -Ķ ï¸ı -si er -em ma -po d -patter n -de sh -en h -ed ward -t ing -k h -hal f -lincol n -mo ther -al leg -r c -volley ball -d n -g ay -all y -le ton -gro ve -l oud -adv anced -re spec -cli ent -supre me -thail and -ho w -gi g -to i -do t -dol lar -ðŁij ĩ -p it -r b -h n -produc ed -gg ers -âĨ Ĵ -ml b -can vas -fin eart -us d -in the -p son -actu al -s l -t b -ip ad -en sure -u mb -w d -sk a -mar s -k end -f eli -th ing -count down -absolu te -r out -dra l -p y -inju red -min t -hun ting -mm er -s age -li gh -ac ity -ex pan -mur ray -ar o -sec ure -four th -eag le -reli ef -st akes -industri al -clar k -under standing -see m -pl enty -sil ver -cla u -thre at -sa il -pro duce -ab str -is is -b r -eng ers -wor ry -bie ber -s j -just in -reali ze -ky le -esp n -fil ter -s ch -ty pes -game dev -d ing -twit ter -soldi ers -p om -car bon -y ards -child hood -ri ed -ke l -ele ph -t ons -key note -qui et -wi re -po sting -is sa -repre senting -bac ks -alex ander -celebr ates -ta ining -| | -ch or -esc ape -pe ek -ti ves -fiel d -ssi e -im pac -spons or -r c -we dd -cann ab -si des -trac ks -com par -con trac -techn ical -bi ble -expl oring -sh are -tra v -n ate -ill o -sc ru -m ingham -gun s -of the -sh ame -se es -ca tho -ac cess -ce l -repor ted - » -mari o -p ad -hope fully -ou se -y on -disapp o -ol o -p itt -pa c -ga p -cru sh -s g -k le -ge m -emp ire -dir ty -a is -avi ation -ze aland -fac ing -high way -d anny -spi der -ot ta -ðŁĺ Ħ -w y -col ours -in fl -co sts -olym pics -au s -h m -ho ward -pas ses -lau ren -mu sh -op in -r ho -disc ount -oper ation -em ily -mm m -cham ber -d il -to yo -shi p -sam u -pic tured -un ic -po l -keep er -carto on -st en -ig nor -n ations -n l -ta sting -deta il -offici als -mo tor -franc is -ed itor -ðŁij ĩ -pe ts -rang ers -t g -r n -w ri -nic hol -i se -spo ts -ani e -chec k -tri ple -ku mar -spe akers -ic ing -pre pared -ab use -friend ship -mon th -swi m -air e -sc ent -hamil ton -indi an -j es -yum my -te ars -da wn -i zed -worl ds -ðŁ ķ -b illi -st one -n hs -ba sic -p or -st le -ir on -ol der -cle vel -e ing -ðŁĺįðŁĺį ðŁĺį -prin ts -fir m -air craft -fin est -devel op -aar on -t z -gra ham -own ers -fo li -less on -qu es -bab e -cra ft -ph en -ju n -bir mingham -v ine -ll er -i an -fineart america -evol u -st ab -im per -war d -com ic -wi z -inv ited -du ke -mat ch -por ts -ro ger -diag no -ke pt -te st -vis u -r hy -so c -to x -b aker -sur face -co vers -man s -b its -x box -ff le -n an -gar d -h art -wat ers -v illa -re tro -light ning -catho lic -democr acy -neigh bor -pen n -cr an -jona than -la ura -vi bes -su b -coach ing -clear ly -uk raine -bra ve -commit ment -t all -mar t -ra p -mo di -sco tt -bro s -show er -ðŁı ¾ -âĺº ï¸ı -cou sin -appro ach -br e -com pos -hil ari -phil ly -g ad -quick ly -ri an -t m -vir tual -hou ses -k t -phoeni x -w ire -ff y -b unch -anc ing -tal e -snap chat -star ter -h t -k icking -ap art -th y -) ! -blo gger -it z -com fort -ang els -w ash -" : -ar gent -re quest -hon est -mi ghty -bo bby -k g -ro l -thou se -ex po -h c -tab les -mag ical -po sts -de m -n w -or lando -ab er -* ** -ðŁĺ ľ -environ mental -trans formation -mi le -w ic -hir ing -ma ine -bo ar -r ying -ti s -nit ure -twee ted -anton io -opin ion -fin ale -di y -f is -th in -trou ble -le go -fi les -qu art -sp a -curren cy -cli mate -fan art -rail way -sp ace -ban ds -dani el -mo tion -l eng -hol der -oc cu -mar ie -cathe dral -bu zz -bi es -nas car -bm w -bat tery -char lotte -doc tor -zz le -se ven -in san -d dy -st en -lab or -thr illed -se ren -docu mentary -wav es -cer tain -can did -allow ed -ninten do -star wars -ta p -home made -d les -ther ing -bre e -emp ty -pi ano -pos iti -coun try -por k -pu ts -per ry -m atic -spot light -ti st -or ities -we alth -c p -bar bar -commit ted -as sau -pro fit -e ight -hu l -fini shing -run ner -ss o -insp ec -char ged -christ op -lo sing -co al -ho o -ele v -de le -mo ham -don ation -c able -clin ic -j in -manag ed -ter ing -â ¬ -ur ban -depu ty -bb er -bur n -acade mic -o tt -sta ke -it er -sto wn -ack er -advent ures -ad ams -gre g -pro m -vo l -ac qu -con gre -pa int -citiz ens -c all -af ford -v c -as ks -the tic -independ ence -â Ľ -h itting -bl on -fu ture -â ı -in no -gen e -bo ards -di stance -se t -re mem -th al -pre vent -l ang -ob jec -su sp -mat t -in duc -bor o -pi one -re di -vir tu -prin ted -sco pe -shar k -suc ce -a stron -il legal -j ag -c ting -ine e -at o -rob in -nutr ition -b f -du tch -b n -fur niture -for gotten -at ar -ru p -hy per -bran ch -communic ation -degre es -on ia -un cle -promo te -or che -wi i -j s -but ton -ma jor -c bs -bri stol -premi um -ordin ary -e dit -m g -we ed -st even -: ' -gu s -te s -cap tured -dru gs -do w -wr ites -bi shop -whe els -ali zation -disco very -w r -rach el -ne il -hy dr -cu test -entreprene ur -kore an -ore gon -ul ty -perfec tly -suppor ted -histor ical -t wins -ell y -we l -de vil -in come -scienti sts -de leg -h en -on i -ic ed -gi o -cur ry -reve al -e g -buff alo -n ol -op era -camer on -haha haha -j ab -gradu ation -cra ig -r al -i f -organi zation -le ge -g ang -su d -edin burgh -l ack -fli es -g ate -thr ones -q b -the real -e leg -pp in -c les -jam ie -tn am -cryp to -ou l -p ages -a se -roo ts -stu pid -a did -boo t -prote in -s ap -si um -su s -end or -fun ction -don t -en na -ch y -squ e -wor ker -m tv -e a -k an -ðŁĴ ļ -mu s -professi on -t to -oper ations -al lo -c tor -inv ite -sc and -ou th -z im -lin ks -cli ents -sam sung -discu sses -n ell -ul tra -some where -ste wart -ine t -de z -b out -fac tor -ti an -tr ans -jere my -d b -ðŁĩ ¬ -or n -develop ing -spo l -coo per -ma u -rememb ering -tre k -famil y -sen iors -fo ster -att ended -w ing -trans form -ele mentary -hor iz -li sting -malay sia -it ch -warri or -philipp ines -russ ell -m end -initi ative -cre ep -to ps -br iti -a ur -shar p -adverti sing -ug ly -achi ev -materi als -bu g -dev ice -bon us -fac ility -col e -nh l -y as -plann ed -pol e -excell ence -tr ick -con fl -r p -achi eve -lo an -swa g -jess ica -ho we -p our -sc u -z oo -r ated -dre sses -re bel -mex ican -co ordin -me ss -atlan tic -t l -osc ar -wal ks -phar mac -investig ation -... # -cc i -eas ily -monday motivation -y ment -au ti -for ced -ar med -colle agues -pap ers -pro per -sha ke -bu c -le an -exhi bit -e vement -co tt -bi z -sp er -k ent -sw an -/ @ -girl friend -haw k -âĺ Ģï¸ı -mon o -ðŁĴ Ľ -stat ue -ðŁĺ ³ -ra s -te eth -preci ous -t ile -p am -swi ft -v ali -no se -dr unk -experi ences -come back -gen ius -wor se -sh ef -ra d -ed it -hon our -au spol -lar ry -h ire -gor don -achi evement -.... .... -su icide -alter native -su p -sur roun -sha ke -ke ith -pe pper -tur k -crimin al -be ck -su m -w alls -cn n -an tic -of fe -col li -win es -high light -hawa ii -emb ar -l fc -ðŁĩ ® -m v -> > -at mo -wor d -car l -shout out -bre wing -ì Ŀ -do f -s ic -hot test -col on -hh h -shu t -low ing -volu me -apart ment -agre ement -de stro -we e -religi ous -iow a -ro d -land ing -re present -ðŁĵ· : -la s -usu ally -h l -c ac -sal v -al ong -laugh ing -be ans -remin ds -pha se -some body -ma sk -ran ked -dest roy -sc i -âĢ¼ ï¸ı -gab ri -le o -ro a -fa iled -si l -refuge es -re vi -r ing -ber ries -coo kies -y y -conserv ation -sh ab -human s -de termin -a in -ni all -as su -mb a -fro m -extre me -vic es -commer ce -ght ful -or dered -suppor ts -re cap -v or -dro pping -correc t -pay ing -mean ing -n j -qui z -" # -busine ss -ðŁĩ® ðŁĩ -indi gen -du st -box es -bl ind -x xx -zz y -ðŁĩ¬ ðŁĩ -ss els -s ant -dd le -hilari ous -desig n -wonder ing -vehic les -k re -ju d -rece ption -par ker -Ã Ń -pri vi -hy dro -sof tball -pol lu -lo cked -ba h -e ar -scri pt -di vi -br ace -geor ge -the ast -bel o -j al -tion ary -dent al -roc ket -pur ch -sh ak -manufac turing -e z -it is -con cep -tb all -ch s -direc ted -pra yers -oo k -phil os -vari ety -che ss -ser ver -g and -bal ti -ðŁĵ ¸ -sel y -cru z -spectac ular -bur ning -re present -i z -t one -mer ce -h ell -bed room -estab li -bo l -com mon -ãĥ » -ab or -kit ty -hei ghts -re pair -willi am -qu ake -alab ama -popul ation -re v -re tt -i sts -n ite -le m -a ha -clevel and -r m -po ver -ob se -mon tre -man ia - ® -con ne -car ni -sh ah -f y -u a -sc or -strugg le -bo b -' ' -appro pri -deci de -ff ed -ca ster -s ort -hun gry -dra g -ا Ù -gr ounds -d w -sli ghtly -car din -dead line -bron ze -web in -bar ry -sil ence -e uro -op tion -ear n -ðŁĴ ĸ -howe ver -na ren -na ils -bath room -v ine -ph d -min ing -gar age -( ) -shou lder -defe at -di r -o v -liber ty -ple as -x on -com pre -a v -j in -ab les -sil ent -fam ili -vis its -di pl -ha bit -milli ons -regar ding -innov ative -sen ator -r ts -v on -k l -wh il -requi red -âĿ Ħ -lu v -presi dential -po cket -hun dre -sho wn -fro zen -to ward -fa st -confi dence -r ough -indivi dual -qu et -ðŁı ½ -dom e -fi fa -engine er -z en -re mix -ðŁĺ ĥ -pl ant -min or -robin son -as y -pul led -cer tain -potat o -( : -pre s -oc ca -w it -it em -si e -d ating -thom pson -own ed -an u -vi e -te dly -good night -ex cept -ðŁĮ Ł -ira q -ki e -ren ces -li p -simil ar -sau di -vi g -arth ur -pic ks -mil an -hon da -ma xi -o g -ste st -ar ch -analy tics -ba sti -pear l -ter ry -hor se -ast ro -ac ce -laun ching -inter national -s no -ta sty -den ver -ir l -pe te -tor n -advant age -var sity -" " -sol e -g c -lan g -demon str -ol ds -un ity -ne ts -insp ire -cre te -nash ville -nel son -e ter -wal k -hy un -m ack -tre as -see king -ra ge -bru sh -ab and -whil st -co con -h ong -shel ter -i p -possi bly -so o -it ed -â Ħ -rac es -war ming -qu in -tele vision -mat ches -ra pi -ment al -pal m -jenni fer -rol ls -indi ana -b ars -cat ching -resc u -candid ates -fa re -âł Ģ -se o -vie tnam -alph a -michel le -visi ble -re gre -wn ed -app le -li p -f fe -li z -york shire -ha il -se asons -be gan -m d -k c -la p -fascin ating -hel p -ur y -u ms -nu ts -se m -along side -bri dge -ori al -o ve -world cup -briti sh -comfor table -i ve -hot els -fair s -hor ri -so x -d ining -stre am -bar ri -ss y -w im -ter ms -v u -pe re -l ens -wal ked -r or -l ars -shi eld -dou bt -pro to -cro ssing -me ant -medi um -ad ding -e b -che ap -fun c -pap er -bran ds -ry an -feed back -col lins -un known -tro pical -sand wich -fal len -for mu -selec t -lo ads -answ ers -or i -mag a -d or -du o -ali e -dru m -ur i -de er -sou l -sh ut -âĺ º -sto len -don ated -bu zz -patri ots -ha l -na sty -nomin ated -mon te -ki a -th ri -ing u -te sts -pe tro -ðŁij ij -ho sts -ne st -to pic -pat ch -m my -hu gh -ab ilities -ma the -s miles -g b -ag enda -insi ghts -chi p -ph an -fail ure -dg ers -ha i -signific ant -sho ck -ru ral -gl am -figu res -pot us -o ta -mini stry -appe ars -fe ar -r h -americ an -h att -son y -fi res -e di -n ou -e qui -wh en -univers al -mad ness -i x -sculp ture -b ach -t to -swe den -et a -en to -develop ed -month ly -ma ps -ra h -le d -del ta -sa ints -is lam -ben ch -fif th -v ard -so cks -wel coming -j e -tur ner -v b -ad i -nor way -ad y -hurric ane -por sche -tra dition -ex am -newsp aper -lu ci -a ver -ide al -d na -madi son -ðŁ § -wit ness -ac ou -insi ght -si mon -robo t -sna ke -n bc -ac o -ro ss -sh ment -religi on -ch ann -in su -camp bell -inst alled -we ather -hor ses -ol i -rober t -k az -ðŁı Ģ -veter an -th read -quar ter -ea sier -cap ture -hi pho -law rence -roman tic -pas sion -cl ay -ox ford -th ai -stu dying -fi a -elec ted -most ly -c b -tu mb -âĢįâĻ Ĥ -x l -sh an -fa ster -ev ans -sli de -sh ri -see k -mi es -chemi stry -pump kin -tu m -, , -ro om -fi red -li ps -pres ence -af f -brew ery -arri ve -sw ag -photo graph -pen gu -chi ps -at tor -val ues -accur ate -con temporary -princi pal -cannab is -ari o -any where -gi a -democr ats -buil dings -li ved -ap s -neg ative -m are -bal lo -li on -diam on -loo k -re form -tom my -il la -tre ats -hundre ds -port land -wor thy -ex cep -ar ia -ido l -be er -cd n -y u -aw k -ðŁĩ ¨ -c ells -à ³ -ident ity -dra wn -de vil -f inger -th am -ðŁij Ĭ -ear ned -fin tech -dol ph -twee ting -evolu tion -ðŁĵ į -est im -m vp -n one -ðŁĩºðŁĩ ¸ -toyo ta -au x -mar in -b old -l bs -ste ak -mur phy -it able -lou is -sol ve -pi a -sk ir -ill ino -webin ar -ban ana -lo v -th on -vo ters -afford able -defe ated -lm fa -air lines -super b -any way -deb t -bo red -ver si -me tal -responsi ble -m k -s se -f ay -cau sed -f p -recomm end -pla za -spor ting -alli ance -au stri -n n -t ours -surpri sed -arti f -th under -sur ve -wor e -bri ef -necess ary -z ie -ash ley -dra ke -r t -kni fe -im mun -char ges -a the -bri de -rep ly -g av -broad cast -pu er -brace let -cap acity -harve st -id k -perfor man -d ding -il ers -par a -jam a -pro vince -ch in -id ers -har i -te aser -ch en -re stor -r at -fl at -col om -ðŁĴ ŀ -ðŁĩ¨ ðŁĩ -smoo th -r t -p itch -stay ing -isra eli -t cot -per spective -do ck -open er -lo vel -x o -class room -l ington -go al -kenne dy -sh am -sp aces -mitch ell -home coming -uk i -claim ed -recru it -ing o -mu fc -mon it -g roo -resi dent -per cent -per man -otta wa -int ment -an xi -stand ards -wor ship -sche me -f x -pot ter -bi an -athle tic -af gh -s se -sat ell -par ties -âĿ¤ âĿ¤ -infra structure -rela x -mo du -wor n -smo king -y ach -practic es -wc w -am b -dome stic -tay lor -k entu -provi ded -mo di -ve g -" ... -ob serv -ðŁĺ © -be ard -m our -an gry -ðŁĺ ± -startu ps -woo den -di ve -na il -anti que -ro ses -torn ado -m at -^ ^ -su spect -far m -de vices -me ga -tu l -scholar ship -ge e -disa ster -arri val -po in -mar c -kati e -bb ed -fal se -deser ves -ric hard -ju ana -fre y -tion ed -hy bri -r w -sar ah -ach i -c ure -o le -mor ris -ch ic -broad way -la bel -pa k -pover ty -gol f -e red -f u -er ies -be es -alo gue -st el -wire less -je wish -ti de -blo cked -life time -b har -sp lit -am ster -th i -jo shu -br unch -ha ps -s for -oo ps -ka poor -hi king -suppo sed -ro of -re as -tra in -ti ght -tru mp -bas ically -r r -ea red -see ds -entr ance -c p -wi e -son ic -vic tim -he re -e h -ear rings -sal mon -arc tic -an ne -dou gla -corru ption -hann ah -ha sn -vo ices -con ce -att a -fle et -clin ical -democr atic -ton y -st ood -le f -twit ch -a il -honest ly -incre ased -dro me -don na -accep ted -visit ors -ap ar -ad or -p ar -jer ry -ra i -brand on -ab u -!! !!!! -me me -in gh -glori ous -b hu -pu mp -j ol -li ke -fi sher -ma z -ag an -destin ation -play list -le tters -gen u -br ace -celebr ated -bann er -r he -dra gon -ðŁĺ ħ -sig nature -gre y -âľ Ķï¸ı -al ice -be red -ph er -ber n -ca th -ga thering -sc oring -influ ence -sm iling -de pt -lo cal -a x -ac u -reti rement -hon or -her self -chem ical -asse ss -y all -fre qu -appreci ation -ac a -cho ir -cu z -so il -c il -repor ting -u h -enterpri se -gr at -jaco b -ru m -fe e -j ak -sp in -bi kes -phi a -ste re -p is -bloo d -t att -ra ft -war ren -sh eri -back stage -mar sh -hash tag -ther ine -re in -game day -guar an -reci pes -min ds -stron ger -issu ed -bic y -n ak -ment ed -sc ary -u x -pre vious -tt le -th ats -ac tors -u ma -tin a -bun ny -promo tion -u ss -oli ver -montre al -what s -appreci ated -la kes -excu se -kno wing -pri zes -musc le -shad es -sco t -ing redi -electr onic -ju an -comb at -s ri -e h -turk ish -l om -stri kes -pri son -re e -po pe -vi d -ol dest -dol l -sw iss -certi fied -cli p -re turning -lat or -le igh -tt es -wat son -heal ing -el im -per haps -ha ss -k au -d der -mou se -new castle -indigen ous -wel comes -co le -tau ght -no ise -appe ar -jo e -can on -wedne sday -u tah -c tive -dri ven -i v -c ell -stri p -ac c -focu sed -ar rest -sto cks -wo o -â Ĺ -notic ed -shad o -di spla -ter ror -bor ne -secon d -que ens -wo ke -ja il -no tt -cam bridge -har t -se af -fa x -ac cept -âĺ ħ -goo ds -k at -t win -h s -thou sand -s ins -su ite -amp ton -ar n -rele v -ric har -hoo ps -n bc -class ic -p ab -soldi er -de plo -le ans -install ation -cla sh -le ban -ee e -ti re -belo ved -fu sion -travel ing -ne i -coo kie -glo be -phys ics -s q -co l -wol ves -d l -ex it -" - -foo tball -le af -ster ling -hi de -minne so -fresh man -natu re -indi e -supp lies -bri s -iri sh -ink tober -doo dle -ic op -mess ages -adul ts -recor ded -fix ed -ar do -offe red -under ground -dr one -p ine -ma inten -and re -ham mer -s x -r ound -hi ke -bra d -ro me -fu ll -on ey -ro ws -colum bia -archi ves -appro ved -bat ch -illino is -recogn ition -shou ldn -fo g -nca a -ke vin -human ity -al though -pow ers -p ou -s ar -pe st -alco hol -con sci -phil adel -en o -t m -ok la -cate gory -particip ate -accu sed -bri ef -po em -clu bs -consul t -ja b -big data -amster dam -ac ing -certi fic -n u -d at -impro ved -and y -campa ig -pale stin -p ace -mo bi -feel ings -wol f -bra in -pro pos -inter active -prin ce -inde x -c is -cha e -peace ful -co vering -ac o -cour ses -mon key -re place -b l -bloo dy -tal es -brigh ton -neighbor hood -g ates -spiritu al -af raid -bre ast -b ones -ðŁij ī -vide o -w au -tou ch -inju ries -car l -ri x -une x -âĢ ¢ -fre d -consi dered -thu si -an ch -on y -u sa -graph ics -ac re -ðŁĺ © -com memor -com mod -go ti -guar dian -star bucks -pre vention -haha haha -admini stration -portu gal -fac ulty -bet a -ul a -al bert -bre ath -er i -le tting -tr ic -ment ation -incredi bly -ten nes -v d -ðŁĻ Ī -ed die -br ick -gr ill -bt w -wat ches -resear chers -t ney -ni e -p as -a ster -vi br -poke mon -ch rome -go at -pitt s -il ly -festi ve -y d -can al -ðŁ Ĩ -fi es -car los -re que -partic i -tra ins -sam ple -temper ature -sym ph -pic king -in door -z ers -playo ffs -____ ____ -ap es -ly rics -islam ic -performan ces -d ick -spar k -se as -hom a -gr ound -disc i -employe e -com mu -alas ka -al an -fe ast -dg ing -ban king -manu el -slow ly -tru cks -mc car -oo o -sc rat -orche stra -indivi du -m x -bre ath -stair s -equ ality -bla ke -loc ations -cocon ut -balti more -aa a -l c -ðŁı Ĩ -har vey -resi st -immigr ation -adid as -fil i -re f -lg bt -mo s -pp i -ken ny -terr or -ban e -apol is -s g -social media -ka i -hon est -as sas -bol lywood -âĢįâĻ Ģï¸ı -ferr ari -hor n -cryp to -bo om -mainten ance -i di -s man -w l -ext ended -in sul -ve s -go sp -tr i -pi g -tar ge -cel er -st ati -sm h -ri dic -appe al -? ) -con clu -cos me -she ep -christop her -en thusi -po lish -me ts -oun ded -sustain ability -creati vity -con crete -ra i -ali en -ble ss -te es -clu b -ro t -bo s -ex ist -perfe ction -lu ck -rock y -expen sive -mean while -happy birthday -pre t -thr iller -ca ve -playo ff -som er -l u -le x -def ence -am writing -home less -pro phe -ch et -past or -ðŁ¤ £ -land er -ww w -Ģ ï¸ı -tic a -! # -o tic -rad ar -po sters -pow der -po li -ha un -tra p -bl in -assau lt -shor ts -re y -sh y -squ ir -rac ist -gar lic -fu r -remo te -sm ell -impre ssed -fing ers -âł Ģ -din o -le ment -s nu -promo ting -str ing -produc tive -b age -ma son -ra z -direc tly -j k -ev al -ðŁij Ĭ -doc tors -co w -ri der -st v -re move -w u -na than -ro d -n r -= > -affe cted -inve st -mp tion -g inger -o d -agricul ture -s que -mu g -coun ting -ke e -mag nific -coo k -ani stan -roo t -plac ed -sym po -gh ana -un d -che er -thro wing -secre ts -f illing -opti mi -butter fly -bu bb -ðŁĺ ī -terri ble -d g -sil k -obse ssed -lo u -ai de -sal ute -mon u -philadel phia -scienti fic -i st -u ae -dess ert -bott les -can yon -ðŁĺ Ī -car ib -o ther -w ich -re source -guil ty -un d -le on -e ss -kan e -el e -tra iner -he im -an te -man age -roo kie -tre ated -po ses -rs vp -cau ses -aw ak -je well -le tt -on ics -tit les -cardi ff -g aga -bu mp -use ful -? ! -loo se -bb ing -: : -argent ina -de bu -cy cl -wh el -dis gu -j el -k ills -bio logy -ex ter -tra sh -bo dies -tr am -circu it -expe ct -la ds -w ells -sho t -ge e -naren dr -fa stest -b ent -b ills -mar shall -h ats -intro duce -citi zen -im possible -gi b -az z -net working -r ant -thin k -in dy -st ops -f theday -bri an -* * -amo di -dom e -coura ge -pac king -af fairs -g n -si zed -ent ary -pol and -swit zer -afgh anistan -w u -ten der -subscri be -mo sco -att end -republic an -hon ey -âĢ ĭ -si mul -we ster -foo die -or o -midd le -ab t -co pies -ma je -narendr amodi -ty pical -inspir ational -vit am -wis con -cu bs -tiv ity -h ali -e ars -k ay -d are -mari juana -cu rious -an ia -tom ato -re mind -ðŁĩ · -sc ared -cou p -po et -land ed -ri d -wra pped -mor ri -climb ing -e ws -fe eding -con tra -tho logy -gri d -ti vely -read er -la ser -di ving -di g -lat in -ti ed -shake spe -o ci -ad m -show ers -chu ck -mar cus -oo s -kne e -o live -ow l -dy lan -an no -g ym -deci sions -well ness -arri ves -sati s -chri s -thur s -ðŁ¤ £ -inter views -thank you -switzer land -over night -journ alist -ser ves -vol can -.... ... -plo t -nic ol -car rying -mag ne -tre asure -ex p -be ver -ðŁĺ ¢ -mar ty -mo le -don ations -recogni zed -b h -du s -sh ann -al do -success fully -ent e -ðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤ -cab inet -cu is -tit led -d as -so l -strate gies -deli vering -ad ds -ani an -ne ther -ðŁĴ ĥ -con tain -su its -pa irs -to dd -rel la -ro pe -ci o -cro p -paint ings -su z -re jec -bu st -d h -fra ud -m h -contro l -je al -destroy ed -al lows -wo ol -minneso ta -om en -j u -sympo sium -d af -lim it -accoun ts -load ing -inter n -re solution -hol land -qu al -meet ings -gra ve -cam ping -v am -re nov -liber al -am ber -gre e -hu mb -fe ver -el ing -broo ks -à ² -be th -ad ed -al t -ro e -perform ed -jo sh -frank lin -nic ole -de ss -bb s -m g -net works -min im -al t -weap ons -gu y -jas on -g ha -harb our -at on -pra ise -kentu cky -bel fast -st icks -blo ss -ho pes -an thro -famili ar -wa it -ch ile -depre ssion -la x -je ts -le ice -recei ves -si er -an k -de x -inde ed -fle xi -fab ric -lam b -hel icop -am anda -âĢĶ âĢĶ -compe te -sn ack -techno logies -sy rian -mom s -mu ham -cho sen -an at -dev on -shar ks -re t -fundra iser -selfi es -st ations -communic ations -tennes see -tu tor -ro t -valu able -dynam ic -nur se -i ed -earth quake -deser ved -a ve -sar a -stre tch -dougla s -ne pal -à § -ob viously -d ame -ra pe -any body -k w -pat rol -hol ders -h anna -info graphic -ec o -be ating -stan ley -bo ats -ri bb -e z -wit ch -inv a -ac id -boar ding -- @ -gi l -da ve -care ers -opp os -l loy -in ter -do pe -re su -j agu -sh ade -in dy -on ist -rel ations -ag en -ab le -inci dent -me ter -shar ma -id r -pro ve -immedi ately -tro ops -am an -g low -gaz a -blo cks -person al -chron ic -all er -si d -sh r -whats app -lu cy -ar chae -ho u -journ alism -our selves -go t -the med -shap ed -we ak -cas ual -leng th -sla m -ab bey -e v -coun ter -est a -reci pi -cha pel -expan sion -sel f -suff ering -sp ice -n z -sp art -desp er -boo king -quart ers -y on -ðŁĴ Ĺ -p k -continu ed -- # -man hatt -tal ked -sh en -com bo -hybri d -je ans -liqu id -se al -re tweets -ac celer -collec tive -t as -: )) -profession als -ra w -o tt -su san -ir ing -okla homa -re ven -survi val -cre ator -tran sit -st ac -sur f -i k -ed iting -ch illing -bai ley -ste al -ra ble -pa rent -hun ger -sn app -collec t -philos oph -dedic ation -c f -c m -le ep -repe at -re ha -un fortun -a er -a ero -abstr act -mon itor -ag ents -bu l -sci ence -harb or -drag ons -floo ding -ac compli -d ash -juli a -the red -tues day -cy ber -b low -ta ined -le m -refe rence -pp o -ne goti -char le -con nor -au lt -access ories -commissi oner -rain y -re ar -advis ory -luc as -ma id -co al -k av -pol o -ðŁı ¾ -tran sport -mar gare -straw berry -bur ns -gre ens -ne v -partici pants -col in -belgi um -col our -in form -d ell -br on -cal y -kick off -strate gic -re union -hon ors -li b -egy p -âŃIJ ï¸ı -hy po -si zes -regi stered -bet es -relax ing -bloo m -inten se -valent ines -insan e -w wii -p x -tri o -bla de -wiscon sin -con e -plat in -ali ze -ra ven -incre asing -indi ans -il ian -bl u -rabb it -exten sion -je f -au di -fer ry -s ell -a day -us b -swe at -cham pag -metho d -mem ph -assi st -s by -ca pe -remo ved -mag n -v t -r ams -f bi -tack le -phe w -h on -motor cycle -su spec -eleph ant -sub ject -let te -da iry -whe at -awk ward -ac t -tro l -mit ted -zay n -sheri ff -ene my -con s -ke tt -bul ls -ev alu -bt c -satell ite -ho lo -por ter -dia betes -bet ter -rele asing -sur f -: - -se basti -collec ting -en cing -e thi -go ds -al ley -health y -m ills -sma sh -co pper -cr ack -read ers -sp ac -licen se -bas ket -bang la -en tic -om i -m ere -si vely -anim ation -lan es -dent ally -chill in -fi e -k aren -dep th -li pse -n g -ri p -mel o -sand y -ðŁijı ðŁijı -vin cent -nu t -hu g -who le -cre ates -? ??? -âĿ¤ï¸ı âĿ¤ï¸ı -bak ed -up grade -rober ts -har a -carib bean -auth entic -mb s -mosco w -attor ney -wi ki -ch lo -hu ll -cor k -" ! -sty lish -ðŁĵ¸ : -di ary -impro ving -ex pand -bri ght -pollu tion -k nights -person ality -chec ked -fac ilities -z el -bow ling -gu er -ðŁİ Ĥ -on going -un its -hoo k -be ck -confl ict -to dd -far ming -educ ational -k ak -cla y -stro ke -bel ly -explo re -mill enni -th m -loo p -sm s -consi st -cir ca -br yan -d ab -youn ger -soli dar -pp a -experi enced -b ella -bo ard -shef field -steph en -consu mer -sub mit -spon sor -t ang -ag gre -comb ined -trac king -sand ers -b az -survi ve -fer red -equ al -se p -re ed -str ong -priv acy -st ap -un g -ac ry -pa sta -pir ates -ag er -fair y -du p -introduc ed -wi p -let s -spr ay -ðŁĵ º -gre w -a sts -pitts burgh -new york -jo ey -lau ren -tra de -ch op -pi pe -cla ire -behavi or -v ap -cre ws -lap top -ðŁ¤ Ĺ -che ster -disci pl -d f -out doors -k s -go ver -super star -cas ino -far mer -; -) -re turned -ðŁı Ī -ma il -roa sted -co sta -v ill -pe z -gard ening -distribu tion -sh ining -inve stors -ra sp -dec ades -reali zed -bar n -p ti -st able -ut d -pan thers -m ens -b n -ca de -bu cket -yn n -when ever -wa ke -da is -ber nie -lo dge -ju lie -atmo sphere -ðŁĺĺ ðŁĺĺ -major ity -par ti -exc it -cu t -me h -musli ms -be gun -fli ghts -vene ss -ce me -po sing -so le -g ou -dark ness -pe ach -cel tic -auth ority -grand ma -ful ness -smi th -speci fic -gar cia -co ins -good ness -aldu b -recru iting -den nis -gar y -sle eve -weap on -pl z -disco ver -harri son -recruit ment -ja i -ch im -com pared -tom s -mo thers -am y -archi ve -t ask -ben jam -se g -law yer -al um -inve sting -mi e -che z -j p -a ke -fl am -wall paper -âĻ¥ ï¸ı -t ton -che st -favor ites -we igh -coo lest -r ating -relev ant -lo gan -ma ple -run ners -pri or -peop le -ma ur -terrori st -te sted -carni val -su spen -me asure -m v -cyber security -app ren -terror ism -o z -v ital -ni es -gon z -fun ded -twi st -assess ment -die sel -en for -colum n -ad dressing -ca sts -pay ment -x ton -fi er -, ' -la st -ne e -un less -clo se -sk ill -cuis ine -fun eral -ti les -a un -k ru -relation ships -ðŁĴ ¯ -ev ent -âĢįâĻĤ ï¸ı -kind ness -pro posed -acou stic -a es -defen der -dan ce -h tt -w at -vo y -ðŁ¤ ĺ -au s -cli ff -sear ching -beauti fully -in qu -at l -speci alist -ðŁIJ ¶ -da i -tra ils -class ics -inst ant -v ous -re venue -mar ch -kir k -fr inge -fire works -tri via -âĺ ħ -tr action -wal ter -mo to -l ily -att itude -cli mb -sc an -sav ings -c w -fa ith -cred its -ab led -gra ff -auto graph -he he -ran ch -ha d -ro gers -ðŁĮ ¹ -f in -re qu -fol k -ad ditional -lyn n -u ber -dol lars -lo gic -wor th -so m -the sis -p ound -bi c -st ur -cer am -spen cer -en tered -v amp -organi zed -âľ Ī -pp s -tr on -merce des -no ti -compet itive -do w -ous ness -vic tor -gr illed -na i -pu tin -ab ra -bl ame -alex and -anim al -dec ent -p ent -inter ior -:' ) -but ler -bal let -ðŁĴ Ķ -albu ms -down s -la d -si r -pla in -p ers -blon de -dis c -paki stan -se ment -ga a -w age -ch as -man i -co ps -terr it -lo l -lau ghter -ri vers -magnific ent -lam p -w b -new sle -char ts -ble ssing -p unch -lon gest -fl oral -cu tie -fare well -sto pping -mb b -bu d -chee se -de cla -si m -mc donald -de ter -you th -t ch -fre der -kin dle -fer n -at or -as leep -p ond -spr int -p ounds -la zy -gh e -fundra ising -dead ly -gran de -dou g -he y -lin da -consi dering -i um -gol den -vi k -auth ors -di ss -u ally -appropri ate -mor ning -y le -hon oring -foli o -be c -re bec -fin land -formu la -corn wall -sh ay -cau sing -bl end -sig nal -t ent -kash mir -nation als -har mony -sc out -acce ssi -he ight -medi eval -impro vement -ke es -prac tical -car d -de par -hu n -om ing -cal gary -ste l -bu bble -gur u -ma h -unex pe -n h -ed a -me at -i ge -si o -god dess -in ches -tun es -br itt -sti on -ra j -âĻ « -mer cy -ðŁĴ ĺ -sen ds -i est -pol ici -val e -reduc ed -as ap -vi jay -defen sive -celebr ations -ri ders -med itation -har mon -g ing - ¡ -program ming -in au -sud den -m h -replac ement -sk u -j ar -gra des -ta st -k itt -brand ing -k aw -boo t -f ought -p ays -g f -iz ation -ho p -k k -activi st -v end -coast al -cha os -ðŁĶ ´ -se me -bill board -li fting -cu mb -sc al -ðŁĸ ¤ -stru ck -l v -indie dev -beat en -jun gle -al right -destin y -m ing -k c -ch ances -om an -q atar -cra f -tra ined -pri x -char m -o tive -s mu -e c -and ers -hand ed -al ban -certain ly -arri ving -i ze -sa i -tr ack -pain ter -hu mble -appo intment -head line -manag ing -mo d -as pe -andre a -à ¤ -ethi op -un ited -exi st -bal i -k ad -n t -d red -re x -recogni ze -tam pa -be ers -ati a -he els -no te -transport ation -tur tle -re de -hipho p -sp icy -sp urs -⬠ĩ -cor p -ther n -to ast -hur ry -proper ties -ma ge -mar co -ele ments -bou ti -syn drome -ms g -develop er -gra ders -he im -re sil -off ices -del ay -di men -vin tag -barbar a -ðŁĺ ± -vene zu -cu lar -fac ed -bar n -ðŁĺ Ĩ -survi vor -wor m -confu sed -passion ate -Ø ± -identi fy -electr icity -sou ls -brad ley -repor tedly -lun ch -shel f -eli a -swee t -smoo th -emplo yment -am el -manhatt an -ste am -oun ts -ye p -li ving -un e -descri be -ca res -man ila -sha wn -ac ted -bas h -st even -re st -pet ition -div ine -wel sh -rac e -platin um -ðŁĮ ¸ -p b -extra ordinary -solidar ity -m all -on ion -schedu led -game of -fer gu -de ms -nor m -p k -tri als -polici es -publi shing -st ole -fron t -charac ter -van ia -ex ce -sti e -sc a -resi dential -sa iling -ðŁĶ¥ðŁĶ¥ ðŁĶ¥ -spons ors -th ick -champag ne -she pher -continu ing -ven ice -per th -na p -a ster -y ak -un limited -cho ices -ne o -hi v -repor ter -bru ssels -f old -dy s -se mi -la wn -it alia -wi fi -as k -em ed -fr ame -monit oring -ste ad -i da -gr in -is a -fli p -re stric -offen sive -atta ched -di sh -wh y -philli ps -gre et -p als -mix tape -v ou -fiel der -spar k -alber ta -g len -ca sh -s ri -u ri -ro dri -entreprene urs -climate change -p sy -d le -em ents -lin ked -nether lands -acci dentally -oppos ition -vel vet -ra ys -c w -om o -m f -lmfa o -newsle tter -: ) -toi let -liter ature -di sp -phili p -uni form -sudden ly -head er -cool er --- - -prou d -bri g -nis san -scienti st -j ah -con centr -pac ks -appo inted -so ap -eng age -cho se -âĻ ¡ -se tup -jeal ous -har ry -g ation -tun nel -te mp -osc ars -dec ade -recomm ended -child ren -ab a -anxi ety -ve ments -sal on -pho too -organi z -mach ines -ab s -vil le -hy pe -ti ff -emer ging -av geek -[ # -contribu tion -bra dy -re sto -g mail -fit z -photo shoot -hel met -h t -eleg ant -ug anda -nur sing -or leans -pen n -na h -foo tage -em a -w o -w ad -concer ns -ve re -re mark -who ever -str ang -p t -qu it -sh ang -histor y -s ick -perman ent -ill ness -col d -visi on -he m -ar row -con vic -pin k -oc cup -bal d -ex hau -u of -am o -on t -ãĥ » -adop t -la id -smo ked -inter pre -ess enti -associ ated -b d -bb y -fi er -inst all -dipl om -con diti -c f -w ak -any a -gr aci -fi sher -s ss -ap r -il it -mus ician -symph ony -cor d -h ack -le gi -l v -bless ings -hum or -sc ra -e ti -min ster -trav elling -bu sh -jewell ery -li me -!! ! -pregn ant -pe e -lo b -cap ital -ip a -pen cil -la bor -duc ks -prou dly -wedd ing -dere k -m w -pe g -valent ine -an gu -re treat -pro spect -dang er -vul ner -up set -, # -sr k -x im -thur sday -n fl -kis ses -re ds -cr ack -re ward -c u -ko k -me te -aband oned -it t -me als -sp ell -stan bul -del ays -ru m -le op -gu m -no va -super man -ch ick -m is -dram atic -inno cent -r ounds -re c -auti sm -bangla desh -mor al -mo vie -sp oo -k la -âĥ £ -ou ting -mess i -ab road -loo kin -a im -q i -st ack -colla ge -à ¯ -hud son -sc an -ho e -ch au -oc cur -comm ander -ho les -ðŁİ Ħ -bi as -v on -stick er -ma k -responsi bility -colum bus -sa int -ed mon -rac ism -far ms -w en -gul f -may o -!!!! !!!! -corpor ation -ba chel -el a -inter nal -je ep -fol lows -di alogue -de rer -smart phone -he len -rich mond -equ ity -s land -b g -ne ar -av i -memph is -we ir -discu ssed -bad ge -p up -mi stake -phen omen -un ite -ðŁ Ľ -de pic -ri des -in augu -n at -sof twitter -comb ination -gosp el -âļ ¾ -ad mission -retro gaming -ðŁIJ ¾ -sch u -mb o -jun ction -al arm -à ¦ -gr ac -kh ali -k ul -m ale -cap tion -wi sh -te re -cor ps -ru bber -play station -er in -effici ent -l or -jo kes -in ary -nor man -lu is -inaugu ral -ch ed -âļ½ ï¸ı -di p -to e -str at -aa c -am u -pi er -co tt -comm and -tt en -sn oo -cu be -clo ses -class ical -s word -expre ssion -reach ing -n app -co st -affe ct -ric o -gi f -brea the -tri be -or tho -h ay -l g -fri es -n m -hi ding -richar ds -en de -mic ro -capit ol -cop y -ro m -regi me -mary land -tax i -di al -embar ra -un believ -ch t -v s -elim in -o dd -pen ny -sound track -l ings -trans ition -rema ining -a is -mali k -? !? -rand om -def end -ul tra -tru m -danc er -st ol -dri ve -a ver -ro ast -defin ition -se an -excit ement -partic ul -su rely -sh av -ber y -di shes -com m -is ol -i am -ob li -gho st -hugh es -chi efs -b as -conserv ative -speci al -fe min -sh ri -n ancy -inte l -tu ne -ðŁĩ ª -jo el -gg le -mo to -ðŁĺ Ķ -bu ck -d ag -antic ip -mont ana -gu id -fro g -ec raft -op e -dri ves -nu mer -x y -color ful -wednesday wisdom -illu min -bey on -inau gur -deep ly -pre fer -for tune -coo ked -ti ble -âĺ ķ -swe ater -it ter -tt y -u i -gi e -com plic -~ ~ -tax es -cu ps -di verse -sam anth -âłĢ âłĢ -ba king -sy mp -wa i -be half -mer cur -travel s -ðŁİī ðŁİ -or ia -eng aged -jump ing -reti red -n aked -p uni -speed way -sci ences -rehear sal -on ym -dy ou -pl ates -r ati -kri sh -jaz z -car ol -ra f -pen alty -tim eline -ru by -engine ers -ra f -bel le -do se -che on -esc ap -me g -ran k -or d -me gan -mer ch -ec lipse -âĺº ï¸ı -ple dge -kir k -per si -leice ster -sa k -w k -saf ely -yy y -je t -promis ed -j c -en ne -no ah -re no -re a -ðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤ -tra il -ðŁij Ģ -f d -soo o -ri min -w k -ภ² -i al -x ox -bis cu -d ale -fan dom -particip ating -fla g -privi lege -pe ach -mach ine -bo ston -gro ss -o g -mir acle -adop tion -u ss -mon sters -be ij -clar ke -pu shing -pra ying -ar o -d n -ell is -apol lo -od ds -refuge e -to w -b p -ðŁĩ¬ðŁĩ § -h end -app eared -memb ership -pe an -du m -viol ent -v y -potat oes -aw w -greet ings -t ts -ac on -sh ane -photograph ed -cra b -temper atures -cu ba -c fc -wel com -he l -in nings -m k -co de -kno ck -gra ss -swe dish -p ta -ick y -v at -lin ing -s q -sa p -ar c -announ cing -sk ins -cit yof -br ing -co x -gam er -it arian -i da -h d -ros se -sad ly -ge o -âļ ¡ï¸ı -tag s -fa ther -chan ge -l ance -whis key -adel aide -te c -stick ers -marke t -class y -bad ass -flo rence -lin er -fro st -k ate -ac on -scand al -es sex -ðŁĺ ı -vi vi -dr ill -blo ggers -recomm end -d ha -ac res -ro ma -bu y -gro cer -er ia -ma har -ff er -patter ns -ver i -com pu -st ev -ang a -ment or -do o -it ali -cdn poli -on ly -conduc t -elec tro -de f -wh ale -prepar ation -bicy cle -vi ral -turn out -bra ss -qu ad -hospit ality -pack aging -den cy -ceme tery -abo ard -dre aming -pic ture -t all -inv ent -ad mi -o e -tem ps -qu an -fun dam -pro mp -resi dence -mu d -sour i -âĦ ¢ -graff iti -gi f -d nd -com p -s war -pe eps -pale stine -devil s -san g -assi stance -bi ke -missi ssi -inter viewed -ne phew -dru ms -v and -gentle men -n sw -inst a -leban on -ee ee -oli via -ver y -rou gh -industri es -m ation -ðŁĺ Ĵ -bar rel -n ay -po ps -moder n -ill y -are st -on ents -protec ting -v ans -e o -vi kings -restaur ants -re ck -jac kie -andre w -w illing -he ath -citiz en -disc rimin -๠Ī -stu art -m ys -hi p -tran sp -" ? -te x -su shi -ke d -cro ssed -dist ur -pe dia -f ate -some how -mo th -proce ssing -is s -r in -u ts -yy c -ver t -lg bt -re id -on to -arab ia -habit at -= = -stre ak -simp son -addic tion -wim ble -deli vers -challeng ing -ðŁİ ¶ -fran ch -e du -s me -ai ds -hur st -th am -tari an -remem bered -palestin ian -fe es -tru m -sket ch -ur u -fit ting -jes se -ðŁĶ¥ ðŁĶ¥ ----- ---- -ba ch -ici a -colo red -da h -associ ate -int el -s eller -p u -stu ffed -ac s -b s -sh in -cooper ation -certific ate -ab u -ingredi ents -re v -in ge -el der -christi an -bun dle -th ic -dir t -beij ing -comm it -ted dy -ed u -to day -s field -w yn -confir ms -lo o -j v -ene ss -al pha -vir us -ari um -gr ind -bri dges -introduc tion -pol ls -bac ter -z ach -termin al -ra iders -fla vor -zom bie -vo d -sp reading -gameof thrones -effici ency -lat ely -ale m -twee t -cri mes -cl er -de y -dg ed -hy un -pay ments -cir cus -ðŁĺŃ ðŁĺŃ -mis souri -lu b -episo des -c age -po s -mat ching -tumb lr -lin ed -ge st -am bi -nar r -ing ton -regu l -blo wn -is le -co co -on don -joshu a -tour ing -sm a -sau sage -best friend -bo eing -desi re -sav age -ra pper -de vo -te ar -take over -cow boys -po ker -par ag -pp e -h int -we ars -se th -ro les -l anc -man ga -form at -fl yer -c ay -mo or -ba ke -spla sh -v ad -ker ala -proce eds -sil ly -reflec tion -di str -wi d -su it -ci vic -yan kees -by n -migr ation -di stin -or ch -fe mini -quali fying -tu ri -o be -hun dred -cra p -wan g -mathe mat -bu re -expo sure -fergu son -seme ster -re serv -pl ym -a hu -fac ial -wa x -wor ried -ca b -vi o -as a -co d -to pics -p cs -hal o -rescu ed -horiz on -ar k -âļ ª -hol ly -el f -ul ti -pu p -quali fied -attend ance -ati vely -destro y -y c -for th -photoo ftheday -c ents -ic eland -meas ures -de sk -port folio -artic les -direc tors -dat ab -e w -creep y -oun ding -hon oured -mi st -j it -men tioned -port able -iti c -d ann -friday feeling -am id -ti ger -scri p -helicop ter -hard ware -expl or -work place -austri a -beat les -ber nar -spi der -disc o -cul t -lim its -shor tly -fin al -nin ja -lu ke -le bron -wal mart -o il -van illa -shi re -ye g -ak y -c s -bl er -collec ted -t g -rol led -speci als -b ff -pier re -sh im -vi er -flash back -restor ation -individu als -pro d -fre aking -tu rer -o a -re fre -mor oc -gre et -re yn -care ful -our ing -u sh -is d -g ill -vie w -thunder storm -b led -pic nic -guar di -pi g -ar k -syl vania -bann ed -u cl -vi jay -ori um -av engers -believ es -eu r -monu ment -concer ned -la bs -ber g -a ap -vi sh -sing les -can cel -z el -ar ab -ru th -too th -ar ta -sh af -chair s -r ack -dise ases -crow d -cl y -fle x -christ ma -artif icial -tom at -fin e -dra ws -advoc ate -fran ce -Ù Ĭ -ðŁĺ ³ -heav y -s our -compre hen -no ble -aa p -hin du -cor al -g ars -ow en -n l -st all -yel low -mar ina -in ver -suppor t -tou gh -promis es -pi e -master piece -sco re -for ce -mor tg -crypto currency -o x -r ors -rock in -pro vin -ho g -no stal -oak land -pat rick -inclu sion -tra ffic -ah med -a ha -lux ury -con secu -de mon -âĸ º -b lowing -st ag -: " -encoura ge -ben e -sku ll -do dge -bu ster -kin son -wit ne -er ror -lo west -fel low -à ° -sh re -bl ur -vir gin -compos er -sli p -mor nings -ga ins -tab le -gra in -ari st -braz ilian -w we -tu es -ribb on -an ag -di st -sac rif -em brace -entreprene ur -af fili -de o -t ali -touri st -fat al -ì Ĭ -autom atic -ðŁĩ µ -we ak -wel fare -confir m -benjam in -fi ghts -alleg ed -me ad -strugg ling -pro secu -che f -à ¨ -propos al -er n -ðŁĺ Ħ -dy k -on gs -hon g -m ack -mel on -on ent -ru sh -d ap -tol er -pro pag -c ze -trans lation -wal let -cott age -sa il -constitu tion -ðŁĴ Ģ -mun ici -fav or -storm hour -i h -ðŁĺ Į -approach ing -pin ned -j ed -niger ian -n ach -sh at -particul arly -mc don -camer as -anni e -admini str -he at -electr ical -char ming -gib son -bouti que -ex posed -ac tor -pil low -beach es -genu ine -margare t -ben nett -lou isi -pos itions -el y -shin y -ten tion -architec t -ren tal -ac qui -goo gle -sub way -mom ent -ðŁļ ¨ -ri m -metho ds -cy cli -nor folk -Ù Ī -over whel -ra pid -we ar -happy birthday -progre ssive -ðŁĴ ¥ -co gn -pap a -f ool -philosoph y -pol ar -jim my -wi g -ðŁĴ ĭ -oper ating -reduc tion -ph i -fla gs -to the -o di -a res -k oo -k ang -ar kansas -ash ton -wimble don -sci fi -attrac tive -mississi ppi -logi sts -ral ph -la bel -gradu ates -ma ha -home town -âľĮ ï¸ı -foun ded -on the -li z -trans l -mini mum -pre sti -ta m -gener ations -re bel -journ alists -par am -mc m -acry lic -death s -tes la -w t -bry ant -jer us -i stanbul -muham mad -ri ley -k ris -work shops -is o -coun ts -stre t -prote cted -trin ity -man ual -r hin -r il -pleas ant -le mon -ner d -har der -dar ren -bur y -ra h -bas is -mi gu -occa sion -li sts -âĿ¤ï¸ıâĿ¤ï¸ı âĿ¤ï¸ı -e b -de cre -hamp ton -ìĿ ´ -tra vis -trans form -puer to -nh l -av oc -tri ps -unexpe cted -ve t -di dyou -bar ber -st ages -m son -re presented -for t -l al -pp le -nic ely -ignor e -qu il -qu inn -h k -carri er -remin ded -am ong -pass enger -el len -gue z -sc ape -mu ral -youn gest -ma sh -d ill -rout ine -stain less -jack son -gand hi -th al -on ers -edit orial -convers ations -sd ale -autom ation -i ke -า ภ-ðŁĩ ª -hau l -la ying -men tions -am en -abor tion -i bi -coun ties -ca therine -man ds -jam e -roll er -au t -n am -o logical -cep tion -ran king -tox ic -sn acks -victor ian -bang kok -psycho logy -re g -ang ela -respon d -sty le -sophi e -dak ota -achiev ed -mar ked -imper ial -in as -glo ves -sli m -confi dent -att acked -gg er -lon ely -valentine sday -re b -craft beer -orig in -zim bab -ce iling -te ens -other wise -w b -f ers -day sof -advis or -y ah -âĻ ª -en der -republic ans -av a -skir t -pi pel -chi e -jan e -ja x -ðŁĺ ĭ -âľ Ĭ -j ays -bre tt -bal o -cru cial -d har -as is -de au -lloy d -chat ting -âĿĦ ï¸ı -rel ay -remark able -n s -we t -bris bane -ðŁĶ ´ -tion ally -f k -la yer -house hold -consecu tive -es is -pend ant -st ir -crit ic -su gar -photo shop -pa res -arti stic -do dgers -c un -cra fted -am end -bo at -âŃIJ ï¸ı -egyp tian -sa w -tra ge -small er -ox y -pa ired -nex t -i res -tac o -o y -u c -st i -a erial -: // -dr o -dot com -gg ins -r pg -ay e -le an -stri ker -lo bby -prote sts -pri ority -congre ss -am ate -inv it -r ington -mom my -th us -allow ing -pione er -enfor cement -g ori -tal k -dra g -du mb -bul let -san ge -er y -tar gets -ðŁĩ ¦ -he ather -consi der -seaf ood -ve st -ris ks -% . -p g -sac red -he ating -kick ed -tto t -. - -chan di -co ven -po ol -pul se -i a -ro ster -shakespe are -es a -car go -pean ut -tro op -ac tion -tab let -home work -cast le -stru ction -mus icians -free zing -bu tt -justin bieber -j j -bah rain -an them -au dit -didyou know -na vig -guid ance -âĸ ¶ -tur f -n un -fic ations -ye men -char ging -x c -bron cos -su bur -p ale -bor ing -among st -for the -em per -om fg -p j -expe cting -ðŁĴ « -st l -ad min -expect ations -sw an -shoo t -oooo o -min ent -ãĢ IJ -wall ace -stan g -satur day -adop ted -dou bles -hom ie -ome z -d han -vent ure -surroun ding -fi le -mob ility -de es -w ski -broo ke -emb ro -re members -kar a -test im -bo tan -m tv -sacrif ice -jerus alem -d l - ´ -proper ly -ili on -as i -leg it -co pe -m cla -recy cling -lar ger -ðŁĴ ĵ -pat ric -gener ous -ja red -p f -mol ly -thom as -ju dges -h b -sor ts -bl vd -o ven -enter ing -plan es -be et -integr ation -boo ked -fre ed -ver n -ash es -to pped -de pot -welcom ed -ren a -m ick -d and -see ks -gam er -ran kings -ren e -mu t -whis ky -fire fighters -gu es -ga ther -tour ney -de men -y ang -new ton -autom otive -back yard -deta iled -mi st -to bac -fi ber -un usual -grat itude -sp are -ne ys -: * -per i -flo ating -fin alist -don ating -dre ss -bro ad -be the -econom ics -tai wan -ed wards -plu g -pra iri -val en -bab a -f ad -an as -har per -dis order -app lied -p att -bi kin -li ver -cu ri -carol ine -ann er -juli an -wal king -mal col -screen shot -co ding -skin care -activi sts -myster ious -ex act -blo cking -mercur y -bat ter -du mp -âľ Į -en se -li sh -ridic ulous -prote sters -ðŁĻ Ī -lu st -swe at -as s -ali ke -co dy -re ments -win ds -as pir -vi enna -pra y -.. .@ -bo i -cand le -assi sts -te e -der son -p ony -f ence -con spir -âĺħ âĺħ -oo th -e pic -ba rely -a unt -b am -diamon ds -end less -scre ens -can cer -gr o -p st -pro spec -mo sque -help ful -ou ri -bro ther -gu jar -cri sti -ine z -to wers -ad dresses -gra y -bur ton -re tweeted -ðŁ¤ Ķ -n ity -du ck -super vis -jo an -kin der -sanc tu -pi ed -âı ° -ł ï¸ı -m ati -reven ge -ce ster -eli fe -desig ners -back ed -bo li -wei ght -cou ch -su res -s its -shri mp -la gos -auth orities -os ity -hol ly -compu ting -fac tors -ab e -pan els -ram ad -sent ence -missi on -hol m -r b -d ads -shang hai -mon ey -she ets -sk ate -thre w -cup cakes -infin ite -l is -practic ing -ess ay -ka i -as ci -mo b -u gh -hol mes -re gg -ik h -mo ck -collec tions -pe p -o va -sal t -nan dez -co y -thre ats -tex ts -cin nam -pregn ancy -pen ding -stam p -flow er -g is -agre ed -pay ne -ro ver -ph ra -sof t -f fin -fa thers -pass engers -aw ays -al a -h es -li van -in s -samu el -ingu i -h of -j j -chen nai -cat al -om ic -he ath -ni ece -pump ed -integr ated -are l -no m -produc tivity -wan ting -vis a -di ana -tw il -it v -cam ps -ro wing -d ley -black and -gu ards -b ells -re verse -vi be -ric ky -mo ss -ny t -âĺ Ģï¸ı -el le -tro y -cu dd -ev an -women s -fo to -mi stakes -wick ed -mi l -c led -me mes -co smo -schol ar -ren o -ðŁĺ Ģ -v ents -# âĢ¦ -terrori sts -ca sey -cardin als -ðŁĺĬ ðŁĺĬ -venezu ela -bol a -liter acy -t w -en o -con tains -au stin -fin anci -ev an -har vard -origin ally -chev ro -her ald -nott ingham -manag ers -âŀ ¡ -accep ting -wal sh -tutor ial -entrepreneur ship -yach t -requi rements -glen n -pe de -unfortun ately -ach ing -dais y -gi an -night mare -âĿ Ĺ -r ina -b art -ema ils -oppo site -who m -sa ke -pu zzle -da shi -par ty -blan ket -bus es -lo re -beau ty -reas on -pun jab -winds or -func tional -exi sting -hel lo -gli mp -con vin -la k -scre aming -rebec ca -bli ss -north west -infin ity -cosme tics -pul ling -coffe e -pl ing -op ho -colom bia -interior design -( + -emo tions -sa c -sun glasses -sav es -d f -six th -al y -ðŁĺ » -de en -dev ast -polit icians -lac rosse -g u -pe i -jav a -comb ine -coal ition -er ts -survi v -ch ad -stri an -n n -de vi -coun c -concer n -contro ller -bre ast -j ury -tu m -introduc es -la di -mobi le -al z -ste ady -nur ses -h acking -on line -oce an -ðŁİ Ħ -a am -ju ven -ic c -louisi ana -ar te -street art -is on -wn s -fr m -p anda -no ir -main tain -del ay -symp toms -thor n -ge ome -ter n -carri ed -p ru -pan or -as sy -per u -clou d -sp ra -pe di -e ste -tag ged -ðŁĺ Ŀ -shado ws -naz i -ا٠Ħ -cor ri -âĻ¥ âĻ¥ -j ad -ðŁĩ « -form al -spo ken -ðŁĮ ŀ -enjo y -lo pez -out look -in ho -w ander -Ù ħ -ma ya -pe e -d ine -ãĢ ij -brief ing -suppor ter -ar ily -ght ers -natur ally -doctor who -j en -v ar -new year -re se -si mm -re x -con sequ -tomat oes -bur st -bra vo -bur gers -cr acking -nor theast -bi om -mush room -mar que -dou ble -ni er -v ag -tw enty -key board -win ni -jama ica -par ish -: - -mental health -ali zing -ren der -wa king -ðŁİ Ĥ -g ly -na than -wa shing -mel issa -jun g -loy al -chil i -song writer -guit arist -bo wie -neighb ors -onym ous -as set -ta i -head quarters -ðŁĮ Ī -i hear -ci gare -sur g -) " -re pl -dar ling -ðŁĻ Ħ -z ak -sa re -ãħ ĭ -mic key -ware house -mass age -ine es -did nt -i w -hur ts -eng aging -mag ic -women in -k itten -mor s -c art -tit ans -colle ague -compe ting -er an -k hal -mar ble -dem and -del ight -et ary -bli zz -lou ise -m ls -fini shes -experim ent -conduc ted -electr onics -itt ers -car ing -wh ats -sym bol -jun g -e cu -pi x -con text -char ger -ðŁĺ ĩ -re ig -fra g -ë ĭ -ch ad -tru e -ker ry -def ending -a int -au ton -check out -bar nes -less ly -d t -m me -clou dy -second ary -are z -_ : -app a -const ant -" ) -ve ts -jo b -i ent -ðŁĺŃðŁĺŃ ðŁĺŃ -m j -fren ch -di ver -davi es -hh hh -e book -๠ī -mar iti -bree ze -susp ended -mat o -vi et -ra hu -se i -bol t -en ary -le is -kar l -fr amed -expla ining -ab c -de aling -nat o -ja ke -exp and -leon ard -establi shed -du b -ar men -el led -voc al -nichol as -ori ent -k yo -illustr ated -ah h -danc ers -milli on -ge ta -po pp -as u -mur dered -gi ble -sto ked -gri ffin -maxi mum -adri an -en counter -ther o -david son -ðŁį » -holi day -ev o -asse ts -car son -memor able -âļ ½ -ob am -represent ative -cb d -tr icks -vo gue -vo ice -mm mm -sebasti an -cli f -ath y -par alle -ðŁ¤ · -pa k -ev acu -e ats -ا Ø -tou ched -organ ised -spir its -can ad -gui ded -frame work -ðŁĮ Ł -pe d -natur al -ag ar -replac ed -anch or -ti t -sha h -organ is -super ior -r n -ch ro -eric a -st ill -cor on -chu ck -loc ks -or gan -ro sen -sc am -ben ed -/ # -ke en -tre vor -vamp ire -sor ted -! ' -af ford -in tro -gr ace -ðŁĺ ľ -sau r -kick starter -influ en -v u -y up -po c -ðŁİ ¥ -a ar -s ang -tre k -et sy -tb h -scre am -chevro let -pix el -shepher d -an or -gabri el -tw ood -sd cc -me ters -develop ers -clo sure -v w -twit ch -ì Ĺ -se oul -pr ice -ho g -n ish -hill ary -scrat ch -in cen -wag on -dis ability -pan ther -ch ats -g d -wit z -sus sex -l ate -den mark -ger ald -cancel led -net te -i x -nav al -bap tist -te t -y ad -ma th -ho y -r andy -po int -intel lec -fru its -w ool -gu in -pr on -the ft -con dem -mar ry -n ola -architec ts -cin cin -roc kets -gentle man -ex plan -t ate -do e -ra ises -wild life -w l -insi der -blan c -w p -for sale -ny c -po well -unbeliev able -pen s -goo dies -mu stang -p ens -st ays -squ ash -xox o -near by -ever ton -co co -le agu -k han -stu d -south west -con struc -s worth -cro atia -le a -su ms -aim s -e an -van ess -iti ous -pa thy -arc ade -b end -sugge sts -sac ram -roy als -ri er -em ir -in cl -an k -clar k -ri ght -vac c -ठ¾ -tan e -li b -u sc -sal es -hu h -s ally -ver a -p ga -gro ws -dru m -tre e -eth ics -sug gest -is ab -se aled -pre viously -anim ated -ab du -ri ses -glo b -pre dat -scar f -del ic -om ar -ll i -sx sw -py thon -ne bra -fun k -reflec t -pav ilion -tic ally -ch asing -bak ery -inva sion -ko h -believ ed -co hen -con qu -cra fts -nat i -cle ver -govern ance -sam ples -fa ils -â Ķ -ti mo -r itu -stri king -inclu sive -sho cking -can t -requi res -dra wings -à¸ Ń -purch ased -du m -z ach -war ner -con sole -man sion -foun tain -circu m -e sh -is land -mil k -pro fits -hali fax -ri val -âľĪ ï¸ı -jen ny -sand ra -ny e -k elly -y al -qu ad -no s -inste in -fin alists -mid fielder -cu e -excep tional -a an -sa pp -gett in -sa a -f ati -sl ice -vol k -s wal -la sting -sum mary -it as -sm o -s z -âĺ Ĩ -ip l -fl ames -ene ws -ha v -hoo die -pitch er -win dy -re vol -centr al -ton ite -ðŁİī ðŁİī -sol ved -mil wau -organiz ations -wee ts -re fin -s th -ãĥ ¼ -el in -ton a -cinnam on -ðŁİ ¨ -ðŁİ ģ -ron aldo -pen insu -ome ga -el ds -desig ning -e igh -blu et -ben z -nu g -ash a -robo ts -su dan -choo sing -en do -ser ge -clo sely -hand y -fing er -be ing -ar te -survi ved -fl ame -mile stone -gu t -d war -fu tures -é e -el o -fri dge -eli c -ou ch -u b -p v -tit an -col lar -st ation -nev ada -aur ora -r d -dun can -âģ ł -bri en -mar sh -Ð ¾ -to tal -ch ry -s ers -su ffe -ra chel -colle ge -to days -cour ts -ch it -re united -gym na -gen esis -be side -re presentation -ch ant -collec tor -ra k -ath ens -ni gh -mun ich -langu ages -fl u -particip ation -__ _ -c v -spec trum -so da -co ver -refe ren -ab bo -ap a -public ation -ed m -mon ica -ar my -ðŁļ Ģ -div or -dr y -stre ams -robo tics -ci der -bull ying -appro val -sto ke -plat forms -sier ra -ex tin -i b -ha yes -succe ed -suff er -at ically -da i -lyn ch -h ound -del ines -ack now -d ated -exclu sively -he res -fac ilit -dam aged -char ter -la kers -fal con -unve iled -wel ove -e ase -pati ence -l one -gent le -gene tic -produc ing -g our -shann on -bil ities -zimbab we -p int -dau ghters -liter ary -bel le -cl am -surroun ded -k any -ne il -pir ate -rang er -hb d -nat alie -bel ong -olym pi -emb assy -sc ol -en er -ak in -lo ren -b h -: / -di va -den im -hi pp -ðŁĩµ ðŁĩ -arn old -? ' -we ren -em power -dis abled -man or -rasp berry -b af -aw ful -dru mmer -kar dashi -n ash -machine learning -ch u -rebel s -tim ing -mon roe -ton gue -ran ge -pup ils -re ss -amaz on -b z -har ley -pal mer -ballo on -s ings -ic ec -j b -c ers -g ps -whi st -ri se -l t -oo oo -c attle -shoo ter -vod ka -uc l -mt g -le sli -jon as -di spo -at ric -ste in -vintag e -fir ms -flo yd -cow boy -soo oo -is aac -war craft -disney land -beauti ful -be am -franch ise -bu n -k ag -an on -tur bo -swee p -made in -kar achi -dete ctive -penn sylvania -contro versi -vitam in -a side -chron ic -descri bes -remo val -ha h -ap er -ten ed -u to -bad ly -mir ac -f ry -ye a -in jec -ther mal -comp act -th or -te ed -ur gent -l ite -g illi -sop hom -ic o -che m -p m -for k -fre ak -ch ak -recipi ent -i y -ni k -model ing -c ans -ðŁı Ģ -del ux -se am -surviv ors -rad ical -investig ating -reli able -f m -tur t -ligh thouse -to ol -go wn -) ) -bo ts -auto graph -a id -bu ffe -h mm -horri ble -ssi onal -ann i -๠Ģ -k its -sch i -eter nal -hu ss -sens itive -r u -tast es -chec ks -im o -por tion -sk ate -e den -half time -fri ed -ri hanna -ti se -fl ick -ca in -s gt -âľ Ķ -sh au -sta ined -ra ffle -dro ve -sal man -princi ples -sh o -ar u -je ss -gu ine -gar bage -my an -jel ly -dis ru -z ia -q ld -ent ries -la v -fle w -ad mit -objec ts -comp are -ny times -cann es -p n -suff ol -ro c -d ana -e gg -hi st -coun sel -' ! -phy si -imag ination -ad just -explo sion -plym outh -hor ror -elli ott -bour ne -de x -bre ed -au dio -lob ster -disappo inted -nation wide -( ( -incre ases -austr ali -ce dar -star ing -rac ial -e is -g mt -visi ons -stay ed -discu ssions -de an -cur tis -mai den -stel lar -happ iest -h wy -pre season -car av -mon days -hospit als -glimp se -schol ars -ja i -ter race -ann a -goo se -gra ded -lot us -hun g -grocer y -stam ps -emper or -sc oop -in ser -c as -exist ence -he al -fal cons -mar vel -reduc ing -terri fic -magne tic -perfor ms -bar re -p us -tre ating -ic on -w h -decla red -tra uma -do d -come dian -nik on -bu gs -as m -mont gom -ibi za -comprehen sive -ha s -san ti -fellow ship -da sh -p sal -louis ville -sp y -fau lt -d the -fi led -vi sta -de sc -fe ars -you tu -sp s -es p -ri g -cri me -ber ger -wonder land -k ent -in formed -stev ens -my th -ast on -ir i -visit or -at ri -produc ers -al la -person ally -separ ate -agen cies -af ri -il an -spo ke -n ina -squ ad -di ves -de pend -li v -fier ce -enter taining -cha in -sc at -bor ders -pal ette -sp ro -os is -der by -tobac co -zi o -willi e -ju vent -zoo m -hol y -enti rely -af e -mart inez -be ds -pe a -bull dogs -ðŁĩª ðŁĩ -ib m -ne on -ethiop ia -team mates -plan ting -tw er -any time -for bes -ó n -run way -ner vous -ro ger -p ile -ch anc -apo caly -u w -o i -dr ought -territ ory -br ick -cre atures -go in -w aff -gre n -sou theast -je an -am bul -ed ited -stra p -c v -aar on -ãĥ» ãĥ» -t su -descri ption -kin dly -clu tch -im mer -en or -women sday -or ange -ra g -ob vious -hy der -chann els -man go -me yer -ra ining -ge tty -pil gri -coordin ator -up load -ninten do -don uts -san chez -app arel -j r -zz i -, @ -jeff erson -accessi ble -great ly -e id -initi al -budd ha -par is -ma scot -â¬ĩ ï¸ı -sch war -si ri -sp inning -mortg age -e cho -end ange -ge dly -chlo e -enh ance -kar nat -k ry -explo res -ðŁĴ ģ -af fair -ic als -all a -dar t -dolph ins -diffe rences -squir rel -au gh -dr ones -ell en -re store -pa w -un for -pi ke -hil ton -colla b -consu mers -co inci -out comes -pp p -a q -coup on -li est -si ms -k ho -av es -spo on -pu dding -cor byn -hat ers -ex ams -sla ve -. ! -p sa -app les -tam il -se d -co ke -zz o -lo sange -car bon -cla ir -... ) -k hu -cra ig -explor ation -sanctu ary -su e -al way -demen tia -won ders -super hero -pakistan i -brown s -bluet ooth -lo cker -mar c -ev entu -delux e -rodri guez -âĿ¤ âĿ¤ -ro bb -ðŁĴ ¦ -lin ux -ten s -intellig ent -se ed -vo ter -s ler -pe aks -inter n -teen age -peninsu la -hand ling -ti e -cou sins -wen dy -me e -à¹Ģ ภ-din o -ðŁĴ ° -ðŁĺ ĥ -ze e -s bury -trage dy -b k -bo re -z in -war ns -idi ot -tou ching -contin ental -tac os -saf ari -wa shed -po dium -morri son -fore sts -c bc -al on -partic ular -be ads -inv ented -lo ch -li ghter -where ver -i de -docu ments -a we -k r -no where -min er -st it -ro x -contribu te -har dy -cl an -ob ject -ca it -ðŁĴķ ðŁĴķ -happ ier -vege tables -t art -g ag -nom inee -heav ily -pan ic -j d -there sa -at m -u ph -s fc -su ri -drin k -n al -re vel -k l -avoc ado -nom ination -ma donna -shar on -malcol m -control led -sh ers -revi val -legis lation -shoo ts -n in -comm entary -pro s -human rights -str anger -mit ch -pipel ine -leg ally -th u -gil bert -tol l -gran ted -gh s -ir anian -refre shing -du k -ab i -pri me -jose ph -mo sa -stati stics -produc tions -mer ry -pat el -sa x -human itarian -struc tures -e missions -town s -fre el -ster ing -rat ings -alle gedly -cab in -st l -w ade -fl yers -tri m -promis ing -z u -bal lot -compar ison -free ze -ou ter -great ness -as sign -snow y -r ale -tor ies -med iter -kno ck -consult ant -cincin nati -analy st -sc oo -je ws -appro xim -pu re -portra its -cy rus -ation al -lo ans -acqu is -el u -accep table -uni on -water color -ru st -batt les -per fu -seas onal -ser ial -mind set -ri ot -fel d -enni al -clo set -pri est -tan ks -int l -scre w -bu m -ab dul -ou x -expla ined -ric a -imag ing -law yers -bu ried -ãĥ»ãĥ» ãĥ» -ear l -âĢ ķ -l ton -resto red -stri pes -fo ss -de mands -ste aling -alex is -mun d -ak er -ur us -war dro -hu gs -gen re -e go -Ù Ħ -particip ated -bab es -ban quet -ti ous -he mi -ds b -lo st -milwau kee -jen ner -ge m -ou tra -lo ses -id i -re ps -ðŁİ § -regu lation -fla w -f ang -vibr ant -ram p -ra ins -well being -so viet -vie wers -de po -libr aries -bi go -ser y -g ill -de struction -co z -c x -bri dal -al ds -plan ted -amate ur -lu d -che ering -show cas -pro file -i u -ver tical -pack ers -wiz ard -ski p -s light -be au -air ways -mu ch -re ra -ðŁĮ Ĭ -ab sor -pati o -pack ages -s ells -ment ally -ðŁĺ ¢ -reyn olds -k are -tri bun -wal t -kn it -ta ste -sur rey -boun ce -cre ature -b are -bet ting -su re -mi ley -laugh s -al ore -cy n -t l -arti st -ann ah -war mer -dynam ics -lunch time -mariti me -vulner able -ðŁĴ ĥ -wol ver -dur ham -const antly -am in -si bl -: @ -bul let -k ach -angel o -wil der -doo m -desk top -law suit -k ca -hen derson -inv iting -bet ty -ta wards -ra fa -le aked -and i -ge ms -af l -vel o -mediter ran -pro be -to tten -steph anie -sn ation -com be -q s -over come -assas sin -ra v -fil ip -winni peg -sh il -determin ed -k as -ou tre -regre t -gui des -aa a -ðŁĺ Ī -wi ves -mani fe -er ly -sm y -sh ima -x ing -pix el -jac ob -ac commod -to y -on o -po o -ti er -an swe -ðŁĴ ģ -ro sa -le ase -bel ongs -th ar -eventu ally -nei ther -go a -ski ing -at ra -ag h -broad casting -f ury -py ram -d ice -volk swag -wom ens -provi der -bom bs -miss ile -whi p -d ick -nor we -back up -el der -mat ure -concer ts -gi ous -sque e -good morning -bra ves -^ _ -au ssie -lun a -mal es -he ck -for tn -rome o -steel ers -p n -pe er -re presents - « -kat y -migu el -requ ire -cha ins -l ur -immedi ate -ti mber -âĸ¶ ï¸ı -advoc acy -ex port -an z -tiff any -auth or -ðŁİ Ī -du des -chil ly -hi d -har m -bu g -mon ster -terri er -tu c -story telling -ta k -in ti -immigr ants -b is -reach es -com passion -john ny -contribu tions -ðŁIJ ¶ -mechan ical -impre ssion -ran ks -ko be -men ting -bloss om -pab lo -buil der -bom bing -tw el -sul livan -om o -pe te -de mi -ku dos -w bb -t gif -mass ach -neighb or -che fs -eng ines -pun e -ga ined -phan tom -s days -ext end -gr an -cent ers -jac qu -dat asci -sleep y -el vis -answe red -s lot -con y -flexi ble -ti ally -le tics -% , -andre ws -si ble -mom ma -vin o -do x -invit ational -twil ight -j ade -ill ery -joh ns -f ou -p v --- -> -break down -billi on -prin ter -mon d -c bc -mag gie -legi on -du b -kur t -po or -paren ting -regi ons -bikin i -be ware -si onal -au burn -kid ding -amp les -sp an -con tempor -c ic -ha bits -ak o -pre fe -bud dies -it z -em ily -person nel -moun tain -ver sus -ðŁĺ ¬ -ear ning -s ink -dar i -u u -s win -i ster -bru tal -n ac -kat a -clo th -am and -ðŁĶ Ĺ -ne o -alu min -week ends -nebra ska -co des -delay ed -brun o -pro ven -in c -i ght -fl an -or o -lam bert -regu lat -w f -massach use -kardashi an -bern ard -fi esta -volcan o -grand pa -anc a -d re -st itu -mean ing -fo am -au ck -at ed -r l -hot el -pers ons -dy nasty -ell or -ma i -am ne -sty ling -avi er -e g -vege tarian -, âĢ¦ -foun ders -sta in -g d -cy cles -sky line -trac tor -exi sts -tra l -kid ney -mar il -inst ag -se tte -addic t -tri angle -flash back -controversi al -z on -p ins -i as -tr ay -town ship -deleg ates -sp am -h ms -cr ane -peop les -o lo -fac tion -but es -on ica -deleg ation -new profile -eli er -mc a -w and -g ely -losange les -ber ke -ti ve -dis rup -zz a -cas a -jor dan -ford shire -ga thered -ic hi -atten dees -à¸Ń ภ-pe ppers -co in -bour bon -ern ity -ro tary -behavi our -jere my -team work -compli ance -tre mend -ðŁĩ § -bu hari -cam bo -bu yers -ha gen -bu ds -bay ern -mon te -sm ells -an za -ath lon -descri bed -work force -gi ving -ap i -invest ments -da il -sel ena -datab ase -th um -mor tal -stu dent -bu yer -do ver -gar ten -att le -loy alty -gen oci -holo cau -theat ers -ru ling -ven us -pat ent -ch un -ab by -awa ke -mass acre -bang alore -break ing -simm ons -ju sti -hal e -ed chat -gg les -haw k -mar king -head lines -stro m -co ve -breath taking -med als -hair cut -christ ine -tele graph -gujar at -ju ra -can e -sho re -propag anda -mu eller -.... .... -sa vi -stom ach -thro ws -ta b -war m -j ong -reno wned -hi r -ra is -mush rooms -guaran teed -bo a -m j -revolu tionary -certi fication -bru ins -jo in -w es -pas sport -c g -sex u -cap able -w v -ton es -jac kets -ac compan -spin ach -fore ver -bla ir -wat ts -g l -cou ples -prairi e -newprofile pic -logi stics -massachuse tts -jagu ar -o id -we al -under water -mo z -y i -ma ths -myan mar -pre ps -suffe red -tr ace -wal i -ah hh -bor g -st itch -cu lin -real ise -infe ction -discrimin ation -sh ame -an kle -hu mid -y t -brac ket -tru ck -tri u -ea ster -commun ity -post card -invol ving -ty ler -car amel -over view -ex amples -integr ity -base ment -instru ments -ani um -at us -gh er -laun dry -achi eve -gen eva -pr icing -hyder abad -beli ef -me ta -j aw -accoun ting -lead er -cristi ano -cou ture -cy p -vis ed -, ,, -k nu -h ick -break er -br am -ra b -mo or -ham as -gradu ating -pupp ies -ak h -ta h -ach es -ri e -op ini -g ta -re ign -tra gic -re ver -p ill -pine apple -tou ches -da re -le ys -il o -inter iors -sc outs -bar t -en zie -don o -bro ck -christi ans -ense mble - · -cine mas -new port -air line -win ston -le igh -cont ents -pre scri -ur ge -tr out -fic ally -il ia -sub si -are r -âļ¾ ï¸ı -w ounded -ðŁĻ Ĥ -pe pper -ðŁĴ ŀ -fit ted -af f -re sur -thursday thoughts -z ero -archae ology -di v -je e -i on -awa iting -co zy -beauti es -bal d -dat a -gri zz -stal k -kin ds -cle ared -jess ic -regu lar -ali ens -plac e -bo s -bi zar -thisi s -ðŁĴ Ģ -totten ham -ma fia -s lam -ari ana -car roll -back pack -care y -uni v -r g -pe p -dig it -tatt oos -ag on -volunte ering -diffe ren -consu mption -ka thr -head phones -t shirt -o b -ele ment -re tail -sh ru -al gori -contain er -consci ous -fi l -com ing -ra sh -u rope -def ine -gi or -femini st -flow ing -rout es -gl aci -fer t -somer set -ant es -twee ps -$ $ -h our -endange red -year sof -ro h -po pped -bac king -ba sil -bra ke -mon aco -lgbt q -pra gue -ut ility -cas si -gate way -haun ted -sch ul -ðŁİ µ -shou ld -walking dead -comple ting -dann y -montgom ery -pengu in -ss i -mer chandi -ðŁij ij -chur ch -h ates -cap tain -brea thing -ce t -fair ly -approach es -compan ion -surpri sing -kany e -pe y -hin di -targe ted -lor ds -de ut -di gging -ger man -ru t -ener gy -close st -y un -apo logi -ภ± -s ack -ru p -dd y -port al -d ough -b ats -ðŁĵ ° -at ur -graph er -pi res -mo tors -ðŁĮ ¹ -j c -dan g -tu k -clu e -us c -pag e -d less -bro ws -ju s -ad ing -re marks -oo m -car dio -ste fan -arm strong -âĢ¢ âĢ¢ -ni est -belgi an -bi op -so y -lo f -í ĥ -q t -flashback friday -ce e -ģ ภ-wre ck -mar ines -amend ment -wardro be -vo y -bur ned -guit ars -ra inf -li fel -ssi l -oun ce -exter nal -c key -me sh -she ikh -inv itation -sugge sti -pop corn -phenomen al -an onymous -tun a -chic ago -o val -del y -loc als -( & -pro f -no vel -fin der -spar ks -la ven -in fu -nic ks -qu ant -ra e -exe c -dist ingui -st ances -mu tual -sh al -unve ils -edmon ton -zan ia -a dio -vie wer -brad ford -audit orium -qu is -re act -htt p -l ero -chee ky -impac ts -ta k -ed t -desper ate -t ay -ì Ħ -sett le -bar gain -resu me -un ite -thro wn -ke st -se ys -mar ching -am it -decl ine -sch ar -me tr -stan ford -lin ke -ber ra -dol ls -rug by -jam i -b or -road trip -dino saur -mi k -sun der -re m -b k -over seas -nau ghty -imple mentation -iam srk -lun cheon -fir ing -mi ami -pere z -the e -z on -gi fted -con version -ceram ic -¡ ï¸ı -pe dro -ì Ĩ -v ick -! @ -he ed -si d -b w -docu ment -pl un -gr ants -fant asy -predic tions -vali d -car ved -gradu ated -ðŁijį ðŁı» -nation ally -ch y -af l -re sso -blan k -ri vals -j ig -e ties -om ics -une mp -b ound -sk o -inspec tion -par al -high s -cri sp -b ans -ob a -[ @ -co spla -costu mes -rec all -mou th -ni gel -b ts -ter a -ko v -do cs -west minster -dic t -gra vity -kar i -ro gue -t ted -war k -ida ho -w end -aw i -queen sland -proce sses -cli ffe -m ick -com pens -op ol -the y -cl ari -wiki pedia -salman khan -haz ard -pre ston -swee test -pd f -che es -tr ilo -south africa -bur nt -( $ -con tain -t p -sub mitted -sound cloud -at u -re z -word press -corru pt -n f -ma ker -í ķ -par as -adv ent -ri al -ca fe -fo ssil -!!!! !!! -co ws -c j -sp ur -institu tions -land mark -ent it -re ut -h is -alz heim -we mb -regg ae -mo squ -st at -identi fied -deal er -re am -re land -ten sion -ðŁĩ © -wra pping -deep er -fr at -red dit -ar is -moroc co -.. " -b low -ma pping -pri orities -ing a -swa p -re wards -conspir acy -creati ve -c j -congre ssional -vau lt -ple x -sophom ore -shad ow -ele ss -ðŁĺ ħ -dar ts -aldu b -anno ying -pro ps -n as -alumin um -h bo -offen se -j ill -oni ons -la ur -ta e -har dest -sh ro -ga ining -meas ure -ed tech -cyp rus -tar a -ang eli -car lo -go on -all i -im plic -ju pit -resil ience -ha il -bal anced -) ... -joy ce -gr a -th eli -defin ed -shi pped -main ly -min a -l m -sac ri -o ber -p im -claim ing -ent ers -co rey -bo k -cri ed -cool ing -dani elle -pharmac y -thor ough -ca ke -k lo -outre ach -z ens -digital marketing -val ent -sn p -her b -mr w -caf é -cap tures -no tre -triu mph -pan cakes -cu mber -spi ke -d ation -bi gg -sp er -crit ical -am al -too th -foun ding -a stro -' # -quan tum -th ames -un c -pri de -air bus -kno cked -un defeated -mediterran ean -cal cu -clo wn -sens or -ham mer -for give -cu shi -ber ry -maje stic -elec t -polit an -g ta -k ari -bur ke -sea hawks -volkswag en -re i -landsc apes -cas u -grand father -list ened -/ / -star trek -rainf all -fur ry -vi er -star k -rif le -ff a -leg es -hillary clinton -min us -correc tly -architec tural -pre ce -up side -box er -ðŁĻĮ ðŁı¼ -is ai -de t -pro vo -tis sue -spoo ky -ve led -re con -prospec ts -que bec -âļ « -ig no -anat omy -shap es -w p -p interest -hor e -an es -pick up -ti p -pra desh -hu gh -co e -po k -gram my -well ington -sti gate -ri gh -lea p -king ston -scen ic -go sh -v ani -au g -s ary -zi er -bure au -lin son -con te -fra gr -all an -g aw -lan a -colli sion -surve ill -ren ais -ar range -s ali -do in -br ance -bren dan -our se -in coming -suspen sion -à ´ -l la -educ ators -in tri -da e -bio graphy -bul gar -villa in -go thic -rw anda -e w -may or -meet up -democr at -mor gan -su dden -te sco -car rot -bom ber -mck in -re ne -fun day -agricul tural -haha h -show time -form ing -col a -scor pi -quo te -po ppy -s life -d az -tu b -ne n -mo t -ðŁĺ » -s ore -elder ly -o ve -skin ny -um i -anc o -man ship -we re -g v -k ah -fol ding -ne at -samanth a -dan ish -uk rain -humid ity -nu tri -jak arta -cand les -oooo oooo -at ile -streng th -i bra -bap ti -charle ston -fr ames -girl s -clear ing -glu ten -# # -super natural -ju bi -ph one -he in -dr un -le ak -invest or -y er -dom ain -ball room -mi sh -app li -off shore -bla ze -dor o -âĺķ ï¸ı -win ery -shar if -ad ore -n ir -saf er -si gh -as cri -strong ly -trac y -ck er -ol l -faith ful -ey ed -deli ghtful -vis m -karnat aka -tit an -wh ar -jer seys -re fur -heav en -gri p -pan ama -pre li -glu ten -o dd -cont ent -pon ti -tion ing -e commerce -feder ation -flaw less -ge ar -ti res -by r -pol ice -cu ban -tri butes -tic ul -chur ches -nur sery -di aries -muse ums -snapp ed -i van -wi ght -touri sts -ramad an -t rent -prophe t -won dered -focu sing -hi d -ic ons -i q -ambul ance -pi st -fun niest -time less -sr ilan -bu ys -ki ds -colour ful -a shi -ch ir -mu m -ðŁĵ ļ -let ter -x en -reut ers -pre serve -in ting -ste p -fu ji -uni ver -i u -show down -po ems -surveill ance -suspec ted -ta e -sol ving -tom b -mother sday -car pen -recru it -pil ots -bro c -mix ing -fri days -ty r -represent atives -tra pped -abdu l -free style -clu ster -âļ łï¸ı -k d -sk ill -pit t -ex o -commer ci -muse um -loc ally -g ina -no bel -immun e -fr ac -cap su -main ed -attemp ts -bull dog -be spoke -sing ers -sp elling -seg ment -nat ures -tic k -lip stick -clean er -gett able -preci sion -âĢ¼ ï¸ı -th ood -re ef -no pe -bill y -di gi -mu si -ri val -figu red -tal ity -sun ny -ber k -aw ww -awa its -un real -co pen -asy lum -ex otic -bu en -mo ck -en able -arch y -fr a -pla stic -al mond -amp li -displa ys -abbo tt -s me -x p -ðŁĻ ĥ -graph ic -i ved -mar a -cau tion -lea ks -en berg -ul u -unic orn -cann on -appren tic -ðŁĺĺ ðŁĺĺ -b ball -wil low -at ics -am as -manufac turer -campaig ns -port ers -flo ors -l su -ty pe -ke j -honor ary -it im -to le -min ecraft -d x -ma sh -ri o -consequ ences -ron ald -go ssi -suffol k -mu se -r bi -live music -i van -ðŁİ ¤ -le u -patri ot -man it -lan ca -home decor -de ar -sig ma -ti de -str ings -v ita -sequ el -try na -inve stigate -bor is -ve gan -barri er -mind fulness -web b -hu stle -in da -tan zania -str ay -tex as -c ag -diagno sis -wom an -g w -ob session -l ative -nu fc -fl ynn -moment um -sof a -wal d -vege table -tu cker -supp er -se ab -ar ro -se ag -ven ting -counc ill -sp lat -cal cul -.. # -com fy -odi sha -sto pp -war fare -ca es -à ¨ -co y -price less -in sec -ðŁĺ Ľ -contro ls -empower ment -datasci ence -per pe -gen ic -e res -tru deau -man o -sla very -expand ing -ma he -fa iling -s aga -photograph s -cre st -re on -surf ing -hi e -ðŁį Ģ -ja e -fel lows -south ampton -sol om -ce ster -tab ility -hor n -se ct -he e -cole man -at las -explo rer -consul tation -copy right -organi zing -den ied -mon keys -noo dles -br is -fl or -dou gh -bon ds -sho cked -eco system -care fully -w m -apart ments -cur ve -san diego -must ard -comm en -cere mon -e ch -ru th -ðŁĻĮ ðŁı» -hawa i -fil med -te ar -as ingly -ca ir -wat t -instru ment -ou tta -ye ol -river side -ë ° -. : -nor wich -alo g -migr ants -new man -ri de -spr ink -targe ting -beli eve -tor ch -reflec ts -per mission -ff man -ene mies -bas ics -se ized -sun days -le i -hass an -en do -h c -st ad -le ments -kk kk -nan o -shar k -man a -on ic -treat ments -ear ly -collabor ative -shu ttle -bran ches -mis ses -mained cm -ap ers -ky le -carri e -leis ure -sh et -bir ding -adv ances -ðŁĵ Ŀ -popu lar -di ane -a be -re war -neigh bour -k pop -remem brance -play ground -ru b -krish na -e bola -inqu iry -ep a -lu min -organ isation -abra ham -norm ally -pre ten -jan et -w t -ðŁĴ İ -encoura ging -a stic -bu mp -syd ney -s z -ss ss -gar rett -ðŁĵ » -consul ting -roman ia -spo tting -chanc ellor -ar ma -presti gious -ðĿ IJ -t ad -cry st -compe tit -rati o -cat aly -bro w -j ur -vi king -commu te -y day -la yers -du mb -esc al -genoci de -f ill -gu pta -ste pping -se i -fo to -wild cats -col i -projec t -ear nings -st r -ge ons -comple tion -b m -decor ated -craw ford -af ghan -sc are -visi bility -hi b -direc tion -stro ll -christ ina -alter nate -cl are -sty list -be hold -s ance -leop ard -acqui red -narr ative -ash i -the a -?? ?? -pe as -at ch -sli des -le en -renew able -eng lish -qu ir -co aster -r x -fo ols -match day -mis m -amaz ing -z ig -ke ting -won t -to wel -di ab -sta ke -n m -mel t -e than -gra pe -polit ician -sm en -í ĺ -re o -wedd ings -cat cher -or acle -me mo -ðŁĮ ´ -ec k -rob bie -norwe gian -oper ator -am or -se wing -ju l -x ie -u v -fif ty -me ga -tatt oo -liber als -u pri -traffic king -richard son -su v -ki p -mess y -tremend ous -gl ou -cour tney -la d -stere o -my ers -i dio -^_ ^ -man ning -dy e -w d -thr one -jun k -as u -provin cial -k ook -wr c -fine art -hamp shire -renais sance -b red -fall out -s j -sn l -al am -tor ture -fy i -sh ines -pa w -ch ar -hen ry -c row -aci ous -di an -pa ige -ba re -stock holm -scen ery -ðŁĩ · -jef frey -pu sh -decor ation -ne d -cu te -brig ade -laven der -inv ites -e sports -vo ir -dri ed -tran spl -sur geon -no vels -pul ls -son y -lun ar -man e -i vy -fru str -dor set -sa i -tor res -ssi on -shut down -suggesti ons -writ ing -e o -battle field -u ga -ðŁIJ ¾ -vac u -spl ac -g it -u g -high land -% ) -mer maid -sacram ento -ta ils -p w -ka h -t ell -enh anced -ì ķ -auck land -cru el -ðŁ¤ © -au dre -sail or -gram mar -g love -de on -infl am -fresh ly -k ell -zi p -christi e -mil d -di xon -instru ctor -g ence -ãħ ł -sub jec -constitu tional -crow ds -in visible -ru ins -da k -si p -pla que -p ouring -comple x -z ine -ste ad -f let -trans mission -lo way -ar un -incre asingly -au d -transp aren -cro wned -sc oun -blizz ard -lux u -fi ers -achieve ments -hun ters -rock ed -bas in -vio let -pro ves -achiev ing -pro sper -se ga -flo at -vi an -xi v -pol ic -tur a -approxim ately -wander lust -keep ers -geta way -co d -pol is -br yan -col ts -tal ents -yo gur -gluten free -wri st -gr y -cze ch -ðŁİ Ī -ev ille -ðŁı Ī -to x -dani els -am er -bi ds -weare one -me tab -g t -boy z -pd x -pos session -pu shed -shr ine -reali stic -tri gger -na vi -ru mors -n af -jen kins -tr un -comm uni -Ã Ĺ -gam ers -arm or -moham med -bal cony -y ah -stron gest -rhy thm -unfor gettable -k p -ho bb -custo dy -greg or -r ita -aes thetic -il ation -sponsor ing -n ay -kid napp -sh s -ra jas -me g -signific antly -butt ons -la c -ver sions -essenti als -opini ons -k ro -d printing -wi dely -d k -ur an -y al -reque sted -c n -cur ric -plu m -gr un -v m -dev on -m yo -rel ation -juvent us -rou ge -min ority -min es -jupit er -n ine -oxy gen -fran kie -une sco -fab ric -disgu sting -sal man -dete ction -lan ka -d ac -ðŁĩ« ðŁĩ· -argu ment -shel ves -cel tics -rober to -pi gs -he dge -fau l -pow ering -butter flies -fi r -re make -att i -com o -emp ha -kend all -poke mon -se ating -d ans -bald win -ðŁij » -lesli e -one direction -ti mber -im an -fon t -e der -di on -ste ph -for mat -gre gory -pro p -he x -ru in -sor y -inf er -n aw -bar ak -sd gs -kar ao -lu sh -v ander -end ent -g is -a fro -soc cer -ay an -t uni -lun g -da yof -alex a -mar ath -addic ted -ag ile -hy gi -light weight -ì § -mand ela -jo ey -anc y -hu m -bi r -memor ial -jim in -ging er -v ak -jav ascri -cro ps -orig ins -d ari -pi per -im port -aggre ssive -predic tion -re pairs -cr acker -voy age -ni ke -mu mmy -linke din -country side -bor der -gla ss -per t -s als -sho e -autograph ed -wal nut -colle gi -sal ary -pa iring -ðŁĮ ¸ -cath ol -swee the -defe ats -streng then -roof top -impro vements -barri ers -ur u -t ally -ru led -ðŁĨ ļ -nai ja -emo ji -per cent -gi o -pro bs -on ce -adm its -pa ths -li ar -day tona -pe ters -cal i -cal li -mu g -o sa -ap h -ab y -hy de -eth nic -pla ins -ol f -haha hahaha -holi c -?! ?! -su bli -bl acks -mo t -gh ton -lo vin -b rent -bar u -l ati -de w -ate au -q a -pain ful -bu sters -st atic -ðŁĩ¨ðŁĩ ¦ -note book -out fits -si es -r f -floo ds -Ñ Ģ -thro at -su ici -ro vers -beng al -pre pares -blo g -mini ature -Ø ¨ -am phi -com b -r sp -in timate -green e -Ì ĩ -al tar -surg ical -ves sel -... ? -gav in -g ator -threat ened -z ar -rob bery -di er -promo ted -y g -x s -su bs -inter viewing -threat ening -do zen -me ado -water fall -nintendo switch -cal um -mini sters -dro p -univers ities -war ned -tac tics -ðŁĩ ² -refu se -ad ju -v ast -ðŁĺ ´ -mc fc -lib ya -no filter -distribu ted -re ser -ron nie -de co -javascri pt -mon k -intere sts -fle x -mar tha -sti es -oo d -ðŁ¤£ ðŁ¤£ -e un -b ali -g omez -sti mul -moder ate -d ity -ir is -stra w -consist ent -direc tions -adop t -sal sa -cro o -reco vered -black friday -lan caster -accep t -weareone exo -buil ds -free man -air plane -diti on -bel ong -jam ie -pit ching -li f -om in -cri spy -pre pping -ve g -chan g -accompli shed -graci as -dolph in -elec tor -culin ary -super bowl -wal a -pur suit -black berry -be an -cardin al -pro ved -immigr ant -stric tly -holocau st -pass age -ha us -cou p -pur se -har ass -< < -le ed -ado be -st ad -legis lat -par ked -pri yan -sil va -kri st -s the -fun ky -ig a -sett lement -ph s -t mrw -stre ssed -hun t -ho ckey -treas ures -cham bers -ol u -hu t -mar ley -tex ture -wilder ness -mm ing -poten tially -om aha -ju dy -to es -spo iler -distingui shed -feli x -ah u -recommend ations -zom bies -hit ler -tri ple -colla pse -motiv ated -ulti mat -gg ling -so y -ci gar -fo ren -vine yard -gl itter -fin dings -colon ial -hun ter -eri k -den s -beet le -lot te -sub tle -s matter -tru sted -experim ental -nam ents -ðŁĺ Ĩ -regi on -acquis ition -bre eding -quarter back -am reading -oo td -ru de -initi atives -st out -hy ung -out come -al fred -mic s -exper tise -bacter ia -pengu ins -jump er -valen cia -bar k -ing day -sell ers -contrac ts -hou ston -commissi oned -adap tation -swan sea -santi ago -common wealth -ju dging -sub mission -sco rer -tom my -ñ o -ex quis -fil ing -explan ation -alli son -wemb ley -ri dge -chev y -san tos -own ership -cogn itive -favour ites -sh ed -phil anthro -dele ted -go dd -s nor -gui delines -ff ing -je ep -cli ps -sw amp -an or -guil d -bol ton -spring field -munici pal -goal keeper -ye on -ðŁĺįðŁĺį ðŁĺįðŁĺį -ãħĭ ãħĭ -water front -gra ve -contempor ary -ar ity -ÃŃ a -sle eps -sy rup -al am -pi re -co yo -moto gp -ty son -kej ri -cir cul -sing ly -cr unch -complic ated -nostal gia -k op -mo ve -k ale -mac ro -mid west -h ans -tri bal -nu de -௠į -bey once -congratul ate -cat er -leagu e -ðŁĻ Ĭ -la dder -cra shed -tech nic -karao ke -harass ment -ro ts -experi encing -kri sten -ðŁĩ ³ -ðŁ¤ Ĺ -reflec tions -guin ness -illustr ator -ðŁĻı ðŁı» -cen ter -nar row -comm ons -regul ations -Ù Ĩ -har m -cro ft -cu ssion -hong kong -st ical -intern ship -zo e -cho p -hoo ds -estim ated -batter ies -berke ley -smooth ie -shau n -cro s -~ ~ -cam pe -hu mp -b g -proto type -cl ick -shaw n -re viewed -tem pl -p f -jed i -blo gs -ray mond -as th -ba h -av ail -scot ch -leaf s -nik ki -to k -hol low -ur ges -of t -un like -lat in -u e -cat ering -mil i -alter nati -ma ver -Ð ¸ -ag le -pre order -lu x -cu cu -ðŁijı ðŁijı -t art -âĿ¤âĿ¤ âĿ¤ -arab ic -rapi dly -ar rang -all en -travel tuesday -pa ws -flo ws -st ability -flu id -ca pp -can berra -uu uu -sp ani -demon stration -m la -plac ement -m w -presi dents -awe som -bever ly -ani st -ne al -father sday -referen dum -la hore -o aks -deb bie -half way -gho sts -de bor -matthe ws -fi at -t fw -pre sen -rob i -de d -bro ck -laugh ed -am ounts -bam boo -kinder garten -eat en -mtv hottest -break out -u sic -fra ser -legis lative -p ang -modu le -sam my -go ver -ear ns -expe dition -gar h -concep ts -char lie -la va -bachel or -veg gies -deter mine -el lie -un locked -fru it -dal la -cou pe -wash ington -depo sit -iv ory -pau la -chic ag -gu cci -ðŁİ ĥ -cul tiv -pier ce -li fted -stu mb -re cover -musc les -conduc ting -cb s -mcla ren -sophi a -cel lu -oce ans -up loaded -game play -mal dives -kim ber -avo i -rac er -ca ine -cav s -h ana -li ga -ra ven -inter vention -inaugur ation -oo h -at traction -merchandi se -tune in -li king -juni ors -int ended -att acking -aqu arium -i wd -comp onents -sur ing -cent u -yogur t -ðŁı ĥ -show room -op tical -ty our -ju dge -yi eld -an to -pl c -transparen cy -recy cled -chi ef -ar om -ambassad ors -plan et -âĿĦ ï¸ı -om ed -vaness a -cour t -mar gar -hal ey -v r -reg ina -pd ates -hi span -live stream -âģ £ -ya hoo -gal la -secu red -w ir -bene ath -off l -n il -am b -ye g -out let -u te -pe ep -lind say -bent ley -... ! -he el -trilo gy -vo s -ty re -there fore -tor onto -ab i -simp li -ja e -exten sive -eleph ants -s or -orient ation -im peach -re play -constru cted -peter son -pa is -por ted -custom s -colla p -ad u -high lands -sal em -shel by -ko vic -stra in -ro sie -sen ators -snap s -bo bb -suz uki -bla des -k p -lo lo -gener ate -si ght -ma e -struc tural -predic t -jump ed -ah mad -sun g -just ice -gla m -vol vo -jubi lee -de tention -lo sses -pu ri -every time -Ð ° -ra o -ed ge -li mer -rese mb -har old -re tri -sacri fic -surpri ses -am c -srilan ka -bar bie -men s -fin n -ag s -ukrain ian -em brac -î IJ -flav ors -hom er -lau re -ou th -pr iced -ver de -fir m -ah s -cu b -tre y -par anor -pro fit -in dv -who a -har sh -al ot -crit ics -hu bby -fi gur -gi ra -ca stro -chan el -in put -origin als -ten ant -yy yy -ture rs -lincol n -co on -lear n -ch ou -ac are -o les -din er -hy p -bizar re -mc r -let sgo -decor ating -ðŁĮ İ -al ison -ar vin -f d -reha b -mccar thy -lot tery -da h -minne apolis -eli gible -diagno sed -emer ald -destin ations -s ans -or y -bla zers -n v -ba il -digital art -no c -mal ta -sol ar -pi pes -alleg ations -no ck -po pe -bri d -premi er -n x -present ations -ef a -bo ws -val ve -opp onent -Į ë -visu al -ing le -cate gor -e ter -po is -dan i -at tract -neu tral -th ene -cra shes -fred die -ut ili -c st -awak ening -slo ven -quali fy -pro of -fair y -le v -fre ight -enjo ys -cup cake -flav our -â ķ -protec tive -ðŁijı ðŁı» -is u -ad mir -h mmm -continu ous -ai res -rap tors -showcas ing -y uk -pa ste -follow er -instru ctions -sp ru -@ __ -the o -debu ts -ve tte -sto w -es of -ach ed -sul tan -sand wich -som alia -franc o -car ne -flu ffy -al pine -jas mine -he ated -viol in -ple ss -divor ce -per former -phi es -port sm -dar a -kir by -lo p -chill i -for th -sky pe -ðŁĩ®ðŁĩ ¹ -celebr ities -ed y -ve e -po ison -ey el -gra bs -ssi c -un o -wester n -rail road -am er -numer ous -s v -fo w -fi st -âĢ ĭ -reque sts -mar tial -em my -accept ance -lau ra -ภ´ -er up -hyun dai -out lander -u tt -wrest le -esp resso -demand ing -g dp -geo graphy -sas kat -tro ll -confe der -su es -se m -be ts -t ful -to sh -teach es -col oured -gal way -mac y -dis orders -bb cra -at em -fen der -lit ter -e sh -provi ders -renov ation -nomin ate -ps g -nomin ations -jen na -shar p -some day -z ur -bra ins -che shire -pre y -hu go - ¿ -to ken -r v -car r -tac tical -zel da -kay la -fern ando -photograph ers -j our -umb rella -woo dy -congress man -du mp -le vy -ju an -d azz -sign als -la in -an u -mic hel -por ch -al den -sibl ings -y ale -pe el -sw ick -gg in -ll c -k ale -s con -il d -pat reon -re el -qu in -wit t -mar ty -moo dy -ton i -der y -g ators -speci fically -dd in -ly on -tr ick -meado ws -p j -bor gh -vi k -tu r -bron x -pu ff -lan tern -ðŁ¤ ¦ -g ently -be stie -fac t -refu sed -fas ci -mp y -ðŁĶ µ -cross over -mead ow -indian apolis -duc ation -sle y -loo m -mix er -new music -film maker -prosper ity -li m -week end -cre amy -neu tr -lu ther -h v -nor thern -tw o -h ra -cat ches -appear ances -ha bit -kitt ens -n v -illa c -inf an -regar dless -liz ard -dun k -cur tain -ac om -in tu -ve z -e min -fl ats -calend ars -em power -ru ined -hun gary -vi d -we x -u lum -aber deen -o sa -k t -ma ssi -se emed -s den -' ? -tele phone -de fi -insp ires -me ow -z ones -bl ind -pl y -tuc son -advent ure -ge d -oy ster -ðŁijıðŁijı ðŁijı -out put -tt t -metal lic -sma sh -ucl a -sco ts -perfe ct -lu cy -regular ly -sp ic -rel ative -ath ers -mis e -batt ling -deci des -mat a -occu pied -random ly -cat softwitter -gi an -ball y -al ties -al lies -im men -sy rac -ðŁĴľ ðŁĴľ -l lan -au r -k ut -lam ar -affe cts -n ra -star war -ðŁ¤ ĺ -sc ram -en chan -pro cess -luxu rious -ar ray -sher lock -comp ati -dor f -stre ss -m su -s with -sal a -sof instagram -fo il -under stood -qu ay -r p -c ade -ja w -en ab -en coun -ðŁİī : -do ck -satur n -mu ll -lay out -ra rely -happ ily -fix ture -or ph -over looking -her bs -m itt -pil lar -nol an -pe tty -str y -u i -mu k -o res -o vers -á µ -re creation -we sley -ri t -kejri wal -sto cking -g v -subscri bers -moo se -ma e -ber t -opp re -assign ment -u ro -high lighting -cal vin -we igh -cambo dia -av on -ke m -dis abilities -read y -char gers -p ads -iz ing -illi an -tru ste -col leges -associ ates -alban y -mil ton -cr on -bu r -har dly -si ghts -anti ques -e cho -surpri singly -ha iti -cap t -ph p -op io -ine quality -equ al -ken y -sch mid -autograph s -ren t -qu er -cit rus -challeng ed -te c -epi de -fe st -z hou -li me -citizen ship -cry stal -convin ced -mess enger -copen hagen -âĿĹ ï¸ı -war ran -develop ments -ï¸ı âĥ£ -fore x -hi ro -sne akers -xi de -vi va -stere o -bat ting -ss el -ho st -beng al -critic ism -q c -cr un -attemp ted -ry e -determin ation -cre ations -d read -label s -pos se -anc er -joh an -si ster -partner ships -les bian -k st -guaran tee -bar o -fix ing -ma son -m ous -chem icals -t less -bio diversity -par o -bhar at -ac ol -refu ge -en te -t iti -dys sey -respon ds -lef to -in er -se vel -rahu l -ol ine -frank fur -cho reo -enjoy able -c to -strugg les -wood land -heavy weight -gen s -rece p -ac cred -ðŁĺ ¡ -trans formed -list en -at op -n k -sur ge -be re -gover nor -prison ers -clau de -t ill -mu lator -emo tion -water loo -star t -ðŁĩ º -clean ed -grand mother -fear less -afric an -astron omy -ðŁı ģ -ภĻ -the world -su itable -anth ony -k and -tt en -meaning ful -disc lo -jaco bs -à ¸ -tom linson -ghe tti -ty pho -sub stan -as co -te k -nag ar -mu d -am on -vacc ine -f ty -fle sh -no el -infl ation -portu gue -glam our -tra m -v re -te qu -roun dup -w yn -rejec ted -mosa ic -si ghting -cal f -o ta -com position -go pro -gonz ale -e ed -b ard -tu e -effec tively -we en -al to -ri bs -rel ate -thir sty -fu rious -di m -ch ard -perfu me -s ny -chur chill -k of -master class -wa ve -ðŁĶ µ -er in -own s -to be -sk illed -te m -go f -en i -tor i -cra zy -l ick -resi stant -ici al -ag ar -! : -g ali -del aware -bl itz -koh li -pu ck -avail ability -hi malay -influ ential -cro chet -victor i -read ing -ho bby -vie t -j as -en gra -sk ul -ðŁĩ² ðŁĩ -educ ate -tech no -distric ts -blu es -se tt -seven th -lear ns -ee ee -apocaly pse -hang out -cru el -mu tu -bru h -hel en -she er -c tion -kle in -tex ans -ce real -sh ine -ne red -gra s -am bro -f ella -hin du -matthe w -li ma -mir anda -je wel -so ho -euro vision -neighb ours -chand ler -be sides -ðŁ¥ ° -ast ros -thu mbs -ren ault -ra ve -hi red -ðŁĸ ¤ -it ary -z or -bla zer -k ine -ea u -kat y -dc comics -pe c -ro dgers -water proof -kill ers -super int -pre serv -as so -brew ers -promo tional -sc am -villa ges -sket ches -ju icy -for life -au dit -so lo -fundam ental -len e -philipp ine -t end -conserv atives -sponsor ship -dd le -a ine -h tc -os i -hul k -w af -ภĻ -evalu ation -ant ine -sle e -robert son -roo sevel -ag i -sophi stic -emplo yers -bubb les -ko wski -inter action -sh u -bou le -ic an -j are -han k -leg itim -k nicks -kar ma -recei ver -per ks -u h -sta ir -sun i -labor atory -gra ves -voc als -oo t -c ture -thri ve -tic o -ãĥ ³ -b w -carto ons -mcdon alds -dra w -y ung -pl er -li d -eth ical -groo ve -ent a -international womensday -pat ron -wor ries -ðŁİ ħ -ðŁij ĭ -ka therine -di az -tor i -bach chan -tru st -min eral -ic om -buil ders -bor n -col oring -lat te -ca se -revolu tion -tra der -ox id -chi pot -inst antly -sou thern -se hun -pro b -her nandez -lis bon -hu awe -p ong -me a -ro oney -wheel chair -ke en -be tt -cor in -regulat ory -di splac -ka ren -sch em -sun sets -wh ales -remin is -he p -hi de -mar cel -pand ora -do yle -th fc -ot to -no kia -trans gender -ko v -hawai ian -sha ve -so vere -exc er -nick i -pu g -st or -ro th -wee t -leg al -dig nity -po w -hom age -ðŁĩ³ ðŁĩ -s re -can on -la x -wo ah -quart z -ñ a -gree ting -flick r -nai robi -advoc ates -an c -vi i -eu gene -th ra -c re -el an -pen sion -th letics -ton i -re agan -x v -sto re -ben ch -har lem -todd ler -sent enced -âĻ¥ ï¸ı -glob ally -che aper -u f -ma m -nic o -ik u -tho u -ni st -dam i -th ala -rho des -sal e -bow ls -â Ī -las vegas -sanc tions -adm ire -mat ched -un able -travel er -ele ven -straw berries -âĢĶâĢĶ âĢĶâĢĶ -stu dio -jac ques -im s -valu ed -s no -cheese cake -n xt -e os -s x -f x -ton ic -hat ch -chic ks -gra ds -hand ic -r ory -as p -ri pped -denti st -n en -lu fc -âľ Ĭ -di ge -hop kins -sher man -f da -for all -ash ley -str and -h y -liqu or -buffe t -ess ence -phar ma -suri ya -ðŁĴĻ ðŁĴĻ -festi vals -z an -re fresh -pur ple -uni forms -kenne th -= ) -as an -hel sin -transform ers -k ali -person alized -chal k -bo bby -â Į -the mes -depar ture -prin t -illustr ations -qui et -agre es -gri ff -Ø ³ -m iti -toge ther -conven ience -ab ar -car lo -turt les -info sec -some what -ar lington -scholar ships -emir ates -mu ms -st ella -auton om -fe ather -g ore -nom inees -fragr ance -Ñ Ĥ -w ong -thea stern -gr e -z illa -is i -bump er -go o -do zens -ab duc -âļª ï¸ı -o ils -don ors -sil icon -i pod -fortn ite -ðŁĴ ¨ -tor o -spark ling -consci ousness -pal a -nu m -moun ted -ffin s -thi eves -team mate -pra b -om er -ta pes -bo d -mit su -ste w -e re -p bs -tu sc -lo we -ra de -parliam entary -h m -ed gar -ðŁijĩ ðŁijĩ -to a -a gh -hon i -s late -ge ek -ap t -hard t -ta p -horiz on -grow th -make over -hi l -paper back -id an -reha bil -gi u -possi bilities -let tu -fran co -bo ss -ach er -does nt -mo e -ta ker -huss ain -ml k -di l -th ia -ham a -real ised -raven s -curric ulum -m ith -k night -ted x -r v -isai ah -cumb ria -birth days -f ing -pre z -mu barak -exquis ite -clear ance -y en -par i -ev o -à º -modi fied -app lying -imple ment -disco vering -chap man -indie game -dis k -crowd funding -mach in -li vel -sty led -âĿ Į -ma king -rehear sals -nutr iti -subscri ption -and ro -cre ators -car ries -ky lie -cam den -appren tice -tax pay -c ca -tuesday thoughts -pis sed -er man -dete c -freed om -mer i -.. ! -psal m -sun light -per spec -be ings -book store -rock star -fun ctions -p ence -fav es -z n -obam acare -sp ill -coven try -pi geon -pi vo -ba it -kol kata -av al -don or -wa h -privi leg -tra ditions -rajas than -ten ess -portugue se -yn es -tack les -de fic -tor n -pol ling -thor ne -in a -bened ict -bar ry -cal ories -ver dict -save the -nor ton -off ice -main stream -impro ves -fr on -respon ding -real tor -scotti sh -de clar -r l -shi v -supp lier -re sting -swee ts -qu i -. âĢ¦ -whit ney -startu p -thank you -teach er -h alls -ha ve -hand made -pro ving -quar tet -ro chester -li an -virtu al -mend es -of icial -mid lands -x box -meas uring -o vo -accommod ation -bri des -collegi ate -intellec tual -in car -ni ag -ðŁį · -sf w -coco a -co ats -civil ians -presi dency -mat rix -sweethe art -tri athlon -wag ner -ra dic -plann er -the o -execu tion -k um -the walkingdead -sc ar -ro tation -blo gging -bom b -re son -bb les -st are -assi sted -e do -brand ed -war nings -thor pe -acknow le -satis fied -sho res -ri d -dor a -phys ically -bi gh -appro ves -ha h -ric al -vers atile -pret end -lu m -ab hi -ye e -sp it -ãĢ Į -dj s -ash tra -j t -ven ues -gram mys -cy clo -tr acker -over watch -repl ica -el yn -nr l -lind sey -hom o -ballo ons -kitch en -si s -am os -ende av -ðŁĴ » -a rec -thu g -hoo ked -hr c -new york -bur gh -americ as -patric ia -ug u -ap athy -ha st -psy chi -cor k -petro l -ðŁİ ¬ -ak u -po pping -psycho logical -au x -g ma -cad illac -wa ste -auth ent -bri stol -nam e -que er -to ber -jer ry -com in -ch ant -privileg ed -op ar -lo ser -tex t -mar ker -stri es -equ ally -ak i -christ mas -gare th -ble w -em ma -imag in -se als -che at -conditi oning -j ana -ren s -dar ies -o asis -disc ounts -coun cil -i ka -shir ley -vou cher -al ps -w x -q r -dri ft -attemp ting -ut c -Ø ª -gonzale z -m f -jo ker -paralle l -pa re -aspe cts -proce du -n p -am a -rale igh -bright en -gu ire -radi ation -cre scent -ho b -il le -str and -v ore -n ard -che st -di wali -av atar -al der -d ling -pa thetic -ðŁĴ ĺ -spir it -jor ge -film making -ðŁĻı ðŁĻı -challeng er -b j -down town -ht ml -ade qu -twi sted -in ely -( ' -wra ps -oper ational -y ne -n us -mag net -market place -health ier -snap shot -dam on -inter ven -fe derer -ow ls -biscu its -j p -ro deo -blue berry -lec tion -fron tier -summ ers -re yes -pede strian -go l -caf fe -refur bi -bou lder -me ghan -speci alty -la ss -e i -suspec ts -appro x -rr r -ra th -st im -cru shed -he d -wh un -lo af -cr ore -river a -gene tics -so ck -wa sted -ny pd -answ ering -do ve -bel la -ol in -du n -fi ji -pre tty -spar kle -y un -j d -euro pa -li fts -am ber -mu r -te k -boy d -roy alty -in do -ri b -go tham -ti est -inst alling -ke mp -the photo -cos mic -) )) -whole sale -loy ment -eas y -su ing -sett led -af p -pro ver -suppor tive -re es -ne ath -deli ber -c é -wel come -pic oftheday -new born -pat ty -sun s -si est -fl int -diffe rently -spo ilers -troop er -g ins -cor y -look out -equi pped -ta pe -to by -resear cher -u sh -ke yes -al ma -induc tion -k w -k har -sl ick -bri de -e ur -cra ving -book ings -ch es -tr unk -vern on -sp her -cryst als -rel atively -pom pe -uni ons -val ley -par a -w ant -ok c -de af -ser gio -len non -sh ay -cr a -v at -he e -t we -liqu id -pol y -ðŁİ ģ -b ent -be aring -motor sport -bar be -te sti -han i -fin ancing -astron aut -water colour -ri sh -comic con -gar t -wr ong -ber n -it an -ste pped -fil ters -c low -me x -dem ons -all o -expand ed -comm and -et ers -go ats -si ri -y r -pot tery -mari on -i le -el an -san to -person a -du ke -hom eless -li ghted -wheel er -chang er -cab bage -sur real -ham burg -sma shed -str an -k not -i art -ob i -be dro -di al -th ick -b ingo -fu s -vacu um -con ve -ati ve -accur acy -accoun t -re fer -ri z -spider man -ban a -r ite -u b -ab s -medic al -lin k -si em -> >>> -be tra -g lowing -re actions -pupp et -spa ghetti -ang s -re medi -pray for -roy ce -char lotte -£ ï¸ı -gh et -affe cting -ro de -soci alist -mo ses -az i -o it -re porters -cd t -ap ing -s nat -minim al -wa ist -sie ge ->> >> -ri g -schmid t -h are -ec a -thor n -he mp -es the -cly de -th a -don ut -moham ed -ling erie -le gg -carpen ter -perform ers -de a -imag ined -cur se -la sh -ct r -agu a -ro ar -gr i -ro le -j fk -resur rec -roosevel t -maril yn -sm alle -will is -wa ited -char ities -the res -li k -origin al -car i -c ough -cru ci -la gun -contra st -k ou -arm our -re moving -t ent -maz da -bri ghter -thi ef -cor ner -tequ ila -buzz ing -al bi -p am -az ure -disc oun -pixel art -possi bility -ham ont -tra des -bu da -hi ve -vers y -fin ch -tran spa -em i -terri fying -in qui -g ba -sub stitu -collec ti -plac ing -cin dy -k ann -pa tho -diamon d -mour inho -guine a -anthro po -air s -pu mps -ì ļ -pas o -cur ling -an ita -resi dency -ne wh -jo on -cigare tte -que ue -ex trac -gam es -spl en -ex press -public ly -bon nie -tribun e -ba ek -reason able -c or -timo thy -she eran -Ä ± -f dn -su tton -concentr ation -carav an -x avier -al ger -cy lin -freder ick -ner ve -pe ak -lettu ce -j ail -pre game -kav an -up graded -eco logy -squad ron -gra pes -goo g -pa stry -ðŁĹ £ -ãĥ¼ ãĥ -mil ano -awa z -presen ter -ðŁĮ ¿ -her d -king s -tem plate -fl our -h v -k ley -i ya -spe c -at er -frankfur t -co ch -tex ting -del i -communi st -regi ment -ele anor -anticip ated -ðŁijĮ ðŁı» -thephoto hour -ran o -survi ving -simul ation -daw son -ar in -aqu a -m or -âĢ¦ . -cin o -ira qi -sh az -dun dee -we s -dra u -hann ah -s news -occup ation -ste en -x m -ang les -sett ings -gur u -kno x -or ca -shap ing -w ent -dr illing -zz ie -br i -kis sing -fin d -ma ine -âŃIJï¸ı âŃIJï¸ı -ðŁĮ į -lar ry -bu sted -ta vern -acti vely -- " -replac ing -no d -un lock -. " -âŀ ¤ -affili ate -to w -l n -happy newyear -di f -j m -green wich -contro versy -daw g -con dol -sav annah -compens ation -touch down -te o -amb itious -embro i -convic ted -iart g -bar ack -tr ance -testim ony -au dition -thum b -my ths -be x -que z -orch id -den y -entit led -hoo d -gr ant -in box -blue jays -r illa -smalle st -bur den -in famous -divi ded -boun daries -t ter -el t -wy oming -be verage -me sm -one ws -budd hist -y ana -as sad -is ms -bar rett -predic ted -back to -tw it -e there -cap tains -escap ed -ay o -lam borgh -gard ner -la ps -k al -adverti sement -insec ts -na po -am en -ac y -r and -g k -te h -k athle -tri dge -pan cake -at ro -pyram id -bu la -paral ym -gau ge -en cies -tom y -biscu it -but cher -quali fier -coun ty -ke i -po ols -dar ker -should ers -ðŁĩºðŁĩ¸ ðŁĩºðŁĩ¸ -sp re -( " -writ ers -g m -ðŁİ ĵ -k nit -hu ff -mt b -philli es -o st -den is -g art -licen sed -inter face -ex cel -d well -from the -co fficial -az zi -appear ing -fore st -n ana -ke ith -manufac turers -beck ham -) ? -e se -col ony -delic ate -ut ter -mc in -transpl ant -pre ferred -par d -ari e -hu b -po ds -perspec tives -pic t -del u -app er -be than -p mo -crimin als -femin ism -sh ack -circum stances -fel las -prote sting -wa x -sugge sted -t ator -dre w -om ni -fa ke -kath y -re b -del ine -ber ni -mi sty -ðŁij © -er able -break through -men swear -millenni als -chan yeol -la z -inser t -rep lies -phra se -n x -ihear tawards -audre y -gran ite -rac ec -ori e -ter ra -innov ations -britt any -at eral -pe ar -bio logical -sh ments -institu tion -m sn -frequ ency -d man -neg lec -t f -ste fan -fox news -ty po -comm s -sequ ence -car men -wh ites -econom ist -exe ter -se um -re sorts -cas ually -bun de -divi de -Ø ¹ -ga g -cre ed -reti re -cau cus -rapi ds -wrestle mania -tul sa -sunder land -fundam ent -o di -yam aha -v ary -intri gu -el se -be acon -an gie -tra ded -tran sm -g ents -kn itting -gal ac -ðĿ Ĺ -u to -sea side -hol t -re rs -far go -train ers -mon soon -b ale -sou ght -mad die -h w -co li -fr an -fav s -ðŁĴ Ķ -int ent -r ally -s bs -lemon ade -barack obama -bre ad -stick y -explo sive -chel ten -t j -as soc -ram en -hom ies -v log -mi ster -lor d -âĢįâĻ Ģï¸ı -aly ssa -sketch book -ru mble -cat ch -migr ant -discipl ine -un likely -chronic les -fl ora -sl ams -am id -s boro -coo p -ju mps -tran qu -mel is -sof ia -en ri -gab e -sy ri -nicol as -cha i -w v -be cky -foo ty -ta o -suppo se -ðŁĺįðŁĺį ðŁĺįðŁĺį -plu sh -ri sh -ðŁ¤ ĵ -k ha -satur days -ac cent -he c -lim it -carl ton -wi red -taylor swift -ðŁĺ ij -sq l -har ro -recipi ents -g at -go p -th of -amaz ed -gh an -ðŁıĨ ðŁıĨ -por to -cla re -di stant -na c -ohi o -ðŁĻı ðŁı¼ -mt n -anti bio -dino sa -me sa -par tial -b v -lear nt -lov ato -questi on -ex tract -gossi p -gi bb -niag ara -ðŁij ¨ -displa yed -so oner -ste vie -nug gets -ml n -bro m -tur b -give aways -stu pi -bl ink -c ili -conven ient -mo h -vi ve -f ric -cau se -cham ber -cu les -ne arest -is se -small biz -t j -canadi ans -smar ter -bra sil -ra re -que tte -w ha -cand le -at omic -ðŁijį ðŁijį -warri or -relax ed -stri ps -ne ur -k ka -r fc -jen sen -reco vering -respon ses -sal am -ortho dox -acti ve -ell ers -n it -âŃ IJ -metro politan -centu ries -vi da -gra ding -transpa rent -sim ple -do ts -superint endent -elev ator -autom ated -red skins -ima m -summer time -jona than -ge aring -michel le -confl ic -m ice -to te -publi sh -pa x -) - -na iled -á ´ -tele scope -ser bia -ba b -ape u -st ically -sen ti -r ats -isol ated -grou p -hat red -paranor mal -stan ley -ali on -safe ty -l s -ठ° -nex us -alexand ra -mas ks -+ + -tr on -au k -brother hood -brow se -mix es -sim one -mu sk -appro ve -lo la -ex p -per th -fu turi -un seen -d m -chel se -sc outing -o we -portsm outh -k ram -mi ze -di spen -su p -d lc -adver t -tere sa -is le -cy cle -met all -shi elds -marin ers -ra z -ing en -fun d -an go -jon es -o ka -mad den -broc coli -domin ic -situ ations -mer o -cric ke -puni shment -d b -sha king -ðŁĺ ļ -m q -ari ans -le h -cla w -we ds -d ure -ni el -j elly -gour met -tra ders -le vi -w ages -kne es -wi se -heaven ly -avi d -melo dy -z ack -ban anas -apprentic e -pro p -fun ny -o de -respec ted -me gan -fe wer -dra fted -med it -gra pe -us army -cru sad -vo cali -prepar ations -non sense -us age -th r -ro th -wiz ards -insi de -promo tions -mon a -red sox -si g -eleg ance -ch ia -univer sal -ãĢ į -ra ja -un ga -pol lin -filip ino -ak a -t sun -ik on -bi king -decor ations -z ac -cade ts -hum our -ag m -re ppin -vac cin -elo ve -u w -dia be -galla gher -az er -do l -a while -pro minent -wel sh -t ann -' ) -bi en -wa g -in al -c wc -wic ket -ur st -q anon -x e -out door -dun n -star r -co logy -ric ky -u efa -reb ounds -s music -inf ant -ðŁĻ ĭ -so p -u mber -hand ing -beg in -sor ting -ha sh -sp ati -re k -buda pest -black hawks -dele te -ro m -can did -auth ori -de bris -spe cul -inter section -marri ott -im ran -ðŁĺģ ðŁĺģ -cru ises -ram sey -rafa el -aware ness -vas cular -beyon cé -ru g -ðŁĺ Į -festi v -ar am -s able -bas il -p ill -flo oring -un beaten -implic ations -u f -w ound -for ge -poin ting -po ts -popular ity -ðŁijı ðŁı» -mani pul -s lots -deb ates -abs ence -ver mont -never forget -wri st -gl oria -ren ce -hu sk -mel ting -ðŁİ Ł -br aces -tim ely -transform ing -am ps -ma k -po e -ah an -gener ally -nd p -ale ppo -unic ef -pro fs -nor d -ma sk -jackson ville -v v -sh ells -bloom ing -oper ators -char coal -ne ville -ma gi -chi p -sam a -ir an -re forms -accu mul -ru e -æ ľ -web sites -ga on -devast ating -sto s -glaci er -ra pp -chipot le -pr a -or ous -rom ney -seas on -decor ative -c isco -dit ch -compla in -ll o -assu me -ðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤðŁĺĤ -n els -cent ric -ft w -car rots -tat a -can ter -per ience -li ers -demo s -bl unt -oper ate -reserv ations -le ah -sub stance -di son -an te -elec tion -v ue -squ are -non profit -ca a -f su -y am -ãĤ ¤ -v ladi -comple tes -mar i -philli p -ne ill -er as -ka it -men do -mahar ashtra -g p -dan e -provi dence -ther apeu -juven ile -me mo -in corpor -aa aa -seven teen -teen ager -à £ -or ns -wi de -cu teness -tw d -ff les -bar a -com edy -over time -y az -bar on -unemp loyment -ðŁij ĭ -exter ior -den se -cent res -match up -history month -artif icial -qu it -e sk -war n -cr itic -j af -ðŁĵ ² -inform ative -fu els -recy cle -nam ing -stri pe -sol ic -mole cular -dee pi -con vo -s sel -na e -de scent -ti z -accoun tability -ter ry -r ito -sl ay -em o -dem ol -sens ation -co v -tor e -round table -y ol -excu ses -ॠį -tur quo -hh hh -pod casts -cele b -me ssi -li o -man n -contribu ted -u z -gener ator -ele ts -veg gie -indu l -en suring -detro it -pun jab -tran spor -instru ction -ad d -por cel -pan eli -cir cles -persi st -clay ton -sp n -dog softwitter -is nt -sp r -retail ers -p w -hun gar -el ena -mon aster -gu atem -je ssie -an z -ra shi -fle e -car ving -fau x -l al -hen ri -d jo -du ll -s ana -lar a -glo be -cri mson -com pass -pau se -na b -lion el -ba ths -u fo -invent ory -sin gh -sat an -ðŁĩ ¸ -ce ments -in form -gener ated -bi den -av g -tas ks -de er -sa u -ja iled -pa stel -sc c -na il -steel e -per is -lamborgh ini -pur sue -mar gin -u ch -bo sch -dra in -cl ara -bo m -lat ino -web ster -rose mary -r ha -s oun -billion aire -not ch -percent age -con or -' " -hom es -earth day -h ort -big gest -di sin -wal ton -edit ors -im ma -om ar -equi valent -pharmac eu -ah med -cam eo -han ni -under rated -ge ment -micro bi -v oo -honor able -obe sity -âļ ¡ï¸ı -limer ick -invol vement -st agram -boule vard -bur g -blackand white -liber ation -fi ve -inter im -sm m -rival ry -cap abilities -stat ements -thu mb -ve d -sw ans -bar ber -e que -seren a -hel m -noo dle -sam pling -n awaz -sing le -thunder storms -sh on -in ev -ë ¯ -to pp -orch ard -bi an -ðŁĺ Ķ -door step -salv ation -marke ting -r ons -cle mson -ra vi -in take -stand with -sin a -ha iku -ple y -elector al -ph illy -la ys -electr ic -cap turing -u pp -er gy -believ ing -cul tures -es day -inva sive -ed ed -spee ch -end ur -viet nam -boy cott -pe de -deli ver -ðŁĴĸ ðŁĴĸ -mer chant -st ir -den ies -poc kets -o ti -cu ddle -ro land -mm ed -den ed -lear ners -hoo p -sour cing -h acked -di m -environ ments -ben son -jud icial -wor cester -pear ls -govern ments -arri vals -cor ners -tun ing -la bour -y m -or dering -le wi -i fe -hygi ene -thou ghtful -indone sian -campaig ning -princi ple -assau l -ru bb -at v -wil ly -en tre -il i -ph on -du ties -âĻ¥ âĻ¥ -sn akes -lo op -am ar -conver tible -bon ding -ment oring -max well -ethere um -destro ying -ax is -ca iro -fin nish -sho ck -ðŁĺ IJ -cal eb -com a -pe dal -co re -contin ent -el son -temp o -helsin ki -ac p -tack ling -st ated -bl a -dou b -sma shing -a ja -camer on -disru ption -warm th -being salmankhan -bullet in -o de -syrac use -ar an -mc gregor -bul k -an ton -confir mation -sp ine -im ran -instru c -jac ks -chi o -pal m -str e -embarra ssing -un t -elimin ate -to ss -c ise -a ws -oni sts -sh inee -jo s -ho se -li vely -opp onents -mo vements -recogni zing -sandwich es -sh akes -exerc ises -se at -profe ssion -merry christmas -lu gg -adopt dont -mar vin -byr ne -un le -he t -ku wait -rah man -aspe ct -humb led -gen es -f and -long time -) ; -cam pu -an gus -ðŁijį ðŁı¼ -q uran -sle eves -s lic -¸ ë -twel ve -your e -i ke -go gh -b st -dic tionary -reflec ting -to on -yar n -em bed -ðŁı ´ -re serves -floo ded -ver iz -du sk -estab lish -pro li -au d -ritu al -or bit -declar ation -recor dings -cam o -cas sette -good luck -cu tter -bo p -b ho -che ating -paci fic -ma res -tim er -col t -tr ous -tomor row -han sen -ci e -w ang -ban i -circu lar -ac ute -far mer -co ys -p se -ir ving -w j -haw kins -b ison -ur day -cru ising -o te -k ath -whi stle -your selves -ant is -sla sh -thorough ly -ke sh -ser ie -ex em -en ig -guil d -sh red -ho gan -ap o -ä ¸ -pu zz -ne tball -au ssi -panor ama -ws j -av is -ar ming -hum ph -brow ser -cri es -fo ggy -mat te -ðŁĮ » -it er -tal lest -by ron -cap tiv -je su -any ways -flag ship -p ton -we y -fay ette -financi al -f oul -solom on -jenni fer -cucu mber -ar gue -tex tile -wrest ler -john ston -pa stor -ðŁĺŃðŁĺŃ ðŁĺŃðŁĺŃ -cac tus -edi ble -re served -ric hie -met res -ingredi ent -h ella -un to -ch ol -cele bs -po ets -gra ham -hay den -coinci dence -b aw -communic ate -flet cher -/ - -tole do -ecu ador -coun sel -s laughter -line ar -at p -os u -jo el -ev ed -conqu er -ru stic -plic ity -recogn ise -room mate -cr acked -jas per -ph er -ðŁĮ º -wo ven -mo ist -ff c -ste ering -ni sh -stand ings -frequ ent -ar di -haz el -as msg -bau m -d art -si dd -nat h -ch ero -card board -c ss -n sfw -pa ir -ðŁĺį ðŁĺĺ -occur red -homeless ness -mal one -ph e -xi a -pad dy -decl are -theat re -b f -per sian -ta d -ax e -susp icious -lam b -mu cho -sen ior -st as -k ite -st ing -gra d -k af -wat ering -Ø ¯ -spi ral -th ms -educ ator -jer ome -of c -clo ck -su l -pe mb -.... ..... -park way -de aux -restric tions -m ons -need le -e j -le agues -water melon -am an -pl enary -max im -w ab -coming soon -bry ce -vi gil -super market -fortun ate -turquo ise -presi dent -li v -inter ns -feel in -fix tures -stun t -st aged -premi eres -lo k -prac titi -shor tage -log ne -ve c -con cor -roc ke -li g -com posed -syn thetic -di p -cam ila -ch is -j ou -su san -eye brows -supp lement -satis faction -moham mad -ti bet -house of -pu n -as sam -shado whun -psy ched -se duc -mand atory -her bert -sc allo -stream ers -proto col -block buster -produc es -sch nei -lau rel -tri be -time hop -pl a -mod elling -tv time -mtv stars -wi dow -me tric -ch am -con do -flow ering -ale c -d ms -inten sity - ¨ -mccar tney -islam abad -k b -f fi -ph al -anal og -f ond -h acks -positi vity -treat y -sub marine -conne ct -sel en -categor ies -cu b -organi ze -si k -quote oftheday -remin ding -am or -loc king -ðŁijı ðŁı¼ -comp ound -et te -b out -rec ur -fe rence -mi zz -tren d -hip ster -for tress -forth coming -preli min -o dyssey -ang p -del ici -even ings -ðŁĶ ¹ -i q -d w -da ir -kathr yn -christian ity -moon light -ha b -wh oo -f bf -se th -genu inely -pa x -char ity -deplo yed -b nb -bu cs -ju dg -con ge -plant ation -im press -car a -sc lub -sco py -land ers -compla ints -b ama -re build -x y -real ism -sh our -le in -brac elets -mer a -assas sin -an chor -ðŁijĮ ðŁı¼ -lin en -con fron -chronic le -comm ent -cat alog -il les -gor ge -me try -jung kook -love my -sent in -se em -fit ness -alli ed -ts man -digital transformation -pr an -lo ft -min ton -alden richards -en vel -cher ish -certain ty -zz z -rhin o -per kins -en rich -cape town -ome ter -sec tions -ske leton -def enders -ðŁĺ Ŀ -pen c -bri t -ja h -capital ism -ðŁ¥ ĩ -baz aar -re me -ex t -kk k -conver t -stor my -b ye -kar an -chry sler -ad os -pre ssed -syn c -ation day -dang er -bad ges -refu ses -em powering -ly m -ex ports -adoptdont shop -ðŁĩ ¯ -th c -awa ited -focu ses -fin ed -o at -haha hah -âģ © -n family -fi ona -luck ily -thr illing -ty ping -out break -di es -he u -craw l -ne sses -o ath -scri pts -gee ks -ðŁIJ Ŀ -p b -mathemat ics -al is -________ ________ -gymna stics -acti vism -recommend ation -gre n -wa in -cour ty -n apol -cau li -hor nets -g als -jo ckey -dir ty -at ar -enor mous -pe st -greg ation -an os -ii ii -def ends -black historymonth -at x -mb c -lugg age -wit ch -co b -la sts -cu m -gg g -ba thing -n ar -ce bu -ðŁį ĥ -navig ation -min e -re jo -ðŁİ Ģ -gif tide -re ta -use less -pu ll -defic it -al lu -ati me -it v -tr illion -pu e -ac ies -proce dure -l ori -jen ny -c ad -ul ously -dr ac -promo tes -ing the -can u -woo hoo -na omi -zar dari -ts u -be ir -sd g -le ver -we ber -ab ud -lun d -crow ded -deplo yment -ter rain -ken ny -ho f -witne ssed -lo ch -j k -bul ly -w ren -poe try -do ff -ww i -mo red -din i -cul ture -promp t - ¥ -maur ice -to pps -r m -cor respon -ab out -jewel s -gi br -eag le -ðŁĺĺ ðŁĺĺðŁĺĺ -l ending -sou ven -ç Ķ -contemporary art -establi shment -j ong -âĢ¦ " -gat or -patri otic -mc coy -v ape -human e -feli z -coach ella -re posting -ste als -fu ller -n ering -at ra -( - -bla ke -he ather -wor ms -discipl inary -rede mption -y ard -am in -" @_ -d nc -t ds -k appa -ne wark -comm its -spe ars -j ams -t and -msn bc -inter medi -aim ed -at ic -teen th -observ ation -kash mir -kavan augh -ou l -san francisco -re u -bel ated -cho w -pass word -st ills -deta ined -sar i -day ton -dar ren -itali an -ar th -amu sic -ar bit -w m -v m -he m -dou g -my r -a sho -pre v -vin d -bra h -sta g -ภµ -pre views -gu k -con taining -leon ardo -sad dle -ru shing -st av -lon gh -gam bling -ve gas -reserv ation -end ale -bal a -fl a -vari ant -he dge -bulgar ia -nat ali -we aver -sol st -encoura ged -ap c -as parag -ne st -cycli sts -fe l -ìĬ ¤ -overwhel ming -pey ton -j it -a post -mb le -ble eding -neighbour hood -a very -expre ssions -mac donald -gi gs -mon ds -illu sion -n ct -cam ero -over head -my th -ol y -vi o -et v -lau rie -unve iling -pri or -con n -iron man -di ff -day in -crit ici -con go -re vision -wal e -direc tor -p ines -black pink -gar ner -cur ated -manit oba -h ac -common ly -bar ton -.... # -mor tality -live smatter -philos op -shor ter -con vince -fre ak -vend ors -insi ghtful -el ly -sens ors -e led -s berg -weight loss -u kip -sp ur -priv ate -qu a -ss c -, ... -supervis or -advis er -amaz ingly -less er -at es -mah on -oooo oo -sar as -pmo india -waff le -un ders -toler ance -sculp tures -her sh -kno cking -smo ke -cathol ic -gri m -tra veled -fli p -ge off -dinosa urs -sle pt -scar let -ok i -compla int -ob sc -nam i -la g -cross fit -u fc -mc cain -refe ree -sad ness -pen ny -li eu -mo de -ki er -vol s -w is -el on -she a -ba o -son ia -cla ire -em manuel -moist ure -di gest -vi ii -t eller -ch on -access ory -night club -foss il -aw an -hu sky -ab original -brand on -ffici ent -cou gars -ste d -ad mitted -igno red -content marketing -ag as -v ase -execu ted -negoti ations -she ad -n and -tab lets -go th -ts al -d fw -on ep -protec tor -sp ho -gaz ette -andre as -ss er -comp ilation -ha v -contain ers -bro ker -soc al -porcel ain -hy uk -air ing -ðŁĴ ° -publi sher -scen ario -spart ans -re viewing -itu des -ed el -pear son -ba sh -mau i -a ad -ðŁĮ Ĭ -li u -ul ate -program mes -fav our -web design -real ty -motiv ational -cro sses -' ... -bus ch -adjust able -ar jun -mist ak -dimen sion -pi stol -weigh s -en y -unve il -indy car -gor don -f ade -fran ken -qual ities -bet t -loc ate -ker r -sp c -confu sion -ne e -luck y -bas es -dep ends -fire fighter -ol a -re t -mar oon -ðŁĶ Ĭ -w am -defin ing -whe at -bi l -é s -b hai -psy ch -ta u -ic ans -thi k -ob ile -inspec tor -ìĨ Įë -ill on -go s -ev angel -fa i -si st -voc ation -bur ge -chi stan -renew ed -enthusi asm -en ting -ag ri -ike a -m sc -aero space -sens iti -memo ir -hosp ice -co caine -der ry -mechan ics -Ħ ภ-tin o -reduc es -collec tors -in justice -supp re -v ana -ab un -nap a -su sa -os lo -e ff -en core -lic ence -ched dar -z al -moun t -ðŁĴ IJ -threat ens -!! " -archi e -fu tsal -scu ba -jo s -gn on -se xi -s official -compar ing -domin ant -tof theday -fa it -propos als -gi ft -y as -cn c -l r -ha b -reser voir -beli efs -gener al -mar ti -t d -est e -ì ł -wi l -ðŁij ¯ -ðŁĶ « -sp x -et work -excer pt -e instein -hir o -sil hou -team ed -per ception -corri dor -mental health -hin ts -ben ny -induc ted -sw x -wi desp -spe ak -cher yl -dru g -ðŁĺ ķ -h f -asparag us -myster ies -fitz gerald -off er -therap ist -care er -dam aging -ts d -per u -wei bo -y ay -phoeni x -disc re -mac book -bar ker -stig ma -sp read -roc kies -kang ar -bri dg -pa i -bi shop -ta iled -capsu le -ðŁĴ ĵ -ge of -roy ale -short listed -o ste -ash amed -ch app -key e -cl a -screen shot -austri an -nati ve -en ight -juli et -michel e -ðŁĮ ´ -travel ers -pi l -football er -win chester -ðŁĻ Ħ -azer bai -gold eng -organis ations -interpre tation -predat or -ofthe week -lo gan -pok é -mari e -cal la -t nt -cin de -ge tic -fit fam -gra v -ow ens -ðŁĮ ± -shoot out -sal is -commissi ons -co he -p tic -ni xon -hi a -amb ition -mar ine -cruel ty -t k -cru de -sal ty -jim a -mon go -ir ony -on wards -arre sts -strang ers -ig er -cycli st -ra g -exten ds -tra dio -bour g -mo i -el la -e able -lex us -au l -der a -histor ian -mor ton -ti ff -man ner -ko t -d k -po inted -mar qu -a an -en ey -du blin -on poli -em ili -secre t -fl o -âļ ¡ -ba j -ste ep -accompan ied -rum ours -dev i -purch asing -fi g -pu b -sch oo -autonom ous -go alie -x ia -autom atically -re vers -ter o -fu ku -titan ic -shoo k -sand als -see kers -exc av -nor dic -bigo live -ba ke -r att -z ak -ne p -ðŁĺ ¤ -cand y -billi ons -book worm -pp et -à ³ -sur faces -sc ars -phil ip -do gg -ci gars -co te -transl ated -cur ator -sin dh -han gover -bre wer -on es -el ton -ðŁĴª ðŁı¼ -mar cu -elli ot -righ te -di oce -ru ss -rail ways -grand son -as cen -apo logy -awa it -mob ili -re spir -parti san -oli vi -stri ke -yo o -white house -expre ssed -pu ps -bed ford -cul tur -fro gs -fly ing -cav ali -c ds -fri ger -street photography -re solve -tali ban -kan g -cru shing -ju m -ðŁĺ Ĵ -william son -tan g -cur ly -t man -veter an -fa ire -artificial intelligence -un anim -pre n -back drop -fr ances -oc cer -doro thy -work ing -ar thr -conver ted -day light -serv ant -pad dle -compla ining -thir ty -nad al -ak u -ibra him -ad dressed -p iss -green house -batt alion -si mulator -out lets -embroi dery -ðŁĵ ± -fis cal -ger ard -sas sy -ðŁİī ðŁİīðŁİī -vent ures -mer it -public ity -ðŁij Ī -sophistic ated -c tu -conven tional -condol ences -isra el -tra dition -ar an -te ss -gla d -ðŁĺĬ ðŁĺĬ -correc tion -ge on -am d -or ship -be ast -ch ment -ì ŀ -nic o -wk nd -wel s -cushi on -beli e -vo c -idio ts -under neath -pu ma -corn ell -en ation -lu l -swa ch -ab ig -u rer -mi e -form erly -ca f -er nal -chor us -juli us -sen ator -âľ į -wh ir -salv ador -ph d -uni fied -boo ster -graph ical -w rec -son ny -mi z -dere rs -s all -ven s -tusc any -wi d -y ong -kur ds -w az -trol ls -mac ro -cat urday -pre ssing -sa sha -cent ennial -gu sts -em c -be fore -den ise -cu st -ðŁĵ ¢ -lo oo -base l -eng land -y olo -ar du -manife sto -do ha -ì ľ -kni ves -bourne mouth -bi bl -bar b -al icia -Ø © -com er -cycl one -g it -ane ws -character i -vent ura -in tra -sf giants -hu t -be a -dar win -ell er -al v -re ese -bl y -kar an -conclu sion -man ny -fla kes -unite blue -nad u -co pp -ed ges -lanca shire -i als -o tta -philipp e -l ent -che e -ment ors -festi val -an ism -compli mentary -r j -pu g -d ine -we i -cli ffs -sar my -ti veness -treas ury -il and -after math -rabb i -ou n -bou quet -herit age -zi on -sur render -shen an -in ks -kar l -gh ty -pol icing -exam ination -ce y -per su -measure ment -hydro gen -lu han -âłĢâłĢ âłĢâłĢ -war i -о Ð -j y -fow ler -mis h -al fre -âĺ ij -bb naija -cat alogue -recogn ised -sa ver -hu skies -col in -mun do -si va -p ng -discoun ted -man utd -fre sno -de vin -prelimin ary -tro phies -pla stics -du g -pro cu -indi go -g ard -dy lan -pit ches -ground breaking -in son -bl ac -an thology -f h -expl ic -r ard -admi ral -so chi -la shes -splen did -en vy -ad v -sex y -festiv ities -stic king -bi b -thr ill -op p -ari el -botan ical -endur ance -fe males -br icks -vat ican -black pool -ber mu -br ough -roll er -bi d -sue de -sloven ia -mm ing -ml b -med alist -di ans -rehabil itation -ne on -s go -li thu -ram os -z ed -pi anist -inten sive -broad band -stu dy -peter sburg -lu ca -ah hhh -phys ician -dill on -tele com -gri ef -mu n -ac ro -si ded -s ly -blo ws -classic cars -tri um -ar gy -? : -h ri -marsh mal -âĢ ĵ -to pping -war saw -tran sc -preserv ation -b av -re friger -experim ents -ä º -gl it -sli ga -g age -fac tor -flav ours -br ony -sp o -cook book -carri age -aw ay -ny fw -on ian -w g -simp sons -ro lex -ðŁı ¿ -cro sby -ãħ ¤ -cre di -syn dic -pu bs -ali fe -poor ly -mac ed -ðŁĺ ŀ -behin dthe -w enger -n ats -ðŁİ Ł -rubb ish -procedu res -typho on -opho bia -er do -fu el -vi era -bu mps -millenni um -new zealand -lec tures -it on -mil ky -respon ded -ê ° -landsc ape -.. @ -bo ther -âĸ ¶ -z hang -huawe i -tu ition -s worn -in u -y or -pa olo -au ditions -ab il -malay sian -ho ps -fe athers -mp le -au ts -ã o -boun ty -ic he -ì ĺ -sh q -pin ot -ge ars -disapp ear -video games -t na -alzheim er -ðŁĮ ŀ -a ji -under wear -swit ching -sign age -o scar -ec on -dro w -cl int -pl ated -gun dy -emb lem -ho es -ici st -nel ly -juni or -road show -miner als -at le -alexand ria -ac claimed -v ell -shi va -ad he -en ne -amne sty -h ounds -councill or -ðŁĴ ¦ -aes the -part nering -influ enced -mag no -fl are -extin ction -civil ian -maje sty -va il -law makers -rac ks -mc c -ori an -sp ices -er rors -may er -co ca -pa i -s ooooo -reti ring -ba thro -ðŁĻĮ ðŁĻĮ -âĸ ª -su f -endor sement -buil ding -broo ch -pal la -arvin d -ag ent -kar ate -r hi -c tv -ta ine -um m -ba x -reig ns -uni of -enterpri ses -adel e -fla ke -at tire -bru ce -ba hamas -gra vy -sa in -che ek -tri vi -lo v -e en -bb lo -lady gaga -itt a -. "- -du stin -observ atory -eigh th -bloom berg -kh s -f cc -gi st -commemor ate -ve er -sexu ality -ed c -nic ole -vac ancy -u ser -son a -:' ( -dipl oma -t end -up grades -Å Ł -jura ssic -cardi ac -dr s -widesp read -à ł -dail ies -vend or -sim plicity -wi der -len ses -supp lements -de pos -ob served -vin es -parti ally -renew al -collabor ate -ali g -fin ity -ph u -zz y -pe tit -ðŁĵ ħ -z in -i gu -sm ack -fall on -ðŁĵ £ -back wards -comp onent -o so -compati ble -bin ding -zur ich -thom e -w ounds -ly ric -fresh men -sne aky -fi bro -di et -emplo yer -in sect -h ated -sch er -raz or -n sw -boo ker -califor ni -av fc - ° -preten ding -pep si -al is -un titled -k art -grand parents -e the -o ck -lux emb -visu als -small business -abdul lah -min ho -su baru -h ra -reve aling -heart breaking -clar ity -am g -sl r -** ** -âŀ ĸ -recor d -ici ary -min ded -ye h -exce ssive -knu ck -icec ream -tru th -ev ic -ta stic -ant arc -ren dering -, , -mit t -loren zo -st patrick -bound ary -zi g -vo cab -osa ka -fur n -tu n -gu l -s ounding -blo gger -utter ly -g af -adv ancing -l cd -mar gin -lifel ong -solst ice -sh ra -wa its -ple ar -bre ach -en ligh -ad er -itt le -c ation -ho on -stu died -?? ??? -k ash -ev angeli -ps l -wei ghts -met als -ty res -tur no -wi e -car b -g ale -se al -sun ite -am ic -patter son -á n -eu ph -up stairs -quali fiers -khali fa -apple music -ìĨĮë ħ -vau ghan -al ter -cru iser -mu a -t ana -kat rina -id ols -spo iled -secre tly -fi bre -part nered -um es -gi ov -com et -screenshot saturday -k eller -fil tr -fe t -con way -pe u -bad minton -gi d -m ound -don key -bu ff -lea ther -lar gely -bro ch -int ments -am use -r k -sto ve -impac ted -con t -cr acks -prison er -bar i -contrac tor -ori oles -domin ate -pol ar -am elia -dr c -ðŁijĮ ðŁijĮ -vi st -su arez -injec tion -blo oms -ðŁļ¨ ðŁļ¨ -sti ff -pay pal -sno wing -thur sdays -goo se -we dge -educ ated -weak ness -de cker -abud ha -bree zy -Û Į -hope ful -o bi -rai der -gh am -de u -se ve -par tly -fu t -infu sed -mer ri -than e -some time -hu e -me in -cre dit -sli ding -ran de -cher ry -dead pool -sh ol -ar am -under wood -sky e -distur bing -m nt -poli shed -guardi ans -ha dn -pic asso -ari us -ak shay -ir ri -j h -happ en -la kh -dal ton -at the -s well -mar sha -re h -cour s -j kt -top us -serv ice -r ink -hack ers -dono van -hor o -tc m -may hem -cha se -dev ops -ken sing -sc up -sh ere -quali fication -c live -ton g -n ancy -mar is -der dale -ber man -cinde rella -jol ly -ci c -loo t -collecti bles -hom icide -g ge -epide mic -su ites -mu ddy -gi mme -e rec -- * -tal la -lis le -embro ide -ðŁĩ© ðŁĩª -veriz on -ve ctor -be anie -arti san -ga in -flo res -vi gil -u so -ðŁĻı ðŁı½ -grin ding -gh er -air ports -respon sive -shaf t -can cel -ceremon ies -e me -at ari -bru shes -eag er -bo hemi -children s -yan kee -ma a -suspen se -mor an -mac ar -sun flower -cre w -vo id -ke ar -fashi oned -jen nings -sunday funday -sub missions -me ad -her man -wa i -crit ically -le um -baek hyun -for cing -co bra -ãģ ® -acqu ire -al k -ge ology -pri mar -import antly -ire z -bunde sliga -curi osity -sen a -stric t -con soli -win ters -ven om -chelten ham -ðŁį º -cen a -t at -ba in -glo ver -under cover -as ses -car n -memorial day -am eli -i rene -ch on -syn thesis -spe edy -mitsu bi -sla yer -compos ite -under stands -pe w -inter rup -hen ri -mor row -an om -thof july -g lee -thre e -ðŁĺ ® -and hi -ch att -renew ables -ye s -trans fers -!!!! !!!! -bab u -du ter -lo ops -pe ers -o ilers -pau lo -ic ation -h mu -war a -mer cer -hom eland -fu ji -ale y -year book -re m -re en -ab sur -bo is -] : -caes ar -shot gun -kur dish -o ren -ra e -anci es -ty pic -f h -def ault -re plic -lu k -trans actions -r ys -infan try -ðŁį ¾ -cho w -chick ens -ba gh -wy att -ay e -gg i -bre ws -ed itions -mi ra -commen cement -pre su -peris cope -ic hi -guatem ala -zam bia -pain ts -wit ches -wan i -un dere -cro y -vo ws -us mc -hear ted -theat res -shu ffle -le vel -mul tic -squee ze -fer n -app et -post al -mal t -on board -ld nt -co o -s sc -k ac -ðŁĺ ĩ -sc rap -mar cos -deal ers -ann u -mill er -co ve -ul ary -vladi mir -be ef -th ur -pick led -se same -bengal uru -mo tt -kathle en -hi st -no tor -dr ank -du chess -snow fall -e ff -tin y -j n -sy our -speci alists -scot us -bay lor -eve rest -mali bu -pre m -harm ful -l ali -b ates -g ye -differen ti -and ra -geome try -el over -black out -== == -ko ta -inter act -asi an -la yo -samu rai -fi del -exhau sted -gla di -pd t -spher ic -anti qu -guit ar -stu ri -ho pper -ang le -f ills -sla p -mi th -rod ney -ong i -in som -pre venting -cassi dy -ap ho -ore gon -lo in -ham mond -contribu ting -f n -gar ri -ori on -comp elling -escap ing -aim ing -plu mb -bi stro -be asts -concer ning -bo e -do pp -shop local -stumb led -âĤ ¹ -naz is -âĢįâĻĤ ï¸ı -gest ure -war ts -us open -hi ggins -char li -hang s -bom bers -° : -fe eds -c ch -st il -nic ola -ðŁĵ º -clam ation -tro pic -af ro -ou k -expen ses -der rick -al ine -fa w -reg ard -im er -sat in -thi um -ry der -pear l -te ss -mm mmm -sen ses -ðŁĩ ¹ -positi ve -exhau st -occu r -nor ris -lil ly -is les -direc ting -yo fficial -count less -sam ar -on stage -flo ck -mir rors -arch er -mo i -k d -vi v -in os -si kh -le i -sen sory -br its -kno x -chest nut -op y -coli seum -z af -di vin -adap ter -:) )) -tem ple -ku n -hel mets -t df -gu ide -m old -o ids -lu ther -he is -monaster y -sp ree -k lu -brit ney -jagu ars -gre ats -c cc -ky rie -machin ery -cric ket -re ro -ab o -aspir ing -semi finals -ale ss -sig natures -var d -me th -her bal -hol den -king dom -ap or -reg gie -ore o -palestin ians -em mys -sec tional -ro i -ney mar -qu el -cu ll -l ka -haz el -estim ate -ul ties -go w -be a -purch ases -bel ts -protec ts -m é -gue ssing -bb o -clau dia -fr acking -jon ny -el k -cel tic -al mighty -ra je -courty ard -ig i -can es -ðŁĴª ðŁı» -bank rup -le thal -âľĮ ï¸ı -graphic design -vad er -penc ils -rough ly -dan te -m fg -const ell -cam el -j b -bloss oms -en to -balo chistan -cine mato -ill ard -jer sey -con sent -dent ed -con templ -sch er -hol i -lou gh -st our -a yo -begin ners -cur b -v hs -a jax -du ff -av eng -dom est -commit ting -ai red -cha p -hedge hog -disappo inting -freel ance -in land -char ms -ðŁĺį âĿ¤ï¸ı -ai sh -m x -buck le -ti dal -per mit -bo ating -ra cha -kend rick -b ello -b hi -ple a -estim ates -l b -apo logies -jay a -bb l -ast oni -inter state -main taining -el bow -mu p -ep it -ðŁĺ ¡ -viol ations -def end -be h -sl c -am ir -pur i -ti um -fi fa -blur ry -scri m -ðŁĻı ðŁı¾ -ma ple -rel atives -âĺ Ŀ -cho c -con nor -⾨ ⾨ -whi sp -list ings -ma ze -than king -ri dd -grass roots -shi fting -desper ately -gor illa -den i -ju les -stra th -g ley -ja in -bu ick -t anner -ðŁĴ Ŀ -ga e -pri m -it ors -n ano -separ ation -armen ia -bor deaux -ðŁ ħ -pj net -bu rial -e bon -glo ss -re new -gri er -spe eds -comic books -sym boli -pur poses -ãħł ãħł -spati al -no table -ci on -n ps -ho ffman -nor man -rt g -du sty -situ ated -tr an -k fc -em en -nic kel -hast ings -sett ling -gr it -l ena -w aw -art s -gu m -ca regi -le wis -sapp hire -rememb er -embed ded -t lc -bl at -serge ant -el sa -boot camp -bow man -photo graphic -pill ars -direction ers -classi fied -no is -ve er -barre ls -wh oop -ðŁĺ± ðŁĺ± -fe male -petro leum -medi a -e fc -poké mon -ठķ -enthusi astic -var un -pro files -pedi atric -acci dents -con rad -jan g -jo jo -ac or -ob server -l f -live stock -for gi -fo s -el m -an and -go e -c ere -avoi ding -gri t -om an -thank fully -scat tered -nick y -cylin der -chees y -di ver -mahe sh -cav es -ear liest -qu inte -subjec ts -b end -gul f -vocali st -glu e -pat ches -un stopp -sny der -demonstr ating -pi o -hor ns -wic kets -and the -r ama -yo on -stra ight -bed time -or ang -bul lets -sa urus -min ers -inci dents -! ... -ðŁİ ¸ -ag ers -hand les -stat es -in ity -d ons -incredi ble -emin em -avi v -ru dy -moz art -folk lore -appli ances -mt l -fre y -di as -hu a -page ant -stri ve -im prison -bul lish -r ana -al erts -bb mas -hy per -derby shire -re cre -re dd -debor ah -cosmo s -law son -mel anie -psy cho -ho or -doo dles -sni per -shad y -man tle -canadi an -new year -inter actions -separ ated -cor ds -spiritu ality -ap u -it o -p ct -pel osi -rebel lion -se iz -wor cester -sec tors -ul i -san ta -Ð µ -ðŁĩªðŁĩ ¸ -bi ased -class ical -gam ma -dee plear -emer ge -back er -sur ance -hand crafted -ðŁİ ¥ -franc is -mill an -ic i -cro wn -wo w -stri ped -un fair -relax ation -³ ï¸ı -embrac ing -she alth -pale o -martin i -dist illery -wr ink -or k -na th -hay ley -cour thouse -si ber -sa di -quiet ly -mel t -m sm -me h -smart phones -rel ent -pp ing -war wick -co logne -gli a -cot ton -pro g -lon e -ip sw -star ters -expan ds -u mp -su ed -ski pper -infe ctions -ing le -à ¡ -cler k -demonstr ate -ac ar -ðŁĺĤðŁĺĤ ðŁĺĤ -ti bet -bun s -alo m -demol ition -ssi a -g st -[ ] -so ar -âĺ Ģ -ðŁĺ ª -ðŁĵ Ĭ -dee pest -beyon d -are t -att ends -activ ated -di mit -âļª ï¸ı -high lighted -magaz ines -rum or -az za -steph ens -dol ph -sho ckey -mat s -we av -mel an -serv ers -tra um -ku sh -æ Ĺ -bab ys -pa z -a al -la use -break ers -canter bury -ul ture -mi ri -euro s -tane ous -impre ssions -du tch -il d -gh i -pur due -adequ ate -l p -sy ner -ang ler -du rable -gal ore -ro wn -mg mt -ðŁĵ Į -lu cia -âĺij ï¸ı -zay n -bor row -. ( -north umber -cru sh -eng a -su sh -extra vag -t out -ma hal -ali stic -ther mo -gall eries -es se -chi bi -attrac tions -lex ington -legislat ure -docu mented -resi den -brow nies -w f -st ool -plan ets -sho ppers -conduc tor -ms p -tr icky -fru ity -end ra -feel the -whi pped -hair style -re fer -oo k -oc topus -audi ences -ku mar -after no -op tim -c fl -ni p -gen i -alpha bet -ann ab -lam in -accep ts -l ng -ðŁĺ « -t ine -ac om -cheer leaders -t k -gr on -v g -k ung -ja x -dha bi -r ss -mack enzie -beir ut -clean up -gy psy -st ell -bur ger -hurric anes -educ ation -st ina -âĻ¡ âĻ¡ -unfortun ate -jere mi -bad ger -at ers -: âĢ¦ -ter ra -subli me -stu d -y mca -mr u -duter te -bren nan -bul b -mel o -yl on -hack er -c red -gu d -as an -pad illa -embroide red -vietnam ese -pione ers -projec tion -re boot -id c -an ey -pri mer -suff ers -win ding -p on -sto day -mor n -u ch -all in -adid as -eliza beth -tu ck -o graphy -ðŁļ Ģ -be g -os borne -ghet to -r h -cn n -ir ma -ma kin -cab les -mur ders -oc ks -inst a -al as -si k -cu ff -la re -foo dies -o vic -at om -geome tric -em pathy -ภµ -cent enary -newsp apers -administr ative -ðŁİ Ĭ -sti ve -contrac tors -le tt -tas mania -awesom eness -den sity -ve en -prince ton -frequ ently -re ject -gh i -modu lar -ceram ics -sh ag -ki wi -can vas -sweat shirt -an j -ti mm -napol i -il er -appe als -hamil ton -ma yo -we ave -arrang ed -whar f -occu py -b vb -as aki -ot ter -nor m -vi es -de tox -tion al -dere k -id ad -ad missions -constitu ency -u pper -woo t -allo y -se ve -lu b -un comfortable -ed win -ab re -d wight -ar che -virtu ally -sp ol -pri e -ai i -er r -swit ch -bar ack -se ok -cou l -wn t -pou l -o live -caffe ine -cardi ff -notor ious -de mp -ex cess -bar r -t ford -a jay -bump ed -my thology -shel ley -fal con -shakespe are -must angs -no ted -bon e -civil ization -sy d -par sons -un official -hy ped -sp ends -oppo sed -v ings -space x -noti fication -deci ding -bio tech -out si -sal ah -! . -fe d -ss y -c ms -bad gers -cr o -ela ine -n ba -dy our -n ant -honey moon -climb ed -conom y -ath a -m ell -ne bula -nature photography -juli e -bm x -inve sted -mon o -lieu tenant -wat kins -techn ician -o se -ka e -ì Ľ -mc queen -pre ach -trav eller -flexi bility -ze bra -reta iler -p ant -ben der -brand t -squ id -war rant -veri fied -cas s -pier cing -hon ours -t ying -mor ris -kis sed -op rah -panor amic -me i -splat oon -wich ita -ari as -gal li -indy ref -good times -athe ist -confe ssion -ow ski -re pping -ad ditions -mechan ism -z im -j ans -su f -cho pped -beg innings -vitam ins -ãħ¤ ãħ¤ -or th -po les -ru b -antarc tica -indie film -web cam -ket ch -bre tt -cle ment -her on -defe ating -hydr o -buc ket -wand ering -sid ney -future of -b inge -on ies -knock out -administr ator -syn the -l ent -jan i -bar ley -premier league -ner ds -cr m -bra s -bot any -evol ved -rot ter -ro wed -tum or -weal thy -Â Ń -mon arch -li shed -da hl -ðŁİ ĥ -bu ch -ken yan -Ø § -red ness -assemb led -se mit -hud der -shro p -ran i -lear ning -mor y -iti a -geo graphic -worl dof -f b -pho sp -boo gie -am ped -? ... -che w -dwar f -ar us -s sen -ru sty -recru its -h k -gar de -app lause -vol umes -invol ves -ta c -hand bag -trans late -ffe l -se ym -aqu atic -trans fer -zo di -and r -acade mia -cr ater -te z -ar se -adap t -col oni -snow man -mal i -hang in -di schar -oy sters -pho e -colon el -w ba -hispan ic -thri ving -sh y -ag les -sales force -cre me -so les -la fayette -â ī -ter ia -ach a -sp erson -go go -car ly -the ore -am ore -vo x -af t -ãĤ ¹ -stap le -mu ffin -di agram -ino x -su stained -av ent -me ta -arbit r -dec ay -ado le -Ð ½ -ec ol -ph o -n k -o cu -gr anny -ç a -luxemb our -stad t -alber to -le vit -am as -d x -or phan -co bb -as c -lo gy -immen se -chan ts -off line -p ent -bre x -w inger -plan e -i el -nichol s -ca thy -nar uto -low ed -/ // -ignor ance -cat astro -you ts -sch en -buil d -haz i -s ine -critical role -du g -dete ct -lo gs -en amel -stpatrick sday -ed die -co pa -cigare ttes -ho ff -kay a -la goon -ra pha -air borne -choo se -puer tor -ke v -gui ding -fro sty -bor ough -mir a -ðŁİ Ĭ -cade t -anu sh -yo gi -e ger -fl ing -slo pe -nin th -we ston -foot wear -f n -may weather -a am -pla in -stair case -witne sses -work outs -ro bust -dex ter -co hort -ðŁļ Ĺ -sp ell -ha ze -o om -organ ising -wild fire -cont acts -av on -min o -upd ating -ðŁį » -li thium -ing ual -k is -au ga -lo com -de duc -u da -th ak -boy le -mp er -hot tie -eri k -re vised -is la -travel photography -oo za -en qui -confe rences -clo ver -g room -cur ves -live on -per f -displac ed -bo log -xx xx -ðŁĺ© ðŁĺ© -te al -ve ssels -rain forest -cal ci -pan ther -gira ffe -ta sted -imag ery -pad res -day time -bas s -ri pe -opio id -nu e -vin yl -invent or -sen s -process or -mu t -gad gets -bibl ical -shann on -jacqu eline -car y -the resistance -ali en -n vi -co sy -bi har -fo ley -ren d -mu gs -fa ken -cl one -ni allo -gra bbed -chi hu -power house -n tt -chero kee -spon ge -imple menting -rh ine -le one -ðŁį Ģ -pret tiest -infra red -impro v -swit ched -tu bes -con tr -bl k -projec ted -be aver -yo t -bbcra dio -thi gh -per secu -apologi ze -w ack -po ster -oli ver -az a -lou d -( ?) -f the -women shi -spar row -blu sh -us able -sc ales -it ative -peu ge -ne eding -legg ings -glam orous -mat ur -c z -wat t -da b -tam ar -et sym -bau er -heart felt -h n -else where -bir ch -alu mini -hu ck -e me -j l -traf ford -d z -por tions -ana sta -arthr itis -esp n -ber gen -viol ation -yo shi -c z -northumber land -clo sures -ðŁĩ¯ ðŁĩ -smi ley -r w -tel ugu -inten si -gre gg -ve ga -dun geon -south bound -ba il -domin ican -semi final -chap ters -h itch -van ity -trans iti -recomm ends -sati sf -bar ca -queen s -( ( -de struc -stra it -ra vi -dess erts -in tru -har am -k os -fo e -fat ty -pais ley -magn itude -dri dge -com ey -schem es -vision ary -our t -down loaded -ðŁĻĮ ðŁı½ -gd pr -lan i -p wc -gu ad -nic est -stake holders -re ferred -george town -arvind kejriwal -schnei der -in doors -all star -strand ed -gen der -ze pp -ma sses -ðŁIJ ± -pati ently -bl dg -z ab -we arab -vi vid -he ck -d ella -sy mb -je opar -la ger -à ª -comb ines -ne c -br ay -flo p -tx wx -jo ys -pon t -pro found -sur round -mad hu -ma ble -ay r -te as -n sa -open ly -er nest -ãĥ © -to po -g na -anti oxid -ti an -e tr -c ello -ma thi -gener osity -b iting -man ic -kel sey -chee ks -ten der -w th -pron oun -ultimat ely -gu sta -ari anag -ger ry -ble ed -red dy -mic h -mitsubi shi -oper ated -sex ually -ma u -cl lr -vi ds -co c -mel ted -ðŁĮ Ī -q ld -ite ch -instru mental -end game -ðŁĵ ĸ -ener gi -brow nie -tam il -at in -domin ated -pra ises -fire place -sens ational -men a -k arti -un prece -ru pt -ori ental -mc cor -tour naments -scen ter -re eves -prescri ption -sam e -fra u -tru ffle -em bo -roman s -bla sts -techno logical -pr at -b sb -y ar -tren dy -ac l -al ad -ðŁį ģ -o hh -bankrup t -tho ven -regar ds -is er -war wick -vine yards -real m -niallo fficial -do ta -ge mini -to do -v able -¨ ¨ -la u -wre ath -ju ve -nat asha -le ver -lor i -hor ser -cc tv -air bnb -es anders -sin clair -ema biggest -high school -con test -optimi stic -t te -ðŁĴķ ðŁĴķ -ss d -ye e -hel ena -con sen -ric ks -jes se -an ic -ðŁİ ¯ -re acts -ro be -independ ence -vol tage -m ington -s ant -à¸Ļ ภ--------- -------- -sentin el -ke tt -rehear sing -aaaa aaaa -sof the -stir ling -sear ch -wi gan -stand out -sna il -pent agon -Ä ģ -ch lor -cru st -net any -chemi st -disapp eared -ric ardo -sp iders -bo se -war ren -me ssing -bann ers -gu el -par ach -ma id -coun ted -epi le -bon fire -speech less -se tter -meas ured -rejec ts -nik ki -le ster -foren sic -fab rics -alo ha -pre served -wat ford -deta iling -dar th -bo u -car ly -... ' -tail gate -noti fications -å ¤ -pas sive -trous ers -balo ch -ro ther -typic ally -à ¥ -sp it -wi z -sic ily -technic ally -ex pose -st age -hu bb -cre am -cap s -po ke -sle ek -ju ne -tempor arily -de z -awak ens -l ame -_ - -ji ha -tues days -advis ed -advis ors -exi sted -dis agree -news room -lo sers -world tour -dr ying -al di -har ness -foot print -hobb it -p mln -i ro -que red -asse ss -gaz e -sa b -th ian -í Ĭ -ti f -ob serve -ev il -dra wer -swee p -cor y -co dy -kyo to -cal lum -n inj -lau rent -be i -sket ching -custom ized -du r -regre ts -knox ville -ìķ Ħ -mess aging -grac ie -abun dance -bi dding -bre wed -fl ouri -therapeu tic -alt itude -ho gs -bur ner -elec tro -wonder fully -he ater -post pon -li very -r all -ad as -a ac -sau l -brook lyn -play house -âĻ¥âĻ¥ âĻ¥ -char itable -in y -z ah -compet itions -be av -plu gged -o is -do om -astron om -speci alized -max i -ta ps -cellu lar -depre ssed -folklore thursday -cri b -e mul -ë° © -fi gh -ru z -car lisle -spe ar -side walk -de i -depend ent -lac es -nh s -ðŁĮ Ļ -reali zing -net work -ric he -re gin -re fresh -st ral -pa thology -pla id -psyched elic -hin d -u ka -algori thm -lin king -progre ssi -fe y -d ade -hydr ated -b ant -fam ed -cot sw -bo ise -as c -rac ing -ja vier -ww en -mar lins -poo p -swe pt -toni ghts -we f -ani me -slo vak -âŀĸ âŀĸ -cla us -lem me -cli ppers -re ls -arianag rande -r te -ko t -thal apathy -hungar ian -zu ma -y von -is u -jour neys -clin ics -be be -ww f -n ws -super heroes -er it -sle ague -identi fication -mo tto -ba i -sour ced -ill er -ap i -pri se -unprece dented -dam as -tuni sia -dra in -undere stim -e ther -quarter ly -rewar ding -al ham -wolver ine -cab ine -hyp no -nad ine -hav ana -da e -ðŁĵ Ī -dr on -read ings -b ati -pic o -mer ci -iti an -wal kers -el ope -mi key -god zilla -bur lington -abu ja -social ism -at ility -sh ell -harry potter -g no -ab ur -re leg -fel ici -ro gen -neuro science -inst in -ath am -vou chers -j arre -fu se -def ici -monte rey -de port -mid day -pp ard -fre ed -ame ter -wil t -n ingham -pr att -liber ty -slo gan -o to -pr i -co ated -c pd -ne tt -il las -mal awi -evol ve -accessi bility -ðŁĶ¥ðŁĶ¥ ðŁĶ¥ðŁĶ¥ -or nament -b p -el is -son line -chi ro -fl ick -ib m -ar ak -en ables -gar land -san e -cu ties -tri p -rotter dam -n ys -lam ps -lu cas -bo g -ra ils -travel led -hic ks -en u -sab ha -scru b -hi er -hart ford -fo o -fer nandez -tre vor -mat tress -appo intments -ale j -fe i -o logist -saf ar -oc ta -sr c -sha un -ambi ent -dri c -bi ker -she e -must ache -h ta -bo one -her ty -car dio -bra kes -rec ital -consi sts -overwhel med -cau l -robb ins -im it -al th -ur l -bi bli -on ne -black livesmatter -diffic ulties -tel ang -tall er -ðŁĵ Ĩ -deb ating -bur rito -mo vember -strength ening -bo e -te stam -mirac les -base ball -re nee -ðŁijī ðŁı» -al fa -âĺ ĺ -unstopp able -ec s -g mo -giftide as -path way -fen cing -ðŁİ ¤ -b ham -ra s -sk o -d led -thel ast -magn um -bin ary -wil de -wil der -wh ati -barbe cue -h ism -can oe -kur di -eli ve -advant ages -mad ame -bi er -mis sing -enter tain -air force -y ama -c is -hash tags -j is -ve il -dream y -ten se -may ward -ch ateau -hunt ington -âļ ĵ -v all -up on -bl ouse -dun es -ðŁĺ ´ -fert ility -m ole -curren cies -st u -ber lin -toa sted -div as -wal t -lar k -por a -hit ter -um er -chil led -bal ancing -fa is -y in -or tiz -east enders -h ate -ur al -ap ril -tim el -à ± -per o -sto cked -respec ts -th t -best friends -giving tuesday -be ad -inv ent -im i -nap les -comb ining -tok ens -thir st -ma sc -par rot -sp u -dent on -* -* -t res -subur ban -wid th -si ve -con tender -siri us -lo k -troop ers -outra ge -tur bo -frag ile -me ssed -do h -disc ord -netany ahu -re sign -forgi veness -mo han -mun ch -cam ou -identi fying -enab ling -hot ter -thorn ton -jai pur -ar ya -ðŁı» âĢįâĻĢï¸ı -mu staf -maj ors -o ke -du ffy -roh ing -til t -ðŁĩ®ðŁĩ ³ -rock star -she ep -hend rix -ra v -in vention -do u -lagun a -gru mpy -sw is -im pe -) ' -you ths -bun ker -st ache -oppo se -indi es -acceler ate -ml p -ed en -w ann -k ail -akshay kumar -su pt -pol ym -midd leton -extra ordin -wil son -australi an -alumini um -way ne -alum nus -mat ics -gri m -er nie -opp a -competit ors -rand all -h ence -decla res -pre aching -sha he -can e -sustain able -stap les -le dge -ad ena -doctor al -bur gundy -decor ate -ren dered -ri sen -pr ank -di or -bee thoven -flo or -ac com -to t -ho dg -touri sm -say in -objec tive -mar kers -premi ership -en abled -camou fla -gi ant -Ñ ģ -smo key -ric ket -pan g -de pending -s ation -evol ving -inter cep -cen sus -tof the -re en -mendo za -trum pet -marke ters -an it -ðŁĻ Ĭ -north western -v la -foto gra -blackand white -che wan -wi g -tro om -ginger bread -k n -ro mero -n fc -or chi -fun ko -sour ce -f s -ra ped -o st -tar ot -ann ually -ðŁĺ ¬ -r ill -del av -.. !! -se s -can n -medic are -ph el -ape x -guardi an -rema ined -r pm -a ñ -story month -instag ood -neighb our -p ing -sem ite -my stic -as cot -mat er -hand ful -dang ers -ti d -ana heim -opol y -sh allow -nami bia -tor ia -procu rement -big bang -announ cements -prosecu tor -beng als -sal le -en roll -ga stro -sugge stion -ba k -ha ul -budd hism -berni esanders -flu te -fati gue -cyn thia -cho i -ir win -gu a -str ous -h p -ba p -satisf ying -play a -ðŁİ ¼ -inst ap -al ice -t p -irri gation -ðŁĩ¬ðŁĩ § -in tric -clu es -ple x -sa x -he pat -dump ed -signific ance -by u -medic ation -pro v -tough est -corn ish -âŀ ľ -kel ley -u v -si zz -si bling -me st -di stor -diplom atic -aun tie -b hat -son ic -bren da -pump kins -ro ch -black burn -ur ged -shi a -arrange ments -floo d -sa unders -lec turer -nou ri -popul ations -diplom acy -consist ently -ðŁ¤ Ļ -t mund -cauli flower -l ily -vocab ulary -vari eties -coo ker -up town -qu ent -mo sa -re inde -velo city -spru ce -social medi -i ber -volun tary -proce ssed -bal tic -y ang -leban ese -d p -dol ly -arrange ment -y uri -cran berry -kal yan -elev ation -cli ff -pu shes -ìĬ ¤ -sil ic -co wx -eter nity -sla ves -vine gar -glou cester -con tained -breaking news -aga inst -renov ated -norm andy -hero in -ys m -mo ds -gre ek -un di -tren ch -v h -encoura ges -head ache -gr ange -: ' -ever green -Ù Ĭ -reck on -ab used -th ru -cho ice -ti dy -col der -scho ice -ha in -bru m -li ars -bre it -yor ker -sh ack -he idi -micha els -sco pic -fasci st -play ful -ca c -yas ss -sh ad -.. ? -qu en -ram irez -clif ton -pr s -best fan -âģ ł -gener ating -head set -disappo intment -abstr act -bo iled -paren thood -azerbai jan -exhib iting -bom bay -oli vier -ko so -un lea -mat ernity -iz er -si ves -r hu -col l -saskat chewan -fre akin -de k -na g -stab ili -ðŁį ķ -organi zer -bo sses -ar u -u va -at able -ta un -after wards -fert ili -ver ge -az i -mor ph -๠ģภ-jer k -cosme tic -ko w -stru st -ap ache -post cards -for mul -ì ĭ -spin al -jack pot -elec tri -Ã Ń -lo y -gra der -diab lo -ar di -he sit -f w -arch ery -pa sh -the ories -repe al -re live -per cy -âĺ Ĩ -im in -syn chron -sham poo -coup ons -o to -la i -thou ght -luxembour g -mo v -ðŁĺ ¥ -ge mma -se ated -m ga -strat ford -un certainty -shi fts -est o -fo ol -fire arms -cor rie -ki ki -appa rent -p ills -olym pia -fi d -elev ated -de cks -ignor ing -av alan -ro v -whist le -p tsd -milit ants -robo tic -pac ers -quil t -bankrupt cy -lic h -per cussion -celebr ity -al s -( ; -su t -pokemon go -h g -off s -gibr altar -scre ams -billi e -gen ome -mar in -be ams -arch bishop -em in -bedro oms -g ated -ol ly -warran ty -at own -cudd les -gun na -k ic -vi ve -cy mru -nar row -pro b -le o -refe rences -manufac tured -cho pper -brun swick -sem is -don ia -r ye -man o -hur ting -? # -hol li -investig ations -c els -ðŁĵ ŀ -le ster -temp les -sto rey -mc mahon -toi lets -wo of -ï¸ İ -le verage -at om -night mares -victor ious -haun ting -custom er -ag i -yo ongi -mon ty -ver onica -w ur -inti mid -blan kets -volu tion -j m -âĺ İ -am on -jud ith -ðŁĺİ ðŁĺİ -distr acted -dri p -hurric ane -and es -revel ation -tro op -ab leg -col lin -tibet an -wor rying -inter nationally -eat er -camero on -brad or -y uk -ðŁĴĹ ðŁĴĹ -tra k -slo pes -ci er -ne a -ol er -ta ka -albi on -volcan ic -am n -a fi -ob stac -face time -ger ing -n pr -metall ica -organ ic -ðŁĴ ¡ -ki dd -d ances -pemb ro -wash er -m its -om er -emo tionally -tan go -ip o -do cks -scan ning -spec s -tho m -the ology -emer gen -om i -g pa -selec tions -un necessary -ima ge -ter s -induc ed -gi gan -rent als -supp lied -m fa -shan kar -lat er -pa jam -cla ve -Ù ģ -ma hin -carl son -avi an -ano va -kati e -aj ith -design ated -chocol ates -investig ators -gla zed -prin cess -er ry -ra gn -ou rable -hr u -sun dance -peuge ot -steam punk -gh lin -gre ase -hi res -z ap -per ce -j ill -tom e -he hehe -joy ful -mae stro -ni shed -gene alo -v ich -p its -fox es -good man -emer son -lo bes -con verse -o ats -thom son -ra him -mal ware -ah i -man kind -re sin -im g -sw ood -kin der -sc roll -ar a -sak ura -ro bbed -xi on -ny a -c ism -ce dar -be in -mour ning -tor to -heath row -done gal -bar b -hydr ation -k or -elim ination -su pdates -hill s -appe ti -star red -ko m -gw en -dd d -cra y -sc anner -personal ised -seren ity -re design -meta ph -box ed -judg ment -no se -ë ¹ -er ad -ac ne -supp liers -ener getic -v om -as ap -ðŁĶ ¸ -ir vine -hat ch -la ss -ad ren -waff les -accur ately -ici o -itt le -se un -occup y -web cam -thene w -ent es -ga i -j w -accoun table -vis or -ir rit -licen sing -hudder sfield -gen ie -ðŁİ ¾ -atmo spheric -ten sions -spart an -clif ford -ol an -north bound -ame en -cen sor -u el -ster y -$ $ -far rell -hy ster -cl t -se dan -rep lied -descri bing -micro wave -sla b -pro sp -assi sting -ru bio -e than -hh hhh -gu ay -z man -ra ise -roll ing -o e -n ile -ambro se -scar borough -hero ic -coo ks -mor t -chop ra -ðŁĮ · -to b -shav ing -stac ey -dor m -motor sports -wi ki -fol ds -sp iced -stress ful -liter al -fu dge -pe ggy -wa ite -tre sses -se sh -pr ic -ðŁİ ħ -fri ght -r va -mumb ai -po m -tt v -cel lar -tom e -andro id -dor is -tsun ami -tin der -o ec -m wc -dor tmund -no thin -l iti -so u -believe in -at u -kno cks -mag ni -ss sss -ro hit -ine ws -ang i -m andy -ke ttle -intermedi ate -av ant -cur l -endor sed -ori o -ur t -consider ation -wi res -shel ters -b ino -vik ram -imple mented -ly dia -bu k -paro dy -c news -under graduate -canu cks -sam i -polit ically -ro tten -gh z -tex tiles -over load -moder ni -recre ational -fli r -bat on -typo graphy -ov ation -intrigu ing -pilgri mage -al ge -ad ays -tcm party -sp elled -cur ls -boo ze -ste m -ann es -ir ls -spon ge -sho pper -sig nation -bra ss -mi stress -le ah -beg inner -lau derdale -augu st -pre school -ta ping -tai pei -execu tives -b d -rhe tor -esc or -immun o -deeplear ning -stat ues -it us -manu script -ly ric -cor vette -mol ly -la ge -de p -cn bc -le st -je ssi -fi fe -griff ith -oppo sing -ran g -dr ills -respec tful -p ity -d ell -har ding -play boy -blo ke -shut out -k ili -o sp -se attle -bc poli -mis es -journ als -team ing -es ther -fre ddy -Ķ ï¸ı -metr ics -no tre -gar ry -for ty -navi gate -perio ds -bened ic -j id -da w -ance stors -restor ing -con g -aller gy -tit anium -c ence -lean ing -ab bas -v ast -uc f -roof ing -e man -seve rely -vo gue -ve au -in bound -d z -tane ously -stret ching -man chester -dr yer -dav is -kan th -the game -it ted -re tain -el les -conge stion -frat ernity -ol lie -lo ki -fre ely -cho o -pon y -sc ep -tab ly -bal t -rock n -di me -lo gging -ðŁį · -ad u -ha voc -water ford -char is -swee tie -run ning -ner d -erdo gan -z ara -weigh ing -fif ty -pre cise -low ell -kurdi stan -r yo -or th -syn th -lin ers -phenomen on -art illery -il legally -constru ct -nostal gic -gar th -al ta -shel ton -a sean -w ander -dur ban -di versi -bon o -cl on -le man -sh un -obstac les -appet ite -fe eder -respir atory -di xie -formu la -an to -so ber -extin ct -au c -ing les -legitim ate -; ; -min nie -ipsw ich -dram atically -ðŁijı ðŁı¼ -ingh am -milit ary -mon et -us navy -for k -dun no -play er -q otd -st oo -ex or -ethiop ian -film fest -pe red -c ate -sau di -in ner -sin cere -tion ality -ale e -de eds -cooper ative -ir onic -cro cod -br ary -post season -cam per -can ary -e in -exten sions -nb d -sher wood -spo kane -hu mp -jit su -ê ¹ -dar yl -p si -stab bed -offer ings -expe cts -cav al -body building -fr aming -f ca -ye arly -bom bed -sk il -resear ching -jud iciary -gree ted -tu dor -mil o -innov ate -ðŁĺ Ľ -r hs -ru by -contribu tor -fam er -soci ally -m lin -fi ery -ut ter -beau t -it os -de voted -rain bow -bar ney -pe ren -ar jun -r na -gab by -ut i -hann ity -pick le -ser v -qu akes -pp e -fe m -wh itec -j n -victor ies -ðŁ§ ¡ -gol fer -congratul ates -resul ting -mechan ic -ur ve -cen tered -kie v -an s -in cub -< < -c mo -bestfan army -dap h -en ham -on cology -ku sh -t xt -ori ented -fashion able -c sr -sa hara -r ack -pd p -han son -ภĩ -ti ers -ra r -pan am -in sky -sa hi -testam ent -asth ma -in her -fisher ies -or der -ho we -gall on -ep is -suz anne -drow ning -paneli sts -ðŁĺ ² -ë ¦ -al ach -commemor ative -at tribu -ðŁij » -mo o -visi onal -week sary -gu st -ak in -poin te -ee e -di spar -ni pp -dent al -st all -pi an -bor e -ul ster -tic k -ir r -tae hyung -micro phone -bermu da -ga ard -el er -plumb ing -hu gely -âļ« ï¸ı -race way -cam bridge -mar cel -burn ley -to ast -holly wood -fa sting -me red -hib ition -ca pped -benef icial -ow ning -cont amin -arab ian -to on -cap ac -hul u -sm ir -nutri ents -se in -graph s -con ditional -ðŁij ħ -or ac -play in -nor the -tor nad -mar ian -ju mbo -lex i -incredible india -road to -uk one -confu sing -sp h -shan k -pi ed -mq m -positi vely -sher ry -path ways -consi ders -tof u -argu ments -resil ient -che tt -with dra -ter o -ated ly -sw ana -he b -fli ght -har ley -decre ase -kind le -book shop -³ ï¸ı -marty rs -sm ur -mc cl -concer to -sti me -rejo ice -app lau -cle ment -mer kel -jai me -im mortal -isle of -mar co -youtu ber -stal king -me too -st ack -sp ouse -u st -lu v -âļ¾ ï¸ı -eque strian -ev ing -fl in -nick name -the big -as ar -st acks -wal ker -bor a -kidnapp ed -hur ling -humb old -rec alls -co pper -ann is -se o -mer ger -mu ir -ad dy -ðŁĴª ðŁĴª -be x -cr acy -con an -congratul ation -mid st -âĻ ¬ -for bi -op tic -cr ate -crocod ile -mad agas -secur ing -ast on -o gue -savi or -salis bury -love it -fuji film -cast les -as st -ar rows -sp acious -tr s -poly vore -progre ssion -m ri -nel son -bi m -indic ator -o da -pe pe -re signation -gu t -sne aker -log ically -az y -are lla -te aring -jo shi -ssion ism -q pr -mari ah -p x -ble ed -mi an -med ley -we iss -ker ry -gat ory -at al -madi son -av enger -nab y -pl and -gi les -fresh water -d ington -ta j -demonstr ates -n tv -bul bs -sunday morning -pe ake -souven ir -wa h -ton nes -m kt -complex ity -con den -ross i -b ing -y ds -su k -n go -mid land -ol y -life is -ri pple -mo reno -dd ers -tu s -á ĥ -bou l -x a -hol dings -wn y -shadowhun ters -ke i -asp ire -m ous -ow en -so ak -skir ts -moun taine -stor ming -ch rome -ri ots -sar ato -amaz e -less ness -nav ar -crit eria -ra fa -indul ge -ay er -por to -nam o -........ ........ -yi elds -val le -j h -mac ron -sa ins -dur ant -tra ilers -wo t -confeder ate -sh rin -id ol -form ally -ten e -motor cycles -than g -no de -bang er -dal y -p ats -enroll ment -au ctions -at al -ar bor -lo gos -de arest -trans action -dom ingo -fle a -ser mon -de ck -sin cere -questi oning -juli o -was p -pre tz -armen ian -k ham -inflam mation -picture sque -acci dental -film makers -ðŁĺ ļ -ðŁĴ į -ca sey -so b -yee zy -good will -parag ra -ss ly -fe ather -dy ed -assassin ation -na de -b cs -app lies -femin ine -fe u -ext ent -depu ties -l ack -psy chic -go i -kill ings -pse u -ðŁ¤ ª -un c -mar l -tan e -mck enna -sur fer -influ ences -free way -hack ney -mal aria -el and -te au -rema stered -Ø ± -raz or -gg y -cor ro -lak sh -fla ir -honest y -hoor ay -de pp -am c -wedne sdays -q a -ed its -- $ -se villa -dou bled -human ities -c cot -som os -r ine -af a -si oux -re construction -wel ding -th reads -am ish -encoura gement -po der -bo ck -bal m -p tions -stand up -accompli shments -guar ding -convic tion -ac ion -napo leon -depic ting -att ack -su i -wear able -âĸª ï¸ı -pot ter -esc ort -vis e -to ts -bo on -event profs -angu lar -womenshi storymonth -bar row -sch i -ac comp -ti k -l end -kensing ton -wol fe -st acked -cra shing -exhi bit -wing ed -sab rina -ma sa -k ms -alway s -et t -pla sma -counsel ing -pick les -nfl draft -mr s -inev itable -coura geous -staf ford -writers life -ho s -e j -gh yun -trade mark -adri an -influen cer -coron ation -ra ging -explo red -usa f -excep tion -eu x -tan ker -sw ami -pac ket -ðŁij¨ âĢį -f en -she en -a ero -j l -re gal -nw t -au ster -meh ta -char ge -a ste -b ate -inf eld -racec ourse -collap sed -fle ece -z il -al lie -alternati ves -geor ges -ðŁĵ į -quir ky -fc b -nat geo -philanthro py -bra i -every day -ðŁIJ ° -ach ers -ja an -fin es -q i -fisher man -distin ct -gri mes -nation alist -comm ence -ro wn -âĢ ³ -z ing -f ter -hr w -baro que -bl ender -kitt y -hoo ks -c ited -w anda -consen sus -reinde er -an and -supp ly -me ds -v n -ol ph -rat chet -shel don -secur ities -ë°© íĥ -cro m -mosqu ito -j eric -im mac -dimen sions -â ¤ -di ssi -sponge bob -dami en -steven son -jo anne -del ish -yi kes -than x -surve ys -postpon ed -alco holic -al ised -ðŁĻı ðŁı» -do ch -sen tim -mered ith -com pares -b ago -happy days -mo ss -ãħ ĭ -ne c -gn ment -frustr ated -comb in -ri v -ec lec -col lo -compli ment -actor slife -ct to -nic ar -op hon -apar the -man t -ja de -trol ley -optimi zation -eye on -eco logical -qui st -ep he -ॠĩ -cin co -appo ints -old school -c pr -behavi oral -min aj -:- ( -tag ging -ev al -jo aqu -ðŁĺ « -ha k -de me -jama ican -so s -hy att -hand book -libr arian -hanni bal -pump ing -ch om -f man -ga i -hu ll -respon ders -green ville -n us -vau gh -ðŁİī ðŁİī -ta xi -gold berg -man tra -te ase -forbi dden -metho dist -ati vity -* *** -ec t -mc gr -Ħ ëĭ -se b -amid st -disapp ear -thy ro -phili ps -er ina -v icious -stream er -million aire -ma p -str ick -hack athon -gh a -ed ic -mi ka -pe ck -ill i -anto ine -ar ca -op tic -ma ure -ðŁĩ¦ ðŁĩº -cla shes -man ly -âĺ ģ -al var -and res -me i -el m -ww ww -al tered -l te -ê¹ Ģ -mo jo -for rest -thal ai -non t -spee ches -acknow ledge -ign ite -x factor -ðŁ¥ Ĥ -mead ow -disru pt -debu ted -scrim mage -pharmaceu tical -fi dd -found ations -philosop her -et al -publi shers -bo ys -c ke -ru gged -opti mism -re be -phil harmon -nar cis -ral lies -lu is -go blue -fol ded -un acceptable -optim al -li sa -pol aro -+ . -en za -âĿ £ï¸ı -mon opoly -grace ful -dair y -du a -diffic ulty -judge ment -o si -mer sey -flu x -new found -ter ns -dimen sional -in vic -al ba -am it -abudha bi -alger ia -autom obile -the ad -lo tion -acceler ator -vac ant -iti on -lu f -al ic -pl l -bla zing -ba z -sen e -ðŁij ¼ -villa ins -direc tory -eis en -to ck -broch ure -ri pp -hb d -zayn malik -nic he -lo lol -certific ates -mor se -fac up -x ham -un wanted -im ports -carne gie -fan sign -mo u -r alph -destroy er -sw ing -trek king -cili ation -pit bull -g aps -ho well -defin itive -mc le -f ps -et z -bol ly -lyn n -gan o -at ure -fur suit -co il -na v -but ts -tro jans -eu re -en ko -sch umer -horri fic -install ment -br b -subur bs -a bel -vi r -de sh -cun ningham -ðŁIJ » -span n -sch we -ke mp -tr u -ste alth -qu es -le w -deli ghts -ko ch -hu mili -cr iti -il t -sp ells -mi ley -car ic -ðŁį ´ -lc fc -substitu te -oun g -? !! -af fir -predic table -class of -er r -cy press -chand ra -age ing -__ __ -ther land -don caster -el in -yo shi -sail ors -har ris -jo anna -niger ians -h ers -pla gue -pro cra -k no -can ton -busine s -un h -pra kash -c in -bow en -co ating -m als -be gging -smith son -ponti ac -sp ies -dam ian -pl ine -und ant -al ta -one ss -shame less -da q -bb m -wal es -stam pede -ser um -Ù Ĩ -cataly st -x n -ab sc -free zer -ch un -ari os -mc cre -fore head -he ars -damas cus -tac oma -ardu ino -encoun ters -stan ton -lg b -ab as -" .. -ke te -drac ula -ele m -g ne -zepp elin -la brador -pul p -op tional -or n -russi ans -san itation -hil ary -etsym ntt -pen alties -au st -ig ans -olympi an -medic aid -vers ace -va pe -re stra -pe ep -sexi est -st alls -di le -the a -punjab i -pupp y -tuesday motivation -ðŁĵ ļ -the flash -roc ket -mo dest -chihu ahu -on na -k sa -hur dles -ca ve -fail ures -sp lit -bo ho -gur l -disappo int -ho ward -nug get -fran z -stal ert -kaz akh -for getting -sch ri -ag ate -am at -eve rett -du et -veter inary -juli an -ch ills -bra ve -ghost busters -lan do -gre ets -profit able -d é -ti r -ze e -om en -pd x -gray son -har i -fix es -stab bing -swim mer -symb ols -compli ments -po se -func tioning -th nx -gi r -corpor ations -bar low -lo e -off season -distin ctive -marvel ous -nik on -enri que -ky u -ja ws -amo to -lom bar -travel blogger -fa h -ouri sm -tri stan -so e -ce ase -ðŁı ħ -z ac -mck enzie -taxpay ers -swim suit -bl o -les ley -kan sas -w ks -ki el -provo king -my les -str ing -kangar oo -galac tic -fif th -s ke -we ir -ll is -mat ory -ðŁĩ ¿ -un ci -re productive -roo ting -ti des -gad get -.... ...... -alex ander -bow ler -scre w -apo log -eri ka -wal ters -shet ty -lan e -ban ter -as ant -me so -v ain -" "" -us i -fer din -accomp lish -man sfield -bom bar -collabor ating -cla p -it ure -s da -smo ky -na k -im person -car la -com ra -bur gl -lo co -ti es -in hi -trac ey -se is -diss er -rr rr -dra y -prote ct -cor ona -hun ger -ck en -c eli -trou bled -predat ors -fic tional -shav ed -riche st -metab oli -ful ham -gro oming -mono chrome -wa sting -as co -ast e -ti sta -remedi es -ung soo -south end -perman ently -bu mble -procra stin -ident ical -practic ally -ma scul -su ke -assu red -val erie -devi ant -grizz lies -thi er -pur a -ne pal -not ts -bil ateral -spo il -car mel -cine matic -ph l -ni fty -ma o -hypo cri -la ser -pan try -mathemat ical -el isa -coordin ation -bel mont -a it -radi ant -bo iler -man g -f ag -cr c -h ams -br in -â¬ĩ ï¸ı -famil ia -âĿ £ -sab er -ru pert -gg an -rit z -mic h -sal ford -le vi -gra l -ðŁĴ ¤ -n ino -ce d -business man -ul tr -sim ply -compre ssion -pa ins -hal t -ë°©íĥ Ħ -landsc aping -n f -croo ked -er d -itt in -ddle ston -sur passed -ino a -da g -bl en -exten ding -at ing -al gae -ball er -u mar -snoo ker -col lu -flo wn -thu b -ridic ulously -ki sh -op le -di re -as ser -ari sto -sc iss -h ating -trou ble -syl via -suc cul -plo ts -sincere ly -al er -laure ate -br ack -att n -rif les -me to -collec tible -cu omo -conte stant -consist ency -ant z -rang es -abig ail -de b -mini ster -grow ers -an oo -hoo ver -dream er -nu cle -resear ch -mi y -sha hid -ma v -d honi -cin i -do j -hin dus -part ying -dal i -alon so -inform al -clark son -it ton -ki an -cit yo -mor i -la sted -as pen -libr ary -susp ici -qu at -den ial -fol der -ch ori -swee ping -eni x -ðŁį Ĥ -Ø Ń -nas car -handmade hour -mou l -heat wave -em er -exam ine -ib n -gr ind -po v -tion ist -m bo -she ila -integr ate -om es -take away -cer v -con nie -tic ket -ce led -bi en -visu ally -madagas car -sor ry -gu i -park run -tra its -la be -pois oning -ॠĢ -vi able -bohemi an -denti stry -bad os -spr outs -mask ed -te ddy -ðŁĺ · -sa f -sa as -ji ang -ti ght -spe aker -withdra wal -bc n -as signed -class rooms -fle ming -ðŁĴ « -super girl -tot als -table top -e books -horizon tal -cra z -flu sh -j ard -c dc -er son -ãħ ł -green wood -ni h -co x -ad a -lit re -go ing -v icky -cur ved -lou ie -gra ins -hy e -lon ge -reme dy -tra inee -san jay -super stars -ma ser -man u -s age -wh l -ðŁĺĤ ðŁĺŃ -ðŁijį ðŁı» -m sd -en z -rab hu -j oo -gh u -ac er -e po -resurrec tion -justice for -bl ended -mo da -avalan che -france sco -re spective -g s -ye ast -wel ch -devo tion -ge tin -athe ism -am ic -carol yn -lo c -ld nont -ave c -us da -le gged -bra very -b lower -cow boy -he h -sti ble -buff al -chann el -run chat -âĺķ ï¸ı -ide ology -best seller -y oo -pe anu -bon ne -fel ic -edi son -fr actu -naren dra -pp ets -seym our -ri viera -he ctor -necess arily -bi anca -soci eties -the best -w g -sent ences -win k -vacc ines -pal ooza -jam ming -as f -mp us -agre ements -ec k -ba c -hon ore -com pul -wild cat -im posed -yo ga -hud son -can celed -l ich -fu zzy -es que -ch uk -w vu -se k -fli pping -r hon -wi shed -wh a -cap ability -len ovo -ìĨĮëħ Ħëĭ -vi vo -tv d -nor a -sil k -pas adena -yo semite -valu ation -clo cks -u ber -mr c -dar kest -au bre -ss o -bell y -wrest lers -kill in -lou der -buck ley -ge el -ad on -un s -appe aling -ðŁij ¯ -semit ism -list ens -fit z -ãĥ³ ãĥ -ny lon -ar ty -seem ingly -hal a -su ited -et y -she ds -mu ffins -ap ric -um ents -u ta -jam mu -chelse afc -star z -yo ko -roo t -clean sing -di ar -pione ering -ihear tradio -dig iti -fin dyour -can o -ðŁĴ İ -z ol -spac ecraft -six ers -moi sturi -b ile -ti sts -hor ton -rang ing -colum bi -mete oro -senti ment -ep l -foo th -text book -drain age -r ly -sc ue -imran khan -ðŁĴ ¸ -margar ita -ed dy -predic ts -gamer gate -advis e -growth hacking -love you -ug and -v f -beng hazi -s later -ne wor -ch el -independence day -p np -cul len -hoo dies -num bered -brit t -t sa -kl tu -s ages -mom o -onep lus -col l -gu ts -w ta -mesm eri -enh ancing -chiro prac -j is -teen agers -m one -constell ation -sweep stakes -e ze -slovak ia -la ye -pear ce -wa ver -po gba -k ron -sur geons -mar x -ti d -gg a -desc end -p ours -upri sing -wal la -sab bath -bachel ore -mack in -k am -peter borough -hor a -ðŁĮŁ ðŁĮŁ -think big -r j -hy drau -sp al -univers it -ðŁı ī -mail online -league of -ten ants -w ally -lan ce -heav ens -dd r -bol ts -am ir -i phone -ci gar -en du -re i -el abor -r inging -john son -characteri stics -sal oon -algori thms -tal kin -m tn -di ve -region als -ff ice -hat i -deviant art -so tto -shir o -l ama -k we -f aded -por ting -tu mmy -est ates -buen os -ðŁ¦ ģ -beli ever -pen etr -dar n -sp ite -can opy -fashi oni -t illa -pet als -eli jah -bra wl -marty r -ë°©íĥĦ ìĨĮëħĦëĭ -mid town -eric h -d apper -sm town -me gam -ww w -le le -on s -cat fish -fir th -fossil friday -ball park -th aw -pot ent -illi e -cre ep -car p -so ap -gun dam -infe c -yy yyy -ठ¨ -z ag -rit t -calcu lator -bo ca -ok o -to ad -threat en -refin ed -olym pic -accompli shment -bacter ial -a ji -tat um -feli z -she ed -j at -th ic -jam al -ðĿ ĺ -lin a -ðŁIJ ¯ -jo king -yot po -pin ch -ak ron -her b -motiv ation -li a -ho stage -cre ek -gam ble -russ ell -patt i -fo tos -c pc -bro ken -back the -cla ys -u mm -stock ton -mat ernal -ü r -la kel -cent ury -be k -infe cted -ภ¡ -smack down -man ned -ta hoe -sm es -bas a -su la -augu sta -. * -rohing ya -gre ed -counsel or -silhou ette -gra vit -cla use -' - -bo bc -occa sions -now adays -dic tat -be ard -n ally -brigh test -kab ul -inc india -dhan ush -archae ological -che ape -mizz ou -d hi -ov ski -bax ter -asse mble -à ¢ -gi gi -ac am -wis ely -haz ard -north ampton -âľĪ ï¸ı -me th -bla sting -re unite -mu lus -ali zes -t read -mil a -ed ward -ko va -pe sto -ðŁij ¶ -vit z -hydrau lic -refurbi shed -mo tel -isab ella -hom me -sever ance -uph ol -mis erable -f ari -lat ter -ef er -crack ers -es l -ac io -yy j -in an -ec b -z ind -pan as -tru cking -re ed -sh aker -burge ss -em pire -ag nes -n ington -art works -fr s -ti le -bi ome -eu n -ch ong -americ ana -god father -go blin -i shi -! ). -temp ted -gen omics -mand ate -ck y -ðŁĴĻ ðŁĴĽ -som ali -br andy -in ven -spoke sperson -pc b -yu an -h g -fa z -starwar s -ro wan -blue grass -don g -d day -trin idad -er ton -ban ning -re tention -cu red -tober fest -re set -we is -deta ched -behindthe scenes -immun ity -ph a -bra y -ðŁij ½ -ran cho -ram say -est onia -nd tv -] . -cab aret -tar o -d v -show cases -plu m -ðŁij ¸ -son oma -pre pa -memor ab -e stu -drive way -u les -magn us -x r -nn n -much as -en ge -stre amed -fore stry -audio book -tro y -reck less -kil om -ru ler -ra k -proce ssion -i ons -po ole -noc tur -wh s -farm house -per a -par me -hypocri sy -s ics -v ant -cas k -holi stic -au st -Ð ¿ -in do -ðŁij© âĢį -di so -disp atch -ol sen -make it -en nis -cent re -ar range -ðŁĮ ¼ -sal ted -ea siest -f ate -reg atta -mo zz -ac an -sin i -g ically -ch ops -chick en -work in -ha gg -invol ve -wee ds -book day -wake up -ky r -michel in -fu ss -re juven -vac ancies -incar cer -m st -sc ents -sovere ign -kick er -à § -bo d -âĢĶ > -sa h -mob il -shrop shire -oph one -dress er -mis suni -hep burn -i mo -foli age -diagno stic -as san -cycl ing -guil t -c sa -puertor ico -win elover -wake field -do ggy -k he -pa pp -co g -al lot -cu ck -poe tic -mi o -re vit -mag ician -ç ¥ -ant enna -west wood -mber g -lux e -oat meal -Ø ¬ -te at -ffe e -sear ches -l ly -plu to -el on -let tering -inno cence -fa i -ann on -telang ana -ma it -neu ral -can ni -ar oma -a stor -fe x -co cac -mon etary -f ent -un sure -' @ -indi rec -teh ran -isol ation -li bs -make up -merce des -ff y -he tero -de o -sco m -cur sed -veteran sday -franken stein -shre ws -de co -ge ese -lefto ver -ha did -vari able -acade mics -carol in -under going -vari ation -na h -ssi er -gamer sunite -pur suing -emer ged -ll ers -control ling -ro aring -mete or -vol t -daw gs -be aver -is life -bathro oms -aci onal -pre vent -lake district -in als -y ani -gra bbing -sac ks -le z -sw ay -k ool -time s -klo pp -la de -con cord -resul ted -revi ve -recon ciliation -ol and -az z -gir o -mand arin -de en -nutriti onal -is coming -van i -aw www -der ived -love your -stop the -shou ting -nov ak -ðŁĻĮ ðŁı¾ -lo af -displa ying -sunday with -ma guire -ch eri -ðŁı Ł -re match -qu ic -Ú © -y in -ðŁĺ ¹ -ili ve -z ip -our ke -down loads -sw at -missi ss -care rs -t ment -proper ty -hahahaha haha -gi bbs -sur rey -ar ise -tic ism -sti a -ir ling -fro g -co se -bas sist -fore ig -lea u -pil lows -hol la -eli e -disclo sure -peanu ts -inte ch -ww c -plun ge -trium ph -cor i -sli ppers -ðŁĻı ðŁĻı -neutr ality -ma re -hair y -gang ster -hu mming -cust ard -mer lin -ale a -s by -dam p -mo han -ver bal -j st -gu tted -b jor -un finished -ðŁĩ¯ðŁĩ µ -un happy -âļ« ï¸ı -by pass -at su -fis cher -sa v -afric ans -re use -mid way -demo lished -ger rard -her cules -Ä Ł -medic ines -cl icking -sur round -jo ong -wav ing -tri bes -wet lands -offici el -argu ing -l le -do va -su zy -club house -ne gro -ob tain -ga o -gl ance -assi st -ch os -ãĤ ¢ -âĺ ķ -adri d -occur s -st ans -par don -livel i -emplo yed -re visit -ff xiv -bb le -ne aring -min er -ðŁĺ ¹ -giov anni -up to -mar vell -mar se -to wels -cb n -engine ered -y elling -spart an -si ans -ðŁĻĮ ðŁı¼ -se v -coyo te -sta di -t cm -app en -shenan igans -open access -so aked -ma squ -le vine -stro kes -l k -aparthe id -hipho p -char don -may may -ha asan -stri pped -fr o -scri ption -f ton -h f -pri sons -marsh al -ķ ãĤ -an cho -com promise -classi fication -buzz feed -bblo ggers -deser ving -) / -s way -ob o -camp ers -poder nfamily -p oured -bri e -squir rels -se ize -: # -le k -ti mb -st acy -nas daq -repe atedly -br at -mi ghty -competit or -mah one -de si -o ke -bm w -shi e -f cb -cheape st -minim alist -par amount -n ate -har as -insan ity -lat eral -ment ality -mo zam -ta pped -yad av -u sp -b way -the od -bil t -ra ids -em press -adap ted -pat ron -nut shell -ag ra -be aded -sundaywith marsha -vi king -proce ed -main tained -thinkbig sundaywithmarsha -sn es -mus ica -to wer -ch ab -bo k -sm t -insul t -harve sting -windo w -ru ther -be ige -dec al -indic ate -ma iling -ri ft -po le -ander son -ch oral -sp ride -l ili -ev elyn -imrankhan pti -.... " -ke red -un dp -water falls -se ars -le mans -world series -ri el -ani e -app ar -score rs -lam p -a than -phys icians -qu inoa -refu sing -vu itton -unle ash -s la -pat i -shou ts -inten tions -fo amed -europe an -neighbor hoods -me er -man son -du h -br at -con es -bow l -kazakh stan -ठ¿ -in appropriate -del hi -ketch up -ful ton -s ys -consul t -gar field -to go -f ml -f led -b ds -facilit ate -ree bok -selfi e -elev ate -activ ate -bi ble -ca wx -b ys -cam ille -sy ou -sk ool -her t -w bc -ple dges -recor der -po sh -ac re -so aking -mat il -v sco -shoot ings -pla r -e con -ðŁĻĮ ðŁı» -rashi d -u bi -ðŁ¤ ¤ -sw inging -wi pe -rap tor -m su -music video -dur ham -at tic -apar ty -fe tus -activ ation -aa z -motiv ate -ðŁĴķ ðŁĴķðŁĴķ -j al -ठ® -ag on -sche er -stal ker -fo ster -az zo -tele gram -vi gor -s laugh -screen shots -entrepre neu -kri stin -inten tion -ch illi -fr action -don a -ge a -tc u -s ite -la k -em il -d nt -bor o -wil kinson -re cu -ato day -t anya -bl anco -cd n -brilli antly -g cc -ac c -evacu ated -ther ine -den ny -cait lin -she pard -pou ch -hand held -sou theastern -ha a -à ´ -re solutions -led ger -sr in -r ar -shat tered -chim ney -im with -mete or -hand led -ra ke -town send -en han -shi py -duc t -tw x -inflam matory -war hammer -theat rical -gro s -sk ar -sco tty -ni el -tit o -tin i -conne ction -_ . -goldeng lobes -sha q -ðŁı ³ï¸ı -hall way -fron ts -effec tiveness -gla ston -d hs -ex pi -to h -c pl -sc s -re o -ha g -resemb lance -hor an -abu sive -qu er -virtu e -cho lester -a q -shan e -m ce -carri ers -di stress -re wind - ¡ -voo doo -int act -ann o -ðŁĺ ¤ -pi led -adi a -ãĥ ³ -en ow -di gs -light ly -goo fy -turb ine -governor s -con te -re open -pa h -i ve -cra fting -swee ps -jo di -an de -zu cker -kaw aii -o ko -v ai -out line -kri sti -ts n -insp o -qu int -fil thy -lyn ne -listen ers -depar ting -or d -t weed -, & -ale k -sel fish -nor ther -recogni zes -i ps -be s -a ed -w ills -pe at -surround ings -mon uments -ais le -be cker -la v -quant ity -v ah -helicop ters -tu cked -alv arez -sha pe -o bey -ad diti -road side -m ite -bl ers -ep age -j au -ignor ant -b ins -lu lu -x o -c fo -ee eee -apprentice ship -shef fiel -to i -ho k -faken ews -deplo y -aid an -husk ers -ãĢ İ -west brook -mi ster -confi gur -car r -fic a -proceed ings -ha w -ste ak -mur derer -pay day -a jo -p vc -don ates -bi af -nom nom -be it -k ali -x rp -ahmed abad -se mic -che y -x tra -an twer -head lining -squ ares -roun ded -flu ore -bol d -disa sters -am oo -gener ic -cran es -brief ly -gi g -auster ity -anticip ation -for ti -treas urer -cann y -ce cil -dete cted -check list -ภ§ -pam ela -bar bados -an field -hear ty -tx lege -peren ni -arro g -ing ram -âĹ ı -ty ne -spo on -r ation -am ba -m be -cam el -h hs -york shire -reflec tive -fre aks -to k -ju do -partic les -du bs -ban jo -accred itation -prover bs -over dose -inte gral -gu ang -mc s -super car -af b -al vin -ail s -x tre -st aging -tw ent -rabb its -mar o -inste m -dol l -cr ay -sant ana -ble ach -mini ons -che ap -man t -di vers -catal onia -lo is -mat ri -cou gar -kay ak -e gre -p so -a ia -å ® -char lton -tr acked -sc ari -pe tt -f wd -x in -gra vel -br ic -bigg boss -ar den -hu gging -pal ms -st v -li mb -the movie -handic ap -ri me -z ai -stu b -indi a -lithu ania -rhy th -p ita -maced onia -high ered -brid get -schwar z -ske let -hi kes -ant arctic -c ps -mash up -Ð ° -n ell -chand ra -he ir -an us -sher idan -mi mi -muse u -bec ca -an ir -bar rie -dioce se -compar able -ðŁı³ï¸ı âĢį -yuk on -me p -hor mon -mer ic -al f -con quered -christ church -ðŁĴĻ ðŁĴĻ -hazard ous -poo h -cont ing -retro spective -par ame -na ir -con sor -ho tra -astoni shing -cater pillar -u man -ti sm -t vs -serv ic -croy don -mor ales -c g -cu m -te ur -scan ada -s all -magno lia -el ise -th our -à® ¿ -ag omez -phel ps -ë°©íĥĦìĨĮëħĦëĭ ¨ -wh os -weav ing -si sd -pro poses -cro ws -pre sale -econom ies -bernar do -sha hid -air show -mc cann -hor ticul -nr l -du el -mongo lia -tou lou -requi rement -struc tured -ed i -o lives -he a -cu ter -Ð º -enthusi ast -harri et -domin ion -sub mer -ðŁį ĥ -sa ab -nes burg -mo ff -def ended -bur t -rewar ded -gold man -op tics -khali d -house holds -buc kets -ce cil -che ss -substan tial -ef l -oper ation -evalu ate -st n -rece ssion -l ll -tom as -tru ths -ak bar -s words -p act -embarra ss -ha o -ay urve -scrip ture -ny cc -op t -di ameter -sc ented -organi zers -re lat -ha e -dream ers -de se -ðŁĮ » -restric ted -n ale -r hp -dol an -mun ster -ha ired -consult ants -jo ints -hu mil -d ill -relent less -t é -af il -ut ilities -japan ese -condem n -pet ite -colli de -q f -peach es -cou rier -l ore -âĺİ ï¸ı -reli ability -ch uk -ðŁĻ ĥ -stu res -ge ther -ho stel -bi er -- _- -â ĩ -e ze -ta ilo -di ent -blu ff -chu ffed -pil ip -mon arch -e em -bu chan -b ick -op au -ku ps -ภ¢ -pist ons -sp ins -m and -ce st -bur ne -v ile -cher ries -bec kett -need les -pan ch -ë Ĥ -haha h -trou bles -insi sts -do you -g mc -mor tar -deleg ate -in n -g anda -sin atra -ठ¤ -spee ding -pu pil -pre mises -ali gnment -pi kach -as us -j alan -Ø µ -lime stone -fol kl -parme san -ce il -mo y -shawn mendes -ac up -hu st -ot es -med ina -ma di -gta v -censor ship -ar g -swe eney -sy kes -col o -foot steps -cann ed -adv ance -gta online -healthy living -ðŁį ¾ -a ig -p ality -oc s -he brew -im minent -berk shire -jeremi ah -out going -bak er -entr ata -ma ids -gro ves -bo c -a del -m fw -con science -arm ys -nut ella -conte stalert -novel ist -la h -ban ker -marque z -ðŁı ¡ -to ff -out age -gr p -ðŁĺŃðŁĺŃ ðŁĺŃðŁĺŃ -musc le -du dley -nvi dia -mi di -m uni -ess ays -dat ac -car ter -ภ£ -t ans -i ves -public ations -al er -ok wx -il u -cu tt -har p -out law -luther an -br ill -bo lic -do well -green land -be sties -path i -pay ton -gue st -har den -ðŁ¤ © -ann ed -evacu ation -po ised -mc der -b han -o i -envel ope -ci d -ca vi -ta pas -book review -grey hound -âĻ ª -fe ud -lun gs -for te -rai der -ff er -oni x -dep end -yn wa -rel ating -de vs -ðŁĴ IJ -acqui res -d ha -j yo -priv ati -can ine -k b -cra b -sar din -imag ining -k j -em por -down hill -ne z -ta eyeon -nick imin -gb p -à µ -w ap -sec co -ma shed -ðŁĴ¥ ðŁĴ¥ -augu stine -diss ol -dic tator -â ĵ -vi per -ed fringe -vau x -hard work -book let -no x -chi ff -ðŁĴ ¨ -observ ations -xbox one -u sher -ke er -lu p -dal las -cal gary -ma dra -di ous -k bs -wood ward -hero ine -lu mber -sea world -o ws -mc ke -maver ick -gu la -cross roads -fan g -s ade -nik ol -chee tah -me c -pp g -er ick -ðŁİ µ -tox ic -bj j -viol a -sp ire -ch ino -tra vis -institu tional -ha as -low ry -w ac -ea e -hu mid -mp ton -ru ck -je w -c ine -zim mer -se f -bhar at -fre es -aam ir -ðŁĴ ħ -z inc -wan e -multi player -royal wedding -e el -preci pit -qu ery -kimber ly -isa bel -ful fill -ig an -vau l -pan e -sc y -dig it -gun n -u tah -dog day -fi on -xia omi -da c -el ast -cha vez -ro blo -g ine -ten th -ab h -ke to -hur dle -na dia -memorab ilia -ha bs -qu an -h w -hv ac -pix ar -ec cle -kram er -accu ses -ðŁĴļ ðŁĴļ -per se -mean time -wa hl -atle tico -âĢ¢âĢ¢ âĢ¢âĢ¢ -ott oman -no vo -k us -conne cted -tru sts -d mv -spen cer -rahu lg -do ve -sto kes -bolog na -enthusi asts -à ª -rockstar games -ted cruz -du ras -s acked -late x -immer sive -cer t -lu cin -princi pals -fa res -sa ils -far n -am ent -saf fron -quent in -check point -fer ris -ex cur -ðŁijī ðŁı¼ -bai ley -se h -ter re -mad am -s band -wan derers -cumber batch -yy c -digit ally -blackandwhite photography -roll in -moroc can -ðŁĮ ħ -din ner -d well -to om -m ye -ez ra -cp fc -war hol -me er -jon ah -no aa -s gate -so on -secu lar -g ating -ti o -dri ver -si ssy -assan ge -ta th -ed mund -bobc ats -ra ji -po stage -stu ds -m gm -kat o -edin burgh -meet the -shir t -fa a -mens fashion -sp reads -wi m -car ts -phoe be -j ars -bot swana -Ù Ĥ -ed war -sk ar -ri ve -gu sty -c tv -ferdin and -su therland -nickimin aj -k v -si us -bee ch -re z -desi res -on ial -camp o -quar ry -lor raine -gil more -ig gy -µ ï¸ı -ho pping -avi z -ðŁĮ º -uni sex -dedic ate -att itudes -ste er -jun kie -rail way -y b -whi sper -key an -k us -ju g -di x -a ins -sum mon -ov ich -sy ed -her ald -ma ison -me ded -wild flower -main land -ri sky -ru kh -over looked -ki c -destro ys -nam an -ki p -z ano -champion sleague -ban dit -quin cy -smi le -cal vin -open ings -ta pp -ol ulu -spec tro -accred ited -ap k -pra ised -bar nett -pol len -premi ered -selen agomez -tou red -screen ings -uu u -mis o -en se -adam lambert -guel ph -har yana -hu tto -le ar -l tc -po ached -brex it -æ Ŀ -tt c -pa vement -mon gers -ro e -ad ers -ling ton -particip ant -ca red -ga il -y ates -lan tic -dash board -jo o -feli pe -ssi onist -bu m -s end -a eri -thu gs -luci fer -a he -dete ctor -fil ly -gas oline -ham per -hump day -the ta -the band -fore casts -o hhh -lo bb -hol l -cp u -az u -ad ar -hai ley -bu b -car t -quo ted -an archy -pan cre -twit art -al den -st ash -the less -or ni -belie bers -mor mon -partic le -avi ation -⬠Ĩ -webcam toy -sad dened -cru is -ham let -n ct -roll ins -marque e -saw yer -reli ance -a ura -di ec -soo thing -sig nings -ak is -à ³ -at kins -aer op -ðŁĮ ¿ -y ab -sh ari -con nol -du bbed -manufac ture -convin cing -feelthe bern -ra u -pu lit -on ec -gem stone -ur ging -bag u -ga h -aci ds -fi anc -zodi ac -sn oop -her rera -initi ated -ven ge -profess ors -pro di -stron ger -e mission -bb a -hal le -ta pp -haw an -wh im -compe ted -myr tle -ir port -cold play -ach e -ske p -m son -ss ic -calli graphy -swim mers -me y -pp c -thri ft -po c -re places -commu ter -âģ¦ âģ¦@ -go ers -lo gue -para dig -bas kets -sensiti vity -joh an -atl antis -& & -suit case -anxi ous -l h -str i -gal loway -stre ad -war den -gr ounded -ffici ency -li feat -reli c -disgu ise -island ers -f cofficial -classical music -b mc -en field -bi que -oak ley -bat man -sla ying -ner ves -mul tit -calci um -projec tor -scott sdale -ant ino -gri ps -kim mel -des mond -prote stors -hi atus -metaboli sm -conclu ded -press er -ti pping -sli de -e to -hun ting -aus open -ri k -pp ery -innov ators -pitch ers -ag ger -fun gi -z ad -proli fic -rockn roll -bl ames -ct ar -stam ford -q ad -mozz arella -insan ely -den ver -ph ouse -nom ad -ï ¿ -s ris -pro du -hen ley -pag an -am trak -ru bi -in cl -tu tor -sco tia -wo es -sing apo -fun nel -turn bull -know ledge -gri mm -real madrid -we are -missi les -con sol -emo jis -sne ak -smi ths -ru iz -br ou -i el -ha ver -ðŁĮ ļ -kin gof -basil ica -circul ation -prin ters -ta pping -ri dley -dra gged -ha j -writ er -fundament als -personal ities -me tre -stereo types -bur le -best of -n ffc -ha th -mini stries -a ali -trac ing -pav ed -ł ï¸ı -g ic -insp ire -tu g -ha re -repe ated -ex pon -lol li -rho de -pre cin -install ations -instag ram -az ar -i es -sole ly -du kes -mission ary -van guard -fursuit friday -on d -pol ari -ma st -har an -jos é -jack ed -ec oun -al ities -ne ph -ra vel -moder ated -sco w -s fb -uru guay -as o -ni g -au du -p ints -lat ina -ben z -m itting -char ted -mat ology -cit ro -biop ic -ðŁij Ń -djo kovic -fox y -agu il -so to -an ada -sin king -sc rap -hair s -bethan y -fact friday -ðŁIJ IJ -unlea shed -) ( -contra dic -ram on -coast line -y ong -sn sd -li gan -p ome -mit age -ge tt -wat i -ri sk -so aring -bru sh -f pl -av an -å Ĩ -lar son -sh ear -mul til -blu r -multi media -chun ky -par i -n ani -weir d -cholester ol -char les -dream ed -tan ning -puzz les -fr am -hand ball -ch ag -beli ze -al u -bang s -Ñ Ħ -detec tives -mc g -ish q -bo thered -saf c -mp ing -ten eri -g ays -sail or -an gi -mul ticul -gue ssed -ros é -high ways -bro om -chatt anoo -- ' -see ker -on ed -at f -lu c -> < -bar i -per cep -jewel ry -as ph -sor row -sl ing -mam moth -jac kie -ë § -wilt shire -sa o -can cell -im paired -tor ial -bre ed -guy en -jud ice -tit le -pro spective -applic ants -ðŁį Ĭ -epis cop -e id -b yo -stock ings -ðŁĴĥ ðŁĴĥ -ll p -sna g -keep it -l ough -ol son -matur ity -!! !" -cop ter -i sha -bl i -wil mington -tr youts -th ai -ðŁ¥ ³ -pe bble -kra ft -f p - º -ssi vely -li vin -contest ants -tex tures -jo an -h dr -film festival -prov ence -wi do -op end -c si -sto wn -cro ati -ad just -host ile -analy sts -il an -cu ppa -bru m -newfound land -good win -me tt -mall orca -plu gs -bu k -bb hutto -wrest le -sa ire -sho pped -for za -le head -vi vo -ba st -ro xy -reg is -hard working -hon olulu -desp air -young sters -ni g -impro mp -roll tide -de emed -tre ason -ru shed -for ged -ff f -pikach u -bri ggs -do it -ac cent -la us -gla ze -compet ent -a ho -photo g -mid field -le go -har vard -min orities -re illy -slic ed -once upon -initi ally -financi ally -landscape photography -har dro -qu o -mm ers -par kinson -smu gg -read iness -bru tally -glou cester -mp ed -bbhutto zardari -mur der -ye d -dat aviz -sr t -dow ning -bi ans -m ü -fle ck -fli pped -s ly -brilli ance -ri m -k um -bubb a -ko i -knit ted -sor g -ma is -ðŁĮ ² -ti ss -su stain -sen su -ak han -zi est -exam ines -chardon nay -user name -short list -re bs -on o -dar ing -hard wood -che que -righte ous -light ening -dir k -shra dd -du ra -down stairs -sh al -ami gos -ru ff -s law -ri es -red nation -man us -ðŁĩ§ ðŁĩ· -distin ction -u bun -dur an -mi gra -thi ans -la ver -domest ic -k x -jaz zy -justi fy -belong ing -insul ation -color stv -drun ken -chann eling -qu and -xi ii -enligh ten -kan o -fati ma -teen choice -terri fied -p ba -as ley -met museum -dun e -pack er -ki o -ðŁĴľ ðŁĴľ -bo iler -fas cism -ar mored -back grounds -in mates -embarra ssed -defin es -th d -we go -silic one -lo on -el ding -bor rowed -he mp -ak sh -kaw asaki -br y -de af -kill er -dispo sal -ðŁĩ ° -glaston bury -un covered -o xide -po ff -d ant -k j -ku ro -dri zzle -peop les -fe e -pro pri -dd lovato -pi ggy -ot is -aller gies -u bis -pengu in -ser a -vi z -prosp erous -ici des -tornad oes -sene gal -web cast -sto red -enchan ted -bb cone -bay area -entrepreneu rial -rednation rising -experim enting -ang an -lot to -they re -por e -er p -seren e -east wood -bro kers -bar ge -stal lion -timber lake -tailo red -dy stop -b ate -lat ors -di xit -bran son -dynam o -ky lie -shame ful -bt wn -spring time -mix ture -s ounded -lu ton -dad es -mal a -op ra -en ic -rahulg andhi -se wer -~~ ~~ -ky u -nor theastern -ca er -bc u -nir vana -kitch ens -ous y -al m -river dale -hid den -fl int -sp d -pat rons -katy perry -au gh -exhib itions -sm c -shu ts -at ore -da in -some thing -ber th -bo g -por ter -gen to -con cussion -ang lic -ro we -gr illing -scar lett -master ing -mor nin -comm ented -si me -si zing -christ y -ce os -st m -at ry -tari ffs -vac ation -pre judice -p su -paren tal -far age -can a -cap com -koso vo -you re -men stru -stal in -grape fruit -br an -che sa -dav en -exc el -!! ) -๠Į -distribu tor -ce a -bride sma -millenni al -wa in -ob serving -mis ery -plan etary -expo sing -bra ised -comp ton -don gha -q l -spring steen -th ul -syl ve -cab o -pal ad -niel sen -gaz ing -ba ja -r oud -orchi ds -johan nesburg -se man -d ji -oper ative -affe ction -eclec tic -at c -mut ant -aw x -nic e -mel bourne -indu lg -tu lip -dias pora -wel p -big gie -mississ auga -retri ever -or an -tam my -c ta -hipp o -seas oned -ger mans -eng v -marvell ous -im f -rela ys -mon tan -maur iti -me ister -as surance -reig ning -su fficient -han e -no thing -pos se -nav y -in love -brigh ton -en qu -ch ung -sweat y -es c -cal ed -man s -nicar agua -sl ices -mo cha -washington post -bb n -dam ned -grow ing -en burg -lo an -me s -wh oops -believ ers -spi el -vo daf -l at -s led -cricke ter -brown e -golf ers -bar ra -wat chers -lu igi -sw amy -mom s -pit ched -san tor -cr s -si re -sc amp -bo de -ste war -jon ny -ent ity -pac qui -mind ful -min india -bear ded -temp t -scorpi on -eat on -authori zed -ar to -s vp -op athy -cch ini -house music -disney world -âĢĶ @ -pro pose -di y -expen se -ten g -pupp ets -sm el -d aca -per ry -fin n -boo sting -lefto vers -cou gs -satell ites -man y -az e -g ong -fi e -metho do -fer ries -ðŁ¤Ķ ðŁ¤Ķ -explore rs -load er -attrac ted -il ton -godd amn -pi azza -doc tr -sav ing -paragra ph -visu alization -may ors -work flow -ack les -ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ -ठ¸ -twer k -clu t -lo ver -te ases -si an -o te -deter ior -accor d -l fw -swar ovski -nat al -tra ps -k ina -analy ze -laye red -bever ages -un it -ran som -pe shaw -dest ined -astro logy -si pping -miley cyrus -cam ino -marshmal low -bli ss -out back -fa q -int oler -humil ity -po ppin -hallo ween -mon tene -op hy -nu n -tattoo ed -a as -ðŁĮ ³ -dale y -qual ity -du sa -fisher men -swi f -ter rac -st au -le in -trol ling -ship ment -garden er -march madness -head band -gr t -bur nett -w and -!!!! !!!!! -gh e -du x -hu d -war ner -ðŁĩ ¦ -ex ile -rescu e -rat a -d han -duc ati -dro wn -bl ends -spi e -alli gator -simul taneously -broo ke -u ke -k har -comm union -ri ka -ford fc -chin atown -you rown -me y -can al -syste matic -de pri -ox ford -an il -w ut -equ ation -be z -fle ur -the good -lang ley -ad ity -ed ith -al fie -о ÑĤ -en cry -br ill -ex emp -ce sar -mb ling -ab ri -sc icom -j ing -school ing -mi ka -mechan isms -impromp tu -rhe a -moo re -crime a -be sto -wri ght -el ders -ro ds -kam al -folkl ore -be et -mini on -reli eve -thr o -team usa -pas cal -made with -boli via -itt i -free bies -desi red -best selling -l iness -la den -ke ane -mi sts -hipp ie -atta chment -@ / -se w -flan agan -âĿĹ ï¸ı -supre mac -stl cards -si as -q u -rh ys -ste ep -val leys -v w -pav ing -disp at -al ison -por te -id u -new sc -soc ket -mo s -co star -re vo -prote ins -stanley cup -m cal -ear ring -se cs -mc lean -cap ric -nick elo -ad en -v c -shou se -adap tive -maxi mize -entertain er -pro se -gri ffi -six teen -lam ar -mi rage -saudi arabia -awe ather -ru st -in filtr -fashion week -ðŁĺĬðŁĺĬ ðŁĺĬ -selec tive -bubb le -a den -fen nel -deci sive -m ta -mock ing -mb les -st amp -mu le -bernar do -gr in -po tt -j ingle -vet tel -colom bian -cam o -motivation monday -ba han -p ly -dh ary -k ami -x men -sleep er -gar a -my sti -confi dential -conflic ts -p neu -ce s -insur tech -clean se -me rely -va is -tu x -the great -shar on -ma j -hol a -eco systems -aj ay -aa j -hu sh -har mon -backto school -wiki leaks -reflec ted -ðŁĺ ĵ -commemor ating -ac et -buck ingham -messi ah -tu ous -hor net -to be -d q -he ine -mi g -pl ate -nichol son -sp ie -cumber land -nor mal -pho bia -happy halloween -city fc -mc el -gilli an -ke to -lu de -de mise -su ga -str ate -mcgr ath -visit scotland -foo led -cb r -gc se -col ori -po td -missuni verse -fin ances -ma poli -for ks -Ø ´ -cann on -medic inal -ðŁĹ ĵ -kh o -wre ck -pan to -bag el -gu ll -syndic ate -ic y -pr c -ki en -zi ka -ti sh -pe ta -c co -li za -ch ut -ex traction -el g -gl i -fu eled -pos it -respec tively -leice ster -br ink -vulner ability -im ported -e sha -ðŁ¦ ħ -r ural -re ll -gam ing -atlan tic -aband on -no ah -re solved -pro state -aller gic -ps d -âĺ ¹ -dun geon -fang irl -illumin ated -m hs -white sox -d ently -ck o -endor se -over ly -dazz ling -prior iti -night life -ut il -be have -flam en -east bound -ðŁĴ Ł -ilove you -gov uk -mozam bique -alle gi -dr i -testim onial -ath s -ì§ Ģ -mm y -shab by -pro secco -friend ships -cal am -dam ages -off set -jura ssic -jun o -arre ll -ðŁĴ © -interven tions -dare devil -car ver -run away -ran e -truste es -ha ute -dep ths -ðŁİ Ń -me in -sacrific es -con cier -ne sting -i zzy -me tam -ilove my -ur ine -du lu -mal hotra -ve ins -night ly -co at -an di -he witt -lon el -ci ble -wr ite -jen nie -sant ac -ĸ ï¸ı -str ato -singapo re -sop rano -kri sten -cheer ful -flee twood -fa iri -m eli -wa st -tur nt -sfor sale -sc rolling -angel ina -ren dition -jeric ho -nick y -or b -fla vo -patri ot -ash eville -sick ness -re fund -aggre ssion -b pl -ãĥ ĥ -elu sive -thi story -hang er -bu ffs -vil las -at kinson -sp h -ja it -decl ined -wo k -supre macy -oo tball -ey ang -ðŁİ ĵ -s ford -ath i -consu me -road ster -e so -u pro -reci pe -au f -uc i -ar on -oo oh -cs go -re ich -mc d -min ute -ladi es -pun k -rut gers -mee k -ariz on -ta j -land lord -de gra -autu mn -lyn x -us f -b hi -fairy tale -dongha e -bet sy -explo ded -chen nai -op a -pro tag -br ant -ðŁĵ °: -g f -pal li -ðŁı¼ âĢįâĻĢï¸ı -su t -ill ini -colum nist -shir tless -de centr -sear ched -ec or -bu ggy -s ack -ðŁĺĤ ðŁĺŃ -de t -ther i -or naments -bring back -to v -quarter finals -ic he -con stra -gi er -buchan an -vi x -kay aking -mu stread -swal low -mel b -sc af -op al -may oral -har at -ðŁ¦ ĭ -schedu les -id f -ha gue -ro z -a ah -d mc -du plic -ca che -orph an -frac ture -rec on -ch av -bun nies -al ain -mustaf a -ðŁİ Ļ -vac ations -dynam ite -tex ted -broad caster -ðŁĴ £ -ste amed -rock er -di etary -luxury travel -inaugur ated -sa wards -vaugh n -lincoln shire -click ed -kra ja -f anc -remo ves -layo ffs -mc far -bre eds -win nie -jon ghyun -incen tive -vari ations -pat ton -atur day -persist ent -pr un -pi ers -dal es -æ ĸ -breast feeding -r ance -ta wa -Ĥ âĸ -mur doch -cap tive -thi stle -nic a -commod ity -cou ldnt -board walk -graci ous -practiti oners -n gc -scru m -ner o -camoufla ge -col on -he i -phys icist -saturday morning -ten er -si won -colum ns -bru ne -y vr -ba ir -reti res -hal am -cab er -shaz am -min u -cas cade -milk shake -gri d -d ren -vin cent -so dium -plat ter -cheer leader -chen ko -y ak -elimin ated -ty po -y man -re think -âĿ Ĺ -ts ville -bernardo kath -ex tr -ðŁĺģ ðŁĺģðŁĺģ -ta o -re per -mo ths -em powered -c iting -transpor ted -mon ks -san at -cle ars -bachelore tte -camp bell -racha el -har le -hand ler -climb s -inter ference -rele ase -sh and -r bs -hr h -ãģ ª -val le -r é -sli me -w akes -chu bby -slo an -el ves -ath en -attor neys -micro scope -ston er -sc aling -o be -c out -se man -mid week -bal sam -ðŁĺį âĿ¤ -ti ful -v ish -lo tta -ri pping -re mn -ti re -le ap -ha vent -la by -hi mach -whisp ers -we in -ðŁİ ¸ -wild flowers -se le -u cc -li ability -az ine -sw ings -k ya -ta ir -re main -e do -flo ps -poc ket -grand ad -exam iner -gr is -ffe ct -ðŁijĬ ðŁı» -stud ded -heart beat -de acon -firm ly -infec tious -ste f -out lines -le asing -cla ws -sen se -tab s -hoo t -mo sul -spa wn -co a -hog warts -ve in -alban ia -manu el -b ino -vaux hall -scot land -go bucks -mat ty -phy sio -tor ino -const able -investig ated -s lower -mistak en -bay er -wild fires -vo ic -x on -time to -chas sis -bar ric -pi on -bald head -woo k -regi str -dra fts -b hs -li gue -l ick -staf fordshire -baf ta -dar ry -je anne -ven ding -cor p -⼠³ï¸ı -kid dos -fen way -ca o -west bound -ðŁĺ Ļ -dv r -quick er -bla h -goo die -ðŁĴĭ ðŁĴĭ -vo x -esp er -fac ade -cor relation -red bull -rou p -decl ining -chi ve -mc gee -tur o -in der -f eller -fu g -il ysm -mar di -peshaw ar -ki eran -ine ma -meat balls -pe ck -depre ssing -sen sing -gi z -dd ington -spring watch -ro aming -yellow stone -horse shoe -am man -week day -ol or -ðŁ¥ ° -boo sts -spr int -scar ves -je e -bee tro -cl an -all the -ìĦ ¸ë -enlighten ment -ado be -re generation -? @ -cont ag -yach ts -to u -mor a -en voy -r ani -go li -dhanush kraja -wood working -streng ths -se di -disc s -ar ina -sc on -lit e -ano ther -ðŁ¥ Ĭ -ye men -gu ern -sav vy -lo yed -biom ed -heart break -comra des -milli e -pat ch -un f -jar vis -bl aming -commemor ation -ge y -å ¥ -cardio vascular -alig ned -docu ment -. ? -aesthe tics -em u -the irs -le h -ps ic -si f -pl ateau -ex pend -domin ating -rob es -mauriti us -excep tionally -hom er -discover ies -bra un -ten nant -insul in -ðŁİ ® -car bs -te as -? !" -zi e -franco is -brow sing -th ol -cla rence -hel per -ob tained -cas sie -le es -! , -pome gran -hu bs -presti ge -] [ -mach er -bott led -pun ch -pi pe -o ch -gall ons -deliver ies -u ra -un day -mon de -depic ts -re gency -outra geous -khal ed -car o -he arti -za g -develop mental -over coming -stati stical -flavo red -for ds -cre atives -lau rence -di as -sun screen -in ked -pre acher -n ul -impac ting -auti stic -âļ Ķï¸ı -o ss -pel icans -cele ste -v b -ru mp -mc gra -fair fax -hu mor -bbc news -row ling -cal der -seam less -ag ne -p ti -mix ed -t shirts -mer ci -b tob -women instem -genealo gy -pre ven -l our -cra dle -gi use -Ð ¾ -chron o -fair ness -chocol ate -tor y -as da -pre scott -stret ched -al man -u il -re charge -in tre -ob st -hosp ital -hay ward -teneri fe -fried man -vap ing -confe ssions -ye ah -bal li -luck now -cor pse -sculp tor -amp ton -t pp -indic ates -sur plus -tru man -ðĿ Ļ -sin ha -in vo -sovere ign -ke v -establi shing -engra ved -assu ming -ðŁı ģ -sou za -fab i -ton ed -oun ge -del oit -dow ney -no ble -om or -car tridge -ðŁı IJ -u hur -hol loway -succe sses -r sa -âĦ ¢ -ma zz -tw d -disc ourse -. < -y at -satis fy -com pri -ठ¹ -graph ite -disser tation -ar ter -í Ķ -b ally -zom bi -ly ons -a ic -u bc -pra da -e il -da x -cla i -grand daughter -extravag anza -chall enge -ðŁ¤ ŀ -po ver -primar ily -dad dy -man a -bi kers -inqui ries -da un -fel ine -gener ative -he f -benef iting -lind sey -pol ka -demonstr ated -al le -rand y -o su -low key -weir dest -red bull -our y -n ous -wood stock -cre denti -nic er -g ado -aly ss -ap h -prepa redness -station ary -incorpor ated -dy er -sarato ga -cele sti -: " -antibio tics -or gs -inde fin -ap ron -и Ð -fif teen -no f -ðŁĶ Ŀ -ph x -te ga -m z -organiz ational -on air -band ung -pleas ures -mor i -secre tari -rac coon -ca shi -pil ates -k on -geof frey -la o -kam p -depart ments -back packing -an am -à « -crack down -aun ty -on do -li zzie -ph ers -cu n -ðŁĩ ± -k pop -pu t -inten tional -connol ly -bar clays -hs fb -swin don -u ku -s ally -a int -âľ ħ -pen ang -up lifting -epile psy -inter ro -bun gal -go ku -blue berries -ठ¦ -u ssia -sil ky -mou red -i stic -bri efs -me ats -go b -ch aser -state wide -pra sad -gl itch -ar in -ban ff -memb er -ðŁĺŃ âĿ¤ï¸ı -lo ving -hall a -ภ¡ -smo kers -yak u -scicom m -physi o -sw ol -lem ons -gel ato -ch ool -capit als -ki stan -ti ghts -spi kes -trav ellers -ik lan -commissi oning -ar ine -emabiggest fans -empha sis -front line -pad dock -destruc tive -ba ha -l inger -je wish -shet land -mc gin -mon key -ko z -s one -raj ini -te h -y en -c vs -masqu er -gir ly -we sle -was nt -bro dy -termin ator -gil le -mag gi -bir die -jeopar dy -cu bic -vm ware -intric ate -an up -to pia -east on -sab res -investig ates -bu sting -bil ingual -valent ino -in format -fer re -advent ur -hydr ate -for sy -az iz -san to -e de -whist ler -continu ously -d ham -un used -ji had -addic tive -vi dy -do b -i do -fi ed -ni versary -n one -fu er -ðŁĺį ðŁĺĺ -coven ant -prin table -immac ulate -o em -cl t -serv ants -consu med -un released -sc um -pack aged -me re -ìĦ¸ë ¸ -to by -ta f -spo ons -me al -f ball -fair field -jan et -silver stone -dart mouth -follow me -voy ager -kom bat -anni ver -ene w -mag dal -ho ve -sa th -grizz ly -car di -gart ner -sand y -kan ye -post ure -po ign -im pulse -radio logy -horiz ons -si am -aish war -= => -no che -tr is -el yn -com me -du i -ce c -councill ors -cudd ling -creep ing -loc ke -manag es -trans ferred -ne cks -di er -dan o -v ick -lun ches -d he -en sures -cri ss -ul ster -bann on -cont enders -sp am -sweet ness -med al -hon duras -arc tic -ultra sound -in fr -disco vers -ei ffel -ca sters -ru ben -du st -awe ed -atri um -lest we -se ared -ðŁĵº : -ty ne -ex changes -little mix -l le -astron auts -hersh ey -work day -kno b -so v -re signs -today show -der man -an th -af c -ta ster -sw oo -sa eed -per ing -narrow ly -rn li -best buy -panas onic -obst acle -farmer s -ðŁİ Ļ -pa wan -ki est -ang ers -absur d -oh my -sin o -pist achi -sp ice -giu li -prime time -ko w -k ens -ex agger -! ?! -u ba -midd les -ju dd -e jec -slam med -pen sions -of a -re create -b hp -xx l -liver pool -thre sh -pur ity -ni eu -hol ics -wr ath -ra do -gli o -am ma -dile mma -cr u -lets go -.... @ -âĿ ĵ -sugge sting -tru mps -hor us -f v -ic om -refer ring -predic tive -tar ts -ge tte -so ck -glo ssy -pin ky -al ec -thy me -ou ra -thero ad -pe tr -cr am -p fi -dv n -me ier -incen tives -tun nels -mobi l -rec ap -extra s -upri ght -rev amp -per severance -, - -ot p -mir ror -ar wx -ger ry -ma her -g or -hom epage -am is -ag ra -made le -best friend -sirius xm -bun dles -admir ing -t dsb -ðŁį ģ -ch as -slow ing -ro h -wall papers -âĢ¦ / -tek ken -gang s -tal a -lind say -shou l -line backer -tool kit -ur anium -caly p -ab rams -mat thi -ðŁı ¿ -hon ourable -da yo -ver sail -tan k -st c -fr itz -spl end -pat ag -anno yed -on day -devast ated -chattanoo ga -national ism -mas sey -jen n -tail or -dev gn -org ans -zu cchini -on fox -sat ire -wex ford -dis grace -no to -vol ta -âĿ¤ï¸ıâĿ¤ï¸ı âĿ¤ï¸ıâĿ¤ï¸ı -à ¶ -home owners -poin ter -m cr -au sten -day sto -mo ons -pal ma -gra zing -e so -influen cers -shahid kapoor -compli ant -measure ments -develop s -y d -par l -p vt -rand olph -tor tured -ger ald -eli as -deepi kap -war mup -hick ory -g ap -co ffin -am our -re neg -moun ting -seven s -ig le -hi er -dec ad -tri ght -esc apes -wer ner -t fl -ful filled -ni ger -sour dough -re aper -choo ses -spin ner -week nd -fil tered -sh uk -kat i -old ham -open source -kh anna -at elier -conne c -opho bic -gla s -complic ations -ar son -counc ils -sm ol -as sy -lur king -ling ui -han ks -e in -Ù ħ -ru gs -n guyen -nou veau -men ace -le v -alad din -ru ining -round about -k m -con or -shoo ps -may day -traum atic -prab has -ka iser -k ita -rou ter -pe dro -re tar -stun ner -spani sh -distur bed -acade my -e learning -wit ty -sen g -fer al -av y -sta b -ke aton -ur du -ko to -hu i -coo ke -ari an -the personal -u ma -se ap -a sting -rhetor ic -hand writing -munici pality -consor tium -ðŁIJ Ł -glasgo w -ra ya -eli za -polym er -bro th -prac ti -correspon dent -addic ts -gay le -ail ing -o fe -p li -hear tw -st itch -sight ings -prie sts -sam o -slo th -good wood -roc co -sab c -summ it -l ace -pres ley -itt en -cin cy -thepersonal network -s week -pe gas -af con -regi stry -ci m -le th -dic ap -cand ice -flu ent -sm ack -pede stri -al oud -car ac -priyan kach -p gh -ir ons -dol ce -lat via -dece ased -thero ck -cla p -cen e -fo am -morris sey -gre t -essenti ally -com cast -be agle -argu es -ing ed -- âĢ¦ -sa g -ha san -ðŁĻ Ĩ -ðŁį ° -nh ra -kann ada -indic ators -on er -bri xton -at as -screen play -sor ority -sha heed -he em -class mates -tain ment -es i -breast cancer -zucker berg -aur or -en cia -ref ers -kae per -vor tex -com part -lym ph -photograph ing -ste ff -rest ling -par sley -mom ento -th man -lac king -du tt -ocu lus -fin o -fren zy -ra sc -der n -dis missed -noo k -met gala -sh ill -rapha el -maver icks -exhib its -eag erly -c pa -amen ities -. âłĢ -exo dus -ern st -lit a -deal t -womens march -i ain -score board -campe ones -c en -ti ki -garri son -fidel ity -bra g -road map -psy chop -lo e -ble u -ðŁijĬ ðŁı¼ -sau vi -spr inger -temp tation -ru dolph -ac ura -wic z -parach ute -stro l -len ny -zi k -dom s -nb af -al pac -vivi an -ro ve -pre et -perpe tu -sna ke -air soft -infl atable -prin ces -ati e -ffe y -pati ent -m ire -chel le -sl ack -groo vy -# : -up loading -!!!!!!!! !!!!!!!! -siem ens -provi sion -v fx -need y -f ats -to poli -bhu tto -sa thletics -alu ms -t winning -south western -adop ting -last night -man ne -la ga -tw ell -ac ia --- -- -eye wear -hur ley -fle e -sa ch -pe cker -cost ly -is k -cr ates -polic y -ero sion -in go -wer k -ðŁIJ į -torto ise -therap ies -inter net -chihuahu a -ri ps -fre i -ed or -tai ji -t fc -do d -demp sey -christ in -chen g -hi ps -gra eme -com passionate -cavali ers -histor ic -soul ful -crimin al -ja c -vin ci -expi red -sur at -turi smo -k ona -se aweed -ber ts -le ica -expre ssing -a al -wor t -break fast -her ring -am used -rhu barb -mar tian -cospla yer -y ash -stri al -ra ul -refer ral -dw ts -j w -ad ler -cur tains -gu r -val ence -tyr one -sw fc -coach ed -re born -diabe tic -cho ke -nor folk -investig ative -ðŁĴ¯ ðŁĴ¯ -z id -v mas -phi e -objec tives -âľ ĭ -over due -di vers -mat su -ðŁİŁ ï¸ı -casu alties -ภ§ -al k -stand ardi -re alist -arti facts -pand or -ke x -in vin -( !) -ine y -par aly -mr t -fay e -the voice -on ga -de ed -skin ner -az wx -speci men -priyankach opra -nu evo -bar kley -toulou se -resu mes -football ers -cit i -fe tch -è re -lestwe forget -ðŁĻ ĭ -ch unk -dri fting -manipul ation -equ als -pu tt -ky ungsoo -âĿ¤ï¸ı # -ela stic -par ano -fo y -do ping -cin cy -ss ler -interrup ted -al ay -ado res -ame thy -con voy -ãĢ ı -Ĭ ãģ -black list -gener als -sa chin -bru shed -oun ces -non stop -illi ams -bt sarmy -u av -ru ff -bur ma -bi k -defen ce -schul tz -bo asts -lonel iness -go re -trans forms -alum na -@ @ -ra ppers -ne hru -car o -himalay an -wearab les -ge h -pepper mint -re development -flam ingo -cos by -big baldhead -ag ri -bare foot -sco pes -re gram -gh ana -ðŁİ « -i heart -sa die -carri e -microbi al -ku ala -sk ater -quer que -âĻ © -gen res -reas oning -ch ased -as o -sli pped -en can -vam os -ker s -ad verse -mo il -commod ities -with you -sil ent -hy pe -an de -am ination -whi spe -lit z -âļ½ï¸ı âļ½ï¸ı -ri ff -pp y -lam bs -gan esh -ab sent -regu lator -marse ille -en roll -par cel -wa p -by rd -ðŁĩ Ń -tu ber -country music -par l -contro llers -responsi bilities -we y -ch ate -montene gro -chic o -mil an -l ms -tra inees -appropri ately -un certain -popp ies -ed sheeran -nutr itious -gar o -deut sch -awe some -ãĥ ¼ -comfor tably -land marks -et i -re usable -daniel le -ro sal -co les -just ic -c cs -f anny -ni m -mc u -clin ch -at ene -mer ge -im db -ang lo -uc cino -pan ini -an not -bur berry -feat ure -predic ting -fashioni sta -s ask -imag inary -mm o -south sudan -spe ar -hu bble -jo inthe -coyo tes -sli go -ko dak -sit com -polaro id -roo ted -corru p -ðŁĻĮ ðŁĻĮ -bris ban -at z -ah l -re my -tal ent -aval on -ra da -pau line -locom otive -go ons -ne mo -maser ati -ic u -stu tt -histor ically -sm b -pres by -avo id -so oners -rhine stone -w ad -ri sing -tro t -mo des -reg ent -optimi ze -re ece -sm u -ver ti -newyork city -cor tez -ra c -in case -sin c -fiel ding -e tta -tiff any -al monds -sad dle -k rat -mat ter -g low -star ving -gl o -cra ppy -sl ur -st d -monit ors -recei pt -maymay entrata -mc il -un is -rain bows -cal dwell -pacqui ao -j op -a fe -hoo k -es sen -wiz ard -medi an -fla ws -com s -âĿ Ħ -ing h -ha ynes -anton io -tem plates -ou ter -na w -cardi gan -bel grade -ðŁĴ ī -hom o -a ise -ro pes -no ve -what you -tri gge -concep tion -ad ukone -na di -fri ars -sw er -adju sted -hot line -san ity -kau r -down loading -c gi -ten or -eth nic -app alach -ภ¸ -pa g -gol ds -on set -investig ator -car tel -peace fully -jarre tt -cat alan -poli o -n um -fru stration -dhar ma -my life -âľĮ ðŁı» -aber deen -mu sa -bin der -spark ly -fle eing -instin ct -co ping -domin ance -ill ers -er a -u conn -lo oms -living ston -gal i -he s -c ma -bel a -se ley -mon k -la ch -mar x - ´ -m erica -woman in -es sex -ra ina -jim i -nep tune -z ack -chine se -mart ins -chand elier -her n -with us -ear l -asph alt -modu les -st p -ul la -psychi atric -mile age -captiv ating -si der -men to -mor t -tran ce -tal bot -ab by -ì ĥ -âľĮ ðŁı¼ -j ak -daw n -turn up -scre wed -fe ds -blue print -ðŁĴĸ ðŁĴĸ -har sh -er os -insom nia -ban kers -ta emin -mis conduct -hu mber -gi di -edu ardo -con a -musc ular -consu ming -ra sh -don nie -di pped -col lie -samu el -melt down -ðŁĺįðŁĺį ðŁĺį -me z -exam ining -schwar tz -pri stine -ðŁIJ Ŀ -ve it -ful filling -an esthe -gue sses -dra ft -som me -soli d -pati onal -ho ped -evolu tionary -all er -enter tained -sli ps -lud wig -conclu des -sen sible -bon net -cra ze -tra s -haz ards -const antine -ed ics -star trek -to c -occu pational -in cheon -deepikap adukone -pizz as -new comer -de part -oppre ssion -ebon y -foss ils -tro jan -el en -ste aks -k hou -positi oning -ug by -red cross -ak h -dol ce -us mnt -pp en -dil ig -ma vs -call er -cost ello -⼠Ħ -dy n -thing s -rhin os -a xi -sar kar -con vocation -att ers -ss ss -fun gus -eu gen -russ o -squ at -w sb -eli on -william sburg -s off -defici ency -be arer -o kin -key stone -t wain -cal ming -break able -wa res -horser acing -com bs -bun ting -u it -t land -ðŁĴĻðŁĴĻ ðŁĴĻ -ga stron -sab ot -ick ers -commissi oners -sen ate -ii ot -ath ena -nit rogen -an tony -ero tic -di alo -mis sou -hypo cr -âľ Ī -kaeper nick -can v -d roo -clevel and -o sh -mon sta -stefan o -^ ) -sh ul -po ison -ha e -commerci als -ma ul -nit ro -co worker -alo e -vap or -t ents -russi an -qu id -question able -mid get -po ker -girl friends -sin the -erit rea -ten ure -depos its -buc keyes -spot ter -theod ore -trin ity -joaqu in -u cci -follow the -caf c -mp a -ðŁIJ » -plo tting -dom ino -ta ek -sion ally -dicap rio -pa p -car mel -ig er -bt cc -beth le -www bigbaldhead -foo die -bagh dad -mason ry -off ended -à · -ภģ -sc ro -vers es -ori ent -ar ches -pi yu -know your -gre e -ta kers -gu ard -dish on -bucket list -bha fc -war dly -ðŁİīðŁİ Ĭ -leigh ton -pe w -stra y -assaul ted -in hal -ly fe -amar keting -l x -kat z -ubun tu -me o -carto onist -turno ver -mi z -dis like -mul len -mo f -bl and -hi des -emer ges -chori zo -truste e -ma hog -lan sing -paralym pic -fa int -fa una -ch al -sn ar -cat h -bent on -cast illo -sli ppery -apric ot -oec d -bar o -l z -he ming -clow ns -co workers -peru vian -commu ters -y ell -ðŁļ ´ -under ing -v j -tt p -fli pk -w ana -soc ent -Ĥâĸ Ĥâĸ -ठĤ -oo sa -jag ger -di sm -e less -d ham -cali f -a official -ec lip -harro gate -gra pp -com rade -n tr -concentr ate -thi ghs -bit coin -bel arus -ë ĵ -end uring -now watching -industri al -pi p -ar on -ar at - ® -whit by -oooo ooo -sa ree -tic als -mis leading -yo on -year s -sle igh -roman ian -sciss ors -vam pires -ac up -ab ba -th weeksary -cent ri -fl ye -u o -c bi -bu ena -sin d -mar ino -bur r -re building -ठ² -anniver saire -ac ca -ðŁĴĢ ðŁĴĢ -gett ing -tu lips -wolf pack -âľį ï¸ı -more than -ta kin -ðŁ¤ĺ ðŁı» -u be -mon ic -dou bts -mo wer -co balt -don ne -specul ation -argu ably -kak u -htt ps -prosecu tion -din ah -stam atic -disclo sed -bever ly -fl wx -cra bs -extraordin aire -war mest -imper i -o logists -trac es -par c -lake side -am r -ter i -hour ly -domin ation -ar row -shrews bury -ance stry -wr angler -trigge red -pen sac -roo ster -survi ves -a on -bo ko -val or -love is -la g -pe y -fo cal -out laws -bl anc -artic ho -wit s -marsh all -die go -support small -u ca -sa h -je et -syn ago -gover ning -ðŁĴ ¬ -sal ads -cre ate -miri am -cen sored -ami de -no u -z eta -allegi ance -* ) -bl m -ric an -pa stors -oly mpus -blo c -whir l -star ry -pr one -y k -p ne -congratul ating -be v -so ber -love island -sa ir -an ing -tutor ials -q e -lun d -in ist -cle ver -taxpay er -ali z -wren ch -dd ling -cap ri -h pa -ðŁı» âĢįâĻĤï¸ı -na j -o j -futuri stic -jelly fish -ðŁĶ¥ðŁĶ¥ ðŁĶ¥ðŁĶ¥ -cel ery -plan k -fil a -ne me -un healthy -lec tions -ðŁ§ ¡ -rit chie -n ws -mi kha -wonder woman -âĢ İ -hip stamatic -ka g -ðŁĴľðŁĴľ ðŁĴľ -poul try -mo w -wor ds -lo ff -ðŁ¤£ ðŁ¤£ -relat able -re mixes -keny atta -ke m -re signed -fo d -stra igh -j lo -hu tch -box ers -colle en -mag s -instruc tional -ko l -attrac ts -pra g -account ant -go ggles -br u -th ole -mar row -leu ke -oc to -pon ds -bubb ly -he ist -ìĹ ij -im p -a har -ha unt -hall mark -psy ch -kkkk kkkk -col umb -jump suit -cost co -si delines -ag gies -over turned -ni b -key chain -fu k -f af -mi am -assist ants -cy cled -ri der -dam mit -red wings -mag es -kin s -ì Ĥ -ho d -son t -carol ine -" ' -cu le -bra id -fel ony -ar ities -ruther ford -depic tion -isab elle -ro ach -k day -fifth harmony -em y -li gam -bari sta -albu querque -gro ss -ðŁį º -oo ks -ðŁij ¼ -dun can -try in -jag s -g ould -li tho -âģ £ -а Ð -sam my -tun g -cas ser -apo lo -aaaa a -man g -as ics -sh en -p ye -tur bul -ss p -saint sfc -on lin -n anny -he ster -do z -ภĶ -th read -ren ts -kh and -ðŁĴª ðŁı½ -un conditional -rob son -car re -ph on -sacrific ed - £ -auto s -par ker -oc a -log in -kee gan -hard cover -dough nuts -ðŁĮ İ -spit fire -refresh ments -saskat oon -commod ore -j f -rub ber -halam adrid -child care -stra da -io m -ri k -dak ar -ther mom -cro pped -gar u -ali k -ven i -i ft -si ka -ritu als -z ul -e ch - © -su dan -l land -i me -do cker -ì ¤ -fe ared -fa o -wal ter -no g -mutu als -l h -ali gn -mon ia -concep tart -ðŁĻı ðŁı¼ -sco e -compet ence -sw ine -ly me -laun ch -green er -abstract art -inqu is -gran ada -ga elic -flu ff -d backs -grave yard -ba be -acade mic -adventur ous -joh ann -~ ! -bi bi -| # -pl ings -gett y -as b -âĿ¤ï¸ı @ -staf f -religi ons -bang or -world bookday -me gh -de vin -ash ore -meri dian -gi thub -qui z -all stars -be stest -ir resi -ack er -do te -war rington -pol ly -newor leans -cr ou -wi gs -che y -smithson ian -la sag -de tour -bor is -stra ps -mari ah -inten tionally -ko h -ðŁį ¸ -ssi an -mar issa -cor al -episcop al -casu alty -tom o -supply chain -sam p -on go -ro o -cavi ar -p fw -clau dio -buff alo -s ations -mat ty -snap back -l ds -al arms -mat te -âĺ Ķï¸ı -conditi oner -d ors -he x -fi zz -a stri -sus sex -secur ity -qa eda -all star -cocac ola -as one -cl icks -sc ans -mu te -he avier -ðŁİ § -âĺ ŀ -lv l -book boost -youtu be -fla shes -f jor -c su -explo de -do dge -cair n -gonz ales -th ill -pel le -hart ley -renew able -re tin -e stre -costar ica -shipy ard -nc fc -pri ya -a ghan -an ath -plu gin -co rey -re bound -or u -kat rin -hor mone -gi m -mahin dra -s sus -park land -har per -fanta stic -infer no -ep ilo -wrest ling -fe ct -c it -ac oun -to ssed -monu mental -char tered -bu st -pe tra -âĮ ļ -wildflower hour -sweat ers -* . -bl er -ate ch -go wan -demo graphic -bra l -suici de -renov ations -vu el -sin ister -ar mani -miso gy -ph arrell -nap s -un iting -crusad ers -cor gi -insu red -than i -no or -g q -d ada -bicy cles -snu ggle -sch an -ten berg -ss al -fe mme -bo il -½ ï¸ı -re ap -occur ring -hus sein -divi d -sto ke -sh alom -na ia -o lic -frustr ating -Ù ĩ -ig s -gro ver -scen arios -n ds -bru tality -med alli -bu on -sas s -skate boarding -ony x -lor ry -ny u -gau tam -mm ings -gu g -end i -lo thian -comm ando -chal k -ph ora -asse ssing -ti gh -crun chy -ad ay -is l -ci ara -pilgri ms -kam al -p to -brit anni -t ani -sm c -l ure -app store -ab y -golf ing -cl c -fa u -an as -shu tting -regul ated -carn age -scow boys -all enge -c ma -humbold t -rel le -ku mb -her i -refin ery -sound check -d wayne -bos nia -i sp -the alth -anni v -relev ance -my a -bag gage -dre ad -s bc -th ed -bu h -hi jab -lo id -ke w -c te -respec t -lovel ies -cu bes -celebr ate -dir t -sav ers -_ , -gar ment -pulit zer -mas jid -beat port -al arts -encry ption -s ner -ple ads -found ry -sym metry -ru mi -birth place -scallo ps -supp le -pivo tal -t ati -no de -so d -pro xim -tr ics -col dest -bren t -mand u -cla ir -e ach -and alu -hi ddleston -ðŁIJ º -mel ts -v ance -pin n -se ments -scre ened -sa chs -o bl -ic ha -âĺĺ ï¸ı -school ers -heal ed -lo gged -ðŁ¤ĺ ðŁı¼ -ic us -bore dom -b ish -b ffs -tal king -sure sh -hoo kem -de on -de fl -ei leen -ðŁį ķ -women intech -ri sotto -rang er -adverti se -ภģภ-tel ly -la go -dart moor -d ong -sk ates -lo go -un ner -mail box -ma sala -lo oooo -amethy st -che wing -c bb -australi ans -rc mp -game art -# ... -kor n -extre mism -fruit ful -anci ent -pu bg -pol ite -wh it -mur als -m gr -line man -dav ao -ste ms -ten nis -av age -tu pac -gigan tic -hs bc -auto biography -up the -ี à¹Ī -re gal -fig uring -ku l -mis sy -hoo p -gra s -for ums -back lash -abduc ted -p nw -min ic -bu tt -bott oms -at on -ven g -ðŁĮ ı -del aney -prab hu -fan club -over haul -health ye -sy no -aa f -ren amed -kim i -un cle -man city -se u -qu anti -este em -um in -en zo -mel vin -under go -j har -far ah -coast ers -humph rey -mh z -children s -^ . -d hi -disrup tive -integr ating -r nb -over sized -a ide -ne au -docu mentation -ðŁijĢ ðŁijĢ -pal o -hear th -ri yad -pun ctu -abc news -secu res -boy band -bir ch -ju co -tra ff -legislat ors -bay a -ãĤ ¯ -no ises -collec ts -s warm -k ner -bi shops -stur geon -snapp ing -mo l -fre aky -chair person -tro p -lyn ch -car cin -art sy -e sto -cha i -fl ur -inv ali -sau sages -im el -j or -fun fact -wit ter -puni shed -ac ons -h ya -re versi -em c -dif fu -z x -sp aw -cla d -d mit -hol land -fre sco -pay roll -ab undant -stu ffing -mor o -c ny -boy cott -wend y -ele ven -pro voc -pil ot -tr x -be ad -climate action -ri on -assi e -ì ĸ -o sm -islam ic -ho ar -good reads -al ici -afterno ons -spoke sman -jo lie -it as -masc ara -âĻ© âĻ« -pre vail -beetro ot -lu jah -k li -dod ger - » -ru le -l n -scre am -ho bart -col bert -r tc -er m -pat ro -quo ting -s live -que st -non fiction -semin ary -prosecu tors -ve st -express way -g ge -nau tical -et f -ðŁİīðŁİ Ĭ -dur ation -cha ired -the film -fab io -she h -can o -ðŁĴª ðŁı» -with draw -! :) -cor pus -phen om -yel p -la wn -ent om -snapp er -but te -pin ball -pro xy -libr e -alle vi -n ada -gabri el -fo wl -eure ka -daph ne -tu nes -pun ched -wh ore -jo g -ren tial -man ners -o pe -wh ufc -gu th -revol t -sne aker -philharmon ic -ho ste -sovereign ty -ðŁĻıðŁĻı ðŁĻı -fish ing -sci art -fe ta -i pp -dump ing -kel own -gir i -dig its -sal u -san jay -twee ters -sp as -col chester -sc ab -ma dd -๠Ħภ-Ä ĩ -ged don -march for -do p -maure en -un plugged -di do -fashion blogger -up a -mex ic -tar y -pol ye -jame son -v t -grin der -mad dy -consult ancy -¬ ë -leagueof legends -ac cents -um ni -jane iro -tu ss -h ens -ampli fier -to shi -pret tier -pre vents -new town -red wood -vant age -ball ard -ar tof -a she -a sion -lac ey -ap at -gro ve -ภĦ -rw and -real tors -tra itor -bed ding -ö r -zi on -fla shing -cam pan -boom er -secretari at -ab ol -liti gation -cont amination -se dly -shred ded -in for -do herty -bench mark -ro che -skate board -sho vel -i zz -to pper -o ster -laby rin -autu m -k ong -hum mus -vi z -tech news -kla us -am using -socialmedi amarketing -i des -cast ell -ste e -underestim ate -cal ab -pa ign -b illing -unanim ously -g mb -fly fishing -hath away -commerci al -colour ing -skul ls -pivo t -te p -tb c -motor way -x press -construc tive -pu k -under lying -kir sten -mani ac -cha o -se ma -chiff on -ðŁijĮ ðŁı» -ver ona -kom o -stan doff -wi ped -c ated -bla ir -wor kin -m sc -bethle hem -swi pe -unexpe c -pe es -pe tri -orig ami -ðŁij ħ -mex ico -flav or -ru dd -cannab is -mar u -ri ddle -wor shi -sil on -sch at -ap se -tang er -bi ous -e er -questi oned -o zar -dan k -angle sey -char an -bak u -compe ten -re pri -bat ter -sa xon -cal ves -leng ths -$ $$ -âŀ ¡ï¸ı -immer sion -ga unt -car ry -cy to -b anda -shu tt -experi ence -el gin -mous se -ta z -ê µ -in correct -en z -b ham -mor on -so ver -ar un -ti pped -la ble -de arly -bau tista -í Ļ -mor tal -woo p -dt la -sho cks -dav os -ðŁĵ Ŀ -swim wear -her man -ðŁijĩ ðŁijĩ -z ir -neglec ted -grac ed -campu ses -av s -ar ora -swach hb -live pd -ac cra -enqui ries -shoo ters -kur t -vancou ver -brad ley -gar da -g ü -ol la -attrac ting -up ton -ne win -lu mia -furn ace -ev ers -e on -sw a -roo kies -a oc -v ss -bris ket -tor ch -yo da -heart land -tac o -ph ony -food bank -ab bey -bab ylon -u y -gre ate -expre sses -d andy -sc apes -survi vor -ron d -e ci -ha vin -ab el -chil dish -tor que -wav y -ur self -kanye west -year of -ale stine -o brien -al fon -sk ag -kore an -anchor age -val eri -de w -ðŁİ ¨ -land slide -car ole -christ en -go phers -af i -priyan ka -q q -power of -it te -pc so -tw ol -pr y -intellec tu -guer rero -pi les -wish list -w ren -time table -ë ı -prodi gy -gibb ons -. / -ne ur -anz ac -mur ray -vie st -pla ster -la ir -art gallery -inter continental -g br -bell ator -nam joon -mam mals -am el -y aw -saras ota -cam ar -bud ding -sum mari -aco sta -la sh -ey ou -post graduate -instruc tors -ti g -const ant -were wolf -ic os -cla s -glen n -bud ge -ðŁĻ Ĥ -er ta -sta ins -persecu tion -cumb ri -o ch -syner gy -hu ang -scand in -mid terms -comment ator -regar ded -perpe tual -bo iling -al p -lan ge -sch le -fac eli -twee ta -ri dden -ok toberfest -charlotte sville -ik lan -jo u -ch atham -b sc -ðŁį ¦ -stra uss -mel low -xx xx -happy hour -re actor -ww er -distr action -at orial -ðŁĴª ðŁı¼ -twin peaks -fay ette -a or -ko k -bro om -sy fy -ou se -am ag -Ø · -ubis oft -lu lu -hall mark -stu art -it ya -si deline -venge ance -re lu -sex ism -boun cing -un ites -gu stav -te ssa -stu mp -pro clamation -ima x -divid end -col by -ðŁį İ -play wright -un safe -co smo -ðŁĩ²ðŁĩ ½ -cup board -constitu ents -ang lia -ram page -ðŁĺįðŁĺį ðŁĺįðŁĺįðŁĺį -than ked -take aways -shro ff -de bat -kh ur -conduc ts -format s -à © -port age -graph ers -u ten -pre m -mo ines -condem ns -s ous -l ps -f cs -deal ership -leuke mia -bure au -ski d -guardi ola -ca ster -thir d -avoi ded -en cyclo -c sr -vi xx -analy zing -she ar -dulu th -shap iro -chan ting -stre sses -as be -mil itia -ãĥ ª -col lin -arsen e -sure sh -teach ings -yi xing -sh ill -nu des -sv u -clear water -war ped -pro life -artist son -it u -versail les -galax y -ax el -spring st -cal a -hu hu -sc u -commit ments -exe ter -poign ant -mo tion -conserv atory -row dy -rec alled -mu sk -emb elli -so the -âĺ Ģ -sto pper -sch ild -to pe -el mo -zi el -j om -barn sley -snow den -on tour -jour ney -hills borough -par ole -w ts -mo ving -ag ility -tiv o -ff ers -kindle unlimited -g wen -ann an -ah mad -tex tured -hepat itis -dra m -insi ders -tis sues -ãĥ Ħ -fc barcelona -cr atic -na acp -pe can -f gm -custom ize -concer t -g sm -pe g -p one -justin trudeau -super cars -happy holidays -bu lar -ado x -lap tops -digital health -destin ation -gradu ally -áĥ ¦ -popp y -ss l -inhi bit -star light -of fro -glo omy -x per -hal der -im plants -le to -hass el -a as -un told -en ci -liber ia -or an -con tests -il ah -sma g -sc out -mari anne -cr yo -schedu ling -lo s -kan e -stutt gart -ne se -law rence -da in -pho tom -car ou -ภ£ -g wy -national dogday -roa sting -band camp -kentu cky -stret ches -ke rel -ca she -ãĤ ¸ -sta x -tran si -dog gie -at ric -hal le -ci vic -brow ning -lein ster -cat day -high land -joy ous -in cumb -or lando -ro mo -col ton -del ta -car ab -ro tc -aster oid -goose bumps -mo logy -yo ko -an ds -tomor rows -red carpet -sm p -ca sio -ðŁ¤£ðŁ¤£ ðŁ¤£ -se au -rejec tion -rot ating -bi partisan -th un -mat i -bon i -ol l -ener gye -do it -l j -mother hood -lou ise -neck laces -el ite -ni x -l cs -en v -gl u -le sh -cran k -su sie -m clau -so tu -crow ley -rat ri -use d -bre ton -alfre do -ye o -travel pics -ti pp -elli son -sax ophone -me red -heu ghan -ta ine -f es -vi ro -suppo sedly -i as -dige stive -y le -li zzy -wildlife photography -bri anna -west field -ra ined -am her -ðŁĺĦ ðŁĺĦ -distribu te -bott om -pre serving -oil and -craf ty -de scen -col ling -shakespeare sunday -r wc -ang led -ci an -t ations -mon tage -me yers -france sca -ðŁĮ · -wi ggins -san ford -volunte er -car ra -bar k -vari ed -pl in -am u -kap il -rock ers -qu ind -br ane -in mate -ent al -impro vis -michi gan -re tweeting -progre ssing -mercedes benz -smo ker -physi ology -dor ado -watt pad -h wa -sr bachchan -w ga -vol atility -hi re -ac ap -wn ba -hein z -stit ches -kidnapp ing -bur ys -lim b -f itters -thumb nail -ton e -mir and -desi rable -ad dison -tar an -tamil nadu -spec tator -soci ology -amit shah -remo tely -âĻ ¦ -ham id -r ds -g lee -smooth ly -sch ro -er c -lali ga -he als -us f -ni shi -d hu -un il -h le -tro mb -bhu tan -pilip inas -se ung -whit man -te y -min ce -snow boarding -re au -k ker -av o -zach ary -ran veer -ti k -gover n -qu al -beck y -anthropo logy -att en -grocer ies -de bit -war p -sil icon -hawa ii -ðŁĴ ħ -pomegran ate -pe er -orang es -people schoice -end ure -ðŁĴĽ ðŁĴĽ -ãĤ¹ ãĥ -ac ial -a haha -stu k -imper ial -bl ond -pow der -kno ts -vin ce -wood lands -den a -watch in -mat cha -ma hat -galax ies -middles brough -k ö -stre e -resc ues -wal do -lero y -desp ic -real ities -tm nt -ha q -un o -pe c -bolly wood -blin ds -design thinking -he ms -and hra -ab sen -fan s -ste ch -shire hour -bla ine -shak ti -pu rely -ðŁı ı -tra fal -ke ynes -gr ate -to bias -spon taneous -satur ated -caval ry -pri sc -ðŁĺ ij -wh t -pas si -~~ ~ -vir at -patt inson -la o -weir do -sym pathy -ju da -occa sionally -cred ited -stat u -es co -hil ly -esc ape -dischar ge -se er -may nard -sud bury -z lat -or al -we er -encoun tered -sm elling -over sight -ê ¸ -that cher -mack ay -you can -fre ep -freed oms -prophe cy -ho e -ishq ba -dra ke -qu its -pel led -tur k -o vi -wesle yan -new music -leg g -ch eng -h illi -ay y -pan ties -ad versity -ad jac -vaccin ation -ju ke -ga c -exce ed -time sof -sta ining -ep cot -v ital -up ward -bethe sda -apar k -ma hi -camp fire -enchan ting -rha pso -h z -na ver -fa x -vali dation -ac ad -ny r -as ym -coordin ated -depar ted -all ery -var ies -spr ite -chap lin -ss occer -s wat -bre t -relu ct -tunes app -super star -reminis cing -o co -home grown -dough nut -un canny -la pd -thyro id -! âĿ¤ï¸ı -botan ic -bre s -sp ade -i ste -echo es -du lil -bur sting -qui ero -ðŁij İ -loy ola -amuse ment -ha ils -sleep y -burgl ary -âľ ı -ro gue -cot land -mo ors -low er -wic ked -ðŁĶ Ĭ -compet iti -argent ine -yvon ne -karti keyan -ili ary -gat sby -precin ct -six ty -na ji -cam s -practiti oner -ðŁĺ³ ðŁĺ³ -pu ne -neg li -juli en -inv aded -cali br -cla m -duba i -mu k -lan tic -produc t -fe dex -ï¸ı : -eu ra -dari us -s ling -virtual reality -home stead -ðŁı³ï¸ıâĢį ðŁĮĪ -pac ed -in ha -pul mon -la zy -premi ering -ma stered -in he -con gregation -ba jo -sport ing -new jersey -hor ny -lma oo -leng thy -du t -yo gh -swe aring -philosoph ical -pap ua -in ski -know les -dy ke -âĢ ² -to ken -mc guire -ri ot -probab ility -mc con -gro s -su mat -c ite -da a -on da -mad dow -che w -board games -spar ked -re claimed -ad hd -ny se -imwith her -equ inox -boo ths -balsam ic -ha zy -dor chester -ag os -se aw -moder ator -seri ea -ander sen -pilgri m -âŃIJ âŃIJ -itch en -hal li -x ton -nathan iel -mun ition -celesti al -ga f -zo om -mark le -pen thouse -cal e -s fa -bar king -tu cket -em ery -cal orie -li que -ad ar -mc nam -tor tilla -wood pecker -mo town -bad ger -ayr shire -scram ble -dd ay -cra ziest -per rie -cho co -cast e -i ot -wre cked -selec ting -uss r -gra ft -pun t -lab ou -ir st -ba ek -Û Į -su ki -que u -ach at -te ster -aug mented -wc vb -sin ks -ðŁĵ » -ra ke -inter ne -be cause -belle vue -une arth -light en -ðŁĺ £ -turn around -labe led -unemp loyed -twitter kurds -le ia -h ye -great er -ðŁIJ İ -tim ed -i red -e tt -limit ations -cab e -s out -bee ch -anni hil -re trac -yo ona -ang er -den nis -supp lying -di z -" ( -sc ur -gun man -su ho -sauvi gnon -ภ¥ -wi ley -land on -choreo graphy -pre historic -ðŁı ĥ -var gas -assess ments -pinn acle -di i -chamber lain -ì Ī -v p -present ers -deut sche -sun shine -sal utes -r one -bu siest -- .- -motor ists -hemi sphere -al wx -ps p -ow a -den ying -cho c -gu tier -han uk -mus kete -jait ley -se wage -t ame -thin kers -shi m -se quo -pap ar -middle east -k wa -ke g -patag onia -no y -bar ça -take off -he a -à ¬ -n sc -g dc -ðŁij Ī -mou stache -mel ania -thr a -â¬Ĩ ï¸ı -pier ced -ze us -fon ts -ber a -it iner -q atar -contr ary -ire land -i fy -ou los -commun al -fin s -un paid -pa a -ðŁijĩ ðŁı» -ri os -ou p -f iller -cafe teria -à¸ Ń -kas i -cali ber -z ulu -v sco -ts ford -dragon fly -smo kin -pi st -psycho logist -diplom at -we bs -buc cane -à® ¾ -motiv ational -du ne -ba e -c fs -with out -er on -i ac -ate e -pen sion -fra zier -en sis -sk is -par ting -ger y -territ ories -nach os -eni ght -ever lasting -msd honi -tel e -sp un -po di -sab ah -environ mentally -ce ase -beau mont -mar ta -kel vin -ho ff -sun il -n da -co b -sh ale -ree dus -un boxing -u bio -re opened -n all -capsu les -mar r -himalay as -swee ter -ja z -f mr -twee ter -dha ka -na u -de mi -d fs -ta urus -fad ing -it utes -ci p -over flow -jef frey -don ny -car tunesapp -ðŁį ij -prefe cture -danc ed -c pt -ple asing -ital k -earth quakes -ul ation -hi o -ãĢ ĭ -ant an -nutri ent -de ere -selec ts -enrich ment -r iti -tram pol -bl amed -j ia -contribu tors -chesa peake -pi geons -tribun al -mad uro -w su -ilo ve -effici ently -dar cy -war ms -ar ra -ec u -ho wer -strugg led -rajini kanth -ðŁĺ¢ ðŁĺ¢ -hou sing -str at -eli x -disp ro -raf fic -thi erry -na sty -c fb -staf fing -al ma -back ers -hen son -sky walker -reale state -roo s -ness y -chan ce -cair ns -c ci -pe dal -ly ft -cross word -wait er -only in -kru ger -k ir -alej andro -car tier -car rera -re paired -ou at -un clear -un breakable -today in -qu eries -jo dy -gen ital -win ner -to l -kelown a -fascin ated -ãĥ ¬ -sris ri -squ ared -spr ung -negoti ate -priv ately -av en ->> >>> -g ical -gav in -chester field -zu mba -or r -nat alia -impeach ment -mn l -car at -criti que -credi ble -trac y -tan i -musi k -jig saw -gam bia -tol kien -fe u -as per -sav ory -fo xx -f itt -mar lon -l rt -v ell -p br -imprison ed -i om -chu l -wind shield -kay e -ba a -chor d -s art -al gon -minister ial -nat geo -la zio -nor ms -ðŁijį ðŁijį -lic king -fut bol -un sung -dalla scowboys -sh red -distur b -dev ine -be ards -ch f -b day -ro sso -ig or -ay i -si ren -k air -sti les -ro f -mag nets -un cover -mou se -bang ing -si ghted -spe ople -impac t -row land -kir a -environ ment -love the -p sis -mish ra -gl endale -ca jun -o che -de ception -sex ist -stra ws -s ga -buff er -apost le -sp l -pop up -ðŁļ Ĺ -r g -up er -ball in -i dy -occa sional -national park -ðŁı Ĭ -u an -innov ation -ภ« -te aparty -re tte -counter fe -b ha -rec s -ig en -ðŁĮ IJ -humming bird -cu r -ha ven -la zar -pue blo -: : -zi onist -op ath -inver ness -promo ter -carto on -cabine ts -mahog any -surve ying -r ational -feel ing -testi fy -so w -oc on -ภ¢ -ne el -mar is -sol itary -che mo -rad cliffe -sim ons -ros ary -new er -jo die -re tali -pra wn -pad dy -hen ge -k ala -im plant -at y -bren twood -par adox -ene z -re designed -p our -wy d -al de -௠ģ -sol d -biomed ical -๠Ĥ -tt tt -mat teo -ys er -new ton -de bun -ner dy -loo l -wo on -elisa beth -ec c -wh i -ach o -salv age -sal aries -qu ity -navig ating -oph thal -con soles -re built -o pec -ast ers -sho red -set list -kathr yn -rhy mes -re visiting -ash ish -li ft -re post -sole il -âı ± -weal th -sa at -we c -king james -flipk art -field work -se gu -mo dal -bu b -are rs -ðŁį Ĵ -clo oney -pad dington -necess ity -guth rie -pen te -li mo -jo sie -ar tin -en c -l hs -betra yal -info graphics -i er -mo a -hear ings -bon jour -sym bolic -ag ro -wed ges -krist ina -wild flower -athle tic -photograph y -pe sh -ca hill -chi lean -gou l -fi oren -ðŁij ¶ -z il -sk im -bad oo -deli a -tre ble -n cc -ðŁĩ¦ ðŁĩ -a house -bul lock -sol itude -ا٠Ĩ -can cers -futureof work -hu tch -water shed -war mongers -sp illed -colom bo -mo th -associ ations -weigh ed -global goals -not just -christ i -tor g -swe ating -man eu -clu sters -âĢ¼ï¸ı âĢ¼ï¸ı -ta ped -ul y -tru sting -yu suf -te in -ra b -, ,,, -sin ai -audi ble -explic it -cro wns -sch iz -at least -ðŁĹ £ -de bra -je suit -ene gger -z hen -one sie -i it -ss f -gur gaon -chak ra -bear cats -k ran -k awa -reque sting -han over -g end -sor os -mer cy -lovel y -do omed -tim my -ku z -ul l -ab ram -sa ison -ãĥ « -clean ers -re mo -circu its -bar red -o th -mo ist -madele ine -gall o -u j -per mits -hea viest -car ols -az te -gior gio -flo ats -decl aring -us rc -min at -craf ts -pri ma -conven i -nickelo deon -danc ing -ceremon ial -blo gg -tw p -anglic an -she k -k nick -( (( -hubb ard -harve y -hit man -fen g -we some -for za -s word -op us -bro m -gi bility -z al -m unch -dance hall -gre edy -hd mi -re birth -ðŁĺĭ ðŁĺĭ -s world -figur ine -com post -k f -engra ving -gior no -st ana -k man -ham ster -compos ers -aj e -func tionality -pol k -is ons -air planes -te se -hor rors -musc at -gi ven -sp ence -ðŁĩ¸ ðŁĩ -eli ot -ach illes -fre ck -crypto currencies -sou ther -hal o -bor neo -polit ic -hahahaha h -up state -si ena -obsc ure -hau sen -lloy d -happy friday -motor bike -bon a -americ as -hol s -- ( -spor ty -un aware -reven ues -christop her -bank sy -av an -ev apor -com press -eyel iner -to dos -buff y -renewable energy -ly rical -ar chan -rapi st -fair trade -lma ooo -beat z -pro active -la pse -ir ical -revers al -po de -mcin tyre -mac au -ãĥ ķãĤ -nash grier -f sa -g all -çĶ Ł -perpe tr -il ya -configur ation -% ; -str ange -rac i -ภĩ -pic kups -kov sky -mam mal -w ps -g able -compar ative -z h -save our -da vey -on etsy -mu ssels -mis er -cri stina -electr on -cra ve -lo ren -precipit ation -m z -ðŁį « -vin cen -snow board -no ida -ah n -marin ated -g tr -town hall -min is -bethe l -adv an -su ra -shi el -fur ry -ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤ -lyn d -so il -sc ence -sen eca -shar jah -dick ens -credenti als -av ar -per k -requ iring -pre fer -j ian -de ca -r ach -ing for -del e -be ep -ðŁĴ » -cis ely -hu ddle -green sboro -haw king -ho ax -hang ar -ç ľ -mis o -lo vin -gre ta -ab ad -logi e -at an -snow flake -mahe sh -fear the -al kal -bobb lehead -ba hn -ju dged -fu tu -feli x -ðŁį ĵ -pi ke -der iv -notic es -au er -dis super -or da -wi pes -am ino -stri kers -foo tb -dram as -pun ching -score less -heming way -bi h -bal lad -chat ter -am mo -kle in -fabric ation -kari m -z end -hi sto -vol ta -rock y -marke ter -xtre me -sequ encing -paradig m -cle ats -boom ing -âģł âģł -block ade -promp ts -yogh urt -pur pose -nu r -regu late -nois y -ing rid -bird watching -bar tender -Ù ĥ -wor dof -cha otic -shor ty -el dest -z app -onceupon atime -fl yo -rit os -mike quind -ðŁIJ ´ -regi stering -. ] -ad ol -gg gg -pur ge -kid lit -ar bor -val ves -synago gue -o th -unanim ous -veri fication -dar rell -ãģ Ħ -vander bilt -tape stry -pro sper -did dy -dra fting -de cep -marqu is -st int -michael jackson -pee led -men us -bb b -sc are -ema il -wri gley -it is -f ell -some thin -bar ra -ed gar -di pping -pu ddle -sla de -lear ner -jal en -ðŁ§ IJ -the daily -mikequind azzi -ju x -iq bal -mckin ney -ra iser -ef an -dr one -cat o -pic ket -cro we -l att -uk o -giuse ppe -hin i -synthe si -ponti fex -song writing -to d -swit ches -din ners -h q -gabri elle -pensac ola -cir cle -expo ses -ev s -riyad h -pro men -o ck -sa j -cit ation -brew co -jo si -ep aper -dri f -point less -tang led -cri pp -line ups -fairi es -daz e -mour n -bla dder -sal z -bur undi -book mark -the people -sub sequ -princi pal -sk er -court ney -a oki -rac ers -ad m -mom a -critical role -hou n -shed ding -sa ka -ace ous -mck ay -hus bands - ½ -me da -accu sations -ro sel -nc is -witne ssing -or ama -go ds -hil ton -el man -ÃŃ n -meg ap -cra ven -announ cer -crit eri -sheffiel dissuper -milit ant -consu l -hoo ded -aby ss -b x -ma dam -lo cu -mary am -manic ure -grat is -ac tresses -ros ario -this dayin -king ly -gn ome -cel ine -r ous -he el -lil ac -vish al -ab h -thor ns -s ls -ne al -construc ting -be ren -s lang -ma ins -far ra -sar ko -pai ge -gu iller -l ala -ice berg -nou n -plann ers -u mmm -ou ses -ill ary -ma an -box ing -zi pper -srin agar -migu el -o str -mp o -responsi bly -lan terns -appli ance -x b -gren ade -neglec t -dy sle -ham mock -ne ctar -wit cher -r gv -di ence -ser bian -seed ed -cru z -bi sh -sp he -e q -sky rim -alge bra -phil ately -bungal ow -ge off -y ves -demand ed -consider ations -the vamp -pawan kalyan -co ded -grit ty -erup tion -se infeld -uni denti -ëĭ Ī -wor m -ac us -se ung -dun g -ro land -su d -di visions -ab lanc -shor test -j f -p oun -plant based -be to -tough er -mc o -don et -mark us -v fl -ðŁı ł -open ing -co ward -caber net -o xi -burle sque -sand ra -su mo -consi st -tho t -cay man -motor ola -gutier rez -d slr -y w -no bel -nov ice -moms demand -grun ge -sp or -d cc -pre sses -sli st -allot ment -voc ational -ft c -pu ja -lo ven -utt arak -tan dem -sh ep -come dians -anat om -cant wait -healthye ating -west side -mar gins -chi ang -asbe stos -stupi dity -proble matic -fit bit -: $ -ceil ings -shu a -protec tions -bio tic -beng ali -re sts -bien nale -tim o -cul min -e minent -affe ction -unbeliev ably -individu ally -canvas sing -wh itt -nov asco -chin son -h pe -go w -gloucester shire -pa o -thresh old -chev ron -s ine -we ther -pp ie -aqu ino -antwer p -âĸ ¬ -po on -inst af -equ ine -cinemato graphy -nbaf inals -vali ant -kil kenny -te rence -syste mic -sr l -p ound -made ira -pl ough -tre cht -mat ed -mp d -ransom ware -ph in -li qui -bb ce -boom er -i standwith -con ju -r te -nar a -foo lish -da shing -vier nes -br ite -da u -juni per -ai da -you now -ra zer -de i -repe ating -comfor ting -adjac ent -e to -ca sted -chat ur -mu er -syn th -san itary -mac le -independ ent -law ful -e erie -h or -ðŁĴ Ń -am rit -vel o -station ery -mu f -may may -contempl ating -elabor ate -gre gor -dri es -ac col -ภļ -schwarz enegger -ill nesses -day break -follow back -collu sion -electr onic -jo vi -hiro shima -ta w -hom ec -mic ah -qu itting -fro sting -ben fica -hel i -s ical -pic cad -corpor ate -ment orship -you are -sing er -shi va -ru ne -ing er -ri um -play able -doo p -wil low -ter re -ni p -at d -war bler -profession ally -er ase -proce ed -pedestri ans -mis chief -ben ding -alas kan -c kett -mo p -dd les -shut ter -ge ared -atene o -ma deline -g ations -o sha -der ick -sw ild -an gry -pat ents -hun k -decre ased -fr y -ðŁĴĸðŁĴĸ ðŁĴĸ -sal on -quant ities -d ario -ni gel -ku ma -jen n -happ ye -xx x -rex perience -pro s -au sch -rele ssly -ham burger -fuku shima -er ne -stat ec -ren d -may field -j one -lef ty -bern stein -sm il -gener ates -fore station -band its -ta yo -r ca -ac ci -rodri go -kn app -elo vers -vege tation -u ral -le ft -ħ ï¸ı -worl dre -sur i -embar k -w son -ba you -mu ller -mo vers -ðŁķ º -presby ter -l f -cre e -bat b -sal am -demonstr ations -an ec -n pc -it ics -to graphy -re inst -thur st -tal e -off ences -smart city -bro tha -ofthe year -in valuable -ear n -ðŁijı ðŁı½ -kre mlin -gra dy -town fc -guern sey -ma ha -contag ious -dre x -be en -( £ -nati vity -k tm -somer halder -comp ounds -íķ ĺ -" âĢ¦ -af g -ott news -h ound -fire fly -cil an -donet sk -volunte ered -ak ira -è ª -sing ul -st h -dro wned -mand o -he ir -ðŁİīðŁİ Ī -tax is -y uki -vel d -k ans -el k -ran ts -hash tag -t eng -ro g -a at -gru b -e ber -in india -colo ssus -sig ni -so ever -mile stones -der o -differen tial -phu ket -master mind -an gh -mel ani -bro ker -actor vijay -stun ned -continu ity -af fl -vo cal -perenni al -fianc é -in complete -hun ts -re issue -domin ates -tur meric -ro am -ri on -bag ged -nas sau -fu t -x ox -national trust -jo ye -san o -hearth stone -dis respect -le es -h se -siber ian -offe e -re stock -wolf gang -re gan -plan o -un wind -re par -mil le -] , -skul l -fat ally -concep tual -ðŁĮ ² -f é -ber to -b ms -u a -mag na -notre dame -le te -la undering -heartw arming -buffe tt -go at -pe abo -wind mill -v ac -continu ally -az alea -mem brane -can cels -make yourown -athe red -p to -tor pe -ðŁĺ ł -ðŁĴ § -sc ares -le aking -z et -pix els -ac i -kh il -marath i -ðŁĻı ðŁı½ -u la -tam u -chandi garh -z agre -aa b -pronoun ced -aubre y -sand er -pun ta -har low -ic elan -celebr atory -so t -unci ation -stru ly -mc dowell -deepi ka -remin ders -my stical -ct c -chat ted -s ica -bar gains -ch hat -ru bin -m net -oiland gas -pel ican -o at -mor ality -k our -i h -nu clear -gc u -ric her -vene zia -m ma -le ith -ac company -rich mond -sports net -ba ahu -smu ggling -mm i -ðŁĩ®ðŁĩ ª -twi sts -sahi b -.... . -amb itions -il lo -histor ical -fo rec -show biz -pon ies -chas ers -remo del -will ing -prince sses -am ple -cushi ons -ac les -lot r -da ch -an the -in corporate -new bury -ki ri -fried rich -ab v -ball ers -alber t -ðŁij Ń -let i -nan op -ci de -anal o -n sf -)) )) -griffi ths -valen ci -ro ano -fun run -babys itting -ca day -ent re -u ck -slu g -tic al -the sims -ro ar -car ney -g am -sto we -fi d -bun ny -sham rock -pe cu -mol ina -go cougs -con tributes -transform ation -mo y -v aj -sever y -antioxid ants -thir teen -sight seeing -l j -reversi ble -odd ly -hoo kah -nou vel -hal al -fe i -stab les -mul t -ho pped -bra ids -inter change -ghana ian -ww ww -eth no -con junction -ago v -ye ti -earth and -ts p -con serve -heir loom -metaph or -woo f -tor io -self less -n wa -em ilia -yl ene -y xe -gi ar -moder ating -pro bz -b fi -ne er -du mmy -hanuk kah -we bber -k v -eye brow -dag ger -su mp -ra ges -ork ney -tb o -hal sey -assign ments -tr onic -scri b -co on -an war -# âĢİ -jal ape -flori da -qu aid -haw keyes -âĻ¡ âĻ¡ -street car -ro g -dat lantic -gran ola -un changed -expect ation -Ù ĩ -mar lin -gu mmy -ðŁĻı ðŁı¾ -awareness month -oil painting -mu th -per ch -jun to -villa gers -mor g -che ated -web comic -the future -d ps -la kings -men tioning -vo or -ident ities -accor d -mc gu -l pga -rum our -massi vely -m pls -heal y -d ate -sp oli -re visited -on t -al and -scru tiny -lakel and -bl ending -< / -an kara -jami edor -metab olic -f ences -ann y -å ħ -semic on -oo tt -space ship -wack y -le ta -ap ac -she e -in herit -do res -ðŁĩ¨ðŁĩ ¦ -gent e -tw ick -ri ms -gal ve -de ville -king fisher -scorpi o -ow l -al ar -vari an -ðŁĹ ĵ -vene tian -star dust -then orth -q ing -har rington -consul ate -spectac le -ho bbs -tur ks -gre er -mat ing -ðŁİ Ģ -ðŁĮ Ģ -direc ts -í ĭ -pompe o -vo iced -la os -tz u -pro me -pri sm -mer c -fortun ately -bc fc -mcdon nell -not sorry -smi led -t ba -for war -mid term -dar by -we instein -up grading -wol ff -bron co -cab ello -ðŁ¥ ĩ -fi able -shar pe -bat tered -sat o -myth ical -instap ic -pre pped -eni um -e spo -di aper -explan ations -who pping -ragn ar -pe el -antibio tic -l acks -harri son -li sm -au l -qu ail -martin a -sent encing -sc ams -di di -tr onics -ãħł ãħł -go ff -za in -param ore -cha ined -clin ton -li ff -cott ages -em on -reve rend -consu mer -ce an -t any -lum pur -e bay -sto ol -ðŁĺ» ðŁĺ» -ta pro -h ath -modern art -just ine -prover b -app y -tra x -mani fest -am bu -nai k -pe pp -r sd -mer chants -kitch ener -shi fted -li zz -âĺħâĺħ âĺħâĺħ -âĢĶâĢĶâĢĶâĢĶ âĢĶâĢĶâĢĶâĢĶ -uto pia -tom o -ou ted -com ers -chiroprac tic -book club -cin dy -pro hibition -se uss -ë¯ ¼ -thin kin -rr rr -go fund -t ack -om b -catastro phic -ling u -guild ford -bo td -ॠĭ -plan ter -^ ^ -win k -kath mandu -sto ppers -smooth ies -re efs -hin d -bell amy -Ħ ë -waste water -vo or -nat l -! ] -re el -y ap -scoo by -work space -corin thians -bl un -obli gation -g bbo -dy son -cra vings -ell ington -dap l -wre xham -earthand clouds -uk runchat -positi oned -kal b -four square -jo ck -im pending -even ing -ath y -pro claimed -c ites -ann apolis -san i -mar th -ir l -accom mo -ka a -fin a -y aa -di sper -ec ar -bha k -will y -ðŁĺĢ ðŁĺĢ -mcder mott -mo j -gener ational -u said -train ing -lon ely -lo res -impe cc -âĢ IJ -beav ers -ma ki -he b -aap l -å ı -wolver hampton -leader board -me u -c fa -easter n -hu r -civil war -ou rage -hor ned -le high -awar ds -evi dent -gi gab -r ous -ma del -ro byn -ur gently -k ors -en as -heis man -bam bam -fab ian -f om -evalu ating -assemb ly -out sourcing -hun tsville -ðŁĶ ª -justi fied -cashi er -sp aper -buc keye -analy tical -illumin ati -au tho -o j -sha de -geel ong -wh ey -he aton -terri bly -ele k -un charted -sd live -moto cross -her mes -dar shan -dar lington -cash mere -gri pping -cilan tro -pun ish -... : -ðŁĴ Ħ -inst ance -der i -lo bal -muk her -sp ar -thin ker -fre mont -com piled -color ado -vig ne -sm d -whe ad -villa ge -le ek -formula e -ta res -persist ence -?? ???? -ped ago -he z -alzheim ers -vul ture -off ence -is great -suff ra -kick in -h mmmm -broad way -ï¸ı @ -art i -alli son -endor ses -ry u -lolli pop -soy bean -kend all -cer a -inv ade -( ðŁĵ·: -conver ter -car pets -ho bo -fr it -pe ac -es qu -ern an -ou f -an il -di ffer -ch ing -bre cht -sp g -daven port -stra va -sever n -n gos -stor ians -fe te -parame dic -j hb -al amo -sne aking -gold coast -roof s -isi l -depic ted -projec tions -nu mb -o ss -ep i -glu cose -zid ane -infin iti -íĺ Ħ -ran som -ton ics -fal k -g ler -ou tw -re ss -week ly -the on -n ole -ðŁĩªðŁĩ º -vol ley -sum mar -neg ativity -sam son -ye w -aus votes -ju l -ju dy -f art -pra yed -pal ate -multicul tural -double header -cycl ones -pier re -ãģ ¨ -âĺ łï¸ı -rt w -conver ting -wir ral -l ari -ir relevant -austin mahone -an che -ya an -sd f -$ . -explo ding -ulti mate -prof ici -gofund me -cell ence -ep stein -bul lied -sep tic -à® ¤ -lu mber -cu ff -vsco cam -pl or -ภ¥ -se ok -ro to -venezu elan -sor ta -spir ited -daniel padilla -team sisd -radio active -icelan dic -ðŁĴ ¤ -ver e -accommo date -shi pp -ot ter -ol ina -e go -su la -san antonio -de as -simil arities -âļ ¾ -y om -bro ward -å ° -can cun -veri fy -on te -candle light -ìł ķ -inf ants -az am -ðŁĺ ° -le ven -un stable -bloom ington -x ford -con tour -y p -innov ator -histor ies -po y -lolo lol -ex pires -cat alo -bill boards -an ab -el ic -novasco tia -fa ire -ìĿ ´ -rock well -gr ille -az tec -joh or -ur struly -fi ren -dun lop -id le -port man -jo es -tx hsfb -hol m -cham ele -under world -lo ss -ti em -therap ists -past ure -pa ste -ing now -vul can -ra gon -lar kin -o shi -ho co -child hood -umb rel -success or -kath y -iz en -° ï¸ı -share holders -ol ga -ai b -he ap -fl aming -ro u -air tel -rat t -z ane -vo w -thor ough -sn ag -par th -un conscious -ve y -new release -gh ee -croati an -facilit ating -swan son -astor ia -to logy -master y -ðŁ¤ ij -bil bao -trou pe -the ori -chey enne -ro tt -shore line -gra sso -master chef -+ ) -vi x -ellen show -as g -an ak -ku ya -safar ilive -debu ting -blu m -list ener -v ins -book shelf -smart cities -makeyourown lane -; ; -ðŁIJ ¯ -ri zz -on ward -bull dog -bear ish -vir uses -fri gh -lin den -we iser -sn t -gon a -dre sden -fl anders -cu k -wheel ing -ba u -atu esday -surf ers -swi ft -mc call -arbitr ation -aw d -mon c -b ine -at x -re fr -mi ro -po sey -n are -rit ter -âģ ¦ -play book -blow out -sports manship -s oooooo -malay alam -gri ms -bur bank -infin ity -sar gent -oit nb -joseph ine -ski pping -par kin -excur sion -semin ars -jo har -par tridge -post game -ll ll -blan che -temp ting -m na -lu ka -is ers -to ffee -bar ron -he mmings -sa e -go hawks -cu pid -li mbs -con se -un common -z ada -head shot -so ils -pione er -mam ma -sem itic -pan dey -jamiedor nan -spl its -vel a -son i -ra ff -t mobile -âŀ ĸ -pra wns -lit er -enjo yment -egg plant -tu b -cultur al -us ic -suspici on -sy cam -summ ed -ma du -ho ck -up wards -eye ing -ri ve -assas sins -âĤ ¬ -out fy -chi ves -t ner -la is -por ridge -sad dest -w cc -vick i -sna ils -biz italk -mill an -ðŁĮ į -sam oa -j ing -mi key -gu j -chel ms -eli gibility -arma da -thro p -surger ies -ãĤ ¿ -mo hawk -ex its -me m -is lington -c me -land fill -kait lyn -ðŁİ ¼ -combin ations -tomorrow land -ver b -cor a -pre cisely -na om -ðŁĨ ķ -shr ink -sof tly -merce de -mand el -poo dle -ball erina -sop h -jux ta -y at -ary an -hesit ate -lo wered -gu lar -dungeon sand -ron an -my ri -sp f -men opau -gra sp -pa thi -fe asi -fla w -shi story -ste ward -gg le -fay re -cli que -credi bility -yo g -sec tion -mu sko -se ville -no tt -cal m -mate o -indic ted -fi ba -by l -lin o -u kin -!! # -enig ma -siri us -bu sc -ðŁį Ĭ -mac kerel -psal ms -a at -tomorrow spaper -ðŁĺ ĸ -p fc -........ ... -shre k -mul let -o sh -danger ously -immen sely -am ur -ðŁį Ĥ -pro por -sy a -london marathon -abo ve -obli gatory -pro v -ra cha -alex is -pri mary -sh h -ether net -d stv -cou gar -un lucky -ni l -steak house -mel a -fc bayern -cause way -ca therine -fluore scent -nx t -to kyo -au sp -releg ation -qui zz -shored itch -proud tobe -promo s -inter acting -home brew -da esh -w pg -stead ily -provin ces -bal lots -i ah -al to -< << -you u -ri ley -prefe rence -tra verse -incen se -am munition -ho dges -# @ -hail state -tart an -witch craft -vent ilation -liber tarian -! âĢ¦ -ow es -% ! -ong chang -bru shing -le ic -fi ber -under attack -down load -ex pir -hy o -pompe y -mc bride -y ag -stre e -com bat -ten ding -ai ra -gug gen -ab ra -in na -fli ps -aw al -m ach -dol lar -inspir ations -z um -o du -it ty -video game -aqu aman -har u -bel fast -je b -but ch -us gs -calcu lus -go yal -mor gen -x finity -stand up -contrac ep -sab re -na be -in secure -gener ously -epit ome -l w -t ca -narr atives -don nell -pand as -ber gh -tu t -ker al -fel icity -br ampton -quinte t -nom ore -ðŁĶ ij -lo i -alham dulil -ðŁĶ¥ ðŁĶĹ -ston er -shaw l -clin ical -bren dan -gon e -fla wed -tri ppy -j g -al location -po aching -ve vo -mo cks -lef tist -bon uses -condem ned -abil ity -st ating -microbi ome -bio logist -for you -wahl berg -ss or -ift ar -w ul -ÑĦ оÑĤ -pom er -me me -ver te -tre ll -tra it -in let -hormon es -deliber ately -vill ar -battle ship -p bl -tw enti -ho kies -dal ail -say a -may fair -han s -die ts -⾨ ⾨ -od in -hot spur -pap i -k ana -k amp -fin na -flo tus -ti ans -unic orns -tribe ca -chang ers -fore ground -out a -inv aders -gett ys -tomorrowspaper stoday -mac millan -hand written -w fp -u de -state of -base d -âĺģ ï¸ı -cas m -psy ched -histor ians -fol d -d da -ag grav -p ans -green way -au sv -ðŁĺ ¶ -shradd ha -inde x -be sti -zim mer -t ness -eye shadow -ot te -go ts -distribu ting -pro min -yo l -ace a -tram rahim -hoo per -supre me -jam min -intu itive -quali fications -sli m -sid di -jay ne -tri pping -g tx -pun s -e manuel -om g -mid summer -in to -succul ent -ri en -new mexico -o or -hoo king -in f -ðŁ¤ Ŀ -flir ting -na hi -g friend -t ps -hel ix -z s -on ie -ct f -kri s -irresi stible -fla p -ðŁijıðŁı» ðŁijıðŁı» -us wnt -ru d -ram ps -pin oy -ot w -lol z -low ering -favor ite -t mc -phra ses -her mi -aver aging -em br -ben o -estu ary -sle eve -ribb ons -ta sh -ภ¹ -x f -aw gs -sun ited -brew eries -anir ud -pun ches -ol die -ip ads -wi fey -land lords -d ji -gun ner -íķ ´ -tex an -ex op -cas sandra -s off -ðŁļ « -igh ton -bak ers -awareness week -v all -ear p -bts bbmas -apologi zes -âļĵ ï¸ı -was ps -states man -snat ch -watch dog -ra fi -after party -spi ke -j er -peri ph -r nc -mu ll -le en -shi es -li eu -urstruly mahesh -mer ton -de sai -shi f -ðŁĮ ± -pe dic -gos ling -arrang ing -ww g -gen y -you uu -netfli x -e ttes -k wi -bernar dino -am iga -Ø ¨ -kashmir i -t ings -emer itus -de cat -ab domin -dc i -pha ses -d jan -be am -op ry -i shed -the ellenshow -the st -habit ats -to ons -mclau ghlin -ri pper -micro biology -tal aga -clu eless -ss u -cro che -bro mance -longe vity -zagre b -prev ented -tra ve -spo ilt -darry l -migra ine -al cat -dd dd -vi v -ser pent -mat tel -jam a -con quest -î Ħ -sam sung -presbyter ian -ket ch -fire fox -mo tif -le c -cho pping -cher no -j ann -ðŁIJ ° -pro lon -wake up -conver gence -mersey side -heart broken -lo oming -hal lucin -mai ze -commun ism -mo h -twitter storians -serge y -res eller -favor able -ed gy -re iter -mal aga -live me -ka hn -pul sion -big g -kim kardashian -ati o -tyr anny -ru ption -q ant -pro ven -by z -pu shaw -kri stin -e er -tar dis -ri z -awak en -mi ko -un documented -path finder -indirec t -resemb les -h ler -conce aled -scand al -re im -d nb -cr itters -attend ant -apprentice ships -aa u -scre amed -l su -fa h -har bour -ed d -bat sman -li ss -mi sha -spani el -it f -advan cement -fa c -close up -cecil ia -medi c -narcis si -lav ish -gi ac -ma ys -le it -wine wednesday -pushaw ard -let to -curren ts -bug atti -out ine -w j -un do -ler osis -devo tional -ðŁij « -on na -fais al -sa una -himach al -am ii -à® ® -di zzy -screen writing -ph x -sp n -ick i -ag irl -fi shes -wb z -pi m -bo ar -ac id -! .. -rocke feller -n ga -dra stically -simpli fy -dru mming -autum nal -gur mee -lor de -jo ann -give up -b our -am ura -der land -sim pler -wat son -tri dent -concor dia -bel lum -bre k -dum plings -vi on -dungeonsand dragons -sp ri -ascen sion -wil datlantic -u st -rob ins -legi on -insi st -jar o -gue ss -so b -bigh it -pool side -negoti ating -mc gill -bil d -techn icians -miti gation -ajay devgn -b to -ant en -cosmo politan -ðŁĺĬðŁĺĬ ðŁĺĬðŁĺĬ -patri oti -temp er -promen ade -nav ajo -nam m -wrink les -dc fc -le ach -bru nette -r f -cout inho -al ti -tradition ally -op tome -na z -accord ingly -rec ard -de ets -sw ell -po sure -whit ening -strang er -illi on -here ford -u wu -ro bber -cotsw olds -cl en -gor ge -nam aste -re lish -gri ff -adren aline -bla sio -val e -ê ² -toler ate -rail minindia -jen sen -ho ven -el lu -ob sole -eisen hower -unidenti fied -than niversary -body guard -Ø ¯ -i dge -sch al -stock port -sn i -re taining -po po -pix ie -oli thic -ki er -ha jj -sa z -cor bin -!!!! !!!!!! -v it -me gat -de h -circu it -af fleck -theore tical -hope less -u ab -slu mp -b ice -jam med -let stalk -can i -side ways -labyrin th -re fs -ha hn -jare d -ðŁį ¹ -jam bo -ph yl -enhan cement -c tr -ful lest -se ye -do ba -cho ic -yo s -cb j -andr é -re watch -pri ma -doctr ine -for gets -u hm -ar ound -u le -art lovers -shi raz -har th -ex tor -Å ¡ -unexpec tedly -eli us -y x -em my -se ac -ðŁijĩðŁijĩ ðŁijĩ -correc ted -com bu -wom anc -cou gh -what son -publi shes -divers ity -back bone -lock down -mesmeri zing -nor te -ma b -desig ner -í ģ -ra gh -mole cules -get outside -the beatles -semicon duc -nach o -lun es -ham mers -sul tan -o on -fe ren -att ach -ar qu -uttarak hand -s ash -; - -tre ad -i ko -ar thur -scandin avian -r ation -ga el -charge able -fish y -v ma -hand bags -char a -ay ne -de fam -sett lers -qad ri -pal ais -in wx -apocaly ptic -poo ja -a es -at ories -proof ing -n lp -ts la -v ina -li do -dee phouse -informat ics -v v -pp ings -di ss -à ¯ -uhur u -st ony -betra yed -b aff -my ra -as pen -allow ance -tam ara -ci f -cor bett -ser ge -di go -ambi gu -pain ters -p cr -p ca -nom s -lo ft -ve e -opend ata -ðŁIJ ± -alex andre -identi fies -fantasy football -re production -brom ley -ware agle -mm er -p ss -cu es -ay at -hut chinson -sar ac -jack man -ira h -ap ink -col s -aussi es -ex ecs -day ton -ðŁĻ Ĩ -im v -har am -chuck le -authent icity -ar do -incub ator -ภª -photo shopped -embrac ed -fight for -gor man -zz zz -schol astic -cri sps -te apo -mid night -ga ine -col lier -s ate -de tte -å Ń -imag ine -i ff -tw ili -i fication -teat ro -nor ma -es ur -emergen cies -rise up -r inger -hass le -cait lyn -tranqu il -vers a -se b -over look -gin i -bo go -se re -may ne -henri k -contamin ated -rhapso dy -pro portion -wildatlantic way -âģ© . -organis ers -tran e -stand ard -sper m -laun cher -ric ci -her ts -paper work -showcas ed -mer yl -pen a -p imp -disa strous -^. ^ -phar a -x is -fron tal -sw irl -sp ills -swag ger -smart watch -sizz ling -savi our -cat ar -bb cr -refurbi shment -dr is -citro en -absor b -patrioti sm -il leg -chro mo -fresh ers -ru s -lim iting -ef ish -down ed -man dir -hazel nut -p all -mac on -disappear ing -quali fies -bo on -bar racks -am ine -gen dere -ðŁļ ĺ -j es -ãĥ Ń -qu ito -middle weight -sch au -quad ru -aci ones -limit less -ðŁijĮ ðŁı½ -ch man -ar av -regulat ors -it up -batter sea -mil ford -g z -tic king -gh ou -cru shes -tu tu -dread ful -fam ine -for change -dalail ama -ðŁĴ į -whit aker -hash mi -h us -vo d -bet te -aa ah -iso o -ðŁ¥ Ī -ha ar -la ine -b v -all day -spr out -indie games -free bie -gree ks -but ler -ill in -ha al -ware ness -si ma -public health -gam a -wa a -oun g -goo oo -okin awa -off enders -im pose -ho c -young ster -story teller -sc ap -figh ter -+ , -whit es -music monday -re za -go ducks -bri a -mi um -cas per -cru mbs -a ad -marti alarts -ch p -ri gged -tn g -harve sted -sa k -do jo -mill wall -b nw -oc d -histor yof -t mr -si rens -fan ci -caregi vers -vir a -son i -recur ring -acknowle dged -ðŁı Ł -oph ile -bu cky -stre ssing -roo k -di gger -vi val -san do -fle et -si ers -sel caday -refre shed -anti fa -a que -po lo -disappear ance -de mb -âĮļ ï¸ı -ren ted -ber ger -g mb -cu la -ss al -goo dy -u hh -marcel o -w anna -soft ware -shop small -turt le -tom as -fri sco -ðŁĺį ðŁĴķ -jim enez -c su -day z -an do -wyn ne -choreo grapher -cerv ical -trail blazers -ed g -zend aya -travel blog -el s -whole some -co g -lab out -ar ney -del le -su isse -ma si -ine se -om be -fi ddle -re claim -pa u -wat cher -sla in -ber ty -opti mum -el ites -min is -tur key -patro ls -ger ard -au reli -wild ly -wal tz -br gy -w ob -cre st -+ ++ -ve z -fro sted -davi do -the x -param edics -p into -han k -du pont -ur g -fo stering -micro poetry -spec tre ----- > -ne uro -fri da -music al -galve ston -e ffic -sc ape -pal azzo -th all -pro visional -p js -au re -ðŁĶ ľ -mam amoo -kit ties -cre e -wa k -lo ool -lu pus -cn blue -à º -ðŁİ ¬ -rac ed -tro se -om as -stri de -co ors -⤠µï¸ı -in comparable -cy ril -broad er -arec lipse -ðŁį Ķ -inter val -ti ru -co working -w aco -a ham -a bee -flouri sh -the times -ol ini -kick boxing -lu cer -at la -as un -casser ole -mi aw -lobb ying -jan ice -cir que -re flex -le ary -sanat omy -tem pest -se mb -mur dering -us av -ro bo -on et -p cc -nati ves -life of -sa ha -ruth less -rel ates -appeti zer -pye ongchang -nor d -er u -a thing -ug ly -pl ying -bran ce -organ ise -kend ra -dat o -chees es -par ma -burn out -a stra -pre toria -adjust ment -uk u -sl o -li ken -fav ors -cli ve -be ets -snow donia -go tv -sy n -open house -pan i -portra yed -sl ated -me cca -ren al -supportsmall streamers -staf fs -da o -bi ker -vik tor -tit us -admi red -ðŁĵ ± -hurric an -he ats -gl ory -photo genic -mer i -de por -burn ham -or angu -dj ing -impre ssionism -ign ition -ca i -w ynn -de pe -cove ted -colla gen -sau s -or nam -administr ators -ss on -nh politics -hahahaha hahahaha -aspir ations -r gb -swol len -so we -sc r -diver gent -hou ghton -han oi -d ory -ni ki -land ry -b cci -ðŁijĮ ðŁijĮ -is mail -tri pod -her d -bhat t -dress age -tab by -ingu ish -hur on -à³ į -à ł -to das -evangel ical -chor ds -st john -slo ppy -marty r -face book -ali ght -sen sei -kath niel -r ites -zi one -u o -revel ations -weight lifting -pan o -nc wx -ac ton -à® ķ -Ø ² -som a -à¸ Ĺ -respec ting -mar che -fore man -be tty -ki k -shi bu -po on -argy le -k swx -et z -mar bella -brac kets -stand by -fire side -defi ance -v ex -britanni a -in habit -appo int -piyu sh -le ash -sci ento -fla sk -sen na -> : -at roc -sand erson -id lib -dhan ush -ðŁĺ Ļ -en thr -hit ch -de dly -al ley -dor k -mon do -cudd ly -mis sin -ye sss -night ing -j pn -w ary -ump ire -ma z -ê ³ -bab s -ĭ ãģ -stan ford -posse ssed -exce eded -ðŁĶ ¶ -wall art -tra p -j il -hi bis -sp ying -scri be -khali l -trans lator -lu mb -di zed -ch c -super vision -shut ter -ja g -_ * -yester days -ms f -hi hi -gonz aga -gille spie -vive k -ec static -this morning -ch us -ed es -ston ed -be es -ðŁĩ¹ ðŁĩ -tur in -ho ver -at rics -ster n -sam heughan -auti sm -mi ya -eye witness -writ ings -travel tips -chut ney -px rtg -keny ans -my stic -k rit -/ $ -red head -world ly -am us -op la -le ve -gab bana -se en -o clock -gang a -keen an -sc ent -ol dies -go green -corner stone -comp ly -con cours -ðŁİ¶ ðŁİ¶ -ha an -con fis -aw son -cle op -î Ģ -su zu -sau té -al gar -subscri ber -este emed -ãĤ¤ ãĥ -worth while -mel rose -flo ck -bri ghtly -viol inist -p ere -sli pping -and co -si gh -ha van -cu lo -m sa -fibro sis -matil da -ra fting -aw ard -ë ª -mm mm -ge aux -ste iner -sin n -help ers -beet les -ai mee -tai wan -pistachi o -mac beth -m zan -descend ants -on sale -in r -il m -grou se -sa ig -mo w -bi gre -adjust ments -tu la -mathe w -transl ates -mu h -bol lah -ðŁĴĽ ðŁĴĻ -amo res -ab outs -bomb shell -bla ster -x avi -s ns -k roger -ga ther -erad ic -daf t -chem o -ben ches -ðŁĩ© ðŁĩ -ut v -our a -n ko -gator ade -biaf ra -ok state -im danielpadilla -dom ains -open ingday -kid do -do i -ric e -day care -mac millan -ba thurst -cheer leading -ðŁ¦ ģ -cash back -k won -hob bies -exem pl -ries ling -âļ ª -ag les -ny s -every thing -nav is -ad di -magne sium -faceli ft -ark ham -grand es -extre mist -don at -vit ality -pump kin -be tta -sl td -arti san -li by -pe aked -ah hhhh -mary am -assi m -un sc -ment e -al aya -low ers -ar as -gri ev -le ip -gr ati -cri ses -spr ints -exe cute -w to -ms d -mag ical -re viewer -spark les -juke box -ðŁĺĤ âĿ¤ï¸ı -pay back -licen ses -dun kin -bel t -lake wood -h ateful -bud gets -rev amped -ph erson -ky iv -went worth -ro sen -cru ise -gi ggle -def star -assassin scre -ym outh -win kle -w fc -band wagon -b kk -w iring -kear ney -south side -pe tit -! ðŁĺį -nor dic -mir za -mu gabe -v l -scon es -k tv -sand al -du c -m alls -ðŁĴŀ ðŁĴŀ -it c -al ay -im pair -un rest -flo ss -c é -ab ou -var ying -muse o -ser ver -di ya -hibis cus -ero y -mer ritt -fin dom -f pp -un usually -go tt -conting ent -ali aa -ball on -jo l -hi ked -zy me -ay r -ag n -ga z -perio dic -spar ty -practi sing -lin ton -tal is -cy pri -womanin biz -radio disney -ðŁĮ ¼ -jump ers -endo cr -ðŁļ¨ ðŁļ¨ -and on -shar apo -mi er -ma sonic -fac tories -vi en -bb ers -ìĽ IJ -hol d -ke bab -be ak -approach ed -ac milan -mun ro -ko sher -excell ency -negoti ation -walt disneyworld -cr ouch -te asing -suppre ssion -en ya -b ce -transformation tuesday -cal lie -vis was -p gat -ic ted -end ings -esc u -recru ited -it fc -collabor ations -g ino -snu ck -ausch witz -i fc -x ii -ke sha -ger vais -clo ak -x l -sa ad -prob ation -pre cau -mac in -anasta si -le k -e azy -daysof code -mariah carey -yo g -stit ched -boy friends -sh ar -ph ile -ag u -twin kle -phi shing -week ender -ic ton -gurmee tramrahim -al ton -l eness -all an -pen ultimate -kry stal -go u -lan de -dis mant -ab using -nor se -pat erson -ed mun -ap an -xi umin -sk el -cat walk -re act -wal led -t angle -br yn -ve to -super moon -cas ablanc -appreci ates -ski d -bo th -catal ina -ele ague -cyber monday -cau tious -ðŁ¤ ĵ -nov o -hamp ton -ha ye -jose f -var an -lo bos -roano ke -orph ans -tt in -squ ads -ishqba aaz -black panther -e tu -k sh -cru mble -cess na -reli eved -scul ly -pollin ators -explore canada -ki es -kam loops -kir an -pri mal -sett lements -hot spot -brain storming -ce dric -bi ennial -sh ant -âĻ¡âĻ¡ âĻ¡ -do on -hear n -walk way -fe m -ve al -deport ation -tox ins -elimin ating -descen ding -by the -bla sphe -ha sta -comple ment -as cent -ri ga -provo st -âĸ ª -wee ping -anti semitism -employe e -unearth ed -pin o -natali e -bla d -ang ola -lock heed -in ian -ag r -ni ster -im pala -m ke -fan atic -âĺħ âĺħ -ðŁij ¸ -lu ch -simpli fied -gall ery -econom ic -cy borg -con i -sel ma -in ception -ko ala -dv ds -cre sted -m mor -visi ble -n sd -ðŁĻĮ ðŁı½ -w under -refriger ator -re opening -e era -carou sel -as p -balli stic -victor y -mo tive -tre y -sharapo va -si i -mon ter -int end -west chester -sp e -cy mb -vi dal -ll ama -uni v -fin er -crafts manship -jazz fest -b ch -ag gio -n cc -lamb da -tranqu ility -cis co -ba den -so bbing -of i -go ta -ru mored -war med -ore an -ac ton -mar ci -gh ani -âľ ĵ -as sorted -pembro ke -pen elope -da f -at ty -aim o -pretz el -carni val -than os -ko chi -mer sal -ham radio -ar twit -cas c -guer rilla -kush ner -k app -al ise -todd lers -steward ship -o tti -ter ri -tem pe -rest less -vit o -zay ed -rsp b -pi on -hi ppo -haw thorne -in as -am ily -nut cracker -lo p -d ali -tro pic -ðŁ¤ ł -ul o -jare dle -py rene -pale o -usa ir -m ould -it ated -gene tically -biom ass -ðŁĩ³ðŁĩ ± -do dd -practic ed -monarch s -un manned -m buhari -am al -photo gra -ko ol -bren don -ju ices -cu re -world bank -poin ters -ðŁĴ Ŀ -tur f -le ds -bor ussia -bapti sm -warwick shire -moun ts -gay o -be gg -co pied -asi ans -k g -moder nist -gi d -front man -concentr ated -y t -sc avenger -iron ically -adi c -ps n -ðŁ¥ ī -cultur ally -yu v -mac arthur -fertili zer -be withyou -ri gor -min ors -z oning -âĸ ł -ri r -adole scent -vin ny -ren g -sand stone -gu et -we sth -ple dged -lac ed -sp ide -v ai -ty coon -seiz ure -du p -appalach ian -ro k -cathol ics -sey chel -posse ss -la ger -jo di -cham p -stra s -d ina -cent uri -cal der -blur ay -ðŁĩ¨ðŁĩ ³ -mo do -an nette -youtu bers -chap s -ang ling -label ing -a qui -pk wy -ly le -bi sexual -lit ur -dug out -li bby -grey sanatomy -sub stances -august us -rall ying -fi del -ing ue -äº º -hallmark channel -tooth brush -m á -adi rond -ag gi -ðŁĵį : -cru sade -tax ation -k z -i ver -dou bling -room ie -wa b -en rolled -az on -a ju -grand children -as df -ðŁ¥ º -mat ic -ough ton -utili ze -ðŁĴ £ -pon der -rais in -dys function -co bain -butter nut -e man -su red -dri an -and friends -with the -on omy -heine ken -bri dal -leader ship -pyram ids -deutsch land -jo cel -bo wel -y qr -horse power -be acon -ing eni -gra dient -fer mented -mo om -thing y -pot assi -wrist band -bor d -bo died -ðŁĺŃ ðŁĺį -ma pp -ka u -cyber punk -ph ish -loo king -co ates -ap ur -am ie -uk labour -at in -g la -adop table -shel by -v illi -ri ya -m ingly -cli mber -bumble bee -ðŁĺ ¸ -c sd -âĿ ¥ -hospit alized -c ki -hat er -ch r -re tina -it a -fan base -beat rice -gwy ne -go ss -fo s -favor ited -swachhb harat -mal ade -mon mouth -" [ -si van -sh hh -command ing -sains burys -wee d -g man -ss w -rep tile -iv y -tro pics -roll ers -over cast -ex position -masquer ade -man crush -wa ist -spr inter -sle et -le vin -j pg -_ ( -o pel -explo it -ap a -po we -wrec king -jong in -or b -er ick -bo sco -pra ising -ber tr -to wing -in security -ku t -resto cked -rr p -prescri bed -trafal gar -per t -g ases -app rais -g har -music als -âĸ¬ âĸ¬ -mc fad -ag ony -conditi on -equi p -shi k -atra vel -ðŁĩ¿ ðŁĩ¦ -ke h -abduc tion -pe oria -wil kins -g ms -as d -ev i -ðŁĴĹ ðŁĴĹðŁĴĹ -u z -mo c -halle lujah -guad alu -lou vre -dra wing -go ve -ph ant -fri e -web dev -program mer -z able -games com -clari fy -li th -kin ky -âĿ £ -labour doorstep -son ata -ju ris -mai den -vi adu -buch arest -conditi oned -capit alist -u de -ps b -sp ca -lul la -footh ills -kay o -bon d -wom b -roun der -ce sar -bur sts -ap ra -sw oon -sab rin -fra grant -cle arer -ku brick -cli max -jour no -ag le -ðŁı½ âĢįâĻĢï¸ı -poo ch -hal e -sol it -sal mon -organis ms -bron son -art en -hodg son -alo ve -vent ure -bb i -ae a -ðŁIJ ¢ -ld n -d nr -o zone -el las -man ny -azz ur -un beat -tru ffles -th ong -ma ñ -las ers -ley e -gettys burg -back packs -or is -ma ison -craw ling -la bra -cl ing -dra gging -ste al -dou bt -de van -ck ers -agent sof -photo bomb -elon musk -abo y -dist ances -story line -sp i -nor than -europe ans -wh ale -ser pent -ðŁļ ² -fi or -tr it -ox o -awar ding -class mate -su fc -smar test -rich es -pr k -big foot -ar mb -bi polar -dw elling -om ars -k wan -gri me -m eng -freder ick -navar ro -sorry notsorry -jaredle to -pa ve -sl ack -barn sley -att ar -evic tion -accumul ation -o ir -cat chy -wel ter -vik as -has see -nik ita -mo yes -mathe ws -shi v -gat wick -pro filing -compan ions -mar rake -an tics -ðŁĻĮðŁĻĮ ðŁĻĮ -se se -bo i -bart lett -poison ous -ab uses -ym m -kam pala -guggen heim -imv kohli -dol om -bre e -thro ttle -gare th -fitz patrick -un ya -par ad -mar got -j nr -we a -potassi um -p nc -disgu ised -cra sh -ren ergy -ill ic -coup led -ni els -ci ones -æĹ ¥ -im ent -despic able -d ye -what cha -conne ctions -paralym pics -gaunt let -wait rose -suici dal -star ship -vap or -st ou -law maker -coo led -si mo -then o -offro ad -ja den -bas que -vick y -lu kaku -centr o -tri sh -strate gist -medic ations -hor st -b fc -gra il -sharp ly -ad itya -tom b -kau fman -tri pad -sam ba -pastor al -brit ney -sag an -hill side -mas ons -sar a -z one -x u -to tes -rob bie -app en -mon tag -der o -short film -charis matic -tat ors -ki ba -and ri -al arming -split ting -ic ar -th ug -scari est -sylve ster -an an -u trecht -a difference -me ade -bu ster -air strikes -cu ffs -account ants -ðŁĺ¡ ðŁĺ¡ -new t -bo tt -issu ing -cl ancy -wwen etwork -kyu hyun -rese mble -pajam as -sin k -kin ney -sul ph -or k -li es -la gh -or ton -ra hul -d sc -we will -re am -collo qui -shar ia -hec tic -sar casm -land er -tm z -endor f -ro z -ham mered -fri s -w adi -pope francis -he it -flash light -un born -op es -hol iness -ðŁIJ ¦ -nach t -im sa -gr acing -bj p -ver ts -c sc -home owner -a que -bigo try -anni e -bag h -âĿ¤ï¸ı ðŁĺį -car i -thom p -dispo sable -cardio logy -pat ented -hh hhhh -ld r -stephen son -cro res -fan ning -cli mat -ðŁijį ðŁijįðŁijį -ðŁijį ðŁı¼ -aer on -piccad illy -bank rupt -sil via -emplo y -don ny -commen ting -screen writer -io ta -ce an -anc ers -tu an -street wear -ठ¯ -sk ine -esp a -asi f -os ce -she ppard -more cam -bott le -der s -orac le -google play -aver aged -edmon ton -steph an -sister hood -cru sted -stag gering -methodo logy -congress woman -c abo -tri ggers -mil ky -gli de -tooth paste -room mates -nu ff -gu am -sprink les -alternati ve -wat fordfc -uof t -hal ey -cont acted -bun dy -pro stitu -gh ar -pre ston -on site -hil ar -g ts -c att -hamp stead -? ?! -ðŁĩ§ ðŁĩ -bbc qt -aless andro -resi st -ma idan -t ko -shad ing -pin up -gal lo -sin u -at ec -fun k -ac lu -stri des -rhy me -wet land -bbc springwatch -t ins -wild card -st our -flamen co -pau la -onto logy -gang sta -am ade -ãĤ « -t bs -skelet al -run ner -jard in -harri er -hun ted -z hen -believein film -de mean -au diti -re start -chon dri -âĿ¤ï¸ı ðŁĴĻ -mcla ren -ga b -sh um -au sa -lewi sham -y pg -k jv -fur nished -dor o -bon ded -mor ty -lat itude -_ ) -lo va -water ways -vin ai -shor th -drun k -c ay -ay ana -kap lan -capp uccino -spr o -life boat -has bro -spol ice -tor on -do ing -dam n -sh ree -foun tains -ent ation -mar u -boar der -to pless -j ada -chan ning -ul ls -en closure -gib son -fractu red -brit ton -à ¶ -t ous -por th -dra f -tra iling -mar gate -eli fe -down ward -lin n -gla des -girl power -ak rish -u ki -ron da -ts c -appreci ationday -vis ing -lo om -ðŁį ³ -mex ican -ar gos -y ya -jad ine -south port -d end -si sta -rede em -men g -bra xton -antioxid ant -s key -mp g -fin ding -vibr ation -ce u -kh art -di mini -cl ine -shel ly -hin es -ī ï¸ı -to pical -no ver -ma xx -prim itive -illustr ate -b ounds -tren ton -join tly -breed ers -u chi -wakeup america -b ada -ðŁĹ £ï¸ı -gu acam -sp heres -pere gr -youth ful -lo lo -bir min -t ly -jeremy corbyn -defe cts -co sm -a rent -v aa -bag els -medi ac -cori ander -ic ago -g haz -ab bas -re model -struc turing -pu m -out law -ad ani -r bc -gul ls -n li -confu se -ðŁijĩ ðŁı¼ -vil a -mcnam ara -correc tions -mug hal -ser i -re gain -ss b -lea ve -haha hah -gran de -di stressed -re chargeable -ho a -hou sed -sti l -attribu ted -opath ic -di ps -pri t -head phone -conclu de -pil o -he t -ut sa -nit in -je m -sni ppet -tutor ing -op er -sun k -en sla -cha u -ac orn -quinte ss -ran kin -affili ated -our lives -cl int -se ater -isa ac -ba shing -sme ar -nur se -doo dling -" ; -sa ku -atroc ities -im am -g fs -viol ating -comm end -brad shaw -er ville -b illed -b be -thul hu -i phones -moo se -di os -re w -me thane -strang ely -whis ky -ti ghtly -spiel berg -radi us -notic ing -wi f -ig nati -i fa -ap is -w ali -ha itian -bu shes -y z -v l -ex ited -asse l -tru ec -dom en -ash er -in king -newyear seve -hend ricks -bat i -ìĿ´ ì -rich ter -mon santo -con line -agre at -ðŁ¤ ¯ -master pieces -ar n -rough s -cle ve -se v -fashi ons -to ya -sh ail -cop eland -aqu ari -dec als -are you -y aya -a str -fon t -ml m -ar ca -pp or -pol lock -xper ia -conserv ation -chain saw -ag gie -?! ?!? -si le -sh on -ìĹ IJ -note books -marque tte -de us -bb led -spic er -mc cabe -nor wich -modi fication -boo sted -stru m -sales man -bang le -nis san -hez bollah -brea sts -a af -anth us -sk er -ow ed -her os -gi fs -fo sters -eat ers -du es -_ / -lymph oma -sf am -me gal -afri di -ag ic -p amp -jeal ousy -ðŁijĮ ðŁı¼ -calcul ate -napp ing -g ale -ðŁ¦ Ħ -lub bock -assu med -ren ting -íĥ ľ -subur b -ãĤ · -tech nic -u cla -in front -gar net -ster oids -stri ving -ho war -mo ver -le ton -bull do -is in -ci ao -sn z -fore front -d ams -mid wife -ma wards -cla pton -we in -subsi dies -spr oud -rother ham -phan tom -ar ach -spi el -rac ket -sel amat -no on -l bc -enti ally -ðŁĴ ¸ -sil ve -m oud -kine tic -y asi -ðŁİ © -o ol -mi ku -i za -fer a -flo ren -barber shop -groo t -z est -ne ars -stan is -z and -police man -juris dic -form ations -appar atus -sp d -arti fact -to sc -motiv ating -womanc rush -re dro -diagno stics -ra za -out fitters -el xn -dod gy -ry n -sh d -ortho don -ol de -jay anti -bal ances -quic kest -can ton -friday reads -! * -na a -a ak -ðŁĶ · -behavi ors -rasp berries -ä » -polit ical -cam il -å ľ -di k -ast ounding -lie be -novel ty -tur moil -sul ly -spring break -hon ouring -cc g -ðŁı Ĵ -my little -ky c -pro ms -ðŁķ Ĭ -à ¨ -bi ge -av ril -ðŁĩµðŁĩ ° -mari on -as ants -sur ya -oc tag -luf than -ac ron -fayette ville -ti que -love s -en ca -de kalb -ta ver -de vote -aux iliary -joh annes -tread mill -ay an -qu r -donald son -cher yl -" .... -s ven -kir sty -gun ners -ra dish -o ahu -v sky -i ble -con course -b ps -elo qu -ash ford -te bow -roblo x -ma da -dri ving -th day -spro ject -m ms -band ed -. !! -libr arians -flan nel -intoler ance -her al -ç µ -neme sis -list a -tar ak -cry pt -star plus -vish nu -sc ale -cr is -% ), -j illian -regg ae -pegas us -ol in -ip ment -man ic -l fc -godd ard -ite am -parl our -anch ors -lee minho -talla hassee -ant it -d ho -kid ney -y ash -batt led -az ad -gar is -faul kner -sni ff -papar azzi -ed m -phy llis -con tested -aa ay -se ca -k ton -vel ve -rain ier -for um -tam pab -ho sp -trac tors -ox fordshire -no tion -guang zhou -ðŁĺ ¯ -ref ill -wednesday motivation -sli der -mukher jee -pr att -fon taine -alph on -af ar -ts i -pest icides -fi ends -mo cking -bra w -tran sat -do ses -co res -hom ophobia -docu menting -zlat an -con doms -s é -sun set -kun st -ton ga -ภª -v ation -sp ray -chow der -ra ps -palla dium -nor wood -music history -hoo ker -si si -osp rey -ph ys -conce ded -bob cat -ar mad -ze it -Ù Ħ -ðŁĺģ ðŁĺģ -mer idi -ðŁĩ· ðŁĩº -corn wall -! ), -touch downs -ze it -chal et -mm m -al che -gor illa -fo ss -ati ku -lumin ous -ivan ka -be ek -sta res -sw iss -âĿ¤âĿ¤ âĿ¤âĿ¤ -scru bs -me ath -gusta v -jo gging -confe tti -as os -ers fc -breit bart -applic able -autho red -ya ho -h in -displac ement -j v -ðŁĮ¹ ðŁĮ¹ -ot c -non profits -diec ast -gu sto -inte stin -c ages -me en -lu kas -moon ey -ðŁĺ · -very day -tor ah -is sion -wa c -lever aging -ish able -cu se -le wood -may an -turn table -ju ice -tru sty -tu p -eti quette -supervis ors -stu n -gu zman -confe ren -ric o -fe ast -back ward -pol aris -mic he -jo g -h ing -field house -vel ing -sho cker -esc ence -ठ¾ -vi be -anasta sia -mar ched -kill ing -Ķ ë -fe tt -exop lan -... ( -snow day -lo h -ir ani -la khs -del a -po caly -boom ers -dictat orship -ac er -tur keys -quarter final -muskete ers -ðŁĴĽ ðŁĴļ -sf x -museum week -sc ala -ri sis -( ðŁĵ· -ãĢ Ĥ -z ies -bo eh -hu es -lu sci -dol a -impeach trump -roo d -don caster -tor re -hero es -fo yer -tar i -blur red -ke w -frank ly -dro id -ap al -Ð ¼ -y af -bre t -par agu -cac ao -ðŁĻĮ ðŁı¾ -ru e -head aches -shaw ty -char ley -pal er -go wns -correc tional -ðŁĺ© ðŁĺ© -breaking bad -ol ing -da p -endeav our -cit adel -tra d -incumb ent -medit ate -foo ted -ðŁĴ µ -shab bat -dayof the -wil lem -gal way -to red -marri age -f illion -sleeve less -aud itor -jin young -invin cible -kad una -a and -volcan oes -mon eti -indie gogo -buccane ers -ðŁijī ðŁı½ -ãĢ Ĥ -lay ton -cuck oo -hu mber -buzz er -Ï ī -to re -stra ins -sto m -pa ine -s we -du ff -z ou -si mi -li pp -ur n -se agu -ðŁĶ ® -sun dae -hi c -ðŁĺ ¨ -bull pen -u per -flyo ver -al dridge -glo bes -ali es -ken zie -ge es -y cle -sp lin -mag enta -j ha -bal u -gh orn -ti pper -wick er -taste of -con clave -ch ale -inv asi -cat er -dio xide -me gab -win n -at p -transform ative -nest led -hi g -bri dging -lil ies -chee red -bad dest -sc rolls -real is -dipl o -ðŁĶ « -conce ssion -prefe rences -explo des -er gon -introduc tory -ine au -ch af -som es -land rover -spir ation -sex y -sco recard -illustr ates -soul mate -wi en -inter disciplinary -fore casting -ent ities -glu ed -en lar -cur t -percep tions -boot leg -mi re -asho k -v az -hor ne -cal le -ac ulture -ther oy -night time -oc al -character design -ar mist -ðŁĺı ðŁĺı -yah oo -ac eae -to se -even to -sou t -nay anth -wh om -v are -ri gging -gen us -hi ve -com mands -sti e -day a -ethan ol -en f -hi fi -flu ence -cle mson -re invent -thermom eter -humor ous -emer ging -aci ón -ðŁĺĺ ðŁĺį -s ity -haw ke -accompan ying -t ility -ðŁĺ ª -re cess -protag onist -l ery -dun dal -int l -britt any -q bs -off the -marri ages -how to -viol ated -adel aide -wit t -lanc er -pak v -hu me -st ade -bra gging -ou tright -ad c -super st -real time -cu res -garden ers -ero ck -dale jr -ver o -bar tol -mo ti -mc fly -v pn -st ink -over rated -guer ra -e tis -ath ome -twd family -th ab -tn x -rafa el -family travel -x ley -sat anic -equ ations -ru dy -wal dorf -stan i -tu be -meas les -zimmer man -obli gations -i ously -bow ser -trans former -sho ppe -shak en -gh ouse -to d -ke tball -share holder -mar ca -kp mg -ak an -given chy -coast al -au th -roller coaster -mar ches -coordin ate -cine ma -apprentic es -par lor -mit o -men on -consider able -bar re -glo ss -enh ances -jaz eera -fal mouth -thra sh -stat en -k zn -eng el -samanth ap -flo ppy -sal om -ðŁıĨ ðŁıĨ -w ack -deliber ate -osc ill -herit ag -du sted -orni thology -pad dle -fer ns -bar un -cl ans -anticip ate -a ay -mat ically -é ĩ -tu mble -post man -unic ef -tro tter -op d -leaf let -ge ist -cease fire -scre ws -cre ation -wal nuts -longh orns -under statement -ab b -proxim ity -na x -un ity -turn pike -orda ined -dub step -chak ra -me ch -love her -look alike -donne in -vir on -Ù Ī -bang ers -vari ants -out dated -in ta -cri sto -sp elt -food and -f on -stefan i -margin al -hu tton -ti ara -tel ford -qu en -fair grounds -que tta -mikha il -heal er -v ball -ty re -under grad -gl end -hom ers -scri bed -main tains -po che -mis sal -mar ko -u as -á n -sh p -con vey -pad re -sab a -pu glia -madhu ri -pa xton -chap lain -n ago -ca si -... !!! -fli rt -sal eh -k are -di re -stam ped -extre me -ðŁĺĥ ðŁĺĥ -ho ppy -guadalu pe -advant aged -eu char -p low -un n -mac qu -port land -cla sh -pe s -lou bout -y p -keep ing -arca dia -fran kie -fi u -de th -encyclo pedia -si ze -inve sts -ðŁį © -geo logical -fran ç -con front -ðŁĺ ¥ -d ys -af m -tex an -graph ene -repost app -ac f -ur sula -gaz a -dd led -fu m -wsb tv -m be -fron tiers -chrono graph -ke s -inter faith -tab oo -spar ta -won do -flori st -em braces -ca w -no el -arch ers -ðŁIJ · -roman o -ban an -sh akers -melo dies -geo thermal -se phora -ìļ ° -оР´ -pro c -hand shake -pan de -popul ated -slow down -hor tons -registr ations -un deni -lan ts -pas sover -thak ur -li ef -adhe sive -pe tal -micro scopy -memph is -confir ming -air drop -mesm er -perce ived -ming le -lifel ine -gh j -worcester shire -pas sions -ach er -el lar -ah o -firen ze -bar ang -letter man -hat field -lu cha -je ter -e shop -william s -horo scope -pre de -east bourne -dur ga -di version -al trin -seis mic -premi osm -nar co -ti r -ori g -or m -land fall -ci ous -lin do -max ine -x ico -tra y -os wald -c ba -ric otta -n cr -mar au -ภ² -gladi ator -ch ery -lun g -u me -po psic -lon ging -can als -ta ya -decentr alized -sho pp -pres sures -mahar aj -eti had -wal greens -succe ssion -sign aling -li g -staf fer -north korea -def ying -as ma -de g -peri meter -oak ville -m sk -balti more -rece ip -de ple -ðŁĺŃ ðŁĺĤ -jambo ree -> .< -rsp b -puni sher -consider ably -in tothe -pari sian -acceler ated -polye ster -low es -fr ying -sauté ed -mou ths -seychel les -ra x -go dis -dak ota -house wives -the me -mat inee -black bird -ye sung -pre fers -pelle gr -in ated -trun ks -stronger together -re pet -re pairing -ped als -toler ant -her r -dun ne -indic ation -decat ur -b tv -exhibit ors -ik on -friday motivation -bra gg -live tweet -al ves -womens art -foreig ners -wal lets -min dy -lan ey -bb in -tv miaw -lif ter -tar get -tam e -dr ou -astro photography -mp c -g pu -nord strom -fric tion -run off -lov able -sp nfamily -ext ingui -bloo dy -sch el -arti stry -sw ish -scar ce -ph ils -max im -pos sum -com promised -sty li -sc fc -is sa -birmin gham -sket ched -angel ica -ordin ance -je ts -conqu er -ðŁĺ IJ -online shopping -s ori -reason ably -nue stro -ar turo -ch l -benef ici -spho to -wel t -ni kk -ðŁ¤ ŀ -dan ao -for mid -as se -af irst -âľ Ĥ -gil lette -as sor -an onym -sel ca -fe mi -bear able -y and -ar mory -cre pe -celtic fc -bra vo -in expensive -de lec -ge cko -new market -snow flakes -kab ir -con tra -can ning -mor pho -gar wal -ðŁĴĥ ðŁı» -fight ing -mu tation -woo dy -ju gg -gr aces -premiosm tvmiaw -kenne dy -gu p -sa e -op ha -off spring -fini sher -bet ts -span ning -mar j -h one -sh ing -contin ents -samanthap rabhu -un related -l acy -explo sions -benjam in -sophi e -no ting -micro soft -as sen -a hoy -i ker -ho fer -mo e -ah madi -yan n -an ak -ma hi -be u -aha h -creep er -baahu bali -am at -pri ory -haw keye -deloit te -sko da -print making -assemb ling -mirac ulous -no ch -sw o -leg a -oper ates -border lands -eli e -stron gh -rep tiles -pir ate -un fold - ¯ -qual comm -un predictable -ot r -rose wood -direc tional -counsel ors -corn ell -liber ated -j ad -ir regular -bulgar ian -high ness -vodaf one -sw ild -mini mize -gra zie -๠ĩ -r stats -stre ep -ome tric -humb le -lu mp -l ille -b ü -home depot -tripad visor -ki wan -a via -er z -ex ico -du f -blu men -mi zing -ar ma -in im -con stan -sor a -ju al -au n -tw ell -tren ches -her a -r k -po plar -recipe oftheday -ll an -bhu ban -short ages -ing don -bridge water -ðŁIJ ĺ -fortn ite -cam den -un cture -pro w -colon ies -t ks -n go -b hm -live pd -spl ace -sli ke -happye aster -ter rence -revol ver -j ed -yy yy -office of -m ts -exist ential -r ourke -explore bc -sse d -pri est -vix en -si ding -k pa -a har -ju ic -ob struc -foren sics -uk mfg -cancell ation -we ary -ab q -ele c -pri zed -deb ts -me zz -salv atore -m dc -gre tte -c gc -th on -snow storm -ts ch -cook ery -å ¹ -wa xing -n acional -mur s -ra ve -cap es -ger main -dri pping -sub mitting -ome lette -iter ation -aj es -shim mer -fu eling -ðŁĩ§ ðŁĩª -li po -bo bble -un follow -islam ist -hi ber -cat s -agentsof shield -sen si -____ _ -ster ia -inst al -ausp icious -har row -over land -femini sts -inst ant -char iot -blind ness -sp ed -sc arec -nu it -mini atures -ho seok -glo ck -fifa worldcup -e te -dis m -we iner -ex foli -ear ts -ภĶ -my art -man il -iss ant -form a -in cu -buffal ob -in tim -mc cul -anj ali -po po -un doub -hil a -fun gal -thank ful -fu tur -en dish -ren ds -th ar -she ff -ring o -nichol ls -io wa -po tom -cl ams -ãģ Ħ -acon f -stadi ums -di mp -di k -residen ces -do v -caric ature -seagu ll -kl m -confe ss -sla pped -cele b -turb ines -pp v -nur ture -el ab -.... .# -tu ff -de press -al far -amii bo -di spon -e wing -que er -friend s -for re -âĺ ¼ -sw t -aqu arius -head liner -cur d -fi gs -o tters -love fl -kare em -go vegan -fri yay -consol ation -at ri -ì§ Ħ -âĺĿ ï¸ı -poly ne -gu ed -o ya -la us -intestin al -cam illa -scal p -pi r -leed s -horri fying -bore tum -dand elion -fer rer -ell ic -as x -so ren -re loaded -ale ague -navig ator -ine tte -add ams -al chemist -ak shay -dystop ian -awe c -n aya -al isa -ai led -ag or -avi ator -ali zer -smo bile -findyour park -cop ying -to ddy -sh ti -mon ger -cal houn -nap kin -break up -y atra -se thu -ric hi -eras mus -fer ry -am ore -prac tise -bo bo -power point -oo se -li ffe -chin a -sh ka -fad navis -du ane -war on -fal se -ðŁļ Ĥ -wa shes -disc ip -==== ==== -g k -ab b -stub born -medi eval -p ci -ðŁį ª -maril yn -h yo -man di -cr i -prede cess -continu ation -om usic -s lat -wh al -mall ory -bon n -shen zhen -ca i -âĺ ĥ -sa fest -for wards -dra wers -bla sted -sle e -mor phe -mb ta -dumb ass -ÑĦоÑĤ о -alhamdulil lah -ec lub -al beit -heal ey -ayurve da -adverti sed -cro cs -itt les -bry son -be i -nj pw -honore e -fu sed -ðŁĶ ĺ -mul tin -n aga -de parts -ko p -kin o -jhar khand -ed na -ax le -mil ton -supremac ist -marrake ch -domin ic -tran script -] [# -: ). -wo c -sur rounds -o gil -leaf lets -co well -whe w -tru de -proli fer -succe s -sports man -con dom -po che -k up -imprison ment -{ } -scram bled -å Ľ -ka ine -cell phone -metam or -con i -remn ants -ee z -down pour -afterno on -exerc ising -ber ser -architec ture -wick low -m ns -is p -bo c -n iss -mn wild -stu mble -r si -lu ffy -sil en -dd ad -bul lies -haw ker -bb cc -scu ba -e pp -que ts -for aging -pal let -ha di -cinemato grapher -cat chers -to aster -k hi -lite coin -kid lit -amher st -maur icio -ip ad -mar malade -fe y -don nelly -g to -est as -cere bral -ant grasso -zz led -vir gil -swa pped -ðŁĺħ ðŁĺħ -no dapl -greate st -nhl bruins -fra ser -b mo -ane w -. âĿ¤ï¸ı -se gregation -remark ably -mccor mick -lo gger -er as -contrac ting -âłĢ âłĢ -yor ks -uku lele -touch screen -de cked -ben n -south wark -ra vin -nu mis -ðŁ¤ Ļ -ru t -gre co -eth ic -red neck -ar r -t cs -ih ri -ðŁĩ« ðŁĩ· -l k -inher ited -zy k -viadu ct -marty red -hi gu -ss n -be in -street style -fer gie -bank of -æĹ ¥ -stake holder -exempl ary -cre ss -ess a -ero tica -intre pid -gom es -bra un -bethan y -bang tan -pulmon ary -m illing -doctor ate -trump russia -ठ° -s ani -bl att -pla u -depri ved -t le -ful ly -bour n -st ak -lufthan sa -kio sk -far oo -def y -bad an -ðŁĺĺ âĿ¤ï¸ı -rit z -tri sha -ran ds -middle sex -arab s -pro j -sport scenter -repe ats -iv f -bleed blue -as sure -o bs -territ orial -ele n -bever ley -ann ah -âĿ¤ï¸ıâĿ¤ï¸ı âĿ¤ï¸ıâĿ¤ï¸ı -z l -for good -science fiction -gla u -son ya -pri th -st weets -mix ers -mari o -ant elope -writing community -went z -den ham -be di -sf o -harley davidson -look book -immuno therapy -or phe -es ville -ed ged -tas k -sb ball -corro sion -kilom eters -co sting -play back -ke ke -di visi -u ter -re location -yel led -pen g -up beat -ser ve -âļ ł -hal en -stir ring -reh man -en v -schu macher -frag ment -alkal ine -sb k -resil i -share point -rol lover -tra sh -counter part -âĻ « -ob itu -à ½ -ãĤ ¹ -mul berry -ðŁİ Ĩ -auton omy -spra ying -nat l -love you -fran ki -nu k -esc ar -can teen -ali baba -de plor -mole cule -pu d -fort night -blon die -sp hin -portra yal -ta che -bu te -consi sting -freep alestine -c sp -im mort -d ns -ðŁĴ¥ ðŁĴ¥ -tour de -coo king -archi val -ga thers -bit t -b anc -pre mature -snow ball -poetry day -lou dly -fug itive -ed ay -em ra -ðŁĩ¸ ðŁĩª -sci en -node js -jur gen -je ong -band ana -un is -fox sports -v andy -pro visions -wee p -tu k -i ko -h oun -zig gy -z r -fil let -bat a -tin k -con e -we want -k ilo -hor ace -sl t -sc t -stay tuned -victor ia -umb ria -att acker -ingham shire -fright ening -no ir -fr at -con tempt -lia ison -ho i -br ink -tr ill -ni agar -kick ass -dun das -not my -rho de -bu mble -no xi -fa g -spec tators -mancrush monday -jin ping -distr act -dais y -wal den -portra it -ar thistory -vol tron -ev el -is c -ac m -r ite -na o -de ported -swe ats -ru fus -lo bo -labor day -gam o -ihri thik -bl it -abdomin al -ãħ¤ãħ¤ ãħ¤ãħ¤ -i it -e q -bu sy -allu arjun -un disclosed -de ton -pro create -ki l -ðŁİĤ ðŁİĤ -mitch ell -ki i -inherit ance -al p -jo burg -pat rolling -compul sory -un signed -ni am -l ga -eshop suk -tr illi -ma w -appreci ating -rock ab -mañ ana -an tal -mal vern -roy o -grand prix -sut ton -go ftheday -dig i -ãħĭãħĭ ãħĭãħĭ -t les -varan asi -erec ted -discip les -cont act -ðŁĺ µ -li d -⬠ĩ -scen tre -radi ator -ing tips -trans itions -thursday motivation -chem ical -separ ati -sal is -mi m -geo graphical -book fest -/ . -âľ ĭ -v ae -cur rie -ag garwal -acceler ation -the ses -lg m -u mass -pro portions -nat a -ani ans -ku ch -be acons -ap r -@ # -ðŁĴª ðŁı¾ -nu ke -sher aton -ki o -ma kati -polit ico -mor ale -ì Ļ -econom ically -gg ly -ss en -pa stries -intern ships -vic ente -fanta ken -aveng ers -accu se -slee pover -indic ated -the dream -ster one -ren ders -fro st -ou i -gre gg -d ore -⾨ ⾨⾨ -pu gs -sat y -nu mb -hems worth -tam i -la ssic -schi ff -igle sias -ag awa -] " -re shi -game stop -divor ced -theat er -clau di -un conventional -prophe ts -ac in -twel f -tow ering -t ml -sc lerosis -k wan -ge ts -distur b -na ira -ener g -pir acy -pru itt -noti fied -hen na -bra m -ground water -bl s -opti mis -$ ) -luci e -biz hour -fang irling -gr ills -or l -ver se -c ina -law less -artistson twitter -tele vised -marshmal lows -radio head -bar r -m fc -bre vi -mmor pg -g aya -âĸ « -sub titles -j t -disney land -to bago -nh m -groo ve -fi awec -" / -ba o -scra bble -om ni -ff l -um c -si mba -ali er -ter rell -plu me -mi di -dig nit -co c -bru t -ad ata -alche my -d sm -ðŁĺĨ ðŁĺĨ -win try -spa res -cu er -conclu sions -to ys -od or -fl ann -gar vey -scrip tions -inspec tions -cat ap -ang lo -st louis -heim er -at ay -tr ich -en yc -chil ds -vent il -mont p -guiller mo -circu lare -z ell -mode led -craf tsman -al ina -stimul ation -cashe w -ju das -best of -to ire -susp ends -scol lege -real ising -by tes -bloo ds -as si -ðŁĴ ¿ -o hs -ðŁį ĭ -scallo p -ठµ -gi fting -camo gie -wil kes -o zzy -ðŁ¤ ¤ -ver onic -sav oy -deme tri -baby girl -ðŁĺį ðŁĺŃ -so x -cly de -induc tee -count down -self care -ठľ -vi ka -tor re -phd chat -pe ars -aw h -suff rage -le sn -admir ation -mp p -shark week -schul z -santor ini -clo ver -( * -stras bourg -ex iting -so yu -finger print -che a -ãĢ ľ -vin dic -song writers -so a -prou der -nam a -= )) -simple st -delici ously -gil les -u q -mn wx -ep p -sh un -ken nel -fall on -ðŁIJ £ -sin d -tra gically -out es -modern ism -co ke -gy n -spi on -âĺ¹ ï¸ı -le am -compress or -apolog ise -twent yon -fan atics -âĻ » -sco tsman -sa wa -ko u -as er -ภļ -welter weight -phen om -twick enham -stri a -p out -ka z -gi am -cd p -ho y -emplo y -red mond -ภĦภ-sm ere -trance family -proto cols -pie ce -lu iz -iter acy -carl s -united states -har med -phd life -ch aw -foot prints -l é -cho ker -z ana -sli pper -eric sson -insul ting -articho ke -advis ing -acquis itions -op or -mut ations -re ar -ॠģ -pod cast -wi ther -kun g -íĺ ¸ -win slow -di apers -ðŁĵ¸ @ -ec ker -col lar -hu ey -gi ro -mono gram -kas ich -si veness -malay si -arom atic -gre s -gali leo -u ji -rob b -dr m -none theless -as a -: > -lo a -l np -at work -ag t -laksh mi -pipel ines -id al -stre l -re all -chain z -stone wall -san sk -ðŁı ´ -pied mont -hoste ss -ci u -t é -analy ses -wil helm -scott y -rw by -mosqu it -use mb -qu ins -ðŁij İ -tu cker -s conf -speci fications -psychi atry -broo kes -s ils -ol af -de to -co di -cli p -fil th -womancrush wednesday -go to -ang erous -be ale -w tc -paneli st -ne x -lar sen -emili o -tab leau -h itters -conce ived -americ ani -or tega -mar di -Ñ ĥ -pain tball -thir sty -new yorker -etis ation -go ss -we aker -u gh -tro ll -har ga -du al -ght ning -at ine -ðŁĺİ ðŁĺİðŁĺİ -cook out -pyrene es -po ss -authent ication -sports wear -yun ho -kir o -archi pel -shen ko -ren der -nov ation -divin ity -ðŁij £ -su fi -humb ling -ge opol -devote es -wait ress -tr ough -py ro -i ba -bl ing -gra f -epilo ts -bt r -of tball -bas king -domin os -so om -r ath -sher yl -qu el -astronom ical -wel d -track list -sig nee -slee pless -com man -ch ron -summ on -pure michigan -cri spr -sli p -la gi -ra q -um u -thal ap -char med -scru mp -quad copter -ski p -peter sen -mun i -ðŁĮ ¾ -mon aghan -tra ys -ick ed -canad aday -te gr -ï¿ ½ -hot ness -heavy metal -ab ar -gop debate -az ul -spider man -sun flowers -ľ ë -web comics -bar d -Ð ² -nichol as -slu sh -ram an -mark ham -ffici al -ff ler -íĬ ¸ -ple ss -anush ka -to to -sk aters -pro wrestling -compet es -ay ala -myster y -thr ills -mp g -independ ently -y ul -imper ative -formid able -tire less -st acking -ton gues -mal tese -pot ts -mat ti -char ting -chill out -super nova -ome o -sky sports -nu tty -ðŁĹĵ ï¸ı -ro han -insp ired -concier ge -ser ra -ma kk -gal at -chi pp -ye v -ì £ -reim bur -op ul -kimber ley -i eee -bre men -ch itec -or in -nak u -bon kers -foo ty -emer gence -ðŁĨ ĺ -sti p -serge i -zo ey -ai me -wou ld -dy es -destin y -vinai grette -dri er -circulare conomy -an archi -ss r -sch el -cin er -gro om -determin ing -gar min -cal ais -incarcer ation -bu kit -no i -chelms ford -mckin ley -chi pped -belong ed -tu mors -str oud -mi i -influen za -wwen xt -tun dra -tele communications -cat sofinstagram -t ages -beat ty -o du -ml kday -oo per -dang le -ak ley -cru mb -anti gua -ti mbers -rou hani -ðŁĴª ðŁĴªðŁĴª -ha fi -... !! -w cs -coo p -sn c -lit res -ãĢ Ĭ -ha z -co z -k ant -green field -cur ti -y ale -flye agles -what soever -wor thing -rou lette -flyeagles fly -un da -a inted -stand ing -lusci ous -h pc -effic acy -ash land -me ghan -ky wx -n pr -bath tub -ac os -h ani -mar cor -man tis -da isi -bo ba -ab bie -mu til -vi al -spy der -po z -g ti -el fie -nigh tw -metro id -anton i -mad die -dh ry -dar lings -ten ds -taek wondo -atlan ta -me ow -chlo e -ãĥ İ -ym es -siber ia -k con -gu es -mar iner -fac il -azz le -[ ... -han nover -bav aria -vir go -te uk -u sps -) # -wall a -sam pson -need less -ver bally -hay ley -bow led -pi us -lam pard -ham string -vol vo -road safety -cho king -sor bet -a hem -healthy food -brai ded -horticul ture -cr ative -che ek -ad do -the force -ko ko -schiz oph -j ie -w ada -twentyon epilots -h bcu -pro ton -pau ls -lou isa -lat am -kyr gy -com pac -sd k -sap i -?? ? -liber alism -ep silon -ai den -w usa -spra yed -baske tball -kim ono -blue wave -ali as -ë§ Ī -mug shot -ce c -do gre -ad ora -ðŁĵ· @ -kra kow -intrigu ed -exhau sting -astron omer -ven ison -lady bug -ci v -bra e -us m -bri be -acup uncture -pembro ke -ke ating -chi e -y ad -t si -sm i -see ding -gate shead -lis boa -gy p -canv ass -ðŁĶ´ âļªï¸ı -op i -ni r -soci etal -ly te -ati es -c sm -ar tery -al in -aka poor -abstr acts -âĢ¦ âĢ¦ -teen wolf -ne we -travel gram -sentim ental -per ched -han del -ho ek -f ay -coordin ating -anim ate -man ian -effor t -jer ky -f ck -adri enne -ma bly -tra ding -my el -spi ro -sol a -stor ing -over drive -monday morning -dream team -pul se -bon di -ber nie -pgat our -tri poli -son am -plat t -âļ ¡ -ag roup -îIJ Ĵ -inv ading -v cu -k ell -ñ os -un dead -pod casting -mercede sam -mana fort -cor tex -que so -impecc able -pal mer -wil doz -sport sc -guacam ole -dispen ser -cate gori -stun ts -per il -invit ations -dune din -xi e -achi eves -saf er -pre ds -ph an -knuck les -k ak -igno res -lovemy job -aru ba -ound ation -datac enter -co vert -gr ing -cou ple -ا ر -vol i -mc cle -arti sans -lu do -kal am -arom a -under taker -hu la -wiz kid -gu mb -god frey -bakers field -ker n -engine er -car ve -pal in -guaran tees -pe bbles -b ays -zi eg -fin k -â¬ĩï¸ı â¬ĩï¸ı -down pours -ro chelle -rasp berry -ðŁĺ ® -gra phies -stom p -caf es -ari zed -utt ar -cal vary -dri e -crusad er -bus an -tux edo -si u -seam us -cul tured -blan chard -town house -ge red -butter milk -flu ctu -roger federer -hel i -ðŁ¦ ĥ -u ous -ram esh -mu ppets -email marketing -ye ss -br ice -ri zio -pel o -donnein arte -u rable -inve stin -bump ing -raji v -sav a -thro wer -fore x -o hhhh -th rust -pull man -r fid -sep sis -le ed -fri ght -roun ding -ne b -ph ins -ai sha -utili zing -squ ats -gold smith -j ic -bo ks -vau s -i po -exclu sion -tari ff -po kes -min al -land s -en force -washington dc -or char -g x -mar ys -ey our -aussi e -bak ers -un popular -latin os -lar ge -pu tnam -bol o -wa de -pel o -di zz -ob struction -fla ppy -weare the -depend ence -pajam a -e te -y ann -e wan -disc la -a ay -kar ina -e ic -an trim -w soc -neg atively -kai do -fotogra fia -dh ru -colo ssal -mcle od -k wang -mani pu -ex hilar -us atoday -summer slam -co les -tapro om -unbeat able -de ma -tic ks -k ling -fil s -campaig ners -ภķ -brew ster -audu bon -qu ay -ch s -ki gali -d ler -strength ens -som al -sign ingday -gol ds -pig ment -orche stral -g q -lin kin -ðŁı ĩ -ta w -algar ve -ho v -ear le -gold fish -am ig -ex er -ben in -dru id -ðŁIJ ¸ -she m -quat tro -mer cen -men te -incorpor ating -bon anza -state fair -en de -concep tions -e es -âĻ¥ï¸ı âĻ¥ï¸ı -d son -fire arm -orb ital -we h -multi p -fo b -requi em -p light -thou se -sa id -oc re -remem brance -n old -chi pping -be v -er t -ca thy -sy m -ri ggs -m ley -dialo gues -sl ender -how l -gau teng -wd w -to bi -smo kes -im plo -b pm -ad n -mom basa -cap sul -bloom field -artic ul -cle o -goog led -flu ffy -l ard -en zyme -ve sti -ibra hi -fl ame -e mea -out ages -dispro por -ble ak -an sel -ick er -st louis -stock market -good friday -sau lt -stal led -pro m -ep som -b é -the se -sau ces -me w -lit fest -pre d -re u -kar ak -si enna -ell in -bio technology -ï¸ıâĥ£ - -tac tic -sa in -por k -mon za -ka j -lu sh -compart ment -chang ing -shraddha kapoor -fo al -ar tem -cu ando -can ola -ori ente -me sse -d ited -br c -box er -bbc two -s st -ment day -em ing -de wey -kof i -âŀĸâŀĸ âŀĸâŀĸ -reali zation -smo l -tw ood -san je -flag staff -ber wick -cor set -can ary -whistle blower -et ched -com posing -squee zed -bow er -auto desk -ne h -mathi eu -ba ja -Å Ĥ -hy dra -da im -am eri -insi sted -mer lot -gar ros -heart news -gaine sville -cut ler -bo de -ðŁĺī ðŁĺī -lew es -scoun try -g sa -us u -cc m -god awgs -phara oh -cra e -mor ley -hyp noti -f ades -neur ons -fu zz -ing co -high landers -star k -vig ne -pac kets -amar illo -reu ben -insul ts -bas ic -vec tor -n me -ac ruz -tro s -transm itter -ðŁĺ ŀ -interpre t -ðŁĺ ² -pre quel -mc gowan -dis semin -ðŁĴĺ ðŁĴĺ -mascul inity -indie gamedev -ali ve -te t -pe tal -ema iled -ar med -ko o -he er -ba ird -super junior -metro polis -delav in -decl ines -stit utes -Û ģ -p tbo -g lan -cho res -e aling -chri ssy -ste mc -vi an -assassin ated -pron ounce -illeg als -discover y -cav ill -fri fotos -f al -so i -sabot age -t int -p dc -ðŁİīðŁİ Ī -ãĤ Ĭãģ -ji o -endeav or -in sig -commit tees -she arer -me tz -mar rying -h dd -g by -fre t -tri sh -pu l -scrip ted -sa ki -l w -ke ye -shim i -nan aimo -ca h -à « -tem pered -ici an -du gg -dish washer -air field -s rugby -gr inch -y st -r ms -mahat ma -lan kan -disc ar -dige stion -no des -l ls -om ic -gu tter -tis garh -feder ico -election day -bo he -master card -fire ball -âľ Ķï¸ı -oy ster -p ong -do k -en route -m vc -beat the -ali stair -shu b -sh aming -cherno byl -ghi bli -the s -pin ion -d bs -sal ts -ic tion -epi ph -nc pol -in convenience -whit ley -inspec ting -wood ley -wi ener -skil let -no les -m ca -h ina -a sha -willing ness -well ness -tam ed -show time -dis advantaged -ber nat -us n -mission aries -coun selling -arrog ant -quant itative -leg alization -ho dge -energye fficiency -cameron dallas -pos sessions -p bb -harris burg -v g -hindu ism -happy thanksgiving -fi b -re acting -tweeta picture -pol iti -mu ppet -hur rah -pac e -coast guard -guar ded -as am -par ry -fore very -x q -oom f -ke anu -j ind -ri st -customer service -sac red -ðŁĺ º -ton er -occur rence -mat u -val dez -red d -is ak -power rangers -pe asant -raj ini -abra ham -e mil -car do -tr il -hair styles -obsole te -sam pler -direc tive -delavin kisses -ver ton -glo s -sp ay -paler mo -com ets -man ziel -chicag of -ski pped -pic torial -h ant -b mi -a ol -re opens -pad dling -devo s -fra ud -bas eline -que ues -sp ired -sn are -eu ve -descri ptions -daisi es -ca ching -gall eria -tri mmed -stin o -recy cla -ic ular -bir ken -raw lings -fli x -chic as -b gt -lik eli -argy ll -thel ove -ga ston -bl anca -ha k -f one -sailor moon -h aci -ima c -fl yn -de can -bel les -ap ic -zo g -taun ton -con stance -lasag na -ker nel -in ka -har bor -collec tively -calcul ated -av ille -shil pa -pur du -gi mm -fun er -a est -pembroke shire -nighting ale -n unes -hyper tension -hu bert -sli ders -infer tility -comm ended -transat lantic -metr ical -!! @ -Å Ł -ss g -bac ca -inver ted -fun factfriday -it ans -albu m -acqu ainted -ri er -whel an -sar ab -mu e -snoo ze -pi ff -agre eing -sp itting -jer maine -n ye -âľı ï¸ı -am bush -ze ph -con greg -univers ity -s app -wann abe -pat rice -ib d -do glo -fri dges -sun d -king ston -ar gon -kam en -hardro ck -ds ley -do lores -ì ° -ota ku -pi ping -be having -âŃIJï¸ıâŃIJï¸ı âŃIJï¸ı -blue bird -an sari -teapo t -fire work -cro p -log ans -ty ped -thick ness -ig ers -c fp -dys functional -contra sting -et ty -aston martin -tx st -dra grace -at tributes -marath on -manu scripts -john stone -ðŁĺ± ðŁĺ± -bo er -ay u -aru gula -poo rest -con du -assu mption -anag h -no h -delav in -sit ter -g ö -mor ow -kick start -com i -gl acial -ghe ad -ba in -ker shaw -en dof -fre ud -om at -i af -hu g -sign up -each other -defin ite -tu bing -shak ira -ðŁijı ðŁı½ -uu uu -sw in -sham bles -ol as -sk ell -brit ain -kn w -clu tter -om y -j ens -hang ed -city scape -scra ps -un locking -dead liest -er no -breast cancer -a it -inspec t -fu ri -ðŁĴ Į -ku d -ju le -or ah -mi ds -m dt -bur gring -r attle -pu sa -stal k -cle ans -iss ance -z ek -worth it -nam eis -musko ka -council man -urban art -bar rac -un solved -tu l -g ita -white board -soy beans -em ent -cont i -saturday motivation -conveni ently -doc king -t ado -âı © -sp ino -puppy love -po f -fabric ated -robb ers -adop ts -ti fied -kk r -indulg ence -notic eable -macqu arie -chap el -sensu al -ki ko -melan oma -lore tta -li ance -ab en -sp lus -ga al -ac ele -lib dems -compar isons -ðŁĮ µ -rhy thms -mer y -en capsul -nap ier -ðŁijĮ ðŁijĮðŁijĮ -ðŁij IJ -plat z -fre sno -re formed -ran bir -el it -the best -bhu shan -vin nie -impro vised -s ittin -re created -e ba -ec ker -ac rob -pon te -cor d -gi ddy -eur usd -fe ver -intu ition -gar i -dum mies -bud weiser -amend ments -te tra -sch nit -ay as -mar ys -ci st -k ani -ker mit -ðŁĺ±ðŁĺ± ðŁĺ± -tin ker -strol ling -di visional -niger i -omin ous -menstru al -kar ab -k hy -bw fc -pan handle -l illi -well er -stra pped -son the -transfer ring -ethe real -sne aks -ru dol -gab les -jac king -cin code -for tune -canadi ens -con for -ab normal -frank lin -tit a -mu la -persi st -cu ties -ki el -ðŁĩ± ðŁĩ -her mann -aw k -fi asco -ko to -we ta -hi ker -budd y -preven tive -mcgra w -game boy -forsy th -top shop -si ob -sad h -in tram -follow art -so aps -dragon ball -ou x -morri son -๠ĥ -lu bric -adul thood -morri sons -âļ łï¸ı -her mo -ta ka -stall one -mis use -team gb -ra gha -con fined -at y -hom ophobic -nw o -sky news -ho ya -ac rosse -wi iu -pur ée -jed dah -ðŁ¤ § -advis ers -ph ine -an is -scrump tious -ë° ķ -c ke -vin y -ter m -s dc -o do -home school -vas c -leop ards -debor ah -illic it -cur ran -as roma -nau ght -mar ig -brand i -em p -ðŁĺį ðŁijĮ -î Į -su spend -lu z -initi ation -sch aft -jensen ackles -craw ler -post doc -des ks -trail blazer -den omin -tri x -no ise -po et -± ï¸ı -s mug -vol atile -proof s -pharmac ist -sardin ia -mash able -kim chi -co ed -schal ke -doo dled -c sw -sh ur -ro x -do k -chris brown -mathemat ician -ab ound -ang elic -rock ford -d ole -yor kers -ms n -g man -xavi er -bor rowing -mark ings -longh orn -k ja -diver ted -mm it -euph oria -ay yy -te a -pa h -ck i -un cut -li ven -ky ung -fan art -mer ing -red ding -amo vie -gri di -c thulhu -schol arly -ju dah -th bewithyou -eu calyp -ðŁIJ ķ -hert fordshire -cour troom -by u -auc tioned -ple ase -mar cia -ê° ĵ -succe eded -el as -arvin d -t lot -saig on -re tt -ra kesh -fd ny -as en -se bring -gladi ators -you know -v lad -gol a -par ap -ÑĢ и -sab cnews -one team -oh l -sun e -ri j -cd c -star gate -run down -plat o -ph c -chat ter -ra viol -mn f -mand ala -li et -ภķ -mari a -hun gover -consoli dation -fer rell -tradition al -ilove art -gal ap -ðŁı Į -que zon -espa ña -ðŁĩ¨ðŁĩ Ń -ho bby -steam boat -mali gn -guil lau -pro hi -its me -íĥ Ģ -in scription -al z -mari an -k ade -mm on -adju sting -ne sts -intern ally -ci r -vik ram -mal ala -k ph -fel icia -the real -cap tivity -at is -marcor ubio -kale ido -che v -mano j -le more -gent ri -vi ps -tro pe -" âĢĶ -pair ings -mal nutrition -fr ay -desig nation -brun omars -az e -tor rential -pan zer -ga il -under the -the ological -schizoph re -dazz le -freder ic -mo par -ad illa -so ggy -ra un -medi ocre -colo rec -i fe -p inst -blu ef - ² -world water -gir oud -clar inet -ad olf -tar antino -receip ts -assu mp -ðŁij Ł -coffe es -âľĬ ðŁı¾ -du plex -s of -r x -lin o -timber wolves -pan dit -mo tm -e ga -ay ama -ach s -outsi der -ll en -co er -til ly -cheese burger -ma ds -ple dis -emp ty -national parks -az iz -p mi -jun kies -f ener -sq n -è s -gener ation -cleop atra -bhuban es -mosqu es -ty free -popp ins -tw c -or well -n age -ka whi -hol low -dal ai -¨¨ ¨¨ -ou ro -m health -gi on -az o -vis as -reneg ade -re ic -w sop -ðŁĴļ ðŁĴĽ -e chel -tox icity -mü n -bun k -stimul ating -asth our -\ ' -ep h -ende mic -cn bc -shrin king -peabo dy -michel angelo -can yon -wal e -su mi -si ders -inu it -? . -profession alism -dr acing -plat oon -p ons -out bound -maple leafs -de sol -cen cy -a than -ver ma -ru bbing -ok an -ðŁij ł -mull ins -authent ic -Å į -alman ac -ga ia -bb q -on imo -ke h -ty a -tou ts -y av -re posit -, . -wi ght -se eyou -cal lof -done sia -bar gaining -gr anth -sd su -amphi theater -p su -re watching -wine tasting -peak district -dete cting -thur man -phe e -èª ķ -u mich -re r -sculp ted -go le -name sake -ðŁĶ ģ -serv icing -bau gh -pu gh -pen cil -dar th -munch kin -at orium -ten ers -sun y -rolling stones -mag ing -star rer -i dris -fe instein -ag ron -âĺºï¸ı âĺºï¸ı -supervis ed -chamele on -aggre gate -succe ssive -mo gul -inst yle -pol dark -custom e -ohio state -ha ya -ci des -broker age -angel ou -fifa wwc -de forestation -al ton -pam ph -hu gged -ho bo -change able -ku ber -bur roughs -demon etisation -cape cod -vers atility -or ice -le ila -womenin science -tu a -he dges -embarrass ment -ali fe -so ars -ni ghter -hy mn -gi pp -chas u -tech s -ni all -k illa -hi ka -cam els -valu e - ¢ -sc oops -mah moud -clu sive -adri ana -pac o -oz il -un as -transl ations -whispe rer -s bi -bu xton -bio tics -indi ffe -ken ney -k lar -et ching -barra best -inst ability -se ine -vo tel -blo gged -whis key -my space -t ant -lan dia -give back -illu s -aw ak -ac ab -f bloggers -cloud computing -blat ant -syri ans -band ra -sty n -an em -ke ted -kar thik -barun sob -pin ot -gu bernat -gay e -arti ste -i fied -conven tions -hu an -geni uses -eeee ee -fol ly -somer ville -pride month -ðŁĩºðŁĩ¸ ðŁĩºðŁĩ¸ -chemo therapy -paul s -bak ar -ìĦ¸ë¸ IJ -taiwan ese -fol lo -c ss -re ign -nn nn -fla un -catastro phe -iti es -frag ments -extre mists -ym oun -car men -eze kiel -conne cting -se h -man ta -remodel ing -we ymouth -at oms -ce m -ne well -lu mi -the open -mo c -mili band -g land -z shq -mag gie -mani acs -m sp -ad y -cre ams -le anne -e sta -py g -af finity -pray er -dun bar -ligh troom -ac adi -wyn onna -roman tic -state dept -sick le -wh os -lam o -et our -fin ity -shru b -shar pen -pun dit -ed on -af ore -mar s -jeff ery -ter ps -medal list -kath arine -accu sing -ta z -roy d -from home -confron tation -alle gh -ðŁijī ðŁijī -refresh er -ran veer -never land -jo jo -lu crative -en am -ca ver -pa edi -man jaro -flu ids -the ssal -oppre ssed -mu ss -joh anna -Ø ® -cn g -buil dthe -sett les -s ith -fu ego -cl amp -ar ag -pay er -ted x -mand y -inter stellar -fr c -ch and -b cc -mo lo -len til -johan sson -grims by -nature lovers -ðŁļ¨ ðŁļ¨ðŁļ¨ -shin de -x in -international dayof -transiti onal -sat a -cad dy -wo d -if u -ha ys -holl yo -j ang -ir c -co im -grad able -" " -ðŁį ´ -ঠ¾ -a el -n yo -west lake -time out -sof i -phenom ena -cultiv ation -ag no -un armed -so t -con j -gen o -royal navy -nutriti on -fair mont -ti relessly -sn g -re ty -mic a -lu cent -slo ane -droo l -riz al -od ell -critici zed -. '" -la ze -deser ted -co der -pra s -l illian -itiner ary -dav y -an ap -whi pping -hobo ken -kare ena -çľ Ł -vi us -ter n -nan tucket -mis understood -bu laga -st ant -chin ook -z am -reli es -d ss -ed mond -sket chy -m ell -fe x -rec tor -dist ill -day dream -wine maker -ri pley -billion aires -hel ene -ati f -cul prit -bertr and -wou ldnt -ma pped -v ak -gla dly -parliam ent -kidlit art -ware ness -goli ath -âĨ ĵ -view point -tat ted -fu ls -dor sey -ang lers -li ds -ki ya -bow les -be h -b ite -compati bility -ance stral -pro x -beha ved -gubernat orial -ch field -sab an -z h -teen y -shibu ya -holli day -pan cy -âĿĦï¸ı âĿĦï¸ı -seun gri -? , -ðŁĩ¦ ðŁĩ· -im itation -impac tful -any i -gene vie -añ os -bate man -gli der -af ar -ra sheed -effor tless -sh war -dach sh -er un -at os -kin i -ch d -kha ki -k lin -felici dades -bel o -as l -to ppers -fin ley -stac ey -rigor ous -kar ting -le ppard -car michael -be ret -c se -ak hi -mer ingue -ab an -ha ke -ger i -er jee -re sto -comm anders -pr it -fl or -ad ven -ex termin -remain der -å IJ -es g -martin o -lulla by -| @ -mi gn -in store -big bang -cor di -cau ley -ante bellum -dg ate -cro ck -span dex -scaf folding -ore os -ê°ĵ ìĦ¸ë¸IJ -pom ona -ma uro -uni versi -re mi -af ootball -t ant -sm alls -ne h -worl do -tropic al -mor ph -jav elin -gla r -arqu itec -reminis cent -tu bs -spide y -make u -syl la -progressi ves -blo t -shor ten -keep in -ch ak -ang st -super food -decad ent -ston y -neuro logical -ar boretum -ann ak -fe ma -per cu -dis respectful -small biz -lo x -co om -c sc -bs bi -pre valence -him ss -esp an -mo ga -fr ampton -sky map -mas se -levi athan -( ). -noctur nal -car ameli -ang or -amne sia -outsi ders -she alth -rhin o -ant ag -ag io -ðŁĴ° ðŁĴ° -take me -kab addi -c si -m sh -coch rane -thessal oni -sil a -ha us -du sting -obe se -mack lemore -mani sh -len in -m dc -gro wn -shef field -s rs -ke le -car son -ch um -dah lia -can tore -opp o -how ling -cyber crime -sur realism -sc ran -fa iz -thre n -rac ists -r out -pk not -se mana -sin i -mc cull -ma chi -alfon so -y b -sar dar -kend rick -den g -reci pro -on f -doom sday -bri bery -custom iz -art is -c pi -ðŁĻĪ ðŁĻĪ -sla va -let te -en s -âĿ¤ï¸ı ðŁĺĺ -cra yon -ad an -tr c -migr ate -simp son -row ers -king sley -farmers market -shee han -ne phe -bor non -car ton -mic key -all ure -u lu -sli pknot -heb do -gui do -dog celebration -online marketing -acceler ating -) .. -origin ated -macar oni -ed tech -out field -mit z -disc us -adverti ser -man or -ha shi -descri p -cap ita -ful bright -recep tor -con n -con ey -spion age -r attle -pre st -u li -blog post -acker ay -) âĢ¦ -red velvet -mat th -inspir ing -b sd -ker ri -po con -mil lar -re pur -accent ure -ä ¹ -ram bo -ragnar ok -dele ting -british museum -pat ory -leip zig -flori an -sci fi -in ers -br ate -yo y -melis sa -ab er -ma sa -po te -mosquit oes -transpl ant -r pa -; )) -bast ille -yl an -joye ux -melo dic -cap tions -atri st -roch dale -gott i -pew die -cuties aturday -who is -aqu aculture -tiv a -sp el -he ss -ha ji -fred die -co per -brand o -v k -photo book -* , -my dayin -micha ela -brune i -sr ini -in te -Ä ± -de ol -d fc -separ ately -bun d -ve sts -to c -me ck -rein forced -constra ints -car roll -sq ft -re ver -cam per -bird man -in action -gener ators -triumph ant -pe sts -o vo -gy pt -al amo -sc aled -suresh pp -sd n -is mo -gi os -) @ -justic eleague -restaur ant -gab i -den gue -next gen -exemp li -ap ex -inspir ational -down side -kid z -u pl -et na -alvar o -fel dman -bar net -m ha -es ch -bloo ded ->>>> >>>> -kan i -ho fficial -casablanc a -bir ds -ty ga -sw amp -o day -new castle -nb ap -ci sion -cho ols -af lo -ne p -mon ton -ak b -super model -down time -th os -sc wx -snoo py -ag greg -yo ke -nor cal -we tt -prolon ged -me tast -beat er -f ta -t lap -disgu sted -y h -voice over -itch y -ip c -ðŁİ ¾ -phe asant -stra its -ram pant -j g -fer til -assu res -fortun es -sal inas -liz ards -kett le -i bs -cyn thi -he g -mc cr -soccer oos -happen ings -cor den -ðŁĺĤ ðŁijĮ -t ches -egre t -wolver ines -congratul ated -ho gg -bott ling -wr i -fer ri -bo sch -af ire -og den -s jo -j dm -sv t -con tex -tol lywood -min k -me se -super sonic -op oulos -å ¸ -âĶ ģ -knuck le -gu ise -gam i -chu cky -z inger -radi al -compla ined -bo da -fe tal -discipl ines -cor ro -ðŁĩ®ðŁĩ ¹ -op ted -filtr ation -ad nan -em cee -mi stre -insom ni -fer gus -tra jec -on don -med tech -tanger ine -madra s -gru e -cab s -z hu -sureshpp rabhu -insul ated -day swild -pp m -band ai -v day -s ff -squ id -lo thing -not dead -expre ssive -cu ll -ala stair -x u -up front -fish ers -en es -um d -dis missal -sti er -sel s -lu st -re active -prote ster -eyel ashes -al im -goo de -gre eng -da ir -com pen -anush ka -proto typing -ma pu -bear ings -ðŁIJ Ł -for me -bsbi botany -timo thy -out skirts -am bed -are tha -wend ell -stre aks -ni m -k pk -sne e -fit ter -quo ta -p ate -win ning -ðŁį Ń -sho pping -ma inst -cul ver -ste vie -mcfad den -counter parts -gren fell -fol som -dor set -tech crunch -⬠ħï¸ı -tip tuesday -us l -tre x -geor gie -ranveer official -lic ks -se wn -k f -' âĢ¦ -jap s -p ate -orth op -fe sta -stra s -mon tal -hammer smith -fore most -wido ws -mad re -ite z -mito chondri -lig ans -z ona -cari bou -m ss -andre i -weather channel -gh c -: ... -ta ft -awe ather -al isation -bru tal -bliss ful -nik ola -mal icious -q m -mpg vip -bro die -bl itz -applau d -dri bb -v ague -dog go -transl ating -interpre ted -hat ched -ge tyour -benefici aries -spar ring -caes ars -aw illiams -la hat -bro ke -ti mp -virtu es -rel ying -pie tro -k tn -ici sts -pab lo -lou i -a ag -pn pp -cha st -pul ses -fini sh -usair force -type writer -thomp son -dog s -ut to -ãģ į -sand al -new ly -do ge -z w -wan kers -ne gr -mu cha -determin es -black fish -sk unk -mu ps -instru ment -phy to -daysto go -skin ned -hai der -con ten -ðŁIJ¾ ðŁIJ¾ -we iler -undoub tedly -chair ing -wall is -sh ard -zind abad -adul t -absor ption -pre sto -deplo ying -drum mond -battle front -seag ulls -how dy -juda ism -des de -part ition -âľ Ŀ -no logy -national bestfriend -lesn ar -film fare -co asts -christen sen -ac an -mb u -co pped -ru bble -sw c -fun nier -far ther -where as -nano technology -with stand -pil low -bow ers -to pe -it ly -con fit -ma kar -comfor ts -bo sh -cli pper -bal la -sti k -mil b -safe guard -musi que -eas port -ya z -pad ded -bad er -fore ign -chop in -archi ve -o ka -tran sporting -tml talk -aj it -consequ ence -sc roo -ff o -collabor ated -pug chat -ye mi -jav ed -au burn -o of -ma w -sau cer -miti gate -i les -evangeli st -ter ie -re cl -indic tment -cat a -bright ness -may the -whim sical -un lv -key word -cu min -med way -west world -tra w -im posing -form ity -coul ter -ab z -ny pd -grass i -kel sey -qld pol -clock work -f dr -di anne -âĺ ij -ad h -p ann -bra vely -ae ge -un lawful -ver di -pocaly pse -phar o -kar la -reson ance -ma stiff -la dak -bu u -ma iled -hi i -craw ley -tor rent -mach ado -liby an -effort lessly -fal sely -q vist -ke ef -craf thour -cheri shed -val kyrie -s ari -kal amaz -be he -ðŁĮ Ļ -th im -ro ddy -col trane -but chers -ach im -wk end -awk ward -cab rera -:) ))) -fran c -decl an -con dos -a ja -pandor amusic -char ter -ph ill -mon trose -hatch back -handic app -gre aves -eucalyp tus -ut most -t son -bur ton -mid wives -in cur -ðŁĺį # -moo d -compre ssed -tom a -must ang -mo g -as ana -te stic -sho tel -in sol -cor sair -nh q -ben ny -sm ma -kap ur -in con -jon as -ener gies -don al -as ad -se z -n pa -archi ved -stimul ate -do p -hy d -gri eving -ãĥ Ī -ron a -why te -tree house -ss ell -sand ro -ko bo -ther most -se clu -hi ya -ge ez -mam as -prisc illa -flav oured -fas s -w old -maker space -cospla y -p tv -happy valentinesday -sequo ia -love craft -gu an -d tm -ci i -yoko hama -pos thum -re q -ðŁĶµ âļªï¸ı -galat asar -dol by -hamp tons -disturb ance -stone henge -ok c -disrup ting -month sary -jun gle -head lights -du stin -micro sof -happy mothersday -ko ko -gra zi -te sto -na idu -mal ay -ari al -ru mb -ab oo -har man -tra pe -spo ils -je ho -go dly -lock screen -z un -pi ous -ma gento -l enders -prob able -corpor al -m our -aw al -su a -call me -ton ne -go vin -devast ation -x j -gear box -war lock -per me -it ate -gaza underattack -du val -paras ite -clement e -le th -i va -fro zen -tho les -to bin -cair n -s ill -luc kiest -conver ts -st ale -pan cra -euro pale -wis dom -sch ur -ì ¶ -verti go -bi j -u bc -nu re -righte ousness -mt c -factor y -ver st -revers ed -hur i -hee chul -fab er -ar r -ul ous -ven om -ph at -green ery -bra dy -à ¦ -: (( -never giveup -di sha -mo ta -health care -dun ham -dex po -den zel -bb ins -f ics -wh am -mc g -eli an -wat a -str alia -tel lu -pe sky -spin off -ar moured -re acted -do fficial -te du -sag ar -mor ally -paralle led -fi os -dow ner -dau gh -re do -world cup -tari q -bar ne -glaci ers -oc cult -barbar ian -her mosa -!! !) -y ur -inter nation -p ss -sit u -p int -american air -sw am -dopp ler -ðŁĴĻ ðŁĴľ -cincode mayo -le van -hell enic -mc ne -ju di -yu h -st x -qu are -ðŁĺĤ . -sti g -g els -mot ley -hard work -euro zone -e ad -ç¥ Ń -seab ir -ci us -la id -alpac a -presu mably -pewdie pie -boo ted -am ari -tam ine -sol ace -bar row -acade mies -x ian -om ination -dun geons -b ma -de ity -ai k -stab il -hir a -affection ate -ving ne -new port -ãħĭ ãħĭ -thir ds -re tains -aroma therapy -ski er -ni ma -do pe -cr inge -con domin -to or -anim ator -sar aj -seas cape -minim alism -lake shore -calla way -berg man -à¤ Ĺ -whisp ering -stupi d -ri ghtful -requ is -ir n -se va -ut pol -tuber culo -squ ish -de but -govern mental -christ ine -all man -weap on -s ito -bur i -lo lita -leaf y -fu ch -tin ted -mck en -a hahaha -ðŁĩµðŁĩ ¹ -repe al -ne gan -ðŁķ Ĭ -tail gating -game insight -ðŁıŁ ï¸ı -yaku za -z t -ti ring -pro posing -bow lers -tra itors -ak shi -cler gy -cit o -up sets -tu scal -symph onic -sil ently -shu ff -black well -ðŁĺĤ ) -ko be -rober to -ri dg -dc u -mer ino -ft p -east side -. ~ -nb l -mn leg -ts for -frau dul -ca pping -in my -gymna st -ston es -ss in -twe aks -shag gy -oak land -dem sin -sang ria -mm va -hen nessy -down ton -ri ghtly -in it -aga ve -ob last -northe ast -friend ship -dal a -tro phy -ðŁij ½ -mag in -margar itas -ê · -ww fc -fa sh -di ke -cu d -char t -ðŁij ® -refuge es -jop lin -n cs -imp y -firm ware -pas cu -flam in -health tech -bell letstalk -w aka -ol ls -la go -co wan -bombar dier -sh ome -ðŁĻ ħ -mc master -na ve -well s -u ta -tell ers -mis fits -kap il -face off -af firm -a pro -whit epaper -super yacht -speci mens -al located -... , -- __ -ka w -dachsh und -djo ker -s work -qui ere -or um -ðŁIJ ł -som m -c mt -ingh our -skin ny -lgb ti -gi ggles -break away -resear ched -par ity -my al -ms l -re tained -si vity -make inindia -sol ves -defam ation -wal tham -sri racha -road way -concep tu -al in -iw ant -å Ī -del ft -tender loin -ga ins -faul ts -sw ire -st ellen -pol lo -dy ne -bornon thisday -asdf ghj -sq l -sali m -advis es -vo ip -ìĹij ìĨ -un touched -she il -ontari o -uph ill -so bre -de shi -nov ella -du tton -craw fish -ا٠Ĩ -ma a -tw ine -kal in -ðŁĩµðŁĩ Ń -ye ss -brook s -hoo siers -ton ka -umbrel las -ay ers -ate am -acqu iring -su ction -ä n -wi es -tari ans -soci o -mat tb -shepher ds -o so -charity tuesday -s logans -ninj as -al bat -by te -bash ir -trampol ine -mydayin la -i ja -bas el -ror y -gol die -fi rec -un noticed -pecu liar -sch a -ker son -mour ns -liquid ity -qu ipment -hi bs -ar s -aeron au -slide show -sla bs -delici ousness -sk itchen -hta fc -full erton -cre ighton -aer ob -procrastin ation -az ores -white hall -uss occer -medi ation -djoker nole -and me -um en -noxi ous -jo ss -ili fe -anni vers -sudan ese -et res -under mine -whole foods -diso be -kor i -ade le -eli z -can ti -al on -gymna sium -sarko die -meteoro logist -yl de -ste en -stamp collecting -nas al -lo tt -fran ks -ex ol -ack i -good year -animal rights -y les -vio lets -mm es -s thel -ra pping -tu scan -wai ver -tur ner -eat local -northe asthour -anim ations -tom morow -t sh -ff ame -bra e -pe tron -glam our -br yn -d cs -bal es -ðŁĶ ¶ -bro v -bre v -b ons -physi que -car ne -x e -elix ir -vol ved -l oma -ìľ ł -æ ĺ -van u -ri gs -bal ance -va res -bon ita -sprink le -perfec to -di on -le ak -calcu tta -o ba -d ma -c mon -tun er -pneu monia -bo gus -apolo ge -cl ough -bor ne -)) )) -revi ved -o varian -ner f -c legg -fan fest -cho u -reali zes -mc n -li gu -leg alize -just saying -for ster -bo sni -k hi -in dom -hei del -en cryp -si ss -ed di -mar bles -brisban e -y ing -pre paid -wal sall -cooper ate -orche str -mar isa -ho wie -che wy -bren ner -andro meda -e gan -sto cki -cav endish -ag an -ban o -de ir -go g -bl k -re thinking -ch ig -rhe u -sni p -p eng -semin ole -m swx -an nex -lyn da -lewisham ilton -cu mul -tb l -dolph in -agu ero -........ .... -pre lude -at our -gr anger -too ting -ro tun -dis ar -home items -da res -**** **** -ðŁij Ĩ -compre h -jin x -as well -iri e -circul ating -ðŁIJ ¥ -over board -cultiv ate -rhe tt -oriente ering -ca k -bal kans -s itt -jas min -britney spears -ro tor -se aling -g bc -oc ci -f as -eman cip -com er -war time -tic kle -son ny -pac es -log g -at rix -sr p -g win -do bbs -uz be -the wanted -dru sh -ex tru -m icky -honore es -dar win -re dux -mm j -ram i -jalape ño -io c -do ver -ju ju -whit ney -s eng -en ly -au ch -archipel ago -vigil ant -man gal -wil dest -parano id -hal i -bb ly -sanc tioned -real ms -con co -u ddin -c sk -play time -libr a -sav ag -oc tane -rec tan -re turn -par rish -mor rha -cc p -c mu -sa iled -se vent -ro sie -pil ing -he w -boar ded -seg ments -neph ro -( . -cr ats -bak es -ðŁį ¸ -back tothe -sibl ing -kirk land -ke o -gu wa -bre ads -ðŁĺľ ðŁĺľ -t q -haras sed -ga u -wil bur -j isoo -ep er -li sam -tri ppin -sh ino -ru kh -beast mode -cho a -inst aweather -rich land -gar i -fe z -cowboy snation -fur suit -k run -a en -sycam ore -se gun -ent ennial -di h -o ax -demsin philly -ðŁĻ Ģ -sn hl -pen nies -pass words -ma kin -ty e -d eng -kni gh -jeep life -hel pline -a for -zz zz -ste amy -pic ker -iter ate -happen ingnow -ki b -bloom berg -martyr dom -bul ly -assor tment -a hora -zo e -no i -illu stri -agar wal -p sc -electr onica -recruit er -gar diner -rad ha -naf ta -dot net -pi ero -geor g -bel s -ðŁĺĤ ðŁĺį -tuberculo sis -run nin -mor is -haul ing -ev oc -bre thren -sha ir -frame works -a stu -ri gid -ku ma -kre me -jin nah -insu rers -ny u -f ere -nol lywood -good vibes -- ... -toi le -sk ril -instaweather pro -cze ch -pa vel -one piece -nike plus -fi let -cav ity -ðŁı½ âĢįâĻĤï¸ı -ðŁİ £ -dra stic -dail ys -siam ese -re bu -oste o -lar k -f re -sh elling -p é -glad ys -ðŁıĢ ðŁıĢ -gusta ve -submer ged -grand stand -att u -won t -f pv -b ley -jon i -ang ames -weigh ted -al ou -ठ¶ -les bians -f j -anni es -am l -dor ia -dav in -be ta -can c -madewith unity -ha j -bad lands -mu l -blu ec -pa wn -cov ington -neuro logy -htt weets -dysle xia -thel ove -ne at -fork lift -autom ate -une ven -monte ss -he in -ha g -rel ics -competiti veness -can elo -mar tens -bullet proof -sk ittles -g ya -pri mo -americ afirst -woo o -abor tions -?? !! -ma che -ld ers -rl ly -preli ms -direc t -cour se -swa in -super cell -ec centric -sting ray -ple ts -wil cox -west in -okan agan -kir an -car bo -bomb ings -ra rest -bo h -gaw d -di gg -mo ana -enti rety -en closed -dodge ball -par ton -milky way -at r -thorough bred -re ally -qant as -epiph any -ine e -aero smith -spi eth -ar thro -ell ini -du bu -bra ving -âļ½ âļ½ -re structuring -illumin ate -equ ili -mp i -ash ton -pony tail -ma scots -flat tering -cru m -ast a -à® ° -stranger things -bar nab -ر ÙĬ -make shift -got cha -will am -cho irs -kilom etres -gho sh -eu than -dol ly -un ning -the ar -cre we -w sw -j ace -dis miss -ke an -ho ta -kh at -~ > -thir u -ren dez -hart man -tee ssi -cas ca -z ah -hydr ange -fo d -aw p -mzan si -thick er -nago ya -ne va -sti que -cast el -dam ian -there by -ji ang -ale k -music islife -ra q -calla han -gou ache -somal iland -sean hannity -ra heem -lo se -elo ve -whar ton -rectan gular -illustr ating -har ne -auti sma -scra pped -ell and -decre e -nag pur -ki pp -so re -n md -ma as -gun a -gart ner -bel li -then ight -je on -gendere quality -gi ver -a el -gar ments -ne u -mardi gras -mar sden -ro wer -pollu ted -camer aman -vin od -be asley -cro c -ji u -hollyo aks -anesthe sia -al les -ste ward -lati mes -ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸ ðŁĩºðŁĩ¸ -tic ian -gor ia -come dic -ðŁ¤Ķ ðŁ¤ĶðŁ¤Ķ -nai ve -sli ons -ł Ī -bur glar -ðŁĺŃðŁĺŃ ðŁĺŃðŁĺŃðŁĺŃ -york shi -se ñ -fan boy -lau rel -inci dence -potom ac -rober ta -presi den -pr yor -os bourne -w ku -te me -pal ae -ðŁ¥ º -re boun -itu de -red dish -k hand -coloni alism -north carolina -ðĿ Ĵ -manne quin -lady bird -ta sty -knowledge able -g shore -ðŁĮ Į -à® © -qu aker -salz burg -med alists -chy na -bridesma id -ma ori -ro p -outra ged -in adequate -truck ers -al ana -ìĿ ¼ -ri x -oooo oooo -command ments -lam beth -aa j -eco friendly -bla z -morecam be -boun cy -rou x -rai ded -mi zed -sh c -gaw x -labor atories -ru bs -rest room -consult ations -ca jun -virgin i -so ir -rev ue -ple in -wag er -ç ¹ -we do -growing up -! ðŁĺĬ -face ted -sin ners -ho vering -ti ene -seas oning -an ja -leg go -il is -fla x -dev o -ash ram -mati sse -ker i -go wer -bo tox -mar shes -unh cr -ts m -opti mus -dun i -stu ffs -so k -order ly -n bad -islam ophobia -raviol i -fab er -cre ds -won ka -in fusion -over weight -daily news -assi mil -acol lege -medalli on -kili manjaro -sti ff -tham es -sun ken -th ard -my dubai -hilari ously -han nel -plu mber -fair view -separ ating -rasc al -qui en -necess ities -confeder ation -ll ll -: ] -weak nesses -bron co -ra ffles -el ot -ãĤ¸ ãĥ -advent calendar -ðŁİ ¹ -stra vel -tun ic -k su -im peach -e spionage -! - -di ment -cur rant -bio de -commu ting -by ron -ðŁĴĵ ðŁĴĵ -shad ed -tr uro -cray ons -ar ne -h sc -fre aked -dram ati -fle ek -u cd -marl borough -^ - -cross ings -mal o -black ops -bin ance -cho ked -chen ey -pl o -ge stures -val edic -ryan air -rem ington -v cs -mc kee -ec z -be gs -nail art -mayor of -happy fathersday -war t -pet itions -n ingly -clean energy -bro x -sl alom -exist ent -ab ay -ug liest -tom p -stom a -sel by -goal scorer -ben ji -overwhel mingly -lan s -semiconduc tor -south korea -re scheduled -sk yl -en listed -dow ski -si del -rosen berg -nas ser -white head -pri us -har are -en n -ry der -í Ĥ -mon g -clas ico -transpor ter -po tty -is me -** *** -vic e -sk it -ode ssa -l mp -her n -raci ally -pin oy -paragu ay -obitu ary -go es -bu cha -side walks -angu lar -un constitutional -transiti oning -i bu -gu ys -un packing -oooo oo -black girl -ber gs - ¯ -wordof theday -trump train -thunder bolt -m si -fasci sts -ठ¬ -t sk -collap ses -raje sh -loveis love -migr ating -set back -ðŁĺĬ âĿ¤ï¸ı -t els -safety first -nar rated -jae joong -un answered -lique ur -en nes -dal go -bill ings -salt water -mer maids -lon gs -clap ham -we arec -pic collage -n ach -h ace -pois oned -lo th -ag na -adel rey -guar dia -poli shing -peace keeping -d all -p isa -la pland -process ors -de andre -so bs -p once -dra ins -c be -ðŁİ¥ : -spla sh -meat ball -fon tana -worcester shirehour -ne v -bri sk -b int -ac r -po x -cay enne -skril lex -j fc -hahahaha hahaha -gla s -en gul -tempor al -oni zed -con cre -com pose -vibr ations -plant ers -fer t -criticalrole fanart -t bli -sch allenge -huck abee -munici pal -iam bic -radi os -ne vis -dura bility -mc cla -horse back -inst itutes -ful fill -atta ch -ate ur -ak an -resi sting -illumin ation -hand le -hair care -om ent -macle od -ka iser -g no -bear down -ly f -gl omer -distor tion -z m -san k -roo sters -is now -as ports -ag en -wo ken -st george -ro mper -my le -econom ists -ru to -t will -health and -d ito -ws l -tair p -pra kash -mic heal -h ts -w rights -kat su -fioren tina -defen seman -d itch -var sity -texan scheer -ba ham -sc anned -we il -seduc tive -ðŁijį ðŁı½ -fu e -er win -dav ison -ter ran -moo ds -wool f -re source -@ . -cu sh -ðŁį ° -regre ssion -cur led -la zer -jo anne -ab bott -mo z -down ers -mm mmmm -valent ina -k hair -dream t -cro ok -che k -ste aming -nephe ws -cl eric -as ober -indefin itely -w ye -us news -joy ce -flu shing -wynonna earp -ron do -kis s -hot dog -bar ns -sax ophon -far ley -gas p -decre asing -al way -pe x -l sd -shi ft -p outine -ra zz -rescu ing -ni ko -ho ch -cc l -u aap -n ts -m car -il wx -conqu ering -ket tering -stur dy -delay ing -sto k -vani shed -cath ar -bin gham -in v -ic hiro -he mo -budge ting -[... ] -be ss -sebasti an -slow ed -ðĿ ij -musli m -stun s -acton climate -ve a -se ton -rose tta -oun t -hard in -flu id -ca w -ðŁ¥ Ĥ -yach t -un l -sp hy -provoc ative -or ic -is back -__ _ -nicol as -gy an -loo se -fl in -reb ate -: :: -! "@ -com icon -she ff -down stream -chic hester -beach life -mom life -diabe te -ar ra -van e -ok u -ye o -man go -try out -app ell -he irs -arjun a -dd u -na veen -movi c -soci alists -s back -criteri on -soyu z -k her -da z -yol anda -wine oclock -re ina -one w -leon ard -en dez -u bs -support local -facilit ated -carameli zed -b pa -vuel ta -my tho -m ami -spe are -nbap layoffs -fe vre -nick jonas -im print -c so -craig slist -la salle -gi deon -ha doop -dis regard -w ud -tu c -ma gee -acou stics -ta a -qui e -pol a -cr t -dw yer -dis sec -capit ol -men tion -kn oll -he igh -fin ders -plac ements -l se -indi ra -gur i -madhuri dixit -kingdom s -iambic pent -geor gina -je ky -conflic ting -bay an -aga tha -uph old -dr on -vic ar -ex pat -periph eral -pe ssi -fa f -ance stor -? .. -wid get -pun c -comm enced -beav s -air waves -ad dis -po a -de sses -co den -vu e -ru pee -kar in -spo ck -m sy -ภ° -pr ick -fill more -ti fication -thing sto -sar de -em ile -pere ira -n ad -bright ening -arre sting -wo king -usc g -sp ill -raspberry pi -hu go -ite c -is ma -cuff links -optimi zed -oc c -mi wx -en ka -el ited -afford able -sa kh -coron ado -ho h -at ul -ai oli -jim cantore -accoun ted -vin ay -her mit -groo ves -ran ch -r illa -we tter -ou tof -veter in -ni kov -ki an -fair banks -ram apho -n iti -k ko -ru sty -ne stle -tv xq -shahe er -âĿ¤âĿ¤ âĿ¤âĿ¤ -penn ant -gem stones -dem debate -ðŁIJ Ĭ -auton ews -support indiefilm -mach o -ve x -new sat -ne ti -conce ssions -can died -yof the -mac au -den ds -cricke ters -san iti -mari ano -gh at -ar toftheday -¡ ľ -e gos -gen oa -chat bots -bri er -al labout -mon ty -spi ed -r tr -comfor t -sni ppets -real time -gra in -exam ined -en lightening -tt u -god bless -release the -sing ular -ki ans -ha ka -sor ren -defe ct -mar g -equ ities -d orian -su ka -per l -aishwar ya -pul lover -preci sion -fair way -ne ve -rive ting -vill anova -en com -ak o -passion ately -europale ague -siem pre -x vi -enligh tened -c fr -âĺħâĺħ âĺħâĺħ -wast eland -is f -new comers -emergen cy -amphi theatre -- . -text books -figur ative -tre mb -pe sc -ab hin -ab bot -ac acia -har ds -por sche -kau ai -el isa -car rick -abo u -elli er -be ch -neu tron -galap agos -ru ben -in nis -how to -nun s -sab ine -i ac -clin ched -no tori -fi ves -cairn gor -per i -gr c -ðŁĴ¯ ðŁĴ¯ -mal m -twelf th -di ff -rout ines -marty n -lin den -synthesi zer -nu mber -game cube -fal kirk -byz antine -queu ing -gr ill -scal able -char red -rou ting -her bali -gri zz -ðŁĺŃðŁĺŃ ðŁĺŃ -tol l -termin als -l pc -ab d -war mups -remo vable -¯ \ -vi go -pap aya -ne ve -lov ingly -jo kers -ib les -sse tt -poten ti -pel e -gi gi -sadi q -leg acy -son o -ru pees -retar ded -ele e -par r -fi ance -ey re -say ers -pend ants -mak nae -al bans -adap ting -p ff -pu berty -ji u -ing rad -hypocr ite -diplom ats -phys ical -rob by -bon sai -ãģ · -f att -catal unya -âľ ĸï¸ı -ro ma -more land -so e -conver sions -stl blues -shol m -gra ssy -pra do -on u -assaul ting -> _ -sett es -dis graceful -aph ra -âļ½ï¸ı âļ½ï¸ı -ठª -kil n -goal tender -s ru -philanthro pist -b als -th n -stu den -sando val -dogre scue -eli ons -asse ssed -lar go -hec tares -sh rm -sa if -cle avage -no ches -n ene -fat alities -cur ing -clean ser -al es -p vp -south bank -pizz eria -marsh als -kni fe -an dover -tbli ghtning -sr sly -ou te -digi mon -timesof india -prome the -le bo -f su -wit z -rever e -man as -mam ba -ch ica -gu an -exhibit or -csr racing -d ere -xx xxx -gu sta -story time -ston ey -organ ics -and u -se am -min ogue -anushka sharma -ab a -ðŁİĻ ï¸ı -ugand an -chro matic -as sn -document aries -sh t -ru paul -loy d -k ats -e us -ite ch -me dusa -pan ty -kel logg -et to -talla de -sha a -do st -p ms -mari ana -je ster -croo ks -ðŁĶ ¬ -min danao -ind hoven -ðŁ¤ ª -le xi -tv n -jan is -co te -ãģ Ĩ -ser rano -iw m -ðŁIJ ¬ -k ke -distribu tors -cap u -counterfe it -camp site -ag gie -ðŁĺ ¼ -chhat tisgarh -~ @ -state u -san di -prevent able -cl s -can ne -mm c -i ver -sa haran -pal is -night out -do s -ap ia -absc bn -manag erial -aro se -mo wx -aro sa -ðŁĮ ³ -under dog -remo ver -astronom ers -lent ils -su scep -smoo ther -pend leton -fau cet -e mory -dal mati -af cb -tic us -exem pt -en rol -d heim -ðŁIJ º -restric tion -star fish -sto w -snor kel -thunder birds -she ad -homo sexual -dy n -as li -andre tti -dou che -dom o -tar mac -slu mber -pr onto -first dayof -mini ature -mari achi -argu s -recomm ending -mobi les -in ce -illustri ous -or c -adver ts -gr its -wea sel -pag oda -over pass -gre ys -maxi mus -arma gh -wood land -sun ni -ðŁĴ ī -ë Ŀ -ti one -soci o -ho s -ðŁ¤Ĺ ðŁ¤Ĺ -wind sor -subsequ ent -munch ies -id h -exclu ding -e mi -cu th -z ai -week days -law suits -barn ard -Ø ª -pe tting -net es -mul ligan -pharmac ists -ra quel -e ton -cran ston -gil ded -cle ary -ce ph -ra a -pam per -lombar di -as in -sher ry -pro d -for te -ari anism -buffalob ills -æľ ¬ -ðŁĶ¥ # -uu u -just ices -car ina -nat in -mas low -dro oling -cog nac -cam ber -el ong -r dr -in en -convic tions -am use -tro ck -harm less -visit ation -gen omic -bl and -beno it -chim p -tuscal oosa -gre asy -x po -gil t -se q -per mitted -christma seve -book s -mu e -old school -human right -be ati -ðŁĶ Ŀ -sh at -sculp ting -h wan -fern andes -sci utto -fu entes -endeav ors -maid stone -un paralleled -shou ted -queen of -mer c -band ic -ve da -sel angor -pi le -ja han -intimid ating -disapp ears -cl ich -za ha -w urst -hi v -fod ils -cor dless -aaaa aa -hy dra -bel inda -e els -bu f -su staining -rugby league -no c -brig itte -( ðŁĵ¸: -tromb one -soo the -smo g -ad p -stab le -ing ley -diagno se -ms g -we ss -tic keting -one e -nsw pol -e up -auto psy -adity anath -sun down -river front -si ya -p is -hier archy -dur ango -di jk -ren shaw -he aps -epide mi -david bowie -interne tof -dd i -nation ality -mb ar -air y -win der -w alia -elli ott -c x -bav arian -pl att -an tw -wi wx -sof ter -ne ha -h eller -th and -dani ela -bo ast -degra dation -ðŁĴ¦ ðŁĴ¦ -transform ing -man e -av ut -ðŁĺĪ ðŁĺĪ -vo ter -the e -t ate -pu ff -in door -sop roud -boy ce -boris johnson -wait in -immun ology -ðŁıĨðŁıĨ ðŁıĨ -âĿ Į -street food -liz asober -cavali er -c elia -need le -motor ing -g ato -, ) -ra de -harve st -t ms -jar pad -on ey -air men -v re -impair ment -abhi shek -snoo p -l ant -fam ously -bl ou -s ze -g ander -un touch -tu f -dee jay -col lateral -b ind -ðŁļ © -pin ning -ic n -' ; -the economist -ul tram -worldwater day -ti poff -the i -feed ers -campa ign -sc umb -day weekend -yo m -pe dic -h ough -ps v -pl in -on de -boston marathon -az zy -* _* -con ley -thi ago -hoo o -gal erie -luci d -je tt -gl itz -final fantasy -achiev ers -y ung -peregr ine -op hi -dam es -biom ar -âĺĢï¸ı âĺĢï¸ı -sk c -l ics -fl ank -ar rahman -ho of -uphol stery -t ats -wo z - ¿ -snor ing -ra er -l ju -ap d -pl ating -kan u -im ation -fragr ances -m ra -mor ay -mo tt -im muni -hearti es -bho pal -tim ers -g ata -color way -car nation -win get -si ghs -s ville -optimi st -chate au -olympi ans -ci o -singer songwriter -ny o -fi bers -bur ch -ag ro -mil ne -ig bo -cr amer -ation als -dan ube -pad ma -nor mani -en forced -bre ck -boeh ner -ar den -sur rendered -pros thetic -om a -ha iled -calcul ations -w fa -bi b -fcb live -fon da -west coast -que sts -friend ly -to wie -fit ch -bal ot -star dom -scrat ching -ho sa -thi ka -o ven -stro ke -out post -pharmaceu ticals -hi kari -mu y -af d -fallon tonight -squ at -or u -dra ined -chocol at -ë¯ ¼ -wor ths -ri b -mu j -that s -residen te -it el -boo st -mi gos -mul led -la a -etsy shop -don keys -me k -p tc -flin ders -e hs -ro hit -mu ir -g ad -compos itions -åĨ Ļ -combu stion -i kh -yemen i -wav ed -gar ci -ak os -oo ds -fu sion -se que -s lan -pl ur -kic chasu -shenan do -s ams -worl den -horo witz -with me -mic robes -k ki -ðŁĴĶ ðŁĴĶ -w su -patch work -fre er -y aki -the art -symboli sm -mil er -bt n -ma bu -side kick -motiv ates -sag itt -natur als -serv iced -ps ori -pa ola -qu ig -i badan -gi ggs -ë ³ -sciento logy -si oux -salam at -d res -cad bury -d hawan -ci ón -_ ' -swa pping -maris ka -james bond -explo sives -ay les -af er -s agu -cen sor -tom a -jeff erson -ring ed -par tist -ir responsible -aguil ar -vac ay -equ itable -altrin cham -ac ur -man ish -ger min -schoo led -pu tter -ed ad -nav al -toast y -sol areclipse -dish u -coy ne -ac co -mu ck -mar an -el os -len der -cro ix -worth less -ha ber -gun men -ðŁį ĵ -zen ith -t enders -hur st -hol tz -itali ans -car low -u cd -characteri stic -bun g -av l -u th -sa sia -rs l -red man -neighbor ing -green peace -sti ps -follow party -y gk -en os -omni bus -na issance -chri ssy -secu re -call back -ji hoon -memor y -block er -l anta -daf fodils -bil t -ffer ty -fau st -ie c -nipp les -so g -m nd -jagu ar -bol dly -ab poli -pro position -gun sense -evan sville -cu tters -we go -dou n -do x -stal lions -ka j -shi ppers -j awa -vol o -le ven -pap rika -kov ich -jor di -induc tees -app alling -dial ysis -allevi ate -âĢĶ âĢĶ -pie ter -mid wi -q tr -juli ette -inter mission -haw ks -act ment -one ill -k lin -vam ps -fam ous -cou ld -autom obi -da an -west end -elli p -nh c -mel anch -web series -ton gue -snat ched -smy th -tan gible -sl i -e asing -bar stool -over lay -afford ability -ting ed -ter as -ay ush -wanna one -rh ine -dan a -sh ana -kend al -fer tile -w ir -repl eni -lar vae -is ro -con vos -ab brevi -u cc -hun gry -bur rows -ag er -nav i -mat in -du per -cer n -ma don -ķ ï¸ı -é ģ -tu ps -hy att -sh ep -friday night -wis er -hei di -hat ton -p gh -foun tain -wrist bands -ahmadi yya -aeri al -subscri bed -so los -m ace -sla yed -for fe -dul ce -christ mass -arun jaitley -viol ate -ob stru -ni eces -w vu -idy l -fa ze -pre serves -infr inge -premi ers -inter vals -agen cy -( © -stand alone -di mes -bo er -param eters -ge tit -ðŁĺĺðŁĺĺ ðŁĺĺðŁĺĺ -tu lane -for given -scol l -mb ps -smash bros -rob bi -prima vera -ali st -ghost ly -ay at -ye ats -impre ssionist -ear phones -caul field -wai kiki -sal ute -sc ou -mu ay -louis vuitton -bak hta -ado g -inven tions -hur d -forec lo -stream line -thalai var -ch snews -will ard -t sn -euro parl -cru sher -my sore -gro wer -ra ping -pat ti -g den -sm w -muf ti -kid man -ab r -soun ders -skep tical -ðŁĶ İ -sun dar -i me -fer g -feather weight -ar lington -pas qu -ag azine -wearab le -nati c -mccl ure -inter mitt -hor de -six ties -car te -bha v -ze al -experi ential -ador ned -som mer -eno te -hypo thesis -stin ky -pro to -dead lines -vo gel -mus ings -monc ton -gu ter -f le -aci on -voice of -ta sha -inhabit ants -type face -s ba -bts x -ðŁĶ Ĵ -wor x -u hc -jo ko -cell ars -gor o -continu um -... & -weather cee -ha p -sr k -ris ers -lonely planet -un named -co eur -ðŁį Į -the world -ili ke -fa sten -ami go -ri ba -ramapho sa -staf fers -had ley -? ?" -fi ore -sal ut -hu ff -bez os -Ñ ĭ -ra der -kam ala -in line -fill ers -um atic -all in -shat ter -re in -o ku -ch ases -fla gged -baby metal -water stones -ts b -cut out -op hel -aam a -rockab illy -sto lic -jet blue -ich ick -down ton -uzbe kistan -pat na -la q -gr ange -) _/ -subsi di -sc p -newsc ast -it sa -twee tyour -e mor -archae ologists -uni fication -por ta -q x -protec tors -pro hib -charis ma -car tag -ren fre -scul pt -guwa hati -de ma -boo p -unf pa -dex ter -lay la -alleg es -sou ps -never again -l ys -cal c -bar oness -visu alize -ger ber -absor bed -i ers -a han -fon tein -detec tors -verst appen -sv c -formul ated -ac dc -li x -in competent -bh k -lour des -water house -snow ed -appreci ative -sig ma -lizasober ano -pen ned -pay check -tall inn -fanc afe -par isi -av alley -vi g -ru fc -hard ship -so cute -po ise -ì ¹ -roth schild -k ly -???? ???? -l hp -il ay -f hs -am ad -ide als -brad bury -bal boa -nic ot -kid nap -wol ve -tas manian -op t -matthi as -ãĥ³ ãĤ -super markets -mylittle pony -me lee -li ster -gr oun -fe dora -kind ness -en en -bra hms -¯\ _( -ros well -mar lene -ic u -re formation -or ail -he brides -dispar ities -terrac otta -swal lows -re id -influ encing -flu or -den e -tum our -blon des -thunder bird -sh eva -moga dishu -ka b -cre eps -i ving -ene ed -anno y -âĶ Ģ -intri gue -enqu iry -ar aj -tur al -kuber netes -end lessly -divi dends -tor a -ti sh -commemor ates -un ra -tri b -pon ty -ne m -diss ent -brew ingco -ðŁĺ ½ -nor mali -bi of -( ... -chil len -ì£ ¼ -mell on -av is -mccor mack -ing ra -enrich ed -custome rexperience -testo sterone -snu g -sett i -ger onimo -inqui rer -bre aches -very thing -bloom ing -mu ra -dispo s -bi de -de va -shade sof -in trin -sh ev -s ven -nayanth ara -gan esha -c ws -ber ta -label led -use um -nick named -ma han -car uso -ap ur -ðŁij Ĩ -w q -orphan age -discar ded -mag nu -lu e -je on -bridge port -pac ing -mercur y -( ðŁĵ¸ -marx ist -amphi bious -transplant ation -stit ching -then burg -gradu al -ãĤ Į -ro ft -ma ils -ine c -guy ana -dopp elg -ver o -re write -head less -harb augh -gate way -car sforsale -sw i -st is -mach t -un de -sura baya -stap leton -nur turing -mil ner -ya o -lma oooo -ko sh -arsen al -k ame -er ry -ar royo -dis misses -ru bbed -rc b -lew d -dil u -and or -vi de -ur in -inter sec -ha ar -al b -year swith -app leton -é al -ul livan -suc cu -monter rey -d mx -artem is -ron nie -farm land -s football -gro tto -anth i -ãĢ ģ -à® Ł -vid ya -jimmy fallon -ൠį -t zer -gravit ational -w thr -u hhh -e hr -tin ker -ti juana -scran ton -ram charan -bar clay -re van -m si -ka p -wr s -we thenorth -tor al -sat u -gro m -fac ep -erick son -z yn -se dge -oo dle -spur sofficial -ds p -sic ilian -soli hull -recei vers -ladak h -hend rick -ther i -presi ding -mc guinness -litt ers -gun nar -gh oul -wi b -n tv -kar o -fro ck -b lau -ampli fy -all is -ul lah -memo irs -kh loe -intercep tions -pet day -lo oney -con fin -ch ay -piyush goyal -frequ encies -ut z -event ual -warm ly -obli vion -an ka -ta it -âĿ¤ï¸ı . -director ial -ru lers -prince s -mu ck -stur ridge -deu ce -abri dged -bagu ette -un cles -pen du -min ding -forre ster -av ila -wall er -wall street -ment or -hin o -high way -crom well -fanart friday -mb i -co yle -a hi -tro ve -spie gel -pay tm -mcin tosh -jan sen -nit i -nash ville -len o -leicester shire -le gos -dic t -ðŁĵ ½ -sp ad -beverly hills -sy rah -separ ates -z ain -un fit -dra gs -tan ia -over flowing -hri thik -haw thorn -z ani -mac far -fi de -to tem -pe ds -fundament ally -cal ico -sin ner -j ä -hil de -ds d -ten ay -ta hit -mil f -lie b -inform ing -up lift -ra el -mortg ages -lec t -ii ii -guillau me -compos ites -old smobile -l end -gar th -com mish -bapti zed -scorpi ons -ru cker -bringback our -alli ance -thalap athy -tal i -sp ans -eri dge -wither spoon -lin da -sky lar -kor n -hom s -Ä į -sil enced -caf fe -ar ty -dist inguish -to wed -pun g -jessic a -ear nest -beau fort -t ama -study abroad -si khs -new bie -nav ratri -mar ble -loun ging -lit ter -dal it -so sa -iz es -gra de -com promising -tr iton -de tta -v j -chau ffe -spec tral -powe red -montess ori -artic ulate -hal ton -al co -ye y -mn twins -acoun ty -ðŁijı ðŁı¾ -âī Ī -mad men -kal a -gru m -chi k -ati s -su me -akh tar -job search -high lighter -bo ath -âĦ ¹ -tar zan -lam bo -âĽĦ ï¸ı -ox fam -dump ster -pretz els -mac os -incl ined -fac tual -adverti sers -shu i -pu ree -ml pfi -anti dote -cap o -pa str -merc ado -but ton -ar min -ag g -lol la -horri bly -er rands -christop he -time snow -monday motiv -li ss -scand als -mc i -dispropor tion -âĺ İ -sur pass -samar itan -so tho -pu rest -fl att -trivi atuesday -delec table -leop old -hermi one -chou dhary -en rich -¡ ¡ -subsi diary -ine qualities -bachel or -auto immune -la kota -i hop -ad jec -the simpsons -sh es -se k -gret chen -up stream -hin akhan -coper nic -x tina -lu g -tough ness -e ad -cli pped -bi us -sl v -fah ren -dee pak -ca u -x an -im mature -dig ni -bo bs -shred ding -but tery -accommod ations -de ven -chun ks -super league -sky bet -kil dare -je et -ë į -ce k -wrec ks -pro pane -oh l -tb d -quo i -trum pp -mi mo -reluct ant -ver ne -o ic -ma gh -ar nau -se ver -li dge -stair way -kicchasu deep -ðŁĶ º -mach ining -aama admi -ot i -c da -al it -pan y -inst alls -ac ct -e shop -di em -hard well -fulfill ment -sc afe -qu ack -extrac ts -swee tened -fi ghton -f di -d inger -wal tham -us ur -refe rees -seok jin -gran n -af rin -th n -sch af -par cels -bet is -amar ine -nom an -kh tar -mor itz -cou pling -bar ons -ðŁIJ ¸ -à ¸ -sl p -sad ler -x ander -tri ad -mc millan -kh z -divi ding -ìĹijìĨ Į -dar yl -zed d -le ys -pla ques -flu ori -tipper ary -on nell -di dier -lang ford -im c -the sun -bir dies -ar cha -ye ssss -t di -dar ia -cand ace -al tam -pal aces -ch it -sant am -event ful -book of -ad b -mon stax -cre ole -co el -âĸ ½ -we aren -sten nis -she ath -ati sm -gron ingen -mlpfi m -le pre -wrong ly -rsp ca -rendez vous -acknowle dging -pel vic -solic itor -sla ys -nue stra -lo d -is lander -fer oci -fashion show -ra ss -dge on -adole scents -sma shes -negli gence -grate ful -ved ere -sw oop -ing l -apol ice -vand alism -gan n -jo ao -di supdates -zimbab we -under age -radi ance -w of -bour geo -pla s -cr ani -gh ue -wrec kem -warran ts -re form -jim mie -at wood -ys l -neil himself -l bj -i man -tan to -nois se -ver bs -equip o -al together -mam ent -l ice -dou glass -tier ney -pri med -j hal -furn itu -braz ili -v ill -past els -n ison -u ff -paral ysis -jay e -im po -ðŁij ģ -strate gically -pakistan is -was sup -super bike -thank u -tru elove -sha ikh -israel is -vi p -to g -li en -la ker -grey hounds -cul ars -bian chi -balot elli -ar ran -loo s -str ates -he bron -ar vo -sunder land -the al -tomb stone -sand man -c pac -thanks giving -love him -lat ino -an in -aka if -ĭ ãĤ -tor quay -di est -alli anz -ðŁĺ ķ -golf club -cl lr -wal cott -sch nau -promp ted -nomin ating -len nox -val et -mon ro -may ward -e ph -ðŁĶ Ķ -inter oper -r da -re flex -arm chair -ê° ķ -stri pper -por ti -ph arm -ham za -ni reland -ne ue -h pv -port foli -sun burn -fris bee -be al -bapti ste -x h -ty m -pr ati -o vers -haz rat -deser t -der ry -us ky -em mett -ach arya -)_/ ¯ -shu d -may a -ham ill -ra im -nr c -fitt ings -cur vy -ðŁı ĩ -ster ling -ॠĢ -wal kin -short cuts -mil ly -ast ur -alpha be -pl i -pe z -miss you -rad ford -ml g -ta eyang -notjust lakes -du mps -seren dip -le ur -ra ving -e ster -de priv -absc bn -ðŁijĩ ðŁı» -scar city -o cr -mean ings -cap t -da hl -fer mentation -bri oche -to win -out lander -massi mo -en cro -ðŁ¥ ³ -buil t -po tam -kir i -tm w -monit ored -k ites -peoples vote -gray son -íģ ¬ -afri ka -a dies -i vote -gy ne -g annon -di x -c mc -ou ral -fox andfriends -bel i -ig ne -gl an -katrin akaif -co politics -qual itative -p si -lu cci -disc oura -âĺ ® -kel li -gau tam -carac as -reale st -pu la -in us -hill top -make aw -atten borough -tw y -r arity -peck ham -ma hon -corn elius -clin icians -ton line -tb i -paradi se -ka si -inev it -fresh ness -colling wood -lun atic -defen se -cop d -in fra -wain wright -sains bury -alab am -te ma -lac o -chec ker -releg ated -tren t -stal ks -huff post -bhubanes war -ast ral -share your -prim rose -hi me -cat an -end ment -en dow -cle mens -mal oney -hil ary -game time -den ise -collabor ators -b wo -radic als -gue tta -ici on -au a -snap matic -sat chel -excav ation -base man -s ão -gn ation -fel d -surve y -shah zad -ma st -anirud hofficial -tru cker -ot ago -geo graph -ethe l -âļ¡ï¸ı âļ¡ï¸ı -s ver -mu tt -internetof things -ancho red -wh ouse -bang la -bal main -ç¹ ĭãģ -break fa -á Ģ -twi ster -te tris -ca v -stag s -g z -au b -stor med -hel ens -yar mouth -st asy -gustav o -co sc -vin son -up p -sc ricket -assump tions -app e -nu h -u er -pre mise -n aga -e amon -coron ary -na f -north side -el mer -ro tar -out lining -el f -re surg -kat elyn -in can -hyster ia -ce e -am bani -pro lly -Į ãĤĬãģ -ax es -san jose -rem brandt -mag pie -even ly -scor sese -qu aint -f g -b buk -indian football -weare all -spd wy -pis ces -ec g -âĺħâĺħâĺħâĺħ âĺħ -pre orders -: | -ni pple -sal azar -ju me -jail break -min n -bas sett -ze tta -jef free -ad jun -tic on -san diego -drink local -chol era -solic itors -o bo -com post -ni an -wr a -tre ach -ic ic -profession al -del ve -leg ate -histor ia -cro issant -con noisse -nam o -palli ative -chem trails -i ority -global warming -comic art -behavi oural -re sted -li as -cli mates -Ł ãģĦ -rut land -nou rish -menopau se -hot ties -demen ti -ve spa -mel ville -anal ogue -tz man -str ung -im perfect -gl are -cir cling -ros berg -rec o -oc ity -lo ire -em be -do ssier -ne el -nan do -me a -gal vani -fin esse -ag p -berke ley -asi m -âĺº âĺº -quil ted -ish ere -un matched -po tion -for z -at re -selfi es -juli ana -ðŁļ ¶ -âĸ º -mel ton -âłĢâłĢâłĢâłĢ âłĢâłĢâłĢâłĢ -spin rilla -pur cell -ed p -at leti -tony awards -ra ja -pro gno -mol ten -stu ff -p ally -nobel prize -âĻ» ï¸ı -spiritu al -spe ake -sa sha -bri um -tru ss -critici ze -assassinscre ed -yor uba -u lo -fire man -workin progress -ef cc -fla res -ro bot -hi kers -cl l -shado wing -pat sy -leh man -c ns -å ± -guad al -à± į -ra pe -r honda -paralle ls -son ja -langu age -land ings -z ola -cr amps -bur ning -apprais al -jol la -ham m -kas a -gul ly -f go -uly sses -ri be -ðŁĴ Ħ -ib u -eti enne -bri ar -fin ely -comb ating -y ql -go tham -we chat -to paz -primar ies -l se -iz z -hel e -dispon ible -cy stic -bel ichick -th rush -kansas city -ge om -soli di -red bubble -by stand -cambridge shire -par fait -ast le -ow o -ind ore -stom ping -sm elly -ðŁ¤ ĸ -locom o -adm itting -hol me -clock wise -min sk -mc co -for get -ev p -cam ra -ab ella -yo tes -universit yof -mé xico -silver ado -ric ket -crom bie -pu j -eradic ate -deli ght -y go -glam ping -vic a -du ggan -coun ters -cf d -sc our -react js -pu ram -paras ites -in ki -vill en -stel la -li mbo -ang as -k cr -ðŁĴļðŁĴļ ðŁĴļ -vap ori -mum ford -oli gar -à ¼ -al oo -boo ties -ad r -k elli -dru mmers -av ici -nature uk -ron al -in trac -un splash -le che -g oma -el ine -envir o -bi onic -bu eno -mi k -av in -star ling -em powers -cake day -boy cot -ðŁĴļ ðŁĴļ -ðŁĮ¸ ðŁĮ¸ -v ach -m ci -fractu res -ger i -sk ing -exclu ded -lu ce -ja ve -ig gy -evi den -aki stan -a wn -mor als -luci fer -ha ban -tumb ling -sunday motivation -mo sley -captain america -sch icago -the one -mo td -d ts -ðŁIJ ¼ -rep ell -ii i -locu st -geo spatial -mer sey -immer se -desc end -ber nade -j s -boat sales -win der -cran k -sing leton -candid acy -ben a -ðŁı» âĢį -high lander -ol t -k prs -healthy lifestyle -four teen -end the -ith aca -circul ated -r ans -pre valent -ha vas -splend or -roo ster -kalamaz oo -jewell ers -enne dy -rou sey -es y -cann ons -ornam ental -// // -ren don -win ne -mol ding -eid mubarak -coun tess -simon a -ha wa -fo es -du ster -sb u -por tray -mar ries -goo dday -cho co -achi ever -ðŁĺ¹ ðŁĺ¹ -pre neur -tr amp -tom i -n bat -garden chat -farra khan -ever glades -ab ru -sou sa -se ce -homes wee -terre strial -bar it -sri devi -ol u -mel inda -f rick -can dies -ðŁĺŃ ðŁĴķ -qu reshi -family fun -exor cist -cardin al -ny t -dies el -cu mulus -capric orn -si ology -lor na -dou gie -an die -super sport -c fl -п ÑĢи -say ang -pe ek -ภĬ -lo be -j em -ing lis -gg led -c sn -amne sty -chu ps -ba es -sau er -ðŁı IJ -mongo lian -en et -back street -dr illed -acce ssing -ce o -b se -ai ken -pur r -wor sen -whe res -war k -testi fying -bu ri -bla st -aw g -ðŁĵ ĭ -re defining -hear ing -u ci -c mp -bon i -tail oring -ta ji -noc chi -em t -stephen king -ne et -compla ins -campaig ner -luci ano -twili ght -ti esto -pas sports -flo yd -cathe dr -na ked -caregi ver -b coz -ade cides -ku ri -ly k -br aries -dren ched -disc lose -ðŁĴª ðŁı½ -le blanc -je tty -gar ty -chip mun -b su -rhyth mic -ic z -fri d -anne x -ame x -solo ist -lanc ers -arro whead -speci fication -simul ated -na is -inver te -bo wing -wor ship -f z -abo ss -sha q -ì¶ ķ -challeng ers -an arch -aamaadmi party -ãħĭãħĭ ãħĭ -suffol k -so corro -sn ell -cla dding -absor bing -shaw a -particip ates -ðŁį Ķ -book stores -bak u -seap ort -ko jima -gab y -pack ard -electr ician -let it -mo wing -fa wad -young jae -hot mail -men ing -u rie -intim acy -con ti -: ") -lifeis good -in ciner -i dri -craz iness -jour nos -fran chi -bott len -al da -ff es -k x -south we -air a -clay ton -sco ti -f j -bri ga -ðŁ¤ĺ ðŁı» -demonstr ators -y z -stor k -na q -casc ades -travel chat -plat a -pad ma -fran ci -at tain -bat girl -lom bard -hoo s -d dos -neon atal -discla imer -r ss -r ant -di sen -tex aste -so cal -frac tal -cam ry -stri fe -sn acking -mu h -sant ander -mor ons -gra f -par ades -hu ston -dru pal -mi ento -kir stel -hy de -vom it -forti fied -sphin x -da v -bir yani -win nings -s baseball -mer ged -lovel ondon -ling ering -dream big -car leton -liveli hood -djan go -astri d -gri ds -down e -bru ised -s ne -scarec row -hel ium -f nc -bi ggs -an ter -restor ative -em pires -ab del -life style -kiwan is -colloqui um -me en -pr ick -anti que -ze b -mi mic -edmon ds -ðŁijĬ ðŁijĬ -q ing -pp el -mc gill -interpre ting -âŀ ķ -rash ad -do ka -narr ator -electro magnetic -ash by -sau ra -iran deal -âģ īï¸ı -krish nan -in di -ff en -bre a -os man -multin ational -chi ppe -recruit ers -aus biz -p ounding -re gen -cur sor -refu sal -mac s -in ak -ax ial -wa ifu -up cycled -hindu stan -cas sini -carly le -scrat ches -re ef -man atee -eat ery -ðŁĵ ¢ -un condition -sen pai -on ther -comic book -pro sciutto -de mar -mi se -ma ge -fre ec -aye sha -al der -android games -ley ton -ho ck -door way -chicagof ire -aali yah -sw elling -bi x -. ðŁĺĤ -evan kirstel -torpe do -kon stant -genevie ve -ma ia -ha user -do torg -hide ous -fi k -sp raw -e ek -z appa -wan dered -' ' -ra jan -bam bi -( $) -wid ening -tool box -sa ir -illumin ating -pra ys -out patient -i w -day o -lo b -sw fl -sha des -gu ms -coo kin -ko di -gri ffin -traum ati -ste a -slaugh tered -god bless -air time -pseu do -b sa -hau led -ar if -à¸Ńภĩ -le l -wc po -mil iti -char ters -worl da -ru k -k gs -digital india -is able -idyl lic -esp ino -marie tta -e bo -team canada -ab our -wil ton -rock stars -fav ored -phys ic -wrink le -tb r -d print -ball arat -ad al -z ey -ðŁĺį ðŁĶ¥ -tom lin -mt r -pal sy -fener bah -tight en -phil ia -ir oning -ry u -b ant -enqu ire -ca ir -abur ger -tru n -green berg -chau han -ir ina -sh ani -trend setter -pre tt -zaf ar -alo ve -v ici -pan ic -no o -lu stre -disrup ted -bal lis -son sof -mon si -inst ac -ake st -ëĭ ¤ -kw ame -horror movies -distric t -sau cy -mb an -ar mies -with drawn -med ics -loft us -er oom -be kind -ar ns -all on -un ison -davi ds -cr at -nicot ine -so or -sm x -on co -cospla ying -zombi es -har ms -e ger -ro sy -moon shine -fe in -ce tt -du brov -reg ents -ben itez -ðŁijıðŁı¼ ðŁijıðŁı¼ -ste c -m alia -prioriti ze -ic eland -ft se -v amo -lam ont -homo sexuality -bre es -regu i -cb p -te j -sky sports -deter gent -sha sta -de rel -conserv ancy -colori zed -accol ades -vis o -show your -nan ow -bice ps -us ability -bi m -dailys ketch -pearl jam -stran gest -mega deth -broad casts -bar ren -ar ton -chri ss -confi gu -lu res -is the -e ul -railway ana -global health -gi anni -u aap -s lum -consci ously -ab re -n up -bud get -v ada -e sch -real ness -er ased -th unt -be z -armist ice -ðŁij ¹ -sh run -o led -driver less -ðŁ¤· ðŁı»âĢįâĻĢï¸ı -won dr -sk an -sal aam -mother land -h wang -gen o -gang nam -tw right -endor sing -en ic -ador ation -pau sed -patric ks -do cked -plat te -ff xv -ethnic ity -auto show -side show -after life -re located -orphan ed -food network -dare to -and ra -sla ps -v live -swim s -re imagined -mist le -re vise -real ity -bhar ti -ðŁĴĻ ðŁĴĽ -late st -prou dest -gra sses -lan yard -fresh est -carcin oma -anom aly -zieg ler -sum ner -ly rix -gor g -is d -av el -swild life -me squ -john cena -euro league -sab er -master ful -yar ra -cogn ition -jacob son -abo lic -sir loin -shuk la -moj ito -su pere -st weet -me z -e sa -rudol f -gur a -where you -tt m -win s -trust worthy -ny k -bra den -table top -good food -es on -be k -lingui stic -gra ys -ch ath -h cs -mon i -de ans -cu ssions -ch ell -slo ws -he mi -d app -shar pie -boo sters -a os -str ack -se dona -mu eller -hard wick -or nate -thor a -sal ud -o twol -ch um -mi ho -for age -thel ittle -tear ful -ones elf -min dy -sm g -gmb h -emer ald -ðŁĶ´ âļªï¸ı -tu tti -recep tions -re vising -i brox -tope ka -sal ami -expan se -i books -dob son -cli o -at s -ðŁļ Į -mo ha -is ance -shu tters -moo t -jan ine -marvel comics -jor dani -pos er -kenne th -hy ung -de ja -ase ball -speci ality -eu ston -classic car -had ith -ðŁIJ ī -chas ing -iz o -gros ven -ag lia -thisdayin history -t row -om ile -hu ar -by n -sal ine -div ine -demon ic -ty ran -han dover -revit alization -pa ella -cryp tic -se dg -m end -dun kirk -bre d -wal d -sport scar -a ard -whe aton -da ener -k lan -br t -bakhta war -spi res -schu bert -ro ti -poli sh -o se -ag ame -wonder con -prote stant -bo sa -ðŁĺ Ł -d ü -joy ride -ger trude -âĿ Ŀ -gil a -v h -tw a -tra v -swal lowed -star ve -la in -ent ren -rei ki -su kh -cra ic -az u -web page -kee fe -hypo the -hir sch -hel le -camp ground -w amy -tra vi -sha hi -san deep -ru i -han uman -dw p -reposit ory -no or -no ff -un real -p ell -black history -har vick -ma scar -pay ee -pa sha -gastron omy -d ÃŃ -ai g -rosen thal -open day -embelli shed -t tip -sun bathing -go pack -end ome -ï¸ı # -invali d -final four -st fu -squish y -ra sta -mo sch -jam esc -die trich -sel a -mel b -el vi -t dp -sun i -sli t -j ha -bi za -spi ked -l li -l illard -vam pi -syno psis -az har -kendrick lamar -ĮãĤĬãģ ŁãģĦ -heart less -country file -air play -arrog ance -pre e -virtu oso -ãħłãħł ãħłãħł -raj u -le bu -for ward -tu g -dro s -mondaymotiv aton -concep cion -thel o -pad i -looo ol -ÑĢ од -it ss -eth ical -end uro -__ : -expend iture -mon ste -mas king -terri ers -ib is -e mber -cu mple -punctu ation -pi per -ir vin -ade e -yy yyyy -flash backs -cel sius -don nie -bo gota -ben evol -the script -shil pa -pro se -fin dia -ze ke -ne ko -do ves -blues lyrix -fro sh -sowe to -mp lo -al ai -sab i -raq qa -wf tv -stro ller -ian somerhalder -ðŁĶ ª -an on -mo seley -! ?!? -sta king -mol y -car tri -c sg -ast or -transc end -ma er -de ux -cow girl -sas k -pun ter -ma ken -o ates -love tt -grow ler -sag in -v n -ssi ble -officeof rg -y mc -sab ar -faul ty -ap ha -ak on -ðŁij « -snow don -ae w -raise the -ðĿ ĵ -grue some -clement ine -sp ing -lat a -worlden viron -mi mic -can aria -bakhtawar bz -ao a -fal a -ãĤ Ń -avi va -you uuu -thi gh -la dders -gu mbo -tz ky -fu zz -plastic pollution -est ate -strength ened -k ant -dr in -cal vert -transform ational -frigh tened -mac lean -elited angerous -ear thy -t son -to da -j nu -.. , -mic hal -i ban -je ong -is real -sim coe -exclu sives -blue bells -ben e -te u -pil sner -pens ke -athe ists -m pu -cartag ena -ðŁĴĹ ðŁĴĹ -million aires -kk kk -it ar -subscri ptions -remo te -ma fi -hin ton -w cc -ho k -ds b -ab leton -sevent y -pun ks -e indhoven -sh one -mcfar lane -lim popo -empha si -à ¼ -sin fo -pe tre -man grove -ch ino -ber tie -play lists -push awards -p af -deb bie -c do -r ino -ðŁı¾ âĢįâĻĤï¸ı -fol ke -bon nar -th ine -sl an -hal ter -evi e -aw some -vul tures -spar ky -seiz ures -âľ Ķ -ram one -ine ffe -al n -pro ctor -ast ra -the voice -gro te -sci on -dead line -am aya -tain ted -patter ned -exce eding -cross fit -kay lee -drop box -ru shes -tack led -mo by -retro gamer -n cbd -benef itting -shay kh -guild hall -gen try -dream cast -dread ed -bun dled -th aw -revol ving -n pt -kylie jenner -imagin ative -ron i -over came -family time -ds burg -car naval -relation ship -recogni zable -cor oner -ho le -fan fic -emir ates -bur ritos -analy se -thin ner -ne es -galli poli -bl r -cat woman --- >> -au lt -ada ily -nau ghty -ili o -solit aire -mtv br -jocel yn -arun ach -rep ent -south gate -hy acin -essenti al -fent on -and um -it or -go pal -sl inger -po sei -aw il -wi elding -ra ila -eli as -a sto -à ¤ -tend ency -str ata -ker t -< - -im acele -da es -sti mulus -han ley -fit nes -ec stasy -lim ous -ha iling -ðŁ¤ Ń -chis wick -tar ies -sla v -pul i -moderni zation -black mail -b ingham -h fx -+ + -ðŁĩ®ðŁĩ ³ -ni v -we a -profess or -k off -bol ster -su ave -sequ ences -pepper oni -not te -dre n -ãģ¨ ç¹ĭãģ -hs v -o ga -ap tly -z ad -excel si -rin ka -mol dova -min n -ma bel -conferen cing -bas ing -of er -ob si -hamill himself -care less -brief ed -inhe rent -par ish -dub nation -town sville -sar awak -gee ky -doncaster isgreat -was abi -gu p -phen o -dra inthe -carrie underwood -ble eds -bbc world -ane w -alta f -dul wich -ani ston -w ti -sumat ra -gra fton -bl n -me ster -bode ga -re go -es q -an jo -sump tuous -mai sie -ï¿ ½ -wil t -jak ob -el vis -se pul -mu ster -air pollution -president e -happy monday -exten sively -fl ondon -t ls -play ing -pe ed -din ho -var dy -pi ka -n iro -au cus -ðŁį ¦ -nu ll -el ondon -juvent us -imag ines -dis ab -lit o -d ura -work places -promo te -mc caf -wood work -waw x -à® ª -tt ino -shar i -sem per -better together -ðŁijĬ ðŁı» -ze bra -pon dering -en chil -ho m -cosm ic -tan z -mo cked -ec cc -ath ed -abo lish -prop eller -paris agreement -assemb lies -indu stry -fraudul ent -pe sa -chang min -ax x -ðŁĴ µ -irr ational -cu sa -ramad han -octa via -on elove -jac ki -bar ak -taxi der -seri ous -nathan fillion -mc en -ch k -po part -grav ity -copp ola -reading fc -illu sions -j ig -ww x -re sh -ex porting -buzz ard -âĻ ¤ -p cm -lan apar -ko s -arom as -antal ya -ww dc -ven a -phil a -ball in -ðŁij Ħ -quin ta -ma o -f ery -eigh ty -sentim ents -safe guarding -r wa -pu ffs -luc ille -de cath -sl u -nu gent -de ter -braz il -ze iss -super bowl -subsi dy -alter n -hi dalgo -enz ymes -ä ½ -tag ne -hair dresser -adri en -walk out -oppo ses -can tina -bed side -af an -ðŁĶ Ĺ -prophe tic -dan es -un successful -super charged -pk k -exem ption -hart le -secu lar -cli pping -br s -united way -c net -pat chy -ha gan -e en -âļ ľ -var a -sym pathi -never trump -affir mation -om f -ny cfc -ma ja -sur ro -keer th -up scale -sandal wood -mon archy -kno bs -å ĭ -po tholes -hunger games -ter races -na sir -coun sell -welcome to -wa q -se aman -m ita -stun ningly -on theroad -in ability -) !! -bon go -ant v -sp ut -worldenviron mentday -resu sc -y td -fi m -eun hyuk -sa chin -rose anne -cler mont -ape c -am ina -v ening -n antes -al most -sin us -ex as -ty l -ti en -ple ad -lanc s -bur naby -re k -jo om -observ ers -disco graphy -cl g -âĻ ¦ -sn ack -r ti -o ily -crystal li -bru te -web development -topp ings -la f -an is -ad der -reli ving -car lin -battle of -we g -syri an -pon t -n dc -lagh ate -yu ma -sp p -p iti -ro bbing -mart ing -rey kja -raj put -nc ds -kie wicz -âĢ¢ âĢ¢ -vam pire -substan tially -opio ids -nepal i -k line -ar oo -under stand -lit t -u it -thro mbo -sar ies -qu ot -b alling -t tr -s gh -philip p -br ant -ac l -m ello -whit taker -. ; -defi ant -b gc -repl ying -mir ren -metamor pho -sch wab -bul ge -utili zed -pick ering -par don -d sa -ภĪ -doo ley -cumul ative -Ð » -ur gency -e mir -+ /- -¦ Ī -ot as -âı ³ -station ed -grape vine -ar ac -karan johar -f ancy -sau l -coo gs -lgbt q -ا٠ħ -jav i -u mmer -pl l -den is -dai pur -pu ffin -lewi sham -fand om -co pe -ves matter -s ve -hel pless -deo dor -ostr ich -kaz an -friday the -con dor -v x -sophom ores -rob les -cu tt -cli mbers -ë¦ ¬ -sle g -sn f -mac ys -hydr ating -grou pe -po yn -mou lin -hg tv -lmfa ooo -sulph ur -asdfghj kl -annab elle -hump back -bra ved -viswas am -multi purpose -hu midi -escor ted -barb ican -f ad -cor sa -ðŁ¤ « -pi ppa -here to -can y -ser gi -or cas -o vie -ed ou -s any -glob alization -man cini -food truck -f is -defi brill -sch re -sma fia -love wins -la ut -k aka -hol lande -game on -resurg ence -out side -olympi ad -int an -abstr action -rapi d -pal om -cal le -jas min -attack ers -swag g -mit ra -ky lo -à® ² -her mitage -gor do -e ira -so sfam -roll out -exc ite -sy nod -mer rill -c als -as sa -liveli hoods -ju ve -the black -gopack go -ant lers -alban ian -wool ly -qu iche -puri fication -are th -smar thome -ne k -all blacks -mex icans -is m -ger ms -comple xion -mar ck -u shi -ðŁIJ IJ -char l -ca stic -till erson -giuli ani -biode gradable -mal bec -bo is -ju bil -im es -r ame -gene tic -esp nu -ch ley -so ho -go pher -g sc -buu ren -cu be -bridesma ids -webin ars -to e -mani pur -viol ently -notic ias -ex changing -chi ev -replac eable -muay thai -bu ss -sp il -instal ment -div ya -cait lin -o lim -fil tering -whirl wind -sta red -prior it -pr am -pompe ii -mono logue -k ite -bu ka -âĢ¦ .. -vac cine -bre ro -woz ni -sol ent -re ferr -my rt -gridi ron -galatasar ay -fro ze -clare mont -ðŁ¥ ĥ -victori as -ssel dorf -pa stures -net neutrality -ch or -ðŁij ģ -ಠ¿ -we ho -symp tom -jo sel -in ous -dragon con -power ball -p te -four thofjuly -ec la -ear buds -where abouts -salt life -depriv ation -ch ter -wi ggle -syste m -ps st -ch az -d any -ri mo -oax aca -lanapar rilla -barcel on -melanch oly -way back -ho tro -n si -l illy -kur o -ja han -intellec t -board game -ðŁı Ĭ -sneak peek -k prc -jail s -cand el -zan zi -mor timer -star ch -ra gs -p fa -long live -k art -gir ona -cro cker -christop h -precau tions -war ship -per m -paren t -van gogh -gif ford -allegh eny -ra yn -ut m -sten cil -rec alling -pen ney -z azzle -ìĥ Ŀ -hin ds -aren as -nu ev -law ler -gu in -do this -ðŁij ķ -ì¶ķ íķĺ -we g -ti b -ri din -complex es -turbul ent -pe sos -de marcus -vall arta -sam sun -kis ses -hein rich -deport es -wil ms -ur d -then ext -inki gayo -ho wi -fir sts -carri age -clean liness -mas war -is ch -ax el -si zzle -road house -fr ans -ent ourage -co bble -boo th -benedic t -tal on -fc u -year ofthe -ray on -raider nation -fo yle -ko val -pi anos -l pg -bur mese -man ure -geo caching -cosc ino -b np -fer ra -stro phy -mar ais -ce es -legen dof -kat niss -eno ch -av ed -you know -d prk -ðŁĺ¢ ðŁĺ¢ -sp un -pro st -sor rows -cent red -ke a -gal icia -? ðŁ¤Ķ -ÑĢод а -bou chard -ðŁĴĻ ðŁĴľ -yu i -seed lings -jon ah -reco vers -ny rd -board room -su ma -my japs -tun g -sha i -ir gc -eli o -wag ons -ka shi -polic emen -john nie -ale coscino -shop ify -dot ted -de tri -va w -to fficial -in your -chal mers -trac ed -no vi -by es -ari el -nipp on -la pel -gri ez -b gs -fool ing -d ita -vijay sethu -nm wx -as ot -kr anti -hel m -ve di -sic kest -mo chi -k abo -shru bs -he red -b sp -sq m -ham r -dul kar -anth a -nr f -avoid ance -at en -publi x -be arers -nas i -ha p -h ells -ðŁĸ ¥ -ภ· -thelast jedi -oh wx -ðŁį « -wa hoo -there se -rec aps -ss nhq -bird photography -v ay -pet ti -pau lo -bel vedere -( * -gr l -du vet -c pec -sa it -por sch -meas urable -avi ators -fre mantle -bre en -on om -me and -life saving -eu ref -en don -embar as -aira sia -el is -dun kin -star magic -s ill -porto bello -ki efer -ex e -mu ted -ãģ ¦ -we thepeople -logi a -liber al -theforce awakens -min ed -haun ts -freck les -care taker -s india -âķ IJ -dev lin -list on -direction er -oh n -fi garo -em manuel -du bois -cl ones -bru ise -ðŁİĪ ðŁİī -disin fe -der matology -as r -s watch -dis comfort -tam anna -pi day -mack en -k atic -delu sional -shaw nee -gu d -al bino -p ali -din gh -cucu mbers -coffe y -anticip ating -treas ured -web summit -shel tered -sav or -pedago gy -m gs -sh ma -s bu -den ali -cam pos -bubble gum -o ir -le aps -y ler -r one -sansk rit -min t -meat less -futuri st -du de -a vel -prote sted -squ ire -z aki -sz n -har court -cycl one -bour dain -gather ings -d ant -advent urer -parag on -alt man -dd ing -ban erjee -snorkel ing -mother well -mis sy -en der -glo ws -ki wis -chick pea -por o -e fron -app t -u y -speci fied -gab by -e strada -com bos -bour bon -vin i -var un -steph ani -key words -car vings -amit abh -wr ought -tw al -re els -clu bbing -ubi quit -cri t -ambed kar -æ Ļ -prun ing -vaccin ated -boe ing -s ks -lo ona -hypno sis -edel man -pho l -he w -colo sse -mckin sey -u on -to te -sacrific ing -ox i -n ang -e mu -пÑĢи ÑĢода -m th -kers wednesday -argu ed -timel apse -ris king -regul ating -ni gh -likeli hood -cu bic -au ction -rein for -pi stor -no ses -ye l -snu ggles -pe i -jean ette -ta ku -ri th -guy z -ภŀ -y te -ver ted -pay soff -jau regui -hoo ligans -procedu ral -mi b -har dy -el eng -chec kers -all ine -the met -prou dof -keerth yofficial -collabor ator -ni u -infl icted -adv ani -re twee -memor iam -f icial -ti ghter -sal em -re viewers -br ics -ben digo -am ell -tur kish -sush maswar -paul son -pal awan -mol lie -stitch er -s burgh -ir u -hay dn -en ers -aro a -u zzi -saraj evo -hel a -apol lo -nine ty -vac a -sp on -vent u -jel ena -hei fer -avo ids -sp ine -pri ze -mar ist -re creating -me de -woo den -find lay -ro fl -n di -compreh end -yu go -y ü -to work -u fos -son ar -pi ston -recor ding -tent ative -art forsale -pel lets -fre do -ÙĪ ر -mu ses -custom ization -pro found -is ner -ide ally -si am -plan kton -cm dr -man ger -fran ken -customiz able -ठ® -walk away -swi vel -vast ly -no ton -lex a -ex moor -z as -tan te -reduc tions -lol ly -hip sters -benef ited -ë ² -ww www -mascul ine -fi ji -dre y -ph ill -ane ous -nic ol -men dez -disapp ro -ch ner -through s -shen mue -east man -ðŁIJ İ -yu ck -under tale -re ys -go beavs -eng en -c na -mer r -bir k -ãģ¨ç¹ĭãģ ĮãĤĬãģŁãģĦ -âĥ£ @ -yn na -ste ed -offen der -at um -vani shing -presi denti -love them -g nocchi -fri ggin -per il -mad hya -ag ne -dee jay -mar nock -m tb -fold able -@ ___ -stand re -bron x -bow ski -fin ite -cro ckett -b sf -ge tit -seren awilliams -mir o -ignati us -sla y -rin se -fon due -sel dom -s more -gan i -dy ce -dmit ry -cru mb -late post -pri mark -oh ana -flor als -do a -remembrance day -d ds -azi one -toon ami -air port -æĿ ± -th ad -fi st -dine sh -dr who -ad words -admi rer -pro je -kyrgy z -à « -manife station -le wan -j ic -thi bau -le ased -van ity -nouri shed -never theless -aug mente -fu elled -che ad -wil shere -ru di -p z -my co -mor ro -herbali fe -hardro ck -de man -dre ality -sp ades -ce vic -bha i -bar on -ultimat efan -hou news -to bi -stru t -ke el -affili ation -the masters -sm al -hu e -este ban -con v -om nic -datab ases -co v -ter ti -st g -snoop dogg -metab ol -leth bridge -ðŁı» âĢįâĻĢï¸ı -year ling -residente vil -nws l -iy aki -griez mann -c ous -ðŁĵĿ : -tor ian -sam i -ðŁĶ¥ðŁĶ¥ ðŁĶ¥ðŁĶ¥ðŁĶ¥ -g are -alli ances -whit field -we ther -refin ing -coy i -kra ken -ðŁĺĺ âĿ¤ -singul arity -lil i -h ns -bol dand -waw rinka -misogy ny -lo vers -c q -b dg -ad ona -gar ter -women of -sc d -recogn ising -mun a -str ou -sign alling -lare do -hell boy -alek sand -un available -pedi atric -as in -mer ia -ri shi -futuri sm -w ye -polari zed -e we -pro pel -in forms -cre ase -~ " -arti ston -like for -heidel berg -er ra -life in -len ny -inter rupt -cohe rent -ca z -vick ers -le veled -f bs -cab ins -bu mmed -apost les -we h -ten don -souven irs -infu ri -pier ce -asse t -m las -go th -di ggin -ann as -yl or -th waite -sw el -pan era -mur derers -croo ked -bs go -ac u -a on -re an -one of -ko hl -bloo dh -pest icide -lost dog -fle xing -ëĤ ĺ -su pra -eter nally -ðŁļ Ļ -pa olo -ol an -mom o -is elle -captain marvel -s lou -mistak enly -akhi lesh -mer t -il inan -bu on -bal kan -mir ro -mill en -der ail -dam on -tit i -bi os -re don -pic ard -par te -ðŁ¤ Ł -Ø º -son ics -fir sth -dd c -veg ans -tur ban -ni gan -lot tie -lyn don -star buck -pink floyd -life styles -am ara -a she -r sc -val a -sm er -cw gc -cli ent -buen as -jag an -coo ps -ðŁijij ðŁijij -speci alizes -snag ged -g lar -ben net -wildlife wednesday -bow den -pi k -art in -empor ium -ar l -re ba -pas ser -disappo ints -additi ve -âľĬ ðŁı½ -bay er -missou la -ha skell -comm ences -ni x -ne man -explo ited -plastic surgery -cc d -aso cial -vo t -sie gel -fro ome -kap am -far a -e ha -pro bes -mw f -meet ing -p bb -ak ins -mistle toe -kingdom hearts -for kids -ec r -bal e -escor ts -adidas originals -k wa -k ts -hallo ffame -ðŁĺį . -wag s -pot ted -o wing -honey comb -he fty -uro logy -mer le -b pd -stri pping -re ich -k state -gu ay -yon ge -shak ti -g loom -bat t -son om -n ery -el ba -blan ks -hel le -triple ts -bom bay -ak arta -ab ia -transm itted -rol f -ja is -angular js -fi erc -m ss -trac e -ॠĩ -tom bs -old man -kom bucha -fo l -e health -cere als -are lli -in ari -ðŁĴ © -wo l -liber ties -fa wn -af firm -nun avut -hyster ical -k drama -art es -âĢ¢âĢ¢âĢ¢âĢ¢ âĢ¢âĢ¢âĢ¢âĢ¢ -valent in -man slaughter -gal es -eo in -energi zed -del s -with draws -st les -sar castic -ram esh -incredi bles -lock hart -ya wn -ultimatefan live -oooooooo oooooooo -mu en -guru dev -te er -pe eling -new snow -lingui stics -direc tv -ag end -uni lever -ru ger -han dedly -ero se -li mel -the c -royal ties -fini shers -nr g -m gt -fid get -com ps -bac on -aggre ssively -ab it -ch â -tar de -slu gger -q anda -gre ening -d ats -ensla ved -spec tor -o ye -fre ef -b hand -stop brexit -mis conceptions -cav a -ðŁĺįðŁĺįðŁĺįðŁĺį ðŁĺįðŁĺįðŁĺįðŁĺį -multit asking -hou sel -ferre ira -cen time -ank les -jo dh -hel ly -fro me -out tuesday -nar nia -bal aji -l bloggers -jyo ti -ðŁį ĩ -lan cia -cap ri -y ap -nat ash -down fall -." âĢĶ -à ® -ligam ent -coat ings -ai ded -hi ko -fall ing -encryp ted -yeg food -infringe ment -cu di -ce p -ðŁĺį ðŁĺĤ -tra d -super rugby -ed win -wh iche -vi meo -lay ne -in vigor -he he -dubrov nik -bie ber -u tr -sham an -op ers -ham ill -en ig -di f -ar um -scrap book -min h -diver gence -mckin non -life time -guter res -wil le -ple as -patt y -mic ron -k z -dom aine -ru sher -m ds -ches ney -screw driver -âģ© , -sle dge -hau er -chan a -stam ina -sprink ler -pl n -he ff -bol ton -om on -car rington -accor dion -jor ge -inter ception -in puts -gu ll -tran scription -vanu atu -it ical -eth os -tic h -spac ey -pee king -u mi -ha ger -psycho tic -illi an -illi a -bonnar oo -an ese -pu c -laghate parth -en hall -econom ical -dre dge -% - -u we -tu bular -scoun cil -pe asants -fl er -tumb ler -he p -ford ham -row ley -initi als -ev asion -er nation -plu gins -coch ran -c attle -acid ity -ðŁİĬ ðŁİī -re grann -jump man -ef ace -x ma -patri archy -esco bar -cristi an -tip ton -nu eva -hack ney -back seat -kill arney -aid an -sta dion -simul taneous -ida ho -a je -u th -figu re -clo s -bur k -volun tar -rec ite -macfar lane -cur few -bou do -w gn -sti x -sla p -scrat ched -philli p -jour ne -ex pelled -wa z -u ke -tati ana -ou e -ho pp -dimit ri -ðŁĵ £ -mato logist -electri fying -blu ffs -bill smafia -az cardinals -y aa -x mas -shar a -r ith -g ills -dre s -bar ton -authori zation -imperi alism -home of -to do -foot path -band width -visit spain -moh sin -erup ted -mi ki -insig nia -mike l -ss h -ger a -bank holiday -aw an -t weak -star craft -e al -construc tion -skelet ons -le ep -ine m -bar clay -ship wreck -monsi eur -yo h -ron t -form ative -ser o -le p -horse man -hoo sier -haz mat -cylin ders -cen ti -ðŁĴ¥ðŁĴ¥ ðŁĴ¥ -re em -na ire -mus ically -gras shopper -est onian -termin ology -ro main -blogger rt -tox in -stan ce -cultiv ated -an ast -ðŁIJ į -shi mano -go pher -ene i -recycla ble -gam ification -fight for -c q -avoc ados -ke ys -eli ke -gly cer -shak ur -mobili zation -gal ley -expla in -ex changed -pe th -obe dience -illa ge -en nis -ãĥ ŀ -wi v -walla bies -ma ar -ig ers -fin tech -fin alized -wo j -meaning less -in field -onna ise -e et -bron te -pass ages -ðŁij § -strick land -northern lights -lom ond -h tc -wr ay -shi fter -di alog -ðŁį į ->> >>>> -te atime -ste ch -sic huan -qu ill -fran ca -comple mentary -bar rington -marcu s -mal am -goo oo -for sa -elec tra -af s -âĹ Ĩ -tri fe -sn azzy -fo lia -and olan -after dark -wood son -stra de -litt lest -o gun -con wy -co wards -ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤðŁĺĤ -íĬ ¸ -se ul -mur phy -dun ks -kapil shar -jo achim -wom ack -equal ity -aver ages -a ine -ðŁ¦ Ī -tac ular -dis ability -u ked -mid century -bar thol -teas ers -tab ern -nj caa -sp out -op i -ku bball -bl om -so ar -popu lism -meth yl -ðŁijĬ ðŁı¼ -o spre -alo ils -ðŁĵ ĸ -ðŁĮ ļ -x er -sp illing -publ ica -car dam -adi sh -sa cha -p kg -bu da -lyric ist -i bc -gru mp -ho ver -hal ep -anti body -anem one -âĻ¥âĻ¥ âĻ¥âĻ¥ -m cl -litho graph -cc u -s fest -path ic -calli ster -otta wa -gun sn -rut ger -hali but -en vision -differenti ate -ðŁļĢ ðŁļĢ -pir an -lat el -uc n -trou bad -ra ine -fierc ely -learn english -lea se -wex mondays -em it -dray ton -bur rell -scuba diving -hol ler -dr u -clo cked -w ral -ap ro -trans lucent -w bo -patri arch -mo ja -lan nister -fish ery -ne derland -mil dly -mi rai -ma ko -ja p -ðŁĺ©ðŁĺ© ðŁĺ© -pro statec -p anna -ar ama -under taking -tomp kins -ne op -soli ds -sav oury -e ames -cut lery -wood bridge -steam er -ri zzo -wild cat -rat na -lamin ated -kin eni -jal ap -ai des -acknowle dges -?! ?!?! -! ðŁİī -w afc -mag gio -ha ves -dar je -of i -gr il -v asi -bru x -mo hd -fake speare -arn old -r mb -for be -wal leye -ro di -therapeu tics -strate gi -ob ste -mu dder -download able -dd ings -d ca -asi angames -campe on -appropri ation -th century -ram atta -dra ped -bul lion -mu c -one x -se greg -ophel ia -bod ily -âĿ¤ ðŁĺį -wi zar -te ased -ade my -to id -sur a -lazar us -sn ickers -ma se -lo h -bow ed -bibli o -x change -har lan -gho shal -flavor ful -bha gat -alle z -whiche ver -ten stein -disc er -organ iser -mt g -dream liner -t se -hok kaido -mo k -indulg ent -hick man -blin ded -al yn -aaa ah -sp ool -lough borough -inter pret -et v -aristo tle -optimi zing -avici i -madu rai -ju li -naw az -mat chups -ab ide -paint ing -w elling -vel i -octag on -in scribed -po king -plac er -life cycle -kili g -g sp -eli ves -cle ments -na sheed -me sut -incarcer ated -dist illed -wal ang -delic acy -del gado -che z -ch ita -ad ero -tu x -pati l -o do -abh cosmetics -tv c -p bc -in accurate -hardwork paysoff -ball er -quot ation -merchandi sing -ga stri -defen ses -dro gba -bex hill -ban kno -win ona -si eg -p gs -hahah ha -agu chi -su bram -mirac le -de sch -li bre -ba cher -ent ine -bbcra di -lou dest -r ps -pi erc -fr yer -storm trooper -rafael nadal -pas co -exhau stion -epic onetsy -rc tid -kel lie -ga ines -d bz -sm riti -s bridge -lim ited -cla w -technic al -bio graphical -ado red -ภ° -exclu de -ac adia -key boards -fur man -so ca -sur u -ni ps -sw aps -server less -run e -pu ffy -north ampton -nish ings -hen der -cartri dges -gun shot -ðŁĵ ¹ -fil ament -respon dents -pey ton -mountaine er -mer ging -life span -intimid ation -p afc -nl wx -expan sive -pur r -f ck -ca e -at ti -tele thon -so hn -mend el -lo pes -dor i -un broken -te red -tast ings -in active -disin tegr -t assel -share the -pi ano -is lay -air space -z awa -ricci ardo -ming ton -fresh er -cur ry -re vs -pharo ah -h mv -exhilar ating -wh oo -lin kin -kri spy -competen cy -ste wards -ne bu -kat su -ad mins -baz ar -as ar -giving back -s summit -song z -lin us -raj kumar -farm ington -fanta sia -ðŁĺ´ ðŁĺ´ -so bri -lis se -barry more -pri sm -blo b -sen ew -mono xide -exp ire -eigh teen -di pper -xi ao -kil t -hin ch -bbc sport -bam boo -p ter -ex al -ðŁ¦ ĭ -ham lin -expe ditions -star gazing -food security -wy lie -ul f -st ingly -on storm -lo eb -bro ome -bn ha -pancre atic -eli ve -!!!!!!!! !!! -ther apper -ortho pedic -avengers endgame -antit rust -ìļ ° -go te -om d -off side -gy llen -win eries -white water -ad l -lu pita -exce eds -consi sted -chew bacca -ash leigh -nhl jets -is san -sh ld -hay at -cran berries -ðŁ¤ĺ ðŁı½ -rock the -spring training -fall out -dairy free -wa j -un decided -so wn -rc n -north wales -htt r -fu mble -d its -comp elled -popu list -min ted -blan chett -. '' -pro pulsion -m illa -au berg -her tz -h ta -u daipur -serendip ity -azte cs -als ace -ðŁIJ ij -lu n -sho es -char li -gar za -ðŁĴ Ł -pro biotics -fox tv -ol is -mi ff -loc alized -diffu ser -si gue -fun ko -rend ous -ðŁĴ ij -jeky ll diff --git a/MagicQuill/comfy/sd1_tokenizer/special_tokens_map.json b/MagicQuill/comfy/sd1_tokenizer/special_tokens_map.json deleted file mode 100644 index 2c2130b544c0c5a72d5d00da071ba130a9800fb2..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/sd1_tokenizer/special_tokens_map.json +++ /dev/null @@ -1,24 +0,0 @@ -{ - "bos_token": { - "content": "<|startoftext|>", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": false - }, - "eos_token": { - "content": "<|endoftext|>", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": false - }, - "pad_token": "<|endoftext|>", - "unk_token": { - "content": "<|endoftext|>", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": false - } -} diff --git a/MagicQuill/comfy/sd1_tokenizer/tokenizer_config.json b/MagicQuill/comfy/sd1_tokenizer/tokenizer_config.json deleted file mode 100644 index 5ba7bf706515bc60487ad0e1816b4929b82542d6..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/sd1_tokenizer/tokenizer_config.json +++ /dev/null @@ -1,34 +0,0 @@ -{ - "add_prefix_space": false, - "bos_token": { - "__type": "AddedToken", - "content": "<|startoftext|>", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": false - }, - "do_lower_case": true, - "eos_token": { - "__type": "AddedToken", - "content": "<|endoftext|>", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": false - }, - "errors": "replace", - "model_max_length": 77, - "name_or_path": "openai/clip-vit-large-patch14", - "pad_token": "<|endoftext|>", - "special_tokens_map_file": "./special_tokens_map.json", - "tokenizer_class": "CLIPTokenizer", - "unk_token": { - "__type": "AddedToken", - "content": "<|endoftext|>", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": false - } -} diff --git a/MagicQuill/comfy/sd1_tokenizer/vocab.json b/MagicQuill/comfy/sd1_tokenizer/vocab.json deleted file mode 100644 index 469be27c5c010538f845f518c4f5e8574c78f7c8..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/sd1_tokenizer/vocab.json +++ /dev/null @@ -1,49410 +0,0 @@ -{ - "!": 0, - "!!": 1443, - "!!!": 11194, - "!!!!": 4003, - "!!!!!!!!": 11281, - "!!!!!!!!!!!!!!!!": 30146, - "!!!!!!!!!!!": 49339, - "!!!!!!!!!!": 35579, - "!!!!!!!!!": 28560, - "!!!!!!!!": 21622, - "!!!!!!!": 15203, - "!!!!!!": 9168, - "!!!!!": 5203, - "!!!!": 2360, - "!!!\"": 28048, - "!!!)": 42532, - "!!!": 995, - "!!\"": 20556, - "!!#": 34997, - "!!)": 28352, - "!!": 748, - "!!@": 40705, - "!\"": 2947, - "!\"@": 43819, - "!#": 9670, - "!'": 13222, - "!),": 37904, - "!).": 26225, - "!)": 4571, - "!*": 37737, - "!,": 29325, - "!-": 43499, - "!...": 22121, - "!..": 35475, - "!.": 22517, - "!:)": 31671, - "!:": 17545, - "!": 256, - "!?!": 29767, - "!?!?": 47081, - "!?": 6004, - "!@": 15117, - "!]": 34466, - "!âĢ¦": 35068, - "!âĿ¤ï¸ı": 32559, - "!ðŁİī": 49085, - "!ðŁĺĬ": 43434, - "!ðŁĺį": 36438, - "\"": 1, - "\"!": 10377, - "\"\"": 41530, - "\"\"\"": 25539, - "\"\"": 8575, - "\"#": 8345, - "\"'": 31065, - "\"(": 32741, - "\")": 13112, - "\",": 4332, - "\"-": 9375, - "\"....": 37785, - "\"...": 9049, - "\"..": 25403, - "\".": 2811, - "\"/": 39486, - "\":": 7811, - "\";": 37549, - "\"": 257, - "\"?": 11727, - "\"@": 1512, - "\"@_": 20236, - "\"[": 36930, - "\"âĢ¦": 33993, - "\"âĢĶ": 41151, - "#": 2, - "##": 15483, - "#...": 31491, - "#:": 30144, - "#": 258, - "#@": 35062, - "#âĢ¦": 12834, - "#âĢİ": 34262, - "$": 3, - "$$": 24233, - "$$$": 31859, - "$$": 14929, - "$)": 39460, - "$.": 34682, - "$": 259, - "%": 4, - "%!": 35070, - "%),": 37819, - "%)": 16063, - "%,": 14505, - "%-": 48784, - "%.": 12475, - "%;": 33379, - "%": 260, - "&": 5, - "&&": 27791, - "&": 261, - "'": 6, - "'!": 13781, - "'\"": 19479, - "'#": 15319, - "''": 46594, - "''": 8445, - "')": 19175, - "',": 5662, - "'-": 26152, - "'...": 20474, - "'.": 4645, - "':": 7182, - "';": 44517, - "'": 262, - "'?": 17242, - "'@": 26397, - "'d": 1896, - "'ll": 1342, - "'m": 880, - "'re": 982, - "'s": 568, - "'t": 713, - "'ve": 1200, - "'âĢ¦": 42120, - "(": 7, - "(!)": 30253, - "(\"": 18741, - "(#": 6229, - "($)": 46597, - "($": 15186, - "(&": 15042, - "('": 18235, - "((": 22944, - "(((": 33287, - "((": 13796, - "().": 41737, - "()": 8475, - "(*": 48004, - "(*": 39575, - "(+": 12903, - "(-": 20228, - "(...": 45159, - "(.": 43055, - "(:": 8528, - "(;": 23983, - "(": 263, - "(?)": 22885, - "(@": 2181, - "(£": 33987, - "(©": 44886, - "(ðŁĵ·:": 34610, - "(ðŁĵ·": 37999, - "(ðŁĵ¸:": 44422, - "(ðŁĵ¸": 45204, - ")": 8, - ")!!": 47518, - ")!": 7805, - ")\"": 13046, - ")#": 39981, - ")'": 23613, - ")(": 27956, - "))": 13720, - "))))": 42911, - "))))": 34181, - ")))": 18305, - "))": 5167, - "),": 2361, - ")-": 19034, - ")...": 15274, - ")..": 41822, - ").": 1818, - ")/": 26616, - "):": 4143, - ");": 19686, - ")": 264, - ")?": 18765, - ")@": 41928, - ")_/": 45028, - ")_/¯": 45781, - ")âĢ¦": 41844, - "*": 9, - "*)": 30956, - "**": 9825, - "****": 21326, - "********": 42974, - "*****": 43571, - "****": 25167, - "***": 7829, - "**": 4441, - "*,": 41895, - "*-*": 23568, - "*.": 31304, - "*": 265, - "*_*": 44535, - "+": 10, - "+)": 34810, - "++": 47298, - "+++": 35986, - "++": 19056, - "+,": 35885, - "+.": 25238, - "+/-": 47614, - "+": 266, - ",": 11, - ",\"": 3823, - ",#": 11215, - ",&": 26905, - ",'": 10599, - ",)": 44493, - ",,": 21340, - ",,,,": 33225, - ",,,": 14811, - ",,": 8844, - ",-": 29821, - ",...": 20365, - ",.": 41277, - ",": 267, - ",@": 13975, - ",âĢ¦": 14601, - "-": 12, - "-\"": 18646, - "-#": 10151, - "-$": 24946, - "-'": 28010, - "-(": 33345, - "-)": 3535, - "-*": 21527, - "--": 2154, - "----": 5753, - "--------": 11772, - "----------------": 23122, - "----": 30164, - "---->": 35999, - "---": 11079, - "--->": 14518, - "--": 2432, - "-->": 6422, - "-->>": 47252, - "-.-": 32765, - "-...": 43147, - "-.": 44040, - "-": 268, - "->": 5081, - "-@": 10087, - "-_-": 27227, - "-__": 42718, - "-âĢ¦": 30047, - ".": 13, - ".!!": 37805, - ".!": 14030, - ".\"": 18650, - ".\"-": 21234, - ".\"": 1081, - ".\"âĢĶ": 48703, - ".#": 5014, - ".'\"": 41558, - ".''": 49379, - ".'": 5938, - ".(": 22294, - ".)": 5376, - ".*": 26145, - ".,": 5276, - ".-": 12481, - "..": 608, - "..!!": 23707, - "..!": 17994, - "..\"": 15229, - "..#": 15735, - "..,": 47143, - "...": 3002, - "...!!!": 38351, - "...!!": 39915, - "...!": 16860, - "...\"": 5240, - "...#": 8195, - "...&": 44979, - "...'": 23167, - "...(": 37981, - "...)": 14040, - "...,": 42717, - "....": 2386, - "....\"": 26689, - "....#": 20346, - ".....": 34151, - ".....#": 38867, - "........": 8246, - "................": 24855, - "............": 42965, - "...........": 35008, - "..........": 25526, - ".........": 19881, - "........": 14720, - ".......": 9917, - "......": 5590, - ".....": 3104, - "....": 1390, - "....@": 29790, - "...:": 34570, - "...": 678, - "...?": 16388, - "...@": 12672, - "..": 852, - "..?": 23875, - "..@": 21124, - "./": 31975, - ".:": 15811, - ".;": 47596, - ".": 269, - ".<": 29442, - ".?": 29294, - ".@": 1230, - ".]": 33511, - ".~": 42651, - ".âĢ¦": 18047, - ".âĿ¤ï¸ı": 39085, - ".âłĢ": 30097, - ".ðŁĺĤ": 46580, - "/": 14, - "/#": 13217, - "/$": 36266, - "/-": 19811, - "/.": 39382, - "//": 15348, - "////": 46271, - "///": 22734, - "//": 3502, - "/": 270, - "/@": 8216, - "0": 15, - "0": 271, - "1": 16, - "1": 272, - "2": 17, - "2": 273, - "3": 18, - "3": 274, - "4": 19, - "4": 275, - "5": 20, - "5": 276, - "6": 21, - "6": 277, - "7": 22, - "7": 278, - "8": 23, - "8": 279, - "9": 24, - "9": 280, - ":": 25, - ":\"": 29498, - ":\")": 46432, - ":\"": 12089, - ":#": 26625, - ":$": 33769, - ":'": 8017, - ":'(": 21250, - ":')": 10701, - ":'": 23851, - ":((": 42496, - ":(": 5965, - ":)": 11070, - ":))))": 42339, - ":)))": 21840, - ":))": 10164, - ":).": 39010, - ":)": 1408, - ":*": 12617, - ":-": 13021, - ":-(": 25137, - ":-)": 4223, - ":-": 10323, - ":...": 42140, - "://": 12441, - ":/": 13604, - "::": 33077, - ":::": 43818, - "::": 9788, - ":": 281, - ":>": 39677, - ":@": 14339, - ":]": 43486, - ":|": 45986, - ":âĢ¦": 22365, - ";": 26, - ";))": 41873, - ";)": 3661, - ";-": 35657, - ";-)": 10475, - ";;": 34824, - ";;": 24492, - ";": 282, - "<": 27, - "<-": 47280, - "": 34308, - "<<": 24588, - "<": 283, - "<<": 16482, - "<<<": 35054, - "<|endoftext|>": 49407, - "<|startoftext|>": 49406, - "=": 28, - "=))": 39587, - "=)": 17840, - "=": 284, - "==": 11748, - "====": 21734, - "========": 38952, - "==>": 29688, - "=>": 9714, - ">": 29, - ">.<": 38507, - ">:": 36196, - ">": 285, - "><": 28015, - ">>": 8270, - ">>": 2988, - ">>>": 6395, - ">>>>": 18461, - ">>>>": 18435, - ">>>>>": 32972, - ">>>>>>": 48947, - ">>>>>>>>": 41947, - ">_": 44144, - "?": 30, - "?!": 9785, - "?!!": 25342, - "?!\"": 29315, - "?!": 2835, - "?!?!": 16349, - "?!?!?!": 49084, - "?!?!?": 37619, - "?!?": 11395, - "?\"": 3283, - "?#": 24018, - "?'": 13610, - "?)": 9626, - "?,": 41628, - "?...": 22641, - "?..": 43905, - "?.": 41251, - "?:": 21067, - "?": 286, - "??": 5195, - "??!!": 43219, - "??!": 37341, - "??\"": 44996, - "??": 2197, - "???": 40017, - "???": 3824, - "????": 15936, - "????": 10362, - "?????": 21370, - "??????": 34589, - "????????": 45091, - "?@": 29258, - "?ðŁ¤Ķ": 47928, - "@": 31, - "@#": 39397, - "@.": 43730, - "@/": 28639, - "@": 287, - "@@": 30314, - "@_": 2692, - "@__": 17042, - "@___": 48308, - "A": 32, - "A": 288, - "B": 33, - "B": 289, - "C": 34, - "C": 290, - "D": 35, - "D": 291, - "E": 36, - "E": 292, - "F": 37, - "F": 293, - "G": 38, - "G": 294, - "H": 39, - "H": 295, - "I": 40, - "I": 296, - "J": 41, - "J": 297, - "K": 42, - "K": 298, - "L": 43, - "L": 299, - "M": 44, - "M": 300, - "N": 45, - "N": 301, - "O": 46, - "O": 302, - "P": 47, - "P": 303, - "Q": 48, - "Q": 304, - "R": 49, - "R": 305, - "S": 50, - "S": 306, - "T": 51, - "T": 307, - "U": 52, - "U": 308, - "V": 53, - "V": 309, - "W": 54, - "W": 310, - "X": 55, - "X": 311, - "Y": 56, - "Y": 312, - "Z": 57, - "Z": 313, - "[": 58, - "[#": 11115, - "[...": 39975, - "[...]": 43790, - "[": 314, - "[@": 15148, - "[]": 22240, - "\\": 59, - "\\'": 41239, - "\\": 315, - "]": 60, - "]\"": 39434, - "],": 34067, - "].": 26262, - "]:": 21641, - "]": 316, - "][#": 39009, - "][": 29329, - "^": 61, - "^)": 30720, - "^-": 43516, - "^.": 31552, - "^.^": 35791, - "^": 317, - "^^": 34454, - "^^": 9064, - "^_": 14423, - "^_^": 15995, - "_": 62, - "_'": 44701, - "_(": 36951, - "_)": 37393, - "_*": 36237, - "_,": 31417, - "_-": 23193, - "_.": 26841, - "_/": 37647, - "_:": 13109, - "_": 318, - "__": 2355, - "__:": 47043, - "__": 3838, - "___": 43812, - "___": 13530, - "____": 4727, - "____": 25350, - "_____": 38803, - "________": 9549, - "________________": 20115, - "`": 63, - "`": 319, - "a": 64, - "a": 320, - "aa": 1821, - "aa": 3894, - "aaa": 14376, - "aaa": 9583, - "aaaa": 6727, - "aaaa": 19336, - "aaaaa": 31095, - "aaaaaa": 44413, - "aaaaaaaa": 23126, - "aaaah": 49151, - "aaah": 35856, - "aaay": 37846, - "aab": 34108, - "aac": 23251, - "aac": 11346, - "aad": 20464, - "aad": 35894, - "aaf": 37638, - "aaf": 31534, - "aag": 42174, - "aah": 28990, - "aaj": 28727, - "aaj": 43411, - "aak": 37739, - "aal": 22268, - "aal": 30208, - "aali": 27896, - "aaliyah": 46577, - "aam": 12943, - "aam": 22775, - "aama": 45018, - "aamaadmi": 45563, - "aamaadmiparty": 46406, - "aamir": 27456, - "aan": 20705, - "aan": 13426, - "aand": 38054, - "aap": 12023, - "aap": 12052, - "aapl": 34516, - "aar": 4695, - "aar": 13234, - "aard": 46932, - "aaron": 13948, - "aaron": 7709, - "aas": 28542, - "aas": 32205, - "aat": 34018, - "aat": 35004, - "aau": 35426, - "aay": 38281, - "aay": 40249, - "aaz": 26770, - "ab": 596, - "ab": 3937, - "aba": 44204, - "aba": 11102, - "abad": 33444, - "abad": 7155, - "aban": 41662, - "aband": 8595, - "abandon": 28805, - "abandoned": 11227, - "abar": 17860, - "abar": 39805, - "abas": 25402, - "abay": 43542, - "abb": 38954, - "abb": 38297, - "abba": 30870, - "abbas": 37494, - "abbas": 24412, - "abbey": 31927, - "abbey": 10132, - "abbie": 39949, - "abbo": 13536, - "abbot": 44046, - "abbott": 43737, - "abbott": 15649, - "abbrevi": 44843, - "abby": 30586, - "abby": 14694, - "abc": 13137, - "abc": 5334, - "abcnews": 31566, - "abd": 44093, - "abdel": 46511, - "abdomin": 35335, - "abdominal": 39328, - "abdu": 13361, - "abduc": 17884, - "abducted": 31520, - "abduction": 36984, - "abdul": 14227, - "abdul": 15593, - "abdullah": 21317, - "abe": 15856, - "abe": 12734, - "abee": 36037, - "abel": 31938, - "abel": 25318, - "abella": 46156, - "aben": 40865, - "aber": 7828, - "aber": 41867, - "aberdeen": 30539, - "aberdeen": 17236, - "abh": 27484, - "abh": 33649, - "abhcosmetics": 49189, - "abhi": 18113, - "abhin": 44045, - "abhishek": 44502, - "abi": 16867, - "abi": 14161, - "abia": 48604, - "abide": 49163, - "abig": 20863, - "abigail": 25686, - "abil": 21135, - "abilities": 8724, - "ability": 35146, - "ability": 3024, - "abit": 48668, - "ablanc": 33716, - "able": 10102, - "able": 863, - "abled": 10655, - "ableg": 24055, - "ables": 8486, - "ableton": 47169, - "ably": 6748, - "abnormal": 40934, - "abo": 2889, - "abo": 21861, - "aboard": 11661, - "abol": 31768, - "abolic": 46827, - "abolish": 47403, - "aboo": 42433, - "abor": 8416, - "aboriginal": 20422, - "abortion": 12336, - "abortions": 43218, - "aboss": 46401, - "abou": 36455, - "abou": 44053, - "abound": 41037, - "abour": 46637, - "about": 20204, - "about": 781, - "abouts": 36339, - "above": 35019, - "above": 4348, - "aboy": 37077, - "abpoli": 44779, - "abq": 38767, - "abr": 44932, - "abra": 10694, - "abra": 35087, - "abraham": 40623, - "abraham": 15869, - "abram": 33255, - "abrams": 29852, - "abre": 22472, - "abre": 46756, - "abri": 28605, - "abridged": 45333, - "abroad": 11253, - "abru": 46295, - "abs": 18431, - "abs": 11109, - "absc": 25389, - "abscbn": 44260, - "abscbn": 45810, - "absen": 32453, - "absence": 19240, - "absent": 30363, - "absol": 4624, - "absolu": 7055, - "absolut": 4666, - "absolute": 7501, - "absolutely": 4703, - "absor": 14303, - "absorb": 35806, - "absorbed": 45059, - "absorbing": 46412, - "absorption": 42210, - "abstr": 7530, - "abstract": 23885, - "abstract": 10197, - "abstractart": 31170, - "abstraction": 47696, - "abstracts": 40065, - "absur": 21639, - "absurd": 29757, - "abt": 9850, - "abu": 9167, - "abu": 11787, - "abud": 20180, - "abudha": 21450, - "abudhabi": 25256, - "abuja": 23371, - "abun": 20544, - "abundance": 23236, - "abundant": 31611, - "abur": 23377, - "aburger": 46660, - "abuse": 7678, - "abused": 23855, - "abuses": 37132, - "abusing": 36558, - "abusive": 26858, - "abv": 34172, - "aby": 16342, - "aby": 31378, - "abyss": 33632, - "abz": 42292, - "ac": 546, - "ac": 2816, - "aca": 9213, - "acab": 41388, - "acacia": 44047, - "acad": 32537, - "acade": 2892, - "academia": 22662, - "academic": 31178, - "academic": 7935, - "academics": 26417, - "academies": 42569, - "academy": 29968, - "academy": 4041, - "acadi": 41455, - "acadia": 49236, - "acam": 26172, - "acan": 42227, - "acan": 26318, - "acap": 32357, - "acar": 22232, - "acare": 16961, - "acc": 26805, - "acc": 9318, - "acca": 30883, - "acce": 8564, - "acceler": 10161, - "accelerate": 23619, - "accelerated": 38513, - "accelerating": 41821, - "acceleration": 39387, - "accelerator": 25261, - "accent": 28110, - "accent": 18931, - "accents": 31738, - "accenture": 41853, - "accep": 4616, - "accept": 16447, - "accept": 9338, - "acceptable": 14209, - "acceptance": 17090, - "accepted": 9159, - "accepting": 12855, - "accepts": 22338, - "access": 7596, - "access": 3822, - "accessi": 10787, - "accessibility": 23407, - "accessible": 13977, - "accessing": 46339, - "accessories": 10220, - "accessory": 20417, - "acci": 4263, - "acci": 33943, - "accident": 6608, - "accidental": 24895, - "accidentally": 11061, - "accidents": 22072, - "acclaimed": 21172, - "acco": 44730, - "accol": 33858, - "accolades": 46731, - "accom": 23658, - "accommo": 34495, - "accommod": 14386, - "accommodate": 34708, - "accommodation": 18066, - "accommodations": 45536, - "accomp": 24985, - "accompan": 14746, - "accompanied": 20715, - "accompany": 34142, - "accompanying": 38179, - "accompli": 10205, - "accomplish": 25542, - "accomplished": 16462, - "accomplishment": 26100, - "accomplishments": 24965, - "accor": 4182, - "accord": 34293, - "accord": 28513, - "according": 4717, - "accordingly": 35535, - "accordion": 48760, - "accoun": 3081, - "account": 18424, - "account": 4684, - "accountability": 19377, - "accountable": 24216, - "accountant": 31026, - "accountants": 37222, - "accounted": 43951, - "accounting": 14805, - "accounts": 9974, - "accra": 31900, - "accred": 17451, - "accreditation": 27015, - "accredited": 27647, - "acct": 45569, - "accu": 5618, - "accumul": 19275, - "accumulation": 37112, - "accur": 6551, - "accuracy": 18423, - "accurate": 8858, - "accurately": 24206, - "accusations": 33615, - "accuse": 39414, - "accused": 9434, - "accuses": 27496, - "accusing": 41474, - "acdc": 45067, - "ace": 2675, - "ace": 804, - "acea": 35219, - "aceae": 38153, - "acele": 40868, - "aceous": 33610, - "acer": 37990, - "acer": 25809, - "aces": 5725, - "acet": 28735, - "acf": 38389, - "ach": 972, - "ach": 987, - "acha": 22686, - "acharya": 45780, - "achat": 32706, - "ache": 27771, - "ache": 7214, - "ached": 17048, - "acher": 38442, - "acher": 17936, - "achers": 25051, - "aches": 14823, - "achi": 3264, - "achi": 9087, - "achiev": 8160, - "achieve": 14798, - "achieve": 8175, - "achieved": 12359, - "achievement": 8245, - "achievements": 16114, - "achiever": 46286, - "achievers": 44544, - "achieves": 40123, - "achieving": 16120, - "achilles": 33327, - "achim": 42335, - "aching": 12864, - "acho": 33130, - "achs": 41195, - "aci": 4359, - "aci": 34100, - "acia": 30163, - "acial": 32422, - "acid": 35474, - "acid": 10085, - "acidity": 48800, - "acids": 27751, - "acies": 20162, - "acin": 39442, - "acing": 9442, - "acio": 26202, - "acion": 44965, - "acion": 24968, - "acional": 26435, - "aciones": 35832, - "acious": 16020, - "acity": 7511, - "ación": 38175, - "ack": 877, - "ack": 725, - "acked": 5698, - "acker": 31201, - "acker": 7940, - "ackeray": 41843, - "acki": 42857, - "acking": 5515, - "ackles": 28503, - "acknow": 13563, - "acknowle": 18100, - "acknowledge": 25209, - "acknowledged": 35913, - "acknowledges": 49083, - "acknowledging": 45645, - "acks": 3858, - "acl": 47593, - "acl": 23073, - "acle": 6504, - "acles": 34164, - "aclu": 37354, - "acm": 39317, - "acmilan": 36500, - "acne": 24195, - "aco": 9463, - "aco": 8800, - "acol": 17431, - "acollege": 43468, - "acom": 17224, - "acom": 22342, - "acon": 11621, - "acon": 11571, - "aconf": 38851, - "acons": 31599, - "acor": 22076, - "acorn": 37537, - "acos": 39943, - "acosta": 31994, - "acou": 8794, - "acoun": 31295, - "acounty": 45449, - "acoustic": 10616, - "acoustics": 43873, - "acp": 19627, - "acqu": 7946, - "acquainted": 40713, - "acqui": 12194, - "acquire": 21576, - "acquired": 15932, - "acquires": 27376, - "acquiring": 42785, - "acquis": 14207, - "acquisition": 16543, - "acquisitions": 39649, - "acr": 43648, - "acre": 26749, - "acre": 9493, - "acres": 11630, - "acro": 21060, - "acrob": 40891, - "acron": 37770, - "across": 2500, - "acrosse": 40979, - "acruz": 40455, - "acry": 10440, - "acrylic": 12252, - "acs": 11782, - "act": 10305, - "act": 1393, - "acted": 10971, - "acti": 4786, - "acting": 6319, - "action": 12493, - "action": 1816, - "actions": 6271, - "activ": 3430, - "activate": 26737, - "activated": 22249, - "activation": 26769, - "active": 19009, - "active": 4046, - "actively": 18645, - "activi": 7230, - "activism": 20117, - "activist": 10850, - "activists": 12649, - "activities": 6514, - "activity": 6206, - "actment": 44807, - "acton": 36167, - "acton": 36697, - "actonclimate": 43797, - "actor": 12181, - "actor": 4035, - "actors": 9255, - "actorslife": 25117, - "actorvijay": 34033, - "actress": 5805, - "actresses": 33639, - "acts": 6816, - "actu": 2375, - "actual": 7488, - "actually": 2955, - "acu": 9204, - "acu": 48475, - "aculture": 38145, - "acup": 30869, - "acup": 27278, - "acupuncture": 40043, - "acur": 44719, - "acura": 30120, - "acus": 33710, - "acute": 19734, - "acy": 18717, - "acy": 2356, - "ad": 594, - "ad": 680, - "ada": 25785, - "ada": 1886, - "adaily": 47254, - "adal": 46646, - "adam": 6037, - "adam": 4944, - "adamlambert": 27659, - "adams": 7942, - "adan": 41802, - "adani": 37499, - "adap": 6341, - "adapt": 22666, - "adaptation": 16566, - "adapted": 26657, - "adapter": 21839, - "adapting": 44120, - "adaptive": 28672, - "adar": 27702, - "adar": 32681, - "adas": 23250, - "adata": 39500, - "aday": 31367, - "aday": 10280, - "adays": 24337, - "adb": 45630, - "adc": 38201, - "add": 19408, - "add": 3536, - "addams": 38912, - "added": 4149, - "adder": 47557, - "addi": 36378, - "addic": 5709, - "addict": 14614, - "addicted": 16275, - "addiction": 11751, - "addictive": 29638, - "addicts": 29997, - "adding": 8676, - "addis": 43911, - "addison": 32369, - "additi": 26927, - "addition": 6698, - "additional": 10666, - "additions": 22575, - "additive": 48546, - "addo": 40001, - "address": 5834, - "addressed": 20817, - "addresses": 12702, - "addressing": 10594, - "adds": 9944, - "addy": 24746, - "ade": 2194, - "ade": 1928, - "adecides": 46374, - "aded": 9994, - "adee": 47054, - "adel": 4434, - "adel": 27308, - "adelaide": 38193, - "adelaide": 11611, - "adele": 42843, - "adele": 21220, - "adelrey": 43627, - "ademy": 49123, - "aden": 28669, - "aden": 28688, - "adena": 23648, - "adequ": 18232, - "adequate": 22281, - "ader": 21365, - "adero": 49185, - "aders": 27672, - "ades": 5793, - "adh": 42301, - "adhd": 32649, - "adhe": 21175, - "adhesive": 38429, - "adi": 2486, - "adi": 8779, - "adia": 26874, - "adic": 36780, - "adid": 8086, - "adidas": 22396, - "adidas": 9589, - "adidasoriginals": 48575, - "adies": 45834, - "adifference": 37217, - "adilla": 41167, - "ading": 15000, - "adio": 15060, - "adirond": 36843, - "adish": 49009, - "adity": 28596, - "aditya": 37186, - "adityanath": 44437, - "adjac": 32517, - "adjacent": 33836, - "adjec": 45512, - "adju": 16413, - "adjun": 45995, - "adjust": 13784, - "adjust": 28073, - "adjustable": 20476, - "adjusted": 30515, - "adjusting": 41132, - "adjustment": 36081, - "adjustments": 36331, - "adl": 49351, - "adler": 30222, - "adm": 9892, - "adm": 33604, - "admi": 11666, - "admin": 12528, - "admini": 6434, - "administr": 12174, - "administration": 9502, - "administrative": 22424, - "administrator": 22603, - "administrators": 36123, - "admins": 49297, - "admir": 17031, - "admiral": 21013, - "admiration": 39569, - "admire": 17791, - "admired": 36103, - "admirer": 48344, - "admiring": 29835, - "admission": 11315, - "admissions": 22463, - "admit": 13769, - "admits": 16332, - "admitted": 20427, - "admitting": 46148, - "adn": 40339, - "adnan": 42037, - "ado": 4775, - "ado": 2933, - "adobe": 29256, - "adobe": 16484, - "adog": 44913, - "adol": 33512, - "adole": 22704, - "adolescent": 36793, - "adolescents": 45656, - "adolf": 41179, - "adon": 25907, - "adona": 48419, - "adop": 4183, - "adopt": 16441, - "adopt": 11159, - "adoptable": 36905, - "adoptdont": 19674, - "adoptdontshop": 20089, - "adopted": 12538, - "adopting": 30158, - "adoption": 11544, - "adopts": 40853, - "ador": 4992, - "ador": 9162, - "adora": 40031, - "adorable": 6298, - "adoration": 46781, - "adore": 15502, - "adored": 49233, - "adores": 30290, - "adorned": 44953, - "ados": 20079, - "adox": 32188, - "adp": 44426, - "adr": 46189, - "adren": 24204, - "adrenaline": 35552, - "adri": 5935, - "adrian": 25012, - "adrian": 13163, - "adriana": 41363, - "adrid": 26562, - "adrien": 47469, - "adrienne": 40081, - "ads": 2485, - "adu": 16882, - "adu": 24446, - "adukone": 30511, - "adul": 7222, - "adult": 42209, - "adult": 7115, - "adulthood": 40964, - "adults": 9391, - "adv": 1647, - "adv": 21018, - "advan": 33411, - "advance": 27291, - "advance": 7022, - "advanced": 7465, - "advancement": 35437, - "advances": 15852, - "advancing": 21355, - "advani": 48189, - "advant": 7017, - "advantage": 8573, - "advantaged": 38361, - "advantages": 23506, - "adven": 41670, - "advent": 3071, - "advent": 15199, - "adventcalendar": 43492, - "adventur": 29627, - "adventure": 17251, - "adventure": 4377, - "adventurer": 48098, - "adventures": 7941, - "adventurous": 31179, - "adver": 4806, - "adverse": 30348, - "adversity": 32516, - "advert": 19080, - "adverti": 5682, - "advertise": 31473, - "advertised": 38987, - "advertisement": 18713, - "advertiser": 41829, - "advertisers": 45472, - "advertising": 8158, - "adverts": 44306, - "advice": 4973, - "advis": 4634, - "advise": 25962, - "advised": 23196, - "adviser": 20367, - "advisers": 40984, - "advises": 42761, - "advising": 39648, - "advisor": 12380, - "advisors": 23197, - "advisory": 10224, - "advoc": 6657, - "advocacy": 14443, - "advocate": 12044, - "advocates": 17757, - "adwords": 48343, - "ady": 41446, - "ady": 8781, - "ae": 5548, - "ae": 4542, - "aea": 37048, - "aed": 26912, - "aege": 42304, - "ael": 41533, - "ael": 43340, - "aen": 43085, - "aer": 10195, - "aeri": 27685, - "aerial": 44866, - "aerial": 12440, - "aero": 10196, - "aero": 25026, - "aerob": 42824, - "aeron": 37286, - "aeronau": 42816, - "aerop": 27735, - "aerosmith": 43253, - "aerospace": 20530, - "aes": 10617, - "aes": 35677, - "aest": 40694, - "aesthe": 21181, - "aesthetic": 16179, - "aesthetics": 29295, - "aew": 47108, - "af": 702, - "af": 4391, - "afa": 24953, - "afan": 47474, - "afar": 41637, - "afar": 37866, - "afb": 27022, - "afc": 29742, - "afc": 6571, - "afcb": 44276, - "afcon": 30019, - "afd": 44626, - "afe": 30487, - "afe": 13912, - "afer": 44707, - "aff": 8849, - "aff": 14864, - "affair": 13998, - "affairs": 9830, - "affe": 4556, - "affect": 11361, - "affected": 9715, - "affecting": 18448, - "affection": 33780, - "affection": 28381, - "affectionate": 42578, - "affects": 17285, - "affili": 12120, - "affiliate": 18652, - "affiliated": 37540, - "affiliation": 48377, - "affinity": 41451, - "affir": 25343, - "affirm": 42711, - "affirm": 48625, - "affirmation": 47495, - "affl": 34036, - "affleck": 35584, - "afford": 7951, - "afford": 13223, - "affordability": 44828, - "affordable": 43944, - "affordable": 8926, - "afg": 33994, - "afgh": 9029, - "afghan": 15919, - "afghanistan": 9836, - "afi": 24074, - "afi": 31958, - "afil": 27209, - "afire": 42010, - "afirst": 38601, - "afl": 15132, - "afl": 14356, - "aflo": 41959, - "afm": 38385, - "afootball": 41694, - "afor": 43102, - "afore": 41468, - "afp": 18311, - "afraid": 9474, - "afri": 13888, - "afric": 2136, - "africa": 3093, - "african": 17471, - "african": 4736, - "africans": 26534, - "afridi": 37651, - "afrika": 45833, - "afrin": 45586, - "afro": 16267, - "afro": 21795, - "afs": 48960, - "aft": 22693, - "after": 2278, - "after": 953, - "afterdark": 48966, - "afterlife": 46790, - "aftermath": 20958, - "afterno": 22330, - "afternoon": 39035, - "afternoon": 2716, - "afternoons": 31631, - "afterparty": 35305, - "afterwards": 23911, - "ag": 602, - "ag": 5241, - "aga": 1050, - "aga": 4654, - "again": 1495, - "against": 23838, - "against": 1601, - "agame": 46943, - "agan": 42946, - "agan": 9178, - "agar": 13199, - "agar": 17544, - "agarwal": 43117, - "agas": 20430, - "agate": 25454, - "agatha": 43896, - "agave": 42671, - "agawa": 39433, - "agazine": 44942, - "age": 4758, - "age": 805, - "aged": 3889, - "ageing": 25349, - "agen": 10101, - "agen": 43696, - "agencies": 13887, - "agency": 44885, - "agency": 6270, - "agend": 48653, - "agenda": 8728, - "agent": 21210, - "agent": 6576, - "agents": 10199, - "agentsof": 37074, - "agentsofshield": 38801, - "ager": 44847, - "ager": 10443, - "agers": 22123, - "ages": 2321, - "agg": 45482, - "aggarwal": 39386, - "agger": 27836, - "aggi": 36844, - "aggie": 44244, - "aggie": 37618, - "aggies": 31047, - "aggio": 36685, - "aggrav": 35203, - "aggre": 10426, - "aggreg": 41968, - "aggregate": 41318, - "aggression": 28900, - "aggressive": 16295, - "aggressively": 48667, - "agh": 17917, - "agh": 14402, - "aghan": 31276, - "agi": 24036, - "agi": 17645, - "agic": 37652, - "agile": 16276, - "agility": 32161, - "aging": 4336, - "agio": 41746, - "agirl": 35469, - "agle": 37035, - "agle": 16702, - "agles": 36374, - "agles": 22679, - "aglia": 46912, - "agm": 19162, - "agn": 36474, - "agna": 43626, - "agne": 29374, - "agne": 48303, - "agnes": 26213, - "agno": 41540, - "ago": 6276, - "ago": 1468, - "agomez": 27127, - "agon": 26775, - "agon": 14901, - "agony": 36977, - "agor": 38920, - "agos": 32657, - "agov": 34227, - "agp": 46048, - "agr": 36639, - "agra": 26660, - "agra": 29830, - "agram": 2447, - "agre": 3180, - "agreat": 37594, - "agree": 5953, - "agreed": 12774, - "agreeing": 40720, - "agreement": 8286, - "agreements": 25865, - "agrees": 17854, - "agri": 20527, - "agri": 30326, - "agricul": 7234, - "agricultural": 15440, - "agriculture": 9720, - "agro": 33178, - "agro": 44589, - "agron": 41314, - "agroup": 40099, - "ags": 16926, - "agt": 39681, - "agu": 3922, - "agu": 36544, - "agua": 18482, - "aguchi": 49206, - "ague": 2095, - "aguero": 42964, - "agues": 7000, - "aguil": 27946, - "aguilar": 44715, - "ah": 1772, - "ah": 1288, - "aha": 12082, - "aha": 8429, - "ahah": 38661, - "ahaha": 32423, - "ahahaha": 42620, - "aham": 36036, - "ahan": 45061, - "ahan": 19255, - "ahar": 31038, - "ahar": 38760, - "ahe": 27688, - "ahead": 3158, - "ahem": 39995, - "ahh": 13152, - "ahhh": 14769, - "ahhhh": 21054, - "ahhhhh": 36392, - "ahi": 45349, - "ahi": 24154, - "ahl": 30433, - "ahmad": 32167, - "ahmad": 16902, - "ahmadi": 38656, - "ahmadiyya": 44865, - "ahmed": 19491, - "ahmed": 12081, - "ahmedabad": 26966, - "ahn": 33405, - "aho": 28114, - "aho": 38444, - "ahora": 43113, - "ahouse": 33197, - "ahoy": 38652, - "ahs": 16937, - "ahu": 11908, - "ahu": 16515, - "ai": 2014, - "ai": 2215, - "aia": 27046, - "aib": 34780, - "aic": 29454, - "aid": 13723, - "aid": 5182, - "aida": 33830, - "aidan": 48814, - "aidan": 26945, - "aide": 31558, - "aide": 9746, - "aided": 48707, - "aiden": 40020, - "aides": 49082, - "aids": 11759, - "aig": 27295, - "aig": 46989, - "aii": 22478, - "aik": 42575, - "aiken": 46342, - "ail": 1457, - "ail": 9154, - "ailed": 38919, - "ailing": 29999, - "ails": 27024, - "aim": 6787, - "aim": 11255, - "aime": 39872, - "aimed": 20247, - "aimee": 36318, - "aiming": 21768, - "aimo": 36706, - "aims": 13326, - "ain": 8326, - "ain": 2210, - "aine": 48983, - "aine": 17634, - "ains": 27621, - "aint": 29543, - "aint": 13099, - "ainted": 39933, - "aioli": 43949, - "air": 1281, - "air": 1922, - "aira": 35085, - "aira": 46444, - "airasia": 48020, - "airbnb": 23098, - "airborne": 22755, - "airbus": 15324, - "aircraft": 7706, - "airdrop": 38434, - "aire": 7682, - "aired": 21938, - "aires": 17034, - "airfield": 40525, - "airforce": 23511, - "airing": 20453, - "airline": 14847, - "airlines": 8929, - "airmen": 44499, - "airplane": 16451, - "airplanes": 33319, - "airplay": 47024, - "airpollution": 47362, - "airport": 48337, - "airport": 3259, - "airports": 21543, - "airs": 18539, - "airshow": 27139, - "airsoft": 30134, - "airspace": 49280, - "airstrikes": 37220, - "airtel": 34784, - "airtime": 46617, - "airwaves": 43910, - "airways": 14299, - "airy": 44453, - "ais": 7616, - "ais": 11393, - "aise": 30505, - "aish": 21946, - "aisha": 40211, - "aishwar": 29687, - "aishwarya": 44019, - "aisle": 26917, - "ait": 25613, - "ait": 40814, - "aj": 3990, - "aj": 6342, - "aja": 42343, - "aja": 19633, - "ajax": 21933, - "ajay": 22494, - "ajay": 28726, - "ajaydevgn": 35515, - "aje": 48818, - "aje": 33315, - "ajes": 38791, - "aji": 26102, - "aji": 21153, - "ajit": 42261, - "ajith": 24118, - "ajo": 26958, - "aju": 36855, - "ak": 819, - "ak": 1196, - "aka": 19154, - "aka": 3412, - "akaif": 45736, - "akan": 43678, - "akan": 38244, - "akapoor": 40064, - "akarta": 48603, - "akb": 41962, - "akbar": 27180, - "ake": 10558, - "ake": 5776, - "aked": 6115, - "aker": 14245, - "aker": 3074, - "akers": 5788, - "akes": 4764, - "akest": 46679, - "akh": 14821, - "akh": 30660, - "akhan": 28158, - "akhi": 41660, - "akhilesh": 48495, - "akhtar": 45458, - "aki": 18173, - "aki": 6592, - "akin": 24630, - "akin": 13601, - "aking": 1809, - "akins": 48568, - "akira": 34001, - "akis": 27732, - "akistan": 46221, - "akley": 39908, - "ako": 44027, - "ako": 14541, - "akon": 47105, - "akos": 44659, - "akrish": 37434, - "akron": 26115, - "aks": 2953, - "aksh": 28226, - "akshay": 21483, - "akshay": 38914, - "akshaykumar": 23624, - "akshi": 42634, - "aku": 18151, - "aku": 20815, - "aky": 11977, - "al": 526, - "al": 566, - "ala": 12783, - "ala": 3449, - "alab": 6365, - "alabam": 45880, - "alabama": 8422, - "alach": 24622, - "alad": 23074, - "aladdin": 29951, - "alai": 47072, - "alain": 28999, - "alam": 16612, - "alam": 16012, - "alamo": 41922, - "alamo": 34632, - "alan": 9563, - "alan": 5773, - "alana": 43405, - "aland": 34304, - "aland": 6819, - "alar": 34333, - "alarm": 11321, - "alarming": 37209, - "alarms": 31236, - "alarts": 31422, - "alas": 7276, - "alas": 22412, - "alaska": 9562, - "alaskan": 33898, - "alastair": 42062, - "alay": 30289, - "alay": 36450, - "alaya": 36397, - "alb": 45248, - "alba": 25254, - "alban": 10882, - "albania": 29170, - "albanian": 47721, - "albans": 44119, - "albany": 17359, - "albat": 42797, - "albeit": 38984, - "alber": 6413, - "albert": 34174, - "albert": 9507, - "alberta": 11048, - "alberto": 22714, - "albi": 18512, - "albino": 48062, - "albion": 24071, - "albu": 2216, - "album": 40712, - "album": 2431, - "albums": 10705, - "albuquerque": 31079, - "alcat": 35361, - "alche": 37909, - "alchemist": 38913, - "alchemy": 39501, - "alco": 6848, - "alco": 45446, - "alcohol": 9426, - "alcoholic": 25098, - "ald": 4539, - "ald": 2928, - "alda": 46440, - "alde": 33114, - "alden": 17155, - "alden": 27710, - "aldenrichards": 20051, - "alder": 18220, - "alder": 46571, - "aldi": 23204, - "aldo": 9933, - "aldridge": 38084, - "alds": 14285, - "aldu": 6505, - "aldub": 10532, - "aldub": 15247, - "ale": 1440, - "ale": 1336, - "alea": 26518, - "aleague": 38909, - "alec": 29804, - "alec": 19954, - "alecoscino": 47948, - "aled": 4970, - "alee": 24515, - "alej": 23440, - "alejandro": 32950, - "alek": 26906, - "alek": 43310, - "aleksand": 48429, - "alem": 11825, - "aleppo": 19258, - "aler": 25674, - "aler": 27335, - "alert": 4662, - "alerts": 22144, - "ales": 44171, - "ales": 5962, - "aless": 21864, - "alessandro": 37344, - "alestine": 31945, - "alex": 2959, - "alex": 4134, - "alexa": 16273, - "alexand": 10696, - "alexander": 25527, - "alexander": 7563, - "alexandra": 19054, - "alexandre": 35711, - "alexandria": 21171, - "alexis": 35023, - "alexis": 14243, - "aley": 21635, - "alf": 27098, - "alfa": 23482, - "alfar": 38870, - "alfie": 28598, - "alfon": 31947, - "alfonso": 41784, - "alfre": 20982, - "alfred": 16553, - "alfredo": 32291, - "algae": 25654, - "algar": 36291, - "algarve": 40290, - "alge": 24336, - "algebra": 33694, - "alger": 18568, - "algeria": 25257, - "algon": 33007, - "algori": 14912, - "algorithm": 23295, - "algorithms": 26039, - "alham": 23352, - "alhamdulil": 35129, - "alhamdulillah": 38982, - "ali": 835, - "ali": 3558, - "alia": 2492, - "aliaa": 36468, - "alian": 3464, - "alias": 40026, - "alibaba": 39231, - "alic": 25265, - "alice": 23759, - "alice": 9192, - "alici": 31630, - "alicia": 20914, - "alie": 8697, - "alien": 22846, - "alien": 9639, - "aliens": 14883, - "alier": 39493, - "alies": 38086, - "alife": 41347, - "alife": 21100, - "alig": 21272, - "alight": 36157, - "align": 31160, - "aligned": 29292, - "alignment": 27267, - "alik": 31141, - "alike": 12665, - "alim": 42075, - "alin": 42746, - "alin": 40063, - "alina": 39529, - "aline": 21799, - "aling": 5169, - "alion": 19049, - "alis": 21308, - "alis": 20114, - "alisa": 38918, - "alisation": 42143, - "alise": 36718, - "alised": 25099, - "alism": 5607, - "alison": 28653, - "alison": 16970, - "alist": 44900, - "alist": 3320, - "alistair": 40551, - "alistic": 22302, - "alists": 5653, - "alit": 45566, - "alities": 27925, - "ality": 1694, - "alive": 40467, - "alive": 4716, - "aliz": 30979, - "alization": 8026, - "alize": 10268, - "alized": 6141, - "alizer": 38922, - "alizes": 26181, - "alizing": 13023, - "alk": 30246, - "alk": 21577, - "alkal": 33450, - "alkaline": 39210, - "all": 813, - "all": 615, - "alla": 13884, - "alla": 14000, - "allabout": 43996, - "allah": 6378, - "allan": 36552, - "allan": 15404, - "allblacks": 47728, - "allday": 35862, - "alle": 4870, - "alle": 29478, - "alled": 7379, - "alleg": 7456, - "allegations": 16992, - "alleged": 12133, - "allegedly": 14177, - "alleges": 45051, - "allegh": 41479, - "allegheny": 47851, - "allegi": 28832, - "allegiance": 30955, - "allen": 16712, - "allen": 6386, - "allenge": 31387, - "aller": 10116, - "aller": 30630, - "allergic": 28809, - "allergies": 28247, - "allergy": 24408, - "allery": 32542, - "alles": 43354, - "allevi": 31682, - "alleviate": 44799, - "alley": 36205, - "alley": 10329, - "allez": 49137, - "alli": 4123, - "alli": 15268, - "alliance": 45404, - "alliance": 8945, - "alliances": 48403, - "allianz": 45740, - "allie": 25040, - "allied": 20045, - "allies": 17277, - "alligator": 28574, - "allin": 45007, - "allin": 22395, - "alline": 48182, - "alling": 2992, - "allis": 45309, - "allison": 34602, - "allison": 16578, - "allman": 42611, - "allo": 8107, - "allo": 18389, - "allocated": 42716, - "allocation": 35139, - "allon": 46693, - "allot": 26363, - "allotment": 33750, - "allow": 5645, - "allow": 6722, - "allowance": 35696, - "allowed": 7885, - "allowing": 12458, - "allows": 9966, - "alloy": 22467, - "alls": 1997, - "allstar": 31247, - "allstar": 22974, - "allstars": 31198, - "allthe": 29253, - "allu": 20157, - "alluarjun": 39333, - "allure": 41814, - "ally": 7461, - "ally": 769, - "alm": 28303, - "alma": 32933, - "alma": 18337, - "alman": 29394, - "almanac": 41268, - "almighty": 21898, - "almond": 15646, - "almonds": 30468, - "almost": 47534, - "almost": 2671, - "aln": 47203, - "alo": 3435, - "alo": 6183, - "aloe": 30728, - "alog": 15813, - "alogue": 9101, - "aloha": 23160, - "aloils": 49002, - "alom": 22236, - "alon": 14097, - "alon": 42846, - "alone": 4702, - "along": 8300, - "along": 2528, - "alongside": 8646, - "alonso": 25704, - "aloo": 46187, - "alore": 14323, - "alot": 16945, - "alou": 43180, - "aloud": 30028, - "alove": 46669, - "alove": 37045, - "alp": 32020, - "alp": 39342, - "alpac": 30128, - "alpaca": 42561, - "alph": 6720, - "alpha": 11807, - "alpha": 8624, - "alphabe": 45796, - "alphabet": 22335, - "alphon": 37865, - "alpine": 17055, - "alps": 18191, - "already": 2426, - "alright": 10866, - "als": 23982, - "als": 938, - "alsace": 49388, - "also": 1446, - "alt": 9995, - "alt": 10006, - "alta": 24470, - "alta": 25378, - "altaf": 47342, - "altam": 45624, - "altar": 16385, - "alter": 4949, - "alter": 21393, - "altered": 25201, - "altern": 47463, - "alternate": 15926, - "alternati": 16699, - "alternative": 37327, - "alternative": 8248, - "alternatives": 25041, - "alth": 23463, - "alth": 5863, - "although": 9421, - "alti": 35531, - "alties": 17276, - "altitude": 23241, - "altman": 48100, - "alto": 35053, - "alto": 17518, - "altogether": 45689, - "alton": 41331, - "alton": 36550, - "altrin": 38458, - "altrincham": 44718, - "alty": 5546, - "alu": 4776, - "alu": 27991, - "alum": 5404, - "alum": 10553, - "alumin": 14563, - "alumini": 22908, - "aluminium": 23631, - "aluminum": 15251, - "alumna": 30313, - "alumni": 6646, - "alumnus": 23633, - "alums": 30155, - "alv": 20928, - "alvar": 25196, - "alvarez": 26924, - "alvaro": 41941, - "alves": 38547, - "alvin": 27023, - "alway": 14046, - "alway": 43764, - "always": 24997, - "always": 1466, - "alwx": 32768, - "aly": 6468, - "aly": 12910, - "alyn": 49150, - "alyss": 29490, - "alyssa": 18898, - "alz": 12936, - "alz": 41128, - "alzheim": 15212, - "alzheimer": 21151, - "alzheimers": 34592, - "am": 548, - "am": 687, - "ama": 18206, - "ama": 1696, - "amad": 45095, - "amade": 37366, - "amag": 32049, - "amal": 15315, - "amal": 36753, - "aman": 19890, - "aman": 10110, - "amand": 14560, - "amanda": 10036, - "amar": 6424, - "amar": 19607, - "amara": 48522, - "amari": 42565, - "amarillo": 40449, - "amarine": 45591, - "amarketing": 30788, - "amas": 22716, - "amas": 15667, - "amat": 38664, - "amat": 25455, - "amate": 12453, - "amateur": 14287, - "amaya": 47210, - "amaz": 1185, - "amaze": 24846, - "amazed": 18944, - "amazing": 15949, - "amazing": 1370, - "amazingly": 20368, - "amazon": 13630, - "amazon": 4140, - "amb": 9042, - "amb": 16853, - "amba": 27003, - "ambani": 45967, - "ambas": 5634, - "ambassad": 5758, - "ambassador": 6795, - "ambassadors": 16832, - "ambed": 42089, - "ambedkar": 48131, - "amber": 18292, - "amber": 9986, - "ambi": 11844, - "ambient": 23447, - "ambigu": 35702, - "ambition": 20673, - "ambitions": 34152, - "ambitious": 18666, - "ambro": 17585, - "ambrose": 24253, - "ambu": 34423, - "ambul": 13944, - "ambulance": 15555, - "ambush": 40725, - "amc": 24942, - "amc": 16921, - "amd": 20845, - "ame": 3995, - "ame": 780, - "amed": 5660, - "ameen": 24229, - "amel": 31988, - "amel": 10960, - "ameli": 21599, - "amelia": 21433, - "amell": 48198, - "amen": 18716, - "amen": 12335, - "amend": 12425, - "amendment": 15019, - "amendments": 40901, - "amenities": 30096, - "ament": 27528, - "amer": 17081, - "amer": 16147, - "ameri": 40422, - "americ": 1283, - "america": 2224, - "americafirst": 43216, - "american": 8746, - "american": 2151, - "americana": 26221, - "americanair": 42538, - "americani": 39726, - "americans": 6676, - "americas": 33343, - "americas": 18142, - "ames": 5469, - "ameter": 23393, - "amethy": 30291, - "amethyst": 31485, - "amex": 46390, - "amg": 21324, - "amher": 32311, - "amherst": 39065, - "ami": 6100, - "ami": 3065, - "amic": 25824, - "amic": 21383, - "amid": 18908, - "amid": 11953, - "amide": 30952, - "amidst": 25172, - "amie": 36901, - "amig": 40294, - "amiga": 35329, - "amigo": 44991, - "amigos": 28176, - "amii": 35462, - "amiibo": 38871, - "amily": 36732, - "amin": 14337, - "amin": 20235, - "amina": 47531, - "amination": 30355, - "amine": 35823, - "aming": 3507, - "amino": 33464, - "amir": 26029, - "amir": 21973, - "amis": 29829, - "amish": 24958, - "amit": 15083, - "amit": 25255, - "amitabh": 48124, - "amitshah": 32374, - "aml": 43185, - "amma": 29786, - "amman": 29243, - "ammo": 33474, - "ammunition": 35060, - "amn": 24073, - "amne": 14596, - "amnesia": 41741, - "amnesty": 46330, - "amnesty": 21177, - "amo": 4833, - "amo": 11156, - "amodi": 9826, - "amon": 17492, - "amon": 24046, - "among": 12310, - "among": 4265, - "amongst": 12520, - "amoo": 26977, - "amor": 19977, - "amor": 15973, - "amore": 38937, - "amore": 22691, - "amores": 36338, - "amos": 18133, - "amoto": 25492, - "amount": 6403, - "amounts": 16747, - "amour": 29908, - "amovie": 41062, - "amp": 3521, - "amp": 6259, - "amped": 22640, - "amphi": 16379, - "amphibious": 45206, - "amphitheater": 41285, - "amphitheatre": 44039, - "ample": 34162, - "amples": 14536, - "ampli": 15647, - "amplifier": 31743, - "amplify": 45308, - "amps": 19252, - "ampton": 29410, - "ampton": 9347, - "amr": 30916, - "amreading": 16546, - "amrit": 33849, - "ams": 1396, - "amster": 9110, - "amsterdam": 9441, - "amtrak": 27855, - "amu": 11347, - "amu": 32336, - "amur": 35014, - "amura": 35487, - "amus": 36269, - "amuse": 21421, - "amuse": 44367, - "amused": 30212, - "amusement": 32570, - "amusic": 20266, - "amusing": 31789, - "amwriting": 9660, - "amy": 10547, - "amy": 5187, - "an": 514, - "an": 550, - "ana": 6588, - "ana": 1388, - "anab": 34742, - "anada": 27948, - "anag": 12115, - "anagh": 40774, - "anaheim": 23728, - "anak": 34814, - "anak": 38658, - "anal": 2785, - "analo": 34179, - "analog": 19963, - "analogue": 46031, - "analy": 4611, - "analyse": 47246, - "analyses": 39695, - "analysis": 5296, - "analyst": 14198, - "analysts": 28075, - "analytical": 34550, - "analytics": 8558, - "analyze": 28519, - "analyzing": 32107, - "anam": 29525, - "anan": 37215, - "anand": 25073, - "anand": 22083, - "anap": 41566, - "anarch": 46405, - "anarchi": 39879, - "anarchy": 27707, - "anas": 31382, - "anas": 12633, - "anast": 48902, - "anasta": 22915, - "anastasi": 36534, - "anastasia": 37975, - "anat": 10045, - "anath": 31277, - "anatom": 33759, - "anatomy": 15376, - "anc": 1124, - "anc": 17758, - "anca": 14583, - "ance": 7165, - "ance": 884, - "anced": 5071, - "ancer": 17415, - "ancers": 37296, - "ances": 3515, - "ancestor": 43904, - "ancestors": 24405, - "ancestral": 41615, - "ancestry": 30922, - "anch": 9489, - "anche": 34679, - "ancho": 26610, - "anchor": 20030, - "anchor": 13201, - "anchorage": 31950, - "anchored": 45926, - "anchors": 37830, - "anci": 4192, - "ancient": 31495, - "ancient": 5810, - "ancies": 21647, - "ancing": 7797, - "anco": 15459, - "ancy": 16282, - "ancy": 3633, - "and": 672, - "and": 537, - "anda": 2911, - "andalu": 31443, - "andco": 36302, - "ande": 26889, - "ande": 30354, - "ander": 3740, - "ander": 3935, - "anders": 10880, - "andersen": 32661, - "anderson": 26683, - "anderson": 6510, - "andes": 24052, - "andfriends": 36871, - "andhi": 21617, - "andhra": 32452, - "andi": 28870, - "andi": 14354, - "andie": 46318, - "andme": 42831, - "ando": 35950, - "ando": 5986, - "andolan": 48965, - "andon": 36488, - "andor": 45243, - "andover": 44177, - "andr": 22661, - "andra": 46795, - "andra": 21730, - "andre": 2657, - "andre": 9400, - "andrea": 10895, - "andreas": 20444, - "andrei": 42137, - "andres": 25197, - "andretti": 44291, - "andrew": 11717, - "andrew": 4847, - "andrews": 14506, - "andri": 37208, - "andro": 4417, - "andro": 17980, - "android": 24284, - "android": 5191, - "androidgames": 46572, - "andromeda": 42942, - "andré": 35609, - "ands": 32257, - "andthe": 22111, - "andu": 44200, - "andum": 47266, - "andy": 9447, - "andy": 2888, - "ane": 5846, - "ane": 3051, - "anec": 33965, - "anem": 41395, - "anemone": 49019, - "aneous": 48273, - "anes": 15381, - "anese": 48778, - "anesthe": 30622, - "anesthesia": 43353, - "anew": 39084, - "anew": 47341, - "anews": 20919, - "aney": 22387, - "anfield": 26993, - "ang": 883, - "ang": 2704, - "anga": 11641, - "angames": 43178, - "angan": 28264, - "angas": 46180, - "ange": 2960, - "ange": 3039, - "angel": 5029, - "angel": 5130, - "angela": 12354, - "angeles": 7382, - "angeli": 15265, - "angelic": 41038, - "angelica": 38582, - "angelina": 28890, - "angelo": 14342, - "angelou": 41328, - "angels": 7809, - "anger": 32737, - "anger": 6788, - "angerous": 39716, - "angers": 29756, - "angh": 34030, - "angi": 28003, - "angi": 24301, - "angie": 18859, - "angle": 21749, - "angle": 6946, - "angled": 32322, - "angler": 22284, - "anglers": 41608, - "angles": 18627, - "anglesey": 31850, - "anglia": 32076, - "anglic": 28322, - "anglican": 33284, - "angling": 36824, - "anglo": 39515, - "anglo": 30408, - "ango": 19090, - "angola": 36636, - "angor": 41740, - "angp": 19992, - "angry": 33910, - "angry": 9054, - "angs": 18441, - "angst": 41714, - "angu": 11209, - "angular": 43584, - "angular": 24981, - "angularjs": 48608, - "angus": 19688, - "ani": 1326, - "ani": 3624, - "ania": 9866, - "anian": 9945, - "anians": 39393, - "anic": 23113, - "anie": 26697, - "anie": 7671, - "anil": 28589, - "anil": 34619, - "anim": 2190, - "animal": 10697, - "animal": 4668, - "animalrights": 42859, - "animals": 4995, - "animate": 40076, - "animated": 13360, - "animation": 10344, - "animations": 42870, - "animator": 42591, - "anime": 23314, - "anime": 6469, - "anin": 45735, - "aning": 30972, - "anir": 27089, - "anirud": 35278, - "anirudhofficial": 45917, - "anis": 40986, - "anis": 47556, - "anism": 20947, - "anist": 16729, - "anistan": 9727, - "aniston": 47344, - "anit": 23683, - "anita": 18544, - "anium": 14794, - "anj": 22443, - "anja": 43440, - "anjali": 38834, - "anjo": 47353, - "ank": 13339, - "ank": 10029, - "anka": 45324, - "ankara": 34309, - "ankle": 14777, - "ankles": 48688, - "ann": 850, - "ann": 5424, - "anna": 13821, - "anna": 2160, - "annab": 22336, - "annabelle": 47661, - "annah": 39166, - "annah": 14327, - "annak": 41720, - "annan": 32166, - "annapolis": 34491, - "annas": 48467, - "anne": 9139, - "anne": 4083, - "anned": 27352, - "anner": 12642, - "annes": 24343, - "annette": 36821, - "annex": 42958, - "annex": 46389, - "anni": 2438, - "anni": 13728, - "annie": 37270, - "annie": 12173, - "annies": 43184, - "annihil": 32734, - "annis": 24742, - "anniv": 31399, - "anniver": 29671, - "annivers": 42836, - "anniversaire": 30882, - "anniversary": 3048, - "anno": 9901, - "anno": 26871, - "annon": 26385, - "annot": 30411, - "announ": 1806, - "announce": 3682, - "announced": 4103, - "announcement": 6932, - "announcements": 23735, - "announcer": 33626, - "announces": 6500, - "announcing": 11593, - "annoy": 45138, - "annoyed": 29863, - "annoying": 15248, - "annu": 21698, - "annual": 2906, - "annually": 23703, - "anny": 34313, - "anny": 5291, - "ano": 5617, - "ano": 2658, - "anom": 21612, - "anomaly": 46811, - "anon": 47079, - "anon": 13667, - "anonym": 38605, - "anonymous": 15036, - "anoo": 25690, - "anor": 13243, - "anor": 16596, - "anos": 20132, - "another": 29274, - "another": 1380, - "anova": 24116, - "ans": 24586, - "ans": 885, - "ansari": 40748, - "ansel": 40356, - "answ": 3369, - "answe": 14391, - "answer": 4518, - "answered": 14499, - "answering": 18280, - "answers": 8692, - "ant": 1103, - "ant": 773, - "anta": 3023, - "antag": 41745, - "antal": 39355, - "antalya": 47440, - "antan": 32899, - "antarc": 21338, - "antarctic": 27077, - "antarctica": 22587, - "ante": 19311, - "ante": 9769, - "antebellum": 41683, - "antelope": 39177, - "anten": 35517, - "antenna": 26370, - "anter": 46508, - "antes": 14927, - "antgrasso": 39074, - "anth": 3737, - "anth": 29741, - "antha": 47981, - "anthe": 34167, - "anthem": 12504, - "anthi": 45261, - "anthology": 21009, - "anthony": 17477, - "anthony": 6113, - "anthro": 10019, - "anthropo": 18538, - "anthropology": 32407, - "anthus": 37639, - "anti": 3120, - "anti": 3564, - "antibio": 18954, - "antibiotic": 34387, - "antibiotics": 29499, - "antibody": 49018, - "antic": 8260, - "anticip": 11435, - "anticipate": 38280, - "anticipated": 18605, - "anticipating": 48067, - "anticipation": 26983, - "antics": 37126, - "antidote": 45476, - "antifa": 35926, - "antigua": 39910, - "antine": 17641, - "antino": 27818, - "antioxid": 23010, - "antioxidant": 37452, - "antioxidants": 34208, - "antiqu": 21745, - "antique": 46517, - "antique": 9060, - "antiques": 17365, - "antis": 19748, - "antisemitism": 36630, - "antit": 37833, - "antitrust": 49343, - "antlers": 47720, - "antly": 5265, - "anto": 16826, - "anto": 24486, - "antoine": 25188, - "anton": 5497, - "anton": 19644, - "antoni": 39958, - "antonio": 30497, - "antonio": 7842, - "antony": 30707, - "antrim": 40252, - "ants": 1589, - "antv": 47520, - "antw": 44460, - "antwer": 26970, - "antwerp": 33797, - "antz": 25684, - "anu": 8537, - "anu": 17152, - "anup": 29617, - "anus": 27084, - "anush": 22765, - "anushka": 42080, - "anushka": 39822, - "anushkasharma": 44203, - "anwar": 34261, - "anxi": 9021, - "anxiety": 11103, - "anxious": 27793, - "any": 1307, - "any": 1504, - "anya": 11173, - "anybody": 10071, - "anyi": 41632, - "anymore": 7372, - "anyone": 2302, - "anything": 3582, - "anytime": 13924, - "anyway": 8931, - "anyways": 19778, - "anywhere": 8863, - "anz": 14445, - "anz": 19425, - "anza": 14669, - "anzac": 31977, - "ao": 7313, - "ao": 5703, - "aoa": 47119, - "aoc": 31918, - "aofficial": 30840, - "aoki": 33602, - "aol": 40643, - "aon": 30928, - "aon": 48476, - "aor": 32044, - "aos": 46860, - "ap": 688, - "ap": 2728, - "apa": 36954, - "apa": 13537, - "apac": 34320, - "apache": 23921, - "apal": 38017, - "apan": 36562, - "apar": 9161, - "apark": 32528, - "apart": 6474, - "apart": 7803, - "aparthe": 25121, - "apartheid": 26597, - "apartment": 8285, - "apartments": 15791, - "aparty": 26767, - "apat": 31755, - "apathy": 18145, - "apc": 20300, - "apd": 44563, - "ape": 6098, - "ape": 2609, - "apec": 47530, - "aper": 13681, - "aper": 5858, - "apers": 15846, - "apes": 9550, - "apeu": 19040, - "apex": 41935, - "apex": 23712, - "aph": 16341, - "aph": 29491, - "apha": 47104, - "apho": 21758, - "aphra": 44147, - "api": 23342, - "api": 14674, - "apia": 44259, - "apic": 40679, - "aping": 18456, - "apink": 35725, - "apis": 37575, - "apk": 27648, - "apo": 4089, - "apo": 19758, - "apocaly": 13932, - "apocalypse": 17571, - "apocalyptic": 35675, - "apol": 5023, - "apolice": 45663, - "apolis": 9598, - "apollo": 48213, - "apollo": 11554, - "apolo": 31094, - "apolog": 25530, - "apologe": 42908, - "apologi": 14977, - "apologies": 21959, - "apologise": 39608, - "apologize": 22879, - "apologizes": 35298, - "apology": 20768, - "apor": 21871, - "apore": 6679, - "apost": 20309, - "apostle": 33051, - "apostles": 48457, - "app": 882, - "app": 2231, - "appa": 4884, - "appa": 13110, - "appalach": 30523, - "appalachian": 36806, - "appalling": 44797, - "appar": 26698, - "apparatus": 37716, - "apparel": 13972, - "apparent": 23963, - "apparently": 5287, - "appe": 3748, - "appe": 45949, - "appeal": 9625, - "appealing": 25909, - "appeals": 22447, - "appear": 5544, - "appear": 9308, - "appearance": 7238, - "appearances": 17214, - "appeared": 11561, - "appearing": 18759, - "appears": 8743, - "appell": 43833, - "appen": 37201, - "appen": 26589, - "apper": 18780, - "appet": 21686, - "appeti": 24179, - "appetite": 24481, - "appetizer": 36065, - "applau": 24713, - "applaud": 42152, - "applause": 22650, - "apple": 8629, - "apple": 3055, - "applemusic": 21390, - "apples": 14032, - "appleton": 45250, - "appli": 15495, - "appliance": 33677, - "appliances": 22134, - "applic": 4235, - "applicable": 37927, - "applicants": 28035, - "application": 7241, - "applications": 7341, - "applied": 12636, - "applies": 24910, - "apply": 4356, - "applying": 17965, - "appo": 5433, - "appoint": 36190, - "appointed": 11087, - "appointment": 10890, - "appointments": 23439, - "appoints": 25132, - "apprais": 36972, - "appraisal": 46108, - "appreci": 3474, - "appreciate": 6263, - "appreciated": 9264, - "appreciates": 36573, - "appreciating": 39352, - "appreciation": 9212, - "appreciationday": 37438, - "appreciative": 45074, - "appren": 10582, - "apprentic": 15662, - "apprentice": 19122, - "apprentice": 17985, - "apprentices": 38252, - "apprenticeship": 26939, - "apprenticeships": 35425, - "appro": 2398, - "approach": 7781, - "approach": 6241, - "approached": 36499, - "approaches": 14962, - "approaching": 12164, - "appropri": 8446, - "appropriate": 10768, - "appropriately": 30383, - "appropriation": 49110, - "approval": 13549, - "approve": 19064, - "approved": 9412, - "approves": 18107, - "approx": 18266, - "approxim": 14201, - "approximately": 16128, - "apps": 7020, - "appstore": 31377, - "appt": 48112, - "appy": 34420, - "apr": 39396, - "apr": 11177, - "apra": 37027, - "apric": 25923, - "apricot": 30815, - "april": 23548, - "april": 2484, - "apro": 42712, - "apro": 49051, - "apron": 29502, - "aps": 8868, - "apse": 31843, - "apt": 17921, - "aptly": 47313, - "apu": 22166, - "apur": 36900, - "apur": 45193, - "aq": 14018, - "aq": 26862, - "aqu": 4458, - "aqua": 18613, - "aquaculture": 41885, - "aquaman": 35098, - "aquari": 37605, - "aquarium": 16814, - "aquarius": 38879, - "aquatic": 22658, - "aque": 35927, - "aque": 37268, - "aqui": 36826, - "aquino": 33796, - "ar": 516, - "ar": 625, - "ara": 24161, - "ara": 3340, - "arab": 5405, - "arab": 12028, - "arabia": 11746, - "arabian": 24663, - "arabic": 16709, - "arabs": 39155, - "arac": 47620, - "arach": 37689, - "arag": 41502, - "araj": 45142, - "arak": 23416, - "aram": 19223, - "aram": 21473, - "arama": 49066, - "aran": 20839, - "aran": 19641, - "aras": 36399, - "arat": 30856, - "arav": 35836, - "arbit": 20267, - "arbitr": 22702, - "arbitration": 34845, - "arbor": 33516, - "arbor": 24878, - "arboretum": 41719, - "arc": 4997, - "arc": 11592, - "arca": 25189, - "arca": 37612, - "arcade": 13331, - "arcadia": 38372, - "arch": 2458, - "arch": 8557, - "archa": 45619, - "archae": 10121, - "archaeological": 26163, - "archaeologists": 45035, - "archaeology": 14868, - "archan": 33359, - "archbishop": 23994, - "arche": 22474, - "archer": 21824, - "archers": 38407, - "archery": 23935, - "arches": 30771, - "archi": 4479, - "archie": 20557, - "archipel": 39750, - "archipelago": 43025, - "architec": 3359, - "architect": 12192, - "architects": 13290, - "architectural": 15360, - "architecture": 39038, - "architecture": 4920, - "archival": 39249, - "archive": 42257, - "archive": 10548, - "archived": 42379, - "archives": 9411, - "archy": 15643, - "arctic": 29716, - "arctic": 9138, - "ard": 3793, - "ard": 746, - "arden": 44600, - "arden": 27057, - "ardi": 23932, - "ardi": 19837, - "ardo": 35735, - "ardo": 9394, - "ards": 1654, - "ardu": 20906, - "arduino": 25398, - "are": 1076, - "are": 631, - "area": 2445, - "areas": 5429, - "arec": 18136, - "areclipse": 36030, - "ared": 5369, - "arel": 12798, - "arella": 24784, - "arelli": 48619, - "aren": 4033, - "aren": 4318, - "arena": 5463, - "arenas": 47860, - "arent": 37487, - "arer": 14857, - "arers": 33159, - "ares": 12224, - "arest": 11708, - "aret": 22247, - "areth": 47725, - "aretha": 42090, - "areyou": 37607, - "arez": 13108, - "arg": 27285, - "argent": 7812, - "argentina": 9789, - "argentine": 32582, - "argon": 40737, - "argos": 37443, - "argu": 7440, - "arguably": 30899, - "argue": 19788, - "argued": 48153, - "argues": 30045, - "arguing": 26549, - "argument": 16224, - "arguments": 24693, - "argus": 44300, - "argy": 21066, - "argyle": 36179, - "argyll": 40667, - "ari": 1221, - "ari": 3681, - "aria": 8883, - "arial": 42431, - "arian": 29980, - "arian": 6953, - "ariana": 14892, - "arianag": 23025, - "arianagrande": 23321, - "arianism": 44351, - "arians": 19104, - "arias": 22567, - "arie": 18774, - "ariel": 47959, - "ariel": 21025, - "aries": 5213, - "arif": 46621, - "arily": 12993, - "arin": 29564, - "arin": 18612, - "arina": 29271, - "arine": 29586, - "aring": 2142, - "ario": 8862, - "arios": 25392, - "aris": 15227, - "arise": 26490, - "arist": 12110, - "aristo": 25666, - "aristotle": 49156, - "arities": 31069, - "arity": 16608, - "arium": 11809, - "arius": 21482, - "ariz": 6516, - "arized": 40167, - "arizon": 28936, - "arizona": 7106, - "arjun": 24565, - "arjun": 20477, - "arjuna": 43835, - "ark": 11921, - "ark": 12010, - "arkansas": 12227, - "arkham": 36381, - "arl": 48542, - "arlington": 44940, - "arlington": 17865, - "arly": 3637, - "arm": 5671, - "arm": 4793, - "arma": 15887, - "arma": 38716, - "armad": 37897, - "armada": 34938, - "armagh": 44313, - "armani": 31314, - "armb": 37096, - "armchair": 45757, - "armed": 40471, - "armed": 8202, - "armen": 13145, - "armenia": 22008, - "armenian": 24891, - "armies": 46686, - "armin": 45481, - "arming": 19766, - "armist": 38150, - "armistice": 46765, - "armor": 16167, - "armored": 28214, - "armory": 38610, - "armour": 18503, - "armoured": 42514, - "arms": 5706, - "armstrong": 15005, - "army": 13541, - "army": 3133, - "armys": 27311, - "arn": 9348, - "arn": 37597, - "arnau": 45556, - "arne": 43509, - "arney": 35962, - "arnold": 49096, - "arnold": 13609, - "arns": 46692, - "aro": 7514, - "aro": 11551, - "aroa": 48209, - "arom": 16831, - "aroma": 40143, - "aroma": 26390, - "aromas": 47439, - "aromatherapy": 42584, - "aromatic": 39669, - "aron": 30855, - "aron": 28926, - "aroo": 47581, - "arora": 31897, - "arosa": 44264, - "arose": 44262, - "around": 35615, - "around": 1630, - "arqu": 35654, - "arquitec": 41703, - "arr": 39106, - "arr": 42489, - "arra": 32918, - "arra": 43827, - "arrahman": 44554, - "arran": 45722, - "arrang": 16711, - "arrange": 15410, - "arrange": 26311, - "arranged": 22451, - "arrangement": 23822, - "arrangements": 23792, - "arranging": 35321, - "array": 17293, - "arre": 4374, - "arrell": 28846, - "arrest": 9320, - "arrested": 5845, - "arresting": 43930, - "arrests": 20683, - "arri": 2115, - "arrival": 9073, - "arrivals": 19583, - "arrive": 8851, - "arrived": 3514, - "arrives": 9905, - "arriving": 10884, - "arro": 15729, - "arrog": 26997, - "arrogance": 47025, - "arrogant": 40582, - "arrow": 30920, - "arrow": 11149, - "arrowhead": 46393, - "arrows": 24768, - "arroyo": 45237, - "ars": 42815, - "ars": 864, - "arse": 22665, - "arsen": 5330, - "arsenal": 45234, - "arsenal": 6084, - "arsene": 32117, - "arson": 29937, - "art": 1486, - "art": 794, - "arta": 12031, - "arte": 13482, - "arte": 12947, - "artem": 40387, - "artemis": 45256, - "arten": 37043, - "arter": 29449, - "artery": 40062, - "artes": 48629, - "artforsale": 48239, - "artgallery": 31982, - "arth": 7146, - "arth": 20265, - "arthistory": 39313, - "arthr": 20807, - "arthritis": 22916, - "arthro": 43255, - "arthur": 35660, - "arthur": 8550, - "arti": 1635, - "arti": 34601, - "artic": 3003, - "articho": 30937, - "artichoke": 39647, - "article": 3550, - "articles": 11939, - "articul": 40343, - "articulate": 45444, - "artif": 8950, - "artifact": 37718, - "artifacts": 30249, - "artificial": 19357, - "artificial": 12040, - "artificialintelligence": 20799, - "artillery": 24465, - "artin": 33168, - "artin": 48540, - "artis": 41794, - "artisan": 36389, - "artisan": 21535, - "artisans": 40140, - "artist": 14326, - "artist": 2456, - "artiste": 41402, - "artistic": 12421, - "artiston": 48443, - "artistry": 38570, - "artists": 4899, - "artistson": 32127, - "artistsontwitter": 39469, - "artlovers": 35617, - "arto": 28464, - "artof": 31751, - "artoftheday": 43990, - "arton": 46744, - "arts": 22040, - "arts": 3812, - "artsy": 31588, - "arturo": 38591, - "artwit": 36713, - "artwork": 4188, - "artworks": 26215, - "arty": 45417, - "arty": 25916, - "aru": 13757, - "aru": 23907, - "aruba": 40131, - "arugula": 40770, - "arum": 48732, - "arun": 16105, - "arun": 31877, - "arunach": 47260, - "arunjaitley": 44874, - "arus": 22644, - "arvin": 16971, - "arvind": 21209, - "arvind": 41079, - "arvindkejriwal": 22971, - "arvo": 45726, - "arwx": 29824, - "ary": 4617, - "ary": 856, - "arya": 23594, - "aryan": 34966, - "as": 587, - "as": 601, - "asa": 39676, - "asa": 11914, - "asad": 42376, - "asaki": 22455, - "asam": 40603, - "asan": 22379, - "asan": 17841, - "asana": 42363, - "asant": 25536, - "asants": 37766, - "asap": 24199, - "asap": 10822, - "asar": 24733, - "asar": 49299, - "asb": 31186, - "asbe": 32113, - "asbestos": 33765, - "asc": 22720, - "asc": 23305, - "ascen": 20767, - "ascension": 35499, - "ascent": 36625, - "asci": 12753, - "asco": 25578, - "asco": 17488, - "ascot": 23723, - "ascri": 15506, - "asd": 36988, - "asda": 29391, - "asdf": 36857, - "asdfghj": 42758, - "asdfghjkl": 47660, - "ase": 8083, - "ase": 894, - "asean": 24472, - "aseball": 46903, - "ased": 2134, - "asen": 41085, - "aser": 39615, - "aser": 7209, - "ases": 3762, - "asf": 25863, - "asg": 34813, - "ash": 2067, - "ash": 2612, - "asha": 40572, - "asha": 13472, - "ashamed": 20633, - "ashby": 46531, - "ashe": 48523, - "ashe": 31752, - "asher": 37585, - "ashes": 12587, - "asheville": 28897, - "ashford": 37796, - "ashi": 15563, - "ashi": 15934, - "ashish": 33145, - "ashland": 39938, - "ashleigh": 49356, - "ashley": 17825, - "ashley": 8957, - "asho": 20273, - "ashok": 38141, - "ashore": 31194, - "ashram": 43445, - "ashton": 43264, - "ashton": 12228, - "ashtra": 18118, - "asi": 3596, - "asi": 12562, - "asia": 5741, - "asian": 21737, - "asian": 7128, - "asiangames": 49108, - "asians": 36771, - "asics": 31097, - "aside": 13676, - "asif": 37302, - "asim": 46050, - "asin": 48432, - "asin": 44347, - "asing": 4194, - "asingly": 15803, - "asion": 31753, - "asis": 12398, - "ask": 11027, - "ask": 2765, - "asked": 3993, - "asking": 5914, - "asks": 7953, - "asl": 41650, - "asleep": 10749, - "asley": 28206, - "asli": 44290, - "asm": 13851, - "asma": 38497, - "asmsg": 19839, - "aso": 30343, - "aso": 27932, - "asober": 43749, - "asocial": 48557, - "ason": 1163, - "asone": 31249, - "asons": 4249, - "asos": 37924, - "asot": 47968, - "asp": 17814, - "asp": 36666, - "asparag": 20301, - "asparagus": 20604, - "aspe": 10894, - "aspect": 19681, - "aspects": 18203, - "aspen": 35695, - "aspen": 25712, - "asper": 32991, - "asph": 28019, - "asphalt": 30574, - "aspir": 12669, - "aspirations": 36127, - "aspire": 24836, - "aspiring": 21862, - "asports": 43695, - "asr": 48052, - "asroma": 41000, - "ass": 12664, - "ass": 5301, - "assa": 47715, - "assad": 18699, - "assam": 19930, - "assan": 26352, - "assange": 27565, - "assas": 9603, - "assassin": 14366, - "assassin": 20029, - "assassinated": 40488, - "assassination": 24907, - "assassins": 34918, - "assassinscre": 36428, - "assassinscreed": 46082, - "assau": 7908, - "assaul": 19596, - "assault": 9679, - "assaulted": 30785, - "assaulting": 44143, - "asse": 3166, - "asse": 38600, - "assel": 37582, - "assemb": 5531, - "assemble": 26169, - "assembled": 22627, - "assemblies": 47406, - "assembling": 38670, - "assembly": 34542, - "assembly": 7059, - "assen": 38651, - "asser": 25665, - "asses": 21596, - "assess": 9209, - "assess": 23211, - "assessed": 44160, - "assessing": 31364, - "assessment": 10590, - "assessments": 32753, - "asset": 48463, - "asset": 13039, - "assets": 13170, - "assi": 2907, - "assi": 39540, - "assie": 31624, - "assign": 14190, - "assigned": 25767, - "assignment": 17342, - "assignments": 34257, - "assim": 36394, - "assimil": 43467, - "assist": 26558, - "assist": 10286, - "assistance": 11685, - "assistant": 6799, - "assistants": 31054, - "assisted": 18095, - "assisting": 24243, - "assists": 12675, - "assn": 44208, - "asso": 17617, - "assoc": 18891, - "associ": 3566, - "associate": 11777, - "associated": 11164, - "associates": 17358, - "association": 5578, - "associations": 33209, - "assor": 38604, - "assorted": 36701, - "assortment": 43112, - "asst": 24767, - "assu": 8328, - "assume": 19294, - "assumed": 37661, - "assuming": 29422, - "assump": 41182, - "assumption": 40773, - "assumptions": 45948, - "assurance": 28408, - "assure": 39161, - "assured": 25591, - "assures": 41988, - "assy": 29940, - "assy": 12963, - "ast": 1761, - "ast": 1242, - "asta": 43269, - "aste": 25033, - "aste": 25579, - "aster": 11013, - "aster": 9526, - "asteroid": 32253, - "asters": 33139, - "asth": 16684, - "asthma": 24610, - "asthour": 41238, - "astic": 15876, - "asting": 29984, - "astle": 46141, - "asto": 47275, - "aston": 24760, - "aston": 13879, - "astoni": 21962, - "astonishing": 27110, - "astonmartin": 40760, - "astor": 26391, - "astor": 47086, - "astoria": 34798, - "astounding": 37748, - "astr": 37609, - "astra": 47205, - "astra": 36079, - "astral": 45889, - "astri": 31243, - "astrid": 46499, - "astro": 8563, - "astro": 15318, - "astrology": 28526, - "astron": 7982, - "astronaut": 18376, - "astronauts": 29733, - "astronom": 23264, - "astronomer": 40036, - "astronomers": 44268, - "astronomical": 39775, - "astronomy": 17472, - "astrophotography": 38559, - "astros": 17598, - "asts": 10452, - "astu": 43137, - "astur": 45795, - "asu": 13157, - "asu": 16001, - "asun": 36044, - "asure": 3813, - "asus": 27269, - "aswell": 42978, - "asx": 38906, - "asy": 8524, - "asy": 2333, - "asylum": 15638, - "asym": 32539, - "at": 527, - "at": 536, - "ata": 4236, - "atable": 23909, - "atal": 24877, - "atal": 24797, - "atan": 33446, - "atar": 20128, - "atar": 7995, - "atari": 21549, - "atas": 30057, - "atay": 39518, - "atc": 28383, - "atch": 15938, - "atd": 33890, - "ate": 992, - "ate": 671, - "ateam": 42784, - "ateau": 16359, - "atec": 37352, - "atech": 31306, - "ated": 14589, - "ated": 943, - "atedly": 24698, - "atee": 32839, - "ateful": 5419, - "atelier": 29932, - "ately": 3862, - "atem": 17116, - "aten": 47984, - "atene": 30405, - "ateneo": 33904, - "ater": 18597, - "ater": 5877, - "ateral": 18819, - "aters": 22364, - "ates": 20370, - "ates": 1150, - "atest": 1705, - "ateur": 43677, - "atf": 28013, - "ath": 1374, - "ath": 1649, - "atha": 22530, - "atham": 23383, - "athan": 41260, - "athan": 26701, - "athe": 8963, - "athed": 47402, - "atheism": 25823, - "atheist": 22571, - "atheists": 47155, - "athen": 29112, - "athena": 30705, - "athens": 13524, - "ather": 6171, - "ather": 1817, - "athered": 34091, - "athers": 17266, - "athi": 28918, - "athing": 36069, - "athle": 3310, - "athlete": 7388, - "athletes": 7125, - "athletic": 33182, - "athletic": 9028, - "athletics": 7019, - "athlon": 14670, - "athome": 38217, - "athon": 4951, - "aths": 28835, - "athy": 34488, - "athy": 13183, - "ati": 591, - "ati": 6751, - "atia": 10908, - "atic": 20248, - "atic": 2647, - "atically": 13558, - "atics": 15666, - "atie": 30137, - "aties": 40060, - "atif": 41592, - "atiku": 37912, - "atile": 15474, - "atility": 23373, - "atime": 20158, - "atin": 36903, - "atin": 23047, - "atine": 39741, - "ating": 25653, - "ating": 1074, - "atio": 35401, - "ation": 2265, - "ation": 656, - "ational": 14205, - "ational": 3108, - "ationals": 44593, - "ationday": 20082, - "ations": 986, - "atis": 45456, - "atis": 41142, - "atism": 45638, - "ative": 18422, - "ative": 1648, - "atively": 11929, - "atives": 5629, - "ativity": 25166, - "atkins": 27734, - "atkinson": 28908, - "atl": 5411, - "atl": 10629, - "atla": 36043, - "atlan": 6818, - "atlanta": 39964, - "atlanta": 6839, - "atlantic": 28804, - "atlantic": 8189, - "atlantis": 27790, - "atlas": 15775, - "atle": 21170, - "atleast": 33231, - "atleti": 46067, - "atletico": 27501, - "atm": 14127, - "atmo": 8271, - "atmosphere": 10506, - "atmospheric": 24223, - "ato": 7987, - "ato": 4364, - "atoday": 26799, - "atom": 22418, - "atom": 24031, - "atomic": 18996, - "atoms": 41434, - "aton": 31525, - "aton": 10012, - "atop": 17455, - "ator": 10748, - "ator": 1962, - "atore": 28314, - "atorial": 32040, - "atories": 35678, - "atorium": 41306, - "ators": 3389, - "atory": 5920, - "atos": 41643, - "atour": 42967, - "atown": 24000, - "atp": 38105, - "atp": 19817, - "atr": 43247, - "atra": 20227, - "atra": 14401, - "atravel": 36981, - "atre": 46057, - "atri": 13882, - "atri": 38889, - "atric": 32238, - "atric": 13652, - "atrics": 36253, - "atrist": 41879, - "atrium": 29725, - "atrix": 43003, - "atro": 18724, - "atroc": 36197, - "atrocities": 37551, - "atry": 28334, - "ats": 46890, - "ats": 1032, - "atsu": 26531, - "att": 1017, - "att": 7103, - "atta": 7282, - "atta": 9146, - "attach": 43676, - "attach": 35653, - "attached": 11038, - "attachment": 28638, - "attack": 24971, - "attack": 3815, - "attacked": 12366, - "attacker": 39288, - "attackers": 47701, - "attacking": 16813, - "attacks": 7321, - "attain": 46459, - "attar": 37110, - "attemp": 4933, - "attempt": 7409, - "attempted": 17408, - "attempting": 18195, - "attempts": 15610, - "atten": 4084, - "atten": 32408, - "attenborough": 45860, - "attend": 9841, - "attend": 5802, - "attendance": 11928, - "attendant": 35424, - "attended": 8140, - "attendees": 14648, - "attending": 6696, - "attends": 22248, - "attention": 4936, - "atters": 30675, - "atthe": 21489, - "atti": 49265, - "atti": 16235, - "attic": 26766, - "attire": 21222, - "attitude": 10648, - "attitudes": 27611, - "attle": 14685, - "attle": 5030, - "attn": 25677, - "attor": 8856, - "attorney": 10372, - "attorneys": 29113, - "attrac": 7154, - "attract": 17010, - "attracted": 28493, - "attracting": 31909, - "attraction": 16807, - "attractions": 22307, - "attractive": 12231, - "attracts": 31024, - "attribu": 24624, - "attributed": 37520, - "attributes": 40763, - "attu": 43173, - "atty": 36705, - "atu": 15191, - "atu": 24295, - "atuesday": 34841, - "atul": 1744, - "atul": 43948, - "atum": 48295, - "atur": 14986, - "aturday": 29027, - "ature": 25305, - "ature": 4490, - "atures": 7358, - "atus": 14795, - "atv": 19598, - "atwood": 45680, - "atwork": 39680, - "atx": 34849, - "atx": 20136, - "aty": 40974, - "aty": 33107, - "atz": 30432, - "au": 627, - "au": 2566, - "aua": 45906, - "aub": 45938, - "auberg": 49382, - "aubre": 25899, - "aubrey": 34110, - "auburn": 42269, - "auburn": 14534, - "auc": 24489, - "auch": 43024, - "auck": 14588, - "auckland": 16072, - "auction": 48160, - "auction": 6462, - "auctioned": 41073, - "auctions": 24876, - "aucus": 47374, - "aud": 16107, - "aud": 19711, - "audi": 5091, - "audi": 10277, - "audible": 33227, - "audience": 6863, - "audiences": 22328, - "audio": 13792, - "audio": 5766, - "audiobook": 26282, - "audit": 12505, - "audit": 17625, - "auditi": 37377, - "audition": 18673, - "auditions": 21134, - "auditor": 38050, - "auditorium": 15063, - "audre": 16075, - "audrey": 18812, - "audu": 27934, - "audubon": 40275, - "auer": 33460, - "auf": 28924, - "aug": 15397, - "aug": 5720, - "auga": 22797, - "augh": 28310, - "augh": 14005, - "augmente": 48356, - "augmented": 32708, - "augu": 2610, - "august": 24353, - "august": 3171, - "augusta": 26144, - "augustine": 27397, - "augustus": 36835, - "auk": 19058, - "aul": 20695, - "aul": 34391, - "ault": 47253, - "ault": 10219, - "aun": 10608, - "aun": 38721, - "aunt": 12685, - "auntie": 23783, - "aunty": 29528, - "aur": 8156, - "aur": 17282, - "aura": 27728, - "aure": 36010, - "aureli": 35980, - "auror": 30067, - "aurora": 13500, - "aus": 10624, - "aus": 7630, - "ausa": 37384, - "ausbiz": 46543, - "ausch": 33926, - "auschwitz": 36523, - "ausopen": 27831, - "ausp": 35039, - "auspicious": 38806, - "auspol": 8241, - "aussi": 19762, - "aussie": 40230, - "aussie": 14424, - "aussies": 35727, - "aust": 26301, - "aust": 25418, - "austen": 29885, - "auster": 25030, - "austerity": 26982, - "austin": 12845, - "austin": 5125, - "austinmahone": 34678, - "austr": 2518, - "australi": 13798, - "australia": 3444, - "australian": 23630, - "australian": 6258, - "australians": 31488, - "austri": 8946, - "austria": 11960, - "austrian": 20638, - "ausv": 35206, - "ausvotes": 34661, - "aut": 12343, - "auth": 2381, - "auth": 38247, - "authent": 18158, - "authentic": 41266, - "authentic": 10369, - "authentication": 39746, - "authenticity": 35734, - "autho": 34552, - "author": 14447, - "author": 4358, - "authored": 37928, - "authori": 19207, - "authorities": 12729, - "authority": 10524, - "authorization": 48854, - "authorized": 28463, - "authors": 10765, - "auti": 8200, - "autism": 36256, - "autism": 11244, - "autisma": 43324, - "autistic": 29360, - "auto": 3917, - "auto": 5668, - "autobiography": 31509, - "autodesk": 40415, - "autograph": 10657, - "autograph": 13722, - "autographed": 16309, - "autographs": 17376, - "autoimmune": 45509, - "autom": 4114, - "automate": 43203, - "automated": 19022, - "automatic": 12126, - "automatically": 20725, - "automation": 12328, - "automobi": 44813, - "automobile": 25258, - "automotive": 12607, - "auton": 13100, - "autonews": 43975, - "autonom": 17870, - "autonomous": 20722, - "autonomy": 39223, - "autopsy": 44436, - "autos": 31118, - "autoshow": 46788, - "auts": 21140, - "autu": 5445, - "autum": 31783, - "autumn": 28940, - "autumn": 6110, - "autumnal": 35481, - "aux": 18154, - "aux": 8909, - "auxiliary": 37778, - "av": 722, - "av": 8484, - "ava": 12385, - "avage": 31505, - "avail": 1651, - "avail": 16686, - "availability": 17551, - "available": 1685, - "aval": 18012, - "avalan": 23970, - "avalanche": 25815, - "avalley": 45082, - "avalon": 30436, - "avan": 27971, - "avan": 33351, - "avant": 24305, - "avar": 33423, - "avatar": 18219, - "ave": 10062, - "ave": 4860, - "avec": 25828, - "aved": 47918, - "avel": 46817, - "avel": 48088, - "aven": 5963, - "aven": 32971, - "aveng": 21935, - "avenger": 24799, - "avengers": 39413, - "avengers": 12016, - "avengersendgame": 49342, - "avent": 22700, - "avenue": 7042, - "aver": 8788, - "aver": 11403, - "average": 6254, - "averaged": 37310, - "averages": 48982, - "averaging": 35266, - "avery": 20313, - "aves": 14023, - "avfc": 21304, - "avg": 19452, - "avgeek": 11114, - "avi": 3324, - "avi": 11297, - "avia": 38710, - "avian": 24115, - "aviation": 27717, - "aviation": 7617, - "aviator": 38921, - "aviators": 48011, - "avici": 46192, - "avicii": 49158, - "avid": 19118, - "avier": 14598, - "avila": 45339, - "aville": 40689, - "avin": 46204, - "avis": 45163, - "avis": 19765, - "aviv": 22130, - "aviva": 47122, - "aviz": 27607, - "avl": 44749, - "avo": 4496, - "avo": 32400, - "avoc": 12291, - "avocado": 14135, - "avocados": 48911, - "avoi": 16797, - "avoid": 30448, - "avoid": 5983, - "avoidance": 47983, - "avoided": 32103, - "avoiding": 22086, - "avoids": 48220, - "avon": 22790, - "avon": 17348, - "avril": 37763, - "avs": 31896, - "avut": 44472, - "avy": 29973, - "aw": 808, - "aw": 5557, - "awa": 4820, - "awa": 6872, - "await": 20769, - "awaited": 20092, - "awaiting": 14872, - "awaits": 15635, - "awak": 9776, - "awak": 41387, - "awake": 14695, - "awaken": 35412, - "awakening": 17017, - "awakens": 23191, - "awal": 42447, - "awal": 35090, - "awan": 48869, - "awan": 20420, - "awar": 5745, - "award": 36310, - "award": 2047, - "awarded": 7368, - "awarding": 37089, - "awards": 34528, - "awards": 2320, - "aware": 4427, - "aware": 7196, - "awareness": 19217, - "awareness": 4823, - "awarenessmonth": 34278, - "awarenessweek": 35294, - "away": 21088, - "away": 1520, - "aways": 12782, - "awaz": 18586, - "awd": 34846, - "awe": 1693, - "awe": 14106, - "aweather": 42142, - "aweather": 28681, - "awec": 38916, - "aweed": 29724, - "awesom": 16727, - "awesome": 30390, - "awesome": 1848, - "awesomeness": 22430, - "awful": 13617, - "awg": 46350, - "awgs": 35275, - "awh": 39566, - "awhile": 19171, - "awi": 15167, - "awil": 47271, - "awilliams": 42163, - "awk": 8888, - "awk": 40943, - "awkward": 42337, - "awkward": 10304, - "awn": 46222, - "awp": 43300, - "aws": 19658, - "awsome": 47196, - "awson": 36286, - "aww": 11568, - "awww": 15634, - "awwww": 26460, - "awx": 28385, - "ax": 3165, - "ax": 9203, - "axe": 19861, - "axel": 47889, - "axel": 32131, - "axes": 45970, - "axi": 30672, - "axial": 46550, - "axis": 19614, - "axle": 39003, - "axx": 47411, - "ay": 658, - "ay": 551, - "aya": 5917, - "ayala": 39827, - "ayama": 41194, - "ayan": 37781, - "ayan": 16269, - "ayana": 37400, - "ayas": 40904, - "ayat": 44902, - "ayat": 35720, - "aye": 21661, - "aye": 12446, - "ayer": 24852, - "ayers": 42783, - "ayesha": 46570, - "ayi": 33025, - "ayles": 44706, - "ayne": 35669, - "ayo": 21929, - "ayo": 18708, - "ayr": 23002, - "ayr": 36473, - "ayrshire": 32687, - "ays": 785, - "ayu": 40769, - "ayurve": 27185, - "ayurveda": 38986, - "ayush": 44831, - "ayy": 32514, - "ayyy": 41052, - "az": 854, - "az": 5468, - "aza": 22883, - "azad": 37838, - "azalea": 34087, - "azam": 34727, - "azar": 27911, - "azcardinals": 48846, - "aze": 41157, - "aze": 28485, - "azer": 19169, - "azerbai": 20649, - "azerbaijan": 23888, - "azhar": 47019, - "azi": 23914, - "azi": 18452, - "azine": 29140, - "azione": 48335, - "aziz": 41205, - "aziz": 29630, - "azo": 41227, - "azon": 36854, - "azores": 42826, - "azte": 33270, - "aztec": 34749, - "aztecs": 49387, - "azu": 27701, - "azu": 46963, - "azul": 39807, - "azure": 18514, - "azwx": 30262, - "azy": 24783, - "azz": 9817, - "azz": 26453, - "azza": 22255, - "azzi": 18758, - "azzle": 39974, - "azzo": 26779, - "azzur": 37055, - "azzy": 44534, - "añ": 23716, - "años": 41634, - "b": 65, - "b": 321, - "ba": 932, - "ba": 1792, - "baa": 33004, - "baahu": 34145, - "baahubali": 38663, - "bab": 1202, - "bab": 19039, - "baba": 12631, - "babe": 31177, - "babe": 7716, - "babes": 14253, - "babies": 6635, - "babs": 36217, - "babu": 21623, - "baby": 7268, - "baby": 1794, - "babygirl": 39554, - "babylon": 31928, - "babymetal": 45013, - "babys": 22266, - "babysitting": 34186, - "bac": 2791, - "bac": 25867, - "bacca": 40708, - "bach": 11773, - "bach": 8758, - "bachchan": 17690, - "bachel": 11283, - "bachelor": 45508, - "bachelor": 16766, - "bachelore": 26009, - "bachelorette": 29093, - "bacher": 49211, - "back": 1663, - "back": 893, - "backbone": 35635, - "backdrop": 20802, - "backed": 12721, - "backer": 22183, - "backers": 32934, - "background": 5994, - "backgrounds": 28215, - "backing": 14935, - "backlash": 31519, - "backpack": 14894, - "backpacking": 29524, - "backpacks": 37063, - "backs": 7562, - "backseat": 48812, - "backstage": 9236, - "backstreet": 46337, - "backthe": 26127, - "backto": 18703, - "backtoschool": 28730, - "backtothe": 43059, - "backup": 14415, - "backward": 37964, - "backwards": 21283, - "backyard": 12608, - "bacon": 48666, - "bacon": 7104, - "bacter": 11814, - "bacteria": 16556, - "bacterial": 26101, - "bad": 2564, - "bad": 2103, - "bada": 37475, - "badan": 39149, - "badass": 11616, - "baddest": 38112, - "baden": 36690, - "bader": 42254, - "badge": 11301, - "badger": 32686, - "badger": 22363, - "badgers": 22521, - "badges": 20084, - "badlands": 43192, - "badly": 13684, - "badminton": 21412, - "badoo": 33192, - "bados": 25755, - "bae": 32834, - "bae": 6855, - "baek": 18557, - "baek": 32702, - "baekhyun": 21572, - "baes": 46332, - "baf": 13616, - "baff": 35693, - "bafta": 29199, - "bag": 3408, - "bag": 3365, - "bage": 9698, - "bagel": 28777, - "bagels": 37489, - "baggage": 31402, - "bagged": 34047, - "bagh": 21659, - "bagh": 37271, - "baghdad": 30763, - "bago": 25105, - "bags": 6136, - "bagu": 27749, - "baguette": 45334, - "bah": 8372, - "bah": 16685, - "baha": 29592, - "baham": 43718, - "bahamas": 21224, - "bahan": 28704, - "bahn": 33452, - "bahrain": 12503, - "bai": 6232, - "bai": 23339, - "bail": 22933, - "bail": 16986, - "bailey": 27535, - "bailey": 10180, - "bain": 40784, - "bain": 21593, - "bair": 29059, - "baird": 40474, - "bait": 18010, - "baj": 20713, - "baja": 40418, - "baja": 28374, - "bajo": 32619, - "bak": 4059, - "bak": 23742, - "bakar": 41414, - "bake": 20736, - "bake": 11878, - "baked": 10364, - "baker": 27303, - "baker": 7743, - "bakers": 35293, - "bakers": 40231, - "bakersfield": 40149, - "bakery": 13377, - "bakes": 43057, - "bakhta": 44912, - "bakhtawar": 46937, - "bakhtawarbz": 47118, - "baking": 11467, - "baku": 46417, - "baku": 31852, - "bal": 1398, - "bal": 2282, - "bala": 20291, - "balaji": 48694, - "balance": 42894, - "balance": 6827, - "balanced": 15273, - "balances": 37733, - "balancing": 23541, - "balboa": 45098, - "balcony": 16169, - "bald": 11153, - "bald": 14875, - "baldhead": 29191, - "baldwin": 16242, - "bale": 48573, - "bale": 18873, - "bales": 42879, - "bali": 16432, - "bali": 10900, - "balkan": 48499, - "balkans": 42987, - "ball": 3807, - "ball": 1069, - "balla": 42246, - "ballad": 33472, - "ballarat": 46645, - "ballard": 31750, - "baller": 49194, - "baller": 25655, - "ballerina": 34962, - "ballers": 34173, - "ballet": 10703, - "balli": 29406, - "ballin": 47444, - "ballin": 33057, - "balling": 47588, - "ballis": 46675, - "ballistic": 36667, - "ballo": 8871, - "ballon": 36469, - "balloon": 13634, - "balloons": 18130, - "ballot": 14185, - "ballots": 35051, - "ballpark": 26080, - "ballroom": 15493, - "balls": 6927, - "bally": 17275, - "bally": 29451, - "balm": 24962, - "balmain": 45929, - "balo": 12395, - "baloch": 23173, - "balochistan": 21918, - "balot": 44615, - "balotelli": 45721, - "bals": 44154, - "balsam": 29121, - "balsamic": 32654, - "balt": 24441, - "balti": 8400, - "baltic": 23817, - "baltimore": 38502, - "baltimore": 9582, - "balu": 38093, - "bam": 6383, - "bam": 12686, - "bama": 20021, - "bambam": 34538, - "bambi": 46596, - "bamboo": 49322, - "bamboo": 16748, - "ban": 1159, - "ban": 2777, - "bana": 18428, - "banan": 38410, - "banana": 8922, - "bananas": 19121, - "banc": 39252, - "band": 4613, - "band": 1963, - "banda": 31865, - "bandai": 42054, - "bandana": 39265, - "bandcamp": 32229, - "banded": 37804, - "bandic": 44400, - "bandit": 27639, - "bandits": 33940, - "bandra": 41393, - "bands": 7858, - "bandung": 29512, - "bandwagon": 36432, - "bandwidth": 48859, - "bane": 9597, - "banerjee": 48102, - "banff": 29565, - "bang": 3524, - "bang": 6907, - "bangalore": 14697, - "banger": 24872, - "bangers": 38311, - "banging": 33033, - "bangkok": 12351, - "bangla": 10339, - "bangla": 45928, - "bangladesh": 11245, - "bangle": 37634, - "bangor": 31190, - "bangs": 27992, - "bangtan": 39131, - "bani": 19732, - "banjo": 27014, - "bank": 7061, - "bank": 2723, - "banker": 27316, - "bankers": 30599, - "bankholiday": 48868, - "banking": 9566, - "bankno": 49201, - "bankof": 39120, - "bankrup": 21904, - "bankrupt": 23077, - "bankrupt": 37288, - "bankruptcy": 23978, - "banks": 6367, - "banksy": 33350, - "bann": 5304, - "banned": 12012, - "banner": 9185, - "banners": 23145, - "banning": 26246, - "bannon": 29710, - "bano": 42947, - "banquet": 14254, - "bans": 15146, - "bant": 23301, - "bant": 46657, - "banter": 25535, - "bao": 39487, - "bao": 20408, - "bap": 7415, - "bap": 23754, - "bapti": 15477, - "baptism": 36765, - "baptist": 13274, - "baptiste": 45770, - "baptized": 45400, - "bar": 1040, - "bar": 2411, - "bara": 19345, - "barack": 18670, - "barack": 22481, - "barackobama": 18885, - "barak": 47419, - "barak": 16260, - "barang": 38446, - "barb": 24173, - "barb": 20913, - "barbados": 26992, - "barbar": 7906, - "barbara": 10937, - "barbarian": 42530, - "barbe": 18372, - "barbecue": 23501, - "barber": 19517, - "barber": 12296, - "barbershop": 37707, - "barbican": 47668, - "barbie": 16923, - "barca": 22942, - "barcel": 6134, - "barcelon": 47820, - "barcelona": 6412, - "barclay": 48877, - "barclay": 45276, - "barclays": 29538, - "bard": 39812, - "bard": 17514, - "bare": 16023, - "bare": 14318, - "barefoot": 30327, - "barely": 12684, - "bargain": 15076, - "bargaining": 41282, - "bargains": 34126, - "barge": 28272, - "bari": 21428, - "bari": 28016, - "barista": 31078, - "barit": 46300, - "bark": 32333, - "bark": 16560, - "barker": 20618, - "barking": 32676, - "barkley": 30266, - "barley": 22607, - "barlow": 25483, - "barn": 10490, - "barn": 10942, - "barnab": 43272, - "barnard": 44332, - "barne": 42527, - "barnes": 13102, - "barnet": 41943, - "barnett": 27650, - "barney": 24563, - "barns": 43759, - "barnsley": 37109, - "barnsley": 32153, - "baro": 17422, - "baro": 30817, - "baron": 48371, - "baron": 19349, - "baroness": 45056, - "barons": 45596, - "baroque": 25065, - "barr": 39473, - "barr": 22492, - "barra": 28442, - "barra": 33542, - "barrabest": 41376, - "barrac": 40835, - "barracks": 35822, - "barre": 13840, - "barre": 38257, - "barred": 33261, - "barrel": 11703, - "barrels": 22059, - "barren": 46743, - "barrett": 18701, - "barri": 8660, - "barric": 29189, - "barrie": 27090, - "barrier": 15706, - "barriers": 16321, - "barrington": 48954, - "barron": 34881, - "barrow": 42568, - "barrow": 24983, - "barry": 18028, - "barry": 8461, - "barrymore": 49310, - "bars": 8616, - "barstool": 44826, - "bart": 14838, - "bart": 12870, - "bartender": 33498, - "barthol": 48989, - "bartlett": 37130, - "bartol": 38209, - "barton": 48853, - "barton": 20345, - "baru": 16356, - "barun": 38278, - "barunsob": 41398, - "barça": 32788, - "bas": 1244, - "bas": 11420, - "basa": 26142, - "base": 2776, - "base": 4579, - "baseball": 23479, - "baseball": 3470, - "based": 35196, - "based": 2812, - "basel": 42803, - "basel": 20903, - "baseline": 40648, - "baseman": 45910, - "basement": 14792, - "bases": 20496, - "bash": 20462, - "bash": 10972, - "bashing": 37545, - "bashir": 42799, - "basic": 40452, - "basic": 7696, - "basically": 9125, - "basics": 15825, - "basil": 19225, - "basil": 14936, - "basilica": 27879, - "basin": 16117, - "basing": 47321, - "basis": 12278, - "baske": 3713, - "basket": 10338, - "basketball": 40023, - "basketball": 3835, - "baskets": 27787, - "basking": 39769, - "basque": 37175, - "bass": 22831, - "bass": 5992, - "bassett": 45992, - "bassist": 26496, - "bast": 28092, - "basti": 8559, - "bastille": 41874, - "bat": 2121, - "bat": 6575, - "bata": 39277, - "batb": 33962, - "batch": 9413, - "bate": 25034, - "bate": 28277, - "bateman": 41635, - "bates": 21727, - "batgirl": 46460, - "bath": 6064, - "bath": 5713, - "bathing": 20144, - "bathro": 21201, - "bathroom": 8470, - "bathrooms": 26434, - "baths": 19442, - "bathtub": 39942, - "bathurst": 36365, - "bati": 23362, - "bati": 37589, - "batman": 27811, - "batman": 7223, - "baton": 24331, - "bats": 14984, - "batsman": 35432, - "batt": 2407, - "batt": 48595, - "battalion": 20820, - "batter": 12654, - "batter": 31855, - "battered": 34375, - "batteries": 16666, - "battersea": 35839, - "battery": 7870, - "batting": 17401, - "battle": 7344, - "battle": 3528, - "battled": 37837, - "battlefield": 16055, - "battlefront": 42214, - "battleof": 47560, - "battles": 14213, - "battleship": 35165, - "battling": 17268, - "bau": 6055, - "bau": 34840, - "bauer": 22903, - "baugh": 41301, - "baum": 19840, - "bautista": 31881, - "bav": 21075, - "bavaria": 39977, - "bavarian": 44458, - "baw": 19808, - "bax": 21216, - "baxter": 26168, - "bay": 3631, - "bay": 2174, - "baya": 31573, - "bayan": 43895, - "bayarea": 28260, - "bayer": 48548, - "bayer": 29183, - "bayern": 14666, - "baylor": 21721, - "bayou": 33955, - "bays": 40156, - "baz": 10430, - "baz": 25268, - "bazaar": 20070, - "bazar": 49298, - "bb": 1174, - "bb": 3529, - "bba": 27762, - "bball": 15664, - "bbb": 33535, - "bbc": 5123, - "bbc": 5188, - "bbcc": 39052, - "bbce": 33818, - "bbcnews": 29370, - "bbcone": 28259, - "bbcqt": 37343, - "bbcr": 35802, - "bbcra": 17115, - "bbcradi": 49213, - "bbcradio": 22876, - "bbcsport": 49321, - "bbcspringwatch": 37358, - "bbctwo": 40395, - "bbcworld": 47340, - "bbe": 37559, - "bbed": 9077, - "bber": 7933, - "bbers": 36494, - "bbhutto": 28085, - "bbhuttozardari": 28135, - "bbi": 37047, - "bbin": 38553, - "bbing": 9787, - "bbins": 42504, - "bbl": 21961, - "bble": 26570, - "bble": 5924, - "bbled": 37626, - "bbles": 18093, - "bblo": 21231, - "bbloggers": 26614, - "bbly": 43031, - "bbm": 25382, - "bbmas": 22145, - "bbn": 28427, - "bbnaija": 20984, - "bbo": 21892, - "bbq": 41270, - "bbq": 6726, - "bbs": 10002, - "bbuk": 45978, - "bby": 11166, - "bby": 3810, - "bc": 3116, - "bc": 2162, - "bcc": 41509, - "bcci": 36138, - "bce": 36510, - "bcfc": 34359, - "bch": 36684, - "bcn": 25766, - "bcoz": 46373, - "bcpoli": 24389, - "bcs": 24909, - "bcu": 28299, - "bd": 24358, - "bd": 11165, - "bday": 33022, - "bday": 5781, - "bdg": 48418, - "bds": 26732, - "be": 571, - "be": 655, - "bea": 21886, - "bea": 20925, - "beach": 6068, - "beach": 2117, - "beaches": 12183, - "beachlife": 43824, - "beacon": 36883, - "beacon": 18858, - "beacons": 39395, - "bead": 31621, - "bead": 23557, - "beaded": 26661, - "beads": 14099, - "beagle": 30044, - "beak": 36498, - "beal": 45769, - "beale": 39717, - "beam": 35339, - "beam": 13663, - "beams": 23993, - "bean": 16471, - "bean": 5328, - "beanie": 21534, - "beans": 8302, - "bear": 6375, - "bear": 4298, - "bearable": 38608, - "bearcats": 33242, - "beard": 26157, - "beard": 9052, - "bearded": 28459, - "beardown": 43687, - "beards": 33020, - "bearer": 30686, - "bearers": 47986, - "bearing": 18370, - "bearings": 42083, - "bearish": 34829, - "bears": 6182, - "beasley": 43349, - "beast": 20847, - "beast": 6957, - "beastmode": 43076, - "beasts": 21771, - "beat": 3774, - "beat": 3018, - "beaten": 10864, - "beater": 41974, - "beati": 44386, - "beating": 10078, - "beatles": 11961, - "beatport": 31421, - "beatrice": 36922, - "beats": 6289, - "beatthe": 40550, - "beatty": 39903, - "beatz": 33363, - "beau": 1016, - "beau": 14298, - "beaufort": 45423, - "beaumont": 32857, - "beaut": 24559, - "beauti": 1154, - "beauties": 14874, - "beautiful": 13662, - "beautiful": 1215, - "beautifully": 10627, - "beauty": 12881, - "beauty": 2488, - "beav": 23260, - "beaver": 26432, - "beaver": 22874, - "beavers": 34513, - "beavs": 43909, - "bebe": 23331, - "bec": 6899, - "bec": 10773, - "became": 5464, - "because": 32714, - "because": 1631, - "becca": 27088, - "bech": 44055, - "beck": 8256, - "beck": 10396, - "becker": 26918, - "beckett": 27249, - "beckham": 18764, - "becky": 32406, - "becky": 18921, - "become": 2989, - "becomes": 6766, - "becoming": 6208, - "bed": 4152, - "bed": 2722, - "bedding": 31761, - "bedford": 20779, - "bedi": 39181, - "bedro": 18415, - "bedroom": 8411, - "bedrooms": 23996, - "beds": 13914, - "bedside": 47473, - "bedtime": 22115, - "bee": 6097, - "bee": 5028, - "beech": 32733, - "beech": 27596, - "beef": 21703, - "beef": 6529, - "beek": 37915, - "been": 33986, - "been": 1025, - "beep": 33432, - "beer": 8885, - "beer": 2544, - "beers": 10907, - "bees": 36249, - "bees": 9100, - "beet": 12582, - "beet": 28621, - "beethoven": 23656, - "beetle": 16534, - "beetles": 36317, - "beetro": 29251, - "beetroot": 31638, - "beets": 36087, - "before": 20898, - "before": 1348, - "beg": 2219, - "beg": 22401, - "began": 8636, - "begg": 36769, - "begging": 25371, - "begin": 19197, - "begin": 4947, - "beginner": 24351, - "beginners": 21930, - "beginning": 5791, - "beginnings": 22581, - "begins": 4635, - "begs": 43531, - "begun": 10514, - "beh": 21971, - "beh": 41612, - "beha": 5737, - "behalf": 11470, - "behave": 28825, - "behaved": 41617, - "behavi": 6149, - "behaving": 40745, - "behavior": 10461, - "behavioral": 25135, - "behaviors": 37741, - "behaviour": 14655, - "behavioural": 46019, - "behe": 42329, - "behin": 2335, - "behind": 2403, - "behindthe": 21104, - "behindthescenes": 26253, - "behold": 15929, - "bei": 38991, - "bei": 23227, - "beige": 26677, - "beij": 11547, - "beijing": 11796, - "bein": 39117, - "bein": 24168, - "being": 13481, - "being": 1265, - "beings": 17998, - "beingsalmankhan": 19637, - "beir": 20176, - "beirut": 22352, - "beit": 26963, - "bek": 46846, - "bek": 26135, - "bekind": 46691, - "bel": 1308, - "bel": 3543, - "bela": 30555, - "belarus": 30849, - "belated": 20256, - "belfast": 35100, - "belfast": 10015, - "belgi": 7001, - "belgian": 15008, - "belgium": 10239, - "belgrade": 30502, - "beli": 1859, - "beli": 45842, - "belichick": 46132, - "belie": 20854, - "beliebers": 27714, - "belief": 14802, - "beliefs": 20575, - "believ": 4972, - "believe": 15819, - "believe": 2649, - "believed": 13380, - "believein": 24294, - "believeinfilm": 37375, - "believer": 26057, - "believers": 28434, - "believes": 12017, - "believing": 19551, - "belinda": 44415, - "belize": 27990, - "bell": 5417, - "bell": 3718, - "bella": 18282, - "bella": 10418, - "bellamy": 34461, - "bellator": 31985, - "belle": 13587, - "belle": 11496, - "belles": 40678, - "bellevue": 32715, - "belli": 43335, - "bellletstalk": 42695, - "bello": 21954, - "bells": 12811, - "bellum": 35493, - "belly": 25901, - "belly": 10404, - "belmont": 25612, - "belo": 8379, - "belo": 41649, - "belong": 16453, - "belong": 13596, - "belonged": 39893, - "belonging": 28193, - "belongs": 14395, - "beloved": 9363, - "below": 3788, - "bels": 43127, - "belt": 36416, - "belt": 7373, - "belts": 21888, - "belvedere": 48003, - "ben": 1465, - "ben": 3518, - "bena": 46249, - "bench": 17770, - "bench": 8771, - "benches": 36349, - "benchmark": 31775, - "bend": 22100, - "bend": 13332, - "bender": 22551, - "bendigo": 48197, - "bending": 33897, - "bene": 12091, - "bene": 47151, - "beneath": 16850, - "bened": 13216, - "benedic": 24402, - "benedict": 47896, - "benedict": 18027, - "benef": 3260, - "benefici": 38593, - "beneficial": 24660, - "beneficiaries": 42160, - "benefit": 6399, - "benefited": 48266, - "benefiting": 29474, - "benefits": 5465, - "benefitting": 47222, - "benevol": 47060, - "benfica": 33873, - "beng": 6962, - "bengal": 17404, - "bengal": 16374, - "bengali": 33774, - "bengals": 23737, - "bengaluru": 21707, - "benghazi": 25967, - "benin": 40296, - "benitez": 46711, - "benjam": 10550, - "benjamin": 38647, - "benjamin": 12131, - "benji": 43548, - "benn": 39097, - "bennet": 48536, - "bennett": 12186, - "benny": 42369, - "benny": 20595, - "beno": 35268, - "benoit": 44373, - "benson": 19578, - "bent": 9809, - "bent": 18369, - "bentley": 16859, - "benton": 30812, - "benz": 27937, - "benz": 13470, - "ber": 867, - "ber": 1516, - "bera": 32802, - "bere": 17458, - "bered": 9193, - "beren": 33654, - "beret": 41658, - "berg": 12022, - "berg": 3294, - "bergen": 22918, - "berger": 35933, - "berger": 13873, - "bergh": 35120, - "bergman": 42597, - "bergs": 43592, - "berk": 15633, - "berke": 14639, - "berkeley": 46049, - "berkeley": 16667, - "berkshire": 27300, - "berlin": 23532, - "berlin": 5891, - "berman": 21514, - "bermu": 21032, - "bermuda": 24644, - "bern": 9195, - "bern": 18382, - "bernade": 46242, - "bernar": 11962, - "bernard": 14579, - "bernardino": 35328, - "bernardo": 27137, - "bernardo": 28696, - "bernardokath": 29081, - "bernat": 40578, - "berni": 18798, - "bernie": 40093, - "bernie": 10503, - "berniesanders": 23745, - "bernstein": 33936, - "berra": 15089, - "berries": 8319, - "berry": 15334, - "berry": 3488, - "bers": 6408, - "berser": 39037, - "bert": 17340, - "bert": 2358, - "berta": 45187, - "berth": 28317, - "bertie": 47182, - "berto": 34073, - "bertr": 36962, - "bertrand": 41594, - "berts": 30205, - "berty": 35973, - "berwick": 40407, - "bery": 11411, - "bes": 26911, - "bes": 3635, - "beside": 13519, - "besides": 17596, - "bespoke": 15612, - "bess": 43791, - "best": 3419, - "best": 949, - "bestbuy": 29749, - "bestest": 31199, - "bestfan": 23880, - "bestfanarmy": 24590, - "bestfriend": 29832, - "bestfriend": 11856, - "bestfriends": 23555, - "besti": 35210, - "bestie": 17188, - "besties": 27346, - "besto": 28615, - "bestof": 27892, - "bestof": 39533, - "bestseller": 25841, - "bestselling": 28632, - "bet": 1051, - "bet": 4430, - "beta": 43188, - "beta": 9505, - "betes": 10255, - "beth": 9993, - "beth": 4892, - "bethan": 18781, - "bethany": 39130, - "bethany": 27952, - "bethe": 12624, - "bethel": 33410, - "bethesda": 32527, - "bethle": 30760, - "bethlehem": 31827, - "betis": 45590, - "beto": 33721, - "betra": 18436, - "betrayal": 33171, - "betrayed": 35692, - "bets": 17107, - "betsy": 28946, - "bett": 17715, - "bett": 20489, - "betta": 36387, - "bette": 35855, - "better": 10320, - "better": 1539, - "bettertogether": 47392, - "betting": 14319, - "betts": 38637, - "betty": 36175, - "betty": 14350, - "between": 1957, - "beu": 38660, - "bev": 40324, - "bev": 30968, - "bever": 9924, - "beverage": 18694, - "beverages": 28521, - "beverley": 39165, - "beverly": 30906, - "beverly": 16728, - "beverlyhills": 45363, - "beware": 14532, - "bewithyou": 36787, - "bex": 18676, - "bex": 24748, - "bexhill": 49200, - "bey": 3234, - "bey": 6767, - "beyon": 11447, - "beyonce": 16632, - "beyoncé": 19219, - "beyond": 22246, - "beyond": 4432, - "bez": 28592, - "bez": 46764, - "bezos": 45000, - "bf": 19858, - "bf": 7990, - "bfc": 37183, - "bff": 11984, - "bffs": 31462, - "bfi": 34244, - "bg": 16674, - "bg": 11295, - "bgc": 47598, - "bgs": 47963, - "bgt": 40665, - "bh": 9930, - "bh": 13603, - "bha": 6144, - "bha": 33068, - "bhafc": 30779, - "bhagat": 49136, - "bhai": 48370, - "bhai": 20508, - "bhak": 34501, - "bham": 31874, - "bham": 23491, - "bhan": 27356, - "bhand": 48679, - "bhar": 9108, - "bharat": 27454, - "bharat": 17430, - "bharti": 46803, - "bhat": 23784, - "bhatt": 36143, - "bhav": 44950, - "bhi": 28943, - "bhi": 21955, - "bhk": 45070, - "bhm": 38741, - "bho": 19721, - "bhopal": 44573, - "bhp": 29776, - "bhs": 29195, - "bhu": 9172, - "bhuban": 38729, - "bhubanes": 41213, - "bhubaneswar": 45888, - "bhushan": 40884, - "bhutan": 32391, - "bhutto": 30153, - "bi": 717, - "bi": 3035, - "bia": 3841, - "biaf": 26961, - "biafra": 36355, - "bian": 19531, - "bian": 9027, - "bianca": 25854, - "bianchi": 45720, - "bians": 28141, - "bias": 11268, - "biased": 22178, - "bib": 44607, - "bib": 21022, - "bibi": 31182, - "bibl": 20912, - "bible": 26738, - "bible": 7583, - "bibli": 23465, - "biblical": 22841, - "biblio": 49131, - "bic": 5960, - "bic": 10675, - "bice": 35589, - "biceps": 46735, - "bick": 27238, - "bicy": 9247, - "bicycle": 11652, - "bicycles": 31326, - "bid": 21035, - "bid": 5553, - "bidding": 23237, - "bide": 45178, - "biden": 19451, - "bids": 16148, - "bie": 5561, - "bie": 4173, - "bieber": 48725, - "bieber": 7535, - "bien": 19176, - "bien": 25742, - "biennale": 33776, - "biennial": 36609, - "bier": 27226, - "bier": 23508, - "bies": 7867, - "big": 1915, - "big": 1205, - "bigbaldhead": 30325, - "bigbang": 41680, - "bigbang": 23734, - "bigdata": 9440, - "bige": 37762, - "bigfoot": 37095, - "bigg": 15312, - "bigg": 35399, - "biggboss": 27056, - "bigger": 6806, - "biggest": 19483, - "biggest": 3505, - "biggie": 28392, - "biggs": 46507, - "bigh": 18106, - "bighit": 35508, - "bigo": 14278, - "bigolive": 20735, - "bigotry": 37269, - "bigre": 36330, - "bih": 33471, - "bihar": 22849, - "bij": 42478, - "bik": 30306, - "bike": 11686, - "bike": 3701, - "biker": 36100, - "biker": 23449, - "bikers": 29468, - "bikes": 9227, - "bikin": 12638, - "biking": 19157, - "bikini": 14531, - "bil": 3092, - "bil": 20506, - "bilateral": 25599, - "bilbao": 34802, - "bild": 35512, - "bile": 25943, - "bilingual": 29623, - "bilities": 13582, - "bility": 4694, - "bill": 4444, - "bill": 2886, - "billboard": 10856, - "billboards": 34741, - "billed": 37558, - "billi": 7693, - "billie": 23990, - "billing": 31797, - "billings": 43615, - "billion": 14520, - "billion": 5729, - "billionaire": 19475, - "billionaires": 41590, - "billions": 20742, - "bills": 9810, - "billsmafia": 48845, - "billy": 15626, - "billy": 6814, - "bilt": 44770, - "bilt": 26654, - "bim": 46737, - "bim": 24775, - "bin": 4849, - "bin": 5346, - "binance": 43520, - "binary": 23497, - "bind": 44513, - "binder": 30541, - "binding": 21287, - "bine": 34848, - "bing": 24818, - "bing": 5665, - "binge": 22600, - "bingham": 43785, - "bingham": 47296, - "bingo": 18418, - "bino": 29172, - "bino": 24313, - "bins": 26934, - "bint": 43647, - "bio": 2830, - "bio": 5162, - "biode": 43502, - "biodegradable": 47740, - "biodiversity": 17428, - "biof": 45158, - "biographical": 49232, - "biography": 15423, - "biological": 18821, - "biologist": 35149, - "biology": 9796, - "biom": 13010, - "biomar": 44549, - "biomass": 36746, - "biome": 26218, - "biomed": 29280, - "biomedical": 33117, - "bionic": 46201, - "biop": 15009, - "biopic": 27942, - "bios": 48505, - "biotech": 22514, - "biotechnology": 40375, - "biotic": 33773, - "biotics": 41371, - "bious": 31845, - "bipartisan": 32266, - "bipolar": 37097, - "bique": 27809, - "bir": 921, - "bir": 16284, - "birch": 31569, - "birch": 22907, - "bird": 6908, - "bird": 3329, - "birdie": 29612, - "birdies": 45618, - "birding": 15851, - "birdman": 41915, - "birdphotography": 47999, - "birds": 41951, - "birds": 4337, - "birdwatching": 33497, - "birk": 48289, - "birken": 40661, - "birmin": 37482, - "birmingham": 38580, - "birmingham": 7720, - "birth": 1128, - "birth": 5397, - "birthday": 7381, - "birthday": 1166, - "birthdays": 17954, - "birthplace": 31429, - "biryani": 46489, - "bis": 5064, - "bis": 14461, - "biscu": 11532, - "biscuit": 18731, - "biscuits": 18248, - "bisexual": 36829, - "bish": 33690, - "bish": 31461, - "bishop": 20625, - "bishop": 8024, - "bishops": 31579, - "bison": 19741, - "bistro": 21770, - "bit": 3010, - "bit": 2010, - "bitcoin": 30848, - "bitcoin": 6366, - "bite": 41613, - "biting": 23016, - "bits": 7747, - "bitt": 39251, - "bius": 45525, - "bix": 46579, - "biz": 8212, - "biz": 5431, - "biza": 47013, - "bizar": 14886, - "bizarre": 16965, - "bizhour": 39462, - "bizitalk": 34929, - "bj": 4592, - "bj": 18229, - "bjj": 27437, - "bjor": 26525, - "bjp": 37264, - "bjp": 6178, - "bk": 15099, - "bk": 14083, - "bkk": 36433, - "bl": 833, - "bl": 9467, - "bla": 2205, - "bla": 19630, - "blac": 21008, - "black": 2025, - "black": 1449, - "blackand": 12809, - "blackandwhite": 23688, - "blackandwhite": 19506, - "blackandwhitephotography": 27544, - "blackberry": 16470, - "blackbird": 38526, - "blackburn": 23789, - "blackfish": 42193, - "blackfriday": 16445, - "blackgirl": 43591, - "blackhawks": 19203, - "blackhistory": 46982, - "blackhistorymonth": 20135, - "blacklist": 30295, - "blacklivesmatter": 23467, - "blackmail": 47295, - "blackops": 43519, - "blackout": 21733, - "blackpanther": 36592, - "blackpink": 20339, - "blackpool": 21031, - "blacks": 16351, - "blackwell": 42642, - "blad": 36635, - "bladder": 33593, - "blade": 10264, - "blades": 16893, - "blah": 29212, - "blaine": 32457, - "blair": 31824, - "blair": 14749, - "blake": 20229, - "blake": 9579, - "blame": 10695, - "blamed": 32906, - "blames": 27841, - "blaming": 29287, - "blan": 4609, - "blanc": 30936, - "blanc": 13301, - "blanca": 40670, - "blanchard": 40177, - "blanche": 34875, - "blanchett": 49378, - "blanco": 26801, - "bland": 44372, - "bland": 30799, - "blank": 15134, - "blanket": 12878, - "blankets": 24042, - "blanks": 48599, - "blasio": 35553, - "blasphe": 36622, - "blast": 46349, - "blast": 5964, - "blasted": 38976, - "blaster": 36341, - "blasting": 26178, - "blasts": 23067, - "blat": 22048, - "blatant": 41391, - "blatt": 39138, - "blau": 45307, - "blaz": 43413, - "blaze": 15497, - "blazer": 17606, - "blazers": 16984, - "blazing": 25267, - "bldg": 22981, - "ble": 1447, - "ble": 1059, - "bleach": 27034, - "bleak": 40355, - "bled": 12006, - "bleed": 23027, - "bleed": 24791, - "bleedblue": 39160, - "bleeding": 20311, - "bleeds": 47339, - "blen": 25651, - "blend": 10780, - "blended": 25813, - "blender": 25066, - "blending": 34307, - "blends": 28572, - "bler": 31305, - "bler": 11979, - "blers": 26930, - "bles": 5763, - "bless": 9640, - "bless": 5387, - "blessed": 4411, - "blessing": 10729, - "blessings": 11185, - "bleu": 30114, - "blew": 18176, - "bley": 43176, - "bli": 1450, - "bli": 28051, - "blin": 9678, - "blin": 5406, - "blind": 17248, - "blind": 8351, - "blinded": 49149, - "blindness": 38812, - "blinds": 32449, - "bling": 39764, - "bling": 7097, - "blink": 18976, - "bliss": 28531, - "bliss": 12893, - "blissful": 42145, - "blit": 39327, - "blitz": 42151, - "blitz": 17548, - "blizz": 13075, - "blizzard": 16111, - "blk": 42950, - "blk": 22872, - "blm": 30957, - "bln": 47348, - "blo": 1204, - "blo": 25505, - "blob": 49312, - "bloc": 30961, - "block": 4638, - "block": 4593, - "blockade": 33489, - "blockbuster": 19939, - "blockchain": 6653, - "blocked": 9106, - "blocker": 44767, - "blocking": 12652, - "blocks": 10113, - "blog": 16376, - "blog": 2589, - "blogg": 33282, - "blogged": 41380, - "blogger": 21352, - "blogger": 7806, - "bloggerrt": 48898, - "bloggers": 11627, - "blogging": 18090, - "blogpost": 41842, - "blogs": 16682, - "bloke": 24384, - "blom": 48996, - "blon": 7958, - "blond": 32426, - "blonde": 10711, - "blondes": 45130, - "blondie": 39236, - "bloo": 2373, - "blood": 9231, - "blood": 3590, - "blooded": 41946, - "bloodh": 48480, - "bloods": 39539, - "bloody": 38568, - "bloody": 9468, - "bloom": 7311, - "bloom": 10257, - "bloomberg": 43109, - "bloomberg": 21238, - "bloomfield": 40342, - "blooming": 45175, - "blooming": 19266, - "bloomington": 34731, - "blooms": 21439, - "bloss": 10017, - "blossom": 14472, - "blossoms": 21916, - "blot": 41710, - "blou": 44506, - "blouse": 23525, - "blow": 15230, - "blow": 10211, - "blower": 25832, - "blowing": 12087, - "blown": 11848, - "blowout": 34857, - "blows": 21063, - "blr": 47250, - "bls": 39458, - "blu": 1263, - "blu": 10273, - "blue": 3829, - "blue": 1746, - "bluebells": 47150, - "blueberries": 29551, - "blueberry": 18251, - "bluebird": 40747, - "bluec": 43194, - "bluef": 41174, - "bluegrass": 26241, - "bluejays": 18684, - "blueprint": 30594, - "blues": 17566, - "blues": 5159, - "blueslyrix": 47068, - "bluet": 13469, - "bluetooth": 14052, - "bluewave": 40025, - "bluff": 27232, - "bluffs": 48844, - "blum": 34818, - "blumen": 38714, - "blun": 34472, - "blunt": 19305, - "blur": 12102, - "blur": 27976, - "bluray": 36818, - "blurred": 38013, - "blurry": 21977, - "blush": 22889, - "blvd": 12578, - "bly": 20930, - "bly": 4426, - "bm": 4773, - "bm": 15916, - "bma": 42573, - "bmc": 27807, - "bmi": 40642, - "bmo": 39083, - "bms": 34074, - "bmw": 26637, - "bmw": 7869, - "bmx": 22535, - "bn": 10496, - "bn": 7992, - "bnb": 20010, - "bnha": 49336, - "bnp": 47910, - "bnw": 35903, - "bo": 647, - "bo": 2525, - "boa": 14732, - "boar": 7837, - "boar": 35473, - "board": 10419, - "board": 1972, - "boarded": 43052, - "boarder": 37414, - "boardgame": 47829, - "boardgames": 32646, - "boarding": 10086, - "boardroom": 47937, - "boards": 7963, - "boardwalk": 29043, - "boast": 44467, - "boasts": 30309, - "boat": 12426, - "boat": 4440, - "boath": 45461, - "boating": 21951, - "boats": 10080, - "boatsales": 46244, - "bob": 8444, - "bob": 4423, - "boba": 39948, - "bobb": 16891, - "bobble": 38796, - "bobblehead": 33451, - "bobby": 17847, - "bobby": 7816, - "bobc": 26153, - "bobcat": 37896, - "bobcats": 27568, - "bobo": 38939, - "bobs": 45533, - "boc": 27307, - "boc": 39042, - "boca": 26094, - "bock": 24961, - "bod": 17904, - "bod": 26340, - "boda": 42030, - "bode": 28452, - "bode": 40429, - "bodega": 47350, - "bodied": 36892, - "bodies": 9799, - "bodily": 49119, - "body": 7132, - "body": 1774, - "bodybuilding": 24538, - "bodyguard": 35565, - "boe": 23476, - "boe": 21773, - "boeh": 38002, - "boehner": 44599, - "boeing": 48135, - "boeing": 11857, - "boer": 44889, - "boer": 40768, - "bog": 23426, - "bog": 28318, - "bogo": 35769, - "bogota": 47059, - "bogus": 42907, - "boh": 43238, - "bohe": 40541, - "bohemi": 21552, - "bohemian": 25753, - "boho": 25444, - "boi": 37129, - "boi": 12673, - "boil": 31332, - "boiled": 23886, - "boiler": 28212, - "boiler": 25615, - "boiling": 32019, - "bois": 47742, - "bois": 21640, - "boise": 23304, - "bok": 26671, - "bok": 15289, - "boko": 30929, - "boks": 40216, - "bol": 2860, - "bol": 8413, - "bola": 12840, - "bold": 26975, - "bold": 8911, - "boldand": 48413, - "boldly": 44778, - "boli": 12722, - "bolic": 27343, - "bolivia": 28628, - "bollah": 36336, - "bolly": 25302, - "bollywood": 32448, - "bollywood": 9604, - "bolo": 40236, - "bolog": 22818, - "bologna": 27513, - "bolster": 47304, - "bolt": 13131, - "bolton": 48757, - "bolton": 16598, - "bolts": 26028, - "bom": 3012, - "bom": 19469, - "bomb": 18091, - "bomb": 6331, - "bombar": 25544, - "bombardier": 42700, - "bombay": 48602, - "bombay": 23890, - "bombed": 24542, - "bomber": 15436, - "bombers": 21786, - "bombing": 14475, - "bombings": 43236, - "bombs": 14410, - "bombshell": 36340, - "bon": 1871, - "bon": 4216, - "bona": 33342, - "bonanza": 40304, - "bond": 37022, - "bond": 6826, - "bonded": 37390, - "bondi": 40092, - "bonding": 19609, - "bonds": 15786, - "bone": 22502, - "bone": 6195, - "bones": 9476, - "bonfire": 23151, - "bongo": 47519, - "boni": 32269, - "boni": 46356, - "bonita": 42896, - "bonjour": 33176, - "bonkers": 39865, - "bonn": 38969, - "bonnar": 47191, - "bonnaroo": 48777, - "bonne": 25844, - "bonnet": 30636, - "bonnie": 18555, - "bono": 24476, - "bons": 42883, - "bonsai": 44129, - "bonus": 8164, - "bonuses": 35144, - "boo": 824, - "boo": 7317, - "boogie": 22639, - "book": 2828, - "book": 1116, - "bookboost": 31257, - "bookclub": 34438, - "bookday": 26327, - "booked": 12584, - "booker": 21302, - "bookfest": 39381, - "booking": 10145, - "bookings": 18345, - "booklet": 27405, - "bookmark": 33596, - "bookof": 45629, - "bookreview": 27362, - "books": 44382, - "books": 2161, - "bookshelf": 34821, - "bookshop": 24705, - "bookstore": 17999, - "bookstores": 46416, - "bookworm": 20743, - "boom": 9609, - "boom": 7121, - "boomer": 33819, - "boomer": 31766, - "boomers": 37988, - "booming": 33487, - "boon": 24979, - "boon": 35821, - "boone": 23453, - "boop": 45047, - "boost": 44639, - "boost": 6260, - "boosted": 37631, - "booster": 20877, - "boosters": 46859, - "boosting": 28480, - "boosts": 29247, - "boot": 10843, - "boot": 8087, - "bootcamp": 22051, - "booted": 42564, - "booth": 47895, - "booth": 3971, - "booths": 32653, - "booties": 46188, - "bootleg": 38139, - "boots": 7319, - "booze": 24341, - "bop": 19720, - "bor": 1141, - "bor": 15093, - "bora": 24736, - "bord": 36891, - "bordeaux": 22009, - "border": 16304, - "border": 6177, - "borderlands": 38676, - "borders": 13900, - "bore": 14084, - "bore": 24638, - "bored": 8933, - "boredom": 31460, - "boretum": 38902, - "borg": 14770, - "borgh": 17180, - "boring": 12519, - "boris": 31212, - "boris": 15704, - "borisjohnson": 44481, - "born": 17695, - "born": 2683, - "borne": 42910, - "borne": 9328, - "borneo": 33332, - "bornon": 41811, - "bornonthisday": 42757, - "boro": 26796, - "boro": 7974, - "borough": 22761, - "borough": 6203, - "borrow": 22293, - "borrowed": 28224, - "borrowing": 41045, - "borussia": 36764, - "bos": 14885, - "bos": 9644, - "bosa": 46946, - "bosch": 42009, - "bosch": 19466, - "bosco": 36960, - "bose": 23142, - "bosh": 42244, - "bosni": 42924, - "bosnia": 31396, - "boss": 17935, - "boss": 4206, - "bosses": 23906, - "boston": 11540, - "boston": 4399, - "bostonmarathon": 44533, - "bot": 4136, - "bot": 6947, - "botan": 12554, - "botanic": 32560, - "botanical": 21026, - "botany": 22612, - "botd": 34451, - "both": 36575, - "both": 2212, - "bother": 21125, - "bothered": 27997, - "botox": 43449, - "bots": 13721, - "botswana": 27584, - "bott": 3520, - "bott": 37225, - "bottle": 37306, - "bottle": 5392, - "bottled": 29331, - "bottlen": 46439, - "bottles": 9754, - "bottling": 42006, - "bottom": 32314, - "bottom": 5931, - "bottoms": 31524, - "bou": 3728, - "bou": 23165, - "bouchard": 47930, - "boudo": 48827, - "bought": 4142, - "boul": 24830, - "boulder": 18260, - "boule": 17652, - "boulevard": 19504, - "boun": 5993, - "bounce": 14316, - "bouncing": 32060, - "bouncy": 43415, - "bound": 15140, - "bound": 4567, - "boundaries": 18690, - "boundary": 21344, - "bounds": 37469, - "bounty": 21142, - "bouquet": 20961, - "bour": 2934, - "bour": 35486, - "bourbon": 48118, - "bourbon": 14652, - "bourdain": 48095, - "bourg": 20690, - "bourgeo": 45672, - "bourn": 39143, - "bourne": 13789, - "bourne": 5192, - "bournemouth": 20911, - "bout": 19982, - "bout": 8123, - "bouti": 10926, - "boutique": 12179, - "bow": 2297, - "bow": 4040, - "bowden": 48538, - "bowed": 49130, - "bowel": 36880, - "bowen": 25368, - "bower": 40414, - "bowers": 42238, - "bowie": 13036, - "bowing": 46398, - "bowl": 26719, - "bowl": 3814, - "bowled": 39987, - "bowler": 25528, - "bowlers": 42632, - "bowles": 41611, - "bowling": 10390, - "bowls": 17787, - "bowman": 22052, - "bows": 17000, - "bowser": 38234, - "bowski": 48311, - "box": 2774, - "box": 2063, - "boxed": 24190, - "boxer": 40394, - "boxer": 15363, - "boxers": 31019, - "boxes": 8350, - "boxing": 33669, - "boxing": 5554, - "boy": 2927, - "boy": 1876, - "boyband": 31568, - "boyce": 44480, - "boycot": 46208, - "boycott": 31615, - "boycott": 19559, - "boyd": 18295, - "boyfriend": 7328, - "boyfriends": 36541, - "boyle": 22802, - "boys": 25223, - "boys": 2034, - "boyz": 16152, - "bp": 23410, - "bp": 11558, - "bpa": 43855, - "bpd": 48587, - "bpl": 28901, - "bpm": 40338, - "bps": 37794, - "br": 711, - "br": 7532, - "bra": 1195, - "bra": 5860, - "brac": 6663, - "brace": 8376, - "brace": 9183, - "bracelet": 8969, - "bracelets": 20027, - "braces": 19249, - "brack": 25676, - "bracket": 14780, - "brackets": 36183, - "brad": 4848, - "brad": 9405, - "bradbury": 45097, - "braden": 46842, - "bradford": 15062, - "bradley": 31905, - "bradley": 10952, - "brador": 24062, - "bradshaw": 37556, - "brady": 42494, - "brady": 11117, - "brae": 42874, - "brae": 40040, - "brag": 30110, - "bragg": 38545, - "bragging": 38199, - "brah": 20276, - "brahms": 45114, - "brai": 25048, - "braid": 31067, - "braided": 39997, - "braids": 34221, - "brain": 9454, - "brain": 4812, - "brains": 17129, - "brainstorming": 36607, - "braised": 28363, - "brake": 14937, - "brakes": 23456, - "bral": 31309, - "bram": 14815, - "bram": 39456, - "brampton": 35124, - "bran": 3684, - "bran": 28348, - "brance": 36072, - "brance": 15413, - "branch": 7998, - "branches": 15843, - "brand": 3910, - "brand": 2896, - "branded": 18097, - "brandi": 41003, - "branding": 10841, - "brando": 41892, - "brandon": 20423, - "brandon": 9166, - "brands": 8681, - "brandt": 22552, - "brandy": 26232, - "brane": 32340, - "branson": 28280, - "brant": 28951, - "brant": 47592, - "braries": 46377, - "brary": 24520, - "bras": 22611, - "brasil": 18991, - "brass": 24348, - "brass": 11655, - "brat": 26717, - "brat": 26631, - "brate": 41864, - "braun": 39129, - "braun": 29309, - "brave": 25461, - "brave": 7769, - "braved": 47663, - "bravely": 42303, - "bravery": 25831, - "braves": 14422, - "braving": 43258, - "bravo": 38613, - "bravo": 13006, - "braw": 37871, - "brawl": 26066, - "braxton": 37451, - "bray": 26256, - "bray": 22993, - "braz": 4625, - "brazil": 47459, - "brazil": 6305, - "brazili": 45697, - "brazilian": 12111, - "brb": 25316, - "brc": 40393, - "bre": 887, - "bre": 7782, - "brea": 7318, - "brea": 46538, - "breach": 21363, - "breaches": 45173, - "bread": 18886, - "bread": 5066, - "breads": 43064, - "break": 2206, - "break": 2568, - "breakable": 30691, - "breakaway": 42732, - "breakdown": 14519, - "breaker": 14814, - "breakers": 22270, - "breakfa": 45931, - "breakfast": 30210, - "breakfast": 3290, - "breaking": 14698, - "breaking": 2755, - "breakingbad": 38032, - "breakingnews": 23837, - "breakout": 16752, - "breaks": 7263, - "breakthrough": 18802, - "breakup": 38931, - "breast": 12930, - "breast": 9475, - "breastcancer": 40813, - "breastcancer": 30065, - "breastfeeding": 29033, - "breasts": 37637, - "breath": 9508, - "breath": 9576, - "breathe": 11364, - "breathing": 14959, - "breathtaking": 14709, - "brecht": 34622, - "breck": 44598, - "bred": 46929, - "bred": 16008, - "bree": 7892, - "bree": 37138, - "breed": 28030, - "breed": 13791, - "breeders": 37472, - "breeding": 16544, - "breeds": 29021, - "breen": 48013, - "brees": 46721, - "breeze": 13125, - "breezy": 21451, - "breit": 23864, - "breitbart": 37926, - "brek": 35494, - "bremen": 39861, - "bren": 5209, - "brenda": 23786, - "brendan": 35134, - "brendan": 15414, - "brendon": 36756, - "brennan": 22372, - "brenner": 42941, - "brent": 31439, - "brent": 16355, - "brentwood": 33108, - "brero": 47781, - "bres": 32561, - "bret": 38020, - "bret": 32548, - "brethren": 43134, - "breton": 32290, - "brett": 22591, - "brett": 12394, - "brev": 42882, - "brevi": 39475, - "brew": 5048, - "brew": 7253, - "brewco": 33582, - "brewed": 23238, - "brewer": 20756, - "breweries": 35277, - "brewers": 17618, - "brewery": 8850, - "brewing": 8275, - "brewingco": 45155, - "brews": 21663, - "brewster": 40274, - "brex": 22726, - "brexit": 27666, - "brexit": 5801, - "brgy": 35983, - "bri": 1036, - "bri": 18636, - "bria": 35890, - "brian": 9824, - "brian": 4989, - "brianna": 32308, - "briar": 46119, - "bribe": 40042, - "bribery": 41792, - "bric": 27055, - "brice": 40190, - "brick": 13937, - "brick": 9518, - "bricks": 21029, - "brics": 48196, - "brid": 16995, - "bridal": 36875, - "bridal": 14284, - "bride": 18342, - "bride": 8964, - "brides": 18067, - "bridesma": 28356, - "bridesmaid": 43399, - "bridesmaids": 47754, - "bridg": 20623, - "bridge": 8647, - "bridge": 2465, - "bridgeport": 45201, - "bridges": 11811, - "bridget": 27073, - "bridgewater": 38732, - "bridging": 38109, - "brie": 26622, - "brief": 9435, - "brief": 8954, - "briefed": 47326, - "briefing": 12991, - "briefly": 26980, - "briefs": 29557, - "brien": 13504, - "brier": 43995, - "brig": 11081, - "briga": 46448, - "brigade": 16032, - "briggs": 28108, - "brigh": 6710, - "bright": 10383, - "bright": 4852, - "brighten": 18208, - "brightening": 43929, - "brighter": 18507, - "brightest": 26159, - "brightly": 36298, - "brightness": 42280, - "brighton": 28416, - "brighton": 9470, - "brigitte": 44421, - "brill": 27342, - "brill": 28601, - "brilli": 3821, - "brilliance": 28146, - "brilliant": 4106, - "brilliantly": 26803, - "brin": 25620, - "bring": 11596, - "bring": 2430, - "bringback": 28969, - "bringbackour": 45403, - "bringing": 4777, - "brings": 5138, - "brink": 39296, - "brink": 28796, - "brioche": 45818, - "bris": 9385, - "bris": 15783, - "brisban": 30431, - "brisbane": 42932, - "brisbane": 12407, - "brisk": 43646, - "brisket": 31920, - "bristol": 18159, - "bristol": 8010, - "brit": 2318, - "brit": 20066, - "britain": 40802, - "britain": 6272, - "britanni": 31373, - "britannia": 36188, - "brite": 33827, - "briti": 8155, - "british": 8651, - "british": 3504, - "britishmuseum": 41858, - "britney": 37192, - "britney": 21853, - "britneyspears": 42990, - "brits": 21832, - "britt": 10811, - "britt": 25976, - "brittany": 38187, - "brittany": 18818, - "britton": 37422, - "brium": 46079, - "brixton": 30056, - "bro": 927, - "bro": 4410, - "broad": 3491, - "broad": 12623, - "broadband": 21050, - "broadcast": 8967, - "broadcaster": 29005, - "broadcasting": 14403, - "broadcasts": 46742, - "broader": 36029, - "broadway": 34599, - "broadway": 9092, - "broc": 15587, - "broccoli": 19094, - "broch": 21419, - "brochure": 25275, - "brock": 14841, - "brock": 16745, - "brodie": 42150, - "brody": 29608, - "broke": 42165, - "broke": 6509, - "broken": 26126, - "broken": 5107, - "broker": 34032, - "broker": 20449, - "brokerage": 41327, - "brokers": 28271, - "brom": 18972, - "brom": 33296, - "bromance": 35353, - "bromley": 35715, - "bron": 4011, - "bron": 10243, - "bronco": 43488, - "bronco": 34370, - "broncos": 12516, - "bronson": 37042, - "bronte": 48936, - "bronx": 48310, - "bronx": 17183, - "brony": 21084, - "bronze": 8459, - "broo": 5204, - "brooch": 21207, - "brook": 4782, - "brook": 7322, - "brooke": 28576, - "brooke": 12549, - "brookes": 39707, - "brooklyn": 23253, - "brooklyn": 6983, - "brooks": 42779, - "brooks": 9991, - "broom": 32046, - "broom": 28008, - "broome": 49335, - "bros": 7776, - "broth": 29994, - "brotha": 33974, - "brother": 12697, - "brother": 3157, - "brotherhood": 19059, - "brothers": 4548, - "brou": 27874, - "brough": 21033, - "brought": 4222, - "brov": 42881, - "brow": 6547, - "brow": 15895, - "broward": 34719, - "brown": 6315, - "brown": 2866, - "browne": 28440, - "brownie": 23045, - "brownies": 22312, - "browning": 32241, - "browns": 14051, - "brows": 14998, - "browse": 19060, - "browser": 19768, - "browsing": 29318, - "brox": 43539, - "brs": 47485, - "brt": 46936, - "bru": 1698, - "bru": 31028, - "bruce": 21223, - "bruce": 7085, - "bruh": 17575, - "bruins": 14736, - "bruise": 48048, - "bruised": 46502, - "brum": 23862, - "brum": 28078, - "brun": 6870, - "brunch": 9113, - "brune": 29057, - "brunei": 41898, - "brunette": 35528, - "bruno": 14568, - "brunomars": 41156, - "brunswick": 24012, - "brush": 27969, - "brush": 8594, - "brushed": 30298, - "brushes": 21550, - "brushing": 35072, - "brussels": 11020, - "brut": 39499, - "brutal": 42144, - "brutal": 14556, - "brutality": 31348, - "brutally": 28132, - "brute": 47552, - "brux": 49093, - "bry": 6587, - "bry": 28228, - "bryan": 16134, - "bryan": 10412, - "bryant": 12256, - "bryce": 19895, - "bryn": 36569, - "bryn": 42877, - "bryson": 38990, - "bs": 11783, - "bs": 1329, - "bsa": 46619, - "bsb": 23070, - "bsbi": 41728, - "bsbibotany": 42086, - "bsc": 32031, - "bsd": 41848, - "bse": 46341, - "bsf": 48314, - "bsgo": 48474, - "bsp": 47977, - "bst": 19698, - "bsu": 46385, - "bt": 3317, - "bt": 4205, - "btc": 10315, - "btcc": 30759, - "btn": 44681, - "bto": 35516, - "btob": 29379, - "btr": 39767, - "bts": 15154, - "bts": 4007, - "btsarmy": 30302, - "btsbbmas": 35297, - "btsx": 44971, - "btv": 38541, - "btw": 9520, - "btwn": 28284, - "bu": 609, - "bu": 5831, - "bub": 27704, - "bub": 33158, - "bubb": 9739, - "bubba": 28149, - "bubble": 28687, - "bubble": 10799, - "bubblegum": 48078, - "bubbles": 17648, - "bubbly": 31034, - "buc": 8207, - "buccane": 32830, - "buccaneers": 38058, - "buch": 22623, - "bucha": 43582, - "buchan": 27237, - "buchanan": 28975, - "bucharest": 37013, - "buck": 6061, - "buck": 11433, - "bucket": 22596, - "bucket": 10498, - "bucketlist": 30778, - "buckets": 27168, - "buckeye": 34549, - "buckeyes": 30741, - "buckingham": 28736, - "buckle": 21948, - "buckley": 25905, - "bucks": 6103, - "bucky": 35916, - "bucs": 20011, - "bud": 2942, - "bud": 10737, - "buda": 18520, - "buda": 49012, - "budapest": 19202, - "budd": 7296, - "buddha": 13981, - "buddhism": 23744, - "buddhist": 18697, - "buddies": 14543, - "budding": 31992, - "buddy": 40948, - "buddy": 6557, - "budge": 32005, - "budget": 46758, - "budget": 5639, - "budgeting": 43789, - "budgets": 36419, - "buds": 14665, - "budweiser": 40900, - "buen": 15640, - "buena": 30876, - "buenas": 48529, - "bueno": 46202, - "buenos": 26055, - "buf": 44417, - "buff": 5456, - "buff": 21416, - "buffal": 25836, - "buffalo": 31231, - "buffalo": 8054, - "buffalob": 38831, - "buffalobills": 44352, - "buffe": 13724, - "buffer": 33050, - "buffet": 17829, - "buffett": 34081, - "buffs": 28906, - "buffy": 33356, - "bug": 14453, - "bug": 8162, - "bugatti": 35451, - "buggy": 28963, - "bugs": 13850, - "buh": 31406, - "buhari": 14661, - "buick": 22000, - "buil": 1354, - "build": 22739, - "build": 3289, - "builder": 14474, - "builders": 17694, - "building": 21206, - "building": 2307, - "buildings": 8866, - "builds": 16449, - "buildthe": 41497, - "built": 45824, - "built": 3874, - "buk": 28084, - "buk": 24317, - "buka": 47778, - "bukit": 39888, - "bul": 2572, - "bul": 10200, - "bula": 18726, - "bulaga": 41575, - "bular": 32187, - "bulb": 22373, - "bulbs": 24808, - "bulgar": 15424, - "bulgaria": 20295, - "bulgarian": 38693, - "bulge": 47603, - "bulk": 19643, - "bull": 4537, - "bull": 6029, - "bulldo": 37675, - "bulldog": 34828, - "bulldog": 15611, - "bulldogs": 13916, - "bullet": 14340, - "bullet": 12465, - "bulletin": 19638, - "bulletproof": 43212, - "bullets": 22117, - "bullied": 34689, - "bullies": 39050, - "bullion": 49114, - "bullish": 22142, - "bullock": 33198, - "bullpen": 38081, - "bulls": 10313, - "bully": 43111, - "bully": 20190, - "bullying": 13548, - "bum": 27683, - "bum": 14226, - "bumble": 25585, - "bumble": 39303, - "bumblebee": 36911, - "bummed": 48456, - "bump": 9783, - "bump": 15877, - "bumped": 22495, - "bumper": 17881, - "bumping": 40196, - "bumps": 21115, - "bun": 2591, - "bun": 13665, - "bunch": 7796, - "bund": 41905, - "bunde": 18841, - "bundesliga": 21582, - "bundle": 11793, - "bundled": 47228, - "bundles": 29834, - "bundy": 37332, - "bung": 44748, - "bungal": 29549, - "bungalow": 33696, - "bunk": 41236, - "bunker": 23615, - "bunnies": 28998, - "bunny": 34198, - "bunny": 9258, - "buns": 22235, - "bunting": 30695, - "buon": 31350, - "buon": 48498, - "bur": 1039, - "bur": 17362, - "burbank": 34862, - "burberry": 30412, - "burch": 44588, - "burden": 18687, - "bure": 11902, - "bureau": 32098, - "bureau": 15400, - "burg": 19505, - "burg": 3499, - "burge": 20522, - "burger": 22356, - "burger": 6548, - "burgers": 13007, - "burgess": 26211, - "burgh": 18141, - "burgh": 4965, - "burgl": 25554, - "burglar": 43365, - "burglary": 32573, - "burgring": 40823, - "burgundy": 23650, - "buri": 46348, - "buri": 42614, - "burial": 22012, - "buried": 14233, - "burk": 48822, - "burke": 15340, - "burle": 27891, - "burlesque": 33732, - "burlington": 23370, - "burma": 30305, - "burmese": 47906, - "burn": 7934, - "burn": 4285, - "burnaby": 47541, - "burne": 27246, - "burned": 15022, - "burner": 23243, - "burnett": 28558, - "burnham": 36111, - "burning": 46107, - "burning": 8405, - "burnley": 24653, - "burnout": 36078, - "burns": 10234, - "burnt": 15185, - "burr": 30879, - "burrell": 49045, - "burrito": 23473, - "burritos": 47245, - "burroughs": 41337, - "burrows": 44846, - "burst": 13005, - "bursting": 32566, - "bursts": 37026, - "burt": 27162, - "burton": 42354, - "burton": 12704, - "burundi": 33595, - "bury": 12276, - "bury": 3899, - "burys": 32362, - "bus": 1319, - "bus": 2840, - "busan": 40172, - "busc": 35000, - "busch": 20475, - "buses": 12879, - "bush": 11191, - "bush": 6867, - "bushes": 37578, - "busiest": 32764, - "busine": 4598, - "busines": 25364, - "business": 8346, - "business": 1716, - "businesses": 7287, - "businessman": 25635, - "buss": 47764, - "bust": 31299, - "bust": 9959, - "busted": 18643, - "buster": 37219, - "buster": 12094, - "busters": 16362, - "busting": 29622, - "busy": 39332, - "busy": 4354, - "but": 2201, - "but": 767, - "butch": 35102, - "butcher": 18732, - "butchers": 42334, - "bute": 39240, - "butes": 14630, - "butler": 35867, - "butler": 10702, - "butt": 12500, - "butt": 31523, - "butte": 31678, - "butter": 5427, - "butter": 6952, - "butterflies": 16232, - "butterfly": 9738, - "buttermilk": 40180, - "butternut": 36867, - "buttery": 45535, - "button": 45480, - "button": 8007, - "buttons": 16188, - "butts": 25309, - "buu": 42313, - "buuren": 47752, - "buxton": 41370, - "buy": 11632, - "buy": 2131, - "buyer": 14682, - "buyers": 14663, - "buying": 6566, - "buys": 15560, - "buzz": 7866, - "buzz": 8706, - "buzzard": 47434, - "buzzer": 38064, - "buzzfeed": 26613, - "buzzing": 18511, - "bv": 18958, - "bv": 35861, - "bvb": 22454, - "bw": 17672, - "bw": 15120, - "bway": 26652, - "bwfc": 40918, - "bwo": 45902, - "bx": 33633, - "by": 1713, - "by": 638, - "bye": 20076, - "bye": 4460, - "byes": 47958, - "byl": 34994, - "byn": 46917, - "byn": 11890, - "byo": 28039, - "bypass": 26530, - "byr": 15534, - "byrd": 30369, - "byrne": 19676, - "byron": 43504, - "byron": 19775, - "bys": 26740, - "bystand": 46138, - "byte": 42798, - "bytes": 39538, - "bythe": 36621, - "byu": 41072, - "byu": 23770, - "byz": 35406, - "byzantine": 44081, - "bz": 13631, - "bé": 40365, - "bü": 38706, - "c": 66, - "c": 322, - "ca": 772, - "ca": 1684, - "caa": 19316, - "cab": 3033, - "cab": 11912, - "cabaret": 26263, - "cabbage": 18407, - "cabe": 32731, - "cabello": 34371, - "caber": 29062, - "cabernet": 33730, - "cabin": 14178, - "cabine": 23354, - "cabinet": 9937, - "cabinets": 33083, - "cabins": 48455, - "cable": 7925, - "cables": 22408, - "cabo": 37318, - "cabo": 28370, - "cabrera": 42338, - "cabs": 42048, - "cac": 8298, - "cac": 23872, - "cacao": 38022, - "cache": 28993, - "caching": 40655, - "cactus": 19794, - "cad": 6297, - "cad": 20166, - "caday": 34187, - "cadbury": 44698, - "caddy": 41521, - "cade": 10497, - "cade": 17306, - "cadet": 22764, - "cadets": 19160, - "cadillac": 18156, - "cae": 49264, - "caer": 28298, - "caes": 15740, - "caesar": 21642, - "caesars": 42162, - "caf": 3471, - "caf": 20867, - "cafc": 30748, - "cafe": 15201, - "cafe": 4979, - "cafes": 40166, - "cafeteria": 32817, - "caffe": 18258, - "caffe": 45416, - "caffeine": 22487, - "café": 15304, - "cag": 15714, - "cage": 11838, - "cages": 37939, - "cah": 40519, - "cahill": 33185, - "cai": 38971, - "cai": 36116, - "cain": 13747, - "caine": 16799, - "cair": 15804, - "cair": 46659, - "cairn": 31264, - "cairn": 42467, - "cairngor": 44067, - "cairns": 32941, - "cairo": 19615, - "cait": 14116, - "caitlin": 47768, - "caitlin": 26809, - "caitlyn": 35763, - "cajun": 43425, - "cajun": 33044, - "cak": 42986, - "cake": 15295, - "cake": 2972, - "cakeday": 46207, - "cakes": 5950, - "cal": 1198, - "cal": 6372, - "cala": 32133, - "calab": 31795, - "calais": 39886, - "calam": 28841, - "calc": 45055, - "calci": 22824, - "calcium": 27815, - "calcu": 15328, - "calcul": 15734, - "calculate": 37656, - "calculated": 40688, - "calculations": 44605, - "calculator": 26093, - "calculus": 35104, - "calcutta": 42901, - "calder": 29372, - "calder": 36817, - "caldwell": 30484, - "cale": 32674, - "caleb": 19619, - "caled": 28421, - "calend": 6057, - "calendar": 7122, - "calendars": 17229, - "calf": 17508, - "calgary": 27415, - "calgary": 10797, - "calhoun": 38929, - "cali": 2857, - "cali": 16337, - "caliber": 32820, - "calibr": 32597, - "calico": 45379, - "calif": 30839, - "califor": 3526, - "californi": 21303, - "california": 3729, - "call": 7950, - "call": 1620, - "calla": 20658, - "callahan": 43313, - "callaway": 42596, - "callback": 44764, - "calle": 47699, - "calle": 38144, - "called": 2726, - "caller": 30666, - "calli": 16338, - "callie": 36512, - "calligraphy": 27775, - "calling": 4597, - "callister": 49026, - "callme": 42449, - "callof": 41280, - "calls": 4572, - "callum": 23224, - "calm": 34990, - "calm": 7011, - "calming": 30690, - "calorie": 32679, - "calories": 18029, - "cals": 47714, - "calum": 16405, - "calvary": 40169, - "calvert": 47134, - "calves": 31857, - "calvin": 27642, - "calvin": 17345, - "caly": 10244, - "calyp": 29851, - "cam": 1004, - "cam": 5982, - "camar": 31991, - "camber": 44362, - "cambo": 14662, - "cambodia": 17347, - "cambridge": 24651, - "cambridge": 9334, - "cambridgeshire": 46139, - "camden": 38735, - "camden": 17984, - "came": 1986, - "camel": 27005, - "camel": 21914, - "camels": 41357, - "cameo": 19492, - "camer": 4961, - "camera": 3934, - "cameraman": 43347, - "cameras": 12172, - "camero": 20320, - "cameron": 19634, - "cameron": 8057, - "camerondallas": 40587, - "cameroon": 24061, - "camil": 37745, - "camila": 19919, - "camilla": 38897, - "camille": 26741, - "camino": 28529, - "camo": 28702, - "camo": 19716, - "camogie": 39547, - "camou": 23588, - "camoufla": 23667, - "camouflage": 29049, - "camp": 2854, - "camp": 2877, - "campa": 2793, - "campaig": 9448, - "campaign": 44524, - "campaign": 3193, - "campaigner": 46364, - "campaigners": 40272, - "campaigning": 19594, - "campaigns": 15669, - "campan": 31765, - "campbell": 29094, - "campbell": 8806, - "campe": 16672, - "campeon": 49109, - "campeones": 30105, - "camper": 41914, - "camper": 24522, - "campers": 26619, - "campfire": 32530, - "campground": 46969, - "camping": 9982, - "campo": 27600, - "campos": 48077, - "camps": 12806, - "campsite": 44243, - "campu": 19687, - "campus": 4560, - "campuses": 31895, - "camra": 46155, - "camry": 46472, - "cams": 32590, - "can": 950, - "can": 753, - "cana": 28341, - "canad": 13193, - "canada": 2698, - "canadaday": 39800, - "canadi": 4329, - "canadian": 22160, - "canadian": 5255, - "canadians": 18989, - "canadiens": 40932, - "canal": 28585, - "canal": 9535, - "canals": 38483, - "canaria": 47117, - "canary": 40409, - "canary": 24523, - "canberra": 16719, - "canc": 43189, - "cancel": 12026, - "cancel": 21546, - "canceled": 25874, - "cancell": 28027, - "cancellation": 38765, - "cancelled": 13270, - "cancels": 34089, - "cancer": 12690, - "cancer": 3148, - "cancers": 33201, - "cancun": 34721, - "cand": 4986, - "candace": 45623, - "candel": 47834, - "candi": 6034, - "candice": 30024, - "candid": 7884, - "candid": 19206, - "candidacy": 46248, - "candidate": 6475, - "candidates": 8619, - "candied": 43982, - "candies": 46305, - "candle": 18995, - "candle": 12674, - "candlelight": 34724, - "candles": 15472, - "candy": 20741, - "candy": 6417, - "cane": 23644, - "cane": 14716, - "canelo": 43210, - "canes": 21902, - "cani": 35592, - "canine": 27380, - "cann": 4139, - "cann": 23709, - "cannab": 7577, - "cannabis": 31837, - "cannabis": 8861, - "canne": 44252, - "canned": 27290, - "cannes": 13773, - "canni": 26389, - "canning": 38621, - "cannon": 28771, - "cannon": 15661, - "cannons": 46269, - "cannot": 4785, - "canny": 26986, - "cano": 31668, - "cano": 25937, - "canoe": 23503, - "canola": 40389, - "canon": 17749, - "canon": 9310, - "canopy": 26061, - "cans": 13707, - "cant": 13395, - "cant": 5784, - "canteen": 39230, - "canter": 19301, - "canterbury": 22271, - "canti": 42845, - "cantina": 47472, - "canton": 37735, - "canton": 25363, - "cantore": 41769, - "cantwait": 33760, - "canu": 20171, - "canucks": 24321, - "canv": 30714, - "canvas": 22441, - "canvas": 7483, - "canvass": 40054, - "canvassing": 33783, - "cany": 47674, - "canyon": 41246, - "canyon": 9755, - "cao": 29207, - "cap": 1289, - "cap": 3938, - "capabilities": 19512, - "capability": 25885, - "capable": 14742, - "capac": 24665, - "capacity": 8970, - "capcom": 28342, - "cape": 10288, - "cape": 6631, - "capecod": 41339, - "capes": 38785, - "capetown": 20059, - "capit": 6889, - "capita": 41833, - "capital": 11198, - "capital": 5439, - "capitalism": 20068, - "capitalist": 37015, - "capitals": 29579, - "capitol": 43880, - "capitol": 11375, - "capo": 45477, - "capp": 16718, - "capped": 24659, - "capping": 42656, - "cappuccino": 37402, - "capri": 48699, - "capri": 30982, - "capric": 28667, - "capricorn": 46314, - "caps": 23185, - "capsu": 15608, - "capsul": 40341, - "capsule": 20627, - "capsules": 32870, - "capt": 45815, - "capt": 17369, - "captain": 14958, - "captain": 4621, - "captainamerica": 46229, - "captainmarvel": 48492, - "captains": 18706, - "caption": 11327, - "captions": 41878, - "captiv": 19776, - "captivating": 30580, - "captive": 29038, - "captivity": 41141, - "capture": 8818, - "captured": 8020, - "captures": 15305, - "capturing": 19548, - "capu": 44241, - "car": 811, - "car": 1615, - "cara": 20016, - "carab": 32251, - "carac": 30029, - "caracas": 45854, - "caramel": 14788, - "carameli": 41739, - "caramelized": 43854, - "carat": 32981, - "carav": 13814, - "caravan": 18566, - "carb": 21379, - "carbo": 43235, - "carbon": 14038, - "carbon": 7549, - "carbs": 29313, - "carcin": 31587, - "carcinoma": 46810, - "card": 10793, - "card": 2601, - "cardam": 49008, - "cardboard": 19845, - "cardi": 6211, - "cardi": 29677, - "cardiac": 21256, - "cardiff": 22488, - "cardiff": 9781, - "cardigan": 30501, - "cardin": 8457, - "cardinal": 46310, - "cardinal": 16472, - "cardinals": 12837, - "cardio": 15003, - "cardio": 23455, - "cardiology": 37276, - "cardiovascular": 29291, - "cardo": 40625, - "cards": 4094, - "care": 2050, - "care": 1776, - "cared": 27675, - "career": 20609, - "career": 3061, - "careers": 10090, - "careful": 11999, - "carefully": 15789, - "caregi": 22042, - "caregiver": 46372, - "caregivers": 35909, - "careless": 47325, - "carers": 26484, - "cares": 10968, - "caretaker": 48037, - "carey": 14895, - "cargo": 12490, - "cari": 18497, - "cari": 37273, - "carib": 9757, - "caribbean": 10368, - "caribou": 42135, - "caric": 25337, - "caricature": 38857, - "carina": 44357, - "caring": 13083, - "carl": 8273, - "carl": 9482, - "carla": 25552, - "carleton": 46496, - "carlin": 47559, - "carlisle": 23276, - "carlo": 17861, - "carlo": 15266, - "carlos": 9538, - "carlow": 44745, - "carls": 39635, - "carlson": 24114, - "carlton": 18934, - "carly": 23166, - "carly": 22689, - "carlyle": 46555, - "carmel": 30757, - "carmel": 25601, - "carmen": 41427, - "carmen": 18834, - "carmichael": 41657, - "carn": 21597, - "carnage": 31385, - "carnation": 44577, - "carnaval": 47238, - "carne": 17053, - "carne": 42885, - "carnegie": 25287, - "carney": 34194, - "carni": 8438, - "carnival": 36708, - "carnival": 10577, - "caro": 30317, - "caro": 29344, - "carol": 4242, - "carol": 11489, - "carole": 31955, - "carolin": 26418, - "carolina": 7027, - "caroline": 31064, - "caroline": 12641, - "carols": 33269, - "carolyn": 25825, - "carou": 32224, - "carousel": 36665, - "carp": 26085, - "carpen": 15584, - "carpenter": 18475, - "carpet": 6922, - "carpets": 34612, - "carr": 26951, - "carr": 17136, - "carra": 32332, - "carre": 31114, - "carrera": 32952, - "carri": 4739, - "carriage": 47885, - "carriage": 21087, - "carrick": 44052, - "carrie": 30334, - "carrie": 15848, - "carried": 12960, - "carrier": 12308, - "carriers": 26865, - "carries": 17982, - "carrieunderwood": 47338, - "carrington": 48759, - "carroll": 41911, - "carroll": 14893, - "carrot": 15435, - "carrots": 19299, - "carry": 31863, - "carry": 6998, - "carrying": 9920, - "cars": 3346, - "carsforsale": 45222, - "carson": 41766, - "carson": 13171, - "cart": 27705, - "cart": 13065, - "cartag": 45042, - "cartagena": 47157, - "carte": 44949, - "cartel": 30529, - "carter": 27330, - "carter": 7260, - "cartier": 32951, - "carto": 5487, - "carton": 41812, - "cartoon": 33082, - "cartoon": 7651, - "cartoonist": 30793, - "cartoons": 17673, - "cartri": 47084, - "cartridge": 29432, - "cartridges": 49249, - "carts": 27581, - "cartunesapp": 32888, - "caruso": 45192, - "carve": 40152, - "carved": 15127, - "carver": 28850, - "carving": 19428, - "carvings": 48123, - "cary": 22844, - "cas": 1671, - "cas": 13831, - "casa": 14643, - "casablanc": 36572, - "casablanca": 41950, - "casc": 36714, - "casca": 43296, - "cascade": 29065, - "cascades": 46454, - "case": 17698, - "case": 2068, - "cases": 6888, - "casey": 24899, - "casey": 12836, - "cash": 11050, - "cash": 5131, - "cashback": 36368, - "cashe": 32233, - "cashew": 39531, - "cashi": 29517, - "cashier": 34547, - "cashmere": 34566, - "casi": 38350, - "casino": 10473, - "casio": 32261, - "cask": 26299, - "casm": 35198, - "casper": 35892, - "cass": 22556, - "cassandra": 35289, - "casser": 31093, - "casserole": 36045, - "cassette": 19717, - "cassi": 14942, - "cassidy": 21757, - "cassie": 29323, - "cassini": 46554, - "cast": 2509, - "cast": 1970, - "caste": 32693, - "casted": 33838, - "castel": 43306, - "castell": 31792, - "caster": 32101, - "caster": 8449, - "casters": 29721, - "castic": 47737, - "castillo": 30813, - "casting": 7087, - "castle": 12496, - "castle": 3540, - "castles": 24766, - "castro": 16950, - "casts": 10595, - "casu": 15345, - "casual": 10129, - "casually": 18840, - "casualties": 30244, - "casualty": 31222, - "cat": 1481, - "cat": 2368, - "cata": 42279, - "catal": 12792, - "catalan": 30532, - "catalina": 36576, - "catalo": 34740, - "catalog": 20036, - "catalogue": 20985, - "catalonia": 27039, - "catalunya": 44132, - "cataly": 15894, - "catalyst": 25387, - "catan": 45893, - "catap": 39514, - "catar": 35801, - "catastro": 22736, - "catastrophe": 41422, - "catastrophic": 34448, - "catch": 18901, - "catch": 3042, - "catcher": 15965, - "catchers": 39060, - "catches": 17213, - "catching": 8617, - "catchy": 37114, - "catday": 32243, - "cate": 6357, - "cate": 24510, - "cated": 31823, - "categor": 17006, - "categori": 40117, - "categories": 19971, - "category": 9432, - "cater": 16634, - "cater": 38101, - "catering": 16697, - "caterpillar": 27111, - "catfish": 26077, - "cath": 9196, - "cath": 30811, - "cathar": 43784, - "cathe": 7174, - "cathedr": 46370, - "cathedral": 7865, - "catherine": 35035, - "catherine": 12339, - "catho": 7595, - "cathol": 16315, - "catholic": 20382, - "catholic": 7757, - "catholics": 36808, - "cathy": 40326, - "cathy": 22731, - "cation": 21367, - "cato": 33558, - "cats": 38800, - "cats": 3989, - "catsofinstagram": 39901, - "catsoftwitter": 17273, - "catt": 37339, - "cattle": 48799, - "cattle": 13644, - "caturday": 20892, - "catwalk": 36565, - "catwoman": 47251, - "cau": 1121, - "cau": 45529, - "caucus": 18847, - "caught": 4520, - "caul": 23460, - "cauley": 41682, - "caulfield": 44906, - "cauli": 20123, - "cauliflower": 23802, - "cause": 18982, - "cause": 1394, - "caused": 8940, - "causes": 9775, - "causeway": 35034, - "causing": 10779, - "caution": 15656, - "cautious": 36579, - "cav": 4942, - "cav": 45935, - "cava": 48682, - "caval": 24537, - "cavali": 20783, - "cavalier": 44488, - "cavaliers": 30194, - "cavalry": 32467, - "cave": 25441, - "cave": 9654, - "cavendish": 42945, - "caver": 41487, - "caves": 22096, - "cavi": 27360, - "caviar": 31228, - "cavill": 40492, - "cavity": 43156, - "cavs": 16800, - "caw": 38405, - "caw": 43804, - "cawx": 26739, - "cay": 11876, - "cay": 37399, - "cayenne": 43650, - "cayman": 33737, - "caz": 48451, - "cb": 4034, - "cb": 8830, - "cba": 38472, - "cbb": 31487, - "cbc": 14096, - "cbc": 14523, - "cbd": 13176, - "cbe": 43639, - "cbi": 30875, - "cbj": 35608, - "cbn": 26579, - "cbp": 46723, - "cbr": 28762, - "cbs": 16788, - "cbs": 8009, - "cc": 2976, - "cc": 2021, - "cca": 17987, - "ccc": 21856, - "ccd": 48556, - "ccg": 37755, - "cch": 21789, - "cchini": 28467, - "cci": 32942, - "cci": 8196, - "ccl": 43773, - "ccm": 40435, - "cco": 28786, - "ccot": 24950, - "ccp": 43045, - "ccs": 30400, - "cctv": 23097, - "ccu": 49023, - "cd": 4308, - "cd": 4480, - "cda": 45565, - "cdc": 41098, - "cdc": 25779, - "cdn": 8886, - "cdn": 26802, - "cdnpoli": 11645, - "cdo": 47187, - "cdp": 39624, - "cds": 20784, - "cdt": 18455, - "ce": 685, - "ce": 629, - "cea": 28355, - "cean": 34409, - "cean": 37295, - "cease": 32856, - "cease": 25499, - "ceasefire": 38291, - "cebu": 20146, - "cec": 29694, - "cec": 40029, - "cecil": 26987, - "cecil": 27169, - "cecilia": 35440, - "ced": 25634, - "ced": 2323, - "cedar": 24167, - "cedar": 13799, - "cedric": 36608, - "cee": 45966, - "cee": 15015, - "cees": 47914, - "ceil": 27275, - "ceiling": 12374, - "ceilings": 33770, - "cek": 45544, - "cel": 2269, - "cel": 7597, - "cele": 1314, - "celeb": 38862, - "celeb": 19393, - "celebr": 1372, - "celebrate": 31414, - "celebrate": 2694, - "celebrated": 9184, - "celebrates": 7564, - "celebrating": 3382, - "celebration": 4615, - "celebrations": 10825, - "celebratory": 34115, - "celebrities": 17071, - "celebrity": 23981, - "celebrity": 7320, - "celebs": 19803, - "celed": 25741, - "celer": 9621, - "celery": 30990, - "celeste": 29364, - "celesti": 29497, - "celestial": 32669, - "celi": 25567, - "celia": 44489, - "celine": 33644, - "cell": 9316, - "cell": 5533, - "cellar": 24282, - "cellars": 44976, - "cellence": 34687, - "cello": 23013, - "cellphone": 39029, - "cells": 8890, - "cellu": 16791, - "cellular": 23268, - "cels": 24021, - "celsius": 47057, - "celtic": 21897, - "celtic": 10523, - "celticfc": 38612, - "celtics": 16226, - "cem": 41435, - "ceme": 10517, - "cement": 4369, - "cements": 19448, - "cemetery": 11660, - "cen": 1306, - "cen": 30106, - "cena": 21591, - "cence": 24410, - "cency": 41259, - "cene": 30038, - "censor": 24230, - "censor": 44709, - "censored": 30951, - "censorship": 27284, - "census": 23677, - "cent": 1784, - "cent": 3662, - "centenary": 22422, - "centennial": 20895, - "center": 16651, - "center": 2119, - "centered": 24584, - "centers": 14494, - "centi": 48889, - "centime": 48687, - "centr": 2370, - "central": 13448, - "central": 3339, - "centre": 26310, - "centre": 2916, - "centred": 47925, - "centres": 19354, - "centri": 30872, - "centric": 19297, - "centro": 37178, - "cents": 11934, - "centu": 16818, - "centuri": 36816, - "centuries": 19014, - "century": 26134, - "century": 4275, - "ceo": 46340, - "ceo": 3559, - "ceos": 28332, - "cep": 2632, - "cep": 48714, - "ceph": 44343, - "cept": 3678, - "ception": 12346, - "cer": 1364, - "cer": 1925, - "cera": 34608, - "ceram": 10677, - "ceramic": 15112, - "ceramics": 22438, - "cere": 3984, - "cere": 22085, - "cereal": 17581, - "cereals": 48618, - "cerebral": 39073, - "ceremon": 15796, - "ceremonial": 33281, - "ceremonies": 21547, - "ceremony": 5193, - "cern": 44851, - "cers": 13638, - "cert": 27522, - "certain": 8526, - "certain": 7883, - "certainly": 10883, - "certainty": 20054, - "certi": 4888, - "certific": 9443, - "certificate": 11786, - "certificates": 25281, - "certification": 14735, - "certified": 9288, - "cerv": 25738, - "cervical": 35953, - "ces": 28715, - "ces": 1604, - "cesar": 37025, - "cesar": 28603, - "cess": 2314, - "cess": 1554, - "cessna": 36596, - "cest": 27245, - "cester": 15769, - "cester": 12718, - "cet": 14960, - "cett": 46708, - "ceu": 37457, - "cevic": 48369, - "cey": 20971, - "cf": 10189, - "cf": 11171, - "cfa": 34521, - "cfb": 32931, - "cfc": 11577, - "cfd": 46171, - "cfl": 46320, - "cfl": 22332, - "cfo": 26937, - "cfp": 40756, - "cfr": 44033, - "cfs": 32835, - "cg": 27118, - "cg": 14740, - "cgc": 38775, - "cgi": 30520, - "ch": 540, - "ch": 634, - "cha": 1587, - "cha": 4541, - "chab": 26670, - "chad": 13095, - "chad": 12923, - "chae": 9460, - "chaf": 38123, - "chag": 27989, - "chai": 31590, - "chai": 18919, - "chain": 13898, - "chain": 3946, - "chained": 34402, - "chains": 14438, - "chainsaw": 37617, - "chainz": 39687, - "chair": 4728, - "chair": 4269, - "chaired": 31664, - "chairing": 42205, - "chairman": 6901, - "chairperson": 31584, - "chairs": 12033, - "chak": 13702, - "chak": 41713, - "chakra": 38304, - "chakra": 33241, - "chal": 7397, - "chal": 30809, - "chale": 38099, - "chalet": 37907, - "chalk": 31362, - "chalk": 17846, - "chall": 2073, - "challeng": 4138, - "challenge": 29462, - "challenge": 2836, - "challenged": 17380, - "challenger": 18228, - "challengers": 46404, - "challenges": 6280, - "challenging": 11754, - "chalmers": 47955, - "cham": 1290, - "cham": 19951, - "chamber": 18983, - "chamber": 7642, - "chamberlain": 32756, - "chambers": 16501, - "chamele": 34759, - "chameleon": 41317, - "champ": 36813, - "champ": 6602, - "champag": 10283, - "champagne": 11007, - "champi": 1680, - "champion": 2643, - "champion": 3950, - "champions": 4227, - "championship": 3429, - "championships": 7047, - "championsleague": 27638, - "champs": 6240, - "chan": 1255, - "chan": 6704, - "chana": 48752, - "chanc": 13931, - "chance": 32940, - "chance": 2594, - "chancellor": 15886, - "chances": 10870, - "chand": 7126, - "chand": 41508, - "chandelier": 30570, - "chandi": 12482, - "chandigarh": 34106, - "chandler": 17595, - "chandra": 27082, - "chandra": 25348, - "chanel": 16951, - "chang": 2233, - "chang": 16461, - "change": 11608, - "change": 1799, - "changeable": 41335, - "changed": 4907, - "changer": 18406, - "changers": 35185, - "changes": 4938, - "changing": 40384, - "changing": 5621, - "changmin": 47410, - "chann": 8804, - "channel": 25837, - "channel": 3847, - "channeling": 28197, - "channels": 13961, - "channing": 37417, - "chant": 18165, - "chant": 13521, - "chanting": 32111, - "chants": 22723, - "chanyeol": 18805, - "chao": 31815, - "chaos": 10853, - "chaotic": 33501, - "chap": 3825, - "chap": 21939, - "chapel": 40859, - "chapel": 10137, - "chaplain": 38348, - "chaplin": 32545, - "chapman": 17968, - "chapp": 20634, - "chaps": 36823, - "chapter": 6014, - "chapters": 22936, - "char": 1054, - "char": 16017, - "chara": 35668, - "charac": 2792, - "character": 10997, - "character": 4009, - "characterdesign": 38149, - "characteri": 20920, - "characteristic": 44747, - "characteristics": 26037, - "characters": 6564, - "charan": 31851, - "charcoal": 19268, - "chard": 17524, - "chardon": 26599, - "chardonnay": 28161, - "charge": 25032, - "charge": 5948, - "chargeable": 35664, - "charged": 7916, - "charger": 13090, - "chargers": 17352, - "charges": 8962, - "charging": 12514, - "chariot": 38811, - "charis": 24449, - "charisma": 45041, - "charismatic": 37205, - "charitable": 23256, - "charities": 18493, - "charity": 20008, - "charity": 4607, - "charitytuesday": 42794, - "charl": 47736, - "charle": 10217, - "charles": 27983, - "charles": 5127, - "charleston": 15478, - "charley": 38027, - "charli": 21784, - "charli": 49392, - "charlie": 16764, - "charlie": 6393, - "charlotte": 18445, - "charlotte": 7871, - "charlottesville": 32027, - "charlton": 27048, - "charm": 10876, - "charmed": 39790, - "charming": 12177, - "charms": 21944, - "charred": 44085, - "chart": 42685, - "chart": 5053, - "charted": 27939, - "charter": 42345, - "charter": 13569, - "chartered": 31298, - "charters": 46626, - "charting": 39841, - "charts": 10728, - "chas": 10717, - "chas": 29838, - "chase": 21503, - "chase": 3859, - "chased": 30342, - "chaser": 29560, - "chasers": 34158, - "chases": 45011, - "chasing": 46909, - "chasing": 13376, - "chassis": 29188, - "chast": 42176, - "chasu": 41352, - "chat": 5355, - "chat": 2402, - "chatbots": 43994, - "chate": 30377, - "chateau": 44582, - "chateau": 23520, - "chath": 46849, - "chatham": 32030, - "chats": 13263, - "chatt": 21618, - "chattanoo": 28009, - "chattanooga": 29866, - "chatted": 34124, - "chatter": 33473, - "chatter": 41103, - "chatting": 12401, - "chatur": 33839, - "chau": 11263, - "chau": 37536, - "chauffe": 45440, - "chauhan": 46663, - "chav": 28997, - "chavez": 27480, - "chaw": 39639, - "chay": 45317, - "chaz": 47815, - "chc": 36233, - "chd": 41645, - "che": 983, - "che": 3842, - "chea": 39580, - "chead": 48358, - "cheap": 27036, - "cheap": 8678, - "cheape": 26164, - "cheaper": 17776, - "cheapest": 26640, - "cheat": 18180, - "cheated": 34285, - "cheating": 19722, - "chec": 1113, - "check": 7672, - "check": 1217, - "checked": 10387, - "checker": 45883, - "checkers": 48181, - "checking": 7441, - "checklist": 26989, - "checkout": 13101, - "checkpoint": 27531, - "checks": 13737, - "ched": 11341, - "ched": 2146, - "cheddar": 20551, - "chee": 5326, - "chee": 20944, - "cheek": 40000, - "cheek": 21227, - "cheeks": 23019, - "cheeky": 15068, - "cheer": 9733, - "cheer": 6918, - "cheered": 38111, - "cheerful": 28882, - "cheering": 14289, - "cheerleader": 29072, - "cheerleaders": 22343, - "cheerleading": 36366, - "cheers": 6562, - "chees": 15182, - "cheese": 10738, - "cheese": 4108, - "cheeseburger": 41200, - "cheesecake": 17803, - "cheeses": 36076, - "cheesy": 22093, - "cheetah": 27431, - "chef": 12137, - "chef": 4895, - "chefs": 14486, - "chek": 43745, - "chel": 3084, - "chel": 25970, - "chell": 46854, - "chelle": 30141, - "chelms": 34936, - "chelmsford": 39890, - "chelse": 19071, - "chelsea": 6031, - "chelseafc": 25927, - "chelten": 18889, - "cheltenham": 21589, - "chem": 5667, - "chem": 13698, - "chemi": 7179, - "chemical": 39376, - "chemical": 9208, - "chemicals": 17426, - "chemist": 23138, - "chemistry": 8841, - "chemo": 33095, - "chemo": 36348, - "chemotherapy": 41412, - "chemtrails": 46015, - "chen": 5907, - "chen": 8983, - "cheney": 43522, - "cheng": 32512, - "cheng": 30190, - "chenko": 29073, - "chennai": 28948, - "chennai": 12791, - "cheon": 11498, - "cheque": 28168, - "cher": 3597, - "cher": 3466, - "cheri": 26471, - "cherish": 20053, - "cherished": 42325, - "cherno": 35376, - "chernobyl": 40554, - "chero": 19844, - "cherokee": 22860, - "cherries": 27248, - "cherry": 21470, - "cherry": 7325, - "chers": 5789, - "chery": 38478, - "cheryl": 37784, - "cheryl": 20600, - "ches": 18346, - "ches": 1910, - "chesa": 28349, - "chesapeake": 32909, - "cheshire": 17130, - "chesney": 48747, - "chess": 27170, - "chess": 8397, - "chest": 18217, - "chest": 10563, - "chester": 10466, - "chester": 3343, - "chesterfield": 32975, - "chestnut": 21834, - "chet": 9663, - "chett": 24695, - "chev": 7152, - "chev": 41145, - "chevro": 12850, - "chevrolet": 13240, - "chevron": 33792, - "chevy": 16581, - "chew": 32645, - "chew": 22642, - "chewan": 23689, - "chewbacca": 49355, - "chewing": 31486, - "chewy": 42940, - "chey": 26968, - "chey": 31208, - "cheyenne": 34805, - "chez": 49183, - "chez": 10556, - "chf": 33021, - "chfield": 41619, - "chhat": 34127, - "chhattisgarh": 44246, - "chi": 1337, - "chi": 4039, - "chia": 19147, - "chiang": 33764, - "chibi": 22306, - "chic": 2627, - "chic": 9091, - "chica": 44190, - "chicag": 16778, - "chicago": 15038, - "chicago": 3530, - "chicagof": 40638, - "chicagofire": 46576, - "chicas": 40664, - "chichester": 43823, - "chick": 3170, - "chick": 11238, - "chicken": 26322, - "chicken": 3717, - "chickens": 21658, - "chickpea": 48109, - "chicks": 17810, - "chico": 30379, - "chie": 40046, - "chie": 12388, - "chief": 16830, - "chief": 3455, - "chiefs": 11419, - "chiev": 47761, - "chiff": 27407, - "chiffon": 31817, - "chig": 42952, - "chihu": 22857, - "chihuahu": 25437, - "chihuahua": 30181, - "chik": 45455, - "chil": 1333, - "child": 4392, - "child": 2913, - "childcare": 31133, - "childhood": 34772, - "childhood": 7551, - "childish": 31939, - "childre": 2135, - "children": 11101, - "children": 2153, - "childrens": 31551, - "childrens": 21553, - "childs": 39521, - "chile": 10022, - "chilean": 33186, - "chili": 13033, - "chill": 6498, - "chill": 6382, - "chilled": 23540, - "chillen": 45160, - "chilli": 26787, - "chilli": 17067, - "chillin": 10347, - "chilling": 10179, - "chillout": 39842, - "chills": 25460, - "chilly": 14450, - "chim": 10543, - "chimney": 26821, - "chimp": 44374, - "chin": 6555, - "chin": 8979, - "china": 38943, - "china": 2817, - "chinatown": 28582, - "chine": 4013, - "chinese": 30568, - "chinese": 4271, - "ching": 34621, - "ching": 1439, - "chino": 47181, - "chino": 27440, - "chinook": 41577, - "chinson": 33786, - "chio": 19650, - "chip": 19271, - "chip": 8730, - "chipmun": 46384, - "chipot": 17702, - "chipotle": 19284, - "chipp": 39854, - "chippe": 46541, - "chipped": 39892, - "chipping": 40323, - "chips": 8855, - "chir": 15564, - "chiro": 23413, - "chiroprac": 25987, - "chiropractic": 34437, - "chis": 19920, - "chistan": 20523, - "chiswick": 47290, - "chit": 13515, - "chit": 45626, - "chita": 49184, - "chitec": 39862, - "chive": 29222, - "chives": 34921, - "chk": 47424, - "chl": 38592, - "chley": 47748, - "chlo": 10374, - "chloe": 39966, - "chloe": 13992, - "chlor": 23135, - "chman": 35835, - "chment": 20848, - "chner": 48277, - "cho": 1327, - "cho": 5150, - "choa": 43077, - "choc": 32772, - "choc": 21983, - "choco": 46285, - "choco": 32692, - "chocol": 3443, - "chocolat": 44631, - "chocolate": 29389, - "chocolate": 3820, - "chocolates": 24120, - "choi": 23749, - "choic": 35606, - "choice": 23857, - "choice": 4051, - "choices": 11016, - "choir": 9214, - "choirs": 43277, - "choke": 30231, - "choked": 43521, - "choker": 39642, - "choking": 39993, - "chol": 19802, - "cholera": 45999, - "cholester": 26861, - "cholesterol": 27982, - "chom": 25151, - "chon": 20416, - "chon": 21601, - "chondri": 37379, - "chong": 26220, - "choo": 3869, - "choo": 24437, - "chool": 29578, - "chools": 41958, - "choose": 22756, - "choose": 5073, - "chooses": 29923, - "choosing": 13475, - "chop": 10458, - "chop": 16663, - "chopin": 42256, - "chopped": 22580, - "chopper": 24011, - "chopping": 35375, - "chopra": 24258, - "chops": 26321, - "chor": 7567, - "chor": 47795, - "choral": 26684, - "chord": 33005, - "chords": 36152, - "choreo": 17443, - "choreographer": 35952, - "choreography": 32749, - "chores": 40483, - "chori": 25718, - "chorizo": 30802, - "chorus": 20869, - "chos": 26559, - "chose": 11090, - "chosen": 10044, - "chou": 16960, - "chou": 42917, - "choudhary": 45503, - "chow": 20257, - "chow": 21657, - "chowder": 37886, - "chp": 35896, - "chr": 36918, - "chri": 1135, - "chris": 9907, - "chris": 2978, - "chrisbrown": 41035, - "chriss": 46745, - "chrissy": 44762, - "chrissy": 40485, - "christ": 1403, - "christ": 6703, - "christchurch": 27100, - "christen": 31956, - "christensen": 42226, - "christi": 3328, - "christi": 33213, - "christian": 11792, - "christian": 4729, - "christianity": 20000, - "christians": 14842, - "christie": 16084, - "christin": 30189, - "christina": 15925, - "christine": 42610, - "christine": 14712, - "christma": 12039, - "christmas": 18174, - "christmas": 1677, - "christmaseve": 44381, - "christmass": 44873, - "christop": 7917, - "christoph": 47844, - "christophe": 45486, - "christopher": 33349, - "christopher": 9630, - "christy": 28331, - "chro": 13207, - "chromatic": 44207, - "chrome": 24843, - "chrome": 9529, - "chromo": 35809, - "chron": 5577, - "chron": 39781, - "chronic": 10115, - "chronic": 13677, - "chronicle": 20034, - "chronicles": 18905, - "chrono": 29387, - "chronograph": 38397, - "chry": 13508, - "chrysler": 20078, - "chs": 40277, - "chs": 8391, - "chsnews": 44919, - "cht": 11384, - "chter": 47811, - "chu": 3799, - "chu": 13622, - "chubby": 29109, - "chuck": 13211, - "chuck": 9894, - "chuckle": 35733, - "chucky": 42026, - "chuffed": 27233, - "chuk": 25878, - "chuk": 27221, - "chul": 33001, - "chum": 46869, - "chum": 41767, - "chun": 14693, - "chun": 25391, - "chung": 28418, - "chunk": 30275, - "chunks": 45538, - "chunky": 27978, - "chups": 46331, - "chur": 2309, - "church": 14956, - "church": 2735, - "churches": 15539, - "churchill": 17527, - "chus": 36246, - "chut": 28788, - "chutney": 36261, - "chy": 15131, - "chy": 8096, - "chyna": 43398, - "châ": 48669, - "ci": 698, - "ci": 5798, - "cia": 4019, - "cial": 1143, - "cian": 32323, - "ciao": 37677, - "ciara": 31369, - "cible": 28873, - "cic": 14539, - "cic": 21517, - "cid": 27359, - "cide": 34178, - "cider": 13547, - "cides": 41326, - "cie": 19730, - "cier": 24067, - "cies": 6785, - "cif": 35698, - "cigar": 26031, - "cigar": 16525, - "cigare": 13044, - "cigarette": 18548, - "cigarettes": 22750, - "cigars": 20750, - "cii": 42408, - "cil": 9217, - "cil": 2998, - "cilan": 33998, - "cilantro": 34568, - "cili": 18977, - "ciliation": 25294, - "cim": 30021, - "cin": 2396, - "cin": 25367, - "cina": 39467, - "cincin": 13291, - "cincinnati": 14197, - "cinco": 25131, - "cincode": 40930, - "cincodemayo": 42542, - "cincy": 30015, - "cincy": 30286, - "cinde": 20660, - "cinderella": 21515, - "cindy": 34439, - "cindy": 18532, - "cine": 4015, - "cine": 27451, - "cinema": 38251, - "cinema": 6443, - "cinemas": 14845, - "cinematic": 25602, - "cinemato": 21919, - "cinematographer": 39059, - "cinematography": 33802, - "ciner": 39882, - "cing": 4014, - "cini": 25699, - "cinnam": 12768, - "cinnamon": 13460, - "cino": 18616, - "cio": 44584, - "cio": 9954, - "cion": 22024, - "ciones": 37155, - "cious": 38466, - "cip": 32884, - "cir": 2459, - "cir": 41135, - "circa": 10411, - "circle": 33574, - "circle": 7117, - "circles": 19411, - "circling": 46036, - "circu": 5143, - "circuit": 35583, - "circuit": 9801, - "circuits": 33260, - "circul": 16618, - "circular": 19733, - "circulare": 39525, - "circulareconomy": 39878, - "circulated": 46258, - "circulating": 42980, - "circulation": 27880, - "circum": 13406, - "circumstances": 18786, - "circus": 11833, - "cirque": 36049, - "cis": 9459, - "cis": 23513, - "cisco": 36689, - "cisco": 19290, - "cise": 19657, - "cisely": 33434, - "cision": 41957, - "cism": 24166, - "cist": 40906, - "cit": 4420, - "cit": 31294, - "citadel": 38036, - "citation": 33581, - "cite": 32641, - "cited": 25069, - "cites": 34490, - "citi": 4280, - "citi": 30270, - "cities": 5441, - "citing": 29088, - "citiz": 5816, - "citizen": 11720, - "citizen": 9814, - "citizens": 7949, - "citizenship": 17386, - "cito": 42636, - "citro": 27941, - "citroen": 35805, - "citrus": 17379, - "city": 5002, - "city": 1305, - "cityfc": 28751, - "cityo": 25709, - "cityof": 11595, - "cityscape": 40808, - "ciu": 39693, - "cius": 42559, - "civ": 40039, - "civic": 32240, - "civic": 11888, - "civil": 6923, - "civil": 6450, - "civilian": 21187, - "civilians": 18076, - "civilization": 22503, - "civilwar": 34524, - "ción": 44700, - "cj": 15238, - "cj": 15205, - "ck": 916, - "ck": 868, - "cke": 25224, - "cke": 40989, - "cked": 3441, - "cken": 25566, - "cker": 15509, - "cker": 4744, - "ckers": 37073, - "cket": 5525, - "ckett": 33899, - "ckey": 15029, - "ckey": 3657, - "cki": 36916, - "cki": 41055, - "cking": 4805, - "cko": 28818, - "cks": 2031, - "cky": 26229, - "cky": 3083, - "cl": 969, - "cl": 6482, - "cla": 940, - "cla": 20636, - "clad": 31606, - "cladding": 46411, - "clai": 29459, - "claim": 4290, - "claim": 6607, - "claimed": 9010, - "claiming": 15286, - "claims": 6852, - "clair": 31441, - "clair": 14039, - "claire": 20410, - "claire": 10460, - "clam": 13588, - "clam": 32598, - "clamation": 21793, - "clamp": 41501, - "clams": 38849, - "clan": 29252, - "clan": 14114, - "clancy": 37227, - "clans": 38279, - "clap": 30037, - "clap": 25546, - "clapham": 43619, - "clapton": 37683, - "clar": 3617, - "clara": 19468, - "clare": 18948, - "clare": 15927, - "claremont": 47789, - "clarence": 29320, - "clari": 15175, - "clarify": 37004, - "clarinet": 41178, - "clarity": 21323, - "clark": 13340, - "clark": 7521, - "clarke": 11548, - "clarkson": 25706, - "clas": 32003, - "clash": 38367, - "clash": 9359, - "clashes": 25193, - "clasico": 43567, - "class": 2876, - "class": 1874, - "classes": 6919, - "classi": 2507, - "classic": 9353, - "classic": 2713, - "classical": 22179, - "classical": 11355, - "classicalmusic": 27806, - "classiccar": 46906, - "classiccars": 21064, - "classics": 10634, - "classification": 26612, - "classified": 22056, - "classmate": 37090, - "classmates": 30062, - "classof": 25345, - "classroom": 9001, - "classrooms": 25768, - "classy": 11615, - "clau": 7526, - "claude": 17461, - "claudi": 39439, - "claudia": 21893, - "claudio": 31230, - "claus": 23317, - "clause": 26151, - "clave": 24111, - "claw": 49230, - "claw": 19106, - "claws": 29161, - "clay": 10402, - "clay": 8823, - "clays": 26128, - "clayton": 46445, - "clayton": 19413, - "clc": 31380, - "cle": 1321, - "cle": 2537, - "clean": 3572, - "clean": 3772, - "cleaned": 17468, - "cleanenergy": 43538, - "cleaner": 15619, - "cleaners": 33258, - "cleaning": 7210, - "cleanliness": 47886, - "cleans": 40827, - "cleanse": 28717, - "cleanser": 44170, - "cleansing": 25931, - "cleanup": 22353, - "clear": 4631, - "clear": 3143, - "clearance": 17959, - "cleared": 14880, - "clearer": 37031, - "clearing": 15481, - "clearly": 7767, - "clears": 29092, - "clearwater": 32124, - "cleary": 44342, - "cleats": 33486, - "cleavage": 44165, - "cled": 12827, - "clegg": 42915, - "clemens": 45896, - "clement": 22592, - "clement": 24714, - "clemente": 42461, - "clementine": 47112, - "clements": 49175, - "clemson": 38170, - "clemson": 19537, - "clen": 35547, - "cleo": 40344, - "cleop": 36287, - "cleopatra": 41212, - "cler": 11828, - "clergy": 42635, - "cleric": 43748, - "clerk": 22230, - "clermont": 47529, - "cles": 8077, - "cleve": 37599, - "clevel": 7701, - "cleveland": 30716, - "cleveland": 8430, - "clever": 30977, - "clever": 13385, - "clg": 47546, - "cli": 1503, - "clich": 44407, - "click": 16676, - "click": 3585, - "clicked": 29015, - "clicking": 26542, - "clicks": 31250, - "client": 48528, - "client": 7467, - "clients": 8114, - "clif": 13182, - "cliff": 23827, - "cliff": 10625, - "cliffe": 15170, - "clifford": 24226, - "cliffs": 20953, - "clifton": 23878, - "climat": 37283, - "climate": 7854, - "climate": 4589, - "climateaction": 31622, - "climatechange": 11055, - "climates": 46022, - "climax": 37033, - "climb": 7421, - "climb": 10649, - "climbed": 22528, - "climber": 36910, - "climbers": 47648, - "climbing": 9877, - "climbs": 29098, - "clin": 2879, - "clinch": 30404, - "clinched": 44064, - "cline": 37460, - "cling": 37068, - "cling": 4760, - "clinic": 7926, - "clinical": 35133, - "clinical": 9148, - "clinicians": 45866, - "clinics": 23330, - "clint": 37542, - "clint": 21160, - "clinton": 34403, - "clinton": 5820, - "clio": 46889, - "clip": 39712, - "clip": 9289, - "clipped": 45524, - "clipper": 42245, - "clippers": 23319, - "clipping": 47484, - "clips": 16594, - "clique": 34983, - "clive": 36086, - "clive": 21509, - "cll": 46091, - "cllr": 45743, - "cllr": 23034, - "clo": 1194, - "cloak": 36528, - "clock": 19878, - "clock": 6716, - "clocked": 49049, - "clocks": 25895, - "clockwise": 46150, - "clockwork": 42297, - "clon": 24477, - "clone": 22854, - "clones": 48047, - "clooney": 33161, - "clos": 48821, - "close": 10603, - "close": 2660, - "closed": 4552, - "closely": 13478, - "closer": 6377, - "closes": 11354, - "closest": 14975, - "closet": 14221, - "closeup": 35439, - "closing": 7101, - "closure": 13249, - "closures": 22923, - "cloth": 14559, - "clothes": 7080, - "clothing": 7425, - "clou": 4069, - "cloud": 12965, - "cloud": 3887, - "cloudcomputing": 41390, - "clouds": 6244, - "cloudy": 13106, - "clough": 42909, - "clover": 39574, - "clover": 22812, - "clow": 18386, - "clown": 15329, - "clowns": 30820, - "cls": 44251, - "clt": 29651, - "clt": 24236, - "clu": 996, - "club": 9642, - "club": 1736, - "clubbing": 48128, - "clubhouse": 26553, - "clubs": 9437, - "clue": 14994, - "clueless": 35350, - "clues": 23764, - "clusive": 41362, - "cluster": 15595, - "clusters": 33217, - "clut": 28507, - "clutch": 13953, - "clutter": 40804, - "cly": 12037, - "clyde": 39557, - "clyde": 18469, - "cm": 10190, - "cm": 3741, - "cma": 30554, - "cma": 31388, - "cmc": 45839, - "cmdr": 48250, - "cme": 34946, - "cmo": 24589, - "cmon": 42904, - "cmp": 46355, - "cms": 22520, - "cmt": 42727, - "cmu": 43046, - "cn": 3886, - "cn": 16200, - "cna": 48287, - "cnbc": 41242, - "cnbc": 24371, - "cnblue": 36018, - "cnc": 20571, - "cnet": 47487, - "cnews": 24319, - "cng": 41496, - "cnn": 22405, - "cnn": 8259, - "cns": 46095, - "cny": 31614, - "co": 622, - "co": 1320, - "coa": 29167, - "coach": 3275, - "coach": 2312, - "coached": 30228, - "coachella": 20222, - "coaches": 6924, - "coaching": 7766, - "coal": 10227, - "coal": 7919, - "coalition": 12920, - "coast": 6398, - "coast": 3720, - "coastal": 38246, - "coastal": 10852, - "coaster": 15944, - "coasters": 31548, - "coastguard": 40601, - "coastline": 27959, - "coasts": 42225, - "coat": 28869, - "coat": 7356, - "coated": 23401, - "coates": 36899, - "coating": 25369, - "coatings": 48706, - "coats": 18075, - "cob": 20140, - "cob": 32863, - "cobain": 36866, - "cobalt": 30896, - "cobb": 22719, - "cobble": 47894, - "cobra": 21574, - "coc": 23036, - "coc": 39498, - "coca": 21197, - "cocac": 26393, - "cocacola": 31248, - "cocaine": 20534, - "coch": 18599, - "cochran": 48798, - "cochrane": 41752, - "coco": 11850, - "coco": 13316, - "cocoa": 18074, - "cocon": 8597, - "coconut": 9581, - "cod": 16132, - "cod": 11915, - "code": 11582, - "code": 3217, - "coded": 33703, - "coden": 43914, - "coder": 41561, - "codes": 14566, - "codi": 39711, - "coding": 12647, - "cody": 23222, - "cody": 12666, - "coe": 15386, - "coed": 41028, - "coel": 45633, - "coer": 41198, - "coeur": 44986, - "coffe": 2255, - "coffee": 12898, - "coffee": 2453, - "coffees": 41184, - "coffey": 48066, - "cofficial": 18757, - "coffin": 29907, - "cog": 26362, - "cog": 35960, - "cogn": 12210, - "cognac": 44361, - "cognition": 46825, - "cognitive": 16584, - "cohe": 20669, - "cohen": 13381, - "coherent": 48450, - "cohort": 22782, - "coil": 25307, - "coim": 41528, - "coin": 14651, - "coin": 4170, - "coinci": 14015, - "coincidence": 19807, - "coins": 10530, - "coke": 39602, - "coke": 14035, - "col": 754, - "col": 9371, - "cola": 15444, - "colbert": 31647, - "colby": 32068, - "colchester": 31715, - "cold": 11146, - "cold": 3153, - "colder": 23859, - "coldest": 31438, - "coldplay": 27770, - "cole": 9305, - "cole": 8166, - "coleman": 15774, - "coles": 40265, - "coles": 30398, - "coli": 18877, - "coli": 15910, - "colin": 20989, - "colin": 10238, - "coliseum": 21836, - "coll": 25982, - "coll": 23898, - "colla": 2929, - "collab": 14013, - "collabor": 4437, - "collaborate": 21271, - "collaborated": 42265, - "collaborating": 25545, - "collaboration": 6642, - "collaborations": 36520, - "collaborative": 15841, - "collaborator": 48186, - "collaborators": 45901, - "collage": 11258, - "collagen": 36120, - "collap": 16881, - "collapse": 16520, - "collapsed": 25037, - "collapses": 43601, - "collar": 39662, - "collar": 13497, - "collateral": 44512, - "colle": 1801, - "colleague": 13067, - "colleagues": 8203, - "collec": 1733, - "collect": 10186, - "collected": 11980, - "collecti": 18530, - "collectible": 25680, - "collectibles": 21519, - "collecting": 10325, - "collection": 2548, - "collections": 12760, - "collective": 10162, - "collectively": 40687, - "collector": 13522, - "collectors": 20540, - "collects": 31576, - "colleen": 31020, - "college": 13512, - "college": 2229, - "colleges": 17357, - "collegi": 16311, - "collegiate": 18068, - "colli": 8262, - "collide": 27214, - "collie": 30611, - "collier": 35748, - "collin": 24056, - "collin": 32116, - "colling": 32319, - "collingwood": 45873, - "collins": 8684, - "collision": 15407, - "collo": 25115, - "colloqui": 37243, - "colloquium": 46514, - "collu": 25658, - "collusion": 33864, - "colo": 7300, - "colo": 27288, - "cologne": 22216, - "cology": 19187, - "colom": 8987, - "colombia": 12901, - "colombian": 28701, - "colombo": 33207, - "colon": 8280, - "colon": 29050, - "colonel": 22674, - "coloni": 22667, - "colonial": 16530, - "colonialism": 43385, - "colonies": 38738, - "colony": 18767, - "color": 4036, - "color": 3140, - "colorado": 34580, - "colorado": 6742, - "colorec": 41171, - "colored": 11775, - "colorful": 11444, - "colori": 28764, - "coloring": 17696, - "colorized": 46730, - "colors": 5389, - "colorstv": 28195, - "colorway": 44576, - "colossal": 40258, - "colosse": 48142, - "colossus": 34022, - "colour": 10240, - "colour": 4769, - "coloured": 17111, - "colourful": 15562, - "colouring": 31803, - "colours": 7626, - "cols": 35726, - "colt": 19726, - "colton": 32249, - "coltrane": 42333, - "colts": 16135, - "colum": 4164, - "columb": 31043, - "columbi": 25947, - "columbia": 9410, - "columbus": 11273, - "column": 10593, - "columnist": 28958, - "columns": 29056, - "com": 610, - "com": 2464, - "coma": 19620, - "comb": 3587, - "comb": 16380, - "combat": 35083, - "combat": 9275, - "combating": 46121, - "combe": 14363, - "combin": 25112, - "combination": 11312, - "combinations": 34950, - "combine": 12919, - "combined": 10427, - "combines": 22991, - "combining": 23561, - "combo": 10155, - "combos": 48117, - "combs": 30694, - "combu": 35629, - "combustion": 44654, - "comcast": 30043, - "come": 4225, - "come": 891, - "comeback": 8234, - "comedian": 13848, - "comedians": 33758, - "comedic": 43360, - "comedy": 19346, - "comedy": 4749, - "comer": 42997, - "comer": 20916, - "comers": 34436, - "comes": 2091, - "comet": 21405, - "comets": 40636, - "comey": 22957, - "comfor": 6563, - "comfort": 44000, - "comfort": 7808, - "comfortable": 8652, - "comfortably": 30392, - "comforting": 33835, - "comforts": 42243, - "comfy": 15736, - "comi": 40781, - "comic": 7729, - "comic": 4962, - "comicart": 46018, - "comicbook": 46564, - "comicbooks": 22018, - "comiccon": 18379, - "comicon": 43820, - "comics": 4256, - "comin": 18164, - "coming": 14916, - "coming": 1171, - "comingsoon": 19894, - "comm": 965, - "comm": 11413, - "comman": 39780, - "command": 18391, - "command": 11350, - "commander": 11265, - "commanders": 41667, - "commanding": 36933, - "commandments": 43409, - "commando": 31361, - "commands": 38163, - "comme": 29692, - "commemor": 9495, - "commemorate": 21242, - "commemorates": 45149, - "commemorating": 28734, - "commemoration": 29288, - "commemorative": 24623, - "commen": 15795, - "commence": 25059, - "commenced": 43908, - "commencement": 21666, - "commences": 48551, - "commend": 37555, - "commended": 40702, - "comment": 20035, - "comment": 5761, - "commentary": 14146, - "commentator": 32016, - "commented": 28328, - "commenting": 37292, - "comments": 6606, - "commer": 4028, - "commerce": 8333, - "commerci": 15601, - "commercial": 31802, - "commercial": 6287, - "commercials": 30724, - "commish": 45399, - "commissi": 6000, - "commission": 5292, - "commissioned": 16565, - "commissioner": 10221, - "commissioners": 30702, - "commissioning": 29585, - "commissions": 20668, - "commit": 3041, - "commit": 11797, - "commitment": 7770, - "commitments": 32136, - "commits": 20241, - "committed": 7907, - "committee": 5636, - "committees": 40504, - "committing": 21937, - "commod": 9496, - "commodities": 30350, - "commodity": 29041, - "commodore": 31129, - "common": 8414, - "common": 4176, - "commonly": 20344, - "commons": 16653, - "commonwealth": 16569, - "comms": 18832, - "commu": 9561, - "commun": 1515, - "communal": 32809, - "communi": 16164, - "communic": 4784, - "communicate": 19809, - "communication": 7999, - "communications": 10052, - "communion": 28579, - "communism": 35387, - "communist": 18602, - "communities": 6361, - "community": 14784, - "community": 1927, - "commute": 15898, - "commuter": 27782, - "commuters": 30823, - "commuting": 43503, - "como": 16236, - "comp": 2561, - "comp": 11679, - "compac": 40014, - "compact": 13690, - "compan": 1995, - "companies": 5361, - "companion": 14963, - "companions": 37124, - "company": 2634, - "compar": 7580, - "comparable": 27092, - "comparative": 33388, - "compare": 13771, - "compared": 10544, - "compares": 25104, - "comparing": 20564, - "comparison": 14186, - "comparisons": 40870, - "compart": 30072, - "compartment": 40383, - "compass": 19438, - "compassion": 14463, - "compassionate": 30193, - "compati": 17295, - "compatibility": 41614, - "compatible": 21286, - "compe": 5254, - "compelled": 49375, - "compelling": 21766, - "compen": 42079, - "compens": 15172, - "compensation": 18663, - "compet": 2932, - "compete": 10038, - "competed": 27767, - "competen": 31853, - "competence": 31165, - "competency": 49293, - "competent": 28113, - "competes": 39826, - "competing": 13068, - "competit": 15892, - "competiti": 32581, - "competition": 3742, - "competitions": 23259, - "competitive": 10687, - "competitiveness": 43209, - "competitor": 26633, - "competitors": 23638, - "compilation": 20446, - "compiled": 34579, - "compla": 7428, - "complain": 19292, - "complained": 42029, - "complaining": 20812, - "complains": 46363, - "complaint": 20391, - "complaints": 20020, - "comple": 1730, - "complement": 36624, - "complementary": 48953, - "complete": 3263, - "completed": 5976, - "completely": 5989, - "completes": 19321, - "completing": 14949, - "completion": 15915, - "complex": 16099, - "complex": 6324, - "complexes": 47870, - "complexion": 47732, - "complexity": 24815, - "compli": 5270, - "compliance": 14658, - "compliant": 29893, - "complic": 11460, - "complicated": 16621, - "complications": 29936, - "compliment": 25116, - "complimentary": 20948, - "compliments": 25477, - "comply": 36281, - "component": 21284, - "components": 16816, - "compos": 7783, - "compose": 43659, - "composed": 19916, - "composer": 12104, - "composers": 33314, - "composing": 40412, - "composite": 21606, - "composites": 45395, - "composition": 17510, - "compositions": 44652, - "compost": 46002, - "compost": 33307, - "compound": 19980, - "compounds": 33991, - "compre": 8483, - "compreh": 42976, - "comprehen": 12050, - "comprehend": 48230, - "comprehensive": 13854, - "compress": 33353, - "compressed": 42359, - "compression": 25638, - "compressor": 39607, - "compri": 29445, - "compromise": 26611, - "compromised": 38576, - "compromising": 45436, - "comps": 48665, - "compton": 28364, - "compu": 11639, - "compul": 25869, - "compulsory": 39345, - "computing": 12732, - "comra": 25553, - "comrade": 30844, - "comrades": 29282, - "coms": 30493, - "con": 616, - "con": 2457, - "cona": 30605, - "conan": 24750, - "conce": 9145, - "concealed": 35419, - "conceded": 37895, - "conceived": 39725, - "concentr": 11085, - "concentrate": 30846, - "concentrated": 36776, - "concentration": 18565, - "concep": 8389, - "concepcion": 47035, - "concept": 6353, - "conceptart": 31162, - "conception": 30510, - "conceptions": 40307, - "concepts": 16763, - "conceptu": 42745, - "conceptual": 34070, - "concer": 2228, - "concern": 12928, - "concerned": 12020, - "concerning": 21772, - "concerns": 11134, - "concert": 32180, - "concert": 3066, - "concerto": 24710, - "concerts": 14418, - "concession": 38117, - "concessions": 43981, - "concier": 28859, - "concierge": 39850, - "conclave": 38098, - "conclu": 9627, - "conclude": 37525, - "concluded": 27825, - "concludes": 30634, - "conclusion": 20932, - "conclusions": 39507, - "conco": 43034, - "concor": 19913, - "concord": 26448, - "concordia": 35492, - "concours": 36282, - "concourse": 37793, - "concre": 43658, - "concrete": 9637, - "concussion": 28321, - "condem": 13287, - "condemn": 27212, - "condemned": 35145, - "condemns": 32092, - "conden": 24816, - "conditi": 11170, - "condition": 36978, - "condition": 7336, - "conditional": 24671, - "conditioned": 37014, - "conditioner": 31239, - "conditioning": 18181, - "conditions": 5892, - "condo": 19952, - "condol": 18661, - "condolences": 20836, - "condom": 39021, - "condomin": 42589, - "condoms": 37878, - "condor": 47643, - "condos": 42342, - "condu": 40772, - "conduc": 5379, - "conduct": 11647, - "conducted": 13080, - "conducting": 16787, - "conductor": 22317, - "conducts": 32084, - "cone": 39279, - "cone": 10266, - "cones": 26718, - "coney": 41837, - "conf": 6477, - "confe": 1968, - "confeder": 17104, - "confederate": 24864, - "confederation": 43484, - "conferen": 37961, - "conference": 2230, - "conferences": 22811, - "conferencing": 47320, - "confess": 38860, - "confession": 22572, - "confessions": 29404, - "confetti": 37923, - "confi": 5005, - "confidence": 8510, - "confident": 12365, - "confidential": 28712, - "configu": 46746, - "configur": 26950, - "configuration": 33378, - "confin": 45316, - "confined": 40973, - "confir": 3930, - "confirm": 12130, - "confirmation": 19645, - "confirmed": 6346, - "confirming": 38433, - "confirms": 11803, - "confis": 36285, - "confit": 42241, - "confl": 8173, - "conflic": 19029, - "conflict": 10397, - "conflicting": 43894, - "conflicts": 28713, - "confor": 40933, - "confron": 20033, - "confront": 38382, - "confrontation": 41478, - "confu": 6890, - "confuse": 37503, - "confused": 10946, - "confusing": 24683, - "confusion": 20493, - "cong": 24407, - "conge": 20013, - "congestion": 24432, - "congo": 20334, - "congr": 1227, - "congrats": 1887, - "congratul": 1750, - "congratulate": 16633, - "congratulated": 42004, - "congratulates": 24580, - "congratulating": 30967, - "congratulation": 24751, - "congratulations": 1864, - "congre": 7947, - "congreg": 40727, - "congregation": 32618, - "congress": 12452, - "congress": 4599, - "congressional": 15239, - "congressman": 17145, - "congresswoman": 37317, - "coni": 39031, - "coni": 36651, - "conj": 41543, - "conju": 33821, - "conjunction": 34226, - "conley": 44536, - "conline": 37593, - "conn": 41836, - "conn": 20329, - "conne": 8437, - "connec": 29933, - "connect": 19969, - "connected": 27506, - "connecting": 41429, - "connection": 26840, - "connections": 37161, - "connie": 25739, - "connoisse": 46012, - "connol": 27739, - "connolly": 29537, - "connor": 21984, - "connor": 10218, - "conom": 2664, - "conomy": 22529, - "conor": 29955, - "conor": 19478, - "conqu": 13382, - "conquer": 38585, - "conquer": 19821, - "conquered": 27099, - "conquering": 43778, - "conquest": 35367, - "conrad": 22073, - "cons": 10311, - "consci": 9427, - "conscience": 27310, - "conscious": 14914, - "consciously": 46755, - "consciousness": 17894, - "conse": 34887, - "consecu": 12084, - "consecutive": 12413, - "consen": 23110, - "consensus": 25071, - "consent": 21922, - "consequ": 13003, - "consequence": 42262, - "consequences": 15682, - "conserv": 4649, - "conservancy": 46729, - "conservation": 37616, - "conservation": 8322, - "conservative": 11421, - "conservatives": 17631, - "conservatory": 32140, - "conserve": 34231, - "consi": 2899, - "consider": 12471, - "consider": 6734, - "considerable": 38256, - "considerably": 38510, - "consideration": 24310, - "considerations": 33700, - "considered": 9487, - "considering": 10761, - "considers": 24691, - "consist": 10410, - "consist": 33735, - "consisted": 49354, - "consistency": 25683, - "consistent": 16439, - "consistently": 23799, - "consisting": 39241, - "consists": 23458, - "consol": 27869, - "consolation": 38888, - "console": 13403, - "consoles": 33136, - "consoli": 21586, - "consolidation": 41111, - "consor": 27108, - "consortium": 29988, - "conspir": 12680, - "conspiracy": 15236, - "const": 3826, - "constable": 29179, - "constan": 38718, - "constance": 40682, - "constant": 32000, - "constant": 13111, - "constantine": 30640, - "constantly": 14336, - "constell": 21913, - "constellation": 25991, - "constitu": 6299, - "constituency": 22464, - "constituents": 32075, - "constitution": 12157, - "constitutional": 16091, - "constra": 28973, - "constraints": 41910, - "constru": 3983, - "construc": 13321, - "construct": 24467, - "constructed": 16876, - "constructing": 33653, - "construction": 48873, - "construction": 4585, - "constructive": 31810, - "consu": 4689, - "consul": 5295, - "consul": 33630, - "consulate": 34341, - "consult": 9438, - "consult": 26727, - "consultancy": 31735, - "consultant": 14196, - "consultants": 27203, - "consultation": 15777, - "consultations": 43424, - "consulting": 15883, - "consume": 28919, - "consumed": 29653, - "consumer": 34408, - "consumer": 10422, - "consumers": 14014, - "consuming": 30607, - "consumption": 14904, - "cont": 2036, - "cont": 21425, - "contact": 39367, - "contact": 3523, - "contacted": 37331, - "contacts": 22789, - "contag": 29259, - "contagious": 33984, - "contain": 9948, - "contain": 15187, - "contained": 23836, - "container": 14913, - "containers": 20448, - "containing": 20281, - "contains": 12844, - "contamin": 24662, - "contaminated": 35773, - "contamination": 31770, - "conte": 15402, - "conte": 26882, - "contempl": 21924, - "contemplating": 33854, - "contempor": 14538, - "contemporary": 16607, - "contemporary": 8859, - "contemporaryart": 20212, - "contempt": 39293, - "conten": 42201, - "contender": 23573, - "contenders": 29711, - "content": 15526, - "content": 4750, - "contentmarketing": 20429, - "contents": 14850, - "contest": 23103, - "contest": 4576, - "contestalert": 27313, - "contestant": 25682, - "contestants": 28062, - "contested": 37845, - "contests": 32210, - "contex": 42015, - "context": 13089, - "conti": 46431, - "conti": 40842, - "contin": 1918, - "continent": 19623, - "continental": 14089, - "continents": 38642, - "conting": 27104, - "contingent": 36467, - "continu": 4688, - "continually": 34086, - "continuation": 38964, - "continue": 3942, - "continued": 10150, - "continues": 4305, - "continuing": 11009, - "continuity": 34035, - "continuous": 17033, - "continuously": 29634, - "continuum": 44978, - "contour": 34733, - "contr": 22871, - "contra": 9880, - "contra": 38620, - "contrac": 7581, - "contracep": 35109, - "contract": 6120, - "contracting": 39091, - "contractor": 21429, - "contractors": 22427, - "contracts": 16563, - "contradic": 27957, - "contrary": 32805, - "contrast": 18501, - "contrasting": 40758, - "contribu": 4753, - "contribute": 14112, - "contributed": 19397, - "contributes": 34203, - "contributing": 21762, - "contribution": 11116, - "contributions": 14465, - "contributor": 24553, - "contributors": 32908, - "contro": 2372, - "control": 9963, - "control": 3366, - "controlled": 14140, - "controller": 12929, - "controllers": 30374, - "controlling": 26427, - "controls": 15746, - "controversi": 13674, - "controversial": 14617, - "controversy": 18659, - "conv": 48382, - "conve": 18421, - "conven": 7283, - "conveni": 33278, - "convenience": 17859, - "convenient": 18978, - "conveniently": 40844, - "convention": 6752, - "conventional": 20835, - "conventions": 41404, - "conver": 6336, - "convergence": 35381, - "convers": 4577, - "conversation": 5690, - "conversations": 12326, - "converse": 24149, - "conversion": 15111, - "conversions": 44137, - "convert": 20074, - "converted": 20808, - "converter": 34611, - "convertible": 19608, - "converting": 34674, - "converts": 42470, - "convey": 38342, - "convic": 11150, - "convicted": 18668, - "conviction": 24967, - "convictions": 44366, - "convin": 12889, - "convince": 20351, - "convinced": 17388, - "convincing": 27742, - "convo": 19372, - "convocation": 30674, - "convos": 44842, - "convoy": 30292, - "conway": 21410, - "conwy": 48971, - "cony": 14501, - "coo": 1664, - "coo": 21691, - "coogs": 47624, - "cook": 9726, - "cook": 5977, - "cookbook": 21086, - "cooke": 29979, - "cooked": 11452, - "cooker": 23806, - "cookery": 38779, - "cookie": 9367, - "cookies": 8320, - "cookin": 46610, - "cooking": 39248, - "cooking": 6283, - "cookout": 39743, - "cooks": 24256, - "cool": 5594, - "cool": 2077, - "cooled": 37170, - "cooler": 11078, - "coolest": 10566, - "cooling": 15291, - "coom": 41726, - "coon": 34260, - "coon": 16958, - "coop": 39917, - "coop": 18910, - "cooper": 7264, - "cooper": 8133, - "cooperate": 42936, - "cooperation": 11785, - "cooperative": 24517, - "coops": 48531, - "coordin": 8187, - "coordinate": 38250, - "coordinated": 32540, - "coordinating": 40075, - "coordination": 25611, - "coordinator": 13967, - "coors": 36025, - "cop": 3196, - "cop": 7070, - "copa": 22749, - "copd": 45876, - "cope": 47635, - "cope": 12564, - "copeland": 37604, - "copen": 15637, - "copenhagen": 17390, - "coper": 41891, - "copernic": 45519, - "copied": 36770, - "copies": 9851, - "coping": 30545, - "copolitics": 45846, - "copp": 20937, - "copped": 42229, - "copper": 24741, - "copper": 10333, - "coppola": 47427, - "cops": 10719, - "copter": 28049, - "copy": 11376, - "copy": 4509, - "copying": 38925, - "copyright": 15778, - "cor": 851, - "cor": 18559, - "cora": 34953, - "coral": 31220, - "coral": 12054, - "corbett": 35699, - "corbin": 35578, - "corbyn": 14026, - "cord": 40893, - "cord": 11181, - "corden": 41999, - "cordi": 41681, - "cordless": 44412, - "cords": 22164, - "core": 19622, - "core": 5000, - "cores": 37874, - "corey": 31279, - "corey": 15288, - "corgi": 31320, - "cori": 26508, - "coriander": 37491, - "corin": 17716, - "corinthians": 34471, - "cork": 18148, - "cork": 10376, - "corn": 5202, - "corn": 5894, - "cornelius": 45865, - "cornell": 38689, - "cornell": 20859, - "corner": 18509, - "corner": 5253, - "corners": 19584, - "cornerstone": 36280, - "cornish": 23774, - "cornwall": 37903, - "cornwall": 10777, - "coron": 13210, - "corona": 25564, - "coronado": 43946, - "coronary": 45955, - "coronation": 25014, - "coroner": 47241, - "corp": 29203, - "corp": 10918, - "corpor": 4258, - "corporal": 42445, - "corporate": 33877, - "corporate": 6838, - "corporation": 11282, - "corporations": 25482, - "corps": 11330, - "corpse": 29408, - "corpus": 31672, - "correc": 5011, - "correct": 8340, - "corrected": 35628, - "correction": 20843, - "correctional": 38030, - "corrections": 37507, - "correctly": 15359, - "correlation": 29218, - "correspon": 20203, - "correspondent": 29996, - "corri": 12974, - "corridor": 20592, - "corrie": 23961, - "corro": 24936, - "corro": 42033, - "corrosion": 39191, - "corru": 6501, - "corrup": 30429, - "corrupt": 15194, - "corruption": 9141, - "corsa": 47670, - "corsair": 42367, - "corset": 40408, - "cortex": 40109, - "cortez": 30461, - "corvette": 24367, - "cory": 23221, - "cory": 18329, - "cos": 5865, - "cos": 5700, - "cosby": 30324, - "cosc": 45944, - "coscino": 47909, - "cose": 26495, - "cosm": 37486, - "cosme": 9628, - "cosmetic": 23918, - "cosmetics": 12896, - "cosmic": 47398, - "cosmic": 18304, - "cosmo": 12829, - "cosmo": 32072, - "cosmopolitan": 35518, - "cosmos": 22151, - "cospla": 15149, - "cosplay": 42401, - "cosplay": 6435, - "cosplayer": 30215, - "cosplaying": 46701, - "cost": 11360, - "cost": 4713, - "costa": 10480, - "costar": 28659, - "costarica": 31272, - "costco": 31045, - "costello": 30667, - "costing": 39193, - "costly": 30170, - "costs": 7628, - "costu": 5786, - "costume": 7235, - "costumes": 15150, - "cosy": 22848, - "cot": 4718, - "cot": 5871, - "cote": 44234, - "cote": 20751, - "cotland": 32576, - "cotsw": 23303, - "cotswolds": 35546, - "cott": 8211, - "cott": 11349, - "cottage": 12155, - "cottages": 34405, - "cotton": 22218, - "cotton": 7050, - "cou": 1368, - "couch": 12724, - "cougar": 35028, - "cougar": 27042, - "cougars": 20425, - "cough": 35631, - "cough": 18498, - "cougs": 28482, - "coul": 22483, - "could": 44812, - "could": 1510, - "couldn": 4072, - "couldnt": 29042, - "coulter": 42291, - "coun": 939, - "counc": 12927, - "council": 18187, - "council": 3620, - "councill": 15732, - "councillor": 21179, - "councillors": 29695, - "councilman": 40833, - "councils": 29938, - "counsel": 13780, - "counsel": 19814, - "counseling": 25000, - "counsell": 47510, - "counselling": 40581, - "counselor": 26148, - "counselors": 38688, - "count": 6073, - "count": 5887, - "countdown": 39559, - "countdown": 7500, - "counted": 23149, - "counter": 10134, - "counter": 7352, - "counterfe": 33067, - "counterfeit": 44242, - "counterpart": 39216, - "counterparts": 42106, - "counters": 46170, - "countess": 46276, - "counties": 12338, - "counting": 9723, - "countless": 21819, - "countries": 5489, - "country": 7896, - "country": 2157, - "countryfile": 47023, - "countrymusic": 30372, - "countryside": 16303, - "counts": 12264, - "county": 18734, - "county": 2116, - "coup": 9871, - "coup": 16479, - "coupe": 16773, - "couple": 40136, - "couple": 3377, - "coupled": 37153, - "couples": 14752, - "coupling": 45595, - "coupon": 14019, - "coupons": 23945, - "cour": 1391, - "coura": 4436, - "courage": 9828, - "courageous": 25005, - "courier": 27217, - "cours": 21493, - "course": 43225, - "course": 2613, - "courses": 9464, - "court": 16837, - "court": 2908, - "courte": 5088, - "courtesy": 5228, - "courthouse": 22205, - "courtney": 33601, - "courtney": 15990, - "courtroom": 41071, - "courts": 13514, - "courty": 20121, - "courtyard": 21900, - "cous": 48397, - "cousin": 7780, - "cousins": 14073, - "cout": 29118, - "coutinho": 35530, - "couture": 14808, - "cov": 19384, - "cov": 48385, - "cove": 21700, - "cove": 14708, - "coven": 12483, - "covenant": 29647, - "coventry": 18007, - "cover": 13534, - "cover": 2202, - "coverage": 6810, - "covered": 5603, - "covering": 9462, - "covers": 7745, - "covert": 40134, - "coveted": 36119, - "covington": 43196, - "cow": 5076, - "cow": 9706, - "cowan": 42699, - "coward": 33729, - "cowards": 48972, - "cowboy": 25833, - "cowboy": 13657, - "cowboys": 11864, - "cowboysnation": 43082, - "cowell": 39015, - "cowgirl": 47090, - "coworker": 30727, - "coworkers": 30821, - "coworking": 36034, - "cows": 15204, - "cowx": 23831, - "cox": 25784, - "cox": 11597, - "coy": 12765, - "coy": 15742, - "coyi": 48407, - "coyle": 45348, - "coyne": 44729, - "coyo": 16614, - "coyote": 26586, - "coyotes": 30423, - "coys": 19736, - "coz": 39922, - "coz": 14282, - "cozy": 14873, - "cp": 7905, - "cp": 9130, - "cpa": 30095, - "cpac": 45731, - "cpc": 26125, - "cpd": 23402, - "cpec": 48007, - "cpfc": 27553, - "cpi": 41795, - "cpl": 26852, - "cpr": 25134, - "cps": 27078, - "cpt": 32892, - "cpu": 27700, - "cq": 48910, - "cq": 48417, - "cr": 1075, - "cr": 3483, - "cra": 1184, - "cra": 18362, - "crab": 27382, - "crab": 11574, - "crabs": 30908, - "crack": 11222, - "crack": 10334, - "crackdown": 29527, - "cracked": 19826, - "cracker": 16298, - "crackers": 26200, - "cracking": 13008, - "cracks": 21426, - "cracy": 24749, - "cradle": 29384, - "crae": 40438, - "craf": 10873, - "craft": 7717, - "craft": 3588, - "craftbeer": 12371, - "crafted": 12424, - "crafthour": 42324, - "crafting": 26886, - "crafts": 33276, - "crafts": 13383, - "craftsman": 39528, - "craftsmanship": 36682, - "crafty": 32317, - "craic": 46962, - "craig": 14042, - "craig": 8061, - "craigslist": 43865, - "cram": 29809, - "cramer": 44592, - "cramps": 46106, - "cran": 7761, - "cranberries": 49361, - "cranberry": 23824, - "crane": 14626, - "cranes": 26979, - "crani": 45674, - "crank": 46246, - "crank": 32283, - "cranston": 44340, - "crap": 11899, - "crappy": 30475, - "crash": 37150, - "crash": 5033, - "crashed": 16638, - "crashes": 17013, - "crashing": 24991, - "crat": 46696, - "crate": 24756, - "crater": 22663, - "crates": 30172, - "cratic": 32175, - "crative": 39999, - "crats": 43056, - "crave": 33397, - "craven": 33625, - "craving": 18344, - "cravings": 34476, - "craw": 7400, - "crawfish": 42772, - "crawford": 15918, - "crawl": 20106, - "crawler": 41012, - "crawley": 42316, - "crawling": 37066, - "cray": 24184, - "cray": 27032, - "crayon": 41801, - "crayons": 43508, - "craz": 25776, - "craze": 30637, - "craziest": 32690, - "craziness": 46436, - "crazy": 17540, - "crazy": 3578, - "crc": 25618, - "cre": 798, - "cre": 17762, - "cream": 23184, - "cream": 3867, - "creams": 41447, - "creamy": 17206, - "crease": 48441, - "create": 30949, - "create": 3380, - "created": 4080, - "creates": 10361, - "creati": 6714, - "creating": 5524, - "creation": 38293, - "creation": 6900, - "creations": 17411, - "creative": 15237, - "creative": 4450, - "creatives": 29352, - "creativity": 9636, - "creator": 10173, - "creators": 17981, - "creature": 14317, - "creatures": 13938, - "cred": 7314, - "cred": 22377, - "credenti": 29487, - "credentials": 33422, - "credi": 21097, - "credibility": 34984, - "credible": 32983, - "credit": 21467, - "credit": 3900, - "credited": 32480, - "credits": 10654, - "creds": 43462, - "cree": 33961, - "cree": 36014, - "creed": 18845, - "creek": 26120, - "creek": 5526, - "creep": 8153, - "creep": 26084, - "creeper": 38662, - "creeping": 29697, - "creeps": 45135, - "creepy": 11943, - "creighton": 42823, - "creme": 22681, - "creole": 45632, - "crepe": 38611, - "crescent": 18211, - "cress": 39124, - "crest": 35985, - "crest": 15760, - "crested": 36656, - "crete": 8584, - "crew": 21560, - "crew": 3462, - "crewe": 43284, - "crews": 10463, - "cri": 1621, - "cri": 38962, - "crib": 23271, - "cric": 4328, - "cricke": 19098, - "cricket": 21859, - "cricket": 5373, - "cricketer": 28439, - "cricketers": 43986, - "cried": 15290, - "cries": 19769, - "crime": 13872, - "crime": 4896, - "crimea": 28614, - "crimes": 11827, - "crimin": 5874, - "criminal": 30197, - "criminal": 8255, - "criminals": 18783, - "crimson": 19437, - "cringe": 42588, - "cripp": 33588, - "cris": 37818, - "crises": 36403, - "crisis": 5712, - "crisp": 15145, - "crispr": 39784, - "crisps": 35744, - "crispy": 16458, - "criss": 29708, - "cristi": 12699, - "cristian": 48808, - "cristiano": 14807, - "cristina": 33395, - "cristo": 38315, - "crit": 3613, - "crit": 48130, - "criteri": 33627, - "criteria": 24849, - "criterion": 43841, - "criti": 25333, - "critic": 12417, - "critic": 19361, - "critical": 15314, - "critical": 6808, - "critically": 21570, - "criticalrole": 33606, - "criticalrole": 22742, - "criticalrolefanart": 43663, - "critici": 20333, - "criticism": 17405, - "criticize": 46081, - "criticized": 41557, - "critics": 16946, - "critique": 32982, - "critters": 35423, - "crm": 22610, - "cro": 1192, - "cro": 22522, - "croati": 28072, - "croatia": 13323, - "croatian": 34795, - "croc": 43350, - "croche": 35352, - "crochet": 17554, - "crock": 41685, - "crocker": 47843, - "crockett": 48313, - "crocod": 24519, - "crocodile": 24757, - "crocs": 38988, - "croft": 16657, - "croissant": 46011, - "croix": 44735, - "crom": 25082, - "crombie": 46162, - "cromwell": 45345, - "cron": 17361, - "croo": 16443, - "crook": 43744, - "crooked": 48473, - "crooked": 25644, - "crooks": 44226, - "crop": 40751, - "crop": 9955, - "cropped": 31139, - "crops": 16290, - "crore": 18274, - "crores": 37281, - "cros": 16670, - "crosby": 21095, - "cross": 5266, - "cross": 3417, - "crossed": 11731, - "crosses": 20473, - "crossfit": 47214, - "crossfit": 20395, - "crossing": 8673, - "crossings": 43517, - "crossover": 17194, - "crossroads": 27427, - "crossword": 32945, - "crou": 31206, - "crouch": 36506, - "crow": 3138, - "crow": 16019, - "crowd": 12036, - "crowd": 4570, - "crowded": 20182, - "crowdfunding": 17971, - "crowds": 16092, - "crowe": 33560, - "crowley": 32287, - "crown": 22190, - "crown": 6902, - "crowned": 16109, - "crowns": 33229, - "crows": 27134, - "croy": 21676, - "croydon": 27116, - "crs": 28449, - "crt": 43877, - "cru": 1815, - "cru": 29788, - "cruci": 18499, - "crucial": 12396, - "crude": 20677, - "cruel": 16073, - "cruel": 17573, - "cruelty": 20675, - "cruis": 27721, - "cruise": 36425, - "cruise": 6764, - "cruiser": 21394, - "cruises": 19214, - "cruising": 19743, - "crum": 43268, - "crumb": 48327, - "crumb": 39909, - "crumble": 36595, - "crumbs": 35893, - "crun": 17407, - "crunch": 16620, - "crunchy": 31366, - "crusad": 19133, - "crusade": 36846, - "crusader": 40171, - "crusaders": 31319, - "crush": 22296, - "crush": 7610, - "crushed": 18270, - "crusher": 44923, - "crushes": 35844, - "crushing": 20790, - "crust": 23136, - "crusted": 37314, - "cruz": 33689, - "cruz": 8403, - "cry": 2837, - "cry": 6290, - "crying": 6828, - "cryo": 32215, - "cryp": 4865, - "crypt": 37814, - "cryptic": 46925, - "crypto": 8080, - "crypto": 9608, - "cryptocurrencies": 33329, - "cryptocurrency": 12070, - "cryst": 15891, - "crystal": 17387, - "crystal": 6517, - "crystalli": 47551, - "crystals": 18350, - "cs": 11978, - "cs": 2804, - "csa": 26355, - "csc": 41727, - "csc": 37266, - "csd": 36913, - "cse": 41659, - "csg": 47085, - "csgo": 28928, - "csi": 41750, - "csi": 28070, - "csk": 43036, - "csm": 40061, - "csn": 46329, - "cso": 43864, - "csp": 39243, - "csr": 32105, - "csr": 24598, - "csrracing": 44193, - "css": 41418, - "css": 19846, - "cst": 17016, - "csu": 35948, - "csu": 31261, - "csw": 41031, - "ct": 3381, - "ct": 1122, - "cta": 28397, - "ctar": 27842, - "ctc": 34123, - "cte": 31410, - "cted": 2910, - "ctf": 35250, - "cthulhu": 41064, - "cting": 7985, - "ction": 17578, - "ction": 1569, - "ctions": 7021, - "ctive": 9313, - "cto": 17445, - "ctor": 8108, - "ctr": 35602, - "ctr": 18481, - "cts": 6936, - "ctto": 25118, - "ctu": 20834, - "cture": 17668, - "ctv": 21213, - "ctv": 27590, - "cu": 729, - "cu": 11224, - "cuando": 40388, - "cub": 16938, - "cub": 19972, - "cuba": 11576, - "cuban": 15536, - "cube": 47753, - "cube": 11353, - "cubes": 31413, - "cubic": 48159, - "cubic": 29614, - "cubs": 9858, - "cuck": 26364, - "cuckoo": 38062, - "cucu": 16705, - "cucumber": 19787, - "cucumbers": 48065, - "cud": 42684, - "cudd": 12820, - "cuddle": 19568, - "cuddles": 24001, - "cuddling": 29696, - "cuddly": 36208, - "cudi": 48713, - "cue": 13424, - "cuer": 39506, - "cues": 35719, - "cuff": 34693, - "cuff": 22414, - "cufflinks": 43938, - "cuffs": 37221, - "cuis": 9938, - "cuisine": 10605, - "cuk": 34838, - "cul": 1877, - "cula": 35935, - "cular": 10940, - "culars": 45719, - "cule": 31066, - "cules": 18984, - "culin": 14772, - "culinary": 16466, - "cull": 21880, - "cull": 42061, - "cullen": 25973, - "culmin": 33778, - "culo": 36305, - "culprit": 41593, - "cult": 11965, - "cultiv": 16781, - "cultivate": 42983, - "cultivated": 48901, - "cultivation": 41539, - "cultur": 20780, - "cultural": 34908, - "cultural": 6753, - "culturally": 36783, - "culture": 20197, - "culture": 3673, - "cultured": 40176, - "cultures": 19552, - "culver": 42103, - "cum": 20142, - "cum": 27119, - "cumb": 10858, - "cumber": 15309, - "cumberbatch": 27541, - "cumberland": 28747, - "cumbri": 32010, - "cumbria": 17953, - "cumin": 42285, - "cumple": 47050, - "cumul": 42961, - "cumulative": 47610, - "cumulus": 46313, - "cun": 12423, - "cun": 29532, - "cunningham": 25321, - "cuomo": 25681, - "cup": 5059, - "cup": 1937, - "cupboard": 32074, - "cupcake": 17025, - "cupcakes": 12747, - "cupid": 34885, - "cuppa": 28077, - "cups": 11463, - "cur": 1092, - "cur": 33073, - "curated": 20341, - "curator": 20753, - "curb": 21931, - "curd": 38881, - "cure": 36758, - "cure": 9088, - "cured": 26248, - "cures": 38204, - "curfew": 48826, - "curi": 12640, - "curing": 44169, - "curiosity": 21583, - "curious": 9865, - "curl": 24306, - "curled": 43734, - "curling": 18543, - "curls": 24340, - "curly": 20795, - "curran": 40999, - "currant": 43501, - "curren": 6142, - "currencies": 23530, - "currency": 7853, - "current": 3653, - "currently": 3792, - "currents": 35450, - "curric": 16201, - "curriculum": 17947, - "currie": 39385, - "curry": 49285, - "curry": 8051, - "curse": 18479, - "cursed": 26408, - "cursor": 46546, - "curt": 38137, - "curtain": 17223, - "curtains": 30223, - "curti": 39925, - "curtis": 13808, - "curve": 15792, - "curved": 25789, - "curves": 22814, - "curvy": 45788, - "cus": 2736, - "cusa": 47414, - "cuse": 37950, - "cush": 43731, - "cushi": 15333, - "cushion": 20853, - "cushions": 34163, - "cussion": 16658, - "cussions": 46853, - "cust": 20900, - "custard": 26516, - "custo": 4376, - "custody": 16176, - "custom": 2662, - "custom": 4996, - "custome": 41323, - "customer": 24035, - "customer": 5102, - "customerexperience": 45167, - "customers": 5528, - "customerservice": 40611, - "customiz": 41793, - "customizable": 48253, - "customization": 48244, - "customize": 32179, - "customized": 23229, - "customs": 16880, - "cut": 10511, - "cut": 3032, - "cute": 16031, - "cute": 2242, - "cuteness": 19342, - "cuter": 27151, - "cutest": 8032, - "cuth": 44328, - "cutie": 10733, - "cuties": 40939, - "cuties": 23420, - "cutiesaturday": 41883, - "cutler": 40428, - "cutlery": 49073, - "cutout": 45016, - "cuts": 7435, - "cutt": 27338, - "cutt": 47647, - "cutter": 19719, - "cutters": 44783, - "cutting": 7266, - "cuz": 9215, - "cv": 13531, - "cv": 13947, - "cvs": 29603, - "cw": 10652, - "cw": 11065, - "cwc": 19179, - "cwgc": 48527, - "cws": 45186, - "cx": 44457, - "cx": 14283, - "cy": 1470, - "cy": 1678, - "cyber": 5830, - "cyber": 10210, - "cybercrime": 41772, - "cybermonday": 36578, - "cyberpunk": 36896, - "cybersecurity": 10581, - "cyborg": 36650, - "cycl": 9791, - "cycle": 19083, - "cycle": 5072, - "cycled": 31055, - "cycles": 14605, - "cycli": 12201, - "cycling": 26353, - "cycling": 6321, - "cyclist": 20686, - "cyclists": 20303, - "cyclo": 18122, - "cyclone": 48094, - "cyclone": 20917, - "cyclones": 34669, - "cylin": 18569, - "cylinder": 22092, - "cylinders": 48888, - "cymb": 36677, - "cymru": 24005, - "cyn": 14324, - "cynthi": 41994, - "cynthia": 23748, - "cyp": 14809, - "cypress": 25347, - "cypri": 36481, - "cyprus": 15263, - "cyril": 36028, - "cyrus": 14204, - "cystic": 46131, - "cyto": 31864, - "cz": 22898, - "cz": 22921, - "cze": 12152, - "czech": 43151, - "czech": 16141, - "cé": 36454, - "cé": 18317, - "d": 67, - "d": 323, - "da": 925, - "da": 1140, - "daa": 32642, - "daan": 44814, - "dab": 10413, - "dab": 22900, - "dac": 16222, - "dac": 27478, - "daca": 28477, - "dach": 34166, - "dachsh": 41641, - "dachshund": 42720, - "dad": 4346, - "dad": 2639, - "dada": 31325, - "daddy": 29466, - "daddy": 6546, - "dade": 23299, - "dades": 28289, - "dads": 12741, - "dae": 23358, - "dae": 15422, - "daener": 46934, - "daes": 47282, - "daesh": 35047, - "daf": 9972, - "daf": 36704, - "daffodils": 44769, - "daft": 36347, - "dag": 11434, - "dag": 25650, - "dagger": 34251, - "dah": 16976, - "dah": 11776, - "dahl": 45816, - "dahl": 22621, - "dahlia": 41768, - "dai": 13559, - "dai": 10632, - "dail": 14676, - "dailies": 21260, - "daily": 6689, - "daily": 2873, - "dailynews": 43466, - "dailys": 43160, - "dailysketch": 46738, - "daim": 40421, - "dain": 32222, - "dain": 28315, - "daipur": 47631, - "dair": 19998, - "dair": 42078, - "dairy": 25243, - "dairy": 10302, - "dairyfree": 49366, - "dais": 10502, - "daisi": 39947, - "daisies": 40654, - "daisy": 39310, - "daisy": 12865, - "dak": 6999, - "dak": 16095, - "dakar": 31137, - "dakota": 38522, - "dakota": 12358, - "dal": 2476, - "dal": 5601, - "dala": 42675, - "dalai": 41222, - "dalail": 35169, - "dalailama": 35849, - "dale": 11533, - "dale": 4677, - "dalejr": 38207, - "dales": 29031, - "daley": 28544, - "dalgo": 43614, - "dali": 36735, - "dali": 25703, - "dalit": 45432, - "dall": 43631, - "dalla": 16772, - "dallas": 27414, - "dallas": 5759, - "dallascowboys": 33016, - "dalmati": 44275, - "dalton": 21488, - "daly": 24873, - "dam": 1880, - "dam": 4926, - "damage": 6822, - "damaged": 13568, - "damages": 28842, - "damaging": 20610, - "damas": 23345, - "damascus": 25396, - "dame": 10069, - "dames": 44548, - "dami": 17783, - "damian": 43307, - "damian": 25375, - "damien": 25090, - "dammit": 31057, - "damn": 37409, - "damn": 4451, - "damned": 28428, - "damon": 48503, - "damon": 18244, - "damp": 26520, - "dams": 37680, - "dan": 2257, - "dan": 2284, - "dana": 44834, - "dana": 13777, - "danao": 38598, - "danc": 3945, - "dance": 10619, - "dance": 2724, - "danced": 32891, - "dancehall": 33300, - "dancer": 11400, - "dancers": 13153, - "dances": 24083, - "dancing": 33280, - "dancing": 6226, - "dand": 12593, - "dandelion": 38903, - "dandy": 31932, - "dane": 19330, - "danes": 47477, - "dang": 4283, - "dang": 14992, - "danger": 20083, - "danger": 11212, - "dangerous": 7350, - "dangerously": 35012, - "dangers": 23726, - "dangle": 39907, - "dani": 3001, - "dani": 17009, - "daniel": 7859, - "daniel": 4981, - "daniela": 44466, - "danielle": 30396, - "danielle": 15292, - "danielpadilla": 34702, - "daniels": 16146, - "danish": 15467, - "dank": 31849, - "dann": 11951, - "danny": 14950, - "danny": 7621, - "dano": 29703, - "dans": 16241, - "dant": 48097, - "dant": 28237, - "dante": 21911, - "danube": 44594, - "dany": 47816, - "dao": 36099, - "dap": 12149, - "dap": 38034, - "daph": 24591, - "daphne": 31687, - "dapl": 34478, - "dapp": 46857, - "dapper": 26071, - "daq": 25381, - "dar": 1377, - "dar": 6242, - "dara": 17064, - "darby": 34366, - "darcy": 32916, - "dare": 14833, - "dare": 9863, - "daredevil": 28849, - "dares": 42973, - "dareto": 46794, - "dari": 16292, - "dari": 14552, - "daria": 45622, - "daries": 18184, - "daring": 28166, - "dario": 33918, - "darius": 32606, - "darje": 49089, - "dark": 5724, - "dark": 3144, - "darker": 18737, - "darkest": 25898, - "darkness": 10521, - "darling": 13048, - "darlings": 39961, - "darlington": 34565, - "darn": 26059, - "darrell": 33522, - "darren": 20263, - "darren": 12275, - "darry": 29200, - "darryl": 35359, - "darshan": 34564, - "dart": 14001, - "dart": 19841, - "darth": 41304, - "darth": 23164, - "dartmoor": 31477, - "dartmouth": 29667, - "darts": 15246, - "darwin": 43013, - "darwin": 20926, - "daryl": 45607, - "daryl": 24532, - "das": 9940, - "das": 7359, - "dash": 13858, - "dash": 10206, - "dashboard": 27679, - "dashi": 12876, - "dashing": 33825, - "dat": 1717, - "dat": 9445, - "data": 14876, - "data": 2281, - "datab": 11941, - "database": 14678, - "databases": 48384, - "datac": 27329, - "datacenter": 40133, - "datasci": 14496, - "datascience": 15748, - "dataviz": 28138, - "date": 34300, - "date": 1524, - "dated": 13564, - "dates": 7228, - "dating": 8534, - "dation": 15311, - "datlantic": 34270, - "dato": 36075, - "dats": 48674, - "dau": 3162, - "dau": 33828, - "daugh": 42523, - "daughter": 3944, - "daughters": 13585, - "daun": 29470, - "dav": 3700, - "dav": 46488, - "davao": 31502, - "dave": 10089, - "dave": 5077, - "daven": 28350, - "davenport": 34624, - "davey": 33391, - "davi": 1732, - "david": 4640, - "david": 2259, - "davidbowie": 44448, - "davido": 35989, - "davids": 46695, - "davidson": 13166, - "davies": 13120, - "davin": 43187, - "davis": 24426, - "davis": 5536, - "davison": 43725, - "davos": 31887, - "davy": 41565, - "daw": 5971, - "daw": 24404, - "dawg": 18660, - "dawgs": 26431, - "dawn": 30590, - "dawn": 7689, - "dawson": 18611, - "dax": 29458, - "day": 1405, - "day": 575, - "daya": 38165, - "daybreak": 33862, - "daycare": 36363, - "daydream": 41587, - "dayin": 20332, - "daylight": 20809, - "dayo": 29856, - "dayo": 46605, - "dayof": 16272, - "dayofthe": 38043, - "days": 1161, - "daysof": 12379, - "daysofcode": 36537, - "daysto": 29886, - "daystogo": 42198, - "dayswild": 42052, - "daytime": 22830, - "dayton": 35729, - "dayton": 20262, - "daytona": 16335, - "dayweekend": 44526, - "dayz": 35949, - "daz": 15449, - "daz": 43844, - "daze": 33591, - "dazz": 17149, - "dazzle": 41164, - "dazzling": 28821, - "db": 19100, - "db": 8128, - "dbacks": 31175, - "dbs": 40558, - "dbz": 49226, - "dc": 5074, - "dc": 2743, - "dca": 49107, - "dcc": 33747, - "dccomics": 17610, - "dcfc": 35526, - "dci": 35336, - "dcs": 42878, - "dcu": 42647, - "dd": 1353, - "dd": 3766, - "dda": 35202, - "ddad": 39049, - "dday": 32689, - "dday": 26243, - "ddc": 48513, - "ddd": 24183, - "dddd": 35362, - "dden": 5013, - "dder": 9300, - "dders": 24827, - "ddi": 44450, - "ddin": 17175, - "dding": 48101, - "dding": 8974, - "ddings": 49106, - "ddington": 29238, - "ddle": 17633, - "ddle": 8357, - "ddled": 38392, - "ddles": 33901, - "ddleston": 25647, - "ddling": 30981, - "ddlovato": 28244, - "ddos": 46463, - "ddr": 26027, - "dds": 48334, - "ddu": 43836, - "ddy": 14981, - "ddy": 7876, - "de": 561, - "de": 654, - "dea": 18477, - "deacon": 29155, - "dead": 3906, - "dead": 2747, - "deadliest": 40811, - "deadline": 47209, - "deadline": 8458, - "deadlines": 44959, - "deadly": 10756, - "deadpool": 21471, - "deaf": 28229, - "deaf": 18358, - "deal": 7249, - "deal": 2696, - "dealer": 15218, - "dealers": 21697, - "dealership": 32096, - "dealing": 13138, - "deals": 4469, - "dealt": 30101, - "dean": 13807, - "dean": 5828, - "deandre": 43635, - "deans": 46852, - "dear": 15696, - "dear": 3817, - "dearest": 24880, - "dearly": 31880, - "deas": 34715, - "death": 7163, - "death": 2767, - "deaths": 12253, - "deau": 12399, - "deaux": 19883, - "deb": 2987, - "deb": 25687, - "debat": 32082, - "debate": 5196, - "debates": 19239, - "debating": 23472, - "debbie": 47186, - "debbie": 16735, - "debit": 32410, - "debor": 16738, - "deborah": 40997, - "deborah": 22150, - "debra": 33233, - "debris": 19208, - "debt": 8932, - "debts": 38770, - "debu": 9790, - "debun": 33123, - "debut": 42608, - "debut": 4085, - "debuted": 25215, - "debuting": 34817, - "debuts": 17044, - "dec": 3063, - "dec": 4628, - "deca": 33428, - "decad": 29914, - "decade": 11099, - "decadent": 41716, - "decades": 10488, - "decal": 26678, - "decals": 37606, - "decan": 40677, - "decat": 35334, - "decath": 47455, - "decatur": 38540, - "decay": 22703, - "dece": 3534, - "deceased": 30035, - "december": 3864, - "decent": 10698, - "decentr": 28960, - "decentralized": 38485, - "decep": 33529, - "deception": 33046, - "deci": 2262, - "decide": 8447, - "decided": 4939, - "decides": 17269, - "deciding": 22513, - "decision": 5575, - "decisions": 9903, - "decisive": 28690, - "deck": 24885, - "deck": 6943, - "decked": 39096, - "decker": 21449, - "decks": 23968, - "decl": 7091, - "decla": 10739, - "declan": 42341, - "declar": 18040, - "declaration": 19714, - "declare": 19856, - "declared": 13845, - "declares": 23641, - "declaring": 33273, - "decline": 15084, - "declined": 28911, - "declines": 40478, - "declining": 29221, - "deco": 26412, - "deco": 16422, - "decor": 5148, - "decor": 6928, - "decorate": 23651, - "decorated": 15917, - "decorating": 16968, - "decoration": 16029, - "decorations": 19158, - "decorative": 19289, - "decre": 12284, - "decrease": 24703, - "decreased": 33913, - "decreasing": 43763, - "decree": 43327, - "ded": 16744, - "ded": 1241, - "dedic": 4701, - "dedicate": 27610, - "dedicated": 6770, - "dedication": 10188, - "dedly": 36204, - "deduc": 22799, - "dee": 5268, - "dee": 6705, - "deed": 30260, - "deeds": 24516, - "deejay": 48304, - "deejay": 44511, - "deemed": 28102, - "deen": 26456, - "deen": 12912, - "deep": 5462, - "deep": 3383, - "deepak": 45528, - "deeper": 15224, - "deepest": 22245, - "deephouse": 35684, - "deepi": 19371, - "deepika": 34120, - "deepikap": 29903, - "deepikapadukone": 30646, - "deeplear": 22181, - "deeplearning": 24362, - "deeply": 11449, - "deer": 19454, - "deer": 8700, - "deere": 32901, - "dees": 12547, - "deets": 35537, - "def": 2044, - "def": 11649, - "defam": 35670, - "defamation": 42741, - "default": 21650, - "defe": 4148, - "defeat": 8477, - "defeated": 8927, - "defeating": 22594, - "defeats": 16317, - "defect": 44013, - "defects": 37485, - "defen": 3619, - "defence": 30307, - "defence": 9659, - "defend": 21970, - "defend": 11397, - "defended": 27161, - "defender": 10618, - "defenders": 20063, - "defending": 13098, - "defends": 20134, - "defense": 45875, - "defense": 6021, - "defenseman": 43714, - "defenses": 49198, - "defensive": 10824, - "defi": 17244, - "defiance": 36186, - "defiant": 47597, - "defibrill": 47684, - "defic": 18022, - "defici": 23387, - "deficiency": 30685, - "deficit": 20156, - "defin": 3188, - "define": 14919, - "defined": 15278, - "defines": 28218, - "defining": 20504, - "definite": 40793, - "definitely": 4824, - "definition": 11405, - "definitive": 25298, - "defl": 31467, - "deforestation": 41330, - "defstar": 36427, - "defy": 39148, - "defying": 38496, - "deg": 38498, - "degra": 28939, - "degradation": 44468, - "degre": 4653, - "degree": 7119, - "degrees": 8000, - "deh": 35582, - "dei": 33833, - "dei": 23279, - "deir": 42948, - "deity": 42574, - "deja": 46902, - "dek": 23901, - "dekalb": 37775, - "del": 1233, - "del": 2003, - "dela": 37986, - "delaney": 31528, - "delav": 23706, - "delavin": 40477, - "delavin": 40776, - "delavinkisses": 40631, - "delaware": 17547, - "delay": 12955, - "delay": 10934, - "delayed": 14567, - "delaying": 43781, - "delays": 11232, - "dele": 7922, - "dele": 33431, - "delec": 38615, - "delectable": 45500, - "deleg": 8046, - "delegate": 27259, - "delegates": 14623, - "delegation": 14632, - "delete": 19204, - "deleted": 16588, - "deleting": 41857, - "delft": 42749, - "delgado": 49182, - "delhi": 26723, - "delhi": 5717, - "deli": 1932, - "deli": 18601, - "delia": 33193, - "deliber": 18316, - "deliberate": 38271, - "deliberately": 35163, - "delic": 13366, - "delicacy": 49181, - "delicate": 18768, - "delici": 19993, - "delicious": 3959, - "deliciously": 39589, - "deliciousness": 42819, - "delight": 46165, - "delight": 13073, - "delighted": 5943, - "delightful": 15513, - "delights": 25330, - "deline": 18797, - "delines": 13562, - "delish": 25093, - "deliver": 19561, - "deliver": 7396, - "delivered": 7278, - "deliveries": 29336, - "delivering": 9943, - "delivers": 11753, - "delivery": 5619, - "dell": 24381, - "dell": 10242, - "della": 22986, - "delle": 35963, - "deloit": 29428, - "deloitte": 38667, - "dels": 48636, - "delta": 32250, - "delta": 8768, - "delu": 18779, - "delusional": 48059, - "delux": 13709, - "deluxe": 14056, - "delve": 46008, - "dely": 15040, - "dem": 3251, - "dem": 7825, - "dema": 40268, - "dema": 45046, - "deman": 48366, - "demand": 13072, - "demand": 5650, - "demanded": 33699, - "demanding": 17099, - "demands": 14241, - "demar": 46566, - "demarcus": 47873, - "demb": 35930, - "demdebate": 43973, - "deme": 25143, - "demean": 37376, - "demen": 12604, - "dementi": 46028, - "dementia": 14047, - "demetri": 39553, - "demi": 32879, - "demi": 14480, - "demise": 28756, - "demo": 2930, - "demo": 7380, - "democr": 3573, - "democracy": 7758, - "democrat": 15431, - "democratic": 9149, - "democrats": 8865, - "demographic": 31308, - "demol": 19382, - "demolished": 26537, - "demolition": 22237, - "demon": 5635, - "demon": 12085, - "demonetisation": 41338, - "demonic": 46920, - "demons": 18388, - "demonstr": 8579, - "demonstrate": 22231, - "demonstrated": 29477, - "demonstrates": 24806, - "demonstrating": 22107, - "demonstration": 16722, - "demonstrations": 33964, - "demonstrators": 46450, - "demos": 19304, - "demp": 22490, - "dempsey": 30188, - "dems": 10989, - "demsin": 42664, - "demsinphilly": 43091, - "den": 1177, - "den": 1181, - "dena": 32431, - "denali": 48076, - "dence": 3370, - "dency": 11659, - "dend": 37447, - "dends": 43985, - "dene": 45128, - "dened": 19571, - "deng": 43098, - "deng": 41788, - "dengue": 41932, - "denham": 39180, - "deni": 21995, - "denial": 25716, - "denied": 15780, - "denies": 19565, - "denim": 13606, - "denis": 47630, - "denis": 18750, - "denise": 45900, - "denise": 20899, - "denmark": 13268, - "dennis": 32738, - "dennis": 10534, - "denny": 26808, - "denomin": 41016, - "dens": 16533, - "dense": 19353, - "density": 22431, - "dent": 3593, - "dent": 1258, - "dental": 24635, - "dental": 8382, - "dentally": 10346, - "dented": 21923, - "denti": 4418, - "dential": 5459, - "dentist": 17816, - "dentistry": 25754, - "dently": 28817, - "denton": 23567, - "dents": 1517, - "denver": 27847, - "denver": 8569, - "deny": 18679, - "denying": 32771, - "denzel": 42503, - "deo": 26406, - "deo": 12121, - "deodor": 47639, - "deol": 41902, - "deon": 31466, - "deon": 16079, - "dep": 6079, - "dep": 24370, - "depar": 10794, - "depart": 5343, - "depart": 30649, - "departed": 32541, - "departing": 26902, - "department": 5744, - "departments": 29523, - "departs": 38998, - "departure": 17850, - "depe": 36118, - "depend": 13894, - "depend": 27371, - "dependence": 40243, - "dependent": 23280, - "depending": 23673, - "depends": 20497, - "depic": 11307, - "depicted": 34637, - "depicting": 24970, - "depiction": 31071, - "depicts": 29340, - "deple": 38504, - "deplo": 9356, - "deplor": 39232, - "deploy": 26944, - "deployed": 20009, - "deploying": 42212, - "deployment": 20183, - "depo": 14276, - "depor": 36110, - "deport": 23389, - "deportation": 36617, - "deported": 39320, - "deportes": 47878, - "depos": 21266, - "deposit": 16775, - "deposits": 30740, - "depot": 12589, - "depp": 24941, - "depre": 7107, - "depress": 38869, - "depressed": 23269, - "depressing": 29235, - "depression": 10023, - "depri": 28587, - "depriv": 45809, - "deprivation": 47810, - "deprived": 39140, - "dept": 9201, - "depth": 10350, - "depths": 28855, - "depu": 6912, - "deputies": 24914, - "deputy": 7932, - "der": 839, - "der": 801, - "dera": 20696, - "derail": 48502, - "derby": 13904, - "derby": 7177, - "derbyshire": 22147, - "derdale": 21513, - "dere": 5701, - "dere": 44194, - "dered": 3776, - "derek": 22461, - "derek": 11205, - "derel": 46728, - "derer": 11289, - "derers": 20882, - "deri": 34573, - "derick": 33908, - "dering": 6076, - "deriv": 33458, - "derived": 26461, - "derland": 35488, - "derman": 29740, - "dermatology": 48051, - "dern": 30086, - "dero": 37203, - "dero": 34026, - "derrick": 21798, - "derry": 45777, - "derry": 20535, - "ders": 37307, - "ders": 1923, - "derson": 12677, - "dery": 17172, - "des": 6797, - "des": 1437, - "desai": 35316, - "desc": 13866, - "descen": 32318, - "descend": 26004, - "descend": 46241, - "descendants": 36323, - "descending": 36620, - "descent": 19375, - "desch": 49209, - "descri": 4637, - "describe": 10967, - "described": 14671, - "describes": 13678, - "describing": 24239, - "descrip": 41832, - "description": 13951, - "descriptions": 40653, - "desde": 42218, - "dese": 27195, - "deser": 3659, - "desert": 45776, - "desert": 7301, - "deserted": 41560, - "deserve": 7043, - "deserved": 10061, - "deserves": 9079, - "deserving": 26615, - "desh": 25320, - "desh": 7448, - "deshi": 42769, - "desi": 6772, - "desi": 26635, - "desig": 1250, - "design": 8359, - "design": 1681, - "designated": 24119, - "designation": 41155, - "designed": 4486, - "designer": 35640, - "designer": 5728, - "designers": 12720, - "designing": 13467, - "designs": 6747, - "designthinking": 32450, - "desirable": 32368, - "desire": 11858, - "desired": 28631, - "desires": 27598, - "desk": 11937, - "desk": 6550, - "desks": 41014, - "desktop": 14345, - "desmond": 27821, - "desol": 41258, - "desp": 3642, - "despair": 28097, - "desper": 10144, - "desperate": 15072, - "desperately": 21993, - "despic": 32442, - "despicable": 37158, - "despite": 5325, - "dess": 7096, - "dess": 10001, - "dessert": 9753, - "desserts": 22948, - "desses": 43913, - "dest": 6540, - "dest": 4549, - "destin": 4934, - "destination": 32191, - "destination": 9179, - "destinations": 16981, - "destined": 28525, - "destiny": 39875, - "destiny": 10867, - "destro": 8287, - "destroy": 8308, - "destroy": 11930, - "destroyed": 9965, - "destroyer": 25291, - "destroying": 19613, - "destroys": 27634, - "destruc": 22945, - "destruction": 14281, - "destructive": 29591, - "det": 28966, - "det": 15366, - "deta": 1914, - "detached": 26252, - "detail": 7657, - "detailed": 12609, - "detailing": 23163, - "details": 2353, - "detained": 20260, - "dete": 5606, - "detec": 17991, - "detect": 22744, - "detected": 26988, - "detecting": 41290, - "detection": 16220, - "detective": 13672, - "detectives": 27994, - "detector": 27689, - "detectors": 45063, - "detention": 16908, - "deter": 10742, - "deter": 47458, - "detergent": 46726, - "deterior": 28512, - "determin": 8325, - "determination": 17410, - "determine": 16768, - "determined": 14371, - "determines": 42192, - "determining": 39884, - "deth": 38375, - "deto": 39710, - "deton": 39335, - "detour": 31211, - "detox": 22459, - "detri": 47951, - "detro": 6210, - "detroit": 19404, - "detroit": 7073, - "detta": 45438, - "dette": 35750, - "deu": 21457, - "deuce": 45332, - "deus": 37625, - "deut": 14970, - "deutsch": 30389, - "deutsche": 32760, - "deutschland": 36878, - "deux": 47089, - "dev": 2797, - "dev": 3670, - "deva": 45179, - "devan": 37072, - "devast": 12913, - "devastated": 29865, - "devastating": 19280, - "devastation": 42452, - "devel": 1820, - "develop": 1966, - "develop": 7708, - "developed": 8763, - "developer": 10929, - "developers": 13248, - "developing": 8131, - "development": 2855, - "developmental": 29347, - "developments": 17393, - "develops": 29895, - "deven": 45537, - "devgn": 29871, - "devi": 12926, - "devi": 20717, - "deviant": 25593, - "deviantart": 26046, - "device": 8163, - "devices": 9067, - "devil": 8894, - "devil": 8043, - "deville": 34329, - "devils": 11683, - "devin": 31193, - "devin": 20996, - "devine": 33019, - "devlin": 48040, - "devo": 11861, - "devo": 43444, - "devon": 16205, - "devon": 10046, - "devops": 21504, - "devos": 40646, - "devote": 37777, - "devoted": 24561, - "devotees": 39759, - "devotion": 25821, - "devotional": 35456, - "devs": 27374, - "dew": 31952, - "dew": 16358, - "dewey": 40399, - "dex": 10030, - "dex": 13790, - "dexpo": 42502, - "dexter": 45049, - "dexter": 22781, - "dey": 11829, - "dez": 23190, - "dez": 8122, - "df": 12908, - "df": 10468, - "dfc": 41903, - "dfs": 32880, - "dfw": 20439, - "dg": 2394, - "dg": 9742, - "dgate": 41684, - "dge": 4016, - "dge": 1360, - "dged": 11830, - "dgeon": 45655, - "dgers": 8733, - "dges": 5432, - "dging": 9565, - "dh": 6669, - "dh": 9960, - "dha": 11629, - "dha": 27377, - "dhabi": 22349, - "dhaka": 32877, - "dham": 29635, - "dham": 30838, - "dhan": 12542, - "dhan": 28569, - "dhanush": 26162, - "dhanush": 36200, - "dhanushkraja": 29266, - "dhar": 12397, - "dharma": 30536, - "dhary": 28706, - "dhawan": 44699, - "dhe": 29706, - "dheim": 44280, - "dhi": 31553, - "dhi": 26166, - "dho": 37834, - "dhoni": 25698, - "dhru": 40257, - "dhry": 39960, - "dhs": 26849, - "dhu": 32387, - "di": 570, - "di": 1618, - "dia": 7351, - "dia": 3357, - "diab": 15954, - "diabe": 19167, - "diabete": 43826, - "diabetes": 10319, - "diabetic": 30230, - "diablo": 23931, - "diag": 6851, - "diagno": 7736, - "diagnose": 44429, - "diagnosed": 16979, - "diagnosis": 15715, - "diagnostic": 26351, - "diagnostics": 37723, - "diagram": 22697, - "dial": 18416, - "dial": 11381, - "dialo": 30709, - "dialog": 48945, - "dialogue": 11288, - "dialogues": 40330, - "dialysis": 44798, - "diam": 4347, - "diameter": 27189, - "diamon": 8873, - "diamond": 18535, - "diamond": 6235, - "diamonds": 12687, - "dian": 16021, - "dian": 4998, - "diana": 12803, - "diane": 15855, - "dianne": 42299, - "dians": 21041, - "diaper": 34382, - "diapers": 39659, - "diar": 25932, - "diaries": 15541, - "diary": 10380, - "dias": 22137, - "dias": 29354, - "diaspora": 28390, - "diaz": 17688, - "dic": 1404, - "dic": 6717, - "dicap": 30023, - "dicaprio": 30755, - "dice": 14406, - "dick": 14413, - "dick": 9554, - "dickens": 33421, - "dict": 45360, - "dict": 15159, - "dictat": 26156, - "dictator": 27399, - "dictatorship": 37989, - "dictionary": 19699, - "did": 1861, - "did": 1335, - "diddy": 33527, - "didi": 34396, - "didier": 45614, - "didn": 2376, - "didnt": 13057, - "dido": 31725, - "didyou": 12295, - "didyouknow": 12506, - "die": 3150, - "die": 2082, - "diec": 27729, - "diecast": 37936, - "died": 3622, - "diego": 30940, - "diego": 6306, - "diem": 45571, - "dience": 33686, - "dient": 27231, - "dier": 29702, - "dier": 16394, - "dies": 20104, - "dies": 1862, - "diesel": 46312, - "diesel": 10591, - "diest": 45739, - "diet": 21295, - "diet": 6582, - "dietary": 29009, - "dietrich": 47005, - "diets": 35173, - "dif": 18656, - "dif": 48731, - "diff": 44073, - "diff": 20331, - "diffe": 1967, - "differ": 34620, - "differen": 14903, - "difference": 4731, - "differences": 14003, - "different": 2731, - "differenti": 21729, - "differential": 34027, - "differentiate": 49032, - "differently": 18325, - "diffic": 6140, - "difficult": 7405, - "difficulties": 23468, - "difficulty": 25245, - "diffu": 31603, - "diffuser": 49400, - "dig": 1831, - "dig": 9887, - "dige": 17820, - "digest": 20413, - "digestion": 40533, - "digestive": 32304, - "digg": 43240, - "digger": 35919, - "diggin": 48466, - "digging": 14971, - "digi": 15627, - "digi": 39361, - "digimon": 44181, - "digit": 14899, - "digit": 27472, - "digital": 4704, - "digital": 2794, - "digitalart": 16987, - "digitalhealth": 32190, - "digitalindia": 46630, - "digitally": 27543, - "digitalmarketing": 15299, - "digitaltransformation": 20047, - "digiti": 25935, - "digits": 31710, - "digni": 45532, - "dignit": 39497, - "dignity": 17744, - "digo": 35701, - "digs": 26877, - "dih": 43089, - "dii": 32755, - "dijk": 44444, - "dik": 38854, - "dik": 37747, - "dike": 42683, - "dil": 7643, - "dil": 17942, - "dile": 25428, - "dilemma": 29787, - "dilig": 30664, - "dill": 12318, - "dill": 27206, - "dillon": 21056, - "dilu": 45242, - "dim": 19576, - "dim": 17523, - "dime": 24443, - "dimen": 10935, - "dimension": 20479, - "dimensional": 25252, - "dimensions": 25086, - "diment": 43500, - "dimes": 44888, - "dimini": 37459, - "dimit": 22250, - "dimitri": 48840, - "dimp": 38853, - "din": 1462, - "din": 5673, - "dina": 36815, - "dinah": 30903, - "dine": 20951, - "dine": 12989, - "diner": 16963, - "dinesh": 48341, - "ding": 7545, - "ding": 796, - "dinger": 45580, - "dingh": 48064, - "dings": 5473, - "dington": 24804, - "dinho": 47370, - "dini": 20196, - "dining": 8658, - "dinner": 27548, - "dinner": 2571, - "dinners": 33570, - "dino": 9692, - "dino": 14077, - "dinosa": 18955, - "dinosaur": 15095, - "dinosaurs": 20387, - "dio": 3779, - "dio": 1521, - "dioce": 20763, - "diocese": 27091, - "dion": 42899, - "dion": 16250, - "dior": 23655, - "dios": 37563, - "dious": 27417, - "dioxide": 38102, - "dip": 19918, - "dip": 11343, - "dipl": 8490, - "diplo": 38115, - "diplom": 11169, - "diploma": 21251, - "diplomacy": 23798, - "diplomat": 32828, - "diplomatic": 23782, - "diplomats": 44126, - "dipped": 30610, - "dipper": 49317, - "dipping": 33544, - "dips": 37522, - "dir": 4251, - "dir": 8478, - "dire": 38355, - "dire": 25664, - "direc": 1534, - "direct": 43224, - "direct": 6016, - "directed": 8392, - "directing": 21817, - "direction": 15923, - "direction": 5407, - "directional": 38687, - "directioner": 48042, - "directioners": 22055, - "directions": 16440, - "directive": 40630, - "directly": 9701, - "director": 20337, - "director": 2681, - "directorial": 45327, - "directors": 11940, - "directory": 25272, - "directs": 34349, - "directv": 48652, - "dirk": 28171, - "dirt": 31415, - "dirt": 11795, - "dirty": 20127, - "dirty": 7615, - "dis": 1518, - "dis": 6112, - "disa": 3882, - "disab": 47380, - "disabilities": 17350, - "disability": 48986, - "disability": 13261, - "disabled": 13613, - "disadvantaged": 40577, - "disagree": 23199, - "disapp": 5384, - "disappear": 21148, - "disappear": 25173, - "disappearance": 35929, - "disappeared": 23139, - "disappearing": 35819, - "disappears": 44406, - "disappo": 7605, - "disappoint": 25446, - "disappointed": 13794, - "disappointing": 21941, - "disappointment": 23884, - "disappoints": 48545, - "disappro": 48276, - "disar": 42971, - "disaster": 9072, - "disasters": 26976, - "disastrous": 35790, - "disc": 1472, - "disc": 10712, - "discar": 40532, - "discarded": 45197, - "discer": 49140, - "dischar": 22671, - "discharge": 32485, - "disci": 9559, - "discip": 38951, - "discipl": 10467, - "disciples": 39366, - "disciplinary": 20232, - "discipline": 18903, - "disciplines": 42032, - "discla": 40248, - "disclaimer": 46465, - "disclo": 17481, - "disclose": 46379, - "disclosed": 30905, - "disclosure": 26502, - "disco": 2475, - "disco": 11964, - "discography": 47545, - "discomfort": 48054, - "discord": 23582, - "discoun": 18515, - "discount": 7638, - "discounted": 20993, - "discounts": 18186, - "discoura": 45850, - "discourse": 29441, - "discover": 10539, - "discover": 4834, - "discovered": 6986, - "discoveries": 29308, - "discovering": 17967, - "discovers": 29719, - "discovery": 40491, - "discovery": 8027, - "discre": 20616, - "discrimin": 11721, - "discrimination": 14775, - "discs": 29270, - "discu": 1984, - "discus": 41828, - "discuss": 4312, - "discussed": 11300, - "discusses": 8116, - "discussing": 5900, - "discussion": 5060, - "discussions": 13806, - "dise": 4262, - "disease": 5336, - "diseases": 12035, - "disen": 46468, - "disgrace": 29877, - "disgraceful": 44146, - "disgu": 9793, - "disguise": 27803, - "disguised": 37149, - "disgusted": 41977, - "disgusting": 16218, - "dish": 11039, - "dish": 4531, - "disha": 42498, - "dishes": 11412, - "dishon": 30777, - "dishu": 44728, - "dishwasher": 40524, - "disin": 19484, - "disinfe": 48050, - "disintegr": 49275, - "disk": 17970, - "dislike": 30796, - "dism": 30836, - "dism": 38821, - "dismant": 36557, - "dismiss": 43287, - "dismissal": 42068, - "dismissed": 30087, - "dismisses": 45238, - "disney": 6729, - "disney": 4696, - "disneyland": 39481, - "disneyland": 13661, - "disneyworld": 28469, - "diso": 26305, - "disobe": 42841, - "dison": 19310, - "disorder": 12635, - "disorders": 17114, - "disp": 11073, - "dispar": 24633, - "disparities": 45122, - "dispat": 28652, - "dispatch": 26306, - "dispen": 19077, - "dispenser": 40116, - "disper": 34499, - "displa": 9326, - "displac": 17718, - "displaced": 22817, - "displacement": 37931, - "display": 4456, - "displayed": 18967, - "displaying": 26468, - "displays": 15648, - "dispo": 13651, - "dispon": 38872, - "disponible": 46130, - "dispos": 45177, - "disposable": 37275, - "disposal": 28231, - "dispro": 32927, - "dispropor": 40354, - "disproportion": 45492, - "disregard": 43869, - "disrespect": 34055, - "disrespectful": 41723, - "disru": 13763, - "disrup": 14641, - "disrupt": 25214, - "disrupted": 46674, - "disrupting": 42419, - "disruption": 19635, - "disruptive": 31554, - "diss": 10766, - "diss": 35688, - "dissec": 43879, - "dissemin": 40463, - "dissent": 45154, - "disser": 25560, - "dissertation": 29448, - "dissi": 25088, - "dissol": 27398, - "dissuper": 33461, - "dist": 5479, - "dist": 12116, - "distance": 7964, - "distances": 37078, - "distant": 18949, - "distill": 41586, - "distilled": 49179, - "distillery": 22200, - "distin": 11892, - "distinct": 25056, - "distinction": 28183, - "distinctive": 25486, - "distingui": 15053, - "distinguish": 45418, - "distinguished": 16513, - "distor": 23781, - "distortion": 43690, - "distr": 11885, - "distract": 39309, - "distracted": 24049, - "distraction": 32039, - "distress": 26866, - "distressed": 37515, - "distri": 5987, - "distribu": 6138, - "distribute": 32313, - "distributed": 16419, - "distributing": 35216, - "distribution": 10484, - "distributor": 28354, - "distributors": 44240, - "distric": 3208, - "district": 46683, - "district": 3506, - "districts": 17565, - "distur": 11732, - "disturb": 33018, - "disturb": 39449, - "disturbance": 42416, - "disturbed": 29967, - "disturbing": 21476, - "disupdates": 45667, - "dit": 5752, - "dit": 2524, - "dita": 47965, - "ditch": 43715, - "ditch": 19291, - "dited": 40392, - "diti": 2363, - "dition": 16452, - "dition": 3015, - "ditional": 4322, - "ditions": 4503, - "dito": 43705, - "dits": 49374, - "dity": 16436, - "dium": 2903, - "div": 5293, - "div": 14869, - "diva": 13605, - "divas": 23534, - "dive": 26042, - "dive": 9058, - "diver": 13119, - "diver": 22094, - "divergence": 48735, - "divergent": 36132, - "divers": 30241, - "divers": 27038, - "diverse": 11464, - "diversi": 24475, - "diversion": 38457, - "diversity": 35634, - "diversity": 6257, - "diverted": 41049, - "dives": 13893, - "divi": 8375, - "divid": 31337, - "divide": 18842, - "divided": 18689, - "dividend": 32067, - "dividends": 45146, - "dividing": 45605, - "divin": 21838, - "divine": 46919, - "divine": 10976, - "diving": 9886, - "divinity": 39754, - "divisi": 39196, - "division": 5378, - "divisional": 40912, - "divisions": 33715, - "divor": 13543, - "divorce": 17060, - "divorced": 39437, - "divya": 47767, - "diwali": 18218, - "dix": 45838, - "dix": 27620, - "dixie": 24484, - "dixit": 28279, - "dixon": 16086, - "diy": 28472, - "diy": 7845, - "diya": 36459, - "diz": 32740, - "dized": 36232, - "dizz": 40239, - "dizzy": 35464, - "dj": 3761, - "dj": 3723, - "djan": 35338, - "django": 46498, - "dji": 35284, - "dji": 28379, - "djing": 36113, - "djo": 19432, - "djoker": 42721, - "djokernole": 42830, - "djokovic": 27944, - "djs": 18117, - "dk": 20702, - "dk": 16196, - "dl": 12558, - "dl": 9373, - "dlc": 19079, - "dle": 11057, - "dle": 3287, - "dled": 23494, - "dler": 40279, - "dles": 7890, - "dless": 14997, - "dley": 12808, - "dling": 18221, - "dly": 3069, - "dm": 19070, - "dm": 4667, - "dma": 42903, - "dman": 18826, - "dmc": 28991, - "dmit": 31607, - "dmitry": 48326, - "dms": 19955, - "dmv": 27508, - "dmx": 45255, - "dn": 11552, - "dn": 7459, - "dna": 8790, - "dnb": 35422, - "dnc": 20237, - "dnd": 11678, - "dnr": 37051, - "dns": 39245, - "dnt": 26795, - "do": 639, - "do": 818, - "doa": 48332, - "dob": 29640, - "doba": 35605, - "dobbs": 43006, - "dobson": 46888, - "doc": 3009, - "doc": 7251, - "doch": 25101, - "dock": 17311, - "dock": 8997, - "docked": 46784, - "docker": 31152, - "docking": 40845, - "docks": 24091, - "docs": 15157, - "doctor": 7872, - "doctor": 5547, - "doctoral": 23649, - "doctorate": 39134, - "doctors": 9705, - "doctorwho": 12996, - "doctr": 28497, - "doctrine": 35612, - "docu": 4433, - "document": 29293, - "document": 15121, - "documentaries": 44209, - "documentary": 7881, - "documentation": 31560, - "documented": 22310, - "documenting": 37876, - "documents": 14105, - "dod": 13847, - "dod": 30187, - "dodd": 36748, - "dodge": 31263, - "dodge": 12093, - "dodgeball": 43244, - "dodger": 31641, - "dodgers": 12422, - "dodgy": 37727, - "doe": 13296, - "does": 2397, - "does": 1897, - "doesn": 2503, - "doesnt": 17937, - "dof": 8277, - "doff": 20193, - "dofficial": 42516, - "dog": 4326, - "dog": 1929, - "dogcelebration": 41819, - "dogday": 27475, - "doge": 42187, - "dogg": 20749, - "doggie": 32237, - "doggo": 42155, - "doggy": 26359, - "doglo": 40733, - "dogre": 40030, - "dogrescue": 44158, - "dogs": 42182, - "dogs": 3255, - "dogsoftwitter": 19415, - "doh": 23581, - "doha": 20908, - "doherty": 31774, - "doi": 36361, - "doin": 15412, - "doing": 37408, - "doing": 1960, - "doit": 32272, - "doit": 28109, - "doj": 25700, - "dojo": 35901, - "dok": 40547, - "dok": 41034, - "doka": 46528, - "dol": 2287, - "dol": 19170, - "dola": 38005, - "dolan": 27200, - "dolby": 42414, - "dolce": 30033, - "dolce": 30661, - "dole": 41040, - "doll": 27031, - "doll": 9286, - "dollar": 35092, - "dollar": 7474, - "dollars": 10669, - "dolls": 15090, - "dolly": 43281, - "dolly": 23821, - "dolom": 37137, - "dolores": 40741, - "dolph": 8900, - "dolph": 22257, - "dolphin": 42963, - "dolphin": 16464, - "dolphins": 14002, - "dom": 2164, - "dom": 1919, - "domain": 15492, - "domaine": 48744, - "domains": 36358, - "dome": 8515, - "dome": 9827, - "domen": 37584, - "domest": 21936, - "domestic": 28189, - "domestic": 9043, - "domin": 4361, - "dominance": 30546, - "dominant": 20565, - "dominate": 21431, - "dominated": 23048, - "dominates": 34043, - "dominating": 29303, - "domination": 30919, - "domingo": 24882, - "dominic": 39007, - "dominic": 19095, - "dominican": 22934, - "dominion": 27155, - "domino": 30752, - "dominos": 39770, - "domo": 44293, - "doms": 30126, - "don": 1067, - "don": 847, - "dona": 26789, - "donal": 42375, - "donald": 5990, - "donald": 4335, - "donaldson": 37783, - "donaldtrump": 6652, - "donat": 36384, - "donate": 6429, - "donated": 8705, - "donates": 26960, - "donating": 12621, - "donation": 7924, - "donations": 9928, - "doncaster": 38008, - "doncaster": 25352, - "doncasterisgreat": 47333, - "done": 5136, - "done": 1700, - "donegal": 24172, - "donesia": 41281, - "donet": 33724, - "donetsk": 33999, - "dong": 26242, - "dong": 31478, - "dongha": 28365, - "donghae": 28945, - "donia": 24014, - "donkey": 21415, - "donkeys": 44644, - "donna": 9158, - "donne": 30897, - "donnein": 38308, - "donneinarte": 40193, - "donnell": 35118, - "donnelly": 39070, - "donnie": 47058, - "donnie": 30609, - "donny": 37291, - "donny": 32887, - "dono": 14840, - "donor": 18013, - "donors": 17887, - "donovan": 21499, - "dons": 22127, - "dont": 8094, - "dont": 4632, - "donut": 18471, - "donuts": 13970, - "doo": 4543, - "doo": 11643, - "doodle": 9388, - "doodled": 41030, - "doodles": 22156, - "doodling": 37548, - "dooley": 47609, - "doom": 23263, - "doom": 14344, - "doomed": 33251, - "doomsday": 41791, - "doon": 36612, - "doop": 33886, - "door": 7188, - "door": 2489, - "doors": 4228, - "doorstep": 19533, - "doorway": 46575, - "dop": 42381, - "dop": 31722, - "dope": 42587, - "dope": 10094, - "doping": 30285, - "dopp": 21774, - "doppelg": 45216, - "doppler": 42540, - "dor": 2766, - "dor": 8695, - "dora": 18104, - "dorado": 32350, - "dorchester": 32656, - "dore": 39423, - "dores": 34323, - "dorf": 17296, - "dori": 49270, - "doria": 43186, - "dorian": 44016, - "doris": 24285, - "dork": 36206, - "dorm": 24263, - "doro": 15498, - "doro": 37389, - "dorothy": 20805, - "dors": 31240, - "dorset": 42109, - "dorset": 16047, - "dorsey": 41607, - "dortmund": 24290, - "dory": 36135, - "dos": 44258, - "dos": 5474, - "dose": 11497, - "doses": 37873, - "dossier": 46042, - "dost": 44222, - "dot": 7473, - "dot": 7004, - "dota": 23085, - "dotcom": 12443, - "dote": 31202, - "dothis": 47864, - "dotnet": 43124, - "dotorg": 46587, - "dots": 19019, - "dotted": 47950, - "dou": 1756, - "dou": 23608, - "doub": 19631, - "double": 13013, - "double": 3200, - "doubled": 24948, - "doubleheader": 34668, - "doubles": 12539, - "doubling": 36850, - "doubt": 37071, - "doubt": 8671, - "doubts": 30894, - "douche": 44292, - "doug": 20271, - "doug": 10758, - "dough": 15785, - "dough": 14983, - "doughnut": 32555, - "doughnuts": 31124, - "dougie": 46317, - "dougla": 9140, - "douglas": 10065, - "douglass": 45692, - "doun": 44785, - "dov": 38856, - "dova": 26551, - "dove": 27511, - "dove": 18281, - "dover": 43019, - "dover": 14683, - "doves": 47067, - "dow": 8022, - "dow": 10688, - "dowell": 27344, - "down": 1833, - "down": 1136, - "downe": 46501, - "downed": 35814, - "downer": 42522, - "downers": 43739, - "downey": 29429, - "downfall": 48702, - "downhill": 27387, - "downing": 28140, - "download": 35076, - "download": 3794, - "downloadable": 49105, - "downloaded": 22961, - "downloading": 30519, - "downloads": 26481, - "downpour": 39034, - "downpours": 40160, - "downs": 10706, - "downside": 41937, - "downstairs": 28174, - "downstream": 43822, - "downtime": 41964, - "downton": 45023, - "downton": 42668, - "downtown": 18230, - "downtown": 5061, - "downward": 37430, - "dowski": 43556, - "dox": 44786, - "dox": 14510, - "doyle": 17728, - "doyou": 27256, - "doz": 31106, - "dozen": 16401, - "dozens": 17883, - "dp": 23820, - "dp": 6465, - "dprint": 46644, - "dprinting": 16194, - "dprk": 47920, - "dps": 34288, - "dq": 28741, - "dr": 1084, - "dr": 1701, - "dra": 1114, - "dra": 7402, - "drac": 20168, - "dracing": 41253, - "dracula": 25405, - "draf": 37426, - "draft": 30624, - "draft": 5198, - "drafted": 19129, - "drafting": 33528, - "drafts": 29194, - "drag": 8452, - "drag": 12463, - "dragged": 27884, - "dragging": 37069, - "dragon": 9187, - "dragon": 5471, - "dragonball": 40959, - "dragoncon": 47802, - "dragonfly": 32824, - "dragons": 10203, - "dragrace": 40762, - "drags": 45368, - "drain": 23347, - "drain": 19467, - "drainage": 25953, - "drained": 44630, - "drains": 43638, - "drainthe": 47337, - "drake": 32504, - "drake": 8958, - "dral": 7503, - "dram": 6937, - "dram": 32170, - "drama": 5055, - "dramas": 33467, - "dramati": 43512, - "dramatic": 11240, - "dramatically": 24495, - "drank": 21712, - "draped": 49113, - "drastic": 43159, - "drastically": 35478, - "drau": 18621, - "draw": 17675, - "draw": 4001, - "drawer": 23219, - "drawers": 38975, - "drawing": 36996, - "drawing": 3610, - "drawings": 13397, - "drawn": 8893, - "draws": 12043, - "dray": 25562, - "drayton": 49044, - "drc": 21434, - "dre": 960, - "dre": 14584, - "dread": 17412, - "dread": 31403, - "dreaded": 47227, - "dreadful": 35846, - "dreality": 48367, - "dream": 4595, - "dream": 2984, - "dreambig": 46495, - "dreamcast": 47226, - "dreamed": 27984, - "dreamer": 25692, - "dreamers": 27194, - "dreaming": 11662, - "dreamliner": 49143, - "dreams": 4405, - "dreamt": 43743, - "dreamteam": 40090, - "dreamy": 23517, - "dred": 10903, - "dredge": 48783, - "dren": 29068, - "dren": 47309, - "drenched": 46378, - "dres": 48852, - "dres": 44697, - "dresden": 34836, - "dress": 12622, - "dress": 2595, - "dressage": 36144, - "dressed": 6559, - "dresser": 26346, - "dresses": 8184, - "dressing": 6348, - "drew": 18792, - "drew": 5281, - "drex": 33985, - "drey": 48271, - "dri": 1203, - "dri": 28833, - "drian": 36870, - "dribb": 42153, - "dric": 23448, - "dridge": 22956, - "drie": 40170, - "dried": 16037, - "drier": 39877, - "dries": 33857, - "drif": 33585, - "drift": 18194, - "drifting": 30276, - "drill": 11626, - "drilled": 46338, - "drilling": 18634, - "drills": 24378, - "drin": 3375, - "drin": 47133, - "drink": 14131, - "drink": 3979, - "drinking": 5778, - "drinklocal": 45998, - "drinks": 6732, - "drip": 24050, - "dripping": 38787, - "dris": 35804, - "drive": 11402, - "drive": 2620, - "driven": 9314, - "driver": 27563, - "driver": 4383, - "driverless": 46769, - "drivers": 7384, - "drives": 11441, - "driveway": 26273, - "driving": 37800, - "driving": 4161, - "drizzle": 28240, - "drm": 39674, - "dro": 1494, - "dro": 12442, - "drogba": 49199, - "droid": 38016, - "drome": 9157, - "dron": 43898, - "dron": 23360, - "drone": 33557, - "drone": 9397, - "drones": 14006, - "droo": 30715, - "drool": 41554, - "drooling": 44360, - "drop": 16407, - "drop": 3387, - "dropbox": 47216, - "dropped": 6792, - "dropping": 8339, - "drops": 6437, - "dros": 47033, - "drou": 38558, - "drought": 13935, - "drove": 13753, - "drow": 21159, - "drown": 28571, - "drowned": 34005, - "drowning": 24618, - "drs": 21257, - "dru": 2275, - "dru": 49048, - "drug": 20601, - "drug": 5600, - "drugs": 8021, - "druid": 40297, - "drum": 13353, - "drum": 8698, - "drummer": 13618, - "drummers": 46191, - "drumming": 35480, - "drummond": 42213, - "drums": 11690, - "drun": 15488, - "drunk": 37398, - "drunk": 8232, - "drunken": 28196, - "drupal": 46481, - "drush": 43009, - "drwho": 48342, - "dry": 13544, - "dry": 4501, - "dryer": 24425, - "drying": 23203, - "ds": 3361, - "ds": 646, - "dsa": 47607, - "dsb": 47168, - "dsb": 14257, - "dsburg": 47237, - "dsc": 37240, - "dsd": 45383, - "dsley": 40740, - "dslr": 33740, - "dsm": 39502, - "dson": 40310, - "dsp": 45291, - "dss": 41580, - "dstv": 35027, - "dt": 13104, - "dt": 7427, - "dthe": 13863, - "dtla": 31885, - "dtm": 42407, - "dts": 46233, - "du": 691, - "du": 3686, - "dua": 25244, - "dual": 39739, - "dual": 5347, - "duane": 38946, - "dub": 14526, - "dub": 13144, - "duba": 5485, - "dubai": 32599, - "dubai": 5985, - "dubbed": 27740, - "dublin": 20707, - "dublin": 6145, - "dubnation": 47329, - "dubois": 48046, - "dubrov": 46709, - "dubrovnik": 48724, - "dubs": 27013, - "dubstep": 38303, - "dubu": 43257, - "duc": 979, - "duc": 36446, - "ducati": 28570, - "ducation": 17197, - "duce": 3660, - "duchess": 21713, - "duck": 12708, - "duck": 6910, - "ducks": 11202, - "duct": 26829, - "dude": 48087, - "dude": 5710, - "dudes": 14449, - "dudley": 27324, - "due": 2887, - "duel": 27143, - "dues": 37646, - "duet": 25457, - "duf": 38713, - "duff": 38071, - "duff": 21934, - "duffy": 23599, - "dug": 22743, - "dug": 21000, - "dugg": 40523, - "duggan": 46169, - "dugout": 36831, - "duh": 26716, - "dui": 29693, - "duk": 14160, - "duke": 18402, - "duke": 7732, - "dukes": 27914, - "dul": 6738, - "dulce": 44872, - "dulil": 32565, - "dulkar": 47980, - "dull": 19433, - "dulu": 28865, - "duluth": 32109, - "dulwich": 47343, - "dum": 13400, - "dum": 11564, - "dumb": 15901, - "dumb": 12464, - "dumbass": 38980, - "dummies": 40899, - "dummy": 34246, - "dump": 12655, - "dump": 17146, - "dumped": 23768, - "dumping": 31707, - "dumplings": 35495, - "dumps": 45804, - "dumpster": 45467, - "dun": 2616, - "dun": 18284, - "dunbar": 41453, - "duncan": 31084, - "duncan": 13502, - "dundal": 38185, - "dundas": 39300, - "dundee": 18619, - "dune": 32833, - "dune": 28208, - "dunedin": 40121, - "dunes": 23526, - "dung": 33712, - "dungeon": 28812, - "dungeon": 22931, - "dungeons": 42572, - "dungeonsand": 34970, - "dungeonsanddragons": 35497, - "dunham": 42501, - "duni": 43454, - "dunk": 17222, - "dunkin": 48022, - "dunkin": 36415, - "dunkirk": 46928, - "dunks": 48977, - "dunlop": 34753, - "dunn": 19185, - "dunne": 38538, - "dunno": 24502, - "duo": 8696, - "dup": 36805, - "dup": 10445, - "duper": 44850, - "duplex": 41186, - "duplic": 28992, - "dupont": 35994, - "dur": 4355, - "dur": 23230, - "dura": 28173, - "dura": 47382, - "durability": 43671, - "durable": 22285, - "duran": 28185, - "durango": 44443, - "durant": 24861, - "duras": 27518, - "duration": 31663, - "durban": 24474, - "dure": 19108, - "durga": 38456, - "durham": 26765, - "durham": 14335, - "during": 1590, - "dus": 9931, - "dusa": 28546, - "dusk": 19708, - "dust": 29723, - "dust": 8349, - "dusted": 38274, - "duster": 46280, - "dustin": 42423, - "dustin": 21235, - "dusting": 41756, - "dusty": 22029, - "dut": 32625, - "dutch": 22277, - "dutch": 7991, - "duter": 21624, - "duterte": 22371, - "duties": 19603, - "dutt": 30081, - "dutton": 42771, - "duty": 6458, - "duval": 42459, - "duvet": 48006, - "dux": 28562, - "dv": 4288, - "dv": 26265, - "dvd": 7170, - "dvds": 36655, - "dvn": 29811, - "dvr": 29210, - "dw": 8455, - "dw": 19997, - "dwar": 13487, - "dwarf": 22643, - "dwayne": 31395, - "dwell": 27549, - "dwell": 18755, - "dwelling": 37098, - "dwight": 22473, - "dwp": 46976, - "dwts": 30220, - "dwyer": 43878, - "dx": 22717, - "dx": 15679, - "dy": 1444, - "dy": 907, - "dyce": 48325, - "dye": 37159, - "dye": 15997, - "dyed": 24906, - "dyer": 29495, - "dyes": 39874, - "dying": 5115, - "dyk": 12142, - "dyke": 32632, - "dylan": 21004, - "dylan": 9900, - "dyn": 44289, - "dyn": 30669, - "dynam": 5735, - "dynamic": 10057, - "dynamics": 14329, - "dynamite": 29003, - "dynamo": 28281, - "dynasty": 14593, - "dyne": 42756, - "dyou": 11484, - "dyour": 22525, - "dys": 11022, - "dys": 38384, - "dysfunction": 36865, - "dysfunctional": 40757, - "dysle": 33681, - "dyslexia": 43199, - "dyson": 34475, - "dyssey": 17435, - "dystop": 28276, - "dystopian": 38915, - "dz": 24421, - "dz": 22913, - "dé": 25466, - "dü": 46948, - "dÃŃ": 46988, - "e": 68, - "e": 324, - "ea": 2150, - "ea": 8100, - "eable": 20693, - "each": 31442, - "each": 2416, - "eachother": 40792, - "ead": 42556, - "ead": 45523, - "eae": 27446, - "eag": 3743, - "eager": 21551, - "eagerly": 30094, - "eagle": 20207, - "eagle": 7517, - "eagles": 6920, - "eal": 48872, - "ealing": 40484, - "eames": 49072, - "eamon": 45954, - "ean": 13327, - "ear": 1055, - "ear": 8373, - "earbuds": 47807, - "eared": 9127, - "earl": 30573, - "earl": 14235, - "earle": 40292, - "earlier": 4297, - "earliest": 22097, - "early": 15840, - "early": 2090, - "earn": 33977, - "earn": 8465, - "earned": 8898, - "earnest": 45422, - "earning": 14550, - "earnings": 15912, - "earns": 16760, - "earp": 35296, - "earphones": 44905, - "earring": 28664, - "earrings": 9136, - "ears": 9861, - "eart": 7086, - "earth": 5184, - "earth": 3475, - "earthand": 34229, - "earthandclouds": 34480, - "earthday": 19481, - "earthquake": 10060, - "earthquakes": 32895, - "earthy": 47139, - "earts": 38824, - "eas": 5740, - "ease": 13574, - "easier": 8817, - "easiest": 26314, - "easily": 8197, - "easing": 44825, - "easport": 42251, - "east": 5022, - "east": 2602, - "eastbound": 28827, - "eastbourne": 38455, - "eastenders": 23545, - "easter": 14783, - "easter": 4811, - "eastern": 34522, - "eastern": 6311, - "eastman": 48280, - "easton": 29619, - "eastside": 42650, - "eastwood": 28270, - "easy": 18308, - "easy": 3176, - "eat": 5418, - "eat": 3384, - "eaten": 16750, - "eater": 24060, - "eaters": 37645, - "eatery": 46559, - "eating": 4371, - "eatlocal": 42868, - "eaton": 28462, - "eats": 13188, - "eau": 17608, - "eazy": 36536, - "eb": 12283, - "eb": 8677, - "eba": 40889, - "ebay": 34412, - "ebay": 4099, - "eber": 34020, - "ebo": 46635, - "ebola": 15864, - "ebon": 22013, - "ebony": 30651, - "ebook": 13122, - "ebooks": 25774, - "ec": 747, - "ec": 10879, - "eca": 18465, - "ecar": 34500, - "ecb": 26205, - "ecc": 33128, - "eccc": 47401, - "eccentric": 43228, - "eccle": 27494, - "ece": 2163, - "eces": 5905, - "ecg": 45983, - "ech": 15797, - "ech": 31147, - "echel": 41233, - "echo": 17366, - "echo": 13989, - "echoes": 32564, - "eci": 31936, - "eck": 25866, - "eck": 15969, - "ecker": 39661, - "ecker": 40890, - "ecla": 47806, - "eclec": 25114, - "eclectic": 28382, - "eclip": 30841, - "eclipse": 11505, - "eclub": 38983, - "eco": 5106, - "eco": 10077, - "ecofriendly": 43412, - "ecol": 22706, - "ecological": 25127, - "ecology": 18578, - "ecommerce": 15529, - "econ": 26755, - "econ": 21158, - "econom": 2768, - "economic": 36649, - "economic": 5259, - "economical": 48782, - "economically": 39406, - "economics": 12625, - "economies": 27136, - "economist": 18836, - "economists": 43701, - "economy": 5644, - "ecor": 28962, - "ecosystem": 15788, - "ecosystems": 28725, - "ecoun": 27924, - "ecr": 48572, - "ecraft": 11439, - "ecs": 23485, - "ecstasy": 47286, - "ecstatic": 36244, - "ect": 25168, - "ecu": 13087, - "ecu": 32919, - "ecuador": 19813, - "ecz": 43530, - "ed": 843, - "ed": 538, - "eda": 10804, - "edad": 44724, - "eday": 39258, - "edc": 21245, - "edchat": 14702, - "edd": 35431, - "eddi": 42930, - "eddie": 22748, - "eddie": 9517, - "eddy": 25959, - "ede": 29632, - "eded": 19555, - "edel": 20460, - "edelman": 48139, - "eden": 23621, - "eden": 13741, - "eder": 16249, - "edes": 36247, - "edfringe": 27402, - "edg": 35955, - "edgar": 33543, - "edgar": 17914, - "edge": 16914, - "edge": 5461, - "edged": 39188, - "edges": 20938, - "edgy": 35393, - "edi": 8750, - "edi": 27148, - "edible": 19795, - "edic": 25184, - "edics": 30641, - "edin": 6524, - "edinburgh": 27574, - "edinburgh": 8068, - "eding": 5742, - "edison": 25846, - "edit": 8239, - "edit": 8013, - "edited": 13945, - "edith": 28597, - "editing": 10178, - "edition": 3062, - "editions": 21664, - "editor": 7661, - "editorial": 12325, - "editors": 19486, - "edits": 24945, - "edm": 37843, - "edm": 13539, - "edmon": 11275, - "edmond": 41581, - "edmonds": 46520, - "edmonton": 37311, - "edmonton": 15058, - "edmun": 36561, - "edmund": 27567, - "edna": 39002, - "edo": 29145, - "edo": 18096, - "edon": 41467, - "edor": 30184, - "edou": 47678, - "edp": 46066, - "eds": 1941, - "edsheeran": 30386, - "edt": 15071, - "edtech": 41825, - "edtech": 15262, - "edu": 11757, - "edu": 11799, - "eduardo": 30604, - "educ": 2200, - "educate": 17563, - "educated": 21447, - "education": 22358, - "education": 2806, - "educational": 10400, - "educator": 19875, - "educators": 15420, - "edwar": 27586, - "edward": 26184, - "edward": 7450, - "edwards": 12627, - "edwin": 48718, - "edwin": 22471, - "edy": 17072, - "edy": 4144, - "ee": 2644, - "ee": 4708, - "eed": 17513, - "eee": 24632, - "eee": 9361, - "eeee": 11696, - "eeee": 17570, - "eeeee": 26938, - "eeeeee": 41407, - "eek": 46591, - "eel": 27462, - "eels": 44416, - "eem": 27236, - "een": 47490, - "een": 21230, - "eer": 35409, - "eer": 31846, - "eera": 36664, - "eerie": 33846, - "ees": 40308, - "eet": 48935, - "eez": 39033, - "ef": 1490, - "ef": 1829, - "efa": 16999, - "eface": 48804, - "efan": 33556, - "efc": 22065, - "efcc": 46087, - "efer": 26199, - "eff": 20548, - "eff": 21715, - "effe": 2808, - "effec": 3943, - "effect": 5436, - "effective": 6837, - "effectively": 17516, - "effectiveness": 26847, - "effects": 7331, - "effic": 36004, - "efficacy": 39937, - "effici": 6670, - "efficiency": 11823, - "efficient": 11334, - "efficiently": 32915, - "effor": 6356, - "effort": 40078, - "effort": 6255, - "effortless": 41639, - "effortlessly": 42320, - "efforts": 6847, - "efish": 35813, - "efl": 27172, - "efron": 48111, - "efs": 7389, - "eg": 8053, - "eg": 14599, - "ega": 41193, - "egan": 42943, - "eger": 46704, - "eger": 22767, - "egg": 13778, - "egg": 5911, - "eggplant": 34906, - "eggs": 7099, - "ego": 34712, - "ego": 14250, - "egos": 43992, - "egre": 27044, - "egret": 42002, - "egy": 5224, - "egyp": 10250, - "egypt": 7267, - "egyptian": 12428, - "eh": 9277, - "eh": 9135, - "eha": 48563, - "ehealth": 48617, - "ehr": 45271, - "ehs": 44648, - "ei": 4006, - "ei": 18264, - "eic": 40251, - "eid": 28038, - "eid": 13979, - "eidmubarak": 46275, - "eiffel": 29720, - "eigh": 13468, - "eight": 7910, - "eighteen": 49316, - "eighth": 21237, - "eighty": 47449, - "eil": 29457, - "eileen": 31468, - "ein": 29944, - "ein": 24524, - "eindhoven": 47172, - "eing": 7702, - "einstein": 20587, - "eira": 47708, - "eis": 13802, - "eisen": 25273, - "eisenhower": 35562, - "either": 6036, - "ej": 19887, - "ej": 25009, - "ejec": 29771, - "ek": 4212, - "ek": 2092, - "el": 544, - "el": 832, - "ela": 11284, - "ela": 3787, - "elab": 38866, - "elabor": 26034, - "elaborate": 33855, - "elaine": 22523, - "elan": 17763, - "elan": 18399, - "eland": 24930, - "eland": 6275, - "elas": 41078, - "elast": 27479, - "elastic": 30282, - "elba": 48598, - "elbow": 21965, - "eld": 5684, - "elder": 11791, - "elder": 14416, - "elderly": 15455, - "elders": 28617, - "eldest": 33503, - "elding": 28223, - "elds": 13466, - "ele": 2084, - "ele": 9766, - "eleague": 36577, - "eleanor": 18604, - "elearning": 29969, - "elec": 1564, - "elec": 38768, - "elect": 15336, - "elected": 8828, - "election": 19312, - "election": 4247, - "electionday": 40540, - "elections": 6949, - "elector": 16465, - "electoral": 19544, - "electr": 3654, - "electra": 48959, - "electri": 23927, - "electric": 19547, - "electric": 5031, - "electrical": 12176, - "electrician": 46422, - "electricity": 10950, - "electrifying": 48843, - "electro": 11648, - "electro": 23244, - "electromagnetic": 46530, - "electron": 33396, - "electronic": 33865, - "electronic": 9273, - "electronica": 43119, - "electronics": 13081, - "eled": 20357, - "elee": 44112, - "eleg": 8075, - "elegance": 19146, - "elegant": 11124, - "elek": 34559, - "elem": 25406, - "element": 14909, - "elementary": 8143, - "elements": 10925, - "elen": 30654, - "elen": 39164, - "elena": 19421, - "eleng": 48180, - "eleph": 7554, - "elephant": 10299, - "elephants": 16871, - "eler": 24646, - "eless": 15244, - "eless": 30837, - "elets": 19400, - "elev": 7921, - "elevate": 26736, - "elevated": 23967, - "elevation": 23826, - "elevator": 19021, - "eleven": 31617, - "eleven": 17795, - "elf": 45961, - "elf": 11924, - "elfie": 39955, - "elg": 28790, - "elgin": 31868, - "eli": 1018, - "eli": 6292, - "elia": 10956, - "elian": 42508, - "elias": 47274, - "elias": 29902, - "elic": 34743, - "elic": 13492, - "elie": 38677, - "elie": 26501, - "elier": 14634, - "elife": 37429, - "elife": 12719, - "eligibility": 34937, - "eligible": 16978, - "elijah": 26065, - "elike": 48913, - "elim": 9296, - "elimin": 11386, - "eliminate": 19655, - "eliminated": 29075, - "eliminating": 36619, - "elimination": 24176, - "elin": 25353, - "elin": 13458, - "eline": 46199, - "eline": 7153, - "eling": 9990, - "elio": 47943, - "elion": 30682, - "elions": 44159, - "eliot": 33326, - "elis": 23411, - "elis": 48021, - "elisa": 25610, - "elisa": 44051, - "elisabeth": 33127, - "elise": 27124, - "elit": 40882, - "elite": 32277, - "elite": 6553, - "elited": 43943, - "elitedangerous": 47138, - "elites": 35975, - "elius": 35623, - "elive": 49338, - "elive": 23505, - "elives": 49174, - "elix": 32926, - "elixir": 42887, - "eliz": 42844, - "eliza": 6132, - "eliza": 29992, - "elizabeth": 22397, - "elizabeth": 7026, - "elk": 34013, - "elk": 21896, - "ell": 826, - "ell": 812, - "ella": 20692, - "ella": 2957, - "elland": 43326, - "ellar": 38443, - "ellas": 37053, - "elle": 12818, - "elle": 4765, - "elled": 13146, - "ellen": 14007, - "ellen": 12312, - "ellenshow": 34812, - "eller": 20927, - "eller": 4465, - "ellers": 19010, - "elles": 24431, - "elli": 3367, - "elli": 6673, - "ellic": 38905, - "ellie": 16769, - "ellier": 44054, - "ellin": 40374, - "elling": 2220, - "ellington": 34477, - "ellini": 43256, - "elliot": 20761, - "elliott": 44456, - "elliott": 13788, - "ellip": 44816, - "ellis": 11553, - "ellison": 32295, - "ello": 2512, - "ellor": 14594, - "ells": 2433, - "ellu": 35560, - "elly": 8041, - "elly": 20355, - "elm": 25199, - "elm": 22082, - "elman": 33622, - "elmer": 45958, - "elmo": 32150, - "elo": 6170, - "elo": 13490, - "elon": 26381, - "elon": 20406, - "elondon": 47377, - "elong": 44363, - "elonmusk": 37076, - "elope": 23367, - "eloqu": 37795, - "elos": 44733, - "elot": 43490, - "elove": 43319, - "elove": 19165, - "elover": 21732, - "elovers": 33946, - "els": 35958, - "els": 1645, - "elsa": 22050, - "else": 18857, - "else": 3344, - "elsewhere": 22906, - "elson": 19624, - "elt": 18692, - "elton": 20758, - "elu": 14208, - "elusive": 28903, - "elves": 29111, - "elvi": 47008, - "elvis": 47359, - "elvis": 14498, - "elxn": 37726, - "ely": 12189, - "ely": 1273, - "elyn": 29691, - "elyn": 18126, - "em": 908, - "em": 2270, - "ema": 7002, - "ema": 11131, - "emabiggest": 23101, - "emabiggestfans": 29587, - "email": 33537, - "email": 4462, - "emailed": 40470, - "emailmarketing": 40188, - "emails": 12871, - "eman": 24416, - "eman": 36868, - "emancip": 42996, - "emanuel": 35232, - "emb": 3692, - "embar": 8266, - "embaras": 48019, - "embark": 33953, - "embarra": 11382, - "embarrass": 27183, - "embarrassed": 28217, - "embarrassing": 19653, - "embarrassment": 41346, - "embassy": 13598, - "embe": 46041, - "embed": 19703, - "embedded": 22046, - "embelli": 32144, - "embellished": 46992, - "ember": 47049, - "emblem": 21163, - "embo": 23065, - "embr": 35267, - "embrac": 16928, - "embrace": 12118, - "embraced": 35739, - "embraces": 38404, - "embracing": 22196, - "embro": 12550, - "embroi": 18667, - "embroide": 21530, - "embroidered": 22381, - "embroidery": 20823, - "emc": 20897, - "emc": 31602, - "emcee": 42038, - "eme": 22910, - "eme": 21548, - "emea": 40352, - "emed": 11028, - "emen": 22033, - "ement": 40841, - "ement": 2057, - "ements": 11058, - "emer": 3132, - "emer": 25727, - "emerald": 46878, - "emerald": 16980, - "emerge": 22182, - "emerged": 26425, - "emergen": 24096, - "emergence": 39867, - "emergencies": 35759, - "emergency": 44038, - "emergency": 5897, - "emerges": 30801, - "emerging": 38174, - "emerging": 11113, - "emeritus": 35333, - "emerson": 24147, - "emery": 32678, - "emi": 44327, - "emi": 18525, - "emil": 26794, - "emil": 40624, - "emile": 43926, - "emili": 20709, - "emilia": 34238, - "emilio": 39722, - "emily": 14545, - "emily": 7640, - "emin": 17227, - "emin": 23995, - "eminem": 22129, - "eminent": 33779, - "eming": 40398, - "emir": 13337, - "emir": 47613, - "emirates": 47244, - "emirates": 17867, - "emission": 27761, - "emissions": 14172, - "emit": 49043, - "emma": 18177, - "emma": 7445, - "emmanuel": 48045, - "emmanuel": 20411, - "emmett": 45779, - "emmy": 35625, - "emmy": 17089, - "emmys": 21875, - "emo": 3738, - "emo": 19381, - "emoji": 16327, - "emojis": 27870, - "emon": 34406, - "emor": 45034, - "emory": 44274, - "emotion": 17464, - "emotional": 7357, - "emotionally": 24088, - "emotions": 12904, - "emp": 3831, - "emp": 41004, - "empathy": 22420, - "emper": 12522, - "emperor": 13828, - "empha": 16237, - "emphasi": 47176, - "emphasis": 29588, - "empire": 26212, - "empire": 7614, - "empires": 46510, - "emplo": 3409, - "employ": 37290, - "employ": 39626, - "employe": 5037, - "employed": 26567, - "employee": 36631, - "employee": 9560, - "employees": 7377, - "employer": 21296, - "employers": 17647, - "employment": 10959, - "empor": 27386, - "emporium": 48541, - "empower": 13612, - "empower": 17230, - "empowered": 29087, - "empowering": 20086, - "empowerment": 15747, - "empowers": 46206, - "empress": 26656, - "empty": 41203, - "empty": 7893, - "emra": 39259, - "ems": 2858, - "emt": 46360, - "emu": 48149, - "emu": 29296, - "emul": 23272, - "emy": 31076, - "en": 524, - "en": 576, - "ena": 3452, - "enab": 17308, - "enable": 15642, - "enabled": 23666, - "enables": 23417, - "enabling": 23590, - "enam": 41486, - "enamel": 22746, - "enary": 13132, - "enas": 34536, - "enation": 20860, - "enberg": 15658, - "enburg": 28430, - "enc": 33169, - "enca": 37774, - "encan": 30345, - "encapsul": 40874, - "ence": 6495, - "ence": 954, - "enced": 6549, - "ences": 3777, - "enchan": 17290, - "enchanted": 28258, - "enchanting": 32531, - "enchil": 47396, - "enci": 32207, - "encia": 30068, - "encies": 18729, - "encing": 10326, - "enclosed": 43243, - "enclosure": 37419, - "encom": 44026, - "encore": 20549, - "encoun": 17309, - "encounter": 13164, - "encountered": 32492, - "encounters": 25399, - "encoura": 6169, - "encourage": 12090, - "encouraged": 20299, - "encouragement": 24959, - "encourages": 23848, - "encouraging": 15875, - "encro": 45822, - "encry": 28600, - "encryp": 42928, - "encrypted": 48710, - "encryption": 31423, - "ency": 3484, - "encyclo": 32104, - "encyclopedia": 38376, - "end": 945, - "end": 806, - "enda": 6735, - "endale": 20290, - "endange": 13990, - "endangered": 14931, - "ende": 11373, - "ende": 40306, - "endeav": 18134, - "endeavor": 40502, - "endeavors": 44394, - "endeavour": 38035, - "ended": 2622, - "endemic": 41241, - "endent": 16265, - "ender": 48106, - "ender": 12383, - "enders": 7418, - "endez": 43850, - "endgame": 23042, - "endi": 31359, - "ending": 2695, - "endings": 36516, - "endish": 38841, - "endless": 12688, - "endlessly": 45145, - "endment": 45894, - "endo": 13476, - "endo": 15830, - "endocr": 36486, - "endof": 40786, - "endome": 46996, - "endon": 48018, - "endor": 8092, - "endorf": 37249, - "endorse": 28819, - "endorsed": 24307, - "endorsement": 21205, - "endorses": 34603, - "endorsing": 46779, - "endow": 45895, - "endra": 22321, - "ends": 1339, - "endthe": 46256, - "endu": 26032, - "endur": 19557, - "endurance": 21027, - "endure": 32419, - "enduring": 30851, - "enduro": 47042, - "ene": 3297, - "ene": 6049, - "ened": 2494, - "eneed": 45137, - "enegger": 33235, - "enei": 48906, - "enemies": 15824, - "enemy": 10310, - "enen": 45113, - "ener": 2244, - "ener": 13600, - "energ": 39451, - "energetic": 24197, - "energi": 23044, - "energies": 42374, - "energized": 48635, - "energy": 14974, - "energy": 2650, - "energye": 32271, - "energyefficiency": 40586, - "eners": 48208, - "enes": 42066, - "eness": 11806, - "enet": 46336, - "enew": 29672, - "enews": 13442, - "eney": 20706, - "enez": 33110, - "enf": 38167, - "enfield": 27808, - "enfor": 10592, - "enforce": 40224, - "enforced": 44597, - "enforcement": 12460, - "eng": 1035, - "eng": 6730, - "enga": 22297, - "engag": 6793, - "engage": 11089, - "engaged": 11475, - "engagement": 7281, - "engaging": 13060, - "enge": 26279, - "enge": 2742, - "engel": 38265, - "engen": 48286, - "enger": 6618, - "engers": 7533, - "engine": 3355, - "engine": 5857, - "engineer": 40151, - "engineer": 8517, - "engineered": 26580, - "engineering": 5273, - "engineers": 11494, - "engines": 14487, - "england": 20904, - "england": 3595, - "english": 15942, - "english": 3469, - "engra": 17560, - "engraved": 29421, - "engraving": 33309, - "engul": 43655, - "engv": 28401, - "enh": 7449, - "enhall": 48781, - "enham": 24592, - "enhan": 26827, - "enhance": 13993, - "enhanced": 16070, - "enhancement": 35601, - "enhances": 38259, - "enhancing": 25986, - "eni": 4395, - "eni": 17538, - "enic": 46780, - "enic": 28292, - "enig": 19754, - "enig": 48730, - "enight": 32848, - "enight": 20640, - "enigma": 34998, - "ening": 1133, - "enium": 34380, - "enix": 25720, - "enjo": 1498, - "enjoy": 12981, - "enjoy": 2218, - "enjoyable": 17444, - "enjoyed": 5045, - "enjoying": 3603, - "enjoyment": 34905, - "enjoys": 17024, - "enka": 43942, - "enko": 25312, - "enlar": 38136, - "enligh": 21364, - "enlighten": 28200, - "enlightened": 44032, - "enlightening": 44005, - "enlightenment": 29255, - "enlisted": 43555, - "enly": 43023, - "enn": 43563, - "enna": 8095, - "enne": 21176, - "enne": 11518, - "ennedy": 46266, - "ennes": 43613, - "enni": 7049, - "ennial": 14220, - "ennis": 48923, - "ennis": 26309, - "eno": 9429, - "eno": 12843, - "enoch": 47917, - "enor": 13955, - "enormous": 20129, - "enos": 44759, - "enote": 44955, - "enough": 2744, - "enow": 26876, - "enqu": 28417, - "enqui": 22810, - "enquire": 46658, - "enquiries": 31901, - "enquiry": 45141, - "enri": 18915, - "enrich": 20058, - "enrich": 45504, - "enriched": 45166, - "enrichment": 32903, - "enrique": 25489, - "enrol": 44279, - "enroll": 23739, - "enroll": 30366, - "enrolled": 36853, - "enrollment": 24875, - "enroute": 40548, - "ens": 41799, - "ens": 1323, - "ense": 12657, - "ense": 27658, - "ensemble": 14843, - "ensis": 32842, - "ensla": 37535, - "enslaved": 48675, - "ensure": 7492, - "ensures": 29707, - "ensuring": 19403, - "ent": 724, - "ent": 621, - "enta": 17681, - "ental": 32342, - "ental": 6168, - "entary": 9833, - "entation": 37412, - "ente": 17433, - "ente": 9935, - "ented": 3800, - "entennial": 43088, - "enter": 2963, - "enter": 3819, - "entered": 10679, - "entering": 12580, - "enterpri": 7339, - "enterprise": 9220, - "enterprises": 21219, - "enters": 15287, - "entertain": 5566, - "entertain": 23510, - "entertained": 30631, - "entertainer": 28674, - "entertaining": 13897, - "entertainment": 6166, - "entes": 24213, - "enthr": 36202, - "enthusi": 9631, - "enthusiasm": 20525, - "enthusiast": 27153, - "enthusiastic": 22068, - "enthusiasts": 27514, - "enti": 1938, - "ential": 5194, - "entially": 37695, - "entic": 10340, - "entine": 49212, - "enting": 20526, - "entire": 4709, - "entirely": 13911, - "entirety": 43242, - "entit": 15209, - "entities": 38134, - "entitled": 18680, - "entity": 28455, - "ently": 2922, - "ento": 21917, - "ento": 8762, - "entom": 31676, - "entourage": 47893, - "entr": 7129, - "entrance": 9129, - "entrata": 27304, - "entre": 34188, - "entre": 19600, - "entren": 46959, - "entrepre": 4583, - "entreprene": 4789, - "entrepreneu": 26784, - "entrepreneur": 12119, - "entrepreneur": 8033, - "entrepreneurial": 28261, - "entrepreneurs": 11054, - "entrepreneurship": 12858, - "entries": 13766, - "entry": 5362, - "ents": 870, - "entu": 6650, - "enty": 5657, - "enu": 23430, - "env": 32280, - "env": 39207, - "envel": 20052, - "envelope": 27358, - "envir": 3512, - "enviro": 46200, - "environ": 3599, - "environment": 33039, - "environment": 5501, - "environmental": 7831, - "environmentally": 32855, - "environments": 19577, - "envision": 49031, - "envoy": 29263, - "envy": 21017, - "eny": 20482, - "enya": 36509, - "enyc": 39520, - "enz": 25805, - "enz": 31873, - "enza": 25239, - "enzie": 14839, - "enzo": 31543, - "enzyme": 40348, - "enzymes": 47465, - "eo": 16054, - "eo": 11712, - "eoin": 48634, - "eon": 31915, - "eos": 17805, - "ep": 1178, - "ep": 1117, - "epa": 15866, - "epage": 26931, - "epaper": 33584, - "epcot": 32524, - "eper": 43071, - "eph": 45752, - "eph": 41240, - "ephe": 25129, - "epi": 7219, - "epi": 34641, - "epic": 12683, - "epic": 4991, - "epiconetsy": 49222, - "epide": 17382, - "epidemi": 44447, - "epidemic": 21522, - "epile": 23150, - "epilepsy": 29547, - "epilo": 31291, - "epilots": 39766, - "epiph": 40561, - "epiphany": 43251, - "epis": 24616, - "episcop": 28037, - "episcopal": 31221, - "episo": 2708, - "episode": 2965, - "episodes": 11837, - "epit": 21967, - "epitome": 35114, - "epl": 25950, - "epo": 25810, - "epp": 39054, - "epp": 39593, - "eps": 4090, - "epsilon": 40019, - "epsom": 40364, - "epstein": 34688, - "eq": 39331, - "eq": 33692, - "equ": 2563, - "equal": 17373, - "equal": 10433, - "equality": 48981, - "equality": 9578, - "equally": 18172, - "equals": 30278, - "equation": 28591, - "equations": 38225, - "eque": 19518, - "equestrian": 24728, - "equi": 8752, - "equili": 43262, - "equine": 33801, - "equinox": 32652, - "equip": 6526, - "equip": 36979, - "equipment": 6893, - "equipo": 45688, - "equipped": 18331, - "equitable": 44717, - "equities": 44015, - "equity": 11293, - "equivalent": 19489, - "er": 517, - "er": 528, - "era": 30548, - "era": 2072, - "erable": 18801, - "erad": 24194, - "eradic": 36346, - "eradicate": 46164, - "eral": 6222, - "eran": 13069, - "eras": 19325, - "eras": 39090, - "erase": 33893, - "erased": 46762, - "erasmus": 38935, - "erc": 5360, - "erc": 32382, - "erd": 25645, - "erdo": 21112, - "erdogan": 24453, - "ere": 17907, - "ere": 642, - "erec": 21526, - "erected": 39365, - "ered": 9097, - "eres": 15751, - "ergon": 38120, - "ergy": 19550, - "eri": 2769, - "eri": 9509, - "eria": 11634, - "erial": 5409, - "eric": 1206, - "eric": 5396, - "erica": 13208, - "erich": 26070, - "erick": 27434, - "erick": 36959, - "erickson": 45286, - "ericsson": 39645, - "eridge": 45408, - "erie": 7005, - "eries": 9099, - "erik": 22805, - "erik": 16532, - "erika": 25531, - "erin": 17532, - "erin": 11333, - "erina": 25176, - "ering": 1785, - "erit": 23335, - "eritrea": 30738, - "erjee": 41665, - "erly": 14380, - "erm": 31649, - "erman": 17990, - "ern": 6992, - "ern": 12140, - "ernal": 20868, - "ernan": 34617, - "ernation": 48796, - "erne": 33930, - "ernest": 23006, - "ernie": 23636, - "ernity": 14653, - "erno": 40812, - "ernst": 30099, - "ero": 3211, - "ero": 3732, - "erock": 38206, - "eron": 32837, - "eroom": 46690, - "eros": 30597, - "erose": 48657, - "erosion": 30174, - "erotic": 30708, - "erotica": 39126, - "erous": 6384, - "eroy": 36461, - "erp": 28268, - "err": 22479, - "err": 25346, - "erra": 48446, - "errands": 45485, - "error": 12097, - "errors": 21195, - "erry": 45236, - "erry": 24124, - "ers": 4840, - "ers": 612, - "ersfc": 37925, - "ership": 2884, - "erson": 25780, - "erson": 6811, - "ert": 40325, - "ert": 3112, - "erta": 32007, - "erton": 26245, - "erts": 12921, - "eru": 36068, - "erun": 41642, - "erup": 17093, - "erupted": 48862, - "eruption": 33705, - "erville": 37557, - "erwin": 43724, - "ery": 12467, - "ery": 1692, - "erz": 38711, - "es": 957, - "es": 542, - "esa": 46834, - "esa": 12489, - "esanders": 23099, - "esc": 3330, - "esc": 28420, - "escal": 15902, - "escap": 11499, - "escape": 32484, - "escape": 7568, - "escaped": 18707, - "escapes": 29916, - "escaping": 21767, - "escar": 39229, - "escence": 37972, - "esch": 46760, - "esch": 41945, - "esco": 32482, - "escobar": 48807, - "escor": 24360, - "escort": 24976, - "escorted": 47667, - "escorts": 48574, - "escu": 36517, - "esday": 19553, - "ese": 18766, - "ese": 2260, - "esg": 41674, - "esh": 17119, - "esh": 13407, - "esha": 28799, - "eshop": 38451, - "eshop": 45570, - "eshopsuk": 39349, - "esi": 30064, - "esis": 12414, - "esk": 19359, - "esl": 26201, - "eso": 29890, - "eso": 28921, - "esof": 17047, - "eson": 46845, - "esp": 3849, - "esp": 13870, - "espa": 37301, - "espan": 41731, - "españa": 41118, - "especially": 4878, - "esper": 29216, - "espino": 46633, - "espionage": 43498, - "espn": 22917, - "espn": 7540, - "espnu": 47747, - "espo": 34381, - "esports": 16035, - "espresso": 17098, - "esq": 47352, - "esqu": 34616, - "esque": 25877, - "ess": 3118, - "ess": 9764, - "essa": 39125, - "essay": 12751, - "essays": 27328, - "esse": 22305, - "essen": 30489, - "essence": 17830, - "essenti": 11163, - "essential": 47264, - "essential": 6895, - "essentially": 30042, - "essentials": 16191, - "essex": 30563, - "essex": 11623, - "est": 2291, - "est": 1509, - "esta": 41449, - "esta": 10135, - "estab": 7010, - "establi": 8412, - "establish": 19709, - "established": 13143, - "establishing": 29420, - "establishment": 20213, - "estas": 39072, - "estate": 47130, - "estate": 6159, - "estates": 26054, - "este": 12968, - "este": 20579, - "esteban": 48381, - "esteem": 31541, - "esteemed": 36293, - "ester": 45808, - "esthe": 18468, - "esther": 24393, - "estim": 8904, - "estimate": 21883, - "estimated": 16665, - "estimates": 21957, - "esto": 31589, - "esto": 23958, - "estonia": 26260, - "estonian": 48895, - "estrada": 48116, - "estre": 31271, - "estu": 26272, - "estuary": 35269, - "esur": 35758, - "esville": 39187, - "esy": 46268, - "et": 1169, - "et": 875, - "eta": 8761, - "etal": 25221, - "etary": 13074, - "etc": 5353, - "etched": 40411, - "etching": 41375, - "ete": 38820, - "ete": 40245, - "eter": 8587, - "eter": 17007, - "eternal": 13732, - "eternally": 48486, - "eternity": 23832, - "eters": 18392, - "etf": 31661, - "eth": 4819, - "eth": 5927, - "ethan": 24245, - "ethan": 15958, - "ethanol": 38166, - "ethe": 21312, - "ethel": 45921, - "ether": 23349, - "ethere": 18705, - "ethereal": 40925, - "ethereum": 19612, - "ethernet": 35026, - "ethi": 10327, - "ethic": 39104, - "ethical": 47041, - "ethical": 17679, - "ethics": 13355, - "ethiop": 10897, - "ethiopia": 13920, - "ethiopian": 24507, - "ethnic": 30522, - "ethnic": 16344, - "ethnicity": 46787, - "ethno": 34225, - "ethos": 48768, - "eti": 11188, - "eti": 30394, - "etienne": 46118, - "eties": 15137, - "etihad": 38489, - "etiquette": 37957, - "etis": 38216, - "etisation": 39733, - "etna": 41940, - "eto": 27829, - "eto": 33837, - "eton": 44339, - "etour": 41462, - "etr": 23012, - "etres": 42838, - "ets": 3442, - "etsy": 13237, - "etsy": 6282, - "etsym": 22902, - "etsymntt": 25416, - "etsyshop": 44643, - "ett": 32729, - "ett": 24998, - "etta": 30466, - "ette": 19981, - "ette": 5212, - "ettes": 35326, - "etto": 44219, - "etty": 40759, - "etu": 36593, - "etv": 49155, - "etv": 20325, - "etwork": 20585, - "ety": 25920, - "ety": 2746, - "etz": 36181, - "etz": 25301, - "eu": 1506, - "eu": 3238, - "eucalyp": 41068, - "eucalyptus": 42351, - "euchar": 38362, - "eugen": 30678, - "eugene": 17760, - "eul": 46749, - "eun": 16431, - "eun": 26219, - "eunhyuk": 47526, - "eup": 44435, - "euph": 21386, - "euphoria": 41051, - "eur": 18343, - "eur": 12018, - "eura": 32605, - "eure": 25311, - "euref": 48017, - "eureka": 31686, - "euro": 2039, - "euro": 8463, - "euroleague": 46821, - "europa": 18290, - "europale": 42473, - "europaleague": 44029, - "europarl": 44922, - "europe": 4198, - "europe": 3848, - "european": 26712, - "european": 4759, - "europeans": 37082, - "euros": 22274, - "eurovision": 17593, - "eurozone": 42555, - "eurusd": 40895, - "eus": 44214, - "euston": 46905, - "euthan": 43280, - "euve": 40652, - "eux": 25019, - "ev": 776, - "ev": 10133, - "eva": 6845, - "evacu": 13187, - "evacuated": 26806, - "evacuation": 27353, - "eval": 25139, - "eval": 9703, - "evalu": 10314, - "evaluate": 27174, - "evaluating": 34541, - "evaluation": 17640, - "evan": 12821, - "evan": 12847, - "evangel": 20518, - "evangeli": 21372, - "evangelical": 36151, - "evangelist": 42275, - "evankirstel": 46581, - "evans": 8836, - "evansville": 44782, - "evapor": 33352, - "evasion": 48795, - "eve": 5732, - "eve": 1866, - "eved": 19820, - "evel": 39315, - "evelyn": 26687, - "evement": 8210, - "even": 6359, - "even": 1427, - "evening": 34487, - "evening": 2285, - "evenings": 19994, - "evenly": 45974, - "event": 10612, - "event": 1655, - "eventful": 45628, - "evento": 38155, - "eventprofs": 24980, - "events": 3667, - "eventu": 14055, - "eventual": 45321, - "eventually": 14397, - "ever": 888, - "ever": 1247, - "everest": 21722, - "everett": 25456, - "everglades": 46294, - "evergreen": 23852, - "everlasting": 32849, - "evers": 31914, - "everton": 13315, - "every": 1091, - "every": 1505, - "everybody": 5901, - "everyday": 25049, - "everyday": 5160, - "everyone": 1584, - "everything": 36376, - "everything": 2410, - "everytime": 16911, - "everywhere": 6364, - "eves": 7323, - "evi": 5348, - "evi": 36989, - "evic": 21336, - "eviction": 37111, - "eviden": 46220, - "evidence": 6439, - "evident": 34529, - "evie": 47195, - "evil": 23218, - "evil": 6006, - "eville": 16143, - "eving": 24729, - "evo": 17962, - "evo": 13169, - "evoc": 43133, - "evol": 5350, - "evolu": 7725, - "evolution": 8902, - "evolutionary": 30629, - "evolve": 23406, - "evolved": 22613, - "evolving": 23675, - "evp": 46154, - "evs": 33576, - "ew": 11942, - "ew": 15428, - "ewan": 40247, - "ewe": 48438, - "ewing": 38873, - "ews": 9878, - "ex": 659, - "ex": 4118, - "exac": 5460, - "exact": 12651, - "exactly": 5840, - "exagger": 29766, - "exal": 49324, - "exam": 4428, - "exam": 8785, - "examination": 20970, - "examine": 25728, - "examined": 44004, - "examiner": 29149, - "examines": 28160, - "examining": 30616, - "example": 6228, - "examples": 14790, - "exams": 14028, - "exas": 47536, - "exc": 1302, - "excav": 20733, - "excavation": 45909, - "exce": 10999, - "exceed": 32521, - "exceeded": 36221, - "exceeding": 47213, - "exceeds": 49353, - "excel": 28351, - "excel": 18754, - "excell": 3298, - "excellence": 8171, - "excellency": 36503, - "excellent": 4239, - "excelsi": 47315, - "excep": 8882, - "except": 8541, - "exception": 25018, - "exceptional": 13425, - "exceptionally": 29306, - "excer": 17737, - "excerpt": 20586, - "excess": 22491, - "excessive": 21332, - "exchange": 6616, - "exchanged": 48919, - "exchanges": 29730, - "exchanging": 47760, - "excit": 10510, - "excite": 47711, - "excited": 1889, - "excitement": 11407, - "exciting": 4300, - "exclu": 3114, - "exclude": 49235, - "excluded": 46216, - "excluding": 44326, - "exclusion": 40219, - "exclusive": 3747, - "exclusively": 13565, - "exclusives": 47149, - "excu": 7324, - "excur": 27533, - "excursion": 34869, - "excuse": 9266, - "excuses": 19388, - "exe": 3554, - "exe": 48027, - "exec": 15052, - "execs": 35728, - "execu": 4360, - "execute": 36405, - "executed": 20432, - "execution": 18085, - "executive": 5944, - "executives": 24357, - "exem": 19753, - "exemp": 28602, - "exempl": 36371, - "exemplary": 39123, - "exempli": 41934, - "exempt": 44278, - "exemption": 47481, - "exer": 40295, - "exerc": 5932, - "exercise": 7016, - "exercises": 19669, - "exercising": 39036, - "exeter": 32137, - "exeter": 18837, - "exfoli": 38823, - "exhau": 11154, - "exhaust": 21812, - "exhausted": 21741, - "exhausting": 40035, - "exhaustion": 49221, - "exhi": 3022, - "exhib": 3783, - "exhibit": 24992, - "exhibit": 8209, - "exhibiting": 23889, - "exhibition": 4219, - "exhibitions": 28311, - "exhibitor": 44192, - "exhibitors": 38542, - "exhibits": 30093, - "exhilar": 40262, - "exhilarating": 49289, - "exi": 5297, - "exico": 38712, - "exile": 28566, - "exist": 10899, - "exist": 9645, - "existed": 23198, - "existence": 13832, - "existent": 43541, - "existential": 38752, - "existing": 12886, - "exists": 14608, - "exit": 9374, - "exited": 37581, - "exiting": 39577, - "exits": 34943, - "exmoor": 48260, - "exo": 15600, - "exo": 5842, - "exodus": 30098, - "exol": 42856, - "exop": 35288, - "exoplan": 37980, - "exor": 24506, - "exorcist": 46309, - "exotic": 15639, - "exp": 9923, - "exp": 19066, - "expan": 7512, - "expand": 10382, - "expand": 13141, - "expanded": 18390, - "expanding": 15755, - "expands": 22223, - "expanse": 46886, - "expansion": 10138, - "expansive": 49261, - "expat": 43900, - "expe": 2560, - "expect": 9802, - "expect": 5716, - "expectation": 34273, - "expectations": 12529, - "expected": 5573, - "expecting": 12525, - "expects": 24536, - "expedition": 16761, - "expeditions": 49327, - "expelled": 48834, - "expen": 7216, - "expend": 29302, - "expenditure": 47044, - "expense": 28473, - "expenses": 21797, - "expensive": 9649, - "exper": 1533, - "experi": 4723, - "experience": 31867, - "experience": 2415, - "experienced": 10417, - "experiences": 8233, - "experiencing": 16643, - "experiential": 44952, - "experim": 6697, - "experiment": 13079, - "experimental": 16539, - "experimenting": 28263, - "experiments": 21077, - "expert": 6284, - "expertise": 16555, - "experts": 6960, - "expi": 26850, - "expir": 35077, - "expire": 49315, - "expired": 30200, - "expires": 34739, - "expl": 3261, - "expla": 3517, - "explain": 48918, - "explain": 7304, - "explained": 14229, - "explaining": 13136, - "explains": 6655, - "explan": 13294, - "explanation": 16577, - "explanations": 34383, - "explic": 21011, - "explicit": 33228, - "explo": 3586, - "explode": 31262, - "exploded": 28947, - "explodes": 38119, - "exploding": 34683, - "exploit": 36953, - "exploited": 48554, - "explor": 11958, - "exploration": 14043, - "explore": 10405, - "explore": 5147, - "explorebc": 38754, - "explorecanada": 36600, - "explored": 25016, - "explorer": 15776, - "explorers": 28491, - "explores": 13996, - "exploring": 7584, - "explosion": 13785, - "explosions": 38646, - "explosive": 18888, - "explosives": 44705, - "expo": 7820, - "expo": 6344, - "expon": 27905, - "export": 14444, - "exporting": 47433, - "exports": 20088, - "expose": 23181, - "exposed": 12180, - "exposes": 33575, - "exposing": 28362, - "exposition": 36943, - "exposure": 11903, - "expre": 6085, - "express": 18553, - "express": 5642, - "expressed": 20777, - "expresses": 31931, - "expressing": 30207, - "expression": 11357, - "expressions": 20314, - "expressive": 42060, - "expressway": 31658, - "exquis": 16575, - "exquisite": 17958, - "ext": 5711, - "ext": 20072, - "exten": 5555, - "extend": 14492, - "extended": 9614, - "extending": 25652, - "extends": 20688, - "extension": 10275, - "extensions": 24525, - "extensive": 16870, - "extensively": 47365, - "extent": 24913, - "exter": 9797, - "exterior": 19352, - "extermin": 41671, - "external": 15028, - "extin": 13553, - "extinct": 24488, - "extinction": 21186, - "extingui": 38567, - "extor": 35620, - "extr": 29082, - "extra": 6416, - "extra": 4231, - "extrac": 18550, - "extract": 18962, - "extraction": 28789, - "extracts": 45576, - "extraordin": 23628, - "extraordinaire": 30909, - "extraordinary": 10982, - "extras": 29817, - "extravag": 22299, - "extravaganza": 29461, - "extre": 3978, - "extreme": 38357, - "extreme": 8331, - "extremely": 6519, - "extremism": 31493, - "extremist": 36383, - "extremists": 41425, - "extru": 43010, - "ey": 1541, - "ey": 1477, - "eyang": 28915, - "eye": 5034, - "eye": 3272, - "eyebrow": 34250, - "eyebrows": 19923, - "eyed": 15512, - "eyeing": 34916, - "eyel": 17075, - "eyelashes": 42074, - "eyeliner": 33354, - "eyeon": 25126, - "eyes": 3095, - "eyeshadow": 35213, - "eyewear": 30165, - "eyewitness": 36258, - "eyou": 31996, - "eyour": 40229, - "eyre": 44115, - "ez": 10082, - "ez": 8387, - "eze": 25993, - "eze": 27229, - "ezekiel": 41428, - "ezra": 27552, - "f": 69, - "f": 325, - "fa": 778, - "fa": 2800, - "faa": 27577, - "fab": 2833, - "fab": 5492, - "faber": 43461, - "faber": 42488, - "fabi": 29425, - "fabian": 34539, - "fabio": 31666, - "fabric": 16217, - "fabric": 10033, - "fabricated": 40851, - "fabrication": 33476, - "fabrics": 23159, - "fabulous": 5189, - "fac": 1053, - "fac": 35438, - "facade": 29217, - "face": 2545, - "face": 1710, - "facebook": 36156, - "facebook": 2943, - "faced": 10941, - "faceli": 32023, - "facelift": 36380, - "faceoff": 42710, - "facep": 45285, - "faces": 4905, - "faceted": 43435, - "facetime": 24076, - "facial": 11909, - "facil": 39973, - "facilit": 13567, - "facilitate": 26733, - "facilitated": 43853, - "facilitating": 34796, - "facilities": 10388, - "facility": 8165, - "facing": 7619, - "fact": 17189, - "fact": 3598, - "factfriday": 27953, - "faction": 14629, - "factor": 21082, - "factor": 8124, - "factories": 36492, - "factors": 12733, - "factory": 42483, - "factory": 6072, - "facts": 5085, - "factual": 45471, - "faculty": 9504, - "facup": 25283, - "fad": 12632, - "fad": 47669, - "fade": 20486, - "faded": 26051, - "fades": 40441, - "fading": 32882, - "fadnavis": 38945, - "faf": 31052, - "faf": 43903, - "fag": 25617, - "fag": 39305, - "fah": 25495, - "fah": 35429, - "fahren": 45527, - "fai": 20519, - "fai": 26384, - "fail": 7105, - "fail": 6801, - "failed": 8314, - "failing": 15757, - "fails": 13388, - "failure": 8732, - "failures": 25442, - "faint": 30807, - "fair": 3031, - "fair": 2849, - "fairbanks": 43962, - "faire": 34745, - "faire": 20798, - "fairfax": 29368, - "fairfield": 29664, - "fairgrounds": 38325, - "fairi": 28884, - "fairies": 33590, - "fairly": 14961, - "fairmont": 41547, - "fairness": 29388, - "fairs": 8655, - "fairtrade": 33361, - "fairview": 43479, - "fairway": 44022, - "fairy": 17021, - "fairy": 10444, - "fairytale": 28944, - "fais": 23542, - "faisal": 35459, - "fait": 20567, - "faith": 10653, - "faith": 5080, - "faithful": 15511, - "faiz": 41775, - "fake": 18794, - "fake": 5777, - "faken": 22853, - "fakenews": 26943, - "fakespeare": 49095, - "fal": 2778, - "fal": 40494, - "fala": 47120, - "falcon": 22498, - "falcon": 13571, - "falcons": 13834, - "falk": 34648, - "falkirk": 44080, - "fall": 6489, - "fall": 2359, - "fallen": 8688, - "falling": 48709, - "falling": 7293, - "fallon": 39596, - "fallon": 21281, - "fallontonight": 44627, - "fallout": 49365, - "fallout": 16009, - "falls": 4778, - "falmouth": 38261, - "false": 38948, - "false": 9078, - "falsely": 42321, - "fam": 1058, - "fam": 5128, - "fame": 6573, - "famed": 23302, - "famer": 24554, - "famil": 3395, - "famili": 8488, - "familia": 25622, - "familiar": 10020, - "families": 4612, - "family": 8137, - "family": 1315, - "familyfun": 46308, - "familytime": 47236, - "familytravel": 38222, - "famine": 35847, - "famous": 44811, - "famous": 4096, - "famously": 44505, - "fan": 1675, - "fan": 2261, - "fanart": 41059, - "fanart": 7855, - "fanartfriday": 45346, - "fanatic": 36643, - "fanatics": 39610, - "fanbase": 36921, - "fanboy": 43369, - "fanc": 29017, - "fancafe": 45080, - "fanci": 35908, - "fanclub": 31530, - "fancy": 47622, - "fancy": 6733, - "fand": 19684, - "fandom": 47634, - "fandom": 11534, - "fanfest": 42916, - "fanfic": 47243, - "fang": 14269, - "fang": 27428, - "fangirl": 28813, - "fangirling": 39463, - "fanning": 37282, - "fanny": 30401, - "fans": 32454, - "fans": 1840, - "fansign": 25288, - "fant": 4467, - "fanta": 2703, - "fantaken": 39412, - "fantasia": 49306, - "fantastic": 31289, - "fantastic": 2935, - "fantasy": 15124, - "fantasy": 5267, - "fantasyfootball": 35713, - "fao": 31155, - "faq": 28533, - "far": 1578, - "far": 2384, - "fara": 48562, - "farage": 28340, - "farah": 31547, - "fare": 8620, - "fare": 6461, - "fares": 27525, - "farewell": 10734, - "fargo": 18870, - "fari": 26197, - "farley": 43761, - "farm": 9066, - "farm": 3985, - "farmer": 19735, - "farmer": 10474, - "farmers": 29752, - "farmers": 6402, - "farmersmarket": 41808, - "farmhouse": 26293, - "farming": 10399, - "farmington": 49305, - "farmland": 45258, - "farms": 11277, - "farn": 27527, - "faroo": 39147, - "farra": 33657, - "farrakhan": 46293, - "farrell": 24234, - "fart": 34664, - "farther": 42233, - "fas": 4830, - "fas": 42995, - "fasci": 17191, - "fascin": 7327, - "fascinated": 32964, - "fascinating": 8640, - "fascism": 28213, - "fascist": 23870, - "fascists": 43598, - "fash": 42682, - "fashi": 2099, - "fashion": 6976, - "fashion": 2444, - "fashionable": 24597, - "fashionblogger": 31726, - "fashioned": 21563, - "fashioni": 26062, - "fashionista": 30415, - "fashions": 37601, - "fashionshow": 45653, - "fashionweek": 28684, - "fass": 42398, - "fast": 8509, - "fast": 1953, - "fasten": 44990, - "faster": 8835, - "fastest": 9808, - "fasting": 24656, - "fat": 4751, - "fat": 5484, - "fatal": 12124, - "fatalities": 44168, - "fatally": 34069, - "fate": 26315, - "fate": 11734, - "father": 11607, - "father": 3224, - "fathers": 12780, - "fathersday": 16731, - "fati": 13430, - "fatigue": 23747, - "fatima": 28202, - "fats": 30151, - "fatt": 44131, - "fatty": 22953, - "fau": 5571, - "fau": 31381, - "faucet": 44273, - "faul": 16230, - "faulkner": 37840, - "fault": 13862, - "faults": 42752, - "faulty": 47103, - "fauna": 30808, - "faust": 44772, - "faux": 19429, - "fav": 1355, - "fav": 5426, - "fave": 7272, - "faves": 18003, - "favor": 1766, - "favor": 12160, - "favorable": 35392, - "favored": 46640, - "favorite": 35262, - "favorite": 1916, - "favorited": 36926, - "favorites": 10564, - "favors": 36085, - "favour": 3111, - "favour": 20469, - "favourite": 3342, - "favourites": 16585, - "favs": 18879, - "faw": 21800, - "fawad": 46425, - "fawn": 48624, - "fax": 32535, - "fax": 9337, - "fay": 8939, - "fay": 40074, - "faye": 30257, - "fayette": 32043, - "fayette": 19782, - "fayetteville": 37771, - "fayre": 34982, - "faz": 26238, - "faze": 44880, - "fb": 22637, - "fb": 3307, - "fball": 29663, - "fbf": 20004, - "fbi": 10293, - "fbloggers": 41389, - "fbs": 48454, - "fc": 4278, - "fc": 1399, - "fca": 24540, - "fcb": 26639, - "fcb": 25045, - "fcbarcelona": 32174, - "fcbayern": 35033, - "fcblive": 44608, - "fcc": 21240, - "fck": 40080, - "fck": 49263, - "fcofficial": 27805, - "fcs": 32095, - "fcu": 47898, - "fd": 16972, - "fd": 11525, - "fda": 17823, - "fdi": 45579, - "fdn": 18563, - "fdny": 41084, - "fdr": 42298, - "fe": 623, - "fe": 873, - "fear": 8744, - "fear": 5402, - "feared": 31154, - "fearless": 17470, - "fears": 13867, - "fearthe": 33449, - "feasi": 34977, - "feast": 37963, - "feast": 9564, - "feat": 1703, - "feat": 5611, - "feather": 24905, - "feather": 17871, - "feathers": 21138, - "featherweight": 44939, - "feature": 30413, - "feature": 4527, - "featured": 4743, - "features": 4643, - "featuring": 3706, - "feb": 4317, - "febru": 4202, - "february": 4248, - "fect": 31293, - "fed": 22518, - "fed": 7035, - "feder": 4737, - "federal": 6369, - "federation": 15530, - "federer": 18246, - "federico": 40539, - "fedex": 32603, - "fedora": 45111, - "feds": 30593, - "fee": 28242, - "fee": 9224, - "feed": 6662, - "feed": 5839, - "feedback": 8683, - "feeder": 24482, - "feeders": 44523, - "feeding": 9879, - "feeds": 21788, - "feel": 2408, - "feel": 2051, - "feelin": 19903, - "feeling": 33087, - "feeling": 3045, - "feelings": 9452, - "feels": 4808, - "feelthe": 22322, - "feelthebern": 27743, - "fees": 11765, - "feet": 4804, - "fei": 23441, - "fei": 34217, - "fein": 46707, - "feinstein": 41313, - "fel": 2081, - "fel": 20304, - "feld": 45913, - "feld": 14219, - "feldman": 41942, - "feli": 7498, - "felic": 25845, - "felici": 23379, - "felicia": 41139, - "felicidades": 41648, - "felicity": 35123, - "feline": 29471, - "felipe": 27681, - "felix": 33455, - "felix": 16514, - "feliz": 26104, - "feliz": 20221, - "fell": 33540, - "fell": 6266, - "fella": 17586, - "fellas": 18787, - "feller": 29226, - "fellow": 12099, - "fellow": 5242, - "fellows": 15766, - "fellowship": 13857, - "felony": 31068, - "felt": 5413, - "fem": 24574, - "fem": 36615, - "fema": 41721, - "female": 22062, - "female": 3970, - "females": 21028, - "femi": 38607, - "femin": 11423, - "femini": 11894, - "feminine": 24911, - "feminism": 18784, - "feminist": 14921, - "feminists": 38809, - "femme": 31331, - "fen": 5509, - "fen": 25024, - "fence": 12679, - "fences": 34312, - "fencing": 23489, - "fender": 17117, - "fener": 41208, - "fenerbah": 46652, - "feng": 33291, - "fennel": 28689, - "fent": 26395, - "fenton": 47265, - "fenway": 29206, - "fer": 1765, - "fer": 2897, - "fera": 37705, - "feral": 29972, - "ferdin": 25541, - "ferdinand": 27591, - "fere": 43144, - "feren": 35652, - "ference": 19984, - "ferg": 44938, - "fergie": 39119, - "fergu": 10988, - "fergus": 42041, - "ferguson": 11904, - "fermentation": 45817, - "fermented": 36886, - "fern": 10747, - "fern": 21685, - "fernandes": 44391, - "fernandez": 23436, - "fernando": 17140, - "ferns": 38277, - "feroci": 45652, - "ferr": 7256, - "ferra": 47911, - "ferrari": 9606, - "ferre": 29626, - "ferred": 10432, - "ferreira": 48686, - "ferrell": 41112, - "ferrer": 38904, - "ferri": 42008, - "ferries": 28489, - "ferris": 27532, - "ferry": 38936, - "ferry": 10278, - "fers": 12378, - "fert": 14925, - "fert": 43662, - "fertil": 41987, - "fertile": 44837, - "fertili": 23912, - "fertility": 23528, - "fertilizer": 36786, - "fery": 47448, - "fes": 32300, - "fest": 17383, - "fest": 2590, - "festa": 42124, - "festi": 1943, - "festiv": 19222, - "festival": 20946, - "festival": 2240, - "festivals": 17834, - "festive": 9533, - "festivities": 21020, - "fet": 21409, - "feta": 31705, - "fetal": 42031, - "fetch": 30271, - "fete": 34629, - "fett": 37979, - "fetus": 26768, - "feu": 24912, - "feu": 32990, - "feud": 27365, - "fever": 40896, - "fever": 9989, - "fevre": 43861, - "few": 1939, - "fewer": 19128, - "fex": 41584, - "fex": 26392, - "fey": 39069, - "fey": 23298, - "fez": 43081, - "ff": 1021, - "ff": 1304, - "ffa": 15355, - "ffame": 42873, - "ffc": 19832, - "ffe": 1138, - "ffe": 8631, - "ffect": 29151, - "ffed": 8448, - "ffee": 26377, - "ffel": 22656, - "ffen": 46537, - "ffer": 27369, - "ffer": 11636, - "ffers": 32163, - "fferty": 44771, - "ffes": 46441, - "ffey": 30138, - "fff": 28106, - "ffi": 19961, - "ffic": 4762, - "ffice": 26044, - "ffici": 3639, - "fficial": 39818, - "fficial": 6463, - "fficiency": 27800, - "fficient": 20424, - "ffin": 12779, - "ffin": 7367, - "ffing": 16592, - "ffins": 17898, - "ffl": 39490, - "ffle": 7749, - "ffler": 39819, - "ffles": 19344, - "ffman": 15823, - "ffo": 42264, - "ffs": 4424, - "ffxiv": 26569, - "ffxv": 46786, - "ffy": 26404, - "ffy": 7795, - "fg": 45977, - "fg": 6823, - "fgm": 32178, - "fgo": 46113, - "fh": 21649, - "fh": 21010, - "fhs": 45094, - "fi": 701, - "fi": 3589, - "fia": 8827, - "fiable": 34373, - "fianc": 27752, - "fiance": 44114, - "fiancé": 34039, - "fiasco": 40944, - "fiat": 16740, - "fiawec": 39485, - "fib": 40594, - "fiba": 34993, - "fiber": 35074, - "fiber": 12612, - "fibers": 44587, - "fibre": 21401, - "fibro": 21294, - "fibrosis": 36307, - "fic": 1788, - "fic": 2059, - "fica": 26952, - "fically": 14854, - "fication": 4523, - "fications": 12512, - "ficial": 48192, - "fics": 42505, - "fiction": 6218, - "fictional": 25570, - "fid": 34197, - "fid": 23966, - "fidd": 25218, - "fiddle": 35968, - "fide": 45375, - "fidel": 21740, - "fidel": 36837, - "fidelity": 30109, - "fidget": 48664, - "fie": 28487, - "fie": 10348, - "fied": 29642, - "fied": 2853, - "fiel": 1361, - "field": 7571, - "field": 1570, - "fielder": 11046, - "fieldhouse": 37969, - "fielding": 30465, - "fields": 6494, - "fieldwork": 33155, - "fiends": 37869, - "fier": 11167, - "fier": 10598, - "fierc": 48609, - "fierce": 13896, - "fiercely": 49039, - "fiers": 16113, - "fiery": 24557, - "fies": 9537, - "fiesta": 14580, - "fif": 5309, - "fifa": 21976, - "fifa": 8516, - "fifaworldcup": 38819, - "fifawwc": 41329, - "fife": 24374, - "fifteen": 29504, - "fifth": 25515, - "fifth": 8772, - "fifthharmony": 31075, - "fifty": 24456, - "fifty": 15978, - "fig": 4814, - "fig": 20719, - "figaro": 48044, - "figh": 23274, - "fight": 5262, - "fight": 2757, - "fighter": 35884, - "fighter": 6438, - "fighters": 7371, - "fightfor": 48909, - "fightfor": 35740, - "fighting": 38625, - "fighting": 4652, - "fighton": 45578, - "fights": 12132, - "figs": 38882, - "figu": 6390, - "figur": 16948, - "figurative": 44042, - "figure": 48820, - "figure": 5274, - "figured": 15630, - "figures": 8739, - "figurine": 33306, - "figuring": 31513, - "fiji": 48270, - "fiji": 18285, - "fik": 46589, - "fil": 1142, - "fil": 14915, - "fila": 30992, - "filament": 49252, - "file": 12545, - "file": 4512, - "filed": 13864, - "files": 7850, - "filet": 43155, - "fili": 9590, - "filing": 16576, - "filip": 14368, - "filipino": 19153, - "fill": 15904, - "fill": 6277, - "filled": 5589, - "filler": 32816, - "fillers": 45005, - "fillet": 39276, - "filling": 9736, - "fillion": 38048, - "fillmore": 43922, - "fills": 21750, - "filly": 27690, - "film": 5117, - "film": 1860, - "filmed": 15801, - "filmfare": 42224, - "filmfest": 24508, - "filmfestival": 28066, - "filming": 6866, - "filmmaker": 17202, - "filmmakers": 24896, - "filmmaking": 18226, - "films": 5370, - "fils": 40271, - "filter": 7541, - "filtered": 29926, - "filtering": 47770, - "filters": 18385, - "filth": 39713, - "filthy": 26899, - "filtr": 21408, - "filtration": 42036, - "fim": 47525, - "fin": 735, - "fin": 10663, - "fina": 34497, - "final": 11968, - "final": 1755, - "finale": 7844, - "finalfantasy": 44543, - "finalfour": 46999, - "finalist": 12620, - "finalists": 13422, - "finalized": 48930, - "finally": 1992, - "finals": 4536, - "finan": 4807, - "finance": 6117, - "finances": 28767, - "financi": 12846, - "financial": 19783, - "financial": 4930, - "financially": 28124, - "financing": 18375, - "finch": 18523, - "find": 18638, - "find": 1416, - "finder": 15045, - "finders": 43884, - "findia": 47064, - "finding": 37455, - "finding": 6002, - "findings": 16529, - "findlay": 48227, - "findom": 36463, - "finds": 6680, - "findyour": 25936, - "findyourpark": 38924, - "fine": 12042, - "fine": 3797, - "fineart": 7484, - "fineart": 16005, - "fineartamerica": 7724, - "fined": 20094, - "finely": 46120, - "finer": 36681, - "fines": 25053, - "finesse": 46047, - "finest": 7707, - "fing": 6485, - "fing": 17955, - "finger": 13480, - "finger": 8895, - "fingerprint": 39579, - "fingers": 9690, - "fini": 2405, - "finish": 42178, - "finish": 3958, - "finished": 3078, - "finisher": 38636, - "finishers": 48661, - "finishes": 13078, - "finishing": 7912, - "finite": 48312, - "finity": 41463, - "finity": 21273, - "fink": 40158, - "finland": 10775, - "finley": 41652, - "finn": 28479, - "finn": 16925, - "finna": 35180, - "finnish": 19616, - "fino": 30083, - "fins": 32810, - "fintech": 48929, - "fintech": 8899, - "fion": 27476, - "fiona": 20099, - "fior": 37086, - "fiore": 44997, - "fioren": 33188, - "fiorentina": 43713, - "fios": 42521, - "fir": 770, - "fir": 16233, - "fire": 2951, - "fire": 1769, - "firearm": 40311, - "firearms": 23960, - "fireball": 40543, - "firec": 42806, - "fired": 8846, - "firefighter": 20498, - "firefighters": 12600, - "firefly": 33997, - "firefox": 35372, - "fireman": 46085, - "firen": 34752, - "firenze": 38445, - "fireplace": 23050, - "fires": 8749, - "fireside": 36185, - "firework": 40750, - "fireworks": 10641, - "firing": 15105, - "firm": 16936, - "firm": 7705, - "firmly": 29156, - "firms": 13655, - "firmware": 42691, - "first": 6853, - "first": 874, - "firstdayof": 44297, - "firsth": 48512, - "firsts": 47884, - "firth": 26078, - "fis": 7846, - "fis": 47683, - "fiscal": 20825, - "fischer": 26532, - "fish": 6431, - "fish": 2759, - "fisher": 11175, - "fisher": 9176, - "fisheries": 24612, - "fisherman": 25055, - "fishermen": 28547, - "fishers": 42065, - "fishery": 49057, - "fishes": 35470, - "fishing": 31703, - "fishing": 4935, - "fishy": 35665, - "fist": 48340, - "fist": 17085, - "fit": 2366, - "fit": 2478, - "fitbit": 33768, - "fitch": 44614, - "fitfam": 20662, - "fitnes": 47285, - "fitness": 20044, - "fitness": 4838, - "fits": 6401, - "fitt": 32994, - "fitted": 14863, - "fitter": 42096, - "fitters": 32364, - "fitting": 11769, - "fittings": 45787, - "fitz": 11120, - "fitz": 25913, - "fitzgerald": 20606, - "fitzpatrick": 37141, - "fiu": 38374, - "five": 19508, - "five": 3127, - "fives": 44066, - "fix": 4596, - "fix": 6028, - "fixed": 9393, - "fixes": 25473, - "fixing": 17423, - "fixture": 17317, - "fixtures": 19904, - "fizz": 31242, - "fj": 43183, - "fj": 46447, - "fjor": 31260, - "fk": 12410, - "fl": 1082, - "fl": 2685, - "fla": 1577, - "fla": 20292, - "flag": 11536, - "flag": 4859, - "flagged": 45012, - "flags": 12221, - "flagship": 19779, - "flagstaff": 40406, - "flair": 24938, - "flake": 21221, - "flakes": 20934, - "flam": 10559, - "flame": 40351, - "flame": 13484, - "flamen": 28826, - "flamenco": 37362, - "flames": 13441, - "flamin": 42693, - "flaming": 34782, - "flamingo": 30323, - "flan": 14572, - "flanagan": 28641, - "flanders": 34837, - "flank": 44553, - "flann": 39510, - "flannel": 37807, - "flap": 35253, - "flappy": 40241, - "flare": 21185, - "flares": 46088, - "flash": 6089, - "flash": 5815, - "flashback": 14616, - "flashback": 11988, - "flashbackfriday": 15014, - "flashbacks": 47056, - "flashes": 31259, - "flashing": 31764, - "flashlight": 37256, - "flask": 36194, - "flat": 8986, - "flat": 6313, - "flats": 17228, - "flatt": 45498, - "flattering": 43267, - "flaun": 41421, - "flav": 7191, - "flavo": 28895, - "flavor": 31835, - "flavor": 11818, - "flavored": 29350, - "flavorful": 49135, - "flavors": 16930, - "flavour": 17026, - "flavoured": 42397, - "flavours": 21083, - "flaw": 14268, - "flaw": 34978, - "flawed": 35136, - "flawless": 15531, - "flaws": 30492, - "flax": 43443, - "fle": 2428, - "fle": 44964, - "flea": 24883, - "fleck": 28143, - "fled": 26731, - "flee": 19427, - "flee": 30167, - "fleece": 25038, - "fleeing": 30543, - "fleek": 43513, - "fleet": 35922, - "fleet": 9147, - "fleetwood": 28883, - "fleming": 25769, - "fler": 48789, - "flesh": 17495, - "flet": 16102, - "fletcher": 19810, - "fleur": 28593, - "flew": 13768, - "flex": 16426, - "flex": 12038, - "flexi": 10032, - "flexibility": 22547, - "flexible": 14502, - "flexing": 48483, - "fli": 2472, - "flick": 13746, - "flick": 23414, - "flickr": 17755, - "flies": 8070, - "flight": 24701, - "flight": 3795, - "flights": 10515, - "flin": 24730, - "flin": 43816, - "flinders": 44647, - "fling": 22768, - "flint": 28306, - "flint": 18324, - "flip": 20385, - "flip": 11035, - "flipk": 30829, - "flipkart": 33154, - "flipped": 28144, - "flipping": 25881, - "flips": 35089, - "flir": 24330, - "flirt": 38352, - "flirting": 35243, - "flix": 40663, - "flo": 1945, - "flo": 20711, - "float": 16123, - "floating": 12619, - "floats": 33272, - "flock": 36297, - "flock": 21822, - "flondon": 47366, - "floo": 4062, - "flood": 23793, - "flood": 7148, - "flooded": 19706, - "flooding": 10204, - "floods": 16369, - "floor": 23657, - "floor": 4125, - "flooring": 19227, - "floors": 15671, - "flop": 22994, - "floppy": 38267, - "flops": 29146, - "flor": 15784, - "flor": 41669, - "flora": 18906, - "floral": 10732, - "florals": 48331, - "floren": 37706, - "florence": 11617, - "flores": 21537, - "flori": 3482, - "florian": 41861, - "florida": 34264, - "florida": 3966, - "florist": 38403, - "floss": 36453, - "flotus": 35181, - "flour": 18592, - "flouri": 23239, - "flourish": 36038, - "flow": 2180, - "flow": 5608, - "flower": 12772, - "flower": 4055, - "flowering": 19953, - "flowers": 4023, - "flowing": 14922, - "flown": 25659, - "flows": 16715, - "floyd": 46369, - "floyd": 13656, - "flu": 3698, - "flu": 13528, - "fluctu": 40181, - "fluence": 38169, - "fluent": 30025, - "fluff": 31174, - "fluffy": 40346, - "fluffy": 17054, - "fluid": 43803, - "fluid": 16717, - "fluids": 41490, - "fluor": 45127, - "fluore": 26974, - "fluorescent": 35036, - "fluori": 45611, - "flur": 31591, - "flush": 25777, - "flushing": 43754, - "flute": 23746, - "flux": 25249, - "flwx": 30907, - "fly": 5666, - "fly": 3228, - "flye": 30873, - "flyeagles": 39927, - "flyeaglesfly": 39931, - "flyer": 11875, - "flyers": 14181, - "flyfishing": 31800, - "flying": 20782, - "flying": 4610, - "flyn": 40676, - "flynn": 15721, - "flyo": 33506, - "flyover": 38083, - "fm": 13715, - "fm": 3689, - "fman": 25152, - "fml": 26730, - "fmr": 32875, - "fn": 22773, - "fn": 21763, - "fnc": 46506, - "fo": 898, - "fo": 6157, - "foal": 40386, - "foam": 30039, - "foam": 14587, - "foamed": 26711, - "fob": 40315, - "focal": 30934, - "focu": 5827, - "focus": 4353, - "focused": 9319, - "focuses": 20093, - "focusing": 15551, - "fod": 31015, - "fod": 43299, - "fodils": 44411, - "foe": 22952, - "foes": 46279, - "fog": 9417, - "foggy": 19770, - "foil": 17302, - "fol": 1106, - "fol": 48616, - "fold": 35201, - "fold": 11021, - "foldable": 48307, - "folded": 25233, - "folder": 25717, - "folding": 15464, - "folds": 24266, - "foley": 22850, - "foli": 7713, - "folia": 48964, - "foliage": 26350, - "folio": 10772, - "folk": 10665, - "folk": 6032, - "folke": 47190, - "folkl": 27273, - "folklore": 22133, - "folklore": 28620, - "folklorethursday": 23270, - "folks": 5422, - "follo": 41417, - "follow": 1964, - "follow": 1979, - "followart": 40957, - "followback": 33863, - "followed": 6499, - "follower": 17039, - "followers": 4856, - "following": 3473, - "followme": 29668, - "followparty": 44757, - "follows": 11287, - "followthe": 30747, - "folly": 41408, - "folsom": 42108, - "fom": 34540, - "fon": 5017, - "fon": 38318, - "fond": 19964, - "fonda": 44609, - "fondue": 48321, - "fone": 40672, - "font": 37610, - "font": 16248, - "fontaine": 37864, - "fontana": 43643, - "fontein": 45062, - "fonts": 32801, - "foo": 1183, - "foo": 23435, - "food": 4586, - "food": 1559, - "foodand": 38317, - "foodbank": 31926, - "foodie": 30762, - "foodie": 9847, - "foodies": 22416, - "foodnetwork": 46793, - "foods": 7057, - "foodsecurity": 49329, - "foodtruck": 47682, - "fool": 23959, - "fool": 12212, - "fooled": 28761, - "fooling": 47964, - "foolish": 33824, - "fools": 15946, - "foot": 6702, - "foot": 4738, - "footage": 11130, - "footb": 33466, - "football": 9376, - "football": 1882, - "footballer": 20646, - "footballers": 30269, - "footed": 38040, - "footh": 25951, - "foothills": 37020, - "footpath": 48858, - "footprint": 23206, - "footprints": 39640, - "footsteps": 27289, - "footwear": 22772, - "footy": 39866, - "footy": 18922, - "for": 645, - "for": 556, - "forage": 46871, - "foraging": 39056, - "forall": 17824, - "forbe": 49098, - "forbes": 13925, - "forbi": 24754, - "forbidden": 25164, - "force": 12068, - "force": 2869, - "forced": 8201, - "forces": 5381, - "forchange": 35848, - "forcing": 21573, - "ford": 3751, - "ford": 1623, - "fordfc": 28581, - "fordham": 48792, - "fords": 29351, - "fordshire": 14645, - "fore": 1484, - "fore": 1332, - "forec": 34155, - "forecast": 7361, - "forecasting": 38133, - "forecasts": 27696, - "foreclo": 44916, - "forefront": 37679, - "foreground": 35186, - "forehead": 25394, - "foreig": 26497, - "foreign": 42255, - "foreign": 6046, - "foreigners": 38549, - "foreman": 36174, - "foremost": 42128, - "foren": 16526, - "forensic": 23158, - "forensics": 38763, - "forest": 18760, - "forest": 4167, - "forestation": 33939, - "forestry": 26281, - "forests": 14095, - "forever": 14748, - "forever": 3225, - "forevery": 40605, - "forex": 40200, - "forex": 17395, - "forfe": 44871, - "forge": 19232, - "forged": 28105, - "forget": 46153, - "forget": 2678, - "forgets": 35613, - "forgetting": 25452, - "forgi": 22080, - "forgive": 15332, - "forgiven": 44894, - "forgiveness": 23585, - "forgood": 39169, - "forgot": 6483, - "forgotten": 7994, - "fork": 24501, - "fork": 13700, - "forkids": 48571, - "forklift": 43202, - "forks": 28769, - "forlife": 17624, - "form": 1157, - "form": 1907, - "forma": 38829, - "formal": 12978, - "formally": 24867, - "format": 16252, - "format": 11874, - "formation": 2510, - "formations": 37715, - "formative": 48882, - "formats": 32085, - "forme": 42085, - "formed": 6528, - "former": 2276, - "formerly": 20866, - "formid": 38599, - "formidable": 39834, - "forming": 15443, - "formity": 42290, - "forms": 5161, - "formu": 8689, - "formul": 23923, - "formula": 24485, - "formula": 10776, - "formulae": 34586, - "formulated": 45066, - "forre": 38876, - "forrest": 25205, - "forrester": 45338, - "forsa": 48958, - "forsale": 13303, - "forster": 42923, - "forsy": 29629, - "forsyth": 40952, - "fort": 12300, - "fort": 2921, - "forte": 44350, - "forte": 27367, - "forth": 17068, - "forth": 11932, - "forthcoming": 19989, - "forthe": 12521, - "forti": 26984, - "fortified": 46486, - "fortn": 14428, - "fortnight": 39235, - "fortnite": 38734, - "fortnite": 17890, - "fortress": 19988, - "fortun": 6950, - "fortunate": 19898, - "fortunately": 34358, - "fortune": 40931, - "fortune": 11451, - "fortunes": 41989, - "forty": 24399, - "forum": 37851, - "forum": 4538, - "forums": 31518, - "forwar": 34364, - "forward": 47031, - "forward": 2342, - "forwards": 38974, - "foryou": 35150, - "forz": 46056, - "forza": 33293, - "forza": 28089, - "fos": 36925, - "fos": 22081, - "foss": 14240, - "foss": 37911, - "fossil": 20419, - "fossil": 15202, - "fossilfriday": 26079, - "fossils": 30652, - "foster": 26778, - "foster": 8139, - "fostering": 35996, - "fosters": 37644, - "foto": 15908, - "foto": 12823, - "fotogra": 23687, - "fotografia": 40256, - "fotos": 26124, - "fou": 14516, - "fought": 10844, - "foul": 19784, - "foun": 3154, - "found": 3454, - "found": 1546, - "foundation": 4058, - "foundations": 25219, - "founded": 12240, - "founder": 5145, - "founders": 14602, - "founding": 15317, - "foundry": 31426, - "fountain": 44863, - "fountain": 13405, - "fountains": 37411, - "four": 5113, - "four": 2721, - "foursquare": 34484, - "fourteen": 46255, - "fourth": 7516, - "fourthofjuly": 47805, - "fow": 17084, - "fowl": 31685, - "fowler": 20980, - "fox": 5007, - "fox": 3240, - "foxandfriends": 45841, - "foxes": 24145, - "foxnews": 18830, - "foxsports": 39267, - "foxtv": 49396, - "foxx": 32993, - "foxy": 27945, - "foy": 30284, - "foyer": 38011, - "foyle": 47902, - "fp": 28058, - "fp": 8941, - "fpl": 27970, - "fpp": 36464, - "fps": 25300, - "fpv": 43175, - "fr": 936, - "fr": 5512, - "fra": 3368, - "fra": 15644, - "frac": 15607, - "fracking": 21894, - "fractal": 46471, - "fraction": 26788, - "fractu": 25847, - "fracture": 28995, - "fractured": 37421, - "fractures": 46213, - "frag": 13093, - "fragile": 23579, - "fragment": 39209, - "fragments": 41424, - "fragr": 15403, - "fragrance": 17874, - "fragrances": 44567, - "fragrant": 37030, - "fram": 27987, - "frame": 11029, - "frame": 6481, - "framed": 13135, - "frames": 15479, - "framework": 13195, - "frameworks": 43136, - "framing": 24539, - "frampton": 41733, - "fran": 2118, - "fran": 18878, - "franc": 3872, - "franc": 42340, - "franca": 48952, - "france": 12045, - "france": 3552, - "frances": 20803, - "francesca": 32327, - "francesco": 25816, - "franch": 11756, - "franchi": 46438, - "franchise": 13664, - "franci": 46458, - "francis": 22187, - "francis": 7660, - "francisco": 6887, - "franco": 17934, - "franco": 17052, - "francois": 29317, - "frank": 5390, - "frank": 5229, - "franken": 20487, - "franken": 48252, - "frankenstein": 26410, - "frankfur": 17442, - "frankfurt": 18598, - "franki": 39227, - "frankie": 38373, - "frankie": 16215, - "franklin": 40935, - "franklin": 9999, - "frankly": 38015, - "franks": 42855, - "frans": 47892, - "franz": 25449, - "franç": 38381, - "fraser": 39082, - "fraser": 16754, - "frat": 15225, - "frat": 39292, - "fraternity": 24433, - "frau": 23063, - "fraud": 40647, - "fraud": 9961, - "fraudul": 42655, - "fraudulent": 47408, - "fray": 41154, - "frazier": 32841, - "frc": 41507, - "fre": 821, - "fre": 43165, - "freak": 20352, - "freak": 13701, - "freaked": 43511, - "freakin": 23900, - "freaking": 11992, - "freaks": 27009, - "freaky": 31583, - "freck": 33328, - "freckles": 48036, - "fred": 9486, - "fred": 6678, - "freddie": 41890, - "freddie": 17014, - "freddy": 24394, - "freder": 10745, - "frederic": 41165, - "frederick": 37103, - "frederick": 18570, - "fredo": 48241, - "free": 2065, - "free": 1139, - "freebie": 35865, - "freebies": 28630, - "freec": 46569, - "freed": 12585, - "freed": 23392, - "freedom": 17992, - "freedom": 4511, - "freedoms": 32500, - "freef": 48678, - "freel": 14174, - "freelance": 21942, - "freely": 24436, - "freeman": 16450, - "freep": 32499, - "freepalestine": 39242, - "freer": 44676, - "frees": 27455, - "freestyle": 15594, - "freeway": 24927, - "freeze": 14187, - "freezer": 25390, - "freezing": 12499, - "frei": 30183, - "freight": 17023, - "fremantle": 48012, - "fremont": 34578, - "fren": 2919, - "french": 13118, - "french": 3461, - "frenzy": 30084, - "frequ": 9211, - "frequencies": 45319, - "frequency": 18825, - "frequent": 19836, - "frequently": 22434, - "fresco": 31609, - "fresh": 4065, - "fresh": 2975, - "fresher": 49284, - "freshers": 35810, - "freshest": 46809, - "freshly": 16081, - "freshman": 9381, - "freshmen": 21292, - "freshness": 45872, - "freshwater": 24803, - "fresno": 40879, - "fresno": 20995, - "fret": 40510, - "freud": 40787, - "frey": 22136, - "frey": 9082, - "fri": 815, - "fri": 6882, - "friars": 30513, - "fric": 18981, - "frick": 46304, - "friction": 38563, - "frid": 46388, - "frida": 36001, - "friday": 6350, - "friday": 1461, - "fridayfeeling": 11952, - "fridaymotivation": 38544, - "fridaynight": 44858, - "fridayreads": 37736, - "fridays": 15589, - "fridaythe": 47642, - "fridge": 13491, - "fridges": 40734, - "frie": 36999, - "fried": 13743, - "fried": 7310, - "friedman": 29402, - "friedrich": 34171, - "friend": 3017, - "friend": 1625, - "friendly": 44612, - "friendly": 4681, - "friends": 38875, - "friends": 1574, - "friendship": 42674, - "friendship": 7679, - "friendships": 28840, - "fries": 11369, - "frifotos": 40493, - "friger": 20785, - "friggin": 48300, - "frigh": 34831, - "fright": 24277, - "fright": 40207, - "frightened": 47136, - "frightening": 39290, - "fringe": 10640, - "fris": 37252, - "frisbee": 45768, - "frisco": 35945, - "frit": 34614, - "fritz": 29860, - "friyay": 38887, - "frm": 12951, - "fro": 626, - "fro": 26603, - "frock": 45306, - "frog": 26494, - "frog": 11438, - "frogs": 20781, - "from": 8330, - "from": 633, - "frome": 48691, - "fromhome": 41477, - "fromthe": 18756, - "fron": 1847, - "fron": 18036, - "front": 10996, - "front": 2184, - "frontal": 35794, - "frontier": 18253, - "frontiers": 38396, - "frontline": 29589, - "frontman": 36775, - "fronts": 26846, - "froome": 48560, - "frosh": 47069, - "frost": 39420, - "frost": 11619, - "frosted": 35988, - "frosting": 33872, - "frosty": 22760, - "froze": 47788, - "frozen": 42464, - "frozen": 8507, - "frs": 26216, - "fru": 3248, - "fruit": 16771, - "fruit": 5190, - "fruitful": 31494, - "fruits": 13282, - "fruity": 22320, - "frustr": 16046, - "frustrated": 25111, - "frustrating": 31342, - "frustration": 30535, - "fry": 33914, - "fry": 13686, - "fryer": 49217, - "frying": 38516, - "fs": 23699, - "fs": 3854, - "fsa": 33373, - "fsu": 44185, - "fsu": 19317, - "ft": 3391, - "ft": 981, - "fta": 41975, - "ftc": 33752, - "fted": 5612, - "fter": 25063, - "fthe": 22886, - "ftheday": 9823, - "fting": 6174, - "fton": 26605, - "ftp": 42649, - "fts": 3767, - "ftse": 46717, - "ftw": 19298, - "fty": 17494, - "fu": 665, - "fu": 9098, - "fuch": 42617, - "fudge": 24270, - "fue": 43723, - "fuego": 41500, - "fuel": 21113, - "fuel": 5945, - "fueled": 28792, - "fueling": 38793, - "fuelled": 48357, - "fuels": 19365, - "fuentes": 44393, - "fuer": 29645, - "fug": 29227, - "fugitive": 39257, - "fuji": 15573, - "fuji": 21634, - "fujifilm": 24765, - "fuk": 31051, - "fuku": 20728, - "fukushima": 33929, - "ful": 1814, - "ful": 857, - "fulbright": 41834, - "fulfill": 43675, - "fulfill": 27467, - "fulfilled": 29919, - "fulfilling": 30621, - "fulfillment": 45573, - "fulham": 25574, - "full": 9407, - "full": 1476, - "fuller": 20225, - "fullerton": 42822, - "fullest": 35603, - "fully": 39142, - "fully": 2401, - "fulness": 10526, - "fuls": 41606, - "fulton": 26725, - "fum": 38393, - "fumble": 49373, - "fun": 1229, - "fun": 1499, - "func": 8679, - "function": 8093, - "functional": 12885, - "functionality": 33316, - "functioning": 25479, - "functions": 18001, - "fund": 19089, - "fund": 4877, - "fundam": 11670, - "fundament": 18852, - "fundamental": 17627, - "fundamentally": 45378, - "fundamentals": 27887, - "funday": 15439, - "funded": 10588, - "funding": 5588, - "fundra": 6201, - "fundraiser": 10049, - "fundraising": 10755, - "funds": 7066, - "funer": 40693, - "funeral": 10606, - "funfact": 31596, - "funfactfriday": 40710, - "fungal": 38838, - "fungi": 27837, - "fungus": 30677, - "funk": 37353, - "funk": 13372, - "funko": 49402, - "funko": 23697, - "funky": 16492, - "funnel": 27862, - "funnier": 42232, - "funniest": 15557, - "funny": 19124, - "funny": 3789, - "funrun": 34185, - "fur": 2395, - "fur": 9686, - "furi": 40816, - "furious": 17522, - "furman": 49238, - "furn": 21348, - "furnace": 31913, - "furnished": 37388, - "furnitu": 45696, - "furniture": 7993, - "furry": 33414, - "furry": 15351, - "fursuit": 25306, - "fursuit": 43083, - "fursuitfriday": 27917, - "further": 5583, - "fury": 14404, - "fus": 18419, - "fuse": 23386, - "fused": 38994, - "fusion": 44661, - "fusion": 9364, - "fuss": 26331, - "fut": 21460, - "fut": 34049, - "futbol": 33014, - "futsal": 20558, - "futu": 33454, - "futur": 38840, - "future": 7959, - "future": 1904, - "futureof": 22599, - "futureofwork": 33202, - "futures": 13488, - "futuri": 19068, - "futurism": 48435, - "futurist": 48086, - "futuristic": 30987, - "fuzz": 47128, - "fuzz": 40443, - "fuzzy": 25876, - "fv": 29795, - "fw": 23934, - "fw": 5277, - "fwd": 27052, - "fx": 17807, - "fx": 9025, - "fy": 8440, - "fy": 2702, - "fyi": 16014, - "fying": 5294, - "fz": 46400, - "fé": 34072, - "g": 70, - "g": 326, - "ga": 1275, - "ga": 1531, - "gaa": 10715, - "gaal": 40867, - "gaard": 24645, - "gab": 3927, - "gab": 37382, - "gabbana": 36272, - "gabby": 48115, - "gabby": 24567, - "gabe": 18916, - "gabi": 41931, - "gable": 33387, - "gables": 40928, - "gabri": 8311, - "gabriel": 31684, - "gabriel": 13244, - "gabrielle": 33572, - "gaby": 46420, - "gac": 32520, - "gad": 7786, - "gad": 44651, - "gadget": 25525, - "gadgets": 22840, - "gado": 29489, - "gae": 22003, - "gael": 35663, - "gaelic": 31173, - "gaf": 21354, - "gaf": 32670, - "gag": 14121, - "gag": 18844, - "gaga": 9782, - "gage": 21081, - "gah": 27750, - "gai": 24214, - "gai": 25153, - "gaia": 41269, - "gail": 41160, - "gail": 27676, - "gain": 21536, - "gain": 6202, - "gaine": 35747, - "gained": 14489, - "gaines": 49225, - "gainesville": 40427, - "gaining": 15260, - "gains": 42751, - "gains": 12107, - "gal": 2001, - "gal": 4488, - "gala": 7211, - "galac": 18864, - "galactic": 25514, - "galap": 41115, - "galapagos": 44057, - "galat": 39853, - "galatasar": 42413, - "galatasaray": 47787, - "galax": 5647, - "galaxies": 32435, - "galaxy": 32130, - "galaxy": 6545, - "gale": 37658, - "gale": 21380, - "galerie": 44539, - "gales": 48633, - "gali": 17546, - "gali": 30552, - "galicia": 47927, - "galileo": 39671, - "gall": 3011, - "gall": 33374, - "galla": 16847, - "gallagher": 19168, - "galleria": 40656, - "galleries": 22304, - "gallery": 36648, - "gallery": 3830, - "galley": 48917, - "galli": 22568, - "gallipoli": 47249, - "gallo": 37350, - "gallo": 33265, - "gallon": 24615, - "gallons": 29335, - "galloway": 27796, - "galore": 22286, - "gals": 20125, - "galvani": 46046, - "galve": 34328, - "galveston": 36003, - "galway": 38045, - "galway": 17112, - "gam": 1162, - "gam": 34195, - "gama": 35873, - "gambia": 32988, - "gamble": 26121, - "gambling": 20287, - "game": 2882, - "game": 1063, - "gameart": 31490, - "gameboy": 40951, - "gamecube": 44079, - "gameday": 9241, - "gamedev": 7544, - "gameinsight": 42626, - "gameof": 10987, - "gameofthrones": 11822, - "gameon": 47691, - "gameplay": 16794, - "gamer": 12595, - "gamer": 11598, - "gamergate": 25961, - "gamers": 16166, - "gamersunite": 26423, - "games": 18551, - "games": 1955, - "gamescom": 37003, - "gamestop": 39436, - "gametime": 45899, - "gami": 42025, - "gamification": 48908, - "gaming": 28803, - "gaming": 4017, - "gamma": 22180, - "gamo": 39325, - "gan": 1822, - "gan": 1670, - "gand": 8399, - "ganda": 27261, - "gander": 44508, - "gandhi": 12322, - "ganesh": 30362, - "ganesha": 45185, - "gang": 8066, - "gang": 5674, - "ganga": 36275, - "gangnam": 46777, - "gangs": 29844, - "gangsta": 37365, - "gangster": 26514, - "gani": 48324, - "gann": 45665, - "gannon": 45837, - "gano": 25304, - "gao": 26556, - "gaon": 19279, - "gap": 29906, - "gap": 7609, - "gaps": 25296, - "gar": 1099, - "gar": 5824, - "gara": 28710, - "garage": 8474, - "garbage": 13760, - "garci": 44658, - "garcia": 10529, - "gard": 7751, - "gard": 21003, - "garda": 31906, - "garde": 22649, - "garden": 4674, - "garden": 2756, - "gardenchat": 46292, - "gardener": 28554, - "gardeners": 38205, - "gardening": 10483, - "gardens": 6152, - "gardiner": 43121, - "gardner": 18710, - "gare": 5633, - "gare": 48402, - "gareth": 37140, - "gareth": 18175, - "garfield": 26728, - "garh": 16762, - "gari": 40898, - "gari": 43080, - "garis": 37839, - "garland": 23418, - "garlic": 9685, - "garment": 31418, - "garments": 43341, - "garmin": 39885, - "garner": 20340, - "garnet": 37669, - "garo": 30388, - "garrett": 15881, - "garri": 21764, - "garrison": 30108, - "garros": 40425, - "garry": 24398, - "gars": 12055, - "gart": 18380, - "gart": 18751, - "garten": 14684, - "garter": 48420, - "garth": 45398, - "garth": 24469, - "gartner": 43334, - "gartner": 29678, - "garty": 46383, - "garu": 31140, - "garvey": 39511, - "garwal": 38623, - "gary": 10535, - "gary": 4516, - "garza": 49393, - "gas": 5047, - "gas": 2474, - "gases": 36971, - "gasoline": 27691, - "gasp": 43762, - "gaston": 40669, - "gastri": 49197, - "gastro": 23740, - "gastron": 30699, - "gastronomy": 46987, - "gat": 5314, - "gat": 18941, - "gata": 44575, - "gate": 8071, - "gate": 3302, - "gated": 23997, - "gates": 9472, - "gateshead": 40051, - "gateway": 45221, - "gateway": 14943, - "gather": 36345, - "gather": 12602, - "gathered": 14646, - "gathering": 9197, - "gatherings": 48096, - "gathers": 39250, - "gating": 27561, - "gation": 11095, - "gations": 33906, - "gato": 44492, - "gator": 20216, - "gator": 16390, - "gatorade": 36354, - "gators": 17173, - "gatory": 24796, - "gatsby": 32586, - "gatwick": 37122, - "gau": 5919, - "gau": 43068, - "gauge": 18728, - "gaunt": 31862, - "gauntlet": 37163, - "gautam": 45853, - "gautam": 31356, - "gauteng": 40333, - "gav": 8966, - "gave": 3485, - "gavin": 32974, - "gavin": 16389, - "gaw": 15405, - "gawd": 43239, - "gawx": 43420, - "gay": 7460, - "gay": 5627, - "gaya": 39477, - "gaye": 41401, - "gayle": 29998, - "gayo": 36768, - "gays": 28001, - "gaz": 4837, - "gaz": 36475, - "gaza": 38391, - "gaza": 10112, - "gazaunderattack": 42458, - "gaze": 23212, - "gazette": 20443, - "gazing": 28373, - "gb": 8727, - "gb": 4619, - "gba": 18528, - "gbbo": 34474, - "gbc": 42993, - "gbp": 27391, - "gbr": 31984, - "gby": 40509, - "gc": 8577, - "gc": 6043, - "gcc": 26804, - "gcse": 28763, - "gcu": 34137, - "gd": 13264, - "gd": 14604, - "gdc": 32793, - "gden": 44928, - "gdp": 17100, - "gdpr": 22963, - "ge": 619, - "ge": 710, - "gea": 26790, - "gear": 15532, - "gear": 4802, - "gearbox": 42454, - "geared": 33903, - "gearing": 19027, - "gears": 21147, - "geaux": 36313, - "gecko": 38616, - "ged": 17252, - "ged": 3480, - "geddon": 31720, - "gedly": 13991, - "gee": 9806, - "gee": 9071, - "geek": 17920, - "geek": 7135, - "geeks": 20110, - "geeky": 47332, - "geel": 25906, - "geelong": 34555, - "gees": 38088, - "geese": 26413, - "geez": 42394, - "geh": 30320, - "geist": 38290, - "gel": 7343, - "gel": 5697, - "gelato": 29577, - "gels": 42552, - "gely": 14637, - "gem": 14261, - "gem": 7613, - "gement": 19495, - "gemini": 23086, - "gemma": 23952, - "gems": 14355, - "gemstone": 27747, - "gemstones": 43972, - "gen": 1024, - "gen": 3278, - "gence": 16088, - "gency": 5245, - "gend": 33247, - "gender": 22976, - "gender": 5906, - "gendere": 35824, - "genderequality": 43338, - "gene": 5822, - "gene": 7962, - "genealo": 24142, - "genealogy": 29381, - "gener": 1832, - "general": 20576, - "general": 3658, - "generally": 19256, - "generals": 30296, - "generate": 16896, - "generated": 19450, - "generates": 33938, - "generating": 23882, - "generation": 41211, - "generation": 4883, - "generational": 34506, - "generations": 12247, - "generative": 29472, - "generator": 19399, - "generators": 41917, - "generic": 26978, - "generosity": 23015, - "generous": 12570, - "generously": 35113, - "genes": 19683, - "genesis": 13518, - "genetic": 47746, - "genetic": 13578, - "genetically": 36745, - "genetics": 18276, - "geneva": 14799, - "genevie": 41633, - "genevieve": 46584, - "geni": 22334, - "genic": 15750, - "genie": 24221, - "genital": 32960, - "genius": 8235, - "geniuses": 41406, - "geno": 41544, - "geno": 46776, - "genoa": 43993, - "genoci": 14687, - "genocide": 15903, - "genome": 23991, - "genomic": 44371, - "genomics": 26227, - "genre": 14249, - "genres": 30340, - "gens": 17449, - "gent": 3685, - "gent": 7139, - "gente": 34325, - "gentle": 7262, - "gentle": 13577, - "gentleman": 13293, - "gentlemen": 11692, - "gently": 17187, - "gento": 28320, - "gentri": 41148, - "gentry": 47225, - "gents": 18862, - "genu": 9182, - "genuine": 12184, - "genuinely": 20006, - "genus": 38161, - "geny": 35323, - "geo": 5038, - "geo": 11604, - "geocaching": 47908, - "geof": 20629, - "geoff": 33697, - "geoff": 20386, - "geoffrey": 29520, - "geograph": 45920, - "geographic": 22635, - "geographical": 39380, - "geography": 17101, - "geological": 38380, - "geology": 21578, - "geom": 46135, - "geome": 12958, - "geometric": 22419, - "geometry": 21731, - "geon": 20844, - "geon": 7295, - "geons": 15914, - "geopol": 39758, - "geor": 2549, - "georg": 43126, - "george": 8377, - "george": 3296, - "georges": 25042, - "georgetown": 22970, - "georgie": 42115, - "georgina": 43892, - "geospatial": 46238, - "geothermal": 38413, - "geous": 3068, - "ger": 1291, - "ger": 1502, - "gera": 48867, - "gerald": 29901, - "gerald": 13269, - "gerard": 35979, - "gerard": 20826, - "gerber": 45058, - "gered": 40179, - "geri": 41664, - "geri": 46214, - "gering": 24077, - "germain": 38786, - "german": 14972, - "german": 4710, - "germans": 28400, - "germany": 4464, - "germin": 44721, - "germs": 47731, - "geronimo": 45171, - "gerrard": 26538, - "gerry": 29825, - "gerry": 23026, - "gers": 3314, - "gertrude": 46950, - "gervais": 36527, - "gery": 32845, - "ges": 3316, - "gest": 11843, - "gest": 2033, - "gesture": 21780, - "gestures": 43524, - "get": 5670, - "get": 779, - "geta": 13155, - "getaway": 16131, - "gether": 27224, - "getic": 20661, - "getin": 25822, - "getit": 44891, - "getit": 48315, - "getoutside": 35644, - "gets": 39448, - "gets": 2127, - "gett": 6647, - "gett": 27965, - "gettable": 15620, - "gette": 29800, - "gettin": 13428, - "getting": 30885, - "getting": 1500, - "getty": 31185, - "getty": 13965, - "gettys": 35189, - "gettysburg": 37062, - "getyour": 42159, - "gey": 29289, - "gf": 28953, - "gf": 10846, - "gfriend": 35245, - "gfs": 37553, - "gg": 1129, - "gg": 3286, - "gga": 26003, - "ggan": 25626, - "gge": 21521, - "gge": 31659, - "gged": 6095, - "gger": 12367, - "gger": 3493, - "ggers": 7480, - "ggg": 20143, - "gggg": 33513, - "ggi": 21662, - "ggin": 17160, - "gging": 4966, - "ggins": 12444, - "ggle": 34981, - "ggle": 11430, - "ggled": 46328, - "ggles": 14703, - "ggling": 16523, - "ggly": 39407, - "ggs": 4797, - "ggy": 24935, - "ggy": 6476, - "gh": 583, - "gh": 790, - "gha": 10010, - "gha": 25183, - "gham": 21456, - "ghan": 18945, - "ghan": 6624, - "ghana": 30330, - "ghana": 9731, - "ghanaian": 34223, - "ghani": 36699, - "ghar": 37334, - "ghar": 36973, - "ghat": 43989, - "ghaz": 37493, - "ghc": 42139, - "ghe": 10754, - "ghe": 28561, - "ghead": 40783, - "ghee": 34794, - "gher": 21542, - "gher": 14796, - "ghet": 18447, - "ghetti": 17485, - "ghetto": 22403, - "ghi": 22436, - "ghi": 22279, - "ghibli": 40555, - "ghj": 38439, - "ghlin": 24131, - "gho": 4307, - "ghorn": 38094, - "ghosh": 43279, - "ghoshal": 49134, - "ghost": 11417, - "ghost": 7108, - "ghostbusters": 25462, - "ghostly": 44901, - "ghosts": 16737, - "ghou": 35843, - "ghoul": 45302, - "ghouse": 38238, - "ghs": 14157, - "ght": 1413, - "ght": 630, - "ghted": 4963, - "ghter": 2427, - "ghters": 12994, - "ghtful": 8334, - "ghting": 3019, - "ghtly": 6993, - "ghtning": 39740, - "ghton": 16353, - "ghts": 1259, - "ghty": 20968, - "ghty": 5866, - "ghu": 25808, - "ghue": 45675, - "ghyun": 25010, - "ghz": 24325, - "gi": 707, - "gi": 4478, - "gia": 8864, - "giac": 35444, - "giam": 39623, - "gian": 17274, - "gian": 12866, - "gianni": 46752, - "giant": 23668, - "giant": 4687, - "giants": 7076, - "giar": 34241, - "gib": 9816, - "gibb": 18964, - "gibbons": 31974, - "gibbs": 26488, - "gibility": 33297, - "gible": 13159, - "gibr": 20206, - "gibraltar": 23988, - "gibson": 37420, - "gibson": 12178, - "gic": 27900, - "gic": 2570, - "gical": 32973, - "gically": 26320, - "gid": 36774, - "gid": 21413, - "giddy": 40894, - "gideon": 43867, - "gidi": 30603, - "gie": 11459, - "gie": 3991, - "gier": 28974, - "gies": 5505, - "gif": 11363, - "gif": 11677, - "gifford": 47850, - "gifs": 37643, - "gift": 20569, - "gift": 2733, - "gifted": 15110, - "giftide": 20152, - "giftideas": 23487, - "gifting": 39546, - "gifts": 5836, - "gig": 26981, - "gig": 7471, - "gigab": 34530, - "gigan": 24104, - "gigantic": 31507, - "giggle": 36426, - "giggles": 42731, - "giggs": 44692, - "gigi": 44106, - "gigi": 26171, - "gigs": 20316, - "gil": 3997, - "gil": 10088, - "gila": 46952, - "gilbert": 14154, - "gilded": 44341, - "giles": 24802, - "gill": 14280, - "gill": 12003, - "gille": 29610, - "gilles": 39590, - "gillespie": 36242, - "gillette": 38603, - "gilli": 13695, - "gillian": 28753, - "gills": 48851, - "gilmore": 27603, - "gilt": 44378, - "gim": 31284, - "gimm": 40692, - "gimme": 21525, - "gin": 3374, - "gin": 4941, - "gina": 15604, - "gine": 27482, - "ging": 10829, - "ging": 3905, - "ginger": 16287, - "ginger": 9718, - "gingerbread": 23692, - "gini": 35768, - "gino": 36521, - "gins": 18328, - "gio": 16329, - "gio": 8050, - "gion": 41226, - "gior": 14920, - "giorgio": 33271, - "giorno": 33310, - "gios": 41927, - "gious": 14419, - "giov": 21404, - "giovanni": 26574, - "gipp": 41351, - "gir": 1077, - "gir": 25481, - "gira": 16949, - "giraffe": 22826, - "giri": 31709, - "girl": 3914, - "girl": 1611, - "girlfriend": 8217, - "girlfriends": 30736, - "girlpower": 37433, - "girls": 15480, - "girls": 1917, - "girly": 29605, - "giro": 39664, - "giro": 26454, - "girona": 47842, - "giroud": 41177, - "gis": 16266, - "gis": 12773, - "gist": 21241, - "git": 16060, - "git": 20918, - "gita": 40838, - "github": 31196, - "giu": 17931, - "giuli": 29762, - "giuliani": 47739, - "giuse": 29385, - "giuseppe": 33563, - "give": 4120, - "give": 1781, - "giveaway": 5310, - "giveaways": 18974, - "giveback": 41385, - "given": 33323, - "given": 4302, - "givenchy": 38245, - "giver": 43339, - "gives": 3926, - "giveup": 35485, - "giving": 14673, - "giving": 2339, - "givingback": 49300, - "givingtuesday": 23556, - "giz": 29237, - "gk": 38953, - "gk": 18719, - "gl": 1849, - "gl": 14751, - "gla": 1523, - "gla": 36904, - "glaci": 14924, - "glacial": 40782, - "glacier": 19282, - "glaciers": 42528, - "glad": 20841, - "glad": 4761, - "glades": 37432, - "gladi": 21742, - "gladiator": 38477, - "gladiators": 41087, - "gladly": 41598, - "gladys": 43168, - "glam": 8738, - "glam": 16905, - "glamorous": 22896, - "glamour": 42876, - "glamour": 17499, - "glamping": 46167, - "glan": 40482, - "glan": 45844, - "glance": 26557, - "gland": 41441, - "glar": 48535, - "glar": 41702, - "glare": 46035, - "glas": 29935, - "glas": 43654, - "glasgo": 6757, - "glasgow": 29990, - "glasgow": 7363, - "glass": 16305, - "glass": 3313, - "glasses": 6116, - "glaston": 26848, - "glastonbury": 28233, - "glau": 39171, - "glaze": 28112, - "glazed": 24122, - "gle": 7166, - "gle": 2865, - "glee": 32379, - "glee": 21614, - "glen": 6158, - "glen": 11049, - "glend": 38332, - "glendale": 33043, - "glenn": 32004, - "glenn": 12861, - "gler": 34649, - "gley": 21998, - "gli": 5896, - "gli": 28791, - "glia": 22217, - "glide": 37321, - "glider": 41636, - "glimp": 12888, - "glimpse": 13817, - "glio": 29785, - "glit": 21079, - "glitch": 29563, - "glitter": 16528, - "glitz": 44542, - "glo": 1721, - "glo": 30474, - "glob": 13363, - "global": 6707, - "global": 2779, - "globalgoals": 33211, - "globalhealth": 46751, - "globalization": 47680, - "globally": 17775, - "globalwarming": 46017, - "globe": 19436, - "globe": 9368, - "globes": 38085, - "glock": 38818, - "glomer": 43689, - "gloom": 48594, - "gloomy": 32199, - "glori": 7270, - "gloria": 19244, - "glorious": 9171, - "glory": 36107, - "glory": 7285, - "glos": 40633, - "gloss": 38258, - "gloss": 22014, - "glossy": 29802, - "glou": 15989, - "gloucester": 28133, - "gloucester": 23835, - "gloucestershire": 33789, - "glove": 16078, - "glover": 21594, - "gloves": 12363, - "glow": 30472, - "glow": 10111, - "glowing": 18437, - "glows": 48107, - "glu": 5952, - "glu": 32281, - "glucose": 34642, - "glue": 22103, - "glued": 38135, - "gluten": 15482, - "gluten": 15524, - "glutenfree": 16138, - "gly": 13027, - "glycer": 48914, - "gm": 18743, - "gm": 5918, - "gma": 18155, - "gmail": 11119, - "gman": 41043, - "gman": 36936, - "gmb": 35934, - "gmb": 31799, - "gmbh": 46877, - "gmc": 27257, - "gmo": 23486, - "gms": 36987, - "gmt": 13803, - "gn": 2455, - "gn": 9831, - "gna": 23009, - "gnation": 45912, - "gne": 25407, - "gni": 5104, - "gnment": 25110, - "gno": 23376, - "gno": 43686, - "gnocchi": 48299, - "gnome": 33643, - "gnon": 20561, - "go": 650, - "go": 861, - "goa": 14399, - "goal": 9003, - "goal": 3321, - "goalie": 20723, - "goalkeeper": 16601, - "goals": 3295, - "goalscorer": 43547, - "goaltender": 44151, - "goat": 34082, - "goat": 9530, - "goats": 18393, - "gob": 29559, - "gobeavs": 48285, - "goblin": 26223, - "goblue": 25232, - "gobucks": 29175, - "gocougs": 34202, - "god": 4190, - "god": 1731, - "godawgs": 40436, - "godbless": 46616, - "godbless": 44007, - "godd": 16589, - "goddamn": 28495, - "goddard": 37827, - "goddess": 10808, - "godfather": 26222, - "godfrey": 40148, - "godis": 38521, - "godly": 42438, - "gods": 33620, - "gods": 10328, - "goducks": 35889, - "godzilla": 23369, - "goe": 22084, - "goers": 27784, - "goes": 43581, - "goes": 2635, - "gof": 17537, - "goff": 34399, - "goftheday": 39360, - "gofund": 34445, - "gofundme": 34686, - "gog": 42949, - "goggles": 31027, - "gogh": 19697, - "gogo": 22688, - "gogreen": 36279, - "gohawks": 34884, - "goi": 24917, - "goin": 13939, - "going": 25787, - "going": 1245, - "goku": 29550, - "gol": 1537, - "gol": 18257, - "gola": 41090, - "gold": 4999, - "gold": 2209, - "goldberg": 25161, - "goldcoast": 34634, - "golden": 10763, - "golden": 3878, - "goldeng": 20650, - "goldenglobes": 26842, - "goldfish": 40293, - "goldie": 42805, - "goldman": 27164, - "golds": 30526, - "golds": 40283, - "goldsmith": 40214, - "gole": 41297, - "golf": 9096, - "golf": 3096, - "golfclub": 45742, - "golfer": 24579, - "golfers": 28441, - "golfing": 31379, - "goli": 29265, - "goliath": 41602, - "gom": 7051, - "goma": 46198, - "gomes": 39128, - "gomez": 16433, - "gon": 1854, - "gon": 3379, - "gona": 34835, - "gone": 35135, - "gone": 3601, - "gong": 28486, - "gonna": 2562, - "gonz": 10587, - "gonzaga": 36241, - "gonzale": 17512, - "gonzales": 31265, - "gonzalez": 18198, - "goo": 1381, - "goo": 17882, - "good": 2185, - "good": 886, - "goodbye": 6968, - "goodday": 46284, - "goode": 42076, - "goodfood": 46844, - "goodfriday": 40360, - "goodie": 29213, - "goodies": 13308, - "goodluck": 19718, - "goodman": 24146, - "goodmorning": 14421, - "goodness": 10531, - "goodnight": 8540, - "goodreads": 31629, - "goods": 9340, - "goodtimes": 22570, - "goodvibes": 43146, - "goodwill": 24902, - "goodwin": 28080, - "goodwood": 30008, - "goody": 35937, - "goodyear": 42858, - "goofy": 26879, - "goog": 18581, - "google": 12195, - "google": 3460, - "googled": 40345, - "googleplay": 37309, - "goon": 15267, - "goons": 30440, - "goooo": 35876, - "goooo": 48957, - "goose": 21445, - "goose": 13822, - "goosebumps": 32254, - "gop": 18942, - "gop": 6250, - "gopack": 46995, - "gopackgo": 47719, - "gopal": 47268, - "gopdebate": 39806, - "gopher": 47750, - "gopher": 48905, - "gophers": 31957, - "gopro": 17511, - "gor": 1747, - "gor": 29827, - "gordo": 47707, - "gordon": 20485, - "gordon": 8244, - "gore": 30311, - "gore": 17872, - "gorg": 46815, - "gorge": 35548, - "gorge": 20038, - "gorgeous": 3241, - "gori": 12461, - "goria": 43359, - "gorilla": 37910, - "gorilla": 21994, - "gorman": 35741, - "goro": 44977, - "gory": 7160, - "gos": 20517, - "gos": 5693, - "gosh": 15395, - "gosling": 35320, - "gosp": 9617, - "gospel": 11313, - "goss": 39734, - "goss": 36924, - "gossi": 15684, - "gossip": 18963, - "got": 10125, - "got": 1005, - "gota": 36693, - "gotcha": 43275, - "gote": 49345, - "goth": 48465, - "goth": 20437, - "gotham": 46123, - "gotham": 18299, - "gothic": 15426, - "goti": 9497, - "goto": 39715, - "gots": 35215, - "gott": 5089, - "gott": 36466, - "gotta": 4633, - "gotten": 5889, - "gotti": 41881, - "gotv": 36089, - "gou": 10520, - "gou": 36555, - "gouache": 43314, - "goul": 33187, - "gould": 31087, - "gour": 13580, - "gourmet": 19111, - "gov": 4022, - "gov": 4564, - "gove": 36997, - "govegan": 38886, - "gover": 10471, - "gover": 16759, - "govern": 2351, - "govern": 32404, - "governance": 13386, - "governing": 30946, - "government": 3149, - "governmental": 42609, - "governments": 19582, - "governor": 17459, - "governor": 6630, - "governors": 26881, - "govin": 42451, - "govt": 5345, - "govuk": 28830, - "gow": 21885, - "gow": 33788, - "gowan": 31307, - "gower": 43448, - "gown": 13719, - "gowns": 38029, - "goyal": 35105, - "gp": 19329, - "gp": 5051, - "gpa": 24098, - "gps": 13639, - "gpu": 38561, - "gq": 40286, - "gq": 31324, - "gr": 709, - "gr": 6062, - "gra": 782, - "gra": 15276, - "grab": 4646, - "grabbed": 22856, - "grabbing": 26440, - "grabs": 17076, - "grac": 11323, - "grace": 13225, - "grace": 5142, - "graced": 31894, - "graceful": 25242, - "graces": 38629, - "graci": 11174, - "gracias": 16463, - "gracie": 23235, - "gracing": 37263, - "gracious": 29044, - "grad": 19869, - "grad": 7291, - "gradable": 41529, - "grade": 45435, - "grade": 3394, - "graded": 13823, - "grader": 23930, - "graders": 10930, - "grades": 10838, - "gradient": 36885, - "grading": 19016, - "grads": 17811, - "gradu": 3230, - "gradual": 45210, - "gradually": 32192, - "graduate": 6675, - "graduated": 15128, - "graduates": 12236, - "graduating": 14819, - "graduation": 8060, - "grady": 33980, - "graeme": 30192, - "graf": 46478, - "graf": 39765, - "graff": 10656, - "graffiti": 11676, - "graft": 32698, - "grafton": 47347, - "graham": 19805, - "graham": 7711, - "grail": 37184, - "grain": 44003, - "grain": 12109, - "grains": 25791, - "gral": 25631, - "gram": 2949, - "gram": 2338, - "grammar": 16077, - "grammy": 15388, - "grammys": 18121, - "grams": 6294, - "gran": 3892, - "gran": 14493, - "granada": 31172, - "grand": 3058, - "grand": 2991, - "grandad": 29148, - "grandchildren": 36856, - "granddaughter": 29460, - "grande": 37514, - "grande": 10757, - "grandes": 36382, - "grandfather": 15346, - "grandma": 10525, - "grandmother": 17469, - "grandpa": 14582, - "grandparents": 21311, - "grandprix": 39358, - "grandson": 20766, - "grandstand": 43172, - "grange": 45027, - "grange": 23850, - "granger": 42968, - "granite": 18813, - "grann": 45585, - "granny": 22710, - "granola": 34271, - "grant": 18682, - "grant": 5442, - "granted": 14156, - "granth": 41283, - "grants": 15123, - "grape": 19131, - "grape": 15959, - "grapefruit": 28347, - "grapes": 18580, - "grapevine": 47619, - "graph": 1349, - "graph": 4407, - "graphene": 38387, - "grapher": 14987, - "graphers": 32088, - "graphic": 15653, - "graphic": 4245, - "graphical": 20878, - "graphicdesign": 21907, - "graphics": 9492, - "graphies": 40164, - "graphite": 29447, - "graphs": 24670, - "graphy": 4897, - "grapp": 30843, - "gras": 31517, - "gras": 17584, - "grasp": 34975, - "grass": 11584, - "grass": 5922, - "grasses": 46807, - "grasshopper": 48894, - "grassi": 42294, - "grasso": 34808, - "grassroots": 21991, - "grassy": 44140, - "grat": 9221, - "grate": 32463, - "grateful": 45659, - "grateful": 5730, - "grati": 36402, - "gratis": 33638, - "gratitude": 12614, - "grav": 20663, - "grave": 16606, - "grave": 9981, - "gravel": 27054, - "graves": 17665, - "graveyard": 31176, - "gravit": 26150, - "gravitational": 45268, - "gravity": 47426, - "gravity": 15160, - "gravy": 21225, - "gray": 12703, - "gray": 7048, - "grays": 46848, - "grayson": 45831, - "grayson": 25471, - "grazi": 42427, - "grazie": 38698, - "grazing": 29889, - "grc": 44069, - "gre": 689, - "gre": 17878, - "grease": 24132, - "greasy": 44376, - "great": 3265, - "great": 830, - "greate": 31930, - "greater": 32725, - "greater": 7033, - "greatest": 39080, - "greatest": 4153, - "greatly": 13978, - "greatness": 14189, - "greats": 21855, - "greaves": 42350, - "greco": 39103, - "gree": 9987, - "gree": 30774, - "greece": 6965, - "greed": 26147, - "greedy": 33301, - "greek": 23844, - "greek": 6842, - "greeks": 35866, - "green": 2762, - "green": 1901, - "greenberg": 46662, - "greene": 16383, - "greener": 31169, - "greenery": 42493, - "greenfield": 39924, - "greeng": 42077, - "greenhouse": 20819, - "greening": 48673, - "greenland": 27345, - "greenpeace": 44755, - "greens": 10235, - "greensboro": 33436, - "greenville": 25156, - "greenway": 35205, - "greenwich": 18658, - "greenwood": 25782, - "greer": 34345, - "greet": 11042, - "greet": 11997, - "greeted": 24546, - "greeting": 17754, - "greetings": 11569, - "greets": 25464, - "greg": 6894, - "greg": 7943, - "gregation": 20131, - "gregg": 39422, - "gregg": 22929, - "gregor": 33856, - "gregor": 16177, - "gregory": 16253, - "gren": 13941, - "gren": 20119, - "grenade": 33679, - "grenfell": 42107, - "gres": 39670, - "gress": 2752, - "gret": 30041, - "greta": 33443, - "gretchen": 45516, - "grette": 38774, - "grew": 10451, - "grey": 9190, - "grey": 5046, - "greyhound": 27363, - "greyhounds": 45718, - "greys": 44311, - "greysanatomy": 36833, - "gri": 2169, - "gri": 18484, - "grid": 29067, - "grid": 9882, - "gridi": 41063, - "gridiron": 47786, - "grids": 46500, - "grief": 21058, - "grier": 22016, - "griev": 36400, - "grieving": 42383, - "griez": 47962, - "griezmann": 48396, - "griff": 17855, - "griff": 35551, - "griffi": 28676, - "griffin": 46612, - "griffin": 13161, - "griffith": 24375, - "griffiths": 34182, - "gril": 49091, - "grill": 44083, - "grill": 9519, - "grille": 34748, - "grilled": 10691, - "grilling": 28324, - "grills": 39464, - "grim": 20383, - "grim": 23635, - "grime": 37101, - "grimes": 25057, - "grimm": 27865, - "grims": 34861, - "grimsby": 41513, - "grin": 11033, - "grin": 28697, - "grinch": 40527, - "grind": 25730, - "grind": 11810, - "grinder": 31733, - "grinding": 21541, - "gring": 40135, - "grip": 15521, - "gripping": 34567, - "grips": 27819, - "gris": 29150, - "grit": 22037, - "grit": 22087, - "grits": 44307, - "gritty": 33704, - "grizz": 14877, - "grizz": 44088, - "grizzlies": 25594, - "grizzly": 29676, - "grl": 48005, - "gro": 1464, - "gro": 12691, - "grocer": 11633, - "groceries": 32409, - "grocery": 13826, - "grom": 45284, - "gron": 22345, - "groningen": 45639, - "groo": 9015, - "groom": 39883, - "groom": 22813, - "grooming": 25575, - "groot": 37708, - "groove": 39484, - "groove": 17680, - "grooves": 43954, - "groovy": 30143, - "gros": 26834, - "gros": 32639, - "gross": 31080, - "gross": 11541, - "grosven": 46911, - "grote": 47207, - "grotto": 45260, - "grou": 1582, - "groun": 45110, - "ground": 9558, - "ground": 2461, - "groundbreaking": 21006, - "grounded": 27799, - "grounds": 8454, - "groundwater": 39457, - "group": 19045, - "group": 1771, - "groupe": 47654, - "groups": 6776, - "grouse": 36327, - "grove": 31756, - "grove": 7463, - "grover": 31345, - "groves": 27306, - "grow": 3179, - "grow": 4559, - "grower": 44925, - "growers": 25689, - "growing": 28429, - "growing": 4425, - "growingup": 43433, - "growler": 47096, - "grown": 41762, - "grown": 7120, - "grows": 13352, - "growth": 17925, - "growth": 4026, - "growthhacking": 25963, - "grp": 27321, - "grt": 28557, - "gru": 5957, - "grub": 34019, - "grue": 42047, - "gruesome": 47111, - "grum": 45454, - "grump": 49015, - "grumpy": 23610, - "grun": 16203, - "grunge": 33745, - "gry": 16140, - "gry": 5364, - "gs": 25818, - "gs": 1345, - "gsa": 40433, - "gsc": 47751, - "gshore": 43392, - "gsm": 32181, - "gsp": 49173, - "gst": 22239, - "gt": 16151, - "gt": 4725, - "gta": 14826, - "gta": 15338, - "gtaonline": 27292, - "gtav": 27283, - "gti": 39954, - "gto": 39071, - "gtr": 33407, - "gts": 37338, - "gtx": 35230, - "gu": 700, - "gu": 12916, - "gua": 23751, - "guacam": 37477, - "guacamole": 40115, - "guad": 22966, - "guadal": 46097, - "guadalu": 36994, - "guadalupe": 38360, - "guam": 37325, - "guan": 44191, - "guan": 42406, - "guang": 27019, - "guangzhou": 37857, - "guar": 4119, - "guaran": 9242, - "guarantee": 17421, - "guaranteed": 14731, - "guarantees": 40154, - "guard": 30776, - "guard": 4901, - "guarded": 40602, - "guardi": 12008, - "guardia": 43628, - "guardian": 23713, - "guardian": 9498, - "guardians": 21479, - "guarding": 24966, - "guardiola": 32100, - "guards": 12810, - "guatem": 19423, - "guatemala": 21670, - "guay": 48591, - "guay": 24247, - "gubernat": 41400, - "gubernatorial": 41618, - "gucci": 16779, - "gud": 48061, - "gud": 22378, - "gue": 2030, - "gue": 2917, - "gued": 38893, - "guel": 23146, - "guelph": 27660, - "guer": 10391, - "guern": 29277, - "guernsey": 33982, - "guerra": 38215, - "guerrero": 31967, - "guerrilla": 36715, - "gues": 39971, - "gues": 12601, - "guess": 35506, - "guess": 3135, - "guessed": 28005, - "guesses": 30623, - "guessing": 21891, - "guest": 27349, - "guest": 3781, - "guests": 6212, - "guet": 36797, - "guetta": 45904, - "guez": 12313, - "gug": 31358, - "guggen": 35086, - "guggenheim": 37135, - "gui": 2587, - "gui": 25746, - "guid": 11437, - "guidance": 12508, - "guide": 21845, - "guide": 3555, - "guided": 13194, - "guidelines": 16591, - "guides": 14375, - "guiding": 22759, - "guido": 41818, - "guil": 5008, - "guild": 19755, - "guild": 16597, - "guildford": 34450, - "guildhall": 47224, - "guillau": 41123, - "guillaume": 45394, - "guiller": 33660, - "guillermo": 39524, - "guilt": 26354, - "guilty": 9761, - "guin": 13284, - "guin": 47863, - "guine": 13759, - "guinea": 18537, - "guinness": 16648, - "guire": 18209, - "guise": 42024, - "guit": 3759, - "guitar": 21746, - "guitar": 5084, - "guitarist": 13035, - "guitars": 15023, - "guj": 34935, - "gujar": 12698, - "gujarat": 14714, - "guk": 20280, - "gul": 5530, - "gul": 21350, - "gula": 27426, - "gular": 34969, - "gulf": 22101, - "gulf": 11279, - "gull": 48764, - "gull": 28778, - "gulls": 37501, - "gully": 46112, - "gum": 22041, - "gum": 11235, - "gumb": 40147, - "gumbo": 47126, - "gummy": 34276, - "gums": 46609, - "gun": 2748, - "gun": 3496, - "guna": 43333, - "gundam": 26087, - "gundy": 21162, - "gunman": 32743, - "gunmen": 44738, - "gunn": 27473, - "gunna": 24002, - "gunnar": 45301, - "gunner": 35285, - "gunners": 37788, - "guns": 7591, - "gunsense": 44781, - "gunshot": 49250, - "gunsn": 49028, - "gup": 38632, - "gup": 47335, - "gupta": 15905, - "gur": 3218, - "gur": 30224, - "gura": 46836, - "gurgaon": 33240, - "guri": 43888, - "gurl": 25445, - "gurmee": 35482, - "gurmeetramrahim": 36549, - "guru": 18629, - "guru": 10800, - "gurudev": 48647, - "gus": 8018, - "gust": 24629, - "gusta": 23024, - "gusta": 44196, - "gustav": 32062, - "gustav": 37921, - "gustave": 43170, - "gustavo": 45943, - "gusto": 37937, - "gusts": 20896, - "gusty": 27589, - "gut": 24780, - "gut": 13486, - "guter": 44963, - "guterres": 48738, - "guth": 31696, - "guthrie": 33164, - "gutier": 32773, - "gutierrez": 33739, - "guts": 25983, - "gutted": 26524, - "gutter": 40537, - "guwa": 43063, - "guwahati": 45045, - "guy": 10008, - "guy": 2149, - "guyana": 45215, - "guyen": 28031, - "guys": 43588, - "guys": 1791, - "guyz": 48170, - "guzman": 37960, - "gv": 15462, - "gv": 17336, - "gw": 7172, - "gw": 15717, - "gwen": 32165, - "gwen": 24182, - "gwin": 43005, - "gwy": 32226, - "gwyne": 36923, - "gx": 40227, - "gy": 2168, - "gy": 1164, - "gya": 43214, - "gyan": 43814, - "gye": 21728, - "gyllen": 49348, - "gym": 9902, - "gym": 5222, - "gymna": 13517, - "gymnasium": 42847, - "gymnast": 42658, - "gymnastics": 20116, - "gyn": 39603, - "gyne": 45836, - "gyp": 40053, - "gypsy": 22354, - "gypt": 41921, - "gz": 45937, - "gz": 35841, - "gö": 40778, - "gü": 31907, - "h": 71, - "h": 327, - "ha": 560, - "ha": 1429, - "haa": 26814, - "haal": 35869, - "haan": 36284, - "haar": 45247, - "haar": 35859, - "haas": 27443, - "haasan": 26601, - "hab": 20573, - "hab": 20002, - "haban": 46225, - "haber": 44737, - "habit": 8491, - "habit": 17215, - "habitat": 11747, - "habitats": 35344, - "habits": 14540, - "habs": 27489, - "hac": 20343, - "hace": 43623, - "haci": 40674, - "hack": 6610, - "hack": 11182, - "hackathon": 25182, - "hacked": 19575, - "hacker": 22376, - "hackers": 21498, - "hacking": 12939, - "hackney": 48811, - "hackney": 24928, - "hacks": 19965, - "had": 10660, - "had": 1100, - "hadi": 39058, - "hadid": 26415, - "hadith": 46907, - "hadley": 44995, - "hadn": 21480, - "hadoop": 43868, - "hae": 30723, - "hae": 27193, - "hafi": 39914, - "hag": 26855, - "hag": 43207, - "hagan": 47489, - "hagen": 14664, - "hager": 48773, - "hagg": 26324, - "hague": 28988, - "hah": 18108, - "hah": 13680, - "haha": 1913, - "haha": 3060, - "hahah": 27253, - "hahah": 15441, - "hahaha": 4722, - "hahahah": 37513, - "hahahah": 20096, - "hahahaha": 8058, - "hahahaha": 9501, - "hahahahah": 33334, - "hahahahaha": 16347, - "hahahahahaha": 26487, - "hahahahahahaha": 43653, - "hahahahahahahaha": 36126, - "hahahha": 49205, - "hahn": 35596, - "hai": 8734, - "hai": 5234, - "haider": 42200, - "haiku": 19542, - "hail": 15272, - "hail": 8634, - "hailed": 44604, - "hailey": 27703, - "hailing": 47288, - "hails": 32571, - "hailstate": 35063, - "hain": 23861, - "hair": 4658, - "hair": 2225, - "haircare": 43682, - "haircut": 14711, - "hairdresser": 47468, - "haired": 27202, - "hairs": 27951, - "hairstyle": 22324, - "hairstyles": 40627, - "hairy": 26513, - "haiti": 17368, - "haitian": 37577, - "haj": 27885, - "haj": 43191, - "haji": 41889, - "hajj": 35576, - "hak": 25142, - "hak": 40671, - "haka": 44011, - "hake": 41663, - "hal": 1296, - "hal": 8708, - "hala": 25918, - "halal": 34216, - "halam": 29061, - "halamadrid": 31132, - "halder": 32201, - "hale": 37038, - "hale": 14701, - "halen": 39204, - "halep": 49017, - "haley": 37330, - "haley": 16839, - "half": 7453, - "half": 2349, - "halftime": 13742, - "halfway": 16736, - "hali": 9860, - "hali": 43030, - "halibut": 49030, - "halifax": 13411, - "hall": 6850, - "hall": 2140, - "halla": 29569, - "halle": 27763, - "halle": 32239, - "hallelujah": 36993, - "halli": 32665, - "hallmark": 31040, - "hallmark": 32053, - "hallmarkchannel": 36840, - "hallo": 3463, - "halloffame": 48578, - "halloween": 28537, - "halloween": 3739, - "halls": 18052, - "hallucin": 35385, - "hallway": 26845, - "halo": 33331, - "halo": 11918, - "halsey": 34256, - "halt": 25640, - "halter": 47194, - "halton": 45445, - "ham": 1522, - "ham": 1714, - "hama": 17944, - "hamas": 14818, - "hamburg": 18409, - "hamburger": 33928, - "hamid": 32377, - "hamil": 6725, - "hamill": 45784, - "hamill": 48729, - "hamillhimself": 47324, - "hamilton": 22448, - "hamilton": 7684, - "hamlet": 27722, - "hamlin": 49326, - "hamm": 46110, - "hammer": 15331, - "hammer": 9401, - "hammered": 37251, - "hammers": 35649, - "hammersmith": 42127, - "hammock": 33682, - "hammond": 21761, - "hamont": 18518, - "hamp": 6665, - "hamper": 27692, - "hampshire": 16006, - "hampstead": 37340, - "hampton": 36582, - "hampton": 12285, - "hamptons": 42415, - "hamr": 47979, - "hamradio": 36712, - "hams": 25619, - "hamster": 33313, - "hamstring": 39990, - "hamza": 45762, - "han": 1545, - "han": 3565, - "hana": 16801, - "hand": 1722, - "hand": 2463, - "handbag": 22654, - "handbags": 35667, - "handball": 27988, - "handbook": 25147, - "handcrafted": 22185, - "handed": 10881, - "handedly": 48656, - "handel": 40072, - "handful": 23725, - "handheld": 26812, - "handic": 17812, - "handicap": 27063, - "handicapp": 42349, - "handing": 19196, - "handle": 43681, - "handle": 7245, - "handled": 26824, - "handler": 29097, - "handles": 22124, - "handling": 14071, - "handmade": 18054, - "handmade": 6737, - "handmadehour": 25724, - "handover": 46922, - "hands": 3500, - "handshake": 38418, - "handsome": 7438, - "handwriting": 29986, - "handwritten": 35192, - "handy": 13479, - "hane": 28411, - "hang": 3351, - "hang": 5592, - "hangar": 33439, - "hanged": 40807, - "hanger": 28905, - "hangin": 22670, - "hanging": 4850, - "hangout": 17572, - "hangover": 20755, - "hangs": 21785, - "hani": 39944, - "hani": 18374, - "hank": 35993, - "hank": 17655, - "hanks": 29943, - "hanley": 47284, - "hann": 5584, - "hanna": 10075, - "hannah": 18622, - "hannah": 9142, - "hannel": 43477, - "hanni": 19493, - "hannibal": 25149, - "hannity": 24569, - "hannover": 39976, - "hanoi": 36134, - "hanover": 33246, - "hans": 35172, - "hans": 16628, - "hansen": 19729, - "hanson": 24602, - "hant": 40641, - "hanuk": 32774, - "hanukkah": 34247, - "hanuman": 46975, - "hao": 27184, - "hap": 44981, - "hap": 47988, - "happ": 784, - "happen": 21486, - "happen": 4506, - "happened": 4402, - "happening": 4284, - "happeningnow": 43107, - "happenings": 41998, - "happens": 4988, - "happier": 14118, - "happiest": 13811, - "happily": 17316, - "happiness": 5096, - "happy": 2952, - "happy": 900, - "happybirthday": 9651, - "happybirthday": 12207, - "happydays": 25106, - "happye": 33922, - "happyeaster": 38745, - "happyfathersday": 43534, - "happyfriday": 33340, - "happyhalloween": 28750, - "happyholidays": 32186, - "happyhour": 32036, - "happymonday": 47364, - "happymothersday": 42425, - "happynewyear": 18655, - "happythanksgiving": 40593, - "happyvalentinesday": 42403, - "haps": 9114, - "haq": 32445, - "har": 915, - "har": 5888, - "hara": 10367, - "haram": 35732, - "haram": 22950, - "haran": 27921, - "harare": 43562, - "haras": 26644, - "harass": 16481, - "harassed": 43067, - "harassment": 16641, - "harat": 28984, - "harb": 5856, - "harbaugh": 45220, - "harbor": 40686, - "harbor": 10202, - "harbour": 35430, - "harbour": 10011, - "harcourt": 48093, - "hard": 3312, - "hard": 1626, - "hardcover": 31123, - "harden": 27350, - "harder": 12274, - "hardest": 15258, - "hardin": 43802, - "harding": 24382, - "hardly": 17363, - "hardro": 28126, - "hardrock": 48365, - "hardrock": 40739, - "hards": 44048, - "hardship": 45085, - "hardt": 17922, - "hardware": 11957, - "hardwell": 45572, - "hardwick": 46864, - "hardwood": 28167, - "hardwork": 42554, - "hardwork": 27404, - "hardworking": 28095, - "hardworkpaysoff": 49193, - "hardy": 48179, - "hardy": 14113, - "hare": 27903, - "hare": 18464, - "harga": 39738, - "hari": 25472, - "hari": 8981, - "harlan": 49133, - "harle": 29096, - "harlem": 17771, - "harley": 24702, - "harley": 13632, - "harleydavidson": 39183, - "harlow": 34113, - "harm": 16656, - "harm": 14452, - "harman": 42434, - "harmed": 39637, - "harmful": 21725, - "harmless": 44369, - "harmon": 10828, - "harmon": 28729, - "harmony": 10785, - "harms": 46703, - "harne": 43323, - "harness": 23205, - "harold": 16917, - "harp": 27339, - "harper": 31288, - "harper": 12634, - "harri": 6639, - "harrier": 37372, - "harriet": 27154, - "harrington": 34340, - "harris": 25356, - "harris": 6925, - "harrisburg": 40590, - "harrison": 34389, - "harrison": 10540, - "harro": 18939, - "harrogate": 30842, - "harrow": 38807, - "harry": 11094, - "harry": 3600, - "harrypotter": 23375, - "harsh": 30596, - "harsh": 16944, - "hart": 9335, - "hart": 7752, - "hartford": 23434, - "harth": 35619, - "hartle": 47482, - "hartley": 31268, - "hartman": 43294, - "haru": 35099, - "harvard": 28118, - "harvard": 12848, - "harve": 6405, - "harvest": 44495, - "harvest": 8971, - "harvested": 35899, - "harvesting": 26674, - "harvey": 33289, - "harvey": 9586, - "harvick": 46983, - "haryana": 27661, - "has": 13855, - "has": 791, - "hasan": 30049, - "hasbro": 37405, - "hash": 6338, - "hash": 19199, - "hashi": 41831, - "hashmi": 35852, - "hashtag": 34015, - "hashtag": 9238, - "hashtags": 23514, - "haskell": 48550, - "hasn": 9143, - "hass": 9298, - "hassan": 15829, - "hassee": 37117, - "hassel": 32204, - "hassle": 35762, - "hast": 18146, - "hasta": 36623, - "hastings": 22035, - "hat": 3447, - "hat": 3801, - "hatch": 24202, - "hatch": 17809, - "hatchback": 42348, - "hatched": 42158, - "hate": 23546, - "hate": 3753, - "hated": 21298, - "hateful": 36418, - "hater": 36917, - "haters": 14027, - "hates": 14957, - "hatfield": 38448, - "hath": 27894, - "hath": 34416, - "hathaway": 31801, - "hati": 26045, - "hating": 25668, - "hatred": 19046, - "hats": 9812, - "hatt": 8747, - "hatton": 44861, - "hau": 5152, - "hauer": 48751, - "haul": 23743, - "haul": 12332, - "hauled": 46620, - "hauling": 43132, - "haun": 9676, - "haunt": 31039, - "haunted": 14944, - "haunting": 24034, - "haunts": 48035, - "haus": 41755, - "haus": 16478, - "hausen": 33338, - "hauser": 46586, - "haute": 28854, - "hav": 13443, - "hav": 20447, - "havan": 36304, - "havana": 23357, - "havas": 46261, - "have": 18053, - "have": 720, - "haven": 33074, - "haven": 3871, - "havent": 29130, - "haver": 27876, - "haves": 49088, - "havin": 31937, - "having": 1977, - "havoc": 24447, - "haw": 2788, - "haw": 26954, - "hawa": 6067, - "hawa": 46278, - "hawai": 15800, - "hawaii": 32413, - "hawaii": 8265, - "hawaiian": 17734, - "hawan": 27765, - "hawk": 14704, - "hawk": 8218, - "hawke": 38178, - "hawker": 39051, - "hawkeye": 38666, - "hawkeyes": 34266, - "hawking": 33437, - "hawkins": 19740, - "hawks": 44806, - "hawks": 5841, - "hawthorn": 45372, - "hawthorne": 36730, - "hay": 4871, - "hay": 11367, - "haya": 41325, - "hayat": 49360, - "hayden": 19806, - "haydn": 48207, - "haye": 36583, - "hayes": 13555, - "hayley": 39986, - "hayley": 22204, - "haynes": 30496, - "hays": 41524, - "hayward": 29400, - "haz": 5040, - "haz": 39921, - "hazard": 26174, - "hazard": 15178, - "hazardous": 27102, - "hazards": 30639, - "haze": 22785, - "hazel": 19838, - "hazel": 21882, - "hazelnut": 35816, - "hazi": 22740, - "hazmat": 48887, - "hazrat": 45775, - "hazy": 32655, - "hb": 6854, - "hb": 12576, - "hbcu": 40008, - "hbd": 25277, - "hbd": 13594, - "hbo": 15252, - "hc": 15831, - "hc": 7821, - "hcs": 46850, - "hd": 11601, - "hd": 4414, - "hdd": 40508, - "hdmi": 33302, - "hdr": 28065, - "he": 651, - "he": 797, - "hea": 27150, - "hea": 32790, - "head": 1603, - "head": 1375, - "headache": 23849, - "headaches": 38025, - "headband": 28556, - "headed": 6153, - "header": 11077, - "heading": 4409, - "headless": 45219, - "headlights": 42422, - "headline": 10891, - "headliner": 38880, - "headlines": 14706, - "headlining": 26971, - "headphone": 37524, - "headphones": 14906, - "headquarters": 13041, - "heads": 5174, - "headset": 23883, - "headshot": 34890, - "heal": 1231, - "heal": 13833, - "healed": 31456, - "healer": 38328, - "healey": 38985, - "healing": 9295, - "heals": 32384, - "health": 2145, - "health": 1728, - "healthand": 43704, - "healthcare": 42500, - "healthcare": 6023, - "healthier": 18242, - "healthtech": 42694, - "healthy": 10330, - "healthy": 3782, - "healthye": 31532, - "healthyeating": 33761, - "healthyfood": 39996, - "healthylifestyle": 46254, - "healthyliving": 27293, - "healy": 34299, - "heap": 34781, - "heaps": 44446, - "hear": 2749, - "hear": 2584, - "heard": 4063, - "hearing": 46353, - "hearing": 5541, - "hearings": 33175, - "hearn": 36613, - "hears": 25395, - "heart": 4975, - "heart": 1936, - "heartbeat": 29154, - "heartbreak": 29281, - "heartbreaking": 21322, - "heartbroken": 35383, - "hearted": 21679, - "heartfelt": 22904, - "hearth": 31563, - "hearthstone": 34054, - "hearti": 29345, - "hearties": 44572, - "heartland": 31923, - "heartless": 47022, - "heartnews": 40426, - "hearts": 5516, - "heartw": 30002, - "heartwarming": 34080, - "hearty": 26994, - "heat": 12175, - "heat": 4403, - "heated": 17057, - "heater": 23246, - "heath": 12794, - "heath": 11719, - "heather": 20230, - "heather": 12470, - "heathrow": 24171, - "heating": 12478, - "heaton": 34557, - "heats": 36106, - "heatwave": 25726, - "heav": 2409, - "heaven": 15520, - "heaven": 5545, - "heavenly": 19117, - "heavens": 26026, - "heavier": 31253, - "heaviest": 33268, - "heavily": 14123, - "heavy": 12048, - "heavy": 4200, - "heavymetal": 39804, - "heavyweight": 17448, - "heb": 24700, - "heb": 34515, - "hebdo": 41817, - "hebrew": 27298, - "hebrides": 45121, - "hebron": 45725, - "hec": 18932, - "heck": 22985, - "heck": 14427, - "hectares": 44162, - "hectic": 37245, - "hector": 25852, - "hed": 18271, - "hedge": 16229, - "hedge": 20294, - "hedgehog": 21940, - "hedges": 41345, - "hee": 18364, - "hee": 15773, - "heechul": 42487, - "heed": 15118, - "heel": 33646, - "heel": 16861, - "heels": 10909, - "heem": 30061, - "heer": 40473, - "hef": 29473, - "heff": 48756, - "hefty": 48584, - "heg": 41995, - "heh": 25834, - "hehe": 48723, - "hehe": 10658, - "hehehe": 24138, - "hei": 6101, - "hei": 29051, - "heidel": 42927, - "heidelberg": 48445, - "heidi": 44860, - "heidi": 23867, - "heifer": 48219, - "heigh": 43883, - "height": 10788, - "heights": 8418, - "heim": 10931, - "heim": 9768, - "heimer": 39517, - "hein": 15487, - "hein": 43206, - "heine": 28742, - "heineken": 36874, - "heinrich": 47877, - "heinz": 32359, - "heir": 27083, - "heir": 34007, - "heirloom": 34232, - "heirs": 43834, - "heis": 21849, - "heisman": 34537, - "heist": 31035, - "heit": 37255, - "hel": 919, - "hel": 11579, - "hela": 48212, - "held": 4042, - "hele": 46129, - "helen": 17576, - "helen": 11291, - "helena": 23109, - "helene": 41591, - "helens": 45940, - "heli": 33874, - "heli": 40183, - "helicop": 10035, - "helicopter": 11956, - "helicopters": 26922, - "helium": 46505, - "helix": 35247, - "hell": 8410, - "hell": 4141, - "hella": 19800, - "hellboy": 48428, - "helle": 48600, - "helle": 46968, - "hellenic": 42544, - "heller": 44464, - "hello": 12887, - "hello": 3306, - "hells": 47989, - "helly": 48690, - "helm": 47970, - "helm": 19520, - "helmet": 11122, - "helmets": 21843, - "help": 8641, - "help": 1318, - "helped": 4845, - "helper": 29321, - "helpers": 36316, - "helpful": 12695, - "helping": 3875, - "helpless": 47638, - "helpline": 43101, - "helps": 5144, - "helsin": 17842, - "helsinki": 19626, - "hem": 20270, - "hem": 11148, - "hemi": 14256, - "hemi": 46856, - "heming": 30819, - "hemingway": 33470, - "hemisphere": 32767, - "hemmings": 34882, - "hemo": 43788, - "hemp": 28225, - "hemp": 18467, - "hems": 32451, - "hemsworth": 39428, - "hen": 2385, - "hen": 8047, - "hence": 23640, - "hend": 11560, - "hender": 49248, - "henderson": 14348, - "hendrick": 45296, - "hendricks": 37588, - "hendrix": 23605, - "henge": 33104, - "henley": 27853, - "henna": 39455, - "hennessy": 42667, - "henri": 19431, - "henri": 21610, - "henrik": 35772, - "henry": 16018, - "henry": 5508, - "hens": 31742, - "henson": 32935, - "hep": 17724, - "hep": 48791, - "hepat": 23767, - "hepatitis": 32169, - "hepburn": 26348, - "her": 1223, - "her": 899, - "hera": 38724, - "heral": 37809, - "herald": 27625, - "herald": 12851, - "herb": 26116, - "herb": 15302, - "herbal": 21868, - "herbali": 44087, - "herbalife": 48364, - "herbert": 19935, - "herbs": 17320, - "hercules": 26539, - "herd": 36142, - "herd": 18589, - "here": 9134, - "here": 763, - "hered": 47976, - "hereford": 35543, - "heres": 13566, - "hereto": 47673, - "heri": 31392, - "herit": 4720, - "heritag": 38273, - "heritage": 20962, - "heritage": 5455, - "herman": 31890, - "herman": 21568, - "hermann": 40942, - "hermes": 34563, - "hermi": 35265, - "hermione": 45502, - "hermit": 43953, - "hermitage": 47706, - "hermo": 40967, - "hermosa": 42531, - "hern": 30571, - "hern": 43576, - "hernandez": 17707, - "hero": 7338, - "hero": 3756, - "heroes": 38010, - "heroes": 5506, - "heroic": 24255, - "heroin": 23841, - "heroine": 27420, - "heron": 22593, - "heros": 37642, - "herr": 38537, - "herrera": 27755, - "herring": 30211, - "hers": 25359, - "herself": 9207, - "hersh": 20379, - "hershey": 29734, - "hert": 26744, - "hertfordshire": 41070, - "herts": 35784, - "herty": 23454, - "hertz": 49383, - "hes": 30553, - "hes": 12784, - "hesit": 23933, - "hesitate": 34967, - "hess": 41888, - "hester": 31105, - "het": 37527, - "het": 19678, - "hetero": 26405, - "heu": 20105, - "heughan": 32298, - "hew": 48141, - "hew": 43051, - "hewitt": 28871, - "hex": 16255, - "hex": 31241, - "hey": 10759, - "hey": 2189, - "hez": 34591, - "hezbollah": 37636, - "hf": 26606, - "hf": 20603, - "hfx": 47297, - "hg": 23986, - "hg": 26237, - "hgtv": 47657, - "hh": 3280, - "hh": 5180, - "hhh": 8281, - "hhhh": 19391, - "hhhh": 13121, - "hhhhh": 24246, - "hhhhhh": 37278, - "hhs": 27006, - "hi": 677, - "hi": 1883, - "hia": 20672, - "hiatus": 27823, - "hib": 15922, - "hiber": 38799, - "hibis": 36226, - "hibiscus": 36460, - "hibition": 24658, - "hibs": 42814, - "hic": 3549, - "hic": 38079, - "hick": 14813, - "hickman": 49148, - "hickory": 29905, - "hicks": 23429, - "hid": 15552, - "hid": 14451, - "hidalgo": 47464, - "hidden": 28305, - "hidden": 7029, - "hiddleston": 31444, - "hide": 17725, - "hide": 9379, - "hideous": 46588, - "hides": 30800, - "hiding": 11371, - "hie": 15763, - "hier": 23433, - "hier": 29913, - "hierarchy": 44442, - "hifi": 38168, - "hig": 38108, - "higgins": 21783, - "high": 1487, - "high": 1400, - "higher": 5321, - "highered": 27072, - "highest": 5317, - "highland": 32244, - "highland": 16062, - "highlander": 46251, - "highlanders": 40445, - "highlands": 16883, - "highlight": 8264, - "highlighted": 22252, - "highlighter": 45460, - "highlighting": 17344, - "highlights": 6173, - "highly": 5302, - "highness": 38694, - "highs": 15144, - "highschool": 23102, - "highway": 45344, - "highway": 7620, - "highways": 28007, - "higu": 39115, - "hihi": 36240, - "hii": 42315, - "hijab": 31407, - "hika": 41356, - "hikari": 44624, - "hike": 9404, - "hiked": 36471, - "hiker": 40947, - "hikers": 46090, - "hikes": 27076, - "hiking": 9118, - "hiko": 48708, - "hil": 3508, - "hil": 17927, - "hila": 38837, - "hilar": 37337, - "hilari": 7784, - "hilarious": 8358, - "hilariously": 43476, - "hilary": 45898, - "hilary": 25415, - "hilde": 45382, - "hill": 3671, - "hill": 2682, - "hillary": 13257, - "hillary": 7074, - "hillaryclinton": 15357, - "hilli": 32513, - "hills": 24178, - "hills": 5289, - "hillsborough": 32157, - "hillside": 37194, - "hilltop": 45858, - "hilly": 32483, - "hilton": 33621, - "hilton": 14012, - "him": 4128, - "him": 1269, - "himach": 29132, - "himachal": 35461, - "himalay": 17552, - "himalayan": 30318, - "himalayas": 32872, - "hime": 45892, - "himself": 4530, - "himss": 41730, - "hin": 1676, - "hin": 37930, - "hina": 40571, - "hinakhan": 45518, - "hinch": 49320, - "hind": 34460, - "hind": 23293, - "hindi": 14967, - "hinds": 47859, - "hindu": 17587, - "hindu": 12053, - "hinduism": 40592, - "hindus": 25701, - "hindustan": 46553, - "hines": 37462, - "hing": 37968, - "hini": 33564, - "hino": 45343, - "hint": 11868, - "hinton": 47165, - "hints": 20594, - "hio": 32897, - "hip": 11725, - "hip": 6584, - "hipho": 8819, - "hiphop": 26598, - "hiphop": 10914, - "hipp": 13607, - "hippie": 28637, - "hippo": 28398, - "hippo": 36729, - "hips": 30191, - "hipstamatic": 31002, - "hipster": 19987, - "hipsters": 48265, - "hir": 4959, - "hir": 14728, - "hira": 42577, - "hire": 32356, - "hire": 8243, - "hired": 17602, - "hires": 24133, - "hiring": 7835, - "hiro": 17396, - "hiro": 20588, - "hiroshima": 33867, - "hirsch": 46967, - "his": 15211, - "his": 787, - "hism": 23502, - "hispan": 16843, - "hispanic": 22676, - "hist": 21710, - "hist": 13779, - "histo": 33479, - "histor": 2993, - "historia": 46010, - "historian": 20697, - "historians": 35200, - "historic": 30195, - "historic": 5726, - "historical": 34154, - "historical": 8039, - "historically": 30445, - "histories": 34736, - "history": 11142, - "history": 1695, - "historymonth": 19356, - "historyof": 35905, - "hit": 5453, - "hit": 2341, - "hitch": 22937, - "hitch": 36203, - "hitler": 16518, - "hitman": 33290, - "hits": 4712, - "hitter": 23538, - "hitters": 39724, - "hitting": 7957, - "hiv": 44410, - "hiv": 11018, - "hive": 38162, - "hive": 18521, - "hiya": 42393, - "hk": 22648, - "hk": 12307, - "hl": 8297, - "hl": 5956, - "hle": 32389, - "hler": 35418, - "hm": 17913, - "hm": 7631, - "hmm": 13725, - "hmmm": 17032, - "hmmmm": 34598, - "hms": 14625, - "hmu": 21630, - "hmv": 49288, - "hn": 22905, - "hn": 7478, - "hns": 48412, - "ho": 606, - "ho": 2971, - "hoa": 37517, - "hoar": 31628, - "hoax": 33438, - "hob": 18212, - "hobart": 31646, - "hobb": 16175, - "hobbies": 36370, - "hobbit": 23207, - "hobbs": 34343, - "hobby": 41120, - "hobby": 17557, - "hobo": 34613, - "hobo": 41334, - "hoboken": 41568, - "hoc": 35880, - "hoch": 43772, - "hock": 34914, - "hock": 46574, - "hockey": 16499, - "hockey": 4111, - "hoco": 34771, - "hod": 31062, - "hodg": 23660, - "hodge": 40585, - "hodges": 35061, - "hodgson": 37044, - "hoe": 32502, - "hoe": 11262, - "hoek": 40073, - "hoes": 21164, - "hof": 20186, - "hof": 12789, - "hofer": 38654, - "hoff": 32860, - "hoff": 22751, - "hofficial": 41949, - "hoffman": 22026, - "hog": 12075, - "hog": 13255, - "hogan": 19757, - "hogg": 42005, - "hogs": 23242, - "hogwarts": 29168, - "hoh": 43947, - "hoi": 39295, - "hok": 26942, - "hok": 47167, - "hokies": 35168, - "hokkaido": 49145, - "hol": 1187, - "hol": 7349, - "hola": 28724, - "hold": 36496, - "hold": 3254, - "holden": 21869, - "holder": 7862, - "holders": 10074, - "holding": 5050, - "holdings": 24832, - "holds": 7286, - "hole": 47242, - "hole": 5341, - "holes": 11266, - "holi": 2093, - "holi": 21926, - "holic": 16348, - "holics": 29782, - "holiday": 13168, - "holiday": 2878, - "holidays": 5372, - "holiness": 37259, - "holistic": 26300, - "holl": 27699, - "holla": 26500, - "holland": 31608, - "holland": 9978, - "hollande": 47690, - "holler": 49047, - "holli": 24019, - "holliday": 41624, - "hollow": 41221, - "hollow": 16691, - "holloway": 29435, - "holly": 12731, - "holly": 11923, - "hollyo": 41525, - "hollyoaks": 43352, - "hollywood": 24655, - "hollywood": 5518, - "holm": 34758, - "holm": 12739, - "holme": 46149, - "holmes": 12756, - "holo": 10317, - "holocau": 14688, - "holocaust": 16476, - "hols": 33344, - "holt": 18868, - "holtz": 44743, - "holy": 13910, - "holy": 4874, - "hom": 906, - "hom": 47397, - "homa": 9557, - "homage": 17746, - "home": 2143, - "home": 1137, - "homebrew": 35046, - "homec": 33869, - "homecoming": 9008, - "homedecor": 15695, - "homedepot": 38707, - "homegrown": 32554, - "homeitems": 42972, - "homeland": 21633, - "homeless": 18403, - "homeless": 9661, - "homelessness": 19851, - "homemade": 7889, - "homeof": 48856, - "homeowner": 37267, - "homeowners": 29882, - "homepage": 29828, - "homer": 29307, - "homer": 16931, - "homers": 38333, - "homes": 19480, - "homes": 5416, - "homeschool": 40994, - "homestead": 32609, - "homeswee": 46298, - "hometown": 12238, - "homework": 12495, - "homicide": 21520, - "homie": 12540, - "homies": 18893, - "homme": 26193, - "homo": 18129, - "homo": 30504, - "homophobia": 37875, - "homophobic": 40975, - "homosexual": 44288, - "homosexuality": 46720, - "homs": 45413, - "hon": 1279, - "hon": 10296, - "honda": 8553, - "honduras": 29715, - "hone": 38640, - "honest": 7814, - "honest": 9602, - "honestly": 9155, - "honesty": 24939, - "honey": 9843, - "honey": 6406, - "honeycomb": 48583, - "honeymoon": 22527, - "hong": 12144, - "hong": 8598, - "hongkong": 16659, - "honi": 17918, - "honolulu": 28096, - "honor": 9206, - "honor": 3402, - "honorable": 19498, - "honorary": 15675, - "honore": 25868, - "honored": 5494, - "honoree": 38993, - "honorees": 43012, - "honoring": 10771, - "honors": 10248, - "honour": 8240, - "honourable": 29855, - "honoured": 11945, - "honouring": 37754, - "honours": 22558, - "hoo": 2300, - "hoo": 7920, - "hood": 18681, - "hood": 3222, - "hooded": 33631, - "hoodie": 13444, - "hoodies": 25974, - "hoods": 16664, - "hoof": 44555, - "hook": 30488, - "hook": 10395, - "hookah": 34214, - "hooked": 18138, - "hookem": 31465, - "hooker": 37891, - "hooking": 35240, - "hooks": 25068, - "hooligans": 48176, - "hoon": 21368, - "hooo": 44538, - "hoop": 31516, - "hoop": 19573, - "hooper": 35221, - "hoops": 9351, - "hoor": 22155, - "hooray": 24940, - "hoos": 46462, - "hoosier": 48886, - "hoosiers": 42780, - "hoot": 29164, - "hoover": 25691, - "hop": 10848, - "hop": 5833, - "hope": 5263, - "hope": 1683, - "hoped": 30628, - "hopeful": 21453, - "hopefully": 7602, - "hopeless": 35586, - "hopes": 10018, - "hoping": 7207, - "hopkins": 17821, - "hopp": 48839, - "hopped": 34220, - "hopper": 21748, - "hopping": 27606, - "hoppy": 38359, - "hops": 21137, - "hor": 1407, - "hor": 33847, - "hora": 26013, - "horace": 39282, - "horan": 26857, - "horde": 44947, - "hore": 15380, - "horiz": 8144, - "horizon": 17924, - "horizon": 11920, - "horizons": 29685, - "horizontal": 25775, - "hormon": 27096, - "hormone": 31283, - "hormones": 35162, - "horn": 15771, - "horn": 9607, - "horne": 38143, - "horned": 34526, - "hornet": 28739, - "hornets": 20124, - "horns": 22109, - "horny": 32622, - "horo": 21500, - "horoscope": 38453, - "horowitz": 44669, - "horri": 8656, - "horrible": 13726, - "horribly": 45484, - "horrific": 25314, - "horrifying": 38901, - "horror": 13787, - "horror": 5032, - "horrormovies": 46682, - "horrors": 33321, - "horse": 8562, - "horse": 4558, - "horseback": 43673, - "horseman": 48885, - "horsepower": 36882, - "horser": 23096, - "horseracing": 30693, - "horses": 8809, - "horseshoe": 29242, - "horst": 37182, - "hort": 19482, - "horticul": 27141, - "horticulture": 39998, - "horton": 25945, - "hortons": 38422, - "horus": 29794, - "hos": 44320, - "hos": 25008, - "hosa": 44618, - "hose": 19662, - "hoseok": 38817, - "hosp": 2847, - "hosp": 37853, - "hospice": 20533, - "hospit": 7180, - "hospital": 29399, - "hospital": 3851, - "hospitality": 11657, - "hospitalized": 36915, - "hospitals": 13816, - "host": 17403, - "host": 3953, - "hostage": 26119, - "hoste": 31700, - "hosted": 6017, - "hostel": 27225, - "hostess": 39692, - "hostile": 28074, - "hosting": 4857, - "hosts": 8718, - "hot": 2851, - "hot": 2069, - "hota": 43289, - "hotdog": 43758, - "hotel": 14591, - "hotel": 2738, - "hotels": 8654, - "hotline": 30516, - "hotmail": 46427, - "hotness": 39803, - "hotra": 27109, - "hotro": 47823, - "hotspot": 36606, - "hotspur": 35176, - "hotter": 23591, - "hottest": 8279, - "hottie": 22804, - "hotties": 46027, - "hou": 1011, - "hou": 10122, - "hough": 44529, - "houghton": 36133, - "houn": 39273, - "houn": 33607, - "hound": 33996, - "hound": 13561, - "hounds": 21178, - "hounews": 48373, - "hour": 14930, - "hour": 2232, - "hourly": 30918, - "hours": 2382, - "house": 4107, - "house": 1212, - "housed": 37518, - "household": 12412, - "households": 27167, - "housel": 48685, - "housemusic": 28468, - "houseof": 19928, - "houses": 7791, - "housewives": 38523, - "housing": 32924, - "housing": 5734, - "houston": 16564, - "houston": 5663, - "hov": 40291, - "hove": 29674, - "hoven": 35559, - "hover": 36252, - "hover": 49016, - "hovering": 43437, - "how": 7470, - "how": 829, - "howar": 37672, - "howard": 25447, - "howard": 7632, - "howdy": 42216, - "howe": 8179, - "howe": 24614, - "howell": 25297, - "hower": 32920, - "however": 8467, - "howi": 47883, - "howie": 42939, - "howl": 40332, - "howling": 41771, - "howto": 38191, - "howto": 44060, - "hoy": 39625, - "hoy": 13278, - "hoya": 40978, - "hp": 23753, - "hp": 6371, - "hpa": 30983, - "hpc": 39936, - "hpe": 33787, - "hpv": 45765, - "hq": 33571, - "hq": 4693, - "hr": 4810, - "hr": 4086, - "hra": 21320, - "hra": 17212, - "hrc": 18139, - "hrh": 29103, - "hri": 21068, - "hrithik": 45371, - "hrs": 7157, - "hru": 24127, - "hrw": 25064, - "hs": 9343, - "hs": 2466, - "hsbc": 31508, - "hsc": 43510, - "hse": 34057, - "hsfb": 29539, - "hsv": 47311, - "ht": 11123, - "ht": 7801, - "hta": 23452, - "hta": 49384, - "htafc": 42821, - "htc": 48942, - "htc": 17635, - "html": 18231, - "hts": 43710, - "htt": 10620, - "http": 15066, - "https": 30901, - "httr": 49372, - "httweets": 43198, - "hu": 845, - "hu": 5949, - "hua": 22138, - "huan": 41405, - "huang": 32013, - "huar": 46916, - "huawe": 17709, - "huawei": 21128, - "hub": 18775, - "hub": 7028, - "hubb": 23183, - "hubbard": 33288, - "hubble": 30421, - "hubby": 16947, - "hubert": 40699, - "hubs": 29327, - "huck": 22909, - "huckabee": 43666, - "hud": 7169, - "hud": 28563, - "hudder": 22629, - "huddersfield": 24220, - "huddle": 33435, - "hudson": 25873, - "hudson": 11260, - "hue": 48380, - "hue": 21465, - "hues": 38003, - "huey": 39663, - "huff": 18746, - "huff": 44999, - "huffpost": 45887, - "hug": 40790, - "hug": 10359, - "huge": 2699, - "hugely": 24648, - "hugged": 41333, - "hugging": 27058, - "hugh": 8723, - "hugh": 15385, - "hughes": 11418, - "hugo": 43935, - "hugo": 17132, - "hugs": 14248, - "huh": 13348, - "huhu": 32134, - "hui": 29978, - "hul": 7911, - "hula": 40145, - "hulk": 17637, - "hull": 25154, - "hull": 10375, - "hulu": 24666, - "hum": 5823, - "hum": 16283, - "human": 3175, - "human": 2751, - "humane": 20220, - "humanitarian": 14170, - "humanities": 24949, - "humanity": 9420, - "humanright": 44385, - "humanrights": 14148, - "humans": 8324, - "humb": 9988, - "humber": 30602, - "humber": 38063, - "humble": 38703, - "humble": 10889, - "humbled": 19682, - "humbling": 39757, - "humbold": 24739, - "humboldt": 31389, - "hume": 38197, - "humid": 14778, - "humid": 27447, - "humidi": 47666, - "humidity": 15469, - "humil": 27205, - "humili": 25332, - "humility": 28535, - "humming": 26515, - "hummingbird": 33072, - "hummus": 31785, - "humor": 29369, - "humor": 11186, - "humorous": 38173, - "humour": 19161, - "hump": 16673, - "hump": 24529, - "humpback": 47662, - "humpday": 27693, - "humph": 19767, - "humphrey": 31549, - "hun": 1616, - "hun": 10795, - "hundre": 8505, - "hundred": 11898, - "hundreds": 8879, - "hung": 13825, - "hungar": 19420, - "hungarian": 23325, - "hungary": 17232, - "hunger": 25565, - "hunger": 10184, - "hungergames": 47507, - "hungover": 41110, - "hungry": 44845, - "hungry": 8451, - "hunk": 33912, - "hunt": 16498, - "hunt": 5774, - "hunted": 37373, - "hunter": 16531, - "hunter": 6099, - "hunters": 16115, - "hunting": 27830, - "hunting": 7507, - "huntington": 23521, - "hunts": 34041, - "huntsville": 34544, - "hur": 2305, - "hur": 34523, - "hurd": 44915, - "hurdle": 27486, - "hurdles": 25440, - "huri": 42486, - "hurley": 30166, - "hurling": 24738, - "huron": 36147, - "hurrah": 40599, - "hurric": 6543, - "hurrican": 36105, - "hurricane": 24051, - "hurricane": 8782, - "hurricanes": 22357, - "hurry": 10921, - "hurst": 44742, - "hurst": 11760, - "hurt": 7413, - "hurting": 24017, - "hurts": 13059, - "hus": 5111, - "hus": 35853, - "husband": 6179, - "husbands": 33612, - "hush": 28728, - "husk": 19246, - "huskers": 26946, - "huskies": 20988, - "husky": 20421, - "huss": 13733, - "hussain": 17940, - "hussein": 31336, - "hust": 27279, - "hustle": 15709, - "huston": 46480, - "hut": 20924, - "hut": 16503, - "hutch": 31018, - "hutch": 33203, - "hutchinson": 35721, - "hutto": 27662, - "hutton": 38321, - "hv": 17209, - "hv": 18593, - "hvac": 27492, - "hw": 27491, - "hw": 18876, - "hwa": 32352, - "hwan": 44390, - "hwang": 46775, - "hwy": 13812, - "hy": 1441, - "hy": 17827, - "hya": 31600, - "hyacin": 47263, - "hyatt": 44856, - "hyatt": 25146, - "hybri": 9084, - "hybrid": 10156, - "hyd": 42382, - "hyde": 46484, - "hyde": 16343, - "hyder": 13960, - "hyderabad": 14801, - "hydr": 8031, - "hydra": 44414, - "hydra": 40420, - "hydrange": 43298, - "hydrate": 29628, - "hydrated": 23300, - "hydrating": 47653, - "hydration": 24174, - "hydrau": 26017, - "hydraulic": 26189, - "hydro": 8368, - "hydro": 22595, - "hydrogen": 20974, - "hye": 32724, - "hye": 25792, - "hygi": 16277, - "hygiene": 19591, - "hymn": 41350, - "hyo": 38960, - "hyo": 35078, - "hyp": 16964, - "hype": 30353, - "hype": 11111, - "hyped": 22507, - "hyper": 7997, - "hyper": 22146, - "hypertension": 40698, - "hypno": 23355, - "hypnosis": 48138, - "hypnoti": 40440, - "hypo": 10252, - "hypocr": 30711, - "hypocri": 25606, - "hypocrisy": 26296, - "hypocrite": 44125, - "hypothe": 46966, - "hypothesis": 44956, - "hyster": 24235, - "hysteria": 45965, - "hysterical": 48627, - "hyuk": 20452, - "hyun": 11831, - "hyun": 8589, - "hyundai": 17094, - "hyung": 46901, - "hyung": 16551, - "hz": 32533, - "i": 72, - "i": 328, - "ia": 12486, - "ia": 1073, - "iac": 32838, - "iac": 44063, - "iaf": 40789, - "iah": 35052, - "iain": 30103, - "ial": 11530, - "ial": 1974, - "ials": 20940, - "iam": 3579, - "iam": 11415, - "iambic": 43668, - "iambicpent": 43891, - "iamsrk": 15103, - "ian": 7723, - "ian": 1800, - "ians": 6451, - "iansomerhalder": 47077, - "iart": 18413, - "iartg": 18669, - "ias": 32303, - "ias": 14620, - "ib": 3962, - "ib": 13554, - "iba": 39763, - "ibadan": 44691, - "iban": 47145, - "ibc": 49014, - "ibd": 40732, - "iber": 23814, - "ibi": 12337, - "ibis": 47048, - "ibiza": 13853, - "ible": 37792, - "ibles": 44102, - "ibm": 23415, - "ibm": 13918, - "ibn": 25729, - "ibooks": 46887, - "ibra": 15476, - "ibrahi": 40350, - "ibrahim": 20816, - "ibrox": 46883, - "ibs": 41993, - "ibu": 43587, - "ibu": 46117, - "ic": 535, - "ic": 1029, - "ica": 2576, - "icago": 37492, - "ical": 6082, - "ical": 1110, - "ically": 3161, - "icals": 13999, - "ican": 17653, - "ican": 5246, - "icans": 20511, - "icar": 37211, - "ication": 21629, - "icc": 12945, - "ice": 2739, - "ice": 733, - "iceberg": 33662, - "icec": 13636, - "icecream": 21334, - "iced": 8049, - "icelan": 34114, - "iceland": 46716, - "iceland": 11935, - "icelandic": 34705, - "ices": 1931, - "ich": 5333, - "ich": 1232, - "icha": 31453, - "iche": 28972, - "iche": 21143, - "ichi": 21669, - "ichi": 14647, - "ichick": 45022, - "ichiro": 43787, - "ici": 948, - "ici": 22189, - "icia": 11774, - "icial": 17543, - "icial": 6397, - "ician": 40522, - "ician": 5374, - "icians": 6264, - "iciary": 21329, - "icic": 46006, - "icide": 6558, - "icides": 28253, - "icing": 7676, - "icio": 24207, - "icion": 45905, - "icious": 3325, - "icist": 21165, - "icists": 42171, - "icity": 7243, - "ick": 1168, - "ick": 1068, - "icked": 39799, - "icker": 40357, - "ickers": 30701, - "icki": 35468, - "icking": 6619, - "icks": 3727, - "icky": 11587, - "icn": 44516, - "ico": 13697, - "ico": 3040, - "icom": 17693, - "icom": 29796, - "icon": 13843, - "icon": 5646, - "iconic": 6959, - "icons": 15553, - "icop": 9389, - "icos": 32002, - "ics": 1324, - "ict": 6349, - "icted": 36515, - "iction": 40560, - "icton": 36548, - "icu": 45118, - "icu": 30443, - "icular": 40660, - "icus": 31459, - "icy": 28780, - "icy": 3495, - "icymi": 5315, - "icz": 46387, - "id": 1568, - "id": 1014, - "ida": 11032, - "ida": 11600, - "idad": 22462, - "idaho": 48817, - "idaho": 15165, - "idal": 39684, - "idan": 17929, - "idc": 22386, - "ide": 1909, - "ide": 14104, - "idea": 3612, - "ideal": 8789, - "ideally": 48247, - "ideals": 45096, - "ideas": 4452, - "ident": 7113, - "identi": 6009, - "identical": 25587, - "identification": 23337, - "identified": 15217, - "identifies": 35712, - "identify": 10949, - "identifying": 23589, - "identities": 34292, - "identity": 8892, - "ideology": 25840, - "iders": 8980, - "ides": 31791, - "idf": 28987, - "idge": 35567, - "idh": 44325, - "idi": 9611, - "idi": 14264, - "idio": 15994, - "idiot": 14087, - "idiots": 20856, - "idk": 8972, - "idle": 34754, - "idlib": 36199, - "ido": 6763, - "ido": 29641, - "idol": 24866, - "idol": 8884, - "idols": 21398, - "idr": 10106, - "idri": 46435, - "idris": 41312, - "ids": 6111, - "idu": 28655, - "idy": 33058, - "idyl": 44879, - "idyllic": 46632, - "ie": 6789, - "ie": 1718, - "iec": 44773, - "ied": 10059, - "ieee": 39860, - "iel": 27875, - "iel": 22729, - "ience": 1542, - "ient": 13115, - "ier": 33173, - "ier": 5912, - "iers": 45060, - "ies": 27912, - "ies": 963, - "iest": 10818, - "if": 8063, - "if": 878, - "ifa": 37574, - "ifc": 36524, - "ife": 41172, - "ife": 19590, - "iff": 35753, - "ification": 35755, - "ified": 41403, - "ift": 31143, - "iftar": 35153, - "ifu": 41523, - "ify": 32807, - "ig": 1089, - "ig": 3072, - "iga": 16493, - "igan": 27468, - "igans": 25419, - "igbo": 44591, - "ige": 10806, - "igen": 33070, - "iger": 30758, - "iger": 20685, - "igers": 40755, - "igers": 48928, - "iggy": 46219, - "iggy": 27604, - "igh": 2712, - "igh": 5451, - "ight": 14571, - "ight": 897, - "ighton": 35292, - "igi": 21901, - "igle": 29912, - "iglesias": 39432, - "ign": 7303, - "ign": 2326, - "ignati": 37573, - "ignatius": 48318, - "igne": 45843, - "ignite": 25210, - "ignition": 36115, - "igno": 15375, - "ignor": 7653, - "ignorance": 22735, - "ignorant": 26933, - "ignore": 12304, - "ignored": 20428, - "ignores": 40129, - "ignoring": 23969, - "igor": 33024, - "igs": 31344, - "igu": 21279, - "ih": 12162, - "ih": 34135, - "ihear": 13043, - "iheart": 30332, - "iheartawards": 18811, - "iheartradio": 25934, - "ihop": 45511, - "ihri": 39108, - "ihrithik": 39326, - "ii": 5103, - "ii": 2329, - "iii": 46236, - "iii": 6572, - "iiii": 20133, - "iiii": 45393, - "iiot": 30704, - "iit": 39330, - "iit": 33238, - "ij": 7337, - "ija": 42802, - "ik": 3903, - "ik": 10177, - "ika": 18188, - "ike": 12329, - "ike": 19696, - "ikea": 20528, - "iker": 38653, - "ikh": 44655, - "ikh": 12758, - "iklan": 32028, - "iklan": 29584, - "iko": 35659, - "iko": 39272, - "ikon": 38543, - "ikon": 19156, - "iku": 17780, - "il": 543, - "il": 958, - "ila": 4344, - "ilah": 32211, - "ilan": 13889, - "ilan": 28076, - "iland": 20957, - "ilation": 16180, - "ilay": 45093, - "ild": 22278, - "ild": 17164, - "ile": 18398, - "ile": 989, - "iled": 3358, - "iler": 22446, - "iler": 3615, - "ilers": 8975, - "iles": 42274, - "ili": 2076, - "ili": 19601, - "ilia": 14855, - "ilian": 10272, - "iliary": 32585, - "ilife": 42835, - "ilike": 44989, - "ilinan": 48497, - "iling": 3299, - "ilio": 47256, - "ilion": 12561, - "ilis": 43442, - "ilit": 11178, - "ilities": 5446, - "ility": 1787, - "ilive": 26478, - "ill": 828, - "ill": 660, - "illa": 8877, - "illa": 3043, - "illac": 17218, - "illage": 48922, - "illard": 21920, - "illary": 33667, - "illas": 23404, - "ille": 18213, - "ille": 5559, - "illed": 2527, - "illeg": 35808, - "illegal": 7983, - "illegally": 24466, - "illegals": 40490, - "iller": 23341, - "iller": 2956, - "illers": 30547, - "illery": 14514, - "illes": 20037, - "illi": 1086, - "illi": 25187, - "illia": 48776, - "illiams": 30301, - "illian": 48775, - "illian": 17355, - "illic": 37152, - "illicit": 40998, - "illie": 26083, - "illin": 35868, - "illing": 2803, - "illini": 28957, - "illino": 8920, - "illinois": 9414, - "illion": 35542, - "illion": 2035, - "illness": 11145, - "illnesses": 33861, - "illo": 34153, - "illo": 7588, - "illon": 20516, - "ills": 1900, - "illu": 3025, - "illumin": 11446, - "illuminate": 43261, - "illuminated": 28814, - "illuminati": 34551, - "illuminating": 46601, - "illumination": 43680, - "illus": 41386, - "illusion": 20318, - "illusions": 47429, - "illustr": 6268, - "illustrate": 37468, - "illustrated": 13151, - "illustrates": 38129, - "illustrating": 43322, - "illustration": 6052, - "illustrations": 17852, - "illustrator": 16649, - "illustri": 43116, - "illustrious": 44304, - "illy": 11707, - "illy": 9532, - "ilm": 36326, - "ilo": 4220, - "ilo": 14835, - "ilove": 7183, - "ilove": 32914, - "iloveart": 41114, - "ilovemy": 28863, - "iloveyou": 28829, - "ils": 1543, - "ilt": 25334, - "ilton": 28494, - "ilu": 27337, - "ilwx": 43777, - "ily": 4881, - "ily": 1026, - "ilya": 33377, - "ilysm": 29228, - "im": 732, - "im": 1496, - "ima": 2414, - "ima": 6432, - "imac": 40675, - "imacele": 47281, - "imag": 2316, - "image": 24101, - "image": 2867, - "imagery": 22828, - "images": 4952, - "imagin": 18178, - "imaginary": 30417, - "imagination": 13783, - "imaginative": 47233, - "imagine": 35752, - "imagine": 4826, - "imagined": 18478, - "imagines": 47379, - "imaging": 14231, - "imagining": 27384, - "imam": 37552, - "imam": 19024, - "iman": 45684, - "iman": 16247, - "imation": 44566, - "imax": 32066, - "imc": 45616, - "imdanielpadilla": 36357, - "imdb": 30407, - "ime": 44937, - "ime": 31151, - "imel": 31594, - "iment": 37157, - "imer": 21802, - "imes": 47744, - "imf": 28403, - "img": 24157, - "imi": 23559, - "imin": 23942, - "imit": 23462, - "imitation": 41630, - "imma": 19487, - "immac": 25085, - "immaculate": 29649, - "immature": 45531, - "immedi": 7366, - "immediate": 14440, - "immediately": 10108, - "immen": 17278, - "immense": 22722, - "immensely": 35013, - "immer": 13954, - "immerse": 46240, - "immersion": 31861, - "immersive": 27521, - "immigr": 5851, - "immigrant": 16474, - "immigrants": 14460, - "immigration": 9588, - "imminent": 27299, - "immort": 39244, - "immortal": 24717, - "immun": 8961, - "immune": 15606, - "immuni": 44571, - "immunity": 26254, - "immuno": 24361, - "immunology": 44483, - "immunotherapy": 39185, - "imo": 26349, - "imo": 13738, - "imp": 3335, - "imp": 31037, - "impac": 7573, - "impact": 33036, - "impact": 3844, - "impacted": 21424, - "impactful": 41631, - "impacting": 29359, - "impacts": 15069, - "impair": 36451, - "impaired": 28028, - "impairment": 44501, - "impala": 36641, - "impe": 23612, - "impeach": 16874, - "impeach": 43497, - "impeachment": 32979, - "impeachtrump": 38006, - "impecc": 34511, - "impeccable": 40111, - "impending": 34486, - "imper": 7727, - "imperative": 39833, - "imperfect": 46034, - "imperi": 30911, - "imperial": 32425, - "imperial": 12361, - "imperialism": 48855, - "imperson": 25551, - "implant": 33106, - "implants": 32202, - "imple": 7423, - "implement": 17966, - "implementation": 15102, - "implemented": 24315, - "implementing": 22862, - "implic": 15269, - "implications": 19229, - "implo": 40337, - "impo": 45704, - "import": 2336, - "import": 16294, - "importance": 6821, - "important": 2829, - "importantly": 21580, - "imported": 28798, - "imports": 25286, - "impose": 35879, - "imposed": 25871, - "imposing": 42289, - "impossible": 9815, - "impre": 3763, - "impress": 20015, - "impressed": 9689, - "impression": 14468, - "impressionism": 36114, - "impressionist": 44904, - "impressions": 22276, - "impressive": 6634, - "imprint": 43863, - "imprison": 22141, - "imprisoned": 32999, - "imprisonment": 39024, - "impro": 2531, - "impromp": 28100, - "impromptu": 28611, - "improv": 22868, - "improve": 4971, - "improved": 9446, - "improvement": 10790, - "improvements": 16320, - "improves": 18035, - "improving": 10381, - "improvis": 32343, - "improvised": 40886, - "impulse": 29683, - "impy": 42690, - "imran": 19647, - "imran": 19212, - "imrankhan": 25956, - "imrankhanpti": 26688, - "ims": 17800, - "imsa": 37262, - "imv": 35731, - "imvkohli": 37136, - "imwith": 26822, - "imwithher": 32651, - "in": 512, - "in": 530, - "ina": 18026, - "ina": 1366, - "inability": 47517, - "inaccurate": 49192, - "inaction": 41916, - "inactive": 49274, - "inadequate": 43403, - "inak": 46549, - "inal": 19178, - "inals": 26438, - "inan": 26204, - "inappropriate": 26722, - "inari": 48620, - "inary": 11337, - "inas": 36731, - "inas": 12362, - "inated": 38530, - "ination": 4706, - "inau": 10832, - "inaugu": 11309, - "inaugur": 11448, - "inaugural": 11340, - "inaugurated": 29011, - "inauguration": 16805, - "inbound": 24420, - "inbox": 18683, - "inc": 14570, - "inc": 4438, - "incan": 45964, - "incar": 18070, - "incarcer": 26334, - "incarcerated": 49178, - "incarceration": 39887, - "incase": 30463, - "ince": 44303, - "incen": 13259, - "incense": 35059, - "incentive": 29024, - "incentives": 29813, - "inception": 36653, - "inch": 6523, - "incheon": 30645, - "inches": 10809, - "inci": 5747, - "incidence": 43371, - "incident": 10103, - "incidents": 22120, - "incindia": 26161, - "inciner": 46434, - "incl": 27857, - "incl": 13338, - "inclined": 45470, - "inclu": 1738, - "include": 5942, - "included": 7414, - "includes": 6197, - "including": 2814, - "inclusion": 12079, - "inclusive": 13393, - "income": 8044, - "incoming": 15416, - "incomparable": 36027, - "incompetent": 45069, - "incomplete": 34040, - "incon": 42372, - "inconvenience": 40563, - "incorpor": 19335, - "incorporate": 34168, - "incorporated": 29494, - "incorporating": 40303, - "incorrect": 31872, - "incre": 1870, - "increase": 5230, - "increased": 9156, - "increases": 13797, - "increasing": 10270, - "increasingly": 16106, - "incredi": 2883, - "incredible": 22128, - "incredible": 3457, - "incredibleindia": 24680, - "incredibles": 48641, - "incredibly": 9513, - "incu": 38830, - "incub": 24587, - "incubator": 35736, - "incumb": 32246, - "incumbent": 38038, - "incur": 42356, - "ind": 5386, - "ind": 4655, - "inda": 15710, - "inde": 2645, - "indeed": 10031, - "indefin": 29501, - "indefinitely": 43750, - "independ": 4147, - "independence": 23117, - "independence": 7955, - "independenceday": 25971, - "independent": 33844, - "independent": 7088, - "independently": 39831, - "inder": 29225, - "index": 35209, - "index": 9458, - "indhoven": 44229, - "indi": 1098, - "indi": 46536, - "india": 27067, - "india": 1762, - "indian": 7685, - "indian": 3606, - "indiana": 8615, - "indianapolis": 17196, - "indianfootball": 45979, - "indians": 10271, - "indic": 7136, - "indicate": 26679, - "indicated": 39416, - "indicates": 29412, - "indication": 38539, - "indicator": 24776, - "indicators": 30054, - "indicted": 34992, - "indictment": 42278, - "indie": 5260, - "indie": 9383, - "indiedev": 10863, - "indiefilm": 22588, - "indiegame": 17969, - "indiegamedev": 40466, - "indiegames": 35864, - "indiegogo": 38057, - "indies": 23618, - "indiffe": 41372, - "indigen": 8348, - "indigenous": 9303, - "indigo": 21002, - "indira": 43887, - "indirec": 26398, - "indirect": 35416, - "indivi": 5649, - "individu": 9574, - "individual": 8512, - "individually": 33782, - "individuals": 11990, - "indo": 26303, - "indo": 18297, - "indom": 42926, - "indone": 6180, - "indonesia": 7229, - "indonesian": 19593, - "indoor": 44478, - "indoor": 9546, - "indoors": 22973, - "indore": 46143, - "indu": 2298, - "induc": 7973, - "induced": 24103, - "inducted": 20596, - "inductee": 39558, - "inductees": 44796, - "induction": 18338, - "indul": 19402, - "indulg": 28388, - "indulge": 24851, - "indulgence": 40856, - "indulgent": 49147, - "industri": 5082, - "industrial": 30853, - "industrial": 7520, - "industries": 11700, - "industry": 47407, - "industry": 3318, - "indv": 16942, - "indy": 9821, - "indy": 10098, - "indycar": 20484, - "indyref": 22569, - "ine": 855, - "ine": 715, - "ineau": 38122, - "inec": 45214, - "ined": 2038, - "inee": 43252, - "inee": 7986, - "inees": 13056, - "ineffe": 47202, - "inely": 18234, - "inem": 48876, - "inema": 29232, - "inen": 44365, - "inequalities": 45507, - "inequality": 17372, - "iner": 17438, - "iner": 5155, - "iners": 41863, - "ines": 2137, - "inese": 35966, - "iness": 1463, - "inet": 8121, - "inette": 38911, - "inev": 19527, - "inevit": 45871, - "inevitable": 25004, - "inews": 24300, - "inexpensive": 38614, - "iney": 30254, - "inez": 12700, - "inf": 1529, - "inf": 35241, - "infamous": 18688, - "infan": 17219, - "infant": 19192, - "infantry": 21655, - "infants": 34726, - "infe": 7164, - "infec": 26088, - "infected": 26136, - "infection": 14774, - "infections": 22227, - "infectious": 29157, - "infeld": 25035, - "infer": 16258, - "inferno": 31290, - "infertility": 40701, - "infield": 48933, - "infiltr": 28683, - "infin": 6246, - "infinite": 12748, - "infiniti": 34644, - "infinity": 34863, - "infinity": 12895, - "infl": 7627, - "inflam": 16080, - "inflammation": 24893, - "inflammatory": 26831, - "inflatable": 30135, - "inflation": 17497, - "inflicted": 48188, - "influ": 4835, - "influen": 13229, - "influence": 9199, - "influenced": 21183, - "influencer": 25013, - "influencers": 29891, - "influences": 24926, - "influencing": 45126, - "influential": 17553, - "influenza": 39897, - "info": 5680, - "info": 2222, - "infographic": 10076, - "infographics": 33172, - "infor": 31773, - "inform": 10241, - "inform": 19449, - "informal": 25705, - "informat": 29625, - "informatics": 35685, - "information": 3204, - "informative": 19364, - "informed": 13876, - "informing": 45388, - "informs": 48440, - "infosec": 17863, - "infr": 29718, - "infra": 7312, - "infra": 45877, - "infrared": 22867, - "infrastructure": 9034, - "infringe": 44882, - "infringement": 48712, - "infront": 37668, - "infu": 15048, - "infuri": 48461, - "infused": 21461, - "infusion": 43464, - "ing": 653, - "ing": 519, - "inga": 15233, - "ingco": 40444, - "ingday": 16561, - "ingdon": 38731, - "inge": 11790, - "inge": 7071, - "inged": 30046, - "ingen": 19088, - "ingeni": 36884, - "inger": 33883, - "inger": 3541, - "ingfor": 33430, - "ingh": 9170, - "ingh": 30495, - "ingham": 24497, - "ingham": 4291, - "inghamshire": 39289, - "inghour": 42728, - "inging": 4066, - "ingl": 45662, - "ingle": 22228, - "ingle": 17005, - "ingles": 24490, - "ingley": 44428, - "inglis": 46327, - "ingly": 4796, - "ingnow": 34766, - "ingo": 30175, - "ingo": 9012, - "ingra": 45165, - "ingrad": 44124, - "ingram": 26998, - "ingredi": 9272, - "ingredient": 19799, - "ingredients": 11788, - "ingrid": 33496, - "ings": 895, - "ingthe": 20170, - "ingtips": 39373, - "ington": 11846, - "ington": 2156, - "ingu": 8714, - "ingual": 22795, - "ingue": 36838, - "ingui": 12788, - "inguish": 36146, - "inha": 32612, - "inhabit": 36189, - "inhabitants": 44968, - "inhal": 30786, - "inhe": 32617, - "inher": 24611, - "inherent": 47327, - "inherit": 34322, - "inheritance": 39341, - "inherited": 39111, - "inhi": 25557, - "inhibit": 32196, - "inho": 12984, - "ini": 6154, - "ini": 3581, - "inian": 36638, - "inim": 38717, - "inindia": 34021, - "ining": 1389, - "inist": 30976, - "init": 42670, - "initi": 4580, - "initial": 13980, - "initially": 28123, - "initials": 48794, - "initiated": 27756, - "initiation": 41009, - "initiative": 8152, - "initiatives": 16549, - "inity": 22126, - "inj": 5112, - "injec": 13688, - "injection": 21438, - "inju": 5006, - "injured": 7505, - "injuries": 9481, - "injury": 6223, - "injustice": 20541, - "ink": 4547, - "ink": 967, - "inka": 40685, - "inked": 29356, - "inki": 46176, - "inkigayo": 47882, - "inking": 37586, - "inks": 20966, - "inktober": 9387, - "inland": 21943, - "inlet": 35161, - "inline": 45004, - "inlove": 28415, - "inmate": 32341, - "inmates": 28216, - "inmy": 42657, - "inn": 27260, - "inn": 5569, - "inna": 35088, - "inner": 24512, - "inner": 6955, - "inning": 4415, - "innings": 11580, - "innis": 44059, - "inno": 7961, - "innocence": 26383, - "innocent": 11241, - "innov": 2890, - "innovate": 24549, - "innovation": 33063, - "innovation": 4272, - "innovations": 18817, - "innovative": 8494, - "innovator": 34735, - "innovators": 27834, - "ino": 4211, - "ino": 2691, - "inoa": 25649, - "inos": 21828, - "inous": 47801, - "inox": 22698, - "input": 16952, - "inputs": 48763, - "inqu": 10628, - "inqui": 18527, - "inquirer": 45172, - "inquiries": 29469, - "inquiry": 15865, - "inquis": 31171, - "inr": 36325, - "ins": 12786, - "ins": 1041, - "insan": 7875, - "insane": 10260, - "insanely": 27846, - "insanity": 26645, - "inscribed": 49168, - "inscription": 41127, - "insec": 15744, - "insect": 21297, - "insects": 18714, - "insecure": 35112, - "insecurity": 36964, - "inser": 13830, - "insert": 18807, - "insi": 3453, - "inside": 19141, - "inside": 2912, - "insider": 13300, - "insiders": 32171, - "insig": 40503, - "insight": 8795, - "insightful": 20354, - "insights": 8729, - "insignia": 48864, - "insist": 35504, - "insisted": 40423, - "insists": 27255, - "inski": 32630, - "insky": 24607, - "insol": 42366, - "insom": 21755, - "insomni": 42040, - "insomnia": 30598, - "inson": 21007, - "insp": 1597, - "inspec": 7915, - "inspect": 40815, - "inspecting": 40565, - "inspection": 15142, - "inspections": 39513, - "inspector": 20514, - "inspir": 2573, - "inspiration": 4195, - "inspirational": 41936, - "inspirational": 9855, - "inspirations": 35093, - "inspire": 27901, - "inspire": 8583, - "inspired": 39849, - "inspired": 3516, - "inspires": 17245, - "inspiring": 41847, - "inspiring": 5705, - "inspo": 26897, - "inst": 1264, - "inst": 1581, - "insta": 22411, - "insta": 11694, - "instability": 41377, - "instac": 46678, - "instaf": 33800, - "instag": 14612, - "instagood": 23718, - "instagram": 27910, - "instagram": 2659, - "instal": 38805, - "install": 6940, - "install": 11168, - "installation": 9358, - "installations": 27909, - "installed": 8807, - "installing": 18301, - "installment": 25315, - "installs": 45568, - "instalment": 47766, - "instance": 34572, - "instant": 38810, - "instant": 10635, - "instantly": 17703, - "instap": 23758, - "instapic": 34378, - "instaweather": 43078, - "instaweatherpro": 43150, - "inste": 3571, - "instead": 4191, - "instein": 13421, - "instem": 27030, - "instin": 23382, - "instinct": 30544, - "institu": 4257, - "institute": 5861, - "institutes": 43674, - "institution": 18823, - "institutional": 27442, - "institutions": 15207, - "instore": 41679, - "instru": 4544, - "instruc": 19648, - "instruction": 19407, - "instructional": 31022, - "instructions": 17040, - "instructor": 16087, - "instructors": 31998, - "instrument": 42196, - "instrument": 15806, - "instrumental": 23041, - "instruments": 14793, - "instyle": 41321, - "insu": 8805, - "insul": 9615, - "insulated": 42051, - "insulation": 28194, - "insulin": 29311, - "insult": 26673, - "insulting": 39646, - "insults": 40451, - "insur": 5024, - "insurance": 5870, - "insured": 31321, - "insurers": 43142, - "insurtech": 28716, - "int": 1828, - "int": 1207, - "inta": 38314, - "intact": 26870, - "intake": 19539, - "intan": 47695, - "inte": 1598, - "inte": 41900, - "intech": 26504, - "inted": 6147, - "integr": 5151, - "integral": 27018, - "integrate": 25735, - "integrated": 12797, - "integrating": 31555, - "integration": 12583, - "integrity": 14791, - "intel": 11778, - "intel": 11426, - "intellec": 13281, - "intellect": 47828, - "intellectu": 31966, - "intellectual": 18069, - "intelli": 5324, - "intellig": 5632, - "intelligence": 6846, - "intelligent": 14063, - "inten": 2967, - "intend": 36674, - "intended": 16812, - "intense": 10258, - "intensi": 22928, - "intensity": 19956, - "intensive": 21049, - "intent": 18881, - "intention": 26786, - "intentional": 29536, - "intentionally": 31215, - "intentions": 26710, - "inter": 1006, - "inter": 10093, - "interact": 21736, - "interacting": 35045, - "interaction": 17650, - "interactions": 22162, - "interactive": 9456, - "intercep": 23676, - "interception": 48762, - "interceptions": 45313, - "interchange": 34222, - "intercontinental": 31983, - "interdisciplinary": 38132, - "intere": 2008, - "interest": 5095, - "interested": 4620, - "interesting": 3628, - "interests": 16425, - "interface": 18753, - "interfaith": 38399, - "interference": 29099, - "interim": 19509, - "interior": 10700, - "interior": 7305, - "interiordesign": 12902, - "interiors": 14836, - "intermedi": 20246, - "intermediate": 24304, - "intermission": 44805, - "intermitt": 44946, - "intern": 9976, - "intern": 14068, - "internal": 11285, - "internally": 41134, - "internation": 42534, - "international": 8566, - "international": 2436, - "internationaldayof": 41518, - "internationally": 24059, - "internationalwomensday": 17682, - "interne": 32713, - "internet": 30180, - "internet": 4757, - "internetof": 44449, - "internetofthings": 45925, - "interns": 19902, - "internship": 16661, - "internships": 39410, - "interoper": 45754, - "interpre": 11162, - "interpret": 49154, - "interpret": 40459, - "interpretation": 20652, - "interpreted": 42157, - "interpreting": 46525, - "interro": 29548, - "interrup": 21609, - "interrupt": 48449, - "interrupted": 30288, - "intersec": 45246, - "intersection": 19210, - "interstate": 21963, - "interstellar": 41506, - "interval": 36032, - "intervals": 44884, - "interven": 18245, - "intervention": 16804, - "interventions": 28848, - "interview": 2885, - "interviewed": 11688, - "interviewing": 16399, - "interviews": 9910, - "intestin": 37938, - "intestinal": 38896, - "inthe": 7486, - "inti": 14459, - "intim": 38832, - "intimacy": 46430, - "intimate": 16382, - "intimid": 24041, - "intimidating": 44405, - "intimidation": 49258, - "inting": 15571, - "intl": 38186, - "intl": 14224, - "intment": 9020, - "intments": 21420, - "into": 35235, - "into": 1095, - "intoler": 28534, - "intolerance": 37808, - "intothe": 38511, - "intra": 20922, - "intrac": 46195, - "intram": 40956, - "intre": 29397, - "intrepid": 39127, - "intri": 15421, - "intric": 23763, - "intricate": 29616, - "intrigu": 18856, - "intrigue": 45140, - "intrigued": 40034, - "intriguing": 24334, - "intrin": 45181, - "intro": 2999, - "intro": 13224, - "introduc": 3621, - "introduce": 9813, - "introduced": 10446, - "introduces": 12933, - "introducing": 6256, - "introduction": 11812, - "introductory": 38121, - "intru": 22949, - "ints": 2514, - "intu": 17225, - "intuition": 40897, - "intuitive": 35224, - "inu": 21131, - "inuit": 41250, - "inus": 45857, - "inv": 2279, - "inv": 43786, - "inva": 10084, - "invade": 34609, - "invaded": 32596, - "invaders": 35188, - "invading": 40101, - "invali": 31592, - "invalid": 46998, - "invaluable": 33976, - "invasi": 38100, - "invasion": 13378, - "invasive": 19554, - "inve": 2024, - "inven": 26233, - "invent": 11665, - "invent": 23558, - "invented": 14100, - "invention": 23607, - "inventions": 44914, - "inventor": 22836, - "inventory": 19444, - "inver": 12061, - "inverness": 33080, - "inverte": 46397, - "inverted": 40709, - "invest": 4180, - "invest": 9716, - "invested": 22536, - "investig": 4626, - "investigate": 15703, - "investigated": 29180, - "investigates": 29621, - "investigating": 13713, - "investigation": 8194, - "investigations": 24020, - "investigative": 30233, - "investigator": 30528, - "investigators": 24121, - "investin": 40195, - "investing": 10554, - "investment": 5605, - "investments": 14675, - "investor": 15490, - "investors": 10486, - "invests": 38378, - "invic": 25253, - "invigor": 48722, - "invin": 30252, - "invincible": 38052, - "invisible": 16093, - "invit": 12454, - "invitation": 15032, - "invitational": 14511, - "invitations": 40120, - "invite": 8109, - "invited": 7731, - "invites": 16034, - "inviting": 14349, - "invo": 29417, - "invol": 4000, - "involve": 26325, - "involved": 5320, - "involvement": 19502, - "involves": 22652, - "involving": 14786, - "inwx": 35674, - "iny": 23257, - "inyour": 47954, - "io": 3167, - "io": 3752, - "ioc": 43018, - "iom": 33000, - "iom": 31135, - "ion": 14871, - "ion": 3668, - "ions": 26289, - "ior": 7354, - "ior": 2498, - "iority": 46016, - "iors": 6427, - "ios": 6614, - "iot": 32694, - "iot": 6627, - "iota": 37294, - "ious": 6994, - "iously": 38233, - "iow": 7439, - "iowa": 38847, - "iowa": 8290, - "ip": 1719, - "ip": 8600, - "ipa": 11199, - "ipad": 39067, - "ipad": 7491, - "ipads": 35281, - "ipc": 41981, - "iphone": 26030, - "iphone": 4314, - "iphones": 37561, - "ipl": 13440, - "ipment": 37824, - "ipo": 40218, - "ipo": 24090, - "ipod": 17889, - "ipp": 31706, - "ips": 26910, - "ipsw": 22221, - "ipswich": 24494, - "iq": 15554, - "iq": 19996, - "iqbal": 33553, - "ir": 582, - "ir": 742, - "ira": 4923, - "ira": 5371, - "irah": 35724, - "iran": 19273, - "iran": 5075, - "irandeal": 46533, - "irani": 37984, - "iranian": 14158, - "iraq": 8543, - "iraqi": 18617, - "irc": 41527, - "ird": 2770, - "ire": 3013, - "ire": 1454, - "ired": 32728, - "ired": 2995, - "ireland": 32806, - "ireland": 4157, - "irene": 21600, - "ires": 12435, - "irez": 21581, - "irgc": 47942, - "iri": 2155, - "iri": 13880, - "irical": 33366, - "irie": 42979, - "irina": 46664, - "iring": 10169, - "iris": 16437, - "irish": 9386, - "irish": 4889, - "irl": 34494, - "irl": 8570, - "irling": 26493, - "irls": 24344, - "irma": 22406, - "irn": 42603, - "iro": 23209, - "iro": 7280, - "iron": 7699, - "iron": 5391, - "ironic": 24518, - "ironically": 36779, - "ironing": 46655, - "ironman": 20330, - "irons": 30032, - "irony": 20681, - "irport": 27769, - "irr": 24641, - "irrational": 47413, - "irregular": 38692, - "irrelevant": 34677, - "irresi": 31200, - "irresistible": 35252, - "irresponsible": 44714, - "irri": 21484, - "irrigation": 23761, - "irrit": 24218, - "irs": 6086, - "irst": 32701, - "iru": 48206, - "irvin": 47053, - "irvine": 24201, - "irving": 19738, - "irwin": 23750, - "iry": 7239, - "is": 595, - "is": 533, - "isa": 11034, - "isa": 6536, - "isaac": 37544, - "isaac": 13659, - "isab": 13357, - "isabel": 27466, - "isabella": 26192, - "isabelle": 31072, - "isable": 46631, - "isai": 15365, - "isaiah": 17952, - "isak": 40619, - "isance": 46893, - "isation": 7194, - "isback": 43811, - "isc": 39316, - "isch": 47888, - "isco": 5736, - "iscoming": 26458, - "isd": 46816, - "isd": 12002, - "ise": 7669, - "ise": 1479, - "ised": 2861, - "iselle": 48491, - "iser": 23080, - "iser": 5626, - "isers": 34879, - "ises": 5153, - "isf": 44036, - "isgreat": 34595, - "ish": 6844, - "ish": 1061, - "isha": 28050, - "ishable": 37949, - "ished": 35341, - "ishere": 46053, - "ishi": 26224, - "ishq": 27996, - "ishqba": 32503, - "ishqbaaaz": 36591, - "isi": 7233, - "isi": 17880, - "isil": 34636, - "isin": 37676, - "ising": 3426, - "isis": 7531, - "isk": 30171, - "isl": 31368, - "isla": 22807, - "islam": 6003, - "islam": 8770, - "islamabad": 19959, - "islamic": 31627, - "islamic": 9552, - "islamist": 38798, - "islamophobia": 43459, - "island": 13408, - "island": 2619, - "islander": 45651, - "islanders": 27804, - "islands": 7145, - "islay": 49279, - "isle": 19082, - "isle": 11849, - "isleof": 24718, - "isles": 21816, - "islife": 26433, - "islington": 34945, - "ism": 47730, - "ism": 1935, - "isma": 43937, - "ismail": 36140, - "isme": 43570, - "ismo": 41926, - "isms": 18700, - "isn": 2923, - "isner": 48246, - "isnow": 43694, - "isnt": 19416, - "iso": 2462, - "iso": 12263, - "isol": 11414, - "isolated": 19044, - "isolation": 26400, - "ison": 12949, - "ison": 4553, - "isons": 33318, - "isoo": 35857, - "isp": 31397, - "isp": 39041, - "isra": 3591, - "israel": 20837, - "israel": 4779, - "israeli": 8994, - "israelis": 45713, - "isreal": 47147, - "isro": 44841, - "iss": 11738, - "iss": 4950, - "issa": 38579, - "issa": 7560, - "issan": 49358, - "issance": 40828, - "issant": 38828, - "isse": 18986, - "ission": 37946, - "issu": 2049, - "issue": 3202, - "issued": 9246, - "issues": 4082, - "issuing": 37226, - "ist": 9751, - "ist": 2304, - "istanbul": 12258, - "istandwith": 33820, - "iste": 32563, - "ister": 14555, - "isthe": 46748, - "istic": 29556, - "ists": 8426, - "isu": 17030, - "isu": 23328, - "it": 529, - "it": 585, - "ita": 36920, - "ita": 2864, - "itable": 8915, - "ital": 2306, - "ital": 1660, - "itali": 11644, - "italia": 11025, - "italian": 20264, - "italian": 5175, - "italians": 44744, - "italk": 32894, - "italy": 4052, - "itan": 18383, - "itans": 40711, - "itar": 47161, - "itarian": 11599, - "itary": 17604, - "itas": 31634, - "itas": 13436, - "itate": 42457, - "itated": 36744, - "itation": 5070, - "itative": 22892, - "itc": 36449, - "itch": 2387, - "itch": 8147, - "itchen": 32664, - "itchy": 41980, - "ite": 2732, - "ite": 802, - "iteam": 37828, - "itec": 3099, - "itec": 43936, - "itech": 44215, - "itech": 23040, - "ited": 8603, - "ited": 1108, - "itel": 44638, - "itely": 4605, - "item": 8532, - "items": 6207, - "iter": 7938, - "iter": 19773, - "iteracy": 39634, - "iterate": 43106, - "iteration": 38790, - "ites": 2454, - "itez": 42131, - "itf": 35436, - "itfc": 36519, - "ith": 6133, - "ith": 1757, - "ithaca": 46257, - "iti": 760, - "iti": 6165, - "itia": 22634, - "itian": 23365, - "itic": 11950, - "itical": 48767, - "itics": 33967, - "ities": 41423, - "ities": 1480, - "itim": 15676, - "itiner": 32803, - "itinerary": 41564, - "iting": 1257, - "ition": 25263, - "ition": 1104, - "itions": 5540, - "itious": 13329, - "itis": 33539, - "itis": 8388, - "itive": 3067, - "itly": 42240, - "ito": 22167, - "ito": 4661, - "iton": 21119, - "itor": 47267, - "itor": 4584, - "itors": 22005, - "itos": 24560, - "its": 7140, - "its": 902, - "itsa": 45032, - "itself": 7290, - "itsme": 41125, - "itss": 47040, - "itt": 1031, - "itt": 11228, - "itta": 21233, - "itte": 31962, - "itted": 24429, - "itten": 30014, - "itten": 4343, - "itter": 11456, - "itters": 13082, - "itti": 28629, - "ittin": 25646, - "itting": 3147, - "ittle": 24208, - "ittle": 21366, - "ittles": 38989, - "itton": 25707, - "itty": 35096, - "itu": 1668, - "itu": 32128, - "itude": 43382, - "itude": 5012, - "itudes": 20459, - "itunes": 7007, - "itup": 35838, - "iture": 25547, - "itus": 24364, - "itutes": 32883, - "itv": 20159, - "itv": 12805, - "ity": 2480, - "ity": 696, - "itya": 32055, - "itz": 14544, - "itz": 7807, - "iu": 14292, - "iu": 15575, - "ium": 10762, - "ius": 6740, - "iv": 6775, - "iv": 9315, - "iva": 42463, - "ivan": 15544, - "ivan": 15689, - "ivanka": 37914, - "ive": 26885, - "ive": 8653, - "ived": 15654, - "iver": 36849, - "iver": 44254, - "ives": 27333, - "ivf": 39159, - "iving": 45136, - "ivory": 16776, - "ivote": 45835, - "ivy": 36939, - "ivy": 16045, - "iw": 13058, - "iw": 46604, - "iwant": 42747, - "iwd": 16815, - "iwm": 44237, - "ix": 13272, - "ix": 8756, - "iy": 13704, - "iya": 18595, - "iyaki": 48395, - "iz": 2845, - "iz": 8407, - "iza": 37704, - "ization": 10847, - "ize": 10885, - "ized": 7690, - "izen": 34776, - "izer": 23895, - "izes": 45434, - "izing": 17354, - "izo": 46910, - "izz": 31779, - "izz": 46128, - "izzy": 28861, - "j": 73, - "j": 329, - "ja": 1586, - "ja": 2641, - "jaan": 25052, - "jab": 8059, - "jab": 9439, - "jac": 2293, - "jac": 30198, - "jace": 43286, - "jack": 2679, - "jack": 3267, - "jacked": 27923, - "jacket": 6164, - "jackets": 14745, - "jacki": 47418, - "jackie": 28023, - "jackie": 11716, - "jacking": 40929, - "jackman": 35723, - "jackpot": 23926, - "jacks": 19649, - "jackson": 12321, - "jackson": 4363, - "jacksonville": 19263, - "jaco": 6840, - "jacob": 14385, - "jacob": 9222, - "jacobs": 17482, - "jacobson": 46826, - "jacqu": 14495, - "jacqueline": 22843, - "jacques": 17799, - "jad": 12976, - "jad": 38691, - "jada": 37416, - "jade": 25123, - "jade": 14513, - "jaden": 37174, - "jadine": 37445, - "jae": 16869, - "jae": 15765, - "jaejoong": 43610, - "jaf": 19362, - "jag": 7984, - "jag": 36236, - "jagan": 48530, - "jagger": 30835, - "jags": 31086, - "jagu": 10096, - "jaguar": 44777, - "jaguar": 14757, - "jaguars": 21854, - "jah": 20067, - "jah": 11084, - "jahan": 44404, - "jahan": 47827, - "jai": 10542, - "jai": 13819, - "jail": 18574, - "jail": 9332, - "jailbreak": 45990, - "jailed": 19456, - "jails": 47833, - "jaime": 24716, - "jain": 21999, - "jaipur": 23593, - "jais": 48607, - "jait": 28910, - "jaitley": 32776, - "jak": 9225, - "jak": 30589, - "jakarta": 15471, - "jake": 13140, - "jake": 7419, - "jakob": 47358, - "jal": 8380, - "jal": 26773, - "jalan": 27270, - "jalap": 49081, - "jalape": 34263, - "jalapeño": 43017, - "jalen": 33548, - "jam": 1434, - "jam": 5201, - "jama": 8977, - "jama": 35366, - "jamaica": 13019, - "jamaican": 25144, - "jamal": 26108, - "jambo": 35599, - "jamboree": 38506, - "jame": 12341, - "james": 6963, - "james": 2392, - "jamesbond": 44704, - "jamesc": 47004, - "jameson": 31731, - "jami": 15092, - "jamie": 16454, - "jamie": 8078, - "jamiedor": 34310, - "jamiedornan": 34896, - "jammed": 35590, - "jammin": 35223, - "jamming": 25862, - "jammu": 25926, - "jams": 20243, - "jan": 1891, - "jan": 3334, - "jana": 18182, - "jane": 12389, - "jane": 6736, - "janeiro": 31740, - "janet": 29665, - "janet": 15872, - "jang": 41526, - "jang": 22074, - "jani": 22606, - "janice": 36048, - "janine": 46896, - "janis": 44233, - "jann": 35377, - "jans": 22578, - "jansen": 45354, - "janu": 3623, - "january": 3697, - "jap": 2299, - "jap": 49062, - "japan": 4502, - "japan": 3400, - "japanese": 27211, - "japanese": 4925, - "japs": 42121, - "jar": 5120, - "jar": 10837, - "jard": 25778, - "jardin": 37371, - "jare": 17654, - "jared": 35597, - "jared": 12571, - "jaredle": 36739, - "jaredleto": 37106, - "jaro": 35505, - "jarpad": 44497, - "jarre": 23385, - "jarrett": 30531, - "jars": 27583, - "jarvis": 29286, - "jas": 4492, - "jas": 17559, - "jasmin": 42989, - "jasmin": 47700, - "jasmine": 17056, - "jason": 10009, - "jason": 5395, - "jasper": 19827, - "jat": 26106, - "jau": 26932, - "jauregui": 48175, - "jav": 6234, - "java": 12918, - "javascri": 16289, - "javascript": 16423, - "jave": 46218, - "javed": 42268, - "javelin": 41701, - "javi": 47627, - "javier": 23307, - "jaw": 14804, - "jaw": 17307, - "jawa": 44790, - "jaws": 25491, - "jax": 22348, - "jax": 12390, - "jay": 3427, - "jay": 4155, - "jaya": 21960, - "jayanti": 37732, - "jaye": 45703, - "jayne": 35228, - "jays": 12393, - "jaz": 3465, - "jaz": 32874, - "jazeera": 38260, - "jazz": 11488, - "jazz": 4528, - "jazzfest": 36683, - "jazzy": 28191, - "jb": 21915, - "jb": 13637, - "jc": 14991, - "jc": 11517, - "jd": 18289, - "jd": 14125, - "jdm": 42013, - "je": 1013, - "je": 8776, - "jeal": 9964, - "jealous": 11093, - "jealousy": 37654, - "jean": 13943, - "jean": 6473, - "jeanette": 48167, - "jeanne": 29201, - "jeans": 10157, - "jeb": 35101, - "jec": 1347, - "ject": 6070, - "jed": 12166, - "jed": 38748, - "jeddah": 40982, - "jedi": 16681, - "jee": 29250, - "jee": 14870, - "jeep": 16593, - "jeep": 11286, - "jeeplife": 43100, - "jeet": 45542, - "jeet": 30944, - "jef": 10276, - "jeff": 6245, - "jeff": 5550, - "jefferson": 44711, - "jefferson": 13976, - "jeffery": 41470, - "jeffree": 45994, - "jeffrey": 32886, - "jeffrey": 16027, - "jeho": 42437, - "jeky": 43893, - "jekyll": 49405, - "jel": 9794, - "jelena": 48218, - "jelly": 19110, - "jelly": 13762, - "jellyfish": 30988, - "jem": 46326, - "jem": 37530, - "jen": 2554, - "jen": 12997, - "jenkins": 16162, - "jenn": 33921, - "jenn": 29869, - "jenna": 17125, - "jenner": 14260, - "jenni": 6774, - "jennie": 28875, - "jennifer": 19786, - "jennifer": 8613, - "jennings": 21564, - "jenny": 20165, - "jenny": 13414, - "jens": 40806, - "jensen": 35558, - "jensen": 19004, - "jensenackles": 41011, - "jeon": 45200, - "jeon": 43337, - "jeong": 47146, - "jeong": 39264, - "jeopar": 22988, - "jeopardy": 29613, - "jer": 2310, - "jer": 35307, - "jere": 5614, - "jeremi": 22362, - "jeremiah": 27301, - "jeremy": 14656, - "jeremy": 8127, - "jeremycorbyn": 37484, - "jeric": 25084, - "jericho": 28892, - "jerk": 23917, - "jerky": 40079, - "jermaine": 40722, - "jerome": 19876, - "jerry": 18163, - "jerry": 9164, - "jersey": 21921, - "jersey": 4471, - "jerseys": 15518, - "jerus": 12257, - "jerusalem": 12557, - "jes": 7686, - "jes": 35826, - "jess": 5313, - "jess": 13758, - "jesse": 23112, - "jesse": 11770, - "jessi": 24373, - "jessic": 14881, - "jessica": 45421, - "jessica": 8178, - "jessie": 19424, - "jester": 44225, - "jesu": 19777, - "jesuit": 33234, - "jesus": 4070, - "jet": 11515, - "jet": 6565, - "jetblue": 45021, - "jeter": 38450, - "jets": 38584, - "jets": 10025, - "jett": 44541, - "jetty": 46382, - "jew": 27450, - "jewel": 4880, - "jewel": 17591, - "jewell": 9777, - "jewellers": 46265, - "jewellery": 11192, - "jewelry": 28018, - "jewelry": 6039, - "jewels": 20205, - "jewish": 29594, - "jewish": 9104, - "jews": 14200, - "jf": 31130, - "jf": 33718, - "jfc": 43652, - "jfk": 18486, - "jg": 41986, - "jg": 35138, - "jh": 24858, - "jh": 21485, - "jha": 47012, - "jha": 38092, - "jhal": 45695, - "jhar": 31546, - "jharkhand": 39001, - "jhb": 34631, - "ji": 3252, - "ji": 2697, - "jia": 32907, - "jian": 33427, - "jiang": 43309, - "jiang": 25762, - "jic": 48350, - "jic": 40215, - "jid": 24403, - "jie": 40005, - "jig": 15136, - "jig": 47430, - "jigsaw": 32987, - "jiha": 23194, - "jihad": 29637, - "jihoon": 44765, - "jil": 36225, - "jill": 24136, - "jill": 15254, - "jillian": 37820, - "jim": 3190, - "jim": 4550, - "jima": 20679, - "jimcantore": 43950, - "jimenez": 35947, - "jimi": 30565, - "jimin": 16286, - "jimmie": 45679, - "jimmy": 12215, - "jimmy": 6817, - "jimmyfallon": 45265, - "jin": 7927, - "jin": 8485, - "jind": 40609, - "jing": 34933, - "jing": 28607, - "jingle": 28699, - "jinnah": 43141, - "jinping": 39308, - "jinx": 42977, - "jinyoung": 38051, - "jio": 40501, - "jis": 25988, - "jis": 23515, - "jisoo": 43070, - "jit": 11947, - "jit": 20308, - "jitsu": 24530, - "jiu": 43351, - "jiu": 44123, - "jj": 12502, - "jj": 12790, - "jk": 20189, - "jk": 9702, - "jkt": 21494, - "jl": 25027, - "jl": 22911, - "jlo": 31017, - "jm": 24044, - "jm": 18657, - "jn": 24576, - "jn": 21717, - "jnr": 37145, - "jnu": 47142, - "jo": 683, - "jo": 3804, - "joachim": 48979, - "joan": 28064, - "joan": 12710, - "joann": 35484, - "joanna": 25357, - "joanne": 43736, - "joanne": 25092, - "joao": 45666, - "joaqu": 25140, - "joaquin": 30745, - "job": 13114, - "job": 2075, - "jobs": 3735, - "jobsearch": 45459, - "joburg": 39343, - "jocel": 36879, - "jocelyn": 47259, - "jock": 34485, - "jockey": 20126, - "jodh": 48689, - "jodi": 36812, - "jodi": 26888, - "jodie": 33100, - "jody": 32959, - "joe": 9309, - "joe": 3305, - "joel": 19819, - "joel": 11429, - "joes": 34756, - "joey": 16281, - "joey": 10455, - "jog": 37967, - "jog": 31691, - "jogging": 37922, - "joh": 1201, - "johan": 17416, - "johan": 27789, - "johann": 31180, - "johanna": 41494, - "johannes": 37779, - "johannesburg": 28377, - "johansson": 41512, - "johar": 34871, - "john": 2004, - "john": 1742, - "johncena": 46820, - "johnnie": 47947, - "johnny": 14464, - "johnny": 6904, - "johns": 14515, - "johnson": 26036, - "johnson": 4010, - "johnston": 19791, - "johnstone": 40766, - "johor": 34750, - "join": 14737, - "join": 1384, - "joined": 4954, - "joining": 5118, - "joins": 5681, - "joint": 6640, - "jointhe": 30422, - "jointly": 37471, - "joints": 27204, - "jojo": 41484, - "jojo": 22075, - "joke": 7198, - "joker": 18200, - "jokers": 44101, - "jokes": 11336, - "joking": 26112, - "joko": 44975, - "jol": 9174, - "jol": 36470, - "jolie": 31633, - "jolla": 46109, - "jolly": 21516, - "jom": 32152, - "jon": 3026, - "jon": 6139, - "jona": 6629, - "jonah": 47934, - "jonah": 27556, - "jonas": 42373, - "jonas": 13650, - "jonathan": 19026, - "jonathan": 7762, - "jone": 33934, - "jones": 19091, - "jones": 3538, - "jong": 20214, - "jong": 14726, - "jonghyun": 29023, - "jongin": 36957, - "joni": 43177, - "jonny": 28454, - "jonny": 21895, - "joo": 25807, - "joo": 27680, - "joom": 47543, - "joon": 18547, - "joong": 26544, - "jop": 30486, - "joplin": 42688, - "jor": 2482, - "jor": 31595, - "jordan": 14644, - "jordan": 4388, - "jordani": 46898, - "jordi": 44795, - "jorge": 48761, - "jorge": 18225, - "jos": 20560, - "jos": 19661, - "jose": 4647, - "jose": 7075, - "josef": 36584, - "josel": 47800, - "joseph": 14163, - "joseph": 6478, - "josephine": 34866, - "josh": 9998, - "josh": 5679, - "joshi": 24786, - "joshu": 9112, - "joshua": 11852, - "josi": 33583, - "josie": 33167, - "joss": 42834, - "josé": 27922, - "jou": 19921, - "jou": 32029, - "jour": 2078, - "jour": 17142, - "journ": 4563, - "journal": 6626, - "journalism": 10123, - "journalist": 9914, - "journalists": 12249, - "journals": 24391, - "journe": 48833, - "journey": 32156, - "journey": 3749, - "journeys": 23329, - "journo": 37034, - "journos": 46437, - "jovi": 33866, - "joy": 6308, - "joy": 4273, - "joyce": 43753, - "joyce": 15275, - "joye": 34052, - "joyeux": 41876, - "joyful": 24139, - "joyous": 32245, - "joyride": 46949, - "joys": 22996, - "jp": 18249, - "jp": 10557, - "jpg": 36950, - "jpn": 36212, - "jr": 13973, - "jr": 3605, - "js": 46243, - "js": 8006, - "jst": 26523, - "jt": 39480, - "jt": 18119, - "ju": 669, - "ju": 9970, - "jual": 38720, - "juan": 17148, - "juan": 9274, - "juana": 9081, - "jubi": 15485, - "jubil": 47743, - "jubilee": 16907, - "juco": 31570, - "jud": 8363, - "juda": 32478, - "judah": 41066, - "judaism": 42217, - "judas": 39532, - "judd": 29770, - "judg": 20012, - "judge": 16824, - "judge": 5656, - "judged": 33453, - "judgement": 25246, - "judges": 12575, - "judging": 16570, - "judgment": 24191, - "judi": 42546, - "judice": 28032, - "judicial": 19579, - "judiciary": 24545, - "judith": 24047, - "judo": 27011, - "judy": 34663, - "judy": 16510, - "jug": 27619, - "jugg": 38628, - "juic": 38761, - "juice": 37954, - "juice": 6916, - "juices": 36757, - "juicy": 17623, - "juju": 43020, - "juke": 32519, - "jukebox": 36411, - "jul": 34662, - "jul": 15975, - "jule": 40819, - "jules": 21996, - "juli": 3614, - "juli": 49160, - "julia": 10207, - "julian": 25459, - "julian": 12643, - "juliana": 46059, - "julie": 22534, - "julie": 10505, - "julien": 32595, - "juliet": 20641, - "juliette": 44804, - "julio": 24888, - "julius": 20870, - "july": 2272, - "jum": 20791, - "jumbo": 24678, - "jume": 45989, - "jump": 5519, - "jump": 6423, - "jumped": 16901, - "jumper": 16558, - "jumpers": 36485, - "jumping": 11476, - "jumpman": 48803, - "jumps": 18911, - "jumpsuit": 31044, - "jun": 1637, - "jun": 7719, - "junction": 11320, - "june": 23188, - "june": 2345, - "jung": 13086, - "jung": 13031, - "jungkook": 20040, - "jungle": 42421, - "jungle": 10865, - "juni": 4029, - "junior": 21167, - "junior": 5027, - "juniors": 16811, - "juniper": 33829, - "junk": 16000, - "junkie": 27613, - "junkies": 41207, - "juno": 28845, - "junto": 34282, - "jupit": 15270, - "jupiter": 16212, - "jur": 15896, - "jura": 14715, - "jurassic": 28844, - "jurassic": 21255, - "jurgen": 39263, - "juris": 37010, - "jurisdic": 37714, - "jury": 12931, - "jus": 14999, - "just": 1770, - "just": 761, - "justi": 14700, - "justic": 30399, - "justice": 16904, - "justice": 3604, - "justicefor": 25812, - "justiceleague": 41929, - "justices": 44356, - "justified": 34546, - "justify": 28192, - "justin": 7537, - "justin": 4394, - "justinbieber": 12501, - "justine": 34418, - "justintrudeau": 32184, - "justsaying": 42922, - "juve": 47717, - "juve": 23092, - "juven": 12944, - "juvenile": 19333, - "juvent": 13908, - "juventus": 47378, - "juventus": 16208, - "jux": 33552, - "juxta": 34964, - "jv": 37932, - "jv": 11805, - "jw": 30221, - "jw": 24215, - "jy": 20979, - "jyo": 27378, - "jyoti": 48696, - "jä": 45381, - "k": 74, - "k": 330, - "ka": 1595, - "ka": 1525, - "kaa": 34496, - "kab": 6554, - "kab": 45134, - "kabaddi": 41749, - "kabir": 38619, - "kabo": 47974, - "kabul": 26160, - "kac": 21693, - "kach": 14341, - "kad": 10901, - "kade": 41130, - "kaduna": 38053, - "kae": 22542, - "kaeper": 30070, - "kaepernick": 30713, - "kaf": 19870, - "kag": 13666, - "kag": 31003, - "kah": 16068, - "kah": 15463, - "kahn": 35397, - "kai": 12752, - "kai": 9601, - "kaido": 40255, - "kail": 23623, - "kaine": 39028, - "kair": 33027, - "kaiser": 43685, - "kaiser": 29960, - "kait": 19326, - "kaitlyn": 34948, - "kaj": 44788, - "kaj": 40381, - "kak": 10401, - "kak": 40128, - "kaka": 47689, - "kaku": 30900, - "kal": 4187, - "kal": 18712, - "kala": 45453, - "kala": 33105, - "kalam": 40142, - "kalamaz": 42328, - "kalamazoo": 46264, - "kalb": 34483, - "kale": 17162, - "kale": 16625, - "kaleido": 41144, - "kali": 17844, - "kali": 26964, - "kalin": 42776, - "kalyan": 23825, - "kam": 4104, - "kam": 26011, - "kamal": 31371, - "kamal": 28619, - "kamala": 45003, - "kame": 45235, - "kamen": 40738, - "kami": 28707, - "kamloops": 36602, - "kamp": 35179, - "kamp": 29522, - "kampala": 37134, - "kan": 2532, - "kan": 8101, - "kana": 35178, - "kand": 17478, - "kane": 32218, - "kane": 9765, - "kang": 12226, - "kang": 20789, - "kangar": 20622, - "kangaroo": 25513, - "kani": 40907, - "kani": 41948, - "kann": 18533, - "kannada": 30053, - "kano": 28201, - "kans": 34012, - "kansas": 25507, - "kansas": 6539, - "kansascity": 46134, - "kant": 39923, - "kant": 47132, - "kanth": 24427, - "kanu": 44565, - "kany": 13590, - "kanye": 29680, - "kanye": 14965, - "kanyewest": 31943, - "kap": 6804, - "kap": 45279, - "kapam": 48561, - "kapil": 32337, - "kapil": 42709, - "kapilshar": 48978, - "kaplan": 37401, - "kapoor": 9117, - "kapp": 36717, - "kappa": 20239, - "kapur": 42371, - "kar": 1813, - "kar": 5933, - "kara": 12552, - "karab": 40916, - "karachi": 13671, - "karak": 40372, - "karan": 20077, - "karan": 20931, - "karanjohar": 47621, - "karao": 16262, - "karaoke": 16640, - "karate": 21211, - "kardashi": 13619, - "kardashian": 14578, - "kare": 14310, - "kare": 38354, - "kareem": 38885, - "kareena": 41569, - "karen": 17719, - "karen": 10349, - "kari": 15339, - "kari": 15161, - "karim": 33477, - "karin": 43917, - "karina": 40250, - "karl": 20967, - "karl": 13134, - "karla": 42309, - "karma": 17658, - "karnat": 13994, - "karnataka": 15515, - "karo": 45305, - "kart": 47841, - "kart": 21310, - "karthik": 41397, - "karti": 23053, - "kartikeyan": 32584, - "karting": 41655, - "kas": 6119, - "kas": 14372, - "kasa": 46111, - "kash": 6954, - "kash": 21371, - "kashi": 47945, - "kashmir": 20251, - "kashmir": 10783, - "kashmiri": 35331, - "kasi": 45870, - "kasi": 32819, - "kasich": 39666, - "kat": 2844, - "kat": 9341, - "kata": 14558, - "kate": 11620, - "kate": 6699, - "katelyn": 45963, - "kath": 7386, - "kath": 19745, - "katharine": 41473, - "katherine": 17687, - "kathle": 18721, - "kathleen": 21709, - "kathmandu": 34456, - "kathniel": 36159, - "kathr": 14905, - "kathryn": 33142, - "kathryn": 19999, - "kathy": 34775, - "kathy": 18795, - "kati": 6515, - "kati": 29928, - "katic": 48058, - "katie": 24117, - "katie": 9076, - "katniss": 47916, - "kato": 27573, - "katrin": 31282, - "katrina": 21397, - "katrinakaif": 45845, - "kats": 44213, - "katsu": 49296, - "katsu": 43712, - "katy": 17609, - "katy": 14435, - "katyperry": 28309, - "katz": 30790, - "kau": 9299, - "kau": 36895, - "kauai": 44050, - "kaufman": 37188, - "kaur": 30518, - "kav": 10228, - "kavan": 18576, - "kavanaugh": 20252, - "kaw": 10842, - "kaw": 42719, - "kawa": 33244, - "kawaii": 26891, - "kawasaki": 28227, - "kawhi": 41220, - "kay": 4673, - "kay": 9862, - "kaya": 22752, - "kayak": 27043, - "kayaking": 28977, - "kaye": 33003, - "kayla": 17139, - "kaylee": 47215, - "kayo": 37021, - "kaz": 8812, - "kaz": 39622, - "kazakh": 25451, - "kazakhstan": 26720, - "kazan": 47641, - "kb": 27381, - "kb": 19960, - "kbs": 27418, - "kc": 10869, - "kc": 8638, - "kca": 14347, - "kcon": 39970, - "kcr": 46181, - "kd": 21826, - "kd": 15597, - "kday": 31074, - "kdrama": 48628, - "ke": 643, - "ke": 618, - "kea": 47926, - "kean": 43288, - "keane": 28635, - "keanu": 40608, - "kear": 21562, - "kearney": 36435, - "keating": 40045, - "keaton": 29975, - "kebab": 36497, - "ked": 11730, - "ked": 1243, - "kee": 9724, - "kee": 6760, - "keef": 42323, - "keefe": 46965, - "keegan": 31122, - "keel": 48376, - "keen": 17714, - "keen": 13218, - "keenan": 36276, - "keep": 2924, - "keep": 1726, - "keeper": 7650, - "keepers": 16130, - "keepin": 41712, - "keeping": 38371, - "keeping": 4873, - "keepit": 28044, - "keeps": 6333, - "keer": 27412, - "keerth": 47500, - "keerthyofficial": 48185, - "kees": 10791, - "keg": 32785, - "keh": 41272, - "keh": 36983, - "kei": 18735, - "kei": 24835, - "keith": 18762, - "keith": 8252, - "kej": 15674, - "kejri": 16617, - "kejriwal": 17334, - "keke": 39195, - "kel": 2825, - "kel": 7553, - "kele": 41765, - "kell": 16082, - "kell": 40103, - "keller": 21407, - "kelley": 23776, - "kelli": 45852, - "kelli": 46190, - "kellie": 49224, - "kellogg": 44218, - "kelly": 13417, - "kelly": 5220, - "kelown": 31708, - "kelowna": 32963, - "kelsey": 42295, - "kelsey": 23018, - "kelvin": 32859, - "kem": 31013, - "kem": 17349, - "kemp": 18302, - "kemp": 25325, - "ken": 1838, - "ken": 1702, - "kend": 7497, - "kendal": 44836, - "kendall": 34607, - "kendall": 16238, - "kendra": 36074, - "kendrick": 41787, - "kendrick": 21953, - "kendricklamar": 47020, - "kenne": 6209, - "kennedy": 38631, - "kennedy": 9004, - "kennel": 39595, - "kenneth": 46900, - "kenneth": 17839, - "kenney": 41373, - "kenny": 20185, - "kenny": 9595, - "kens": 29765, - "kensing": 21505, - "kensington": 24988, - "kent": 13875, - "kent": 8214, - "kentu": 9045, - "kentucky": 32230, - "kentucky": 10014, - "keny": 17374, - "kenya": 6181, - "kenyan": 22624, - "kenyans": 36263, - "kenyatta": 31012, - "kenzie": 38087, - "keo": 43062, - "kept": 7737, - "ker": 2352, - "ker": 1485, - "keral": 35122, - "kerala": 11881, - "kered": 26690, - "kerel": 32232, - "keri": 43447, - "kermit": 40908, - "kern": 40150, - "kernel": 40684, - "kerr": 20491, - "kerri": 41849, - "kerry": 24795, - "kerry": 13097, - "kers": 30347, - "kers": 2880, - "kershaw": 40785, - "kerson": 42810, - "kerswednesday": 48152, - "kert": 47279, - "kes": 38398, - "kes": 1115, - "kesh": 19751, - "kesha": 36526, - "kest": 15080, - "ket": 2715, - "ket": 1236, - "ketball": 38240, - "ketch": 22590, - "ketch": 35371, - "ketchup": 26724, - "kete": 25404, - "keted": 41396, - "keting": 15951, - "keto": 27485, - "keto": 28754, - "kets": 1632, - "kett": 23124, - "kett": 10312, - "kettering": 43779, - "kettle": 41992, - "kettle": 24303, - "kev": 22758, - "kev": 29419, - "kevin": 9419, - "kevin": 4685, - "kew": 38014, - "kew": 31409, - "kex": 30251, - "key": 2891, - "key": 1458, - "keyan": 27617, - "keyboard": 13017, - "keyboards": 49237, - "keychain": 31050, - "keye": 40516, - "keye": 20635, - "keyes": 18336, - "keynes": 32462, - "keynote": 7556, - "keys": 48912, - "keys": 6355, - "keystone": 30688, - "keyword": 42284, - "keywords": 48122, - "kf": 33308, - "kf": 42119, - "kfc": 22032, - "kg": 36772, - "kg": 7817, - "kgs": 46629, - "kh": 2166, - "kh": 7452, - "kha": 7333, - "kha": 18929, - "khair": 43742, - "khaki": 41646, - "khal": 13070, - "khaled": 29343, - "khali": 11324, - "khalid": 27166, - "khalifa": 21389, - "khalil": 36229, - "kham": 24892, - "khan": 13318, - "khan": 3873, - "khand": 43384, - "khand": 31110, - "khanna": 29931, - "khar": 18340, - "khar": 28578, - "khart": 37458, - "khat": 43290, - "khe": 26360, - "kher": 43843, - "khi": 39062, - "khi": 42925, - "khil": 34101, - "khloe": 45312, - "kho": 14022, - "kho": 28774, - "khou": 30656, - "khs": 21239, - "khtar": 45593, - "khu": 14041, - "khur": 32083, - "khy": 40917, - "khz": 45604, - "ki": 848, - "ki": 2608, - "kia": 8712, - "kian": 43961, - "kian": 25708, - "kians": 44010, - "kib": 43108, - "kiba": 37207, - "kic": 24003, - "kic": 27633, - "kicchasu": 44665, - "kicchasudeep": 45560, - "kick": 4102, - "kick": 4289, - "kickass": 39299, - "kickboxing": 36041, - "kicked": 12479, - "kicker": 26338, - "kickin": 34597, - "kicking": 7802, - "kickoff": 10245, - "kicks": 6989, - "kickstart": 40780, - "kickstarter": 13228, - "kid": 3948, - "kid": 3551, - "kidd": 24082, - "kidding": 14535, - "kiddo": 36360, - "kiddos": 29205, - "kidlit": 39064, - "kidlit": 33515, - "kidlitart": 41600, - "kidman": 44931, - "kidnap": 45100, - "kidnapp": 16183, - "kidnapped": 24737, - "kidnapping": 32361, - "kidney": 37835, - "kidney": 14610, - "kids": 15561, - "kids": 1911, - "kidz": 41938, - "kie": 8544, - "kie": 3094, - "kiefer": 48026, - "kiel": 40940, - "kiel": 25509, - "kien": 28782, - "kier": 20403, - "kier": 35575, - "kieran": 29231, - "kies": 36601, - "kies": 4993, - "kiest": 29755, - "kiev": 24585, - "kiewicz": 47574, - "kigali": 40278, - "kii": 39340, - "kik": 36176, - "kiki": 23962, - "kiko": 40861, - "kil": 4912, - "kil": 39337, - "kildare": 45541, - "kili": 24386, - "kilig": 49172, - "kilimanjaro": 43470, - "kilkenny": 33805, - "kill": 6163, - "kill": 4367, - "killa": 41355, - "killarney": 48813, - "killed": 3733, - "killer": 28230, - "killer": 6613, - "killers": 17614, - "killin": 25903, - "killing": 37977, - "killing": 5923, - "killings": 24918, - "kills": 9795, - "kiln": 44150, - "kilo": 39281, - "kilom": 26285, - "kilometers": 39192, - "kilometres": 43278, - "kilt": 49319, - "kim": 4639, - "kim": 4606, - "kimber": 16796, - "kimberley": 39859, - "kimberly": 27465, - "kimchi": 41027, - "kimi": 31536, - "kimkardashian": 35400, - "kimmel": 27820, - "kimono": 40024, - "kin": 1442, - "kin": 2667, - "kina": 28518, - "kind": 7204, - "kind": 3044, - "kinda": 6612, - "kinder": 12711, - "kinder": 24159, - "kindergarten": 16749, - "kindle": 24704, - "kindle": 10746, - "kindleunlimited": 32164, - "kindly": 13952, - "kindness": 45112, - "kindness": 10614, - "kinds": 14879, - "kine": 17607, - "kineni": 49080, - "kinetic": 37699, - "king": 2365, - "king": 674, - "kingdom": 21870, - "kingdom": 7364, - "kingdomhearts": 48570, - "kingdoms": 43890, - "kingfisher": 34330, - "kingjames": 33153, - "kingly": 33642, - "kingof": 27878, - "kings": 18590, - "kings": 4232, - "kingsley": 41807, - "kingston": 40736, - "kingston": 15393, - "kini": 41644, - "kinky": 37006, - "kinney": 37233, - "kino": 39000, - "kins": 31060, - "kins": 4386, - "kinson": 12095, - "kio": 28210, - "kio": 39401, - "kiosk": 39146, - "kip": 27636, - "kip": 15986, - "kipp": 43329, - "kir": 3476, - "kir": 32949, - "kira": 33038, - "kiran": 43234, - "kiran": 36603, - "kirby": 17065, - "kiri": 34170, - "kiri": 45826, - "kirk": 10639, - "kirk": 11508, - "kirkland": 43061, - "kiro": 39749, - "kirstel": 46483, - "kirsten": 31813, - "kirsty": 37787, - "kis": 3199, - "kis": 22796, - "kish": 25662, - "kiss": 43757, - "kiss": 5946, - "kissed": 22561, - "kisses": 47876, - "kisses": 11220, - "kissing": 18637, - "kistan": 29580, - "kit": 4566, - "kit": 4274, - "kita": 29961, - "kitch": 3850, - "kitchen": 18131, - "kitchen": 4485, - "kitchener": 34428, - "kitchens": 28301, - "kite": 47777, - "kite": 19867, - "kites": 45829, - "kits": 13730, - "kitt": 10840, - "kitten": 13063, - "kittens": 17216, - "kitties": 36013, - "kitty": 25067, - "kitty": 8417, - "kiwan": 38709, - "kiwanis": 46513, - "kiwi": 22440, - "kiwis": 48108, - "kiya": 41610, - "kj": 27385, - "kj": 28238, - "kja": 41048, - "kjv": 37387, - "kk": 4390, - "kk": 10849, - "kka": 19002, - "kke": 44239, - "kker": 32399, - "kki": 44672, - "kkk": 20073, - "kkkk": 15834, - "kkkk": 47160, - "kkkkkkkk": 31042, - "kko": 43965, - "kkr": 40855, - "kl": 8498, - "kl": 14134, - "kla": 11249, - "klan": 46935, - "klar": 41374, - "klaus": 31788, - "kle": 7612, - "kle": 7432, - "klein": 33475, - "klein": 17579, - "kley": 18594, - "kli": 31640, - "klin": 44809, - "klin": 41647, - "kline": 47580, - "kling": 40270, - "klm": 38859, - "klo": 15296, - "klopp": 26446, - "kltu": 25978, - "klu": 21852, - "kly": 45090, - "km": 29954, - "km": 4590, - "kman": 33312, - "kms": 24996, - "kn": 4825, - "kn": 23693, - "knapp": 33945, - "kne": 6358, - "knee": 9897, - "knees": 19115, - "kner": 31578, - "knew": 5009, - "kni": 6312, - "knick": 33286, - "knicks": 17657, - "knife": 44176, - "knife": 8960, - "knigh": 43099, - "knight": 17949, - "knight": 7355, - "knights": 10385, - "knit": 18745, - "knit": 14313, - "knitted": 28151, - "knitting": 18863, - "knives": 20910, - "kno": 1482, - "kno": 25362, - "knob": 29736, - "knobs": 47504, - "knock": 14195, - "knock": 11583, - "knocked": 15325, - "knocking": 20380, - "knockout": 22602, - "knocks": 24296, - "knoll": 43882, - "knot": 18412, - "knots": 32428, - "know": 4179, - "know": 1038, - "knowing": 9267, - "knowledge": 27864, - "knowledge": 5510, - "knowledgeable": 43391, - "knowles": 32631, - "known": 3102, - "knows": 4309, - "knowyour": 30773, - "knox": 18630, - "knox": 21833, - "knoxville": 23232, - "knu": 14812, - "knuck": 21333, - "knuckle": 42023, - "knuckles": 40127, - "knw": 40803, - "ko": 1313, - "ko": 2448, - "koala": 36654, - "kobe": 42644, - "kobe": 14470, - "kobo": 42390, - "koch": 25331, - "kochi": 36710, - "kodak": 30425, - "kodi": 46611, - "kof": 17528, - "koff": 47303, - "kofi": 40400, - "koh": 13379, - "koh": 31216, - "kohl": 48479, - "kohli": 17549, - "koi": 28150, - "kojima": 46419, - "kok": 32045, - "kok": 11225, - "koko": 42426, - "koko": 40003, - "kol": 7142, - "kol": 31023, - "kolkata": 18011, - "kom": 6686, - "kom": 24181, - "kombat": 29670, - "kombucha": 48615, - "komo": 31820, - "kon": 5743, - "kon": 29519, - "kona": 30203, - "kong": 31784, - "kong": 6506, - "konstant": 46583, - "koo": 12225, - "koo": 40472, - "kook": 16003, - "kool": 36755, - "kool": 26444, - "kop": 16623, - "kop": 38999, - "kor": 6428, - "kor": 24175, - "kore": 3919, - "korea": 5915, - "korean": 31949, - "korean": 8034, - "kori": 42842, - "korn": 45412, - "korn": 31492, - "kors": 34535, - "kos": 47438, - "kos": 22951, - "kosh": 45233, - "kosher": 36502, - "koso": 23892, - "kosovo": 28343, - "kot": 23323, - "kot": 20701, - "kota": 21735, - "koto": 40945, - "koto": 29977, - "kou": 18502, - "kou": 39614, - "kour": 34134, - "kov": 17733, - "kov": 15156, - "kova": 26185, - "koval": 47903, - "kovic": 16886, - "kovich": 44794, - "kovsky": 33384, - "kow": 29764, - "kow": 23919, - "kowski": 17649, - "koz": 29598, - "kp": 16174, - "kp": 16894, - "kpa": 38759, - "kph": 41138, - "kpk": 42094, - "kpmg": 38243, - "kpop": 29534, - "kpop": 15859, - "kprc": 47832, - "kprs": 46253, - "kr": 7309, - "kr": 14107, - "kra": 5762, - "kraft": 28057, - "kraja": 29016, - "kraken": 48408, - "krakow": 40033, - "kram": 19075, - "kramer": 27495, - "kran": 33243, - "kranti": 47969, - "krat": 30470, - "kre": 8362, - "kreme": 43140, - "kremlin": 33979, - "kri": 3679, - "kris": 35251, - "kris": 12261, - "krish": 11487, - "krishna": 15863, - "krishnan": 46535, - "krispy": 49292, - "krist": 16490, - "kristen": 28881, - "kristen": 16644, - "kristi": 26895, - "kristin": 35408, - "kristin": 26785, - "kristina": 33180, - "krit": 36265, - "kro": 16193, - "kroger": 36344, - "kron": 25999, - "kru": 10609, - "kruger": 32948, - "krun": 43084, - "kry": 13995, - "krystal": 36554, - "ks": 10470, - "ks": 662, - "ksa": 25439, - "ksh": 36594, - "kst": 17420, - "kstate": 48590, - "ksu": 43496, - "kswx": 36180, - "kt": 17238, - "kt": 7792, - "ktm": 33989, - "ktn": 42170, - "kton": 37848, - "kts": 48577, - "ktv": 36444, - "ku": 1836, - "ku": 4827, - "kuala": 30336, - "kubball": 48995, - "kuber": 41336, - "kubernetes": 45144, - "kubrick": 37032, - "kuch": 39394, - "kud": 40818, - "kudos": 14481, - "kul": 11325, - "kul": 31514, - "kum": 18086, - "kum": 28148, - "kuma": 43139, - "kuma": 33920, - "kumar": 22329, - "kumar": 7674, - "kumb": 31391, - "kun": 6849, - "kun": 21842, - "kung": 39656, - "kung": 22347, - "kunst": 37881, - "kup": 39023, - "kups": 27240, - "kur": 4862, - "kurdi": 23504, - "kurdish": 21644, - "kurdistan": 24459, - "kurds": 20888, - "kuri": 46375, - "kuro": 28239, - "kuro": 47826, - "kurt": 31903, - "kurt": 14527, - "kus": 27618, - "kus": 27505, - "kush": 22264, - "kush": 24594, - "kushner": 36716, - "kut": 17283, - "kut": 36965, - "kuwait": 19679, - "kuya": 34815, - "kuz": 33253, - "kv": 27594, - "kv": 34249, - "kw": 10072, - "kw": 18339, - "kwa": 32784, - "kwa": 48576, - "kwame": 46681, - "kwan": 37100, - "kwan": 39447, - "kwang": 40260, - "kwe": 26050, - "kwi": 35327, - "kwon": 36369, - "kx": 28190, - "kx": 46442, - "ky": 2018, - "ky": 2383, - "kya": 29142, - "kyc": 37758, - "kyiv": 36422, - "kyle": 15847, - "kyle": 7539, - "kylie": 28282, - "kylie": 17983, - "kyliejenner": 47232, - "kylo": 47704, - "kyo": 13150, - "kyo": 6281, - "kyoto": 23223, - "kyr": 26329, - "kyrgy": 40013, - "kyrgyz": 48346, - "kyrie": 21857, - "kyu": 28296, - "kyu": 25490, - "kyuhyun": 37229, - "kyung": 41058, - "kyungsoo": 30280, - "kywx": 39940, - "kz": 48743, - "kz": 36848, - "kzn": 38264, - "kö": 32437, - "l": 75, - "l": 331, - "la": 572, - "la": 1210, - "laa": 44642, - "lab": 3537, - "lab": 4352, - "labe": 25749, - "label": 12235, - "label": 9093, - "labeled": 32720, - "labeling": 36825, - "labelled": 45188, - "labels": 17413, - "lable": 31879, - "labor": 11201, - "labor": 7878, - "laboratories": 43421, - "laboratory": 17664, - "laborday": 39324, - "labou": 32700, - "labour": 19586, - "labour": 6019, - "labourdoorstep": 37008, - "labout": 35961, - "labra": 37067, - "labrador": 25409, - "labs": 12021, - "laby": 29131, - "labyrin": 31782, - "labyrinth": 35594, - "lac": 4477, - "lac": 16189, - "lace": 30012, - "lace": 5421, - "laced": 36800, - "laces": 23281, - "lacey": 31754, - "lach": 30558, - "lack": 24915, - "lack": 8069, - "lacking": 30080, - "lacks": 34388, - "laco": 45882, - "lacrosse": 12915, - "lacy": 38645, - "lad": 15991, - "lad": 10707, - "ladak": 42312, - "ladakh": 45295, - "ladder": 16637, - "ladders": 47125, - "lade": 26447, - "laden": 28634, - "ladi": 12934, - "ladies": 28932, - "ladies": 3431, - "lads": 9803, - "lady": 7275, - "lady": 2909, - "ladybird": 43389, - "ladybug": 40038, - "ladygaga": 21232, - "laf": 47555, - "lafayette": 22683, - "lag": 30932, - "lag": 20394, - "laga": 30161, - "lage": 24369, - "lager": 36811, - "lager": 22989, - "lagh": 37237, - "laghate": 47565, - "laghateparth": 48780, - "lagi": 39786, - "lago": 42698, - "lago": 31476, - "lagoon": 22753, - "lagos": 12728, - "lagun": 18500, - "laguna": 23609, - "lah": 27315, - "lah": 4299, - "lahat": 42164, - "lahore": 16733, - "lai": 23947, - "laid": 42560, - "laid": 11160, - "lain": 46958, - "lain": 17151, - "laine": 35860, - "lair": 31981, - "lais": 34923, - "lak": 12890, - "lak": 26793, - "lake": 6441, - "lake": 2553, - "lakedistrict": 26437, - "lakel": 26133, - "lakeland": 34306, - "laker": 45717, - "lakers": 13570, - "lakes": 9265, - "lakeshore": 42595, - "lakeside": 30915, - "lakewood": 36417, - "lakh": 21487, - "lakhs": 37985, - "lakings": 34289, - "lakota": 45510, - "laksh": 24937, - "lakshmi": 39682, - "lal": 12301, - "lal": 19430, - "lala": 33661, - "lali": 21726, - "laliga": 32383, - "lam": 2022, - "lam": 5704, - "lama": 26049, - "lamar": 28678, - "lamar": 17284, - "lamb": 19863, - "lamb": 10034, - "lambda": 36687, - "lambert": 14574, - "lambeth": 43410, - "lambo": 45464, - "lamborgh": 18709, - "lamborghini": 19462, - "lambs": 30361, - "lame": 23192, - "lamin": 22337, - "laminated": 49079, - "lamo": 41461, - "lamont": 46719, - "lamp": 26700, - "lamp": 10725, - "lampard": 39989, - "lamps": 23424, - "lan": 1193, - "lan": 4872, - "lana": 15406, - "lanapar": 47437, - "lanaparrilla": 47819, - "lanc": 11872, - "lanca": 15694, - "lancashire": 20939, - "lancaster": 16446, - "lance": 26025, - "lance": 11609, - "lancer": 38195, - "lancers": 46392, - "lancia": 48698, - "lancs": 47540, - "land": 1567, - "land": 973, - "lande": 36556, - "landed": 9873, - "lander": 37247, - "lander": 9666, - "landers": 20019, - "landfall": 38465, - "landfill": 34947, - "landia": 41384, - "landing": 8292, - "landings": 46104, - "landlord": 28938, - "landlords": 35283, - "landmark": 15208, - "landmarks": 30393, - "lando": 25463, - "lando": 7065, - "landon": 32748, - "landrover": 38125, - "landry": 36137, - "lands": 40223, - "lands": 2961, - "landsc": 4384, - "landscape": 21123, - "landscape": 5727, - "landscapephotography": 28125, - "landscapes": 15344, - "landscaping": 25642, - "landslide": 31954, - "lane": 25534, - "lane": 3980, - "lanes": 10345, - "laney": 38552, - "lang": 7969, - "lang": 8578, - "lange": 32021, - "langford": 45615, - "langley": 28595, - "langu": 4095, - "language": 46103, - "language": 4781, - "languages": 13527, - "lani": 22964, - "lanka": 16221, - "lankan": 40531, - "lannister": 49056, - "lans": 43550, - "lansing": 30805, - "lant": 44504, - "lanta": 44768, - "lantern": 17185, - "lanterns": 33676, - "lantic": 32601, - "lantic": 27678, - "lants": 38425, - "lanyard": 46808, - "lao": 32475, - "lao": 29521, - "laos": 34353, - "lap": 7213, - "lap": 8639, - "lapd": 32557, - "lapel": 47961, - "lapland": 43633, - "laps": 18711, - "lapse": 33365, - "laptop": 10464, - "laptops": 32189, - "laq": 45026, - "lar": 1592, - "lar": 1652, - "lara": 19435, - "lard": 40347, - "lare": 22415, - "laredo": 48427, - "large": 40234, - "large": 3638, - "largely": 21418, - "larger": 12567, - "largest": 4960, - "largo": 44161, - "lari": 34676, - "lark": 43164, - "lark": 23536, - "larkin": 34769, - "larry": 18642, - "larry": 8242, - "lars": 8669, - "larsen": 39721, - "larson": 27973, - "larvae": 44840, - "las": 8295, - "las": 2552, - "lasag": 31210, - "lasagna": 40683, - "lasalle": 43866, - "laser": 25607, - "laser": 9885, - "lasers": 37060, - "lash": 31995, - "lash": 18480, - "lashes": 21015, - "lass": 24203, - "lass": 18263, - "lassic": 39430, - "last": 10600, - "last": 952, - "lasted": 25711, - "lasting": 13434, - "lastnight": 30159, - "lasts": 20141, - "lasvegas": 17789, - "lat": 1591, - "lat": 28437, - "lata": 47114, - "latam": 40012, - "late": 13267, - "late": 2325, - "latel": 49035, - "lately": 11824, - "latepost": 48328, - "later": 24109, - "later": 2941, - "lateral": 26646, - "latest": 46805, - "latest": 2053, - "latex": 27520, - "lati": 16357, - "latimes": 43356, - "latin": 16695, - "latin": 9888, - "latina": 27936, - "latino": 45734, - "latino": 19470, - "latinos": 40233, - "lation": 6191, - "latitude": 37392, - "lative": 15719, - "lator": 9291, - "lators": 28278, - "latt": 33561, - "latte": 17697, - "latter": 26198, - "latvia": 30034, - "lau": 1853, - "lau": 23090, - "lauderdale": 24352, - "laugh": 4969, - "laugh": 6332, - "laughed": 16746, - "laughing": 8301, - "laughs": 14322, - "laughter": 10722, - "laun": 2944, - "launch": 31168, - "launch": 2904, - "launched": 6125, - "launcher": 35782, - "launches": 7023, - "launching": 8565, - "laundering": 34079, - "laundry": 14797, - "laur": 15256, - "laura": 17091, - "laura": 7763, - "laure": 16932, - "laureate": 25675, - "laurel": 43370, - "laurel": 19942, - "lauren": 10456, - "lauren": 7634, - "laurence": 29353, - "laurent": 23226, - "laurie": 20326, - "laus": 38895, - "laus": 28111, - "lause": 22269, - "laut": 47688, - "lav": 13767, - "lav": 26919, - "lava": 16765, - "laven": 15047, - "lavender": 16033, - "laver": 28188, - "lavish": 35443, - "law": 2874, - "law": 2606, - "lawful": 33845, - "lawler": 47862, - "lawless": 39468, - "lawmaker": 37169, - "lawmakers": 21190, - "lawn": 31675, - "lawn": 11024, - "lawrence": 32221, - "lawrence": 8820, - "laws": 7306, - "lawson": 22152, - "lawsuit": 14346, - "lawsuits": 44331, - "lawyer": 10552, - "lawyers": 14232, - "lax": 17750, - "lax": 10024, - "lay": 7205, - "lay": 6360, - "laye": 25995, - "layer": 12411, - "layered": 28520, - "layers": 15900, - "laying": 12333, - "layla": 45050, - "layne": 48721, - "layo": 21738, - "layoffs": 29019, - "layout": 17314, - "lays": 19546, - "layton": 38061, - "laz": 18806, - "lazar": 33075, - "lazarus": 49126, - "laze": 41559, - "lazer": 43735, - "lazio": 33010, - "lazy": 32614, - "lazy": 10753, - "lb": 21958, - "lb": 7422, - "lbc": 37694, - "lbj": 45683, - "lbloggers": 48695, - "lbs": 8912, - "lc": 9584, - "lc": 7225, - "lcd": 21356, - "lcfc": 25339, - "lcs": 32279, - "ld": 1431, - "ld": 730, - "lder": 6945, - "lders": 43221, - "ldn": 37050, - "ldn": 2517, - "ldnont": 25827, - "ldnt": 21690, - "ldr": 37279, - "lds": 31235, - "le": 534, - "le": 579, - "lea": 2246, - "lea": 13324, - "leach": 35527, - "lead": 1328, - "lead": 2784, - "leader": 14806, - "leader": 3236, - "leaderboard": 34519, - "leaders": 3546, - "leadership": 36876, - "leadership": 3652, - "leading": 3833, - "leads": 5335, - "leaf": 9377, - "leaf": 7232, - "leaflet": 38289, - "leaflets": 39014, - "leafs": 16688, - "leafy": 42616, - "leagu": 13317, - "league": 16635, - "league": 2313, - "leagueof": 26022, - "leagueoflegends": 31737, - "leagues": 19888, - "leah": 24350, - "leah": 19308, - "leak": 42900, - "leak": 15489, - "leaked": 14353, - "leaking": 34097, - "leaks": 15657, - "leam": 39606, - "lean": 12447, - "lean": 8208, - "leaning": 24411, - "leanne": 41448, - "leans": 9357, - "leap": 29129, - "leap": 15392, - "leaps": 48080, - "lear": 1146, - "lear": 27663, - "learn": 16959, - "learn": 1768, - "learned": 6048, - "learnenglish": 49040, - "learner": 33547, - "learners": 19572, - "learning": 22632, - "learning": 2378, - "learns": 17569, - "learnt": 18959, - "leary": 36051, - "lease": 49041, - "lease": 14394, - "leased": 48352, - "leash": 36192, - "leasing": 29160, - "least": 3651, - "leather": 21417, - "leather": 5862, - "leau": 26498, - "leav": 3198, - "leave": 37512, - "leave": 3258, - "leaves": 5579, - "leaving": 5216, - "leban": 9360, - "lebanese": 23819, - "lebanon": 11695, - "leblanc": 46381, - "lebo": 44184, - "lebron": 11971, - "lebu": 47030, - "lec": 944, - "lec": 35374, - "leche": 46197, - "lect": 45392, - "lection": 18252, - "lections": 30995, - "lecture": 6617, - "lecturer": 23795, - "lectures": 21118, - "led": 8767, - "led": 912, - "ledge": 23647, - "ledge": 4815, - "ledger": 26817, - "leds": 36763, - "lee": 6224, - "lee": 2592, - "leed": 16483, - "leed": 40206, - "leeds": 38900, - "leeds": 7420, - "leek": 34585, - "leeminho": 37831, - "leen": 35311, - "leen": 15940, - "leep": 48875, - "leep": 10191, - "lees": 29324, - "lees": 34056, - "lef": 9152, - "left": 33949, - "left": 1823, - "leftist": 35143, - "lefto": 17437, - "leftover": 26414, - "leftovers": 28481, - "lefty": 33935, - "leg": 1211, - "leg": 4924, - "lega": 38674, - "legacy": 44108, - "legacy": 6447, - "legal": 17743, - "legal": 3998, - "legalization": 40584, - "legalize": 42921, - "legally": 14152, - "legate": 46009, - "lege": 8065, - "legen": 6105, - "legend": 5480, - "legend": 3539, - "legendary": 6053, - "legendof": 47915, - "legends": 6396, - "leges": 15356, - "legg": 18474, - "legg": 32511, - "legged": 25830, - "leggings": 22895, - "leggo": 43441, - "legi": 11183, - "legion": 35503, - "legion": 14525, - "legis": 7200, - "legislat": 16486, - "legislation": 14143, - "legislative": 16755, - "legislators": 31572, - "legislature": 22309, - "legit": 12563, - "legitim": 17656, - "legitimate": 24491, - "lego": 28117, - "lego": 7849, - "legos": 45359, - "legs": 7072, - "leh": 19105, - "leh": 29298, - "lehead": 28090, - "lehigh": 34527, - "lehman": 46094, - "lei": 15828, - "lei": 21830, - "leia": 32723, - "leic": 35073, - "leica": 30206, - "leice": 10026, - "leicester": 28795, - "leicester": 11510, - "leicestershire": 45358, - "leigh": 14849, - "leigh": 9292, - "leighton": 30782, - "leila": 41342, - "lein": 20026, - "lein": 28551, - "leinster": 32242, - "leip": 36401, - "leipzig": 41860, - "leis": 13133, - "leisure": 15849, - "leit": 35446, - "leith": 34141, - "lek": 26626, - "lek": 36535, - "lel": 46623, - "lele": 26075, - "lem": 10213, - "lem": 8428, - "leman": 24478, - "lemans": 26694, - "lement": 9693, - "lements": 15833, - "lemme": 23318, - "lemon": 12272, - "lemon": 7184, - "lemonade": 18884, - "lemons": 29576, - "lemore": 41147, - "len": 3687, - "len": 2159, - "lena": 22038, - "lend": 45397, - "lend": 24987, - "lender": 44734, - "lenders": 42443, - "lending": 20209, - "lene": 17628, - "leness": 36551, - "leng": 7861, - "length": 10130, - "lengths": 31858, - "lengthy": 32624, - "lenin": 41760, - "lennon": 18360, - "lennox": 45748, - "lenny": 48448, - "lenny": 30124, - "leno": 45357, - "lenovo": 25886, - "lens": 8666, - "lenses": 21264, - "lent": 20943, - "lent": 22605, - "lentil": 41511, - "lentils": 44269, - "leo": 24008, - "leo": 8312, - "leon": 6581, - "leon": 9763, - "leonard": 43849, - "leonard": 13142, - "leonardo": 20282, - "leone": 22864, - "leop": 11234, - "leopard": 15931, - "leopards": 40996, - "leopold": 45501, - "lep": 48884, - "leppard": 41656, - "lepre": 45641, - "ler": 5587, - "ler": 1803, - "lero": 15067, - "lerosis": 35455, - "leroy": 32441, - "lers": 6247, - "lery": 38184, - "les": 4339, - "les": 840, - "lesbian": 17419, - "lesbians": 43182, - "lesh": 32282, - "lesley": 25506, - "lesli": 13649, - "leslie": 16244, - "lesn": 39568, - "lesnar": 42223, - "less": 3242, - "less": 1285, - "lesser": 20369, - "lessly": 13103, - "lessness": 24847, - "lesson": 7714, - "lessons": 7199, - "lest": 24372, - "lest": 6794, - "lester": 23157, - "lester": 24023, - "lestwe": 29726, - "lestweforget": 30273, - "let": 1898, - "let": 1094, - "leta": 34319, - "lete": 34078, - "letes": 6815, - "leth": 30022, - "leth": 42462, - "lethal": 21905, - "lethbridge": 48390, - "leti": 34176, - "letics": 14504, - "letit": 46423, - "leto": 32203, - "leton": 37674, - "leton": 7462, - "lets": 10448, - "lets": 3243, - "letsgo": 16967, - "letsgo": 29789, - "letstalk": 35591, - "lett": 22428, - "lett": 9778, - "lette": 41798, - "lette": 10301, - "letter": 15567, - "letter": 4861, - "lettering": 26382, - "letterman": 38447, - "letters": 9181, - "letting": 9510, - "letto": 35449, - "lettu": 17933, - "lettuce": 18573, - "leu": 15691, - "leuke": 31031, - "leukemia": 32097, - "leum": 21571, - "leur": 45806, - "lev": 17022, - "lev": 29950, - "levan": 42543, - "leve": 36271, - "level": 21682, - "level": 2931, - "leveled": 48453, - "levels": 6295, - "leven": 44792, - "leven": 34729, - "lever": 20178, - "lever": 23094, - "leverage": 24030, - "leveraging": 37948, - "levi": 25630, - "levi": 19113, - "leviathan": 41736, - "levin": 36949, - "levine": 26594, - "levit": 22715, - "levy": 17147, - "lew": 5063, - "lew": 25329, - "lewan": 48349, - "lewd": 45241, - "lewes": 40431, - "lewi": 19589, - "lewis": 22043, - "lewis": 6020, - "lewisham": 37385, - "lewisham": 47633, - "lewishamilton": 42960, - "lewood": 37951, - "lex": 6586, - "lex": 9658, - "lexa": 48259, - "lexi": 44231, - "lexi": 24679, - "lexington": 22308, - "lexus": 20694, - "ley": 2565, - "ley": 1066, - "leye": 37061, - "leys": 45609, - "leys": 14834, - "leyton": 46573, - "lez": 26442, - "lf": 33960, - "lf": 22078, - "lfc": 37826, - "lfc": 8267, - "lfw": 28514, - "lg": 4546, - "lg": 11368, - "lga": 39348, - "lgb": 25401, - "lgbt": 11743, - "lgbt": 9592, - "lgbti": 42730, - "lgbtq": 47625, - "lgbtq": 14939, - "lgm": 39389, - "lh": 27794, - "lh": 31159, - "lhp": 45092, - "lhs": 33170, - "li": 554, - "li": 4250, - "lia": 26118, - "lia": 6964, - "liability": 29139, - "liaison": 39294, - "liam": 5258, - "liam": 7167, - "lian": 18058, - "liance": 40864, - "liar": 16334, - "liars": 23863, - "lias": 46021, - "lib": 10249, - "lib": 13345, - "libby": 36832, - "libdems": 40869, - "liber": 3425, - "liberal": 48032, - "liberal": 9985, - "liberalism": 40018, - "liberals": 15981, - "liberated": 38690, - "liberation": 19507, - "liberia": 32208, - "libertarian": 35067, - "liberties": 48623, - "liberty": 23397, - "liberty": 8480, - "libr": 2856, - "libra": 43038, - "librarian": 25148, - "librarians": 37806, - "libraries": 14277, - "library": 25713, - "library": 3519, - "libre": 49210, - "libre": 31681, - "libs": 26401, - "liby": 36390, - "libya": 16417, - "libyan": 42319, - "lic": 2508, - "lic": 3376, - "lice": 45691, - "licen": 6706, - "licence": 20550, - "license": 10337, - "licensed": 18752, - "licenses": 36414, - "licensing": 24219, - "lich": 23979, - "lich": 25875, - "lick": 29197, - "lick": 17541, - "licking": 33013, - "licks": 42117, - "lics": 44552, - "lid": 39369, - "lid": 17678, - "lidge": 45558, - "lido": 35683, - "lids": 41609, - "lie": 6570, - "lie": 2538, - "lieb": 45387, - "liebe": 37749, - "lied": 6486, - "lief": 38428, - "lien": 45716, - "lier": 3626, - "liers": 19303, - "lies": 37236, - "lies": 3205, - "liest": 14020, - "liet": 41107, - "lieu": 20401, - "lieu": 35313, - "lieutenant": 22538, - "lif": 16456, - "life": 2666, - "life": 970, - "lifeat": 27801, - "lifeboat": 37404, - "lifecycle": 49171, - "lifein": 48447, - "lifeis": 24824, - "lifeisgood": 46433, - "lifel": 15025, - "lifeline": 38438, - "lifelong": 21358, - "lifeof": 36061, - "lifesaving": 48016, - "lifespan": 49257, - "lifestyle": 46512, - "lifestyle": 7037, - "lifestyles": 48521, - "lifetime": 48737, - "lifetime": 9107, - "liff": 34404, - "liffe": 38942, - "lift": 33146, - "lift": 6779, - "lifted": 16783, - "lifter": 38555, - "lifting": 10857, - "lifts": 18291, - "lig": 19915, - "lig": 38493, - "liga": 16802, - "ligam": 31077, - "ligament": 48705, - "ligan": 27962, - "ligans": 42133, - "ligh": 7510, - "light": 3885, - "light": 1395, - "lighted": 18404, - "lighten": 32717, - "lightening": 28170, - "lighter": 14102, - "lighthouse": 13717, - "lighting": 5799, - "lightly": 26878, - "lightning": 7756, - "lightroom": 41454, - "lights": 3073, - "lightweight": 16278, - "ligu": 42920, - "ligue": 29196, - "lik": 4831, - "lik": 18495, - "like": 9175, - "like": 789, - "liked": 7112, - "likefor": 48444, - "likeli": 40666, - "likelihood": 48158, - "likely": 5256, - "liken": 36084, - "likes": 4724, - "liking": 16810, - "lil": 6012, - "lil": 4461, - "lilac": 33647, - "lili": 26686, - "lili": 48411, - "lilies": 38110, - "lillard": 47016, - "lille": 38705, - "lilli": 40920, - "lillian": 41563, - "lilly": 47825, - "lilly": 21815, - "lily": 23803, - "lily": 10647, - "lim": 2377, - "lim": 17204, - "lima": 17589, - "limb": 27061, - "limb": 32363, - "limbo": 46179, - "limbs": 34886, - "lime": 17385, - "lime": 11193, - "limel": 48658, - "limer": 16915, - "limerick": 19501, - "limestone": 27272, - "limit": 18933, - "limit": 9973, - "limitations": 32730, - "limited": 49229, - "limited": 3472, - "limiting": 35812, - "limitless": 35833, - "limits": 11966, - "limo": 33166, - "limous": 47287, - "limpopo": 47175, - "lin": 1254, - "lin": 2424, - "lina": 26110, - "lincol": 6239, - "lincoln": 16957, - "lincoln": 7454, - "lincolnshire": 29014, - "lind": 6492, - "linda": 45410, - "linda": 10760, - "linden": 44076, - "linden": 34832, - "lindo": 38467, - "lindsay": 29846, - "lindsay": 16858, - "lindsey": 29475, - "lindsey": 18128, - "line": 3674, - "line": 1148, - "linear": 19816, - "linebacker": 29848, - "lined": 11842, - "lineman": 31501, - "linen": 20032, - "liner": 11618, - "liners": 24463, - "lines": 3418, - "liness": 28633, - "lineup": 7316, - "lineups": 33589, - "ling": 4851, - "ling": 1358, - "linger": 29593, - "lingerie": 18473, - "lingering": 46494, - "lings": 11390, - "lington": 27673, - "lington": 9002, - "lingu": 34449, - "lingui": 29942, - "linguistic": 46847, - "linguistics": 48651, - "lining": 11589, - "link": 18433, - "link": 2468, - "linke": 15088, - "linked": 11059, - "linkedin": 16302, - "linkin": 40287, - "linkin": 49291, - "linking": 23296, - "links": 8113, - "linn": 37431, - "lino": 41189, - "lino": 34995, - "lins": 6567, - "linson": 15401, - "linton": 36479, - "linus": 49303, - "linux": 14061, - "lio": 19395, - "lion": 8872, - "lion": 5567, - "lionel": 19441, - "lions": 7093, - "lip": 8630, - "lip": 8546, - "lipo": 38795, - "lipp": 38074, - "lips": 8847, - "lipse": 10351, - "lipstick": 15618, - "liqu": 6310, - "lique": 32680, - "liqueur": 43612, - "liqui": 33817, - "liquid": 18366, - "liquid": 10158, - "liquidity": 42812, - "liquor": 17828, - "lis": 7297, - "lis": 12749, - "lisa": 25236, - "lisa": 7424, - "lisam": 43072, - "lisboa": 40052, - "lisbon": 17708, - "lish": 12658, - "lish": 2354, - "lished": 22620, - "lisle": 21529, - "lism": 34390, - "liss": 45489, - "liss": 35433, - "lisse": 49309, - "list": 1734, - "list": 1998, - "lista": 37812, - "listed": 6457, - "listen": 17454, - "listen": 2672, - "listened": 15347, - "listener": 34819, - "listeners": 26901, - "listening": 3656, - "listens": 25912, - "lister": 45109, - "listing": 8145, - "listings": 21987, - "liston": 48041, - "lists": 12281, - "lit": 2213, - "lit": 4350, - "lita": 30100, - "lite": 29273, - "lite": 13694, - "litecoin": 39063, - "liter": 3085, - "liter": 34904, - "literacy": 12841, - "literal": 24269, - "literally": 4719, - "literary": 13586, - "literature": 11072, - "litfest": 40369, - "lith": 37005, - "lithium": 22794, - "litho": 31088, - "lithograph": 49022, - "lithu": 21045, - "lithuania": 27068, - "liti": 24292, - "litigation": 31769, - "lito": 47381, - "litre": 25786, - "litres": 39919, - "litt": 1216, - "litt": 47583, - "litter": 45431, - "litter": 17118, - "litters": 45300, - "little": 7024, - "little": 1274, - "littlemix": 29731, - "littlest": 48969, - "litur": 36830, - "litz": 30357, - "liu": 20466, - "liv": 13895, - "liv": 19901, - "livan": 12785, - "live": 3215, - "live": 1064, - "lived": 8867, - "livel": 17973, - "liveli": 26566, - "livelihood": 46497, - "livelihoods": 47716, - "lively": 19663, - "liveme": 35396, - "livemusic": 15688, - "liven": 41057, - "liveon": 22815, - "livepd": 38742, - "livepd": 31899, - "liver": 4755, - "liver": 12639, - "liverpool": 29778, - "liverpool": 5366, - "livery": 23248, - "lives": 3247, - "livesmatter": 20348, - "livestock": 22079, - "livestream": 16844, - "livetweet": 38546, - "livin": 28061, - "living": 10965, - "living": 2815, - "livingston": 30551, - "lix": 45068, - "liz": 8632, - "liz": 12242, - "liza": 28787, - "lizard": 17221, - "lizards": 41991, - "lizasober": 44487, - "lizasoberano": 45076, - "lizz": 34430, - "lizzie": 29530, - "lizzy": 32306, - "lj": 34211, - "lj": 32273, - "lju": 44562, - "lk": 39110, - "lk": 26596, - "lka": 21881, - "ll": 1657, - "ll": 865, - "lla": 15419, - "llama": 36679, - "llan": 17281, - "llan": 38728, - "lland": 31150, - "llc": 17161, - "lle": 26550, - "lle": 29732, - "llen": 41197, - "ller": 7722, - "llers": 26426, - "lli": 47015, - "lli": 13368, - "llis": 25518, - "lll": 27177, - "llll": 34874, - "llll": 43485, - "llo": 19293, - "lloy": 10092, - "lloyd": 33339, - "lloyd": 12400, - "llp": 28042, - "lls": 40535, - "lly": 26379, - "lm": 6981, - "lm": 15282, - "lma": 4493, - "lmao": 5121, - "lmaoo": 32623, - "lmaooo": 33362, - "lmaoooo": 45232, - "lmfa": 8928, - "lmfao": 11068, - "lmfaooo": 47658, - "lmp": 43575, - "lms": 30381, - "ln": 31644, - "ln": 18654, - "lng": 22339, - "lnp": 39679, - "lo": 549, - "lo": 2982, - "loa": 39678, - "load": 4515, - "load": 2834, - "loaded": 6756, - "loader": 28492, - "loading": 9975, - "loads": 8691, - "loaf": 26467, - "loaf": 18273, - "loan": 28431, - "loan": 8176, - "loans": 14206, - "lob": 11197, - "lob": 46606, - "lobal": 34574, - "lobb": 27698, - "lobby": 12449, - "lobbying": 36047, - "lobe": 46325, - "lobes": 24148, - "lobo": 39323, - "lobos": 36586, - "lobster": 13793, - "loc": 1378, - "loc": 25826, - "local": 9202, - "local": 2029, - "localized": 49399, - "locally": 15603, - "locals": 15041, - "locate": 20490, - "located": 5677, - "location": 4372, - "locations": 9580, - "loch": 20188, - "loch": 14101, - "lock": 7201, - "lock": 4381, - "lockdown": 35636, - "locke": 29698, - "locked": 8371, - "locker": 14053, - "lockhart": 48642, - "lockheed": 36637, - "locking": 19978, - "locks": 13212, - "lockscreen": 42439, - "loco": 25555, - "locom": 22798, - "locomo": 46147, - "locomotive": 30439, - "locu": 33635, - "locust": 46237, - "lod": 45650, - "lodge": 10504, - "loe": 30113, - "loe": 25484, - "loeb": 49334, - "lof": 15011, - "loff": 31008, - "loft": 35707, - "loft": 20049, - "loftus": 46689, - "log": 3239, - "log": 7383, - "logan": 20655, - "logan": 10569, - "logans": 40752, - "logg": 43002, - "logged": 31457, - "logger": 39089, - "logging": 24444, - "logi": 3177, - "logia": 48031, - "logic": 10670, - "logical": 4791, - "logically": 24782, - "logie": 33445, - "logies": 7378, - "login": 31121, - "logist": 7407, - "logistics": 14755, - "logists": 12233, - "logne": 19911, - "logo": 31480, - "logo": 5750, - "logos": 24879, - "logs": 22745, - "logue": 27785, - "logy": 22721, - "logy": 1659, - "loh": 49129, - "loh": 37983, - "loi": 35128, - "loid": 31408, - "loin": 21760, - "loire": 46040, - "lois": 27040, - "lok": 19908, - "lok": 23575, - "loki": 24435, - "lol": 10721, - "lol": 1824, - "lola": 19065, - "lolita": 42615, - "lolla": 45483, - "lolli": 27906, - "lollipop": 34605, - "lolly": 48264, - "lolo": 16895, - "lolo": 37481, - "lolol": 25280, - "lololol": 34738, - "lolz": 35260, - "lom": 9279, - "loma": 42889, - "lombar": 25493, - "lombard": 46461, - "lombardi": 44346, - "lomond": 48941, - "lon": 1235, - "lon": 6507, - "london": 6835, - "london": 1789, - "londonmarathon": 35018, - "lone": 22220, - "lone": 13576, - "lonel": 28872, - "loneliness": 30310, - "lonely": 34509, - "lonely": 12368, - "lonelyplanet": 44984, - "long": 4792, - "long": 1538, - "longe": 25793, - "longer": 5349, - "longest": 10731, - "longevity": 35354, - "longh": 20286, - "longhorn": 41047, - "longhorns": 38295, - "longing": 38482, - "longlive": 47840, - "longs": 43618, - "longtime": 19685, - "loo": 731, - "loo": 11804, - "look": 8874, - "look": 1012, - "lookalike": 38307, - "lookbook": 39184, - "looked": 4913, - "lookin": 11254, - "looking": 36898, - "looking": 1312, - "lookout": 18330, - "looks": 1606, - "lool": 33125, - "loom": 37440, - "loom": 17199, - "looming": 35384, - "looms": 30550, - "loon": 28222, - "loona": 48137, - "looney": 45315, - "looo": 20902, - "loool": 36016, - "looool": 47038, - "looooo": 31484, - "loop": 19606, - "loop": 10408, - "loops": 21625, - "loos": 45723, - "loose": 43815, - "loose": 9786, - "loot": 21518, - "lop": 36734, - "lop": 17066, - "lopes": 49269, - "lopez": 12982, - "lor": 2179, - "lor": 11335, - "lord": 18896, - "lord": 3486, - "lorde": 35483, - "lords": 14969, - "lore": 12880, - "lore": 27218, - "loren": 13602, - "loren": 33398, - "lorenzo": 21342, - "lores": 34510, - "loretta": 40863, - "lori": 20164, - "lori": 23095, - "lorna": 46316, - "lorraine": 27602, - "lorry": 31354, - "los": 32217, - "los": 3087, - "losange": 14037, - "losangeles": 14638, - "lose": 43318, - "lose": 5354, - "loser": 18168, - "losers": 23201, - "loses": 14263, - "losing": 7918, - "loss": 34761, - "loss": 4327, - "losses": 16909, - "lost": 14258, - "lost": 2624, - "lostdog": 48482, - "lot": 5132, - "lot": 1954, - "loth": 43625, - "lothian": 31360, - "lothing": 42058, - "lotion": 25260, - "lotr": 34165, - "lots": 2958, - "lott": 42854, - "lotta": 29125, - "lotte": 16535, - "lotte": 7274, - "lottery": 16975, - "lottie": 48517, - "lotto": 28265, - "lotus": 13824, - "lou": 2207, - "lou": 9745, - "loubout": 38369, - "loud": 22884, - "loud": 7464, - "louder": 25904, - "loudest": 49214, - "loudly": 39256, - "lough": 21927, - "lough": 28045, - "loughborough": 49153, - "loui": 42173, - "louie": 25790, - "louis": 8916, - "louis": 4459, - "louisa": 40011, - "louise": 32275, - "louise": 13076, - "louisi": 12187, - "louisiana": 12946, - "louisville": 13860, - "louisvuitton": 44911, - "loun": 6466, - "lounge": 7141, - "lounging": 45430, - "lour": 29383, - "lourdes": 45071, - "louvre": 36995, - "lov": 8923, - "lov": 21229, - "lova": 37394, - "lovable": 38565, - "lovato": 18960, - "love": 2618, - "love": 793, - "lovecraft": 42405, - "loved": 3249, - "lovefl": 38884, - "loveher": 38306, - "lovehim": 45733, - "loveis": 30931, - "loveisland": 30970, - "loveislove": 43603, - "loveit": 24764, - "lovel": 8999, - "lovelies": 31412, - "lovelondon": 46493, - "lovely": 33250, - "lovely": 2165, - "lovemy": 20041, - "lovemyjob": 40130, - "loven": 33754, - "lover": 28508, - "lover": 7168, - "lovers": 48416, - "lovers": 5973, - "loves": 37773, - "loves": 3925, - "lovethe": 33040, - "lovethem": 48298, - "lovett": 47095, - "lovewins": 47687, - "loveyou": 39226, - "loveyou": 25964, - "loveyour": 26462, - "lovin": 33442, - "lovin": 16354, - "loving": 29568, - "loving": 3721, - "lovingly": 44100, - "low": 1049, - "low": 1042, - "loway": 16104, - "lowe": 17910, - "lowed": 22733, - "lowell": 24458, - "lower": 32578, - "lower": 4909, - "lowered": 34968, - "lowering": 35261, - "lowers": 36398, - "lowes": 38515, - "lowest": 12098, - "lowing": 8283, - "lowkey": 29481, - "lowry": 27444, - "lows": 4406, - "lox": 41725, - "loy": 4519, - "loy": 23929, - "loyal": 13032, - "loyalty": 14686, - "loyd": 44212, - "loyed": 29279, - "loyment": 18307, - "loyola": 32569, - "lp": 22282, - "lp": 6392, - "lpc": 44092, - "lpg": 47905, - "lpga": 34295, - "lps": 32094, - "lr": 20572, - "lr": 7041, - "lrt": 32996, - "ls": 19051, - "ls": 1268, - "lsd": 43766, - "lse": 46127, - "lse": 43886, - "lsu": 35428, - "lsu": 15672, - "lt": 13642, - "lt": 3333, - "ltc": 27664, - "ltd": 6802, - "lte": 25202, - "lton": 14237, - "lu": 664, - "lu": 9657, - "lub": 22469, - "lub": 11836, - "lubbock": 37660, - "lubric": 40963, - "luc": 7013, - "luc": 28014, - "luca": 21053, - "lucas": 23425, - "lucas": 10225, - "lucci": 45849, - "luce": 46217, - "lucent": 41552, - "lucer": 36042, - "luch": 36646, - "lucha": 38449, - "luci": 8787, - "lucia": 22290, - "luciano": 46365, - "lucid": 44540, - "lucie": 39461, - "lucifer": 46224, - "lucifer": 27687, - "lucille": 47454, - "lucin": 27523, - "luck": 9647, - "luck": 2820, - "luckiest": 42469, - "luckily": 20100, - "lucknow": 29407, - "lucky": 20495, - "lucky": 4133, - "lucrative": 41485, - "lucy": 17262, - "lucy": 10120, - "lud": 14288, - "lude": 28755, - "ludo": 40141, - "ludwig": 30633, - "lue": 45199, - "luf": 25264, - "lufc": 17818, - "luffy": 39047, - "lufthan": 37769, - "lufthansa": 39145, - "lug": 45521, - "lugg": 19673, - "luggage": 20138, - "luhan": 20975, - "luigi": 28444, - "luis": 25231, - "luis": 11339, - "luiz": 39633, - "lujah": 31639, - "luk": 21652, - "luka": 34878, - "lukaku": 37177, - "lukas": 37941, - "luke": 11970, - "luke": 5652, - "lul": 20861, - "lulla": 37019, - "lullaby": 41676, - "lulu": 32052, - "lulu": 26935, - "lum": 18112, - "lum": 5997, - "lumb": 36231, - "lumber": 27421, - "lumber": 34692, - "lumi": 41437, - "lumia": 31912, - "lumin": 15867, - "luminous": 37913, - "lump": 38704, - "lumpur": 34411, - "lun": 3221, - "lun": 49390, - "luna": 14425, - "lunar": 16043, - "lunatic": 45874, - "lunch": 10954, - "lunch": 2772, - "luncheon": 15104, - "lunches": 29705, - "lunchtime": 14330, - "lund": 30975, - "lund": 20181, - "lunes": 35648, - "lung": 38479, - "lung": 16271, - "lungs": 27366, - "lup": 27413, - "lupita": 49352, - "lupus": 36017, - "lur": 14439, - "lure": 31376, - "lures": 46747, - "lurking": 29941, - "lus": 7158, - "lusci": 38004, - "luscious": 39935, - "lush": 40382, - "lush": 16263, - "lust": 42071, - "lust": 12662, - "lustre": 46673, - "luther": 21848, - "luther": 17208, - "lutheran": 27341, - "luton": 28288, - "luv": 24726, - "luv": 8502, - "lux": 3439, - "lux": 16704, - "luxe": 26373, - "luxemb": 21314, - "luxembour": 22712, - "luxembourg": 23949, - "luxu": 16112, - "luxurious": 17292, - "luxury": 12083, - "luxury": 5247, - "luxurytravel": 29010, - "luz": 41008, - "lv": 10862, - "lv": 11184, - "lvl": 31256, - "lw": 40515, - "lw": 35115, - "lx": 30789, - "ly": 1251, - "ly": 597, - "lydia": 24316, - "lyf": 43688, - "lyfe": 30787, - "lyft": 32944, - "lying": 7175, - "lyk": 46376, - "lyle": 36828, - "lym": 20087, - "lyme": 31167, - "lymph": 30073, - "lymphoma": 37648, - "lyn": 3957, - "lyn": 5054, - "lynch": 31586, - "lynch": 13560, - "lynd": 33416, - "lynda": 42959, - "lyndon": 48518, - "lynn": 25303, - "lynn": 10667, - "lynne": 26900, - "lynx": 28941, - "lyon": 17176, - "lyons": 29453, - "lyric": 24366, - "lyric": 21291, - "lyrical": 33358, - "lyricist": 49013, - "lyrics": 9551, - "lyrix": 46814, - "lys": 45054, - "lyte": 40059, - "lywood": 4012, - "lz": 30818, - "lé": 39641, - "m": 76, - "m": 332, - "ma": 577, - "ma": 1226, - "maa": 42774, - "maa": 21555, - "maan": 33668, - "maar": 48927, - "maas": 43332, - "mab": 35639, - "mabel": 47319, - "mable": 23001, - "mably": 40082, - "mabu": 44682, - "mac": 1961, - "mac": 4945, - "macar": 21558, - "macaroni": 41824, - "macarthur": 36785, - "macau": 43984, - "macau": 33370, - "macbeth": 36321, - "macbook": 20617, - "macdonald": 20315, - "mace": 44869, - "maced": 21102, - "macedonia": 27071, - "macfar": 45374, - "macfarlane": 48825, - "mach": 2637, - "mach": 35091, - "machado": 42318, - "mache": 43220, - "macher": 29330, - "machi": 41783, - "machin": 17972, - "machine": 11539, - "machine": 4169, - "machinelearning": 13621, - "machinery": 21858, - "machines": 11108, - "machining": 45562, - "macho": 43977, - "macht": 45225, - "macin": 36533, - "mack": 8590, - "mack": 12145, - "mackay": 32497, - "macken": 48057, - "mackenzie": 22351, - "mackerel": 35002, - "mackin": 26010, - "macklemore": 41758, - "macle": 33843, - "maclean": 47137, - "macleod": 43684, - "macmillan": 36364, - "macmillan": 35191, - "macon": 35818, - "macos": 45469, - "macqu": 38365, - "macquarie": 40858, - "macro": 20891, - "macro": 16626, - "macron": 24859, - "macs": 46548, - "macy": 17113, - "macys": 47652, - "mad": 2740, - "mad": 3843, - "mada": 37799, - "madagas": 24758, - "madagascar": 25744, - "madam": 33634, - "madam": 27538, - "madame": 23507, - "madd": 31717, - "madden": 19093, - "maddie": 39959, - "maddie": 18875, - "maddow": 32644, - "maddy": 31734, - "made": 5388, - "made": 1105, - "madein": 13670, - "madeira": 33810, - "madel": 34532, - "madele": 29831, - "madeleine": 33264, - "madeline": 33905, - "madewith": 28627, - "madewithunity": 43190, - "madhu": 23000, - "madhuri": 38346, - "madhuridixit": 43889, - "madhya": 48302, - "madi": 6527, - "madi": 27282, - "madison": 24798, - "madison": 8791, - "madmen": 45452, - "madness": 8755, - "madon": 44852, - "madonna": 14137, - "madra": 27416, - "madras": 42046, - "madre": 42130, - "madri": 5529, - "madrid": 5909, - "mads": 41201, - "madu": 34913, - "madurai": 49159, - "maduro": 32912, - "mae": 16898, - "mae": 17339, - "maer": 47088, - "maestro": 24140, - "mafi": 47164, - "mafia": 14890, - "mag": 1191, - "mag": 4508, - "maga": 8694, - "magaz": 2974, - "magazine": 3113, - "magazines": 22253, - "magdal": 29673, - "mage": 46568, - "mage": 10923, - "magee": 43872, - "magenta": 38091, - "magento": 42442, - "mages": 31059, - "maggi": 29611, - "maggie": 41443, - "maggie": 14524, - "maggio": 49087, - "magh": 45555, - "magi": 19270, - "magic": 13061, - "magic": 3778, - "magical": 36408, - "magical": 7823, - "magician": 26368, - "magin": 42678, - "maging": 41310, - "magn": 10290, - "magna": 34076, - "magne": 9921, - "magnesium": 36379, - "magnet": 18240, - "magnetic": 13838, - "magnets": 33030, - "magni": 24297, - "magnific": 9725, - "magnificent": 10724, - "magnitude": 22955, - "magno": 21184, - "magnolia": 27123, - "magnu": 45198, - "magnum": 23496, - "magnus": 26275, - "magpie": 45973, - "mags": 31021, - "maguire": 26470, - "mah": 7206, - "mah": 10801, - "maha": 12237, - "maha": 33983, - "mahal": 22301, - "mahan": 45191, - "mahar": 11635, - "maharaj": 38488, - "maharashtra": 19328, - "mahat": 32434, - "mahatma": 40530, - "mahe": 15756, - "maher": 29826, - "mahesh": 33448, - "mahesh": 22095, - "mahi": 32529, - "mahi": 38659, - "mahin": 24113, - "mahindra": 31285, - "mahmoud": 41361, - "mahog": 30804, - "mahogany": 33084, - "mahon": 45864, - "mahon": 20371, - "mahone": 26634, - "mai": 7138, - "mai": 14595, - "maia": 46585, - "maid": 23148, - "maid": 10226, - "maidan": 37346, - "maiden": 37011, - "maiden": 13809, - "maids": 27305, - "maidstone": 44395, - "mail": 10478, - "mail": 2614, - "mailbox": 31482, - "mailed": 42314, - "mailing": 26680, - "mailonline": 26021, - "mails": 45213, - "main": 3904, - "main": 2623, - "maine": 18639, - "maine": 7836, - "mained": 15609, - "mainedcm": 15845, - "mainland": 27629, - "mainly": 15280, - "mains": 33656, - "mainst": 42102, - "mainstream": 18034, - "maintain": 12954, - "maintained": 26665, - "maintaining": 21964, - "maintains": 38335, - "mainten": 9399, - "maintenance": 9610, - "mais": 28153, - "maisie": 47355, - "maison": 37065, - "maison": 27626, - "mait": 26387, - "maize": 35386, - "maj": 2948, - "maj": 28723, - "maja": 47498, - "maje": 9852, - "majestic": 15335, - "majesty": 21188, - "major": 8008, - "major": 3350, - "majority": 10508, - "majors": 23597, - "mak": 11271, - "mak": 19253, - "makar": 42242, - "makati": 39402, - "make": 3232, - "make": 1078, - "makeaw": 45859, - "makeinindia": 42739, - "makeit": 26308, - "maken": 47093, - "makeover": 17926, - "maker": 15196, - "maker": 4836, - "makers": 6577, - "makerspace": 42400, - "makes": 2088, - "makeshift": 43274, - "makeu": 41707, - "makeup": 26402, - "makeup": 5853, - "makeyourown": 34090, - "makeyourownlane": 34823, - "maki": 34514, - "makin": 43096, - "makin": 22407, - "making": 17976, - "making": 1665, - "makk": 39852, - "maknae": 44118, - "mako": 49061, - "mal": 1662, - "mal": 3796, - "mala": 28290, - "malade": 36928, - "malaga": 35395, - "malala": 41137, - "malam": 48956, - "malaria": 24929, - "malawi": 23405, - "malay": 5323, - "malay": 42430, - "malayalam": 34860, - "malaysi": 39668, - "malaysia": 8146, - "malaysian": 21136, - "malbec": 47741, - "malcol": 12645, - "malcolm": 14139, - "maldives": 16795, - "male": 11326, - "male": 2801, - "males": 14426, - "malhotra": 28866, - "mali": 6701, - "mali": 22669, - "malia": 46714, - "malibu": 21723, - "malicious": 42147, - "malign": 41122, - "malik": 11394, - "mall": 10984, - "mall": 6220, - "mallorca": 28082, - "mallory": 38968, - "malls": 36447, - "malm": 44071, - "malnutrition": 41153, - "malo": 43518, - "malone": 19852, - "maloney": 45897, - "mals": 25370, - "malt": 21688, - "malta": 16989, - "maltese": 39838, - "malvern": 39356, - "malware": 24153, - "mam": 4404, - "mam": 17778, - "mama": 7133, - "mamamoo": 36012, - "mamas": 42395, - "mamba": 44189, - "mament": 45690, - "mami": 43858, - "mamma": 34893, - "mammal": 33385, - "mammals": 31987, - "mammoth": 28022, - "man": 723, - "man": 786, - "mana": 29467, - "mana": 15837, - "manafort": 40108, - "manag": 1830, - "manage": 9770, - "managed": 7928, - "management": 3319, - "manager": 3898, - "managerial": 44261, - "managers": 12853, - "manages": 29699, - "managing": 10892, - "manas": 44188, - "manatee": 46558, - "mance": 2324, - "manchester": 24424, - "manchester": 4651, - "mancini": 47681, - "mancity": 31538, - "mancrush": 36945, - "mancrushmonday": 39307, - "mand": 4325, - "mand": 27244, - "mandala": 41106, - "mandarin": 26455, - "mandate": 26228, - "mandatory": 19934, - "mandel": 34960, - "mandela": 16280, - "mandi": 38961, - "mandir": 35815, - "mando": 34006, - "mands": 12340, - "mandu": 31440, - "mandy": 41505, - "mandy": 24302, - "mane": 44471, - "mane": 16044, - "maneu": 33216, - "mang": 25616, - "mang": 31096, - "manga": 11873, - "mangal": 43027, - "manger": 48251, - "mango": 43831, - "mango": 13962, - "mangrove": 47180, - "manhatt": 10152, - "manhattan": 10961, - "mani": 5654, - "mani": 10718, - "mania": 8435, - "maniac": 31814, - "maniacs": 41444, - "manian": 40077, - "manic": 23017, - "manic": 37825, - "manicure": 33637, - "manife": 14379, - "manifest": 34422, - "manifestation": 48348, - "manifesto": 20907, - "manil": 38827, - "manila": 10969, - "manipu": 40261, - "manipul": 19237, - "manipulation": 30277, - "manipur": 47757, - "manish": 41759, - "manish": 44720, - "manit": 15693, - "manitoba": 20342, - "manjaro": 41489, - "mankind": 24155, - "manly": 25194, - "mann": 19396, - "mann": 4783, - "manne": 30160, - "manned": 26139, - "mannequin": 43388, - "manner": 20700, - "manners": 31693, - "manning": 15996, - "manny": 37054, - "manny": 20933, - "mano": 15753, - "mano": 24016, - "manoj": 41146, - "manor": 41830, - "manor": 13614, - "mans": 28422, - "mans": 7746, - "mansfield": 25543, - "manship": 15460, - "mansion": 13404, - "manslaughter": 48632, - "manson": 26715, - "mant": 25122, - "mant": 27037, - "manta": 41431, - "mantis": 39946, - "mantle": 22159, - "mantra": 25162, - "manu": 3404, - "manu": 25799, - "manual": 12268, - "manuel": 29171, - "manuel": 9567, - "manufac": 5105, - "manufacture": 27741, - "manufactured": 24010, - "manufacturer": 15668, - "manufacturers": 18763, - "manufacturing": 8386, - "manure": 47907, - "manus": 28181, - "manuscript": 24365, - "manuscripts": 40765, - "manutd": 20994, - "many": 28484, - "many": 1346, - "manziel": 40637, - "mao": 47447, - "mao": 25605, - "maori": 43400, - "map": 25180, - "map": 3923, - "maple": 21980, - "maple": 10570, - "mapleleafs": 41257, - "mapoli": 28768, - "mapp": 36894, - "mapped": 41596, - "mapping": 15231, - "maps": 8765, - "mapu": 42082, - "mar": 675, - "mar": 3091, - "mara": 15655, - "marais": 47913, - "maran": 44732, - "marath": 16274, - "marathi": 34102, - "marathon": 40764, - "marathon": 5910, - "marau": 38475, - "marbella": 36182, - "marble": 45429, - "marble": 13071, - "marbles": 42931, - "marc": 14054, - "marc": 9075, - "marca": 38242, - "marcel": 17726, - "marcel": 24652, - "marcelo": 35939, - "march": 10638, - "march": 2227, - "marche": 36173, - "marched": 37976, - "marches": 38249, - "marchfor": 31721, - "marching": 15082, - "marchmadness": 28555, - "marci": 36698, - "marcia": 41075, - "marck": 47733, - "marco": 24719, - "marco": 10924, - "marcor": 39945, - "marcorubio": 41143, - "marcos": 21696, - "marcu": 20760, - "marcus": 48955, - "marcus": 9895, - "mardi": 39728, - "mardi": 29229, - "mardigras": 43343, - "mare": 26512, - "mare": 8870, - "mares": 19724, - "marg": 44014, - "margar": 16838, - "margare": 10232, - "margaret": 12185, - "margarita": 25958, - "margaritas": 42679, - "margate": 37428, - "margin": 19464, - "margin": 21357, - "marginal": 38320, - "margins": 33763, - "margot": 37144, - "mari": 2603, - "mari": 19322, - "maria": 41109, - "maria": 6595, - "mariachi": 44299, - "mariah": 31214, - "mariah": 24789, - "mariahcarey": 36538, - "marian": 41129, - "marian": 24677, - "mariana": 44224, - "marianne": 32214, - "mariano": 43988, - "marie": 20657, - "marie": 7864, - "marietta": 46634, - "marig": 41002, - "marijuana": 9864, - "maril": 14611, - "marilyn": 38959, - "marilyn": 18489, - "marin": 8910, - "marin": 23992, - "marina": 12060, - "marinated": 33406, - "marine": 20674, - "marine": 5746, - "mariner": 39972, - "mariners": 19086, - "marines": 15018, - "marino": 30878, - "mario": 39176, - "mario": 7600, - "marion": 37765, - "marion": 18397, - "maris": 21512, - "maris": 33093, - "marisa": 42938, - "mariska": 44703, - "marissa": 31219, - "marist": 48223, - "mariti": 13124, - "maritime": 14331, - "marj": 38639, - "mark": 3805, - "mark": 2110, - "marke": 2399, - "marked": 12360, - "marker": 18170, - "markers": 23664, - "market": 11614, - "market": 2196, - "marketer": 33482, - "marketers": 23682, - "marketing": 19535, - "marketing": 2905, - "marketplace": 18241, - "markets": 7292, - "markham": 39817, - "marking": 14705, - "markings": 41046, - "markle": 32672, - "marko": 38338, - "marks": 5466, - "markus": 33725, - "marl": 24922, - "marlborough": 43515, - "marlene": 45117, - "marley": 16504, - "marlin": 34275, - "marlins": 23309, - "marlon": 32995, - "marmalade": 39068, - "marnock": 48305, - "maro": 27029, - "maroon": 20501, - "marqu": 20704, - "marque": 13012, - "marquee": 27725, - "marquette": 37624, - "marquez": 27317, - "marquis": 33530, - "marr": 32871, - "marrake": 37125, - "marrakech": 39006, - "marri": 3839, - "marriage": 38047, - "marriage": 7040, - "marriages": 38190, - "married": 6791, - "marries": 46283, - "marriott": 19211, - "marrow": 31030, - "marry": 13288, - "marrying": 40507, - "mars": 41469, - "mars": 7496, - "marsden": 43344, - "marse": 26577, - "marseille": 30365, - "marsh": 9237, - "marsh": 13505, - "marsha": 21491, - "marshal": 26608, - "marshall": 30939, - "marshall": 9811, - "marshals": 44175, - "marshes": 43450, - "marshmal": 21069, - "marshmallow": 28530, - "marshmallows": 39471, - "mart": 2348, - "mart": 7772, - "marta": 32858, - "martens": 43211, - "marth": 34493, - "martha": 16427, - "marti": 20577, - "martial": 17088, - "martialarts": 35895, - "martian": 30214, - "martin": 6929, - "martin": 3690, - "martina": 34393, - "martinez": 13913, - "marting": 47570, - "martini": 22199, - "martino": 41675, - "martins": 30569, - "marty": 9926, - "marty": 17169, - "martyn": 44075, - "martyr": 36155, - "martyr": 26067, - "martyrdom": 43110, - "martyred": 39114, - "martyrs": 24707, - "maru": 37413, - "maru": 31838, - "marvel": 13835, - "marvel": 5996, - "marvelcomics": 46897, - "marvell": 26576, - "marvellous": 28402, - "marvelous": 25487, - "marvin": 19675, - "marx": 30559, - "marx": 26001, - "marxist": 45205, - "mary": 5146, - "mary": 2676, - "maryam": 33636, - "maryam": 36393, - "maryland": 11379, - "marys": 40905, - "marys": 40228, - "mas": 5226, - "mas": 1412, - "masa": 24995, - "masa": 41868, - "masala": 31483, - "masc": 23564, - "mascar": 46984, - "mascara": 31635, - "mascot": 13983, - "mascots": 43266, - "mascul": 25589, - "masculine": 48269, - "masculinity": 40465, - "mase": 49128, - "maser": 25798, - "maserati": 30442, - "mash": 12317, - "mash": 15680, - "mashable": 41026, - "mashed": 27395, - "mashup": 27079, - "masi": 35965, - "masjid": 31420, - "mask": 19262, - "mask": 8306, - "masked": 25757, - "masking": 47046, - "masks": 19055, - "maslow": 44359, - "mason": 17424, - "mason": 9699, - "masonic": 36491, - "masonry": 30764, - "masons": 37195, - "masqu": 26593, - "masquer": 29604, - "masquerade": 36944, - "mass": 4636, - "mass": 4854, - "massach": 14484, - "massachuse": 14577, - "massachusetts": 14756, - "massacre": 14696, - "massage": 13055, - "masse": 41735, - "masses": 22978, - "massey": 29868, - "massi": 17239, - "massimo": 45821, - "massive": 4818, - "massively": 34297, - "mast": 45916, - "mast": 27920, - "master": 4534, - "master": 3498, - "mastercard": 40542, - "masterchef": 34809, - "masterclass": 17529, - "mastered": 32616, - "masterful": 46823, - "mastering": 28326, - "mastermind": 34029, - "masterpiece": 12066, - "masterpieces": 37596, - "masters": 6913, - "mastery": 34800, - "mastiff": 42311, - "maswar": 47887, - "mat": 905, - "mat": 9063, - "mata": 17270, - "match": 7733, - "match": 2439, - "matcha": 32433, - "matchday": 15947, - "matched": 17792, - "matches": 8609, - "matching": 11840, - "matchup": 19355, - "matchups": 49162, - "mate": 6137, - "mate": 2936, - "mated": 33813, - "mateo": 34991, - "mater": 23724, - "materi": 7084, - "material": 7118, - "materials": 8161, - "maternal": 26131, - "maternity": 23894, - "mates": 5817, - "math": 13277, - "math": 6025, - "mathe": 8725, - "mathemat": 11901, - "mathematical": 25609, - "mathematician": 41036, - "mathematics": 20113, - "mathew": 36333, - "mathews": 37120, - "mathi": 23014, - "mathieu": 40417, - "maths": 14763, - "mati": 12716, - "mati": 32268, - "matic": 36859, - "matic": 7900, - "matically": 38282, - "matics": 23634, - "matil": 26751, - "matilda": 36308, - "matin": 44849, - "matinee": 38525, - "mating": 34346, - "mation": 11701, - "matisse": 43446, - "mato": 13127, - "matologist": 48842, - "matology": 27940, - "matory": 25519, - "matri": 27041, - "matrix": 18078, - "mats": 22259, - "matsu": 30242, - "matt": 7972, - "matt": 3972, - "mattb": 42791, - "matte": 31237, - "matte": 19771, - "mattel": 35365, - "matteo": 33120, - "matter": 30471, - "matter": 3828, - "matters": 5708, - "matth": 41846, - "matthe": 5116, - "matthew": 17588, - "matthew": 7008, - "matthews": 16739, - "matthi": 29853, - "matthias": 45104, - "matti": 39840, - "mattress": 23438, - "matty": 31233, - "matty": 29176, - "matu": 40616, - "matur": 22897, - "mature": 14417, - "maturity": 28047, - "mau": 8134, - "mau": 23033, - "maui": 20463, - "maul": 30725, - "maur": 10574, - "maure": 25191, - "maureen": 31723, - "maurice": 20200, - "mauricio": 39066, - "mauriti": 28406, - "mauritius": 29305, - "mauro": 41691, - "mav": 25697, - "maver": 16700, - "maverick": 27425, - "mavericks": 30092, - "mavs": 30665, - "maw": 39351, - "maw": 42271, - "mawards": 37682, - "max": 4898, - "max": 3902, - "maxi": 8554, - "maxi": 23266, - "maxim": 19892, - "maxim": 38574, - "maximize": 28673, - "maximum": 13162, - "maximus": 44312, - "maxine": 38468, - "maxwell": 19611, - "maxx": 37466, - "may": 1686, - "may": 1270, - "maya": 45783, - "maya": 12987, - "mayan": 37952, - "maybe": 3746, - "mayday": 29957, - "mayer": 21196, - "mayfair": 35171, - "mayfield": 33933, - "mayhem": 21502, - "maymay": 26600, - "maymay": 33853, - "maymayentrata": 30480, - "maynard": 32487, - "mayne": 35771, - "mayo": 22449, - "mayo": 11280, - "mayor": 15429, - "mayor": 4676, - "mayoral": 28983, - "mayorof": 43533, - "mayors": 28501, - "mays": 35445, - "maythe": 42281, - "mayward": 45751, - "mayward": 23519, - "mayweather": 22774, - "maz": 9177, - "maz": 36215, - "mazda": 18506, - "maze": 21988, - "mazz": 29439, - "mañ": 37059, - "mañana": 39354, - "mb": 758, - "mb": 3996, - "mba": 8329, - "mban": 46685, - "mbar": 44452, - "mbb": 10736, - "mbc": 20137, - "mbe": 38395, - "mbe": 27004, - "mber": 5467, - "mber": 1034, - "mberg": 26372, - "mbers": 5443, - "mbi": 45347, - "mble": 20310, - "mble": 4756, - "mbles": 28693, - "mbling": 28604, - "mbo": 25733, - "mbo": 11319, - "mbps": 44896, - "mbs": 10370, - "mbta": 38979, - "mbu": 42228, - "mbuhari": 36752, - "mc": 1278, - "mc": 4126, - "mca": 40570, - "mca": 14635, - "mcal": 28663, - "mcar": 43776, - "mcbride": 35080, - "mcc": 21192, - "mccabe": 37628, - "mccaf": 47385, - "mccain": 20397, - "mccall": 34844, - "mccann": 27140, - "mccar": 9570, - "mccarthy": 16974, - "mccartney": 19958, - "mccl": 24709, - "mccla": 43672, - "mccle": 40139, - "mcclure": 44945, - "mcco": 46152, - "mccon": 32638, - "mccor": 23057, - "mccormack": 45164, - "mccormick": 39088, - "mccoy": 20218, - "mccr": 41996, - "mccre": 25393, - "mccul": 38833, - "mccull": 41782, - "mcd": 28930, - "mcder": 27355, - "mcdermott": 34504, - "mcdon": 12171, - "mcdonald": 10741, - "mcdonalds": 17674, - "mcdonnell": 34360, - "mcdowell": 34119, - "mce": 26864, - "mcel": 28752, - "mcen": 47423, - "mcfad": 36976, - "mcfadden": 42105, - "mcfar": 29020, - "mcfarlane": 47174, - "mcfc": 16416, - "mcfly": 38211, - "mcg": 42507, - "mcg": 27995, - "mcgee": 29223, - "mcgill": 46524, - "mcgill": 35511, - "mcgin": 29596, - "mcgowan": 40462, - "mcgr": 25169, - "mcgra": 29367, - "mcgrath": 28759, - "mcgraw": 40950, - "mcgregor": 19642, - "mcgu": 34294, - "mcguinness": 45299, - "mcguire": 32635, - "mci": 46212, - "mci": 45491, - "mcil": 30481, - "mcin": 18770, - "mcintosh": 45353, - "mcintyre": 33369, - "mck": 6781, - "mckay": 33611, - "mcke": 27424, - "mckee": 43529, - "mcken": 42619, - "mckenna": 24924, - "mckenzie": 25502, - "mckin": 15437, - "mckinley": 39891, - "mckinney": 33554, - "mckinnon": 48736, - "mckinsey": 48143, - "mcl": 49021, - "mcla": 12565, - "mclaren": 37381, - "mclaren": 16789, - "mclau": 32285, - "mclaughlin": 35346, - "mcle": 25299, - "mclean": 28666, - "mcleod": 40259, - "mcm": 12251, - "mcmahon": 24026, - "mcmaster": 42703, - "mcmillan": 45603, - "mcn": 42919, - "mcnam": 32682, - "mcnamara": 37506, - "mcne": 42545, - "mco": 33723, - "mcqueen": 22544, - "mcr": 29884, - "mcr": 16966, - "mcs": 27020, - "mcu": 30403, - "md": 8637, - "md": 4732, - "mdc": 38773, - "mdc": 41761, - "mds": 48746, - "mdt": 40822, - "me": 613, - "me": 614, - "mea": 46045, - "mea": 17711, - "mead": 12134, - "mead": 21567, - "meade": 37218, - "meado": 16402, - "meadow": 25213, - "meadow": 17195, - "meadows": 17178, - "meal": 29662, - "meal": 5478, - "meals": 11229, - "mean": 4189, - "mean": 3450, - "meand": 48015, - "meaning": 14586, - "meaning": 8342, - "meaningful": 17480, - "meaningless": 48932, - "meanings": 45814, - "means": 3494, - "meant": 8674, - "meantime": 27499, - "meanwhile": 9650, - "meas": 5867, - "measles": 38230, - "measurable": 48010, - "measure": 15261, - "measure": 10579, - "measured": 23154, - "measurement": 20973, - "measurements": 29894, - "measures": 11936, - "measuring": 18064, - "meat": 10805, - "meat": 6480, - "meatball": 43642, - "meatballs": 29233, - "meath": 37920, - "meatless": 48085, - "meats": 29558, - "mec": 27432, - "mecca": 36095, - "mech": 38305, - "mechan": 6715, - "mechanic": 24582, - "mechanical": 14467, - "mechanics": 20536, - "mechanism": 22576, - "mechanisms": 28610, - "meck": 41908, - "med": 1948, - "med": 2177, - "meda": 33614, - "medal": 29714, - "medal": 6974, - "medalist": 21040, - "medalists": 43397, - "medalli": 31349, - "medallion": 43469, - "medallist": 41472, - "medals": 14710, - "mede": 48225, - "meded": 27627, - "medi": 1436, - "media": 22064, - "media": 1895, - "mediac": 37490, - "median": 30491, - "mediation": 42829, - "medic": 3602, - "medic": 35441, - "medicaid": 25421, - "medical": 18432, - "medical": 4116, - "medicare": 23710, - "medication": 23771, - "medications": 37181, - "medicinal": 28772, - "medicine": 5616, - "medicines": 26541, - "medics": 46688, - "medieval": 38956, - "medieval": 10789, - "medina": 27281, - "mediocre": 41170, - "medit": 19130, - "meditate": 38039, - "meditation": 10827, - "mediter": 14194, - "mediterran": 14358, - "mediterranean": 15327, - "medium": 8675, - "medley": 24793, - "meds": 25075, - "medtech": 42044, - "medusa": 44216, - "medway": 42286, - "mee": 1725, - "mee": 14075, - "meek": 28935, - "meen": 37940, - "meen": 46515, - "meer": 26714, - "meer": 27555, - "meet": 5714, - "meet": 1633, - "meeting": 48566, - "meeting": 2071, - "meetings": 9980, - "meets": 5972, - "meetthe": 27575, - "meetup": 15430, - "meg": 11500, - "meg": 16186, - "mega": 15979, - "mega": 9068, - "megab": 38103, - "megadeth": 46741, - "megal": 37650, - "megam": 26073, - "megan": 19127, - "megan": 11503, - "megap": 33624, - "megat": 35581, - "megh": 31192, - "meghan": 39939, - "meghan": 18261, - "meh": 10512, - "meh": 22211, - "mehta": 25031, - "mei": 22564, - "mei": 25198, - "meier": 29812, - "mein": 28857, - "mein": 21466, - "meister": 28407, - "mek": 44645, - "mel": 1902, - "mel": 6834, - "mela": 35032, - "melan": 22261, - "melanch": 44818, - "melancholy": 47821, - "melani": 34031, - "melania": 32796, - "melanie": 22153, - "melanoma": 40862, - "melb": 47007, - "melb": 28980, - "melbourne": 28387, - "melbourne": 6995, - "melee": 45108, - "meli": 28885, - "melinda": 46303, - "melis": 18913, - "melissa": 41866, - "melissa": 13030, - "mell": 22531, - "mell": 41583, - "mello": 47594, - "mellon": 45162, - "mellow": 32034, - "melo": 10354, - "melo": 22374, - "melodic": 41877, - "melodies": 38412, - "melody": 19119, - "melon": 12146, - "melrose": 36296, - "melt": 22209, - "melt": 15957, - "meltdown": 30613, - "melted": 23037, - "melting": 19247, - "melton": 46062, - "melts": 31446, - "melville": 46030, - "melvin": 31544, - "mely": 6373, - "mem": 4937, - "mem": 34944, - "memb": 2114, - "member": 29566, - "member": 1640, - "members": 2567, - "membership": 11562, - "membrane": 34088, - "meme": 35157, - "meme": 9169, - "memes": 12828, - "memo": 15967, - "memo": 19334, - "memoir": 20532, - "memoirs": 45311, - "memor": 1858, - "memorab": 26271, - "memorabilia": 27488, - "memorable": 13172, - "memorial": 16285, - "memorial": 4642, - "memorialday": 21598, - "memoriam": 48191, - "memories": 4304, - "memory": 44766, - "memory": 5137, - "memph": 10285, - "memphis": 38432, - "memphis": 11298, - "men": 1552, - "men": 1656, - "mena": 23052, - "menace": 29949, - "mend": 8151, - "mend": 46927, - "mendel": 49268, - "mendes": 18060, - "mendez": 48275, - "mendo": 19327, - "mendoza": 23680, - "meng": 37102, - "meng": 37450, - "mening": 46428, - "menon": 38255, - "menopau": 34974, - "menopause": 46026, - "mens": 16924, - "mens": 10495, - "mensfashion": 27578, - "menstru": 28345, - "menstrual": 40915, - "menswear": 18803, - "ment": 1585, - "ment": 777, - "mental": 8611, - "mental": 3448, - "mentalhealth": 20593, - "mentalhealth": 13022, - "mentality": 26647, - "mentally": 14307, - "mentary": 4468, - "mentation": 9512, - "mentday": 40397, - "mente": 40302, - "mente": 36396, - "mented": 9249, - "menting": 14471, - "mention": 43881, - "mention": 6762, - "mentioned": 11948, - "mentioning": 34290, - "mentions": 12334, - "mento": 30582, - "mentor": 45342, - "mentor": 11642, - "mentoring": 19610, - "mentors": 20945, - "mentorship": 33878, - "ments": 1827, - "menu": 6225, - "menus": 33534, - "meo": 30792, - "meow": 39965, - "meow": 17246, - "mep": 27095, - "mer": 1316, - "mer": 2452, - "mera": 20028, - "merc": 34357, - "merc": 44399, - "mercado": 45479, - "merce": 8409, - "mercede": 34959, - "mercedes": 26403, - "mercedes": 10685, - "mercedesam": 40107, - "mercedesbenz": 32347, - "mercen": 40301, - "mercer": 21632, - "merch": 11504, - "merchandi": 14954, - "merchandise": 16808, - "merchandising": 49196, - "merchant": 19563, - "merchants": 34427, - "merci": 23364, - "merci": 29378, - "mercur": 11471, - "mercury": 45203, - "mercury": 12653, - "mercy": 33249, - "mercy": 10815, - "mere": 29657, - "mere": 10342, - "mered": 24657, - "mered": 32297, - "meredith": 25103, - "merely": 28718, - "merge": 30406, - "merged": 46492, - "merger": 24744, - "merging": 49256, - "meri": 17993, - "meri": 36109, - "meria": 48433, - "meric": 27097, - "merica": 30561, - "meridi": 37901, - "meridian": 31195, - "mering": 41060, - "meringue": 41661, - "merino": 42648, - "merit": 20830, - "merkel": 24715, - "merle": 48586, - "merlin": 26517, - "merlot": 40424, - "mermaid": 16064, - "mermaids": 43617, - "mero": 19097, - "merr": 48288, - "merri": 21462, - "merrill": 47713, - "merritt": 36462, - "merry": 14167, - "merry": 5779, - "merrychristmas": 19672, - "mers": 4199, - "mersal": 36711, - "mersey": 25248, - "mersey": 46239, - "merseyside": 35382, - "mert": 48496, - "merton": 35315, - "mery": 40873, - "meryl": 35787, - "mes": 28432, - "mes": 3029, - "mesa": 18956, - "mese": 42018, - "mesh": 15030, - "mesm": 18695, - "mesmer": 38435, - "mesmeri": 25985, - "mesmerizing": 35637, - "meso": 25537, - "mesqu": 46819, - "mess": 2490, - "mess": 8188, - "message": 3918, - "messages": 9390, - "messaging": 23234, - "messe": 40391, - "messed": 23580, - "messenger": 17389, - "messi": 19394, - "messi": 11252, - "messiah": 28737, - "messing": 23144, - "messy": 15987, - "mest": 23780, - "mester": 47349, - "mesut": 49177, - "met": 5249, - "met": 2340, - "meta": 14803, - "meta": 22701, - "metab": 16150, - "metabol": 48389, - "metaboli": 25573, - "metabolic": 34311, - "metabolism": 27824, - "metal": 8935, - "metal": 4044, - "metall": 19084, - "metallic": 17257, - "metallica": 24079, - "metals": 21375, - "metam": 28862, - "metamor": 39030, - "metamorpho": 47601, - "metaph": 24189, - "metaphor": 34233, - "metast": 41973, - "mete": 11226, - "meteor": 26429, - "meteor": 26823, - "meteoro": 25948, - "meteorologist": 42849, - "meter": 10104, - "meters": 13247, - "metgala": 30089, - "meth": 21867, - "meth": 26177, - "methane": 37565, - "metho": 5770, - "method": 10284, - "methodist": 25165, - "methodo": 28488, - "methodology": 37316, - "methods": 12200, - "methyl": 48999, - "metmuseum": 28207, - "meto": 25679, - "metoo": 24722, - "metr": 15086, - "metre": 27889, - "metres": 19798, - "metric": 19950, - "metrical": 40704, - "metrics": 24396, - "metro": 7257, - "metro": 6784, - "metroid": 39957, - "metropolis": 40476, - "metropolitan": 19013, - "metry": 20039, - "mets": 9633, - "mett": 28081, - "metz": 40506, - "meu": 34520, - "mew": 40368, - "mex": 3213, - "mex": 18387, - "mexic": 31728, - "mexican": 37442, - "mexican": 8186, - "mexicans": 47729, - "mexico": 31834, - "mexico": 4604, - "mey": 28584, - "mey": 27777, - "meyer": 13963, - "meyers": 32326, - "mez": 30615, - "mez": 46833, - "mezz": 38771, - "mf": 18199, - "mf": 11067, - "mfa": 24107, - "mfc": 39474, - "mfg": 21912, - "mfw": 27309, - "mg": 10003, - "mg": 8014, - "mga": 23954, - "mgm": 27572, - "mgmt": 22288, - "mgr": 31500, - "mgs": 48073, - "mgt": 48663, - "mh": 9962, - "mh": 10834, - "mha": 41944, - "mhealth": 41225, - "mhs": 28815, - "mhz": 31550, - "mi": 714, - "mi": 2251, - "mia": 5852, - "miam": 31053, - "miami": 15106, - "miami": 4891, - "mian": 24792, - "miaw": 36046, - "mib": 48178, - "mic": 1213, - "mic": 3816, - "mica": 41551, - "micah": 33870, - "mice": 19030, - "mich": 25628, - "mich": 23029, - "micha": 2083, - "michael": 6051, - "michael": 2511, - "michaela": 41897, - "michaeljackson": 33532, - "michaels": 23868, - "michal": 47144, - "miche": 37966, - "micheal": 43709, - "michel": 5158, - "michel": 17153, - "michelangelo": 41245, - "michele": 20642, - "michelin": 26330, - "michelle": 19028, - "michelle": 8625, - "michi": 5658, - "michigan": 32344, - "michigan": 6296, - "mick": 15171, - "mick": 12592, - "mickey": 41813, - "mickey": 13053, - "micky": 43011, - "micro": 3160, - "micro": 11374, - "microbes": 44671, - "microbi": 19496, - "microbial": 30335, - "microbiology": 35348, - "microbiome": 35148, - "micron": 48742, - "microphone": 24643, - "micropoetry": 35997, - "microscope": 29114, - "microscopy": 38431, - "microsof": 42424, - "microsoft": 38650, - "microsoft": 7254, - "microwave": 24240, - "mics": 16554, - "mid": 2192, - "mid": 4734, - "midcentury": 48988, - "midd": 2983, - "midday": 23390, - "middle": 9849, - "middle": 3694, - "middleeast": 32783, - "middles": 29769, - "middlesbrough": 32436, - "middlesex": 39154, - "middleton": 23627, - "middleweight": 35829, - "midfield": 28116, - "midfielder": 13423, - "midget": 30734, - "midi": 39496, - "midi": 27326, - "midland": 24822, - "midlands": 18062, - "midnight": 35746, - "midnight": 6302, - "mids": 40821, - "midst": 24752, - "midsummer": 35234, - "midterm": 34365, - "midterms": 32015, - "midtown": 26069, - "midway": 26536, - "midweek": 29120, - "midwest": 16627, - "midwi": 44802, - "midwife": 37681, - "midwives": 42355, - "mie": 20865, - "mie": 10555, - "miento": 46482, - "mier": 36490, - "mies": 8840, - "miff": 49398, - "mig": 28743, - "might": 2727, - "mighty": 26632, - "mighty": 7815, - "mign": 41678, - "migos": 44640, - "migr": 3736, - "migra": 28186, - "migraine": 35360, - "migrant": 18902, - "migrants": 15814, - "migrate": 41804, - "migrating": 43604, - "migration": 11891, - "migu": 12279, - "miguel": 33672, - "miguel": 14436, - "miho": 46870, - "mii": 39896, - "mik": 15096, - "mik": 46203, - "mika": 28609, - "mika": 25185, - "mike": 5884, - "mike": 3178, - "mikel": 48865, - "mikequind": 33508, - "mikequindazzi": 33551, - "mikey": 34934, - "mikey": 23368, - "mikha": 30999, - "mikhail": 38327, - "miki": 48863, - "miko": 35413, - "miku": 37703, - "mil": 1469, - "mil": 12826, - "mila": 26183, - "milan": 30380, - "milan": 8552, - "milano": 18585, - "milb": 42248, - "mild": 16085, - "mildly": 49059, - "mile": 7833, - "mile": 6243, - "mileage": 30579, - "miler": 44680, - "miles": 3446, - "milestone": 13485, - "milestones": 34025, - "miley": 25336, - "miley": 14321, - "mileycyrus": 28528, - "milf": 45386, - "milford": 35840, - "mili": 16698, - "miliband": 41440, - "milit": 3715, - "militant": 33629, - "militants": 23974, - "military": 24498, - "military": 4323, - "militi": 46625, - "militia": 32114, - "milk": 13409, - "milk": 5205, - "milkshake": 29066, - "milky": 37320, - "milky": 21120, - "milkyway": 43246, - "mill": 4221, - "mill": 6637, - "milla": 49381, - "millan": 34930, - "millan": 22188, - "millar": 41851, - "mille": 34066, - "millen": 48501, - "millenni": 10406, - "millennial": 28357, - "millennials": 18804, - "millennium": 21116, - "miller": 21699, - "miller": 5733, - "milli": 5340, - "millie": 29283, - "milling": 39133, - "million": 13154, - "million": 2506, - "millionaire": 25179, - "millionaires": 47159, - "millions": 8492, - "mills": 10331, - "millwall": 35902, - "milly": 45794, - "milne": 44590, - "milner": 45230, - "milo": 24548, - "milton": 39004, - "milton": 17360, - "milwau": 13452, - "milwaukee": 14259, - "mim": 39379, - "mimi": 27086, - "mimic": 47116, - "mimic": 46519, - "mimo": 45551, - "min": 771, - "min": 3331, - "mina": 15281, - "minaj": 25136, - "minal": 40222, - "minat": 33275, - "mince": 32396, - "mind": 5890, - "mind": 2575, - "mindanao": 44228, - "minded": 21330, - "mindful": 28457, - "mindfulness": 15707, - "minding": 45337, - "minds": 9244, - "mindset": 14217, - "mindy": 46875, - "mindy": 38551, - "mine": 20149, - "mine": 3347, - "minecraft": 15678, - "mined": 48034, - "minent": 12533, - "miner": 14109, - "miner": 26572, - "mineral": 17692, - "minerals": 21169, - "miners": 22119, - "mines": 16211, - "ming": 10868, - "ming": 2107, - "mingham": 7590, - "mingle": 38437, - "mingly": 36909, - "mington": 49283, - "mington": 23119, - "minh": 48734, - "minho": 21318, - "mini": 1810, - "mini": 3954, - "miniature": 44298, - "miniature": 16377, - "miniatures": 38816, - "minic": 31522, - "minim": 10005, - "minimal": 18458, - "minimalism": 42594, - "minimalist": 26641, - "minimize": 38697, - "minimum": 12244, - "minindia": 28458, - "mining": 8473, - "minion": 28622, - "minions": 27035, - "minis": 33409, - "minis": 35976, - "minister": 25688, - "minister": 3569, - "ministerial": 33008, - "ministers": 16406, - "ministries": 27895, - "ministry": 8742, - "mink": 42017, - "minn": 45991, - "minn": 47318, - "minne": 7083, - "minneapolis": 16977, - "minneso": 9380, - "minnesota": 9968, - "minnie": 24493, - "mino": 22791, - "minogue": 44202, - "minor": 8522, - "minorities": 28119, - "minority": 16210, - "minors": 36789, - "mins": 6196, - "minsk": 46151, - "minster": 11189, - "mint": 48084, - "mint": 7506, - "minted": 49377, - "minton": 20050, - "minu": 29064, - "minus": 15358, - "minute": 28931, - "minute": 4497, - "minutes": 3056, - "mio": 26366, - "mir": 2750, - "mir": 6585, - "mira": 21665, - "mira": 22762, - "mirac": 13685, - "miracle": 49208, - "miracle": 11543, - "miracles": 23478, - "miraculous": 38671, - "mirage": 28679, - "mirai": 49060, - "mirand": 32367, - "miranda": 17590, - "mire": 38140, - "mire": 30140, - "miri": 22273, - "miriam": 30950, - "miro": 34851, - "miro": 48317, - "mirren": 47600, - "mirro": 48500, - "mirror": 29823, - "mirror": 7220, - "mirrors": 21823, - "mirza": 36440, - "mis": 866, - "mis": 11239, - "mischief": 33896, - "misconceptions": 48681, - "misconduct": 30601, - "mise": 46567, - "mise": 17267, - "miser": 33394, - "miserable": 26196, - "misery": 28360, - "mises": 24390, - "misfits": 42708, - "mish": 15494, - "mish": 20981, - "misha": 35434, - "mishra": 33042, - "misleading": 30862, - "mism": 15948, - "miso": 27657, - "miso": 33441, - "misogy": 31315, - "misogyny": 48415, - "miss": 6984, - "miss": 1526, - "missal": 38337, - "missed": 3955, - "misses": 15844, - "missi": 3008, - "missile": 14411, - "missiles": 27868, - "missin": 36209, - "missing": 23509, - "missing": 3423, - "mission": 12738, - "mission": 2406, - "missionaries": 40580, - "missionary": 27915, - "missions": 6990, - "mississ": 26483, - "mississauga": 28393, - "mississi": 11687, - "mississippi": 12232, - "missou": 30710, - "missoula": 48549, - "missouri": 11835, - "missuni": 26347, - "missuniverse": 28766, - "missy": 48105, - "missy": 31515, - "missyou": 45799, - "mist": 12610, - "mist": 11946, - "mistak": 20478, - "mistake": 11303, - "mistaken": 29182, - "mistakenly": 48494, - "mistakes": 12824, - "mister": 26949, - "mister": 18895, - "mistle": 46800, - "mistletoe": 48569, - "mistre": 42039, - "mistress": 24349, - "mists": 28636, - "misty": 18799, - "misunderstood": 41574, - "misuse": 40970, - "mit": 3303, - "mit": 4551, - "mita": 47514, - "mitage": 27964, - "mitch": 6969, - "mitch": 14150, - "mitchell": 39339, - "mitchell": 9007, - "mite": 26929, - "mith": 21752, - "mith": 17948, - "miti": 17857, - "mitigate": 42273, - "mitigation": 35514, - "mito": 38254, - "mitochondri": 42132, - "mitra": 47703, - "mits": 24086, - "mitsu": 17905, - "mitsubi": 21604, - "mitsubishi": 23030, - "mitt": 17321, - "mitt": 21341, - "mitted": 10307, - "mitting": 27938, - "mitz": 41827, - "mium": 35891, - "miwx": 43941, - "mix": 3210, - "mix": 3285, - "mixed": 29376, - "mixed": 6780, - "mixer": 17200, - "mixers": 39175, - "mixes": 19061, - "mixing": 15588, - "mixtape": 11044, - "mixture": 28286, - "miy": 25695, - "miya": 36257, - "miz": 20881, - "miz": 30795, - "mize": 19076, - "mized": 43418, - "mizing": 38715, - "mizz": 19985, - "mizzou": 26165, - "mj": 13117, - "mj": 14733, - "mk": 11581, - "mk": 8937, - "mke": 36642, - "mkt": 24814, - "ml": 3627, - "ml": 5780, - "mla": 16723, - "mlas": 48464, - "mlb": 21039, - "mlb": 7482, - "mley": 40329, - "mlg": 45801, - "mlin": 24556, - "mlk": 17941, - "mlkday": 39905, - "mlm": 37611, - "mln": 18971, - "mlp": 23620, - "mlpfi": 45475, - "mlpfim": 45640, - "mls": 13077, - "mm": 1028, - "mm": 2848, - "mma": 34140, - "mma": 6096, - "mmc": 44253, - "mme": 13105, - "mmed": 19570, - "mmer": 35717, - "mmer": 7508, - "mmers": 28128, - "mmes": 42862, - "mmi": 34147, - "mming": 21038, - "mming": 16507, - "mmings": 31357, - "mmit": 41050, - "mmj": 43015, - "mmm": 37908, - "mmm": 7641, - "mmmm": 36312, - "mmmm": 13180, - "mmmmm": 21808, - "mmmmmm": 43740, - "mmo": 30418, - "mmon": 41131, - "mmor": 36657, - "mmorpg": 39476, - "mms": 37803, - "mmva": 42666, - "mmy": 28837, - "mmy": 8722, - "mn": 5086, - "mn": 4057, - "mna": 34877, - "mnd": 44776, - "mnet": 34129, - "mnf": 41105, - "mnl": 32980, - "mnleg": 42653, - "mns": 39040, - "mnt": 21477, - "mntwins": 45448, - "mnwild": 39044, - "mnwx": 39592, - "mo": 617, - "mo": 2080, - "moa": 33174, - "moana": 43241, - "mob": 2818, - "mob": 12754, - "mobi": 9451, - "mobil": 26343, - "mobil": 29815, - "mobile": 12935, - "mobile": 3451, - "mobiles": 44302, - "mobili": 20770, - "mobility": 12546, - "mobilization": 48916, - "moby": 47219, - "moc": 41439, - "moc": 36992, - "mocha": 28425, - "mochi": 47973, - "mock": 15641, - "mock": 12759, - "mocked": 47400, - "mocking": 28692, - "mocking": 37870, - "mocks": 35142, - "mod": 6362, - "mod": 10893, - "moda": 25814, - "modal": 33157, - "mode": 20402, - "mode": 6493, - "model": 4591, - "model": 2863, - "modeled": 39527, - "modeling": 13706, - "modelling": 19946, - "models": 6176, - "moder": 2894, - "moderate": 16435, - "moderated": 27928, - "moderating": 34242, - "moderator": 32659, - "modern": 11706, - "modern": 4077, - "modernart": 34417, - "moderni": 24328, - "modernism": 39601, - "modernist": 36773, - "modernization": 47294, - "modes": 30454, - "modest": 25436, - "modi": 9047, - "modi": 7774, - "modification": 37630, - "modified": 17964, - "modo": 36820, - "mods": 23843, - "modu": 9036, - "modular": 22437, - "module": 16757, - "modules": 30575, - "moe": 38655, - "moe": 17938, - "mof": 30798, - "moff": 27160, - "mog": 42362, - "moga": 41732, - "mogadishu": 45133, - "mogul": 41320, - "moh": 18979, - "moh": 35388, - "moha": 46892, - "moham": 7923, - "mohamed": 18472, - "mohammad": 19926, - "mohammed": 16168, - "mohan": 26521, - "mohan": 23586, - "mohawk": 34942, - "mohd": 49094, - "mohsin": 48861, - "moi": 20691, - "moi": 21825, - "moil": 30349, - "moines": 32091, - "moist": 19831, - "moist": 33263, - "moisture": 20412, - "moisturi": 25942, - "moj": 34505, - "moja": 49055, - "mojito": 46830, - "mojo": 25204, - "mok": 49146, - "mol": 4246, - "mol": 31582, - "mold": 21846, - "molding": 46274, - "moldova": 47317, - "mole": 9927, - "mole": 23529, - "molecular": 19370, - "molecule": 39233, - "molecules": 35643, - "molina": 34201, - "mollie": 48203, - "molly": 24368, - "molly": 12573, - "molo": 41510, - "mology": 32255, - "molten": 46071, - "moly": 47083, - "mom": 1614, - "mom": 2543, - "moma": 33605, - "mombasa": 40340, - "moment": 12197, - "moment": 2495, - "momento": 30078, - "moments": 5251, - "momentum": 15722, - "momlife": 43825, - "momma": 14508, - "mommy": 12456, - "momo": 48490, - "momo": 25980, - "moms": 28446, - "moms": 10042, - "momsdemand": 33744, - "mon": 749, - "mon": 2173, - "mona": 19143, - "monaco": 14938, - "monaghan": 39797, - "monarch": 27235, - "monarch": 22619, - "monarchs": 36750, - "monarchy": 47503, - "monaster": 19422, - "monastery": 21850, - "monc": 34847, - "moncton": 44962, - "mond": 14522, - "mond": 4475, - "monday": 6205, - "monday": 2098, - "mondaymorning": 40089, - "mondaymotiv": 45488, - "mondaymotivation": 8198, - "mondaymotivaton": 47034, - "mondays": 13815, - "monde": 29339, - "mondo": 36207, - "monds": 20317, - "mone": 25990, - "monet": 24499, - "monetary": 26394, - "moneti": 38056, - "money": 12743, - "money": 2327, - "mong": 43566, - "monger": 38928, - "mongers": 27670, - "mongo": 20680, - "mongolia": 27144, - "mongolian": 46335, - "moni": 46851, - "monia": 31161, - "monic": 30893, - "monica": 13540, - "monit": 9014, - "monitor": 10198, - "monitored": 45828, - "monitoring": 11030, - "monitors": 30478, - "monk": 30557, - "monk": 16424, - "monkey": 29597, - "monkey": 9465, - "monkeys": 15781, - "monks": 29090, - "monmouth": 36929, - "mono": 8220, - "mono": 22537, - "monochrome": 25576, - "monogram": 39665, - "monologue": 47776, - "monopoly": 25241, - "monoxide": 49314, - "monro": 45750, - "monroe": 13625, - "mons": 19885, - "monsanto": 37592, - "monsi": 46677, - "monsieur": 48879, - "monsoon": 18872, - "monsta": 30718, - "monstax": 45631, - "monste": 47045, - "monster": 14454, - "monster": 6060, - "monsters": 11546, - "mont": 5186, - "mont": 5382, - "montag": 37202, - "montage": 32325, - "montal": 42126, - "montan": 28405, - "montana": 11436, - "monte": 8711, - "monte": 14667, - "montene": 28538, - "montenegro": 30378, - "monter": 36673, - "monterey": 23388, - "monterrey": 45254, - "montess": 43205, - "montessori": 45443, - "montgom": 13852, - "montgomery": 14951, - "month": 7680, - "month": 1924, - "monthly": 8764, - "months": 3109, - "monthsary": 42420, - "monton": 41961, - "montp": 39523, - "montre": 8434, - "montreal": 9262, - "montrose": 42347, - "monty": 43997, - "monty": 24038, - "monu": 9748, - "monument": 12019, - "monumental": 31297, - "monuments": 26916, - "mony": 4117, - "monza": 40380, - "moo": 4953, - "moo": 24626, - "mood": 42358, - "mood": 5394, - "moods": 43727, - "moody": 17170, - "moom": 36887, - "moon": 6334, - "moon": 3293, - "mooney": 37942, - "moonlight": 20001, - "moons": 29887, - "moonshine": 46706, - "moor": 14817, - "moor": 11877, - "moore": 28613, - "moore": 6708, - "moors": 32577, - "moose": 37562, - "moose": 17338, - "moot": 46895, - "mop": 33900, - "mopar": 41166, - "mor": 657, - "mor": 18614, - "mora": 29262, - "moral": 11246, - "morale": 39404, - "morales": 27117, - "morality": 34133, - "morally": 42519, - "morals": 46223, - "moran": 21557, - "moray": 44569, - "more": 5434, - "more": 750, - "morecam": 37305, - "morecambe": 43414, - "mored": 20195, - "moreland": 44135, - "moreno": 24826, - "morethan": 30889, - "morg": 34284, - "morgan": 15432, - "morgan": 6075, - "morgen": 35106, - "mori": 25710, - "mori": 29514, - "moris": 43131, - "moritz": 45594, - "morley": 40439, - "mormon": 27715, - "morn": 22393, - "mornin": 28327, - "morning": 10769, - "morning": 1119, - "mornings": 12106, - "moro": 31613, - "moroc": 11996, - "moroccan": 27546, - "morocco": 15228, - "moron": 31875, - "morons": 46477, - "morow": 40779, - "morph": 23915, - "morph": 41700, - "morphe": 38978, - "morpho": 38622, - "morrha": 43044, - "morri": 9876, - "morris": 22560, - "morris": 9090, - "morrison": 40961, - "morrison": 14094, - "morrisons": 40965, - "morrissey": 30040, - "morro": 48363, - "morrow": 21611, - "mors": 13064, - "morse": 25282, - "mort": 24257, - "mort": 30583, - "mortal": 31883, - "mortal": 14680, - "mortality": 20347, - "mortar": 27258, - "mortg": 12069, - "mortgage": 13988, - "mortgages": 45391, - "mortimer": 47836, - "morton": 20698, - "morty": 37391, - "mory": 22633, - "mos": 28658, - "mos": 9593, - "mosa": 14164, - "mosa": 23809, - "mosaic": 17506, - "mosch": 47003, - "mosco": 9840, - "moscow": 10371, - "moseley": 47080, - "moses": 18451, - "mosley": 46228, - "mosqu": 15215, - "mosque": 12694, - "mosques": 41214, - "mosquit": 39699, - "mosquito": 25083, - "mosquitoes": 41870, - "moss": 25107, - "moss": 12815, - "most": 7034, - "most": 1096, - "mostly": 8829, - "mosul": 29165, - "mot": 16352, - "mot": 15452, - "mota": 42499, - "motd": 46232, - "motel": 26191, - "moth": 33208, - "moth": 11736, - "mother": 7455, - "mother": 3050, - "motherhood": 32274, - "motherland": 46774, - "mothers": 10546, - "mothersday": 15583, - "motherwell": 48104, - "moths": 29086, - "moti": 38210, - "motif": 35373, - "motion": 32139, - "motion": 7860, - "motiv": 3183, - "motivate": 26771, - "motivated": 16521, - "motivates": 44684, - "motivating": 37720, - "motivation": 26117, - "motivation": 4193, - "motivational": 32832, - "motivational": 20472, - "motivationmonday": 28703, - "motive": 36669, - "motley": 42553, - "motm": 41192, - "moto": 10646, - "moto": 11431, - "motocross": 34562, - "motogp": 16615, - "motor": 3975, - "motor": 7659, - "motorbike": 33341, - "motorcycle": 10297, - "motorcycles": 24869, - "motoring": 44491, - "motorists": 32766, - "motorola": 33738, - "motors": 14989, - "motorsport": 18371, - "motorsports": 24264, - "motorway": 31808, - "motown": 32685, - "mott": 44570, - "mott": 21708, - "motto": 23338, - "mou": 2809, - "mou": 25289, - "moud": 37698, - "moul": 25725, - "mould": 36743, - "moulin": 47656, - "moun": 2023, - "mound": 21414, - "mount": 20553, - "mount": 5532, - "mountain": 14547, - "mountain": 3965, - "mountaine": 24841, - "mountaineer": 49255, - "mountains": 5873, - "mounted": 17897, - "mounting": 29910, - "mounts": 36767, - "mour": 9053, - "mour": 42446, - "moured": 29555, - "mourinho": 18536, - "mourn": 33592, - "mourning": 24169, - "mourns": 42811, - "mous": 24837, - "mous": 17425, - "mouse": 33032, - "mouse": 9301, - "mousse": 31869, - "moustache": 32795, - "mouth": 15152, - "mouth": 4932, - "mouths": 38518, - "mov": 23950, - "move": 16624, - "move": 2783, - "moved": 6997, - "movember": 23474, - "movement": 5208, - "movements": 19665, - "mover": 37673, - "movers": 33957, - "moves": 6880, - "movi": 1707, - "movic": 43838, - "movie": 11247, - "movie": 2016, - "movies": 4772, - "moving": 32160, - "moving": 3584, - "mow": 31006, - "mow": 36329, - "mower": 30895, - "mowing": 46424, - "mowx": 44263, - "moy": 27276, - "moy": 34205, - "moyes": 37119, - "moz": 14761, - "moz": 43738, - "mozam": 26648, - "mozambique": 28831, - "mozart": 22132, - "mozz": 26317, - "mozzarella": 27845, - "mp": 1037, - "mp": 1246, - "mpa": 30749, - "mpc": 38560, - "mpd": 33814, - "mped": 28134, - "mper": 22803, - "mpg": 39830, - "mpg": 37454, - "mpgvip": 42149, - "mph": 5306, - "mpi": 43263, - "mping": 27999, - "mple": 21139, - "mplo": 47071, - "mpls": 34298, - "mpo": 33674, - "mpp": 39570, - "mps": 5504, - "mption": 9717, - "mpton": 27448, - "mpu": 47156, - "mpus": 25864, - "mpy": 17192, - "mq": 19103, - "mqm": 24687, - "mr": 3139, - "mr": 1982, - "mra": 44568, - "mrc": 25897, - "mri": 24773, - "mrs": 25003, - "mrs": 4255, - "mrt": 30256, - "mru": 22370, - "mrw": 15303, - "ms": 3525, - "ms": 988, - "msa": 36306, - "msc": 31826, - "msc": 20529, - "msd": 25804, - "msd": 36407, - "msdhoni": 32850, - "msf": 36239, - "msg": 44430, - "msg": 10928, - "msh": 41751, - "msi": 43597, - "msi": 45278, - "msk": 38501, - "msl": 42736, - "msm": 22210, - "msn": 18824, - "msn": 41042, - "msnbc": 20245, - "mson": 27773, - "mson": 12298, - "msp": 41445, - "msp": 22318, - "mss": 42136, - "mss": 48610, - "mst": 26335, - "msu": 26763, - "msu": 17298, - "mswx": 42957, - "msy": 43919, - "mt": 4252, - "mt": 3284, - "mta": 28691, - "mtb": 48306, - "mtb": 18747, - "mtc": 42482, - "mtg": 49142, - "mtg": 13648, - "mth": 48151, - "mtl": 22135, - "mtn": 26041, - "mtn": 18953, - "mtr": 46650, - "mts": 38751, - "mtv": 8099, - "mtv": 12555, - "mtvbr": 47258, - "mtvhottest": 16751, - "mtvstars": 19948, - "mu": 670, - "mu": 6411, - "mua": 21395, - "muay": 44910, - "muaythai": 47763, - "mubarak": 17957, - "muc": 49115, - "much": 14300, - "much": 1238, - "mucha": 42191, - "muchas": 26278, - "mucho": 19864, - "muck": 44731, - "muck": 45330, - "mud": 17491, - "mud": 11673, - "mudder": 49104, - "muddy": 21524, - "mue": 44383, - "mue": 40717, - "mueller": 46863, - "mueller": 14719, - "muen": 48646, - "muer": 33840, - "muf": 33852, - "mufc": 9013, - "muffin": 22696, - "muffins": 25922, - "mufti": 44930, - "mug": 16339, - "mug": 9722, - "mugabe": 36441, - "mughal": 37508, - "mugs": 22852, - "mugshot": 40028, - "muh": 36335, - "muh": 46475, - "muham": 10043, - "muhammad": 12259, - "muir": 44650, - "muir": 24745, - "muj": 44635, - "muk": 17327, - "muk": 32600, - "mukher": 34575, - "mukherjee": 37862, - "mul": 1899, - "mul": 43193, - "mula": 40937, - "mulator": 17463, - "mulberry": 39221, - "mule": 28695, - "mull": 17313, - "mull": 35310, - "mulled": 44641, - "mullen": 30797, - "muller": 33956, - "mullet": 35010, - "mulligan": 44336, - "mullins": 41265, - "mult": 34219, - "multi": 3947, - "multi": 6400, - "multic": 21683, - "multicul": 28004, - "multicultural": 34667, - "multil": 27975, - "multimedia": 27977, - "multin": 38996, - "multinational": 46540, - "multip": 40314, - "multiplayer": 27460, - "multiple": 6470, - "multipurpose": 47665, - "multit": 27814, - "multitasking": 48684, - "mulus": 26180, - "mum": 15565, - "mum": 4030, - "mumb": 5850, - "mumbai": 24279, - "mumbai": 6971, - "mumford": 46184, - "mummy": 16301, - "mums": 17868, - "mun": 2617, - "mun": 21059, - "muna": 48424, - "munch": 23587, - "munch": 33299, - "munchies": 44324, - "munchkin": 41305, - "mund": 14244, - "mundo": 20990, - "muni": 27327, - "muni": 39795, - "munich": 13526, - "munici": 12159, - "municipal": 43667, - "municipal": 16600, - "municipality": 29987, - "munition": 32668, - "munro": 36501, - "munster": 27201, - "mup": 21966, - "muppet": 40598, - "muppets": 40187, - "mups": 42195, - "mur": 2144, - "mur": 18293, - "mura": 45176, - "mural": 12315, - "murals": 31499, - "murder": 28136, - "murder": 5787, - "murdered": 13158, - "murderer": 26956, - "murderers": 48472, - "murdering": 36055, - "murders": 22409, - "murdoch": 29037, - "murphy": 48976, - "murphy": 8914, - "murray": 31978, - "murray": 7513, - "murs": 38783, - "mus": 2198, - "mus": 8103, - "musa": 30540, - "musc": 5696, - "muscat": 33322, - "muscle": 27323, - "muscle": 9269, - "muscles": 16786, - "muscular": 30606, - "muse": 2369, - "muse": 15686, - "museo": 36457, - "muses": 48243, - "museu": 27087, - "museum": 15602, - "museum": 2786, - "museums": 15542, - "museumweek": 37996, - "mush": 7635, - "mushroom": 13011, - "mushrooms": 14730, - "musi": 15628, - "music": 4110, - "music": 1179, - "musica": 26668, - "musical": 36002, - "musical": 5173, - "musically": 48893, - "musicals": 36974, - "musichistory": 37890, - "musician": 11179, - "musicians": 12498, - "musicislife": 43311, - "musicmonday": 35887, - "musicvideo": 26764, - "musik": 32986, - "musings": 44961, - "musique": 42250, - "musk": 32143, - "musk": 19063, - "muskete": 32775, - "musketeers": 37993, - "musko": 34987, - "muskoka": 40832, - "musli": 4958, - "muslim": 43795, - "muslim": 7060, - "muslims": 10513, - "muss": 41493, - "mussels": 33393, - "must": 6783, - "must": 2048, - "mustache": 23451, - "mustaf": 23596, - "mustafa": 29000, - "mustang": 42361, - "mustang": 13309, - "mustangs": 22500, - "mustard": 15794, - "muster": 47361, - "mustread": 28978, - "mut": 12598, - "mut": 22839, - "mutant": 28384, - "mutation": 38626, - "mutations": 39651, - "mute": 31252, - "muted": 48028, - "muth": 34280, - "mutil": 39950, - "mutt": 45924, - "mutu": 17574, - "mutual": 15055, - "mutuals": 31158, - "muy": 44625, - "mv": 10580, - "mv": 8269, - "mvc": 40549, - "mvp": 8905, - "mw": 16725, - "mw": 11206, - "mwc": 24289, - "mwf": 48565, - "mx": 21947, - "mx": 9575, - "my": 1152, - "my": 607, - "mya": 31401, - "myal": 42735, - "myan": 13761, - "myanmar": 14764, - "myart": 38826, - "myco": 48362, - "mydayin": 41896, - "mydayinla": 42801, - "mydubai": 43475, - "mye": 27551, - "myel": 40084, - "myers": 15993, - "myjaps": 47939, - "myle": 43700, - "myles": 25511, - "mylife": 30537, - "mylittle": 37757, - "mylittlepony": 45107, - "myo": 16206, - "myr": 20272, - "myra": 35694, - "myri": 34972, - "myrt": 47785, - "myrtle": 27768, - "mys": 11724, - "myself": 3245, - "mysore": 44924, - "myspace": 41382, - "myster": 4669, - "mysteries": 20605, - "mysterious": 12650, - "mystery": 39828, - "mystery": 6711, - "mysti": 28711, - "mystic": 36264, - "mystic": 23722, - "mystical": 34122, - "myth": 20322, - "myth": 13878, - "mythical": 34377, - "mytho": 43857, - "mythology": 22496, - "myths": 18675, - "mz": 29509, - "mz": 33400, - "mzan": 36322, - "mzansi": 43301, - "má": 36842, - "mé": 21890, - "méxico": 46159, - "mü": 28142, - "mün": 41235, - "n": 77, - "n": 333, - "na": 1097, - "na": 1272, - "naa": 37738, - "naacp": 32176, - "nab": 6951, - "nab": 19440, - "nabe": 35111, - "naby": 24800, - "nac": 14557, - "nac": 18950, - "nach": 12168, - "nach": 43622, - "nacho": 35647, - "nachos": 32847, - "nacht": 37261, - "nacional": 38782, - "nad": 6204, - "nad": 43928, - "nada": 31683, - "nadal": 20814, - "nade": 24908, - "nadi": 30512, - "nadia": 27487, - "nadine": 23356, - "nadu": 20936, - "nae": 19374, - "naf": 16161, - "naf": 45956, - "nafta": 43123, - "nag": 6694, - "nag": 23902, - "naga": 45953, - "naga": 38997, - "nagar": 17490, - "nage": 41219, - "nago": 38349, - "nagoya": 43303, - "nagpur": 43328, - "nah": 26421, - "nah": 11129, - "nahi": 35244, - "nai": 6230, - "nai": 10692, - "naia": 31340, - "naidu": 42429, - "naija": 16326, - "naik": 34424, - "nail": 19459, - "nail": 9059, - "nailart": 43532, - "nailed": 19035, - "nails": 8469, - "nair": 27107, - "naira": 39450, - "naire": 48892, - "nairobi": 17756, - "nais": 46396, - "naissance": 44761, - "naive": 43362, - "naj": 30985, - "naji": 32589, - "nak": 9248, - "nak": 25550, - "naked": 46371, - "naked": 11478, - "naku": 39864, - "nal": 14132, - "nal": 3119, - "nale": 27198, - "nall": 32869, - "nally": 26158, - "nam": 1410, - "nam": 12344, - "nama": 39586, - "naman": 27635, - "namaste": 35549, - "name": 18160, - "name": 1981, - "named": 3194, - "nameis": 40831, - "nament": 3916, - "naments": 16540, - "names": 6130, - "namesake": 41298, - "nami": 20393, - "namibia": 23731, - "naming": 19367, - "namjoon": 31986, - "namm": 35524, - "namo": 46013, - "namo": 24854, - "nan": 4375, - "nan": 7750, - "nana": 18761, - "nanaimo": 40518, - "nancy": 21511, - "nancy": 11425, - "nand": 20435, - "nandez": 12764, - "nando": 46044, - "nang": 48148, - "nani": 27980, - "nanny": 31104, - "nano": 15835, - "nano": 22006, - "nanop": 34177, - "nanotechnology": 42235, - "nanow": 46734, - "nant": 22526, - "nantes": 47533, - "nantucket": 41573, - "nao": 39319, - "naom": 34955, - "naomi": 20173, - "nap": 6568, - "nap": 11012, - "napa": 20545, - "napier": 40875, - "napkin": 38930, - "naples": 23560, - "napo": 18715, - "napol": 20122, - "napoleon": 24969, - "napoli": 22445, - "napp": 11359, - "napping": 37657, - "naps": 31317, - "naq": 46453, - "nar": 2977, - "nar": 20145, - "nara": 33823, - "narcis": 25229, - "narcissi": 35442, - "narco": 38461, - "nard": 18216, - "nare": 34853, - "naren": 8468, - "narendr": 9807, - "narendra": 25848, - "narendramodi": 9853, - "narnia": 48693, - "narr": 11845, - "narrated": 43609, - "narrative": 15933, - "narratives": 35117, - "narrator": 46529, - "narrow": 24006, - "narrow": 16652, - "narrowly": 29747, - "naruto": 22732, - "nas": 3090, - "nas": 15250, - "nasa": 6841, - "nasal": 42853, - "nascar": 25723, - "nascar": 7868, - "nasdaq": 26629, - "nash": 6771, - "nash": 13620, - "nasheed": 49176, - "nashgrier": 33372, - "nashville": 45356, - "nashville": 8585, - "nasi": 47987, - "nasir": 47509, - "nassau": 34048, - "nasser": 43559, - "nasty": 32930, - "nasty": 8709, - "nat": 1276, - "nat": 11310, - "nata": 39392, - "natal": 28516, - "natali": 20296, - "natalia": 32978, - "natalie": 36634, - "natalie": 13595, - "natash": 48701, - "natasha": 23093, - "nate": 26643, - "nate": 7587, - "natgeo": 33009, - "natgeo": 25046, - "nath": 22203, - "nath": 19843, - "nathan": 13028, - "nathan": 9711, - "nathanfillion": 47422, - "nathaniel": 32667, - "nati": 1060, - "nati": 13384, - "natic": 44944, - "natin": 44358, - "nation": 2317, - "nation": 2670, - "national": 3126, - "national": 1362, - "nationalbestfriend": 42222, - "nationaldogday": 32227, - "nationalism": 29867, - "nationalist": 25058, - "nationality": 44451, - "nationally": 15130, - "nationalpark": 33060, - "nationalparks": 41204, - "nationals": 10784, - "nationaltrust": 34051, - "nations": 7654, - "nationwide": 13795, - "native": 20639, - "native": 4562, - "natives": 36060, - "nativity": 33988, - "natl": 39225, - "natl": 34465, - "nato": 13139, - "nats": 21106, - "natu": 2775, - "natur": 6800, - "natural": 13198, - "natural": 3288, - "naturally": 12995, - "naturals": 44686, - "nature": 9382, - "nature": 2625, - "naturelovers": 41514, - "naturephotography": 22533, - "natures": 15616, - "natureuk": 46193, - "nau": 5955, - "nau": 32878, - "naught": 41001, - "naughty": 47255, - "naughty": 15101, - "nautical": 31660, - "nav": 3413, - "nav": 25308, - "navajo": 35523, - "naval": 44725, - "naval": 13273, - "navar": 24848, - "navarro": 37104, - "nave": 42704, - "naveen": 43837, - "naver": 32534, - "navi": 16159, - "navi": 44848, - "navig": 12507, - "navigate": 24400, - "navigating": 33134, - "navigation": 20148, - "navigator": 38910, - "navis": 36377, - "navratri": 45428, - "navy": 28414, - "navy": 5598, - "naw": 16259, - "naw": 30500, - "nawaz": 49161, - "nawaz": 19523, - "nax": 38299, - "nay": 11704, - "nay": 16182, - "naya": 38917, - "nayanth": 38157, - "nayanthara": 45184, - "naz": 6363, - "naz": 35534, - "nazi": 12972, - "nazis": 21778, - "nb": 6459, - "nb": 6813, - "nba": 22524, - "nba": 5139, - "nbad": 43458, - "nbaf": 30127, - "nbafinals": 33803, - "nbap": 41956, - "nbaplayoffs": 43860, - "nbat": 46291, - "nbc": 9352, - "nbc": 8799, - "nbd": 24526, - "nbl": 42652, - "nc": 5021, - "nc": 4911, - "nca": 6921, - "ncaa": 9418, - "ncbd": 47221, - "ncc": 33195, - "ncc": 36686, - "ncds": 47573, - "ncfc": 31274, - "ncis": 33617, - "ncpol": 40562, - "ncr": 38474, - "ncs": 42689, - "nct": 27723, - "nct": 20319, - "ncwx": 36166, - "nd": 5625, - "nd": 1764, - "nda": 32862, - "ndc": 47564, - "ndi": 48229, - "ndp": 19257, - "nds": 31347, - "ndtv": 26261, - "ne": 557, - "ne": 1422, - "nea": 24068, - "neal": 33652, - "neal": 16730, - "near": 11296, - "near": 2252, - "nearby": 13314, - "nearest": 18985, - "nearing": 26571, - "nearly": 4816, - "nears": 37710, - "neat": 43201, - "neat": 15465, - "neath": 18315, - "neau": 31559, - "neb": 40209, - "nebra": 13371, - "nebraska": 14565, - "nebu": 49295, - "nebula": 22532, - "nec": 25109, - "nec": 22992, - "necess": 6961, - "necessarily": 25853, - "necessary": 8955, - "necessities": 43483, - "necessity": 33163, - "neck": 6066, - "neck": 6906, - "necklace": 7385, - "necklaces": 32276, - "necks": 29701, - "nectar": 33683, - "ned": 16030, - "ned": 1369, - "nederland": 49058, - "nee": 20494, - "nee": 10601, - "need": 3229, - "need": 1262, - "needed": 4049, - "needing": 22894, - "needle": 44490, - "needle": 19886, - "needles": 27250, - "needless": 39984, - "needs": 2536, - "needy": 30150, - "neel": 33092, - "neel": 46043, - "neer": 34245, - "nees": 47248, - "neet": 46362, - "neg": 5513, - "negan": 42623, - "negative": 8869, - "negatively": 40254, - "negativity": 34658, - "neglec": 18827, - "neglect": 33680, - "neglected": 31893, - "negli": 32594, - "negligence": 45658, - "negoti": 10216, - "negotiate": 32969, - "negotiating": 35510, - "negotiation": 36504, - "negotiations": 20433, - "negr": 42190, - "negro": 26554, - "neh": 40416, - "neh": 41697, - "neha": 44463, - "nehru": 30316, - "nei": 9366, - "neigh": 4061, - "neighb": 6534, - "neighbor": 7759, - "neighbor": 14485, - "neighborhood": 9471, - "neighborhoods": 26713, - "neighboring": 44754, - "neighbors": 13037, - "neighbour": 15858, - "neighbour": 23719, - "neighbourhood": 20312, - "neighbours": 17594, - "neil": 13591, - "neil": 8030, - "neilhimself": 45682, - "neill": 19324, - "neither": 14398, - "nek": 47727, - "neko": 47066, - "nel": 5476, - "nel": 2693, - "nell": 27081, - "nell": 8117, - "nelly": 21166, - "nels": 19296, - "nelson": 24774, - "nelson": 8586, - "nem": 45153, - "neman": 48553, - "neme": 30993, - "nemesis": 37811, - "nemo": 30441, - "nen": 17817, - "nen": 15451, - "nene": 44167, - "neo": 14562, - "neo": 11017, - "neon": 21043, - "neon": 13919, - "neonatal": 46464, - "neop": 49069, - "nep": 20739, - "nep": 41960, - "nepal": 25597, - "nepal": 10066, - "nepali": 47579, - "neph": 27926, - "nephe": 41810, - "nephew": 11689, - "nephews": 43747, - "nephro": 43054, - "neptune": 30566, - "ner": 2064, - "ner": 998, - "nerd": 24452, - "nerd": 12273, - "nerds": 22609, - "nerdy": 33124, - "nered": 17583, - "nerf": 42914, - "nering": 20226, - "nero": 29048, - "ners": 2129, - "nerve": 18571, - "nerves": 27813, - "nervous": 13928, - "nery": 48597, - "nes": 5457, - "nes": 4980, - "nesburg": 27159, - "nese": 32220, - "ness": 7187, - "ness": 1294, - "nesses": 20107, - "nessy": 32939, - "nest": 20302, - "nest": 8719, - "nesting": 28860, - "nestle": 43967, - "nestled": 38107, - "nests": 41133, - "net": 1851, - "net": 2315, - "netany": 23137, - "netanyahu": 23583, - "netball": 19761, - "netes": 44335, - "netfli": 6304, - "netflix": 35325, - "netflix": 6600, - "nether": 9946, - "netherlands": 11060, - "neti": 43980, - "netneutrality": 47794, - "nets": 8582, - "nett": 23403, - "nett": 6975, - "nette": 13271, - "network": 23285, - "network": 3304, - "networking": 9818, - "networks": 10004, - "neu": 3855, - "neu": 43342, - "neue": 45764, - "neur": 19001, - "neur": 31976, - "neural": 26388, - "neuro": 7401, - "neuro": 36000, - "neurological": 41718, - "neurology": 43197, - "neurons": 40442, - "neuroscience": 23381, - "neutr": 17207, - "neutral": 17011, - "neutrality": 26511, - "neutron": 44056, - "nev": 10236, - "nev": 43645, - "neva": 43304, - "nevada": 13499, - "neve": 44099, - "neve": 44023, - "never": 6746, - "never": 1426, - "neveragain": 45053, - "neverforget": 19242, - "nevergiveup": 42497, - "neverland": 41483, - "nevertheless": 48355, - "nevertrump": 47494, - "neville": 19269, - "nevis": 43670, - "new": 1218, - "new": 686, - "newark": 20240, - "newbie": 45427, - "newborn": 18320, - "newbury": 34169, - "newcastle": 41955, - "newcastle": 9302, - "newcomer": 30648, - "newcomers": 44037, - "newe": 40068, - "newell": 41436, - "newer": 33099, - "newest": 4990, - "newfound": 25250, - "newfoundland": 28079, - "newh": 18546, - "newin": 31911, - "newjersey": 32621, - "newly": 42186, - "newly": 7056, - "newman": 15815, - "newmarket": 38617, - "newmexico": 35238, - "newmusic": 32510, - "newmusic": 17201, - "newor": 25969, - "neworleans": 31205, - "newport": 42580, - "newport": 14846, - "newprofile": 14633, - "newprofilepic": 14754, - "newrelease": 34793, - "news": 6216, - "news": 1120, - "newsat": 43979, - "newsc": 28656, - "newscast": 45031, - "newsle": 10727, - "newsletter": 11069, - "newsnow": 48650, - "newsp": 7109, - "newspaper": 8786, - "newspapers": 22423, - "newsroom": 23200, - "newt": 37224, - "newton": 33122, - "newton": 12606, - "newtown": 31747, - "newyear": 22161, - "newyear": 12999, - "newyearseve": 37587, - "newyork": 18140, - "newyork": 10454, - "newyorkcity": 30460, - "newyorker": 39732, - "newzealand": 21117, - "nex": 6897, - "nex": 39720, - "next": 12434, - "next": 1131, - "nextgen": 41933, - "nexus": 19053, - "ney": 3857, - "ney": 1438, - "neymar": 21878, - "neys": 12616, - "nez": 27388, - "nf": 15195, - "nf": 25643, - "nfamily": 20098, - "nfc": 23695, - "nffc": 27893, - "nfl": 11219, - "nfl": 4691, - "nfldraft": 25002, - "ng": 10352, - "ng": 5215, - "nga": 35477, - "ngc": 29046, - "ngo": 38740, - "ngo": 24821, - "ngos": 34627, - "nguyen": 29947, - "nh": 3760, - "nh": 10803, - "nhc": 44817, - "nhl": 12290, - "nhl": 8167, - "nhlbruins": 39081, - "nhljets": 49357, - "nhm": 39483, - "nhpolitics": 36125, - "nhq": 42368, - "nhra": 30052, - "nhs": 23282, - "nhs": 7695, - "ni": 697, - "ni": 3256, - "nia": 3098, - "niag": 18071, - "niagar": 39298, - "niagara": 18965, - "niall": 41354, - "niall": 8327, - "niallo": 22855, - "niallofficial": 23084, - "niam": 39347, - "nian": 46003, - "nib": 31049, - "nic": 2109, - "nic": 6651, - "nica": 29040, - "nicar": 25119, - "nicaragua": 28423, - "nice": 28386, - "nice": 1805, - "nicely": 12303, - "nicer": 29488, - "nicest": 22967, - "niche": 25279, - "nichol": 7668, - "nicholas": 39814, - "nicholas": 13148, - "nicholls": 38846, - "nichols": 22730, - "nicholson": 28745, - "nick": 4209, - "nick": 4253, - "nickel": 22034, - "nickelo": 28668, - "nickelodeon": 33279, - "nicki": 17738, - "nickimin": 27390, - "nickiminaj": 27593, - "nickjonas": 43862, - "nickname": 24731, - "nicknamed": 45190, - "nicks": 15049, - "nicky": 28893, - "nicky": 22091, - "nico": 20850, - "nico": 17779, - "nicol": 9919, - "nicol": 48274, - "nicola": 21791, - "nicolas": 43813, - "nicolas": 18918, - "nicole": 21246, - "nicole": 10000, - "nicot": 45099, - "nicotine": 46697, - "nie": 9524, - "nie": 3501, - "niece": 12795, - "nieces": 44877, - "niel": 19109, - "niel": 26837, - "niels": 37154, - "nielsen": 28372, - "nier": 13014, - "nies": 10586, - "niest": 15007, - "nieu": 29781, - "nific": 4748, - "nifty": 25604, - "nig": 27933, - "nig": 28099, - "nigan": 48516, - "nigel": 33919, - "nigel": 15153, - "niger": 4524, - "niger": 29920, - "nigeri": 40913, - "nigeria": 6106, - "nigerian": 12167, - "nigerians": 25358, - "nigh": 13525, - "nigh": 48157, - "night": 3870, - "night": 930, - "nightclub": 20418, - "nighter": 41349, - "nighting": 36211, - "nightingale": 40696, - "nightlife": 28823, - "nightly": 28868, - "nightmare": 12867, - "nightmares": 24032, - "nightout": 44257, - "nights": 4296, - "nighttime": 38147, - "nightw": 39956, - "nih": 25783, - "nik": 5126, - "nik": 13705, - "nike": 16300, - "nike": 5783, - "nikeplus": 43154, - "niki": 36136, - "nikita": 37118, - "nikk": 38596, - "nikki": 23156, - "nikki": 16689, - "niko": 43771, - "nikol": 27430, - "nikola": 42146, - "nikon": 25488, - "nikon": 13849, - "nikov": 43960, - "nil": 16852, - "nil": 35030, - "nile": 24252, - "nim": 30402, - "nim": 42093, - "nima": 42586, - "nin": 5794, - "nin": 14145, - "nina": 13891, - "nine": 16213, - "nine": 7330, - "ninety": 48214, - "ning": 6050, - "ning": 762, - "ningham": 23395, - "ningly": 43537, - "nings": 4588, - "nington": 26214, - "ninj": 23225, - "ninja": 11969, - "ninjas": 42796, - "nino": 25633, - "ninten": 6184, - "nintendo": 13969, - "nintendo": 7886, - "nintendoswitch": 16404, - "ninth": 22770, - "nip": 33889, - "nip": 22333, - "nipp": 24634, - "nipple": 45987, - "nipples": 44774, - "nippon": 47960, - "nips": 49241, - "nir": 15503, - "nir": 40057, - "nireland": 45763, - "niro": 47373, - "nirvana": 28300, - "nis": 5609, - "nis": 3786, - "nish": 19834, - "nish": 13256, - "nished": 24141, - "nishi": 32386, - "nishings": 49247, - "nison": 45700, - "niss": 39043, - "nissan": 37635, - "nissan": 11082, - "nist": 17782, - "nister": 36640, - "nit": 4087, - "nit": 19011, - "nite": 8427, - "niti": 43964, - "niti": 45355, - "nitin": 37529, - "nitro": 30726, - "nitrogen": 30706, - "niture": 7840, - "nity": 12707, - "niu": 48187, - "niv": 47300, - "niversary": 29643, - "nix": 48552, - "nix": 32278, - "nixon": 20671, - "nj": 8343, - "nj": 6672, - "njcaa": 48992, - "njpw": 38992, - "nk": 22708, - "nk": 17456, - "nko": 36353, - "nl": 12057, - "nl": 7655, - "nli": 37502, - "nlp": 35680, - "nlwx": 49260, - "nm": 15956, - "nm": 11370, - "nmd": 43331, - "nme": 40454, - "nmwx": 47967, - "nn": 8947, - "nn": 12925, - "nnn": 26277, - "nnnn": 41420, - "no": 578, - "no": 871, - "noaa": 27557, - "noah": 28806, - "noah": 11519, - "nobel": 33742, - "nobel": 15605, - "nobelprize": 46074, - "noble": 29430, - "noble": 12051, - "nobody": 7009, - "noc": 16988, - "noc": 44420, - "nocchi": 46359, - "noch": 38672, - "noche": 29689, - "noches": 44166, - "nock": 16993, - "noctur": 26291, - "nocturnal": 41738, - "nod": 18648, - "nodapl": 39079, - "node": 31434, - "node": 24871, - "nodejs": 39262, - "nodes": 40534, - "noel": 38406, - "noel": 17496, - "nof": 29505, - "noff": 46979, - "nofilter": 16418, - "nog": 31157, - "noh": 40775, - "noi": 43115, - "noi": 39889, - "noida": 33404, - "noir": 39291, - "noir": 12953, - "nois": 22057, - "noise": 41018, - "noise": 9307, - "noises": 31575, - "noisse": 45686, - "noisy": 33495, - "nokia": 17731, - "nol": 8055, - "nola": 13289, - "nolan": 17323, - "nold": 40322, - "nole": 34654, - "noles": 40569, - "nollywood": 43145, - "nology": 42221, - "nom": 2981, - "nom": 12799, - "nomad": 27849, - "noman": 45592, - "nomin": 5643, - "nominate": 17122, - "nominated": 8710, - "nominating": 45747, - "nomination": 14136, - "nominations": 17124, - "nominee": 14122, - "nominees": 17873, - "nomnom": 26962, - "nomore": 35126, - "noms": 35706, - "non": 4282, - "non": 3353, - "none": 29644, - "none": 8906, - "nonetheless": 39675, - "nonfiction": 31654, - "nonprofit": 19315, - "nonprofits": 37935, - "nonsense": 19136, - "nonstop": 30300, - "nont": 25207, - "noo": 6759, - "noo": 46672, - "noodle": 19521, - "noodles": 15782, - "nook": 30088, - "noon": 37693, - "noon": 2347, - "noor": 46978, - "noor": 31323, - "nope": 15625, - "nor": 1062, - "nor": 6190, - "nora": 25890, - "norcal": 41970, - "nord": 19261, - "nord": 36067, - "nordic": 36439, - "nordic": 20734, - "nordstrom": 38562, - "norfolk": 30232, - "norfolk": 12202, - "norm": 10990, - "norm": 22457, - "norma": 35757, - "normal": 28748, - "normal": 5967, - "normali": 45157, - "normally": 15870, - "norman": 22027, - "norman": 11338, - "normandy": 23840, - "normani": 44596, - "norms": 33011, - "norris": 21814, - "norse": 36559, - "norte": 35638, - "north": 3468, - "north": 2188, - "northampton": 49246, - "northampton": 26175, - "northan": 37081, - "northbound": 24228, - "northcarolina": 43386, - "northe": 24675, - "northeast": 42673, - "northeast": 13009, - "northeastern": 28297, - "northeasthour": 42869, - "norther": 26908, - "northern": 17210, - "northern": 5049, - "northernlights": 48940, - "northkorea": 38495, - "northside": 45957, - "northumber": 22295, - "northumberland": 22922, - "northwales": 49371, - "northwest": 12894, - "northwestern": 23685, - "norton": 18032, - "norway": 8780, - "norwe": 14414, - "norwegian": 15971, - "norwich": 37629, - "norwich": 15812, - "norwood": 37889, - "nos": 13420, - "nose": 24192, - "nose": 8231, - "noses": 48163, - "nostal": 12076, - "nostalgia": 16622, - "nostalgic": 24468, - "not": 2534, - "not": 783, - "notable": 22023, - "notch": 19476, - "notdead": 42059, - "note": 10910, - "note": 3246, - "notebook": 16365, - "notebooks": 37623, - "noted": 22501, - "notes": 5795, - "nothin": 24291, - "nothing": 28412, - "nothing": 2586, - "noti": 10686, - "notic": 6915, - "notice": 6683, - "noticeable": 40857, - "noticed": 9324, - "notices": 33459, - "noticias": 47759, - "noticing": 37571, - "notification": 22512, - "notifications": 23169, - "notified": 39454, - "noting": 38649, - "notion": 37856, - "notjust": 33212, - "notjustlakes": 45803, - "notmy": 39301, - "noto": 29878, - "noton": 48258, - "notor": 21711, - "notori": 44065, - "notorious": 22489, - "notre": 24397, - "notre": 15306, - "notredame": 34077, - "notsorry": 34361, - "nott": 9333, - "nott": 34989, - "notte": 47308, - "nottingham": 12852, - "notts": 25598, - "nou": 8751, - "nou": 30953, - "noun": 33663, - "nouri": 23796, - "nourish": 46025, - "nourished": 48354, - "nous": 29485, - "nouveau": 29948, - "nouvel": 34215, - "nov": 2264, - "nov": 4293, - "nova": 11236, - "novak": 26465, - "novasco": 33785, - "novascotia": 34744, - "novation": 39753, - "nove": 30507, - "novel": 15044, - "novel": 6080, - "novelist": 27314, - "novella": 42770, - "novels": 16040, - "novelty": 37750, - "november": 3680, - "nover": 37465, - "novi": 47957, - "novice": 33743, - "novo": 27504, - "novo": 36581, - "now": 2040, - "now": 692, - "nowadays": 26155, - "nowhere": 14108, - "nowplaying": 3708, - "nowwatching": 30852, - "nox": 27406, - "noxi": 39304, - "noxious": 42833, - "noy": 32787, - "np": 18205, - "np": 6314, - "npa": 42378, - "npc": 33966, - "npr": 39941, - "npr": 24078, - "nps": 22025, - "npt": 47231, - "nr": 6574, - "nr": 9713, - "nra": 17286, - "nrc": 45786, - "nrf": 47982, - "nrg": 48662, - "nrl": 27142, - "nrl": 18127, - "ns": 12405, - "ns": 1373, - "nsa": 23004, - "nsc": 32792, - "nsd": 36659, - "nsf": 34180, - "nsfw": 19847, - "nsi": 47824, - "nsw": 21301, - "nsw": 11693, - "nswpol": 44434, - "nt": 10902, - "nt": 3207, - "ntr": 30845, - "nts": 43775, - "ntt": 22859, - "ntv": 24807, - "ntv": 45304, - "nu": 1156, - "nu": 9444, - "nucle": 25693, - "nuclear": 34136, - "nuclear": 7279, - "nude": 16630, - "nudes": 32122, - "nue": 22834, - "nuestra": 45649, - "nuestro": 38590, - "nuev": 47861, - "nueva": 48810, - "nuevo": 30265, - "nufc": 15720, - "nuff": 37324, - "nug": 13471, - "nugent": 47457, - "nugget": 25448, - "nuggets": 18970, - "nuh": 45950, - "nuit": 38815, - "nuk": 39228, - "nuke": 39399, - "nul": 29358, - "null": 47376, - "num": 17896, - "num": 30534, - "numb": 34639, - "numb": 39427, - "number": 44078, - "number": 2842, - "numbered": 25975, - "numbers": 6121, - "numer": 11442, - "numerous": 17082, - "numis": 39100, - "nun": 12511, - "nun": 28540, - "nunavut": 48626, - "nunes": 40697, - "nuns": 44061, - "nup": 46757, - "nur": 3920, - "nur": 33493, - "nure": 42480, - "nurse": 37547, - "nurse": 10058, - "nursery": 15540, - "nurses": 12938, - "nursing": 11126, - "nurture": 38865, - "nurturing": 45229, - "nus": 25157, - "nus": 18239, - "nut": 10358, - "nut": 6491, - "nutcracker": 36733, - "nutella": 27312, - "nutr": 6198, - "nutri": 15470, - "nutrient": 32900, - "nutrients": 24668, - "nutriti": 17978, - "nutrition": 41546, - "nutrition": 7989, - "nutritional": 26457, - "nutritious": 30387, - "nuts": 8644, - "nutshell": 26659, - "nutty": 39846, - "nv": 17217, - "nv": 16985, - "nvi": 22847, - "nvidia": 27325, - "nw": 7826, - "nw": 7030, - "nwa": 34237, - "nwo": 40976, - "nws": 23333, - "nws": 30998, - "nwsl": 48394, - "nwt": 25029, - "nx": 18810, - "nx": 16997, - "nxt": 35037, - "nxt": 17804, - "ny": 1383, - "ny": 1350, - "nya": 24165, - "nyc": 13304, - "nyc": 2832, - "nycc": 27187, - "nycfc": 47497, - "nye": 40723, - "nye": 13416, - "nyfw": 21089, - "nyk": 46841, - "nylon": 25915, - "nyo": 41534, - "nyo": 44586, - "nypd": 42293, - "nypd": 18279, - "nyr": 32538, - "nyrd": 47936, - "nys": 36375, - "nys": 23423, - "nyse": 32650, - "nyt": 46311, - "nyt": 12816, - "nytimes": 13772, - "nyu": 43143, - "nyu": 31355, - "nz": 10142, - "nz": 7082, - "o": 78, - "o": 334, - "oa": 11994, - "oahu": 37790, - "oak": 6010, - "oak": 7221, - "oakland": 42663, - "oakland": 12077, - "oakley": 27810, - "oaks": 16734, - "oakville": 38500, - "oasis": 18185, - "oat": 20095, - "oat": 34132, - "oates": 47094, - "oath": 20108, - "oatmeal": 26374, - "oats": 24150, - "oax": 43090, - "oaxaca": 47818, - "ob": 1411, - "ob": 14908, - "oba": 42902, - "oba": 15147, - "obam": 13174, - "obama": 4276, - "obamacare": 18005, - "obe": 11897, - "obe": 29117, - "obedience": 48921, - "ober": 15284, - "obese": 41757, - "obesity": 19499, - "obey": 26926, - "obi": 21454, - "obi": 18414, - "obile": 20513, - "obitu": 39218, - "obituary": 43580, - "objec": 7970, - "object": 14115, - "objective": 23663, - "objectives": 30238, - "objects": 13770, - "obl": 31452, - "oblast": 42672, - "obli": 11416, - "obligation": 34473, - "obligations": 38232, - "obligatory": 35020, - "oblivion": 45323, - "obo": 46001, - "obo": 26618, - "obrien": 31946, - "obs": 39162, - "obsc": 20392, - "obscure": 33337, - "obse": 8433, - "observ": 9050, - "observation": 20250, - "observations": 27409, - "observatory": 21236, - "observe": 23217, - "observed": 21267, - "observer": 22077, - "observers": 47544, - "observing": 28359, - "obsessed": 9744, - "obsession": 15718, - "obsi": 47323, - "obsole": 35561, - "obsolete": 40628, - "obst": 29398, - "obstac": 24075, - "obstacle": 29751, - "obstacles": 24480, - "obste": 49103, - "obstru": 44876, - "obstruc": 38762, - "obstruction": 40240, - "obtain": 26555, - "obtained": 29322, - "obvious": 13959, - "obviously": 10068, - "oc": 1566, - "oc": 6603, - "oca": 31120, - "ocal": 38148, - "occ": 43940, - "occa": 8530, - "occasion": 12280, - "occasional": 33059, - "occasionally": 32479, - "occasions": 26154, - "occer": 20804, - "occi": 42994, - "occu": 7863, - "occult": 42529, - "occup": 11152, - "occupation": 18624, - "occupational": 30644, - "occupied": 17271, - "occupy": 22453, - "occupy": 24210, - "occur": 11264, - "occur": 21813, - "occurred": 19850, - "occurrence": 40615, - "occurring": 31335, - "occurs": 26563, - "ocd": 35904, - "oce": 3509, - "ocean": 12941, - "ocean": 4918, - "oceans": 16792, - "och": 29334, - "och": 32011, - "oche": 33045, - "oci": 9891, - "ocity": 46039, - "ock": 33579, - "ock": 21313, - "ocks": 22410, - "oclock": 36274, - "oco": 32553, - "ocon": 33090, - "ocr": 45813, - "ocre": 40320, - "ocs": 27297, - "oct": 4565, - "octa": 23444, - "octag": 37768, - "octagon": 49167, - "octane": 43040, - "octavia": 47416, - "octo": 31032, - "october": 3481, - "octopus": 22327, - "ocu": 22709, - "oculus": 30082, - "od": 4886, - "od": 9719, - "oda": 24777, - "oday": 41954, - "odd": 15525, - "odd": 11387, - "oddly": 34213, - "odds": 11555, - "ode": 19125, - "ode": 19639, - "odell": 41556, - "odessa": 43574, - "odi": 12223, - "odi": 18853, - "odin": 35175, - "odisha": 15737, - "odo": 49188, - "odo": 40993, - "odor": 39509, - "odu": 35095, - "odu": 39904, - "odyssey": 19991, - "oe": 24251, - "oe": 11667, - "oec": 24288, - "oecd": 30816, - "oem": 29650, - "oes": 3643, - "of": 684, - "of": 539, - "ofa": 29774, - "ofc": 19877, - "ofe": 30000, - "ofer": 47322, - "off": 892, - "off": 1007, - "offe": 8261, - "offee": 34059, - "offen": 7231, - "offence": 34594, - "offences": 33972, - "offended": 30765, - "offender": 48294, - "offenders": 35878, - "offense": 15253, - "offensive": 11037, - "offer": 20607, - "offer": 3271, - "offered": 9395, - "offering": 6896, - "offerings": 24535, - "offers": 4679, - "offic": 3276, - "office": 18033, - "office": 2171, - "officeof": 38750, - "officeofrg": 47100, - "officer": 4683, - "officers": 6335, - "offices": 10933, - "offici": 1401, - "official": 5768, - "official": 1868, - "officially": 4226, - "officials": 7658, - "officiel": 26548, - "offl": 16851, - "offline": 22724, - "offro": 32198, - "offroad": 37173, - "offs": 23987, - "offseason": 25485, - "offset": 28843, - "offshore": 15496, - "offside": 49347, - "offspring": 38635, - "offthe": 38189, - "ofi": 36692, - "ofi": 49090, - "oficial": 18061, - "oft": 16693, - "oftball": 39768, - "often": 4864, - "ofthe": 7592, - "oftheday": 6988, - "oftheweek": 20654, - "oftheyear": 33975, - "og": 11542, - "og": 8555, - "oga": 47312, - "ogden": 42011, - "ogil": 39013, - "ography": 22399, - "ogue": 24761, - "ogun": 48970, - "oh": 5648, - "oh": 1779, - "ohana": 48330, - "ohh": 23076, - "ohhh": 27697, - "ohhhh": 40201, - "ohi": 5207, - "ohio": 18951, - "ohio": 6155, - "ohiostate": 41324, - "ohl": 45547, - "ohl": 41095, - "ohmy": 29758, - "ohn": 48043, - "ohs": 39542, - "ohwx": 47993, - "oi": 27357, - "oi": 13934, - "oic": 45554, - "oid": 14758, - "oids": 21847, - "oil": 11973, - "oil": 2870, - "oiland": 32316, - "oilandgas": 34130, - "oilers": 21627, - "oilpainting": 34279, - "oils": 17886, - "oily": 47550, - "oir": 48079, - "oir": 37113, - "ois": 23262, - "oit": 18453, - "oitnb": 34865, - "oj": 30986, - "oj": 34553, - "ok": 1944, - "ok": 2481, - "oka": 42258, - "oka": 19092, - "okan": 41263, - "okanagan": 43233, - "okay": 4917, - "okc": 42418, - "okc": 18357, - "oke": 26636, - "oke": 23598, - "oki": 20390, - "okin": 30687, - "okinawa": 35877, - "okla": 9431, - "oklahoma": 10170, - "oko": 26892, - "oko": 26095, - "okstate": 36356, - "oktoberfest": 32026, - "oku": 45010, - "oku": 43829, - "okwx": 27336, - "ol": 562, - "ol": 2985, - "ola": 20499, - "ola": 3373, - "olaf": 39709, - "olan": 48489, - "olan": 24227, - "oland": 26452, - "olas": 40800, - "old": 4931, - "old": 896, - "olde": 37731, - "older": 7700, - "oldest": 9285, - "oldham": 29929, - "oldie": 35280, - "oldies": 36278, - "oldman": 48614, - "olds": 8580, - "oldschool": 44384, - "oldschool": 25133, - "oldsmobile": 45396, - "ole": 9089, - "ole": 1947, - "oled": 46768, - "oler": 24069, - "oles": 16962, - "olf": 16346, - "olga": 34779, - "oli": 3811, - "oli": 8810, - "olic": 31341, - "oligar": 46185, - "olim": 47769, - "olin": 37823, - "olin": 18283, - "olina": 34711, - "oline": 17441, - "oling": 38033, - "olini": 36040, - "olis": 49397, - "olithic": 35574, - "olive": 22486, - "olive": 9898, - "oliver": 22882, - "oliver": 9261, - "olives": 27149, - "olivi": 20773, - "olivia": 11697, - "olivier": 23891, - "oll": 32270, - "oll": 15510, - "olla": 31908, - "ollie": 24434, - "olls": 42697, - "olly": 23998, - "olo": 14628, - "olo": 7606, - "ological": 12345, - "ologist": 23442, - "ologists": 30912, - "ology": 4627, - "olor": 29245, - "olph": 25077, - "ols": 2236, - "olsen": 26307, - "olson": 28046, - "olt": 46252, - "olu": 16502, - "olu": 46302, - "olulu": 27645, - "oly": 20323, - "oly": 24823, - "olym": 3594, - "olympi": 13597, - "olympia": 23965, - "olympiad": 47694, - "olympian": 25420, - "olympians": 44583, - "olympic": 26099, - "olympic": 6388, - "olympics": 7629, - "olympus": 30960, - "om": 547, - "om": 3932, - "oma": 44603, - "oma": 5358, - "omaha": 16509, - "oman": 22088, - "oman": 10871, - "omar": 19488, - "omar": 13367, - "omars": 37099, - "omas": 36023, - "omat": 40788, - "omb": 34447, - "ombe": 35967, - "omd": 49346, - "ome": 3693, - "ome": 5832, - "omed": 16835, - "omega": 13465, - "omelette": 38789, - "omen": 9969, - "omen": 25469, - "oment": 43683, - "omeo": 39844, - "omer": 24087, - "omer": 17902, - "omes": 25736, - "ometer": 20060, - "ometric": 38702, - "omez": 12541, - "omf": 47496, - "omfg": 12523, - "omg": 35233, - "omg": 3186, - "omi": 24097, - "omi": 10341, - "omic": 40536, - "omic": 12793, - "omics": 15138, - "omile": 46915, - "omin": 16457, - "omination": 42571, - "oming": 10796, - "ominous": 40914, - "omni": 18793, - "omni": 39489, - "omnibus": 44760, - "omnic": 48383, - "omo": 14478, - "omo": 11066, - "omon": 48758, - "omor": 29431, - "oms": 3770, - "omusic": 38965, - "omy": 40805, - "omy": 6884, - "on": 521, - "on": 525, - "ona": 2687, - "onair": 29511, - "onal": 918, - "onboard": 21689, - "once": 16331, - "once": 2654, - "onceupon": 28122, - "onceuponatime": 33505, - "onco": 46700, - "oncology": 24593, - "ond": 27918, - "ond": 2636, - "onda": 32643, - "onday": 29864, - "onde": 44532, - "ondo": 29529, - "ondon": 42043, - "ondon": 11851, - "one": 1980, - "one": 637, - "onec": 27746, - "oned": 28012, - "oned": 4698, - "onedirection": 16245, - "onee": 44433, - "oneill": 44808, - "onelove": 47417, - "onent": 12147, - "onents": 11709, - "oneof": 48478, - "onep": 20440, - "onepiece": 43153, - "oneplus": 25981, - "oner": 30055, - "oner": 6071, - "oners": 12324, - "ones": 20757, - "ones": 1575, - "oneself": 46874, - "onesie": 33237, - "oness": 25379, - "onet": 36058, - "oneteam": 41094, - "onetsy": 33392, - "onew": 43848, - "onews": 18696, - "onex": 49116, - "oney": 44498, - "oney": 9408, - "onf": 41790, - "onfox": 29874, - "ong": 2787, - "ong": 846, - "onga": 30259, - "ongchang": 35071, - "ongi": 21754, - "ongo": 31226, - "ongoing": 10393, - "ongs": 12143, - "oni": 4385, - "oni": 8048, - "onia": 8001, - "onial": 27599, - "onian": 21090, - "onic": 15838, - "onic": 3711, - "onica": 14631, - "onics": 9779, - "onie": 35249, - "onies": 22601, - "onimo": 41271, - "oning": 5197, - "onion": 10985, - "onions": 15255, - "onist": 10099, - "onists": 19659, - "onix": 27370, - "onized": 43657, - "onlin": 31103, - "online": 12940, - "online": 2027, - "onlinemarketing": 41820, - "onlineshopping": 38587, - "only": 11646, - "only": 1033, - "onlyin": 32947, - "onna": 25438, - "onna": 35458, - "onnaise": 48934, - "onne": 23466, - "onnell": 45613, - "ono": 28165, - "ono": 14388, - "onom": 48014, - "onomy": 36873, - "onpoli": 20708, - "ons": 26076, - "ons": 708, - "onsale": 36324, - "onset": 30527, - "onsite": 37336, - "onstage": 21821, - "onstorm": 49333, - "ont": 34303, - "ont": 11157, - "ontari": 6739, - "ontario": 42766, - "ontario": 7436, - "onte": 34723, - "onthe": 12241, - "onther": 46563, - "ontheroad": 47516, - "onthisday": 6862, - "onto": 11745, - "onto": 3141, - "ontology": 37364, - "ontour": 32155, - "onu": 44142, - "onward": 34827, - "onwards": 20682, - "ony": 9490, - "ony": 2926, - "onym": 11483, - "onymous": 13038, - "onyx": 31353, - "oo": 574, - "oo": 2822, - "ood": 16429, - "ood": 738, - "oodle": 45289, - "oods": 44660, - "oof": 42270, - "ooh": 16806, - "ook": 22326, - "ook": 8394, - "ooks": 31082, - "ool": 37702, - "ool": 929, - "oom": 22786, - "oom": 15002, - "oomf": 40607, - "oon": 35651, - "oon": 7100, - "ooo": 9571, - "oooh": 28927, - "oooo": 4002, - "oooo": 13643, - "ooooo": 12532, - "oooooo": 43590, - "oooooo": 20372, - "ooooooo": 30859, - "oooooooo": 15473, - "oooooooo": 43408, - "oooooooooooooooo": 48645, - "oop": 7326, - "ooper": 39906, - "oops": 9116, - "oor": 35239, - "oos": 9896, - "oosa": 30834, - "oose": 38941, - "oot": 17667, - "ootball": 28914, - "ootd": 16547, - "ooth": 12682, - "oott": 34316, - "ooza": 22809, - "op": 676, - "op": 3691, - "opa": 28949, - "opal": 28982, - "opar": 18167, - "opath": 33079, - "opathic": 37521, - "opathy": 28466, - "opau": 27239, - "opd": 38288, - "ope": 31694, - "ope": 11440, - "opec": 33138, - "opel": 36952, - "open": 3647, - "open": 1488, - "openaccess": 26591, - "opend": 28069, - "opendata": 35709, - "openday": 46991, - "opened": 5303, - "opener": 8998, - "openhouse": 36091, - "opening": 33728, - "opening": 2516, - "openingday": 36359, - "openings": 27643, - "openly": 23005, - "opens": 4801, - "opensource": 29930, - "oper": 2796, - "oper": 37533, - "opera": 8056, - "operate": 19306, - "operated": 23031, - "operates": 38675, - "operating": 12218, - "operation": 27173, - "operation": 7639, - "operational": 18237, - "operations": 8106, - "operative": 28380, - "operator": 15972, - "operators": 19267, - "opers": 48728, - "opes": 37258, - "oph": 6796, - "opha": 38634, - "ophel": 45017, - "ophelia": 49118, - "ophi": 44547, - "ophile": 35915, - "opho": 12900, - "ophobia": 21111, - "ophobic": 29934, - "ophon": 25120, - "ophone": 26345, - "ophthal": 33135, - "ophy": 28539, - "opi": 40056, - "opi": 48994, - "opin": 7636, - "opini": 14825, - "opinion": 7843, - "opinions": 16192, - "opio": 17371, - "opioid": 22833, - "opioids": 47578, - "opla": 36270, - "ople": 25663, - "opol": 15173, - "opoly": 23729, - "opor": 39650, - "opoulos": 42020, - "opp": 2020, - "opp": 21024, - "oppa": 23637, - "oppo": 7399, - "oppo": 41770, - "opponent": 17002, - "opponents": 19664, - "oppor": 2914, - "opportun": 2939, - "opportunities": 5978, - "opportunity": 4004, - "oppos": 10091, - "oppose": 23617, - "opposed": 22509, - "opposes": 47471, - "opposing": 24376, - "opposite": 12872, - "opposition": 11062, - "oppre": 17341, - "oppressed": 41492, - "oppression": 30650, - "opra": 28291, - "oprah": 22562, - "opry": 35340, - "ops": 3054, - "opt": 45103, - "opt": 27188, - "opted": 42035, - "opti": 6580, - "optic": 25190, - "optic": 24755, - "optical": 16822, - "optics": 27165, - "optim": 22331, - "optimal": 25235, - "optimi": 9737, - "optimis": 39459, - "optimism": 25226, - "optimist": 44581, - "optimistic": 23104, - "optimization": 25125, - "optimize": 30456, - "optimized": 43939, - "optimizing": 49157, - "optimum": 35974, - "optimus": 43453, - "option": 8464, - "optional": 25411, - "options": 7063, - "optome": 35533, - "opul": 39858, - "opus": 33295, - "opy": 21835, - "or": 523, - "or": 541, - "ora": 4301, - "orac": 24673, - "oracle": 37308, - "oracle": 15966, - "orah": 40820, - "orail": 45120, - "oral": 32490, - "oral": 6007, - "orama": 33619, - "oran": 32209, - "oran": 28395, - "orang": 22116, - "orange": 13957, - "orange": 4287, - "oranges": 32417, - "orangu": 36112, - "orb": 28894, - "orb": 36958, - "orbit": 19713, - "orbital": 40312, - "orc": 44305, - "orca": 18631, - "orcas": 47676, - "orch": 11893, - "orchar": 40226, - "orchard": 19530, - "orche": 8004, - "orchestr": 42937, - "orchestra": 9573, - "orchestral": 40285, - "orchi": 23696, - "orchid": 18678, - "orchids": 28376, - "ord": 26903, - "ord": 11502, - "orda": 33462, - "ordained": 38302, - "order": 24613, - "order": 2191, - "ordered": 8335, - "ordering": 19588, - "orderly": 43457, - "orders": 6187, - "ordin": 4378, - "ordinance": 38583, - "ordinary": 8012, - "ore": 3580, - "ore": 1423, - "orean": 36696, - "ored": 5133, - "oregon": 21759, - "oregon": 8035, - "oren": 21645, - "oreo": 21873, - "oreos": 41688, - "ores": 17328, - "org": 3401, - "org": 5593, - "organ": 3338, - "organ": 13213, - "organi": 3636, - "organic": 24080, - "organic": 5980, - "organics": 44199, - "organis": 13204, - "organisation": 15868, - "organisations": 20651, - "organise": 36073, - "organised": 13191, - "organiser": 49141, - "organisers": 35778, - "organising": 22787, - "organisms": 37041, - "organiz": 11107, - "organization": 8064, - "organizational": 29510, - "organizations": 13453, - "organize": 19973, - "organized": 10681, - "organizer": 23905, - "organizers": 27191, - "organizing": 15779, - "organs": 29872, - "orgs": 29500, - "ori": 1540, - "ori": 8693, - "oria": 11474, - "orial": 8648, - "orian": 21193, - "oric": 43810, - "orice": 41341, - "orie": 18815, - "orient": 13149, - "orient": 30770, - "oriental": 23056, - "orientation": 16873, - "oriente": 40390, - "oriented": 24596, - "orienteering": 42985, - "ories": 5934, - "orig": 2273, - "orig": 38463, - "origami": 31832, - "origin": 2555, - "origin": 12372, - "original": 18496, - "original": 3117, - "originally": 12849, - "originals": 16953, - "originated": 41823, - "origins": 16291, - "orin": 39863, - "oring": 3006, - "orio": 24308, - "orioles": 21430, - "orion": 21765, - "oris": 37064, - "orities": 7903, - "ority": 5556, - "orium": 12015, - "ork": 22202, - "ork": 37235, - "orkney": 34254, - "orl": 39465, - "orlando": 32247, - "orlando": 7827, - "orleans": 11127, - "orm": 38464, - "orn": 25412, - "orn": 8130, - "ornam": 36122, - "ornament": 23409, - "ornamental": 46270, - "ornaments": 28968, - "ornate": 46865, - "orni": 27713, - "ornithology": 38275, - "orns": 19340, - "oro": 9848, - "oro": 14573, - "orous": 19286, - "orph": 17318, - "orphan": 22718, - "orphan": 28994, - "orphanage": 45196, - "orphaned": 46792, - "orphans": 36588, - "orphe": 39186, - "orr": 32977, - "ors": 1127, - "orship": 20846, - "ort": 1019, - "ortega": 39727, - "orth": 22584, - "orth": 24461, - "ortho": 11366, - "orthodon": 37730, - "orthodox": 19008, - "orthop": 42123, - "orthopedic": 49341, - "ortiz": 23544, - "orton": 37238, - "oru": 44629, - "oru": 31281, - "orum": 42724, - "orwell": 41218, - "ory": 16983, - "ory": 1985, - "os": 2211, - "os": 1299, - "osa": 16340, - "osa": 17237, - "osaka": 21347, - "osborne": 22402, - "osbourne": 43376, - "osc": 5092, - "oscar": 21157, - "oscar": 8191, - "oscars": 11098, - "osce": 37303, - "oscill": 38272, - "ose": 46942, - "ose": 22541, - "osh": 30717, - "osh": 35011, - "osha": 33907, - "oshi": 34770, - "osi": 25247, - "osi": 17636, - "osis": 13903, - "osity": 12730, - "oslo": 20547, - "osm": 31626, - "osman": 46539, - "oso": 42793, - "oso": 21285, - "osp": 24387, - "ospre": 49001, - "osprey": 37893, - "oss": 29362, - "oss": 34640, - "ost": 23701, - "ost": 18749, - "oste": 20632, - "osteo": 43163, - "oster": 31781, - "ostr": 33673, - "ostrich": 47640, - "osu": 29480, - "osu": 19818, - "oswald": 38471, - "ot": 1863, - "ot": 2062, - "ota": 17509, - "ota": 8741, - "otago": 45919, - "otaku": 40743, - "otas": 47616, - "otc": 37934, - "otd": 5683, - "ote": 28511, - "ote": 19744, - "otes": 27280, - "oth": 33262, - "oth": 33519, - "other": 9758, - "other": 1010, - "others": 3326, - "otherwise": 12376, - "oti": 19567, - "oti": 45564, - "otic": 9671, - "otis": 28246, - "otive": 10877, - "oto": 23946, - "oto": 23399, - "otp": 29822, - "otr": 38685, - "ots": 5769, - "ott": 10167, - "ott": 7936, - "otta": 7623, - "otta": 20941, - "ottawa": 49027, - "ottawa": 9019, - "otte": 35214, - "otter": 34710, - "otter": 22456, - "otters": 38883, - "otti": 36721, - "ottnews": 33995, - "otto": 17730, - "ottoman": 27503, - "otw": 35259, - "otwol": 46868, - "ou": 520, - "ou": 6544, - "ouat": 32954, - "ouch": 13493, - "oud": 1359, - "oue": 48838, - "ouf": 34618, - "ough": 4204, - "ough": 991, - "ought": 2253, - "oughton": 36860, - "oui": 39421, - "ouk": 21796, - "oul": 20253, - "oul": 8081, - "ould": 859, - "oulos": 32808, - "oun": 636, - "oun": 20960, - "ounce": 15027, - "ounces": 30299, - "ound": 2013, - "ound": 853, - "oundation": 40132, - "ounded": 9634, - "ounding": 11944, - "ounds": 2753, - "oung": 35875, - "oung": 25341, - "ounge": 29427, - "ount": 43801, - "ount": 4172, - "ounts": 10963, - "oup": 32815, - "our": 727, - "our": 581, - "oura": 29806, - "oura": 36352, - "ourable": 24126, - "ourage": 34525, - "oural": 45840, - "oured": 6956, - "ouri": 12696, - "ouring": 12000, - "ourism": 25496, - "ourke": 26480, - "ourlives": 37541, - "ouro": 41224, - "ours": 1491, - "ourse": 15415, - "ourselves": 10124, - "ourt": 22960, - "oury": 29484, - "ous": 1987, - "ous": 879, - "ouse": 32048, - "ouse": 7603, - "ouses": 33666, - "ously": 2501, - "ousness": 10689, - "ousy": 28302, - "out": 1130, - "out": 620, - "outa": 35187, - "outage": 27320, - "outages": 40353, - "outback": 28532, - "outbound": 41256, - "outbreak": 20103, - "outcome": 16552, - "outcomes": 14016, - "outdated": 38313, - "outdoor": 19184, - "outdoor": 6368, - "outdoors": 10469, - "oute": 44180, - "outed": 34435, - "outer": 30499, - "outer": 14188, - "outes": 39600, - "outfield": 41826, - "outfit": 6525, - "outfits": 16366, - "outfitters": 37725, - "outfy": 34920, - "outgoing": 27302, - "outh": 16933, - "outh": 8111, - "outine": 35452, - "outing": 11251, - "outlander": 45820, - "outlander": 17095, - "outlaw": 37498, - "outlaw": 27340, - "outlaws": 30935, - "outlet": 16855, - "outlets": 20822, - "outline": 26894, - "outlines": 29159, - "outlining": 45960, - "outlook": 12983, - "outof": 43958, - "outpatient": 46603, - "outpost": 44622, - "output": 17255, - "outra": 14262, - "outrage": 23577, - "outraged": 43402, - "outrageous": 29342, - "outre": 14373, - "outreach": 15297, - "outright": 38200, - "outs": 5790, - "outsi": 22515, - "outside": 47693, - "outside": 2782, - "outsider": 41196, - "outsiders": 41742, - "outskirts": 42088, - "outsourcing": 34543, - "outstanding": 6387, - "outta": 15807, - "outtuesday": 48692, - "outw": 34650, - "oux": 40960, - "oux": 14228, - "ov": 6420, - "ov": 8479, - "ova": 12762, - "oval": 15039, - "ovarian": 42913, - "ovation": 24333, - "ove": 8649, - "ove": 15456, - "oven": 44620, - "oven": 12579, - "over": 1658, - "over": 962, - "overall": 6914, - "overboard": 42982, - "overcame": 47235, - "overcast": 36942, - "overcome": 14365, - "overcoming": 29348, - "overdose": 27017, - "overdrive": 40088, - "overdue": 30240, - "overflow": 32885, - "overflowing": 45370, - "overhaul": 31531, - "overhead": 20321, - "overland": 38808, - "overlay": 44827, - "overload": 24327, - "overlook": 35767, - "overlooked": 27632, - "overlooking": 17319, - "overly": 28820, - "overnight": 9913, - "overpass": 44310, - "overrated": 38214, - "overs": 45774, - "overs": 17329, - "overseas": 15100, - "oversight": 32494, - "oversized": 31557, - "overtime": 19347, - "overturned": 31048, - "overview": 14789, - "overwatch": 18124, - "overweight": 43465, - "overwhel": 12204, - "overwhelmed": 23459, - "overwhelming": 20306, - "overwhelmingly": 43549, - "ovi": 32508, - "ovic": 22417, - "ovich": 27623, - "ovie": 47677, - "ovo": 41920, - "ovo": 18065, - "ovski": 26167, - "ow": 2032, - "ow": 2250, - "owa": 32770, - "owe": 19073, - "owed": 37641, - "owen": 24838, - "owen": 12056, - "owens": 20664, - "owes": 35069, - "owing": 48582, - "owl": 34332, - "owl": 9899, - "owls": 18247, - "own": 3845, - "own": 1758, - "owned": 8536, - "owner": 5019, - "owners": 7712, - "ownership": 16583, - "owning": 24661, - "owns": 17533, - "owo": 46142, - "ows": 27423, - "owski": 22573, - "ox": 3282, - "ox": 12071, - "oxfam": 45466, - "oxford": 28588, - "oxford": 8824, - "oxfordshire": 37855, - "oxi": 33731, - "oxi": 48147, - "oxid": 17701, - "oxide": 28235, - "oxo": 37088, - "oxy": 12432, - "oxygen": 16214, - "oy": 6638, - "oy": 12437, - "oya": 38894, - "oye": 48677, - "oyster": 40545, - "oyster": 17253, - "oysters": 22672, - "oz": 10584, - "oz": 6044, - "ozar": 31848, - "ozil": 41365, - "ozone": 37052, - "ozzy": 39549, - "p": 79, - "p": 335, - "pa": 765, - "pa": 2217, - "paa": 32812, - "pab": 9354, - "pablo": 42172, - "pablo": 14473, - "pac": 2332, - "pac": 7608, - "pace": 40600, - "pace": 9450, - "paced": 32611, - "pacers": 23976, - "paces": 43001, - "paci": 5699, - "pacific": 19723, - "pacific": 6654, - "pacing": 45202, - "pack": 2711, - "pack": 3420, - "package": 7053, - "packaged": 29656, - "packages": 14305, - "packaging": 11658, - "packard": 46421, - "packed": 5883, - "packer": 28209, - "packers": 14294, - "packet": 25022, - "packets": 40448, - "packing": 9829, - "packs": 11086, - "paco": 41364, - "pacqui": 28456, - "pacquiao": 30485, - "pact": 27182, - "pad": 3798, - "pad": 7601, - "padded": 42253, - "paddington": 33162, - "paddle": 38276, - "paddle": 20811, - "paddling": 40645, - "paddock": 29590, - "paddy": 33103, - "paddy": 19855, - "padi": 47037, - "padilla": 22380, - "padma": 44595, - "padma": 46457, - "padre": 38343, - "padres": 22829, - "pads": 17353, - "paedi": 41488, - "paella": 46924, - "paf": 47185, - "pafc": 49259, - "pag": 4151, - "pag": 30525, - "pagan": 27854, - "page": 14996, - "page": 2504, - "pageant": 22139, - "pages": 8082, - "pagoda": 44309, - "pah": 41054, - "pah": 26884, - "pai": 20624, - "pai": 21198, - "paid": 5057, - "paige": 33659, - "paige": 16022, - "paign": 31796, - "pain": 2141, - "pain": 4495, - "paine": 38069, - "painful": 16361, - "pains": 25639, - "paint": 7948, - "paint": 5185, - "paintball": 39730, - "painted": 6433, - "painter": 10888, - "painters": 35703, - "painting": 49164, - "painting": 3086, - "paintings": 9956, - "paints": 21672, - "pair": 19848, - "pair": 4038, - "paired": 12433, - "pairing": 16313, - "pairings": 41152, - "pairs": 9950, - "pais": 16878, - "paisley": 22954, - "pajam": 24110, - "pajama": 40244, - "pajamas": 37231, - "pak": 13186, - "pak": 9094, - "paki": 3438, - "pakistan": 10713, - "pakistan": 3994, - "pakistani": 14050, - "pakistanis": 45707, - "pakv": 38196, - "pal": 1850, - "pal": 3611, - "pala": 17895, - "palace": 6381, - "palaces": 45625, - "palad": 28371, - "palae": 43379, - "palais": 35673, - "palate": 34666, - "palawan": 48202, - "palazzo": 36006, - "pale": 4768, - "pale": 12518, - "paleo": 36741, - "paleo": 22198, - "paler": 38028, - "palermo": 40635, - "palestin": 9449, - "palestine": 11682, - "palestinian": 11764, - "palestinians": 21874, - "palette": 13901, - "pali": 48063, - "palin": 40153, - "palis": 44256, - "pality": 27296, - "pall": 35817, - "palla": 21208, - "palladium": 37888, - "pallet": 39057, - "palli": 28954, - "palliative": 46014, - "pally": 46073, - "palm": 19651, - "palm": 8612, - "palma": 29888, - "palmer": 40112, - "palmer": 13633, - "palms": 27059, - "palo": 31562, - "palom": 47698, - "palooza": 25861, - "pals": 11043, - "palsy": 46651, - "pam": 8228, - "pam": 18513, - "pamela": 26991, - "pamp": 37653, - "pamper": 44345, - "pamph": 41332, - "pan": 1072, - "pan": 7437, - "panam": 24606, - "panama": 15522, - "panas": 26207, - "panasonic": 29750, - "pancake": 18723, - "pancakes": 15308, - "panch": 27251, - "pancra": 42472, - "pancre": 27708, - "pancreatic": 49337, - "pancy": 41625, - "pand": 5631, - "panda": 12952, - "pandas": 35119, - "pande": 38419, - "pandey": 34895, - "pandit": 41191, - "pandor": 30250, - "pandora": 17727, - "pandoramusic": 42344, - "pane": 27470, - "panel": 3724, - "paneli": 19410, - "panelist": 39719, - "panelists": 24619, - "panels": 12735, - "panera": 48471, - "pang": 16756, - "pang": 23672, - "panhandle": 40919, - "pani": 36092, - "panic": 46671, - "panic": 14124, - "panini": 30410, - "pann": 42302, - "panna": 49065, - "pano": 36165, - "panor": 12962, - "panorama": 19763, - "panoramic": 22563, - "pans": 35204, - "pant": 22550, - "panther": 22825, - "panther": 13262, - "panthers": 10494, - "panties": 32515, - "panto": 28776, - "pantry": 25608, - "pants": 5003, - "panty": 44217, - "pany": 45567, - "panzer": 41159, - "pao": 33790, - "paola": 44689, - "paolo": 48488, - "paolo": 21133, - "pap": 1884, - "pap": 30756, - "papa": 12211, - "papar": 32782, - "paparazzi": 37842, - "papaya": 44098, - "paper": 8680, - "paper": 2802, - "paperback": 17928, - "papers": 8204, - "paperwork": 35785, - "papi": 35177, - "papp": 26361, - "paprika": 44793, - "papua": 32629, - "par": 699, - "par": 9163, - "para": 18355, - "para": 8976, - "parach": 23147, - "parachute": 30122, - "parad": 37143, - "parade": 5809, - "parades": 46479, - "paradi": 6658, - "paradig": 27786, - "paradigm": 33485, - "paradise": 45869, - "paradise": 7247, - "paradox": 33109, - "parag": 11866, - "paragon": 48099, - "paragra": 24903, - "paragraph": 28499, - "paragu": 38021, - "paraguay": 43579, - "paral": 15143, - "paralle": 13184, - "parallel": 18201, - "paralleled": 42520, - "parallels": 46101, - "paraly": 30255, - "paralym": 18727, - "paralympic": 30806, - "paralympics": 37162, - "paralysis": 45702, - "param": 12250, - "parame": 27106, - "paramedic": 34630, - "paramedics": 35991, - "parameters": 44890, - "paramore": 34401, - "paramount": 26642, - "parano": 30283, - "paranoid": 43029, - "paranor": 16940, - "paranormal": 19047, - "parap": 41091, - "paras": 15198, - "parasite": 42460, - "parasites": 46175, - "parc": 30914, - "parcel": 30367, - "parcels": 45589, - "pard": 18773, - "pardon": 47606, - "pardon": 26565, - "pare": 18202, - "pared": 5498, - "paren": 3106, - "parent": 47848, - "parent": 10183, - "parental": 28339, - "parenthood": 23887, - "parenting": 14529, - "parents": 3731, - "pares": 12420, - "parfait": 46140, - "pari": 17961, - "pari": 27979, - "paris": 13982, - "paris": 3445, - "parisagreement": 47405, - "parish": 47328, - "parish": 13020, - "parisi": 45081, - "parisian": 38512, - "parity": 42734, - "park": 4985, - "park": 1452, - "parked": 16487, - "parker": 31119, - "parker": 8365, - "parkin": 34868, - "parking": 5984, - "parkinson": 28129, - "parkland": 31287, - "parkrun": 25747, - "parks": 6873, - "parkway": 19882, - "parl": 30373, - "parl": 29897, - "parliam": 5941, - "parliament": 41599, - "parliament": 7151, - "parliamentary": 17912, - "parlor": 38253, - "parlour": 37829, - "parma": 36077, - "parme": 26295, - "parmesan": 27274, - "paro": 17429, - "parody": 24318, - "parole": 32158, - "parr": 44113, - "parrish": 43043, - "parrot": 23565, - "parry": 40604, - "parsley": 30077, - "parsons": 22505, - "part": 1872, - "part": 1551, - "parte": 48508, - "parth": 34790, - "parti": 10509, - "partial": 18957, - "partially": 21269, - "partic": 2871, - "partici": 9540, - "particip": 4400, - "participant": 27674, - "participants": 10237, - "participate": 9433, - "participated": 14252, - "participates": 46414, - "participating": 11535, - "participation": 13529, - "particle": 27716, - "particles": 27012, - "particul": 11408, - "particular": 14098, - "particularly": 12170, - "parties": 9032, - "parting": 32844, - "partisan": 20772, - "partist": 44713, - "partition": 42219, - "partly": 21459, - "partner": 5210, - "partner": 4568, - "partnered": 21402, - "partnering": 21182, - "partners": 5568, - "partnership": 6123, - "partnerships": 17418, - "parton": 43245, - "partridge": 34872, - "parts": 5149, - "party": 12877, - "party": 1580, - "partying": 25702, - "pas": 1341, - "pas": 9525, - "pasadena": 25892, - "pascal": 28626, - "pasco": 49220, - "pascu": 42692, - "pash": 23936, - "pasha": 46986, - "paso": 18542, - "pasqu": 44941, - "pass": 5016, - "pass": 3511, - "passage": 16477, - "passages": 48937, - "passed": 4957, - "passenger": 12311, - "passengers": 12781, - "passer": 48544, - "passes": 7633, - "passi": 32471, - "passing": 6589, - "passion": 8822, - "passion": 5332, - "passionate": 10947, - "passionately": 44028, - "passions": 38441, - "passive": 23171, - "passover": 38426, - "passport": 14739, - "passports": 46368, - "password": 20258, - "passwords": 43095, - "past": 7315, - "past": 2729, - "pasta": 10441, - "paste": 34765, - "paste": 17038, - "pastel": 19457, - "pastels": 45699, - "pastor": 19792, - "pastor": 9664, - "pastoral": 37191, - "pastors": 30959, - "pastr": 45478, - "pastries": 39409, - "pastry": 18582, - "pasture": 34764, - "pastures": 47793, - "pat": 1300, - "pat": 7036, - "patag": 29862, - "patagonia": 32786, - "patch": 29284, - "patch": 8721, - "patches": 22104, - "patchwork": 44675, - "patchy": 47488, - "pate": 42122, - "pate": 42098, - "patel": 14168, - "patent": 14692, - "patented": 37277, - "patents": 33911, - "paterson": 36560, - "path": 7408, - "path": 5035, - "pathetic": 18222, - "pathfinder": 35415, - "pathi": 34976, - "pathi": 27347, - "pathic": 49025, - "patho": 18534, - "pathology": 23290, - "paths": 16333, - "pathway": 23488, - "pathways": 24690, - "pathy": 13330, - "pati": 2799, - "pati": 26708, - "patience": 13575, - "patient": 30139, - "patient": 6262, - "patiently": 22980, - "patients": 5543, - "patil": 49187, - "patio": 14304, - "pational": 30627, - "patna": 45025, - "patory": 41859, - "patreon": 17165, - "patri": 4771, - "patriarch": 49054, - "patriarchy": 48806, - "patric": 12569, - "patrice": 40731, - "patricia": 18143, - "patrick": 12078, - "patrick": 5286, - "patricks": 46783, - "patriot": 28896, - "patriot": 15692, - "patrioti": 35520, - "patriotic": 20217, - "patriotism": 35807, - "patriots": 8707, - "patro": 31650, - "patrol": 10073, - "patrolling": 39344, - "patrols": 35978, - "patron": 26658, - "patron": 17683, - "patrons": 28308, - "pats": 24874, - "patsy": 46093, - "patt": 12637, - "patter": 4982, - "pattern": 7447, - "patterned": 47212, - "patterns": 11637, - "patterson": 21384, - "patti": 44927, - "patti": 26123, - "pattinson": 32474, - "patton": 29026, - "patty": 48741, - "patty": 18321, - "pau": 1834, - "pau": 35970, - "paul": 6035, - "paul": 2597, - "paula": 37363, - "paula": 16777, - "pauline": 30438, - "paulo": 48002, - "paulo": 21628, - "pauls": 41413, - "pauls": 40010, - "paulson": 48201, - "pause": 19439, - "paused": 46782, - "pav": 6661, - "pave": 37107, - "paved": 27898, - "pavel": 43152, - "pavement": 27669, - "pavilion": 13374, - "paving": 28651, - "paw": 14009, - "paw": 16016, - "pawan": 29754, - "pawankalyan": 33702, - "pawn": 43195, - "paws": 16714, - "pax": 20007, - "pax": 19033, - "paxton": 38347, - "pay": 2642, - "pay": 3345, - "payback": 36413, - "paycheck": 45078, - "payday": 26957, - "payee": 46985, - "payer": 41503, - "paying": 8341, - "payment": 10596, - "payments": 11832, - "payne": 12775, - "paypal": 21442, - "payroll": 31610, - "pays": 10845, - "paysoff": 48174, - "paytm": 45352, - "payton": 27348, - "paz": 22267, - "pb": 20112, - "pb": 10981, - "pba": 28205, - "pbb": 48567, - "pbb": 40589, - "pbc": 49191, - "pbl": 35166, - "pbr": 32998, - "pbs": 17908, - "pc": 6782, - "pc": 3808, - "pca": 35705, - "pcb": 26235, - "pcc": 36059, - "pci": 38957, - "pcm": 47436, - "pcr": 35704, - "pcs": 11917, - "pcso": 31963, - "pct": 22168, - "pd": 4387, - "pd": 4675, - "pdates": 16842, - "pdc": 40498, - "pdf": 15181, - "pdp": 24601, - "pdt": 21743, - "pdx": 25470, - "pdx": 16153, - "pe": 661, - "pe": 956, - "pea": 13915, - "peabo": 34083, - "peabody": 41244, - "peac": 34615, - "peace": 6249, - "peace": 3021, - "peaceful": 9461, - "peacefully": 30530, - "peacekeeping": 43630, - "peach": 10522, - "peach": 11538, - "peaches": 27216, - "peak": 18572, - "peak": 6026, - "peakdistrict": 41289, - "peake": 24810, - "peaked": 36391, - "peaks": 14067, - "pean": 11563, - "peanu": 25843, - "peanut": 12491, - "peanuts": 26503, - "pear": 4910, - "pear": 18820, - "pearce": 25996, - "pearl": 21806, - "pearl": 8560, - "pearljam": 46739, - "pearls": 19581, - "pears": 39565, - "pearson": 20461, - "peas": 15937, - "peasant": 40621, - "peasants": 48788, - "peat": 26914, - "pebble": 28056, - "pebbles": 40155, - "pec": 32447, - "pec": 17611, - "pecan": 32177, - "peck": 25186, - "peck": 29234, - "pecker": 30169, - "peckham": 45863, - "pecu": 34200, - "peculiar": 42808, - "ped": 13197, - "ped": 2966, - "pedago": 34590, - "pedagogy": 48072, - "pedal": 32943, - "pedal": 19621, - "pedals": 38535, - "pede": 12862, - "pede": 19560, - "pedestri": 30027, - "pedestrian": 18256, - "pedestrians": 33895, - "pedi": 12967, - "pedia": 11733, - "pediatric": 48431, - "pediatric": 22071, - "pedic": 35319, - "pedic": 44528, - "pedro": 29963, - "pedro": 15114, - "peds": 45377, - "pee": 12988, - "pee": 11196, - "peed": 47369, - "peek": 46323, - "peek": 7569, - "peeking": 48771, - "peel": 34386, - "peel": 17158, - "peeled": 33533, - "peeling": 48649, - "peep": 25425, - "peep": 16857, - "peeps": 11681, - "peer": 32416, - "peer": 14432, - "peers": 21626, - "pees": 31830, - "peg": 32182, - "peg": 11207, - "pegas": 30018, - "pegasus": 37822, - "peggy": 24271, - "pei": 48166, - "pei": 12917, - "pel": 4286, - "pel": 7006, - "pele": 44105, - "pelican": 34131, - "pelicans": 29363, - "pell": 46981, - "pelle": 31267, - "pelled": 32506, - "pellegr": 38529, - "pellets": 48240, - "pelo": 40192, - "pelo": 40238, - "pelosi": 22169, - "pelvic": 45646, - "pemb": 19880, - "pembro": 24084, - "pembroke": 36702, - "pembroke": 40044, - "pembrokeshire": 40695, - "pen": 1501, - "pen": 5356, - "pena": 35788, - "penalties": 25417, - "penalty": 11491, - "penang": 29545, - "penc": 20065, - "pence": 18002, - "pencil": 41303, - "pencil": 11200, - "pencils": 21909, - "pend": 3052, - "pendant": 12415, - "pendants": 44117, - "pending": 12770, - "pendleton": 44272, - "pendu": 45336, - "penelope": 36703, - "penetr": 26058, - "peng": 42955, - "peng": 39200, - "pengu": 8854, - "penguin": 28249, - "penguin": 14952, - "penguins": 16557, - "peninsu": 13464, - "peninsula": 14070, - "penn": 7760, - "penn": 11128, - "pennant": 43971, - "penned": 45077, - "penney": 47856, - "pennies": 43094, - "pennsylvania": 13673, - "penny": 20400, - "penny": 11388, - "pens": 13307, - "pens": 13310, - "pensac": 30925, - "pensacola": 33573, - "pension": 32840, - "pension": 17764, - "pensions": 29773, - "penske": 47154, - "pent": 10699, - "pent": 22725, - "pentagon": 23133, - "pente": 33165, - "penthouse": 32673, - "penultimate": 36553, - "peop": 1030, - "people": 10573, - "people": 1047, - "peoples": 28241, - "peoples": 14627, - "peopleschoice": 32418, - "peoplesvote": 45830, - "peoria": 36985, - "pep": 12761, - "pep": 14898, - "pepe": 24778, - "pepp": 34425, - "pepper": 14861, - "pepper": 8253, - "peppermint": 30321, - "pepperoni": 47307, - "peppers": 14650, - "pepsi": 21307, - "per": 703, - "per": 1284, - "pera": 26294, - "perce": 24135, - "perceived": 38436, - "percent": 16328, - "percent": 9017, - "percentage": 19477, - "percep": 28017, - "perception": 20591, - "perceptions": 38138, - "perch": 34281, - "perched": 40071, - "percu": 41722, - "percussion": 23980, - "percy": 23940, - "pere": 8665, - "pere": 36300, - "pered": 24509, - "peregr": 37479, - "peregrine": 44546, - "pereira": 43927, - "peren": 24564, - "perenni": 26996, - "perennial": 34038, - "perez": 15107, - "perf": 22816, - "perfe": 1624, - "perfec": 6599, - "perfect": 17261, - "perfect": 1878, - "perfection": 9646, - "perfectly": 8037, - "perfecto": 42898, - "perfor": 2311, - "perform": 3866, - "perform": 5940, - "performan": 8973, - "performance": 2714, - "performances": 9553, - "performed": 9997, - "performer": 17061, - "performers": 18476, - "performing": 5170, - "performs": 13839, - "perfu": 14214, - "perfume": 17525, - "perhaps": 9297, - "peri": 12618, - "peri": 44068, - "perience": 19302, - "peril": 40119, - "peril": 48301, - "perimeter": 38499, - "pering": 29746, - "perio": 5101, - "period": 6131, - "periodic": 36476, - "periods": 24401, - "periph": 35308, - "peripheral": 43901, - "peris": 19461, - "periscope": 21668, - "perk": 33424, - "perkins": 20057, - "perks": 17660, - "perl": 44018, - "perm": 47847, - "perman": 9018, - "permanent": 11144, - "permanently": 25584, - "perme": 42456, - "permission": 15822, - "permit": 21950, - "permits": 33267, - "permitted": 44380, - "pero": 23551, - "perpe": 15749, - "perpetr": 33376, - "perpetu": 30132, - "perpetual": 32018, - "perrie": 32691, - "perry": 28478, - "perry": 7899, - "pers": 3688, - "pers": 10710, - "perse": 27498, - "persecu": 22878, - "persecution": 32009, - "perseverance": 29820, - "persi": 11509, - "persian": 19859, - "persist": 19412, - "persist": 40938, - "persistence": 34588, - "persistent": 29028, - "person": 3510, - "person": 2533, - "persona": 18401, - "personal": 10114, - "personal": 4121, - "personalised": 24186, - "personalities": 27888, - "personality": 10386, - "personalized": 17845, - "personally": 13885, - "personnel": 14546, - "persons": 14592, - "perspec": 17997, - "perspective": 8996, - "perspectives": 18777, - "persu": 20972, - "pert": 36970, - "pert": 16306, - "perth": 19067, - "perth": 11011, - "peru": 20612, - "peru": 12964, - "peruvian": 30822, - "pes": 38368, - "pes": 2598, - "pesa": 47409, - "pesc": 44044, - "pesh": 33184, - "peshaw": 28524, - "peshawar": 29230, - "pesky": 42512, - "pesos": 47872, - "pessi": 43902, - "pest": 20130, - "pest": 9425, - "pesticide": 48481, - "pesticides": 37868, - "pesto": 26186, - "pests": 41919, - "pet": 2167, - "pet": 3703, - "peta": 28785, - "petal": 38430, - "petal": 40469, - "petals": 26064, - "petday": 45314, - "pete": 14479, - "pete": 8571, - "peter": 5093, - "peter": 3696, - "peterborough": 26012, - "peters": 16336, - "petersburg": 21052, - "petersen": 39794, - "peterson": 16877, - "peth": 48920, - "petit": 36437, - "petit": 21276, - "petite": 27213, - "petition": 10975, - "petitions": 43536, - "petr": 29808, - "petra": 31300, - "petre": 47179, - "petri": 31831, - "petro": 8716, - "petrol": 18149, - "petroleum": 22063, - "petron": 42875, - "pets": 7663, - "pett": 27051, - "petti": 48001, - "petting": 44334, - "petty": 17324, - "peu": 21411, - "peuge": 22893, - "peugeot": 24129, - "pew": 21608, - "pew": 30783, - "pewdie": 41882, - "pewdiepie": 42563, - "pex": 43765, - "pey": 14966, - "pey": 30933, - "peyton": 49254, - "peyton": 20307, - "pez": 45798, - "pez": 10482, - "pf": 16680, - "pf": 12572, - "pfa": 47839, - "pfc": 35007, - "pff": 44121, - "pfi": 29810, - "pfw": 31229, - "pg": 12476, - "pg": 5211, - "pga": 13351, - "pgat": 36514, - "pgatour": 40094, - "pgh": 44862, - "pgh": 30031, - "pgs": 49204, - "ph": 745, - "ph": 2042, - "pha": 4443, - "pha": 26255, - "phal": 19962, - "phan": 8731, - "phan": 40126, - "phant": 36998, - "phantom": 37688, - "phantom": 14490, - "phar": 5570, - "phara": 35792, - "pharaoh": 40437, - "pharm": 45761, - "pharma": 17831, - "pharmac": 8193, - "pharmaceu": 19490, - "pharmaceutical": 25217, - "pharmaceuticals": 44623, - "pharmacist": 41024, - "pharmacists": 44337, - "pharmacy": 15293, - "pharo": 42308, - "pharoah": 49287, - "pharrell": 31316, - "phase": 8304, - "phases": 35337, - "phat": 42492, - "phc": 41102, - "phd": 20875, - "phd": 8472, - "phdchat": 39564, - "phdlife": 39638, - "phe": 4787, - "phe": 19853, - "pheasant": 41983, - "phee": 41292, - "phel": 23711, - "phelps": 27128, - "phen": 7718, - "pheno": 47336, - "phenom": 31673, - "phenom": 39618, - "phenomen": 11304, - "phenomena": 41538, - "phenomenal": 15035, - "phenomenon": 24464, - "pher": 9194, - "pher": 19828, - "phers": 29531, - "pherson": 36421, - "phew": 10295, - "phi": 2239, - "phi": 12220, - "phia": 9228, - "phic": 3977, - "phie": 30237, - "phies": 17062, - "phil": 2821, - "phil": 6199, - "phila": 47443, - "philadel": 9428, - "philadelphia": 9749, - "philanthro": 16587, - "philanthropist": 44153, - "philanthropy": 25047, - "philately": 33695, - "phile": 36543, - "philharmon": 25228, - "philharmonic": 31699, - "phili": 4277, - "philia": 46654, - "philip": 20748, - "philip": 11074, - "philipp": 5623, - "philipp": 47591, - "philippe": 20942, - "philippine": 17629, - "philippines": 8149, - "philips": 25175, - "phill": 42346, - "phill": 48272, - "philli": 6456, - "phillies": 18748, - "phillip": 48832, - "phillip": 19323, - "phillips": 11041, - "philly": 19545, - "philly": 7785, - "philos": 8395, - "philosop": 20349, - "philosoph": 10187, - "philosopher": 25220, - "philosophical": 32628, - "philosophy": 12213, - "phils": 38573, - "phin": 33816, - "phine": 40985, - "phins": 40210, - "phish": 36897, - "phishing": 36546, - "phl": 25603, - "pho": 816, - "pho": 22707, - "phobia": 28749, - "phoe": 22673, - "phoebe": 27582, - "phoeni": 6778, - "phoenix": 20615, - "phoenix": 7793, - "phol": 48140, - "phon": 19602, - "phon": 31115, - "phone": 15486, - "phone": 1951, - "phones": 6351, - "phony": 31925, - "phora": 31363, - "phosp": 22638, - "photo": 1153, - "photo": 1125, - "photobomb": 37075, - "photobook": 41894, - "photog": 28115, - "photogenic": 36108, - "photogra": 36754, - "photograph": 1688, - "photograph": 8853, - "photographed": 11573, - "photographer": 5748, - "photographers": 17141, - "photographic": 22053, - "photographing": 30074, - "photographs": 15759, - "photography": 33183, - "photography": 2108, - "photom": 32223, - "photoo": 11106, - "photooftheday": 11933, - "photos": 2479, - "photoshoot": 11121, - "photoshop": 12419, - "photoshopped": 35738, - "phouse": 27848, - "php": 17370, - "phra": 12777, - "phrase": 18809, - "phrases": 35264, - "phs": 16495, - "phu": 21274, - "phuket": 34028, - "phx": 35466, - "phx": 29507, - "phy": 6484, - "phy": 4292, - "phyl": 35600, - "phyllis": 37844, - "phys": 3734, - "phys": 37894, - "physi": 13782, - "physic": 46641, - "physical": 44127, - "physical": 6671, - "physically": 18105, - "physician": 21055, - "physicians": 26702, - "physicist": 29052, - "physics": 9369, - "physio": 29574, - "physio": 29177, - "physiology": 32349, - "physique": 42884, - "phyto": 42197, - "pi": 741, - "pi": 5357, - "pia": 8918, - "pian": 24637, - "pianist": 21048, - "piano": 49278, - "piano": 7894, - "pianos": 47904, - "piazza": 28496, - "pic": 901, - "pic": 1282, - "pical": 5482, - "picard": 48507, - "picasso": 21481, - "piccad": 33876, - "piccadilly": 37287, - "piccollage": 43621, - "pick": 6379, - "pick": 3142, - "picked": 6018, - "picker": 43105, - "pickering": 47605, - "picket": 33559, - "picking": 9545, - "pickle": 24570, - "pickled": 21705, - "pickles": 25001, - "picks": 8551, - "pickup": 15382, - "pickups": 33383, - "picnic": 12007, - "pico": 23363, - "picoftheday": 18319, - "pics": 2559, - "pict": 18778, - "pictorial": 40640, - "picture": 11663, - "picture": 1674, - "pictured": 7647, - "pictures": 3646, - "picturesque": 24894, - "pid": 5225, - "piday": 48056, - "pie": 12065, - "pie": 5319, - "piece": 39632, - "piece": 2754, - "pieces": 6194, - "pied": 24686, - "pied": 12713, - "piedmont": 39691, - "pier": 5641, - "pier": 11348, - "pierc": 49216, - "pierce": 48462, - "pierce": 16782, - "pierced": 32799, - "piercing": 22557, - "piero": 43125, - "pierre": 34670, - "pierre": 11985, - "piers": 29030, - "pies": 6898, - "pieter": 44801, - "pietro": 42169, - "piff": 40719, - "pig": 12009, - "pig": 9619, - "pigeon": 18008, - "pigeons": 32910, - "piggy": 28245, - "pigment": 40284, - "pigs": 16228, - "pik": 48539, - "pika": 47372, - "pikach": 27268, - "pikachu": 28107, - "pike": 33457, - "pike": 14011, - "pil": 2893, - "pil": 20645, - "pilates": 29518, - "pile": 44403, - "pile": 13930, - "piled": 26873, - "piles": 31968, - "pilgri": 13966, - "pilgrim": 32662, - "pilgrimage": 24335, - "pilgrims": 31370, - "piling": 43050, - "pilip": 27234, - "pilipinas": 32392, - "pill": 14830, - "pill": 19226, - "pillar": 17322, - "pillars": 22054, - "pillow": 42237, - "pillow": 12182, - "pillows": 26499, - "pills": 23964, - "pilo": 37526, - "pilot": 31619, - "pilot": 6687, - "pilots": 15586, - "pilsner": 47153, - "pim": 15285, - "pim": 35472, - "pimp": 35789, - "pin": 2629, - "pin": 5164, - "pinball": 31679, - "pinch": 26114, - "pine": 9398, - "pine": 7374, - "pineapple": 14831, - "pines": 20338, - "ping": 23720, - "ping": 2089, - "pinion": 40557, - "pink": 11151, - "pink": 3360, - "pinkfloyd": 48520, - "pinky": 29803, - "pinn": 31448, - "pinnacle": 32754, - "pinned": 12165, - "pinning": 44515, - "pino": 36633, - "pinot": 41399, - "pinot": 21146, - "pinoy": 43578, - "pinoy": 35258, - "pins": 14619, - "pinst": 41173, - "pint": 42537, - "pint": 13584, - "pinterest": 15379, - "pinto": 35992, - "pints": 27935, - "pinup": 37349, - "pio": 22108, - "pion": 36728, - "pion": 29190, - "pione": 7975, - "pioneer": 34892, - "pioneer": 12459, - "pioneering": 25933, - "pioneers": 22383, - "pious": 42441, - "pip": 30854, - "pipe": 29333, - "pipe": 10459, - "pipel": 12387, - "pipeline": 14151, - "pipelines": 39683, - "piper": 47052, - "piper": 16293, - "pipes": 16991, - "piping": 40744, - "pippa": 47672, - "pir": 4351, - "pir": 38899, - "piracy": 39452, - "piran": 49034, - "pirate": 38680, - "pirate": 13592, - "pirates": 10442, - "pire": 16613, - "pires": 14988, - "pis": 9230, - "pis": 44441, - "pisa": 43632, - "pisces": 45982, - "piss": 20818, - "pissed": 17989, - "pist": 15556, - "pist": 32826, - "pistachi": 29760, - "pistachio": 36320, - "pistol": 20480, - "piston": 48236, - "pistons": 27242, - "pistor": 48162, - "pit": 2946, - "pit": 7476, - "pita": 27070, - "pitbull": 25295, - "pitch": 8992, - "pitch": 5872, - "pitched": 28447, - "pitcher": 13445, - "pitchers": 27835, - "pitches": 21005, - "pitching": 16455, - "piti": 47568, - "pits": 24144, - "pitt": 7607, - "pitt": 15599, - "pitts": 9531, - "pittsburgh": 10453, - "pity": 24380, - "pius": 39988, - "pivo": 18009, - "pivot": 31805, - "pivotal": 31432, - "pix": 6185, - "pix": 13088, - "pixar": 27493, - "pixel": 14384, - "pixel": 13241, - "pixelart": 18516, - "pixels": 34099, - "pixie": 35573, - "piyu": 30772, - "piyush": 36191, - "piyushgoyal": 45318, - "pizz": 3897, - "pizza": 4474, - "pizzas": 30647, - "pizzeria": 44174, - "pj": 12524, - "pj": 17179, - "pjnet": 22011, - "pjs": 36009, - "pk": 10149, - "pk": 10991, - "pkg": 49011, - "pkk": 47480, - "pknot": 41779, - "pkwy": 36827, - "pl": 712, - "pl": 5678, - "pla": 841, - "pla": 19945, - "plac": 2331, - "place": 14884, - "place": 1445, - "placed": 9729, - "placement": 16724, - "placements": 43885, - "placer": 49170, - "places": 4448, - "placing": 18531, - "plague": 25360, - "plaid": 23291, - "plain": 22776, - "plain": 10709, - "plains": 16345, - "plan": 1740, - "plan": 2970, - "pland": 24801, - "plane": 22728, - "plane": 5363, - "planes": 12581, - "planet": 16833, - "planet": 5172, - "planetary": 28361, - "planets": 22315, - "plank": 30991, - "plankton": 48249, - "plann": 6409, - "planned": 8169, - "planner": 18083, - "planners": 33664, - "planning": 4446, - "plano": 34063, - "plans": 4181, - "plant": 8521, - "plant": 3912, - "plantation": 20014, - "plantbased": 33720, - "planted": 14286, - "planter": 34453, - "planters": 43661, - "planting": 13922, - "plants": 5829, - "plaque": 16097, - "plaques": 45610, - "plar": 26754, - "plas": 45673, - "plasma": 24999, - "plaster": 31980, - "plastic": 15645, - "plastic": 6102, - "plasticpollution": 47129, - "plastics": 20999, - "plasticsurgery": 48555, - "plat": 3172, - "plata": 46456, - "plate": 28744, - "plate": 5135, - "plateau": 29301, - "plated": 21161, - "plates": 11485, - "platform": 5549, - "platforms": 13551, - "platin": 10267, - "plating": 44564, - "platinum": 10979, - "plato": 41101, - "platoon": 41254, - "platt": 44459, - "platt": 40097, - "platte": 46785, - "platter": 29071, - "platz": 40878, - "plau": 39139, - "play": 1222, - "play": 1453, - "playa": 23756, - "playable": 33885, - "playback": 39194, - "playbook": 34856, - "playboy": 24383, - "played": 3432, - "player": 24503, - "player": 2477, - "players": 3030, - "playful": 23871, - "playground": 15861, - "playhouse": 23254, - "playin": 24674, - "playing": 47368, - "playing": 1629, - "playlist": 9180, - "playlists": 47183, - "playo": 5804, - "playoff": 9655, - "playoffs": 9548, - "plays": 5134, - "playstation": 11332, - "playtime": 43037, - "playwright": 32070, - "plaza": 8943, - "plc": 16827, - "ple": 926, - "ple": 1619, - "plea": 21956, - "plead": 47539, - "pleads": 31425, - "plear": 21362, - "pleas": 8481, - "pleas": 48740, - "pleasant": 12271, - "please": 41074, - "please": 1474, - "pleased": 6107, - "pleasing": 32893, - "pleasure": 5854, - "pleasures": 29513, - "pledge": 11507, - "pledged": 36799, - "pledges": 26746, - "pledis": 41202, - "plein": 43429, - "plenary": 19891, - "plenty": 7524, - "pler": 17677, - "ples": 6248, - "pless": 39821, - "pless": 17059, - "plets": 43230, - "plex": 23765, - "plex": 15241, - "pley": 19543, - "pli": 30001, - "pli": 45797, - "plic": 5806, - "plicity": 19823, - "plight": 40317, - "plin": 44531, - "plin": 32335, - "pline": 25376, - "pling": 12899, - "plings": 31184, - "pll": 47629, - "pll": 25266, - "pln": 48755, - "plo": 1778, - "plo": 43523, - "plor": 34695, - "plot": 9918, - "plots": 25672, - "plotting": 30751, - "plough": 33811, - "plow": 38363, - "pls": 5572, - "plu": 2052, - "plug": 12628, - "plugged": 23261, - "plugin": 31278, - "plugins": 48797, - "plugs": 28083, - "plum": 26267, - "plum": 16202, - "plumb": 21769, - "plumber": 43478, - "plumbing": 24647, - "plume": 39495, - "plun": 15122, - "plunge": 26506, - "plur": 44664, - "plus": 3097, - "plush": 18926, - "pluto": 26380, - "ply": 17249, - "ply": 28705, - "plying": 36071, - "plym": 11907, - "plymouth": 13786, - "plz": 10538, - "pm": 13699, - "pm": 990, - "pmi": 41206, - "pmln": 23208, - "pmo": 18782, - "pmoindia": 20374, - "pms": 44223, - "pn": 14431, - "pn": 13774, - "pnc": 37148, - "pne": 30966, - "pneu": 28714, - "pneumonia": 42906, - "png": 20992, - "pnp": 25972, - "pnpp": 42175, - "pnw": 31521, - "po": 628, - "po": 3057, - "poa": 43912, - "poached": 27665, - "poaching": 35140, - "poc": 13232, - "poc": 27780, - "pocaly": 37987, - "pocalypse": 42307, - "poche": 38336, - "poche": 39022, - "pocket": 29147, - "pocket": 8504, - "pockets": 19566, - "pocon": 41850, - "pod": 3583, - "pod": 7446, - "podcast": 39654, - "podcast": 4294, - "podcasting": 40106, - "podcasts": 19392, - "pode": 33368, - "poder": 24960, - "podernfamily": 26620, - "podi": 32853, - "podium": 14093, - "pods": 18776, - "poe": 4746, - "poe": 19254, - "poem": 9436, - "poems": 15577, - "poet": 41019, - "poet": 9872, - "poetic": 26365, - "poetry": 20192, - "poetry": 6038, - "poetryday": 39255, - "poets": 19804, - "pof": 40850, - "poff": 28236, - "pogba": 25998, - "poign": 29682, - "poignant": 32138, - "poin": 9074, - "point": 13280, - "point": 2301, - "pointe": 24631, - "pointed": 20703, - "pointer": 29883, - "pointers": 36760, - "pointing": 19233, - "pointless": 33586, - "points": 3396, - "pois": 17008, - "poise": 45087, - "poised": 27354, - "poison": 30722, - "poison": 17074, - "poisoned": 43624, - "poisoning": 25750, - "poisonous": 37131, - "pok": 15387, - "poke": 6892, - "poke": 23186, - "pokemon": 16239, - "pokemon": 9528, - "pokemongo": 23985, - "poker": 30735, - "poker": 11865, - "pokes": 40221, - "poking": 49169, - "poké": 20656, - "pokémon": 22066, - "pol": 977, - "pol": 7649, - "pola": 43876, - "poland": 9834, - "polar": 21432, - "polar": 12214, - "polari": 27919, - "polaris": 37965, - "polarized": 48437, - "polaro": 25237, - "polaroid": 30427, - "poldark": 41322, - "pole": 26682, - "pole": 8170, - "poles": 22585, - "poli": 9675, - "poli": 5414, - "polic": 16126, - "police": 15535, - "police": 2120, - "policeman": 37713, - "policemen": 47946, - "polici": 10819, - "policies": 10993, - "policing": 20969, - "policy": 30173, - "policy": 4660, - "polio": 30533, - "polis": 16133, - "polish": 46941, - "polish": 9632, - "polished": 21478, - "polishing": 43629, - "polit": 2247, - "politan": 15337, - "polite": 31497, - "politi": 40597, - "politic": 33333, - "political": 37744, - "political": 4197, - "politically": 24323, - "politician": 15960, - "politicians": 12914, - "politico": 39403, - "politics": 4929, - "polk": 33317, - "polka": 29476, - "poll": 7032, - "pollen": 27651, - "pollin": 19152, - "pollinators": 36599, - "polling": 18024, - "pollo": 42755, - "pollock": 37614, - "polls": 11813, - "pollu": 8370, - "polluted": 43346, - "pollution": 10384, - "polly": 31204, - "polo": 35928, - "polo": 10229, - "poly": 6833, - "poly": 18367, - "polye": 31730, - "polyester": 38514, - "polym": 23626, - "polymer": 29993, - "polyne": 38892, - "polyvore": 24771, - "pom": 7548, - "pom": 24280, - "pome": 27963, - "pomegran": 29326, - "pomegranate": 32415, - "pomer": 35156, - "pomona": 41690, - "pompe": 18352, - "pompeii": 47775, - "pompeo": 34351, - "pompey": 35079, - "pon": 3809, - "pon": 22391, - "ponce": 43637, - "pond": 10750, - "ponder": 36863, - "pondering": 47395, - "ponds": 31033, - "pone": 32183, - "pong": 40546, - "pong": 17710, - "ponies": 34157, - "pons": 41255, - "pont": 47563, - "pont": 22997, - "ponte": 40892, - "ponti": 15527, - "pontiac": 25373, - "pontifex": 33566, - "ponty": 45152, - "pony": 24438, - "pony": 12678, - "ponytail": 43265, - "poo": 6601, - "poo": 14389, - "pooch": 37037, - "poodle": 34961, - "pooh": 27103, - "pooja": 35676, - "pool": 12484, - "pool": 2831, - "poole": 26290, - "pools": 18736, - "poolside": 35509, - "poon": 33799, - "poon": 36178, - "poop": 23310, - "poor": 14528, - "poor": 3665, - "poorest": 40771, - "poorly": 21101, - "pop": 6530, - "pop": 2852, - "popart": 47425, - "popcorn": 15034, - "pope": 16994, - "pope": 9283, - "popefrancis": 37254, - "poplar": 38726, - "popo": 38835, - "popo": 35572, - "popp": 13156, - "popped": 14934, - "poppies": 30385, - "poppin": 28536, - "popping": 18152, - "poppins": 41216, - "poppy": 32194, - "poppy": 15447, - "pops": 11705, - "popsic": 38481, - "popu": 3785, - "popul": 6593, - "popular": 15854, - "popular": 4368, - "popularity": 19235, - "populated": 38420, - "population": 8423, - "populations": 23797, - "populism": 48998, - "populist": 49376, - "popup": 33053, - "por": 817, - "por": 7697, - "pora": 23537, - "porcel": 19409, - "porcelain": 20451, - "porch": 17154, - "pore": 28267, - "pork": 40379, - "pork": 7897, - "poro": 48110, - "porridge": 34924, - "porsch": 48009, - "porsche": 44049, - "porsche": 8783, - "port": 1641, - "port": 1418, - "porta": 45037, - "portable": 11949, - "portage": 32087, - "portal": 14982, - "porte": 28654, - "ported": 16879, - "porter": 28319, - "porter": 10318, - "porters": 15670, - "portfoli": 45766, - "portfolio": 11938, - "porth": 37425, - "porti": 45760, - "porting": 26052, - "portion": 13739, - "portions": 22914, - "portland": 38366, - "portland": 8880, - "portman": 34755, - "porto": 24853, - "porto": 18947, - "portobello": 48025, - "portra": 4175, - "portrait": 39312, - "portrait": 5352, - "portraits": 14203, - "portray": 46282, - "portrayal": 39238, - "portrayed": 36093, - "ports": 7734, - "portsm": 17063, - "portsmouth": 19074, - "portu": 7159, - "portugal": 9503, - "portugue": 17498, - "portuguese": 18019, - "pos": 1780, - "pos": 11839, - "pose": 25478, - "pose": 4230, - "posed": 5206, - "posei": 47270, - "poser": 46899, - "poses": 9773, - "posey": 34852, - "posh": 26748, - "posing": 10518, - "posit": 28793, - "positi": 7895, - "position": 4657, - "positioned": 34482, - "positioning": 30657, - "positions": 12188, - "positive": 21811, - "positive": 4844, - "positively": 24688, - "positivity": 19966, - "poss": 39745, - "posse": 17414, - "posse": 28413, - "possess": 36810, - "possessed": 36220, - "possession": 16154, - "possessions": 40588, - "possi": 2521, - "possibilities": 17932, - "possibility": 18517, - "possible": 3134, - "possibly": 8601, - "possum": 38575, - "post": 3489, - "post": 1549, - "postage": 27570, - "postal": 21687, - "postcard": 14785, - "postcards": 23922, - "postdoc": 41013, - "posted": 4752, - "poster": 22881, - "poster": 3574, - "posters": 9673, - "postgame": 34873, - "postgraduate": 31997, - "posthum": 42410, - "posting": 7559, - "postman": 38285, - "postpon": 23247, - "postponed": 25097, - "posts": 7824, - "postseason": 24521, - "posture": 29681, - "posure": 35539, - "pot": 3547, - "pot": 5168, - "potam": 45825, - "potassi": 36889, - "potassium": 37147, - "potat": 5975, - "potato": 8527, - "potatoes": 11567, - "potd": 28765, - "pote": 41869, - "poten": 4454, - "potent": 26082, - "potenti": 44104, - "potential": 5100, - "potentially": 16508, - "potholes": 47506, - "potion": 46055, - "potom": 38848, - "potomac": 43372, - "pots": 19234, - "pott": 28698, - "potted": 48581, - "potter": 24975, - "potter": 9026, - "pottery": 18396, - "potts": 39839, - "potty": 43569, - "potus": 8740, - "pou": 9423, - "pouch": 26811, - "poul": 22485, - "poultry": 31005, - "poun": 33719, - "pound": 33809, - "pound": 10674, - "pounding": 46544, - "pounds": 10752, - "pour": 33112, - "pour": 8180, - "poured": 26621, - "pouring": 16098, - "pours": 26005, - "pout": 39621, - "poutine": 43768, - "pov": 25731, - "pover": 8432, - "pover": 29464, - "poverty": 9095, - "pow": 1317, - "pow": 17745, - "powder": 32427, - "powder": 9674, - "powe": 36955, - "powell": 13305, - "power": 2789, - "power": 1807, - "powerball": 47803, - "powered": 45442, - "powered": 7332, - "powerful": 4875, - "powerhouse": 22858, - "powering": 16231, - "powerof": 31961, - "powerpoint": 38940, - "powerrangers": 40620, - "powers": 9422, - "pox": 43649, - "poy": 34737, - "poyn": 47655, - "poz": 39953, - "pp": 604, - "pp": 4186, - "ppa": 10416, - "ppard": 23391, - "ppc": 27778, - "ppe": 24573, - "ppe": 11867, - "pped": 1873, - "ppel": 46523, - "ppen": 30663, - "pper": 6719, - "pper": 2440, - "ppers": 5232, - "ppery": 27833, - "ppet": 20744, - "ppets": 25849, - "ppg": 27433, - "ppi": 9594, - "ppie": 33795, - "ppin": 8076, - "pping": 22214, - "pping": 1682, - "ppings": 35687, - "ppl": 6758, - "pple": 12302, - "ppm": 42053, - "ppo": 10215, - "ppor": 37613, - "ppp": 14017, - "pps": 10683, - "ppv": 38864, - "ppy": 30360, - "ppy": 3860, - "pr": 766, - "pr": 4150, - "pra": 1865, - "pra": 19285, - "prab": 17901, - "prabhas": 29959, - "prabhu": 31529, - "prac": 2243, - "practi": 29995, - "practic": 5495, - "practical": 10792, - "practically": 25588, - "practice": 3349, - "practiced": 36749, - "practices": 9040, - "practicing": 12750, - "practise": 38938, - "practising": 36478, - "practiti": 19909, - "practitioner": 32591, - "practitioners": 29045, - "prada": 29456, - "pradesh": 15384, - "prado": 44141, - "prag": 31025, - "prague": 14940, - "prairi": 12629, - "prairie": 14753, - "praise": 10013, - "praised": 27649, - "praises": 23049, - "praising": 36961, - "prakash": 43708, - "prakash": 25366, - "pram": 47774, - "pran": 20048, - "prank": 23654, - "pras": 41562, - "prasad": 29562, - "prat": 23069, - "prati": 45773, - "pratt": 37863, - "pratt": 23396, - "prawn": 33102, - "prawns": 34903, - "pray": 12671, - "pray": 6041, - "prayed": 34665, - "prayer": 41452, - "prayer": 6583, - "prayers": 8393, - "prayfor": 18443, - "praying": 11550, - "prays": 46602, - "prc": 28781, - "pre": 679, - "pre": 2900, - "preach": 22545, - "preacher": 29357, - "preaching": 23642, - "precau": 36532, - "precautions": 47845, - "prece": 15361, - "preci": 5470, - "precin": 27908, - "precinct": 32587, - "precious": 8226, - "precipit": 27463, - "precipitation": 33399, - "precise": 24457, - "precisely": 34954, - "precision": 44021, - "precision": 15621, - "pred": 40370, - "predat": 13364, - "predator": 20653, - "predators": 25569, - "prede": 38454, - "predecess": 38963, - "predic": 4876, - "predict": 16900, - "predictable": 25344, - "predicted": 18702, - "predicting": 30414, - "prediction": 16296, - "predictions": 15125, - "predictive": 29798, - "predicts": 25960, - "preds": 40125, - "pree": 47026, - "preet": 30131, - "prefe": 14542, - "prefecture": 32890, - "prefer": 33426, - "prefer": 11450, - "preference": 35057, - "preferences": 38118, - "preferred": 18772, - "prefers": 38528, - "pregame": 18575, - "pregn": 7190, - "pregnancy": 12769, - "pregnant": 11195, - "prehistoric": 32750, - "prejudice": 28337, - "preli": 15523, - "prelimin": 19990, - "preliminary": 20997, - "prelims": 43223, - "prelude": 42966, - "prem": 32090, - "prem": 21724, - "premature": 39253, - "premi": 2413, - "premier": 16996, - "premier": 5539, - "premiere": 5367, - "premiered": 27652, - "premieres": 19907, - "premiering": 32615, - "premierleague": 22608, - "premiers": 44883, - "premiership": 23665, - "premiosm": 38460, - "premiosmtvmiaw": 38630, - "premise": 45952, - "premises": 27266, - "premium": 8011, - "pren": 20801, - "preneur": 46288, - "preorder": 16703, - "preorders": 45985, - "prep": 6430, - "prep": 7277, - "prepa": 26270, - "prepaid": 42934, - "prepar": 4968, - "preparation": 11651, - "preparations": 19135, - "prepare": 7014, - "prepared": 7677, - "preparedness": 29492, - "prepares": 16375, - "preparing": 7365, - "prepped": 34379, - "prepping": 16459, - "preps": 14765, - "prequel": 40461, - "pres": 1385, - "pres": 8529, - "presale": 27135, - "presby": 30447, - "presbyter": 33959, - "presbyterian": 35370, - "preschool": 24354, - "prescott": 29392, - "prescri": 14851, - "prescribed": 36968, - "prescription": 23061, - "preseason": 13813, - "presen": 16742, - "presence": 8848, - "present": 2344, - "present": 2881, - "presentation": 4594, - "presentations": 16998, - "presented": 4587, - "presenter": 18587, - "presenters": 32759, - "presenting": 5339, - "presents": 4215, - "preserv": 17616, - "preservation": 21074, - "preserve": 15570, - "preserved": 23161, - "preserves": 44881, - "preserving": 32315, - "presi": 1697, - "presiden": 43374, - "presidency": 18077, - "president": 19900, - "president": 1940, - "presidente": 47363, - "presidenti": 48297, - "presidential": 8503, - "presidents": 16726, - "presiding": 45298, - "presley": 30013, - "press": 4124, - "press": 2124, - "pressed": 20080, - "presser": 27826, - "presses": 33748, - "pressing": 20893, - "pressure": 6083, - "pressures": 38487, - "prest": 41840, - "presti": 12245, - "prestige": 29328, - "prestigious": 15888, - "presto": 42211, - "preston": 37335, - "preston": 15179, - "presu": 21667, - "presumably": 42562, - "pret": 9652, - "preten": 15871, - "pretend": 18111, - "pretending": 21306, - "pretoria": 36080, - "prett": 46667, - "prettier": 31745, - "prettiest": 22866, - "pretty": 18286, - "pretty": 2111, - "pretz": 24890, - "pretzel": 36707, - "pretzels": 45468, - "prev": 20274, - "prevail": 31637, - "prevalence": 41729, - "prevalent": 46260, - "preven": 29382, - "prevent": 26436, - "prevent": 7968, - "preventable": 44250, - "prevented": 35356, - "preventing": 21756, - "prevention": 9500, - "preventive": 40949, - "prevents": 31746, - "preview": 4449, - "previews": 20279, - "previous": 9252, - "previously": 13359, - "prey": 17131, - "prez": 17956, - "pri": 955, - "pri": 23400, - "pric": 24275, - "price": 13254, - "price": 2827, - "priced": 16934, - "priceless": 15743, - "prices": 5954, - "pricing": 14800, - "prick": 43921, - "prick": 46516, - "pride": 15323, - "pride": 3436, - "pridemonth": 41410, - "prie": 22477, - "priest": 38756, - "priest": 14222, - "priests": 30005, - "prim": 22004, - "prima": 35611, - "prima": 33277, - "primal": 36604, - "primar": 21579, - "primaries": 46126, - "primarily": 29465, - "primark": 48329, - "primary": 35024, - "primary": 5814, - "primavera": 44899, - "prime": 14162, - "prime": 5183, - "primed": 45694, - "primer": 22388, - "primetime": 29763, - "primitive": 37467, - "primo": 43215, - "primrose": 45891, - "prin": 1588, - "prince": 9457, - "prince": 4735, - "princes": 45329, - "princes": 30136, - "princess": 24123, - "princess": 5079, - "princesses": 34161, - "princeton": 22433, - "princi": 5129, - "principal": 33599, - "principal": 8860, - "principals": 27524, - "principle": 19595, - "principles": 13755, - "print": 17851, - "print": 3557, - "printable": 29648, - "printed": 7978, - "printer": 14521, - "printers": 27881, - "printing": 7369, - "printmaking": 38669, - "prints": 7704, - "prior": 20328, - "prior": 10572, - "priorit": 47773, - "prioriti": 28822, - "priorities": 15232, - "prioritize": 46715, - "priority": 12451, - "priory": 38665, - "prisc": 32468, - "priscilla": 42396, - "prise": 23343, - "prism": 49311, - "prism": 34356, - "prison": 9281, - "prison": 6622, - "prisoner": 21427, - "prisoners": 17460, - "prisons": 26607, - "pristine": 30618, - "prit": 41668, - "prit": 37523, - "prith": 39173, - "prius": 43561, - "priv": 3270, - "privacy": 10437, - "private": 20362, - "private": 4439, - "privately": 32970, - "privati": 27379, - "privi": 8367, - "privileg": 18015, - "privilege": 11537, - "privileged": 18166, - "prix": 10875, - "priya": 31275, - "priyan": 16488, - "priyanka": 31959, - "priyankach": 30030, - "priyankachopra": 30264, - "prize": 48222, - "prize": 4521, - "prized": 38769, - "prizes": 9268, - "prk": 37094, - "pro": 644, - "pro": 2630, - "proactive": 33364, - "prob": 17706, - "prob": 24007, - "probab": 3907, - "probability": 32637, - "probable": 42444, - "probably": 4047, - "probation": 36531, - "probe": 14359, - "probes": 48564, - "probiotics": 49395, - "proble": 2719, - "problem": 4324, - "problematic": 33767, - "problems": 4671, - "probs": 16330, - "probz": 34243, - "proc": 38417, - "proce": 4076, - "procedu": 18204, - "procedural": 48177, - "procedure": 20163, - "procedures": 21109, - "proceed": 26664, - "proceed": 33894, - "proceedings": 26953, - "proceeds": 11882, - "process": 17291, - "process": 4078, - "processed": 23816, - "processes": 15169, - "processing": 11737, - "procession": 26288, - "processor": 22838, - "processors": 43634, - "proclaimed": 34489, - "proclamation": 32065, - "procra": 25361, - "procrastin": 25586, - "procrastination": 42825, - "procreate": 39336, - "proctor": 47204, - "procu": 21001, - "procurement": 23733, - "prod": 44349, - "prod": 11991, - "prodi": 27759, - "prodigy": 31973, - "produ": 27852, - "produc": 1471, - "produce": 7529, - "produced": 7479, - "producer": 7064, - "producers": 13883, - "produces": 19940, - "producing": 13579, - "product": 32602, - "product": 4306, - "production": 4146, - "productions": 14166, - "productive": 9697, - "productivity": 12800, - "products": 3964, - "prof": 15043, - "prof": 5488, - "profe": 2611, - "profess": 5486, - "professi": 3705, - "profession": 8104, - "profession": 19671, - "professional": 46007, - "professional": 4774, - "professionalism": 41252, - "professionally": 33892, - "professionals": 10165, - "professor": 47302, - "professor": 6092, - "professors": 27758, - "profici": 34685, - "profile": 14291, - "profile": 6444, - "profiles": 22070, - "profiling": 37123, - "profit": 16941, - "profit": 7909, - "profitable": 25465, - "profits": 13410, - "profound": 48245, - "profound": 22998, - "profs": 19260, - "prog": 22219, - "progno": 46070, - "program": 4162, - "program": 2737, - "programme": 6322, - "programmer": 37001, - "programmes": 20468, - "programming": 10831, - "programs": 7345, - "progre": 7069, - "progress": 4421, - "progressi": 23297, - "progressing": 32346, - "progression": 24772, - "progressive": 12208, - "progressives": 41709, - "prohi": 41124, - "prohib": 45040, - "prohibition": 34440, - "proj": 39156, - "proje": 48345, - "projec": 1610, - "project": 15911, - "project": 1965, - "projected": 22873, - "projection": 22384, - "projections": 34638, - "projector": 27816, - "projects": 5090, - "proli": 19710, - "prolife": 32126, - "prolifer": 39018, - "prolific": 27839, - "prolly": 45968, - "prolon": 35379, - "prolonged": 41972, - "prom": 40363, - "prom": 7944, - "prome": 34355, - "promen": 33578, - "promenade": 35522, - "promethe": 44183, - "promin": 35217, - "prominent": 19172, - "promis": 3963, - "promise": 6745, - "promised": 11516, - "promises": 12064, - "promising": 14183, - "promo": 3037, - "promo": 6755, - "promos": 35044, - "promote": 47384, - "promote": 8003, - "promoted": 16395, - "promoter": 33081, - "promotes": 20169, - "promoting": 9695, - "promotion": 9259, - "promotional": 17619, - "promotions": 19142, - "promp": 11671, - "prompt": 20198, - "prompted": 45746, - "prompts": 33490, - "proms": 37759, - "pron": 13285, - "prone": 30964, - "pronoun": 23022, - "pronounce": 40489, - "pronounced": 34109, - "pronto": 44296, - "proof": 17020, - "proof": 5248, - "proofing": 35679, - "proofs": 41023, - "prop": 19123, - "prop": 16254, - "propag": 12151, - "propaganda": 14718, - "propane": 45546, - "propel": 48439, - "propeller": 47404, - "proper": 3577, - "proper": 8205, - "properly": 12560, - "properties": 10922, - "property": 26486, - "property": 5043, - "prophe": 9662, - "prophecy": 32501, - "prophet": 15549, - "prophetic": 47476, - "prophets": 39441, - "propor": 35016, - "proportion": 35775, - "proportions": 39391, - "propos": 9455, - "proposal": 12139, - "proposals": 20568, - "propose": 28471, - "proposed": 10615, - "proposes": 27133, - "proposing": 42631, - "proposition": 44780, - "propri": 28243, - "props": 15249, - "propulsion": 49380, - "pros": 33925, - "pros": 14147, - "prosciutto": 46565, - "prose": 47063, - "prose": 28675, - "prosecco": 28839, - "prosecu": 12136, - "prosecution": 30902, - "prosecutor": 23736, - "prosecutors": 31656, - "prosp": 24242, - "prospec": 12693, - "prospect": 11211, - "prospective": 28034, - "prospects": 15372, - "prosper": 16121, - "prosper": 33526, - "prosperity": 17203, - "prosperous": 28252, - "prost": 47923, - "prostate": 28808, - "prostatec": 49064, - "prosthetic": 44602, - "prostitu": 37333, - "protag": 28950, - "protagonist": 38183, - "prote": 1845, - "protec": 5640, - "protect": 25563, - "protect": 4817, - "protected": 12266, - "protecting": 11710, - "protection": 6238, - "protections": 33772, - "protective": 17028, - "protector": 20441, - "protectors": 45039, - "protects": 21889, - "protein": 8088, - "proteins": 28661, - "protest": 6279, - "protestant": 46945, - "protested": 48089, - "protester": 42073, - "protesters": 12660, - "protesting": 18788, - "protestors": 27822, - "protests": 12450, - "proto": 8672, - "proto": 44958, - "protocol": 19938, - "protocols": 39631, - "proton": 40009, - "prototype": 16675, - "prototyping": 42081, - "prou": 5739, - "proud": 11080, - "proud": 1679, - "prouder": 39585, - "proudest": 46806, - "proudly": 11203, - "proudof": 48184, - "proudtobe": 35043, - "prov": 23772, - "prov": 35021, - "prove": 10107, - "proved": 16473, - "proven": 35405, - "proven": 14569, - "provence": 28067, - "prover": 18312, - "proverb": 34419, - "proverbs": 27016, - "proves": 16119, - "provi": 2289, - "provide": 4832, - "provided": 9046, - "providence": 19331, - "provider": 14409, - "providers": 17120, - "provides": 7161, - "providing": 7250, - "provin": 12074, - "province": 8978, - "provinces": 35050, - "provincial": 16002, - "proving": 18055, - "provision": 30148, - "provisional": 36008, - "provisions": 39269, - "provo": 15367, - "provoc": 31618, - "provocative": 43809, - "provoking": 25510, - "provost": 36627, - "prow": 38737, - "prowrestling": 39825, - "prox": 41616, - "proxim": 31436, - "proximity": 38298, - "proxy": 31680, - "prs": 23879, - "pru": 12961, - "pruitt": 39453, - "prun": 29029, - "pruning": 48133, - "pry": 31965, - "pryor": 43375, - "ps": 3982, - "ps": 814, - "psa": 14031, - "psal": 13859, - "psalm": 17995, - "psalms": 35003, - "psb": 37017, - "psc": 43118, - "psd": 28810, - "pse": 19737, - "pse": 5423, - "pseu": 24919, - "pseudo": 46618, - "psg": 17123, - "psi": 45848, - "psi": 24533, - "psic": 29299, - "psis": 33041, - "psl": 21373, - "psn": 36781, - "pso": 27045, - "pson": 7487, - "psori": 44688, - "psp": 32769, - "pss": 35718, - "pss": 42535, - "psst": 47814, - "pst": 12692, - "psu": 41286, - "psu": 28338, - "psv": 44530, - "psy": 3576, - "psy": 11056, - "psych": 31041, - "psych": 20509, - "psyched": 19932, - "psyched": 35199, - "psychedelic": 23292, - "psychi": 18147, - "psychiatric": 30578, - "psychiatry": 39706, - "psychic": 24916, - "psycho": 6472, - "psycho": 22154, - "psychological": 18153, - "psychologist": 32827, - "psychology": 12352, - "psychop": 30112, - "psychotic": 48774, - "pt": 11139, - "pt": 1459, - "pta": 11586, - "ptbo": 40481, - "ptc": 44646, - "pte": 47804, - "pter": 49323, - "pti": 29375, - "pti": 10491, - "ptic": 20670, - "ption": 3479, - "ptions": 24963, - "pto": 31372, - "pto": 34092, - "pton": 19780, - "pts": 5886, - "ptsd": 23973, - "ptv": 42402, - "pu": 755, - "pu": 11780, - "pub": 20720, - "pub": 6301, - "puberty": 44122, - "pubg": 31496, - "publ": 3434, - "publi": 1617, - "public": 3592, - "public": 2122, - "publica": 49007, - "publication": 13538, - "publications": 27334, - "publichealth": 35872, - "publicity": 20831, - "publicly": 18554, - "publish": 19032, - "published": 4311, - "publisher": 20455, - "publishers": 25222, - "publishes": 35633, - "publishing": 10994, - "publix": 47985, - "pubs": 21099, - "puc": 48779, - "puck": 17550, - "pud": 39234, - "pudding": 14025, - "puddle": 33545, - "pue": 20161, - "pueblo": 33076, - "puer": 8968, - "puerto": 12289, - "puertor": 22757, - "puertorico": 26356, - "puff": 44477, - "puff": 17184, - "puffin": 47632, - "puffs": 47453, - "puffy": 49245, - "pug": 20950, - "pug": 17739, - "pugchat": 42266, - "pugh": 41302, - "puglia": 38345, - "pugs": 39425, - "puj": 46163, - "puja": 33753, - "puk": 31811, - "pul": 2469, - "pul": 40512, - "pula": 45856, - "puli": 47293, - "pulit": 27745, - "pulitzer": 31419, - "pull": 20155, - "pull": 6857, - "pulled": 8525, - "pulling": 12897, - "pullman": 40203, - "pullover": 44020, - "pulls": 16041, - "pulmon": 32613, - "pulmonary": 39132, - "pulp": 25410, - "pulse": 40091, - "pulse": 12485, - "pulses": 42177, - "pulsion": 35398, - "pum": 37497, - "puma": 20858, - "pump": 5179, - "pump": 9173, - "pumped": 12796, - "pumping": 25150, - "pumpkin": 36386, - "pumpkin": 8842, - "pumpkins": 23787, - "pumps": 18540, - "pun": 2707, - "pun": 19929, - "punc": 43907, - "punch": 29332, - "punch": 10730, - "punched": 31689, - "punches": 35279, - "punching": 33468, - "punctu": 31565, - "punctuation": 47051, - "pundit": 41466, - "pune": 32593, - "pune": 14488, - "pung": 45420, - "puni": 11479, - "punish": 34569, - "punished": 31598, - "punisher": 38509, - "punishment": 19099, - "punjab": 19405, - "punjab": 12883, - "punjabi": 25430, - "punk": 28933, - "punk": 7246, - "punks": 47171, - "puns": 35231, - "punt": 32699, - "punta": 34112, - "punter": 47092, - "pup": 11926, - "pup": 11302, - "pupil": 27265, - "pupils": 13628, - "pupp": 7116, - "puppet": 18439, - "puppets": 28475, - "puppies": 14820, - "puppy": 25431, - "puppy": 6829, - "puppylove": 40849, - "pups": 20778, - "pur": 1727, - "pur": 6265, - "pura": 25596, - "puram": 46174, - "purcell": 46065, - "purch": 8384, - "purchase": 5481, - "purchased": 13399, - "purchases": 21887, - "purchasing": 20718, - "purdu": 40691, - "purdue": 22280, - "pure": 14202, - "pure": 5979, - "puree": 45474, - "purely": 32459, - "puremichigan": 39783, - "purest": 45497, - "purge": 33514, - "puri": 16910, - "puri": 21974, - "purification": 47724, - "purity": 29780, - "purple": 17837, - "purple": 5496, - "purpose": 33492, - "purpose": 7391, - "purposes": 22020, - "purr": 49262, - "purr": 46343, - "purse": 16480, - "pursue": 19463, - "pursuing": 26424, - "pursuit": 16469, - "purée": 40981, - "pus": 13841, - "pusa": 40825, - "push": 16028, - "push": 6831, - "pushaw": 35407, - "pushaward": 35448, - "pushawards": 47184, - "pushed": 16155, - "pushes": 23828, - "pushing": 11549, - "put": 29535, - "put": 1983, - "putin": 10693, - "putnam": 40235, - "puts": 7898, - "putt": 30279, - "putter": 44723, - "putting": 5154, - "puzz": 19760, - "puzzle": 12875, - "puzzles": 27986, - "pv": 14517, - "pv": 13495, - "pvc": 26959, - "pvp": 44172, - "pvt": 29898, - "pw": 19419, - "pw": 16067, - "pwc": 22965, - "px": 24790, - "px": 10262, - "pxrtg": 36262, - "py": 4005, - "py": 7504, - "pye": 31099, - "pyeongchang": 36066, - "pyg": 41450, - "pyram": 14405, - "pyramid": 18725, - "pyramids": 36877, - "pyrene": 36740, - "pyrenees": 39744, - "pyro": 39762, - "python": 13370, - "pz": 48361, - "pé": 43167, - "q": 80, - "q": 336, - "qa": 24944, - "qa": 16360, - "qad": 27844, - "qadri": 35672, - "qaeda": 31246, - "qanda": 48672, - "qanon": 19182, - "qant": 35404, - "qantas": 43250, - "qatar": 32804, - "qatar": 10872, - "qb": 8073, - "qbs": 38188, - "qc": 17406, - "qe": 30974, - "qf": 27215, - "qi": 25054, - "qi": 11256, - "qing": 46522, - "qing": 34339, - "ql": 28366, - "qld": 23039, - "qld": 13765, - "qldpol": 42296, - "qm": 42148, - "qotd": 24504, - "qpr": 24788, - "qq": 31960, - "qr": 18193, - "qs": 14364, - "qt": 15013, - "qtr": 44803, - "qu": 666, - "qu": 28646, - "qua": 20363, - "quack": 45575, - "quad": 11656, - "quad": 13419, - "quadcopter": 39792, - "quadru": 35831, - "quaid": 34265, - "quail": 34392, - "quaint": 45976, - "quake": 8421, - "quaker": 43395, - "quakes": 24572, - "qual": 9979, - "qual": 32405, - "qualcomm": 38683, - "quali": 4574, - "qualification": 21508, - "qualifications": 35225, - "qualified": 11927, - "qualifier": 18733, - "qualifiers": 21388, - "qualifies": 35820, - "qualify": 17019, - "qualifying": 11895, - "qualitative": 45847, - "qualities": 20488, - "quality": 28545, - "quality": 3027, - "quan": 11669, - "quan": 27490, - "quand": 28198, - "quant": 15050, - "quanti": 31540, - "quantitative": 40583, - "quantities": 33917, - "quantity": 26920, - "quantum": 15320, - "quar": 3856, - "quare": 42549, - "quarry": 27601, - "quart": 7851, - "quarter": 8816, - "quarter": 6632, - "quarterback": 16545, - "quarterfinal": 37992, - "quarterfinals": 28971, - "quarterly": 23350, - "quarters": 10146, - "quartet": 18056, - "quartz": 17752, - "quat": 25715, - "quattro": 40300, - "quay": 40276, - "quay": 17304, - "que": 1147, - "que": 2319, - "quebec": 15373, - "queen": 6407, - "queen": 2997, - "queenof": 44398, - "queens": 22943, - "queens": 9330, - "queensland": 15168, - "queer": 38874, - "queer": 18161, - "quel": 39774, - "quel": 21879, - "quen": 23876, - "quen": 38324, - "quent": 23808, - "quentin": 27530, - "quer": 17378, - "quer": 26859, - "quered": 23210, - "queries": 32958, - "querque": 30338, - "query": 27464, - "ques": 25328, - "ques": 7715, - "queso": 40110, - "quest": 31653, - "quest": 4846, - "questi": 2391, - "question": 18961, - "question": 4382, - "questionable": 30733, - "questioned": 31847, - "questioning": 24887, - "questions": 3883, - "quests": 44611, - "quet": 8513, - "quets": 39055, - "quetta": 38326, - "quette": 18993, - "queu": 32705, - "queue": 18549, - "queues": 40649, - "queuing": 44082, - "quez": 18677, - "quezon": 41117, - "qui": 1912, - "qui": 18046, - "quic": 26474, - "quiche": 47723, - "quick": 5969, - "quick": 3712, - "quicker": 29211, - "quickest": 37734, - "quickly": 7787, - "quid": 30732, - "quie": 43875, - "quien": 43482, - "quiere": 42723, - "quiero": 32567, - "quiet": 17853, - "quiet": 7557, - "quietly": 22208, - "quig": 44690, - "quil": 12305, - "quill": 48951, - "quilt": 23977, - "quilted": 46052, - "quin": 8607, - "quin": 17167, - "quincy": 27640, - "quind": 32339, - "quinn": 12306, - "quinoa": 26703, - "quins": 39701, - "quint": 26898, - "quinta": 47446, - "quinte": 22098, - "quintess": 37538, - "quintet": 35125, - "quipment": 42813, - "quir": 15943, - "quirky": 25044, - "quis": 15064, - "quist": 25128, - "quit": 19358, - "quit": 11140, - "quite": 4135, - "quito": 35828, - "quits": 32505, - "quitting": 33871, - "quity": 33133, - "quiz": 31197, - "quiz": 8344, - "quizz": 35041, - "quo": 3046, - "quo": 28127, - "quoi": 45549, - "quot": 5452, - "quot": 47587, - "quota": 42097, - "quotation": 49195, - "quote": 15446, - "quote": 4020, - "quoted": 27706, - "quoteoftheday": 19975, - "quotes": 5808, - "quoting": 31651, - "qur": 37782, - "quran": 19690, - "qureshi": 46307, - "qvist": 42322, - "qx": 45038, - "r": 81, - "r": 337, - "ra": 559, - "ra": 1735, - "raa": 44344, - "rab": 14816, - "rab": 33224, - "rabb": 6875, - "rabbi": 20959, - "rabbit": 10274, - "rabbits": 27028, - "rabhu": 25806, - "rable": 10182, - "rac": 1773, - "rac": 30462, - "raccoon": 29516, - "race": 10978, - "race": 2471, - "racec": 18814, - "racecourse": 25036, - "raced": 36021, - "racer": 16798, - "racers": 33603, - "races": 8605, - "raceway": 24650, - "rach": 6876, - "rach": 33429, - "racha": 21952, - "racha": 35022, - "rachael": 29095, - "rachel": 13511, - "rachel": 8029, - "raci": 33381, - "racial": 13801, - "racially": 43577, - "racing": 23306, - "racing": 3699, - "racism": 11276, - "racist": 9684, - "racists": 41777, - "rack": 24600, - "rack": 12034, - "racket": 37691, - "racks": 21191, - "rad": 4473, - "rad": 8238, - "rada": 30437, - "radar": 9672, - "radcliffe": 33096, - "rade": 44494, - "rade": 17911, - "rader": 45002, - "radford": 45800, - "radha": 43122, - "radi": 5772, - "radial": 42028, - "radiance": 45670, - "radiant": 25614, - "radiation": 18210, - "radiator": 39372, - "radic": 18082, - "radical": 13712, - "radicals": 45903, - "radio": 7176, - "radio": 2638, - "radioactive": 34704, - "radiodisney": 36483, - "radiohead": 39472, - "radiology": 29684, - "radios": 43669, - "radish": 37789, - "radius": 37570, - "rado": 29784, - "rae": 21646, - "rae": 15051, - "rael": 45390, - "raer": 44561, - "raf": 11495, - "raf": 11490, - "rafa": 14352, - "rafa": 24850, - "rafael": 38221, - "rafael": 19216, - "rafaelnadal": 49219, - "raff": 34900, - "raffic": 32928, - "raffle": 13752, - "raffles": 43489, - "rafi": 35304, - "raft": 9233, - "rafting": 36309, - "rag": 13958, - "rag": 20687, - "rage": 8593, - "rages": 34253, - "ragh": 35642, - "ragha": 40972, - "raging": 25015, - "ragn": 24125, - "ragnar": 34385, - "ragnarok": 41856, - "ragon": 34768, - "rags": 47838, - "rah": 12277, - "rah": 8766, - "raheem": 43317, - "rahim": 24152, - "rahman": 19680, - "rahu": 13129, - "rahul": 37239, - "rahul": 17440, - "rahulg": 27510, - "rahulgandhi": 28293, - "rai": 9165, - "rai": 9638, - "raid": 6877, - "raided": 43417, - "raider": 27368, - "raider": 21455, - "raidernation": 47901, - "raiders": 11817, - "raids": 26655, - "rail": 4573, - "rail": 6879, - "raila": 47273, - "railminindia": 35557, - "railroad": 17080, - "rails": 23427, - "railway": 27614, - "railway": 7856, - "railwayana": 46750, - "railways": 20765, - "raim": 45785, - "rain": 3128, - "rain": 2443, - "raina": 30564, - "rainbow": 24562, - "rainbow": 6286, - "rainbows": 30483, - "raine": 49038, - "raine": 6871, - "rained": 32310, - "rainf": 15024, - "rainfall": 15350, - "rainforest": 22823, - "rainier": 37850, - "raining": 13964, - "rains": 14272, - "rainy": 10222, - "rais": 14729, - "raise": 24249, - "raise": 5078, - "raised": 6027, - "raiser": 33555, - "raises": 13297, - "raisethe": 47109, - "raisin": 36864, - "raising": 6883, - "raj": 5958, - "raj": 10813, - "raja": 46069, - "raja": 19150, - "rajan": 46595, - "rajas": 16185, - "rajasthan": 18017, - "raje": 21899, - "rajesh": 43602, - "raji": 27569, - "rajini": 29600, - "rajini": 40622, - "rajinikanth": 32922, - "rajiv": 40197, - "rajkumar": 49304, - "rajput": 47572, - "raju": 47029, - "rak": 13523, - "rak": 26287, - "rake": 26825, - "rake": 32712, - "rakesh": 41083, - "ral": 8062, - "ral": 1406, - "rale": 14192, - "raleigh": 18207, - "rall": 23249, - "rallies": 25230, - "rally": 18882, - "rally": 5041, - "rallying": 36836, - "ralph": 25290, - "ralph": 12234, - "ram": 1976, - "ram": 2007, - "rama": 22112, - "ramad": 12736, - "ramadan": 15547, - "ramadhan": 47415, - "raman": 39816, - "ramapho": 43963, - "ramaphosa": 44993, - "ramatta": 49112, - "rambo": 41855, - "ramcharan": 45275, - "rame": 47745, - "ramen": 18892, - "ramesh": 48640, - "ramesh": 40186, - "rami": 43016, - "ramirez": 23877, - "ramon": 27958, - "ramone": 47201, - "ramos": 21046, - "ramp": 14271, - "rampage": 32077, - "rampant": 41985, - "ramps": 35257, - "rams": 10292, - "ramsay": 26259, - "ramsey": 19215, - "ran": 1433, - "ran": 4031, - "rana": 22143, - "ranbir": 40881, - "rance": 29034, - "ranch": 43955, - "ranch": 10659, - "rancho": 26258, - "rand": 5628, - "rand": 18718, - "randall": 23639, - "rande": 21469, - "randolph": 29899, - "random": 11396, - "random": 6160, - "randomly": 17272, - "rands": 39153, - "randy": 29479, - "randy": 13279, - "rane": 28852, - "rang": 4043, - "rang": 24377, - "range": 13627, - "range": 3818, - "ranger": 31472, - "ranger": 13593, - "rangers": 7664, - "ranges": 25685, - "ranging": 25946, - "rani": 29264, - "rani": 22631, - "rank": 11501, - "ranked": 8307, - "rankin": 37539, - "ranking": 12347, - "rankings": 12596, - "ranks": 14469, - "rano": 18608, - "rans": 46259, - "ransom": 28523, - "ransom": 34646, - "ransomware": 33815, - "rant": 46467, - "rant": 9819, - "rants": 34014, - "ranveer": 32402, - "ranveer": 41482, - "ranveerofficial": 42116, - "rao": 16913, - "rap": 7773, - "rap": 7348, - "rape": 46099, - "rape": 10070, - "raped": 23700, - "rapha": 22754, - "raphael": 30091, - "rapi": 8610, - "rapid": 47697, - "rapid": 12205, - "rapidly": 16710, - "rapids": 18848, - "raping": 44926, - "rapist": 33360, - "rapp": 19283, - "rapper": 11860, - "rappers": 30315, - "rapping": 42864, - "raps": 37887, - "raptor": 26762, - "raptors": 17035, - "raq": 39787, - "raq": 43312, - "raqqa": 47074, - "raquel": 44338, - "rar": 26819, - "rar": 24605, - "rard": 21012, - "rare": 18992, - "rare": 3865, - "rarely": 17315, - "rarest": 43237, - "rarity": 45862, - "ras": 23492, - "ras": 8224, - "rasc": 30085, - "rascal": 43481, - "rash": 14917, - "rash": 30608, - "rashad": 46527, - "rasheed": 41638, - "rashi": 19426, - "rashid": 26757, - "rasp": 10487, - "raspberries": 37742, - "raspberry": 40162, - "raspberry": 13615, - "raspberrypi": 43934, - "rass": 45654, - "rasta": 47002, - "rat": 3806, - "rat": 8985, - "rata": 28568, - "ratchet": 25078, - "rate": 5068, - "rated": 8183, - "rates": 6864, - "rath": 18268, - "rath": 39772, - "rather": 5252, - "rati": 11486, - "rating": 10567, - "ratings": 14176, - "ratio": 15893, - "ration": 27002, - "ration": 35662, - "rational": 33086, - "ratna": 49078, - "ratri": 32288, - "rats": 19043, - "ratt": 20737, - "ratt": 34785, - "rattle": 40824, - "rattle": 41839, - "rau": 27744, - "raul": 30218, - "raun": 41169, - "rav": 14367, - "rav": 23606, - "rave": 38784, - "rave": 17601, - "ravel": 27927, - "raven": 10269, - "raven": 16803, - "ravens": 17946, - "ravi": 22947, - "ravi": 19538, - "ravin": 39099, - "raving": 45807, - "raviol": 41104, - "ravioli": 43460, - "raw": 10166, - "raw": 6323, - "rawlings": 40662, - "rax": 38520, - "ray": 5312, - "ray": 3077, - "raya": 29991, - "raymond": 16683, - "rayn": 47852, - "rayon": 47900, - "rays": 11064, - "raz": 9700, - "raz": 19087, - "raza": 37724, - "razer": 33832, - "razor": 24934, - "razor": 21300, - "razz": 43769, - "rb": 12740, - "rb": 7477, - "rbc": 37500, - "rbi": 15687, - "rbs": 29102, - "rc": 7575, - "rc": 7457, - "rca": 33942, - "rcb": 45240, - "rcmp": 31489, - "rcn": 49370, - "rctid": 49223, - "rd": 13501, - "rd": 1973, - "rda": 45755, - "rdr": 44364, - "rds": 32378, - "re": 515, - "re": 810, - "rea": 11521, - "reach": 4483, - "reach": 4279, - "reached": 6878, - "reaches": 14462, - "reaching": 11358, - "react": 36566, - "react": 15065, - "reacted": 42515, - "reacting": 40595, - "reaction": 7189, - "reactions": 18438, - "reactive": 42072, - "reactjs": 46173, - "reactor": 32037, - "reacts": 23115, - "read": 933, - "read": 1199, - "reader": 9884, - "readers": 10335, - "readiness": 28131, - "reading": 17556, - "reading": 2337, - "readingfc": 47428, - "readings": 23361, - "reads": 6597, - "ready": 17351, - "ready": 1112, - "reagan": 17767, - "real": 2017, - "real": 1532, - "realdonaldtrump": 7025, - "reale": 5930, - "realest": 45855, - "realestate": 32937, - "realestate": 6569, - "reali": 4185, - "realis": 38114, - "realise": 14773, - "realised": 17945, - "realising": 39537, - "realism": 20024, - "realist": 30248, - "realistic": 16157, - "realities": 32443, - "reality": 46802, - "reality": 5004, - "realization": 40402, - "realize": 7538, - "realized": 10489, - "realizes": 42918, - "realizing": 23284, - "reall": 39686, - "really": 43249, - "really": 1414, - "realm": 23083, - "realmadrid": 27866, - "realms": 43033, - "realness": 46761, - "realtime": 44002, - "realtime": 38203, - "realtor": 18038, - "realtors": 31759, - "realty": 20471, - "ream": 37242, - "ream": 15219, - "rean": 48477, - "reap": 31334, - "reaper": 29922, - "rear": 39652, - "rear": 10223, - "reas": 9121, - "reason": 12882, - "reason": 3893, - "reasonable": 18558, - "reasonably": 38589, - "reasoning": 30341, - "reasons": 5686, - "reau": 32398, - "reb": 12370, - "reb": 18796, - "reba": 48543, - "rebate": 43817, - "rebe": 25227, - "rebec": 10774, - "rebecca": 12892, - "rebel": 8185, - "rebel": 12248, - "rebellion": 22170, - "rebels": 13623, - "rebirth": 33303, - "reboot": 22385, - "reborn": 30229, - "reboun": 43381, - "rebound": 31280, - "rebounds": 19190, - "rebs": 28164, - "rebu": 43162, - "rebuild": 20022, - "rebuilding": 30880, - "rebuilt": 33137, - "rec": 1020, - "rec": 11243, - "recall": 15151, - "recalled": 32142, - "recalling": 47855, - "recalls": 24740, - "recap": 29816, - "recap": 8337, - "recaps": 47997, - "recard": 35536, - "rece": 1890, - "recei": 2148, - "receip": 38503, - "receipt": 30479, - "receipts": 41181, - "receive": 4800, - "received": 4178, - "receiver": 17659, - "receivers": 45294, - "receives": 10027, - "receiving": 7252, - "recent": 3969, - "recently": 4482, - "recep": 17450, - "reception": 8364, - "receptions": 46881, - "receptor": 41835, - "recess": 38182, - "recession": 27176, - "recharge": 29396, - "rechargeable": 37516, - "reci": 2037, - "recipe": 28923, - "recipe": 4614, - "recipeoftheday": 38727, - "recipes": 9243, - "recipi": 10136, - "recipient": 13703, - "recipients": 18940, - "recipro": 41789, - "recital": 23457, - "recite": 48824, - "reck": 11715, - "reckless": 26284, - "reckon": 23854, - "recl": 42277, - "reclaim": 35969, - "reclaimed": 32648, - "reco": 2535, - "reco": 46038, - "recogn": 6343, - "recogni": 5329, - "recognise": 19824, - "recognised": 20986, - "recognising": 48423, - "recognition": 9415, - "recognizable": 47240, - "recognize": 10905, - "recognized": 9929, - "recognizes": 26909, - "recognizing": 19666, - "recomm": 4540, - "recommend": 11628, - "recommend": 8942, - "recommendation": 20118, - "recommendations": 16516, - "recommended": 11100, - "recommending": 44301, - "recommends": 22940, - "recon": 15371, - "recon": 28996, - "reconciliation": 26451, - "reconstruction": 24955, - "recor": 1723, - "record": 21328, - "record": 2717, - "recorded": 9392, - "recorder": 26747, - "recording": 48237, - "recording": 6942, - "recordings": 19715, - "records": 4529, - "recover": 16785, - "recovered": 16444, - "recovering": 19005, - "recovers": 47935, - "recovery": 6591, - "recre": 22148, - "recreate": 29775, - "recreated": 40888, - "recreating": 48224, - "recreation": 17331, - "recreational": 24329, - "recru": 4745, - "recruit": 9011, - "recruit": 15585, - "recruited": 36518, - "recruiter": 43120, - "recruiters": 46542, - "recruiting": 10533, - "recruitment": 10541, - "recruits": 22647, - "recs": 33069, - "rectan": 43041, - "rectangular": 43321, - "rector": 41585, - "recu": 26798, - "recur": 19983, - "recurring": 35912, - "recy": 6790, - "recycla": 40659, - "recyclable": 48907, - "recycle": 19366, - "recycled": 16829, - "recycling": 12566, - "red": 1893, - "red": 736, - "redbubble": 46137, - "redbull": 29483, - "redbull": 29219, - "redcarpet": 32259, - "redcross": 30659, - "redd": 22149, - "redd": 40618, - "redding": 41061, - "reddish": 43383, - "reddit": 15226, - "reddy": 23028, - "rede": 10913, - "redeem": 37449, - "redefining": 46352, - "redemption": 20233, - "redesign": 24188, - "redesigned": 33111, - "redevelopment": 30322, - "redhead": 36267, - "redi": 7976, - "redman": 44753, - "redmond": 39627, - "rednation": 28180, - "rednationrising": 28262, - "redneck": 39105, - "redness": 22626, - "redo": 42524, - "redon": 48506, - "redro": 37722, - "reds": 11221, - "redskins": 19023, - "redsox": 19144, - "reduc": 5015, - "reduce": 6604, - "reduced": 10821, - "reduces": 20539, - "reducing": 13836, - "reduction": 12219, - "reductions": 48263, - "redux": 43014, - "redvelvet": 41845, - "redwings": 31058, - "redwood": 31748, - "ree": 9282, - "ree": 5813, - "reebok": 26734, - "reece": 30457, - "reed": 26209, - "reed": 10435, - "reedus": 32865, - "reef": 46557, - "reef": 15624, - "reefs": 34459, - "reel": 34467, - "reel": 17166, - "reels": 48127, - "reem": 48891, - "reen": 21638, - "reen": 23679, - "rees": 18314, - "reese": 20929, - "reeves": 23060, - "ref": 4067, - "ref": 9591, - "refe": 5624, - "refer": 18425, - "refer": 22325, - "referee": 20398, - "referees": 45583, - "referen": 13535, - "reference": 10214, - "references": 24009, - "referendum": 16732, - "referr": 47784, - "referral": 30219, - "referred": 22969, - "referring": 29797, - "refers": 30069, - "refill": 37859, - "refin": 13455, - "refined": 26098, - "refinery": 31393, - "refining": 48406, - "reflec": 4608, - "reflect": 13373, - "reflected": 28732, - "reflecting": 19700, - "reflection": 11884, - "reflections": 16647, - "reflective": 27008, - "reflects": 15821, - "reflex": 45756, - "reflex": 36050, - "reform": 45678, - "reform": 8875, - "reformation": 45119, - "reformed": 40880, - "reforms": 19274, - "refr": 34850, - "refre": 11995, - "refresh": 17836, - "refresh": 23288, - "refreshed": 35925, - "refresher": 41481, - "refreshing": 14159, - "refreshments": 31127, - "refriger": 21076, - "refrigerator": 36662, - "refs": 35595, - "refu": 3545, - "refuge": 5638, - "refuge": 17432, - "refugee": 11556, - "refugees": 42687, - "refugees": 8316, - "refund": 28899, - "refur": 15519, - "refurbi": 18259, - "refurbished": 26190, - "refurbishment": 35803, - "refusal": 46547, - "refuse": 16412, - "refused": 17190, - "refuses": 20085, - "refusing": 26704, - "reg": 5472, - "reg": 12353, - "regain": 37510, - "regal": 31512, - "regal": 25028, - "regan": 34062, - "regar": 5881, - "regard": 21801, - "regarded": 32017, - "regarding": 8493, - "regardless": 17220, - "regards": 23079, - "regatta": 26316, - "regen": 46545, - "regency": 29341, - "regeneration": 29257, - "regent": 30455, - "regents": 46710, - "regg": 12757, - "reggae": 37821, - "reggae": 15214, - "reggie": 21872, - "regi": 1608, - "regime": 11378, - "regiment": 18603, - "regin": 23287, - "regina": 16841, - "region": 16542, - "region": 4341, - "regional": 5552, - "regionals": 26043, - "regions": 14530, - "regis": 28094, - "register": 3967, - "registered": 10254, - "registering": 33510, - "registr": 29193, - "registration": 7302, - "registrations": 38423, - "registry": 30020, - "rego": 47351, - "regram": 30329, - "regrann": 48802, - "regre": 8627, - "regression": 43733, - "regret": 14374, - "regrets": 23231, - "regu": 3411, - "regui": 46722, - "regul": 11847, - "regular": 14882, - "regular": 6307, - "regularly": 17263, - "regulat": 14575, - "regulate": 33494, - "regulated": 31384, - "regulating": 48156, - "regulation": 14267, - "regulations": 16654, - "regulator": 30364, - "regulators": 35837, - "regulatory": 17717, - "reh": 21492, - "reha": 10193, - "rehab": 16973, - "rehabil": 17930, - "rehabilitation": 21042, - "rehear": 7273, - "rehearsal": 11482, - "rehearsals": 17977, - "rehearsing": 23125, - "rehman": 39206, - "rei": 15343, - "rei": 26033, - "reic": 41230, - "reich": 48589, - "reich": 28929, - "reid": 45125, - "reid": 11744, - "reig": 13092, - "reign": 41419, - "reign": 14827, - "reigning": 28409, - "reigns": 21217, - "reiki": 46960, - "reilly": 28120, - "reim": 35421, - "reimagined": 46799, - "reimbur": 39857, - "rein": 9240, - "rein": 45009, - "reina": 43847, - "reinde": 23810, - "reindeer": 25072, - "reinfor": 48161, - "reinforced": 41909, - "reinst": 33969, - "reinvent": 38171, - "reissue": 34042, - "reiter": 35394, - "rejec": 9958, - "reject": 22435, - "rejected": 17505, - "rejection": 32264, - "rejects": 23155, - "rejo": 20150, - "rejoice": 24712, - "rejuven": 26332, - "rek": 47542, - "rek": 19201, - "rel": 1825, - "rel": 5233, - "rela": 4362, - "reland": 15220, - "relat": 27192, - "relatable": 31010, - "relate": 17520, - "related": 5880, - "relates": 36064, - "relating": 27373, - "relation": 4561, - "relation": 16207, - "relations": 10100, - "relationship": 47239, - "relationship": 5837, - "relationships": 10610, - "relative": 17265, - "relatively": 18351, - "relatives": 21981, - "relax": 6777, - "relax": 9035, - "relaxation": 22194, - "relaxed": 18999, - "relaxing": 10256, - "relay": 12403, - "relays": 28404, - "rele": 1602, - "release": 29100, - "release": 2706, - "released": 3410, - "releases": 7393, - "releasethe": 44008, - "releasing": 10321, - "releg": 23378, - "relegated": 45884, - "relegation": 35040, - "relent": 22213, - "relentless": 27207, - "relessly": 33927, - "relev": 9349, - "relevance": 31400, - "relevant": 10568, - "reli": 2674, - "reliability": 27220, - "reliable": 13714, - "reliance": 27727, - "relic": 27802, - "relics": 43208, - "relief": 7518, - "relies": 41579, - "relieve": 28623, - "relieved": 36597, - "religi": 4940, - "religion": 8803, - "religions": 31189, - "religious": 8289, - "relish": 35550, - "relive": 23939, - "reliving": 47558, - "rell": 28802, - "rell": 7127, - "rella": 9952, - "relle": 31390, - "reloaded": 38908, - "relocated": 46791, - "relocation": 39198, - "rels": 23320, - "relu": 32058, - "reluct": 32549, - "reluctant": 45552, - "rely": 4158, - "relying": 42168, - "rem": 15098, - "rem": 21637, - "rema": 4569, - "remain": 29144, - "remain": 6415, - "remainder": 41672, - "remained": 23714, - "remaining": 11392, - "remains": 6807, - "remake": 16234, - "remark": 11136, - "remarkable": 12404, - "remarkably": 39087, - "remarks": 15001, - "remastered": 24932, - "rematch": 26473, - "rembrandt": 45972, - "reme": 20071, - "remedi": 18442, - "remedies": 25581, - "remedy": 25794, - "remem": 7966, - "rememb": 7062, - "remember": 22045, - "remember": 2195, - "remembered": 11763, - "remembering": 8135, - "remembers": 12551, - "remembrance": 40321, - "remembrance": 15860, - "remembranceday": 48333, - "rement": 7173, - "rements": 12667, - "remi": 41693, - "remin": 3216, - "remind": 9868, - "reminded": 12309, - "reminder": 5565, - "reminders": 34121, - "reminding": 19976, - "reminds": 8303, - "remington": 43527, - "reminis": 17723, - "reminiscent": 41704, - "reminiscing": 32552, - "remix": 8519, - "remixes": 31011, - "remn": 29127, - "remnants": 39032, - "remo": 4064, - "remo": 33259, - "remodel": 34159, - "remodel": 37495, - "remodeling": 41432, - "remote": 47163, - "remote": 9687, - "remotely": 32375, - "removable": 44095, - "removal": 13679, - "remove": 9709, - "removed": 10289, - "remover": 44267, - "removes": 29018, - "removing": 18504, - "remy": 30434, - "ren": 737, - "ren": 2596, - "rena": 12591, - "renais": 15409, - "renaissance": 16007, - "renal": 36096, - "renamed": 31535, - "renault": 17600, - "rence": 19245, - "rence": 1553, - "rences": 8545, - "rend": 33932, - "rend": 22851, - "render": 39752, - "render": 13024, - "rendered": 23652, - "rendering": 21339, - "renders": 39419, - "rendez": 43293, - "rendezvous": 45644, - "rendition": 28891, - "rendon": 46272, - "rendous": 49403, - "rends": 38842, - "rene": 15438, - "rene": 12597, - "renee": 23480, - "reneg": 29909, - "renegade": 41229, - "renergy": 37151, - "renew": 6645, - "renew": 22015, - "renewable": 31269, - "renewable": 15941, - "renewableenergy": 33357, - "renewables": 21619, - "renewal": 21270, - "renewed": 20524, - "renfre": 45043, - "reng": 36795, - "reno": 11520, - "reno": 12831, - "renov": 9984, - "renovated": 23839, - "renovation": 17121, - "renovations": 31311, - "renowned": 14727, - "rens": 18183, - "renshaw": 44445, - "rent": 17377, - "rent": 1609, - "rental": 12193, - "rentals": 24105, - "rented": 35932, - "rential": 31692, - "renting": 37662, - "rently": 2615, - "rents": 31109, - "reo": 15963, - "reo": 26854, - "reon": 15761, - "reopen": 26883, - "reopened": 32868, - "reopening": 36663, - "reopens": 40644, - "rep": 4229, - "rep": 6487, - "repair": 8419, - "repaired": 32953, - "repairing": 38534, - "repairs": 16297, - "repar": 34065, - "repe": 5785, - "repeal": 42622, - "repeal": 23938, - "repeat": 10192, - "repeated": 27904, - "repeatedly": 26630, - "repeating": 33834, - "repeats": 39158, - "repell": 46235, - "repent": 47261, - "reper": 29085, - "repet": 38533, - "repl": 13047, - "replac": 6069, - "replace": 9466, - "replaceable": 47762, - "replaced": 13200, - "replacement": 10835, - "replaces": 27781, - "replacing": 18647, - "replay": 16875, - "repleni": 44839, - "replic": 21651, - "replica": 18125, - "replied": 24238, - "replies": 18808, - "reply": 8965, - "replying": 47599, - "repor": 2628, - "report": 2417, - "reported": 7598, - "reportedly": 10953, - "reporter": 11019, - "reporters": 18454, - "reporting": 9218, - "reports": 4908, - "reposit": 41276, - "repository": 46977, - "repost": 33147, - "repost": 7217, - "repostapp": 38388, - "reposting": 20223, - "reppin": 19163, - "repping": 22574, - "repre": 3397, - "represent": 8293, - "represent": 8406, - "representation": 13520, - "representative": 13175, - "representatives": 15591, - "represented": 12299, - "representing": 7561, - "represents": 14433, - "repri": 31854, - "reproduction": 35714, - "reproductive": 25522, - "reps": 14265, - "reptile": 36938, - "reptiles": 38679, - "republic": 6376, - "republic": 7185, - "republican": 9842, - "republicans": 12384, - "repur": 41852, - "req": 42411, - "requ": 10664, - "reque": 9539, - "request": 7813, - "requested": 16199, - "requesting": 33245, - "requests": 17087, - "requi": 4863, - "requiem": 40316, - "require": 14437, - "required": 8500, - "requirement": 27146, - "requirements": 12860, - "requires": 13396, - "requiring": 33425, - "requis": 42602, - "rer": 41295, - "rer": 3407, - "rera": 14301, - "rero": 21860, - "rers": 18869, - "res": 4466, - "res": 934, - "resc": 3956, - "rescheduled": 43553, - "rescu": 8618, - "rescue": 28567, - "rescue": 5718, - "rescued": 11919, - "rescues": 32439, - "rescuing": 43770, - "rese": 13000, - "resear": 6090, - "research": 25694, - "research": 2379, - "researched": 42733, - "researcher": 18334, - "researchers": 9522, - "researching": 24544, - "reseller": 35391, - "resemb": 16916, - "resemblance": 26856, - "resemble": 37230, - "resembles": 35417, - "reser": 16420, - "reserv": 11906, - "reservation": 20289, - "reservations": 19307, - "reserve": 6911, - "reserved": 19796, - "reserves": 19705, - "reservoir": 20574, - "reset": 26250, - "resh": 47432, - "reshi": 39435, - "resi": 2152, - "residen": 22311, - "residence": 11672, - "residences": 38855, - "residency": 18545, - "resident": 9016, - "residente": 44637, - "residentevil": 48393, - "residential": 11002, - "residents": 6008, - "resign": 23584, - "resignation": 24779, - "resigned": 31014, - "resigns": 29738, - "resil": 10932, - "resili": 39212, - "resilience": 15271, - "resilient": 24694, - "resin": 24156, - "resist": 37345, - "resist": 9587, - "resistance": 7392, - "resistant": 17542, - "resisting": 43679, - "resolution": 9977, - "resolutions": 26816, - "resolve": 20787, - "resolved": 28807, - "reson": 18092, - "resonance": 42310, - "resort": 6594, - "resorts": 18839, - "resource": 43729, - "resource": 9760, - "resources": 6723, - "respec": 7466, - "respect": 31411, - "respect": 4916, - "respected": 19126, - "respectful": 24379, - "respecting": 36172, - "respective": 25817, - "respectively": 28794, - "respects": 23553, - "respir": 20771, - "respiratory": 24483, - "respon": 2421, - "respond": 12355, - "responded": 21121, - "respondents": 49253, - "responders": 25155, - "responding": 18037, - "responds": 17436, - "response": 5399, - "responses": 19006, - "responsi": 5490, - "responsibilities": 30375, - "responsibility": 11272, - "responsible": 8936, - "responsibly": 33675, - "responsive": 21544, - "ress": 34651, - "ress": 13629, - "resso": 15133, - "rest": 10974, - "rest": 2539, - "restart": 37378, - "restaur": 3775, - "restaurant": 41930, - "restaurant": 4489, - "restaurants": 11714, - "rested": 46020, - "resting": 18044, - "restless": 36724, - "restling": 30076, - "resto": 11118, - "resto": 41666, - "restock": 34060, - "restocked": 36966, - "restor": 8984, - "restoration": 11989, - "restorative": 46509, - "restore": 14008, - "restored": 14238, - "restoring": 24406, - "restra": 25424, - "restric": 11036, - "restricted": 27197, - "restriction": 44282, - "restrictions": 19884, - "restroom": 43423, - "restructuring": 43260, - "rests": 33775, - "resu": 10095, - "resul": 2655, - "result": 5659, - "resulted": 26449, - "resulting": 24581, - "results": 3790, - "resume": 15077, - "resumes": 30268, - "resur": 14865, - "resurg": 45962, - "resurgence": 47692, - "resurrec": 18487, - "resurrection": 25811, - "resusc": 47523, - "ret": 20500, - "ret": 10048, - "reta": 20153, - "retail": 14910, - "retail": 6455, - "retailer": 22549, - "retailers": 19418, - "retain": 24430, - "retained": 42737, - "retaining": 35571, - "retains": 42583, - "retali": 33101, - "retar": 29964, - "retarded": 44111, - "retention": 26247, - "rethink": 29078, - "rethinking": 42951, - "reti": 4721, - "retin": 31270, - "retina": 36919, - "retire": 18846, - "retired": 11477, - "retirement": 9205, - "retires": 29060, - "retiring": 21200, - "retrac": 32735, - "retreat": 11210, - "retri": 16918, - "retriever": 28394, - "retro": 6535, - "retro": 7755, - "retrogamer": 47220, - "retrogaming": 11316, - "retrospective": 27105, - "rett": 41082, - "rett": 8425, - "rette": 33066, - "return": 43042, - "return": 3458, - "returned": 10476, - "returning": 9290, - "returns": 5020, - "retwee": 48190, - "retweet": 3195, - "retweeted": 12705, - "retweeting": 32345, - "retweets": 10160, - "rety": 41550, - "reu": 20255, - "reu": 40371, - "reuben": 40450, - "reunion": 10247, - "reunite": 26179, - "reunited": 13516, - "reusable": 30395, - "reuse": 26535, - "reut": 15210, - "reuters": 15569, - "rev": 8424, - "rev": 11789, - "revamp": 29819, - "revamped": 36420, - "revan": 45277, - "reve": 3115, - "reveal": 8052, - "revealed": 7171, - "revealing": 21321, - "reveals": 6621, - "revel": 14133, - "revelation": 24053, - "revelations": 36163, - "reven": 10171, - "revenge": 12717, - "revenue": 10637, - "revenues": 33348, - "rever": 14829, - "rever": 41913, - "revere": 44187, - "reverend": 34407, - "revers": 20726, - "reversal": 33367, - "reverse": 12812, - "reversed": 42485, - "reversi": 31601, - "reversible": 34212, - "revi": 8317, - "review": 2268, - "reviewed": 16678, - "reviewer": 36409, - "reviewers": 48195, - "reviewing": 20458, - "reviews": 7227, - "revise": 46801, - "revised": 22806, - "revising": 46882, - "revision": 20335, - "revisit": 26568, - "revisited": 34302, - "revisiting": 33144, - "revit": 26367, - "revitalization": 46923, - "revival": 14142, - "revive": 26450, - "revived": 42912, - "revo": 28660, - "revol": 13447, - "revolt": 31697, - "revolu": 4900, - "revolution": 17699, - "revolution": 6644, - "revolutionary": 14734, - "revolver": 38747, - "revolving": 47230, - "revs": 49286, - "revue": 43428, - "rew": 37564, - "rewar": 15857, - "reward": 11223, - "rewarded": 27163, - "rewarding": 23351, - "rewards": 15235, - "rewatch": 35610, - "rewatching": 41287, - "rewind": 26867, - "rewrite": 45218, - "rex": 13002, - "rex": 10904, - "rexperience": 33924, - "rey": 9681, - "rey": 4517, - "reyes": 18255, - "reykja": 47571, - "reyn": 11998, - "reynolds": 14309, - "reys": 48284, - "rez": 27597, - "rez": 15192, - "reza": 35888, - "rf": 35529, - "rf": 16368, - "rfc": 19003, - "rfid": 40204, - "rg": 33055, - "rg": 14897, - "rgb": 36128, - "rgv": 33685, - "rh": 8745, - "rh": 22404, - "rha": 19473, - "rhapso": 32532, - "rhapsody": 35774, - "rhe": 9186, - "rhea": 28612, - "rhetor": 24359, - "rhetoric": 29985, - "rhett": 42984, - "rheu": 42953, - "rhi": 21212, - "rhin": 12269, - "rhine": 22863, - "rhine": 44833, - "rhinestone": 30450, - "rhino": 41744, - "rhino": 20056, - "rhinos": 30671, - "rho": 7637, - "rhode": 39302, - "rhode": 27907, - "rhodes": 17785, - "rhon": 25882, - "rhonda": 46100, - "rhp": 27199, - "rhs": 24551, - "rhu": 23897, - "rhubarb": 30213, - "rhy": 7740, - "rhyme": 37356, - "rhymes": 33143, - "rhys": 28647, - "rhyth": 27069, - "rhythm": 16172, - "rhythmic": 46386, - "rhythms": 40872, - "ri": 553, - "ri": 2574, - "ria": 3650, - "rial": 15200, - "rian": 7788, - "rib": 44634, - "rib": 18298, - "riba": 44992, - "ribb": 10081, - "ribbon": 12114, - "ribbons": 35271, - "ribe": 46115, - "ribs": 17519, - "ric": 920, - "ric": 4798, - "rica": 14230, - "rical": 18109, - "rican": 30958, - "ricardo": 23140, - "ricci": 35783, - "ricciardo": 49282, - "rice": 36362, - "rice": 4741, - "rich": 5223, - "rich": 4021, - "richar": 9350, - "richard": 9080, - "richard": 4470, - "richards": 11372, - "richardson": 15984, - "riche": 23286, - "richer": 34138, - "riches": 37093, - "richest": 25572, - "richi": 38934, - "richie": 19797, - "richland": 43079, - "richmond": 34143, - "richmond": 11292, - "richter": 37591, - "rick": 6237, - "rick": 3064, - "ricket": 46161, - "ricket": 23671, - "ricks": 23111, - "ricky": 19188, - "ricky": 12814, - "rico": 37962, - "rico": 11362, - "ricotta": 38473, - "rics": 7353, - "ricul": 6980, - "rid": 18103, - "rid": 9874, - "ridd": 21990, - "ridden": 32025, - "riddle": 31839, - "ride": 15816, - "ride": 2994, - "rider": 31056, - "rider": 9707, - "riders": 10826, - "rides": 11308, - "ridg": 42646, - "ridge": 16580, - "ridge": 6352, - "ridic": 9624, - "ridiculous": 12659, - "ridiculously": 25661, - "ridin": 47869, - "riding": 6765, - "ridley": 27883, - "rie": 14824, - "rie": 5322, - "ried": 7552, - "riel": 26696, - "rien": 35237, - "rier": 40714, - "rier": 13336, - "ries": 28179, - "ries": 3059, - "riesling": 36372, - "rif": 7044, - "riff": 30359, - "rifle": 15354, - "rifles": 25678, - "rift": 26681, - "rig": 18462, - "rig": 13871, - "riga": 36626, - "rigged": 35897, - "rigging": 38160, - "riggs": 40328, - "righ": 15391, - "right": 13341, - "right": 1155, - "righte": 20762, - "righteous": 28169, - "righteousness": 42481, - "rightful": 42601, - "rightly": 42669, - "rights": 3336, - "rigid": 43138, - "rigor": 36788, - "rigorous": 41654, - "rigs": 42893, - "rihanna": 13744, - "rij": 41097, - "rik": 31136, - "rik": 27832, - "rika": 28580, - "ril": 12270, - "ril": 2388, - "riley": 35056, - "riley": 12260, - "rill": 23705, - "rilla": 43956, - "rilla": 18685, - "rim": 28147, - "rim": 12199, - "rime": 27064, - "rimin": 11527, - "rimo": 47817, - "rims": 34327, - "rin": 5859, - "rin": 11739, - "rina": 12869, - "rine": 24952, - "ring": 8318, - "ring": 2540, - "ringed": 44712, - "ringer": 35761, - "ringing": 26035, - "ringo": 38845, - "rings": 5751, - "rington": 12455, - "rink": 21497, - "rinka": 47316, - "rino": 47188, - "rinse": 48320, - "rio": 15681, - "rio": 5782, - "rion": 31623, - "rion": 34046, - "rios": 32814, - "riot": 32636, - "riot": 14218, - "riots": 24844, - "rious": 6340, - "rip": 10353, - "rip": 4243, - "ripe": 22832, - "ripley": 41589, - "ripp": 25276, - "ripped": 17815, - "ripper": 35347, - "ripping": 29126, - "ripple": 24825, - "rips": 30182, - "rir": 36792, - "ris": 6108, - "ris": 1999, - "rise": 13641, - "rise": 3151, - "risen": 23653, - "risers": 44983, - "rises": 13362, - "riseup": 35760, - "rish": 18378, - "rish": 18927, - "rishi": 48434, - "rising": 30452, - "rising": 5448, - "risis": 37998, - "risk": 27967, - "risk": 4213, - "risking": 48155, - "risks": 12474, - "risky": 27630, - "risotto": 31471, - "rist": 40610, - "rit": 5156, - "rit": 17333, - "rita": 16178, - "ritchie": 30997, - "rite": 39318, - "rite": 18429, - "rites": 36160, - "rith": 48169, - "rith": 48850, - "riti": 32904, - "rito": 19379, - "ritos": 33507, - "ritt": 26092, - "ritter": 34854, - "ritu": 13391, - "ritual": 19712, - "rituals": 31145, - "ritz": 39151, - "ritz": 25627, - "rium": 33884, - "riv": 25113, - "rival": 13412, - "rival": 15629, - "rivalry": 19511, - "rivals": 15135, - "rive": 27588, - "rive": 34917, - "river": 5239, - "river": 2473, - "rivera": 18275, - "riverdale": 28304, - "riverfront": 44439, - "rivers": 10723, - "riverside": 15809, - "riveting": 44024, - "riviera": 25851, - "rix": 43407, - "rix": 9483, - "riya": 36908, - "riyad": 31564, - "riyadh": 33577, - "riz": 18426, - "riz": 35411, - "rizal": 41555, - "rizio": 40191, - "rizz": 34826, - "rizzo": 49076, - "rj": 26016, - "rj": 20949, - "rk": 38725, - "rk": 21422, - "rl": 18041, - "rl": 14590, - "rlly": 43222, - "rly": 25954, - "rm": 20202, - "rm": 8431, - "rmb": 49097, - "rms": 40529, - "rn": 13206, - "rn": 7666, - "rna": 24566, - "rnb": 31556, - "rnc": 35309, - "rnli": 29748, - "ro": 532, - "ro": 2795, - "roa": 8313, - "roach": 31073, - "road": 4370, - "road": 1759, - "roadhouse": 47891, - "roadmap": 30111, - "roads": 6189, - "roadsafety": 39992, - "roadshow": 21168, - "roadside": 26928, - "roadster": 28920, - "roadto": 24681, - "roadtrip": 15094, - "roadway": 42744, - "roam": 34045, - "roaming": 29240, - "roano": 34184, - "roanoke": 36587, - "roar": 34193, - "roar": 18483, - "roaring": 26428, - "roast": 11404, - "roasted": 10479, - "roasting": 32228, - "rob": 2668, - "rob": 6442, - "robb": 14059, - "robb": 39673, - "robbed": 24163, - "robber": 35545, - "robbers": 40852, - "robbery": 16393, - "robbi": 44898, - "robbie": 37200, - "robbie": 15970, - "robbing": 47569, - "robbins": 23461, - "robby": 44128, - "robe": 23116, - "rober": 4532, - "robert": 8811, - "robert": 3929, - "roberta": 43373, - "roberto": 42645, - "roberto": 16227, - "roberts": 10366, - "robertson": 17643, - "robes": 29304, - "robi": 16743, - "robin": 6681, - "robin": 7988, - "robins": 35502, - "robinson": 8523, - "robles": 47646, - "roblo": 27481, - "roblox": 37798, - "robo": 4672, - "robo": 36057, - "robot": 46089, - "robot": 8797, - "robotic": 23975, - "robotics": 13546, - "robots": 13473, - "robson": 31113, - "robust": 22780, - "robyn": 34533, - "roc": 3268, - "roc": 13776, - "rocco": 30009, - "roch": 23788, - "rochdale": 41880, - "roche": 31776, - "rochelle": 40161, - "rochester": 18057, - "rock": 2640, - "rock": 2172, - "rockab": 39353, - "rockabilly": 45019, - "rocke": 19914, - "rocked": 16116, - "rockefeller": 35476, - "rocker": 29008, - "rockers": 32338, - "rocket": 25435, - "rocket": 8383, - "rockets": 13292, - "rockford": 41039, - "rockies": 20621, - "rockin": 12073, - "rocking": 7081, - "rockn": 24442, - "rocknroll": 27840, - "rocks": 6135, - "rockstar": 23603, - "rockstar": 18000, - "rockstargames": 27516, - "rockstars": 46639, - "rockthe": 49363, - "rockwell": 34747, - "rocky": 33481, - "rocky": 9648, - "rod": 9712, - "rod": 8291, - "roddy": 42332, - "rode": 18449, - "rodeo": 18250, - "rodgers": 17612, - "rodi": 49100, - "rodney": 21753, - "rodri": 11053, - "rodrigo": 33944, - "rodriguez": 14057, - "rods": 28618, - "roe": 27671, - "roe": 9996, - "rof": 33029, - "rofl": 48228, - "roft": 45212, - "rog": 34269, - "rog": 34017, - "rogen": 23380, - "roger": 13929, - "roger": 7735, - "rogerfederer": 40182, - "rogers": 10661, - "rogue": 32575, - "rogue": 15162, - "roh": 14933, - "roh": 29840, - "rohan": 39848, - "rohing": 23600, - "rohingya": 26146, - "rohit": 44649, - "rohit": 24299, - "roi": 21877, - "rok": 36807, - "rol": 3393, - "rol": 7818, - "roland": 33713, - "roland": 19569, - "role": 18485, - "role": 3414, - "roles": 11871, - "rolex": 21093, - "rolf": 48606, - "roll": 4711, - "roll": 3341, - "rolled": 11982, - "roller": 21034, - "roller": 12342, - "rollercoaster": 38248, - "rollers": 36941, - "rollin": 27545, - "rolling": 24250, - "rolling": 6347, - "rollingstones": 41309, - "rollins": 27724, - "rollout": 47710, - "rollover": 39214, - "rolls": 8614, - "rolltide": 28101, - "rom": 11377, - "rom": 19205, - "roma": 44134, - "roma": 11631, - "romain": 48897, - "roman": 4416, - "roman": 7370, - "romance": 7215, - "romania": 15884, - "romanian": 30866, - "romano": 38409, - "romans": 23066, - "romantic": 41457, - "romantic": 8821, - "rome": 9406, - "rome": 5243, - "romeo": 14429, - "romero": 23694, - "romney": 19287, - "romo": 32248, - "romper": 43699, - "ron": 2393, - "ron": 3372, - "rona": 42385, - "ronal": 46194, - "ronald": 15683, - "ronaldo": 13463, - "ronan": 34971, - "rond": 31935, - "ronda": 37436, - "rondo": 43756, - "rone": 48082, - "rone": 32763, - "roni": 47234, - "ronnie": 45257, - "ronnie": 16421, - "rons": 19536, - "ront": 48881, - "roo": 1249, - "roo": 31227, - "rood": 38007, - "roof": 9120, - "roof": 6449, - "roofing": 24415, - "roofs": 34635, - "rooftop": 16319, - "rook": 35918, - "rookie": 9771, - "rookies": 31917, - "room": 8845, - "room": 1530, - "roomie": 36851, - "roommate": 19825, - "roommates": 37323, - "rooms": 6328, - "rooney": 17712, - "roos": 32938, - "roosevel": 17644, - "roosevelt": 18488, - "rooster": 46263, - "rooster": 30926, - "roosters": 43693, - "root": 25930, - "root": 9728, - "rooted": 30428, - "rooting": 25523, - "roots": 8084, - "rop": 43401, - "rope": 9953, - "ropes": 30506, - "ror": 8668, - "ror": 2843, - "rors": 12072, - "rory": 42804, - "rory": 17813, - "ros": 5288, - "ros": 6930, - "rosa": 14393, - "rosal": 30397, - "rosario": 33640, - "rosary": 33098, - "rosberg": 46037, - "rose": 6146, - "rose": 3568, - "roseanne": 47528, - "rosel": 33616, - "rosemary": 19472, - "rosen": 13214, - "rosen": 36424, - "rosenberg": 43558, - "rosenthal": 46990, - "roses": 9061, - "rosetta": 43800, - "rosewood": 38686, - "rosie": 43049, - "rosie": 16888, - "ross": 8801, - "ross": 2158, - "rosse": 11602, - "rossi": 24817, - "rosso": 33023, - "roster": 12487, - "roswell": 45116, - "rosy": 46705, - "rosé": 28006, - "rot": 10055, - "rot": 9643, - "rotar": 45959, - "rotary": 14654, - "rotating": 32265, - "rotation": 18089, - "rotc": 32252, - "roth": 17741, - "roth": 19139, - "rother": 23174, - "rotherham": 37687, - "rothschild": 45089, - "roti": 46940, - "roto": 34698, - "rotor": 42991, - "rots": 16642, - "rott": 34806, - "rotten": 24324, - "rotter": 22614, - "rotterdam": 23422, - "rotun": 42970, - "rou": 2964, - "rou": 34783, - "roud": 28375, - "rouge": 16209, - "rough": 11699, - "rough": 8511, - "roughly": 21910, - "roughs": 37598, - "rouhani": 39912, - "roulette": 39930, - "roun": 5602, - "round": 9403, - "round": 2522, - "roundabout": 29953, - "rounded": 26973, - "rounder": 37024, - "rounding": 40208, - "rounds": 11242, - "roundtable": 19386, - "roundup": 17503, - "roup": 29220, - "rourke": 38753, - "rous": 33645, - "rous": 34531, - "rousey": 46267, - "rout": 7502, - "rout": 41778, - "route": 5261, - "router": 29962, - "routes": 14923, - "routine": 12319, - "routines": 44074, - "routing": 44086, - "roux": 43416, - "rov": 23971, - "rove": 30130, - "rover": 12776, - "rovers": 16373, - "row": 5275, - "row": 1044, - "rowan": 26240, - "rowdy": 32141, - "rowe": 28323, - "rowed": 22615, - "rower": 43345, - "rowers": 41806, - "rowing": 12807, - "rowland": 33037, - "rowley": 48793, - "rowling": 29371, - "rown": 22287, - "rown": 25060, - "rows": 9409, - "rox": 14111, - "rox": 41033, - "roxy": 28093, - "roy": 2128, - "roy": 6354, - "royal": 6691, - "royal": 3853, - "royale": 20630, - "royalnavy": 41545, - "royals": 13335, - "royalties": 48660, - "royalty": 18296, - "royalwedding": 27461, - "royce": 18444, - "royd": 41476, - "royo": 39357, - "roz": 28989, - "roz": 37250, - "rp": 17305, - "rp": 8174, - "rpa": 41872, - "rpg": 12445, - "rpm": 23715, - "rps": 49215, - "rr": 5311, - "rr": 9126, - "rrp": 36967, - "rrr": 18267, - "rrrr": 25561, - "rrrr": 34444, - "rs": 6978, - "rs": 1724, - "rsa": 29437, - "rsc": 48524, - "rsd": 34426, - "rsi": 39046, - "rsl": 44752, - "rsp": 16381, - "rspb": 38508, - "rspb": 36727, - "rspca": 45643, - "rss": 46466, - "rss": 22350, - "rstats": 38700, - "rsvp": 9774, - "rt": 8959, - "rt": 8991, - "rtc": 31648, - "rte": 33822, - "rte": 23322, - "rtg": 22028, - "rti": 47549, - "rtr": 43999, - "rts": 8496, - "rtw": 34673, - "ru": 681, - "ru": 13735, - "rub": 15862, - "rub": 22586, - "rubb": 19597, - "rubbed": 45239, - "rubber": 31131, - "rubber": 11331, - "rubbing": 41262, - "rubbish": 21108, - "rubble": 42230, - "ruben": 44058, - "ruben": 29722, - "rubi": 27856, - "rubin": 34128, - "rubio": 24244, - "rubs": 43422, - "ruby": 24552, - "ruby": 11493, - "ruck": 27449, - "rucker": 45402, - "rud": 35256, - "rudd": 31836, - "rude": 16548, - "rudi": 48360, - "rudol": 40927, - "rudolf": 46835, - "rudolph": 30119, - "rudy": 38226, - "rudy": 22131, - "rue": 38024, - "rue": 19276, - "rufc": 45084, - "ruff": 28177, - "ruff": 30304, - "rufus": 39322, - "rug": 4217, - "rug": 19220, - "rugby": 15091, - "rugby": 4964, - "rugbyleague": 44419, - "ruger": 48655, - "rugged": 25225, - "rugs": 29946, - "rui": 46974, - "ruin": 16256, - "ruined": 17231, - "ruining": 29952, - "ruins": 16094, - "ruiz": 27873, - "ruk": 46628, - "rukh": 43075, - "rukh": 27631, - "rule": 31643, - "rule": 6175, - "ruled": 16324, - "ruler": 26286, - "rulers": 45328, - "rules": 5272, - "ruling": 14690, - "rum": 9223, - "rum": 11233, - "rumb": 42432, - "rumble": 18900, - "rumi": 31428, - "rumor": 22254, - "rumored": 36694, - "rumors": 16160, - "rumour": 34296, - "rumours": 20716, - "rump": 29366, - "run": 1639, - "run": 1934, - "runaway": 28851, - "runchat": 25838, - "rundown": 41100, - "rune": 33882, - "rune": 49244, - "runner": 37370, - "runner": 7913, - "runners": 10571, - "runnin": 43130, - "running": 24451, - "running": 2761, - "runoff": 38564, - "runs": 5586, - "runway": 13927, - "rup": 7996, - "rup": 14980, - "rupaul": 44211, - "rupee": 43916, - "rupees": 44110, - "rupert": 25625, - "rupt": 23055, - "ruption": 35403, - "rural": 28801, - "rural": 8737, - "rus": 35811, - "rus": 5998, - "rush": 12148, - "rush": 6973, - "rushed": 28104, - "rusher": 48745, - "rushes": 47217, - "rushing": 20284, - "russ": 6285, - "russ": 20764, - "russell": 26122, - "russell": 8150, - "russi": 2600, - "russia": 4018, - "russian": 30731, - "russian": 4868, - "russians": 25413, - "russo": 30679, - "rust": 28682, - "rust": 14212, - "rustic": 19822, - "rusty": 43966, - "rusty": 22646, - "rut": 14973, - "rut": 39102, - "rutger": 49029, - "rutgers": 28934, - "ruth": 15798, - "ruth": 12029, - "ruther": 26676, - "rutherford": 31070, - "ruthless": 36063, - "rutland": 46024, - "ruto": 43702, - "ruz": 23275, - "rv": 17135, - "rv": 17951, - "rva": 24278, - "rw": 9085, - "rw": 22926, - "rwa": 47452, - "rwand": 31758, - "rwanda": 15427, - "rwby": 39698, - "rwc": 32321, - "rx": 41188, - "rx": 15945, - "ry": 1511, - "ry": 913, - "ryan": 8682, - "ryan": 4053, - "ryanair": 43526, - "ryder": 43564, - "ryder": 21805, - "rye": 24015, - "rye": 17409, - "rying": 7838, - "ryn": 37728, - "ryo": 24460, - "rys": 21654, - "ryu": 46656, - "ryu": 34604, - "ré": 29106, - "s": 82, - "s": 338, - "sa": 774, - "sa": 1344, - "saa": 13429, - "saab": 27158, - "saad": 36530, - "saas": 25761, - "saat": 33151, - "sab": 3233, - "sab": 23213, - "saba": 38344, - "sabah": 32854, - "saban": 41620, - "sabar": 47102, - "sabbath": 26008, - "sabc": 30010, - "sabcnews": 41093, - "saber": 46822, - "saber": 25624, - "sabha": 23431, - "sabi": 47073, - "sabine": 44062, - "sable": 19224, - "sabot": 30700, - "sabotage": 40496, - "sabre": 35110, - "sabres": 29620, - "sabrin": 37029, - "sabrina": 24994, - "sac": 3632, - "sac": 12905, - "sach": 30168, - "sacha": 49010, - "sachin": 47527, - "sachin": 30297, - "sachs": 31451, - "sack": 28964, - "sack": 14979, - "sacked": 27519, - "sacks": 26441, - "sacram": 13334, - "sacramento": 16065, - "sacred": 40612, - "sacred": 12477, - "sacri": 15283, - "sacrif": 12117, - "sacrific": 16919, - "sacrifice": 12556, - "sacrificed": 31116, - "sacrifices": 28858, - "sacrificing": 48146, - "sad": 2810, - "sad": 3719, - "saddened": 27720, - "saddest": 34925, - "saddle": 30469, - "saddle": 20283, - "sade": 27429, - "sadh": 40955, - "sadi": 22207, - "sadie": 30333, - "sadiq": 44107, - "sadler": 45600, - "sadly": 11603, - "sadness": 20399, - "sae": 38633, - "sae": 34883, - "saeed": 29745, - "saf": 2125, - "saf": 25760, - "safar": 23443, - "safari": 14091, - "safarilive": 34816, - "safc": 27998, - "safe": 2901, - "safe": 2996, - "safeguard": 42249, - "safeguarding": 47451, - "safely": 11513, - "safer": 40124, - "safer": 15504, - "safest": 38973, - "safety": 19050, - "safety": 3406, - "safetyfirst": 43608, - "saffron": 27529, - "sag": 6609, - "sag": 30048, - "saga": 15758, - "sagan": 37193, - "sagar": 42518, - "sage": 25800, - "sage": 7509, - "sages": 25979, - "sagin": 47097, - "sagitt": 44685, - "sagu": 44708, - "sah": 30943, - "sah": 26342, - "saha": 36062, - "sahara": 24599, - "saharan": 44255, - "sahi": 24608, - "sahib": 34150, - "sai": 16048, - "sai": 10886, - "said": 40319, - "said": 1946, - "saif": 44164, - "saig": 36328, - "saigon": 41081, - "sail": 7528, - "sail": 12156, - "sailed": 43047, - "sailing": 11003, - "sailor": 28002, - "sailor": 16076, - "sailormoon": 40673, - "sailors": 25355, - "sails": 27526, - "sain": 21226, - "sain": 40378, - "sains": 24860, - "sainsbury": 45879, - "sainsburys": 36934, - "saint": 11274, - "saint": 5599, - "saints": 8769, - "saintsfc": 31102, - "sair": 46600, - "sair": 30971, - "saire": 28087, - "saison": 33256, - "sait": 48008, - "saj": 33580, - "sak": 11511, - "sak": 35900, - "saka": 33609, - "sake": 12874, - "sakh": 43945, - "saki": 40514, - "saku": 37550, - "sakura": 24162, - "sal": 980, - "sal": 6126, - "sala": 17300, - "salaam": 46773, - "salad": 6188, - "salads": 30948, - "salah": 22516, - "salam": 19007, - "salam": 33963, - "salamat": 44696, - "salami": 46885, - "salaries": 33132, - "salary": 16312, - "salazar": 45988, - "sale": 17786, - "sale": 1690, - "saleh": 38353, - "salem": 48194, - "salem": 16884, - "sales": 13347, - "sales": 3765, - "salesforce": 22680, - "salesman": 37633, - "salford": 25629, - "sali": 15411, - "salim": 42760, - "salinas": 41990, - "saline": 46918, - "salis": 20667, - "salis": 39378, - "salisbury": 24763, - "sall": 27122, - "sall": 20883, - "salle": 23738, - "sally": 29542, - "sally": 13349, - "salman": 13754, - "salman": 16219, - "salmankhan": 15177, - "salmon": 37040, - "salmon": 9137, - "salom": 38268, - "salon": 33916, - "salon": 11105, - "saloon": 26038, - "sals": 16307, - "salsa": 16442, - "salt": 12763, - "salt": 6611, - "salted": 26313, - "saltlife": 47809, - "salts": 40559, - "saltwater": 43616, - "salty": 20678, - "salu": 31711, - "salud": 46867, - "salut": 44998, - "salute": 44908, - "salute": 9747, - "salutes": 32762, - "salv": 8299, - "salvador": 20874, - "salvage": 33131, - "salvation": 19534, - "salvatore": 38772, - "salz": 33594, - "salzburg": 43396, - "sam": 1644, - "sam": 3730, - "sama": 19272, - "samanth": 11465, - "samantha": 15466, - "samanthap": 38266, - "samanthaprabhu": 38643, - "samar": 21820, - "samaritan": 45495, - "samba": 37190, - "same": 23062, - "same": 2208, - "samheughan": 36255, - "sami": 48400, - "sami": 24322, - "sammy": 31091, - "sammy": 16758, - "samo": 30006, - "samoa": 34932, - "samp": 31225, - "sample": 9542, - "sampler": 40629, - "samples": 13387, - "sampling": 19522, - "sampson": 39983, - "sams": 44667, - "samson": 34659, - "samsun": 47875, - "samsung": 35369, - "samsung": 8115, - "samu": 7646, - "samuel": 30612, - "samuel": 12787, - "samurai": 21739, - "san": 1489, - "san": 2223, - "sana": 19434, - "sanantonio": 34714, - "sanat": 29091, - "sanatomy": 36052, - "sanc": 7398, - "sance": 15930, - "sanchez": 13971, - "sanctioned": 43032, - "sanctions": 17790, - "sanctu": 12712, - "sanctuary": 14044, - "sand": 2147, - "sand": 5094, - "sandal": 36445, - "sandal": 42185, - "sandals": 20731, - "sandalwood": 47502, - "sandeep": 46973, - "sander": 34111, - "sanders": 10429, - "sanderson": 36198, - "sandi": 44249, - "sandiego": 45997, - "sandiego": 15793, - "sandman": 45730, - "sando": 35921, - "sandoval": 44157, - "sandra": 33733, - "sandra": 13415, - "sandro": 42389, - "sands": 5936, - "sandstone": 36796, - "sandwich": 17050, - "sandwich": 8687, - "sandwiches": 19667, - "sandy": 29679, - "sandy": 10355, - "sane": 23419, - "sanford": 32330, - "sanfrancisco": 20254, - "sang": 13235, - "sang": 11684, - "sange": 12466, - "sangria": 42665, - "sani": 39137, - "sani": 34492, - "sanitary": 33842, - "sanitation": 25414, - "saniti": 43987, - "sanity": 30517, - "sanjay": 31712, - "sanjay": 25796, - "sanje": 40405, - "sanjose": 45971, - "sank": 43692, - "sano": 34053, - "sans": 16982, - "sansk": 39689, - "sanskrit": 48083, - "sant": 8356, - "sant": 23120, - "santa": 22175, - "santa": 4555, - "santac": 28876, - "santam": 45627, - "santana": 27033, - "santander": 46476, - "santi": 13856, - "santiago": 16568, - "santo": 29631, - "santo": 18400, - "santor": 28448, - "santorini": 39573, - "santos": 16582, - "sany": 47679, - "sao": 28026, - "sap": 8089, - "sap": 11591, - "sapi": 40016, - "sapp": 13427, - "sapp": 40729, - "sapphire": 22044, - "sar": 1808, - "sar": 9424, - "sara": 37196, - "sara": 10063, - "sarab": 40716, - "sarac": 35722, - "sarah": 9086, - "sarah": 5327, - "saraj": 42592, - "sarajevo": 48211, - "saras": 20373, - "sarasota": 31990, - "sarato": 24845, - "saratoga": 29496, - "sarawak": 47331, - "sarcasm": 37246, - "sarcastic": 48639, - "sardar": 41786, - "sarde": 43925, - "sardin": 27383, - "sardinia": 41025, - "sare": 13051, - "saree": 30860, - "sargent": 34864, - "sari": 42327, - "sari": 20261, - "saries": 47586, - "sarkar": 30673, - "sarko": 33658, - "sarkodie": 42848, - "sarmy": 20954, - "sart": 33006, - "sary": 15398, - "sas": 3960, - "sas": 5235, - "sash": 35656, - "sasha": 46078, - "sasha": 20894, - "sasia": 44751, - "sask": 47091, - "sask": 30416, - "saskat": 17102, - "saskatchewan": 23899, - "saskatoon": 31128, - "sass": 31351, - "sassy": 20827, - "sat": 1382, - "sat": 3279, - "sata": 41520, - "satan": 19446, - "satanic": 38224, - "satchel": 45908, - "sate": 35749, - "satell": 9031, - "satellite": 10316, - "satellites": 28483, - "sath": 29675, - "sathletics": 30154, - "sati": 7038, - "satin": 21803, - "sation": 23674, - "sations": 31232, - "satire": 29875, - "satis": 9906, - "satisf": 22941, - "satisfaction": 19925, - "satisfied": 18101, - "satisfy": 29444, - "satisfying": 23755, - "sato": 34376, - "satu": 45283, - "satur": 1634, - "saturated": 32466, - "saturday": 12537, - "saturday": 1748, - "saturdaymorning": 29053, - "saturdaymotivation": 40843, - "saturdays": 18930, - "saturn": 17312, - "saty": 39426, - "sau": 2096, - "sau": 19455, - "sauce": 5520, - "saucer": 42272, - "sauces": 40367, - "saucy": 46684, - "saudi": 24511, - "saudi": 8548, - "saudiarabia": 28680, - "sauer": 46333, - "saul": 47623, - "saul": 23252, - "sault": 40361, - "sauna": 35460, - "saunders": 23794, - "saur": 13227, - "saura": 46532, - "saurus": 22118, - "saus": 36121, - "sausage": 11855, - "sausages": 31593, - "sauté": 36290, - "sautéed": 38517, - "sauvi": 30116, - "sauvignon": 32745, - "sav": 2248, - "sav": 26533, - "sava": 40198, - "savag": 43039, - "savage": 11859, - "savannah": 18662, - "save": 5895, - "save": 2673, - "saved": 7137, - "saveour": 33390, - "saver": 20987, - "savers": 31416, - "saves": 12907, - "savethe": 18031, - "savi": 14721, - "saving": 28498, - "saving": 6979, - "savings": 10651, - "savior": 24762, - "saviour": 35800, - "savor": 48071, - "savory": 32992, - "savoury": 49071, - "savoy": 39552, - "savvy": 29278, - "saw": 12429, - "saw": 2425, - "sawa": 39613, - "sawards": 29012, - "sawyer": 27726, - "sax": 14169, - "sax": 23766, - "saxon": 31856, - "saxophon": 43760, - "saxophone": 32296, - "say": 3047, - "say": 1451, - "saya": 35170, - "sayang": 46322, - "sayers": 44116, - "sayin": 23662, - "saying": 4455, - "says": 1563, - "saz": 35577, - "sb": 5576, - "sb": 4977, - "sba": 44970, - "sback": 43840, - "sband": 27539, - "sbaseball": 46491, - "sbball": 39190, - "sbc": 31404, - "sberg": 20358, - "sbi": 41369, - "sbk": 39211, - "sboro": 18909, - "sbridge": 49228, - "sbs": 18883, - "sbu": 48075, - "sbu": 46281, - "sburg": 7390, - "sburgh": 48205, - "sbury": 14081, - "sby": 26519, - "sby": 10287, - "sc": 663, - "sc": 3219, - "sca": 11001, - "scab": 31716, - "scaf": 28981, - "scafe": 45574, - "scaffolding": 41687, - "scal": 10859, - "scala": 37997, - "scalable": 44084, - "scale": 37817, - "scale": 5879, - "scaled": 41923, - "scales": 22891, - "scaling": 29116, - "scallo": 19936, - "scallop": 39544, - "scallops": 31430, - "scalp": 38898, - "scam": 17620, - "scam": 13215, - "scamp": 28451, - "scams": 34395, - "scan": 10650, - "scan": 11261, - "scanada": 27121, - "scand": 8110, - "scandal": 35420, - "scandal": 11622, - "scandals": 45490, - "scandin": 32014, - "scandinavian": 35661, - "scanned": 43719, - "scanner": 24185, - "scanning": 24092, - "scans": 31251, - "scap": 35883, - "scape": 36005, - "scape": 12314, - "scapes": 31933, - "scar": 4171, - "scar": 18088, - "scarborough": 24254, - "scarce": 38572, - "scarcity": 45812, - "scare": 33536, - "scare": 15920, - "scarec": 38814, - "scarecrow": 46504, - "scared": 9870, - "scares": 34096, - "scarf": 13365, - "scari": 27050, - "scariest": 37213, - "scarlet": 20389, - "scarlett": 28325, - "scars": 20747, - "scarves": 29249, - "scary": 9250, - "scat": 13899, - "scattered": 22090, - "scavenger": 36778, - "scc": 19458, - "scd": 48422, - "scen": 2204, - "scenario": 20456, - "scenarios": 31346, - "scence": 33418, - "scene": 3562, - "scenery": 16025, - "scenes": 5415, - "scenic": 15394, - "scent": 36277, - "scent": 7683, - "scented": 27190, - "scenter": 23059, - "scentre": 39371, - "scents": 26336, - "scep": 24439, - "scfc": 38578, - "sch": 844, - "sch": 7542, - "scha": 42809, - "schaf": 45588, - "schaft": 41010, - "schal": 35568, - "schalke": 41029, - "schallenge": 43665, - "schan": 31328, - "schar": 15085, - "schat": 31842, - "schau": 35830, - "sche": 3038, - "sche": 7289, - "schedu": 4207, - "schedule": 5521, - "scheduled": 10986, - "schedules": 28986, - "scheduling": 32216, - "scheer": 26776, - "schel": 39881, - "schel": 38569, - "schem": 17720, - "scheme": 9024, - "schemes": 22958, - "schen": 22738, - "scher": 21925, - "scher": 21299, - "schi": 13731, - "schi": 24984, - "schicago": 46230, - "schiff": 39431, - "schild": 32148, - "schiz": 33230, - "schizoph": 40004, - "schizophre": 41163, - "schle": 32022, - "schmid": 17375, - "schmidt": 18463, - "schnau": 45745, - "schnei": 19941, - "schneider": 22972, - "schnit": 40903, - "scho": 2493, - "schoice": 23860, - "schol": 4498, - "scholar": 7192, - "scholar": 12830, - "scholarly": 41065, - "scholars": 13818, - "scholarship": 9070, - "scholarships": 17866, - "scholastic": 35743, - "schoo": 20721, - "school": 6063, - "school": 1228, - "schooled": 44722, - "schoolers": 31455, - "schooling": 28608, - "schools": 3513, - "schre": 47685, - "schri": 25453, - "schro": 32381, - "schu": 11318, - "schubert": 46939, - "schul": 14945, - "schultz": 30308, - "schulz": 39572, - "schumacher": 39208, - "schumer": 25313, - "schur": 42475, - "schwab": 47602, - "schwar": 13985, - "schwartz": 30617, - "schwarz": 27074, - "schwarzenegger": 33860, - "schwe": 25324, - "sci": 2267, - "sci": 8309, - "sciart": 31704, - "scicom": 28606, - "scicomm": 29573, - "scien": 39261, - "science": 10201, - "science": 2497, - "sciencefiction": 39170, - "sciences": 11481, - "scienti": 4338, - "scientific": 9750, - "scientist": 11083, - "scientists": 8045, - "sciento": 36193, - "scientology": 44694, - "scifi": 41862, - "scifi": 12230, - "scion": 47208, - "sciss": 25667, - "scissors": 30867, - "sciutto": 44392, - "sclerosis": 39446, - "sclub": 20017, - "sco": 1065, - "sco": 4763, - "scoe": 31164, - "scol": 13599, - "scoll": 44895, - "scollege": 39536, - "scom": 26407, - "scon": 17163, - "scon": 29272, - "scones": 36443, - "sconf": 39704, - "scoo": 14199, - "scooby": 34469, - "scoop": 13829, - "scoops": 41360, - "scope": 7979, - "scopes": 30328, - "scopic": 23869, - "scopy": 20018, - "scor": 8442, - "score": 12067, - "score": 4431, - "scoreboard": 30104, - "scorecard": 38128, - "scored": 6143, - "scoreless": 33469, - "scorer": 16572, - "scorers": 26699, - "scores": 7039, - "scoring": 9198, - "scorpi": 15445, - "scorpio": 34331, - "scorpion": 28461, - "scorpions": 45401, - "scorsese": 45975, - "scot": 2496, - "scot": 9271, - "scotch": 16687, - "scoti": 46446, - "scotia": 27859, - "scotland": 29174, - "scotland": 4203, - "scots": 17260, - "scotsman": 39612, - "scott": 7775, - "scott": 3664, - "scotti": 6227, - "scottish": 18039, - "scottish": 7442, - "scottsdale": 27817, - "scotty": 39697, - "scotty": 26836, - "scotus": 21720, - "scou": 44909, - "scoun": 16110, - "scouncil": 48787, - "scountry": 40432, - "scour": 46172, - "scout": 32213, - "scout": 10786, - "scouting": 19072, - "scouts": 14837, - "scow": 27929, - "scowboys": 31386, - "scp": 45030, - "scr": 36131, - "scra": 11187, - "scrabble": 39488, - "scram": 17289, - "scramble": 32688, - "scrambled": 39026, - "scran": 41774, - "scranton": 45274, - "scrap": 27950, - "scrap": 21695, - "scrapbook": 48733, - "scrapped": 43325, - "scraps": 40809, - "scrat": 9572, - "scratch": 13258, - "scratched": 48831, - "scratches": 46556, - "scratching": 44617, - "scre": 1795, - "scream": 31645, - "scream": 13239, - "screamed": 35427, - "screaming": 12891, - "screams": 23989, - "screen": 5351, - "screen": 3750, - "screened": 31450, - "screening": 6688, - "screenings": 27655, - "screenplay": 30058, - "screens": 12689, - "screenshot": 20637, - "screenshot": 12646, - "screenshots": 26783, - "screenshotsaturday": 21406, - "screenwriter": 37293, - "screenwriting": 35465, - "screw": 25529, - "screw": 14225, - "screwdriver": 48748, - "screwed": 30592, - "screws": 38292, - "scri": 2139, - "scrib": 34259, - "scribe": 36228, - "scribed": 38334, - "scricket": 45947, - "scrim": 21978, - "scrimmage": 25216, - "scrip": 11955, - "script": 8374, - "scripted": 40513, - "scription": 26604, - "scriptions": 39512, - "scripts": 20109, - "scripture": 27186, - "scro": 30768, - "scroll": 24160, - "scrolling": 28889, - "scrolls": 38113, - "scroo": 42263, - "scru": 7589, - "scrub": 23432, - "scrubs": 37919, - "scrum": 29047, - "scrump": 39791, - "scrumptious": 40987, - "scrutiny": 34305, - "scs": 26853, - "sct": 39284, - "scu": 8181, - "scu": 32135, - "scuba": 39053, - "scuba": 20559, - "scubadiving": 49046, - "scue": 25955, - "scul": 4948, - "scully": 36598, - "sculp": 6093, - "sculpt": 45044, - "sculpted": 41296, - "sculpting": 44389, - "sculptor": 29409, - "sculpture": 8757, - "sculptures": 20378, - "scum": 29655, - "scumb": 44525, - "scup": 21506, - "scur": 32742, - "scwx": 41966, - "scy": 27471, - "sd": 3080, - "sd": 4159, - "sda": 25548, - "sdale": 12327, - "sday": 5902, - "sday": 1376, - "sdays": 14491, - "sdc": 40992, - "sdcc": 13246, - "sden": 17241, - "sdf": 34681, - "sdg": 20177, - "sdgs": 16261, - "sdk": 40015, - "sdlive": 34561, - "sdn": 41925, - "sdsu": 41284, - "se": 567, - "se": 611, - "sea": 5970, - "sea": 2102, - "seab": 15728, - "seabir": 42558, - "seac": 35626, - "seaf": 9336, - "seafood": 12472, - "seag": 15730, - "seagu": 38076, - "seagull": 38858, - "seagulls": 42215, - "seahawks": 15341, - "seal": 21381, - "seal": 10159, - "sealed": 13358, - "sealing": 42992, - "seals": 18179, - "seam": 13710, - "seam": 44201, - "seaman": 47513, - "seamless": 29373, - "seamus": 40175, - "sean": 11406, - "sean": 6077, - "seanhannity": 43316, - "seap": 29983, - "seaport": 46418, - "sear": 1612, - "search": 23129, - "search": 1920, - "searched": 28961, - "searches": 26378, - "searching": 10626, - "seared": 29727, - "sears": 26693, - "seas": 7329, - "seas": 9556, - "seascape": 42593, - "seaside": 18867, - "season": 19288, - "season": 1367, - "seasonal": 14215, - "seasoned": 28399, - "seasoning": 43439, - "seasons": 8635, - "seat": 19670, - "seat": 4922, - "seated": 23953, - "seater": 37543, - "seating": 16240, - "seats": 6944, - "seattle": 24388, - "seattle": 6274, - "seau": 32263, - "seaw": 32658, - "seaweed": 30204, - "seaworld": 27422, - "seb": 35766, - "seb": 25171, - "sebasti": 10324, - "sebastian": 43792, - "sebastian": 13181, - "sebring": 41086, - "sec": 2875, - "sec": 5338, - "seca": 37847, - "secco": 27394, - "sece": 46297, - "seclu": 42392, - "secon": 1846, - "second": 9329, - "second": 2241, - "secondary": 13107, - "seconds": 6541, - "secre": 2460, - "secret": 20710, - "secret": 4145, - "secretari": 29515, - "secretariat": 31767, - "secretary": 6552, - "secretly": 21400, - "secrets": 9735, - "secs": 28665, - "sect": 15772, - "section": 34986, - "section": 4853, - "sectional": 21876, - "sections": 20061, - "sector": 6579, - "sectors": 22173, - "secu": 4894, - "secular": 47483, - "secular": 27560, - "secur": 2557, - "secure": 44763, - "secure": 7515, - "secured": 16848, - "secures": 31567, - "securing": 24759, - "securities": 25080, - "security": 31245, - "security": 2741, - "sed": 14034, - "sed": 1252, - "sedan": 24237, - "sedg": 46926, - "sedge": 45288, - "sedi": 29269, - "sedly": 31771, - "sedona": 46862, - "seduc": 19933, - "seductive": 43721, - "see": 1751, - "see": 862, - "seed": 14064, - "seed": 6488, - "seeded": 33688, - "seeding": 40050, - "seedlings": 47933, - "seeds": 9128, - "seeing": 3214, - "seek": 8839, - "seeker": 28011, - "seekers": 20732, - "seeking": 8592, - "seeks": 12594, - "seem": 20043, - "seem": 7523, - "seemed": 17240, - "seemingly": 25917, - "seems": 4453, - "seen": 36273, - "seen": 2041, - "seer": 32486, - "sees": 7594, - "seeyou": 41279, - "sef": 27453, - "seg": 10551, - "sega": 16122, - "segment": 15615, - "segments": 43053, - "segreg": 49117, - "segregation": 39086, - "segu": 33156, - "segun": 43087, - "seh": 27536, - "seh": 41430, - "sehun": 17705, - "sei": 13130, - "sei": 15907, - "sein": 24669, - "seine": 41378, - "seinfeld": 33706, - "seis": 25559, - "seismic": 38459, - "seiz": 22171, - "seize": 26624, - "seized": 15826, - "seizure": 36804, - "seizures": 47199, - "sek": 45515, - "sek": 25880, - "sel": 1000, - "sel": 4098, - "sela": 47006, - "selamat": 37692, - "selangor": 44402, - "selby": 43546, - "selca": 38606, - "selcaday": 35924, - "seldom": 48322, - "sele": 29137, - "selec": 3014, - "select": 8690, - "selected": 6881, - "selecting": 32696, - "selection": 6724, - "selections": 24099, - "selective": 28686, - "selects": 32902, - "selen": 19970, - "selena": 14677, - "selenagomez": 27653, - "seley": 30556, - "self": 10139, - "self": 1322, - "selfcare": 39560, - "selfi": 3007, - "selfie": 26735, - "selfie": 3666, - "selfies": 46058, - "selfies": 10050, - "selfish": 26907, - "selfless": 34236, - "sell": 10279, - "sell": 5119, - "seller": 11779, - "sellers": 16562, - "selling": 4396, - "sells": 14306, - "selma": 36652, - "sels": 42070, - "selves": 4505, - "sely": 8402, - "sem": 8645, - "sem": 17106, - "sema": 31816, - "seman": 29119, - "seman": 28378, - "semana": 41780, - "semb": 36054, - "seme": 10855, - "sement": 10714, - "sements": 31449, - "semester": 11905, - "semi": 11023, - "semi": 6684, - "semic": 26967, - "semicon": 34315, - "semiconduc": 35646, - "semiconductor": 43551, - "semifinal": 22935, - "semifinals": 21863, - "semin": 5595, - "seminar": 7269, - "seminars": 34870, - "seminary": 31655, - "seminole": 42956, - "semis": 24013, - "semit": 22628, - "semite": 23721, - "semitic": 34894, - "semitism": 25911, - "semper": 47391, - "sen": 1057, - "sen": 2249, - "sena": 21584, - "senate": 30703, - "senate": 6843, - "senator": 20871, - "senator": 8495, - "senators": 16889, - "send": 27684, - "send": 3625, - "sending": 6985, - "sends": 10817, - "sene": 25269, - "seneca": 33419, - "senegal": 28255, - "senew": 49313, - "seng": 43022, - "seng": 29971, - "senior": 19865, - "senior": 3415, - "seniors": 8138, - "senna": 36195, - "senpai": 46562, - "sens": 5218, - "sens": 22837, - "sensation": 19383, - "sensational": 23051, - "sense": 29162, - "sense": 4747, - "sensei": 36158, - "senses": 21809, - "sensi": 38802, - "sensible": 30635, - "sensing": 29236, - "sensiti": 20531, - "sensitive": 13734, - "sensitivity": 27788, - "sensor": 15330, - "sensors": 20356, - "sensory": 21831, - "sensu": 28157, - "sensual": 40860, - "sent": 6200, - "sent": 3676, - "sentence": 12737, - "sentenced": 17773, - "sentences": 25858, - "sentencing": 34394, - "senti": 19042, - "sentim": 25102, - "sentiment": 25949, - "sentimental": 40070, - "sentiments": 47450, - "sentin": 20042, - "sentinel": 23123, - "senting": 3924, - "seo": 24743, - "seo": 8622, - "seok": 34697, - "seok": 22482, - "seokjin": 45584, - "seoul": 13253, - "sep": 3212, - "sep": 10434, - "separ": 6859, - "separate": 13886, - "separated": 22163, - "separately": 41904, - "separates": 45365, - "separati": 39377, - "separating": 43480, - "separation": 22007, - "sephora": 38414, - "sepsis": 40205, - "sept": 5380, - "septe": 3672, - "september": 3707, - "septic": 34690, - "sepul": 47360, - "seq": 44379, - "sequ": 5491, - "seque": 44662, - "sequel": 15701, - "sequence": 18833, - "sequences": 47306, - "sequencing": 33484, - "sequo": 32781, - "sequoia": 42404, - "ser": 803, - "ser": 2771, - "sera": 28250, - "serbia": 19038, - "serbian": 33687, - "sere": 35770, - "seren": 7880, - "serena": 19519, - "serenawilliams": 48316, - "serendip": 45805, - "serendipity": 49386, - "serene": 28269, - "serenity": 24187, - "serge": 13477, - "serge": 35700, - "sergeant": 22049, - "sergei": 39870, - "sergey": 35390, - "sergi": 47675, - "sergio": 18359, - "seri": 2763, - "seri": 37509, - "serial": 14216, - "serie": 19752, - "seriea": 32660, - "series": 1857, - "serious": 47421, - "serious": 4770, - "seriously": 4885, - "sermon": 24884, - "sero": 48883, - "serpent": 37084, - "serpent": 35364, - "serra": 39851, - "serrano": 44236, - "sers": 13509, - "serum": 25385, - "serv": 1297, - "serv": 24571, - "servant": 20810, - "servants": 29652, - "serve": 39202, - "serve": 2838, - "served": 4740, - "server": 36458, - "server": 8398, - "serverless": 49243, - "servers": 22262, - "serves": 9915, - "servic": 27115, - "service": 21496, - "service": 2086, - "serviced": 44687, - "services": 3100, - "servicing": 41300, - "serving": 5722, - "sery": 14279, - "ses": 23708, - "ses": 1386, - "sesame": 21706, - "sese": 37128, - "sesh": 24274, - "session": 2550, - "sessions": 6327, - "set": 7965, - "set": 1167, - "setback": 43605, - "seth": 20005, - "seth": 11870, - "sethu": 38933, - "setlist": 33141, - "seton": 43799, - "sets": 4650, - "sett": 4984, - "sett": 17567, - "sette": 14613, - "setter": 23153, - "settes": 44145, - "setti": 45170, - "setting": 5264, - "settings": 18628, - "settle": 15075, - "settled": 18310, - "settlement": 16494, - "settlements": 36605, - "settlers": 35671, - "settles": 41498, - "settling": 22036, - "setup": 11092, - "seu": 31539, - "seul": 48975, - "seum": 18838, - "seun": 24209, - "seung": 32393, - "seung": 33711, - "seungri": 41627, - "seuss": 34441, - "sev": 26585, - "sev": 37600, - "seva": 42604, - "seve": 21458, - "seve": 22468, - "sevel": 17439, - "seven": 7874, - "seven": 5757, - "sevens": 29911, - "sevent": 43048, - "seventeen": 19337, - "seventh": 17568, - "seventy": 47170, - "sever": 3250, - "sever": 45557, - "several": 5560, - "severance": 26194, - "severe": 6215, - "severely": 24417, - "severn": 34626, - "severy": 34207, - "sevilla": 24947, - "seville": 34988, - "sew": 28640, - "sewage": 32777, - "sewer": 28294, - "sewing": 15974, - "sewn": 42118, - "sex": 3548, - "sex": 5937, - "sexi": 20562, - "sexiest": 25426, - "sexism": 32059, - "sexist": 33047, - "sexu": 14741, - "sexual": 6749, - "sexuality": 21244, - "sexually": 23032, - "sexy": 21019, - "sexy": 38127, - "sey": 6317, - "sey": 2258, - "seychel": 36809, - "seychelles": 38519, - "seye": 35604, - "seym": 22657, - "seymour": 25850, - "seys": 15081, - "sez": 42377, - "señ": 43368, - "sf": 4435, - "sf": 4915, - "sfa": 32675, - "sfam": 37649, - "sfb": 27930, - "sfc": 14129, - "sfest": 49024, - "sff": 42056, - "sfgiants": 20923, - "sfield": 11801, - "sfo": 39182, - "sfootball": 45259, - "sfor": 9115, - "sford": 28917, - "sforsale": 28888, - "sfw": 18073, - "sfx": 37995, - "sg": 9599, - "sg": 7611, - "sga": 33049, - "sgate": 27558, - "sgh": 47590, - "sgo": 5393, - "sgo": 21044, - "sgt": 13748, - "sh": 552, - "sh": 849, - "sha": 1514, - "sha": 3337, - "shaa": 44221, - "shab": 8323, - "shabbat": 38042, - "shabby": 28838, - "shack": 23866, - "shack": 18785, - "shad": 3182, - "shad": 23874, - "shade": 34554, - "shade": 10097, - "shaded": 43506, - "shades": 46608, - "shades": 9270, - "shadesof": 45180, - "shading": 37348, - "shado": 9325, - "shadow": 15243, - "shadow": 7068, - "shadowhun": 19931, - "shadowhunters": 24834, - "shadowing": 46092, - "shadows": 12971, - "shady": 22158, - "shaf": 12032, - "shaft": 21545, - "shag": 22439, - "shaggy": 42662, - "shah": 13203, - "shah": 8439, - "shahe": 23643, - "shaheed": 30060, - "shaheer": 43969, - "shahi": 46972, - "shahid": 25696, - "shahid": 27138, - "shahidkapoor": 29892, - "shahzad": 45915, - "shai": 47941, - "shaikh": 45712, - "shail": 37603, - "shair": 43135, - "shak": 8385, - "shake": 8206, - "shake": 8251, - "shaken": 38237, - "shaker": 26210, - "shakers": 38411, - "shakes": 19668, - "shakespe": 9890, - "shakespeare": 22499, - "shakespeare": 12488, - "shakespearesunday": 32320, - "shaking": 19101, - "shakira": 40795, - "shakti": 48593, - "shakti": 32458, - "shakur": 48915, - "shal": 15056, - "shal": 28175, - "shale": 32864, - "shall": 4742, - "shallow": 23730, - "shalom": 31339, - "sham": 6453, - "sham": 9005, - "shaman": 48727, - "shambles": 40799, - "shame": 14776, - "shame": 7593, - "shameful": 28283, - "shameless": 25380, - "shaming": 40553, - "shampoo": 23944, - "shamrock": 34199, - "shan": 5171, - "shan": 8834, - "shana": 44835, - "shand": 29101, - "shane": 26863, - "shane": 11572, - "shang": 11141, - "shanghai": 12742, - "shani": 46665, - "shank": 24685, - "shankar": 24108, - "shann": 9932, - "shannon": 22842, - "shannon": 13581, - "shant": 36610, - "shap": 5581, - "shape": 26925, - "shape": 6448, - "shaped": 10127, - "shapes": 15377, - "shaping": 18632, - "shapiro": 32110, - "shaq": 46402, - "shaq": 26843, - "shar": 1669, - "shar": 36542, - "shara": 48849, - "sharapo": 36489, - "sharapova": 36671, - "shard": 42207, - "share": 7585, - "share": 1978, - "shared": 5368, - "shareholder": 38241, - "shareholders": 34778, - "sharepoint": 39213, - "shares": 4974, - "sharethe": 49277, - "shareyour": 45890, - "shari": 27738, - "shari": 47390, - "sharia": 37244, - "sharif": 15501, - "sharing": 3567, - "sharjah": 33420, - "shark": 15836, - "shark": 7980, - "sharks": 10047, - "sharkweek": 39571, - "sharma": 10105, - "sharon": 28722, - "sharon": 14138, - "sharp": 17126, - "sharp": 8157, - "sharpe": 34374, - "sharpen": 41465, - "sharpie": 46858, - "sharply": 37185, - "shasta": 46727, - "shat": 12169, - "shat": 44388, - "shatter": 45008, - "shattered": 26820, - "shau": 13750, - "shaun": 23446, - "shaun": 16669, - "shav": 11410, - "shave": 17735, - "shaved": 25571, - "shaving": 24261, - "shaw": 6122, - "shaw": 6805, - "shawa": 46413, - "shawl": 35132, - "shawn": 16677, - "shawn": 10970, - "shawnee": 48060, - "shawnmendes": 27277, - "shawty": 38026, - "shay": 10778, - "shay": 18361, - "shaykh": 47223, - "shaz": 18618, - "shazam": 29063, - "shc": 43419, - "shd": 37729, - "she": 1729, - "she": 1043, - "shea": 20407, - "shead": 44287, - "shead": 20434, - "shealth": 41743, - "shealth": 22197, - "shear": 27974, - "shear": 32108, - "shearer": 40505, - "sheath": 45637, - "shed": 16586, - "shed": 1492, - "shedding": 33608, - "sheds": 25921, - "shee": 23450, - "shee": 34321, - "sheed": 26105, - "sheehan": 41809, - "sheen": 25025, - "sheep": 23604, - "sheep": 9629, - "sheer": 17577, - "sheeran": 18561, - "sheet": 7298, - "sheets": 12744, - "shef": 8237, - "sheff": 38844, - "sheff": 43821, - "sheffiel": 26940, - "sheffield": 41763, - "sheffield": 10420, - "sheffieldissuper": 33628, - "sheh": 31667, - "sheikh": 15031, - "sheil": 42765, - "sheila": 25734, - "shek": 33285, - "shel": 3159, - "shelby": 36906, - "shelby": 16885, - "sheldon": 25079, - "shelf": 10955, - "shell": 23374, - "shell": 6648, - "shelley": 22497, - "shelling": 43166, - "shells": 19265, - "shelly": 37461, - "shelter": 8599, - "sheltered": 48070, - "shelters": 24312, - "shelton": 24471, - "shelves": 16225, - "shem": 40299, - "shen": 10154, - "shen": 31098, - "shenan": 20965, - "shenando": 44666, - "shenanigans": 26590, - "shenko": 39751, - "shenmue": 48279, - "shenzhen": 38970, - "shep": 33757, - "shep": 44857, - "shepard": 26810, - "shepher": 11008, - "shepherd": 13242, - "shepherds": 42792, - "sheppard": 37304, - "sher": 3570, - "sher": 4510, - "sheraton": 39400, - "shere": 21507, - "sheri": 9235, - "sheridan": 27085, - "sheriff": 10309, - "sherlock": 17294, - "sherman": 17822, - "sherry": 44348, - "sherry": 24689, - "shers": 14141, - "sherwood": 24527, - "sheryl": 39773, - "shes": 45514, - "shes": 2502, - "shet": 15850, - "shetland": 29595, - "shetty": 25533, - "shev": 45182, - "sheva": 45132, - "shh": 35025, - "shhh": 36932, - "shi": 823, - "shi": 3533, - "shia": 23791, - "shibu": 36177, - "shibuya": 41623, - "shie": 26638, - "shiel": 33413, - "shield": 8670, - "shields": 19085, - "shies": 35312, - "shif": 35317, - "shift": 43767, - "shift": 6905, - "shifted": 34429, - "shifter": 48944, - "shifting": 21992, - "shifts": 23957, - "shik": 36980, - "shil": 14370, - "shill": 32121, - "shill": 30090, - "shilpa": 47062, - "shilpa": 40690, - "shim": 11986, - "shim": 32780, - "shima": 14382, - "shimano": 48904, - "shimi": 40517, - "shimmer": 38792, - "shin": 5664, - "shin": 11784, - "shinde": 41516, - "shine": 17582, - "shine": 3780, - "shinee": 19660, - "shines": 16015, - "shing": 38641, - "shing": 1743, - "shining": 10485, - "shino": 43074, - "shiny": 12190, - "ship": 7645, - "ship": 1158, - "shipment": 28553, - "shipp": 34709, - "shipped": 15279, - "shippers": 44789, - "shipping": 5721, - "ships": 3262, - "shipwreck": 48878, - "shipy": 26828, - "shipyard": 31273, - "shir": 1956, - "shiraz": 35618, - "shire": 11975, - "shire": 2968, - "shirehour": 32456, - "shirley": 18189, - "shiro": 26048, - "shirt": 27576, - "shirt": 2523, - "shirtless": 28959, - "shirts": 5803, - "shistory": 34979, - "shiv": 18042, - "shiv": 37121, - "shiva": 33881, - "shiva": 21174, - "shka": 38944, - "shld": 49359, - "shma": 48074, - "shment": 8802, - "shments": 18822, - "sho": 719, - "sho": 13756, - "shock": 19617, - "shock": 8736, - "shocked": 15787, - "shocker": 37971, - "shockey": 22258, - "shocking": 13394, - "shocks": 31886, - "shoe": 16308, - "shoe": 7342, - "shoes": 49391, - "shoes": 4079, - "shol": 21472, - "sholm": 44139, - "shome": 42701, - "shon": 19526, - "shon": 37621, - "shone": 47173, - "shoo": 1975, - "shook": 20730, - "shoops": 29956, - "shoot": 12531, - "shoot": 3704, - "shooter": 13645, - "shooters": 31902, - "shooting": 3992, - "shootings": 26753, - "shootout": 20666, - "shoots": 14144, - "shop": 5738, - "shop": 1557, - "shopify": 47949, - "shoplocal": 21775, - "shopp": 38486, - "shoppe": 38236, - "shopped": 28088, - "shopper": 24346, - "shoppers": 22316, - "shopping": 42101, - "shopping": 4266, - "shops": 6467, - "shopsmall": 35942, - "shor": 3209, - "shore": 14717, - "shore": 5928, - "shored": 33140, - "shoreditch": 35042, - "shoreline": 34807, - "shores": 18102, - "short": 6803, - "short": 3005, - "shortage": 19910, - "shortages": 38730, - "shortcuts": 45793, - "shorten": 41711, - "shorter": 20350, - "shortest": 33717, - "shortfilm": 37204, - "shorth": 37397, - "shortlist": 28163, - "shortlisted": 20631, - "shortly": 11967, - "shorts": 9680, - "shorty": 33502, - "shot": 9805, - "shot": 2000, - "shotel": 42365, - "shotgun": 21643, - "shots": 5342, - "shou": 3890, - "shoul": 29847, - "should": 14947, - "should": 1535, - "shoulder": 8476, - "shoulders": 18738, - "shouldn": 9416, - "shour": 20025, - "shouse": 28671, - "shout": 7335, - "shout": 5214, - "shouted": 44397, - "shouting": 26464, - "shoutout": 8274, - "shouts": 26709, - "shovel": 31778, - "show": 2133, - "show": 1080, - "showbiz": 34156, - "showcas": 14290, - "showcase": 7265, - "showcased": 35786, - "showcases": 26266, - "showcasing": 17036, - "showdown": 15576, - "showed": 7150, - "shower": 7777, - "showers": 9893, - "showing": 3649, - "shown": 8506, - "showroom": 16821, - "shows": 2665, - "showtime": 40576, - "showtime": 15442, - "showyour": 46733, - "shp": 38341, - "shq": 21145, - "shr": 10118, - "shra": 21360, - "shradd": 28172, - "shraddha": 35208, - "shraddhakapoor": 40385, - "shre": 12101, - "shred": 19756, - "shred": 33017, - "shredded": 31772, - "shredding": 45534, - "shree": 37410, - "shrek": 35009, - "shrews": 26411, - "shrewsbury": 30921, - "shri": 8838, - "shri": 11424, - "shrimp": 12727, - "shrin": 24865, - "shrine": 16156, - "shrink": 34957, - "shrinking": 41243, - "shrm": 44163, - "shro": 15259, - "shroff": 32081, - "shrop": 22630, - "shropshire": 26344, - "shru": 14911, - "shrub": 41464, - "shrubs": 47975, - "shrun": 46767, - "shs": 16184, - "sht": 44210, - "shti": 38927, - "shu": 2872, - "shu": 17651, - "shua": 33771, - "shub": 40552, - "shud": 45782, - "shuff": 42641, - "shuffle": 21681, - "shui": 45473, - "shuk": 29927, - "shukla": 46829, - "shul": 30721, - "shum": 37383, - "shun": 24479, - "shun": 39594, - "shur": 41032, - "shut": 8702, - "shut": 8282, - "shutdown": 16051, - "shutout": 24385, - "shuts": 28313, - "shutt": 31866, - "shutter": 36235, - "shutter": 33902, - "shutters": 46894, - "shutting": 31383, - "shuttle": 15842, - "shwar": 41640, - "shy": 22678, - "shy": 9682, - "si": 564, - "si": 2990, - "sia": 2357, - "siam": 29686, - "siam": 48248, - "siamese": 43161, - "sian": 28510, - "sian": 6221, - "sians": 26583, - "sias": 28645, - "siber": 22206, - "siberia": 39969, - "siberian": 34058, - "sibl": 14338, - "sible": 14507, - "sibling": 43060, - "sibling": 23779, - "siblings": 17156, - "sic": 8278, - "sic": 1118, - "sica": 34125, - "sical": 33875, - "sichuan": 48950, - "sicilian": 45292, - "sicily": 23179, - "sick": 11143, - "sick": 5359, - "sickest": 47972, - "sickle": 41459, - "sickness": 28898, - "sics": 26297, - "sid": 10117, - "sid": 15119, - "sidd": 19842, - "siddi": 35227, - "side": 5869, - "side": 1145, - "sided": 21061, - "sidekick": 44683, - "sidel": 43557, - "sideline": 32056, - "sidelines": 31046, - "sider": 30581, - "siders": 41249, - "sides": 7578, - "sideshow": 46789, - "sidewalk": 23278, - "sidewalks": 43583, - "sideways": 35593, - "siding": 38758, - "sidney": 22598, - "sie": 8533, - "sie": 5685, - "sieg": 49203, - "siege": 18460, - "siegel": 48559, - "siem": 18434, - "siemens": 30147, - "siempre": 44030, - "siena": 33336, - "sienna": 40373, - "sier": 10028, - "sier": 7444, - "sierra": 13552, - "siers": 35923, - "sies": 16367, - "siest": 18323, - "sif": 29300, - "sig": 872, - "sig": 19145, - "sigh": 36303, - "sigh": 15505, - "sighs": 44579, - "sight": 16897, - "sight": 6329, - "sighted": 33034, - "sighting": 17507, - "sightings": 30004, - "sights": 17364, - "sightseeing": 34210, - "sigma": 45075, - "sigma": 15697, - "sign": 5538, - "sign": 2292, - "signage": 21156, - "signal": 10781, - "signaling": 38492, - "signalling": 48426, - "signals": 17150, - "signation": 24347, - "signature": 9189, - "signatures": 21865, - "signed": 3163, - "signee": 39778, - "signi": 34023, - "signific": 6374, - "significance": 23769, - "significant": 8735, - "significantly": 16187, - "signing": 4401, - "signingday": 40282, - "signings": 27731, - "signs": 4659, - "signup": 40791, - "sigue": 49401, - "sii": 36672, - "sik": 19974, - "sik": 22413, - "sika": 31144, - "sikh": 21829, - "sikhs": 45426, - "sil": 1556, - "sil": 8315, - "sila": 41754, - "sile": 37620, - "silen": 39048, - "silence": 8462, - "silenced": 45415, - "silent": 30352, - "silent": 8487, - "silently": 42640, - "silhou": 20589, - "silhouette": 26149, - "silic": 23830, - "silicon": 32412, - "silicon": 17888, - "silicone": 28221, - "silk": 25891, - "silk": 9743, - "silky": 29554, - "sill": 42468, - "sill": 48024, - "silly": 11883, - "silon": 31841, - "sils": 39708, - "silva": 16489, - "silve": 37697, - "silver": 7525, - "silver": 3467, - "silverado": 46160, - "silverstone": 29666, - "silvia": 37289, - "sim": 5026, - "sim": 10740, - "sima": 35871, - "simba": 39492, - "simcoe": 47148, - "sime": 28329, - "simi": 38073, - "simil": 7202, - "similar": 8547, - "similarities": 34716, - "simm": 13001, - "simmons": 14699, - "simo": 37171, - "simon": 8796, - "simon": 6668, - "simona": 46277, - "simone": 19062, - "simons": 33097, - "simp": 2542, - "simple": 19018, - "simple": 4129, - "simpler": 35489, - "simplest": 39588, - "simpli": 16868, - "simplicity": 21262, - "simplified": 36647, - "simplify": 35479, - "simply": 25637, - "simply": 6151, - "simpson": 41805, - "simpson": 11750, - "simpsons": 21092, - "sims": 14021, - "simul": 9845, - "simulated": 46395, - "simulation": 18610, - "simulator": 20821, - "simultaneous": 48816, - "simultaneously": 28575, - "sin": 1303, - "sin": 3421, - "sina": 19541, - "sinai": 33226, - "sinatra": 27262, - "sinc": 30464, - "since": 1855, - "sincere": 24513, - "sincere": 24886, - "sincerely": 25673, - "sinclair": 23100, - "sind": 39598, - "sind": 30877, - "sindh": 20754, - "sindia": 48038, - "sine": 22741, - "sine": 33793, - "sinfo": 47178, - "sing": 1387, - "sing": 1197, - "singapo": 27861, - "singapore": 28879, - "singapore": 6754, - "singer": 33880, - "singer": 5108, - "singers": 15613, - "singersongwriter": 44585, - "singh": 19445, - "singh": 5715, - "singing": 5864, - "single": 19524, - "single": 2688, - "singles": 12025, - "singleton": 46247, - "singly": 16619, - "sings": 13635, - "singul": 34003, - "singular": 44009, - "singularity": 48410, - "sinha": 29416, - "sini": 41781, - "sini": 26319, - "sinister": 31313, - "sink": 37232, - "sink": 14551, - "sinking": 27949, - "sinks": 32710, - "sinn": 36315, - "sinner": 45380, - "sinners": 43436, - "sino": 29759, - "sins": 9345, - "sinthe": 30737, - "sinu": 37351, - "sinus": 47535, - "sio": 10807, - "siob": 40954, - "siology": 46315, - "sion": 5676, - "sion": 1015, - "sional": 14533, - "sionally": 30754, - "sions": 4060, - "sioux": 44695, - "sioux": 24954, - "sip": 16096, - "sipping": 28527, - "sir": 10708, - "sir": 3846, - "sire": 28450, - "siren": 33026, - "sirens": 35907, - "siri": 13986, - "siri": 18394, - "sirius": 23574, - "sirius": 34999, - "siriusxm": 29833, - "sirloin": 46828, - "sis": 18132, - "sis": 2580, - "sisd": 27132, - "sisi": 37892, - "siss": 42929, - "sissy": 27564, - "sist": 20520, - "sista": 37448, - "sister": 17417, - "sister": 3677, - "sisterhood": 37313, - "sisters": 6404, - "sit": 7387, - "sit": 4037, - "sitcom": 30426, - "site": 26792, - "site": 1988, - "sites": 7236, - "sith": 41499, - "sito": 42613, - "sits": 12726, - "sitt": 42988, - "sitter": 40777, - "sittin": 40887, - "sitting": 4919, - "situ": 5562, - "situ": 42536, - "situated": 22030, - "situation": 7144, - "situations": 19096, - "sity": 38177, - "sity": 5477, - "siu": 40174, - "sium": 8090, - "sius": 27595, - "siva": 20991, - "sivan": 36931, - "sive": 23572, - "sive": 1875, - "sively": 10343, - "siveness": 39667, - "sives": 23896, - "sivity": 42738, - "siwon": 29055, - "six": 5968, - "six": 4093, - "sixers": 25941, - "sixteen": 28677, - "sixth": 12909, - "sixties": 44948, - "sixty": 32588, - "siya": 44440, - "size": 38377, - "size": 3235, - "sized": 9832, - "sizes": 10253, - "sizing": 28330, - "sizz": 23778, - "sizzle": 47890, - "sizzling": 35799, - "sj": 7536, - "sj": 16010, - "sjo": 42012, - "sk": 909, - "sk": 2058, - "ska": 7495, - "skag": 31948, - "skan": 46772, - "skar": 27587, - "skar": 26835, - "skate": 13740, - "skate": 12745, - "skateboard": 31777, - "skateboarding": 31352, - "skater": 30337, - "skaters": 39824, - "skates": 31479, - "skc": 44551, - "ske": 6261, - "ske": 25516, - "skel": 36564, - "skelet": 27075, - "skeletal": 37369, - "skeleton": 20062, - "skeletons": 48874, - "skell": 40801, - "skep": 27772, - "skeptical": 44934, - "sker": 37640, - "sker": 33600, - "sket": 3744, - "sketch": 11767, - "sketch": 5269, - "sketchbook": 18899, - "sketched": 38581, - "sketches": 17622, - "sketching": 23228, - "sketchy": 41582, - "skey": 37453, - "ski": 3327, - "ski": 3428, - "skid": 36574, - "skid": 32099, - "skier": 42585, - "skies": 7244, - "skiing": 14400, - "skil": 24543, - "skill": 15598, - "skill": 10604, - "skilled": 17535, - "skillet": 40568, - "skills": 4113, - "skim": 33191, - "skin": 5821, - "skin": 3575, - "skincare": 12648, - "skine": 37300, - "sking": 46215, - "skinned": 42199, - "skinner": 30261, - "skinny": 42729, - "skinny": 15457, - "skins": 11594, - "skip": 39793, - "skip": 14296, - "skipped": 40639, - "skipper": 22226, - "skipping": 34867, - "skir": 8919, - "skirt": 12386, - "skirts": 24840, - "skis": 32843, - "skit": 43573, - "skitchen": 42820, - "skittles": 43213, - "sko": 15141, - "sko": 23493, - "skoda": 38668, - "skool": 26743, - "skril": 43149, - "skrillex": 43651, - "sks": 48136, - "sku": 10836, - "skul": 17561, - "skull": 34068, - "skull": 12092, - "skulls": 31804, - "skunk": 42194, - "sky": 3075, - "sky": 2390, - "skybet": 45540, - "skye": 21475, - "skyl": 43554, - "skylar": 45411, - "skyline": 14606, - "skymap": 41734, - "skynews": 40977, - "skype": 17069, - "skyrim": 33693, - "skysports": 39845, - "skysports": 46725, - "skywalker": 32936, - "sl": 2621, - "sl": 7489, - "sla": 2725, - "sla": 26707, - "slab": 24241, - "slabs": 42818, - "slack": 37108, - "slack": 30142, - "slade": 33546, - "slain": 35972, - "slalom": 43540, - "slam": 14891, - "slam": 10131, - "slammed": 29772, - "slams": 18907, - "slan": 44663, - "slan": 47193, - "sland": 11294, - "slang": 33655, - "slap": 48830, - "slap": 21751, - "slapped": 38861, - "slaps": 46796, - "slash": 19749, - "slat": 38966, - "slate": 17919, - "slated": 36094, - "slater": 25968, - "slaugh": 26782, - "slaughter": 19815, - "slaughtered": 46615, - "slav": 47292, - "slava": 41797, - "slave": 14029, - "slavery": 15754, - "slaves": 23833, - "slaw": 28178, - "slay": 48319, - "slay": 19380, - "slayed": 44870, - "slayer": 21605, - "slaying": 27812, - "slays": 45648, - "slc": 21972, - "sle": 1709, - "sleague": 23336, - "sled": 28438, - "sledge": 48750, - "slee": 17642, - "slee": 38977, - "sleek": 23187, - "sleep": 4656, - "sleep": 3840, - "sleeper": 28709, - "sleeping": 6982, - "sleepless": 39779, - "sleepover": 39415, - "sleeps": 16610, - "sleepy": 32572, - "sleepy": 14497, - "sleet": 36948, - "sleeve": 35270, - "sleeve": 10536, - "sleeveless": 38049, - "sleeves": 19691, - "sleg": 47650, - "sleigh": 30865, - "slender": 40331, - "slept": 20388, - "sler": 14066, - "sley": 17198, - "sley": 6496, - "sli": 1811, - "sli": 44824, - "slic": 19692, - "slice": 13431, - "sliced": 28121, - "slices": 28424, - "slick": 18341, - "slide": 27828, - "slide": 8837, - "slider": 37861, - "sliders": 40700, - "slides": 15939, - "slideshow": 42817, - "sliding": 21468, - "slife": 15448, - "sliga": 21080, - "slight": 14297, - "slightly": 8456, - "sligo": 30424, - "slike": 38744, - "slim": 35226, - "slim": 12364, - "slime": 29107, - "sling": 28021, - "sling": 32607, - "slinger": 47269, - "slions": 43363, - "slip": 39785, - "slip": 12105, - "slipknot": 41816, - "slipped": 30344, - "slipper": 39644, - "slippers": 26509, - "slippery": 30814, - "slipping": 36301, - "slips": 30632, - "slist": 33749, - "slit": 47011, - "slive": 31652, - "slo": 4303, - "slo": 36083, - "sloan": 29110, - "sloane": 41553, - "slogan": 23398, - "slogans": 42795, - "slope": 22769, - "slopes": 24066, - "sloppy": 36154, - "slot": 14500, - "sloth": 30007, - "slots": 19238, - "slou": 48493, - "slovak": 23315, - "slovakia": 25994, - "sloven": 17018, - "slovenia": 21037, - "slow": 6674, - "slow": 5444, - "slowdown": 38421, - "slowed": 43793, - "slower": 29181, - "slowing": 29839, - "slowly": 9568, - "slows": 46855, - "slp": 45599, - "slr": 21325, - "sls": 33651, - "slt": 39283, - "sltd": 36388, - "slu": 7224, - "slu": 47456, - "slug": 34190, - "slugger": 48671, - "slum": 46754, - "slumber": 44295, - "slump": 35588, - "slur": 30476, - "slush": 39815, - "slv": 45526, - "sly": 28145, - "sly": 21062, - "sm": 978, - "sm": 2764, - "sma": 4357, - "sma": 11854, - "smack": 21280, - "smack": 30026, - "smackdown": 26138, - "smafia": 47686, - "smag": 32212, - "smal": 48379, - "small": 5244, - "small": 2442, - "smallbiz": 41724, - "smallbiz": 18987, - "smallbusiness": 21316, - "smalle": 18490, - "smaller": 12431, - "smallest": 18686, - "smalls": 41696, - "sman": 9612, - "smar": 3201, - "smart": 5383, - "smart": 4115, - "smartcities": 34822, - "smartcity": 33973, - "smarter": 18990, - "smartest": 37092, - "smarthome": 47726, - "smartphone": 11290, - "smartphones": 22212, - "smartwatch": 35798, - "smash": 17258, - "smash": 10332, - "smashbros": 44897, - "smashed": 18410, - "smashes": 45657, - "smashing": 19632, - "smatter": 16537, - "smb": 30446, - "smc": 31375, - "smc": 28312, - "smd": 34582, - "sme": 11758, - "sme": 15650, - "smear": 37546, - "smel": 28476, - "smell": 9688, - "smelling": 32493, - "smells": 14668, - "smelly": 46145, - "smen": 15961, - "smer": 48526, - "smere": 39629, - "smes": 26141, - "smg": 46876, - "smh": 9623, - "smi": 5655, - "smi": 40049, - "smil": 33937, - "smile": 27641, - "smile": 3490, - "smiled": 34362, - "smiles": 8726, - "smiley": 22925, - "smiling": 9200, - "smir": 24667, - "smith": 10527, - "smith": 2915, - "smiths": 27872, - "smithson": 25372, - "smithsonian": 31209, - "smm": 19510, - "smma": 42370, - "smo": 2513, - "smo": 13437, - "smobile": 38923, - "smog": 44425, - "smoke": 20381, - "smoke": 6664, - "smoked": 11161, - "smoker": 32348, - "smokers": 29571, - "smokes": 40336, - "smokey": 23670, - "smokin": 32825, - "smoking": 9038, - "smoky": 25549, - "smol": 29939, - "smol": 40403, - "smoo": 5430, - "smooth": 10958, - "smooth": 8990, - "smoother": 44271, - "smoothie": 16668, - "smoothies": 34458, - "smoothly": 32380, - "smore": 48323, - "smp": 32260, - "smriti": 49227, - "sms": 10409, - "smt": 26672, - "smtown": 26072, - "smu": 10878, - "smu": 30458, - "smug": 41021, - "smugg": 28130, - "smuggling": 34146, - "smur": 24708, - "smusic": 19191, - "smw": 44929, - "smx": 46699, - "smy": 14381, - "smyth": 44822, - "sn": 1672, - "sn": 5844, - "sna": 4032, - "snack": 47548, - "snack": 10039, - "snacking": 46474, - "snacks": 12349, - "snag": 34789, - "snag": 28043, - "snagged": 48534, - "snail": 23132, - "snails": 34928, - "snake": 30133, - "snake": 8798, - "snakes": 19605, - "snap": 4578, - "snap": 7404, - "snapback": 31234, - "snapchat": 7799, - "snapmatic": 45907, - "snapp": 10185, - "snapped": 15543, - "snapper": 31677, - "snapping": 31581, - "snaps": 16890, - "snapshot": 18243, - "snar": 30810, - "snare": 40651, - "snat": 18457, - "snatch": 35302, - "snatched": 44821, - "snation": 14362, - "snazzy": 48963, - "snc": 39918, - "sne": 3791, - "sne": 46503, - "sneak": 27871, - "sneak": 6917, - "sneaker": 31698, - "sneaker": 24781, - "sneakers": 17397, - "sneaking": 34633, - "sneakpeek": 47831, - "sneaks": 40926, - "sneaky": 21293, - "snee": 42095, - "snell": 46410, - "sner": 31424, - "snes": 26667, - "snews": 18623, - "snf": 47651, - "sng": 41549, - "snhl": 43093, - "sni": 7186, - "sni": 35570, - "snickers": 49127, - "sniff": 37841, - "snip": 42954, - "sniper": 22157, - "snippet": 37531, - "snippets": 44001, - "snl": 16011, - "sno": 8567, - "sno": 17802, - "snoo": 11352, - "snooker": 25657, - "snoop": 44503, - "snoop": 27754, - "snoopdogg": 48388, - "snoopy": 41967, - "snooze": 40718, - "snor": 16590, - "snoring": 44560, - "snorkel": 44285, - "snorkeling": 48103, - "snow": 3880, - "snow": 2583, - "snowball": 39254, - "snowboard": 33403, - "snowboarding": 32397, - "snowday": 37982, - "snowden": 32154, - "snowdon": 47107, - "snowdonia": 36088, - "snowed": 45073, - "snowfall": 21714, - "snowflake": 33447, - "snowflakes": 38618, - "snowing": 21443, - "snowman": 22668, - "snowstorm": 38777, - "snowy": 14191, - "snp": 15301, - "sns": 36343, - "snsd": 27961, - "snt": 34834, - "snu": 9694, - "snuck": 36522, - "snug": 45169, - "snuggle": 31327, - "snuggles": 48165, - "sny": 17526, - "snyder": 22106, - "snz": 37678, - "so": 759, - "so": 706, - "soa": 39584, - "soak": 24839, - "soaked": 26592, - "soaking": 26750, - "soap": 26086, - "soap": 11088, - "soaps": 40958, - "soar": 48997, - "soar": 22241, - "soaring": 27968, - "soars": 41348, - "sob": 24900, - "sob": 35507, - "sobbing": 36691, - "sober": 30969, - "sober": 24487, - "sobre": 42768, - "sobri": 49308, - "sobs": 43636, - "soc": 3253, - "soc": 7741, - "soca": 49239, - "socal": 46470, - "socal": 20450, - "soccer": 16268, - "soccer": 4233, - "socceroos": 41997, - "socent": 30831, - "sochi": 21014, - "soci": 1720, - "social": 4803, - "social": 2346, - "socialism": 23372, - "socialist": 18450, - "socialists": 43839, - "socially": 24555, - "socialmedi": 23813, - "socialmedia": 9600, - "socialmediamarketing": 31790, - "societal": 40058, - "societies": 25855, - "society": 3757, - "socio": 44319, - "socio": 42790, - "sociology": 32373, - "sock": 29801, - "sock": 18277, - "socket": 28657, - "socks": 8774, - "socorro": 46409, - "socute": 45086, - "sod": 31435, - "soda": 13533, - "sodium": 29070, - "soe": 44136, - "soe": 25498, - "soever": 34024, - "sof": 1571, - "sof": 41187, - "sofa": 15723, - "soff": 35290, - "soff": 30684, - "sofficial": 20563, - "sofi": 41537, - "sofia": 18914, - "sofinstagram": 17301, - "soft": 12778, - "soft": 3773, - "softball": 8369, - "softer": 44462, - "softhe": 23127, - "softly": 34958, - "software": 35941, - "software": 5847, - "softwitter": 11311, - "sog": 44775, - "soggy": 41168, - "sohn": 49267, - "soho": 47749, - "soho": 17592, - "soi": 40495, - "soil": 33417, - "soil": 9216, - "soils": 34891, - "soir": 43427, - "sok": 43456, - "sol": 1175, - "sol": 9941, - "sola": 40086, - "solace": 42567, - "solar": 16990, - "solar": 5199, - "solareclipse": 44727, - "sold": 33116, - "sold": 3939, - "soldi": 5098, - "soldier": 9355, - "soldiers": 7547, - "sole": 10519, - "sole": 8576, - "soleil": 33148, - "solely": 27913, - "solent": 47783, - "soles": 22682, - "soli": 3911, - "solic": 19369, - "solicitor": 45647, - "solicitors": 46000, - "solid": 30626, - "solid": 6148, - "solidar": 10415, - "solidarity": 10983, - "solidi": 46136, - "solids": 49070, - "solihull": 45293, - "solit": 37039, - "solitaire": 47257, - "solitary": 33094, - "solitude": 33199, - "solo": 17626, - "solo": 5797, - "soloist": 46391, - "solom": 15768, - "solomon": 19785, - "solos": 44868, - "solst": 20298, - "solstice": 21359, - "solu": 2487, - "solution": 4575, - "solutions": 5140, - "solve": 8917, - "solved": 13451, - "solves": 42740, - "solving": 15581, - "som": 734, - "som": 10672, - "soma": 36170, - "somal": 40281, - "somali": 26231, - "somalia": 17051, - "somaliland": 43315, - "some": 1132, - "some": 836, - "somebody": 8305, - "someday": 17127, - "somehow": 11735, - "someone": 2100, - "somer": 9656, - "somerhalder": 33990, - "somerset": 14926, - "somerville": 41409, - "somes": 38124, - "somethin": 33541, - "something": 28316, - "something": 2006, - "sometime": 21464, - "sometimes": 4237, - "somewhat": 17864, - "somewhere": 8119, - "somm": 42726, - "somme": 30625, - "sommer": 44954, - "somos": 24951, - "son": 1176, - "son": 825, - "sona": 21249, - "sonam": 40096, - "sonar": 48235, - "sonata": 37009, - "sone": 29599, - "song": 6868, - "song": 2295, - "songs": 4641, - "songwriter": 13034, - "songwriters": 39583, - "songwriting": 33567, - "songz": 49302, - "soni": 34899, - "soni": 35911, - "sonia": 20409, - "sonic": 23785, - "sonic": 9132, - "sonics": 48511, - "sonja": 46102, - "sonline": 23412, - "sonny": 43000, - "sonny": 20880, - "sono": 44109, - "sonom": 48596, - "sonoma": 26269, - "sons": 5502, - "sonsof": 46676, - "sont": 31063, - "sonthe": 40923, - "sony": 16042, - "sony": 8748, - "sonya": 39172, - "soo": 5517, - "soo": 8602, - "soom": 39771, - "soon": 27559, - "soon": 1745, - "sooner": 18968, - "sooners": 30449, - "sooo": 11526, - "soooo": 13658, - "sooooo": 21199, - "soooooo": 34859, - "soor": 46698, - "soothe": 44424, - "soothing": 27730, - "sop": 3974, - "sop": 19194, - "soph": 34963, - "sophi": 6192, - "sophia": 16790, - "sophie": 38648, - "sophie": 12357, - "sophistic": 17646, - "sophisticated": 20833, - "sophom": 13696, - "sophomore": 15242, - "sophomores": 47645, - "soprano": 28880, - "soproud": 44479, - "sor": 1852, - "sor": 16872, - "sora": 38719, - "sorbet": 39994, - "sore": 43330, - "sore": 15454, - "sored": 6731, - "soren": 38907, - "sorg": 28152, - "sori": 38588, - "sorority": 30059, - "soros": 33248, - "sorren": 44012, - "sorrow": 28020, - "sorrows": 47924, - "sorry": 25745, - "sorry": 3675, - "sorrynotsorry": 37105, - "sort": 8450, - "sorta": 34700, - "sorted": 13221, - "sorting": 19198, - "sorts": 12577, - "sory": 16257, - "sos": 25145, - "sos": 5792, - "sosa": 45433, - "sosfam": 47709, - "sot": 41542, - "sot": 34116, - "sothe": 32145, - "sotho": 45496, - "soto": 27947, - "sotto": 26047, - "sotu": 32286, - "sou": 1101, - "sou": 24293, - "sought": 18874, - "soul": 8701, - "soul": 3755, - "soulful": 30196, - "soulmate": 38130, - "souls": 10951, - "soun": 19474, - "sound": 5236, - "sound": 3608, - "soundcheck": 31394, - "soundcloud": 15190, - "sounded": 28287, - "sounders": 44933, - "sounding": 21351, - "sounds": 5694, - "soundtrack": 11389, - "soup": 7077, - "soups": 45052, - "sour": 2235, - "sour": 12049, - "source": 23698, - "source": 3634, - "sourced": 23340, - "sources": 5124, - "sourcing": 19574, - "sourdough": 29921, - "souri": 11674, - "sous": 32093, - "sousa": 46296, - "sout": 38156, - "sout": 32732, - "south": 2938, - "south": 2045, - "southafrica": 15184, - "southampton": 15767, - "southbank": 44173, - "southbound": 22932, - "southeast": 13942, - "southeastern": 26813, - "southend": 25583, - "souther": 33330, - "southern": 17704, - "southern": 5036, - "southgate": 47262, - "southkorea": 43552, - "southport": 37446, - "southside": 36436, - "southsudan": 30419, - "southwark": 39098, - "southwe": 46443, - "southwest": 13320, - "southwestern": 30157, - "souven": 20210, - "souvenir": 24811, - "souvenirs": 48460, - "souza": 29424, - "sov": 29737, - "sover": 31876, - "sovere": 17736, - "sovereign": 29418, - "sovereign": 26337, - "sovereignty": 31701, - "soviet": 14274, - "sow": 33089, - "sowe": 36130, - "soweto": 47070, - "sown": 49369, - "sox": 39556, - "sox": 8657, - "soy": 16524, - "soy": 15010, - "soybean": 34606, - "soybeans": 40840, - "soyu": 39578, - "soyuz": 43842, - "sp": 588, - "sp": 4393, - "spa": 7852, - "spa": 6692, - "spac": 10336, - "space": 7857, - "space": 2138, - "spacecraft": 25940, - "spaces": 9006, - "spaceship": 34317, - "spacex": 22511, - "spacey": 48770, - "spacious": 24769, - "spad": 45362, - "spade": 32562, - "spades": 48368, - "spaghetti": 18440, - "spain": 5083, - "spal": 26018, - "spam": 29712, - "spam": 14624, - "span": 4270, - "span": 14537, - "spandex": 41686, - "spani": 16721, - "spaniel": 35435, - "spanish": 29966, - "spanish": 6013, - "spann": 25323, - "spanning": 38638, - "spans": 45407, - "spaper": 34548, - "spar": 3378, - "spar": 34576, - "spare": 12615, - "spares": 39505, - "spark": 9555, - "spark": 11047, - "sparked": 32647, - "sparkle": 18287, - "sparkles": 36410, - "sparkling": 17893, - "sparkly": 30542, - "sparks": 15046, - "sparky": 47198, - "sparring": 42161, - "sparrow": 22888, - "spart": 10143, - "sparta": 38401, - "spartan": 26582, - "spartan": 24225, - "spartans": 20457, - "sparty": 36477, - "spas": 31714, - "spati": 19200, - "spatial": 22022, - "spaw": 31605, - "spawn": 29166, - "spay": 40634, - "spc": 20492, - "spca": 37018, - "spd": 37717, - "spd": 28307, - "spdwy": 45981, - "spe": 876, - "spe": 36676, - "speak": 20599, - "speak": 4208, - "speake": 46077, - "speaker": 25764, - "speaker": 4914, - "speakers": 7675, - "speaking": 3714, - "speaks": 5661, - "spear": 23277, - "spear": 30420, - "speare": 43859, - "spears": 20242, - "spec": 1711, - "spec": 18596, - "speci": 1969, - "special": 11422, - "special": 1689, - "specialist": 10630, - "specialists": 21719, - "speciality": 46904, - "specialized": 23265, - "specializes": 48533, - "specially": 4513, - "specials": 11983, - "specialty": 18262, - "species": 6330, - "specific": 10528, - "specifically": 17174, - "specification": 46394, - "specifications": 39705, - "specified": 48114, - "specimen": 30263, - "specimens": 42715, - "specs": 24093, - "spect": 3416, - "spectac": 7242, - "spectacle": 34342, - "spectacular": 8404, - "spectator": 32372, - "spectators": 39306, - "spective": 6633, - "spector": 48676, - "spectral": 45441, - "spectre": 35998, - "spectro": 27646, - "spectrum": 13532, - "specul": 19209, - "speculation": 30898, - "sped": 38813, - "spee": 4050, - "speech": 19556, - "speech": 4902, - "speeches": 25208, - "speechless": 23152, - "speed": 6860, - "speed": 4163, - "speeding": 27264, - "speeds": 22017, - "speedway": 11480, - "speedy": 21603, - "spel": 41887, - "spell": 22784, - "spell": 11230, - "spelled": 24339, - "spelling": 15614, - "spells": 25335, - "spelt": 38316, - "spen": 5087, - "spence": 33324, - "spencer": 27509, - "spencer": 10678, - "spend": 4664, - "spending": 5961, - "spends": 22508, - "spent": 4429, - "speople": 33035, - "sper": 8213, - "sper": 15313, - "sperm": 35781, - "sperson": 22687, - "spf": 34973, - "spg": 34623, - "sph": 28909, - "sph": 24684, - "sphe": 33691, - "spher": 18349, - "sphere": 6987, - "spheres": 37478, - "spheric": 21744, - "sphin": 39237, - "sphinx": 46487, - "spho": 20442, - "sphoto": 38594, - "sphy": 43808, - "spi": 3174, - "spi": 37080, - "spic": 17264, - "spice": 29761, - "spice": 10141, - "spiced": 24267, - "spicer": 37627, - "spices": 21194, - "spicy": 10915, - "spide": 36801, - "spider": 11963, - "spider": 7622, - "spiderman": 39808, - "spiderman": 18427, - "spiders": 23141, - "spidey": 41706, - "spie": 28573, - "spie": 28746, - "spied": 43998, - "spiegel": 45351, - "spiel": 28435, - "spiel": 37690, - "spielberg": 37569, - "spies": 25374, - "spieth": 43254, - "spike": 35306, - "spike": 15310, - "spiked": 47014, - "spikes": 29582, - "spil": 47765, - "spill": 43933, - "spill": 18006, - "spilled": 33206, - "spilling": 49006, - "spills": 35796, - "spin": 6288, - "spin": 9226, - "spinach": 14747, - "spinal": 23925, - "spine": 48221, - "spine": 19646, - "sping": 47113, - "spinner": 29924, - "spinning": 13987, - "spino": 40848, - "spinoff": 42513, - "spinrilla": 46064, - "spins": 27243, - "spion": 39604, - "spionage": 41838, - "spir": 3745, - "spiral": 19873, - "spiration": 38126, - "spire": 27439, - "spired": 40650, - "spires": 46938, - "spiri": 4024, - "spirit": 18224, - "spirit": 4071, - "spirited": 34701, - "spirits": 13192, - "spiritu": 7237, - "spiritual": 46076, - "spiritual": 9473, - "spirituality": 22165, - "spiro": 40085, - "spit": 18115, - "spit": 23177, - "spite": 26060, - "spitfire": 31126, - "spitting": 40721, - "spl": 2470, - "spl": 33052, - "spla": 4809, - "splac": 16059, - "splace": 38743, - "splash": 43641, - "splash": 11879, - "splat": 15733, - "splatoon": 22565, - "splay": 3169, - "splen": 18552, - "splend": 29861, - "splendid": 21016, - "splendor": 46262, - "splin": 38090, - "split": 25443, - "split": 9109, - "splits": 34897, - "splitting": 37210, - "splus": 40866, - "spn": 35467, - "spn": 19414, - "spnfamily": 38566, - "spo": 1261, - "spo": 21085, - "spock": 43918, - "spoil": 25600, - "spoiled": 21399, - "spoiler": 16512, - "spoilers": 18326, - "spoils": 42436, - "spoilt": 35358, - "spokane": 24528, - "spoke": 13890, - "spoke": 6518, - "spoken": 12979, - "spokesman": 31632, - "spokesperson": 26234, - "spol": 22476, - "spol": 8132, - "spoli": 34301, - "spolice": 37406, - "spon": 1715, - "spon": 48216, - "sponge": 22861, - "sponge": 24345, - "spongebob": 25089, - "spons": 5597, - "sponsor": 10424, - "sponsor": 7574, - "sponsored": 7197, - "sponsoring": 16181, - "sponsors": 11005, - "sponsorship": 17632, - "spontaneous": 32465, - "spoo": 11248, - "spooky": 15369, - "spool": 49152, - "spoon": 27001, - "spoon": 14024, - "spoons": 29661, - "spor": 1475, - "spor": 33746, - "sport": 4379, - "sport": 2364, - "sporting": 32620, - "sporting": 8944, - "sports": 6436, - "sports": 2054, - "sportsc": 40114, - "sportscar": 46931, - "sportscenter": 39157, - "sportsman": 39020, - "sportsmanship": 34858, - "sportsnet": 34144, - "sportswear": 39747, - "sporty": 33346, - "spot": 3223, - "spot": 3049, - "spotify": 7193, - "spotlight": 7901, - "spots": 7670, - "spotted": 4533, - "spotter": 30742, - "spotting": 15885, - "spouse": 24724, - "spout": 48993, - "spp": 47567, - "spr": 1536, - "spr": 19417, - "spra": 12966, - "spraw": 46590, - "spray": 37885, - "spray": 10449, - "sprayed": 40022, - "spraying": 39224, - "spre": 18740, - "spread": 20620, - "spread": 5284, - "spreading": 11821, - "spreads": 27579, - "spree": 21851, - "spri": 35498, - "spride": 26685, - "spring": 5166, - "spring": 2420, - "springbreak": 37753, - "springer": 30117, - "springfield": 16599, - "springs": 7308, - "springst": 32132, - "springsteen": 28367, - "springtime": 28285, - "springtraining": 49364, - "springwatch": 29239, - "sprink": 15817, - "sprinkle": 42897, - "sprinkler": 48754, - "sprinkles": 37326, - "sprint": 29248, - "sprint": 10751, - "sprinter": 36947, - "sprints": 36404, - "sprite": 32544, - "spro": 13902, - "spro": 37403, - "sproject": 37802, - "sproud": 37686, - "sprout": 35863, - "sprouts": 25756, - "spru": 17041, - "spruce": 23812, - "sprung": 32968, - "sps": 13869, - "spu": 23566, - "spun": 47922, - "spun": 32852, - "spur": 15206, - "spur": 20361, - "spurs": 10916, - "spursofficial": 45290, - "sput": 47521, - "spx": 20584, - "spy": 13861, - "spy": 6656, - "spyder": 39952, - "spying": 36227, - "sq": 9370, - "sq": 11590, - "sqft": 41912, - "sql": 42759, - "sql": 18938, - "sqm": 47978, - "sqn": 41209, - "squ": 1653, - "squad": 13892, - "squad": 4234, - "squadron": 18579, - "squads": 36590, - "square": 19314, - "square": 3999, - "squared": 32967, - "squares": 26972, - "squash": 13312, - "squat": 44628, - "squat": 30680, - "squats": 40213, - "sque": 9721, - "sque": 8097, - "squee": 14420, - "squeeze": 21684, - "squeezed": 40413, - "squid": 42057, - "squid": 22553, - "squir": 9683, - "squire": 48090, - "squirrel": 14004, - "squirrels": 26623, - "squish": 42607, - "squishy": 47001, - "sr": 3437, - "sr": 5428, - "srbachchan": 32353, - "src": 23445, - "sre": 17748, - "sri": 11051, - "sri": 9276, - "sridevi": 46301, - "srilan": 15559, - "srilanka": 16922, - "srin": 26818, - "srinagar": 33671, - "srini": 41899, - "sriracha": 42743, - "sris": 27851, - "srisri": 32966, - "srk": 44982, - "srk": 11216, - "srl": 33808, - "srp": 43004, - "srs": 41764, - "srsly": 44179, - "srt": 28139, - "sru": 44152, - "srugby": 40526, - "ss": 690, - "ss": 632, - "ssa": 6088, - "ssal": 31330, - "ssal": 35936, - "ssb": 37511, - "ssc": 21692, - "ssc": 20364, - "ssd": 23107, - "sse": 9030, - "sse": 8938, - "ssed": 38755, - "ssed": 1804, - "ssel": 17402, - "ssel": 19373, - "sseldorf": 47792, - "ssell": 42388, - "ssels": 8355, - "ssen": 39408, - "ssen": 22645, - "sser": 20445, - "sses": 1802, - "ssett": 44103, - "ssf": 33239, - "ssg": 40707, - "ssh": 48866, - "ssi": 834, - "ssi": 14953, - "ssia": 22238, - "ssian": 31218, - "ssible": 47099, - "ssic": 27774, - "ssic": 17077, - "ssie": 7572, - "ssier": 26422, - "ssil": 15026, - "ssin": 42660, - "ssing": 2112, - "ssion": 16050, - "ssion": 1627, - "ssional": 13727, - "ssionism": 24787, - "ssionist": 27682, - "ssions": 4137, - "ssive": 2734, - "ssively": 28060, - "ssl": 32195, - "ssler": 30287, - "ssly": 24904, - "ssn": 39116, - "ssnhq": 47998, - "sso": 25900, - "sso": 7914, - "ssoccer": 32546, - "sson": 36124, - "sson": 7271, - "ssor": 35152, - "ssp": 31101, - "ssr": 39880, - "sss": 11176, - "ssss": 30676, - "ssss": 15880, - "sssss": 24298, - "sst": 40396, - "ssu": 35351, - "ssummit": 49301, - "ssus": 31286, - "ssw": 36937, - "ssy": 22519, - "ssy": 8661, - "st": 522, - "st": 545, - "sta": 1363, - "sta": 2745, - "stab": 7726, - "stab": 29974, - "stabbed": 24534, - "stabbing": 25474, - "stabil": 42576, - "stabili": 23903, - "stability": 16716, - "stable": 44427, - "stable": 10492, - "stables": 34218, - "stac": 10175, - "stacey": 41653, - "stacey": 24262, - "stache": 23616, - "stack": 24723, - "stack": 11257, - "stacked": 24990, - "stacking": 39836, - "stacks": 24734, - "stacy": 26628, - "stad": 15832, - "stad": 16485, - "stade": 38198, - "stadi": 26587, - "stadion": 48815, - "stadium": 3390, - "stadiums": 38852, - "stadt": 22713, - "staf": 2367, - "staff": 31188, - "staff": 2813, - "staffer": 38494, - "staffers": 44994, - "staffing": 32932, - "stafford": 25006, - "staffordshire": 29198, - "staffs": 36098, - "stag": 12088, - "stag": 20277, - "stage": 23182, - "stage": 2170, - "staged": 19906, - "stages": 12297, - "staggering": 37315, - "staging": 27026, - "stagram": 19503, - "stags": 45936, - "stain": 3933, - "stain": 14603, - "stained": 13751, - "staining": 32523, - "stainless": 12320, - "stains": 32008, - "stair": 7240, - "stair": 17662, - "staircase": 22777, - "stairs": 9577, - "stairway": 45559, - "stak": 39144, - "stake": 15955, - "stake": 7937, - "stakeholder": 39122, - "stakeholders": 22968, - "stakes": 7519, - "staking": 47082, - "stal": 3861, - "stal": 5535, - "stale": 42471, - "stalert": 25450, - "stalin": 28346, - "stalk": 40826, - "stalk": 14878, - "stalker": 26777, - "stalking": 24721, - "stalks": 45886, - "stall": 24636, - "stall": 12058, - "stalled": 40362, - "stallion": 28273, - "stallions": 44787, - "stallone": 40969, - "stalls": 25427, - "stam": 4663, - "stamatic": 30904, - "stamford": 27843, - "stamina": 48753, - "stamp": 28694, - "stamp": 12771, - "stampcollecting": 42852, - "stamped": 38356, - "stampede": 25384, - "stamps": 13827, - "stan": 2203, - "stan": 2434, - "stana": 33311, - "stanbul": 11231, - "stance": 48900, - "stance": 3542, - "stances": 15054, - "stand": 1819, - "stand": 2087, - "standalone": 44887, - "standard": 35780, - "standard": 5807, - "standardi": 30247, - "standards": 9022, - "standby": 36184, - "standing": 39934, - "standing": 2862, - "standings": 19835, - "standoff": 31821, - "standout": 23131, - "standre": 48309, - "stands": 6446, - "standup": 35108, - "standup": 24964, - "standwith": 19540, - "stanford": 36219, - "stanford": 15087, - "stang": 12536, - "stani": 38228, - "stanis": 37711, - "stanley": 19048, - "stanley": 10079, - "stanleycup": 28662, - "stans": 26564, - "stant": 41576, - "stant": 4906, - "stanton": 25400, - "stap": 10438, - "staple": 22695, - "staples": 23646, - "stapleton": 45228, - "star": 993, - "star": 1565, - "starbuck": 48519, - "starbucks": 9499, - "starch": 47837, - "starcraft": 48871, - "stardom": 44616, - "stardust": 34337, - "stare": 18094, - "stared": 47772, - "stares": 37916, - "starfish": 44283, - "stargate": 41099, - "stargazing": 49328, - "staring": 13800, - "stark": 40446, - "stark": 15353, - "starlight": 32197, - "starling": 46205, - "starmagic": 48023, - "starplus": 37815, - "starr": 19186, - "starred": 24180, - "starrer": 41311, - "starring": 6660, - "starry": 30963, - "stars": 2895, - "starship": 37166, - "start": 17466, - "start": 1572, - "started": 2760, - "starter": 7800, - "starters": 22222, - "starting": 2530, - "startrek": 30642, - "startrek": 15349, - "starts": 3105, - "startu": 6996, - "startup": 18049, - "startup": 5882, - "startups": 9056, - "starve": 46957, - "starving": 30473, - "starwar": 17287, - "starwars": 26239, - "starwars": 7887, - "starz": 25928, - "stas": 19866, - "stash": 27711, - "stasy": 45942, - "stat": 3004, - "stat": 15216, - "state": 3492, - "state": 1295, - "statec": 33931, - "stated": 19629, - "statedept": 41458, - "statefair": 40305, - "statement": 5401, - "statements": 19513, - "staten": 38263, - "stateof": 35195, - "states": 22125, - "states": 4218, - "statesman": 35301, - "stateu": 44248, - "statewide": 29561, - "stati": 9622, - "static": 16363, - "stating": 35147, - "station": 13498, - "station": 2631, - "stationary": 29493, - "stationed": 47618, - "stationery": 33851, - "stations": 10051, - "statistical": 29349, - "statistics": 14165, - "stats": 7294, - "statu": 32481, - "statue": 8222, - "statues": 24363, - "status": 6414, - "stau": 28550, - "staur": 3709, - "stav": 20285, - "stax": 32235, - "stay": 4714, - "stay": 2277, - "stayed": 13805, - "staying": 8993, - "stays": 13311, - "staytuned": 39285, - "stc": 29859, - "std": 30477, - "ste": 795, - "ste": 2686, - "stea": 46614, - "stead": 16101, - "stead": 11031, - "steadily": 35049, - "steady": 12937, - "steak": 26955, - "steak": 8913, - "steakhouse": 35031, - "steaks": 30655, - "steal": 37070, - "steal": 10181, - "stealing": 14242, - "steals": 20224, - "stealth": 25327, - "steam": 10962, - "steam": 6972, - "steamboat": 41121, - "steamed": 29007, - "steamer": 49075, - "steaming": 43746, - "steampunk": 24130, - "steamy": 43104, - "stec": 46713, - "stech": 48949, - "stech": 32455, - "sted": 20426, - "sted": 1356, - "stee": 31793, - "steed": 48293, - "steel": 6938, - "steel": 4726, - "steele": 19460, - "steelers": 14430, - "steen": 42851, - "steen": 18625, - "steep": 28648, - "steep": 20714, - "steer": 27612, - "steering": 19833, - "stef": 29158, - "stefan": 15004, - "stefan": 18829, - "stefani": 38319, - "stefano": 30719, - "steff": 30075, - "stein": 13653, - "stein": 5818, - "steiner": 36314, - "stel": 9102, - "stel": 10798, - "stell": 22355, - "stella": 46178, - "stella": 17869, - "stellar": 13810, - "stellen": 42754, - "stem": 24342, - "stem": 6761, - "stemc": 40486, - "stems": 31503, - "sten": 7652, - "sten": 7877, - "stencil": 47854, - "stennis": 45636, - "step": 15572, - "step": 3348, - "steph": 3522, - "steph": 16251, - "stephan": 37312, - "stephani": 48121, - "stephanie": 14361, - "stephen": 10421, - "stephen": 6078, - "stephenking": 46361, - "stephens": 22256, - "stephenson": 37280, - "stepped": 18384, - "stepping": 15906, - "steps": 5408, - "ster": 1022, - "ster": 881, - "stere": 9229, - "stered": 6935, - "stereo": 15992, - "stereo": 17400, - "stereotypes": 27890, - "steria": 38804, - "stering": 14175, - "sterling": 45790, - "sterling": 9378, - "stern": 36254, - "stern": 2945, - "steroids": 37670, - "sterone": 39418, - "sters": 2132, - "stery": 24232, - "stest": 8556, - "stev": 11640, - "steve": 7412, - "steve": 3803, - "steven": 10973, - "steven": 8016, - "stevens": 13877, - "stevenson": 25091, - "stevie": 42104, - "stevie": 18969, - "stew": 17906, - "stewar": 28453, - "steward": 34980, - "steward": 43355, - "stewards": 49294, - "stewardship": 36720, - "stewart": 8120, - "stfu": 47000, - "stg": 48387, - "stgeorge": 43698, - "sth": 13456, - "sth": 34004, - "sthe": 16491, - "sthel": 42863, - "sti": 860, - "sti": 12439, - "stia": 26492, - "stible": 25835, - "stic": 5868, - "stic": 1561, - "stical": 16660, - "stically": 19041, - "stick": 5483, - "stick": 4987, - "sticker": 11270, - "stickers": 11613, - "sticking": 21021, - "sticks": 10016, - "sticky": 18887, - "stics": 5449, - "stie": 38164, - "stie": 11000, - "stier": 42069, - "sties": 16428, - "stiff": 43471, - "stiff": 21441, - "stig": 4088, - "stig": 42551, - "stigate": 15390, - "stigma": 20619, - "stik": 42247, - "stil": 21790, - "stil": 37519, - "stiles": 33028, - "still": 13209, - "still": 1170, - "stills": 20259, - "stim": 18269, - "stime": 24711, - "stimul": 16434, - "stimulate": 42380, - "stimulating": 41237, - "stimulation": 39530, - "stimulus": 47283, - "stin": 2588, - "stin": 4025, - "stina": 22359, - "stine": 7098, - "sting": 19868, - "sting": 1271, - "stingly": 49332, - "stingray": 43229, - "stink": 38213, - "stinky": 44957, - "stino": 40658, - "stint": 33531, - "stion": 10812, - "stip": 39869, - "stips": 44756, - "stique": 43305, - "stir": 12416, - "stir": 19564, - "stirling": 23128, - "stirring": 39205, - "stis": 45224, - "stit": 14110, - "stitch": 30003, - "stitch": 14771, - "stitched": 36540, - "stitcher": 48204, - "stitches": 32360, - "stitching": 45208, - "stitu": 14585, - "stitutes": 40479, - "stive": 22426, - "stix": 48829, - "stjohn": 36153, - "stl": 14179, - "stl": 12527, - "stlblues": 44138, - "stlcards": 28644, - "stle": 7698, - "stles": 48638, - "stlouis": 40358, - "stlouis": 39516, - "stm": 28333, - "stn": 27175, - "sto": 928, - "sto": 5723, - "stock": 5899, - "stock": 3206, - "stocked": 23552, - "stockholm": 16024, - "stocki": 42944, - "stocking": 17335, - "stockings": 28040, - "stockmarket": 40359, - "stockport": 35569, - "stocks": 9321, - "stockton": 26130, - "stoday": 22392, - "stok": 43782, - "stoke": 31338, - "stoke": 13550, - "stoked": 13160, - "stokes": 27512, - "stol": 11401, - "stol": 6700, - "stole": 10995, - "stolen": 8704, - "stolic": 45020, - "stom": 2343, - "stom": 38068, - "stoma": 43545, - "stomach": 14722, - "stomp": 40165, - "stomping": 46144, - "ston": 4101, - "ston": 1839, - "stone": 7694, - "stone": 2441, - "stoned": 36248, - "stonehenge": 42417, - "stoner": 35131, - "stoner": 29115, - "stones": 42659, - "stones": 6885, - "stonewall": 39688, - "stoney": 44198, - "stony": 41717, - "stony": 35691, - "stoo": 24505, - "stood": 9151, - "stool": 34413, - "stool": 22314, - "stop": 6005, - "stop": 1691, - "stopbrexit": 48680, - "stopp": 15738, - "stopped": 6015, - "stopper": 32147, - "stoppers": 34457, - "stopping": 10735, - "stops": 9822, - "stopthe": 26463, - "stor": 809, - "stor": 17740, - "storage": 6824, - "store": 17769, - "store": 2183, - "stored": 28257, - "stores": 6370, - "storey": 24025, - "storians": 34628, - "stories": 3784, - "storing": 40087, - "stork": 46452, - "storm": 7434, - "storm": 2819, - "stormed": 45939, - "stormhour": 12161, - "storming": 24842, - "storms": 6464, - "stormtrooper": 49218, - "stormy": 20075, - "stors": 7178, - "story": 6512, - "story": 1134, - "storyline": 37079, - "storymonth": 23717, - "storyteller": 35882, - "storytelling": 14457, - "storytime": 44197, - "stos": 19281, - "stou": 37168, - "stour": 37361, - "stour": 21928, - "stout": 16550, - "stove": 21423, - "stow": 44284, - "stow": 17046, - "stowe": 34196, - "stown": 28071, - "stown": 7939, - "stp": 30576, - "stpatrick": 21343, - "stpatricksday": 22747, - "str": 807, - "str": 15913, - "stra": 1894, - "stra": 6253, - "strack": 46861, - "strada": 31134, - "strade": 48968, - "straigh": 31016, - "straight": 22114, - "straight": 4241, - "strain": 16887, - "strains": 38067, - "strait": 22946, - "straits": 41984, - "stral": 23289, - "stralia": 42510, - "stran": 18411, - "strand": 18214, - "strand": 17826, - "stranded": 22975, - "strang": 11138, - "strange": 33380, - "strange": 7288, - "strangely": 37566, - "stranger": 35541, - "stranger": 14149, - "strangers": 20684, - "strangerthings": 43271, - "strangest": 46740, - "strap": 13946, - "strapped": 40922, - "straps": 31213, - "stras": 36814, - "stras": 42125, - "strasbourg": 39576, - "strat": 11345, - "strat": 32925, - "strata": 47278, - "strate": 3532, - "strate": 28758, - "strategi": 49102, - "strategic": 10246, - "strategically": 45706, - "strategies": 9942, - "strategist": 37180, - "strategy": 5637, - "strates": 45724, - "stratford": 23955, - "strath": 21997, - "stration": 3156, - "strato": 28878, - "strauss": 32033, - "strava": 34625, - "stravel": 43494, - "straw": 7430, - "straw": 16438, - "strawberries": 17796, - "strawberry": 10233, - "straws": 33048, - "stray": 30784, - "stray": 15712, - "stre": 1079, - "stre": 19652, - "stread": 27797, - "streak": 11749, - "streaks": 42092, - "stream": 8659, - "stream": 3322, - "streamed": 26280, - "streamer": 25178, - "streamers": 19937, - "streaming": 6278, - "streamline": 44917, - "streams": 13545, - "stree": 35082, - "stree": 32438, - "streep": 38701, - "street": 4839, - "street": 2012, - "streetart": 12948, - "streetcar": 34268, - "streetfood": 44486, - "streetphotography": 20786, - "streets": 6058, - "streetstyle": 39118, - "streetwear": 37298, - "strel": 39685, - "stren": 4349, - "streng": 4472, - "strength": 15475, - "strength": 5959, - "strengthen": 16318, - "strengthened": 47131, - "strengthening": 23475, - "strengthens": 40280, - "strengths": 29268, - "stress": 17297, - "stress": 5843, - "stressed": 16497, - "stresses": 32112, - "stressful": 24268, - "stressing": 35917, - "stret": 12265, - "stretch": 10064, - "stretched": 29393, - "stretches": 32231, - "stretching": 24423, - "stri": 1493, - "stri": 27795, - "stria": 39620, - "strial": 30217, - "strian": 12924, - "stric": 2607, - "strick": 25181, - "strickland": 48939, - "strict": 21585, - "strictly": 16475, - "stride": 36024, - "strides": 37355, - "stries": 18171, - "strife": 46473, - "strike": 20774, - "strike": 5767, - "striker": 12448, - "strikers": 33465, - "strikes": 9280, - "striking": 13392, - "string": 25512, - "string": 9696, - "strings": 15699, - "strip": 9317, - "stripe": 19368, - "striped": 22192, - "stripes": 14239, - "stripped": 26602, - "stripper": 45759, - "stripping": 48588, - "strips": 19000, - "strive": 22140, - "striving": 37671, - "stro": 3121, - "stro": 6186, - "stroke": 44621, - "stroke": 10403, - "strokes": 26595, - "strol": 30123, - "stroll": 15924, - "stroller": 47076, - "strolling": 40911, - "strom": 14707, - "stron": 4165, - "strong": 10436, - "strong": 2389, - "stronger": 27760, - "stronger": 9245, - "strongertogether": 38532, - "strongest": 16171, - "strongh": 38678, - "strongly": 15507, - "strophy": 47912, - "strou": 48425, - "stroud": 39895, - "strous": 23752, - "stru": 1666, - "struc": 3311, - "struck": 10861, - "struction": 12497, - "structural": 16899, - "structure": 5285, - "structured": 27147, - "structures": 14171, - "structuring": 37496, - "strugg": 5176, - "struggle": 8443, - "struggled": 32921, - "struggles": 17446, - "struggling": 12135, - "struly": 34118, - "strum": 37632, - "strung": 46033, - "strust": 23920, - "strut": 48375, - "stry": 17325, - "stry": 2245, - "sts": 1088, - "stu": 858, - "stu": 23531, - "stuart": 32054, - "stuart": 11723, - "stub": 27066, - "stubborn": 38955, - "stuck": 6596, - "stud": 22368, - "stud": 13319, - "studded": 29153, - "studen": 44156, - "student": 14681, - "student": 2556, - "students": 1712, - "studi": 5691, - "studied": 21369, - "studies": 6426, - "studio": 17798, - "studio": 3155, - "studios": 6231, - "studs": 27571, - "study": 21051, - "study": 3123, - "studyabroad": 45425, - "studying": 8826, - "stuff": 46072, - "stuff": 3487, - "stuffed": 11781, - "stuffing": 31612, - "stuffs": 43455, - "stuk": 32424, - "stumb": 16784, - "stumble": 39045, - "stumbled": 21776, - "stump": 32064, - "stun": 3088, - "stun": 37959, - "stunned": 34034, - "stunner": 29965, - "stunning": 3769, - "stunningly": 47515, - "stuns": 43796, - "stunt": 19905, - "stunts": 40118, - "stupi": 18975, - "stupid": 42600, - "stupid": 8085, - "stupidity": 33766, - "stur": 10676, - "sturdy": 43780, - "stures": 27223, - "sturgeon": 31580, - "sturi": 21747, - "sturridge": 45331, - "stutt": 30444, - "stuttgart": 32219, - "stv": 27060, - "stv": 9708, - "stweet": 46832, - "stweets": 39174, - "stx": 42548, - "sty": 1421, - "sty": 2920, - "style": 12356, - "style": 1844, - "styled": 17974, - "styles": 6948, - "styli": 38577, - "styling": 14597, - "stylish": 10378, - "stylist": 15928, - "styn": 41394, - "su": 605, - "su": 2937, - "sua": 42448, - "suarez": 21437, - "suave": 47305, - "sub": 1783, - "sub": 7765, - "subaru": 21319, - "subjec": 16090, - "subject": 10300, - "subjects": 22099, - "subli": 16350, - "sublime": 22367, - "submarine": 19968, - "submer": 27156, - "submerged": 43171, - "submission": 16571, - "submissions": 21566, - "submit": 10423, - "submitted": 15189, - "submitting": 38788, - "subram": 49207, - "subs": 16398, - "subscri": 5838, - "subscribe": 9839, - "subscribed": 44867, - "subscriber": 36292, - "subscribers": 17337, - "subscription": 17979, - "subscriptions": 47162, - "subsequ": 33598, - "subsequent": 44323, - "subsi": 14856, - "subsidi": 45029, - "subsidiary": 45506, - "subsidies": 37685, - "subsidy": 47462, - "substan": 17487, - "substance": 19309, - "substances": 36834, - "substantial": 27171, - "substantially": 47577, - "substitu": 18529, - "substitute": 25340, - "subtitles": 39479, - "subtle": 16536, - "subur": 12517, - "suburb": 37664, - "suburban": 23570, - "suburbs": 25317, - "subway": 12196, - "suc": 1869, - "succe": 7981, - "succeed": 13556, - "succeeded": 41077, - "succes": 39019, - "success": 3695, - "success": 3034, - "successes": 29436, - "successful": 4670, - "successfully": 9934, - "succession": 38491, - "successive": 41319, - "successor": 34774, - "succu": 45253, - "succul": 25671, - "succulent": 35236, - "such": 2046, - "suction": 42786, - "sud": 8067, - "sud": 33714, - "sudan": 31149, - "sudan": 13474, - "sudanese": 42837, - "sudbury": 32488, - "sudden": 10833, - "sudden": 15433, - "suddenly": 11076, - "sue": 14045, - "sue": 6641, - "sued": 22225, - "suede": 21036, - "sues": 17105, - "suf": 21204, - "suf": 22579, - "sufc": 37091, - "suff": 4866, - "suffe": 13510, - "suffer": 13557, - "suffered": 14766, - "suffering": 10140, - "suffers": 22389, - "sufficient": 28410, - "suffol": 13775, - "suffolk": 46408, - "suffolk": 15685, - "suffra": 34596, - "suffrage": 39567, - "sufi": 39756, - "sug": 3189, - "suga": 28757, - "sugar": 12418, - "sugar": 5574, - "sugge": 6345, - "suggest": 13356, - "suggested": 18790, - "suggesti": 15033, - "suggesting": 29792, - "suggestion": 23741, - "suggestions": 16052, - "suggests": 13333, - "suho": 32744, - "sui": 24972, - "suici": 16372, - "suicidal": 37165, - "suicide": 31310, - "suicide": 8247, - "suing": 18309, - "suisse": 35964, - "suit": 11887, - "suit": 3940, - "suitable": 17476, - "suitcase": 27792, - "suite": 9346, - "suited": 25919, - "suites": 21523, - "suits": 9949, - "suk": 24820, - "suk": 6886, - "suka": 44017, - "suke": 25590, - "sukh": 46961, - "suki": 32704, - "sul": 1767, - "sul": 19879, - "sula": 34713, - "sula": 26143, - "sullivan": 14477, - "sully": 37752, - "sulph": 37234, - "sulphur": 47659, - "sultan": 35650, - "sultan": 17049, - "sum": 7054, - "sum": 8257, - "suma": 47938, - "sumat": 32640, - "sumatra": 47346, - "sume": 45457, - "sumi": 41248, - "summ": 1309, - "summar": 34657, - "summari": 31993, - "summary": 13435, - "summed": 34912, - "summer": 5500, - "summer": 1673, - "summers": 18254, - "summerslam": 40264, - "summertime": 19025, - "summit": 30011, - "summit": 3768, - "summon": 27622, - "summon": 39782, - "sumner": 46813, - "sumo": 33734, - "sump": 34252, - "sumptuous": 47354, - "sums": 13325, - "sun": 968, - "sun": 2176, - "sunbathing": 46994, - "sunburn": 45767, - "sund": 40735, - "sundae": 38078, - "sundance": 24128, - "sundar": 44936, - "sunday": 6649, - "sunday": 1706, - "sundayfunday": 21565, - "sundaymorning": 24809, - "sundaymotivation": 46227, - "sundays": 15827, - "sundaywith": 26469, - "sundaywithmarsha": 26662, - "sunder": 15097, - "sunderland": 45727, - "sunderland": 18851, - "sundown": 44438, - "sune": 41096, - "sunflower": 21559, - "sunflowers": 39809, - "sung": 16903, - "sung": 6047, - "sunglasses": 12906, - "suni": 17663, - "suni": 47010, - "sunil": 32861, - "sunite": 21382, - "sunited": 35276, - "sunk": 37534, - "sunken": 43473, - "sunlight": 17996, - "sunni": 44315, - "sunny": 15632, - "sunny": 5438, - "sunrise": 5610, - "suns": 18322, - "sunscreen": 29355, - "sunset": 37880, - "sunset": 3424, - "sunsets": 17721, - "sunshine": 32761, - "sunshine": 5385, - "suny": 41308, - "sup": 19078, - "sup": 8249, - "supdates": 24177, - "super": 1642, - "super": 1994, - "superb": 8930, - "superbike": 45709, - "superbowl": 47461, - "superbowl": 16467, - "supercar": 27021, - "supercars": 32185, - "supercell": 43227, - "supercharged": 47479, - "supere": 46831, - "superfood": 41715, - "supergirl": 25771, - "superhero": 14049, - "superheroes": 23334, - "superint": 17615, - "superintendent": 19020, - "superior": 13205, - "superjunior": 40475, - "superleague": 45539, - "superman": 11237, - "supermarket": 19897, - "supermarkets": 45106, - "supermodel": 41963, - "supermoon": 36571, - "supernatural": 15484, - "supernova": 39843, - "superrugby": 48717, - "supersonic": 42019, - "supersport": 46319, - "superst": 38202, - "superstar": 32551, - "superstar": 10472, - "superstars": 25797, - "supervis": 12709, - "supervised": 41316, - "supervision": 36234, - "supervisor": 20366, - "supervisors": 37958, - "superyacht": 42714, - "supp": 1023, - "supper": 15727, - "supple": 31431, - "supplement": 19924, - "supplements": 21265, - "supplied": 24106, - "supplier": 18043, - "suppliers": 24196, - "supplies": 9384, - "supply": 25074, - "supply": 6389, - "supplychain": 31224, - "supplying": 32739, - "suppo": 6941, - "suppor": 2104, - "support": 12062, - "support": 1425, - "supported": 8038, - "supporter": 12992, - "supporters": 7403, - "supportindiefilm": 43976, - "supporting": 3976, - "supportive": 18313, - "supportlocal": 43852, - "supports": 8336, - "supportsmall": 30941, - "supportsmallstreamers": 36097, - "suppose": 18924, - "supposed": 9119, - "supposedly": 32302, - "suppre": 20542, - "suppression": 36508, - "supra": 48485, - "supre": 5875, - "supremac": 28643, - "supremacist": 39005, - "supremacy": 28913, - "supreme": 35222, - "supreme": 7468, - "supt": 23625, - "sur": 1090, - "sur": 7123, - "sura": 33412, - "sura": 49125, - "surabaya": 45227, - "surance": 22184, - "surat": 30201, - "sure": 14320, - "sure": 1650, - "sured": 36869, - "surely": 11409, - "sures": 12725, - "suresh": 32118, - "suresh": 31464, - "sureshpp": 41924, - "sureshpprabhu": 42050, - "surf": 10176, - "surf": 10322, - "surface": 7744, - "surfaces": 20746, - "surfer": 24925, - "surfers": 34842, - "surfing": 15762, - "surg": 13045, - "surge": 17457, - "surgeon": 16039, - "surgeons": 26000, - "surger": 5122, - "surgeries": 34940, - "surgery": 5344, - "surgical": 16386, - "suri": 14130, - "suri": 33952, - "suring": 16817, - "suriya": 17832, - "surpass": 45494, - "surpassed": 25648, - "surplus": 29413, - "surpri": 3244, - "surprise": 5099, - "surprised": 8949, - "surprises": 16920, - "surprising": 14964, - "surprisingly": 17367, - "surreal": 18408, - "surrealism": 41773, - "surrender": 20964, - "surrendered": 44601, - "surrey": 26489, - "surrey": 14315, - "surro": 47499, - "surroun": 8250, - "surround": 26543, - "surround": 22999, - "surrounded": 13589, - "surrounding": 12544, - "surroundings": 26915, - "surrounds": 39012, - "suru": 49240, - "surve": 8952, - "surveill": 15408, - "surveillance": 15578, - "survey": 45914, - "survey": 6809, - "surveying": 33085, - "surveys": 25096, - "survi": 3440, - "surviv": 12922, - "survival": 10172, - "survive": 10431, - "survived": 13483, - "survives": 30927, - "surviving": 18609, - "survivor": 31934, - "survivor": 10944, - "survivors": 13711, - "surya": 37767, - "sus": 8091, - "sus": 3036, - "susa": 20546, - "susan": 19922, - "susan": 10168, - "suscep": 44270, - "sush": 22298, - "sushi": 11729, - "sushmaswar": 48200, - "susie": 32284, - "susp": 7971, - "suspec": 10298, - "suspect": 9065, - "suspected": 15579, - "suspects": 18265, - "suspen": 10578, - "suspend": 41007, - "suspended": 13126, - "suspends": 39535, - "suspense": 21556, - "suspension": 15417, - "suspici": 25714, - "suspicion": 34910, - "suspicious": 19862, - "sussex": 31244, - "sussex": 13266, - "sustain": 4644, - "sustain": 28156, - "sustainability": 9635, - "sustainable": 23645, - "sustainable": 7078, - "sustained": 22699, - "sustaining": 44418, - "sut": 23984, - "sut": 28956, - "sutherland": 27592, - "sutton": 39359, - "sutton": 18564, - "suv": 15985, - "suz": 9957, - "suzanne": 24617, - "suzu": 36289, - "suzuki": 16892, - "suzy": 26552, - "sv": 6508, - "sv": 17083, - "svc": 45065, - "sve": 47637, - "sven": 37786, - "sven": 45183, - "sver": 45923, - "sville": 44580, - "sville": 6741, - "svp": 28465, - "svt": 42014, - "svu": 32123, - "sw": 1220, - "sw": 4457, - "swa": 4707, - "swa": 31916, - "swach": 20862, - "swachhb": 31898, - "swachhbharat": 36927, - "swag": 8852, - "swag": 8177, - "swagg": 47702, - "swagger": 35797, - "swain": 43226, - "swal": 13433, - "swallow": 28979, - "swallowed": 46956, - "swallows": 45124, - "swam": 42539, - "swami": 25021, - "swamp": 41953, - "swamp": 16595, - "swamy": 28445, - "swan": 8215, - "swan": 12530, - "swana": 24699, - "swans": 19516, - "swansea": 16567, - "swanson": 34797, - "swap": 15234, - "swapped": 39077, - "swapping": 44702, - "swaps": 49242, - "swar": 11680, - "swarm": 31577, - "swarovski": 28515, - "swat": 32547, - "swat": 26482, - "swatch": 48053, - "sway": 26443, - "sway": 26617, - "swc": 42231, - "swe": 2350, - "swe": 38070, - "swear": 7406, - "swearing": 32627, - "sweat": 10282, - "sweat": 12663, - "sweater": 11455, - "sweaters": 31303, - "sweating": 33215, - "sweats": 39321, - "sweatshirt": 22442, - "sweaty": 28419, - "sweden": 8760, - "swedish": 11585, - "swee": 1812, - "sweek": 30017, - "sweeney": 27286, - "sweep": 23220, - "sweep": 13669, - "sweeping": 25719, - "sweeps": 26887, - "sweepstakes": 25992, - "sweet": 10957, - "sweet": 2418, - "sweetened": 45577, - "sweeter": 32873, - "sweetest": 15180, - "sweethe": 16316, - "sweetheart": 18079, - "sweetie": 24450, - "sweetness": 29713, - "sweets": 18045, - "swel": 48470, - "swell": 35538, - "swell": 21490, - "swelling": 46578, - "swept": 23311, - "swer": 30514, - "swfc": 30227, - "swfl": 46607, - "swi": 3881, - "swi": 45223, - "swick": 17159, - "swif": 28548, - "swift": 34843, - "swift": 8229, - "swild": 33909, - "swild": 38696, - "swildlife": 46818, - "swim": 4928, - "swim": 7681, - "swimmer": 25475, - "swimmers": 27776, - "swimming": 7411, - "swims": 46798, - "swimsuit": 25504, - "swimwear": 31889, - "swin": 14554, - "swin": 40798, - "swindon": 29540, - "swine": 31166, - "swing": 25292, - "swing": 7429, - "swinging": 26760, - "swings": 29141, - "swipe": 31828, - "swire": 42753, - "swirl": 35795, - "swis": 23611, - "swish": 38571, - "swiss": 37917, - "swiss": 9287, - "swit": 3726, - "switch": 22480, - "switch": 5893, - "switched": 22869, - "switches": 33569, - "switching": 21155, - "swith": 17299, - "switzer": 9835, - "switzerland": 9912, - "swivel": 48256, - "swo": 38673, - "swol": 29575, - "swollen": 36129, - "swoo": 29744, - "swood": 24158, - "swoon": 37028, - "swoop": 45661, - "sword": 33294, - "sword": 11356, - "swords": 27181, - "swork": 42722, - "sworld": 33305, - "sworn": 21130, - "sworth": 13322, - "swt": 38878, - "swx": 20597, - "sx": 9402, - "sx": 17806, - "sxsw": 13369, - "sy": 974, - "sy": 2126, - "sya": 35017, - "sycam": 34911, - "sycamore": 43086, - "syd": 4525, - "syd": 22504, - "sydney": 15878, - "sydney": 5278, - "syed": 27624, - "syfy": 32047, - "sykes": 27287, - "syl": 6452, - "sylla": 41708, - "sylvania": 12011, - "sylve": 28369, - "sylvester": 37214, - "sylvia": 25670, - "sym": 3645, - "sym": 40327, - "symb": 22987, - "symbol": 13085, - "symboli": 22019, - "symbolic": 33177, - "symbolism": 44679, - "symbols": 25476, - "symmetry": 31427, - "symp": 11468, - "sympathi": 47493, - "sympathy": 32477, - "symph": 9544, - "symphonic": 42639, - "symphony": 11180, - "sympo": 9730, - "symposium": 9971, - "symptom": 47799, - "symptoms": 12956, - "syn": 3758, - "syn": 36090, - "synago": 30945, - "synagogue": 33518, - "sync": 20081, - "synchron": 23943, - "syndic": 21098, - "syndicate": 28779, - "syndrome": 10927, - "syner": 22283, - "synergy": 32012, - "syno": 31533, - "synod": 47712, - "synopsis": 47018, - "synth": 33841, - "synth": 24462, - "synthe": 22604, - "synthesi": 33565, - "synthesis": 21602, - "synthesizer": 44077, - "synthetic": 19917, - "syou": 26742, - "syour": 21718, - "syrac": 17279, - "syracuse": 19640, - "syrah": 45364, - "syri": 18917, - "syria": 5563, - "syrian": 47562, - "syrian": 10041, - "syrians": 41392, - "syrup": 16611, - "sys": 26726, - "syste": 1933, - "system": 47813, - "system": 2422, - "systematic": 28586, - "systemic": 33807, - "systems": 4828, - "sz": 13438, - "sz": 15879, - "sze": 44507, - "szn": 48092, - "são": 45911, - "sé": 37879, - "t": 83, - "t": 339, - "ta": 648, - "ta": 1397, - "taa": 43874, - "tab": 2648, - "tab": 14724, - "tabby": 36145, - "tabern": 48991, - "tability": 15770, - "table": 12108, - "table": 2175, - "tableau": 39723, - "tables": 7822, - "tablet": 12494, - "tabletop": 46843, - "tabletop": 25773, - "tablets": 20436, - "tably": 24440, - "taboo": 38400, - "tabs": 29163, - "tac": 3145, - "tac": 22653, - "tache": 39239, - "tack": 6339, - "tack": 34446, - "tackle": 10294, - "tackled": 47218, - "tackles": 18021, - "tackling": 19628, - "taco": 31924, - "taco": 12436, - "tacoma": 25397, - "tacos": 14090, - "tactic": 40377, - "tactical": 17137, - "tactics": 16410, - "tacular": 48985, - "tad": 15890, - "tad": 19860, - "tado": 40846, - "tae": 15257, - "tae": 15580, - "taehyung": 24642, - "taek": 30753, - "taekwondo": 39963, - "taemin": 30600, - "taeyang": 45802, - "taeyeon": 27389, - "taf": 29660, - "taft": 42141, - "tag": 3456, - "tag": 3640, - "tage": 2669, - "tages": 39902, - "tagged": 12969, - "tagging": 25138, - "tagne": 47467, - "tags": 11606, - "tah": 14822, - "tah": 7090, - "tahit": 45385, - "tahoe": 26140, - "tai": 6511, - "tai": 13040, - "taiji": 30185, - "tail": 7156, - "tail": 4132, - "tailed": 20626, - "tailgate": 23168, - "tailgating": 42625, - "tailo": 27230, - "tailor": 29870, - "tailored": 28275, - "tailoring": 46357, - "tails": 16066, - "tain": 2841, - "tain": 1908, - "taine": 21214, - "taine": 32299, - "tained": 10212, - "taining": 7565, - "tainment": 30063, - "tains": 3952, - "tainted": 47211, - "taipei": 24356, - "tair": 29143, - "tairp": 43707, - "tait": 45325, - "taiwan": 36319, - "taiwan": 12626, - "taiwanese": 41416, - "taj": 28937, - "taj": 24805, - "taji": 46358, - "tak": 15070, - "tak": 14458, - "taka": 24070, - "taka": 40968, - "take": 5052, - "take": 1172, - "takeaway": 25737, - "takeaways": 32080, - "takeme": 41748, - "taken": 2807, - "takeoff": 32789, - "takeover": 11863, - "taker": 17939, - "takers": 30775, - "takes": 2633, - "takin": 30890, - "taking": 2019, - "taku": 48168, - "tal": 976, - "tal": 2066, - "tala": 29845, - "talaga": 35349, - "talbot": 30585, - "tale": 33971, - "tale": 7798, - "talent": 30435, - "talent": 5114, - "talented": 5331, - "talents": 16136, - "tales": 9469, - "tali": 12122, - "tali": 45406, - "taliban": 20788, - "talis": 36480, - "tality": 15631, - "talk": 12462, - "talk": 1841, - "talked": 10153, - "talkin": 26040, - "talking": 31463, - "talking": 2578, - "talks": 3237, - "tall": 11664, - "tall": 7771, - "talla": 21528, - "tallade": 44220, - "tallahassee": 37832, - "taller": 23470, - "tallest": 19774, - "tallinn": 45079, - "tally": 16323, - "talon": 47897, - "tam": 2661, - "tam": 12246, - "tama": 45424, - "tamanna": 48055, - "tamar": 22901, - "tamara": 35697, - "tame": 38557, - "tame": 32778, - "tamed": 40575, - "tami": 39429, - "tamil": 23046, - "tamil": 14033, - "tamilnadu": 32371, - "tamine": 42566, - "tammy": 28396, - "tampa": 10906, - "tampab": 37852, - "tamu": 34105, - "tan": 2123, - "tan": 5039, - "tana": 21396, - "tand": 20244, - "tandem": 33756, - "tane": 13344, - "tane": 24923, - "taneous": 22275, - "taneously": 24422, - "tang": 10425, - "tang": 20794, - "tanger": 31844, - "tangerine": 42045, - "tangible": 44823, - "tangle": 36568, - "tangled": 33587, - "tango": 24089, - "tani": 31374, - "tani": 32985, - "tania": 45369, - "tank": 29858, - "tank": 6172, - "tanker": 25020, - "tanks": 14223, - "tann": 19174, - "tanner": 22001, - "tanning": 27985, - "tans": 27332, - "tant": 41383, - "tant": 41695, - "tante": 48262, - "tanto": 45685, - "tany": 34410, - "tanya": 26800, - "tanz": 47399, - "tanzania": 15711, - "tao": 29084, - "tao": 18923, - "tap": 17923, - "tap": 7888, - "tapas": 27361, - "tape": 18332, - "tape": 5749, - "taped": 33219, - "tapes": 17903, - "tapestry": 33525, - "taping": 24355, - "tapp": 27644, - "tapp": 27764, - "tapped": 26649, - "tapping": 27882, - "tapro": 34415, - "taproom": 40266, - "taps": 23267, - "tar": 2002, - "tar": 6977, - "tara": 15264, - "tarak": 37813, - "taran": 32370, - "tarantino": 41180, - "tarde": 48670, - "tardis": 35410, - "tares": 34587, - "targe": 9620, - "target": 38556, - "target": 5400, - "targeted": 14968, - "targeting": 15818, - "targets": 12468, - "tari": 4238, - "tari": 38012, - "tarian": 11762, - "tarians": 42789, - "taries": 47291, - "tariff": 40220, - "tariffs": 28335, - "tariq": 42526, - "tarmac": 44294, - "taro": 26264, - "tarot": 23702, - "tart": 16707, - "tart": 14120, - "tartan": 35064, - "tarts": 29799, - "tary": 31729, - "tary": 5065, - "tarzan": 45463, - "tas": 6538, - "tas": 10163, - "tash": 35272, - "tasha": 44967, - "task": 39189, - "task": 10549, - "tasks": 19453, - "tasmania": 22429, - "tasmanian": 45102, - "tassel": 49276, - "tast": 10839, - "taste": 14314, - "taste": 5219, - "tasted": 22827, - "tasteof": 38097, - "taster": 29743, - "tastes": 13736, - "tastic": 21337, - "tasting": 7656, - "tastings": 49273, - "tasty": 43390, - "tasty": 8568, - "tat": 2652, - "tat": 21592, - "tata": 19300, - "tate": 44476, - "tate": 13295, - "tath": 27566, - "tati": 31433, - "tatiana": 48837, - "tation": 5280, - "tations": 32324, - "tator": 18791, - "tators": 37206, - "tats": 44557, - "tatt": 9232, - "tatted": 41605, - "tattoo": 15980, - "tattoo": 6325, - "tattooed": 28541, - "tattoos": 14900, - "tatum": 26103, - "tau": 6620, - "tau": 20510, - "taught": 9306, - "taun": 23910, - "taunton": 40681, - "taurus": 32881, - "taver": 37776, - "tavern": 18644, - "taw": 33868, - "taw": 40289, - "tawa": 29035, - "tawards": 14351, - "tax": 4581, - "tax": 3879, - "taxation": 36847, - "taxes": 11462, - "taxi": 25160, - "taxi": 11380, - "taxider": 47420, - "taxis": 34009, - "taxpay": 17986, - "taxpayer": 30978, - "taxpayers": 25503, - "tay": 6542, - "tay": 15073, - "taya": 38484, - "tayl": 3913, - "taylor": 9044, - "taylor": 3961, - "taylorswift": 18936, - "tayo": 33941, - "taz": 41475, - "taz": 31870, - "tb": 1990, - "tb": 7490, - "tba": 34363, - "tball": 8390, - "tball": 1467, - "tbc": 31807, - "tbd": 45548, - "tbh": 13238, - "tbi": 45868, - "tbl": 42962, - "tbli": 43664, - "tblightning": 44178, - "tbo": 34255, - "tbr": 46643, - "tbs": 37368, - "tbt": 2950, - "tc": 6820, - "tc": 5454, - "tca": 35116, - "tch": 10744, - "tch": 4048, - "tches": 42001, - "tcm": 21501, - "tcm": 26588, - "tcmparty": 24338, - "tcot": 8995, - "tcs": 39107, - "tcu": 26791, - "td": 20578, - "td": 3192, - "tdf": 21844, - "tdi": 45621, - "tdp": 47009, - "tds": 20238, - "tdsb": 29836, - "te": 600, - "te": 756, - "tea": 41053, - "tea": 3274, - "teach": 2043, - "teach": 6865, - "teacher": 18051, - "teacher": 4008, - "teachers": 5069, - "teaches": 17110, - "teaching": 5141, - "teachings": 32119, - "teal": 22821, - "team": 2085, - "team": 1027, - "teamcanada": 46636, - "teamed": 20590, - "teamgb": 40971, - "teaming": 24392, - "teammate": 17900, - "teammates": 13921, - "teams": 3891, - "teamsisd": 34703, - "teamusa": 28625, - "teamwork": 14657, - "teaparty": 33065, - "teapo": 35745, - "teapot": 40749, - "tear": 15802, - "tear": 11862, - "tearful": 46873, - "tearing": 24785, - "tears": 7688, - "teas": 23003, - "teas": 29314, - "tease": 25163, - "teased": 49122, - "teaser": 8982, - "teasers": 48990, - "teases": 28509, - "teasing": 36507, - "teat": 26376, - "teatime": 48948, - "teatro": 35756, - "teau": 24931, - "tebow": 37797, - "tec": 17381, - "tec": 11612, - "tech": 1782, - "tech": 2061, - "techcrunch": 42110, - "techn": 6252, - "technews": 31787, - "technic": 16639, - "technic": 37666, - "technical": 49231, - "technical": 7582, - "technically": 23180, - "technician": 22540, - "technicians": 35513, - "techno": 2599, - "techno": 17564, - "technological": 23068, - "technologies": 10040, - "technology": 3089, - "techs": 41353, - "ted": 4841, - "ted": 775, - "tedcruz": 27517, - "teddy": 25758, - "teddy": 11798, - "tedly": 8539, - "tedu": 42517, - "tedx": 17950, - "tedx": 41504, - "tee": 12676, - "tee": 3385, - "teed": 13692, - "teen": 5398, - "teen": 4697, - "teenage": 14069, - "teenager": 19338, - "teenagers": 25989, - "teenchoice": 28203, - "teens": 12375, - "teenth": 20249, - "teenwolf": 40067, - "teeny": 41622, - "teer": 48648, - "tees": 9641, - "teessi": 43295, - "teeth": 8225, - "tega": 29508, - "tegr": 39801, - "teh": 18720, - "teh": 29601, - "tehran": 26399, - "tein": 33223, - "tej": 46724, - "tek": 17489, - "tek": 18294, - "tekken": 29843, - "tel": 4978, - "tel": 2226, - "telang": 23469, - "telangana": 26386, - "tele": 3103, - "tele": 32851, - "telecom": 21057, - "telecommunications": 39900, - "telegram": 26780, - "telegraph": 14713, - "telephone": 17243, - "telescope": 19037, - "telethon": 49266, - "televised": 39470, - "television": 8608, - "telford": 38323, - "tell": 16069, - "tell": 2330, - "teller": 20415, - "tellers": 42707, - "telling": 5507, - "tells": 5217, - "tellu": 42511, - "telly": 31475, - "tels": 43607, - "telugu": 22927, - "tely": 5630, - "tem": 2404, - "tem": 17536, - "tema": 45881, - "teme": 43378, - "temp": 2684, - "temp": 11097, - "tempe": 36723, - "temper": 5981, - "temper": 35521, - "temperature": 9543, - "temperatures": 11575, - "tempered": 40521, - "tempest": 36053, - "templ": 16679, - "template": 18591, - "templates": 30498, - "temple": 21841, - "temple": 5620, - "temples": 24024, - "tempo": 19625, - "tempor": 4858, - "temporal": 43656, - "temporarily": 23189, - "temporary": 6513, - "temps": 11668, - "tempt": 28460, - "temptation": 30118, - "tempted": 26226, - "tempting": 34876, - "ten": 1149, - "ten": 2581, - "tenant": 16954, - "tenants": 26023, - "tenay": 45384, - "tenberg": 31329, - "tend": 17630, - "tend": 21252, - "tendency": 47277, - "tender": 23020, - "tender": 9838, - "tenderloin": 42750, - "tenders": 44741, - "tending": 35084, - "tendon": 48459, - "tends": 39962, - "tene": 24868, - "tened": 13682, - "tener": 29054, - "teneri": 28000, - "tenerife": 29401, - "teners": 41307, - "teness": 18018, - "teng": 34016, - "teng": 28474, - "tennant": 29310, - "tennes": 9514, - "tennessee": 10053, - "tennis": 31504, - "tennis": 5298, - "tenor": 30521, - "tens": 14062, - "tense": 23518, - "tension": 15221, - "tensions": 24224, - "tenstein": 49139, - "tent": 18505, - "tent": 10782, - "tentative": 48238, - "tenth": 27483, - "tention": 12191, - "tents": 30730, - "tenure": 30739, - "teo": 18665, - "tep": 31806, - "tequ": 17502, - "tequila": 18510, - "ter": 704, - "ter": 652, - "tera": 15155, - "teras": 44830, - "tere": 11329, - "tered": 49272, - "tered": 4389, - "terence": 33806, - "teresa": 19081, - "teri": 30917, - "teria": 22685, - "terie": 42276, - "tering": 7929, - "term": 40991, - "term": 4780, - "termin": 4766, - "terminal": 11816, - "terminals": 44091, - "terminator": 29609, - "terminology": 48896, - "terms": 8663, - "tern": 41572, - "tern": 12959, - "terns": 25251, - "tero": 20727, - "tero": 24697, - "terps": 41471, - "terr": 3921, - "terra": 22366, - "terra": 18816, - "terrac": 28549, - "terrace": 13820, - "terraces": 47508, - "terracotta": 45123, - "terrain": 20184, - "terran": 43726, - "terre": 33888, - "terre": 27537, - "terrell": 39494, - "terrence": 38746, - "terrestrial": 46299, - "terri": 4504, - "terri": 36722, - "terrible": 9741, - "terribly": 34558, - "terrier": 14455, - "terriers": 47047, - "terrific": 13837, - "terrified": 28204, - "terrifying": 18526, - "territ": 10720, - "territorial": 39163, - "territories": 32846, - "territory": 13936, - "terror": 9596, - "terror": 9327, - "terrori": 6836, - "terrorism": 10583, - "terrorist": 10575, - "terrorists": 12835, - "terry": 19378, - "terry": 8561, - "ters": 24102, - "ters": 1737, - "terti": 48386, - "tery": 4184, - "tes": 8019, - "tes": 3609, - "tesco": 15434, - "tese": 33320, - "tesla": 12254, - "tess": 21807, - "tess": 20840, - "tessa": 32063, - "test": 7738, - "test": 1628, - "testam": 23477, - "testament": 24609, - "tested": 10576, - "tester": 32707, - "testi": 18373, - "testic": 42364, - "testify": 33088, - "testifying": 46347, - "testim": 12553, - "testimonial": 28834, - "testimony": 18672, - "testing": 4967, - "testo": 42428, - "testosterone": 45168, - "tests": 8715, - "tet": 40468, - "tet": 13275, - "tetra": 40902, - "tetris": 45934, - "teu": 47152, - "teuk": 39979, - "teur": 27120, - "tex": 2056, - "tex": 11728, - "texan": 35287, - "texan": 38386, - "texans": 17580, - "texanscheer": 43717, - "texas": 15713, - "texas": 3403, - "texaste": 46469, - "text": 18169, - "text": 4160, - "textbook": 25952, - "textbooks": 44041, - "texted": 29004, - "textile": 19789, - "textiles": 24326, - "texting": 18600, - "texts": 12767, - "texture": 16505, - "textured": 32168, - "textures": 28063, - "tey": 32395, - "tez": 22664, - "tf": 18828, - "tf": 5001, - "tfc": 30186, - "tfl": 29918, - "tford": 22493, - "tful": 17108, - "tfw": 16741, - "tg": 7665, - "tg": 11981, - "tgif": 14483, - "th": 513, - "th": 640, - "tha": 18470, - "tha": 4715, - "thab": 38219, - "thad": 48339, - "thai": 28054, - "thai": 8825, - "thail": 7258, - "thailand": 7469, - "thak": 22801, - "thakur": 38427, - "thal": 7967, - "thal": 12323, - "thala": 17784, - "thalai": 25206, - "thalaivar": 44918, - "thalap": 39789, - "thalapathy": 45405, - "thalapathy": 23324, - "thall": 36007, - "tham": 11761, - "tham": 8896, - "thames": 43472, - "thames": 15321, - "than": 792, - "than": 1126, - "thand": 44465, - "thane": 21463, - "thang": 24870, - "thani": 31322, - "thank": 2790, - "thank": 1144, - "thanked": 32079, - "thankful": 38839, - "thankful": 6217, - "thankfully": 22089, - "thanking": 21989, - "thanks": 5672, - "thanks": 1085, - "thanksgiving": 45732, - "thanksgiving": 6167, - "thanku": 45710, - "thankyou": 18050, - "thankyou": 9911, - "thanniversary": 35564, - "thanos": 36709, - "thanx": 25095, - "thar": 14396, - "thar": 38843, - "thard": 43474, - "that": 6303, - "that": 682, - "thatcher": 32496, - "thats": 44636, - "thats": 9254, - "thaw": 26081, - "thaw": 47229, - "thbewithyou": 41067, - "thc": 20091, - "thcentury": 49111, - "thd": 28219, - "thday": 37801, - "the": 599, - "the": 518, - "thea": 15935, - "thea": 25429, - "thead": 25259, - "theal": 45728, - "thealth": 31398, - "thear": 43283, - "theart": 44678, - "theast": 8378, - "theastern": 17877, - "theat": 2263, - "theater": 39438, - "theater": 6128, - "theaters": 14689, - "theatre": 19857, - "theatre": 3292, - "theatres": 21680, - "theatrical": 26833, - "theband": 27695, - "thebeatles": 35645, - "thebest": 40883, - "thebest": 25856, - "thebig": 24732, - "theblack": 47718, - "thec": 48659, - "thed": 31405, - "thedaily": 33550, - "theday": 4408, - "thedream": 39417, - "thee": 44475, - "thee": 15108, - "theeconomist": 44518, - "theellenshow": 35342, - "thefilm": 31665, - "theflash": 25434, - "theforce": 40002, - "theforceawakens": 48033, - "theft": 13286, - "thefuture": 34287, - "thegame": 24428, - "thegood": 28594, - "thegreat": 28721, - "thei": 44522, - "their": 911, - "theirs": 29297, - "thel": 5403, - "thelast": 23495, - "thelastjedi": 47992, - "theless": 27712, - "theli": 15277, - "thelittle": 46872, - "thelo": 47036, - "thelove": 40668, - "thelove": 43200, - "them": 5435, - "them": 1180, - "themasters": 48378, - "theme": 38524, - "theme": 5849, - "themed": 10126, - "themes": 17849, - "themet": 48183, - "themovie": 27062, - "themselves": 6503, - "then": 5929, - "then": 1594, - "thenburg": 45209, - "thene": 17012, - "thenew": 24212, - "thenext": 47881, - "thenight": 43336, - "theno": 37172, - "thenorth": 34338, - "theo": 17043, - "theo": 18084, - "theod": 26653, - "theodore": 30743, - "theological": 41162, - "theology": 24095, - "theon": 34653, - "theone": 46231, - "theopen": 41438, - "theore": 22690, - "theoretical": 35585, - "theori": 34804, - "theories": 23937, - "theory": 7143, - "thepeople": 33597, - "thepersonal": 29981, - "thepersonalnetwork": 30016, - "thephoto": 18303, - "thephotohour": 18607, - "ther": 1160, - "ther": 743, - "therap": 4499, - "therapeu": 19332, - "therapeutic": 23240, - "therapeutics": 49101, - "therapies": 30179, - "therapist": 20608, - "therapists": 34763, - "therapper": 49340, - "therapy": 5257, - "there": 5283, - "there": 997, - "thereal": 8074, - "thereal": 41140, - "thereby": 43308, - "thered": 10208, - "therefore": 16865, - "theres": 18494, - "theresa": 14126, - "therese": 47996, - "theresistance": 22845, - "theri": 28967, - "theri": 45297, - "therine": 26807, - "therine": 9239, - "thering": 7891, - "therland": 25351, - "thermal": 13689, - "thermo": 22303, - "thermom": 31138, - "thermometer": 38172, - "thermost": 42391, - "thern": 10919, - "thern": 3137, - "thero": 13165, - "theroad": 29807, - "therock": 30036, - "theroy": 38146, - "thers": 1959, - "thes": 40556, - "thes": 6460, - "thescript": 47061, - "these": 40366, - "these": 1071, - "theses": 39388, - "thesimpsons": 45513, - "thesims": 34192, - "thesis": 10673, - "thessal": 41491, - "thessaloni": 41753, - "thest": 35343, - "thesun": 45617, - "theta": 27694, - "thetic": 7954, - "thetimes": 36039, - "thevamp": 33701, - "thevoice": 47206, - "thevoice": 30258, - "thewalkingdead": 18087, - "thewanted": 43008, - "theworld": 44988, - "theworld": 17475, - "thex": 35990, - "they": 15174, - "they": 889, - "theyre": 28266, - "thfc": 17729, - "thi": 2362, - "thi": 9111, - "thia": 17943, - "thiago": 44537, - "thian": 23214, - "thians": 28187, - "thibau": 48351, - "thic": 26107, - "thic": 11794, - "thick": 18417, - "thick": 11006, - "thicker": 43302, - "thickness": 40754, - "thief": 18508, - "thier": 25595, - "thierry": 32929, - "thieves": 17899, - "thigh": 47124, - "thigh": 22877, - "thighs": 30847, - "thik": 20512, - "thika": 44619, - "thill": 31266, - "thim": 42331, - "thin": 2178, - "thin": 7847, - "thine": 47192, - "thing": 7499, - "thing": 946, - "things": 30670, - "things": 1739, - "thingsto": 43924, - "thingy": 36888, - "think": 9820, - "think": 1331, - "thinkbig": 26015, - "thinkbigsundaywithmarsha": 26666, - "thinker": 34577, - "thinkers": 32779, - "thinkin": 34443, - "thinking": 3291, - "thinks": 6109, - "thinner": 47247, - "thir": 6030, - "third": 32102, - "third": 3981, - "thirds": 42582, - "thirst": 23563, - "thirsty": 39731, - "thirsty": 17521, - "thirteen": 34209, - "thirty": 20813, - "thiru": 43292, - "this": 4340, - "this": 589, - "thisday": 6532, - "thisdayin": 33641, - "thisdayinhistory": 46913, - "thisi": 7299, - "thisis": 14887, - "thismorning": 36245, - "thistle": 29039, - "thistory": 28904, - "thium": 21804, - "thletics": 17765, - "thm": 10407, - "thman": 30079, - "thms": 19874, - "thn": 44155, - "thn": 45587, - "thnx": 25480, - "tho": 1325, - "tho": 5025, - "thof": 18943, - "thofjuly": 21613, - "thol": 29319, - "thole": 31029, - "tholes": 42465, - "thology": 9881, - "thom": 2585, - "thom": 24094, - "thomas": 12574, - "thomas": 3888, - "thome": 21289, - "thomp": 37274, - "thompson": 42181, - "thompson": 8535, - "thomson": 24151, - "thon": 38776, - "thon": 8924, - "thong": 37058, - "thood": 15623, - "thor": 4130, - "thor": 13691, - "thora": 46866, - "thorn": 12957, - "thorn": 18466, - "thorne": 18025, - "thorns": 33650, - "thornton": 23592, - "thorough": 15294, - "thorough": 34788, - "thoroughbred": 43248, - "thoroughly": 19750, - "thorpe": 18099, - "thos": 41965, - "those": 1753, - "thot": 33736, - "thou": 1513, - "thou": 17781, - "though": 2846, - "thought": 23948, - "thought": 2449, - "thoughtful": 19592, - "thoughts": 3618, - "thour": 27125, - "thousand": 9344, - "thousands": 7089, - "thouse": 40318, - "thouse": 7819, - "thoven": 23078, - "thr": 1111, - "thr": 19138, - "thra": 17761, - "thra": 32797, - "thrash": 38262, - "thre": 1607, - "thread": 31108, - "thread": 8815, - "threads": 24957, - "threat": 7527, - "threat": 7212, - "threaten": 26097, - "threatened": 16391, - "threatening": 16400, - "threatens": 20555, - "threats": 12766, - "three": 21615, - "three": 2097, - "thren": 41776, - "thresh": 29779, - "threshold": 33791, - "threw": 12746, - "thri": 8713, - "thrift": 27779, - "thrill": 21023, - "thrilled": 7879, - "thriller": 9653, - "thrilling": 20101, - "thrills": 39829, - "thrive": 17669, - "thriving": 22677, - "thro": 2101, - "thro": 28624, - "throat": 16371, - "thrombo": 47585, - "throne": 15999, - "thrones": 8072, - "throp": 34939, - "throttle": 37139, - "through": 6091, - "through": 1417, - "throughout": 6721, - "throughs": 48278, - "throw": 3315, - "throw": 6293, - "throwback": 6001, - "throwback": 5058, - "throwbackthursday": 6326, - "thrower": 40199, - "throwing": 9734, - "thrown": 15079, - "throws": 14723, - "thru": 23856, - "thru": 6162, - "thrush": 46133, - "thrust": 40202, - "ths": 2079, - "tht": 23554, - "thu": 3837, - "thu": 14153, - "thub": 25660, - "thug": 37212, - "thug": 18137, - "thugs": 27686, - "thul": 28368, - "thulhu": 37560, - "thum": 14679, - "thumb": 19514, - "thumb": 18674, - "thumbnail": 32365, - "thumbs": 17599, - "thun": 32267, - "thunder": 6161, - "thunder": 8951, - "thunderbird": 45131, - "thunderbirds": 44286, - "thunderbolt": 43596, - "thunderstorm": 12005, - "thunderstorms": 19525, - "thunt": 46763, - "thur": 1837, - "thur": 21704, - "thurman": 41291, - "thurs": 9908, - "thursday": 11218, - "thursday": 2221, - "thursdaymotivation": 39375, - "thursdays": 21444, - "thursdaythoughts": 14866, - "thurst": 33970, - "thus": 12457, - "thusi": 9488, - "thwaite": 48469, - "thweeksary": 30871, - "thx": 5913, - "thy": 7804, - "thy": 3362, - "thyme": 29805, - "thyro": 25174, - "thyroid": 32558, - "ti": 555, - "ti": 2605, - "tia": 6709, - "tial": 2826, - "tially": 14503, - "tian": 23011, - "tian": 8125, - "tians": 35182, - "tiara": 38322, - "tib": 47868, - "tibet": 19927, - "tibet": 22234, - "tibetan": 24057, - "tible": 11453, - "tic": 890, - "tic": 1550, - "tica": 9669, - "tical": 34191, - "tical": 4342, - "tically": 13375, - "ticals": 30861, - "tice": 3122, - "tich": 48769, - "tician": 43358, - "ticism": 26491, - "tick": 24640, - "tick": 15617, - "ticket": 25740, - "ticket": 4500, - "ticketing": 44432, - "tickets": 2015, - "ticking": 35842, - "tickle": 42999, - "ticks": 40269, - "tico": 17670, - "ticon": 45996, - "tics": 2419, - "ticul": 15538, - "ticus": 44277, - "tid": 26002, - "tid": 23727, - "tidal": 21949, - "tide": 15698, - "tide": 9105, - "tides": 25524, - "tidy": 23858, - "tie": 14072, - "tie": 3422, - "tied": 9889, - "tiem": 34762, - "tien": 47538, - "tiene": 43438, - "tier": 14390, - "tier": 6598, - "tierney": 45693, - "tiers": 24604, - "ties": 25556, - "ties": 2499, - "tiest": 18300, - "tiesto": 46367, - "tif": 23216, - "tiff": 11112, - "tiff": 20699, - "tiffany": 30467, - "tiffany": 14446, - "tification": 43923, - "tified": 40854, - "tiful": 29123, - "tify": 6677, - "tig": 31999, - "tiger": 11954, - "tiger": 6531, - "tigers": 6934, - "tigh": 31365, - "tight": 25763, - "tight": 9123, - "tighten": 46653, - "tighter": 48193, - "tightly": 37568, - "tights": 29581, - "tijuana": 45273, - "tik": 24986, - "tik": 32403, - "tiki": 30107, - "til": 6124, - "til": 1763, - "tile": 26217, - "tile": 8227, - "tiles": 10607, - "tility": 38180, - "till": 17462, - "till": 4267, - "tilla": 26063, - "tillerson": 47738, - "tilly": 41199, - "tilt": 23601, - "tim": 1292, - "tim": 3863, - "timate": 4754, - "timb": 26627, - "timber": 14441, - "timber": 16246, - "timberlake": 28274, - "timbers": 39911, - "timberwolves": 41190, - "time": 3764, - "time": 788, - "timed": 32727, - "timehop": 19944, - "timel": 23549, - "timelapse": 48154, - "timeless": 15558, - "timeline": 11492, - "timely": 19250, - "timeout": 41536, - "timer": 19725, - "timers": 44574, - "times": 26445, - "times": 1661, - "timesnow": 45487, - "timesof": 32522, - "timesofindia": 44182, - "timetable": 31971, - "timeto": 29187, - "timing": 13624, - "timm": 22444, - "timmy": 33252, - "timo": 13390, - "timo": 33777, - "timothy": 42087, - "timothy": 18560, - "timp": 42166, - "tin": 1310, - "tin": 5420, - "tina": 9257, - "tinder": 24287, - "tine": 22341, - "ting": 7451, - "ting": 694, - "tinged": 44829, - "tings": 35332, - "tini": 26839, - "tink": 39278, - "tinker": 45272, - "tinker": 40910, - "tino": 20538, - "tins": 37359, - "tint": 40497, - "tinted": 42618, - "tiny": 21716, - "tiny": 5591, - "tio": 27562, - "tion": 2274, - "tion": 740, - "tional": 22460, - "tional": 2986, - "tionality": 24514, - "tionally": 12409, - "tionary": 8381, - "tione": 44318, - "tioned": 9083, - "tioning": 15528, - "tionist": 25732, - "tions": 1371, - "tious": 14255, - "tip": 15383, - "tip": 4623, - "tipoff": 44521, - "tipp": 32294, - "tipped": 31878, - "tipper": 38095, - "tipperary": 45612, - "tipping": 27827, - "tips": 3173, - "tipton": 48809, - "tiptuesday": 42112, - "tique": 37772, - "tir": 25467, - "tir": 38462, - "tire": 29128, - "tire": 9362, - "tired": 6533, - "tireless": 39835, - "tirelessly": 41548, - "tires": 15533, - "tiring": 42630, - "tiru": 36033, - "tis": 7839, - "tis": 7394, - "tise": 13745, - "tisgarh": 40538, - "tish": 45148, - "tish": 28784, - "tism": 27113, - "tiss": 28155, - "tissue": 15368, - "tissues": 32172, - "tist": 7902, - "tista": 25580, - "tists": 25944, - "tit": 1991, - "tit": 13202, - "tita": 40936, - "titan": 13496, - "titan": 15516, - "titanic": 20729, - "titanium": 24409, - "titans": 13066, - "titi": 17434, - "titi": 48504, - "title": 28033, - "title": 3644, - "titled": 9939, - "titles": 9780, - "tito": 26838, - "titus": 36102, - "tium": 21975, - "tiv": 1835, - "tiva": 41886, - "tive": 14640, - "tive": 1420, - "tively": 9883, - "tiveness": 20955, - "tives": 7570, - "tivity": 9859, - "tivo": 32162, - "tix": 5835, - "tiz": 19376, - "tj": 18890, - "tj": 18988, - "tk": 22344, - "tk": 20676, - "tko": 37347, - "tks": 38739, - "tl": 14325, - "tl": 8190, - "tland": 30697, - "tlap": 41976, - "tlc": 22047, - "tle": 39141, - "tle": 5825, - "tles": 39363, - "tless": 17427, - "tlot": 41080, - "tls": 47367, - "tly": 37483, - "tly": 1646, - "tm": 9430, - "tm": 7789, - "tman": 20796, - "tmc": 35263, - "tment": 26485, - "tml": 39445, - "tmltalk": 42260, - "tmnt": 32444, - "tmobile": 34901, - "tmr": 35906, - "tmrw": 16496, - "tms": 44496, - "tmund": 23801, - "tmw": 45827, - "tmz": 37248, - "tn": 3827, - "tn": 7248, - "tna": 21150, - "tnam": 8079, - "tner": 34922, - "tness": 35212, - "tney": 9523, - "tng": 35898, - "tnt": 20659, - "tnx": 38220, - "to": 580, - "to": 531, - "toa": 17916, - "toad": 26096, - "toast": 24654, - "toast": 10920, - "toasted": 23533, - "toaster": 39061, - "toasty": 44726, - "tob": 24260, - "tobac": 12611, - "tobacco": 13905, - "tobago": 39482, - "tobe": 17534, - "tobe": 28740, - "tober": 18162, - "tober": 2925, - "toberfest": 26249, - "tobi": 40335, - "tobi": 48374, - "tobias": 32464, - "tobin": 42466, - "toby": 29659, - "toby": 18333, - "toc": 41907, - "toc": 30643, - "tock": 25274, - "tod": 38239, - "tod": 33568, - "toda": 47141, - "todas": 36150, - "today": 11800, - "today": 721, - "todayin": 32957, - "todays": 13513, - "todayshow": 29739, - "todd": 10398, - "todd": 9951, - "toddler": 17772, - "toddlers": 36719, - "toddy": 38926, - "todo": 48857, - "todo": 23087, - "todos": 33355, - "toe": 47756, - "toe": 11344, - "toes": 16511, - "tof": 6659, - "toff": 27319, - "toffee": 34880, - "tofficial": 47953, - "tofthe": 23678, - "toftheday": 20566, - "tofu": 24692, - "tog": 45715, - "toge": 1903, - "together": 17858, - "together": 1952, - "togo": 26729, - "tography": 33968, - "toh": 26851, - "toi": 7472, - "toi": 26941, - "toid": 49124, - "toile": 43148, - "toilet": 11071, - "toilets": 24027, - "toire": 39534, - "tok": 16690, - "tok": 27010, - "token": 32634, - "token": 17134, - "tokens": 23562, - "tokyo": 35038, - "tokyo": 6667, - "tol": 4678, - "tol": 32962, - "told": 3527, - "tole": 15677, - "toledo": 19812, - "toler": 12150, - "tolerance": 20377, - "tolerant": 38536, - "tolerate": 35556, - "tolkien": 32989, - "toll": 44090, - "toll": 14155, - "tollywood": 42016, - "tology": 34799, - "tom": 999, - "tom": 2435, - "toma": 42360, - "toma": 44710, - "tomas": 35944, - "tomas": 27178, - "tomat": 12041, - "tomato": 9867, - "tomatoes": 13004, - "tomb": 37187, - "tomb": 15582, - "tombs": 48613, - "tombstone": 45729, - "tome": 24137, - "tome": 24283, - "tomi": 46290, - "tomlin": 46649, - "tomlinson": 17484, - "tommorow": 42871, - "tommy": 16573, - "tommy": 8876, - "tomo": 31223, - "tomo": 34434, - "tomor": 1277, - "tomorrow": 19728, - "tomorrow": 1293, - "tomorrowland": 34951, - "tomorrows": 32258, - "tomorrowspaper": 35005, - "tomorrowspaperstoday": 35190, - "tomp": 43544, - "tompkins": 49068, - "toms": 10545, - "tomy": 18730, - "ton": 838, - "ton": 917, - "tona": 13459, - "tone": 32366, - "tone": 8408, - "toned": 29426, - "toner": 40614, - "tones": 14744, - "tong": 21510, - "tonga": 37882, - "tongue": 44820, - "tongue": 13626, - "tongues": 39837, - "toni": 17766, - "toni": 17171, - "tonic": 17808, - "tonics": 34647, - "tonight": 1009, - "tonights": 23312, - "tonite": 13449, - "tonka": 42781, - "tonline": 45867, - "tonne": 42450, - "tonnes": 24813, - "tons": 7555, - "tony": 9150, - "tony": 4767, - "tonyawards": 46068, - "too": 1843, - "too": 1256, - "took": 2280, - "tool": 13718, - "tool": 5999, - "toolbox": 46599, - "toolkit": 29849, - "tools": 5771, - "toom": 27550, - "toon": 24664, - "toon": 19701, - "toonami": 48336, - "toons": 35345, - "toor": 42590, - "tooth": 15316, - "tooth": 12030, - "toothbrush": 36841, - "toothpaste": 37322, - "tooting": 42969, - "top": 5534, - "top": 1253, - "topaz": 46125, - "tope": 32149, - "tope": 42239, - "topeka": 46884, - "topia": 29618, - "topic": 8720, - "topical": 37464, - "topics": 11916, - "topless": 37415, - "topo": 23008, - "topoli": 30152, - "topp": 19529, - "topped": 12588, - "topper": 31780, - "toppers": 41651, - "topping": 21071, - "toppings": 47554, - "topps": 20201, - "tops": 8154, - "topshop": 40953, - "topus": 21495, - "tor": 937, - "tor": 1208, - "tora": 45147, - "torah": 37945, - "toral": 45282, - "torch": 31921, - "torch": 15820, - "tore": 38066, - "tore": 19385, - "tored": 38046, - "torg": 33214, - "tori": 17689, - "tori": 17539, - "toria": 23732, - "torial": 28029, - "torian": 48399, - "tories": 14193, - "torino": 29178, - "torio": 34235, - "torn": 8572, - "torn": 18023, - "tornad": 24676, - "tornado": 9062, - "tornadoes": 28254, - "toro": 17892, - "toron": 37407, - "toronto": 16866, - "toronto": 4514, - "torpe": 34093, - "torpedo": 46582, - "torquay": 45738, - "torque": 31940, - "torre": 39563, - "torre": 38009, - "torrent": 42317, - "torrential": 41158, - "torres": 16049, - "tors": 2546, - "tortilla": 32683, - "torto": 24170, - "tortoise": 30178, - "torture": 16013, - "tortured": 29900, - "tory": 29390, - "tory": 4214, - "tos": 6094, - "tosc": 37719, - "tose": 38154, - "tosh": 17109, - "toshi": 31744, - "toss": 19656, - "tossed": 31296, - "tot": 4618, - "tot": 23659, - "total": 13507, - "total": 4445, - "totally": 5440, - "totals": 25772, - "tote": 48145, - "tote": 19031, - "totem": 45376, - "totes": 37199, - "tothe": 12222, - "toto": 39823, - "tots": 24978, - "totten": 14360, - "tottenham": 14889, - "tou": 1879, - "tou": 29261, - "touch": 9480, - "touch": 4526, - "touchdown": 18664, - "touchdowns": 37905, - "touched": 13190, - "touches": 14832, - "touching": 14088, - "touchscreen": 39095, - "tough": 12063, - "tough": 5499, - "tougher": 33722, - "toughest": 23773, - "toughness": 45522, - "toulou": 27145, - "toulouse": 30267, - "tour": 2710, - "tour": 1760, - "tourde": 39247, - "toured": 27654, - "touri": 4224, - "touring": 11853, - "tourism": 23661, - "tourism": 6556, - "tourist": 12123, - "tourists": 15546, - "tournament": 4097, - "tournaments": 23058, - "tourney": 12603, - "tours": 8948, - "tous": 37424, - "tout": 22300, - "touts": 41274, - "tov": 28970, - "tow": 11557, - "tow": 18653, - "toward": 8508, - "towards": 4447, - "towed": 45419, - "towel": 15953, - "towels": 26578, - "tower": 26669, - "tower": 4730, - "towering": 39444, - "towers": 12701, - "towie": 44613, - "towin": 45819, - "towing": 36963, - "town": 4068, - "town": 1605, - "townfc": 33981, - "townhall": 33408, - "townhouse": 40178, - "towns": 14173, - "townsend": 26826, - "township": 14622, - "townsville": 47330, - "towork": 48233, - "tox": 7742, - "tox": 16145, - "toxic": 27436, - "toxic": 12348, - "toxicity": 41234, - "toxin": 48899, - "toxins": 36618, - "toy": 14387, - "toy": 5988, - "toya": 37602, - "toyo": 7644, - "toyota": 8908, - "toys": 39508, - "toys": 7162, - "tp": 23760, - "tp": 15188, - "tpp": 29411, - "tps": 35246, - "tq": 43066, - "tr": 635, - "tr": 6337, - "tra": 752, - "tra": 2483, - "trac": 2266, - "trace": 48611, - "trace": 14767, - "traced": 47956, - "traces": 30913, - "tracey": 25558, - "tracing": 27897, - "track": 10887, - "track": 2700, - "tracked": 27049, - "tracker": 18123, - "tracking": 10428, - "tracklist": 39777, - "tracks": 7579, - "tract": 4690, - "traction": 10644, - "tractor": 14607, - "tractors": 37854, - "tracy": 32984, - "tracy": 15508, - "trad": 48716, - "trad": 38037, - "trade": 10457, - "trade": 3629, - "traded": 18860, - "trademark": 25011, - "trader": 17700, - "traders": 19112, - "trades": 18519, - "trading": 40083, - "trading": 6520, - "tradio": 20689, - "tradition": 20838, - "tradition": 8784, - "traditional": 41113, - "traditional": 5604, - "traditionally": 35532, - "traditions": 18016, - "traf": 3227, - "trafal": 32461, - "trafalgar": 36969, - "traff": 31571, - "traffic": 12080, - "traffic": 3399, - "trafficking": 15983, - "trafford": 22912, - "trage": 12430, - "tragedy": 14082, - "tragic": 14828, - "tragically": 39599, - "trail": 11523, - "trail": 4921, - "trailblazer": 41015, - "trailblazers": 35954, - "trailer": 4700, - "trailers": 24862, - "trailing": 37427, - "trails": 10633, - "train": 9122, - "train": 3231, - "trained": 10874, - "trainee": 25795, - "trainees": 30382, - "trainer": 9767, - "trainers": 18871, - "training": 34508, - "training": 2199, - "trains": 9541, - "trait": 35160, - "traitor": 31760, - "traitors": 42633, - "traits": 25748, - "trajec": 42042, - "trak": 24065, - "tral": 14609, - "tram": 9800, - "tram": 17500, - "tramp": 46289, - "trampol": 32905, - "trampoline": 42800, - "tramrahim": 35220, - "tran": 1357, - "tran": 22031, - "trance": 30584, - "trance": 18671, - "trancefamily": 39630, - "trane": 35779, - "tranqu": 18912, - "tranquil": 35764, - "tranquility": 36688, - "trans": 1826, - "trans": 8126, - "transaction": 24881, - "transactions": 21653, - "transat": 37872, - "transatlantic": 40703, - "transc": 21073, - "transcend": 47087, - "transcript": 39008, - "transcription": 48765, - "transfer": 22659, - "transfer": 7134, - "transferred": 29700, - "transferring": 40924, - "transfers": 21621, - "transform": 8142, - "transform": 12288, - "transformation": 34204, - "transformation": 7832, - "transformational": 47135, - "transformationtuesday": 36511, - "transformative": 38106, - "transformed": 17453, - "transformer": 38235, - "transformers": 17843, - "transforming": 44470, - "transforming": 19251, - "transforms": 30312, - "transgender": 17732, - "transi": 32236, - "transit": 10174, - "transiti": 22939, - "transition": 11391, - "transitional": 41519, - "transitioning": 43586, - "transitions": 39374, - "transl": 12243, - "translate": 22655, - "translated": 20752, - "translates": 36334, - "translating": 42156, - "translation": 12153, - "translations": 41367, - "translator": 36230, - "translucent": 49052, - "transm": 18861, - "transmission": 16103, - "transmitted": 48605, - "transmitter": 40457, - "transp": 11726, - "transpa": 18524, - "transparen": 16108, - "transparency": 16828, - "transparent": 19017, - "transpl": 16038, - "transplant": 41871, - "transplant": 18771, - "transplantation": 45207, - "transpor": 19406, - "transport": 10231, - "transport": 7362, - "transportation": 10911, - "transported": 29089, - "transporter": 43568, - "transporting": 42259, - "trap": 36224, - "trap": 9677, - "trape": 42435, - "trapped": 15592, - "traps": 28517, - "tras": 30638, - "trash": 39215, - "trash": 9798, - "traum": 22263, - "trauma": 13846, - "traumati": 46613, - "traumatic": 29958, - "trav": 7586, - "trav": 46955, - "trave": 35357, - "travel": 2824, - "travel": 1949, - "travelblog": 35957, - "travelblogger": 25494, - "travelchat": 46455, - "traveled": 20384, - "traveler": 17794, - "travelers": 20644, - "travelgram": 40069, - "traveling": 9365, - "travelled": 23428, - "traveller": 22546, - "travellers": 29583, - "travelling": 11190, - "travelphotography": 22808, - "travelpics": 32293, - "travels": 11472, - "traveltips": 36260, - "traveltuesday": 16713, - "traverse": 35058, - "travi": 46971, - "travis": 27441, - "travis": 12287, - "traw": 42288, - "trax": 34421, - "tray": 38470, - "tray": 14621, - "trays": 39798, - "trc": 41803, - "tre": 975, - "tre": 6033, - "treach": 46005, - "tread": 26182, - "tread": 35658, - "treadmill": 37780, - "treas": 8591, - "treason": 28103, - "treasure": 9922, - "treasured": 48068, - "treasurer": 26985, - "treasures": 16500, - "treasury": 20956, - "treat": 3968, - "treat": 3901, - "treated": 9772, - "treating": 13842, - "treatment": 4869, - "treatments": 15839, - "treats": 8878, - "treaty": 19967, - "treble": 33194, - "trecht": 33812, - "tree": 13354, - "tree": 2677, - "treehouse": 42387, - "trees": 4682, - "trek": 13236, - "trek": 8136, - "trekking": 25293, - "trell": 35159, - "tremb": 44043, - "tremend": 14659, - "tremendous": 15988, - "tren": 2579, - "trench": 23846, - "trenches": 38723, - "trend": 19986, - "trend": 6643, - "trending": 6087, - "trends": 7015, - "trendsetter": 46666, - "trendy": 23072, - "trent": 45885, - "trent": 15548, - "trenton": 37470, - "tres": 23569, - "tress": 4733, - "tresses": 24273, - "trevor": 23437, - "trevor": 13219, - "trex": 42114, - "trey": 36670, - "trey": 16939, - "tri": 924, - "tri": 9618, - "triad": 45602, - "trial": 5991, - "trials": 10992, - "triangle": 14615, - "triathlon": 18080, - "trib": 45151, - "tribal": 16629, - "tribe": 19943, - "tribe": 11365, - "tribeca": 35184, - "tribes": 26546, - "tribu": 3028, - "tribun": 14311, - "tribunal": 32911, - "tribune": 18556, - "tribute": 5493, - "tributes": 15537, - "tric": 9511, - "tric": 4081, - "trich": 39519, - "trick": 17177, - "trick": 8172, - "tricks": 13177, - "tricky": 22319, - "trics": 31437, - "trident": 35491, - "tridge": 18722, - "tried": 4554, - "tries": 4315, - "trife": 48962, - "trigge": 30509, - "trigger": 16158, - "triggered": 30924, - "triggers": 37319, - "tright": 29915, - "tril": 40626, - "trill": 39297, - "trilli": 39350, - "trillion": 20160, - "trilo": 15183, - "trilogy": 16862, - "trim": 14182, - "trimmed": 40657, - "trin": 6628, - "trinidad": 26244, - "trinity": 30744, - "trinity": 12267, - "trio": 10263, - "trip": 23421, - "trip": 2529, - "tripad": 37189, - "tripadvisor": 38708, - "triple": 16519, - "triple": 7673, - "triplets": 48601, - "tripod": 36141, - "tripoli": 40095, - "trippin": 43073, - "tripping": 35229, - "trippy": 35137, - "trips": 12292, - "tris": 29690, - "trish": 40511, - "trish": 37179, - "trisha": 39152, - "tristan": 25497, - "trit": 37087, - "triton": 45437, - "triu": 14782, - "trium": 21065, - "triumph": 26507, - "triumph": 15307, - "triumphant": 41918, - "trivi": 21228, - "trivia": 10642, - "triviatuesday": 45499, - "trix": 41017, - "tro": 1046, - "tro": 3332, - "trock": 44368, - "trojan": 30653, - "trojans": 25310, - "trol": 10306, - "troll": 39737, - "troll": 17103, - "trolley": 25124, - "trolling": 28552, - "trolls": 20890, - "tromb": 32390, - "trombone": 44423, - "tron": 19057, - "tron": 10684, - "tronic": 34258, - "tronics": 34397, - "troom": 23691, - "troop": 12492, - "troop": 24054, - "trooper": 18327, - "troopers": 23576, - "troops": 10109, - "trop": 31585, - "trope": 41150, - "trophies": 20998, - "trophy": 42676, - "trophy": 6502, - "tropic": 21794, - "tropic": 36736, - "tropical": 41699, - "tropical": 8686, - "tropics": 36940, - "tros": 40456, - "trose": 36022, - "trot": 30453, - "trotter": 38287, - "trou": 5181, - "troubad": 49037, - "trouble": 25669, - "trouble": 7848, - "troubled": 25568, - "troubles": 27254, - "trough": 39761, - "troupe": 34803, - "trous": 19727, - "trousers": 23172, - "trout": 14853, - "trove": 45350, - "trow": 46914, - "troy": 26283, - "troy": 12819, - "trs": 24770, - "tru": 931, - "tru": 25326, - "truck": 14781, - "truck": 4629, - "trucker": 45918, - "truckers": 43404, - "trucking": 26208, - "trucks": 9569, - "trude": 39017, - "trudeau": 15752, - "true": 13096, - "true": 2328, - "truec": 37583, - "truelove": 45711, - "truffle": 23064, - "truffles": 37057, - "truly": 4545, - "trum": 11766, - "trum": 11399, - "truman": 29414, - "trump": 9124, - "trump": 1797, - "trumpet": 23681, - "trumpp": 45550, - "trumprussia": 39135, - "trumps": 29793, - "trumptrain": 43595, - "trun": 16163, - "trun": 46661, - "trunk": 18347, - "trunks": 38531, - "truro": 43507, - "truss": 46080, - "trust": 17691, - "trust": 3876, - "truste": 17356, - "trusted": 16538, - "trustee": 30803, - "trustees": 28853, - "trusting": 33221, - "trusts": 27507, - "trustworthy": 46840, - "trusty": 37955, - "truth": 21335, - "truth": 4319, - "truths": 27179, - "trx": 31620, - "try": 4487, - "try": 1209, - "tryin": 31085, - "trying": 2551, - "tryna": 15702, - "tryout": 43832, - "tryouts": 28053, - "ts": 2290, - "ts": 590, - "tsa": 25977, - "tsal": 20438, - "tsb": 45015, - "tsc": 37437, - "tsch": 38778, - "tsd": 20611, - "tse": 49144, - "tsfor": 42654, - "tsford": 32823, - "tsh": 42872, - "tshirt": 14907, - "tshirts": 29377, - "tsi": 40048, - "tsi": 37867, - "tsk": 43600, - "tsla": 35681, - "tsm": 43452, - "tsman": 20046, - "tsn": 44921, - "tsn": 26896, - "tson": 42353, - "tson": 47140, - "tsp": 34230, - "tsu": 13950, - "tsu": 20175, - "tsun": 19155, - "tsunami": 24286, - "tsville": 29080, - "tt": 971, - "tt": 1402, - "tta": 2646, - "ttc": 27668, - "tte": 23105, - "tte": 3070, - "tted": 15163, - "tten": 11351, - "tten": 17479, - "tter": 18691, - "tter": 5165, - "tters": 6318, - "ttes": 9293, - "tti": 5237, - "ttin": 36589, - "tting": 1188, - "ttino": 47389, - "ttip": 46993, - "ttle": 9253, - "ttm": 46838, - "tto": 8759, - "tto": 8105, - "tton": 10562, - "ttot": 12480, - "ttp": 30828, - "ttr": 47589, - "tts": 11570, - "ttt": 17256, - "tttt": 33119, - "ttu": 44006, - "ttv": 24281, - "tty": 11457, - "tty": 1856, - "tu": 764, - "tu": 5760, - "tua": 41344, - "tual": 4799, - "tuan": 37297, - "tub": 34907, - "tub": 15450, - "tube": 38229, - "tube": 3308, - "tuber": 30371, - "tuberculo": 42606, - "tuberculosis": 43129, - "tubes": 22870, - "tubing": 40794, - "tubs": 41705, - "tubular": 48786, - "tuc": 14456, - "tuc": 43871, - "tuck": 22398, - "tucked": 26923, - "tucker": 39703, - "tucker": 15726, - "tucket": 32677, - "tucson": 17250, - "tudor": 24547, - "tue": 17515, - "tues": 2283, - "tues": 12113, - "tuesday": 10209, - "tuesday": 2519, - "tuesdaymotivation": 25432, - "tuesdays": 23195, - "tuesdaythoughts": 17988, - "tuf": 44510, - "tuff": 38868, - "tug": 47032, - "tug": 27902, - "tuition": 21129, - "tuk": 39271, - "tuk": 14993, - "tul": 9069, - "tul": 40837, - "tula": 36332, - "tulane": 44893, - "tulip": 28389, - "tulips": 30886, - "tulsa": 18850, - "tum": 12932, - "tum": 8843, - "tumb": 8831, - "tumble": 38284, - "tumbler": 48790, - "tumbling": 46226, - "tumblr": 11841, - "tummy": 26053, - "tumor": 22616, - "tumors": 39894, - "tumour": 45129, - "tun": 1415, - "tun": 21349, - "tuna": 15037, - "tundra": 39899, - "tune": 11427, - "tune": 3300, - "tuned": 5898, - "tunein": 16809, - "tuner": 42905, - "tunes": 31688, - "tunes": 10810, - "tunesapp": 32550, - "tung": 47940, - "tung": 31092, - "tuni": 16270, - "tunic": 43495, - "tuning": 19585, - "tunisia": 23346, - "tunnel": 11096, - "tunnels": 29814, - "tuous": 28738, - "tup": 37956, - "tup": 4507, - "tupac": 31506, - "tups": 44855, - "tur": 985, - "tur": 17182, - "tura": 16127, - "tural": 45143, - "tural": 4261, - "turb": 18973, - "turban": 48515, - "turbine": 26880, - "turbines": 38863, - "turbo": 23578, - "turbo": 13668, - "turbul": 31100, - "turbulent": 47871, - "ture": 4321, - "ture": 941, - "tured": 3987, - "turer": 11993, - "turers": 16956, - "tures": 2400, - "turf": 36762, - "turf": 12510, - "turi": 11896, - "turin": 36251, - "turing": 5812, - "turismo": 30202, - "turk": 8254, - "turk": 32507, - "turkey": 35977, - "turkey": 4790, - "turkeys": 37991, - "turkish": 48199, - "turkish": 9278, - "turks": 34344, - "turmeric": 34044, - "turmoil": 37751, - "turn": 5522, - "turn": 2105, - "turnaround": 32719, - "turnbull": 27863, - "turned": 3771, - "turner": 42867, - "turner": 8777, - "turning": 4976, - "turno": 21377, - "turnout": 11654, - "turnover": 30794, - "turnpike": 38301, - "turns": 3185, - "turnt": 28887, - "turntable": 37953, - "turnup": 30591, - "turo": 29224, - "turquo": 19390, - "turquoise": 19899, - "turt": 13716, - "turtle": 35943, - "turtle": 10912, - "turtles": 17862, - "tus": 24828, - "tus": 7079, - "tusc": 17909, - "tuscal": 42638, - "tuscaloosa": 44375, - "tuscan": 42865, - "tuscany": 20885, - "tuss": 31741, - "tut": 35121, - "tutor": 10054, - "tutor": 27858, - "tutorial": 12857, - "tutorials": 30973, - "tutoring": 37532, - "tutti": 46880, - "tutu": 35845, - "tux": 28720, - "tux": 49186, - "tuxedo": 40173, - "tv": 3197, - "tv": 1583, - "tvc": 49190, - "tvd": 25889, - "tvmiaw": 38554, - "tvn": 44232, - "tvs": 27114, - "tvtime": 19947, - "tvxq": 43968, - "tw": 966, - "tw": 12842, - "twa": 46954, - "twain": 30689, - "twal": 48126, - "tware": 5707, - "twc": 41217, - "twd": 29440, - "twd": 19343, - "twdfamily": 38218, - "twe": 18365, - "tweak": 48870, - "tweaks": 42661, - "twee": 1330, - "tweed": 26904, - "tweeps": 14928, - "tweet": 11826, - "tweet": 1842, - "tweeta": 32024, - "tweetapicture": 40596, - "tweeted": 7841, - "tweeter": 32876, - "tweeters": 31713, - "tweeting": 8901, - "tweets": 3560, - "tweetyour": 45033, - "twel": 14476, - "twelf": 39443, - "twelfth": 44072, - "twell": 38722, - "twell": 30162, - "twelve": 19694, - "twent": 27027, - "twenti": 35167, - "twenty": 13016, - "twentyon": 39609, - "twentyonepilots": 40007, - "twer": 13923, - "twerk": 28506, - "twi": 5537, - "twice": 6970, - "twick": 34326, - "twickenham": 39619, - "twil": 12804, - "twili": 35754, - "twilight": 46366, - "twilight": 14512, - "twill": 43703, - "twin": 9342, - "twin": 6769, - "twine": 42775, - "twinkle": 36545, - "twinning": 30156, - "twinpeaks": 32042, - "twins": 8040, - "twist": 10589, - "twisted": 18233, - "twister": 45933, - "twists": 34149, - "twit": 1643, - "twit": 18704, - "twitart": 27709, - "twitch": 13251, - "twitch": 9153, - "twitter": 7546, - "twitter": 1989, - "twitterkurds": 32722, - "twitterstorians": 35389, - "two": 17211, - "two": 1237, - "twol": 31964, - "twood": 40404, - "twood": 13245, - "twp": 33283, - "twright": 46778, - "twt": 6825, - "twx": 26830, - "twy": 45861, - "tx": 6636, - "tx": 5200, - "txhsfb": 34757, - "txlege": 26995, - "txst": 40761, - "txt": 24595, - "txwx": 22995, - "ty": 1260, - "ty": 744, - "tya": 41273, - "tycoon": 36803, - "tye": 43097, - "tyfree": 41215, - "tyga": 41952, - "tying": 22559, - "tyl": 47537, - "tyler": 14787, - "tyler": 7058, - "tym": 45772, - "tyne": 27000, - "tyne": 29729, - "tyour": 16823, - "type": 15673, - "type": 3877, - "typed": 40753, - "typeface": 44969, - "types": 7543, - "typewriter": 42180, - "typho": 17486, - "typhoon": 21110, - "typic": 21648, - "typical": 9854, - "typically": 23175, - "typing": 20102, - "typo": 18831, - "typo": 29076, - "typography": 24332, - "tyr": 15590, - "tyran": 46921, - "tyranny": 35402, - "tyre": 38330, - "tyre": 16864, - "tyres": 21376, - "tyrone": 30226, - "tyson": 16616, - "tz": 7710, - "tz": 4983, - "tzer": 45267, - "tzky": 47127, - "tzman": 46032, - "tzu": 34354, - "té": 27208, - "té": 39694, - "u": 84, - "u": 340, - "ua": 34075, - "ua": 8441, - "uaap": 46753, - "uaap": 43774, - "uab": 35587, - "uae": 9752, - "ual": 1921, - "ually": 10767, - "uan": 33062, - "uas": 38339, - "uav": 30303, - "ub": 18430, - "ub": 13494, - "uba": 29768, - "ubc": 42479, - "ubc": 29455, - "ube": 30892, - "uber": 25896, - "uber": 10668, - "ubi": 26758, - "ubio": 32867, - "ubiquit": 48129, - "ubis": 28248, - "ubisoft": 32051, - "ubs": 43851, - "ubun": 28184, - "ubuntu": 30791, - "uc": 4903, - "uc": 12438, - "uca": 30942, - "ucc": 44844, - "ucc": 29138, - "ucci": 30746, - "uccino": 30409, - "ucd": 44746, - "ucd": 43514, - "ucf": 24414, - "uch": 19465, - "uch": 22394, - "uchi": 37473, - "uci": 46354, - "uci": 28925, - "uck": 34189, - "ucl": 12013, - "ucl": 13647, - "ucla": 37667, - "ucla": 17259, - "ucn": 49036, - "uconn": 30549, - "ud": 6560, - "ud": 5765, - "uda": 22800, - "udaipur": 49385, - "uddin": 43035, - "ude": 37016, - "ude": 35194, - "ue": 16696, - "ue": 1190, - "uefa": 19189, - "uel": 24231, - "uer": 45951, - "ues": 2526, - "uf": 17777, - "uf": 19230, - "ufc": 20396, - "ufc": 6490, - "uff": 45701, - "ufo": 19443, - "ufos": 48234, - "ug": 3754, - "ug": 16061, - "uga": 16056, - "ugand": 25965, - "uganda": 11125, - "ugandan": 44206, - "ugby": 30658, - "ugh": 39736, - "ugh": 12755, - "ugliest": 43543, - "ugly": 36070, - "ugly": 8159, - "ugu": 18144, - "uh": 17661, - "uh": 9219, - "uhc": 44974, - "uhh": 35938, - "uhhh": 45270, - "uhm": 35614, - "uhur": 29434, - "uhuru": 35690, - "ui": 17326, - "ui": 11458, - "uil": 29395, - "uit": 30696, - "uit": 47584, - "uj": 33266, - "uji": 39672, - "uk": 2294, - "uk": 1432, - "uka": 23294, - "uke": 48836, - "uke": 28577, - "uked": 48987, - "uki": 37435, - "uki": 9009, - "ukin": 34996, - "ukip": 20360, - "uklabour": 36902, - "ukmfg": 38764, - "uko": 33562, - "ukone": 24682, - "ukrain": 15468, - "ukraine": 7768, - "ukrainian": 16927, - "ukrunchat": 34481, - "uku": 29541, - "uku": 36082, - "ukulele": 39094, - "ul": 914, - "ul": 6625, - "ula": 34104, - "ula": 9506, - "ular": 4927, - "ulary": 21701, - "ulate": 20467, - "ulation": 32896, - "ule": 35616, - "ules": 26274, - "ulf": 49331, - "uli": 41841, - "uli": 22174, - "ull": 33254, - "ulla": 30577, - "ullah": 45310, - "ullivan": 45252, - "ulls": 37418, - "ulo": 46084, - "ulo": 36738, - "ulous": 42490, - "ulous": 4281, - "ulously": 20167, - "ulster": 29709, - "ulster": 24639, - "ult": 4380, - "ulti": 11925, - "ulties": 21884, - "ultimat": 16522, - "ultimate": 34684, - "ultimate": 5377, - "ultimatefan": 48372, - "ultimatefanlive": 48644, - "ultimately": 23023, - "ultr": 25636, - "ultra": 11398, - "ultra": 8118, - "ultram": 44519, - "ultrasound": 29717, - "ulture": 22272, - "ulty": 8036, - "ulu": 41815, - "ulu": 15659, - "ulum": 17235, - "uly": 33220, - "ulysses": 46114, - "um": 1622, - "um": 1008, - "uma": 29982, - "uma": 9256, - "uman": 27112, - "umar": 25656, - "umass": 39390, - "umatic": 45006, - "umb": 7493, - "umber": 19195, - "umbrel": 34773, - "umbrella": 17143, - "umbrellas": 42782, - "umbria": 39287, - "umc": 39491, - "umd": 42067, - "ume": 38480, - "umen": 42832, - "uments": 25924, - "umer": 23539, - "umes": 21403, - "umi": 48772, - "umi": 15458, - "umich": 41294, - "umin": 31542, - "umm": 26129, - "umm": 21215, - "ummer": 47628, - "ummm": 33665, - "umni": 31739, - "ump": 22224, - "umpire": 36214, - "ums": 8643, - "umu": 39788, - "un": 569, - "un": 2271, - "una": 6385, - "unable": 17793, - "unacceptable": 25234, - "unanim": 20800, - "unanimous": 33520, - "unanimously": 31798, - "unanswered": 43611, - "unarmed": 41541, - "unas": 41366, - "unavailable": 48430, - "unaware": 33347, - "unbeat": 37056, - "unbeatable": 40267, - "unbeaten": 19228, - "unbeliev": 11383, - "unbelievable": 13306, - "unbelievably": 33781, - "unborn": 37257, - "unboxing": 32866, - "unbreakable": 32956, - "unbroken": 49271, - "unc": 24921, - "unc": 15322, - "uncanny": 32556, - "uncertain": 30384, - "uncertainty": 23956, - "unch": 1527, - "unchanged": 34272, - "uncharted": 34560, - "unci": 25521, - "unciation": 34117, - "uncle": 31537, - "uncle": 8002, - "unclear": 32955, - "uncles": 45335, - "uncomfortable": 22470, - "uncommon": 34888, - "uncondition": 46561, - "unconditional": 31112, - "unconscious": 34791, - "unconstitutional": 43585, - "unconventional": 39440, - "uncover": 33031, - "uncovered": 28234, - "uncture": 38736, - "uncut": 41056, - "und": 9762, - "und": 9732, - "unda": 39932, - "undant": 25377, - "unday": 29338, - "unde": 45226, - "undead": 40105, - "undecided": 49368, - "undefeated": 15326, - "undeni": 38424, - "under": 1473, - "under": 1798, - "underage": 45669, - "underattack": 35075, - "undercover": 21595, - "underdog": 44266, - "undere": 21675, - "underestim": 23348, - "underestimate": 31794, - "undergo": 31545, - "undergoing": 26419, - "undergrad": 38331, - "undergraduate": 24320, - "underground": 9396, - "undering": 30826, - "underlying": 31812, - "undermine": 42839, - "underneath": 20857, - "underrated": 19494, - "unders": 20376, - "understand": 47582, - "understand": 4600, - "understanding": 7522, - "understands": 21607, - "understatement": 38296, - "understood": 17303, - "undertaker": 40144, - "undertaking": 49067, - "undertale": 48283, - "underthe": 41161, - "underwater": 14760, - "underway": 6273, - "underwear": 21154, - "underwood": 21474, - "underworld": 34760, - "undi": 23845, - "undisclosed": 39334, - "undo": 35454, - "undocumented": 35414, - "undoub": 38836, - "undoubtedly": 42204, - "undp": 26691, - "une": 4522, - "une": 10966, - "unearth": 32716, - "unearthed": 36632, - "unemp": 15139, - "unemployed": 32721, - "unemployment": 19350, - "unes": 6394, - "unesco": 16216, - "uneven": 43204, - "unex": 9484, - "unexpe": 10802, - "unexpec": 31829, - "unexpected": 12293, - "unexpectedly": 35622, - "unf": 29285, - "unfair": 22193, - "unfinished": 26526, - "unfit": 45367, - "unfold": 38681, - "unfollow": 38797, - "unfor": 14010, - "unforgettable": 16173, - "unfortun": 10194, - "unfortunate": 22361, - "unfortunately": 12863, - "unfpa": 45048, - "ung": 10439, - "ung": 4334, - "unga": 19151, - "ungsoo": 25582, - "unh": 25365, - "unhappy": 26528, - "unhcr": 43451, - "unhealthy": 30994, - "uni": 1107, - "uni": 5926, - "unic": 7648, - "unicef": 38286, - "unicef": 19259, - "unicorn": 15660, - "unicorns": 35183, - "unidenti": 33707, - "unidentified": 35563, - "unification": 45036, - "unified": 20876, - "uniform": 11075, - "uniforms": 17838, - "unil": 32388, - "unilever": 48654, - "uniof": 21218, - "union": 14210, - "union": 3503, - "unions": 18353, - "unis": 30482, - "unis": 39266, - "unisex": 27609, - "unison": 46694, - "unit": 28522, - "unit": 5695, - "unite": 15078, - "unite": 11305, - "uniteblue": 20935, - "united": 10898, - "united": 2690, - "unitedstates": 39636, - "unitedway": 47486, - "unites": 32061, - "uniting": 31318, - "units": 10394, - "unity": 38300, - "unity": 8581, - "univ": 36680, - "univ": 14896, - "univer": 15574, - "univers": 5855, - "universal": 19148, - "universal": 8754, - "universe": 6104, - "universi": 41692, - "universit": 26019, - "universities": 16408, - "university": 40728, - "university": 2182, - "universityof": 46158, - "unk": 5542, - "unknown": 8685, - "unl": 43807, - "unlawful": 42305, - "unle": 19677, - "unlea": 23893, - "unleash": 26706, - "unleashed": 27955, - "unless": 10602, - "unlike": 16694, - "unlikely": 18904, - "unlimited": 11015, - "unlock": 18649, - "unlocked": 16770, - "unlocking": 40810, - "unlucky": 35029, - "unlv": 42283, - "unmanned": 36751, - "unmatched": 46054, - "unn": 38364, - "unnamed": 44985, - "unnecessary": 24100, - "unner": 31481, - "unning": 43282, - "unnoticed": 42807, - "uno": 32446, - "uno": 17078, - "unofficial": 22506, - "unpacking": 43589, - "unpaid": 32811, - "unparalleled": 44396, - "unplugged": 31724, - "unpopular": 40232, - "unprece": 23054, - "unprecedented": 23344, - "unpredictable": 38684, - "unra": 45150, - "unreal": 46980, - "unreal": 15636, - "unrelated": 38644, - "unreleased": 29654, - "unrest": 36452, - "uns": 25908, - "unsafe": 32071, - "unsc": 36395, - "unseen": 19069, - "unsigned": 39346, - "unsolved": 40836, - "unsplash": 46196, - "unstable": 34730, - "unstopp": 22105, - "unstoppable": 23484, - "unsuccessful": 47478, - "unsung": 33015, - "unsure": 26396, - "unt": 19654, - "unt": 6537, - "until": 1942, - "untitled": 21309, - "unto": 19801, - "untold": 32206, - "untouch": 44509, - "untouched": 42764, - "unused": 29636, - "unusual": 12613, - "unusually": 36465, - "unve": 6685, - "unveil": 20483, - "unveiled": 13572, - "unveiling": 20327, - "unveils": 15057, - "unwanted": 25285, - "unwind": 34064, - "unya": 37142, - "uo": 30874, - "uo": 36162, - "uof": 11155, - "uoft": 37329, - "uon": 48144, - "uous": 40185, - "up": 1083, - "up": 705, - "upa": 31727, - "upbeat": 39201, - "upcoming": 4196, - "upcycled": 46552, - "upd": 3226, - "update": 2491, - "updated": 5974, - "updates": 4904, - "updating": 22792, - "uper": 38082, - "uper": 33056, - "upfront": 42064, - "upgrade": 10365, - "upgraded": 18577, - "upgrades": 21253, - "upgrading": 34368, - "uph": 14128, - "uphill": 42767, - "uphol": 26195, - "uphold": 43897, - "upholstery": 44556, - "upl": 41939, - "uplift": 45389, - "uplifting": 29546, - "upload": 13968, - "uploaded": 16793, - "uploading": 30145, - "upon": 23524, - "upon": 5067, - "upp": 19549, - "upp": 45946, - "upper": 22465, - "upper": 7067, - "upri": 15982, - "upright": 29818, - "uprising": 26006, - "upro": 28922, - "ups": 6926, - "upscale": 47501, - "upset": 11214, - "upsets": 42637, - "upside": 15362, - "upstairs": 21387, - "upstate": 33335, - "upstream": 45517, - "upthe": 31510, - "upto": 26575, - "upton": 31910, - "uptown": 23807, - "upward": 32526, - "upwards": 34915, - "uq": 39591, - "ur": 565, - "ur": 1775, - "ura": 29337, - "ura": 3544, - "urable": 40194, - "ural": 23547, - "ural": 33948, - "uran": 16197, - "uranium": 29850, - "urban": 7931, - "urban": 5800, - "urbanart": 40834, - "urd": 47880, - "urday": 19742, - "urdu": 29976, - "ure": 5514, - "ure": 726, - "ured": 4210, - "urer": 20864, - "ures": 2288, - "urg": 35995, - "urge": 14852, - "urged": 23790, - "urgency": 47612, - "urgent": 13693, - "urgently": 34534, - "urges": 16692, - "urging": 27748, - "uri": 11052, - "uri": 8699, - "urie": 46429, - "urin": 45245, - "urine": 28864, - "uring": 1351, - "url": 23464, - "urn": 38075, - "uro": 17343, - "uro": 5925, - "urology": 48585, - "urope": 14918, - "urs": 4794, - "urself": 31942, - "urst": 19181, - "urstruly": 34751, - "urstrulymahesh": 35314, - "ursula": 38390, - "urt": 24309, - "uru": 16322, - "uru": 11768, - "uruguay": 27931, - "urus": 14246, - "urve": 24583, - "ury": 8642, - "ury": 2106, - "us": 904, - "us": 718, - "usa": 9491, - "usa": 2547, - "usability": 46736, - "usable": 22890, - "usaf": 25017, - "usage": 19137, - "usaid": 34507, - "usair": 36742, - "usairforce": 42179, - "usarmy": 19132, - "usatoday": 40263, - "usav": 36056, - "usb": 10281, - "usc": 13346, - "usc": 14995, - "uscg": 43932, - "usd": 7485, - "usda": 25829, - "use": 4419, - "use": 1483, - "used": 32289, - "used": 2026, - "useful": 9784, - "useless": 20154, - "usemb": 39700, - "user": 21248, - "user": 7031, - "username": 28162, - "users": 7433, - "uses": 5282, - "useum": 45189, - "usf": 32385, - "usf": 28942, - "usgs": 35103, - "ush": 12001, - "ush": 18335, - "usher": 27411, - "ushi": 47734, - "usi": 25540, - "usic": 34909, - "usic": 16753, - "using": 1996, - "usky": 45778, - "usl": 42113, - "usm": 40041, - "usmc": 21678, - "usmnt": 30662, - "usn": 40579, - "usnavy": 24500, - "usnews": 43752, - "uso": 21539, - "usopen": 21782, - "usp": 26651, - "usps": 39980, - "usrc": 33274, - "uss": 11545, - "uss": 9260, - "ussia": 29553, - "ussoccer": 42828, - "ussr": 32697, - "ust": 35501, - "ust": 24725, - "usu": 4254, - "usu": 40434, - "usual": 6129, - "usually": 8296, - "usur": 45582, - "uswnt": 35255, - "ut": 1419, - "ut": 3641, - "uta": 42706, - "uta": 25925, - "utah": 27474, - "utah": 9312, - "utc": 18196, - "utd": 10493, - "ute": 16856, - "ute": 3130, - "uten": 32089, - "uter": 39197, - "utes": 2850, - "uth": 48819, - "uth": 44750, - "uti": 24568, - "util": 28824, - "utili": 17015, - "utilities": 27210, - "utility": 14941, - "utilize": 36861, - "utilized": 47604, - "utilizing": 40212, - "utm": 47853, - "utmost": 42352, - "uto": 18866, - "uto": 13683, - "utopia": 34433, - "utpol": 42605, - "utr": 48726, - "utrecht": 37216, - "uts": 11740, - "utsa": 37528, - "utt": 17096, - "uttar": 40168, - "uttarak": 33755, - "uttarakhand": 35655, - "utter": 18769, - "utter": 24558, - "utterly": 21353, - "utto": 42183, - "utv": 36351, - "utz": 45320, - "uu": 5702, - "uu": 14553, - "uuu": 44355, - "uuu": 27656, - "uuuu": 16720, - "uuuu": 40797, - "uv": 23777, - "uv": 15977, - "uva": 23908, - "uw": 13933, - "uw": 19166, - "uwe": 48785, - "uwu": 35544, - "ux": 9251, - "ux": 6213, - "uy": 31929, - "uy": 48113, - "uz": 19398, - "uz": 36991, - "uzbe": 43007, - "uzbekistan": 45024, - "uzzi": 48210, - "v": 85, - "v": 341, - "va": 4648, - "va": 1892, - "vaa": 37488, - "vable": 23088, - "vac": 3125, - "vac": 34085, - "vaca": 48215, - "vacancies": 26333, - "vacancy": 21247, - "vacant": 25262, - "vacation": 28336, - "vacation": 6561, - "vacations": 29002, - "vacay": 44716, - "vacc": 13342, - "vaccin": 19164, - "vaccinated": 48134, - "vaccination": 32518, - "vaccine": 47780, - "vaccine": 17493, - "vaccines": 25860, - "vach": 46211, - "vacu": 16058, - "vacuum": 18420, - "vad": 11880, - "vada": 46759, - "vader": 21908, - "vae": 39384, - "vag": 13015, - "vague": 42154, - "vah": 26921, - "vai": 26893, - "vai": 36802, - "vail": 21189, - "vain": 25538, - "vais": 28719, - "vaj": 34206, - "vak": 16288, - "vak": 41597, - "val": 1214, - "val": 1560, - "vala": 48525, - "valdez": 40617, - "vale": 35554, - "vale": 10820, - "valedic": 43525, - "valen": 12630, - "valence": 30225, - "valenci": 34183, - "valencia": 16559, - "valent": 3655, - "valent": 15300, - "valentin": 48631, - "valentina": 43741, - "valentine": 11208, - "valentine": 5876, - "valentines": 10259, - "valentinesday": 12369, - "valentino": 29624, - "valeri": 31951, - "valerie": 25592, - "valet": 45749, - "vali": 8230, - "valiant": 33804, - "valid": 15126, - "validation": 32536, - "valkyrie": 42326, - "vall": 23523, - "vall": 35295, - "vallarta": 47874, - "valle": 24857, - "valle": 29105, - "valley": 18354, - "valley": 3136, - "valleys": 28649, - "valor": 30930, - "vals": 7431, - "valu": 6291, - "valuable": 10056, - "valuation": 25894, - "value": 41358, - "value": 4602, - "valued": 17801, - "values": 8857, - "valve": 17001, - "valves": 33517, - "vam": 9983, - "vamo": 46718, - "vamos": 30346, - "vamp": 10680, - "vampi": 47017, - "vampire": 47576, - "vampire": 13220, - "vampires": 30868, - "vamps": 44810, - "van": 2446, - "van": 2451, - "vana": 20543, - "vanc": 6320, - "vance": 31447, - "vancou": 6750, - "vancouver": 31904, - "vancouver": 7208, - "vand": 11691, - "vandalism": 45664, - "vander": 16264, - "vanderbilt": 33524, - "vandy": 39268, - "vane": 43828, - "vaness": 13328, - "vanessa": 16836, - "vangogh": 47849, - "vanguard": 27916, - "vani": 15396, - "vani": 26459, - "vania": 10998, - "vanilla": 11974, - "vanished": 43783, - "vanishing": 48296, - "vanity": 48353, - "vanity": 22938, - "vans": 11711, - "vant": 26298, - "vantage": 31749, - "vanu": 42892, - "vanuatu": 48766, - "vap": 10462, - "vape": 25423, - "vape": 20219, - "vaping": 29403, - "vapor": 37167, - "vapor": 30729, - "vapori": 46183, - "var": 3187, - "var": 12998, - "vara": 47492, - "varan": 36585, - "varanasi": 39364, - "vard": 21866, - "vard": 8773, - "vardy": 47371, - "vare": 38159, - "vares": 42895, - "vargas": 32752, - "vari": 3354, - "variable": 26416, - "varian": 34334, - "variant": 20293, - "variants": 38312, - "variation": 26420, - "variations": 29025, - "varied": 32334, - "varies": 32543, - "varieties": 23805, - "variety": 8396, - "various": 7395, - "varsity": 43716, - "varsity": 8574, - "varun": 48120, - "varun": 22069, - "vary": 18855, - "varying": 36456, - "vas": 5669, - "vas": 5995, - "vasc": 40995, - "vascular": 19218, - "vase": 20431, - "vasi": 49092, - "vast": 24413, - "vast": 16414, - "vastly": 48257, - "vat": 11588, - "vat": 18363, - "vatican": 21030, - "vation": 37884, - "vau": 6391, - "vaugh": 25158, - "vaughan": 21392, - "vaughn": 29013, - "vaul": 27469, - "vault": 15240, - "vaus": 40217, - "vaux": 27403, - "vauxhall": 29173, - "vaw": 47952, - "vay": 48000, - "vaz": 38142, - "vb": 29365, - "vb": 8778, - "vball": 38329, - "vc": 28670, - "vc": 7952, - "vcs": 43528, - "vcu": 40102, - "vd": 9515, - "vday": 42055, - "ve": 673, - "ve": 563, - "vea": 43798, - "veal": 36616, - "veau": 24419, - "vec": 19912, - "vector": 40453, - "vector": 21533, - "ved": 19515, - "ved": 1102, - "veda": 44401, - "vedere": 45660, - "vedi": 47971, - "vee": 35708, - "vee": 17073, - "veen": 22432, - "veer": 21243, - "veer": 22058, - "veg": 9048, - "veg": 16460, - "vega": 22930, - "vegan": 15705, - "vegan": 5615, - "vegans": 48514, - "vegas": 20288, - "vegas": 4413, - "vege": 6219, - "vegetable": 15725, - "vegetables": 14119, - "vegetarian": 14600, - "vegetation": 33947, - "veggie": 19401, - "veggies": 16767, - "vehic": 3973, - "vehicle": 5299, - "vehicles": 8361, - "veil": 23516, - "vein": 29169, - "veins": 28867, - "veit": 30620, - "vel": 942, - "vel": 1287, - "vela": 34898, - "veld": 34011, - "veled": 15370, - "veli": 49166, - "veling": 37970, - "vell": 21173, - "vell": 32997, - "velo": 14357, - "velo": 33850, - "velocity": 23811, - "vels": 5109, - "velve": 37849, - "velvet": 11063, - "vely": 1708, - "vember": 3477, - "vement": 3129, - "vements": 11104, - "ven": 1240, - "ven": 1638, - "vena": 47442, - "vend": 10851, - "vending": 29202, - "vendor": 21261, - "vendors": 20353, - "vene": 5365, - "veness": 10516, - "venetian": 34336, - "venezia": 34139, - "venezu": 10939, - "venezuela": 12839, - "venezuelan": 34699, - "veng": 31526, - "venge": 27757, - "vengeance": 32057, - "veni": 31142, - "venice": 11010, - "vening": 47532, - "venison": 40037, - "venom": 42491, - "venom": 21588, - "vens": 20884, - "vent": 4373, - "vent": 5687, - "ventil": 39522, - "ventilation": 35066, - "venting": 15731, - "vention": 4122, - "vents": 12833, - "ventu": 48217, - "ventura": 20921, - "venture": 37046, - "venture": 12543, - "ventures": 20829, - "venue": 5097, - "venues": 18120, - "venus": 14691, - "ver": 624, - "ver": 667, - "vera": 13350, - "verage": 3725, - "verb": 34952, - "verbal": 26522, - "verbally": 39985, - "verbs": 45687, - "verde": 16935, - "verdi": 42306, - "verdict": 18030, - "vere": 11135, - "vere": 34707, - "vered": 2868, - "verge": 23913, - "veri": 11638, - "verification": 33521, - "verified": 22555, - "verify": 34722, - "vering": 4630, - "veriz": 19707, - "verizon": 21532, - "verma": 41261, - "vermont": 19241, - "vern": 2214, - "vern": 12586, - "verne": 45553, - "vernon": 18348, - "vero": 45217, - "vero": 38208, - "verona": 31819, - "veronic": 39551, - "veronica": 24039, - "vers": 1219, - "vers": 2094, - "versa": 35765, - "versace": 25422, - "versail": 29857, - "versailles": 32129, - "versary": 2940, - "versatile": 18110, - "versatility": 41340, - "verse": 39466, - "verse": 3131, - "verses": 30769, - "versi": 8934, - "version": 3273, - "versions": 16190, - "versity": 1906, - "verst": 42484, - "verstappen": 45064, - "versus": 14548, - "versy": 18522, - "vert": 11742, - "verte": 35158, - "verted": 48173, - "verti": 30459, - "vertical": 14293, - "vertigo": 42477, - "verton": 40632, - "verts": 37265, - "very": 11698, - "very": 1070, - "veryday": 37944, - "verything": 45174, - "ves": 9616, - "ves": 1003, - "vesmatter": 47636, - "vespa": 46029, - "vessel": 16387, - "vessels": 22822, - "vest": 31657, - "vest": 12473, - "vesti": 40349, - "vests": 41906, - "vet": 12294, - "vet": 5951, - "veter": 4330, - "veteran": 20797, - "veteran": 8814, - "veterans": 7092, - "veteransday": 26409, - "veterin": 43959, - "veterinary": 25458, - "veto": 36570, - "vets": 13113, - "vette": 17045, - "vettel": 28700, - "vevo": 35141, - "vex": 36187, - "vex": 43978, - "vey": 34792, - "vey": 3884, - "vez": 35987, - "vez": 17226, - "vf": 25966, - "vfl": 33726, - "vfx": 30149, - "vg": 40591, - "vg": 22346, - "vh": 46953, - "vh": 23847, - "vhs": 21932, - "vi": 603, - "vi": 4259, - "via": 1048, - "viable": 25752, - "viadu": 37012, - "viaduct": 39113, - "vial": 39951, - "vian": 40487, - "vian": 16124, - "vibe": 37974, - "vibe": 12813, - "vibes": 7764, - "vibr": 9527, - "vibrant": 14270, - "vibration": 37456, - "vibrations": 43660, - "vic": 1555, - "vic": 4412, - "vica": 46168, - "vicar": 43899, - "vice": 43572, - "vice": 6931, - "vicente": 39411, - "vices": 8332, - "vich": 24143, - "vici": 46670, - "vicious": 25177, - "vick": 15116, - "vick": 29704, - "vickers": 48452, - "vicki": 34927, - "vicky": 37176, - "vicky": 25788, - "victi": 6861, - "victim": 9133, - "victims": 7131, - "victor": 2423, - "victor": 10690, - "victori": 17555, - "victoria": 39286, - "victoria": 6127, - "victorian": 12350, - "victorias": 47791, - "victories": 24577, - "victorious": 24033, - "victory": 36668, - "victory": 4127, - "vid": 17233, - "vid": 9284, - "vida": 19015, - "vidal": 36678, - "vide": 1334, - "vide": 45244, - "video": 9478, - "video": 1455, - "videogame": 35097, - "videogames": 21149, - "videos": 6081, - "vids": 23035, - "vidy": 29639, - "vidya": 45264, - "vie": 922, - "vie": 8538, - "vien": 36493, - "vienna": 12670, - "vier": 15352, - "vier": 11987, - "viera": 21114, - "viernes": 33826, - "vies": 22458, - "viest": 31979, - "viet": 17558, - "viet": 13128, - "vietnam": 19558, - "vietnam": 8623, - "vietnamese": 22382, - "view": 12004, - "view": 1093, - "viewed": 7226, - "viewer": 15061, - "viewers": 14275, - "viewing": 7124, - "viewpoint": 41604, - "views": 2758, - "vig": 8549, - "vig": 45083, - "vigil": 21538, - "vigil": 19896, - "vigilant": 43026, - "vigne": 40447, - "vigne": 34581, - "vigo": 44097, - "vigor": 26781, - "vii": 17759, - "viii": 20414, - "vijay": 12014, - "vijay": 10823, - "vijaysethu": 47966, - "vik": 10764, - "vik": 17181, - "vika": 39562, - "vikas": 37116, - "viking": 26663, - "viking": 15897, - "vikings": 11713, - "vikram": 41136, - "vikram": 24314, - "viktor": 36101, - "vil": 1338, - "vil": 3000, - "vila": 37505, - "vile": 27247, - "vill": 10481, - "vill": 45698, - "villa": 3203, - "villa": 7754, - "village": 34584, - "village": 4331, - "villagers": 34283, - "villages": 17621, - "villain": 15425, - "villains": 25271, - "villanova": 44025, - "villar": 35164, - "villas": 28907, - "ville": 11110, - "ville": 1930, - "villen": 46177, - "villi": 36907, - "vimeo": 48720, - "vin": 1379, - "vin": 2558, - "vina": 35682, - "vinai": 37396, - "vinaigrette": 39876, - "vinay": 43952, - "vince": 32429, - "vince": 6236, - "vincen": 33402, - "vincent": 29069, - "vincent": 10357, - "vinci": 30199, - "vind": 20275, - "vindic": 39582, - "vine": 8471, - "vine": 7721, - "vinegar": 23834, - "vines": 21268, - "vineyard": 16527, - "vineyards": 23082, - "ving": 5375, - "ving": 903, - "vingne": 42579, - "vings": 22510, - "vini": 48119, - "vinnie": 40885, - "vinny": 36794, - "vino": 14509, - "vinod": 43348, - "vins": 34820, - "vinson": 45945, - "vintag": 10936, - "vintage": 13654, - "vintage": 3266, - "viny": 40990, - "vinyl": 22835, - "vinyl": 5754, - "vio": 11913, - "vio": 20324, - "viol": 3164, - "viola": 27438, - "violate": 44875, - "violated": 38192, - "violating": 37554, - "violation": 22919, - "violations": 21969, - "violence": 5450, - "violent": 11565, - "violently": 47758, - "violet": 16118, - "violets": 42861, - "violin": 17058, - "violinist": 36299, - "vion": 35496, - "vious": 6418, - "viously": 7149, - "vip": 45714, - "vip": 7111, - "viper": 27401, - "vips": 41149, - "vir": 1790, - "vir": 25319, - "vira": 35910, - "viral": 11653, - "virat": 32473, - "virgil": 39076, - "virgin": 5651, - "virgin": 12103, - "virgini": 43426, - "virginia": 6728, - "virgo": 39978, - "viro": 32301, - "viron": 38309, - "virtu": 7977, - "virtual": 18059, - "virtual": 7790, - "virtually": 22475, - "virtualreality": 32608, - "virtue": 26860, - "virtues": 42167, - "virtuoso": 47027, - "virus": 11808, - "viruses": 34830, - "vis": 1301, - "vis": 5337, - "visa": 12802, - "visas": 41228, - "vise": 24977, - "vised": 14810, - "vish": 12024, - "vish": 29124, - "vishal": 33648, - "vishnu": 37816, - "visi": 1409, - "visibility": 15921, - "visible": 36658, - "visible": 8626, - "vising": 37439, - "vision": 11147, - "vision": 2515, - "visional": 24627, - "visionary": 22959, - "visions": 13804, - "visit": 3388, - "visit": 1600, - "visitation": 44370, - "visited": 5580, - "visiting": 4680, - "visitor": 13881, - "visitors": 9160, - "visits": 8489, - "visitscotland": 28760, - "visitspain": 48860, - "vism": 15514, - "viso": 46732, - "visor": 24217, - "vist": 21436, - "vista": 13865, - "visu": 7739, - "visual": 17004, - "visual": 7195, - "visualization": 28500, - "visualize": 45057, - "visually": 25743, - "visuals": 21315, - "viswas": 36513, - "viswasam": 47664, - "vit": 4056, - "vit": 35580, - "vita": 15700, - "vital": 32525, - "vital": 10585, - "vitality": 36385, - "vitam": 9856, - "vitamin": 13675, - "vitamins": 22582, - "vito": 36725, - "vity": 4893, - "vitz": 26188, - "vius": 41571, - "viv": 21827, - "viv": 35363, - "viva": 17399, - "vival": 35920, - "vive": 18980, - "vive": 24004, - "vivek": 36243, - "vivi": 11625, - "vivian": 30129, - "vivid": 22984, - "vivo": 28091, - "vivo": 25888, - "vix": 28976, - "vix": 34811, - "vixen": 38757, - "vixx": 32106, - "viz": 28251, - "viz": 31786, - "vj": 45439, - "vj": 30827, - "vk": 41893, - "vl": 37580, - "vl": 36442, - "vla": 23686, - "vlad": 41089, - "vladi": 19320, - "vladimir": 21702, - "vlive": 46797, - "vlog": 18894, - "vm": 16204, - "vm": 20269, - "vma": 35666, - "vmas": 30236, - "vmware": 29615, - "vn": 47098, - "vn": 25076, - "vo": 947, - "vo": 3951, - "voc": 4105, - "voc": 20855, - "vocab": 21346, - "vocabulary": 23804, - "vocal": 34037, - "vocal": 13147, - "vocali": 19134, - "vocalist": 22102, - "vocals": 17666, - "vocation": 20521, - "vocational": 33751, - "vod": 11820, - "vod": 35854, - "vodaf": 28436, - "vodafone": 38695, - "vodka": 13646, - "vogel": 44960, - "vogue": 24418, - "vogue": 13178, - "voic": 29185, - "voice": 13179, - "voice": 3386, - "voiced": 34352, - "voiceof": 44966, - "voiceover": 41979, - "voices": 9144, - "void": 21561, - "voip": 42762, - "voir": 16036, - "vol": 1343, - "vol": 7945, - "volatile": 41022, - "volatility": 32355, - "volcan": 9916, - "volcanic": 24072, - "volcano": 14581, - "volcanoes": 38055, - "voli": 40138, - "volk": 13432, - "volkswag": 14407, - "volkswagen": 15342, - "volley": 7130, - "volley": 34656, - "volleyball": 7458, - "volo": 44791, - "vols": 20404, - "volt": 26430, - "volta": 29879, - "volta": 33480, - "voltage": 23118, - "voltron": 39314, - "volu": 3563, - "volume": 8284, - "volumes": 22651, - "volun": 3356, - "voluntar": 48823, - "voluntary": 23815, - "volunte": 3556, - "volunteer": 32331, - "volunteer": 7114, - "volunteered": 34000, - "volunteering": 14902, - "volunteers": 5939, - "volution": 24043, - "volved": 42888, - "volvo": 39991, - "volvo": 16906, - "vom": 24198, - "vomit": 46485, - "von": 11269, - "von": 8497, - "voo": 19497, - "voodoo": 26869, - "voor": 34291, - "voor": 34464, - "vor": 8338, - "vor": 5308, - "vore": 18215, - "vortex": 30071, - "vos": 16863, - "vot": 48558, - "vote": 6830, - "vote": 2187, - "voted": 6454, - "votel": 41379, - "voter": 44474, - "voter": 14065, - "voters": 8925, - "votes": 6693, - "voting": 5756, - "vou": 11045, - "voucher": 18190, - "vouchers": 23384, - "vous": 10636, - "vow": 34787, - "vows": 21677, - "vox": 29215, - "vox": 22692, - "voy": 10622, - "voy": 15021, - "voyage": 16299, - "voyager": 29669, - "vp": 32758, - "vp": 3896, - "vpn": 38212, - "vr": 16840, - "vr": 5921, - "vre": 44500, - "vre": 17501, - "vs": 11385, - "vs": 1547, - "vsco": 26752, - "vsco": 32822, - "vscocam": 34694, - "vsky": 37791, - "vss": 31919, - "vt": 31732, - "vt": 10291, - "vu": 8664, - "vu": 13230, - "vue": 43915, - "vue": 19313, - "vuel": 31312, - "vuelta": 43856, - "vuitton": 26705, - "vul": 6856, - "vulcan": 34767, - "vulner": 11213, - "vulnerability": 28797, - "vulnerable": 14332, - "vulture": 34593, - "vultures": 47197, - "vv": 19264, - "vv": 35686, - "vw": 28650, - "vw": 13250, - "vx": 47644, - "vy": 11566, - "vy": 5157, - "w": 86, - "w": 342, - "wa": 869, - "wa": 2663, - "waa": 35874, - "wab": 19893, - "wab": 36852, - "wac": 27445, - "wac": 37947, - "wack": 22880, - "wack": 38270, - "wacky": 34318, - "waco": 36035, - "wad": 11133, - "wad": 30451, - "wada": 40006, - "wade": 40237, - "wade": 14180, - "wadi": 37253, - "waf": 17638, - "wafc": 49086, - "waff": 13940, - "waffle": 20375, - "waffles": 24205, - "wag": 5764, - "wag": 19177, - "wage": 10716, - "wager": 43430, - "wages": 19114, - "wagner": 18081, - "wagon": 13260, - "wagons": 47944, - "wags": 48580, - "wah": 24812, - "wah": 18014, - "wahl": 27500, - "wahlberg": 35151, - "wahoo": 47995, - "wai": 11469, - "wai": 21569, - "waifu": 46551, - "waikiki": 44907, - "wain": 28358, - "wain": 20120, - "wainwright": 45878, - "waist": 36946, - "waist": 18459, - "wait": 10021, - "wait": 1885, - "waite": 24272, - "waited": 18492, - "waiter": 32946, - "waitin": 44482, - "waiting": 2680, - "waitress": 39760, - "waitrose": 37164, - "waits": 21361, - "waiver": 42866, - "waj": 49367, - "wak": 11172, - "wak": 36015, - "waka": 42696, - "wake": 10501, - "wake": 5731, - "wakefield": 26358, - "wakes": 29108, - "wakeup": 26328, - "wakeup": 35380, - "wakeupamerica": 37474, - "waking": 13025, - "wal": 1056, - "wal": 6903, - "wala": 16468, - "walang": 49180, - "walcott": 45744, - "wald": 46930, - "wald": 15724, - "walden": 39311, - "waldo": 32440, - "waldorf": 38227, - "wale": 41247, - "wale": 20336, - "wales": 25383, - "wales": 5110, - "walgreens": 38490, - "wali": 37576, - "wali": 14768, - "walia": 44455, - "walk": 8588, - "walk": 2374, - "walkaway": 48255, - "walked": 8667, - "walker": 24735, - "walker": 6150, - "walkers": 23366, - "walkin": 45792, - "walking": 12644, - "walking": 3941, - "walkingdead": 14948, - "walkout": 47470, - "walks": 8192, - "walkway": 36614, - "wall": 4316, - "wall": 2569, - "walla": 26007, - "walla": 39982, - "wallabies": 48926, - "wallace": 12535, - "wallart": 36223, - "walled": 36567, - "waller": 45340, - "wallet": 12154, - "wallets": 38550, - "walleye": 49099, - "wallis": 42206, - "wallpaper": 10560, - "wallpapers": 29841, - "walls": 8258, - "wallstreet": 45341, - "wally": 26024, - "walmart": 11972, - "walnut": 16310, - "walnuts": 38294, - "walsall": 42935, - "walsh": 12856, - "walt": 23535, - "walt": 14312, - "waltdisneyworld": 36505, - "walter": 31156, - "walter": 10645, - "walters": 25532, - "waltham": 42742, - "waltham": 45581, - "walton": 19485, - "waltz": 35982, - "wam": 20503, - "wamy": 46970, - "wan": 2060, - "wan": 4557, - "wana": 30830, - "wand": 14636, - "wand": 28559, - "wanda": 25070, - "wander": 12985, - "wander": 24473, - "wandered": 46593, - "wanderers": 27540, - "wandering": 22597, - "wanderlust": 16129, - "wane": 27459, - "wang": 19731, - "wang": 11900, - "wani": 21674, - "wankers": 42189, - "wann": 23622, - "wanna": 35940, - "wanna": 3836, - "wannabe": 40730, - "wannaone": 44832, - "want": 18356, - "want": 1280, - "wanted": 3146, - "wanting": 12801, - "wants": 3107, - "wap": 27393, - "wap": 30368, - "waq": 47512, - "war": 984, - "war": 2238, - "wara": 21631, - "warbler": 33891, - "warcraft": 13660, - "ward": 7728, - "ward": 1460, - "warden": 27798, - "wardly": 30780, - "wardro": 14247, - "wardrobe": 15020, - "wards": 2593, - "ware": 7416, - "ware": 4476, - "wareagle": 35716, - "warehouse": 13054, - "wareness": 41601, - "wareness": 35870, - "wares": 30692, - "warfare": 15739, - "warhammer": 26832, - "warhol": 27554, - "wari": 20977, - "wark": 46346, - "wark": 15164, - "warlock": 42455, - "warm": 14725, - "warm": 3616, - "warmed": 36695, - "warmer": 14328, - "warmest": 30910, - "warming": 8606, - "warmly": 45322, - "warmongers": 33205, - "warms": 32917, - "warmth": 19636, - "warmup": 29904, - "warmups": 44094, - "warn": 19360, - "warned": 16409, - "warner": 28564, - "warner": 13402, - "warning": 4994, - "warnings": 18098, - "warns": 14086, - "waron": 38947, - "warp": 32411, - "warped": 32125, - "warran": 17392, - "warrant": 22554, - "warrants": 45677, - "warranty": 23999, - "warren": 23143, - "warren": 9234, - "warri": 4109, - "warrington": 31203, - "warrior": 18998, - "warrior": 8148, - "warriors": 6421, - "wars": 3931, - "warsaw": 21072, - "warship": 47846, - "wart": 43535, - "wart": 7346, - "wartime": 42998, - "warts": 21781, - "warwick": 23081, - "warwick": 22215, - "warwickshire": 36766, - "wary": 36213, - "was": 3398, - "was": 739, - "wasabi": 47334, - "wash": 3363, - "wash": 7810, - "washed": 14092, - "washer": 24085, - "washes": 38950, - "washing": 13029, - "washington": 16774, - "washington": 4365, - "washingtondc": 40225, - "washingtonpost": 28426, - "wasn": 5044, - "wasnt": 29607, - "wasp": 24889, - "wasps": 35300, - "wassup": 45708, - "wast": 28886, - "waste": 18157, - "waste": 6065, - "wasted": 18278, - "wasteland": 44035, - "wastewater": 34463, - "wasting": 25577, - "wat": 800, - "wat": 10621, - "wata": 42509, - "watch": 7046, - "watch": 1239, - "watchdog": 35303, - "watched": 5775, - "watcher": 35971, - "watchers": 28443, - "watches": 9521, - "watchin": 32432, - "watching": 2113, - "water": 2505, - "water": 1573, - "watercolor": 14211, - "watercolour": 18377, - "waterfall": 16403, - "waterfalls": 26692, - "waterford": 24448, - "waterfront": 16605, - "waterhouse": 45072, - "watering": 19871, - "waterloo": 17465, - "watermelon": 19889, - "waterproof": 17613, - "waters": 7753, - "watershed": 33204, - "waterstones": 45014, - "waterways": 37395, - "watford": 23162, - "watfordfc": 37328, - "wati": 27966, - "watkins": 22539, - "watson": 35490, - "watson": 9294, - "watt": 22899, - "watt": 15805, - "wattpad": 32351, - "watts": 14750, - "wau": 9479, - "wav": 6054, - "wave": 17530, - "wave": 4535, - "waved": 44657, - "waver": 25997, - "waves": 7882, - "waving": 26545, - "wavy": 31941, - "waw": 22039, - "wawrinka": 48414, - "wawx": 47387, - "wax": 18789, - "wax": 11910, - "waxing": 38781, - "way": 3079, - "way": 923, - "wayback": 47822, - "wayne": 23632, - "wayne": 7003, - "ways": 1248, - "waz": 20889, - "waz": 48835, - "wb": 10726, - "wb": 12377, - "wba": 22675, - "wbb": 14482, - "wbc": 26745, - "wbo": 49053, - "wbz": 35471, - "wc": 4842, - "wc": 5755, - "wcc": 47166, - "wcc": 34926, - "wcpo": 46624, - "wcs": 39916, - "wcvb": 32709, - "wcw": 9041, - "wd": 15998, - "wd": 7494, - "wdw": 40334, - "we": 598, - "we": 649, - "wea": 37146, - "wea": 47301, - "weak": 12128, - "weak": 10128, - "weaker": 39735, - "weakness": 21448, - "weaknesses": 43487, - "weal": 14759, - "wealth": 33150, - "wealth": 7904, - "wealthy": 22617, - "weap": 6156, - "weapon": 42612, - "weapon": 10537, - "weapons": 10007, - "wear": 12206, - "wear": 2839, - "wearab": 22983, - "wearable": 44943, - "wearable": 24973, - "wearables": 30319, - "weare": 4264, - "weare": 27867, - "weareall": 45980, - "wearec": 43620, - "wearen": 45635, - "weareone": 16149, - "weareoneexo": 16448, - "wearethe": 40242, - "wearing": 3309, - "wears": 11869, - "weary": 38766, - "weasel": 44308, - "weather": 8808, - "weather": 2237, - "weathercee": 44980, - "weatherchannel": 42138, - "weav": 22260, - "weave": 22450, - "weaver": 20297, - "weaving": 27131, - "web": 2055, - "web": 4601, - "webb": 15708, - "webber": 34248, - "webcam": 24211, - "webcam": 22589, - "webcamtoy": 27719, - "webcast": 28256, - "webcomic": 34286, - "webcomics": 39811, - "webdesign": 20470, - "webdev": 37000, - "webdevelopment": 47553, - "weber": 20179, - "webin": 8460, - "webinar": 8921, - "webinars": 47755, - "webpage": 46964, - "webs": 32829, - "webseries": 44819, - "website": 3364, - "websites": 19278, - "webster": 19471, - "websummit": 48069, - "wec": 33152, - "wechat": 46124, - "wed": 1687, - "wed": 3478, - "wedd": 7576, - "wedding": 11204, - "wedding": 3101, - "weddings": 15964, - "wedge": 21446, - "wedges": 33179, - "wedne": 2380, - "wednesday": 9311, - "wednesday": 2689, - "wednesdaymotivation": 37860, - "wednesdays": 24943, - "wednesdaywisdom": 11445, - "wedo": 43432, - "weds": 19107, - "wee": 716, - "wee": 8288, - "weed": 36935, - "weed": 8015, - "weeds": 26326, - "week": 1286, - "week": 994, - "weekday": 29244, - "weekdays": 44330, - "weekend": 17205, - "weekend": 1456, - "weekender": 36547, - "weekends": 14564, - "weekly": 34652, - "weekly": 5885, - "weeknd": 29925, - "weeks": 2898, - "weeksary": 24628, - "ween": 17517, - "ween": 1599, - "weep": 39270, - "weeping": 36629, - "weer": 32491, - "weet": 17742, - "weets": 13454, - "wef": 23313, - "weg": 47867, - "weg": 47561, - "wego": 44784, - "wego": 28220, - "weh": 48458, - "weh": 40313, - "weho": 47798, - "wei": 6958, - "wei": 20952, - "weibo": 20613, - "weigh": 10565, - "weigh": 17346, - "weighed": 33210, - "weighing": 24455, - "weighs": 20481, - "weight": 12723, - "weight": 3868, - "weighted": 43179, - "weightlifting": 36164, - "weightloss": 20359, - "weights": 21374, - "weil": 43720, - "weiler": 42203, - "wein": 29134, - "wein": 37684, - "weiner": 38822, - "weinstein": 34367, - "weir": 11299, - "weir": 25517, - "weird": 27981, - "weird": 5613, - "weirdest": 29482, - "weirdo": 32476, - "weis": 26251, - "weiser": 34833, - "weiss": 24794, - "wel": 1267, - "wel": 8042, - "welch": 25820, - "welcom": 11578, - "welcome": 18318, - "welcome": 1881, - "welcomed": 12590, - "welcomes": 9304, - "welcometo": 47511, - "welcoming": 8775, - "weld": 39776, - "welding": 24956, - "welfare": 12129, - "well": 3277, - "well": 1123, - "wellbeing": 14273, - "weller": 40921, - "welling": 49165, - "wellington": 15389, - "wellness": 40574, - "wellness": 9904, - "wells": 42705, - "wells": 9804, - "welove": 13573, - "welp": 28391, - "wels": 20852, - "welsh": 19173, - "welsh": 10977, - "welt": 38595, - "welter": 37115, - "welterweight": 39617, - "wemb": 15213, - "wembley": 16579, - "wen": 6590, - "wen": 11278, - "wend": 15166, - "wendell": 42091, - "wendy": 31616, - "wendy": 14074, - "wenger": 21105, - "went": 18633, - "went": 2437, - "wentworth": 36423, - "wentz": 39179, - "wer": 6316, - "wer": 2980, - "were": 15461, - "were": 1365, - "wered": 6605, - "weren": 13611, - "werewolf": 32001, - "werk": 30176, - "werner": 29917, - "wers": 7110, - "wes": 18620, - "wes": 14738, - "wesle": 29606, - "wesley": 17332, - "wesleyan": 32509, - "wesome": 33292, - "wess": 44431, - "west": 2973, - "west": 1593, - "westbound": 29208, - "westbrook": 26948, - "westchester": 36675, - "westcoast": 44610, - "westend": 44815, - "wester": 9846, - "western": 17079, - "western": 4463, - "westfield": 32309, - "westh": 36798, - "westin": 43232, - "westlake": 41535, - "westminster": 15158, - "weston": 22771, - "westside": 33762, - "westwood": 26371, - "westworld": 42287, - "wet": 12406, - "wet": 6682, - "weta": 40946, - "wethenorth": 45281, - "wethepeople": 48030, - "wether": 33794, - "wether": 48405, - "wetland": 37357, - "wetlands": 26547, - "wett": 41971, - "wetter": 43957, - "wewant": 39280, - "wewill": 37241, - "wex": 17234, - "wexford": 29876, - "wexmondays": 49042, - "wey": 30376, - "wey": 19781, - "weymouth": 41433, - "wf": 14576, - "wf": 22313, - "wfa": 44606, - "wfc": 36431, - "wfp": 35193, - "wftv": 47075, - "wg": 21091, - "wg": 25857, - "wga": 32354, - "wgn": 48828, - "wh": 573, - "wh": 13844, - "wha": 18994, - "wha": 25884, - "whal": 38967, - "whale": 37083, - "whale": 11650, - "whales": 17722, - "wham": 42506, - "whar": 15517, - "wharf": 22452, - "wharton": 43320, - "what": 4268, - "what": 768, - "whatcha": 37160, - "whate": 6695, - "whatever": 6743, - "whati": 23500, - "whats": 9263, - "whats": 13084, - "whatsapp": 10119, - "whatsoever": 39928, - "whatson": 35632, - "whatyou": 30508, - "whe": 2009, - "whead": 34583, - "wheat": 20505, - "wheat": 10303, - "wheaton": 46933, - "wheel": 7360, - "wheel": 6744, - "wheelchair": 17713, - "wheeler": 18405, - "wheeling": 34839, - "wheels": 8025, - "whel": 9792, - "whelan": 40715, - "when": 8753, - "when": 827, - "whenever": 10500, - "where": 7052, - "where": 1234, - "whereabouts": 47808, - "whereas": 42234, - "wheres": 46345, - "wherever": 14103, - "whereyou": 46837, - "whether": 5903, - "whew": 39016, - "whey": 34556, - "whi": 4295, - "whi": 33129, - "which": 1448, - "whiche": 48719, - "whichever": 49138, - "whil": 8499, - "while": 1519, - "whilst": 8596, - "whim": 27766, - "whimsical": 42282, - "whip": 14412, - "whipped": 22323, - "whipping": 41567, - "whir": 20873, - "whirl": 30962, - "whirlwind": 47771, - "whis": 6024, - "whiskey": 41381, - "whiskey": 11610, - "whisky": 37567, - "whisky": 12599, - "whisp": 21986, - "whispe": 30356, - "whisper": 27616, - "whisperer": 41368, - "whispering": 42599, - "whispers": 29133, - "whist": 13640, - "whistle": 23972, - "whistle": 19746, - "whistleblower": 40410, - "whistler": 29633, - "whit": 4398, - "whit": 31498, - "whitaker": 35851, - "whitby": 30858, - "white": 4699, - "white": 1579, - "whiteboard": 40839, - "whitec": 24575, - "whitehall": 42827, - "whitehead": 43560, - "whitehouse": 20776, - "whitening": 35540, - "whitepaper": 42713, - "whites": 35886, - "whites": 18835, - "whitesox": 28816, - "whitewater": 49350, - "whitfield": 48404, - "whitley": 40564, - "whitman": 32394, - "whitney": 43021, - "whitney": 18048, - "whitt": 33784, - "whittaker": 47595, - "whl": 25801, - "who": 2969, - "who": 822, - "whoa": 16943, - "whoever": 11137, - "whois": 41884, - "whole": 10360, - "whole": 2954, - "wholefoods": 42840, - "wholesale": 18306, - "wholesome": 35959, - "whom": 38158, - "whom": 12873, - "whoo": 20003, - "whoo": 49290, - "whoop": 22060, - "whoops": 28433, - "whopping": 34384, - "whore": 31690, - "whos": 41460, - "whos": 27130, - "whose": 6933, - "whouse": 45927, - "whs": 26292, - "wht": 32470, - "whufc": 31695, - "whun": 18272, - "why": 11040, - "why": 1182, - "whyte": 42386, - "wi": 820, - "wi": 5585, - "wib": 45303, - "wic": 7834, - "wich": 9759, - "wich": 5238, - "wichita": 22566, - "wick": 6798, - "wick": 6479, - "wicked": 32579, - "wicked": 12825, - "wicker": 38096, - "wicket": 19180, - "wickets": 22110, - "wicklow": 39039, - "wicz": 30121, - "wid": 11886, - "wid": 20886, - "wide": 19341, - "wide": 3184, - "widely": 16195, - "widening": 46598, - "wider": 21263, - "widesp": 20598, - "widespread": 21258, - "widget": 43906, - "wido": 28068, - "widow": 19949, - "widows": 42129, - "width": 23571, - "wie": 21378, - "wie": 9131, - "wielding": 47272, - "wien": 38131, - "wiener": 40567, - "wies": 42788, - "wif": 37572, - "wife": 3607, - "wifey": 35282, - "wifi": 11026, - "wig": 23690, - "wig": 12216, - "wigan": 23130, - "wiggins": 32329, - "wiggle": 47812, - "wight": 41278, - "wight": 15545, - "wigs": 31207, - "wii": 8005, - "wiiu": 40980, - "wiki": 10373, - "wiki": 24265, - "wikileaks": 28731, - "wikipedia": 15176, - "wil": 1352, - "wil": 20581, - "wilbur": 43069, - "wilcox": 43231, - "wild": 2780, - "wild": 3220, - "wildatlantic": 35500, - "wildatlanticway": 35776, - "wildcard": 37360, - "wildcat": 49077, - "wildcat": 25870, - "wildcats": 15909, - "wilde": 23498, - "wilder": 14343, - "wilder": 23499, - "wilderness": 16506, - "wildest": 43028, - "wildfire": 22788, - "wildfires": 29184, - "wildflower": 27628, - "wildflower": 33181, - "wildflowerhour": 31302, - "wildflowers": 29136, - "wildlife": 13298, - "wildlife": 5250, - "wildlifephotography": 32307, - "wildlifewednesday": 48537, - "wildly": 35981, - "wildoz": 40113, - "wiley": 32747, - "wilhelm": 39696, - "wilkes": 39548, - "wilkins": 36986, - "wilkinson": 26797, - "will": 5062, - "will": 751, - "willam": 43276, - "willard": 44920, - "wille": 48739, - "willem": 38044, - "willi": 2256, - "william": 8420, - "william": 4705, - "williams": 38452, - "williams": 4075, - "williamsburg": 30683, - "williamson": 20793, - "willie": 13907, - "willing": 34160, - "willing": 11718, - "willingness": 40573, - "willis": 18491, - "willow": 33887, - "willow": 15665, - "wills": 26913, - "willy": 34502, - "willy": 19599, - "wilmington": 28052, - "wilms": 47879, - "wilshere": 48359, - "wilson": 23629, - "wilson": 5622, - "wilt": 23394, - "wilt": 47357, - "wilton": 46638, - "wiltshire": 28025, - "wim": 8662, - "wim": 27580, - "wimble": 11752, - "wimbledon": 12229, - "win": 831, - "win": 1225, - "winchester": 20647, - "wind": 6812, - "wind": 3630, - "winder": 44454, - "winder": 46245, - "winding": 22390, - "windmill": 34084, - "windo": 3110, - "window": 26675, - "window": 4879, - "windows": 5437, - "winds": 12668, - "winds": 7012, - "windshield": 33002, - "windsor": 44322, - "windsor": 12884, - "windy": 13446, - "wine": 7375, - "wine": 2604, - "winelover": 26357, - "winemaker": 41588, - "wineoclock": 43846, - "wineries": 49349, - "winery": 15500, - "wines": 8263, - "winetasting": 41288, - "winewednesday": 35447, - "wing": 8141, - "wing": 1340, - "winged": 24993, - "winger": 22727, - "winget": 44578, - "wings": 5178, - "wink": 34455, - "wink": 25859, - "winkle": 36430, - "winn": 38104, - "winne": 46273, - "winner": 32961, - "winner": 2520, - "winners": 4320, - "winni": 13018, - "winnie": 29022, - "winning": 42099, - "winning": 2577, - "winnings": 46490, - "winnipeg": 14369, - "winona": 49202, - "wins": 46839, - "wins": 2718, - "winslow": 39658, - "winston": 14848, - "winter": 7340, - "winter": 2541, - "winters": 21587, - "wintry": 39504, - "wip": 10447, - "wipe": 26761, - "wiped": 31822, - "wipes": 33463, - "wir": 16849, - "wir": 44838, - "wire": 7558, - "wire": 7794, - "wired": 18935, - "wireless": 9103, - "wires": 24311, - "wiring": 36434, - "wirral": 34675, - "wis": 3392, - "wis": 20405, - "wiscon": 9857, - "wisconsin": 10265, - "wisdom": 42474, - "wisdom": 5425, - "wise": 19116, - "wise": 5558, - "wisely": 26173, - "wiser": 44859, - "wish": 11328, - "wish": 2412, - "wished": 25883, - "wishes": 6045, - "wishing": 5307, - "wishlist": 31969, - "wit": 584, - "wit": 8531, - "witch": 20139, - "witch": 10083, - "witchcraft": 35065, - "witcher": 33684, - "witches": 21673, - "with": 1435, - "with": 593, - "withdra": 24696, - "withdraw": 31670, - "withdrawal": 25765, - "withdrawn": 46687, - "withdraws": 48637, - "wither": 39655, - "witherspoon": 45409, - "within": 4154, - "withme": 44670, - "without": 32836, - "without": 2193, - "withstand": 42236, - "withthe": 36872, - "withus": 30572, - "withyou": 30351, - "witne": 12096, - "witness": 8793, - "witnessed": 20187, - "witnesses": 22778, - "witnessing": 33618, - "wits": 30938, - "witt": 38194, - "witt": 17168, - "witter": 31597, - "witty": 29970, - "witz": 44186, - "witz": 13265, - "wiv": 48925, - "wives": 14378, - "wiwx": 44461, - "wiz": 7730, - "wiz": 23178, - "wizar": 49121, - "wizard": 30490, - "wizard": 14295, - "wizards": 19140, - "wizkid": 40146, - "wj": 19739, - "wj": 35453, - "wk": 11512, - "wk": 11528, - "wkend": 42336, - "wknd": 20851, - "wks": 25508, - "wku": 43377, - "wl": 13299, - "wl": 9613, - "wm": 20268, - "wm": 15790, - "wn": 1186, - "wn": 757, - "wnba": 32358, - "wned": 8628, - "wns": 12950, - "wnt": 22484, - "wny": 24833, - "wo": 1613, - "wo": 11132, - "woah": 17751, - "wob": 35984, - "woc": 39011, - "wod": 41522, - "woes": 27860, - "wof": 45671, - "woj": 48931, - "wok": 28912, - "woke": 9331, - "woken": 43697, - "woking": 43931, - "wol": 2798, - "wol": 48622, - "wold": 42399, - "wolf": 9453, - "wolf": 5916, - "wolfe": 24989, - "wolff": 34369, - "wolfgang": 34061, - "wolfpack": 30887, - "wolve": 45101, - "wolver": 14334, - "wolverhampton": 34518, - "wolverine": 23353, - "wolverines": 42003, - "wolves": 9372, - "wom": 1087, - "womack": 48980, - "woman": 15716, - "woman": 2308, - "womanc": 35630, - "womancrush": 37721, - "womancrushwednesday": 39714, - "womanin": 30562, - "womaninbiz": 36482, - "womb": 37023, - "women": 3648, - "women": 1507, - "womenin": 13062, - "womeninscience": 41343, - "womeninstem": 29380, - "womenintech": 31470, - "womenof": 48421, - "womens": 12822, - "womens": 14408, - "womensart": 38548, - "womensday": 13956, - "womenshi": 22887, - "womenshistorymonth": 24982, - "womensmarch": 30102, - "won": 1528, - "won": 1749, - "wonder": 2070, - "wonder": 3936, - "wondercon": 46944, - "wondered": 15550, - "wonderful": 2582, - "wonderfully": 23245, - "wondering": 8360, - "wonderland": 13874, - "wonders": 14048, - "wonderwoman": 31000, - "wondo": 38402, - "wondr": 46771, - "wong": 17876, - "wonka": 43463, - "wont": 43174, - "wont": 15952, - "woo": 1867, - "woo": 9322, - "wood": 3269, - "wood": 1704, - "woodbridge": 49074, - "wooden": 48226, - "wooden": 9057, - "woodland": 44314, - "woodland": 17447, - "woodlands": 32430, - "woodley": 40566, - "woodpecker": 32684, - "woods": 6267, - "woodson": 48967, - "woodstock": 29486, - "woodward": 27419, - "woodwork": 47386, - "woodworking": 29267, - "woody": 38627, - "woody": 17144, - "woof": 34234, - "woof": 24028, - "woohoo": 20172, - "wook": 29192, - "wool": 9967, - "wool": 13283, - "woolf": 43728, - "woolly": 47722, - "woon": 33126, - "wooo": 43217, - "woop": 31884, - "woot": 22466, - "wor": 641, - "worcester": 22172, - "worcester": 19580, - "worcestershire": 38440, - "worcestershirehour": 43644, - "word": 8272, - "word": 2653, - "wordof": 33500, - "wordoftheday": 43594, - "wordpress": 15193, - "words": 31007, - "words": 2709, - "wore": 8953, - "work": 1636, - "work": 951, - "workday": 29735, - "worked": 5410, - "worker": 8098, - "workers": 4795, - "workflow": 28502, - "workforce": 14672, - "workin": 31825, - "workin": 26323, - "working": 20806, - "working": 1699, - "workinprogress": 46086, - "workout": 6773, - "workouts": 22779, - "workplace": 11959, - "workplaces": 47383, - "works": 2322, - "workshop": 3832, - "workshops": 12262, - "workspace": 34470, - "worl": 5221, - "world": 2334, - "world": 1002, - "worlda": 46627, - "worldbank": 36759, - "worldbookday": 31191, - "worldcup": 42525, - "worldcup": 8650, - "worlden": 44668, - "worldenviron": 47115, - "worldenvironmentday": 47522, - "worldly": 36268, - "worldo": 41698, - "worldof": 22636, - "worldre": 33951, - "worlds": 7691, - "worldseries": 26695, - "worldtour": 23202, - "worldwater": 41176, - "worldwaterday": 44520, - "worldwide": 6214, - "worm": 33709, - "worm": 10945, - "worms": 20231, - "worn": 9037, - "worried": 11911, - "worries": 17684, - "worry": 7534, - "worrying": 24058, - "worse": 8236, - "worsen": 46344, - "worshi": 31840, - "worship": 46399, - "worship": 9023, - "worst": 5719, - "wort": 30209, - "worth": 10671, - "worth": 2450, - "worthing": 39929, - "worthit": 40830, - "worthless": 44736, - "worths": 44633, - "worthwhile": 36295, - "worthy": 8881, - "worx": 44973, - "wot": 24863, - "wou": 5279, - "would": 39873, - "would": 1311, - "wouldn": 5878, - "wouldnt": 41595, - "wound": 19231, - "wounded": 14859, - "wounds": 21290, - "woven": 19830, - "wow": 22191, - "wow": 2781, - "woz": 44558, - "wozni": 47782, - "wp": 15378, - "wp": 13302, - "wpg": 35048, - "wps": 33386, - "wq": 45195, - "wr": 1189, - "wr": 8028, - "wra": 3852, - "wra": 46004, - "wral": 49050, - "wrangler": 30923, - "wrap": 7094, - "wrapped": 9875, - "wrapping": 15223, - "wraps": 18236, - "wrath": 29783, - "wray": 48943, - "wrc": 16004, - "wre": 3168, - "wreath": 23091, - "wrec": 20879, - "wreck": 28775, - "wreck": 15017, - "wrecked": 32695, - "wreckem": 45676, - "wrecking": 36956, - "wrecks": 45545, - "wren": 20191, - "wren": 31970, - "wrench": 30980, - "wrest": 4177, - "wrestle": 17097, - "wrestle": 28086, - "wrestlemania": 18849, - "wrestler": 19790, - "wrestlers": 25902, - "wrestling": 31292, - "wrestling": 5904, - "wrexham": 34479, - "wri": 7667, - "wri": 42007, - "wright": 28616, - "wright": 6991, - "wrights": 43711, - "wrigley": 33538, - "wrink": 22201, - "wrinkle": 46642, - "wrinkles": 35525, - "wrist": 19243, - "wrist": 16139, - "wristband": 36890, - "wristbands": 44864, - "writ": 2902, - "write": 28874, - "write": 4946, - "writer": 27886, - "writer": 4422, - "writers": 18742, - "writers": 7307, - "writerslife": 25007, - "writes": 8023, - "writing": 16053, - "writing": 2979, - "writingcommunity": 39178, - "writings": 36259, - "written": 5231, - "wro": 5447, - "wrong": 18381, - "wrong": 3669, - "wrongly": 45642, - "wrote": 5796, - "wrought": 48125, - "wrs": 45280, - "ws": 6300, - "ws": 799, - "wsb": 30681, - "wsbtv": 38394, - "wsj": 19764, - "wski": 12548, - "wsl": 43706, - "wsoc": 40253, - "wson": 33954, - "wsop": 41231, - "wsu": 44674, - "wsu": 32913, - "wsw": 43285, - "wt": 15873, - "wt": 12255, - "wta": 25984, - "wtc": 39718, - "wtf": 6891, - "wth": 23021, - "wthr": 45269, - "wti": 47345, - "wto": 36406, - "wts": 32159, - "wu": 9710, - "wu": 9837, - "wud": 43870, - "wul": 35154, - "wunder": 36661, - "wur": 24040, - "wurst": 44409, - "wusa": 40021, - "wut": 28590, - "wv": 18920, - "wv": 14743, - "wvu": 44878, - "wvu": 25879, - "ww": 3181, - "ww": 4491, - "wwc": 26505, - "wwdc": 47441, - "wwe": 12112, - "wwe": 5290, - "wwen": 23308, - "wwenetwork": 37228, - "wwenxt": 39898, - "wwer": 32038, - "wwf": 23332, - "wwfc": 42681, - "wwg": 35322, - "wwi": 20194, - "wwii": 10261, - "www": 26074, - "www": 9667, - "wwwbigbaldhead": 30761, - "wwww": 34224, - "wwww": 25200, - "wwwww": 48268, - "wwx": 47431, - "wx": 18192, - "wx": 3561, - "wy": 4665, - "wy": 7625, - "wyatt": 21660, - "wyd": 33113, - "wye": 48436, - "wye": 43751, - "wylie": 49330, - "wyn": 11802, - "wyn": 17504, - "wynn": 36117, - "wynne": 35951, - "wynonna": 41456, - "wynonnaearp": 43755, - "wyoming": 18693, - "x": 87, - "x": 343, - "xa": 24831, - "xan": 45530, - "xander": 45601, - "xavi": 36342, - "xavier": 41044, - "xavier": 18567, - "xb": 33678, - "xbox": 18063, - "xbox": 7748, - "xboxone": 27410, - "xc": 12515, - "xchange": 49132, - "xd": 6380, - "xe": 42886, - "xe": 19183, - "xen": 15568, - "xer": 49005, - "xf": 35274, - "xfactor": 25211, - "xfinity": 35107, - "xford": 34732, - "xh": 45771, - "xham": 25284, - "xi": 2467, - "xi": 7376, - "xia": 19854, - "xia": 20724, - "xian": 42570, - "xiao": 49318, - "xiaomi": 27477, - "xico": 38469, - "xide": 17398, - "xie": 40122, - "xie": 15976, - "xii": 36525, - "xiii": 28199, - "xim": 11217, - "xin": 27053, - "xin": 41517, - "xing": 14383, - "xion": 24164, - "xis": 35793, - "xit": 5316, - "xiumin": 36563, - "xiv": 16125, - "xj": 42453, - "xl": 36529, - "xl": 8833, - "xley": 38223, - "xm": 18626, - "xma": 48805, - "xmas": 48848, - "xmas": 6425, - "xmen": 28708, - "xn": 25388, - "xo": 26936, - "xo": 9000, - "xon": 29186, - "xon": 8482, - "xox": 11531, - "xox": 34050, - "xoxo": 13313, - "xp": 15651, - "xper": 32200, - "xperia": 37615, - "xpo": 44377, - "xpress": 31809, - "xq": 40606, - "xr": 26276, - "xrp": 26965, - "xs": 16397, - "xt": 1052, - "xtina": 45520, - "xton": 32666, - "xton": 10597, - "xtra": 26969, - "xtre": 27025, - "xtreme": 33483, - "xu": 42063, - "xu": 37198, - "xv": 17768, - "xvi": 44031, - "xx": 5675, - "xx": 3553, - "xxl": 29777, - "xxx": 33923, - "xxx": 8352, - "xxxx": 32035, - "xxxx": 22819, - "xxxxx": 44195, - "xy": 20023, - "xy": 11443, - "y": 88, - "y": 344, - "ya": 5018, - "ya": 1430, - "yaa": 48847, - "yaa": 34498, - "yaan": 34680, - "yab": 27737, - "yach": 9039, - "yacht": 43806, - "yacht": 12859, - "yachts": 29260, - "yad": 13276, - "yad": 40047, - "yadav": 26650, - "yaf": 38019, - "yag": 35081, - "yah": 16170, - "yah": 12381, - "yaho": 37929, - "yahoo": 38152, - "yahoo": 16846, - "yak": 11014, - "yak": 29074, - "yaki": 44677, - "yaku": 29572, - "yakuza": 42628, - "yal": 16198, - "yal": 13418, - "yale": 39926, - "yale": 17157, - "yall": 9210, - "yam": 6666, - "yam": 19318, - "yama": 23512, - "yamaha": 18854, - "yan": 3949, - "yan": 4788, - "yana": 18698, - "yand": 38609, - "yang": 23818, - "yang": 12605, - "yani": 26439, - "yankee": 21554, - "yankees": 11889, - "yann": 40246, - "yann": 38657, - "yao": 45231, - "yap": 48700, - "yap": 34468, - "yar": 6786, - "yar": 23071, - "yard": 20234, - "yard": 4313, - "yards": 7550, - "yarmouth": 45941, - "yarn": 19702, - "yarra": 46824, - "yas": 8168, - "yas": 20570, - "yash": 30216, - "yash": 37836, - "yasi": 37700, - "yasss": 23873, - "yat": 29443, - "yat": 34965, - "yates": 27677, - "yatra": 38932, - "yav": 41275, - "yaw": 31989, - "yawn": 48643, - "yay": 20614, - "yay": 6712, - "yaya": 37608, - "yaz": 19348, - "yaz": 42252, - "yb": 41785, - "yb": 27615, - "yc": 11931, - "ycle": 38089, - "yd": 29896, - "yd": 9534, - "yday": 15899, - "yds": 24819, - "ye": 693, - "ye": 4582, - "yea": 13687, - "yeah": 29405, - "yeah": 3908, - "year": 5163, - "year": 935, - "yearbook": 21636, - "yearling": 48392, - "yearly": 24541, - "yearof": 31944, - "yearofthe": 47899, - "years": 30864, - "years": 1151, - "yearsof": 14932, - "yearswith": 45249, - "yeast": 25819, - "yeats": 44903, - "yed": 28137, - "yed": 3301, - "yee": 18114, - "yee": 23108, - "yeezy": 24901, - "yeg": 16854, - "yeg": 11976, - "yegfood": 48711, - "yeh": 21331, - "yel": 3323, - "yel": 48164, - "yell": 30824, - "yelled": 39199, - "yelling": 26581, - "yellow": 12059, - "yellow": 4481, - "yellowstone": 29241, - "yelp": 31674, - "yemen": 29276, - "yemen": 12513, - "yemeni": 44656, - "yemi": 42267, - "yen": 29602, - "yen": 17960, - "yeo": 32292, - "yeo": 43830, - "yeol": 15808, - "yeon": 16602, - "yep": 10964, - "yer": 15491, - "yer": 2371, - "yers": 3722, - "yes": 21620, - "yes": 1958, - "yess": 42778, - "yess": 40189, - "yesss": 36210, - "yessss": 45620, - "yester": 1905, - "yesterday": 1926, - "yesterdays": 36238, - "yesung": 38527, - "yet": 2296, - "yeti": 34228, - "yev": 39855, - "yew": 34660, - "yey": 45447, - "yg": 16396, - "ygk": 44758, - "ygo": 46166, - "yh": 41978, - "yi": 5826, - "yi": 14762, - "yield": 16825, - "yields": 24856, - "yikes": 25094, - "yin": 26476, - "yin": 23543, - "ying": 42933, - "ying": 910, - "yixing": 32120, - "yk": 30965, - "yl": 2656, - "yl": 4045, - "ylan": 41875, - "ylde": 42850, - "yle": 32305, - "yle": 10770, - "ylene": 34239, - "yler": 48081, - "yles": 42860, - "ylon": 22375, - "ylor": 48468, - "ym": 1786, - "ym": 19587, - "yman": 29077, - "ymc": 47101, - "ymca": 22369, - "yment": 8199, - "ymes": 39968, - "ymi": 5271, - "ymm": 37133, - "ymoun": 41426, - "ymouth": 36429, - "yn": 2823, - "yn": 4100, - "yne": 18238, - "ynes": 18020, - "ynn": 10499, - "ynna": 48292, - "ynwa": 27372, - "yo": 586, - "yo": 3497, - "yoda": 31922, - "yof": 5966, - "yofficial": 21818, - "yofthe": 43983, - "yog": 34985, - "yog": 36539, - "yoga": 25872, - "yoga": 5523, - "yogh": 32626, - "yoghurt": 33491, - "yogi": 22766, - "yogur": 16137, - "yogurt": 16819, - "yoh": 48880, - "yoke": 41969, - "yoko": 25929, - "yoko": 32256, - "yokohama": 42409, - "yol": 19387, - "yol": 35218, - "yolanda": 43845, - "yolo": 20905, - "yom": 34718, - "yom": 44527, - "yon": 10147, - "yon": 7604, - "yong": 27960, - "yong": 20887, - "yonge": 48592, - "yoo": 25842, - "yoo": 20775, - "yoon": 30863, - "yoon": 22113, - "yoona": 32736, - "yoongi": 24037, - "yor": 2028, - "yor": 21132, - "york": 5318, - "york": 2705, - "yorker": 23865, - "yorkers": 41041, - "yorks": 39093, - "yorkshi": 43367, - "yorkshire": 27007, - "yorkshire": 8633, - "yoruba": 46083, - "yos": 35607, - "yosemite": 25893, - "yoshi": 22920, - "yoshi": 25354, - "yot": 22875, - "yotes": 46157, - "yotpo": 26113, - "you": 1562, - "you": 592, - "youare": 33879, - "youcan": 32498, - "youknow": 47919, - "youknow": 41088, - "youn": 1596, - "young": 6939, - "young": 1888, - "younger": 10414, - "youngest": 12316, - "youngjae": 46426, - "youngster": 35881, - "youngsters": 28098, - "younow": 33831, - "your": 2130, - "your": 695, - "youre": 28344, - "youre": 19695, - "yourown": 28583, - "yours": 3834, - "yourself": 3053, - "yourselves": 19747, - "youth": 10743, - "youth": 3281, - "youthful": 37480, - "youths": 23614, - "youts": 22737, - "youtu": 13868, - "youtube": 31258, - "youtube": 3895, - "youtuber": 24720, - "youtubers": 36822, - "youu": 35055, - "youuu": 35324, - "youuuu": 47123, - "yoy": 41865, - "yp": 38370, - "yp": 34734, - "ypg": 37386, - "yql": 46122, - "yqr": 36881, - "yr": 18395, - "yr": 4333, - "yrs": 4822, - "ys": 1971, - "ys": 961, - "yser": 33121, - "ysis": 4843, - "ysl": 45681, - "ysm": 23842, - "yst": 40528, - "yt": 36777, - "yt": 14779, - "ytd": 47524, - "yte": 48172, - "yu": 3371, - "yu": 8887, - "yuan": 26236, - "yuck": 48282, - "yugo": 48231, - "yuh": 42547, - "yui": 47932, - "yuk": 17037, - "yuk": 24063, - "yuki": 34010, - "yukon": 27094, - "yul": 39832, - "yum": 6869, - "yum": 7259, - "yuma": 47566, - "yummy": 7687, - "yun": 14976, - "yun": 18288, - "yung": 44545, - "yung": 17676, - "yunho": 39748, - "yup": 13231, - "yur": 42533, - "yuri": 23823, - "yusuf": 33222, - "yuv": 36784, - "yves": 33698, - "yvon": 23327, - "yvonne": 32583, - "yvr": 29058, - "yw": 33741, - "yx": 35624, - "yxe": 34240, - "yy": 3433, - "yy": 8321, - "yya": 37444, - "yyc": 27542, - "yyc": 11741, - "yyj": 26203, - "yyy": 11514, - "yyyy": 38749, - "yyyy": 16955, - "yyyyy": 26089, - "yyyyyy": 47055, - "yz": 37579, - "yz": 46451, - "yü": 48232, - "z": 89, - "z": 345, - "za": 3710, - "za": 2186, - "zab": 22982, - "zable": 37002, - "zac": 25501, - "zac": 19159, - "zach": 13401, - "zach": 11815, - "zachary": 32401, - "zack": 30567, - "zack": 19120, - "zad": 47314, - "zad": 27838, - "zada": 34889, - "zaf": 21837, - "zafar": 46668, - "zag": 26091, - "zag": 29346, - "zagre": 34107, - "zagreb": 35355, - "zah": 23258, - "zah": 43297, - "zaha": 44408, - "zai": 44329, - "zai": 27065, - "zain": 34400, - "zain": 45366, - "zak": 13050, - "zak": 20738, - "zaki": 48091, - "zal": 20552, - "zal": 33298, - "zam": 7218, - "zam": 41578, - "zambia": 21671, - "zan": 7284, - "zan": 17835, - "zana": 39643, - "zand": 37712, - "zane": 34786, - "zani": 45373, - "zania": 15059, - "zano": 27637, - "zanzi": 47835, - "zap": 24134, - "zapp": 33504, - "zappa": 46592, - "zar": 5458, - "zar": 16392, - "zara": 24454, - "zardari": 20174, - "zas": 48261, - "zation": 3683, - "zawa": 49281, - "zay": 7102, - "zayed": 36726, - "zayn": 22292, - "zayn": 10308, - "zaynmalik": 25278, - "zazzle": 47857, - "ze": 2254, - "ze": 1298, - "zeal": 44951, - "zealand": 7618, - "zeb": 46518, - "zebra": 47394, - "zebra": 22548, - "zed": 21047, - "zed": 1993, - "zedd": 45608, - "zee": 25468, - "zee": 14080, - "zeiss": 47460, - "zeit": 37898, - "zeit": 37906, - "zek": 40829, - "zeke": 47065, - "zel": 10389, - "zel": 12027, - "zelda": 17138, - "zell": 39526, - "zen": 8518, - "zen": 3928, - "zend": 33478, - "zendaya": 35956, - "zenith": 44740, - "zens": 15298, - "zeph": 40726, - "zepp": 22977, - "zeppelin": 25408, - "zer": 6118, - "zer": 3716, - "zero": 14867, - "zero": 5848, - "zers": 9547, - "zes": 4073, - "zest": 37709, - "zet": 34098, - "zeta": 30954, - "zetta": 45993, - "zeus": 32800, - "zey": 46647, - "zh": 33389, - "zh": 41621, - "zhang": 21127, - "zhen": 37374, - "zhen": 33236, - "zhou": 17384, - "zhu": 42049, - "zi": 2651, - "zi": 5819, - "zia": 13764, - "zid": 30235, - "zidane": 34643, - "zie": 29316, - "zie": 8956, - "zieg": 40157, - "ziegler": 46812, - "ziel": 32151, - "zier": 15399, - "zies": 38001, - "ziest": 28159, - "zig": 15950, - "zig": 21345, - "ziggy": 39274, - "zik": 30125, - "zika": 28783, - "zil": 25039, - "zil": 33190, - "zilla": 17879, - "zim": 8112, - "zim": 22577, - "zimbab": 12373, - "zimbabwe": 45668, - "zimbabwe": 13583, - "zimmer": 27452, - "zimmer": 35211, - "zimmerman": 38231, - "zin": 14085, - "zin": 21278, - "zinc": 27458, - "zind": 26206, - "zindabad": 42208, - "zine": 16100, - "zing": 25062, - "zing": 3152, - "zinger": 42027, - "zio": 13906, - "zion": 31763, - "zion": 20963, - "zione": 36161, - "zionist": 33078, - "zip": 26479, - "zip": 16083, - "zipper": 33670, - "zir": 31892, - "zl": 39168, - "zlat": 32489, - "zlatan": 37877, - "zm": 43691, - "zman": 24248, - "zn": 18004, - "zo": 4397, - "zo": 5056, - "zodi": 22660, - "zodiac": 27753, - "zoe": 43114, - "zoe": 16662, - "zoey": 39871, - "zog": 40680, - "zol": 25939, - "zola": 46105, - "zom": 6623, - "zombi": 29452, - "zombie": 11819, - "zombies": 46702, - "zombies": 16517, - "zon": 15109, - "zon": 14618, - "zona": 42134, - "zone": 37197, - "zone": 4442, - "zones": 17247, - "zoning": 36790, - "zoo": 8182, - "zoo": 7147, - "zoom": 32671, - "zoom": 13909, - "zor": 17605, - "zou": 38072, - "zr": 39275, - "zs": 35248, - "zshq": 41442, - "zt": 42629, - "zu": 4091, - "zu": 14184, - "zucchini": 29873, - "zucker": 26890, - "zuckerberg": 30066, - "zul": 31146, - "zulu": 32821, - "zum": 35094, - "zuma": 23326, - "zumba": 32976, - "zun": 42440, - "zur": 17128, - "zurich": 21288, - "zw": 42188, - "zx": 31604, - "zy": 6615, - "zy": 2303, - "zyk": 39112, - "zyme": 36472, - "zyn": 45287, - "zz": 1544, - "zz": 4943, - "zza": 14642, - "zzi": 13974, - "zzie": 18635, - "zzle": 7873, - "zzled": 39075, - "zzo": 14036, - "zzy": 21275, - "zzy": 8353, - "zzz": 20055, - "zzzz": 35742, - "zzzz": 43103, - "{": 90, - "{": 346, - "{}": 39025, - "|": 91, - "|#": 31183, - "|": 347, - "|@": 41677, - "||": 7566, - "}": 92, - "}": 348, - "~": 93, - "~!": 31181, - "~\"": 48442, - "~": 349, - "~>": 43291, - "~@": 44247, - "~~": 11461, - "~~": 16671, - "~~~": 32472, - "~~~~": 28295, - "¡": 94, - "¡": 350, - "¡ï¸ı": 15113, - "¡ï¸ı": 4174, - "¡ľ": 43991, - "¢": 95, - "¢": 351, - "£": 96, - "£": 352, - "£ï¸ı": 18446, - "¤": 97, - "¤": 353, - "¥": 98, - "¥": 354, - "¦": 99, - "¦": 355, - "¦Ī": 47615, - "§": 100, - "§": 356, - "¨": 101, - "¨": 357, - "©": 102, - "©": 358, - "ª": 103, - "ª": 359, - "«": 104, - "«": 360, - "¬": 105, - "¬": 361, - "¬ë": 31736, - "®": 106, - "®": 362, - "¯": 107, - "¯": 363, - "°": 108, - "°:": 21787, - "°": 364, - "°ï¸ı": 34777, - "±": 109, - "±": 365, - "±ï¸ı": 41020, - "²": 110, - "²": 366, - "³": 111, - "³": 367, - "³ï¸ı": 22195, - "³ï¸ı": 24706, - "´": 112, - "´": 368, - "µ": 113, - "µ": 369, - "µï¸ı": 27605, - "¶": 114, - "¶": 370, - "·": 115, - "·": 371, - "¸": 116, - "¸": 372, - "¸ë": 19693, - "¹": 117, - "¹": 373, - "º": 118, - "º": 374, - "»": 119, - "»": 375, - "¼": 120, - "¼": 376, - "½": 121, - "½": 377, - "½ï¸ı": 31333, - "¾": 122, - "¾": 378, - "¿": 123, - "¿": 379, - "À": 124, - "À": 380, - "Á": 125, - "Á": 381, - "Â": 126, - "Â": 382, - "¡": 26868, - "¡": 10830, - "¡¡": 45505, - "¢": 41359, - "£": 31117, - "£": 1950, - "Â¥": 20199, - "¨": 19957, - "¨¨": 23089, - "¨¨¨¨": 41223, - "©": 31148, - "©": 5811, - "«": 14434, - "®": 30857, - "®": 8436, - "¯": 38682, - "¯": 43593, - "¯\\": 44096, - "¯\\_(": 45115, - "°": 21305, - "°": 6858, - "²": 41175, - "´": 30560, - "´": 12559, - "·": 14844, - "º": 28059, - "»": 31642, - "»": 7599, - "½": 33613, - "¿": 44559, - "¿": 17133, - "ÂŃ": 22618, - "Ã": 127, - "Ã": 383, - "á": 7261, - "á": 22229, - "án": 38340, - "án": 21385, - "â": 26170, - "ã": 19339, - "ão": 21141, - "ä": 10896, - "ä": 47276, - "än": 42787, - "Ã¥": 23176, - "æ": 42495, - "ç": 10067, - "ça": 22711, - "è": 12138, - "è": 37761, - "ère": 30272, - "ès": 41210, - "é": 3459, - "é": 4166, - "éal": 45251, - "ée": 13489, - "és": 20507, - "ê": 27515, - "ë": 29526, - "ë": 40520, - "î": 48704, - "ï": 35689, - "ñ": 6445, - "ña": 17753, - "ño": 16574, - "ños": 40104, - "ó": 8891, - "ó": 27733, - "ón": 13926, - "ô": 26815, - "ö": 7255, - "ö": 37423, - "ör": 31762, - "ø": 17483, - "ø": 45598, - "ú": 17963, - "ú": 36019, - "ü": 6522, - "ü": 47177, - "ür": 26132, - "ÃĹ": 16165, - "Ãł": 36149, - "Ãł": 21259, - "ÃŃ": 8366, - "ÃŃ": 23928, - "ÃŃa": 16609, - "ÃŃn": 33623, - "Ä": 128, - "Ä": 384, - "ı": 18562, - "ı": 41901, - "Äģ": 23134, - "Äĩ": 31719, - "Äį": 45414, - "ÄŁ": 26540, - "Å": 129, - "Å": 385, - "Å¡": 35621, - "ÅĤ": 40419, - "Åį": 41267, - "ÅŁ": 21254, - "ÅŁ": 40706, - "Æ": 130, - "Æ": 386, - "Ç": 131, - "Ç": 387, - "È": 132, - "È": 388, - "É": 133, - "É": 389, - "Ê": 134, - "Ê": 390, - "Ë": 135, - "Ë": 391, - "Ì": 136, - "Ì": 392, - "Ìĩ": 16384, - "Í": 137, - "Í": 393, - "Î": 138, - "Î": 394, - "Ï": 139, - "Ï": 395, - "Ïī": 38065, - "Ð": 140, - "Ð": 396, - "а": 16912, - "а": 27080, - "аÐ": 31090, - "в": 39813, - "е": 22176, - "и": 16701, - "иÐ": 29503, - "к": 27152, - "л": 47611, - "м": 38018, - "н": 22705, - "о": 13506, - "о": 29386, - "оÐ": 20978, - "од": 38416, - "оÑĤ": 28599, - "п": 26302, - "пÑĢи": 46321, - "пÑĢиÑĢода": 48150, - "Ñ": 141, - "Ñ": 397, - "ÑĢ": 16370, - "ÑĢи": 41092, - "ÑĢод": 47039, - "ÑĢода": 47929, - "Ñģ": 23669, - "ÑĤ": 17875, - "Ñĥ": 39729, - "ÑĦ": 27993, - "ÑĦоÑĤ": 35155, - "ÑĦоÑĤо": 38981, - "Ñĭ": 45001, - "Ò": 142, - "Ò": 398, - "Ó": 143, - "Ó": 399, - "Ô": 144, - "Ô": 400, - "Õ": 145, - "Õ": 401, - "Ö": 146, - "Ö": 402, - "×": 147, - "×": 403, - "Ø": 148, - "Ø": 404, - "ا": 6042, - "ا": 22625, - "اØ": 13189, - "ار": 40137, - "اÙ": 8453, - "اÙĦ": 12973, - "اÙħ": 47626, - "اÙĨ": 42773, - "اÙĨ": 33200, - "ب": 16378, - "ب": 35330, - "Ø©": 20915, - "ت": 18197, - "ت": 44333, - "ج": 26375, - "Ø®": 41495, - "د": 19872, - "د": 35566, - "ر": 10948, - "ر": 24933, - "رÙĬ": 43273, - "ز": 36169, - "س": 17856, - "Ø´": 28770, - "ص": 27271, - "Ø·": 32050, - "ع": 18843, - "غ": 48510, - "ØŃ": 25722, - "Ù": 149, - "Ù": 405, - "Ùģ": 24112, - "ÙĤ": 27585, - "Ùĥ": 33499, - "ÙĦ": 14251, - "ÙĦ": 37899, - "Ùħ": 12986, - "Ùħ": 29945, - "ÙĨ": 16655, - "ÙĨ": 25386, - "Ùĩ": 34274, - "Ùĩ": 31343, - "ÙĪ": 12203, - "ÙĪ": 38310, - "ÙĪر": 48242, - "ÙĬ": 12046, - "ÙĬ": 23853, - "Ú": 150, - "Ú": 406, - "Ú©": 26475, - "Û": 151, - "Û": 407, - "Ûģ": 40480, - "ÛĮ": 21452, - "ÛĮ": 32703, - "Ü": 152, - "Ü": 408, - "Ý": 153, - "Ý": 409, - "Þ": 154, - "Þ": 410, - "ß": 155, - "ß": 411, - "à": 156, - "à": 412, - "à¤": 3124, - "त": 27263, - "द": 29552, - "न": 26090, - "प": 44149, - "ब": 43599, - "म": 48254, - "म": 26774, - "य": 37299, - "र": 39136, - "र": 19052, - "ल": 30881, - "व": 39545, - "श": 43181, - "स": 28505, - "ह": 29446, - "ा": 37973, - "ा": 13343, - "ि": 26721, - "à¤Ĥ": 30833, - "à¤ķ": 22067, - "à¤Ĺ": 42598, - "à¤ľ": 39561, - "à¥": 7410, - "à¥Ģ": 45791, - "à¥Ģ": 25751, - "à¥ģ": 39653, - "à¥ĩ": 48612, - "à¥ĩ": 25130, - "à¥ĭ": 34452, - "à¥į": 19389, - "à¦": 11322, - "া": 41532, - "à§": 26339, - "à¨": 15741, - "à©": 32086, - "àª": 22990, - "à«": 48347, - "à¬": 32791, - "à®": 6022, - "த": 34691, - "ன": 43394, - "ப": 47388, - "à®®": 35463, - "à®°": 43270, - "ல": 47705, - "ா": 32831, - "ி": 27126, - "à®ķ": 36168, - "à®Ł": 45263, - "à¯": 11259, - "à¯ģ": 33115, - "à¯į": 16631, - "à°": 12100, - "à±": 23550, - "à±į": 46098, - "à²": 9992, - "ಿ": 47797, - "à³": 20745, - "à³į": 36148, - "à´": 15418, - "àµ": 27392, - "àµį": 45266, - "à¶": 29881, - "à·": 30766, - "à¸": 1777, - "ม": 26137, - "ม": 29570, - "ย": 27241, - "ย": 33091, - "ร": 32225, - "ร": 27331, - "ล": 34696, - "ล": 32746, - "ว": 26990, - "ว": 30245, - "ส": 37883, - "ส": 35737, - "ห": 33064, - "ะ": 43920, - "ะ": 49234, - "ั": 14978, - "า": 11529, - "า": 38476, - "าà¸": 12330, - "ิ": 17092, - "ี": 22421, - "ี": 20278, - "ีà¹Ī": 31511, - "ื": 47991, - "ุ": 30524, - "ู": 35273, - "à¸ģ": 30767, - "à¸ģà¸": 31474, - "à¸Ħ": 31757, - "à¸Ħà¸": 39628, - "à¸ĩ": 24603, - "à¸ĩ": 33382, - "à¸Ī": 47608, - "à¸Ĭ": 46324, - "à¸Ķ": 31107, - "à¸Ķ": 38825, - "à¸ķ": 40273, - "à¸ķ": 41108, - "à¸Ĺ": 36171, - "à¸Ļ": 17474, - "à¸Ļ": 17639, - "à¸Ļà¸": 23121, - "à¸ļ": 33859, - "à¸ļ": 39616, - "à¸ŀ": 48171, - "à¸Ń": 13398, - "à¸Ń": 32818, - "à¸Ńà¸": 14649, - "à¸Ńà¸ĩ": 46622, - "à¹": 4484, - "à¹Ģ": 13729, - "à¹Ģà¸": 14076, - "à¹ģà¸": 23916, - "à¹Ĥ": 33118, - "à¹ĥ": 40962, - "à¹Ħà¸": 31718, - "à¹ĩ": 38699, - "à¹Ī": 11722, - "à¹ī": 13123, - "à¹Į": 28353, - "à¼": 46186, - "à½": 39219, - "á": 157, - "á": 413, - "á´": 19036, - "áµ": 17330, - "áĢ": 45932, - "áĥ": 24829, - "áĥ¦": 32193, - "â": 158, - "â": 414, - "â¤": 25087, - "⤵ï¸ı": 36026, - "â¬": 7930, - "â¬ħï¸ı": 42111, - "â¬Ĩ": 27718, - "â¬Ĩï¸ı": 32798, - "â¬ĩ": 10917, - "â¬ĩ": 39370, - "â¬ĩï¸ı": 25621, - "â¬ĩï¸ı": 13984, - "â¬ĩï¸ıâ¬ĩï¸ı": 40159, - "âĢ": 728, - "âĢ¢": 9485, - "âĢ¢": 2701, - "âĢ¢âĢ¢": 15006, - "âĢ¢âĢ¢": 47575, - "âĢ¢âĢ¢âĢ¢âĢ¢": 27502, - "âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢": 48630, - "âĢ¦": 7095, - "âĢ¦\"": 20215, - "âĢ¦..": 47779, - "âĢ¦.": 18615, - "âĢ¦/": 29842, - "âĢ¦": 959, - "âĢ¦âĢ¦": 40066, - "âĢ²": 32633, - "âĢ³": 25061, - "âĢ¼": 6578, - "âĢ¼ï¸ı": 15622, - "âĢ¼ï¸ı": 8310, - "âĢ¼ï¸ıâĢ¼ï¸ı": 33218, - "âĢĭ": 17086, - "âĢĭ": 9844, - "âĢį": 4244, - "âĢįâĻ": 5177, - "âĢįâĻĢï¸ı": 18897, - "âĢįâĻĢï¸ı": 9605, - "âĢįâĻĤ": 8832, - "âĢįâĻĤï¸ı": 21779, - "âĢįâĻĤï¸ı": 10613, - "âĢİ": 31001, - "âĢIJ": 34512, - "âĢĵ": 21070, - "âĢĵ": 1224, - "âĢĶ": 6718, - "âĢĶ": 2005, - "âĢĶ>": 26341, - "âĢĶ@": 28470, - "âĢĶâĢĶ": 10037, - "âĢĶâĢĶ": 44800, - "âĢĶâĢĶâĢĶâĢĶ": 17797, - "âĢĶâĢĶâĢĶâĢĶâĢĶâĢĶâĢĶâĢĶ": 34432, - "âĢķ": 14236, - "âģ": 1667, - "âģ£": 31089, - "âģ£": 16845, - "âģ¦": 2773, - "âģ¦": 34855, - "âģ¦@": 2859, - "âģ¦âģ¦@": 27783, - "âģ©": 20097, - "âģ©,": 48749, - "âģ©.": 35777, - "âģ©": 2918, - "âģīï¸ı": 46534, - "âģł": 23881, - "âģł": 13503, - "âģłâģł": 33488, - "âĤ": 5227, - "âĤ¬": 34919, - "âĤ¬": 6309, - "âĤ¹": 21777, - "âĥ": 2805, - "âĥ£": 11250, - "âĥ£": 3076, - "âĥ£@": 48291, - "âĦ": 8604, - "âĦ¢": 29438, - "âĦ¢": 11675, - "âĦ¹": 45462, - "âĨ": 6059, - "âĨĴ": 7481, - "âĨĵ": 41603, - "âĩ": 27228, - "âĪ": 17788, - "âī": 22684, - "âīĪ": 45451, - "âĮ": 17848, - "âĮļ": 31301, - "âĮļï¸ı": 35931, - "âı": 7960, - "âı©": 40847, - "âı°": 12714, - "âı±": 33149, - "âı³": 47617, - "âĵ": 27400, - "âĶ": 13389, - "âĶĢ": 45139, - "âĶģ": 42022, - "âķ": 17027, - "âķIJ": 48039, - "âĸ": 4168, - "âĸª": 21203, - "âĸª": 36628, - "âĸªï¸ı": 24974, - "âĸ«": 39478, - "âĸ¬": 33798, - "âĸ¬âĸ¬": 36975, - "âĸ¶": 12509, - "âĸ¶": 21126, - "âĸ¶ï¸ı": 14442, - "âĸº": 46061, - "âĸº": 12086, - "âĸ½": 45634, - "âĸł": 36791, - "âĹ": 9323, - "âĹĨ": 48961, - "âĹı": 26999, - "âĺ": 1741, - "âĺ®": 45851, - "âĺ¹": 28811, - "âĺ¹ï¸ı": 39605, - "âĺº": 5010, - "âĺº": 8703, - "âĺºâĺº": 46051, - "âĺºï¸ı": 11506, - "âĺºï¸ı": 7779, - "âĺºï¸ıâĺºï¸ı": 41315, - "âĺ¼": 38877, - "âĺĢ": 32146, - "âĺĢ": 22242, - "âĺĢï¸ı": 12817, - "âĺĢï¸ı": 8219, - "âĺĢï¸ıâĺĢï¸ı": 44550, - "âĺģ": 25195, - "âĺģï¸ı": 35197, - "âĺĥ": 38972, - "âĺħ": 9339, - "âĺħ": 10643, - "âĺħâĺħ": 12681, - "âĺħâĺħ": 36644, - "âĺħâĺħâĺħâĺħ": 34431, - "âĺħâĺħâĺħâĺħ": 44034, - "âĺħâĺħâĺħâĺħâĺħ": 45984, - "âĺĨ": 23941, - "âĺĨ": 13439, - "âĺİ": 24045, - "âĺİ": 45493, - "âĺİï¸ı": 27219, - "âĺij": 20983, - "âĺij": 42300, - "âĺijï¸ı": 22291, - "âĺĶï¸ı": 31238, - "âĺķ": 11454, - "âĺķ": 26561, - "âĺķï¸ı": 25839, - "âĺķï¸ı": 15499, - "âĺĺ": 23483, - "âĺĺï¸ı": 31454, - "âĺĿ": 21982, - "âĺĿï¸ı": 38891, - "âĺŀ": 31255, - "âĺłï¸ı": 34672, - "âĻ": 1548, - "âĻ¡": 11091, - "âĻ¡": 6251, - "âĻ¡âĻ¡": 22360, - "âĻ¡âĻ¡": 34267, - "âĻ¡âĻ¡âĻ¡": 36611, - "âĻ¤": 47435, - "âĻ¥": 4622, - "âĻ¥": 3405, - "âĻ¥âĻ¥": 12975, - "âĻ¥âĻ¥": 19604, - "âĻ¥âĻ¥âĻ¥": 23255, - "âĻ¥âĻ¥âĻ¥âĻ¥": 49020, - "âĻ¥ï¸ı": 17774, - "âĻ¥ï¸ı": 10561, - "âĻ¥ï¸ıâĻ¥ï¸ı": 40309, - "âĻ¦": 32376, - "âĻ¦": 47547, - "âĻ©": 30339, - "âĻ©âĻ«": 31636, - "âĻª": 27364, - "âĻª": 12382, - "âĻ«": 39217, - "âĻ«": 10814, - "âĻ¬": 24753, - "âĻ»": 39611, - "âĻ»ï¸ı": 46075, - "âļ": 2234, - "âļ¡": 40098, - "âļ¡": 20712, - "âļ¡ï¸ı": 19500, - "âļ¡ï¸ı": 11605, - "âļ¡ï¸ıâļ¡ï¸ı": 45922, - "âļª": 11922, - "âļª": 36373, - "âļªï¸ı": 22251, - "âļªï¸ı": 17885, - "âļ«": 15374, - "âļ«ï¸ı": 26529, - "âļ«ï¸ı": 24649, - "âļ½": 4867, - "âļ½": 13173, - "âļ½âļ½": 43259, - "âļ½ï¸ı": 11342, - "âļ½ï¸ı": 6768, - "âļ½ï¸ıâļ½ï¸ı": 30358, - "âļ½ï¸ıâļ½ï¸ı": 44148, - "âļ¾": 11314, - "âļ¾": 34717, - "âļ¾ï¸ı": 24727, - "âļ¾ï¸ı": 14858, - "âļĵ": 23522, - "âļĵï¸ı": 35299, - "âļĶï¸ı": 29361, - "âļľ": 47491, - "âļł": 39203, - "âļłï¸ı": 40966, - "âļłï¸ı": 15596, - "âĽ": 7956, - "âĽ³ï¸ı": 29204, - "âĽĦ": 30668, - "âĽĦï¸ı": 45465, - "âľ": 1508, - "⾨": 7181, - "⾨": 3531, - "⾨⾨": 35174, - "⾨⾨": 21985, - "⾨⾨⾨": 39424, - "âľĤ": 38602, - "âľħ": 29544, - "âľħ": 5564, - "âľĪ": 10682, - "âľĪ": 30712, - "âľĪï¸ı": 26176, - "âľĪï¸ı": 13413, - "âľĬ": 12392, - "âľĬ": 17819, - "âľĬðŁı½": 48547, - "âľĬðŁı¾": 41185, - "âľĭ": 39383, - "âľĭ": 30239, - "âľĮ": 6419, - "âľĮ": 12656, - "âľĮï¸ı": 21906, - "âľĮï¸ı": 12239, - "âľĮðŁı»": 30538, - "âľĮðŁı¼": 30588, - "âľį": 20872, - "âľįï¸ı": 30888, - "âľı": 32574, - "âľıï¸ı": 40724, - "âľĵ": 36700, - "âľĶ": 47200, - "âľĶ": 13749, - "âľĶï¸ı": 40544, - "âľĶï¸ı": 9191, - "âľĸï¸ı": 44133, - "âľĿ": 42220, - "âĿ": 1045, - "âĿ£": 37007, - "âĿ£": 25623, - "âĿ£ï¸ı": 25240, - "âĿ¤": 1266, - "âĿ¤": 2720, - "âĿ¤âĿ¤": 9033, - "âĿ¤âĿ¤": 14058, - "âĿ¤âĿ¤âĿ¤": 16708, - "âĿ¤âĿ¤âĿ¤âĿ¤": 37918, - "âĿ¤âĿ¤âĿ¤âĿ¤": 43970, - "âĿ¤ï¸ı": 2626, - "âĿ¤ï¸ı#": 30281, - "âĿ¤ï¸ı.": 45326, - "âĿ¤ï¸ı": 1752, - "âĿ¤ï¸ı@": 31187, - "âĿ¤ï¸ıâĿ¤ï¸ı": 6713, - "âĿ¤ï¸ıâĿ¤ï¸ı": 10363, - "âĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ı": 12282, - "âĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ı": 39167, - "âĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ı": 29880, - "âĿ¤ï¸ıðŁĴĻ": 37380, - "âĿ¤ï¸ıðŁĺį": 37272, - "âĿ¤ï¸ıðŁĺĺ": 41800, - "âĿ¤ðŁĺį": 49120, - "âĿ¥": 36914, - "âĿĦ": 8501, - "âĿĦ": 30494, - "âĿĦï¸ı": 16834, - "âĿĦï¸ı": 12402, - "âĿĦï¸ıâĿĦï¸ı": 41626, - "âĿĮ": 44485, - "âĿĮ": 17975, - "âĿĵ": 29791, - "âĿĹ": 12868, - "âĿĹ": 29079, - "âĿĹï¸ı": 28642, - "âĿĹï¸ı": 17391, - "âĿĿ": 46951, - "âŀ": 3257, - "âŀ¡": 12854, - "âŀ¡ï¸ı": 31860, - "âŀ¡ï¸ı": 4956, - "âŀ¤": 18651, - "âŀķ": 46526, - "âŀĸ": 21327, - "âŀĸ": 34902, - "âŀĸâŀĸ": 23316, - "âŀĸâŀĸâŀĸâŀĸ": 40401, - "âŀľ": 23775, - "âł": 5689, - "âłĢ": 9691, - "âłĢ": 8621, - "âłĢâłĢ": 11466, - "âłĢâłĢ": 39092, - "âłĢâłĢâłĢâłĢ": 20976, - "âłĢâłĢâłĢâłĢâłĢâłĢâłĢâłĢ": 46063, - "âŃ": 5527, - "âŃIJ": 6410, - "âŃIJ": 19012, - "âŃIJâŃIJ": 32663, - "âŃIJï¸ı": 12427, - "âŃIJï¸ı": 10251, - "âŃIJï¸ıâŃIJï¸ı": 18640, - "âŃIJï¸ıâŃIJï¸ıâŃIJï¸ı": 40746, - "ã": 159, - "ã": 415, - "ãĢ": 4092, - "ãĢģ": 45262, - "ãĢĤ": 38060, - "ãĢĤ": 38000, - "ãĢĬ": 39920, - "ãĢĭ": 32898, - "ãĢĮ": 18116, - "ãĢį": 19149, - "ãĢİ": 26947, - "ãĢı": 30293, - "ãĢIJ": 12534, - "ãĢij": 12990, - "ãĢľ": 39581, - "ãģ": 4813, - "ãģ¦": 48029, - "ãģ¨": 34671, - "ãģ¨ç¹ĭãģ": 47310, - "ãģ¨ç¹ĭãģĮãĤĬãģŁãģĦ": 48290, - "ãģª": 29104, - "ãģ®": 21575, - "ãģ·": 44130, - "ãģĦ": 33523, - "ãģĦ": 38850, - "ãģĨ": 44235, - "ãģį": 42184, - "ãĤ": 3909, - "ãĤ¢": 26560, - "ãĤ¤": 19319, - "ãĤ¤ãĥ": 36294, - "ãĤ«": 37367, - "ãĤ¯": 31574, - "ãĤ·": 37665, - "ãĤ¸": 32234, - "ãĤ¸ãĥ": 43491, - "ãĤ¹": 22694, - "ãĤ¹": 39220, - "ãĤ¹ãĥ": 32421, - "ãĤ¿": 34941, - "ãĤĬãģ": 40500, - "ãĤĮ": 45211, - "ãĤŃ": 47121, - "ãĥ": 2429, - "ãĥ©": 23007, - "ãĥª": 32115, - "ãĥ«": 33257, - "ãĥ¬": 32965, - "ãĥ³": 17671, - "ãĥ³": 26875, - "ãĥ³ãĤ": 45105, - "ãĥ³ãĥ": 25914, - "ãĥ»": 8415, - "ãĥ»": 11158, - "ãĥ»ãĥ»": 13949, - "ãĥ»ãĥ»ãĥ»": 14234, - "ãĥ¼": 13457, - "ãĥ¼": 30391, - "ãĥ¼ãĥ": 18584, - "ãĥĥ": 28902, - "ãĥĦ": 32173, - "ãĥĪ": 42384, - "ãĥİ": 39967, - "ãĥķãĤ": 33371, - "ãĥŀ": 48924, - "ãĥŃ": 35827, - "ãħ": 5947, - "ãħ¤": 21096, - "ãħ¤ãħ¤": 22583, - "ãħ¤ãħ¤ãħ¤ãħ¤": 39329, - "ãħĭ": 13052, - "ãħĭ": 25108, - "ãħĭãħĭ": 16604, - "ãħĭãħĭ": 42581, - "ãħĭãħĭãħĭ": 46407, - "ãħĭãħĭãħĭãħĭ": 39362, - "ãħł": 16089, - "ãħł": 25781, - "ãħłãħł": 22021, - "ãħłãħł": 34398, - "ãħłãħłãħłãħł": 47028, - "ä": 160, - "ä": 416, - "ä¸": 19759, - "ä¹": 41854, - "äº": 21078, - "人": 36839, - "ä»": 37743, - "ä½": 47466, - "å": 161, - "å": 417, - "å¤": 23170, - "å¥": 29290, - "å®": 27047, - "å°": 34720, - "å±": 46096, - "å¸": 42021, - "å¹": 38780, - "åħ": 34314, - "åĨ": 27972, - "åĨĻ": 44653, - "åĪ": 42748, - "åĭ": 47505, - "åı": 34517, - "åIJ": 41673, - "åĽ": 39027, - "åľ": 37746, - "åŃ": 35751, - "æ": 162, - "æ": 418, - "æĸ": 29032, - "æĹ": 22265, - "æĹ¥": 39121, - "æĹ¥": 37156, - "æĺ": 42891, - "æĻ": 48132, - "æľ": 19277, - "æľ¬": 44353, - "æĿ": 27667, - "æĿ±": 48338, - "ç": 163, - "ç": 419, - "ç¥": 26369, - "ç¥Ń": 42557, - "çµ": 37810, - "ç¹": 43431, - "ç¹ĭãģ": 45930, - "çĶ": 20211, - "çĶŁ": 33375, - "çľ": 33440, - "羣": 41570, - "è": 164, - "è": 420, - "èª": 34002, - "èªķ": 41293, - "é": 165, - "é": 421, - "éģ": 44854, - "éĩ": 38283, - "ê": 166, - "ê": 422, - "ê°": 21122, - "ê°ĵ": 41076, - "ê°ĵìĦ¸ë¸IJ": 41689, - "ê°ķ": 45758, - "ê²": 35555, - "ê³": 36216, - "êµ": 31871, - "ê·": 42680, - "ê¸": 32495, - "ê¹": 24531, - "ê¹Ģ": 25203, - "ë": 167, - "ë": 423, - "ë¦": 24621, - "리": 47649, - "ë§": 28024, - "ë§Ī": 40027, - "ëª": 36311, - "ë¯": 19528, - "민": 34442, - "민": 44632, - "ë°": 15810, - "ë°©": 23273, - "ë°©íĥ": 25081, - "ë°©íĥĦ": 25641, - "ë°©íĥĦìĨĮëħĦëĭ": 26068, - "ë°©íĥĦìĨĮëħĦëĭ¨": 27129, - "ë°ķ": 40988, - "ë²": 48267, - "ë³": 44693, - "ë¹": 24193, - "ëĤ": 27252, - "ëĤĺ": 48484, - "ëĭ": 13094, - "ëĭ¤": 46680, - "ëĭĪ": 33708, - "ëį": 45543, - "ëı": 31972, - "ëĵ": 30850, - "ëĿ": 44317, - "ì": 168, - "ì": 424, - "ì£": 39856, - "주": 45161, - "ì¤": 31153, - "ì§": 16279, - "ì§Ģ": 28836, - "ì§Ħ": 38890, - "ì°": 40742, - "ì¶": 42476, - "ì¶ķ": 46403, - "ì¶ķíķĺ": 47866, - "ì¹": 45088, - "ìĤ": 31061, - "ìĥ": 30587, - "ìĥĿ": 47858, - "ìĦ": 15074, - "ìĦ¸ë": 29254, - "ìĦ¸ë¸": 29658, - "ìĦ¸ë¸IJ": 41415, - "ìĨ": 15115, - "ìĨĮë": 20515, - "ìĨĮëħ": 21391, - "ìĨĮëħĦëĭ": 25887, - "ìĪ": 32757, - "ìĬ": 12125, - "ìĬ¤": 20305, - "ìĬ¤": 23829, - "ìĭ": 23924, - "ìķ": 16071, - "ìķĦ": 23233, - "ìĸ": 31625, - "ìĹ": 13252, - "ìĹIJ": 37622, - "ìĹij": 31036, - "ìĹijìĨ": 42763, - "ìĹijìĨĮ": 45606, - "ìĺ": 21144, - "ìĻ": 39405, - "ìļ": 18541, - "ìļ°": 38415, - "ìļ°": 49344, - "ìĽ": 22543, - "ìĽIJ": 36495, - "ìľ": 20909, - "ìľł": 42890, - "ìĿ": 8276, - "ìĿ´": 12286, - "ìĿ´": 34746, - "ìĿ´ì": 37590, - "ìĿ¼": 43406, - "ìŀ": 20849, - "ìł": 20580, - "ìłķ": 34725, - "í": 169, - "í": 425, - "íģ": 35641, - "íģ¬": 45832, - "íĤ": 43565, - "íĥ": 15012, - "íĥĢ": 41126, - "íĥľ": 37663, - "íĬ": 23215, - "íĬ¸": 48974, - "íĬ¸": 39820, - "íĭ": 34350, - "íĶ": 29450, - "íķ": 15197, - "íķ´": 35286, - "íķĺ": 33992, - "íĺ": 15962, - "íĺ¸": 39657, - "íĺĦ": 34645, - "íĻ": 31882, - "î": 170, - "î": 426, - "îĢ": 36288, - "îĦ": 35368, - "îĮ": 41006, - "îIJ": 16929, - "îIJĴ": 40100, - "ï": 171, - "ï": 427, - "ï¸": 842, - "ï¸İ": 24029, - "ï¸ı": 1392, - "ï¸ı#": 46997, - "ï¸ı:": 32604, - "ï¸ı": 1001, - "ï¸ı@": 34600, - "ï¸ıâĥ£": 17394, - "ï¸ıâĥ£-": 40376, - "ï¸ıâĥ£": 4603, - "ï¿": 27850, - "�": 47356, - "�": 39802, - "ð": 172, - "ð": 428, - "ðĿ": 6874, - "ðĿIJ": 15889, - "ðĿij": 43794, - "ðĿĴ": 43387, - "ðĿĵ": 47110, - "ðĿĹ": 18865, - "ðĿĺ": 26109, - "ðĿĻ": 29415, - "ðŁ": 558, - "ðŁ¤": 1793, - "ðŁ¤£": 9665, - "ðŁ¤£": 9909, - "ðŁ¤£ðŁ¤£": 16430, - "ðŁ¤£ðŁ¤£": 31009, - "ðŁ¤£ðŁ¤£ðŁ¤£": 32262, - "ðŁ¤¤": 39550, - "ðŁ¤¤": 26759, - "ðŁ¤¦": 17186, - "ðŁ¤§": 40983, - "ðŁ¤©": 27351, - "ðŁ¤©": 16074, - "ðŁ¤ª": 44230, - "ðŁ¤ª": 24920, - "ðŁ¤«": 47671, - "ðŁ¤¯": 37595, - "ðŁ¤·": 13185, - "ðŁ¤·ðŁı»âĢįâĻĢï¸ı": 46770, - "ðŁ¤ij": 34801, - "ðŁ¤ĵ": 36580, - "ðŁ¤ĵ": 18928, - "ðŁ¤Ķ": 12706, - "ðŁ¤Ķ": 6497, - "ðŁ¤ĶðŁ¤Ķ": 28490, - "ðŁ¤ĶðŁ¤ĶðŁ¤Ķ": 43361, - "ðŁ¤ĸ": 46146, - "ðŁ¤Ĺ": 16646, - "ðŁ¤Ĺ": 10465, - "ðŁ¤ĹðŁ¤Ĺ": 44321, - "ðŁ¤ĺ": 10623, - "ðŁ¤ĺ": 17288, - "ðŁ¤ĺðŁı»": 46449, - "ðŁ¤ĺðŁı»": 30891, - "ðŁ¤ĺðŁı¼": 31458, - "ðŁ¤ĺðŁı½": 49362, - "ðŁ¤Ļ": 23800, - "ðŁ¤Ļ": 39101, - "ðŁ¤Ŀ": 35242, - "ðŁ¤ŀ": 29463, - "ðŁ¤ŀ": 38597, - "ðŁ¤Ł": 48509, - "ðŁ¤ł": 36737, - "ðŁ¤Ń": 47289, - "ðŁ¥": 4156, - "ðŁ¥°": 29246, - "ðŁ¥°": 17597, - "ðŁ¥³": 45823, - "ðŁ¥³": 28055, - "ðŁ¥º": 43380, - "ðŁ¥º": 36858, - "ðŁ¥Ĥ": 43805, - "ðŁ¥Ĥ": 25212, - "ðŁ¥ĥ": 47790, - "ðŁ¥ĩ": 34372, - "ðŁ¥ĩ": 20069, - "ðŁ¥Ī": 35858, - "ðŁ¥ī": 36782, - "ðŁ¥Ĭ": 29275, - "ðŁ¦": 6040, - "ðŁ¦ģ": 36367, - "ðŁ¦ģ": 26056, - "ðŁ¦ĥ": 40184, - "ðŁ¦Ħ": 37659, - "ðŁ¦ħ": 28800, - "ðŁ¦Ī": 48984, - "ðŁ¦ĭ": 49325, - "ðŁ¦ĭ": 28985, - "ðŁ§": 8792, - "ðŁ§¡": 30996, - "ðŁ§¡": 24578, - "ðŁ§IJ": 33549, - "ðŁħ": 22010, - "ðŁĨ": 9536, - "ðŁĨķ": 34956, - "ðŁĨĺ": 39868, - "ðŁĨļ": 16325, - "ðŁĩ": 1173, - "ðŁĩ¦": 12469, - "ðŁĩ¦": 28565, - "ðŁĩ¦ðŁĩ": 33196, - "ðŁĩ¦ðŁĩ·": 41629, - "ðŁĩ¦ðŁĩº": 25192, - "ðŁĩ§": 14660, - "ðŁĩ§ðŁĩ": 37342, - "ðŁĩ§ðŁĩª": 38794, - "ðŁĩ§ðŁĩ·": 28182, - "ðŁĩ¨": 8889, - "ðŁĩ¨ðŁĩ": 8989, - "ðŁĩ¨ðŁĩ¦": 34324, - "ðŁĩ¨ðŁĩ¦": 16364, - "ðŁĩ¨ðŁĩ³": 36819, - "ðŁĩ¨ðŁĩŃ": 41119, - "ðŁĩ©": 15222, - "ðŁĩ©ðŁĩ": 36350, - "ðŁĩ©ðŁĩª": 21531, - "ðŁĩª": 11428, - "ðŁĩª": 12331, - "ðŁĩªðŁĩ": 13917, - "ðŁĩªðŁĩ¸": 22177, - "ðŁĩªðŁĩº": 34655, - "ðŁĩ«": 12977, - "ðŁĩ«ðŁĩ·": 39109, - "ðŁĩ«ðŁĩ·": 16223, - "ðŁĩ¬": 8129, - "ðŁĩ¬ðŁĩ": 8354, - "ðŁĩ¬ðŁĩ§": 23762, - "ðŁĩ¬ðŁĩ§": 11559, - "ðŁĩ®": 8268, - "ðŁĩ®ðŁĩ": 8347, - "ðŁĩ®ðŁĩª": 34148, - "ðŁĩ®ðŁĩ³": 47299, - "ðŁĩ®ðŁĩ³": 23602, - "ðŁĩ®ðŁĩ¹": 42034, - "ðŁĩ®ðŁĩ¹": 17070, - "ðŁĩ¯": 20090, - "ðŁĩ¯ðŁĩ": 22924, - "ðŁĩ¯ðŁĩµ": 26527, - "ðŁĩ°": 28232, - "ðŁĩ±": 29533, - "ðŁĩ±ðŁĩ": 40941, - "ðŁĩ²": 16411, - "ðŁĩ²ðŁĩ": 17562, - "ðŁĩ²ðŁĩ½": 32073, - "ðŁĩ³": 16645, - "ðŁĩ³ðŁĩ": 17747, - "ðŁĩ³ðŁĩ±": 36747, - "ðŁĩµ": 12127, - "ðŁĩµðŁĩ": 13608, - "ðŁĩµðŁĩ°": 37764, - "ðŁĩµðŁĩ¹": 42621, - "ðŁĩµðŁĩŃ": 42777, - "ðŁĩ·": 16026, - "ðŁĩ·": 9869, - "ðŁĩ·ðŁĩº": 37902, - "ðŁĩ¸": 19447, - "ðŁĩ¸ðŁĩ": 33325, - "ðŁĩ¸ðŁĩª": 39260, - "ðŁĩ¹": 21810, - "ðŁĩ¹ðŁĩ": 36250, - "ðŁĩº": 4054, - "ðŁĩº": 17467, - "ðŁĩºðŁĩ": 4131, - "ðŁĩºðŁĩ¸": 8907, - "ðŁĩºðŁĩ¸": 5688, - "ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸": 18739, - "ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸": 41411, - "ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸": 43357, - "ðŁĩ¿": 25520, - "ðŁĩ¿ðŁĩ¦": 36982, - "ðŁĩŃ": 30370, - "ðŁĮ": 1576, - "ðŁĮ±": 35318, - "ðŁĮ±": 20665, - "ðŁĮ²": 34071, - "ðŁĮ²": 28154, - "ðŁĮ³": 44265, - "ðŁĮ³": 28543, - "ðŁĮ´": 20643, - "ðŁĮ´": 15968, - "ðŁĮµ": 40871, - "ðŁĮ·": 32328, - "ðŁĮ·": 24259, - "ðŁĮ¸": 16314, - "ðŁĮ¸": 10980, - "ðŁĮ¸ðŁĮ¸": 46210, - "ðŁĮ¹": 14990, - "ðŁĮ¹": 10662, - "ðŁĮ¹ðŁĮ¹": 37933, - "ðŁĮº": 27608, - "ðŁĮº": 19829, - "ðŁĮ»": 27196, - "ðŁĮ»": 19772, - "ðŁĮ¼": 36484, - "ðŁĮ¼": 26312, - "ðŁĮ¾": 39796, - "ðŁĮ¿": 27736, - "ðŁĮ¿": 18588, - "ðŁĮĢ": 34348, - "ðŁĮħ": 27547, - "ðŁĮĪ": 23038, - "ðŁĮĪ": 13042, - "ðŁĮĬ": 20465, - "ðŁĮĬ": 14302, - "ðŁĮĮ": 43393, - "ðŁĮį": 34931, - "ðŁĮį": 18641, - "ðŁĮİ": 31125, - "ðŁĮİ": 16969, - "ðŁĮı": 31527, - "ðŁĮIJ": 33071, - "ðŁĮĻ": 42330, - "ðŁĮĻ": 23283, - "ðŁĮļ": 49004, - "ðŁĮļ": 27877, - "ðŁĮŀ": 21152, - "ðŁĮŀ": 12980, - "ðŁĮŁ": 13196, - "ðŁĮŁ": 8542, - "ðŁĮŁðŁĮŁ": 26014, - "ðŁį": 2011, - "ðŁį¦": 47375, - "ðŁį¦": 32032, - "ðŁį©": 38379, - "ðŁįª": 38958, - "ðŁį«": 47994, - "ðŁį«": 33401, - "ðŁį°": 43732, - "ðŁį°": 30051, - "ðŁį³": 37441, - "ðŁį´": 41531, - "ðŁį´": 25338, - "ðŁį·": 24445, - "ðŁį·": 18072, - "ðŁį¸": 43058, - "ðŁį¸": 31217, - "ðŁį¹": 35598, - "ðŁįº": 31081, - "ðŁįº": 21590, - "ðŁį»": 22793, - "ðŁį»": 13167, - "ðŁį¾": 27294, - "ðŁį¾": 21656, - "ðŁįĢ": 22865, - "ðŁįĢ": 15764, - "ðŁįģ": 29837, - "ðŁįģ": 23075, - "ðŁįĤ": 35015, - "ðŁįĤ": 25721, - "ðŁįĥ": 27157, - "ðŁįĥ": 20147, - "ðŁįĩ": 48697, - "ðŁįĬ": 35001, - "ðŁįĬ": 28036, - "ðŁįĭ": 39543, - "ðŁįĮ": 44987, - "ðŁįį": 48946, - "ðŁįİ": 32069, - "ðŁįij": 32889, - "ðŁįĴ": 33160, - "ðŁįĵ": 44739, - "ðŁįĵ": 33456, - "ðŁįĶ": 46415, - "ðŁįĶ": 36031, - "ðŁįķ": 31469, - "ðŁįķ": 23904, - "ðŁįŃ": 42100, - "ðŁİ": 1165, - "ðŁİ£": 43158, - "ðŁİ¤": 23490, - "ðŁİ¤": 15690, - "ðŁİ¥": 22186, - "ðŁİ¥:": 43640, - "ðŁİ¥": 13233, - "ðŁİ§": 31254, - "ðŁİ§": 14266, - "ðŁİ¨": 31953, - "ðŁİ¨": 13461, - "ðŁİ©": 37701, - "ðŁİ«": 30331, - "ðŁİ¬": 36020, - "ðŁİ¬": 18150, - "ðŁİ®": 29312, - "ðŁİ¯": 23114, - "ðŁİµ": 27435, - "ðŁİµ": 14946, - "ðŁİ¶": 11755, - "ðŁİ¶": 6011, - "ðŁİ¶ðŁİ¶": 36283, - "ðŁİ¸": 29135, - "ðŁİ¸": 22122, - "ðŁİ¹": 43493, - "ðŁİ¼": 34949, - "ðŁİ¼": 23757, - "ðŁİ¾": 41982, - "ðŁİ¾": 24222, - "ðŁİĢ": 34347, - "ðŁİĢ": 20151, - "ðŁİģ": 18368, - "ðŁİģ": 13462, - "ðŁİĤ": 13026, - "ðŁİĤ": 10392, - "ðŁİĤðŁİĤ": 39338, - "ðŁİĥ": 22622, - "ðŁİĥ": 16780, - "ðŁİĦ": 12942, - "ðŁİĦ": 11267, - "ðŁİħ": 17685, - "ðŁİħ": 24276, - "ðŁİĨ": 39222, - "ðŁİĪ": 16142, - "ðŁİĪ": 14448, - "ðŁİĪðŁİī": 48049, - "ðŁİī": 4310, - "ðŁİī:": 17310, - "ðŁİī": 3986, - "ðŁİīðŁİ": 11473, - "ðŁİīðŁİĪ": 40499, - "ðŁİīðŁİĪ": 34008, - "ðŁİīðŁİī": 25159, - "ðŁİīðŁİī": 13450, - "ðŁİīðŁİīðŁİī": 20828, - "ðŁİīðŁİĬ": 31662, - "ðŁİīðŁİĬ": 30781, - "ðŁİĬ": 22763, - "ðŁİĬ": 22425, - "ðŁİĬðŁİī": 48801, - "ðŁİĵ": 28916, - "ðŁİĵ": 18744, - "ðŁİĻ": 29001, - "ðŁİĻ": 29753, - "ðŁİĻï¸ı": 44205, - "ðŁİŁ": 19248, - "ðŁİŁ": 21107, - "ðŁİŁï¸ı": 30243, - "ðŁİŃ": 28856, - "ðŁı": 1109, - "ðŁı¡": 27318, - "ðŁı³ï¸ı": 26844, - "ðŁı³ï¸ıâĢį": 27093, - "ðŁı³ï¸ıâĢįðŁĮĪ": 32610, - "ðŁı´": 39690, - "ðŁı´": 19704, - "ðŁı»": 5042, - "ðŁı»": 3702, - "ðŁı»âĢį": 46250, - "ðŁı»âĢįâĻĢï¸ı": 48391, - "ðŁı»âĢįâĻĢï¸ı": 23595, - "ðŁı»âĢįâĻĤï¸ı": 30984, - "ðŁı¼": 6193, - "ðŁı¼": 4027, - "ðŁı¼âĢįâĻĢï¸ı": 28955, - "ðŁı½": 8514, - "ðŁı½": 6114, - "ðŁı½âĢįâĻĢï¸ı": 37036, - "ðŁı½âĢįâĻĤï¸ı": 43157, - "ðŁı¾": 10230, - "ðŁı¾": 7778, - "ðŁı¾âĢįâĻĤï¸ı": 47189, - "ðŁı¿": 29854, - "ðŁı¿": 21094, - "ðŁıĢ": 13708, - "ðŁıĢ": 8813, - "ðŁıĢðŁıĢ": 43169, - "ðŁıģ": 29423, - "ðŁıģ": 17473, - "ðŁıĥ": 16820, - "ðŁıĥ": 32751, - "ðŁıħ": 25500, - "ðŁıĨ": 9585, - "ðŁıĨ": 5596, - "ðŁıĨðŁıĨ": 18946, - "ðŁıĨðŁıĨ": 38269, - "ðŁıĨðŁıĨðŁıĨ": 44484, - "ðŁıĩ": 45789, - "ðŁıĩ": 40288, - "ðŁıĪ": 16144, - "ðŁıĪ": 10477, - "ðŁıī": 26020, - "ðŁıĬ": 33061, - "ðŁıĬ": 47830, - "ðŁıĮ": 41116, - "ðŁıı": 32460, - "ðŁıIJ": 46334, - "ðŁıIJ": 29433, - "ðŁıĴ": 37756, - "ðŁıŁ": 35914, - "ðŁıŁ": 26472, - "ðŁıŁï¸ı": 42627, - "ðŁıł": 33727, - "ðŁIJ": 2074, - "ðŁIJ¢": 37049, - "ðŁIJ£": 39597, - "ðŁIJ¥": 42981, - "ðŁIJ¦": 37260, - "ðŁIJ¬": 44238, - "ðŁIJ¯": 34825, - "ðŁIJ¯": 26111, - "ðŁIJ°": 35378, - "ðŁIJ°": 25050, - "ðŁIJ±": 35710, - "ðŁIJ±": 22979, - "ðŁIJ´": 33509, - "ðŁIJ¶": 14466, - "ðŁIJ¶": 10631, - "ðŁIJ·": 38408, - "ðŁIJ¸": 45597, - "ðŁIJ¸": 40298, - "ðŁIJº": 44281, - "ðŁIJº": 31445, - "ðŁIJ»": 30750, - "ðŁIJ»": 25322, - "ðŁIJ¼": 46234, - "ðŁIJ¾": 16057, - "ðŁIJ¾": 11317, - "ðŁIJ¾ðŁIJ¾": 42202, - "ðŁIJī": 46908, - "ðŁIJĬ": 43974, - "ðŁIJį": 48903, - "ðŁIJį": 30177, - "ðŁIJİ": 48281, - "ðŁIJİ": 32726, - "ðŁIJIJ": 47735, - "ðŁIJIJ": 27954, - "ðŁIJij": 49389, - "ðŁIJķ": 41069, - "ðŁIJĺ": 38733, - "ðŁIJĿ": 30619, - "ðŁIJĿ": 20111, - "ðŁIJŁ": 42084, - "ðŁIJŁ": 29989, - "ðŁIJł": 42725, - "ðŁij": 964, - "ðŁij£": 39755, - "ðŁij§": 48938, - "ðŁij¨": 18966, - "ðŁij¨âĢį": 25023, - "ðŁij©": 18800, - "ðŁij©âĢį": 26304, - "ðŁij«": 47106, - "ðŁij«": 35457, - "ðŁij®": 42686, - "ðŁij¯": 25910, - "ðŁij¯": 20582, - "ðŁij¶": 26187, - "ðŁij¶": 33189, - "ðŁij¸": 26268, - "ðŁij¸": 36645, - "ðŁij¹": 46766, - "ðŁij»": 24625, - "ðŁij»": 16243, - "ðŁij¼": 25270, - "ðŁij¼": 31083, - "ðŁij½": 42677, - "ðŁij½": 26257, - "ðŁijĢ": 11524, - "ðŁijĢ": 5908, - "ðŁijĢðŁijĢ": 31561, - "ðŁijģ": 47796, - "ðŁijģ": 45705, - "ðŁijĦ": 47445, - "ðŁijħ": 31833, - "ðŁijħ": 24672, - "ðŁijĨ": 42975, - "ðŁijĨ": 45194, - "ðŁijĩ": 7662, - "ðŁijĩ": 7475, - "ðŁijĩðŁı»": 45811, - "ðŁijĩðŁı»": 32813, - "ðŁijĩðŁı¼": 37504, - "ðŁijĩðŁijĩ": 17915, - "ðŁijĩðŁijĩ": 31891, - "ðŁijĩðŁijĩðŁijĩ": 35627, - "ðŁijĪ": 32794, - "ðŁijĪ": 20832, - "ðŁijī": 9477, - "ðŁijī": 3988, - "ðŁijīðŁı»": 23481, - "ðŁijīðŁı¼": 27534, - "ðŁijīðŁı½": 38059, - "ðŁijīðŁijī": 41480, - "ðŁijĬ": 8897, - "ðŁijĬ": 9704, - "ðŁijĬðŁı»": 47393, - "ðŁijĬðŁı»": 29152, - "ðŁijĬðŁı¼": 49000, - "ðŁijĬðŁı¼": 30115, - "ðŁijĬðŁijĬ": 46521, - "ðŁijĭ": 19351, - "ðŁijĭ": 17686, - "ðŁijĮ": 4890, - "ðŁijĮ": 4494, - "ðŁijĮðŁı»": 31818, - "ðŁijĮðŁı»": 18606, - "ðŁijĮðŁı¼": 37655, - "ðŁijĮðŁı¼": 20031, - "ðŁijĮðŁı½": 35834, - "ðŁijĮðŁijĮ": 36139, - "ðŁijĮðŁijĮ": 21435, - "ðŁijĮðŁijĮðŁijĮ": 40876, - "ðŁijį": 4686, - "ðŁijį": 4201, - "ðŁijįðŁı»": 25803, - "ðŁijįðŁı»": 15129, - "ðŁijįðŁı¼": 37285, - "ðŁijįðŁı¼": 19689, - "ðŁijįðŁı½": 43722, - "ðŁijįðŁijį": 33012, - "ðŁijįðŁijį": 18997, - "ðŁijįðŁijįðŁijį": 37284, - "ðŁijİ": 39702, - "ðŁijİ": 32568, - "ðŁijı": 3802, - "ðŁijı": 4829, - "ðŁijıðŁı»": 19236, - "ðŁijıðŁı»": 17029, - "ðŁijıðŁı»ðŁijıðŁı»": 35254, - "ðŁijıðŁı¼": 24496, - "ðŁijıðŁı¼": 19979, - "ðŁijıðŁı¼ðŁijıðŁı¼": 46712, - "ðŁijıðŁı½": 40796, - "ðŁijıðŁı½": 33978, - "ðŁijıðŁı¾": 45450, - "ðŁijıðŁijı": 10356, - "ðŁijıðŁijı": 16706, - "ðŁijıðŁijıðŁijı": 17254, - "ðŁijIJ": 40877, - "ðŁijij": 14955, - "ðŁijij": 8717, - "ðŁijijðŁijij": 48532, - "ðŁijķ": 47865, - "ðŁijŁ": 41183, - "ðŁijł": 41264, - "ðŁijŃ": 34175, - "ðŁijŃ": 27943, - "ðŁĴ": 837, - "ðŁĴ¡": 24081, - "ðŁĴ£": 36862, - "ðŁĴ£": 29006, - "ðŁĴ¤": 34706, - "ðŁĴ¤": 25632, - "ðŁĴ¥": 12209, - "ðŁĴ¥": 7347, - "ðŁĴ¥ðŁĴ¥": 27396, - "ðŁĴ¥ðŁĴ¥": 39246, - "ðŁĴ¥ðŁĴ¥ðŁĴ¥": 48890, - "ðŁĴ¦": 21180, - "ðŁĴ¦": 14060, - "ðŁĴ¦ðŁĴ¦": 44469, - "ðŁĴ§": 34095, - "ðŁĴ¨": 27408, - "ðŁĴ¨": 17891, - "ðŁĴ©": 48621, - "ðŁĴ©": 28847, - "ðŁĴª": 5475, - "ðŁĴª": 6440, - "ðŁĴªðŁı»": 31669, - "ðŁĴªðŁı»": 21903, - "ðŁĴªðŁı¼": 32041, - "ðŁĴªðŁı¼": 20759, - "ðŁĴªðŁı½": 46380, - "ðŁĴªðŁı½": 31111, - "ðŁĴªðŁı¾": 39398, - "ðŁĴªðŁĴª": 24747, - "ðŁĴªðŁĴªðŁĴª": 39913, - "ðŁĴ«": 25770, - "ðŁĴ«": 12526, - "ðŁĴ¬": 30947, - "ðŁĴ¯": 10611, - "ðŁĴ¯": 7018, - "ðŁĴ¯ðŁĴ¯": 30234, - "ðŁĴ¯ðŁĴ¯": 44070, - "ðŁĴ°": 20454, - "ðŁĴ°": 14078, - "ðŁĴ°ðŁĴ°": 41747, - "ðŁĴµ": 47412, - "ðŁĴµ": 38041, - "ðŁĴ¸": 37696, - "ðŁĴ¸": 25957, - "ðŁĴ»": 33433, - "ðŁĴ»": 18135, - "ðŁĴ¿": 39541, - "ðŁĴĢ": 14888, - "ðŁĴĢ": 12158, - "ðŁĴĢðŁĴĢ": 30884, - "ðŁĴģ": 13997, - "ðŁĴģ": 14392, - "ðŁĴĥ": 9947, - "ðŁĴĥ": 14333, - "ðŁĴĥðŁı»": 38624, - "ðŁĴĥðŁĴĥ": 28041, - "ðŁĴĦ": 46116, - "ðŁĴĦ": 34571, - "ðŁĴħ": 27457, - "ðŁĴħ": 32414, - "ðŁĴī": 44316, - "ðŁĴī": 30503, - "ðŁĴĭ": 12217, - "ðŁĴĭ": 7417, - "ðŁĴĭðŁĴĭ": 29214, - "ðŁĴĮ": 40817, - "ðŁĴį": 35850, - "ðŁĴį": 24898, - "ðŁĴİ": 25938, - "ðŁĴİ": 15874, - "ðŁĴIJ": 27375, - "ðŁĴIJ": 20554, - "ðŁĴij": 49404, - "ðŁĴĵ": 20628, - "ðŁĴĵ": 12568, - "ðŁĴĵðŁĴĵ": 43505, - "ðŁĴĶ": 18880, - "ðŁĴĶ": 10704, - "ðŁĴĶðŁĴĶ": 44673, - "ðŁĴķ": 5412, - "ðŁĴķ": 3082, - "ðŁĴķðŁĴķ": 23106, - "ðŁĴķðŁĴķ": 14117, - "ðŁĴķðŁĴķðŁĴķ": 26772, - "ðŁĴĸ": 8466, - "ðŁĴĸ": 5582, - "ðŁĴĸðŁĴĸ": 19562, - "ðŁĴĸðŁĴĸ": 30595, - "ðŁĴĸðŁĴĸðŁĴĸ": 33915, - "ðŁĴĹ": 10148, - "ðŁĴĹ": 6690, - "ðŁĴĹðŁĴĹ": 47158, - "ðŁĴĹðŁĴĹ": 24064, - "ðŁĴĹðŁĴĹðŁĴĹ": 36990, - "ðŁĴĺ": 18223, - "ðŁĴĺ": 10816, - "ðŁĴĺðŁĴĺ": 40464, - "ðŁĴĻ": 5305, - "ðŁĴĻ": 4074, - "ðŁĴĻðŁĴĻ": 17833, - "ðŁĴĻðŁĴĻ": 27101, - "ðŁĴĻðŁĴĻðŁĴĻ": 30698, - "ðŁĴĻðŁĴĽ": 46804, - "ðŁĴĻðŁĴĽ": 26230, - "ðŁĴĻðŁĴľ": 47931, - "ðŁĴĻðŁĴľ": 42541, - "ðŁĴļ": 8102, - "ðŁĴļ": 6521, - "ðŁĴļðŁĴļ": 27497, - "ðŁĴļðŁĴļ": 46209, - "ðŁĴļðŁĴļðŁĴļ": 46182, - "ðŁĴļðŁĴĽ": 41232, - "ðŁĴĽ": 8221, - "ðŁĴĽ": 6233, - "ðŁĴĽðŁĴĻ": 36337, - "ðŁĴĽðŁĴļ": 37994, - "ðŁĴĽðŁĴĽ": 32420, - "ðŁĴľ": 6832, - "ðŁĴľ": 4882, - "ðŁĴľðŁĴľ": 17280, - "ðŁĴľðŁĴľ": 28211, - "ðŁĴľðŁĴľðŁĴľ": 31004, - "ðŁĴĿ": 36761, - "ðŁĴĿ": 22002, - "ðŁĴŀ": 14862, - "ðŁĴŀ": 8988, - "ðŁĴŀðŁĴŀ": 36448, - "ðŁĴŁ": 49394, - "ðŁĴŁ": 28828, - "ðŁĴŃ": 33848, - "ðŁĵ": 1497, - "ðŁĵ¢": 46560, - "ðŁĵ¢": 20901, - "ðŁĵ£": 48841, - "ðŁĵ£": 21282, - "ðŁĵ°:": 28952, - "ðŁĵ°": 14985, - "ðŁĵ±": 36104, - "ðŁĵ±": 20824, - "ðŁĵ²": 19363, - "ðŁĵ·": 6966, - "ðŁĵ·:": 8294, - "ðŁĵ·": 5551, - "ðŁĵ·@": 40032, - "ðŁĵ¸": 8401, - "ðŁĵ¸:": 10379, - "ðŁĵ¸": 6074, - "ðŁĵ¸@": 39660, - "ðŁĵ¹": 49251, - "ðŁĵº": 21792, - "ðŁĵº:": 29728, - "ðŁĵº": 10450, - "ðŁĵ»": 32711, - "ðŁĵ»": 15882, - "ðŁĵ½": 45361, - "ðŁĵħ": 21277, - "ðŁĵĨ": 23471, - "ðŁĵĪ": 23359, - "ðŁĵĬ": 22244, - "ðŁĵĭ": 46351, - "ðŁĵĮ": 22289, - "ðŁĵį": 25043, - "ðŁĵį:": 36845, - "ðŁĵį": 8903, - "ðŁĵĸ": 49003, - "ðŁĵĸ": 23043, - "ðŁĵļ": 25433, - "ðŁĵļ": 15566, - "ðŁĵĿ": 31888, - "ðŁĵĿ:": 48398, - "ðŁĵĿ": 15853, - "ðŁĵŀ": 24022, - "ðŁĶ": 1428, - "ðŁĶ¥": 3191, - "ðŁĶ¥#": 44354, - "ðŁĶ¥": 3016, - "ðŁĶ¥ðŁĶ¥": 5692, - "ðŁĶ¥ðŁĶ¥": 11771, - "ðŁĶ¥ðŁĶ¥ðŁĶ¥": 11004, - "ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥": 23408, - "ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥": 30989, - "ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥": 48401, - "ðŁĶ¥ðŁĶĹ": 35130, - "ðŁĶª": 47078, - "ðŁĶª": 34545, - "ðŁĶ«": 38116, - "ðŁĶ«": 20583, - "ðŁĶ¬": 44227, - "ðŁĶ®": 38077, - "ðŁĶ´": 12408, - "ðŁĶ´": 10854, - "ðŁĶ´âļªï¸ı": 46879, - "ðŁĶ´âļªï¸ı": 40055, - "ðŁĶµ": 17531, - "ðŁĶµ": 17193, - "ðŁĶµâļªï¸ı": 42412, - "ðŁĶ¶": 42880, - "ðŁĶ¶": 36222, - "ðŁĶ·": 37740, - "ðŁĶ¸": 24200, - "ðŁĶ¹": 19995, - "ðŁĶº": 45561, - "ðŁĶģ": 41299, - "ðŁĶĬ": 32580, - "ðŁĶĬ": 20502, - "ðŁĶİ": 44935, - "ðŁĶij": 35127, - "ðŁĶĴ": 44972, - "ðŁĶĶ": 45753, - "ðŁĶĹ": 47475, - "ðŁĶĹ": 14561, - "ðŁĶĺ": 38995, - "ðŁĶľ": 36011, - "ðŁĶĿ": 44387, - "ðŁĶĿ": 29506, - "ðŁķ": 7692, - "ðŁķº": 33958, - "ðŁķĬ": 42624, - "ðŁķĬ": 37760, - "ðŁĸ": 6269, - "ðŁĸ¤": 17603, - "ðŁĸ¤": 10860, - "ðŁĸ¥": 47990, - "ðŁĹ": 7045, - "ðŁĹ£": 33232, - "ðŁĹ£": 18583, - "ðŁĹ£ï¸ı": 37476, - "ðŁĹĵ": 34335, - "ðŁĹĵ": 28773, - "ðŁĹĵï¸ı": 39847, - "ðŁĺ": 668, - "ðŁĺ¡": 21968, - "ðŁĺ¡": 17452, - "ðŁĺ¡ðŁĺ¡": 37223, - "ðŁĺ¢": 14308, - "ðŁĺ¢": 9925, - "ðŁĺ¢ðŁĺ¢": 32923, - "ðŁĺ¢ðŁĺ¢": 47921, - "ðŁĺ£": 32718, - "ðŁĺ¤": 26872, - "ðŁĺ¤": 20740, - "ðŁĺ¥": 38383, - "ðŁĺ¥": 23951, - "ðŁĺ¨": 38080, - "ðŁĺ©": 9051, - "ðŁĺ©": 9494, - "ðŁĺ©ðŁĺ©": 22820, - "ðŁĺ©ðŁĺ©": 38031, - "ðŁĺ©ðŁĺ©ðŁĺ©": 49063, - "ðŁĺª": 38181, - "ðŁĺª": 22243, - "ðŁĺ«": 25141, - "ðŁĺ«": 22340, - "ðŁĺ¬": 23704, - "ðŁĺ¬": 14549, - "ðŁĺ®": 40163, - "ðŁĺ®": 21616, - "ðŁĺ¯": 37858, - "ðŁĺ°": 34728, - "ðŁĺ±": 10938, - "ðŁĺ±": 9055, - "ðŁĺ±ðŁĺ±": 22061, - "ðŁĺ±ðŁĺ±": 40767, - "ðŁĺ±ðŁĺ±ðŁĺ±": 40909, - "ðŁĺ²": 40460, - "ðŁĺ²": 24620, - "ðŁĺ³": 12047, - "ðŁĺ³": 8223, - "ðŁĺ³ðŁĺ³": 32592, - "ðŁĺ´": 23527, - "ðŁĺ´": 16415, - "ðŁĺ´ðŁĺ´": 49307, - "ðŁĺµ": 39368, - "ðŁĺ¶": 35207, - "ðŁĺ·": 37943, - "ðŁĺ·": 25759, - "ðŁĺ¸": 36912, - "ðŁĺ¹": 26477, - "ðŁĺ¹": 26573, - "ðŁĺ¹ðŁĺ¹": 46287, - "ðŁĺº": 40613, - "ðŁĺ»": 15453, - "ðŁĺ»": 12911, - "ðŁĺ»ðŁĺ»": 34414, - "ðŁĺ¼": 44245, - "ðŁĺ½": 45156, - "ðŁĺĢ": 12832, - "ðŁĺĢ": 7334, - "ðŁĺĢðŁĺĢ": 34503, - "ðŁĺģ": 6967, - "ðŁĺģ": 4821, - "ðŁĺģðŁĺģ": 37900, - "ðŁĺģðŁĺģ": 19213, - "ðŁĺģðŁĺģðŁĺģ": 29083, - "ðŁĺĤ": 1424, - "ðŁĺĤ)": 42643, - "ðŁĺĤ.": 42550, - "ðŁĺĤ": 1558, - "ðŁĺĤâĿ¤ï¸ı": 36412, - "ðŁĺĤðŁijĮ": 42000, - "ðŁĺĤðŁĺĤ": 2286, - "ðŁĺĤðŁĺĤ": 4112, - "ðŁĺĤðŁĺĤðŁĺĤ": 22233, - "ðŁĺĤðŁĺĤðŁĺĤ": 4887, - "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 9936, - "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 11522, - "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 19295, - "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 33415, - "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 48973, - "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 28504, - "ðŁĺĤðŁĺį": 43128, - "ðŁĺĤðŁĺŃ": 28965, - "ðŁĺĤðŁĺŃ": 25802, - "ðŁĺĥ": 14079, - "ðŁĺĥ": 8520, - "ðŁĺĥðŁĺĥ": 38358, - "ðŁĺĦ": 12141, - "ðŁĺĦ": 7624, - "ðŁĺĦðŁĺĦ": 32312, - "ðŁĺħ": 15245, - "ðŁĺħ": 9188, - "ðŁĺħðŁĺħ": 39078, - "ðŁĺĨ": 16541, - "ðŁĺĨ": 10943, - "ðŁĺĨðŁĺĨ": 39503, - "ðŁĺĩ": 21694, - "ðŁĺĩ": 13091, - "ðŁĺĪ": 14377, - "ðŁĺĪ": 9756, - "ðŁĺĪðŁĺĪ": 44473, - "ðŁĺī": 9740, - "ðŁĺī": 4955, - "ðŁĺīðŁĺī": 40430, - "ðŁĺĬ": 4692, - "ðŁĺĬ": 3020, - "ðŁĺĬâĿ¤ï¸ı": 43606, - "ðŁĺĬðŁĺĬ": 12838, - "ðŁĺĬðŁĺĬ": 20842, - "ðŁĺĬðŁĺĬðŁĺĬ": 28685, - "ðŁĺĬðŁĺĬðŁĺĬðŁĺĬ": 35519, - "ðŁĺĭ": 12391, - "ðŁĺĭ": 7203, - "ðŁĺĭðŁĺĭ": 33304, - "ðŁĺĮ": 19221, - "ðŁĺĮ": 12163, - "ðŁĺį": 1796, - "ðŁĺį#": 42357, - "ðŁĺį.": 48579, - "ðŁĺį": 1754, - "ðŁĺįâĿ¤": 29122, - "ðŁĺįâĿ¤ï¸ı": 21945, - "ðŁĺįðŁijĮ": 41005, - "ðŁĺįðŁĴķ": 35946, - "ðŁĺįðŁĶ¥": 46648, - "ðŁĺįðŁĺĤ": 48715, - "ðŁĺįðŁĺį": 3663, - "ðŁĺįðŁĺį": 6471, - "ðŁĺįðŁĺįðŁĺį": 30614, - "ðŁĺįðŁĺįðŁĺį": 7703, - "ðŁĺįðŁĺįðŁĺįðŁĺį": 16603, - "ðŁĺįðŁĺįðŁĺįðŁĺį": 18925, - "ðŁĺįðŁĺįðŁĺįðŁĺįðŁĺį": 32078, - "ðŁĺįðŁĺįðŁĺįðŁĺįðŁĺįðŁĺįðŁĺįðŁĺį": 48683, - "ðŁĺįðŁĺĺ": 29646, - "ðŁĺįðŁĺĺ": 19849, - "ðŁĺįðŁĺŃ": 39555, - "ðŁĺİ": 7426, - "ðŁĺİ": 4345, - "ðŁĺİðŁĺİ": 24048, - "ðŁĺİðŁĺİðŁĺİ": 39742, - "ðŁĺı": 11624, - "ðŁĺı": 6909, - "ðŁĺıðŁĺı": 38151, - "ðŁĺIJ": 38586, - "ðŁĺIJ": 19618, - "ðŁĺij": 32469, - "ðŁĺij": 18937, - "ðŁĺĴ": 20792, - "ðŁĺĴ": 11702, - "ðŁĺĵ": 28733, - "ðŁĺĶ": 19532, - "ðŁĺĶ": 11432, - "ðŁĺķ": 45741, - "ðŁĺķ": 20602, - "ðŁĺĸ": 35006, - "ðŁĺĺ": 4240, - "ðŁĺĺ": 3352, - "ðŁĺĺâĿ¤": 48409, - "ðŁĺĺâĿ¤ï¸ı": 39150, - "ðŁĺĺðŁĺį": 38176, - "ðŁĺĺðŁĺĺ": 15663, - "ðŁĺĺðŁĺĺ": 10507, - "ðŁĺĺðŁĺĺðŁĺĺ": 20208, - "ðŁĺĺðŁĺĺðŁĺĺðŁĺĺ": 44892, - "ðŁĺĻ": 36201, - "ðŁĺĻ": 29209, - "ðŁĺļ": 24897, - "ðŁĺļ": 19102, - "ðŁĺĽ": 24550, - "ðŁĺĽ": 15745, - "ðŁĺľ": 13226, - "ðŁĺľ": 7830, - "ðŁĺľðŁĺľ": 43065, - "ðŁĺĿ": 20064, - "ðŁĺĿ": 12970, - "ðŁĺŀ": 40458, - "ðŁĺŀ": 21103, - "ðŁĺŁ": 46947, - "ðŁĺł": 34094, - "ðŁĺŃ": 2962, - "ðŁĺŃ": 3915, - "ðŁĺŃâĿ¤ï¸ı": 29567, - "ðŁĺŃðŁĴķ": 46306, - "ðŁĺŃðŁĺĤ": 38505, - "ðŁĺŃðŁĺį": 36893, - "ðŁĺŃðŁĺŃ": 5300, - "ðŁĺŃðŁĺŃ": 11834, - "ðŁĺŃðŁĺŃðŁĺŃ": 44089, - "ðŁĺŃðŁĺŃðŁĺŃ": 13116, - "ðŁĺŃðŁĺŃðŁĺŃðŁĺŃ": 19793, - "ðŁĺŃðŁĺŃðŁĺŃðŁĺŃ": 27322, - "ðŁĺŃðŁĺŃðŁĺŃðŁĺŃðŁĺŃ": 43366, - "ðŁĻ": 1478, - "ðŁĻĢ": 43092, - "ðŁĻĤ": 32006, - "ðŁĻĤ": 14860, - "ðŁĻĥ": 27222, - "ðŁĻĥ": 15652, - "ðŁĻĦ": 20648, - "ðŁĻĦ": 13049, - "ðŁĻħ": 42702, - "ðŁĻĨ": 30050, - "ðŁĻĨ": 35730, - "ðŁĻĪ": 12661, - "ðŁĻĪ": 9516, - "ðŁĻĪðŁĻĪ": 41796, - "ðŁĻĬ": 23684, - "ðŁĻĬ": 16636, - "ðŁĻĭ": 19193, - "ðŁĻĭ": 30274, - "ðŁĻĮ": 4366, - "ðŁĻĮ": 4855, - "ðŁĻĮðŁı»": 26756, - "ðŁĻĮðŁı»": 15799, - "ðŁĻĮðŁı¼": 26584, - "ðŁĻĮðŁı¼": 15364, - "ðŁĻĮðŁı½": 36660, - "ðŁĻĮðŁı½": 22962, - "ðŁĻĮðŁı¾": 38023, - "ðŁĻĮðŁı¾": 26466, - "ðŁĻĮðŁĻĮ": 21202, - "ðŁĻĮðŁĻĮ": 30430, - "ðŁĻĮðŁĻĮðŁĻĮ": 37127, - "ðŁĻı": 4260, - "ðŁĻı": 5503, - "ðŁĻıðŁı»": 25100, - "ðŁĻıðŁı»": 16650, - "ðŁĻıðŁı¼": 31163, - "ðŁĻıðŁı¼": 18952, - "ðŁĻıðŁı½": 34103, - "ðŁĻıðŁı½": 21540, - "ðŁĻıðŁı¾": 34277, - "ðŁĻıðŁı¾": 21979, - "ðŁĻıðŁĻı": 18227, - "ðŁĻıðŁĻı": 26510, - "ðŁĻıðŁĻıðŁĻı": 31702, - "ðŁļ": 2730, - "ðŁļ¨": 12198, - "ðŁļ¨": 6056, - "ðŁļ¨ðŁļ¨": 36487, - "ðŁļ¨ðŁļ¨": 21440, - "ðŁļ¨ðŁļ¨ðŁļ¨": 41515, - "ðŁļ©": 44514, - "ðŁļ«": 35291, - "ðŁļ²": 37085, - "ðŁļ´": 30825, - "ðŁļ¶": 46060, - "ðŁļĢ": 22400, - "ðŁļĢ": 13542, - "ðŁļĢðŁļĢ": 49033, - "ðŁļĤ": 38949, - "ðŁļĮ": 46891, - "ðŁļĹ": 33054, - "ðŁļĹ": 22783, - "ðŁļĺ": 35825, - "ðŁļĻ": 48487, - "ðŁĽ": 11306, - "ñ": 173, - "ñ": 429, - "ò": 174, - "ò": 430, - "ó": 175, - "ó": 431, - "ô": 176, - "ô": 432, - "õ": 177, - "õ": 433, - "ö": 178, - "ö": 434, - "÷": 179, - "÷": 435, - "ø": 180, - "ø": 436, - "ù": 181, - "ù": 437, - "ú": 182, - "ú": 438, - "û": 183, - "û": 439, - "ü": 184, - "ü": 440, - "ý": 185, - "ý": 441, - "þ": 186, - "þ": 442, - "ÿ": 187, - "ÿ": 443, - "Ā": 188, - "Ā": 444, - "ā": 189, - "ā": 445, - "Ă": 190, - "Ă": 446, - "ă": 191, - "ă": 447, - "Ą": 192, - "Ą": 448, - "ą": 193, - "ą": 449, - "Ć": 194, - "Ć": 450, - "ć": 195, - "ć": 451, - "Ĉ": 196, - "Ĉ": 452, - "ĉ": 197, - "ĉ": 453, - "Ċ": 198, - "Ċ": 454, - "ċ": 199, - "ċ": 455, - "Č": 200, - "Č": 456, - "č": 201, - "č": 457, - "Ď": 202, - "Ď": 458, - "ď": 203, - "ď": 459, - "Đ": 204, - "Đ": 460, - "đ": 205, - "đ": 461, - "Ē": 206, - "Ē": 462, - "ē": 207, - "ē": 463, - "Ĕ": 208, - "Ĕ": 464, - "ĕ": 209, - "ĕ": 465, - "Ė": 210, - "Ė": 466, - "ė": 211, - "ė": 467, - "Ę": 212, - "Ę": 468, - "ę": 213, - "ę": 469, - "Ě": 214, - "Ě": 470, - "ě": 215, - "ě": 471, - "Ĝ": 216, - "Ĝ": 472, - "ĝ": 217, - "ĝ": 473, - "Ğ": 218, - "Ğ": 474, - "ğ": 219, - "ğ": 475, - "Ġ": 220, - "Ġ": 476, - "ġ": 221, - "ġ": 477, - "Ģ": 222, - "Ģ": 478, - "Ģï¸ı": 9668, - "Ģï¸ı": 5511, - "ģ": 223, - "ģ": 479, - "ģà¸": 15016, - "Ĥ": 224, - "Ĥ": 480, - "Ĥâĸ": 29036, - "ĤâĸĤâĸ": 30832, - "ĥ": 225, - "ĥ": 481, - "Ħ": 226, - "Ħ": 482, - "Ħà¸": 20537, - "Ħë": 34462, - "Ħëĭ": 25170, - "ħ": 227, - "ħ": 483, - "ħï¸ı": 33950, - "Ĩ": 228, - "Ĩ": 484, - "ĩ": 229, - "ĩ": 485, - "Ī": 230, - "Ī": 486, - "ī": 231, - "ī": 487, - "īï¸ı": 37463, - "Ĭ": 232, - "Ĭ": 488, - "Ĭãģ": 30294, - "ĭ": 233, - "ĭ": 489, - "ĭãģ": 36218, - "ĭãĤ": 45737, - "Į": 234, - "Į": 490, - "ĮãĤĬãģ": 45969, - "ĮãĤĬãģŁãģĦ": 47021, - "Įë": 17003, - "į": 235, - "į": 491, - "İ": 236, - "İ": 492, - "ı": 237, - "ı": 493, - "IJ": 238, - "IJ": 494, - "ij": 239, - "ij": 495, - "Ĵ": 240, - "Ĵ": 496, - "ĵ": 241, - "ĵ": 497, - "Ķ": 242, - "Ķ": 498, - "Ķë": 37978, - "Ķï¸ı": 24395, - "Ķï¸ı": 7443, - "ķ": 243, - "ķ": 499, - "ķãĤ": 26609, - "ķï¸ı": 44853, - "ĸ": 244, - "ĸ": 500, - "ĸï¸ı": 28877, - "Ĺ": 245, - "Ĺ": 501, - "ĺ": 246, - "ĺ": 502, - "Ļ": 247, - "Ļ": 503, - "ļ": 248, - "ļ": 504, - "Ľ": 249, - "Ľ": 505, - "ľ": 250, - "ľ": 506, - "ľë": 39810, - "Ŀ": 251, - "Ŀ": 507, - "ŀ": 252, - "ŀ": 508, - "Ł": 253, - "Ł": 509, - "ŁãģĦ": 46023, - "ł": 254, - "ł": 510, - "łï¸ı": 27899, - "łï¸ı": 12715, - "łĪ": 43364, - "Ń": 255, - "Ń": 511 -} diff --git a/MagicQuill/comfy/sd2_clip.py b/MagicQuill/comfy/sd2_clip.py deleted file mode 100644 index d14b445441b393874020df14919a064fad8067b0..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/sd2_clip.py +++ /dev/null @@ -1,23 +0,0 @@ -from comfy import sd1_clip -import os - -class SD2ClipHModel(sd1_clip.SDClipModel): - def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None): - if layer == "penultimate": - layer="hidden" - layer_idx=-2 - - textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd2_clip_config.json") - super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0}) - -class SD2ClipHTokenizer(sd1_clip.SDTokenizer): - def __init__(self, tokenizer_path=None, embedding_directory=None): - super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024) - -class SD2Tokenizer(sd1_clip.SD1Tokenizer): - def __init__(self, embedding_directory=None): - super().__init__(embedding_directory=embedding_directory, clip_name="h", tokenizer=SD2ClipHTokenizer) - -class SD2ClipModel(sd1_clip.SD1ClipModel): - def __init__(self, device="cpu", dtype=None, **kwargs): - super().__init__(device=device, dtype=dtype, clip_name="h", clip_model=SD2ClipHModel, **kwargs) diff --git a/MagicQuill/comfy/sd2_clip_config.json b/MagicQuill/comfy/sd2_clip_config.json deleted file mode 100644 index 85cec832be9a1d0957245a8d125af398829f247e..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/sd2_clip_config.json +++ /dev/null @@ -1,23 +0,0 @@ -{ - "architectures": [ - "CLIPTextModel" - ], - "attention_dropout": 0.0, - "bos_token_id": 0, - "dropout": 0.0, - "eos_token_id": 2, - "hidden_act": "gelu", - "hidden_size": 1024, - "initializer_factor": 1.0, - "initializer_range": 0.02, - "intermediate_size": 4096, - "layer_norm_eps": 1e-05, - "max_position_embeddings": 77, - "model_type": "clip_text_model", - "num_attention_heads": 16, - "num_hidden_layers": 24, - "pad_token_id": 1, - "projection_dim": 1024, - "torch_dtype": "float32", - "vocab_size": 49408 -} diff --git a/MagicQuill/comfy/sd3_clip.py b/MagicQuill/comfy/sd3_clip.py deleted file mode 100644 index 0713eb28529469b28ae57445b740e13b5bf8eafa..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/sd3_clip.py +++ /dev/null @@ -1,150 +0,0 @@ -from comfy import sd1_clip -from comfy import sdxl_clip -from transformers import T5TokenizerFast -import comfy.t5 -import torch -import os -import comfy.model_management -import logging - -class T5XXLModel(sd1_clip.SDClipModel): - def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None): - textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json") - super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.t5.T5) - -class T5XXLTokenizer(sd1_clip.SDTokenizer): - def __init__(self, embedding_directory=None): - tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") - super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77) - -class SDT5XXLTokenizer(sd1_clip.SD1Tokenizer): - def __init__(self, embedding_directory=None): - super().__init__(embedding_directory=embedding_directory, clip_name="t5xxl", tokenizer=T5XXLTokenizer) - -class SDT5XXLModel(sd1_clip.SD1ClipModel): - def __init__(self, device="cpu", dtype=None, **kwargs): - super().__init__(device=device, dtype=dtype, clip_name="t5xxl", clip_model=T5XXLModel, **kwargs) - - - -class SD3Tokenizer: - def __init__(self, embedding_directory=None): - self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory) - self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory) - self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory) - - def tokenize_with_weights(self, text:str, return_word_ids=False): - out = {} - out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids) - out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) - out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids) - return out - - def untokenize(self, token_weight_pair): - return self.clip_g.untokenize(token_weight_pair) - -class SD3ClipModel(torch.nn.Module): - def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, device="cpu", dtype=None): - super().__init__() - self.dtypes = set() - if clip_l: - self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False) - self.dtypes.add(dtype) - else: - self.clip_l = None - - if clip_g: - self.clip_g = sdxl_clip.SDXLClipG(device=device, dtype=dtype) - self.dtypes.add(dtype) - else: - self.clip_g = None - - if t5: - if dtype_t5 is None: - dtype_t5 = dtype - elif comfy.model_management.dtype_size(dtype_t5) > comfy.model_management.dtype_size(dtype): - dtype_t5 = dtype - - if not comfy.model_management.supports_cast(device, dtype_t5): - dtype_t5 = dtype - - self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5) - self.dtypes.add(dtype_t5) - else: - self.t5xxl = None - - logging.debug("Created SD3 text encoder with: clip_l {}, clip_g {}, t5xxl {}:{}".format(clip_l, clip_g, t5, dtype_t5)) - - def set_clip_options(self, options): - if self.clip_l is not None: - self.clip_l.set_clip_options(options) - if self.clip_g is not None: - self.clip_g.set_clip_options(options) - if self.t5xxl is not None: - self.t5xxl.set_clip_options(options) - - def reset_clip_options(self): - if self.clip_l is not None: - self.clip_l.reset_clip_options() - if self.clip_g is not None: - self.clip_g.reset_clip_options() - if self.t5xxl is not None: - self.t5xxl.reset_clip_options() - - def encode_token_weights(self, token_weight_pairs): - token_weight_pairs_l = token_weight_pairs["l"] - token_weight_pairs_g = token_weight_pairs["g"] - token_weight_pars_t5 = token_weight_pairs["t5xxl"] - lg_out = None - pooled = None - out = None - - if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0: - if self.clip_l is not None: - lg_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) - else: - l_pooled = torch.zeros((1, 768), device=comfy.model_management.intermediate_device()) - - if self.clip_g is not None: - g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g) - if lg_out is not None: - lg_out = torch.cat([lg_out, g_out], dim=-1) - else: - lg_out = torch.nn.functional.pad(g_out, (768, 0)) - else: - g_out = None - g_pooled = torch.zeros((1, 1280), device=comfy.model_management.intermediate_device()) - - if lg_out is not None: - lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1])) - out = lg_out - pooled = torch.cat((l_pooled, g_pooled), dim=-1) - - if self.t5xxl is not None: - t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pars_t5) - if lg_out is not None: - out = torch.cat([lg_out, t5_out], dim=-2) - else: - out = t5_out - - if out is None: - out = torch.zeros((1, 77, 4096), device=comfy.model_management.intermediate_device()) - - if pooled is None: - pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device()) - - return out, pooled - - def load_sd(self, sd): - if "text_model.encoder.layers.30.mlp.fc1.weight" in sd: - return self.clip_g.load_sd(sd) - elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd: - return self.clip_l.load_sd(sd) - else: - return self.t5xxl.load_sd(sd) - -def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None): - class SD3ClipModel_(SD3ClipModel): - def __init__(self, device="cpu", dtype=None): - super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, device=device, dtype=dtype) - return SD3ClipModel_ diff --git a/MagicQuill/comfy/sdxl_clip.py b/MagicQuill/comfy/sdxl_clip.py deleted file mode 100644 index 1257cba1e4296280db50c04e556ad23f02264267..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/sdxl_clip.py +++ /dev/null @@ -1,89 +0,0 @@ -from comfy import sd1_clip -import torch -import os - -class SDXLClipG(sd1_clip.SDClipModel): - def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None): - if layer == "penultimate": - layer="hidden" - layer_idx=-2 - - textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json") - super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, - special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False) - - def load_sd(self, sd): - return super().load_sd(sd) - -class SDXLClipGTokenizer(sd1_clip.SDTokenizer): - def __init__(self, tokenizer_path=None, embedding_directory=None): - super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g') - - -class SDXLTokenizer: - def __init__(self, embedding_directory=None): - self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory) - self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory) - - def tokenize_with_weights(self, text:str, return_word_ids=False): - out = {} - out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids) - out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) - return out - - def untokenize(self, token_weight_pair): - return self.clip_g.untokenize(token_weight_pair) - -class SDXLClipModel(torch.nn.Module): - def __init__(self, device="cpu", dtype=None): - super().__init__() - self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False) - self.clip_g = SDXLClipG(device=device, dtype=dtype) - self.dtypes = set([dtype]) - - def set_clip_options(self, options): - self.clip_l.set_clip_options(options) - self.clip_g.set_clip_options(options) - - def reset_clip_options(self): - self.clip_g.reset_clip_options() - self.clip_l.reset_clip_options() - - def encode_token_weights(self, token_weight_pairs): - token_weight_pairs_g = token_weight_pairs["g"] - token_weight_pairs_l = token_weight_pairs["l"] - g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g) - l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) - return torch.cat([l_out, g_out], dim=-1), g_pooled - - def load_sd(self, sd): - if "text_model.encoder.layers.30.mlp.fc1.weight" in sd: - return self.clip_g.load_sd(sd) - else: - return self.clip_l.load_sd(sd) - -class SDXLRefinerClipModel(sd1_clip.SD1ClipModel): - def __init__(self, device="cpu", dtype=None): - super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=SDXLClipG) - - -class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer): - def __init__(self, tokenizer_path=None, embedding_directory=None): - super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g') - -class StableCascadeTokenizer(sd1_clip.SD1Tokenizer): - def __init__(self, embedding_directory=None): - super().__init__(embedding_directory=embedding_directory, clip_name="g", tokenizer=StableCascadeClipGTokenizer) - -class StableCascadeClipG(sd1_clip.SDClipModel): - def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None): - textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json") - super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, - special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True) - - def load_sd(self, sd): - return super().load_sd(sd) - -class StableCascadeClipModel(sd1_clip.SD1ClipModel): - def __init__(self, device="cpu", dtype=None): - super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=StableCascadeClipG) diff --git a/MagicQuill/comfy/supported_models.py b/MagicQuill/comfy/supported_models.py deleted file mode 100644 index 761498dbc9e54a2365dbef910363eb2ce3c7756e..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/supported_models.py +++ /dev/null @@ -1,559 +0,0 @@ -import torch -from . import model_base -from . import utils - -from . import sd1_clip -from . import sd2_clip -from . import sdxl_clip -from . import sd3_clip -from . import sa_t5 - -from . import supported_models_base -from . import latent_formats - -from . import diffusers_convert - -class SD15(supported_models_base.BASE): - unet_config = { - "context_dim": 768, - "model_channels": 320, - "use_linear_in_transformer": False, - "adm_in_channels": None, - "use_temporal_attention": False, - } - - unet_extra_config = { - "num_heads": 8, - "num_head_channels": -1, - } - - latent_format = latent_formats.SD15 - - def process_clip_state_dict(self, state_dict): - k = list(state_dict.keys()) - for x in k: - if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."): - y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.") - state_dict[y] = state_dict.pop(x) - - if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict: - ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] - if ids.dtype == torch.float32: - state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() - - replace_prefix = {} - replace_prefix["cond_stage_model."] = "clip_l." - state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) - return state_dict - - def process_clip_state_dict_for_saving(self, state_dict): - pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"] - for p in pop_keys: - if p in state_dict: - state_dict.pop(p) - - replace_prefix = {"clip_l.": "cond_stage_model."} - return utils.state_dict_prefix_replace(state_dict, replace_prefix) - - def clip_target(self, state_dict={}): - return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel) - -class SD20(supported_models_base.BASE): - unet_config = { - "context_dim": 1024, - "model_channels": 320, - "use_linear_in_transformer": True, - "adm_in_channels": None, - "use_temporal_attention": False, - } - - unet_extra_config = { - "num_heads": -1, - "num_head_channels": 64, - "attn_precision": torch.float32, - } - - latent_format = latent_formats.SD15 - - def model_type(self, state_dict, prefix=""): - if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction - k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix) - out = state_dict.get(k, None) - if out is not None and torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out. - return model_base.ModelType.V_PREDICTION - return model_base.ModelType.EPS - - def process_clip_state_dict(self, state_dict): - replace_prefix = {} - replace_prefix["conditioner.embedders.0.model."] = "clip_h." #SD2 in sgm format - replace_prefix["cond_stage_model.model."] = "clip_h." - state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) - state_dict = utils.clip_text_transformers_convert(state_dict, "clip_h.", "clip_h.transformer.") - return state_dict - - def process_clip_state_dict_for_saving(self, state_dict): - replace_prefix = {} - replace_prefix["clip_h"] = "cond_stage_model.model" - state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix) - state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict) - return state_dict - - def clip_target(self, state_dict={}): - return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel) - -class SD21UnclipL(SD20): - unet_config = { - "context_dim": 1024, - "model_channels": 320, - "use_linear_in_transformer": True, - "adm_in_channels": 1536, - "use_temporal_attention": False, - } - - clip_vision_prefix = "embedder.model.visual." - noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768} - - -class SD21UnclipH(SD20): - unet_config = { - "context_dim": 1024, - "model_channels": 320, - "use_linear_in_transformer": True, - "adm_in_channels": 2048, - "use_temporal_attention": False, - } - - clip_vision_prefix = "embedder.model.visual." - noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024} - -class SDXLRefiner(supported_models_base.BASE): - unet_config = { - "model_channels": 384, - "use_linear_in_transformer": True, - "context_dim": 1280, - "adm_in_channels": 2560, - "transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0], - "use_temporal_attention": False, - } - - latent_format = latent_formats.SDXL - - def get_model(self, state_dict, prefix="", device=None): - return model_base.SDXLRefiner(self, device=device) - - def process_clip_state_dict(self, state_dict): - keys_to_replace = {} - replace_prefix = {} - replace_prefix["conditioner.embedders.0.model."] = "clip_g." - state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) - - state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.") - state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace) - return state_dict - - def process_clip_state_dict_for_saving(self, state_dict): - replace_prefix = {} - state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g") - if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g: - state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids") - replace_prefix["clip_g"] = "conditioner.embedders.0.model" - state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix) - return state_dict_g - - def clip_target(self, state_dict={}): - return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel) - -class SDXL(supported_models_base.BASE): - unet_config = { - "model_channels": 320, - "use_linear_in_transformer": True, - "transformer_depth": [0, 0, 2, 2, 10, 10], - "context_dim": 2048, - "adm_in_channels": 2816, - "use_temporal_attention": False, - } - - latent_format = latent_formats.SDXL - - def model_type(self, state_dict, prefix=""): - if 'edm_mean' in state_dict and 'edm_std' in state_dict: #Playground V2.5 - self.latent_format = latent_formats.SDXL_Playground_2_5() - self.sampling_settings["sigma_data"] = 0.5 - self.sampling_settings["sigma_max"] = 80.0 - self.sampling_settings["sigma_min"] = 0.002 - return model_base.ModelType.EDM - elif "edm_vpred.sigma_max" in state_dict: - self.sampling_settings["sigma_max"] = float(state_dict["edm_vpred.sigma_max"].item()) - if "edm_vpred.sigma_min" in state_dict: - self.sampling_settings["sigma_min"] = float(state_dict["edm_vpred.sigma_min"].item()) - return model_base.ModelType.V_PREDICTION_EDM - elif "v_pred" in state_dict: - return model_base.ModelType.V_PREDICTION - else: - return model_base.ModelType.EPS - - def get_model(self, state_dict, prefix="", device=None): - out = model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device) - if self.inpaint_model(): - out.set_inpaint() - return out - - def process_clip_state_dict(self, state_dict): - keys_to_replace = {} - replace_prefix = {} - - replace_prefix["conditioner.embedders.0.transformer.text_model"] = "clip_l.transformer.text_model" - replace_prefix["conditioner.embedders.1.model."] = "clip_g." - state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) - - state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace) - state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.") - return state_dict - - def process_clip_state_dict_for_saving(self, state_dict): - replace_prefix = {} - keys_to_replace = {} - state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g") - for k in state_dict: - if k.startswith("clip_l"): - state_dict_g[k] = state_dict[k] - - state_dict_g["clip_l.transformer.text_model.embeddings.position_ids"] = torch.arange(77).expand((1, -1)) - pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"] - for p in pop_keys: - if p in state_dict_g: - state_dict_g.pop(p) - - replace_prefix["clip_g"] = "conditioner.embedders.1.model" - replace_prefix["clip_l"] = "conditioner.embedders.0" - state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix) - return state_dict_g - - def clip_target(self, state_dict={}): - return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel) - -class SSD1B(SDXL): - unet_config = { - "model_channels": 320, - "use_linear_in_transformer": True, - "transformer_depth": [0, 0, 2, 2, 4, 4], - "context_dim": 2048, - "adm_in_channels": 2816, - "use_temporal_attention": False, - } - -class Segmind_Vega(SDXL): - unet_config = { - "model_channels": 320, - "use_linear_in_transformer": True, - "transformer_depth": [0, 0, 1, 1, 2, 2], - "context_dim": 2048, - "adm_in_channels": 2816, - "use_temporal_attention": False, - } - -class KOALA_700M(SDXL): - unet_config = { - "model_channels": 320, - "use_linear_in_transformer": True, - "transformer_depth": [0, 2, 5], - "context_dim": 2048, - "adm_in_channels": 2816, - "use_temporal_attention": False, - } - -class KOALA_1B(SDXL): - unet_config = { - "model_channels": 320, - "use_linear_in_transformer": True, - "transformer_depth": [0, 2, 6], - "context_dim": 2048, - "adm_in_channels": 2816, - "use_temporal_attention": False, - } - -class SVD_img2vid(supported_models_base.BASE): - unet_config = { - "model_channels": 320, - "in_channels": 8, - "use_linear_in_transformer": True, - "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0], - "context_dim": 1024, - "adm_in_channels": 768, - "use_temporal_attention": True, - "use_temporal_resblock": True - } - - unet_extra_config = { - "num_heads": -1, - "num_head_channels": 64, - "attn_precision": torch.float32, - } - - clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual." - - latent_format = latent_formats.SD15 - - sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002} - - def get_model(self, state_dict, prefix="", device=None): - out = model_base.SVD_img2vid(self, device=device) - return out - - def clip_target(self, state_dict={}): - return None - -class SV3D_u(SVD_img2vid): - unet_config = { - "model_channels": 320, - "in_channels": 8, - "use_linear_in_transformer": True, - "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0], - "context_dim": 1024, - "adm_in_channels": 256, - "use_temporal_attention": True, - "use_temporal_resblock": True - } - - vae_key_prefix = ["conditioner.embedders.1.encoder."] - - def get_model(self, state_dict, prefix="", device=None): - out = model_base.SV3D_u(self, device=device) - return out - -class SV3D_p(SV3D_u): - unet_config = { - "model_channels": 320, - "in_channels": 8, - "use_linear_in_transformer": True, - "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0], - "context_dim": 1024, - "adm_in_channels": 1280, - "use_temporal_attention": True, - "use_temporal_resblock": True - } - - - def get_model(self, state_dict, prefix="", device=None): - out = model_base.SV3D_p(self, device=device) - return out - -class Stable_Zero123(supported_models_base.BASE): - unet_config = { - "context_dim": 768, - "model_channels": 320, - "use_linear_in_transformer": False, - "adm_in_channels": None, - "use_temporal_attention": False, - "in_channels": 8, - } - - unet_extra_config = { - "num_heads": 8, - "num_head_channels": -1, - } - - required_keys = { - "cc_projection.weight": None, - "cc_projection.bias": None, - } - - clip_vision_prefix = "cond_stage_model.model.visual." - - latent_format = latent_formats.SD15 - - def get_model(self, state_dict, prefix="", device=None): - out = model_base.Stable_Zero123(self, device=device, cc_projection_weight=state_dict["cc_projection.weight"], cc_projection_bias=state_dict["cc_projection.bias"]) - return out - - def clip_target(self, state_dict={}): - return None - -class SD_X4Upscaler(SD20): - unet_config = { - "context_dim": 1024, - "model_channels": 256, - 'in_channels': 7, - "use_linear_in_transformer": True, - "adm_in_channels": None, - "use_temporal_attention": False, - } - - unet_extra_config = { - "disable_self_attentions": [True, True, True, False], - "num_classes": 1000, - "num_heads": 8, - "num_head_channels": -1, - } - - latent_format = latent_formats.SD_X4 - - sampling_settings = { - "linear_start": 0.0001, - "linear_end": 0.02, - } - - def get_model(self, state_dict, prefix="", device=None): - out = model_base.SD_X4Upscaler(self, device=device) - return out - -class Stable_Cascade_C(supported_models_base.BASE): - unet_config = { - "stable_cascade_stage": 'c', - } - - unet_extra_config = {} - - latent_format = latent_formats.SC_Prior - supported_inference_dtypes = [torch.bfloat16, torch.float32] - - sampling_settings = { - "shift": 2.0, - } - - vae_key_prefix = ["vae."] - text_encoder_key_prefix = ["text_encoder."] - clip_vision_prefix = "clip_l_vision." - - def process_unet_state_dict(self, state_dict): - key_list = list(state_dict.keys()) - for y in ["weight", "bias"]: - suffix = "in_proj_{}".format(y) - keys = filter(lambda a: a.endswith(suffix), key_list) - for k_from in keys: - weights = state_dict.pop(k_from) - prefix = k_from[:-(len(suffix) + 1)] - shape_from = weights.shape[0] // 3 - for x in range(3): - p = ["to_q", "to_k", "to_v"] - k_to = "{}.{}.{}".format(prefix, p[x], y) - state_dict[k_to] = weights[shape_from*x:shape_from*(x + 1)] - return state_dict - - def process_clip_state_dict(self, state_dict): - state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True) - if "clip_g.text_projection" in state_dict: - state_dict["clip_g.transformer.text_projection.weight"] = state_dict.pop("clip_g.text_projection").transpose(0, 1) - return state_dict - - def get_model(self, state_dict, prefix="", device=None): - out = model_base.StableCascade_C(self, device=device) - return out - - def clip_target(self, state_dict={}): - return supported_models_base.ClipTarget(sdxl_clip.StableCascadeTokenizer, sdxl_clip.StableCascadeClipModel) - -class Stable_Cascade_B(Stable_Cascade_C): - unet_config = { - "stable_cascade_stage": 'b', - } - - unet_extra_config = {} - - latent_format = latent_formats.SC_B - supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32] - - sampling_settings = { - "shift": 1.0, - } - - clip_vision_prefix = None - - def get_model(self, state_dict, prefix="", device=None): - out = model_base.StableCascade_B(self, device=device) - return out - -class SD15_instructpix2pix(SD15): - unet_config = { - "context_dim": 768, - "model_channels": 320, - "use_linear_in_transformer": False, - "adm_in_channels": None, - "use_temporal_attention": False, - "in_channels": 8, - } - - def get_model(self, state_dict, prefix="", device=None): - return model_base.SD15_instructpix2pix(self, device=device) - -class SDXL_instructpix2pix(SDXL): - unet_config = { - "model_channels": 320, - "use_linear_in_transformer": True, - "transformer_depth": [0, 0, 2, 2, 10, 10], - "context_dim": 2048, - "adm_in_channels": 2816, - "use_temporal_attention": False, - "in_channels": 8, - } - - def get_model(self, state_dict, prefix="", device=None): - return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device) - -class SD3(supported_models_base.BASE): - unet_config = { - "in_channels": 16, - "pos_embed_scaling_factor": None, - } - - sampling_settings = { - "shift": 3.0, - } - - unet_extra_config = {} - latent_format = latent_formats.SD3 - text_encoder_key_prefix = ["text_encoders."] - - def get_model(self, state_dict, prefix="", device=None): - out = model_base.SD3(self, device=device) - return out - - def clip_target(self, state_dict={}): - clip_l = False - clip_g = False - t5 = False - dtype_t5 = None - pref = self.text_encoder_key_prefix[0] - if "{}clip_l.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict: - clip_l = True - if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict: - clip_g = True - t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref) - if t5_key in state_dict: - t5 = True - dtype_t5 = state_dict[t5_key].dtype - - return supported_models_base.ClipTarget(sd3_clip.SD3Tokenizer, sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5)) - -class StableAudio(supported_models_base.BASE): - unet_config = { - "audio_model": "dit1.0", - } - - sampling_settings = {"sigma_max": 500.0, "sigma_min": 0.03} - - unet_extra_config = {} - latent_format = latent_formats.StableAudio1 - - text_encoder_key_prefix = ["text_encoders."] - vae_key_prefix = ["pretransform.model."] - - def get_model(self, state_dict, prefix="", device=None): - seconds_start_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_start.": ""}, filter_keys=True) - seconds_total_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_total.": ""}, filter_keys=True) - return model_base.StableAudio1(self, seconds_start_embedder_weights=seconds_start_sd, seconds_total_embedder_weights=seconds_total_sd, device=device) - - - def process_unet_state_dict(self, state_dict): - for k in list(state_dict.keys()): - if k.endswith(".cross_attend_norm.beta") or k.endswith(".ff_norm.beta") or k.endswith(".pre_norm.beta"): #These weights are all zero - state_dict.pop(k) - return state_dict - - def clip_target(self, state_dict={}): - return supported_models_base.ClipTarget(sa_t5.SAT5Tokenizer, sa_t5.SAT5Model) - - -models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio] - -models += [SVD_img2vid] diff --git a/MagicQuill/comfy/supported_models_base.py b/MagicQuill/comfy/supported_models_base.py deleted file mode 100644 index cf7cdff34bff803e6dfa750e84f03d66e06634af..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/supported_models_base.py +++ /dev/null @@ -1,95 +0,0 @@ -import torch -from . import model_base -from . import utils -from . import latent_formats - -class ClipTarget: - def __init__(self, tokenizer, clip): - self.clip = clip - self.tokenizer = tokenizer - self.params = {} - -class BASE: - unet_config = {} - unet_extra_config = { - "num_heads": -1, - "num_head_channels": 64, - } - - required_keys = {} - - clip_prefix = [] - clip_vision_prefix = None - noise_aug_config = None - sampling_settings = {} - latent_format = latent_formats.LatentFormat - vae_key_prefix = ["first_stage_model."] - text_encoder_key_prefix = ["cond_stage_model."] - supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32] - - manual_cast_dtype = None - - @classmethod - def matches(s, unet_config, state_dict=None): - for k in s.unet_config: - if k not in unet_config or s.unet_config[k] != unet_config[k]: - return False - if state_dict is not None: - for k in s.required_keys: - if k not in state_dict: - return False - return True - - def model_type(self, state_dict, prefix=""): - return model_base.ModelType.EPS - - def inpaint_model(self): - return self.unet_config["in_channels"] > 4 - - def __init__(self, unet_config): - self.unet_config = unet_config.copy() - self.sampling_settings = self.sampling_settings.copy() - self.latent_format = self.latent_format() - for x in self.unet_extra_config: - self.unet_config[x] = self.unet_extra_config[x] - - def get_model(self, state_dict, prefix="", device=None): - if self.noise_aug_config is not None: - out = model_base.SD21UNCLIP(self, self.noise_aug_config, model_type=self.model_type(state_dict, prefix), device=device) - else: - out = model_base.BaseModel(self, model_type=self.model_type(state_dict, prefix), device=device) - if self.inpaint_model(): - out.set_inpaint() - return out - - def process_clip_state_dict(self, state_dict): - state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True) - return state_dict - - def process_unet_state_dict(self, state_dict): - return state_dict - - def process_vae_state_dict(self, state_dict): - return state_dict - - def process_clip_state_dict_for_saving(self, state_dict): - replace_prefix = {"": self.text_encoder_key_prefix[0]} - return utils.state_dict_prefix_replace(state_dict, replace_prefix) - - def process_clip_vision_state_dict_for_saving(self, state_dict): - replace_prefix = {} - if self.clip_vision_prefix is not None: - replace_prefix[""] = self.clip_vision_prefix - return utils.state_dict_prefix_replace(state_dict, replace_prefix) - - def process_unet_state_dict_for_saving(self, state_dict): - replace_prefix = {"": "model.diffusion_model."} - return utils.state_dict_prefix_replace(state_dict, replace_prefix) - - def process_vae_state_dict_for_saving(self, state_dict): - replace_prefix = {"": self.vae_key_prefix[0]} - return utils.state_dict_prefix_replace(state_dict, replace_prefix) - - def set_inference_dtype(self, dtype, manual_cast_dtype): - self.unet_config['dtype'] = dtype - self.manual_cast_dtype = manual_cast_dtype diff --git a/MagicQuill/comfy/t2i_adapter/__pycache__/adapter.cpython-310.pyc b/MagicQuill/comfy/t2i_adapter/__pycache__/adapter.cpython-310.pyc deleted file mode 100644 index e15c40eb9fceafadcaa877447c5b4a8a9580533c..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/t2i_adapter/__pycache__/adapter.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/t2i_adapter/adapter.py b/MagicQuill/comfy/t2i_adapter/adapter.py deleted file mode 100644 index e9a606b1cd67fd9a955a0ea0a86d1bd5498d85e5..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/t2i_adapter/adapter.py +++ /dev/null @@ -1,293 +0,0 @@ -#taken from https://github.com/TencentARC/T2I-Adapter -import torch -import torch.nn as nn -from collections import OrderedDict - - -def conv_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D convolution module. - """ - if dims == 1: - return nn.Conv1d(*args, **kwargs) - elif dims == 2: - return nn.Conv2d(*args, **kwargs) - elif dims == 3: - return nn.Conv3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -def avg_pool_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D average pooling module. - """ - if dims == 1: - return nn.AvgPool1d(*args, **kwargs) - elif dims == 2: - return nn.AvgPool2d(*args, **kwargs) - elif dims == 3: - return nn.AvgPool3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -class Downsample(nn.Module): - """ - A downsampling layer with an optional convolution. - :param channels: channels in the inputs and outputs. - :param use_conv: a bool determining if a convolution is applied. - :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - downsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - stride = 2 if dims != 3 else (1, 2, 2) - if use_conv: - self.op = conv_nd( - dims, self.channels, self.out_channels, 3, stride=stride, padding=padding - ) - else: - assert self.channels == self.out_channels - self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) - - def forward(self, x): - assert x.shape[1] == self.channels - if not self.use_conv: - padding = [x.shape[2] % 2, x.shape[3] % 2] - self.op.padding = padding - - x = self.op(x) - return x - - -class ResnetBlock(nn.Module): - def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): - super().__init__() - ps = ksize // 2 - if in_c != out_c or sk == False: - self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) - else: - # print('n_in') - self.in_conv = None - self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) - self.act = nn.ReLU() - self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) - if sk == False: - self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) - else: - self.skep = None - - self.down = down - if self.down == True: - self.down_opt = Downsample(in_c, use_conv=use_conv) - - def forward(self, x): - if self.down == True: - x = self.down_opt(x) - if self.in_conv is not None: # edit - x = self.in_conv(x) - - h = self.block1(x) - h = self.act(h) - h = self.block2(h) - if self.skep is not None: - return h + self.skep(x) - else: - return h + x - - -class Adapter(nn.Module): - def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True, xl=True): - super(Adapter, self).__init__() - self.unshuffle_amount = 8 - resblock_no_downsample = [] - resblock_downsample = [3, 2, 1] - self.xl = xl - if self.xl: - self.unshuffle_amount = 16 - resblock_no_downsample = [1] - resblock_downsample = [2] - - self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount) - self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount) - self.channels = channels - self.nums_rb = nums_rb - self.body = [] - for i in range(len(channels)): - for j in range(nums_rb): - if (i in resblock_downsample) and (j == 0): - self.body.append( - ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv)) - elif (i in resblock_no_downsample) and (j == 0): - self.body.append( - ResnetBlock(channels[i - 1], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv)) - else: - self.body.append( - ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv)) - self.body = nn.ModuleList(self.body) - self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1) - - def forward(self, x): - # unshuffle - x = self.unshuffle(x) - # extract features - features = [] - x = self.conv_in(x) - for i in range(len(self.channels)): - for j in range(self.nums_rb): - idx = i * self.nums_rb + j - x = self.body[idx](x) - if self.xl: - features.append(None) - if i == 0: - features.append(None) - features.append(None) - if i == 2: - features.append(None) - else: - features.append(None) - features.append(None) - features.append(x) - - return features - - -class LayerNorm(nn.LayerNorm): - """Subclass torch's LayerNorm to handle fp16.""" - - def forward(self, x: torch.Tensor): - orig_type = x.dtype - ret = super().forward(x.type(torch.float32)) - return ret.type(orig_type) - - -class QuickGELU(nn.Module): - - def forward(self, x: torch.Tensor): - return x * torch.sigmoid(1.702 * x) - - -class ResidualAttentionBlock(nn.Module): - - def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): - super().__init__() - - self.attn = nn.MultiheadAttention(d_model, n_head) - self.ln_1 = LayerNorm(d_model) - self.mlp = nn.Sequential( - OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), - ("c_proj", nn.Linear(d_model * 4, d_model))])) - self.ln_2 = LayerNorm(d_model) - self.attn_mask = attn_mask - - def attention(self, x: torch.Tensor): - self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None - return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] - - def forward(self, x: torch.Tensor): - x = x + self.attention(self.ln_1(x)) - x = x + self.mlp(self.ln_2(x)) - return x - - -class StyleAdapter(nn.Module): - - def __init__(self, width=1024, context_dim=768, num_head=8, n_layes=3, num_token=4): - super().__init__() - - scale = width ** -0.5 - self.transformer_layes = nn.Sequential(*[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)]) - self.num_token = num_token - self.style_embedding = nn.Parameter(torch.randn(1, num_token, width) * scale) - self.ln_post = LayerNorm(width) - self.ln_pre = LayerNorm(width) - self.proj = nn.Parameter(scale * torch.randn(width, context_dim)) - - def forward(self, x): - # x shape [N, HW+1, C] - style_embedding = self.style_embedding + torch.zeros( - (x.shape[0], self.num_token, self.style_embedding.shape[-1]), device=x.device) - x = torch.cat([x, style_embedding], dim=1) - x = self.ln_pre(x) - x = x.permute(1, 0, 2) # NLD -> LND - x = self.transformer_layes(x) - x = x.permute(1, 0, 2) # LND -> NLD - - x = self.ln_post(x[:, -self.num_token:, :]) - x = x @ self.proj - - return x - - -class ResnetBlock_light(nn.Module): - def __init__(self, in_c): - super().__init__() - self.block1 = nn.Conv2d(in_c, in_c, 3, 1, 1) - self.act = nn.ReLU() - self.block2 = nn.Conv2d(in_c, in_c, 3, 1, 1) - - def forward(self, x): - h = self.block1(x) - h = self.act(h) - h = self.block2(h) - - return h + x - - -class extractor(nn.Module): - def __init__(self, in_c, inter_c, out_c, nums_rb, down=False): - super().__init__() - self.in_conv = nn.Conv2d(in_c, inter_c, 1, 1, 0) - self.body = [] - for _ in range(nums_rb): - self.body.append(ResnetBlock_light(inter_c)) - self.body = nn.Sequential(*self.body) - self.out_conv = nn.Conv2d(inter_c, out_c, 1, 1, 0) - self.down = down - if self.down == True: - self.down_opt = Downsample(in_c, use_conv=False) - - def forward(self, x): - if self.down == True: - x = self.down_opt(x) - x = self.in_conv(x) - x = self.body(x) - x = self.out_conv(x) - - return x - - -class Adapter_light(nn.Module): - def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64): - super(Adapter_light, self).__init__() - self.unshuffle_amount = 8 - self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount) - self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount) - self.channels = channels - self.nums_rb = nums_rb - self.body = [] - self.xl = False - - for i in range(len(channels)): - if i == 0: - self.body.append(extractor(in_c=cin, inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=False)) - else: - self.body.append(extractor(in_c=channels[i-1], inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=True)) - self.body = nn.ModuleList(self.body) - - def forward(self, x): - # unshuffle - x = self.unshuffle(x) - # extract features - features = [] - for i in range(len(self.channels)): - x = self.body[i](x) - features.append(None) - features.append(None) - features.append(x) - - return features diff --git a/MagicQuill/comfy/t5.py b/MagicQuill/comfy/t5.py deleted file mode 100644 index 06dfe47668e6326dfbc761bbc4600fd2db0a66de..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/t5.py +++ /dev/null @@ -1,231 +0,0 @@ -import torch -import math -from comfy.ldm.modules.attention import optimized_attention_for_device - -class T5LayerNorm(torch.nn.Module): - def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None, operations=None): - super().__init__() - self.weight = torch.nn.Parameter(torch.empty(hidden_size, dtype=dtype, device=device)) - self.variance_epsilon = eps - - def forward(self, x): - variance = x.pow(2).mean(-1, keepdim=True) - x = x * torch.rsqrt(variance + self.variance_epsilon) - return self.weight.to(device=x.device, dtype=x.dtype) * x - -class T5DenseActDense(torch.nn.Module): - def __init__(self, model_dim, ff_dim, dtype, device, operations): - super().__init__() - self.wi = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device) - self.wo = operations.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device) - # self.dropout = nn.Dropout(config.dropout_rate) - - def forward(self, x): - x = torch.nn.functional.relu(self.wi(x)) - # x = self.dropout(x) - x = self.wo(x) - return x - -class T5DenseGatedActDense(torch.nn.Module): - def __init__(self, model_dim, ff_dim, dtype, device, operations): - super().__init__() - self.wi_0 = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device) - self.wi_1 = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device) - self.wo = operations.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device) - # self.dropout = nn.Dropout(config.dropout_rate) - - def forward(self, x): - hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh") - hidden_linear = self.wi_1(x) - x = hidden_gelu * hidden_linear - # x = self.dropout(x) - x = self.wo(x) - return x - -class T5LayerFF(torch.nn.Module): - def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations): - super().__init__() - if ff_activation == "gelu_pytorch_tanh": - self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device, operations) - elif ff_activation == "relu": - self.DenseReluDense = T5DenseActDense(model_dim, ff_dim, dtype, device, operations) - - self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations) - # self.dropout = nn.Dropout(config.dropout_rate) - - def forward(self, x): - forwarded_states = self.layer_norm(x) - forwarded_states = self.DenseReluDense(forwarded_states) - # x = x + self.dropout(forwarded_states) - x += forwarded_states - return x - -class T5Attention(torch.nn.Module): - def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations): - super().__init__() - - # Mesh TensorFlow initialization to avoid scaling before softmax - self.q = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) - self.k = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) - self.v = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) - self.o = operations.Linear(inner_dim, model_dim, bias=False, dtype=dtype, device=device) - self.num_heads = num_heads - - self.relative_attention_bias = None - if relative_attention_bias: - self.relative_attention_num_buckets = 32 - self.relative_attention_max_distance = 128 - self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device) - - @staticmethod - def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): - """ - Adapted from Mesh Tensorflow: - https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 - - Translate relative position to a bucket number for relative attention. The relative position is defined as - memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to - position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for - small absolute relative_position and larger buckets for larger absolute relative_positions. All relative - positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. - This should allow for more graceful generalization to longer sequences than the model has been trained on - - Args: - relative_position: an int32 Tensor - bidirectional: a boolean - whether the attention is bidirectional - num_buckets: an integer - max_distance: an integer - - Returns: - a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) - """ - relative_buckets = 0 - if bidirectional: - num_buckets //= 2 - relative_buckets += (relative_position > 0).to(torch.long) * num_buckets - relative_position = torch.abs(relative_position) - else: - relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) - # now relative_position is in the range [0, inf) - - # half of the buckets are for exact increments in positions - max_exact = num_buckets // 2 - is_small = relative_position < max_exact - - # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance - relative_position_if_large = max_exact + ( - torch.log(relative_position.float() / max_exact) - / math.log(max_distance / max_exact) - * (num_buckets - max_exact) - ).to(torch.long) - relative_position_if_large = torch.min( - relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) - ) - - relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) - return relative_buckets - - def compute_bias(self, query_length, key_length, device): - """Compute binned relative position bias""" - context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] - memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] - relative_position = memory_position - context_position # shape (query_length, key_length) - relative_position_bucket = self._relative_position_bucket( - relative_position, # shape (query_length, key_length) - bidirectional=True, - num_buckets=self.relative_attention_num_buckets, - max_distance=self.relative_attention_max_distance, - ) - values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) - values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) - return values - - def forward(self, x, mask=None, past_bias=None, optimized_attention=None): - q = self.q(x) - k = self.k(x) - v = self.v(x) - if self.relative_attention_bias is not None: - past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device) - - if past_bias is not None: - if mask is not None: - mask = mask + past_bias - else: - mask = past_bias - - out = optimized_attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask) - return self.o(out), past_bias - -class T5LayerSelfAttention(torch.nn.Module): - def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations): - super().__init__() - self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations) - self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations) - # self.dropout = nn.Dropout(config.dropout_rate) - - def forward(self, x, mask=None, past_bias=None, optimized_attention=None): - normed_hidden_states = self.layer_norm(x) - output, past_bias = self.SelfAttention(self.layer_norm(x), mask=mask, past_bias=past_bias, optimized_attention=optimized_attention) - # x = x + self.dropout(attention_output) - x += output - return x, past_bias - -class T5Block(torch.nn.Module): - def __init__(self, model_dim, inner_dim, ff_dim, ff_activation, num_heads, relative_attention_bias, dtype, device, operations): - super().__init__() - self.layer = torch.nn.ModuleList() - self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations)) - self.layer.append(T5LayerFF(model_dim, ff_dim, ff_activation, dtype, device, operations)) - - def forward(self, x, mask=None, past_bias=None, optimized_attention=None): - x, past_bias = self.layer[0](x, mask, past_bias, optimized_attention) - x = self.layer[-1](x) - return x, past_bias - -class T5Stack(torch.nn.Module): - def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, num_heads, dtype, device, operations): - super().__init__() - - self.block = torch.nn.ModuleList( - [T5Block(model_dim, inner_dim, ff_dim, ff_activation, num_heads, relative_attention_bias=(i == 0), dtype=dtype, device=device, operations=operations) for i in range(num_layers)] - ) - self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations) - # self.dropout = nn.Dropout(config.dropout_rate) - - def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): - mask = None - if attention_mask is not None: - mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) - mask = mask.masked_fill(mask.to(torch.bool), float("-inf")) - - intermediate = None - optimized_attention = optimized_attention_for_device(x.device, mask=attention_mask is not None, small_input=True) - past_bias = None - for i, l in enumerate(self.block): - x, past_bias = l(x, mask, past_bias, optimized_attention) - if i == intermediate_output: - intermediate = x.clone() - x = self.final_layer_norm(x) - if intermediate is not None and final_layer_norm_intermediate: - intermediate = self.final_layer_norm(intermediate) - return x, intermediate - -class T5(torch.nn.Module): - def __init__(self, config_dict, dtype, device, operations): - super().__init__() - self.num_layers = config_dict["num_layers"] - model_dim = config_dict["d_model"] - - self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["num_heads"], dtype, device, operations) - self.dtype = dtype - self.shared = torch.nn.Embedding(config_dict["vocab_size"], model_dim, device=device) - - def get_input_embeddings(self): - return self.shared - - def set_input_embeddings(self, embeddings): - self.shared = embeddings - - def forward(self, input_ids, *args, **kwargs): - x = self.shared(input_ids) - return self.encoder(x, *args, **kwargs) diff --git a/MagicQuill/comfy/t5_config_base.json b/MagicQuill/comfy/t5_config_base.json deleted file mode 100644 index facd85ef3a9c695d564e40b8c1a7db994e392cd3..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/t5_config_base.json +++ /dev/null @@ -1,21 +0,0 @@ -{ - "d_ff": 3072, - "d_kv": 64, - "d_model": 768, - "decoder_start_token_id": 0, - "dropout_rate": 0.1, - "eos_token_id": 1, - "dense_act_fn": "relu", - "initializer_factor": 1.0, - "is_encoder_decoder": true, - "layer_norm_epsilon": 1e-06, - "model_type": "t5", - "num_decoder_layers": 12, - "num_heads": 12, - "num_layers": 12, - "output_past": true, - "pad_token_id": 0, - "relative_attention_num_buckets": 32, - "tie_word_embeddings": false, - "vocab_size": 32128 -} diff --git a/MagicQuill/comfy/t5_config_xxl.json b/MagicQuill/comfy/t5_config_xxl.json deleted file mode 100644 index bf4feadcf501776e65deeda04789738f08e450f9..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/t5_config_xxl.json +++ /dev/null @@ -1,21 +0,0 @@ -{ - "d_ff": 10240, - "d_kv": 64, - "d_model": 4096, - "decoder_start_token_id": 0, - "dropout_rate": 0.1, - "eos_token_id": 1, - "dense_act_fn": "gelu_pytorch_tanh", - "initializer_factor": 1.0, - "is_encoder_decoder": true, - "layer_norm_epsilon": 1e-06, - "model_type": "t5", - "num_decoder_layers": 24, - "num_heads": 64, - "num_layers": 24, - "output_past": true, - "pad_token_id": 0, - "relative_attention_num_buckets": 32, - "tie_word_embeddings": false, - "vocab_size": 32128 -} diff --git a/MagicQuill/comfy/t5_tokenizer/special_tokens_map.json b/MagicQuill/comfy/t5_tokenizer/special_tokens_map.json deleted file mode 100644 index 17ade346a1042cbe0c1436f5bedcbd85c099d582..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/t5_tokenizer/special_tokens_map.json +++ /dev/null @@ -1,125 +0,0 @@ -{ - "additional_special_tokens": [ - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "" - ], - "eos_token": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false - }, - "pad_token": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false - }, - "unk_token": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false - } -} diff --git a/MagicQuill/comfy/t5_tokenizer/tokenizer.json b/MagicQuill/comfy/t5_tokenizer/tokenizer.json deleted file mode 100644 index b11c92d7184d265f0dc857ec5d676aa81aa16262..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/t5_tokenizer/tokenizer.json +++ /dev/null @@ -1,129428 +0,0 @@ -{ - "version": "1.0", - "truncation": null, - "padding": null, - "added_tokens": [ - { - "id": 0, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 1, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 2, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32000, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32001, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32002, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32003, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32004, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32005, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32006, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32007, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32008, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32009, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32010, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32011, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32012, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32013, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32014, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32015, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32016, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32017, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32018, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32019, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32020, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32021, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32022, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32023, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32024, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32025, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32026, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32027, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32028, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32029, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32030, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32031, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32032, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32033, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32034, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32035, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32036, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32037, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32038, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32039, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32040, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32041, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32042, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32043, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32044, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32045, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32046, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32047, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32048, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32049, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32050, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32051, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32052, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32053, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32054, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32055, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32056, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32057, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32058, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32059, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32060, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32061, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32062, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32063, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32064, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32065, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32066, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32067, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32068, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32069, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32070, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32071, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32072, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32073, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32074, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32075, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32076, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32077, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32078, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32079, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32080, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32081, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32082, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32083, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32084, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32085, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32086, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32087, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32088, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32089, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32090, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32091, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32092, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32093, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32094, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32095, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32096, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32097, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32098, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - }, - { - "id": 32099, - "content": "", - "single_word": false, - "lstrip": false, - "rstrip": false, - "normalized": false, - "special": true - } - ], - "normalizer": { - "type": "Sequence", - "normalizers": [ - { - "type": "Precompiled", - "precompiled_charsmap": "ALQCAACEAAAAAACAAQAAgMz8AgC4BQAAhyIAgMzkAgC4PQAAeyIAgMzsAgC4BQAAiyIAgMw8AADNvAAAmwkAgJ4JAIChCQCAgx0AAIAZAACBGQAAPR0AgDUdAIBNHQCARR0AgIAxAACBMQAApAkAgIkxAAA9WAMAPEgDAEAKAIA+aAMAAYUAAIQBAQADjQAAAokAAAWVAAAEkQAAB50AAAaZAAAJqQAACKEAAAutAAAKpQAADbkAAAy9AAAPvQAADrkAABHFAAAQwQAAE80AABLJAAAV1QAAFNEAABfdAAAW2QAAGeUAABjhAAAb7QAAGukAAB31AAAc8QAAH/0AAB75AABhOAkAZR0AgGNADgBi8AgAZSgPAGSADgBn2A8AZvAPAGlwDABoMAwAa/AMAGrYDABtSA0AbBwNAG8QEgBubA0ARgoAgHAMEwBzqBMAcuwTAHUoEAB0TBAAd9ARAHYUEAB50BYAePQQAF0dAIB69BYAdR0AgG0dAIB/fQEAhgwAgEGAAgDeCwCAQxgAAELAAABFSAAARGAAAEeQBgBGhAEASSgGAEhsAQBLOAcASvAHAE1wBwBMRAcAT/AEAE7MBACnCQCAUCwFAFOgCgBSEAUAVQAKAFRQCgBX0AgAVhALAFlICABYuAgAhBEAAFo8CACA9QAAgZ0AANgLAIAtHQCAg2kCAIJFAgCBNQIAgDUCAIdtAwCGVQMAgTkAAIRlAgAXDACAigEEAInVAwCI7QMAjwkAAKgLAIApDACAjAkAAC8MAICJMQMAkQkAAMzYAABVHQCAfR0AgL0aAIBMCgCAgGUDAIENAwCGPQAAgx0DAMwQAgDNhAEAgikAAMx0AwCjgQYAxRoAgICxAgCBsQIAzRoAgIEpAAClwQAA1RoAgMzoAwDNYAIAUgoAgKjxAABYCgCAXgoAgGQKAIDdGgCAgWkAAMzcBACCEQEA5RoAgGoKAIDtGgCA/RoAgAUbAID1GgCAswkAgMygBADN3AQAzAgBALYJAIClHQCAhhEBAOEAKwDgfCcA44hIAuIMOAKdHQCAh5EBALUdAICtHQCAgNkBAIE1AADMxAIA6kRkApUdAIANGwCA72hkAoERBwCC8QEA8NCLAolVAACB5QEAFRsAgIfhAQCAbQAAgQ0AAIN5AAB2CgCAgXkAAICVAQDMOAEAzRQBAIzBAQB8CgCAvAkAgKMVAQDDlBcAwpwUAMWEFwDEUBcAx+wXAMaAEgCNHQCAiAoAgMvQFgDK4BYAzRQWADUMAIDPvCAAzpwZANHMJADQ2CUA0+gkALFRAQA7DACAp90HAL0dAIDWvCQA2cgnANjUIgDb+CcALRsAgIftBwCCCgCAzPgEAB0bAIAlHQCAh8kGALAJAICR3QcAuQkAgCUbAIBwCgCANRsAgIUdAICMDACAjPkGAAsMAICA1QYAgcEGAMzEAgDNBAUAglEAAIN1BwCArQYAgbkGAIY1BwCHKQcAhEEAAI4KAICn7QAAPRsAgIjpBwCJzQcAlAoAgI/BBwCM3QcAmgoAgOoLAICnXQYAsJ0AAKAKAICmCgCAo0EGAEUbAIBVGwCAfQwAgE0bAIBdGwCArXEGAGUbAIC/CQCAzPgDAM0sAwDCCQCAo+UAAMUJAICMTQAAsgoAgKfxAAC4CgCAsT0GAIedAACGlQAAqB0HAISJAAC+CgCAgqkAAIHVAACtAQcAygoAgJE9AACCmQEAyAkAgM0MBQDMCAUAgT0AAIeFAQCIvQEAdRsAgMUdAICuCwCAjJEBAEEMAIBHDACAzR0AgID1AQCBhQEAgoEBAIOdAQCEiQEAxAoAgIapAQCHXQAAiG0AAIlNAABtGwCAzBACAIxdAACCDQAA0AoAgI9JAACw6QAAfRsAgPALAICjKQEAgCUBAIFVAQCFGwCApzUBAMykAQDNEAIA1goAgI0bAICBNQAA3AoAgK4JAQDoCgCAzOgBAM0oAgCVGwCAo/EAAIQFAACdGwCA4goAgK0bAICotQAApRsAgIFdAAC1GwCAzPwBAM3AAQC9GwCAxRsAgIGFAwARDACAgeUDAO4KAICH6QMAywkAgIylAwDNGwCA+goAgKoJAIDVGwCAgZkDAIHdAwCMvQMAzSQBAMwgAQDMEAIAzTACAIH5AACHUQAAgFUAAIFZAAD0CgCAg0kAAIxBAADlGwCA3RsAgM4JAICBfQAAgHEAAMwgAwDNsAMAo30DANEJAICjEQMA7R0AgIEtAQCx/QAApzEDAK1BAwDlHQCAo20DAP0dAID1HQCA7RsAgKdtAwCANQAAgR0AALFtAwCILQAAmAwAgKeVAACBcQAAgFkAAINxAACj9QAAgVEAAK2BAAD1GwCAsQkDAIldAACEPQAAzDgBAISdAQCBGQAAgAkAAIRlAAD9GwCAzNAHAMzwBwAFHACAkYkAAMxMBgDNBAYAzHAGAM10BgDMQAcAmy0PAMyoBwDNrAcAhg0AAIdVDwCEQQ8ACQsAgIIBDACDVQ8AgDUBAIHZAQCkDACAj+kAAIztAACSDACA3R0AgIv1AACIbQ8AiQ0AAA8LAIC0CwCAgiUAAE0MAICBQQAAUwwAgBUeAIANHgCAJR4AgB0eAIAtHgCABR4AgIApAACBKQAA/AsAgA0cAICEeQAAFRwAgIFNAQCAoQEAGAsAgKP9DwDMOAIAzUgDAB0cAICBWQAAzXwCAMykDQAkCwCAWQwAgKjJDwCHOQAA1wkAgImhDwADCwCAkREAAJ4MAIDaCQCAmQsAgF8MAICAuQ8AgbkPANUdAICDjQ8A9gsAgCUcAICEBQAALRwAgB4LAIA1HACAKgsAgIGdDwCHIQAAh7UPAMyoAgDN6AIAzLQMAM3cDACmzQAAp8UAAE0cAICPgQ8AjIkPAKPlAAAwCwCAPRwAgDwLAICxyQAAhwUAAFUcAIBFHACAhz0AAF0cAIBxDACANgsAgKMFDwCB+QAAzKgDAGUcAIBICwCAjEkAAKPxAABtHACAdwwAgEILAICnlQAAfRwAgHUcAIDMrAMAzcgAAN0JAICHaQAA4AkAgIG9AACCeQAA4wkAgIe5AQBOCwCAkaUAAIEdAACdHACAVAsAgIgFAAClHACAm5EAAFoLAIDmCQCAjJEBANILAIDGCwCAwAsAgMwLAICDRQAAgrkBAIG5AQCApQEAPR4AgIZxAABgCwCAhEkAAIsVAACKPQAAiTkAAIhFAACP+QAAZgsAgLoLAICMBQAAp1EBAKZJAQBlDACAsHkAAKNZAQCMqQAAgKkAAIGpAACBlQAAgJUAAK1xAQBrDACAogsAgISNAABNHgCARR4AgKMhAABdHgCAVR4AgGUeAICBbQAAgG0AALEFAQCkOQAANR4AgIUcAIBsCwCAqAUAAJUcAICNHACArQkAAMywAQCBvQMAgL0DAIPNAwCtHACAtRwAgL0cAIDMvAEAzYQBAInpAwDMHAEAgdkCAIDFAgDNOAEAzDwBAMxoAgDNRAIAg00AAMUcAICH2QAAhy0AAIBFAACBEQAAggUAAHILAIDVHACAzRwAgN0cAIDMOAIAiBUAAIjhAACAbQAAgTkAAMyEAgDNUAEAo0UDAIQ5AQDlHACA7RwAgMzcAwDNSAIAbR4AgOkJAIB4CwCAhR4AgKoMAICBbQAA9RwAgH4LAICj0QAAfR4AgHUeAIDMiAQAgXUAAIB1AACBCwCAo7UAAMwABADNVAIA/RwAgIcLAICETQEAjQsAgAUdAIANHQCAzNAOAMwsAQDMAAUAzVwFAOwJAIDvCQCAzJgOAIHBAADMzA8AzDwOAMwIAQDNnA4AzNQPAM14DwDMPA4AzTgOAIHlAQCA5QEAg+UBAILlAQDUCQCAhOUBAIfhAQBBHQCAiaUBAIjZAQCByQcAOR0AgFEdAIBJHQCAzDQBAPUJAICA3QAAgekAAEMKAICD/QAAgM0AAIH5AACBEQcAaR0AgGEdAICJ0QAAzCgBAHkdAIBxHQCA4QsAgMw0AQDbCwCAgF0AAIFlAACjAQEAg2EAAIFxAACASQAAMR0AgBoMAICrCwCAiVUAACwMAIAyDACAWR0AgIEdAIDBGgCATwoAgIIdAACDeQcAgBkHAIEZBwCGIQAAhykAAISRBwDyCQCAimkAALHZBgCIaQAAifUHAEkKAICP3QcAjNkHAIkMAID4CQCAKR0AgPsJAICRoQcAgEEHAIFBBwCHBQAAyRoAgIKRBwDRGgCA2RoAgKOVBgCGhQcAp+0AAMyQAgDN4AUAsekAAKPBAABVCgCAWwoAgGEKAIBnCgCA/gkAgKVlBwDhGgCAzLgDAKhVBwDpGgCAbQoAgPEaAIABGwCACRsAgPkaAIABCgCAo60AAAQKAICMJQYABwoAgIxNAACpHQCAgm0AAIE9BgCCAQYAgWUAAKEdAICHZQAAuR0AgIcRBgCHrQEAsR0AgMxQAgDNxAIAgeEBAIDJAQCD4QEAkYkAAID9AQCB1QEAmR0AgIydAQCJNQAAcwoAgIB1AACBXQAAhi0AAIc1AACEfQAAERsAgIKFAQCDfQAAgJ0BAIGRAQAZGwCAj+kAAIzhAAB5CgCAfwoAgAoKAICIDQAAifkAAKc5AQCRHQCAiwoAgDgMAICjJQEAPgwAgLBZAACJHQCAggUAAMEdAICtFQEAjwwAgDEbAICGBQAAhQoAgCEbAIApGwCAp2kAAIANAQCBAQEAhzEAAKNJAACxGQEAzBACADkbAIAODACAkQoAgK1RAADM1AEAzfgBAKhBAABBGwCAzTgBAMw8AQCB7QMAlwoAgJ0KAICMDQAA7QsAgKMKAICBxQMAzGgCAKkKAICCxQMASRsAgITJAwCHKQAAhjEAAFkbAICCbQAAgAwAgFEbAICHYQAAYRsAgGkbAIAVHQCAzKgDAM2sAgCB+QAAiC0AAA0KAIAQCgCAEwoAgIw1AAC1CgCAuwoAgLHVAADBCgCAeRsAgMkdAICxCwCAzDABAEQMAIBKDACA0R0AgMwEAQDHCgCAcRsAgKelAADTCgCAo40AAMwUAgCAuQAAgbkAAKeFAAAIDACAgmUAAIEbAICMNQAA8wsAgMzsHADN/AMAiRsAgK6tAADZCgCAkRsAgMzABgDN0AYAsL0BAMyQBwDfCgCAgckBAMwYHQDNIAIAhBEAAOsKAIDNuAYAzKwGAKEbAIDlCgCAgSkAALEbAICpGwCAo+0BAMxAHQDNEAIAuRsAgMEbAICBCQAAyRsAgMxAHQDN0AIAqNkBABQMAIDMkAcAzBwBAMxgBgDNZAYA8QoAgBwKAIDRGwCAkSkBAP0KAICBzR8A2RsAgPcKAIDpGwCA4RsAgMzEBgDNwAYAgTEAAIDZAAAfCgCAIgoAgIK5AQCDRQEAgLkBAIG5AQCGXQEA8R0AgIRdAQDpHQCAzcAAAMzwAACIARwAiXkBAAEeAICPVQEAjGEBAPkdAICB3R4AgRUfAJkbAICBXR8AjIEfAIdBHwDMGAMAzWgDAIBNHwCBpR8AJQoAgIOpHwCMFR8AjNEeACgKAICHtR8AgJUfAIGZHwCBEQAAg70fAICFHwCBiR8A8RsAgIQ9AACbDACAiZkfAPkbAICIBQAABgsAgAEcAICADQAAgf0AAAkcAICj2R8Ao3keAKOFAAAMCwCArTUfAKdhHgCnqR8AoQwAgIQNAACnDACAozUfACsKAICtiR8AhHEAAKchHwCxPR4AsYUfAJUMAIDhHQCAEgsAgLcLAIDMtBwAzbAcAFAMAICxQR8AVgwAgJwLAIAZHgCAER4AgCkeAIAhHgCAgLkeAIG5HgCCIQEAgzUBAIRhAQAxHgCAhokBAIe9AQCIkQEAiekBANkdAICL/QEAjOUBAIINAAAJHgCAj90BAIO5AQCRrQEAgb0BAIC9AQCAoQEAgaEBAPkLAID/CwCAhD0AABEcAICJlQEAm4EBAIHNHgCAzR4AzPwCAM3wAgCB5QAAGRwAgIHtAACjpQAAzJABAM1cAgCHHQAAGwsAgKj5AAAhHACAJwsAgFwMAIBiDACAKRwAgIQFAAAxHACAo9UAACELAIA5HACAgVEAAMz0AQDN0AEALQsAgIc9AABRHACAMwsAgEEcAIA/CwCAhwUAAFkcAIBJHACAh/EDAIHZAwCBmQMAgZEAAGEcAIB0DACAjPkDAMwkAQCHuQMAgfkDADkLAIDMZAIAgskDAIyZAwBpHACAh9EDAI+RAwCB3QYAkfUDAMwABADN7AMAh2UAABkdAIBLCwCAcRwAgHoMAIBFCwCAzBgBAIg5AACBHACAeRwAgMxcAwCMJQAALgoAgMwsAQCx/QAAozkDADEKAIA0CgCAoRwAgKdZAwDMdAMAiAkAAKNRAwCpHACAXQsAgINtDQCnnQAApq0AAKOdAACxDQMAzCgBANULAICntQAAprUAAMkLAIDMMAEAgdUHAMMLAIDMKAEAzwsAgEEeAIBjCwCArYkAAGkLAICAzQEAgd0BAMxEAQDNnB4AhPUBAL0LAIDMWAEAzUwBAIDtAQCB/QEAg7UAAGgMAICM3QEAbgwAgMwIHgCM8QYAzDgBAM08AQBRHgCAiREAAIEFBgBJHgCAYR4AgFkeAIBpHgCAgz0AAIAhAACBOQAAgDkAAIEhAAA5HgCAiRwAgMwoAQCB2QYAbwsAgIH9BgDMJAEAmRwAgJEcAICxHACAgCEBAIE1AQCjBQAAuRwAgMEcAIDJHACAzIwFAM1AAgC3HAMAdQsAgIfNBwDZHACA0RwAgB0dAIDNiAAAzJAAAIzdBQCjhQAAFgoAgMzgAgDhHACAiNUHAIFNAACATQAAUQsAgOkcAIBXCwCAkTkHADcKAICIxQcApQsAgIrJBwDxHACAmz0AAIflBwBxHgCAgYUHAICFBwA6CgCAgvkHAILVBgCDRQAAgMkGAIHdBgCG4QYAewsAgIRRAACJHgCAipUGAIuZBgCIeQAAiZ0GAK0MAICPWQcAjG0HAPkcAIDMgAMAzSQCALARBwA9CgCAgR4AgCEdAIB5HgCAhAsAgICNAACBnQAAzOwDAM3oBAABHQCAigsAgKNJBwCQCwCACR0AgKO9BwARHQCAGwAAgOcHAIALAACApKUHAOsEAICKBQCAAwAAgKhhBwDZDQCAZQAAgMgDAIAbCQCArWkHAIAtAQCBPQEAgl0BAINRAQCEYQEAuAQAgKwEAICHYQEAiK0BAIm1AQCKvQEAjykVALwFAIAdDACAzHgCAM3YBQCB3QEAgXEAAOQLAICC/QEAhBkAACMMAICH7QEAIAwAgMw0BADNMAQA5wsAgJ9pFQAmDACAjMkBAM34BADM8AIAsUkBACEHAICB1QAAoxUBAKCZFQBzCACARgcAgIT1AADMKAQAzSwEAMMIAICveQEAqH0BADENAICqaQEAUgkAgLQlAQC1KQEAowkBAAIMAIDqBgCA7gYAgLIFAQCzPQEAvPUAAL39AAC+2QAAOAgAgLgBAQC5AQEAugEBADwHAIBDBwCAhgwAALOdAwCyiQMAswgAgIC9AwBpBwCAbAcAgBIJAIDkBgCA5wYAgDUIAICJhQMAzOQHAL+hAwAFDACA1wwAgIxlAADN5AwAzCQMAIlBAACIVQAAi0UAAIpFAACFtQMAhLUDAIeVAwCGgQMAAQ0AgAQNAIAHDQCAmCwAABMAAICmyAAAzYwGAMyoBgCFaQAAFwAAgDEAAIBpAACAzPADAAcAAIA1AACA0QwAgLGVAAAlDQCAs5UAALKVAAA1DQCAOA0AgEANAIA7DQCALg0AgHUAAICmBgCAJQAAgJgJAIAdIQCAv1UDAEMNAIAZIQCAFSEAgGEgAIC4bAAAlGUNAJIAAgCcrQEAnaUBAJqJAQCbiQEAmJkBAJmJAQDMIAYAzQQGAMxABgDNXAYAzDwHAM04BwDMvAcAhXUAAIABDwCBDQ8AaSAAgLqZAQCFBQAAcSAAgFkgAIC+hQEAgSkPAIAlDwBlIACAgiEPAIUpAAC0pQEAhREAAG0gAICziQ8AsoUPALHJAQCwAQwAt4EPALbtAQC17QEAtO0BAIFlAQCAZQEAg2EBALi1DwDMPAsAhHkBAIDhDwCB3Q8AdSAAgF0gAIDMyAQAzbgEAIWtAACFFQAAISEAgDkhAIDM6BkAzbQZAKRdAQBGDQCAok0CAKPxDwCgVQEAod0PAH8IAIBuCQCAOwkAgO0eAIBsCQCA9R4AgHcJAIDxHgCAsQgAgJMNAACtHgCA+R4AgITVDACF6Q4AlGkAAIfdDgC1HgCAmbQCAL0eAIDFHgCAsR4AgD0hAIC5HgCAn3QBAMEeAICRGA0AgI0OAIGBDgCGhQ4AlYwDAISJDgCXRAIAghEAAKm4AACA0QAAge0AAMkeAIBJDQCA5R4AgIVZDwCDiQAAoTQNAIFFDgCASQ4A6R4AgKU0AQCFYQ8AzPAUAB0fAIC5xAUAzMgDAM3cAwCA3QAAgcEAACUfAIC/kAUAhREAALHsBwCA9QAAgcEAAKEgAIC1jAYALR8AgLdABgCA3Q4AgekOAMwoAgDNtAIAgM0OAIH5DgCFKQAAg4UBAIB1AQCBsQEAgPEBAIHVAQCpIACANR8AgIUFAACxIACAgJkBAIG9AQCCfQAAk9UBAJThAQCFDQAAmSAAgCEfAICACQAAgRkAACkfAICTrQEAlC0AAKUgAICFDQAAMR8AgIUFAACtIACAOR8AgIUpAACCGQAAhTUAAIDxAACB4QAAtSAAgJ0gAIBBIQCAhQUAAGEhAICDdQEAgO0BAIEpAQDM8AEAzbABAEwNAIBdIQCAWSEAgKMNAIBdHwCAZR8AgIA9AACBDQAAbR8AgHUfAICALQAAgR0AAIIVAABhHwCAzSwBAGkfAIBxHwCAeR8AgIjFAwClIQCAzJACAM28AgCE7QMATw0AgIb5AwCdHwCAgIEDAIH9AwCAPQAAgTUAAIFJAACAQQAAzdwBAIJBAAClHwCAoR8AgKkfAIDNMAEAlJ0DAI0hAIDN8AEAzAwBAIG5AwCAxQMAg6EDAJOlAwCArQAAgdUAAICdAACBqQAAiSEAgFINAICBwQAAgMkAAIC1AACBgQAAhSEAgINpBADMcAMAzbQDAIEhAIDNPAEApg0AgJMBBADNjAIAzPQCAIANAACBNQAAlNkGANEfAIDVHwCA2R8AgMwIAQDNHAEAgREAAIApAACpIQCAghkAAICRAQCBkQEAzWgFAMyUAgDMEAkAzSgWAMxYDgDNeA4AzBQNAM3YCgDMKAwAzYwNAMzgFwDM4AoAzDgLAM30CACFEQAAVQ0AgIBRBwCBUQcA4SAAgM2QDgCFBQAA6SAAgMzYDgDN7AEA8SAAgM0ADgCFGQAAzfAPAM08DgDNVA4AzGgBAM1sAQDZIACAYQgAgJSZBwDMwDsAgGEBAIHZAACFKQAAzWQOAMx4AQDNfAEAga0HAICtBwCFZQAAgp0HAIBRAQCBUQEAlOEHAM3AAACEeQEAk8UHAIZhAQDlIACAiCEBAIUNAADtIACAzRgBAMzYAADNtAAAgN0HAIHNBwCZHwCAhQkAAM0fAID1IACA/R8AgN0gAIAFIACADSAAgBUgAIAJIACAASAAgK0hAIARIACAGSAAgMy4AgDNHAMAgGUAAIF1AACCfQAAHSAAgIUJAACFQQAAASEAgKkNAICAmQYAgSEHAIUZAACDfQAACSEAgIVZAAD9IACA+SAAgIDNAACB2QAAjR4AgIURAACE6QAAlR4AgIblAABBIACAgDUAAIENAACdHgCAhR0AAEkgAIClHgCAhQUAAFEgAICAVQAAgW0AAIJ9AACTRQAAlA0AAIUNAAA5IACAkR4AgIAJAACBEQAAmR4AgIUdAABFIACAoR4AgIUFAABNIACAgOkBAIHxAQCCBQAAqR4AgIUJAACFCQAAVSAAgD0gAICAbQEAgXkBAIIZAACDpQEADSEAgIV1AACFBQAAESEAgAUhAIAhIACAzMgCAM3cAgCsDQCAzR4AgIA5AACBOQAA1R4AgN0eAIDRHgCA2R4AgIAdAACBDQAA4R4AgCUgAICAxQAAgdUAAM3AAADMJAIAgNUAAIHFAACFOQAAg8kAACUhAICvDQCAgNUAAIEJAACFBQAALSEAgP0eAICBIACAgAkAAIERAAAFHwCAk5kAAJS5AAANHwCAhWUAAIU9AACJIACAk10AABUfAICFEQAAzXAFAMx0BQCUATwAkSAAgHkgAIDNKAEAhSAAgI0gAICFGQAAlSAAgH0gAIA1IQCAKSEAgCkgAICFJQAAhTkAAMz4AgDNxAMAzTwBALINAICBlQMAgI0DAM3EAQCCpQMAhVEAAIVJAADMKAEAzSwBAM04AQDMPAEAgGk+AIFpPgBJIQCARSEAgM04PADMVDwAgdE8AJOdPgDMSAEAzcgCAM00AQBNIQCAlLk+AFgNAICAoT4AgaE+AIKhPgCIjTwAVSEAgIWtAACALQAAgSEAAIXVPwCVHwCAgO0AAIHxAACGpQAARR8AgISpAADNJAEAzSgBAE0fAICI+T4AhfE/AFUfAIBJHwCAhcU/AM0wAQDNEAEAzfQGAIDdAQCB6QEAzbwGAM1wBgDM4AYAzVwBAMxoBgDNkAYAzWQGAM14BgDMrAcAzagHAMzoBwDNyAcAgk0/AIP9AgCANQIAgekCAFEfAIBZHwCAgAU9AIV9AQBRIQCALSAAgM0UAQApDgCAge0BAIDhAQDNPAEAgs0BAM0sAQCCdQEAgW0BAIBZAQCAZQEAgcUAAIUfAIDNJAEAzTgBAILxAACB+QAAgFkBAIApAACBcQAAzBgBAM18AQDNLAEAjR8AgIEdAACAHQAAiR8AgJEfAIBxIQCAzSQBAMzkPQDNXA8AzegAAMwMAQCA1QEAgckBAIKZAACD5T8ACR8AgBEfAIAZHwCAMSEAgCMOAIB1IQCAPR8AgDEgAIBBHwCALA4AgIBNPwCBQT8AfR8AgGkhAICBHwCAZSEAgIAlPwCBKT8Ak5E/AIN9AAAmDgCAlEEAAMzYAgDNrAIAbSEAgJNVAACACQAAgR0AALUNAIB9IQCAlEEAAK0fAICAnQAAgaEAAIAdAACBEQAAhKUAALUfAICGpQAAvR8AgIjxAACC0QAAgdkAAIDNAACAJQAAgSkAAIIFAADFHwCAsR8AgLkfAIDBHwCAk7EAAJQRAADJHwCAgB0AAIEVAACAJQAAgS0AAII9AAB5IQCAgO0AAIHRAACCFQAAg4EAAIHQPQA1IACAzCACAM3cAQCFeAIAkSEAgC8OAICZIQCAiRgDAN0fAICALQAAgTUAAIAJAACBbQAA5R8AgMEgAICRsQAAkKkAAJPdOwCSAQQAlaUAAJSVOwDtHwCAlqEAAIUJAACTQQAAySAAgPUfAICFBQAA0SAAgJT1AAC5IACAgLkAAIHdAACC5QAA4R8AgOkfAICF6QAAgAkAAIE1AACFBQAAxSAAgPEfAICFHQAAzSAAgPkfAICFBQAA1SAAgLHBBQCwxQMAvSAAgLLFAwC12QUAtM0DAJ0hAICFOQAAuf0DAKEhAICVIQCAuw0AgM0NAIAXDgCAAR8AgAUOAIDTDQCAzIgCAAsOAIDN4D4AzZABAMwkAQBwDQCAjg0AgEEOAIB9DgCAgLEAAM3UPgDN5D4Agw4AgMy8PgDNuD4AgNEDAIHtAwCC/QMAhmkAAD4OAICFnQMAzTwBADgOAIDM6AIAzTw/AIjlAADNGAEAiQ4AgIhBAAA7DgCAdw4AgM0sAQCVDgCAgNUAAJsOAICG4QAAhukAAEcOAIDNJAEAoQ4AgM0QAQCI0QAAiCkAAMz4AgBNDgCAzfgCAMwkAQCnDgCAhS0DAMygPgDNbD4AgNUDAIHNAwCCAQMAg/kDAMxkAwDNzAIARA4AgM0kAQDMDAIAzQgCAIERAADMnAMAzLA+AM20PgDMxD4AzcA+AMyAPgDNuD4ArQ4AgMyEAgDMmD8AzVA+AMwgPgDNoD4AzQw/AM0wPwDNeD8AzQQ/AIhZAAC/DgCAzfgBAMzEAQBKDgCAxQ4AgMsOAIDMFAIAzAgBAM3IAQCIBQAA0Q4AgNcOAIDMKAIAuQ4AgIgNAACG0QAAgB0BAITNAACI9QAAzDwCAIQ1AQDMRAIAhikBAIAOAICIZQEAhg4AgKdEBQBiDgCAi+0AAIjtAACBDQAAiCUAAIZlAADMcAIAzXQCAMwwAgDN2AUAXA4AgIwOAICAOQAAXw4AgMzgBQB6DgCAzCgBAM0UAQCGJQAAiFUAAAgOAICGhDAAxA0AgIDVBwCG/QcAmA4AgMwkAgCIPQAAng4AgGsOAICIPQAApA4AgMxIAgDNeAIAUA4AgKoOAICXwAUAlnAFAJUYBQCAaQAAk1gFAIE5AACIZQAAkPg8AIZZAACeqAUAhEUAAGgOAIDM1AIAmrQFAIBdAACYrAUAp+wEAIgRAADM2AIAzdwCAKO8BACwDgCAzGACAMIOAIBuDgCAyA4AgK0IBADODgCAq/QEAMwsAgCIBQAA1A4AgLfoAwC2HAQAtSgEAMwAAgCzKAQAi3kAAIh9AACwdAQAhkEAAL6kAwCEdQAAiB0AANoOAIC6TAMAzNwDALj8AwCDqAIAiA0AALwOAICIFQAAh5QCAMw4AgBlDgCAzAQCAIvcAgCPDQAAcQ4AgI8ZAADMIAIAdA4AgI3wAgCIdQAAmCADAJksAwCPDgCAlA0AgMxMAgCWcAMAzCQCAIg9AACSDgCAzCwCAIgFAACzDgCAzCQCAIgNAAC2DgCAh/UAAKjUAwCpxAMA3Q4AgNlgAgDSDwCA1Q8AgNsPAICUNQAAkzEAANloAgDYDwCA2UwCAJQFAADeDwCAlSEAAJQpAABQEACAdBYAgEMXAIDSFgCA2WACADcXAIC12AMAtPADAJQ1AADZWAIAWhcAgJQFAADZVAIAlA0AADEXAIDgdAEAisgAALwVAACIyAAA4IACAIcXAICBoAAApOwCAKTIAgCoXAAAvA0AAJkXAIDghAIAvAUAAJ0XAICk+AIA4PQCALDMAwCV0AAAXRcAgLPgAwCmyAIAp2ACAJLYAABkFwCAvsEAAGsXAICXwQAAchcAgHkXAICAFwCAzXg/AMy8PwC+gA0AixcAgLx4DAC9gA0AuvQMALtUDAC49AwAkhcAgLYXAIC3uAwAuhcAgLWMDACyoAMAs6AMAKEXAICxQAMArnACAK9kAwC4BQMArUgDAKgXAICvFwCAqEQDAKnYAwDaFwCAp9gDAKRoAgCliAMAtjUDALc9AwCSyAIAtT0DAJldAQCYTQEAm2UBAJppAQCdZQEAnGUBAJ+FAQCemQEAh5wCAL6tAACWpQAAl70AAMw0BQDNjDcAzLg4AM2sOACflQEAth0AAJ2ZAQCc9QEAs7EBAK54AgDhFwCAvhcAgJk9AADFFwCAmxkAAJoJAADMFwCA0xcAgOBIAgCeCQAArFwCAK30AgD6FwCA9hcAgP4XAIDoFwCAh2ADAO8XAICvVAIAvhEAAJcFAAACGACA4KwCAAYYAICG+AMAh+wDAOC0AgAOGACAr0gCAK6QAgDgPAIAvg0AAAoYAICXGQAA4NgCAIaEAwCWEQAAvwAMAJ1tAACcYQAAEhgAgLFMAgCzUAIAlQ0AABYYAICGnAMA4MgCALMEAgCCBQAAIhgAgLNQAgCVDQAAJhgAgBoYAIAeGACA4LQCAIaMAwCH3AMAvg0AAJVpAACWeQAAKhgAgLToAgC1UAIAlwUAADIYAIDg1AIAtPQCAL4ZAADgoAIALhgAgODUAgCZjAMAt9QCAIoFAAA2GACAOhgAgIoVAAC3NAIAjx0AAD4YAIBCGACAswUAAEYYAICzBQAAWxgAgJwJAACdCQAATRgAgFQYAICMBQAAYhgAgG0YAIB0GACAexgAgJ9JAACCGACAiRgAgGYYAICQGACAlxgAgNkYAIDPGACA6hgAgOAYAICeGACAg8kBAIH5AQCsGACAsxgAgLoYAIDBGACAyBgAgKUYAICAtAIApYgDAOEIAgCuHQAA8RgAgLwJAACN9QEA9RgAgOEAAgCSlQEA45QQAJNFAACXiQEAhRQAAId4AQCGAAQARjoAgEo6AIBOOgCAUjoAgFY6AICdeQAA74xoAJyhAQBaOgCAXjoAgKKZAABiOgCAZjoAgGo6AIBuOgCAp4kAAHI6AIB2OgCAqUkBAHo6AICsqQAAfjoAgII6AICGOgCAsyUBAIo6AICOOgCAkjoAgLchAQC2OQEAtTEBAJY6AICaOgCAufkAALkRAQC4GQEAnjoAgKI6AICmOgCAqjoAgICwAQCEiAIArjoAgIPIAQCEVAMAhFwEALI6AICEXAUAgN0DAIEtAACCMQAAvjwCALo6AIC+OgCAh4gDAIacBACzLQMAwjoAgMY6AIC+AAQAvhwFALbRAwC12QMAyjoAgLv5AwC68QMAmljTAYTgBwC/xQMAvtkDAL3dAwC83QMAvgAYAKUFAwCmDQMAzjoAgIQcGADSOgCA1joAgKPxAwCsAQMArQEDAK4FAwCvGQMArKQbAq3cGgKqLQMAqyUDAL5MGQC+SBoA2joAgL6AGwC04BoCtdQdArYwHgLvCAIA3joAgOGgAQC6OBoC4/gCALoAAAC9ZBwCvvQcAr8AEAKRBNMBkOT2AeBEAQCSCD4C4joAgOY6AIDqOgCA7joAgL6sHADyOgCA9joAgPo6AID+OgCAAjsAgAY7AIAKOwCAgbBtAICAAQCDHFIAgth3AIUgmgCEkL4AhwjPAIaM5gCJbDcBiOAsAYsYfgGK2BMBjeClAYzwWgGP/OsBjliPAbDVFwCxAWgAso1rALOdawC0SWsAtZVvAA47AIDgcAEAEjsAgBY7AIAaOwCAHjsAgIAZAACBGQAAggUAACI7AIAqOwCAoaUCAKJJBwCjQQcApEEGAKXVGwCm3RsAp8EaAKgBHACp4R8AqkkfAKsBEACs9RMAra0TAK4BFACv+RcAqDEGAKkxBgCqTQYAq0UGAKxNBgCtmQYAro0GAK+FBgCGgAMAhxgDAC47AIAyOwCANjsAgDo7AIA+OwCAQjsAgLhtBwC5dQcAun0HALt1BwC8bQcAvc0HAL75BwC/+QcAsKkGALGFBgCyeQcAs3kHALRpBwC1aQcAtl0HALdVBwC2OgCAs8EGAEY7AIAmOwCAth0GAEo7AIBOOwCAtcEGALppBgC7RQYAUjsAgFY7AIC+qQcAv6kHALypBwC9qQcAo4UGAFo7AIBeOwCAYjsAgGY7AICmWQYApYUGAGo7AICrAQYAqi0GAG47AIByOwCAr+0HAK7tBwCt7QcArO0HAKjBBgCpLQEAqiUBAKs9AQCsJQEArS0BAK4lAQCvlQEAdjsAgHo7AIB+OwCAgjsAgIY7AICCvQAAgb0AAIC9AAC4nQEAua0BALqlAQC7bQAAvHUAAL19AAC+dQAAv20AALD1AQCx/QEAssEBALPBAQC0tQEAtb0BALa1AQC3rQEAijsAgI47AICSOwCAs6EBAJY7AIC1oQEAtqEBAJo7AICGgAEAh8QBALo9AQC7NQEAvBkBAL0ZAQC+fQEAv3UBAKPtAQCeOwCAojsAgKY7AICqOwCApu0BAKXtAQCuOwCAq3kBAKpxAQCyOwCAtjsAgK85AQCuMQEArVUBAKxVAQC6OwCAvjsAgMI7AIDGOwCAyjsAgOGsAQDOOwCA42AGANI7AIDWOwCA2jsAgO9UBgDeOwCA4jsAgL60GgDmOwCA6jsAgO47AICGaBwAh4wDAPI7AID2OwCA+jsAgP47AICAOQAAgTkAAIIFAAACPACACjwAgA48AIASPACAFjwAgKgdAwCpQQMAqkEDAKtBAwCsQQMArUkDAK5xAwCvcQMAhCAdABo8AIAePACAIjwAgCY8AIAqPACALjwAgDI8AIC46QAAufUAALr9AAC78QAAvJEAAL2RAAC+iQAAv4kAALDhAACx4QAAsuEAALPhAAC04QAAte0AALbZAAC32QAA4wwHAOEgBwDhMAEA4wgHADY8AIA6PACAPjwAgEI8AIBGPACASjwAgE48AIBSPACA75gHAFY8AIBaPACA74gHALOJAgBePACAYjwAgL6AGgBmPACAtokCALWJAgBqPACAu2UBALplAQBuPACAcjwAgL9pAQC+ZQEAvXUBALx1AQC3PQYAtj0GALU9BgC0IQYAszUGALI1BgCxAQYAsAkGAL9ZBgC+UQYAvVkGALxNBgC7bQYAunkGALlxBgC4eQYAgJ0AAIGtAACCpQAAejwAgH48AICCPACAhjwAgIo8AICvcQYArmkGAK1tBgCsbQYAq4EGAKqZBgCpkQYAqJkGAAY8AIB2PACAjjwAgKPFHQCSPACApcUdAKbFHQCWPACAhgADAIdkAwCqKR4AqykeAKw5HgCtOR4ArikeAK8lHgCzOR4AmjwAgJ48AICiPACApjwAgLb9HgC1/R4AqjwAgLvZHgC60R4ArjwAgLI8AIC/aR8AvmEfAL1pHwC8wR4AqPEeAKnxHgCq8R4Aq/EeAKw1HgCtPR4ArjUeAK8tHgC2PACAujwAgL48AIDCPACAxjwAgMo8AIDOPACA0jwAgLjlHwC57R8AuuUfALv5HwC86R8AvZEfAL6RHwC/jR8AsFUeALFdHgCyVR4As/0fALTlHwC17R8AtuUfALfdHwCjeR8A1jwAgNo8AIDePACA4jwAgKa9HwClvR8A5jwAgKuZHwCqkR8AhogAAIdMAQCvKR4AriEeAK0pHgCsgR8AgEkAAIFJAACCWQAAs5keAOo8AIC1iR4AtlEBAO48AIDyPACA9jwAgLotAQC7JQEAvD0BAL0lAQC+JQEAvxUBAKhNHgCpVR4Aql0eAKtVHgCsTR4ArZ0BAK6JAQCvgQEAhKwBAPo8AID+PACAAj0AgAY9AIAKPQCADj0AgBI9AIC4ZQEAuW0BALplAQC7fQEAvGUBAL1tAQC+ZQEAv9kAALClAQCxrQEAsqUBALO9AQC0rQEAtZ0BALaVAQC3XQEAo9UdABY9AIAaPQCAHj0AgCI9AICmHQIApcUdACY9AICraQIAqmECACo9AIAuPQCAr1kCAK5pAgCtaQIArHECADI9AIA2PQCAOj0AgD49AIBCPQCARj0AgEo9AIBOPQCAgDkAAIE5AACCBQAAUj0AgFo9AIBePQCAh0ADAIZcBACETAQAYj0AgGY9AICEBAUA4yABAGo9AIDhqAEAbj0AgO+UGgByPQCAdj0AgHo9AIB+PQCAgj0AgIY9AICKPQCAs6EDAI49AICSPQCAlj0AgJo9AIC2fQMAtX0DAJ49AIC7WQMAulEDAKI9AICmPQCAv/0AAL79AAC9/QAAvEEDAKhRAgCpWQIAqmkCAKtpAgCstQIArb0CAK61AgCvrQIAhKgHAKo9AICuPQCAsj0AgIKpAAC2PQCAgKkAAIGpAAC4aQEAuWkBALoJAQC7CQEAvBkBAL0ZAQC+CQEAvwkBALDVAgCx3QIAstUCALNpAQC0eQEAtXkBALZpAQC3YQEA4bgBAOHUHwDjOB8A4wwbALo9AIC+PQCAwj0AgMo9AIDOPQCA0j0AgNY9AIDaPQCAvjwJAN49AIDvhBsA74QbAKOhAgDiPQCAhugEAIe8BQDmPQCApn0CAKV9AgDqPQCAq1kCAKpRAgDuPQCA8j0AgK/9AQCu/QEArf0BAKxBAgCzhQYAxj0AgPY9AID6PQCA/j0AgLaJBgC1jQYAAj4AgLuRBgC6iQYABj4AgAo+AIC/9QYAvokGAL2BBgC8iQYADj4AgBI+AIAWPgCAGj4AgB4+AIAiPgCAJj4AgO+EHQAqPgCA4QAEAC4+AIDj/AQAgBEAAIEdAACCBQAAMj4AgKjxBgCp8QYAqg0GAKsFBgCsBQYArQkGAK49BgCvNQYANj4AgDo+AICGiAAAhxADAD4+AIBCPgCARj4AgEo+AIC4EQYAuRkGALohBgC7IQYAvPUHAL39BwC+9QcAv+kHALBNBgCxVQYAsl0GALNVBgC0TQYAtTEGALYxBgC3MQYAo4UHAE4+AIBSPgCAVj4AgFo+AICmiQcApY0HAF4+AICrkQcAqokHAGI+AIBmPgCAr/UHAK6JBwCtgQcArIkHAGo+AICz4QYAbj4AgHI+AIC25QYAdj4AgHo+AIC18QYAur0GALuNBgB+PgCAgj4AgL59AQC/ZQEAvJUGAL11AQCoHQYAqSUGAKotBgCrJQYArD0GAK0hBgCuXQYAr00GAIY+AICKPgCAjj4AgJI+AICWPgCAgrkDAIGxAwCAuQMAuO0BALmFAQC6jQEAu4UBALydAQC9hQEAvo0BAL+FAQCwPQYAsQ0GALIFBgCz5QEAtP0BALXlAQC25QEAt9UBAKOlBQCaPgCAnj4AgKI+AICqPgCApqEFAKW1BQCuPgCAq8kFAKr5BQCGCAwAhxwDAK8hAgCuOQIArTECAKzRBQCyPgCAs/ECALY+AIC6PgCAtlUDAL4+AIDCPgCAteECALpxAwC7eQMAxj4AgMo+AIC+MQMAvz0DALxRAwC9UQMAqCUCAKk1AgCqPQIAqzUCAKwtAgCtkQMArpEDAK+RAwDOPgCA0j4AgNY+AIDaPgCArAAAAN4+AIDiPgCA5j4AgLiZAwC5rQMAuqUDALttAwC8dQMAvX0DAL51AwC/bQMAsPEDALH5AwCywQMAs8EDALSxAwC1vQMAtrUDALepAwDqPgCA7j4AgPI+AID2PgCA+j4AgP4+AIACPwCA76gaAL5oDADhlAEABj8AgOMcBgCADQAAgXEAAIJxAAAKPwCAo/UDAA4/AIASPwCAhEwCABo/AICmUQIApeUDAB4/AICrfQIAqnUCAIbIDACHLA0ArzkCAK41AgCtVQIArFUCAOFQBgAiPwCA4xQHAITADAAmPwCAKj8AgC4/AIAyPwCANj8AgDo/AIA+PwCAQj8AgEY/AIBKPwCA73gbAL74DwBOPwCAUj8AgFY/AICzjQEAWj8AgLWZAQC2jQEAXj8AgFY9AIBiPwCAuoUBALtNAQC8VQEAvV0BAL5VAQC/SQEAo0EOABY/AIBmPwCAaj8AgG4/AICmQQ4ApVUOAHI/AICrgQ4AqkkOAHY/AIB6PwCAr4UOAK6ZDgCtkQ4ArJkOAIBtAACBCQAAgh0AAH4/AIDvGAkAgj8AgIY/AICKPwCA4zwNAI4/AIDhWAwAkj8AgIbQAACHvAMAlj8AgJo/AICokQ4AqZkOAKrJDgCrxQ4ArN0OAK3BDgCuwQ4Ar/UOAIToAACePwCAoj8AgKY/AICqPwCArj8AgLI/AIC2PwCAuMEPALnBDwC6wQ8Au8EPALzBDwC9wQ8AvsEPAL/1DwCwjQ4AsUUOALJNDgCzRQ4AtF0OALVBDgC2QQ4At0EOAKhRDgCpWQ4Aqo0OAKudDgCshQ4ArY0OAK6FDgCvvQ4Auj8AgL4/AIDCPwCAxj8AgMo/AIDOPwCA0j8AgNY/AIC4kQ4AuZkOALqtDgC7RQEAvF0BAL1FAQC+RQEAv3UBALDFDgCxzQ4AssUOALPdDgC0xQ4AtbUOALa9DgC3tQ4AswUOANo/AIDePwCA4j8AgOY/AIC2DQ4AtQ0OAOo/AIC7CQ4AugEOAO4/AIDyPwCAv3EOAL4BDgC9CQ4AvBEOAIJtAACjQQ4AgFUAAIFlAACmSQ4A+j8AgP4/AIClSQ4AqkUOAKtNDgCGSAAAh3gAAK5FDgCvNQ4ArFUOAK1NDgCoXQIAqWECAKplAgCrdQIArG0CAK2xAgCusQIAr7ECAITsBAACQACABkAAgApAAIAOQACAEkAAgBZAAIAaQACAuHEDALlxAwC6cQMAu3EDALzVAwC93QMAvtUDAL/NAwCw0QIAsdECALLRAgCz0QIAtFEDALVRAwC2UQMAt1EDAB5AAICz6QIAIkAAgL6ABAC2NQIAJkAAgCpAAIC14QIAuhECALsRAgAuQACAMkAAgL6RAwC/kQMAvAECAL0BAgA2QACAOkAAgKOlAgA+QACApa0CAEJAAIBGQACApnkCAEpAAIBOQACAq10CAKpdAgCtTQIArE0CAK/dAwCu3QMAqNUCAKndAgCqLQEAqyUBAKw9AQCtJQEAri0BAK8lAQBSQACAVkAAgFpAAIBeQACAYkAAgGpAAIBuQACAckAAgLiFAQC5iQEAup0BALuVAQC8sQEAvbEBAL55AAC/eQAAsF0BALHlAQCy4QEAs/kBALTpAQC13QEAttUBALe9AQDh8A4AdkAAgOMUDgB6QACAgb0AAIC9AAB+QACAgq0AAIYABACH7AUAgkAAgIZAAICKQACAjkAAgO9gDgCSQACAlkAAgJpAAICFXH0AnkAAgKJAAIDjZAEApkAAgOG0AQCqQACA76AOAK5AAICmPgCAhPgFALJAAIC2QACAukAAgLMlBgBmQACAvkAAgMJAAIDGQACAtiUGALU1BgDKQACAu6EGALoZBgDOQACA0kAAgL+ZBgC+rQYAva0GALy1BgCCbQAA7zAEAIBVAACBZQAAvlwDANZAAICG+AAAh2wDANpAAIDeQACA4kAAgOZAAIDqQACA40QEAO5AAIDhjAcAo6UGAPJAAID2QACA+kAAgP5AAICmpQYApbUGAAJBAICrIQYAqpkGAAZBAIAKQQCArxkGAK4tBgCtLQYArDUGAA5BAICz+QcAEkEAgBZBAIC2SQcAGkEAgB5BAIC1UQcAulEHALtRBwAiQQCAJkEAgL41BwC/OQcAvEUHAL09BwCoNQYAqT0GAKo1BgCriQYArJ0GAK2NBgCusQYAr7EGACpBAIAuQQCAMkEAgDZBAICADQAAgbEAAIKxAAA6QQCAuKEGALmtBgC6vQYAu7UGALytBgC9XQEAvlUBAL9NAQCw0QYAsdEGALLVBgCzrQYAtLUGALW5BgC2qQYAt6UGAKO9BgA+QQCAQkEAgISEAgC+kAEApg0GAKUVBgBKQQCAqxUGAKoVBgCGCAAAh3wBAK99BgCucQYArXkGAKwBBgBOQQCAs60BAFJBAIBWQQCAtqkBAFpBAIBeQQCAta0BALptAQC7dQEAYkEAgGZBAIC+XQEAvzUBALxlAQC9VQEAqGECAKlhAgCqYQIAq2ECAKxhAgCtbQIArp0CAK+VAgBqQQCAbkEAgHJBAIB2QQCAekEAgH5BAICCQQCAhkEAgLiVAgC5nQIAuqECALuhAgC8cQMAvXEDAL5xAwC/cQMAsO0CALH1AgCy9QIAs8UCALTdAgC1tQIAtrECALexAgCKQQCAjkEAgJJBAICj5QIAlkEAgKXlAgCm4QIAmkEAgJ5BAICiQQCAqiUCAKs9AgCsLQIArR0CAK4VAgCvfQIApkEAgKpBAICuQQCAhEB8AIAVAACBHQAAggUAALJBAIC+7HwAukEAgIZIfQCHCAMAvkEAgMJBAIDGQQCAykEAgKidAgCpxQIAqsECAKvBAgCsxQIArc0CAK7xAgCv8QIAzkEAgNJBAIDWQQCA2kEAgMkAAADeQQCA4kEAgOZBAIC4wQEAucEBALrBAQC73QEAvM0BAL31AQC+/QEAv50BALBBAQCxQQEAskEBALNBAQC0QQEAtUEBALZBAQC3QQEA4TgGAOpBAIDjaAYA7kEAgPJBAID2QQCA+kEAgISUfQC+rHwA/kEAgAJCAIAGQgCAvrh/AApCAIDvEAEADkIAgBJCAIAWQgCAGkIAgB5CAIDhkAEAIkIAgONEAAAqQgCAgS0AAIAtAADvgAAAgjkAAC5CAIAyQgCA9j8AgDZCAIDhsH8AtkEAgOPUfAA6QgCAJkIAgD5CAICGuAAAh9QCAEJCAIBGQgCASkIAgE5CAIBSQgCAVkIAgO8gfABaQgCAs4l9AF5CAIBiQgCAZkIAgGpCAIC2jX0AtY19AG5CAIC7RX4AukV+AHJCAIB2QgCAv0V+AL5FfgC9VX4AvFV+AKNJfQB6QgCAfkIAgIJCAICGQgCApk19AKVNfQCKQgCAq4V+AKqFfgCOQgCAkkIAgK+FfgCuhX4ArZV+AKyVfgCCbQAAszF+AIBVAACBZQAAtvF/AITcAwCWQgCAtSF+ALrNfwC70X8AhgAEAIfUAAC+dX8Av3l/ALzBfwC9wX8AqOV/AKn1fwCq/X8Aq/V/AKztfwCtNX4Arj1+AK81fgCaQgCAnkIAgKJCAICmQgCAqkIAgK5CAICyQgCAtkIAgLjZfgC54X4AuuF+ALvhfgC85X4Avel+AL6ZfgC/mX4AsE1+ALFRfgCyUX4As1F+ALT1fgC1+X4Atul+ALfpfgCjdX8AukIAgL5CAIDCQgCAxkIAgKa1fgClZX8AykIAgKuVfgCqiX4AzkIAgNJCAICvPX4ArjF+AK2FfgCshX4A1kIAgLMxfgDaQgCA3kIAgLbFAQDiQgCA5kIAgLXRAQC6yQEAu8kBAOpCAIDuQgCAvs0BAL+xAQC8yQEAvckBAKjdfQCp9X0Aqv19AKvxfQCsHQIArQECAK45AgCvOQIA8kIAgPZCAID6QgCA/kIAgIIFAAACQwCAgBEAAIERAAC4EQIAuRkCALohAgC7IQIAvNUCAL3dAgC+1QIAv80CALBJAgCxSQIAslkCALNZAgC0TQIAtTECALYxAgC3MQIAvgADAKNxfQCEiAIAvoAEAKaFAgAKQwCADkMAgKWRAgCqiQIAq4kCAIYoBACHDAMAro0CAK/xAgCsiQIArYkCABJDAICEyAMAhcwFALPlAwAWQwCAteUDALbtAwAaQwCAHkMAgCJDAIC6bQMAu2UDALx9AwC9ZQMAvmUDAL9VAwAmQwCAKkMAgL8ABACjJQIALkMAgKUlAgCmLQIAMkMAgDZDAIA6QwCAqq0CAKulAgCsvQIAraUCAK6lAgCvlQIAPkMAgEJDAIBGQwCASkMAgE5DAIDjzAMAUkMAgOGsAQBWQwCA7xwDAFpDAIBeQwCAYkMAgGZDAIBqQwCAbkMAgOFwfwBGQQCA4wR+AHJDAIB6QwCA4ZQBAH5DAIDjWAEAgNkAAIHZAACCJQAA7+R+AIJDAICGQwCA7+B+AIpDAICzAQEAjkMAgIboBwCHLAQAkkMAgLY1AQC1BQEAlkMAgLvxAAC64QAAmkMAgJ5DAIC/sQAAvtEAAL3ZAAC84QAABkMAgHZDAICiQwCApkMAgKEBBACgEQQAoxkAAKLFBACotQYAqb0GAKrpBgCr/QYArO0GAK3VBgCu3QYArz0HALBFBwCxVQcAslUHALNtBwC0dQcAtRUHALYdBwC3FQcAuC0HALk1BwC6MQcAuw0HALwZBwC9GQcAvgkHAL8JBwCjQQYAqkMAgK5DAICyQwCAtkMAgKZ1BgClRQYAukMAgKuxBwCqoQcAj8ltAL5DAICv8QcArpEHAK2ZBwCsoQcAld11AJTBdACXzXAAli1zAJFdaACQVWgAk9l0AJJNaQCd5XgAnB17AJ9tBwCeuXgAmR1/AJhVcACboXwAmvl8AIJhbACDhWkAwkMAgMZDAICGEXUAhxF1AISVaQCFjWgAij10AIvFcgDKQwCAzkMAgI7dfgCPMX0AjD1xAI2dcQCSGX0Ak716ANJDAIDvkAkAltUGAJdRBQCUXXkAlQl5AJpxBQCbvQUA1kMAgNpDAIDeQwCA4agFAJx5AQDjuAgAoYUBAOJDAICjqQ0AogEMAKUBCACkOQ0Ap6kJAKa9CQCppRUAqAEUAKsBFACq/RUArbkRAKyxEQCvARwArqEQALH9HACw5R0As+kZALIBGAC1ASQAtH0ZAIQUAAC+FAAAgI0AAIGVAACCbQAA6kMAgIZQDwCHZAAA7kMAgPJDAIC61QcAu90HALjBBwC5wQcAvjEEAL8xBAC88QcAvfEHALKtBwCztQcAsK0HALGlBwC2nQcAt/UHALSlBwC1lQcAqmkHAKtpBwCoaQcAqWkHAK5pBwCvaQcArGkHAK1pBwD2QwCA+kMAgP5DAIACRACABkQAgApEAIAORACAEkQAgKgRBQCpHQUAqjkFAKs5BQCsLQUArVEFAK5JBQCvQQUAFkQAgBpEAIAeRACAIkQAgCZEAIAqRACALkQAgDJEAIC4XQIAuWkCALrBAwC7wQMAvPkDAL35AwC+kQMAv7UDALAJBQCxCQUAsuECALPhAgC0dQIAtX0CALZ1AgC3bQIAs7EEAIQAAgC+BA0ANkQAgDpEAIC20QQAtaUEAD5EAIC7zQQAus0EAEJEAIBGRACAv7kDAL6xAwC9NQMAvDUDAEpEAICj9QQATkQAgFJEAICmlQQAWkQAgF5EAICl4QQAqokEAKuJBACHqA0AhswMAK71AwCv/QMArHEDAK1xAwDhUAYA4TQHAONAAADjWAcAgNEAAIHdAACC1QAAYkQAgGZEAIBqRACAbkQAgHJEAIB2RACAekQAgO+cAADvyAcAfkQAgIJEAICzNQIAhkQAgLW1AQCKRACAjkQAgLa1AQC+7AwAkkQAgLuRAQC6mQEAvVEBALyJAQC/UQEAvlkBAKjtDQCp/Q0AqvUNAKttDgCsdQ4ArX0OAK51DgCvbQ4AVkQAgJZEAICaRACAnkQAgKJEAICmRACAqkQAgK5EAIC49Q4Auf0OALr1DgC7QQ8AvEEPAL1JDwC+cQ8Av3EPALAVDgCxHQ4AshUOALPNDgC01Q4Atd0OALbVDgC3zQ4Ao30NALJEAIC2RACAukQAgL5EAICm/Q4Apf0OAMJEAICr2Q4AqtEOAISoAgDGRACArxkOAK4RDgCtGQ4ArMEOAIBNAACBVQAAglUAALNRDwDKRACAtXEPALZxDwDORACAhuAAAIcEAwC6XQ8Auy0PALw1DwC9OQ8Avi0PAL8lDwCoVQ4AqV0OAKqVDgCrrQ4ArLUOAK29DgCutQ4Ar60OANJEAIDWRACA2kQAgN5EAIDiRACA5kQAgOpEAIDuRACAuGkBALlpAQC6eQEAu3kBALxpAQC9aQEAvt0BAL/VAQCw1Q4AsaUOALKtDgCzoQ4AtKUOALWtDgC2nQ4At1kBAKMdDgDyRACA9kQAgOZDAID6RACApj0OAKU9DgD+RACAq2EOAKoRDgACRQCABkUAgK9pDgCuYQ4ArXUOAKx5DgAKRQCADkUAgBJFAIAWRQCAGkUAgB5FAIAiRQCAJkUAgIANAACBFQAAgh0AACpFAIAuRQCAMkUAgIR4AQC+FAAA4xQPADpFAIDh4A0AhAADAIawBACHFAMAPkUAgEJFAIBGRQCASkUAgE5FAIBSRQCA78APAFZFAIBaRQCAXkUAgGJFAIBmRQCAakUAgLNtAwBuRQCAtX0DALZ1AwByRQCAdkUAgHpFAIC6UQMAu1EDALz1AwC9/QMAvukDAL/hAwB+RQCAgkUAgIZFAICKRQCAjkUAgJJFAICWRQCAmkUAgKhxAgCpeQIAqokDAKuJAwCsmQMArZkDAK6JAwCviQMAsPkDALH5AwCyTQMAs0UDALRBAwC1SQMAtnEDALdxAwC4IQMAuSEDALohAwC7IQMAvCEDAL0hAwC+IQMAvyEDAICdAQCBEQAAghEAAIQEBQDvFAAAnkUAgKJFAIC+EAUA48gAAKpFAIDh0AEArkUAgLJFAIC2RQCAukUAgL5FAICqeQIAq3kCAIboBACHYAUArsECAK/JAgCs3QIArdUCAMJFAICjRQIAxkUAgMpFAICmXQIAzkUAgNJFAIClVQIA1kUAgNpFAIDeRQCA4kUAgOZFAIDqRQCA7kUAgO+EDgC+rAQA4dAOAPJFAIDjFAEA9kUAgPpFAID+RQCAAkYAgLPdAQAGRgCACkYAgA5GAIASRgCAtv0BALX9AQAaRgCAu90BALrdAQCE4AQAHkYAgL+hAQC+vQEAvb0BALy9AQCoBQYAqR0GAKoVBgCrLQYArDUGAK09BgCuNQYArykGAKZFAICC9QcAgeUHAIDlBwAWRgCAIkYAgIYcAACHsAMAuCUGALnFBgC6zQYAu8UGALzdBgC9xQYAvs0GAL/FBgCwWQYAsVkGALIpBgCzKQYAtDkGALUlBgC2JQYAtx0GAKOdBgAmRgCAKkYAgC5GAIAyRgCApr0GAKW9BgA2RgCAq50GAKqdBgA6RgCAPkYAgK/hBgCu/QYArf0GAKz9BgBCRgCAs/UHAEZGAIBKRgCAtu0HAE5GAIBSRgCAteUHALqNBwC7kQcAVkYAgFpGAIC+dQcAv30HALyBBwC9fQcAqCUGAKkpBgCqOQYAqzkGAKwpBgCtKQYArnkGAK91BgBeRgCAYkYAgGZGAIBqRgCAbkYAgHJGAIB2RgCAekYAgLjVBgC53QYAuuEGALv9BgC85QYAve0GAL7lBgC/mQYAsA0GALERBgCyEQYAs+0GALT1BgC1/QYAtvUGALftBgCjsQYAgi0AAIEVAACAsQAANkUAgKapBgCloQYAfkYAgKvVBgCqyQYAgkYAgL5oAQCvOQYArjEGAK05BgCsxQYAikYAgLPxAQCGaAAAh3wBALZdAQCORgCAkkYAgLVVAQC6SQEAu0kBAJZGAICaRgCAvj0BAL8hAQC8OQEAvTUBAJ5GAICiRgCAhAQDAL6AHACmRgCA4RwGAKpGAIDjAAYAvwguAK5GAICyRgCA78gHALZGAIC6RgCAvkYAgMJGAIDGRgCAykYAgKN9AgDORgCApdkCANJGAIDWRgCAptECANpGAIDeRgCAq8UCAKrFAgCtuQIArLUCAK+tAgCusQIAqW0FAKhZBQCrDQIAqrkCAK0dAgCsHQIArwUCAK4NAgC+aB0A4kYAgOZGAIDqRgCAgB0AAIEJAACCmQEA7kYAgLnhAwC4KQIAu+EDALrpAwC94QMAvPkDAL/hAwC+6QMAsU0CALBNAgCzIQIAsi0CALUlAgC0OQIAtxECALYlAgCowQIAqdECAKrRAgCr5QIArP0CAK0VAQCuHQEArw0BAPJGAID6RgCA/kYAgAJHAIAGRwCACkcAgA5HAIASRwCAuAUBALkJAQC6HQEAuxUBALwxAQC9MQEAvv0BAL/1AQCweQEAsUEBALJBAQCzXQEAtEUBALVNAQC2RQEAtz0BAIagHQCHxB0AFkcAgO/YAAAaRwCAHkcAgCJHAIDvxAYAhGwcAOH0BgAmRwCA47AGACpHAIDhlAEALkcAgONEBgCzGQIAMkcAgDZHAIA6RwCAhewsALbVAQC1NQIAPkcAgLvFAQC6/QEAQkcAgEZHAIC/yQEAvsEBAL3JAQC81QEAo9kdAPZGAIBKRwCATkcAgFJHAICmFR4ApfUdAFZHAICrBR4Aqj0eAFpHAIBeRwCArwkeAK4BHgCtCR4ArBUeAIBpAACBaQAAggUAAGJHAIBmRwCAakcAgIcQAwCGfAMAbkcAgHJHAIB2RwCAekcAgH5HAICCRwCAhkcAgIpHAICopR8Aqa0fAKqlHwCrvR8ArKUfAK2tHwCupR8ArxUfAI5HAICSRwCAlkcAgJpHAICeRwCAokcAgKZHAICqRwCAuA0fALkZHwC6IR8AuyEfALzZAAC92QAAvskAAL/BAACwcR8AsXEfALJxHwCzRR8AtEEfALVNHwC2PR8AtzUfALMtHgCuRwCAskcAgLZHAIC6RwCAti0eALUtHgC+RwCAu7UeALq1HgDCRwCAxkcAgL+JHgC+hR4AvZEeALylHgCCKQAAo2keAIAdAACBFQAApmkeAMpHAIDORwCApWkeAKrxHgCr8R4A0kcAgITgAQCuwR4Ar80eAKzhHgCt1R4AqNUBAKnlAQCq7QEAq+UBAKz9AQCt5QEAru0BAK/lAQC+oAEAhkYAgNZHAIDaRwCAhhAAAId0AQDeRwCA4kcAgLh9AQC5wQAAusEAALvBAAC8wQAAvckAAL7xAAC/8QAAsJ0BALFFAQCyTQEAs0UBALRdAQC1RQEAtk0BALdFAQDmRwCA6kcAgO5HAIDyRwCA9kcAgO80AgDv7B4A+kcAgOHwHQDj4AIA4zAeAOGEAQD+RwCAAkgAgAZIAIAKSACAsyUCAJQAAAAOSACAEkgAgBZIAIC2JQIAtTUCABpIAIC7wQIAuhkCAB5IAIAiSACAv8ECAL7ZAgC90QIAvNkCACZIAIAqSACALkgAgKPpAgAySACApfkCAKbpAgA2SACAOkgAgD5IAICq1QIAqw0CAKwVAgCtHQIArhUCAK8NAgCAYQAAgWEAAIIFAABCSACASkgAgIQABAC+FAQATkgAgIbABACHUAMAUkgAgFZIAIBaSACAXkgAgGJIAIBmSACAqK0CAKm9AgCqtQIAqw0BAKwVAQCtHQEArhUBAK8NAQCE7AQAakgAgG5IAIBySACAdkgAgHpIAIB+SACAgkgAgLgdAQC5LQEAuiUBALvNAQC81QEAvd0BAL7JAQC/wQEAsH0BALFVAQCyXQEAs1UBALRNAQC1PQEAtjUBALctAQDhGB4AhkgAgOM4HgCKSACAjkgAgJJIAICWSACAmkgAgJ5IAICiSACAvmAEAKZIAICBdQAAgHUAAO/gHwCCbQAAqkgAgK5IAICG6AQAh3wFALJIAIDhkAEAukgAgOOgAAC+SACAwkgAgMZIAIDvtAAAykgAgM5IAIDSSACA1kgAgLUFBgBGSACAtkgAgLYFBgDaSACA3kgAgLOlBQDiSACAvRkGALwRBgC/YQYAvhEGAOZIAIDqSACAuwkGALohBgCj/QUA7kgAgPJIAID2SACA+kgAgKZdBgClXQYA/kgAgKtRBgCqeQYAAkkAgAZJAICvOQYArkkGAK1BBgCsSQYAqFEGAKlZBgCqYQYAq2EGAKxhBgCtYQYArmEGAK9hBgAKSQCADkkAgBJJAIAWSQCAgA0AAIGxAQCCsQEAGkkAgLhNBwC5VQcAul0HALtVBwC8TQcAvXUHAL59BwC/cQcAsMUHALHNBwCyxQcAs90HALTFBwC1zQcAtsUHALd5BwCz6QcAHkkAgCJJAICEwAEAvtgBALbhBwC16QcAJkkAgLsJBgC6AQYAhogAAIesAQC/CQYAvgEGAL0JBgC8EQYAKkkAgKOtBwAuSQCAMkkAgKalBwA2SQCAOkkAgKWtBwCqRQYAq00GAD5JAIBCSQCArkUGAK9NBgCsVQYArU0GAKhZBgCpZQYAqm0GAKtlBgCsYQYArWEGAK5hBgCvYQYAhKwBAEZJAIBKSQCATkkAgFJJAIBWSQCAWkkAgF5JAIC4kQEAuZkBALqhAQC7oQEAvHEBAL1xAQC+cQEAv3EBALDxAQCx8QEAsvUBALPdAQC0xQEAtbEBALaxAQC3sQEAs+UFAGJJAIBmSQCAakkAgG5JAIC24QUAtekFAHJJAIC7NQIAujUCAHZJAIB6SQCAv3UCAL4BAgC9CQIAvCECAH5JAICjoQUAgkkAgIZJAICmpQUAikkAgI5JAIClrQUAqnECAKtxAgCSSQCAvigDAK5FAgCvMQIArGUCAK1NAgCA1QAAgd0AAILhAACaSQCA4yABAJ5JAIDhqAEAokkAgO80AgCmSQCAhggMAIdoAwCsAAAAqkkAgK5JAICySQCAs40DALZJAIC6SQCAhIAMAL5JAIC2vQMAtYEDAMJJAIC7TQMAuk0DAMZJAIDKSQCAv00DAL5NAwC9TQMAvE0DAKhBAgCpTQIAqkUCAKtZAgCsSQIArX0CAK51AgCvuQIAvmgNAM5JAIDSSQCA1kkAgIRsDADaSQCA3kkAgOJJAIC4TQEAuVUBALpVAQC7ZQEAvH0BAL0VAQC+EQEAvxEBALDJAgCxyQIAstkCALPZAgC0yQIAtckCALZ9AQC3dQEA4XgHAOOYAADjuAYA4VwGAOZJAIDqSQCA7kkAgPJJAID2SQCA+kkAgP5JAIACSgCA7AAAAO9cAADv6AYACkoAgIFpAACAYQAAo4UCAIJhAACliQIADkoAgBJKAICmtQIAhkAMAIfEDACrRQIAqkUCAK1FAgCsRQIAr0UCAK5FAgCojQ4AqZEOAKqVDgCrqQ4ArKUOAK2tDgCupQ4Ar9kOAAZKAIAWSgCAGkoAgB5KAIAiSgCAJkoAgCpKAIAuSgCAuHUPALl9DwC6dQ8Au90PALzFDwC9zQ8AvsUPAL/9DwCwqQ4AsbUOALK1DgCzhQ4AtJ0OALVRDwC2UQ8At1EPALMdDgAySgCANkoAgDpKAIA+SgCAti0OALUtDgBCSgCAu3EOALptDgBGSgCASkoAgL+VDwC+WQ4AvVEOALxhDgBOSgCAo1kOAFJKAIBWSgCApmkOAFpKAIBeSgCApWkOAKopDgCrNQ4AYkoAgGZKAICuHQ4Ar9EPAKwlDgCtFQ4AqL0OAKnRDgCq0Q4AqykBAKw5AQCtOQEArikBAK8pAQCADQAAgRUAAIIdAABqSgCAbkoAgHJKAIC+dAIAdkoAgLjtAQC5hQEAuoEBALuBAQC8hQEAvY0BAL6xAQC/sQEAsFkBALFZAQCy7QEAs+UBALT9AQC15QEAtuUBALfVAQB6SgCAtqkBALWhAQB+SgCAs0kOAIJKAICGOAAAh9wBAL8xAQC+KQEAvSEBALwpAQC7jQEAuo0BAJZJAICGSgCAoxkOAIpKAICOSgCAkkoAgJZKAICm+QEApfEBAJpKAICr3QEAqt0BAJ5KAICiSgCAr2EBAK55AQCtcQEArHkBAKZKAIDv3A8AqkoAgK5KAICySgCAtkoAgLpKAIC+SgCAwkoAgMZKAIDKSgCAzkoAgNJKAIDj6A4A1koAgOGMDgCAEQAAgREAAIIRAACEQAIA2koAgN5KAIDiSgCAvhADAIbABACHRAMA6koAgO5KAIDySgCA9koAgPpKAID+SgCA7yQCAAJLAIAGSwCACksAgA5LAIASSwCAFksAgBpLAICE7AQAHksAgCJLAIAmSwCA4+wCACpLAIDhOAEALksAgLNVAwAySwCANksAgDpLAIA+SwCAth0DALUdAwBCSwCAuwkDALo5AwBGSwCASksAgL/9AAC+/QAAvfkAALwRAwCogQIAqYkCAKqdAgCrsQIArNUCAK3dAgCu1QIAr80CAIDNAQCBCQAAghkAAE5LAIBSSwCAWksAgL5wBQBeSwCAuFkBALlZAQC6aQEAu2kBALx5AQC9eQEAvmkBAL9lAQCwvQIAsY0CALKFAgCzbQEAtHkBALV5AQC2aQEAt2kBAIYgBACHCAUAYksAgGZLAIBqSwCAbksAgHJLAIDvXAAAhOwEAOFcDgB2SwCA44wOAHpLAIB+SwCAgksAgIZLAICjVQIAiksAgI5LAICSSwCAlksAgKYdAgClHQIAmksAgKsJAgCqOQIAnksAgKJLAICv/QEArv0BAK35AQCsEQIAqGkGAKlpBgCqeQYAq3kGAKxpBgCtaQYArp0GAK+VBgBWSwCApksAgKpLAICuSwCAsksAgLZLAIC6SwCAvksAgLj1BgC5+QYAuo0GALuFBgC8nQYAvYUGAL6FBgC/tQYAsO0GALH1BgCy/QYAs/UGALTtBgC10QYAttEGALfRBgCz8QYAghUAAIG1AACAtQAAwksAgLbpBgC14QYAvtQDALsxBgC6KQYAxksAgMpLAIC/FQYAvikGAL0hBgC8KQYAzksAgKO1BgCGyAAAh8gAAKatBgDSSwCA1ksAgKWlBgCqbQYAq3UGANpLAIDeSwCArm0GAK9RBgCsbQYArWUGAKg1BgCpOQYAqoEGAKuBBgCsgQYArYEGAK6BBgCvtQYA4ksAgOZLAIDqSwCA7ksAgPJLAID2SwCA+ksAgP5LAIC4nQYAua0GALqlBgC7aQEAvHkBAL15AQC+aQEAv2kBALDRBgCx0QYAstEGALPRBgC0tQYAtb0GALa1BgC3rQYAswkGAAJMAIAGTACACkwAgA5MAIC2AQYAtQkGABJMAIC7FQYAuhUGABZMAIAaTACAv3kGAL5xBgC9BQYAvAUGAB5MAICjTQYAIkwAgOZKAICmRQYAJkwAgCpMAIClTQYAqlEGAKtRBgAuTACAMkwAgK41BgCvPQYArEEGAK1BBgCB6QMAgN0DAISIAwCC4QMAhrA8AIeIAgC+VAMAOkwAgD5MAIBCTACARkwAgEpMAIBOTACAUkwAgFZMAIBaTACA4/AGAF5MAIDhMAYAhAA8AGJMAIBmTACAakwAgG5MAIByTACAhTQ9AHZMAIB6TACA77AHAH5MAICCTACAhkwAgIpMAICOTACAkkwAgL7EPACWTACAgp0BAIGdAQCAnQEAqA0CAKllAgCqfQIAq3UCAKxZAgCtWQIArpkDAK+ZAwCw6QMAsekDALL5AwCz+QMAtOkDALXpAwC2XQMAt1UDALhtAwC5dQMAunUDALtFAwC8XQMAvTUDAL4xAwC/KQMAmkwAgJ5MAICiTACAqkwAgOFgAwDv9AMA40QCAK5MAICyTACA4zwDAO/0NwDh/AEAtkwAgLpMAIC+TACAwkwAgIZkPwCHaD0AhTQhALOZAwDGTACAtb0DALa1AwDKTACAzkwAgNJMAIC6QQIAu0ECALxBAgC9QQIAvkECAL9BAgDWTACA2kwAgN5MAIDiTACA5kwAgOpMAIDuTACA7/gBAIRoPADhPAYA8kwAgOMcBgD2TACA+kwAgP5MAIACTQCAoxUDAAZNAIAKTQCADk0AgBJNAICmOQMApTEDABpNAICrzQIAqs0CAL5kPgAeTQCAr80CAK7NAgCtzQIArM0CAKgdPgCpJT4Aqi0+AKslPgCsPT4ArSU+AK4tPgCvJT4ApkwAgIL1PwCB5T8AgOU/ABZNAIAiTQCAhgAEAIecAwC4LT4AuTE+ALoxPgC7MT4AvNE+AL3RPgC+0T4Av80+ALBdPgCxIT4Asjk+ALM5PgC0KT4AtSk+ALYZPgC3FT4As6U+ACZNAIAqTQCALk0AgDJNAIC2pT4AtbU+ADZNAIC75T4Aupk+ADpNAIA+TQCAv+0+AL7tPgC97T4AvO0+AEJNAICj4T4ARk0AgEpNAICm4T4ATk0AgFJNAICl8T4Aqt0+AKuhPgBWTQCAWk0AgK6pPgCvqT4ArKk+AK2pPgCPBSUAsyU+AF5NAIBiTQCAtik+AGZNAIBqTQCAtSk+ALp9PgC7RT4Abk0AgHJNAIC+tT4Av70+ALxdPgC9vT4An304AJ5lOQCd8TgAnFE0AJtZNQCaUTUAmfEwAJgNMQCXZTEAlsEwAJVZLQCUTS0Ak+EsAJLZKQCRWSkAkPEoALSlGQC13RgAdk0AgIQIAACwkRUAsQEVALIBGACzvRkAgA0AAIGtAwCCpQMAek0AgKNhAACiHT0AoZk9AKBxPACkxQUApUEEAKYBCACn4QkANkwAgKH1AQCi6QEAo90FAKwBEACtxREArtkRAK85EACoZQgAqQEMAKrZDQCrCQ0AijEuAIuhMwB+TQCAgk0AgI65MwCPETYAjB0yAI1NMgCCJSYAg6krAL5kAwCEYAQAhqEvAIcVLgCEGSoAhZEqAJphPgCb7T4AhsgEAIfcAwCKTQCA4Vw+AJyJAwDjAD4Akmk2AJN5NwCOTQCA7xg+AJZNOwCXuT8AlME7AJVdOgCpnT0AqIk9AKu5PQCqrT0Arak9AKyhPQCvyT0ArqE9AL7oBACSTQCAlk0AgJpNAICeTQCAok0AgKZNAICqTQCAuVk9ALhRPQC7eT0AumU9AL1pPQC8YT0Avx09AL5hPQCxgT0AsLk9ALNpPQCyiT0AtXk9ALRxPQC3aT0AtnE9AKMhPACuTQCAsk0AgLZNAIC6TQCApi08AKUtPAC+TQCAq0E8AKp5PADCTQCAxk0AgK+5PACusTwArbk8AKxZPADKTQCAzk0AgLN9AwDSTQCAtdkDANZNAIDaTQCAttEDAN5NAIDiTQCAu8UDALrFAwC9uQMAvLUDAL+tAwC+sQMA5k0AgOpNAIDuTQCA71wDAIAVAACBHQAAgjEAAO+MPgCE7AQA4fw+APJNAIDjHD4A+k0AgOGUAQD+TQCA4yAAAKP1AwACTgCAh+gEAIZsBAAGTgCAplkDAKVRAwAKTgCAq00DAKpNAwAOTgCAEk4AgK8lAwCuOQMArTEDAKw9AwCGTQCA9k0AgBZOAIAaTgCAHk4AgCJOAIAmTgCAKk4AgKhxBgCpTQYAqo0GAKuFBgCsnQYArYUGAK6NBgCvhQYAsP0GALFBBwCyQQcAs0EHALRBBwC1SQcAtnEHALdxBwC4IQcAuSEHALolBwC7OQcAvCkHAL0VBwC+HQcAv/0HALMlBgAuTgCAMk4AgDZOAIA6TgCAtiUGALU1BgA+TgCAu6UHALoZBgBCTgCARk4AgL+tBwC+pQcAvbUHALy1BwBKTgCAo2EGAE5OAIBSTgCApmEGAFZOAIBaTgCApXEGAKpdBgCr4QcAXk4AgGJOAICu4QcAr+kHAKzxBwCt8QcAqLEGAKm9BgCqzQYAq90GAKzNBgCt/QYArvUGAK8VAQCA+QEAgc0BAILFAQC+ZAIAhpAAAIcAAQBqTgCAbk4AgLjRAQC52QEAuuEBALvhAQC8kQEAvZ0BAL6VAQC/iQEAsG0BALF1AQCyfQEAs3UBALRtAQC18QEAtvEBALfxAQCzRQYAZk4AgHJOAIB2TgCAek4AgLZ9BgC1RQYAfk4AgLuxAQC6qQEAgk4AgIZOAIC/NQEAvqkBAL2hAQC8qQEAik4AgKMBBgCOTgCAkk4AgKY5BgCWTgCAmk4AgKUBBgCq7QEAq/UBAJ5OAICiTgCAru0BAK9xAQCs7QEAreUBAOEoAQCmTgCA41ACAKpOAICuTgCAsk4AgLZOAIC6TgCAvk4AgMJOAIDGTgCAyk4AgIFxAACAGQAA75wCAIJ5AADOTgCA0k4AgITIAgCzxQMA2k4AgLXFAwC2xQMAvhADAIbADACHRAwAuqkDALulAwC8vQMAvaEDAL6hAwC/lQMArhEGAK8ZBgCsAQYArQEGAKqlBgCrEQYAqEU5AKlxOQDeTgCA4k4AgOZOAIDqTgCA7k4AgPJOAID2TgCA+k4AgL7tBwC/TQcAvNEHAL3lBwC63QcAu8EHALg1BgC51QcAtjkGALcNBgC0JQYAtTkGALIxBgCzPQYAsFEGALFRBgCoOQIAqTkCAKqBAgCrgQIArIECAK2JAgCusQIAr7ECAIRsDQD+TgCAvmANAAJPAIAGTwCACk8AgA5PAIASTwCAuE0BALlVAQC6XQEAu1UBALxNAQC9dQEAvn0BAL91AQCwoQIAsa0CALKlAgCzuQIAtKkCALWdAgC2lQIAt3kBAOFUBgDh1AcA4zgGAOOwBwAWTwCAGk8AgB5PAIAiTwCAhOQMACZPAIAqTwCALk8AgDJPAIA2TwCA72wAAO/kBwCjSQIAOk8AgD5PAIBCTwCASk8AgKZJAgClSQIATk8AgKspAgCqJQIAhkgMAIfcDACvGQIAri0CAK0tAgCsMQIAqFEOAKmlDgCqrQ4Aq6UOAKy9DgCtpQ4Arq0OAK+lDgCA5Q8Age0PAILlDwBGTwCAUk8AgFZPAIBaTwCAXk8AgLjVDwC53Q8AutUPALvpDwC8+Q8AvfkPAL7pDwC/6Q8AsN0OALFBDwCyRQ8As10PALRFDwC1TQ8AtkUPALftDwCzJQ4AYk8AgGZPAIBqTwCAbk8AgLYlDgC1NQ4Ack8AgLuFDwC6GQ4Adk8AgHpPAIC/iQ8AvoEPAL2JDwC8kQ8Afk8AgKNhDgCCTwCAhk8AgKZhDgCKTwCAjk8AgKVxDgCqXQ4Aq8EPAJJPAICWTwCArsUPAK/NDwCs1Q8Arc0PAKjRDgCp2Q4AqjkBAKs5AQCsKQEArSkBAK6dAQCvlQEAmk8AgJ5PAICiTwCApk8AgIANAACBtQAAgr0AAKpPAIC4lQEAuZ0BALqhAQC7oQEAvHEAAL1xAAC+cQAAv3EAALDtAQCx9QEAsvUBALPFAQC03QEAtbUBALaxAQC3sQEArk8AgLJPAICzuQEAvsACALWpAQC2TwCAuk8AgLahAQCGgAEAh8QBALs5AQC6IQEAvRkBALwpAQC/eQEAvhEBAKPxAQC+TwCA1k4AgMJPAIDGTwCApukBAKXhAQDKTwCAq3EBAKppAQDOTwCA0k8AgK8xAQCuWQEArVEBAKxhAQDWTwCA2k8AgN5PAIDiTwCA4agBAOZPAIDjQAIA6k8AgL8oFQDuTwCA73QCAPJPAID2TwCA+k8AgP5PAIACUACABlAAgON0DwCEiAMA4TQOAApQAIAOUACAElAAgBZQAICADQAAgRUAAIIRAAAaUACAHlAAgO+kDwAiUACAKlAAgKgZAwCpQQMAqkUDAKtdAwCsTQMArX0DAK51AwCvnQAAhaQVAL58AwCGCAQAhxwDAC5QAIAyUACANlAAgDpQAIC49QAAuf0AALr1AAC7jQAAvIEAAL2BAAC+gQAAv4EAALDlAACx7QAAsuUAALP5AAC07QAAtdEAALbVAAC3zQAAPlAAgEJQAIBGUACAs8ECAEpQAIC1yQIAtvECAE5QAIBSUACAVlAAgLotAQC7JQEAvD0BAL0hAQC+JQEAvxkBAKapAgCESAIAWlAAgKWRAgBeUACAo5kCAGJQAIBmUACArn0BAK9BAQCsZQEArXkBAKp1AQCrfQEAalAAgG5QAIByUACAdlAAgHpQAIB+UACA7+QAAIJQAICGUACAilAAgOMQDgCOUACA4VgOAJJQAICALQAAgREAAIIVAAC+sAUAs3UBAJpQAICHFAUAhmwEAJ5QAIC21QAAtWUBAKJQAIC7/QAAuvUAAKZQAICqUACAv6EAAL69AAC93QAAvN0AAKh9BgCptQYAqr0GAKu1BgCsrQYArRUHAK4dBwCvFQcAllAAgK5QAICyUACAtlAAgLpQAIC+UACAwlAAgMZQAIC4OQcAuTkHALrJBwC7yQcAvNkHAL3ZBwC+zQcAv8UHALBxBwCxeQcAskkHALNJBwC0OQcAtSUHALYhBwC3IQcAozUGAMpQAIDOUACA0lAAgNZQAICmlQcApSUGANpQAICrvQcAqrUHAN5QAIDiUACAr+EHAK79BwCtnQcArJ0HAOZQAIDqUACA7lAAgPJQAID2UACAgj0AAIE9AACAPQAA+lAAgP5QAIACUQCAhKADAL6kAwAGUQCAhvgAAIfgAACoxQYAqdUGAKrVBgCr5QYArP0GAK0xAQCuMQEArzEBAApRAIAOUQCAElEAgBZRAIAaUQCAHlEAgCJRAIAmUQCAuN0BALntAQC65QEAu40BALyVAQC9nQEAvpUBAL+NAQCwUQEAsVEBALJRAQCzUQEAtPUBALX9AQC29QEAt+0BALNdBgAqUQCALlEAgDJRAIA2UQCAtrEBALV1BgA6UQCAu5UBALqVAQA+UQCAQlEAgL85AQC+MQEAvYUBALyFAQClLQYARlEAgEpRAICm6QEATlEAgFJRAICjBQYAVlEAgK3dAQCs3QEAr2EBAK5pAQBaUQCAJlAAgKvNAQCqzQEAXlEAgGJRAICExAMAvwD0AGZRAICCPQAAgT0AAIA9AABqUQCAblEAgHJRAIC+YAMAelEAgH5RAICCUQCAhlEAgIbgHACHAAMA7wwHAIpRAICOUQCAklEAgJZRAICaUQCAnlEAgKJRAICmUQCAqlEAgOHABgCuUQCA4ywHALJRAIC2UQCAulEAgL5RAIDCUQCAxlEAgMpRAIDOUQCA0lEAgKiBAwCpgQMAqoEDAKuBAwCsgQMArYEDAK6BAwCvgQMAsEUDALFNAwCyRQMAs10DALRNAwC1fQMAtnUDALcZAwC4KQMAuTUDALo9AwC7MQMAvAEDAL31AAC+/QAAv+0AALMpAgDWUQCA2lEAgN5RAIDiUQCAtiECALUpAgCEUB0Au6kCALqhAgDqUQCA7lEAgL+ZAgC+qQIAvakCALyxAgCBTQAAgE0AAO+cAwCCXQAAhvAcAId4HQC+EB0A8lEAgPZRAID6UQCA/lEAgAJSAIDhkAEABlIAgONgAwAKUgCADlIAgBJSAIAWUgCAGlIAgB5SAIAiUgCAJlIAgO+UAQCE7BwA4XAGACpSAIDjUAEALlIAgDJSAIA2UgCAOlIAgKPpAgA+UgCAQlIAgEZSAIBKUgCApuECAKXpAgBOUgCAq2kCAKphAgBSUgCAvqgcAK9ZAgCuaQIArWkCAKxxAgCoMR4AqTEeAKoxHgCrMR4ArF0eAK1FHgCuTR4Ar0UeAOZRAICCzR8AgfUfAID9HwBWUgCAWlIAgIYcAACH+AMAuMUeALnNHgC6xR4Au90eALzFHgC9zR4AvsUeAL9ZHwCwPR4AsQUeALINHgCzBR4AtB0eALUBHgC2BR4At/0eALO5HgBeUgCAYlIAgGZSAIBqUgCAtsUeALXVHgBuUgCAu8EeALr5HgByUgCAdlIAgL/FHgC+2R4AvdEeALzZHgB6UgCAo/0eAH5SAICCUgCApoEeAIZSAICKUgCApZEeAKq9HgCrhR4AjlIAgJJSAICunR4Ar4EeAKydHgCtlR4AqCkeAKkpHgCqVR4Aq20eAKx1HgCtfR4ArnUeAK9pHgCWUgCAmlIAgJ5SAICiUgCAplIAgKpSAICuUgCAslIAgLjpHgC59R4Auv0eALv1HgC87R4AvZEeAL6RHgC/kR4AsB0eALHlHgCy7R4As+UeALT9HgC15R4Atu0eALflHgCz3R4AtlIAgLpSAIC+UgCAwlIAgLb9HgC1/R4AhFgBALshHgC62R4AvigAAMpSAIC/IR4AvjkeAL0xHgC8OR4AgU0AAIBNAACjlR4Agl0AAKW1HgDGUgCAzlIAgKa1HgB2UQCA0lIAgKtpHgCqkR4ArXkeAKxxHgCvaR4ArnEeAIYABACHRAMAs4ECANZSAIC1gQIA2lIAgN5SAIC2gQIAiAAAAOJSAIC74QIAuu0CAL3lAgC8+QIAv9ECAL7lAgDmUgCA6lIAgIREAwC+jAMA4UgCAO5SAIDjAAIA7/wfAPJSAIDhPB4A79wCAONgHwD2UgCA+lIAgP5SAIACUwCAqQUCAKixAgCrBQIAqgUCAK0NAgCsBQIArzUCAK41AgCEbAUABlMAgApTAIAOUwCAElMAgBZTAIAaUwCAHlMAgLnpAwC44QMAu/kDALrhAwC96QMAvOEDAL9dAwC+4QMAsSkCALAlAgCzPQIAsiECALUZAgC0LQIAt9kDALYRAgAiUwCAJlMAgCpTAICjhQMALlMAgKWFAwCmhQMAMlMAgDpTAIA+UwCAqukDAKvlAwCs/QMAreEDAK7hAwCv1QMAgEkAAIFVAACCVQAAo6kCAL6YBAClQQEApkEBAEJTAICG4AUAh+AFAKotAQCrOQEArBEBAK0FAQCuDQEArwUBAEZTAIBKUwCATlMAgO/cAABSUwCAVlMAgFpTAIDviB4AhCwHAOHsHgBeUwCA4xweAGJTAIDhlAEAZlMAgOMwAACzJQIAhWDmAGpTAIBuUwCAclMAgLbNAQC1zQEAdlMAgLu1AQC6oQEAelMAgH5TAIC/iQEAvoEBAL2JAQC8nQEANlMAgIJTAICGUwCAilMAgI5TAICSUwCAllMAgJpTAICoAQcAqQEHAKp1BwCrrQcArLUHAK29BwCuqQcAr6kHALDZBwCx7QcAsvkHALP1BwC0mQcAtZkHALaJBwC3gQcAuIkHALmJBwC6bQAAu2UAALx9AAC9ZQAAvm0AAL9lAACBCQAAgJkAAJ5TAICCHQAAolMAgKZTAICqUwCArlMAgKgNBQCpfQUAqk0FAKuhBgCspQYAra0GAK6dBgCv/QYAsIUGALGRBgCyqQYAs70GALSlBgC1rQYAtqUGALd5BgC4SQYAuUkGALpZBgC7WQYAvEkGAL1JBgC++QcAv/kHALNdBgCyUwCAhigCAIcsAQC2UwCAtp0GALWdBgC6UwCAu4kGALq9BgC+UwCAwlMAgL/9BgC+/QYAvYEGALyNBgDGUwCAoxkGAMpTAIDOUwCAptkGANJTAIDWUwCApdkGAKr5BgCrzQYA2lMAgN5TAICuuQYAr7kGAKzJBgCtxQYAqBkBAKkZAQCqjQAAq50AAKyNAACtvQAArrUAAK/dAADiUwCA5lMAgOpTAIDuUwCA8lMAgPZTAID6UwCA/lMAgLhpAAC5aQAAunkAALt5AAC8aQAAvWkAAL7dAwC/1QMAsKkAALGpAACyvQAAs7UAALSZAAC1mQAAtlkAALdZAAC+LAIAAlQAgAZUAIAKVACADlQAgBJUAIAaVACAHlQAgIAtAACBNQAAgj0AACJUAICGkAwAh+gCACZUAIAqVACAs0UDAC5UAIAyVACANlQAgDpUAIC2fQMAtUUDAD5UAIC7LQMAui0DAEJUAIBGVACAvx0DAL4dAwC9IQMAvCkDAKvNAwCqzQMASlQAgE5UAICv/QMArv0DAK3BAwCsyQMAo6UDAFJUAIBWVACAWlQAgF5UAICmnQMApaUDAGJUAIBmVACAalQAgG5UAIByVACAdlQAgII9AACBPQAAgD0AAHpUAIB+VACAglQAgIRgAwCG0AwAhzADAIpUAICOVACAvkQCAJJUAICWVACAmlQAgOEAAACeVACA46gGAKJUAICE7AwAplQAgO/QAwCqVACArlQAgLJUAIC2VACAulQAgLNtAQC+VACAwlQAgMZUAIDKVACAthEBALVlAQDOVACAuz0BALo1AQDSVACA1lQAgL/9AQC+/QEAvRUBALwVAQDaVACA4fwGAN5UAIDjPAcA4lQAgOZUAIDqVACA7lQAgPJUAIC+bAwA+lQAgP5UAIACVQCABlUAgApVAIDvFAYAgV0AAIBdAACj5QEAgm0AAKXtAQAOVQCAElUAgKaZAQCHqAwAhuQMAKu1AQCqvQEArZ0BAKydAQCvdQEArnUBAKgZDgCpGQ4AqiUOAKs1DgCsLQ4ArVEOAK5RDgCvUQ4AhlQAgPZUAIAWVQCAGlUAgB5VAIAiVQCAJlUAgCpVAIC47Q4AufUOALr1DgC7jQ4AvJUOAL2dDgC+lQ4Av40OALAxDgCxOQ4AsgEOALMBDgC0+Q4AtfkOALbdDgC31Q4AqHkOAKl5DgCqjQ8Aq4UPAKydDwCtgQ8AroUPAK+5DwAuVQCAMlUAgDZVAIA6VQCAPlUAgEJVAIBGVQCASlUAgLiRDwC5mQ8AuqEPALuhDwC8UQ8AvV0PAL5JDwC/SQ8AsM0PALHVDwCy3Q8As9UPALTNDwC1sQ8AtrEPALexDwCzBQ4ATlUAgFJVAIBWVQCAWlUAgLYBDgC1FQ4AXlUAgLsRDgC6CQ4AYlUAgISgAQC/dQ4AvgkOAL0BDgC8CQ4AgmkAAKNBDgCAWQAAgVEAAKZFDgC+WAEAZlUAgKVRDgCqTQ4Aq1UOAIbIAACHrAEArk0OAK8xDgCsTQ4ArUUOAGpVAIBuVQCAclUAgHZVAIB6VQCAflUAgBZUAICCVQCAqAkOAKkJDgCqGQ4AqxkOAKwJDgCtYQ4ArmEOAK+VAQCw7QEAsfUBALL9AQCz9QEAtO0BALV1AQC2fQEAt3UBALhNAQC5VQEAul0BALtVAQC8TQEAvfEAAL7xAAC/8QAAhlUAgIpVAICOVQCAklUAgJZVAIDj6A4AmlUAgOE0DgC+AAQA79wPAJ5VAICiVQCAplUAgKpVAICuVQCAslUAgLPxDQC2VQCAulUAgL5VAIDCVQCAtoENALXhDQDGVQCAu1ECALpJAgDKVQCAzlUAgL/RAgC+SQIAvUECALxJAgCjMQ0A0lUAgISIAwDaVQCA3lUAgKZBDQClIQ0A4lUAgKuRAgCqiQIA5lUAgOpVAICvEQIArokCAK2BAgCsiQIAgKkAAIGpAACCTQAA7lUAgOFkEgDjTAIA4wgLAOGsAQDyVQCA7zwCAO8YFgD2VQCAhlAGAIdIAwD6VQCA/lUAgKiBAgCpgQIAqoECAKuBAgCsgQIArYECAK6FAgCvHQEAAlYAgAZWAIAKVgCADlYAgBJWAIAWVgCAGlYAgIS4BQC4dQEAuX0BALp1AQC7CQEAvBkBAL0ZAQC+CQEAvwEBALBlAQCxbQEAsmUBALN9AQC0aQEAtV0BALZVAQC3TQEAHlYAgCJWAIAmVgCAKlYAgC5WAIAyVgCA7zQAAO/ADgDhXA4A4UwPAOOUAADjnA4ANlYAgIJlAACBfQAAgH0AADpWAIA+VgCAvsQHALNFAgBCVgCAtUUCALZNAgBKVgCAhkAGAIeQBAC67QEAu+UBALz9AQC95QEAvuEBAL/VAQCflQgAngUIAJ3dDQCcPQwAmzEMAJr1DQCZ7RAAmD0QAJfVEQCWsRUAlQUUAJTlFQCTtRkAkjEYAJE5GACQDRwAj2EcANZVAICz1QYATlYAgLX9BgBGVgCAUlYAgLaRBgBWVgCAWlYAgLuVBgC6lQYAvVUHALxVBwC/VQcAvlUHAF5WAIBiVgCAqo0GAKuFBgCsnQYArYUGAK6BBgCvtQYAhKgAAGZWAIBqVgCAoyUFAG5WAIClJQUApi0FAHJWAIB2VgCAelYAgH5WAICCVgCAhlYAgIpWAICOVgCAklYAgJZWAICaVgCAnlYAgKJWAICjqQUAotEEAKHZBACgZQUAgiEdAIM1HQCmVgCAqlYAgIaVGACH3RQAhBkZAIUZGQCKDRUAi7EUAK5WAICyVgCAjsURAI/VDACMzRAAjR0RAJJhDQCTdQ0AvkwAALpWAICWxQkAl80EAJSNDACVXQkAmkEFAJtBBQCGyP8Ah0wAAIFZAACAeQAAnCEEAIJRAAChxQEAvlYAgKMB/ACi2QEApRX9AKS1/QCnufkApgH4AKkJ+AColfkAqwX1AKqt9QCtsfEArAHwAK8d8ACurfEAseHtALAB7ACzAegAsv3sALVd6QC09ekAwlYAgMZWAIDKVgCAzlYAgNJWAIDWVgCA2lYAgN5WAIDiVgCA5lYAgKiNBACplQQAqpUEAKulBACsvQQArdkEAK75BACv8QQAhGz8AOpWAIDuVgCA8lYAgPZWAID6VgCA/lYAgAJXAIC4eQUAucUFALrNBQC7xQUAvN0FAL3FBQC+zQUAv+0FALCZBACxmQQAskkFALNJBQC0WQUAtVkFALZJBQC3SQUAox0EAL7M/AAGVwCAClcAgA5XAICmWQQApTUEABJXAICrXQQAql0EABZXAIAaVwCAr50FAK6dBQCtnQUArJ0FAB5XAICznQIAIlcAgCpXAIC2UQIALlcAgDJXAIC1uQIAukkCALtVAgCGSP0Ah8D8AL41AgC/PQIAvEUCAL09AgCo3QQAqUkDAKpRAwCrbQMArHUDAK2VAwCunQMAr7kDAICNAQCB5QEAguEBADZXAIA6VwCAPlcAgEJXAIBGVwCAuJUDALmdAwC6lQMAu60DALy1AwC9vQMAvrUDAL9VAgCwyQMAsdUDALLVAwCzrQMAtLUDALW9AwC2tQMAt60DAEpXAIBOVwCAo9EDAFJXAICl9QMAVlcAgFpXAICmHQMAXlcAgGJXAICrGQMAqgUDAK1xAwCsCQMAr3EDAK55AwDhKAcAZlcAgOPkBgBqVwCA4SgGAG5XAIDjaAEAclcAgHZXAIB6VwCA71gAAH5XAICCVwCAhlcAgO/IBgCKVwCAqE39AKmB/QCq0f0Aq9H9AKzx/QCt8f0ArvH9AK/x/QAmVwCAghEAAIEZAACA0f8AjlcAgJJXAICEdAMAvnQDALh1/gC5ff4AunX+ALvF/gC83f4AvcX+AL7F/gC/9f4AsJH9ALGR/QCykf0As5H9ALRV/gC1Xf4AtlX+ALdN/gCzWf0AllcAgIasAACHRAMAmlcAgLZx/QC1ef0AnlcAgLtV/QC6Vf0AolcAgKZXAIC/mf4AvpH+AL1F/QC8Rf0AqlcAgKMd/QCuVwCAslcAgKY1/QC2VwCAulcAgKU9/QCqEf0AqxH9AL5XAIDCVwCArtX+AK/d/gCsAf0ArQH9AKjN/wCp0f8AqtH/AKsh/gCsIf4ArSH+AK4h/gCvIf4AxlcAgMpXAIDOVwCA0lcAgNZXAIDaVwCA3lcAgOJXAIC4jf4AuZH+ALqV/gC7rf4AvLX+AL25/gC+qf4Av6n+ALDh/gCx4f4AsuX+ALP5/gC06f4AtdX+ALbd/gC3uf4As1n/AOZXAIC2VgCA6lcAgO5XAIC2of4Atan+APJXAIC7Jf4AuiX+APZXAID6VwCAvxH+AL4t/gC9Lf4AvDH+AIIZAACjHf8AgGUAAIEZAACm5f4A/lcAgAJYAICl7f4AqmH+AKth/gCEZAEAviAAAK5p/gCvVf4ArHX+AK1p/gAKWACA4zT+AA5YAIDhfP0AhrAEAIcIAwASWACAFlgAgBpYAIAeWACAhCQDAIQkBAAiWACA70j+ACZYAIAqWACAs+kCAC5YAIC+RAQAvkAFADJYAIC2nQIAtZkCADZYAIC7iQIAur0CADpYAIA+WACAv1kDAL5RAwC9WQMAvJECAKkdAgCoFQIAqyUCAKolAgCtWQIArFUCAK9NAgCuUQIAvmQGAEJYAIBGWACASlgAgE5YAIBSWACAVlgAgFpYAIC5+QMAuPEDALtNAwC68QMAvUEDALxZAwC/cQMAvkEDALEJAgCwPQIAs8kDALIBAgC12QMAtNEDALfJAwC20QMA4ZABAF5YAIDj8AAAYlgAgGZYAICCPQAAgT0AAIA9AABqWACAblgAgHJYAIB6WACAflgAgIJYAIDvLAAAhlgAgKPpAwCKWACAhugEAIdgBQCOWACApp0DAKWZAwCSWACAq4kDAKq9AwCWWACAmlgAgK9ZAgCuUQIArVkCAKyRAwCeWACAolgAgKZYAICqWACArlgAgLJYAIC2WACA71gBAISgBADhVP8AulgAgOOEAQC+WACAwlgAgMZYAIDKWACAs9kBAM5YAICFzBkA0lgAgNZYAIC28QEAtfkBANpYAIC7pQEAutkBAN5YAIDiWACAv50BAL6dAQC9pQEAvK0BAKgBBgCpDQYAqhEGAKsRBgCsMQYArTEGAK4pBgCvJQYAdlgAgILJBwCBwQcAgPEHAOZYAIDqWACAhhwAAIf8AwC47QYAufUGALr9BgC79QYAvO0GAL1RBwC+VQcAv00HALBdBgCxIQYAsjkGALMxBgC0GQYAtRkGALbdBgC31QYAo5kGAO5YAIDyWACA9lgAgPpYAICmsQYApbkGAP5YAICr5QYAqpkGAAJZAIAGWQCAr90GAK7dBgCt5QYArO0GAApZAICz8QcADlkAgBJZAIC2gQcAFlkAgBpZAIC1mQcAuo0HALtlBwAeWQCAIlkAgL59BwC/ZQcAvH0HAL11BwCoLQYAqTUGAKo9BgCrMQYArFUGAK1FBgCuRQYAr3UGACZZAIAqWQCALlkAgDJZAIA2WQCAOlkAgD5ZAIBCWQCAuOkGALn1BgC6/QYAu/UGALztBgC9kQYAvpUGAL+NBgCwDQYAseUGALLtBgCz5QYAtP0GALXlBgC27QYAt+UGAKO1BgBGWQCASlkAgE5ZAIBSWQCApsUGAKXdBgAGWACAqyEGAKrJBgBWWQCAWlkAgK8hBgCuOQYArTEGAKw5BgCASQAAgUkAAIJZAACzRQEAXlkAgLVFAQC2RQEAYlkAgIZAAACHZAAAuikBALslAQC8PQEAvSEBAL4hAQC/FQEAZlkAgGpZAICEBAMAvgAMAOMoBgDv4AIA4RAGAG5ZAIDvkAYA4zwCAHJZAIDh1AEAdlkAgHpZAIB+WQCAglkAgIZZAICKWQCAo8ECAI5ZAIClwQIAklkAgJZZAICmwQIAmlkAgJ5ZAICroQIAqq0CAK2lAgCsuQIAr5ECAK6lAgCpBQIAqLECAKsFAgCqBQIArQ0CAKwFAgCvNQIArjUCAISoDACiWQCAplkAgKpZAICuWQCAslkAgLZZAIC6WQCAuekDALjhAwC7+QMAuuEDAL3pAwC84QMAv10DAL7hAwCxKQIAsCUCALM9AgCyIQIAtRkCALQtAgC32QMAthECAKitAgCp1QIAqtUCAKsNAQCsFQEArQkBAK4xAQCvLQEAvlkAgMJZAIDKWQCAzlkAgNJZAIDWWQCA2lkAgN5ZAIC4IQEAuSEBALrtAQC75QEAvP0BAL3lAQC+7QEAv+UBALBVAQCxXQEAslUBALMtAQC0NQEAtTkBALYtAQC3JQEAgD0BAIGlAACCrQAA79QHAOJZAIDmWQCA6lkAgO8oBwC+LAwA4fQGAO5ZAIDjkAcA8lkAgOGUAQD2WQCA4wwGALMdAgD6WQCAh0QNAIZMDQD+WQCAtskBALXdAQACWgCAu9kBALrRAQAGWgCACloAgL+9AQC+sQEAvbkBALzBAQDGWQCADloAgBJaAIAWWgCAGloAgB5aAIAiWgCAJloAgKgJDwCpCQ8AqhkPAKsZDwCsCQ8ArQkPAK6pDwCvqQ8AsNkPALHtDwCy+Q8As/UPALSVDwC1hQ8AtoUPALe1DwC4jQ8AuWEAALphAAC7YQAAvGEAAL1hAAC+YQAAv2EAAKNdDQCCLQAAgRUAAIAdAAAqWgCApokOAKWdDgAuWgCAq5kOAKqRDgAyWgCANloAgK/9DgCu8Q4ArfkOAKyBDgA6WgCAs/UPAIboAwCHvAMAtu0PAD5aAIBCWgCAteUPALp5DwC7TQ8ARloAgEpaAIC+NQ8AvyUPALxJDwC9RQ8AozEOAE5aAIBSWgCAVloAgFpaAICmKQ4ApSEOAF5aAICriQ4Aqr0OAGJaAIBmWgCAr+EOAK7xDgCtgQ4ArI0OAGpaAIBuWgCAcloAgHZaAIB6WgCAfloAgIJaAICGWgCAiloAgI5aAICSWgCAlloAgIANAACB1QAAgt0AAJpaAICoQQEAqVEBAKpRAQCrZQEArH0BAK2RAACukQAAr5EAAJ5aAICiWgCAhGQBAL5kAQCGkAEAh4QAAKpaAICuWgCAuJEAALmRAAC6kQAAu5EAALyxAAC9sQAAvrEAAL+xAACw8QAAsfkAALLBAACzwQAAtLEAALWxAAC2sQAAt7EAALPZAgCyWgCAvnADAL5EBAC2WgCAthEDALX1AgC6WgCAuz0DALo1AwC+WgCAwloAgL91AwC+dQMAvRUDALwVAwDGWgCAo50CAMpaAIDOWgCAplUDANJaAIDWWgCApbECAKpxAwCreQMA2loAgN5aAICuMQMArzEDAKxRAwCtUQMAqDkDAKk5AwCqjQAAq50AAKyNAACtvQAArrUAAK/dAADiWgCA5loAgOpaAIDuWgCA8loAgPZaAID6WgCA/loAgLhpAAC5aQAAunkAALt5AAC8aQAAvWkAAL7ZAQC/2QEAsKkAALGpAACyvQAAs7UAALSZAAC1mQAAtlkAALdZAAACWwCABlsAgApbAIAOWwCA70QAABJbAICGmAUAh+QCAOOYAACEqAIA4fgBABpbAICAOQAAgTkAAIItAAAeWwCAs0UBACJbAIAmWwCAKlsAgC5bAIC2fQEAtUUBADJbAIC7LQEAui0BADZbAIA6WwCAvx0BAL4dAQC9IQEAvCkBAD5bAIDhUA4AQlsAgOM8DwBGWwCASlsAgE5bAIBSWwCAVlsAgFpbAIDjAAAAXlsAgGJbAIBmWwCAhPQFAO/kDgCuqQEAr6kBAKydAQCtlQEAqpkBAKuZAQBqWwCAblsAgKbJAQByWwCAdlsAgKXxAQCC/QcAo/EBAID9BwCB9QcAFlsAgHpbAIB+WwCAglsAgIZbAICKWwCAhrgDAIeQAwCoDQcAqRkHAKptBwCrZQcArH0HAK1lBwCuZQcAr1UHALAtBwCxxQcAssEHALPdBwC0xQcAtc0HALbFBwC3/QcAuMUHALnJBwC62QcAu9kHALypBwC9qQcAvp0HAL+VBwCzxQcAjlsAgJJbAICWWwCAmlsAgLbFBwC11QcAnlsAgLshBwC6yQcAolsAgKZbAIC/KQcAviEHAL0pBwC8NQcAqlsAgKOBBwCuWwCAslsAgKaBBwC2WwCAulsAgKWRBwCqjQcAq2UHAL5bAIDCWwCArmUHAK9tBwCscQcArW0HAKgVAQCpgQEAqoEBAKuBAQCsgQEArYkBAK6xAQCvsQEAxlsAgMpbAIDOWwCA0lsAgNZbAIDaWwCA3lsAgOJbAIC4ZQAAuW0AALplAAC7fQAAvGUAAL1tAAC+ZQAAv90AALChAQCxrQEAsqUBALO5AQC0qQEAtZ0BALaVAQC3XQAA5lsAgIIdAACBHQAAgB0AAOpbAIDuWwCA8lsAgL5YAQCErAIA9lsAgIcIAQCGjAEA+lsAgKZaAID+WwCAAlwAgLNJAQAGXACAClwAgA5cAIASXACAtkkBALVJAQAWXACAuykBALolAQAaXACAHlwAgL8ZAQC+LQEAvS0BALwxAQC+2AMAIlwAgO/4BgAmXACAKlwAgC5cAIDv4AIAMlwAgOGUAQA2XACA43QCADpcAIDhmAUAPlwAgOMMBwBCXACARlwAgEpcAICjwQIAhIwDAKXBAgBOXACAUlwAgKbBAgBWXACAWlwAgKuhAgCqrQIAraUCAKy5AgCvkQIArqUCAKgxAwCpPQMAqjUDAKtJAwCsWQMArVkDAK5JAwCvQQMAgMUAAIEJAACCGQAAXlwAgGJcAIBqXACAh2wDAIYcHAC47QAAufEAALr1AAC7jQAAvJUAAL2BAAC+gQAAv70AALAJAwCxCQMAsu0AALPhAAC04QAAteEAALblAAC32QAAblwAgHJcAIB2XACAs7ECAHpcAIC13QIAttUCAH5cAICCXACAhlwAgLrBAgC7wQIAvDUBAL05AQC+KQEAvykBAKaNAgCKXACAjlwAgKWFAgCSXACAo+kCAJZcAICaXACArnEBAK9xAQCsbQEArWEBAKqZAgCrmQIAnlwAgKJcAICmXACA4YQGAKpcAIDjJAYArlwAgOGUAQCyXACA4ywAAL7oHQC2XACAulwAgO/IAACE/B0AvvAcAL5cAIDvSAcAwlwAgMZcAIDKXACAzlwAgIEdAACAHQAA0lwAgIIFAACGQBwAh8QcANpcAIDeXACA4lwAgOZcAIDqXACA7lwAgKi1HgCpBR8Aqg0fAKsFHwCsAR8ArQkfAK45HwCvOR8A1lwAgPJcAID2XACA+lwAgP5cAIACXQCABl0AgApdAIC4yR8AudUfALrRHwC76R8AvPkfAL3tHwC+mR8Av5kfALAlHwCxLR8AsjkfALM1HwC0LR8AtQ0fALYFHwC3/R8As4UfAA5dAIASXQCAFl0AgBpdAIC2iR8AtYkfAB5dAIC76R8AuuEfACJdAIAmXQCAv8kfAL7pHwC94R8AvO0fACpdAICjwR8ALl0AgDJdAICmzR8ANl0AgDpdAIClzR8AqqUfAKutHwA+XQCAQl0AgK6tHwCvjR8ArKkfAK2lHwCo6R4AqekeAKr5HgCr+R4ArOkeAK3pHgCuPQEArzUBAID5AQCBzQEAgsUBAIRgAgBGXQCASl0AgIdoAQCGnAAAuNEBALnZAQC64QEAu+EBALyRAQC9nQEAvpUBAL+JAQCwTQEAsVUBALJdAQCzVQEAtE0BALXxAQC28QEAt/EBALNxHgBOXQCAUl0AgFZdAIBaXQCAtmkeALVhHgBeXQCAu5EBALqJAQBiXQCAZl0AgL81AQC+iQEAvYEBALyJAQBqXQCAZlwAgKM5HgBuXQCApSkeAHJdAIB2XQCApiEeAHpdAIB+XQCAq9kBAKrBAQCtyQEArMEBAK99AQCuwQEAgl0AgIZdAICKXQCAjl0AgJJdAICWXQCAml0AgJ5dAICiXQCApl0AgKpdAICuXQCAsl0AgLpdAIC+XQCAvnADAOHkHgCESAIA4+gfAIQABACAeQAAgXkAAIJpAADCXQCAhsAEAIdEAwDGXQCAyl0AgM5dAIDSXQCA7yAfANZdAIDaXQCA3l0AgOJdAIDvSAIA5l0AgOpdAIDuXQCA8l0AgL7oBAD2XQCA+l0AgP5dAIACXgCA4ZABAAZeAIDj6AIAs0kDAApeAIAOXgCAEl4AgBZeAIC2SQMAtUkDABpeAIC7LQMAuiUDAB5eAIAiXgCAvxUDAL4VAwC9IQMAvCkDAKg1AgCpgQIAqoECAKuBAgCsgQIArYkCAK6xAgCvsQIAgP0BAIHNAQCCxQEAKl4AgIaQBACHBAUALl4AgIRwBAC4SQEAuUkBALpZAQC7WQEAvEkBAL1JAQC+eQEAv3kBALChAgCxqQIAsr0CALO1AgC0kQIAtZECALZ5AQC3eQEAMl4AgDZeAIA6XgCAPl4AgEJeAIBGXgCASl4AgO/QHgC+6AQA4VweAE5eAIDjkAAAUl4AgFZeAIBaXgCAXl4AgKNJAgBiXgCAZl4AgGpeAIBuXgCApkkCAKVJAgByXgCAqy0CAKolAgB2XgCAel4AgK8VAgCuFQIArSECAKwpAgCoNQYAqT0GAKpVBgCrZQYArH0GAK1lBgCubQYAr2EGACZeAIB+XgCAgl4AgIZeAICADQAAgbEAAIKxAACKXgCAuOkGALnpBgC6+QYAu/UGALyVBgC9nQYAvpUGAL+NBgCw4QYAseEGALLhBgCz/QYAtOUGALXtBgC25QYAt9kGALPdBgCOXgCAkl4AgJZeAICaXgCAtuUGALX1BgCeXgCAuyUGALolBgCGmAAAh6wAAL8pBgC+IQYAvSkGALw1BgCiXgCAo5kGAKZeAICqXgCApqEGAK5eAICyXgCApbEGAKphBgCrYQYAtl4AgLpeAICuZQYAr20GAKxxBgCtbQYAqC0GAKk9BgCqiQYAq4kGAKyZBgCtmQYArokGAK+JBgC+XgCAwl4AgMZeAIDKXgCAzl4AgNJeAIDWXgCA2l4AgLiNBgC5lQYAupUGALulBgC8vQYAvXEBAL5xAQC/cQEAsPkGALHNBgCy2QYAs9kGALTJBgC1yQYAtr0GALe1BgCzAQYA3l4AgOJeAIDmXgCA6l4AgLYZBgC1EQYA7l4AgLsJBgC6PQYA8l4AgPZeAIC/DQYAvg0GAL0NBgC8DQYA+l4AgKNFBgC2XQCA/l4AgKZdBgACXwCAhFgAAKVVBgCqeQYAq00GAL5oAQAGXwCArkkGAK9JBgCsSQYArUkGAIDBAwCByQMAgt0DAKPNAgAKXwCApdkCAKbNAgAOXwCAhoANAIeUAwCqxQIAqw0DAKwVAwCtHQMArhUDAK8NAwDhnBcA4xgGAOMUAwDhNAYA7xgCABJfAIAWXwCAGl8AgOPQAgAeXwCA4VACACJfAIAmXwCA7ywGAO/kJQAqXwCArE0CAK1RAgCuUQIAr2UCAKgBAgCpCQIAqlkCAKtVAgCE7A0ALl8AgDJfAIA2XwCAvvgNADpfAIA+XwCAQl8AgLxRAwC9WQMAvmEDAL9hAwC47QMAuVEDALpRAwC7UQMAtM0DALXVAwC23QMAt9UDALAdAgCx1QMAst0DALPVAwDjyAAARl8AgOG4AQBKXwCAhFQPAE5fAIBSXwCAVl8AgKHpAgCgFQYAo6UDAKINAwDvIAAAWl8AgF5fAIBiXwCAZl8AgGpfAICFNCYAs40DAG5fAIC1mQMAto0DAHJfAICGwA8Ah5QNALqFAwC7TQIAvFUCAL1dAgC+VQIAv00CAHpfAIB+XwCAgl8AgIZfAICKXwCAjl8AgI/d6wDvxAYAvuAPAOGMBgCSXwCA44AGAID1AACB5QAAguUAAJZfAICZbR8AmMUfAJvJGwCaeRoAnXUaAJzFGwCf+QcAnhkGAJFpFgCQsesAk20XAJLNFwCV0RMAlGkSAJdREgCWzRMAg1XkAIJB5AB2XwCAml8AgIeNHQCGkRgAhTkYAISVGQCLERwAigUcAJ5fAICiXwCAj4UVAI6ZEACNORAAjJUdAJNRFACSRRQApl8AgKpfAICXYQkAlnUIAJWdCQCU+RUAm0EMAJqtDQCuXwCAsl8AgLZfAIC6XwCAvl8AgJzxDAChbQ0Awl8AgKMBBACihQAApZkEAKSRBACnGTgApsUFAKkJOACoKTgAq4k8AKoBPACtATAArB08AK8pMACunTAAseE0ALABNACzASgAsv00ALXZKAC00SgAxl8AgMpfAIDOXwCA0l8AgNZfAIDaXwCAgB0AAIEJAACC2QEA3l8AgKgRDwCpGQ8Aql0PAKtVDwCsTQ8ArXEPAK51DwCvbQ8A4l8AgOpfAICGiAAAhxABAO5fAIDyXwCA9l8AgPpfAIC4TQ4AuVEOALpRDgC7UQ4AvGUOAL1tDgC+ZQ4Avx0OALAdDwCxwQ8AssEPALPBDwC0xQ8Atc0PALbFDwC3eQ4As9UPAP5fAIACYACABmAAgApgAIC28Q8AtcUPAA5gAIC7BQ8AutkPABJgAIAWYACAvwkPAL4BDwC9FQ8AvBUPABpgAICjkQ8AHmAAgCJgAICmtQ8AJmAAgCpgAIClgQ8Aqp0PAKtBDwAuYACAMmAAgK5FDwCvTQ8ArFEPAK1RDwCogQ0AqYENAKqBDQCrgQ0ArIENAK2BDQCusQ0Ar6ENADZgAIA6YACAPmAAgEJgAIBGYACAgrkAAIG9AACAvQAAuDUCALk9AgC6zQIAu5UCALyNAgC9tQIAvr0CAL+1AgCwbQIAsU0CALJFAgCzJQIAtD0CALUdAgC2FQIAtw0CAEpgAIBOYACAswENAFJgAIC1AQ0AWmAAgISUAwC2CQ0AviwEAF5gAIC7gQIAuqECAL35AgC8mQIAv9ECAL7xAgBiYACAZmAAgGpgAICjRQ0AbmAAgKVFDQCmTQ0AcmAAgIbgBACHpAQAquUCAKvFAgCs3QIArb0CAK61AgCvlQIAqCUCAKk1AgCqPQIAqzUCAKwtAgCtkQIArpECAK+RAgB2YACAemAAgH5gAICCYACAzAAAAIZgAICKYACAjmAAgLiZAgC5rQIAuqUCALttAQC8dQEAvX0BAL51AQC/bQEAsPECALH5AgCywQIAs8ECALSxAgC1vQIAtrUCALepAgCSYACA44QOAJZgAIDh9A4AmmAAgJ5gAICiYACApmAAgIQgBQCqYACArmAAgLJgAIC2YACA7+wOALpgAIC+YACAs/UCAMJgAICG6AQAh4wEAL5cBAC2UQIAteUCAMpgAIC7fQIAunUCAM5gAIDSYACAvzkCAL41AgC9VQIAvFUCAKM1BQBWYACAxmAAgNZgAIDaYACAppEFAKUlBQDeYACAq70FAKq1BQDiYACA5mAAgK/5BQCu9QUArZUFAKyVBQCA+QcAgfkHAIKNBwCzjQYA6mAAgLWdBgC2iQYA7mAAgPJgAID2YACAuk0HALtFBwC8XQcAvUEHAL5BBwC/QQcA+mAAgP5gAIDmXwCAAmEAgAZhAIAKYQCADmEAgBJhAICoNQYAqQEGAKppBgCraQYArHkGAK1lBgCuZQYAr50HALDlBwCx7QcAsuUHALP5BwC06QcAtekHALZZBwC3VQcAuHEHALlxBwC6cQcAu3EHALxVBwC9XQcAvlUHAL9NBwCjwQcAFmEAgBphAIAeYQCAImEAgKbFBwCl0QcAJmEAgKsJBgCqAQYAKmEAgC5hAICvDQYArg0GAK0NBgCsEQYAgGkAAIFpAACCBQAAMmEAgL6YAQCEmAEANmEAgDphAICGADwAh8QBAD5hAIBCYQCARmEAgEphAIBOYQCAUmEAgKhdBgCpbQYAqmUGAKuBAQCsgQEArYkBAK6xAQCvsQEAVmEAgFphAIBeYQCAYmEAgGZhAIBqYQCAbmEAgHJhAIC4VQEAuV0BALpVAQC7yQAAvNkAAL3ZAAC+yQAAv8EAALCxAQCxuQEAsokBALOJAQC0cQEAtXEBALZ1AQC3bQEAs+0FAHZhAIB6YQCAfmEAgIJhAIC2CQIAtQkCAIZhAIC7fQIAunUCAIphAICOYQCAv7UCAL61AgC9XQIAvF0CAL5gAgCjqQUAkmEAgJZhAICmTQIAmmEAgJ5hAIClTQIAqjECAKs5AgCiYQCAhOADAK7xAgCv8QIArBkCAK0ZAgC+iDwAqmEAgKotAwCrJQMArD0DAK0lAwCuLQMAryUDAID1AACB/QAAgsEAAKPBAwCuYQCApcEDAKbBAwCyYQCAhmA8AIdUAwC2YQCAumEAgL5hAIDjqAIAwmEAgOGkAQDGYQCA71wCAMphAIDOYQCA0mEAgNZhAIDaYQCA3mEAgOJhAIDjjAcA5mEAgOE8BADqYQCA7mEAgPJhAID2YQCAhCACAPphAID+YQCAAmIAgAZiAIDvbAcACmIAgA5iAICzLQIAhEQ9ABJiAIAaYgCAHmIAgLYtAgC1LQIAImIAgLvJAgC6wQIAJmIAgCpiAIC/yQIAvsECAL3JAgC80QIA4XgHAOPAAADjOAYA4VwGAICpAACBqQAAgtEAAC5iAIAyYgCANmIAgL6kPAA6YgCAPmIAgO8cAADvkAYAQmIAgIZgPACHBD0ARmIAgLNxAQBKYgCAtRkBALYJAQBOYgCAUmIAgFZiAIC6AQEAuwEBALwBAQC9AQEAvgEBAL8BAQCohT4AqbU+AKq1PgCrxT4ArN0+AK3FPgCuwT4Ar/0+AFpiAIBeYgCAYmIAgGZiAIBqYgCAbmIAgHJiAIB2YgCAuFE/ALlRPwC6UT8Au1E/ALx1PwC9fT8AvnU/AL9tPwCwiT4AsYk+ALKZPgCzmT4AtIk+ALWJPgC2eT8At3U/AKZhAICjOT4AemIAgBZiAICmQT4AfmIAgIJiAIClUT4Aqkk+AKtJPgCGYgCAimIAgK5JPgCvST4ArEk+AK1JPgCASQAAgVEAAIJRAACzkT8AjmIAgLW5PwC2RT8AkmIAgIZAAACHBAMAukU/ALtdPwC8TT8AvT0/AL4pPwC/IT8AqE0+AKlVPgCqVT4Aq2U+AKx9PgCtiT4Arrk+AK+5PgCWYgCAmmIAgJ5iAICiYgCApmIAgKpiAICuYgCAsmIAgLhhAQC5YQEAumEBALthAQC8YQEAvWEBAL5hAQC/YQEAsM0+ALHVPgCy1T4As6U+ALShPgC1qT4Atpk+ALeZPgCj3T4AtmIAgLpiAIC+YgCAwmIAgKYJPgCl9T4AxmIAgKsRPgCqCT4AymIAgM5iAICvbT4ArmU+AK1xPgCsAT4A0mIAgNZiAIDaYgCA3mIAgOJiAIDmYgCA6mIAgO5iAICAOQAAgTkAAIIFAADyYgCAvrgBAIS4AQD6YgCA/mIAgKitAgCp1QIAqtUCAKstAwCsNQMArT0DAK41AwCvLQMAAmMAgAZjAIAKYwCADmMAgBJjAIAWYwCAGmMAgB5jAIC46QMAuekDALqJAwC7iQMAvJkDAL2ZAwC+iQMAv4kDALBVAwCxXQMAslUDALPpAwC0+QMAtfkDALbpAwC34QMAs10CACJjAICGKAQAh8wDACZjAIC2vQMAtb0DACpjAIC7mQMAupEDAC5jAIAyYwCAvz0DAL49AwC9PQMAvIEDAIUAFACjGQIANmMAgDpjAICm+QMAPmMAgEJjAICl+QMAqtUDAKvdAwBGYwCASmMAgK55AwCveQMArMUDAK15AwDjVD4A4dw/AOHQPgDjPD4ATmMAgO8cAABSYwCAVmMAgFpjAIDjwAAAXmMAgOHUAQDvYD4AYmMAgGpjAIDvRD8AgGEAAIFtAACCfQAAhAAFAIbwBACHnAUAvhAFAG5jAIByYwCAdmMAgHpjAIB+YwCAgmMAgIZjAICKYwCAjmMAgLiJPQC5iT0Aupk9ALuRPQC8uT0Avbk9AL7RPQC/0T0AsAU+ALENPgCyBT4Asx0+ALQFPgC1DT4AtgU+ALe5PQConT4Aqa0+AKqlPgCrvT4ArKU+AK2tPgCupT4Ar30+AISsBAC+rAQAkmMAgJZjAICaYwCAnmMAgKJjAICmYwCAqPkFAKn5BQCqKQYAqykGAKw5BgCtOQYArikGAK8pBgBmYwCAqmMAgK5jAICyYwCAtmMAgLpjAIC+YwCAwmMAgLiNBgC5kQYAupEGALulBgC8vQYAvUUHAL5BBwC/QQcAsFkGALFZBgCy7QYAs/0GALTtBgC13QYAttUGALe1BgCzoQYAxmMAgMpjAIDOYwCA0mMAgLa5BgC1sQYA2mMAgLudBgC6nQYA1mMAgPZiAIC/GQYAvikGAL0pBgC8OQYAglEAAKPlBgCAQQAAgUEAAKb9BgDeYwCA4mMAgKX1BgCq2QYAq9kGAIZIAACHbAAArm0GAK9dBgCsfQYArW0GAKg5BgCpWQYAqmkGAKtpBgCseQYArXkGAK5pBgCvaQYA5mMAgOpjAIDuYwCA8mMAgPZjAID6YwCA/mMAgAJkAIC4ZQEAuW0BALplAQC7fQEAvGUBAL1tAQC+ZQEAv9kBALAZBgCxGQYAsoEGALOBBgC0gQYAtYEGALaBBgC3gQYAs+EGAAZkAIAKZACADmQAgBJkAIC2+QYAtfEGABZkAIC73QYAut0GABpkAIAeZACAv0UGAL5FBgC9VQYAvFUGACJkAICjpQYAJmQAgCpkAICmvQYALmQAgDJkAICltQYAqpkGAKuZBgA2ZACAOmQAgK4BBgCvAQYArBEGAK0RBgConQIAqdECAKrRAgCrLQMArDUDAK09AwCuNQMAry0DAD5kAIBCZACAvmQCAEpkAIBOZACAUmQAgFZkAIBaZACAuOkDALnpAwC6iQMAu4UDALydAwC9gQMAvoEDAL+1AwCwVQMAsV0DALJVAwCz6QMAtPkDALX5AwC26QMAt+EDAIBtAwCBpQAAgq0AALNVAgBeZACAtbEDALaxAwBiZACAhOACAGZkAIC6nQMAu5UDALyNAwC9MQMAvjEDAL8xAwCjGQIAamQAgIVwaQBuZACAcmQAgKb9AwCl/QMAdmQAgKvZAwCq0QMAhkgMAIe8AwCvfQMArn0DAK19AwCswQMAemQAgH5kAICCZACAhmQAgO+wBgDvxAMAimQAgI5kAIDjfAYA45QDAOG4BwDh3AEAkmQAgJZkAICaZACAnmQAgKJkAICmZACAhEQCAL5YDQCADQAAgTUAAII9AACqZACArmQAgLJkAICGyAwAh1wNALpkAIC+ZACAwmQAgMZkAIDKZACAzmQAgNJkAIDWZACA2mQAgN5kAIDiZACA74AGAISsDQDh7AYA5mQAgONcBgDqZACA7mQAgPJkAID2ZACAs/UBAPpkAID+ZACAAmUAgAZlAIC2RQEAteUBAAplAIC7LQEAuiEBAA5lAIASZQCAv/UAAL71AAC9JQEAvC0BAKgtDgCpNQ4Aqj0OAKs1DgCsLQ4ArYUOAK6FDgCvuQ4AtmQAgBZlAIAaZQCAHmUAgIAZAACBGQAAggUAACJlAIC4WQ8AuVkPALp5DwC7eQ8AvGkPAL1pDwC+GQ8AvxkPALClDgCxqQ4AsrkOALOxDgC0cQ8AtXEPALZxDwC3cQ8Apb0OAL6IAwAqZQCAph0OACZlAIAuZQCAo60OADJlAICtfQ4ArHUOAK+tDwCurQ8ARmQAgDZlAICrdQ4AqnkOALO5DwA6ZQCAhmgAAIcMAwA+ZQCAtlEPALVZDwBCZQCAu3UPALp1DwBGZQCASmUAgL9FDwC+RQ8AvVEPALxlDwCocQ4AqXEOAKpxDgCrcQ4ArJEOAK2RDgCukQ4Ar5EOAE5lAIBSZQCAVmUAgFplAIBeZQCAYmUAgGZlAIBqZQCAuIUOALmNDgC6hQ4Au50OALyNDgC9vQ4AvrUOAL95AQCw8Q4AsfEOALLxDgCzxQ4AtMEOALXBDgC2wQ4At8EOAKP5DgBuZQCAcmUAgHZlAIB6ZQCAphEOAKUZDgB+ZQCAqzUOAKo1DgCCZQCAhmUAgK8FDgCuBQ4ArREOAKwlDgCADQAAgRUAAIIdAACKZQCAjmUAgJJlAICElAEAvpQBAIZABwCH5AAAmmUAgJ5lAICiZQCApmUAgKplAICuZQCAqIkCAKmRAgCqlQIAq7kCAKzVAgCtxQIArsUCAK/1AgCyZQCAtmUAgLplAIC+ZQCAvnwDAMJlAIDGZQCAymUAgLh9AwC5wQMAusEDALvBAwC8wQMAvckDAL7xAwC/8QMAsI0CALFFAwCyTQMAs0UDALRdAwC1RQMAtk0DALdFAwCzHQIAzmUAgNJlAIDWZQCA2mUAgLZFAgC1XQIA3mUAgLuBAwC6SQIA4mUAgOZlAIC/gQMAvpkDAL2RAwC8mQMA6mUAgKNZAgDuZQCA8mUAgKYBAgD2ZQCA+mUAgKUZAgCqDQIAq8UDAP5lAIACZgCArt0DAK/FAwCs3QMArdUDAIDZAQCB7QEAguUBAO+4DgAKZgCA4cQBAISYAgDj1AAADmYAgL7sBAASZgCA7wgAABZmAIDhxA8AGmYAgONkDgCGAAUAh2gFAB5mAICzvQIAImYAgLWtAgC2pQIAJmYAgCpmAIAuZgCAukEBALtBAQC8RQEAvU0BAL5FAQC/+QEAMmYAgDZmAIA6ZgCAPmYAgEJmAIBGZgCASmYAgO/gAQCEbAQA4dQOAE5mAIDjHA4AUmYAgFZmAIBaZgCAXmYAgKMxAgBiZgCAhCQHAGZmAIBqZgCApikCAKUhAgBuZgCAq80BAKrNAQByZgCAemYAgK91AQCuyQEArcEBAKzJAQCo6QUAqekFAKr5BQCr+QUArOkFAK3pBQCuOQYArzkGAAZmAICCzQcAgfUHAID9BwB2ZgCAfmYAgIYYAwCHkAMAuNEGALnZBgC64QYAu+EGALyRBgC9nQYAvpUGAL+JBgCwSQYAsUkGALJdBgCzVQYAtE0GALXxBgC28QYAt/EGALDhBwCx4QcAsgkHALMJBwC0GQcAtRkHALYJBwC3CQcAuDkHALkNBwC6GQcAuxkHALwJBwC9CQcAvn0HAL9xBwCCZgCAlmUAgIZmAICKZgCAjmYAgJJmAICWZgCAmmYAgKjxBwCpxQcAqsEHAKvdBwCsyQcArb0HAK6pBwCvoQcAsykGAJ5mAICiZgCApmYAgKpmAIC2XQYAtSEGAK5mAIC7RQYAukUGALJmAIC2ZgCAv70GAL69BgC9vQYAvL0GALpmAICjbQYAvmYAgMJmAICmGQYAxmYAgMpmAIClZQYAqgEGAKsBBgDOZgCA0mYAgK75BgCv+QYArPkGAK35BgCobQYAqbEBAKpJAQCrRQEArF0BAK1FAQCuTQEAr0UBANZmAICCHQAAgR0AAIAdAADaZgCA3mYAgOJmAIC+VAEAuIEAALmNAAC6hQAAu5kAALyJAAC9vQAAvrUAAL99AACwPQEAseEAALLhAACz4QAAtOEAALXpAAC20QAAt9EAALsFAwC62QIAhiwCAIcsAwC/DQMAvgUDAL0VAwC8FQMAs+ECAOpmAIDuZgCAhCwDAPJmAIC25QIAtfUCAPZmAICqnQIAq0EDAPpmAID+ZgCArkEDAK9JAwCsUQMArVEDAAJnAICjpQIABmcAgApnAICmoQIADmcAgBJnAIClsQIAqakAAKihAACrtQAAqr0AAK3dAACs3QAAr/EAAK79AAC+LBwAFmcAgBpnAIAeZwCAImcAgCZnAIAqZwCALmcAgLl9AAC4fQAAu80BALrNAQC93QEAvN0BAL/NAQC+zQEAsZUAALCJAACzTQAAspUAALVdAAC0XQAAt00AALZNAAAyZwCANmcAgDpnAIA+ZwCAQmcAgEZnAIBKZwCATmcAgIA5AACBOQAAggUAAFJnAIBaZwCAXmcAgIf4AgCGfB0A4bgEAL7IHADjQAYAYmcAgGZnAIBqZwCAbmcAgHJnAIB2ZwCAemcAgH5nAICCZwCAhmcAgIpnAIDvsAcAjmcAgJJnAICWZwCAmmcAgO/IAACeZwCAomcAgKZnAIDvQAYAqmcAgOH8BgCuZwCA4xwGALJnAIDhlAEAtmcAgONkBgCAEQAAgRkAAIIpAACz/QEAumcAgLWdAQC2lQEAvmcAgMJnAICEbB0AuoUBALuZAQC8iQEAvVEBAL5RAQC/UQEAozEeAFZnAIDGZwCAymcAgM5nAICmWR4ApVEeANJnAICrVR4AqkkeAIYIAwCHbAMAr50eAK6dHgCtnR4ArEUeANZnAICzCR8A2mcAgN5nAIC2CR8A4mcAgOZnAIC1CR8AugUfALsNHwDqZwCA7mcAgL4FHwC/CR8AvBUfAL0NHwCw5R8Ase0fALLlHwCz/R8AtOUfALXpHwC2GR8AtxkfALgpHwC5NR8Auj0fALs1HwC8ER8AvR0fAL4JHwC/BR8A8mcAgPZnAIDmZgCA+mcAgP5nAIACaACABmgAgApoAICo0R8AqdEfAKqlHwCrvR8ArKUfAK2tHwCupR8Ar50fAKNNHgAOaACAEmgAgBZoAIAaaACApk0eAKVNHgAeaACAq0keAKpBHgAiaACAJmgAgK9NHgCuQR4ArUkeAKxRHgCADQAAgRUAAIIdAAAqaACALmgAgDJoAICEtAEAvrQBAL/oAQA6aACAhkgHAIc0AACEvAYAPmgAgEJoAIC+tAYAqI0BAKmVAQCqlQEAq80BAKzZAQCt2QEArs0BAK/FAQBGaACASmgAgE5oAIBSaACAVmgAgFpoAIBeaACAYmgAgLgdAQC5wQAAusEAALvBAAC8wQAAvckAAL7xAAC/8QAAsIkBALGJAQCyKQEAsykBALQ9AQC1JQEAti0BALclAQC7bQIAum0CAGZoAIBqaACAv8ECAL7ZAgC93QIAvN0CALM9AgBuaACAcmgAgHZoAICE/AYAtnkCALVxAgB6aACAqikCAKspAgB+aACAgmgAgK6dAgCvhQIArJkCAK2ZAgCGaACAo3kCAIpoAICOaACApj0CAJJoAICWaACApTUCAIJtJwCDjSoAhqgFAIdsAwCGmS4Ah80vAIQRLgCFmS4AiiESAIspEgCaaACAnmgAgI6RFgCPHRYAjBESAI0RFgCScRoAk+UaAKJoAIDvlHYAlvEeAJflHgCUSRoAlRkeAJopAgCb4QIAqmgAgK5oAICyaACA4SASAJzxAgDjIBYAnyEfAJ7BHwCdmRsAnC0bAJuhGwCavRcAmTkXAJixFwCXiRMAlqkTAJWpEwCUdS4AkzkvAJIxLwCRsS8AkDUrAI+tJgDjeB8A0gAAAOFcHwCCmQEAtmgAgIDxAQCB8QEAvqgHALpoAIC+aACAwmgAgIS8BgDvLB8AxmgAgMpoAIDhpB4A48wAAON8HgDhvAEAzmgAgNJoAIDWaACAhJwGANpoAIC+bAYA3mgAgOJoAIDmaACA7xAAAO8EHgDqaACA7mgAgPJoAID2aACA+mgAgP5oAIACaQCABmkAgAppAICAPQAAgQkAAILJBwAOaQCAo/kDAKLxAwChMQMAoM0fALBJcQCxAXwAsgl8ALMhfQC0AXgAtRV4ADZoAICmaACAEmkAgL4oDgCGDAAAh4wDABZpAIAaaQCAHmkAgCJpAIAmaQCAoV0AAKJVAACjfQAApAEMAKUVDACm9QwApwEIAKghCACpxQgAqgF0AKsJdACsAXQArR11AK55cACveXAAqOUFAKnxBQCq8QUAqy0FAKw1BQCtPQUArjUFAK8tBQAqaQCALmkAgDJpAIA2aQCAOmkAgD5pAIBCaQCARmkAgLj9BgC5jQYAuoUGALutBgC8uQYAvbkGAL6tBgC/pQYAsFUFALFdBQCyVQUAs+UGALT9BgC10QYAttEGALfRBgCzeQQASmkAgE5pAIBSaQCAVmkAgLa9BAC1vQQAWmkAgLuZBAC6kQQAXmkAgGJpAIC/FQcAvjkHAL0xBwC8gQQAZmkAgKM9BABqaQCAbmkAgKb5BAByaQCAdmkAgKX5BACq1QQAq90EAHppAIB+aQCArn0HAK9RBwCsxQQArXUHAKhpBwCpaQcAqnkHAKvZBgCs9QYArf0GAK71BgCv5QYAgMkAAIHJAACCBQAAgmkAgIZwDwCHNAAAimkAgI5pAIC4fQYAuQUGALoNBgC7BQYAvB0GAL0FBgC+DQYAvwUGALCdBgCxdQYAsn0GALN1BgC0UQYAtV0GALZVBgC3TQYAs/EEAJJpAICWaQCAmmkAgJ5pAIC2fQUAtX0FAKJpAIC7sQUAulkFAKZpAICqaQCAv5kFAL6VBQC9oQUAvKkFAK5pAICjtQQAsmkAgLZpAICmOQUAumkAgL5pAIClOQUAqh0FAKv1BQDCaQCAxmkAgK7RBQCv3QUArO0FAK3lBQCpuQIAqLECAKvJAgCqsQIArTUCAKw1AgCvNQIArjUCAMppAIDOaQCA0mkAgNZpAIDaaQCA3mkAgOJpAIDmaQCAuekDALjZAwC7iQMAuuEDAL2dAwC8nQMAv4EDAL6JAwCxVQIAsFUCALNVAgCyVQIAtfkDALTxAwC36QMAtvEDALM9AwDqaQCA7mkAgPJpAID6aQCAtrEDALW5AwD+aQCAu5UDALqVAwCGiAwAh6ANAL85AgC+MQIAvYUDALyFAwACagCAo3kDAAZqAIAKagCApvUDAA5qAIASagCApf0DAKrRAwCr0QMAFmoAgBpqAICudQIAr30CAKzBAwCtwQMAgIUAAIGNAACChQAA79AGAOOwBwDj9AQA4QgHAOHsBADvOAYA7yAEAL6kDAAeagCAImoAgOGEAQAmagCA49wGACpqAIAuagCAhMANALPJAQAyagCAtdkBALbJAQA2agCAOmoAgD5qAIC6xQEAu60BALy5AQC9uQEAvq0BAL+lAQCwLQ4AsUUOALJBDgCzQQ4AtEUOALVNDgC2cQ4At3EOALiBDgC5gQ4AuoEOALuBDgC8gQ4AvYEOAL6BDgC/gQ4A9mkAgEJqAIBGagCASmoAgIZpAIBOagCAUmoAgFZqAICo2Q0AqdkNAKptDgCrZQ4ArH0OAK1lDgCuZQ4Ar1UOAKOFDgCCLQAAgRUAAIAdAABaagCApoUOAKWVDgBeagCAq+EOAKqJDgBiagCAZmoAgK/pDgCu4Q4ArfUOAKz1DgBqagCAs4UPAIZoAACHHAMAtoUPAG5qAIByagCAtZEPALqNDwC7SQ8AdmoAgHpqAIC+MQ8AvzEPALxJDwC9RQ8AqBEOAKkZDgCqSQ4Aq0UOAKxdDgCtQQ4ArkEOAK91DgB+agCAgmoAgIZqAICKagCAjmoAgJJqAICWagCAmmoAgLihDgC5oQ4Aug0BALsFAQC8HQEAvQEBAL4BAQC/AQEAsA0OALHJDgCy2Q4As9UOALSxDgC1sQ4AtqkOALehDgCjwQ4AnmoAgKJqAICmagCAqmoAgKbBDgCl1Q4ArmoAgKsNDgCqyQ4AsmoAgLZqAICvdQ4ArnUOAK0BDgCsDQ4AumoAgL5qAIDCagCAxmoAgIANAACBNQAAgj0AAMpqAIDOagCA0moAgISEAQC+hAEAhjAHAIf4AADaagCA3moAgKjBAgCp0QIAqtECAKvlAgCs/QIArTUDAK49AwCvNQMA4moAgOZqAIDqagCA7moAgPJqAID2agCA+moAgP5qAIC40QMAudkDALrhAwC74QMAvJEDAL2RAwC+kQMAv5EDALBNAwCxVQMAsl0DALNVAwC0TQMAtfEDALbxAwC38QMAu7EDALqpAwACawCAvoQDAL8VAwC+qQMAvaEDALypAwCzeQIABmsAgAprAIAOawCAEmsAgLaVAwC1VQIAFmsAgKrtAwCr9QMAGmsAgB5rAICu7QMAr1EDAKztAwCt5QMAImsAgKM9AgAmawCAKmsAgKbRAwAuawCAMmsAgKURAgA2awCAgiEAAIEVAACAFQAA7wQAAISUAgA6awCAPmsAgOPYAABCawCA4fgBAEprAIBOawCAUmsAgFZrAIBaawCAhmAFAIcIBQBeawCAs20BAGJrAIC1fQEAtnUBAGZrAIBqawCAbmsAgLpRAQC7UQEAvPkBAL3RAQC+0QEAv9EBAHJrAICjpQEAdmsAgHprAICmvQEAfmsAgIJrAICltQEAqpkBAKuZAQCGawCAimsAgK4ZAQCvGQEArDEBAK0ZAQCOawCA4fQOAJJrAIDjFA4A9AAAAOF8DACWawCA41AKAJprAICeawCAviAEAO8wDQCiawCApmsAgIQ0BADvrA4AsDkGALE5BgCygQYAs6kGALS5BgC1uQYAtqkGALehBgC46QYAuekGALrJBgC7xQYAvN0GAL3BBgC+wQYAvz0HAEZrAICCHQAAgR0AAIAdAACqawCArmsAgLJrAIDWagCAqJkFAKmZBQCqSQYAq0kGAKxZBgCtWQYArkkGAK9JBgCorQcAqbUHAKq9BwCrtQcArK0HAK3dBwCuyQcAr8EHALZrAIC6awCAhogDAIcQAwC+awCAwmsAgMZrAIDKawCAuG0HALkFBwC6AQcAuxUHALwxBwC9MQcAvikHAL8pBwCwgQcAsYEHALJpBwCzZQcAtH0HALVhBwC2YQcAt1UHALM1BgDOawCA0msAgNZrAIDaawCAtl0GALUlBgDeawCAu0UGALpFBgDiawCA5msAgL+lBgC+uQYAvbEGALy9BgDqawCAo3EGAO5rAIDyawCAphkGAPZrAID6awCApWEGAKoBBgCrAQYA/msAgAJsAICu/QYAr+EGAKz5BgCt9QYAqCUBAKk1AQCqPQEAqzUBAKwtAQCtkQAArpEAAK+RAAAGbACACmwAgA5sAIASbACAFmwAgIK9AwCBvQMAgL0DALiZAAC5rQAAuqUAALttAAC8dQAAvX0AAL51AAC/bQAAsPEAALH5AACywQAAs8EAALSxAAC1vQAAtrUAALepAAAabACAHmwAgCJsAICEgAIAvhwCACpsAICG+HwAh8wCAISsAwAubACAMmwAgDZsAIA6bACAPmwAgEJsAIBGbACAs/UCAEpsAIBObACAkgAAAFJsAIC2UQMAteUCAFZsAIC7fQMAunUDAFpsAIBebACAvzkDAL41AwC9VQMAvFUDAKM1AgBibACAZmwAgGpsAIBubACAppEDAKUlAgBybACAq70DAKq1AwB2bACAemwAgK/5AwCu9QMArZUDAKyVAwC+wAMAfmwAgIJsAICGbACAgA0AAIE1AACCPQAAimwAgI5sAICSbACAhsh8AIcAAwCabACAnmwAgKJsAICmbACAqmwAgK5sAICybACAtmwAgLpsAIC+bACAwmwAgO/0AwCE7HwA4ZQBAMZsAIDjMAMAymwAgM5sAIDSbACA1mwAgLNpAQDabACA3mwAgOJsAIDmbACAtmEBALVpAQDqbACAuykBALohAQDubACA8mwAgL8dAQC+HQEAvSUBALwtAQD2bACA+mwAgP5sAICjpQEAAm0AgKWlAQCmrQEAvlR8AIaAfACH7HwAqu0BAKvlAQCs4QEArekBAK7RAQCv0QEACm0AgOGcBgCEBH8A4yQGAOPUBgAObQCA4TAEABJtAIDvlAcAgnUAAIFhAACAaQAAFm0AgBptAIAebQCA7+wGALiNfgC5lX4AupV+ALulfgC8vX4AvdF+AL7RfgC/0X4AsGV+ALFtfgCyeX4As3F+ALRZfgC1WX4Atr1+ALe1fgCoVX4AqWF+AKphfgCrYX4ArGF+AK1hfgCuYX4Ar2F+ACJtAICWbACAJmwAgCZtAIAGbQCAKm0AgC5tAIAybQCAqHF+AKlxfgCqcX4Aq3F+AKyRfwCtkX8ArpF/AK+RfwA2bQCAOm0AgD5tAIBCbQCARm0AgEptAIBObQCAUm0AgLiFfwC5jX8AuoV/ALudfwC8jX8Avb1/AL61fwC/XX8AsPF/ALHxfwCy8X8As8V/ALTBfwC1wX8AtsF/ALfBfwCz+X8AVm0AgFptAIBebQCAYm0AgLYRfgC1GX4AZm0AgLs1fgC6NX4Aam0AgG5tAIC/BX4AvgV+AL0RfgC8JX4AghUAAKO9fwCAYQAAgWEAAKZVfgBybQCAvpABAKVdfgCqcX4Aq3F+AHZtAIB6bQCArkF+AK9BfgCsYX4ArVV+AKhBfgCpUX4AqlV+AKt9fgCsZX4ArW1+AK75AQCv8QEAhgAAAIc0AQB+bQCAgm0AgIZtAICKbQCAjm0AgJJtAIC4dQEAuX0BALp1AQC7yQAAvNkAAL3ZAAC+yQAAv8EAALCVAQCxnQEAspUBALNNAQC0VQEAtV0BALZVAQC3TQEAs919AJZtAICabQCAnm0AgKJtAIC27X0Ate19AKZtAIC7WQIAulECAKptAICubQCAv5kCAL6RAgC9mQIAvEECALJtAICjmX0Atm0AgLptAICmqX0Avm0AgMJtAIClqX0AqhUCAKsdAgDGbQCAym0AgK7VAgCv3QIArAUCAK3dAgDObQCA0m0AgNZtAIDabQCAgB0AAIEJAACCOQAA3m0AgOJtAIC+AAQA6m0AgO5tAIDybQCA9m0AgPptAID+bQCAhIwDAAJuAICHCAMAhuwEAAZuAIDviAIACm4AgA5uAICEbAQA4zQCABJuAIDhVAEAFm4AgBpuAIAebgCAIm4AgKhtAgCprQIAqqUCAKu9AgCspQIAra0CAK6lAgCvGQEAvqwEACZuAIAqbgCALm4AgDJuAIA2bgCAOm4AgD5uAIC4DQEAuREBALoRAQC7JQEAvD0BAL3VAQC+3QEAv9UBALBpAQCxaQEAsnkBALNxAQC0WQEAtVkBALY5AQC3NQEAsy0CAEJuAIBGbgCASm4AgE5uAIC2LQIAtS0CAFJuAIC7rQEAuq0BAFpuAIBebgCAv50BAL6dAQC9pQEAvK0BAIBNAACBVQAAglUAAO9sAABibgCA7+x/AO+8fgBmbgCA4RB/AOPUfwDj2H4A4ex/AGpuAIDhTH4Abm4AgOMkfgDmbQCAVm4AgKsFBgCqBQYArQ0GAKwFBgCvNQYArjUGAIYAAwCHKAMAo4UFAHJuAIClhQUAdm4AgHpuAICmhQUAs/EGAH5uAICCbgCAhm4AgIpuAIC26QYAteEGAI5uAIC7vQYAur0GAJJuAICWbgCAv4kGAL6BBgC9iQYAvJUGAKgpBgCpKQYAqjkGAKs5BgCsKQYArSkGAK5dBgCvTQYAmm4AgJ5uAICibgCApm4AgKpuAICubgCAsm4AgLZuAIC46QcAuekHALr5BwC7+QcAvOkHAL3pBwC+XQcAv1UHALA5BgCxOQYAsgEGALMdBgC0BQYAtQ0GALYFBgC32QcAo7EHAIItAACBFQAAgB0AALpuAICmqQcApaEHAL5uAICr/QcAqv0HAMJuAICEpAIAr8kHAK7BBwCtyQcArNUHAL7MAQCzlQYAxm4AgMpuAIC2qQYAzm4AgNJuAIC1rQYAulkBALshAQCGyAAAhwwBAL4hAQC/KQEAvDEBAL0xAQCoKQYAqSkGAKpZBgCrUQYArGEGAK1tBgCutQEAr6kBAITgAQDWbgCA2m4AgN5uAIDibgCA5m4AgOpuAIDubgCAuGEBALlhAQC6YQEAu2EBALxhAQC9YQEAvmEBAL9hAQCw2QEAsaEBALKhAQCzoQEAtKEBALWpAQC2kQEAt5EBAKPRBQDybgCA9m4AgPpuAID+bgCApu0FAKXpBQACbwCAq2UCAKodAgAGbwCACm8AgK9tAgCuZQIArXUCAKx1AgAObwCAEm8AgBZvAIAabwCAHm8AgCJvAIAmbwCAKm8AgIA9AACBCQAAghkAAC5vAIAybwCAOm8AgL48AwA+bwCAhgAMAIcUAwBCbwCAs9UDAEZvAIC1PQMAtjUDAEpvAIBObwCAv4wKALoRAwC7EQMAvLUAAL29AAC+tQAAv60AAFJvAIDjdAEAVm8AgOG8AQBabwCAXm8AgGJvAIBmbwCAam8AgG5vAIBybwCAdm8AgHpvAIDvdAIAfm8AgIJvAICoTQIAqVECAKpRAgCrqQIArLkCAK25AgCuqQIAr6kCAIRsDQCGbwCAim8AgI5vAICSbwCAlm8AgJpvAIC+dA0AuG0BALkFAQC6DQEAuwUBALwdAQC9BQEAvg0BAL8FAQCw2QIAsdkCALJtAQCzZQEAtH0BALVlAQC2ZQEAt1UBAOG4AQDhUAcA47QAAON8BwCAqQAAgQkAAII5AACebwCAom8AgKpvAICubwCAsm8AgO4AAAC2bwCA7wAAAO9kBgCGYAwAh+QMAKORAgC6bwCApXkCAL5vAIDCbwCApnECAMZvAIDKbwCAq1UCAKpVAgCt+QEArPEBAK/pAQCu8QEApm8AgDZvAIDObwCA0m8AgNZvAIDabwCA3m8AgOJvAICoVQ4AqVkOAKqhDgCrvQ4ArK0OAK2VDgCu+Q4Ar/UOALCRDgCxkQ4AspEOALORDgC0sQ4AtbEOALaxDgC3sQ4AuJEOALmdDgC6lQ4Au0kPALxZDwC9WQ8AvkkPAL9JDwCzCQ4A5m8AgOpvAIDubwCA8m8AgLY1DgC1BQ4A9m8AgLt1DgC6dQ4A+m8AgP5vAIC/VQ4AvlUOAL1lDgC8ZQ4AAnAAgKNNDgAGcACACnAAgKZxDgAOcACAEnAAgKVBDgCqMQ4AqzEOAISkAwC+pAMArhEOAK8RDgCsIQ4ArSEOAKilDgCprQ4AqqUOAKu5DgCs3Q4ArcEOAK7BDgCv/Q4AgO0BAIHxAQCC8QEAFnAAgIaQAQCHtAEAGnAAgB5wAIC4yQEAuckBALrZAQC70QEAvPkBAL35AQC+mQEAv5UBALCFDgCxbQEAsmUBALN9AQC0ZQEAtW0BALZlAQC3+QEAsy0OACJwAIAmcACAKnAAgC5wAIC2QQ4AtVUOADJwAIC7qQEAukEOADZwAIA6cACAv6kBAL6hAQC9qQEAvLEBAD5wAICjaQ4AQnAAgEZwAICmBQ4ASnAAgE5wAIClEQ4AqgUOAKvtAQBScACAVnAAgK7lAQCv7QEArPUBAK3tAQCoOQMAqTkDAKqNAwCrhQMArJ0DAK2FAwCuhQMAr7UDAFpwAIBecACAYnAAgGZwAIBqcACAbnAAgHJwAIB2cACAuGEAALlhAAC6YQAAu2EAALxhAAC9YQAAvmEAAL9hAACwzQMAsaUDALKhAwCzoQMAtKUDALWtAwC2kQMAt5EDAIANAACBEQAAghEAAHpwAIDv9AIAfnAAgIJwAIC+HAMA4xQCAISIAgDhgAEAinAAgI5wAICScACAh8gDAIY8BAC7AQMAumkDAJZwAICacACAvwkDAL4BAwC9FQMAvBUDALNlAwCecACAonAAgKZwAICqcACAtmUDALV1AwCucACAsnAAgLZwAIC6cACAo4kCAL5wAIClmQIApokCAMJwAICELAIAxnAAgKqFAgCr7QIArPkCAK35AgCu7QIAr+UCAMpwAIDOcACAvkQFAIRMBQDScACA1nAAgNpwAIDecACA4nAAgOZwAIDqcACA7nAAgIAZAACBGQAAggUAAPJwAIDhGA8A4VwOAOO4DgDjdAEA+nAAgP5wAIACcQCABnEAgIYABACHZAUACnEAgA5xAIAScQCAFnEAgO98DgDvqAEAs3UBABpxAIAecQCAInEAgCZxAIC2MQEAtRUBACpxAIC7HQEAuhUBAC5xAIAycQCAv+EAAL79AAC9/QAAvP0AAPZwAIA2cQCAOnEAgD5xAICGcACAQnEAgEZxAIBKcQCAqI0GAKmVBgCqnQYAq+UGAKz9BgCt0QYArtEGAK/RBgCwsQYAsbkGALJJBwCzSQcAtFkHALVFBwC2RQcAt3kHALghBwC5IQcAujkHALs5BwC8KQcAvSkHAL4ZBwC/GQcAozUGAE5xAIBScQCAVnEAgFpxAICmcQYApVUGAF5xAICrXQYAqlUGAGJxAIC+oAMAr6EHAK69BwCtvQcArL0HAIBRAACBWQAAgmEAALNVBwCF9AAAtX0HALZ1BwBmcQCAhgAcAIfkAQC6LQcAuyUHALw9BwC9JQcAviUHAL8VBwCokQYAqZEGAKqRBgCrkQYArLkGAK25BgCuqQYAr6kGAGpxAIBucQCAcnEAgHZxAICiIQEAozUBAKA5BQChEQQAuEkBALlJAQC6XQEAu1UBALxNAQC90QEAvtEBAL/RAQCwpQYAsa0GALKlBgCzvQYAtK0GALWdBgC2lQYAt3kBAKMZBgCPnXkAenEAgH5xAICCcQCApjkGAKUxBgCGcQCAq2kGAKphBgCKcQCAjnEAgK9ZBgCuaQYArWkGAKxxBgCeiQgAn8EFAJzJCQCdyQkAmqENAJu9DACYsQ0AmbkNAJahcQCXRXEAlEV1AJWxcQCSoXUAk7V1AJDleQCRzXkAil1yAItFcgCScQCAvoAcAI51DgCPZQ4AjLlyAI11DgCCOXoAgzl6AJZxAICacQCAhnF2AIeZdgCECXoAhW12AJptBwCbVQIAnnEAgKJxAICmcQCA4ZAAAJxZAgDjCBoAkgkPAJNlCgCqcQCA7zgWAJZ1BgCXdQYAlH0KAJU1CwCpjRYAqIUWAKsBEACqMRYArXESAKy1EgCvuS4ArgEsAKF9AgCucQCAo6EeAKKpHgClsRoApPUfAKflGwCmsRoAhMwDAIRMHACycQCAtnEAgLpxAIC+cQCAwnEAgMZxAICxASgAsNkuALONKgCy6SoAtfUmALQBJACEcB0AynEAgID9AQCBFQAAgh0AAL6AHADOcQCA0nEAgIe4AgCGPB0A2nEAgN5xAIDicQCA5nEAgOpxAIDucQCA8nEAgPZxAID6cQCA/nEAgAJyAIAGcgCA44ADAApyAIDhoAEADnIAgO+UAwAScgCAFnIAgBpyAIAecgCAInIAgCZyAIAqcgCALnIAgOE8BgAycgCA49AGADZyAIDhMAcAOnIAgOOsBgCAOQAAgRUAAIIdAADvHAYAPnIAgEJyAIC+uB8A7+gBALPpAgBKcgCAh8QcAIbsHABOcgCAtlkCALVRAgBScgCAu00CALpNAgBWcgCAWnIAgL+5AQC+2QEAvdEBALz1AQCjKR0A1nEAgEZyAIBecgCAYnIAgKaZHQClkR0AZnIAgKuNHQCqjR0AanIAgG5yAICveR4ArhkeAK0RHgCsNR4AcnIAgLNtHwB2cgCAenIAgLZlHwB+cgCAgnIAgLVtHwC6IR8AuyEfAIZyAICKcgCAviUfAL8pHwC8MR8AvTEfAKihHwCpoR8AqqEfAKuhHwCsoR8AraEfAK6hHwCvoR8AjnIAgJJyAICWcgCAmnIAgJ5yAICicgCApnIAgKpyAIC4rR8AubUfALq9HwC7tR8AvK0fAL1VHwC+UR8Av00fALChHwCxoR8AsqEfALOhHwC0pR8AtakfALadHwC3lR8AoykeAIIZAACBGQAAgLEBAK5yAICmIR4ApSkeALJyAICrZR4AqmUeAIaIAACH/AEAr20eAK5hHgCtdR4ArHUeALZyAICzmR4AunIAgL5yAIC2XQEAwnIAgMZyAIC1sR4AukkBALtJAQDKcgCAznIAgL49AQC/IQEAvDkBAL01AQCoRR4AqVUeAKpVHgCrZR4ArH0eAK2ZAQCuiQEAr4EBAISsAADScgCA1nIAgNpyAIDecgCA4nIAgOZyAIDqcgCAuK0BALllAQC6bQEAu2UBALx9AQC9ZQEAvm0BAL9lAQCwyQEAsckBALKpAQCzpQEAtL0BALWhAQC2oQEAt5UBALhpHAC5oRwAusEcALvBHAC8wRwAvcEcAL7BHAC/wRwAsIkfALGJHwCyIRwAswUcALQdHAC1fRwAtnUcALdtHACoYR8AqWEfAKphHwCrYR8ArNkfAK3ZHwCuyR8Ar8EfAO5yAIDycgCA9nIAgPpyAID+cgCAAnMAgAZzAIAKcwCADnMAgBJzAIC+AAQAo1EdABZzAICleR0AppUCABpzAIAecwCAInMAgKqBAgCrgQIArPECAK39AgCu9QIAr+kCACpzAIDh9AEALnMAgON8AQCATQAAgXUAAIJ9AAAycwCAhsAEAIekBAA2cwCAOnMAgD5zAIBCcwCARnMAgO+MAgCoSQIAqUkCAKpdAgCrVQIArHkCAK15AgCuvQIAr7UCAISgBQBKcwCATnMAgFJzAIC+vAQAVnMAgFpzAIBecwCAuC0BALk1AQC6PQEAuzUBALwtAQC91QEAvt0BAL/NAQCwzQIAsdUCALLdAgCz1QIAtM0CALUVAQC2HQEAtxUBAOGEHgDjbB8A41wfAOFYHgBicwCAZnMAgGpzAIBucwCAcnMAgHZzAIB6cwCAfnMAgOkAAADv9B4A70weAIJzAICzlQIAhnMAgIpzAICOcwCAknMAgLa5AgC1sQIAmnMAgLtRAgC6SQIAhsgEAIesBAC/kQEAvkkCAL1BAgC8SQIAJnMAgKNRBQCecwCAlnMAgKZ9BQCicwCApnMAgKV1BQCqjQUAq5UFAKpzAICucwCAro0FAK9VBgCsjQUArYUFAICJBwCBiQcAgpkHALORBgCycwCAtbkGALapBgC2cwCAunMAgL5zAIC6TQcAu0UHALxdBwC9QQcAvkEHAL9BBwCoQQYAqU0GAKpVBgCrZQYArH0GAK1lBgCubQYAr2UGAMJzAIDGcwCAynMAgM5zAIDScwCA1nMAgNpzAIDecwCAuFkHALlZBwC6aQcAu2kHALx5BwC9eQcAvmUHAL8ZBwCwxQcAsc0HALLFBwCz2QcAtMkHALXJBwC2aQcAt2kHAKPdBwDicwCA5nMAgOpzAIDucwCApuUHAKX1BwDycwCAqwkGAKoBBgD2cwCA+nMAgK8NBgCuDQYArQ0GAKwRBgCAbQAAgQkAAIIZAAD+cwCAAnQAgISYAQC+kAEABnQAgIbAAACH5AEACnQAgA50AIASdACAFnQAgBp0AIAedACAqF0GAKmNAQCqnQEAq5UBAKy5AQCtuQEArskBAK/BAQCEoAAAInQAgCZ0AIAqdACALnQAgDJ0AIA2dACAOnQAgLh5AQC5eQEAus0AALvFAAC83QAAvcUAAL7FAAC/9QAAsIEBALGBAQCySQEAs0kBALRZAQC1WQEAtkkBALdJAQCzFQIAPnQAgEJ0AIBGdACASnQAgLY5AgC1MQIATnQAgLtFAgC6RQIAUnQAgFZ0AIC/nQIAvp0CAL2dAgC8nQIAhXw+AKNRAgBadACAXnQAgKZ9AgBidACAZnQAgKV1AgCqAQIAqwECAGp0AIBudACArtkCAK/ZAgCs2QIArdkCAIDpAACB6QAAggUAAHJ0AIC+AAwAenQAgIeoAwCGvAwAfnQAgIJ0AICGdACAinQAgI50AICSdACAlnQAgJp0AICedACAonQAgKZ0AICqdACA42ABAK50AIDhoAEAsnQAgO+IAgC2dACAunQAgL50AIDCdACAxnQAgMp0AIDOdACAqGkCAKlpAgCqeQIAq3kCAKxpAgCtaQIArr0CAK+1AgC+rAwA0nQAgNZ0AIDadACAgB0AAIEJAACCqQAA3nQAgLhRAQC5WQEAumEBALthAQC8GQEAvRkBAL4NAQC/BQEAsM0CALHVAgCy3QIAs9UCALTNAgC1cQEAtnEBALdxAQDjxAAA4XwHAOF4BgDjvAYA4nQAgIQYDQCGuAwAhzwNAL4sDwDqdACA7nQAgPJ0AIDvEAAA9nQAgPp0AIDvdAYA/nQAgAJ1AIAGdQCAs70CAAp1AIC1rQIAtqUCAA51AIASdQCAFnUAgLpFAgC7XQIAvEUCAL1NAgC+RQIAv/kBAHZ0AIClfQ0ApnUNAOZ0AIAadQCAHnUAgCJ1AICjbQ0ArJUNAK2dDQCulQ0ArykOACZ1AIAqdQCAqpUNAKuNDQCz5Q4ALnUAgDJ1AIA2dQCAOnUAgLblDgC19Q4APnUAgLuhDgC62Q4AQnUAgEZ1AIC/pQ4AvrkOAL2xDgC8uQ4AqBUOAKklDgCqLQ4AqyUOAKw9DgCtJQ4Ari0OAK8lDgCADQAAgRUAAIIdAABKdQCATnUAgFJ1AICEMAMAVnUAgLgpDgC5KQ4AujkOALs5DgC8KQ4AvSkOAL79DwC/9Q8AsF0OALElDgCyLQ4AsyUOALQ9DgC1IQ4AtiUOALcZDgCjpQ8AWnUAgIYoAQCHTAEAXnUAgKalDwCltQ8AYnUAgKvhDwCqmQ8AZnUAgGp1AICv5Q8ArvkPAK3xDwCs+Q8AbnUAgLPpDgBydQCAdnUAgLaRDgB6dQCAfnUAgLXlDgC6sQ4Au7kOAIJ1AICGdQCAvmEBAL9hAQC8mQ4AvZkOAKglDgCpLQ4AqiUOAKs5DgCsKQ4ArVUOAK5dDgCvVQ4AinUAgI51AICSdQCAlnUAgJp1AICedQCAonUAgKZ1AIC49QEAuYEBALqBAQC7gQEAvIEBAL2JAQC+sQEAv7EBALAxDgCxOQ4AsgkOALMJDgC04QEAteEBALbhAQC3zQEAo60NAKp1AICudQCAsnUAgLZ1AICm1Q0ApaENALp1AICr/Q0AqvUNAL51AIDCdQCAryUCAK4lAgCt3Q0ArN0NAIBdAACBbQAAgmUAALNRAwC+nAMAtXkDALYZAwDKdQCAhOACAM51AIC6PQMAuzUDALwZAwC9GQMAvtkDAL/ZAwCohQMAqZUDAKqVAwCrpQMArL0DAK3VAwCu0QMAr9EDAIYABACHNAMAv6AzANJ1AIDWdQCA2nUAgN51AIDidQCAuHEDALlxAwC6cQMAu3EDALzVAAC93QAAvtUAAL/NAACwtQMAsb0DALKBAwCzgQMAtFEDALVRAwC2UQMAt1EDAO+oAwDmdQCA6nUAgO51AICEHAIA8nUAgPZ1AID6dQCAviwFAP51AIACdgCABnYAgONAAwAKdgCA4SgAAA52AICjXQIAEnYAgBZ2AIAadgCAHnYAgKYVAgCldQIAInYAgKs5AgCqMQIAJnYAgCp2AICv1QIArtUCAK0VAgCsFQIA4ygBAOEADwDhCA4A4wgOAID9AACBCQAAgjkAAC52AIAydgCAOnYAgD52AIBCdgCA7+gOAEZ2AIBKdgCA72QOALNtAQBOdgCAhugEAIcMBQBSdgCAtm0BALVtAQBWdgCAu+0AALrtAABadgCAXnYAgL/VAAC+6QAAveEAALzpAACoXQYAqWEGAKqlBgCrvQYArKUGAK2tBgCupQYArxkHADZ2AIBidgCAZnYAgGp2AIBudgCAcnYAgHZ2AIB6dgCAuHUHALl5BwC6DQcAuwUHALwdBwC9BQcAvgUHAL81BwCwaQcAsWkHALJ9BwCzdQcAtG0HALVRBwC2UQcAt1EHAKMtBgB+dgCAgnYAgIZ2AICKdgCApi0GAKUtBgCOdgCAq60HAKqtBwCSdgCAlnYAgK+VBwCuqQcAraEHAKypBwCADQAAgRUAAIIdAACadgCAnnYAgKJ2AICEVAMAvlwAAKZ2AICqdgCAhugAAIdMAwCudgCAsnYAgLZ2AIC6dgCAvnYAgOMEBADCdgCA4bQFAMZ2AIDKdgCAznYAgNJ2AIDWdgCA2nYAgN52AIDidgCA5nYAgO/sBADqdgCA7nYAgLPtBgDydgCA9nYAgPp2AID+dgCAtpEGALXhBgACdwCAu40GALqNBgAGdwCACncAgL9BAQC+WQEAvVEBALxZAQCoJQYAqS0GAKolBgCrOQYArCkGAK1RBgCuSQYAr0EGAIDNAACBCQAAghkAAA53AIASdwCAhCwBAL40AAAadwCAuP0BALlBAQC6QQEAu0EBALxBAQC9SQEAvnEBAL9xAQCwCQYAsQkGALLNAQCzxQEAtN0BALXFAQC2zQEAt8UBAIagPACHRAMAHncAgKOhBQAidwCApa0FAKbdBQAmdwCAKncAgL4oPACqwQUAq8EFAKwVAgCtHQIArhUCAK8NAgC2QQMALncAgDJ3AIC1sQIANncAgLOhAgA6dwCAPncAgL5FAwC/TQMAvHUDAL1NAwC6ZQMAu20DAEJ3AIBGdwCASncAgE53AIDGdQCAUncAgFZ3AIBadwCAXncAgGJ3AICoRQIAqVUCAKpdAgCrVQIArE0CAK21AwCusQMAr60DALDVAwCx3QMAstUDALPtAwC09QMAtf0DALb1AwC37QMAuNkDALnZAwC6rQMAu6UDALy9AwC9pQMAvqUDAL+VAwCj9QMAZncAgGp3AIBudwCAcncAgKYVAgCl5QMAdncAgKs5AgCqMQIAencAgH53AICvGQIArhECAK0ZAgCsIQIAgGkAAIFpAACCBQAAgncAgIp3AICOdwCAkncAgO8cAACEbAIA4ZQBAJZ3AIDjyAAAmncAgJ53AICGWDwAh1A9AKJ3AICmdwCAqncAgISEPQCudwCAsncAgLZ3AIDvuAEAvmw8AOF0BgC6dwCA42QBAL53AIDCdwCAxncAgMp3AICz0QEAzncAgNJ3AIDWdwCA2ncAgLaRAQC1+QEA3ncAgLu9AQC6vQEA4ncAgOZ3AIC/dQEAvnUBAL2FAQC8hQEAqL09AKkNPgCqGT4AqxE+AKwxPgCtUT4ArlE+AK9NPgCGdwCAgh0AAIEdAACAHQAA6ncAgO53AIDydwCA9ncAgLjVPgC53T4AutU+ALtJPwC8WT8AvVk/AL5JPwC/QT8AsDk+ALE5PgCyET4AsxE+ALTxPgC18T4AtvU+ALftPgCjkT4A+ncAgIYoAACHwAMA/ncAgKbRPgCluT4AAngAgKv9PgCq/T4ABngAgAp4AICvNT4ArjU+AK3FPgCsxT4ADngAgLOdPwASeACAFngAgLalPwAaeACAHngAgLWtPwC6aT8Au3U/ACJ4AIAmeACAvlk/AL9FPwC8bT8AvWU/ACp4AIAueACAMngAgDZ4AIDjYDwAOngAgOEAPQA+eACA7/w9AEJ4AIBGeACASngAgE54AIBSeACAVngAgFp4AICjGT4AghkAAIEZAACAcQAAXngAgKYhPgClKT4AYngAgKvxPgCq7T4AhCQBAL4kAQCvwT4Art0+AK3hPgCs6T4AqNE+AKnRPgCq0T4Aq+U+AKzhPgCt4T4Arhk+AK8ZPgCGAAAAh4QAAGp4AIBueACAcngAgHZ4AIB6eACAfngAgLh9PgC5AT4AugE+ALsBPgC8AT4AvQk+AL4xPgC/MT4AsGk+ALF1PgCyfT4As3U+ALRZPgC1RT4Atk0+ALdFPgCohQIAqZUCAKqVAgCrpQIArL0CAK3VAgCu0QIAr9ECAIJ4AICGeACAingAgL8k5gGOeACAkngAgJZ4AICaeACAuFUDALlZAwC6bQMAu2UDALx9AwC9ZQMAvm0DAL9lAwCwtQIAsb0CALKBAgCzgQIAtHEDALVxAwC2cQMAt3EDALMdAgCeeACAongAgKZ4AICEiAMAtlUCALU1AgAWdwCAu3kCALpxAgCqeACArngAgL+1AwC+tQMAvVUCALxVAgCyeACAo1kCALZ4AIC6eACAphECAL54AIDCeACApXECAKo1AgCrPQIAxngAgMp4AICu8QMAr/EDAKwRAgCtEQIAqKkCAKmpAgCquQIAq7kCAKypAgCtqQIArjkBAK85AQCAzQEAgQkAAIIZAADOeACA0ngAgL64BQDaeACA3ngAgLjpAQC56QEAuokBALuFAQC8nQEAvYEBAL6BAQC/tQEAsEkBALFVAQCyXQEAs1UBALRNAQC18QEAtvEBALfxAQDvFAAA4ngAgIaoBQCH3AUA5ngAgIRYBADqeACA78Q+AO54AIDhxD4A8ngAgOMwPgDjyAAA9ngAgOEoAQD6eACAtn0CAP54AIACeQCAtXUCAAZ5AICzZQIACnkAgA55AIC+3QEAv2EBALzdAQC91QEAutkBALvFAQASeQCAFnkAgKOxBQDWeACAGnkAgB55AIAieQCApqkFAKWhBQAmeQCAqxEGAKoNBgAqeQCALnkAgK+1BgCuCQYArQEGAKwJBgAyeQCANnkAgDp5AIA+eQCAgBkAAIEZAACCBQAAQnkAgL5sAwBGeQCAhsgAAIccAwBKeQCATnkAgFJ5AIBWeQCAqLkHAKm5BwCqDQcAqx0HAKwJBwCtNQcArjEHAK8pBwCEqAMAWnkAgF55AIBieQCAZnkAgGp5AIBueQCAcnkAgLjJAAC5yQAAutkAALvRAAC8+QAAvfkAAL6ZAAC/mQAAsF0HALEhBwCyIQcAsz0HALQpBwC1KQcAtgEHALcBBwCzhQYAdnkAgHp5AIB+eQCAgnkAgLa1BgC1gQYAhnkAgLvlBgC6mQYAinkAgI55AIC/7QYAvu0GAL3pBgC89QYAknkAgJZ5AICaeQCAnnkAgKJ5AICmeQCAqnkAgO+QBACueQCA4dwGALJ5AIDj7AUAgCkAAIEVAACCEQAAvnwBAKMFBgC6eQCAhigAAIdMAQC+eQCApjUGAKUBBgDCeQCAq2UGAKoZBgDGeQCAynkAgK9tBgCubQYArWkGAKx1BgDOeQCAs70BANJ5AIDWeQCAtnkBANp5AIDeeQCAtXkBALpVAQC7XQEA4nkAgOZ5AIC++QAAv/kAALxFAQC9+QAAqHECAKlxAgCqcQIAq3ECAKy1AgCtvQIArrUCAK+tAgCE7AwA6nkAgO55AIDyeQCA9nkAgPp5AID+eQCAAnoAgLhpAwC5aQMAugkDALsJAwC8GQMAvRkDAL4JAwC/CQMAsNUCALHdAgCy1QIAs2kDALR5AwC1eQMAtmkDALdhAwAGegCACnoAgA56AICj9QIAEnoAgKUxAgCmMQIAFnoAgBp6AIAeegCAqh0CAKsVAgCsDQIArbEDAK6xAwCvsQMAgGEAAIFhAACCBQAAInoAgIbwDACHYAMAvhAMACp6AIBmeACALnoAgDJ6AIA2egCAOnoAgD56AIBCegCARnoAgKiFAgCplQIAqpUCAKulAgCsvQIArdUCAK7RAgCv0QIASnoAgE56AIBSegCAVnoAgFp6AIBeegCAYnoAgGZ6AIC4dQEAuX0BALp1AQC7zQEAvNUBAL3dAQC+yQEAv8EBALC1AgCxvQIAsoECALOBAgC0VQEAtV0BALZVAQC3TQEA4RAGAIRIDADjDAYAanoAgISYDABuegCAcnoAgHZ6AIB6egCAfnoAgIJ6AICGegCAgXUAAIB1AADvIAEAgnUAAIp6AICOegCAknoAgL7ADACFtA4A4RACAO9cAADjABYA4ZABAJp6AIDjWAEA7zwHAJ56AICiegCAhgAIAIe4DACznQ0AJnoAgKZ6AICqegCArnoAgLbVDQC1tQ0AsnoAgLv5DQC68Q0AtnoAgLp6AIC/GQ4AvhEOAL3VDQC81Q0AvnoAgKPZDQDCegCAxnoAgKaRDQDKegCAznoAgKXxDQCqtQ0Aq70NANJ6AIDWegCArlUOAK9dDgCskQ0ArZENAKhdDgCpYQ4AqmEOAKthDgCsYQ4ArWEOAK5hDgCvYQ4A2noAgN56AIDiegCA5noAgOp6AIDuegCA8noAgPZ6AIC4TQ8AuVEPALpRDwC7UQ8AvHEPAL1xDwC+cQ8Av3EPALDBDwCxwQ8AssEPALPBDwC0wQ8AtcEPALbBDwC3wQ8As+kPAPp6AIC+gAEA/noAgJZ6AIC24Q8AtekPAAJ7AIC7BQ4AugUOAAp7AIAGewCAvwUOAL4FDgC9FQ4AvBUOAIFNAACAQQAA72gNAIJRAACG8AcAh9QBAA57AIASewCAFnsAgIRwAQAaewCAHnsAgOHgDgAiewCA40gNACZ7AICjaQ8AKnsAgC57AIAyewCANnsAgKZhDwClaQ8AOnsAgKuFDgCqhQ4APnsAgEJ7AICvhQ4AroUOAK2VDgCslQ4ARnsAgLMxDgBKewCATnsAgLbBAQBSewCAVnsAgLXRAQC6zQEAu6UBAFp7AIBeewCAvqUBAL+tAQC8sQEAvbEBAI/dJgCj8Q0AYnsAgGZ7AICmAQIAansAgG57AIClEQIAqg0CAKtlAgByewCAviAEAK5lAgCvbQIArHECAK1xAgCfoQwAnnkKAJ1pCgCc0QgAm7E2AJp1NgCZ0TQAmOEyAJdtMgCWZTIAlTU/AJRhPgCTcT4AkjU7AJFxOgCQeToAgJUAAIGdAACCoQAAensAgO9EAgDhdA8AfnsAgOMcDwDj1AEAgnsAgOHgAQDvXAEAo7UCAKJBAACh3Q4AoLkOALWpAwCGewCAhMAEALahAwCG8AUAh+QEALOFAwCKewCAvXEDALxpAwC/QQMAvnEDAI57AIC2eQCAu3EDALp5AwCC3ScAgwE7AL6EBwC+wAYAhhE/AIcZPwCEETsAhV06AIp9PgCLJTMAknsAgJZ7AICOuTUAjxU3AIw1MwCNgTMAkqE3AJPZCQC+xBkAmnsAgJaxDQCXUQ8AlHkLAJVhCwCaBQ8Am5EBAJ57AICiewCApnsAgN0AAACcfQMAqnsAgOFIDwCuewCA4xwOALJ7AIC2ewCAunsAgL57AIDCewCAsUEXALChFwCzqesBsgHoAbUB7AG0EesB74wOAMZ7AICpxR8AqAEcAKsBEACqkR8ArdkTAKzREwCv2RcArgUTAKHxAgDKewCAo8kHAKLBAgClARgApGUHAKehGwCm+RsAqCkFAKldBQCqVQUAq20FAKx5BQCteQUArm0FAK9hBQB2ewCAznsAgNJ7AIDWewCAgA0AAIGxAACCsQAA2nsAgLiJBQC5iQUAup0FALuVBQC8uQUAvbkFAL5RBgC/UQYAsOUFALHtBQCy5QUAs/0FALTtBQC13QUAttUFALe9BQCj3QUA3nsAgOJ7AICEDAAA5nsAgKb5BQCl8QUA6nsAgKspBQCqIQUAhpgAAIegAACvGQUArikFAK0pBQCsMQUA7nsAgLNhBgDyewCA9nsAgLYhBgD6ewCA/nsAgLUBBgC6rQcAu40HAAJ8AIAGfACAvo0HAL9xBwC8lQcAvY0HAL65BQC/uQUAvLkFAL25BQC6uQUAu7kFALi5BQC5uQUAtkkFALdJBQC0fQUAtXUFALJ5BQCzeQUAsBUFALF9BQCuXQUAr20FAKxFBQCtXQUAqqUKAKtdBQCovQoAqa0KAAp8AIAOfACAEnwAgBZ8AIAafACAHnwAgCJ8AIAmfACAqA0HAKkdBwCqLQcAq0kHAKxNBwCtZQcArrEGAK+xBgAqfACALnwAgDJ8AIA2fACAOnwAgD58AIBCfACARnwAgLhVBgC5XQYAulUGALtxBgC8NQYAvfEBAL7xAQC/8QEAsK0GALGNBgCyhQYAs50GALSNBgC1cQYAtnUGALdtBgCjpQQAgi0AAIEVAACAHQAASnwAgKblBAClxQQATnwAgKtJBQCqaQUAUnwAgFp8AICvtQUArkkFAK1JBQCsUQUAhmAcAIcIAwBefACAs4UCAGJ8AIC1gQIAtoECAGZ8AIBqfACAbnwAgLoJAwC7CQMAvBkDAL0ZAwC+CQMAvwkDAKxVAgCtXQIArmECAK9hAgCoDQIAqVUCAKpRAgCrUQIAhKwDAHJ8AIB2fACAenwAgIT8HQB+fACAgnwAgIZ8AIC8cQMAvXEDAL5xAwC/cQMAuHEDALlxAwC6cQMAu3EDALSRAwC1kQMAtpEDALeRAwCwkQMAsZEDALKRAwCzkQMAinwAgI58AICSfACAlnwAgJp8AIDhpAEAnnwAgOOAAQC+aBwAonwAgKZ8AIDv2AYAqnwAgK58AICyfACAtnwAgKOJAwCCLQAAgRUAAIAdAAC6fACApo0DAKWNAwC+fACAqwUCAKoFAgDCfACAynwAgK8FAgCuBQIArRUCAKwVAgCGIBwAh8QdAM58AIDSfACA1nwAgNp8AIDefACA72wGAOJ8AIDhbAcA5nwAgON0BwDqfACA7nwAgPJ8AID2fACAs5EBAPp8AID+fACAAn0AgAZ9AIC2sQEAtbkBAAp9AIC7VQEAukkBAA59AIASfQCAv/UAAL71AAC9RQEAvEUBAKNRHgDGfACAFn0AgBp9AIAefQCApnEeAKV5HgAifQCAq5UeAKqJHgAmfQCAKn0AgK81HwCuNR8ArYUeAKyFHgCAbQAAgRUAAIIdAADv/BkALn0AgDJ9AIA2fQCAOn0AgIbAAACHrAMAPn0AgEJ9AIBGfQCA4SwcAEp9AIDjzBwAqK0eAKnNHgCq2R4Aq9EeAKzxHgCt8R4Arj0eAK81HgCE7AAATn0AgFJ9AIBWfQCAWn0AgF59AIBifQCAZn0AgLjRHwC53R8Auu0fALvlHwC84R8AveEfAL7hHwC/4R8AsE0eALFRHgCyUR4As1EeALTxHwC18R8AtvEfALfxHwCobR4AqY0eAKqFHgCrnR4ArIUeAK2NHgCuuR4Ar7UeAGp9AIBufQCAcn0AgHZ9AIB6fQCAfn0AgIJ9AICGfQCAuJ0eALmtHgC6pR4Au0UBALxdAQC9RQEAvkUBAL91AQCw0R4AsdEeALLRHgCz0R4AtLUeALW9HgC2tR4At60eALMNHgCKfQCAjn0AgJJ9AICWfQCAtg0eALUNHgCafQCAuxUeALoVHgCefQCAon0AgL95HgC+cR4AvQUeALwFHgCCbQAAo0keAIBVAACBZQAApkkeAL6cAQCqfQCApUkeAKpRHgCrUR4Ah3wAAIZMAACuNR4Arz0eAKxBHgCtQR4AqF0CAKltAgCqZQIAq30CAKxpAgCtsQIArrECAK+xAgCE7AQArn0AgLJ9AIC2fQCAun0AgL59AIDCfQCAxn0AgLhxAwC5cQMAunEDALtxAwC81QMAvd0DAL7VAwC/zQMAsNECALHRAgCy0QIAs9ECALRRAwC1UQMAtlEDALdRAwCz7QIAyn0AgM59AIC+gAQA0n0AgLYxAgC14QIA1n0AgLsVAgC6FQIA2n0AgN59AIC/lQMAvpUDAL0FAgC8BQIA4n0AgKOpAgDmfQCA6n0AgKZ1AgDufQCA8n0AgKWlAgCqUQIAq1ECAPZ9AID6fQCArtEDAK/RAwCsQQIArUECAKjZAgCpIQEAqiEBAKshAQCsIQEArSEBAK4hAQCvIQEA/n0AgAJ+AIAGfgCAviAEAAp+AIAOfgCAEn4AgBp+AIC4jQEAuZEBALqRAQC7pQEAvL0BAL11AAC+fQAAv3UAALDlAQCx7QEAsvkBALPxAQC02QEAtdkBALa5AQC3tQEA4RgeAB5+AIDjKB8AIn4AgIGlAACApQAAJn4AgIKlAACGAAQAh/QFACp+AIAufgCAMn4AgDZ+AIDvYB4AOn4AgD5+AIBCfgCAhfD0AUZ+AIBKfgCA42QBAE5+AIDhpAEAUn4AgO/IAABWfgCAWn4AgFZ8AICE/AUAXn4AgGJ+AICzKQYAFn4AgGZ+AIBqfgCAbn4AgLYhBgC1KQYAcn4AgLupBgC6oQYAdn4AgHp+AIC/nQYAvp0GAL2lBgC8rQYA4bQHAH5+AIDjeAQAgn4AgIB9AACBEQAAghUAAIZ+AICGwAAAh1gDAIp+AICOfgCAkn4AgJZ+AIDvDAQAmn4AgKOpBgCefgCAon4AgKZ+AICqfgCApqEGAKWpBgCufgCAqykGAKohBgCyfgCAtn4AgK8dBgCuHQYArSUGAKwtBgC6fgCAs0kHAL5+AIDCfgCAtn0HAMZ+AIDKfgCAtXUHALpdBwC7JQcAzn4AgNJ+AIC+IQcAvy0HALw9BwC9MQcAqD0GAKmBBgCqhQYAq5UGAKy5BgCtuQYArqkGAK+pBgDWfgCA2n4AgN5+AIDifgCA5n4AgIK5AACBsQAAgLkAALitBgC5vQYAurUGALtFAQC8XQEAvUUBAL5FAQC/dQEAsN0GALGlBgCyrQYAs6EGALShBgC1rQYAtpkGALeVBgCjDQYA6n4AgO5+AIDyfgCAhJgCAKY5BgClMQYAvpwBAKthBgCqGQYAhggAAId8AQCvaQYArmUGAK11BgCseQYA+n4AgLO1AQD+fgCAAn8AgLZVAQAGfwCACn8AgLWhAQC6cQEAu3kBAA5/AIASfwCAvjEBAL89AQC8UQEAvVEBAKhpAgCpaQIAqnkCAKt5AgCsbQIArZECAK6RAgCvkQIAFn8AgBp/AIAefwCAIn8AgCZ/AIAqfwCALn8AgDJ/AIC4mQIAua0CALqlAgC7bQMAvHUDAL19AwC+dQMAv20DALDxAgCx+QIAssECALPBAgC0sQIAtb0CALa1AgC3qQIANn8AgDp/AIA+fwCAo/0CAEJ/AICl6QIAph0CAEZ/AIBKfwCATn8AgKo5AgCrMQIArBkCAK0ZAgCueQIAr3UCAFJ/AIBWfwCAWn8AgIQADACAGQAAgQkAAII5AABefwCAYn8AgGp/AIBufwCAvuAMAHJ/AIB2fwCAhlgNAIcMAwCowQIAqc0CAKrFAgCr2QIArMkCAK39AgCu9QIArz0BAHp/AIB+fwCAgn8AgIZ/AICKfwCAjn8AgJJ/AIC+MAwAuMUBALnNAQC62QEAu9EBALzxAQC98QEAvpkBAL+ZAQCwRQEAsU0BALJFAQCzXQEAtEUBALVNAQC2RQEAt/0BAOE4BgCWfwCA42wGAJp/AICefwCAon8AgKZ/AICqfwCAhKgNAK5/AICyfwCAtn8AgL6wDwC6fwCA72wGAL5/AIDCfwCApn0AgMZ/AIDKfwCA41AAAM5/AIDhoAEA0n8AgO+EAADafwCAhyANAIZMDwCAPQAAgSEAAIIlAADefwCAs80NAGZ/AIDWfwCA4n8AgOZ/AIC2/Q0AtcENAOp/AIC7CQ4AugEOAO5/AIDyfwCAvwkOAL4BDgC9CQ4AvBEOAPZ/AIDjmAwA+n8AgOH8DwD+fwCAAoAAgAaAAIAKgACADoAAgBKAAIAWgACAGoAAgB6AAIDvYAwAIoAAgCaAAICjTQ0AKoAAgC6AAIAygACANoAAgKZ9DQClQQ0AOoAAgKuJDgCqgQ4APoAAgEKAAICviQ4AroEOAK2JDgCskQ4Agm0AALM1DgCAVQAAgWUAALb1DwCE3AMARoAAgLX9DwC60Q8Au9EPAIYABACH3AAAvn0PAL9lDwC8wQ8AvXkPAKjlDwCp7Q8AqvkPAKv5DwCsMQ4ArTEOAK4xDgCvMQ4ASoAAgE6AAIBSgACAVoAAgFqAAIBegACAYoAAgGaAAIC43Q4AueEOALrhDgC74Q4AvOUOAL3pDgC+mQ4Av5UOALBRDgCxUQ4AslEOALPpDgC0/Q4AteUOALbtDgC35Q4Ao3EPAGqAAIBugACAcoAAgHaAAICmsQ4ApbkOAHqAAICrlQ4AqpUOAH6AAICCgACAryEOAK45DgCtPQ4ArIUOAIaAAICzyQEAioAAgI6AAIC2+QEAkoAAgJaAAIC1wQEAuqkBALu1AQCagACAnoAAgL6tAQC/lQEAvK0BAL2lAQCo5Q0AqfkNAKoFAgCrHQIArA0CAK09AgCuNQIAr10CAKKAAICmgACAqoAAgK6AAICAGQAAgRkAAIIFAACygACAuC0CALk1AgC6MQIAuzECALzVAgC93QIAvtUCAL/NAgCwKQIAsTUCALI9AgCzNQIAtC0CALUVAgC2HQIAtxUCALqAAICEnAIAvoAAgKOBAgDCgACApYkCAKaxAgDGgACAhiAEAIfUAwCq4QIAq/0CAKzlAgCt7QIAruUCAK/dAgC29QMAvkQDAIWM/QG1/QMAyoAAgLP9AwDOgACA0oAAgL59AwC/TQMAvGUDAL19AwC6dQMAu30DANaAAIDagACA3oAAgOKAAICEBAIAoyUCAOaAAIClJQIApi0CAOqAAIDugACA8oAAgKqtAgCrpQIArL0CAK2lAgCupQIAr5UCAPaAAID6gACA/oAAgAKBAIAGgQCA48ADAAqBAIDhrAEADoEAgO9YAwASgQCAFoEAgIANAACB5QAAgu0AABqBAIDhYA8A40ABAOM4DgDheA4AHoEAgCKBAIC+lAUAKoEAgIYABACHZAUALoEAgDKBAIA2gQCA7/wOAO98DgA6gQCAs1EBAD6BAID2fgCAQoEAgEaBAIC2DQEAtQkBAEqBAIC74QAAuhkBAE6BAIBSgQCAv9EAAL7pAAC96QAAvPkAALaAAIAmgQCAVoEAgFqBAIBegQCAYoEAgGaBAIBqgQCAqKEGAKmtBgCquQYAq7EGAKzhBgCt7QYAruUGAK/FBgCwvQYAsUUHALJNBwCzXQcAtE0HALV1BwC2fQcAtx0HALglBwC5LQcAuiUHALs9BwC8KQcAvRUHAL4RBwC/EQcAoxEGAG6BAIBygQCAdoEAgHqBAICmTQYApUkGAH6BAICroQcAqlkGAIKBAICGgQCAr5EHAK6pBwCtqQcArLkHAIANAACBFQAAgh0AAIqBAICOgQCAkoEAgISUAwC+lAMAloEAgJqBAICGyAAAh4wAAJ6BAICigQCApoEAgKqBAIConQYAqa0GAKqlBgCrvQYArK0GAK3RBgCu1QYAr80GAK6BAICygQCAtoEAgLqBAIC+gQCAwoEAgMaBAIDKgQCAuF0BALnBAQC6wQEAu8EBALzBAQC9yQEAvvEBAL/xAQCwvQYAsY0GALKFBgCzZQEAtH0BALVlAQC2bQEAt2UBALMtBgDOgQCA0oEAgNaBAIDagQCAtlEGALUlBgDegQCAu0kGALp5BgDigQCA5oEAgL+hAQC+uQEAvbEBALxRBgDqgQCAo2kGAO6BAIDygQCAphUGAPaBAID6gQCApWEGAKo9BgCrDQYA/oEAgAKCAICu/QEAr+UBAKwVBgCt9QEAutUHALvdBwC4wQcAucEHAL4xBAC/MQQAvPEHAL3xBwCyrQcAs7UHALCtBwCxpQcAtp0HALf1BwC0pQcAtZUHAKppBwCraQcAqGkHAKlpBwCuaQcAr2kHAKxpBwCtaQcAgLkDAIGNAwCChQMAhKgDAIZQ/AGHCAMAvjQDAAqCAICoZQIAqXUCAKp9AgCrdQIArG0CAK21AwCuvQMAr7UDAA6CAIASggCAFoIAgBqCAIAeggCAIoIAgCaCAIAqggCAuFEDALlZAwC6YQMAu2EDALwRAwC9HQMAvhUDAL8JAwCwzQMAsdUDALLdAwCz1QMAtM0DALVxAwC2cQMAt3EDAC6CAIAyggCAs/0DADaCAIC17QMAOoIAgD6CAIC2PQIAQoIAgEaCAIC7GQIAugECAL0JAgC8AQIAv70CAL4BAgBKggCAToIAgITE/QG+wPwBUoIAgFaCAIBaggCA79wDAF6CAIDhlAEAYoIAgOMQAwBmggCAgu0AAIHtAACA7QAA4TgGAOE8BwDjQAEA45QGAGqCAIBuggCAcoIAgHqCAICGgPwBh+j9AX6CAICCggCAhoIAgIqCAIDvnAEA79wGAKM1AwCOggCAkoIAgJaCAICaggCApvUCAKUlAwCeggCAq9ECAKrJAgCiggCApoIAgK91AgCuyQIArcECAKzJAgB2ggCAqoIAgK6CAICyggCA76T9AbaCAIC6ggCAvoIAgON4/QHCggCA4UD8AcaCAIDKggCAzoIAgNKCAIDWggCAs+X+AYItAACBFQAAgB0AANqCAIC25f4BtfX+Ad6CAIC7Yf8Butn+AeKCAICE5AMAv2n/Ab5h/wG9df8BvHn/Aaj9/gGpJf4Bqi3+Aasl/gGsPf4BrSX+Aa4t/gGvJf4BviwAAOaCAICGiAAAh+wAAOqCAIDuggCA8oIAgPaCAIC4gf8BuYH/AbqZ/wG7mf8BvIn/Ab21/wG+sf8Bv63/AbBd/gGx5f8Bsu3/AbPh/wG05f8Bte3/AbbZ/wG32f8Bo6X/AfqCAID+ggCAAoMAgAaDAICmpf8BpbX/AQqDAICrIf4Bqpn/AQ6DAIASgwCAryn+Aa4h/gGtNf4BrDn+ARaDAICz6f4BGoMAgB6DAIC2lf4BIoMAgCaDAIC16f4BurH+Abu5/gEqgwCALoMAgL51AQC/fQEAvJH+Ab2R/gGoHf4BqS3+Aaol/gGrPf4BrCX+Aa1R/gGuUf4Br1H+ATKDAIA2gwCAOoMAgD6DAIBCgwCARoMAgEqDAIBOgwCAuNkBALnZAQC67QEAu+EBALzhAQC94QEAvuEBAL/hAQCwMf4BsTn+AbIB/gGzAf4BtPUBALX9AQC29QEAt+kBAKOt/QFSgwCAvkwDAFqDAIBegwCAptH9AaWt/QFigwCAq/39Aar1/QFmgwCAaoMAgK85AgCuMQIArdX9AazV/QGA+QMAgfkDAIJNAACFdCAAboMAgITYAwCE1AQAcoMAgIZABACHVAMAdoMAgHqDAIB+gwCAgoMAgIaDAIC+8AUAqDECAKkxAgCqMQIAqzECAKyVAwCtnQMArpUDAK+NAwCKgwCAjoMAgJKDAICWgwCAhHwHAJqDAICegwCAooMAgLipAwC5qQMAumkDALtpAwC8eQMAvXkDAL5pAwC/aQMAsP0DALHNAwCyxQMAs60DALS5AwC1uQMAtq0DALelAwCmgwCAqoMAgK6DAICygwCAtoMAgLqDAIDv6AMAvoMAgOGQAQDCgwCA42wDAMqDAICAJQAAgSkAAIIdAADOgwCAs/kDANKDAICGaAcAh1wFANaDAIC2XQIAtV0CANqDAIC7SQIAunkCAN6DAIDigwCAvz0CAL49AgC9OQIAvFECAOaDAIDhPP4BvkAGAOPwAQDqgwCA7oMAgPKDAID2gwCA+oMAgP6DAIAChACABoIAgAaEAIAKhACADoQAgO/kAQAShACAFoQAgKNxAwAahACApdUCAB6EAIAihACAptUCACaEAIAqhACAq8ECAKrxAgCtsQIArNkCAK+1AgCutQIA4dz8AcaDAIDjUAQA74gEAID1BwCBCQAAgj0AAC6EAICEJAEAMoQAgDaEAIA6hACAPoQAgOFMBADv5BwA43QEALNdBgBChACAhgAMAIfgAwBGhACAtgUGALV1BgBKhACAuxEGALoJBgBOhACAUoQAgL/VBgC+1QYAvQEGALwJBgCojQYAqZUGAKqVBgCrpQYArL0GAK3FBgCuxQYAr/UGAFaEAIBahACAXoQAgGKEAIBmhACAaoQAgG6EAIByhACAuHUGALl9BgC6dQYAu80HALzVBwC93QcAvtUHAL/NBwCwjQYAsZUGALKdBgCzlQYAtFEGALVRBgC2UQYAt1EGAKMdBwCPFewBdoQAgHqEAIB+hACApkUHAKU1BwCChACAq1EHAKpJBwCGhACAioQAgK+VBwCulQcArUEHAKxJBwCeRfkBn6X5AZyR/QGdTfkBmlX9AZtd/QGYBfEBmZX+AZal8gGXYfEBlG31AZU19QGS4ekBk4X2AZBV7AGRXekBsbEdALClHQCziRkAskEcALUBJAC09RkAjoQAgJKEAICWhACAgqkDAIGhAwCAaQAAohUFAKMFAgCgFQYAob0FAKHFAQCahACAo80NAKLlAQClAQgApN0NAKfRCQCm2QkAqQEUAKilCACrxRQAqs0VAK3REQCsARAArwEcAK51EQCCEe8BgynvAZ6EAICihACAhuH1AYcR9gGEOeoBhY3qAYp59gGL4fEBvqQMAKqEAICO+f0BjzH+AYw98gGNYfIBkkn+AZOd/gGHCAwAhmwMAJax+gGX+QUAlFn6AZVZ+gGaYQYAm8EGAK6EAICyhACAtoQAgLqEAICcyQEAvoQAgKitBQCpuQUAqs0FAKvdBQCszQUArf0FAK71BQCvHQUAwoQAgMaEAIDKhACAzoQAgNKEAIDWhACA2oQAgN6EAIC4dQUAuX0FALoJBQC7CQUAvB0FAL0BBQC+AQUAvz0FALBxBQCxcQUAsnEFALNxBQC0UQUAtVEFALZRBQC3TQUAs0UEAOKEAIDmhACA6oQAgO6EAIC2fQQAtUUEAPKEAIC7tQQAurUEAPaEAID6hACAv5UEAL6VBAC9pQQAvKUEAP6EAICjAQQAAoUAgAaFAICmOQQACoUAgA6FAIClAQQAqvEEAKvxBAAShQCAhOwNAK7RBACv0QQArOEEAK3hBADh0AYAhAwMAOMoBwC+AAwAGoUAgO9EAwCGuAwAhywNAB6FAIDjlAEAIoUAgOH8AQBWgwCAJoUAgO/IBgAqhQCALoUAgDKFAICzjQMANoUAgLWNAwA6hQCAPoUAgLa1AwBChQCARoUAgLtBAwC6SQMAvUEDALxZAwC/QQMAvkkDAKNFDACmhACAFoUAgEqFAIBOhQCApn0MAKVFDABShQCAq4kMAKqBDABWhQCAWoUAgK+JDACugQwArYkMAKyRDACAFQ8AgR0PAIIhDwCzIQ4AXoUAgLUhDgC2JQ4AYoUAgGaFAIBqhQCAusEOALvBDgC8wQ4AvcEOAL7BDgC/wQ4AqK0OAKntDgCq5Q4Aq/0OAKzlDgCt6Q4ArjkOAK85DgBuhQCAcoUAgHaFAIB6hQCAgB0AAIEJAACCvQEAfoUAgLjNDwC51Q8AutUPALvlDwC8/Q8AvZUPAL6RDwC/kQ8AsEkOALFJDgCyWQ4As1kOALRJDgC1SQ4Atv0PALf1DwCjbQ8AgoUAgL6EAQCKhQCAjoUAgKZpDwClbQ8AkoUAgKuNDwCqjQ8AhogAAIdsAQCvjQ8Aro0PAK2NDwCsjQ8AloUAgLPtDgCahQCAnoUAgLaRDgCihQCApoUAgLXhDgC6tQ4Au70OAKqFAICuhQCAvn0BAL9lAQC8mQ4AvZkOAKgRDgCpJQ4AqiEOAKs5DgCsLQ4ArVUOAK5dDgCvUQ4AhKgAALKFAIC2hQCAuoUAgL6FAIDChQCAxoUAgMqFAIC47QEAuZUBALqVAQC7rQEAvLUBAL11AQC+fQEAv3UBALA1DgCxPQ4AsgkOALMJDgC0/QEAteUBALblAQC31QEAo6kNAM6FAIDShQCA1oUAgNqFAICm1Q0ApaUNAN6FAICr+Q0AqvENAOKFAIDmhQCAryECAK45AgCt3Q0ArN0NAIANAACBFQAAgh0AAOqFAIDuhQCA8oUAgIeQAwCGfAQAvuwEAPqFAID+hQCAAoYAgAaGAIAKhgCADoYAgBKGAICyLQ4AszUOALAtDgCxJQ4Ati0OALedDwC0LQ4AtSUOALq9DwC7jQ8AuKUPALm9DwC+LQ8AvxUPALyVDwC9JQ8AFoYAgBqGAIAehgCAIoYAgCaGAIAqhgCALoYAgDKGAICqpQ4Aq7UOAKjFDgCp3Q4Arp0OAK9VDgCspQ4ArZUOAKgNAgCpFQIAqhUCAKtNAgCsWQIArVkCAK5NAgCvRQIAhKgFADaGAIA6hgCAPoYAgIS4BABChgCARoYAgEqGAIC4/QIAuUEBALpBAQC7QQEAvEEBAL1JAQC+cQEAv3EBALAJAgCxCQIAss0CALPFAgC03QIAtcUCALbNAgC3xQIA4dQPAOMQDgDj9A4A4QwOAE6GAIBShgCAVoYAgFqGAIBehgCAYoYAgL4kBABqhgCA7AAAAO9EAADvzA4AboYAgIJlAACz2QIAgFUAAIFtAAC2nQIAcoYAgHaGAIC1lQIAuokCALuJAgCGqAQAh+AEAL5dAgC/RQIAvF0CAL1VAgCjHQUA9oUAgGaGAIB6hgCAfoYAgKZZBQClUQUAgoYAgKtNBQCqTQUAhoYAgIqGAICvgQUArpkFAK2RBQCsmQUAjoYAgLMpBgCShgCAloYAgLYpBgCahgCAnoYAgLUpBgC6pQYAu60GAKKGAICmhgCAvqUGAL+tBgC8tQYAva0GAKjlBgCp7QYAquUGAKv9BgCs5QYAre0GAK7lBgCvXQYAqoYAgK6GAICyhgCAtoYAgLqGAIC+hgCAwoYAgMaGAIC46QcAuekHALr9BwC79QcAvO0HAL1FBwC+TQcAv0UHALAlBgCxLQYAsiUGALM9BgC0JQYAtS0GALYlBgC32QcAo20HAIItAACBFQAAgB0AAMqGAICmbQcApW0HAM6GAICr6QcAquEHANKGAIC+oAEAr+kHAK7hBwCt6QcArPEHANaGAICzkQYAhugAAIcsAQC2QQEA2oYAgN6GAIC1UQEAuk0BALslAQDihgCA5oYAgL4lAQC/LQEAvDEBAL0xAQCwrQEAscUBALLBAQCzwQEAtMUBALXNAQC28QEAt/EBALgBAQC5AQEAugEBALsBAQC8AQEAvQEBAL4BAQC/AQEA6oYAgO6GAIDyhgCA9oYAgIaFAID6hgCA/oYAgAKHAICoTQYAqVkGAKo9BgCrNQYArP0BAK3lAQCu5QEAr9UBAKPVBQAGhwCACocAgA6HAIAShwCApgUCAKUVAgAWhwCAq2ECAKoJAgAahwCAHocAgK9pAgCuYQIArXUCAKx1AgAihwCAJocAgCqHAIAuhwCAMocAgOFkBQA2hwCA4+wFAIARAACBEQAAghEAAO/0BgA6hwCAPocAgEKHAIC+MAMAhMQCAEqHAICz4QMAhMAcALVRAwBOhwCAUocAgLZZAwBWhwCAWocAgLtxAwC6eQMAvbUAALxpAwC/tQAAvrUAAF6HAIDhlAEAYocAgONcAgCGcBwAh0QDAGaHAIBqhwCAbocAgHKHAIB2hwCAeocAgH6HAICChwCAhocAgO94AgCoVQIAqV0CAKphAgCrYQIArNECAK3RAgCu0QIAr9ECAIqHAICOhwCAkocAgJaHAICahwCAnocAgKKHAICmhwCAuGkBALlpAQC6CQEAuwkBALwZAQC9GQEAvgkBAL8FAQCwtQIAsb0CALK1AgCzaQEAtHkBALV5AQC2aQEAt2EBAOHEBwDjpAYA47gGAOF8BgCADQAAgTUAAII9AACqhwCArocAgLKHAIC+4B0AuocAgL6HAIDvYAAA7+gGAMKHAICjqQIAxocAgMqHAIDOhwCA0ocAgKYRAgClGQIA1ocAgKs5AgCqMQIAhkgcAIfMHACv/QEArv0BAK39AQCsIQIAqIUeAKmRHgCqkR4Aq60eAKy1HgCt1R4ArtEeAK/FHgC2hwCA2ocAgN6HAIDihwCA5ocAgOqHAIDuhwCA8ocAgLhhHwC5YR8AumEfALthHwC8YR8AvWEfAL5hHwC/YR8AsL0eALGFHgCyjR4As4UeALSdHgC1hR4Ato0eALeFHgCzGR4A9ocAgPqHAID+hwCAAogAgLZVHgC1PR4ABogAgLtBHgC6eR4ACogAgA6IAIC/QR4AvlkeAL1RHgC8WR4AEogAgKNdHgAWiACAGogAgKYRHgAeiACAIogAgKV5HgCqPR4AqwUeAISkAwC+qAMArh0eAK8FHgCsHR4ArRUeAKitHgCptR4AqrUeAKvJHgCs2R4ArdkeAK7JHgCvwR4AgO0BAIHxAQCC8QEAJogAgIaQAACHdAEAKogAgC6IAIC4yQEAuckBALrZAQC70QEAvPkBAL35AQC+mQEAv5UBALBFAQCxTQEAskUBALNdAQC0RQEAtU0BALZFAQC3+QEAsz0eADKIAIA2iACAOogAgD6IAIC2WR4AtVEeAEKIAIC7iQEAuoEBAEaIAIBKiACAv4kBAL6BAQC9iQEAvJEBAE6IAIBSiACAo3UeAFaIAIClGR4AWogAgF6IAICmER4ARocAgGKIAICrwQEAqskBAK3BAQCs2QEAr8EBAK7JAQBmiACAaogAgG6IAIByiACAdogAgIQYAgB6iACAfogAgIKIAICGiACAiogAgI6IAICSiACAmogAgJ6IAIC+cAMAgGkAAIFpAACCeQAAhAAEAIbwBACHdAMAoogAgO8MHwCmiACA4aweAKqIAIDj8B4ArogAgLKIAIC2iACAuogAgL6IAIDCiACAxogAgMqIAIDvVAIAzogAgNKIAIDWiACA46QCANqIAIDhgAEA3ogAgOKIAIDmiACA6ogAgO6IAICzRQMA8ogAgPaIAID6iACA/ogAgLZFAwC1VQMAAokAgLshAwC6SQMAvqAEAAqJAIC/KQMAviEDAL01AwC8OQMAqDkCAKk5AgCqjQIAq4UCAKydAgCthQIAroUCAK+1AgCA7QEAgfUBAIL1AQAOiQCAhpAEAIcEBQASiQCAFokAgLhFAQC5TQEAukUBALtdAQC8SQEAvUkBAL55AQC/eQEAsM0CALGlAgCyrQIAs6ECALSlAgC1rQIAtp0CALd9AQAaiQCAHokAgCKJAIAmiQCAKokAgC6JAIAyiQCA74gBAITsBADhVB4ANokAgONUAQA6iQCAPokAgEKJAIBGiQCAo0UCAEqJAIBOiQCAUokAgFaJAICmRQIApVUCAFqJAICrIQIAqkkCAF6JAIBiiQCArykCAK4hAgCtNQIArDkCAKg1BgCpPQYAqlEGAKttBgCseQYArWUGAK5tBgCvZQYABokAgGaJAIBqiQCAbokAgIAZAACBGQAAggUAAHKJAIC45QYAuekGALr5BgC7+QYAvOkGAL3pBgC+nQYAv5UGALAdBgCx5QYAsu0GALPlBgC0/QYAteEGALbhBgC34QYAs9kGAL7QAwB2iQCAeokAgH6JAIC25QYAtfEGAIKJAIC7IQYAutkGAIaYAACHeAMAvyUGAL45BgC9MQYAvDkGAIaJAICjnQYAiokAgI6JAICmoQYAkokAgJaJAICltQYAqp0GAKtlBgCaiQCAnokAgK59BgCvYQYArH0GAK11BgCo7QcAqSkGAKoxBgCrMQYArJEGAK2RBgCukQYAr5EGAKKJAICmiQCAqokAgK6JAICyiQCAtokAgLqJAIC+iQCAuIUGALmNBgC6hQYAu50GALyNBgC9vQYAvrUGAL95AQCw8QYAsfEGALLxBgCzxQYAtMEGALXBBgC2wQYAt8EGALO5BgDCiQCAxokAgMqJAIDOiQCAthEGALUZBgDSiQCAuzUGALo1BgDWiQCA2okAgL8FBgC+BQYAvREGALwlBgClQQYA3okAgOKJAICmSQYAgRUAAIB5AACj4QYAghUAAK1JBgCsfQYAr10GAK5dBgCENAEAlogAgKttBgCqbQYAvswDAOqJAICzlQIA7okAgLXZAgDyiQCA9okAgLbRAgCGgAwAhzgDALvFAgC6xQIAvRUDALwVAwC/FQMAvhUDAPqJAID+iQCA71gGAIRAAwACigCABooAgAqKAIAOigCAEooAgBaKAIAaigCAHooAgOE4BgAiigCA4yQGAL5wDACsSQIArUkCAK5dAgCvVQIAqB0CAKkFAgCqBQIAq10CAISoDAAmigCAKooAgC6KAIC+vA0AMooAgDaKAIA6igCAvE0DAL1VAwC+VQMAv2UDALjpAwC56QMAul0DALtVAwC0yQMAtckDALbZAwC32QMAsBkCALEZAgCy2QMAs9kDAD6KAIDj5AAAQooAgOG8AQBGigCAgj0AAIE9AACAPQAASooAgE6KAIBSigCAWooAgF6KAIDvzAMAYooAgGaKAICj3QMAaooAgIboDACHYA0AbooAgKaZAwClkQMAcooAgKuNAwCqjQMAdooAgHqKAICvXQIArl0CAK1dAgCsXQIAfooAgIKKAICGigCAiooAgI6KAICSigCAlooAgO/gAQCEvAwA4YwGAJqKAIDjHAYAnooAgKKKAICmigCAqooAgLPVAQCuigCAsooAgLaKAIC6igCAtpEBALWZAQC+igCAu70BALq9AQDCigCAyooAgL+dAQC+nQEAvZ0BALydAQCoBQ4AqQkOAKodDgCrFQ4ArFEOAK1RDgCuSQ4Ar0kOAFaKAICCzQ8AgfUPAID9DwDGigCAzooAgIYcAACHsAMAuOkOALnpDgC6/Q4Au/UOALztDgC9VQ8AvlEPAL9NDwCwOQ4AsTkOALIJDgCzCQ4AtBkOALUZDgC2DQ4At9kOAKOVDgDSigCA1ooAgNqKAIDeigCAptEOAKXZDgDiigCAq/0OAKr9DgDmigCA6ooAgK/dDgCu3Q4Ard0OAKzdDgDuigCAs/0PAPKKAID2igCAtoEPAPqKAID+igCAtZkPALqNDwC7ZQ8AAosAgAaLAIC+fQ8Av2UPALx9DwC9dQ8AqC0OAKk1DgCqMQ4AqzEOAKxVDgCtRQ4ArkUOAK91DgAKiwCADosAgBKLAIAWiwCAGosAgB6LAIAiiwCAJosAgLjpDgC59Q4Auv0OALv1DgC87Q4AvZEOAL6RDgC/kQ4AsA0OALHlDgCy7Q4As+UOALT9DgC15Q4Atu0OALflDgCjuQ4Agi0AAIEVAACAHQAAKosAgKbFDgCl3Q4ALosAgKshDgCqyQ4AMosAgL4sAQCvIQ4ArjkOAK0xDgCsOQ4AOosAgLZVAQC1RQEANosAgLNVAQA+iwCAhngAAIdcAAC/OQEAvjEBAL0lAQC8JQEAuzEBALpZAQDmiQCAQosAgEaLAIBKiwCAhAQDAKOJAgBOiwCApZkCAKaJAgBSiwCAvyg5AFaLAICqhQIAq+0CAKz5AgCt+QIAru0CAK/lAgDjWAIA78AOAOGIAQBaiwCAXosAgGKLAIBmiwCAaosAgG6LAIByiwCAdosAgHqLAIDvKAIA4ygOAH6LAIDhRA4AqbUCAKhpDQCrAQIAqgkCAK0BAgCsGQIArzECAK4BAgC+AAQAgosAgIaLAICKiwCAjosAgJKLAICWiwCAmosAgLnlAwC45QMAu+UDALrlAwC95QMAvOUDAL/lAwC+5QMAsSECALBJAgCzJQIAsiUCALUpAgC0IQIAtxUCALYVAgCowQIAqdECAKr1AgCrDQEArBUBAK0FAQCuBQEArzkBAJ6LAICiiwCAqosAgK6LAICyiwCAtosAgLqLAIC+iwCAuC0BALk9AQC67QEAu+UBALz9AQC95QEAvu0BAL/lAQCwLQEAsTUBALI9AQCzNQEAtC0BALUVAQC2HQEAtxUBAIA9AQCBpQAAgq0AAO/YAACGsAUAh9gFAMKLAIDv1A8AhGwEAOH0DgDGiwCA4xwPAMqLAIDhlAEAzosAgOMMDgCzPQIA0osAgNaLAIDaiwCA3osAgLbFAQC13QEA4osAgLuxAQC6qQEA5osAgOqLAIC/kQEAvqkBAL2hAQC8qQEAposAgO6LAICqRQYAq10GAKxFBgCtTQYArkUGAK99BgDyiwCA9osAgPqLAICj0QUA/osAgKUxBgCmKQYAAowAgAaMAICCHQAAgR0AAIAdAAAKjACADowAgBKMAIC+lAMAFowAgBqMAICGSAMAh8wDAB6MAIAijACAJowAgCqMAICoqQcAqakHAKq5BwCruQcArKkHAK2pBwCuAQcArzUHAC6MAIAyjACANowAgDqMAIA+jACAQowAgEaMAIBKjACAuC0HALnBAAC66QAAu+kAALz5AAC95QAAvuUAAL+dAACwUQcAsV0HALItBwCzJQcAtD0HALUlBwC2JQcAtxUHALMxBgBOjACAUowAgFaMAIBajACAtikGALUhBgBejACAu5kGALqVBgBijACAZowAgL/hBgC++QYAvfEGALz5BgBqjACAo3UGAG6MAIByjACApm0GAHaMAIB6jACApWUGAKrRBgCr3QYAfowAgIKMAICuvQYAr6UGAKy9BgCttQYAqOUBAKn1AQCq/QEAq/UBAKztAQCtNQEArj0BAK81AQCA+QAAgc0AAILFAACEYAEAvngBAIqMAICHrAAAhpABALjRAAC52QAAuuEAALvhAAC8kQAAvZ0AAL6VAAC/iQAAsE0BALFVAQCyXQEAs1UBALRNAQC18QAAtvEAALfxAACzdQIAjowAgJKMAICWjACAmowAgLa1AgC1ZQIAnowAgLuRAgC6iQIAoowAgKaMAIC/NQMAvokCAL2BAgC8iQIAqowAgKMxAgCujACAhMADAKbxAgCyjACAtowAgKUhAgCqzQIAq9UCALqMAIC+jACArs0CAK9xAwCszQIArcUCAKuNAACqjQAAqY0AAKg5AwCvvQAArr0AAK2FAACsjQAAqgAAAKsAAADCjACAxowAgMqMAIDOjACA0owAgNaMAIC7fQAAun0AALl9AAC4fQAAv90BAL7dAQC93QEAvN0BALO5AACysQAAsaEAALCtAAC3XQAAtl0AALWVAAC0lQAA2owAgN6MAIDijACA5owAgIE1AACADQAA6owAgII1AAC+rD0A7owAgPKMAICFaD0A+owAgP6MAICGODwAh8ACALNJAQACjQCA0AAAAAaNAIAKjQCAtkkBALVJAQAOjQCAuykBALolAQASjQCAFo0AgL8dAQC+HQEAvSEBALwpAQDjNDYA4QwGAOGwAgDjPAYAGo0AgB6NAIAijQCAJo0AgIQsPwC+oD8AKo0AgC6NAIDvfDcAMo0AgDaNAIDvGAEAOo0AgD6NAICGaD4Ah8w/AEKNAIBGjQCASo0AgO+UAABOjQCA4ZQBAFKNAIDjUAAAVo0AgILpPwCB6T8AgPE/AKMJPgCPASQA9owAgFqNAIBejQCApgk+AKUJPgBijQCAq2k+AKplPgBmjQCAao0AgK9dPgCuXT4ArWE+AKxpPgCeYTgAn3U4AJzBNACdtTkAmqU1AJt1NACYeTAAmXExAJYhLQCXhTEAlG0sAJVlLACSeSgAk6UtAJBRJACReSgAsQ0UALAFFACzARgAslUUALV5GAC0tRgAbo0AgHKNAIB2jQCAeo0AgH6NAICCjQCAotE8AKMlAQCgdTkAob08AKHJAACGjQCAowEEAKLlAAClHQQApPUEAKf5CACmAQgAqQEMAKhtCACrzQwAqs0MAK3REACsARAAr9URAK7ZEACCBSUAgy0lAIqNAICOjQCAhsEsAIcRLQCEHSkAhRUpAIopLQCLZSwAko0AgJaNAICOHTAAj8E0AIzZMACNHTEAkmE1AJPNNQCajQCAno0AgJZhOQCXmTgAlKE4AJV9OQCaYT0AmwU9AKKNAICmjQCAqo0AgK6NAICc6QAAso0AgLaNAIC6jQCAvo0AgMKNAICGjACAxo0AgMqNAIDOjQCAqJE+AKmRPgCq7T4Aq+E+AKzhPgCt6T4ArtE+AK/RPgCwUT4AsVE+ALJRPgCzUT4AtHk+ALV5PgC2bT4At2U+ALghPgC5IT4Aujk+ALs5PgC8KT4AvRU+AL4RPgC/DT4AgJkDAIGZAwCCBQAA0o0AgL5UAwDhsD0A2o0AgONAPgCEOAIA3o0AgOKNAIDv9D8A5o0AgOqNAICGmAQAhxwDALMFPQCECAQA7o0AgPKNAID2jQCAtgk9ALUJPQD6jQCAu/U9ALr1PQD+jQCAAo4AgL/dPQC+3T0AveU9ALzlPQAGjgCACo4AgKPNPQC+xAQApcE9AA6OAIASjgCApsE9ABaOAIAajgCAqz09AKo9PQCtLT0ArC09AK8VPQCuFT0AtmkCAB6OAIAijgCAtWkCACaOAICzSQIAKo4AgC6OAIC+qQMAv6kDALzBAwC9wQMAuvkDALv5AwAyjgCANo4AgKgtAwCpnQMAqpUDAKutAwCstQMArb0DAK61AwCv2QMAgA0AAIEVAACCHQAAOo4AgD6OAIBCjgCAh7QFAIacBAC4MQIAuTECALo1AgC7zQIAvNUCAL3dAgC+1QIAv8kCALBpAgCxaQIAskECALNBAgC0OQIAtTkCALYRAgC3EQIASo4AgOM0PgBOjgCA4aw+AFKOAIDvfAMAVo4AgFqOAIBejgCA45QDAGKOAIDhfD4AZo4AgO/oPgBqjgCAbo4AgHKOAIB2jgCAo1UDAHqOAICldQMAfo4AgIKOAICmdQMAho4AgIqOAICr5QIAquUCAK3dAgCs3QIAr7UCAK61AgCoGQYAqSEGAKohBgCrPQYArCUGAK1dBgCuVQYAr00GAEaOAICOjgCAko4AgJaOAICajgCAno4AgKKOAICmjgCAuOUGALmBBgC6gQYAu50GALyJBgC9iQYAvqEGAL+hBgCwPQYAsQ0GALIFBgCz7QYAtPUGALXhBgC24QYAt90GALOpBgCCLQAAgRUAAIAdAACqjgCAtt0GALWtBgCujgCAu8kGALr5BgCyjgCAhOADAL8lBgC+MQYAvTkGALzRBgC+iAMAo+0GANaNAIC2jgCAppkGALqOAIC+jgCApekGAKq9BgCrjQYAhkgAAIdsAACudQYAr2EGAKyVBgCtfQYAqIEGAKmNBgCqmQYAq5UGAKyNBgCttQYArrEGAK+tBgDCjgCAxo4AgMqOAIDOjgCA0o4AgNaOAIDajgCA3o4AgLilBgC5YQEAumEBALthAQC8YQEAvWEBAL5hAQC/YQEAsNkGALHZBgCyqQYAs6kGALS9BgC1oQYAtqEGALedBgCzEQYA4o4AgOaOAIDqjgCA7o4AgLY1BgC1BQYA8o4AgLsdBgC6HQYA9o4AgPqOAIC/ZQYAvnkGAL19BgC8fQYA/o4AgKNVBgACjwCABo8AgKZxBgAKjwCADo8AgKVBBgCqWQYAq1kGABKPAIAWjwCArj0GAK8hBgCsOQYArTkGAKjVAgCp3QIAqikDAKspAwCsOQMArTkDAK4pAwCvKQMAGo8AgB6PAIAijwCAKo8AgC6PAIAyjwCAvrgDADaPAIC47QMAuYUDALqBAwC7gQMAvIUDAL2NAwC+sQMAv7EDALBZAwCxWQMAsu0DALPlAwC0/QMAteUDALblAwC31QMAgKEAAIGhAACCoQAAvoAMADqPAICEmAIAPo8AgEKPAICGAAwAh/QDAEaPAIBKjwCATo8AgFKPAIBWjwCAhLADALPhAwBajwCAXo8AgGKPAIBmjwCAtvkDALXxAwBqjwCAu90DALrdAwBujwCAco8AgL9hAwC+eQMAvXEDALx5AwB2jwCAeo8AgH6PAICjLQIAgo8AgKU9AgCmNQIAho8AgIqPAICOjwCAqhECAKsRAgCstQIArb0CAK61AgCvrQIA48QDAOMQBwDhuAEA4WwHAIBxAACBcQAAggUAAJKPAICGwAwAh1QNAJqPAICejwCA77ADAO8ABwCijwCApo8AgKqPAICujwCAso8AgLaPAIC6jwCAvo8AgMKPAIDvpAEAhKANAOGABgDGjwCA4xABAMqPAIDOjwCA0o8AgNaPAICz9QEA2o8AgN6PAIDijwCA5o8AgLZNAQC1SQEA6o8AgLtRAQC6SQEA7o8AgPKPAIC/OQEAvjEBAL1BAQC8SQEAqC0OAKk1DgCqPQ4AqzEOAKyBDgCtjQ4AroUOAK+1DgCWjwCA9o8AgPqPAID+jwCAgBkAAIEZAACCBQAAApAAgLidDgC5rQ4AuqUOALtNDwC8VQ8AvV0PAL5JDwC/QQ8AsM0OALHVDgCy3Q4As9UOALS1DgC1vQ4AtrUOALetDgCjtQ4AvogDAAaQAIAKkACADpAAgKYNDgClCQ4AEpAAgKsRDgCqCQ4AhggAAIdsAwCveQ4ArnEOAK0BDgCsCQ4AFpAAgBqQAIAekACAs7UPACKQAIC1VQ8Atl0PACaPAIAmkACAKpAAgLp5DwC7eQ8AvGkPAL1dDwC+SQ8Av0kPAKhpDgCpaQ4AqnEOAKtxDgCskQ4ArZEOAK6RDgCvkQ4ALpAAgDKQAIA2kACAOpAAgD6QAIBCkACARpAAgEqQAIC4hQ4AuY0OALqFDgC7nQ4AvI0OAL29DgC+tQ4Av3kBALDxDgCx8Q4AsvEOALPFDgC0wQ4AtcEOALbBDgC3wQ4Ao/kOAE6QAIBSkACAVpAAgFqQAICmEQ4ApRkOAF6QAICrNQ4AqjUOAGKQAIBmkACArwUOAK4FDgCtEQ4ArCUOAIANAACBFQAAgh0AAGqQAIBukACAcpAAgISUAQC+lAEAhkAHAIf0AAB6kACAfpAAgIKQAICGkACAipAAgI6QAICojQIAqZUCAKqVAgCrzQIArNUCAK3dAgCuyQIAr/0CAJKQAICWkACAmpAAgJ6QAIC/ABQAopAAgKaQAICqkACAuH0DALnBAwC6wQMAu8EDALzBAwC9yQMAvvEDAL/xAwCwhQIAsUUDALJNAwCzRQMAtF0DALVFAwC2TQMAt0UDALMdAgCukACAspAAgLaQAIC6kACAtl0CALVdAgC+kACAu4EDALpBAgDCkACAxpAAgL+BAwC+mQMAvZEDALyZAwDKkACAo1kCAM6QAIDSkACAphkCANaQAIDakACApRkCAKoFAgCrxQMA3pAAgOKQAICu3QMAr8UDAKzdAwCt1QMA6pAAgOPMAACEBAIA4bwBAIDJAQCB/QEAgvUBAL4QBQDukACAvigEAPKQAID2kACA+pAAgO8QAAD+kACAApEAgIbgBACH9AIABpEAgAqRAIDj/A8ADpEAgOHgDwASkQCA7xQPABaRAIAakQCAHpEAgCKRAIAmkQCAKpEAgC6RAIAykQCANpEAgDqRAIA+kQCAQpEAgEaRAIBKkQCA7+ABAIUEEgDh3A4ATpEAgOMcDgCAKQAAgR0AAIIFAABSkQCAszECAFqRAICEzAUAXpEAgGKRAIC2KQIAtSECAGaRAIC7zQEAus0BAGqRAIBukQCAv3UBAL7JAQC9wQEAvMkBAKjpBQCp6QUAqvkFAKv5BQCs6QUArekFAK45BgCvOQYA5pAAgFaRAICGiAAAhwADAHKRAIB2kQCAepEAgH6RAIC40QYAudkGALrhBgC74QYAvJEGAL2dBgC+lQYAv4kGALBJBgCxSQYAsl0GALNVBgC0TQYAtfEGALbxBgC38QYAo3EFAIKRAICGkQCAipEAgI6RAICmaQUApWEFAJKRAICrjQYAqo0GAJaRAICakQCArzUGAK6JBgCtgQYArIkGAJ6RAICikQCAs+EHAKaRAIC14QcAqpEAgK6RAIC25QcAdpAAgLKRAIC7vQcAuqEHAL2VBwC8qQcAv5UHAL6VBwCoAQYAqSUGAKohBgCrIQYArCEGAK0tBgCuJQYAr1UGALaRAICCHQAAgR0AAIAdAAC6kQCAvpEAgMKRAIC+MAEAuDkGALk5BgC6yQYAu8kGALzZBgC92QYAvskGAL/JBgCwLQYAsTEGALI1BgCzCQYAtBkGALUZBgC2CQYAtwkGAKOpBgCEjAIAhigfAIdEAQDKkQCApq0GAKWpBgDOkQCAq/UGAKrpBgDSkQCA1pEAgK/dBgCu3QYArd0GAKzhBgDakQCAsxUGAN6RAIDikQCAtj0GAOaRAIDqkQCAtTUGALrZAQC72QEA7pEAgPKRAIC+fQEAv2UBALx9AQC9dQEAqMUFAKnJBQCq2QUAq9EFAKz5BQCt+QUArikCAK8pAgD2kQCA+pEAgP6RAIACkgCAjAAAAAaSAIAKkgCADpIAgLjtAgC5hQIAuo0CALuBAgC8hQIAvY0CAL69AgC/fQMAsFkCALFZAgCy7QIAs+UCALT9AgC15QIAtuUCALfVAgCjUQUAEpIAgBaSAIAakgCAHpIAgKZ5BQClcQUAIpIAgKudAgCqnQIAJpIAgCqSAICvIQIArjkCAK0xAgCsOQIAghEAAC6SAICAZQAAgQkAADKSAIC+mAMAOpIAgD6SAICEJAMAQpIAgIdoAwCGjBwARpIAgEqSAIBOkgCAUpIAgFaSAIBakgCAs6ECAITAHAC10QIAXpIAgGKSAIC21QIAZpIAgGqSAIC7wQIAuvUCAL0RAQC82QIAvxEBAL4ZAQBukgCAcpIAgHaSAIB6kgCAfpIAgIKSAICGkgCA77gGAIqSAIDhnAQAjpIAgON0BgCSkgCAlpIAgJqSAICekgCAgPkAAIH5AACCBQAAopIAgL5YHACEWB8A71wAAO9ABgDhkAEA4fwGAOM8AADjdAYAqpIAgK6SAICGmBwAh/QcAKNpAgC+DB8AspIAgLaSAIC6kgCAph0CAKUZAgC+kgCAqwkCAKo9AgDCkgCAxpIAgK/ZAQCu0QEArdkBAKwRAgCokR0AqZkdAKqhHQCroR0ArNEdAK3dHQCu1R0Ar8kdADaSAICmkgCAypIAgM6SAIDSkgCA1pIAgNqSAIDekgCAuHkeALl5HgC6zR4Au8UeALzdHgC9xR4AvsUeAL/1HgCwuR0AsY0dALKFHQCzTR4AtFUeALVdHgC2VR4At0keALjNHwC51R8Aut0fALvVHwC88R8Avf0fAL7pHwC/6R8AsKUfALGxHwCysR8As40fALSVHwC19R8Atv0fALf1HwCoGR4AqRkeAKotHgCrPR4ArCUeAK0tHgCuJR4Ar90fAOKSAIDmkgCA6pIAgO6SAIDykgCAxpEAgPaSAID6kgCAs+UfAP6SAIACkwCABpMAgAqTAIC27R8Ate0fAA6TAIC7NR4AuiEeABKTAIAWkwCAv3EeAL4RHgC9GR4AvCUeAIJpAACjoR8AgFkAAIFRAACmqR8AGpMAgB6TAIClqR8AqmUeAKtxHgCGAAQAh+wBAK5VHgCvNR4ArGEeAK1dHgCoMR4AqTEeAKpBHgCrQR4ArEEeAK1JHgCucR4Ar3EeACKTAIAmkwCAKpMAgC6TAIAykwCANpMAgDqTAIA+kwCAuCkBALkpAQC6OQEAuzUBALwtAQC90QAAvtEAAL/RAACwyQEAsckBALLZAQCz2QEAtMkBALXJAQC2GQEAtxkBALPJHQBCkwCARpMAgEqTAIBOkwCAtskdALXJHQBSkwCAuw0CALoNAgBWkwCAWpMAgL8NAgC+DQIAvQ0CALwNAgBekwCAo40dAGKTAIBmkwCApo0dAGqTAIBukwCApY0dAKpJAgCrSQIAcpMAgHaTAICuSQIAr0kCAKxJAgCtSQIAgA0AAIERAACCEQAAepMAgO/MAgB+kwCAgpMAgISQAgDjLAIAvigDAOHYAQCKkwCAhhAEAIfUAwCOkwCAkpMAgLNhAwCWkwCAmpMAgJ6TAICikwCAtnkDALVxAwCmkwCAu10DALpdAwCqkwCArpMAgL/hAAC++QAAvfEAALz5AACjoQIAspMAgLaTAIC6kwCAvpMAgKa5AgClsQIAwpMAgKudAgCqnQIAxpMAgMqTAICvIQEArjkBAK0xAQCsOQEAzpMAgNKTAIDvZB8A1pMAgNqTAIDekwCA4pMAgOaTAICADQAAgREAAIIVAADqkwCA4eAcAO6TAIDjiB8A8pMAgISAAgC+jAUAh0gFAIYsBAD6kwCA/pMAgO+kHgDv9B4A4QAeAOFQHwDjLB4A47AeAAKUAIAGlACACpQAgA6UAIASlACAFpQAgISEBACzcQEAGpQAgLUdAQC2FQEAHpQAgCKUAIAmlACAugEBALsBAQC89QAAvf0AAL71AAC/7QAAqK0GAKm9BgCqtQYAq8kGAKzZBgCt2QYArskGAK/BBgAqlACALpQAgDKUAIA2lACAOpQAgD6UAIBClACARpQAgLhtBwC5BQcAug0HALsBBwC8AQcAvQEHAL4BBwC/AQcAsIkGALGJBgCybQcAs2UHALR9BwC1ZQcAtmUHALdVBwCGkwCAozkGAEqUAID2kwCApl0GAE6UAIBSlACApVUGAKpJBgCrSQYAVpQAgFqUAICuvQcAr6UHAKy9BwCttQcAgG0AAIEJAACCGQAAXpQAgGKUAIC+nAMAZpQAgGqUAICGQAAAh2AAAG6UAIBylACAdpQAgHqUAIB+lACAgpQAgKiRBgCpkQYAqrkGAKu5BgCsqQYArakGAK7ZBgCv2QYAhpQAgIqUAICOlACAkpQAgJaUAICalACAnpQAgKKUAIC4cQEAuXEBALpxAQC7cQEAvNkBAL3BAQC+wQEAv/UBALCxBgCxuQYAsokGALOJBgC0UQEAtVEBALZRAQC3UQEAszEGAKaUAICqlACArpQAgLKUAIC2KQYAtSEGALaUAIC7fQYAunUGALqUAIC+lACAv5UBAL6VAQC9XQYAvF0GAMKUAICjdQYAxpQAgMqUAICmbQYAzpQAgNKUAIClZQYAqjEGAKs5BgCErAEAvqABAK7RAQCv0QEArBkGAK0ZBgCo3QIAqe0CAKrlAgCr/QIArOUCAK3tAgCu5QIArz0DANqUAIDelACA4pQAgL5kDADmlACA6pQAgO6UAIDylACAuMkDALnJAwC62QMAu9EDALz5AwC9+QMAvpkDAL+VAwCwRQMAsU0DALJFAwCzXQMAtEUDALVNAwC2RQMAt/kDAIFVAwCASQMAs2UCAIJVAwC1ZQIA9pQAgPqUAIC2ZQIAhgAMAIfkAwC7gQMAuokDAL2BAwC8mQMAv4EDAL6JAwCjLQIA/pQAgAKVAIAGlQCACpUAgKYtAgClLQIADpUAgKvJAwCqwQMAEpUAgBaVAICvyQMArsEDAK3JAwCs0QMA49gGAOGsBwDhnAYA45wGABqVAICEWA0AHpUAgCKVAIAmlQCAKpUAgC6VAIAylQCA7xwBADaVAIA6lQCA70AGAIB5AACBFQAAghEAAIQADAA+lQCA46wAAEKVAIDhpAEASpUAgO9wAACGyAwAh6QNAE6VAIBSlQCAVpUAgFqVAIC6yQUAu8kFALilBQC5zQUAvvkFAL/5BQC8zQUAvcUFALKlBQCzrQUAsBEGALERBgC2rQUAt50FALS1BQC1rQUAqmEGAKthBgConQYAqZUGAK5hBgCvYQYArHEGAK1xBgBelQCAYpUAgGaVAIBqlQCAbpUAgHKVAIC+sAwAdpUAgKghDgCpIQ4AqiEOAKs9DgCsJQ4ArS0OAK4lDgCviQ4ARpUAgHqVAIB+lQCAgpUAgIaVAICKlQCAjpUAgJKVAIC4UQ8AuV0PALpVDwC7bQ8AvHUPAL19DwC+dQ8Av2kPALD5DgCxoQ4AsqEOALOhDgC0oQ4AtakOALaRDgC3kQ4As6kOAJaVAIDWlACAmpUAgJ6VAIC2rQ4Ata0OAKKVAIC7ZQ4Auj0OAKaVAICqlQCAv20OAL5lDgC9dQ4AvHUOAIIZAACj7Q4AgGUAAIEZAACm6Q4ArpUAgLKVAICl6Q4AqnkOAKshDgC2lQCAupUAgK4hDgCvKQ4ArDEOAK0xDgCoYQ4AqXUOAKp9DgCrdQ4ArG0OAK31DgCu/Q4Ar/UOAIaAAQCHpAEAvpUAgMKVAIDGlQCAypUAgM6VAIDSlQCAuHUBALl9AQC6dQEAu8kBALzdAQC9xQEAvsUBAL/1AQCwjQ4AsZUOALKdDgCzkQ4AtFUBALVdAQC2VQEAt00BALP1DgDWlQCA2pUAgN6VAIDilQCAtnUOALXlDgDmlQCAu1EOALpJDgDqlQCA7pUAgL+ZAQC+kQEAvUUOALxJDgDylQCAo7EOAPaVAID6lQCApjEOAP6VAIAClgCApaEOAKoNDgCrFQ4ABpYAgAqWAICu1QEAr90BAKwNDgCtAQ4AqO0CAKktAwCqJQMAqz0DAKwlAwCtLQMAriUDAK+ZAwAOlgCAEpYAgBaWAIAalgCAHpYAgCKWAIC+dAIAKpYAgLiNAwC5kQMAupEDALulAwC8vQMAvXUAAL59AAC/dQAAsOkDALHpAwCy+QMAs/EDALTZAwC12QMAtrkDALe1AwCArQAAgbUAAIK9AACzoQMALpYAgLWhAwC2oQMAMpYAgITgAgA2lgCAuiEDALshAwC8IQMAvSkDAL4RAwC/EQMAo+0DAIXABACFtG8AOpYAgD6WAICm7QMApe0DAEKWAICrbQMAqm0DAIZIBQCHbAMAr10DAK5dAwCtZQMArG0DAEaWAIDjAA4A71hsAOG0DwBKlgCATpYAgFKWAIBWlgCAoakDAKD9DwCjwQMAog0DAOHgAwDv4A8A4+QDAFqWAIBelgCAYpYAgIQEBAC+BAQAZpYAgO+UAwBqlgCAbpYAgHKWAIDj1AMAdpYAgOFUAAB6lgCAfpYAgIKWAICGlgCAgA0AAIEVAACCHQAAipYAgI6WAICSlgCAj5EbAO+cDgCE4AcA4dQOAJqWAIDj8A4AnpYAgKKWAICGGAcAh5AEAJnlFwCY5RcAm+kLAJo5CwCd/QoAnPELAJ9VDwCeXQ8AkSkfAJDNGwCTJR8Aks0fAJXREwCUKRMAlxkXAJZ1EwCM4RAAjSUQAI4tEACP+QwAJpYAgJaWAICKORQAi5UUAITpGACFBRgAhuUYAIfxFACmlgCAqpYAgIIxHACDFRwAnKkEAK6WAICylgCAtpYAgLqWAIC+lgCAmtEEAJt9BACUTQ0AleUIAJblCACXtQgAwpYAgMaWAICSWQwAk1kMAKGRAADKlgCAowF8AKKZAACluXwApJF8AKeZeACm4X0AqYF5AKiheACriXQAqgF0AK0BcACsWXQAr4VwAK6dcACx4WwAsAFsALMBaACyHWwAtfVoALT1aADOlgCA0pYAgNaWAIDalgCA3pYAgOKWAIDmlgCA6pYAgO6WAIDylgCAqD0HAKmVBwCqlQcAq6kHAKzdBwCtxQcArsUHAK8dBgD2lgCAgh0AAIEdAACAHQAA+pYAgP6WAIAClwCAvmABALgZBgC5GQYAuikGALslBgC8IQYAvSEGAL4hBgC/IQYAsHEGALFxBgCycQYAs3EGALRNBgC1NQYAtj0GALctBgCzHQcACpcAgIYoAACHqAAADpcAgLZFBwC1VQcAEpcAgLu1BgC6tQYAFpcAgBqXAIC/8QYAvokGAL2lBgC8pQYAHpcAgKNZBwAilwCAJpcAgKYBBwAqlwCALpcAgKURBwCq8QYAq/EGADKXAIA2lwCArs0GAK+1BgCs4QYAreEGAKipBQCptQUAqr0FAKs9AgCsJQIArVECAK5RAgCvUQIAOpcAgD6XAIBClwCARpcAgIQ8AwBKlwCATpcAgFKXAIC4pQIAua0CALqlAgC7vQIAvKUCAL2tAgC+pQIAv30DALAxAgCxMQIAshkCALMZAgC09QIAta0CALalAgC3nQIAVpcAgFqXAIBelwCAszkFAGKXAIC1oQIAtt0CAGaXAIBqlwCAbpcAgLr5AgC7+QIAvMECAL3BAgC+PQIAv2UCAHKXAICmgQIApf0CAHqXAICjZQUAvlh8AIbYfACHnHwArzkCAK5hAgCtnQIArJ0CAKulAgCqpQIAfpcAgIKXAICohQIAqZUCAKqVAgCrpQIArL0CAK3VAgCu0QIAr9ECAIGFAQCAhQEAhpcAgILtAQCKlwCAjpcAgJKXAICWlwCAuHUBALl9AQC6dQEAu80BALzVAQC93QEAvskBAL/BAQCwtQIAsb0CALKBAgCzgQIAtFEBALVRAQC2UQEAt1EBAJqXAICelwCAopcAgKaXAIDhMAYA4WQHAOMoBgDjxAYAhCB9AKqXAIDvbAAA7xgGAK6XAICylwCAtpcAgLqXAICzXQIAvkh8AL6XAIDClwCAxpcAgLYVAgC1dQIAypcAgLs5AgC6MQIAzpcAgNKXAIC/1QEAvtUBAL0VAgC8FQIAo519AHaXAIDWlwCA2pcAgN6XAICm1X0ApbV9AOKXAICr+X0AqvF9AOaXAIDqlwCArxV+AK4VfgCt1X0ArNV9AIBNAACBVQAAglUAALOxfgDulwCAtWV/ALZtfwDylwCAhkADAIcEAwC66X8Au+l/ALz5fwC9+X8Avt1/AL/NfwD2lwCA+pcAgAaXAID+lwCAApgAgAaYAIAKmACADpgAgKhtfgCpXX4AqlV+AKuFfwCsgX8ArYF/AK6BfwCvgX8AsEF/ALFBfwCyQX8As0F/ALR1fwC1ZX8Atm1/ALdlfwC4XX8AuS1/ALolfwC7PX8AvC1/AL0dfwC+FX8Av/UAAKP9fwASmACAFpgAgBqYAIAemACApiF+AKUpfgAimACAq6V+AKqlfgAmmACAKpgAgK+BfgCukX4ArbV+AKy1fgAumACAMpgAgDaYAIA6mACAPpgAgEKYAIBGmACASpgAgIA9AACBCQAAghkAAE6YAIBSmACAhLgBAL6wAQBWmACAqK0BAKnVAQCq1QEAqw0BAKwVAQCtGQEArgkBAK8JAQCGAAQAhwQBAFqYAIBemACAYpgAgGaYAIBqmACAbpgAgLjtAAC5hQAAuo0AALuFAAC8nQAAvYUAAL6NAAC/hQAAsHkBALF5AQCy7QAAs+UAALT9AAC15QAAtuUAALfVAACzXQIAcpgAgHaYAIB6mACAfpgAgLaZAgC1nQIAgpgAgLu9AgC6vQIAhpgAgIqYAIC/IQMAvjkDAL0xAwC8OQMAvigDAKMZAgCOmACAkpgAgKbdAgCWmACAmpgAgKXZAgCq+QIAq/kCAJ6YAICimACArn0DAK9lAwCsfQMArXUDAL7IBACmmACAqpgAgL7EBQCumACAspgAgLaYAIC6mACAgD0AAIEJAACCGQAAvpgAgMKYAICEOAMAypgAgM6YAIDveAIA0pgAgIZIBACHVAMA1pgAgNqYAIDemACA4pgAgOaYAIDqmACA7pgAgPKYAIDjVAIA9pgAgOFAAQD6mACA/pgAgOMkfwACmQCA4Zx8AAaZAIAKmQCADpkAgBKZAICEbAUAFpkAgBqZAIAemQCAIpkAgO8YfwAmmQCAKpkAgLPxAgAumQCAMpkAgDqZAIA+mQCAtukCALXhAgBCmQCAu3EBALppAQCHoAUAhswEAL85AQC+WQEAvVEBALxhAQDhQH8ARpkAgOM4fgCEwAQAgtkAAO8UAACApQAAgdkAAEqZAIDjwAAATpkAgOHUAQBSmQCAVpkAgO+EfgBamQCAqs0BAKvVAQBemQCAYpkAgK79AQCvnQEArMUBAK31AQBmmQCAo1UCAGqZAIBumQCApk0CAHKZAIB2mQCApUUCAMaYAIA2mQCAepkAgH6ZAICCmQCAhpkAgIqZAICOmQCAqJkGAKmZBgCq7QYAq/0GAKzlBgCt7QYAruUGAK/dBgCwpQYAsa0GALKlBgCzuQYAtK0GALVVBwC2UQcAt00HALh1BwC5fQcAunUHALtJBwC8WQcAvVkHAL5JBwC/RQcAs0UGAJKZAICWmQCAmpkAgJ6ZAIC2TQYAtU0GAKKZAIC7SQYAukEGAIYIAACHjAAAv7EHAL5JBgC9TQYAvFEGAIJdAACjAQYAgEUAAIFdAACmCQYAqpkAgK6ZAIClCQYAqgUGAKsNBgCymQCAtpkAgK4NBgCv9QcArBUGAK0JBgCoTQYAqVUGAKpVBgCriQYArLEGAK29BgCuqQYAr6kGAKaZAIC6mQCAvpkAgMKZAIDGmQCAypkAgM6ZAIDSmQCAuEkBALlJAQC6WQEAu1kBALxJAQC9SQEAvt0BAL/VAQCw3QYAsa0GALKlBgCzjQYAtJkGALWZBgC2jQYAt4UGALPdBgDWmQCA2pkAgN6ZAIDimQCAtj0GALU5BgDmmQCAu2kGALoZBgDqmQCA7pkAgL9dBgC+XQYAvVkGALxxBgDymQCAo5kGAPaZAID6mQCApnkGAP6ZAIACmgCApX0GAKpdBgCrLQYABpoAgAqaAICuGQYArxkGAKw1BgCtHQYAqNUCAKndAgCq4QIAq+ECAKw1AwCtPQMArjUDAK8tAwCAzQMAgQkAAIIZAAAOmgCAEpoAgIQYAgC+dAMAGpoAgLjpAwC56QMAuokDALuFAwC8nQMAvYEDAL6BAwC/tQMAsFUDALFdAwCyVQMAs+kDALT5AwC1+QMAtukDALfhAwCGIAwAhxADAB6aAIAimgCAJpoAgCqaAIAumgCA71wCADKaAIDhFAAANpoAgOOIAgC++AwAOpoAgD6aAIBCmgCAu/kDALrxAwC+gA0ARpoAgL9dAwC+XQMAvV0DALzhAwCzCQIASpoAgE6aAIBSmgCAVpoAgLbdAwC13QMAWpoAgKipBgCpqQYAqrkGAKu5BgCsqQYArakGAK4dBQCvFQUAXpoAgGKaAIBmmgCAapoAgG6aAIBymgCAdpoAgHqaAIC4GQUAuS0FALolBQC7yQUAvNkFAL3FBQC+zQUAv8UFALBtBQCxdQUAsnUFALNFBQC0XQUAtT0FALY1BQC3KQUA4fQGAOFUBwDjFAYA47wGAIEJAACAqQAAfpoAgII5AACE7A0AgpoAgIeIDACGDAwAipoAgI6aAIDvzAcA78QHAKMpAwCSmgCAlpoAgJqaAICemgCApv0CAKX9AgCimgCAq9kCAKrRAgCmmgCAqpoAgK99AgCufQIArX0CAKzBAgCoPQ4AqY0OAKqFDgCrnQ4ArIUOAK2NDgCuuQ4Ar7UOAIaaAICumgCAspoAgLaaAIC6mgCAvpoAgMKaAIDGmgCAuL0OALllDwC6bQ8Au2UPALx9DwC9ZQ8Avm0PAL9lDwCw1Q4Asd0OALLVDgCzoQ4AtJUOALWdDgC2lQ4At40OALMNDgDKmgCAzpoAgNKaAIDWmgCAtg0OALUNDgDamgCAuxkOALoRDgDemgCAFpoAgL9ZDgC+UQ4AvXUOALwBDgDimgCAo0kOAOaaAIDqmgCApkkOAO6aAIDymgCApUkOAKpVDgCrXQ4AhKQDAPaaAICuFQ4Arx0OAKxFDgCtMQ4AqLEOAKmxDgCqzQ4Aq8UOAKzdDgCtxQ4ArsUOAK/1DgCA7QEAgfEBAILxAQD6mgCAhpABAIe0AQD+mgCAApsAgLjFAQC5zQEAusUBALvdAQC8zQEAvf0BAL6ZAQC/lQEAsI0OALFBAQCyQQEAs0EBALRBAQC1QQEAtkEBALdBAQCzRQ4ABpsAgAqbAIAOmwCAEpsAgLZFDgC1VQ4AFpsAgLuFAQC6SQ4AGpsAgB6bAIC/hQEAvoUBAL2VAQC8lQEAIpsAgKMBDgAmmwCAKpsAgKYBDgAumwCAMpsAgKURDgCqDQ4Aq8EBADabAIA6mwCArsEBAK/BAQCs0QEArdEBAKgtAwCpPQMAqjUDAKuJAwCsmQMArZkDAK6JAwCvgQMAPpsAgEKbAIBGmwCASpsAgE6bAIBSmwCAVpsAgFqbAIC4rQMAuWUAALptAAC7ZQAAvH0AAL1lAAC+bQAAv2UAALDJAwCxyQMAsqkDALOlAwC0vQMAtaEDALahAwC3lQMAgL0AAIEJAACCGQAAXpsAgGKbAIC+2AMAapsAgG6bAICErAIAcpsAgIfoAwCGDAQAdpsAgHqbAIB+mwCAgpsAgLP9AwCGmwCAipsAgI6bAICSmwCAtlkDALVRAwCWmwCAu00DALpNAwCamwCAnpsAgL8lAwC+OQMAvTEDALw9AwCimwCAppsAgKqbAICumwCA71gPALKbAIC2mwCAupsAgOOQDgC+mwCA4bAPAMKbAIDGmwCAypsAgM6bAIDSmwCAgHUAAIF9AACCdQAAhBgFAO88AwDamwCAvhQFAN6bAIDj0AMA4psAgOFAAADmmwCAhtAEAIdYBQDqmwCA7psAgPKbAID2mwCA+psAgP6bAIACnACABpwAgAqcAIDvrA8AhOwEAOEQDgAOnACA41QBABKcAIAWnACAGpwAgB6cAICj/QIAIpwAgCacAIAqnACALpwAgKZZAgClUQIAMpwAgKtNAgCqTQIANpwAgDqcAICvJQIArjkCAK0xAgCsPQIAqJkGAKmZBgCqrQYAq70GAKylBgCtrQYArqUGAK/ZBgDWmwCAghEAAIEZAACAwQcAPpwAgEKcAIC+cAMARpwAgLhJBwC5SQcAul0HALtVBwC8TQcAvXEHAL51BwC/bQcAsKkGALGpBgCyuQYAs7EGALSZBgC1mQYAtnkHALd5BwC1NQYASpwAgE6cAIC2NQYAhjAAAIdcAwCzPQYAUpwAgL19BgC8dQYAv0UGAL5FBgBmmwCAVpwAgLt1BgC6dQYAo2UGAFqcAIBenACAYpwAgGacAICmbQYApW0GAGqcAICrLQYAqi0GAG6cAIBynACArx0GAK4dBgCtJQYArC0GAKhVBgCpWQYAqm0GAKthBgCsaQYArWkGAK6ZBgCvmQYAdpwAgHqcAIB+nACAgpwAgIacAICKnACAjpwAgJKcAIC4+QYAufkGALqNBgC7hQYAvJ0GAL2FBgC+hQYAv7UGALDpBgCx6QYAsvkGALP5BgC06QYAtd0GALbJBgC3yQYAs+UGAJacAICanACAnpwAgKKcAIC26QYAteEGAKacAIC7LQYAui0GAKqcAICunACAvxkGAL4tBgC9LQYAvC0GAIIVAACjoQYAgGEAAIFhAACmrQYAspwAgL6QAQClpQYAqmkGAKtpBgCEpAEAupwAgK5pBgCvXQYArGkGAK1pBgCohQIAqY0CAKqVAgCruQIArNUCAK3dAgCu1QIAr80CAIaAHACHZAMAvpwAgL5gAwDCnACAxpwAgMqcAIDOnACAuHUDALl9AwC6dQMAu8kDALzZAwC92QMAvskDAL/BAwCwvQIAsY0CALKFAgCzTQMAtFUDALVdAwC2VQMAt00DALMdAgDSnACAhAgDANacAIDanACAtl0CALVdAgDenACAu0kCALp5AgDinACA5pwAgL+ZAwC+kQMAvZkDALxRAgCwAAAAo1kCAOqcAIDunACAphkCAPKcAID2nACApRkCAKo9AgCrDQIA+pwAgP6cAICu1QMAr90DAKwVAgCt3QMAAp0AgAadAIAKnQCA76wGAA6dAIASnQCAFp0AgBqdAIC+6BwAHp0AgCKdAIAqnQCALp0AgOGABwAynQCA42AGAIBdAACBYQAAgmEAALN9AQA2nQCAtW0BALZlAQA6nQCAhiAdAIdYHQC6+QEAu/EBALzZAQC92QEAvrEBAL+xAQDvoAAAPp0AgEKdAIBGnQCASp0AgE6dAIBSnQCA71wBAIRsHADhzAYAVp0AgOMcBgDjSAAAWp0AgOEwAQBenQCAo/EBAGKdAICFABQAZp0AgGqdAICm6QEApeEBAG6dAICrfQEAqnUBAHKdAIB2nQCArz0BAK49AQCtVQEArFUBAKjtHQCpLR4AqjkeAKs5HgCsKR4ArSkeAK6dHgCvkR4AJp0AgHqdAIB+nQCAgp0AgIadAICC+QAAgfEAAID9AAC4qR4AuakeALpJHwC7SR8AvFkfAL1FHwC+TR8Av0UfALDxHgCx+R4AssEeALPBHgC0uR4AtbkeALatHgC3pR4AsBEfALERHwCyER8AsyUfALQlHwC1KR8Atl0fALdRHwC4cR8AuXkfALpBHwC7QR8AvJUAAL2dAAC+lQAAv40AAIqdAIC2nACAjp0AgJKdAICWnQCAmp0AgIb4AwCH0AAAqM0fAKnVHwCq0R8Aq70fAKytHwCtcR8ArnEfAK9xHwCzOR4Anp0AgKKdAICmnQCAqp0AgLaRHgC1RR4Arp0AgLu1HgC6tR4Asp0AgLadAIC/jR4AvoEeAL2RHgC8pR4Aup0AgKN9HgC+nQCAwp0AgKbVHgDGnQCAyp0AgKUBHgCq8R4Aq/EeAM6dAIDSnQCArsUeAK/JHgCs4R4ArdUeAKhVAQCpgQAAqoEAAKuBAACsgQAArYkAAK6xAACvsQAA1p0AgNqdAIDenQCA4p0AgOadAIDqnQCA7p0AgPKdAIC4ZQAAuW0AALplAAC7fQAAvGUAAL1tAAC+ZQAAv90DALChAACxrQAAsqUAALO5AAC0qQAAtZ0AALaVAAC3XQAA9p0AgIIdAACBHQAAgB0AAPqdAID+nQCAAp4AgL4UAgAKngCAhKgCAA6eAIASngCAFp4AgBqeAIAengCAjwAAALNJAwAingCAhugEAIesAgAmngCAtkkDALVJAwAqngCAuykDALolAwAungCAMp4AgL8ZAwC+LQMAvS0DALwxAwA2ngCAo40DADqeAIA+ngCApo0DAEKeAIBGngCApY0DAKrhAwCr7QMASp4AgE6eAICu6QMAr90DAKz1AwCt6QMAvoQDAFKeAIBWngCAWp4AgF6eAIBingCAZp4AgGqeAICAPQAAgQkAAIIZAABungCAcp4AgHqeAICENAMAfp4AgLMtAQCCngCAh8wCAIZMBQCGngCAti0BALUtAQCKngCAu0kBALp5AQCOngCAkp4AgL+9AQC+vQEAvbkBALxRAQDheB8Alp4AgOPQHwCangCAnp4AgOGUAQCingCA42gDAKaeAICqngCArp4AgO+IAwCyngCAtp4AgO+sHwC6ngCAvp4AgMKeAIDGngCAyp4AgM6eAIDSngCA1p4AgO9EHgDangCA4dweAN6eAIDjHB4A4p4AgOqeAIDungCA8p4AgIFpAACAZQAAo+UBAIJ9AACl5QEA9p4AgIQUBACm5QEAvigEAPqeAICrgQEAqrEBAK1xAQCsmQEAr3UBAK51AQCoIQYAqS0GAKolBgCrPQYArCUGAK0tBgCuXQYAr00GAHaeAIDmngCAhggDAIeMAwD+ngCAAp8AgAafAIAKnwCAuOkGALnpBgC6jQYAu4UGALydBgC9hQYAvo0GAL+FBgCwPQYAsQ0GALIFBgCz7QYAtPkGALX5BgC27QYAt+UGALDNBwCx1QcAstEHALPtBwC09QcAtf0HALbpBwC36QcAuN0HALklBwC6LQcAuyUHALw9BwC9JQcAvi0HAL8lBwAOnwCAEp8AgAaeAIAWnwCAGp8AgB6fAIAinwCAJp8AgKgVBgCpGQYAqu0HAKv9BwCs7QcArd0HAK7VBwCvuQcAswUGACqfAIAunwCAMp8AgDafAIC2PQYAtQUGADqfAIC7cQYAumkGAD6fAIBCnwCAv1kGAL5RBgC9WQYAvGUGAEafAICjQQYASp8AgE6fAICmeQYAUp8AgIS0AQClQQYAqi0GAKs1BgC+gAEAWp8AgK4VBgCvHQYArCEGAK0dBgCoNQYAqT0GAKo1BgCrWQYArHUGAK2lAQCurQEAr6UBAIDpAACB6QAAgv0AAL8kAQCGMA8Ah+QAAF6fAIBinwCAuMUAALnNAAC6xQAAu90AALzNAAC9/QAAvvUAAL+dAACw3QEAsSUBALItAQCzIQEAtCEBALUhAQC2IQEAtyEBALvBAgC6OQIAZp8AgGqfAIC/xQIAvsUCAL3VAgC82QIAs50FAG6fAIBynwCAdp8AgIwAAAC2BQIAtd0FAHqfAICqfQIAq4UCAH6fAICCnwCAroECAK+BAgCsnQIArZECAIafAICj2QUAip8AgI6fAICmQQIAkp8AgJafAIClmQUAgpFqAIORagCanwCAnp8AgIa5FgCH6RcAhBEWAIWZFgCKoRIAi6ESAKKfAICmnwCAjpEeAI9ZHgCMmRMAjREeAJJxGgCT5RoAqp8AgO/oJACW8QYAlwUGAJTlGgCVGQYAmikCAJvFAgCunwCAsp8AgLafAIDhKBsAnN0CAOMgDwCfIQcAnsEHAJ01GwCcLRsAm6EbAJr5HwCZOR8AmLEfAJcBEgCWIRMAlSkTAJRRFgCTGRcAkjEXAJGxFwCQKWsAj1FrAOOsBwCEBA0A4RwHAIANAACBNQAAgj0AALqfAIC+nwCAwp8AgL4gDQDKnwCAzp8AgO9MBwCGWAwAh2ANANKfAIDWnwCA2p8AgN6fAICEXA8A4p8AgO8IAADvhAYA4ZABAOGwBgDj4AAA42QGAOafAIDqnwCA7p8AgPKfAID2nwCA+p8AgL4ADwCEQA4A/p8AgAKgAIAGoACACqAAgA6gAIASoACAFqAAgBqgAICj1QMAotUDAKExAwCgLQcAVp8AgMafAIAeoACAIqAAgCagAICCmQAAgZEAAICZAACoTQ0AqZ0NAKqVDQCrJQ4ArD0OAK0RDgCuEQ4ArxEOALB9DgCxDQ4AsgUOALMtDgC0OQ4AtTkOALYtDgC3JQ4AuOkOALnpDgC6wQ4Au8EOALy5DgC9nQ4AvpUOAL+NDgCzPQ0AKqAAgC6gAIAyoACANqAAgLaxDgC1lQ4AOqAAgLvpDgC6mQ4AhogAAIfkAAC/3Q4Avt0OAL3ZDgC88Q4APqAAgKN5DQC+hAEAhIAGAKb1DgBCoACARqAAgKXRDgCq3Q4Aq60OAEqgAIBOoACArpkOAK+ZDgCstQ4ArZ0OALIFNQCzGTQAsG0wALENNQBSoACAVqAAgLQBKAC1PSkAWqAAgF6gAIBioACAZqAAgGqgAIBuoACAcqAAgHagAICiRQEAo9UBAHqgAIChTQEAps0FAKcBOACkAQQApX0FAKoBPACrRT0AqEk5AKnlOQCudTEAr30xAKxdPQCtATAAqO0OAKn1DgCqCQ4AqwkOAKwZDgCtGQ4Arg0OAK8tDgB+oACAgqAAgIagAICKoACAjqAAgJKgAICWoACAmqAAgLgdDgC5JQ4Aui0OALslDgC8PQ4Avd0BAL7VAQC/zQEAsFUOALFdDgCyVQ4Asy0OALQ1DgC1JQ4Ati0OALclDgCzgQ0AnqAAgKKgAICqoACArqAAgLaZDQC1kQ0AvlQEALuZDQC6kQ0AhogEAIe8AwC/4Q0AvvENAL35DQC8gQ0AgkkAAKPFDQCA9QMAgUkAAKbdDQCyoACAtqAAgKXVDQCq1Q0Aq90NALqgAIC+oACArrUNAK+lDQCsxQ0Arb0NAKgdAgCpRQIAql0CAKtVAgCseQIArXkCAK6JAwCviQMAwqAAgMagAIDKoACAzqAAgIT8BQDSoACA1qAAgNqgAIC4iQMAuWUDALptAwC7ZQMAvH0DAL1lAwC+bQMAv2UDALDBAwCxwQMAssEDALPBAwC0wQMAtcEDALbBAwC3wQMA3qAAgOKgAIDmoACA6qAAgO6gAIDhpAEA8qAAgOPADgC+aAQA9qAAgPqgAIDvHAEA/qAAgAKhAIAGoQCACqEAgLOVAwAOoQCAEqEAgBqhAIAeoQCAtrkDALWxAwAioQCAu0UCALpFAgCGqAQAh6QFAL9FAgC+RQIAvVUCALxVAgDh4A4A4SwMAOMIDgDj1A4AgK0AAIHRAACC0QAAJqEAgCqhAIAuoQCAMqEAgDahAIA6oQCAPqEAgO+IDgDvLA4AoxUDAEKhAICFxCsARqEAgEqhAICmOQMApTEDAE6hAICrxQIAqsUCAFKhAIBWoQCAr8UCAK7FAgCt1QIArNUCAKgNBgCpFQYAql0GAKtVBgCseQYArXkGAK65BgCvuQYAFqEAgFqhAIBeoQCAYqEAgGahAIBqoQCAbqEAgHKhAIC4TQcAuVUHALpRBwC7aQcAvHkHAL1lBwC+bQcAv2UHALDJBgCxyQYAst0GALPVBgC0zQYAtXUHALZ9BwC3dQcAs9UGAHahAIB6oQCAfqEAgIKhAIC2+QYAtfEGAIahAIC7DQYAug0GAIYIAACHLAAAv7EHAL4JBgC9AQYAvAkGAIJRAACjkQYAgEEAAIFBAACmvQYAiqEAgI6hAICltQYAqkkGAKtJBgCSoQCAlqEAgK5NBgCv9QcArE0GAK1FBgCwsQYAsbEGALLNBgCzwQYAtMEGALXJBgC28QYAt/EGALgFAQC5DQEAugUBALsdAQC8BQEAvQ0BAL4FAQC/uQEAmqEAgJ6hAICioQCApqEAgKqhAICuoQCApqAAgLKhAICoLQYAqTUGAKo1BgCr8QYArNEGAK3RBgCu0QYAr9EGALPdBgC2oQCAuqEAgL6hAIDCoQCAtjEGALU5BgDGoQCAuxUGALoVBgDKoQCAzqEAgL9tBgC+ZQYAvXUGALx5BgDSoQCAo5kGANahAIDaoQCApnUGAN6hAIDioQCApX0GAKpRBgCrUQYA5qEAgOqhAICuIQYArykGAKw9BgCtMQYAqNUCAKndAgCq4QIAq+ECAKxRAwCtUQMArlEDAK9RAwDuoQCA8qEAgL7sAwD6oQCA/qEAgAKiAIAGogCACqIAgLjpAwC56QMAuokDALuFAwC8nQMAvYEDAL6BAwC/tQMAsDEDALExAwCyNQMAs+kDALT5AwC1+QMAtukDALfhAwCAbQMAgaUAAIKtAACzZQIADqIAgLXVAwC23QMAEqIAgITgAgAWogCAuvkDALv5AwC87QMAvTEDAL4xAwC/MQMAh+wDAIZkPACyAAAAGqIAgB6iAIDjCAQAIqIAgOHsBgAmogCA7wAGACqiAIAuogCAMqIAgDaiAIA6ogCAPqIAgEKiAIBGogCASqIAgE6iAIDjoAMAUqIAgOGoAQBWogCA7/ADAIIdAACBHQAAgB0AAFqiAIBeogCAYqIAgGqiAIC+TD0AbqIAgKOhAwC+QDwApRECAHKiAIB2ogCAphkCAIRsAgB6ogCAqz0CAKo9AgCt9QIArCkCAK/1AgCu9QIAhkA8AIe0PQB+ogCAgqIAgIaiAICKogCAjqIAgO9EBgCSogCA4dQGAJaiAIDjDAcAmqIAgJ6iAICiogCApqIAgLP1AQCqogCArqIAgLKiAIC2ogCAtkUBALXlAQC6ogCAuzEBALopAQC+ogCAwqIAgL8dAQC+HQEAvRkBALwlAQCoLT4AqTU+AKo9PgCrNT4ArC0+AK2FPgCuhT4Ar7k+AGaiAIDGogCAyqIAgM6iAICAGQAAgRkAAIIFAADSogCAuLk+ALm5PgC6ST8Au0k/ALxZPwC9WT8Avk0/AL9BPwCwrT4AsbU+ALKxPgCzjT4AtJk+ALWZPgC2iT4At4k+AKO1PgCEjAIA1qIAgNqiAIDeogCApgU+AKWlPgDiogCAq3E+AKppPgCGCAAAh2gDAK9dPgCuXT4ArVk+AKxlPgDmogCAs5E/AOqiAIDuogCAtlk/APKiAID2ogCAtbk/ALp1PwC7fT8A+qIAgP6iAIC+QT8Av0E/ALxZPwC9VT8AsJU+ALGdPgCyqT4As6U+ALShPgC1oT4AtqE+ALehPgC45T4Aue0+ALrlPgC7/T4AvO0+AL3dPgC+1T4AvxkBAAKjAIAGowCACqMAgA6jAIASowCA9qEAgBajAIAaowCAqF0+AKkhPgCqPT4AqzU+AKwVPgCt/T4ArvU+AK/tPgCj1T4AHqMAgCKjAIAmowCAKqMAgKYdPgCl/T4ALqMAgKs5PgCqMT4AMqMAgDajAICvBT4ArgU+AK0RPgCsHT4AgREAAIANAAA6owCAghkAAD6jAIBCowCAhJQBAL4QAACGQAcAhwABAEqjAIBOowCAUqMAgFajAIBaowCAXqMAgKiNAgCplQIAqpUCAKvNAgCs2QIArdkCAK7NAgCvxQIAYqMAgGajAIBqowCAbqMAgIwAAAByowCAdqMAgHqjAIC4HQMAucEDALrBAwC7wQMAvMEDAL3JAwC+8QMAv/EDALCJAgCxiQIAsikDALMpAwC0OQMAtTkDALYpAwC3JQMAsx0CAH6jAICCowCAhqMAgIqjAIC2WQIAtVECAI6jAIC7TQIAuk0CAJKjAICWowCAv/0DAL79AwC9/QMAvP0DAJqjAICeowCAoqMAgKajAIDhDD4AqqMAgOOoPwCuowCAgT0AAIAxAADvUD8Agh0AALKjAIC++AQAhhgFAIdMAwCEDAIA48wAALqjAIDhvAEAvqMAgMKjAIDGowCAyqMAgM6jAICELAUA0qMAgNajAIDaowCA7xAAAN6jAIDiowCAo90DAOajAIDqowCA7qMAgPKjAICmmQMApZEDAPajAICrjQMAqo0DAPqjAID+owCArz0CAK49AgCtPQIArD0CAAKkAIAGpACACqQAgA6kAIASpACAFqQAgBqkAIDvKD4AHqQAgOE8PgAipACA4zgBAIApAACBFQAAghEAACqkAICzMQIAvsgEAITABAAupACAMqQAgLYpAgC1IQIANqQAgLvNAQC6zQEAOqQAgD6kAIC/dQEAvskBAL3BAQC8yQEAqOkFAKnpBQCq+QUAq/kFAKzpBQCt6QUArjkGAK85BgC2owCAJqQAgIaIAACHQAMAQqQAgEakAIBKpACATqQAgLjRBgC52QYAuuEGALvhBgC8kQYAvZEGAL6RBgC/kQYAsEkGALFJBgCyXQYAs1UGALRNBgC18QYAtvEGALfxBgCjcQUAUqQAgFakAIBapACAXqQAgKZpBQClYQUAYqQAgKuNBgCqjQYAZqQAgGqkAICvNQYArokGAK2BBgCsiQYAbqQAgLPRBwBypACAdqQAgLbxBwB6pACAfqQAgLXBBwC60QcAu90HAIKkAICGpACAvrkHAL+5BwC8xQcAvbkHALhpBgC5aQYAuokGALuJBgC8mQYAvZkGAL6JBgC/iQYAsBEGALEdBgCyFQYAs2kGALR5BgC1eQYAtmkGALdhBgCoSQYAqVUGAKpdBgCrVQYArE0GAK11BgCucQYAr3EGAEajAICCHQAAgR0AAIAdAACKpACAjqQAgJKkAIC+cAEAo5UGAJqkAICGKAAAh0gBAJ6kAICmtQYApYUGAKKkAICrmQYAqpUGAKakAICqpACAr/0GAK79BgCt/QYArIEGAK6kAICzFQYAsqQAgLakAIC2PQYAuqQAgL6kAIC1NQYAutkBALvZAQDCpACAxqQAgL59AQC/ZQEAvH0BAL11AQCovQUAqckFAKrZBQCr0QUArPkFAK35BQCuKQIArykCAMqkAIDOpACA0qQAgNakAICMAAAA2qQAgN6kAIDipACAuO0CALmFAgC6gQIAu4ECALyFAgC9jQIAvrECAL+xAgCwWQIAsVkCALLtAgCz5QIAtP0CALXlAgC25QIAt9UCAKNRBQDmpACA6qQAgO6kAIDypACApnkFAKVxBQD2pACAq50CAKqdAgD6pACA/qQAgK8hAgCuOQIArTECAKw5AgCBbQAAgG0AAAKlAICCBQAAvlwMAAqlAIAOpQCA79AGAITsAwDhHAUAEqUAgOP8BwAWpQCAGqUAgIbYDACHvAwAqIUCAKmVAgCqlQIAq6UCAKy9AgCt1QIArtECAK/RAgAepQCAIqUAgCalAIAqpQCALqUAgDKlAIA2pQCAOqUAgLh1AQC5fQEAunUBALvJAQC82QEAvdkBAL7JAQC/wQEAsLUCALG9AgCygQIAs4ECALRRAQC1UQEAtlEBALdRAQA+pQCAhAQNAEKlAIBGpQCAvhwMAEqlAIDvHAAA76AGAOGQAQDhRAcA43AGAOOYBgBOpQCAUqUAgFalAIBapQCAs10CAF6lAIBipQCAZqUAgGqlAIC2FQIAtXUCAG6lAIC7OQIAujECAHKlAIB6pQCAv9UBAL7VAQC9FQIAvBUCAKOdDQAGpQCAdqUAgH6lAICCpQCAptUNAKW1DQCGpQCAq/kNAKrxDQCGCAMAh2ADAK8VDgCuFQ4ArdUNAKzVDQCAkQ8AgZkPAIKhDwCzpQ4AiqUAgLWhDgC2eQ8AjqUAgJKlAICWpQCAukUPALtdDwC8RQ8AvU0PAL5FDwC//Q8AqFUOAKldDgCqYQ4Aq30OAKxlDgCttQ8Arr0PAK+1DwCapQCAnqUAgKKlAICmpQCAqqUAgK6lAICypQCAtqUAgLhVDwC5dQ8Aun0PALt1DwC8bQ8AvREPAL4RDwC/EQ8AsM0PALHVDwCy3Q8As9UPALTNDwC1dQ8AtnEPALdxDwCj6Q8AuqUAgL6lAIDCpQCAxqUAgKY1DgCl7Q8AyqUAgKsRDgCqCQ4AzqUAgNKlAICvsQ4ArgkOAK0BDgCsCQ4A1qUAgIIdAACBHQAAgB0AANqlAIDepQCA4qUAgL6UAQCErAEA5qUAgIfgAQCGzAAA6qUAgO6lAIDypQCAlqQAgKhtDgCpiQEAqpkBAKuRAQCswQEArckBAK75AQCv+QEAhKAAAPalAID6pQCA/qUAgAKmAIAGpgCACqYAgA6mAIC4xQAAuc0AALrFAAC73QAAvM0AAL39AAC+9QAAv50AALBBAQCxQQEAskEBALNBAQC0QQEAtUEBALZBAQC3QQEAsxECABKmAIAWpgCAGqYAgB6mAIC2SQIAtUkCACKmAIC7hQIAuoUCACamAIAqpgCAv4UCAL6FAgC9lQIAvJUCAIU8GgCjVQIALqYAgDKmAICmDQIANqYAgDqmAIClDQIAqsECAKvBAgA+pgCAQqYAgK7BAgCvwQIArNECAK3RAgCCGQAARqYAgIAZAACBGQAASqYAgE6mAIBSpgCAWqYAgL4ABABepgCAYqYAgGamAIBqpgCAbqYAgHKmAIB2pgCA7+gOAHqmAICG6AQAh1ADAH6mAICCpgCA74ACAIamAIDhlAEAiqYAgONYAQCOpgCA4wAOAJKmAIDhaA0AlqYAgKhxAgCpcQIAqnECAKupAgCsuQIArbkCAK6pAgCvqQIAhKwFAJqmAICepgCAoqYAgKamAICqpgCArqYAgLKmAIC4bQEAuQ0BALoFAQC7GQEAvAkBAL09AQC+NQEAv9kBALDZAgCx2QIAsm0BALNlAQC0fQEAtWUBALZlAQC3VQEA4WAPAOP0AADjHA4A4bwBALamAICCOQAAgTEAAIA9AAC6pgCAvigEAL6mAIDCpgCAvjwHAO8QAADv0A4AyqYAgIbgBACHyAQAzqYAgLO1AgDSpgCAtX0CALZ1AgDWpgCA2qYAgN6mAIC6UQIAu1ECALz1AQC9/QEAvvUBAL/tAQBWpgCAxqYAgKqxBQCrsQUArBUGAK0dBgCuFQYArw0GAOKmAIDmpgCA6qYAgKNVBQDupgCApZ0FAKaVBQDypgCAs+kGAPamAID6pgCA/qYAgAKnAIC24QYAtekGAAanAIC7sQYAuqEGAAqnAIAOpwCAv50GAL6RBgC9pQYAvKkGAKgdBgCpIQYAqiEGAKshBgCsIQYArSEGAK4hBgCvIQYAEqcAgBanAIAapwCAHqcAgCKnAIAmpwCAKqcAgC6nAIC45QcAue0HALrlBwC7/QcAvOUHAL3tBwC+5QcAv00HALAlBgCxNQYAsj0GALMxBgC0FQYAtRkGALYNBgC3AQYAo6kHAIIVAACBtQEAgLUBADKnAICmoQcApakHADanAICr8QcAquEHAISgAgA6pwCAr90HAK7RBwCt5QcArOkHAD6nAICzlQYAhugAAIcYAQC2tQYAQqcAgEanAIC1vQYAukkBALtVAQBKpwCATqcAgL45AQC/OQEAvEUBAL05AQCoPQYAqU0GAKpZBgCrUQYArHEGAK1xBgCuuQEAr7kBAISsAQBSpwCAVqcAgFqnAIBepwCAYqcAgGanAIBqpwCAuKkBALmpAQC6aQEAu2kBALx5AQC9eQEAvmkBAL9pAQCwyQEAsdUBALLVAQCzqQEAtLkBALW5AQC2qQEAt6EBAKPRBQBupwCAcqcAgHanAIB6pwCApvEFAKX5BQB+pwCAqxECAKoNAgCCpwCAhqcAgK99AgCufQIArX0CAKwBAgCKpwCAjqcAgJKnAICWpwCAgTEAAIANAACapwCAgjkAAJ6nAICipwCAviQDAKqnAICupwCAsqcAgIbYHACHTAMAtqcAgLqnAIC+pwCAhMAcAOMgAQDCpwCA4cgBAManAIDvMAIAyqcAgM6nAIDSpwCA1qcAgNqnAIDepwCA4qcAgLOVAwDmpwCA6qcAgO6nAIDypwCAtrkDALWxAwD2pwCAu1EDALpJAwD6pwCA/qcAgL/1AAC+SQMAvUEDALxJAwCoLQIAqUUCAKpdAgCrVQIArHkCAK15AgCuvQIAr7UCAL5oHQACqACABqgAgAqoAICAHQAAgQkAAIKpAAAOqACAuFEBALlZAQC6YQEAu2EBALwRAQC9EQEAvhEBAL8RAQCwzQIAsdUCALLdAgCz1QIAtM0CALVxAQC2cQEAt3EBAOFYBgDhVAcA47AAAOO8BgASqACAGqgAgIYYHACHVB0AHqgAgCKoAIAmqACAKqgAgL74HAAuqACA7/AGAO/gBgCjlQIAMqgAgDaoAIA6qACAPqgAgKa5AgClsQIAQqgAgKtRAgCqSQIARqgAgEqoAICv9QEArkkCAK1BAgCsSQIAqG0eAKl1HgCqfR4Aq40eAKyVHgCtnR4Aro0eAK+BHgAWqACATqgAgFKoAIBWqACAWqgAgF6oAIBiqACAZqgAgLiJHgC5iR4AupkeALuRHgC8uR4AvbkeAL59HwC/dR8AsMUeALHNHgCyxR4As90eALTFHgC1zR4AtsUeALe5HgCz9R4AaqgAgG6oAIByqACAdqgAgLYdHgC1HR4AeqgAgLsJHgC6AR4AfqgAgIKoAIC/CR4AvgEeAL0JHgC8ER4Agm0AAKOxHgCAVQAAgWUAAKZZHgCEmAMAv9ABAKVZHgCqRR4Aq00eAIYABACHmAEArkUeAK9NHgCsVR4ArU0eAIqoAICOqACAhCQAAJKoAICWqACAmqgAgKanAICGqACAqLUeAKmFHgCqjR4Aq4UeAKydHgCtgR4Arv0eAK/1HgCwjR4AsZUeALKVHgCzpR4AtL0eALVxAQC2cQEAt3EBALhRAQC5UQEAulEBALtRAQC89QEAvf0BAL71AQC/7QEAsyUeAL4IBwCeqACAoqgAgKaoAIC2IR4AtTUeAKqoAIC7cR4AumkeAK6oAICyqACAv5UBAL5ZHgC9UR4AvGEeALaoAICjYR4AuqgAgL6oAICmZR4AwqgAgMaoAIClcR4Aqi0eAKs1HgDKqACAzqgAgK4dHgCv0QEArCUeAK0VHgDhVBoA0qgAgONcCgDWqACA2qgAgN6oAIDiqACA5qgAgOqoAIC+qAUA7qgAgPKoAICPMSoA+qgAgO/E+wD+qACAk2EuAJIdLwCR2SoAkEkqAJfZEgCWdRIAlQ0TAJTBLgCbHRsAmkEWAJlJFgCYDRcAn3EeAJ4RGwCdcRoAnHkaAKOhAgCinQMAoZUfAKCJHgDjiAEA4wgeAOFoAADh/B4A79wBAO98HwC1if4AtAH8ALMB+gCylfoAsQH4ALAR9gCv4fYArgH0AK0l8gCs7fIAqwHwAKrpDwCp1Q4AqN0OAKcBDACmyQoApe0KAKQBCACj4QYAovEGAKHlAwACqQCAggErAIMBKwAGqQCACqkAgIYxLwCHiS8AhIkrAIVFLgCKdRIAiwUTAIYIBQCHbAUAjhEXAI8RFwCMsRMAjV0WAJI9GgCTQRsAhMgFAIQABwCWUR8Al1EfAJRRGwCVORoAmn0eAJt9AgAOqQCAEqkAgIFZAQCAVQEAnFkDAIJRAQC+yAcAFqkAgBqpAIAeqQCAIqkAgCapAIAqqQCA79QeAC6pAIDhJB4AMqkAgONoAQA2qQCAOqkAgD6pAIBCqQCAu2kCALpZAgBGqQCASqkAgL8dAgC+HQIAvRkCALxxAgCz7QIATqkAgFKpAIBWqQCAWqkAgLZ9AgC17QIAXqkAgKMNBQD2qACAYqkAgGqpAIBmqQCApp0FAKUNBQBuqQCAq4kFAKq5BQCGCAMAh3wDAK/9BQCu/QUArfkFAKyRBQCAsQcAgbkHAIJBAACzsQYAcqkAgLVZBwC2MQcAdqkAgHqpAIB+qQCAuuEHALvhBwC84QcAveEHAL7hBwC/3QcAqLUGAKm5BgCqdQYAq4UHAKydBwCt/QcArvUHAK8ZBwCCqQCAhqkAgIqpAICOqQCAkqkAgJapAICaqQCAnqkAgLh1BwC5fQcAunUHALsFBwC8HQcAvTEHAL4xBwC/MQcAsGkHALFpBwCyeQcAs3kHALRpBwC1VQcAtlEHALdNBwCj/QcAoqkAgKapAICqqQCArqkAgKZ9BgClFQYAsqkAgKutBgCqrQYAtqkAgLqpAICvkQYArq0GAK2tBgCsrQYAvqkAgMKpAIDGqQCAyqkAgIAdAACBCQAAgjkAAM6pAIDSqQCA2qkAgIbIAACHpAEA3qkAgOKpAIDmqQCA6qkAgKiNAQCpmQEAqtkBAKvRAQCs8QEArfEBAK45AQCvOQEAhKAAAO6pAIDyqQCA9qkAgPqpAID+qQCAAqoAgAaqAIC4zQAAudUAALrVAAC75QAAvP0AAL2VAAC+nQAAv5UAALBJAQCxSQEAslkBALNZAQC0SQEAtUkBALb9AAC39QAAugUEALsJBAC44QcAueEHAL4JBAC/CQQAvAkEAL0JBACyjQcAs+UHALC1BwCxhQcAtuUHALftBwC08QcAtfEHAKpNBwCrVQcAqEkHAKlJBwCu3QcAr8UHAKxNBwCt1QcACqoAgA6qAIASqgCAFqoAgBqqAIAeqgCAIqoAgCaqAICz0QIAKqoAgC6qAIC+AAwAMqoAgLbxAgC1+QIANqoAgLsNAgC6DQIAOqoAgD6qAIC/DQIAvg0CAL0NAgC8DQIAghUAAKOVAgCAYQAAgWEAAKa1AgBCqgCASqoAgKW9AgCqSQIAq0kCAIbIDACHrAwArkkCAK9JAgCsSQIArUkCAKhlAgCpdQIAqn0CAKt1AgCsbQIArbECAK6xAgCvsQIAhKANAE6qAIBSqgCAVqoAgFqqAIBeqgCAYqoAgGaqAIC4MQEAuTEBALoxAQC7MQEAvNUBAL3dAQC+yQEAv8EBALDRAgCx0QIAstECALPRAgC0EQEAtREBALYRAQC3EQEA4bAGAGqqAIDj0AYAhEAPAG6qAIDhpAEAcqoAgOPABgB2qgCAeqoAgH6qAIDv1AYA7AAAAIKqAIDvZAcAhqoAgIqqAICOqgCAkqoAgLO5AgCWqgCAtakCALZ9AgCaqgCAnqoAgKKqAIC6WQIAu1kCALxJAgC9SQIAvpkBAL+ZAQCjdQ0ARqoAgKaqAICqqgCArqoAgKaxDQClZQ0AsqoAgKuVDQCqlQ0AvqQDALaqAICvVQ4ArlUOAK2FDQCshQ0AgE0AAIFVAACCVQAAs2UPALqqAIC1ZQ8Atm0PAL6qAICGQAMAhxQDALrtDwC7/Q8AvOkPAL3VDwC+3Q8Av9UPAKhZDgCpoQ8AqqEPAKuhDwCsoQ8AraEPAK6hDwCvoQ8AwqoAgMaqAIDKqgCAzqoAgNKqAIDWqgCA2qoAgN6qAIC4AQ8AuQEPALoBDwC7HQ8AvA0PAL01DwC+PQ8Av9UAALBlDwCxdQ8AsnEPALNNDwC0VQ8AtV0PALZNDwC3QQ8AoykOAOKqAIDmqgCA6qoAgO6qAICmIQ4ApSkOAPKqAICrsQ4AqqEOAPaqAID6qgCAr5kOAK6RDgCtmQ4ArKUOAP6qAIACqwCABqsAgAqrAIDvJA0ADqsAgBKrAIAWqwCA49AOABqrAIDhGA4AHqsAgIAVAACBGQAAggUAACKrAICo0QEAqdkBAKopAQCrKQEArDkBAK05AQCuKQEArykBAL5oAQAqqwCAhsgBAIesAAAuqwCAMqsAgDarAIA6qwCAuO0AALmFAAC6jQAAu4UAALydAAC9gQAAvoEAAL+BAACwWQEAsVkBALLtAACz5QAAtP0AALXlAAC25QAAt9UAALOhAgA+qwCAQqsAgEarAIBKqwCAtrkCALWxAgBOqwCAu50CALqdAgBSqwCAVqsAgL8hAwC+OQMAvTEDALw5AwCF+PUAo+UCAFqrAIBeqwCApv0CAGKrAIBmqwCApfUCAKrZAgCr2QIAaqsAgG6rAICufQMAr2UDAKx9AwCtdQMAuOkAALnpAAC6aQAAu2kAALx5AAC9ZQAAvm0AAL9lAACwsQAAsbkAALKBAACzgQAAtPkAALX5AAC27QAAt+UAAKhlAwCpdQMAqn0DAKt1AwCsbQMArdEAAK7RAACv0QAAcqsAgHarAIB6qwCA1qkAgH6rAICCqwCAhqsAgIqrAICA/QEAgQkAAIIZAACOqwCAkqsAgL5EAgCaqwCAnqsAgISsAgCiqwCAh/gCAIasBQCmqwCAqqsAgK6rAICyqwCAs/UCALarAIC6qwCAvqsAgMKrAIC2UQEAteUCAMarAIC7fQEAunUBAMqrAIDOqwCAvz0BAL49AQC9VQEAvFUBAOFwDwDSqwCA47gOAITABQDvyAAA1qsAgNqrAIDeqwCA4zwOAOKrAIDh0AEA5qsAgIR0BwDqqwCA72gBAO6rAIDyqwCApXkCAKbNAQD2qwCAgCEAAIEhAACC3QcAo2kCAKzJAQCtyQEArqEBAK+hAQD6qwCA/qsAgKrpAQCr4QEAlqsAgAKsAIC+QAIABqwAgIYwAwCHMAMACqwAgA6sAICoOQcAqTkHAKoNBwCrHQcArAUHAK0NBwCuBQcAr3kHALAJBwCxCQcAshkHALMRBwC0OQcAtTkHALbdBwC3yQcAuPkHALn5BwC6zQcAu8EHALzFBwC9yQcAvrkHAL+xBwCzpQcAEqwAgBasAIAarACAHqwAgLatBwC1rQcAIqwAgLvtBwC67QcAJqwAgCqsAIC/3QcAvt0HAL3lBwC87QcALqwAgKPhBwAyrACANqwAgKbpBwA6rACAPqwAgKXpBwCqqQcAq6kHAEKsAIBGrACArpkHAK+ZBwCsqQcAraEHAEqsAIBOrACAUqwAgFasAIBarACAXqwAgGKsAIBmrACAgREAAIANAABqrACAghkAAG6sAIByrACAvuQBAHasAICG4AAAhxgBAHqsAIB+rACAgqwAgIasAICKrACA77AEAI6sAIDh1AYAkqwAgONcBACWrACAmqwAgJ6sAICirACAqJkBAKmZAQCqDQEAqwUBAKwdAQCtBQEArgUBAK81AQCEiAEApqwAgKqsAICurACAsqwAgLasAIC6rACAvqwAgLjBAAC5wQAAusEAALvBAAC8wQAAvcEAAL7BAAC/wQAAsE0BALElAQCyIQEAsyEBALQlAQC1LQEAthEBALcRAQDCrACAxqwAgLONAgDKrACAtZ0CAM6sAIDSrACAto0CANasAIDarACAu+kCALqBAgC9/QIAvP0CAL/hAgC+6QIA3qwAgKbVAgClxQIAvggDAKPVAgCCLQAAgRkAAIB5AACvuQIArrECAK2lAgCspQIAq7ECAKrZAgDirACA6qwAgO80AgDurACAhxgDAIYs/ADyrACA9qwAgPqsAID+rACAAq0AgAatAIAKrQCADq0AgOMAAQASrQCA4eABABatAIC6tQMAu70DABqtAIAerQCAvnkDAL95AwC8pQMAvXkDACarAICztQMAIq0AgCatAIC2kQMAKq0AgC6tAIC1pQMAqEkCAKlJAgCqWQIAq1kCAKxJAgCtdQIArnECAK9tAgC+aP0AvqT/ADKtAIA2rQCAOq0AgD6tAIBCrQCARq0AgLj5AgC5+QIAukkBALtJAQC8XQEAvUEBAL5BAQC/fQEAsBUCALEdAgCyFQIAs8kCALTZAgC12QIAtskCALfJAgDjIAYA4bAGAOGAAQDjEAYAgA0AAIE1AACCPQAASq0AgE6tAIBSrQCAWq0AgF6tAIDvcAAAYq0AgGatAIDvTAEAhIz9AGqtAICjmQIAbq0AgKWJAgByrQCAdq0AgKa9AgCGwPwAh+T8AKuRAgCqmQIArVUCAKyJAgCvVQIArlUCAKh9/gCpgf4Aqpn+AKuZ/gCsif4ArYn+AK65/gCvuf4AVq0AgHqtAIB+rQCAgq0AgIatAICKrQCAjq0AgJKtAIC4tf4Aub3+ALph/wC7Yf8AvGH/AL1h/wC+Yf8Av2H/ALDJ/gCxyf4Ast3+ALPR/gC0uf4Atbn+ALaR/gC3kf4AsxH+AJatAICarQCAnq0AgKKtAIC2Cf4AtQH+AKatAIC7Df4Aug3+AKqtAICurQCAv33+AL59/gC9Bf4AvAn+ALKtAICjVf4Atq0AgLqtAICmTf4Avq0AgMKtAIClRf4Aqkn+AKtJ/gCEKAMAxq0AgK45/gCvOf4ArE3+AK1B/gCAzQEAgdEBAILRAQCzuf4Ayq0AgLXR/gC21f4Azq0AgIZgAQCHYAEAug0BALsFAQC8HQEAvQUBAL4NAQC/BQEA0q0AgNatAIDarQCA3q0AgOKtAIDhwP0A5q0AgOOM/ADqrQCA7q0AgPKtAIDvtPwA9q0AgPqtAID+rQCAAq4AgKgp/gCpKf4Aqj3+AKs1/gCsVf4ArVn+AK5N/gCvRf4ABq4AgAquAIAOrgCAEq4AgBauAIAargCAHq4AgCKuAIC4SQEAuUkBALpZAQC7UQEAvHkBAL15AQC+GQEAvxUBALDFAQCxzQEAssUBALPdAQC0xQEAtc0BALbFAQC3eQEAJq4AgCquAIAurgCAo7n9ADKuAICl0f0AptX9AITQAwBBrgCAvuACAKoNAgCrBQIArB0CAK0FAgCuDQIArwUCAIFJAACAQQAAowkDAIJdAAClGQMARa4AgEmuAICmEQMAhsAEAIfkAwCrDQMAqg0DAK0BAwCsHQMArwEDAK4JAwCw4QMAseEDALLhAwCz/QMAtOUDALXtAwC25QMAtz0DALgFAwC5DQMAugUDALsdAwC8BQMAvQ0DAL4FAwC/vQAATa4AgFGuAIBVrgCAWa4AgOasAIBdrgCAYa4AgGWuAICo8QMAqfkDAKqpAwCrqQMArLkDAK25AwCuqQMAr6UDALNBAgBprgCAba4AgHGuAIB1rgCAtlkCALVRAgB5rgCAu0UCALpFAgB9rgCAga4AgL9JAgC+QQIAvUkCALxVAgCFrgCAia4AgI2uAICRrgCA74wDAJWuAICZrgCAna4AgONsAwChrgCA4VAAAKWuAICprgCAvngFALGuAICEcAIAgOUAAIHpAACC+QAAta4AgIawBACHVAUAua4AgO9A/gC9rgCA4Vz+AMGuAIDjVAEAxa4AgMmuAIDNrgCA0a4AgLOZAQDVrgCA2a4AgN2uAIDhrgCAth0BALUdAQDlrgCAuz0BALo9AQDprgCA7a4AgL/hAAC++QAAvfEAALz5AACoIQYAqVEGAKpRBgCrzQYArNUGAK3dBgCu1QYAr8kGAK2uAIDxrgCA9a4AgPmuAID9rgCAAa8AgAWvAIAJrwCAuG0HALkFBwC6DQcAuwUHALwdBwC9AQcAvgEHAL8BBwCwuQYAsbkGALJtBwCzZQcAtH0HALVlBwC2ZQcAt1UHAKPZBgANrwCAEa8AgBWvAIAZrwCApl0GAKVdBgCEnAIAq30GAKp9BgC+JAMAHa8AgK+hBwCuuQcArbEHAKy5BwCASQAAgUkAAIJZAACzVQcAIa8AgLV9BwC2aQcAJa8AgIZAAACHVAMAulUHALspBwC8OQcAvTkHAL4pBwC/IQcAo5kGACmvAIAtrwCAMa8AgDWvAICmpQYApbEGADmvAICr5QYAqpkGAD2vAIBBrwCAr+0GAK7lBgCt9QYArPUGAOE4BQBFrwCA4yQEAEmvAIBNrwCAUa8AgFWvAIBZrwCAXa8AgGGvAIBlrwCAaa8AgG2vAIBxrwCA7/QEAHWvAICo+QYAqQkGAKoRBgCrLQYArDkGAK0lBgCuLQYAryUGAHmvAIB9rwCAga8AgIWvAICAGQAAgRkAAIIFAACJrwCAuOUBALntAQC65QEAu/0BALzlAQC97QEAvuUBAL9ZAQCwXQYAsSEGALIhBgCzIQYAtCEGALUpBgC2EQYAtxEGAKjRAgCp2QIAqg0DAKsFAwCsHQMArQUDAK4FAwCvNQMAvmQCAJGvAICVrwCAma8AgJ2vAIChrwCApa8AgKmvAIC4JQMAuS0DALolAwC7PQMAvCUDAL0pAwC++QMAv/kDALBNAwCxIQMAsiUDALM9AwC0JQMAtS0DALYlAwC3HQMAs4UDAITIAgCtrwCAhAgDALGvAIC2hQMAtZUDALWvAIC75QMAuokDAIYIDACHnAMAv+kDAL7hAwC96QMAvPEDAIXsCgA2rgCAo80DALmvAICl3QMAva8AgMGvAICmzQMAxa8AgMmvAICrrQMAqsEDAK2hAwCsuQMAr6EDAK6pAwDNrwCA0a8AgNWvAIDZrwCA78gDAN2vAIDhrwCA5a8AgOO0AwDprwCA4dABAO2vAICADQAAgXUAAIJ9AADxrwCA9a8AgPmvAICzZQEAvgQCALVlAQABsACABbAAgLZlAQCGQA0Ah1gNALv1AQC6/QEAvaUBALy5AQC/mQEAvqUBAAmwAIANsACAEbAAgIQADAAVsACAGbAAgB2wAIDvzAEAIbAAgOEsBgAlsACA4yABAOwAAAApsACALbAAgDGwAIA1sACAo+kBADmwAIA9sACApukBAEGwAIBFsACApekBAKpxAQCreQEASbAAgE2wAICuKQEArxUBAKw1AQCtKQEAqCUOAKktDgCqJQ4Aqz0OAKwlDgCtLQ4AriUOAK+VDgD9rwCAUbAAgFWwAIBZsACAXbAAgIKdAACBnQAAgJ0AALhFDwC5TQ8AukUPALtZDwC8SQ8AvUkPAL59DwC/cQ8AsPEOALH5DgCypQ4As7kOALSpDgC1lQ4Atp0OALd9DwCo1Q8Aqd0PAKoJDwCrCQ8ArBkPAK0FDwCuDQ8ArwUPAGGwAIBlsACAabAAgL6gAwBtsACAcbAAgId4AwCGEAAAuBUPALkdDwC6IQ8AuyEPALz1AAC9/QAAvvUAAL/tAACwQQ8AsU0PALJdDwCzVQ8AtE0PALU1DwC2MQ8AtzEPAHWwAIDvsAwAebAAgH2wAICBsACAhbAAgImwAICNsACAkbAAgJWwAICZsACAnbAAgKGwAIDjqA0ApbAAgOGMDQCzwQ4AqbAAgK2wAICxsACAtbAAgLbFDgC10Q4AubAAgLvJDgC6xQ4AvbAAgMGwAIC/sQ4AvskOAL3BDgC8yQ4AowEOAMWwAIDJsACAzbAAgNGwAICmBQ4ApREOANWwAICrCQ4AqgUOANmwAICErAIAr3EOAK4JDgCtAQ4ArAkOAIBRAACBWQAAgmEAALPFAAC+zAEAtcUAALbNAADhsACAhkAHAIcUAQC6yQAAu8kAALzZAAC92QAAvskAAL/FAACrDQMAqg0DAKkJAwCouQIArw0DAK4NAwCtDQMArA0DAL5gAwDlsACA6bAAgO2wAIDxsACA9bAAgPmwAIC+MAUAuykDALoZAwC5GQMAuAEDAL/dAwC+3QMAvd0DALwxAwCzTQMAsk0DALFNAwCwTQMAtzkDALYxAwC1QQMAtE0DAP2wAICmkQMApZkDAAGxAICjmQMABbEAgAmxAIANsQCAr5kDAK6VAwCthQMArIUDAKuVAwCqlQMAja8AgBGxAIAVsQCAGbEAgB2xAIAhsQCAJbEAgCmxAIAtsQCAMbEAgDWxAIA5sQCAPbEAgEGxAICAHQAAgQkAAIL9AQBFsQCAvwgHAEmxAIBRsQCA7yQAAFWxAICElAIAWbEAgF2xAICH4AIAhgQFAL4AGABhsQCAZbEAgOGQAQBpsQCA44AAAG2xAIBxsQCAdbEAgLNlAQB5sQCAtWUBALZtAQB9sQCAgbEAgIWxAIC65QEAu/kBALzpAQC96QEAvsUBAL+9AQCJsQCAjbEAgJGxAIC+xBkAlbEAgJmxAICdsQCA78gBAKGxAIDh3A4ApbEAgOMwDgCpsQCArbEAgLGxAICEMAQAgHkAAIEVAACCFQAAo+UBALWxAICl5QEApu0BALmxAICGQAYAh5AHAKplAQCreQEArGkBAK1pAQCuRQEArz0BAKjdBQCpIQYAqiEGAKshBgCsIQYArSEGAK4hBgCvnQYATbEAgL2xAIDBsQCAhDABAMWxAIDJsQCAzbEAgNGxAIC4jQYAuZUGALqdBgC7lQYAvI0GAL21BgC+vQYAv7UGALDtBgCx8QYAsvEGALPxBgC0zQYAtbUGALa9BgC3tQYAqIkHAKmVBwCqkQcAq5EHAKy9BwCtpQcArqEHAK/dBwDVsQCA2bEAgN2xAIDhsQCA5bEAgOmxAIDtsQCA8bEAgLhJBwC5VQcAul0HALtVBwC8cQcAvX0HAL5pBwC/aQcAsKUHALGtBwCyuQcAs7EHALSRBwC1kQcAtnkHALd5BwD1sQCA+bEAgP2xAIABsgCA78gFAOHACQAFsgCA48AZAOMkBAAJsgCA4dAGAO/cKACinQMAoxUBAKAZBQChjQUAs1kGAA2yAIARsgCAFbIAgBmyAIC2ZQYAtXUGAB2yAIC7KQYAuiEGACGyAIAlsgCAvxUGAL4VBgC9JQYAvC0GAKOZBgCPmfwAKbIAgDGyAIA1sgCApqUGAKW1BgA5sgCAq+kGAKrhBgCGKB8Ah5wAAK/VBgCu1QYAreUGAKztBgCebQkAn30HAJwNCwCd7QkAmvENAJs5DQCY5fAAmQ0PAJbh8QCX6fEAlMX1AJUN8wCSHfcAk/H1AJD9+QCR7fkAgh3/AIMB+gA9sgCAQbIAgIYV9gCHOfYAhAn6AIXx9ACKwfAAiyXyAEWyAIBJsgCAjuEMAI8VDgCMNfIAjQHzAJKtDgCTgQgATbIAgFGyAICW6QQAl3UGAJR5CgCV8QoAmtEGAJvJAABVsgCAWbIAgIEdAwCAHQMAnFkCAIL1AwCrARAAqpUWAKmNFgCojRYAr5UuAK4BLACt/RIArJkSAKOlHgCipR4AoY0CAN2wAICnGRoAppUaAKUBGACknR8AXbIAgGGyAIBlsgCAabIAgG2yAIBxsgCAdbIAgHmyAICz5SoAsuUqALGtLwCw5S4AfbIAgIGyAIC1ASQAtBEqAKgpAwCpNQMAqj0DAKs1AwCsLQMArbUDAK69AwCvtQMAhbIAgImyAICNsgCAkbIAgIAdAACBCQAAgrkAAJWyAIC4TQIAuV0CALptAgC7CQIAvBkCAL0ZAgC+CQIAvwECALDNAwCx1QMAst0DALPVAwC0zQMAtXUCALZ9AgC3dQIAmbIAgITIHQChsgCAvgwfAKWyAICpsgCA70gGAO9YBwDhWAYA4ZgGAOOUAQDjAAYAhhAcAId8HQC+9B4ArbIAgLGyAIC2ZQMAtfUDALWyAICz5QMAubIAgL2yAIDBsgCAv+ECAL5ZAwC9UQMAvFkDALtBAwC6WQMAxbIAgMmyAIAtsgCAnbIAgM2yAIDRsgCA1bIAgNmyAIDdsgCA4bIAgKitHQCptR0AqrUdAKslHgCsPR4ArR0eAK4VHgCvdR4AsA0eALEtHgCyJR4As40eALSVHgC1nR4AtpUeALeNHgC4tR4Aub0eALq1HgC7nR4AvIUeAL1VHwC+XR8Av1UfALMdHQDlsgCA6bIAgO2yAIDxsgCAtr0eALWVHgD1sgCAu8keALrpHgD5sgCA/bIAgL95HgC+cR4AvXkeALzRHgCCKQAAo1kdAIAdAACBFQAApvkeAAGzAIAFswCApdEeAKqtHgCrjR4ACbMAgITgAwCuNR4Arz0eAKyVHgCtPR4AqIkeAKmVHgCqnR4Aq7EeAKzRHgCt2R4Ars0eAK/FHgANswCAEbMAgIaIAACHbAEAFbMAgBmzAIAdswCAIbMAgLhdAQC5wQEAusEBALvBAQC8wQEAvckBAL7xAQC/8QEAsL0eALGdHgCylR4As2UBALR9AQC1ZQEAtm0BALdlAQCqLR0AqzUdACWzAIApswCAri0dAK+VHACsLR0ArSUdAISMAQCjkR0ALbMAgDGzAICmER0ANbMAgDmzAIClgR0As1UeAD2zAIBBswCARbMAgEmzAIC2GR4AtRkeAE2zAIC7GR4AujkeAFGzAIBVswCAv+EBAL75AQC98QEAvAEeAFmzAIBdswCAYbMAgKOZHQBlswCApdUdAKbVHQBpswCAbbMAgHGzAICq9R0Aq9UdAKzNHQCtPQIArjUCAK8tAgCAZQAAgRUAAIIdAACEAAQAdbMAgHmzAICHcAMAhvwEAIGzAICFswCAibMAgI2zAICRswCAlbMAgJmzAICdswCAvsgEAKGzAIClswCAqbMAgK2zAICxswCAtbMAgO/cHwC5swCA4ZQBAL2zAIDjHAEAwbMAgMWzAIDJswCAzbMAgLt1AwC6aQMAvkgGANGzAIC/HQMAvh0DAL0dAwC8ZQMAs9UDANWzAIDZswCA3bMAgOGzAIC2fQMAtcUDAIRwBQCoJQIAqTUCAKo9AgCrNQIArC0CAK2dAgCulQIAr7UCAIIVAADlswCAgNkBAIEJAADEAAAA6bMAgPGzAID1swCAuKkCALmpAgC6SQEAu0kBALxZAQC9RQEAvkUBAL99AQCwzQIAsdECALLRAgCzqQIAtLkCALW5AgC2qQIAt6ECAOEoHgDhNBwA43QBAOMYHgD5swCA/bMAgIa4BACHVAUAhDgHAAG0AIAFtACACbQAgL6sBwANtACA78weAO/IGgCj9QIAEbQAgBW0AIAZtACAHbQAgKZdAgCl5QIAIbQAgKtVAgCqSQIAJbQAgCm0AICvPQIArj0CAK09AgCsRQIAqGEGAKlhBgCqYQYAq2EGAKxhBgCtYQYArmEGAK9hBgDtswCALbQAgDG0AIA1tACAObQAgD20AIBBtACARbQAgLjxBgC58QYAuvEGALvxBgC8nQYAvbEGAL6xBgC/sQYAsOUGALHtBgCy5QYAs/0GALTlBgC17QYAttkGALfVBgCz6QYASbQAgE20AIBRtACAVbQAgLbhBgC16QYAWbQAgLspBgC6IQYAXbQAgGG0AIC/KQYAviEGAL0pBgC8MQYAgl0AAKOtBgCARQAAgV0AAKalBgBltACAabQAgKWtBgCqZQYAq20GAIYADACHQAMArmUGAK9tBgCsdQYArW0GAG20AIDvfAUAcbQAgHW0AIB5tACAfbQAgIG0AICFtACAibQAgI20AICRtACAlbQAgJm0AIDjaAUAnbQAgOF4BQCz0QYAobQAgKW0AICptACArbQAgLb9BgC1/QYAsbQAgLupBgC6oQYAtbQAgLm0AIC/mQYAvqkGAL2pBgC8sQYAqLkGAKm5BgCqGQYAqxkGAKw1BgCtPQYArjUGAK8pBgC9tACAgh0AAIEdAACAHQAAwbQAgMW0AIDJtACA0bQAgLjpAQC56QEAuvkBALv5AQC86QEAvekBAL5dAQC/VQEAsCUGALEtBgCyJQYAsz0GALQtBgC1HQYAthUGALfZAQCGgAwAh+QCANW0AICjnQUA2bQAgKWxBQCmsQUA3bQAgOG0AIDltACAqu0FAKvlBQCs/QUAreUFAK7lBQCv1QUAtk0DAOm0AICExAMAtUUDAO20AICzjQIA8bQAgPW0AIC+SQMAv0kDALxJAwC9SQMAumkDALtpAwD5tACA/bQAgAG1AICmiQMApYEDAAW1AICjSQIACbUAgA21AIARtQCAr40DAK6NAwCtjQMArI0DAKutAwCqrQMAfbMAgBW1AIAZtQCAHbUAgIW0PQAhtQCAJbUAgCm1AIAttQCAMbUAgIA9AACBCQAAgh0AADW1AIC+sAMAObUAgIc4AwCG3AwAQbUAgEW1AIBJtQCATbUAgFG1AIDvXAYAVbUAgFm1AIC+6AwA45QGAF21AIDh3AEAYbUAgGW1AIBptQCAbbUAgLNRAQBxtQCAdbUAgHm1AIB9tQCAtnEBALV5AQCBtQCAuz0BALo9AQCFtQCAibUAgL/9AQC+9QEAvQUBALwFAQCNtQCAkbUAgJW1AICEQAwAmbUAgJ21AIChtQCA76wHAKW1AIDhJAYAqbUAgONABwCGkAwAh/wMALG1AIC1tQCAgFkAAIFlAACCYQAAo90BALm1AICl9QEApv0BAL21AIDBtQCAxbUAgKqxAQCrsQEArIkBAK2JAQCueQEAr3EBAM20AIA9tQCAybUAgM21AICttQCA0bUAgNW1AIDZtQCAqJ0NAKktDgCqOQ4AqzEOAKwRDgCtEQ4Arn0OAK9tDgCwGQ4AsRkOALIxDgCzMQ4AtNEOALXZDgC2zQ4At8UOALj9DgC52Q4AuqkOALupDgC8vQ4AvaUOAL6tDgC/pQ4AqIEPAKmBDwCqgQ8Aq4EPAKyBDwCtjQ8AroUPAK+1DwDdtQCA4bUAgOW1AIDptQCA7bUAgPG1AID1tQCA+bUAgLidDwC5rQ8AuqUPALtNDwC8VQ8AvV0PAL5JDwC/SQ8AsNEPALHRDwCy0Q8As9EPALS1DwC1vQ8AtrUPALetDwCzCQ4A/bUAgAG2AIAFtgCACbYAgLYNDgC1CQ4ADbYAgLsVDgC6FQ4AEbYAgBW2AIC/eQ4AvnEOAL0FDgC8BQ4AghUAAKNNDgCAYQAAgWEAAKZJDgAZtgCAvhABAKVNDgCqUQ4Aq1EOAIQkAQAhtgCArjUOAK89DgCsQQ4ArUEOAKg5DgCpOQ4AqlkOAKtRDgCscQ4ArXEOAK6RAQCvkQEAhgAAAIeEAAAltgCAKbYAgC22AIAxtgCANbYAgDm2AIC4dQEAuX0BALp1AQC7yQAAvNkAAL3ZAAC+yQAAv8EAALD1AQCx/QEAsvUBALNNAQC0VQEAtV0BALZVAQC3TQEAuk0PALtVDwC4TQ8AuUUPAL59DwC/tQ8AvEUPAL11DwCyAQ8AswEPALAxDwCxMQ8AtgEPALcNDwC0EQ8AtREPAKqZDgCrRQ8AqOUOAKmZDgCuQQ8Ar0EPAKxRDwCtUQ8APbYAgEG2AIBFtgCASbYAgE22AIBRtgCAVbYAgFm2AICzUQ0AXbYAgGG2AIBltgCAabYAgLZxDQC1eQ0AbbYAgLu5AgC6sQIAcbYAgHW2AIC/GQIAvhECAL0ZAgC8oQIAebYAgKMVDQB9tgCAgbYAgKY1DQCFtgCAibYAgKU9DQCq9QIAq/0CAIToAwCRtgCArlUCAK9dAgCs5QIArV0CAKhtAgCprQIAqqUCAKu9AgCspQIAra0CAK6lAgCvfQEAgO0BAIHxAQCC8QEAvqAFAJW2AICZtgCAh2gFAIYcBQC4yQEAuckBALrZAQC70QEAvPkBAL35AQC+mQEAv5UBALAFAQCxDQEAsgUBALMdAQC0BQEAtQ0BALYFAQC3+QEA4WQPAOGcDwDjFA4A49QPAJ22AIDhPA4AobYAgOPkAAC+rAQApbYAgKm2AIDvDAAArbYAgLG2AIDvYA4A77QPALW2AIC5tgCAhEQEALNhAgC9tgCAtWECALZhAgDBtgCAxbYAgMm2AIC6jQEAu4UBALydAQC9hQEAvo0BAL+FAQCjrQUAjbYAgM22AIDRtgCA1bYAgKatBQClrQUA2bYAgKtJBgCqQQYA3bYAgOG2AICvSQYArkEGAK1JBgCsUQYA5bYAgOm2AIDttgCA8bYAgIAdAACBCQAAgjkAAPW2AID5tgCA/bYAgIbIAACHIAMAAbcAgAW3AIAJtwCADbcAgKhtBgCptQcAqr0HAKsdBwCsCQcArTEHAK4xBwCvLQcAhKgDABG3AIAVtwCAGbcAgB23AIAhtwCAJbcAgCm3AIC4zQAAudUAALrVAAC75QAAvP0AAL2VAAC+nQAAv5UAALBVBwCxJQcAsi0HALM9BwC0LQcAtRUHALYdBwC39QAALbcAgOG8BgAxtwCA4/QFADW3AIA5twCAPbcAgEG3AIBFtwCASbcAgE23AIBRtwCAVbcAgFm3AIBdtwCA7+gEALN1BgCCLQAAgRUAAIAdAABhtwCAtvEGALXBBgBltwCAu6EGALrRBgBptwCAvmwBAL+RBgC+qQYAvakGALy5BgCjtQYAcbcAgIYoAACHTAEAdbcAgKYxBgClAQYAebcAgKthBgCqEQYAfbcAgIG3AICvUQYArmkGAK1pBgCseQYAhbcAgLO9AQCJtwCAjbcAgLZ5AQCRtwCAlbcAgLV5AQC6VQEAu10BAJm3AICdtwCAvvkAAL/lAAC8RQEAvf0AAKhxAgCpcQIAqnECAKtxAgCstQIArb0CAK61AgCvrQIAhOw8AKG3AICltwCAqbcAgK23AICxtwCAtbcAgLm3AIC4XQMAuWUDALptAwC7ZQMAvH0DAL1lAwC+bQMAv2UDALDVAgCx3QIAstUCALNtAwC0eQMAtWUDALZtAwC3ZQMAHbYAgL23AIDBtwCAo/UCAMW3AIClMQIApjECAMm3AIDNtwCA0bcAgKodAgCrFQIArA0CAK21AwCusQMAr60DAIBlAACBCQAAghkAANW3AIDZtwCA4bcAgL4QPADltwCAhsA8AIcgAwDptwCA7bcAgPG3AID1twCA+bcAgP23AICohQIAqZUCAKqVAgCrpQIArL0CAK3VAgCu0QIAr9ECAAG4AIAFuACACbgAgA24AIARuACAFbgAgBm4AIAduACAuHUBALl9AQC6dQEAu8kBALzZAQC9xQEAvsUBAL/9AQCwtQIAsb0CALKBAgCzgQIAtFUBALVdAQC2VQEAt00BAOGkBgAhuACA41AGAL6APACEHDwAvoA/ACW4AIApuACALbgAgDG4AIA1uACAObgAgD24AIBBuACA7+AGAEW4AICBfQAAgHEAAEm4AICCBQAAUbgAgFW4AIDvTAAAWbgAgOGQAQBduACA41gBAGG4AIBluACAabgAgIZYPwCH/DwAs509AN23AIBNuACAbbgAgHG4AIC21T0AtbU9AHW4AIC7+T0AuvE9AHm4AIB9uACAvxk+AL4RPgC91T0AvNU9AIG4AICj2T0AhbgAgIm4AICmkT0AjbgAgJG4AICl8T0AqrU9AKu9PQCVuACAmbgAgK5VPgCvXT4ArJE9AK2RPQCoVT4AqVk+AKphPgCrYT4ArGE+AK1hPgCuYT4Ar2E+AISoAwCduACAobgAgKW4AICpuACArbgAgLG4AIC1uACAuEU/ALldPwC6VT8Au20/ALx1PwC9fT8AvnU/AL9tPwCwwT8AscE/ALLBPwCzwT8AtME/ALXBPwC2wT8At8E/AIC5AQCBuQEAggUAALm4AIDhgD4AwbgAgOMoPQDFuACAhoAAAIcEAQDvCD0AybgAgM24AIDRuACA1bgAgNm4AICzqT8AvbgAgN24AIDhuACA5bgAgLahPwC1qT8A6bgAgLtFPgC6RT4A7bgAgPG4AIC/RT4AvkU+AL1VPgC8VT4Ao2k/APW4AID5uACA/bgAgAG5AICmYT8ApWk/AAW5AICrhT4AqoU+AAm5AIANuQCAr4U+AK6FPgCtlT4ArJU+ABG5AICzGT4AFbkAgBm5AIC2IT4AHbkAgCG5AIC1MT4AuvEBALv5AQAluQCAKbkAgL6xAQC/vQEAvNEBAL3RAQCo0T0AqdE9AKrVPQCr6T0ArP09AK3lPQCu7T0ArxECAID5AwCBzQMAgsUDAIQkAwC+AAQAMbkAgIesAwCGvAQAuBkCALktAgC6JQIAu+kCALz5AgC9+QIAvukCAL/pAgCwcQIAsXkCALJBAgCzQQIAtDECALU9AgC2NQIAtykCAKVtPQA1uQCAObkAgKZ9PQA9uQCAbbcAgKNFPQBBuQCArY0CAKyNAgCv4QIAru0CAKwAAABFuQCAq6UCAKqtAgDh+AEASbkAgOP0AgCEwAQATbkAgFG5AIBVuQCAWbkAgF25AIBhuQCAZbkAgGm5AIBtuQCAcbkAgO8wAgB1uQCAqBUCAKkZAgCqJQIAqz0CAKwlAgCtLQIAriUCAK9VAgB5uQCAfbkAgIG5AICFuQCAibkAgI25AICEsAQAkbkAgLjRAgC52QIAuuECALvhAgC8kQIAvZ0CAL6VAgC/iQIAsC0CALE1AgCyNQIAswUCALQdAgC18QIAtvECALfxAgDheD8A4zQBAOMIPgDhbD4AgQkAAICpAACVuQCAgj0AAJm5AIChuQCApbkAgL4gBACpuQCA79g+AO/MPgCtuQCAsbkAgLPpAgCG6AQAh8AEALbpAgC1uQCAubkAgLXpAgC6rQIAu7UCAL25AIDBuQCAvp0CAL9xAgC8pQIAvZUCAC25AICduQCAxbkAgMm5AIDNuQCA0bkAgNW5AIDZuQCAqBUGAKmhBgCqoQYAq70GAKytBgCtgQYArv0GAK/tBgCwlQYAsZ0GALKVBgCzrQYAtLUGALW9BgC2tQYAt60GALiVBgC5mQYAukkHALtJBwC8WQcAvVkHAL5JBwC/SQcArN0FAK3tBQCu5QUArwkFAN25AIDhuQCAqtUFAKvNBQDluQCApZEFAKaRBQDpuQCA7bkAgPG5AID1uQCAo5EFALNJBgD5uQCA/bkAgAG6AIAFugCAtmEGALVFBgAJugCAuzkGALoxBgC+ZAAADboAgL8ZBgC+EQYAvRkGALwhBgCjiQcAgtkBAIHZAQCAwQEAEboAgKahBwClhQcAFboAgKv5BwCq8QcAhggBAId8AQCv2QcArtEHAK3ZBwCs4QcAGboAgLP1BgAdugCAIboAgLaFBgAlugCAKboAgLWdBgC6jQYAu20BAC26AIAxugCAvmUBAL9tAQC8dQEAvW0BAKglBgCpLQYAqjkGAKsxBgCsUQYArUEGAK5BBgCvdQYANboAgDm6AIA9ugCAQboAgEW6AIBJugCATboAgFG6AIC4VQEAuWUBALplAQC7fQEAvGUBAL1tAQC+HQEAvxUBALANBgCx7QEAsuUBALP9AQC05QEAte0BALblAQC3bQEAo7EFAFW6AIBZugCAvkgDAL5YDACmwQUApdkFAF26AICrKQIAqskFAGG6AIBlugCArykCAK4hAgCtKQIArDECAGm6AIBtugCAcboAgHW6AICAGQAAgRkAAIIFAAB5ugCAhKwDAIG6AICHGAMAhswMAIW6AICJugCAjboAgJG6AICokQMAqZkDAKrJAwCrxQMArN0DAK3BAwCuwQMAr/UDAJW6AICZugCAnboAgKG6AIClugCAqboAgK26AICxugCAuH0DALnBAAC6wQAAu9EAALz5AAC9+QAAvpkAAL+ZAACwjQMAsUUDALJNAwCzRQMAtF0DALVFAwC2TQMAt0UDALNBAgC1ugCAuboAgL8EDwC9ugCAtkECALVVAgDBugCAu4ECALpJAgDFugCAyboAgL+BAgC+mQIAvZECALyZAgDNugCA0boAgNW6AIDZugCA76QDAN26AIDhugCA5boAgOMQAwDpugCA4VgAAIQgDQCAKQAAgSkAAIIdAADxugCA4VAGAOGgBwDjoAYA41AHAIWUDAD1ugCA70gbAPm6AIDhJAIA/boAgONwGgABuwCABbsAgAm7AIDvqAEA7+gGAIagDwCHDA0Ao4kCAA27AIClnQIAEbsAgBW7AICmiQIAGbsAgB27AICrSQIAqoECAK1ZAgCsUQIAr0kCAK5RAgCoZQ4AqXUOAKp9DgCrdQ4ArG0OAK21DgCuvQ4Ar7UOAO26AIAhuwCAJbsAgCm7AIAtuwCAOLsAgDy7AIBAuwCAuF0PALltDwC6ZQ8Auw0PALwVDwC9HQ8AvhUPAL8JDwCwzQ4AsdUOALLdDgCz1Q4AtM0OALVxDwC2cQ8At20PALP1DgBEuwCASLsAgEy7AIBQuwCAtjUOALXlDgBUuwCAuxEOALoJDgBYuwCAXLsAgL+1DwC+CQ4AvQEOALwJDgCCFQAAo7EOAIBhAACBYQAApnEOAGC7AIC+EAEApaEOAKpNDgCrVQ4AaLsAgIQgAQCuTQ4Ar/EPAKxNDgCtRQ4An0UIAJ4NCQCdDQkAnJkLAJt1NQCaETUAmZk3AJgNMQCXJTEAliUxAJWBPQCUDT0Ak4k/AJIVOACRPTkAkD05AI9lJQDvrA0AhgAEAIegAQBsuwCAcLsAgHS7AIDv6AEAeLsAgOE0AgB8uwCA4zQBAIC7AIDjCAwAhLsAgOEIDQChoQEAiLsAgKMJBQCibQMApc0EAKQRBQCnHRkAph0ZAKmhHQCoORkAq+kcAKqpHQCtkREArAEQAK8BFACuUREAsfkVALDlFQCz6WkAsgFoALUBbAC0eWkAjLsAgJC7AICUuwCAmLsAgJy7AICguwCAowkDAKIZDQCh/Q0AoP0NAIIlJgCDBToApLsAgKi7AICGqTwAhzU+AIQdOgCFPTsAiok+AIslMgCsuwCAsLsAgI6xNACPMTYAjD0yAI0tMgCSJTYAk9EIAIREAwC+wAQAlhULAJdVDgCUXQoAlVUKAJplDgCbiQ4AtLsAgLi7AIC8uwCAwLsAgJyBAADEuwCAuLUCALm9AgC6tQIAuwkCALwZAgC9GQIAvgkCAL8BAgCwdQ0AsX0NALJJDQCzSQ0AtJUCALWdAgC2lQIAt40CAKi9DQCpUQ0AqlUNAKtpDQCsfQ0ArWUNAK5tDQCvEQ0AZLsAgILtAQCBHQAAgB0AAMi7AIDMuwCAfboAgL5wBQCznQwAhIwFANC7AIDYuwCA3LsAgLalDAC1tQwA4LsAgLv5DAC68QwAhigFAIcgBQC/GQMAvhEDAL3dDAC83QwA5LsAgKPZDADouwCA7LsAgKbhDADwuwCA9LsAgKXxDACqtQwAq70MAPi7AID8uwCArlUDAK9dAwCsmQwArZkMAAC8AIAEvACACLwAgAy8AIAQvACAFLwAgBi8AIDvvAEAHLwAgOF8DgAgvACA41ABACS8AIAovACALLwAgDC8AICzlQIANLwAgDi8AIA8vACAQLwAgLa9AgC1uQIASLwAgLs5AgC6YQIAhsgEAIesBAC/GQIAvhECAL0ZAgC8IQIAo1UFAILVBwCBxQcAgMUHAEy8AICmfQUApXkFAFC8AICr+QUAqqEFAFS8AIBYvACAr9kFAK7RBQCt2QUArOEFAFy8AICzWQcAYLwAgGS8AIC2HQcAaLwAgGy8AIC1FQcAugkHALsJBwBwvACAdLwAgL75BwC/+QcAvPkHAL35BwDUuwCARLwAgHi8AIB8vACAgLwAgIS8AICIvACAjLwAgKitBwCptQcAqrUHAKvtBwCs+QcArfkHAK7tBwCv5QcAsKkHALGpBwCySQcAs0kHALRZBwC1WQcAtkkHALdJBwC4eQcAuUUHALpBBwC7XQcAvEUHAL1NBwC+RQcAvzkHAKMdBgCQvACAlLwAgJi8AICcvACAplkGAKVRBgCgvACAq00GAKpNBgCkvACAqLwAgK+9BgCuvQYArb0GAKy9BgCAbQAAgQkAAIIZAACsvACAsLwAgISYAQC+kAEAtLwAgIYAHACHxAEAuLwAgLy8AIDAvACAxLwAgMi8AIDMvACAqF0GAKmVAQCqlQEAq6UBAKy9AQCt1QEArtEBAK/RAQDQvACA1LwAgNi8AIDcvACA4LwAgOS8AIDovACA7LwAgLhZAQC5WQEAus0AALvFAAC83QAAvcUAAL7FAAC/9QAAsLUBALG9AQCygQEAs4EBALR5AQC1eQEAtmkBALdpAQCzHQIA8LwAgPS8AIC+gBwA+LwAgLZVAgC1NQIA/LwAgLt5AgC6cQIAAL0AgAS9AIC/vQIAvr0CAL1VAgC8VQIACL0AgKNZAgAMvQCAEL0AgKYRAgAUvQCAGL0AgKVxAgCqNQIAqz0CABy9AIAgvQCArvkCAK/5AgCsEQIArRECACi9AIAsvQCAvgQdAL4AHgAwvQCANL0AgDi9AIA8vQCAgPkAAIHNAACCxQAAhCADAIawHACHlAMAQL0AgES9AIBIvQCATL0AgFC9AIBUvQCA42wCAFi9AIDhoAEAXL0AgO8UAgBgvQCAZL0AgGi9AIBsvQCAcL0AgHS9AIB4vQCA4fAGAOE0BgDjTAAA4xgGAHy9AICAvQCAhL0AgIi9AICAPQAAgQkAAIIZAACMvQCAkL0AgIS8HQDvmAAA7zgHALMxAgDRAAAAh9gdAIZsHACYvQCAtikCALUhAgCcvQCAu80CALrNAgCgvQCApL0AgL/NAgC+zQIAvc0CALzNAgCyXQYAs2UGALANBgCxVQYAtn0GALedBQC0fQYAtXUGALqNBQC7zQUAuKUFALmFBQC+xQUAv8kFALzVBQC9zQUAqL0AgKy9AICwvQCAtL0AgLi9AIC8vQCAwL0AgMS9AICqtQYAq70GAKgBBwCpvQYAroEGAK+NBgCsmQYArZUGAKNxHQDIvQCAzL0AgNC9AIDUvQCApmkdAKVhHQDYvQCAq40dAKqNHQDcvQCA4L0AgK+NHQCujR0ArY0dAKyNHQDkvQCAs9UeAOi9AIDsvQCAts0eAPC9AID0vQCAtcUeALqhHgC7oR4A+L0AgPy9AIC+pR4Av6keALyxHgC9sR4AJL0AgJS9AIAAvgCAhAQDAID5AACB+QAAghEAAAS+AICoIR4AqSEeAKo5HgCrOR4ArCkeAK0pHgCuAR4ArwEeALABHgCxAR4AsgEeALMBHgC0BR4AtQkeALY9HgC3NR4AuA0eALkVHgC6HR4AuxUeALwNHgC95R8Avu0fAL/lHwCjkR8ACL4AgIYoAQCHSAEADL4AgKaJHwClgR8AEL4AgKvlHwCq5R8AFL4AgBi+AICv7R8AruEfAK31HwCs9R8AHL4AgLMtHgAgvgCAJL4AgLaVHgAovgCALL4AgLWdHgC6sR4Au7EeADC+AIA0vgCAvnUBAL99AQC8oR4AvaEeAKjRHgCp2R4AquEeAKvhHgCsUR4ArVEeAK5RHgCvUR4AOL4AgDy+AIBAvgCARL4AgEi+AIBMvgCAUL4AgFS+AIC43QEAue0BALrlAQC7jQEAvJkBAL2ZAQC+jQEAv4UBALAxHgCxMR4AsjEeALMxHgC09QEAtf0BALb1AQC37QEAo2kdAFi+AIBcvgCAYL4AgGS+AICm0R0ApdkdAGi+AICr9R0AqvUdAGy+AIBwvgCArzkCAK4xAgCt5R0ArOUdAIFpAACAWQAAvgAEAIJhAAB4vgCAfL4AgIC+AICEvgCAhOwDAIi+AICHiAMAhuwEAIy+AICQvgCAlL4AgJi+AICohQMAqZUDAKqVAwCrpQMArL0DAK3VAwCu0QMAr9EDAJy+AICgvgCApL4AgKi+AICsvgCAsL4AgLS+AIC4vgCAuHEDALlxAwC6cQMAu3EDALzVAAC93QAAvtUAAL/NAACwtQMAsb0DALKBAwCzgQMAtFEDALVRAwC2UQMAt1EDAOFUHgDhrB8A45QBAOMoHgDjYAMAvL4AgOEIAADAvgCA75ADAMS+AIDIvgCAzL4AgNC+AIDUvgCA70wfAO9MHwCzXQIA2L4AgNy+AIDgvgCA6L4AgLYVAgC1dQIA7L4AgLs5AgC6MQIAhCQFAL7gBAC/1QIAvtUCAL0VAgC8FQIAuJEdALmZHQC6oR0Au6EdALzRHQC93R0AvtUdAL/JHQCwCR4AsQkeALIZHgCzGR4AtAkeALUJHgC2vR0At7UdAKipHgCpqR4AqrkeAKu5HgCsqR4ArakeAK55HgCveR4AgKUAAIGtAACCpQAA8L4AgIbQBACH+AQA9L4AgPi+AIB0vgCA5L4AgPy+AIAAvwCABL8AgAi/AIAMvwCAEL8AgKhxBgCpcQYAqnEGAKtxBgCsVQYArUUGAK5NBgCvRQYAsD0GALHlBgCy7QYAs+UGALT9BgC15QYAtu0GALflBgC43QYAuXEHALp1BwC7SQcAvFkHAL1ZBwC+SQcAv0kHALPZBgAUvwCAGL8AgBy/AIAgvwCAtuUGALX9BgAkvwCAuwEGALrZBgAovwCALL8AgL8BBgC+GQYAvREGALwZBgAwvwCAo9kFADS/AIA4vwCAppEFADy/AIBAvwCApfEFAKq1BQCrvQUARL8AgEi/AICuUQUAr1EFAKyRBQCtkQUAo1kHAIIZAACBGQAAgOEBAEy/AICmZQcApX0HAFC/AICrgQcAqlkHAISgAgC+rAEAr4EHAK6ZBwCtkQcArJkHAFS/AICzqQYAhugAAIcsAQC2WQEAWL8AgFy/AIC1oQYAunUBALt9AQBgvwCAZL8AgL75AQC/+QEAvGUBAL35AQCo0QYAqdkGAKplBgCrdQYArG0GAK2dAQCulQEAr40BAITsAQBovwCAbL8AgHC/AIB0vwCAeL8AgHy/AICAvwCAuGkBALlpAQC6CQEAuwUBALwdAQC9AQEAvgEBAL81AQCw9QEAsf0BALL1AQCzaQEAtHkBALV5AQC2aQEAt2EBAIS/AICIvwCAjL8AgKPhBQCQvwCApekFAKYRAgCUvwCAmL8AgJy/AICqPQIAqzUCAKwtAgCtsQIArrECAK+xAgCgvwCApL8AgL4EAwCEAAwAqL8AgKy/AICwvwCAtL8AgIANAACBFQAAgh0AALi/AIC8vwCAwL8AgIdEAwCG3AwAs+kDAMi/AIDMvwCA0L8AgNS/AIC2PQMAtT0DANi/AIC7GQMAuhEDANy/AIDgvwCAv7kAAL6xAAC9uQAAvAEDAOS/AIDhlAEA6L8AgON8AQDsvwCA8L8AgPS/AID4vwCA/L8AgADAAIAEwACACMAAgAzAAIAQwACAFMAAgO9MAgCoVQIAqV0CAKphAgCrYQIArLUCAK29AgCutQIAr60CAL5oDQAYwACAHMAAgCDAAIAkwACAgq0AAIGtAACArQAAuGEBALlhAQC6CQEAuwkBALwBAQC9AQEAvgEBAL8BAQCw1QIAsd0CALLVAgCzbQEAtHUBALV9AQC2aQEAt2EBAOFoBgDh8AcA47AAAOP0BgAowACALMAAgDDAAIA4wACAPMAAgEDAAIBEwACASMAAgL78DABMwACA72wAAO8oBgCjqQIAUMAAgIZoDACHBA0AVMAAgKZ9AgClfQIAWMAAgKtZAgCqUQIAXMAAgGDAAICv+QEArvEBAK35AQCsQQIAqIUOAKmNDgCqhQ4Aq50OAKyNDgCtvQ4ArrUOAK/dDgA0wACAZMAAgGjAAIBswACAcMAAgHTAAIB4wACAfMAAgLitDgC5tQ4Aur0OALu1DgC8dQ8AvX0PAL51DwC/bQ8AsKkOALG1DgCyvQ4As7UOALStDgC1lQ4Atp0OALeVDgCzDQ4AgMAAgITAAICIwACAjMAAgLY9DgC1BQ4AkMAAgLtxDgC6bQ4AlMAAgJjAAIC/UQ4AvmkOAL1hDgC8aQ4AghkAAKNJDgCAZQAAgRkAAKZ5DgCcwACAoMAAgKVBDgCqKQ4AqzUOAIS8AwCkwACAri0OAK8VDgCsLQ4ArSUOAKidDgCppQ4Aqq0OAKulDgCsvQ4AraEOAK7dDgCvzQ4AhiABAIdkAQCowACArMAAgLDAAIC0wACAuMAAgLzAAIC4eQEAuXkBALrNAQC7xQEAvN0BAL3FAQC+xQEAv/UBALC9DgCxjQ4AsoUOALNJAQC0WQEAtVkBALZJAQC3SQEAtS0OAMDAAIDEwACAtjkOAMjAAIDMwACAsz0OANDAAIC9hQEAvEkOAL+FAQC+hQEA1MAAgMS/AIC7UQ4AumEOAKNlDgDYwACA3MAAgODAAIDkwACApmEOAKV1DgDowACAqwkOAKo5DgDswACA8MAAgK/dAQCu3QEArd0BAKwRDgD0wACA+MAAgO/QDwD8wACAAMEAgATBAIAIwQCADMEAgBDBAIC+aAMAGMEAgBzBAIDhVA4AIMEAgONkDgAkwQCAgFkAAIFZAACCaQAAhIwDAIbwBACHFAMAKMEAgCzBAIAwwQCANMEAgDjBAIA8wQCAQMEAgETBAIBIwQCATMEAgFDBAIBUwQCAWMEAgFzBAIBgwQCAZMEAgGjBAIBswQCAqIkDAKmJAwCqmQMAq5kDAKyJAwCtiQMArj0DAK81AwCwUQMAsVEDALJVAwCzfQMAtBUDALUdAwC2FQMAtw0DALg9AwC5DQMAugUDALvtAAC89QAAvfkAAL7pAAC/6QAAcMEAgHTBAIB4wQCAsz0CAHzBAIC1LQIAtiUCAIDBAIC+aAUAiMEAgLq5AgC7uQIAvK0CAL2FAgC+/QIAv/UCAIBJAACBVQAAglUAAIQABQDvjAMAvhgEAId0BQCG/AQA4zwDAIzBAIDhUAAAkMEAgJTBAICYwQCAnMEAgKDBAICkwQCAqMEAgKzBAICwwQCAtMEAgLjBAIC8wQCA79QOAL4oBgDhdA4AwMEAgONUAQDEwQCAyMEAgMzBAIDQwQCAo/ECANTBAIDYwQCA3MEAgODBAICm6QIApeECAOTBAICrdQIAqnUCAOjBAIDswQCArzkCAK4xAgCtSQIArGECAKgpBgCpKQYAqj0GAKsxBgCsSQYArUkGAK55BgCveQYAhMEAgIIVAACBxQcAgMUHAPDBAICEaAMA9MEAgPjBAIC4yQYAuckGALrZBgC72QYAvMkGAL3JBgC+WQcAv1kHALAJBgCxCQYAshkGALMZBgC0CQYAtQkGALb5BgC3+QYAs7UGAPzBAICGrAAAh0ADAADCAIC2yQYAtcEGAATCAIC7zQYAus0GAAjCAIAMwgCAv80GAL7NBgC9zQYAvM0GABDCAICj8QYAFMIAgBjCAICmjQYAHMIAgCDCAIClhQYAqokGAKuJBgAkwgCAKMIAgK6JBgCviQYArIkGAK2JBgCoJQYAqWEGAKplBgCrfQYArGUGAK1tBgCuZQYAr50GACzCAIAwwgCANMIAgDjCAIA8wgCAQMIAgETCAIBIwgCAuPUGALn9BgC69QYAu4kGALyZBgC9mQYAvokGAL+BBgCw5QYAse0GALLlBgCz/QYAtOUGALXtBgC20QYAt80GAEzCAIC2/QYAtf0GAFDCAICz/QYAVMIAgFjCAIBcwgCAvzkGAL4xBgC9OQYAvCEGALs5BgC6MQYAFMEAgGDCAICjrQYAgnkAAIFVAACAVQAAhFwBAKatBgClrQYAaMIAgKtpBgCqYQYAhkh/AIfkAACvaQYArmEGAK1pBgCscQYAbMIAgO/cBwBwwgCAdMIAgHjCAIB8wgCAgMIAgITCAICIwgCAhKADAIzCAIC/JHkAkMIAgONoBwCUwgCA4XQGALPRAgCYwgCAvgQDAISAfQCcwgCAtvkCALXxAgCgwgCAu7UCALqpAgCkwgCAqMIAgL9RAwC+mQIAvZECALylAgCpBQIAqLkCAKsVAgCqHQIArT0CAKw9AgCvUQIArl0CAL5ofQCswgCAsMIAgLTCAIC4wgCAvMIAgMDCAIDEwgCAufEDALjpAwC78QMAuvkDAL1RAwC86QMAv00DAL5RAwCxNQIAsCkCALMBAgCyNQIAtdEDALQZAgC30QMAttkDAIIpAACjlQMAgB0AAIEVAACmvQMAyMIAgMzCAICltQMAqu0DAKvxAwDQwgCA2MIAgK7dAwCvFQIArOEDAK3VAwCGYH0Ah3h9ALNBAQCEAH8AtUEBANzCAIDgwgCAtkkBAOTCAIDowgCAu0EBALpNAQC9SQEAvEUBAL8pAQC+OQEA7MIAgO/cBgDwwgCA9MIAgPjCAID8wgCAAMMAgO8wBgCELH4A4eAGAATDAIDjiAEACMMAgON0AAAMwwCA4SwBAKPJAQAQwwCAFMMAgIVweQAYwwCApsEBAKXJAQAcwwCAq8kBAKrFAQAgwwCAJMMAgK+hAQCusQEArcEBAKzNAQCo3X0AqQV+AKoBfgCrAX4ArAF+AK0BfgCuAX4ArwF+ANTCAIAowwCALMMAgDDDAIA0wwCAgp0AAIGdAACAnQAAuC1+ALnhfgC64X4Au+F+ALzhfgC94X4AvuF+AL/hfgCwQX4AsU1+ALJZfgCzVX4AtDV+ALUlfgC2JX4AtxV+AKitfwCp0X8AqtF/AKvtfwCs9X8ArRV/AK4RfwCvEX8AOMMAgDzDAIBAwwCARMMAgIbwAwCHuAAASMMAgEzDAIC4EX8AuRl/ALohfwC7IX8AvPUAAL39AAC+9QAAv+0AALBxfwCxcX8AsnF/ALNFfwC0QX8AtU1/ALY9fwC3NX8As1l+AFDDAIBUwwCAWMMAgFzDAIC2lX4AtX1+AGDDAIC7tX4AurV+AGTDAIBowwCAv4l+AL6FfgC9kX4AvKV+AGzDAICjHX4AcMMAgHTDAICm0X4AeMMAgHzDAIClOX4AqvF+AKvxfgCAwwCAhMMAgK7BfgCvzX4ArOF+AK3VfgCwrQAAscUAALLBAACzwQAAtMUAALXNAAC28QAAt/EAALhhAAC5YQAAumEAALt9AAC8ZQAAvW0AAL5lAAC/vQMAiMMAgIzDAICQwwCAZMIAgJTDAICYwwCAnMMAgKDDAICoWQEAqVkBAKrtAACr5QAArP0AAK3lAACu5QAAr9UAAKTDAICCHQAAgR0AAIAdAACowwCArMMAgLDDAIC+VAIAhoAEAIfsAgC4wwCAvMMAgMDDAIDEwwCAyMMAgL54AwDjdH4AzMMAgOG4fQDQwwCA1MMAgNjDAIDcwwCA4MMAgOTDAIDowwCA7MMAgPDDAIDvwH4A9MMAgPjDAID8wwCAs4UDAADEAIAExACACMQAgAzEAIC2hQMAtZUDABDEAIC74QMAuokDAL4kBgAUxACAv+kDAL7hAwC99QMAvPUDAIIpAACjwQMAgB0AAIEVAACmwQMAGMQAgBzEAICl0QMAqs0DAKulAwAgxACAheAFAK6lAwCvrQMArLEDAK2xAwDh+AMAKMQAgONcHwAsxACA7/QDADDEAICGPAcAh6wCAON8fgA0xACA4YABADjEAIA8xACAQMQAgO/kEwBExACAs3EBAEjEAIBMxACAUMQAgFTEAIC2EQEAtWEBAFjEAIC7OQEAujEBAFzEAIBgxACAvxkBAL4RAQC9GQEAvCEBAGTEAIBoxACAbMQAgHDEAIB0xACAeMQAgHzEAIDvxH8AgMQAgOH8fgCExACA4/B/AIANAACBdQAAgn0AAIjEAICMxACAkMQAgKP5AQC+AAgApekBAJjEAICcxACAppkBAISoBQCgxACAq7EBAKq5AQCtkQEArKkBAK+RAQCumQEAqCkGAKkpBgCqOQYAqzkGAKwpBgCtUQYArlUGAK9NBgAkxACAhCABAKTEAICUxACAo+EBAKKZBAChGQQAoPEFALg5BgC5OQYAus0GALvFBgC83QYAvcUGAL7FBgC/8QYAsDUGALE9BgCyNQYAsw0GALQVBgC1HQYAthUGALcJBgCPoWwAs5EHAIYoAQCHfAMAtqEHAKjEAICsxACAtbEHALrlBwC77QcAsMQAgLTEAIC+7QcAv90HALz1BwC97QcAn/l4AJ7leACdcXkAnCF8AJvxfACaYX0AmZlxAJjZcACX4XAAlnl0AJVtdACUbXQAk61pAJJxaACReWgAkB1uAIIhbQCD5W8AuMQAgLzEAICGTWgAh5V1AISZaQCFmWkAiqV1AIu5dQDAxACAxMQAgI5xcACPgXwAjDlxAI05cQCSYX0Ak6l9AMjEAIDMxACAlml5AJeZBACU4XgAlX15AJpBBQCbyQUA0MQAgNTEAIDYxACA3MQAgJypAADgxACAo4ENAKKpAQChqQEA5MQAgKexCQCmAQgApU0NAKSZDQCrkRUAqoUVAKkBFACocQkArx0QAK7pEQCtvREArAEQALMBGACy8RwAscEdALDJHQC0wwCA6MQAgLXhGAC0/RkA7MQAgPDEAID0xACA+MQAgIAdAACBCQAAgv0DAPzEAICjFQUAAMUAgIaIDACHPAMACMUAgKYlBQClNQUADMUAgKtpBQCqYQUAEMUAgBTFAICvWQUArmkFAK1pBQCscQUAGMUAgBzFAICEBAwAIMUAgCTFAIDhbAYAKMUAgOPsewAsxQCAMMUAgDTFAIDvqAYAOMUAgDzFAIBAxQCARMUAgKmNBQCogQUAq60FAKqZBQCtoQUArLkFAK+lBQCuqQUAhGgNAEjFAIBMxQCAUMUAgFTFAIBYxQCAXMUAgL70DAC5SQUAuEEFALtZBQC6QQUAvUkFALxBBQC/cQUAvn0FALGpBQCwoQUAs7kFALKhBQC1mQUAtKkFALd5BQC2kQUAqNUEAKndBACq7QQAqyUDAKyFAwCtjQMArrEDAK+xAwBgxQCAZMUAgGjFAIBsxQCAgBkAAIEZAACCBQAAcMUAgLgxAgC5MQIAujUCALvBAgC8hQIAvbUCAL69AgC/tQIAsGkCALFpAgCyQQIAs0ECALQ5AgC1OQIAthECALcRAgCGoAwAh0wNAHjFAIB8xQCA76QGAIDFAICExQCA78wHAOOUAQDhpAYA4TgBAONcBgCIxQCAjMUAgJDFAICUxQCAmMUAgJzFAICzLQQAoMUAgLVFAwCkxQCAqMUAgLZFAwCsxQCAsMUAgLvlAgC65QIAvd0CALzdAgC/tQIAvrUCAATFAIB0xQCAtMUAgLjFAIC8xQCAwMUAgMTFAIDIxQCAqDEOAKk5DgCqAQ4AqwEOAKxxDgCtcQ4ArnUOAK9tDgCwGQ4AsSUOALItDgCzJQ4AtCEOALUhDgC2IQ4AtyEOALjFDgC5zQ4AusUOALvdDgC8xQ4Avc0OAL5ZDwC/WQ8As6kOAMzFAIDQxQCA1MUAgNjFAIC20Q4AtdkOANzFAIC7wQ4Auv0OAODFAIC+LAAAv8UOAL7FDgC90Q4AvNkOAIJpAACj7Q4AgFkAAIFRAACmlQ4A5MUAgOjFAIClnQ4AqrkOAKuFDgCGyAAAh6wAAK6BDgCvgQ4ArJ0OAK2VDgDsxQCAs5EOAPDFAID0xQCAtqUOAPjFAID8xQCAta0OALrhDgC74Q4AAMYAgATGAIC+6Q4Av9UOALz1DgC96Q4Ao6UKAAjGAIAMxgCAEMYAgBTGAICmzQ0Apc0NABjGAICrbQwAqm0MABzGAIAgxgCArz0MAK49DACtVQwArFUMAKgJDgCpCQ4Aqh0OAKsVDgCsIQ4ArSEOAK4hDgCvIQ4AJMYAgCjGAIAsxgCAMMYAgDTGAIA4xgCAPMYAgEDGAIC4zQEAudUBALrdAQC71QEAvM0BAL1RAQC+UQEAv1EBALAhDgCxIQ4AsiUOALM5DgC0KQ4AtRUOALYdDgC39QEARMYAgEjGAIBMxgCAo5kNAFDGAIClpQ0Apq0NAL7cAgCE7AMAWMYAgKrpDQCr6Q0ArP0NAK3hDQCu4Q0Ar90NAIBFAACBTQAAglkAAKNFAwBcxgCApUEDAKZBAwBgxgCAhsAEAIcAAwCqLQMAqyUDAKw9AwCtJQMAriUDAK8VAwCoWQIAqYUDAKqBAwCrgQMArIUDAK2NAwCusQMAr7EDAGTGAIBoxgCAbMYAgHDGAIB0xgCAeMYAgHzGAICAxgCAuGUDALltAwC6ZQMAu30DALxlAwC9bQMAvmUDAL/dAACwpQMAsa0DALKlAwCzvQMAtK0DALWdAwC2lQMAt10DALMJAgCExgCAiMYAgIzGAICQxgCAtg0CALUNAgCUxgCAu2kCALphAgCYxgCAnMYAgL9ZAgC+aQIAvWkCALxxAgCgxgCApMYAgKjGAICsxgCA4aABALDGAIDjaAMAtMYAgIEVAACAFQAA74wDAIIVAAC4xgCAvMYAgMDGAIC+cAUA4RgOAOGUDwDjOA8A49QPAISUAgDIxgCAzMYAgNDGAIDUxgCA2MYAgNzGAIDgxgCA5MYAgOjGAIDv7AEA7/gPAIZgBACHBAUAs5UBAITMBQC1dQEA7MYAgPDGAIC2dQEA9MYAgPjGAIC7UQEAulkBAL31AAC8SQEAv/UAAL71AACoJQYAqVUGAKpVBgCrrQYArLUGAK29BgCutQYAr60GAMTGAID8xgCAAMcAgATHAIAIxwCADMcAgBDHAIAUxwCAuGkHALlpBwC6CQcAuwkHALwZBwC9GQcAvg0HAL8BBwCw1QYAsd0GALLVBgCzaQcAtHkHALV5BwC2aQcAt2EHAKPdBgAYxwCAHMcAgCDHAIAkxwCApj0GAKU9BgAoxwCAqxkGAKoRBgAsxwCAMMcAgK+9BwCuvQcArb0HAKwBBgCAXQAAgW0AAIJlAACzUQcAvtgDALVxBwC2cQcANMcAgIbgAACHFAMAul0HALs5BwC8KQcAvRUHAL4dBwC/2QAAqJUGAKmdBgCqlQYAq60GAKy1BgCtvQYArrUGAK+tBgA4xwCAPMcAgEDHAIBExwCASMcAgEzHAIBQxwCAVMcAgLhxAQC5cQEAunEBALtxAQC81QEAvd0BAL7VAQC/zQEAsNUGALGxBgCysQYAs40GALSVBgC1UQEAtlEBALdRAQBYxwCAoxkGAFzHAIBgxwCApjkGAFTGAIBkxwCApTkGAKoVBgCrcQYAaMcAgGzHAICuVQYAr5EBAKxhBgCtXQYAcMcAgHTHAIB4xwCAfMcAgIDHAICExwCAiMcAgIzHAICQxwCAlMcAgJjHAICcxwCAgBkAAIEZAACCBQAAoMcAgISAAgC+gAMAhwwDAIasHADhaAYAqMcAgOOYBwCsxwCAsMcAgLTHAIDvrAcAuMcAgLzHAIDAxwCAxMcAgMjHAIDMxwCA0McAgNTHAICzZQMA2McAgLVlAwC2bQMA3McAgODHAIDkxwCAuukDALvlAwC8/QMAve0DAL7RAwC/0QMA6McAgOzHAIDwxwCA9McAgPjHAID8xwCAAMgAgATIAICogQMAqYEDAKqBAwCrgQMArIEDAK2BAwCugQMAr4EDALBBAwCxTQMAskUDALNVAwC0eQMAtXkDALYZAwC3GQMAuCkDALkpAwC6OQMAuzkDALwpAwC9KQMAvhkDAL8ZAwCBGQAAgBEAAKMhAgCCLQAApSECAAjIAIAMyACApikCABDIAIAYyACAq6ECAKqtAgCtqQIArLkCAK+VAgCulQIAhEwCAL5IHQCHZB0AhuwcAONAAwAcyACA4aABACDIAIDvnAMAJMgAgCjIAIAsyACAMMgAgDTIAIA4yACAPMgAgEDIAIBEyACASMgAgEzIAIBQyACAVMgAgFjIAIDvtAEAhKgdAOF8BgBcyACA43AGAGDIAIBkyACAaMgAgGzIAICz4QEAcMgAgHTIAIB4yACAfMgAgLblAQC19QEAgMgAgLuhAQC62QEAvuQcAIjIAIC/rQEAvqUBAL2xAQC8uQEAqBUeAKkZHgCqKR4AqykeAKw9HgCtJR4Ari0eAK8lHgAUyACAgvkfAIH5HwCA4R8AhMgAgIzIAICGHAAAh7ADALjBHgC5wR4AusEeALvBHgC8wR4AvcEeAL7BHgC/wR4AsF0eALElHgCyLR4AsyUeALQhHgC1KR4AthkeALcZHgCjoR4AkMgAgJTIAICYyACAnMgAgKalHgCltR4AoMgAgKvhHgCqmR4ApMgAgKjIAICv7R4AruUeAK3xHgCs+R4ArMgAgLOZHwCwyACAtMgAgLa9HwC4yACAvMgAgLW1HwC6mR8Au5kfAMDIAIDEyACAvnkfAL95HwC8eR8AvXkfAKglHgCpUR4AqlUeAKtpHgCseR4ArXkeAK5pHgCvaR4AyMgAgMzIAIDQyACA1MgAgNjIAIDcyACA4MgAgOTIAIC42R4Aue0eALr5HgC7+R4AvOkeAL3pHgC+nR4Av5UeALAZHgCxGR4AsukeALPpHgC0+R4AtfkeALbpHgC36R4Ao90eAIIpAACBFQAAgB0AAOjIAICm+R4ApfEeAOzIAICr3R4Aqt0eAKTHAIDwyACArz0eAK49HgCtPR4ArD0eAITIAgCzQQEAvgwBAPjIAIC2QQEA/MgAgADJAIC1UQEAuk0BALslAQCGSAAAh1ABAL4lAQC/LQEAvDEBAL0xAQAEyQCACMkAgIQEAwC+gAQADMkAgO+oHwAQyQCAFMkAgL8oMQDjdB8AGMkAgOE4HgAcyQCAIMkAgCTJAIAoyQCALMkAgDDJAICjzQIANMkAgKXdAgA4yQCAPMkAgKbNAgBAyQCARMkAgKupAgCqwQIArb0CAKy9AgCvoQIArqkCAKm1AgCoaR0AqwECAKoJAgCtAQIArBkCAK8xAgCuAQIAhGwFAEjJAIBMyQCAUMkAgFTJAICCnQEAgZ0BAICdAQC55QMAuOUDALvlAwC65QMAveUDALzlAwC/5QMAvuUDALEhAgCwSQIAsyUCALIlAgC1KQIAtCECALcVAgC2FQIAqM0CAKnRAgCq0QIAqw0BAKwVAQCtBQEArgEBAK8BAQBYyQCAXMkAgGDJAIBoyQCAvvgEAGzJAIBwyQCAdMkAgLgVAQC5HQEAuikBALspAQC89QEAvf0BAL71AQC/7QEAsEkBALFVAQCyXQEAs1UBALRNAQC1NQEAtj0BALcxAQCGoAUAh8gFAHjJAIDvvAAAfMkAgIDJAICEyQCA74weAIQsBwDh8B4AiMkAgOMcHgCMyQCA4ZQBAJDJAIDjbAAAsxkCAJTJAICYyQCAnMkAgIQACAC2xQEAtd0BAKDJAIC70QEAus0BAKTJAICoyQCAv7EBAL7JAQC9wQEAvMkBAKPZBQBkyQCArMkAgLDJAIC0yQCApgUGAKUdBgC4yQCAqxEGAKoNBgC8yQCAwMkAgK9xBgCuCQYArQEGAKwJBgDEyQCAgh0AAIEdAACAHQAAyMkAgMzJAIDQyQCA1MkAgIZAAwCHxAMA2MkAgNzJAIDgyQCA5MkAgOjJAIDsyQCAqK0HAKmxBwCqsQcAq7EHAKwZBwCtBQcArg0HAK8FBwDwyQCA9MkAgPjJAID8yQCAAMoAgATKAIAIygCADMoAgLgtBwC5zQAAusUAALvdAAC8zQAAvf0AAL71AAC/nQAAsEkHALFVBwCyUQcAsykHALQ5BwC1OQcAtiUHALcVBwCzOQYAEMoAgBTKAIAYygCAHMoAgLaFBgC1kQYAIMoAgLuRBgC6jQYAJMoAgCjKAIC//QYAvv0GAL39BgC8hQYALMoAgKN9BgAwygCANMoAgKbBBgA4ygCAPMoAgKXVBgCqyQYAq9UGAEDKAIC+bAEArrkGAK+5BgCswQYArbkGAKjpAQCp6QEAqvkBAKv5AQCs6QEArekBAK45AQCvOQEAgPUAAIH9AACCwQAARMoAgIYQAACHdAEASMoAgPTIAIC4zQAAudUAALrVAAC75QAAvP0AAL2VAAC+kQAAv5EAALBJAQCxSQEAslkBALNZAQC0SQEAtUkBALb9AAC39QAA7/QGAEzKAIBQygCAVMoAgO8wAgBYygCAXMoAgGDKAIDj4AcAZMoAgOGAAQBoygCA4ygGAGzKAIDhyAUAcMoAgLMxAgB0ygCAeMoAgJYAAAB8ygCAtikCALUhAgCAygCAu80CALrNAgCEygCAiMoAgL/NAgC+zQIAvc0CALzNAgCMygCAkMoAgJTKAICj/QIAmMoAgKXtAgCm5QIAnMoAgKDKAICkygCAqgECAKsBAgCsAQIArQECAK4BAgCvAQIAgA0AAIEVAACCHQAAqMoAgKzKAICwygCAvlQMALjKAICGwAwAhyQDALzKAIDAygCAxMoAgMjKAIDMygCA0MoAgKi5AgCpAQEAqgEBAKsBAQCsBQEArQ0BAK4FAQCvOQEAhKgNANTKAIDYygCA3MoAgODKAIDkygCA6MoAgOzKAIC4LQEAucUBALrNAQC7xQEAvMEBAL3JAQC++QEAv/kBALBNAQCxUQEAslUBALMpAQC0OQEAtSUBALYlAQC3FQEA4RgGAPDKAIDjOAcA9MoAgPjKAIC+WAwA/MoAgADLAICEbA8ABMsAgL5gDwAIywCADMsAgBDLAIDvcAYAFMsAgIAVAACBGQAAgi0AAITMDwDjYAYAGMsAgOGgAQAcywCA73QAACDLAICGyAwAh/wMACjLAIAsywCAMMsAgDTLAICjCQ4AtMoAgCTLAIA4ywCAPMsAgKYNDgClDQ4AQMsAgKsVDgCqCQ4ARMsAgEjLAICvYQ4Arn0OAK19DgCsAQ4ATMsAgLOpDgBQywCAVMsAgLapDgBYywCAXMsAgLWpDgC6SQ8Au0kPAGDLAIBkywCAvkkPAL9JDwC8SQ8AvUkPAKhdDgCpbQ4AqmUOAKt9DgCsZQ4ArW0OAK5lDgCvuQ8AaMsAgGzLAIBwywCAdMsAgHjLAIB8ywCAgMsAgITLAIC4UQ8AuV0PALpVDwC7aQ8AvH0PAL1lDwC+bQ8Av2EPALDJDwCxyQ8AstkPALPZDwC0yQ8AtckPALZ9DwC3cQ8AiMsAgLURDwC2EQ8AjMsAgIARAACBGQAAgikAALMVDwC8HQ8AvWEPAL5hDwC/fQ8AkMsAgJTLAIC6FQ8AuwkPAKOtDwCYywCAhugAAIfIAQCcywCApq0PAKWtDwCgywCAq00OAKpNDgCkywCAqMsAgK9NDgCuTQ4ArU0OAKxNDgCocQ4AqXEOAKpxDgCrcQ4ArJ0BAK2FAQCuhQEAr7UBAL7sAACsywCAsMsAgLTLAIC4ywCAvMsAgMDLAIDEywCAuGEBALlhAQC6YQEAu2EBALxhAQC9YQEAvmEBAL9hAQCwzQEAsaUBALKhAQCzoQEAtKUBALWtAQC2kQEAt5EBALP5DQDIywCAzMsAgNDLAIDUywCAtgUCALUVAgDYywCAu2ECALoJAgDcywCA4MsAgL9pAgC+YQIAvXUCALx1AgDkywCAo70NAOjLAIDsywCApkECAPDLAID0ywCApVECAKpNAgCrJQIA+MsAgPzLAICuJQIAry0CAKwxAgCtMQIAge0AAIDtAADv0AEAgh0AAADMAIAIzACAhjgEAIdQAwAMzACAEMwAgBTMAIAYzACA4eABABzMAIDjZA8AIMwAgCTMAIAozACALMwAgLORAwAwzACAtbkDALZ9AwA0zACAOMwAgDzMAIC6WQMAu1kDALxJAwC9SQMAvv0AAL/1AACoRQIAqVUCAKpVAgCrZQIArH0CAK2xAgCusQIAr7ECAL5oBQBAzACARMwAgEjMAIBMzACAUMwAgFTMAIBYzACAuF0BALltAQC6ZQEAuw0BALwZAQC9GQEAvg0BAL8FAQCw0QIAsdECALLRAgCz0QIAtHUBALV9AQC2dQEAt20BAOF4DwDjNA4A47gOAOF8DgBczACAYMwAgGTMAIBozACAbMwAgHDMAIB4zACAfMwAgIDMAIDv5A4A79QOAITMAICjnQIAgmEAAIFpAACAUQAAhJwFAKZxAgCltQIAiMwAgKtVAgCqVQIAhkgEAIfMBACv+QEArvEBAK1FAgCsRQIAqJUGAKmlBgCqrQYAq6UGAKy9BgCtoQYArqUGAK/dBgB0zACAjMwAgJDMAICUzACAmMwAgJzMAICgzACApMwAgLhtBwC5dQcAun0HALt1BwC8bQcAvcUHAL7NBwC/xQcAsKUGALGtBgCyuQYAs7EGALSRBgC1kQYAtl0HALdVBwCzJQYAqMwAgKzMAICwzACAtMwAgLYhBgC1NQYAuMwAgLtpBgC6YQYAvMwAgMDMAIC/VQYAvlUGAL1lBgC8bQYAxMwAgKNhBgDIzACAzMwAgKZlBgDQzACA1MwAgKVxBgCqJQYAqy0GANjMAIDczACArhEGAK8RBgCsKQYArSEGAKipBgCpqQYAqrkGAKuxBgCszQYArTEBAK4xAQCvMQEAgMkBAIHJAQCCBQAA4MwAgL54AgCEeAIA5MwAgOjMAIC43QEAue0BALrlAQC7jQEAvJkBAL2ZAQC+jQEAv4UBALBRAQCxUQEAslEBALNRAQC09QEAtf0BALb1AQC37QEAszEGAOzMAICGKAAAh9wBAPDMAIC2sQEAtUUGAPTMAIC7lQEAupUBAPjMAID8zACAvzkBAL4xAQC9hQEAvIUBAATMAICjdQYAAM0AgATNAICm9QEACM0AgAzNAIClAQYAqtEBAKvRAQAQzQCAFM0AgK51AQCvfQEArMEBAK3BAQAYzQCAHM0AgCDNAIAkzQCAKM0AgCzNAIAwzQCANM0AgDjNAIA8zQCAQM0AgETNAIBIzQCATM0AgFDNAIC+cAMAhQA8AOHEBgCERAIA44wHAIBhAACBYQAAgmEAAO9oAwCFRDwA4RACAFjNAIDj2CsAhlA9AIf0AwBczQCA76QHAGDNAIDvQAIAZM0AgGjNAIBszQCAcM0AgHTNAIB4zQCAhDw8AHzNAICAzQCAhM0AgIjNAIDj7AIAjM0AgOEsAQCzUQMAkM0AgJTNAICYzQCAnM0AgLZ5AwC1cQMAoM0AgLs5AwC6MQMApM0AgKjNAIC/9QAAvvUAAL0VAwC8FQMAqD0CAKmBAgCqmQIAq5ECAKy5AgCtuQIArtECAK/RAgCEqD8Avqg/AKzNAICwzQCAtM0AgLjNAIC8zQCAwM0AgLhRAQC5UQEAulEBALtRAQC8cQEAvXEBAL5xAQC/cQEAsLUCALG9AgCygQIAs4ECALRxAQC1cQEAtnEBALdxAQCAtQAAgb0AAIK1AADIzQCAhrA/AIfgPADMzQCA71QAAL4sPgDhVAYA0M0AgOOIAADUzQCA2M0AgNzNAIDgzQCAo1ECAOTNAIC/2CYA6M0AgOzNAICmeQIApXECAPDNAICrOQIAqjECAPTNAID4zQCAr/UBAK71AQCtFQIArBUCAJAtJACRBSgAkg0oAJPZKACUhS0AlTUsAJbFLACXtTEAmAEwAJkVMACalTUAmyk0AJxtNACdmTUAnj04AJ81OABUzQCAttU+ALXFPgDEzQCAs9E+APzNAIAAzgCABM4AgL/ZPgC+1T4AvcU+ALzFPgC71T4Auuk+AAjOAICPXSQAqeUJAKgVCACrBQwAqg0MAK0BEACsAQwAr0EQAK69EACh4QAADM4AgKMBBACi4QAApZ0EAKSVBACnuQgApgEIAKD1OQChBT0Aouk8AKP1PQAQzgCAFM4AgBjOAIAczgCAscEUALABFACzARgAsn0UALXVGAC01RgAIM4AgCTOAICCISUAgyklACjOAIAszgCAhsUpAIeBLACEGSkAhRkpAIoBLQCL+S0AMM4AgDjOAICOATEAj4k0AIyRMACNHTEAkkU1AJMZNQCG6AcAh+wBAJZZOQCXYTgAlPU0AJVZOQCaoTwAm0U9ADzOAIBAzgCAgX0AAIB9AACcQTwAglUAAKjpPwCp/T8Aqgk/AKsFPwCsHT8ArQU/AK4NPwCvBT8ARM4AgEjOAIBMzgCAUM4AgFTOAIBYzgCAXM4AgGDOAIC4DT8AuRU/ALoVPwC7JT8AvD0/AL39PgC+9T4Av+0+ALB9PwCxQT8AskE/ALNBPwC0QT8AtU0/ALY9PwC3NT8Ao4E8AGTOAIBozgCAbM4AgHDOAICmhTwApZU8AHTOAICrhTwAqrk8AHjOAIB8zgCAr4k8AK6FPACtlTwArJU8AITIAwCz7T0AgM4AgITOAIC26T0AiM4AgIzOAIC16T0Auq09ALu1PQCQzgCAlM4AgL6dPQC/IQIAvKU9AL2VPQCoDT0AqR09AKohPQCrPT0ArCU9AK0tPQCuJT0Ar1k9AIANAACBFQAAgh0AAJjOAICczgCAoM4AgKjOAIC+uAMAuLkCALlhAgC6GQIAuxkCALwJAgC9CQIAviECAL8hAgCwLT0AsTU9ALI1PQCzBT0AtB09ALWhAgC2oQIAt6ECAKOpPACszgCAhigFAIfsAgCwzgCApq08AKWtPAC0zgCAq/E8AKrpPAC4zgCAvM4AgK9lAwCu2TwArdE8AKzhPADAzgCAsykCAMTOAIDIzgCAtvkCAMzOAIDQzgCAtfkCALrVAgC73QIA1M4AgNjOAIC+eQEAv3kBALzFAgC9eQEA3M4AgODOAICj5QIA5M4AgKU1AgDozgCA7M4AgKY1AgDwzgCA9M4AgKsRAgCqGQIArbUBAKwJAgCvtQEArrUBAOPwPgDhrD8A4UA+AON8PwD4zgCA/M4AgADPAIAEzwCAgA0AAIERAACCEQAACM8AgO+oPgAMzwCAEM8AgO8gPgCoLQUAqW0FAKplBQCrrQUArLUFAK29BQCutQUAr60FAKTOAICE6AMAvuADABTPAICGEAMAh5gDABjPAIAczwCAuGkGALlpBgC6AQYAuwEGALwFBgC9DQYAvjEGAL8xBgCw1QUAsd0FALLVBQCzaQYAtHkGALV5BgC2aQYAt2EGAKg5BgCpgQcAqpkHAKuRBwCsuQcArbkHAK7ZBwCv1QcAIM8AgCTPAIA0zgCAKM8AgCzPAIAwzwCANM8AgDjPAIC4VQcAuV0HALppBwC7aQcAvAEHAL0BBwC+AQcAvwEHALCtBwCxsQcAsrEHALOFBwC0nQcAtXUHALZ9BwC3cQcAsxEGADzPAIBAzwCARM8AgEjPAIC2OQYAtTEGAEzPAIC7dQYAumkGAFDPAIBUzwCAv7EGAL5ZBgC9UQYAvGUGAFjPAICjVQYAXM8AgGDPAICmfQYAZM8AgGjPAICldQYAqi0GAKsxBgBszwCAcM8AgK4dBgCv9QYArCEGAK0VBgCouQEAqbkBAKopAQCrKQEArD0BAK0lAQCuLQEAryUBAHTPAICCHQAAgR0AAIAdAAB4zwCAfM8AgIDPAIC+cAEAuIEAALmNAAC6hQAAu5kAALyJAAC9vQAAvrUAAL99AACwXQEAseEAALLhAACz4QAAtOEAALXpAAC20QAAt9EAAITIAgCzpQIAhzgDAIYoAgC2oQIAiM8AgIzPAIC1sQIAup0CALshAwC+bAMAkM8AgL4hAwC/KQMAvDEDAL0xAwCj4QIAlM8AgJjPAICczwCAoM8AgKblAgCl9QIApM8AgKtlAwCq2QIAqM8AgKzPAICvbQMArmUDAK11AwCsdQMAqZkAAKiRAACrzQAAqqEAAK3dAACs3QAAr8UAAK7NAAC+LA0AsM8AgLTPAIC4zwCAvM8AgMDPAIDEzwCAyM8AgLnBAQC4eQAAu8EBALrJAQC9wQEAvNkBAL/FAQC+xQEAsY0AALCNAACzQQAAskkAALVBAAC0WQAAt0EAALZJAADMzwCA0M8AgNTPAIDYzwCA3M8AgO9QBwDgzwCA5M8AgL74DwDjdAcA6M8AgOF8BACAGQAAgQkAAIJ5AADszwCA8M8AgLNpAQD4zwCAhMQCALYdAQD8zwCAANAAgLUVAQC6CQEAuwkBAIboDQCH6A0Avt0BAL/FAQC83QEAvdUBAATQAIAI0ACADNAAgBDQAIDv1AAAFNAAgBjQAIDvTAEA47ADAOG0BgDhgAEA45gBABzQAIAg0ACAJNAAgCjQAIAs0ACAMNAAgKPlAQCEwA0ApZkBADTQAIA40ACAppEBADzQAIBA0ACAq4UBAKqFAQCtWQEArFEBAK9JAQCuUQEA9M8AgETQAIBI0ACATNAAgFDQAIBU0ACAWNAAgFzQAICoaQ8AqXEPAKpxDwCrrQ8ArLUPAK29DwCutQ8Ar6kPALDZDwCx9Q8Asv0PALP1DwC07Q8AtZUPALadDwC3iQ8AuLkPALmFDwC6jQ8Au2kAALx5AAC9eQAAvmkAAL9pAACBnQAAgJ0AAGDQAICCBQAAZNAAgGjQAIBs0ACAcNAAgIaAAwCH9AMAdNAAgHjQAIB80ACAgNAAgITQAICEzwCAs5kPAIjQAICM0ACAkNAAgJTQAIC2XQ8AtV0PAJjQAIC7UQ8Aun0PAJzQAICg0ACAvzEPAL5JDwC9QQ8AvEkPAKNZDgCk0ACAqNAAgKzQAICw0ACApp0OAKWdDgC00ACAq5EOAKq9DgC40ACAvNAAgK/xDgCuiQ4ArYEOAKyJDgDA0ACAxNAAgMjQAIDM0ACAgBkAAIEZAACCBQAA0NAAgISgAQDU0ACAh+gBAIYABADY0ACA3NAAgODQAIDk0ACAqBUBAKkdAQCqFQEAqyUBAKw9AQCtJQEAri0BAK8lAQDo0ACA7NAAgPDQAID00ACA+NAAgPzQAIAA0QCABNEAgLjJAAC5yQAAutkAALvRAAC8+QAAvfkAAL6ZAAC/mQAAsCUBALEtAQCyJQEAsz0BALQtAQC1HQEAthUBALf5AAAI0QCADNEAgBDRAICzkQIAFNEAgLW5AgC2qQIAGNEAgBzRAIAg0QCAuu0CALvlAgC8/QIAveUCAL7lAgC/1QIApvECACTRAIAo0QCApeECACzRAICjyQIAMNEAgDTRAICuvQIAr40CAKylAgCtvQIAqrUCAKu9AgA40QCAPNEAgID5AACB+QAAggUAAEDRAIC+yAMAhBgDAEjRAIBM0QCAUNEAgFTRAIBY0QCAXNEAgGDRAIBk0QCAhhgEAIecAwBo0QCAbNEAgHDRAIB00QCAeNEAgHzRAIDvsAIAgNEAgOGUAQCE0QCA42wCAIjRAICM0QCAkNEAgJTRAICY0QCA79APAJzRAICg0QCApNEAgKjRAIDhrAEArNEAgONsAACAMQAAgT0AAIIdAADv9A4A42wOALDRAIDhLA8AvnAFALM5AgCEDAUAhugEAIdgBQDcAAAAtvECALX5AgC40QCAu9UCALrVAgC80QCAwNEAgL91AQC+dQEAvcUCALzFAgDE0QCA4fQOAMjRAIDjUA4AzNEAgNDRAIDU0QCA2NEAgNzRAIDg0QCA5NEAgOjRAIDs0QCA8NEAgPTRAIDv5A8ApmUCAPjRAID80QCApW0CAADSAICjrQIABNIAgAjSAICu4QEAr+EBAKxRAgCtUQIAqkECAKtBAgAM0gCAENIAgKiZBgCpmQYAqqkGAKupBgCsuQYArbkGAK6pBgCvqQYAFNIAgIIdAACBHQAAgB0AABjSAIAc0gCAINIAgL50AwC4rQYAubUGALq9BgC7tQYAvK0GAL1RBwC+UQcAv1EHALChBgCxoQYAsqEGALOhBgC0oQYAtaEGALalBgC3mQYARNEAgLMlBgCExAMAtNEAgLY9BgAk0gCAKNIAgLU1BgC6YQYAu2EGAIYIAACHiAAAvmEGAL9hBgC8cQYAvXEGAKNhBgAs0gCAMNIAgDTSAIA40gCApnkGAKVxBgA80gCAqyUGAKolBgBA0gCARNIAgK8lBgCuJQYArTUGAKw1BgCoXQYAqW0GAKplBgCrjQYArJkGAK2FBgCujQYAr4UGAEjSAIBM0gCAUNIAgFTSAIBY0gCAXNIAgGDSAIBk0gCAuIUGALmNBgC6mQYAu5UGALyNBgC9rQYAvqUGAL99AQCw/QYAscUGALLNBgCzxQYAtN0GALXFBgC2zQYAt8UGALPtBgBo0gCAbNIAgHDSAIB00gCAtgUGALURBgB40gCAuwEGALo5BgB80gCAgNIAgL8BBgC+GQYAvREGALwZBgCE0gCAo6kGAIjSAICM0gCApkEGAJDSAICElAEApVUGAKp9BgCrRQYAvqABAJjSAICuXQYAr0UGAKxdBgCtVQYAqJkCAKnBAgCqwQIAq8ECAKzBAgCtyQIArvECAK/xAgCB7QMAgO0DAJzSAICC+QMAhpAcAId0AwCg0gCApNIAgLjFAwC5zQMAusUDALvdAwC8zQMAvf0DAL71AwC/nQMAsEEDALFBAwCyQQMAs0EDALRBAwC1QQMAtkEDALdBAwCzSQIAqNIAgKzSAICw0gCAtNIAgLZJAgC1SQIAuNIAgLuFAwC6hQMAvNIAgMDSAIC/hQMAvoUDAL2VAwC8lQMAxNIAgKMNAgDI0gCAzNIAgKYNAgDQ0gCA1NIAgKUNAgCqwQMAq8EDANjSAIDc0gCArsEDAK/BAwCs0QMArdEDAOOYAQDhpAcA4VgGAONYBgDhoAEA4NIAgOPQAADk0gCA6NIAgOzSAIDvOAAA8NIAgO/0AQD00gCA+NIAgO/4BgCAeQAAgRUAAIIdAACEAB0A/NIAgADTAIC+EB0ACNMAgIbAHACHrB0ADNMAgBDTAIAU0wCAGNMAgBzTAIAg0wCAu8UFALqhBQC5qQUAuJEFAL/NBQC+zQUAvckFALzVBQCzHQYAsh0GALEdBgCwHQYAt6EFALa9BQC1vQUAtL0FAKu9BgCqvQYAqb0GAKi9BgCvfQYArn0GAK19BgCsfQYAJNMAgCjTAIAs0wCAMNMAgDTTAIA40wCAPNMAgEDTAICo7R0AqS0eAKoxHgCrMR4ArJUeAK2dHgCulR4Ar40eAATTAIBE0wCASNMAgEzTAIBQ0wCAVNMAgFjTAIBc0wCAuKkeALmpHgC6XR8Au1EfALxxHwC9cR8AvnUfAL9pHwCw/R4Asc0eALLFHgCzrR4AtLkeALW5HgC2rR4At6UeALO5HgBg0wCAZNMAgGjTAICU0gCAth0eALUdHgBs0wCAuwkeALo5HgBw0wCAhOADAL99HgC+fR4AvXkeALwRHgCCaQAAo/0eAIBFAACBUQAAplkeAL6cAwB00wCApVkeAKp9HgCrTR4AhkgAAIdsAACuOR4ArzkeAKxVHgCtPR4AqF0eAKltHgCqZR4Aq30eAKxlHgCtbR4ArmUeAK/9HgB40wCAfNMAgIDTAICE0wCAiNMAgIzTAICQ0wCAlNMAgLhpAQC5aQEAunkBALt5AQC8aQEAvWkBAL7dAQC/1QEAsIUeALGNHgCyhR4As50eALSFHgC1jR4AtoUeALdZAQCz7R4AmNMAgJzTAICg0wCApNMAgLbtHgC17R4AqNMAgLtJHgC6QR4ArNMAgLDTAIC/SR4AvkEeAL1JHgC8UR4AtNMAgKOpHgC40wCAvNMAgKapHgDA0wCAxNMAgKWpHgCqBR4Aqw0eAMjTAIDM0wCArgUeAK8NHgCsFR4ArQ0eAKghAwCpIQMAqiEDAKshAwCsIQMArSEDAK4hAwCvIQMA0NMAgNTTAIDY0wCAvmACANzTAIDg0wCA6NMAgOzTAIC4iQMAuYkDALqdAwC7lQMAvLkDAL25AwC+eQAAv3kAALDlAwCx7QMAsuUDALP9AwC07QMAtd0DALbVAwC3vQMAgKkAAIG1AACCvQAAs6UDAPDTAIC1pQMAtq0DAPTTAICE4AIA+NMAgLotAwC7JQMAvD0DAL0lAwC+JQMAvxUDAKPpAwD80wCAhmgEAIeAAwAA1ACApuEDAKXpAwAE1ACAq2kDAKphAwAI1ACADNQAgK9ZAwCuaQMArWkDAKxxAwAQ1ACAFNQAgBjUAIAc1ACAINQAgOE8HwAk1ACA40AeACjUAIAs1ACAMNQAgO+MHgA01ACAONQAgDzUAIBA1ACARNQAgIIlAACBEQAAgB0AAEjUAIDj5AMATNQAgOGsAQBQ1ACA77ADAIRkAgC+YAUAhtAEAIdEBQBY1ACAXNQAgGDUAIBk1ACAaNQAgGzUAIBw1ACAdNQAgHjUAIDvsAEAhKQFAOHcHgB81ACA4xABAIDUAICE1ACAiNQAgIzUAICzUQEAkNQAgJTUAICY1ACAnNQAgLYRAQC1fQEAoNQAgLsNAQC6DQEApNQAgKjUAIC//QAAvv0AAL39AAC8/QAAqDkGAKk5BgCqmQYAq5EGAKy1BgCt0QYArskGAK/BBgBU1ACArNQAgLDUAIC01ACAgA0AAIGxAACCsQAAuNQAgLhhBwC5YQcAumEHALt9BwC8ZQcAvW0HAL5lBwC/HQcAsIkGALGJBgCyaQcAs2kHALR5BwC1eQcAtmkHALdlBwCjEQYAvNQAgMDUAIC+gAMAxNQAgKZRBgClPQYAyNQAgKtNBgCqTQYAhggAAId8AwCvvQcArr0HAK29BwCsvQcAzNQAgNDUAICzSQcA1NQAgLVZBwDY1ACA3NQAgLZRBwDg1ACA5NMAgLtBBwC6dQcAvUUHALxFBwC/RQcAvkUHAKh5BgCpeQYAqokGAKuJBgCsmQYArZkGAK6JBgCviQYA5NQAgOjUAIDs1ACA8NQAgPTUAID41ACA/NQAgADVAIC4jQYAuZUGALqVBgC7pQYAvL0GAL1xAQC+cQEAv3EBALD5BgCxzQYAstkGALPZBgC0yQYAtckGALa9BgC3tQYAowEGAATVAIAI1QCADNUAgBDVAICmGQYApREGABTVAICrCQYAqj0GABjVAIAc1QCArw0GAK4NBgCtDQYArA0GACDVAIAk1QCAKNUAgCzVAICAGQAAgRkAAIIFAAAw1QCAhKwBAL6sAQCH6AAAhkwPADjVAIA81QCAQNUAgETVAIConQIAqcUCAKrNAgCrwQIArMUCAK3NAgCu+QIArz0DAEjVAIBM1QCAUNUAgFTVAIC+PAwAWNUAgFzVAIBg1QCAuMkDALnJAwC62QMAu9EDALz5AwC9+QMAvpkDAL+ZAwCwRQMAsU0DALJFAwCzXQMAtEUDALVNAwC2RQMAt/kDALNFAgBk1QCAaNUAgGzVAIBw1QCAtk0CALVNAgB01QCAu4kDALqBAwB41QCAfNUAgL+JAwC+gQMAvYkDALyRAwCA1QCAowECAITVAICI1QCApgkCAIzVAICQ1QCApQkCAKrFAwCrzQMAlNUAgJjVAICuxQMAr80DAKzVAwCtzQMAgO0BAIEVAACCEQAAhAACAJzVAIDhpAEAoNUAgOPsAACo1QCArNUAgLDVAIDvMAAAtNUAgLjVAIC81QCAwNUAgIbgDACH9AIAxNUAgMjVAIDM1QCA0NUAgO/MBgDU1QCA4bAHANjVAIDjEAYA3NUAgODVAIDk1QCA6NUAgOzVAIDw1QCA9NUAgPjVAID81QCAANYAgATWAIAI1gCA7+gBAIUYDwDhzAYADNYAgOMcBgCAKQAAgR0AAIIFAAAQ1gCAszkCAITMDQCGaA8Ah/wMAOHQ0gO28QEAtfkBABjWAIC72QEAutEBAL7kDAAc1gCAv30BAL59AQC9fQEAvMEBAKjxDQCp8Q0AqvENAKvxDQCsMQ4ArTEOAK4xDgCvMQ4ApNUAgBTWAIAg1gCAJNYAgCjWAIAs1gCAMNYAgDTWAIC46Q4AuekOALqJDgC7hQ4AvJ0OAL2BDgC+gQ4Av7UOALBVDgCxXQ4AslUOALPpDgC0+Q4AtfkOALbpDgC34Q4Ao3kNADjWAIA81gCAQNYAgETWAICmsQ4ApbkOAEjWAICrmQ4AqpEOAEzWAIBQ1gCArz0OAK49DgCtPQ4ArIEOAFTWAICz7Q8AWNYAgFzWAIC26Q8AYNYAgGTWAIC16Q8Auq0PALu1DwA01QCAaNYAgL6VDwC/mQ8AvK0PAL2hDwCoIQ4AqSEOAKohDgCrPQ4ArCUOAK0tDgCuJQ4Ar1UOAGzWAIBw1gCAdNYAgHjWAICAHQAAgQkAAIK9AAB81gCAuDkOALk5DgC6yQ4Au8kOALzZDgC92Q4AvskOAL/JDgCwLQ4AsTUOALI9DgCzMQ4AtBUOALUZDgC2CQ4AtwkOAKOpDgCA1gCAhIACAL6AAQCFAAQApq0OAKWtDgCI1gCAq/EOAKrpDgCGKAcAhxgAAK/dDgCu0Q4AreUOAKzpDgCM1gCAs+0BAJDWAICU1gCAtuUBAJjWAICc1gCAte0BALplAQC7bQEAoNYAgKTWAIC+bQEAv10BALx1AQC9bQEAqN0NAKnpDQCqIQIAqyECAKwhAgCtIQIAriECAK8hAgCo1gCArNYAgLDWAIC01gCAohECAKMRAgCgqQ4AodUCALiJAgC5iQIAup0CALuVAgC8vQIAvXUDAL59AwC/dQMAsOUCALHtAgCy5QIAs/0CALTtAgC13QIAttUCALe9AgCjqQIAj8UaALjWAIC81gCAwNYAgKahAgClqQIAxNYAgKspAgCqIQIAyNYAgMzWAICvGQIArikCAK0pAgCsMQIAniUOAJ/lDgCc6QoAnRUKAJpFFgCbRQoAmFkWAJlRFgCWcRIAl4ETAJRVEgCV7RIAktEeAJPZHgCQtRoAkVUeAISpHwCFJR8AhiUfAIexEwDQ1gCA1NYAgIJZGwCDURsAjEUSAI2lFwCOpRcAj7kXAIA5+wHY1gCAijkTAIutEwCUmQsAlaEPAJZpDwCX3Q8A3NYAgO+cDwCSyQsAk30LAJxFAwDjeA4A4NYAgOGYDADk1gCAhHgCAJqRAwCbXQMA4QQAAL6IBQDj3OoD6NYAgOzWAIDw1gCA7+wAAO+MDgDhcA4A4fwOAOMwAADjeA4AgSEAAIA5AADvtO0DgikAALMJAgD41gCAhmgEAIcsBQD81gCAtg0CALUNAgAA1wCAu8UBALrFAQAE1wCACNcAgL99AQC+fQEAvdUBALzVAQCE1gCA9NYAgAzXAIAQ1wCAFNcAgBjXAIAc1wCAINcAgKi9BQCp5QUAquEFAKvhBQCs5QUAre0FAK7RBQCv0QUAsGEGALFhBgCyYQYAs2EGALTZBgC12QYAtskGALfBBgC4yQYAuckGALp5BwC7eQcAvEUHAL0lBwC+EQcAvw0HAKNJBQAk1wCAKNcAgCzXAIAw1wCApk0FAKVNBQA01wCAq4UGAKqFBgA41wCAPNcAgK89BgCuPQYArZUGAKyVBgBA1wCARNcAgEjXAIBM1wCAUNcAgFTXAIBY1wCAXNcAgIA5AACBOQAAggUAAGDXAIC+uAMAhLgDAGjXAIBs1wCAqMUGAKnVBgCq1QYAq+UGAKz9BgCtHQEArhUBAK8NAQBk1wCAcNcAgIaIAQCHHAEAdNcAgHjXAIB81wCAgNcAgLjpAQC56QEAuokBALuJAQC8mQEAvZkBAL6JAQC/iQEAsHUBALF9AQCydQEAs+kBALT5AQC1+QEAtukBALfhAQCzXQYAhNcAgIjXAICM1wCAhLwBALadAQC1dQYAkNcAgLu5AQC6sQEAlNcAgJjXAIC/PQEAvj0BAL09AQC8oQEAnNcAgKMZBgCg1wCApNcAgKbZAQCo1wCArNcAgKUxBgCq9QEAq/0BALDXAIC01wCArnkBAK95AQCs5QEArXkBAKj5AgCp+QIAqi0DAKs9AwCsJQMArS0DAK4lAwCvmQMAuNcAgLzXAIDA1wCAxNcAgIANAACBsQAAgrEAAMjXAIC4lQMAuZ0DALqhAwC7oQMAvHEAAL1xAAC+cQAAv3EAALDpAwCx6QMAsvUDALPFAwC03QMAtbUDALaxAwC3sQMAvswDAMzXAIDQ1wCA2NcAgNzXAIDg1wCA5NcAgO/kAgDo1wCA4ZQBAOzXAIDjLAEA8NcAgPTXAICHGAMAhhz8A7tNAwC6TQMA+NcAgPzXAIC/EQMAvnkDAL1xAwC8QQMAs8UDAITo/AMA2ACABNgAgAjYAIC2zQMAtc0DAAzYAICkAfwDpSX/A6bZ/wOnAfgDENgAgKEVAwCiHQMAoz0CAKwR9wOtAfADri3zA68B8wOoEfsDqZn7A6oB9AOrHfcDtAHoA7Vl6wO+xPwDhMT8A7AB7AOxVe8Dsk3vA7Nx7gMU2ACAGNgAgBzYAIAg2ACAJNgAgCjYAIAs2ACAMNgAgOFQBgDhNAQA42wBAOPoBgA02ACAONgAgDzYAIBA2ACAgDUAAIE9AACCNQAASNgAgEzYAIBQ2ACA77ABAO/ABgCj5QIAVNgAgIbo/AOHfP0DWNgAgKbtAgCl7QIAXNgAgKttAgCqbQIAYNgAgGTYAICvMQIArlkCAK1RAgCsYQIAqI3+A6mV/gOqnf4Dq5X+A6yx/gOtvf4Drqn+A6+p/gNE2ACAaNgAgGzYAIBw2ACAdNgAgHjYAIB82ACAgNgAgLgl/wO5Lf8DuiX/A7s9/wO8Jf8DvS3/A74l/wO/zf8DsKn+A7Gp/gOygf4Ds4H+A7SB/gO1if4Dtmn/A7cd/wOE2ACA4SD8A4jYAIDjePwDjNgAgJDYAICU2ACAmNgAgJzYAICg2ACApNgAgKjYAICAHQAAgXEAAIJxAADvDP0Ds1X+A6zYAICw2ACAvkAAALTYAIC2ff4DtXn+A7jYAIC7Lf4Dui3+A4boAACHrAAAvw3+A74F/gO9Ff4DvBX+A6OV/wO82ACAwNgAgMTYAIDI2ACApr3/A6W5/wPM2ACAq+3/A6rt/wPQ2ACA1NgAgK/N/wOuxf8DrdX/A6zV/wPY2ACAs/H+A9zYAIDg2ACAto3+A+TYAIDo2ACAtY3+A7pFAQC7TQEA7NgAgPDYAIC+RQEAv00BALxVAQC9TQEAqC3+A6k1/gOqPf4Dq0n+A6xB/gOtSf4DrnH+A69x/gP02ACA+NgAgPzYAIAA2QCABNkAgAjZAIAM2QCAENkAgLhJAQC5VQEAul0BALtVAQC8TQEAvXUBAL59AQC/dQEAsMUBALHNAQCyxQEAs90BALTFAQC1zQEAtsUBALd9AQCjtf0DFNkAgBjZAICExAMAHNkAgKbJ/QOlyf0DINkAgKsJAgCqAQIAKNkAgL7sAgCvCQIArgECAK0JAgCsEQIAgEkAAIFVAACCVQAAo0UDACzZAIClRQMApkUDADDZAICGwAQAhxQDAKopAwCrJQMArD0DAK0hAwCuIQMArxUDADTZAIA42QCAPNkAgEDZAIBE2QCASNkAgEzZAIBQ2QCAqH0CAKmhAwCqoQMAq6EDAKyhAwCtqQMArpEDAK+RAwCwgQMAsY0DALKFAwCzmQMAtIkDALW9AwC2tQMAt30DALhFAwC5TQMAukUDALtdAwC8RQMAvU0DAL5FAwC/+QAA1NcAgLMNAgBU2QCAWNkAgLYNAgBc2QCAYNkAgLUNAgC6YQIAu20CAGTZAIBo2QCAvmkCAL9dAgC8dQIAvWkCAGzZAIBw2QCAdNkAgHjZAIB82QCA4aQBAIDZAIDjQAMAhNkAgIjZAICM2QCA77gDAIAVAACBHQAAggUAAJDZAICEgAIAvsgFAIcYBQCGLAQAmNkAgJzZAICg2QCA76gBAKTZAIDhdP4DqNkAgOPw/gOs2QCAsNkAgLTZAIC42QCAvNkAgMDZAIDE2QCAs5EBAMjZAIC1UQEAtlEBAMzZAIDQ2QCA1NkAgLp9AQC7dQEAvG0BAL39AAC+9QAAv+kAAKgpBgCpVQYAqlUGAKuNBgCslQYArZ0GAK6VBgCvjQYAlNkAgNjZAIDc2QCA4NkAgOTZAIDo2QCA7NkAgPDZAIC4bQcAuQUHALoNBwC7BQcAvB0HAL0FBwC+AQcAvz0HALD1BgCx/QYAsvUGALNlBwC0fQcAtWEHALZhBwC3VQcA4xAFAPTZAIDh8AQA+NkAgIAdAACBCQAAgjkAAPzZAIAA2gCAhOgDAL7gAwAE2gCA78wFAAjaAICHOAAAhhgAAKOdBgAM2gCAENoAgBTaAIAY2gCApl0GAKVdBgAc2gCAq3kGAKpxBgAg2gCAJNoAgK/lBwCu+QcArfEHAKxhBgCokQYAqZEGAKqRBgCrrQYArLkGAK2lBgCurQYAr6UGACjaAIAs2gCAMNoAgDTaAIA42gCAPNoAgEDaAIBE2gCAuGUBALltAQC6ZQEAu30BALxlAQC9bQEAvmUBAL/ZAQCw3QYAsaUGALKtBgCzpQYAtKEGALWpBgC2mQYAt5kGALMZBgBI2gCATNoAgFDaAIBU2gCAtiUGALUxBgBY2gCAu2EGALoZBgBc2gCAYNoAgL9tBgC+ZQYAvXEGALx5BgBk2gCAo10GAGjaAIBs2gCApmEGAHDaAICEmAEApXUGAKpdBgCrJQYAvqQBAHjaAICuIQYArykGAKw9BgCtNQYAqcUCAKixAgCrxQIAqsUCAK3NAgCsxQIAr/UCAK71AgB82gCAgNoAgITaAICI2gCAjNoAgJDaAICU2gCAmNoAgLnJAwC4wQMAu9kDALrBAwC9+QMAvMkDAL+ZAwC+8QMAsUUDALBFAwCzRQMAskUDALVFAwC0RQMAt0UDALZFAwCASQMAgUkDAIJdAwCzRQIAvtwMALVFAgC2RQIAnNoAgIYADACH5AMAuokDALuJAwC8mQMAvZkDAL6JAwC/iQMAowkCAKDaAICk2gCAqNoAgKzaAICmCQIApQkCALDaAICrxQMAqsUDALTaAIC42gCAr8UDAK7FAwCt1QMArNUDALzaAIDA2gCAxNoAgCTZAIDvAAAAyNoAgMzaAIDQ2gCA4+gAANTaAIDhjAEA2NoAgNzaAIDg2gCA6NoAgOzaAICAbQAAgXUAAIJ9AACEQAIAhvAMAId4DQDw2gCA9NoAgPjaAID82gCAANsAgATbAIAI2wCADNsAgBDbAIAU2wCAGNsAgBzbAIAg2wCAJNsAgCjbAIAs2wCAMNsAgO/MAQCE7AwA4TAGADTbAIDjGAEAONsAgDzbAIBA2wCARNsAgLPlAQBI2wCAhIQPAEzbAIBQ2wCAtuUBALX1AQBY2wCAu30BALrZAQC+oAwAXNsAgL8hAQC+OQEAvTEBALw5AQCo7Q0AqSUOAKotDgCrJQ4ArD0OAK0lDgCuLQ4AryUOAOTaAICC9Q8AgeUPAIDpDwBU2wCAYNsAgIaYAACHDAMAuK0OALlFDwC6TQ8Au0UPALxFDwC9TQ8AvkUPAL95DwCwXQ4AsfkOALKtDgCzpQ4AtL0OALWlDgC2pQ4At5UOAGTbAIDv7AwAaNsAgGzbAIBw2wCAdNsAgHjbAIB82wCAvugAAIDbAICE2wCAiNsAgIzbAIDj6A0AkNsAgOEEDACj5Q4AlNsAgJjbAICc2wCAoNsAgKblDgCl9Q4ApNsAgKt9DgCq2Q4AqNsAgKzbAICvIQ4ArjkOAK0xDgCsOQ4AqDkOAKk5DgCqUQ4Aq1EOAKxxDgCtcQ4ArnEOAK9xDgCw2wCAtNsAgLjbAIC82wCAgBkAAIEZAACCBQAAwNsAgLjRDgC50Q4AutEOALvlDgC84Q4AveEOAL7hDgC/4Q4AsBEOALERDgCyEQ4AsxEOALTxDgC18Q4AtvEOALfxDgCz2Q4AyNsAgIYoAACHuAAAzNsAgLbxDgC1+Q4A0NsAgLvVDgC61Q4A1NsAgNjbAIC/NQ4AvjUOAL3FDgC8xQ4A3NsAgKOdDgDg2wCA5NsAgKa1DgDo2wCA7NsAgKW9DgCqkQ4Aq5EOAPDbAID02wCArnEOAK9xDgCsgQ4ArYEOAKjdDQCp6Q0Aqj0CAKuNAgCsmQIArZkCAK6JAgCviQIAvqwEAPjbAID82wCAhCADAADcAIAE3ACACNwAgAzcAIC4iQIAuYkCALqZAgC7kQIAvLkCAL25AgC+eQMAv3kDALD5AgCx+QIAss0CALPFAgC03QIAtcUCALbBAgC3uQIAs7UCABDcAIAU3ACAGNwAgBzcAIC2GQIAtRECACDcAIC7PQIAuj0CACTcAIAo3ACAvwECAL4ZAgC9EQIAvBkCACzcAICj8QIAMNwAgDjcAICmXQIAPNwAgEDcAIClVQIAqnkCAKt5AgCGSAUAh6wEAK5dAgCvRQIArF0CAK1VAgCohQIAqZUCAKqVAgCrpQIArL0CAK3VAgCu0QIAr9ECAETcAIBI3ACATNwAgFDcAICB8QEAgJkBAHTaAICC9QEAuHkBALl5AQC6zQEAu8UBALzdAQC9xQEAvsUBAL/1AQCwtQIAsb0CALKBAgCzgQIAtFUBALVdAQC2SQEAt0kBAFTcAIBY3ACAXNwAgO/UAQCEEAUAYNwAgGTcAIDvjA4AvuwFAOHsDgBo3ACA4xwOAGzcAIDhlAEAcNwAgONkDgCzXQIAdNwAgHjcAIB83ACAgNwAgLYVAgC1dQIAhNwAgLs5AgC6MQIAiNwAgIzcAIC/2QEAvtEBAL0VAgC8FQIAo50FADTcAICQ3ACAlNwAgJjcAICm1QUApbUFAJzcAICr+QUAqvEFAKDcAICk3ACArxkGAK4RBgCt1QUArNUFAIBRAACBWQAAgmEAALOVBgCo3ACAtXEHALZxBwCs3ACAhkADAIdUAwC67QcAu+UHALzlBwC97QcAvtEHAL/NBwCw3ACAtNwAgLjcAIC83ACAwNwAgMTcAIDvQAQAyNwAgOEwBwDM3ACA45QEANDcAIDU3ACA2NwAgNzcAIDg3ACAoxkGAOTcAIDo3ACA7NwAgPDcAICm/QcApf0HAPTcAICraQcAqmEHAPjcAID83ACAr0EHAK5dBwCtYQcArGkHAKjNBwCp0QcAqtEHAKstBgCsNQYArT0GAK41BgCvnQYAAN0AgATdAIAI3QCADN0AgIAZAACBGQAAggUAABDdAIC4iQYAuYkGALqZBgC7kQYAvLkGAL25BgC+UQEAv1EBALDlBgCx7QYAsv0GALP1BgC02QYAtcUGALbBBgC3uQYAqNEBAKnZAQCqCQEAqwkBAKwZAQCtGQEArgkBAK8JAQCEYAEAvnwBAIeoAACGjAEAGN0AgBzdAIAg3QCAJN0AgLgJAQC5CQEAuhkBALsRAQC8OQEAvTkBAL75AAC/+QAAsH0BALFBAQCyRQEAs10BALRFAQC1TQEAtkUBALc5AQAo3QCALN0AgDDdAICzjQIANN0AgLWdAgC2lQIAON0AgDzdAIBA3QCAurUCALuJAgC8nQIAvYUCAL6NAgC/hQIAps0CAETdAIBI3QCApcUCAEzdAICj1QIAUN0AgFTdAICu1QIAr90CAKzFAgCt3QIAqu0CAKvRAgCE9AMAWN0AgKgxAwCpMQMAqjEDAKsxAwCskQAArZEAAK6RAACvjQAAXN0AgGDdAIBk3QCAaN0AgGzdAIBw3QCAdN0AgHjdAIC4vQAAuWUAALptAAC7ZQAAvH0AAL1lAAC+bQAAv2UAALD9AACxxQAAss0AALOpAAC0uQAAtaUAALahAAC3oQAAgL0BAIEJAACCGQAAfN0AgIDdAIC+WAIAhxQdAIacHQCEbB0AxNsAgIjdAICM3QCAvrwcAJDdAICU3QCAmN0AgLP5AgCc3QCAoN0AgKTdAICo3QCAtlEBALVZAQC+3B8Au0EBALp5AQCs3QCAsN0AgL8hAQC+PQEAvT0BALxZAQDhcAcAtN0AgOMIBgC43QCA78wAALzdAIDA3QCAxN0AgOMQAADI3QCA4dABAMzdAICGkBwAh/QcAO/gBgDQ3QCAo3kCANTdAIDY3QCA3N0AgODdAICm0QEApdkBAOTdAICrwQEAqvkBAOjdAIDs3QCAr6EBAK69AQCtvQEArNkBAITdAICCFQAAgeUfAIDlHwDw3QCA9N0AgPjdAID83QCAqAkfAKkJHwCqHR8AqxUfAKwNHwCtcR8ArnEfAK9xHwCwER8AsS0fALIlHwCzyR8AtN0fALXBHwC2wR8At8EfALjFHwC5yR8AutUfALupHwC8uR8AvbkfAL6pHwC/oR8As7UfAADeAIAE3gCACN4AgAzeAIC20R8AtaUfABDeAIC7yR8AuvUfABTeAIAY3gCAvyUfAL45HwC9PR8AvNEfABzeAIAg3gCAJN4AgCjeAIAs3gCA4WAfADDeAIDjtBwANN4AgDjeAIA83gCA7wAdAEDeAIBE3gCASN4AgEzeAICjNR4AUN4AgFTeAIBY3gCAXN4AgKZRHgClJR4AYN4AgKtJHgCqdR4AhKgCAGTeAICvpR4ArrkeAK29HgCsUR4AgE0AAIFVAACCVQAAs8kBAGjeAIC12QEAtskBAGzeAICGoAAAhwQBALrFAQC7rQEAvLUBAL29AQC+tQEAv60BAKiZAQCpmQEAqg0BAKsFAQCsHQEArQUBAK4FAQCvNQEAcN4AgHTeAIB43gCAfN4AgIDeAICE3gCAiN4AgIzeAIC4JQEAuS0BALo5AQC7OQEAvCkBAL0pAQC+3QAAv9UAALBNAQCxJQEAsi0BALMlAQC0PQEAtSUBALYhAQC3HQEAkN4AgJTeAICY3gCAo4kCAJzeAIClmQIApokCAKDeAICk3gCAqN4AgKqFAgCr7QIArPUCAK39AgCu9QIAr+0CAKzeAICw3gCAtN4AgIRAAgC43gCAvN4AgMDeAIDE3gCAgA0AAIEVAACCHQAAyN4AgMzeAIDQ3gCAh7QDAIbcBAC+zAMA2N4AgNzeAIDg3gCA7+gCAOTeAIDo3gCA7N4AgOP8AgDw3gCA4dABAPTeAID43gCA/N4AgADfAIAE3wCAs2EDAAjfAIAM3wCAEN8AgBTfAIC2eQMAtXEDABjfAIC7XQMAul0DABzfAIAg3wCAv+EAAL79AAC9/QAAvP0AALC5AgCxuQIAsgkBALMJAQC0GQEAtQUBALYFAQC3PQEAuAUBALllAQC6bQEAu2UBALxhAQC9YQEAvmEBAL9hAQCFXAcAJN8AgCjfAIAs3wCAFN0AgDDfAIA03wCAON8AgKgxAgCpOQIAqskCAKvJAgCs2QIArdkCAK7JAgCvyQIAhMwFAOGAHgA83wCA47weAOE4HgBA3wCA46AAAL4QBABI3wCATN8AgO8MHgBQ3wCAVN8AgFjfAIBc3wCA73QeAKNhAgCCUQAAgUEAAICRAABg3wCApnkCAKVxAgBk3wCAq10CAKpdAgCGyAQAhzwFAK/hAQCu/QEArf0BAKz9AQCohQYAqY0GAKqFBgCrmQYArIkGAK2JBgCuvQYAr7EGAETfAIBo3wCAbN8AgHDfAIB03wCAeN8AgHzfAICA3wCAuJ0GALmtBgC6pQYAuwkHALwZBwC9GQcAvg0HAL8FBwCw0QYAsdEGALLRBgCz0QYAtLUGALW9BgC2tQYAt60GALMNBgCE3wCAiN8AgIzfAICQ3wCAtgkGALUBBgCU3wCAuxUGALoVBgCY3wCAnN8AgL95BgC+cQYAvQUGALwFBgCg3wCA4aAEAKTfAIDjXAUAgA0AAIE1AACCPQAAqN8AgKzfAICw3wCAhGADAL5sAAC/8AEAhZAAALTfAIDvmAUAo40HAIQIAACGAAwAh4wAALjfAICmiQcApYEHALzfAICrlQcAqpUHAMDfAIDE3wCAr/kHAK7xBwCthQcArIUHAMjfAICz6QYAzN8AgNDfAIC26QYA1N8AgNjfAIC16QYAukUBALtNAQDc3wCA4N8AgL5FAQC/TQEAvFUBAL1NAQCoIQYAqSEGAKolBgCrPQYArCUGAK0tBgCuSQYAr0EGAOTfAIDo3wCA7N8AgPDfAID03wCA+N8AgPzfAIAA4ACAuEkBALlJAQC6WQEAu1EBALx5AQC9eQEAvhkBAL8VAQCwxQEAsc0BALLFAQCz3QEAtMUBALXNAQC2xQEAt3kBAATgAIAI4ACADOAAgKOhBQAQ4ACApaEFAKahBQAU4ACAjyHqAxjgAICqDQIAqwUCAKwdAgCtBQIArg0CAK8FAgCX7RIAlmUSAJVFEQCUnRYAk3EWAJJVFQCReesDkFnqA59hBgCeNQUAnUUaAJxpGgCbVRkAmkUeAJlZHgCYRR0A4WAAABzgAIDjTD4AIOAAgKOxAgCi1QEAobUHAKCJBgCxATgAsAk+ALOVOgCyjToAtbUmALQBJADvaDoAvjAMAKnJNgCowTYAqwEwAKrhNwCtzTMArPUyAK/5PgCuATwAoRkCACjgAICjbQ4Aom0OAKX1CgCkAQgAp4ULAKaZCgCGAA0Ah0QNAIIJ6wODCesDhDHqA4UVFACGORcAh80XAISgDQAs4ACAiiUQAIsNEwCMnRMAjQ0cAI4ZHwCPDR8A1N4AgO8AAwCSbRgAk0kbAJR9GwCVBQQAllkHAJdJBwAw4ACANOAAgJpFBgCbLQAAnFEDAONgAAA44ACA4WwAAIClAQCBAQEAggUBAL4ADAA84ACAQOAAgETgAIDviAEASOAAgOFUBgBM4ACA41QBAFDgAIBU4ACAWOAAgFzgAICz6QIAYOAAgGTgAIBo4ACAbOAAgLadAgC1mQIAcOAAgLuJAgC6vQIAdOAAgHjgAIC/WQIAvlECAL1ZAgC8kQIAoykNAHzgAICA4ACAhOAAgIjgAICmXQ0ApVkNAIzgAICrSQ0Aqn0NAJDgAICY4ACAr5kNAK6RDQCtmQ0ArFENAIBRAACBWQAAgmEAALMtDwCc4ACAtS0PALbJDwCg4ACAhkADAIcIAwC6yQ8Au8UPALzBDwC9wQ8AvsEPAL/BDwAk4ACAlOAAgKTgAICo4ACArOAAgLDgAIC04ACAuOAAgKhFDgCpgQ8AqskPAKvJDwCsyQ8ArSUPAK4tDwCvJQ8AsGEPALFtDwCyeQ8As3kPALRpDwC1aQ8Ath0PALcVDwC4LQ8AuTUPALo1DwC7BQ8AvB0PAL3xAAC+8QAAv/EAAKNhDgC84ACAhMQBAMDgAIDE4ACApoUOAKVhDgDI4ACAq4kOAKqFDgDM4ACA0OAAgK+NDgCujQ4ArY0OAKyNDgDU4ACA2OAAgNzgAIDg4ACA5OAAgOjgAIDs4ACA8OAAgPTgAICCHQAAgR0AAIAdAAD44ACA/OAAgADhAIC+tAEAqK0BAKnVAQCq1QEAqwUBAKwdAQCtBQEArg0BAK8FAQCGgAEAhxgBAAjhAIAM4QCAEOEAgBThAIAY4QCAHOEAgLiFAAC5jQAAuoUAALudAAC8hQAAvY0AAL6FAAC/vQAAsH0BALHhAACy5QAAs/0AALTtAAC13QAAttUAALe9AACzXQIAIOEAgCThAIAo4QCALOEAgLaFAgC1lQIAMOEAgLslAwC6uQIANOEAgDjhAIC/GQMAvikDAL0pAwC8MQMAvswEAKMZAgA84QCAQOEAgKbBAgBE4QCASOEAgKXRAgCq/QIAq2EDAEzhAIBQ4QCArm0DAK9dAwCsdQMArW0DAKgpAwCpKQMAqjkDAKs5AwCsKQMArSkDAK6dAACvlQAAVOEAgFjhAIBc4QCAYOEAgGThAICCqQEAga0BAICtAQC4mQAAua0AALqlAAC7bQAAvHUAAL19AAC+dQAAv20AALDtAACx9QAAsvUAALPFAAC03QAAtb0AALa1AAC3qQAA4XgBAOEcDgDjEAAA4zwOAGjhAIBs4QCAvhQEAHDhAICErAIAeOEAgId4BQCGDAUAfOEAgIDhAIDvvAAA70gOALPxAgCE4QCAiOEAgIzhAICQ4QCAtukCALXhAgCU4QCAu3EBALppAQCY4QCAhKAEAL85AQC+WQEAvVEBALxhAQCc4QCAhIwEAKDhAICEADgApOEAgKjhAICs4QCAsOEAgKqJDgCriQ4AqLkOAKmxDgCu/Q4Ar+EOAKz5DgCt9Q4Asq0OALNlDgCwkQ4AsaUOALZ9DgC3ZQ4AtH0OALV1DgC6XQ4Au+UNALhdDgC5VQ4AvuENAL/pDQC8/Q0AvfUNAKOxBQB04QCAtOEAgLjhAIC84QCApqkFAKWhBQDA4QCAqzEGAKopBgDE4QCAyOEAgK95BgCuGQYArREGAKwhBgDM4QCA0OEAgNThAIDY4QCAgB0AAIEJAACCOQAA3OEAgODhAIDk4QCAhsgAAIcMAwDo4QCA7OEAgPDhAID04QCAqKUHAKm1BwCqvQcAq8kHAKzZBwCt2QcArskHAK/BBwC+oAAA+OEAgPzhAIAA4gCABOIAgAjiAIAM4gCAEOIAgLjNAAC51QAAutUAALvlAAC8/QAAvZUAAL6dAAC/lQAAsIkHALFlBwCyYQcAs30HALRlBwC1bQcAtmUHALf1AACzNQYAFOIAgBjiAIAc4gCAIOIAgLZZBgC1UQYAJOIAgLuhBgC6TQYAKOIAgCziAIC/qQYAvqEGAL2pBgC8tQYAMOIAgDTiAIDv8AUAOOIAgDziAIBA4gCAROIAgEjiAICAPQAAgQkAAIIdAABM4gCA4cgGAFDiAIDjSAQAVOIAgKO1BgBY4gCAhigAAIdAAQBc4gCAptkGAKXRBgBg4gCAqyEGAKrNBgBk4gCAaOIAgK8pBgCuIQYArSkGAKw1BgBs4gCAs70BAHDiAIB04gCAtnkBAHjiAIB84gCAtXkBALpVAQC7XQEAgOIAgITiAIC++QAAv/kAALxFAQC9+QAAqHECAKlxAgCqcQIAq3ECAKy1AgCtvQIArrUCAK+tAgC+rDwAiOIAgIziAICQ4gCAlOIAgJjiAICc4gCAoOIAgLhpAwC5aQMAugkDALsJAwC8HQMAvQUDAL4NAwC/BQMAsNUCALHdAgCy1QIAs2kDALR5AwC1eQMAtmkDALdhAwCk4gCAqOIAgKziAICj9QIAsOIAgKUxAgCmMQIAtOIAgLjiAIC84gCAqh0CAKsVAgCsDQIArbEDAK6xAwCvsQMA7xgCAIIVAACBbQAAgG0AAMDiAIDI4gCAhvg8AIcYAwDM4gCA0OIAgNTiAIDY4gCA42wHAAThAIDhaAEA3OIAgKiFAgCplQIAqpUCAKulAgCsvQIArdUCAK7RAgCv0QIA4OIAgOTiAIDo4gCA7OIAgPDiAID04gCA+OIAgPziAIC4dQEAuX0BALp1AQC7zQEAvNUBAL3dAQC+yQEAv8EBALC1AgCxvQIAsoECALOBAgC0VQEAtV0BALZVAQC3TQEA4bQGAADjAIDj9AYABOMAgIQYPQAI4wCADOMAgBDjAIAU4wCAGOMAgBzjAIAg4wCAJOMAgCjjAIDvWAYALOMAgIF9AACAcQAAMOMAgIIFAAA44wCAPOMAgO+AAQC+VDwA4ZABAEDjAIDjfAYAROMAgEjjAIBM4wCAhtg8AIf0PACjnT0AxOIAgDTjAIBQ4wCAVOMAgKbVPQCltT0AWOMAgKv5PQCq8T0AXOMAgGDjAICvGT4ArhE+AK3VPQCs1T0AZOMAgLOhPgBo4wCAbOMAgLatPgBw4wCAdOMAgLWxPgC6ST8Au0k/AHjjAIB84wCAvkk/AL9JPwC8ST8AvUk/AKhVPgCpZT4Aqm0+AKtlPgCsfT4ArWk+AK65PwCvuT8AgOMAgITjAICI4wCAjOMAgJDjAICU4wCAmOMAgJzjAIC4VT8AuV0/ALpVPwC7bT8AvHU/AL19PwC+dT8Av20/ALDJPwCxyT8Astk/ALPZPwC0yT8Atck/ALZ9PwC3cT8AghUAAKPhPwCAsQEAgbEBAKbtPwCg4wCAvtABAKXxPwCqCT4Aqwk+AITkAQCk4wCArgk+AK8JPgCsCT4ArQk+ALPdPACo4wCAhugAAIfMAQCs4wCAtpU8ALX1PACw4wCAu7k8ALqxPAC04wCAuOMAgL9ZPwC+UT8AvZU8ALyVPACoUT4AqVE+AKptPgCrYT4ArGE+AK1hPgCulQEAr40BAISgAQC84wCAwOMAgMTjAIDI4wCAzOMAgNDjAIDU4wCAuKkBALmpAQC6aQEAu2kBALx5AQC9eQEAvmkBAL9pAQCw/QEAsc0BALLFAQCzrQEAtLkBALW5AQC2rQEAt6UBALPlPQDY4wCA3OMAgODjAIDk4wCAtuE9ALXpPQDo4wCAuwkCALo5AgDs4wCA8OMAgL99AgC+fQIAvXkCALwRAgD04wCAo6E9APjjAID84wCApqU9AADkAIAE5ACApa09AKp9AgCrTQIACOQAgAzkAICuOQIArzkCAKxVAgCtPQIAgOkAAIHpAACCHQAAvsADAO/kAgAQ5ACAh1QDAIY8BADjEAEAGOQAgOH4AQAc5ACAIOQAgCTkAIAo5ACALOQAgDDkAIA05ACAOOQAgLORAwA85ACAtbkDALZ9AwBA5ACAROQAgEjkAIC6WQMAu1kDALxJAwC9SQMAvv0AAL/1AACoRQIAqVUCAKpVAgCrZQIArH0CAK2xAgCusQIAr7ECAIRsBQBM5ACAUOQAgFTkAIBY5ACAXOQAgL5wBQBg5ACAuF0BALltAQC6ZQEAuw0BALwZAQC9GQEAvg0BAL8FAQCw0QIAsdECALLRAgCz0QIAtHUBALV9AQC2dQEAt20BAOFAPwDjvAAA4wg+AOFsPgBk5ACAaOQAgGzkAIBw5ACAdOQAgHjkAIB85ACAgOQAgL5sBwDvVAAA75w+AIjkAICjnQIAgmkAAIFhAACAaQAAjOQAgKZxAgCltQIAkOQAgKtVAgCqVQIAhsgEAIfsBACv+QEArvEBAK1FAgCsRQIAqKUGAKmpBgCquQYAq7kGAKypBgCtqQYArtkGAK/ZBgCE5ACAlOQAgJjkAICc5ACAoOQAgKTkAICo5ACArOQAgLhxBwC5cQcAunUHALvdBwC8xQcAvc0HAL7FBwC//QcAsKkGALG1BgCytQYAs40GALSVBgC1UQcAtlEHALdRBwCzMQYAsOQAgLTkAIC45ACAvOQAgLYpBgC1IQYAwOQAgLtxBgC6bQYAxOQAgMjkAIC/lQcAvlEGAL1ZBgC8YQYAzOQAgKN1BgDQ5ACA1OQAgKZtBgDY5ACA3OQAgKVlBgCqKQYAqzUGAODkAIDk5ACArhUGAK/RBwCsJQYArR0GAIANAACBFQAAgh0AAOjkAIDs5ACA8OQAgITcAQD05ACAhoAAAIcgAQD45ACA/OQAgADlAIAE5QCACOUAgAzlAIAQ5QCA43QEABTlAIDhyAUAGOUAgBzlAIAg5QCAJOUAgCjlAIAs5QCAMOUAgDTlAIA45QCA77QEADzlAIBA5QCAqD0GAKlVBgCqVQYAq6kBAKy5AQCtuQEArqkBAK+pAQCErAEAROUAgEjlAIBM5QCAUOUAgFTlAIBY5QCAXOUAgLhtAQC5BQEAugEBALsBAQC8BQEAvQ0BAL4xAQC/MQEAsNkBALHZAQCybQEAs2UBALR9AQC1ZQEAtmUBALdVAQCBvQMAgL0DALPVBQCCGQAAtTkCAGDlAIC+VAMAtjECAGjlAIBs5QCAuxUCALoVAgC9uQIAvLECAL+pAgC+sQIAcOUAgKZpAgClYQIAhAAMAKONBQB05QCAhvgMAId8AwCv8QIArukCAK3hAgCs6QIAq00CAKpNAgB45QCAfOUAgIDlAICE5QCAiOUAgIzlAIDjIAEAkOUAgOGgAQCU5QCA70ACAJjlAICc5QCAoOUAgKTlAICo5QCArOUAgLDlAICz8QMAtOUAgBTkAIC45QCAvOUAgLbpAwC14QMAwOUAgLu1AwC6tQMAxOUAgMjlAIC/lQMAvpUDAL2lAwC8pQMAqCkCAKkpAgCqOQIAqzkCAKwpAgCtKQIArlkCAK9VAgCAzQEAgQkAAIIZAADM5QCA0OUAgL58DQCHtA0AhhwMALgxAgC5PQIAujUCALvpAgC8+QIAvfkCAL7pAgC/6QIAsDECALExAgCyMQIAszECALQRAgC1EQIAthECALcRAgDY5QCA3OUAgODlAIDk5QCA6OUAgOzlAIDw5QCA79QGAPTlAIDhVAYA+OUAgOOkAACsDBUA/OUAgADmAIAE5gCAo/ECAAjmAIAM5gCAEOYAgBTmAICm6QIApeECABjmAICrtQIAqrUCABzmAIAg5gCAr5UCAK6VAgCtpQIArKUCAKghDgCpIQ4AqkkOAKtZDgCsaQ4ArWkOAK6ZDgCvmQ4A1OUAgCTmAIAo5gCALOYAgDDmAIA05gCAOOYAgDzmAIC49Q4Auf0OALr1DgC7iQ4AvJ0OAL2FDgC+hQ4Av7UOALDpDgCx6Q4Asv0OALPxDgC01Q4Atd0OALbVDgC3zQ4As8EOAIIVAACBtQAAgLUAAEDmAIC26Q4AteEOAL4QAAC7LQ4Aui0OAIRkAwBE5gCAvxkOAL4RDgC9JQ4AvCkOAEjmAICjhQ4AhogAAIdsAwCmrQ4ATOYAgFDmAIClpQ4AqmkOAKtpDgBU5gCAWOYAgK5VDgCvXQ4ArG0OAK1hDgCziQ4AXOYAgGDmAIBk5gCAaOYAgLaBDgC1iQ4AbOYAgLuVDgC6jQ4AcOYAgHTmAIC/+Q4AvvEOAL2FDgC8hQ4AeOYAgHzmAICA5gCAhOYAgOMMDQCI5gCA4RgNAIzmAIDvrAwAkOYAgJTmAICY5gCAnOYAgKDmAICk5gCAqOYAgKgBDgCpAQ4AqgEOAKsBDgCsAQ4ArQEOAK4BDgCvPQ4AgN0AAIEJAACCGQAArOYAgLDmAICEPAEAvnQAALjmAIC4HQ4AuS0OALolDgC76QEAvPkBAL35AQC+6QEAv+kBALBJDgCxUQ4AslEOALNRDgC0NQ4AtT0OALY1DgC3LQ4Ao4kNALzmAICGrAQAhzwDAMDmAICmgQ0ApYkNAMTmAICrlQ0Aqo0NAMjmAIDM5gCAr/kNAK7xDQCthQ0ArIUNANDmAICznQIAhEgDAL5ABAC2VQMA1OYAgNjmAIC1sQIAunEDALt5AwDc5gCA4OYAgL4xAwC/MQMAvFEDAL1RAwCwkQMAsZkDALKhAwCzoQMAtNEDALXRAwC20QMAt9EDALj1AwC5+QMAus0DALvFAwC83QMAvcUDAL7NAwC/xQMA5OYAgOjmAIDs5gCA8OYAgIV8GQD05gCA+OYAgGTlAICoIQIAqTECAKoxAgCrBQIArB0CAK3xAwCu8QMAr/EDAPzmAIAA5wCABOcAgAjnAIDvUAAADOcAgBDnAIAU5wCA44QAABjnAIDh+AEAHOcAgIAVAACBGQAAggUAACDnAICjmQMAKOcAgIZoBACHYAUALOcAgKZRAgCltQMAMOcAgKt9AgCqdQIANOcAgDjnAICvNQIArjUCAK1VAgCsVQIAPOcAgEDnAIBE5wCASOcAgEznAIBQ5wCAVOcAgO/4AQC+bAQA4YAOAFjnAIDjFAEAXOcAgGDnAIBk5wCAaOcAgGznAIBw5wCAdOcAgLPdAQB45wCAtf0BALb1AQB85wCAgOcAgITnAIC6sQEAu4UBALydAQC9NQEAvj0BAL81AQCpBQYAqLkFAKsVBgCqHQYArT0GAKw9BgCvTQYArl0GACTnAICCHQAAgR0AAIAdAACI5wCAjOcAgJDnAICU5wCAuUEHALidBgC7QQcAukkHAL1FBwC8WQcAv0UHAL5FBwCxCQYAsD0GALOpBgCyAQYAtbkGALSxBgC3rQYAtrEGAKORBgCEjAIAhigAAIfAAwCY5wCAprkGAKWxBgCc5wCAq8kGAKr9BgCg5wCApOcAgK95BgCucQYArXkGAKzRBgCo5wCAs5kHAKznAICw5wCAtlEHALTnAIC45wCAtbEHALptBwC7dQcAvOcAgMDnAIC+WQcAv0UHALxtBwC9ZQcAxOcAgMjnAIDM5wCA0OcAgNTnAIDY5wCA3OcAgO+oBQDg5wCA4TQFAOTnAIDjdAUA6OcAgOznAIDw5wCA9OcAgKMdBgCCLQAAgRUAAIAdAAD45wCAptUGAKU1BgD85wCAq/EGAKrpBgAA6ACAhCgBAK/BBgCu3QYAreEGAKzpBgCoxQYAqdUGAKrVBgCr5QYArP0GAK0VBgCuHQYArxUGAL7sAQAI6ACAhggAAIcgAAAM6ACAEOgAgBToAIAY6ACAuH0GALkFBgC6DQYAuwUGALwBBgC9CQYAvjkGAL85BgCwbQYAsXUGALJ9BgCzdQYAtFkGALVFBgC2TQYAt0UGAKiRAgCpmQIAqqECAKuhAgCs0QIArd0CAK7VAgCvyQIAHOgAgCDoAIAk6ACAvyweACjoAIAs6ACAMOgAgDToAIC4VQMAuV0DALppAwC7ZQMAvGEDAL1hAwC+YQMAv2EDALC5AgCxjQIAsoUCALNtAwC0dQMAtX0DALZ1AwC3bQMAOOgAgDzoAICzIQIAQOgAgLVRAgCEiAMAROgAgLZVAgC05gCAvigcALtBAgC6dQIAvbEDALxZAgC/sQMAvrkDAKNpAgBI6ACATOgAgFDoAIBU6ACAph0CAKUZAgBY6ACAqwkCAKo9AgBc6ACAYOgAgK/5AwCu8QMArfkDAKwRAgCopQIAqbUCAKq9AgCrtQIArK0CAK01AQCuPQEArzUBAL4sHABk6ACAaOgAgGzoAIBw6ACAeOgAgIdoHQCGHB0AuIUBALmNAQC6hQEAu50BALyNAQC9vQEAvrUBAL95AACwUQEAsVEBALJRAQCzUQEAtPEBALXxAQC29QEAt+UBAO/YAACCtQAAgaUAAIClAAB86ACAgOgAgIToAIDvxAYAiOgAgOH0BgCM6ACA4zgBAOPMAACQ6ACA4SgBAJToAICY6ACAtuUBALV1AgCEQBwAs2UCAJzoAICg6ACApOgAgL9lAQC+ZQEAvdUBALzVAQC7xQEAusUBAKjoAICs6ACAo7UdAHToAICw6ACAtOgAgLjoAICmNR4ApaUdALzoAICrFR4AqhUeAMDoAIDE6ACAr7UeAK61HgCtBR4ArAUeAMjoAIDM6ACA0OgAgNToAICADQAAgTUAAII9AADY6ACA3OgAgODoAIC1BQAAcRoAgOG0AgCs2AIAtQUAAHUaAICotR8AqRUfAKodHwCrFR8ArDEfAK09HwCuLR8AryEfAOG0AgCs2AIAtQUAAHkaAIDhtAIArNgCALUFAAB9GgCAuNEAALnZAAC64QAAu+EAALyRAAC9kQAAvpEAAL+RAACwIR8AsTEfALIxHwCzMR8AtAkfALUJHwC28QAAt/EAAOG0AgCs3AIA71QdALUdAACBGgCA4bwCAKzQAgC1KQAAoyUBAKKRAwChFR0AoA0dAOGAHgCFGgCA47wdAOHEAgCz1R4AtQkAAKzYAgCJGgCA4bwCALb9HgC1+R4ArOACALu1HgC6pR4AtQUAAI0aAIC/jR4Avo0eAL2lHgC8pR4AoxUeAOG8AgCs0AIAtREAAI9pJQCmPR4ApTkeAJEaAICrdR4AqmUeAOG0AgCseAEAr00eAK5NHgCtZR4ArGUeAJvdFACa5RUAmQEXAJjhEACfcR8AnnkZAJ35GQCcARsAk+UtAJIRLwCRbSkAkG0pAJf5EQCW8REAlYUsAJSZLQC1JQAA4ZQCAILxJgCDjSoAhJUqAIXhLACGHS4Ah3kuAKy0AgCVGgCAilUvAIspEgCMORIAjRkTAI7xFACPHRYAtQUAAJkaAICSVRcAk5EYAJRxGgCV+RoAlvkcAJd9HgCC4AMAkwsAgJpVHgCb2QAAnHUCAIMMAICzDACAuIkKAKwBBACthQYAroEGAMwQAgDMfAMAtgwAgJ0aAIDCDACAxQwAgMgMAIAACwCAgaUyArwMAIAE6ACAmpUGAJtVIwK8kQYAvbEAAL6RBgC/rQYAuOkGALmVBgC6kQYAoRoAgLTBBgC1zQYAts0GALfdBgCw/QYAseUGALKdAACz5QYAhVTHA6UaAICH/AAAuAEKAK0aAIDpDACAsRoAgIyRcwCNpAEAzPACAL4NAIDBDQCAiRQAALgZCgCLDAAAGg4AgFMOAIC5DACAvwwAgBkKAICRwAEAywwAgLhtCgDODACA1AwAgNoMAIDdDACA4AwAgLUaAIAoDQCA5gwAgLkaAIDhpB4AKw0AgONUHgCvIXMAzCgCAO8MAIDsDACA8gwAgPUMAID4DACAzIACAJS4AwD7DACAkhQCAO9gHgCQAAIA/gwAgAoNAIC48QoADQ0AgJ8LAIAQDQCAiSkLABMNAICpGgCAvDABAL/EAQC+7AEAFg0AgMzsAgC4xQoAukQBAK0JAIAZDQCAygYAgN8GAIDyBgCAHA0AgPoGAIAfDQCACgcAgC0HAIAYBwCA9gcAgC8HAICpDQCAOgcAgK8NAIBKBwCAtXkAAGcHAIC3cSoCcgcAgLFhAAB0BwCAsw0pAo0HAIC96QAAoAcAgPoHAICtBwCAuRkrAsMHAIC7WRQCHwgAgFoJAIA8CACALw4AgFsIAIA5AACAgQgAgHEAAIDHCACAKwAAgCAJAIA9AACAXAkAgEMAAIBeCQCARQgAgGoIAIBJAACAAAgAgFMAAIB5CQCAWQAAgCINAIBfAACAuw0iAtANAIDMFDYCHwAAgL9lAAC+EQAAvW0AAOUHAICAaQEAgXUBAIJxAQCD3SEChGkHAIWBBwCGgQcAh3EBAIihAQCJrQEAirUHAIuNBwCMlQcAjaUBAE8AAICPpQEAkOEBAJHtBwCSsSECk/0HAJSNBwCVUQYAlvEBAJfZAQCY0QEAmXUGAJp9BgCb1QEAnGkGAJ2ZFAKeUQYAn1EGAKB1FAKhuQYAokkBAKOFLQKkIQEApS0BAKZ1FAKntQYAqKERAqlRFAKqlQYAsSEAgMy8NQLNPDUCbQAAgKoDAICsAwCArwMAgL0hAIDEIQCA2yEAgOIhAIDJAACADwAAgLihBgC6BgCAtwYAgMwAAIDOIQCAtQMAgN0FAIAYBgCAugUCALvVAgC46QUAuf0FAL7JAgC/5RcCvA0CAL0BAgCy4QUAs+EFALCNBQCxnQUAtuUFALfpBQC09QUAte0FAKo9BQCrwQUAqD0FAKk1BQCuzQUAr/UFAKzNBQCtxQUAoj0FAKMFBQCg1QIAoTkFAKYdBQCnBQUApB0FAKUVBQC/BgCAm8EFAD4GAIBVBgCAnt0FAJ8xBACcUQIAndUFAHIGAICJBgCApAMAgDAiAIDbAACAoAMAgI8HAIDuBwCA8gcAgJAJAIACCACABggAgJYLAICUCQCArwoAgG8HAICLBwCAlwcAgKIHAICqBwCAqgkAgPsOAIASDwCAHw8AgMwEMwLNsDACzCAzAs3gMALMEDACzGgwAsxYMALNjDACzGgxAs0UMQLM1DECzRQ2AsxwIALN0CcCzDA2AswkMQLMDDwCzWg/AswYPwLNND8CzBg9As3AMgLMRDwCzBg5Asw4MgLNqDICzIgyAs34MwLMfDMCzUAzAswoMwLNCDMCzMghAs0kJgLMrCYCzEA4AsyYJQLNyDoCzBwkAs0QJALMhDsCzag7AsysJQLNvDoCzKw4Asz4JwLM4DgCzXQ4AicPAID2BgCAYQ0AgIgNAIDNICoCzBwrAqoGAIAsIgCAzKQgAs2gJwLMOCYCygQAgMw4OgLNPDsCzBA5As1gPgLMoAMAvj0NAL3tLALWBACAu1UjAgQJAIC5PSICzwYAgNkHAIClBACAoA0AgLIEAIBvBQCA9AYAgL4EAIB1BQCAr70MAK6ZLgKtpQwAwgUAgKvFIgIDBgCAxAQAgCMGAIDQBACAyAUAgCkGAIBdBgCAowEYAqAEAIAaBwCAHQcAgJ9dDACeUQwAnUUMACcHAICbWSECrwcAgLEHAIC0BwCAuAcAgCoHAIDOBwCA0AcAgJMtJgLTBwCAbAgAgG8IAICPBQwAjnEMAI1lDAB5CACAi0UgAmAJAICJNS8CYwkAgGcJAIB8CACAcAkAgHMJAIC9AwCAACIAgIFdDACAYQwAgAABAIEYAACCAAQABCIAgIQQBwCFFAYAhuQIAIc8AgCILAUAiaQFAIoAeAAIIgCAjCQAAAwiAIAUIgCAECIAgLgRAACRxHsAkkh6AJNMeQAcIgCAzOgCAJbwCQC4OQAAkMAJACQiAICS8AkAzPgCAJS0CQC4DQAAKCIAgMwcAgC4BQAANCIAgMzkAgC4HQAAOCIAgDwiAIBDIgCAWiIAgKiMCACp5HsAYSIAgKvUBgDM5AIAuA0AAGsiAIDMlAIAbyIAgLGAewC4CQAAuBUAAMz8AgC15AgAcyIAgMzYAgB3IgCAuAUAALqcBQC7XAUAvAB8AL30fwC++H0Av/xyAIAJOgKBDToCggE6AoMFOgKEGToChR06AoYROgKHFToCiCk6AoktOgKKIToCiyU6Aow5OgKNPToCjjE6Ao81OgLM8AIAkekPAIMiAIDMzAIAuBkAAH8iAIDM3AIAl+UPALg1AAC4DQAAjyIAgMz8AgC4BQAAkyIAgMwwAgCXIgCAzNACAJsiAICfIgCAzIgCAKQtDwClVQ8Apl0PAMyUAgCoqToCqa06ArjVAACjIgCAuDUAAKciAIDMUAMAr7U6AswsAwCrIgCAzBgDALMFDwC0HQ8AzyIAgLYJDwC3CQ8Avmh9ALhtAAC4RQAAzDgDALwpDwDTIgCAviUPAMxYAwCH5Q4AzOg6Ari9AQC4yQEAzPA1As2kMwLMgCICzXwlAs2UNgLMBCkCzew7AsxkOgK45QEAuMEBAInVDgCI1Q4Al7EOALgNAACvIgCAsyIAgLciAIC4GQAAuyIAgNciAICfaTsC2yIAgL8iAIC4PQAAzMQCAMz4AgDDIgCAxyIAgLjZAADLIgCA3yIAgLjRAADjIgCAuPEAAMzMMwLnIgCAuMkAAMzoMwLrIgCAuNUAAKllAAC4yQAAzNgCAKq5BgC3TQ0Atk0NALU1DgC0NQ4AuFUAABUjAICxGQ8AsCkOAL/1AwC+UQ0AvVkNALw1DAC7XQ0Aul0NALldDQC4XQ0AgL0KAIHFCgCCFQQAg8kKAMx8BQCF3QoAhtUKAIfNCgDMVAUAifEKAIq5CACLDQgAjBEIAI0VCACOtScCj+UKAJBpCACRbQgAknEIAJNtJALMEAUAlR0IAJaFCgDMEAUAzDQFAJk9CACaiQoAmw0IAJwRCACdFQgAzEgFAMwQAgCgZQoAoW0KAKJlCgC4BQcApLEEAMzoAgCmsQQAuA0HAKiBBADM/AIAqpkIAKtdCgCsuQgArakEALglBwCvNQgAsNEIALHxBADMwAIAs40IALQpKAK1IQoAtiEKALchCgC4IQsAuSUIALhBBwC7KQsAvA0dAr3dDwC+MQsAvzELAIDdCgAZIwCAnKF9ANADAIDpAwCAhRkJAIaZCQCHlQkAiOEJAIklJQICBACAGwQAgC4EAIBBBACAVAQAgGcEAICQrQoAkUkFAJJtBQCTYQUAlGEFAJVtBQCWZQUAlxEFAJg1BQCZPQUAmjUFAJsNBQCcFQUAnR0FAJ4VBQCfCQUAoKkJAKH9BQCi9QUAowEFAKQFBQClDQUApgUFAKc9BQCoBQUAqQ0FAKoFBQCrGQUArIkJAK2pBQCutQkAr/0JALABCQCxfQUAsnUFALMBBQC0aQkAtQEFALYFBQC3PQUAuAUFALnhJQK6AQUAuwEFALzRJQK9PQkAvnkJAL9dCQCDMAUAoXgHAJ+xfgB6BACApHgHAKVIBwCNBACA8wQAgIt8BADdAACAEwEAgIhIBAAcAQCAIAEAgCQBAIAoAQCALAEAgDABAICyAAcAs/wHADQBAIDhAACAtuQHALfwBwDmAACA6wAAgLrgBwC7nAcAvIgHAL2oBwDwAACAs8F+AKPMBAD1AACA+gAAgIMABAD/AACAhXQEAKUgBAAEAQCAiEwEAAkBAIAOAQCAFwEAgK8tBwCNxAcArSEHAKwpBwDNAwCA8AQAgI8FAICwZQcA4gUAgB0GAIBDBgCAWgYAgHcGAICOBgCA0wMAgOwDAIAFBACAHgQAgDEEAIC8fAQAgt0rAoPlKwKA/QoAgfkrAoaZCQCHmQkAhOEKAIXhCgCKiQkAi4kJAIiJCQCJiQkAjoUJAEQEAICM4QgAjY0JAJK5KwKTQScCkJkrApHFCwCWyQsAl3UnApTFDQCV0SQCmskLAJvZKgKYyQsAmXkHAFcEAIBqBACAnP0LAH0EAICQBACA9gQAgKABAICkAQCAqAEAgONkAgCsAQCAsAEAgLQBAIDvvAcAqBEJALgBAIC8AQCAwAEAgMQBAIDIAQCAzAEAgNABAIDUAQCA2AEAgNwBAIDgAQCA5AEAgOgBAIDsAQCA8AEAgPQBAID4AQCA/AEAgAACAICCnH4ABAIAgKD1VAKh2VQCoulUAqP1dQCk7XUApZ12AKaVdgCnvXYAqIV2AKkpfQCqOX0AqwV9AKwdfQCtBX0Arg19AK8FfQCwfX0AsUl+ALJRfgCzUX4AtHV+ALV9fgC2aX4At2l+ALhZfgC5WX4Auil+ALspfgC8IX4AvSF+AL4ZfgC/GX4AkgcAgDkJAIDXBwCATSIAgLQNAAC1NQAAtj0AAKIGAICsBgCArwYAgAMjAIAJIwCAvSV4ALy1WALGMQCALjoAgJkqAIC9KgCAySoAgNkqAIDhKgCA7SoAgPUqAID9KgCACSsAgF0rAIB1KwCAhSsAgJUrAIClKwCAtSsAgNUrAICAeX8AgYF/AIKBfwCDnX8AhI1/AIWxfwCGsX8Ah7F/AIjhfwCJ4X8AiuF/AIv9fwCM5X8Aje1/AI7lfwCP3X8AkKV/AJGtfwCSpX8Ak71/AJSlfwCVrX8Alm1+AJctfgCYFX4AmRl+AJrpfgCb6X4AnPl+AJ35fgCe6X4An+V+AKAdfgChJX4AoiV+AKM9fgCkJX4ApS1+AKYlfgCnXX4AqGV+AKltfgCqZX4Aq31+AKxlfgCtbX4ArmV+AK9dfgCwJX4AsS1+ALIlfgCzPX4AtCV+ALUpfgC2WXcAt9V1ALj9eQC56XUAuvl1ALvZeQC86XUAvdV1AL7RdQC/2XUAgDF2AIE9dgCCSXYAg0V2AIRBdgCFTXYAhvl0AId9dgCIoQIAiU12AIpZdgCLuXoAjEl2AI2degCOsQIAjx16AJCRVgKRKXYAkoF2AJPNdgCU2XYAlel2AJbJdgCX0VkCmKF2AJllWgKa8XYAm01aApzRdgCdYXoAnoFWAp/VdgCgBQIAoY1aAqI1VwKjCXYApCF2AKUtdgCmiVoCp5laAqi5WgKpdXYAql13ANkrAIDdKwCAESwAgDksAIBJLACAUSwAgFUsAIBhLACAfSwAgIEsAICZLACAnSwAgKUsAIC1LACAUS0AgGUtAIClLQCAuS0AgMEtAIDFLQCA1S0AgJl1CgD4LQCAJC4AgDAuAIBQLgCAXC4AgGAuAIBkLgCAgux6AINkewB8LgCAgC4AgIZ0ewCHvHsArC4AgLguAIDALgCAyC4AgNguAIDnLgCA7y4AgBsvAIAfLwCAJy8AgJJwfAArLwCAMy8AgJFMfAA7LwCASy8AgGcvAIDfLwCA8y8AgKvMfACo5HwAqdx8APcvAIB3MACAezAAgI8wAICiwHwAkzAAgJswAICjMACAzEBJAs0ASQLM/EoCzWhLAqswAIC3MACA7TAAgP0wAIARMQCAjjEAgJoxAICqMQCAsqx8ALNAfAC2MQCAwjEAgMoxAIDOMQCAtGx8ALUEfACAlQcAgZ0HAIKVBwCDqQcAhLkHAIW5BwCG2QcAh9kHAIjpBwCJ6QcAivkHAIv5BwCM6QcAjekHAI7RBwCP0QcAkLEHAJGxBwCSSQEAk0kBAJRZAQCVWQEAlkkBAJdJAQCYeQEAmXkBAJpJAQCbSQEAnFkBAJ1ZAQCeSQEAn0kBAKC5AQChuQEAoskBAKPJAQCk2QEApdkBAKbJAQCnyQEAqPkBAKn5AQCqyQEAq8kBAKzZAQCt2QEArskBAK/JAQCwuQEAsbkBALJJAQCzSQEAtFkBALVZAQC2SQEAt0kBALh5AQC5eQEAukkBALtJAQC8WQEAvVkBAL5JAQC/SQEA0jEAgNYxAIDaMQCAkjIAgNoyAIDmMgCA6jIAgO4yAIDyMgCA+jIAgP4yAIASMwCALjMAgDYzAIB2MwCAejMAgIIzAICGMwCAjjMAgJIzAIC2MwCAujMAgNYzAIDaMwCA3jMAgOIzAID2MwCAGjQAgB40AIAiNACARjQAgIY0AICKNACAqjQAgLo0AIDCNACA4jQAgAY1AIBKNQCAUjUAgGY1AIByNQCAejUAgII1AICGNQCAijUAgKI1AICmNQCAwjUAgMo1AIDSNQCA1jUAgOI1AIDqNQCA7jUAgPI1AID6NQCA/jUAgJ42AICyNgCAnoUMAOY2AIDqNgCA8jYAgIC5AwCBuQMAgskDAIPJAwCE2QMAhdkDAIbJAwCHyQMAiPkDAIn5AwCKyQMAi8kDAIzZAwCN2QMAjs0DAI/FAwCQvQMAkQEMAJJJDgCTSQ4AlFkOAJVZDgCWSQ4Al0kOAJh5DgCZeQ4AmkkOAJtJDgCcWQ4AnVkOAJ5JDgCfSQ4AoLkOAKG5DgCiyQ4Ao8kOAKTZDgCl2Q4ApskOAKfJDgCo+Q4AqfkOAKrJDgCryQ4ArNkOAK3ZDgCuyQ4Ar8kOALC5DgCxuQ4AskkOALNJDgC0WQ4AtVkOALZJDgC3SQ4AuHkOALl5DgC6SQ4Au0kOALxZDgC9WQ4AvkkOAL9JDgC8eQQAvXkEAL6JBAC/nQQAuHUEALl9BAC6aQQAu2kEALRxBAC1cQQAtnEEALdxBACwcQQAsXEEALJxBACzcQQArGkEAK1pBACucQQAr3EEAKhBBACpQQQAqkEEAKtBBACknQUApWEEAKZhBACnYQQAoJ0FAKGFBQCijQUAo4UFAJxdBQCdZQUAnm0FAJ9lBQCYXQUAmUUFAJpNBQCbRQUAlB0FAJVlBQCWbQUAl2UFAJAdBQCRBQUAkg0FAJMFBQCMMQcAjTEHAI4xBwCPMQcAiDEHAIkxBwCKMQcAizEHAIQxBwCFMQcAhjEHAIcxBwCAMQcAgTEHAIIxBwCDMQcAJjcAgC43AIA2NwCAcjcAgHY3AIB+NwCAgjcAgIY3AICyNwCAtjcAgL43AIDSNwCA1jcAgPI3AID6NwCA/jcAgCI4AIBCOACAUjgAgFY4AIBeOACAijgAgI44AICeOACAwjgAgM44AIDeOACA9jgAgP44AIACOQCABjkAgAo5AIAWOQCAGjkAgCI5AIA+OQCAQjkAgEY5AIBeOQCAYjkAgGo5AIB+OQCAgjkAgIY5AICOOQCAkjkAgJY5AICaOQCAnjkAgK45AIDGOQCAyjkAgNY5AIDaOQCA3jkAgOI5AIDqOQCA7jkAgPI5AID+OQCABjoAgA46AIASOgCAGjoAgIC5AQCBuQEAgskBAIPJAQCE2QEAhdkBAIbJAQCHyQEAiPkBAIn5AQCKyQEAi8kBAIzZAQCN2QEAjskBAI/JAQCQuQEAkbkBAJIRAACTEQAAlDEAAJUxAAAeOgCAIjoAgCo6AIAyOgCAPSMAgGUsAIBpLACAJSQAgIJgAgCZ4QAAgIAAAIGYAACC5AYAg4gEAITUGwCFlBoAhhgfALMjAICIxB4AiQAQAIqoEwCLrBEAjAAoAI20KwCOuCoAj7wpAOOwAgC+dAIAnlUAAOMUAgCCbAIAtyMAgJkNAAC+RAIAnjUAAIJoAgCZBQAAuyMAgO/MAgC+oAAAgoQAAO/YAgDj7AEA4/QBAL8jAIDjCAMAwyMAgOM4AwDHIwCA44gDAMsjAIDv4AMAzyMAgO+IAwDvPAEA78QDANMjAIDv1AMA4+wDAB43AIDXIwCA4+wDAOPsAwDj5AMA2yMAgOO4AwDvXAMA70wDAN8jAIDvSAMA7/QDAOMjAIDnIwCA7zQDAON8AwDjlAQA6yMAgO8jAIDzIwCA47QEAPcjAID7IwCA/yMAgO9sBAADJACAByQAgO9YBADvUAQACyQAgBYkAIAaJACAvQAAgOP4BADCAACAMSQAgB4kAIBtKQCA45wEAAglAIBrJQCAriUAgO9QBADaJQCABCYAgO88BAApJgCAgAlLAoYcdwC+RAIAgnQCAL5QAgA+JgCAmREBAJkNAQCPrAIAggQCAI1oAQCewQIAi3wBAJ49AQCeKQEAvggCAJfQAgCZXQEAldACAJ5VAQCT0AIAmXUBAJHQAgC+SAIAn7gCAEYmAICdtAIAnk0BAJuwAgCZXQEAmbQCAL6EAgCeqQEApowCAGImAICkgAIAmakBAGomAIChSAIAgqwCAK/kAgCCtAIAglwCAJnlAQC+CAIAgnwCAIIABACopAIAnvkBAL5wAgC1HAQAnoUBAL6oBQCyhAIAtrECAL6sBQC4KQkAuYkCALqZAgCCjAUAu+gEAIKcBQByJgCAuPAEAJ5ZBgCZbQYAnmEGAJl5BgC+fAIAnmEGAIJcAgC+QAIAmVkGAJ5dBgCCYAIAmaUGAL58AgCevQYAghwCAL4UAgCZzQYAvkwCAIJMAgCa3QYAnt0GAJ/FBgDjDAIAgrwCAJn5BgC+ZAIA7/QCAJrxBgCe6QYAn+kGAJ7ZBgCf1QYA4wQCAJklBgCaIQYAgngCAJk9BgDjBAIAgkQCAJolBgC+cAIA75wCAJ4FBgCfFQYA7+gCAJp1BgCZBQYAggQCAL5wAgDjcAIAnnUGAJ8NBgCeAQYAvnwCAOM0AgCZDQYAvmACAIJsAgDv8AIAmTUGAIKQAwDv2AIAniEGAIQmAICbxQcAmeUHAL58AgCe7QcAn8UHAOPsAwCdUAIAnNEHAIJsAgDv1AIAmc0HAIJ8AgC+cAIAmd0HAJ7dBwC+AAIA42gCAJ6tBwCZuQcA42gCAIJ8AgDjDAIAvkgCAJmpBwCCWAIA78QCAJ6ZBwC+bAIA77gCAIKUAgCejQcA77gCALsAAACZeQcAuQwAAJ5xBwC/AAAAglQCAL0EAAC+aAIAs9QDAJmxBgCxcAMAggQCALc4AACeoQYAtTQAAL5wAgCrWAMAnqEGAO9cAgCZqQYArxADAIJQAgCtFAMAmYUHAJlpBgC+WAIAnmEGAL58AgCCaAIApqACAOOQAgCZaQYA43wBAOOYAQDjrAEA49ABAOPoAQC+dAIAno0FAOMwAgDvzAIAgmgCAJnRBQDvlAIA71QBAO9wAQDvJAEA7ygBAL58AgCevQUA4wwCAIJ4AgCZrQIAvnQCAJ6lAgDjNAIAgmACAJkZAAC+YAIA7/wCAJ4NAACClAIA79QCAJAmAIDj/AIAmQkAAL5gAgCYJgCAnh0AAOMAAgCwJSoAglgCAJkNAADv9AIAvmQCAK4mAIDvwAIAnhkAAIIYAgCCOAIA43ACAJkRAACaNQAAmSkBAL50AgDsJgCAnyUAAJ4JAACZ6QEAvrQDAL7gAwCazQEA79gCAJ4RAQCC2AMA/SYAgIHEAgDjsAMAHycAgOP8AwC+/AIAhMQCAIIoAgCGEAIAKicAgIg8AgCeIQAAnw0AAHonAIDvKAMAj3QCAO8sAwCCiAIAmXUAAJoVAACSxAMAldADAJktAACa0QAAjicAgL7IAgCYaAMAm3wDAILEAwCeQQAAnykAALAnAICChAIA45ACAL4IAwC+JwCABigAgJ8ZAACe7QAA49ACAJlxAACaFQAAvhQCAO8wAgCZIQAA71gCABQoAICv7AMAggQCALFMHACwABwAniUAALJMHACeXQAAn2EAAOO8AgCZIQAA+QAAAHEpAIDvlAIAdSkAgL08HACCgB0Av8EfAHkpAIDjtB0AvnQCAJ71HwDj8B0AmQUAAH0pAIC+fAIAngkAAIJgAgCZDQAAiSkAgL5gAgDvzAIAnh0AAOklAIDv3AIA42gCAPkYAIDjPB0AIRoAgP0YAIABGQCAJRoAgCkaAIAtGgCAMRoAgDUaAIA5GgCA76QCAD0aAIDvJB0AQRoAgLHFAAAFGQCAs8UAALLdAAC1yQAAtMEAALcdAAC2wQAAuWUAALhlAAC7zQAAus0AAL3dAAC83QAAv8UAAL7JAAAJGQCADRkAgE0ZAIBhGQCAERkAgBUZAIDvFHgD7wBIA+HYTQPhOKgC41x5A+O0UAOtGQCAsRkAgLUZAIC5GQCAgMkBAIHVAQCC3QEAg20CAITdAQCFcQIAhgEEAIcdBQCIJQUAiTUFAIo9BQCLbQUAjHUFAI1lBQCObQUAj80BAJC1AQCRvQEAkrUBAJNNAwCUVQMAlV0DAJZVAwCXTQMAmHUDAJl9AwCadQMAm00DAJxVAwCdWQMAnkkDAJ9JAwCguQMAobkDAKLBAwCj3QMApMUDAKXNAwCmxQMAp/0DAKjJAwCpyQMAqtEDAKvRAwCsMQMArTEDAK4xAwCvMQMAsFEDALFRAwCyUQMAs1EDALRxAwC1cQMAtnEDALdxAwC4UQMAuVEDALpRAwC7UQMAvDEDAL0xAwC+MQMAvzEDAL0ZAIDBGQCAxRkAgMkZAIDNGQCA0RkAgNUZAIDZGQCA3RkAgOEZAIDwIAIA5RkAgOkZAIDtGQCA8RkAgPUZAICc9TYAnf02APkZAICRkAIA/RkAgKkZAIBFGQCASRkAgEUaAIC6adgASRoAgE0aAIC4sTYAubE2AFEaAIBVGgCAWRoAgF0aAIBRGQCAYRoAgGUaAIBVGQCAWRkAgF0ZAIBlGQCAaRkAgG0ZAIBxGQCAdRkAgHkZAIB9GQCAgRkAgIUZAICJGQCAjRkAgJEZAICVGQCAglgCAJkZAIBpGgCA8FgCAG0aAICdGQCAoRkAgKUZAIABGgCABRoAgJF0AwDhtDsCCRoAgOPYIgINGgCAERoAgBUaAIAZGgCAHRoAgKUqAIBVLQCAqSoAgMEqAICtKgCAljMAgO/IPwK1KgCA4ZTzAuGY0gLjlPcC4xDGAuGUtgLhkJ0C44SiAuMIhwIZGQCAHRkAgO+4swLvOIsCnSoAgOAtAIDvIJcC7+DgAoLkAgBpLQCACAIAgLrF2QAOAgCAFAIAgBoCAIAgAgCAJgIAgCwCAIAyAgCAOAIAgD4CAIBEAgCASgIAgFACAIDhgHgC8OQGAOMUagKCgAgA4aAPAuEIEwLjhA4C4xgeAlYCAIA0AwCA7zQ7Au8wHwI6AwCAQAMAgO8MEgJGAwCAJRkAgCkZAIBMAwCAUgMAgC0ZAIAxGQCAWAMAgF4DAIB2AwCAggMAgIgDAICOAwCAlAMAgJoDAIB8AwCAZAMAgDUZAIA5GQCAbQMAgFwCAIA9GQCAQRkAgHQCAIBoAgCAvAIAgHoCAICYAgCAYgIAgJICAIBuAgCApAIAgNQCAICAUQYAgV0GAIJVBgCDaQYAhHkGAIV5BgCGaQYAh2kGAIhZBgCJoQcAiqUHAIu9BwCMpQcAja0HAI6lBwDyAgCA7AIAgOACAICSCRQAkxUUAJTxBwCV8QcAlvEHAJfxBwCY0QcAmdEHAJo5FACb0QcAnIEHAJ2BBwCefQcAnx0UAJktAQCYLQEAmz0BAJo9AQCdLQEAnC0BACEZAICeVQEAkd0GAJDRBgCTJQEAkiUBAJUtAQCULQEAlx0BAJYdAQCJ8QYAiOkGAIvxBgCK+QYAjbEGAIzpBgCPqQYAjrkGAIHxBgCA7QYAg/EGAIL5BgCF0QYAhOkGAIfRBgCG2QYAua0DALitAwC7vQMAur0DAL2tAwC8rQMAv90DAL7dAwCxrQMAsK0DALO9AwCyvQMAta0DALStAwC3nQMAtp0DAKm5AQCosQEAq3UBAKqxAQCtFQEArBUBAK/dAwCu3QMAobkBAKCpAQCjiQEAorEBAKWZAQCkkQEAp4kBAKaRAQAuAwCAwgIAgM4CAIDmAgCA2gIAgAQDAICwAgCA+AIAgCIDAIAKAwCAngIAgIACAIC2AgCAyAIAgP4CAICGAgCAKAMAgKoCAIAQAwCAjAIAgBYDAIAcAwCACS0AgOsuAIDKNACAhAcAgAYFAIAVBQCAJAUAgDMFAIBCBQCASwUAgPAsOABUBQCAXQUAgGYFAICSBQCA40huA5sFAIDhTG4DpAUAgO/0AQOnBQCAqgUAgK0FAIBGOgCApkwAgNZVAIA2aACAZnEAgJZ6AID2jACAVp8AgIaoAIDtugCAJMQAgFTNAICE1gCAtN8AgDG7AIA6rgCABqUAgPkqAICJKwCAoSoAgOUqAIBBMQCAATEAgE40AIDVLACABjMAgIo3AIBiNACAHSwAgJI0AICeMwCAEjgAgFkrAICFLACA+jEAgCY5AIAdKwCArSsAgJ4xAIC8LgCAySwAgFksAIA4LgCALC4AgJGgBgDuMwCAGSsAgJ43AIB1LACAzS0AgLAFAIDh1D8D4VgaA+PcLwPjUA4D4RTyA+FA0wPjQOoD40DDA7MFAIC2BQCA73jrA+9c8gO5BQCA5QUAgO9E3gPvmCUD4bSLA+E8lwPjfKID45iLA+EwQQDhUKwD4xx/AOOIRgDoBQCA6wUAgO84ewDv4EEA7gUAgPEFAIDvzIoD7yCHA4DBGACB3RgAgikLAIMpCwCE6Q4AhekOAIYZDwCH8RgAiCUPAIntGgCK5RsAiyEdAIw5HQCN5RsAjmkQAI/VGgCQhRsAkU0PAJJFDwCTXQ8AlEUPAJVNDwCWRQ8Al30PAJhFDwCZTQ8AmkUPAJtpGwCcQQ8AnUEPAJ5BDwCfQQ8AoMEPAKHBDwCiwQ8Ao8EPAKS5CwCluQsApqkLAKfNDwCo9Q8Aqf0PAKr1DwCrzQ8ArNkPAK3ZDwCuyQ8Ar8kPALC5DwCxuQ8AsmkPALNpDwC0YQ8AtWEPALY5DwC3OQ8AuBEPALkRDwC66QEAu+kBALz5AQC9+QEAvukBAL/pAQD0BQCA9wUAgPoFAID9BQCAAAYAgCAGAIDhBACAgAUAgNMFAIAOBgCANAYAgEsGAIBoBgCAfwYAgJYGAIDdAwCA9gMAgA8EAIASBwCAQQgAgD4IAIA/BwCAOSQAgHIkAICjJACAyCQAgLkmAIDEJgCAyCYAgMwmAIDQJgCALygAgG4oAICWKACAmigAgL8oAIDHKACA4ygAgPUoAID5KACA/SgAgLrp0wAVKQCAMCkAgEspAIA9JACASiQAgFckAIBkJACAdiQAgIMkAICVJACApyQAgLckAIDMJACA1iQAgOQkAIDuJACA+yQAgAwlAIAWJQCAbyUAgHYlAIAkJQCAgBkDAIEZAwCCKQMAgykDAIQ5AwCFOQMAhikDAIcpAwCIGQMAiRkDAIppAwCLaQMAjHkDAI15AwCOaQMAj2kDAJAZAwCRGQMAkgEEAJMtAwCUNQMAlVUGAJZdBgCXVQYAmG0GAJl1BgCafQYAm3UGAJxtBgCdNQYAnj0GAJ81BgCgzQYAodUGAKLdBgCj1QYApPkDAKX5AwCm6QMAp+kDAKjZAwCp+QYAqikGAKspBgCsOQYArTkGAK7FAwCvPQMAsEUDALFNAwCyRQMAs10DALRFAwC1TQMAtkUDALd9AwC4SQMAuUkDALpZAwC7fQYAvGUGAL1tBgC+ZQYAgCUAgKkVDwCoAQ8Aq00PAKpNDwCtRQ8ArEUPAK+hDQCuqQ0AoXULAKBhCwCj7QsAoqkLAKXlCwCk5QsApzkPAKZZCAC5oQ0AuJkNALuhDQC6qQ0AvaENALy5DQAxJQCAvqkNALGhDQCw2Q0As6ENALKpDQC1oQ0AtLkNALehDQC2qQ0AOCUAgEglAIBbJQCAsiUAgLwlAICRJQCAoSUAgNAlAICB7Q0AgO0NAIP9DQCC/Q0Ahe0NAITtDQCH2Q0AhiEYAJlNDQCYTQ0Am1ENAJpdDQCdeQ0AnHUNAJ9pDQCecQ0AkYkNAJCBDQCTmQ0AkoENAJWJDQCUgQ0Al30NAJaBDQDgJACAICUAgI0lAIDMJQCA3iUAgAgmAIAtJgCAQiYAgPAlAID6JQCADCYAgBkmAIAxJgCATiYAgFgmAIB2JgCASiYAgGYmAIBuJgCAgCYAgIwmAICUJgCAoyYAgN4mAICcJgCAsiYAgKcmAIC9JgCA1CYAgOImAIABJwCAEScAgBsnAIBPJwCAkicAgOcnAIBPKQCAXSkAgGEpAIBlKQCA8CYAgC4nAIA+JwCASCcAgCMnAIBTJwCAYycAgH4nAIBwJwCAlicAgMInAIDJJwCApicAgNMnAIDdJwCAtCcAgBgoAIAKKACA6ycAgCUoAIDyJwCA/CcAgDMoAIBAKACASigAgFQoAIBeKACAcigAgH8oAICGKACAnigAgKUoAICyKACAyygAgNUoAIDnKACAASkAgA4pAIAZKQCAIykAgDQpAIA7KQCAUykAgMMDAIDmBACAhQUAgNgFAIATBgCAOQYAgFAGAIBtBgCAhAYAgJsGAIDjAwCA/AMAgBUEAIAoBACAOwQAgE4EAIBhBACAdAQAgIcEAICaBACAAAUAgA8FAIAeBQCALQUAgDwFAIBjCACAJAgAgMEGAID8BwCAHQkAgOMoEwAzCQCAKggAgC0IAIAxCACAJAcAgNwuAIDKMACA2S0AgLswAIBFMQCAJwkAgO/sEwAGCQCA3A0AgM8IAICDCACAMQcAgEwHAID8BgCACggAgJQIAIAqCQCACQkAgOANAIDsDQCA2wgAgJkIAIAVBwCAhggAgFUHAID/BgCApgcAgJEkAIDwDQCA4ggAgCcIAICcCACAWAgAgBUJAID0DQCA5QgAgBQIAICfCACA6AgAgBcIAIDJCACAoggAgOwIAIAbCACAzAgAgKYIAID3CACA/QgAgIgHAICKCACAWQcAgAMHAIA9CQCAQQkAgEkJAIA2CQCAGAkAgPgNAID0CACALQkAgAwJAIDkDQCA0ggAgI4IAIBdBwCAMAkAgA8JAIDoDQCA1QgAgJEIAIBgBwCArQgAgGMHAIDjSBIA4xQSAOP4EwDjuBMA4+wSAOOgEgDjbBIA43gSAO/ADQDv2A0A73QSAO9QEgDvqBIA79wSAO8oEwDvIBMA6QcAgMwGAIAOCACAEQgAgNgGAIDUBgCAIQgAgAcHAIBnCACADAcAgHYIAIA0BwCANwcAgKoIAIC2CACAuQgAgOPYEADjoBAA46AQAON0EQDjNBAA4wgQAOPkEADj9BAA77wQAO/gEADvzBAA7zgQAO8QEADvcBAA73AQAO9MEADjhBMA4+gTAOMwEADjEBAA42ATAONAEwDjpBMA47QTAO/IEwDvtBMA75gTAO98EwDvXBMA70wTAO8UEwDv6BAAgO08AIH1PACC/TwAg/U8AITtPACFFT0Ahh09AIcVPQCILT0AiTU9AIo9PQCLNT0AjC09AI0VPQCOHT0AjxU9AJBtPQCRdT0Akn09AJN1PQCUbT0AlRU9AJYdPQCXFT0AmC09AJk1PQCaPT0AmzU9AJwtPQCdFT0Anh09AJ8VPQCg7T0AofU9AKL9PQCj9T0ApO09AKUVPQCmHT0ApxU9AKgtPQCpNT0Aqj09AKs1PQCsLT0ArRU9AK4dPQCvFT0AsG09ALF1PQCyfT0As3U9ALRtPQC1FT0AthE9ALcRPQC4MT0AuTE9ALoxPQC7MT0AvBE9AL0RPQC+ET0AvxE9AIDxPACB/TwAgvU8AIMNPwCEFT8AhR0/AIYVPwCHDT8AiDU/AIk9PwCKNT8Aiw0/AIwVPwCNHT8AjhU/AI8NPwCQdT8AkX0/AJJ1PwCTDT8AlBU/AJUZPwCWCT8Alwk/AJg5PwCZOT8Amgk/AJsJPwCcGT8AnRk/AJ4JPwCfCT8AoPk/AKH5PwCiCT8Aowk/AKQZPwClGT8Apgk/AKcJPwCoOT8AqTk/AKoJPwCrCT8ArBk/AK0ZPwCuCT8Arwk/ALB5PwCxeT8Asgk/ALMJPwC0GT8AtRk/ALYJPwC3CT8AuDk/ALk5PwC6CT8Auwk/ALwZPwC9GT8Avgk/AL8JPwCA+TwAgfk8AIJJPQCDST0AhFk9AIVZPQCGST0Ah0k9AIh5PQCJeT0Aikk9AItJPQCMWT0AjVk9AI5JPQCPST0AkDk9AJE5PQCSAQQAk00GAJRVBgCVXQYAllUGAJdNBgCYdQYAmX0GAJp1BgCbTQYAnFUGAJ1dBgCeVQYAn00GAKC1BgChvQYAorUGAKPNBgCk1QYApd0GAKbVBgCnzQYAqPUGAKn9BgCq9QYAq80GAKzVBgCt3QYArtUGAK/NBgCwtQYAsb0GALK1BgCzTQYAtFUGALVdBgC2VQYAt00GALh1BgC5fQYAunUGALtNBgC8VQYAvV0GAL5VBgC/TQYArH0/AK2lPwCurT8Ar6U/AKh9PwCpZT8Aqm0/AKtlPwCkHT8ApUU/AKZNPwCnRT8AoB0/AKEFPwCiDT8AowU/ALydPwC9pT8Avq0/AL+lPwC4nT8AuYU/ALqNPwC7hT8AtN0/ALWlPwC2rT8At6U/ALDdPwCxxT8Ass0/ALPFPwCMZToAjW06AI5lOgCPfToAiEU6AIlNOgCKRToAi306AIRlOgCFbToAhmU6AId9OgCABToAgQ06AIIFOgCDfToAnF04AJ3lPwCe7T8An+U/AJhdOACZRTgAmk04AJtFOACUuTgAlWU4AJZtOACXZTgAkAU6AJENOgCSBToAkwE5AMAIAIDYCACA3ggAgPAIAIB2BwCAIgkAgHkHAICBBwCAVAkAgJ0HAIDLBwCAvQcAgMQGAIDcBACAewUAgM4FAIAJBgCALwYAgEYGAIBjBgCAegYAgJEGAIDXAwCA8AMAgAkEAIAiBACANQQAgEgEAIBbBACAbgQAgIEEAICUBACA+gQAgAkFAIAYBQCAJwUAgDYFAIBFBQCATgUAgFcFAIBgBQCAaQUAgJUFAICeBQCAXQgAgFYOAIBZDgCAOjoAgKwKAIAVCwCANjoAgD46AICcGQAAnRkAAJ45AACfOQAA4wwAgEI6AIB6NwCA8TAAgKI3AIBaMgCAxSoAgLksAICaMDUA7C0AgB0tAIDoLQCA1y8AgJ+ENQDSMwCAnUQpAGI1AICaNgCA1jYAgAo3AIAeOACAdjEAgAIyAICuMgCARjMAgGI2AIBGOACAcjkAgOkqAICNLACAijEAgNIyAICWNgCAwjkAgJQuAIB6MgCAhjYAgBo3AIALMACAvjUAgLSAGgC1hBkAtojmALeM5ACwABwAsZQeALIAGACznBsAvADsAL2k7wC+qO4Av6TtALgA4AC5tOMAurjiALu84QCkwAAApQAMAKbIDgCnAAgA4jYAgAcvAIAFMQCArXwDAKwAEACt5BMArugSAK9gEQCo8AoAqRwJAKr4FgCr/BQAGjIAgB4zAIAqOACAKSsAgMErAIAtLACAczAAgIIxAIDOMgCA8jMAgI42AICmNgCAyjcAgO44AICiOQCAvjkAgC40AIBuNACAvAgAgCY1AIBGNgCAejgAgE43AIChLQCAIy8AgN40AICeNQCAAjMAgDY0AICaNwCA5jgAgJ0tAIBwLgCAejEAgC4yAIBiMgCAFjUAgD41AICmOACAKSwAgJwAAACqNQCAzSsAgMkrAICaNACAKjUAgF42AICuOACAajcAgA8wAIBaNwCA0SoAgEQuAIB7LwCAMjMAgLIzAIBNLACAPjQAgDkrAIBfLwCAsSoAgO4xAICLMACAEjUAgIDpAwCB6QMAgjkvAIP9AwCE5QMAhe0DAIblAwCHfS4AiEEuAIkhAgCKeS8AiyUCAIw9AgCNJQIAjiECAI8dAgCQZQIAkW0CAJJlAgCTfQIAlGUCAJVtAgCWZQIAlx0CAJglAgCZLQIAmiUCAJs9AgCcJQIAnS0CAJ4lAgCfHQIAoOUCAKHtAgCi5QIAo/0CAKTlAgCl7QIApuUCAKdNAgCodQIAqX0CAKqpAQCrqQEArLkBAK25AQCuqQEAr6kBALDZAQCx2QEAsukBALPpAQC0eSIAtf0BALb1AQC37QEAuNUBALndAQC61QEAu60BALy1AQC9uQEAvqkBAL+pAQChLACAjS0AgP4zAIBmNgCAPjcAgLoxAIDmMQCAHzAAgB42AIA/MACArjMAgAUrAICBKwCAxSsAgFYxAID+NACA9jUAgEo3AIBaOACANSwAgOksAIAXLwCApzAAgH4yAIBCNACAljgAgHo5AIDOOQCA5jkAgOkwAICmMQCA7jcAgOMuAIC/LwCA2y8AgGswAIBuMgCAujIAgGozAICONACAMjUAgJY1AIDeNwCAbjYAgAY4AIB+OACA6SsAgBUsAID9LACAqjIAgPY2AIADLwCAcy8AgDcwAICyMQCA2jQAgCYzAIAVKwCAWS0AgKguAIB/LwCAQjMAgF4zAIBuNQCAgFEBAIEBKgCCXQEAg1UBAIRNAQCFdQEAhn0BAId1AQCITQEAiVUBAIqdKwCLWQEAjEkBAI1JAQCOuQEAj7kBAJDJAQCRyQEAktkBAJPZAQCUyQEAlckBAJb5AQCX+QEAmMkBAJnJAQCa2QEAm9kBAJzJAQCdyQEAnrkBAJ+5AQCgSQEAoZUBAKJFAQCjXQEApEUBAKVNAQCmRQEAp30BAKhFAQCpTQEAqnkPAKtBAQCsQQEArUEBAK5BAQCvQQEAsMEDALHBAwCywQMAs8EDALTBAwC1wQMAtsEDALfBAwC4wQMAucEDALrBAwC7wQMAvMEDAL3BAwC+wQMAv8kMAI41AIBiOACA4jgAgPI4AIAuOQCALSsAgII0AIBOOACAyjgAgJcvAIDxKgCAUSsAgEguAIBoLgCAlzAAgMYyAIDOMwCAejYAgBo4AIDZMACAojgAgA0sAIAlMQCAMTEAgBIyAIBKMgCATjMAgKozAIAqNACADjUAgDo5AIDrLwCAsjgAgEErAICMLgCAMjIAgOI3AIBPLwCAny8AgDkxAIC6OACA8SsAgNksAIB4LgCAwjAAgBUxAIBiMQCA9jEAgEozAIC+MwCAWjUAgPo2AIAGNwCA1jgAgF0sAIBOMgCA3SwAgMoyAIBuMwCAijYAgL44AICqOQCA0jkAgC0xAICxOSMAsBEDALMVAwCyFQMAtTUDALQ1AwC3NQMAtjUDALkVAwC4FQMAuxUDALoVAwC9dQMAvHUDAL91AwC+dQMAoZkNAKCRDQCjqQ0AopENAKW5DQCksQ0Ap6kNAKaxDQCpmQ0AqJENAKtpAwCqkQ0ArXkDAKxxAwCvaQMArnEDAJEZDQCQEQ0Aky0NAJIRDQCVPQ0AlD0NAJctDQCWLQ0AmR0NAJgdDQCbbQ0Amm0NAJ15DQCcgQ4An2kNAJ5xDQCBmQ0AgAkjAIOpDQCCkQ0AhbkNAISxDQCHqQ0AhrENAImZDQCIkQ0Ai2kNAIqRDQCNeQ0AjHENAI9pDQCOcQ0AKjIAgMY1AIDGNACA6jQAgBozAICiMgCAZjcAgA0rAIAuNgCA9SsAgOUrAIDzLgCAEzAAgPY0AIA0LgCABjIAgOUwAIDqNwCAqjgAgA8vAIBhKwCANS0AgIktAIDVMACA0SsAgCIzAIDmMwCASjQAgGY0AIBqNACAfjQAgPo4AIDuNACAkjYAgFY3AIAKOACANjgAgE45AIBSOQCAVjkAgLo5AIAuOACAxjgAgDErAIBVKwCAaSsAgCUsAIAxLACAcSwAgCUtAIBBLQCASS0AgIUtAICRLQCAdC4AgIsvAICzLwCAuy8AgJH4EADTLwCAfzAAgK8wAIDdMACAWjEAgIApAQCBKQEAgjkBAIM5AQCEKQEAhSkBAIZZAQCHWQEAiNkoAIltAQCKKSUAi2EBAIxhAQCNYQEAHjIAgDoyAICQGQEAajIAgJIVAQC+MgCA3jIAgJU1AQCWPQEAlzUBAJgNAQCZFQEAmh0BAJsVAQCcDQEAnfUBAJ7dKABSMwCAoAUBADI0AICiAQEAVjQAgFI0AIClGQEApgkBAFo0AIBeNACAdjQAgKo9AQCrNQEArC0BAK0VAQCuHQEArxUBALBtAQCxdQEAsn0BALN1AQC0bQEAtRUBALYdAQC3FQEAuC0BALk1AQC6PQEAuzUBALzZLgC9KQEAvhkBAL8ZAQC6eR4Au3keALjNAgC5eR4AvpUeAL+dHgC8QQIAvZ0eALJ9HgCzRR4AsH0eALF1HgC2XR4At0UeALRdHgC1VR4AqgUeAKsNHgCodR4AqQ0eAHo0AICeNACArBUeAK0NHgCiSR4Ao0keAKBJHgChSR4ApkkeAKf5AgCkSR4ApUkeAJqNHgCblR4AmI0eAJmFHgCeiR4An4keAJyNHgCdhR4AkgUDAJP1AACQCQMAkY05AJaxHgCXFQYAlO0AAJUBHACKvQMAi0EDAIiFAwCJnQMAjkEDAI9JAwCMyTkAjVEDAIIVAgCDHQIAgAUCAIEdAgCGzQMAh7EDAIQFAgCFxQMAs/kFALLxBQCx+QUAsOEFALeZKgC2EQMAtRkDALThBQC7NQMAujUDALklAwC4JQMAvxUDAL4VAwC9JQMAvCUDAKP9BQCi/QUAof0FAKD9BQCnnQUApp0FAKWdBQCknQUAq7kFAKqxBQCpJScAqL0FAK+ZBQCukQUArZkFAKyhBQCTAQUAkvkFAJF1OQCQ9QUAlwEFAJYZBQCVEQUAlBkFAJt5CQCaOQUAmTEFAJg5BQCfHQUAnh0FAJ0dBQCcHQUAg4kFAIKBBQCBiQUAgPEFAIeFBQCGhQUAhZUFAISBJgCLhQUAioUFAIm1BQCItQUAj4UFAI6FBQCNlQUAjJUFAM40AIA6NQCAQjUAgFY1AIB+NQCAzjUAgAI2AIBqNgCAEjcAgCo3AIBeNwCAYjcAgKY3AICqNwCAAjgAgNo4AIAeOQCANjkAgIMvAICQ6gCA5jUAgLkqAIC9KwCAfSsAgCUrAIBlKwCAkSsAgCEsAIA9LACAES0AgCEtAIA9LQCAmS0AgOQtAIDwLQCADC4AgBwuAIALLwCAEy8AgEMvAIBjLwCAky8AgKsvAICbLwCAry8AgO8vAIBHMACAUzAAgFswAICDMACACTEAgB0xAIBeMgCAVjIAgIYyAIAWNACA4jIAgBYzAIBiMwCAfjMAgKIzAIDGMwCAyjMAgOozAICAjQEAgZUBAIKdAQCDlQEAhI0BAIW1AQCGvQEAh7UBAIiNAQCJwR0AipkBAIvBHQCMhQEAjY0BAI6FAQCP/QEAkIUBAJEZHQCSkRQAk4UBAJSdAQCViTIAlk0ZAJc9GwCYsQEAmbEBAJotHACbtQEAnD0cAJ2pAQCemQEAn5kBAKDlHQChbQEAomUBAKN9AQCkZQEApW0BAKbxHQCnYQEAqKEDAKmhAwCqoQMAq6EDAKyhAwCttQEArq0DAK+lAwCwYRkAsdkDALLZAQCz7QMAtPUDALX9AwC29QMAt+0DALjFAQC50QMAumEdALvVAwC82QEAvT0XAL7FAwC/0QEA+jMAgA40AIAKNACAOjQAgLY0AIDmNACAHjUAgE41AIAyNgCAWjYAgM42AIAWNwCAIjcAgEI3AIBGNwCAUjcAgG43AIDmNwCAFjgAgEo4AIBqOACAtjgAgA45AIAqOQCAijkAgCfqAIAi6gCAVOoAgOEpAIAJKgCADSoAgNbqAIAD6wCAe+sAgBY6AIAmOgCARwgAgFIIAIBVCACASggAgE4IAIBXCQCA8Q4AgOIOAIDnDgCA9g4AgOwOAICyNACASw8AgMoPAICBDwCALw8AgFoPAIBnDwCAbw8AgJ0PAIDCDwCAuA8AgL0PAICqDwCAsQ8AgP4OAIADDwCACA8AgIBBAQCBMQMAgk0BAINFAQCEXQEAhUUBAIZNAQCHIQMAiF0fAIl9AQCKaQMAi3EBAIx1AwCNVQEAjlk6AI9ZAQCQKQEAkSkBAJI5AQCTOQEAlCkBAJUpAQCW2QEAl9kBAJjpAQCZ6QEAFQ8AgCIPAIAqDwCAMg8AgDwPAIBBDwCARg8AgFAPAIBVDwCAXQ8AgGoPAIByDwCAdw8AgHwPAICEDwCAiQ8AgJMPAICYDwCAoA8AgKUPAIDFDwCANw8AgBoPAIBiDwCAjg8AgA0PAIDdFgCA5hYAgOkWAIDvFgCA4xYAgOwWAIDgFgCAExcAgBYXAID1FgCA8hYAgPgWAICAmQcAgZkHAPsWAICDrQcAhLUHAAQXAICGsQcAh7EHAIiRBwCJkQcAipEHAIuRBwCM8QcAjfEHAI7xBwCP8QcAkJEHAJGVBwCSnQcAk5kHAJSFBwCVgQcAloEHAJeFBwCYuQcAmb0HAJq1BwCbsQcAnK0HAJ2pBwCemQcAn50HAKBhBwChZQcAom0HAKNpBwCkdQcApXEHAKZxBwCndQcAqEkHAKlNBwCqRQcAq0EHAKxdBwCtWQcArkkHAK9NBwCwMQcAsTUHALI9BwCzOQcAtCUHALUhBwC2IQcAtyUHALgZBwC5HQcAuhUHALsRBwC8DQcAvQkHAL7xAAC/9QAAgAkBAIENAQCCHQEAgxkBAITZAACF3QAAhtUAAIfRAACI8QAAifUAAIr9AACL+QAAjOkAAI3tAACO5QAAj+EAAJCdAACRmQAAkq0AAJOpAACUtQAAlbEAAJaxAACXtQAAmIkAAJmNAACahQAAm4EAAJydAACdmQAAnokAAJ+NAACgdQAAoXEAAKJ9AACjeQAApGlQAqVtUAKmYQAAp2UAAKhZAACpXQAAqlUAAKtRAACsTQAArUkAAK49AwCvOQMAsClQArEtUAIBFwCABxcAgP4WAIANFwCAChcAgBkXAIDZXFICHxcAgCUXAIAiFwCAKBcAgCsXAIA0FwCALhcAgKOhAACipQAAoZEAAKCVAACntQAAprEAAKW9AACkuQAAq40AAKqJAACpgQAAqIUAAK+FAACugQAArYkAAKyNAACz/QAAsvkAALHxAACw9QAAt5kAALadAAC1nQAAtJkAALutAAC6qQAAuaUAALilAAC/ZQEAvmEBAL1tAQC8aQEAHBcAgFcXAIBAFwCAPRcAgEgXAIBOFwCAOhcAgNksUQJLFwCAVBcAgHkWAIDhDwCAMRAAgA4QAIAiEACAHRAAgJNBAAAnEACALBAAgBMQAICXWQAAllUAAJVZAACUXQAAm3EAAJppAACZZQAAmGUAAJ9lAACeYQAAnTFTApxtAAC4gQQAuYEEALqBBAC7gQQAvIEEAFEXAIC+jQQA5g8AgLDdBQCxTQQAskUEALNdBAC0RQQAtU0EALZFBADrDwCAqKEFAKntQQCqrQUAq6UFAKy9BQCtpQUArq0FAK+lBQCgqQUAoZFBAKKpQACjoQUApKEFAKWhBQCmoQUAp6EFAP8PAIAYEACAWBAAgF0QAIBpEACAnVUFAH8QAICfWQUAjhAAgJMQAICeEACAkwUFAJQdBQCVBQUAlg0FAJcFBQC4EACAyxAAgO8QAIAhEQCAJhEAgC4RAIA9EQCATBEAgIBxBQCBcQUAgnEFAINxBQCEUQUAhVEFAIZdBQBREQCAWREAgHwRAICjEQCArxEAgM8RAIDUEQCA2REAgBMSAIAmEgCAMhIAgEoSAIDEEgCAGhMAgDMTAIA4EwCASxMAgFwTAIBuEwCAcxMAgJoTAICiEwCAtxMAgN4TAIDjEwCAPRQAgEIUAIBHFACAUxQAgF8UAIBkFACAbBQAgHgUAICSFACAlxQAgJ8UAICkFACAqRQAgK4UAICzFACAuBQAgMsUAIDQFACA7BQAgAYVAIAgFQCALBUAgEQVAIBJFQCAVhUAgHcVAICaFQCAtBUAgMAVAIDFFQCAzRUAgO4VAIAIFgCAFxYAgDQWAIA5FgCAQRYAgEYWAIBZFgCAXhYAgICtAQCBtQEAgr0BAIO1AQCErQEAhdUBAIbdAQCH1QEAiO0BAIn1AQCK/QEAi/UBAIztAQCN1QEAjt0BAI/VAQCQrQEAkbUBAJK9AQCTtQEAlK0BAJVVAwCWXQMAl1UDAJhtAwCZdQMAmn0DAJt1AwCcbQMAnVUDAJ5dAwCfVQMAoK0DAKG1AwCivQMAo7UDAKStAwCl1QMAphkOAKfZAwCobQ8AqSEOAKrhAwCr4QMArCkOAK3lAwCuGQ4ArxkOALCVAwCxnQMAsgEOALORAwC0HQ4AtQUOALa5AwC3uQMAuDkOALmNAwC6NQ4AuxEOALyBAQC9gQEAvnkBAL95AQCEFgCAkBYAgJwWAICrFgCAyBYAgM0WAIDuEQCA/xEAgHwWAICBAACAiwAAgJUAAICfAACAqQAAgLMAAID1DwCA+g8AgAQQAIB1EACAehAAgIQQAIDlEACA6hAAgBcRAIAzEQCAOBEAgEIRAIBRFQCADRYAgBIWAIAqFgCAoRYAgKYWAIC+FgCA8A8AgAkQAICJEACAHBEAgNcSAIA/FQCALxYAgGMWAIDDFgCARxEAgGQSAICfEgCAshIAgBEUAIAdFACAKRQAgI0TAICSEwCA0RMAgNYTAID9EwCAAhQAgGkSAIBuEgCAtxIAgLwSAIDCEQCAxxEAgJYRAICbEQCApD0DAKVFAwCmTQMAp0UDAKA9AwChJQMAoi0DAKMlAwCsfQMArUUDAK5NAwCvRQMAqH0DAKllAwCqbQMAq2UDALQ9AwC1xQMAts0DALfFAwCwPQMAsSUDALItAwCzJQMAvP0DAL3FAwC+zQMAv8UDALj9AwC55QMAuu0DALvlAwCEBQwAhQ0MAIYFDACHHQwAgI0MAIGpDACCGQwAg1ENAIxhDACNYQwAjmEMAI9hDACIKQwAiRUMAIodDACLFQwAlD0MAJXFAwCWzQMAl8UDAJABDACRAQwAkgEMAJMBDACc/QMAncUDAJ7NAwCfxQMAmP0DAJnlAwCa7QMAm+UDAIBpBACBaQQAgnEEAINxBACEnQQAhYUEAIaNBACHhQQAiL0EAImNBACKhQQAi50EAIyFBACNqQYAjvkEAI/5BACQiQQAkYkEAJKRBACTkQQAlLEEAJWxBACW+QYAl60EAJiVBACZwQYAmmkGAJtpBgCceQYAnXkGAJ7RBgCf/QsAoA0GAKEdCwCiGQYAo0ULAKQFBgClTQsApjUGAKe1BACoEQYAqREGAKoRBgCrNQQArC0EAK0BBACuXQQArx0GALDNBgCxbQYAsnUGALMNBgC0FQYAtR0GALYVBgC3DQYAuDUGALk9BgC6NQYAuw0GALwVBgC9HQYAvhUGAL8NBgCA9QcAgf0HAIL1BwCD9QAAhO0AAIURAwCGEQMAhxEDAIgxAwCJMQMAijEDAIsxAwCMhQcAjRUDAI4dAwCPFQMAkG0DAJGNBwCShQcAk50HAJSFBwCVjQcAloUHAJe9BwCYhQcAmY0HAJqFBwCbnQcAnIUHAJ2NBwCehQcAn4UAAKB9AAChgQMAooEDAKOBAwCkgQMApYEDAKaBAwCngQMAqBUHAKmFAwCqjQMAq4UDAKydAwCtoQMArqEDAK+hAwCwdQcAsXUHALJxBwCzhQUAtM0FALX1BQC2/QUAt8kDALj5AwC5+QMAuqEFALuhBQC8wQMAvcUDAN4RAIDjEQCAhJz7ACYTAIArEwCAYRMAgGYTAIB2EgCAghIAgJUSAICaEgCARRIAgNwSAIBXEwCASxAAgKMQAIC9EACAxBAAgJB1AACRfQAAknEAAJNxAACUAfwAlVX+AJZd/gCXVf4AmG3+AJlp/gCaef4Am3n+AJxp/gCdaf4Anln+AJ9Z/gCgpf4Aoa3+AKKl/gCjof4ApKH+AKWl/gCmrf4Ap6X+AKiZ/gCpmf4Aqun+AKvt/gCs9f4ArfH+AK7x/gCv8f4AsI3+ALGV/gCymf4As5n+ALSJ/gC1if4Atrn+ALe9/gC4hf4AuY3+ALqF/gC7nf4AvIX+AL2B/gC+gf4Av4H+AKbZCACnBQcApMEIAKWZBQCi0QgAo9EIAKCJBQChtQgArgEHAK8BBwCsMQcArTEHAKo9BwCrJQcAqD0HAKk1BwC2fQcAtwUHALR9BwC1dQcAsskFALNlBwCwcQcAsXEHAL4BBwC/AQcAvDEHAL0xBwC6IQcAuyEHALg9BwC5MQcAhjkHAIc5BwCELQcAhTkHAIINBwCDNQcAgBEHAIEFBwCOSQcAj0kHAIxNBwCN1QUAisEFAIvBBQCI1QUAiXEHAJbVBQCX2QgAlE0FAJXdBQCSUQUAk9kFAJD5BQCRoQUAnnEIAJ99CACcYQgAnWEIAJpxCACbeQUAmMUIAJl1BQD0EACA+xAAgAIRAICBEQCAuxEAgLQRAIArEgCAGBIAgB8SAIBWEgCATxIAgF0SAIDJEgCAHxMAgIcSAIB7EgCApBIAgKsSAIA9EwCAUBMAgHgTAIB/EwCAhhMAgKcTAIC8EwCAwxMAgOgTAID2EwCA7xMAgEwUAIB9FACAhBQAgAsVAIAZFQCAEhUAgPEUAIAlFQCAMRUAgHwVAICDFQCAkxUAgFsVAIBpFQCAnxUAgKYVAIBiFQCASxYAgFIWAIDzFQCA+hUAgNkVAIDgFQCAIxYAgBwWAICwFgCAbhAAgLEQAICqEACA3hAAgNcQAIAQEQCACREAgI8RAIBeEQCAgIEBAIGBAQCCgQEAg4EBAISdAQCFhQEAhokBAIeJAQCItQEAib0BAIq1AQCLjQEAjJUBAI2dAQCOlQEAj40BAIgRAIA3EgCAkv0BAJP1AQCU7QEAlZUBAJadAQCXlQEAmKkBAJmpAQCauQEAm7kBAJypAQCdrQEAnqUBAJ+dAQCgZQEAoW0BAKJlAQCjfQEApGUBAKVtAQCmZQEAp90AAKjlAACppQMAqq0DAKulAwCsvQMAraUDAK6tAwCvpQMAsN0DALHlAwCy7QMAs+UDALSpAQC1VQEAtvUDALftAwC41QMAud0DALrVAwC7rQMAvM0DAL3BAwC+vQMAv7UDANASAICOEgCARBMAgP8UAIA4FQCAlRYAgIkWAIC3FgCAuRUAgIsUAIABFgCAyhMAgMQUAIDSFQCArRUAgPgUAIC9FACAZREAgKgRAIBwFQCA0BAAgFgUAIBiEACAPhIAgOcVAIATEwCAcRQAgEIQAIA5EACAihUAgOESAID2EQCArhMAgGsWAIDqEgCA8RIAgGwRAIAEEgCApgMAgA0jAIARIwCAoAYAgMcAAIC1BgCAqyMAgK8jAIC5IQCAtSEAgOMHAIB7CQCAfwkAgEEjAICnIwCANSMAgDkjAIAdIwCAISMAgCUjAIApIwCALSMAgDEjAIDbBwCA3wcAgNEAAICATQEAgVEBAIJRAQCDTQEAhE0DAIUhAwCGRQEAh30BANcAAICiAwCAqAMAgN0HAIDTAACA1QAAgL0GAIB5AACABxQAgH0AAICHAACAkQAAgAwUAICbAACAGBQAgKUAAIAkFACArwAAgDAUAIC5AACANRQAgM8PAIBVEACAmBAAgJsQAIArEQCAVhEAgKARAIDMEQCA6BEAgOsRAIDzEQCADRIAgBASAIBzEgCAwRIAgDATAIBrEwCAlxMAgJ8TAICwpQEAsa0BALKlAQCzvQEAtKUBALWtAQC2pQEAt10BALhlAQC5bQEAumUBALt9AQC8ZQEA2xMAgDoUAIBpFACAgAW5AIHhBgCC4QYAg+EGAIThBgCoBgCAswYAgIfpBgCI2QYAifmxAIr1sQCL8bEAjO2xAI31BgCO+QYAj/0GAJDZBgCR2QYAkvWxAJwUAICUiZIClfEGAJb1BgCX9QYAmNkGAJnVsgCa3bIAm6kGAJy5BgCduQYAnqkGAJ+BBgCgoQcAoaEHAKIhsgCjpQcApIUAAKWNAACmQbMA1RQAgKiNBwCplQcAqp0HAKuVBwBOFQCAyhUAgDYQAIA+FgCAsP0HALGFBwCyjQcAaBYAgLSZBwCBFgCAtpUHALeNBwC4tQcAub0HALq1BwC7jQcAvJUHAL2dBwC+lQcAv40HAIB1BgCBlaACgpmgAoOZoAKEhaAChb2gAoaxoAKHhaACiLmgAomRoAKKnaACi5mgAoyFoAKNjQEAjoEBAI9FBgCQOQYAkT0GAJIxBgCTMQYAlC0GAJXVBgCW2QYAl90GAJjhBgCZ4QYAmu0GAJvpBgCc9QYAnf0GAJ7xBgCf9QYAoAkGAKEJBgCiBQYAowEGAKQdBgClBQYApgkGAKcNBgCoMQYAqTEGAKo9BgCrNQYArCkGAK0pBgCuJQYArx0GALBhBgCxYQYAsm0GALNpBgC0dQYAtX0GALZxBgC3dQYAuEkGALlJBgC6RQYAu0EGALxdBgC9RQYAvkkGAL9NBgCAsQUAgbEFAIK9BQCDuQUAhKUFAIWtBQCGoQUAh6UFAIiZBQCJmQUAipUFAIuRBQCMjQUAjcEFAI7NBQCPyQUAkLUFAJG9BQCSsQUAk7UFAJSpBQCVqQUAlqUFAJehBQCYnQUAmSkCAJolAgCbIQIAnD0CAJ3pAgCe5QIAn+ECAKAdAgChNQIAojkCAKM9AgCkIQIApSECAKYtAgCnKQIAqBUCAKkZAgCqFQIAqxECAKwNAgCteQIArnUCAK8V8ACwafAAsRECALIdAgCzGQIAtAUCALUhAAC2LQAAtyUAALgZAAC54QEAuu0BALvlAQC8+QEA2BQAgN0UAIC/9YYCp2kNAOIUAIDnFACAzwAAgNkAAICzAwCA4QcAgH0JAID7IgCAzNSFAszghQL/IgCAgSkAgDUkAIBuJACAjSQAgLyZBQC9mQUAvqkFAL+ZvAC4mQUAuZkFALqJBQC7iQUAtKEFALXVsQC23bEAt6kFALCxsgCxzQUAssUFALO9BQCfJACAxCQAgMMoAIDfKACA8SgAgIgmAICFKQCAaSkAgCkkAIAtJACA2WSgAoEJAIDZUKAChAkAgI0JAICKCQCAhwkAgOwhAIDvIgCA9CEAgJhlBQCZEbIA/CEAgNkwoAKUOZEClU0FAJZFBQCXXQUAkGkFAJFpBQCSWQUAk1kFAID9vACB1ZwCgmW8AIPFvACEkbwAhZ28AIalvACHjbwAiK2TAonlvACKKZACi7W8AIwRkAKNlbwAji2wAI/FnAKQ6bwAkcHIAJJBkAKT8Z0ClNW8AJXlvACW4bwAl02QAphlkAKZfZACmrm8AJupCgCcbQ8Anb0KAPMiAICfXQ8AoK0PAKElCgCibQoAo2UKAKQNCgClpQ8ApgXUAKepDwComQ8AqZkPAKopDwCrKQ8ArDkPAK05DwCuKQ8ArykPALBZDwCxndEAspXRALOF1gC0sdEAtbHRALbZ1AC32dQAuOnUALnp1AC6+dQAu/nUALzp1AC96dQAvrnUAL+51ACASdUAgUnVAIJZ1QCDWdUAhEnVAIV90ACGddAAh23QAIhV0ACJXdAAinXVAIut1QCMtdUAjb3VAI611QCPQdAAkMHQAJHB0ACSwdAAk8HQAJTB0ACVwdAAlsHQAJfB0ACYwdAAmc3QAJrF0ACb3dAAnOHVAJ3pDgCe2Q4An9kOAKDV2wChwdkAotnZAKPB2QCkxdkApc3ZAKbF2QCnGdkAqGHZAKlh2QCqydkAq8nZAKzZ2QCt2dkArs3ZAK/B2QCwCdkAsRXZALId2QCzrdoAtB3ZALWx2gC2wdwAt93dALjl3QC59d0Auv3dALut3QC8td0AvaXdAL6t3QDwIQCAgvHaAIPx2gD3IgCA5OgAgIYR2ACHEdgAhOHaAIXh2gCKKdgAiynYAK9AEwClKNoAjinYAI8p2ACMKdgAjSnYAJJh2ACTYdgA6egAgO7oAICWZdgAl23YAJR12ACVbdgAml3YAJst2ADz6ACA8FwCALEw3wCR8AIAnCnYALLQAwCiOQ0Ao1GeAqAlDQChOQ0AplUNAIS8AgCkJQ0ApV0NAKptDQCrAQQAqGENAKlRAwCuuQAAp3UAAKxhDQCtxQIA+OgAgIfMAwDwVAIAzFC6AJHYBACb9NsAkRgCAJk02wCddAQAvh0AAJ9gBQCejAUAjOwCAI2sBAD96ACAvfWKAqghvwCpLb8Aqi2/AKs9vwCsKb8ArVW/AK5RvwCvTb8AoBkIAKGlvQCiIb8AozGzAKQ9vwClJb8Apg2zAKclvwC46bMAuc3LALppswC7uQkAvH0IAL2tCQC+QQwAv50JALA5vwCxhb0Asgm/ALPtywC0Gb8AtQW/ALbtswC3Bb8AiDG9AIkxvQCKrQgAiyW9AIwJCQCNvQgAjiW+AI+JDAAC6QCAgQ0JAIKlDACDUQkAhIEIAIWBCACGmQgAh60MAJhhvQCZYb0Amm0JAJsVnQKcxQ8AnQ28AJ7BDwCfcQkAkBW+AJERnwKSNZ8Ckw2fApQJvgCVCb4AlnG9AJdxvQCCuAQAl6UHALnEAwDwWAIAkUwCAJLIAgCErAQAsD0AAAzpAIAH6QCAvQUAABHpAIDwTAIAuhEAAJEkAgCN5AQAkqwCAJasAgC4uAMAudADAJb4AgCvDQAAFukAgPB4AgCRXAIAlrACAK8FAAAb6QCAIOkAgCnpAIAy6QCAP+kAgIX4AwBM6QCAh4ADAIbAAgBZ6QCAZukAgHPpAICW6QCAuzkAAHzpAICf6QCAiekAgL8dAAC+HQAAvR0AALwhAACVwB0AlMQfAJfIGgCWABgAkSAAAJDUAQCT2B4AkgAcAJ3gEgCcABAAn+gRAJ7sEwCZ8BkAmPQbAJv4FwCaABQAnnEBAJ9xAQCABQAArOkAgM0KAICwDACAXg0AgGQNAIBqDQCAdg0AgHkNAIB8DQCAfw0AgIINAICRDQCAlw0AgJoNAICdDQCAICIAgMcNAIDWDQCA/A0AgP8NAIAODgCAEQ4AgB0OAIAYIgCAMg4AgDUOAIDXFgCAEBcAgNoWAIC4ACwAuYwvALqILgC6AwCAhpwXAMx4vACEmC0AhVwXALcDAIDKAwCAiAAoAIksFADtBACAjAUAgN8FAIAaBgCAQAYAgFcGAIB0BgCAiwYAgDgBAIA8AQCAQAEAgEQBAIBIAQCATAEAgKR9AQBQAQCAonUBAKNlAQCggQEAoYEBALxxugC9kbYAvnG6AL+ltgC48bgAuXW6ALqZzgC7dboAtGG6ALVtugC2eboAt3W6ALAZugCxEboAsgm6ALMFugCsUboArXG2AK5RugCvbboAqNG4AKldugCqRbYAq1G6AKRxlgKlYZYCpnGWAqe9ugCgzZsCofG6AKLJugCjxboAnHmaAp0tugCeDc4An4WWApgJugCZtZYCmjm6AJuJtgCUMboA+CEAgJZpugCXrZYCkHm6AJE1ugCSMboAkwG6AIxJzgCN5bYAjhmaAo+hugCIoboAiUG2AIqhugCLdbYAhAG4AIWFugCGac4Ah4W6AICxugCBvboAgqm6AIOlugCAgbkAgQ27AIIVtwCDAbsAhAG7AIUhtwCGAbsAhz27AIgJuwCJAbsAihm7AIsVuwCMcbsAjX27AI5puwCPZbsAkKG5AJEluwCSyc8AkyW7AJQhuwCVwbcAliG7AJf1twCY6c8AmUW3AJq5mwKbAbsAnLm7AJ31uwCe8bsAn8G7AKARuwChCZQCokm7AKONlwKkCbsApbWXAqY5uwCnibcAqFmbAqkNuwCqLc8Aq6WXAqwNmgKtMbsArgm7AK8FuwCw0ZcCscGXArLRlwKzHbsAtFG5ALXduwC2xbcAt9G7ALjxuwC50bcAuvG7ALvNuwC82bsAvdG7AL7JuwC/xbsAgJmkAIEliAKCqaQAgxmoAFsNAICFvaQAhp3QAIcViAKInYUCiaGkAIqZpACLlaQAjCGIAo0xiAKOIYgCj+2kAJDBpgCRTaQAklWoAJNBpACUQaQAlWGoAJZBpACXfaQAmEmkAJlBpACaWaQAm1WkAJwxpACdPaQAnimkAJ8lpACgYaYAoeWkAKIJ0ACj5aQApOGkAKUBqACm4aQApzWoAKgp0ACphagAqnmEAqvBpACseaQArTWkAK4xpACvAaQAsFGkALFJiwKyCaQAs82IArRJpAC19YgCtnmkALfJqAC4GYQCuU2kALpt0AC75YgCvE2FAr1xpAC+SaQAv0WkAIARiQKBAYkCghGJAoPdpQCEkacAhR2lAFQBAICHEaUAiDGlAIkRqQCKMaUAWAEAgFwBAICNEaUAjgmlAI8FpQCQAaUAkQ2lAJIZpQCTFaUAlLGnAGABAICW2dEAlzWlAJgRpQCZ8akAmhGlAJvFqQCc+dEAZAEAgJ6phQKfEaUAoEmlAKEFpQCiAaUAozGlAKQBpQClGYoCplmlAKediQKoOaUAqYWJAqoJpQCruakArEmFAq0dpQCuPdEAr7WJArB9hAKxQaUAsnmlALN1pQC0wYkCtdGJArbBiQK3DaUAuGGnALntpQBoAQCAu+GlALzhpQC9wakAvuGlAGwBAIC3baYAttWGArUpqgC0hdIAs7mqALJtpgCxjaoAsG2mAL8higK+5aYAvaWJAnABAIC7jaYAdAEAgLm5pgC49aYAeAEAgKZ1pgClbaYAfAEAgIABAICiTaYAhAEAgIgBAICvCaYAruXSAIwBAICsjaQAqymmAKolpgCpMaYAkAEAgJc5pgCWNaYAlQ2mAJQxhwKTmYoCkhHSAJExpgCQZYYCn62mAJ65qgCUAQCAnC2kAJthpgCarYoCmb2KApitigKHfaYAhk2mAIVJpgCEBaYAg72mAIIFhgKB+aoAgFXSAI/1qgCORaYAjcmKAox1pgCL8YoCijWmAIl1iQKIbaYAgCmnAIEhpwCCOacAgzWnAIRRpwCYAQCAhkmnAJwBAIDMSIkCzYiJAoqp0wCLRacAjEGnAI2hqwCOQacAj5WrAJDJ0wBFIwCAkpmHApMhpwCUmacAldWnAJbRpwCX4acAmPGnAJnpiAKaqacAm22LApzppwCdVYsCntmnAJ9pqwCgeYcCoS2nAKIN0wCjhYsCpC2GAqURpwCmKacApyWnAKixiwKpoYsCqrGLAqt9pwCsMaUArb2nAK6lqwCvsacAsNGnALHxqwCy0acAs+2nALT5pwC18acAtumnALflpwC4oacAua2nALq5pwC7tacAvBGlAL2VpwC+edMAv5WnAICRoACBiY8CgsmgAIMNjAKEiaAAhTWMAoa5oACHCawAiNmAAomNoACKrdQAiyWMAoyNgQKNsaAAjomgAI+FoACQUYwCkUGMApJRjAKTnaAAlNGiAJVdoACWRawAl1GgAJhxoACZUawAmnGgAJtNoACcWaAAnVGgAJ5JoACfRaAAoMGgAKHNoACi2aAAo9WgAKRxogCl9aAAphnUAKf1oACo0aAAqTGsAKrRoACrBawArDnUAK2VrACuaYACr9GgALAJoACxRaAAskGgALNxoAC0QaAAtVmPArYZoAC33YwCuHmgALnFjAK6SaAAu/msALwJgAK9XaAAvn3UAL/1jAKAvYACgYGhAIK5oQCDtaEAhAGNAoURjQKGAY0Ch82hAIihowCJLaEAijWtAIshoQCMIaEAjQGtAI4hoQCPHaEAkGmhAJFhoQCSeaEAk3WhAJQRoQCVHaEAlgmhAJcFoQCYgaMAmQWhAJrp1QCbBaEAnAGhAJ3hrQCeAaEAn9WtAKAJ1QChpa0AolmBAqPhoQCkWaEApRWhAKYRoQCnIaEAqDGhAKkpjgKqaaEAq62NAqwpoQCtlY0CrhmhAK+prQCwOYECsW2hALJN1QCzxY0CtG2AArVRoQC2aaEAt2WhALjxjQK54Y0CuvGNArs9oQC8caMAvf2hAL7lrQC/8aEAs2miALKF1gCxaaIAsO2gALe5rgC2baIAtY2uALRtogC7TaIAuvWCArkJrgC4pdYAv42iAL69ogC9uaIAvPWiAKNNogCiWa4AoUGiAKDNoACncaIApk2iAKVtrgCkTaIAq1miAKpVogCpTaIAqEWiAK8pogCuJaIArTGiAKw9ogCTla4AkiWiAJGpjgKQFaIAl5mOApYR1gCVMaIAlGWCApsZogCaFaIAmS2iAJgRgwKfYaIAnq2OAp29jgKcrY4Cg2muAIK9ogCBXa4AgL2iAIe9ogCGBYIChfmuAIRV1gCLXaIAim2iAIlpogCIJaIAj/GOAo41ogCNdY0CjG2iAIARowCBMa8AghGjAIMtowCEOaMAhTGjAIYpowCHJaMAiGGjAIltowCKeaMAi3WjAIzRoQCNVaMAjrnXAI9VowCQMaMAkdGvAJIxowCT5a8AlNnXAJV1rwCWiYMClzGjAJipowCZ5aMAmuGjAJvRowCc4aMAnfmMAp65owCffY8CoBmjAKGljwKiKaMAo5mvAKRpgwKlPaMAph3XAKeVjwKoHYICqSGjAKoZowCrFaMArKGPAq2xjwKuoY8Cr22jALBBoQCxzaMAstWvALPBowC0waMAteGvALbBowC3/aMAuMmjALnBowC62aMAu9WjALyxowC9vaMAvqmjAL+lowBnDQCA0QYAgG0NAIDIBwCAcw0AgA8HAICFDQCAlAcAgIsNAICaBwCAuA0AgH0HAIDKDQCAxQcAgAIOAIBPBwCAFA4AgFIHAIAgDgCAkB0AAOEGAIAPJACA4iUAgCguAICtLACAyS0AgKpVAACrKQAAMjcAgAErAIDGMACAsjIAgAEsAIBTLwCAmSsAgJ8wAIDtKwCAGjUAgI43AICtLQCA5SwAgGYyAIADMACALzAAgA44AIAjMACA+y8AgHI0AICAIa4AgaWsAIJJ2ACDpawAhKGsAIVBoACGoawAh3WgAIhp2ACJxaAAiv0AAIsxxgCM7QAAjdEAAI7VAACPyQAAgCmhAIFNFACCIQEAg+G4AoQ5qgCFOaoAhhG9AodRFACIEQEAidW4AorNrQCLLbsCjGEUAI3ZjQKObRQAj2UUAJB5AQCRubgCkkm9ApNFuwKUDRQAlTUUAJYZAQCXqbgCmF2qAJkBFACaIQEAmwUUAJx5vQKdhbgCnnm7Ap+JuAKggb0CoXm4AqKZCQCjlRQApFmuAKWJFACmmQEAp70UAKipAQCpvbsCqrkBAKuJFACsmRQArZkUAK6JFACviRQAsNkBALEJrgCy6QEAs9W7ArTNuwK17RQAtpW8ArfhFAC4oRQAuaEUALrBoQC7pRQAvNkBAL0ZuAK+0aoAv9GqAL9FFwC+RRcAvTUXALxBvwK7KRcAugm4ArkBuAK4PQIAt+2tALY9AgC1HRcAtB0XALMdFwCyHRcAsR0XALAtAgCvWbgCrk0CAK1pFwCsTQIAq00XAKqdrQCpQRcAqE0KAK40AIDRLACApX0XAKR9FwCjoa4Aom2CAqF9ggKgbYICnzmuAJ41rgCdDa4AnDGPApuZggKaEdoAmTGuAJhljgKXtaIAlgWuAJWJggKUNa4Ak7GCApJ1rgCRNYECkC2uAI99rgCOTa4AjUmuAIwFrgCLva4AigWOAon5ogCIVdoAh0miAIadrgCFfaIAhJ2uAIOZrgCCddoAgZmuAIAdrADMqIQCzUyGAswguQLNTLkCzECOAkYyAIDMmIUCzTyEAswQgwLNUIMCzKCDAs2MgwLMMIACzSSAAswYgALNhIACmjMAgAUsAIAxLQCAiSMAgE0jAIBXIwCAayMAgJMjAIB1IwCAnSMAgGEjAIB/IwCAzPC5As2EuQLMULgCzay7AoDNAACB1QAAgt0AAIPVAACEzQAAhfUAAIb9AACH9QAAiM0AAFcvAIDBLACA1SoAgM0qAIDdKgCAuekAgCErAICQZQAAkW0AAKiIKgA1KwCAPSsAgEUrAIBJKwCATSsAgKIAMACjzDMAoOg9AKHsPACm8DYAp/QoAKQANACl/DUAgFERAIHpiAKCXREAg1URAIQpBACF6b0Chhm4AocVvgKIfREAiUURAIppBACL2b0CjA2vAI1REQCOcQQAj1URAJBJuAKRtb0Ckkm+ApO5vQKUUbgClam9ApZJDACXRREAmKmrAJl5EQCaaQQAm00RAJx5BACdbb4CnmkEAJ9ZEQCgqREAoakRAKK5EQCjuREApIkEAKVZqwCmuQQAp4W+Aqi9vgKpnREAquW5AquREQCs8REArfERAK6RpACv9REAsOkEALEpvQKy4a8As+GvALTZuAK1mREAtukEALctvQK4BagAueW+Arq5EQC7AYgCvKURAL2tEQC+wQQAvwG9AoABuQKBDb8CglUQAINtEACEUQUAheG8AoYlrgCHeRAAiGkFAIlNEACKIbkCi928AowxvwKNwbwCjjm5Ao/BvAKQUQ0AkV0QAJKBqgCTURAAlFEFAJV1EACWUQUAl0W/AphxBQCZQRAAmkEQAJtBEACcQRAAnUEQAJ5hBQCfsaoAoKEFAKGdvwKilb8Co7UQAKTduAKlqRAAptkQAKfZEACoiaUAqe0QAKqBBQCrQbwCrJmuAK2ZrgCusbkCr/EQALDxBQCxNbwCsi2pALPNvwK0gRAAtTmJAraNEAC3hRAAuNkFALkZvAK66bkCu+W/ArytEAC9lRAAvrkFAL8JvAK5La0AuC2tALtFEwC6BboCveG/ArwlBgC/GbwCvvmqALEdEwCwabsCs20TALJtEwC1eRMAtB2mALfVvwK2FQYAqXUTAKh1EwCrhakAqlUGAK1JvAKsdQYAr2ETAK5BvAKhQRMAoGUGAKNxvAKiZQYApVUTAKRlBgCnVRMAplUTAJl1vwKYhbwCm3W/ApqNugKdiRMAnIUOAJ+FEwCeVakAkVW/ApDlBgCTzRMAkpGtAJXZEwCU/QYAl0m/Apa1ugKJmRMAiJETAIs1vwKK9QYAjdm8AozVugKPuRMAjoETAIGtEwCA7boCgxm/AoLdBgCF8bwChBGqAIcVigKGrRMAgD2sAIFhEgCCQQcAg2USAIQZuwKF5b4Chhm9AofpvgKIIbsCidm+AopFEgCLXRIAjSkAgM3pAICOzaoAj8mLApCdiwKRpYsCkrGqAJOxqgCU2akAldmpAJb5qQCX+akAmJWqAJmRiwKatYsCm42LApyJqgCdiaoAnvGpAJ/xqQCgIakAoSGpAKJ9qgCjeYsCpE2LAqV1iwKmYaoAp2GqAKgpqQCpKakAqgmpAKsJqQCsRaoArUGLAq5liwKvXYsCsDmqALE5qgCyQakAs0GpALRxqQC1cakAti2qALcpiwK4PYsCuQWLAroRqgC7EaoAvHmpAL15qQC+WakAv1mpAIKJIwBtKwCAcSsAgI0rAIC+6QCAh5kjAJEpAIB5KwCAyOkAgIu5JACpKwCAifkkAI6VIwCPiSMAsSsAgI2JJACSvSMAESsAgLkrAICR4SMAo+sAgJfFIwCU8SMA4SsAgJkpAICbkSMA+SsAgJndIwD9KwCAnwktAAksAICdjdUAogkjAJ0pAIBBLACAofUjAEUsAICnGSMApCUkAG0sAICq7SQAeSwAgKgdIwCpeSQArhUjAK8JIwCsCSQArQkkALI9IwCJLACAsDEjALFhIwC2VSMAt0UjALRxIwC1XSMAulkjALsRIwCRLACAuV0jAL6JLQCVLACAvI0tANzpAICAuSUAgX0iAIKBIgCDmSIAhK0lAIXZJQCGuSIAh5EiAIiVIgCJ8SUAljIAgIuxJQCMgSUAjYElAI6dIgCPgSIAkLkiAJHpIgCStSIAk9EiAJT5IgCV1SIAlt0iAJfNIgCY+SIAmdUiAJrRIgCbmSIAqSwAgLEsAIDh6QCAvSwAgGUAAACh/SIAogEiAKMZIgDFLACApVklAKY5IgCnESIAqBUiAKlxJQDNLACAqzElAKwBJQCtASUArh0iAK8BIgCwOSIAsWkiALI1IgCzUSIAtHkiALVVIgC2XSIAt00iALh5IgC5VSIAulEiALsZIgD1LACA4SwAgO0sAIDxLACAgI0vAIGlLwCCrS8Ag70vAISlLwCFrS8AhqUvAIfdLwCI5S8Aie0vAIrlLwD5LACAAS0AgAUtAIANLQCAFS0AgJCRLwCRkS8AkpEvAJORLwCUsS8AlbEvAJa1LwCXRTMAmE0zAJlVMwCaPTMAmxkzAJyZMwCdiTMAnlUwAJ9JMACgwTAAockwAKLZMACj1TAApM0wAKX9MACm5TAApzUwAKi1MQCpuTEAqu0xAKuxmgCs0ZYArbE6AK61OgAZLQCAsEGUALHNlgCy1ZoAs8GWALTBlgC14ZoAtsGWALf9lgC4yZYAucGWALrZlgC71ZYAvLGWAL29lgC+qZYAv6WWAMUAAAChfSAAooEgACktAICkrScALS0AgDktAICnkSAAXS0AgKnxJwCqZScAq7EnAKyBJwCtgScArp0gAK+BIACwuSAAsekgALK1IABhLQCAtPkgALXVIAC23SAAt80gAEUtAIC51SAATS0AgLuZIACpLQCAcS0AgHUtAIB5LQCAgDknAIH9IACCASAAgxkgAG0tAICFWScAhjkgAIcRIACIFSAAiXEnAIrlJwCLMScAjAEnAI0BJwCOHSAAjwEgAJA5IACRaSAAkjUgAJNRIACUeSAAlVUgAJZdIACXTSAAmHkgAJlVIACaUSAAmxkgAJyFLgCdBdYAnoEuAJ+BLgCArT8AgbU/AIK9PwCDtT8AhK0/AIW5yACG1T8Ah80/AIj1PwCJ/T8AipnIAIvxPwCMATsAjQE7AI6NyACPOQQAkEkEAJFJBACSWQQAk1UEAJRNBACV3TwAlnkEAJd1BACYWQQAmSEEAJohBACbNdQAnCEEAJ3Z5gCeJQQAnx0EAKDpBACh9QQAos0/AKP1BACkFQQApfnUAKYhyACnIcgAqNHUAKktBACqOQQAq03CAKwtBACtdcgArh0EAK95BACwKQQAsTEEALI9BACzOQQAtC0EALX9BQC2qQUAt6kFALiZBQC5mQUAunkFALtFBQC8AQUAvQEFAL4BBQC/AQUAgC0HAIE1BwCCPQcAgzUHAIQtBwCFqQcAhqUHAIdl1QCILQYAiTEGAIoxBgCLDQYAjPnJAI15BgCOWQYAj1UGAJBpyQCRNQYAkj0GAJM1BgCULQYAlcUGAJZdAwCXVQMAmG0DAJl1AwCafQMAm3UDAJxtAwCdET0AnlkDAJ9ZAwCgqQMAoakDAKK5AwCjuQMApKkDAKWpAwCm2QMAp9kDAKjpAwCp6QMAqvkDAKv9AwCs5QMAre0DAK7lAwCvbcMAsKEDALGhAwCyoQMAs6EDALShAwC1zeYAtq0DALelAwC4yeYAuZkDALppAwC7aQMAvHkDAL15AwC+aQMAv2kDAIAAAACBLQCAfS0AgJUtAIDm6QCAsS0AgLUtAIC9LQCA0S0AgPQtAIDr6QCA8OkAgAAuAIAELgCACC4AgPwtAIAQLgCAoSkAgKUpAIAYLgCAIC4AgPXpAIA8LgCAQC4AgEwuAID66QCAVC4AgFguAIA3LwCAqSkAgGwuAICILgCAhC4AgATqAICQLgCACeoAgJwuAICYLgCAoC4AgLAuAIC0LgCArSkAgMQuAIDMLgCA0C4AgNQuAICxKQCADuoAgLUpAID3LgCA+y4AgP8uAIDV6wCAGOoAgNo1AIAvLwCAuSkAgDvqAIAN6wCAPy8AgEcvAIC9KQCAWy8AgGsvAICqIfQAq7U/AKilPwCpzecArkXwAK+hPwCsSfAArTH0AKJl4gCjvT8AoLk/AKG5PwCmlT8Ap50/AKSlPwClnT8Augk8AG8vAIC4CTwAuQk8AHcvAICHLwCAxSkAgMEpAICy3T8AswU9ALBN7wCx1T8Atn3wALe55AC0HT0AtWk8AB3qAICPLwCAoy8AgKcvAIC3LwCAyy8AgMMvAIDHLwCAgrX7AM8vAICA/T8AgfU/AOMvAIDnLwCA/y8AgAcwAICavT8Am/3NAJi9PwCZtT8Anlk/AJ9ZPwCcWT8AnVk/AJKBPwCTaekAkHnkAJGxPwCWgT8Al4H0AJQh5wCVmT8AFzAAgCswAIAs6gCAJzAAgBswAIAzMACAOzAAgE8wAIAx6gCAVzAAgEoAAABLMACAQzAAgMkpAIBfMACAZzAAgG8wAIBjMACAzSkAgIcwAIA26gCAszAAgPUwAIDRMACA2SkAgNUpAIDRKQCAnSsAgKErAID5MACA4TAAgK41AIA9KgCADTEAgCExAIAZMQCAT+oAgN0pAIA1MQCAKTEAgFIxAIBZ6gCAXjEAgD0xAIBmMQCAajEAgG4xAIByMQCAfjEAgF7qAICGMQCA5SkAgJIxAIBj6gCAljEAgOkpAICiMQCArjEAgL4xAIBo6gCA/+kAgG3qAIDeMQCAcuoAgLgJAQC5CQEAuhkBALsZAQC8CQEAvQkBAL45AQC/OQEAsM3FALE1zACymQ4As5kOALSJDgC1iQ4AtjkBALc5AQCo6dkAqckOAKrZDgCrqcUArMUOAK3NDgCuxQ4Ar/kOAKA1DgChPQ4AojUOAKOxxQCk8Q4ApfEOAKbxDgCn8Q4AmGkPAJlpDwCaeQ8Am3kPAJxpDwCdaQ8Ant0OAJ/NDgCQ+eoAkXEPAJJ9DwCTdQ8AlG0PAJVpDwCWWQ8Al1kPAIh5DwCJeQ8AigkPAIsJDwCMGQ8AjRkPAI4NzACPDQ8AgHkPAIF5DwCCSQ8Ag0kPAIRZDwCFWQ8AhkkPAIdJDwCKUQIAi1ECAIj5xgCJQQIAjnECAI/txgCMQQIAjUECAIIVAgCDHQIAgAUCAIEdAgCGdQIAh30CAIQFAgCFfQIAmsUCAJvNAgCYkc8AmYXaAJ7FAgCfzQIAnNUCAJ3NAgCSDQIAkxUCAJANAgCRBQIAlg0CAJf1AgCUDQIAlQUCAKo9AgCrRQIAqD0CAKk1AgCuXQIAr0UCAKxdAgCtVQIAol3GAKMBAgCgNQIAoQ0CAKYBAgCnxdgApBECAKURAgC6OQIAuzkCALg5AgC5OQIAvtkBAL/ZAQC82QEAvdkBALI9AgCzBQIAsD0CALE1AgC2GQIAtxkCALQdAgC16cIA6jEAgPIxAIDiMQCA/jEAgA4yAIAWMgCAIjIAgCYyAIB36gCACjIAgD4yAIBCMgCA7SkAgFIyAIB86gCANjIAgHIyAICB6gCAhuoAgHYyAICKMgCAgjIAgPEpAICOMgCAnjIAgJoyAICmMgCAw+kAgLYyAICL6gCAwjIAgJXqAIDWMgCA9jIAgJrqAIAKMwCADjMAgJ/qAICk6gCAKjMAgDozAID1KQCAPjMAgPkpAIBWMwCAWjMAgGYzAIByMwCA/SkAgIozAICp6gCApjMAgK7qAIAT6gCAwjMAgLPqAIC4AAAAuOoAgL3qAIABKgCABSoAgMfqAIDC6gCAzOoAgIAB3gCB8QcAgvEHAIPxBwCEFQIAhR0CAIYVAgCHEQIAiCXeAIld3gCKOQIAizkCAIwpAgCNKQIAjhkCAI99ygCQTd4AkWECAJJhAgCT7cEAlH0CAJVlAgCWIcAAl2kCAJhZAgCZMcIAmlUCAJstAgCcNQIAnT0CAJ4xAgCfMQIAoNECAKHRAgCi0QIAo9ECAKTxAgCl8QIApvECAKfxAgCo0QIAqdECAKrRAgCr0QIArDECAK0xAgCuMQIArzECALBRAgCxUQIAslECALNRAgC0cQIAtXECALZxAgC3cQIAuFECALlRAgC6+dwAu1UCALxNAgC9NQIAvj0CAL81AgC+7QYAv/UGALztBgC95QYAuskGALvJBgC4xcsAuckGALbtBgC39QYAtO0GALXlBgCyjQYAs/UGALDR3QCxhQYArvEGAK/xBgCs5QYAreEGAKr1BgCr/QYAqMUGAKn9BgCm9QYAp/0GAKTlBgCl/QYAovUGAKP9BgCg+QYAoZ3dAJ75BgCf+QYAnPkGAJ35BgCa+QYAm/kGAJj5BgCZ+QYAlvkGAJf5BgCUcd0AlfkGAJL9BgCT5QYAkP0GAJH1BgCO/QYAj4UGAIz9BgCN9QYAiuEGAIsB3QCI8QYAifEGAIbBBgCHwQYAhPEGAIXxBgCCkccAg+EGAIDpBgCBxcAAgAAAANHqAIACNACABjQAgBI0AIARKgCAFSoAgNvqAIAmNACAGSoAgODqAIDl6gCA6uoAgJY0AIAdKgCAojQAgKY0AIDv6gCA9OoAgL40AIAhKgCA+eoAgNI0AIDWNACAJSoAgP7qAIDyNACAKSoAgAI1AID6NACACjUAgAjrAIAiNQCALSoAgC41AIA2NQCARjUAgDEqAIAS6wCAF+sAgDUqAIAc6wCAXjUAgCHrAIBqNQCAdjUAgCbrAIAr6wCAkjUAgDDrAICaNQCAQOoAgDkqAICyNQCAtjUAgEEqAIC6NQCAFC4AgDXrAIA66wCAReoAgErqAIDeNQCA9jcAgIDNAQCB1QEAgt0BAIPVAQCEzQEAhfUBAIb9AQCH9QEAiM0BAInVAQCK3QEAi/UJAIzJAQCNyQEAjgEcAI89HwCQRR8AkU0fAJJFHwCTXR8AlEUfAJVNHwCWRR8Al30fAJhBxwCZQR8AmkEfAJtBHwCcQR8AnUEfAJ5BHwCfYd8AoL0fAKHFHwCizR8Ao8UfAKTdHwClxR8Aps0fAKfFHwCo/R8AqcUfAKrNHwCrxR8ArN0fAK3FHwCuzR8Ar8UfALC9HwCxRR8Ask0fALNFHwC0/ckAtVkfALZJHwC3SR8AuHkfALl5HwC6SR8Au8XdALxVHwC9XR8AvlUfAL9NHwAKNgCABjYAgA42AIAZLACAEjYAgBY2AIAaNgCAIjYAgD/rAIAmNgCAOjYAgD42AIAqNgCAQjYAgFY2AIA2NgCASjYAgE42AIBSNgCAROsAgE7rAIBJ6wCASSoAgHI2AIB2NgCAfjYAgGLrAICCNgCAU+sAgE0qAIBRKgCAWOsAgF3rAIBVKgCAojYAgKo2AICuNgCAujYAgLY2AIDCNgCAvjYAgMY2AIDKNgCA0jYAgFkqAIDaNgCA3jYAgF0qAIDuNgCAZ+sAgP42AIACNwCAYSoAgA43AICVKQCAbOsAgHHrAIBlKgCAaSoAgDo3AIB26wCAkjcAgJY3AICuNwCAgLUBAIG9AQCCtQEAg80BAITt9ACF0QEAhtEBAIfRAQCI8QEAifEBAIrxAQCL8QEAjNEBAI3RAQCO0QEAj9EBAJB9wwCRBcMAkl35AJO9AQCUpQEAla0BAJalAQCXXQMAmGUDAJltAwCaZQMAm30DAJxlAwCdbQMAnmUDAJ85wwCgoQMAoaEDAKKhAwCjoQMApKEDAKWhAwCmoQMAp6EDAKjhAwCp4QMAquEDAKvhAwCs4QMAreEDAK7hAwCv4QMAsKEDALGhAwCyoQMAs6EDALShAwC1oQMAtqEDALehAwC4YQMAuWEDALphAwC7YQMAvGEDAL1hAwC+pcMAv6HDALo3AICA6wCA0ukAgMY3AIDCNwCAzjcAgNfpAIDaNwCAhesAgIrrAIAmOACAMjgAgDo4AICP6wCAPjgAgGY4AIByOACAdjgAgG44AICCOACAhjgAgJTrAICSOACAbSoAgJo4AICZ6wCAcSoAgNI4AICkLgCA6jgAgJ7rAICo6wCAdSoAgHkqAIASOQCAresAgH0qAICy6wCAMjkAgLfrAIBKOQCAgSoAgFo5AIBmOQCAbjkAgHY5AICFKgCAvOsAgKY5AICyOQCAiSoAgI0qAIC2OQCAwesAgJEqAIDG6wCAy+sAgNDrAICVKgCA9jkAgPo5AIACOgCACjoAgNrrAICQ1QEAkd0BAJLVAQCT7QEAlPUBAJXB+wCW8QEAl/n7AJjNAQCZ1QEAmt0BAJvVAQCcyfsAnckBAEUqAICPAAAAgNkBAIHZAQCC6QEAg+kBAIT5AQCF+QEAhukBAIfpAQCI2QEAidkBAIoJwQCLrQEAjLUBAI29AQCOtQEAj60BAKAAAAChAAAAogAAAKMAAACkAAAApQAAAKYAAACnAAAAqAAAAKkAAACqAAAAqwAAAKwAAACtAAAArgAAAK8AAACwAAAAsQAAALIAAACzAAAAtAAAALUAAAC2AAAAtwAAALgAAAC5AAAAugAAALsAAAC8AAAAvQAAAL4AAAC/AAAAACAAIMyBACDMgwAgzIQAIMyFACDMhgAgzIcAIMyIACDMiMyAACDMiMyBACDMiM2CACDMigAgzIsAIMyTACDMk8yAACDMk8yBACDMk82CACDMlAAgzJTMgAAgzJTMgQAgzJTNggAgzKcAIMyoACDMswAgzYIAIM2FACDZiwAg2YwAINmM2ZEAINmNACDZjdmRACDZjgAg2Y7ZkQAg2Y8AINmP2ZEAINmQACDZkNmRACDZkQAg2ZHZsAAg2ZIAIOOCmQAg44KaACEAISEAIT8AIgAjACQAJQAmACcAKAAoMSkAKDEwKQAoMTEpACgxMikAKDEzKQAoMTQpACgxNSkAKDE2KQAoMTcpACgxOCkAKDE5KQAoMikAKDIwKQAoMykAKDQpACg1KQAoNikAKDcpACg4KQAoOSkAKEEpAChCKQAoQykAKEQpAChFKQAoRikAKEcpAChIKQAoSSkAKEopAChLKQAoTCkAKE0pAChOKQAoTykAKFApAChRKQAoUikAKFMpAChUKQAoVSkAKFYpAChXKQAoWCkAKFkpAChaKQAoYSkAKGIpAChjKQAoZCkAKGUpAChmKQAoZykAKGgpAChpKQAoaikAKGspAChsKQAobSkAKG4pAChvKQAocCkAKHEpAChyKQAocykAKHQpACh1KQAodikAKHcpACh4KQAoeSkAKHopACjhhIApACjhhIIpACjhhIMpACjhhIUpACjhhIYpACjhhIcpACjhhIkpACjhhIspACjhhIwpACjhhI4pACjhhI8pACjhhJApACjhhJEpACjhhJIpACjkuIApACjkuIMpACjkuIkpACjkuZ0pACjkuowpACjkupQpACjku6MpACjkvIEpACjkvJEpACjlhaspACjlha0pACjlirQpACjljYEpACjljZQpACjlkI0pACjlkbwpACjlm5spACjlnJ8pACjlraYpACjml6UpACjmnIgpACjmnIkpACjmnKgpACjmoKopACjmsLQpACjngaspACjnibkpACjnm6MpACjnpL4pACjnpZ0pACjnpa0pACjoh6opACjoh7MpACjosqEpACjos4cpACjph5EpACjqsIApACjrgpgpACjri6QpACjrnbwpACjrp4gpACjrsJQpACjsgqwpACjslYQpACjsmKTsoIQpACjsmKTtm4QpACjsnpApACjso7wpACjssKgpACjsubQpACjtg4ApACjtjIwpACjtlZgpACkAKgArACwALQAuAC4uAC4uLgAvADAAMCwAMC4AMOKBhDMAMOeCuQAxADEsADEuADEwADEwLgAxMOaXpQAxMOaciAAxMOeCuQAxMQAxMS4AMTHml6UAMTHmnIgAMTHngrkAMTIAMTIuADEy5pelADEy5pyIADEy54K5ADEzADEzLgAxM+aXpQAxM+eCuQAxNAAxNC4AMTTml6UAMTTngrkAMTUAMTUuADE15pelADE154K5ADE2ADE2LgAxNuaXpQAxNueCuQAxNwAxNy4AMTfml6UAMTfngrkAMTgAMTguADE45pelADE454K5ADE5ADE5LgAxOeaXpQAxOeeCuQAx4oGEADHigYQxMAAx4oGEMgAx4oGEMwAx4oGENAAx4oGENQAx4oGENgAx4oGENwAx4oGEOAAx4oGEOQAx5pelADHmnIgAMeeCuQAyADIsADIuADIwADIwLgAyMOaXpQAyMOeCuQAyMQAyMeaXpQAyMeeCuQAyMgAyMuaXpQAyMueCuQAyMwAyM+aXpQAyM+eCuQAyNAAyNOaXpQAyNOeCuQAyNQAyNeaXpQAyNgAyNuaXpQAyNwAyN+aXpQAyOAAyOOaXpQAyOQAyOeaXpQAy4oGEMwAy4oGENQAy5pelADLmnIgAMueCuQAzADMsADMuADMwADMw5pelADMxADMx5pelADMyADMzADM0ADM1ADM2ADM3ADM4ADM5ADPigYQ0ADPigYQ1ADPigYQ4ADPml6UAM+aciAAz54K5ADQANCwANC4ANDAANDEANDIANDMANDQANDUANDYANDcANDgANDkANOKBhDUANOaXpQA05pyIADTngrkANQA1LAA1LgA1MAA14oGENgA14oGEOAA15pelADXmnIgANeeCuQA2ADYsADYuADbml6UANuaciAA254K5ADcANywANy4AN+KBhDgAN+aXpQA35pyIADfngrkAOAA4LAA4LgA45pelADjmnIgAOOeCuQA5ADksADkuADnml6UAOeaciAA554K5ADoAOjo9ADsAPAA9AD09AD09PQA+AD8APyEAPz8AQABBAEFVAEHiiJVtAEIAQnEAQwBDRABDby4AQ+KIlWtnAEQAREoARFoARHoARMW9AETFvgBFAEYARkFYAEcAR0IAR0h6AEdQYQBHeQBIAEhQAEhWAEhnAEh6AEkASUkASUlJAElKAElVAElWAElYAEoASwBLQgBLSwBLTQBMAExKAExURABMagBMwrcATQBNQgBNQwBNRABNSHoATVBhAE1WAE1XAE3OqQBOAE5KAE5qAE5vAE8AUABQSABQUE0AUFBWAFBSAFBURQBQYQBRAFIAUnMAUwBTRABTTQBTUwBTdgBUAFRFTABUSHoAVE0AVQBWAFZJAFZJSQBWSUlJAFbiiJVtAFcAV0MAV1oAV2IAWABYSQBYSUkAWQBaAFsAXABdAF4AXwBgAGEAYS5tLgBhL2MAYS9zAGHKvgBiAGJhcgBjAGMvbwBjL3UAY2FsAGNjAGNkAGNtAGNtMgBjbTMAZABkQgBkYQBkbABkbQBkbTIAZG0zAGR6AGTFvgBlAGVWAGVyZwBmAGZmAGZmaQBmZmwAZmkAZmwAZm0AZwBnYWwAaABoUGEAaGEAaQBpaQBpaWkAaWoAaW4AaXYAaXgAagBrAGtBAGtIegBrUGEAa1YAa1cAa2NhbABrZwBrbABrbQBrbTIAa20zAGt0AGvOqQBsAGxqAGxtAGxuAGxvZwBseABswrcAbQBtMgBtMwBtQQBtVgBtVwBtYgBtZwBtaWwAbWwAbW0AbW0yAG1tMwBtb2wAbXMAbeKIlXMAbeKIlXMyAG4AbkEAbkYAblYAblcAbmoAbm0AbnMAbwBvVgBwAHAubS4AcEEAcEYAcFYAcFcAcGMAcHMAcQByAHJhZAByYWTiiJVzAHJhZOKIlXMyAHMAc3IAc3QAdAB1AHYAdmkAdmlpAHZpaWkAdwB4AHhpAHhpaQB5AHoAewB8AH0AwqIAwqMAwqUAwqYAwqwAwrBDAMKwRgDCtwDDgADDgQDDggDDgwDDhADDhQDDhgDDhwDDiADDiQDDigDDiwDDjADDjQDDjgDDjwDDkQDDkgDDkwDDlADDlQDDlgDDmQDDmgDDmwDDnADDnQDDoADDoQDDogDDowDDpADDpQDDpwDDqADDqQDDqgDDqwDDrADDrQDDrgDDrwDDsADDsQDDsgDDswDDtADDtQDDtgDDuQDDugDDuwDDvADDvQDDvwDEgADEgQDEggDEgwDEhADEhQDEhgDEhwDEiADEiQDEigDEiwDEjADEjQDEjgDEjwDEkgDEkwDElADElQDElgDElwDEmADEmQDEmgDEmwDEnADEnQDEngDEnwDEoADEoQDEogDEowDEpADEpQDEpgDEpwDEqADEqQDEqgDEqwDErADErQDErgDErwDEsADEsQDEtADEtQDEtgDEtwDEuQDEugDEuwDEvADEvQDEvgDFgwDFhADFhQDFhgDFhwDFiADFiwDFjADFjQDFjgDFjwDFkADFkQDFkwDFlADFlQDFlgDFlwDFmADFmQDFmgDFmwDFnADFnQDFngDFnwDFoADFoQDFogDFowDFpADFpQDFqADFqQDFqgDFqwDFrADFrQDFrgDFrwDFsADFsQDFsgDFswDFtADFtQDFtgDFtwDFuADFuQDFugDFuwDFvADFvQDFvgDGjgDGkADGoADGoQDGqwDGrwDGsADHjQDHjgDHjwDHkADHkQDHkgDHkwDHlADHlQDHlgDHlwDHmADHmQDHmgDHmwDHnADHngDHnwDHoADHoQDHogDHowDHpgDHpwDHqADHqQDHqgDHqwDHrADHrQDHrgDHrwDHsADHtADHtQDHuADHuQDHugDHuwDHvADHvQDHvgDHvwDIgADIgQDIggDIgwDIhADIhQDIhgDIhwDIiADIiQDIigDIiwDIjADIjQDIjgDIjwDIkADIkQDIkgDIkwDIlADIlQDIlgDIlwDImADImQDImgDImwDIngDInwDIogDIpgDIpwDIqADIqQDIqgDIqwDIrADIrQDIrgDIrwDIsADIsQDIsgDIswDItwDJkADJkQDJkgDJlADJlQDJmQDJmwDJnADJnwDJoQDJowDJpQDJpgDJqADJqQDJqgDJqwDJrQDJrwDJsADJsQDJsgDJswDJtADJtQDJuADJuQDJuwDKgQDKggDKgwDKiQDKigDKiwDKjADKkADKkQDKkgDKlQDKnQDKnwDKuQDKvG4AzIAAzIEAzIjMgQDMkwDOhgDOiADOiQDOigDOjADOjgDOjwDOkADOkQDOkgDOkwDOlADOlQDOlgDOlwDOmADOmQDOmgDOmwDOnADOnQDOngDOnwDOoADOoQDOowDOpADOpQDOpgDOpwDOqADOqQDOqgDOqwDOrADOrQDOrgDOrwDOsADOsQDOsgDOswDOtADOtQDOtgDOtwDOuADOuQDOugDOuwDOvADOvEEAzrxGAM68VgDOvFcAzrxnAM68bADOvG0AzrxzAM69AM6+AM6/AM+AAM+BAM+CAM+DAM+EAM+FAM+GAM+HAM+IAM+JAM+KAM+LAM+MAM+NAM+OAM+cAM+dANCAANCBANCDANCHANCMANCNANCOANCZANC5ANC9ANGKANGMANGQANGRANGTANGXANGcANGdANGeANG2ANG3ANOBANOCANOQANORANOSANOTANOWANOXANOaANObANOcANOdANOeANOfANOiANOjANOkANOlANOmANOnANOqANOrANOsANOtANOuANOvANOwANOxANOyANOzANO0ANO1ANO4ANO5ANWl1oIA1bTVpQDVtNWrANW01a0A1bTVtgDVvtW2ANeQANeQ1rcA15DWuADXkNa8ANeQ15wA15EA15HWvADXkda/ANeSANeS1rwA15MA15PWvADXlADXlNa8ANeV1rkA15XWvADXlta8ANeY1rwA15nWtADXmda8ANea1rwA15sA15vWvADXm9a/ANecANec1rwA150A157WvADXoNa8ANeh1rwA16IA16PWvADXpNa8ANek1r8A16bWvADXp9a8ANeoANeo1rwA16nWvADXqda814EA16nWvNeCANep14EA16nXggDXqgDXqta8ANey1rcA2KEA2KIA2KMA2KQA2KUA2KYA2KbYpwDYptisANim2K0A2KbYrgDYptixANim2LIA2KbZhQDYptmGANim2YcA2KbZiADYptmJANim2YoA2KbbhgDYptuHANim24gA2KbbkADYptuVANinANin2YPYqNixANin2YTZhNmHANin2YsA2KfZtADYqADYqNisANio2K0A2KjYrdmKANio2K4A2KjYrtmKANio2LEA2KjYsgDYqNmFANio2YYA2KjZhwDYqNmJANio2YoA2KkA2KoA2KrYrADYqtis2YUA2KrYrNmJANiq2KzZigDYqtitANiq2K3YrADYqtit2YUA2KrYrgDYqtiu2YUA2KrYrtmJANiq2K7ZigDYqtixANiq2LIA2KrZhQDYqtmF2KwA2KrZhditANiq2YXYrgDYqtmF2YkA2KrZhdmKANiq2YYA2KrZhwDYqtmJANiq2YoA2KsA2KvYrADYq9ixANir2LIA2KvZhQDYq9mGANir2YcA2KvZiQDYq9mKANisANis2K0A2KzYrdmJANis2K3ZigDYrNmEINis2YTYp9mE2YcA2KzZhQDYrNmF2K0A2KzZhdmJANis2YXZigDYrNmJANis2YoA2K0A2K3YrADYrdis2YoA2K3ZhQDYrdmF2YkA2K3ZhdmKANit2YkA2K3ZigDYrgDYrtisANiu2K0A2K7ZhQDYrtmJANiu2YoA2K8A2LAA2LDZsADYsQDYsdiz2YjZhADYsdmwANix24zYp9mEANiyANizANiz2KwA2LPYrNitANiz2KzZiQDYs9itANiz2K3YrADYs9iuANiz2K7ZiQDYs9iu2YoA2LPYsQDYs9mFANiz2YXYrADYs9mF2K0A2LPZhdmFANiz2YcA2LPZiQDYs9mKANi0ANi02KwA2LTYrNmKANi02K0A2LTYrdmFANi02K3ZigDYtNiuANi02LEA2LTZhQDYtNmF2K4A2LTZhdmFANi02YcA2LTZiQDYtNmKANi1ANi12K0A2LXYrditANi12K3ZigDYtdiuANi12LEA2LXZhNi52YUA2LXZhNmJANi12YTZiSDYp9mE2YTZhyDYudmE2YrZhyDZiNiz2YTZhQDYtdmE25IA2LXZhQDYtdmF2YUA2LXZiQDYtdmKANi2ANi22KwA2LbYrQDYttit2YkA2LbYrdmKANi22K4A2LbYrtmFANi22LEA2LbZhQDYttmJANi22YoA2LcA2LfYrQDYt9mFANi32YXYrQDYt9mF2YUA2LfZhdmKANi32YkA2LfZigDYuADYuNmFANi5ANi52KwA2LnYrNmFANi52YTZitmHANi52YUA2LnZhdmFANi52YXZiQDYudmF2YoA2LnZiQDYudmKANi6ANi62KwA2LrZhQDYutmF2YUA2LrZhdmJANi62YXZigDYutmJANi62YoA2YDZiwDZgNmOANmA2Y7ZkQDZgNmPANmA2Y/ZkQDZgNmQANmA2ZDZkQDZgNmRANmA2ZIA2YEA2YHYrADZgditANmB2K4A2YHYrtmFANmB2YUA2YHZhdmKANmB2YkA2YHZigDZggDZgtitANmC2YTbkgDZgtmFANmC2YXYrQDZgtmF2YUA2YLZhdmKANmC2YkA2YLZigDZgwDZg9inANmD2KwA2YPYrQDZg9iuANmD2YQA2YPZhQDZg9mF2YUA2YPZhdmKANmD2YkA2YPZigDZhADZhNiiANmE2KMA2YTYpQDZhNinANmE2KwA2YTYrNisANmE2KzZhQDZhNis2YoA2YTYrQDZhNit2YUA2YTYrdmJANmE2K3ZigDZhNiuANmE2K7ZhQDZhNmFANmE2YXYrQDZhNmF2YoA2YTZhwDZhNmJANmE2YoA2YUA2YXYpwDZhdisANmF2KzYrQDZhdis2K4A2YXYrNmFANmF2KzZigDZhditANmF2K3YrADZhdit2YUA2YXYrdmF2K8A2YXYrdmKANmF2K4A2YXYrtisANmF2K7ZhQDZhdiu2YoA2YXZhQDZhdmF2YoA2YXZiQDZhdmKANmGANmG2KwA2YbYrNitANmG2KzZhQDZhtis2YkA2YbYrNmKANmG2K0A2YbYrdmFANmG2K3ZiQDZhtit2YoA2YbYrgDZhtixANmG2LIA2YbZhQDZhtmF2YkA2YbZhdmKANmG2YYA2YbZhwDZhtmJANmG2YoA2YcA2YfYrADZh9mFANmH2YXYrADZh9mF2YUA2YfZiQDZh9mKANmH2bAA2YgA2YjYs9mE2YUA2YjZtADZiQDZidmwANmKANmK2KwA2YrYrNmKANmK2K0A2YrYrdmKANmK2K4A2YrYsQDZitiyANmK2YUA2YrZhdmFANmK2YXZigDZitmGANmK2YcA2YrZiQDZitmKANmK2bQA2a4A2a8A2bEA2bkA2boA2bsA2b4A2b8A2oAA2oMA2oQA2oYA2ocA2ogA2owA2o0A2o4A2pEA2pgA2qEA2qQA2qYA2qkA2q0A2q8A2rEA2rMA2roA2rsA2r4A24AA24EA24IA24UA24YA24cA24fZtADbiADbiQDbiwDbjADbkADbkgDbkwDgpJXgpLwA4KSW4KS8AOCkl+CkvADgpJzgpLwA4KSh4KS8AOCkouCkvADgpKkA4KSr4KS8AOCkr+CkvADgpLEA4KS0AOCmoeCmvADgpqLgprwA4Kav4Ka8AOCniwDgp4wA4KiW4Ki8AOCol+CovADgqJzgqLwA4Kir4Ki8AOCosuCovADgqLjgqLwA4Kyh4Ky8AOCsouCsvADgrYgA4K2LAOCtjADgrpQA4K+KAOCviwDgr4wA4LGIAOCzgADgs4cA4LOIAOCzigDgs4sA4LWKAOC1iwDgtYwA4LeaAOC3nADgt50A4LeeAOC5jeC4sgDguqvgupkA4Lqr4LqhAOC7jeC6sgDgvIsA4L2A4L61AOC9guC+twDgvYzgvrcA4L2R4L63AOC9luC+twDgvZvgvrcA4L2x4L2yAOC9seC9tADgvbHgvoAA4L6Q4L61AOC+kuC+twDgvpzgvrcA4L6h4L63AOC+puC+twDgvqvgvrcA4L6y4L2x4L6AAOC+suC+gADgvrPgvbHgvoAA4L6z4L6AAOGApgDhg5wA4YSAAOGEgQDhhIIA4YSDAOGEhADhhIUA4YSGAOGEhwDhhIgA4YSJAOGEigDhhIsA4YSMAOGEjQDhhI4A4YSPAOGEkADhhJEA4YSSAOGElADhhJUA4YSaAOGEnADhhJ0A4YSeAOGEoADhhKEA4YSiAOGEowDhhKcA4YSpAOGEqwDhhKwA4YStAOGErgDhhK8A4YSyAOGEtgDhhYAA4YWHAOGFjADhhZcA4YWYAOGFmQDhhaAA4YWhAOGFogDhhaMA4YWkAOGFpQDhhaYA4YWnAOGFqADhhakA4YWqAOGFqwDhhawA4YWtAOGFrgDhha8A4YWwAOGFsQDhhbIA4YWzAOGFtADhhbUA4YaEAOGGhQDhhogA4YaRAOGGkgDhhpQA4YaeAOGGoQDhhqoA4YasAOGGrQDhhrAA4YaxAOGGsgDhhrMA4Ya0AOGGtQDhh4cA4YeIAOGHjADhh44A4YeTAOGHlwDhh5kA4YedAOGHnwDhh7EA4YeyAOGshgDhrIgA4ayKAOGsjADhrI4A4aySAOGsuwDhrL0A4a2AAOGtgQDhrYMA4bSCAOG0lgDhtJcA4bScAOG0nQDhtKUA4bW7AOG2hQDhuIAA4biBAOG4ggDhuIMA4biEAOG4hQDhuIYA4biHAOG4iADhuIkA4biKAOG4iwDhuIwA4biNAOG4jgDhuI8A4biQAOG4kQDhuJIA4biTAOG4lADhuJUA4biWAOG4lwDhuJgA4biZAOG4mgDhuJsA4bicAOG4nQDhuJ4A4bifAOG4oADhuKEA4biiAOG4owDhuKQA4bilAOG4pgDhuKcA4bioAOG4qQDhuKoA4birAOG4rADhuK0A4biuAOG4rwDhuLAA4bixAOG4sgDhuLMA4bi0AOG4tQDhuLYA4bi3AOG4uADhuLkA4bi6AOG4uwDhuLwA4bi9AOG4vgDhuL8A4bmAAOG5gQDhuYIA4bmDAOG5hADhuYUA4bmGAOG5hwDhuYgA4bmJAOG5igDhuYsA4bmMAOG5jQDhuY4A4bmPAOG5kADhuZEA4bmSAOG5kwDhuZQA4bmVAOG5lgDhuZcA4bmYAOG5mQDhuZoA4bmbAOG5nADhuZ0A4bmeAOG5nwDhuaAA4bmhAOG5ogDhuaMA4bmkAOG5pQDhuaYA4bmnAOG5qADhuakA4bmqAOG5qwDhuawA4bmtAOG5rgDhua8A4bmwAOG5sQDhubIA4bmzAOG5tADhubUA4bm2AOG5twDhubgA4bm5AOG5ugDhubsA4bm8AOG5vQDhub4A4bm/AOG6gADhuoEA4bqCAOG6gwDhuoQA4bqFAOG6hgDhuocA4bqIAOG6iQDhuooA4bqLAOG6jADhuo0A4bqOAOG6jwDhupAA4bqRAOG6kgDhupMA4bqUAOG6lQDhupYA4bqXAOG6mADhupkA4bqgAOG6oQDhuqIA4bqjAOG6pADhuqUA4bqmAOG6pwDhuqgA4bqpAOG6qgDhuqsA4bqsAOG6rQDhuq4A4bqvAOG6sADhurEA4bqyAOG6swDhurQA4bq1AOG6tgDhurcA4bq4AOG6uQDhuroA4bq7AOG6vADhur0A4bq+AOG6vwDhu4AA4buBAOG7ggDhu4MA4buEAOG7hQDhu4YA4buHAOG7iADhu4kA4buKAOG7iwDhu4wA4buNAOG7jgDhu48A4buQAOG7kQDhu5IA4buTAOG7lADhu5UA4buWAOG7lwDhu5gA4buZAOG7mgDhu5sA4bucAOG7nQDhu54A4bufAOG7oADhu6EA4buiAOG7owDhu6QA4bulAOG7pgDhu6cA4buoAOG7qQDhu6oA4burAOG7rADhu60A4buuAOG7rwDhu7AA4buxAOG7sgDhu7MA4bu0AOG7tQDhu7YA4bu3AOG7uADhu7kA4byAAOG8gQDhvIIA4byDAOG8hADhvIUA4byGAOG8hwDhvIgA4byJAOG8igDhvIsA4byMAOG8jQDhvI4A4byPAOG8kADhvJEA4bySAOG8kwDhvJQA4byVAOG8mADhvJkA4byaAOG8mwDhvJwA4bydAOG8oADhvKEA4byiAOG8owDhvKQA4bylAOG8pgDhvKcA4byoAOG8qQDhvKoA4byrAOG8rADhvK0A4byuAOG8rwDhvLAA4byxAOG8sgDhvLMA4by0AOG8tQDhvLYA4by3AOG8uADhvLkA4by6AOG8uwDhvLwA4by9AOG8vgDhvL8A4b2AAOG9gQDhvYIA4b2DAOG9hADhvYUA4b2IAOG9iQDhvYoA4b2LAOG9jADhvY0A4b2QAOG9kQDhvZIA4b2TAOG9lADhvZUA4b2WAOG9lwDhvZkA4b2bAOG9nQDhvZ8A4b2gAOG9oQDhvaIA4b2jAOG9pADhvaUA4b2mAOG9pwDhvagA4b2pAOG9qgDhvasA4b2sAOG9rQDhva4A4b2vAOG9sADhvbIA4b20AOG9tgDhvbgA4b26AOG9vADhvoAA4b6BAOG+ggDhvoMA4b6EAOG+hQDhvoYA4b6HAOG+iADhvokA4b6KAOG+iwDhvowA4b6NAOG+jgDhvo8A4b6QAOG+kQDhvpIA4b6TAOG+lADhvpUA4b6WAOG+lwDhvpgA4b6ZAOG+mgDhvpsA4b6cAOG+nQDhvp4A4b6fAOG+oADhvqEA4b6iAOG+owDhvqQA4b6lAOG+pgDhvqcA4b6oAOG+qQDhvqoA4b6rAOG+rADhvq0A4b6uAOG+rwDhvrAA4b6xAOG+sgDhvrMA4b60AOG+tgDhvrcA4b64AOG+uQDhvroA4b68AOG/ggDhv4MA4b+EAOG/hgDhv4cA4b+IAOG/igDhv4wA4b+QAOG/kQDhv5IA4b+WAOG/lwDhv5gA4b+ZAOG/mgDhv6AA4b+hAOG/ogDhv6QA4b+lAOG/pgDhv6cA4b+oAOG/qQDhv6oA4b+sAOG/sgDhv7MA4b+0AOG/tgDhv7cA4b+4AOG/ugDhv7wA4oCQAOKAkwDigJQA4oCy4oCyAOKAsuKAsuKAsgDigLLigLLigLLigLIA4oC14oC1AOKAteKAteKAtQDigqkA4oaQAOKGkQDihpIA4oaTAOKGmgDihpsA4oauAOKHjQDih44A4oePAOKIggDiiIQA4oiHAOKIiQDiiIwA4oiRAOKIkgDiiKQA4oimAOKIq+KIqwDiiKviiKviiKsA4oir4oir4oir4oirAOKIruKIrgDiiK7iiK7iiK4A4omBAOKJhADiiYcA4omJAOKJoADiiaIA4omtAOKJrgDiia8A4omwAOKJsQDiibQA4om1AOKJuADiibkA4oqAAOKKgQDiioQA4oqFAOKKiADiiokA4oqsAOKKrQDiiq4A4oqvAOKLoADii6EA4ouiAOKLowDii6oA4ourAOKLrADii60A4pSCAOKWoADil4sA4qaFAOKmhgDiq53MuADitaEA44CBAOOAggDjgIgA44CJAOOAigDjgIsA44CMAOOAjQDjgI4A44CPAOOAkADjgJEA44CSAOOAlADjgJRT44CVAOOAlOS4ieOAlQDjgJTkuozjgJUA44CU5Yud44CVAOOAlOWuieOAlQDjgJTmiZPjgJUA44CU5pWX44CVAOOAlOacrOOAlQDjgJTngrnjgJUA44CU55uX44CVAOOAlQDjgJYA44CXAOOBjADjgY4A44GQAOOBkgDjgZQA44GWAOOBmADjgZoA44GcAOOBngDjgaAA44GiAOOBpQDjgacA44GpAOOBsADjgbEA44GzAOOBtADjgbYA44G3AOOBuQDjgboA44G744GLAOOBvADjgb0A44KI44KKAOOClADjgpkA44KaAOOCngDjgqEA44KiAOOCouODkeODvOODiADjgqLjg6vjg5XjgqEA44Ki44Oz44Oa44KiAOOCouODvOODqwDjgqMA44KkAOOCpOODi+ODs+OCsADjgqTjg7Pjg4EA44KlAOOCpgDjgqbjgqnjg7MA44KnAOOCqADjgqjjgrnjgq/jg7zjg4kA44Ko44O844Kr44O8AOOCqQDjgqoA44Kq44Oz44K5AOOCquODvOODoADjgqsA44Kr44Kk44OqAOOCq+ODqeODg+ODiADjgqvjg63jg6rjg7wA44KsAOOCrOODreODswDjgqzjg7Pjg54A44KtAOOCreODpeODquODvADjgq3jg60A44Kt44Ot44Kw44Op44OgAOOCreODreODoeODvOODiOODqwDjgq3jg63jg6/jg4Pjg4gA44KuAOOCruOCrADjgq7jg4vjg7wA44Ku44Or44OA44O8AOOCrwDjgq/jg6vjgrzjgqTjg60A44Kv44Ot44O844ONAOOCsADjgrDjg6njg6AA44Kw44Op44Og44OI44OzAOOCsQDjgrHjg7zjgrkA44KyAOOCswDjgrPjgrMA44Kz44OIAOOCs+ODq+ODigDjgrPjg7zjg50A44K0AOOCtQDjgrXjgqTjgq/jg6sA44K144Oz44OB44O844OgAOOCtgDjgrcA44K344Oq44Oz44KwAOOCuADjgrkA44K6AOOCuwDjgrvjg7Pjg4EA44K744Oz44OIAOOCvADjgr0A44K+AOOCvwDjg4AA44OA44O844K5AOODgQDjg4IA44ODAOODhADjg4UA44OGAOODhwDjg4fjgrcA44OIAOODiOODswDjg4kA44OJ44OrAOODigDjg4rjg44A44OLAOODjADjg40A44OOAOODjuODg+ODiADjg48A44OP44Kk44OEAOODkADjg5Djg7zjg6zjg6sA44ORAOODkeODvOOCu+ODs+ODiADjg5Hjg7zjg4QA44OSAOODkwDjg5Pjg6sA44OUAOODlOOCouOCueODiOODqwDjg5Tjgq/jg6sA44OU44KzAOODlQDjg5XjgqHjg6njg4Pjg4kA44OV44Kj44O844OIAOODleODqeODswDjg5YA44OW44OD44K344Kn44OrAOODlwDjg5gA44OY44Kv44K/44O844OrAOODmOODq+ODhADjg5kA44OZ44O844K/AOODmgDjg5rjgr0A44Oa44OL44OSAOODmuODs+OCuQDjg5rjg7zjgrgA44ObAOODm+ODswDjg5vjg7zjg6sA44Ob44O844OzAOODnADjg5zjg6vjg4gA44OdAOODneOCpOODs+ODiADjg53jg7Pjg4kA44OeAOODnuOCpOOCr+ODrQDjg57jgqTjg6sA44Oe44OD44OPAOODnuODq+OCrwDjg57jg7Pjgrfjg6fjg7MA44OfAOODn+OCr+ODreODswDjg5/jg6oA44Of44Oq44OQ44O844OrAOODoADjg6EA44Oh44KsAOODoeOCrOODiOODswDjg6Hjg7zjg4jjg6sA44OiAOODowDjg6QA44Ok44O844OJAOODpOODvOODqwDjg6UA44OmAOODpuOCouODswDjg6cA44OoAOODqQDjg6oA44Oq44OD44OI44OrAOODquODqQDjg6sA44Or44OU44O8AOODq+ODvOODluODqwDjg6wA44Os44OgAOODrOODs+ODiOOCsuODswDjg60A44OvAOODr+ODg+ODiADjg7AA44OxAOODsgDjg7MA44O0AOODtwDjg7gA44O5AOODugDjg7sA44O8AOODvgDjkp4A45K5AOOSuwDjk58A45SVAOObrgDjm7wA456BAOOgrwDjoaIA46G8AOOjhwDjo6MA46ScAOOkugDjqK4A46msAOOrpADjrIgA46yZAOOtiQDjrp0A47CYAOOxjgDjtLMA47aWAOO6rADjurgA47ybAOO/vADkgIgA5ICYAOSAuQDkgYYA5IKWAOSDowDkhK8A5IiCAOSIpwDkiqAA5IyBAOSMtADkjZkA5I+VAOSPmQDkkIsA5JGrAOSUqwDklZ0A5JWhAOSVqwDkl5cA5Je5AOSYtQDkmr4A5JuHAOSmlQDkp6YA5KmuAOSptgDkqrIA5KyzAOSvjgDks44A5LOtAOSzuADktZYA5LiAAOS4gQDkuIMA5LiJAOS4igDkuIsA5LiNAOS4mQDkuKYA5LioAOS4rQDkuLIA5Li2AOS4uADkuLkA5Li9AOS4vwDkuYEA5LmZAOS5nQDkuoIA5LqFAOS6hgDkuowA5LqUAOS6oADkuqQA5LquAOS6ugDku4AA5LuMAOS7pADkvIEA5LyRAOS9oADkvoAA5L6GAOS+iwDkvq4A5L67AOS+vwDlgIIA5YCrAOWBugDlgpkA5YOPAOWDmgDlg6cA5YSqAOWEvwDlhYAA5YWFAOWFjQDlhZQA5YWkAOWFpQDlhacA5YWoAOWFqQDlhasA5YWtAOWFtwDlhoAA5YaCAOWGjQDlhpIA5YaVAOWGlgDlhpcA5YaZAOWGpADlhqsA5YasAOWGtQDlhrcA5YeJAOWHjADlh5wA5YeeAOWHoADlh7UA5YiAAOWIgwDliIcA5YiXAOWInQDliKkA5Yi6AOWIuwDliYYA5YmNAOWJsgDlibcA5YqJAOWKmwDliqMA5YqzAOWKtADli4cA5YuJAOWLkgDli54A5YukAOWLtQDli7kA5Yu6AOWMhQDljIYA5YyVAOWMlwDljJoA5Yy4AOWMuwDljL8A5Y2BAOWNhADljYUA5Y2JAOWNkQDljZQA5Y2aAOWNnADljakA5Y2wAOWNswDljbUA5Y29AOWNvwDljoIA5Y62AOWPgwDlj4gA5Y+KAOWPjADlj58A5Y+jAOWPpQDlj6sA5Y+vAOWPsQDlj7MA5ZCGAOWQiADlkI0A5ZCPAOWQnQDlkLgA5ZC5AOWRggDlkYgA5ZGoAOWSngDlkqIA5ZK9AOWTtgDllJAA5ZWPAOWVkwDllZUA5ZWjAOWWhADllocA5ZaZAOWWnQDllqsA5ZazAOWWtgDll4AA5ZeCAOWXogDlmIYA5ZmRAOWZqADlmbQA5ZuXAOWbmwDlm7kA5ZyWAOWclwDlnJ8A5ZywAOWeiwDln44A5Z+0AOWgjQDloLEA5aCyAOWhgADloZoA5aGeAOWiqADloqwA5aKzAOWjmADlo58A5aOrAOWjrgDlo7AA5aOyAOWjtwDlpIIA5aSGAOWkigDlpJUA5aSaAOWknADlpKIA5aSnAOWkp+atowDlpKkA5aWEAOWliADlpZEA5aWUAOWlogDlpbMA5aeYAOWnrADlqJsA5ainAOWpogDlqaYA5aq1AOWsiADlrKgA5ay+AOWtkADlrZcA5a2mAOWugADlroUA5a6XAOWvgwDlr5gA5a+nAOWvrgDlr7MA5a+4AOWvvwDlsIYA5bCPAOWwogDlsLgA5bC/AOWxoADlsaIA5bGkAOWxpQDlsa4A5bGxAOWyjQDls4AA5bSZAOW1gwDltZAA5bWrAOW1rgDltbwA5bayAOW2ugDlt5sA5behAOW3ogDlt6UA5bemAOW3sQDlt70A5be+AOW4qADluL0A5bmpAOW5sgDlubPmiJAA5bm0AOW5ugDlubwA5bm/AOW6pgDlurAA5bqzAOW6tgDlu4kA5buKAOW7kgDlu5MA5buZAOW7rADlu7QA5bu+AOW8hADlvIsA5byTAOW8ogDlvZAA5b2TAOW9oQDlvaIA5b2pAOW9qwDlvbMA5b6LAOW+jADlvpcA5b6aAOW+qQDlvq0A5b+DAOW/jQDlv5cA5b+1AOW/uQDmgJIA5oCcAOaBtQDmgoEA5oKUAOaDhwDmg5gA5oOhAOaEiADmhYQA5oWIAOaFjADmhY4A5oWgAOaFqADmhboA5oaOAOaGkADmhqQA5oavAOaGsgDmh54A5oeyAOaHtgDmiIAA5oiIAOaIkADmiJsA5oiuAOaItADmiLYA5omLAOaJkwDmiZ0A5oqVAOaKsQDmi4kA5ouPAOaLkwDmi5QA5ou8AOaLvgDmjIcA5oy9AOaNkADmjZUA5o2oAOaNuwDmjoMA5o6gAOaOqQDmj4QA5o+FAOaPpADmkJwA5pCiAOaRkgDmkakA5pG3AOaRvgDmkpoA5pKdAOaThADmlK8A5pS0AOaVjwDmlZYA5pWsAOaVuADmlocA5paXAOaWmQDmlqQA5pawAOaWuQDml4UA5pegAOaXogDml6MA5pelAOaYjuayuwDmmJMA5pigAOaYreWSjADmmYkA5pm0AOaaiADmmpEA5pqcAOaatADmm4YA5puwAOabtADmm7gA5pyAAOaciADmnIkA5pyXAOacmwDmnKEA5pyoAOadjgDmnZMA5p2WAOadngDmnbsA5p6FAOaelwDmn7MA5p+6AOaglwDmoJ8A5qCqAOagquW8j+S8muekvgDmoZIA5qKBAOaihQDmoo4A5qKoAOaklADmpYIA5qajAOanqgDmqIIA5qiTAOaqqADmq5MA5qubAOashADmrKAA5qyhAOatlADmraIA5q2jAOatsgDmrbcA5q25AOaunwDmrq4A5q6zAOauugDmrrsA5q+LAOavjQDmr5QA5q+bAOawjwDmsJQA5rC0AOaxjgDmsacA5rKIAOayvwDms4wA5rONAOazpQDms6gA5rSWAOa0mwDmtJ4A5rS0AOa0vgDmtYEA5rWpAOa1qgDmtbcA5rW4AOa2hQDmt4sA5reaAOa3qgDmt7kA5riaAOa4rwDmua4A5rqAAOa6nADmuroA5ruHAOa7iwDmu5EA5rubAOa8jwDmvJQA5ryiAOa8owDmva4A5r+GAOa/qwDmv74A54CbAOeAngDngLkA54GKAOeBqwDngbAA54G3AOeBvQDngpkA54KtAOeDiADng5kA54ShAOeFhQDnhYkA54WuAOeGnADnh44A54eQAOeIkADniJsA54ioAOeIqgDniKsA54i1AOeItgDniLsA54i/AOeJhwDniZAA54mZAOeJmwDniaIA54m5AOeKgADnipUA54qsAOeKrwDni4AA54u8AOeMqgDnjbUA5426AOeOhADnjocA546JAOeOiwDnjqUA546yAOePngDnkIYA55CJAOeQogDnkYcA55GcAOeRqQDnkbEA55KFAOeSiQDnkpgA55OKAOeTnADnk6YA55SGAOeUmADnlJ8A55SkAOeUqADnlLAA55SyAOeUswDnlLcA55S7AOeUvgDnlZkA55WlAOeVsADnlosA55aSAOeXogDnmJAA55idAOeYnwDnmYIA55mpAOeZtgDnmb0A55quAOeavwDnm4oA55ubAOebowDnm6cA55uuAOebtADnnIEA55yeAOecnwDnnYAA552KAOeeiwDnnqcA55+bAOefogDnn7MA56GOAOehqwDnoowA56KRAOejigDno4wA56O7AOekqgDnpLoA56S8AOekvgDnpYgA56WJAOelkADnpZYA56WdAOelngDnpaUA56W/AOemgQDnpo0A56aOAOemjwDnpq4A56a4AOemvgDnp4oA56eYAOenqwDnqJwA56mAAOepigDnqY8A56m0AOepugDnqoEA56qxAOeriwDnq64A56u5AOesoADnro8A56+AAOevhgDnr4kA57C+AOexoADnsbMA57G7AOeykgDnsr4A57OSAOezlgDns6MA57OnAOezqADns7gA57SAAOe0kADntKIA57SvAOe1ggDntZsA57WjAOe2oADntr4A57eHAOe3tADnuIIA57iJAOe4twDnuYEA57mFAOe8tgDnvL4A572RAOe9sgDnvbkA5726AOe+hQDnvooA576VAOe+mgDnvr0A57+6AOiAgQDogIUA6ICMAOiAkgDogLMA6IGGAOiBoADoga8A6IGwAOiBvgDogb8A6IKJAOiCiwDogq0A6IKyAOiEgwDohL4A6IeYAOiHowDoh6gA6IeqAOiHrQDoh7MA6Ie8AOiIgQDoiIQA6IiMAOiImADoiJsA6IifAOiJrgDoia8A6ImyAOiJuADoibkA6IqLAOiKkQDoip0A6IqxAOiKswDoir0A6IulAOiLpgDojJ0A6IyjAOiMtgDojZIA6I2TAOiNowDojq0A6I69AOiPiQDoj4oA6I+MAOiPnADoj6cA6I+vAOiPsQDokL0A6JGJAOiRlwDok64A6JOxAOiTswDok7wA6JSWAOiVpADol40A6Je6AOiYhgDomJIA6JitAOiYvwDomY0A6JmQAOiZnADomacA6JmpAOiZqwDomogA6JqpAOibogDonI4A6JyoAOidqwDonbkA6J6GAOieugDon6EA6KCBAOignwDooYAA6KGMAOihoADooaMA6KOCAOijjwDoo5cA6KOeAOijoQDoo7gA6KO6AOikkADopYEA6KWkAOilvgDopoYA6KaLAOimlgDop5IA6KejAOiogADoqqAA6KqqAOiqvwDoq4sA6KuSAOirlgDoq60A6Ku4AOirvgDorIEA6Ky5AOitmADoroAA6K6KAOiwtwDosYYA6LGIAOixlQDosbgA6LKdAOiyoQDosqkA6LKrAOizgQDos4IA6LOHAOiziADos5MA6LSIAOi0mwDotaQA6LWwAOi1twDotrMA6La8AOi3iwDot68A6LewAOi6qwDou4oA6LuUAOi8pgDovKoA6Ly4AOi8uwDovaIA6L6bAOi+ngDovrAA6L61AOi+tgDpgKMA6YC4AOmBigDpgakA6YGyAOmBvADpgo8A6YKRAOmClADpg44A6YOeAOmDsQDpg70A6YSRAOmEmwDphYkA6YWqAOmGmQDphrQA6YeGAOmHjADph48A6YeRAOmItADpiLgA6Ym2AOmJvADpi5cA6YuYAOmMhADpjYoA6Y+5AOmQlQDplbcA6ZaAAOmWiwDplq0A6Za3AOmYnADpmK4A6ZmLAOmZjQDpmbUA6Zm4AOmZvADpmoYA6ZqjAOmatgDpmrcA6Zq4AOmauQDpm4MA6ZuiAOmbowDpm6gA6Zu2AOmbtwDpnKMA6ZyyAOmdiADpnZEA6Z2WAOmdngDpnaIA6Z2pAOmfiwDpn5sA6Z+gAOmfrQDpn7MA6Z+/AOmggQDpoIUA6aCLAOmgmADpoKkA6aC7AOmhngDpoqgA6aObAOmjnwDpo6IA6aOvAOmjvADppKgA6aSpAOmmlgDpppkA6aanAOmmrADpp4IA6aexAOmnvgDpqaoA6aqoAOmrmADpq58A6aySAOmspQDprK8A6ayyAOmsvADprZoA6a2vAOmxgADpsZcA6bOlAOmzvQDptacA6ba0AOm3ugDpuJ4A6bm1AOm5vwDpupcA6bqfAOm6pQDpursA6buDAOm7jQDpu44A6buRAOm7uQDpu70A6bu+AOm8hQDpvI4A6byPAOm8kwDpvJYA6bygAOm8uwDpvYMA6b2KAOm9kgDpvo0A6b6OAOm+nADpvp8A6b6gAOqcpwDqna8A6qy3AOqtkgDqsIAA6rCBAOqwggDqsIMA6rCEAOqwhQDqsIYA6rCHAOqwiADqsIkA6rCKAOqwiwDqsIwA6rCNAOqwjgDqsI8A6rCQAOqwkQDqsJIA6rCTAOqwlADqsJUA6rCWAOqwlwDqsJgA6rCZAOqwmgDqsJsA6rCcAOqwnQDqsJ4A6rCfAOqwoADqsKEA6rCiAOqwowDqsKQA6rClAOqwpgDqsKcA6rCoAOqwqQDqsKoA6rCrAOqwrADqsK0A6rCuAOqwrwDqsLAA6rCxAOqwsgDqsLMA6rC0AOqwtQDqsLYA6rC3AOqwuADqsLkA6rC6AOqwuwDqsLwA6rC9AOqwvgDqsL8A6rGAAOqxgQDqsYIA6rGDAOqxhADqsYUA6rGGAOqxhwDqsYgA6rGJAOqxigDqsYsA6rGMAOqxjQDqsY4A6rGPAOqxkADqsZEA6rGSAOqxkwDqsZQA6rGVAOqxlgDqsZcA6rGYAOqxmQDqsZoA6rGbAOqxnADqsZ0A6rGeAOqxnwDqsaAA6rGhAOqxogDqsaMA6rGkAOqxpQDqsaYA6rGnAOqxqADqsakA6rGqAOqxqwDqsawA6rGtAOqxrgDqsa8A6rGwAOqxsQDqsbIA6rGzAOqxtADqsbUA6rG2AOqxtwDqsbgA6rG5AOqxugDqsbsA6rG8AOqxvQDqsb4A6rG/AOqygADqsoEA6rKCAOqygwDqsoQA6rKFAOqyhgDqsocA6rKIAOqyiQDqsooA6rKLAOqyjADqso0A6rKOAOqyjwDqspAA6rKRAOqykgDqspMA6rKUAOqylQDqspYA6rKXAOqymADqspkA6rKaAOqymwDqspwA6rKdAOqyngDqsp8A6rKgAOqyoQDqsqIA6rKjAOqypADqsqUA6rKmAOqypwDqsqgA6rKpAOqyqgDqsqsA6rKsAOqyrQDqsq4A6rKvAOqysADqsrEA6rKyAOqyswDqsrQA6rK1AOqytgDqsrcA6rK4AOqyuQDqsroA6rK7AOqyvADqsr0A6rK+AOqyvwDqs4AA6rOBAOqzggDqs4MA6rOEAOqzhQDqs4YA6rOHAOqziADqs4kA6rOKAOqziwDqs4wA6rONAOqzjgDqs48A6rOQAOqzkQDqs5IA6rOTAOqzlADqs5UA6rOWAOqzlwDqs5gA6rOZAOqzmgDqs5sA6rOcAOqznQDqs54A6rOfAOqzoADqs6EA6rOiAOqzowDqs6QA6rOlAOqzpgDqs6cA6rOoAOqzqQDqs6oA6rOrAOqzrADqs60A6rOuAOqzrwDqs7AA6rOxAOqzsgDqs7MA6rO0AOqztQDqs7YA6rO3AOqzuADqs7kA6rO6AOqzuwDqs7wA6rO9AOqzvgDqs78A6rSAAOq0gQDqtIIA6rSDAOq0hADqtIUA6rSGAOq0hwDqtIgA6rSJAOq0igDqtIsA6rSMAOq0jQDqtI4A6rSPAOq0kADqtJEA6rSSAOq0kwDqtJQA6rSVAOq0lgDqtJcA6rSYAOq0mQDqtJoA6rSbAOq0nADqtJ0A6rSeAOq0nwDqtKAA6rShAOq0ogDqtKMA6rSkAOq0pQDqtKYA6rSnAOq0qADqtKkA6rSqAOq0qwDqtKwA6rStAOq0rgDqtK8A6rSwAOq0sQDqtLIA6rSzAOq0tADqtLUA6rS2AOq0twDqtLgA6rS5AOq0ugDqtLsA6rS8AOq0vQDqtL4A6rS/AOq1gADqtYEA6rWCAOq1gwDqtYQA6rWFAOq1hgDqtYcA6rWIAOq1iQDqtYoA6rWLAOq1jADqtY0A6rWOAOq1jwDqtZAA6rWRAOq1kgDqtZMA6rWUAOq1lQDqtZYA6rWXAOq1mADqtZkA6rWaAOq1mwDqtZwA6rWdAOq1ngDqtZ8A6rWgAOq1oQDqtaIA6rWjAOq1pADqtaUA6rWmAOq1pwDqtagA6rWpAOq1qgDqtasA6rWsAOq1rQDqta4A6rWvAOq1sADqtbEA6rWyAOq1swDqtbQA6rW1AOq1tgDqtbcA6rW4AOq1uQDqtboA6rW7AOq1vADqtb0A6rW+AOq1vwDqtoAA6raBAOq2ggDqtoMA6raEAOq2hQDqtoYA6raHAOq2iADqtokA6raKAOq2iwDqtowA6raNAOq2jgDqto8A6raQAOq2kQDqtpIA6raTAOq2lADqtpUA6raWAOq2lwDqtpgA6raZAOq2mgDqtpsA6racAOq2nQDqtp4A6rafAOq2oADqtqEA6raiAOq2owDqtqQA6ralAOq2pgDqtqcA6raoAOq2qQDqtqoA6rarAOq2rADqtq0A6rauAOq2rwDqtrAA6raxAOq2sgDqtrMA6ra0AOq2tQDqtrYA6ra3AOq2uADqtrkA6ra6AOq2uwDqtrwA6ra9AOq2vgDqtr8A6reAAOq3gQDqt4IA6reDAOq3hADqt4UA6reGAOq3hwDqt4gA6reJAOq3igDqt4sA6reMAOq3jQDqt44A6rePAOq3kADqt5EA6reSAOq3kwDqt5QA6reVAOq3lgDqt5cA6reYAOq3mQDqt5oA6rebAOq3nADqt50A6reeAOq3nwDqt6AA6rehAOq3ogDqt6MA6rekAOq3pQDqt6YA6renAOq3qADqt6kA6reqAOq3qwDqt6wA6retAOq3rgDqt68A6rewAOq3sQDqt7IA6rezAOq3tADqt7UA6re2AOq3twDqt7gA6re5AOq3ugDqt7sA6re8AOq3vQDqt74A6re/AOq4gADquIEA6riCAOq4gwDquIQA6riFAOq4hgDquIcA6riIAOq4iQDquIoA6riLAOq4jADquI0A6riOAOq4jwDquJAA6riRAOq4kgDquJMA6riUAOq4lQDquJYA6riXAOq4mADquJkA6riaAOq4mwDquJwA6ridAOq4ngDquJ8A6rigAOq4oQDquKIA6rijAOq4pADquKUA6rimAOq4pwDquKgA6ripAOq4qgDquKsA6risAOq4rQDquK4A6rivAOq4sADquLEA6riyAOq4swDquLQA6ri1AOq4tgDquLcA6ri4AOq4uQDquLoA6ri7AOq4vADquL0A6ri+AOq4vwDquYAA6rmBAOq5ggDquYMA6rmEAOq5hQDquYYA6rmHAOq5iADquYkA6rmKAOq5iwDquYwA6rmNAOq5jgDquY8A6rmQAOq5kQDquZIA6rmTAOq5lADquZUA6rmWAOq5lwDquZgA6rmZAOq5mgDquZsA6rmcAOq5nQDquZ4A6rmfAOq5oADquaEA6rmiAOq5owDquaQA6rmlAOq5pgDquacA6rmoAOq5qQDquaoA6rmrAOq5rADqua0A6rmuAOq5rwDqubAA6rmxAOq5sgDqubMA6rm0AOq5tQDqubYA6rm3AOq5uADqubkA6rm6AOq5uwDqubwA6rm9AOq5vgDqub8A6rqAAOq6gQDquoIA6rqDAOq6hADquoUA6rqGAOq6hwDquogA6rqJAOq6igDquosA6rqMAOq6jQDquo4A6rqPAOq6kADqupEA6rqSAOq6kwDqupQA6rqVAOq6lgDqupcA6rqYAOq6mQDqupoA6rqbAOq6nADqup0A6rqeAOq6nwDquqAA6rqhAOq6ogDquqMA6rqkAOq6pQDquqYA6rqnAOq6qADquqkA6rqqAOq6qwDquqwA6rqtAOq6rgDquq8A6rqwAOq6sQDqurIA6rqzAOq6tADqurUA6rq2AOq6twDqurgA6rq5AOq6ugDqursA6rq8AOq6vQDqur4A6rq/AOq7gADqu4EA6ruCAOq7gwDqu4QA6ruFAOq7hgDqu4cA6ruIAOq7iQDqu4oA6ruLAOq7jADqu40A6ruOAOq7jwDqu5AA6ruRAOq7kgDqu5MA6ruUAOq7lQDqu5YA6ruXAOq7mADqu5kA6ruaAOq7mwDqu5wA6rudAOq7ngDqu58A6rugAOq7oQDqu6IA6rujAOq7pADqu6UA6rumAOq7pwDqu6gA6rupAOq7qgDqu6sA6rusAOq7rQDqu64A6ruvAOq7sADqu7EA6ruyAOq7swDqu7QA6ru1AOq7tgDqu7cA6ru4AOq7uQDqu7oA6ru7AOq7vADqu70A6ru+AOq7vwDqvIAA6ryBAOq8ggDqvIMA6ryEAOq8hQDqvIYA6ryHAOq8iADqvIkA6ryKAOq8iwDqvIwA6ryNAOq8jgDqvI8A6ryQAOq8kQDqvJIA6ryTAOq8lADqvJUA6ryWAOq8lwDqvJgA6ryZAOq8mgDqvJsA6rycAOq8nQDqvJ4A6ryfAOq8oADqvKEA6ryiAOq8owDqvKQA6rylAOq8pgDqvKcA6ryoAOq8qQDqvKoA6ryrAOq8rADqvK0A6ryuAOq8rwDqvLAA6ryxAOq8sgDqvLMA6ry0AOq8tQDqvLYA6ry3AOq8uADqvLkA6ry6AOq8uwDqvLwA6ry9AOq8vgDqvL8A6r2AAOq9gQDqvYIA6r2DAOq9hADqvYUA6r2GAOq9hwDqvYgA6r2JAOq9igDqvYsA6r2MAOq9jQDqvY4A6r2PAOq9kADqvZEA6r2SAOq9kwDqvZQA6r2VAOq9lgDqvZcA6r2YAOq9mQDqvZoA6r2bAOq9nADqvZ0A6r2eAOq9nwDqvaAA6r2hAOq9ogDqvaMA6r2kAOq9pQDqvaYA6r2nAOq9qADqvakA6r2qAOq9qwDqvawA6r2tAOq9rgDqva8A6r2wAOq9sQDqvbIA6r2zAOq9tADqvbUA6r22AOq9twDqvbgA6r25AOq9ugDqvbsA6r28AOq9vQDqvb4A6r2/AOq+gADqvoEA6r6CAOq+gwDqvoQA6r6FAOq+hgDqvocA6r6IAOq+iQDqvooA6r6LAOq+jADqvo0A6r6OAOq+jwDqvpAA6r6RAOq+kgDqvpMA6r6UAOq+lQDqvpYA6r6XAOq+mADqvpkA6r6aAOq+mwDqvpwA6r6dAOq+ngDqvp8A6r6gAOq+oQDqvqIA6r6jAOq+pADqvqUA6r6mAOq+pwDqvqgA6r6pAOq+qgDqvqsA6r6sAOq+rQDqvq4A6r6vAOq+sADqvrEA6r6yAOq+swDqvrQA6r61AOq+tgDqvrcA6r64AOq+uQDqvroA6r67AOq+vADqvr0A6r6+AOq+vwDqv4AA6r+BAOq/ggDqv4MA6r+EAOq/hQDqv4YA6r+HAOq/iADqv4kA6r+KAOq/iwDqv4wA6r+NAOq/jgDqv48A6r+QAOq/kQDqv5IA6r+TAOq/lADqv5UA6r+WAOq/lwDqv5gA6r+ZAOq/mgDqv5sA6r+cAOq/nQDqv54A6r+fAOq/oADqv6EA6r+iAOq/owDqv6QA6r+lAOq/pgDqv6cA6r+oAOq/qQDqv6oA6r+rAOq/rADqv60A6r+uAOq/rwDqv7AA6r+xAOq/sgDqv7MA6r+0AOq/tQDqv7YA6r+3AOq/uADqv7kA6r+6AOq/uwDqv7wA6r+9AOq/vgDqv78A64CAAOuAgQDrgIIA64CDAOuAhADrgIUA64CGAOuAhwDrgIgA64CJAOuAigDrgIsA64CMAOuAjQDrgI4A64CPAOuAkADrgJEA64CSAOuAkwDrgJQA64CVAOuAlgDrgJcA64CYAOuAmQDrgJoA64CbAOuAnADrgJ0A64CeAOuAnwDrgKAA64ChAOuAogDrgKMA64CkAOuApQDrgKYA64CnAOuAqADrgKkA64CqAOuAqwDrgKwA64CtAOuArgDrgK8A64CwAOuAsQDrgLIA64CzAOuAtADrgLUA64C2AOuAtwDrgLgA64C5AOuAugDrgLsA64C8AOuAvQDrgL4A64C/AOuBgADrgYEA64GCAOuBgwDrgYQA64GFAOuBhgDrgYcA64GIAOuBiQDrgYoA64GLAOuBjADrgY0A64GOAOuBjwDrgZAA64GRAOuBkgDrgZMA64GUAOuBlQDrgZYA64GXAOuBmADrgZkA64GaAOuBmwDrgZwA64GdAOuBngDrgZ8A64GgAOuBoQDrgaIA64GjAOuBpADrgaUA64GmAOuBpwDrgagA64GpAOuBqgDrgasA64GsAOuBrQDrga4A64GvAOuBsADrgbEA64GyAOuBswDrgbQA64G1AOuBtgDrgbcA64G4AOuBuQDrgboA64G7AOuBvADrgb0A64G+AOuBvwDrgoAA64KBAOuCggDrgoMA64KEAOuChQDrgoYA64KHAOuCiADrgokA64KKAOuCiwDrgowA64KNAOuCjgDrgo8A64KQAOuCkQDrgpIA64KTAOuClADrgpUA64KWAOuClwDrgpgA64KZAOuCmgDrgpsA64KcAOuCnQDrgp4A64KfAOuCoADrgqEA64KiAOuCowDrgqQA64KlAOuCpgDrgqcA64KoAOuCqQDrgqoA64KrAOuCrADrgq0A64KuAOuCrwDrgrAA64KxAOuCsgDrgrMA64K0AOuCtQDrgrYA64K3AOuCuADrgrkA64K6AOuCuwDrgrwA64K9AOuCvgDrgr8A64OAAOuDgQDrg4IA64ODAOuDhADrg4UA64OGAOuDhwDrg4gA64OJAOuDigDrg4sA64OMAOuDjQDrg44A64OPAOuDkADrg5EA64OSAOuDkwDrg5QA64OVAOuDlgDrg5cA64OYAOuDmQDrg5oA64ObAOuDnADrg50A64OeAOuDnwDrg6AA64OhAOuDogDrg6MA64OkAOuDpQDrg6YA64OnAOuDqADrg6kA64OqAOuDqwDrg6wA64OtAOuDrgDrg68A64OwAOuDsQDrg7IA64OzAOuDtADrg7UA64O2AOuDtwDrg7gA64O5AOuDugDrg7sA64O8AOuDvQDrg74A64O/AOuEgADrhIEA64SCAOuEgwDrhIQA64SFAOuEhgDrhIcA64SIAOuEiQDrhIoA64SLAOuEjADrhI0A64SOAOuEjwDrhJAA64SRAOuEkgDrhJMA64SUAOuElQDrhJYA64SXAOuEmADrhJkA64SaAOuEmwDrhJwA64SdAOuEngDrhJ8A64SgAOuEoQDrhKIA64SjAOuEpADrhKUA64SmAOuEpwDrhKgA64SpAOuEqgDrhKsA64SsAOuErQDrhK4A64SvAOuEsADrhLEA64SyAOuEswDrhLQA64S1AOuEtgDrhLcA64S4AOuEuQDrhLoA64S7AOuEvADrhL0A64S+AOuEvwDrhYAA64WBAOuFggDrhYMA64WEAOuFhQDrhYYA64WHAOuFiADrhYkA64WKAOuFiwDrhYwA64WNAOuFjgDrhY8A64WQAOuFkQDrhZIA64WTAOuFlADrhZUA64WWAOuFlwDrhZgA64WZAOuFmgDrhZsA64WcAOuFnQDrhZ4A64WfAOuFoADrhaEA64WiAOuFowDrhaQA64WlAOuFpgDrhacA64WoAOuFqQDrhaoA64WrAOuFrADrha0A64WuAOuFrwDrhbAA64WxAOuFsgDrhbMA64W0AOuFtQDrhbYA64W3AOuFuADrhbkA64W6AOuFuwDrhbwA64W9AOuFvgDrhb8A64aAAOuGgQDrhoIA64aDAOuGhADrhoUA64aGAOuGhwDrhogA64aJAOuGigDrhosA64aMAOuGjQDrho4A64aPAOuGkADrhpEA64aSAOuGkwDrhpQA64aVAOuGlgDrhpcA64aYAOuGmQDrhpoA64abAOuGnADrhp0A64aeAOuGnwDrhqAA64ahAOuGogDrhqMA64akAOuGpQDrhqYA64anAOuGqADrhqkA64aqAOuGqwDrhqwA64atAOuGrgDrhq8A64awAOuGsQDrhrIA64azAOuGtADrhrUA64a2AOuGtwDrhrgA64a5AOuGugDrhrsA64a8AOuGvQDrhr4A64a/AOuHgADrh4EA64eCAOuHgwDrh4QA64eFAOuHhgDrh4cA64eIAOuHiQDrh4oA64eLAOuHjADrh40A64eOAOuHjwDrh5AA64eRAOuHkgDrh5MA64eUAOuHlQDrh5YA64eXAOuHmADrh5kA64eaAOuHmwDrh5wA64edAOuHngDrh58A64egAOuHoQDrh6IA64ejAOuHpADrh6UA64emAOuHpwDrh6gA64epAOuHqgDrh6sA64esAOuHrQDrh64A64evAOuHsADrh7EA64eyAOuHswDrh7QA64e1AOuHtgDrh7cA64e4AOuHuQDrh7oA64e7AOuHvADrh70A64e+AOuHvwDriIAA64iBAOuIggDriIMA64iEAOuIhQDriIYA64iHAOuIiADriIkA64iKAOuIiwDriIwA64iNAOuIjgDriI8A64iQAOuIkQDriJIA64iTAOuIlADriJUA64iWAOuIlwDriJgA64iZAOuImgDriJsA64icAOuInQDriJ4A64ifAOuIoADriKEA64iiAOuIowDriKQA64ilAOuIpgDriKcA64ioAOuIqQDriKoA64irAOuIrADriK0A64iuAOuIrwDriLAA64ixAOuIsgDriLMA64i0AOuItQDriLYA64i3AOuIuADriLkA64i6AOuIuwDriLwA64i9AOuIvgDriL8A64mAAOuJgQDriYIA64mDAOuJhADriYUA64mGAOuJhwDriYgA64mJAOuJigDriYsA64mMAOuJjQDriY4A64mPAOuJkADriZEA64mSAOuJkwDriZQA64mVAOuJlgDriZcA64mYAOuJmQDriZoA64mbAOuJnADriZ0A64meAOuJnwDriaAA64mhAOuJogDriaMA64mkAOuJpQDriaYA64mnAOuJqADriakA64mqAOuJqwDriawA64mtAOuJrgDria8A64mwAOuJsQDribIA64mzAOuJtADribUA64m2AOuJtwDribgA64m5AOuJugDribsA64m8AOuJvQDrib4A64m/AOuKgADrioEA64qCAOuKgwDrioQA64qFAOuKhgDriocA64qIAOuKiQDriooA64qLAOuKjADrio0A64qOAOuKjwDripAA64qRAOuKkgDripMA64qUAOuKlQDripYA64qXAOuKmADripkA64qaAOuKmwDripwA64qdAOuKngDrip8A64qgAOuKoQDriqIA64qjAOuKpADriqUA64qmAOuKpwDriqgA64qpAOuKqgDriqsA64qsAOuKrQDriq4A64qvAOuKsADrirEA64qyAOuKswDrirQA64q1AOuKtgDrircA64q4AOuKuQDriroA64q7AOuKvADrir0A64q+AOuKvwDri4AA64uBAOuLggDri4MA64uEAOuLhQDri4YA64uHAOuLiADri4kA64uKAOuLiwDri4wA64uNAOuLjgDri48A64uQAOuLkQDri5IA64uTAOuLlADri5UA64uWAOuLlwDri5gA64uZAOuLmgDri5sA64ucAOuLnQDri54A64ufAOuLoADri6EA64uiAOuLowDri6QA64ulAOuLpgDri6cA64uoAOuLqQDri6oA64urAOuLrADri60A64uuAOuLrwDri7AA64uxAOuLsgDri7MA64u0AOuLtQDri7YA64u3AOuLuADri7kA64u6AOuLuwDri7wA64u9AOuLvgDri78A64yAAOuMgQDrjIIA64yDAOuMhADrjIUA64yGAOuMhwDrjIgA64yJAOuMigDrjIsA64yMAOuMjQDrjI4A64yPAOuMkADrjJEA64ySAOuMkwDrjJQA64yVAOuMlgDrjJcA64yYAOuMmQDrjJoA64ybAOuMnADrjJ0A64yeAOuMnwDrjKAA64yhAOuMogDrjKMA64ykAOuMpQDrjKYA64ynAOuMqADrjKkA64yqAOuMqwDrjKwA64ytAOuMrgDrjK8A64ywAOuMsQDrjLIA64yzAOuMtADrjLUA64y2AOuMtwDrjLgA64y5AOuMugDrjLsA64y8AOuMvQDrjL4A64y/AOuNgADrjYEA642CAOuNgwDrjYQA642FAOuNhgDrjYcA642IAOuNiQDrjYoA642LAOuNjADrjY0A642OAOuNjwDrjZAA642RAOuNkgDrjZMA642UAOuNlQDrjZYA642XAOuNmADrjZkA642aAOuNmwDrjZwA642dAOuNngDrjZ8A642gAOuNoQDrjaIA642jAOuNpADrjaUA642mAOuNpwDrjagA642pAOuNqgDrjasA642sAOuNrQDrja4A642vAOuNsADrjbEA642yAOuNswDrjbQA6421AOuNtgDrjbcA6424AOuNuQDrjboA6427AOuNvADrjb0A642+AOuNvwDrjoAA646BAOuOggDrjoMA646EAOuOhQDrjoYA646HAOuOiADrjokA646KAOuOiwDrjowA646NAOuOjgDrjo8A646QAOuOkQDrjpIA646TAOuOlADrjpUA646WAOuOlwDrjpgA646ZAOuOmgDrjpsA646cAOuOnQDrjp4A646fAOuOoADrjqEA646iAOuOowDrjqQA646lAOuOpgDrjqcA646oAOuOqQDrjqoA646rAOuOrADrjq0A646uAOuOrwDrjrAA646xAOuOsgDrjrMA6460AOuOtQDrjrYA6463AOuOuADrjrkA6466AOuOuwDrjrwA6469AOuOvgDrjr8A64+AAOuPgQDrj4IA64+DAOuPhADrj4UA64+GAOuPhwDrj4gA64+JAOuPigDrj4sA64+MAOuPjQDrj44A64+PAOuPkADrj5EA64+SAOuPkwDrj5QA64+VAOuPlgDrj5cA64+YAOuPmQDrj5oA64+bAOuPnADrj50A64+eAOuPnwDrj6AA64+hAOuPogDrj6MA64+kAOuPpQDrj6YA64+nAOuPqADrj6kA64+qAOuPqwDrj6wA64+tAOuPrgDrj68A64+wAOuPsQDrj7IA64+zAOuPtADrj7UA64+2AOuPtwDrj7gA64+5AOuPugDrj7sA64+8AOuPvQDrj74A64+/AOuQgADrkIEA65CCAOuQgwDrkIQA65CFAOuQhgDrkIcA65CIAOuQiQDrkIoA65CLAOuQjADrkI0A65COAOuQjwDrkJAA65CRAOuQkgDrkJMA65CUAOuQlQDrkJYA65CXAOuQmADrkJkA65CaAOuQmwDrkJwA65CdAOuQngDrkJ8A65CgAOuQoQDrkKIA65CjAOuQpADrkKUA65CmAOuQpwDrkKgA65CpAOuQqgDrkKsA65CsAOuQrQDrkK4A65CvAOuQsADrkLEA65CyAOuQswDrkLQA65C1AOuQtgDrkLcA65C4AOuQuQDrkLoA65C7AOuQvADrkL0A65C+AOuQvwDrkYAA65GBAOuRggDrkYMA65GEAOuRhQDrkYYA65GHAOuRiADrkYkA65GKAOuRiwDrkYwA65GNAOuRjgDrkY8A65GQAOuRkQDrkZIA65GTAOuRlADrkZUA65GWAOuRlwDrkZgA65GZAOuRmgDrkZsA65GcAOuRnQDrkZ4A65GfAOuRoADrkaEA65GiAOuRowDrkaQA65GlAOuRpgDrkacA65GoAOuRqQDrkaoA65GrAOuRrADrka0A65GuAOuRrwDrkbAA65GxAOuRsgDrkbMA65G0AOuRtQDrkbYA65G3AOuRuADrkbkA65G6AOuRuwDrkbwA65G9AOuRvgDrkb8A65KAAOuSgQDrkoIA65KDAOuShADrkoUA65KGAOuShwDrkogA65KJAOuSigDrkosA65KMAOuSjQDrko4A65KPAOuSkADrkpEA65KSAOuSkwDrkpQA65KVAOuSlgDrkpcA65KYAOuSmQDrkpoA65KbAOuSnADrkp0A65KeAOuSnwDrkqAA65KhAOuSogDrkqMA65KkAOuSpQDrkqYA65KnAOuSqADrkqkA65KqAOuSqwDrkqwA65KtAOuSrgDrkq8A65KwAOuSsQDrkrIA65KzAOuStADrkrUA65K2AOuStwDrkrgA65K5AOuSugDrkrsA65K8AOuSvQDrkr4A65K/AOuTgADrk4EA65OCAOuTgwDrk4QA65OFAOuThgDrk4cA65OIAOuTiQDrk4oA65OLAOuTjADrk40A65OOAOuTjwDrk5AA65ORAOuTkgDrk5MA65OUAOuTlQDrk5YA65OXAOuTmADrk5kA65OaAOuTmwDrk5wA65OdAOuTngDrk58A65OgAOuToQDrk6IA65OjAOuTpADrk6UA65OmAOuTpwDrk6gA65OpAOuTqgDrk6sA65OsAOuTrQDrk64A65OvAOuTsADrk7EA65OyAOuTswDrk7QA65O1AOuTtgDrk7cA65O4AOuTuQDrk7oA65O7AOuTvADrk70A65O+AOuTvwDrlIAA65SBAOuUggDrlIMA65SEAOuUhQDrlIYA65SHAOuUiADrlIkA65SKAOuUiwDrlIwA65SNAOuUjgDrlI8A65SQAOuUkQDrlJIA65STAOuUlADrlJUA65SWAOuUlwDrlJgA65SZAOuUmgDrlJsA65ScAOuUnQDrlJ4A65SfAOuUoADrlKEA65SiAOuUowDrlKQA65SlAOuUpgDrlKcA65SoAOuUqQDrlKoA65SrAOuUrADrlK0A65SuAOuUrwDrlLAA65SxAOuUsgDrlLMA65S0AOuUtQDrlLYA65S3AOuUuADrlLkA65S6AOuUuwDrlLwA65S9AOuUvgDrlL8A65WAAOuVgQDrlYIA65WDAOuVhADrlYUA65WGAOuVhwDrlYgA65WJAOuVigDrlYsA65WMAOuVjQDrlY4A65WPAOuVkADrlZEA65WSAOuVkwDrlZQA65WVAOuVlgDrlZcA65WYAOuVmQDrlZoA65WbAOuVnADrlZ0A65WeAOuVnwDrlaAA65WhAOuVogDrlaMA65WkAOuVpQDrlaYA65WnAOuVqADrlakA65WqAOuVqwDrlawA65WtAOuVrgDrla8A65WwAOuVsQDrlbIA65WzAOuVtADrlbUA65W2AOuVtwDrlbgA65W5AOuVugDrlbsA65W8AOuVvQDrlb4A65W/AOuWgADrloEA65aCAOuWgwDrloQA65aFAOuWhgDrlocA65aIAOuWiQDrlooA65aLAOuWjADrlo0A65aOAOuWjwDrlpAA65aRAOuWkgDrlpMA65aUAOuWlQDrlpYA65aXAOuWmADrlpkA65aaAOuWmwDrlpwA65adAOuWngDrlp8A65agAOuWoQDrlqIA65ajAOuWpADrlqUA65amAOuWpwDrlqgA65apAOuWqgDrlqsA65asAOuWrQDrlq4A65avAOuWsADrlrEA65ayAOuWswDrlrQA65a1AOuWtgDrlrcA65a4AOuWuQDrlroA65a7AOuWvADrlr0A65a+AOuWvwDrl4AA65eBAOuXggDrl4MA65eEAOuXhQDrl4YA65eHAOuXiADrl4kA65eKAOuXiwDrl4wA65eNAOuXjgDrl48A65eQAOuXkQDrl5IA65eTAOuXlADrl5UA65eWAOuXlwDrl5gA65eZAOuXmgDrl5sA65ecAOuXnQDrl54A65efAOuXoADrl6EA65eiAOuXowDrl6QA65elAOuXpgDrl6cA65eoAOuXqQDrl6oA65erAOuXrADrl60A65euAOuXrwDrl7AA65exAOuXsgDrl7MA65e0AOuXtQDrl7YA65e3AOuXuADrl7kA65e6AOuXuwDrl7wA65e9AOuXvgDrl78A65iAAOuYgQDrmIIA65iDAOuYhADrmIUA65iGAOuYhwDrmIgA65iJAOuYigDrmIsA65iMAOuYjQDrmI4A65iPAOuYkADrmJEA65iSAOuYkwDrmJQA65iVAOuYlgDrmJcA65iYAOuYmQDrmJoA65ibAOuYnADrmJ0A65ieAOuYnwDrmKAA65ihAOuYogDrmKMA65ikAOuYpQDrmKYA65inAOuYqADrmKkA65iqAOuYqwDrmKwA65itAOuYrgDrmK8A65iwAOuYsQDrmLIA65izAOuYtADrmLUA65i2AOuYtwDrmLgA65i5AOuYugDrmLsA65i8AOuYvQDrmL4A65i/AOuZgADrmYEA65mCAOuZgwDrmYQA65mFAOuZhgDrmYcA65mIAOuZiQDrmYoA65mLAOuZjADrmY0A65mOAOuZjwDrmZAA65mRAOuZkgDrmZMA65mUAOuZlQDrmZYA65mXAOuZmADrmZkA65maAOuZmwDrmZwA65mdAOuZngDrmZ8A65mgAOuZoQDrmaIA65mjAOuZpADrmaUA65mmAOuZpwDrmagA65mpAOuZqgDrmasA65msAOuZrQDrma4A65mvAOuZsADrmbEA65myAOuZswDrmbQA65m1AOuZtgDrmbcA65m4AOuZuQDrmboA65m7AOuZvADrmb0A65m+AOuZvwDrmoAA65qBAOuaggDrmoMA65qEAOuahQDrmoYA65qHAOuaiADrmokA65qKAOuaiwDrmowA65qNAOuajgDrmo8A65qQAOuakQDrmpIA65qTAOualADrmpUA65qWAOualwDrmpgA65qZAOuamgDrmpsA65qcAOuanQDrmp4A65qfAOuaoADrmqEA65qiAOuaowDrmqQA65qlAOuapgDrmqcA65qoAOuaqQDrmqoA65qrAOuarADrmq0A65quAOuarwDrmrAA65qxAOuasgDrmrMA65q0AOuatQDrmrYA65q3AOuauADrmrkA65q6AOuauwDrmrwA65q9AOuavgDrmr8A65uAAOubgQDrm4IA65uDAOubhADrm4UA65uGAOubhwDrm4gA65uJAOubigDrm4sA65uMAOubjQDrm44A65uPAOubkADrm5EA65uSAOubkwDrm5QA65uVAOublgDrm5cA65uYAOubmQDrm5oA65ubAOubnADrm50A65ueAOubnwDrm6AA65uhAOubogDrm6MA65ukAOubpQDrm6YA65unAOubqADrm6kA65uqAOubqwDrm6wA65utAOubrgDrm68A65uwAOubsQDrm7IA65uzAOubtADrm7UA65u2AOubtwDrm7gA65u5AOubugDrm7sA65u8AOubvQDrm74A65u/AOucgADrnIEA65yCAOucgwDrnIQA65yFAOuchgDrnIcA65yIAOuciQDrnIoA65yLAOucjADrnI0A65yOAOucjwDrnJAA65yRAOuckgDrnJMA65yUAOuclQDrnJYA65yXAOucmADrnJkA65yaAOucmwDrnJwA65ydAOucngDrnJ8A65ygAOucoQDrnKIA65yjAOucpADrnKUA65ymAOucpwDrnKgA65ypAOucqgDrnKsA65ysAOucrQDrnK4A65yvAOucsADrnLEA65yyAOucswDrnLQA65y1AOuctgDrnLcA65y4AOucuQDrnLoA65y7AOucvADrnL0A65y+AOucvwDrnYAA652BAOudggDrnYMA652EAOudhQDrnYYA652HAOudiADrnYkA652KAOudiwDrnYwA652NAOudjgDrnY8A652QAOudkQDrnZIA652TAOudlADrnZUA652WAOudlwDrnZgA652ZAOudmgDrnZsA652cAOudnQDrnZ4A652fAOudoADrnaEA652iAOudowDrnaQA652lAOudpgDrnacA652oAOudqQDrnaoA652rAOudrADrna0A652uAOudrwDrnbAA652xAOudsgDrnbMA6520AOudtQDrnbYA6523AOuduADrnbkA6526AOuduwDrnbwA6529AOudvgDrnb8A656AAOuegQDrnoIA656DAOuehADrnoUA656GAOuehwDrnogA656JAOueigDrnosA656MAOuejQDrno4A656PAOuekADrnpEA656SAOuekwDrnpQA656VAOuelgDrnpcA656YAOuemQDrnpoA656bAOuenADrnp0A656eAOuenwDrnqAA656hAOueogDrnqMA656kAOuepQDrnqYA656nAOueqADrnqkA656qAOueqwDrnqwA656tAOuergDrnq8A656wAOuesQDrnrIA656zAOuetADrnrUA6562AOuetwDrnrgA6565AOueugDrnrsA6568AOuevQDrnr4A656/AOufgADrn4EA65+CAOufgwDrn4QA65+FAOufhgDrn4cA65+IAOufiQDrn4oA65+LAOufjADrn40A65+OAOufjwDrn5AA65+RAOufkgDrn5MA65+UAOuflQDrn5YA65+XAOufmADrn5kA65+aAOufmwDrn5wA65+dAOufngDrn58A65+gAOufoQDrn6IA65+jAOufpADrn6UA65+mAOufpwDrn6gA65+pAOufqgDrn6sA65+sAOufrQDrn64A65+vAOufsADrn7EA65+yAOufswDrn7QA65+1AOuftgDrn7cA65+4AOufuQDrn7oA65+7AOufvADrn70A65++AOufvwDroIAA66CBAOugggDroIMA66CEAOughQDroIYA66CHAOugiADroIkA66CKAOugiwDroIwA66CNAOugjgDroI8A66CQAOugkQDroJIA66CTAOuglADroJUA66CWAOuglwDroJgA66CZAOugmgDroJsA66CcAOugnQDroJ4A66CfAOugoADroKEA66CiAOugowDroKQA66ClAOugpgDroKcA66CoAOugqQDroKoA66CrAOugrADroK0A66CuAOugrwDroLAA66CxAOugsgDroLMA66C0AOugtQDroLYA66C3AOuguADroLkA66C6AOuguwDroLwA66C9AOugvgDroL8A66GAAOuhgQDroYIA66GDAOuhhADroYUA66GGAOuhhwDroYgA66GJAOuhigDroYsA66GMAOuhjQDroY4A66GPAOuhkADroZEA66GSAOuhkwDroZQA66GVAOuhlgDroZcA66GYAOuhmQDroZoA66GbAOuhnADroZ0A66GeAOuhnwDroaAA66GhAOuhogDroaMA66GkAOuhpQDroaYA66GnAOuhqADroakA66GqAOuhqwDroawA66GtAOuhrgDroa8A66GwAOuhsQDrobIA66GzAOuhtADrobUA66G2AOuhtwDrobgA66G5AOuhugDrobsA66G8AOuhvQDrob4A66G/AOuigADrooEA66KCAOuigwDrooQA66KFAOuihgDroocA66KIAOuiiQDroooA66KLAOuijADroo0A66KOAOuijwDropAA66KRAOuikgDropMA66KUAOuilQDropYA66KXAOuimADropkA66KaAOuimwDropwA66KdAOuingDrop8A66KgAOuioQDroqIA66KjAOuipADroqUA66KmAOuipwDroqgA66KpAOuiqgDroqsA66KsAOuirQDroq4A66KvAOuisADrorEA66KyAOuiswDrorQA66K1AOuitgDrorcA66K4AOuiuQDroroA66K7AOuivADror0A66K+AOuivwDro4AA66OBAOujggDro4MA66OEAOujhQDro4YA66OHAOujiADro4kA66OKAOujiwDro4wA66ONAOujjgDro48A66OQAOujkQDro5IA66OTAOujlADro5UA66OWAOujlwDro5gA66OZAOujmgDro5sA66OcAOujnQDro54A66OfAOujoADro6EA66OiAOujowDro6QA66OlAOujpgDro6cA66OoAOujqQDro6oA66OrAOujrADro60A66OuAOujrwDro7AA66OxAOujsgDro7MA66O0AOujtQDro7YA66O3AOujuADro7kA66O6AOujuwDro7wA66O9AOujvgDro78A66SAAOukgQDrpIIA66SDAOukhADrpIUA66SGAOukhwDrpIgA66SJAOukigDrpIsA66SMAOukjQDrpI4A66SPAOukkADrpJEA66SSAOukkwDrpJQA66SVAOuklgDrpJcA66SYAOukmQDrpJoA66SbAOuknADrpJ0A66SeAOuknwDrpKAA66ShAOukogDrpKMA66SkAOukpQDrpKYA66SnAOukqADrpKkA66SqAOukqwDrpKwA66StAOukrgDrpK8A66SwAOuksQDrpLIA66SzAOuktADrpLUA66S2AOuktwDrpLgA66S5AOukugDrpLsA66S8AOukvQDrpL4A66S/AOulgADrpYEA66WCAOulgwDrpYQA66WFAOulhgDrpYcA66WIAOuliQDrpYoA66WLAOuljADrpY0A66WOAOuljwDrpZAA66WRAOulkgDrpZMA66WUAOullQDrpZYA66WXAOulmADrpZkA66WaAOulmwDrpZwA66WdAOulngDrpZ8A66WgAOuloQDrpaIA66WjAOulpADrpaUA66WmAOulpwDrpagA66WpAOulqgDrpasA66WsAOulrQDrpa4A66WvAOulsADrpbEA66WyAOulswDrpbQA66W1AOultgDrpbcA66W4AOuluQDrpboA66W7AOulvADrpb0A66W+AOulvwDrpoAA66aBAOumggDrpoMA66aEAOumhQDrpoYA66aHAOumiADrpokA66aKAOumiwDrpowA66aNAOumjgDrpo8A66aQAOumkQDrppIA66aTAOumlADrppUA66aWAOumlwDrppgA66aZAOummgDrppsA66acAOumnQDrpp4A66afAOumoADrpqEA66aiAOumowDrpqQA66alAOumpgDrpqcA66aoAOumqQDrpqoA66arAOumrADrpq0A66auAOumrwDrprAA66axAOumsgDrprMA66a0AOumtQDrprYA66a3AOumuADrprkA66a6AOumuwDrprwA66a9AOumvgDrpr8A66eAAOungQDrp4IA66eDAOunhADrp4UA66eGAOunhwDrp4gA66eJAOunigDrp4sA66eMAOunjQDrp44A66ePAOunkADrp5EA66eSAOunkwDrp5QA66eVAOunlgDrp5cA66eYAOunmQDrp5oA66ebAOunnADrp50A66eeAOunnwDrp6AA66ehAOunogDrp6MA66ekAOunpQDrp6YA66enAOunqADrp6kA66eqAOunqwDrp6wA66etAOunrgDrp68A66ewAOunsQDrp7IA66ezAOuntADrp7UA66e2AOuntwDrp7gA66e5AOunugDrp7sA66e8AOunvQDrp74A66e/AOuogADrqIEA66iCAOuogwDrqIQA66iFAOuohgDrqIcA66iIAOuoiQDrqIoA66iLAOuojADrqI0A66iOAOuojwDrqJAA66iRAOuokgDrqJMA66iUAOuolQDrqJYA66iXAOuomADrqJkA66iaAOuomwDrqJwA66idAOuongDrqJ8A66igAOuooQDrqKIA66ijAOuopADrqKUA66imAOuopwDrqKgA66ipAOuoqgDrqKsA66isAOuorQDrqK4A66ivAOuosADrqLEA66iyAOuoswDrqLQA66i1AOuotgDrqLcA66i4AOuouQDrqLoA66i7AOuovADrqL0A66i+AOuovwDrqYAA66mBAOupggDrqYMA66mEAOuphQDrqYYA66mHAOupiADrqYkA66mKAOupiwDrqYwA66mNAOupjgDrqY8A66mQAOupkQDrqZIA66mTAOuplADrqZUA66mWAOuplwDrqZgA66mZAOupmgDrqZsA66mcAOupnQDrqZ4A66mfAOupoADrqaEA66miAOupowDrqaQA66mlAOuppgDrqacA66moAOupqQDrqaoA66mrAOuprADrqa0A66muAOuprwDrqbAA66mxAOupsgDrqbMA66m0AOuptQDrqbYA66m3AOupuADrqbkA66m6AOupuwDrqbwA66m9AOupvgDrqb8A66qAAOuqgQDrqoIA66qDAOuqhADrqoUA66qGAOuqhwDrqogA66qJAOuqigDrqosA66qMAOuqjQDrqo4A66qPAOuqkADrqpEA66qSAOuqkwDrqpQA66qVAOuqlgDrqpcA66qYAOuqmQDrqpoA66qbAOuqnADrqp0A66qeAOuqnwDrqqAA66qhAOuqogDrqqMA66qkAOuqpQDrqqYA66qnAOuqqADrqqkA66qqAOuqqwDrqqwA66qtAOuqrgDrqq8A66qwAOuqsQDrqrIA66qzAOuqtADrqrUA66q2AOuqtwDrqrgA66q5AOuqugDrqrsA66q8AOuqvQDrqr4A66q/AOurgADrq4EA66uCAOurgwDrq4QA66uFAOurhgDrq4cA66uIAOuriQDrq4oA66uLAOurjADrq40A66uOAOurjwDrq5AA66uRAOurkgDrq5MA66uUAOurlQDrq5YA66uXAOurmADrq5kA66uaAOurmwDrq5wA66udAOurngDrq58A66ugAOuroQDrq6IA66ujAOurpADrq6UA66umAOurpwDrq6gA66upAOurqgDrq6sA66usAOurrQDrq64A66uvAOursADrq7EA66uyAOurswDrq7QA66u1AOurtgDrq7cA66u4AOuruQDrq7oA66u7AOurvADrq70A66u+AOurvwDrrIAA66yBAOusggDrrIMA66yEAOushQDrrIYA66yHAOusiADrrIkA66yKAOusiwDrrIwA66yNAOusjgDrrI8A66yQAOuskQDrrJIA66yTAOuslADrrJUA66yWAOuslwDrrJgA66yZAOusmgDrrJsA66ycAOusnQDrrJ4A66yfAOusoADrrKEA66yiAOusowDrrKQA66ylAOuspgDrrKcA66yoAOusqQDrrKoA66yrAOusrADrrK0A66yuAOusrwDrrLAA66yxAOussgDrrLMA66y0AOustQDrrLYA66y3AOusuADrrLkA66y6AOusuwDrrLwA66y9AOusvgDrrL8A662AAOutgQDrrYIA662DAOuthADrrYUA662GAOuthwDrrYgA662JAOutigDrrYsA662MAOutjQDrrY4A662PAOutkADrrZEA662SAOutkwDrrZQA662VAOutlgDrrZcA662YAOutmQDrrZoA662bAOutnADrrZ0A662eAOutnwDrraAA662hAOutogDrraMA662kAOutpQDrraYA662nAOutqADrrakA662qAOutqwDrrawA662tAOutrgDrra8A662wAOutsQDrrbIA662zAOuttADrrbUA6622AOuttwDrrbgA6625AOutugDrrbsA6628AOutvQDrrb4A662/AOuugADrroEA666CAOuugwDrroQA666FAOuuhgDrrocA666IAOuuiQDrrooA666LAOuujADrro0A666OAOuujwDrrpAA666RAOuukgDrrpMA666UAOuulQDrrpYA666XAOuumADrrpkA666aAOuumwDrrpwA666dAOuungDrrp8A666gAOuuoQDrrqIA666jAOuupADrrqUA666mAOuupwDrrqgA666pAOuuqgDrrqsA666sAOuurQDrrq4A666vAOuusADrrrEA666yAOuuswDrrrQA6661AOuutgDrrrcA6664AOuuuQDrrroA6667AOuuvADrrr0A666+AOuuvwDrr4AA66+BAOuvggDrr4MA66+EAOuvhQDrr4YA66+HAOuviADrr4kA66+KAOuviwDrr4wA66+NAOuvjgDrr48A66+QAOuvkQDrr5IA66+TAOuvlADrr5UA66+WAOuvlwDrr5gA66+ZAOuvmgDrr5sA66+cAOuvnQDrr54A66+fAOuvoADrr6EA66+iAOuvowDrr6QA66+lAOuvpgDrr6cA66+oAOuvqQDrr6oA66+rAOuvrADrr60A66+uAOuvrwDrr7AA66+xAOuvsgDrr7MA66+0AOuvtQDrr7YA66+3AOuvuADrr7kA66+6AOuvuwDrr7wA66+9AOuvvgDrr78A67CAAOuwgQDrsIIA67CDAOuwhADrsIUA67CGAOuwhwDrsIgA67CJAOuwigDrsIsA67CMAOuwjQDrsI4A67CPAOuwkADrsJEA67CSAOuwkwDrsJQA67CVAOuwlgDrsJcA67CYAOuwmQDrsJoA67CbAOuwnADrsJ0A67CeAOuwnwDrsKAA67ChAOuwogDrsKMA67CkAOuwpQDrsKYA67CnAOuwqADrsKkA67CqAOuwqwDrsKwA67CtAOuwrgDrsK8A67CwAOuwsQDrsLIA67CzAOuwtADrsLUA67C2AOuwtwDrsLgA67C5AOuwugDrsLsA67C8AOuwvQDrsL4A67C/AOuxgADrsYEA67GCAOuxgwDrsYQA67GFAOuxhgDrsYcA67GIAOuxiQDrsYoA67GLAOuxjADrsY0A67GOAOuxjwDrsZAA67GRAOuxkgDrsZMA67GUAOuxlQDrsZYA67GXAOuxmADrsZkA67GaAOuxmwDrsZwA67GdAOuxngDrsZ8A67GgAOuxoQDrsaIA67GjAOuxpADrsaUA67GmAOuxpwDrsagA67GpAOuxqgDrsasA67GsAOuxrQDrsa4A67GvAOuxsADrsbEA67GyAOuxswDrsbQA67G1AOuxtgDrsbcA67G4AOuxuQDrsboA67G7AOuxvADrsb0A67G+AOuxvwDrsoAA67KBAOuyggDrsoMA67KEAOuyhQDrsoYA67KHAOuyiADrsokA67KKAOuyiwDrsowA67KNAOuyjgDrso8A67KQAOuykQDrspIA67KTAOuylADrspUA67KWAOuylwDrspgA67KZAOuymgDrspsA67KcAOuynQDrsp4A67KfAOuyoADrsqEA67KiAOuyowDrsqQA67KlAOuypgDrsqcA67KoAOuyqQDrsqoA67KrAOuyrADrsq0A67KuAOuyrwDrsrAA67KxAOuysgDrsrMA67K0AOuytQDrsrYA67K3AOuyuADrsrkA67K6AOuyuwDrsrwA67K9AOuyvgDrsr8A67OAAOuzgQDrs4IA67ODAOuzhADrs4UA67OGAOuzhwDrs4gA67OJAOuzigDrs4sA67OMAOuzjQDrs44A67OPAOuzkADrs5EA67OSAOuzkwDrs5QA67OVAOuzlgDrs5cA67OYAOuzmQDrs5oA67ObAOuznADrs50A67OeAOuznwDrs6AA67OhAOuzogDrs6MA67OkAOuzpQDrs6YA67OnAOuzqADrs6kA67OqAOuzqwDrs6wA67OtAOuzrgDrs68A67OwAOuzsQDrs7IA67OzAOuztADrs7UA67O2AOuztwDrs7gA67O5AOuzugDrs7sA67O8AOuzvQDrs74A67O/AOu0gADrtIEA67SCAOu0gwDrtIQA67SFAOu0hgDrtIcA67SIAOu0iQDrtIoA67SLAOu0jADrtI0A67SOAOu0jwDrtJAA67SRAOu0kgDrtJMA67SUAOu0lQDrtJYA67SXAOu0mADrtJkA67SaAOu0mwDrtJwA67SdAOu0ngDrtJ8A67SgAOu0oQDrtKIA67SjAOu0pADrtKUA67SmAOu0pwDrtKgA67SpAOu0qgDrtKsA67SsAOu0rQDrtK4A67SvAOu0sADrtLEA67SyAOu0swDrtLQA67S1AOu0tgDrtLcA67S4AOu0uQDrtLoA67S7AOu0vADrtL0A67S+AOu0vwDrtYAA67WBAOu1ggDrtYMA67WEAOu1hQDrtYYA67WHAOu1iADrtYkA67WKAOu1iwDrtYwA67WNAOu1jgDrtY8A67WQAOu1kQDrtZIA67WTAOu1lADrtZUA67WWAOu1lwDrtZgA67WZAOu1mgDrtZsA67WcAOu1nQDrtZ4A67WfAOu1oADrtaEA67WiAOu1owDrtaQA67WlAOu1pgDrtacA67WoAOu1qQDrtaoA67WrAOu1rADrta0A67WuAOu1rwDrtbAA67WxAOu1sgDrtbMA67W0AOu1tQDrtbYA67W3AOu1uADrtbkA67W6AOu1uwDrtbwA67W9AOu1vgDrtb8A67aAAOu2gQDrtoIA67aDAOu2hADrtoUA67aGAOu2hwDrtogA67aJAOu2igDrtosA67aMAOu2jQDrto4A67aPAOu2kADrtpEA67aSAOu2kwDrtpQA67aVAOu2lgDrtpcA67aYAOu2mQDrtpoA67abAOu2nADrtp0A67aeAOu2nwDrtqAA67ahAOu2ogDrtqMA67akAOu2pQDrtqYA67anAOu2qADrtqkA67aqAOu2qwDrtqwA67atAOu2rgDrtq8A67awAOu2sQDrtrIA67azAOu2tADrtrUA67a2AOu2twDrtrgA67a5AOu2ugDrtrsA67a8AOu2vQDrtr4A67a/AOu3gADrt4EA67eCAOu3gwDrt4QA67eFAOu3hgDrt4cA67eIAOu3iQDrt4oA67eLAOu3jADrt40A67eOAOu3jwDrt5AA67eRAOu3kgDrt5MA67eUAOu3lQDrt5YA67eXAOu3mADrt5kA67eaAOu3mwDrt5wA67edAOu3ngDrt58A67egAOu3oQDrt6IA67ejAOu3pADrt6UA67emAOu3pwDrt6gA67epAOu3qgDrt6sA67esAOu3rQDrt64A67evAOu3sADrt7EA67eyAOu3swDrt7QA67e1AOu3tgDrt7cA67e4AOu3uQDrt7oA67e7AOu3vADrt70A67e+AOu3vwDruIAA67iBAOu4ggDruIMA67iEAOu4hQDruIYA67iHAOu4iADruIkA67iKAOu4iwDruIwA67iNAOu4jgDruI8A67iQAOu4kQDruJIA67iTAOu4lADruJUA67iWAOu4lwDruJgA67iZAOu4mgDruJsA67icAOu4nQDruJ4A67ifAOu4oADruKEA67iiAOu4owDruKQA67ilAOu4pgDruKcA67ioAOu4qQDruKoA67irAOu4rADruK0A67iuAOu4rwDruLAA67ixAOu4sgDruLMA67i0AOu4tQDruLYA67i3AOu4uADruLkA67i6AOu4uwDruLwA67i9AOu4vgDruL8A67mAAOu5gQDruYIA67mDAOu5hADruYUA67mGAOu5hwDruYgA67mJAOu5igDruYsA67mMAOu5jQDruY4A67mPAOu5kADruZEA67mSAOu5kwDruZQA67mVAOu5lgDruZcA67mYAOu5mQDruZoA67mbAOu5nADruZ0A67meAOu5nwDruaAA67mhAOu5ogDruaMA67mkAOu5pQDruaYA67mnAOu5qADruakA67mqAOu5qwDruawA67mtAOu5rgDrua8A67mwAOu5sQDrubIA67mzAOu5tADrubUA67m2AOu5twDrubgA67m5AOu5ugDrubsA67m8AOu5vQDrub4A67m/AOu6gADruoEA67qCAOu6gwDruoQA67qFAOu6hgDruocA67qIAOu6iQDruooA67qLAOu6jADruo0A67qOAOu6jwDrupAA67qRAOu6kgDrupMA67qUAOu6lQDrupYA67qXAOu6mADrupkA67qaAOu6mwDrupwA67qdAOu6ngDrup8A67qgAOu6oQDruqIA67qjAOu6pADruqUA67qmAOu6pwDruqgA67qpAOu6qgDruqsA67qsAOu6rQDruq4A67qvAOu6sADrurEA67qyAOu6swDrurQA67q1AOu6tgDrurcA67q4AOu6uQDruroA67q7AOu6vADrur0A67q+AOu6vwDru4AA67uBAOu7ggDru4MA67uEAOu7hQDru4YA67uHAOu7iADru4kA67uKAOu7iwDru4wA67uNAOu7jgDru48A67uQAOu7kQDru5IA67uTAOu7lADru5UA67uWAOu7lwDru5gA67uZAOu7mgDru5sA67ucAOu7nQDru54A67ufAOu7oADru6EA67uiAOu7owDru6QA67ulAOu7pgDru6cA67uoAOu7qQDru6oA67urAOu7rADru60A67uuAOu7rwDru7AA67uxAOu7sgDru7MA67u0AOu7tQDru7YA67u3AOu7uADru7kA67u6AOu7uwDru7wA67u9AOu7vgDru78A67yAAOu8gQDrvIIA67yDAOu8hADrvIUA67yGAOu8hwDrvIgA67yJAOu8igDrvIsA67yMAOu8jQDrvI4A67yPAOu8kADrvJEA67ySAOu8kwDrvJQA67yVAOu8lgDrvJcA67yYAOu8mQDrvJoA67ybAOu8nADrvJ0A67yeAOu8nwDrvKAA67yhAOu8ogDrvKMA67ykAOu8pQDrvKYA67ynAOu8qADrvKkA67yqAOu8qwDrvKwA67ytAOu8rgDrvK8A67ywAOu8sQDrvLIA67yzAOu8tADrvLUA67y2AOu8twDrvLgA67y5AOu8ugDrvLsA67y8AOu8vQDrvL4A67y/AOu9gADrvYEA672CAOu9gwDrvYQA672FAOu9hgDrvYcA672IAOu9iQDrvYoA672LAOu9jADrvY0A672OAOu9jwDrvZAA672RAOu9kgDrvZMA672UAOu9lQDrvZYA672XAOu9mADrvZkA672aAOu9mwDrvZwA672dAOu9ngDrvZ8A672gAOu9oQDrvaIA672jAOu9pADrvaUA672mAOu9pwDrvagA672pAOu9qgDrvasA672sAOu9rQDrva4A672vAOu9sADrvbEA672yAOu9swDrvbQA6721AOu9tgDrvbcA6724AOu9uQDrvboA6727AOu9vADrvb0A672+AOu9vwDrvoAA676BAOu+ggDrvoMA676EAOu+hQDrvoYA676HAOu+iADrvokA676KAOu+iwDrvowA676NAOu+jgDrvo8A676QAOu+kQDrvpIA676TAOu+lADrvpUA676WAOu+lwDrvpgA676ZAOu+mgDrvpsA676cAOu+nQDrvp4A676fAOu+oADrvqEA676iAOu+owDrvqQA676lAOu+pgDrvqcA676oAOu+qQDrvqoA676rAOu+rADrvq0A676uAOu+rwDrvrAA676xAOu+sgDrvrMA6760AOu+tQDrvrYA6763AOu+uADrvrkA6766AOu+uwDrvrwA6769AOu+vgDrvr8A67+AAOu/gQDrv4IA67+DAOu/hADrv4UA67+GAOu/hwDrv4gA67+JAOu/igDrv4sA67+MAOu/jQDrv44A67+PAOu/kADrv5EA67+SAOu/kwDrv5QA67+VAOu/lgDrv5cA67+YAOu/mQDrv5oA67+bAOu/nADrv50A67+eAOu/nwDrv6AA67+hAOu/ogDrv6MA67+kAOu/pQDrv6YA67+nAOu/qADrv6kA67+qAOu/qwDrv6wA67+tAOu/rgDrv68A67+wAOu/sQDrv7IA67+zAOu/tADrv7UA67+2AOu/twDrv7gA67+5AOu/ugDrv7sA67+8AOu/vQDrv74A67+/AOyAgADsgIEA7ICCAOyAgwDsgIQA7ICFAOyAhgDsgIcA7ICIAOyAiQDsgIoA7ICLAOyAjADsgI0A7ICOAOyAjwDsgJAA7ICRAOyAkgDsgJMA7ICUAOyAlQDsgJYA7ICXAOyAmADsgJkA7ICaAOyAmwDsgJwA7ICdAOyAngDsgJ8A7ICgAOyAoQDsgKIA7ICjAOyApADsgKUA7ICmAOyApwDsgKgA7ICpAOyAqgDsgKsA7ICsAOyArQDsgK4A7ICvAOyAsADsgLEA7ICyAOyAswDsgLQA7IC1AOyAtgDsgLcA7IC4AOyAuQDsgLoA7IC7AOyAvADsgL0A7IC+AOyAvwDsgYAA7IGBAOyBggDsgYMA7IGEAOyBhQDsgYYA7IGHAOyBiADsgYkA7IGKAOyBiwDsgYwA7IGNAOyBjgDsgY8A7IGQAOyBkQDsgZIA7IGTAOyBlADsgZUA7IGWAOyBlwDsgZgA7IGZAOyBmgDsgZsA7IGcAOyBnQDsgZ4A7IGfAOyBoADsgaEA7IGiAOyBowDsgaQA7IGlAOyBpgDsgacA7IGoAOyBqQDsgaoA7IGrAOyBrADsga0A7IGuAOyBrwDsgbAA7IGxAOyBsgDsgbMA7IG0AOyBtQDsgbYA7IG3AOyBuADsgbkA7IG6AOyBuwDsgbwA7IG9AOyBvgDsgb8A7IKAAOyCgQDsgoIA7IKDAOyChADsgoUA7IKGAOyChwDsgogA7IKJAOyCigDsgosA7IKMAOyCjQDsgo4A7IKPAOyCkADsgpEA7IKSAOyCkwDsgpQA7IKVAOyClgDsgpcA7IKYAOyCmQDsgpoA7IKbAOyCnADsgp0A7IKeAOyCnwDsgqAA7IKhAOyCogDsgqMA7IKkAOyCpQDsgqYA7IKnAOyCqADsgqkA7IKqAOyCqwDsgqwA7IKtAOyCrgDsgq8A7IKwAOyCsQDsgrIA7IKzAOyCtADsgrUA7IK2AOyCtwDsgrgA7IK5AOyCugDsgrsA7IK8AOyCvQDsgr4A7IK/AOyDgADsg4EA7IOCAOyDgwDsg4QA7IOFAOyDhgDsg4cA7IOIAOyDiQDsg4oA7IOLAOyDjADsg40A7IOOAOyDjwDsg5AA7IORAOyDkgDsg5MA7IOUAOyDlQDsg5YA7IOXAOyDmADsg5kA7IOaAOyDmwDsg5wA7IOdAOyDngDsg58A7IOgAOyDoQDsg6IA7IOjAOyDpADsg6UA7IOmAOyDpwDsg6gA7IOpAOyDqgDsg6sA7IOsAOyDrQDsg64A7IOvAOyDsADsg7EA7IOyAOyDswDsg7QA7IO1AOyDtgDsg7cA7IO4AOyDuQDsg7oA7IO7AOyDvADsg70A7IO+AOyDvwDshIAA7ISBAOyEggDshIMA7ISEAOyEhQDshIYA7ISHAOyEiADshIkA7ISKAOyEiwDshIwA7ISNAOyEjgDshI8A7ISQAOyEkQDshJIA7ISTAOyElADshJUA7ISWAOyElwDshJgA7ISZAOyEmgDshJsA7IScAOyEnQDshJ4A7ISfAOyEoADshKEA7ISiAOyEowDshKQA7ISlAOyEpgDshKcA7ISoAOyEqQDshKoA7ISrAOyErADshK0A7ISuAOyErwDshLAA7ISxAOyEsgDshLMA7IS0AOyEtQDshLYA7IS3AOyEuADshLkA7IS6AOyEuwDshLwA7IS9AOyEvgDshL8A7IWAAOyFgQDshYIA7IWDAOyFhADshYUA7IWGAOyFhwDshYgA7IWJAOyFigDshYsA7IWMAOyFjQDshY4A7IWPAOyFkADshZEA7IWSAOyFkwDshZQA7IWVAOyFlgDshZcA7IWYAOyFmQDshZoA7IWbAOyFnADshZ0A7IWeAOyFnwDshaAA7IWhAOyFogDshaMA7IWkAOyFpQDshaYA7IWnAOyFqADshakA7IWqAOyFqwDshawA7IWtAOyFrgDsha8A7IWwAOyFsQDshbIA7IWzAOyFtADshbUA7IW2AOyFtwDshbgA7IW5AOyFugDshbsA7IW8AOyFvQDshb4A7IW/AOyGgADshoEA7IaCAOyGgwDshoQA7IaFAOyGhgDshocA7IaIAOyGiQDshooA7IaLAOyGjADsho0A7IaOAOyGjwDshpAA7IaRAOyGkgDshpMA7IaUAOyGlQDshpYA7IaXAOyGmADshpkA7IaaAOyGmwDshpwA7IadAOyGngDshp8A7IagAOyGoQDshqIA7IajAOyGpADshqUA7IamAOyGpwDshqgA7IapAOyGqgDshqsA7IasAOyGrQDshq4A7IavAOyGsADshrEA7IayAOyGswDshrQA7Ia1AOyGtgDshrcA7Ia4AOyGuQDshroA7Ia7AOyGvADshr0A7Ia+AOyGvwDsh4AA7IeBAOyHggDsh4MA7IeEAOyHhQDsh4YA7IeHAOyHiADsh4kA7IeKAOyHiwDsh4wA7IeNAOyHjgDsh48A7IeQAOyHkQDsh5IA7IeTAOyHlADsh5UA7IeWAOyHlwDsh5gA7IeZAOyHmgDsh5sA7IecAOyHnQDsh54A7IefAOyHoADsh6EA7IeiAOyHowDsh6QA7IelAOyHpgDsh6cA7IeoAOyHqQDsh6oA7IerAOyHrADsh60A7IeuAOyHrwDsh7AA7IexAOyHsgDsh7MA7Ie0AOyHtQDsh7YA7Ie3AOyHuADsh7kA7Ie6AOyHuwDsh7wA7Ie9AOyHvgDsh78A7IiAAOyIgQDsiIIA7IiDAOyIhADsiIUA7IiGAOyIhwDsiIgA7IiJAOyIigDsiIsA7IiMAOyIjQDsiI4A7IiPAOyIkADsiJEA7IiSAOyIkwDsiJQA7IiVAOyIlgDsiJcA7IiYAOyImQDsiJoA7IibAOyInADsiJ0A7IieAOyInwDsiKAA7IihAOyIogDsiKMA7IikAOyIpQDsiKYA7IinAOyIqADsiKkA7IiqAOyIqwDsiKwA7IitAOyIrgDsiK8A7IiwAOyIsQDsiLIA7IizAOyItADsiLUA7Ii2AOyItwDsiLgA7Ii5AOyIugDsiLsA7Ii8AOyIvQDsiL4A7Ii/AOyJgADsiYEA7ImCAOyJgwDsiYQA7ImFAOyJhgDsiYcA7ImIAOyJiQDsiYoA7ImLAOyJjADsiY0A7ImOAOyJjwDsiZAA7ImRAOyJkgDsiZMA7ImUAOyJlQDsiZYA7ImXAOyJmADsiZkA7ImaAOyJmwDsiZwA7ImdAOyJngDsiZ8A7ImgAOyJoQDsiaIA7ImjAOyJpADsiaUA7ImmAOyJpwDsiagA7ImpAOyJqgDsiasA7ImsAOyJrQDsia4A7ImvAOyJsADsibEA7ImyAOyJswDsibQA7Im1AOyJtgDsibcA7Im4AOyJuQDsiboA7Im7AOyJvADsib0A7Im+AOyJvwDsioAA7IqBAOyKggDsioMA7IqEAOyKhQDsioYA7IqHAOyKiADsiokA7IqKAOyKiwDsiowA7IqNAOyKjgDsio8A7IqQAOyKkQDsipIA7IqTAOyKlADsipUA7IqWAOyKlwDsipgA7IqZAOyKmgDsipsA7IqcAOyKnQDsip4A7IqfAOyKoADsiqEA7IqiAOyKowDsiqQA7IqlAOyKpgDsiqcA7IqoAOyKqQDsiqoA7IqrAOyKrADsiq0A7IquAOyKrwDsirAA7IqxAOyKsgDsirMA7Iq0AOyKtQDsirYA7Iq3AOyKuADsirkA7Iq6AOyKuwDsirwA7Iq9AOyKvgDsir8A7IuAAOyLgQDsi4IA7IuDAOyLhADsi4UA7IuGAOyLhwDsi4gA7IuJAOyLigDsi4sA7IuMAOyLjQDsi44A7IuPAOyLkADsi5EA7IuSAOyLkwDsi5QA7IuVAOyLlgDsi5cA7IuYAOyLmQDsi5oA7IubAOyLnADsi50A7IueAOyLnwDsi6AA7IuhAOyLogDsi6MA7IukAOyLpQDsi6YA7IunAOyLqADsi6kA7IuqAOyLqwDsi6wA7IutAOyLrgDsi68A7IuwAOyLsQDsi7IA7IuzAOyLtADsi7UA7Iu2AOyLtwDsi7gA7Iu5AOyLugDsi7sA7Iu8AOyLvQDsi74A7Iu/AOyMgADsjIEA7IyCAOyMgwDsjIQA7IyFAOyMhgDsjIcA7IyIAOyMiQDsjIoA7IyLAOyMjADsjI0A7IyOAOyMjwDsjJAA7IyRAOyMkgDsjJMA7IyUAOyMlQDsjJYA7IyXAOyMmADsjJkA7IyaAOyMmwDsjJwA7IydAOyMngDsjJ8A7IygAOyMoQDsjKIA7IyjAOyMpADsjKUA7IymAOyMpwDsjKgA7IypAOyMqgDsjKsA7IysAOyMrQDsjK4A7IyvAOyMsADsjLEA7IyyAOyMswDsjLQA7Iy1AOyMtgDsjLcA7Iy4AOyMuQDsjLoA7Iy7AOyMvADsjL0A7Iy+AOyMvwDsjYAA7I2BAOyNggDsjYMA7I2EAOyNhQDsjYYA7I2HAOyNiADsjYkA7I2KAOyNiwDsjYwA7I2NAOyNjgDsjY8A7I2QAOyNkQDsjZIA7I2TAOyNlADsjZUA7I2WAOyNlwDsjZgA7I2ZAOyNmgDsjZsA7I2cAOyNnQDsjZ4A7I2fAOyNoADsjaEA7I2iAOyNowDsjaQA7I2lAOyNpgDsjacA7I2oAOyNqQDsjaoA7I2rAOyNrADsja0A7I2uAOyNrwDsjbAA7I2xAOyNsgDsjbMA7I20AOyNtQDsjbYA7I23AOyNuADsjbkA7I26AOyNuwDsjbwA7I29AOyNvgDsjb8A7I6AAOyOgQDsjoIA7I6DAOyOhADsjoUA7I6GAOyOhwDsjogA7I6JAOyOigDsjosA7I6MAOyOjQDsjo4A7I6PAOyOkADsjpEA7I6SAOyOkwDsjpQA7I6VAOyOlgDsjpcA7I6YAOyOmQDsjpoA7I6bAOyOnADsjp0A7I6eAOyOnwDsjqAA7I6hAOyOogDsjqMA7I6kAOyOpQDsjqYA7I6nAOyOqADsjqkA7I6qAOyOqwDsjqwA7I6tAOyOrgDsjq8A7I6wAOyOsQDsjrIA7I6zAOyOtADsjrUA7I62AOyOtwDsjrgA7I65AOyOugDsjrsA7I68AOyOvQDsjr4A7I6/AOyPgADsj4EA7I+CAOyPgwDsj4QA7I+FAOyPhgDsj4cA7I+IAOyPiQDsj4oA7I+LAOyPjADsj40A7I+OAOyPjwDsj5AA7I+RAOyPkgDsj5MA7I+UAOyPlQDsj5YA7I+XAOyPmADsj5kA7I+aAOyPmwDsj5wA7I+dAOyPngDsj58A7I+gAOyPoQDsj6IA7I+jAOyPpADsj6UA7I+mAOyPpwDsj6gA7I+pAOyPqgDsj6sA7I+sAOyPrQDsj64A7I+vAOyPsADsj7EA7I+yAOyPswDsj7QA7I+1AOyPtgDsj7cA7I+4AOyPuQDsj7oA7I+7AOyPvADsj70A7I++AOyPvwDskIAA7JCBAOyQggDskIMA7JCEAOyQhQDskIYA7JCHAOyQiADskIkA7JCKAOyQiwDskIwA7JCNAOyQjgDskI8A7JCQAOyQkQDskJIA7JCTAOyQlADskJUA7JCWAOyQlwDskJgA7JCZAOyQmgDskJsA7JCcAOyQnQDskJ4A7JCfAOyQoADskKEA7JCiAOyQowDskKQA7JClAOyQpgDskKcA7JCoAOyQqQDskKoA7JCrAOyQrADskK0A7JCuAOyQrwDskLAA7JCxAOyQsgDskLMA7JC0AOyQtQDskLYA7JC3AOyQuADskLkA7JC6AOyQuwDskLwA7JC9AOyQvgDskL8A7JGAAOyRgQDskYIA7JGDAOyRhADskYUA7JGGAOyRhwDskYgA7JGJAOyRigDskYsA7JGMAOyRjQDskY4A7JGPAOyRkADskZEA7JGSAOyRkwDskZQA7JGVAOyRlgDskZcA7JGYAOyRmQDskZoA7JGbAOyRnADskZ0A7JGeAOyRnwDskaAA7JGhAOyRogDskaMA7JGkAOyRpQDskaYA7JGnAOyRqADskakA7JGqAOyRqwDskawA7JGtAOyRrgDska8A7JGwAOyRsQDskbIA7JGzAOyRtADskbUA7JG2AOyRtwDskbgA7JG5AOyRugDskbsA7JG8AOyRvQDskb4A7JG/AOySgADskoEA7JKCAOySgwDskoQA7JKFAOyShgDskocA7JKIAOySiQDskooA7JKLAOySjADsko0A7JKOAOySjwDskpAA7JKRAOySkgDskpMA7JKUAOySlQDskpYA7JKXAOySmADskpkA7JKaAOySmwDskpwA7JKdAOySngDskp8A7JKgAOySoQDskqIA7JKjAOySpADskqUA7JKmAOySpwDskqgA7JKpAOySqgDskqsA7JKsAOySrQDskq4A7JKvAOySsADskrEA7JKyAOySswDskrQA7JK1AOyStgDskrcA7JK4AOySuQDskroA7JK7AOySvADskr0A7JK+AOySvwDsk4AA7JOBAOyTggDsk4MA7JOEAOyThQDsk4YA7JOHAOyTiADsk4kA7JOKAOyTiwDsk4wA7JONAOyTjgDsk48A7JOQAOyTkQDsk5IA7JOTAOyTlADsk5UA7JOWAOyTlwDsk5gA7JOZAOyTmgDsk5sA7JOcAOyTnQDsk54A7JOfAOyToADsk6EA7JOiAOyTowDsk6QA7JOlAOyTpgDsk6cA7JOoAOyTqQDsk6oA7JOrAOyTrADsk60A7JOuAOyTrwDsk7AA7JOxAOyTsgDsk7MA7JO0AOyTtQDsk7YA7JO3AOyTuADsk7kA7JO6AOyTuwDsk7wA7JO9AOyTvgDsk78A7JSAAOyUgQDslIIA7JSDAOyUhADslIUA7JSGAOyUhwDslIgA7JSJAOyUigDslIsA7JSMAOyUjQDslI4A7JSPAOyUkADslJEA7JSSAOyUkwDslJQA7JSVAOyUlgDslJcA7JSYAOyUmQDslJoA7JSbAOyUnADslJ0A7JSeAOyUnwDslKAA7JShAOyUogDslKMA7JSkAOyUpQDslKYA7JSnAOyUqADslKkA7JSqAOyUqwDslKwA7JStAOyUrgDslK8A7JSwAOyUsQDslLIA7JSzAOyUtADslLUA7JS2AOyUtwDslLgA7JS5AOyUugDslLsA7JS8AOyUvQDslL4A7JS/AOyVgADslYEA7JWCAOyVgwDslYQA7JWFAOyVhgDslYcA7JWIAOyViQDslYoA7JWLAOyVjADslY0A7JWOAOyVjwDslZAA7JWRAOyVkgDslZMA7JWUAOyVlQDslZYA7JWXAOyVmADslZkA7JWaAOyVmwDslZwA7JWdAOyVngDslZ8A7JWgAOyVoQDslaIA7JWjAOyVpADslaUA7JWmAOyVpwDslagA7JWpAOyVqgDslasA7JWsAOyVrQDsla4A7JWvAOyVsADslbEA7JWyAOyVswDslbQA7JW1AOyVtgDslbcA7JW4AOyVuQDslboA7JW7AOyVvADslb0A7JW+AOyVvwDsloAA7JaBAOyWggDsloMA7JaEAOyWhQDsloYA7JaHAOyWiADslokA7JaKAOyWiwDslowA7JaNAOyWjgDslo8A7JaQAOyWkQDslpIA7JaTAOyWlADslpUA7JaWAOyWlwDslpgA7JaZAOyWmgDslpsA7JacAOyWnQDslp4A7JafAOyWoADslqEA7JaiAOyWowDslqQA7JalAOyWpgDslqcA7JaoAOyWqQDslqoA7JarAOyWrADslq0A7JauAOyWrwDslrAA7JaxAOyWsgDslrMA7Ja0AOyWtQDslrYA7Ja3AOyWuADslrkA7Ja6AOyWuwDslrwA7Ja9AOyWvgDslr8A7JeAAOyXgQDsl4IA7JeDAOyXhADsl4UA7JeGAOyXhwDsl4gA7JeJAOyXigDsl4sA7JeMAOyXjQDsl44A7JePAOyXkADsl5EA7JeSAOyXkwDsl5QA7JeVAOyXlgDsl5cA7JeYAOyXmQDsl5oA7JebAOyXnADsl50A7JeeAOyXnwDsl6AA7JehAOyXogDsl6MA7JekAOyXpQDsl6YA7JenAOyXqADsl6kA7JeqAOyXqwDsl6wA7JetAOyXrgDsl68A7JewAOyXsQDsl7IA7JezAOyXtADsl7UA7Je2AOyXtwDsl7gA7Je5AOyXugDsl7sA7Je8AOyXvQDsl74A7Je/AOyYgADsmIEA7JiCAOyYgwDsmIQA7JiFAOyYhgDsmIcA7JiIAOyYiQDsmIoA7JiLAOyYjADsmI0A7JiOAOyYjwDsmJAA7JiRAOyYkgDsmJMA7JiUAOyYlQDsmJYA7JiXAOyYmADsmJkA7JiaAOyYmwDsmJwA7JidAOyYngDsmJ8A7JigAOyYoQDsmKIA7JijAOyYpADsmKUA7JimAOyYpwDsmKgA7JipAOyYqgDsmKsA7JisAOyYrQDsmK4A7JivAOyYsADsmLEA7JiyAOyYswDsmLQA7Ji1AOyYtgDsmLcA7Ji4AOyYuQDsmLoA7Ji7AOyYvADsmL0A7Ji+AOyYvwDsmYAA7JmBAOyZggDsmYMA7JmEAOyZhQDsmYYA7JmHAOyZiADsmYkA7JmKAOyZiwDsmYwA7JmNAOyZjgDsmY8A7JmQAOyZkQDsmZIA7JmTAOyZlADsmZUA7JmWAOyZlwDsmZgA7JmZAOyZmgDsmZsA7JmcAOyZnQDsmZ4A7JmfAOyZoADsmaEA7JmiAOyZowDsmaQA7JmlAOyZpgDsmacA7JmoAOyZqQDsmaoA7JmrAOyZrADsma0A7JmuAOyZrwDsmbAA7JmxAOyZsgDsmbMA7Jm0AOyZtQDsmbYA7Jm3AOyZuADsmbkA7Jm6AOyZuwDsmbwA7Jm9AOyZvgDsmb8A7JqAAOyagQDsmoIA7JqDAOyahADsmoUA7JqGAOyahwDsmogA7JqJAOyaigDsmosA7JqMAOyajQDsmo4A7JqPAOyakADsmpEA7JqSAOyakwDsmpQA7JqVAOyalgDsmpcA7JqYAOyamQDsmpoA7JqbAOyanADsmp0A7JqeAOyanwDsmqAA7JqhAOyaogDsmqMA7JqkAOyapQDsmqYA7JqnAOyaqADsmqkA7JqqAOyaqwDsmqwA7JqtAOyargDsmq8A7JqwAOyasQDsmrIA7JqzAOyatADsmrUA7Jq2AOyatwDsmrgA7Jq5AOyaugDsmrsA7Jq8AOyavQDsmr4A7Jq/AOybgADsm4EA7JuCAOybgwDsm4QA7JuFAOybhgDsm4cA7JuIAOybiQDsm4oA7JuLAOybjADsm40A7JuOAOybjwDsm5AA7JuRAOybkgDsm5MA7JuUAOyblQDsm5YA7JuXAOybmADsm5kA7JuaAOybmwDsm5wA7JudAOybngDsm58A7JugAOyboQDsm6IA7JujAOybpADsm6UA7JumAOybpwDsm6gA7JupAOybqgDsm6sA7JusAOybrQDsm64A7JuvAOybsADsm7EA7JuyAOybswDsm7QA7Ju1AOybtgDsm7cA7Ju4AOybuQDsm7oA7Ju7AOybvADsm70A7Ju+AOybvwDsnIAA7JyBAOycggDsnIMA7JyEAOychQDsnIYA7JyHAOyciADsnIkA7JyKAOyciwDsnIwA7JyNAOycjgDsnI8A7JyQAOyckQDsnJIA7JyTAOyclADsnJUA7JyWAOyclwDsnJgA7JyZAOycmgDsnJsA7JycAOycnQDsnJ4A7JyfAOycoADsnKEA7JyiAOycowDsnKQA7JylAOycpgDsnKcA7JyoAOycqQDsnKoA7JyrAOycrADsnK0A7JyuAOycrwDsnLAA7JyxAOycsgDsnLMA7Jy0AOyctQDsnLYA7Jy3AOycuADsnLkA7Jy6AOycuwDsnLwA7Jy9AOycvgDsnL8A7J2AAOydgQDsnYIA7J2DAOydhADsnYUA7J2GAOydhwDsnYgA7J2JAOydigDsnYsA7J2MAOydjQDsnY4A7J2PAOydkADsnZEA7J2SAOydkwDsnZQA7J2VAOydlgDsnZcA7J2YAOydmQDsnZoA7J2bAOydnADsnZ0A7J2eAOydnwDsnaAA7J2hAOydogDsnaMA7J2kAOydpQDsnaYA7J2nAOydqADsnakA7J2qAOydqwDsnawA7J2tAOydrgDsna8A7J2wAOydsQDsnbIA7J2zAOydtADsnbUA7J22AOydtwDsnbgA7J25AOydugDsnbsA7J28AOydvQDsnb4A7J2/AOyegADsnoEA7J6CAOyegwDsnoQA7J6FAOyehgDsnocA7J6IAOyeiQDsnooA7J6LAOyejADsno0A7J6OAOyejwDsnpAA7J6RAOyekgDsnpMA7J6UAOyelQDsnpYA7J6XAOyemADsnpkA7J6aAOyemwDsnpwA7J6dAOyengDsnp8A7J6gAOyeoQDsnqIA7J6jAOyepADsnqUA7J6mAOyepwDsnqgA7J6pAOyeqgDsnqsA7J6sAOyerQDsnq4A7J6vAOyesADsnrEA7J6yAOyeswDsnrQA7J61AOyetgDsnrcA7J64AOyeuQDsnroA7J67AOyevADsnr0A7J6+AOyevwDsn4AA7J+BAOyfggDsn4MA7J+EAOyfhQDsn4YA7J+HAOyfiADsn4kA7J+KAOyfiwDsn4wA7J+NAOyfjgDsn48A7J+QAOyfkQDsn5IA7J+TAOyflADsn5UA7J+WAOyflwDsn5gA7J+ZAOyfmgDsn5sA7J+cAOyfnQDsn54A7J+fAOyfoADsn6EA7J+iAOyfowDsn6QA7J+lAOyfpgDsn6cA7J+oAOyfqQDsn6oA7J+rAOyfrADsn60A7J+uAOyfrwDsn7AA7J+xAOyfsgDsn7MA7J+0AOyftQDsn7YA7J+3AOyfuADsn7kA7J+6AOyfuwDsn7wA7J+9AOyfvgDsn78A7KCAAOyggQDsoIIA7KCDAOyghADsoIUA7KCGAOyghwDsoIgA7KCJAOygigDsoIsA7KCMAOygjQDsoI4A7KCPAOygkADsoJEA7KCSAOygkwDsoJQA7KCVAOyglgDsoJcA7KCYAOygmQDsoJoA7KCbAOygnADsoJ0A7KCeAOygnwDsoKAA7KChAOygogDsoKMA7KCkAOygpQDsoKYA7KCnAOygqADsoKkA7KCqAOygqwDsoKwA7KCtAOygrgDsoK8A7KCwAOygsQDsoLIA7KCzAOygtADsoLUA7KC2AOygtwDsoLgA7KC5AOygugDsoLsA7KC8AOygvQDsoL4A7KC/AOyhgADsoYEA7KGCAOyhgwDsoYQA7KGFAOyhhgDsoYcA7KGIAOyhiQDsoYoA7KGLAOyhjADsoY0A7KGOAOyhjwDsoZAA7KGRAOyhkgDsoZMA7KGUAOyhlQDsoZYA7KGXAOyhmADsoZkA7KGaAOyhmwDsoZwA7KGdAOyhngDsoZ8A7KGgAOyhoQDsoaIA7KGjAOyhpADsoaUA7KGmAOyhpwDsoagA7KGpAOyhqgDsoasA7KGsAOyhrQDsoa4A7KGvAOyhsADsobEA7KGyAOyhswDsobQA7KG1AOyhtgDsobcA7KG4AOyhuQDsoboA7KG7AOyhvADsob0A7KG+AOyhvwDsooAA7KKBAOyiggDsooMA7KKEAOyihQDsooYA7KKHAOyiiADsookA7KKKAOyiiwDsoowA7KKNAOyijgDsoo8A7KKQAOyikQDsopIA7KKTAOyilADsopUA7KKWAOyilwDsopgA7KKZAOyimgDsopsA7KKcAOyinQDsop4A7KKfAOyioADsoqEA7KKiAOyiowDsoqQA7KKlAOyipgDsoqcA7KKoAOyiqQDsoqoA7KKrAOyirADsoq0A7KKuAOyirwDsorAA7KKxAOyisgDsorMA7KK0AOyitQDsorYA7KK3AOyiuADsorkA7KK6AOyiuwDsorwA7KK9AOyivgDsor8A7KOAAOyjgQDso4IA7KODAOyjhADso4UA7KOGAOyjhwDso4gA7KOJAOyjigDso4sA7KOMAOyjjQDso44A7KOPAOyjkADso5EA7KOSAOyjkwDso5QA7KOVAOyjlgDso5cA7KOYAOyjmQDso5oA7KObAOyjnADso50A7KOeAOyjnwDso6AA7KOhAOyjogDso6MA7KOkAOyjpQDso6YA7KOnAOyjqADso6kA7KOqAOyjqwDso6wA7KOtAOyjrgDso68A7KOwAOyjsQDso7IA7KOzAOyjtADso7UA7KO2AOyjtwDso7gA7KO5AOyjugDso7sA7KO8AOyjvOydmADso70A7KO+AOyjvwDspIAA7KSBAOykggDspIMA7KSEAOykhQDspIYA7KSHAOykiADspIkA7KSKAOykiwDspIwA7KSNAOykjgDspI8A7KSQAOykkQDspJIA7KSTAOyklADspJUA7KSWAOyklwDspJgA7KSZAOykmgDspJsA7KScAOyknQDspJ4A7KSfAOykoADspKEA7KSiAOykowDspKQA7KSlAOykpgDspKcA7KSoAOykqQDspKoA7KSrAOykrADspK0A7KSuAOykrwDspLAA7KSxAOyksgDspLMA7KS0AOyktQDspLYA7KS3AOykuADspLkA7KS6AOykuwDspLwA7KS9AOykvgDspL8A7KWAAOylgQDspYIA7KWDAOylhADspYUA7KWGAOylhwDspYgA7KWJAOyligDspYsA7KWMAOyljQDspY4A7KWPAOylkADspZEA7KWSAOylkwDspZQA7KWVAOyllgDspZcA7KWYAOylmQDspZoA7KWbAOylnADspZ0A7KWeAOylnwDspaAA7KWhAOylogDspaMA7KWkAOylpQDspaYA7KWnAOylqADspakA7KWqAOylqwDspawA7KWtAOylrgDspa8A7KWwAOylsQDspbIA7KWzAOyltADspbUA7KW2AOyltwDspbgA7KW5AOylugDspbsA7KW8AOylvQDspb4A7KW/AOymgADspoEA7KaCAOymgwDspoQA7KaFAOymhgDspocA7KaIAOymiQDspooA7KaLAOymjADspo0A7KaOAOymjwDsppAA7KaRAOymkgDsppMA7KaUAOymlQDsppYA7KaXAOymmADsppkA7KaaAOymmwDsppwA7KadAOymngDspp8A7KagAOymoQDspqIA7KajAOympADspqUA7KamAOympwDspqgA7KapAOymqgDspqsA7KasAOymrQDspq4A7KavAOymsADsprEA7KayAOymswDsprQA7Ka1AOymtgDsprcA7Ka4AOymuQDsproA7Ka7AOymvADspr0A7Ka+AOymvwDsp4AA7KeBAOynggDsp4MA7KeEAOynhQDsp4YA7KeHAOyniADsp4kA7KeKAOyniwDsp4wA7KeNAOynjgDsp48A7KeQAOynkQDsp5IA7KeTAOynlADsp5UA7KeWAOynlwDsp5gA7KeZAOynmgDsp5sA7KecAOynnQDsp54A7KefAOynoADsp6EA7KeiAOynowDsp6QA7KelAOynpgDsp6cA7KeoAOynqQDsp6oA7KerAOynrADsp60A7KeuAOynrwDsp7AA7KexAOynsgDsp7MA7Ke0AOyntQDsp7YA7Ke3AOynuADsp7kA7Ke6AOynuwDsp7wA7Ke9AOynvgDsp78A7KiAAOyogQDsqIIA7KiDAOyohADsqIUA7KiGAOyohwDsqIgA7KiJAOyoigDsqIsA7KiMAOyojQDsqI4A7KiPAOyokADsqJEA7KiSAOyokwDsqJQA7KiVAOyolgDsqJcA7KiYAOyomQDsqJoA7KibAOyonADsqJ0A7KieAOyonwDsqKAA7KihAOyoogDsqKMA7KikAOyopQDsqKYA7KinAOyoqADsqKkA7KiqAOyoqwDsqKwA7KitAOyorgDsqK8A7KiwAOyosQDsqLIA7KizAOyotADsqLUA7Ki2AOyotwDsqLgA7Ki5AOyougDsqLsA7Ki8AOyovQDsqL4A7Ki/AOypgADsqYEA7KmCAOypgwDsqYQA7KmFAOyphgDsqYcA7KmIAOypiQDsqYoA7KmLAOypjADsqY0A7KmOAOypjwDsqZAA7KmRAOypkgDsqZMA7KmUAOyplQDsqZYA7KmXAOypmADsqZkA7KmaAOypmwDsqZwA7KmdAOypngDsqZ8A7KmgAOypoQDsqaIA7KmjAOyppADsqaUA7KmmAOyppwDsqagA7KmpAOypqgDsqasA7KmsAOyprQDsqa4A7KmvAOypsADsqbEA7KmyAOypswDsqbQA7Km1AOyptgDsqbcA7Km4AOypuQDsqboA7Km7AOypvADsqb0A7Km+AOypvwDsqoAA7KqBAOyqggDsqoMA7KqEAOyqhQDsqoYA7KqHAOyqiADsqokA7KqKAOyqiwDsqowA7KqNAOyqjgDsqo8A7KqQAOyqkQDsqpIA7KqTAOyqlADsqpUA7KqWAOyqlwDsqpgA7KqZAOyqmgDsqpsA7KqcAOyqnQDsqp4A7KqfAOyqoADsqqEA7KqiAOyqowDsqqQA7KqlAOyqpgDsqqcA7KqoAOyqqQDsqqoA7KqrAOyqrADsqq0A7KquAOyqrwDsqrAA7KqxAOyqsgDsqrMA7Kq0AOyqtQDsqrYA7Kq3AOyquADsqrkA7Kq6AOyquwDsqrwA7Kq9AOyqvgDsqr8A7KuAAOyrgQDsq4IA7KuDAOyrhADsq4UA7KuGAOyrhwDsq4gA7KuJAOyrigDsq4sA7KuMAOyrjQDsq44A7KuPAOyrkADsq5EA7KuSAOyrkwDsq5QA7KuVAOyrlgDsq5cA7KuYAOyrmQDsq5oA7KubAOyrnADsq50A7KueAOyrnwDsq6AA7KuhAOyrogDsq6MA7KukAOyrpQDsq6YA7KunAOyrqADsq6kA7KuqAOyrqwDsq6wA7KutAOyrrgDsq68A7KuwAOyrsQDsq7IA7KuzAOyrtADsq7UA7Ku2AOyrtwDsq7gA7Ku5AOyrugDsq7sA7Ku8AOyrvQDsq74A7Ku/AOysgADsrIEA7KyCAOysgwDsrIQA7KyFAOyshgDsrIcA7KyIAOysiQDsrIoA7KyLAOysjADsrI0A7KyOAOysjwDsrJAA7KyRAOyskgDsrJMA7KyUAOyslQDsrJYA7KyXAOysmADsrJkA7KyaAOysmwDsrJwA7KydAOysngDsrJ8A7KygAOysoQDsrKIA7KyjAOyspADsrKUA7KymAOyspwDsrKgA7KypAOysqgDsrKsA7KysAOysrQDsrK4A7KyvAOyssADsrLEA7KyyAOysswDsrLQA7Ky1AOystgDsrLcA7Ky4AOysuQDsrLoA7Ky7AOysvADsrL0A7Ky+AOysvwDsrYAA7K2BAOytggDsrYMA7K2EAOythQDsrYYA7K2HAOytiADsrYkA7K2KAOytiwDsrYwA7K2NAOytjgDsrY8A7K2QAOytkQDsrZIA7K2TAOytlADsrZUA7K2WAOytlwDsrZgA7K2ZAOytmgDsrZsA7K2cAOytnQDsrZ4A7K2fAOytoADsraEA7K2iAOytowDsraQA7K2lAOytpgDsracA7K2oAOytqQDsraoA7K2rAOytrADsra0A7K2uAOytrwDsrbAA7K2xAOytsgDsrbMA7K20AOyttQDsrbYA7K23AOytuADsrbkA7K26AOytuwDsrbwA7K29AOytvgDsrb8A7K6AAOyugQDsroIA7K6DAOyuhADsroUA7K6GAOyuhwDsrogA7K6JAOyuigDsrosA7K6MAOyujQDsro4A7K6PAOyukADsrpEA7K6SAOyukwDsrpQA7K6VAOyulgDsrpcA7K6YAOyumQDsrpoA7K6bAOyunADsrp0A7K6eAOyunwDsrqAA7K6hAOyuogDsrqMA7K6kAOyupQDsrqYA7K6nAOyuqADsrqkA7K6qAOyuqwDsrqwA7K6tAOyurgDsrq8A7K6wAOyusQDsrrIA7K6zAOyutADsrrUA7K62AOyutwDsrrgA7K65AOyuugDsrrsA7K68AOyuvQDsrr4A7K6/AOyvgADsr4EA7K+CAOyvgwDsr4QA7K+FAOyvhgDsr4cA7K+IAOyviQDsr4oA7K+LAOyvjADsr40A7K+OAOyvjwDsr5AA7K+RAOyvkgDsr5MA7K+UAOyvlQDsr5YA7K+XAOyvmADsr5kA7K+aAOyvmwDsr5wA7K+dAOyvngDsr58A7K+gAOyvoQDsr6IA7K+jAOyvpADsr6UA7K+mAOyvpwDsr6gA7K+pAOyvqgDsr6sA7K+sAOyvrQDsr64A7K+vAOyvsADsr7EA7K+yAOyvswDsr7QA7K+1AOyvtgDsr7cA7K+4AOyvuQDsr7oA7K+7AOyvvADsr70A7K++AOyvvwDssIAA7LCBAOywggDssIMA7LCEAOywhQDssIYA7LCHAOywiADssIkA7LCKAOywiwDssIwA7LCNAOywjgDssI8A7LCQAOywkQDssJIA7LCTAOywlADssJUA7LCWAOywlwDssJgA7LCZAOywmgDssJsA7LCcAOywnQDssJ4A7LCfAOywoADssKEA7LCiAOywowDssKQA7LClAOywpgDssKcA7LCoAOywqQDssKoA7LCrAOywrADssK0A7LCuAOywrwDssLAA7LCxAOywsgDssLMA7LC0AOywtQDssLYA7LC3AOywuADssLjqs6AA7LC5AOywugDssLsA7LC8AOywvQDssL4A7LC/AOyxgADssYEA7LGCAOyxgwDssYQA7LGFAOyxhgDssYcA7LGIAOyxiQDssYoA7LGLAOyxjADssY0A7LGOAOyxjwDssZAA7LGRAOyxkgDssZMA7LGUAOyxlQDssZYA7LGXAOyxmADssZkA7LGaAOyxmwDssZwA7LGdAOyxngDssZ8A7LGgAOyxoQDssaIA7LGjAOyxpADssaUA7LGmAOyxpwDssagA7LGpAOyxqgDssasA7LGsAOyxrQDssa4A7LGvAOyxsADssbEA7LGyAOyxswDssbQA7LG1AOyxtgDssbcA7LG4AOyxuQDssboA7LG7AOyxvADssb0A7LG+AOyxvwDssoAA7LKBAOyyggDssoMA7LKEAOyyhQDssoYA7LKHAOyyiADssokA7LKKAOyyiwDssowA7LKNAOyyjgDsso8A7LKQAOyykQDsspIA7LKTAOyylADsspUA7LKWAOyylwDsspgA7LKZAOyymgDsspsA7LKcAOyynQDssp4A7LKfAOyyoADssqEA7LKiAOyyowDssqQA7LKlAOyypgDssqcA7LKoAOyyqQDssqoA7LKrAOyyrADssq0A7LKuAOyyrwDssrAA7LKxAOyysgDssrMA7LK0AOyytQDssrYA7LK3AOyyuADssrkA7LK6AOyyuwDssrwA7LK9AOyyvgDssr8A7LOAAOyzgQDss4IA7LODAOyzhADss4UA7LOGAOyzhwDss4gA7LOJAOyzigDss4sA7LOMAOyzjQDss44A7LOPAOyzkADss5EA7LOSAOyzkwDss5QA7LOVAOyzlgDss5cA7LOYAOyzmQDss5oA7LObAOyznADss50A7LOeAOyznwDss6AA7LOhAOyzogDss6MA7LOkAOyzpQDss6YA7LOnAOyzqADss6kA7LOqAOyzqwDss6wA7LOtAOyzrgDss68A7LOwAOyzsQDss7IA7LOzAOyztADss7UA7LO2AOyztwDss7gA7LO5AOyzugDss7sA7LO8AOyzvQDss74A7LO/AOy0gADstIEA7LSCAOy0gwDstIQA7LSFAOy0hgDstIcA7LSIAOy0iQDstIoA7LSLAOy0jADstI0A7LSOAOy0jwDstJAA7LSRAOy0kgDstJMA7LSUAOy0lQDstJYA7LSXAOy0mADstJkA7LSaAOy0mwDstJwA7LSdAOy0ngDstJ8A7LSgAOy0oQDstKIA7LSjAOy0pADstKUA7LSmAOy0pwDstKgA7LSpAOy0qgDstKsA7LSsAOy0rQDstK4A7LSvAOy0sADstLEA7LSyAOy0swDstLQA7LS1AOy0tgDstLcA7LS4AOy0uQDstLoA7LS7AOy0vADstL0A7LS+AOy0vwDstYAA7LWBAOy1ggDstYMA7LWEAOy1hQDstYYA7LWHAOy1iADstYkA7LWKAOy1iwDstYwA7LWNAOy1jgDstY8A7LWQAOy1kQDstZIA7LWTAOy1lADstZUA7LWWAOy1lwDstZgA7LWZAOy1mgDstZsA7LWcAOy1nQDstZ4A7LWfAOy1oADstaEA7LWiAOy1owDstaQA7LWlAOy1pgDstacA7LWoAOy1qQDstaoA7LWrAOy1rADsta0A7LWuAOy1rwDstbAA7LWxAOy1sgDstbMA7LW0AOy1tQDstbYA7LW3AOy1uADstbkA7LW6AOy1uwDstbwA7LW9AOy1vgDstb8A7LaAAOy2gQDstoIA7LaDAOy2hADstoUA7LaGAOy2hwDstogA7LaJAOy2igDstosA7LaMAOy2jQDsto4A7LaPAOy2kADstpEA7LaSAOy2kwDstpQA7LaVAOy2lgDstpcA7LaYAOy2mQDstpoA7LabAOy2nADstp0A7LaeAOy2nwDstqAA7LahAOy2ogDstqMA7LakAOy2pQDstqYA7LanAOy2qADstqkA7LaqAOy2qwDstqwA7LatAOy2rgDstq8A7LawAOy2sQDstrIA7LazAOy2tADstrUA7La2AOy2twDstrgA7La5AOy2ugDstrsA7La8AOy2vQDstr4A7La/AOy3gADst4EA7LeCAOy3gwDst4QA7LeFAOy3hgDst4cA7LeIAOy3iQDst4oA7LeLAOy3jADst40A7LeOAOy3jwDst5AA7LeRAOy3kgDst5MA7LeUAOy3lQDst5YA7LeXAOy3mADst5kA7LeaAOy3mwDst5wA7LedAOy3ngDst58A7LegAOy3oQDst6IA7LejAOy3pADst6UA7LemAOy3pwDst6gA7LepAOy3qgDst6sA7LesAOy3rQDst64A7LevAOy3sADst7EA7LeyAOy3swDst7QA7Le1AOy3tgDst7cA7Le4AOy3uQDst7oA7Le7AOy3vADst70A7Le+AOy3vwDsuIAA7LiBAOy4ggDsuIMA7LiEAOy4hQDsuIYA7LiHAOy4iADsuIkA7LiKAOy4iwDsuIwA7LiNAOy4jgDsuI8A7LiQAOy4kQDsuJIA7LiTAOy4lADsuJUA7LiWAOy4lwDsuJgA7LiZAOy4mgDsuJsA7LicAOy4nQDsuJ4A7LifAOy4oADsuKEA7LiiAOy4owDsuKQA7LilAOy4pgDsuKcA7LioAOy4qQDsuKoA7LirAOy4rADsuK0A7LiuAOy4rwDsuLAA7LixAOy4sgDsuLMA7Li0AOy4tQDsuLYA7Li3AOy4uADsuLkA7Li6AOy4uwDsuLwA7Li9AOy4vgDsuL8A7LmAAOy5gQDsuYIA7LmDAOy5hADsuYUA7LmGAOy5hwDsuYgA7LmJAOy5igDsuYsA7LmMAOy5jQDsuY4A7LmPAOy5kADsuZEA7LmSAOy5kwDsuZQA7LmVAOy5lgDsuZcA7LmYAOy5mQDsuZoA7LmbAOy5nADsuZ0A7LmeAOy5nwDsuaAA7LmhAOy5ogDsuaMA7LmkAOy5pQDsuaYA7LmnAOy5qADsuakA7LmqAOy5qwDsuawA7LmtAOy5rgDsua8A7LmwAOy5sQDsubIA7LmzAOy5tADsubUA7Lm2AOy5twDsubgA7Lm5AOy5ugDsubsA7Lm8AOy5vQDsub4A7Lm/AOy6gADsuoEA7LqCAOy6gwDsuoQA7LqFAOy6hgDsuocA7LqIAOy6iQDsuooA7LqLAOy6jADsuo0A7LqOAOy6jwDsupAA7LqRAOy6kgDsupMA7LqUAOy6lQDsupYA7LqXAOy6mADsupkA7LqaAOy6mwDsupwA7LqdAOy6ngDsup8A7LqgAOy6oQDsuqIA7LqjAOy6pADsuqUA7LqmAOy6pwDsuqgA7LqpAOy6qgDsuqsA7LqsAOy6rQDsuq4A7LqvAOy6sADsurEA7LqyAOy6swDsurQA7Lq1AOy6tgDsurcA7Lq4AOy6uQDsuroA7Lq7AOy6vADsur0A7Lq+AOy6vwDsu4AA7LuBAOy7ggDsu4MA7LuEAOy7hQDsu4YA7LuHAOy7iADsu4kA7LuKAOy7iwDsu4wA7LuNAOy7jgDsu48A7LuQAOy7kQDsu5IA7LuTAOy7lADsu5UA7LuWAOy7lwDsu5gA7LuZAOy7mgDsu5sA7LucAOy7nQDsu54A7LufAOy7oADsu6EA7LuiAOy7owDsu6QA7LulAOy7pgDsu6cA7LuoAOy7qQDsu6oA7LurAOy7rADsu60A7LuuAOy7rwDsu7AA7LuxAOy7sgDsu7MA7Lu0AOy7tQDsu7YA7Lu3AOy7uADsu7kA7Lu6AOy7uwDsu7wA7Lu9AOy7vgDsu78A7LyAAOy8gQDsvIIA7LyDAOy8hADsvIUA7LyGAOy8hwDsvIgA7LyJAOy8igDsvIsA7LyMAOy8jQDsvI4A7LyPAOy8kADsvJEA7LySAOy8kwDsvJQA7LyVAOy8lgDsvJcA7LyYAOy8mQDsvJoA7LybAOy8nADsvJ0A7LyeAOy8nwDsvKAA7LyhAOy8ogDsvKMA7LykAOy8pQDsvKYA7LynAOy8qADsvKkA7LyqAOy8qwDsvKwA7LytAOy8rgDsvK8A7LywAOy8sQDsvLIA7LyzAOy8tADsvLUA7Ly2AOy8twDsvLgA7Ly5AOy8ugDsvLsA7Ly8AOy8vQDsvL4A7Ly/AOy9gADsvYEA7L2CAOy9gwDsvYQA7L2FAOy9hgDsvYcA7L2IAOy9iQDsvYoA7L2LAOy9jADsvY0A7L2OAOy9jwDsvZAA7L2RAOy9kgDsvZMA7L2UAOy9lQDsvZYA7L2XAOy9mADsvZkA7L2aAOy9mwDsvZwA7L2dAOy9ngDsvZ8A7L2gAOy9oQDsvaIA7L2jAOy9pADsvaUA7L2mAOy9pwDsvagA7L2pAOy9qgDsvasA7L2sAOy9rQDsva4A7L2vAOy9sADsvbEA7L2yAOy9swDsvbQA7L21AOy9tgDsvbcA7L24AOy9uQDsvboA7L27AOy9vADsvb0A7L2+AOy9vwDsvoAA7L6BAOy+ggDsvoMA7L6EAOy+hQDsvoYA7L6HAOy+iADsvokA7L6KAOy+iwDsvowA7L6NAOy+jgDsvo8A7L6QAOy+kQDsvpIA7L6TAOy+lADsvpUA7L6WAOy+lwDsvpgA7L6ZAOy+mgDsvpsA7L6cAOy+nQDsvp4A7L6fAOy+oADsvqEA7L6iAOy+owDsvqQA7L6lAOy+pgDsvqcA7L6oAOy+qQDsvqoA7L6rAOy+rADsvq0A7L6uAOy+rwDsvrAA7L6xAOy+sgDsvrMA7L60AOy+tQDsvrYA7L63AOy+uADsvrkA7L66AOy+uwDsvrwA7L69AOy+vgDsvr8A7L+AAOy/gQDsv4IA7L+DAOy/hADsv4UA7L+GAOy/hwDsv4gA7L+JAOy/igDsv4sA7L+MAOy/jQDsv44A7L+PAOy/kADsv5EA7L+SAOy/kwDsv5QA7L+VAOy/lgDsv5cA7L+YAOy/mQDsv5oA7L+bAOy/nADsv50A7L+eAOy/nwDsv6AA7L+hAOy/ogDsv6MA7L+kAOy/pQDsv6YA7L+nAOy/qADsv6kA7L+qAOy/qwDsv6wA7L+tAOy/rgDsv68A7L+wAOy/sQDsv7IA7L+zAOy/tADsv7UA7L+2AOy/twDsv7gA7L+5AOy/ugDsv7sA7L+8AOy/vQDsv74A7L+/AO2AgADtgIEA7YCCAO2AgwDtgIQA7YCFAO2AhgDtgIcA7YCIAO2AiQDtgIoA7YCLAO2AjADtgI0A7YCOAO2AjwDtgJAA7YCRAO2AkgDtgJMA7YCUAO2AlQDtgJYA7YCXAO2AmADtgJkA7YCaAO2AmwDtgJwA7YCdAO2AngDtgJ8A7YCgAO2AoQDtgKIA7YCjAO2ApADtgKUA7YCmAO2ApwDtgKgA7YCpAO2AqgDtgKsA7YCsAO2ArQDtgK4A7YCvAO2AsADtgLEA7YCyAO2AswDtgLQA7YC1AO2AtgDtgLcA7YC4AO2AuQDtgLoA7YC7AO2AvADtgL0A7YC+AO2AvwDtgYAA7YGBAO2BggDtgYMA7YGEAO2BhQDtgYYA7YGHAO2BiADtgYkA7YGKAO2BiwDtgYwA7YGNAO2BjgDtgY8A7YGQAO2BkQDtgZIA7YGTAO2BlADtgZUA7YGWAO2BlwDtgZgA7YGZAO2BmgDtgZsA7YGcAO2BnQDtgZ4A7YGfAO2BoADtgaEA7YGiAO2BowDtgaQA7YGlAO2BpgDtgacA7YGoAO2BqQDtgaoA7YGrAO2BrADtga0A7YGuAO2BrwDtgbAA7YGxAO2BsgDtgbMA7YG0AO2BtQDtgbYA7YG3AO2BuADtgbkA7YG6AO2BuwDtgbwA7YG9AO2BvgDtgb8A7YKAAO2CgQDtgoIA7YKDAO2ChADtgoUA7YKGAO2ChwDtgogA7YKJAO2CigDtgosA7YKMAO2CjQDtgo4A7YKPAO2CkADtgpEA7YKSAO2CkwDtgpQA7YKVAO2ClgDtgpcA7YKYAO2CmQDtgpoA7YKbAO2CnADtgp0A7YKeAO2CnwDtgqAA7YKhAO2CogDtgqMA7YKkAO2CpQDtgqYA7YKnAO2CqADtgqkA7YKqAO2CqwDtgqwA7YKtAO2CrgDtgq8A7YKwAO2CsQDtgrIA7YKzAO2CtADtgrUA7YK2AO2CtwDtgrgA7YK5AO2CugDtgrsA7YK8AO2CvQDtgr4A7YK/AO2DgADtg4EA7YOCAO2DgwDtg4QA7YOFAO2DhgDtg4cA7YOIAO2DiQDtg4oA7YOLAO2DjADtg40A7YOOAO2DjwDtg5AA7YORAO2DkgDtg5MA7YOUAO2DlQDtg5YA7YOXAO2DmADtg5kA7YOaAO2DmwDtg5wA7YOdAO2DngDtg58A7YOgAO2DoQDtg6IA7YOjAO2DpADtg6UA7YOmAO2DpwDtg6gA7YOpAO2DqgDtg6sA7YOsAO2DrQDtg64A7YOvAO2DsADtg7EA7YOyAO2DswDtg7QA7YO1AO2DtgDtg7cA7YO4AO2DuQDtg7oA7YO7AO2DvADtg70A7YO+AO2DvwDthIAA7YSBAO2EggDthIMA7YSEAO2EhQDthIYA7YSHAO2EiADthIkA7YSKAO2EiwDthIwA7YSNAO2EjgDthI8A7YSQAO2EkQDthJIA7YSTAO2ElADthJUA7YSWAO2ElwDthJgA7YSZAO2EmgDthJsA7YScAO2EnQDthJ4A7YSfAO2EoADthKEA7YSiAO2EowDthKQA7YSlAO2EpgDthKcA7YSoAO2EqQDthKoA7YSrAO2ErADthK0A7YSuAO2ErwDthLAA7YSxAO2EsgDthLMA7YS0AO2EtQDthLYA7YS3AO2EuADthLkA7YS6AO2EuwDthLwA7YS9AO2EvgDthL8A7YWAAO2FgQDthYIA7YWDAO2FhADthYUA7YWGAO2FhwDthYgA7YWJAO2FigDthYsA7YWMAO2FjQDthY4A7YWPAO2FkADthZEA7YWSAO2FkwDthZQA7YWVAO2FlgDthZcA7YWYAO2FmQDthZoA7YWbAO2FnADthZ0A7YWeAO2FnwDthaAA7YWhAO2FogDthaMA7YWkAO2FpQDthaYA7YWnAO2FqADthakA7YWqAO2FqwDthawA7YWtAO2FrgDtha8A7YWwAO2FsQDthbIA7YWzAO2FtADthbUA7YW2AO2FtwDthbgA7YW5AO2FugDthbsA7YW8AO2FvQDthb4A7YW/AO2GgADthoEA7YaCAO2GgwDthoQA7YaFAO2GhgDthocA7YaIAO2GiQDthooA7YaLAO2GjADtho0A7YaOAO2GjwDthpAA7YaRAO2GkgDthpMA7YaUAO2GlQDthpYA7YaXAO2GmADthpkA7YaaAO2GmwDthpwA7YadAO2GngDthp8A7YagAO2GoQDthqIA7YajAO2GpADthqUA7YamAO2GpwDthqgA7YapAO2GqgDthqsA7YasAO2GrQDthq4A7YavAO2GsADthrEA7YayAO2GswDthrQA7Ya1AO2GtgDthrcA7Ya4AO2GuQDthroA7Ya7AO2GvADthr0A7Ya+AO2GvwDth4AA7YeBAO2HggDth4MA7YeEAO2HhQDth4YA7YeHAO2HiADth4kA7YeKAO2HiwDth4wA7YeNAO2HjgDth48A7YeQAO2HkQDth5IA7YeTAO2HlADth5UA7YeWAO2HlwDth5gA7YeZAO2HmgDth5sA7YecAO2HnQDth54A7YefAO2HoADth6EA7YeiAO2HowDth6QA7YelAO2HpgDth6cA7YeoAO2HqQDth6oA7YerAO2HrADth60A7YeuAO2HrwDth7AA7YexAO2HsgDth7MA7Ye0AO2HtQDth7YA7Ye3AO2HuADth7kA7Ye6AO2HuwDth7wA7Ye9AO2HvgDth78A7YiAAO2IgQDtiIIA7YiDAO2IhADtiIUA7YiGAO2IhwDtiIgA7YiJAO2IigDtiIsA7YiMAO2IjQDtiI4A7YiPAO2IkADtiJEA7YiSAO2IkwDtiJQA7YiVAO2IlgDtiJcA7YiYAO2ImQDtiJoA7YibAO2InADtiJ0A7YieAO2InwDtiKAA7YihAO2IogDtiKMA7YikAO2IpQDtiKYA7YinAO2IqADtiKkA7YiqAO2IqwDtiKwA7YitAO2IrgDtiK8A7YiwAO2IsQDtiLIA7YizAO2ItADtiLUA7Yi2AO2ItwDtiLgA7Yi5AO2IugDtiLsA7Yi8AO2IvQDtiL4A7Yi/AO2JgADtiYEA7YmCAO2JgwDtiYQA7YmFAO2JhgDtiYcA7YmIAO2JiQDtiYoA7YmLAO2JjADtiY0A7YmOAO2JjwDtiZAA7YmRAO2JkgDtiZMA7YmUAO2JlQDtiZYA7YmXAO2JmADtiZkA7YmaAO2JmwDtiZwA7YmdAO2JngDtiZ8A7YmgAO2JoQDtiaIA7YmjAO2JpADtiaUA7YmmAO2JpwDtiagA7YmpAO2JqgDtiasA7YmsAO2JrQDtia4A7YmvAO2JsADtibEA7YmyAO2JswDtibQA7Ym1AO2JtgDtibcA7Ym4AO2JuQDtiboA7Ym7AO2JvADtib0A7Ym+AO2JvwDtioAA7YqBAO2KggDtioMA7YqEAO2KhQDtioYA7YqHAO2KiADtiokA7YqKAO2KiwDtiowA7YqNAO2KjgDtio8A7YqQAO2KkQDtipIA7YqTAO2KlADtipUA7YqWAO2KlwDtipgA7YqZAO2KmgDtipsA7YqcAO2KnQDtip4A7YqfAO2KoADtiqEA7YqiAO2KowDtiqQA7YqlAO2KpgDtiqcA7YqoAO2KqQDtiqoA7YqrAO2KrADtiq0A7YquAO2KrwDtirAA7YqxAO2KsgDtirMA7Yq0AO2KtQDtirYA7Yq3AO2KuADtirkA7Yq6AO2KuwDtirwA7Yq9AO2KvgDtir8A7YuAAO2LgQDti4IA7YuDAO2LhADti4UA7YuGAO2LhwDti4gA7YuJAO2LigDti4sA7YuMAO2LjQDti44A7YuPAO2LkADti5EA7YuSAO2LkwDti5QA7YuVAO2LlgDti5cA7YuYAO2LmQDti5oA7YubAO2LnADti50A7YueAO2LnwDti6AA7YuhAO2LogDti6MA7YukAO2LpQDti6YA7YunAO2LqADti6kA7YuqAO2LqwDti6wA7YutAO2LrgDti68A7YuwAO2LsQDti7IA7YuzAO2LtADti7UA7Yu2AO2LtwDti7gA7Yu5AO2LugDti7sA7Yu8AO2LvQDti74A7Yu/AO2MgADtjIEA7YyCAO2MgwDtjIQA7YyFAO2MhgDtjIcA7YyIAO2MiQDtjIoA7YyLAO2MjADtjI0A7YyOAO2MjwDtjJAA7YyRAO2MkgDtjJMA7YyUAO2MlQDtjJYA7YyXAO2MmADtjJkA7YyaAO2MmwDtjJwA7YydAO2MngDtjJ8A7YygAO2MoQDtjKIA7YyjAO2MpADtjKUA7YymAO2MpwDtjKgA7YypAO2MqgDtjKsA7YysAO2MrQDtjK4A7YyvAO2MsADtjLEA7YyyAO2MswDtjLQA7Yy1AO2MtgDtjLcA7Yy4AO2MuQDtjLoA7Yy7AO2MvADtjL0A7Yy+AO2MvwDtjYAA7Y2BAO2NggDtjYMA7Y2EAO2NhQDtjYYA7Y2HAO2NiADtjYkA7Y2KAO2NiwDtjYwA7Y2NAO2NjgDtjY8A7Y2QAO2NkQDtjZIA7Y2TAO2NlADtjZUA7Y2WAO2NlwDtjZgA7Y2ZAO2NmgDtjZsA7Y2cAO2NnQDtjZ4A7Y2fAO2NoADtjaEA7Y2iAO2NowDtjaQA7Y2lAO2NpgDtjacA7Y2oAO2NqQDtjaoA7Y2rAO2NrADtja0A7Y2uAO2NrwDtjbAA7Y2xAO2NsgDtjbMA7Y20AO2NtQDtjbYA7Y23AO2NuADtjbkA7Y26AO2NuwDtjbwA7Y29AO2NvgDtjb8A7Y6AAO2OgQDtjoIA7Y6DAO2OhADtjoUA7Y6GAO2OhwDtjogA7Y6JAO2OigDtjosA7Y6MAO2OjQDtjo4A7Y6PAO2OkADtjpEA7Y6SAO2OkwDtjpQA7Y6VAO2OlgDtjpcA7Y6YAO2OmQDtjpoA7Y6bAO2OnADtjp0A7Y6eAO2OnwDtjqAA7Y6hAO2OogDtjqMA7Y6kAO2OpQDtjqYA7Y6nAO2OqADtjqkA7Y6qAO2OqwDtjqwA7Y6tAO2OrgDtjq8A7Y6wAO2OsQDtjrIA7Y6zAO2OtADtjrUA7Y62AO2OtwDtjrgA7Y65AO2OugDtjrsA7Y68AO2OvQDtjr4A7Y6/AO2PgADtj4EA7Y+CAO2PgwDtj4QA7Y+FAO2PhgDtj4cA7Y+IAO2PiQDtj4oA7Y+LAO2PjADtj40A7Y+OAO2PjwDtj5AA7Y+RAO2PkgDtj5MA7Y+UAO2PlQDtj5YA7Y+XAO2PmADtj5kA7Y+aAO2PmwDtj5wA7Y+dAO2PngDtj58A7Y+gAO2PoQDtj6IA7Y+jAO2PpADtj6UA7Y+mAO2PpwDtj6gA7Y+pAO2PqgDtj6sA7Y+sAO2PrQDtj64A7Y+vAO2PsADtj7EA7Y+yAO2PswDtj7QA7Y+1AO2PtgDtj7cA7Y+4AO2PuQDtj7oA7Y+7AO2PvADtj70A7Y++AO2PvwDtkIAA7ZCBAO2QggDtkIMA7ZCEAO2QhQDtkIYA7ZCHAO2QiADtkIkA7ZCKAO2QiwDtkIwA7ZCNAO2QjgDtkI8A7ZCQAO2QkQDtkJIA7ZCTAO2QlADtkJUA7ZCWAO2QlwDtkJgA7ZCZAO2QmgDtkJsA7ZCcAO2QnQDtkJ4A7ZCfAO2QoADtkKEA7ZCiAO2QowDtkKQA7ZClAO2QpgDtkKcA7ZCoAO2QqQDtkKoA7ZCrAO2QrADtkK0A7ZCuAO2QrwDtkLAA7ZCxAO2QsgDtkLMA7ZC0AO2QtQDtkLYA7ZC3AO2QuADtkLkA7ZC6AO2QuwDtkLwA7ZC9AO2QvgDtkL8A7ZGAAO2RgQDtkYIA7ZGDAO2RhADtkYUA7ZGGAO2RhwDtkYgA7ZGJAO2RigDtkYsA7ZGMAO2RjQDtkY4A7ZGPAO2RkADtkZEA7ZGSAO2RkwDtkZQA7ZGVAO2RlgDtkZcA7ZGYAO2RmQDtkZoA7ZGbAO2RnADtkZ0A7ZGeAO2RnwDtkaAA7ZGhAO2RogDtkaMA7ZGkAO2RpQDtkaYA7ZGnAO2RqADtkakA7ZGqAO2RqwDtkawA7ZGtAO2RrgDtka8A7ZGwAO2RsQDtkbIA7ZGzAO2RtADtkbUA7ZG2AO2RtwDtkbgA7ZG5AO2RugDtkbsA7ZG8AO2RvQDtkb4A7ZG/AO2SgADtkoEA7ZKCAO2SgwDtkoQA7ZKFAO2ShgDtkocA7ZKIAO2SiQDtkooA7ZKLAO2SjADtko0A7ZKOAO2SjwDtkpAA7ZKRAO2SkgDtkpMA7ZKUAO2SlQDtkpYA7ZKXAO2SmADtkpkA7ZKaAO2SmwDtkpwA7ZKdAO2SngDtkp8A7ZKgAO2SoQDtkqIA7ZKjAO2SpADtkqUA7ZKmAO2SpwDtkqgA7ZKpAO2SqgDtkqsA7ZKsAO2SrQDtkq4A7ZKvAO2SsADtkrEA7ZKyAO2SswDtkrQA7ZK1AO2StgDtkrcA7ZK4AO2SuQDtkroA7ZK7AO2SvADtkr0A7ZK+AO2SvwDtk4AA7ZOBAO2TggDtk4MA7ZOEAO2ThQDtk4YA7ZOHAO2TiADtk4kA7ZOKAO2TiwDtk4wA7ZONAO2TjgDtk48A7ZOQAO2TkQDtk5IA7ZOTAO2TlADtk5UA7ZOWAO2TlwDtk5gA7ZOZAO2TmgDtk5sA7ZOcAO2TnQDtk54A7ZOfAO2ToADtk6EA7ZOiAO2TowDtk6QA7ZOlAO2TpgDtk6cA7ZOoAO2TqQDtk6oA7ZOrAO2TrADtk60A7ZOuAO2TrwDtk7AA7ZOxAO2TsgDtk7MA7ZO0AO2TtQDtk7YA7ZO3AO2TuADtk7kA7ZO6AO2TuwDtk7wA7ZO9AO2TvgDtk78A7ZSAAO2UgQDtlIIA7ZSDAO2UhADtlIUA7ZSGAO2UhwDtlIgA7ZSJAO2UigDtlIsA7ZSMAO2UjQDtlI4A7ZSPAO2UkADtlJEA7ZSSAO2UkwDtlJQA7ZSVAO2UlgDtlJcA7ZSYAO2UmQDtlJoA7ZSbAO2UnADtlJ0A7ZSeAO2UnwDtlKAA7ZShAO2UogDtlKMA7ZSkAO2UpQDtlKYA7ZSnAO2UqADtlKkA7ZSqAO2UqwDtlKwA7ZStAO2UrgDtlK8A7ZSwAO2UsQDtlLIA7ZSzAO2UtADtlLUA7ZS2AO2UtwDtlLgA7ZS5AO2UugDtlLsA7ZS8AO2UvQDtlL4A7ZS/AO2VgADtlYEA7ZWCAO2VgwDtlYQA7ZWFAO2VhgDtlYcA7ZWIAO2ViQDtlYoA7ZWLAO2VjADtlY0A7ZWOAO2VjwDtlZAA7ZWRAO2VkgDtlZMA7ZWUAO2VlQDtlZYA7ZWXAO2VmADtlZkA7ZWaAO2VmwDtlZwA7ZWdAO2VngDtlZ8A7ZWgAO2VoQDtlaIA7ZWjAO2VpADtlaUA7ZWmAO2VpwDtlagA7ZWpAO2VqgDtlasA7ZWsAO2VrQDtla4A7ZWvAO2VsADtlbEA7ZWyAO2VswDtlbQA7ZW1AO2VtgDtlbcA7ZW4AO2VuQDtlboA7ZW7AO2VvADtlb0A7ZW+AO2VvwDtloAA7ZaBAO2WggDtloMA7ZaEAO2WhQDtloYA7ZaHAO2WiADtlokA7ZaKAO2WiwDtlowA7ZaNAO2WjgDtlo8A7ZaQAO2WkQDtlpIA7ZaTAO2WlADtlpUA7ZaWAO2WlwDtlpgA7ZaZAO2WmgDtlpsA7ZacAO2WnQDtlp4A7ZafAO2WoADtlqEA7ZaiAO2WowDtlqQA7ZalAO2WpgDtlqcA7ZaoAO2WqQDtlqoA7ZarAO2WrADtlq0A7ZauAO2WrwDtlrAA7ZaxAO2WsgDtlrMA7Za0AO2WtQDtlrYA7Za3AO2WuADtlrkA7Za6AO2WuwDtlrwA7Za9AO2WvgDtlr8A7ZeAAO2XgQDtl4IA7ZeDAO2XhADtl4UA7ZeGAO2XhwDtl4gA7ZeJAO2XigDtl4sA7ZeMAO2XjQDtl44A7ZePAO2XkADtl5EA7ZeSAO2XkwDtl5QA7ZeVAO2XlgDtl5cA7ZeYAO2XmQDtl5oA7ZebAO2XnADtl50A7ZeeAO2XnwDtl6AA7ZehAO2XogDtl6MA7ZekAO2XpQDtl6YA7ZenAO2XqADtl6kA7ZeqAO2XqwDtl6wA7ZetAO2XrgDtl68A7ZewAO2XsQDtl7IA7ZezAO2XtADtl7UA7Ze2AO2XtwDtl7gA7Ze5AO2XugDtl7sA7Ze8AO2XvQDtl74A7Ze/AO2YgADtmIEA7ZiCAO2YgwDtmIQA7ZiFAO2YhgDtmIcA7ZiIAO2YiQDtmIoA7ZiLAO2YjADtmI0A7ZiOAO2YjwDtmJAA7ZiRAO2YkgDtmJMA7ZiUAO2YlQDtmJYA7ZiXAO2YmADtmJkA7ZiaAO2YmwDtmJwA7ZidAO2YngDtmJ8A7ZigAO2YoQDtmKIA7ZijAO2YpADtmKUA7ZimAO2YpwDtmKgA7ZipAO2YqgDtmKsA7ZisAO2YrQDtmK4A7ZivAO2YsADtmLEA7ZiyAO2YswDtmLQA7Zi1AO2YtgDtmLcA7Zi4AO2YuQDtmLoA7Zi7AO2YvADtmL0A7Zi+AO2YvwDtmYAA7ZmBAO2ZggDtmYMA7ZmEAO2ZhQDtmYYA7ZmHAO2ZiADtmYkA7ZmKAO2ZiwDtmYwA7ZmNAO2ZjgDtmY8A7ZmQAO2ZkQDtmZIA7ZmTAO2ZlADtmZUA7ZmWAO2ZlwDtmZgA7ZmZAO2ZmgDtmZsA7ZmcAO2ZnQDtmZ4A7ZmfAO2ZoADtmaEA7ZmiAO2ZowDtmaQA7ZmlAO2ZpgDtmacA7ZmoAO2ZqQDtmaoA7ZmrAO2ZrADtma0A7ZmuAO2ZrwDtmbAA7ZmxAO2ZsgDtmbMA7Zm0AO2ZtQDtmbYA7Zm3AO2ZuADtmbkA7Zm6AO2ZuwDtmbwA7Zm9AO2ZvgDtmb8A7ZqAAO2agQDtmoIA7ZqDAO2ahADtmoUA7ZqGAO2ahwDtmogA7ZqJAO2aigDtmosA7ZqMAO2ajQDtmo4A7ZqPAO2akADtmpEA7ZqSAO2akwDtmpQA7ZqVAO2algDtmpcA7ZqYAO2amQDtmpoA7ZqbAO2anADtmp0A7ZqeAO2anwDtmqAA7ZqhAO2aogDtmqMA7ZqkAO2apQDtmqYA7ZqnAO2aqADtmqkA7ZqqAO2aqwDtmqwA7ZqtAO2argDtmq8A7ZqwAO2asQDtmrIA7ZqzAO2atADtmrUA7Zq2AO2atwDtmrgA7Zq5AO2augDtmrsA7Zq8AO2avQDtmr4A7Zq/AO2bgADtm4EA7ZuCAO2bgwDtm4QA7ZuFAO2bhgDtm4cA7ZuIAO2biQDtm4oA7ZuLAO2bjADtm40A7ZuOAO2bjwDtm5AA7ZuRAO2bkgDtm5MA7ZuUAO2blQDtm5YA7ZuXAO2bmADtm5kA7ZuaAO2bmwDtm5wA7ZudAO2bngDtm58A7ZugAO2boQDtm6IA7ZujAO2bpADtm6UA7ZumAO2bpwDtm6gA7ZupAO2bqgDtm6sA7ZusAO2brQDtm64A7ZuvAO2bsADtm7EA7ZuyAO2bswDtm7QA7Zu1AO2btgDtm7cA7Zu4AO2buQDtm7oA7Zu7AO2bvADtm70A7Zu+AO2bvwDtnIAA7ZyBAO2cggDtnIMA7ZyEAO2chQDtnIYA7ZyHAO2ciADtnIkA7ZyKAO2ciwDtnIwA7ZyNAO2cjgDtnI8A7ZyQAO2ckQDtnJIA7ZyTAO2clADtnJUA7ZyWAO2clwDtnJgA7ZyZAO2cmgDtnJsA7ZycAO2cnQDtnJ4A7ZyfAO2coADtnKEA7ZyiAO2cowDtnKQA7ZylAO2cpgDtnKcA7ZyoAO2cqQDtnKoA7ZyrAO2crADtnK0A7ZyuAO2crwDtnLAA7ZyxAO2csgDtnLMA7Zy0AO2ctQDtnLYA7Zy3AO2cuADtnLkA7Zy6AO2cuwDtnLwA7Zy9AO2cvgDtnL8A7Z2AAO2dgQDtnYIA7Z2DAO2dhADtnYUA7Z2GAO2dhwDtnYgA7Z2JAO2digDtnYsA7Z2MAO2djQDtnY4A7Z2PAO2dkADtnZEA7Z2SAO2dkwDtnZQA7Z2VAO2dlgDtnZcA7Z2YAO2dmQDtnZoA7Z2bAO2dnADtnZ0A7Z2eAO2dnwDtnaAA7Z2hAO2dogDtnaMA7Z2kAO2dpQDtnaYA7Z2nAO2dqADtnakA7Z2qAO2dqwDtnawA7Z2tAO2drgDtna8A7Z2wAO2dsQDtnbIA7Z2zAO2dtADtnbUA7Z22AO2dtwDtnbgA7Z25AO2dugDtnbsA7Z28AO2dvQDtnb4A7Z2/AO2egADtnoEA7Z6CAO2egwDtnoQA7Z6FAO2ehgDtnocA7Z6IAO2eiQDtnooA7Z6LAO2ejADtno0A7Z6OAO2ejwDtnpAA7Z6RAO2ekgDtnpMA7Z6UAO2elQDtnpYA7Z6XAO2emADtnpkA7Z6aAO2emwDtnpwA7Z6dAO2engDtnp8A7Z6gAO2eoQDtnqIA7Z6jAPCRgpoA8JGCnADwkYKrAPCRhK4A8JGErwDwkY2LAPCRjYwA8JGSuwDwkZK8APCRkr4A8JGWugDwkZa7APCdhZfwnYWlAPCdhZjwnYWlAPCdhZjwnYWl8J2FrgDwnYWY8J2FpfCdha8A8J2FmPCdhaXwnYWwAPCdhZjwnYWl8J2FsQDwnYWY8J2FpfCdhbIA8J2GufCdhaUA8J2GufCdhaXwnYWuAPCdhrnwnYWl8J2FrwDwnYa68J2FpQDwnYa68J2FpfCdha4A8J2GuvCdhaXwnYWvAPCghKIA8KCUnADwoJSlAPCglYsA8KCYugDwoKCEAPCgo54A8KCorADwoK2jAPChk6QA8KGaqADwoZuqAPChp4gA8KGsmADwobSLAPCht6QA8KG3pgDwooaDAPCihp8A8KKMsQDwopuUAPCioYQA8KKhigDwoqyMAPCir7EA8KOAigDwo4q4APCjjZ8A8KOOkwDwo46cAPCjj4MA8KOPlQDwo5GtAPCjmqMA8KOipwDwo6qNAPCjq7oA8KOyvADwo7SeAPCju5EA8KO9ngDwo76OAPCkiaMA8KSLrgDwpI6rAPCkmIgA8KSctQDwpKCUAPCksLYA8KSykgDwpL6hAPCkvrgA8KWBhADwpYOyAPClg7MA8KWEmQDwpYSzAPCliYkA8KWQnQDwpZimAPClmpoA8KWbhQDwpaW8APClqqcA8KWuqwDwpbKAAPCls5AA8KW+hgDwpoeaAPCmiKgA8KaJhwDwpouZAPCmjL4A8KaTmgDwppSjAPCmlqgA8KaepwDwpp61APCmrLwA8KawtgDwprOVAPCmtasA8Ka8rADwpr6xAPCng5IA8KePigDwp5mnAPCnoq4A8KelpgDwp7KoAPCnu5MA8Ke8rwDwqJeSAPCol60A8KicrgDwqK+6APCotbcA8KmFhQDwqYefAPCpiJoA8KmQigDwqZKWAPCplrYA8KmssADwqoOOAPCqhIUA8KqIjgDwqoqRAPCqjpIA8KqYgAA=" - }, - { - "type": "Strip", - "strip_left": false, - "strip_right": true - }, - { - "type": "Replace", - "pattern": { - "Regex": " {2,}" - }, - "content": "▁" - } - ] - }, - "pre_tokenizer": { - "type": "Metaspace", - "replacement": "▁", - "add_prefix_space": true, - "prepend_scheme": "first" - }, - "post_processor": { - "type": "TemplateProcessing", - "single": [ - { - "Sequence": { - "id": "A", - "type_id": 0 - } - }, - { - "SpecialToken": { - "id": "", - "type_id": 0 - } - } - ], - "pair": [ - { - "Sequence": { - "id": "A", - "type_id": 0 - } - }, - { - "SpecialToken": { - "id": "", - "type_id": 0 - } - }, - { - "Sequence": { - "id": "B", - "type_id": 0 - } - }, - { - "SpecialToken": { - "id": "", - "type_id": 0 - } - } - ], - "special_tokens": { - "": { - "id": "", - "ids": [ - 1 - ], - "tokens": [ - "" - ] - } - } - }, - "decoder": { - "type": "Metaspace", - "replacement": "▁", - "add_prefix_space": true, - "prepend_scheme": "always" - }, - "model": { - "type": "Unigram", - "unk_id": 2, - "vocab": [ - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "▁", - -2.0122928619384766 - ], - [ - "X", - -2.486478805541992 - ], - [ - ".", - -3.5449328422546387 - ], - [ - ",", - -3.649247407913208 - ], - [ - "s", - -3.9033992290496826 - ], - [ - "▁the", - -3.9598512649536133 - ], - [ - "a", - -4.097104549407959 - ], - [ - ":", - -4.414328098297119 - ], - [ - "▁and", - -4.420670986175537 - ], - [ - "▁to", - -4.4523234367370605 - ], - [ - "▁of", - -4.572070121765137 - ], - [ - "▁fill", - -4.575019836425781 - ], - [ - "e", - -4.674920082092285 - ], - [ - "▁in", - -4.812063694000244 - ], - [ - "t", - -5.063905715942383 - ], - [ - "-", - -5.129043102264404 - ], - [ - "▁is", - -5.283425331115723 - ], - [ - "▁de", - -5.344141960144043 - ], - [ - "▁for", - -5.3930158615112305 - ], - [ - "’", - -5.4228339195251465 - ], - [ - "i", - -5.469857692718506 - ], - [ - "▁that", - -5.576240539550781 - ], - [ - "▁you", - -5.596375465393066 - ], - [ - "d", - -5.6047282218933105 - ], - [ - "▁I", - -5.6640448570251465 - ], - [ - "▁with", - -5.703730583190918 - ], - [ - "n", - -5.737886905670166 - ], - [ - "▁on", - -5.784142971038818 - ], - [ - "'", - -5.828996181488037 - ], - [ - "o", - -5.925558090209961 - ], - [ - "▁are", - -5.931313991546631 - ], - [ - "▁it", - -5.939518928527832 - ], - [ - "en", - -5.9465556144714355 - ], - [ - "▁be", - -5.9556708335876465 - ], - [ - "▁The", - -5.990020751953125 - ], - [ - "▁as", - -6.057407379150391 - ], - [ - "▁your", - -6.132311820983887 - ], - [ - "l", - -6.139498710632324 - ], - [ - "▁(", - -6.184796333312988 - ], - [ - "▁or", - -6.241950035095215 - ], - [ - "▁have", - -6.27459192276001 - ], - [ - "▁at", - -6.327472686767578 - ], - [ - "▁from", - -6.349645137786865 - ], - [ - "▁an", - -6.350090980529785 - ], - [ - "▁was", - -6.350385665893555 - ], - [ - "▁this", - -6.352563381195068 - ], - [ - "er", - -6.3604278564453125 - ], - [ - "▁la", - -6.3624043464660645 - ], - [ - "m", - -6.375206470489502 - ], - [ - "r", - -6.376530170440674 - ], - [ - "ing", - -6.3778581619262695 - ], - [ - "▁can", - -6.387146472930908 - ], - [ - "!", - -6.421379566192627 - ], - [ - "▁will", - -6.423982620239258 - ], - [ - "▁by", - -6.44155216217041 - ], - [ - "?", - -6.585887432098389 - ], - [ - "▁not", - -6.5959086418151855 - ], - [ - "re", - -6.620072364807129 - ], - [ - ")", - -6.63656759262085 - ], - [ - "▁we", - -6.643022060394287 - ], - [ - "y", - -6.654535293579102 - ], - [ - "▁und", - -6.741473197937012 - ], - [ - "▁has", - -6.7602033615112305 - ], - [ - "▁all", - -6.768176555633545 - ], - [ - "▁die", - -6.8641204833984375 - ], - [ - "▁but", - -6.906830310821533 - ], - [ - "▁our", - -6.909878730773926 - ], - [ - "▁their", - -6.91325044631958 - ], - [ - "▁A", - -6.915814399719238 - ], - [ - "▁more", - -6.918668746948242 - ], - [ - "▁un", - -6.924930572509766 - ], - [ - "▁der", - -6.925402641296387 - ], - [ - "c", - -6.925714015960693 - ], - [ - "u", - -6.932939052581787 - ], - [ - "in", - -6.934063911437988 - ], - [ - "▁so", - -6.947050094604492 - ], - [ - "▁they", - -6.989297866821289 - ], - [ - "▁one", - -7.012735843658447 - ], - [ - "▁about", - -7.071486473083496 - ], - [ - "▁my", - -7.072140693664551 - ], - [ - "ul", - -7.076492786407471 - ], - [ - "▁which", - -7.097039222717285 - ], - [ - "à", - -7.099997520446777 - ], - [ - "▁In", - -7.100254535675049 - ], - [ - "/", - -7.100865840911865 - ], - [ - "he", - -7.104752540588379 - ], - [ - "f", - -7.110044002532959 - ], - [ - "▁le", - -7.112937927246094 - ], - [ - "▁out", - -7.128556728363037 - ], - [ - "▁also", - -7.133583068847656 - ], - [ - "▁des", - -7.156766414642334 - ], - [ - "▁It", - -7.162121295928955 - ], - [ - "▁up", - -7.1723432540893555 - ], - [ - "▁\"", - -7.172809600830078 - ], - [ - "▁time", - -7.178046703338623 - ], - [ - "ă", - -7.183253765106201 - ], - [ - "if", - -7.185171127319336 - ], - [ - "▁This", - -7.191652297973633 - ], - [ - "▁We", - -7.223267078399658 - ], - [ - "p", - -7.224130153656006 - ], - [ - "▁do", - -7.228212356567383 - ], - [ - "–", - -7.235409736633301 - ], - [ - "▁“", - -7.238142013549805 - ], - [ - "on", - -7.240827560424805 - ], - [ - "h", - -7.2543206214904785 - ], - [ - "▁si", - -7.276725769042969 - ], - [ - "le", - -7.2994256019592285 - ], - [ - "▁les", - -7.312957286834717 - ], - [ - "▁în", - -7.314571857452393 - ], - [ - "▁his", - -7.324767112731934 - ], - [ - "▁who", - -7.35105562210083 - ], - [ - "▁like", - -7.371364116668701 - ], - [ - "b", - -7.375369071960449 - ], - [ - "▁when", - -7.380199432373047 - ], - [ - ";", - -7.380846977233887 - ], - [ - "▁been", - -7.38668966293335 - ], - [ - "▁other", - -7.388518333435059 - ], - [ - "ly", - -7.394660949707031 - ], - [ - "\"", - -7.407205104827881 - ], - [ - "g", - -7.407997131347656 - ], - [ - "▁cu", - -7.415276527404785 - ], - [ - "▁care", - -7.432408332824707 - ], - [ - "▁what", - -7.433043003082275 - ], - [ - "▁new", - -7.4370903968811035 - ], - [ - "or", - -7.445409774780273 - ], - [ - "▁some", - -7.461953639984131 - ], - [ - "▁get", - -7.479001998901367 - ], - [ - "▁were", - -7.491549491882324 - ], - [ - "▁just", - -7.492495536804199 - ], - [ - "▁there", - -7.493194103240967 - ], - [ - "▁would", - -7.494382381439209 - ], - [ - "S", - -7.4974141120910645 - ], - [ - "▁them", - -7.513596057891846 - ], - [ - "▁any", - -7.520544052124023 - ], - [ - ").", - -7.521052360534668 - ], - [ - "al", - -7.523056983947754 - ], - [ - "▁into", - -7.527902603149414 - ], - [ - "▁me", - -7.528337001800537 - ], - [ - "▁had", - -7.532425403594971 - ], - [ - "▁se", - -7.5451483726501465 - ], - [ - "▁make", - -7.5827131271362305 - ], - [ - "at", - -7.589433670043945 - ], - [ - "▁than", - -7.592360019683838 - ], - [ - "▁du", - -7.595852375030518 - ], - [ - "▁over", - -7.6078782081604 - ], - [ - "▁You", - -7.626111030578613 - ], - [ - "▁how", - -7.635554313659668 - ], - [ - "▁no", - -7.63729190826416 - ], - [ - "▁people", - -7.639947414398193 - ], - [ - "an", - -7.64084005355835 - ], - [ - "”", - -7.644528865814209 - ], - [ - "é", - -7.646921157836914 - ], - [ - "it", - -7.648641109466553 - ], - [ - "▁If", - -7.648687839508057 - ], - [ - "k", - -7.6605634689331055 - ], - [ - "▁pe", - -7.662139415740967 - ], - [ - "is", - -7.66726016998291 - ], - [ - "▁her", - -7.6733808517456055 - ], - [ - "▁work", - -7.680386543273926 - ], - [ - "ve", - -7.687412738800049 - ], - [ - "▁only", - -7.69785737991333 - ], - [ - "▁may", - -7.702393531799316 - ], - [ - "▁its", - -7.702449798583984 - ], - [ - "▁first", - -7.704373836517334 - ], - [ - "▁most", - -7.708309173583984 - ], - [ - "▁well", - -7.708758354187012 - ], - [ - "▁use", - -7.715085983276367 - ], - [ - "▁zu", - -7.718777656555176 - ], - [ - "▁pour", - -7.736708164215088 - ], - [ - "z", - -7.745654106140137 - ], - [ - "il", - -7.745913982391357 - ], - [ - "▁need", - -7.74778938293457 - ], - [ - "▁these", - -7.763317584991455 - ], - [ - "▁din", - -7.769891262054443 - ], - [ - "▁den", - -7.775663375854492 - ], - [ - "▁us", - -7.778133869171143 - ], - [ - "able", - -7.779712200164795 - ], - [ - "▁S", - -7.781893730163574 - ], - [ - "▁mit", - -7.792516231536865 - ], - [ - "▁very", - -7.79970645904541 - ], - [ - "▁am", - -7.814100742340088 - ], - [ - "&", - -7.829529285430908 - ], - [ - "▁au", - -7.83012056350708 - ], - [ - "▁many", - -7.83834171295166 - ], - [ - "▁mai", - -7.84363317489624 - ], - [ - "A", - -7.849830150604248 - ], - [ - "th", - -7.855541229248047 - ], - [ - "▁through", - -7.859585285186768 - ], - [ - "▁pentru", - -7.86391544342041 - ], - [ - "▁two", - -7.873607158660889 - ], - [ - "▁von", - -7.874959945678711 - ], - [ - "▁way", - -7.887117385864258 - ], - [ - "ll", - -7.887749195098877 - ], - [ - "I", - -7.891303539276123 - ], - [ - "▁ce", - -7.9015631675720215 - ], - [ - "▁și", - -7.904444694519043 - ], - [ - "▁help", - -7.907405853271484 - ], - [ - "▁best", - -7.907911777496338 - ], - [ - "),", - -7.908212184906006 - ], - [ - "un", - -7.925017833709717 - ], - [ - "▁years", - -7.925964832305908 - ], - [ - "▁2", - -7.9282684326171875 - ], - [ - "▁C", - -7.936962604522705 - ], - [ - "▁nu", - -7.939520835876465 - ], - [ - "▁good", - -7.943995952606201 - ], - [ - "v", - -7.94746732711792 - ], - [ - "▁1", - -7.94765567779541 - ], - [ - "w", - -7.947978496551514 - ], - [ - "▁das", - -7.960538864135742 - ], - [ - "▁ca", - -7.962430477142334 - ], - [ - "▁where", - -7.964908123016357 - ], - [ - "▁know", - -7.96622896194458 - ], - [ - "▁year", - -7.971063613891602 - ], - [ - "▁He", - -7.974609375 - ], - [ - "▁see", - -7.980011463165283 - ], - [ - "▁für", - -7.984004497528076 - ], - [ - "▁auf", - -7.984249114990234 - ], - [ - "▁3", - -7.984433650970459 - ], - [ - "de", - -7.985401153564453 - ], - [ - "est", - -8.002091407775879 - ], - [ - "▁back", - -8.007022857666016 - ], - [ - "▁such", - -8.008523941040039 - ], - [ - "▁should", - -8.011754989624023 - ], - [ - "x", - -8.015050888061523 - ], - [ - "▁after", - -8.01761245727539 - ], - [ - "▁could", - -8.019674301147461 - ], - [ - "▁ist", - -8.020784378051758 - ], - [ - "▁now", - -8.022845268249512 - ], - [ - "▁much", - -8.023111343383789 - ], - [ - "and", - -8.02390193939209 - ], - [ - "...", - -8.030110359191895 - ], - [ - "▁home", - -8.036273956298828 - ], - [ - "to", - -8.03821086883545 - ], - [ - "▁ein", - -8.04833984375 - ], - [ - "▁even", - -8.048656463623047 - ], - [ - "▁que", - -8.049829483032227 - ], - [ - "▁day", - -8.051553726196289 - ], - [ - "▁take", - -8.054189682006836 - ], - [ - "▁want", - -8.054435729980469 - ], - [ - "▁For", - -8.06217098236084 - ], - [ - "▁said", - -8.063249588012695 - ], - [ - "▁sur", - -8.073471069335938 - ], - [ - "▁une", - -8.077030181884766 - ], - [ - "▁să", - -8.082921028137207 - ], - [ - "▁dans", - -8.084549903869629 - ], - [ - "▁great", - -8.088057518005371 - ], - [ - "▁este", - -8.08947467803955 - ], - [ - "▁because", - -8.094311714172363 - ], - [ - "▁information", - -8.104085922241211 - ], - [ - "ului", - -8.105451583862305 - ], - [ - "▁find", - -8.112174987792969 - ], - [ - "C", - -8.119946479797363 - ], - [ - "▁she", - -8.125317573547363 - ], - [ - "▁im", - -8.126056671142578 - ], - [ - "ation", - -8.130115509033203 - ], - [ - "▁then", - -8.13021469116211 - ], - [ - "▁est", - -8.13099479675293 - ], - [ - "▁par", - -8.138585090637207 - ], - [ - "▁used", - -8.141871452331543 - ], - [ - "▁E", - -8.146790504455566 - ], - [ - "▁made", - -8.149978637695312 - ], - [ - "▁So", - -8.15785026550293 - ], - [ - "am", - -8.16288948059082 - ], - [ - "▁eine", - -8.165464401245117 - ], - [ - "▁şi", - -8.168368339538574 - ], - [ - "▁business", - -8.17335033416748 - ], - [ - "▁right", - -8.173593521118164 - ], - [ - "▁here", - -8.176125526428223 - ], - [ - "▁being", - -8.184967041015625 - ], - [ - "▁B", - -8.185355186462402 - ], - [ - "▁those", - -8.185736656188965 - ], - [ - "▁before", - -8.194721221923828 - ], - [ - "▁And", - -8.199501037597656 - ], - [ - "▁P", - -8.200712203979492 - ], - [ - "ers", - -8.200922012329102 - ], - [ - "▁don", - -8.204029083251953 - ], - [ - "B", - -8.20487117767334 - ], - [ - "▁life", - -8.206265449523926 - ], - [ - "▁go", - -8.209736824035645 - ], - [ - "▁As", - -8.210551261901855 - ], - [ - "▁M", - -8.221170425415039 - ], - [ - "▁each", - -8.22955322265625 - ], - [ - "▁qui", - -8.23323917388916 - ], - [ - "▁place", - -8.236248970031738 - ], - [ - "com", - -8.237479209899902 - ], - [ - "ant", - -8.252915382385254 - ], - [ - "▁sich", - -8.255932807922363 - ], - [ - "▁There", - -8.261948585510254 - ], - [ - "ar", - -8.264991760253906 - ], - [ - "▁Sie", - -8.273868560791016 - ], - [ - "▁own", - -8.277531623840332 - ], - [ - "▁part", - -8.279440879821777 - ], - [ - "ent", - -8.281047821044922 - ], - [ - "▁world", - -8.28173542022705 - ], - [ - "ment", - -8.282004356384277 - ], - [ - "▁while", - -8.294474601745605 - ], - [ - "▁But", - -8.295366287231445 - ], - [ - "▁around", - -8.300799369812012 - ], - [ - "▁L", - -8.301082611083984 - ], - [ - "us", - -8.304039001464844 - ], - [ - "▁plus", - -8.313054084777832 - ], - [ - "▁To", - -8.313691139221191 - ], - [ - "▁5", - -8.31412410736084 - ], - [ - "▁high", - -8.31862735748291 - ], - [ - "▁long", - -8.319378852844238 - ], - [ - "D", - -8.320075035095215 - ], - [ - "▁D", - -8.320279121398926 - ], - [ - "▁really", - -8.322924613952637 - ], - [ - "▁nicht", - -8.332040786743164 - ], - [ - "▁Le", - -8.335328102111816 - ], - [ - "▁service", - -8.3412504196167 - ], - [ - "▁4", - -8.342093467712402 - ], - [ - "▁different", - -8.342538833618164 - ], - [ - "▁Die", - -8.348092079162598 - ], - [ - "▁think", - -8.353771209716797 - ], - [ - "—", - -8.355998039245605 - ], - [ - "▁auch", - -8.357160568237305 - ], - [ - "▁look", - -8.362202644348145 - ], - [ - "▁both", - -8.366817474365234 - ], - [ - "lor", - -8.36687183380127 - ], - [ - "▁down", - -8.367999076843262 - ], - [ - "ten", - -8.368885040283203 - ], - [ - "▁La", - -8.378066062927246 - ], - [ - "▁off", - -8.380044937133789 - ], - [ - "▁vous", - -8.380541801452637 - ], - [ - "▁They", - -8.381462097167969 - ], - [ - "M", - -8.383248329162598 - ], - [ - "▁pas", - -8.384513854980469 - ], - [ - "▁data", - -8.385709762573242 - ], - [ - "▁T", - -8.386754989624023 - ], - [ - "▁love", - -8.388101577758789 - ], - [ - "▁every", - -8.390009880065918 - ], - [ - "▁10", - -8.391179084777832 - ], - [ - "▁last", - -8.392083168029785 - ], - [ - "▁same", - -8.393481254577637 - ], - [ - "▁using", - -8.395487785339355 - ], - [ - "▁free", - -8.408831596374512 - ], - [ - "▁dem", - -8.40894889831543 - ], - [ - "▁still", - -8.409984588623047 - ], - [ - "ate", - -8.410931587219238 - ], - [ - "ist", - -8.415611267089844 - ], - [ - "▁between", - -8.420283317565918 - ], - [ - "P", - -8.420982360839844 - ], - [ - "be", - -8.428167343139648 - ], - [ - "▁available", - -8.429443359375 - ], - [ - "man", - -8.432978630065918 - ], - [ - "▁company", - -8.439678192138672 - ], - [ - "▁G", - -8.441640853881836 - ], - [ - "▁experience", - -8.444950103759766 - ], - [ - "▁going", - -8.449073791503906 - ], - [ - "▁site", - -8.453832626342773 - ], - [ - "j", - -8.455142974853516 - ], - [ - "are", - -8.456900596618652 - ], - [ - "▁set", - -8.470661163330078 - ], - [ - "2", - -8.473684310913086 - ], - [ - "▁system", - -8.474678039550781 - ], - [ - "▁important", - -8.476791381835938 - ], - [ - "▁few", - -8.482437133789062 - ], - [ - "▁fi", - -8.482551574707031 - ], - [ - "ich", - -8.483301162719727 - ], - [ - "▁What", - -8.488649368286133 - ], - [ - "▁services", - -8.502433776855469 - ], - [ - "▁under", - -8.502569198608398 - ], - [ - "▁When", - -8.50308895111084 - ], - [ - "▁online", - -8.50699520111084 - ], - [ - "▁New", - -8.51494312286377 - ], - [ - "▁come", - -8.524871826171875 - ], - [ - "▁provide", - -8.525650024414062 - ], - [ - "F", - -8.526449203491211 - ], - [ - "▁team", - -8.52782154083252 - ], - [ - "▁always", - -8.529409408569336 - ], - [ - "▁De", - -8.530412673950195 - ], - [ - "▁că", - -8.532517433166504 - ], - [ - "▁him", - -8.53586196899414 - ], - [ - "▁F", - -8.538305282592773 - ], - [ - "▁things", - -8.550079345703125 - ], - [ - "▁including", - -8.550943374633789 - ], - [ - "▁support", - -8.552608489990234 - ], - [ - "▁number", - -8.554113388061523 - ], - [ - "T", - -8.557183265686035 - ], - [ - "▁during", - -8.55886459350586 - ], - [ - "▁family", - -8.560463905334473 - ], - [ - "▁little", - -8.561317443847656 - ], - [ - "▁three", - -8.567726135253906 - ], - [ - "▁water", - -8.56810188293457 - ], - [ - "▁man", - -8.569759368896484 - ], - [ - "▁An", - -8.57192611694336 - ], - [ - "based", - -8.572155952453613 - ], - [ - "▁R", - -8.57442855834961 - ], - [ - "▁sau", - -8.574433326721191 - ], - [ - "▁avec", - -8.576035499572754 - ], - [ - "▁better", - -8.576830863952637 - ], - [ - "▁„", - -8.582253456115723 - ], - [ - "▁too", - -8.58635425567627 - ], - [ - "ge", - -8.586719512939453 - ], - [ - "▁must", - -8.589736938476562 - ], - [ - "▁per", - -8.589916229248047 - ], - [ - "ele", - -8.590399742126465 - ], - [ - "▁oder", - -8.59264850616455 - ], - [ - "au", - -8.59555435180664 - ], - [ - "▁aus", - -8.595727920532227 - ], - [ - "▁werden", - -8.598653793334961 - ], - [ - "▁does", - -8.599140167236328 - ], - [ - "▁without", - -8.599270820617676 - ], - [ - "▁ou", - -8.599929809570312 - ], - [ - "▁design", - -8.60101318359375 - ], - [ - "▁va", - -8.605440139770508 - ], - [ - "▁did", - -8.615679740905762 - ], - [ - "▁O", - -8.619062423706055 - ], - [ - "▁U", - -8.623565673828125 - ], - [ - "up", - -8.62901496887207 - ], - [ - "▁end", - -8.63367748260498 - ], - [ - "▁local", - -8.636231422424316 - ], - [ - "▁next", - -8.638967514038086 - ], - [ - "▁sure", - -8.64098072052002 - ], - [ - "▁lot", - -8.64644718170166 - ], - [ - "▁Re", - -8.647016525268555 - ], - [ - "▁top", - -8.647642135620117 - ], - [ - "▁Our", - -8.656886100769043 - ], - [ - "▁small", - -8.656978607177734 - ], - [ - "▁full", - -8.659418106079102 - ], - [ - "▁something", - -8.662886619567871 - ], - [ - "ung", - -8.666722297668457 - ], - [ - "▁vor", - -8.673250198364258 - ], - [ - "E", - -8.673337936401367 - ], - [ - "▁give", - -8.67603588104248 - ], - [ - "▁might", - -8.67660903930664 - ], - [ - "▁another", - -8.679330825805664 - ], - [ - "▁6", - -8.680779457092285 - ], - [ - "▁All", - -8.681318283081055 - ], - [ - "▁process", - -8.681672096252441 - ], - [ - "L", - -8.682575225830078 - ], - [ - "▁found", - -8.68941593170166 - ], - [ - "▁sind", - -8.690044403076172 - ], - [ - "▁since", - -8.69528865814209 - ], - [ - "▁With", - -8.695560455322266 - ], - [ - "K", - -8.696988105773926 - ], - [ - "um", - -8.701016426086426 - ], - [ - "▁within", - -8.701669692993164 - ], - [ - "▁post", - -8.706608772277832 - ], - [ - "▁car", - -8.709365844726562 - ], - [ - "une", - -8.714099884033203 - ], - [ - "▁N", - -8.715041160583496 - ], - [ - "▁J", - -8.715597152709961 - ], - [ - "ic", - -8.71823787689209 - ], - [ - "R", - -8.722309112548828 - ], - [ - "ter", - -8.727437019348145 - ], - [ - "ur", - -8.728265762329102 - ], - [ - "▁She", - -8.73131275177002 - ], - [ - "▁public", - -8.732009887695312 - ], - [ - "▁keep", - -8.735784530639648 - ], - [ - "▁H", - -8.736178398132324 - ], - [ - "▁order", - -8.740762710571289 - ], - [ - "▁start", - -8.742195129394531 - ], - [ - "ez", - -8.74746322631836 - ], - [ - "▁‘", - -8.749832153320312 - ], - [ - "uri", - -8.751104354858398 - ], - [ - "▁20", - -8.752482414245605 - ], - [ - "▁On", - -8.753515243530273 - ], - [ - "▁offer", - -8.763005256652832 - ], - [ - "▁quality", - -8.764988899230957 - ], - [ - "▁working", - -8.769987106323242 - ], - [ - "▁No", - -8.770307540893555 - ], - [ - "▁That", - -8.775156021118164 - ], - [ - "▁game", - -8.7863187789917 - ], - [ - "▁bei", - -8.786642074584961 - ], - [ - "▁today", - -8.788661003112793 - ], - [ - "▁never", - -8.794586181640625 - ], - [ - "▁week", - -8.79587173461914 - ], - [ - "▁St", - -8.797786712646484 - ], - [ - "▁feel", - -8.799317359924316 - ], - [ - "▁put", - -8.801899909973145 - ], - [ - "▁website", - -8.80322265625 - ], - [ - "Y", - -8.804483413696289 - ], - [ - "▁days", - -8.804709434509277 - ], - [ - "▁program", - -8.805448532104492 - ], - [ - "▁looking", - -8.810463905334473 - ], - [ - "▁K", - -8.810808181762695 - ], - [ - "▁students", - -8.811436653137207 - ], - [ - "▁create", - -8.811800956726074 - ], - [ - "▁change", - -8.812616348266602 - ], - [ - "▁book", - -8.812932014465332 - ], - [ - "ity", - -8.813761711120605 - ], - [ - "▁At", - -8.815207481384277 - ], - [ - "▁possible", - -8.815670013427734 - ], - [ - "▁sunt", - -8.81651496887207 - ], - [ - "▁7", - -8.818120002746582 - ], - [ - "▁real", - -8.823369026184082 - ], - [ - "▁al", - -8.824172019958496 - ], - [ - "▁making", - -8.825371742248535 - ], - [ - "▁Be", - -8.825761795043945 - ], - [ - "▁products", - -8.82592487335205 - ], - [ - "▁case", - -8.82653522491455 - ], - [ - "▁school", - -8.8272066116333 - ], - [ - "▁say", - -8.830352783203125 - ], - [ - "area", - -8.832084655761719 - ], - [ - "▁My", - -8.833836555480957 - ], - [ - "▁point", - -8.834731101989746 - ], - [ - "▁als", - -8.83560848236084 - ], - [ - "▁children", - -8.836194038391113 - ], - [ - "▁course", - -8.844061851501465 - ], - [ - "▁show", - -8.847993850708008 - ], - [ - "▁8", - -8.849273681640625 - ], - [ - "▁These", - -8.849345207214355 - ], - [ - "▁18", - -8.851140975952148 - ], - [ - "▁large", - -8.851323127746582 - ], - [ - "co", - -8.854362487792969 - ], - [ - "▁über", - -8.854788780212402 - ], - [ - "▁second", - -8.856559753417969 - ], - [ - "▁market", - -8.859807014465332 - ], - [ - "▁fost", - -8.86048698425293 - ], - [ - "▁easy", - -8.863983154296875 - ], - [ - "▁plan", - -8.864302635192871 - ], - [ - "▁project", - -8.864927291870117 - ], - [ - "G", - -8.865178108215332 - ], - [ - "W", - -8.869574546813965 - ], - [ - "3", - -8.871939659118652 - ], - [ - "▁son", - -8.873332023620605 - ], - [ - "la", - -8.879053115844727 - ], - [ - "▁face", - -8.88137435913086 - ], - [ - "▁needs", - -8.88148021697998 - ], - [ - "ch", - -8.883138656616211 - ], - [ - "▁personal", - -8.88343620300293 - ], - [ - "me", - -8.886031150817871 - ], - [ - "▁sont", - -8.887377738952637 - ], - [ - "▁je", - -8.894930839538574 - ], - [ - "▁non", - -8.895471572875977 - ], - [ - "▁got", - -8.896591186523438 - ], - [ - "▁Do", - -8.897382736206055 - ], - [ - "the", - -8.89765453338623 - ], - [ - "▁health", - -8.89908504486084 - ], - [ - "▁special", - -8.90555477142334 - ], - [ - ".\"", - -8.907710075378418 - ], - [ - "1", - -8.907852172851562 - ], - [ - "den", - -8.908616065979004 - ], - [ - "▁state", - -8.909355163574219 - ], - [ - "▁open", - -8.91019058227539 - ], - [ - "▁money", - -8.91053581237793 - ], - [ - "▁again", - -8.913084983825684 - ], - [ - "▁food", - -8.913167953491211 - ], - [ - "▁page", - -8.914595603942871 - ], - [ - "▁together", - -8.91628360748291 - ], - [ - "age", - -8.919108390808105 - ], - [ - "▁qu", - -8.921928405761719 - ], - [ - "hat", - -8.922386169433594 - ], - [ - "▁ver", - -8.926993370056152 - ], - [ - "▁W", - -8.927785873413086 - ], - [ - "▁away", - -8.928759574890137 - ], - [ - "▁wird", - -8.931641578674316 - ], - [ - "▁until", - -8.934249877929688 - ], - [ - "V", - -8.934935569763184 - ], - [ - "▁pre", - -8.935851097106934 - ], - [ - "▁One", - -8.936429977416992 - ], - [ - "▁product", - -8.936561584472656 - ], - [ - "▁often", - -8.939326286315918 - ], - [ - "▁wir", - -8.944111824035645 - ], - [ - "▁nach", - -8.945127487182617 - ], - [ - "▁include", - -8.946555137634277 - ], - [ - "▁um", - -8.948204040527344 - ], - [ - "▁room", - -8.953709602355957 - ], - [ - "▁group", - -8.953767776489258 - ], - [ - "▁name", - -8.954949378967285 - ], - [ - "ce", - -8.955448150634766 - ], - [ - "H", - -8.956180572509766 - ], - [ - "N", - -8.958139419555664 - ], - [ - "▁person", - -8.958183288574219 - ], - [ - "▁social", - -8.958606719970703 - ], - [ - "▁list", - -8.963666915893555 - ], - [ - "▁How", - -8.964127540588379 - ], - [ - "▁why", - -8.96571159362793 - ], - [ - "▁community", - -8.965995788574219 - ], - [ - "▁contact", - -8.973031044006348 - ], - [ - "­", - -8.9755859375 - ], - [ - "▁co", - -8.979683876037598 - ], - [ - "▁play", - -8.983960151672363 - ], - [ - "▁having", - -8.984169960021973 - ], - [ - "▁power", - -8.986917495727539 - ], - [ - "▁call", - -8.991690635681152 - ], - [ - "▁against", - -8.991816520690918 - ], - [ - "▁become", - -8.997780799865723 - ], - [ - "▁cost", - -9.003793716430664 - ], - [ - "▁V", - -9.004593849182129 - ], - [ - "▁research", - -9.006913185119629 - ], - [ - "▁12", - -9.007307052612305 - ], - [ - "▁wie", - -9.008277893066406 - ], - [ - "der", - -9.008386611938477 - ], - [ - "▁thing", - -9.014028549194336 - ], - [ - "▁along", - -9.017301559448242 - ], - [ - "4", - -9.017330169677734 - ], - [ - "▁access", - -9.020391464233398 - ], - [ - "▁level", - -9.020505905151367 - ], - [ - "▁price", - -9.022817611694336 - ], - [ - "▁einen", - -9.023714065551758 - ], - [ - "▁side", - -9.026359558105469 - ], - [ - "▁Un", - -9.026851654052734 - ], - [ - "▁means", - -9.030416488647461 - ], - [ - "(", - -9.032341957092285 - ], - [ - "▁big", - -9.034374237060547 - ], - [ - "▁God", - -9.036499977111816 - ], - [ - "▁dass", - -9.037314414978027 - ], - [ - "im", - -9.037374496459961 - ], - [ - "▁30", - -9.037432670593262 - ], - [ - "▁event", - -9.041665077209473 - ], - [ - "▁development", - -9.042060852050781 - ], - [ - "▁form", - -9.04226303100586 - ], - [ - "▁read", - -9.042579650878906 - ], - [ - "▁hand", - -9.043194770812988 - ], - [ - "▁control", - -9.04446792602539 - ], - [ - "▁However", - -9.046320915222168 - ], - [ - "▁done", - -9.048060417175293 - ], - [ - "▁job", - -9.051692008972168 - ], - [ - "▁hard", - -9.056619644165039 - ], - [ - "▁war", - -9.057538032531738 - ], - [ - "▁area", - -9.0584135055542 - ], - [ - "▁add", - -9.0586576461792 - ], - [ - "▁votre", - -9.0593900680542 - ], - [ - "▁live", - -9.059494018554688 - ], - [ - "▁range", - -9.060099601745605 - ], - [ - "▁After", - -9.060164451599121 - ], - [ - "▁Les", - -9.060513496398926 - ], - [ - "▁far", - -9.064413070678711 - ], - [ - "ver", - -9.064727783203125 - ], - [ - "▁old", - -9.069576263427734 - ], - [ - "▁perfect", - -9.06976318359375 - ], - [ - "▁15", - -9.070429801940918 - ], - [ - "▁space", - -9.073654174804688 - ], - [ - "▁house", - -9.074068069458008 - ], - [ - "ine", - -9.07408618927002 - ], - [ - "▁enough", - -9.074334144592285 - ], - [ - "0", - -9.075824737548828 - ], - [ - "▁several", - -9.077119827270508 - ], - [ - "The", - -9.081155776977539 - ], - [ - "mm", - -9.085619926452637 - ], - [ - "▁University", - -9.08637523651123 - ], - [ - "▁diese", - -9.087566375732422 - ], - [ - "▁Co", - -9.088335990905762 - ], - [ - "▁comes", - -9.088497161865234 - ], - [ - "▁across", - -9.088857650756836 - ], - [ - "▁already", - -9.090097427368164 - ], - [ - ",”", - -9.090341567993164 - ], - [ - "▁body", - -9.09276294708252 - ], - [ - "▁Das", - -9.094594955444336 - ], - [ - "▁einer", - -9.095956802368164 - ], - [ - "▁left", - -9.09921646118164 - ], - [ - "▁future", - -9.105711936950684 - ], - [ - "▁times", - -9.106670379638672 - ], - [ - "▁dar", - -9.109651565551758 - ], - [ - "▁simple", - -9.110408782958984 - ], - [ - "ry", - -9.112407684326172 - ], - [ - "▁getting", - -9.113155364990234 - ], - [ - "▁try", - -9.115362167358398 - ], - [ - "ți", - -9.116897583007812 - ], - [ - "ness", - -9.120043754577637 - ], - [ - "▁makes", - -9.120377540588379 - ], - [ - "▁past", - -9.120619773864746 - ], - [ - "ca", - -9.12130069732666 - ], - [ - "▁light", - -9.122207641601562 - ], - [ - "▁Der", - -9.122997283935547 - ], - [ - "▁run", - -9.125843048095703 - ], - [ - "▁four", - -9.126943588256836 - ], - [ - "ance", - -9.130500793457031 - ], - [ - "▁ever", - -9.131503105163574 - ], - [ - "▁einem", - -9.131816864013672 - ], - [ - "▁below", - -9.133723258972168 - ], - [ - "O", - -9.134073257446289 - ], - [ - "▁9", - -9.137282371520996 - ], - [ - "▁learn", - -9.14004135131836 - ], - [ - "out", - -9.140358924865723 - ], - [ - "▁video", - -9.143178939819336 - ], - [ - "▁etc", - -9.146929740905762 - ], - [ - "▁«", - -9.148795127868652 - ], - [ - "▁zum", - -9.149712562561035 - ], - [ - "▁kann", - -9.1504487991333 - ], - [ - "▁minutes", - -9.151180267333984 - ], - [ - "▁example", - -9.154194831848145 - ], - [ - "▁nous", - -9.154619216918945 - ], - [ - "▁Se", - -9.157441139221191 - ], - [ - "▁sie", - -9.159955024719238 - ], - [ - "▁industry", - -9.161614418029785 - ], - [ - "▁problem", - -9.162016868591309 - ], - [ - "J", - -9.162480354309082 - ], - [ - "▁country", - -9.163366317749023 - ], - [ - "▁fact", - -9.164189338684082 - ], - [ - "▁type", - -9.164190292358398 - ], - [ - "ner", - -9.164238929748535 - ], - [ - "▁companies", - -9.165864944458008 - ], - [ - "▁line", - -9.169849395751953 - ], - [ - "▁city", - -9.172713279724121 - ], - [ - "▁check", - -9.173710823059082 - ], - [ - "▁doing", - -9.174406051635742 - ], - [ - "elle", - -9.175037384033203 - ], - [ - "▁fun", - -9.176549911499023 - ], - [ - "▁En", - -9.177546501159668 - ], - [ - "▁Your", - -9.178601264953613 - ], - [ - "ling", - -9.181450843811035 - ], - [ - "▁share", - -9.18185806274414 - ], - [ - "ile", - -9.182005882263184 - ], - [ - "▁actually", - -9.187544822692871 - ], - [ - "▁value", - -9.187751770019531 - ], - [ - "zi", - -9.188661575317383 - ], - [ - "▁ab", - -9.1898832321167 - ], - [ - "▁offers", - -9.1905517578125 - ], - [ - "▁less", - -9.190573692321777 - ], - [ - "▁night", - -9.193560600280762 - ], - [ - "▁Dr", - -9.19518756866455 - ], - [ - "▁started", - -9.195454597473145 - ], - [ - "▁least", - -9.198020935058594 - ], - [ - "▁short", - -9.198562622070312 - ], - [ - "▁main", - -9.201143264770508 - ], - [ - "▁single", - -9.202939987182617 - ], - [ - "▁though", - -9.203780174255371 - ], - [ - "▁prin", - -9.203930854797363 - ], - [ - "time", - -9.20531177520752 - ], - [ - "▁hours", - -9.206608772277832 - ], - [ - "▁others", - -9.206849098205566 - ], - [ - "▁called", - -9.20730209350586 - ], - [ - "▁visit", - -9.208869934082031 - ], - [ - "▁bit", - -9.209009170532227 - ], - [ - "ée", - -9.210821151733398 - ], - [ - "▁customers", - -9.211383819580078 - ], - [ - "▁music", - -9.212000846862793 - ], - [ - "▁members", - -9.217191696166992 - ], - [ - "ies", - -9.21743392944336 - ], - [ - "▁pay", - -9.219176292419434 - ], - [ - "nd", - -9.219744682312012 - ], - [ - "▁once", - -9.221125602722168 - ], - [ - "gen", - -9.2217378616333 - ], - [ - "▁können", - -9.222976684570312 - ], - [ - "▁low", - -9.223771095275879 - ], - [ - "▁durch", - -9.227394104003906 - ], - [ - "▁story", - -9.228075981140137 - ], - [ - "▁understand", - -9.22953987121582 - ], - [ - "“", - -9.229856491088867 - ], - [ - "▁Am", - -9.231831550598145 - ], - [ - "▁didn", - -9.234603881835938 - ], - [ - "▁content", - -9.237217903137207 - ], - [ - "son", - -9.24180793762207 - ], - [ - "▁building", - -9.242242813110352 - ], - [ - "▁result", - -9.242605209350586 - ], - [ - "▁aux", - -9.243107795715332 - ], - [ - "▁complete", - -9.244999885559082 - ], - [ - "▁doesn", - -9.24510669708252 - ], - [ - "▁haben", - -9.246070861816406 - ], - [ - "▁questions", - -9.24661636352539 - ], - [ - "line", - -9.247077941894531 - ], - [ - "▁technology", - -9.247429847717285 - ], - [ - "▁Pro", - -9.247976303100586 - ], - [ - "▁current", - -9.248504638671875 - ], - [ - "▁won", - -9.248883247375488 - ], - [ - "▁let", - -9.250710487365723 - ], - [ - "▁features", - -9.251978874206543 - ], - [ - "▁please", - -9.258262634277344 - ], - [ - "5", - -9.258519172668457 - ], - [ - "▁above", - -9.259394645690918 - ], - [ - "ive", - -9.262128829956055 - ], - [ - "▁management", - -9.262394905090332 - ], - [ - "▁lui", - -9.262539863586426 - ], - [ - "her", - -9.263057708740234 - ], - [ - "▁training", - -9.265711784362793 - ], - [ - "▁everything", - -9.2665433883667 - ], - [ - "▁noch", - -9.266846656799316 - ], - [ - "▁came", - -9.267708778381348 - ], - [ - "▁web", - -9.272823333740234 - ], - [ - "▁ensure", - -9.272987365722656 - ], - [ - "▁months", - -9.273130416870117 - ], - [ - "▁art", - -9.27313232421875 - ], - [ - "▁sub", - -9.274359703063965 - ], - [ - "▁million", - -9.274559020996094 - ], - [ - "▁professional", - -9.275035858154297 - ], - [ - "▁results", - -9.278368949890137 - ], - [ - "▁kind", - -9.278395652770996 - ], - [ - "▁season", - -9.279285430908203 - ], - [ - "▁unique", - -9.281067848205566 - ], - [ - "ze", - -9.284360885620117 - ], - [ - "▁enjoy", - -9.28487777709961 - ], - [ - "▁early", - -9.287765502929688 - ], - [ - "▁major", - -9.288202285766602 - ], - [ - "▁yet", - -9.29152774810791 - ], - [ - "▁Ver", - -9.293331146240234 - ], - [ - "one", - -9.296777725219727 - ], - [ - "▁media", - -9.29719352722168 - ], - [ - "▁[", - -9.30095100402832 - ], - [ - "▁property", - -9.302969932556152 - ], - [ - "▁beautiful", - -9.304466247558594 - ], - [ - "▁given", - -9.305286407470703 - ], - [ - "▁due", - -9.306716918945312 - ], - [ - "▁government", - -9.307181358337402 - ], - [ - "▁nur", - -9.30881404876709 - ], - [ - "▁email", - -9.309103012084961 - ], - [ - "▁total", - -9.311080932617188 - ], - [ - "▁natural", - -9.311264038085938 - ], - [ - "▁test", - -9.311450004577637 - ], - [ - "▁provides", - -9.311640739440918 - ], - [ - "▁various", - -9.312631607055664 - ], - [ - "▁American", - -9.315605163574219 - ], - [ - "▁moment", - -9.318109512329102 - ], - [ - "▁air", - -9.318952560424805 - ], - [ - "▁idea", - -9.319236755371094 - ], - [ - "▁known", - -9.319981575012207 - ], - [ - "▁Il", - -9.320504188537598 - ], - [ - "▁friends", - -9.320576667785645 - ], - [ - "▁final", - -9.320919036865234 - ], - [ - "▁buy", - -9.32139778137207 - ], - [ - "▁specific", - -9.322234153747559 - ], - [ - "▁issues", - -9.32454776763916 - ], - [ - "▁took", - -9.325233459472656 - ], - [ - "▁mind", - -9.326258659362793 - ], - [ - "▁study", - -9.32675838470459 - ], - [ - "▁addition", - -9.328418731689453 - ], - [ - "▁size", - -9.332446098327637 - ], - [ - "▁pro", - -9.334047317504883 - ], - [ - "▁film", - -9.33545970916748 - ], - [ - "▁pot", - -9.335636138916016 - ], - [ - "▁thought", - -9.338120460510254 - ], - [ - "▁tell", - -9.33890438079834 - ], - [ - "▁While", - -9.339675903320312 - ], - [ - "▁head", - -9.339983940124512 - ], - [ - "▁clients", - -9.340429306030273 - ], - [ - "▁performance", - -9.346199989318848 - ], - [ - "▁question", - -9.346835136413574 - ], - [ - "▁whether", - -9.347925186157227 - ], - [ - "▁certain", - -9.34826946258545 - ], - [ - "▁model", - -9.348764419555664 - ], - [ - "▁following", - -9.350926399230957 - ], - [ - "▁energy", - -9.354207992553711 - ], - [ - "▁office", - -9.354207992553711 - ], - [ - "▁whole", - -9.356687545776367 - ], - [ - "▁bring", - -9.356956481933594 - ], - [ - "▁required", - -9.35726261138916 - ], - [ - "ţi", - -9.358223915100098 - ], - [ - "▁date", - -9.358695030212402 - ], - [ - "_", - -9.358983039855957 - ], - [ - "que", - -9.359789848327637 - ], - [ - "▁da", - -9.360264778137207 - ], - [ - "▁US", - -9.36120319366455 - ], - [ - "▁taking", - -9.36143684387207 - ], - [ - "go", - -9.362788200378418 - ], - [ - "▁living", - -9.36341667175293 - ], - [ - "▁someone", - -9.363489151000977 - ], - [ - "▁heart", - -9.365120887756348 - ], - [ - "▁key", - -9.365775108337402 - ], - [ - "▁areas", - -9.366238594055176 - ], - [ - "▁says", - -9.367013931274414 - ], - [ - "▁2018", - -9.369132041931152 - ], - [ - "▁month", - -9.37012767791748 - ], - [ - "▁Er", - -9.371354103088379 - ], - [ - "ste", - -9.375077247619629 - ], - [ - "▁11", - -9.375179290771484 - ], - [ - "▁front", - -9.37528133392334 - ], - [ - "▁Now", - -9.37669563293457 - ], - [ - "▁class", - -9.376946449279785 - ], - [ - "▁choose", - -9.377082824707031 - ], - [ - "pe", - -9.37808609008789 - ], - [ - "▁further", - -9.379021644592285 - ], - [ - "▁believe", - -9.37936019897461 - ], - [ - "of", - -9.379590034484863 - ], - [ - "▁among", - -9.380990982055664 - ], - [ - "sch", - -9.381686210632324 - ], - [ - "▁child", - -9.382609367370605 - ], - [ - "▁aber", - -9.38376235961914 - ], - [ - "▁Please", - -9.386269569396973 - ], - [ - "rea", - -9.387248992919922 - ], - [ - "▁later", - -9.387272834777832 - ], - [ - "▁amount", - -9.388760566711426 - ], - [ - "ice", - -9.390128135681152 - ], - [ - "▁National", - -9.390177726745605 - ], - [ - "▁style", - -9.390748977661133 - ], - [ - "▁tout", - -9.391490936279297 - ], - [ - "▁staff", - -9.392939567565918 - ], - [ - "▁white", - -9.397933959960938 - ], - [ - "▁ge", - -9.399179458618164 - ], - [ - "▁five", - -9.400984764099121 - ], - [ - "▁blog", - -9.40109920501709 - ], - [ - "▁designed", - -9.40125846862793 - ], - [ - "▁went", - -9.402216911315918 - ], - [ - "▁Da", - -9.40268611907959 - ], - [ - "▁general", - -9.403801918029785 - ], - [ - "▁rest", - -9.403874397277832 - ], - [ - "▁zur", - -9.40579891204834 - ], - [ - "▁quite", - -9.405948638916016 - ], - [ - "per", - -9.40687084197998 - ], - [ - "▁customer", - -9.408379554748535 - ], - [ - "▁close", - -9.408747673034668 - ], - [ - "▁Some", - -9.41054630279541 - ], - [ - "▁women", - -9.41075611114502 - ], - [ - "▁move", - -9.410761833190918 - ], - [ - "▁software", - -9.411357879638672 - ], - [ - "▁Ein", - -9.413651466369629 - ], - [ - "▁Ab", - -9.413823127746582 - ], - [ - "▁history", - -9.413864135742188 - ], - [ - "▁either", - -9.41564655303955 - ], - [ - "▁seen", - -9.417396545410156 - ], - [ - "▁card", - -9.419726371765137 - ], - [ - "▁City", - -9.421541213989258 - ], - [ - "▁hope", - -9.421769142150879 - ], - [ - "▁16", - -9.422072410583496 - ], - [ - "és", - -9.422825813293457 - ], - [ - "va", - -9.423294067382812 - ], - [ - "▁Al", - -9.423827171325684 - ], - [ - "▁especially", - -9.424827575683594 - ], - [ - "▁view", - -9.426136016845703 - ], - [ - "men", - -9.427363395690918 - ], - [ - "▁account", - -9.427489280700684 - ], - [ - "▁needed", - -9.429777145385742 - ], - [ - "▁United", - -9.429789543151855 - ], - [ - "]", - -9.432387351989746 - ], - [ - "▁yourself", - -9.432788848876953 - ], - [ - "▁100", - -9.433059692382812 - ], - [ - "▁receive", - -9.433417320251465 - ], - [ - "▁ideas", - -9.43369197845459 - ], - [ - "▁writing", - -9.434585571289062 - ], - [ - "▁simply", - -9.434741973876953 - ], - [ - "▁present", - -9.435087203979492 - ], - [ - "▁continue", - -9.436107635498047 - ], - [ - "▁application", - -9.44115161895752 - ], - [ - "▁build", - -9.44187068939209 - ], - [ - "▁turn", - -9.44249439239502 - ], - [ - "ated", - -9.442923545837402 - ], - [ - "▁everyone", - -9.443060874938965 - ], - [ - "cette", - -9.443114280700684 - ], - [ - "▁bien", - -9.444964408874512 - ], - [ - "less", - -9.445222854614258 - ], - [ - "▁Si", - -9.445359230041504 - ], - [ - "▁original", - -9.446867942810059 - ], - [ - "8", - -9.44794750213623 - ], - [ - "▁individual", - -9.448895454406738 - ], - [ - "tre", - -9.449433326721191 - ], - [ - "▁works", - -9.45171070098877 - ], - [ - "▁options", - -9.451821327209473 - ], - [ - "▁May", - -9.454456329345703 - ], - [ - "▁Not", - -9.454940795898438 - ], - [ - "▁report", - -9.455467224121094 - ], - [ - "mer", - -9.457239151000977 - ], - [ - "▁human", - -9.459118843078613 - ], - [ - "▁provided", - -9.459603309631348 - ], - [ - "▁By", - -9.460925102233887 - ], - [ - "▁series", - -9.462006568908691 - ], - [ - "7", - -9.46226692199707 - ], - [ - "▁modern", - -9.463875770568848 - ], - [ - "▁meet", - -9.463921546936035 - ], - [ - "▁50", - -9.464119911193848 - ], - [ - "▁25", - -9.46969985961914 - ], - [ - "▁color", - -9.470091819763184 - ], - [ - "▁download", - -9.470109939575195 - ], - [ - "▁Here", - -9.471144676208496 - ], - [ - "6", - -9.471323013305664 - ], - [ - "▁poate", - -9.471449851989746 - ], - [ - "▁În", - -9.472321510314941 - ], - [ - "▁phone", - -9.473695755004883 - ], - [ - "▁likely", - -9.474374771118164 - ], - [ - "▁table", - -9.476469993591309 - ], - [ - "▁ma", - -9.476551055908203 - ], - [ - "▁Or", - -9.479181289672852 - ], - [ - "Z", - -9.48026180267334 - ], - [ - "▁19", - -9.482215881347656 - ], - [ - "▁insurance", - -9.482544898986816 - ], - [ - "▁anything", - -9.483808517456055 - ], - [ - "▁search", - -9.485033988952637 - ], - [ - "▁Ge", - -9.48520565032959 - ], - [ - "▁issue", - -9.485564231872559 - ], - [ - "▁includes", - -9.485688209533691 - ], - [ - "▁clear", - -9.487342834472656 - ], - [ - "les", - -9.488021850585938 - ], - [ - "▁almost", - -9.488259315490723 - ], - [ - "ilor", - -9.48935317993164 - ], - [ - "▁14", - -9.490717887878418 - ], - [ - "by", - -9.494056701660156 - ], - [ - "▁Du", - -9.49624252319336 - ], - [ - "▁mais", - -9.497303009033203 - ], - [ - "ier", - -9.499163627624512 - ], - [ - "▁law", - -9.49924087524414 - ], - [ - "▁added", - -9.500134468078613 - ], - [ - "▁con", - -9.500962257385254 - ], - [ - ",\"", - -9.501530647277832 - ], - [ - "▁ago", - -9.502127647399902 - ], - [ - "▁His", - -9.504697799682617 - ], - [ - "▁points", - -9.504981994628906 - ], - [ - "▁mult", - -9.505581855773926 - ], - [ - "▁financial", - -9.506216049194336 - ], - [ - "▁problems", - -9.506428718566895 - ], - [ - "▁however", - -9.50648307800293 - ], - [ - "▁events", - -9.50675106048584 - ], - [ - "▁half", - -9.507889747619629 - ], - [ - "ard", - -9.511183738708496 - ], - [ - "▁ask", - -9.51156997680664 - ], - [ - "▁version", - -9.511631965637207 - ], - [ - "end", - -9.512478828430176 - ], - [ - "▁created", - -9.512639999389648 - ], - [ - "▁lead", - -9.512917518615723 - ], - [ - "▁focus", - -9.513853073120117 - ], - [ - "▁increase", - -9.515096664428711 - ], - [ - "ex", - -9.515118598937988 - ], - [ - "▁allow", - -9.515798568725586 - ], - [ - "▁extra", - -9.516464233398438 - ], - [ - "▁24", - -9.516692161560059 - ], - [ - "▁credit", - -9.516772270202637 - ], - [ - "▁production", - -9.516801834106445 - ], - [ - "zu", - -9.517256736755371 - ], - [ - "▁black", - -9.51754093170166 - ], - [ - "▁systems", - -9.518040657043457 - ], - [ - "▁17", - -9.518178939819336 - ], - [ - "▁opportunity", - -9.518531799316406 - ], - [ - "▁bis", - -9.519219398498535 - ], - [ - "▁fast", - -9.519807815551758 - ], - [ - "ring", - -9.521166801452637 - ], - [ - "▁Don", - -9.522114753723145 - ], - [ - "▁via", - -9.52242660522461 - ], - [ - "fer", - -9.5225248336792 - ], - [ - "▁comme", - -9.522799491882324 - ], - [ - "▁popular", - -9.523722648620605 - ], - [ - "▁South", - -9.524491310119629 - ], - [ - "ating", - -9.525003433227539 - ], - [ - "▁State", - -9.525198936462402 - ], - [ - "ator", - -9.525679588317871 - ], - [ - "▁common", - -9.525968551635742 - ], - [ - "con", - -9.526727676391602 - ], - [ - "▁throughout", - -9.527557373046875 - ], - [ - "▁risk", - -9.52774715423584 - ], - [ - "▁young", - -9.528532028198242 - ], - [ - "▁Je", - -9.528688430786133 - ], - [ - "▁image", - -9.52928352355957 - ], - [ - "ha", - -9.529376983642578 - ], - [ - "▁third", - -9.529587745666504 - ], - [ - "▁taken", - -9.530049324035645 - ], - [ - "▁Z", - -9.5314302444458 - ], - [ - "▁dis", - -9.5316162109375 - ], - [ - "▁From", - -9.533575057983398 - ], - [ - "▁details", - -9.534862518310547 - ], - [ - "▁games", - -9.53516674041748 - ], - [ - "▁practice", - -9.536040306091309 - ], - [ - "che", - -9.536151885986328 - ], - [ - "▁security", - -9.537364959716797 - ], - [ - "▁medical", - -9.537653923034668 - ], - [ - "▁learning", - -9.537806510925293 - ], - [ - "▁material", - -9.538509368896484 - ], - [ - "▁international", - -9.540703773498535 - ], - [ - "▁forward", - -9.541245460510254 - ], - [ - "▁paper", - -9.541247367858887 - ], - [ - "▁action", - -9.541348457336426 - ], - [ - "▁file", - -9.542378425598145 - ], - [ - "▁oil", - -9.543096542358398 - ], - [ - "▁self", - -9.54377555847168 - ], - [ - "▁private", - -9.545247077941895 - ], - [ - "▁interest", - -9.545559883117676 - ], - [ - "bar", - -9.546065330505371 - ], - [ - "▁sale", - -9.547115325927734 - ], - [ - "▁stay", - -9.547348976135254 - ], - [ - "ke", - -9.548089981079102 - ], - [ - "▁San", - -9.549053192138672 - ], - [ - "▁matter", - -9.549870491027832 - ], - [ - "▁reason", - -9.550254821777344 - ], - [ - "ted", - -9.55147647857666 - ], - [ - "▁potential", - -9.551742553710938 - ], - [ - "▁brand", - -9.552441596984863 - ], - [ - "▁field", - -9.55315113067627 - ], - [ - "▁treatment", - -9.553420066833496 - ], - [ - "▁period", - -9.553516387939453 - ], - [ - "▁York", - -9.553890228271484 - ], - [ - "▁Park", - -9.554738998413086 - ], - [ - "▁acest", - -9.556009292602539 - ], - [ - "ou", - -9.556926727294922 - ], - [ - "▁Ce", - -9.557014465332031 - ], - [ - "▁ready", - -9.558111190795898 - ], - [ - "▁rather", - -9.55860424041748 - ], - [ - "▁outside", - -9.560086250305176 - ], - [ - "▁standard", - -9.560121536254883 - ], - [ - "▁located", - -9.560770034790039 - ], - [ - "▁marketing", - -9.562313079833984 - ], - [ - "cu", - -9.564041137695312 - ], - [ - "▁Can", - -9.564562797546387 - ], - [ - "▁education", - -9.566105842590332 - ], - [ - "use", - -9.566640853881836 - ], - [ - "▁role", - -9.566828727722168 - ], - [ - "▁men", - -9.571505546569824 - ], - [ - "▁probably", - -9.571550369262695 - ], - [ - "▁store", - -9.57221508026123 - ], - [ - "▁John", - -9.572355270385742 - ], - [ - "▁rate", - -9.573956489562988 - ], - [ - "▁code", - -9.573994636535645 - ], - [ - "▁kids", - -9.574408531188965 - ], - [ - "▁currently", - -9.57552719116211 - ], - [ - "▁near", - -9.576475143432617 - ], - [ - "▁sales", - -9.576716423034668 - ], - [ - "▁usually", - -9.577012062072754 - ], - [ - "▁activities", - -9.577242851257324 - ], - [ - "▁party", - -9.577371597290039 - ], - [ - "▁leur", - -9.577434539794922 - ], - [ - "▁particular", - -9.577627182006836 - ], - [ - "▁mehr", - -9.577707290649414 - ], - [ - "ill", - -9.578757286071777 - ], - [ - "▁percent", - -9.579113006591797 - ], - [ - "▁fait", - -9.579537391662598 - ], - [ - "▁happy", - -9.579904556274414 - ], - [ - "▁inside", - -9.58005428314209 - ], - [ - "▁save", - -9.580510139465332 - ], - [ - "▁skills", - -9.580765724182129 - ], - [ - "▁consider", - -9.581025123596191 - ], - [ - "▁recent", - -9.58161735534668 - ], - [ - "▁strong", - -9.581781387329102 - ], - [ - "▁position", - -9.582076072692871 - ], - [ - "▁knowledge", - -9.582303047180176 - ], - [ - "▁tax", - -9.583868980407715 - ], - [ - "▁users", - -9.584261894226074 - ], - [ - "und", - -9.585564613342285 - ], - [ - "▁coming", - -9.585904121398926 - ], - [ - "▁article", - -9.585923194885254 - ], - [ - "min", - -9.586345672607422 - ], - [ - "▁sein", - -9.586555480957031 - ], - [ - "▁travel", - -9.586871147155762 - ], - [ - "▁changes", - -9.58765983581543 - ], - [ - "▁impact", - -9.588181495666504 - ], - [ - "▁wanted", - -9.588460922241211 - ], - [ - "▁address", - -9.5885591506958 - ], - [ - "▁soon", - -9.58873462677002 - ], - [ - "▁North", - -9.588915824890137 - ], - [ - "ată", - -9.589237213134766 - ], - [ - "▁trying", - -9.58985424041748 - ], - [ - "▁app", - -9.590612411499023 - ], - [ - "▁School", - -9.592510223388672 - ], - [ - "▁Es", - -9.592548370361328 - ], - [ - "we", - -9.59261703491211 - ], - [ - "▁conditions", - -9.59292984008789 - ], - [ - "▁digital", - -9.593293190002441 - ], - [ - "▁similar", - -9.594805717468262 - ], - [ - "▁solution", - -9.59514331817627 - ], - [ - "▁location", - -9.595183372497559 - ], - [ - "▁Of", - -9.595418930053711 - ], - [ - "▁follow", - -9.595842361450195 - ], - [ - "▁red", - -9.597526550292969 - ], - [ - "▁review", - -9.599202156066895 - ], - [ - "▁skin", - -9.599575996398926 - ], - [ - "▁pretty", - -9.600369453430176 - ], - [ - "day", - -9.600558280944824 - ], - [ - "▁dé", - -9.602072715759277 - ], - [ - "▁cause", - -9.602169036865234 - ], - [ - "▁Sa", - -9.602463722229004 - ], - [ - "▁user", - -9.602520942687988 - ], - [ - "▁Man", - -9.603377342224121 - ], - [ - "”.", - -9.604146003723145 - ], - [ - "▁Just", - -9.604366302490234 - ], - [ - "▁faire", - -9.604475021362305 - ], - [ - "▁member", - -9.605619430541992 - ], - [ - "▁iar", - -9.606892585754395 - ], - [ - "▁higher", - -9.607715606689453 - ], - [ - "▁step", - -9.607887268066406 - ], - [ - "▁wide", - -9.608185768127441 - ], - [ - "▁uns", - -9.608920097351074 - ], - [ - "▁World", - -9.609135627746582 - ], - [ - "▁additional", - -9.61176586151123 - ], - [ - "ber", - -9.613197326660156 - ], - [ - "▁easily", - -9.613990783691406 - ], - [ - "▁deal", - -9.615070343017578 - ], - [ - "▁ways", - -9.615514755249023 - ], - [ - "▁mobile", - -9.616837501525879 - ], - [ - "▁national", - -9.616913795471191 - ], - [ - "▁couple", - -9.617389678955078 - ], - [ - "▁ihre", - -9.61939811706543 - ], - [ - "▁choice", - -9.619612693786621 - ], - [ - "for", - -9.619686126708984 - ], - [ - "ous", - -9.62070083618164 - ], - [ - "▁Google", - -9.620855331420898 - ], - [ - "▁environment", - -9.622426986694336 - ], - [ - "urile", - -9.623322486877441 - ], - [ - "▁Center", - -9.626680374145508 - ], - [ - "mp", - -9.628592491149902 - ], - [ - "▁»", - -9.629727363586426 - ], - [ - "qui", - -9.630680084228516 - ], - [ - "▁growth", - -9.631048202514648 - ], - [ - "ler", - -9.633174896240234 - ], - [ - "▁improve", - -9.63360595703125 - ], - [ - "▁items", - -9.6336669921875 - ], - [ - "▁Nu", - -9.63393783569336 - ], - [ - "▁leave", - -9.634074211120605 - ], - [ - "▁true", - -9.634805679321289 - ], - [ - "▁wurde", - -9.63487434387207 - ], - [ - "▁cannot", - -9.635004043579102 - ], - [ - "▁13", - -9.635096549987793 - ], - [ - "▁running", - -9.636015892028809 - ], - [ - "▁anti", - -9.636177062988281 - ], - [ - "▁option", - -9.636306762695312 - ], - [ - "▁reading", - -9.63657283782959 - ], - [ - "▁Car", - -9.636698722839355 - ], - [ - "▁Wir", - -9.638110160827637 - ], - [ - "▁April", - -9.63975715637207 - ], - [ - "▁behind", - -9.640642166137695 - ], - [ - "▁client", - -9.640750885009766 - ], - [ - "▁cover", - -9.641012191772461 - ], - [ - "▁stop", - -9.641090393066406 - ], - [ - "ja", - -9.641277313232422 - ], - [ - "▁built", - -9.641307830810547 - ], - [ - "▁Con", - -9.641313552856445 - ], - [ - "ement", - -9.641366004943848 - ], - [ - "▁projects", - -9.641828536987305 - ], - [ - "▁variety", - -9.641840934753418 - ], - [ - "▁Ihre", - -9.642666816711426 - ], - [ - "ș", - -9.64302921295166 - ], - [ - "▁unter", - -9.64385986328125 - ], - [ - "▁longer", - -9.646577835083008 - ], - [ - "year", - -9.647161483764648 - ], - [ - "▁photo", - -9.648370742797852 - ], - [ - "▁Also", - -9.64933967590332 - ], - [ - "▁received", - -9.651098251342773 - ], - [ - "▁return", - -9.652676582336426 - ], - [ - "00", - -9.653081893920898 - ], - [ - "▁bar", - -9.653343200683594 - ], - [ - "ary", - -9.654427528381348 - ], - [ - "elor", - -9.655137062072754 - ], - [ - "▁Home", - -9.656189918518066 - ], - [ - "our", - -9.656298637390137 - ], - [ - "▁Me", - -9.65771198272705 - ], - [ - "▁held", - -9.659111022949219 - ], - [ - "▁click", - -9.66014289855957 - ], - [ - "▁ex", - -9.660178184509277 - ], - [ - "▁cum", - -9.661561965942383 - ], - [ - "▁takes", - -9.66395378112793 - ], - [ - "▁computer", - -9.665796279907227 - ], - [ - "▁told", - -9.668192863464355 - ], - [ - "+", - -9.670648574829102 - ], - [ - "▁patients", - -9.670809745788574 - ], - [ - "ting", - -9.672165870666504 - ], - [ - "▁direct", - -9.672248840332031 - ], - [ - "▁quickly", - -9.672410011291504 - ], - [ - "tic", - -9.672877311706543 - ], - [ - "▁vom", - -9.673723220825195 - ], - [ - "▁di", - -9.67381477355957 - ], - [ - "▁kitchen", - -9.674022674560547 - ], - [ - "▁network", - -9.675640106201172 - ], - [ - "▁2015", - -9.676688194274902 - ], - [ - "▁effective", - -9.677227020263672 - ], - [ - "▁collection", - -9.677703857421875 - ], - [ - "▁2017", - -9.677751541137695 - ], - [ - "▁words", - -9.678145408630371 - ], - [ - "▁cele", - -9.678857803344727 - ], - [ - "▁student", - -9.678862571716309 - ], - [ - "▁amazing", - -9.678932189941406 - ], - [ - "eur", - -9.680419921875 - ], - [ - ".”", - -9.68227481842041 - ], - [ - "▁ale", - -9.682716369628906 - ], - [ - "”,", - -9.68414306640625 - ], - [ - "▁purchase", - -9.684350967407227 - ], - [ - "▁mean", - -9.68477725982666 - ], - [ - "▁West", - -9.686846733093262 - ], - [ - "▁nice", - -9.6889066696167 - ], - [ - "▁age", - -9.689131736755371 - ], - [ - "▁base", - -9.68923568725586 - ], - [ - "▁summer", - -9.68928337097168 - ], - [ - "▁multi", - -9.689496994018555 - ], - [ - "▁allows", - -9.689573287963867 - ], - [ - "▁latest", - -9.689604759216309 - ], - [ - "▁global", - -9.68992805480957 - ], - [ - "▁chance", - -9.690792083740234 - ], - [ - "▁sense", - -9.690872192382812 - ], - [ - "ieren", - -9.692789077758789 - ], - [ - "▁difficult", - -9.693133354187012 - ], - [ - "ité", - -9.694750785827637 - ], - [ - "ka", - -9.694792747497559 - ], - [ - "du", - -9.69483757019043 - ], - [ - "▁providing", - -9.695744514465332 - ], - [ - "▁Art", - -9.696940422058105 - ], - [ - "▁drive", - -9.698554992675781 - ], - [ - "▁Go", - -9.698877334594727 - ], - [ - "▁très", - -9.699414253234863 - ], - [ - "U", - -9.699579238891602 - ], - [ - "▁Pre", - -9.699846267700195 - ], - [ - "▁shows", - -9.700040817260742 - ], - [ - "▁hair", - -9.701324462890625 - ], - [ - "▁success", - -9.701513290405273 - ], - [ - "▁UK", - -9.703169822692871 - ], - [ - "red", - -9.703241348266602 - ], - [ - "ü", - -9.703370094299316 - ], - [ - "ish", - -9.703631401062012 - ], - [ - "▁weeks", - -9.704839706420898 - ], - [ - "▁solutions", - -9.7055025100708 - ], - [ - "▁Pe", - -9.7057523727417 - ], - [ - "▁equipment", - -9.706141471862793 - ], - [ - "și", - -9.706482887268066 - ], - [ - "▁worked", - -9.707073211669922 - ], - [ - "\".", - -9.708627700805664 - ], - [ - "▁legal", - -9.708720207214355 - ], - [ - "▁bad", - -9.70892333984375 - ], - [ - "▁40", - -9.709561347961426 - ], - [ - "▁Internet", - -9.709798812866211 - ], - [ - "▁included", - -9.709976196289062 - ], - [ - "▁upon", - -9.710977554321289 - ], - [ - "▁excellent", - -9.71106243133545 - ], - [ - "▁goal", - -9.71130084991455 - ], - [ - "▁El", - -9.711408615112305 - ], - [ - "▁Mo", - -9.711703300476074 - ], - [ - "▁policy", - -9.71319580078125 - ], - [ - "▁aussi", - -9.713537216186523 - ], - [ - "▁weight", - -9.713687896728516 - ], - [ - "ici", - -9.715133666992188 - ], - [ - "▁approach", - -9.715584754943848 - ], - [ - "▁six", - -9.71579647064209 - ], - [ - "▁entire", - -9.715911865234375 - ], - [ - "9", - -9.71633529663086 - ], - [ - "▁send", - -9.716832160949707 - ], - [ - "▁1.", - -9.718971252441406 - ], - [ - "▁wenn", - -9.719056129455566 - ], - [ - "▁photos", - -9.71993637084961 - ], - [ - "://", - -9.721014022827148 - ], - [ - "ger", - -9.72281551361084 - ], - [ - "▁favorite", - -9.723104476928711 - ], - [ - "ley", - -9.723477363586426 - ], - [ - "▁else", - -9.72463321685791 - ], - [ - "▁types", - -9.72468376159668 - ], - [ - "▁link", - -9.725333213806152 - ], - [ - "▁recently", - -9.72584056854248 - ], - [ - "▁Mit", - -9.72631549835205 - ], - [ - "▁hot", - -9.726548194885254 - ], - [ - "tra", - -9.726597785949707 - ], - [ - "ş", - -9.727307319641113 - ], - [ - "▁according", - -9.728511810302734 - ], - [ - "▁necessary", - -9.728511810302734 - ], - [ - "▁multiple", - -9.729269027709961 - ], - [ - "▁Im", - -9.729510307312012 - ], - [ - "▁sehr", - -9.729660034179688 - ], - [ - "▁sign", - -9.732263565063477 - ], - [ - "▁anyone", - -9.73283576965332 - ], - [ - "▁land", - -9.733613014221191 - ], - [ - "▁States", - -9.734037399291992 - ], - [ - "▁unsere", - -9.734119415283203 - ], - [ - "ées", - -9.734639167785645 - ], - [ - "We", - -9.735671043395996 - ], - [ - "▁nothing", - -9.735845565795898 - ], - [ - "▁commercial", - -9.736858367919922 - ], - [ - "ful", - -9.737265586853027 - ], - [ - "▁seems", - -9.739325523376465 - ], - [ - "▁International", - -9.740097045898438 - ], - [ - "▁March", - -9.74163818359375 - ], - [ - "▁Thanks", - -9.743307113647461 - ], - [ - "▁County", - -9.74365234375 - ], - [ - "▁books", - -9.744638442993164 - ], - [ - "▁Ca", - -9.7451753616333 - ], - [ - "▁mi", - -9.746304512023926 - ], - [ - "▁meeting", - -9.746662139892578 - ], - [ - "▁tools", - -9.747593879699707 - ], - [ - "▁cut", - -9.747650146484375 - ], - [ - "▁related", - -9.74765682220459 - ], - [ - "▁lives", - -9.748003005981445 - ], - [ - "way", - -9.748501777648926 - ], - [ - "▁develop", - -9.748651504516602 - ], - [ - "▁sound", - -9.748723983764648 - ], - [ - "▁safe", - -9.748950958251953 - ], - [ - "▁Her", - -9.74937629699707 - ], - [ - "▁average", - -9.751277923583984 - ], - [ - "▁clean", - -9.75174331665039 - ], - [ - "▁talk", - -9.752362251281738 - ], - [ - "▁peut", - -9.75241756439209 - ], - [ - "▁dann", - -9.752546310424805 - ], - [ - "▁terms", - -9.753265380859375 - ], - [ - "▁foarte", - -9.753512382507324 - ], - [ - "▁super", - -9.754284858703613 - ], - [ - "▁programs", - -9.754853248596191 - ], - [ - "▁decision", - -9.75540828704834 - ], - [ - "▁costs", - -9.756058692932129 - ], - [ - "▁être", - -9.756291389465332 - ], - [ - "▁2019", - -9.757674217224121 - ], - [ - "led", - -9.759482383728027 - ], - [ - "▁parents", - -9.759617805480957 - ], - [ - "▁Mr", - -9.761702537536621 - ], - [ - "▁lower", - -9.762362480163574 - ], - [ - "▁door", - -9.762978553771973 - ], - [ - "▁été", - -9.763933181762695 - ], - [ - "▁box", - -9.764954566955566 - ], - [ - "▁record", - -9.765517234802246 - ], - [ - "▁win", - -9.765650749206543 - ], - [ - "ster", - -9.766402244567871 - ], - [ - "▁America", - -9.766748428344727 - ], - [ - "▁immer", - -9.768763542175293 - ], - [ - "▁road", - -9.76996898651123 - ], - [ - "▁leading", - -9.772759437561035 - ], - [ - "▁section", - -9.772838592529297 - ], - [ - "▁Facebook", - -9.772990226745605 - ], - [ - "▁Most", - -9.7738676071167 - ], - [ - "iert", - -9.77435302734375 - ], - [ - "▁morning", - -9.774497032165527 - ], - [ - "▁asked", - -9.775190353393555 - ], - [ - "▁involved", - -9.77551555633545 - ], - [ - "▁hier", - -9.777607917785645 - ], - [ - "▁images", - -9.77821159362793 - ], - [ - "▁House", - -9.778263092041016 - ], - [ - "▁highly", - -9.780763626098633 - ], - [ - "▁Bar", - -9.781620979309082 - ], - [ - "▁Service", - -9.782510757446289 - ], - [ - "▁attention", - -9.784318923950195 - ], - [ - "▁normal", - -9.784571647644043 - ], - [ - "▁plans", - -9.785883903503418 - ], - [ - "▁source", - -9.785930633544922 - ], - [ - "▁Aus", - -9.788092613220215 - ], - [ - "▁benefits", - -9.788655281066895 - ], - [ - "▁ses", - -9.789348602294922 - ], - [ - "des", - -9.789867401123047 - ], - [ - "▁internet", - -9.789949417114258 - ], - [ - "▁materials", - -9.790080070495605 - ], - [ - "▁même", - -9.791318893432617 - ], - [ - "▁fine", - -9.791522026062012 - ], - [ - "▁fit", - -9.792226791381836 - ], - [ - "▁21", - -9.792612075805664 - ], - [ - "▁itself", - -9.793739318847656 - ], - [ - "▁wieder", - -9.793972969055176 - ], - [ - "▁Many", - -9.795313835144043 - ], - [ - "▁nature", - -9.795402526855469 - ], - [ - "▁pain", - -9.795467376708984 - ], - [ - "▁device", - -9.796183586120605 - ], - [ - "art", - -9.796989440917969 - ], - [ - "pro", - -9.7971830368042 - ], - [ - "▁France", - -9.797271728515625 - ], - [ - "lich", - -9.797314643859863 - ], - [ - "▁2014", - -9.799542427062988 - ], - [ - "▁inter", - -9.799964904785156 - ], - [ - "▁Li", - -9.800453186035156 - ], - [ - "▁career", - -9.801136016845703 - ], - [ - "▁looks", - -9.80145263671875 - ], - [ - "▁ré", - -9.802245140075684 - ], - [ - "▁ability", - -9.802556991577148 - ], - [ - "▁situation", - -9.803154945373535 - ], - [ - "ville", - -9.803157806396484 - ], - [ - "▁2016", - -9.80319595336914 - ], - [ - "tes", - -9.803462982177734 - ], - [ - "▁remember", - -9.803879737854004 - ], - [ - "▁TV", - -9.803998947143555 - ], - [ - "▁levels", - -9.805853843688965 - ], - [ - "▁subject", - -9.807723999023438 - ], - [ - "ally", - -9.80844497680664 - ], - [ - "▁reduce", - -9.810232162475586 - ], - [ - "▁*", - -9.8108491897583 - ], - [ - "▁Day", - -9.810867309570312 - ], - [ - "▁write", - -9.812152862548828 - ], - [ - "▁pick", - -9.814252853393555 - ], - [ - "ence", - -9.815399169921875 - ], - [ - "▁fresh", - -9.816520690917969 - ], - [ - "▁traditional", - -9.816662788391113 - ], - [ - "chi", - -9.817692756652832 - ], - [ - "▁machine", - -9.818047523498535 - ], - [ - "▁resources", - -9.819125175476074 - ], - [ - "â", - -9.819502830505371 - ], - [ - "▁countries", - -9.820009231567383 - ], - [ - "▁Even", - -9.820342063903809 - ], - [ - "▁green", - -9.821283340454102 - ], - [ - "▁Free", - -9.821910858154297 - ], - [ - "▁daily", - -9.822112083435059 - ], - [ - "▁respect", - -9.823013305664062 - ], - [ - "▁instead", - -9.823714256286621 - ], - [ - "▁Once", - -9.82418155670166 - ], - [ - "▁word", - -9.824407577514648 - ], - [ - "▁construction", - -9.82489013671875 - ], - [ - "▁huge", - -9.825064659118652 - ], - [ - "▁feature", - -9.825220108032227 - ], - [ - "▁themselves", - -9.826369285583496 - ], - [ - "▁loss", - -9.82919692993164 - ], - [ - "%", - -9.830063819885254 - ], - [ - "▁safety", - -9.830256462097168 - ], - [ - "▁economic", - -9.831406593322754 - ], - [ - "▁require", - -9.831945419311523 - ], - [ - "30", - -9.83255386352539 - ], - [ - "▁planning", - -9.833393096923828 - ], - [ - "▁mal", - -9.834482192993164 - ], - [ - "▁directly", - -9.835214614868164 - ], - [ - "ure", - -9.835719108581543 - ], - [ - "▁track", - -9.835734367370605 - ], - [ - "▁tool", - -9.836135864257812 - ], - [ - "▁positive", - -9.836392402648926 - ], - [ - "▁piece", - -9.837076187133789 - ], - [ - "▁parts", - -9.837140083312988 - ], - [ - "ang", - -9.83740520477295 - ], - [ - "▁trip", - -9.837453842163086 - ], - [ - "▁organization", - -9.837935447692871 - ], - [ - "▁sites", - -9.838274002075195 - ], - [ - "▁fire", - -9.83831787109375 - ], - [ - "▁China", - -9.838876724243164 - ], - [ - "▁Pour", - -9.839289665222168 - ], - [ - "▁plant", - -9.84011459350586 - ], - [ - "▁board", - -9.840341567993164 - ], - [ - "▁interesting", - -9.841227531433105 - ], - [ - "gar", - -9.841713905334473 - ], - [ - "▁fie", - -9.841752052307129 - ], - [ - "▁late", - -9.842166900634766 - ], - [ - "▁wall", - -9.842294692993164 - ], - [ - "▁walk", - -9.842741966247559 - ], - [ - "ham", - -9.843868255615234 - ], - [ - "▁Ne", - -9.845427513122559 - ], - [ - "▁First", - -9.845462799072266 - ], - [ - "▁double", - -9.845701217651367 - ], - [ - "▁budget", - -9.847657203674316 - ], - [ - "▁cases", - -9.847670555114746 - ], - [ - "cal", - -9.849738121032715 - ], - [ - "old", - -9.849796295166016 - ], - [ - "▁Bo", - -9.849822998046875 - ], - [ - "▁spend", - -9.850439071655273 - ], - [ - "port", - -9.850828170776367 - ], - [ - "▁worth", - -9.850934028625488 - ], - [ - "ique", - -9.851308822631836 - ], - [ - "nes", - -9.85190486907959 - ], - [ - "cul", - -9.852272033691406 - ], - [ - "era", - -9.85296630859375 - ], - [ - "▁text", - -9.853032112121582 - ], - [ - "▁decided", - -9.854948997497559 - ], - [ - "▁floor", - -9.855036735534668 - ], - [ - "▁requirements", - -9.85529899597168 - ], - [ - "▁cel", - -9.855361938476562 - ], - [ - "▁effect", - -9.855412483215332 - ], - [ - "▁gibt", - -9.856159210205078 - ], - [ - "▁news", - -9.859238624572754 - ], - [ - "▁vos", - -9.859931945800781 - ], - [ - "▁players", - -9.86057186126709 - ], - [ - "▁saw", - -9.862728118896484 - ], - [ - "▁auto", - -9.863056182861328 - ], - [ - "▁town", - -9.863207817077637 - ], - [ - "▁myself", - -9.864106178283691 - ], - [ - "▁lost", - -9.864988327026367 - ], - [ - "▁$", - -9.865124702453613 - ], - [ - "▁June", - -9.86609172821045 - ], - [ - "▁significant", - -9.866196632385254 - ], - [ - "▁giving", - -9.866230010986328 - ], - [ - "▁stand", - -9.866744041442871 - ], - [ - "▁stock", - -9.867657661437988 - ], - [ - "▁hold", - -9.867766380310059 - ], - [ - "▁Are", - -9.869078636169434 - ], - [ - "▁shall", - -9.86923599243164 - ], - [ - "▁ideal", - -9.869279861450195 - ], - [ - "▁London", - -9.87080192565918 - ], - [ - "▁answer", - -9.870853424072266 - ], - [ - "▁Vor", - -9.87157917022705 - ], - [ - "▁gives", - -9.873115539550781 - ], - [ - "ative", - -9.87316608428955 - ], - [ - "▁timp", - -9.873167991638184 - ], - [ - "▁center", - -9.87362289428711 - ], - [ - "▁Group", - -9.874580383300781 - ], - [ - "▁sans", - -9.875143051147461 - ], - [ - "▁Ar", - -9.875466346740723 - ], - [ - "▁Ma", - -9.875568389892578 - ], - [ - "▁reach", - -9.876279830932617 - ], - [ - "ren", - -9.876652717590332 - ], - [ - "▁More", - -9.877446174621582 - ], - [ - "mit", - -9.878068923950195 - ], - [ - "▁guide", - -9.87833309173584 - ], - [ - "▁fully", - -9.878828048706055 - ], - [ - "▁Since", - -9.878952980041504 - ], - [ - "▁Inc", - -9.87923812866211 - ], - [ - "▁culture", - -9.879780769348145 - ], - [ - "eat", - -9.880531311035156 - ], - [ - "▁written", - -9.880722999572754 - ], - [ - "▁Ho", - -9.881338119506836 - ], - [ - "▁India", - -9.881625175476074 - ], - [ - "▁Well", - -9.881708145141602 - ], - [ - "back", - -9.881752967834473 - ], - [ - "▁goes", - -9.882170677185059 - ], - [ - "▁completely", - -9.88217544555664 - ], - [ - "▁tour", - -9.883081436157227 - ], - [ - "▁began", - -9.883196830749512 - ], - [ - "▁picture", - -9.883255958557129 - ], - [ - "▁mare", - -9.88353157043457 - ], - [ - "▁playing", - -9.884223937988281 - ], - [ - "▁trebuie", - -9.884926795959473 - ], - [ - "ils", - -9.884940147399902 - ], - [ - "chen", - -9.885220527648926 - ], - [ - "▁hit", - -9.885416984558105 - ], - [ - "▁complex", - -9.88591480255127 - ], - [ - "▁Thank", - -9.886140823364258 - ], - [ - "▁Let", - -9.886350631713867 - ], - [ - "▁applications", - -9.887116432189941 - ], - [ - "▁friend", - -9.888312339782715 - ], - [ - "▁English", - -9.889549255371094 - ], - [ - "▁charge", - -9.890040397644043 - ], - [ - "▁recommend", - -9.893453598022461 - ], - [ - "▁message", - -9.893672943115234 - ], - [ - "In", - -9.893722534179688 - ], - [ - "▁Mar", - -9.894762992858887 - ], - [ - "pp", - -9.895845413208008 - ], - [ - "▁method", - -9.89692497253418 - ], - [ - "▁successful", - -9.897004127502441 - ], - [ - "tion", - -9.898880958557129 - ], - [ - "▁release", - -9.899920463562012 - ], - [ - "▁creating", - -9.900403022766113 - ], - [ - "▁despre", - -9.90141773223877 - ], - [ - "esc", - -9.902434349060059 - ], - [ - "▁eye", - -9.902752876281738 - ], - [ - "▁apply", - -9.905945777893066 - ], - [ - "net", - -9.906000137329102 - ], - [ - "side", - -9.906539916992188 - ], - [ - "▁ar", - -9.906949996948242 - ], - [ - "▁platform", - -9.90713882446289 - ], - [ - "▁touch", - -9.907329559326172 - ], - [ - "▁towards", - -9.90785026550293 - ], - [ - "▁match", - -9.908224105834961 - ], - [ - "▁Black", - -9.909344673156738 - ], - [ - "▁fall", - -9.90961742401123 - ], - [ - "▁ground", - -9.910234451293945 - ], - [ - "▁High", - -9.910740852355957 - ], - [ - "▁Q", - -9.911155700683594 - ], - [ - "▁schon", - -9.911709785461426 - ], - [ - "▁hotel", - -9.911751747131348 - ], - [ - "▁prices", - -9.912031173706055 - ], - [ - "▁developed", - -9.913411140441895 - ], - [ - "uk", - -9.913476943969727 - ], - [ - "ide", - -9.91367244720459 - ], - [ - "▁September", - -9.91370964050293 - ], - [ - "ized", - -9.914202690124512 - ], - [ - "▁War", - -9.914704322814941 - ], - [ - "!!", - -9.916285514831543 - ], - [ - "▁grow", - -9.916997909545898 - ], - [ - "▁watch", - -9.917067527770996 - ], - [ - "▁storage", - -9.917412757873535 - ], - [ - "eau", - -9.917513847351074 - ], - [ - "can", - -9.918373107910156 - ], - [ - "▁Get", - -9.919524192810059 - ], - [ - "▁See", - -9.91953182220459 - ], - [ - "▁European", - -9.919703483581543 - ], - [ - "▁language", - -9.91982650756836 - ], - [ - "ează", - -9.920175552368164 - ], - [ - "▁court", - -9.920334815979004 - ], - [ - "▁Why", - -9.921106338500977 - ], - [ - "▁hear", - -9.921342849731445 - ], - [ - "▁doar", - -9.921804428100586 - ], - [ - "lan", - -9.92330265045166 - ], - [ - "▁Christmas", - -9.923810958862305 - ], - [ - "▁Web", - -9.923871994018555 - ], - [ - "vo", - -9.92405891418457 - ], - [ - "▁sent", - -9.924983024597168 - ], - [ - "▁businesses", - -9.925868034362793 - ], - [ - "▁Red", - -9.926278114318848 - ], - [ - "tel", - -9.926375389099121 - ], - [ - "▁Ha", - -9.926508903503418 - ], - [ - "▁wonderful", - -9.926653861999512 - ], - [ - "ations", - -9.926738739013672 - ], - [ - "za", - -9.92748737335205 - ], - [ - "▁22", - -9.928659439086914 - ], - [ - "▁thinking", - -9.92941665649414 - ], - [ - "▁became", - -9.929733276367188 - ], - [ - "▁cool", - -9.929835319519043 - ], - [ - "▁speed", - -9.930370330810547 - ], - [ - "mar", - -9.930426597595215 - ], - [ - "▁--", - -9.931743621826172 - ], - [ - "▁groups", - -9.931920051574707 - ], - [ - "▁interested", - -9.93198299407959 - ], - [ - "ak", - -9.93218994140625 - ], - [ - "▁60", - -9.932672500610352 - ], - [ - "▁screen", - -9.93370246887207 - ], - [ - "▁Design", - -9.933789253234863 - ], - [ - "▁limited", - -9.935648918151855 - ], - [ - "▁expected", - -9.935959815979004 - ], - [ - "▁opportunities", - -9.936376571655273 - ], - [ - "▁regular", - -9.936870574951172 - ], - [ - "off", - -9.93702220916748 - ], - [ - "▁Best", - -9.937298774719238 - ], - [ - "Re", - -9.938436508178711 - ], - [ - "▁ihr", - -9.938719749450684 - ], - [ - "▁Great", - -9.938907623291016 - ], - [ - "▁employees", - -9.93924617767334 - ], - [ - "▁custom", - -9.939679145812988 - ], - [ - "▁multe", - -9.940123558044434 - ], - [ - "let", - -9.940876007080078 - ], - [ - "▁benefit", - -9.942487716674805 - ], - [ - "▁term", - -9.942623138427734 - ], - [ - "▁bine", - -9.942869186401367 - ], - [ - "▁deep", - -9.944526672363281 - ], - [ - "▁August", - -9.94526481628418 - ], - [ - "▁President", - -9.945381164550781 - ], - [ - "▁Auf", - -9.945854187011719 - ], - [ - "▁wish", - -9.946924209594727 - ], - [ - "▁sometimes", - -9.947274208068848 - ], - [ - "ari", - -9.947793960571289 - ], - [ - "▁pressure", - -9.948184967041016 - ], - [ - "▁ani", - -9.94859504699707 - ], - [ - "▁trade", - -9.949930191040039 - ], - [ - "▁firm", - -9.950027465820312 - ], - [ - "▁comment", - -9.95003604888916 - ], - [ - "▁November", - -9.950242042541504 - ], - [ - "▁expect", - -9.951102256774902 - ], - [ - "▁2012", - -9.952491760253906 - ], - [ - "▁Ich", - -9.95328140258789 - ], - [ - "▁relationship", - -9.95363998413086 - ], - [ - "▁active", - -9.954682350158691 - ], - [ - "org", - -9.954710960388184 - ], - [ - "▁heat", - -9.956732749938965 - ], - [ - "▁wood", - -9.95678997039795 - ], - [ - "▁notre", - -9.957921028137207 - ], - [ - "▁function", - -9.958330154418945 - ], - [ - "▁2.", - -9.95909309387207 - ], - [ - "▁wedding", - -9.960049629211426 - ], - [ - "▁starting", - -9.961235046386719 - ], - [ - "▁Health", - -9.961249351501465 - ], - [ - "\",", - -9.961713790893555 - ], - [ - "▁death", - -9.962173461914062 - ], - [ - "▁pages", - -9.962764739990234 - ], - [ - "▁vehicle", - -9.96293830871582 - ], - [ - "▁request", - -9.963874816894531 - ], - [ - "▁helps", - -9.963916778564453 - ], - [ - "▁blue", - -9.964017868041992 - ], - [ - "▁analysis", - -9.964414596557617 - ], - [ - "▁posted", - -9.964544296264648 - ], - [ - "▁healthy", - -9.964814186096191 - ], - [ - "▁contract", - -9.964988708496094 - ], - [ - "▁•", - -9.965263366699219 - ], - [ - "▁Each", - -9.965293884277344 - ], - [ - "▁Fa", - -9.966179847717285 - ], - [ - "▁dintre", - -9.966221809387207 - ], - [ - "▁Friday", - -9.967202186584473 - ], - [ - "▁considered", - -9.967992782592773 - ], - [ - "cher", - -9.96826457977295 - ], - [ - "▁quick", - -9.968731880187988 - ], - [ - "▁understanding", - -9.96916389465332 - ], - [ - "▁condition", - -9.969378471374512 - ], - [ - "ization", - -9.971049308776855 - ], - [ - "▁document", - -9.971664428710938 - ], - [ - "▁prevent", - -9.971890449523926 - ], - [ - "▁growing", - -9.9725341796875 - ], - [ - "▁protection", - -9.972620964050293 - ], - [ - "▁cat", - -9.974002838134766 - ], - [ - "▁#", - -9.975058555603027 - ], - [ - "10", - -9.975275039672852 - ], - [ - "▁join", - -9.9759521484375 - ], - [ - "▁serve", - -9.976580619812012 - ], - [ - "▁blood", - -9.977095603942871 - ], - [ - "▁July", - -9.977341651916504 - ], - [ - "▁region", - -9.977787971496582 - ], - [ - "car", - -9.97933578491211 - ], - [ - "▁entre", - -9.979788780212402 - ], - [ - "▁physical", - -9.981287002563477 - ], - [ - "▁cash", - -9.9813232421875 - ], - [ - "aux", - -9.981823921203613 - ], - [ - "ng", - -9.982654571533203 - ], - [ - "▁stage", - -9.98281478881836 - ], - [ - "▁seem", - -9.983034133911133 - ], - [ - "▁definitely", - -9.983795166015625 - ], - [ - "▁investment", - -9.983827590942383 - ], - [ - "▁purpose", - -9.985441207885742 - ], - [ - "▁begin", - -9.985486030578613 - ], - [ - "®", - -9.985495567321777 - ], - [ - "▁break", - -9.985701560974121 - ], - [ - "itate", - -9.987293243408203 - ], - [ - "▁moving", - -9.989288330078125 - ], - [ - "▁met", - -9.990678787231445 - ], - [ - "ize", - -9.990833282470703 - ], - [ - "▁select", - -9.991165161132812 - ], - [ - "▁tous", - -9.991310119628906 - ], - [ - "▁Europe", - -9.991639137268066 - ], - [ - "@", - -9.992724418640137 - ], - [ - "▁individuals", - -9.993392944335938 - ], - [ - "▁Zeit", - -9.993524551391602 - ], - [ - "gu", - -9.995670318603516 - ], - [ - "▁unit", - -9.995753288269043 - ], - [ - "▁noi", - -9.996089935302734 - ], - [ - "▁places", - -9.996171951293945 - ], - [ - "all", - -9.99632453918457 - ], - [ - "▁wait", - -9.996755599975586 - ], - [ - "▁difference", - -9.997234344482422 - ], - [ - "▁round", - -9.998015403747559 - ], - [ - "50", - -9.99953842163086 - ], - [ - "rie", - -9.999545097351074 - ], - [ - "▁Et", - -9.999933242797852 - ], - [ - "20", - -10.000725746154785 - ], - [ - "▁activity", - -10.000792503356934 - ], - [ - "е", - -10.000866889953613 - ], - [ - "▁Windows", - -10.001087188720703 - ], - [ - "▁produce", - -10.001385688781738 - ], - [ - "▁keine", - -10.00212574005127 - ], - [ - "▁Air", - -10.002567291259766 - ], - [ - "▁January", - -10.004890441894531 - ], - [ - "▁deux", - -10.005081176757812 - ], - [ - "▁entry", - -10.005208015441895 - ], - [ - "king", - -10.006500244140625 - ], - [ - "▁goals", - -10.006736755371094 - ], - [ - "▁previous", - -10.0077543258667 - ], - [ - "▁+", - -10.008035659790039 - ], - [ - "▁Business", - -10.008259773254395 - ], - [ - "ont", - -10.008552551269531 - ], - [ - "▁Sunday", - -10.008694648742676 - ], - [ - "▁offering", - -10.010359764099121 - ], - [ - "▁response", - -10.011018753051758 - ], - [ - "▁surface", - -10.011393547058105 - ], - [ - "▁Department", - -10.01212215423584 - ], - [ - "▁exactly", - -10.012190818786621 - ], - [ - "▁Online", - -10.012577056884766 - ], - [ - "dem", - -10.013803482055664 - ], - [ - "ischen", - -10.014006614685059 - ], - [ - "▁hands", - -10.015100479125977 - ], - [ - "▁hour", - -10.016197204589844 - ], - [ - "▁dog", - -10.016946792602539 - ], - [ - "▁damage", - -10.017006874084473 - ], - [ - "▁capital", - -10.018792152404785 - ], - [ - "▁toate", - -10.020488739013672 - ], - [ - "▁wrong", - -10.020674705505371 - ], - [ - "unui", - -10.022201538085938 - ], - [ - "tri", - -10.023979187011719 - ], - [ - "▁sell", - -10.023999214172363 - ], - [ - "▁published", - -10.024175643920898 - ], - [ - "▁families", - -10.024675369262695 - ], - [ - "▁avoid", - -10.025490760803223 - ], - [ - "▁Ko", - -10.025506019592285 - ], - [ - "▁mod", - -10.026697158813477 - ], - [ - "rat", - -10.027653694152832 - ], - [ - "▁Make", - -10.0299654006958 - ], - [ - "▁October", - -10.030153274536133 - ], - [ - "▁former", - -10.031285285949707 - ], - [ - "▁Services", - -10.03281021118164 - ], - [ - "▁felt", - -10.033045768737793 - ], - [ - "▁selection", - -10.033309936523438 - ], - [ - "eaza", - -10.034177780151367 - ], - [ - "gel", - -10.034422874450684 - ], - [ - "▁Good", - -10.035792350769043 - ], - [ - "▁actual", - -10.0364351272583 - ], - [ - "▁gut", - -10.036853790283203 - ], - [ - "▁gas", - -10.03708553314209 - ], - [ - "15", - -10.038182258605957 - ], - [ - "▁structure", - -10.038285255432129 - ], - [ - "▁act", - -10.0386381149292 - ], - [ - "▁Zu", - -10.038654327392578 - ], - [ - "▁creative", - -10.039134979248047 - ], - [ - "▁Vi", - -10.039159774780273 - ], - [ - "▁shop", - -10.04066276550293 - ], - [ - "▁Lo", - -10.040735244750977 - ], - [ - "şi", - -10.042192459106445 - ], - [ - "▁mis", - -10.042224884033203 - ], - [ - "ungen", - -10.042301177978516 - ], - [ - "▁fan", - -10.04240608215332 - ], - [ - "▁|", - -10.043391227722168 - ], - [ - "▁Bei", - -10.044037818908691 - ], - [ - "▁protect", - -10.04454517364502 - ], - [ - "▁Na", - -10.0447998046875 - ], - [ - "q", - -10.045693397521973 - ], - [ - "ok", - -10.04710578918457 - ], - [ - "▁California", - -10.047263145446777 - ], - [ - "▁political", - -10.047301292419434 - ], - [ - "25", - -10.047530174255371 - ], - [ - "▁feeling", - -10.047913551330566 - ], - [ - "▁ces", - -10.048321723937988 - ], - [ - "▁display", - -10.048857688903809 - ], - [ - "▁essential", - -10.04964542388916 - ], - [ - "ând", - -10.049971580505371 - ], - [ - "▁seine", - -10.050551414489746 - ], - [ - "▁soft", - -10.050915718078613 - ], - [ - "ach", - -10.05102252960205 - ], - [ - "▁happen", - -10.051118850708008 - ], - [ - "▁Paul", - -10.053346633911133 - ], - [ - "▁Cu", - -10.054024696350098 - ], - [ - "house", - -10.055376052856445 - ], - [ - "ante", - -10.05582046508789 - ], - [ - "▁easier", - -10.056551933288574 - ], - [ - "▁sort", - -10.0567045211792 - ], - [ - "▁Post", - -10.057138442993164 - ], - [ - "▁accept", - -10.05730152130127 - ], - [ - "field", - -10.057648658752441 - ], - [ - "zen", - -10.057741165161133 - ], - [ - "▁character", - -10.057848930358887 - ], - [ - "▁beginning", - -10.058433532714844 - ], - [ - "▁Jesus", - -10.058760643005371 - ], - [ - "▁weekend", - -10.059663772583008 - ], - [ - "▁certainly", - -10.06114387512207 - ], - [ - "▁THE", - -10.061254501342773 - ], - [ - "▁alle", - -10.06189250946045 - ], - [ - "▁transport", - -10.062220573425293 - ], - [ - "▁Saturday", - -10.063043594360352 - ], - [ - "▁basic", - -10.064136505126953 - ], - [ - "▁loved", - -10.06431770324707 - ], - [ - "ros", - -10.065333366394043 - ], - [ - "▁offered", - -10.065996170043945 - ], - [ - "▁camera", - -10.067024230957031 - ], - [ - "▁Green", - -10.06789779663086 - ], - [ - "ology", - -10.069480895996094 - ], - [ - "ä", - -10.069646835327148 - ], - [ - "▁manage", - -10.070416450500488 - ], - [ - "▁paid", - -10.070881843566895 - ], - [ - "▁advice", - -10.071617126464844 - ], - [ - "▁patient", - -10.072234153747559 - ], - [ - "▁spent", - -10.072272300720215 - ], - [ - "▁mir", - -10.072366714477539 - ], - [ - "▁baby", - -10.072400093078613 - ], - [ - "ö", - -10.073193550109863 - ], - [ - "▁basis", - -10.073338508605957 - ], - [ - "▁cancer", - -10.073765754699707 - ], - [ - "▁Although", - -10.07400894165039 - ], - [ - "▁gift", - -10.074336051940918 - ], - [ - "▁3.", - -10.074871063232422 - ], - [ - "dieser", - -10.075157165527344 - ], - [ - "▁overall", - -10.07520580291748 - ], - [ - "▁Sch", - -10.075265884399414 - ], - [ - "▁Ex", - -10.076258659362793 - ], - [ - "▁December", - -10.07689094543457 - ], - [ - "▁released", - -10.078214645385742 - ], - [ - "▁prior", - -10.07900333404541 - ], - [ - "▁sowie", - -10.081072807312012 - ], - [ - "▁club", - -10.081326484680176 - ], - [ - "▁Street", - -10.081535339355469 - ], - [ - "▁College", - -10.08254623413086 - ], - [ - "▁î", - -10.083059310913086 - ], - [ - "over", - -10.083159446716309 - ], - [ - "▁gave", - -10.08454704284668 - ], - [ - "▁truly", - -10.084784507751465 - ], - [ - "par", - -10.084806442260742 - ], - [ - "▁Canada", - -10.084888458251953 - ], - [ - "▁existing", - -10.085420608520508 - ], - [ - "lie", - -10.086335182189941 - ], - [ - "▁ganz", - -10.086658477783203 - ], - [ - "▁setting", - -10.087109565734863 - ], - [ - "▁supply", - -10.08739185333252 - ], - [ - "▁college", - -10.087540626525879 - ], - [ - "▁communication", - -10.088407516479492 - ], - [ - "▁23", - -10.088834762573242 - ], - [ - "▁pass", - -10.091546058654785 - ], - [ - "▁devices", - -10.091872215270996 - ], - [ - "▁glass", - -10.092083930969238 - ], - [ - "▁experienced", - -10.092395782470703 - ], - [ - "▁grand", - -10.093363761901855 - ], - [ - "▁Po", - -10.093396186828613 - ], - [ - "▁beyond", - -10.094029426574707 - ], - [ - "▁format", - -10.094165802001953 - ], - [ - "▁mon", - -10.09461498260498 - ], - [ - "▁perform", - -10.094635009765625 - ], - [ - "sten", - -10.095130920410156 - ], - [ - "▁1,", - -10.096270561218262 - ], - [ - "▁Per", - -10.096640586853027 - ], - [ - "▁sold", - -10.097247123718262 - ], - [ - "▁rates", - -10.0972900390625 - ], - [ - "▁regarding", - -10.097782135009766 - ], - [ - "▁Paris", - -10.098291397094727 - ], - [ - "▁Dar", - -10.099579811096191 - ], - [ - "▁challenge", - -10.099649429321289 - ], - [ - "▁feet", - -10.100564002990723 - ], - [ - "▁Su", - -10.102017402648926 - ], - [ - "je", - -10.102593421936035 - ], - [ - "▁Bank", - -10.102627754211426 - ], - [ - "ven", - -10.103126525878906 - ], - [ - "jo", - -10.103290557861328 - ], - [ - "▁band", - -10.10348892211914 - ], - [ - "▁delivery", - -10.104915618896484 - ], - [ - "Vous", - -10.104924201965332 - ], - [ - "tele", - -10.10495376586914 - ], - [ - "▁East", - -10.105379104614258 - ], - [ - "▁pictures", - -10.106067657470703 - ], - [ - "▁useful", - -10.106481552124023 - ], - [ - "*", - -10.107648849487305 - ], - [ - "▁increased", - -10.107746124267578 - ], - [ - "▁stories", - -10.108119010925293 - ], - [ - "sion", - -10.108280181884766 - ], - [ - "bra", - -10.108345985412598 - ], - [ - "▁brought", - -10.108466148376465 - ], - [ - "▁effort", - -10.109898567199707 - ], - [ - "▁payment", - -10.11058235168457 - ], - [ - "▁heard", - -10.110925674438477 - ], - [ - "▁played", - -10.111245155334473 - ], - [ - "▁White", - -10.111417770385742 - ], - [ - "▁metal", - -10.111721992492676 - ], - [ - "tal", - -10.111754417419434 - ], - [ - "▁engine", - -10.112006187438965 - ], - [ - "▁Club", - -10.11218547821045 - ], - [ - "ical", - -10.114581108093262 - ], - [ - "▁effects", - -10.115421295166016 - ], - [ - "▁degree", - -10.115763664245605 - ], - [ - "▁bed", - -10.1159086227417 - ], - [ - "ette", - -10.115991592407227 - ], - [ - "▁David", - -10.116386413574219 - ], - [ - "°", - -10.117666244506836 - ], - [ - "▁Au", - -10.117938041687012 - ], - [ - "▁Company", - -10.11845874786377 - ], - [ - "▁player", - -10.11938190460205 - ], - [ - "▁Today", - -10.120569229125977 - ], - [ - "▁maintain", - -10.12093448638916 - ], - [ - "▁minute", - -10.121193885803223 - ], - [ - "mail", - -10.122172355651855 - ], - [ - "▁race", - -10.122366905212402 - ], - [ - "▁comfortable", - -10.123887062072754 - ], - [ - "▁responsible", - -10.124085426330566 - ], - [ - "vor", - -10.124622344970703 - ], - [ - "▁associated", - -10.124695777893066 - ], - [ - "▁weather", - -10.124701499938965 - ], - [ - "▁$1", - -10.125639915466309 - ], - [ - "▁tried", - -10.126176834106445 - ], - [ - "▁Check", - -10.127649307250977 - ], - [ - "▁solid", - -10.127864837646484 - ], - [ - "▁movie", - -10.128364562988281 - ], - [ - "▁coffee", - -10.12874698638916 - ], - [ - "board", - -10.129073143005371 - ], - [ - "▁po", - -10.12946605682373 - ], - [ - "▁warm", - -10.129583358764648 - ], - [ - "▁connect", - -10.131733894348145 - ], - [ - "▁Ad", - -10.133807182312012 - ], - [ - "work", - -10.133859634399414 - ], - [ - "mal", - -10.13397216796875 - ], - [ - "▁Act", - -10.134634971618652 - ], - [ - "▁achieve", - -10.134769439697266 - ], - [ - "▁Nach", - -10.136604309082031 - ], - [ - "www", - -10.136669158935547 - ], - [ - "term", - -10.13672161102295 - ], - [ - "▁claim", - -10.137251853942871 - ], - [ - "▁particularly", - -10.138245582580566 - ], - [ - "▁cas", - -10.138396263122559 - ], - [ - "▁furniture", - -10.138461112976074 - ], - [ - "▁finish", - -10.13896369934082 - ], - [ - "▁temps", - -10.139026641845703 - ], - [ - "▁disease", - -10.139115333557129 - ], - [ - "▁lots", - -10.139196395874023 - ], - [ - "▁ball", - -10.139307975769043 - ], - [ - "▁sun", - -10.14010238647461 - ], - [ - "▁strategy", - -10.140498161315918 - ], - [ - "bre", - -10.140518188476562 - ], - [ - "▁mine", - -10.141541481018066 - ], - [ - "▁Click", - -10.141743659973145 - ], - [ - "ran", - -10.141983032226562 - ], - [ - "▁Will", - -10.142234802246094 - ], - [ - "▁garden", - -10.142974853515625 - ], - [ - "▁stuff", - -10.14359188079834 - ], - [ - "▁limit", - -10.144641876220703 - ], - [ - "▁bottom", - -10.14494800567627 - ], - [ - "▁shown", - -10.144962310791016 - ], - [ - "ship", - -10.145271301269531 - ], - [ - "▁habe", - -10.145858764648438 - ], - [ - "▁Super", - -10.146219253540039 - ], - [ - "▁completed", - -10.146971702575684 - ], - [ - "▁wine", - -10.146979331970215 - ], - [ - "ische", - -10.147262573242188 - ], - [ - "▁largest", - -10.147466659545898 - ], - [ - "▁appropriate", - -10.148261070251465 - ], - [ - "▁immediately", - -10.150248527526855 - ], - [ - "▁Hi", - -10.152358055114746 - ], - [ - "▁trust", - -10.152767181396484 - ], - [ - "ability", - -10.154254913330078 - ], - [ - "▁powerful", - -10.155101776123047 - ], - [ - "▁helping", - -10.155620574951172 - ], - [ - "▁schedule", - -10.155688285827637 - ], - [ - "▁correct", - -10.155707359313965 - ], - [ - "▁transfer", - -10.156496047973633 - ], - [ - "pre", - -10.15665340423584 - ], - [ - "▁journey", - -10.15688419342041 - ], - [ - "pm", - -10.157002449035645 - ], - [ - "don", - -10.158435821533203 - ], - [ - "▁highest", - -10.159249305725098 - ], - [ - "▁finally", - -10.15999698638916 - ], - [ - "form", - -10.160258293151855 - ], - [ - "▁extremely", - -10.160404205322266 - ], - [ - "▁window", - -10.160501480102539 - ], - [ - "▁Over", - -10.162222862243652 - ], - [ - "▁remove", - -10.162469863891602 - ], - [ - "wood", - -10.162479400634766 - ], - [ - "▁2013", - -10.163631439208984 - ], - [ - "▁mother", - -10.164072036743164 - ], - [ - "▁Auto", - -10.16436767578125 - ], - [ - "▁annual", - -10.164615631103516 - ], - [ - "▁Star", - -10.164834976196289 - ], - [ - "▁Di", - -10.166138648986816 - ], - [ - "о", - -10.16711139678955 - ], - [ - "▁gold", - -10.167129516601562 - ], - [ - "tar", - -10.167352676391602 - ], - [ - "ju", - -10.167750358581543 - ], - [ - "▁Use", - -10.169474601745605 - ], - [ - "▁thanks", - -10.16960334777832 - ], - [ - "▁centre", - -10.170127868652344 - ], - [ - "▁Australia", - -10.170358657836914 - ], - [ - "▁estate", - -10.170504570007324 - ], - [ - "▁eyes", - -10.1714448928833 - ], - [ - "▁force", - -10.171592712402344 - ], - [ - "▁income", - -10.17395305633545 - ], - [ - "▁science", - -10.174036026000977 - ], - [ - "ori", - -10.174230575561523 - ], - [ - "▁enter", - -10.174851417541504 - ], - [ - "▁28", - -10.175408363342285 - ], - [ - "ire", - -10.17568302154541 - ], - [ - "▁schools", - -10.175797462463379 - ], - [ - "▁restaurant", - -10.176088333129883 - ], - [ - "▁Council", - -10.177032470703125 - ], - [ - "aus", - -10.177885055541992 - ], - [ - "▁agree", - -10.17905330657959 - ], - [ - "▁campaign", - -10.179192543029785 - ], - [ - "▁Ta", - -10.179428100585938 - ], - [ - "▁letter", - -10.179814338684082 - ], - [ - "▁central", - -10.179931640625 - ], - [ - "▁Because", - -10.180054664611816 - ], - [ - "▁path", - -10.180349349975586 - ], - [ - "▁loc", - -10.180882453918457 - ], - [ - "▁files", - -10.182587623596191 - ], - [ - "▁population", - -10.182705879211426 - ], - [ - "▁explore", - -10.182723999023438 - ], - [ - "▁mid", - -10.182734489440918 - ], - [ - "▁concept", - -10.182748794555664 - ], - [ - "▁church", - -10.183015823364258 - ], - [ - "80", - -10.183026313781738 - ], - [ - "▁einfach", - -10.185834884643555 - ], - [ - "▁reasons", - -10.186690330505371 - ], - [ - "▁determine", - -10.186755180358887 - ], - [ - "▁February", - -10.187095642089844 - ], - [ - "▁evidence", - -10.18797779083252 - ], - [ - "▁sleep", - -10.188036918640137 - ], - [ - "▁Board", - -10.188652992248535 - ], - [ - "▁maybe", - -10.189635276794434 - ], - [ - "▁wasn", - -10.189701080322266 - ], - [ - "▁Monday", - -10.190101623535156 - ], - [ - "▁director", - -10.190481185913086 - ], - [ - "well", - -10.190974235534668 - ], - [ - "During", - -10.191001892089844 - ], - [ - "▁sweet", - -10.191061973571777 - ], - [ - "▁assist", - -10.19124984741211 - ], - [ - "▁police", - -10.191511154174805 - ], - [ - "▁repair", - -10.191729545593262 - ], - [ - "▁techniques", - -10.191733360290527 - ], - [ - "▁served", - -10.191808700561523 - ], - [ - "vi", - -10.192037582397461 - ], - [ - "▁sports", - -10.192331314086914 - ], - [ - "▁opening", - -10.192401885986328 - ], - [ - "▁ones", - -10.192731857299805 - ], - [ - "▁notice", - -10.193460464477539 - ], - [ - "▁PC", - -10.193547248840332 - ], - [ - "▁alte", - -10.194242477416992 - ], - [ - "▁Bi", - -10.194340705871582 - ], - [ - "▁cold", - -10.195606231689453 - ], - [ - "▁billion", - -10.195794105529785 - ], - [ - "▁balance", - -10.196361541748047 - ], - [ - "cer", - -10.196417808532715 - ], - [ - "▁nearly", - -10.196725845336914 - ], - [ - "▁wear", - -10.197259902954102 - ], - [ - "free", - -10.19760799407959 - ], - [ - "▁Have", - -10.197748184204102 - ], - [ - "▁comfort", - -10.199211120605469 - ], - [ - "▁studies", - -10.199225425720215 - ], - [ - "▁traffic", - -10.199540138244629 - ], - [ - "▁item", - -10.200214385986328 - ], - [ - "▁teaching", - -10.200467109680176 - ], - [ - "▁turned", - -10.201326370239258 - ], - [ - "isation", - -10.201354026794434 - ], - [ - "12", - -10.202038764953613 - ], - [ - "▁greater", - -10.202167510986328 - ], - [ - "▁knew", - -10.20233154296875 - ], - [ - "▁Association", - -10.203333854675293 - ], - [ - "▁Office", - -10.203802108764648 - ], - [ - "▁established", - -10.204085350036621 - ], - [ - "45", - -10.204170227050781 - ], - [ - "▁Love", - -10.204318046569824 - ], - [ - "▁changed", - -10.204882621765137 - ], - [ - "▁pan", - -10.205184936523438 - ], - [ - "van", - -10.20565414428711 - ], - [ - "▁Mi", - -10.205663681030273 - ], - [ - "▁tend", - -10.20637321472168 - ], - [ - "▁connection", - -10.206522941589355 - ], - [ - "▁lack", - -10.206954002380371 - ], - [ - "▁bank", - -10.208464622497559 - ], - [ - "cat", - -10.208720207214355 - ], - [ - "▁helped", - -10.209071159362793 - ], - [ - "▁spot", - -10.209417343139648 - ], - [ - "▁spring", - -10.20974063873291 - ], - [ - "▁Wi", - -10.210912704467773 - ], - [ - "▁Mac", - -10.211682319641113 - ], - [ - "▁Christ", - -10.212015151977539 - ], - [ - "▁saying", - -10.212835311889648 - ], - [ - "▁General", - -10.213062286376953 - ], - [ - "▁port", - -10.213099479675293 - ], - [ - "▁Mal", - -10.213156700134277 - ], - [ - "▁System", - -10.213486671447754 - ], - [ - "▁According", - -10.2152738571167 - ], - [ - "▁chiar", - -10.21568489074707 - ], - [ - "log", - -10.21576976776123 - ], - [ - "▁mix", - -10.215974807739258 - ], - [ - "▁Lake", - -10.216042518615723 - ], - [ - "▁intr", - -10.216590881347656 - ], - [ - "▁deliver", - -10.216793060302734 - ], - [ - "mon", - -10.216931343078613 - ], - [ - "▁Ro", - -10.217060089111328 - ], - [ - "▁Management", - -10.217504501342773 - ], - [ - "bri", - -10.218718528747559 - ], - [ - "▁pieces", - -10.218774795532227 - ], - [ - "▁announced", - -10.218926429748535 - ], - [ - "▁Yes", - -10.219268798828125 - ], - [ - "▁dark", - -10.220884323120117 - ], - [ - "val", - -10.221765518188477 - ], - [ - "▁rights", - -10.22309684753418 - ], - [ - "▁Diese", - -10.223100662231445 - ], - [ - "ki", - -10.223350524902344 - ], - [ - "vent", - -10.22375774383545 - ], - [ - "▁born", - -10.22380542755127 - ], - [ - "▁muss", - -10.224031448364258 - ], - [ - "compared", - -10.224660873413086 - ], - [ - "▁demand", - -10.224669456481934 - ], - [ - "▁handle", - -10.225493431091309 - ], - [ - "▁mode", - -10.226058006286621 - ], - [ - "lic", - -10.226137161254883 - ], - [ - "▁ahead", - -10.226436614990234 - ], - [ - "▁sharing", - -10.227599143981934 - ], - [ - "▁micro", - -10.227779388427734 - ], - [ - "▁Par", - -10.228626251220703 - ], - [ - "▁Every", - -10.22950553894043 - ], - [ - "▁bag", - -10.229736328125 - ], - [ - "▁daca", - -10.22974967956543 - ], - [ - "▁Apple", - -10.23022174835205 - ], - [ - "▁Mark", - -10.230239868164062 - ], - [ - "▁larger", - -10.231284141540527 - ], - [ - "eze", - -10.231978416442871 - ], - [ - "▁progress", - -10.232234001159668 - ], - [ - "▁stress", - -10.232929229736328 - ], - [ - "▁cards", - -10.233663558959961 - ], - [ - "▁driving", - -10.233738899230957 - ], - [ - "▁dry", - -10.233970642089844 - ], - [ - "▁relevant", - -10.234556198120117 - ], - [ - "▁Jo", - -10.234825134277344 - ], - [ - "▁tree", - -10.235036849975586 - ], - [ - "▁reported", - -10.235770225524902 - ], - [ - "ities", - -10.23577880859375 - ], - [ - "▁tea", - -10.235806465148926 - ], - [ - "▁although", - -10.236145973205566 - ], - [ - "▁Research", - -10.236261367797852 - ], - [ - "▁pool", - -10.23691463470459 - ], - [ - "▁fin", - -10.237163543701172 - ], - [ - "▁Und", - -10.238130569458008 - ], - [ - "▁decide", - -10.239217758178711 - ], - [ - "▁expert", - -10.239344596862793 - ], - [ - "rate", - -10.239428520202637 - ], - [ - "zeit", - -10.239971160888672 - ], - [ - "▁26", - -10.24040412902832 - ], - [ - "▁Ka", - -10.24056339263916 - ], - [ - "▁fix", - -10.240666389465332 - ], - [ - "igen", - -10.240713119506836 - ], - [ - "▁direction", - -10.241188049316406 - ], - [ - "▁star", - -10.241661071777344 - ], - [ - "▁middle", - -10.241889953613281 - ], - [ - "▁Ja", - -10.241962432861328 - ], - [ - "▁Land", - -10.24207878112793 - ], - [ - "ken", - -10.242605209350586 - ], - [ - "▁button", - -10.242630004882812 - ], - [ - "▁rules", - -10.242656707763672 - ], - [ - "▁également", - -10.242706298828125 - ], - [ - "▁viel", - -10.243158340454102 - ], - [ - "▁welcome", - -10.243682861328125 - ], - [ - "că", - -10.243932723999023 - ], - [ - "▁Top", - -10.245308876037598 - ], - [ - "▁allowed", - -10.245487213134766 - ], - [ - "▁tip", - -10.245584487915039 - ], - [ - "▁cei", - -10.245768547058105 - ], - [ - "▁Nous", - -10.246004104614258 - ], - [ - "té", - -10.246850967407227 - ], - [ - "▁unei", - -10.246903419494629 - ], - [ - "▁efforts", - -10.247260093688965 - ], - [ - "▁note", - -10.247719764709473 - ], - [ - "▁title", - -10.247977256774902 - ], - [ - "ric", - -10.248047828674316 - ], - [ - "berg", - -10.248252868652344 - ], - [ - "▁ainsi", - -10.248576164245605 - ], - [ - "▁led", - -10.248713493347168 - ], - [ - "▁alone", - -10.248786926269531 - ], - [ - "ward", - -10.249215126037598 - ], - [ - "▁vie", - -10.249323844909668 - ], - [ - "▁brain", - -10.249427795410156 - ], - [ - "light", - -10.250100135803223 - ], - [ - "▁Court", - -10.250598907470703 - ], - [ - "set", - -10.250869750976562 - ], - [ - "▁steps", - -10.251251220703125 - ], - [ - "pri", - -10.251391410827637 - ], - [ - "Q", - -10.251654624938965 - ], - [ - "sti", - -10.251938819885254 - ], - [ - "▁voice", - -10.252121925354004 - ], - [ - "▁models", - -10.252705574035645 - ], - [ - "▁parties", - -10.25442886352539 - ], - [ - "▁radio", - -10.255270957946777 - ], - [ - "▁mission", - -10.25545883178711 - ], - [ - "▁methods", - -10.255658149719238 - ], - [ - "▁Te", - -10.256019592285156 - ], - [ - "air", - -10.256489753723145 - ], - [ - "▁essay", - -10.256719589233398 - ], - [ - "my", - -10.256826400756836 - ], - [ - "▁competition", - -10.257049560546875 - ], - [ - "ses", - -10.257447242736816 - ], - [ - "▁serious", - -10.258724212646484 - ], - [ - "▁Ti", - -10.258733749389648 - ], - [ - "▁Hand", - -10.259561538696289 - ], - [ - "not", - -10.25958251953125 - ], - [ - "▁winter", - -10.261277198791504 - ], - [ - "24", - -10.261724472045898 - ], - [ - "▁vision", - -10.26174545288086 - ], - [ - "▁technical", - -10.262110710144043 - ], - [ - "▁cross", - -10.262799263000488 - ], - [ - "▁update", - -10.262947082519531 - ], - [ - "▁Team", - -10.263564109802246 - ], - [ - "▁evening", - -10.264286041259766 - ], - [ - "▁experts", - -10.26435661315918 - ], - [ - "part", - -10.264640808105469 - ], - [ - "▁wo", - -10.265190124511719 - ], - [ - "▁App", - -10.265729904174805 - ], - [ - "▁peu", - -10.266267776489258 - ], - [ - "▁mich", - -10.26630687713623 - ], - [ - "▁reports", - -10.267001152038574 - ], - [ - "▁km", - -10.267594337463379 - ], - [ - "▁print", - -10.2678804397583 - ], - [ - "▁Hotel", - -10.268101692199707 - ], - [ - "▁earlier", - -10.268235206604004 - ], - [ - "▁uses", - -10.26826286315918 - ], - [ - "▁menu", - -10.268416404724121 - ], - [ - "▁miles", - -10.26845645904541 - ], - [ - "▁classes", - -10.268463134765625 - ], - [ - "▁mo", - -10.268525123596191 - ], - [ - "▁loan", - -10.2691011428833 - ], - [ - "▁host", - -10.269192695617676 - ], - [ - "▁author", - -10.269274711608887 - ], - [ - "-1", - -10.269434928894043 - ], - [ - "▁bun", - -10.269940376281738 - ], - [ - "19", - -10.270011901855469 - ], - [ - "uch", - -10.270670890808105 - ], - [ - "ble", - -10.270813941955566 - ], - [ - "▁holiday", - -10.270859718322754 - ], - [ - "los", - -10.271894454956055 - ], - [ - "▁looked", - -10.272663116455078 - ], - [ - "▁Test", - -10.272759437561035 - ], - [ - "▁moved", - -10.273000717163086 - ], - [ - "▁numbers", - -10.273306846618652 - ], - [ - "▁covered", - -10.273405075073242 - ], - [ - "ker", - -10.273696899414062 - ], - [ - "TM", - -10.273768424987793 - ], - [ - "▁album", - -10.274727821350098 - ], - [ - "▁27", - -10.27476692199707 - ], - [ - "▁când", - -10.27523422241211 - ], - [ - "▁shopping", - -10.275248527526855 - ], - [ - "▁Ihr", - -10.27531623840332 - ], - [ - "▁requires", - -10.275786399841309 - ], - [ - "▁USA", - -10.275909423828125 - ], - [ - "000", - -10.275951385498047 - ], - [ - "▁official", - -10.276010513305664 - ], - [ - "▁states", - -10.276346206665039 - ], - [ - "▁tips", - -10.276570320129395 - ], - [ - "ible", - -10.277321815490723 - ], - [ - "▁Lu", - -10.27756404876709 - ], - [ - "ces", - -10.278343200683594 - ], - [ - "▁figure", - -10.27839469909668 - ], - [ - "▁Take", - -10.278576850891113 - ], - [ - "▁după", - -10.278687477111816 - ], - [ - "▁teams", - -10.278980255126953 - ], - [ - "▁song", - -10.279138565063477 - ], - [ - "▁master", - -10.279386520385742 - ], - [ - "ED", - -10.279841423034668 - ], - [ - "▁cleaning", - -10.280523300170898 - ], - [ - "▁drop", - -10.280651092529297 - ], - [ - "▁primary", - -10.2808837890625 - ], - [ - "▁Life", - -10.28108024597168 - ], - [ - "▁carry", - -10.281129837036133 - ], - [ - "▁initial", - -10.281270980834961 - ], - [ - "▁encore", - -10.281617164611816 - ], - [ - "▁Add", - -10.281670570373535 - ], - [ - "▁woman", - -10.282076835632324 - ], - [ - "▁Water", - -10.282219886779785 - ], - [ - "▁advantage", - -10.28277587890625 - ], - [ - "see", - -10.283234596252441 - ], - [ - "ré", - -10.283341407775879 - ], - [ - "▁motor", - -10.283479690551758 - ], - [ - "mel", - -10.2838716506958 - ], - [ - "▁finding", - -10.284419059753418 - ], - [ - "▁plastic", - -10.286365509033203 - ], - [ - "▁IT", - -10.286602973937988 - ], - [ - "▁Church", - -10.286916732788086 - ], - [ - "▁shape", - -10.287345886230469 - ], - [ - "▁gets", - -10.287763595581055 - ], - [ - "▁followed", - -10.288186073303223 - ], - [ - "▁100%", - -10.288315773010254 - ], - [ - "▁Program", - -10.28912353515625 - ], - [ - "▁Another", - -10.28934383392334 - ], - [ - "▁zwei", - -10.289522171020508 - ], - [ - "▁father", - -10.289839744567871 - ], - [ - "▁rich", - -10.290282249450684 - ], - [ - "où", - -10.290810585021973 - ], - [ - "▁lines", - -10.290934562683105 - ], - [ - "▁distance", - -10.291757583618164 - ], - [ - "▁cell", - -10.291876792907715 - ], - [ - "▁parte", - -10.292072296142578 - ], - [ - "bit", - -10.292445182800293 - ], - [ - "▁perhaps", - -10.292749404907227 - ], - [ - "rii", - -10.293590545654297 - ], - [ - "▁session", - -10.294137954711914 - ], - [ - "▁Pentru", - -10.294528007507324 - ], - [ - "ING", - -10.295049667358398 - ], - [ - "ants", - -10.295478820800781 - ], - [ - "▁remain", - -10.295543670654297 - ], - [ - "13", - -10.295588493347168 - ], - [ - "▁finished", - -10.295763969421387 - ], - [ - "bel", - -10.298725128173828 - ], - [ - "▁organizations", - -10.299455642700195 - ], - [ - "▁Any", - -10.299896240234375 - ], - [ - "▁taste", - -10.300277709960938 - ], - [ - "Whether", - -10.300600051879883 - ], - [ - "ram", - -10.300874710083008 - ], - [ - "like", - -10.301307678222656 - ], - [ - "▁artist", - -10.301319122314453 - ], - [ - "aire", - -10.303369522094727 - ], - [ - "▁French", - -10.303386688232422 - ], - [ - "▁donc", - -10.303634643554688 - ], - [ - "ow", - -10.30386734008789 - ], - [ - "▁200", - -10.303993225097656 - ], - [ - "▁paint", - -10.304465293884277 - ], - [ - "▁Open", - -10.304535865783691 - ], - [ - "▁appear", - -10.304722785949707 - ], - [ - "▁Washington", - -10.304765701293945 - ], - [ - "▁target", - -10.30491828918457 - ], - [ - "pir", - -10.305578231811523 - ], - [ - "▁generally", - -10.305987358093262 - ], - [ - "▁British", - -10.306790351867676 - ], - [ - "▁seven", - -10.306937217712402 - ], - [ - "▁bio", - -10.307162284851074 - ], - [ - "▁sector", - -10.307358741760254 - ], - [ - "90", - -10.30777359008789 - ], - [ - "▁fapt", - -10.307881355285645 - ], - [ - "▁prefer", - -10.308316230773926 - ], - [ - "▁partner", - -10.308427810668945 - ], - [ - "ăm", - -10.308547973632812 - ], - [ - "▁diverse", - -10.308610916137695 - ], - [ - "▁onto", - -10.309283256530762 - ], - [ - "▁refer", - -10.309828758239746 - ], - [ - "▁Law", - -10.310302734375 - ], - [ - "▁Ri", - -10.310596466064453 - ], - [ - "▁critical", - -10.310735702514648 - ], - [ - "▁copy", - -10.310897827148438 - ], - [ - "ck", - -10.311517715454102 - ], - [ - "ix", - -10.311732292175293 - ], - [ - "tag", - -10.311793327331543 - ], - [ - "▁Road", - -10.311936378479004 - ], - [ - "▁concern", - -10.312053680419922 - ], - [ - "▁maximum", - -10.312095642089844 - ], - [ - "▁train", - -10.312148094177246 - ], - [ - "▁într", - -10.312189102172852 - ], - [ - "ura", - -10.313023567199707 - ], - [ - "▁Qu", - -10.313481330871582 - ], - [ - "▁links", - -10.313538551330566 - ], - [ - "▁audience", - -10.313969612121582 - ], - [ - "▁foot", - -10.314554214477539 - ], - [ - "▁Blue", - -10.314605712890625 - ], - [ - "ification", - -10.315386772155762 - ], - [ - "▁developing", - -10.315847396850586 - ], - [ - "▁interior", - -10.315876007080078 - ], - [ - "=", - -10.316556930541992 - ], - [ - "▁aceasta", - -10.31698989868164 - ], - [ - "▁dedicated", - -10.317373275756836 - ], - [ - "▁movement", - -10.317383766174316 - ], - [ - "sta", - -10.318868637084961 - ], - [ - "▁challenges", - -10.319018363952637 - ], - [ - "inte", - -10.319074630737305 - ], - [ - "▁Euro", - -10.319075584411621 - ], - [ - "▁classic", - -10.320341110229492 - ], - [ - "▁Um", - -10.320767402648926 - ], - [ - "▁alternative", - -10.321407318115234 - ], - [ - "mann", - -10.321614265441895 - ], - [ - "▁Une", - -10.322278022766113 - ], - [ - "qu", - -10.322415351867676 - ], - [ - "▁heavy", - -10.322434425354004 - ], - [ - "▁install", - -10.322484970092773 - ], - [ - "▁fiind", - -10.322504043579102 - ], - [ - "▁leaders", - -10.323003768920898 - ], - [ - "▁views", - -10.323019981384277 - ], - [ - "▁www", - -10.323084831237793 - ], - [ - "▁standards", - -10.323270797729492 - ], - [ - "ong", - -10.323580741882324 - ], - [ - "40", - -10.323833465576172 - ], - [ - "▁cm", - -10.323848724365234 - ], - [ - "▁park", - -10.324324607849121 - ], - [ - "▁himself", - -10.324419021606445 - ], - [ - "▁People", - -10.324649810791016 - ], - [ - "▁separate", - -10.324843406677246 - ], - [ - "▁secure", - -10.325018882751465 - ], - [ - "sie", - -10.325084686279297 - ], - [ - "▁maintenance", - -10.325199127197266 - ], - [ - "▁encourage", - -10.32766056060791 - ], - [ - "ein", - -10.328139305114746 - ], - [ - "▁reviews", - -10.328202247619629 - ], - [ - "▁Michael", - -10.328210830688477 - ], - [ - "▁background", - -10.328283309936523 - ], - [ - "▁therefore", - -10.328433990478516 - ], - [ - "▁server", - -10.328487396240234 - ], - [ - "▁dream", - -10.328742027282715 - ], - [ - "ping", - -10.329025268554688 - ], - [ - "▁block", - -10.329855918884277 - ], - [ - "▁2009", - -10.330734252929688 - ], - [ - "▁facilities", - -10.330931663513184 - ], - [ - "▁II", - -10.331367492675781 - ], - [ - "▁attend", - -10.33156967163086 - ], - [ - "▁cap", - -10.33224105834961 - ], - [ - "35", - -10.332416534423828 - ], - [ - "▁steel", - -10.332796096801758 - ], - [ - "▁shared", - -10.333391189575195 - ], - [ - "▁doctor", - -10.333939552307129 - ], - [ - "▁River", - -10.33411693572998 - ], - [ - "▁Bay", - -10.334456443786621 - ], - [ - "▁length", - -10.335005760192871 - ], - [ - "▁jobs", - -10.335466384887695 - ], - [ - "▁Plus", - -10.335992813110352 - ], - [ - "▁station", - -10.336140632629395 - ], - [ - "▁elements", - -10.336268424987793 - ], - [ - "▁rock", - -10.336668014526367 - ], - [ - "▁professionals", - -10.336670875549316 - ], - [ - "cle", - -10.336777687072754 - ], - [ - "▁dont", - -10.336873054504395 - ], - [ - "urilor", - -10.337142944335938 - ], - [ - "▁gain", - -10.337271690368652 - ], - [ - "▁programme", - -10.337540626525879 - ], - [ - "▁Cor", - -10.338377952575684 - ], - [ - "▁leader", - -10.338542938232422 - ], - [ - "ării", - -10.33876895904541 - ], - [ - "▁>", - -10.339137077331543 - ], - [ - "▁task", - -10.339471817016602 - ], - [ - "▁seeing", - -10.339943885803223 - ], - [ - "▁statement", - -10.34045696258545 - ], - [ - "vin", - -10.341094017028809 - ], - [ - "▁fish", - -10.341700553894043 - ], - [ - "▁advanced", - -10.342403411865234 - ], - [ - "▁discuss", - -10.342494010925293 - ], - [ - "die", - -10.342904090881348 - ], - [ - "isch", - -10.342944145202637 - ], - [ - "▁plenty", - -10.342947959899902 - ], - [ - "▁Hall", - -10.343120574951172 - ], - [ - "▁Other", - -10.343339920043945 - ], - [ - "▁homes", - -10.344944953918457 - ], - [ - "▁Ni", - -10.345016479492188 - ], - [ - "▁testing", - -10.345102310180664 - ], - [ - "▁Last", - -10.345392227172852 - ], - [ - "▁Note", - -10.345595359802246 - ], - [ - "▁talking", - -10.345934867858887 - ], - [ - "▁exchange", - -10.347042083740234 - ], - [ - "▁exercise", - -10.347189903259277 - ], - [ - "▁cea", - -10.347546577453613 - ], - [ - "▁wife", - -10.34820556640625 - ], - [ - "▁Für", - -10.348480224609375 - ], - [ - "▁Texas", - -10.34981918334961 - ], - [ - "▁fr", - -10.35065746307373 - ], - [ - "▁speak", - -10.350894927978516 - ], - [ - "17", - -10.351007461547852 - ], - [ - "70", - -10.351462364196777 - ], - [ - "▁promote", - -10.351851463317871 - ], - [ - "tul", - -10.351990699768066 - ], - [ - "apos", - -10.35208511352539 - ], - [ - "▁Jahr", - -10.35214900970459 - ], - [ - "▁Trump", - -10.352204322814941 - ], - [ - "▁ohne", - -10.352357864379883 - ], - [ - "▁learned", - -10.353700637817383 - ], - [ - "▁Sp", - -10.353803634643555 - ], - [ - "▁owner", - -10.354275703430176 - ], - [ - "mor", - -10.354422569274902 - ], - [ - "▁fois", - -10.354452133178711 - ], - [ - "▁meaning", - -10.35518741607666 - ], - [ - "▁dacă", - -10.355249404907227 - ], - [ - "nic", - -10.355484008789062 - ], - [ - "а", - -10.355525970458984 - ], - [ - "14", - -10.355767250061035 - ], - [ - "▁driver", - -10.356258392333984 - ], - [ - "▁Amazon", - -10.3567533493042 - ], - [ - "▁flow", - -10.358469009399414 - ], - [ - "▁shot", - -10.358726501464844 - ], - [ - "▁sous", - -10.35914421081543 - ], - [ - "▁Gold", - -10.359339714050293 - ], - [ - "▁straight", - -10.359562873840332 - ], - [ - "▁conference", - -10.359610557556152 - ], - [ - "▁peste", - -10.359662055969238 - ], - [ - "whose", - -10.36030101776123 - ], - [ - "▁installation", - -10.36050796508789 - ], - [ - "▁produced", - -10.360607147216797 - ], - [ - "▁independent", - -10.36192512512207 - ], - [ - "▁Institute", - -10.362021446228027 - ], - [ - "▁James", - -10.362373352050781 - ], - [ - "▁mental", - -10.362601280212402 - ], - [ - "ara", - -10.362798690795898 - ], - [ - "ium", - -10.363021850585938 - ], - [ - "▁husband", - -10.36306095123291 - ], - [ - "▁guests", - -10.363907814025879 - ], - [ - "27", - -10.364319801330566 - ], - [ - "▁Che", - -10.364651679992676 - ], - [ - "▁Indian", - -10.364694595336914 - ], - [ - "zer", - -10.36478042602539 - ], - [ - "▁minimum", - -10.364962577819824 - ], - [ - "500", - -10.365096092224121 - ], - [ - "▁sit", - -10.36561393737793 - ], - [ - "put", - -10.36656379699707 - ], - [ - "▁avea", - -10.36665153503418 - ], - [ - "▁ride", - -10.367088317871094 - ], - [ - "gan", - -10.367152214050293 - ], - [ - "▁Ke", - -10.36747932434082 - ], - [ - "book", - -10.367515563964844 - ], - [ - "ages", - -10.368019104003906 - ], - [ - "▁presented", - -10.368157386779785 - ], - [ - "▁Com", - -10.368927955627441 - ], - [ - "▁Call", - -10.369053840637207 - ], - [ - "▁fee", - -10.369847297668457 - ], - [ - "ări", - -10.369905471801758 - ], - [ - "▁putea", - -10.37072467803955 - ], - [ - "▁Public", - -10.371030807495117 - ], - [ - "▁pa", - -10.371152877807617 - ], - [ - "28", - -10.371233940124512 - ], - [ - "▁Director", - -10.37126350402832 - ], - [ - "▁contains", - -10.3717622756958 - ], - [ - "▁factors", - -10.372554779052734 - ], - [ - "▁famous", - -10.372614860534668 - ], - [ - "▁bathroom", - -10.373040199279785 - ], - [ - "▁core", - -10.37353229522705 - ], - [ - "▁viele", - -10.373610496520996 - ], - [ - "▁acum", - -10.374361991882324 - ], - [ - "▁animal", - -10.374407768249512 - ], - [ - "▁Ihnen", - -10.374425888061523 - ], - [ - "▁Find", - -10.374545097351074 - ], - [ - "▁Fall", - -10.374861717224121 - ], - [ - "ford", - -10.376051902770996 - ], - [ - "▁coverage", - -10.3765287399292 - ], - [ - "▁smart", - -10.376830101013184 - ], - [ - "ries", - -10.376893997192383 - ], - [ - "▁memory", - -10.3772554397583 - ], - [ - "▁dance", - -10.377443313598633 - ], - [ - "11", - -10.37746810913086 - ], - [ - "▁communities", - -10.377655982971191 - ], - [ - "eurs", - -10.378050804138184 - ], - [ - "▁Florida", - -10.378463745117188 - ], - [ - "▁sport", - -10.379366874694824 - ], - [ - "▁bus", - -10.37992000579834 - ], - [ - "▁colors", - -10.379969596862793 - ], - [ - "▁affect", - -10.380044937133789 - ], - [ - "▁score", - -10.380183219909668 - ], - [ - "▁properties", - -10.38050365447998 - ], - [ - "18", - -10.380593299865723 - ], - [ - "▁astfel", - -10.381312370300293 - ], - [ - "▁beach", - -10.382407188415527 - ], - [ - "▁friendly", - -10.382795333862305 - ], - [ - "izing", - -10.38288688659668 - ], - [ - "▁buying", - -10.383146286010742 - ], - [ - "▁forget", - -10.383195877075195 - ], - [ - "este", - -10.383198738098145 - ], - [ - "▁capacity", - -10.38360595703125 - ], - [ - "▁lose", - -10.383692741394043 - ], - [ - "▁listed", - -10.38407039642334 - ], - [ - "ica", - -10.384084701538086 - ], - [ - "han", - -10.384085655212402 - ], - [ - "▁selbst", - -10.384390830993652 - ], - [ - "▁values", - -10.384391784667969 - ], - [ - "▁Power", - -10.384559631347656 - ], - [ - "▁comments", - -10.384831428527832 - ], - [ - "eux", - -10.385346412658691 - ], - [ - "ați", - -10.385419845581055 - ], - [ - "▁context", - -10.385710716247559 - ], - [ - "liche", - -10.385944366455078 - ], - [ - "▁keeping", - -10.38620662689209 - ], - [ - "▁2008", - -10.38647174835205 - ], - [ - "▁su", - -10.386670112609863 - ], - [ - "▁biggest", - -10.386838912963867 - ], - [ - "▁fiecare", - -10.387356758117676 - ], - [ - "ight", - -10.38845157623291 - ], - [ - "▁toute", - -10.389808654785156 - ], - [ - "▁dinner", - -10.389827728271484 - ], - [ - "bau", - -10.390706062316895 - ], - [ - "▁Mai", - -10.390762329101562 - ], - [ - "▁status", - -10.390776634216309 - ], - [ - "rez", - -10.391340255737305 - ], - [ - "▁selected", - -10.391549110412598 - ], - [ - "▁cells", - -10.392601013183594 - ], - [ - "▁eight", - -10.393319129943848 - ], - [ - "▁package", - -10.393320083618164 - ], - [ - "▁scale", - -10.39333724975586 - ], - [ - "din", - -10.39336109161377 - ], - [ - "▁Who", - -10.393381118774414 - ], - [ - "▁century", - -10.393399238586426 - ], - [ - "▁bi", - -10.393516540527344 - ], - [ - "▁Africa", - -10.39384937286377 - ], - [ - "▁http", - -10.394133567810059 - ], - [ - "▁named", - -10.394230842590332 - ], - [ - "▁adding", - -10.394901275634766 - ], - [ - "▁mention", - -10.395039558410645 - ], - [ - "▁casino", - -10.395421981811523 - ], - [ - "▁couldn", - -10.395624160766602 - ], - [ - "▁outdoor", - -10.395912170410156 - ], - [ - "▁sugar", - -10.3960542678833 - ], - [ - "▁prepared", - -10.396124839782715 - ], - [ - "21", - -10.396528244018555 - ], - [ - "▁Ba", - -10.396632194519043 - ], - [ - "vers", - -10.396697998046875 - ], - [ - "ration", - -10.396773338317871 - ], - [ - "▁ja", - -10.397035598754883 - ], - [ - "▁aspect", - -10.397224426269531 - ], - [ - "▁31", - -10.397462844848633 - ], - [ - "▁treat", - -10.397475242614746 - ], - [ - "tru", - -10.397841453552246 - ], - [ - "▁flat", - -10.397890090942383 - ], - [ - "32", - -10.397989273071289 - ], - [ - "▁reality", - -10.398238182067871 - ], - [ - "▁waste", - -10.39876937866211 - ], - [ - "▁King", - -10.399649620056152 - ], - [ - "▁drug", - -10.399870872497559 - ], - [ - "▁operations", - -10.400120735168457 - ], - [ - "▁aim", - -10.40042495727539 - ], - [ - "▁fans", - -10.400444984436035 - ], - [ - "▁vers", - -10.400891304016113 - ], - [ - "▁plants", - -10.400971412658691 - ], - [ - "▁Dis", - -10.401477813720703 - ], - [ - "▁Daten", - -10.401510238647461 - ], - [ - "être", - -10.40267276763916 - ], - [ - "▁placed", - -10.40326976776123 - ], - [ - "▁bon", - -10.403977394104004 - ], - [ - "beim", - -10.4041109085083 - ], - [ - "▁slow", - -10.40501880645752 - ], - [ - "cri", - -10.405512809753418 - ], - [ - "▁Care", - -10.405691146850586 - ], - [ - "mes", - -10.406211853027344 - ], - [ - "26", - -10.406257629394531 - ], - [ - "box", - -10.406330108642578 - ], - [ - "▁helpful", - -10.406362533569336 - ], - [ - "▁documents", - -10.406543731689453 - ], - [ - "▁visitors", - -10.406773567199707 - ], - [ - "ture", - -10.406862258911133 - ], - [ - "▁Menschen", - -10.406891822814941 - ], - [ - "▁Chi", - -10.406975746154785 - ], - [ - "▁recipe", - -10.40764045715332 - ], - [ - "▁kept", - -10.407693862915039 - ], - [ - "▁Grand", - -10.407915115356445 - ], - [ - "▁operating", - -10.408178329467773 - ], - [ - "point", - -10.408329010009766 - ], - [ - "▁bin", - -10.40837287902832 - ], - [ - "▁Tri", - -10.40845775604248 - ], - [ - "Be", - -10.408512115478516 - ], - [ - "▁experiences", - -10.40856647491455 - ], - [ - "▁academic", - -10.408608436584473 - ], - [ - "▁finden", - -10.40870475769043 - ], - [ - "▁sera", - -10.409092903137207 - ], - [ - "act", - -10.410541534423828 - ], - [ - "▁Pa", - -10.410907745361328 - ], - [ - "▁society", - -10.411056518554688 - ], - [ - "▁combination", - -10.411237716674805 - ], - [ - "5%", - -10.41182804107666 - ], - [ - "▁owners", - -10.41188907623291 - ], - [ - "▁poor", - -10.412039756774902 - ], - [ - "▁Robert", - -10.412378311157227 - ], - [ - "▁military", - -10.412964820861816 - ], - [ - "▁economy", - -10.413033485412598 - ], - [ - "▁aware", - -10.413055419921875 - ], - [ - "rot", - -10.413443565368652 - ], - [ - "mie", - -10.413544654846191 - ], - [ - "▁Thursday", - -10.414399147033691 - ], - [ - "▁2011", - -10.41490650177002 - ], - [ - "▁fantastic", - -10.41554069519043 - ], - [ - "▁numerous", - -10.415921211242676 - ], - [ - "▁fair", - -10.4165620803833 - ], - [ - "med", - -10.416753768920898 - ], - [ - "▁welche", - -10.416893005371094 - ], - [ - "▁fruit", - -10.41712760925293 - ], - [ - "ku", - -10.417325019836426 - ], - [ - "▁Social", - -10.417583465576172 - ], - [ - "▁funds", - -10.418157577514648 - ], - [ - "▁atunci", - -10.418214797973633 - ], - [ - "▁Part", - -10.418238639831543 - ], - [ - "▁Big", - -10.418301582336426 - ], - [ - "▁2010", - -10.419414520263672 - ], - [ - "▁detail", - -10.419889450073242 - ], - [ - "▁Peter", - -10.419942855834961 - ], - [ - "ani", - -10.420196533203125 - ], - [ - "▁Wie", - -10.420795440673828 - ], - [ - "▁Tu", - -10.421649932861328 - ], - [ - "ear", - -10.421706199645996 - ], - [ - "▁Wenn", - -10.421941757202148 - ], - [ - "▁manager", - -10.42199993133545 - ], - [ - "▁Dan", - -10.422409057617188 - ], - [ - "▁Pi", - -10.42257308959961 - ], - [ - "▁wants", - -10.422652244567871 - ], - [ - "▁Data", - -10.42322826385498 - ], - [ - "pos", - -10.42387580871582 - ], - [ - "▁older", - -10.423946380615234 - ], - [ - "▁Download", - -10.424071311950684 - ], - [ - "▁Was", - -10.424107551574707 - ], - [ - "▁corner", - -10.424195289611816 - ], - [ - "▁president", - -10.424199104309082 - ], - [ - "mas", - -10.424248695373535 - ], - [ - "▁smaller", - -10.424361228942871 - ], - [ - "▁bright", - -10.424459457397461 - ], - [ - "▁proper", - -10.424582481384277 - ], - [ - "▁Kinder", - -10.424637794494629 - ], - [ - "▁Two", - -10.424668312072754 - ], - [ - "▁award", - -10.42471694946289 - ], - [ - "▁premier", - -10.425211906433105 - ], - [ - "▁seek", - -10.425646781921387 - ], - [ - "▁thank", - -10.425662994384766 - ], - [ - "▁proud", - -10.426509857177734 - ], - [ - "▁workers", - -10.426774024963379 - ], - [ - "▁2000", - -10.426970481872559 - ], - [ - "▁gone", - -10.427482604980469 - ], - [ - "▁medium", - -10.427693367004395 - ], - [ - "▁grade", - -10.42777156829834 - ], - [ - "▁Ru", - -10.427800178527832 - ], - [ - "cro", - -10.427851676940918 - ], - [ - "▁interview", - -10.428311347961426 - ], - [ - "23", - -10.428787231445312 - ], - [ - "▁mari", - -10.429442405700684 - ], - [ - "▁80", - -10.429756164550781 - ], - [ - "▁Ga", - -10.430047035217285 - ], - [ - "▁90", - -10.431839942932129 - ], - [ - "▁anderen", - -10.432605743408203 - ], - [ - "▁cultural", - -10.433018684387207 - ], - [ - "but", - -10.433144569396973 - ], - [ - "rum", - -10.433300018310547 - ], - [ - "get", - -10.43338680267334 - ], - [ - "▁pop", - -10.433582305908203 - ], - [ - "▁Information", - -10.433594703674316 - ], - [ - "▁press", - -10.434972763061523 - ], - [ - "▁Project", - -10.435359001159668 - ], - [ - "▁excited", - -10.435755729675293 - ], - [ - "▁Saint", - -10.436088562011719 - ], - [ - "▁England", - -10.436192512512207 - ], - [ - "▁beauty", - -10.43643856048584 - ], - [ - "▁agreement", - -10.436464309692383 - ], - [ - "▁Like", - -10.437565803527832 - ], - [ - "▁strength", - -10.437664985656738 - ], - [ - "▁waiting", - -10.438165664672852 - ], - [ - "и", - -10.438270568847656 - ], - [ - "Le", - -10.438329696655273 - ], - [ - "▁residents", - -10.43835735321045 - ], - [ - "▁Ben", - -10.438603401184082 - ], - [ - "▁mentioned", - -10.439260482788086 - ], - [ - "▁etwas", - -10.43930721282959 - ], - [ - "▁rooms", - -10.439347267150879 - ], - [ - "▁neue", - -10.439501762390137 - ], - [ - "▁Microsoft", - -10.439726829528809 - ], - [ - "▁passed", - -10.440205574035645 - ], - [ - "▁sea", - -10.440893173217773 - ], - [ - "▁electric", - -10.441244125366211 - ], - [ - "▁forms", - -10.441384315490723 - ], - [ - "▁Central", - -10.441597938537598 - ], - [ - "▁Lord", - -10.442625999450684 - ], - [ - "ute", - -10.442763328552246 - ], - [ - "▁pré", - -10.442790031433105 - ], - [ - "▁square", - -10.44308090209961 - ], - [ - "itatea", - -10.443451881408691 - ], - [ - "▁debt", - -10.443757057189941 - ], - [ - "▁street", - -10.443975448608398 - ], - [ - "▁pi", - -10.444917678833008 - ], - [ - "▁happened", - -10.445326805114746 - ], - [ - "▁Tuesday", - -10.445592880249023 - ], - [ - "recht", - -10.446094512939453 - ], - [ - "▁Eine", - -10.44627857208252 - ], - [ - "▁Set", - -10.446768760681152 - ], - [ - "▁federal", - -10.4468412399292 - ], - [ - "CC", - -10.446905136108398 - ], - [ - "....", - -10.446938514709473 - ], - [ - "lig", - -10.447463035583496 - ], - [ - "▁Christian", - -10.44870662689209 - ], - [ - "▁truth", - -10.449213981628418 - ], - [ - "▁map", - -10.449728012084961 - ], - [ - "▁secret", - -10.449979782104492 - ], - [ - "▁Chinese", - -10.450844764709473 - ], - [ - "hol", - -10.450895309448242 - ], - [ - "▁wrote", - -10.451505661010742 - ], - [ - "▁hospital", - -10.451783180236816 - ], - [ - "▁Island", - -10.451870918273926 - ], - [ - "▁frame", - -10.451946258544922 - ], - [ - "▁sources", - -10.452117919921875 - ], - [ - "pan", - -10.453242301940918 - ], - [ - "▁29", - -10.453530311584473 - ], - [ - "▁changing", - -10.454547882080078 - ], - [ - "▁Where", - -10.454627990722656 - ], - [ - "▁negative", - -10.45471477508545 - ], - [ - "▁processes", - -10.45491886138916 - ], - [ - "▁leadership", - -10.455029487609863 - ], - [ - "▁nos", - -10.455195426940918 - ], - [ - "▁info", - -10.455780029296875 - ], - [ - "▁Gu", - -10.45595645904541 - ], - [ - "▁CO", - -10.45605182647705 - ], - [ - "▁reference", - -10.456884384155273 - ], - [ - "▁corporate", - -10.457097053527832 - ], - [ - "▁characters", - -10.457563400268555 - ], - [ - "▁dining", - -10.4577054977417 - ], - [ - "▁becoming", - -10.459708213806152 - ], - [ - "▁4.", - -10.460311889648438 - ], - [ - "▁Science", - -10.460626602172852 - ], - [ - "▁Education", - -10.461943626403809 - ], - [ - "▁camp", - -10.46207046508789 - ], - [ - "fall", - -10.462146759033203 - ], - [ - "▁Auch", - -10.462471961975098 - ], - [ - "▁topic", - -10.462519645690918 - ], - [ - "▁influence", - -10.463460922241211 - ], - [ - "▁70", - -10.463892936706543 - ], - [ - "▁identify", - -10.464459419250488 - ], - [ - "▁(19", - -10.464646339416504 - ], - [ - "care", - -10.465216636657715 - ], - [ - "ions", - -10.466215133666992 - ], - [ - "ray", - -10.4663724899292 - ], - [ - "▁Both", - -10.466577529907227 - ], - [ - "▁collect", - -10.466997146606445 - ], - [ - "▁practices", - -10.467667579650879 - ], - [ - "▁fight", - -10.468058586120605 - ], - [ - "▁injury", - -10.46873664855957 - ], - [ - "▁nici", - -10.46905517578125 - ], - [ - "▁depuis", - -10.469563484191895 - ], - [ - "▁actions", - -10.469609260559082 - ], - [ - "▁Wednesday", - -10.47089958190918 - ], - [ - "▁bill", - -10.471086502075195 - ], - [ - "▁cheap", - -10.471318244934082 - ], - [ - "lui", - -10.471719741821289 - ], - [ - "▁awesome", - -10.471731185913086 - ], - [ - "tig", - -10.472554206848145 - ], - [ - "▁expensive", - -10.472636222839355 - ], - [ - "ceea", - -10.472834587097168 - ], - [ - "▁exact", - -10.472907066345215 - ], - [ - "22", - -10.473462104797363 - ], - [ - "▁avant", - -10.47352123260498 - ], - [ - "▁fat", - -10.47353744506836 - ], - [ - "▁spending", - -10.474353790283203 - ], - [ - "▁designs", - -10.47608470916748 - ], - [ - "▁damit", - -10.4761323928833 - ], - [ - "▁comp", - -10.47619342803955 - ], - [ - "▁whatever", - -10.476434707641602 - ], - [ - "▁Light", - -10.476442337036133 - ], - [ - "▁quarter", - -10.47680377960205 - ], - [ - "hand", - -10.477301597595215 - ], - [ - "▁connected", - -10.477584838867188 - ], - [ - "▁technologies", - -10.47772216796875 - ], - [ - "ges", - -10.477808952331543 - ], - [ - "▁shower", - -10.478998184204102 - ], - [ - "▁500", - -10.47923469543457 - ], - [ - "▁Time", - -10.479436874389648 - ], - [ - "▁zone", - -10.480525970458984 - ], - [ - "▁vote", - -10.480624198913574 - ], - [ - "▁andere", - -10.480871200561523 - ], - [ - "▁otherwise", - -10.480988502502441 - ], - [ - "tur", - -10.481294631958008 - ], - [ - "▁happens", - -10.481504440307617 - ], - [ - "hin", - -10.481597900390625 - ], - [ - "▁volume", - -10.482161521911621 - ], - [ - "▁thousands", - -10.482391357421875 - ], - [ - "war", - -10.482551574707031 - ], - [ - "▁Play", - -10.482900619506836 - ], - [ - "▁temperature", - -10.48371410369873 - ], - [ - "▁industrial", - -10.483830451965332 - ], - [ - "▁fuel", - -10.483915328979492 - ], - [ - "100", - -10.48409366607666 - ], - [ - "top", - -10.484210014343262 - ], - [ - "kin", - -10.484312057495117 - ], - [ - "▁efficient", - -10.484414100646973 - ], - [ - "teil", - -10.484525680541992 - ], - [ - "alt", - -10.484578132629395 - ], - [ - "▁monde", - -10.48483657836914 - ], - [ - "▁Ra", - -10.484899520874023 - ], - [ - "▁bedroom", - -10.485103607177734 - ], - [ - "▁showing", - -10.485316276550293 - ], - [ - "▁continued", - -10.485490798950195 - ], - [ - "▁Plan", - -10.48552131652832 - ], - [ - "▁assistance", - -10.486014366149902 - ], - [ - "▁discover", - -10.48622989654541 - ], - [ - "▁Year", - -10.486238479614258 - ], - [ - "▁applied", - -10.486433029174805 - ], - [ - "▁audio", - -10.48755931854248 - ], - [ - "▁thus", - -10.487645149230957 - ], - [ - "▁permet", - -10.48806095123291 - ], - [ - "▁fashion", - -10.488532066345215 - ], - [ - "cra", - -10.488645553588867 - ], - [ - "ious", - -10.488700866699219 - ], - [ - "▁focused", - -10.489258766174316 - ], - [ - "16", - -10.48930549621582 - ], - [ - "▁arm", - -10.489364624023438 - ], - [ - "▁Their", - -10.489789962768555 - ], - [ - "▁Foundation", - -10.49022388458252 - ], - [ - "▁majority", - -10.49022388458252 - ], - [ - "▁wind", - -10.490785598754883 - ], - [ - "▁bought", - -10.491056442260742 - ], - [ - "▁factor", - -10.491918563842773 - ], - [ - "▁opened", - -10.49213695526123 - ], - [ - "tern", - -10.492374420166016 - ], - [ - "▁cars", - -10.492597579956055 - ], - [ - "▁exciting", - -10.492691040039062 - ], - [ - "▁affordable", - -10.493510246276855 - ], - [ - "ches", - -10.493563652038574 - ], - [ - "▁panel", - -10.493720054626465 - ], - [ - "▁caused", - -10.493793487548828 - ], - [ - "▁travail", - -10.493998527526855 - ], - [ - "▁roof", - -10.494073867797852 - ], - [ - "▁enable", - -10.494202613830566 - ], - [ - "▁toward", - -10.494491577148438 - ], - [ - "▁Development", - -10.494688987731934 - ], - [ - "▁foreign", - -10.495308876037598 - ], - [ - "avi", - -10.495320320129395 - ], - [ - "long", - -10.495328903198242 - ], - [ - "De", - -10.49578857421875 - ], - [ - "▁Mon", - -10.49588394165039 - ], - [ - "▁Va", - -10.495942115783691 - ], - [ - "AP", - -10.496097564697266 - ], - [ - "▁asta", - -10.49720573425293 - ], - [ - "▁prepare", - -10.497220993041992 - ], - [ - "▁German", - -10.497261047363281 - ], - [ - "▁Centre", - -10.497325897216797 - ], - [ - "ère", - -10.497367858886719 - ], - [ - "▁fear", - -10.497537612915039 - ], - [ - "▁Este", - -10.497878074645996 - ], - [ - "▁Des", - -10.49793529510498 - ], - [ - "▁Kon", - -10.499308586120605 - ], - [ - "á", - -10.499866485595703 - ], - [ - "stand", - -10.500805854797363 - ], - [ - "▁Real", - -10.500842094421387 - ], - [ - "lichen", - -10.50098705291748 - ], - [ - "▁Beach", - -10.501455307006836 - ], - [ - "▁expertise", - -10.50185775756836 - ], - [ - "▁route", - -10.502445220947266 - ], - [ - "▁nation", - -10.502551078796387 - ], - [ - "▁snow", - -10.503022193908691 - ], - [ - "▁articles", - -10.503127098083496 - ], - [ - "▁Wood", - -10.504426956176758 - ], - [ - "▁operation", - -10.50494384765625 - ], - [ - "▁passion", - -10.505215644836426 - ], - [ - "▁cand", - -10.505690574645996 - ], - [ - "haus", - -10.505701065063477 - ], - [ - "OR", - -10.505711555480957 - ], - [ - "▁senior", - -10.506511688232422 - ], - [ - "▁becomes", - -10.506546020507812 - ], - [ - "▁sounds", - -10.506878852844238 - ], - [ - "▁enjoyed", - -10.50704574584961 - ], - [ - "▁gegen", - -10.507533073425293 - ], - [ - "▁courses", - -10.507919311523438 - ], - [ - "▁absolutely", - -10.508257865905762 - ], - [ - "tim", - -10.508264541625977 - ], - [ - "uff", - -10.508516311645508 - ], - [ - "▁moins", - -10.50860595703125 - ], - [ - "▁TO", - -10.509060859680176 - ], - [ - "▁fabric", - -10.509267807006836 - ], - [ - "poli", - -10.509326934814453 - ], - [ - "▁Bre", - -10.509761810302734 - ], - [ - "▁bo", - -10.509916305541992 - ], - [ - "▁Elle", - -10.510469436645508 - ], - [ - "bu", - -10.512336730957031 - ], - [ - "▁participants", - -10.512401580810547 - ], - [ - "stone", - -10.512794494628906 - ], - [ - "ties", - -10.51366138458252 - ], - [ - "▁listen", - -10.513700485229492 - ], - [ - "▁Spiel", - -10.513752937316895 - ], - [ - "pot", - -10.513872146606445 - ], - [ - "▁selling", - -10.514358520507812 - ], - [ - "▁geht", - -10.514680862426758 - ], - [ - "▁mini", - -10.515146255493164 - ], - [ - "▁trans", - -10.515408515930176 - ], - [ - "▁ingredients", - -10.515642166137695 - ], - [ - "auf", - -10.515671730041504 - ], - [ - "▁orice", - -10.51595401763916 - ], - [ - "▁Next", - -10.516300201416016 - ], - [ - "▁cream", - -10.516756057739258 - ], - [ - "▁edge", - -10.516973495483398 - ], - [ - "▁recommended", - -10.517022132873535 - ], - [ - "▁Form", - -10.517277717590332 - ], - [ - "▁processing", - -10.51746940612793 - ], - [ - "vert", - -10.517709732055664 - ], - [ - "▁described", - -10.518362998962402 - ], - [ - "▁installed", - -10.51884937286377 - ], - [ - "▁managed", - -10.518952369689941 - ], - [ - "▁electronic", - -10.518966674804688 - ], - [ - "▁performed", - -10.519064903259277 - ], - [ - "▁raise", - -10.519098281860352 - ], - [ - "▁imagine", - -10.519281387329102 - ], - [ - "down", - -10.51952838897705 - ], - [ - "▁fond", - -10.519978523254395 - ], - [ - "▁Inter", - -10.520434379577637 - ], - [ - "▁Mc", - -10.520550727844238 - ], - [ - "▁Dans", - -10.520679473876953 - ], - [ - "istic", - -10.520966529846191 - ], - [ - "▁miss", - -10.521052360534668 - ], - [ - "sur", - -10.521062850952148 - ], - [ - "▁Col", - -10.521879196166992 - ], - [ - "cut", - -10.522021293640137 - ], - [ - "▁dupa", - -10.522160530090332 - ], - [ - "▁Twitter", - -10.522604942321777 - ], - [ - "▁bowl", - -10.523721694946289 - ], - [ - "▁remains", - -10.5237455368042 - ], - [ - "▁Jan", - -10.524046897888184 - ], - [ - "▁smooth", - -10.524162292480469 - ], - [ - "▁fees", - -10.524415969848633 - ], - [ - "▁aid", - -10.524494171142578 - ], - [ - "▁presence", - -10.524827003479004 - ], - [ - "▁Android", - -10.52499771118164 - ], - [ - "▁decisions", - -10.52539348602295 - ], - [ - "▁names", - -10.5254487991333 - ], - [ - "▁Music", - -10.525546073913574 - ], - [ - "▁innovative", - -10.525578498840332 - ], - [ - "▁Tom", - -10.525997161865234 - ], - [ - "▁spread", - -10.526165962219238 - ], - [ - "▁lovely", - -10.526222229003906 - ], - [ - "▁daughter", - -10.526397705078125 - ], - [ - "US", - -10.527050971984863 - ], - [ - "▁facility", - -10.52710247039795 - ], - [ - "▁peace", - -10.527105331420898 - ], - [ - "▁department", - -10.527277946472168 - ], - [ - "▁weiter", - -10.527591705322266 - ], - [ - "▁Sun", - -10.527756690979004 - ], - [ - "▁fund", - -10.527772903442383 - ], - [ - "▁2018.", - -10.52792739868164 - ], - [ - "▁discussion", - -10.528186798095703 - ], - [ - "75", - -10.528799057006836 - ], - [ - "EC", - -10.529126167297363 - ], - [ - "▁lunch", - -10.529144287109375 - ], - [ - "▁videos", - -10.52927017211914 - ], - [ - "05", - -10.531253814697266 - ], - [ - "ige", - -10.531266212463379 - ], - [ - "▁parking", - -10.531564712524414 - ], - [ - "▁relationships", - -10.531732559204102 - ], - [ - "▁George", - -10.532986640930176 - ], - [ - "▁teachers", - -10.53299617767334 - ], - [ - "room", - -10.533458709716797 - ], - [ - "▁Tra", - -10.533605575561523 - ], - [ - "▁Sam", - -10.533651351928711 - ], - [ - "▁properly", - -10.535590171813965 - ], - [ - "▁Book", - -10.535629272460938 - ], - [ - "▁CA", - -10.536957740783691 - ], - [ - "▁calls", - -10.53756046295166 - ], - [ - "▁stat", - -10.538175582885742 - ], - [ - "ux", - -10.538220405578613 - ], - [ - "▁soit", - -10.538439750671387 - ], - [ - "▁Community", - -10.538684844970703 - ], - [ - "▁Jahren", - -10.538714408874512 - ], - [ - "▁increasing", - -10.539575576782227 - ], - [ - "▁civil", - -10.540184020996094 - ], - [ - "app", - -10.540573120117188 - ], - [ - "▁35", - -10.540589332580566 - ], - [ - "▁rise", - -10.540600776672363 - ], - [ - "▁dabei", - -10.540989875793457 - ], - [ - "▁studio", - -10.541803359985352 - ], - [ - "▁policies", - -10.542054176330566 - ], - [ - "▁agent", - -10.542055130004883 - ], - [ - "▁Before", - -10.542601585388184 - ], - [ - "▁Cal", - -10.543017387390137 - ], - [ - "▁2005", - -10.543404579162598 - ], - [ - "▁sample", - -10.543777465820312 - ], - [ - "▁manner", - -10.545186996459961 - ], - [ - "wing", - -10.54521369934082 - ], - [ - "stra", - -10.545552253723145 - ], - [ - "▁fel", - -10.545793533325195 - ], - [ - "▁Show", - -10.545952796936035 - ], - [ - "▁scene", - -10.54656982421875 - ], - [ - "mic", - -10.546764373779297 - ], - [ - "nom", - -10.546995162963867 - ], - [ - "▁typically", - -10.547088623046875 - ], - [ - "▁pair", - -10.547104835510254 - ], - [ - "▁detailed", - -10.547394752502441 - ], - [ - "▁Work", - -10.547422409057617 - ], - [ - "▁cities", - -10.547451972961426 - ], - [ - "▁Rock", - -10.54749584197998 - ], - [ - "▁Gar", - -10.547906875610352 - ], - [ - "▁serving", - -10.548352241516113 - ], - [ - "▁machen", - -10.548521995544434 - ], - [ - "▁trees", - -10.54888916015625 - ], - [ - "▁accident", - -10.549199104309082 - ], - [ - "▁cloud", - -10.54920482635498 - ], - [ - "▁animals", - -10.549297332763672 - ], - [ - "▁Den", - -10.549897193908691 - ], - [ - "▁Wa", - -10.54990291595459 - ], - [ - "▁suggest", - -10.550220489501953 - ], - [ - "putting", - -10.550407409667969 - ], - [ - "▁suite", - -10.550434112548828 - ], - [ - "▁clearly", - -10.550849914550781 - ], - [ - "▁net", - -10.551287651062012 - ], - [ - "▁funding", - -10.551506996154785 - ], - [ - "▁salt", - -10.551935195922852 - ], - [ - "▁Men", - -10.552119255065918 - ], - [ - "ped", - -10.552419662475586 - ], - [ - "▁Food", - -10.553142547607422 - ], - [ - "▁leaving", - -10.553544998168945 - ], - [ - "▁Government", - -10.554243087768555 - ], - [ - "ick", - -10.554381370544434 - ], - [ - "▁seat", - -10.555121421813965 - ], - [ - "▁Los", - -10.555183410644531 - ], - [ - "▁teacher", - -10.555587768554688 - ], - [ - "▁iPhone", - -10.555693626403809 - ], - [ - "▁300", - -10.556120872497559 - ], - [ - "▁commitment", - -10.556180000305176 - ], - [ - "▁aspects", - -10.556498527526855 - ], - [ - "▁previously", - -10.55711555480957 - ], - [ - "▁cent", - -10.5572509765625 - ], - [ - "▁Vo", - -10.557341575622559 - ], - [ - "▁artists", - -10.557963371276855 - ], - [ - "▁runs", - -10.558130264282227 - ], - [ - ">", - -10.558155059814453 - ], - [ - "▁Gi", - -10.558273315429688 - ], - [ - "▁mar", - -10.5585355758667 - ], - [ - "!!!", - -10.558544158935547 - ], - [ - "▁Media", - -10.558943748474121 - ], - [ - "▁feedback", - -10.559109687805176 - ], - [ - "▁resolution", - -10.559117317199707 - ], - [ - "IN", - -10.55915641784668 - ], - [ - "▁wurden", - -10.55952262878418 - ], - [ - "▁busy", - -10.559832572937012 - ], - [ - "▁adult", - -10.5600004196167 - ], - [ - "29", - -10.560487747192383 - ], - [ - "elles", - -10.561375617980957 - ], - [ - "▁closed", - -10.561762809753418 - ], - [ - "▁trouble", - -10.561767578125 - ], - [ - "▁rent", - -10.561984062194824 - ], - [ - "lot", - -10.56224536895752 - ], - [ - "▁importance", - -10.562314987182617 - ], - [ - "▁units", - -10.56257438659668 - ], - [ - "Pro", - -10.562713623046875 - ], - [ - "▁provider", - -10.563005447387695 - ], - [ - "▁visual", - -10.563288688659668 - ], - [ - "IT", - -10.563385009765625 - ], - [ - "▁diet", - -10.563733100891113 - ], - [ - "▁appearance", - -10.563932418823242 - ], - [ - "pin", - -10.564576148986816 - ], - [ - "▁Din", - -10.564760208129883 - ], - [ - "▁eating", - -10.565516471862793 - ], - [ - "Fi", - -10.565762519836426 - ], - [ - "ball", - -10.565765380859375 - ], - [ - "är", - -10.565861701965332 - ], - [ - "ney", - -10.565878868103027 - ], - [ - "▁records", - -10.566070556640625 - ], - [ - "▁Fi", - -10.566180229187012 - ], - [ - "▁faut", - -10.566329002380371 - ], - [ - "▁CD", - -10.566803932189941 - ], - [ - "ign", - -10.566930770874023 - ], - [ - "▁vă", - -10.566996574401855 - ], - [ - "▁agency", - -10.567153930664062 - ], - [ - "ierung", - -10.567323684692383 - ], - [ - "▁Back", - -10.567361831665039 - ], - [ - "▁windows", - -10.567545890808105 - ], - [ - "▁pull", - -10.567888259887695 - ], - [ - "ash", - -10.567959785461426 - ], - [ - "▁profit", - -10.568593978881836 - ], - [ - "▁brings", - -10.568605422973633 - ], - [ - "▁Committee", - -10.569122314453125 - ], - [ - "▁girl", - -10.569174766540527 - ], - [ - "▁vehicles", - -10.569372177124023 - ], - [ - "▁Hier", - -10.569567680358887 - ], - [ - "ES", - -10.569639205932617 - ], - [ - "până", - -10.569880485534668 - ], - [ - "▁Kunden", - -10.570380210876465 - ], - [ - "pen", - -10.570462226867676 - ], - [ - "▁explain", - -10.570505142211914 - ], - [ - "▁cadru", - -10.570760726928711 - ], - [ - "▁attack", - -10.571100234985352 - ], - [ - "▁markets", - -10.571115493774414 - ], - [ - "▁claims", - -10.571340560913086 - ], - [ - "▁walking", - -10.571385383605957 - ], - [ - "▁pouv", - -10.571528434753418 - ], - [ - "low", - -10.571642875671387 - ], - [ - "▁showed", - -10.572114944458008 - ], - [ - "▁principal", - -10.57211971282959 - ], - [ - "▁lucru", - -10.572144508361816 - ], - [ - "▁precum", - -10.572712898254395 - ], - [ - "TA", - -10.573094367980957 - ], - [ - "▁partners", - -10.573104858398438 - ], - [ - "▁exist", - -10.573136329650879 - ], - [ - "▁internal", - -10.57334041595459 - ], - [ - "hen", - -10.573945045471191 - ], - [ - "▁Master", - -10.573966979980469 - ], - [ - "unless", - -10.574013710021973 - ], - [ - "▁doubt", - -10.574721336364746 - ], - [ - "$", - -10.574785232543945 - ], - [ - "▁Long", - -10.574888229370117 - ], - [ - "▁leaves", - -10.574907302856445 - ], - [ - "allowing", - -10.575063705444336 - ], - [ - "pol", - -10.575272560119629 - ], - [ - "▁Up", - -10.575491905212402 - ], - [ - "▁Contact", - -10.576093673706055 - ], - [ - "▁practical", - -10.57708740234375 - ], - [ - "▁suit", - -10.57758903503418 - ], - [ - "▁Site", - -10.577656745910645 - ], - [ - "▁formation", - -10.57768726348877 - ], - [ - "▁signal", - -10.578215599060059 - ], - [ - "▁approximately", - -10.578414916992188 - ], - [ - "▁ourselves", - -10.578497886657715 - ], - [ - "▁colour", - -10.578519821166992 - ], - [ - "▁species", - -10.578530311584473 - ], - [ - "▁advance", - -10.578753471374512 - ], - [ - "▁PM", - -10.57891845703125 - ], - [ - "ans", - -10.579121589660645 - ], - [ - "▁locations", - -10.579397201538086 - ], - [ - "vous", - -10.579601287841797 - ], - [ - "▁updated", - -10.579636573791504 - ], - [ - "▁faith", - -10.579673767089844 - ], - [ - "mus", - -10.579740524291992 - ], - [ - "▁stores", - -10.579863548278809 - ], - [ - "heim", - -10.580127716064453 - ], - [ - "▁suitable", - -10.580558776855469 - ], - [ - "▁continues", - -10.580703735351562 - ], - [ - "▁fac", - -10.581133842468262 - ], - [ - "ever", - -10.581156730651855 - ], - [ - "▁Bill", - -10.581195831298828 - ], - [ - "▁chose", - -10.58121109008789 - ], - [ - "▁inform", - -10.581228256225586 - ], - [ - "▁environmental", - -10.581427574157715 - ], - [ - "▁responsibility", - -10.58188533782959 - ], - [ - "99", - -10.582542419433594 - ], - [ - "▁competitive", - -10.583723068237305 - ], - [ - "▁strategies", - -10.583903312683105 - ], - [ - "▁toujours", - -10.584270477294922 - ], - [ - "tive", - -10.58430290222168 - ], - [ - "▁automatically", - -10.585600852966309 - ], - [ - "▁dress", - -10.585609436035156 - ], - [ - "▁Minister", - -10.585624694824219 - ], - [ - "har", - -10.586076736450195 - ], - [ - "▁Start", - -10.586249351501465 - ], - [ - "▁=", - -10.586563110351562 - ], - [ - "▁pattern", - -10.58659553527832 - ], - [ - "tier", - -10.58676528930664 - ], - [ - "▁pays", - -10.587034225463867 - ], - [ - "▁profile", - -10.58725357055664 - ], - [ - "▁raised", - -10.587263107299805 - ], - [ - "ange", - -10.587288856506348 - ], - [ - "▁drink", - -10.587762832641602 - ], - [ - "▁element", - -10.588042259216309 - ], - [ - "▁landscape", - -10.58875560760498 - ], - [ - "▁Tag", - -10.589073181152344 - ], - [ - "▁cheese", - -10.589590072631836 - ], - [ - "ific", - -10.590009689331055 - ], - [ - "▁Stadt", - -10.590181350708008 - ], - [ - "39", - -10.591398239135742 - ], - [ - "▁launch", - -10.592113494873047 - ], - [ - "▁wouldn", - -10.592150688171387 - ], - [ - "AS", - -10.592202186584473 - ], - [ - "▁push", - -10.593059539794922 - ], - [ - "▁mill", - -10.593452453613281 - ], - [ - "▁mass", - -10.593647003173828 - ], - [ - "▁category", - -10.593790054321289 - ], - [ - "sondern", - -10.594050407409668 - ], - [ - "col", - -10.594111442565918 - ], - [ - "▁climate", - -10.594313621520996 - ], - [ - "lier", - -10.594437599182129 - ], - [ - "▁slightly", - -10.595514297485352 - ], - [ - "95", - -10.596519470214844 - ], - [ - "ace", - -10.596612930297852 - ], - [ - "▁domain", - -10.597633361816406 - ], - [ - "kan", - -10.598306655883789 - ], - [ - "▁feed", - -10.598485946655273 - ], - [ - "▁Live", - -10.598837852478027 - ], - [ - "▁Mais", - -10.599113464355469 - ], - [ - "▁après", - -10.599365234375 - ], - [ - "▁village", - -10.59941577911377 - ], - [ - "▁hatte", - -10.59968090057373 - ], - [ - "▁joined", - -10.599881172180176 - ], - [ - "▁Museum", - -10.600311279296875 - ], - [ - "head", - -10.600855827331543 - ], - [ - "▁draw", - -10.6009521484375 - ], - [ - "▁concerns", - -10.600966453552246 - ], - [ - "ER", - -10.601505279541016 - ], - [ - "▁technique", - -10.601648330688477 - ], - [ - "▁Bio", - -10.601861000061035 - ], - [ - "▁Sea", - -10.601881980895996 - ], - [ - "▁@", - -10.601927757263184 - ], - [ - "wer", - -10.6021146774292 - ], - [ - "▁battery", - -10.602462768554688 - ], - [ - "▁mostly", - -10.60267448425293 - ], - [ - "▁familiar", - -10.602680206298828 - ], - [ - "▁Sub", - -10.602689743041992 - ], - [ - "▁delicious", - -10.603222846984863 - ], - [ - "doch", - -10.60326099395752 - ], - [ - "60", - -10.603395462036133 - ], - [ - "▁carte", - -10.603611946105957 - ], - [ - "▁avut", - -10.604146957397461 - ], - [ - "▁premium", - -10.60460376739502 - ], - [ - "▁attempt", - -10.604704856872559 - ], - [ - "▁Über", - -10.60473346710205 - ], - [ - "▁combined", - -10.604935646057129 - ], - [ - "lement", - -10.604947090148926 - ], - [ - "▁voi", - -10.605031967163086 - ], - [ - "▁wonder", - -10.605376243591309 - ], - [ - "▁failure", - -10.606106758117676 - ], - [ - "which", - -10.606147766113281 - ], - [ - "esti", - -10.606316566467285 - ], - [ - "31", - -10.606547355651855 - ], - [ - "▁sta", - -10.606734275817871 - ], - [ - "▁transform", - -10.60673999786377 - ], - [ - "▁license", - -10.606743812561035 - ], - [ - "▁depending", - -10.606758117675781 - ], - [ - "▁specifically", - -10.606782913208008 - ], - [ - "▁OF", - -10.60693645477295 - ], - [ - "band", - -10.606959342956543 - ], - [ - "▁Sport", - -10.60731315612793 - ], - [ - "list", - -10.607434272766113 - ], - [ - "▁Tour", - -10.60753059387207 - ], - [ - "▁Israel", - -10.607564926147461 - ], - [ - "▁filled", - -10.607722282409668 - ], - [ - "▁manual", - -10.60776138305664 - ], - [ - "▁watching", - -10.608621597290039 - ], - [ - "▁rule", - -10.608877182006836 - ], - [ - "mat", - -10.60901927947998 - ], - [ - "▁notes", - -10.609585762023926 - ], - [ - "▁Oh", - -10.60960578918457 - ], - [ - "▁bereits", - -10.609634399414062 - ], - [ - "▁foundation", - -10.609916687011719 - ], - [ - "▁vital", - -10.610146522521973 - ], - [ - "▁lassen", - -10.610747337341309 - ], - [ - "▁cât", - -10.611162185668945 - ], - [ - "▁shipping", - -10.611433029174805 - ], - [ - "▁registered", - -10.611513137817383 - ], - [ - "▁jour", - -10.612669944763184 - ], - [ - "▁island", - -10.61276626586914 - ], - [ - "▁sets", - -10.613068580627441 - ], - [ - "▁football", - -10.613683700561523 - ], - [ - "▁EU", - -10.613860130310059 - ], - [ - "▁stone", - -10.614019393920898 - ], - [ - "▁Press", - -10.614699363708496 - ], - [ - "▁adapt", - -10.615066528320312 - ], - [ - "ised", - -10.615425109863281 - ], - [ - "▁thoughts", - -10.615434646606445 - ], - [ - "▁doors", - -10.615851402282715 - ], - [ - "€", - -10.615954399108887 - ], - [ - "▁components", - -10.616040229797363 - ], - [ - "rig", - -10.616332054138184 - ], - [ - "▁generation", - -10.616585731506348 - ], - [ - "▁guess", - -10.616700172424316 - ], - [ - "cker", - -10.61694049835205 - ], - [ - "▁realize", - -10.617207527160645 - ], - [ - "▁Roman", - -10.617310523986816 - ], - [ - "▁contre", - -10.617693901062012 - ], - [ - "▁Out", - -10.617938995361328 - ], - [ - "▁IN", - -10.619051933288574 - ], - [ - "cip", - -10.619085311889648 - ], - [ - "59", - -10.619330406188965 - ], - [ - "▁enhance", - -10.619768142700195 - ], - [ - "▁battle", - -10.61982250213623 - ], - [ - "▁monitor", - -10.619863510131836 - ], - [ - "▁Martin", - -10.62045955657959 - ], - [ - "▁websites", - -10.620461463928223 - ], - [ - "▁DE", - -10.620599746704102 - ], - [ - "▁Festival", - -10.620951652526855 - ], - [ - "ân", - -10.62131118774414 - ], - [ - "▁Place", - -10.621419906616211 - ], - [ - "▁rare", - -10.621554374694824 - ], - [ - "această", - -10.621726989746094 - ], - [ - "▁sollte", - -10.621731758117676 - ], - [ - "▁Read", - -10.621816635131836 - ], - [ - "ware", - -10.622169494628906 - ], - [ - "Those", - -10.622671127319336 - ], - [ - "ende", - -10.623543739318848 - ], - [ - "▁prix", - -10.623835563659668 - ], - [ - "▁roman", - -10.624101638793945 - ], - [ - "▁creation", - -10.624224662780762 - ], - [ - "▁confidence", - -10.624552726745605 - ], - [ - "▁Japan", - -10.624638557434082 - ], - [ - "▁rain", - -10.624942779541016 - ], - [ - "▁guys", - -10.62518310546875 - ], - [ - "▁south", - -10.625236511230469 - ], - [ - "▁trading", - -10.625646591186523 - ], - [ - "▁€", - -10.626100540161133 - ], - [ - "▁Film", - -10.626341819763184 - ], - [ - "▁pana", - -10.627065658569336 - ], - [ - "▁asemenea", - -10.627066612243652 - ], - [ - "36", - -10.627190589904785 - ], - [ - "▁instance", - -10.627884864807129 - ], - [ - "cou", - -10.629385948181152 - ], - [ - "▁nun", - -10.630074501037598 - ], - [ - "▁Pass", - -10.630390167236328 - ], - [ - "Cette", - -10.630579948425293 - ], - [ - "▁Network", - -10.630876541137695 - ], - [ - "▁prime", - -10.631010055541992 - ], - [ - "▁spiritual", - -10.632098197937012 - ], - [ - "▁tough", - -10.633030891418457 - ], - [ - "▁AND", - -10.633086204528809 - ], - [ - "▁Cat", - -10.633601188659668 - ], - [ - "▁boat", - -10.633611679077148 - ], - [ - "▁leads", - -10.634864807128906 - ], - [ - "▁Germany", - -10.63509750366211 - ], - [ - "▁valuable", - -10.635635375976562 - ], - [ - "57", - -10.635892868041992 - ], - [ - "lect", - -10.636148452758789 - ], - [ - "▁distribution", - -10.636445045471191 - ], - [ - "dar", - -10.636518478393555 - ], - [ - "▁Manager", - -10.637701988220215 - ], - [ - "cha", - -10.637725830078125 - ], - [ - "▁obtain", - -10.637741088867188 - ], - [ - "GB", - -10.637908935546875 - ], - [ - "▁unor", - -10.638079643249512 - ], - [ - "schaft", - -10.638603210449219 - ], - [ - "▁zwischen", - -10.638723373413086 - ], - [ - "▁winning", - -10.639172554016113 - ], - [ - "▁suis", - -10.639811515808105 - ], - [ - "58", - -10.640130996704102 - ], - [ - "▁Party", - -10.640372276306152 - ], - [ - "▁ceva", - -10.640416145324707 - ], - [ - "▁comprehensive", - -10.640684127807617 - ], - [ - "▁aceste", - -10.640726089477539 - ], - [ - "▁committed", - -10.640726089477539 - ], - [ - "▁Hu", - -10.641382217407227 - ], - [ - "ţ", - -10.64149284362793 - ], - [ - "▁north", - -10.642021179199219 - ], - [ - "werk", - -10.642542839050293 - ], - [ - "▁interface", - -10.642794609069824 - ], - [ - "▁Valley", - -10.64281177520752 - ], - [ - "▁anywhere", - -10.64281177520752 - ], - [ - "▁Only", - -10.642851829528809 - ], - [ - "TE", - -10.643295288085938 - ], - [ - "hui", - -10.6436767578125 - ], - [ - "bus", - -10.643951416015625 - ], - [ - "vis", - -10.6439790725708 - ], - [ - "▁Society", - -10.645116806030273 - ], - [ - "▁reliable", - -10.64556884765625 - ], - [ - "▁quelques", - -10.64563274383545 - ], - [ - "tech", - -10.646187782287598 - ], - [ - "ual", - -10.646377563476562 - ], - [ - "▁educational", - -10.646418571472168 - ], - [ - "serv", - -10.646490097045898 - ], - [ - "▁opinion", - -10.646628379821777 - ], - [ - "▁appears", - -10.646702766418457 - ], - [ - "▁count", - -10.646795272827148 - ], - [ - "irea", - -10.646981239318848 - ], - [ - "ban", - -10.647504806518555 - ], - [ - "▁45", - -10.647530555725098 - ], - [ - "▁contain", - -10.647661209106445 - ], - [ - "ost", - -10.647663116455078 - ], - [ - "▁anul", - -10.647706031799316 - ], - [ - "rien", - -10.648159980773926 - ], - [ - "gra", - -10.648360252380371 - ], - [ - "▁counter", - -10.648946762084961 - ], - [ - "-3", - -10.650411605834961 - ], - [ - "▁resource", - -10.650463104248047 - ], - [ - "▁Wo", - -10.6505126953125 - ], - [ - "▁posts", - -10.650618553161621 - ], - [ - "▁employee", - -10.651320457458496 - ], - [ - "rol", - -10.651863098144531 - ], - [ - "▁ended", - -10.651969909667969 - ], - [ - "met", - -10.653080940246582 - ], - [ - "▁meine", - -10.653165817260742 - ], - [ - "▁reached", - -10.653368949890137 - ], - [ - "gri", - -10.653716087341309 - ], - [ - "▁Bra", - -10.65374755859375 - ], - [ - "▁conduct", - -10.654294967651367 - ], - [ - "▁housing", - -10.654422760009766 - ], - [ - "▁tickets", - -10.654792785644531 - ], - [ - "▁database", - -10.655674934387207 - ], - [ - "IL", - -10.656150817871094 - ], - [ - "▁perspective", - -10.656359672546387 - ], - [ - "▁Har", - -10.656404495239258 - ], - [ - "▁error", - -10.656549453735352 - ], - [ - "▁meal", - -10.656569480895996 - ], - [ - "▁hearing", - -10.657238006591797 - ], - [ - "▁transition", - -10.657302856445312 - ], - [ - "▁browser", - -10.657609939575195 - ], - [ - "▁supported", - -10.657609939575195 - ], - [ - "▁starts", - -10.658814430236816 - ], - [ - "țe", - -10.658902168273926 - ], - [ - "▁adults", - -10.658905029296875 - ], - [ - "▁România", - -10.65917682647705 - ], - [ - "dra", - -10.659884452819824 - ], - [ - "▁worry", - -10.660222053527832 - ], - [ - "▁avoir", - -10.660497665405273 - ], - [ - "▁regional", - -10.660507202148438 - ], - [ - "▁min", - -10.660722732543945 - ], - [ - "▁Does", - -10.660806655883789 - ], - [ - "▁Keep", - -10.661200523376465 - ], - [ - "rom", - -10.661237716674805 - ], - [ - "sco", - -10.661320686340332 - ], - [ - "tem", - -10.661898612976074 - ], - [ - "▁Old", - -10.661954879760742 - ], - [ - "▁Under", - -10.662552833557129 - ], - [ - "▁Commission", - -10.662557601928711 - ], - [ - "▁Bau", - -10.6632661819458 - ], - [ - "▁News", - -10.663358688354492 - ], - [ - "▁mois", - -10.663444519042969 - ], - [ - "▁respond", - -10.66356372833252 - ], - [ - "▁alles", - -10.663878440856934 - ], - [ - "▁chair", - -10.664475440979004 - ], - [ - "▁ho", - -10.664854049682617 - ], - [ - "right", - -10.664908409118652 - ], - [ - "▁totally", - -10.665532112121582 - ], - [ - "gle", - -10.665534973144531 - ], - [ - "▁32", - -10.665604591369629 - ], - [ - "66", - -10.665664672851562 - ], - [ - "town", - -10.665902137756348 - ], - [ - "Ch", - -10.666261672973633 - ], - [ - "▁gr", - -10.66629695892334 - ], - [ - "▁garage", - -10.666328430175781 - ], - [ - "ții", - -10.666495323181152 - ], - [ - "▁Union", - -10.667136192321777 - ], - [ - "ică", - -10.667343139648438 - ], - [ - "▁2,", - -10.668437004089355 - ], - [ - "▁reflect", - -10.669163703918457 - ], - [ - "▁retail", - -10.669388771057129 - ], - [ - "▁unde", - -10.669605255126953 - ], - [ - "▁accessible", - -10.670262336730957 - ], - [ - "water", - -10.67059326171875 - ], - [ - "▁regard", - -10.670710563659668 - ], - [ - "▁logo", - -10.671489715576172 - ], - [ - "▁inspired", - -10.671518325805664 - ], - [ - "▁Wall", - -10.671859741210938 - ], - [ - "▁Ste", - -10.672093391418457 - ], - [ - "▁asking", - -10.672179222106934 - ], - [ - "▁Journal", - -10.673028945922852 - ], - [ - "▁Teil", - -10.674042701721191 - ], - [ - "▁collaboration", - -10.674185752868652 - ], - [ - "▁acid", - -10.674266815185547 - ], - [ - "▁Fund", - -10.674382209777832 - ], - [ - "▁spirit", - -10.6744384765625 - ], - [ - "despite", - -10.674457550048828 - ], - [ - "▁delivered", - -10.674821853637695 - ], - [ - "▁girls", - -10.675374984741211 - ], - [ - "▁Look", - -10.675896644592285 - ], - [ - "rant", - -10.675949096679688 - ], - [ - "▁District", - -10.676460266113281 - ], - [ - "▁rental", - -10.676709175109863 - ], - [ - "▁spune", - -10.676733016967773 - ], - [ - "els", - -10.677544593811035 - ], - [ - "▁permanent", - -10.677659034729004 - ], - [ - "▁iron", - -10.677709579467773 - ], - [ - "▁Thomas", - -10.677745819091797 - ], - [ - "EL", - -10.678071022033691 - ], - [ - "▁except", - -10.678074836730957 - ], - [ - "▁catch", - -10.678366661071777 - ], - [ - "▁providers", - -10.678375244140625 - ], - [ - "▁2006", - -10.678435325622559 - ], - [ - "▁chat", - -10.679931640625 - ], - [ - "▁emergency", - -10.680281639099121 - ], - [ - "gre", - -10.68030834197998 - ], - [ - "site", - -10.680888175964355 - ], - [ - "▁missing", - -10.68089485168457 - ], - [ - "abil", - -10.680914878845215 - ], - [ - "▁Hill", - -10.68099594116211 - ], - [ - "urs", - -10.681312561035156 - ], - [ - "▁plusieurs", - -10.681716918945312 - ], - [ - "▁birthday", - -10.681726455688477 - ], - [ - "DS", - -10.682019233703613 - ], - [ - "ersten", - -10.682381629943848 - ], - [ - "▁5.", - -10.68252944946289 - ], - [ - "▁library", - -10.68333911895752 - ], - [ - "▁earth", - -10.683515548706055 - ], - [ - "CI", - -10.683645248413086 - ], - [ - "▁lighting", - -10.684442520141602 - ], - [ - "▁fixed", - -10.684879302978516 - ], - [ - "tori", - -10.684891700744629 - ], - [ - "▁replace", - -10.684995651245117 - ], - [ - "▁administration", - -10.685074806213379 - ], - [ - "leurs", - -10.685229301452637 - ], - [ - "▁meat", - -10.686142921447754 - ], - [ - "▁songs", - -10.686662673950195 - ], - [ - "▁confirm", - -10.686866760253906 - ], - [ - "▁rapid", - -10.68698787689209 - ], - [ - "▁Special", - -10.686995506286621 - ], - [ - "▁holding", - -10.687115669250488 - ], - [ - "▁honor", - -10.687271118164062 - ], - [ - "▁Market", - -10.687409400939941 - ], - [ - "La", - -10.687535285949707 - ], - [ - "▁measure", - -10.687760353088379 - ], - [ - "▁guarantee", - -10.68785572052002 - ], - [ - "▁switch", - -10.68813419342041 - ], - [ - "▁extensive", - -10.688294410705566 - ], - [ - "▁Neu", - -10.688674926757812 - ], - [ - "avez", - -10.688901901245117 - ], - [ - "▁protein", - -10.688984870910645 - ], - [ - "▁infrastructure", - -10.689454078674316 - ], - [ - "▁functions", - -10.689494132995605 - ], - [ - "▁cont", - -10.689496040344238 - ], - [ - "row", - -10.689760208129883 - ], - [ - "star", - -10.689773559570312 - ], - [ - "▁Port", - -10.690192222595215 - ], - [ - "Using", - -10.690336227416992 - ], - [ - "▁faster", - -10.690557479858398 - ], - [ - "44", - -10.691168785095215 - ], - [ - "▁measures", - -10.691615104675293 - ], - [ - "▁celor", - -10.69186019897461 - ], - [ - "▁exam", - -10.69189739227295 - ], - [ - "200", - -10.69202995300293 - ], - [ - "î", - -10.692545890808105 - ], - [ - "▁conversation", - -10.692832946777344 - ], - [ - "▁brands", - -10.692959785461426 - ], - [ - "▁Code", - -10.69359016418457 - ], - [ - "▁Website", - -10.693748474121094 - ], - [ - "OS", - -10.693782806396484 - ], - [ - "▁alors", - -10.693822860717773 - ], - [ - "▁organ", - -10.694032669067383 - ], - [ - "▁removed", - -10.694823265075684 - ], - [ - "▁Head", - -10.694905281066895 - ], - [ - "▁Cha", - -10.694908142089844 - ], - [ - "▁visiting", - -10.694928169250488 - ], - [ - "▁wild", - -10.694928169250488 - ], - [ - "▁seit", - -10.694962501525879 - ], - [ - "49", - -10.695109367370605 - ], - [ - "▁organic", - -10.69539737701416 - ], - [ - "aţi", - -10.695775032043457 - ], - [ - "▁kit", - -10.695947647094727 - ], - [ - "68", - -10.695959091186523 - ], - [ - "▁flowers", - -10.696124076843262 - ], - [ - "▁appreciate", - -10.697006225585938 - ], - [ - "▁dead", - -10.697439193725586 - ], - [ - "▁Fire", - -10.697539329528809 - ], - [ - "▁cela", - -10.697591781616211 - ], - [ - "▁Ph", - -10.697633743286133 - ], - [ - "▁arrive", - -10.697921752929688 - ], - [ - "▁purposes", - -10.698213577270508 - ], - [ - "▁qualité", - -10.698226928710938 - ], - [ - "▁restaurants", - -10.698478698730469 - ], - [ - "▁advertising", - -10.698541641235352 - ], - [ - "cur", - -10.69855785369873 - ], - [ - "▁ça", - -10.698973655700684 - ], - [ - "▁introduced", - -10.699088096618652 - ], - [ - "▁returned", - -10.699111938476562 - ], - [ - "▁desire", - -10.699511528015137 - ], - [ - "▁soul", - -10.699983596801758 - ], - [ - "▁Technology", - -10.699994087219238 - ], - [ - ");", - -10.700163841247559 - ], - [ - "▁Royal", - -10.700282096862793 - ], - [ - "tant", - -10.70068645477295 - ], - [ - "▁possibly", - -10.700702667236328 - ], - [ - "▁consumers", - -10.700812339782715 - ], - [ - "▁doua", - -10.70097541809082 - ], - [ - "ified", - -10.70097827911377 - ], - [ - "▁Award", - -10.70114803314209 - ], - [ - "toutes", - -10.70130443572998 - ], - [ - "▁meant", - -10.701325416564941 - ], - [ - "ezi", - -10.701616287231445 - ], - [ - "▁plu", - -10.701766014099121 - ], - [ - "ţii", - -10.7021484375 - ], - [ - "▁talent", - -10.702789306640625 - ], - [ - "▁Security", - -10.703309059143066 - ], - [ - "arii", - -10.703352928161621 - ], - [ - "▁zi", - -10.703455924987793 - ], - [ - "▁Shop", - -10.703667640686035 - ], - [ - "▁breakfast", - -10.704107284545898 - ], - [ - "▁trial", - -10.704485893249512 - ], - [ - "ami", - -10.704936981201172 - ], - [ - "▁register", - -10.705301284790039 - ], - [ - "unserer", - -10.705646514892578 - ], - [ - "▁solar", - -10.705697059631348 - ], - [ - "▁deals", - -10.70591926574707 - ], - [ - "▁Ku", - -10.7059326171875 - ], - [ - "To", - -10.706186294555664 - ], - [ - "bat", - -10.70680046081543 - ], - [ - "MC", - -10.707010269165039 - ], - [ - "▁Global", - -10.707018852233887 - ], - [ - "у", - -10.707405090332031 - ], - [ - "▁nor", - -10.707818984985352 - ], - [ - "▁milk", - -10.707868576049805 - ], - [ - "▁choices", - -10.708206176757812 - ], - [ - "»", - -10.7086763381958 - ], - [ - "▁Sur", - -10.708695411682129 - ], - [ - "more", - -10.708739280700684 - ], - [ - "48", - -10.709024429321289 - ], - [ - "67", - -10.709375381469727 - ], - [ - "▁replacement", - -10.709942817687988 - ], - [ - "34", - -10.710440635681152 - ], - [ - "▁chocolate", - -10.710485458374023 - ], - [ - "▁Family", - -10.71059513092041 - ], - [ - "This", - -10.71122932434082 - ], - [ - "▁novel", - -10.711435317993164 - ], - [ - "▁Chicago", - -10.711563110351562 - ], - [ - "▁participate", - -10.71166706085205 - ], - [ - "▁trei", - -10.712727546691895 - ], - [ - "▁monthly", - -10.713729858398438 - ], - [ - "▁survey", - -10.713977813720703 - ], - [ - "▁End", - -10.714285850524902 - ], - [ - "▁Medical", - -10.71442699432373 - ], - [ - "autres", - -10.714678764343262 - ], - [ - "rich", - -10.714698791503906 - ], - [ - "▁bike", - -10.714703559875488 - ], - [ - "▁eventually", - -10.714717864990234 - ], - [ - "▁HD", - -10.714722633361816 - ], - [ - "bil", - -10.714744567871094 - ], - [ - "cent", - -10.714902877807617 - ], - [ - "▁afin", - -10.715676307678223 - ], - [ - "▁surgery", - -10.716160774230957 - ], - [ - "▁sin", - -10.716455459594727 - ], - [ - "▁manufacturing", - -10.716955184936523 - ], - [ - "▁consumer", - -10.717245101928711 - ], - [ - "system", - -10.717306137084961 - ], - [ - "▁object", - -10.717400550842285 - ], - [ - "▁Ju", - -10.717422485351562 - ], - [ - "ered", - -10.7178373336792 - ], - [ - "rac", - -10.718070030212402 - ], - [ - "▁clinical", - -10.718664169311523 - ], - [ - "▁dollars", - -10.719761848449707 - ], - [ - "▁chain", - -10.71994686126709 - ], - [ - "▁afternoon", - -10.720196723937988 - ], - [ - "▁ligne", - -10.720422744750977 - ], - [ - "▁accounts", - -10.721806526184082 - ], - [ - "ving", - -10.722037315368652 - ], - [ - "▁Australian", - -10.72240924835205 - ], - [ - "38", - -10.722542762756348 - ], - [ - "▁persoane", - -10.72258472442627 - ], - [ - "▁grande", - -10.722668647766113 - ], - [ - "▁Report", - -10.723472595214844 - ], - [ - "▁revenue", - -10.723649024963379 - ], - [ - "▁spre", - -10.723760604858398 - ], - [ - "▁cutting", - -10.7239990234375 - ], - [ - "▁approved", - -10.724133491516113 - ], - [ - "▁glad", - -10.724188804626465 - ], - [ - "chaque", - -10.724395751953125 - ], - [ - "win", - -10.724435806274414 - ], - [ - "▁waren", - -10.724733352661133 - ], - [ - "▁launched", - -10.725071907043457 - ], - [ - "▁layer", - -10.725645065307617 - ], - [ - "▁airport", - -10.725716590881348 - ], - [ - "▁effectively", - -10.72572135925293 - ], - [ - "▁coach", - -10.725946426391602 - ], - [ - "dé", - -10.726130485534668 - ], - [ - "LE", - -10.72627067565918 - ], - [ - "▁müssen", - -10.726386070251465 - ], - [ - "plan", - -10.726641654968262 - ], - [ - "dan", - -10.726705551147461 - ], - [ - "55", - -10.726786613464355 - ], - [ - "bringing", - -10.726895332336426 - ], - [ - "▁$2", - -10.726995468139648 - ], - [ - "nce", - -10.727181434631348 - ], - [ - "▁inspiration", - -10.728177070617676 - ], - [ - "You", - -10.728657722473145 - ], - [ - "▁soll", - -10.729095458984375 - ], - [ - "▁seemed", - -10.729595184326172 - ], - [ - "▁flight", - -10.729687690734863 - ], - [ - "▁prima", - -10.729883193969727 - ], - [ - "▁Welt", - -10.730123519897461 - ], - [ - "▁jetzt", - -10.730315208435059 - ], - [ - "ky", - -10.730428695678711 - ], - [ - "▁Western", - -10.73054027557373 - ], - [ - "▁label", - -10.730600357055664 - ], - [ - "▁möglich", - -10.73081111907959 - ], - [ - "▁input", - -10.730862617492676 - ], - [ - "▁laws", - -10.730995178222656 - ], - [ - "▁personnes", - -10.731708526611328 - ], - [ - "▁paying", - -10.731731414794922 - ], - [ - "▁Uhr", - -10.73173713684082 - ], - [ - "▁Mary", - -10.731745719909668 - ], - [ - "pur", - -10.73190689086914 - ], - [ - "▁covers", - -10.732133865356445 - ], - [ - "▁throw", - -10.732522964477539 - ], - [ - "▁Tor", - -10.733281135559082 - ], - [ - "▁bat", - -10.73355484008789 - ], - [ - "▁Gr", - -10.73373031616211 - ], - [ - "▁farm", - -10.73376178741455 - ], - [ - "▁improved", - -10.733843803405762 - ], - [ - "▁fără", - -10.734286308288574 - ], - [ - "▁theme", - -10.73437213897705 - ], - [ - "pens", - -10.734865188598633 - ], - [ - "▁Cup", - -10.734975814819336 - ], - [ - "▁settings", - -10.735114097595215 - ], - [ - "▁hire", - -10.735234260559082 - ], - [ - "▁massive", - -10.735248565673828 - ], - [ - "▁generate", - -10.735405921936035 - ], - [ - "▁earn", - -10.735837936401367 - ], - [ - "▁tab", - -10.736431121826172 - ], - [ - "For", - -10.736616134643555 - ], - [ - "gang", - -10.736891746520996 - ], - [ - "▁hin", - -10.73709487915039 - ], - [ - "▁roll", - -10.737113952636719 - ], - [ - "▁engagement", - -10.737157821655273 - ], - [ - "▁signed", - -10.737177848815918 - ], - [ - "▁League", - -10.737323760986328 - ], - [ - "▁registration", - -10.737931251525879 - ], - [ - "▁première", - -10.738763809204102 - ], - [ - "isse", - -10.73896598815918 - ], - [ - "▁university", - -10.739027976989746 - ], - [ - "ell", - -10.739157676696777 - ], - [ - "▁nou", - -10.739169120788574 - ], - [ - "rog", - -10.739191055297852 - ], - [ - "▁sitting", - -10.739206314086914 - ], - [ - "▁cazul", - -10.739571571350098 - ], - [ - "▁surrounding", - -10.73983383178711 - ], - [ - "▁Asia", - -10.740357398986816 - ], - [ - "▁bath", - -10.740825653076172 - ], - [ - "hal", - -10.740923881530762 - ], - [ - "▁plate", - -10.741026878356934 - ], - [ - "▁tests", - -10.741151809692383 - ], - [ - "▁presentation", - -10.741156578063965 - ], - [ - "▁chicken", - -10.741501808166504 - ], - [ - "▁Val", - -10.741586685180664 - ], - [ - "ably", - -10.74166488647461 - ], - [ - "▁magazine", - -10.741697311401367 - ], - [ - "▁Maybe", - -10.74187183380127 - ], - [ - "▁sauce", - -10.742673873901367 - ], - [ - "TC", - -10.742887496948242 - ], - [ - "▁exclusive", - -10.74296760559082 - ], - [ - "86", - -10.74306869506836 - ], - [ - "▁teeth", - -10.743474960327148 - ], - [ - "▁regularly", - -10.743524551391602 - ], - [ - "sed", - -10.743824005126953 - ], - [ - "gro", - -10.744174003601074 - ], - [ - "He", - -10.744211196899414 - ], - [ - "▁2017.", - -10.744302749633789 - ], - [ - "▁template", - -10.74489688873291 - ], - [ - "▁gleich", - -10.744938850402832 - ], - [ - "bal", - -10.745061874389648 - ], - [ - "▁African", - -10.74511432647705 - ], - [ - "în", - -10.745231628417969 - ], - [ - "▁rep", - -10.74543571472168 - ], - [ - "▁beat", - -10.74588394165039 - ], - [ - "▁deck", - -10.746064186096191 - ], - [ - "▁intended", - -10.746221542358398 - ], - [ - "▁para", - -10.746513366699219 - ], - [ - "▁IP", - -10.746712684631348 - ], - [ - "▁bra", - -10.746881484985352 - ], - [ - "▁forces", - -10.746966361999512 - ], - [ - "▁routine", - -10.747184753417969 - ], - [ - "▁Jahre", - -10.747758865356445 - ], - [ - "▁Bad", - -10.74797534942627 - ], - [ - "▁drivers", - -10.748074531555176 - ], - [ - "▁updates", - -10.748095512390137 - ], - [ - "▁elegant", - -10.748279571533203 - ], - [ - "▁external", - -10.748444557189941 - ], - [ - "▁engineering", - -10.748819351196289 - ], - [ - "ender", - -10.749544143676758 - ], - [ - "table", - -10.749755859375 - ], - [ - "inter", - -10.749878883361816 - ], - [ - "▁Romania", - -10.749948501586914 - ], - [ - "▁zile", - -10.750468254089355 - ], - [ - "▁luxury", - -10.750570297241211 - ], - [ - "▁calling", - -10.750750541687012 - ], - [ - "▁cooking", - -10.75101375579834 - ], - [ - "▁component", - -10.75114631652832 - ], - [ - "wan", - -10.75121021270752 - ], - [ - "schen", - -10.751212120056152 - ], - [ - "▁birth", - -10.751242637634277 - ], - [ - "asupra", - -10.751349449157715 - ], - [ - "Co", - -10.751471519470215 - ], - [ - "▁opt", - -10.75153923034668 - ], - [ - "▁discovered", - -10.751860618591309 - ], - [ - "▁teach", - -10.752084732055664 - ], - [ - "▁Son", - -10.75234317779541 - ], - [ - "▁guest", - -10.752384185791016 - ], - [ - "▁dogs", - -10.752695083618164 - ], - [ - "▁2003", - -10.752745628356934 - ], - [ - "▁behavior", - -10.752750396728516 - ], - [ - "pé", - -10.7529935836792 - ], - [ - "63", - -10.75316333770752 - ], - [ - "▁Human", - -10.753702163696289 - ], - [ - "▁expression", - -10.754800796508789 - ], - [ - "▁nevoie", - -10.754936218261719 - ], - [ - "▁recherche", - -10.75528621673584 - ], - [ - "ging", - -10.755767822265625 - ], - [ - "related", - -10.755948066711426 - ], - [ - "▁discount", - -10.756040573120117 - ], - [ - "▁Brown", - -10.756054878234863 - ], - [ - "▁Such", - -10.756107330322266 - ], - [ - "▁Ve", - -10.757149696350098 - ], - [ - "▁height", - -10.757265090942383 - ], - [ - "clo", - -10.757414817810059 - ], - [ - "▁incredible", - -10.757912635803223 - ], - [ - "▁bas", - -10.757916450500488 - ], - [ - "▁mă", - -10.75798225402832 - ], - [ - "▁purchased", - -10.758240699768066 - ], - [ - "▁compte", - -10.75831127166748 - ], - [ - "▁instructions", - -10.758537292480469 - ], - [ - "▁Instead", - -10.75866985321045 - ], - [ - "▁output", - -10.758706092834473 - ], - [ - "▁mom", - -10.758886337280273 - ], - [ - "DR", - -10.759828567504883 - ], - [ - "89", - -10.760168075561523 - ], - [ - "▁reduced", - -10.760621070861816 - ], - [ - "98", - -10.7606840133667 - ], - [ - "▁constant", - -10.760879516601562 - ], - [ - "▁therapy", - -10.762417793273926 - ], - [ - "▁capable", - -10.762757301330566 - ], - [ - "mark", - -10.763265609741211 - ], - [ - "▁Sometimes", - -10.76332950592041 - ], - [ - "▁joy", - -10.763419151306152 - ], - [ - "▁perfectly", - -10.763589859008789 - ], - [ - "▁painting", - -10.763704299926758 - ], - [ - "avait", - -10.763765335083008 - ], - [ - "▁Sha", - -10.764384269714355 - ], - [ - "▁dat", - -10.764463424682617 - ], - [ - "▁produits", - -10.764479637145996 - ], - [ - "tric", - -10.76456356048584 - ], - [ - "ierte", - -10.765153884887695 - ], - [ - "▁Smith", - -10.765836715698242 - ], - [ - "▁trebui", - -10.766264915466309 - ], - [ - "▁beaucoup", - -10.766630172729492 - ], - [ - "▁chosen", - -10.767189025878906 - ], - [ - "▁cre", - -10.76732063293457 - ], - [ - "▁complet", - -10.767341613769531 - ], - [ - "▁Ltd", - -10.767599105834961 - ], - [ - "▁recovery", - -10.76781940460205 - ], - [ - "▁district", - -10.768423080444336 - ], - [ - "78", - -10.768640518188477 - ], - [ - "▁Unter", - -10.76872730255127 - ], - [ - "▁schnell", - -10.768729209899902 - ], - [ - "▁apart", - -10.768943786621094 - ], - [ - "▁phase", - -10.76894760131836 - ], - [ - "▁seeking", - -10.769091606140137 - ], - [ - "▁mark", - -10.769148826599121 - ], - [ - "▁pet", - -10.769233703613281 - ], - [ - "▁PDF", - -10.769296646118164 - ], - [ - "▁efficiency", - -10.769577980041504 - ], - [ - "▁buildings", - -10.769611358642578 - ], - [ - "69", - -10.769723892211914 - ], - [ - "▁sens", - -10.769858360290527 - ], - [ - "▁Video", - -10.770115852355957 - ], - [ - "▁destination", - -10.770181655883789 - ], - [ - "▁female", - -10.770319938659668 - ], - [ - "▁supporting", - -10.770674705505371 - ], - [ - "▁signs", - -10.77077865600586 - ], - [ - "▁appeal", - -10.770784378051758 - ], - [ - "76", - -10.77110481262207 - ], - [ - "▁favourite", - -10.771612167358398 - ], - [ - "ock", - -10.771702766418457 - ], - [ - "▁readers", - -10.771757125854492 - ], - [ - "▁Did", - -10.771868705749512 - ], - [ - "rou", - -10.772045135498047 - ], - [ - "PA", - -10.77222728729248 - ], - [ - "▁Jean", - -10.772480964660645 - ], - [ - "▁Em", - -10.772586822509766 - ], - [ - "pass", - -10.77280330657959 - ], - [ - "▁Zi", - -10.773090362548828 - ], - [ - "▁între", - -10.773261070251465 - ], - [ - "▁fly", - -10.773427963256836 - ], - [ - "mos", - -10.773666381835938 - ], - [ - "▁emotional", - -10.773860931396484 - ], - [ - "asse", - -10.774768829345703 - ], - [ - "▁sessions", - -10.775086402893066 - ], - [ - "▁symptoms", - -10.77564811706543 - ], - [ - "▁died", - -10.776217460632324 - ], - [ - "▁seconds", - -10.776628494262695 - ], - [ - "▁procedure", - -10.777206420898438 - ], - [ - "▁express", - -10.777420997619629 - ], - [ - "▁două", - -10.777885437011719 - ], - [ - "▁valid", - -10.778393745422363 - ], - [ - "▁euro", - -10.7788667678833 - ], - [ - "▁interests", - -10.779032707214355 - ], - [ - "Having", - -10.779237747192383 - ], - [ - "▁hundreds", - -10.779669761657715 - ], - [ - "grad", - -10.780023574829102 - ], - [ - "▁neuen", - -10.780084609985352 - ], - [ - "▁cook", - -10.780552864074707 - ], - [ - "▁pur", - -10.780834197998047 - ], - [ - "▁charges", - -10.781024932861328 - ], - [ - "sche", - -10.78118896484375 - ], - [ - "▁smile", - -10.781468391418457 - ], - [ - "▁festival", - -10.781611442565918 - ], - [ - "cho", - -10.781672477722168 - ], - [ - "▁£", - -10.781937599182129 - ], - [ - "cht", - -10.78201675415039 - ], - [ - "▁macht", - -10.782021522521973 - ], - [ - "▁Wasser", - -10.782028198242188 - ], - [ - "▁Cap", - -10.78226375579834 - ], - [ - "▁Learn", - -10.78274154663086 - ], - [ - "▁load", - -10.783162117004395 - ], - [ - "▁aici", - -10.783225059509277 - ], - [ - "▁Ch", - -10.784143447875977 - ], - [ - "▁cycle", - -10.784223556518555 - ], - [ - "▁carried", - -10.784337997436523 - ], - [ - "▁jusqu", - -10.784517288208008 - ], - [ - "stein", - -10.78505802154541 - ], - [ - "ski", - -10.78513240814209 - ], - [ - "cap", - -10.78579330444336 - ], - [ - "▁Bal", - -10.785852432250977 - ], - [ - "▁minor", - -10.786053657531738 - ], - [ - "77", - -10.786175727844238 - ], - [ - "▁considering", - -10.78632640838623 - ], - [ - "innen", - -10.78644847869873 - ], - [ - "▁greatest", - -10.787055015563965 - ], - [ - "▁Training", - -10.787137031555176 - ], - [ - "08", - -10.787307739257812 - ], - [ - "▁significantly", - -10.787607192993164 - ], - [ - "gé", - -10.787728309631348 - ], - [ - "▁dumpster", - -10.788351058959961 - ], - [ - "▁allem", - -10.788930892944336 - ], - [ - "▁bonus", - -10.7889404296875 - ], - [ - "▁guy", - -10.789036750793457 - ], - [ - "fel", - -10.78904914855957 - ], - [ - "▁lifestyle", - -10.789241790771484 - ], - [ - "▁Bro", - -10.78961181640625 - ], - [ - "▁implement", - -10.789687156677246 - ], - [ - "lock", - -10.790046691894531 - ], - [ - "▁Earth", - -10.790142059326172 - ], - [ - "kar", - -10.790733337402344 - ], - [ - "▁invest", - -10.790833473205566 - ], - [ - "▁river", - -10.790933609008789 - ], - [ - "▁accurate", - -10.791494369506836 - ], - [ - "▁mu", - -10.791579246520996 - ], - [ - "▁celebrate", - -10.792119979858398 - ], - [ - "▁ran", - -10.79256820678711 - ], - [ - "▁bigger", - -10.792988777160645 - ], - [ - "▁Mer", - -10.793476104736328 - ], - [ - "▁millions", - -10.793486595153809 - ], - [ - "▁partie", - -10.793563842773438 - ], - [ - "▁dazu", - -10.793951988220215 - ], - [ - "▁Full", - -10.794130325317383 - ], - [ - "gie", - -10.794207572937012 - ], - [ - "bot", - -10.794373512268066 - ], - [ - "roll", - -10.79472827911377 - ], - [ - "▁Women", - -10.795303344726562 - ], - [ - "▁compare", - -10.796135902404785 - ], - [ - "▁van", - -10.796503067016602 - ], - [ - "▁apps", - -10.796521186828613 - ], - [ - "PC", - -10.797050476074219 - ], - [ - "▁drei", - -10.79736042022705 - ], - [ - "▁maison", - -10.797588348388672 - ], - [ - "▁knows", - -10.797712326049805 - ], - [ - "rid", - -10.797972679138184 - ], - [ - "62", - -10.798396110534668 - ], - [ - "class", - -10.798508644104004 - ], - [ - "▁chez", - -10.798669815063477 - ], - [ - "char", - -10.798828125 - ], - [ - "88", - -10.798989295959473 - ], - [ - "▁cast", - -10.79948902130127 - ], - [ - "▁examples", - -10.79973030090332 - ], - [ - "▁Therefore", - -10.799823760986328 - ], - [ - "▁topics", - -10.799941062927246 - ], - [ - "with", - -10.80013656616211 - ], - [ - "▁Anti", - -10.800555229187012 - ], - [ - "how", - -10.800620079040527 - ], - [ - "▁whom", - -10.80094051361084 - ], - [ - "▁Deutschland", - -10.801124572753906 - ], - [ - "tine", - -10.80113697052002 - ], - [ - "▁CEO", - -10.801224708557129 - ], - [ - "▁truck", - -10.801350593566895 - ], - [ - "▁Which", - -10.8015718460083 - ], - [ - "erie", - -10.802017211914062 - ], - [ - "fect", - -10.802069664001465 - ], - [ - "bou", - -10.8026762008667 - ], - [ - "▁(1", - -10.802818298339844 - ], - [ - "sum", - -10.802980422973633 - ], - [ - "▁bonne", - -10.803068161010742 - ], - [ - "▁remaining", - -10.80321216583252 - ], - [ - "▁equal", - -10.803543090820312 - ], - [ - "▁engage", - -10.803561210632324 - ], - [ - "▁RE", - -10.803849220275879 - ], - [ - "style", - -10.804182052612305 - ], - [ - "▁urma", - -10.804337501525879 - ], - [ - "▁Grund", - -10.80496883392334 - ], - [ - "ür", - -10.8051176071167 - ], - [ - "▁font", - -10.805353164672852 - ], - [ - "▁assets", - -10.805916786193848 - ], - [ - "AL", - -10.806102752685547 - ], - [ - "▁rear", - -10.80635929107666 - ], - [ - "▁contemporary", - -10.80646800994873 - ], - [ - "▁occur", - -10.8067045211792 - ], - [ - "rated", - -10.806941986083984 - ], - [ - "▁tight", - -10.807088851928711 - ], - [ - "▁machines", - -10.807921409606934 - ], - [ - "▁0.", - -10.808456420898438 - ], - [ - "▁Aber", - -10.808470726013184 - ], - [ - "sol", - -10.808517456054688 - ], - [ - "rü", - -10.80858039855957 - ], - [ - "▁2007", - -10.809479713439941 - ], - [ - "gg", - -10.809488296508789 - ], - [ - "▁unul", - -10.809691429138184 - ], - [ - "▁était", - -10.809908866882324 - ], - [ - "▁capture", - -10.809980392456055 - ], - [ - "▁command", - -10.810037612915039 - ], - [ - "▁wire", - -10.810425758361816 - ], - [ - "▁shift", - -10.810762405395508 - ], - [ - "▁bread", - -10.81084156036377 - ], - [ - "▁causes", - -10.810937881469727 - ], - [ - "PI", - -10.810938835144043 - ], - [ - "SC", - -10.811086654663086 - ], - [ - "▁lights", - -10.811190605163574 - ], - [ - "▁lived", - -10.811293601989746 - ], - [ - "mul", - -10.811446189880371 - ], - [ - "▁Cur", - -10.811917304992676 - ], - [ - "▁Richard", - -10.811973571777344 - ], - [ - "37", - -10.812638282775879 - ], - [ - "▁cup", - -10.812737464904785 - ], - [ - "▁fields", - -10.812983512878418 - ], - [ - "▁crusher", - -10.813389778137207 - ], - [ - "65", - -10.813774108886719 - ], - [ - "avons", - -10.813822746276855 - ], - [ - "▁gear", - -10.813835144042969 - ], - [ - "▁standing", - -10.813844680786133 - ], - [ - "▁thick", - -10.81445026397705 - ], - [ - "aff", - -10.815132141113281 - ], - [ - "ments", - -10.815434455871582 - ], - [ - "▁conflict", - -10.815728187561035 - ], - [ - "ität", - -10.815825462341309 - ], - [ - "▁worse", - -10.816295623779297 - ], - [ - "SE", - -10.816332817077637 - ], - [ - "imi", - -10.816459655761719 - ], - [ - "▁dating", - -10.817033767700195 - ], - [ - "Do", - -10.817073822021484 - ], - [ - "▁flexible", - -10.817093849182129 - ], - [ - "ologie", - -10.817131996154785 - ], - [ - "SU", - -10.817200660705566 - ], - [ - "▁contribute", - -10.817306518554688 - ], - [ - "▁denn", - -10.817428588867188 - ], - [ - "▁appointment", - -10.81746768951416 - ], - [ - "▁ticket", - -10.817523002624512 - ], - [ - "bed", - -10.817892074584961 - ], - [ - "▁2019.", - -10.817936897277832 - ], - [ - "▁tasks", - -10.81871223449707 - ], - [ - "▁carbon", - -10.818734169006348 - ], - [ - "▁situations", - -10.819400787353516 - ], - [ - "MA", - -10.819402694702148 - ], - [ - "▁portion", - -10.819498062133789 - ], - [ - "▁urban", - -10.819585800170898 - ], - [ - "▁Canadian", - -10.819805145263672 - ], - [ - "▁Bur", - -10.819937705993652 - ], - [ - "▁pack", - -10.81995964050293 - ], - [ - "▁effet", - -10.819992065429688 - ], - [ - "▁Ball", - -10.82008171081543 - ], - [ - "▁timpul", - -10.82014274597168 - ], - [ - "▁owned", - -10.820211410522461 - ], - [ - "▁surprise", - -10.820413589477539 - ], - [ - "▁Mu", - -10.820582389831543 - ], - [ - "▁decades", - -10.821001052856445 - ], - [ - "▁affected", - -10.821728706359863 - ], - [ - "▁proven", - -10.821732521057129 - ], - [ - "▁Fe", - -10.821990966796875 - ], - [ - "zy", - -10.822042465209961 - ], - [ - "42", - -10.822175979614258 - ], - [ - "▁trend", - -10.8223876953125 - ], - [ - "▁autres", - -10.82262897491455 - ], - [ - "No", - -10.823028564453125 - ], - [ - "▁nine", - -10.823565483093262 - ], - [ - "ON", - -10.82376480102539 - ], - [ - "NE", - -10.823953628540039 - ], - [ - "oli", - -10.824359893798828 - ], - [ - "▁Daniel", - -10.824434280395508 - ], - [ - "▁spa", - -10.824939727783203 - ], - [ - "▁messages", - -10.825084686279297 - ], - [ - "PS", - -10.825183868408203 - ], - [ - "47", - -10.825703620910645 - ], - [ - "▁doch", - -10.826032638549805 - ], - [ - "▁improvement", - -10.826187133789062 - ], - [ - "▁mountain", - -10.826350212097168 - ], - [ - "▁Room", - -10.826451301574707 - ], - [ - "▁edition", - -10.826546669006348 - ], - [ - "▁musical", - -10.826712608337402 - ], - [ - "CP", - -10.827024459838867 - ], - [ - "▁Mill", - -10.827027320861816 - ], - [ - "▁steht", - -10.827740669250488 - ], - [ - "▁determined", - -10.828083038330078 - ], - [ - "you", - -10.828392028808594 - ], - [ - "weg", - -10.828554153442383 - ], - [ - "▁Digital", - -10.828624725341797 - ], - [ - "▁filter", - -10.828903198242188 - ], - [ - "▁youth", - -10.829047203063965 - ], - [ - "▁assessment", - -10.829301834106445 - ], - [ - "▁butter", - -10.829370498657227 - ], - [ - "▁Watch", - -10.829427719116211 - ], - [ - "▁zusammen", - -10.829471588134766 - ], - [ - "▁View", - -10.829606056213379 - ], - [ - "09", - -10.829649925231934 - ], - [ - "▁sole", - -10.829816818237305 - ], - [ - ".00", - -10.830018997192383 - ], - [ - "33", - -10.83015251159668 - ], - [ - "▁export", - -10.830229759216309 - ], - [ - "ery", - -10.830373764038086 - ], - [ - "▁zurück", - -10.830426216125488 - ], - [ - "▁walls", - -10.83048152923584 - ], - [ - "▁recognize", - -10.8306884765625 - ], - [ - "law", - -10.830801963806152 - ], - [ - "▁parent", - -10.830863952636719 - ], - [ - "ST", - -10.831357955932617 - ], - [ - "▁description", - -10.831669807434082 - ], - [ - "MS", - -10.831887245178223 - ], - [ - "SM", - -10.83189582824707 - ], - [ - "▁Finally", - -10.831940650939941 - ], - [ - "▁hardware", - -10.831965446472168 - ], - [ - "ident", - -10.832464218139648 - ], - [ - "▁brown", - -10.832566261291504 - ], - [ - "▁kinds", - -10.832950592041016 - ], - [ - "▁Arts", - -10.83297061920166 - ], - [ - "▁concert", - -10.83341121673584 - ], - [ - "▁sec", - -10.83342456817627 - ], - [ - "▁represent", - -10.833512306213379 - ], - [ - "▁institutions", - -10.833597183227539 - ], - [ - "▁fur", - -10.833998680114746 - ], - [ - "▁Support", - -10.83403205871582 - ], - [ - "87", - -10.834076881408691 - ], - [ - "▁ease", - -10.834178924560547 - ], - [ - "▁feels", - -10.834218978881836 - ], - [ - "▁sheet", - -10.834342002868652 - ], - [ - "▁Though", - -10.83437442779541 - ], - [ - "▁propose", - -10.834381103515625 - ], - [ - "▁personnel", - -10.834409713745117 - ], - [ - "bie", - -10.834794044494629 - ], - [ - "▁contest", - -10.834836959838867 - ], - [ - "▁successfully", - -10.835152626037598 - ], - [ - "▁direkt", - -10.835397720336914 - ], - [ - "bietet", - -10.835597038269043 - ], - [ - "▁submit", - -10.835888862609863 - ], - [ - "▁sicher", - -10.835919380187988 - ], - [ - "▁Personal", - -10.83607006072998 - ], - [ - "94", - -10.836341857910156 - ], - [ - "61", - -10.836400985717773 - ], - [ - "▁Very", - -10.836540222167969 - ], - [ - "bol", - -10.836603164672852 - ], - [ - "▁ha", - -10.837089538574219 - ], - [ - "▁channel", - -10.8372220993042 - ], - [ - "mut", - -10.837289810180664 - ], - [ - "▁mouth", - -10.837342262268066 - ], - [ - "▁vast", - -10.837395668029785 - ], - [ - "▁Ob", - -10.837569236755371 - ], - [ - "lit", - -10.83763313293457 - ], - [ - "▁poly", - -10.837878227233887 - ], - [ - "▁trained", - -10.838102340698242 - ], - [ - "▁specialist", - -10.838122367858887 - ], - [ - "UL", - -10.83822250366211 - ], - [ - "▁seiner", - -10.838336944580078 - ], - [ - "SS", - -10.838627815246582 - ], - [ - "▁vacation", - -10.838672637939453 - ], - [ - "▁resume", - -10.839157104492188 - ], - [ - "▁constantly", - -10.839717864990234 - ], - [ - "▁treated", - -10.83986759185791 - ], - [ - "▁150", - -10.840936660766602 - ], - [ - "▁native", - -10.841246604919434 - ], - [ - "▁Russian", - -10.841329574584961 - ], - [ - "▁patterns", - -10.841371536254883 - ], - [ - "▁knowing", - -10.841670989990234 - ], - [ - "▁Pan", - -10.841682434082031 - ], - [ - "peri", - -10.841848373413086 - ], - [ - "aci", - -10.841864585876465 - ], - [ - "▁answers", - -10.842114448547363 - ], - [ - "▁heute", - -10.842985153198242 - ], - [ - "93", - -10.843056678771973 - ], - [ - "▁Winter", - -10.844083786010742 - ], - [ - "▁yes", - -10.844173431396484 - ], - [ - "SP", - -10.844185829162598 - ], - [ - "].", - -10.844388008117676 - ], - [ - "▁kein", - -10.844862937927246 - ], - [ - "▁introduce", - -10.8450927734375 - ], - [ - "-4", - -10.84555435180664 - ], - [ - "▁shoot", - -10.845762252807617 - ], - [ - "AR", - -10.84576416015625 - ], - [ - "▁receiving", - -10.845864295959473 - ], - [ - "▁intre", - -10.84702205657959 - ], - [ - "▁appeared", - -10.84708023071289 - ], - [ - "▁brother", - -10.847321510314941 - ], - [ - "▁extend", - -10.847765922546387 - ], - [ - "▁fara", - -10.848737716674805 - ], - [ - "▁kommt", - -10.848876953125 - ], - [ - "ali", - -10.848913192749023 - ], - [ - "▁numai", - -10.849047660827637 - ], - [ - "▁scientific", - -10.84913158416748 - ], - [ - "▁virtual", - -10.849145889282227 - ], - [ - "▁Ac", - -10.849513053894043 - ], - [ - "▁procedures", - -10.849631309509277 - ], - [ - "▁silver", - -10.849821090698242 - ], - [ - "▁leather", - -10.849979400634766 - ], - [ - "DA", - -10.85014820098877 - ], - [ - "▁executive", - -10.850263595581055 - ], - [ - "▁officials", - -10.850496292114258 - ], - [ - "▁agencies", - -10.850503921508789 - ], - [ - "▁Software", - -10.850540161132812 - ], - [ - "▁cor", - -10.850690841674805 - ], - [ - "Con", - -10.850741386413574 - ], - [ - "▁log", - -10.851066589355469 - ], - [ - "ț", - -10.851147651672363 - ], - [ - "02", - -10.851195335388184 - ], - [ - "▁7.", - -10.85245132446289 - ], - [ - "▁accepted", - -10.852483749389648 - ], - [ - "▁Berlin", - -10.852538108825684 - ], - [ - "ID", - -10.852582931518555 - ], - [ - "cot", - -10.852788925170898 - ], - [ - "▁employment", - -10.852799415588379 - ], - [ - "run", - -10.853020668029785 - ], - [ - "▁identified", - -10.853178977966309 - ], - [ - "96", - -10.853887557983398 - ], - [ - "▁déjà", - -10.853944778442383 - ], - [ - "▁cuisine", - -10.853952407836914 - ], - [ - "turi", - -10.854070663452148 - ], - [ - "▁Japanese", - -10.854316711425781 - ], - [ - "▁golf", - -10.854514122009277 - ], - [ - "▁Ki", - -10.854787826538086 - ], - [ - "▁carefully", - -10.854863166809082 - ], - [ - "▁remote", - -10.854973793029785 - ], - [ - "▁2018,", - -10.855148315429688 - ], - [ - "▁sus", - -10.855154991149902 - ], - [ - "tique", - -10.855293273925781 - ], - [ - "▁residential", - -10.855695724487305 - ], - [ - "97", - -10.855809211730957 - ], - [ - "▁Spring", - -10.855908393859863 - ], - [ - "▁Marketing", - -10.856186866760254 - ], - [ - "▁Control", - -10.85630989074707 - ], - [ - "var", - -10.856344223022461 - ], - [ - "▁historical", - -10.8563814163208 - ], - [ - "▁freedom", - -10.856423377990723 - ], - [ - "sure", - -10.856426239013672 - ], - [ - "▁broken", - -10.856796264648438 - ], - [ - "▁criminal", - -10.856949806213379 - ], - [ - "▁innovation", - -10.857075691223145 - ], - [ - "▁Italian", - -10.857192039489746 - ], - [ - "sper", - -10.857282638549805 - ], - [ - "▁cake", - -10.857653617858887 - ], - [ - "▁candidates", - -10.857894897460938 - ], - [ - "▁sizes", - -10.858267784118652 - ], - [ - "pel", - -10.858366966247559 - ], - [ - "▁frequently", - -10.85889720916748 - ], - [ - "▁planet", - -10.859138488769531 - ], - [ - "▁writer", - -10.859519958496094 - ], - [ - "1,", - -10.859569549560547 - ], - [ - "uvent", - -10.85959529876709 - ], - [ - "▁awareness", - -10.859807968139648 - ], - [ - "name", - -10.859954833984375 - ], - [ - "▁Children", - -10.859980583190918 - ], - [ - "▁relatively", - -10.860311508178711 - ], - [ - "▁pu", - -10.860321998596191 - ], - [ - "▁quiet", - -10.86038875579834 - ], - [ - "▁planned", - -10.860716819763184 - ], - [ - "▁election", - -10.861419677734375 - ], - [ - "▁6.", - -10.861761093139648 - ], - [ - "▁broad", - -10.861772537231445 - ], - [ - "▁skill", - -10.861835479736328 - ], - [ - "▁reasonable", - -10.862037658691406 - ], - [ - "▁Fort", - -10.862283706665039 - ], - [ - "▁aceea", - -10.862407684326172 - ], - [ - "▁arrived", - -10.86263370513916 - ], - [ - "▁payments", - -10.862680435180664 - ], - [ - "ack", - -10.862700462341309 - ], - [ - "▁Ort", - -10.863354682922363 - ], - [ - "▁investors", - -10.863364219665527 - ], - [ - "▁operate", - -10.86351203918457 - ], - [ - "ME", - -10.863556861877441 - ], - [ - "dic", - -10.863683700561523 - ], - [ - "▁foods", - -10.863731384277344 - ], - [ - "▁stick", - -10.863831520080566 - ], - [ - "▁agents", - -10.86412525177002 - ], - [ - "▁crowd", - -10.864175796508789 - ], - [ - "▁Students", - -10.864480972290039 - ], - [ - "▁concerned", - -10.864609718322754 - ], - [ - "test", - -10.864740371704102 - ], - [ - "▁designer", - -10.865334510803223 - ], - [ - "▁Conference", - -10.865593910217285 - ], - [ - "▁saving", - -10.866105079650879 - ], - [ - "▁recorded", - -10.866422653198242 - ], - [ - "▁proposed", - -10.866564750671387 - ], - [ - "▁ship", - -10.86657428741455 - ], - [ - "▁cred", - -10.867274284362793 - ], - [ - "▁Ci", - -10.867440223693848 - ], - [ - "RE", - -10.867619514465332 - ], - [ - "▁tradition", - -10.867753982543945 - ], - [ - "▁worldwide", - -10.867779731750488 - ], - [ - "64", - -10.867944717407227 - ], - [ - "▁television", - -10.867989540100098 - ], - [ - "▁projet", - -10.868102073669434 - ], - [ - "ency", - -10.868487358093262 - ], - [ - "▁struggle", - -10.868514060974121 - ], - [ - "▁twice", - -10.868955612182617 - ], - [ - "▁Off", - -10.869234085083008 - ], - [ - "▁begins", - -10.869577407836914 - ], - [ - "key", - -10.869794845581055 - ], - [ - "▁Table", - -10.869963645935059 - ], - [ - "▁demande", - -10.870177268981934 - ], - [ - "▁liquid", - -10.870441436767578 - ], - [ - "meter", - -10.870684623718262 - ], - [ - "▁2001", - -10.871190071105957 - ], - [ - "▁willing", - -10.871660232543945 - ], - [ - "▁medicine", - -10.871707916259766 - ], - [ - "▁expand", - -10.871747970581055 - ], - [ - "▁2004", - -10.871804237365723 - ], - [ - "▁2002", - -10.872016906738281 - ], - [ - "▁accord", - -10.872292518615723 - ], - [ - "▁Chris", - -10.872446060180664 - ], - [ - "▁prove", - -10.872543334960938 - ], - [ - "ston", - -10.872740745544434 - ], - [ - "mettre", - -10.872800827026367 - ], - [ - "▁moments", - -10.873537063598633 - ], - [ - "tik", - -10.87368392944336 - ], - [ - "such", - -10.874055862426758 - ], - [ - "2.", - -10.874431610107422 - ], - [ - "▁UN", - -10.874561309814453 - ], - [ - "▁jump", - -10.874737739562988 - ], - [ - "▁dish", - -10.87539291381836 - ], - [ - "▁Key", - -10.875663757324219 - ], - [ - "▁challenging", - -10.875975608825684 - ], - [ - "▁domestic", - -10.876410484313965 - ], - [ - "▁impressive", - -10.876752853393555 - ], - [ - "iger", - -10.877022743225098 - ], - [ - "▁Ram", - -10.877157211303711 - ], - [ - "▁doit", - -10.877263069152832 - ], - [ - "▁concrete", - -10.87734317779541 - ], - [ - "▁Unternehmen", - -10.877397537231445 - ], - [ - "▁LED", - -10.877429008483887 - ], - [ - "▁trouver", - -10.877533912658691 - ], - [ - "▁fundamental", - -10.877875328063965 - ], - [ - "▁implementation", - -10.878121376037598 - ], - [ - "85", - -10.878247261047363 - ], - [ - "▁hosting", - -10.87856388092041 - ], - [ - "▁Game", - -10.878691673278809 - ], - [ - "▁taught", - -10.878981590270996 - ], - [ - "tung", - -10.879016876220703 - ], - [ - "ront", - -10.87940502166748 - ], - [ - "▁shoes", - -10.879639625549316 - ], - [ - "79", - -10.8797607421875 - ], - [ - "▁stunning", - -10.879778861999512 - ], - [ - "▁Congress", - -10.880142211914062 - ], - [ - "▁Ent", - -10.880278587341309 - ], - [ - "▁Wer", - -10.880607604980469 - ], - [ - "▁alt", - -10.880608558654785 - ], - [ - "ör", - -10.880699157714844 - ], - [ - "▁calm", - -10.8808012008667 - ], - [ - "46", - -10.881132125854492 - ], - [ - "▁Daca", - -10.881404876708984 - ], - [ - "71", - -10.881938934326172 - ], - [ - "▁Dec", - -10.882392883300781 - ], - [ - "▁Fo", - -10.882437705993652 - ], - [ - "▁defense", - -10.88313102722168 - ], - [ - "▁expectations", - -10.883166313171387 - ], - [ - "▁Alle", - -10.88318920135498 - ], - [ - "▁brief", - -10.883691787719727 - ], - [ - "▁Hospital", - -10.883975982666016 - ], - [ - "▁sides", - -10.884121894836426 - ], - [ - "▁yellow", - -10.884140014648438 - ], - [ - "lei", - -10.88451862335205 - ], - [ - "▁speaking", - -10.884589195251465 - ], - [ - "▁crucial", - -10.885198593139648 - ], - [ - "▁Town", - -10.8854341506958 - ], - [ - "▁married", - -10.885574340820312 - ], - [ - "▁acesta", - -10.885583877563477 - ], - [ - "▁noted", - -10.885611534118652 - ], - [ - "▁Word", - -10.885659217834473 - ], - [ - "▁conducted", - -10.885963439941406 - ], - [ - "▁decor", - -10.886249542236328 - ], - [ - "kon", - -10.886565208435059 - ], - [ - "▁supplies", - -10.8866605758667 - ], - [ - "▁adventure", - -10.886691093444824 - ], - [ - "▁exhibition", - -10.887163162231445 - ], - [ - "heit", - -10.887300491333008 - ], - [ - "▁36", - -10.88744831085205 - ], - [ - "eria", - -10.887505531311035 - ], - [ - "ines", - -10.887551307678223 - ], - [ - "ological", - -10.887582778930664 - ], - [ - "quel", - -10.88806438446045 - ], - [ - "▁Van", - -10.88825511932373 - ], - [ - "-19", - -10.88853645324707 - ], - [ - "2,", - -10.888566970825195 - ], - [ - "▁Band", - -10.888989448547363 - ], - [ - "▁soil", - -10.889184951782227 - ], - [ - "▁Tim", - -10.889599800109863 - ], - [ - "▁NOT", - -10.88968563079834 - ], - [ - "▁pilot", - -10.889753341674805 - ], - [ - "▁Sh", - -10.889774322509766 - ], - [ - "Ho", - -10.890361785888672 - ], - [ - "CA", - -10.890509605407715 - ], - [ - "▁Eu", - -10.890745162963867 - ], - [ - "▁committee", - -10.890829086303711 - ], - [ - "▁Store", - -10.891075134277344 - ], - [ - "▁joint", - -10.89111614227295 - ], - [ - "▁Op", - -10.891315460205078 - ], - [ - "▁Jack", - -10.891985893249512 - ], - [ - "quality", - -10.89216423034668 - ], - [ - "▁Has", - -10.892489433288574 - ], - [ - "▁wenig", - -10.892507553100586 - ], - [ - "hood", - -10.892545700073242 - ], - [ - "▁Class", - -10.892582893371582 - ], - [ - "rus", - -10.892773628234863 - ], - [ - "▁grown", - -10.89294719696045 - ], - [ - "▁About", - -10.893518447875977 - ], - [ - "▁sum", - -10.893942832946777 - ], - [ - "▁Fair", - -10.893946647644043 - ], - [ - "SA", - -10.894149780273438 - ], - [ - "92", - -10.894185066223145 - ], - [ - "▁fourth", - -10.894354820251465 - ], - [ - "▁featured", - -10.894384384155273 - ], - [ - "▁Pen", - -10.89444637298584 - ], - [ - "▁natürlich", - -10.894885063171387 - ], - [ - "ched", - -10.894901275634766 - ], - [ - "▁ban", - -10.895112991333008 - ], - [ - "anne", - -10.89522647857666 - ], - [ - "▁theory", - -10.895413398742676 - ], - [ - "bin", - -10.895438194274902 - ], - [ - "iers", - -10.895819664001465 - ], - [ - "▁strategic", - -10.895903587341309 - ], - [ - "▁jours", - -10.895956039428711 - ], - [ - "▁communicate", - -10.896124839782715 - ], - [ - "▁pin", - -10.896320343017578 - ], - [ - "▁Bon", - -10.89721393585205 - ], - [ - "kom", - -10.897290229797363 - ], - [ - "-5", - -10.898177146911621 - ], - [ - "▁degrees", - -10.898643493652344 - ], - [ - "▁entertainment", - -10.899014472961426 - ], - [ - "ară", - -10.899248123168945 - ], - [ - "ales", - -10.899425506591797 - ], - [ - "▁pendant", - -10.89954662322998 - ], - [ - "▁Series", - -10.899575233459473 - ], - [ - "▁holds", - -10.899592399597168 - ], - [ - "▁Mini", - -10.899828910827637 - ], - [ - "▁Obama", - -10.899898529052734 - ], - [ - "▁conform", - -10.900163650512695 - ], - [ - "-10", - -10.900216102600098 - ], - [ - "▁preparation", - -10.9009370803833 - ], - [ - "▁autre", - -10.90105152130127 - ], - [ - "▁mortgage", - -10.901155471801758 - ], - [ - "▁Kan", - -10.901508331298828 - ], - [ - "▁typical", - -10.901538848876953 - ], - [ - "01", - -10.901711463928223 - ], - [ - "▁Review", - -10.901862144470215 - ], - [ - "▁laptop", - -10.902127265930176 - ], - [ - "CR", - -10.902610778808594 - ], - [ - "▁thread", - -10.90265941619873 - ], - [ - "BS", - -10.902661323547363 - ], - [ - "▁upper", - -10.902700424194336 - ], - [ - "▁searching", - -10.902932167053223 - ], - [ - "▁pen", - -10.903214454650879 - ], - [ - "▁Middle", - -10.90333080291748 - ], - [ - "73", - -10.903359413146973 - ], - [ - "▁leg", - -10.903650283813477 - ], - [ - "onic", - -10.904272079467773 - ], - [ - "IS", - -10.904356956481934 - ], - [ - "▁Kar", - -10.904623985290527 - ], - [ - "anz", - -10.9046630859375 - ], - [ - "▁circuit", - -10.904901504516602 - ], - [ - "▁Casino", - -10.905384063720703 - ], - [ - "07", - -10.90584659576416 - ], - [ - "▁petit", - -10.905906677246094 - ], - [ - "TV", - -10.905978202819824 - ], - [ - "level", - -10.906311988830566 - ], - [ - "▁Point", - -10.906312942504883 - ], - [ - "rau", - -10.906474113464355 - ], - [ - "▁cabinet", - -10.906991958618164 - ], - [ - "▁failed", - -10.907042503356934 - ], - [ - "▁stated", - -10.907126426696777 - ], - [ - "LA", - -10.907461166381836 - ], - [ - "▁privacy", - -10.907596588134766 - ], - [ - "vol", - -10.907901763916016 - ], - [ - "ativ", - -10.908151626586914 - ], - [ - "▁matters", - -10.908210754394531 - ], - [ - "▁Mor", - -10.908555030822754 - ], - [ - "▁Ur", - -10.90860652923584 - ], - [ - "view", - -10.908968925476074 - ], - [ - "▁consultation", - -10.90921688079834 - ], - [ - "TS", - -10.909296989440918 - ], - [ - "▁apartment", - -10.909412384033203 - ], - [ - "▁integrated", - -10.909425735473633 - ], - [ - "74", - -10.909669876098633 - ], - [ - "▁Through", - -10.909710884094238 - ], - [ - "▁kick", - -10.909798622131348 - ], - [ - "▁perioada", - -10.90993881225586 - ], - [ - "▁entirely", - -10.909953117370605 - ], - [ - "▁impossible", - -10.91015911102295 - ], - [ - "▁consideration", - -10.910268783569336 - ], - [ - "▁Alt", - -10.91054916381836 - ], - [ - "▁Come", - -10.911089897155762 - ], - [ - "▁outstanding", - -10.911276817321777 - ], - [ - "83", - -10.911727905273438 - ], - [ - "▁prezent", - -10.911859512329102 - ], - [ - "▁Local", - -10.911993980407715 - ], - [ - "▁Camp", - -10.912056922912598 - ], - [ - "▁bear", - -10.912067413330078 - ], - [ - "enden", - -10.912262916564941 - ], - [ - "life", - -10.91236686706543 - ], - [ - "▁Haus", - -10.912516593933105 - ], - [ - "▁William", - -10.912644386291504 - ], - [ - "“,", - -10.912665367126465 - ], - [ - "▁Instagram", - -10.91285514831543 - ], - [ - "▁solve", - -10.913195610046387 - ], - [ - "▁Ze", - -10.913431167602539 - ], - [ - "▁everyday", - -10.91357135772705 - ], - [ - "bla", - -10.913615226745605 - ], - [ - "eng", - -10.913662910461426 - ], - [ - "ough", - -10.914246559143066 - ], - [ - "84", - -10.914483070373535 - ], - [ - "?\"", - -10.914599418640137 - ], - [ - "rely", - -10.91476821899414 - ], - [ - "TH", - -10.914841651916504 - ], - [ - "lang", - -10.91511058807373 - ], - [ - "82", - -10.915817260742188 - ], - [ - "▁removal", - -10.91589641571045 - ], - [ - "ală", - -10.915956497192383 - ], - [ - "▁circumstances", - -10.916097640991211 - ], - [ - "ente", - -10.91622257232666 - ], - [ - "▁lieu", - -10.91645336151123 - ], - [ - "▁2016.", - -10.91710376739502 - ], - [ - "▁ales", - -10.917342185974121 - ], - [ - "▁pure", - -10.917482376098633 - ], - [ - "▁choosing", - -10.917590141296387 - ], - [ - "▁Russia", - -10.917698860168457 - ], - [ - "amp", - -10.917703628540039 - ], - [ - "▁Santa", - -10.91788387298584 - ], - [ - "▁happening", - -10.918203353881836 - ], - [ - "▁crew", - -10.91822338104248 - ], - [ - "▁lei", - -10.91855239868164 - ], - [ - "IP", - -10.91858196258545 - ], - [ - "RO", - -10.919425964355469 - ], - [ - "▁resort", - -10.919514656066895 - ], - [ - "ened", - -10.919689178466797 - ], - [ - "MB", - -10.920031547546387 - ], - [ - "▁styles", - -10.920052528381348 - ], - [ - "▁dernier", - -10.920533180236816 - ], - [ - "uck", - -10.920699119567871 - ], - [ - "▁Guide", - -10.920710563659668 - ], - [ - "fic", - -10.92096996307373 - ], - [ - "▁fitness", - -10.921977996826172 - ], - [ - "▁healthcare", - -10.92223072052002 - ], - [ - "mol", - -10.92237663269043 - ], - [ - "▁vis", - -10.922721862792969 - ], - [ - "▁atmosphere", - -10.922972679138184 - ], - [ - "▁motion", - -10.922989845275879 - ], - [ - "▁closer", - -10.923114776611328 - ], - [ - "▁SA", - -10.92335319519043 - ], - [ - "▁default", - -10.923371315002441 - ], - [ - "▁architecture", - -10.923471450805664 - ], - [ - "iile", - -10.923528671264648 - ], - [ - "zel", - -10.923675537109375 - ], - [ - "cla", - -10.92387866973877 - ], - [ - "OP", - -10.924382209777832 - ], - [ - "▁west", - -10.924965858459473 - ], - [ - "▁Energy", - -10.925613403320312 - ], - [ - "▁positions", - -10.925777435302734 - ], - [ - "▁contrast", - -10.925885200500488 - ], - [ - "▁serves", - -10.92605972290039 - ], - [ - "cup", - -10.926340103149414 - ], - [ - "▁rose", - -10.926485061645508 - ], - [ - "pers", - -10.92664623260498 - ], - [ - "▁noise", - -10.926846504211426 - ], - [ - "mont", - -10.92690658569336 - ], - [ - "#", - -10.927061080932617 - ], - [ - "lies", - -10.927326202392578 - ], - [ - "pat", - -10.927718162536621 - ], - [ - "IC", - -10.927956581115723 - ], - [ - "arc", - -10.927989959716797 - ], - [ - "▁winner", - -10.928524017333984 - ], - [ - "tent", - -10.928732872009277 - ], - [ - "▁Preis", - -10.929106712341309 - ], - [ - "▁vin", - -10.929254531860352 - ], - [ - "blo", - -10.92929458618164 - ], - [ - "ție", - -10.929520606994629 - ], - [ - "▁OR", - -10.930315017700195 - ], - [ - "▁Buch", - -10.930798530578613 - ], - [ - "▁nearby", - -10.931190490722656 - ], - [ - "▁meetings", - -10.931290626525879 - ], - [ - "▁48", - -10.931465148925781 - ], - [ - "▁quand", - -10.93152904510498 - ], - [ - "▁usual", - -10.931936264038086 - ], - [ - "▁weitere", - -10.932539939880371 - ], - [ - "▁caught", - -10.932571411132812 - ], - [ - "▁issued", - -10.932626724243164 - ], - [ - "ști", - -10.932896614074707 - ], - [ - "upcoming", - -10.933232307434082 - ], - [ - "▁agreed", - -10.933233261108398 - ], - [ - "place", - -10.933353424072266 - ], - [ - "▁Brand", - -10.93344497680664 - ], - [ - "▁relation", - -10.933969497680664 - ], - [ - "▁atât", - -10.934090614318848 - ], - [ - "▁Tre", - -10.934176445007324 - ], - [ - "▁lors", - -10.934438705444336 - ], - [ - "▁adopt", - -10.934452056884766 - ], - [ - "▁celui", - -10.93458366394043 - ], - [ - "cken", - -10.93505859375 - ], - [ - "▁partnership", - -10.935284614562988 - ], - [ - "?”", - -10.935376167297363 - ], - [ - "▁ba", - -10.935746192932129 - ], - [ - "▁ID", - -10.935832023620605 - ], - [ - "▁consistent", - -10.935835838317871 - ], - [ - "▁Ya", - -10.935941696166992 - ], - [ - "▁Academy", - -10.936182022094727 - ], - [ - "cial", - -10.936230659484863 - ], - [ - "1%", - -10.936366081237793 - ], - [ - "▁mise", - -10.936684608459473 - ], - [ - "▁gute", - -10.936728477478027 - ], - [ - "gli", - -10.936939239501953 - ], - [ - "▁Bu", - -10.937679290771484 - ], - [ - "▁reduction", - -10.937917709350586 - ], - [ - "acy", - -10.938126564025879 - ], - [ - "aga", - -10.938161849975586 - ], - [ - "▁Sc", - -10.938273429870605 - ], - [ - "▁Informationen", - -10.938308715820312 - ], - [ - "▁kommen", - -10.938352584838867 - ], - [ - "press", - -10.93837833404541 - ], - [ - "▁bridge", - -10.938379287719727 - ], - [ - "▁qualified", - -10.938671112060547 - ], - [ - "position", - -10.938821792602539 - ], - [ - "▁combat", - -10.938933372497559 - ], - [ - "!\"", - -10.938993453979492 - ], - [ - "eva", - -10.939217567443848 - ], - [ - "oase", - -10.939380645751953 - ], - [ - "▁inner", - -10.939410209655762 - ], - [ - "▁loans", - -10.939720153808594 - ], - [ - "made", - -10.939786911010742 - ], - [ - "▁Mexico", - -10.93993091583252 - ], - [ - "▁formal", - -10.940092086791992 - ], - [ - "▁fell", - -10.94021987915039 - ], - [ - "91", - -10.940524101257324 - ], - [ - "▁campus", - -10.9407320022583 - ], - [ - "ienne", - -10.940869331359863 - ], - [ - "▁framework", - -10.94105339050293 - ], - [ - "ncing", - -10.941157341003418 - ], - [ - "▁Para", - -10.941222190856934 - ], - [ - "▁password", - -10.941298484802246 - ], - [ - "▁sei", - -10.941422462463379 - ], - [ - "▁Cross", - -10.941532135009766 - ], - [ - "▁Ten", - -10.941873550415039 - ], - [ - "bank", - -10.941887855529785 - ], - [ - "▁gun", - -10.942000389099121 - ], - [ - "ient", - -10.942021369934082 - ], - [ - "▁usage", - -10.942176818847656 - ], - [ - "▁(2", - -10.942278861999512 - ], - [ - "Gra", - -10.942320823669434 - ], - [ - "▁prea", - -10.94253158569336 - ], - [ - "▁Als", - -10.942619323730469 - ], - [ - "▁finance", - -10.942638397216797 - ], - [ - "tate", - -10.942665100097656 - ], - [ - "ition", - -10.942703247070312 - ], - [ - "▁regulations", - -10.942741394042969 - ], - [ - "▁Professional", - -10.943001747131348 - ], - [ - "▁pl", - -10.94336986541748 - ], - [ - "▁SEO", - -10.943472862243652 - ], - [ - "▁trecut", - -10.943487167358398 - ], - [ - "▁aller", - -10.943509101867676 - ], - [ - "▁violence", - -10.943986892700195 - ], - [ - "▁membership", - -10.944117546081543 - ], - [ - "▁picked", - -10.944162368774414 - ], - [ - "▁collected", - -10.9443359375 - ], - [ - "▁extended", - -10.944449424743652 - ], - [ - "▁religious", - -10.944661140441895 - ], - [ - "▁salle", - -10.944767951965332 - ], - [ - "RA", - -10.944781303405762 - ], - [ - "▁blend", - -10.945232391357422 - ], - [ - "▁Min", - -10.94532299041748 - ], - [ - "kal", - -10.945887565612793 - ], - [ - "▁featuring", - -10.945902824401855 - ], - [ - "▁researchers", - -10.946263313293457 - ], - [ - "▁Search", - -10.946558952331543 - ], - [ - "CE", - -10.946675300598145 - ], - [ - "▁recognized", - -10.94682502746582 - ], - [ - "▁semi", - -10.94692611694336 - ], - [ - "▁exposure", - -10.94718074798584 - ], - [ - "grew", - -10.947466850280762 - ], - [ - "▁candidate", - -10.948250770568848 - ], - [ - "▁shares", - -10.948908805847168 - ], - [ - "▁edit", - -10.949745178222656 - ], - [ - "CS", - -10.949905395507812 - ], - [ - "▁Cl", - -10.950240135192871 - ], - [ - "▁Enjoy", - -10.951438903808594 - ], - [ - "▁hurt", - -10.951482772827148 - ], - [ - "▁bottle", - -10.951593399047852 - ], - [ - "▁Buy", - -10.95159912109375 - ], - [ - "▁superior", - -10.952286720275879 - ], - [ - "▁missed", - -10.952424049377441 - ], - [ - "▁workshop", - -10.952433586120605 - ], - [ - "action", - -10.952437400817871 - ], - [ - "ple", - -10.952699661254883 - ], - [ - "▁Schul", - -10.952814102172852 - ], - [ - "▁houses", - -10.953080177307129 - ], - [ - "▁2017,", - -10.953569412231445 - ], - [ - "▁killed", - -10.953750610351562 - ], - [ - "▁calendar", - -10.954306602478027 - ], - [ - "▁Mike", - -10.954597473144531 - ], - [ - "FA", - -10.954627990722656 - ], - [ - "nut", - -10.95487117767334 - ], - [ - "▁establish", - -10.955140113830566 - ], - [ - "▁alcohol", - -10.95514965057373 - ], - [ - "▁closely", - -10.955170631408691 - ], - [ - "▁MA", - -10.955381393432617 - ], - [ - "pul", - -10.955389022827148 - ], - [ - "▁defined", - -10.955666542053223 - ], - [ - "aires", - -10.955692291259766 - ], - [ - "▁Shi", - -10.955703735351562 - ], - [ - "▁plays", - -10.956303596496582 - ], - [ - "▁sister", - -10.95690631866455 - ], - [ - "▁cable", - -10.957179069519043 - ], - [ - "▁desk", - -10.957215309143066 - ], - [ - "▁apoi", - -10.957738876342773 - ], - [ - "▁identity", - -10.95785140991211 - ], - [ - "▁stars", - -10.957931518554688 - ], - [ - "▁fata", - -10.958008766174316 - ], - [ - "▁obvious", - -10.958330154418945 - ], - [ - "▁dental", - -10.95843505859375 - ], - [ - "AM", - -10.958802223205566 - ], - [ - "▁sharp", - -10.95881175994873 - ], - [ - "duc", - -10.959053993225098 - ], - [ - "▁manufacturer", - -10.95914077758789 - ], - [ - "!)", - -10.959270477294922 - ], - [ - "▁objects", - -10.959720611572266 - ], - [ - "▁Ag", - -10.959989547729492 - ], - [ - "referred", - -10.960195541381836 - ], - [ - "▁Ak", - -10.960308074951172 - ], - [ - "burg", - -10.960360527038574 - ], - [ - "▁nouveau", - -10.960854530334473 - ], - [ - "▁Pal", - -10.960994720458984 - ], - [ - "▁Arbeits", - -10.961280822753906 - ], - [ - "▁personally", - -10.961288452148438 - ], - [ - "▁Dé", - -10.961292266845703 - ], - [ - "▁import", - -10.961688041687012 - ], - [ - "▁justice", - -10.961913108825684 - ], - [ - "▁photography", - -10.962705612182617 - ], - [ - "▁portfolio", - -10.962841987609863 - ], - [ - "56", - -10.96314525604248 - ], - [ - "▁nouvelle", - -10.963293075561523 - ], - [ - "▁oven", - -10.964197158813477 - ], - [ - "▁400", - -10.964272499084473 - ], - [ - "▁mixed", - -10.964395523071289 - ], - [ - "▁relax", - -10.964427947998047 - ], - [ - "▁imp", - -10.964703559875488 - ], - [ - "▁».", - -10.964734077453613 - ], - [ - "▁mail", - -10.964777946472168 - ], - [ - "rage", - -10.964861869812012 - ], - [ - "nos", - -10.964974403381348 - ], - [ - "▁drugs", - -10.965195655822754 - ], - [ - "▁jede", - -10.965211868286133 - ], - [ - "▁einige", - -10.965232849121094 - ], - [ - "▁8.", - -10.965325355529785 - ], - [ - "ters", - -10.965412139892578 - ], - [ - "▁electrical", - -10.965432167053223 - ], - [ - "▁puis", - -10.965836524963379 - ], - [ - "▁films", - -10.965903282165527 - ], - [ - "41", - -10.966036796569824 - ], - [ - "▁moral", - -10.966398239135742 - ], - [ - "lage", - -10.966402053833008 - ], - [ - "▁spaces", - -10.966415405273438 - ], - [ - "▁Ed", - -10.966462135314941 - ], - [ - "▁classroom", - -10.966588020324707 - ], - [ - "▁große", - -10.966588973999023 - ], - [ - "▁baza", - -10.966887474060059 - ], - [ - "face", - -10.967308044433594 - ], - [ - "▁informed", - -10.967333793640137 - ], - [ - "▁improving", - -10.967477798461914 - ], - [ - "▁guidance", - -10.967880249023438 - ], - [ - "▁gallery", - -10.96800708770752 - ], - [ - "cular", - -10.968046188354492 - ], - [ - "53", - -10.968094825744629 - ], - [ - "Despite", - -10.968238830566406 - ], - [ - "▁forme", - -10.968304634094238 - ], - [ - "▁système", - -10.968415260314941 - ], - [ - "▁Win", - -10.968494415283203 - ], - [ - "▁Small", - -10.968537330627441 - ], - [ - "▁Mobile", - -10.968564987182617 - ], - [ - "▁tape", - -10.968606948852539 - ], - [ - "▁erhalten", - -10.968914985656738 - ], - [ - "▁movies", - -10.968928337097168 - ], - [ - "▁Unfortunately", - -10.968963623046875 - ], - [ - "▁Looking", - -10.96945858001709 - ], - [ - "▁guard", - -10.969584465026855 - ], - [ - "▁pr", - -10.969820976257324 - ], - [ - "▁confident", - -10.96988582611084 - ], - [ - "BA", - -10.970229148864746 - ], - [ - "bas", - -10.970272064208984 - ], - [ - "hum", - -10.97050666809082 - ], - [ - "ular", - -10.9705171585083 - ], - [ - "▁Still", - -10.970593452453613 - ], - [ - "▁flavor", - -10.970656394958496 - ], - [ - "▁boost", - -10.970773696899414 - ], - [ - "▁division", - -10.970842361450195 - ], - [ - "ising", - -10.971006393432617 - ], - [ - "▁monitoring", - -10.971044540405273 - ], - [ - "▁Sen", - -10.97105884552002 - ], - [ - "▁https", - -10.971527099609375 - ], - [ - "mainly", - -10.971735000610352 - ], - [ - "play", - -10.972251892089844 - ], - [ - "▁dynamic", - -10.972357749938965 - ], - [ - "▁coup", - -10.972370147705078 - ], - [ - "▁carpet", - -10.972561836242676 - ], - [ - "iner", - -10.972846984863281 - ], - [ - "ral", - -10.97325611114502 - ], - [ - "iser", - -10.973320007324219 - ], - [ - "RC", - -10.9739990234375 - ], - [ - "▁definition", - -10.97475814819336 - ], - [ - "▁Za", - -10.974767684936523 - ], - [ - "friendly", - -10.974883079528809 - ], - [ - "43", - -10.975123405456543 - ], - [ - "link", - -10.975180625915527 - ], - [ - "▁Multi", - -10.97519302368164 - ], - [ - "▁einmal", - -10.975272178649902 - ], - [ - "▁stopped", - -10.975394248962402 - ], - [ - "vel", - -10.975456237792969 - ], - [ - "▁ongoing", - -10.975565910339355 - ], - [ - "▁ancient", - -10.976259231567383 - ], - [ - "take", - -10.976301193237305 - ], - [ - "cia", - -10.976432800292969 - ], - [ - "▁USB", - -10.976545333862305 - ], - [ - "▁attorney", - -10.976866722106934 - ], - [ - "▁slot", - -10.976866722106934 - ], - [ - "▁Line", - -10.97693157196045 - ], - [ - "rice", - -10.977087020874023 - ], - [ - "ify", - -10.977520942687988 - ], - [ - "ó", - -10.978260040283203 - ], - [ - "▁flash", - -10.978483200073242 - ], - [ - "▁extension", - -10.978555679321289 - ], - [ - "▁Ende", - -10.979022979736328 - ], - [ - "▁powder", - -10.979114532470703 - ], - [ - "ească", - -10.979143142700195 - ], - [ - "03", - -10.979327201843262 - ], - [ - "▁normally", - -10.979416847229004 - ], - [ - "▁pun", - -10.980108261108398 - ], - [ - "viewed", - -10.980138778686523 - ], - [ - "ssen", - -10.980896949768066 - ], - [ - "ache", - -10.981121063232422 - ], - [ - "ește", - -10.98122787475586 - ], - [ - "▁PA", - -10.981266021728516 - ], - [ - "FI", - -10.981945991516113 - ], - [ - "▁Frank", - -10.98198127746582 - ], - [ - "▁apa", - -10.98242473602295 - ], - [ - "▁coast", - -10.982614517211914 - ], - [ - "▁boy", - -10.982665061950684 - ], - [ - "lim", - -10.982902526855469 - ], - [ - "▁putin", - -10.983194351196289 - ], - [ - "▁script", - -10.983332633972168 - ], - [ - "▁noticed", - -10.9837007522583 - ], - [ - "▁dealing", - -10.983922004699707 - ], - [ - "▁Trans", - -10.984100341796875 - ], - [ - "▁border", - -10.984447479248047 - ], - [ - "▁reputation", - -10.984657287597656 - ], - [ - "-2", - -10.984662055969238 - ], - [ - "HS", - -10.984707832336426 - ], - [ - "▁supports", - -10.984724998474121 - ], - [ - "▁horse", - -10.985146522521973 - ], - [ - "nik", - -10.98520565032959 - ], - [ - "▁clothes", - -10.985234260559082 - ], - [ - "▁Card", - -10.985612869262695 - ], - [ - "▁relief", - -10.98595905303955 - ], - [ - "▁Visit", - -10.986259460449219 - ], - [ - "▁luni", - -10.986593246459961 - ], - [ - "81", - -10.986693382263184 - ], - [ - "qua", - -10.986945152282715 - ], - [ - "▁Comp", - -10.98697280883789 - ], - [ - "▁investigation", - -10.987137794494629 - ], - [ - "▁depth", - -10.987598419189453 - ], - [ - "▁earned", - -10.987709045410156 - ], - [ - "▁Ren", - -10.988090515136719 - ], - [ - "▁Dumnezeu", - -10.988107681274414 - ], - [ - "▁Joe", - -10.988210678100586 - ], - [ - "▁goods", - -10.988288879394531 - ], - [ - "▁Vol", - -10.988686561584473 - ], - [ - "▁certified", - -10.989118576049805 - ], - [ - "▁favor", - -10.989326477050781 - ], - [ - "▁Scott", - -10.989599227905273 - ], - [ - "▁protest", - -10.989802360534668 - ], - [ - "▁pace", - -10.989803314208984 - ], - [ - "▁Angeles", - -10.990368843078613 - ], - [ - "inch", - -10.99050521850586 - ], - [ - "▁charged", - -10.99052619934082 - ], - [ - "code", - -10.990968704223633 - ], - [ - "▁convenient", - -10.99138355255127 - ], - [ - "▁Nord", - -10.991556167602539 - ], - [ - "▁yesterday", - -10.991691589355469 - ], - [ - "Dacă", - -10.99169635772705 - ], - [ - "▁Travel", - -10.991786003112793 - ], - [ - "▁kid", - -10.991941452026367 - ], - [ - "ction", - -10.991986274719238 - ], - [ - "▁groupe", - -10.992770195007324 - ], - [ - "pu", - -10.993056297302246 - ], - [ - "bzw", - -10.993196487426758 - ], - [ - "▁mixture", - -10.993513107299805 - ], - [ - "▁Farm", - -10.993715286254883 - ], - [ - "▁acces", - -10.993939399719238 - ], - [ - "matic", - -10.993950843811035 - ], - [ - "▁comparison", - -10.994006156921387 - ], - [ - "reich", - -10.994095802307129 - ], - [ - "pet", - -10.994502067565918 - ], - [ - "▁lit", - -10.994685173034668 - ], - [ - "▁organized", - -10.99476432800293 - ], - [ - "just", - -10.995564460754395 - ], - [ - "▁fellow", - -10.996004104614258 - ], - [ - "Ver", - -10.996209144592285 - ], - [ - "▁trends", - -10.99622631072998 - ], - [ - "▁evaluation", - -10.99626636505127 - ], - [ - "feld", - -10.99639892578125 - ], - [ - "▁Pu", - -10.99671459197998 - ], - [ - "▁equipped", - -10.99727725982666 - ], - [ - "▁catre", - -10.997278213500977 - ], - [ - "eck", - -10.997369766235352 - ], - [ - "▁facing", - -10.997998237609863 - ], - [ - "▁instrument", - -10.998361587524414 - ], - [ - "▁pleased", - -10.998507499694824 - ], - [ - "▁tap", - -10.998818397521973 - ], - [ - "dom", - -10.998826026916504 - ], - [ - "▁pump", - -10.999384880065918 - ], - [ - "▁functional", - -10.999429702758789 - ], - [ - "▁authority", - -10.999455451965332 - ], - [ - "▁experiment", - -10.999478340148926 - ], - [ - "LO", - -10.999529838562012 - ], - [ - "▁scheduled", - -10.999552726745605 - ], - [ - "halt", - -10.999604225158691 - ], - [ - "▁ceiling", - -10.999761581420898 - ], - [ - "▁Step", - -11.000310897827148 - ], - [ - "▁orders", - -11.00032901763916 - ], - [ - "▁speech", - -11.001046180725098 - ], - [ - "▁stands", - -11.001119613647461 - ], - [ - "▁disc", - -11.001920700073242 - ], - [ - "▁rec", - -11.001935958862305 - ], - [ - "▁Text", - -11.00243854522705 - ], - [ - "▁banks", - -11.00294017791748 - ], - [ - "▁oameni", - -11.003045082092285 - ], - [ - "▁communications", - -11.003194808959961 - ], - [ - "trag", - -11.003307342529297 - ], - [ - "▁trail", - -11.003803253173828 - ], - [ - "AN", - -11.00426197052002 - ], - [ - "▁Federal", - -11.004467964172363 - ], - [ - "▁quote", - -11.00455093383789 - ], - [ - "▁spus", - -11.004620552062988 - ], - [ - "▁managing", - -11.004990577697754 - ], - [ - "▁booking", - -11.00505256652832 - ], - [ - "▁Blog", - -11.005669593811035 - ], - [ - "▁tank", - -11.005681991577148 - ], - [ - "pon", - -11.005804061889648 - ], - [ - "GE", - -11.00582218170166 - ], - [ - "▁fiscal", - -11.005871772766113 - ], - [ - "▁satisfaction", - -11.006044387817383 - ], - [ - "cre", - -11.00614070892334 - ], - [ - "▁protected", - -11.006494522094727 - ], - [ - "▁enfants", - -11.006782531738281 - ], - [ - "▁dort", - -11.007554054260254 - ], - [ - "▁Mel", - -11.008041381835938 - ], - [ - "▁turns", - -11.00804615020752 - ], - [ - "▁savings", - -11.008106231689453 - ], - [ - "▁voir", - -11.008358001708984 - ], - [ - "▁Boston", - -11.008394241333008 - ], - [ - "▁debate", - -11.008469581604004 - ], - [ - "▁SO", - -11.008857727050781 - ], - [ - "▁tables", - -11.009193420410156 - ], - [ - "▁honest", - -11.009210586547852 - ], - [ - "mate", - -11.009283065795898 - ], - [ - "▁chart", - -11.0094633102417 - ], - [ - "decât", - -11.009682655334473 - ], - [ - "▁Radio", - -11.009685516357422 - ], - [ - "54", - -11.00986385345459 - ], - [ - "▁vol", - -11.010008811950684 - ], - [ - "last", - -11.010148048400879 - ], - [ - "▁tall", - -11.010408401489258 - ], - [ - "▁Should", - -11.010489463806152 - ], - [ - "▁sink", - -11.010525703430176 - ], - [ - "▁Right", - -11.010527610778809 - ], - [ - "▁male", - -11.010720252990723 - ], - [ - "▁Modern", - -11.010753631591797 - ], - [ - "▁indeed", - -11.010886192321777 - ], - [ - "▁Garden", - -11.011139869689941 - ], - [ - "▁Mod", - -11.011307716369629 - ], - [ - "▁turning", - -11.0115327835083 - ], - [ - "▁inches", - -11.011557579040527 - ], - [ - "▁Police", - -11.01183795928955 - ], - [ - "▁Pay", - -11.012016296386719 - ], - [ - "UE", - -11.0126371383667 - ], - [ - "mé", - -11.012652397155762 - ], - [ - "EE", - -11.013046264648438 - ], - [ - "▁cookies", - -11.013116836547852 - ], - [ - "rip", - -11.013351440429688 - ], - [ - "▁Motor", - -11.01352310180664 - ], - [ - "▁lung", - -11.01379680633545 - ], - [ - "▁Ap", - -11.013995170593262 - ], - [ - "▁sustainable", - -11.014066696166992 - ], - [ - "▁instant", - -11.014240264892578 - ], - [ - "▁Rose", - -11.014464378356934 - ], - [ - "▁Carolina", - -11.014906883239746 - ], - [ - "▁Help", - -11.014969825744629 - ], - [ - "IE", - -11.01535701751709 - ], - [ - "▁Jersey", - -11.015522956848145 - ], - [ - "▁Spanish", - -11.015586853027344 - ], - [ - "▁wheel", - -11.015660285949707 - ], - [ - "▁fishing", - -11.0158109664917 - ], - [ - "gram", - -11.015937805175781 - ], - [ - "▁ST", - -11.016227722167969 - ], - [ - "▁Nov", - -11.01632022857666 - ], - [ - "▁reporting", - -11.016362190246582 - ], - [ - "ked", - -11.016467094421387 - ], - [ - "▁Leben", - -11.016557693481445 - ], - [ - "▁organisation", - -11.016843795776367 - ], - [ - "▁tiny", - -11.017144203186035 - ], - [ - "▁Alex", - -11.017236709594727 - ], - [ - "▁obtained", - -11.017255783081055 - ], - [ - "▁Acest", - -11.017367362976074 - ], - [ - "▁dangerous", - -11.01749038696289 - ], - [ - "utter", - -11.017624855041504 - ], - [ - "▁rev", - -11.01801586151123 - ], - [ - "Un", - -11.018242835998535 - ], - [ - "▁revealed", - -11.018356323242188 - ], - [ - "▁decade", - -11.018709182739258 - ], - [ - "▁possibility", - -11.01945686340332 - ], - [ - "service", - -11.019577980041504 - ], - [ - "è", - -11.01966667175293 - ], - [ - "▁Chief", - -11.019674301147461 - ], - [ - "▁Durch", - -11.019795417785645 - ], - [ - "▁cadre", - -11.019843101501465 - ], - [ - "▁wearing", - -11.019845008850098 - ], - [ - "sized", - -11.01988410949707 - ], - [ - "LY", - -11.01989459991455 - ], - [ - "▁unser", - -11.019963264465332 - ], - [ - "▁2016,", - -11.019988059997559 - ], - [ - "▁fail", - -11.020028114318848 - ], - [ - "iques", - -11.020115852355957 - ], - [ - "▁Angel", - -11.020315170288086 - ], - [ - "▁transportation", - -11.020364761352539 - ], - [ - "▁dates", - -11.020395278930664 - ], - [ - "▁danger", - -11.020731925964355 - ], - [ - "▁forum", - -11.020828247070312 - ], - [ - "zug", - -11.020885467529297 - ], - [ - "▁filed", - -11.021199226379395 - ], - [ - "loc", - -11.021201133728027 - ], - [ - "éri", - -11.021234512329102 - ], - [ - "tribu", - -11.021393775939941 - ], - [ - "▁entered", - -11.021639823913574 - ], - [ - "▁porte", - -11.021928787231445 - ], - [ - "▁arts", - -11.021979331970215 - ], - [ - "▁reform", - -11.022001266479492 - ], - [ - "▁Main", - -11.022101402282715 - ], - [ - "▁dir", - -11.022111892700195 - ], - [ - "▁approval", - -11.022465705871582 - ], - [ - "▁juice", - -11.022750854492188 - ], - [ - "vier", - -11.022771835327148 - ], - [ - "▁nivel", - -11.02318000793457 - ], - [ - "▁returns", - -11.023423194885254 - ], - [ - "▁formed", - -11.023723602294922 - ], - [ - "▁combine", - -11.02436351776123 - ], - [ - "▁cours", - -11.024392127990723 - ], - [ - "▁Standard", - -11.024463653564453 - ], - [ - "▁certification", - -11.024677276611328 - ], - [ - "escu", - -11.024996757507324 - ], - [ - "▁achieved", - -11.025278091430664 - ], - [ - "▁Model", - -11.025280952453613 - ], - [ - "rul", - -11.025404930114746 - ], - [ - "▁Tage", - -11.025530815124512 - ], - [ - "▁injuries", - -11.02560806274414 - ], - [ - "▁Sal", - -11.025671005249023 - ], - [ - "▁expenses", - -11.025887489318848 - ], - [ - "▁cet", - -11.026009559631348 - ], - [ - "▁taxes", - -11.026028633117676 - ], - [ - "diesen", - -11.02626895904541 - ], - [ - "▁fairly", - -11.026638984680176 - ], - [ - "▁Access", - -11.026866912841797 - ], - [ - "wind", - -11.027122497558594 - ], - [ - "IM", - -11.027252197265625 - ], - [ - "ense", - -11.027548789978027 - ], - [ - "▁hang", - -11.027957916259766 - ], - [ - "▁citizens", - -11.028020858764648 - ], - [ - "3%", - -11.028101921081543 - ], - [ - "lum", - -11.028268814086914 - ], - [ - "▁discussed", - -11.028326034545898 - ], - [ - "AC", - -11.02841854095459 - ], - [ - "‘", - -11.0286865234375 - ], - [ - "▁Sol", - -11.028698921203613 - ], - [ - "06", - -11.028816223144531 - ], - [ - "stellen", - -11.029170989990234 - ], - [ - "▁participation", - -11.02917194366455 - ], - [ - "▁Box", - -11.029200553894043 - ], - [ - "▁bieten", - -11.029687881469727 - ], - [ - "▁Louis", - -11.029730796813965 - ], - [ - "▁lessons", - -11.029789924621582 - ], - [ - "▁visible", - -11.029966354370117 - ], - [ - "▁Cam", - -11.030128479003906 - ], - [ - "▁Ban", - -11.03053092956543 - ], - [ - "▁Far", - -11.03060245513916 - ], - [ - "▁travers", - -11.030759811401367 - ], - [ - "▁telling", - -11.030808448791504 - ], - [ - "▁magic", - -11.030855178833008 - ], - [ - "▁Night", - -11.031316757202148 - ], - [ - "▁judge", - -11.031400680541992 - ], - [ - "▁Pat", - -11.031482696533203 - ], - [ - "▁Southern", - -11.031901359558105 - ], - [ - "OL", - -11.031929969787598 - ], - [ - "fully", - -11.032191276550293 - ], - [ - "▁acestea", - -11.03223705291748 - ], - [ - "▁Order", - -11.032383918762207 - ], - [ - "▁facut", - -11.032523155212402 - ], - [ - "▁Matt", - -11.032600402832031 - ], - [ - "registr", - -11.03278923034668 - ], - [ - "▁Yet", - -11.032811164855957 - ], - [ - "ß", - -11.033596992492676 - ], - [ - "▁făcut", - -11.033618927001953 - ], - [ - "▁versions", - -11.033780097961426 - ], - [ - "▁Force", - -11.03396224975586 - ], - [ - "rick", - -11.034153938293457 - ], - [ - "▁rund", - -11.034563064575195 - ], - [ - "ike", - -11.034658432006836 - ], - [ - "▁Young", - -11.034675598144531 - ], - [ - "▁ski", - -11.034927368164062 - ], - [ - "CU", - -11.035385131835938 - ], - [ - "▁Second", - -11.035510063171387 - ], - [ - "▁graduate", - -11.03554916381836 - ], - [ - "▁Bible", - -11.036049842834473 - ], - [ - "▁vary", - -11.036060333251953 - ], - [ - "▁celebration", - -11.036151885986328 - ], - [ - "▁risks", - -11.036210060119629 - ], - [ - "erii", - -11.036327362060547 - ], - [ - "rance", - -11.036577224731445 - ], - [ - "▁MP", - -11.036787986755371 - ], - [ - "▁tale", - -11.036788940429688 - ], - [ - "▁Ford", - -11.037044525146484 - ], - [ - "▁attached", - -11.037278175354004 - ], - [ - "▁Sy", - -11.037312507629395 - ], - [ - "▁Ly", - -11.03765869140625 - ], - [ - "stellung", - -11.037687301635742 - ], - [ - "▁trop", - -11.0377197265625 - ], - [ - "▁années", - -11.037736892700195 - ], - [ - "▁linked", - -11.03792667388916 - ], - [ - "pit", - -11.038352012634277 - ], - [ - "So", - -11.03835391998291 - ], - [ - "ţe", - -11.038473129272461 - ], - [ - "▁origin", - -11.038509368896484 - ], - [ - "▁boys", - -11.039263725280762 - ], - [ - "holder", - -11.039352416992188 - ], - [ - "read", - -11.039461135864258 - ], - [ - "▁relative", - -11.03950023651123 - ], - [ - "▁industries", - -11.03958511352539 - ], - [ - "making", - -11.039688110351562 - ], - [ - "▁tun", - -11.039917945861816 - ], - [ - "▁forced", - -11.041061401367188 - ], - [ - "▁Welcome", - -11.041086196899414 - ], - [ - "▁explained", - -11.041138648986816 - ], - [ - "MP", - -11.041389465332031 - ], - [ - "▁Three", - -11.041613578796387 - ], - [ - "aza", - -11.041768074035645 - ], - [ - "▁1999", - -11.041924476623535 - ], - [ - "▁erst", - -11.042237281799316 - ], - [ - "RS", - -11.042623519897461 - ], - [ - "▁attractive", - -11.04279899597168 - ], - [ - "▁visited", - -11.042805671691895 - ], - [ - "▁nom", - -11.042874336242676 - ], - [ - "▁drum", - -11.042933464050293 - ], - [ - "cast", - -11.043068885803223 - ], - [ - "ogen", - -11.043105125427246 - ], - [ - "▁tech", - -11.04360294342041 - ], - [ - "▁Comment", - -11.043664932250977 - ], - [ - "▁Little", - -11.04405689239502 - ], - [ - "▁suggested", - -11.044086456298828 - ], - [ - "▁gar", - -11.044205665588379 - ], - [ - "▁crack", - -11.04458999633789 - ], - [ - "▁shooting", - -11.044676780700684 - ], - [ - "▁Try", - -11.044759750366211 - ], - [ - "▁Remember", - -11.045008659362793 - ], - [ - "▁folks", - -11.045217514038086 - ], - [ - "▁MS", - -11.045512199401855 - ], - [ - "▁Dia", - -11.04584789276123 - ], - [ - "3)", - -11.046561241149902 - ], - [ - "arbeit", - -11.04697036743164 - ], - [ - "▁pepper", - -11.047065734863281 - ], - [ - "zz", - -11.047107696533203 - ], - [ - "▁extreme", - -11.047235488891602 - ], - [ - "▁extrem", - -11.047367095947266 - ], - [ - "▁severe", - -11.047768592834473 - ], - [ - "▁networks", - -11.047882080078125 - ], - [ - "păr", - -11.047910690307617 - ], - [ - "sent", - -11.047933578491211 - ], - [ - "▁structures", - -11.048048973083496 - ], - [ - "▁Join", - -11.048078536987305 - ], - [ - "▁privind", - -11.048255920410156 - ], - [ - "▁marriage", - -11.04865837097168 - ], - [ - "▁liegt", - -11.048918724060059 - ], - [ - "eben", - -11.048995971679688 - ], - [ - "▁produse", - -11.049076080322266 - ], - [ - "▁tested", - -11.049090385437012 - ], - [ - "▁Queen", - -11.049134254455566 - ], - [ - "▁Tax", - -11.049687385559082 - ], - [ - "rian", - -11.049710273742676 - ], - [ - "▁Problem", - -11.050151824951172 - ], - [ - "izat", - -11.05023193359375 - ], - [ - "udi", - -11.050324440002441 - ], - [ - "▁LA", - -11.050718307495117 - ], - [ - "▁afford", - -11.051108360290527 - ], - [ - "▁percentage", - -11.05121898651123 - ], - [ - "▁cute", - -11.051547050476074 - ], - [ - "▁gorgeous", - -11.051891326904297 - ], - [ - "▁indoor", - -11.05190372467041 - ], - [ - "▁configuration", - -11.052103042602539 - ], - [ - "▁immediate", - -11.052303314208984 - ], - [ - "▁exemple", - -11.052450180053711 - ], - [ - "▁Being", - -11.052550315856934 - ], - [ - "▁introduction", - -11.052591323852539 - ], - [ - "ella", - -11.053206443786621 - ], - [ - "bare", - -11.053521156311035 - ], - [ - "▁besser", - -11.053539276123047 - ], - [ - "▁Put", - -11.053740501403809 - ], - [ - "gon", - -11.054248809814453 - ], - [ - "▁Italy", - -11.054259300231934 - ], - [ - "▁Thus", - -11.05435562133789 - ], - [ - "tari", - -11.054437637329102 - ], - [ - "0.000", - -11.054460525512695 - ], - [ - "▁Price", - -11.054651260375977 - ], - [ - "▁Trust", - -11.054824829101562 - ], - [ - "▁contra", - -11.054863929748535 - ], - [ - "▁layout", - -11.05504035949707 - ], - [ - "▁Ireland", - -11.055187225341797 - ], - [ - "ctor", - -11.055344581604004 - ], - [ - "atoare", - -11.055540084838867 - ], - [ - "pra", - -11.055729866027832 - ], - [ - "rent", - -11.055892944335938 - ], - [ - "▁Seite", - -11.05605411529541 - ], - [ - "▁ori", - -11.056280136108398 - ], - [ - "spiel", - -11.056541442871094 - ], - [ - "▁Times", - -11.056883811950684 - ], - [ - "primarily", - -11.056974411010742 - ], - [ - "nov", - -11.05703067779541 - ], - [ - "▁desired", - -11.057061195373535 - ], - [ - "▁Would", - -11.057072639465332 - ], - [ - "PL", - -11.057225227355957 - ], - [ - "▁originally", - -11.057367324829102 - ], - [ - "▁Ana", - -11.057463645935059 - ], - [ - "EN", - -11.05754566192627 - ], - [ - "▁occasion", - -11.05755615234375 - ], - [ - "▁grant", - -11.057572364807129 - ], - [ - "igkeit", - -11.057975769042969 - ], - [ - "▁scheme", - -11.058146476745605 - ], - [ - "▁2015.", - -11.058621406555176 - ], - [ - "izare", - -11.058778762817383 - ], - [ - "gate", - -11.058792114257812 - ], - [ - "▁poker", - -11.058899879455566 - ], - [ - "pping", - -11.058998107910156 - ], - [ - "▁Wild", - -11.059511184692383 - ], - [ - "▁YouTube", - -11.059995651245117 - ], - [ - "▁assume", - -11.060284614562988 - ], - [ - "с", - -11.060614585876465 - ], - [ - "▁rapport", - -11.060623168945312 - ], - [ - "▁labor", - -11.060996055603027 - ], - [ - "teur", - -11.061041831970215 - ], - [ - "▁genre", - -11.06116008758545 - ], - [ - "▁plat", - -11.061745643615723 - ], - [ - "▁listening", - -11.061750411987305 - ], - [ - "sky", - -11.061777114868164 - ], - [ - "▁neighborhood", - -11.061782836914062 - ], - [ - "▁3-", - -11.062150001525879 - ], - [ - "▁Library", - -11.062162399291992 - ], - [ - "agit", - -11.062249183654785 - ], - [ - "▁platforms", - -11.062849998474121 - ], - [ - "bei", - -11.062882423400879 - ], - [ - "AB", - -11.062897682189941 - ], - [ - "▁manufacturers", - -11.06295394897461 - ], - [ - "▁printing", - -11.063141822814941 - ], - [ - "▁crisis", - -11.063326835632324 - ], - [ - "▁Smart", - -11.06335163116455 - ], - [ - "▁drawing", - -11.063406944274902 - ], - [ - "MO", - -11.06348991394043 - ], - [ - "▁durable", - -11.063569068908691 - ], - [ - "chant", - -11.0636625289917 - ], - [ - "▁chemical", - -11.063764572143555 - ], - [ - "▁savoir", - -11.063776016235352 - ], - [ - "▁Max", - -11.063802719116211 - ], - [ - "gestellt", - -11.06380844116211 - ], - [ - "▁rural", - -11.063854217529297 - ], - [ - "52", - -11.064105033874512 - ], - [ - "▁invited", - -11.064169883728027 - ], - [ - "▁fil", - -11.0642728805542 - ], - [ - "▁Rob", - -11.064284324645996 - ], - [ - "▁Bell", - -11.064387321472168 - ], - [ - "▁neck", - -11.064831733703613 - ], - [ - "pac", - -11.064879417419434 - ], - [ - "wal", - -11.06491470336914 - ], - [ - "▁là", - -11.064922332763672 - ], - [ - "▁Virginia", - -11.065081596374512 - ], - [ - "▁applicable", - -11.06509017944336 - ], - [ - "▁abuse", - -11.065153121948242 - ], - [ - "aide", - -11.065321922302246 - ], - [ - "▁increases", - -11.065396308898926 - ], - [ - "▁moi", - -11.065568923950195 - ], - [ - "▁Non", - -11.065577507019043 - ], - [ - "▁Produkt", - -11.065627098083496 - ], - [ - "FC", - -11.065644264221191 - ], - [ - "▁shops", - -11.065677642822266 - ], - [ - "▁prendre", - -11.065923690795898 - ], - [ - "atul", - -11.065990447998047 - ], - [ - "▁sal", - -11.066137313842773 - ], - [ - "▁société", - -11.06627082824707 - ], - [ - "▁Hot", - -11.066329002380371 - ], - [ - "rim", - -11.066587448120117 - ], - [ - "gue", - -11.06661605834961 - ], - [ - "▁enterprise", - -11.066624641418457 - ], - [ - "▁33", - -11.067329406738281 - ], - [ - "mittel", - -11.067395210266113 - ], - [ - "ged", - -11.067439079284668 - ], - [ - "▁formula", - -11.06777286529541 - ], - [ - "▁spin", - -11.067784309387207 - ], - [ - "als", - -11.067826271057129 - ], - [ - "2%", - -11.06785774230957 - ], - [ - "bon", - -11.068192481994629 - ], - [ - "▁Executive", - -11.068323135375977 - ], - [ - "▁wirklich", - -11.068427085876465 - ], - [ - "îl", - -11.068608283996582 - ], - [ - "1.", - -11.068917274475098 - ], - [ - "▁Arm", - -11.069157600402832 - ], - [ - "▁rid", - -11.069358825683594 - ], - [ - "aries", - -11.069727897644043 - ], - [ - "▁incident", - -11.06982421875 - ], - [ - "▁copii", - -11.070008277893066 - ], - [ - "▁Charles", - -11.070141792297363 - ], - [ - "▁meals", - -11.070147514343262 - ], - [ - "▁wireless", - -11.070237159729004 - ], - [ - "Ex", - -11.070364952087402 - ], - [ - "▁Financial", - -11.070540428161621 - ], - [ - "▁AM", - -11.070615768432617 - ], - [ - "▁fest", - -11.070645332336426 - ], - [ - "▁Ol", - -11.071410179138184 - ], - [ - "oir", - -11.071447372436523 - ], - [ - "300", - -11.071893692016602 - ], - [ - "▁punct", - -11.072138786315918 - ], - [ - "▁Mad", - -11.07283878326416 - ], - [ - "▁Ali", - -11.072907447814941 - ], - [ - "lag", - -11.073214530944824 - ], - [ - "▁ocean", - -11.073314666748047 - ], - [ - "▁mirror", - -11.073326110839844 - ], - [ - "▁Additionally", - -11.073869705200195 - ], - [ - "alia", - -11.073884963989258 - ], - [ - "▁county", - -11.073899269104004 - ], - [ - "▁hip", - -11.074305534362793 - ], - [ - "dale", - -11.074395179748535 - ], - [ - "▁Stra", - -11.074429512023926 - ], - [ - "▁drag", - -11.074575424194336 - ], - [ - "▁Sand", - -11.074851036071777 - ], - [ - "▁historic", - -11.074980735778809 - ], - [ - "ière", - -11.075427055358887 - ], - [ - "▁examine", - -11.075624465942383 - ], - [ - "soci", - -11.075634002685547 - ], - [ - "ime", - -11.076088905334473 - ], - [ - "▁Insurance", - -11.07621955871582 - ], - [ - "▁crime", - -11.076736450195312 - ], - [ - "▁pare", - -11.076945304870605 - ], - [ - "▁craft", - -11.077105522155762 - ], - [ - "▁Building", - -11.077279090881348 - ], - [ - "mission", - -11.077534675598145 - ], - [ - "▁Americans", - -11.077573776245117 - ], - [ - "▁mg", - -11.077799797058105 - ], - [ - "▁passage", - -11.077938079833984 - ], - [ - "▁deposit", - -11.078346252441406 - ], - [ - "▁widely", - -11.078444480895996 - ], - [ - "nch", - -11.078453063964844 - ], - [ - "▁Coast", - -11.078756332397461 - ], - [ - "▁recipes", - -11.078784942626953 - ], - [ - "▁Ziel", - -11.07951545715332 - ], - [ - "▁duty", - -11.079646110534668 - ], - [ - "▁gerne", - -11.079704284667969 - ], - [ - "most", - -11.080034255981445 - ], - [ - "▁argument", - -11.080158233642578 - ], - [ - "▁root", - -11.08021354675293 - ], - [ - "▁consult", - -11.08024787902832 - ], - [ - "▁muscle", - -11.080255508422852 - ], - [ - "▁spoke", - -11.08038330078125 - ], - [ - "▁Cum", - -11.080950736999512 - ], - [ - "▁orange", - -11.081033706665039 - ], - [ - "▁reader", - -11.081123352050781 - ], - [ - "schw", - -11.081151008605957 - ], - [ - "▁commission", - -11.081332206726074 - ], - [ - "histoire", - -11.081811904907227 - ], - [ - "▁represents", - -11.082064628601074 - ], - [ - "▁meilleur", - -11.082343101501465 - ], - [ - "▁10.", - -11.082358360290527 - ], - [ - "HA", - -11.082427024841309 - ], - [ - "▁Systems", - -11.082573890686035 - ], - [ - "▁blind", - -11.082603454589844 - ], - [ - "▁HP", - -11.083221435546875 - ], - [ - "▁doi", - -11.083307266235352 - ], - [ - "▁signature", - -11.083404541015625 - ], - [ - "▁invite", - -11.083505630493164 - ], - [ - "▁Samsung", - -11.083802223205566 - ], - [ - "▁liber", - -11.083942413330078 - ], - [ - "▁letters", - -11.0840482711792 - ], - [ - "▁primul", - -11.084186553955078 - ], - [ - "▁losing", - -11.084328651428223 - ], - [ - "resulting", - -11.084467887878418 - ], - [ - "▁Computer", - -11.08474063873291 - ], - [ - "▁poll", - -11.0847749710083 - ], - [ - "rile", - -11.085102081298828 - ], - [ - "TI", - -11.085142135620117 - ], - [ - "▁cur", - -11.08566951751709 - ], - [ - "▁fonction", - -11.085833549499512 - ], - [ - "gat", - -11.086359977722168 - ], - [ - "AA", - -11.086480140686035 - ], - [ - "tiv", - -11.086692810058594 - ], - [ - "▁Str", - -11.087076187133789 - ], - [ - "ești", - -11.087677955627441 - ], - [ - "▁officer", - -11.0877046585083 - ], - [ - "reducing", - -11.08772087097168 - ], - [ - "▁gifts", - -11.08780288696289 - ], - [ - "▁performing", - -11.08788776397705 - ], - [ - "▁»,", - -11.088349342346191 - ], - [ - "▁guitar", - -11.08838939666748 - ], - [ - "▁segment", - -11.088580131530762 - ], - [ - "▁Tar", - -11.08861255645752 - ], - [ - "▁ultimately", - -11.088805198669434 - ], - [ - "▁cam", - -11.088960647583008 - ], - [ - "▁Arbeit", - -11.089076042175293 - ], - [ - "▁accessories", - -11.089418411254883 - ], - [ - "bad", - -11.089820861816406 - ], - [ - "home", - -11.0899019241333 - ], - [ - "▁clip", - -11.08995532989502 - ], - [ - "range", - -11.090432167053223 - ], - [ - "CM", - -11.090867042541504 - ], - [ - "▁printed", - -11.090883255004883 - ], - [ - "▁Pet", - -11.091177940368652 - ], - [ - "▁attract", - -11.091333389282227 - ], - [ - "date", - -11.091501235961914 - ], - [ - "▁Senior", - -11.091503143310547 - ], - [ - "▁genau", - -11.092177391052246 - ], - [ - "num", - -11.092435836791992 - ], - [ - "▁attended", - -11.092674255371094 - ], - [ - "▁Turn", - -11.092824935913086 - ], - [ - "▁History", - -11.092830657958984 - ], - [ - "some", - -11.092852592468262 - ], - [ - "▁describe", - -11.09308910369873 - ], - [ - "▁Lee", - -11.093143463134766 - ], - [ - "▁Fre", - -11.093314170837402 - ], - [ - "▁league", - -11.093345642089844 - ], - [ - "new", - -11.093505859375 - ], - [ - "tors", - -11.093535423278809 - ], - [ - "▁storm", - -11.094005584716797 - ], - [ - "▁Beispiel", - -11.094197273254395 - ], - [ - "▁index", - -11.094344139099121 - ], - [ - "▁awarded", - -11.094613075256348 - ], - [ - "state", - -11.094625473022461 - ], - [ - "▁1990", - -11.094874382019043 - ], - [ - "▁ends", - -11.094902992248535 - ], - [ - "kor", - -11.095070838928223 - ], - [ - "far", - -11.095418930053711 - ], - [ - "▁Page", - -11.095541000366211 - ], - [ - "▁promotion", - -11.095610618591309 - ], - [ - "▁weekly", - -11.095726013183594 - ], - [ - "400", - -11.095966339111328 - ], - [ - "iuni", - -11.096365928649902 - ], - [ - "▁Summer", - -11.096376419067383 - ], - [ - "▁thin", - -11.096627235412598 - ], - [ - "▁dafür", - -11.09669303894043 - ], - [ - "51", - -11.096769332885742 - ], - [ - "PR", - -11.096978187561035 - ], - [ - "▁Hy", - -11.097001075744629 - ], - [ - "gas", - -11.097013473510742 - ], - [ - "▁atat", - -11.097166061401367 - ], - [ - "▁mining", - -11.097347259521484 - ], - [ - "▁principles", - -11.09741497039795 - ], - [ - "gent", - -11.097545623779297 - ], - [ - "ika", - -11.097685813903809 - ], - [ - "▁religion", - -11.097787857055664 - ], - [ - "▁ordered", - -11.098284721374512 - ], - [ - "▁developers", - -11.098298072814941 - ], - [ - "▁pleasure", - -11.098456382751465 - ], - [ - "vit", - -11.098505020141602 - ], - [ - "mers", - -11.0988130569458 - ], - [ - "▁Section", - -11.098873138427734 - ], - [ - "▁por", - -11.098960876464844 - ], - [ - "▁Name", - -11.099200248718262 - ], - [ - "▁pink", - -11.099260330200195 - ], - [ - "dig", - -11.09934139251709 - ], - [ - "▁eligible", - -11.099397659301758 - ], - [ - "▁Happy", - -11.09941577911377 - ], - [ - "▁fo", - -11.099480628967285 - ], - [ - "▁availability", - -11.099541664123535 - ], - [ - "GO", - -11.099583625793457 - ], - [ - "▁Europa", - -11.099637985229492 - ], - [ - "▁Unit", - -11.099656105041504 - ], - [ - "▁1000", - -11.099837303161621 - ], - [ - "▁Berg", - -11.099846839904785 - ], - [ - "fini", - -11.099853515625 - ], - [ - "▁$3", - -11.100565910339355 - ], - [ - "iza", - -11.100749969482422 - ], - [ - "▁promo", - -11.100830078125 - ], - [ - "▁Low", - -11.101234436035156 - ], - [ - "abord", - -11.101326942443848 - ], - [ - "äh", - -11.101485252380371 - ], - [ - "▁Professor", - -11.101570129394531 - ], - [ - "▁array", - -11.101579666137695 - ], - [ - "▁hate", - -11.101594924926758 - ], - [ - "▁recording", - -11.101601600646973 - ], - [ - "RI", - -11.101649284362793 - ], - [ - "▁proof", - -11.101710319519043 - ], - [ - "lay", - -11.10185718536377 - ], - [ - "DE", - -11.102007865905762 - ], - [ - "▁surprised", - -11.102066040039062 - ], - [ - "▁boxes", - -11.102193832397461 - ], - [ - "▁noastre", - -11.102386474609375 - ], - [ - "zie", - -11.102387428283691 - ], - [ - "▁însă", - -11.10254192352295 - ], - [ - "▁ajuta", - -11.102783203125 - ], - [ - "▁weil", - -11.1028413772583 - ], - [ - "▁whenever", - -11.103026390075684 - ], - [ - "shi", - -11.103194236755371 - ], - [ - "satz", - -11.103605270385742 - ], - [ - "▁remind", - -11.10401725769043 - ], - [ - "▁consist", - -11.10412311553955 - ], - [ - "▁motiv", - -11.104240417480469 - ], - [ - "▁PS", - -11.1043062210083 - ], - [ - "▁trois", - -11.104543685913086 - ], - [ - "pad", - -11.10477352142334 - ], - [ - "▁besten", - -11.104904174804688 - ], - [ - "▁Stone", - -11.105140686035156 - ], - [ - "itz", - -11.105157852172852 - ], - [ - "fit", - -11.105164527893066 - ], - [ - "▁Mountain", - -11.105178833007812 - ], - [ - "OC", - -11.10519027709961 - ], - [ - "▁depends", - -11.105228424072266 - ], - [ - "▁Cover", - -11.105387687683105 - ], - [ - "▁bags", - -11.106058120727539 - ], - [ - "▁Bel", - -11.106199264526367 - ], - [ - "▁Engineering", - -11.106304168701172 - ], - [ - "▁flower", - -11.106647491455078 - ], - [ - "▁gratuit", - -11.106670379638672 - ], - [ - "▁smartphone", - -11.106780052185059 - ], - [ - "stan", - -11.107197761535645 - ], - [ - "spect", - -11.10726261138916 - ], - [ - "SL", - -11.107282638549805 - ], - [ - "sho", - -11.10738754272461 - ], - [ - "▁Ser", - -11.10791301727295 - ], - [ - "▁Perhaps", - -11.108247756958008 - ], - [ - "▁codes", - -11.108342170715332 - ], - [ - "▁Wind", - -11.10849666595459 - ], - [ - "aient", - -11.108757019042969 - ], - [ - "▁Prin", - -11.108802795410156 - ], - [ - "▁(1)", - -11.109090805053711 - ], - [ - "▁figures", - -11.109450340270996 - ], - [ - "▁ausge", - -11.10972785949707 - ], - [ - "▁episode", - -11.110050201416016 - ], - [ - "▁Spa", - -11.110370635986328 - ], - [ - "▁Silver", - -11.110386848449707 - ], - [ - "▁Sky", - -11.110396385192871 - ], - [ - "▁capabilities", - -11.1107177734375 - ], - [ - "▁Uni", - -11.11073112487793 - ], - [ - "▁încă", - -11.110876083374023 - ], - [ - "TO", - -11.111289978027344 - ], - [ - "▁Hal", - -11.111358642578125 - ], - [ - "ghi", - -11.111414909362793 - ], - [ - "▁sofa", - -11.111438751220703 - ], - [ - "hard", - -11.11150074005127 - ], - [ - "▁FOR", - -11.111587524414062 - ], - [ - "▁Ber", - -11.111820220947266 - ], - [ - "▁firms", - -11.11187744140625 - ], - [ - "▁memories", - -11.111883163452148 - ], - [ - "▁lift", - -11.11214542388916 - ], - [ - "▁sending", - -11.11214542388916 - ], - [ - "▁narrow", - -11.112646102905273 - ], - [ - "▁Steve", - -11.112784385681152 - ], - [ - "▁integration", - -11.112905502319336 - ], - [ - "known", - -11.113122940063477 - ], - [ - "▁nostru", - -11.113237380981445 - ], - [ - "iţi", - -11.113422393798828 - ], - [ - "▁Georgia", - -11.113759994506836 - ], - [ - "▁slowly", - -11.114026069641113 - ], - [ - "iere", - -11.114028930664062 - ], - [ - "aka", - -11.114255905151367 - ], - [ - "PE", - -11.114320755004883 - ], - [ - "▁venue", - -11.11468505859375 - ], - [ - "jar", - -11.11474609375 - ], - [ - "buch", - -11.114755630493164 - ], - [ - "rad", - -11.114858627319336 - ], - [ - "▁resistance", - -11.114899635314941 - ], - [ - "▁stehen", - -11.114914894104004 - ], - [ - "chin", - -11.11504077911377 - ], - [ - "▁weak", - -11.11535358428955 - ], - [ - "▁DVD", - -11.115598678588867 - ], - [ - "▁bodies", - -11.115856170654297 - ], - [ - "▁split", - -11.115884780883789 - ], - [ - "What", - -11.116231918334961 - ], - [ - "setzen", - -11.116467475891113 - ], - [ - "▁loves", - -11.116561889648438 - ], - [ - "▁kleine", - -11.117077827453613 - ], - [ - "▁increasingly", - -11.11746883392334 - ], - [ - "▁alert", - -11.117583274841309 - ], - [ - "▁AC", - -11.117647171020508 - ], - [ - "▁partir", - -11.117974281311035 - ], - [ - "▁ratio", - -11.11807918548584 - ], - [ - "▁keeps", - -11.118539810180664 - ], - [ - "▁Area", - -11.118544578552246 - ], - [ - "▁données", - -11.119071960449219 - ], - [ - "▁flag", - -11.119254112243652 - ], - [ - "▁NO", - -11.119277000427246 - ], - [ - "▁hotels", - -11.119336128234863 - ], - [ - "▁debut", - -11.119365692138672 - ], - [ - "▁suffer", - -11.119368553161621 - ], - [ - "▁hidden", - -11.119810104370117 - ], - [ - "▁clothing", - -11.120074272155762 - ], - [ - "▁household", - -11.120235443115234 - ], - [ - "medi", - -11.120268821716309 - ], - [ - "▁reste", - -11.120274543762207 - ], - [ - "bro", - -11.120381355285645 - ], - [ - "▁Bus", - -11.120405197143555 - ], - [ - "▁Ken", - -11.120572090148926 - ], - [ - "IR", - -11.120758056640625 - ], - [ - "▁suffering", - -11.121212005615234 - ], - [ - "▁publication", - -11.121246337890625 - ], - [ - "▁Mat", - -11.121360778808594 - ], - [ - "▁impression", - -11.121509552001953 - ], - [ - "▁founded", - -11.121562957763672 - ], - [ - "▁stable", - -11.121566772460938 - ], - [ - "▁promise", - -11.121719360351562 - ], - [ - "▁Cloud", - -11.121770858764648 - ], - [ - "▁prison", - -11.122099876403809 - ], - [ - "cor", - -11.122355461120605 - ], - [ - "▁Sports", - -11.122716903686523 - ], - [ - "▁erste", - -11.122745513916016 - ], - [ - "shire", - -11.122757911682129 - ], - [ - "▁recommendations", - -11.122916221618652 - ], - [ - "▁permit", - -11.123100280761719 - ], - [ - "▁tomorrow", - -11.123126983642578 - ], - [ - "▁lucky", - -11.123422622680664 - ], - [ - "▁realized", - -11.123449325561523 - ], - [ - "▁famille", - -11.123473167419434 - ], - [ - "▁Zealand", - -11.123542785644531 - ], - [ - "▁wooden", - -11.123601913452148 - ], - [ - "▁east", - -11.124269485473633 - ], - [ - "▁Bereich", - -11.12458324432373 - ], - [ - "während", - -11.124653816223145 - ], - [ - "rite", - -11.124836921691895 - ], - [ - "▁fla", - -11.124902725219727 - ], - [ - "platz", - -11.124991416931152 - ], - [ - "▁zero", - -11.125292778015137 - ], - [ - "▁priority", - -11.12535572052002 - ], - [ - "▁Airport", - -11.125506401062012 - ], - [ - "▁Kauf", - -11.125590324401855 - ], - [ - "▁ultimate", - -11.12601375579834 - ], - [ - "▁chest", - -11.126175880432129 - ], - [ - "▁tone", - -11.126376152038574 - ], - [ - "▁Kal", - -11.126431465148926 - ], - [ - "▁supposed", - -11.12669849395752 - ], - [ - "▁vedere", - -11.126846313476562 - ], - [ - "▁50%", - -11.126872062683105 - ], - [ - "▁Ger", - -11.127785682678223 - ], - [ - "pack", - -11.127849578857422 - ], - [ - "▁priv", - -11.128241539001465 - ], - [ - "▁Kit", - -11.128263473510742 - ], - [ - "▁tent", - -11.128457069396973 - ], - [ - "▁guidelines", - -11.128461837768555 - ], - [ - "▁Republic", - -11.128824234008789 - ], - [ - "including", - -11.129239082336426 - ], - [ - "▁chief", - -11.129615783691406 - ], - [ - "▁Living", - -11.129766464233398 - ], - [ - "keit", - -11.1298189163208 - ], - [ - "▁convert", - -11.129831314086914 - ], - [ - "tail", - -11.129928588867188 - ], - [ - "orient", - -11.129960060119629 - ], - [ - "eigenen", - -11.130245208740234 - ], - [ - "▁soup", - -11.130587577819824 - ], - [ - "▁zona", - -11.130661010742188 - ], - [ - "▁composition", - -11.130690574645996 - ], - [ - "▁Bob", - -11.130831718444824 - ], - [ - "▁exception", - -11.131170272827148 - ], - [ - "▁cr", - -11.131287574768066 - ], - [ - "▁str", - -11.131482124328613 - ], - [ - "▁Fl", - -11.13178825378418 - ], - [ - "AT", - -11.131909370422363 - ], - [ - "kel", - -11.132002830505371 - ], - [ - "▁pricing", - -11.132189750671387 - ], - [ - "▁Mass", - -11.132258415222168 - ], - [ - "vir", - -11.132333755493164 - ], - [ - "leg", - -11.132448196411133 - ], - [ - "▁rating", - -11.132455825805664 - ], - [ - "▁Sale", - -11.132628440856934 - ], - [ - "▁somewhere", - -11.132866859436035 - ], - [ - "▁submitted", - -11.133084297180176 - ], - [ - "▁Pop", - -11.133296012878418 - ], - [ - "▁papers", - -11.13330364227295 - ], - [ - "▁authorities", - -11.133326530456543 - ], - [ - "▁Person", - -11.133381843566895 - ], - [ - "▁kill", - -11.133512496948242 - ], - [ - "▁suggestions", - -11.133548736572266 - ], - [ - "-6", - -11.133644104003906 - ], - [ - "▁dust", - -11.133750915527344 - ], - [ - "taire", - -11.133805274963379 - ], - [ - "▁recognition", - -11.133870124816895 - ], - [ - "3.", - -11.134047508239746 - ], - [ - "▁Mont", - -11.134230613708496 - ], - [ - "▁produit", - -11.13430118560791 - ], - [ - "▁transmission", - -11.134340286254883 - ], - [ - "▁Th", - -11.13475513458252 - ], - [ - "▁passing", - -11.134928703308105 - ], - [ - "▁Partner", - -11.135161399841309 - ], - [ - "▁dire", - -11.135205268859863 - ], - [ - "▁DC", - -11.135432243347168 - ], - [ - "▁sky", - -11.135659217834473 - ], - [ - "▁Kitchen", - -11.135890007019043 - ], - [ - "▁fluid", - -11.135929107666016 - ], - [ - "▁scored", - -11.136005401611328 - ], - [ - "▁chapter", - -11.136100769042969 - ], - [ - "If", - -11.136231422424316 - ], - [ - "letzten", - -11.136275291442871 - ], - [ - "▁officers", - -11.13641357421875 - ], - [ - "▁avem", - -11.136631965637207 - ], - [ - "ister", - -11.136666297912598 - ], - [ - "▁involves", - -11.136688232421875 - ], - [ - "ico", - -11.136898040771484 - ], - [ - "bur", - -11.137056350708008 - ], - [ - "▁mieux", - -11.137064933776855 - ], - [ - "▁Photo", - -11.1371431350708 - ], - [ - "▁Cro", - -11.137228012084961 - ], - [ - "▁professor", - -11.137245178222656 - ], - [ - "▁besonders", - -11.137313842773438 - ], - [ - "д", - -11.137367248535156 - ], - [ - "▁alongside", - -11.137382507324219 - ], - [ - "▁stored", - -11.13770580291748 - ], - [ - "▁activ", - -11.137849807739258 - ], - [ - "▁setup", - -11.138169288635254 - ], - [ - "▁extract", - -11.138627052307129 - ], - [ - "▁accent", - -11.138633728027344 - ], - [ - "▁replaced", - -11.138638496398926 - ], - [ - "tec", - -11.138800621032715 - ], - [ - "▁Natur", - -11.138848304748535 - ], - [ - "▁Pacific", - -11.138887405395508 - ], - [ - "▁NY", - -11.139485359191895 - ], - [ - "▁Capital", - -11.139583587646484 - ], - [ - "▁forest", - -11.13969898223877 - ], - [ - "incredibly", - -11.14006233215332 - ], - [ - "▁choix", - -11.14021110534668 - ], - [ - "▁seriously", - -11.140281677246094 - ], - [ - "▁konnte", - -11.14030933380127 - ], - [ - "▁2014.", - -11.140443801879883 - ], - [ - "ensuring", - -11.140534400939941 - ], - [ - "▁handling", - -11.140661239624023 - ], - [ - "▁9.", - -11.140715599060059 - ], - [ - "▁relations", - -11.140876770019531 - ], - [ - "▁Kom", - -11.141045570373535 - ], - [ - "▁Hol", - -11.141282081604004 - ], - [ - "▁none", - -11.141515731811523 - ], - [ - "rob", - -11.141718864440918 - ], - [ - "▁Forum", - -11.141759872436523 - ], - [ - "hour", - -11.141776084899902 - ], - [ - "ème", - -11.141809463500977 - ], - [ - "▁Space", - -11.141986846923828 - ], - [ - "▁Ham", - -11.142992973327637 - ], - [ - "rap", - -11.143169403076172 - ], - [ - "▁Michigan", - -11.14317512512207 - ], - [ - "km", - -11.143202781677246 - ], - [ - "▁utilize", - -11.143548965454102 - ], - [ - "lov", - -11.143775939941406 - ], - [ - "▁luck", - -11.144388198852539 - ], - [ - "lä", - -11.144824981689453 - ], - [ - "▁healing", - -11.145010948181152 - ], - [ - "▁neu", - -11.145182609558105 - ], - [ - "aging", - -11.145251274108887 - ], - [ - "▁compliance", - -11.145583152770996 - ], - [ - "▁vertical", - -11.145675659179688 - ], - [ - "▁FREE", - -11.145729064941406 - ], - [ - "▁differences", - -11.146014213562012 - ], - [ - "▁Server", - -11.146252632141113 - ], - [ - "▁estimated", - -11.146378517150879 - ], - [ - "schutz", - -11.146692276000977 - ], - [ - "▁notamment", - -11.146736145019531 - ], - [ - "▁120", - -11.146919250488281 - ], - [ - "72", - -11.147282600402832 - ], - [ - "▁heating", - -11.147347450256348 - ], - [ - "late", - -11.14756965637207 - ], - [ - "▁younger", - -11.14783000946045 - ], - [ - "▁Intel", - -11.148171424865723 - ], - [ - "▁salad", - -11.148362159729004 - ], - [ - "▁commonly", - -11.148563385009766 - ], - [ - "▁treatments", - -11.148682594299316 - ], - [ - "▁speaker", - -11.148770332336426 - ], - [ - "▁producing", - -11.149120330810547 - ], - [ - "▁eggs", - -11.149367332458496 - ], - [ - "▁Spirit", - -11.149892807006836 - ], - [ - "▁beide", - -11.149918556213379 - ], - [ - "▁transaction", - -11.150283813476562 - ], - [ - "▁Machine", - -11.150464057922363 - ], - [ - "▁Games", - -11.150527000427246 - ], - [ - "▁niveau", - -11.150687217712402 - ], - [ - "▁Need", - -11.15082836151123 - ], - [ - "radi", - -11.150959968566895 - ], - [ - "mir", - -11.15096664428711 - ], - [ - "causing", - -11.151000022888184 - ], - [ - "▁début", - -11.151042938232422 - ], - [ - "▁rencontre", - -11.151063919067383 - ], - [ - "▁threat", - -11.151153564453125 - ], - [ - "▁enjoying", - -11.151320457458496 - ], - [ - "Com", - -11.151386260986328 - ], - [ - "▁Johnson", - -11.151555061340332 - ], - [ - "▁tournament", - -11.15156364440918 - ], - [ - "▁Micro", - -11.151582717895508 - ], - [ - "▁Drive", - -11.151667594909668 - ], - [ - "▁Cre", - -11.151866912841797 - ], - [ - "▁Lebens", - -11.151930809020996 - ], - [ - "▁categories", - -11.152358055114746 - ], - [ - "5,000", - -11.15261173248291 - ], - [ - "▁confirmed", - -11.152617454528809 - ], - [ - "pli", - -11.152763366699219 - ], - [ - "▁Francisco", - -11.153139114379883 - ], - [ - "▁raw", - -11.153157234191895 - ], - [ - "▁managers", - -11.153223991394043 - ], - [ - "ţie", - -11.153365135192871 - ], - [ - "UR", - -11.153368949890137 - ], - [ - "▁aproape", - -11.154065132141113 - ], - [ - "via", - -11.154606819152832 - ], - [ - "▁engaged", - -11.154646873474121 - ], - [ - "▁parti", - -11.154741287231445 - ], - [ - "▁posting", - -11.15517807006836 - ], - [ - "CO", - -11.155484199523926 - ], - [ - "▁bois", - -11.155815124511719 - ], - [ - "▁inch", - -11.15590763092041 - ], - [ - "vie", - -11.156068801879883 - ], - [ - "▁aside", - -11.156314849853516 - ], - [ - "▁exceptional", - -11.15658950805664 - ], - [ - "▁vintage", - -11.156668663024902 - ], - [ - "▁Him", - -11.156795501708984 - ], - [ - "▁expansion", - -11.156806945800781 - ], - [ - "▁Weg", - -11.157122611999512 - ], - [ - "▁authors", - -11.157535552978516 - ], - [ - "▁deine", - -11.15764045715332 - ], - [ - "▁Prime", - -11.158016204833984 - ], - [ - "▁scan", - -11.158055305480957 - ], - [ - "▁reg", - -11.158112525939941 - ], - [ - "ția", - -11.158141136169434 - ], - [ - "riv", - -11.158258438110352 - ], - [ - "selon", - -11.158440589904785 - ], - [ - "▁Studio", - -11.158571243286133 - ], - [ - "▁dich", - -11.158658027648926 - ], - [ - "▁vi", - -11.158745765686035 - ], - [ - "▁sequence", - -11.159016609191895 - ], - [ - "▁Four", - -11.159046173095703 - ], - [ - "RT", - -11.159050941467285 - ], - [ - "▁ihn", - -11.159072875976562 - ], - [ - "▁employ", - -11.159223556518555 - ], - [ - "umb", - -11.159659385681152 - ], - [ - "ită", - -11.159818649291992 - ], - [ - "▁Station", - -11.159950256347656 - ], - [ - "▁upload", - -11.159972190856934 - ], - [ - "▁upgrade", - -11.160445213317871 - ], - [ - "▁exterior", - -11.160528182983398 - ], - [ - "▁writers", - -11.160531997680664 - ], - [ - "▁plot", - -11.160543441772461 - ], - [ - "▁Gen", - -11.16068172454834 - ], - [ - "TER", - -11.160821914672852 - ], - [ - "-12", - -11.160930633544922 - ], - [ - "http", - -11.162168502807617 - ], - [ - "▁smell", - -11.1621732711792 - ], - [ - "post", - -11.162522315979004 - ], - [ - "von", - -11.162790298461914 - ], - [ - "mili", - -11.16280746459961 - ], - [ - "8%", - -11.162972450256348 - ], - [ - "▁Andrew", - -11.163065910339355 - ], - [ - "▁spun", - -11.16321086883545 - ], - [ - "▁grass", - -11.163444519042969 - ], - [ - "unter", - -11.163474082946777 - ], - [ - "▁burn", - -11.16356086730957 - ], - [ - "▁Gegen", - -11.163601875305176 - ], - [ - "fest", - -11.163721084594727 - ], - [ - "▁Northern", - -11.163738250732422 - ], - [ - "▁consumption", - -11.163775444030762 - ], - [ - "▁bird", - -11.164069175720215 - ], - [ - "▁Miss", - -11.164369583129883 - ], - [ - "anti", - -11.16447925567627 - ], - [ - "▁viata", - -11.164583206176758 - ], - [ - "bereich", - -11.164602279663086 - ], - [ - "▁Change", - -11.164871215820312 - ], - [ - "▁pouvoir", - -11.165255546569824 - ], - [ - "▁demonstrate", - -11.165435791015625 - ], - [ - "▁requirement", - -11.165483474731445 - ], - [ - "BI", - -11.16577434539795 - ], - [ - "ied", - -11.166099548339844 - ], - [ - "▁spray", - -11.166358947753906 - ], - [ - "▁calitate", - -11.166379928588867 - ], - [ - "▁souvent", - -11.1665620803833 - ], - [ - "▁samples", - -11.166682243347168 - ], - [ - "▁compete", - -11.166930198669434 - ], - [ - "ank", - -11.166946411132812 - ], - [ - "année", - -11.167037963867188 - ], - [ - "wick", - -11.167183876037598 - ], - [ - "iff", - -11.167254447937012 - ], - [ - "noi", - -11.167255401611328 - ], - [ - "ography", - -11.167450904846191 - ], - [ - "▁SE", - -11.167508125305176 - ], - [ - "▁250", - -11.16779899597168 - ], - [ - "▁wealth", - -11.167884826660156 - ], - [ - "4%", - -11.168235778808594 - ], - [ - "▁swimming", - -11.168269157409668 - ], - [ - "enne", - -11.168338775634766 - ], - [ - "Qu", - -11.168400764465332 - ], - [ - "▁connections", - -11.168476104736328 - ], - [ - "onne", - -11.16852855682373 - ], - [ - "▁Way", - -11.168676376342773 - ], - [ - "voll", - -11.168793678283691 - ], - [ - "▁extent", - -11.169041633605957 - ], - [ - "▁objective", - -11.169572830200195 - ], - [ - "▁clinic", - -11.169581413269043 - ], - [ - "NA", - -11.169848442077637 - ], - [ - "▁Hope", - -11.170098304748535 - ], - [ - "▁coat", - -11.170331954956055 - ], - [ - "▁depend", - -11.170393943786621 - ], - [ - "▁tine", - -11.170463562011719 - ], - [ - "acc", - -11.170486450195312 - ], - [ - "▁editor", - -11.170598983764648 - ], - [ - "▁Jim", - -11.170690536499023 - ], - [ - "600", - -11.171262741088867 - ], - [ - "▁module", - -11.171302795410156 - ], - [ - "▁deja", - -11.171821594238281 - ], - [ - "atur", - -11.171841621398926 - ], - [ - "▁maintaining", - -11.171918869018555 - ], - [ - "▁hoch", - -11.172059059143066 - ], - [ - "▁covering", - -11.17239761352539 - ], - [ - "vielen", - -11.172450065612793 - ], - [ - "hem", - -11.172531127929688 - ], - [ - "▁illegal", - -11.172656059265137 - ], - [ - "▁certificate", - -11.17329216003418 - ], - [ - "▁collective", - -11.173357963562012 - ], - [ - "▁blow", - -11.17343807220459 - ], - [ - "▁programming", - -11.17343807220459 - ], - [ - "HE", - -11.173727989196777 - ], - [ - "▁Division", - -11.173842430114746 - ], - [ - "▁ceux", - -11.174081802368164 - ], - [ - "▁saved", - -11.174202919006348 - ], - [ - "▁worst", - -11.17426586151123 - ], - [ - "▁arms", - -11.17430305480957 - ], - [ - "▁Officer", - -11.17463493347168 - ], - [ - "▁association", - -11.174838066101074 - ], - [ - "ington", - -11.1749906539917 - ], - [ - "▁belle", - -11.175024032592773 - ], - [ - "tting", - -11.17537784576416 - ], - [ - "▁attacks", - -11.175446510314941 - ], - [ - "▁vei", - -11.17546558380127 - ], - [ - "▁gerade", - -11.175470352172852 - ], - [ - "▁strain", - -11.175748825073242 - ], - [ - "▁offices", - -11.1759672164917 - ], - [ - "EM", - -11.17627239227295 - ], - [ - "EST", - -11.176509857177734 - ], - [ - "-8", - -11.176758766174316 - ], - [ - "▁faculty", - -11.176998138427734 - ], - [ - "▁Plant", - -11.177046775817871 - ], - [ - "pla", - -11.177295684814453 - ], - [ - "card", - -11.177618980407715 - ], - [ - "▁loose", - -11.177982330322266 - ], - [ - "▁PR", - -11.178044319152832 - ], - [ - "profit", - -11.178071022033691 - ], - [ - "▁channels", - -11.178119659423828 - ], - [ - "ATE", - -11.178257942199707 - ], - [ - "atic", - -11.178304672241211 - ], - [ - "wegen", - -11.178404808044434 - ], - [ - "word", - -11.178621292114258 - ], - [ - "▁sehen", - -11.178659439086914 - ], - [ - "▁nombre", - -11.178744316101074 - ], - [ - "▁DO", - -11.178763389587402 - ], - [ - "▁hoping", - -11.178949356079102 - ], - [ - "▁wollen", - -11.179091453552246 - ], - [ - "▁decat", - -11.179244995117188 - ], - [ - "IF", - -11.179386138916016 - ], - [ - "▁permission", - -11.179396629333496 - ], - [ - "▁Williams", - -11.179936408996582 - ], - [ - "▁beer", - -11.179962158203125 - ], - [ - "▁dernière", - -11.180052757263184 - ], - [ - "▁purchasing", - -11.18025016784668 - ], - [ - "▁pride", - -11.180416107177734 - ], - [ - "solv", - -11.180598258972168 - ], - [ - "ego", - -11.180691719055176 - ], - [ - "▁Oil", - -11.18079662322998 - ], - [ - "▁dishes", - -11.18102741241455 - ], - [ - "▁Baby", - -11.181109428405762 - ], - [ - "▁Roll", - -11.181137084960938 - ], - [ - "vez", - -11.18134593963623 - ], - [ - "▁drept", - -11.181367874145508 - ], - [ - "lly", - -11.18148136138916 - ], - [ - "▁potrivit", - -11.181495666503906 - ], - [ - "person", - -11.181961059570312 - ], - [ - "▁interactive", - -11.182269096374512 - ], - [ - "▁brilliant", - -11.182304382324219 - ], - [ - "▁000", - -11.182357788085938 - ], - [ - "▁giant", - -11.182657241821289 - ], - [ - "▁plain", - -11.182945251464844 - ], - [ - "▁lock", - -11.183197975158691 - ], - [ - "▁inspection", - -11.183762550354004 - ], - [ - "▁symbol", - -11.18392276763916 - ], - [ - "▁Gal", - -11.183953285217285 - ], - [ - "▁concepts", - -11.1840181350708 - ], - [ - "▁venture", - -11.18411922454834 - ], - [ - "▁Tr", - -11.184402465820312 - ], - [ - "▁Color", - -11.184469223022461 - ], - [ - "▁behalf", - -11.184635162353516 - ], - [ - "ink", - -11.184715270996094 - ], - [ - "atii", - -11.1848726272583 - ], - [ - "wie", - -11.184907913208008 - ], - [ - "▁stream", - -11.18514347076416 - ], - [ - "▁buyers", - -11.185192108154297 - ], - [ - "legen", - -11.185526847839355 - ], - [ - "iness", - -11.18578815460205 - ], - [ - "▁absolute", - -11.185945510864258 - ], - [ - "▁council", - -11.186067581176758 - ], - [ - "▁displayed", - -11.186172485351562 - ], - [ - "▁Bun", - -11.186405181884766 - ], - [ - "▁darauf", - -11.186585426330566 - ], - [ - "▁rod", - -11.186829566955566 - ], - [ - "▁repeat", - -11.186898231506348 - ], - [ - "quelle", - -11.187023162841797 - ], - [ - "lation", - -11.187433242797852 - ], - [ - "gul", - -11.18774700164795 - ], - [ - "▁compensation", - -11.188064575195312 - ], - [ - "▁string", - -11.1881685256958 - ], - [ - "▁joining", - -11.188251495361328 - ], - [ - "▁Pra", - -11.188429832458496 - ], - [ - "hab", - -11.188936233520508 - ], - [ - "▁plane", - -11.189024925231934 - ], - [ - "▁conversion", - -11.189078330993652 - ], - [ - "▁lesson", - -11.189361572265625 - ], - [ - "bound", - -11.1893949508667 - ], - [ - "▁seats", - -11.18946361541748 - ], - [ - "voc", - -11.189902305603027 - ], - [ - "▁Disney", - -11.190120697021484 - ], - [ - "esse", - -11.190277099609375 - ], - [ - "▁awards", - -11.190279006958008 - ], - [ - "▁initiative", - -11.190483093261719 - ], - [ - "UM", - -11.19050407409668 - ], - [ - "▁intelligence", - -11.190763473510742 - ], - [ - "▁laser", - -11.191128730773926 - ], - [ - "än", - -11.191228866577148 - ], - [ - "▁generated", - -11.191231727600098 - ], - [ - "▁allen", - -11.19186782836914 - ], - [ - "▁Aug", - -11.19261360168457 - ], - [ - "lini", - -11.192968368530273 - ], - [ - "▁Update", - -11.193015098571777 - ], - [ - "▁grab", - -11.193095207214355 - ], - [ - "▁Bridge", - -11.193219184875488 - ], - [ - "rock", - -11.193289756774902 - ], - [ - "hold", - -11.193461418151855 - ], - [ - "seinen", - -11.193643569946289 - ], - [ - "▁false", - -11.193758010864258 - ], - [ - "type", - -11.193792343139648 - ], - [ - "▁outcome", - -11.193906784057617 - ], - [ - "▁crazy", - -11.194161415100098 - ], - [ - "▁Platz", - -11.194281578063965 - ], - [ - "▁believed", - -11.194426536560059 - ], - [ - "▁adjust", - -11.194503784179688 - ], - [ - "▁entrance", - -11.194644927978516 - ], - [ - "▁Colorado", - -11.194751739501953 - ], - [ - "▁concentration", - -11.194865226745605 - ], - [ - "aid", - -11.194958686828613 - ], - [ - "▁regardless", - -11.195035934448242 - ], - [ - "▁mici", - -11.195063591003418 - ], - [ - "▁potentially", - -11.195109367370605 - ], - [ - "▁Custom", - -11.195867538452148 - ], - [ - "rag", - -11.196009635925293 - ], - [ - "▁employer", - -11.19604206085205 - ], - [ - "tagged", - -11.196158409118652 - ], - [ - "▁34", - -11.196271896362305 - ], - [ - "fro", - -11.196895599365234 - ], - [ - "▁Pas", - -11.197010040283203 - ], - [ - "▁AS", - -11.197013854980469 - ], - [ - "PP", - -11.197031021118164 - ], - [ - "stru", - -11.19741439819336 - ], - [ - "grâce", - -11.198037147521973 - ], - [ - "▁anyway", - -11.198240280151367 - ], - [ - "▁streets", - -11.1986083984375 - ], - [ - "▁Region", - -11.199190139770508 - ], - [ - "▁newly", - -11.199280738830566 - ], - [ - "▁assistant", - -11.199461936950684 - ], - [ - "▁requests", - -11.199618339538574 - ], - [ - "▁Ohio", - -11.199705123901367 - ], - [ - "▁continuing", - -11.200072288513184 - ], - [ - "▁îm", - -11.200136184692383 - ], - [ - "7%", - -11.20031452178955 - ], - [ - "▁basically", - -11.200325965881348 - ], - [ - "gabe", - -11.200334548950195 - ], - [ - "▁ultra", - -11.200355529785156 - ], - [ - "pic", - -11.200571060180664 - ], - [ - "▁jeder", - -11.200939178466797 - ], - [ - "▁Cook", - -11.201225280761719 - ], - [ - "▁tie", - -11.201227188110352 - ], - [ - "▁yard", - -11.20151424407959 - ], - [ - "▁wash", - -11.20152759552002 - ], - [ - "▁3,", - -11.20194149017334 - ], - [ - "▁exista", - -11.202128410339355 - ], - [ - "▁egg", - -11.202342987060547 - ], - [ - "▁marché", - -11.202616691589355 - ], - [ - "kommen", - -11.202630996704102 - ], - [ - "▁Select", - -11.202999114990234 - ], - [ - "geben", - -11.203126907348633 - ], - [ - "▁Joseph", - -11.203531265258789 - ], - [ - "▁Ces", - -11.203642845153809 - ], - [ - "▁hundred", - -11.203676223754883 - ], - [ - "even", - -11.203792572021484 - ], - [ - "gal", - -11.204232215881348 - ], - [ - "800", - -11.20443058013916 - ], - [ - "▁Jones", - -11.204599380493164 - ], - [ - "ova", - -11.204681396484375 - ], - [ - "▁careful", - -11.204727172851562 - ], - [ - "▁alarm", - -11.205070495605469 - ], - [ - "NI", - -11.205113410949707 - ], - [ - "▁residence", - -11.205327987670898 - ], - [ - "▁wäre", - -11.20590877532959 - ], - [ - "▁Dor", - -11.205986976623535 - ], - [ - "▁amounts", - -11.206369400024414 - ], - [ - "▁mistake", - -11.206687927246094 - ], - [ - "ates", - -11.206796646118164 - ], - [ - "▁bune", - -11.206951141357422 - ], - [ - "▁vegetables", - -11.207124710083008 - ], - [ - "▁Ann", - -11.207204818725586 - ], - [ - "logical", - -11.20776081085205 - ], - [ - "stadt", - -11.207806587219238 - ], - [ - "▁chances", - -11.207921981811523 - ], - [ - "%)", - -11.208030700683594 - ], - [ - "▁minimal", - -11.20810604095459 - ], - [ - "▁naturally", - -11.20817756652832 - ], - [ - "▁Geld", - -11.20822525024414 - ], - [ - "▁Yu", - -11.208361625671387 - ], - [ - "▁wrap", - -11.20840072631836 - ], - [ - "rest", - -11.208674430847168 - ], - [ - "▁legs", - -11.208758354187012 - ], - [ - "PM", - -11.208806991577148 - ], - [ - "▁Heart", - -11.208888053894043 - ], - [ - "▁suspect", - -11.209020614624023 - ], - [ - "Go", - -11.209098815917969 - ], - [ - "▁Fil", - -11.209175109863281 - ], - [ - "▁YOU", - -11.209175109863281 - ], - [ - "▁victory", - -11.209245681762695 - ], - [ - "pun", - -11.20960807800293 - ], - [ - "▁Zo", - -11.209632873535156 - ], - [ - "CT", - -11.209640502929688 - ], - [ - "▁trim", - -11.20969009399414 - ], - [ - "▁stuck", - -11.209836959838867 - ], - [ - "ators", - -11.209877014160156 - ], - [ - "▁Ideas", - -11.210016250610352 - ], - [ - "▁voyage", - -11.210166931152344 - ], - [ - "▁Restaurant", - -11.210205078125 - ], - [ - "▁pat", - -11.210234642028809 - ], - [ - "▁bond", - -11.210521697998047 - ], - [ - "▁Del", - -11.210552215576172 - ], - [ - "▁fighting", - -11.210705757141113 - ], - [ - "▁concerning", - -11.210867881774902 - ], - [ - "▁etwa", - -11.211141586303711 - ], - [ - "▁Thema", - -11.211237907409668 - ], - [ - "▁preferred", - -11.211423873901367 - ], - [ - "▁pitch", - -11.211465835571289 - ], - [ - "▁Singapore", - -11.211971282958984 - ], - [ - "▁tub", - -11.212018013000488 - ], - [ - "FT", - -11.212053298950195 - ], - [ - "▁Product", - -11.21212100982666 - ], - [ - "▁applying", - -11.212285995483398 - ], - [ - "▁Fr", - -11.212340354919434 - ], - [ - "ţa", - -11.212599754333496 - ], - [ - "▁iPad", - -11.212861061096191 - ], - [ - "PD", - -11.2129545211792 - ], - [ - "▁comun", - -11.212995529174805 - ], - [ - "▁pie", - -11.213286399841309 - ], - [ - "rank", - -11.21364688873291 - ], - [ - "tron", - -11.213677406311035 - ], - [ - "▁pest", - -11.213906288146973 - ], - [ - "▁herself", - -11.213936805725098 - ], - [ - "▁intense", - -11.213964462280273 - ], - [ - "foot", - -11.21413803100586 - ], - [ - "▁1998", - -11.2141695022583 - ], - [ - "▁anxiety", - -11.214616775512695 - ], - [ - "▁portable", - -11.214674949645996 - ], - [ - "▁harm", - -11.214735984802246 - ], - [ - "▁admit", - -11.214885711669922 - ], - [ - "sted", - -11.214900016784668 - ], - [ - "▁regions", - -11.215450286865234 - ], - [ - "cie", - -11.215556144714355 - ], - [ - "▁robust", - -11.21577262878418 - ], - [ - "▁stem", - -11.215982437133789 - ], - [ - "▁roles", - -11.216024398803711 - ], - [ - "▁Latin", - -11.216224670410156 - ], - [ - "▁Ré", - -11.216378211975098 - ], - [ - "▁ref", - -11.216381072998047 - ], - [ - "isme", - -11.216426849365234 - ], - [ - "▁contribution", - -11.216776847839355 - ], - [ - "▁forever", - -11.217447280883789 - ], - [ - "▁frei", - -11.21754264831543 - ], - [ - "▁mont", - -11.217818260192871 - ], - [ - "that", - -11.217999458312988 - ], - [ - "▁sensitive", - -11.218116760253906 - ], - [ - "▁wider", - -11.218175888061523 - ], - [ - "AF", - -11.218234062194824 - ], - [ - "▁liability", - -11.218748092651367 - ], - [ - "ţiei", - -11.219043731689453 - ], - [ - "▁Cho", - -11.219260215759277 - ], - [ - "aria", - -11.21960735321045 - ], - [ - "rang", - -11.21977710723877 - ], - [ - "▁Account", - -11.21986198425293 - ], - [ - "▁III", - -11.219941139221191 - ], - [ - "▁tooth", - -11.220222473144531 - ], - [ - "▁factory", - -11.220240592956543 - ], - [ - "▁dropped", - -11.220495223999023 - ], - [ - "horn", - -11.220780372619629 - ], - [ - "RP", - -11.221110343933105 - ], - [ - "▁container", - -11.22118091583252 - ], - [ - "fran", - -11.221474647521973 - ], - [ - "▁lawyer", - -11.221842765808105 - ], - [ - "▁Image", - -11.221907615661621 - ], - [ - "HO", - -11.22195816040039 - ], - [ - "▁incorporate", - -11.221992492675781 - ], - [ - "▁lume", - -11.22226333618164 - ], - [ - "GA", - -11.222331047058105 - ], - [ - "itati", - -11.222370147705078 - ], - [ - "autre", - -11.222665786743164 - ], - [ - "ierten", - -11.222688674926758 - ], - [ - "[", - -11.222746849060059 - ], - [ - "▁packages", - -11.222758293151855 - ], - [ - "▁Simon", - -11.22290325164795 - ], - [ - "▁somewhat", - -11.223734855651855 - ], - [ - "mbo", - -11.223737716674805 - ], - [ - "lite", - -11.223844528198242 - ], - [ - "▁eliminate", - -11.22395133972168 - ], - [ - "▁decrease", - -11.224117279052734 - ], - [ - "▁geben", - -11.224214553833008 - ], - [ - "▁approaches", - -11.224482536315918 - ], - [ - "▁tissue", - -11.224940299987793 - ], - [ - "▁personne", - -11.225192070007324 - ], - [ - "ional", - -11.225587844848633 - ], - [ - "unable", - -11.2256498336792 - ], - [ - "▁Case", - -11.225736618041992 - ], - [ - "hill", - -11.225744247436523 - ], - [ - "och", - -11.225862503051758 - ], - [ - "▁minister", - -11.225920677185059 - ], - [ - "▁Rad", - -11.226285934448242 - ], - [ - "▁yoga", - -11.226390838623047 - ], - [ - "▁encounter", - -11.22661018371582 - ], - [ - "text", - -11.22670841217041 - ], - [ - "▁OS", - -11.226719856262207 - ], - [ - "▁opera", - -11.22673225402832 - ], - [ - "▁loving", - -11.226977348327637 - ], - [ - "▁birds", - -11.227363586425781 - ], - [ - "▁prim", - -11.227389335632324 - ], - [ - "easca", - -11.227432250976562 - ], - [ - "park", - -11.227453231811523 - ], - [ - "fü", - -11.227797508239746 - ], - [ - "▁champion", - -11.227824211120605 - ], - [ - "▁warning", - -11.228245735168457 - ], - [ - "DC", - -11.228271484375 - ], - [ - "▁yield", - -11.228310585021973 - ], - [ - "raum", - -11.228334426879883 - ], - [ - "▁Student", - -11.228434562683105 - ], - [ - "▁Rev", - -11.22848892211914 - ], - [ - "▁Fu", - -11.228501319885254 - ], - [ - "▁intra", - -11.22854232788086 - ], - [ - "▁proces", - -11.228585243225098 - ], - [ - "▁margin", - -11.228621482849121 - ], - [ - "lands", - -11.228816986083984 - ], - [ - "04", - -11.228952407836914 - ], - [ - "▁Steel", - -11.229897499084473 - ], - [ - "▁besoin", - -11.230081558227539 - ], - [ - "şti", - -11.230561256408691 - ], - [ - "▁39", - -11.230635643005371 - ], - [ - "▁outcomes", - -11.230677604675293 - ], - [ - "wert", - -11.230719566345215 - ], - [ - "3,", - -11.23080062866211 - ], - [ - "▁hole", - -11.230888366699219 - ], - [ - "▁Create", - -11.23096752166748 - ], - [ - "▁hall", - -11.231266975402832 - ], - [ - "nach", - -11.231595039367676 - ], - [ - "▁indicate", - -11.232311248779297 - ], - [ - "cum", - -11.232604026794434 - ], - [ - "▁Mann", - -11.232690811157227 - ], - [ - "▁reaction", - -11.232828140258789 - ], - [ - "▁empty", - -11.23289680480957 - ], - [ - "▁Sign", - -11.232941627502441 - ], - [ - "▁pm", - -11.23300838470459 - ], - [ - "erung", - -11.23322582244873 - ], - [ - "▁würde", - -11.233592987060547 - ], - [ - "▁declarat", - -11.233602523803711 - ], - [ - "6%", - -11.23371410369873 - ], - [ - "▁Client", - -11.23377513885498 - ], - [ - "vil", - -11.234295845031738 - ], - [ - "▁electricity", - -11.234469413757324 - ], - [ - "▁75", - -11.234505653381348 - ], - [ - "▁buna", - -11.234505653381348 - ], - [ - "eşte", - -11.23473834991455 - ], - [ - "▁prop", - -11.234792709350586 - ], - [ - "▁journal", - -11.234883308410645 - ], - [ - "▁meu", - -11.23495101928711 - ], - [ - "▁chef", - -11.235034942626953 - ], - [ - "▁Ever", - -11.235102653503418 - ], - [ - "▁feelings", - -11.235466003417969 - ], - [ - "PT", - -11.23551082611084 - ], - [ - "▁proposal", - -11.235651969909668 - ], - [ - "▁Its", - -11.235709190368652 - ], - [ - "▁2013.", - -11.235795974731445 - ], - [ - "▁Bundes", - -11.23595142364502 - ], - [ - "▁droit", - -11.236333847045898 - ], - [ - "▁10%", - -11.236671447753906 - ], - [ - "gard", - -11.236772537231445 - ], - [ - "information", - -11.236814498901367 - ], - [ - "FE", - -11.237309455871582 - ], - [ - "▁Dun", - -11.237340927124023 - ], - [ - "▁Stock", - -11.237472534179688 - ], - [ - "ație", - -11.2374849319458 - ], - [ - "▁mag", - -11.237603187561035 - ], - [ - "▁br", - -11.237665176391602 - ], - [ - "▁sight", - -11.237772941589355 - ], - [ - "phone", - -11.237796783447266 - ], - [ - "▁Cy", - -11.237811088562012 - ], - [ - "▁opposite", - -11.238035202026367 - ], - [ - "ically", - -11.238235473632812 - ], - [ - "großen", - -11.238388061523438 - ], - [ - "▁Without", - -11.23845100402832 - ], - [ - "espace", - -11.238515853881836 - ], - [ - "▁chairs", - -11.238595008850098 - ], - [ - "▁matches", - -11.238685607910156 - ], - [ - "ateur", - -11.238697052001953 - ], - [ - "▁Cost", - -11.238699913024902 - ], - [ - "▁WordPress", - -11.238880157470703 - ], - [ - "▁Opera", - -11.239195823669434 - ], - [ - "walked", - -11.239234924316406 - ], - [ - "▁transactions", - -11.239521026611328 - ], - [ - "▁nuclear", - -11.239579200744629 - ], - [ - "ways", - -11.239594459533691 - ], - [ - "▁Oct", - -11.239738464355469 - ], - [ - "▁bomb", - -11.239835739135742 - ], - [ - "▁tracking", - -11.239879608154297 - ], - [ - "▁photograph", - -11.240066528320312 - ], - [ - "bio", - -11.240309715270996 - ], - [ - "▁branch", - -11.240363121032715 - ], - [ - "▁$5", - -11.240684509277344 - ], - [ - "▁diagram", - -11.240986824035645 - ], - [ - "▁Hard", - -11.241218566894531 - ], - [ - "bach", - -11.241232872009277 - ], - [ - "▁42", - -11.241249084472656 - ], - [ - "logy", - -11.241472244262695 - ], - [ - "▁tile", - -11.241593360900879 - ], - [ - "▁API", - -11.241833686828613 - ], - [ - "seront", - -11.24204158782959 - ], - [ - "ENT", - -11.242156982421875 - ], - [ - "▁accommodation", - -11.242409706115723 - ], - [ - "▁fiber", - -11.242438316345215 - ], - [ - "▁Give", - -11.242792129516602 - ], - [ - "▁Gas", - -11.242916107177734 - ], - [ - "▁Spain", - -11.243086814880371 - ], - [ - "▁listing", - -11.24312686920166 - ], - [ - "▁blocks", - -11.24349308013916 - ], - [ - "▁constitu", - -11.243762969970703 - ], - [ - "▁convenience", - -11.243797302246094 - ], - [ - "▁prize", - -11.243823051452637 - ], - [ - "▁aircraft", - -11.24404239654541 - ], - [ - "containing", - -11.244124412536621 - ], - [ - "▁vice", - -11.244247436523438 - ], - [ - "▁organisations", - -11.244304656982422 - ], - [ - "▁complicated", - -11.244588851928711 - ], - [ - "rons", - -11.244647979736328 - ], - [ - "▁bars", - -11.244670867919922 - ], - [ - "était", - -11.244705200195312 - ], - [ - "▁checking", - -11.245287895202637 - ], - [ - "vant", - -11.245542526245117 - ], - [ - "▁couch", - -11.245657920837402 - ], - [ - "▁brush", - -11.245870590209961 - ], - [ - "▁printer", - -11.245922088623047 - ], - [ - "▁Rat", - -11.246051788330078 - ], - [ - "▁announce", - -11.246057510375977 - ], - [ - "▁salari", - -11.246200561523438 - ], - [ - "▁Sk", - -11.246356964111328 - ], - [ - "pal", - -11.246383666992188 - ], - [ - "▁yards", - -11.24658203125 - ], - [ - "▁flexibility", - -11.246652603149414 - ], - [ - "▁jamais", - -11.24670696258545 - ], - [ - "UC", - -11.246740341186523 - ], - [ - "▁4,", - -11.246793746948242 - ], - [ - "▁Made", - -11.247078895568848 - ], - [ - "▁solche", - -11.247113227844238 - ], - [ - "▁tri", - -11.247237205505371 - ], - [ - "▁outfit", - -11.247243881225586 - ], - [ - "м", - -11.247267723083496 - ], - [ - "▁encouraged", - -11.247477531433105 - ], - [ - "trac", - -11.247552871704102 - ], - [ - "▁genetic", - -11.24755859375 - ], - [ - "▁beneficial", - -11.247747421264648 - ], - [ - "mă", - -11.247849464416504 - ], - [ - "involving", - -11.247879028320312 - ], - [ - "▁knee", - -11.247879028320312 - ], - [ - "▁respective", - -11.248316764831543 - ], - [ - "▁controlled", - -11.248350143432617 - ], - [ - "▁Rück", - -11.24837589263916 - ], - [ - "LC", - -11.248592376708984 - ], - [ - "▁highlight", - -11.248634338378906 - ], - [ - "chem", - -11.248797416687012 - ], - [ - "▁Bis", - -11.24956226348877 - ], - [ - "▁graphics", - -11.249592781066895 - ], - [ - "▁posibil", - -11.249672889709473 - ], - [ - "orul", - -11.249682426452637 - ], - [ - "imagin", - -11.249836921691895 - ], - [ - "▁draft", - -11.250006675720215 - ], - [ - "shaped", - -11.250219345092773 - ], - [ - "▁suggests", - -11.250221252441406 - ], - [ - "uvre", - -11.250509262084961 - ], - [ - "page", - -11.250545501708984 - ], - [ - "▁sentiment", - -11.250685691833496 - ], - [ - "▁loop", - -11.251015663146973 - ], - [ - "▁Quality", - -11.251839637756348 - ], - [ - "▁volunteers", - -11.251869201660156 - ], - [ - "▁representation", - -11.251923561096191 - ], - [ - "▁examination", - -11.252134323120117 - ], - [ - "▁(2)", - -11.252225875854492 - ], - [ - "assi", - -11.252435684204102 - ], - [ - "▁till", - -11.252486228942871 - ], - [ - "▁Catholic", - -11.252618789672852 - ], - [ - "▁2020", - -11.252726554870605 - ], - [ - "▁random", - -11.252764701843262 - ], - [ - "tage", - -11.253146171569824 - ], - [ - "▁baking", - -11.253690719604492 - ], - [ - "▁Musik", - -11.253852844238281 - ], - [ - "▁SC", - -11.253867149353027 - ], - [ - "▁möchte", - -11.254390716552734 - ], - [ - "▁gene", - -11.254411697387695 - ], - [ - "▁kam", - -11.254928588867188 - ], - [ - "▁inspire", - -11.254974365234375 - ], - [ - "unk", - -11.255097389221191 - ], - [ - "▁Final", - -11.255477905273438 - ], - [ - "▁jeden", - -11.255497932434082 - ], - [ - "▁LLC", - -11.255962371826172 - ], - [ - "▁sistem", - -11.25613784790039 - ], - [ - "▁stages", - -11.256441116333008 - ], - [ - "▁texture", - -11.256613731384277 - ], - [ - "rib", - -11.256739616394043 - ], - [ - "lung", - -11.256782531738281 - ], - [ - "▁breath", - -11.256814002990723 - ], - [ - "▁hosted", - -11.256844520568848 - ], - [ - "▁Kingdom", - -11.257079124450684 - ], - [ - "▁politics", - -11.257121086120605 - ], - [ - "▁mood", - -11.257122993469238 - ], - [ - "cam", - -11.257285118103027 - ], - [ - "▁liked", - -11.257287979125977 - ], - [ - "▁Credit", - -11.257304191589355 - ], - [ - "tisch", - -11.257527351379395 - ], - [ - "▁everywhere", - -11.257692337036133 - ], - [ - "▁poti", - -11.257915496826172 - ], - [ - "▁fruits", - -11.258264541625977 - ], - [ - "oire", - -11.258322715759277 - ], - [ - "▁mesure", - -11.258586883544922 - ], - [ - "▁Studies", - -11.258838653564453 - ], - [ - "▁provision", - -11.25888729095459 - ], - [ - "▁Maria", - -11.258927345275879 - ], - [ - "▁necessarily", - -11.259103775024414 - ], - [ - "▁Net", - -11.259212493896484 - ], - [ - "▁scar", - -11.259307861328125 - ], - [ - "▁tracks", - -11.259424209594727 - ], - [ - "▁ads", - -11.259856224060059 - ], - [ - "termin", - -11.259861946105957 - ], - [ - "▁Yo", - -11.26022720336914 - ], - [ - "atory", - -11.260252952575684 - ], - [ - "itoare", - -11.26025676727295 - ], - [ - "▁colours", - -11.260563850402832 - ], - [ - "▁correctly", - -11.260817527770996 - ], - [ - "▁Trade", - -11.26090145111084 - ], - [ - "▁Week", - -11.261052131652832 - ], - [ - "▁Premier", - -11.261499404907227 - ], - [ - "▁designers", - -11.261600494384766 - ], - [ - "▁BE", - -11.261879920959473 - ], - [ - "▁desktop", - -11.261929512023926 - ], - [ - "▁lifetime", - -11.262046813964844 - ], - [ - "▁Kind", - -11.26213264465332 - ], - [ - "▁divers", - -11.262246131896973 - ], - [ - "rain", - -11.262260437011719 - ], - [ - "▁Von", - -11.262263298034668 - ], - [ - "▁bal", - -11.262568473815918 - ], - [ - "▁shots", - -11.262624740600586 - ], - [ - "▁accommodate", - -11.262767791748047 - ], - [ - "▁Paper", - -11.263001441955566 - ], - [ - "▁interaction", - -11.263191223144531 - ], - [ - "▁acquisition", - -11.263233184814453 - ], - [ - "▁neuro", - -11.26378345489502 - ], - [ - "▁institution", - -11.26391887664795 - ], - [ - "▁automatic", - -11.26403522491455 - ], - [ - "▁assess", - -11.264177322387695 - ], - [ - "▁manifest", - -11.264199256896973 - ], - [ - "▁audit", - -11.264202117919922 - ], - [ - "▁câte", - -11.264406204223633 - ], - [ - "▁insight", - -11.264533996582031 - ], - [ - "▁lange", - -11.264781951904297 - ], - [ - "▁retirement", - -11.264795303344727 - ], - [ - "sons", - -11.264864921569824 - ], - [ - "▁Asian", - -11.26492691040039 - ], - [ - "▁rail", - -11.264978408813477 - ], - [ - "▁Awards", - -11.264982223510742 - ], - [ - "Avec", - -11.265035629272461 - ], - [ - "SO", - -11.26511287689209 - ], - [ - "para", - -11.265304565429688 - ], - [ - "▁tant", - -11.265562057495117 - ], - [ - "▁strike", - -11.265693664550781 - ], - [ - "▁transformation", - -11.265742301940918 - ], - [ - "▁leicht", - -11.26586627960205 - ], - [ - "л", - -11.265996932983398 - ], - [ - "fat", - -11.26629638671875 - ], - [ - "▁Qui", - -11.266626358032227 - ], - [ - "▁chip", - -11.26663589477539 - ], - [ - "titude", - -11.266640663146973 - ], - [ - "▁Projekt", - -11.266998291015625 - ], - [ - "▁statt", - -11.267010688781738 - ], - [ - "▁findet", - -11.267184257507324 - ], - [ - "▁telephone", - -11.267251968383789 - ], - [ - "▁staying", - -11.267267227172852 - ], - [ - "▁Mess", - -11.267353057861328 - ], - [ - "▁patio", - -11.267382621765137 - ], - [ - "▁afla", - -11.267890930175781 - ], - [ - "▁administrative", - -11.267910957336426 - ], - [ - "▁gemeinsam", - -11.268129348754883 - ], - [ - "▁suppliers", - -11.268136024475098 - ], - [ - "ark", - -11.268181800842285 - ], - [ - "▁rice", - -11.268397331237793 - ], - [ - "▁stretch", - -11.268439292907715 - ], - [ - "▁compact", - -11.268651008605957 - ], - [ - "fire", - -11.268756866455078 - ], - [ - "в", - -11.268963813781738 - ], - [ - "vision", - -11.269035339355469 - ], - [ - "▁Mag", - -11.269368171691895 - ], - [ - "▁dreams", - -11.269472122192383 - ], - [ - "▁funny", - -11.26968765258789 - ], - [ - "▁lässt", - -11.270216941833496 - ], - [ - "cade", - -11.270448684692383 - ], - [ - "▁drama", - -11.270484924316406 - ], - [ - "▁schimb", - -11.270767211914062 - ], - [ - "PO", - -11.270785331726074 - ], - [ - "▁Sim", - -11.270806312561035 - ], - [ - "▁motivation", - -11.271045684814453 - ], - [ - "▁presents", - -11.27138614654541 - ], - [ - "▁1997", - -11.271828651428223 - ], - [ - "agi", - -11.271883010864258 - ], - [ - "▁optimal", - -11.27198314666748 - ], - [ - "▁folder", - -11.271995544433594 - ], - [ - "stro", - -11.272034645080566 - ], - [ - "▁Han", - -11.272072792053223 - ], - [ - "▁Ei", - -11.27220344543457 - ], - [ - "▁pus", - -11.272356986999512 - ], - [ - "▁Learning", - -11.272531509399414 - ], - [ - "oop", - -11.272603034973145 - ], - [ - "▁Type", - -11.272658348083496 - ], - [ - "space", - -11.272665023803711 - ], - [ - "▁define", - -11.273098945617676 - ], - [ - "▁plug", - -11.273098945617676 - ], - [ - "yard", - -11.273188591003418 - ], - [ - "▁utility", - -11.273297309875488 - ], - [ - "über", - -11.273561477661133 - ], - [ - "▁commun", - -11.273627281188965 - ], - [ - "▁directed", - -11.273842811584473 - ], - [ - "▁consent", - -11.273893356323242 - ], - [ - "▁DNA", - -11.274068832397461 - ], - [ - "▁statements", - -11.274130821228027 - ], - [ - "real", - -11.274298667907715 - ], - [ - "active", - -11.274430274963379 - ], - [ - "school", - -11.274965286254883 - ], - [ - "▁mic", - -11.275360107421875 - ], - [ - "▁acestui", - -11.275467872619629 - ], - [ - "scale", - -11.27550220489502 - ], - [ - "▁Mid", - -11.275628089904785 - ], - [ - "▁Chair", - -11.275874137878418 - ], - [ - "к", - -11.275936126708984 - ], - [ - "▁Bas", - -11.27630615234375 - ], - [ - "▁38", - -11.276379585266113 - ], - [ - "erin", - -11.276461601257324 - ], - [ - "▁Everyone", - -11.27686882019043 - ], - [ - "COM", - -11.276907920837402 - ], - [ - "▁chronic", - -11.277079582214355 - ], - [ - "▁doctors", - -11.277222633361816 - ], - [ - "▁sh", - -11.277276039123535 - ], - [ - "sport", - -11.27740478515625 - ], - [ - "▁volunteer", - -11.277512550354004 - ], - [ - "▁drinking", - -11.277839660644531 - ], - [ - "▁Mas", - -11.277868270874023 - ], - [ - "▁pursue", - -11.2780122756958 - ], - [ - "▁exposed", - -11.278536796569824 - ], - [ - "exe", - -11.278660774230957 - ], - [ - "hung", - -11.278841972351074 - ], - [ - "▁Tier", - -11.278921127319336 - ], - [ - "▁plac", - -11.279121398925781 - ], - [ - "▁proiect", - -11.279136657714844 - ], - [ - "▁literally", - -11.279288291931152 - ], - [ - "▁acolo", - -11.279412269592285 - ], - [ - "▁User", - -11.279485702514648 - ], - [ - "UT", - -11.279598236083984 - ], - [ - "▁hyper", - -11.279623985290527 - ], - [ - "▁seed", - -11.279794692993164 - ], - [ - "▁literature", - -11.2802734375 - ], - [ - "▁Holy", - -11.280373573303223 - ], - [ - "▁jeu", - -11.280396461486816 - ], - [ - "▁licensed", - -11.280896186828613 - ], - [ - "station", - -11.280900955200195 - ], - [ - "▁criteria", - -11.281292915344238 - ], - [ - "▁sufficient", - -11.281292915344238 - ], - [ - "▁gestion", - -11.281512260437012 - ], - [ - "▁pic", - -11.281549453735352 - ], - [ - "▁64", - -11.28170108795166 - ], - [ - "▁facts", - -11.281905174255371 - ], - [ - "▁Bild", - -11.282098770141602 - ], - [ - "obi", - -11.28212833404541 - ], - [ - "▁nie", - -11.282362937927246 - ], - [ - "▁Jewish", - -11.282756805419922 - ], - [ - "bor", - -11.28281307220459 - ], - [ - "▁1980", - -11.28286361694336 - ], - [ - "▁Fach", - -11.282917976379395 - ], - [ - "craft", - -11.283047676086426 - ], - [ - "▁Pakistan", - -11.283408164978027 - ], - [ - "▁Mos", - -11.283621788024902 - ], - [ - "▁toilet", - -11.283844947814941 - ], - [ - "partea", - -11.28391170501709 - ], - [ - "case", - -11.284221649169922 - ], - [ - "▁clock", - -11.28430461883545 - ], - [ - "▁parc", - -11.284602165222168 - ], - [ - "▁legislation", - -11.284692764282227 - ], - [ - "▁icon", - -11.284933090209961 - ], - [ - "etz", - -11.285178184509277 - ], - [ - "ept", - -11.285270690917969 - ], - [ - "▁Corporation", - -11.28585433959961 - ], - [ - "▁requested", - -11.285983085632324 - ], - [ - "▁column", - -11.286088943481445 - ], - [ - "rier", - -11.286120414733887 - ], - [ - "uß", - -11.2861967086792 - ], - [ - "▁wohl", - -11.286418914794922 - ], - [ - "tell", - -11.286569595336914 - ], - [ - "gno", - -11.286608695983887 - ], - [ - "▁diseases", - -11.286726951599121 - ], - [ - "Sch", - -11.286762237548828 - ], - [ - "▁colon", - -11.287075996398926 - ], - [ - "▁Based", - -11.28709602355957 - ], - [ - "▁flu", - -11.28725528717041 - ], - [ - "▁vocal", - -11.287408828735352 - ], - [ - "▁virus", - -11.287693977355957 - ], - [ - "▁traveling", - -11.287750244140625 - ], - [ - "bul", - -11.287837982177734 - ], - [ - "т", - -11.28794002532959 - ], - [ - "city", - -11.287961959838867 - ], - [ - "AU", - -11.287991523742676 - ], - [ - "wide", - -11.288037300109863 - ], - [ - "▁solo", - -11.288061141967773 - ], - [ - "▁functionality", - -11.288214683532715 - ], - [ - "▁reveal", - -11.28831672668457 - ], - [ - "sign", - -11.288952827453613 - ], - [ - "▁closing", - -11.288971900939941 - ], - [ - "▁peak", - -11.289087295532227 - ], - [ - "▁practic", - -11.289398193359375 - ], - [ - "than", - -11.289473533630371 - ], - [ - "▁driven", - -11.289484977722168 - ], - [ - "êtes", - -11.289548873901367 - ], - [ - "high", - -11.290016174316406 - ], - [ - "power", - -11.290226936340332 - ], - [ - "▁Lin", - -11.29028606414795 - ], - [ - "▁dose", - -11.29034423828125 - ], - [ - "▁pocket", - -11.290650367736816 - ], - [ - "▁Classic", - -11.29067611694336 - ], - [ - "▁packaging", - -11.290792465209961 - ], - [ - "▁distinct", - -11.290800094604492 - ], - [ - "▁côté", - -11.291094779968262 - ], - [ - "▁breast", - -11.29127025604248 - ], - [ - "▁folosit", - -11.29133129119873 - ], - [ - "▁drinks", - -11.291353225708008 - ], - [ - "▁Dog", - -11.291529655456543 - ], - [ - "ailleurs", - -11.291658401489258 - ], - [ - "▁caz", - -11.291804313659668 - ], - [ - "▁escape", - -11.29188346862793 - ], - [ - "▁warranty", - -11.291902542114258 - ], - [ - "▁pulled", - -11.291996955871582 - ], - [ - "data", - -11.292088508605957 - ], - [ - "▁facilitate", - -11.292213439941406 - ], - [ - "É", - -11.292335510253906 - ], - [ - "▁SP", - -11.292403221130371 - ], - [ - "lant", - -11.292557716369629 - ], - [ - "AD", - -11.29256534576416 - ], - [ - "▁Print", - -11.292802810668945 - ], - [ - "mond", - -11.292863845825195 - ], - [ - "▁strange", - -11.292875289916992 - ], - [ - "▁Hor", - -11.293227195739746 - ], - [ - "▁Collection", - -11.293328285217285 - ], - [ - "arm", - -11.29346752166748 - ], - [ - "cas", - -11.293691635131836 - ], - [ - "arrow", - -11.29379940032959 - ], - [ - "▁carrying", - -11.293927192687988 - ], - [ - "▁wave", - -11.294661521911621 - ], - [ - "setzt", - -11.294907569885254 - ], - [ - "▁construct", - -11.29514217376709 - ], - [ - "▁acts", - -11.295269966125488 - ], - [ - "▁Action", - -11.295342445373535 - ], - [ - "▁Kim", - -11.295354843139648 - ], - [ - "oxid", - -11.295459747314453 - ], - [ - "fish", - -11.295519828796387 - ], - [ - "▁damaged", - -11.295660018920898 - ], - [ - "▁Greek", - -11.295747756958008 - ], - [ - "▁belt", - -11.295772552490234 - ], - [ - "▁Prior", - -11.295778274536133 - ], - [ - "▁marks", - -11.295936584472656 - ], - [ - "▁lumea", - -11.296183586120605 - ], - [ - "▁twenty", - -11.296196937561035 - ], - [ - "▁locul", - -11.296360969543457 - ], - [ - "▁Army", - -11.296524047851562 - ], - [ - "apt", - -11.296602249145508 - ], - [ - "▁limits", - -11.296733856201172 - ], - [ - "▁cruise", - -11.296966552734375 - ], - [ - "▁List", - -11.296998023986816 - ], - [ - "utilisation", - -11.29753589630127 - ], - [ - "▁personality", - -11.297622680664062 - ], - [ - "▁sections", - -11.297759056091309 - ], - [ - "▁drawn", - -11.29797649383545 - ], - [ - "▁mold", - -11.298277854919434 - ], - [ - "▁Think", - -11.298333168029785 - ], - [ - "▁holidays", - -11.298355102539062 - ], - [ - "▁critic", - -11.298545837402344 - ], - [ - "grade", - -11.298660278320312 - ], - [ - "▁sick", - -11.299074172973633 - ], - [ - "▁characteristics", - -11.299237251281738 - ], - [ - "▁echipa", - -11.299272537231445 - ], - [ - "▁Fast", - -11.29929256439209 - ], - [ - "▁Br", - -11.299600601196289 - ], - [ - "▁Reise", - -11.299734115600586 - ], - [ - "teen", - -11.299749374389648 - ], - [ - "uci", - -11.299949645996094 - ], - [ - "!”", - -11.300180435180664 - ], - [ - "ppe", - -11.300532341003418 - ], - [ - "▁talked", - -11.301164627075195 - ], - [ - "▁gap", - -11.301473617553711 - ], - [ - "homme", - -11.301778793334961 - ], - [ - "▁interact", - -11.301934242248535 - ], - [ - "▁dollar", - -11.302276611328125 - ], - [ - "▁bone", - -11.302309036254883 - ], - [ - "▁Einsatz", - -11.302343368530273 - ], - [ - "▁sad", - -11.302434921264648 - ], - [ - "any", - -11.302445411682129 - ], - [ - "tation", - -11.302666664123535 - ], - [ - "▁Haupt", - -11.302748680114746 - ], - [ - "iva", - -11.302781105041504 - ], - [ - "▁Schu", - -11.302916526794434 - ], - [ - "▁evaluate", - -11.3036470413208 - ], - [ - "▁variant", - -11.303807258605957 - ], - [ - "▁IS", - -11.303879737854004 - ], - [ - "▁PRO", - -11.303947448730469 - ], - [ - "▁vine", - -11.303959846496582 - ], - [ - "rut", - -11.304062843322754 - ], - [ - "▁existence", - -11.30443286895752 - ], - [ - "-7", - -11.304525375366211 - ], - [ - "ancy", - -11.304702758789062 - ], - [ - "▁Want", - -11.305023193359375 - ], - [ - "alism", - -11.305127143859863 - ], - [ - "ranging", - -11.30550765991211 - ], - [ - "preis", - -11.305551528930664 - ], - [ - "All", - -11.305620193481445 - ], - [ - "▁reception", - -11.30565071105957 - ], - [ - "mai", - -11.305730819702148 - ], - [ - "▁lease", - -11.30577278137207 - ], - [ - "▁finest", - -11.30578899383545 - ], - [ - "▁evident", - -11.305874824523926 - ], - [ - "▁Easy", - -11.306075096130371 - ], - [ - "▁gilt", - -11.306085586547852 - ], - [ - "▁trips", - -11.306344985961914 - ], - [ - "▁skilled", - -11.306368827819824 - ], - [ - "consists", - -11.306456565856934 - ], - [ - "front", - -11.306635856628418 - ], - [ - "rati", - -11.306652069091797 - ], - [ - "▁Following", - -11.30678653717041 - ], - [ - "▁Medicine", - -11.307161331176758 - ], - [ - "▁pune", - -11.30729866027832 - ], - [ - "▁errors", - -11.307354927062988 - ], - [ - "arian", - -11.307613372802734 - ], - [ - "lib", - -11.30811882019043 - ], - [ - "SR", - -11.308351516723633 - ], - [ - "ML", - -11.308568000793457 - ], - [ - "▁Safety", - -11.308823585510254 - ], - [ - "▁clar", - -11.309355735778809 - ], - [ - "New", - -11.309764862060547 - ], - [ - "▁37", - -11.309773445129395 - ], - [ - "▁Administration", - -11.309823036193848 - ], - [ - "▁2.0", - -11.310120582580566 - ], - [ - "▁obviously", - -11.310196876525879 - ], - [ - "▁Mitarbeiter", - -11.310254096984863 - ], - [ - "▁improvements", - -11.31043529510498 - ], - [ - "▁Cut", - -11.310630798339844 - ], - [ - "▁Natural", - -11.310672760009766 - ], - [ - "▁arrival", - -11.311182975769043 - ], - [ - "▁pizza", - -11.311339378356934 - ], - [ - "eşti", - -11.311570167541504 - ], - [ - "cept", - -11.311654090881348 - ], - [ - "▁livre", - -11.311686515808105 - ], - [ - "▁nombreux", - -11.312195777893066 - ], - [ - "▁authentic", - -11.312231063842773 - ], - [ - "▁gemacht", - -11.312472343444824 - ], - [ - "▁broadcast", - -11.312478065490723 - ], - [ - "▁stronger", - -11.312545776367188 - ], - [ - "UP", - -11.31257152557373 - ], - [ - "▁centers", - -11.312614440917969 - ], - [ - "▁petite", - -11.312617301940918 - ], - [ - "▁spots", - -11.312626838684082 - ], - [ - "▁crystal", - -11.312756538391113 - ], - [ - "▁salon", - -11.313044548034668 - ], - [ - "▁gained", - -11.313098907470703 - ], - [ - "▁Mus", - -11.313215255737305 - ], - [ - "▁lens", - -11.313223838806152 - ], - [ - "▁ihm", - -11.313231468200684 - ], - [ - "minute", - -11.313573837280273 - ], - [ - "▁greatly", - -11.313587188720703 - ], - [ - "LP", - -11.31361198425293 - ], - [ - "rait", - -11.314027786254883 - ], - [ - "▁bid", - -11.314154624938965 - ], - [ - "▁cit", - -11.314203262329102 - ], - [ - "entreprise", - -11.31435775756836 - ], - [ - "▁55", - -11.314533233642578 - ], - [ - "▁respectively", - -11.314536094665527 - ], - [ - "▁lo", - -11.314638137817383 - ], - [ - "▁cons", - -11.314743995666504 - ], - [ - "▁Energie", - -11.315169334411621 - ], - [ - "▁OK", - -11.31521224975586 - ], - [ - "▁grill", - -11.315338134765625 - ], - [ - "▁heading", - -11.31549072265625 - ], - [ - "▁sollten", - -11.315491676330566 - ], - [ - "▁Fragen", - -11.315528869628906 - ], - [ - "▁Poli", - -11.315556526184082 - ], - [ - "▁studying", - -11.315723419189453 - ], - [ - "▁développement", - -11.315882682800293 - ], - [ - "▁foam", - -11.316035270690918 - ], - [ - "▁1996", - -11.316511154174805 - ], - [ - "▁disaster", - -11.31662654876709 - ], - [ - "▁cafe", - -11.317262649536133 - ], - [ - "▁moves", - -11.317267417907715 - ], - [ - "focuses", - -11.317712783813477 - ], - [ - "▁Avenue", - -11.317834854125977 - ], - [ - "▁humans", - -11.31784439086914 - ], - [ - "▁(3", - -11.318021774291992 - ], - [ - "▁région", - -11.318347930908203 - ], - [ - "▁DJ", - -11.318608283996582 - ], - [ - "shop", - -11.318819046020508 - ], - [ - "▁acting", - -11.318843841552734 - ], - [ - "▁Justice", - -11.318967819213867 - ], - [ - "▁trouve", - -11.319010734558105 - ], - [ - "▁Estate", - -11.319040298461914 - ], - [ - "▁strict", - -11.319231986999512 - ], - [ - "▁talks", - -11.319283485412598 - ], - [ - "▁mat", - -11.319290161132812 - ], - [ - "▁completion", - -11.319327354431152 - ], - [ - "delivering", - -11.31943416595459 - ], - [ - "CD", - -11.31973934173584 - ], - [ - "0%", - -11.319960594177246 - ], - [ - "▁creativity", - -11.320253372192383 - ], - [ - "BR", - -11.320272445678711 - ], - [ - "▁occurred", - -11.320357322692871 - ], - [ - "Car", - -11.320590019226074 - ], - [ - "▁rising", - -11.320761680603027 - ], - [ - "gger", - -11.32086181640625 - ], - [ - "▁Gene", - -11.320901870727539 - ], - [ - "▁workplace", - -11.320914268493652 - ], - [ - "phy", - -11.321065902709961 - ], - [ - "▁Bla", - -11.32107162475586 - ], - [ - "▁trailer", - -11.32120418548584 - ], - [ - "▁Forest", - -11.321205139160156 - ], - [ - "▁profession", - -11.321246147155762 - ], - [ - "▁Father", - -11.32137680053711 - ], - [ - "flu", - -11.321487426757812 - ], - [ - "tone", - -11.321489334106445 - ], - [ - "▁sexual", - -11.321736335754395 - ], - [ - "▁Map", - -11.321805953979492 - ], - [ - "OT", - -11.3218412399292 - ], - [ - "▁Us", - -11.321878433227539 - ], - [ - "tôt", - -11.321892738342285 - ], - [ - "▁Wert", - -11.321901321411133 - ], - [ - "preparing", - -11.322121620178223 - ], - [ - "isé", - -11.322243690490723 - ], - [ - "▁lake", - -11.322461128234863 - ], - [ - "eed", - -11.32270336151123 - ], - [ - "jun", - -11.322888374328613 - ], - [ - "▁implemented", - -11.323014259338379 - ], - [ - "vid", - -11.323116302490234 - ], - [ - "igne", - -11.323201179504395 - ], - [ - "▁follows", - -11.323214530944824 - ], - [ - "▁Eric", - -11.323430061340332 - ], - [ - "body", - -11.323530197143555 - ], - [ - "▁contained", - -11.323585510253906 - ], - [ - "▁massage", - -11.323715209960938 - ], - [ - "AV", - -11.323725700378418 - ], - [ - "▁insa", - -11.323850631713867 - ], - [ - "▁observed", - -11.323892593383789 - ], - [ - "▁marque", - -11.324137687683105 - ], - [ - "lines", - -11.324451446533203 - ], - [ - "▁Frage", - -11.324482917785645 - ], - [ - "largely", - -11.324647903442383 - ], - [ - "gegeben", - -11.32473087310791 - ], - [ - "▁colleagues", - -11.324762344360352 - ], - [ - "pha", - -11.32494068145752 - ], - [ - "▁representative", - -11.325217247009277 - ], - [ - "▁shut", - -11.325650215148926 - ], - [ - "▁secondary", - -11.325779914855957 - ], - [ - "▁exhibit", - -11.325927734375 - ], - [ - "1)", - -11.325932502746582 - ], - [ - "mid", - -11.326109886169434 - ], - [ - "▁Due", - -11.326229095458984 - ], - [ - "▁initiatives", - -11.326457023620605 - ], - [ - "▁occurs", - -11.326458930969238 - ], - [ - "lent", - -11.326478958129883 - ], - [ - "▁façon", - -11.326778411865234 - ], - [ - "▁iOS", - -11.326803207397461 - ], - [ - "▁exploring", - -11.327000617980957 - ], - [ - "▁stations", - -11.327103614807129 - ], - [ - "nton", - -11.327234268188477 - ], - [ - "▁Country", - -11.32729721069336 - ], - [ - "▁shouldn", - -11.327406883239746 - ], - [ - "▁casual", - -11.327611923217773 - ], - [ - "-18", - -11.32769775390625 - ], - [ - "▁maintained", - -11.32772445678711 - ], - [ - "▁cart", - -11.327790260314941 - ], - [ - "▁propre", - -11.327836036682129 - ], - [ - "▁asset", - -11.327948570251465 - ], - [ - "firm", - -11.32803726196289 - ], - [ - "gla", - -11.328231811523438 - ], - [ - "viv", - -11.3282470703125 - ], - [ - "▁scientists", - -11.328873634338379 - ], - [ - "▁Nor", - -11.328936576843262 - ], - [ - "ites", - -11.329320907592773 - ], - [ - "▁engaging", - -11.329933166503906 - ], - [ - "My", - -11.330178260803223 - ], - [ - "▁workshops", - -11.330282211303711 - ], - [ - "ffer", - -11.3303804397583 - ], - [ - "activité", - -11.33047103881836 - ], - [ - "▁tension", - -11.330567359924316 - ], - [ - "▁dual", - -11.330668449401855 - ], - [ - "uer", - -11.33084774017334 - ], - [ - "900", - -11.330941200256348 - ], - [ - "SF", - -11.33108139038086 - ], - [ - "▁kannst", - -11.331146240234375 - ], - [ - "▁bur", - -11.33115291595459 - ], - [ - "▁visitor", - -11.331156730651855 - ], - [ - "▁granted", - -11.331178665161133 - ], - [ - "▁union", - -11.331355094909668 - ], - [ - "▁tablet", - -11.331461906433105 - ], - [ - "▁Choose", - -11.33146858215332 - ], - [ - "ibil", - -11.331551551818848 - ], - [ - "▁settlement", - -11.331830978393555 - ], - [ - "genommen", - -11.331892967224121 - ], - [ - "▁marked", - -11.332956314086914 - ], - [ - "▁diagnostic", - -11.333370208740234 - ], - [ - "▁prayer", - -11.333529472351074 - ], - [ - "▁Toronto", - -11.334035873413086 - ], - [ - "trans", - -11.334146499633789 - ], - [ - "▁respectiv", - -11.334160804748535 - ], - [ - "▁2012.", - -11.334207534790039 - ], - [ - "icul", - -11.334394454956055 - ], - [ - "▁satisfied", - -11.334527969360352 - ], - [ - "▁Fla", - -11.334596633911133 - ], - [ - "▁estimate", - -11.334638595581055 - ], - [ - "▁Agency", - -11.33466911315918 - ], - [ - "OD", - -11.334708213806152 - ], - [ - "▁McC", - -11.334746360778809 - ], - [ - "bert", - -11.334748268127441 - ], - [ - "▁seal", - -11.334771156311035 - ], - [ - "aine", - -11.334839820861816 - ], - [ - "▁cauza", - -11.334848403930664 - ], - [ - "▁wallpaper", - -11.335081100463867 - ], - [ - "▁alb", - -11.33536434173584 - ], - [ - "▁Sound", - -11.335681915283203 - ], - [ - "worth", - -11.33572769165039 - ], - [ - "chten", - -11.335858345031738 - ], - [ - "programm", - -11.335896492004395 - ], - [ - "▁pounds", - -11.336215019226074 - ], - [ - "▁coaching", - -11.336278915405273 - ], - [ - "▁Furthermore", - -11.336454391479492 - ], - [ - "▁Korea", - -11.336471557617188 - ], - [ - "▁flour", - -11.336530685424805 - ], - [ - "▁sommes", - -11.33657169342041 - ], - [ - "▁Repair", - -11.33661937713623 - ], - [ - "”)", - -11.336642265319824 - ], - [ - "itch", - -11.336675643920898 - ], - [ - "blu", - -11.336786270141602 - ], - [ - "zar", - -11.336882591247559 - ], - [ - "▁diferite", - -11.33745002746582 - ], - [ - "▁Golf", - -11.337685585021973 - ], - [ - "arch", - -11.33772087097168 - ], - [ - "▁panels", - -11.337799072265625 - ], - [ - "jan", - -11.337956428527832 - ], - [ - "“.", - -11.338240623474121 - ], - [ - "izarea", - -11.338324546813965 - ], - [ - "▁golden", - -11.33854866027832 - ], - [ - "▁flying", - -11.338550567626953 - ], - [ - "▁museum", - -11.338700294494629 - ], - [ - "▁equivalent", - -11.338759422302246 - ], - [ - "▁Lang", - -11.339032173156738 - ], - [ - "schi", - -11.339539527893066 - ], - [ - "MI", - -11.339595794677734 - ], - [ - "▁faci", - -11.339838027954102 - ], - [ - "▁Rahmen", - -11.339988708496094 - ], - [ - "▁attending", - -11.340130805969238 - ], - [ - "′′", - -11.340483665466309 - ], - [ - "▁Tro", - -11.341070175170898 - ], - [ - "▁gaming", - -11.341447830200195 - ], - [ - "▁aujourd", - -11.341479301452637 - ], - [ - "▁Wochen", - -11.341526985168457 - ], - [ - "▁entering", - -11.341535568237305 - ], - [ - "its", - -11.34155559539795 - ], - [ - "▁Private", - -11.341866493225098 - ], - [ - "▁Ocean", - -11.34188175201416 - ], - [ - "▁01", - -11.342098236083984 - ], - [ - "▁coloring", - -11.342188835144043 - ], - [ - "ător", - -11.34253215789795 - ], - [ - "▁flooring", - -11.342548370361328 - ], - [ - "▁downtown", - -11.34276294708252 - ], - [ - "rab", - -11.342998504638672 - ], - [ - "HI", - -11.343221664428711 - ], - [ - "▁illness", - -11.343234062194824 - ], - [ - "▁whil", - -11.343307495117188 - ], - [ - "▁diamond", - -11.34333324432373 - ], - [ - "Mail", - -11.343419075012207 - ], - [ - "▁Dream", - -11.34344482421875 - ], - [ - "▁Golden", - -11.344099044799805 - ], - [ - "▁rein", - -11.344220161437988 - ], - [ - "▁hi", - -11.344283103942871 - ], - [ - "▁expressed", - -11.344489097595215 - ], - [ - "▁luat", - -11.344511985778809 - ], - [ - "▁Share", - -11.34453010559082 - ], - [ - "▁Programm", - -11.344706535339355 - ], - [ - "▁Sales", - -11.344707489013672 - ], - [ - "▁prof", - -11.344890594482422 - ], - [ - "▁MO", - -11.34505844116211 - ], - [ - "▁Short", - -11.345088958740234 - ], - [ - "▁charm", - -11.345290184020996 - ], - [ - "▁Cer", - -11.345373153686523 - ], - [ - "▁Run", - -11.34553337097168 - ], - [ - "▁tutorial", - -11.345589637756348 - ], - [ - "oul", - -11.34561824798584 - ], - [ - "▁Fest", - -11.345794677734375 - ], - [ - "▁uniform", - -11.345929145812988 - ], - [ - "aß", - -11.346014976501465 - ], - [ - "▁pipe", - -11.346076965332031 - ], - [ - "▁Square", - -11.346283912658691 - ], - [ - "▁Kosten", - -11.346365928649902 - ], - [ - "▁checked", - -11.346590042114258 - ], - [ - "▁65", - -11.346626281738281 - ], - [ - "▁Adam", - -11.346686363220215 - ], - [ - "cel", - -11.346700668334961 - ], - [ - "ello", - -11.346965789794922 - ], - [ - "▁Res", - -11.347023963928223 - ], - [ - "▁drain", - -11.34708309173584 - ], - [ - "ză", - -11.347129821777344 - ], - [ - "▁Tech", - -11.34739875793457 - ], - [ - "▁strive", - -11.34749698638916 - ], - [ - "cycl", - -11.347506523132324 - ], - [ - "▁stark", - -11.347541809082031 - ], - [ - "load", - -11.34754753112793 - ], - [ - "▁Stat", - -11.347589492797852 - ], - [ - "▁Rec", - -11.347622871398926 - ], - [ - "ians", - -11.347716331481934 - ], - [ - "▁Tin", - -11.347738265991211 - ], - [ - "▁Agreement", - -11.347840309143066 - ], - [ - "▁pret", - -11.348027229309082 - ], - [ - "-9", - -11.348326683044434 - ], - [ - "▁sentence", - -11.348380088806152 - ], - [ - "▁Direct", - -11.348426818847656 - ], - [ - "▁Rep", - -11.348465919494629 - ], - [ - "▁Prozent", - -11.348799705505371 - ], - [ - "▁invitation", - -11.34882640838623 - ], - [ - "▁refund", - -11.349113464355469 - ], - [ - "▁Kids", - -11.349287986755371 - ], - [ - "stock", - -11.349383354187012 - ], - [ - "TP", - -11.349400520324707 - ], - [ - "▁tau", - -11.34941291809082 - ], - [ - "from", - -11.349421501159668 - ], - [ - "▁Ash", - -11.349451065063477 - ], - [ - "store", - -11.349535942077637 - ], - [ - "▁Common", - -11.34958553314209 - ], - [ - "▁Qualität", - -11.34968376159668 - ], - [ - "▁strongly", - -11.349727630615234 - ], - [ - "▁importante", - -11.34979248046875 - ], - [ - "ome", - -11.349912643432617 - ], - [ - "▁surtout", - -11.349946022033691 - ], - [ - "enables", - -11.35020637512207 - ], - [ - "▁decent", - -11.350221633911133 - ], - [ - "▁neutral", - -11.350237846374512 - ], - [ - "▁produs", - -11.350356101989746 - ], - [ - "bury", - -11.350451469421387 - ], - [ - "▁Level", - -11.350618362426758 - ], - [ - "▁interes", - -11.350699424743652 - ], - [ - "mov", - -11.350797653198242 - ], - [ - "▁backup", - -11.350939750671387 - ], - [ - "même", - -11.351094245910645 - ], - [ - "doc", - -11.351119041442871 - ], - [ - "▁#1", - -11.35130786895752 - ], - [ - "▁specified", - -11.351495742797852 - ], - [ - "▁founder", - -11.351655960083008 - ], - [ - "And", - -11.352090835571289 - ], - [ - "isten", - -11.352149963378906 - ], - [ - "▁lecture", - -11.352729797363281 - ], - [ - "▁wake", - -11.352895736694336 - ], - [ - "▁vraiment", - -11.352980613708496 - ], - [ - "▁swing", - -11.353188514709473 - ], - [ - "▁addresses", - -11.353275299072266 - ], - [ - "▁Verfügung", - -11.353504180908203 - ], - [ - "▁deadline", - -11.353761672973633 - ], - [ - "н", - -11.353791236877441 - ], - [ - "▁Content", - -11.353970527648926 - ], - [ - "▁Gre", - -11.354111671447754 - ], - [ - "▁Experience", - -11.354378700256348 - ], - [ - "tura", - -11.354458808898926 - ], - [ - "▁exit", - -11.354642868041992 - ], - [ - "▁Britain", - -11.354652404785156 - ], - [ - "▁Sunt", - -11.354684829711914 - ], - [ - "▁documentation", - -11.354690551757812 - ], - [ - "▁showcase", - -11.3547945022583 - ], - [ - "▁photographs", - -11.354822158813477 - ], - [ - "qué", - -11.35483169555664 - ], - [ - "zin", - -11.354909896850586 - ], - [ - "pres", - -11.354933738708496 - ], - [ - "▁decline", - -11.354955673217773 - ], - [ - "▁Large", - -11.355030059814453 - ], - [ - "▁bills", - -11.355141639709473 - ], - [ - "▁entitled", - -11.355222702026367 - ], - [ - "▁passionate", - -11.355393409729004 - ], - [ - "▁workout", - -11.355413436889648 - ], - [ - "▁Again", - -11.35560417175293 - ], - [ - "▁Haut", - -11.35582160949707 - ], - [ - "▁guaranteed", - -11.35599136352539 - ], - [ - "▁vue", - -11.35600471496582 - ], - [ - "▁farmers", - -11.356224060058594 - ], - [ - "▁admission", - -11.356500625610352 - ], - [ - "▁manière", - -11.357080459594727 - ], - [ - "▁reverse", - -11.357121467590332 - ], - [ - "▁FL", - -11.357142448425293 - ], - [ - "▁terminal", - -11.357206344604492 - ], - [ - "GI", - -11.35731029510498 - ], - [ - "▁speakers", - -11.35739803314209 - ], - [ - "▁responses", - -11.357398986816406 - ], - [ - "▁Doch", - -11.357457160949707 - ], - [ - "▁2013,", - -11.357717514038086 - ], - [ - "▁phones", - -11.357789993286133 - ], - [ - "ential", - -11.357851028442383 - ], - [ - "▁operator", - -11.357916831970215 - ], - [ - "▁steam", - -11.358036994934082 - ], - [ - "burn", - -11.358091354370117 - ], - [ - "▁seul", - -11.35815715789795 - ], - [ - "▁unusual", - -11.358322143554688 - ], - [ - "▁educate", - -11.358403205871582 - ], - [ - "▁Que", - -11.358680725097656 - ], - [ - "▁believes", - -11.359137535095215 - ], - [ - "▁succeed", - -11.359344482421875 - ], - [ - "▁delay", - -11.359533309936523 - ], - [ - "▁deeper", - -11.359633445739746 - ], - [ - "▁reaching", - -11.359890937805176 - ], - [ - "▁objectives", - -11.360086441040039 - ], - [ - "▁temporary", - -11.36028003692627 - ], - [ - "▁artistic", - -11.360421180725098 - ], - [ - "▁sou", - -11.360471725463867 - ], - [ - "▁transparent", - -11.36062240600586 - ], - [ - "There", - -11.360798835754395 - ], - [ - "ception", - -11.360836029052734 - ], - [ - "▁excess", - -11.360939979553223 - ], - [ - "▁gathering", - -11.361008644104004 - ], - [ - "▁Save", - -11.361095428466797 - ], - [ - "ază", - -11.361166000366211 - ], - [ - "▁français", - -11.361197471618652 - ], - [ - "▁laid", - -11.361210823059082 - ], - [ - "▁modul", - -11.361394882202148 - ], - [ - "avoir", - -11.361465454101562 - ], - [ - "under", - -11.362113952636719 - ], - [ - "dding", - -11.362226486206055 - ], - [ - "▁falls", - -11.362232208251953 - ], - [ - "▁Möglichkeit", - -11.362369537353516 - ], - [ - "▁ceremony", - -11.362370491027832 - ], - [ - "rai", - -11.36237621307373 - ], - [ - "▁Bor", - -11.362709045410156 - ], - [ - "▁Below", - -11.362750053405762 - ], - [ - "4)", - -11.362759590148926 - ], - [ - "▁Field", - -11.362833023071289 - ], - [ - "wear", - -11.362935066223145 - ], - [ - "motion", - -11.362948417663574 - ], - [ - "print", - -11.363311767578125 - ], - [ - "game", - -11.363360404968262 - ], - [ - "▁Irish", - -11.363458633422852 - ], - [ - "▁Las", - -11.363458633422852 - ], - [ - "Among", - -11.363570213317871 - ], - [ - "atori", - -11.363580703735352 - ], - [ - "▁ajuns", - -11.363837242126465 - ], - [ - "▁alive", - -11.363860130310059 - ], - [ - "▁retour", - -11.363900184631348 - ], - [ - "▁smoke", - -11.3640775680542 - ], - [ - "▁math", - -11.364285469055176 - ], - [ - "▁Ye", - -11.364337921142578 - ], - [ - "▁Denn", - -11.36436653137207 - ], - [ - "▁1995", - -11.364412307739258 - ], - [ - "▁bani", - -11.364644050598145 - ], - [ - "raz", - -11.364998817443848 - ], - [ - "world", - -11.365026473999023 - ], - [ - "▁engines", - -11.365140914916992 - ], - [ - "nehmen", - -11.365192413330078 - ], - [ - "stor", - -11.365328788757324 - ], - [ - "▁interpret", - -11.365403175354004 - ], - [ - "▁Ven", - -11.365489959716797 - ], - [ - "▁cotton", - -11.365622520446777 - ], - [ - "▁represented", - -11.366004943847656 - ], - [ - "▁fabulous", - -11.366166114807129 - ], - [ - "▁gender", - -11.366301536560059 - ], - [ - "Mar", - -11.366668701171875 - ], - [ - "vic", - -11.366991996765137 - ], - [ - "▁newsletter", - -11.367432594299316 - ], - [ - "sburg", - -11.367574691772461 - ], - [ - "pond", - -11.36838436126709 - ], - [ - "▁Carl", - -11.368454933166504 - ], - [ - "▁bunch", - -11.368714332580566 - ], - [ - "▁tower", - -11.368847846984863 - ], - [ - "▁trigger", - -11.368976593017578 - ], - [ - "▁explanation", - -11.369091033935547 - ], - [ - "Man", - -11.369114875793457 - ], - [ - "iunea", - -11.369168281555176 - ], - [ - "▁announcement", - -11.369492530822754 - ], - [ - "▁seeds", - -11.36952018737793 - ], - [ - "▁shell", - -11.369865417480469 - ], - [ - "▁Working", - -11.36989688873291 - ], - [ - "viz", - -11.370267868041992 - ], - [ - "▁Simply", - -11.370329856872559 - ], - [ - "sub", - -11.37037181854248 - ], - [ - "▁Village", - -11.37060832977295 - ], - [ - "▁falling", - -11.370742797851562 - ], - [ - "▁fits", - -11.37084674835205 - ], - [ - "▁wichtig", - -11.37088394165039 - ], - [ - "▁Down", - -11.37108039855957 - ], - [ - "bble", - -11.371573448181152 - ], - [ - "▁Orange", - -11.37165641784668 - ], - [ - "promoting", - -11.371932029724121 - ], - [ - "▁rapidly", - -11.37217903137207 - ], - [ - "▁translation", - -11.372330665588379 - ], - [ - "nig", - -11.3723726272583 - ], - [ - "fusion", - -11.37240982055664 - ], - [ - "kosten", - -11.372611045837402 - ], - [ - "2)", - -11.372783660888672 - ], - [ - "▁Express", - -11.372958183288574 - ], - [ - "▁Sw", - -11.373003959655762 - ], - [ - "▁frequency", - -11.373086929321289 - ], - [ - "▁diversity", - -11.373348236083984 - ], - [ - "MT", - -11.373452186584473 - ], - [ - "▁bekannt", - -11.373530387878418 - ], - [ - "lion", - -11.373871803283691 - ], - [ - "▁cop", - -11.37393856048584 - ], - [ - "▁Customer", - -11.374072074890137 - ], - [ - "▁demands", - -11.374427795410156 - ], - [ - "▁corn", - -11.374516487121582 - ], - [ - "▁Hamburg", - -11.374551773071289 - ], - [ - "SD", - -11.374628067016602 - ], - [ - "▁Rome", - -11.374677658081055 - ], - [ - "▁Pur", - -11.374750137329102 - ], - [ - "▁stamp", - -11.374885559082031 - ], - [ - "▁grateful", - -11.374967575073242 - ], - [ - "RM", - -11.37511157989502 - ], - [ - "▁Pl", - -11.37511920928955 - ], - [ - "▁Tele", - -11.375154495239258 - ], - [ - "▁plugin", - -11.375492095947266 - ], - [ - "▁maxim", - -11.375675201416016 - ], - [ - "▁Hoch", - -11.37574577331543 - ], - [ - "igung", - -11.375823020935059 - ], - [ - "▁Entwicklung", - -11.375858306884766 - ], - [ - "▁File", - -11.375931739807129 - ], - [ - "▁Eastern", - -11.376070022583008 - ], - [ - "▁scrap", - -11.376331329345703 - ], - [ - "▁acquired", - -11.376338958740234 - ], - [ - "sau", - -11.376364707946777 - ], - [ - "▁Klein", - -11.376452445983887 - ], - [ - "▁milioane", - -11.376492500305176 - ], - [ - "▁Stand", - -11.376693725585938 - ], - [ - "▁childhood", - -11.37671184539795 - ], - [ - "▁artificial", - -11.376752853393555 - ], - [ - "▁substantial", - -11.376851081848145 - ], - [ - "druck", - -11.377315521240234 - ], - [ - "▁Kra", - -11.377562522888184 - ], - [ - "▁performances", - -11.377645492553711 - ], - [ - "▁row", - -11.377824783325195 - ], - [ - "NT", - -11.377899169921875 - ], - [ - "mod", - -11.377904891967773 - ], - [ - "remained", - -11.378399848937988 - ], - [ - "▁nimic", - -11.378462791442871 - ], - [ - "▁Limited", - -11.378555297851562 - ], - [ - "▁cookie", - -11.378718376159668 - ], - [ - "▁retain", - -11.378816604614258 - ], - [ - "▁600", - -11.379144668579102 - ], - [ - "▁eigene", - -11.379158020019531 - ], - [ - "▁tune", - -11.379209518432617 - ], - [ - "NS", - -11.379256248474121 - ], - [ - "▁dad", - -11.379284858703613 - ], - [ - "Moreover", - -11.379415512084961 - ], - [ - "ès", - -11.379434585571289 - ], - [ - "▁worship", - -11.379439353942871 - ], - [ - "▁Material", - -11.3794584274292 - ], - [ - "▁verb", - -11.379528045654297 - ], - [ - "ziehen", - -11.37957763671875 - ], - [ - "lton", - -11.379645347595215 - ], - [ - "▁boot", - -11.379982948303223 - ], - [ - "plo", - -11.380118370056152 - ], - [ - "CF", - -11.380212783813477 - ], - [ - "GM", - -11.380215644836426 - ], - [ - "▁Mix", - -11.38046932220459 - ], - [ - "▁Front", - -11.380474090576172 - ], - [ - "▁repairs", - -11.380655288696289 - ], - [ - "▁proportion", - -11.381068229675293 - ], - [ - "▁habit", - -11.381132125854492 - ], - [ - "▁hide", - -11.38156509399414 - ], - [ - "focusing", - -11.381707191467285 - ], - [ - "▁Annual", - -11.381717681884766 - ], - [ - "▁twin", - -11.3817777633667 - ], - [ - "▁acord", - -11.381780624389648 - ], - [ - "ehr", - -11.381814956665039 - ], - [ - "month", - -11.382303237915039 - ], - [ - "venir", - -11.382535934448242 - ], - [ - "Or", - -11.38254165649414 - ], - [ - "awa", - -11.382600784301758 - ], - [ - "lass", - -11.382735252380371 - ], - [ - "ffe", - -11.383048057556152 - ], - [ - "iți", - -11.383074760437012 - ], - [ - "NO", - -11.3831148147583 - ], - [ - "▁scope", - -11.383295059204102 - ], - [ - "▁lowest", - -11.383527755737305 - ], - [ - "▁afraid", - -11.383572578430176 - ], - [ - "▁subjects", - -11.383578300476074 - ], - [ - "▁templates", - -11.383586883544922 - ], - [ - "▁jos", - -11.383604049682617 - ], - [ - "DM", - -11.383687973022461 - ], - [ - "ensemble", - -11.383792877197266 - ], - [ - "▁Ski", - -11.383941650390625 - ], - [ - "DP", - -11.384099960327148 - ], - [ - "▁grip", - -11.384171485900879 - ], - [ - "2-", - -11.38436222076416 - ], - [ - "▁sécurité", - -11.384743690490723 - ], - [ - "▁mono", - -11.384749412536621 - ], - [ - "▁controls", - -11.384854316711426 - ], - [ - "SV", - -11.384879112243652 - ], - [ - "install", - -11.384970664978027 - ], - [ - "berry", - -11.385042190551758 - ], - [ - "nial", - -11.385120391845703 - ], - [ - "shed", - -11.385462760925293 - ], - [ - "▁celle", - -11.385830879211426 - ], - [ - "FR", - -11.385936737060547 - ], - [ - "äng", - -11.385950088500977 - ], - [ - "▁gaz", - -11.385984420776367 - ], - [ - "êt", - -11.386184692382812 - ], - [ - "▁viewing", - -11.386412620544434 - ], - [ - "▁asigura", - -11.386524200439453 - ], - [ - "bling", - -11.3865327835083 - ], - [ - "master", - -11.386919975280762 - ], - [ - "▁Fin", - -11.387160301208496 - ], - [ - "VC", - -11.387365341186523 - ], - [ - "▁patent", - -11.387715339660645 - ], - [ - "▁Clean", - -11.38773250579834 - ], - [ - "▁1970", - -11.387789726257324 - ], - [ - "▁Char", - -11.387971878051758 - ], - [ - "thi", - -11.388010025024414 - ], - [ - "bli", - -11.388141632080078 - ], - [ - "▁haut", - -11.388307571411133 - ], - [ - "tica", - -11.38836669921875 - ], - [ - "▁venit", - -11.388578414916992 - ], - [ - "▁compatible", - -11.388678550720215 - ], - [ - "▁hanging", - -11.388690948486328 - ], - [ - "UN", - -11.388842582702637 - ], - [ - "▁forth", - -11.388911247253418 - ], - [ - "▁painted", - -11.388912200927734 - ], - [ - "lip", - -11.389031410217285 - ], - [ - "▁deeply", - -11.389089584350586 - ], - [ - "▁participating", - -11.389242172241211 - ], - [ - "▁Iran", - -11.38968276977539 - ], - [ - "▁conventional", - -11.389769554138184 - ], - [ - "ARE", - -11.38985824584961 - ], - [ - "▁accuracy", - -11.389896392822266 - ], - [ - "▁Familie", - -11.389955520629883 - ], - [ - "▁Dir", - -11.39001178741455 - ], - [ - "▁gehen", - -11.390127182006836 - ], - [ - "▁moderne", - -11.39022159576416 - ], - [ - "▁Iraq", - -11.39050579071045 - ], - [ - "▁vente", - -11.390582084655762 - ], - [ - "▁Donald", - -11.390998840332031 - ], - [ - "▁passer", - -11.391051292419434 - ], - [ - "▁mehrere", - -11.391267776489258 - ], - [ - "▁Everything", - -11.391291618347168 - ], - [ - "▁studied", - -11.391307830810547 - ], - [ - "▁acquire", - -11.391312599182129 - ], - [ - "für", - -11.391477584838867 - ], - [ - "▁gal", - -11.391502380371094 - ], - [ - "▁headed", - -11.391809463500977 - ], - [ - "▁screening", - -11.391865730285645 - ], - [ - "▁findings", - -11.392303466796875 - ], - [ - "▁nutrition", - -11.392305374145508 - ], - [ - "▁Secretary", - -11.392308235168457 - ], - [ - "duct", - -11.392431259155273 - ], - [ - "born", - -11.392436027526855 - ], - [ - "«", - -11.39261531829834 - ], - [ - "▁statistics", - -11.392616271972656 - ], - [ - "▁Sydney", - -11.392800331115723 - ], - [ - "▁Prof", - -11.392829895019531 - ], - [ - "▁dialogue", - -11.39327621459961 - ], - [ - "▁gather", - -11.393425941467285 - ], - [ - "valu", - -11.393746376037598 - ], - [ - "▁currency", - -11.394073486328125 - ], - [ - "▁Kat", - -11.394092559814453 - ], - [ - "gotten", - -11.394189834594727 - ], - [ - "main", - -11.39432144165039 - ], - [ - "▁coin", - -11.394340515136719 - ], - [ - "▁Nick", - -11.394380569458008 - ], - [ - "vă", - -11.394658088684082 - ], - [ - "▁Victoria", - -11.394832611083984 - ], - [ - "▁conclusion", - -11.3949613571167 - ], - [ - "▁lemon", - -11.394998550415039 - ], - [ - "▁Article", - -11.39516830444336 - ], - [ - "▁necesar", - -11.39516830444336 - ], - [ - "mag", - -11.395180702209473 - ], - [ - "▁riding", - -11.39537239074707 - ], - [ - "▁Eli", - -11.395599365234375 - ], - [ - "▁cord", - -11.395635604858398 - ], - [ - "wä", - -11.39572811126709 - ], - [ - "ußerdem", - -11.395737648010254 - ], - [ - "▁Bed", - -11.395759582519531 - ], - [ - "▁layers", - -11.395833015441895 - ], - [ - "▁harder", - -11.395975112915039 - ], - [ - "▁processor", - -11.396040916442871 - ], - [ - "▁Ils", - -11.39613151550293 - ], - [ - "▁Edition", - -11.39615535736084 - ], - [ - "▁Link", - -11.396393775939941 - ], - [ - "éré", - -11.396461486816406 - ], - [ - "▁nume", - -11.396576881408691 - ], - [ - "▁Boy", - -11.39659595489502 - ], - [ - "▁equally", - -11.396646499633789 - ], - [ - "▁Regel", - -11.397119522094727 - ], - [ - "▁hopes", - -11.397185325622559 - ], - [ - "odor", - -11.397311210632324 - ], - [ - "▁initially", - -11.397430419921875 - ], - [ - "▁$4", - -11.3974609375 - ], - [ - "▁exemplu", - -11.397537231445312 - ], - [ - "▁vari", - -11.397565841674805 - ], - [ - "schl", - -11.397698402404785 - ], - [ - "▁southern", - -11.39809799194336 - ], - [ - "▁mein", - -11.39818000793457 - ], - [ - "▁1994", - -11.398300170898438 - ], - [ - "▁importantly", - -11.398401260375977 - ], - [ - "▁succes", - -11.398526191711426 - ], - [ - "▁developer", - -11.398598670959473 - ], - [ - "▁lips", - -11.39889144897461 - ], - [ - "▁attitude", - -11.39900016784668 - ], - [ - "▁Age", - -11.399541854858398 - ], - [ - "▁corps", - -11.399713516235352 - ], - [ - "▁clicking", - -11.39976978302002 - ], - [ - "▁putem", - -11.399832725524902 - ], - [ - "▁journée", - -11.40003776550293 - ], - [ - "boy", - -11.4002103805542 - ], - [ - "▁injured", - -11.40028190612793 - ], - [ - "▁watched", - -11.400433540344238 - ], - [ - "▁flights", - -11.40079116821289 - ], - [ - "turn", - -11.400980949401855 - ], - [ - "▁stainless", - -11.401562690734863 - ], - [ - "▁besondere", - -11.40156364440918 - ], - [ - "▁Tur", - -11.401596069335938 - ], - [ - "▁hiring", - -11.401650428771973 - ], - [ - "▁roads", - -11.401727676391602 - ], - [ - "ificat", - -11.401785850524902 - ], - [ - "▁Flor", - -11.402045249938965 - ], - [ - "▁puternic", - -11.402215003967285 - ], - [ - "▁unexpected", - -11.40223503112793 - ], - [ - "▁Est", - -11.40238094329834 - ], - [ - "▁adopted", - -11.40253734588623 - ], - [ - "▁Fox", - -11.402647972106934 - ], - [ - "▁contributions", - -11.402870178222656 - ], - [ - "sec", - -11.402968406677246 - ], - [ - "IO", - -11.403059959411621 - ], - [ - "▁santé", - -11.403432846069336 - ], - [ - "▁Tree", - -11.403763771057129 - ], - [ - "▁scurt", - -11.40381908416748 - ], - [ - "▁Products", - -11.403848648071289 - ], - [ - "▁forecast", - -11.403998374938965 - ], - [ - "▁actor", - -11.404143333435059 - ], - [ - "▁Gallery", - -11.404149055480957 - ], - [ - "▁continuous", - -11.404163360595703 - ], - [ - "▁Hat", - -11.404291152954102 - ], - [ - "▁slip", - -11.404501914978027 - ], - [ - "9%", - -11.404960632324219 - ], - [ - "▁depression", - -11.405043601989746 - ], - [ - "UI", - -11.405229568481445 - ], - [ - "abile", - -11.405648231506348 - ], - [ - "▁merit", - -11.405671119689941 - ], - [ - "▁Fer", - -11.405805587768555 - ], - [ - "▁robot", - -11.405888557434082 - ], - [ - "▁gel", - -11.40589427947998 - ], - [ - "▁gentle", - -11.406017303466797 - ], - [ - "▁wanting", - -11.406071662902832 - ], - [ - "▁understood", - -11.406157493591309 - ], - [ - "▁terrain", - -11.406161308288574 - ], - [ - "▁associate", - -11.406176567077637 - ], - [ - "▁discussions", - -11.40632152557373 - ], - [ - "▁Job", - -11.406365394592285 - ], - [ - "spec", - -11.406440734863281 - ], - [ - "Dabei", - -11.406475067138672 - ], - [ - "etic", - -11.406517028808594 - ], - [ - "gol", - -11.40654468536377 - ], - [ - "▁20%", - -11.406584739685059 - ], - [ - "▁grup", - -11.406606674194336 - ], - [ - "▁Doctor", - -11.406813621520996 - ], - [ - "verse", - -11.407246589660645 - ], - [ - "▁victim", - -11.407258033752441 - ], - [ - "ță", - -11.407302856445312 - ], - [ - "▁scores", - -11.407544136047363 - ], - [ - "▁Policy", - -11.407634735107422 - ], - [ - "▁Anna", - -11.407736778259277 - ], - [ - "IV", - -11.407804489135742 - ], - [ - "▁mineral", - -11.408202171325684 - ], - [ - "live", - -11.40821647644043 - ], - [ - "▁grey", - -11.408368110656738 - ], - [ - "struct", - -11.40852165222168 - ], - [ - "▁emails", - -11.408738136291504 - ], - [ - "▁anymore", - -11.409114837646484 - ], - [ - "▁productivity", - -11.409387588500977 - ], - [ - "▁Dark", - -11.409463882446289 - ], - [ - "▁neither", - -11.409481048583984 - ], - [ - "▁quotes", - -11.409611701965332 - ], - [ - "LS", - -11.410368919372559 - ], - [ - "▁Arizona", - -11.41040325164795 - ], - [ - "night", - -11.410497665405273 - ], - [ - "élé", - -11.411019325256348 - ], - [ - "▁assigned", - -11.411153793334961 - ], - [ - "▁satellite", - -11.411328315734863 - ], - [ - "▁stability", - -11.411665916442871 - ], - [ - "▁networking", - -11.41172981262207 - ], - [ - "▁Transport", - -11.411847114562988 - ], - [ - "▁persons", - -11.411856651306152 - ], - [ - "fund", - -11.412043571472168 - ], - [ - "▁pratique", - -11.41213321685791 - ], - [ - "▁inca", - -11.412134170532227 - ], - [ - "iller", - -11.412349700927734 - ], - [ - "▁packed", - -11.41239070892334 - ], - [ - "▁Vegas", - -11.412484169006348 - ], - [ - "▁offre", - -11.412493705749512 - ], - [ - "▁Bin", - -11.412518501281738 - ], - [ - "stop", - -11.412609100341797 - ], - [ - "mini", - -11.412860870361328 - ], - [ - "▁jam", - -11.412877082824707 - ], - [ - "cord", - -11.41289234161377 - ], - [ - "▁Beautiful", - -11.412996292114258 - ], - [ - "▁trash", - -11.413012504577637 - ], - [ - "▁wise", - -11.413092613220215 - ], - [ - "▁accounting", - -11.413178443908691 - ], - [ - "▁différents", - -11.413182258605957 - ], - [ - "▁stil", - -11.413214683532715 - ], - [ - "suit", - -11.413951873779297 - ], - [ - "▁vier", - -11.414209365844727 - ], - [ - "▁permis", - -11.414224624633789 - ], - [ - "flow", - -11.414238929748535 - ], - [ - "▁col", - -11.414749145507812 - ], - [ - "ected", - -11.414960861206055 - ], - [ - "▁singer", - -11.414999008178711 - ], - [ - "▁GmbH", - -11.415038108825684 - ], - [ - "tics", - -11.415094375610352 - ], - [ - "▁ser", - -11.415159225463867 - ], - [ - "On", - -11.415315628051758 - ], - [ - "▁insights", - -11.415605545043945 - ], - [ - "BB", - -11.415946960449219 - ], - [ - "▁differ", - -11.415959358215332 - ], - [ - "▁Glass", - -11.416131973266602 - ], - [ - "▁Six", - -11.416482925415039 - ], - [ - "▁subscription", - -11.416584968566895 - ], - [ - "BC", - -11.416606903076172 - ], - [ - "▁returning", - -11.416664123535156 - ], - [ - "kleinen", - -11.416693687438965 - ], - [ - "▁advantages", - -11.416747093200684 - ], - [ - "omme", - -11.416852951049805 - ], - [ - "lus", - -11.417071342468262 - ], - [ - "now", - -11.417141914367676 - ], - [ - "▁Pack", - -11.417253494262695 - ], - [ - "▁leak", - -11.417333602905273 - ], - [ - "▁muscles", - -11.41748332977295 - ], - [ - "▁davon", - -11.417492866516113 - ], - [ - "mph", - -11.417858123779297 - ], - [ - "▁temple", - -11.417868614196777 - ], - [ - "▁Après", - -11.417901039123535 - ], - [ - "▁Illinois", - -11.41801643371582 - ], - [ - "▁variable", - -11.418065071105957 - ], - [ - "▁judgment", - -11.418389320373535 - ], - [ - "gran", - -11.41861629486084 - ], - [ - "▁pose", - -11.418621063232422 - ], - [ - "das", - -11.418647766113281 - ], - [ - "ures", - -11.418673515319824 - ], - [ - "▁Championship", - -11.418689727783203 - ], - [ - "ebenfalls", - -11.41872501373291 - ], - [ - "▁hydro", - -11.418753623962402 - ], - [ - "▁angle", - -11.419268608093262 - ], - [ - "▁5-", - -11.41940975189209 - ], - [ - "▁gest", - -11.419547080993652 - ], - [ - "▁Frau", - -11.420233726501465 - ], - [ - "▁knock", - -11.420275688171387 - ], - [ - "FS", - -11.420442581176758 - ], - [ - "spi", - -11.420577049255371 - ], - [ - "▁Regional", - -11.420717239379883 - ], - [ - "lets", - -11.421098709106445 - ], - [ - "▁Date", - -11.42115592956543 - ], - [ - "▁Finance", - -11.421211242675781 - ], - [ - "▁Dann", - -11.421320915222168 - ], - [ - "Star", - -11.421380043029785 - ], - [ - "▁Creek", - -11.421393394470215 - ], - [ - "▁fu", - -11.421648979187012 - ], - [ - "wohn", - -11.422141075134277 - ], - [ - "▁anniversary", - -11.422219276428223 - ], - [ - "▁investments", - -11.422292709350586 - ], - [ - "▁universal", - -11.422601699829102 - ], - [ - "▁pit", - -11.422745704650879 - ], - [ - "ște", - -11.422784805297852 - ], - [ - "▁lab", - -11.422822952270508 - ], - [ - "dienst", - -11.422884941101074 - ], - [ - "▁pal", - -11.422889709472656 - ], - [ - "▁graphic", - -11.42289924621582 - ], - [ - "▁bearing", - -11.422900199890137 - ], - [ - "▁stylish", - -11.423087120056152 - ], - [ - "▁mé", - -11.42319393157959 - ], - [ - "▁există", - -11.42326545715332 - ], - [ - "▁découvrir", - -11.423477172851562 - ], - [ - "comp", - -11.423606872558594 - ], - [ - "ridge", - -11.423667907714844 - ], - [ - "▁heads", - -11.423765182495117 - ], - [ - "▁consequences", - -11.423835754394531 - ], - [ - "self", - -11.423842430114746 - ], - [ - "fried", - -11.423870086669922 - ], - [ - "▁inventory", - -11.424199104309082 - ], - [ - "▁strip", - -11.42422866821289 - ], - [ - "▁Civil", - -11.42424488067627 - ], - [ - "bell", - -11.424307823181152 - ], - [ - "▁neben", - -11.424444198608398 - ], - [ - "▁Perfect", - -11.424470901489258 - ], - [ - "▁Notre", - -11.424478530883789 - ], - [ - "▁fraud", - -11.424630165100098 - ], - [ - "▁employers", - -11.424656867980957 - ], - [ - "▁Jackson", - -11.42470645904541 - ], - [ - "▁probleme", - -11.424915313720703 - ], - [ - "▁richtig", - -11.424957275390625 - ], - [ - "▁Method", - -11.425009727478027 - ], - [ - "▁tired", - -11.425010681152344 - ], - [ - "dies", - -11.425031661987305 - ], - [ - "▁Number", - -11.425315856933594 - ], - [ - "rland", - -11.425652503967285 - ], - [ - "▁latter", - -11.426031112670898 - ], - [ - "rendre", - -11.426064491271973 - ], - [ - "▁cameras", - -11.426095962524414 - ], - [ - "▁euch", - -11.426630020141602 - ], - [ - "▁Description", - -11.427038192749023 - ], - [ - "Spec", - -11.427061080932617 - ], - [ - "▁mile", - -11.427437782287598 - ], - [ - "▁Challenge", - -11.427474021911621 - ], - [ - "▁Solutions", - -11.427504539489746 - ], - [ - "▁trusted", - -11.427509307861328 - ], - [ - "▁einge", - -11.427515029907227 - ], - [ - "rück", - -11.427528381347656 - ], - [ - "▁Ober", - -11.427635192871094 - ], - [ - "kes", - -11.42764949798584 - ], - [ - "▁Log", - -11.427684783935547 - ], - [ - "▁dessert", - -11.427776336669922 - ], - [ - "▁murder", - -11.428033828735352 - ], - [ - "▁1/2", - -11.428311347961426 - ], - [ - "▁Provide", - -11.42872142791748 - ], - [ - "nivelul", - -11.428800582885742 - ], - [ - "nici", - -11.428818702697754 - ], - [ - "▁observe", - -11.42889404296875 - ], - [ - "▁prescription", - -11.429162979125977 - ], - [ - "▁Sau", - -11.429170608520508 - ], - [ - "▁genuine", - -11.42919635772705 - ], - [ - "▁operated", - -11.429231643676758 - ], - [ - "▁generous", - -11.429267883300781 - ], - [ - "▁weapons", - -11.429458618164062 - ], - [ - "▁belief", - -11.4295015335083 - ], - [ - "▁consum", - -11.429584503173828 - ], - [ - "▁unknown", - -11.430116653442383 - ], - [ - "deoarece", - -11.430135726928711 - ], - [ - "Art", - -11.430147171020508 - ], - [ - "▁kurz", - -11.430183410644531 - ], - [ - "▁Gut", - -11.430258750915527 - ], - [ - "▁medication", - -11.430522918701172 - ], - [ - "▁Mau", - -11.43058967590332 - ], - [ - "▁divorce", - -11.430678367614746 - ], - [ - "▁claimed", - -11.430811882019043 - ], - [ - "halten", - -11.430848121643066 - ], - [ - "▁Cons", - -11.43089485168457 - ], - [ - "▁operational", - -11.430975914001465 - ], - [ - "▁Hong", - -11.431081771850586 - ], - [ - "VI", - -11.431143760681152 - ], - [ - "▁Blick", - -11.431485176086426 - ], - [ - "▁lamp", - -11.431706428527832 - ], - [ - "pati", - -11.431853294372559 - ], - [ - "▁4-", - -11.43192195892334 - ], - [ - "▁interven", - -11.431964874267578 - ], - [ - "ques", - -11.43201732635498 - ], - [ - "▁Talk", - -11.432096481323242 - ], - [ - "▁zeigt", - -11.432318687438965 - ], - [ - "▁targeted", - -11.432390213012695 - ], - [ - "round", - -11.432640075683594 - ], - [ - "enfant", - -11.432748794555664 - ], - [ - "▁Reg", - -11.432836532592773 - ], - [ - "▁instruments", - -11.432872772216797 - ], - [ - "▁calcul", - -11.433363914489746 - ], - [ - "▁Henry", - -11.4335298538208 - ], - [ - "▁Cla", - -11.433616638183594 - ], - [ - "▁rack", - -11.433661460876465 - ], - [ - "sehen", - -11.43375301361084 - ], - [ - "▁ending", - -11.433754920959473 - ], - [ - "▁resolve", - -11.434130668640137 - ], - [ - "▁advise", - -11.434178352355957 - ], - [ - "▁sociale", - -11.434386253356934 - ], - [ - "▁cabin", - -11.434536933898926 - ], - [ - "▁involve", - -11.43480396270752 - ], - [ - "gă", - -11.434889793395996 - ], - [ - "▁automat", - -11.435132026672363 - ], - [ - "▁consultant", - -11.435258865356445 - ], - [ - "Bu", - -11.435370445251465 - ], - [ - "▁safely", - -11.435466766357422 - ], - [ - "état", - -11.435478210449219 - ], - [ - "▁pros", - -11.435657501220703 - ], - [ - "▁lies", - -11.435659408569336 - ], - [ - "▁Brian", - -11.435914993286133 - ], - [ - "▁talented", - -11.435954093933105 - ], - [ - "pus", - -11.43599796295166 - ], - [ - "▁hub", - -11.436060905456543 - ], - [ - "▁Ji", - -11.436066627502441 - ], - [ - "▁sought", - -11.436102867126465 - ], - [ - "▁energie", - -11.436210632324219 - ], - [ - "▁möchten", - -11.43634033203125 - ], - [ - "▁11.", - -11.436558723449707 - ], - [ - "▁Kong", - -11.436662673950195 - ], - [ - "▁grave", - -11.43666934967041 - ], - [ - "▁lists", - -11.436800956726074 - ], - [ - "tati", - -11.436809539794922 - ], - [ - "verschiedenen", - -11.43692398071289 - ], - [ - "dam", - -11.437061309814453 - ], - [ - "▁charity", - -11.437249183654785 - ], - [ - "▁breaking", - -11.43735122680664 - ], - [ - "kins", - -11.43747329711914 - ], - [ - "▁könnte", - -11.437517166137695 - ], - [ - "▁appointed", - -11.437532424926758 - ], - [ - "roc", - -11.4376859664917 - ], - [ - "▁Senate", - -11.437979698181152 - ], - [ - "wit", - -11.438002586364746 - ], - [ - "▁emerging", - -11.438162803649902 - ], - [ - "▁année", - -11.438288688659668 - ], - [ - "▁Cool", - -11.438365936279297 - ], - [ - "▁sensor", - -11.43842887878418 - ], - [ - "How", - -11.438488960266113 - ], - [ - "▁Ryan", - -11.438626289367676 - ], - [ - "▁computers", - -11.43871784210205 - ], - [ - "▁fault", - -11.4388427734375 - ], - [ - "▁présent", - -11.438843727111816 - ], - [ - "ulation", - -11.439149856567383 - ], - [ - "▁stir", - -11.439348220825195 - ], - [ - "lauf", - -11.439703941345215 - ], - [ - "▁AI", - -11.440389633178711 - ], - [ - "▁Bri", - -11.440438270568848 - ], - [ - "▁bain", - -11.441011428833008 - ], - [ - "▁5,", - -11.441287994384766 - ], - [ - "schein", - -11.44157886505127 - ], - [ - "▁weiß", - -11.441596031188965 - ], - [ - "▁possibilities", - -11.44235610961914 - ], - [ - "gur", - -11.442413330078125 - ], - [ - "▁hinter", - -11.442647933959961 - ], - [ - "Innen", - -11.442755699157715 - ], - [ - "▁vorba", - -11.442992210388184 - ], - [ - "fahren", - -11.443008422851562 - ], - [ - "▁Cell", - -11.443072319030762 - ], - [ - "univers", - -11.443137168884277 - ], - [ - "▁Follow", - -11.443424224853516 - ], - [ - "▁emotions", - -11.44360637664795 - ], - [ - "▁Ministry", - -11.443694114685059 - ], - [ - "▁curriculum", - -11.443694114685059 - ], - [ - "Je", - -11.443764686584473 - ], - [ - "▁gab", - -11.444080352783203 - ], - [ - "▁sigur", - -11.444270133972168 - ], - [ - "rise", - -11.444416999816895 - ], - [ - "Pri", - -11.44466495513916 - ], - [ - "▁stabil", - -11.444781303405762 - ], - [ - "▁superb", - -11.445100784301758 - ], - [ - "▁Oak", - -11.44510269165039 - ], - [ - "▁rubber", - -11.445286750793457 - ], - [ - "▁tag", - -11.445306777954102 - ], - [ - "PG", - -11.445361137390137 - ], - [ - "▁Heat", - -11.445477485656738 - ], - [ - "▁thousand", - -11.445504188537598 - ], - [ - "▁meets", - -11.445521354675293 - ], - [ - "▁faced", - -11.445578575134277 - ], - [ - "▁reserve", - -11.445640563964844 - ], - [ - "cateva", - -11.445767402648926 - ], - [ - "▁gym", - -11.445771217346191 - ], - [ - "▁vitamin", - -11.445960998535156 - ], - [ - "▁Rest", - -11.446457862854004 - ], - [ - "▁Single", - -11.446535110473633 - ], - [ - "▁Stephen", - -11.446623802185059 - ], - [ - "▁trick", - -11.446824073791504 - ], - [ - "DU", - -11.44694709777832 - ], - [ - "▁telefon", - -11.44711685180664 - ], - [ - "▁gând", - -11.447120666503906 - ], - [ - "▁primit", - -11.447345733642578 - ], - [ - "▁Connect", - -11.447351455688477 - ], - [ - "▁führt", - -11.447440147399902 - ], - [ - "▁Info", - -11.447500228881836 - ], - [ - "▁recall", - -11.447848320007324 - ], - [ - "▁restore", - -11.447885513305664 - ], - [ - "lege", - -11.44792652130127 - ], - [ - "▁franchise", - -11.448189735412598 - ], - [ - "▁seulement", - -11.44856071472168 - ], - [ - "reci", - -11.448598861694336 - ], - [ - "▁2019,", - -11.44864273071289 - ], - [ - "▁Ring", - -11.448663711547852 - ], - [ - "▁assembly", - -11.448678970336914 - ], - [ - "intérieur", - -11.448775291442871 - ], - [ - "▁shade", - -11.44887924194336 - ], - [ - "▁meaningful", - -11.448881149291992 - ], - [ - "bag", - -11.448989868164062 - ], - [ - "ONE", - -11.449249267578125 - ], - [ - "▁globe", - -11.449287414550781 - ], - [ - "▁WA", - -11.449406623840332 - ], - [ - "▁intervention", - -11.449495315551758 - ], - [ - "öl", - -11.449531555175781 - ], - [ - "▁Marine", - -11.45029067993164 - ], - [ - "▁Angebot", - -11.450512886047363 - ], - [ - "▁align", - -11.450618743896484 - ], - [ - "▁temperatures", - -11.450634956359863 - ], - [ - "ifier", - -11.45091724395752 - ], - [ - "▁Nigeria", - -11.451189041137695 - ], - [ - "▁survive", - -11.451216697692871 - ], - [ - "ounce", - -11.451275825500488 - ], - [ - "▁placement", - -11.451416969299316 - ], - [ - "▁deci", - -11.451528549194336 - ], - [ - "▁Taylor", - -11.451759338378906 - ], - [ - "step", - -11.45190715789795 - ], - [ - "▁Geschichte", - -11.452054023742676 - ], - [ - "▁Bet", - -11.452169418334961 - ], - [ - "▁Nature", - -11.45224380493164 - ], - [ - "▁FC", - -11.452256202697754 - ], - [ - "▁ownership", - -11.452286720275879 - ], - [ - "▁behaviour", - -11.452474594116211 - ], - [ - "▁deutlich", - -11.452532768249512 - ], - [ - "▁wondering", - -11.452798843383789 - ], - [ - "▁cleaner", - -11.453295707702637 - ], - [ - "uring", - -11.4534912109375 - ], - [ - "rä", - -11.453496932983398 - ], - [ - "▁ga", - -11.454296112060547 - ], - [ - "ador", - -11.454482078552246 - ], - [ - "▁artwork", - -11.454564094543457 - ], - [ - "ologic", - -11.45457649230957 - ], - [ - "▁eigentlich", - -11.454848289489746 - ], - [ - "▁hell", - -11.45522403717041 - ], - [ - "source", - -11.455251693725586 - ], - [ - "▁gem", - -11.455265045166016 - ], - [ - "▁boss", - -11.455307006835938 - ], - [ - "▁arise", - -11.455460548400879 - ], - [ - "about", - -11.455711364746094 - ], - [ - "▁SI", - -11.455951690673828 - ], - [ - "▁ME", - -11.45610237121582 - ], - [ - "akt", - -11.456191062927246 - ], - [ - "▁Style", - -11.456259727478027 - ], - [ - "▁Körper", - -11.456493377685547 - ], - [ - "gui", - -11.456799507141113 - ], - [ - "▁navigate", - -11.456819534301758 - ], - [ - "▁Meanwhile", - -11.456977844238281 - ], - [ - "▁așa", - -11.457111358642578 - ], - [ - "▁bulk", - -11.457298278808594 - ], - [ - "▁directions", - -11.457310676574707 - ], - [ - "▁brick", - -11.457747459411621 - ], - [ - "▁Poly", - -11.457752227783203 - ], - [ - "▁politique", - -11.457772254943848 - ], - [ - "▁patch", - -11.457777976989746 - ], - [ - "ра", - -11.457816123962402 - ], - [ - "commerce", - -11.457844734191895 - ], - [ - "▁înainte", - -11.457884788513184 - ], - [ - "▁intelligent", - -11.45823860168457 - ], - [ - "▁infection", - -11.458426475524902 - ], - [ - "▁Tru", - -11.458494186401367 - ], - [ - "▁raising", - -11.458504676818848 - ], - [ - "tragen", - -11.458539009094238 - ], - [ - "▁portrait", - -11.45858383178711 - ], - [ - "▁meisten", - -11.458783149719238 - ], - [ - "▁organize", - -11.45893669128418 - ], - [ - "metric", - -11.458962440490723 - ], - [ - "▁Season", - -11.459036827087402 - ], - [ - "▁enforcement", - -11.459259033203125 - ], - [ - "origine", - -11.459836959838867 - ], - [ - "▁Ros", - -11.460065841674805 - ], - [ - "▁Mount", - -11.460083961486816 - ], - [ - "have", - -11.460237503051758 - ], - [ - "▁romantic", - -11.460258483886719 - ], - [ - "▁comic", - -11.460810661315918 - ], - [ - "▁greu", - -11.461116790771484 - ], - [ - "ET", - -11.46133041381836 - ], - [ - "▁hook", - -11.461407661437988 - ], - [ - "▁mort", - -11.461411476135254 - ], - [ - "▁indicated", - -11.461583137512207 - ], - [ - "▁7,", - -11.461982727050781 - ], - [ - "▁Neben", - -11.46204662322998 - ], - [ - "yer", - -11.46214485168457 - ], - [ - "▁momentul", - -11.46214771270752 - ], - [ - "note", - -11.462313652038574 - ], - [ - "▁baz", - -11.46231460571289 - ], - [ - "▁abroad", - -11.462320327758789 - ], - [ - "nite", - -11.462464332580566 - ], - [ - "▁bass", - -11.462701797485352 - ], - [ - "▁norm", - -11.462714195251465 - ], - [ - "▁É", - -11.462788581848145 - ], - [ - "4.", - -11.462881088256836 - ], - [ - "▁province", - -11.463004112243652 - ], - [ - "▁merge", - -11.463419914245605 - ], - [ - "arbeiten", - -11.463438987731934 - ], - [ - "-20", - -11.463574409484863 - ], - [ - "▁Nicht", - -11.463674545288086 - ], - [ - "spo", - -11.463783264160156 - ], - [ - "size", - -11.463815689086914 - ], - [ - "▁assure", - -11.463849067687988 - ], - [ - "charge", - -11.463987350463867 - ], - [ - "▁olive", - -11.464017868041992 - ], - [ - "▁Pot", - -11.46408462524414 - ], - [ - "▁Figure", - -11.4642333984375 - ], - [ - "clair", - -11.464336395263672 - ], - [ - "▁discipline", - -11.464600563049316 - ], - [ - "elli", - -11.464639663696289 - ], - [ - "▁tackle", - -11.465169906616211 - ], - [ - "▁buyer", - -11.465237617492676 - ], - [ - "▁loud", - -11.465479850769043 - ], - [ - "▁180", - -11.465534210205078 - ], - [ - "▁căt", - -11.465587615966797 - ], - [ - "▁Palm", - -11.465738296508789 - ], - [ - "away", - -11.46593189239502 - ], - [ - "▁Mother", - -11.46607494354248 - ], - [ - "onia", - -11.466240882873535 - ], - [ - "▁Protection", - -11.466416358947754 - ], - [ - "auto", - -11.466547966003418 - ], - [ - "▁Version", - -11.466583251953125 - ], - [ - "▁Nice", - -11.466714859008789 - ], - [ - "▁12.", - -11.46682071685791 - ], - [ - "▁0,", - -11.466835021972656 - ], - [ - "ATION", - -11.466911315917969 - ], - [ - "▁Produkte", - -11.466955184936523 - ], - [ - "▁tube", - -11.467084884643555 - ], - [ - "▁Houston", - -11.467106819152832 - ], - [ - "chu", - -11.467500686645508 - ], - [ - "pas", - -11.467717170715332 - ], - [ - "▁Ele", - -11.467801094055176 - ], - [ - "▁mountains", - -11.467835426330566 - ], - [ - "PH", - -11.467937469482422 - ], - [ - "▁languages", - -11.468672752380371 - ], - [ - "▁servicii", - -11.468722343444824 - ], - [ - "▁Stay", - -11.468999862670898 - ], - [ - "fil", - -11.469138145446777 - ], - [ - "▁propos", - -11.469801902770996 - ], - [ - "▁coll", - -11.469825744628906 - ], - [ - "▁mor", - -11.470197677612305 - ], - [ - "▁arrange", - -11.470410346984863 - ], - [ - "▁sorry", - -11.470475196838379 - ], - [ - "▁instruction", - -11.470723152160645 - ], - [ - "▁holes", - -11.47077465057373 - ], - [ - "letting", - -11.471046447753906 - ], - [ - "▁wa", - -11.471074104309082 - ], - [ - "▁Feb", - -11.471227645874023 - ], - [ - "omb", - -11.471232414245605 - ], - [ - "▁prise", - -11.471290588378906 - ], - [ - "VO", - -11.471305847167969 - ], - [ - "week", - -11.471349716186523 - ], - [ - "▁Event", - -11.471427917480469 - ], - [ - "▁AT", - -11.471485137939453 - ], - [ - "ket", - -11.471492767333984 - ], - [ - "haft", - -11.471579551696777 - ], - [ - "▁hits", - -11.47159194946289 - ], - [ - "foli", - -11.471681594848633 - ], - [ - "this", - -11.471948623657227 - ], - [ - "GP", - -11.471970558166504 - ], - [ - "▁Pin", - -11.472332954406738 - ], - [ - "▁Stein", - -11.472503662109375 - ], - [ - "thing", - -11.472512245178223 - ], - [ - "▁emphasis", - -11.472556114196777 - ], - [ - "▁Mur", - -11.472631454467773 - ], - [ - "▁Bag", - -11.472647666931152 - ], - [ - "cons", - -11.47273063659668 - ], - [ - "tons", - -11.472835540771484 - ], - [ - "lash", - -11.472987174987793 - ], - [ - "▁Grant", - -11.473104476928711 - ], - [ - "▁pris", - -11.473175048828125 - ], - [ - "▁bună", - -11.47323989868164 - ], - [ - "▁buc", - -11.473699569702148 - ], - [ - "▁passe", - -11.473746299743652 - ], - [ - "▁jewelry", - -11.474213600158691 - ], - [ - "iens", - -11.474342346191406 - ], - [ - "▁forma", - -11.47453784942627 - ], - [ - "▁Med", - -11.474651336669922 - ], - [ - "laufen", - -11.474778175354004 - ], - [ - "▁hunt", - -11.474977493286133 - ], - [ - "stayed", - -11.475086212158203 - ], - [ - "party", - -11.475152015686035 - ], - [ - "▁fra", - -11.47529411315918 - ], - [ - "▁scenes", - -11.475305557250977 - ], - [ - "▁absorb", - -11.47535228729248 - ], - [ - "▁abilities", - -11.475377082824707 - ], - [ - "lug", - -11.475507736206055 - ], - [ - "▁Sarah", - -11.475693702697754 - ], - [ - "mpf", - -11.47570514678955 - ], - [ - "▁fle", - -11.4757080078125 - ], - [ - "accès", - -11.475872993469238 - ], - [ - "▁solicit", - -11.475926399230957 - ], - [ - "pie", - -11.476278305053711 - ], - [ - "▁Zum", - -11.476296424865723 - ], - [ - "▁universe", - -11.476390838623047 - ], - [ - "▁exists", - -11.476449012756348 - ], - [ - "oane", - -11.476597785949707 - ], - [ - "IVE", - -11.47668743133545 - ], - [ - "▁2011.", - -11.476906776428223 - ], - [ - "▁specialists", - -11.477072715759277 - ], - [ - "▁mess", - -11.477309226989746 - ], - [ - "fach", - -11.477402687072754 - ], - [ - "▁Recht", - -11.477404594421387 - ], - [ - "▁hack", - -11.47755241394043 - ], - [ - "▁jacket", - -11.477564811706543 - ], - [ - "HC", - -11.47769832611084 - ], - [ - "▁substance", - -11.477728843688965 - ], - [ - "▁signing", - -11.477775573730469 - ], - [ - "▁allerdings", - -11.478032112121582 - ], - [ - "▁publish", - -11.478139877319336 - ], - [ - "▁Lab", - -11.478157043457031 - ], - [ - "▁agenda", - -11.478249549865723 - ], - [ - "lane", - -11.478299140930176 - ], - [ - "stream", - -11.478620529174805 - ], - [ - "schau", - -11.47879409790039 - ], - [ - "▁realizat", - -11.478971481323242 - ], - [ - "▁supplier", - -11.479019165039062 - ], - [ - "▁moderate", - -11.47902774810791 - ], - [ - "▁tours", - -11.479212760925293 - ], - [ - "▁narrative", - -11.479220390319824 - ], - [ - "ația", - -11.479279518127441 - ], - [ - "▁maps", - -11.479423522949219 - ], - [ - "treten", - -11.479447364807129 - ], - [ - "▁mars", - -11.479706764221191 - ], - [ - "▁moon", - -11.479745864868164 - ], - [ - "rose", - -11.479751586914062 - ], - [ - "▁exp", - -11.479766845703125 - ], - [ - "zahl", - -11.480154037475586 - ], - [ - "psych", - -11.480195999145508 - ], - [ - "▁gehört", - -11.48024845123291 - ], - [ - "▁bound", - -11.4803466796875 - ], - [ - "▁submission", - -11.480451583862305 - ], - [ - "▁clubs", - -11.480722427368164 - ], - [ - "Am", - -11.480755805969238 - ], - [ - "tenir", - -11.480782508850098 - ], - [ - "▁boast", - -11.480851173400879 - ], - [ - "▁boards", - -11.4810791015625 - ], - [ - "▁Geschäfts", - -11.481216430664062 - ], - [ - "zing", - -11.48126220703125 - ], - [ - "wort", - -11.48137092590332 - ], - [ - "lid", - -11.481417655944824 - ], - [ - "▁contractor", - -11.481528282165527 - ], - [ - "▁donner", - -11.481672286987305 - ], - [ - "▁coupon", - -11.481974601745605 - ], - [ - "adresse", - -11.482004165649414 - ], - [ - "colo", - -11.48210334777832 - ], - [ - "▁perception", - -11.482124328613281 - ], - [ - "NC", - -11.48222541809082 - ], - [ - "▁abge", - -11.482245445251465 - ], - [ - "▁cheaper", - -11.482268333435059 - ], - [ - "▁grace", - -11.482312202453613 - ], - [ - "▁resident", - -11.482718467712402 - ], - [ - "kla", - -11.4828462600708 - ], - [ - "▁bug", - -11.4828462600708 - ], - [ - "▁Available", - -11.482893943786621 - ], - [ - "▁BA", - -11.483323097229004 - ], - [ - "▁Met", - -11.483601570129395 - ], - [ - "▁climb", - -11.48365592956543 - ], - [ - "▁expanded", - -11.484349250793457 - ], - [ - "ying", - -11.484426498413086 - ], - [ - "▁matching", - -11.484469413757324 - ], - [ - "▁suffered", - -11.484733581542969 - ], - [ - "▁employed", - -11.484755516052246 - ], - [ - "pper", - -11.484843254089355 - ], - [ - "▁experiencing", - -11.484884262084961 - ], - [ - "ddy", - -11.484953880310059 - ], - [ - "▁philosophy", - -11.484955787658691 - ], - [ - "▁utilisé", - -11.485008239746094 - ], - [ - "▁Jane", - -11.485079765319824 - ], - [ - "LI", - -11.485087394714355 - ], - [ - "▁elected", - -11.485185623168945 - ], - [ - "▁MI", - -11.485264778137207 - ], - [ - "▁ISO", - -11.485340118408203 - ], - [ - "winning", - -11.48537540435791 - ], - [ - "▁vot", - -11.485424041748047 - ], - [ - "▁generic", - -11.485519409179688 - ], - [ - "▁Bol", - -11.485650062561035 - ], - [ - "▁copies", - -11.48568058013916 - ], - [ - "▁mechanical", - -11.48568058013916 - ], - [ - "günstig", - -11.485682487487793 - ], - [ - "roy", - -11.485770225524902 - ], - [ - "Astfel", - -11.485808372497559 - ], - [ - "media", - -11.485868453979492 - ], - [ - "▁shoulder", - -11.4859037399292 - ], - [ - "▁directory", - -11.486000061035156 - ], - [ - "▁banking", - -11.486016273498535 - ], - [ - "▁mistakes", - -11.486040115356445 - ], - [ - "▁Fran", - -11.486425399780273 - ], - [ - "▁Jon", - -11.486544609069824 - ], - [ - "▁spare", - -11.486579895019531 - ], - [ - "metri", - -11.486668586730957 - ], - [ - "▁mask", - -11.486879348754883 - ], - [ - "▁consistently", - -11.48695182800293 - ], - [ - "▁Columbia", - -11.487278938293457 - ], - [ - "roid", - -11.48774242401123 - ], - [ - "essen", - -11.487935066223145 - ], - [ - "▁(“", - -11.48798656463623 - ], - [ - "▁série", - -11.488212585449219 - ], - [ - "▁Phil", - -11.488249778747559 - ], - [ - "▁usor", - -11.488249778747559 - ], - [ - "▁stood", - -11.488279342651367 - ], - [ - "▁racing", - -11.488335609436035 - ], - [ - "▁Comme", - -11.488555908203125 - ], - [ - "▁exceed", - -11.488565444946289 - ], - [ - "на", - -11.488618850708008 - ], - [ - "▁activate", - -11.48873233795166 - ], - [ - "▁circle", - -11.488836288452148 - ], - [ - "▁bold", - -11.488956451416016 - ], - [ - "▁handy", - -11.48909854888916 - ], - [ - "merely", - -11.489114761352539 - ], - [ - "▁Edward", - -11.489147186279297 - ], - [ - "▁contracts", - -11.489530563354492 - ], - [ - "ê", - -11.489595413208008 - ], - [ - "▁campaigns", - -11.489673614501953 - ], - [ - "▁ought", - -11.489733695983887 - ], - [ - "▁nursing", - -11.489781379699707 - ], - [ - "▁Jr", - -11.489917755126953 - ], - [ - "▁rarely", - -11.490032196044922 - ], - [ - "▁Mir", - -11.490050315856934 - ], - [ - "▁diagnosis", - -11.490379333496094 - ], - [ - "▁Theatre", - -11.490394592285156 - ], - [ - "▁producer", - -11.490407943725586 - ], - [ - "Currently", - -11.490492820739746 - ], - [ - "▁fitting", - -11.490580558776855 - ], - [ - "▁ajunge", - -11.490618705749512 - ], - [ - "minte", - -11.490754127502441 - ], - [ - "▁termen", - -11.490838050842285 - ], - [ - "▁Linux", - -11.491013526916504 - ], - [ - "▁1-", - -11.491068840026855 - ], - [ - "▁hätte", - -11.491202354431152 - ], - [ - "▁Resort", - -11.49129867553711 - ], - [ - "image", - -11.491527557373047 - ], - [ - "▁Rod", - -11.49189281463623 - ], - [ - "▁Fly", - -11.491924285888672 - ], - [ - "try", - -11.492317199707031 - ], - [ - "▁expense", - -11.49245834350586 - ], - [ - "▁Interior", - -11.492799758911133 - ], - [ - "▁fence", - -11.492920875549316 - ], - [ - "▁Kontakt", - -11.493063926696777 - ], - [ - "▁ALL", - -11.493142127990723 - ], - [ - "VA", - -11.493229866027832 - ], - [ - "▁Exchange", - -11.493316650390625 - ], - [ - "ranked", - -11.493558883666992 - ], - [ - "▁Performance", - -11.493621826171875 - ], - [ - "prim", - -11.493635177612305 - ], - [ - "▁basket", - -11.493694305419922 - ], - [ - "▁Vice", - -11.493703842163086 - ], - [ - "phan", - -11.4937105178833 - ], - [ - "▁broke", - -11.494003295898438 - ], - [ - "voir", - -11.49431324005127 - ], - [ - "arg", - -11.494512557983398 - ], - [ - "ART", - -11.494529724121094 - ], - [ - "▁floors", - -11.494856834411621 - ], - [ - "pression", - -11.495025634765625 - ], - [ - "▁possession", - -11.49507999420166 - ], - [ - "▁domaine", - -11.49510669708252 - ], - [ - "▁valeur", - -11.495132446289062 - ], - [ - "▁suddenly", - -11.495282173156738 - ], - [ - "▁mild", - -11.495304107666016 - ], - [ - "▁aflat", - -11.495431900024414 - ], - [ - "▁Tea", - -11.495731353759766 - ], - [ - "tritt", - -11.495767593383789 - ], - [ - "▁Mittel", - -11.495773315429688 - ], - [ - "▁regulatory", - -11.49580192565918 - ], - [ - "▁spectacular", - -11.495905876159668 - ], - [ - "fahrt", - -11.495949745178223 - ], - [ - "GS", - -11.496026039123535 - ], - [ - "MM", - -11.4961576461792 - ], - [ - "▁environments", - -11.496203422546387 - ], - [ - "▁Raum", - -11.496381759643555 - ], - [ - "▁lay", - -11.496664047241211 - ], - [ - "▁cré", - -11.496713638305664 - ], - [ - "▁Selbst", - -11.496726989746094 - ], - [ - "▁opposition", - -11.496821403503418 - ], - [ - "two", - -11.49729061126709 - ], - [ - "▁Clark", - -11.497822761535645 - ], - [ - "▁Netz", - -11.497845649719238 - ], - [ - "bald", - -11.497983932495117 - ], - [ - "▁Innovation", - -11.4982271194458 - ], - [ - "▁overcome", - -11.49825382232666 - ], - [ - "quot", - -11.499013900756836 - ], - [ - "▁Sin", - -11.499106407165527 - ], - [ - "▁Sto", - -11.499320983886719 - ], - [ - "▁grain", - -11.499560356140137 - ], - [ - "▁collections", - -11.499724388122559 - ], - [ - "▁applies", - -11.49986743927002 - ], - [ - "mach", - -11.499934196472168 - ], - [ - "▁wheels", - -11.499958992004395 - ], - [ - "▁universities", - -11.500049591064453 - ], - [ - "▁Ray", - -11.500182151794434 - ], - [ - "lina", - -11.500238418579102 - ], - [ - "▁arrangements", - -11.500393867492676 - ], - [ - "▁western", - -11.500728607177734 - ], - [ - "rous", - -11.500768661499023 - ], - [ - "aise", - -11.500784873962402 - ], - [ - "▁highlights", - -11.50112533569336 - ], - [ - "▁intend", - -11.501265525817871 - ], - [ - "aimed", - -11.501358032226562 - ], - [ - "▁Scotland", - -11.501360893249512 - ], - [ - "▁acestei", - -11.501466751098633 - ], - [ - "graf", - -11.50150203704834 - ], - [ - "duction", - -11.501517295837402 - ], - [ - "path", - -11.50156021118164 - ], - [ - "▁evil", - -11.501633644104004 - ], - [ - "▁scris", - -11.501791000366211 - ], - [ - "▁disposition", - -11.501927375793457 - ], - [ - "▁designing", - -11.5020751953125 - ], - [ - "zwar", - -11.502172470092773 - ], - [ - "▁Retrieve", - -11.50217342376709 - ], - [ - "▁aggressive", - -11.502374649047852 - ], - [ - "▁Glen", - -11.502411842346191 - ], - [ - "▁daher", - -11.502473831176758 - ], - [ - "▁Quick", - -11.502494812011719 - ], - [ - "▁recover", - -11.502632141113281 - ], - [ - "▁prominent", - -11.50288200378418 - ], - [ - "▁visits", - -11.503198623657227 - ], - [ - "▁Mis", - -11.503376960754395 - ], - [ - "▁edited", - -11.503456115722656 - ], - [ - "▁distributed", - -11.503564834594727 - ], - [ - "▁dés", - -11.503580093383789 - ], - [ - "▁alter", - -11.5035982131958 - ], - [ - "▁cooked", - -11.503697395324707 - ], - [ - "embl", - -11.503706932067871 - ], - [ - "Univers", - -11.503715515136719 - ], - [ - "▁Minuten", - -11.504156112670898 - ], - [ - "▁compris", - -11.504179954528809 - ], - [ - "rais", - -11.504182815551758 - ], - [ - "essentially", - -11.504199028015137 - ], - [ - "▁rel", - -11.504340171813965 - ], - [ - "▁appel", - -11.504570007324219 - ], - [ - "▁trace", - -11.504788398742676 - ], - [ - "relating", - -11.504830360412598 - ], - [ - "dès", - -11.504937171936035 - ], - [ - "aste", - -11.504961013793945 - ], - [ - "▁raison", - -11.504963874816895 - ], - [ - "▁frequent", - -11.505281448364258 - ], - [ - "▁beds", - -11.505316734313965 - ], - [ - "▁Miami", - -11.505511283874512 - ], - [ - "▁vibrant", - -11.50564193725586 - ], - [ - "▁Kam", - -11.505721092224121 - ], - [ - "▁klar", - -11.505861282348633 - ], - [ - "▁Tan", - -11.50598430633545 - ], - [ - "▁vidéo", - -11.506032943725586 - ], - [ - "▁Kur", - -11.506115913391113 - ], - [ - "▁themes", - -11.506134033203125 - ], - [ - "▁struggling", - -11.506440162658691 - ], - [ - "▁Magazine", - -11.506444931030273 - ], - [ - "maker", - -11.506476402282715 - ], - [ - "veni", - -11.506564140319824 - ], - [ - "▁Groß", - -11.506732940673828 - ], - [ - "▁streaming", - -11.506772994995117 - ], - [ - "▁analyze", - -11.506876945495605 - ], - [ - "▁titles", - -11.506982803344727 - ], - [ - "pier", - -11.507316589355469 - ], - [ - "▁participant", - -11.507347106933594 - ], - [ - "aims", - -11.507607460021973 - ], - [ - "▁convention", - -11.507638931274414 - ], - [ - "▁flood", - -11.507780075073242 - ], - [ - "▁nights", - -11.507842063903809 - ], - [ - "▁titre", - -11.50792407989502 - ], - [ - "▁voul", - -11.508010864257812 - ], - [ - "weit", - -11.50816822052002 - ], - [ - "where", - -11.508213996887207 - ], - [ - "▁Seiten", - -11.508286476135254 - ], - [ - "▁relaxing", - -11.508628845214844 - ], - [ - "▁piano", - -11.50883674621582 - ], - [ - "▁Pick", - -11.508842468261719 - ], - [ - "▁Sony", - -11.508955001831055 - ], - [ - "▁enhanced", - -11.509017944335938 - ], - [ - "▁visa", - -11.50915241241455 - ], - [ - "CH", - -11.50930118560791 - ], - [ - "▁instantly", - -11.50930404663086 - ], - [ - "▁Fan", - -11.509721755981445 - ], - [ - "▁diabetes", - -11.509988784790039 - ], - [ - "▁popul", - -11.50999641418457 - ], - [ - "Ang", - -11.510232925415039 - ], - [ - "▁Ask", - -11.510295867919922 - ], - [ - "cate", - -11.510650634765625 - ], - [ - "▁simplu", - -11.510666847229004 - ], - [ - "nahme", - -11.510685920715332 - ], - [ - "▁dentist", - -11.510842323303223 - ], - [ - "ubi", - -11.510920524597168 - ], - [ - "article", - -11.511030197143555 - ], - [ - "▁graph", - -11.511094093322754 - ], - [ - "▁rival", - -11.51121711730957 - ], - [ - "jahr", - -11.5113525390625 - ], - [ - "▁bloc", - -11.511370658874512 - ], - [ - "fern", - -11.511427879333496 - ], - [ - "▁dispar", - -11.511516571044922 - ], - [ - "▁servers", - -11.511582374572754 - ], - [ - "▁patru", - -11.511610984802246 - ], - [ - "▁Within", - -11.511634826660156 - ], - [ - "▁situated", - -11.511896133422852 - ], - [ - "▁HR", - -11.511981964111328 - ], - [ - "▁leaf", - -11.511981964111328 - ], - [ - "▁curs", - -11.512049674987793 - ], - [ - "antes", - -11.512325286865234 - ], - [ - "lux", - -11.512406349182129 - ], - [ - "▁1993", - -11.512463569641113 - ], - [ - "stance", - -11.512650489807129 - ], - [ - "▁northern", - -11.512683868408203 - ], - [ - "lves", - -11.512718200683594 - ], - [ - "▁contractors", - -11.512882232666016 - ], - [ - "▁dimensions", - -11.512920379638672 - ], - [ - "▁rolling", - -11.513068199157715 - ], - [ - "▁automobile", - -11.513211250305176 - ], - [ - "▁cru", - -11.51342487335205 - ], - [ - "▁displays", - -11.513570785522461 - ], - [ - "web", - -11.513812065124512 - ], - [ - "had", - -11.513850212097168 - ], - [ - "▁Never", - -11.513893127441406 - ], - [ - "▁2-", - -11.513932228088379 - ], - [ - "vine", - -11.51393985748291 - ], - [ - "▁Wahl", - -11.513975143432617 - ], - [ - "▁Markt", - -11.514166831970215 - ], - [ - "▁Double", - -11.514227867126465 - ], - [ - "▁acknowledge", - -11.514229774475098 - ], - [ - "stal", - -11.514288902282715 - ], - [ - "▁equity", - -11.514620780944824 - ], - [ - "▁ministry", - -11.514823913574219 - ], - [ - "▁Lor", - -11.514875411987305 - ], - [ - "▁sud", - -11.514968872070312 - ], - [ - "idée", - -11.515044212341309 - ], - [ - "▁measured", - -11.515448570251465 - ], - [ - "▁editing", - -11.515609741210938 - ], - [ - "▁singur", - -11.515620231628418 - ], - [ - "▁coal", - -11.515623092651367 - ], - [ - "▁dramatic", - -11.516212463378906 - ], - [ - "AG", - -11.516251564025879 - ], - [ - "asca", - -11.516280174255371 - ], - [ - "▁crash", - -11.516321182250977 - ], - [ - "ischer", - -11.516597747802734 - ], - [ - "▁Pla", - -11.516871452331543 - ], - [ - "▁psycho", - -11.517054557800293 - ], - [ - "piece", - -11.517118453979492 - ], - [ - "▁finger", - -11.517121315002441 - ], - [ - "▁Hollywood", - -11.517123222351074 - ], - [ - "▁Cr", - -11.517345428466797 - ], - [ - "▁locally", - -11.517622947692871 - ], - [ - "▁mouse", - -11.517792701721191 - ], - [ - "▁Base", - -11.517867088317871 - ], - [ - "uite", - -11.518095016479492 - ], - [ - "▁detect", - -11.518099784851074 - ], - [ - "cea", - -11.518150329589844 - ], - [ - "▁bull", - -11.518194198608398 - ], - [ - "▁curve", - -11.518208503723145 - ], - [ - "été", - -11.518218994140625 - ], - [ - "ddle", - -11.51839542388916 - ], - [ - "▁span", - -11.518523216247559 - ], - [ - "WS", - -11.518878936767578 - ], - [ - "CL", - -11.519017219543457 - ], - [ - "▁officially", - -11.519042015075684 - ], - [ - "▁corect", - -11.519168853759766 - ], - [ - "▁Artikel", - -11.5193510055542 - ], - [ - "▁customized", - -11.520099639892578 - ], - [ - "▁intellectual", - -11.52018928527832 - ], - [ - "▁heures", - -11.520334243774414 - ], - [ - "schule", - -11.520444869995117 - ], - [ - "▁investing", - -11.520585060119629 - ], - [ - "▁parallel", - -11.521227836608887 - ], - [ - "▁loi", - -11.521263122558594 - ], - [ - "ările", - -11.521566390991211 - ], - [ - "р", - -11.521679878234863 - ], - [ - "▁bench", - -11.521724700927734 - ], - [ - "▁principle", - -11.521756172180176 - ], - [ - "▁Galaxy", - -11.521829605102539 - ], - [ - "ța", - -11.522237777709961 - ], - [ - "▁(4", - -11.522418975830078 - ], - [ - "▁bedrooms", - -11.522578239440918 - ], - [ - "née", - -11.52273941040039 - ], - [ - "▁surely", - -11.52275276184082 - ], - [ - "very", - -11.522927284240723 - ], - [ - "stelle", - -11.523200988769531 - ], - [ - "activ", - -11.523216247558594 - ], - [ - "cite", - -11.523551940917969 - ], - [ - "▁Original", - -11.523553848266602 - ], - [ - "▁palm", - -11.523665428161621 - ], - [ - "▁losses", - -11.523934364318848 - ], - [ - "▁newspaper", - -11.524153709411621 - ], - [ - "ciu", - -11.52436351776123 - ], - [ - "▁Hold", - -11.524392127990723 - ], - [ - "BO", - -11.524422645568848 - ], - [ - "▁CON", - -11.524598121643066 - ], - [ - "▁modified", - -11.524624824523926 - ], - [ - "▁stake", - -11.524735450744629 - ], - [ - "▁Ton", - -11.524798393249512 - ], - [ - "▁luna", - -11.524968147277832 - ], - [ - "▁Mind", - -11.525094985961914 - ], - [ - "lap", - -11.525150299072266 - ], - [ - "▁opinions", - -11.525247573852539 - ], - [ - "▁Jordan", - -11.525351524353027 - ], - [ - "div", - -11.52537727355957 - ], - [ - "indi", - -11.525418281555176 - ], - [ - "▁Story", - -11.525476455688477 - ], - [ - "▁affiliate", - -11.52585506439209 - ], - [ - "▁matière", - -11.525918960571289 - ], - [ - "▁fifth", - -11.526399612426758 - ], - [ - "▁sheets", - -11.52645492553711 - ], - [ - "▁puțin", - -11.526909828186035 - ], - [ - "ush", - -11.526947021484375 - ], - [ - "geführt", - -11.526993751525879 - ], - [ - "▁Falls", - -11.527168273925781 - ], - [ - "legi", - -11.527295112609863 - ], - [ - "▁auction", - -11.527326583862305 - ], - [ - "▁cooperation", - -11.52735424041748 - ], - [ - "▁Fee", - -11.527474403381348 - ], - [ - "▁Daily", - -11.52774715423584 - ], - [ - "pies", - -11.527853965759277 - ], - [ - "▁basketball", - -11.527976036071777 - ], - [ - "removing", - -11.528056144714355 - ], - [ - "Besides", - -11.528294563293457 - ], - [ - "▁Body", - -11.528355598449707 - ], - [ - "▁AD", - -11.528369903564453 - ], - [ - "RU", - -11.528435707092285 - ], - [ - "ţia", - -11.52894401550293 - ], - [ - "▁Extra", - -11.528986930847168 - ], - [ - "▁Practice", - -11.52900218963623 - ], - [ - "▁Jeff", - -11.529017448425293 - ], - [ - "▁început", - -11.529253005981445 - ], - [ - "ching", - -11.529269218444824 - ], - [ - "▁Gift", - -11.529281616210938 - ], - [ - "kk", - -11.529295921325684 - ], - [ - "\")", - -11.529349327087402 - ], - [ - "▁Austin", - -11.529651641845703 - ], - [ - "thro", - -11.529766082763672 - ], - [ - "▁camping", - -11.529810905456543 - ], - [ - "▁theatre", - -11.529850959777832 - ], - [ - "école", - -11.529916763305664 - ], - [ - "vient", - -11.530159950256348 - ], - [ - "▁faces", - -11.530226707458496 - ], - [ - "▁constructed", - -11.530437469482422 - ], - [ - "▁overnight", - -11.530472755432129 - ], - [ - "▁locale", - -11.530574798583984 - ], - [ - "▁roots", - -11.530611038208008 - ], - [ - "▁bu", - -11.530662536621094 - ], - [ - "4,", - -11.530683517456055 - ], - [ - "▁Enterprise", - -11.530865669250488 - ], - [ - "screen", - -11.530935287475586 - ], - [ - "▁Chef", - -11.53096866607666 - ], - [ - "▁Along", - -11.531298637390137 - ], - [ - "▁MD", - -11.531431198120117 - ], - [ - "▁Supreme", - -11.531597137451172 - ], - [ - "En", - -11.531655311584473 - ], - [ - "▁verwendet", - -11.532015800476074 - ], - [ - "▁processed", - -11.532425880432129 - ], - [ - "▁vendors", - -11.532549858093262 - ], - [ - "▁FA", - -11.532651901245117 - ], - [ - "▁44", - -11.532716751098633 - ], - [ - "▁beautifully", - -11.532933235168457 - ], - [ - "▁eficient", - -11.533092498779297 - ], - [ - "▁Wil", - -11.533117294311523 - ], - [ - "▁Member", - -11.533121109008789 - ], - [ - "▁damages", - -11.5332670211792 - ], - [ - "▁mutual", - -11.533288955688477 - ], - [ - "SN", - -11.533506393432617 - ], - [ - "▁Dave", - -11.533665657043457 - ], - [ - "??", - -11.533998489379883 - ], - [ - "stat", - -11.534090995788574 - ], - [ - "▁tourist", - -11.534374237060547 - ], - [ - "fie", - -11.534425735473633 - ], - [ - "şte", - -11.534754753112793 - ], - [ - "▁donne", - -11.534764289855957 - ], - [ - "▁shadow", - -11.53493881225586 - ], - [ - "▁dough", - -11.534993171691895 - ], - [ - "▁Gro", - -11.535002708435059 - ], - [ - "▁Mah", - -11.535066604614258 - ], - [ - "RF", - -11.535126686096191 - ], - [ - "▁mechanism", - -11.535163879394531 - ], - [ - "▁2011,", - -11.535179138183594 - ], - [ - "▁Alter", - -11.53530502319336 - ], - [ - "▁opposed", - -11.53538990020752 - ], - [ - "▁Fri", - -11.535501480102539 - ], - [ - "▁remarkable", - -11.535572052001953 - ], - [ - "oral", - -11.535635948181152 - ], - [ - "▁verschiedene", - -11.535653114318848 - ], - [ - "▁difficulty", - -11.535691261291504 - ], - [ - "▁Application", - -11.535840034484863 - ], - [ - "▁Hay", - -11.535888671875 - ], - [ - "▁continua", - -11.535935401916504 - ], - [ - "EP", - -11.53609848022461 - ], - [ - "▁Pr", - -11.53617000579834 - ], - [ - "▁Lady", - -11.53631591796875 - ], - [ - "▁interval", - -11.536457061767578 - ], - [ - "▁Mil", - -11.536504745483398 - ], - [ - "▁2010.", - -11.537042617797852 - ], - [ - "VE", - -11.537074089050293 - ], - [ - "integr", - -11.537360191345215 - ], - [ - "▁création", - -11.537415504455566 - ], - [ - "weed", - -11.537456512451172 - ], - [ - "EG", - -11.53760051727295 - ], - [ - "▁6,", - -11.537784576416016 - ], - [ - "▁god", - -11.537866592407227 - ], - [ - "▁accomplish", - -11.537947654724121 - ], - [ - "▁thoroughly", - -11.538019180297852 - ], - [ - "2019", - -11.538228988647461 - ], - [ - "izer", - -11.538246154785156 - ], - [ - "▁Wal", - -11.538300514221191 - ], - [ - "ifying", - -11.538701057434082 - ], - [ - "▁Wohn", - -11.539227485656738 - ], - [ - "▁Holz", - -11.539474487304688 - ], - [ - "▁Advanced", - -11.539528846740723 - ], - [ - "▁honey", - -11.539626121520996 - ], - [ - "proof", - -11.539634704589844 - ], - [ - "▁saison", - -11.540029525756836 - ], - [ - "ându", - -11.540035247802734 - ], - [ - "▁Kevin", - -11.540116310119629 - ], - [ - "▁shelter", - -11.540199279785156 - ], - [ - "▁discut", - -11.540257453918457 - ], - [ - "▁hike", - -11.540257453918457 - ], - [ - "ités", - -11.540461540222168 - ], - [ - "▁boutique", - -11.540672302246094 - ], - [ - "▁Email", - -11.54067611694336 - ], - [ - "▁cosmetic", - -11.540830612182617 - ], - [ - "dian", - -11.540916442871094 - ], - [ - "▁hohe", - -11.540940284729004 - ], - [ - "▁absence", - -11.541071891784668 - ], - [ - "axi", - -11.541136741638184 - ], - [ - "nah", - -11.541178703308105 - ], - [ - "▁Frauen", - -11.541236877441406 - ], - [ - "▁actively", - -11.541278839111328 - ], - [ - "bind", - -11.541468620300293 - ], - [ - "▁everybody", - -11.541740417480469 - ], - [ - "▁controller", - -11.541802406311035 - ], - [ - "▁1.5", - -11.5418062210083 - ], - [ - "erau", - -11.541842460632324 - ], - [ - "gehen", - -11.541988372802734 - ], - [ - "▁scenario", - -11.542038917541504 - ], - [ - "▁odd", - -11.542083740234375 - ], - [ - "▁Ultra", - -11.542089462280273 - ], - [ - "▁finishing", - -11.542366981506348 - ], - [ - "▁cuts", - -11.542383193969727 - ], - [ - "▁financing", - -11.542515754699707 - ], - [ - "▁Chance", - -11.542579650878906 - ], - [ - "surrounded", - -11.542818069458008 - ], - [ - "▁joc", - -11.542903900146484 - ], - [ - "▁shelf", - -11.543004035949707 - ], - [ - "tief", - -11.54308032989502 - ], - [ - "▁Sir", - -11.543146133422852 - ], - [ - "▁Agent", - -11.543197631835938 - ], - [ - "▁scratch", - -11.543560981750488 - ], - [ - "2,000", - -11.54360294342041 - ], - [ - "nutri", - -11.54365348815918 - ], - [ - "nier", - -11.544063568115234 - ], - [ - "▁Dur", - -11.544175148010254 - ], - [ - "▁grid", - -11.544268608093262 - ], - [ - "road", - -11.544413566589355 - ], - [ - "▁pets", - -11.544429779052734 - ], - [ - "stud", - -11.54448127746582 - ], - [ - "OM", - -11.544569969177246 - ], - [ - "Die", - -11.544877052307129 - ], - [ - "▁800", - -11.54496955871582 - ], - [ - "▁arrangement", - -11.545088768005371 - ], - [ - "▁Sri", - -11.545185089111328 - ], - [ - "▁Patrick", - -11.545187950134277 - ], - [ - "ava", - -11.545212745666504 - ], - [ - "▁pension", - -11.54523754119873 - ], - [ - "dung", - -11.545353889465332 - ], - [ - "▁Chapter", - -11.545475006103516 - ], - [ - "▁Property", - -11.545475006103516 - ], - [ - "▁structural", - -11.545571327209473 - ], - [ - "▁overview", - -11.545731544494629 - ], - [ - "2015", - -11.545917510986328 - ], - [ - "▁lawn", - -11.545924186706543 - ], - [ - "▁Vin", - -11.546219825744629 - ], - [ - "lik", - -11.546402931213379 - ], - [ - "dus", - -11.546418190002441 - ], - [ - "Several", - -11.54654598236084 - ], - [ - "▁Bou", - -11.546670913696289 - ], - [ - "▁copper", - -11.546703338623047 - ], - [ - "▁duration", - -11.546867370605469 - ], - [ - "inate", - -11.546982765197754 - ], - [ - "▁podcast", - -11.547204971313477 - ], - [ - "▁Self", - -11.547208786010742 - ], - [ - "▁Construction", - -11.547491073608398 - ], - [ - "achat", - -11.54768180847168 - ], - [ - "???", - -11.547683715820312 - ], - [ - "▁Electric", - -11.547974586486816 - ], - [ - "▁Mrs", - -11.54799747467041 - ], - [ - "▁CT", - -11.548019409179688 - ], - [ - "▁proceed", - -11.548324584960938 - ], - [ - "▁Course", - -11.548333168029785 - ], - [ - "▁Frei", - -11.548699378967285 - ], - [ - "▁heavily", - -11.548868179321289 - ], - [ - "rique", - -11.548872947692871 - ], - [ - "version", - -11.549016952514648 - ], - [ - "▁representatives", - -11.549118041992188 - ], - [ - "▁tourism", - -11.549182891845703 - ], - [ - "▁shirt", - -11.5494966506958 - ], - [ - "▁rough", - -11.549507141113281 - ], - [ - "▁weniger", - -11.549735069274902 - ], - [ - "▁keyboard", - -11.550058364868164 - ], - [ - "▁heritage", - -11.550149917602539 - ], - [ - "kat", - -11.550535202026367 - ], - [ - "assez", - -11.550567626953125 - ], - [ - "▁cabinets", - -11.550591468811035 - ], - [ - "▁Komm", - -11.550762176513672 - ], - [ - "▁impressed", - -11.55078411102295 - ], - [ - "▁Oregon", - -11.550788879394531 - ], - [ - "▁Davis", - -11.55081558227539 - ], - [ - "specialized", - -11.55097770690918 - ], - [ - "▁gross", - -11.550999641418457 - ], - [ - "Located", - -11.551044464111328 - ], - [ - "ttle", - -11.551044464111328 - ], - [ - "▁2010,", - -11.551224708557129 - ], - [ - "chan", - -11.551253318786621 - ], - [ - "mine", - -11.551305770874023 - ], - [ - "▁aduce", - -11.551637649536133 - ], - [ - "▁subsequent", - -11.551729202270508 - ], - [ - "▁demo", - -11.551851272583008 - ], - [ - "aba", - -11.552209854125977 - ], - [ - "▁shock", - -11.552389144897461 - ], - [ - "▁theater", - -11.552854537963867 - ], - [ - "▁engineers", - -11.55294418334961 - ], - [ - "▁feu", - -11.553037643432617 - ], - [ - "▁Rot", - -11.553058624267578 - ], - [ - "▁addressed", - -11.553155899047852 - ], - [ - "▁Letter", - -11.553431510925293 - ], - [ - "gré", - -11.553448677062988 - ], - [ - "▁quantity", - -11.553449630737305 - ], - [ - "▁Seit", - -11.553640365600586 - ], - [ - "▁bacteria", - -11.553681373596191 - ], - [ - "kg", - -11.55408000946045 - ], - [ - "▁conservation", - -11.554191589355469 - ], - [ - "▁entreprises", - -11.55420207977295 - ], - [ - "▁pleasant", - -11.554207801818848 - ], - [ - "armed", - -11.554228782653809 - ], - [ - "dorf", - -11.554286003112793 - ], - [ - "fact", - -11.554320335388184 - ], - [ - "▁Much", - -11.554388046264648 - ], - [ - "▁laugh", - -11.55482006072998 - ], - [ - "▁blade", - -11.554835319519043 - ], - [ - "amine", - -11.554838180541992 - ], - [ - "▁insert", - -11.55493450164795 - ], - [ - "▁toys", - -11.555326461791992 - ], - [ - "▁в", - -11.555726051330566 - ], - [ - "cell", - -11.555747985839844 - ], - [ - "▁strengthen", - -11.555864334106445 - ], - [ - "GR", - -11.555882453918457 - ], - [ - "▁autor", - -11.556114196777344 - ], - [ - "▁LI", - -11.556147575378418 - ], - [ - "▁oamenii", - -11.556184768676758 - ], - [ - "▁Modell", - -11.556222915649414 - ], - [ - "▁sophisticated", - -11.556225776672363 - ], - [ - "▁Write", - -11.556283950805664 - ], - [ - "eți", - -11.556295394897461 - ], - [ - "say", - -11.556641578674316 - ], - [ - "▁nutzen", - -11.556783676147461 - ], - [ - "▁amenities", - -11.556979179382324 - ], - [ - "chel", - -11.557068824768066 - ], - [ - "Unlike", - -11.55720043182373 - ], - [ - "▁Bilder", - -11.557208061218262 - ], - [ - "fertig", - -11.55722713470459 - ], - [ - "PER", - -11.557244300842285 - ], - [ - "▁apparently", - -11.557282447814941 - ], - [ - "▁pointed", - -11.557332992553711 - ], - [ - "lop", - -11.557435989379883 - ], - [ - "▁commande", - -11.557848930358887 - ], - [ - "▁NEW", - -11.557923316955566 - ], - [ - "▁primi", - -11.55798625946045 - ], - [ - "▁aluminum", - -11.558046340942383 - ], - [ - "ificare", - -11.558063507080078 - ], - [ - "open", - -11.55815315246582 - ], - [ - "▁establishment", - -11.558305740356445 - ], - [ - "▁blanc", - -11.558349609375 - ], - [ - "▁1960", - -11.558454513549805 - ], - [ - "▁parameters", - -11.55856990814209 - ], - [ - "schluss", - -11.558685302734375 - ], - [ - "▁jet", - -11.55879020690918 - ], - [ - "gam", - -11.55902099609375 - ], - [ - "▁oral", - -11.559290885925293 - ], - [ - "▁tons", - -11.559348106384277 - ], - [ - "▁AL", - -11.55935001373291 - ], - [ - "▁intention", - -11.55947494506836 - ], - [ - "ives", - -11.55974292755127 - ], - [ - "▁BMW", - -11.559837341308594 - ], - [ - "gun", - -11.559967041015625 - ], - [ - "leben", - -11.560046195983887 - ], - [ - "▁Fresh", - -11.56010913848877 - ], - [ - "▁tuturor", - -11.560193061828613 - ], - [ - "▁marine", - -11.560208320617676 - ], - [ - "mile", - -11.560260772705078 - ], - [ - "▁alta", - -11.560271263122559 - ], - [ - "nnen", - -11.56050968170166 - ], - [ - "▁courts", - -11.560530662536621 - ], - [ - "▁Hello", - -11.560791015625 - ], - [ - "BL", - -11.560895919799805 - ], - [ - "▁reply", - -11.560962677001953 - ], - [ - "environnement", - -11.560975074768066 - ], - [ - "American", - -11.560995101928711 - ], - [ - "▁Tell", - -11.561040878295898 - ], - [ - "▁chic", - -11.56148624420166 - ], - [ - "bir", - -11.561542510986328 - ], - [ - "▁singing", - -11.561788558959961 - ], - [ - "▁earnings", - -11.561819076538086 - ], - [ - "▁ensemble", - -11.562082290649414 - ], - [ - "▁($", - -11.562169075012207 - ], - [ - "▁Tout", - -11.562192916870117 - ], - [ - "▁Abs", - -11.562264442443848 - ], - [ - "▁describes", - -11.562322616577148 - ], - [ - "▁navigation", - -11.5625 - ], - [ - "▁destul", - -11.562532424926758 - ], - [ - "legate", - -11.562586784362793 - ], - [ - "tral", - -11.562599182128906 - ], - [ - "aţie", - -11.562753677368164 - ], - [ - "▁supplied", - -11.562775611877441 - ], - [ - "▁paar", - -11.562911987304688 - ], - [ - "ionat", - -11.563241958618164 - ], - [ - "9.", - -11.563263893127441 - ], - [ - "▁41", - -11.563348770141602 - ], - [ - "▁Track", - -11.563451766967773 - ], - [ - "▁happiness", - -11.563636779785156 - ], - [ - "▁Personen", - -11.563680648803711 - ], - [ - "▁sac", - -11.56373119354248 - ], - [ - "▁shapes", - -11.563774108886719 - ], - [ - "eld", - -11.56393051147461 - ], - [ - "bett", - -11.563963890075684 - ], - [ - "tile", - -11.56400203704834 - ], - [ - "▁divided", - -11.564035415649414 - ], - [ - "▁13.", - -11.56403923034668 - ], - [ - "market", - -11.564109802246094 - ], - [ - "crafted", - -11.564115524291992 - ], - [ - "▁periods", - -11.564120292663574 - ], - [ - "uş", - -11.564568519592285 - ], - [ - "▁trainer", - -11.56460952758789 - ], - [ - "▁Licht", - -11.564871788024902 - ], - [ - "▁advisor", - -11.564948081970215 - ], - [ - "▁Herr", - -11.564980506896973 - ], - [ - "▁Halloween", - -11.565147399902344 - ], - [ - "alter", - -11.565154075622559 - ], - [ - "▁radical", - -11.565155029296875 - ], - [ - "▁nose", - -11.56527042388916 - ], - [ - "▁Sat", - -11.565323829650879 - ], - [ - "▁Mom", - -11.565372467041016 - ], - [ - "moni", - -11.565377235412598 - ], - [ - "▁semn", - -11.565397262573242 - ], - [ - "vé", - -11.565672874450684 - ], - [ - "identifie", - -11.56570053100586 - ], - [ - "▁hatten", - -11.565957069396973 - ], - [ - "completing", - -11.565959930419922 - ], - [ - "▁gust", - -11.565963745117188 - ], - [ - "▁creat", - -11.56601333618164 - ], - [ - "ché", - -11.566075325012207 - ], - [ - "pay", - -11.566216468811035 - ], - [ - "▁Money", - -11.566229820251465 - ], - [ - "IG", - -11.566243171691895 - ], - [ - "▁Cash", - -11.566327095031738 - ], - [ - "altă", - -11.566420555114746 - ], - [ - "▁bekommen", - -11.566620826721191 - ], - [ - "▁43", - -11.56662654876709 - ], - [ - "▁supplement", - -11.566637992858887 - ], - [ - "▁Early", - -11.566754341125488 - ], - [ - "▁mattress", - -11.56692123413086 - ], - [ - "▁worn", - -11.567182540893555 - ], - [ - "rov", - -11.567197799682617 - ], - [ - "▁pray", - -11.56733226776123 - ], - [ - "▁beans", - -11.567673683166504 - ], - [ - "▁passé", - -11.567782402038574 - ], - [ - "▁facilit", - -11.56782054901123 - ], - [ - "▁meters", - -11.56784439086914 - ], - [ - "cke", - -11.568163871765137 - ], - [ - "▁Villa", - -11.568199157714844 - ], - [ - "▁Diego", - -11.568217277526855 - ], - [ - "▁chips", - -11.568244934082031 - ], - [ - "▁mes", - -11.568349838256836 - ], - [ - "▁Seattle", - -11.568421363830566 - ], - [ - "BU", - -11.568621635437012 - ], - [ - "▁nevoi", - -11.568714141845703 - ], - [ - "▁lets", - -11.568737030029297 - ], - [ - "▁hopefully", - -11.56894302368164 - ], - [ - "▁AG", - -11.568954467773438 - ], - [ - "liable", - -11.568999290466309 - ], - [ - "pound", - -11.569067001342773 - ], - [ - "près", - -11.569085121154785 - ], - [ - "arul", - -11.56920337677002 - ], - [ - "isiert", - -11.569281578063965 - ], - [ - "▁Expert", - -11.569297790527344 - ], - [ - "▁particulier", - -11.569367408752441 - ], - [ - "stoff", - -11.569952964782715 - ], - [ - "▁interpretation", - -11.56999397277832 - ], - [ - "După", - -11.57007884979248 - ], - [ - "sait", - -11.57011604309082 - ], - [ - "▁nouvelles", - -11.570173263549805 - ], - [ - "▁Ok", - -11.570175170898438 - ], - [ - "tap", - -11.570301055908203 - ], - [ - "▁targets", - -11.570327758789062 - ], - [ - "rung", - -11.57052230834961 - ], - [ - "▁stare", - -11.570576667785645 - ], - [ - "▁efficiently", - -11.570908546447754 - ], - [ - "EV", - -11.571003913879395 - ], - [ - "évit", - -11.571310997009277 - ], - [ - "▁Moldova", - -11.571542739868164 - ], - [ - "▁Face", - -11.571663856506348 - ], - [ - "▁flo", - -11.57168960571289 - ], - [ - "▁acestora", - -11.5717134475708 - ], - [ - "▁Victor", - -11.57183837890625 - ], - [ - "▁breed", - -11.57198429107666 - ], - [ - "morph", - -11.572230339050293 - ], - [ - "sley", - -11.572274208068848 - ], - [ - "mot", - -11.57234001159668 - ], - [ - "▁URL", - -11.572395324707031 - ], - [ - "ellen", - -11.572502136230469 - ], - [ - "▁resist", - -11.572781562805176 - ], - [ - "zon", - -11.57282829284668 - ], - [ - "ndel", - -11.572967529296875 - ], - [ - "will", - -11.572989463806152 - ], - [ - "▁alege", - -11.573076248168945 - ], - [ - "▁Easter", - -11.573114395141602 - ], - [ - "▁Bat", - -11.573190689086914 - ], - [ - "▁Höhe", - -11.573223114013672 - ], - [ - "▁fascinating", - -11.573387145996094 - ], - [ - "▁Know", - -11.5735445022583 - ], - [ - "illon", - -11.573602676391602 - ], - [ - "flex", - -11.57363224029541 - ], - [ - "who", - -11.573701858520508 - ], - [ - "▁Always", - -11.573729515075684 - ], - [ - "▁Bush", - -11.573777198791504 - ], - [ - "ICE", - -11.574009895324707 - ], - [ - "verein", - -11.57448673248291 - ], - [ - "▁später", - -11.57448959350586 - ], - [ - "▁cherch", - -11.574575424194336 - ], - [ - "makers", - -11.574753761291504 - ], - [ - "versus", - -11.574790954589844 - ], - [ - "▁Clear", - -11.574846267700195 - ], - [ - "▁Pennsylvania", - -11.574912071228027 - ], - [ - "Dieser", - -11.575041770935059 - ], - [ - "▁picking", - -11.575072288513184 - ], - [ - "▁restoration", - -11.57513427734375 - ], - [ - "▁interviews", - -11.575201988220215 - ], - [ - "pressed", - -11.575210571289062 - ], - [ - "nnerhalb", - -11.575674057006836 - ], - [ - "▁connecting", - -11.575834274291992 - ], - [ - "jou", - -11.575943946838379 - ], - [ - "▁react", - -11.576189041137695 - ], - [ - "▁Merci", - -11.576223373413086 - ], - [ - "▁Phone", - -11.576356887817383 - ], - [ - "▁1)", - -11.57652473449707 - ], - [ - "▁victims", - -11.576618194580078 - ], - [ - "▁Spo", - -11.576685905456543 - ], - [ - "atului", - -11.576735496520996 - ], - [ - "▁Harry", - -11.576837539672852 - ], - [ - "▁Sala", - -11.576875686645508 - ], - [ - "Pol", - -11.577075958251953 - ], - [ - "▁Clo", - -11.577167510986328 - ], - [ - "▁Erfolg", - -11.577211380004883 - ], - [ - "autour", - -11.577308654785156 - ], - [ - "▁Template", - -11.577314376831055 - ], - [ - "▁invention", - -11.57754898071289 - ], - [ - "▁schwer", - -11.57761287689209 - ], - [ - "vac", - -11.577625274658203 - ], - [ - "▁Trail", - -11.577627182006836 - ], - [ - "▁Vietnam", - -11.577638626098633 - ], - [ - "▁Size", - -11.577689170837402 - ], - [ - "▁Bern", - -11.577783584594727 - ], - [ - "▁emp", - -11.577845573425293 - ], - [ - "▁shake", - -11.57787799835205 - ], - [ - "▁Ave", - -11.57794189453125 - ], - [ - "▁productive", - -11.578009605407715 - ], - [ - "▁apple", - -11.578015327453613 - ], - [ - "▁portal", - -11.578052520751953 - ], - [ - "▁ceramic", - -11.578082084655762 - ], - [ - "▁pad", - -11.578110694885254 - ], - [ - "▁Syn", - -11.578316688537598 - ], - [ - "Ab", - -11.57845401763916 - ], - [ - "▁syn", - -11.578761100769043 - ], - [ - "find", - -11.578888893127441 - ], - [ - "▁settle", - -11.578909873962402 - ], - [ - "▁général", - -11.578965187072754 - ], - [ - "▁okay", - -11.579032897949219 - ], - [ - "▁receipt", - -11.57906436920166 - ], - [ - "orii", - -11.579117774963379 - ], - [ - "▁Mission", - -11.579122543334961 - ], - [ - "entrée", - -11.579304695129395 - ], - [ - "▁besteht", - -11.579394340515137 - ], - [ - "▁wisdom", - -11.57950210571289 - ], - [ - "▁heraus", - -11.579645156860352 - ], - [ - "▁balanced", - -11.579753875732422 - ], - [ - "▁habits", - -11.579773902893066 - ], - [ - "tang", - -11.579888343811035 - ], - [ - "ură", - -11.580151557922363 - ], - [ - "▁winners", - -11.580182075500488 - ], - [ - "ç", - -11.580215454101562 - ], - [ - "▁folosi", - -11.580242156982422 - ], - [ - "aliment", - -11.5802583694458 - ], - [ - "▁fiction", - -11.580373764038086 - ], - [ - "▁Spe", - -11.580534934997559 - ], - [ - "▁elsewhere", - -11.580663681030273 - ], - [ - "▁dependent", - -11.580808639526367 - ], - [ - "▁Anne", - -11.581167221069336 - ], - [ - "▁excellence", - -11.581695556640625 - ], - [ - "▁Feel", - -11.581753730773926 - ], - [ - "lieb", - -11.581811904907227 - ], - [ - "▁sectors", - -11.581865310668945 - ], - [ - "▁expir", - -11.581886291503906 - ], - [ - "▁surfaces", - -11.58191204071045 - ], - [ - "▁minim", - -11.581937789916992 - ], - [ - "▁tumor", - -11.58204460144043 - ], - [ - "▁paragraph", - -11.582289695739746 - ], - [ - "▁disk", - -11.58232307434082 - ], - [ - "▁tonight", - -11.582379341125488 - ], - [ - "▁precious", - -11.582794189453125 - ], - [ - "▁console", - -11.58288288116455 - ], - [ - "Th", - -11.582939147949219 - ], - [ - "neu", - -11.583020210266113 - ], - [ - "effective", - -11.5839262008667 - ], - [ - "▁Republican", - -11.583944320678711 - ], - [ - "format", - -11.584297180175781 - ], - [ - "▁preserve", - -11.58436107635498 - ], - [ - "▁wiring", - -11.584599494934082 - ], - [ - "▁exercises", - -11.584757804870605 - ], - [ - "▁pregnancy", - -11.584774017333984 - ], - [ - "tries", - -11.58481502532959 - ], - [ - "▁jeunes", - -11.584883689880371 - ], - [ - "▁publishing", - -11.584932327270508 - ], - [ - "▁nehmen", - -11.584935188293457 - ], - [ - "▁capability", - -11.5849609375 - ], - [ - "▁prompt", - -11.584965705871582 - ], - [ - "▁Further", - -11.58497428894043 - ], - [ - "▁semaine", - -11.585173606872559 - ], - [ - "abo", - -11.585216522216797 - ], - [ - "▁evolution", - -11.585319519042969 - ], - [ - "▁Sud", - -11.585403442382812 - ], - [ - "▁frais", - -11.585525512695312 - ], - [ - "LT", - -11.585619926452637 - ], - [ - "▁stack", - -11.58581829071045 - ], - [ - "▁Inside", - -11.585854530334473 - ], - [ - "▁programmes", - -11.585997581481934 - ], - [ - "▁passes", - -11.586196899414062 - ], - [ - "mü", - -11.586474418640137 - ], - [ - "▁progressive", - -11.586518287658691 - ], - [ - "▁calculator", - -11.58658218383789 - ], - [ - "▁Core", - -11.586655616760254 - ], - [ - "BT", - -11.586956977844238 - ], - [ - "core", - -11.586996078491211 - ], - [ - "▁Moon", - -11.587004661560059 - ], - [ - "▁tender", - -11.587040901184082 - ], - [ - "durch", - -11.58721923828125 - ], - [ - "▁commune", - -11.587453842163086 - ], - [ - "▁Prince", - -11.587594032287598 - ], - [ - "▁demonstrated", - -11.587693214416504 - ], - [ - "▁conversations", - -11.587890625 - ], - [ - "▁fri", - -11.587984085083008 - ], - [ - "igh", - -11.587992668151855 - ], - [ - "being", - -11.588334083557129 - ], - [ - "pause", - -11.58853530883789 - ], - [ - "▁Bear", - -11.58871841430664 - ], - [ - "ayant", - -11.588875770568848 - ], - [ - "▁Industry", - -11.588967323303223 - ], - [ - "▁sponsor", - -11.589012145996094 - ], - [ - "▁numele", - -11.589098930358887 - ], - [ - "▁VA", - -11.589167594909668 - ], - [ - "▁Sommer", - -11.589366912841797 - ], - [ - "TB", - -11.589380264282227 - ], - [ - "▁optional", - -11.589505195617676 - ], - [ - "▁Landes", - -11.589812278747559 - ], - [ - "coli", - -11.589963912963867 - ], - [ - "empt", - -11.59018325805664 - ], - [ - "▁Iron", - -11.590620040893555 - ], - [ - "▁1992", - -11.59090518951416 - ], - [ - "▁attempts", - -11.59090518951416 - ], - [ - "halb", - -11.590960502624512 - ], - [ - "▁photographer", - -11.59097671508789 - ], - [ - "▁witness", - -11.59097957611084 - ], - [ - "bru", - -11.591073989868164 - ], - [ - "▁Ras", - -11.59107780456543 - ], - [ - "▁burden", - -11.591142654418945 - ], - [ - "▁kaufen", - -11.591256141662598 - ], - [ - "▁vu", - -11.591362953186035 - ], - [ - "▁Wedding", - -11.591601371765137 - ], - [ - "▁Kla", - -11.591604232788086 - ], - [ - "occasion", - -11.591915130615234 - ], - [ - "▁keys", - -11.592131614685059 - ], - [ - "▁oferi", - -11.592279434204102 - ], - [ - "▁puzzle", - -11.592302322387695 - ], - [ - "eaux", - -11.59254264831543 - ], - [ - "▁Eco", - -11.592805862426758 - ], - [ - "▁52", - -11.592817306518555 - ], - [ - "▁Elizabeth", - -11.59284496307373 - ], - [ - "▁dispose", - -11.593144416809082 - ], - [ - "▁cluster", - -11.59326171875 - ], - [ - "iki", - -11.593283653259277 - ], - [ - "▁Guys", - -11.593595504760742 - ], - [ - "▁Economic", - -11.593632698059082 - ], - [ - "▁apar", - -11.593677520751953 - ], - [ - "▁ziua", - -11.593688011169434 - ], - [ - "▁integral", - -11.593740463256836 - ], - [ - "▁tac", - -11.59376335144043 - ], - [ - "▁restrictions", - -11.593778610229492 - ], - [ - "▁nerve", - -11.593794822692871 - ], - [ - "▁Stop", - -11.59386157989502 - ], - [ - "burger", - -11.593897819519043 - ], - [ - "explo", - -11.593944549560547 - ], - [ - "lö", - -11.593958854675293 - ], - [ - "NP", - -11.594077110290527 - ], - [ - "▁Brook", - -11.59418773651123 - ], - [ - "▁Close", - -11.594278335571289 - ], - [ - "▁representing", - -11.59446907043457 - ], - [ - "▁certaine", - -11.594767570495605 - ], - [ - "▁discovery", - -11.594836235046387 - ], - [ - "▁rece", - -11.594964981079102 - ], - [ - "FF", - -11.594970703125 - ], - [ - "▁salary", - -11.595069885253906 - ], - [ - "▁Wolf", - -11.595137596130371 - ], - [ - "▁deserve", - -11.595166206359863 - ], - [ - "ţele", - -11.595417976379395 - ], - [ - "gathered", - -11.595934867858887 - ], - [ - "▁comply", - -11.59599494934082 - ], - [ - "lagen", - -11.596034049987793 - ], - [ - "ătoare", - -11.596192359924316 - ], - [ - "▁relate", - -11.596410751342773 - ], - [ - "▁Roger", - -11.59656810760498 - ], - [ - "▁blame", - -11.596575736999512 - ], - [ - "▁Jen", - -11.596914291381836 - ], - [ - "▁army", - -11.596936225891113 - ], - [ - "▁$10", - -11.597129821777344 - ], - [ - "▁Cabinet", - -11.597185134887695 - ], - [ - "Gu", - -11.597367286682129 - ], - [ - "▁wildlife", - -11.597452163696289 - ], - [ - "▁Memorial", - -11.597643852233887 - ], - [ - "▁Holiday", - -11.597742080688477 - ], - [ - "▁curat", - -11.598291397094727 - ], - [ - "iilor", - -11.598299026489258 - ], - [ - "▁fleet", - -11.598408699035645 - ], - [ - "▁reviewed", - -11.59843635559082 - ], - [ - "cet", - -11.598450660705566 - ], - [ - "▁virtually", - -11.598487854003906 - ], - [ - "▁Crusher", - -11.59852409362793 - ], - [ - "▁slide", - -11.59858226776123 - ], - [ - "▁générale", - -11.598604202270508 - ], - [ - "▁sensation", - -11.598630905151367 - ], - [ - "▁garlic", - -11.598638534545898 - ], - [ - "5)", - -11.598657608032227 - ], - [ - "▁batteries", - -11.598756790161133 - ], - [ - "SH", - -11.59876823425293 - ], - [ - "▁seller", - -11.59882926940918 - ], - [ - "design", - -11.598871231079102 - ], - [ - "5.", - -11.598944664001465 - ], - [ - "▁Overall", - -11.598969459533691 - ], - [ - "▁investigate", - -11.599058151245117 - ], - [ - "max", - -11.599064826965332 - ], - [ - "▁attach", - -11.599166870117188 - ], - [ - "▁Future", - -11.599209785461426 - ], - [ - "OUR", - -11.599284172058105 - ], - [ - "▁LE", - -11.59968090057373 - ], - [ - "▁bite", - -11.599811553955078 - ], - [ - "tige", - -11.599874496459961 - ], - [ - "▁twist", - -11.59987735748291 - ], - [ - "hole", - -11.600180625915527 - ], - [ - "▁Tony", - -11.600510597229004 - ], - [ - "LU", - -11.600598335266113 - ], - [ - "▁Organization", - -11.600617408752441 - ], - [ - "▁invit", - -11.600632667541504 - ], - [ - "▁Ant", - -11.600739479064941 - ], - [ - "NR", - -11.600788116455078 - ], - [ - "sorgt", - -11.600854873657227 - ], - [ - "▁Lan", - -11.600860595703125 - ], - [ - "▁Manchester", - -11.60091495513916 - ], - [ - "schrift", - -11.601066589355469 - ], - [ - "▁kg", - -11.601150512695312 - ], - [ - "▁aroma", - -11.60132884979248 - ], - [ - "▁Source", - -11.601388931274414 - ], - [ - "▁permite", - -11.601445198059082 - ], - [ - "▁Consider", - -11.601457595825195 - ], - [ - "▁Artist", - -11.601627349853516 - ], - [ - "▁transmit", - -11.601783752441406 - ], - [ - "oasa", - -11.601834297180176 - ], - [ - "▁Zen", - -11.60198974609375 - ], - [ - "ANT", - -11.602235794067383 - ], - [ - "▁consulting", - -11.602404594421387 - ], - [ - "▁commence", - -11.6025390625 - ], - [ - "▁quilt", - -11.60261058807373 - ], - [ - "owned", - -11.602642059326172 - ], - [ - "▁bro", - -11.602689743041992 - ], - [ - "▁integrate", - -11.602715492248535 - ], - [ - "▁Ontario", - -11.602775573730469 - ], - [ - "TF", - -11.602832794189453 - ], - [ - "▁Study", - -11.602887153625488 - ], - [ - "▁ensuite", - -11.603155136108398 - ], - [ - "itatii", - -11.603180885314941 - ], - [ - "Mon", - -11.603235244750977 - ], - [ - "-11", - -11.603299140930176 - ], - [ - "what", - -11.603384017944336 - ], - [ - "▁Things", - -11.60361385345459 - ], - [ - "▁Eye", - -11.603819847106934 - ], - [ - "▁présente", - -11.603828430175781 - ], - [ - "tention", - -11.603915214538574 - ], - [ - "|", - -11.603957176208496 - ], - [ - "stall", - -11.603963851928711 - ], - [ - "▁beef", - -11.603992462158203 - ], - [ - "figur", - -11.604005813598633 - ], - [ - "▁cancel", - -11.604146003723145 - ], - [ - "▁domeniul", - -11.604252815246582 - ], - [ - "▁360", - -11.604290008544922 - ], - [ - "▁sleeping", - -11.6045560836792 - ], - [ - "▁traitement", - -11.604580879211426 - ], - [ - "ühl", - -11.604769706726074 - ], - [ - "▁Environmental", - -11.604835510253906 - ], - [ - "cier", - -11.604894638061523 - ], - [ - "▁NC", - -11.604907035827637 - ], - [ - "pub", - -11.604925155639648 - ], - [ - "▁addiction", - -11.605071067810059 - ], - [ - "▁nest", - -11.605128288269043 - ], - [ - "▁ON", - -11.605395317077637 - ], - [ - "▁discrimin", - -11.605396270751953 - ], - [ - "▁proved", - -11.605517387390137 - ], - [ - "▁occasions", - -11.605864524841309 - ], - [ - "OH", - -11.606184959411621 - ], - [ - "▁lawyers", - -11.606203079223633 - ], - [ - "own", - -11.606290817260742 - ], - [ - "▁Meeting", - -11.606596946716309 - ], - [ - "▁Industrial", - -11.606704711914062 - ], - [ - "owed", - -11.606736183166504 - ], - [ - "▁Cel", - -11.606793403625488 - ], - [ - "legt", - -11.60706615447998 - ], - [ - "ily", - -11.607085227966309 - ], - [ - "▁wins", - -11.607155799865723 - ], - [ - "▁strap", - -11.607367515563965 - ], - [ - "digit", - -11.607441902160645 - ], - [ - "▁hinaus", - -11.607504844665527 - ], - [ - "mple", - -11.607712745666504 - ], - [ - "▁(5", - -11.607797622680664 - ], - [ - "▁pdf", - -11.607894897460938 - ], - [ - "▁eco", - -11.607915878295898 - ], - [ - "▁junior", - -11.608172416687012 - ], - [ - "DB", - -11.608556747436523 - ], - [ - "gelegt", - -11.608636856079102 - ], - [ - "ION", - -11.608678817749023 - ], - [ - "▁competitors", - -11.60880184173584 - ], - [ - "▁Arab", - -11.60898208618164 - ], - [ - "▁Secret", - -11.609148979187012 - ], - [ - "▁Kunst", - -11.609283447265625 - ], - [ - "▁worried", - -11.609297752380371 - ], - [ - "meiner", - -11.609378814697266 - ], - [ - "▁Magic", - -11.609450340270996 - ], - [ - "▁groß", - -11.609537124633789 - ], - [ - "▁travaux", - -11.609748840332031 - ], - [ - "▁sollen", - -11.609772682189941 - ], - [ - "▁Sciences", - -11.609850883483887 - ], - [ - "▁athletes", - -11.610055923461914 - ], - [ - "▁discounts", - -11.610079765319824 - ], - [ - "kit", - -11.610211372375488 - ], - [ - "lind", - -11.610305786132812 - ], - [ - "▁enjoyable", - -11.610421180725098 - ], - [ - "ground", - -11.610489845275879 - ], - [ - "▁Tat", - -11.610529899597168 - ], - [ - "▁passengers", - -11.610576629638672 - ], - [ - "▁Dami", - -11.610677719116211 - ], - [ - "▁Major", - -11.61070728302002 - ], - [ - "watch", - -11.610796928405762 - ], - [ - "working", - -11.610908508300781 - ], - [ - "arrêt", - -11.610923767089844 - ], - [ - "▁subtle", - -11.611069679260254 - ], - [ - "▁epi", - -11.611197471618652 - ], - [ - "▁Jahres", - -11.61128044128418 - ], - [ - "▁cooling", - -11.61141586303711 - ], - [ - "▁makeup", - -11.611427307128906 - ], - [ - "jet", - -11.611495018005371 - ], - [ - "▁Given", - -11.611519813537598 - ], - [ - "plex", - -11.61158275604248 - ], - [ - "▁exploit", - -11.611590385437012 - ], - [ - "rine", - -11.611604690551758 - ], - [ - "▁delivers", - -11.612122535705566 - ], - [ - "▁summary", - -11.612236022949219 - ], - [ - "▁beaches", - -11.612459182739258 - ], - [ - "lift", - -11.612550735473633 - ], - [ - "▁Suite", - -11.612554550170898 - ], - [ - "▁Assistant", - -11.612688064575195 - ], - [ - "▁taxi", - -11.61273193359375 - ], - [ - "▁peaceful", - -11.612805366516113 - ], - [ - "▁Mode", - -11.612980842590332 - ], - [ - "▁Fun", - -11.613059043884277 - ], - [ - "▁diameter", - -11.613142967224121 - ], - [ - "▁phrase", - -11.613150596618652 - ], - [ - "ACT", - -11.613265037536621 - ], - [ - "▁différentes", - -11.613322257995605 - ], - [ - "▁14.", - -11.613417625427246 - ], - [ - "▁CE", - -11.61352825164795 - ], - [ - "▁2)", - -11.613739013671875 - ], - [ - "▁Nat", - -11.613785743713379 - ], - [ - "▁delete", - -11.61388111114502 - ], - [ - "other", - -11.613930702209473 - ], - [ - "hang", - -11.613985061645508 - ], - [ - "▁sujet", - -11.614117622375488 - ], - [ - "▁precise", - -11.614212989807129 - ], - [ - "▁Total", - -11.614290237426758 - ], - [ - "▁chambre", - -11.614483833312988 - ], - [ - "sati", - -11.614666938781738 - ], - [ - "▁Metal", - -11.614995956420898 - ], - [ - "rust", - -11.615038871765137 - ], - [ - "▁Brazil", - -11.615508079528809 - ], - [ - "▁hybrid", - -11.615636825561523 - ], - [ - "ops", - -11.615691184997559 - ], - [ - "▁electro", - -11.615789413452148 - ], - [ - "utz", - -11.61608600616455 - ], - [ - "▁quoi", - -11.616246223449707 - ], - [ - "▁adoption", - -11.616331100463867 - ], - [ - "3.5", - -11.616518020629883 - ], - [ - "50,000", - -11.616599082946777 - ], - [ - "veti", - -11.616630554199219 - ], - [ - "hir", - -11.616957664489746 - ], - [ - "▁adequate", - -11.617067337036133 - ], - [ - "ologist", - -11.617109298706055 - ], - [ - "torii", - -11.617295265197754 - ], - [ - "wasser", - -11.617355346679688 - ], - [ - "▁Authority", - -11.617362976074219 - ], - [ - "▁donation", - -11.617364883422852 - ], - [ - "700", - -11.617375373840332 - ], - [ - "▁somehow", - -11.617375373840332 - ], - [ - "▁kostenlos", - -11.617425918579102 - ], - [ - "▁generations", - -11.617537498474121 - ], - [ - "▁Turkey", - -11.617711067199707 - ], - [ - "rata", - -11.617819786071777 - ], - [ - "▁animation", - -11.618206024169922 - ], - [ - "▁CH", - -11.618281364440918 - ], - [ - "ending", - -11.618317604064941 - ], - [ - "welt", - -11.618376731872559 - ], - [ - "bac", - -11.618380546569824 - ], - [ - "MG", - -11.618460655212402 - ], - [ - "▁parks", - -11.618468284606934 - ], - [ - "▁placing", - -11.618870735168457 - ], - [ - "sort", - -11.61915111541748 - ], - [ - "▁Bitcoin", - -11.619163513183594 - ], - [ - "▁disorder", - -11.619282722473145 - ], - [ - "MAN", - -11.619302749633789 - ], - [ - "aught", - -11.619412422180176 - ], - [ - "▁guides", - -11.61956787109375 - ], - [ - "▁circul", - -11.619651794433594 - ], - [ - "▁Steven", - -11.619954109191895 - ], - [ - "rrière", - -11.619976997375488 - ], - [ - "▁Arch", - -11.61999225616455 - ], - [ - "▁plates", - -11.620091438293457 - ], - [ - "MR", - -11.620118141174316 - ], - [ - "▁cow", - -11.620142936706543 - ], - [ - "▁integrity", - -11.620210647583008 - ], - [ - "▁(18", - -11.620217323303223 - ], - [ - "▁totul", - -11.62024211883545 - ], - [ - "jack", - -11.620373725891113 - ], - [ - "▁privire", - -11.620588302612305 - ], - [ - "▁terme", - -11.620752334594727 - ], - [ - "▁execution", - -11.620781898498535 - ], - [ - "▁organism", - -11.620838165283203 - ], - [ - "▁führen", - -11.620853424072266 - ], - [ - "▁patron", - -11.620940208435059 - ], - [ - "▁appreciated", - -11.62096881866455 - ], - [ - "liant", - -11.62100601196289 - ], - [ - "▁Solar", - -11.621055603027344 - ], - [ - "▁vinyl", - -11.621134757995605 - ], - [ - "▁treasure", - -11.621137619018555 - ], - [ - "▁retro", - -11.621167182922363 - ], - [ - "▁bout", - -11.621174812316895 - ], - [ - "lab", - -11.621183395385742 - ], - [ - "▁dimension", - -11.621394157409668 - ], - [ - "called", - -11.62146282196045 - ], - [ - "▁intern", - -11.621479034423828 - ], - [ - "issement", - -11.62173843383789 - ], - [ - "▁Erst", - -11.621837615966797 - ], - [ - "▁stellen", - -11.621920585632324 - ], - [ - "▁familia", - -11.622069358825684 - ], - [ - "▁notion", - -11.622176170349121 - ], - [ - "▁Could", - -11.622322082519531 - ], - [ - "Getting", - -11.622323036193848 - ], - [ - "▁drives", - -11.622397422790527 - ], - [ - "▁Israeli", - -11.622520446777344 - ], - [ - "▁nations", - -11.622546195983887 - ], - [ - "▁duties", - -11.622700691223145 - ], - [ - "▁personalized", - -11.622788429260254 - ], - [ - "▁weren", - -11.62282657623291 - ], - [ - "▁chemicals", - -11.622847557067871 - ], - [ - "▁killing", - -11.622913360595703 - ], - [ - "▁masa", - -11.622994422912598 - ], - [ - "▁parce", - -11.623026847839355 - ], - [ - "▁lady", - -11.623178482055664 - ], - [ - "ides", - -11.623221397399902 - ], - [ - "▁execut", - -11.62340259552002 - ], - [ - "▁floral", - -11.62341594696045 - ], - [ - "▁Child", - -11.623428344726562 - ], - [ - "▁medal", - -11.623503684997559 - ], - [ - "▁casa", - -11.623603820800781 - ], - [ - "▁enabled", - -11.623650550842285 - ], - [ - "12.", - -11.624239921569824 - ], - [ - "nger", - -11.624266624450684 - ], - [ - "▁vent", - -11.624297142028809 - ], - [ - "▁urmă", - -11.624727249145508 - ], - [ - "▁Herz", - -11.624835968017578 - ], - [ - "▁Jay", - -11.624916076660156 - ], - [ - ".....", - -11.624942779541016 - ], - [ - "▁Kris", - -11.62499713897705 - ], - [ - "kenn", - -11.625001907348633 - ], - [ - "ress", - -11.625027656555176 - ], - [ - "weight", - -11.62519359588623 - ], - [ - "▁indicates", - -11.625198364257812 - ], - [ - "▁mentor", - -11.625328063964844 - ], - [ - "using", - -11.625386238098145 - ], - [ - "▁femmes", - -11.625460624694824 - ], - [ - "▁Jung", - -11.625528335571289 - ], - [ - "▁Send", - -11.625574111938477 - ], - [ - "▁seasons", - -11.625906944274902 - ], - [ - "▁aesthetic", - -11.625964164733887 - ], - [ - "▁Block", - -11.626086235046387 - ], - [ - "▁babies", - -11.626150131225586 - ], - [ - "zig", - -11.626242637634277 - ], - [ - "edge", - -11.626428604125977 - ], - [ - "▁alike", - -11.626458168029785 - ], - [ - "▁immune", - -11.626609802246094 - ], - [ - "▁magical", - -11.626710891723633 - ], - [ - "▁Snow", - -11.626748085021973 - ], - [ - "▁spacious", - -11.627058982849121 - ], - [ - "▁Melbourne", - -11.62706184387207 - ], - [ - "order", - -11.627081871032715 - ], - [ - "▁timing", - -11.627176284790039 - ], - [ - "▁inainte", - -11.627220153808594 - ], - [ - "▁width", - -11.627327919006348 - ], - [ - "bild", - -11.627386093139648 - ], - [ - "Tra", - -11.627429008483887 - ], - [ - "▁appliances", - -11.627449989318848 - ], - [ - "▁dirt", - -11.627498626708984 - ], - [ - "▁Rent", - -11.627689361572266 - ], - [ - "responsibilities", - -11.627747535705566 - ], - [ - "▁blogs", - -11.62778377532959 - ], - [ - "nächsten", - -11.627799034118652 - ], - [ - "▁argue", - -11.627928733825684 - ], - [ - "▁Resume", - -11.627985954284668 - ], - [ - "▁Michel", - -11.628044128417969 - ], - [ - "▁terrible", - -11.628092765808105 - ], - [ - "graph", - -11.628151893615723 - ], - [ - "bird", - -11.628202438354492 - ], - [ - "▁Simple", - -11.628457069396973 - ], - [ - "nning", - -11.628658294677734 - ], - [ - "▁coconut", - -11.628683090209961 - ], - [ - "▁comprise", - -11.628787994384766 - ], - [ - "heure", - -11.628918647766113 - ], - [ - "▁nichts", - -11.628921508789062 - ], - [ - "▁manufacture", - -11.628966331481934 - ], - [ - "▁Sar", - -11.629011154174805 - ], - [ - "green", - -11.629014015197754 - ], - [ - "lining", - -11.62910270690918 - ], - [ - "▁tremendous", - -11.629128456115723 - ], - [ - "▁Wine", - -11.629164695739746 - ], - [ - "gir", - -11.629290580749512 - ], - [ - "▁Nothing", - -11.629562377929688 - ], - [ - "▁Miller", - -11.62957763671875 - ], - [ - "▁Schwe", - -11.629712104797363 - ], - [ - "zone", - -11.629942893981934 - ], - [ - "▁cunoscut", - -11.629964828491211 - ], - [ - "rupt", - -11.630166053771973 - ], - [ - "kle", - -11.630187034606934 - ], - [ - "▁Bucuresti", - -11.630510330200195 - ], - [ - "▁Abend", - -11.630574226379395 - ], - [ - "▁aura", - -11.630583763122559 - ], - [ - "▁Dance", - -11.63073444366455 - ], - [ - "▁Wilson", - -11.63086986541748 - ], - [ - "icide", - -11.630901336669922 - ], - [ - "bai", - -11.630910873413086 - ], - [ - "oriented", - -11.63103199005127 - ], - [ - "▁celebrated", - -11.631421089172363 - ], - [ - "schlag", - -11.631531715393066 - ], - [ - "▁10-", - -11.631600379943848 - ], - [ - "Unsere", - -11.63167667388916 - ], - [ - "énergie", - -11.632009506225586 - ], - [ - "▁qualify", - -11.63205623626709 - ], - [ - "▁contenu", - -11.632177352905273 - ], - [ - "▁Lauf", - -11.63220500946045 - ], - [ - "▁einzelne", - -11.632360458374023 - ], - [ - "▁Youth", - -11.632415771484375 - ], - [ - "explains", - -11.632601737976074 - ], - [ - "grat", - -11.632782936096191 - ], - [ - "▁72", - -11.632804870605469 - ], - [ - "labor", - -11.632885932922363 - ], - [ - "2018", - -11.632940292358398 - ], - [ - "▁Dank", - -11.633149147033691 - ], - [ - "▁Hey", - -11.633523941040039 - ], - [ - "▁refuse", - -11.633536338806152 - ], - [ - "▁graduated", - -11.633599281311035 - ], - [ - "▁României", - -11.633627891540527 - ], - [ - "punkt", - -11.633807182312012 - ], - [ - "▁regulation", - -11.633834838867188 - ], - [ - "Bru", - -11.633842468261719 - ], - [ - "▁Side", - -11.633891105651855 - ], - [ - "▁sol", - -11.633970260620117 - ], - [ - "▁extraordinary", - -11.634182929992676 - ], - [ - "▁ging", - -11.634247779846191 - ], - [ - "▁Creative", - -11.634299278259277 - ], - [ - "▁expanding", - -11.634349822998047 - ], - [ - "▁problème", - -11.63444995880127 - ], - [ - "▁Reserve", - -11.63459300994873 - ], - [ - "auteur", - -11.634642601013184 - ], - [ - "sphere", - -11.634657859802246 - ], - [ - "season", - -11.634716987609863 - ], - [ - "frei", - -11.634756088256836 - ], - [ - "▁8,", - -11.634765625 - ], - [ - "▁filing", - -11.634810447692871 - ], - [ - "▁Complete", - -11.635017395019531 - ], - [ - "▁revolution", - -11.635035514831543 - ], - [ - "▁unele", - -11.63520622253418 - ], - [ - "/8", - -11.635272979736328 - ], - [ - "istes", - -11.635310173034668 - ], - [ - "backed", - -11.635400772094727 - ], - [ - "shirt", - -11.635554313659668 - ], - [ - "▁Details", - -11.635673522949219 - ], - [ - "rod", - -11.635695457458496 - ], - [ - "▁pod", - -11.63582992553711 - ], - [ - "▁operators", - -11.635921478271484 - ], - [ - "was", - -11.635930061340332 - ], - [ - "hou", - -11.63594913482666 - ], - [ - "▁Coach", - -11.636075019836426 - ], - [ - "irii", - -11.636138916015625 - ], - [ - "▁ordinary", - -11.636186599731445 - ], - [ - "Institut", - -11.63620662689209 - ], - [ - "▁Flash", - -11.63633918762207 - ], - [ - "0-", - -11.636537551879883 - ], - [ - "▁flavour", - -11.6367769241333 - ], - [ - "specific", - -11.636906623840332 - ], - [ - "▁landing", - -11.636930465698242 - ], - [ - "▁geo", - -11.636935234069824 - ], - [ - "▁legend", - -11.636983871459961 - ], - [ - "vari", - -11.63703441619873 - ], - [ - "rop", - -11.637084007263184 - ], - [ - "▁Excel", - -11.6370849609375 - ], - [ - "▁Flu", - -11.637203216552734 - ], - [ - "▁intent", - -11.637582778930664 - ], - [ - "▁Deep", - -11.637594223022461 - ], - [ - "▁Kor", - -11.63763427734375 - ], - [ - "▁Philadelphia", - -11.637914657592773 - ], - [ - "▁rând", - -11.63800048828125 - ], - [ - "▁USD", - -11.638033866882324 - ], - [ - "laden", - -11.63803482055664 - ], - [ - "▁Hin", - -11.638047218322754 - ], - [ - "hap", - -11.638197898864746 - ], - [ - "▁thorough", - -11.638227462768555 - ], - [ - "▁oferit", - -11.63826847076416 - ], - [ - "kind", - -11.63831615447998 - ], - [ - "▁Cancer", - -11.638428688049316 - ], - [ - "apo", - -11.638596534729004 - ], - [ - "▁valve", - -11.638650894165039 - ], - [ - "▁encouraging", - -11.63884449005127 - ], - [ - "▁sûr", - -11.638904571533203 - ], - [ - "shing", - -11.638981819152832 - ], - [ - "▁49", - -11.639132499694824 - ], - [ - "gov", - -11.639142990112305 - ], - [ - "▁Five", - -11.63933277130127 - ], - [ - "▁stroke", - -11.639344215393066 - ], - [ - "▁apă", - -11.639398574829102 - ], - [ - "▁gambling", - -11.639543533325195 - ], - [ - "▁nord", - -11.63963508605957 - ], - [ - "onal", - -11.639691352844238 - ], - [ - "▁captured", - -11.63979721069336 - ], - [ - "▁lucruri", - -11.640068054199219 - ], - [ - "serait", - -11.640192985534668 - ], - [ - "▁Members", - -11.640265464782715 - ], - [ - "ital", - -11.640275955200195 - ], - [ - "▁mounted", - -11.640475273132324 - ], - [ - "▁opens", - -11.640792846679688 - ], - [ - "▁Marie", - -11.640861511230469 - ], - [ - "Tech", - -11.640902519226074 - ], - [ - "▁wishes", - -11.641016006469727 - ], - [ - "▁regards", - -11.641073226928711 - ], - [ - "going", - -11.641156196594238 - ], - [ - "Opti", - -11.641250610351562 - ], - [ - "▁femei", - -11.641331672668457 - ], - [ - "▁Fish", - -11.64142894744873 - ], - [ - "▁mount", - -11.641800880432129 - ], - [ - "▁Hunt", - -11.641887664794922 - ], - [ - "▁probabil", - -11.64205265045166 - ], - [ - "▁assured", - -11.642191886901855 - ], - [ - "pho", - -11.642230033874512 - ], - [ - "▁manufactured", - -11.642313003540039 - ], - [ - "▁realistic", - -11.642437934875488 - ], - [ - "ații", - -11.642580032348633 - ], - [ - "▁Planning", - -11.642598152160645 - ], - [ - "▁român", - -11.642645835876465 - ], - [ - "ggy", - -11.642669677734375 - ], - [ - "▁produces", - -11.642696380615234 - ], - [ - "▁reminder", - -11.64284896850586 - ], - [ - "TION", - -11.642868041992188 - ], - [ - "▁brake", - -11.642909049987793 - ], - [ - "▁pla", - -11.643172264099121 - ], - [ - "▁Premium", - -11.643270492553711 - ], - [ - "▁carb", - -11.643310546875 - ], - [ - "▁shine", - -11.643390655517578 - ], - [ - "▁carrier", - -11.643492698669434 - ], - [ - "▁poverty", - -11.64350414276123 - ], - [ - "▁effectiveness", - -11.6436128616333 - ], - [ - "administr", - -11.643655776977539 - ], - [ - "▁Chamber", - -11.643658638000488 - ], - [ - "▁suntem", - -11.64376163482666 - ], - [ - "▁noastră", - -11.643855094909668 - ], - [ - "▁sofort", - -11.643877983093262 - ], - [ - "▁moisture", - -11.644058227539062 - ], - [ - "limb", - -11.6441011428833 - ], - [ - "entre", - -11.644328117370605 - ], - [ - "▁SD", - -11.644330978393555 - ], - [ - "▁BC", - -11.644539833068848 - ], - [ - "▁selecting", - -11.6445951461792 - ], - [ - "achieving", - -11.644673347473145 - ], - [ - "info", - -11.644735336303711 - ], - [ - "▁membres", - -11.644983291625977 - ], - [ - "▁shoe", - -11.645014762878418 - ], - [ - "▁locate", - -11.645065307617188 - ], - [ - "▁assignment", - -11.645085334777832 - ], - [ - "lern", - -11.645283699035645 - ], - [ - "▁defeat", - -11.645406723022461 - ], - [ - "▁endless", - -11.645458221435547 - ], - [ - "▁Stunden", - -11.645523071289062 - ], - [ - "то", - -11.645561218261719 - ], - [ - "▁mur", - -11.645586013793945 - ], - [ - "▁wissen", - -11.645844459533691 - ], - [ - "aime", - -11.645915031433105 - ], - [ - "1-2", - -11.646056175231934 - ], - [ - "▁femme", - -11.646212577819824 - ], - [ - "robe", - -11.646468162536621 - ], - [ - "▁embrace", - -11.64647102355957 - ], - [ - "▁baseball", - -11.646614074707031 - ], - [ - "▁hunting", - -11.64663314819336 - ], - [ - "betrieb", - -11.646790504455566 - ], - [ - "▁gardens", - -11.647045135498047 - ], - [ - "▁risc", - -11.647096633911133 - ], - [ - "▁Cri", - -11.647263526916504 - ], - [ - "best", - -11.647506713867188 - ], - [ - "▁Audio", - -11.647621154785156 - ], - [ - "▁intens", - -11.647659301757812 - ], - [ - "▁Round", - -11.647744178771973 - ], - [ - "▁fireplace", - -11.6478271484375 - ], - [ - "▁dozen", - -11.647912979125977 - ], - [ - "▁hospitals", - -11.64802360534668 - ], - [ - "▁profits", - -11.648076057434082 - ], - [ - "▁Mail", - -11.64811897277832 - ], - [ - "obtenir", - -11.648191452026367 - ], - [ - "▁Ross", - -11.648241996765137 - ], - [ - "bun", - -11.648573875427246 - ], - [ - "polar", - -11.648688316345215 - ], - [ - "▁reflection", - -11.648873329162598 - ], - [ - "▁fut", - -11.648992538452148 - ], - [ - "phon", - -11.649017333984375 - ], - [ - "deck", - -11.649094581604004 - ], - [ - "renowned", - -11.649188041687012 - ], - [ - "▁cate", - -11.649308204650879 - ], - [ - "▁decorative", - -11.6494722366333 - ], - [ - "ieri", - -11.64957332611084 - ], - [ - "▁Tap", - -11.64958381652832 - ], - [ - "▁Dallas", - -11.649600982666016 - ], - [ - "rik", - -11.649665832519531 - ], - [ - "▁pied", - -11.649727821350098 - ], - [ - "rés", - -11.649821281433105 - ], - [ - "ppy", - -11.650137901306152 - ], - [ - "▁bitte", - -11.650188446044922 - ], - [ - "▁cave", - -11.650257110595703 - ], - [ - "▁rescue", - -11.650559425354004 - ], - [ - "▁Hilfe", - -11.650714874267578 - ], - [ - "▁Jason", - -11.650786399841309 - ], - [ - "▁Nations", - -11.650838851928711 - ], - [ - "▁profil", - -11.650938987731934 - ], - [ - "▁Atlantic", - -11.651105880737305 - ], - [ - "▁rub", - -11.651126861572266 - ], - [ - "▁collaborative", - -11.65113353729248 - ], - [ - "étude", - -11.651150703430176 - ], - [ - "▁Workshop", - -11.651389122009277 - ], - [ - "nez", - -11.651628494262695 - ], - [ - "▁chacun", - -11.651714324951172 - ], - [ - "▁Too", - -11.65211296081543 - ], - [ - "App", - -11.652313232421875 - ], - [ - "▁conseil", - -11.652399063110352 - ], - [ - "▁signals", - -11.652474403381348 - ], - [ - "▁Dead", - -11.652497291564941 - ], - [ - "▁Austria", - -11.652522087097168 - ], - [ - "▁slots", - -11.652579307556152 - ], - [ - "▁Dies", - -11.652623176574707 - ], - [ - "raj", - -11.652629852294922 - ], - [ - "stick", - -11.652833938598633 - ], - [ - "▁jaw", - -11.653030395507812 - ], - [ - "▁lounge", - -11.653059005737305 - ], - [ - "curi", - -11.653359413146973 - ], - [ - "nem", - -11.653456687927246 - ], - [ - "▁Cluj", - -11.653512954711914 - ], - [ - "▁rapide", - -11.653584480285645 - ], - [ - "▁companion", - -11.653716087341309 - ], - [ - "▁WE", - -11.653879165649414 - ], - [ - "▁bord", - -11.65389347076416 - ], - [ - "ody", - -11.654045104980469 - ], - [ - "gru", - -11.654057502746582 - ], - [ - "▁46", - -11.654410362243652 - ], - [ - "kra", - -11.654717445373535 - ], - [ - "eller", - -11.65477180480957 - ], - [ - "naire", - -11.65511703491211 - ], - [ - "hose", - -11.655253410339355 - ], - [ - "▁Atlanta", - -11.655254364013672 - ], - [ - "▁violent", - -11.65530776977539 - ], - [ - "▁imagination", - -11.655352592468262 - ], - [ - "▁reward", - -11.655389785766602 - ], - [ - "▁Korean", - -11.655441284179688 - ], - [ - "▁branches", - -11.655501365661621 - ], - [ - "▁GPS", - -11.655625343322754 - ], - [ - "glo", - -11.655633926391602 - ], - [ - "▁condo", - -11.655705451965332 - ], - [ - "▁Investment", - -11.655765533447266 - ], - [ - "▁involvement", - -11.655813217163086 - ], - [ - "▁trap", - -11.655829429626465 - ], - [ - "▁schön", - -11.655872344970703 - ], - [ - "▁ofera", - -11.655933380126953 - ], - [ - "▁unterschiedlich", - -11.65596866607666 - ], - [ - "Net", - -11.655987739562988 - ], - [ - "▁predict", - -11.656113624572754 - ], - [ - "identifying", - -11.656309127807617 - ], - [ - "▁noir", - -11.6566162109375 - ], - [ - "kos", - -11.656816482543945 - ], - [ - "poz", - -11.656816482543945 - ], - [ - "▁11,", - -11.65698528289795 - ], - [ - "▁fitted", - -11.657384872436523 - ], - [ - "MU", - -11.657469749450684 - ], - [ - "TT", - -11.657645225524902 - ], - [ - "▁vrea", - -11.657846450805664 - ], - [ - "▁wound", - -11.657864570617676 - ], - [ - "lac", - -11.657971382141113 - ], - [ - "▁purchases", - -11.658409118652344 - ], - [ - "▁Cape", - -11.65843677520752 - ], - [ - "▁Foto", - -11.658537864685059 - ], - [ - "▁acres", - -11.65865707397461 - ], - [ - "▁nec", - -11.658677101135254 - ], - [ - "▁burning", - -11.659050941467285 - ], - [ - "conf", - -11.659457206726074 - ], - [ - "▁browse", - -11.659486770629883 - ], - [ - "ural", - -11.659762382507324 - ], - [ - "▁Ah", - -11.659841537475586 - ], - [ - "▁stellt", - -11.65992259979248 - ], - [ - "▁ratings", - -11.660012245178223 - ], - [ - "▁Bowl", - -11.660027503967285 - ], - [ - "▁grav", - -11.660289764404297 - ], - [ - "titi", - -11.66048526763916 - ], - [ - "▁prêt", - -11.66075325012207 - ], - [ - "▁fallen", - -11.660818099975586 - ], - [ - "▁nombreuses", - -11.660940170288086 - ], - [ - "train", - -11.660953521728516 - ], - [ - "ène", - -11.661009788513184 - ], - [ - "Aceasta", - -11.661091804504395 - ], - [ - "▁drill", - -11.661421775817871 - ], - [ - "▁Exam", - -11.661477088928223 - ], - [ - "▁Furniture", - -11.661651611328125 - ], - [ - "eanu", - -11.661919593811035 - ], - [ - "étant", - -11.66230297088623 - ], - [ - "sville", - -11.662391662597656 - ], - [ - "▁swim", - -11.662796020507812 - ], - [ - "▁routes", - -11.662826538085938 - ], - [ - "INE", - -11.662860870361328 - ], - [ - "▁Por", - -11.662976264953613 - ], - [ - "ither", - -11.663168907165527 - ], - [ - "▁optim", - -11.663180351257324 - ], - [ - "▁lua", - -11.66331958770752 - ], - [ - "▁myth", - -11.663491249084473 - ], - [ - "▁Bett", - -11.6635103225708 - ], - [ - "chim", - -11.66355037689209 - ], - [ - "▁cyber", - -11.663553237915039 - ], - [ - "▁engineer", - -11.663825035095215 - ], - [ - "▁exploration", - -11.663918495178223 - ], - [ - "arranged", - -11.663973808288574 - ], - [ - "▁aged", - -11.663993835449219 - ], - [ - "▁beau", - -11.664024353027344 - ], - [ - "OUT", - -11.66402530670166 - ], - [ - "▁Minnesota", - -11.664031982421875 - ], - [ - "tress", - -11.664407730102539 - ], - [ - "▁Commercial", - -11.664509773254395 - ], - [ - "▁inspiring", - -11.66462516784668 - ], - [ - "▁Mare", - -11.664725303649902 - ], - [ - "apa", - -11.665140151977539 - ], - [ - "▁ignore", - -11.6651611328125 - ], - [ - "▁gros", - -11.665186882019043 - ], - [ - "▁measurement", - -11.66531753540039 - ], - [ - "ager", - -11.665395736694336 - ], - [ - "intele", - -11.665966987609863 - ], - [ - "▁suspension", - -11.666180610656738 - ], - [ - "▁cultures", - -11.666211128234863 - ], - [ - "▁Wow", - -11.666231155395508 - ], - [ - "▁pushing", - -11.666363716125488 - ], - [ - "▁bands", - -11.666438102722168 - ], - [ - "nage", - -11.666450500488281 - ], - [ - "▁Math", - -11.666515350341797 - ], - [ - "comb", - -11.66658878326416 - ], - [ - "▁créer", - -11.66658878326416 - ], - [ - "▁Lewis", - -11.666685104370117 - ], - [ - "▁VI", - -11.66678524017334 - ], - [ - "emploi", - -11.666791915893555 - ], - [ - "▁elections", - -11.666890144348145 - ], - [ - "▁logic", - -11.666982650756836 - ], - [ - "▁unlike", - -11.667122840881348 - ], - [ - "▁Matthew", - -11.66743278503418 - ], - [ - "▁pă", - -11.667486190795898 - ], - [ - "oxy", - -11.667620658874512 - ], - [ - "équipe", - -11.667717933654785 - ], - [ - "▁worden", - -11.668088912963867 - ], - [ - "dev", - -11.668258666992188 - ], - [ - "▁Massachusetts", - -11.668691635131836 - ], - [ - "▁Return", - -11.668695449829102 - ], - [ - "▁Friends", - -11.66891098022461 - ], - [ - "▁movements", - -11.66894245147705 - ], - [ - "chie", - -11.668964385986328 - ], - [ - "rak", - -11.669017791748047 - ], - [ - "▁Fit", - -11.66904354095459 - ], - [ - "▁copil", - -11.669113159179688 - ], - [ - "iunii", - -11.669188499450684 - ], - [ - "▁intensive", - -11.669234275817871 - ], - [ - "▁rug", - -11.669452667236328 - ], - [ - "lichkeit", - -11.669686317443848 - ], - [ - "kov", - -11.669724464416504 - ], - [ - "▁pense", - -11.66978645324707 - ], - [ - "pop", - -11.66978931427002 - ], - [ - "▁closet", - -11.669865608215332 - ], - [ - "▁prevention", - -11.669920921325684 - ], - [ - "▁Deb", - -11.670256614685059 - ], - [ - "▁devant", - -11.670430183410645 - ], - [ - "▁construit", - -11.670440673828125 - ], - [ - "▁breaks", - -11.67082405090332 - ], - [ - "otic", - -11.670886993408203 - ], - [ - "▁dig", - -11.67088794708252 - ], - [ - "▁près", - -11.670930862426758 - ], - [ - "chte", - -11.671029090881348 - ], - [ - "▁Chat", - -11.671029090881348 - ], - [ - "wel", - -11.671219825744629 - ], - [ - "▁edges", - -11.671272277832031 - ], - [ - "▁keen", - -11.671419143676758 - ], - [ - "▁infant", - -11.671716690063477 - ], - [ - "▁Hills", - -11.6719388961792 - ], - [ - "▁grounds", - -11.671969413757324 - ], - [ - "▁hab", - -11.672039031982422 - ], - [ - "▁Mun", - -11.67215347290039 - ], - [ - "▁references", - -11.672215461730957 - ], - [ - "▁hearts", - -11.672446250915527 - ], - [ - "exprim", - -11.672487258911133 - ], - [ - "▁tratament", - -11.672553062438965 - ], - [ - "LD", - -11.67258358001709 - ], - [ - "ssel", - -11.67275333404541 - ], - [ - "cover", - -11.672782897949219 - ], - [ - "bridge", - -11.672837257385254 - ], - [ - "▁Wein", - -11.672924995422363 - ], - [ - "▁voiture", - -11.673035621643066 - ], - [ - "▁Gemeinde", - -11.67313289642334 - ], - [ - "AI", - -11.673169136047363 - ], - [ - "▁renovation", - -11.673264503479004 - ], - [ - "bid", - -11.673285484313965 - ], - [ - "▁Reading", - -11.673481941223145 - ], - [ - "▁Gor", - -11.673490524291992 - ], - [ - "fur", - -11.673527717590332 - ], - [ - "▁Yoga", - -11.673544883728027 - ], - [ - "▁exclusively", - -11.673630714416504 - ], - [ - "▁emissions", - -11.67385482788086 - ], - [ - "ète", - -11.673905372619629 - ], - [ - "▁glasses", - -11.674055099487305 - ], - [ - "▁organizat", - -11.674135208129883 - ], - [ - "▁washing", - -11.67415714263916 - ], - [ - "▁Audi", - -11.674173355102539 - ], - [ - "▁Labor", - -11.674331665039062 - ], - [ - "▁legacy", - -11.674381256103516 - ], - [ - "▁abstract", - -11.674519538879395 - ], - [ - "▁knowledgeable", - -11.674601554870605 - ], - [ - "▁Glo", - -11.674795150756836 - ], - [ - "▁pregnant", - -11.67481803894043 - ], - [ - "liter", - -11.674851417541504 - ], - [ - "▁paintings", - -11.67522144317627 - ], - [ - "▁tête", - -11.675244331359863 - ], - [ - "voy", - -11.675626754760742 - ], - [ - "▁Jacob", - -11.675667762756348 - ], - [ - "▁dressing", - -11.675679206848145 - ], - [ - "▁provisions", - -11.675768852233887 - ], - [ - "bahn", - -11.675870895385742 - ], - [ - "▁depict", - -11.675875663757324 - ], - [ - "AW", - -11.676068305969238 - ], - [ - "▁bleibt", - -11.676163673400879 - ], - [ - "AND", - -11.676292419433594 - ], - [ - "▁fünf", - -11.676386833190918 - ], - [ - "▁hosts", - -11.676426887512207 - ], - [ - "vas", - -11.676708221435547 - ], - [ - "DO", - -11.67674732208252 - ], - [ - "▁max", - -11.676753997802734 - ], - [ - "▁contributed", - -11.676774978637695 - ], - [ - "roz", - -11.676796913146973 - ], - [ - "▁deschis", - -11.676800727844238 - ], - [ - "itaire", - -11.676809310913086 - ], - [ - "tube", - -11.676959991455078 - ], - [ - "▁Beck", - -11.676959991455078 - ], - [ - "▁curious", - -11.677130699157715 - ], - [ - "▁waves", - -11.677178382873535 - ], - [ - "▁regret", - -11.677248001098633 - ], - [ - "FO", - -11.677326202392578 - ], - [ - "droit", - -11.67734146118164 - ], - [ - "rö", - -11.677565574645996 - ], - [ - "▁Panel", - -11.677624702453613 - ], - [ - "▁pile", - -11.677660942077637 - ], - [ - "▁installing", - -11.677674293518066 - ], - [ - "▁Intr", - -11.677797317504883 - ], - [ - "nung", - -11.677823066711426 - ], - [ - "▁Outdoor", - -11.677855491638184 - ], - [ - "▁generator", - -11.67786693572998 - ], - [ - "▁zahlreiche", - -11.677868843078613 - ], - [ - "▁Third", - -11.67813491821289 - ], - [ - "frac", - -11.678180694580078 - ], - [ - "ovi", - -11.678236961364746 - ], - [ - "▁Casa", - -11.678374290466309 - ], - [ - "▁stomach", - -11.678393363952637 - ], - [ - "▁Lincoln", - -11.67844009399414 - ], - [ - "▁Electronic", - -11.678584098815918 - ], - [ - "coding", - -11.67895221710205 - ], - [ - "2017", - -11.67900276184082 - ], - [ - "▁friendship", - -11.679238319396973 - ], - [ - "ried", - -11.679250717163086 - ], - [ - "но", - -11.679265022277832 - ], - [ - "▁tail", - -11.679267883300781 - ], - [ - "▁petits", - -11.679308891296387 - ], - [ - "▁réseau", - -11.679696083068848 - ], - [ - "▁churches", - -11.679999351501465 - ], - [ - "▁marketplace", - -11.680062294006348 - ], - [ - "▁Pool", - -11.680318832397461 - ], - [ - "▁popularity", - -11.680455207824707 - ], - [ - "▁sprijin", - -11.680496215820312 - ], - [ - "▁Od", - -11.680527687072754 - ], - [ - "▁Transfer", - -11.680562973022461 - ], - [ - "▁fake", - -11.680791854858398 - ], - [ - "▁9,", - -11.681007385253906 - ], - [ - "▁weit", - -11.681264877319336 - ], - [ - "▁relaxed", - -11.681415557861328 - ], - [ - "pig", - -11.68161678314209 - ], - [ - "▁Lauren", - -11.68166732788086 - ], - [ - "gesetzt", - -11.681669235229492 - ], - [ - "▁Clar", - -11.681694984436035 - ], - [ - "▁unlikely", - -11.681731224060059 - ], - [ - "color", - -11.681832313537598 - ], - [ - "▁spouse", - -11.681843757629395 - ], - [ - "▁facile", - -11.681859970092773 - ], - [ - "▁Speed", - -11.681872367858887 - ], - [ - "KE", - -11.682230949401855 - ], - [ - "▁PO", - -11.68231201171875 - ], - [ - "▁Channel", - -11.682321548461914 - ], - [ - "argent", - -11.682356834411621 - ], - [ - "▁Making", - -11.682430267333984 - ], - [ - "▁Coll", - -11.682585716247559 - ], - [ - "cci", - -11.682721138000488 - ], - [ - "corresponding", - -11.68300724029541 - ], - [ - "▁heaven", - -11.683160781860352 - ], - [ - "ţă", - -11.68319320678711 - ], - [ - "▁darüber", - -11.683236122131348 - ], - [ - "acted", - -11.683420181274414 - ], - [ - "only", - -11.683460235595703 - ], - [ - "▁slight", - -11.683465003967285 - ], - [ - "lian", - -11.68348503112793 - ], - [ - "flă", - -11.683510780334473 - ], - [ - "▁vulnerable", - -11.683530807495117 - ], - [ - "▁creator", - -11.68356704711914 - ], - [ - "▁protecting", - -11.68360424041748 - ], - [ - "writing", - -11.68360710144043 - ], - [ - "▁Ter", - -11.68387222290039 - ], - [ - "▁barb", - -11.683987617492676 - ], - [ - "▁dată", - -11.683995246887207 - ], - [ - "▁Screen", - -11.684052467346191 - ], - [ - "▁BBC", - -11.684082984924316 - ], - [ - "Col", - -11.684206008911133 - ], - [ - "fung", - -11.684453964233398 - ], - [ - "▁dreptul", - -11.684494972229004 - ], - [ - "derived", - -11.684538841247559 - ], - [ - "▁designated", - -11.684553146362305 - ], - [ - "▁interactions", - -11.684617042541504 - ], - [ - "SG", - -11.684621810913086 - ], - [ - "▁häufig", - -11.684625625610352 - ], - [ - "▁Mega", - -11.684638023376465 - ], - [ - "▁jazz", - -11.684660911560059 - ], - [ - "lbs", - -11.684797286987305 - ], - [ - "▁Manual", - -11.68484115600586 - ], - [ - "pushed", - -11.685017585754395 - ], - [ - "▁analytics", - -11.685234069824219 - ], - [ - "▁lawsuit", - -11.68533706665039 - ], - [ - "▁gray", - -11.685364723205566 - ], - [ - "shirts", - -11.685401916503906 - ], - [ - "▁hill", - -11.685508728027344 - ], - [ - "▁1991", - -11.68550968170166 - ], - [ - "▁obligations", - -11.685568809509277 - ], - [ - "▁Dubai", - -11.68580436706543 - ], - [ - "()", - -11.685808181762695 - ], - [ - "▁acceptable", - -11.685810089111328 - ], - [ - "therapist", - -11.685877799987793 - ], - [ - "inger", - -11.6860990524292 - ], - [ - "▁territory", - -11.686208724975586 - ], - [ - "▁sang", - -11.6862211227417 - ], - [ - "ät", - -11.686224937438965 - ], - [ - "▁Zukunft", - -11.686238288879395 - ], - [ - "TU", - -11.68657398223877 - ], - [ - "▁horizontal", - -11.68665599822998 - ], - [ - "▁entrepreneurs", - -11.686710357666016 - ], - [ - "▁Eltern", - -11.687017440795898 - ], - [ - "▁presentations", - -11.687129974365234 - ], - [ - "▁confirmation", - -11.687173843383789 - ], - [ - "▁technological", - -11.687432289123535 - ], - [ - "▁1989", - -11.687530517578125 - ], - [ - "EF", - -11.687640190124512 - ], - [ - "ponent", - -11.687663078308105 - ], - [ - "NET", - -11.687699317932129 - ], - [ - "750", - -11.687772750854492 - ], - [ - "▁desert", - -11.687891960144043 - ], - [ - "▁contribu", - -11.687932968139648 - ], - [ - "▁Gun", - -11.687944412231445 - ], - [ - "▁Juli", - -11.688091278076172 - ], - [ - "ERS", - -11.688261985778809 - ], - [ - "▁inceput", - -11.688261985778809 - ], - [ - "▁answered", - -11.688369750976562 - ], - [ - "▁basement", - -11.688410758972168 - ], - [ - "film", - -11.688434600830078 - ], - [ - "▁taille", - -11.688593864440918 - ], - [ - "▁survival", - -11.688655853271484 - ], - [ - "ihnen", - -11.68869400024414 - ], - [ - "▁Bird", - -11.688840866088867 - ], - [ - "speed", - -11.689336776733398 - ], - [ - "▁journalist", - -11.68941879272461 - ], - [ - "▁Indonesia", - -11.689626693725586 - ], - [ - "▁15.", - -11.689973831176758 - ], - [ - "▁19.", - -11.690025329589844 - ], - [ - "étaient", - -11.690114974975586 - ], - [ - "▁tennis", - -11.69024658203125 - ], - [ - "▁aproximativ", - -11.69039249420166 - ], - [ - "▁Hans", - -11.690650939941406 - ], - [ - "▁Remove", - -11.69067096710205 - ], - [ - "▁cats", - -11.691022872924805 - ], - [ - "▁calories", - -11.691052436828613 - ], - [ - "▁limitations", - -11.69119644165039 - ], - [ - "▁subscribe", - -11.691198348999023 - ], - [ - "▁Dem", - -11.691339492797852 - ], - [ - "lust", - -11.691370010375977 - ], - [ - "▁adresa", - -11.691394805908203 - ], - [ - "▁sais", - -11.69140911102295 - ], - [ - "...\"", - -11.691473960876465 - ], - [ - "▁Luft", - -11.691485404968262 - ], - [ - "DL", - -11.691597938537598 - ], - [ - "▁estimates", - -11.691600799560547 - ], - [ - "▁protocol", - -11.691603660583496 - ], - [ - "▁Namen", - -11.691776275634766 - ], - [ - "▁grands", - -11.691901206970215 - ], - [ - "▁voter", - -11.691970825195312 - ], - [ - "▁vacuum", - -11.692075729370117 - ], - [ - "▁versch", - -11.692103385925293 - ], - [ - "▁Democratic", - -11.692107200622559 - ], - [ - "▁Books", - -11.692170143127441 - ], - [ - "▁frames", - -11.692727088928223 - ], - [ - "▁Bee", - -11.692864418029785 - ], - [ - "▁helfen", - -11.692934036254883 - ], - [ - "▁dive", - -11.692963600158691 - ], - [ - "▁physician", - -11.693037033081055 - ], - [ - "▁powered", - -11.693131446838379 - ], - [ - "▁zones", - -11.693337440490723 - ], - [ - "▁regime", - -11.69345474243164 - ], - [ - "check", - -11.693578720092773 - ], - [ - "11.", - -11.693793296813965 - ], - [ - "▁plaisir", - -11.693793296813965 - ], - [ - "▁physically", - -11.693811416625977 - ], - [ - "▁Pul", - -11.694245338439941 - ], - [ - "▁jardin", - -11.694294929504395 - ], - [ - "▁Nur", - -11.694417953491211 - ], - [ - "WC", - -11.694425582885742 - ], - [ - "▁Lock", - -11.694506645202637 - ], - [ - "▁économique", - -11.694530487060547 - ], - [ - "user", - -11.694536209106445 - ], - [ - "▁commit", - -11.694731712341309 - ], - [ - "▁oldest", - -11.694764137268066 - ], - [ - "▁fulfill", - -11.694780349731445 - ], - [ - "▁nervous", - -11.69482135772705 - ], - [ - "▁SH", - -11.695014953613281 - ], - [ - "SK", - -11.695150375366211 - ], - [ - "▁plein", - -11.695291519165039 - ], - [ - "show", - -11.695354461669922 - ], - [ - "▁disability", - -11.695356369018555 - ], - [ - "papier", - -11.69544506072998 - ], - [ - "▁Corp", - -11.695611000061035 - ], - [ - "ători", - -11.695676803588867 - ], - [ - "nţă", - -11.695813179016113 - ], - [ - "▁overseas", - -11.696009635925293 - ], - [ - "▁struck", - -11.69603157043457 - ], - [ - "astic", - -11.69607162475586 - ], - [ - "▁advised", - -11.696088790893555 - ], - [ - "BE", - -11.696161270141602 - ], - [ - "▁UV", - -11.696218490600586 - ], - [ - "patient", - -11.69626235961914 - ], - [ - "▁texte", - -11.696344375610352 - ], - [ - "▁timely", - -11.696444511413574 - ], - [ - "used", - -11.696471214294434 - ], - [ - "▁occasionally", - -11.696524620056152 - ], - [ - "▁entries", - -11.696550369262695 - ], - [ - "underlying", - -11.6967191696167 - ], - [ - "01.", - -11.696748733520508 - ], - [ - "▁automated", - -11.696791648864746 - ], - [ - "yes", - -11.696828842163086 - ], - [ - "▁Staff", - -11.697057723999023 - ], - [ - "▁Einzel", - -11.697546005249023 - ], - [ - "quit", - -11.697687149047852 - ], - [ - "▁Cela", - -11.697951316833496 - ], - [ - "▁snap", - -11.698298454284668 - ], - [ - "▁followers", - -11.698330879211426 - ], - [ - "CN", - -11.698709487915039 - ], - [ - "▁Cooper", - -11.698892593383789 - ], - [ - "ô", - -11.698921203613281 - ], - [ - "▁memorable", - -11.698965072631836 - ], - [ - "▁jur", - -11.698996543884277 - ], - [ - "▁ajutorul", - -11.69905948638916 - ], - [ - "▁Enter", - -11.6991548538208 - ], - [ - "Often", - -11.699294090270996 - ], - [ - "▁dintr", - -11.699341773986816 - ], - [ - "-30", - -11.699419975280762 - ], - [ - "ESS", - -11.699454307556152 - ], - [ - "▁weird", - -11.699462890625 - ], - [ - "▁Animal", - -11.699706077575684 - ], - [ - "▁complement", - -11.699719429016113 - ], - [ - "▁Bot", - -11.699756622314453 - ], - [ - "▁darf", - -11.699764251708984 - ], - [ - "yed", - -11.699808120727539 - ], - [ - "▁Mul", - -11.699872016906738 - ], - [ - "lick", - -11.700080871582031 - ], - [ - "▁Cambridge", - -11.700216293334961 - ], - [ - "adore", - -11.700407981872559 - ], - [ - "▁Dutch", - -11.700420379638672 - ], - [ - "▁Castle", - -11.700431823730469 - ], - [ - "igi", - -11.700563430786133 - ], - [ - "▁enemy", - -11.70071029663086 - ], - [ - "accompanied", - -11.700725555419922 - ], - [ - "▁teren", - -11.701102256774902 - ], - [ - "▁ET", - -11.701498985290527 - ], - [ - "ffle", - -11.701557159423828 - ], - [ - "-15", - -11.701651573181152 - ], - [ - "▁Geo", - -11.701680183410645 - ], - [ - "▁attractions", - -11.701730728149414 - ], - [ - "iker", - -11.70185661315918 - ], - [ - "▁bă", - -11.701990127563477 - ], - [ - "▁heal", - -11.701995849609375 - ], - [ - "weisen", - -11.702144622802734 - ], - [ - "▁spectrum", - -11.702186584472656 - ], - [ - "meld", - -11.702394485473633 - ], - [ - "▁eveniment", - -11.70247745513916 - ], - [ - "arra", - -11.702478408813477 - ], - [ - "rete", - -11.70250129699707 - ], - [ - "▁Had", - -11.70250415802002 - ], - [ - "looking", - -11.702692031860352 - ], - [ - "isierung", - -11.702805519104004 - ], - [ - "▁moyen", - -11.703129768371582 - ], - [ - "▁gesamte", - -11.703202247619629 - ], - [ - "▁destroy", - -11.703407287597656 - ], - [ - "125", - -11.703518867492676 - ], - [ - "▁suivant", - -11.703913688659668 - ], - [ - "▁declared", - -11.703925132751465 - ], - [ - "▁Urban", - -11.704131126403809 - ], - [ - "▁16.", - -11.704168319702148 - ], - [ - "▁Beg", - -11.704168319702148 - ], - [ - "▁canal", - -11.704225540161133 - ], - [ - "▁Pres", - -11.70431137084961 - ], - [ - "▁geeignet", - -11.704339981079102 - ], - [ - "▁strat", - -11.704365730285645 - ], - [ - "UB", - -11.704395294189453 - ], - [ - "▁Alexander", - -11.704424858093262 - ], - [ - "cycle", - -11.704666137695312 - ], - [ - "▁Var", - -11.704802513122559 - ], - [ - "▁domin", - -11.704805374145508 - ], - [ - "▁lasting", - -11.704939842224121 - ], - [ - "terio", - -11.705262184143066 - ], - [ - "▁Battle", - -11.705339431762695 - ], - [ - "▁publications", - -11.705647468566895 - ], - [ - "▁implica", - -11.705886840820312 - ], - [ - "▁NA", - -11.705963134765625 - ], - [ - "▁stocks", - -11.706036567687988 - ], - [ - "Plat", - -11.70611572265625 - ], - [ - "▁excitement", - -11.706149101257324 - ], - [ - "▁Muslim", - -11.706524848937988 - ], - [ - "▁Mari", - -11.706530570983887 - ], - [ - "▁Ul", - -11.706647872924805 - ], - [ - "nächst", - -11.706757545471191 - ], - [ - "▁trait", - -11.706833839416504 - ], - [ - "▁(3)", - -11.706852912902832 - ], - [ - "▁Attorney", - -11.706894874572754 - ], - [ - "▁Malaysia", - -11.70689582824707 - ], - [ - "▁slab", - -11.706960678100586 - ], - [ - "▁dam", - -11.707113265991211 - ], - [ - "▁Bir", - -11.707226753234863 - ], - [ - "▁sing", - -11.70738410949707 - ], - [ - "▁Culture", - -11.7073974609375 - ], - [ - "UD", - -11.707417488098145 - ], - [ - "▁Mes", - -11.707443237304688 - ], - [ - "ități", - -11.707615852355957 - ], - [ - "▁possess", - -11.708173751831055 - ], - [ - "enabling", - -11.70820426940918 - ], - [ - "▁settled", - -11.708335876464844 - ], - [ - "▁sagen", - -11.708492279052734 - ], - [ - "▁erfolgt", - -11.708564758300781 - ], - [ - "dog", - -11.708600997924805 - ], - [ - "ndu", - -11.708732604980469 - ], - [ - "ității", - -11.708745002746582 - ], - [ - "▁Islam", - -11.708930015563965 - ], - [ - "▁catalog", - -11.708931922912598 - ], - [ - "▁simt", - -11.709102630615234 - ], - [ - "tische", - -11.709150314331055 - ], - [ - "▁Mach", - -11.709334373474121 - ], - [ - "▁EP", - -11.709359169006348 - ], - [ - "▁Certified", - -11.709386825561523 - ], - [ - "▁Resources", - -11.70945930480957 - ], - [ - "▁Past", - -11.709607124328613 - ], - [ - "▁Termin", - -11.709755897521973 - ], - [ - "▁lightweight", - -11.709755897521973 - ], - [ - "▁championship", - -11.70994758605957 - ], - [ - "gebiet", - -11.710122108459473 - ], - [ - "▁jurisdiction", - -11.710135459899902 - ], - [ - "▁euros", - -11.710169792175293 - ], - [ - "▁Familien", - -11.710554122924805 - ], - [ - "▁GT", - -11.710677146911621 - ], - [ - "▁dvs", - -11.71081256866455 - ], - [ - "▁nouveaux", - -11.710838317871094 - ], - [ - "▁chill", - -11.710916519165039 - ], - [ - "▁ridicat", - -11.710920333862305 - ], - [ - "his", - -11.711079597473145 - ], - [ - "▁Indi", - -11.711159706115723 - ], - [ - "▁arrested", - -11.71116828918457 - ], - [ - "ităţii", - -11.711170196533203 - ], - [ - "onul", - -11.711274147033691 - ], - [ - "appar", - -11.711296081542969 - ], - [ - "▁Bachelor", - -11.711297988891602 - ], - [ - "▁erfolgreich", - -11.711426734924316 - ], - [ - "▁versatile", - -11.71163558959961 - ], - [ - "▁nécessaire", - -11.711761474609375 - ], - [ - "▁facial", - -11.712160110473633 - ], - [ - "▁Bull", - -11.712226867675781 - ], - [ - "Comm", - -11.712237358093262 - ], - [ - "atte", - -11.712307929992676 - ], - [ - "hom", - -11.7123384475708 - ], - [ - "start", - -11.712576866149902 - ], - [ - "▁roughly", - -11.712936401367188 - ], - [ - "▁bay", - -11.712984085083008 - ], - [ - "▁american", - -11.712986946105957 - ], - [ - "▁Wisconsin", - -11.713135719299316 - ], - [ - "▁Clinton", - -11.713142395019531 - ], - [ - "appareil", - -11.713153839111328 - ], - [ - "▁liberal", - -11.713455200195312 - ], - [ - "▁dau", - -11.713519096374512 - ], - [ - "ech", - -11.713521957397461 - ], - [ - "2014", - -11.713624000549316 - ], - [ - "▁lip", - -11.713645935058594 - ], - [ - "▁maintenant", - -11.713762283325195 - ], - [ - "▁Sil", - -11.713805198669434 - ], - [ - "rben", - -11.713891983032227 - ], - [ - "▁contents", - -11.713980674743652 - ], - [ - "▁magnetic", - -11.714111328125 - ], - [ - "▁terre", - -11.714151382446289 - ], - [ - "▁Rights", - -11.714475631713867 - ], - [ - "lose", - -11.714570045471191 - ], - [ - "▁crown", - -11.71468448638916 - ], - [ - "▁oils", - -11.7147216796875 - ], - [ - "▁entertaining", - -11.714841842651367 - ], - [ - "▁Option", - -11.714848518371582 - ], - [ - "▁Previous", - -11.714916229248047 - ], - [ - "▁vrai", - -11.714930534362793 - ], - [ - "▁Auswahl", - -11.715056419372559 - ], - [ - "▁horses", - -11.715106010437012 - ], - [ - "▁Author", - -11.71533489227295 - ], - [ - "▁Writing", - -11.715461730957031 - ], - [ - "▁travelling", - -11.715522766113281 - ], - [ - "▁350", - -11.715567588806152 - ], - [ - "daten", - -11.71560287475586 - ], - [ - "zan", - -11.715765953063965 - ], - [ - "▁sweat", - -11.715924263000488 - ], - [ - "▁Junior", - -11.715970993041992 - ], - [ - "markt", - -11.71609878540039 - ], - [ - "after", - -11.716105461120605 - ], - [ - "▁admitted", - -11.716262817382812 - ], - [ - "▁1950", - -11.716347694396973 - ], - [ - "▁Sche", - -11.71648120880127 - ], - [ - "▁dorit", - -11.716818809509277 - ], - [ - "▁transferred", - -11.716958045959473 - ], - [ - "utilise", - -11.717194557189941 - ], - [ - "sitz", - -11.717301368713379 - ], - [ - "gio", - -11.717320442199707 - ], - [ - "▁bisher", - -11.717473983764648 - ], - [ - "RD", - -11.717491149902344 - ], - [ - "▁Wales", - -11.717747688293457 - ], - [ - "▁smoking", - -11.717904090881348 - ], - [ - "dire", - -11.717939376831055 - ], - [ - "▁seating", - -11.717979431152344 - ], - [ - "▁constat", - -11.718056678771973 - ], - [ - "▁Hub", - -11.718324661254883 - ], - [ - "▁sieht", - -11.718345642089844 - ], - [ - "▁prospect", - -11.718378067016602 - ], - [ - "▁RO", - -11.718413352966309 - ], - [ - "▁Wars", - -11.718423843383789 - ], - [ - "eek", - -11.718496322631836 - ], - [ - "▁Bring", - -11.718646049499512 - ], - [ - "▁bleiben", - -11.718696594238281 - ], - [ - "arri", - -11.718826293945312 - ], - [ - "inal", - -11.718904495239258 - ], - [ - "▁Maryland", - -11.718932151794434 - ], - [ - "▁Process", - -11.719145774841309 - ], - [ - "They", - -11.719154357910156 - ], - [ - "▁Oxford", - -11.719176292419434 - ], - [ - "▁neat", - -11.719330787658691 - ], - [ - "▁cinema", - -11.719597816467285 - ], - [ - "▁Ist", - -11.719620704650879 - ], - [ - "▁vegan", - -11.719682693481445 - ], - [ - "wall", - -11.719708442687988 - ], - [ - "▁motive", - -11.72010612487793 - ], - [ - "▁mature", - -11.720544815063477 - ], - [ - "▁Dragon", - -11.720653533935547 - ], - [ - "▁google", - -11.720677375793457 - ], - [ - "blick", - -11.72110652923584 - ], - [ - "▁Cod", - -11.721220970153809 - ], - [ - "▁suffi", - -11.721319198608398 - ], - [ - "▁terrorist", - -11.721478462219238 - ], - [ - "Posted", - -11.721484184265137 - ], - [ - "▁Schi", - -11.72157096862793 - ], - [ - "▁Marc", - -11.721597671508789 - ], - [ - "▁operates", - -11.721661567687988 - ], - [ - "gress", - -11.721805572509766 - ], - [ - "has", - -11.721899032592773 - ], - [ - "sole", - -11.722108840942383 - ], - [ - "▁Buck", - -11.722122192382812 - ], - [ - "impl", - -11.722160339355469 - ], - [ - "▁Ron", - -11.722172737121582 - ], - [ - "▁handled", - -11.722346305847168 - ], - [ - "▁Apr", - -11.722347259521484 - ], - [ - "▁Storage", - -11.722467422485352 - ], - [ - "▁temp", - -11.722512245178223 - ], - [ - "▁differently", - -11.722614288330078 - ], - [ - "▁wherever", - -11.722670555114746 - ], - [ - "matched", - -11.722695350646973 - ], - [ - "rios", - -11.72276496887207 - ], - [ - "▁surprising", - -11.722846031188965 - ], - [ - "teilen", - -11.722867965698242 - ], - [ - "▁difficulties", - -11.72294807434082 - ], - [ - "tab", - -11.723064422607422 - ], - [ - "▁Leader", - -11.723128318786621 - ], - [ - "implementing", - -11.723372459411621 - ], - [ - "▁workforce", - -11.723384857177734 - ], - [ - "▁bereit", - -11.723503112792969 - ], - [ - "vig", - -11.72352123260498 - ], - [ - "▁LOVE", - -11.723580360412598 - ], - [ - "▁instances", - -11.723954200744629 - ], - [ - "▁frumos", - -11.723960876464844 - ], - [ - "▁Java", - -11.723974227905273 - ], - [ - "▁arrest", - -11.723977088928223 - ], - [ - "▁apparent", - -11.724152565002441 - ], - [ - "▁hence", - -11.724200248718262 - ], - [ - "▁entwickelt", - -11.72437572479248 - ], - [ - "▁Fra", - -11.724471092224121 - ], - [ - "▁prend", - -11.724486351013184 - ], - [ - "ließ", - -11.724522590637207 - ], - [ - "▁drawer", - -11.724671363830566 - ], - [ - "ARD", - -11.724926948547363 - ], - [ - "▁caring", - -11.72499942779541 - ], - [ - "▁wollte", - -11.725024223327637 - ], - [ - "▁vielleicht", - -11.72511100769043 - ], - [ - "▁iconic", - -11.725324630737305 - ], - [ - "äch", - -11.72552490234375 - ], - [ - "abel", - -11.725639343261719 - ], - [ - "▁génér", - -11.72570514678955 - ], - [ - "ault", - -11.725727081298828 - ], - [ - "▁alternatives", - -11.725909233093262 - ], - [ - "think", - -11.726025581359863 - ], - [ - "ро", - -11.726055145263672 - ], - [ - "whereas", - -11.726058006286621 - ], - [ - "erei", - -11.726366996765137 - ], - [ - "▁Eagle", - -11.726766586303711 - ], - [ - "situé", - -11.72704792022705 - ], - [ - "▁laboratory", - -11.727157592773438 - ], - [ - "▁Nutzung", - -11.727256774902344 - ], - [ - "▁Bathroom", - -11.72728157043457 - ], - [ - "▁loaded", - -11.727293968200684 - ], - [ - "niste", - -11.727408409118652 - ], - [ - "som", - -11.727429389953613 - ], - [ - "▁aucun", - -11.727666854858398 - ], - [ - "gebracht", - -11.727676391601562 - ], - [ - "▁tomb", - -11.727771759033203 - ], - [ - "▁Ty", - -11.727785110473633 - ], - [ - "▁afaceri", - -11.727971076965332 - ], - [ - "tex", - -11.72803783416748 - ], - [ - "ality", - -11.728147506713867 - ], - [ - "▁identification", - -11.728150367736816 - ], - [ - "▁cultiv", - -11.728255271911621 - ], - [ - "Not", - -11.728326797485352 - ], - [ - "▁acestor", - -11.72846508026123 - ], - [ - "▁PhD", - -11.728466033935547 - ], - [ - "nell", - -11.728470802307129 - ], - [ - "▁dial", - -11.728594779968262 - ], - [ - "chro", - -11.728673934936523 - ], - [ - "▁specifications", - -11.728682518005371 - ], - [ - "anii", - -11.72877025604248 - ], - [ - "▁cloth", - -11.728836059570312 - ], - [ - "▁highway", - -11.728914260864258 - ], - [ - "▁Vitamin", - -11.729118347167969 - ], - [ - "▁indication", - -11.729349136352539 - ], - [ - "80%", - -11.72959041595459 - ], - [ - "▁Lion", - -11.729681015014648 - ], - [ - "▁10,", - -11.729693412780762 - ], - [ - "▁Werk", - -11.72974967956543 - ], - [ - "▁combin", - -11.729803085327148 - ], - [ - "▁releases", - -11.7298583984375 - ], - [ - "LL", - -11.730006217956543 - ], - [ - "ktor", - -11.730186462402344 - ], - [ - "ufgrund", - -11.73018741607666 - ], - [ - "calc", - -11.73034381866455 - ], - [ - "▁accomplished", - -11.730606079101562 - ], - [ - "▁los", - -11.730619430541992 - ], - [ - "▁distant", - -11.730688095092773 - ], - [ - "▁secteur", - -11.73068904876709 - ], - [ - "logue", - -11.730781555175781 - ], - [ - "▁betting", - -11.730792999267578 - ], - [ - "elf", - -11.731180191040039 - ], - [ - "puteti", - -11.73123550415039 - ], - [ - "▁Moment", - -11.731236457824707 - ], - [ - "▁scoring", - -11.731548309326172 - ], - [ - "▁freuen", - -11.731572151184082 - ], - [ - "▁fastest", - -11.731873512268066 - ], - [ - "▁directors", - -11.732080459594727 - ], - [ - "▁fame", - -11.732234954833984 - ], - [ - "▁complaint", - -11.732239723205566 - ], - [ - "▁Ep", - -11.732314109802246 - ], - [ - "▁delicate", - -11.732329368591309 - ], - [ - "annonce", - -11.73240852355957 - ], - [ - "ext", - -11.732454299926758 - ], - [ - "▁quit", - -11.732473373413086 - ], - [ - "▁Cop", - -11.73253345489502 - ], - [ - "prop", - -11.732565879821777 - ], - [ - "365", - -11.732742309570312 - ], - [ - "▁Say", - -11.732879638671875 - ], - [ - "▁internationale", - -11.733064651489258 - ], - [ - "cott", - -11.733213424682617 - ], - [ - "▁Whatever", - -11.733261108398438 - ], - [ - "▁admir", - -11.733261108398438 - ], - [ - "▁bucur", - -11.733549118041992 - ], - [ - "▁entity", - -11.733779907226562 - ], - [ - "▁dancing", - -11.733837127685547 - ], - [ - "▁printre", - -11.733892440795898 - ], - [ - "▁meditation", - -11.734396934509277 - ], - [ - "▁avis", - -11.734416961669922 - ], - [ - "▁1988", - -11.73447036743164 - ], - [ - "10.", - -11.734506607055664 - ], - [ - "▁worker", - -11.734638214111328 - ], - [ - "▁$100", - -11.734784126281738 - ], - [ - "▁contrôle", - -11.7349853515625 - ], - [ - "▁insist", - -11.734997749328613 - ], - [ - "ements", - -11.73505973815918 - ], - [ - "izate", - -11.735163688659668 - ], - [ - "▁tied", - -11.735332489013672 - ], - [ - "▁correspond", - -11.735396385192871 - ], - [ - "▁apartments", - -11.735547065734863 - ], - [ - "▁2009.", - -11.735599517822266 - ], - [ - "▁tiles", - -11.735624313354492 - ], - [ - "▁boots", - -11.735639572143555 - ], - [ - "▁laundry", - -11.735673904418945 - ], - [ - "▁Coffee", - -11.735674858093262 - ], - [ - "▁CV", - -11.735727310180664 - ], - [ - "▁composed", - -11.736035346984863 - ], - [ - "atom", - -11.73622989654541 - ], - [ - "▁shore", - -11.736270904541016 - ], - [ - "▁marijuana", - -11.736312866210938 - ], - [ - "plic", - -11.73648452758789 - ], - [ - "▁Zahl", - -11.736649513244629 - ], - [ - "depth", - -11.73682689666748 - ], - [ - "▁Egypt", - -11.736854553222656 - ], - [ - "▁NFL", - -11.736906051635742 - ], - [ - "▁12,", - -11.736922264099121 - ], - [ - "▁pollution", - -11.736964225769043 - ], - [ - "▁Vergleich", - -11.73704719543457 - ], - [ - "û", - -11.737109184265137 - ], - [ - "▁nurse", - -11.737153053283691 - ], - [ - "▁Susan", - -11.737173080444336 - ], - [ - "▁verify", - -11.737393379211426 - ], - [ - "▁kon", - -11.737504959106445 - ], - [ - "▁ulei", - -11.7376127243042 - ], - [ - "▁Sept", - -11.737699508666992 - ], - [ - "▁Location", - -11.737908363342285 - ], - [ - "▁frozen", - -11.737991333007812 - ], - [ - "good", - -11.73802661895752 - ], - [ - "▁cine", - -11.738066673278809 - ], - [ - "forming", - -11.738181114196777 - ], - [ - "▁Near", - -11.738391876220703 - ], - [ - "▁Tab", - -11.738545417785645 - ], - [ - "▁Alexandr", - -11.738600730895996 - ], - [ - "ст", - -11.73863697052002 - ], - [ - "CK", - -11.738656044006348 - ], - [ - "▁loads", - -11.738948822021484 - ], - [ - "▁disorders", - -11.738957405090332 - ], - [ - "hip", - -11.739596366882324 - ], - [ - "▁blessing", - -11.73987102508545 - ], - [ - "▁vechi", - -11.73997688293457 - ], - [ - "▁Bookmark", - -11.740296363830566 - ], - [ - "SON", - -11.74036979675293 - ], - [ - "books", - -11.740428924560547 - ], - [ - "▁tropical", - -11.740438461303711 - ], - [ - "▁Garten", - -11.740447044372559 - ], - [ - "ôt", - -11.740760803222656 - ], - [ - "tures", - -11.740827560424805 - ], - [ - "▁obligation", - -11.741010665893555 - ], - [ - "▁admin", - -11.741011619567871 - ], - [ - "▁sélection", - -11.741106986999512 - ], - [ - "disp", - -11.741172790527344 - ], - [ - "▁Anyone", - -11.741225242614746 - ], - [ - "keeper", - -11.74138355255127 - ], - [ - "▁konnten", - -11.741521835327148 - ], - [ - "▁existe", - -11.741615295410156 - ], - [ - "▁Rund", - -11.741798400878906 - ], - [ - "▁retailers", - -11.74184799194336 - ], - [ - "folg", - -11.741948127746582 - ], - [ - "▁urmare", - -11.742019653320312 - ], - [ - "▁Liebe", - -11.742321014404297 - ], - [ - "▁actors", - -11.742422103881836 - ], - [ - "▁Druck", - -11.742618560791016 - ], - [ - "lien", - -11.742752075195312 - ], - [ - "sian", - -11.742847442626953 - ], - [ - "▁partid", - -11.74304485321045 - ], - [ - "▁loin", - -11.743114471435547 - ], - [ - "AZ", - -11.743119239807129 - ], - [ - "oasă", - -11.743501663208008 - ], - [ - "▁inclusiv", - -11.743656158447266 - ], - [ - "TD", - -11.743680953979492 - ], - [ - "▁anului", - -11.743766784667969 - ], - [ - "poc", - -11.743844985961914 - ], - [ - "▁musique", - -11.743972778320312 - ], - [ - "▁Hart", - -11.743997573852539 - ], - [ - "Sh", - -11.744283676147461 - ], - [ - "html", - -11.744290351867676 - ], - [ - "▁serial", - -11.744318008422852 - ], - [ - "țele", - -11.744369506835938 - ], - [ - "inning", - -11.744544982910156 - ], - [ - "▁Bureau", - -11.744555473327637 - ], - [ - "▁rush", - -11.744626998901367 - ], - [ - "▁deosebit", - -11.744637489318848 - ], - [ - "▁Wort", - -11.744648933410645 - ], - [ - "▁Thailand", - -11.744688987731934 - ], - [ - "▁Language", - -11.745193481445312 - ], - [ - "▁Governor", - -11.745213508605957 - ], - [ - "▁Later", - -11.74525260925293 - ], - [ - "rilor", - -11.745282173156738 - ], - [ - "▁activités", - -11.745372772216797 - ], - [ - "schaffen", - -11.745598793029785 - ], - [ - "▁harvest", - -11.74567985534668 - ], - [ - "▁municipal", - -11.745783805847168 - ], - [ - "einander", - -11.74600601196289 - ], - [ - "▁fingers", - -11.746383666992188 - ], - [ - "▁sculpture", - -11.74638843536377 - ], - [ - "▁Bien", - -11.746390342712402 - ], - [ - "▁departments", - -11.746562957763672 - ], - [ - "▁période", - -11.746746063232422 - ], - [ - "▁jeune", - -11.746960639953613 - ], - [ - "▁governments", - -11.74710750579834 - ], - [ - "uter", - -11.747179985046387 - ], - [ - "Aceste", - -11.747220039367676 - ], - [ - "▁Deal", - -11.747243881225586 - ], - [ - "▁Equipment", - -11.74726390838623 - ], - [ - "nous", - -11.747300148010254 - ], - [ - "▁gate", - -11.747315406799316 - ], - [ - "▁meta", - -11.747447967529297 - ], - [ - "▁stiu", - -11.747474670410156 - ], - [ - "fold", - -11.747486114501953 - ], - [ - "▁seule", - -11.747523307800293 - ], - [ - "▁varied", - -11.747541427612305 - ], - [ - "hit", - -11.747635841369629 - ], - [ - "▁DIY", - -11.74768352508545 - ], - [ - "▁lemn", - -11.747685432434082 - ], - [ - "OB", - -11.747865676879883 - ], - [ - "▁colorful", - -11.748095512390137 - ], - [ - "▁câ", - -11.74826431274414 - ], - [ - "▁semester", - -11.74830150604248 - ], - [ - "▁dealer", - -11.748575210571289 - ], - [ - "nett", - -11.748788833618164 - ], - [ - "▁shortly", - -11.748932838439941 - ], - [ - "▁Driver", - -11.748983383178711 - ], - [ - "culture", - -11.749052047729492 - ], - [ - "▁permitted", - -11.749072074890137 - ], - [ - "▁sorts", - -11.749432563781738 - ], - [ - "▁crop", - -11.74999713897705 - ], - [ - "▁valoare", - -11.75046157836914 - ], - [ - "▁analog", - -11.750576972961426 - ], - [ - "▁excuse", - -11.750588417053223 - ], - [ - "▁modèle", - -11.750657081604004 - ], - [ - "When", - -11.75068473815918 - ], - [ - "▁march", - -11.750744819641113 - ], - [ - "haz", - -11.750978469848633 - ], - [ - "▁minimize", - -11.750992774963379 - ], - [ - "traction", - -11.751028060913086 - ], - [ - "▁caracter", - -11.752382278442383 - ], - [ - "▁modules", - -11.7523832321167 - ], - [ - "clu", - -11.75244426727295 - ], - [ - "ţional", - -11.752482414245605 - ], - [ - "▁breach", - -11.752562522888184 - ], - [ - "▁priced", - -11.752614974975586 - ], - [ - "▁attorneys", - -11.752644538879395 - ], - [ - "▁implant", - -11.752645492553711 - ], - [ - "▁ANY", - -11.752655029296875 - ], - [ - "dition", - -11.752707481384277 - ], - [ - "▁trials", - -11.752838134765625 - ], - [ - "▁Nas", - -11.75293254852295 - ], - [ - "Pre", - -11.752970695495605 - ], - [ - "lorsque", - -11.752979278564453 - ], - [ - "plin", - -11.753050804138184 - ], - [ - "Er", - -11.753056526184082 - ], - [ - "▁Dom", - -11.753067970275879 - ], - [ - "▁tire", - -11.753190040588379 - ], - [ - "sili", - -11.753233909606934 - ], - [ - "▁coins", - -11.753350257873535 - ], - [ - "▁rend", - -11.753470420837402 - ], - [ - "▁reliability", - -11.753503799438477 - ], - [ - "▁Analysis", - -11.753508567810059 - ], - [ - "▁trails", - -11.753692626953125 - ], - [ - "trägt", - -11.753762245178223 - ], - [ - "▁Kansas", - -11.753908157348633 - ], - [ - "▁responsive", - -11.75390911102295 - ], - [ - "▁disappear", - -11.753988265991211 - ], - [ - "▁stakeholders", - -11.754022598266602 - ], - [ - "▁aplica", - -11.754164695739746 - ], - [ - "▁imi", - -11.754180908203125 - ], - [ - "▁Laura", - -11.754369735717773 - ], - [ - "▁Terms", - -11.75440788269043 - ], - [ - "450", - -11.754460334777832 - ], - [ - "▁voltage", - -11.754483222961426 - ], - [ - "▁Gel", - -11.754544258117676 - ], - [ - "▁qualities", - -11.754549026489258 - ], - [ - "▁qualifi", - -11.754603385925293 - ], - [ - "▁Mé", - -11.754735946655273 - ], - [ - "bereit", - -11.754829406738281 - ], - [ - "gleich", - -11.754875183105469 - ], - [ - "▁voting", - -11.754961013793945 - ], - [ - "▁trademark", - -11.755128860473633 - ], - [ - "▁2.5", - -11.75515079498291 - ], - [ - "ND", - -11.755438804626465 - ], - [ - "▁Kelly", - -11.755470275878906 - ], - [ - "▁weiteren", - -11.755559921264648 - ], - [ - "▁filters", - -11.75562572479248 - ], - [ - "▁coût", - -11.75562858581543 - ], - [ - "jur", - -11.755765914916992 - ], - [ - "acre", - -11.755804061889648 - ], - [ - "▁retired", - -11.756022453308105 - ], - [ - "▁Engine", - -11.756205558776855 - ], - [ - "▁président", - -11.756264686584473 - ], - [ - "ajul", - -11.756307601928711 - ], - [ - "▁GA", - -11.756425857543945 - ], - [ - "rät", - -11.75666332244873 - ], - [ - "▁instructor", - -11.756669998168945 - ], - [ - "▁Allen", - -11.75668716430664 - ], - [ - "▁Delhi", - -11.756771087646484 - ], - [ - "▁cure", - -11.756844520568848 - ], - [ - "seite", - -11.756898880004883 - ], - [ - "coming", - -11.756914138793945 - ], - [ - "▁mixing", - -11.756963729858398 - ], - [ - "▁Kno", - -11.757041931152344 - ], - [ - "▁Sure", - -11.757079124450684 - ], - [ - "▁hired", - -11.757102012634277 - ], - [ - "▁participated", - -11.757196426391602 - ], - [ - "Count", - -11.757320404052734 - ], - [ - "treffen", - -11.757355690002441 - ], - [ - "▁54", - -11.75735855102539 - ], - [ - "▁rings", - -11.75735855102539 - ], - [ - "▁Thor", - -11.757359504699707 - ], - [ - "éro", - -11.75744915008545 - ], - [ - "▁buttons", - -11.757488250732422 - ], - [ - "▁47", - -11.757539749145508 - ], - [ - "▁Tel", - -11.757694244384766 - ], - [ - "▁suport", - -11.757776260375977 - ], - [ - "▁rhythm", - -11.75782585144043 - ], - [ - "▁Theater", - -11.758113861083984 - ], - [ - "▁informatii", - -11.758121490478516 - ], - [ - "hält", - -11.758201599121094 - ], - [ - "▁ouvert", - -11.758238792419434 - ], - [ - "fewer", - -11.75828742980957 - ], - [ - "▁alumni", - -11.758466720581055 - ], - [ - "▁valley", - -11.758508682250977 - ], - [ - "tial", - -11.75860595703125 - ], - [ - "***", - -11.758782386779785 - ], - [ - "kri", - -11.75905704498291 - ], - [ - "▁accidents", - -11.759113311767578 - ], - [ - "▁barrel", - -11.759170532226562 - ], - [ - "mobil", - -11.759310722351074 - ], - [ - "etti", - -11.759437561035156 - ], - [ - "▁immigration", - -11.759515762329102 - ], - [ - "▁poveste", - -11.759528160095215 - ], - [ - "hren", - -11.759669303894043 - ], - [ - "hydr", - -11.759719848632812 - ], - [ - "▁tweet", - -11.759744644165039 - ], - [ - "▁zip", - -11.759872436523438 - ], - [ - "▁Bonus", - -11.760189056396484 - ], - [ - "ordnung", - -11.760287284851074 - ], - [ - "liber", - -11.76046085357666 - ], - [ - "▁Navy", - -11.760591506958008 - ], - [ - "▁agreements", - -11.760612487792969 - ], - [ - "▁detection", - -11.7607421875 - ], - [ - "DF", - -11.760762214660645 - ], - [ - "hur", - -11.760774612426758 - ], - [ - "0.00", - -11.760798454284668 - ], - [ - "▁07", - -11.760866165161133 - ], - [ - "etta", - -11.760884284973145 - ], - [ - "▁13,", - -11.760887145996094 - ], - [ - "rolled", - -11.760970115661621 - ], - [ - "▁injection", - -11.761002540588379 - ], - [ - "mig", - -11.761017799377441 - ], - [ - "wach", - -11.761107444763184 - ], - [ - "▁choisir", - -11.761515617370605 - ], - [ - "▁professionnels", - -11.76159954071045 - ], - [ - "▁Tower", - -11.76169490814209 - ], - [ - "▁neighbor", - -11.76170539855957 - ], - [ - "deutschen", - -11.76187801361084 - ], - [ - "▁luxurious", - -11.76201057434082 - ], - [ - "▁walks", - -11.762033462524414 - ], - [ - "reti", - -11.762046813964844 - ], - [ - "▁Pad", - -11.762085914611816 - ], - [ - "wise", - -11.762297630310059 - ], - [ - "▁exhaust", - -11.762307167053223 - ], - [ - "▁demonstration", - -11.762582778930664 - ], - [ - "▁agricultural", - -11.762667655944824 - ], - [ - "Upon", - -11.762885093688965 - ], - [ - "▁Blu", - -11.76292610168457 - ], - [ - "atorul", - -11.762967109680176 - ], - [ - "amour", - -11.762984275817871 - ], - [ - "issant", - -11.763004302978516 - ], - [ - "▁delighted", - -11.763031959533691 - ], - [ - "rita", - -11.763113021850586 - ], - [ - "requiring", - -11.763195037841797 - ], - [ - "ivity", - -11.763216972351074 - ], - [ - "▁Unser", - -11.763306617736816 - ], - [ - "FP", - -11.763379096984863 - ], - [ - "fait", - -11.763533592224121 - ], - [ - "dite", - -11.763562202453613 - ], - [ - "kul", - -11.763716697692871 - ], - [ - "arth", - -11.76376724243164 - ], - [ - "▁Ker", - -11.763815879821777 - ], - [ - "torilor", - -11.763816833496094 - ], - [ - "stage", - -11.763866424560547 - ], - [ - "▁HTML", - -11.76398754119873 - ], - [ - "▁Wheel", - -11.764005661010742 - ], - [ - "▁quelque", - -11.76414680480957 - ], - [ - "▁Ou", - -11.764196395874023 - ], - [ - "▁considerable", - -11.764277458190918 - ], - [ - "▁Sco", - -11.76458740234375 - ], - [ - "▁donations", - -11.76481819152832 - ], - [ - "dessen", - -11.765002250671387 - ], - [ - "▁pourquoi", - -11.765039443969727 - ], - [ - "▁Bow", - -11.765189170837402 - ], - [ - "▁Dupa", - -11.76522445678711 - ], - [ - "ska", - -11.765707015991211 - ], - [ - "hot", - -11.765732765197754 - ], - [ - "▁drove", - -11.765849113464355 - ], - [ - "▁oppos", - -11.766018867492676 - ], - [ - "▁hiking", - -11.766035079956055 - ], - [ - "▁Boot", - -11.766081809997559 - ], - [ - "One", - -11.766087532043457 - ], - [ - "▁guvern", - -11.766094207763672 - ], - [ - "▁15,", - -11.766400337219238 - ], - [ - "scheid", - -11.766437530517578 - ], - [ - "▁Miet", - -11.766458511352539 - ], - [ - "▁Technical", - -11.766767501831055 - ], - [ - "▁Dal", - -11.7669038772583 - ], - [ - "▁Metro", - -11.766966819763184 - ], - [ - "▁Baker", - -11.767215728759766 - ], - [ - "▁trece", - -11.767252922058105 - ], - [ - "tained", - -11.767302513122559 - ], - [ - "block", - -11.76738452911377 - ], - [ - "▁wander", - -11.767401695251465 - ], - [ - "▁penalty", - -11.76742172241211 - ], - [ - "▁shipped", - -11.767509460449219 - ], - [ - "▁30%", - -11.767518043518066 - ], - [ - "group", - -11.767541885375977 - ], - [ - "▁brothers", - -11.767701148986816 - ], - [ - "▁comanda", - -11.767777442932129 - ], - [ - "▁retreat", - -11.767789840698242 - ], - [ - "▁Movie", - -11.767802238464355 - ], - [ - "PU", - -11.76787281036377 - ], - [ - "▁Jun", - -11.767885208129883 - ], - [ - "▁$6", - -11.767969131469727 - ], - [ - "▁Fal", - -11.768054962158203 - ], - [ - "▁Palestinian", - -11.768075942993164 - ], - [ - "▁soccer", - -11.768217086791992 - ], - [ - "▁Autor", - -11.768254280090332 - ], - [ - "▁chamber", - -11.768266677856445 - ], - [ - "nement", - -11.768463134765625 - ], - [ - "▁offense", - -11.768610954284668 - ], - [ - "▁gig", - -11.768631935119629 - ], - [ - "▁abandon", - -11.768691062927246 - ], - [ - "▁Kraft", - -11.768783569335938 - ], - [ - "▁Medicare", - -11.768784523010254 - ], - [ - "▁soap", - -11.768835067749023 - ], - [ - "▁Fur", - -11.768990516662598 - ], - [ - "▁conditioning", - -11.769103050231934 - ], - [ - "rained", - -11.769132614135742 - ], - [ - "▁puts", - -11.769134521484375 - ], - [ - "▁cod", - -11.76930046081543 - ], - [ - "lassen", - -11.76941967010498 - ], - [ - "FL", - -11.769600868225098 - ], - [ - "▁komplett", - -11.769664764404297 - ], - [ - "▁entscheiden", - -11.769665718078613 - ], - [ - "▁Hour", - -11.769691467285156 - ], - [ - "?!", - -11.770040512084961 - ], - [ - "Stream", - -11.770145416259766 - ], - [ - "▁Grad", - -11.770209312438965 - ], - [ - "▁gently", - -11.770231246948242 - ], - [ - "▁poetry", - -11.770429611206055 - ], - [ - "▁secured", - -11.770438194274902 - ], - [ - "oph", - -11.770466804504395 - ], - [ - "hop", - -11.770561218261719 - ], - [ - "handel", - -11.770634651184082 - ], - [ - "▁besoins", - -11.770658493041992 - ], - [ - "got", - -11.770824432373047 - ], - [ - "▁Chrome", - -11.77088737487793 - ], - [ - "ILL", - -11.770930290222168 - ], - [ - "▁Schritt", - -11.771014213562012 - ], - [ - "▁spell", - -11.771063804626465 - ], - [ - "▁grinding", - -11.771334648132324 - ], - [ - "▁ramp", - -11.77144718170166 - ], - [ - "▁mama", - -11.7716064453125 - ], - [ - "▁bottles", - -11.77180290222168 - ], - [ - "▁canvas", - -11.771906852722168 - ], - [ - "▁ecosystem", - -11.77194595336914 - ], - [ - "aţii", - -11.771967887878418 - ], - [ - "cellular", - -11.772085189819336 - ], - [ - "▁Spin", - -11.772164344787598 - ], - [ - "▁Discover", - -11.772217750549316 - ], - [ - "-17", - -11.772322654724121 - ], - [ - "▁feeding", - -11.77246379852295 - ], - [ - "▁stops", - -11.7725191116333 - ], - [ - "▁haute", - -11.772552490234375 - ], - [ - "▁Entscheidung", - -11.7725830078125 - ], - [ - "▁semble", - -11.772590637207031 - ], - [ - "▁acele", - -11.772857666015625 - ], - [ - "▁Walk", - -11.773154258728027 - ], - [ - "▁joke", - -11.773180961608887 - ], - [ - "▁Fed", - -11.773294448852539 - ], - [ - "climat", - -11.773306846618652 - ], - [ - "▁Lot", - -11.773460388183594 - ], - [ - "runner", - -11.773551940917969 - ], - [ - "▁flip", - -11.773786544799805 - ], - [ - "▁werde", - -11.773818016052246 - ], - [ - "▁Deck", - -11.77417278289795 - ], - [ - "bala", - -11.774296760559082 - ], - [ - "▁sacrifice", - -11.774375915527344 - ], - [ - "cid", - -11.774388313293457 - ], - [ - "him", - -11.774569511413574 - ], - [ - "zahlen", - -11.774587631225586 - ], - [ - "▁heater", - -11.774596214294434 - ], - [ - "formed", - -11.774619102478027 - ], - [ - "plus", - -11.774711608886719 - ], - [ - "▁util", - -11.774742126464844 - ], - [ - "rama", - -11.775019645690918 - ], - [ - "(4)", - -11.7750244140625 - ], - [ - "▁knife", - -11.775111198425293 - ], - [ - "▁traditions", - -11.77520751953125 - ], - [ - "▁dip", - -11.775357246398926 - ], - [ - "kill", - -11.775405883789062 - ], - [ - "▁Rich", - -11.775418281555176 - ], - [ - "▁DI", - -11.775555610656738 - ], - [ - "▁containers", - -11.775677680969238 - ], - [ - "▁locuri", - -11.775728225708008 - ], - [ - "▁continent", - -11.775797843933105 - ], - [ - "teilung", - -11.776005744934082 - ], - [ - "▁vreme", - -11.776028633117676 - ], - [ - "organisation", - -11.776126861572266 - ], - [ - "serie", - -11.776135444641113 - ], - [ - "▁Diamond", - -11.776204109191895 - ], - [ - "magazin", - -11.77627944946289 - ], - [ - "▁poster", - -11.776455879211426 - ], - [ - "▁passenger", - -11.7765474319458 - ], - [ - "▁soldiers", - -11.776552200317383 - ], - [ - "▁urgent", - -11.776616096496582 - ], - [ - "▁Lip", - -11.77680778503418 - ], - [ - "▁aşa", - -11.776972770690918 - ], - [ - "▁BO", - -11.777024269104004 - ], - [ - "▁somebody", - -11.777076721191406 - ], - [ - "▁silence", - -11.777132034301758 - ], - [ - "cop", - -11.777359962463379 - ], - [ - "▁Burn", - -11.77749252319336 - ], - [ - "▁stopping", - -11.777544021606445 - ], - [ - "▁essence", - -11.777568817138672 - ], - [ - "▁hitting", - -11.777762413024902 - ], - [ - "▁producers", - -11.777801513671875 - ], - [ - "▁fibre", - -11.777894020080566 - ], - [ - "▁seasonal", - -11.777960777282715 - ], - [ - "▁tara", - -11.778096199035645 - ], - [ - "▁Jose", - -11.778099060058594 - ], - [ - "▁Better", - -11.77825927734375 - ], - [ - "▁steep", - -11.778295516967773 - ], - [ - "Alors", - -11.778353691101074 - ], - [ - "▁collecting", - -11.778507232666016 - ], - [ - "vre", - -11.778635025024414 - ], - [ - "▁disabled", - -11.77863883972168 - ], - [ - "▁voters", - -11.778679847717285 - ], - [ - "consuming", - -11.779092788696289 - ], - [ - "deemed", - -11.779115676879883 - ], - [ - "éra", - -11.779227256774902 - ], - [ - "opération", - -11.779273986816406 - ], - [ - "▁roller", - -11.779305458068848 - ], - [ - "Rather", - -11.779321670532227 - ], - [ - "▁leider", - -11.779370307922363 - ], - [ - "▁IV", - -11.779434204101562 - ], - [ - "▁erreichen", - -11.779473304748535 - ], - [ - "▁charging", - -11.779657363891602 - ], - [ - "tions", - -11.77973747253418 - ], - [ - "tiques", - -11.779861450195312 - ], - [ - "▁formats", - -11.779876708984375 - ], - [ - "▁painful", - -11.78000545501709 - ], - [ - "▁eager", - -11.780061721801758 - ], - [ - "generation", - -11.780137062072754 - ], - [ - "anna", - -11.780235290527344 - ], - [ - "▁races", - -11.780323028564453 - ], - [ - "force", - -11.780357360839844 - ], - [ - "▁ferm", - -11.780522346496582 - ], - [ - "▁breathing", - -11.780618667602539 - ], - [ - "▁offen", - -11.780648231506348 - ], - [ - "▁minds", - -11.780805587768555 - ], - [ - "▁musste", - -11.780832290649414 - ], - [ - "▁Vision", - -11.780888557434082 - ], - [ - "▁Installation", - -11.780988693237305 - ], - [ - "▁hesitate", - -11.781002044677734 - ], - [ - "▁somit", - -11.781023979187012 - ], - [ - "hôtel", - -11.781044006347656 - ], - [ - "cab", - -11.781235694885254 - ], - [ - "-16", - -11.781312942504883 - ], - [ - "▁Visual", - -11.781418800354004 - ], - [ - "intérêt", - -11.781524658203125 - ], - [ - "▁apel", - -11.781831741333008 - ], - [ - "therapy", - -11.782089233398438 - ], - [ - "volt", - -11.78225040435791 - ], - [ - "▁Rou", - -11.782439231872559 - ], - [ - "▁efficace", - -11.782464027404785 - ], - [ - "▁architectural", - -11.782605171203613 - ], - [ - "▁privilege", - -11.782670974731445 - ], - [ - "▁treating", - -11.782711029052734 - ], - [ - "▁Tam", - -11.782722473144531 - ], - [ - "tsch", - -11.782744407653809 - ], - [ - "building", - -11.782750129699707 - ], - [ - "▁associations", - -11.782929420471191 - ], - [ - "▁Consumer", - -11.783424377441406 - ], - [ - "▁Lim", - -11.783496856689453 - ], - [ - "newest", - -11.7835054397583 - ], - [ - "▁față", - -11.783675193786621 - ], - [ - "▁ships", - -11.783732414245605 - ], - [ - "lev", - -11.78373908996582 - ], - [ - "raft", - -11.783817291259766 - ], - [ - "▁variations", - -11.783845901489258 - ], - [ - "▁noua", - -11.78386402130127 - ], - [ - "▁Cab", - -11.784063339233398 - ], - [ - "1.2", - -11.78409481048584 - ], - [ - "▁ocazi", - -11.784347534179688 - ], - [ - "▁recommendation", - -11.784449577331543 - ], - [ - "titled", - -11.78445053100586 - ], - [ - "▁invoice", - -11.78459644317627 - ], - [ - "▁noastra", - -11.784647941589355 - ], - [ - "kur", - -11.784700393676758 - ], - [ - "issent", - -11.784758567810059 - ], - [ - "base", - -11.784778594970703 - ], - [ - "hä", - -11.7848482131958 - ], - [ - "888", - -11.784914016723633 - ], - [ - "▁declar", - -11.784941673278809 - ], - [ - "▁Football", - -11.7850341796875 - ], - [ - "▁Indeed", - -11.785293579101562 - ], - [ - "▁weapon", - -11.785333633422852 - ], - [ - "▁destroyed", - -11.785457611083984 - ], - [ - "▁enormous", - -11.785594940185547 - ], - [ - "▁blanket", - -11.7857084274292 - ], - [ - "▁aktiv", - -11.785759925842285 - ], - [ - "raw", - -11.785791397094727 - ], - [ - "▁computing", - -11.785823822021484 - ], - [ - "6)", - -11.785955429077148 - ], - [ - "▁Dam", - -11.786152839660645 - ], - [ - "▁confort", - -11.786174774169922 - ], - [ - "▁Gla", - -11.786198616027832 - ], - [ - "hardly", - -11.786242485046387 - ], - [ - "▁annually", - -11.786269187927246 - ], - [ - "▁destinations", - -11.786401748657227 - ], - [ - "▁guilty", - -11.786404609680176 - ], - [ - "▁scholarship", - -11.786439895629883 - ], - [ - "▁harmful", - -11.786453247070312 - ], - [ - "▁2-3", - -11.786616325378418 - ], - [ - "▁Race", - -11.786638259887695 - ], - [ - "▁hypo", - -11.78671646118164 - ], - [ - "▁shorter", - -11.786733627319336 - ], - [ - "quest", - -11.78675651550293 - ], - [ - "uze", - -11.786812782287598 - ], - [ - "izi", - -11.787005424499512 - ], - [ - "OO", - -11.787095069885254 - ], - [ - "▁Schutz", - -11.787097930908203 - ], - [ - "▁Teilnehmer", - -11.787185668945312 - ], - [ - "▁profiles", - -11.787199020385742 - ], - [ - "▁sustainability", - -11.78747272491455 - ], - [ - "▁emb", - -11.787489891052246 - ], - [ - "▁Augen", - -11.787516593933105 - ], - [ - "▁outdoors", - -11.787542343139648 - ], - [ - "▁Individual", - -11.787548065185547 - ], - [ - "▁pou", - -11.78757095336914 - ], - [ - "▁Together", - -11.787575721740723 - ], - [ - "HT", - -11.787674903869629 - ], - [ - "suited", - -11.787755012512207 - ], - [ - "▁tro", - -11.787782669067383 - ], - [ - "▁Strom", - -11.787805557250977 - ], - [ - "▁achievement", - -11.78799819946289 - ], - [ - "▁Range", - -11.78815746307373 - ], - [ - "tory", - -11.78817081451416 - ], - [ - "▁distribute", - -11.788250923156738 - ], - [ - "▁letzte", - -11.788276672363281 - ], - [ - "incorporated", - -11.788287162780762 - ], - [ - "▁Kir", - -11.788325309753418 - ], - [ - "ruf", - -11.78839111328125 - ], - [ - "▁disappointed", - -11.788543701171875 - ], - [ - "▁referral", - -11.788602828979492 - ], - [ - "flam", - -11.788687705993652 - ], - [ - "▁excessive", - -11.7886962890625 - ], - [ - "▁rapidement", - -11.788743019104004 - ], - [ - "▁Rio", - -11.78875732421875 - ], - [ - "aţia", - -11.788951873779297 - ], - [ - "▁meuble", - -11.78912353515625 - ], - [ - "▁2008.", - -11.789135932922363 - ], - [ - "▁Gall", - -11.78915023803711 - ], - [ - "▁française", - -11.789369583129883 - ], - [ - "▁ladies", - -11.789695739746094 - ], - [ - "ailed", - -11.789746284484863 - ], - [ - "El", - -11.789834976196289 - ], - [ - "▁wines", - -11.789868354797363 - ], - [ - "▁beispielsweise", - -11.789876937866211 - ], - [ - "▁gamme", - -11.790193557739258 - ], - [ - "▁guided", - -11.79028034210205 - ], - [ - "▁plin", - -11.790339469909668 - ], - [ - "Î", - -11.790390968322754 - ], - [ - "▁True", - -11.790498733520508 - ], - [ - "▁Temple", - -11.790507316589355 - ], - [ - "▁Pic", - -11.790520668029785 - ], - [ - "permalink", - -11.790547370910645 - ], - [ - "▁vedea", - -11.790656089782715 - ], - [ - "▁rank", - -11.790922164916992 - ], - [ - "▁Grill", - -11.791025161743164 - ], - [ - "clin", - -11.791070938110352 - ], - [ - "▁Hab", - -11.791089057922363 - ], - [ - "▁odds", - -11.791125297546387 - ], - [ - "▁anytime", - -11.791146278381348 - ], - [ - "▁Thanksgiving", - -11.791265487670898 - ], - [ - "guard", - -11.791300773620605 - ], - [ - "▁essays", - -11.791389465332031 - ], - [ - "▁PE", - -11.79139518737793 - ], - [ - "▁Rechts", - -11.791494369506836 - ], - [ - "mals", - -11.791751861572266 - ], - [ - "achi", - -11.791762351989746 - ], - [ - "▁Anthony", - -11.791765213012695 - ], - [ - "▁réponse", - -11.792036056518555 - ], - [ - "standing", - -11.79227352142334 - ], - [ - "▁Mol", - -11.792427062988281 - ], - [ - "▁Canon", - -11.792474746704102 - ], - [ - "▁silk", - -11.792515754699707 - ], - [ - "▁pourrait", - -11.79278564453125 - ], - [ - "▁raport", - -11.79280948638916 - ], - [ - "▁Woche", - -11.792889595031738 - ], - [ - "fallen", - -11.79293155670166 - ], - [ - "sting", - -11.79310131072998 - ], - [ - "▁circulation", - -11.793102264404297 - ], - [ - "▁skirt", - -11.7931547164917 - ], - [ - "▁Title", - -11.793187141418457 - ], - [ - "▁17.", - -11.79331111907959 - ], - [ - "▁Touch", - -11.793486595153809 - ], - [ - "▁utilizat", - -11.79352855682373 - ], - [ - "▁Organisation", - -11.793569564819336 - ], - [ - "▁mereu", - -11.793848991394043 - ], - [ - "▁oxygen", - -11.793953895568848 - ], - [ - "lique", - -11.793985366821289 - ], - [ - "▁consume", - -11.794100761413574 - ], - [ - "▁Barb", - -11.794102668762207 - ], - [ - "1.1", - -11.794105529785156 - ], - [ - "▁nicely", - -11.79419231414795 - ], - [ - "▁psychological", - -11.794227600097656 - ], - [ - "▁refrigerator", - -11.794478416442871 - ], - [ - "▁fantasy", - -11.79481029510498 - ], - [ - "▁dispute", - -11.79494571685791 - ], - [ - "▁IBM", - -11.794954299926758 - ], - [ - "▁Nation", - -11.794971466064453 - ], - [ - "▁mobil", - -11.795063972473145 - ], - [ - "▁density", - -11.795201301574707 - ], - [ - "ske", - -11.795230865478516 - ], - [ - "▁intimate", - -11.795313835144043 - ], - [ - "▁tailored", - -11.795319557189941 - ], - [ - "▁outline", - -11.795472145080566 - ], - [ - "TN", - -11.79554557800293 - ], - [ - "mur", - -11.795634269714355 - ], - [ - "GC", - -11.795662879943848 - ], - [ - "they", - -11.795992851257324 - ], - [ - "pag", - -11.796161651611328 - ], - [ - "▁Kultur", - -11.796246528625488 - ], - [ - "grün", - -11.796281814575195 - ], - [ - "voted", - -11.796529769897461 - ], - [ - "▁donné", - -11.796546936035156 - ], - [ - "▁Să", - -11.796629905700684 - ], - [ - "enberg", - -11.796648979187012 - ], - [ - "▁wi", - -11.79686450958252 - ], - [ - "▁Francis", - -11.797057151794434 - ], - [ - "▁Rick", - -11.797157287597656 - ], - [ - "accord", - -11.797403335571289 - ], - [ - "▁Zusammen", - -11.797415733337402 - ], - [ - "▁nonprofit", - -11.797456741333008 - ], - [ - "▁listings", - -11.797615051269531 - ], - [ - "6,", - -11.797908782958984 - ], - [ - "▁maximize", - -11.798253059387207 - ], - [ - "bud", - -11.798345565795898 - ], - [ - "▁promotional", - -11.798486709594727 - ], - [ - "cina", - -11.798646926879883 - ], - [ - "▁potatoes", - -11.79869556427002 - ], - [ - "▁mot", - -11.798871040344238 - ], - [ - "carries", - -11.799384117126465 - ], - [ - "▁stabilit", - -11.799458503723145 - ], - [ - "▁Door", - -11.799574851989746 - ], - [ - "▁downloaded", - -11.799574851989746 - ], - [ - "▁experimental", - -11.799724578857422 - ], - [ - "HD", - -11.7997407913208 - ], - [ - "▁parfois", - -11.79980182647705 - ], - [ - "▁zeigen", - -11.800092697143555 - ], - [ - "▁proposé", - -11.80030632019043 - ], - [ - "▁Verein", - -11.800636291503906 - ], - [ - "▁amestec", - -11.800676345825195 - ], - [ - "▁entreprise", - -11.800718307495117 - ], - [ - "▁PSD", - -11.800841331481934 - ], - [ - "▁bake", - -11.800897598266602 - ], - [ - "▁Rh", - -11.800904273986816 - ], - [ - "▁Mehr", - -11.800922393798828 - ], - [ - "▁purple", - -11.801074028015137 - ], - [ - "▁recipient", - -11.80109691619873 - ], - [ - "rare", - -11.801166534423828 - ], - [ - "egi", - -11.80117130279541 - ], - [ - "ancien", - -11.801176071166992 - ], - [ - "▁risque", - -11.80118465423584 - ], - [ - "▁mystery", - -11.80157470703125 - ], - [ - "mac", - -11.801697731018066 - ], - [ - "ibility", - -11.80182933807373 - ], - [ - "▁Moore", - -11.801881790161133 - ], - [ - "▁flavors", - -11.801911354064941 - ], - [ - "▁trauma", - -11.801966667175293 - ], - [ - "▁automotive", - -11.802112579345703 - ], - [ - "▁Anyway", - -11.802197456359863 - ], - [ - "▁simulation", - -11.802253723144531 - ], - [ - "▁crafts", - -11.802525520324707 - ], - [ - "▁measurements", - -11.80257511138916 - ], - [ - "▁cour", - -11.80257797241211 - ], - [ - "▁tard", - -11.802600860595703 - ], - [ - "nnie", - -11.802881240844727 - ], - [ - "▁Production", - -11.803388595581055 - ], - [ - "▁Cleaning", - -11.803567886352539 - ], - [ - "5,", - -11.803644180297852 - ], - [ - "▁Islamic", - -11.803766250610352 - ], - [ - "▁Gate", - -11.80378532409668 - ], - [ - "bay", - -11.803814888000488 - ], - [ - "HR", - -11.803990364074707 - ], - [ - "▁Offer", - -11.80399227142334 - ], - [ - "▁acceptance", - -11.804107666015625 - ], - [ - "▁Erfahrung", - -11.80412769317627 - ], - [ - "▁environ", - -11.804193496704102 - ], - [ - "▁fancy", - -11.804218292236328 - ], - [ - "▁bullet", - -11.80437183380127 - ], - [ - "organ", - -11.804466247558594 - ], - [ - "▁Peace", - -11.804520606994629 - ], - [ - "▁detalii", - -11.80461597442627 - ], - [ - "▁promised", - -11.804715156555176 - ], - [ - "▁wellness", - -11.804746627807617 - ], - [ - "▁satisfy", - -11.80481243133545 - ], - [ - "▁grants", - -11.805212020874023 - ], - [ - "accueil", - -11.80522346496582 - ], - [ - "▁oben", - -11.805412292480469 - ], - [ - "▁prospects", - -11.80543327331543 - ], - [ - "▁Events", - -11.805513381958008 - ], - [ - "2013", - -11.805569648742676 - ], - [ - "gesehen", - -11.805685997009277 - ], - [ - "▁£1", - -11.805727005004883 - ], - [ - "▁handelt", - -11.805798530578613 - ], - [ - "▁Spieler", - -11.805876731872559 - ], - [ - "▁Virtual", - -11.806145668029785 - ], - [ - "▁bubble", - -11.806239128112793 - ], - [ - "▁Trend", - -11.806254386901855 - ], - [ - "▁sistemul", - -11.806315422058105 - ], - [ - "▁Morgan", - -11.806320190429688 - ], - [ - "▁pole", - -11.806503295898438 - ], - [ - "▁spielen", - -11.806533813476562 - ], - [ - "tür", - -11.806571006774902 - ], - [ - "SCO", - -11.806572914123535 - ], - [ - "▁informative", - -11.806678771972656 - ], - [ - "▁affirm", - -11.806755065917969 - ], - [ - "▁Aqua", - -11.806818008422852 - ], - [ - "▁AR", - -11.806888580322266 - ], - [ - "richten", - -11.807071685791016 - ], - [ - "▁rewards", - -11.807122230529785 - ], - [ - "lub", - -11.807235717773438 - ], - [ - "shot", - -11.807236671447754 - ], - [ - "LM", - -11.807540893554688 - ], - [ - "Up", - -11.807586669921875 - ], - [ - "▁absolut", - -11.807737350463867 - ], - [ - "▁Mart", - -11.807806968688965 - ], - [ - "erweise", - -11.807812690734863 - ], - [ - "BP", - -11.807977676391602 - ], - [ - "▁difficile", - -11.808152198791504 - ], - [ - "▁Document", - -11.808159828186035 - ], - [ - "▁Sweet", - -11.8082914352417 - ], - [ - "▁indicator", - -11.808338165283203 - ], - [ - "▁Boden", - -11.808389663696289 - ], - [ - "mates", - -11.808477401733398 - ], - [ - "▁supporters", - -11.808504104614258 - ], - [ - "▁begun", - -11.808600425720215 - ], - [ - "▁blogging", - -11.808611869812012 - ], - [ - "▁CL", - -11.808663368225098 - ], - [ - "gres", - -11.808692932128906 - ], - [ - "▁preferences", - -11.808738708496094 - ], - [ - "▁screw", - -11.808756828308105 - ], - [ - "▁tutor", - -11.808858871459961 - ], - [ - "▁Additional", - -11.80891227722168 - ], - [ - "▁Bitte", - -11.808976173400879 - ], - [ - "utilizing", - -11.808998107910156 - ], - [ - "▁expérience", - -11.809073448181152 - ], - [ - "▁dur", - -11.809146881103516 - ], - [ - "▁precisely", - -11.809178352355957 - ], - [ - "▁janvier", - -11.809394836425781 - ], - [ - "AGE", - -11.80987548828125 - ], - [ - "moto", - -11.810007095336914 - ], - [ - "▁counsel", - -11.810195922851562 - ], - [ - "▁110", - -11.810226440429688 - ], - [ - "nick", - -11.810245513916016 - ], - [ - "licit", - -11.810540199279785 - ], - [ - "technik", - -11.810659408569336 - ], - [ - "▁collaborate", - -11.810736656188965 - ], - [ - "▁neighbors", - -11.810794830322266 - ], - [ - "tered", - -11.810922622680664 - ], - [ - "▁excel", - -11.811025619506836 - ], - [ - "▁Route", - -11.811059951782227 - ], - [ - "steuer", - -11.81109619140625 - ], - [ - "▁pioneer", - -11.811607360839844 - ], - [ - "nuit", - -11.81169319152832 - ], - [ - "▁skip", - -11.811963081359863 - ], - [ - "▁destruction", - -11.811997413635254 - ], - [ - "▁thesis", - -11.812249183654785 - ], - [ - "▁libre", - -11.812317848205566 - ], - [ - "▁petition", - -11.81234073638916 - ], - [ - "▁steady", - -11.812456130981445 - ], - [ - "▁medications", - -11.812458992004395 - ], - [ - "▁audiences", - -11.812623023986816 - ], - [ - "▁coaches", - -11.812689781188965 - ], - [ - "aller", - -11.812704086303711 - ], - [ - "3,000", - -11.812705993652344 - ], - [ - "▁anger", - -11.812785148620605 - ], - [ - "▁striking", - -11.812844276428223 - ], - [ - "▁shades", - -11.81291675567627 - ], - [ - "▁Sitz", - -11.812994956970215 - ], - [ - "▁gluten", - -11.813162803649902 - ], - [ - "▁egal", - -11.813222885131836 - ], - [ - "ania", - -11.813223838806152 - ], - [ - "▁defend", - -11.813241004943848 - ], - [ - "gut", - -11.81382942199707 - ], - [ - "▁reserves", - -11.813895225524902 - ], - [ - "▁advocate", - -11.814053535461426 - ], - [ - "▁Cit", - -11.814082145690918 - ], - [ - "▁technicians", - -11.814105033874512 - ], - [ - "▁cater", - -11.814138412475586 - ], - [ - "leitung", - -11.814190864562988 - ], - [ - "▁towns", - -11.814335823059082 - ], - [ - "▁Costa", - -11.814364433288574 - ], - [ - "▁confront", - -11.814567565917969 - ], - [ - "mount", - -11.814652442932129 - ], - [ - "▁nationale", - -11.814706802368164 - ], - [ - "▁adverse", - -11.814932823181152 - ], - [ - "▁couleur", - -11.815112113952637 - ], - [ - "▁delight", - -11.815169334411621 - ], - [ - "▁promises", - -11.815224647521973 - ], - [ - "▁silent", - -11.81550121307373 - ], - [ - "richtet", - -11.815556526184082 - ], - [ - "▁Companies", - -11.815614700317383 - ], - [ - "▁Charlotte", - -11.815620422363281 - ], - [ - "▁labels", - -11.815652847290039 - ], - [ - "▁Süd", - -11.815656661987305 - ], - [ - "▁Honor", - -11.81567096710205 - ], - [ - "▁complaints", - -11.815710067749023 - ], - [ - "▁siècle", - -11.815752029418945 - ], - [ - "▁suits", - -11.815792083740234 - ], - [ - "▁Bath", - -11.815827369689941 - ], - [ - "mise", - -11.815926551818848 - ], - [ - "▁acela", - -11.8159818649292 - ], - [ - "▁candidat", - -11.816011428833008 - ], - [ - "Flo", - -11.816207885742188 - ], - [ - "▁conservative", - -11.816215515136719 - ], - [ - "DD", - -11.816314697265625 - ], - [ - "▁changement", - -11.816414833068848 - ], - [ - "▁login", - -11.816492080688477 - ], - [ - "▁Fashion", - -11.816585540771484 - ], - [ - "reichen", - -11.816672325134277 - ], - [ - "through", - -11.816751480102539 - ], - [ - "aki", - -11.817240715026855 - ], - [ - "gna", - -11.817547798156738 - ], - [ - "▁verse", - -11.817551612854004 - ], - [ - "▁threats", - -11.817622184753418 - ], - [ - "▁Song", - -11.817770004272461 - ], - [ - "▁funded", - -11.81792163848877 - ], - [ - "langen", - -11.818023681640625 - ], - [ - "▁distribu", - -11.818195343017578 - ], - [ - "édition", - -11.818316459655762 - ], - [ - "▁royal", - -11.818562507629395 - ], - [ - "▁bevor", - -11.818829536437988 - ], - [ - "▁02", - -11.818854331970215 - ], - [ - "straße", - -11.818938255310059 - ], - [ - "edit", - -11.81904125213623 - ], - [ - "▁energetic", - -11.81922721862793 - ], - [ - "▁Carr", - -11.819757461547852 - ], - [ - "viol", - -11.819937705993652 - ], - [ - "▁niche", - -11.820054054260254 - ], - [ - "avais", - -11.820099830627441 - ], - [ - "▁backyard", - -11.82010269165039 - ], - [ - "▁Saudi", - -11.820158958435059 - ], - [ - "▁Zwei", - -11.820207595825195 - ], - [ - "▁Legal", - -11.82027530670166 - ], - [ - "accessed", - -11.820277214050293 - ], - [ - "▁choisi", - -11.820340156555176 - ], - [ - "▁GDP", - -11.820343971252441 - ], - [ - "oferă", - -11.820352554321289 - ], - [ - "hlen", - -11.820490837097168 - ], - [ - "▁Wor", - -11.820520401000977 - ], - [ - "▁cheer", - -11.820586204528809 - ], - [ - "▁barely", - -11.820625305175781 - ], - [ - "cost", - -11.820646286010742 - ], - [ - "▁Really", - -11.820661544799805 - ], - [ - "kol", - -11.820721626281738 - ], - [ - "▁binding", - -11.821045875549316 - ], - [ - "euer", - -11.821136474609375 - ], - [ - "▁optimization", - -11.821158409118652 - ], - [ - "▁Designer", - -11.8211669921875 - ], - [ - "▁measuring", - -11.82117748260498 - ], - [ - "ncy", - -11.821516036987305 - ], - [ - "weise", - -11.821520805358887 - ], - [ - "DER", - -11.821850776672363 - ], - [ - "▁$7", - -11.821949005126953 - ], - [ - "▁Anfang", - -11.821954727172852 - ], - [ - "material", - -11.821967124938965 - ], - [ - "▁antique", - -11.822281837463379 - ], - [ - "▁Certificate", - -11.822294235229492 - ], - [ - "▁modest", - -11.822370529174805 - ], - [ - "ției", - -11.822427749633789 - ], - [ - "▁praise", - -11.82245922088623 - ], - [ - "▁Springs", - -11.822660446166992 - ], - [ - "▁organiza", - -11.823041915893555 - ], - [ - "jurul", - -11.823047637939453 - ], - [ - "▁plumbing", - -11.82341194152832 - ], - [ - "▁foster", - -11.823490142822266 - ], - [ - "▁Wy", - -11.823491096496582 - ], - [ - "▁Sab", - -11.823503494262695 - ], - [ - "▁overwhelming", - -11.823677062988281 - ], - [ - "▁matin", - -11.823812484741211 - ], - [ - "▁responded", - -11.82408332824707 - ], - [ - "▁confused", - -11.824150085449219 - ], - [ - "▁blessed", - -11.824280738830566 - ], - [ - "▁160", - -11.824295997619629 - ], - [ - "▁ingredient", - -11.824360847473145 - ], - [ - "▁confer", - -11.82448673248291 - ], - [ - "▁Gesundheit", - -11.824530601501465 - ], - [ - "▁bucket", - -11.824555397033691 - ], - [ - "kraft", - -11.824565887451172 - ], - [ - "lange", - -11.824630737304688 - ], - [ - "▁Kopf", - -11.824678421020508 - ], - [ - "▁Prize", - -11.824678421020508 - ], - [ - "▁authorized", - -11.824779510498047 - ], - [ - "▁tick", - -11.824803352355957 - ], - [ - "▁steal", - -11.824910163879395 - ], - [ - "Depending", - -11.824918746948242 - ], - [ - "Depuis", - -11.824952125549316 - ], - [ - "▁functie", - -11.82499885559082 - ], - [ - "▁developments", - -11.825053215026855 - ], - [ - "▁Christians", - -11.825311660766602 - ], - [ - "▁calculated", - -11.8256254196167 - ], - [ - "▁Leave", - -11.825672149658203 - ], - [ - "▁Jam", - -11.82573413848877 - ], - [ - "▁habitat", - -11.825760841369629 - ], - [ - "▁Sorry", - -11.825801849365234 - ], - [ - "▁oficial", - -11.825944900512695 - ], - [ - "▁allein", - -11.826079368591309 - ], - [ - "▁concentrate", - -11.82608413696289 - ], - [ - "dica", - -11.826302528381348 - ], - [ - "▁Convention", - -11.826476097106934 - ], - [ - "illes", - -11.826550483703613 - ], - [ - "▁fum", - -11.82664680480957 - ], - [ - "▁Tal", - -11.826651573181152 - ], - [ - "Europe", - -11.826899528503418 - ], - [ - "▁attachment", - -11.826949119567871 - ], - [ - "▁sensibil", - -11.826995849609375 - ], - [ - "▁clue", - -11.82715892791748 - ], - [ - "▁specialty", - -11.827203750610352 - ], - [ - "▁Cou", - -11.827229499816895 - ], - [ - "▁liste", - -11.827278137207031 - ], - [ - "▁Penn", - -11.827465057373047 - ], - [ - "TRA", - -11.827559471130371 - ], - [ - "▁Themen", - -11.827561378479004 - ], - [ - "▁motivated", - -11.827906608581543 - ], - [ - "▁camere", - -11.828017234802246 - ], - [ - "▁14,", - -11.828393936157227 - ], - [ - "▁attendance", - -11.828557968139648 - ], - [ - "atorii", - -11.828581809997559 - ], - [ - "chemistry", - -11.82873821258545 - ], - [ - "▁roofing", - -11.828959465026855 - ], - [ - "▁Links", - -11.829048156738281 - ], - [ - "▁trou", - -11.829103469848633 - ], - [ - "▁trucks", - -11.829136848449707 - ], - [ - "hilfe", - -11.829557418823242 - ], - [ - "▁(6", - -11.829599380493164 - ], - [ - "vapor", - -11.82964038848877 - ], - [ - "mad", - -11.829668045043945 - ], - [ - "▁Albert", - -11.829877853393555 - ], - [ - "▁FIG", - -11.830073356628418 - ], - [ - "▁Rand", - -11.830187797546387 - ], - [ - "▁Constitution", - -11.830219268798828 - ], - [ - "ambi", - -11.830294609069824 - ], - [ - "▁Syria", - -11.830307006835938 - ], - [ - "▁Fond", - -11.830477714538574 - ], - [ - "▁gouvernement", - -11.830594062805176 - ], - [ - "▁Active", - -11.830705642700195 - ], - [ - "▁prints", - -11.830801963806152 - ], - [ - "▁weigh", - -11.8308687210083 - ], - [ - "▁Craft", - -11.831069946289062 - ], - [ - "▁projets", - -11.831247329711914 - ], - [ - "▁paste", - -11.831377029418945 - ], - [ - "anci", - -11.83139705657959 - ], - [ - "kie", - -11.831411361694336 - ], - [ - "▁gains", - -11.83165168762207 - ], - [ - "▁Record", - -11.831942558288574 - ], - [ - "▁beliefs", - -11.831954956054688 - ], - [ - "countless", - -11.831957817077637 - ], - [ - "▁tomatoes", - -11.831997871398926 - ], - [ - "arie", - -11.832082748413086 - ], - [ - "▁140", - -11.83211612701416 - ], - [ - "▁ethical", - -11.832229614257812 - ], - [ - "objectif", - -11.832279205322266 - ], - [ - "▁acestuia", - -11.832283973693848 - ], - [ - "▁Bluetooth", - -11.832398414611816 - ], - [ - "▁agriculture", - -11.832746505737305 - ], - [ - "uré", - -11.833027839660645 - ], - [ - "▁cale", - -11.833072662353516 - ], - [ - "▁articol", - -11.833073616027832 - ], - [ - "▁gum", - -11.833319664001465 - ], - [ - "▁vendor", - -11.833490371704102 - ], - [ - "ifié", - -11.833527565002441 - ], - [ - "▁peer", - -11.833662033081055 - ], - [ - "pod", - -11.834036827087402 - ], - [ - "▁utilized", - -11.834113121032715 - ], - [ - "▁Mü", - -11.834207534790039 - ], - [ - "owohl", - -11.834208488464355 - ], - [ - "hilst", - -11.834233283996582 - ], - [ - "frame", - -11.834260940551758 - ], - [ - "▁fridge", - -11.834822654724121 - ], - [ - "▁query", - -11.835108757019043 - ], - [ - "▁Survey", - -11.835227012634277 - ], - [ - "▁Hell", - -11.835247993469238 - ], - [ - "▁notification", - -11.83530044555664 - ], - [ - "TR", - -11.83538818359375 - ], - [ - "▁ultima", - -11.835505485534668 - ], - [ - "▁radiation", - -11.835631370544434 - ], - [ - "▁musicians", - -11.835821151733398 - ], - [ - "CAN", - -11.83595085144043 - ], - [ - "▁grocery", - -11.83607292175293 - ], - [ - "▁Sicherheit", - -11.83611011505127 - ], - [ - "▁Highway", - -11.836276054382324 - ], - [ - "▁Break", - -11.836285591125488 - ], - [ - "TED", - -11.836345672607422 - ], - [ - "ön", - -11.836352348327637 - ], - [ - "▁biological", - -11.836352348327637 - ], - [ - "qual", - -11.836397171020508 - ], - [ - "250", - -11.83641242980957 - ], - [ - "▁modify", - -11.836651802062988 - ], - [ - "▁Hit", - -11.836698532104492 - ], - [ - "▁Iar", - -11.836838722229004 - ], - [ - "aged", - -11.836884498596191 - ], - [ - "...)", - -11.83688735961914 - ], - [ - "▁contrat", - -11.836928367614746 - ], - [ - "▁centres", - -11.836956977844238 - ], - [ - "griff", - -11.836987495422363 - ], - [ - "Our", - -11.837233543395996 - ], - [ - "▁determination", - -11.837300300598145 - ], - [ - "▁variables", - -11.83742904663086 - ], - [ - "▁nuts", - -11.837472915649414 - ], - [ - "échange", - -11.837577819824219 - ], - [ - "extérieur", - -11.837631225585938 - ], - [ - "▁suflet", - -11.83764362335205 - ], - [ - "▁Scha", - -11.837752342224121 - ], - [ - "stück", - -11.837774276733398 - ], - [ - "▁Tau", - -11.837821960449219 - ], - [ - "▁participa", - -11.838008880615234 - ], - [ - "▁mad", - -11.838034629821777 - ], - [ - "▁relie", - -11.838051795959473 - ], - [ - "▁Fine", - -11.83808422088623 - ], - [ - "▁grape", - -11.838118553161621 - ], - [ - "▁wage", - -11.838141441345215 - ], - [ - "▁startup", - -11.838193893432617 - ], - [ - "▁blank", - -11.838194847106934 - ], - [ - "▁physique", - -11.838199615478516 - ], - [ - "▁punch", - -11.838233947753906 - ], - [ - "▁contacts", - -11.838321685791016 - ], - [ - "▁dezvolt", - -11.83835220336914 - ], - [ - "cross", - -11.838639259338379 - ], - [ - "▁TR", - -11.838652610778809 - ], - [ - "▁gener", - -11.838754653930664 - ], - [ - "▁indem", - -11.838823318481445 - ], - [ - "▁Stan", - -11.838839530944824 - ], - [ - "▁azi", - -11.838930130004883 - ], - [ - "▁Sel", - -11.838958740234375 - ], - [ - "▁Tot", - -11.83924674987793 - ], - [ - "vra", - -11.839341163635254 - ], - [ - "▁recruit", - -11.839482307434082 - ], - [ - "▁Yeah", - -11.839494705200195 - ], - [ - "/10", - -11.839507102966309 - ], - [ - "▁nail", - -11.83956241607666 - ], - [ - "▁Ky", - -11.839611053466797 - ], - [ - "▁beloved", - -11.839760780334473 - ], - [ - "operative", - -11.839823722839355 - ], - [ - "▁Tickets", - -11.83983325958252 - ], - [ - "▁tear", - -11.840229988098145 - ], - [ - "▁amp", - -11.840352058410645 - ], - [ - "▁04", - -11.840361595153809 - ], - [ - "▁illustrate", - -11.840361595153809 - ], - [ - "▁mac", - -11.840400695800781 - ], - [ - "▁receiver", - -11.840482711791992 - ], - [ - "atrice", - -11.840508460998535 - ], - [ - "▁souhait", - -11.840572357177734 - ], - [ - "▁Gewinn", - -11.840619087219238 - ], - [ - "▁Vit", - -11.840808868408203 - ], - [ - "roch", - -11.841202735900879 - ], - [ - "▁arata", - -11.841262817382812 - ], - [ - "▁Indiana", - -11.841364860534668 - ], - [ - "child", - -11.841516494750977 - ], - [ - "▁invested", - -11.84157657623291 - ], - [ - "▁Excellent", - -11.841625213623047 - ], - [ - "gori", - -11.841769218444824 - ], - [ - "▁thermal", - -11.841813087463379 - ], - [ - "Str", - -11.841973304748535 - ], - [ - "▁liver", - -11.84201717376709 - ], - [ - "miss", - -11.842035293579102 - ], - [ - "▁utiliser", - -11.842120170593262 - ], - [ - "▁prest", - -11.842445373535156 - ], - [ - "2016", - -11.842506408691406 - ], - [ - "isée", - -11.842508316040039 - ], - [ - "▁Index", - -11.842559814453125 - ], - [ - "▁arch", - -11.842639923095703 - ], - [ - "▁Toyota", - -11.842748641967773 - ], - [ - "▁YOUR", - -11.842782020568848 - ], - [ - "▁Mexican", - -11.842891693115234 - ], - [ - "▁gegenüber", - -11.842940330505371 - ], - [ - "▁cannabis", - -11.843033790588379 - ], - [ - "bis", - -11.843077659606934 - ], - [ - "vage", - -11.843083381652832 - ], - [ - "hall", - -11.843091011047363 - ], - [ - "fax", - -11.843137741088867 - ], - [ - "▁spoken", - -11.843232154846191 - ], - [ - "▁Zimmer", - -11.843544960021973 - ], - [ - "kauf", - -11.8436279296875 - ], - [ - "▁couleurs", - -11.843705177307129 - ], - [ - "▁NJ", - -11.844026565551758 - ], - [ - "▁Heritage", - -11.844318389892578 - ], - [ - "▁Pflege", - -11.844321250915527 - ], - [ - "luc", - -11.844361305236816 - ], - [ - "▁56", - -11.844489097595215 - ], - [ - "VP", - -11.844542503356934 - ], - [ - "▁cuvinte", - -11.844594955444336 - ], - [ - "▁Alliance", - -11.844614028930664 - ], - [ - "▁coco", - -11.844615936279297 - ], - [ - "▁leverage", - -11.844762802124023 - ], - [ - "auch", - -11.844844818115234 - ], - [ - "▁Cart", - -11.84506607055664 - ], - [ - "taux", - -11.84532642364502 - ], - [ - "east", - -11.84560775756836 - ], - [ - "▁decorating", - -11.84565258026123 - ], - [ - "tip", - -11.84565544128418 - ], - [ - "▁Communications", - -11.845780372619629 - ], - [ - "ACE", - -11.84580135345459 - ], - [ - "▁Consul", - -11.845993041992188 - ], - [ - "▁Swiss", - -11.846197128295898 - ], - [ - "inci", - -11.846230506896973 - ], - [ - "▁Fact", - -11.846312522888184 - ], - [ - "▁ajung", - -11.846321105957031 - ], - [ - "▁airline", - -11.846325874328613 - ], - [ - "▁kidney", - -11.846379280090332 - ], - [ - "▁Records", - -11.84642505645752 - ], - [ - "▁Olympic", - -11.846747398376465 - ], - [ - "▁dried", - -11.84719467163086 - ], - [ - "oivent", - -11.847333908081055 - ], - [ - "▁Adobe", - -11.847467422485352 - ], - [ - "▁powers", - -11.847748756408691 - ], - [ - "lande", - -11.847834587097168 - ], - [ - "▁relieve", - -11.847858428955078 - ], - [ - "ţine", - -11.847898483276367 - ], - [ - "▁gradually", - -11.847945213317871 - ], - [ - "mud", - -11.84811019897461 - ], - [ - "▁30,", - -11.848116874694824 - ], - [ - "▁plante", - -11.848133087158203 - ], - [ - "▁Hug", - -11.848225593566895 - ], - [ - "▁Focus", - -11.84853458404541 - ], - [ - "▁distinctive", - -11.848594665527344 - ], - [ - "▁Bab", - -11.848662376403809 - ], - [ - "tata", - -11.848679542541504 - ], - [ - "▁Nun", - -11.848797798156738 - ], - [ - "▁Eve", - -11.848811149597168 - ], - [ - "▁déc", - -11.848881721496582 - ], - [ - "▁Beitrag", - -11.84900951385498 - ], - [ - "▁devenit", - -11.849042892456055 - ], - [ - "driven", - -11.849250793457031 - ], - [ - "▁offerings", - -11.84933853149414 - ], - [ - "▁exc", - -11.84941577911377 - ], - [ - "encies", - -11.849576950073242 - ], - [ - "▁Neuro", - -11.849588394165039 - ], - [ - "scher", - -11.849604606628418 - ], - [ - "map", - -11.849703788757324 - ], - [ - "pending", - -11.849783897399902 - ], - [ - "▁courage", - -11.849799156188965 - ], - [ - "axe", - -11.849894523620605 - ], - [ - "▁Gesellschaft", - -11.849900245666504 - ], - [ - "▁ears", - -11.85000991821289 - ], - [ - "▁aider", - -11.850403785705566 - ], - [ - "▁Cast", - -11.85042667388916 - ], - [ - "fast", - -11.850442886352539 - ], - [ - "▁departe", - -11.850502014160156 - ], - [ - "▁oak", - -11.850507736206055 - ], - [ - "▁batch", - -11.850730895996094 - ], - [ - "▁Corporate", - -11.850762367248535 - ], - [ - "▁Ost", - -11.850895881652832 - ], - [ - "-14", - -11.850897789001465 - ], - [ - "▁Pie", - -11.85115909576416 - ], - [ - "▁ranking", - -11.851273536682129 - ], - [ - "clusion", - -11.851316452026367 - ], - [ - "▁costume", - -11.851347923278809 - ], - [ - "▁Knight", - -11.851449966430664 - ], - [ - "▁privat", - -11.851577758789062 - ], - [ - "▁Engineer", - -11.851593971252441 - ], - [ - "▁gens", - -11.8517427444458 - ], - [ - "physics", - -11.85176944732666 - ], - [ - "generating", - -11.851773262023926 - ], - [ - "directement", - -11.851786613464355 - ], - [ - "▁confidential", - -11.851810455322266 - ], - [ - "▁poet", - -11.851937294006348 - ], - [ - "▁monster", - -11.851944923400879 - ], - [ - "▁suppose", - -11.851984977722168 - ], - [ - "său", - -11.851996421813965 - ], - [ - "▁balls", - -11.852103233337402 - ], - [ - "▁substitute", - -11.852137565612793 - ], - [ - "▁simultaneously", - -11.852238655090332 - ], - [ - "▁specify", - -11.852272033691406 - ], - [ - "wald", - -11.852287292480469 - ], - [ - "▁collapse", - -11.852352142333984 - ], - [ - "dessus", - -11.852458953857422 - ], - [ - "▁vitr", - -11.852516174316406 - ], - [ - "▁recruitment", - -11.852607727050781 - ], - [ - "denken", - -11.852632522583008 - ], - [ - "▁candy", - -11.852691650390625 - ], - [ - "▁tourists", - -11.852721214294434 - ], - [ - "dimensional", - -11.852782249450684 - ], - [ - "conce", - -11.852814674377441 - ], - [ - "wechsel", - -11.852822303771973 - ], - [ - "▁passende", - -11.852971076965332 - ], - [ - "industrie", - -11.85299301147461 - ], - [ - "agne", - -11.853127479553223 - ], - [ - "▁warehouse", - -11.853233337402344 - ], - [ - "▁Jugend", - -11.853277206420898 - ], - [ - "▁Weise", - -11.853357315063477 - ], - [ - "▁Zone", - -11.853528022766113 - ], - [ - "▁licence", - -11.853550910949707 - ], - [ - "▁broker", - -11.853630065917969 - ], - [ - "▁Rolle", - -11.85365104675293 - ], - [ - "pton", - -11.853789329528809 - ], - [ - "▁preference", - -11.853846549987793 - ], - [ - "▁homeowners", - -11.853861808776855 - ], - [ - "▁Lum", - -11.85387134552002 - ], - [ - "▁Chairman", - -11.853879928588867 - ], - [ - "▁Pages", - -11.853998184204102 - ], - [ - "▁beam", - -11.854005813598633 - ], - [ - "▁coordinate", - -11.854158401489258 - ], - [ - "▁Tool", - -11.854212760925293 - ], - [ - "▁complexity", - -11.854272842407227 - ], - [ - "▁checks", - -11.854339599609375 - ], - [ - "▁Bedroom", - -11.854405403137207 - ], - [ - "minded", - -11.854538917541504 - ], - [ - "▁copiii", - -11.854694366455078 - ], - [ - "▁celebrating", - -11.85470199584961 - ], - [ - "zimmer", - -11.854759216308594 - ], - [ - "▁Imagine", - -11.854759216308594 - ], - [ - "▁decoration", - -11.854830741882324 - ], - [ - "team", - -11.855354309082031 - ], - [ - "▁împreună", - -11.855369567871094 - ], - [ - "▁publicly", - -11.855391502380371 - ], - [ - "▁centuries", - -11.855514526367188 - ], - [ - "▁Islands", - -11.855644226074219 - ], - [ - "▁ethnic", - -11.855663299560547 - ], - [ - "still", - -11.85576057434082 - ], - [ - "stieg", - -11.855823516845703 - ], - [ - "emia", - -11.855904579162598 - ], - [ - "tags", - -11.856026649475098 - ], - [ - "▁marche", - -11.856062889099121 - ], - [ - "▁migration", - -11.856096267700195 - ], - [ - "▁banner", - -11.85616683959961 - ], - [ - "▁macro", - -11.856378555297852 - ], - [ - "▁Edit", - -11.856379508972168 - ], - [ - "tran", - -11.85656452178955 - ], - [ - "ça", - -11.856597900390625 - ], - [ - "▁recycling", - -11.856670379638672 - ], - [ - "▁1,000", - -11.856673240661621 - ], - [ - "▁Quelle", - -11.856891632080078 - ], - [ - "▁Vel", - -11.85700511932373 - ], - [ - "▁Rit", - -11.857025146484375 - ], - [ - "▁Spaß", - -11.857046127319336 - ], - [ - "▁Corn", - -11.857074737548828 - ], - [ - "tracted", - -11.857177734375 - ], - [ - "cited", - -11.857185363769531 - ], - [ - "▁tablets", - -11.857202529907227 - ], - [ - "▁Display", - -11.857337951660156 - ], - [ - "▁persoana", - -11.857392311096191 - ], - [ - "Term", - -11.857410430908203 - ], - [ - "▁Vancouver", - -11.857537269592285 - ], - [ - "▁Gäste", - -11.857550621032715 - ], - [ - "determining", - -11.857608795166016 - ], - [ - "▁populations", - -11.85778522491455 - ], - [ - "aison", - -11.857873916625977 - ], - [ - "▁surgical", - -11.858072280883789 - ], - [ - "tale", - -11.858160018920898 - ], - [ - "ivi", - -11.858283042907715 - ], - [ - "▁Zur", - -11.858388900756836 - ], - [ - "esprit", - -11.858574867248535 - ], - [ - "▁Edge", - -11.858665466308594 - ], - [ - "dach", - -11.858760833740234 - ], - [ - "phi", - -11.858773231506348 - ], - [ - "▁suc", - -11.858841896057129 - ], - [ - "▁scrie", - -11.858848571777344 - ], - [ - "▁Ausbildung", - -11.858885765075684 - ], - [ - "▁51", - -11.85892391204834 - ], - [ - "ologi", - -11.858938217163086 - ], - [ - "▁correction", - -11.859049797058105 - ], - [ - "▁Wald", - -11.859078407287598 - ], - [ - "▁additionally", - -11.859131813049316 - ], - [ - "▁proche", - -11.859353065490723 - ], - [ - "▁classical", - -11.859477996826172 - ], - [ - "▁bringen", - -11.859490394592285 - ], - [ - "▁(10", - -11.859611511230469 - ], - [ - "▁Mile", - -11.859809875488281 - ], - [ - "lace", - -11.859885215759277 - ], - [ - "▁premi", - -11.85988712310791 - ], - [ - "▁constitute", - -11.860029220581055 - ], - [ - "▁bitter", - -11.860078811645508 - ], - [ - "▁Inform", - -11.860295295715332 - ], - [ - "▁corporations", - -11.860334396362305 - ], - [ - "▁Lisa", - -11.860494613647461 - ], - [ - "▁obligat", - -11.860685348510742 - ], - [ - "Throughout", - -11.860738754272461 - ], - [ - "▁Rs", - -11.860769271850586 - ], - [ - "▁Hair", - -11.860916137695312 - ], - [ - "▁supplements", - -11.86099624633789 - ], - [ - "▁motorcycle", - -11.861054420471191 - ], - [ - "escent", - -11.861132621765137 - ], - [ - "▁investi", - -11.861222267150879 - ], - [ - "▁continuously", - -11.861265182495117 - ], - [ - "▁Essen", - -11.861334800720215 - ], - [ - "▁precision", - -11.8613862991333 - ], - [ - "▁deficit", - -11.861461639404297 - ], - [ - "▁wallet", - -11.861481666564941 - ], - [ - "▁Bürger", - -11.861531257629395 - ], - [ - "chir", - -11.861574172973633 - ], - [ - "9)", - -11.86161994934082 - ], - [ - "▁Programme", - -11.861716270446777 - ], - [ - "▁simplement", - -11.86193561553955 - ], - [ - "MD", - -11.862093925476074 - ], - [ - "▁rouge", - -11.862096786499023 - ], - [ - "usion", - -11.862133979797363 - ], - [ - "▁stove", - -11.862208366394043 - ], - [ - "▁prospective", - -11.862224578857422 - ], - [ - "▁corp", - -11.86234188079834 - ], - [ - "▁impacts", - -11.862401008605957 - ], - [ - "▁bride", - -11.86266803741455 - ], - [ - "0.0", - -11.862788200378418 - ], - [ - "hid", - -11.862833976745605 - ], - [ - "▁warrant", - -11.862930297851562 - ], - [ - "▁Ice", - -11.8631010055542 - ], - [ - "▁sensible", - -11.863151550292969 - ], - [ - "▁vreo", - -11.863166809082031 - ], - [ - "spekt", - -11.863249778747559 - ], - [ - "▁appreciation", - -11.8633394241333 - ], - [ - "▁automation", - -11.863377571105957 - ], - [ - "Luc", - -11.86341381072998 - ], - [ - "teaches", - -11.863471031188965 - ], - [ - "▁fold", - -11.863506317138672 - ], - [ - "deutsche", - -11.863523483276367 - ], - [ - "▁assisted", - -11.86380386352539 - ], - [ - "▁straightforward", - -11.863932609558105 - ], - [ - "▁mechanic", - -11.864068031311035 - ], - [ - "observ", - -11.864169120788574 - ], - [ - "▁Schau", - -11.864195823669434 - ], - [ - "▁Recently", - -11.864301681518555 - ], - [ - "kers", - -11.86435604095459 - ], - [ - "▁Soft", - -11.864455223083496 - ], - [ - "muni", - -11.864537239074707 - ], - [ - "▁lie", - -11.864617347717285 - ], - [ - "▁Fat", - -11.864728927612305 - ], - [ - "cream", - -11.86476993560791 - ], - [ - "▁snack", - -11.864909172058105 - ], - [ - "▁juin", - -11.865068435668945 - ], - [ - "▁competent", - -11.865134239196777 - ], - [ - "▁Drug", - -11.865141868591309 - ], - [ - "▁Row", - -11.865302085876465 - ], - [ - "▁needle", - -11.865852355957031 - ], - [ - "▁convey", - -11.865900039672852 - ], - [ - "▁voie", - -11.86600399017334 - ], - [ - "▁Hon", - -11.866190910339355 - ], - [ - "▁ebook", - -11.866194725036621 - ], - [ - "▁veteran", - -11.866209030151367 - ], - [ - "▁statistical", - -11.866217613220215 - ], - [ - "190", - -11.866312980651855 - ], - [ - "▁munca", - -11.866402626037598 - ], - [ - "▁venues", - -11.866438865661621 - ], - [ - "▁Viel", - -11.866604804992676 - ], - [ - "▁décor", - -11.866799354553223 - ], - [ - "▁répond", - -11.8670015335083 - ], - [ - "▁produsele", - -11.86700439453125 - ], - [ - "ruc", - -11.867009162902832 - ], - [ - "▁drops", - -11.867011070251465 - ], - [ - "▁autant", - -11.867311477661133 - ], - [ - "▁Fahrzeug", - -11.867313385009766 - ], - [ - "▁hills", - -11.86735725402832 - ], - [ - "ference", - -11.867414474487305 - ], - [ - "▁Glück", - -11.86742115020752 - ], - [ - "▁Pac", - -11.867480278015137 - ], - [ - "▁permettr", - -11.867568969726562 - ], - [ - "▁mouvement", - -11.867713928222656 - ], - [ - "établissement", - -11.867859840393066 - ], - [ - "▁Parc", - -11.867874145507812 - ], - [ - "▁solving", - -11.867900848388672 - ], - [ - "▁jail", - -11.867972373962402 - ], - [ - "▁junk", - -11.867980003356934 - ], - [ - "▁jeux", - -11.868091583251953 - ], - [ - "▁rôle", - -11.868107795715332 - ], - [ - "▁cache", - -11.868124961853027 - ], - [ - "▁Answer", - -11.86832046508789 - ], - [ - "wir", - -11.868706703186035 - ], - [ - "option", - -11.868732452392578 - ], - [ - "▁Tiger", - -11.868739128112793 - ], - [ - "▁Ble", - -11.868793487548828 - ], - [ - "Mitglied", - -11.868797302246094 - ], - [ - "▁partial", - -11.868819236755371 - ], - [ - "▁Mercedes", - -11.86888313293457 - ], - [ - "tire", - -11.869001388549805 - ], - [ - "MENT", - -11.869091987609863 - ], - [ - "▁transit", - -11.869230270385742 - ], - [ - "▁cineva", - -11.869285583496094 - ], - [ - "▁Andrea", - -11.869294166564941 - ], - [ - "▁boundaries", - -11.869497299194336 - ], - [ - "script", - -11.870061874389648 - ], - [ - "▁Medi", - -11.870123863220215 - ], - [ - "schreiben", - -11.870203018188477 - ], - [ - "▁lobby", - -11.87035846710205 - ], - [ - "▁defendant", - -11.870406150817871 - ], - [ - "▁sq", - -11.870467185974121 - ], - [ - "▁forgotten", - -11.870569229125977 - ], - [ - "stimmung", - -11.870651245117188 - ], - [ - "hus", - -11.870665550231934 - ], - [ - "RY", - -11.870728492736816 - ], - [ - "▁Anderson", - -11.870748519897461 - ], - [ - "▁Dental", - -11.870828628540039 - ], - [ - "ject", - -11.87110710144043 - ], - [ - "▁Nutzer", - -11.871377944946289 - ], - [ - "▁Portland", - -11.871540069580078 - ], - [ - "scription", - -11.871636390686035 - ], - [ - "▁angel", - -11.871695518493652 - ], - [ - "▁monument", - -11.871748924255371 - ], - [ - "▁număr", - -11.871784210205078 - ], - [ - "▁Lane", - -11.871800422668457 - ], - [ - "▁Bai", - -11.871894836425781 - ], - [ - "But", - -11.871909141540527 - ], - [ - "▁calculate", - -11.872315406799316 - ], - [ - "▁provoca", - -11.87247371673584 - ], - [ - "▁votes", - -11.872493743896484 - ], - [ - "RNA", - -11.872503280639648 - ], - [ - "though", - -11.87259292602539 - ], - [ - "spor", - -11.872631072998047 - ], - [ - "▁connaissance", - -11.872695922851562 - ], - [ - "▁Anwendung", - -11.872932434082031 - ], - [ - "▁Kate", - -11.873123168945312 - ], - [ - "lob", - -11.87315845489502 - ], - [ - "▁Conf", - -11.873180389404297 - ], - [ - "bung", - -11.873212814331055 - ], - [ - "ander", - -11.873282432556152 - ], - [ - "▁functioning", - -11.873297691345215 - ], - [ - "▁sponsored", - -11.873324394226074 - ], - [ - "rav", - -11.873734474182129 - ], - [ - "▁resistant", - -11.873797416687012 - ], - [ - "tră", - -11.873916625976562 - ], - [ - "▁costly", - -11.873923301696777 - ], - [ - "▁Mars", - -11.873991012573242 - ], - [ - "▁tir", - -11.874075889587402 - ], - [ - "▁writes", - -11.874134063720703 - ], - [ - "▁Greg", - -11.874267578125 - ], - [ - "▁Question", - -11.874714851379395 - ], - [ - "▁corporation", - -11.87485408782959 - ], - [ - "▁lire", - -11.874991416931152 - ], - [ - "locked", - -11.875048637390137 - ], - [ - "8,", - -11.875092506408691 - ], - [ - "▁sagt", - -11.875301361083984 - ], - [ - "gaining", - -11.87536907196045 - ], - [ - "▁Pierre", - -11.875688552856445 - ], - [ - "verb", - -11.875725746154785 - ], - [ - "▁Barcelona", - -11.87578296661377 - ], - [ - "werte", - -11.876474380493164 - ], - [ - "▁disponible", - -11.87651538848877 - ], - [ - "▁urge", - -11.876521110534668 - ], - [ - "▁expecting", - -11.876572608947754 - ], - [ - "▁Girl", - -11.87662124633789 - ], - [ - "▁unlimited", - -11.876761436462402 - ], - [ - "watt", - -11.876788139343262 - ], - [ - "▁Möglichkeiten", - -11.876813888549805 - ], - [ - "▁schöne", - -11.876847267150879 - ], - [ - "rium", - -11.877076148986816 - ], - [ - "That", - -11.877272605895996 - ], - [ - "▁socio", - -11.877296447753906 - ], - [ - "▁Democrats", - -11.877351760864258 - ], - [ - "guten", - -11.877422332763672 - ], - [ - "▁Lou", - -11.877425193786621 - ], - [ - "ităţi", - -11.877559661865234 - ], - [ - "▁possibilité", - -11.877717018127441 - ], - [ - "▁adjustable", - -11.877938270568848 - ], - [ - "▁Salt", - -11.877967834472656 - ], - [ - "Thr", - -11.878021240234375 - ], - [ - "▁biseric", - -11.878056526184082 - ], - [ - "ieux", - -11.87808895111084 - ], - [ - "▁procur", - -11.8782377243042 - ], - [ - "▁credits", - -11.878250122070312 - ], - [ - "▁Netflix", - -11.878585815429688 - ], - [ - "doi", - -11.878605842590332 - ], - [ - "▁Jews", - -11.878663063049316 - ], - [ - "▁Ukraine", - -11.87873363494873 - ], - [ - "▁adevărat", - -11.878785133361816 - ], - [ - "▁Apply", - -11.878813743591309 - ], - [ - "▁coupons", - -11.878859519958496 - ], - [ - "▁Detroit", - -11.878881454467773 - ], - [ - "▁rue", - -11.878889083862305 - ], - [ - "anumite", - -11.878926277160645 - ], - [ - "ished", - -11.878973960876465 - ], - [ - "▁withdrawal", - -11.87915325164795 - ], - [ - "▁replacing", - -11.87917709350586 - ], - [ - "catching", - -11.879385948181152 - ], - [ - "▁climbing", - -11.879612922668457 - ], - [ - "▁Basic", - -11.879770278930664 - ], - [ - "▁inclus", - -11.879783630371094 - ], - [ - "scope", - -11.879887580871582 - ], - [ - "▁facem", - -11.879892349243164 - ], - [ - "▁plec", - -11.879904747009277 - ], - [ - "mäßig", - -11.879980087280273 - ], - [ - "▁tasty", - -11.880064010620117 - ], - [ - "▁tunnel", - -11.880074501037598 - ], - [ - "figured", - -11.88032341003418 - ], - [ - "gged", - -11.880390167236328 - ], - [ - "▁conditii", - -11.880599975585938 - ], - [ - "▁homework", - -11.880631446838379 - ], - [ - "volle", - -11.88063907623291 - ], - [ - "▁Gott", - -11.880807876586914 - ], - [ - "▁95", - -11.880969047546387 - ], - [ - "▁elect", - -11.881020545959473 - ], - [ - "▁blast", - -11.881043434143066 - ], - [ - "▁easiest", - -11.881248474121094 - ], - [ - "USE", - -11.881462097167969 - ], - [ - "concentr", - -11.881475448608398 - ], - [ - "orial", - -11.881596565246582 - ], - [ - "▁scroll", - -11.881638526916504 - ], - [ - "stead", - -11.881691932678223 - ], - [ - "▁hormone", - -11.881710052490234 - ], - [ - "▁starter", - -11.88179874420166 - ], - [ - "▁cald", - -11.881878852844238 - ], - [ - "▁wax", - -11.881895065307617 - ], - [ - "▁ridic", - -11.881900787353516 - ], - [ - "ously", - -11.881982803344727 - ], - [ - "maschine", - -11.882101058959961 - ], - [ - "licher", - -11.882399559020996 - ], - [ - "▁16,", - -11.882452964782715 - ], - [ - "▁hassle", - -11.882469177246094 - ], - [ - "semnat", - -11.882535934448242 - ], - [ - "▁pub", - -11.88260555267334 - ], - [ - "240", - -11.882800102233887 - ], - [ - "▁kits", - -11.882871627807617 - ], - [ - "▁Generation", - -11.88293743133545 - ], - [ - "▁merchant", - -11.883052825927734 - ], - [ - "▁Erd", - -11.883068084716797 - ], - [ - "▁café", - -11.883077621459961 - ], - [ - "hoff", - -11.88314151763916 - ], - [ - "▁WITH", - -11.883376121520996 - ], - [ - "▁gesch", - -11.883515357971191 - ], - [ - "▁Editor", - -11.883557319641113 - ], - [ - "▁treats", - -11.883609771728516 - ], - [ - "▁harsh", - -11.883711814880371 - ], - [ - "rome", - -11.883729934692383 - ], - [ - "▁Foreign", - -11.883928298950195 - ], - [ - "▁denied", - -11.883968353271484 - ], - [ - "▁Valentine", - -11.884014129638672 - ], - [ - "▁healthier", - -11.88408088684082 - ], - [ - "▁readily", - -11.884138107299805 - ], - [ - "nac", - -11.884190559387207 - ], - [ - "▁intake", - -11.884191513061523 - ], - [ - "▁puncte", - -11.884230613708496 - ], - [ - "erne", - -11.884431838989258 - ], - [ - "file", - -11.884668350219727 - ], - [ - "▁continually", - -11.884688377380371 - ], - [ - "door", - -11.884699821472168 - ], - [ - "▁imediat", - -11.884822845458984 - ], - [ - "▁accused", - -11.884833335876465 - ], - [ - "chy", - -11.884854316711426 - ], - [ - "▁wrapped", - -11.884861946105957 - ], - [ - "IES", - -11.884878158569336 - ], - [ - "▁terrace", - -11.884883880615234 - ], - [ - "mouth", - -11.884897232055664 - ], - [ - "▁defensive", - -11.884991645812988 - ], - [ - "▁Luci", - -11.88508129119873 - ], - [ - "▁significance", - -11.885107040405273 - ], - [ - "▁2007,", - -11.885213851928711 - ], - [ - "▁inclusion", - -11.885221481323242 - ], - [ - "▁rotation", - -11.885248184204102 - ], - [ - "hos", - -11.885283470153809 - ], - [ - "▁crea", - -11.885357856750488 - ], - [ - "üß", - -11.885903358459473 - ], - [ - "▁Install", - -11.885988235473633 - ], - [ - "▁dump", - -11.885998725891113 - ], - [ - "▁informations", - -11.886114120483398 - ], - [ - "▁Thi", - -11.886117935180664 - ], - [ - "▁85", - -11.886252403259277 - ], - [ - "dox", - -11.886283874511719 - ], - [ - "track", - -11.886436462402344 - ], - [ - "▁couples", - -11.886571884155273 - ], - [ - "▁Assembly", - -11.886594772338867 - ], - [ - "wagen", - -11.88672161102295 - ], - [ - "▁Hil", - -11.886723518371582 - ], - [ - "ières", - -11.886833190917969 - ], - [ - "▁Gabriel", - -11.886903762817383 - ], - [ - "▁patience", - -11.887053489685059 - ], - [ - "▁colored", - -11.887147903442383 - ], - [ - "▁separately", - -11.88715934753418 - ], - [ - "▁deployment", - -11.887166023254395 - ], - [ - "scape", - -11.887306213378906 - ], - [ - "▁Acum", - -11.8875150680542 - ], - [ - "▁länger", - -11.887518882751465 - ], - [ - "▁screens", - -11.887598991394043 - ], - [ - "▁prezenta", - -11.887630462646484 - ], - [ - "▁obicei", - -11.887638092041016 - ], - [ - "▁crisp", - -11.887758255004883 - ], - [ - "▁mechanisms", - -11.887771606445312 - ], - [ - "▁thirty", - -11.887786865234375 - ], - [ - "▁individually", - -11.887989044189453 - ], - [ - "▁internationally", - -11.887991905212402 - ], - [ - "lling", - -11.888050079345703 - ], - [ - "▁bureau", - -11.88843059539795 - ], - [ - "▁erfahren", - -11.88844108581543 - ], - [ - "TY", - -11.888553619384766 - ], - [ - "PF", - -11.888607025146484 - ], - [ - "wid", - -11.888752937316895 - ], - [ - "sell", - -11.888835906982422 - ], - [ - "▁Luke", - -11.888879776000977 - ], - [ - "▁Must", - -11.888916969299316 - ], - [ - "▁identical", - -11.888927459716797 - ], - [ - "▁Netherlands", - -11.888980865478516 - ], - [ - "▁investor", - -11.88905143737793 - ], - [ - "▁squad", - -11.889073371887207 - ], - [ - "▁21,", - -11.889143943786621 - ], - [ - "iko", - -11.889230728149414 - ], - [ - "▁departure", - -11.88937759399414 - ], - [ - "ega", - -11.889384269714355 - ], - [ - "uzi", - -11.889408111572266 - ], - [ - "▁lasa", - -11.889458656311035 - ], - [ - "bian", - -11.889525413513184 - ], - [ - "▁Madrid", - -11.889623641967773 - ], - [ - "▁Iowa", - -11.889806747436523 - ], - [ - "▁Yellow", - -11.890026092529297 - ], - [ - "conom", - -11.89004898071289 - ], - [ - "▁hint", - -11.890098571777344 - ], - [ - "NOW", - -11.890111923217773 - ], - [ - "dress", - -11.890204429626465 - ], - [ - "▁Stück", - -11.890267372131348 - ], - [ - "echt", - -11.890424728393555 - ], - [ - "rial", - -11.89045238494873 - ], - [ - "▁Initiative", - -11.890474319458008 - ], - [ - "▁magnificent", - -11.890474319458008 - ], - [ - "▁pipeline", - -11.890543937683105 - ], - [ - "▁08", - -11.890806198120117 - ], - [ - "▁écrit", - -11.890889167785645 - ], - [ - "KA", - -11.891085624694824 - ], - [ - "arile", - -11.891151428222656 - ], - [ - "▁unfortunately", - -11.891352653503418 - ], - [ - "dose", - -11.891355514526367 - ], - [ - "▁counts", - -11.891427993774414 - ], - [ - "deciding", - -11.891549110412598 - ], - [ - "WA", - -11.89167308807373 - ], - [ - "▁doresc", - -11.891685485839844 - ], - [ - "NY", - -11.892008781433105 - ], - [ - "olin", - -11.892112731933594 - ], - [ - "▁Urlaub", - -11.892133712768555 - ], - [ - "▁alătur", - -11.892317771911621 - ], - [ - "▁Vic", - -11.892515182495117 - ], - [ - "▁fier", - -11.89269733428955 - ], - [ - "EU", - -11.892772674560547 - ], - [ - "▁triple", - -11.892871856689453 - ], - [ - "▁compliment", - -11.89310359954834 - ], - [ - "▁vegetable", - -11.89334487915039 - ], - [ - "member", - -11.893743515014648 - ], - [ - "atiei", - -11.893793106079102 - ], - [ - "▁toxic", - -11.893835067749023 - ], - [ - "▁converted", - -11.893888473510742 - ], - [ - "▁Pink", - -11.893999099731445 - ], - [ - "▁fragment", - -11.894020080566406 - ], - [ - "presenting", - -11.894027709960938 - ], - [ - "▁garantie", - -11.894031524658203 - ], - [ - "▁31,", - -11.894052505493164 - ], - [ - "▁puisqu", - -11.894105911254883 - ], - [ - "aching", - -11.894107818603516 - ], - [ - "▁Shan", - -11.894119262695312 - ], - [ - "▁Affairs", - -11.894368171691895 - ], - [ - "üsse", - -11.894405364990234 - ], - [ - "▁CBD", - -11.894428253173828 - ], - [ - "▁quatre", - -11.894588470458984 - ], - [ - "▁horror", - -11.894651412963867 - ], - [ - "▁culoare", - -11.894661903381348 - ], - [ - "▁welcoming", - -11.894673347473145 - ], - [ - "▁headache", - -11.894808769226074 - ], - [ - "▁septembre", - -11.894820213317871 - ], - [ - "▁Tür", - -11.894862174987793 - ], - [ - "lateral", - -11.89507007598877 - ], - [ - "▁termin", - -11.895228385925293 - ], - [ - "▁Aid", - -11.895291328430176 - ], - [ - "second", - -11.895308494567871 - ], - [ - "▁Philip", - -11.895310401916504 - ], - [ - "berries", - -11.895347595214844 - ], - [ - "▁Slot", - -11.895431518554688 - ], - [ - "ка", - -11.895442962646484 - ], - [ - "▁consecutive", - -11.895590782165527 - ], - [ - "value", - -11.895705223083496 - ], - [ - "▁islands", - -11.8958101272583 - ], - [ - "▁posibilitatea", - -11.895928382873535 - ], - [ - "0.5", - -11.896341323852539 - ], - [ - "▁Dumpster", - -11.896471977233887 - ], - [ - "▁Gran", - -11.89647388458252 - ], - [ - "▁restricted", - -11.8967924118042 - ], - [ - "▁discussing", - -11.896921157836914 - ], - [ - "cock", - -11.896966934204102 - ], - [ - "Serie", - -11.896989822387695 - ], - [ - "▁crushing", - -11.896998405456543 - ], - [ - "RB", - -11.897034645080566 - ], - [ - "▁Gy", - -11.897068977355957 - ], - [ - "normal", - -11.897098541259766 - ], - [ - "DT", - -11.897180557250977 - ], - [ - "▁concurs", - -11.897181510925293 - ], - [ - "▁Beratung", - -11.897231101989746 - ], - [ - "▁handful", - -11.897235870361328 - ], - [ - "▁loading", - -11.897237777709961 - ], - [ - "▁WI", - -11.897269248962402 - ], - [ - "▁Fitness", - -11.897283554077148 - ], - [ - "▁RAM", - -11.897302627563477 - ], - [ - "▁Twi", - -11.89730453491211 - ], - [ - "adurch", - -11.897345542907715 - ], - [ - "▁obiectiv", - -11.897366523742676 - ], - [ - "BM", - -11.897635459899902 - ], - [ - "▁amendment", - -11.8976469039917 - ], - [ - "whi", - -11.897652626037598 - ], - [ - "▁Besonder", - -11.897871017456055 - ], - [ - "ALL", - -11.898003578186035 - ], - [ - "▁earning", - -11.898090362548828 - ], - [ - "▁nutrients", - -11.898580551147461 - ], - [ - "pru", - -11.898633003234863 - ], - [ - "▁offensive", - -11.898696899414062 - ], - [ - "▁shelves", - -11.898711204528809 - ], - [ - "▁încâ", - -11.898726463317871 - ], - [ - "▁execute", - -11.898923873901367 - ], - [ - "▁cauz", - -11.898966789245605 - ], - [ - "exist", - -11.899179458618164 - ], - [ - "▁Meter", - -11.899191856384277 - ], - [ - "there", - -11.899201393127441 - ], - [ - "▁réaliser", - -11.899249076843262 - ], - [ - "blog", - -11.899362564086914 - ], - [ - "▁résultats", - -11.89937973022461 - ], - [ - "baren", - -11.899391174316406 - ], - [ - "▁lang", - -11.899425506591797 - ], - [ - "▁mere", - -11.899870872497559 - ], - [ - "▁toti", - -11.900079727172852 - ], - [ - "DN", - -11.90017032623291 - ], - [ - "Hi", - -11.900310516357422 - ], - [ - "▁merg", - -11.900359153747559 - ], - [ - "▁Camera", - -11.90054988861084 - ], - [ - "▁parfum", - -11.900697708129883 - ], - [ - "CG", - -11.900701522827148 - ], - [ - "posed", - -11.900713920593262 - ], - [ - "▁proposals", - -11.900732040405273 - ], - [ - "▁incorrect", - -11.900811195373535 - ], - [ - "▁Denver", - -11.901168823242188 - ], - [ - "▁noapte", - -11.901397705078125 - ], - [ - "▁VPN", - -11.901436805725098 - ], - [ - "▁Oklahoma", - -11.90159797668457 - ], - [ - "horizon", - -11.901647567749023 - ], - [ - "▁villa", - -11.901668548583984 - ], - [ - "duce", - -11.901812553405762 - ], - [ - "Dienst", - -11.902042388916016 - ], - [ - "▁oversee", - -11.902511596679688 - ], - [ - "astr", - -11.902548789978027 - ], - [ - "brand", - -11.902713775634766 - ], - [ - "▁Safe", - -11.902746200561523 - ], - [ - "▁competing", - -11.902812004089355 - ], - [ - "▁subiect", - -11.902812004089355 - ], - [ - "▁équipe", - -11.903091430664062 - ], - [ - "▁Dress", - -11.903095245361328 - ], - [ - "▁Juni", - -11.903139114379883 - ], - [ - "▁repeated", - -11.90317153930664 - ], - [ - "2012", - -11.903226852416992 - ], - [ - "▁départ", - -11.903234481811523 - ], - [ - "immer", - -11.903335571289062 - ], - [ - "▁mondial", - -11.903374671936035 - ], - [ - "▁datelor", - -11.903703689575195 - ], - [ - "▁surgeon", - -11.903782844543457 - ], - [ - "▁demanding", - -11.903812408447266 - ], - [ - "▁concluded", - -11.903878211975098 - ], - [ - "țiile", - -11.903950691223145 - ], - [ - "marin", - -11.903999328613281 - ], - [ - "▁estim", - -11.904206275939941 - ], - [ - "▁Loan", - -11.904361724853516 - ], - [ - "sculpt", - -11.904373168945312 - ], - [ - "▁99", - -11.904391288757324 - ], - [ - "void", - -11.904400825500488 - ], - [ - "▁Empire", - -11.904499053955078 - ], - [ - "▁Brit", - -11.90450382232666 - ], - [ - "▁véhicule", - -11.904777526855469 - ], - [ - "▁dividend", - -11.905069351196289 - ], - [ - "▁refused", - -11.905077934265137 - ], - [ - "▁speaks", - -11.905156135559082 - ], - [ - "▁Morris", - -11.905282020568848 - ], - [ - "dict", - -11.905349731445312 - ], - [ - "▁funeral", - -11.905556678771973 - ], - [ - "▁Behandlung", - -11.905763626098633 - ], - [ - "▁Revolution", - -11.905905723571777 - ], - [ - "▁Sum", - -11.905935287475586 - ], - [ - "einigen", - -11.906030654907227 - ], - [ - "RES", - -11.906070709228516 - ], - [ - "▁vite", - -11.906071662902832 - ], - [ - "▁Captain", - -11.906190872192383 - ], - [ - "▁assurance", - -11.9061918258667 - ], - [ - "uga", - -11.906500816345215 - ], - [ - "▁conserv", - -11.906583786010742 - ], - [ - "▁therapeutic", - -11.906641006469727 - ], - [ - "▁Sweden", - -11.906753540039062 - ], - [ - "▁Lead", - -11.906888961791992 - ], - [ - "ément", - -11.907071113586426 - ], - [ - "▁53", - -11.90709114074707 - ], - [ - "▁fraction", - -11.9071683883667 - ], - [ - "▁magnet", - -11.907170295715332 - ], - [ - "assurer", - -11.907184600830078 - ], - [ - "▁Steuer", - -11.90733814239502 - ], - [ - "▁flori", - -11.90735149383545 - ], - [ - "▁charming", - -11.907588958740234 - ], - [ - "▁athletic", - -11.907621383666992 - ], - [ - "▁membri", - -11.907706260681152 - ], - [ - "▁Sep", - -11.907726287841797 - ], - [ - "ogue", - -11.907800674438477 - ], - [ - "▁familie", - -11.907800674438477 - ], - [ - "▁SW", - -11.90796947479248 - ], - [ - "▁diagnosed", - -11.908023834228516 - ], - [ - "RR", - -11.908143997192383 - ], - [ - "▁Fern", - -11.908233642578125 - ], - [ - "▁rational", - -11.908281326293945 - ], - [ - "▁talents", - -11.90828800201416 - ], - [ - "ziert", - -11.908317565917969 - ], - [ - "▁chemin", - -11.908459663391113 - ], - [ - "sheet", - -11.908562660217285 - ], - [ - "▁outer", - -11.908565521240234 - ], - [ - "▁Kap", - -11.908591270446777 - ], - [ - "▁HERE", - -11.908656120300293 - ], - [ - "▁uman", - -11.908824920654297 - ], - [ - "▁accompany", - -11.908880233764648 - ], - [ - "▁varieties", - -11.908881187438965 - ], - [ - "▁sensors", - -11.908957481384277 - ], - [ - "▁25%", - -11.90919017791748 - ], - [ - "▁tray", - -11.909354209899902 - ], - [ - "▁critique", - -11.909459114074707 - ], - [ - "▁puţin", - -11.909515380859375 - ], - [ - "▁Schüler", - -11.90953540802002 - ], - [ - "▁repar", - -11.909744262695312 - ], - [ - "▁overlook", - -11.909931182861328 - ], - [ - "▁surf", - -11.910048484802246 - ], - [ - "▁tasting", - -11.910118103027344 - ], - [ - "bog", - -11.91027545928955 - ], - [ - "▁Payment", - -11.910289764404297 - ], - [ - "▁Helen", - -11.91049575805664 - ], - [ - "▁Refer", - -11.910694122314453 - ], - [ - "application", - -11.910698890686035 - ], - [ - "lection", - -11.910856246948242 - ], - [ - "▁avril", - -11.911042213439941 - ], - [ - "▁Grace", - -11.911109924316406 - ], - [ - "▁kau", - -11.911274909973145 - ], - [ - "▁libraries", - -11.911319732666016 - ], - [ - "▁closest", - -11.911347389221191 - ], - [ - "▁coating", - -11.911351203918457 - ], - [ - "▁suicide", - -11.911364555358887 - ], - [ - "▁undergraduate", - -11.911449432373047 - ], - [ - "▁stitch", - -11.91149616241455 - ], - [ - "▁reset", - -11.911593437194824 - ], - [ - "▁Greece", - -11.911626815795898 - ], - [ - "▁Fred", - -11.91197681427002 - ], - [ - "▁18.", - -11.912047386169434 - ], - [ - "▁nuit", - -11.912087440490723 - ], - [ - "▁lying", - -11.912199974060059 - ], - [ - "▁cottage", - -11.91232681274414 - ], - [ - "bone", - -11.912477493286133 - ], - [ - "▁milieu", - -11.912480354309082 - ], - [ - "management", - -11.912623405456543 - ], - [ - "▁Freund", - -11.912724494934082 - ], - [ - "▁specially", - -11.912841796875 - ], - [ - "veut", - -11.912961959838867 - ], - [ - "▁necesare", - -11.912999153137207 - ], - [ - "▁cert", - -11.913081169128418 - ], - [ - "articul", - -11.913151741027832 - ], - [ - "150", - -11.913174629211426 - ], - [ - "rounded", - -11.913180351257324 - ], - [ - "▁longue", - -11.913193702697754 - ], - [ - "▁Quel", - -11.913240432739258 - ], - [ - "Until", - -11.913322448730469 - ], - [ - "▁700", - -11.913398742675781 - ], - [ - "▁installations", - -11.913423538208008 - ], - [ - "▁boats", - -11.913467407226562 - ], - [ - "Fig", - -11.913609504699707 - ], - [ - "▁cocktail", - -11.913613319396973 - ], - [ - "▁rocks", - -11.91366958618164 - ], - [ - "meinen", - -11.91374683380127 - ], - [ - "entrepreneur", - -11.913780212402344 - ], - [ - "schwarz", - -11.913924217224121 - ], - [ - "▁diesel", - -11.91392993927002 - ], - [ - "▁villages", - -11.913969039916992 - ], - [ - "▁cups", - -11.914076805114746 - ], - [ - "▁stairs", - -11.914241790771484 - ], - [ - "▁Match", - -11.914350509643555 - ], - [ - "Taking", - -11.914437294006348 - ], - [ - "prin", - -11.914469718933105 - ], - [ - "▁penal", - -11.91472053527832 - ], - [ - "partner", - -11.914867401123047 - ], - [ - "wave", - -11.91497802734375 - ], - [ - "▁baie", - -11.91515064239502 - ], - [ - "LAN", - -11.915151596069336 - ], - [ - "fix", - -11.915202140808105 - ], - [ - "▁surveillance", - -11.915295600891113 - ], - [ - "▁Register", - -11.915343284606934 - ], - [ - "oara", - -11.915536880493164 - ], - [ - "▁Phoenix", - -11.915602684020996 - ], - [ - "aktuellen", - -11.915613174438477 - ], - [ - "▁livres", - -11.915618896484375 - ], - [ - "▁entities", - -11.916102409362793 - ], - [ - "▁Regard", - -11.916112899780273 - ], - [ - "▁Jazz", - -11.91614055633545 - ], - [ - "▁flame", - -11.91616153717041 - ], - [ - "▁independence", - -11.916215896606445 - ], - [ - "▁Adventure", - -11.916341781616211 - ], - [ - "▁assign", - -11.916399955749512 - ], - [ - "▁Adult", - -11.916579246520996 - ], - [ - "kehr", - -11.916666984558105 - ], - [ - "▁ordering", - -11.916850090026855 - ], - [ - "▁charts", - -11.91687297821045 - ], - [ - "▁Român", - -11.916936874389648 - ], - [ - "bauen", - -11.916982650756836 - ], - [ - "▁Floor", - -11.917065620422363 - ], - [ - "▁Meet", - -11.917101860046387 - ], - [ - "▁compromise", - -11.917158126831055 - ], - [ - "regarded", - -11.917171478271484 - ], - [ - "02.", - -11.917215347290039 - ], - [ - "▁granite", - -11.917299270629883 - ], - [ - "▁Judge", - -11.917314529418945 - ], - [ - "opti", - -11.917373657226562 - ], - [ - "liste", - -11.917379379272461 - ], - [ - "▁capacité", - -11.917427062988281 - ], - [ - "▁criticism", - -11.917450904846191 - ], - [ - "LES", - -11.918198585510254 - ], - [ - "▁Century", - -11.918211936950684 - ], - [ - "▁mobility", - -11.918252944946289 - ], - [ - "▁variation", - -11.918622016906738 - ], - [ - "▁Utah", - -11.91867446899414 - ], - [ - "▁seminar", - -11.918678283691406 - ], - [ - "▁experiments", - -11.918803215026855 - ], - [ - "midst", - -11.918943405151367 - ], - [ - "▁Psycho", - -11.919002532958984 - ], - [ - "▁choses", - -11.919121742248535 - ], - [ - "▁Karl", - -11.919175148010254 - ], - [ - "▁ruling", - -11.919286727905273 - ], - [ - "▁Voice", - -11.919404983520508 - ], - [ - "▁împotriv", - -11.919442176818848 - ], - [ - "▁mesaj", - -11.919500350952148 - ], - [ - "▁vrei", - -11.919594764709473 - ], - [ - "fan", - -11.919601440429688 - ], - [ - "parent", - -11.919648170471191 - ], - [ - "▁oraș", - -11.919770240783691 - ], - [ - "▁printable", - -11.919777870178223 - ], - [ - "▁diver", - -11.919859886169434 - ], - [ - "▁ochi", - -11.919949531555176 - ], - [ - "▁teenager", - -11.920125961303711 - ], - [ - "▁Death", - -11.920150756835938 - ], - [ - "▁manque", - -11.920289993286133 - ], - [ - "ască", - -11.920345306396484 - ], - [ - "▁prob", - -11.9203519821167 - ], - [ - "▁télé", - -11.920354843139648 - ], - [ - "cursul", - -11.920378684997559 - ], - [ - "pion", - -11.92052173614502 - ], - [ - "▁dedication", - -11.920644760131836 - ], - [ - "▁opr", - -11.920687675476074 - ], - [ - "führung", - -11.920761108398438 - ], - [ - "▁cognitive", - -11.920827865600586 - ], - [ - "soft", - -11.920868873596191 - ], - [ - "▁19,", - -11.9209623336792 - ], - [ - "▁24-", - -11.921197891235352 - ], - [ - "▁legitimate", - -11.921220779418945 - ], - [ - "▁comedy", - -11.921277046203613 - ], - [ - "▁violation", - -11.921327590942383 - ], - [ - "▁disposal", - -11.921472549438477 - ], - [ - "▁liegen", - -11.921605110168457 - ], - [ - "ко", - -11.921878814697266 - ], - [ - "▁martie", - -11.921931266784668 - ], - [ - "▁Vas", - -11.92212200164795 - ], - [ - "rash", - -11.922134399414062 - ], - [ - "▁hadn", - -11.922174453735352 - ], - [ - "▁connu", - -11.922204971313477 - ], - [ - "▁regelmäßig", - -11.922216415405273 - ], - [ - "▁Webseite", - -11.922224998474121 - ], - [ - "▁failing", - -11.922273635864258 - ], - [ - "explique", - -11.922449111938477 - ], - [ - "▁Player", - -11.922513961791992 - ], - [ - "vul", - -11.922560691833496 - ], - [ - "camp", - -11.922992706298828 - ], - [ - "▁erreicht", - -11.922996520996094 - ], - [ - "▁tags", - -11.922998428344727 - ], - [ - "▁headline", - -11.923210144042969 - ], - [ - "▁banc", - -11.923253059387207 - ], - [ - "▁Mayor", - -11.923309326171875 - ], - [ - "trop", - -11.923395156860352 - ], - [ - "AK", - -11.9235258102417 - ], - [ - "▁lighter", - -11.923602104187012 - ], - [ - "▁syndrome", - -11.923604965209961 - ], - [ - "▁Adrian", - -11.92365550994873 - ], - [ - "▁EUR", - -11.923759460449219 - ], - [ - "▁Missouri", - -11.923916816711426 - ], - [ - "▁Chan", - -11.924108505249023 - ], - [ - "topped", - -11.924233436584473 - ], - [ - "▁nationwide", - -11.924276351928711 - ], - [ - "▁6-", - -11.924302101135254 - ], - [ - "final", - -11.924408912658691 - ], - [ - "ttes", - -11.924485206604004 - ], - [ - "▁FO", - -11.924537658691406 - ], - [ - "▁legi", - -11.924556732177734 - ], - [ - "▁Hum", - -11.924575805664062 - ], - [ - "vita", - -11.924662590026855 - ], - [ - "▁Regen", - -11.924695014953613 - ], - [ - "▁confusion", - -11.92498779296875 - ], - [ - "▁valori", - -11.925142288208008 - ], - [ - "mill", - -11.92516803741455 - ], - [ - "did", - -11.925237655639648 - ], - [ - "pid", - -11.925253868103027 - ], - [ - "▁implications", - -11.925284385681152 - ], - [ - "▁Value", - -11.92552375793457 - ], - [ - "lângă", - -11.925666809082031 - ], - [ - "▁véritable", - -11.92577075958252 - ], - [ - "▁Stick", - -11.925814628601074 - ], - [ - "zol", - -11.925835609436035 - ], - [ - "▁ebenso", - -11.925863265991211 - ], - [ - "west", - -11.925895690917969 - ], - [ - "▁auszu", - -11.92600154876709 - ], - [ - "▁adorable", - -11.926016807556152 - ], - [ - "▁clarity", - -11.92605209350586 - ], - [ - "▁Wash", - -11.926335334777832 - ], - [ - "▁alien", - -11.926423072814941 - ], - [ - "usement", - -11.926626205444336 - ], - [ - "▁bones", - -11.9266357421875 - ], - [ - "▁Beau", - -11.926726341247559 - ], - [ - "▁Jet", - -11.926727294921875 - ], - [ - "▁visibility", - -11.927034378051758 - ], - [ - "impose", - -11.927063941955566 - ], - [ - "food", - -11.927133560180664 - ], - [ - "▁duce", - -11.927361488342285 - ], - [ - "▁Format", - -11.927386283874512 - ], - [ - "▁durability", - -11.927424430847168 - ], - [ - "▁Prim", - -11.927614212036133 - ], - [ - "▁mele", - -11.927629470825195 - ], - [ - "▁dürfen", - -11.927631378173828 - ], - [ - "▁Angebote", - -11.92765998840332 - ], - [ - "▁discharge", - -11.927745819091797 - ], - [ - "▁Justin", - -11.928055763244629 - ], - [ - "▁shame", - -11.928228378295898 - ], - [ - "▁heated", - -11.928282737731934 - ], - [ - "ères", - -11.92856216430664 - ], - [ - "human", - -11.928810119628906 - ], - [ - "4.5", - -11.928831100463867 - ], - [ - "▁lien", - -11.928955078125 - ], - [ - "▁Alan", - -11.92896556854248 - ], - [ - "▁transmis", - -11.929130554199219 - ], - [ - "▁Bul", - -11.929137229919434 - ], - [ - "plu", - -11.929169654846191 - ], - [ - "acul", - -11.929337501525879 - ], - [ - "merk", - -11.929434776306152 - ], - [ - "▁altfel", - -11.929566383361816 - ], - [ - "deli", - -11.929689407348633 - ], - [ - "▁Cru", - -11.930001258850098 - ], - [ - "▁hommes", - -11.930127143859863 - ], - [ - "aurait", - -11.930137634277344 - ], - [ - "cca", - -11.930187225341797 - ], - [ - "▁Path", - -11.930208206176758 - ], - [ - "astronom", - -11.930241584777832 - ], - [ - "▁détail", - -11.930276870727539 - ], - [ - "▁blocked", - -11.930394172668457 - ], - [ - "iding", - -11.93044376373291 - ], - [ - "schä", - -11.930500030517578 - ], - [ - "▁30-", - -11.930624008178711 - ], - [ - "diction", - -11.930813789367676 - ], - [ - "▁pulling", - -11.930868148803711 - ], - [ - "▁Sample", - -11.930924415588379 - ], - [ - "▁renewable", - -11.930997848510742 - ], - [ - "▁Pinterest", - -11.93106746673584 - ], - [ - "▁Tages", - -11.93106746673584 - ], - [ - "▁shed", - -11.931171417236328 - ], - [ - "▁hart", - -11.931188583374023 - ], - [ - "▁serie", - -11.931200981140137 - ], - [ - "▁documentary", - -11.931208610534668 - ], - [ - "gebaut", - -11.931220054626465 - ], - [ - "▁Hause", - -11.931272506713867 - ], - [ - "share", - -11.931303977966309 - ], - [ - "▁inflation", - -11.93138599395752 - ], - [ - "▁gall", - -11.931504249572754 - ], - [ - "▁adjacent", - -11.931673049926758 - ], - [ - "jer", - -11.93173885345459 - ], - [ - "▁Universal", - -11.931946754455566 - ], - [ - "▁disabilities", - -11.931984901428223 - ], - [ - "▁proposition", - -11.93204116821289 - ], - [ - "Work", - -11.932293891906738 - ], - [ - "▁closure", - -11.932306289672852 - ], - [ - "▁separated", - -11.932496070861816 - ], - [ - "▁soda", - -11.932549476623535 - ], - [ - "▁elite", - -11.93263053894043 - ], - [ - "appro", - -11.93265438079834 - ], - [ - "▁acute", - -11.93266487121582 - ], - [ - "utton", - -11.932938575744629 - ], - [ - "▁facă", - -11.933053016662598 - ], - [ - "▁collector", - -11.933121681213379 - ], - [ - "▁unlock", - -11.933249473571777 - ], - [ - "▁Alpha", - -11.933267593383789 - ], - [ - "▁Used", - -11.933267593383789 - ], - [ - "▁applicants", - -11.933302879333496 - ], - [ - "▁înseamn", - -11.933387756347656 - ], - [ - "▁inclu", - -11.933414459228516 - ], - [ - "▁disclosure", - -11.933544158935547 - ], - [ - "▁Fahr", - -11.933995246887207 - ], - [ - "AST", - -11.934061050415039 - ], - [ - "▁vivre", - -11.934069633483887 - ], - [ - "»,", - -11.934167861938477 - ], - [ - "laud", - -11.93430233001709 - ], - [ - "▁soir", - -11.934365272521973 - ], - [ - "▁barrier", - -11.934405326843262 - ], - [ - "înd", - -11.934470176696777 - ], - [ - "▁ambition", - -11.93451976776123 - ], - [ - "asta", - -11.934550285339355 - ], - [ - "occupied", - -11.934747695922852 - ], - [ - "▁Gau", - -11.934774398803711 - ], - [ - "four", - -11.93481159210205 - ], - [ - "▁nap", - -11.934887886047363 - ], - [ - "iez", - -11.934922218322754 - ], - [ - "endra", - -11.935242652893066 - ], - [ - "gaben", - -11.935464859008789 - ], - [ - "▁Carol", - -11.935481071472168 - ], - [ - "▁Switzerland", - -11.935575485229492 - ], - [ - "▁Bond", - -11.935617446899414 - ], - [ - "▁crossing", - -11.935630798339844 - ], - [ - "▁Palace", - -11.9359769821167 - ], - [ - "NG", - -11.935986518859863 - ], - [ - "▁Budget", - -11.93622875213623 - ], - [ - "▁lid", - -11.936372756958008 - ], - [ - "bab", - -11.936393737792969 - ], - [ - "▁polish", - -11.936416625976562 - ], - [ - "▁herbs", - -11.93673038482666 - ], - [ - "▁dear", - -11.936747550964355 - ], - [ - "▁devrai", - -11.936846733093262 - ], - [ - "walk", - -11.936864852905273 - ], - [ - "▁humanity", - -11.936897277832031 - ], - [ - "▁tires", - -11.936978340148926 - ], - [ - "égal", - -11.936994552612305 - ], - [ - "▁bow", - -11.937032699584961 - ], - [ - "▁debris", - -11.937201499938965 - ], - [ - "▁keywords", - -11.937273025512695 - ], - [ - "irk", - -11.937345504760742 - ], - [ - "▁suspend", - -11.937360763549805 - ], - [ - "▁pourra", - -11.93738079071045 - ], - [ - "migran", - -11.937454223632812 - ], - [ - "thereby", - -11.937570571899414 - ], - [ - "▁Harris", - -11.937943458557129 - ], - [ - "ateurs", - -11.937956809997559 - ], - [ - "▁fal", - -11.938271522521973 - ], - [ - "alleged", - -11.938355445861816 - ], - [ - "noch", - -11.938494682312012 - ], - [ - "▁observation", - -11.938506126403809 - ], - [ - "▁București", - -11.93855094909668 - ], - [ - "▁SQL", - -11.938624382019043 - ], - [ - "▁Phase", - -11.938760757446289 - ], - [ - "▁adventures", - -11.93881607055664 - ], - [ - "▁Kol", - -11.938885688781738 - ], - [ - "▁professionnel", - -11.938916206359863 - ], - [ - "crit", - -11.939026832580566 - ], - [ - "LR", - -11.939313888549805 - ], - [ - "▁preview", - -11.939464569091797 - ], - [ - "▁highlighted", - -11.939942359924316 - ], - [ - "▁Stud", - -11.939949035644531 - ], - [ - "▁labour", - -11.939956665039062 - ], - [ - "MV", - -11.9399995803833 - ], - [ - "click", - -11.940049171447754 - ], - [ - "approche", - -11.94016170501709 - ], - [ - "tian", - -11.940183639526367 - ], - [ - "cité", - -11.940192222595215 - ], - [ - "▁Rain", - -11.94028377532959 - ], - [ - "typ", - -11.94032096862793 - ], - [ - "Usually", - -11.940435409545898 - ], - [ - "▁outlet", - -11.940513610839844 - ], - [ - "logging", - -11.940814018249512 - ], - [ - "▁Temperatur", - -11.940906524658203 - ], - [ - "▁Scottish", - -11.94090747833252 - ], - [ - "iga", - -11.940942764282227 - ], - [ - "▁glory", - -11.941086769104004 - ], - [ - "▁Rom", - -11.941242218017578 - ], - [ - "zeug", - -11.941337585449219 - ], - [ - "establishing", - -11.941339492797852 - ], - [ - "▁imaging", - -11.941926002502441 - ], - [ - "▁Beauty", - -11.942015647888184 - ], - [ - "igan", - -11.942042350769043 - ], - [ - "après", - -11.94224739074707 - ], - [ - "Adresse", - -11.942267417907715 - ], - [ - "cliff", - -11.942349433898926 - ], - [ - "▁unnecessary", - -11.943267822265625 - ], - [ - "▁slim", - -11.943324089050293 - ], - [ - "dir", - -11.943490982055664 - ], - [ - "▁leisure", - -11.943660736083984 - ], - [ - "▁principale", - -11.94368839263916 - ], - [ - "▁Viele", - -11.943770408630371 - ], - [ - "▁2007.", - -11.943802833557129 - ], - [ - "Hopefully", - -11.943829536437988 - ], - [ - "cola", - -11.943851470947266 - ], - [ - "▁Planet", - -11.943927764892578 - ], - [ - "▁orientation", - -11.943933486938477 - ], - [ - "▁angry", - -11.94419002532959 - ], - [ - "MIT", - -11.944234848022461 - ], - [ - "▁Kenya", - -11.944265365600586 - ], - [ - "▁bless", - -11.94435977935791 - ], - [ - "▁Fill", - -11.944524765014648 - ], - [ - "▁compar", - -11.944664001464844 - ], - [ - "▁curtain", - -11.94473934173584 - ], - [ - "ţei", - -11.944754600524902 - ], - [ - "▁Az", - -11.94482421875 - ], - [ - "▁Rang", - -11.944908142089844 - ], - [ - "▁dominant", - -11.944974899291992 - ], - [ - "race", - -11.944985389709473 - ], - [ - "▁Target", - -11.944987297058105 - ], - [ - "▁manually", - -11.944987297058105 - ], - [ - "objet", - -11.945024490356445 - ], - [ - "thrown", - -11.945131301879883 - ], - [ - "NF", - -11.945149421691895 - ], - [ - "durant", - -11.945185661315918 - ], - [ - "rect", - -11.945302963256836 - ], - [ - "▁Größe", - -11.945320129394531 - ], - [ - "VM", - -11.9453763961792 - ], - [ - "▁aprilie", - -11.945476531982422 - ], - [ - "▁Welche", - -11.945639610290527 - ], - [ - "▁verde", - -11.946157455444336 - ], - [ - "▁Portugal", - -11.946266174316406 - ], - [ - "▁algorithm", - -11.94627571105957 - ], - [ - "ăț", - -11.946328163146973 - ], - [ - "▁Grey", - -11.946371078491211 - ], - [ - "▁cleaned", - -11.94644832611084 - ], - [ - "▁modes", - -11.946463584899902 - ], - [ - "▁relaxation", - -11.946599006652832 - ], - [ - "mbr", - -11.946786880493164 - ], - [ - "étique", - -11.946821212768555 - ], - [ - "Her", - -11.946904182434082 - ], - [ - "▁beta", - -11.946952819824219 - ], - [ - "▁nobody", - -11.94699764251709 - ], - [ - "▁aplic", - -11.947060585021973 - ], - [ - "present", - -11.947080612182617 - ], - [ - "emis", - -11.947197914123535 - ], - [ - "éléments", - -11.947257995605469 - ], - [ - "▁lately", - -11.947303771972656 - ], - [ - "fab", - -11.94732666015625 - ], - [ - "▁aluminiu", - -11.947373390197754 - ], - [ - "▁vest", - -11.947524070739746 - ], - [ - "▁statue", - -11.947558403015137 - ], - [ - "▁publice", - -11.947586059570312 - ], - [ - "▁merchandise", - -11.9476900100708 - ], - [ - "▁relat", - -11.947810173034668 - ], - [ - "git", - -11.94796371459961 - ], - [ - "▁interne", - -11.948281288146973 - ], - [ - "▁Tokyo", - -11.948325157165527 - ], - [ - "chal", - -11.948348045349121 - ], - [ - "contacted", - -11.948430061340332 - ], - [ - "▁tras", - -11.948455810546875 - ], - [ - "▁Clinic", - -11.948626518249512 - ], - [ - "▁unbe", - -11.948633193969727 - ], - [ - "▁dumneavoastra", - -11.948798179626465 - ], - [ - "float", - -11.949078559875488 - ], - [ - "isson", - -11.94909381866455 - ], - [ - "▁vessel", - -11.949126243591309 - ], - [ - "attempting", - -11.949161529541016 - ], - [ - "▁doute", - -11.94918441772461 - ], - [ - "▁Leadership", - -11.949322700500488 - ], - [ - "▁sustain", - -11.94947338104248 - ], - [ - "▁textile", - -11.949666023254395 - ], - [ - "auer", - -11.949702262878418 - ], - [ - "▁90%", - -11.949899673461914 - ], - [ - "garten", - -11.949911117553711 - ], - [ - "▁adauga", - -11.949991226196289 - ], - [ - "▁Kil", - -11.950061798095703 - ], - [ - "▁troops", - -11.950420379638672 - ], - [ - "▁pale", - -11.950568199157715 - ], - [ - "host", - -11.950743675231934 - ], - [ - "▁cry", - -11.950757026672363 - ], - [ - "▁Alb", - -11.950793266296387 - ], - [ - "▁Brad", - -11.95089340209961 - ], - [ - "▁bicycle", - -11.951054573059082 - ], - [ - "▁24/7", - -11.951217651367188 - ], - [ - "▁с", - -11.951228141784668 - ], - [ - "▁stimul", - -11.951401710510254 - ], - [ - "gler", - -11.951445579528809 - ], - [ - "▁notwendig", - -11.951496124267578 - ], - [ - "▁cousin", - -11.95158863067627 - ], - [ - "cheie", - -11.951600074768066 - ], - [ - "hay", - -11.951751708984375 - ], - [ - "▁rezolv", - -11.952134132385254 - ], - [ - "▁THIS", - -11.952143669128418 - ], - [ - "ordre", - -11.952157974243164 - ], - [ - "iști", - -11.952173233032227 - ], - [ - "▁conclude", - -11.952310562133789 - ], - [ - "▁Lage", - -11.952327728271484 - ], - [ - "▁Entertainment", - -11.952454566955566 - ], - [ - "▁valued", - -11.952478408813477 - ], - [ - "ktion", - -11.95253849029541 - ], - [ - "▁priorities", - -11.95268440246582 - ], - [ - "▁1986", - -11.952770233154297 - ], - [ - "▁fatal", - -11.952934265136719 - ], - [ - "▁accurately", - -11.952988624572754 - ], - [ - "▁1987", - -11.953022956848145 - ], - [ - "▁folk", - -11.953073501586914 - ], - [ - "7)", - -11.953163146972656 - ], - [ - "führer", - -11.95360279083252 - ], - [ - "▁knot", - -11.953612327575684 - ], - [ - "haltung", - -11.953720092773438 - ], - [ - "▁Charlie", - -11.953733444213867 - ], - [ - "âge", - -11.95376205444336 - ], - [ - "▁threshold", - -11.954041481018066 - ], - [ - "▁assault", - -11.954130172729492 - ], - [ - "▁meist", - -11.954141616821289 - ], - [ - "bine", - -11.954155921936035 - ], - [ - "surprisingly", - -11.954171180725098 - ], - [ - "▁Protect", - -11.954180717468262 - ], - [ - "▁Hack", - -11.954258918762207 - ], - [ - "▁Quant", - -11.954537391662598 - ], - [ - "▁Cet", - -11.954782485961914 - ], - [ - "▁convinced", - -11.95481014251709 - ], - [ - "▁muncă", - -11.955033302307129 - ], - [ - "dging", - -11.955066680908203 - ], - [ - "▁Millionen", - -11.955129623413086 - ], - [ - "zahlung", - -11.955148696899414 - ], - [ - "▁anticipated", - -11.955192565917969 - ], - [ - "▁brass", - -11.9552001953125 - ], - [ - "KO", - -11.955244064331055 - ], - [ - "▁culori", - -11.955286979675293 - ], - [ - "▁Aero", - -11.955326080322266 - ], - [ - "▁intermediu", - -11.955373764038086 - ], - [ - "▁Philippines", - -11.955381393432617 - ], - [ - "▁jury", - -11.955387115478516 - ], - [ - "▁Funktion", - -11.95569896697998 - ], - [ - "▁probe", - -11.955704689025879 - ], - [ - "TL", - -11.955748558044434 - ], - [ - "1.0", - -11.955804824829102 - ], - [ - "ELL", - -11.95581340789795 - ], - [ - "She", - -11.956001281738281 - ], - [ - "▁Blood", - -11.956073760986328 - ], - [ - "▁Dean", - -11.956111907958984 - ], - [ - "▁scène", - -11.9561185836792 - ], - [ - "volu", - -11.95621395111084 - ], - [ - "▁Epi", - -11.95621395111084 - ], - [ - "▁séjour", - -11.95627498626709 - ], - [ - "▁Smartphone", - -11.956306457519531 - ], - [ - "▁fired", - -11.956357955932617 - ], - [ - "beat", - -11.95650577545166 - ], - [ - "▁pockets", - -11.956506729125977 - ], - [ - "▁serviciu", - -11.956624031066895 - ], - [ - "▁affairs", - -11.95678424835205 - ], - [ - "▁Ry", - -11.956842422485352 - ], - [ - "▁Stadium", - -11.956954956054688 - ], - [ - "▁snacks", - -11.957182884216309 - ], - [ - "▁efectu", - -11.957221031188965 - ], - [ - "▁Richtung", - -11.957273483276367 - ], - [ - "▁dresses", - -11.957352638244629 - ], - [ - "▁Medien", - -11.95744800567627 - ], - [ - "writer", - -11.95759105682373 - ], - [ - "changing", - -11.957655906677246 - ], - [ - "▁supportive", - -11.957849502563477 - ], - [ - "▁beneath", - -11.957873344421387 - ], - [ - "paid", - -11.958078384399414 - ], - [ - "▁customize", - -11.958155632019043 - ], - [ - "▁Ferr", - -11.958187103271484 - ], - [ - "reaches", - -11.958338737487793 - ], - [ - "arma", - -11.958401679992676 - ], - [ - "ción", - -11.958598136901855 - ], - [ - "▁elderly", - -11.959243774414062 - ], - [ - "▁modification", - -11.95934009552002 - ], - [ - "▁perfection", - -11.959381103515625 - ], - [ - "▁Allow", - -11.959492683410645 - ], - [ - "▁belonging", - -11.959542274475098 - ], - [ - "▁compound", - -11.959589004516602 - ], - [ - "▁Results", - -11.959681510925293 - ], - [ - "▁astăzi", - -11.959793090820312 - ], - [ - "▁Liber", - -11.959818840026855 - ], - [ - "jor", - -11.959850311279297 - ], - [ - "▁Nin", - -11.959980964660645 - ], - [ - "▁lumina", - -11.959992408752441 - ], - [ - "▁130", - -11.960073471069336 - ], - [ - "▁Platform", - -11.960121154785156 - ], - [ - "▁SMS", - -11.960221290588379 - ], - [ - "▁medic", - -11.96024227142334 - ], - [ - "hör", - -11.960315704345703 - ], - [ - "▁Kas", - -11.96038818359375 - ], - [ - "▁tomato", - -11.960403442382812 - ], - [ - "▁logiciel", - -11.960505485534668 - ], - [ - "php", - -11.960654258728027 - ], - [ - "▁premises", - -11.96071720123291 - ], - [ - "▁Communication", - -11.96072769165039 - ], - [ - "▁reprezintă", - -11.960762023925781 - ], - [ - "▁Partners", - -11.960866928100586 - ], - [ - "▁RV", - -11.961090087890625 - ], - [ - "▁pants", - -11.961197853088379 - ], - [ - "▁envie", - -11.961256980895996 - ], - [ - "▁commerce", - -11.961263656616211 - ], - [ - "▁tears", - -11.961298942565918 - ], - [ - "▁cooler", - -11.961494445800781 - ], - [ - "strand", - -11.961556434631348 - ], - [ - "▁Gil", - -11.961588859558105 - ], - [ - "▁référence", - -11.961641311645508 - ], - [ - "▁electronics", - -11.961681365966797 - ], - [ - "exposition", - -11.961700439453125 - ], - [ - "▁Caribbean", - -11.96171760559082 - ], - [ - "▁compelling", - -11.96171760559082 - ], - [ - "luci", - -11.961723327636719 - ], - [ - "▁Brooklyn", - -11.961892127990723 - ], - [ - "▁Thai", - -11.961950302124023 - ], - [ - "dler", - -11.96198844909668 - ], - [ - "▁supra", - -11.962016105651855 - ], - [ - "centered", - -11.962026596069336 - ], - [ - "▁metro", - -11.962081909179688 - ], - [ - "▁03", - -11.962299346923828 - ], - [ - "▁enrich", - -11.962437629699707 - ], - [ - "▁adevarat", - -11.962594985961914 - ], - [ - "5000", - -11.962961196899414 - ], - [ - "▁bell", - -11.96297550201416 - ], - [ - "▁sine", - -11.962996482849121 - ], - [ - "▁appealing", - -11.963088989257812 - ], - [ - "clam", - -11.963116645812988 - ], - [ - "▁vorhanden", - -11.963165283203125 - ], - [ - "▁pickup", - -11.963268280029297 - ], - [ - "▁Alaska", - -11.963269233703613 - ], - [ - "▁Nacht", - -11.963300704956055 - ], - [ - "borough", - -11.9633207321167 - ], - [ - "▁Blanc", - -11.96340274810791 - ], - [ - "▁apare", - -11.963616371154785 - ], - [ - "▁Works", - -11.963798522949219 - ], - [ - "mettent", - -11.963801383972168 - ], - [ - "atter", - -11.96389389038086 - ], - [ - "terra", - -11.963946342468262 - ], - [ - "▁Bit", - -11.964105606079102 - ], - [ - "RL", - -11.964131355285645 - ], - [ - "▁Wander", - -11.964262962341309 - ], - [ - "▁Hawk", - -11.964595794677734 - ], - [ - "▁Probleme", - -11.964665412902832 - ], - [ - "regel", - -11.964729309082031 - ], - [ - "hne", - -11.964739799499512 - ], - [ - "fass", - -11.96486759185791 - ], - [ - "▁Andy", - -11.965014457702637 - ], - [ - "▁befinde", - -11.965179443359375 - ], - [ - "boo", - -11.965265274047852 - ], - [ - "▁connectivity", - -11.965304374694824 - ], - [ - "▁spielt", - -11.965418815612793 - ], - [ - "zweiten", - -11.96547794342041 - ], - [ - "ţilor", - -11.965526580810547 - ], - [ - "▁confi", - -11.96561336517334 - ], - [ - "▁schlecht", - -11.965773582458496 - ], - [ - "▁Beginn", - -11.96581745147705 - ], - [ - "▁floating", - -11.965903282165527 - ], - [ - "nimmt", - -11.966071128845215 - ], - [ - "▁arbeiten", - -11.96611213684082 - ], - [ - "pillar", - -11.966131210327148 - ], - [ - "sterreich", - -11.966347694396973 - ], - [ - "▁Schule", - -11.966446876525879 - ], - [ - "▁durée", - -11.966521263122559 - ], - [ - "▁honestly", - -11.96653938293457 - ], - [ - "▁acel", - -11.9666166305542 - ], - [ - "▁Prozess", - -11.96662425994873 - ], - [ - "Min", - -11.966629028320312 - ], - [ - "enii", - -11.966632843017578 - ], - [ - "DAY", - -11.966758728027344 - ], - [ - "▁Blo", - -11.966806411743164 - ], - [ - "▁bolt", - -11.966946601867676 - ], - [ - "sicher", - -11.967070579528809 - ], - [ - "▁17,", - -11.967122077941895 - ], - [ - "▁anchor", - -11.967215538024902 - ], - [ - "▁consistency", - -11.967241287231445 - ], - [ - "▁relatives", - -11.967263221740723 - ], - [ - "▁lac", - -11.967385292053223 - ], - [ - "105", - -11.967432975769043 - ], - [ - "▁Craig", - -11.967534065246582 - ], - [ - "▁mandate", - -11.967598915100098 - ], - [ - "▁bedeutet", - -11.967674255371094 - ], - [ - "▁Soviet", - -11.967680931091309 - ], - [ - "▁arguments", - -11.967938423156738 - ], - [ - "▁Gebäude", - -11.967997550964355 - ], - [ - "▁Parliament", - -11.968005180358887 - ], - [ - "▁Kha", - -11.968087196350098 - ], - [ - "nica", - -11.968130111694336 - ], - [ - "▁Amazing", - -11.968162536621094 - ], - [ - "gründe", - -11.968179702758789 - ], - [ - "▁Ott", - -11.968269348144531 - ], - [ - "Exp", - -11.968314170837402 - ], - [ - "▁ianuarie", - -11.96848201751709 - ], - [ - "riot", - -11.968571662902832 - ], - [ - "▁futur", - -11.968626976013184 - ], - [ - "▁Honda", - -11.968647956848145 - ], - [ - "!!!!", - -11.96865177154541 - ], - [ - "▁citit", - -11.968689918518066 - ], - [ - "▁22,", - -11.968708992004395 - ], - [ - "țional", - -11.968711853027344 - ], - [ - "▁lovers", - -11.968732833862305 - ], - [ - "▁Current", - -11.968835830688477 - ], - [ - "▁drone", - -11.96927261352539 - ], - [ - "▁promising", - -11.969335556030273 - ], - [ - "devoted", - -11.969443321228027 - ], - [ - "▁Born", - -11.969520568847656 - ], - [ - "▁viitor", - -11.969589233398438 - ], - [ - "▁ritual", - -11.969614028930664 - ], - [ - "▁Guard", - -11.969681739807129 - ], - [ - "09.", - -11.969828605651855 - ], - [ - "▁Py", - -11.970260620117188 - ], - [ - "▁finds", - -11.970380783081055 - ], - [ - "▁boli", - -11.970394134521484 - ], - [ - "▁Mitglieder", - -11.970697402954102 - ], - [ - "ogni", - -11.97107982635498 - ], - [ - "▁stones", - -11.97118854522705 - ], - [ - "rox", - -11.971210479736328 - ], - [ - "▁dock", - -11.971390724182129 - ], - [ - "▁onion", - -11.97144889831543 - ], - [ - "▁classified", - -11.971538543701172 - ], - [ - "big", - -11.971833229064941 - ], - [ - "RG", - -11.971857070922852 - ], - [ - "influenced", - -11.971955299377441 - ], - [ - "▁sudden", - -11.971988677978516 - ], - [ - "▁ample", - -11.97204303741455 - ], - [ - "án", - -11.972095489501953 - ], - [ - "▁ornament", - -11.972122192382812 - ], - [ - "datele", - -11.972227096557617 - ], - [ - "▁Dad", - -11.97225284576416 - ], - [ - "BER", - -11.972278594970703 - ], - [ - "gerecht", - -11.972380638122559 - ], - [ - "kett", - -11.972536087036133 - ], - [ - "▁Antonio", - -11.972572326660156 - ], - [ - "Nu", - -11.972834587097168 - ], - [ - "dium", - -11.97284984588623 - ], - [ - "CAD", - -11.972850799560547 - ], - [ - "▁bundle", - -11.972916603088379 - ], - [ - "▁Vari", - -11.97301197052002 - ], - [ - "▁thrive", - -11.973020553588867 - ], - [ - "▁Seminar", - -11.973071098327637 - ], - [ - "wire", - -11.973084449768066 - ], - [ - "▁contributing", - -11.973114967346191 - ], - [ - "▁Bour", - -11.97320556640625 - ], - [ - "▁dori", - -11.973206520080566 - ], - [ - "▁packing", - -11.97343921661377 - ], - [ - "▁colleges", - -11.973459243774414 - ], - [ - "▁garbage", - -11.97366714477539 - ], - [ - "▁vector", - -11.973837852478027 - ], - [ - "▁suggestion", - -11.973897933959961 - ], - [ - "borne", - -11.973904609680176 - ], - [ - "▁Listen", - -11.973938941955566 - ], - [ - "▁Prix", - -11.973957061767578 - ], - [ - "viennent", - -11.974162101745605 - ], - [ - "insbesondere", - -11.97426700592041 - ], - [ - "▁fonctionne", - -11.974435806274414 - ], - [ - "▁mainstream", - -11.974485397338867 - ], - [ - "▁merci", - -11.974574089050293 - ], - [ - "oko", - -11.97460651397705 - ], - [ - "▁Commerce", - -11.97493839263916 - ], - [ - "▁droits", - -11.975115776062012 - ], - [ - "▁muzica", - -11.975141525268555 - ], - [ - "▁profesor", - -11.9751558303833 - ], - [ - "▁epic", - -11.97518253326416 - ], - [ - "▁intuitive", - -11.975186347961426 - ], - [ - "▁aggregate", - -11.975223541259766 - ], - [ - "▁vaccine", - -11.97529411315918 - ], - [ - "▁dank", - -11.975459098815918 - ], - [ - "▁situ", - -11.975578308105469 - ], - [ - "▁Cand", - -11.975593566894531 - ], - [ - "▁Ganz", - -11.97562313079834 - ], - [ - "▁Crystal", - -11.97578239440918 - ], - [ - "▁discretion", - -11.975825309753418 - ], - [ - "mug", - -11.975997924804688 - ], - [ - "▁anzu", - -11.976144790649414 - ], - [ - "▁cement", - -11.97616958618164 - ], - [ - "▁priest", - -11.97625732421875 - ], - [ - "▁rejected", - -11.976298332214355 - ], - [ - "▁Summit", - -11.976325988769531 - ], - [ - "▁Sara", - -11.976424217224121 - ], - [ - "▁palette", - -11.976527214050293 - ], - [ - "▁continuare", - -11.976569175720215 - ], - [ - "uge", - -11.976676940917969 - ], - [ - "ryl", - -11.976844787597656 - ], - [ - "▁Solid", - -11.977142333984375 - ], - [ - "▁meilleure", - -11.977177619934082 - ], - [ - "▁Tennessee", - -11.977248191833496 - ], - [ - "rail", - -11.977326393127441 - ], - [ - "▁attributes", - -11.9773530960083 - ], - [ - "▁vessels", - -11.977840423583984 - ], - [ - "cylinder", - -11.977900505065918 - ], - [ - "▁parfait", - -11.977916717529297 - ], - [ - "abb", - -11.97801399230957 - ], - [ - "▁Julie", - -11.97806167602539 - ], - [ - "▁pièces", - -11.978120803833008 - ], - [ - "▁proiecte", - -11.978142738342285 - ], - [ - "médi", - -11.978273391723633 - ], - [ - "▁décembre", - -11.9783935546875 - ], - [ - "Per", - -11.97841739654541 - ], - [ - "1/", - -11.978520393371582 - ], - [ - "regulated", - -11.978601455688477 - ], - [ - "▁Dy", - -11.978633880615234 - ], - [ - "▁23,", - -11.978694915771484 - ], - [ - "beck", - -11.978763580322266 - ], - [ - "tură", - -11.97885513305664 - ], - [ - "▁Chiar", - -11.978931427001953 - ], - [ - "▁isolated", - -11.979012489318848 - ], - [ - "▁kennen", - -11.979259490966797 - ], - [ - "Du", - -11.979260444641113 - ], - [ - "reflected", - -11.979482650756836 - ], - [ - "▁belong", - -11.979571342468262 - ], - [ - "▁welcomed", - -11.97969913482666 - ], - [ - "▁Rate", - -11.979776382446289 - ], - [ - "prestigious", - -11.979859352111816 - ], - [ - "▁1/4", - -11.979930877685547 - ], - [ - "▁distinction", - -11.979966163635254 - ], - [ - "▁boring", - -11.980001449584961 - ], - [ - "▁booked", - -11.980369567871094 - ], - [ - "▁citizen", - -11.980441093444824 - ], - [ - "▁comprises", - -11.980498313903809 - ], - [ - "▁aufge", - -11.98051929473877 - ], - [ - "GL", - -11.980566024780273 - ], - [ - "▁nearest", - -11.980616569519043 - ], - [ - "▁printr", - -11.980692863464355 - ], - [ - "▁département", - -11.981318473815918 - ], - [ - "▁planner", - -11.981510162353516 - ], - [ - "▁Rai", - -11.981817245483398 - ], - [ - "▁Broad", - -11.981934547424316 - ], - [ - "▁pastor", - -11.981947898864746 - ], - [ - "▁reservation", - -11.982243537902832 - ], - [ - "▁decembrie", - -11.982315063476562 - ], - [ - "▁suficient", - -11.982501983642578 - ], - [ - "geld", - -11.982560157775879 - ], - [ - "training", - -11.982620239257812 - ], - [ - "deshalb", - -11.982634544372559 - ], - [ - "▁chaud", - -11.982651710510254 - ], - [ - "Cor", - -11.982662200927734 - ], - [ - "▁Grade", - -11.982769966125488 - ], - [ - "▁faţă", - -11.982809066772461 - ], - [ - "story", - -11.982839584350586 - ], - [ - "gericht", - -11.98286247253418 - ], - [ - "▁Got", - -11.982954025268555 - ], - [ - "particulièrement", - -11.982976913452148 - ], - [ - "▁bump", - -11.983051300048828 - ], - [ - "▁fatigue", - -11.983160018920898 - ], - [ - "Activ", - -11.983250617980957 - ], - [ - "▁numéro", - -11.983302116394043 - ], - [ - "▁stranger", - -11.983312606811523 - ], - [ - "▁Skin", - -11.983327865600586 - ], - [ - "add", - -11.98344898223877 - ], - [ - "Ainsi", - -11.98357105255127 - ], - [ - "▁assists", - -11.983684539794922 - ], - [ - "▁zusätzlich", - -11.983943939208984 - ], - [ - "▁vede", - -11.983979225158691 - ], - [ - "RON", - -11.984108924865723 - ], - [ - "▁seemingly", - -11.984126091003418 - ], - [ - "▁NU", - -11.98417854309082 - ], - [ - "geb", - -11.984273910522461 - ], - [ - "▁Release", - -11.984353065490723 - ], - [ - "▁throwing", - -11.984427452087402 - ], - [ - "▁Alabama", - -11.984447479248047 - ], - [ - "▁Something", - -11.984590530395508 - ], - [ - "▁Cuba", - -11.98464584350586 - ], - [ - "▁Verbindung", - -11.984649658203125 - ], - [ - "▁Cir", - -11.984654426574707 - ], - [ - "your", - -11.984713554382324 - ], - [ - "-13", - -11.984748840332031 - ], - [ - "▁Delta", - -11.984801292419434 - ], - [ - "▁Twin", - -11.98504638671875 - ], - [ - "▁governance", - -11.985156059265137 - ], - [ - "▁groom", - -11.985310554504395 - ], - [ - "▁conception", - -11.98533821105957 - ], - [ - "▁governor", - -11.985383033752441 - ], - [ - "▁Spar", - -11.985416412353516 - ], - [ - "▁coastal", - -11.985652923583984 - ], - [ - "▁Seven", - -11.985856056213379 - ], - [ - "▁inclusive", - -11.986002922058105 - ], - [ - "cili", - -11.986035346984863 - ], - [ - "▁Ridge", - -11.986100196838379 - ], - [ - "teller", - -11.986224174499512 - ], - [ - "▁Kin", - -11.986247062683105 - ], - [ - "leiter", - -11.986279487609863 - ], - [ - "stern", - -11.986364364624023 - ], - [ - "change", - -11.986404418945312 - ], - [ - "▁presidential", - -11.986433982849121 - ], - [ - "▁composer", - -11.986544609069824 - ], - [ - "Stu", - -11.986560821533203 - ], - [ - "▁Frankfurt", - -11.986584663391113 - ], - [ - "prä", - -11.986639976501465 - ], - [ - "▁Ideal", - -11.986644744873047 - ], - [ - "▁linear", - -11.986857414245605 - ], - [ - "▁bloom", - -11.986879348754883 - ], - [ - "▁grades", - -11.986881256103516 - ], - [ - "mettant", - -11.98692512512207 - ], - [ - "▁finishes", - -11.986952781677246 - ], - [ - "holz", - -11.987086296081543 - ], - [ - "▁dirty", - -11.987317085266113 - ], - [ - "▁Roh", - -11.987386703491211 - ], - [ - "▁Praxis", - -11.987408638000488 - ], - [ - "tempo", - -11.987433433532715 - ], - [ - "▁attempted", - -11.987433433532715 - ], - [ - "▁primar", - -11.987434387207031 - ], - [ - "▁pomp", - -11.987528800964355 - ], - [ - "▁tolle", - -11.987614631652832 - ], - [ - "▁adres", - -11.988011360168457 - ], - [ - "▁Between", - -11.988066673278809 - ], - [ - "▁ruin", - -11.988432884216309 - ], - [ - "▁matériel", - -11.988561630249023 - ], - [ - "MER", - -11.988913536071777 - ], - [ - "Nevertheless", - -11.989055633544922 - ], - [ - "▁corruption", - -11.989119529724121 - ], - [ - "spire", - -11.989180564880371 - ], - [ - "▁mou", - -11.989208221435547 - ], - [ - "ROM", - -11.989278793334961 - ], - [ - "▁underground", - -11.98935604095459 - ], - [ - "▁relativ", - -11.989389419555664 - ], - [ - "waited", - -11.989462852478027 - ], - [ - "▁speeds", - -11.989468574523926 - ], - [ - "▁adjusted", - -11.989486694335938 - ], - [ - "▁Flat", - -11.989514350891113 - ], - [ - "UND", - -11.98965835571289 - ], - [ - "▁individuelle", - -11.989744186401367 - ], - [ - "▁anybody", - -11.98978042602539 - ], - [ - "EO", - -11.989790916442871 - ], - [ - "->", - -11.989791870117188 - ], - [ - "▁Spend", - -11.989876747131348 - ], - [ - "aktion", - -11.990011215209961 - ], - [ - "édit", - -11.99006462097168 - ], - [ - "▁quest", - -11.990078926086426 - ], - [ - "rind", - -11.990541458129883 - ], - [ - "▁mediu", - -11.99057388305664 - ], - [ - "▁barriers", - -11.99062442779541 - ], - [ - "▁répondre", - -11.990633010864258 - ], - [ - "▁novembre", - -11.990708351135254 - ], - [ - "▁champ", - -11.990736961364746 - ], - [ - "saw", - -11.990757942199707 - ], - [ - "▁fed", - -11.990804672241211 - ], - [ - "▁favorites", - -11.990939140319824 - ], - [ - "▁shield", - -11.991055488586426 - ], - [ - "▁Wide", - -11.991146087646484 - ], - [ - "▁problema", - -11.991445541381836 - ], - [ - "▁Asta", - -11.991525650024414 - ], - [ - "▁refreshing", - -11.99168872833252 - ], - [ - "hey", - -11.991692543029785 - ], - [ - "obtaining", - -11.991788864135742 - ], - [ - "▁parler", - -11.992072105407715 - ], - [ - "▁Cele", - -11.992134094238281 - ], - [ - "frage", - -11.992136001586914 - ], - [ - "écran", - -11.992324829101562 - ], - [ - "▁cleared", - -11.992448806762695 - ], - [ - "zehn", - -11.992594718933105 - ], - [ - "parmi", - -11.992647171020508 - ], - [ - "änder", - -11.992691993713379 - ], - [ - "▁Defense", - -11.992693901062012 - ], - [ - "tatea", - -11.992696762084961 - ], - [ - "▁reasonably", - -11.992939949035645 - ], - [ - "▁Idee", - -11.992985725402832 - ], - [ - "nehm", - -11.993000030517578 - ], - [ - "technologie", - -11.993020057678223 - ], - [ - "atura", - -11.993048667907715 - ], - [ - "▁slope", - -11.993332862854004 - ], - [ - "Hence", - -11.993351936340332 - ], - [ - "▁40%", - -11.993391990661621 - ], - [ - "▁jewe", - -11.993448257446289 - ], - [ - "▁queries", - -11.993470191955566 - ], - [ - "▁$8", - -11.994096755981445 - ], - [ - "▁Parker", - -11.994107246398926 - ], - [ - "▁publique", - -11.994488716125488 - ], - [ - "quant", - -11.994529724121094 - ], - [ - "issue", - -11.994690895080566 - ], - [ - "▁Cleveland", - -11.994847297668457 - ], - [ - "4,000", - -11.995071411132812 - ], - [ - "IDE", - -11.995145797729492 - ], - [ - "▁Barbara", - -11.995233535766602 - ], - [ - "udge", - -11.995477676391602 - ], - [ - "corn", - -11.99554443359375 - ], - [ - "veți", - -11.995588302612305 - ], - [ - "▁proteins", - -11.995707511901855 - ], - [ - "▁trăi", - -11.995793342590332 - ], - [ - "▁mijloc", - -11.995842933654785 - ], - [ - "logie", - -11.995884895324707 - ], - [ - "▁Walter", - -11.995884895324707 - ], - [ - "heißt", - -11.99593448638916 - ], - [ - "search", - -11.995946884155273 - ], - [ - "▁hochwertige", - -11.996010780334473 - ], - [ - "▁încerc", - -11.996014595031738 - ], - [ - "▁administrator", - -11.99608039855957 - ], - [ - "tension", - -11.996133804321289 - ], - [ - "▁homemade", - -11.996438026428223 - ], - [ - "▁$20", - -11.99651050567627 - ], - [ - "▁leben", - -11.996662139892578 - ], - [ - "netz", - -11.996665954589844 - ], - [ - "▁intensity", - -11.996882438659668 - ], - [ - "▁clever", - -11.996891975402832 - ], - [ - "▁installer", - -11.996999740600586 - ], - [ - "▁Wand", - -11.997087478637695 - ], - [ - "meister", - -11.997130393981934 - ], - [ - "ziel", - -11.99744701385498 - ], - [ - "▁architect", - -11.99748706817627 - ], - [ - "▁crede", - -11.997512817382812 - ], - [ - "▁Sleep", - -11.997675895690918 - ], - [ - "▁demonstr", - -11.997745513916016 - ], - [ - "cake", - -11.997781753540039 - ], - [ - "▁Cheap", - -11.997783660888672 - ], - [ - "pool", - -11.9979829788208 - ], - [ - "▁gadget", - -11.998004913330078 - ], - [ - "▁Anbieter", - -11.998005867004395 - ], - [ - "▁Jonathan", - -11.998170852661133 - ], - [ - "ül", - -11.998492240905762 - ], - [ - "▁Harvard", - -11.998503684997559 - ], - [ - "▁1985", - -11.998773574829102 - ], - [ - "HP", - -11.998839378356934 - ], - [ - "▁afara", - -11.99893569946289 - ], - [ - "▁halten", - -11.999008178710938 - ], - [ - "▁Technik", - -11.999042510986328 - ], - [ - "▁dressed", - -11.999149322509766 - ], - [ - "weis", - -11.999165534973145 - ], - [ - "▁donated", - -11.9993314743042 - ], - [ - "also", - -11.99938678741455 - ], - [ - "▁EN", - -11.999405860900879 - ], - [ - "▁imprim", - -11.99942398071289 - ], - [ - "▁onions", - -11.999458312988281 - ], - [ - "Par", - -11.99950122833252 - ], - [ - "▁donate", - -11.99958324432373 - ], - [ - "▁mice", - -11.999610900878906 - ], - [ - "referring", - -11.999897956848145 - ], - [ - "▁restored", - -12.00003433227539 - ], - [ - "▁amateur", - -12.0000581741333 - ], - [ - "▁Switch", - -12.000075340270996 - ], - [ - "appel", - -12.00013542175293 - ], - [ - "▁idéal", - -12.0001859664917 - ], - [ - "▁wheat", - -12.000199317932129 - ], - [ - "▁lime", - -12.000240325927734 - ], - [ - "REA", - -12.00027084350586 - ], - [ - "riti", - -12.000357627868652 - ], - [ - "ţiile", - -12.00058364868164 - ], - [ - "▁machinery", - -12.00064754486084 - ], - [ - "UNE", - -12.00089168548584 - ], - [ - "▁Cont", - -12.000971794128418 - ], - [ - "▁attendees", - -12.001014709472656 - ], - [ - "▁aparat", - -12.001080513000488 - ], - [ - "freundlich", - -12.00117301940918 - ], - [ - "▁zilnic", - -12.001175880432129 - ], - [ - "▁spark", - -12.001421928405762 - ], - [ - "▁Gast", - -12.001459121704102 - ], - [ - "▁Issue", - -12.00147533416748 - ], - [ - "▁scam", - -12.001566886901855 - ], - [ - "▁bonds", - -12.001618385314941 - ], - [ - "owner", - -12.001641273498535 - ], - [ - "▁empfehlen", - -12.001673698425293 - ], - [ - "elia", - -12.001749992370605 - ], - [ - "cic", - -12.001757621765137 - ], - [ - "▁honored", - -12.001800537109375 - ], - [ - "▁castle", - -12.001846313476562 - ], - [ - "avand", - -12.002058982849121 - ], - [ - "rough", - -12.002108573913574 - ], - [ - "▁Address", - -12.002116203308105 - ], - [ - "angle", - -12.00217342376709 - ], - [ - "leton", - -12.002259254455566 - ], - [ - "▁locked", - -12.002392768859863 - ], - [ - "▁consolid", - -12.00248908996582 - ], - [ - "▁voucher", - -12.003011703491211 - ], - [ - "ației", - -12.003201484680176 - ], - [ - "wachsen", - -12.003211975097656 - ], - [ - "▁magazines", - -12.003287315368652 - ], - [ - "▁Schools", - -12.003318786621094 - ], - [ - "▁voices", - -12.003362655639648 - ], - [ - "▁Dry", - -12.003479957580566 - ], - [ - "▁tricks", - -12.00349235534668 - ], - [ - "schließlich", - -12.003546714782715 - ], - [ - "▁loyalty", - -12.003687858581543 - ], - [ - "risk", - -12.003764152526855 - ], - [ - "▁Vers", - -12.003786087036133 - ], - [ - "chester", - -12.003802299499512 - ], - [ - "▁decorated", - -12.003830909729004 - ], - [ - "▁copiilor", - -12.003969192504883 - ], - [ - "riz", - -12.003994941711426 - ], - [ - "03.", - -12.004013061523438 - ], - [ - "▁Hur", - -12.004016876220703 - ], - [ - "▁archive", - -12.004021644592285 - ], - [ - "▁Continue", - -12.004042625427246 - ], - [ - "▁Nähe", - -12.004043579101562 - ], - [ - "jit", - -12.004090309143066 - ], - [ - "gekommen", - -12.004301071166992 - ], - [ - "▁conjunction", - -12.004349708557129 - ], - [ - "combining", - -12.004404067993164 - ], - [ - "▁Unterstützung", - -12.004517555236816 - ], - [ - "oza", - -12.004593849182129 - ], - [ - "▁sketch", - -12.004720687866211 - ], - [ - "▁arată", - -12.004731178283691 - ], - [ - "▁Mining", - -12.004765510559082 - ], - [ - "uous", - -12.004791259765625 - ], - [ - "▁devis", - -12.004834175109863 - ], - [ - "Almost", - -12.004862785339355 - ], - [ - "Hu", - -12.005037307739258 - ], - [ - "▁Om", - -12.005366325378418 - ], - [ - "MF", - -12.00544548034668 - ], - [ - "liz", - -12.005451202392578 - ], - [ - "▁fails", - -12.005456924438477 - ], - [ - "▁comparable", - -12.005459785461426 - ], - [ - "▁vein", - -12.005547523498535 - ], - [ - "▁Vis", - -12.00561809539795 - ], - [ - "▁viagra", - -12.005654335021973 - ], - [ - "▁farming", - -12.005678176879883 - ], - [ - "▁Late", - -12.005765914916992 - ], - [ - "geschrieben", - -12.006033897399902 - ], - [ - "hrew", - -12.006103515625 - ], - [ - "▁melt", - -12.006120681762695 - ], - [ - "lager", - -12.006168365478516 - ], - [ - "halte", - -12.006240844726562 - ], - [ - "▁Hotels", - -12.006266593933105 - ], - [ - "▁facebook", - -12.0064058303833 - ], - [ - "▁défi", - -12.006550788879395 - ], - [ - "shore", - -12.006802558898926 - ], - [ - "▁membrane", - -12.006866455078125 - ], - [ - "▁sixth", - -12.006903648376465 - ], - [ - "api", - -12.007003784179688 - ], - [ - "▁Owner", - -12.007222175598145 - ], - [ - "▁(\"", - -12.007234573364258 - ], - [ - "▁$50", - -12.007280349731445 - ], - [ - "▁protective", - -12.007420539855957 - ], - [ - "/2", - -12.007548332214355 - ], - [ - "▁Girls", - -12.007562637329102 - ], - [ - "Gri", - -12.00769329071045 - ], - [ - "▁nouă", - -12.007708549499512 - ], - [ - "▁infections", - -12.007813453674316 - ], - [ - "rân", - -12.007868766784668 - ], - [ - "▁Geb", - -12.0078763961792 - ], - [ - "▁Conseil", - -12.007905006408691 - ], - [ - "▁imagini", - -12.007909774780273 - ], - [ - "▁promotions", - -12.00794792175293 - ], - [ - "▁enforce", - -12.00795841217041 - ], - [ - "▁applicant", - -12.007965087890625 - ], - [ - "▁Apart", - -12.008087158203125 - ], - [ - "▁progression", - -12.008151054382324 - ], - [ - "▁careers", - -12.008511543273926 - ], - [ - "▁litigation", - -12.008533477783203 - ], - [ - "▁Menge", - -12.00866413116455 - ], - [ - "▁Contract", - -12.00871753692627 - ], - [ - "▁Kel", - -12.0087308883667 - ], - [ - "▁réserve", - -12.008769035339355 - ], - [ - "▁Cold", - -12.008870124816895 - ], - [ - "▁larg", - -12.009040832519531 - ], - [ - "▁microwave", - -12.009090423583984 - ], - [ - "▁Whit", - -12.009212493896484 - ], - [ - "▁Technologies", - -12.009381294250488 - ], - [ - "OU", - -12.00949478149414 - ], - [ - "itudine", - -12.00959587097168 - ], - [ - "▁handles", - -12.009895324707031 - ], - [ - "▁proceedings", - -12.009982109069824 - ], - [ - "▁prizes", - -12.010043144226074 - ], - [ - "▁unterstützen", - -12.010062217712402 - ], - [ - "▁piele", - -12.010090827941895 - ], - [ - "▁profound", - -12.010153770446777 - ], - [ - "schließen", - -12.0101957321167 - ], - [ - "▁trafic", - -12.01025104522705 - ], - [ - "▁Nar", - -12.010441780090332 - ], - [ - "▁Gesamt", - -12.0106201171875 - ], - [ - "▁bugs", - -12.010720252990723 - ], - [ - "▁Amy", - -12.010764122009277 - ], - [ - "▁eastern", - -12.010775566101074 - ], - [ - "nice", - -12.010784149169922 - ], - [ - "▁Besuch", - -12.010835647583008 - ], - [ - "▁synth", - -12.010892868041992 - ], - [ - "▁clasa", - -12.011194229125977 - ], - [ - "Book", - -12.01134204864502 - ], - [ - "▁ribbon", - -12.011415481567383 - ], - [ - "▁neues", - -12.011431694030762 - ], - [ - "ZE", - -12.011504173278809 - ], - [ - "▁peers", - -12.011613845825195 - ], - [ - "leistung", - -12.011730194091797 - ], - [ - "▁internship", - -12.011808395385742 - ], - [ - "count", - -12.011850357055664 - ], - [ - "nam", - -12.01193618774414 - ], - [ - "▁12-", - -12.012072563171387 - ], - [ - "acked", - -12.012146949768066 - ], - [ - "gonna", - -12.012146949768066 - ], - [ - "▁Dinge", - -12.01215648651123 - ], - [ - "Time", - -12.012299537658691 - ], - [ - "▁twelve", - -12.01242446899414 - ], - [ - "eye", - -12.012432098388672 - ], - [ - "▁avantaj", - -12.01253604888916 - ], - [ - "▁Glas", - -12.012731552124023 - ], - [ - "aucune", - -12.0127534866333 - ], - [ - "▁boil", - -12.012763977050781 - ], - [ - "▁Gray", - -12.012773513793945 - ], - [ - "adapt", - -12.01288890838623 - ], - [ - "occ", - -12.012895584106445 - ], - [ - "▁prieten", - -12.012897491455078 - ], - [ - "▁trai", - -12.01296615600586 - ], - [ - "▁Scal", - -12.013009071350098 - ], - [ - "▁conscious", - -12.013057708740234 - ], - [ - "▁charter", - -12.013093948364258 - ], - [ - "KS", - -12.013242721557617 - ], - [ - "▁Barr", - -12.013404846191406 - ], - [ - "▁summit", - -12.013411521911621 - ], - [ - "▁inflammation", - -12.013439178466797 - ], - [ - "tungs", - -12.013440132141113 - ], - [ - "ovic", - -12.013449668884277 - ], - [ - "▁conduit", - -12.013465881347656 - ], - [ - "▁Alice", - -12.013702392578125 - ], - [ - "▁veterans", - -12.013850212097168 - ], - [ - "Während", - -12.013944625854492 - ], - [ - "▁maximal", - -12.014013290405273 - ], - [ - "▁Hawaii", - -12.014037132263184 - ], - [ - "▁Pine", - -12.01432991027832 - ], - [ - "acelasi", - -12.014391899108887 - ], - [ - "hyp", - -12.014424324035645 - ], - [ - "sensitivity", - -12.01445198059082 - ], - [ - "pour", - -12.014481544494629 - ], - [ - "ре", - -12.014493942260742 - ], - [ - "▁Kentucky", - -12.015129089355469 - ], - [ - "▁badge", - -12.015276908874512 - ], - [ - "affecting", - -12.015310287475586 - ], - [ - "▁chairman", - -12.015311241149902 - ], - [ - "▁München", - -12.015467643737793 - ], - [ - "▁Hersteller", - -12.015469551086426 - ], - [ - "▁urmat", - -12.015615463256836 - ], - [ - "tels", - -12.015654563903809 - ], - [ - "▁FM", - -12.015701293945312 - ], - [ - "▁Basis", - -12.015732765197754 - ], - [ - "▁erklärt", - -12.015809059143066 - ], - [ - "▁changer", - -12.015859603881836 - ], - [ - "tischen", - -12.0159330368042 - ], - [ - "▁brave", - -12.015960693359375 - ], - [ - "▁siguranta", - -12.015986442565918 - ], - [ - "▁partnerships", - -12.015989303588867 - ], - [ - "ților", - -12.015999794006348 - ], - [ - "▁breathe", - -12.016141891479492 - ], - [ - "rink", - -12.016551971435547 - ], - [ - "▁footage", - -12.016654014587402 - ], - [ - "▁transformed", - -12.016658782958984 - ], - [ - "▁prep", - -12.016866683959961 - ], - [ - "▁upset", - -12.016901969909668 - ], - [ - "▁Native", - -12.017059326171875 - ], - [ - "▁Prima", - -12.017154693603516 - ], - [ - "▁jersey", - -12.017163276672363 - ], - [ - "230", - -12.017182350158691 - ], - [ - "▁lucrurile", - -12.017393112182617 - ], - [ - "▁divine", - -12.017502784729004 - ], - [ - "▁Pit", - -12.017593383789062 - ], - [ - "RIS", - -12.01765251159668 - ], - [ - "▁Cultural", - -12.017672538757324 - ], - [ - "▁exotic", - -12.017786979675293 - ], - [ - "▁tastes", - -12.017881393432617 - ], - [ - "▁bargain", - -12.017913818359375 - ], - [ - "▁optimize", - -12.017985343933105 - ], - [ - "▁électrique", - -12.018012046813965 - ], - [ - "deuxième", - -12.018030166625977 - ], - [ - "▁Gary", - -12.018085479736328 - ], - [ - "▁projection", - -12.018122673034668 - ], - [ - "▁sliding", - -12.018195152282715 - ], - [ - "club", - -12.018216133117676 - ], - [ - "association", - -12.01823902130127 - ], - [ - "▁LG", - -12.018259048461914 - ], - [ - "▁capsule", - -12.018291473388672 - ], - [ - "▁politicians", - -12.018397331237793 - ], - [ - "▁thumb", - -12.018423080444336 - ], - [ - "▁globally", - -12.018743515014648 - ], - [ - "positioned", - -12.018796920776367 - ], - [ - "▁Hamilton", - -12.018861770629883 - ], - [ - "arme", - -12.018881797790527 - ], - [ - "▁efectuat", - -12.018881797790527 - ], - [ - "zip", - -12.019111633300781 - ], - [ - "▁welfare", - -12.019201278686523 - ], - [ - "Leistung", - -12.019230842590332 - ], - [ - "▁Bac", - -12.019316673278809 - ], - [ - "▁fizic", - -12.019338607788086 - ], - [ - "OK", - -12.019454002380371 - ], - [ - "▁limba", - -12.019545555114746 - ], - [ - "▁wardrobe", - -12.019549369812012 - ], - [ - "▁offline", - -12.019627571105957 - ], - [ - "▁fortune", - -12.019665718078613 - ], - [ - "▁dialog", - -12.019681930541992 - ], - [ - "▁dramatically", - -12.01997184753418 - ], - [ - "▁NYC", - -12.020045280456543 - ], - [ - "▁Rem", - -12.02017593383789 - ], - [ - "▁bronze", - -12.020455360412598 - ], - [ - "▁pulse", - -12.02053451538086 - ], - [ - "Fortunately", - -12.020562171936035 - ], - [ - "▁glue", - -12.020596504211426 - ], - [ - "▁Expo", - -12.020720481872559 - ], - [ - "▁profitable", - -12.020776748657227 - ], - [ - "▁distributor", - -12.020845413208008 - ], - [ - "abilité", - -12.020869255065918 - ], - [ - "▁lyrics", - -12.020913124084473 - ], - [ - "▁mesh", - -12.02114486694336 - ], - [ - "▁organizational", - -12.021157264709473 - ], - [ - "▁vanilla", - -12.021249771118164 - ], - [ - "▁foc", - -12.021355628967285 - ], - [ - "▁1984", - -12.02147388458252 - ], - [ - "▁créé", - -12.02172565460205 - ], - [ - "▁servi", - -12.022027969360352 - ], - [ - "▁underneath", - -12.022095680236816 - ], - [ - "▁surveys", - -12.022143363952637 - ], - [ - "▁genes", - -12.022238731384277 - ], - [ - "▁limite", - -12.02224349975586 - ], - [ - "oder", - -12.022247314453125 - ], - [ - "▁mandatory", - -12.022269248962402 - ], - [ - "▁hospitality", - -12.022303581237793 - ], - [ - "▁bikes", - -12.022309303283691 - ], - [ - "▁Quote", - -12.022358894348145 - ], - [ - "glu", - -12.02241039276123 - ], - [ - "▁activitatea", - -12.022513389587402 - ], - [ - "preventing", - -12.022584915161133 - ], - [ - "▁Kh", - -12.02259635925293 - ], - [ - "économie", - -12.022616386413574 - ], - [ - "▁visite", - -12.022757530212402 - ], - [ - "▁spectacle", - -12.022778511047363 - ], - [ - "▁tract", - -12.022860527038574 - ], - [ - "▁quant", - -12.022862434387207 - ], - [ - "▁evolu", - -12.022866249084473 - ], - [ - "▁invata", - -12.023070335388184 - ], - [ - "▁homo", - -12.02311897277832 - ], - [ - "▁Users", - -12.02344799041748 - ], - [ - "introducing", - -12.023632049560547 - ], - [ - "hibi", - -12.023661613464355 - ], - [ - "▁Instrument", - -12.023805618286133 - ], - [ - "▁ép", - -12.023839950561523 - ], - [ - "▁Raj", - -12.023869514465332 - ], - [ - "▁executives", - -12.023881912231445 - ], - [ - "atoire", - -12.023885726928711 - ], - [ - "▁erforderlich", - -12.02397346496582 - ], - [ - "male", - -12.024211883544922 - ], - [ - "umble", - -12.024271011352539 - ], - [ - "erson", - -12.024277687072754 - ], - [ - "▁Treatment", - -12.024286270141602 - ], - [ - "▁Representative", - -12.024314880371094 - ], - [ - "▁corners", - -12.024409294128418 - ], - [ - "▁Petit", - -12.024599075317383 - ], - [ - "8)", - -12.02464771270752 - ], - [ - "▁Walker", - -12.024714469909668 - ], - [ - "▁Stir", - -12.02476692199707 - ], - [ - "/19", - -12.024767875671387 - ], - [ - "▁Stelle", - -12.024979591369629 - ], - [ - "ără", - -12.025009155273438 - ], - [ - "osse", - -12.025166511535645 - ], - [ - "2000", - -12.025189399719238 - ], - [ - "▁McG", - -12.025580406188965 - ], - [ - "DV", - -12.025773048400879 - ], - [ - "▁Firm", - -12.025862693786621 - ], - [ - "▁packet", - -12.025904655456543 - ], - [ - "Toate", - -12.02640438079834 - ], - [ - "▁institutional", - -12.026479721069336 - ], - [ - "rug", - -12.026663780212402 - ], - [ - "DG", - -12.026837348937988 - ], - [ - "fine", - -12.026837348937988 - ], - [ - "bringen", - -12.026856422424316 - ], - [ - "▁Horse", - -12.026921272277832 - ], - [ - "▁premiere", - -12.026937484741211 - ], - [ - "▁Că", - -12.027026176452637 - ], - [ - "acheter", - -12.02703857421875 - ], - [ - "▁Afghanistan", - -12.027053833007812 - ], - [ - "▁Prop", - -12.027085304260254 - ], - [ - "ühr", - -12.02715015411377 - ], - [ - "▁braucht", - -12.027398109436035 - ], - [ - "▁sunny", - -12.027424812316895 - ], - [ - "▁Sach", - -12.027461051940918 - ], - [ - "▁volumes", - -12.02753734588623 - ], - [ - "tinut", - -12.02759838104248 - ], - [ - "▁Sho", - -12.027722358703613 - ], - [ - "▁winds", - -12.027735710144043 - ], - [ - "▁Mall", - -12.027873992919922 - ], - [ - "ledge", - -12.027937889099121 - ], - [ - "▁sciences", - -12.027997016906738 - ], - [ - "plication", - -12.028024673461914 - ], - [ - "VR", - -12.028068542480469 - ], - [ - "destin", - -12.028234481811523 - ], - [ - "▁früh", - -12.02833366394043 - ], - [ - "▁tongue", - -12.028359413146973 - ], - [ - "▁Jennifer", - -12.028425216674805 - ], - [ - "▁bracket", - -12.028427124023438 - ], - [ - "▁episodes", - -12.02845287322998 - ], - [ - "breite", - -12.028461456298828 - ], - [ - "▁stoc", - -12.028635025024414 - ], - [ - "ilia", - -12.028728485107422 - ], - [ - "▁Gulf", - -12.02874755859375 - ], - [ - "▁transparency", - -12.028768539428711 - ], - [ - "Industrie", - -12.028853416442871 - ], - [ - "▁viewers", - -12.028916358947754 - ], - [ - "AIN", - -12.029129981994629 - ], - [ - "▁Registration", - -12.029149055480957 - ], - [ - "/4", - -12.029309272766113 - ], - [ - "▁fera", - -12.029337882995605 - ], - [ - "▁06", - -12.029351234436035 - ], - [ - "▁einzu", - -12.029391288757324 - ], - [ - "enburg", - -12.02944278717041 - ], - [ - "▁eff", - -12.029449462890625 - ], - [ - "▁Stage", - -12.029558181762695 - ], - [ - "▁Cour", - -12.029685020446777 - ], - [ - "indu", - -12.029836654663086 - ], - [ - "▁Tools", - -12.029909133911133 - ], - [ - "IST", - -12.029921531677246 - ], - [ - "grund", - -12.030105590820312 - ], - [ - "seitig", - -12.030153274536133 - ], - [ - "pai", - -12.030250549316406 - ], - [ - "▁waist", - -12.030350685119629 - ], - [ - "▁Therapy", - -12.03049373626709 - ], - [ - "▁nomination", - -12.030599594116211 - ], - [ - "▁seama", - -12.030790328979492 - ], - [ - "▁analyse", - -12.030975341796875 - ], - [ - "▁emerge", - -12.031044006347656 - ], - [ - "▁adjustment", - -12.031106948852539 - ], - [ - "▁stroll", - -12.031106948852539 - ], - [ - "▁Beyond", - -12.031174659729004 - ], - [ - "▁legally", - -12.03122615814209 - ], - [ - "▁gauge", - -12.03123664855957 - ], - [ - "▁26,", - -12.031360626220703 - ], - [ - "Tex", - -12.031390190124512 - ], - [ - "economic", - -12.031488418579102 - ], - [ - "stoffe", - -12.031532287597656 - ], - [ - "Wir", - -12.031559944152832 - ], - [ - "ffen", - -12.031601905822754 - ], - [ - "▁acoperi", - -12.031609535217285 - ], - [ - "▁finale", - -12.031792640686035 - ], - [ - "▁theoretical", - -12.031864166259766 - ], - [ - "1.3", - -12.031875610351562 - ], - [ - "anim", - -12.031888008117676 - ], - [ - "▁separation", - -12.031928062438965 - ], - [ - "agence", - -12.031937599182129 - ], - [ - "▁réalisé", - -12.032069206237793 - ], - [ - "sprech", - -12.03215503692627 - ], - [ - "▁embedded", - -12.032208442687988 - ], - [ - "▁defence", - -12.032242774963379 - ], - [ - "éni", - -12.032569885253906 - ], - [ - "▁Norman", - -12.032613754272461 - ], - [ - "▁insgesamt", - -12.032621383666992 - ], - [ - "▁reminde", - -12.032631874084473 - ], - [ - "▁timeline", - -12.032703399658203 - ], - [ - "▁symbols", - -12.032770156860352 - ], - [ - "▁booth", - -12.032783508300781 - ], - [ - "▁Window", - -12.032788276672363 - ], - [ - "▁Titan", - -12.032910346984863 - ], - [ - "înt", - -12.033021926879883 - ], - [ - "▁langa", - -12.033021926879883 - ], - [ - "isant", - -12.03303337097168 - ], - [ - "hart", - -12.033113479614258 - ], - [ - "broader", - -12.033266067504883 - ], - [ - "▁stays", - -12.033288955688477 - ], - [ - "dur", - -12.033488273620605 - ], - [ - "▁Actually", - -12.033514022827148 - ], - [ - "works", - -12.03351879119873 - ], - [ - "▁réussi", - -12.03357219696045 - ], - [ - "▁performant", - -12.033658981323242 - ], - [ - "▁banana", - -12.033788681030273 - ], - [ - "▁baked", - -12.033870697021484 - ], - [ - "▁Parlament", - -12.033931732177734 - ], - [ - "▁Legend", - -12.033967018127441 - ], - [ - "toata", - -12.034172058105469 - ], - [ - "platte", - -12.03419017791748 - ], - [ - "▁Mou", - -12.034192085266113 - ], - [ - "HL", - -12.034235000610352 - ], - [ - "▁(8", - -12.034290313720703 - ], - [ - "▁accepting", - -12.034313201904297 - ], - [ - "▁Senator", - -12.034340858459473 - ], - [ - "▁consciousness", - -12.034396171569824 - ], - [ - "▁conducting", - -12.0344820022583 - ], - [ - "▁panic", - -12.034833908081055 - ], - [ - "▁FDA", - -12.035112380981445 - ], - [ - "▁(7", - -12.035163879394531 - ], - [ - "tool", - -12.035300254821777 - ], - [ - "▁Shipping", - -12.03538703918457 - ], - [ - "▁hop", - -12.035545349121094 - ], - [ - "▁conferences", - -12.03564167022705 - ], - [ - "▁pork", - -12.035661697387695 - ], - [ - "▁spam", - -12.035730361938477 - ], - [ - "▁interesant", - -12.035815238952637 - ], - [ - "▁Tagen", - -12.03581714630127 - ], - [ - "sig", - -12.035886764526367 - ], - [ - "étro", - -12.036044120788574 - ], - [ - "▁legendary", - -12.036449432373047 - ], - [ - "▁Alternative", - -12.036643981933594 - ], - [ - "iana", - -12.036704063415527 - ], - [ - "▁responsable", - -12.036888122558594 - ], - [ - "▁Mihai", - -12.037237167358398 - ], - [ - "▁decreased", - -12.037345886230469 - ], - [ - "▁organised", - -12.037485122680664 - ], - [ - "▁Lamp", - -12.037589073181152 - ], - [ - "litz", - -12.037622451782227 - ], - [ - "ohn", - -12.037622451782227 - ], - [ - "▁moteur", - -12.0376615524292 - ], - [ - "III", - -12.03768539428711 - ], - [ - "▁Montag", - -12.037755012512207 - ], - [ - "▁naturel", - -12.037814140319824 - ], - [ - "▁Hus", - -12.037842750549316 - ], - [ - "▁Schl", - -12.037884712219238 - ], - [ - "ains", - -12.037968635559082 - ], - [ - "▁dying", - -12.0380859375 - ], - [ - "▁HIV", - -12.038115501403809 - ], - [ - "],", - -12.038164138793945 - ], - [ - "alität", - -12.03818416595459 - ], - [ - "▁institute", - -12.038249015808105 - ], - [ - "mix", - -12.038433074951172 - ], - [ - "▁Regulation", - -12.038453102111816 - ], - [ - "▁pagina", - -12.03857707977295 - ], - [ - "▁Awesome", - -12.03860092163086 - ], - [ - "▁Official", - -12.03860092163086 - ], - [ - "▁Minute", - -12.038601875305176 - ], - [ - "▁dairy", - -12.038787841796875 - ], - [ - "▁carti", - -12.038881301879883 - ], - [ - "isk", - -12.039091110229492 - ], - [ - "▁thrilled", - -12.039138793945312 - ], - [ - "▁german", - -12.039172172546387 - ], - [ - "▁frustration", - -12.039228439331055 - ], - [ - "▁forums", - -12.03927230834961 - ], - [ - "command", - -12.039361000061035 - ], - [ - "▁router", - -12.039399147033691 - ], - [ - "▁Lösung", - -12.039423942565918 - ], - [ - "white", - -12.039470672607422 - ], - [ - "▁synthetic", - -12.039487838745117 - ], - [ - "▁retrouver", - -12.039554595947266 - ], - [ - "alle", - -12.039621353149414 - ], - [ - "daran", - -12.039653778076172 - ], - [ - "▁wahr", - -12.039697647094727 - ], - [ - "▁paths", - -12.039875984191895 - ], - [ - "▁unver", - -12.039962768554688 - ], - [ - "▁Environment", - -12.0400972366333 - ], - [ - "▁médecin", - -12.040510177612305 - ], - [ - "crypt", - -12.040572166442871 - ], - [ - "▁pursuit", - -12.040595054626465 - ], - [ - "flat", - -12.040611267089844 - ], - [ - "bron", - -12.040698051452637 - ], - [ - "▁Specialist", - -12.040852546691895 - ], - [ - "▁Vent", - -12.041157722473145 - ], - [ - "Gen", - -12.04132080078125 - ], - [ - "▁attraction", - -12.04132080078125 - ], - [ - "▁piese", - -12.041372299194336 - ], - [ - "CHE", - -12.041665077209473 - ], - [ - "fähig", - -12.04172420501709 - ], - [ - "▁28,", - -12.041773796081543 - ], - [ - "defender", - -12.041810989379883 - ], - [ - "▁stupid", - -12.04181957244873 - ], - [ - "enfin", - -12.04185962677002 - ], - [ - "▁composite", - -12.04207706451416 - ], - [ - "fragen", - -12.042202949523926 - ], - [ - "Part", - -12.042232513427734 - ], - [ - "may", - -12.042238235473633 - ], - [ - "▁Bucureşti", - -12.042248725891113 - ], - [ - "▁février", - -12.042248725891113 - ], - [ - "RED", - -12.042417526245117 - ], - [ - "▁makers", - -12.042462348937988 - ], - [ - "▁guns", - -12.042594909667969 - ], - [ - "▁pasta", - -12.042706489562988 - ], - [ - "STR", - -12.04271125793457 - ], - [ - "▁worthy", - -12.042760848999023 - ], - [ - "Poate", - -12.042783737182617 - ], - [ - "▁101", - -12.04286003112793 - ], - [ - "▁souhaitez", - -12.04299545288086 - ], - [ - "GN", - -12.043449401855469 - ], - [ - "drive", - -12.043499946594238 - ], - [ - "▁aveti", - -12.043582916259766 - ], - [ - "▁eventual", - -12.043591499328613 - ], - [ - "▁américain", - -12.043642044067383 - ], - [ - "▁Mine", - -12.043678283691406 - ], - [ - "▁sunset", - -12.043729782104492 - ], - [ - "▁Choice", - -12.043844223022461 - ], - [ - "▁offset", - -12.043944358825684 - ], - [ - "APP", - -12.04410457611084 - ], - [ - "▁suchen", - -12.044130325317383 - ], - [ - "▁aduc", - -12.044228553771973 - ], - [ - "▁Unternehmens", - -12.044342041015625 - ], - [ - "▁//", - -12.044651985168457 - ], - [ - "▁astept", - -12.044678688049316 - ], - [ - "▁Birthday", - -12.045061111450195 - ], - [ - "▁barn", - -12.045083999633789 - ], - [ - "apport", - -12.045105934143066 - ], - [ - "▁collar", - -12.045212745666504 - ], - [ - "▁gefunden", - -12.045294761657715 - ], - [ - "▁Hai", - -12.045429229736328 - ], - [ - "▁Soul", - -12.045441627502441 - ], - [ - "ismus", - -12.045654296875 - ], - [ - "letzt", - -12.045754432678223 - ], - [ - "▁maker", - -12.045841217041016 - ], - [ - "▁executed", - -12.045857429504395 - ], - [ - "▁Forschung", - -12.045915603637695 - ], - [ - "▁täglich", - -12.045958518981934 - ], - [ - "▁tailor", - -12.045960426330566 - ], - [ - "▁headquarters", - -12.0460844039917 - ], - [ - "▁physicians", - -12.046112060546875 - ], - [ - "▁Scout", - -12.046126365661621 - ], - [ - "folgen", - -12.046175003051758 - ], - [ - "▁cycling", - -12.046184539794922 - ], - [ - "mindestens", - -12.04620361328125 - ], - [ - "▁joli", - -12.046216011047363 - ], - [ - "▁classification", - -12.046225547790527 - ], - [ - "▁Führung", - -12.046258926391602 - ], - [ - "▁peau", - -12.04629135131836 - ], - [ - "INT", - -12.046502113342285 - ], - [ - "▁Garage", - -12.046664237976074 - ], - [ - "teile", - -12.046714782714844 - ], - [ - "util", - -12.046716690063477 - ], - [ - "▁petrec", - -12.046751022338867 - ], - [ - "▁Nevada", - -12.046826362609863 - ], - [ - "▁laisser", - -12.04706859588623 - ], - [ - "▁territoire", - -12.047131538391113 - ], - [ - "▁fichier", - -12.047154426574707 - ], - [ - "▁Formula", - -12.047343254089355 - ], - [ - "scopul", - -12.047379493713379 - ], - [ - "▁Tee", - -12.047486305236816 - ], - [ - "▁Monte", - -12.047529220581055 - ], - [ - "▁pumpkin", - -12.04757022857666 - ], - [ - "▁picnic", - -12.047589302062988 - ], - [ - "▁occupation", - -12.047652244567871 - ], - [ - "▁numérique", - -12.047831535339355 - ], - [ - "linie", - -12.04786491394043 - ], - [ - "▁masina", - -12.048117637634277 - ], - [ - "▁Prä", - -12.048173904418945 - ], - [ - "▁dezvoltare", - -12.048177719116211 - ], - [ - "▁vient", - -12.048291206359863 - ], - [ - "▁ranks", - -12.048295021057129 - ], - [ - "▁Bruce", - -12.048420906066895 - ], - [ - "▁seara", - -12.048433303833008 - ], - [ - "▁hungry", - -12.048563003540039 - ], - [ - "▁resolved", - -12.048650741577148 - ], - [ - "paired", - -12.048735618591309 - ], - [ - "▁Congratulations", - -12.048881530761719 - ], - [ - "▁religi", - -12.048918724060059 - ], - [ - "sätze", - -12.04897689819336 - ], - [ - "▁Eat", - -12.049172401428223 - ], - [ - "▁dense", - -12.049442291259766 - ], - [ - "▁slice", - -12.049447059631348 - ], - [ - "▁mulți", - -12.049463272094727 - ], - [ - "▁vorbe", - -12.049517631530762 - ], - [ - "▁terminate", - -12.049779891967773 - ], - [ - "worm", - -12.049880981445312 - ], - [ - "ignon", - -12.0499267578125 - ], - [ - "▁Howard", - -12.049992561340332 - ], - [ - "▁toddler", - -12.050017356872559 - ], - [ - "▁waters", - -12.050033569335938 - ], - [ - "▁graduates", - -12.0501708984375 - ], - [ - "▁fundraising", - -12.050298690795898 - ], - [ - "06.", - -12.05031967163086 - ], - [ - "▁scent", - -12.050346374511719 - ], - [ - "▁CPU", - -12.050406455993652 - ], - [ - "▁Kid", - -12.05045223236084 - ], - [ - "▁Years", - -12.050460815429688 - ], - [ - "▁Oktober", - -12.05063533782959 - ], - [ - "filled", - -12.050726890563965 - ], - [ - "▁Laser", - -12.05079460144043 - ], - [ - "▁tut", - -12.051032066345215 - ], - [ - "ively", - -12.051101684570312 - ], - [ - "▁WiFi", - -12.051161766052246 - ], - [ - "standen", - -12.051176071166992 - ], - [ - "▁publié", - -12.051243782043457 - ], - [ - "▁explaining", - -12.051279067993164 - ], - [ - "trieb", - -12.051288604736328 - ], - [ - "▁Rapid", - -12.0513334274292 - ], - [ - "▁unterstützt", - -12.051352500915527 - ], - [ - "▁Sonnen", - -12.051401138305664 - ], - [ - "▁lenses", - -12.05141544342041 - ], - [ - "▁pressing", - -12.051477432250977 - ], - [ - "▁respected", - -12.051657676696777 - ], - [ - "adapted", - -12.051706314086914 - ], - [ - "Don", - -12.051726341247559 - ], - [ - "▁mun", - -12.051733016967773 - ], - [ - "MAR", - -12.05180835723877 - ], - [ - "▁seam", - -12.051852226257324 - ], - [ - "chev", - -12.052140235900879 - ], - [ - "▁Sozial", - -12.052424430847168 - ], - [ - "▁Arabia", - -12.052485466003418 - ], - [ - "▁equation", - -12.05257511138916 - ], - [ - "▁elevi", - -12.052780151367188 - ], - [ - "▁piata", - -12.052868843078613 - ], - [ - "JA", - -12.052873611450195 - ], - [ - "▁wholesale", - -12.052887916564941 - ], - [ - "▁faithful", - -12.05296516418457 - ], - [ - "legal", - -12.053092002868652 - ], - [ - "▁Brexit", - -12.053095817565918 - ], - [ - "vention", - -12.053120613098145 - ], - [ - "▁adhere", - -12.053221702575684 - ], - [ - "▁Associate", - -12.053257942199707 - ], - [ - "▁decorations", - -12.053272247314453 - ], - [ - "▁crois", - -12.053359985351562 - ], - [ - "buck", - -12.053370475769043 - ], - [ - "▁smartphones", - -12.053421020507812 - ], - [ - "Regardless", - -12.053427696228027 - ], - [ - "center", - -12.053434371948242 - ], - [ - "eiß", - -12.053481101989746 - ], - [ - "▁emotion", - -12.053584098815918 - ], - [ - "▁Gespräch", - -12.053797721862793 - ], - [ - "▁Avi", - -12.053963661193848 - ], - [ - "▁loft", - -12.054059982299805 - ], - [ - "▁Wissen", - -12.054391860961914 - ], - [ - "▁orchestra", - -12.05439567565918 - ], - [ - "▁gehören", - -12.054421424865723 - ], - [ - "▁Reich", - -12.054532051086426 - ], - [ - "▁abandoned", - -12.054548263549805 - ], - [ - "▁Lanka", - -12.054586410522461 - ], - [ - "pala", - -12.054832458496094 - ], - [ - "▁Stell", - -12.054838180541992 - ], - [ - "logged", - -12.054924964904785 - ], - [ - "terie", - -12.054935455322266 - ], - [ - "▁educa", - -12.054954528808594 - ], - [ - "1).", - -12.055097579956055 - ], - [ - "▁disponibil", - -12.055119514465332 - ], - [ - "IND", - -12.055197715759277 - ], - [ - "▁Pont", - -12.055288314819336 - ], - [ - "▁téléphone", - -12.055398941040039 - ], - [ - "▁rope", - -12.055595397949219 - ], - [ - "ève", - -12.055622100830078 - ], - [ - "▁Trainer", - -12.056062698364258 - ], - [ - "▁présence", - -12.0560941696167 - ], - [ - "▁Oscar", - -12.056121826171875 - ], - [ - "▁VR", - -12.056342124938965 - ], - [ - "▁Besucher", - -12.056357383728027 - ], - [ - "▁disponibles", - -12.056447982788086 - ], - [ - "▁gelten", - -12.056604385375977 - ], - [ - "▁ports", - -12.056645393371582 - ], - [ - "Invest", - -12.056693077087402 - ], - [ - "ésormais", - -12.056795120239258 - ], - [ - "schauen", - -12.056880950927734 - ], - [ - "▁Command", - -12.056958198547363 - ], - [ - "▁alternate", - -12.05709171295166 - ], - [ - "citation", - -12.05713939666748 - ], - [ - "évolution", - -12.05714225769043 - ], - [ - "▁Maine", - -12.057145118713379 - ], - [ - "pflege", - -12.057174682617188 - ], - [ - "2011", - -12.057343482971191 - ], - [ - "▁Ground", - -12.057364463806152 - ], - [ - "▁ghost", - -12.057418823242188 - ], - [ - "lebt", - -12.057530403137207 - ], - [ - "▁scenarios", - -12.057595252990723 - ], - [ - "▁mall", - -12.057634353637695 - ], - [ - "▁Kings", - -12.057653427124023 - ], - [ - "▁15%", - -12.057848930358887 - ], - [ - "▁Paint", - -12.057848930358887 - ], - [ - "FD", - -12.057849884033203 - ], - [ - "ugg", - -12.058011054992676 - ], - [ - "▁Leon", - -12.058023452758789 - ], - [ - "▁grows", - -12.058135032653809 - ], - [ - "▁pharmacy", - -12.058384895324707 - ], - [ - "▁situat", - -12.0584135055542 - ], - [ - "20,000", - -12.05855941772461 - ], - [ - "▁10,000", - -12.058760643005371 - ], - [ - "▁membre", - -12.058771133422852 - ], - [ - "▁facilement", - -12.058806419372559 - ], - [ - "▁Analytics", - -12.058915138244629 - ], - [ - "▁Marvel", - -12.058930397033691 - ], - [ - "▁survived", - -12.059097290039062 - ], - [ - "▁conviction", - -12.059124946594238 - ], - [ - "▁Produktion", - -12.059260368347168 - ], - [ - "▁professionally", - -12.059293746948242 - ], - [ - "▁contributor", - -12.059486389160156 - ], - [ - "▁Kurs", - -12.059503555297852 - ], - [ - "▁humor", - -12.059549331665039 - ], - [ - "▁cinci", - -12.059609413146973 - ], - [ - "▁Different", - -12.059670448303223 - ], - [ - "▁Verarbeitung", - -12.059800148010254 - ], - [ - "▁inexpensive", - -12.059800148010254 - ], - [ - "▁sortie", - -12.05980110168457 - ], - [ - "▁thankful", - -12.059951782226562 - ], - [ - "▁vacances", - -12.059978485107422 - ], - [ - "▁vergangen", - -12.059979438781738 - ], - [ - "▁wings", - -12.05998420715332 - ], - [ - "▁nano", - -12.06003475189209 - ], - [ - "▁touches", - -12.060088157653809 - ], - [ - "▁Notice", - -12.060348510742188 - ], - [ - "▁reprezinta", - -12.060466766357422 - ], - [ - "▁rewarding", - -12.060555458068848 - ], - [ - "▁Kurz", - -12.060580253601074 - ], - [ - "▁mega", - -12.060611724853516 - ], - [ - "▁secrets", - -12.060646057128906 - ], - [ - "▁vorher", - -12.060667037963867 - ], - [ - "▁crescut", - -12.06074333190918 - ], - [ - "▁coordination", - -12.060754776000977 - ], - [ - "▁dissertation", - -12.060863494873047 - ], - [ - "▁header", - -12.060873985290527 - ], - [ - "existent", - -12.061070442199707 - ], - [ - "thal", - -12.061185836791992 - ], - [ - "▁translate", - -12.061214447021484 - ], - [ - "vertrag", - -12.06124210357666 - ], - [ - "GU", - -12.06126594543457 - ], - [ - "▁Arthur", - -12.061315536499023 - ], - [ - "wahl", - -12.061534881591797 - ], - [ - "▁octobre", - -12.061573028564453 - ], - [ - "▁bother", - -12.06157398223877 - ], - [ - "▁pencil", - -12.061580657958984 - ], - [ - "▁Dyna", - -12.061604499816895 - ], - [ - "▁complimentary", - -12.061651229858398 - ], - [ - "écoute", - -12.061676979064941 - ], - [ - "PB", - -12.061722755432129 - ], - [ - "▁independently", - -12.061759948730469 - ], - [ - "▁targeting", - -12.061840057373047 - ], - [ - "fought", - -12.061944961547852 - ], - [ - "mental", - -12.062112808227539 - ], - [ - "▁Veranstaltung", - -12.062300682067871 - ], - [ - "▁tatsächlich", - -12.062314987182617 - ], - [ - "▁Features", - -12.0625 - ], - [ - "▁1920", - -12.062554359436035 - ], - [ - "▁Domain", - -12.062885284423828 - ], - [ - "▁rally", - -12.062901496887207 - ], - [ - "▁iunie", - -12.063036918640137 - ], - [ - "▁fabrics", - -12.063070297241211 - ], - [ - "▁mint", - -12.063331604003906 - ], - [ - "▁antioxidant", - -12.063347816467285 - ], - [ - "hut", - -12.063432693481445 - ], - [ - "EPA", - -12.063496589660645 - ], - [ - "▁rigid", - -12.063498497009277 - ], - [ - "▁evit", - -12.063549995422363 - ], - [ - "▁personnage", - -12.063977241516113 - ], - [ - "▁garanti", - -12.0640287399292 - ], - [ - "▁Hä", - -12.064042091369629 - ], - [ - "▁Days", - -12.064048767089844 - ], - [ - "boarding", - -12.064050674438477 - ], - [ - "jemand", - -12.064166069030762 - ], - [ - "▁Pos", - -12.064262390136719 - ], - [ - "▁wool", - -12.064288139343262 - ], - [ - "▁boom", - -12.064349174499512 - ], - [ - "▁wichtige", - -12.06447982788086 - ], - [ - "▁emerged", - -12.064517974853516 - ], - [ - "▁smoothly", - -12.064802169799805 - ], - [ - "▁Interview", - -12.064942359924316 - ], - [ - "gemäß", - -12.06505012512207 - ], - [ - "▁suivi", - -12.065064430236816 - ], - [ - "▁missions", - -12.065129280090332 - ], - [ - "▁Kreis", - -12.065328598022461 - ], - [ - "century", - -12.065348625183105 - ], - [ - "▁tuned", - -12.065370559692383 - ], - [ - "isieren", - -12.065407752990723 - ], - [ - "▁Branch", - -12.065427780151367 - ], - [ - "▁Russell", - -12.065483093261719 - ], - [ - "▁**", - -12.065519332885742 - ], - [ - "▁Lehr", - -12.065617561340332 - ], - [ - "▁perspectives", - -12.065690040588379 - ], - [ - "▁handed", - -12.06570816040039 - ], - [ - "▁apporte", - -12.065743446350098 - ], - [ - "unta", - -12.065959930419922 - ], - [ - "▁contemplat", - -12.066255569458008 - ], - [ - "riel", - -12.06633472442627 - ], - [ - "▁freely", - -12.066341400146484 - ], - [ - "▁loyal", - -12.066451072692871 - ], - [ - "▁evolved", - -12.066518783569336 - ], - [ - "▁Cafe", - -12.066548347473145 - ], - [ - "▁assignments", - -12.066598892211914 - ], - [ - "▁Cream", - -12.066718101501465 - ], - [ - "▁Build", - -12.066731452941895 - ], - [ - "▁exams", - -12.066746711730957 - ], - [ - "▁graduation", - -12.066765785217285 - ], - [ - "▁Dining", - -12.066773414611816 - ], - [ - "inne", - -12.06684398651123 - ], - [ - "▁propriu", - -12.067055702209473 - ], - [ - "▁accordingly", - -12.067241668701172 - ], - [ - "▁seniors", - -12.067484855651855 - ], - [ - "▁sisters", - -12.067505836486816 - ], - [ - "formerly", - -12.067658424377441 - ], - [ - "▁fleur", - -12.067702293395996 - ], - [ - "▁alten", - -12.067802429199219 - ], - [ - "▁Gefühl", - -12.06797981262207 - ], - [ - "▁freeze", - -12.068222045898438 - ], - [ - "▁structured", - -12.068312644958496 - ], - [ - "▁reserved", - -12.068367004394531 - ], - [ - "stellt", - -12.068638801574707 - ], - [ - "▁foto", - -12.068668365478516 - ], - [ - "linger", - -12.06871223449707 - ], - [ - "▁profiter", - -12.068737030029297 - ], - [ - "▁trup", - -12.068862915039062 - ], - [ - "▁Hunter", - -12.068974494934082 - ], - [ - "▁widespread", - -12.069050788879395 - ], - [ - "entretien", - -12.069242477416992 - ], - [ - "▁Truck", - -12.06958293914795 - ], - [ - "Can", - -12.069656372070312 - ], - [ - "péri", - -12.06976318359375 - ], - [ - "▁>>", - -12.069926261901855 - ], - [ - "▁trains", - -12.070141792297363 - ], - [ - "▁faca", - -12.070149421691895 - ], - [ - "▁Patienten", - -12.070170402526855 - ], - [ - "▁scor", - -12.070361137390137 - ], - [ - "▁perceived", - -12.070384979248047 - ], - [ - "setzung", - -12.070393562316895 - ], - [ - "▁Robin", - -12.070558547973633 - ], - [ - "▁geboren", - -12.07060718536377 - ], - [ - "lons", - -12.070687294006348 - ], - [ - "inţa", - -12.070836067199707 - ], - [ - "glob", - -12.070887565612793 - ], - [ - "subsequently", - -12.07111930847168 - ], - [ - "▁vet", - -12.071170806884766 - ], - [ - "▁Holland", - -12.071328163146973 - ], - [ - "▁Clinical", - -12.071370124816895 - ], - [ - "▁uncertainty", - -12.071381568908691 - ], - [ - "hohen", - -12.071386337280273 - ], - [ - "uza", - -12.071431159973145 - ], - [ - "▁kleiner", - -12.071518898010254 - ], - [ - "▁substances", - -12.07155704498291 - ], - [ - "ados", - -12.071627616882324 - ], - [ - "wheel", - -12.07178020477295 - ], - [ - "▁cone", - -12.071990966796875 - ], - [ - "▁castig", - -12.072218894958496 - ], - [ - "▁Conditions", - -12.072242736816406 - ], - [ - "minus", - -12.072643280029297 - ], - [ - "▁permits", - -12.07265853881836 - ], - [ - "fond", - -12.072784423828125 - ], - [ - "▁reactions", - -12.07278823852539 - ], - [ - "▁Mario", - -12.072819709777832 - ], - [ - "▁materiale", - -12.07291030883789 - ], - [ - "AH", - -12.072924613952637 - ], - [ - "▁juillet", - -12.073172569274902 - ], - [ - "▁juridic", - -12.073182106018066 - ], - [ - "▁dropping", - -12.073200225830078 - ], - [ - "expérience", - -12.073225021362305 - ], - [ - "▁depot", - -12.073345184326172 - ], - [ - "▁plea", - -12.073490142822266 - ], - [ - "dezvoltarea", - -12.073512077331543 - ], - [ - "▁Independent", - -12.07363224029541 - ], - [ - "▁Homes", - -12.073674201965332 - ], - [ - "▁crust", - -12.073808670043945 - ], - [ - "▁pillow", - -12.073899269104004 - ], - [ - "kreis", - -12.073920249938965 - ], - [ - "▁boiler", - -12.073928833007812 - ], - [ - "latin", - -12.073978424072266 - ], - [ - "▁stet", - -12.074131965637207 - ], - [ - "GH", - -12.074143409729004 - ], - [ - "▁absent", - -12.074334144592285 - ], - [ - "▁Directors", - -12.074501037597656 - ], - [ - "zwischen", - -12.07462215423584 - ], - [ - "▁comprendre", - -12.07465648651123 - ], - [ - "▁25,", - -12.074832916259766 - ], - [ - "▁pharmaceutical", - -12.075145721435547 - ], - [ - "▁placeholder", - -12.075174331665039 - ], - [ - "KI", - -12.075176239013672 - ], - [ - "▁români", - -12.07540225982666 - ], - [ - "▁Dollar", - -12.075509071350098 - ], - [ - "▁Operations", - -12.075525283813477 - ], - [ - "▁Dublin", - -12.075550079345703 - ], - [ - "▁drawings", - -12.0756196975708 - ], - [ - "▁respir", - -12.075769424438477 - ], - [ - "▁haul", - -12.0758056640625 - ], - [ - "Obviously", - -12.075864791870117 - ], - [ - "▁Beat", - -12.075864791870117 - ], - [ - "▁jeans", - -12.07590103149414 - ], - [ - "▁Masters", - -12.075927734375 - ], - [ - "▁bits", - -12.076213836669922 - ], - [ - "poți", - -12.076226234436035 - ], - [ - "▁asigur", - -12.076228141784668 - ], - [ - "▁intampla", - -12.076228141784668 - ], - [ - "▁marc", - -12.076282501220703 - ], - [ - "......", - -12.076404571533203 - ], - [ - "▁districts", - -12.076437950134277 - ], - [ - "cru", - -12.076457023620605 - ], - [ - "nav", - -12.076608657836914 - ], - [ - "huile", - -12.076644897460938 - ], - [ - "▁limitation", - -12.076647758483887 - ], - [ - "boat", - -12.076712608337402 - ], - [ - "IRE", - -12.076720237731934 - ], - [ - "Unis", - -12.07675838470459 - ], - [ - "dated", - -12.0769624710083 - ], - [ - "▁consultants", - -12.07699203491211 - ], - [ - "▁Josh", - -12.077007293701172 - ], - [ - "tanz", - -12.077184677124023 - ], - [ - "launching", - -12.0772066116333 - ], - [ - "▁browsing", - -12.077310562133789 - ], - [ - "▁incerc", - -12.077314376831055 - ], - [ - "▁27,", - -12.077375411987305 - ], - [ - "не", - -12.077398300170898 - ], - [ - "wig", - -12.077415466308594 - ], - [ - "▁spar", - -12.077458381652832 - ], - [ - "▁token", - -12.077547073364258 - ], - [ - "▁09", - -12.077548027038574 - ], - [ - "spa", - -12.07766056060791 - ], - [ - "ometer", - -12.07772159576416 - ], - [ - "▁riders", - -12.077869415283203 - ], - [ - "▁Drop", - -12.077898979187012 - ], - [ - "RN", - -12.078103065490723 - ], - [ - "▁pairs", - -12.07815933227539 - ], - [ - "▁psychology", - -12.078420639038086 - ], - [ - "▁Douglas", - -12.078437805175781 - ], - [ - "▁verwenden", - -12.078516960144043 - ], - [ - "▁(9", - -12.07857894897461 - ], - [ - "▁Rental", - -12.078728675842285 - ], - [ - "▁délai", - -12.078847885131836 - ], - [ - "▁sooner", - -12.078882217407227 - ], - [ - "▁bankruptcy", - -12.079109191894531 - ], - [ - "04.", - -12.079110145568848 - ], - [ - "abend", - -12.079194068908691 - ], - [ - "çon", - -12.079237937927246 - ], - [ - "▁Ple", - -12.079243659973145 - ], - [ - "fug", - -12.079337120056152 - ], - [ - "▁Wohnung", - -12.079410552978516 - ], - [ - "▁Preise", - -12.079424858093262 - ], - [ - "▁Kay", - -12.079427719116211 - ], - [ - "▁notify", - -12.079474449157715 - ], - [ - "▁Brain", - -12.079534530639648 - ], - [ - "▁optical", - -12.079580307006836 - ], - [ - "▁modifications", - -12.079727172851562 - ], - [ - "▁repos", - -12.07999324798584 - ], - [ - "▁worksheet", - -12.0800142288208 - ], - [ - "continu", - -12.08005428314209 - ], - [ - "▁assumed", - -12.08059024810791 - ], - [ - "varying", - -12.080626487731934 - ], - [ - "feier", - -12.080643653869629 - ], - [ - "▁Freedom", - -12.080717086791992 - ], - [ - "▁Inhalte", - -12.080740928649902 - ], - [ - "▁observations", - -12.080755233764648 - ], - [ - "▁Gruppe", - -12.080791473388672 - ], - [ - "▁Cyber", - -12.080883979797363 - ], - [ - "hort", - -12.080889701843262 - ], - [ - "▁langue", - -12.080915451049805 - ], - [ - "führen", - -12.08110523223877 - ], - [ - "ganze", - -12.081254005432129 - ], - [ - "▁forte", - -12.081327438354492 - ], - [ - "▁Stefan", - -12.081376075744629 - ], - [ - "▁Jetzt", - -12.081463813781738 - ], - [ - "mehr", - -12.081489562988281 - ], - [ - "trip", - -12.081549644470215 - ], - [ - "▁poem", - -12.081583976745605 - ], - [ - "▁practitioners", - -12.081720352172852 - ], - [ - "▁connector", - -12.08177661895752 - ], - [ - "ECT", - -12.081794738769531 - ], - [ - "▁inseamna", - -12.081820487976074 - ], - [ - "addressing", - -12.081867218017578 - ], - [ - "▁beliebt", - -12.081908226013184 - ], - [ - "▁Mama", - -12.082002639770508 - ], - [ - "▁fade", - -12.08204460144043 - ], - [ - "messen", - -12.08205509185791 - ], - [ - "▁Visa", - -12.082080841064453 - ], - [ - "▁Meta", - -12.082154273986816 - ], - [ - "lene", - -12.082188606262207 - ], - [ - "▁remembered", - -12.082334518432617 - ], - [ - "/3", - -12.082337379455566 - ], - [ - "apte", - -12.082347869873047 - ], - [ - "▁uncomfortable", - -12.082364082336426 - ], - [ - "▁romance", - -12.08253002166748 - ], - [ - "▁réalis", - -12.082601547241211 - ], - [ - "▁Vincent", - -12.082706451416016 - ], - [ - "▁ABC", - -12.08275318145752 - ], - [ - "▁handicap", - -12.082756042480469 - ], - [ - "▁Shin", - -12.082801818847656 - ], - [ - "▁Hunde", - -12.082847595214844 - ], - [ - "▁Ach", - -12.083131790161133 - ], - [ - "▁Questions", - -12.083136558532715 - ], - [ - "▁particles", - -12.083226203918457 - ], - [ - "usch", - -12.083230018615723 - ], - [ - "▁SUV", - -12.083279609680176 - ], - [ - "▁Tous", - -12.083301544189453 - ], - [ - "▁empower", - -12.08336067199707 - ], - [ - "▁Yi", - -12.083446502685547 - ], - [ - "▁LinkedIn", - -12.083453178405762 - ], - [ - "▁Profile", - -12.083507537841797 - ], - [ - "▁surround", - -12.083553314208984 - ], - [ - "▁wh", - -12.083560943603516 - ], - [ - "▁Weiter", - -12.083577156066895 - ], - [ - "▁Weight", - -12.083672523498535 - ], - [ - "▁creatures", - -12.083807945251465 - ], - [ - "Especially", - -12.08381462097168 - ], - [ - "▁repede", - -12.08383560180664 - ], - [ - "▁albums", - -12.083885192871094 - ], - [ - "▁compatibil", - -12.0839204788208 - ], - [ - "▁Interesse", - -12.083929061889648 - ], - [ - "abili", - -12.084062576293945 - ], - [ - "▁roast", - -12.084310531616211 - ], - [ - "▁unii", - -12.084310531616211 - ], - [ - "▁Glad", - -12.084421157836914 - ], - [ - "▁enthusiasm", - -12.084539413452148 - ], - [ - "▁whisk", - -12.084547996520996 - ], - [ - "▁freezer", - -12.084712982177734 - ], - [ - "▁stolen", - -12.084715843200684 - ], - [ - "▁neighbour", - -12.084883689880371 - ], - [ - "▁sake", - -12.084967613220215 - ], - [ - "▁Effect", - -12.0850191116333 - ], - [ - "▁fighter", - -12.085044860839844 - ], - [ - "▁tranquil", - -12.085084915161133 - ], - [ - "▁organizer", - -12.085199356079102 - ], - [ - "pixel", - -12.085306167602539 - ], - [ - "▁Guest", - -12.085338592529297 - ], - [ - "▁Philipp", - -12.085369110107422 - ], - [ - "kunft", - -12.085382461547852 - ], - [ - "▁Meer", - -12.085409164428711 - ], - [ - "▁inviting", - -12.085432052612305 - ], - [ - "gänge", - -12.085450172424316 - ], - [ - "▁Position", - -12.085627555847168 - ], - [ - "giving", - -12.085693359375 - ], - [ - "▁marble", - -12.085807800292969 - ], - [ - "▁neg", - -12.085813522338867 - ], - [ - "▁Haar", - -12.085914611816406 - ], - [ - "Ein", - -12.086039543151855 - ], - [ - "▁buses", - -12.086187362670898 - ], - [ - "▁Lodge", - -12.086188316345215 - ], - [ - "soare", - -12.086319923400879 - ], - [ - "▁Barn", - -12.086409568786621 - ], - [ - "▁captain", - -12.086527824401855 - ], - [ - "▁Fix", - -12.08657169342041 - ], - [ - "ulate", - -12.086629867553711 - ], - [ - "ență", - -12.086709022521973 - ], - [ - "▁finances", - -12.086770057678223 - ], - [ - "▁VIP", - -12.086800575256348 - ], - [ - "▁Adams", - -12.086801528930664 - ], - [ - "▁spécialisé", - -12.086960792541504 - ], - [ - "▁fortunate", - -12.087236404418945 - ], - [ - "ility", - -12.087345123291016 - ], - [ - "▁democracy", - -12.08749771118164 - ], - [ - "shu", - -12.087580680847168 - ], - [ - "▁consiste", - -12.087624549865723 - ], - [ - "▁tort", - -12.087692260742188 - ], - [ - "▁branding", - -12.087793350219727 - ], - [ - "▁porch", - -12.08780288696289 - ], - [ - "UNI", - -12.087867736816406 - ], - [ - "▁placut", - -12.087915420532227 - ], - [ - "▁coupled", - -12.088058471679688 - ], - [ - "▁ministre", - -12.088187217712402 - ], - [ - "▁minerals", - -12.088335037231445 - ], - [ - "▁safer", - -12.088335990905762 - ], - [ - "▁outlets", - -12.088438034057617 - ], - [ - "▁caution", - -12.08864688873291 - ], - [ - "▁lightly", - -12.0886869430542 - ], - [ - "▁utilizator", - -12.088700294494629 - ], - [ - "▁Pala", - -12.088959693908691 - ], - [ - "▁doll", - -12.088961601257324 - ], - [ - "(1)", - -12.089065551757812 - ], - [ - "chol", - -12.089120864868164 - ], - [ - "▁Left", - -12.08919620513916 - ], - [ - "▁roulant", - -12.089277267456055 - ], - [ - "▁propune", - -12.089301109313965 - ], - [ - "▁Cred", - -12.089339256286621 - ], - [ - "▁negotiations", - -12.089362144470215 - ], - [ - "amba", - -12.089393615722656 - ], - [ - "▁grasp", - -12.089420318603516 - ], - [ - "▁Amsterdam", - -12.089451789855957 - ], - [ - "▁Zweck", - -12.08945369720459 - ], - [ - "▁conven", - -12.089563369750977 - ], - [ - "▁organizing", - -12.089574813842773 - ], - [ - "section", - -12.089618682861328 - ], - [ - "▁endeavor", - -12.089634895324707 - ], - [ - "▁basics", - -12.089722633361816 - ], - [ - "jud", - -12.089874267578125 - ], - [ - "▁yarn", - -12.090049743652344 - ], - [ - "▁shout", - -12.09009075164795 - ], - [ - "fällt", - -12.090285301208496 - ], - [ - "▁dragoste", - -12.09054946899414 - ], - [ - "▁Rein", - -12.090594291687012 - ], - [ - "Cal", - -12.090688705444336 - ], - [ - "▁deaths", - -12.090729713439941 - ], - [ - "▁24,", - -12.0907564163208 - ], - [ - "▁măr", - -12.090773582458496 - ], - [ - "server", - -12.090825080871582 - ], - [ - "▁explic", - -12.09085464477539 - ], - [ - "▁sufer", - -12.090903282165527 - ], - [ - "▁lucrări", - -12.091097831726074 - ], - [ - "▁Disease", - -12.091126441955566 - ], - [ - "▁prescribed", - -12.091194152832031 - ], - [ - "prozess", - -12.091285705566406 - ], - [ - "▁dessin", - -12.091343879699707 - ], - [ - "▁refuge", - -12.091473579406738 - ], - [ - "▁cope", - -12.091631889343262 - ], - [ - "pole", - -12.09196949005127 - ], - [ - "▁vacant", - -12.091984748840332 - ], - [ - "▁sezon", - -12.092035293579102 - ], - [ - "▁Carbon", - -12.092227935791016 - ], - [ - "▁goût", - -12.092233657836914 - ], - [ - "Ste", - -12.092320442199707 - ], - [ - "▁surroundings", - -12.092754364013672 - ], - [ - "definite", - -12.09284496307373 - ], - [ - "▁adaptation", - -12.093358993530273 - ], - [ - "cteur", - -12.0933837890625 - ], - [ - "System", - -12.093442916870117 - ], - [ - "▁Burg", - -12.093550682067871 - ], - [ - "▁retention", - -12.093579292297363 - ], - [ - "examen", - -12.093618392944336 - ], - [ - "▁adjustments", - -12.093668937683105 - ], - [ - "nies", - -12.094213485717773 - ], - [ - "▁RSS", - -12.094215393066406 - ], - [ - "▁Umwelt", - -12.094259262084961 - ], - [ - "▁strengths", - -12.094326972961426 - ], - [ - "loom", - -12.094401359558105 - ], - [ - "▁pics", - -12.094404220581055 - ], - [ - "phase", - -12.09443187713623 - ], - [ - "▁Poland", - -12.094472885131836 - ], - [ - "▁practicing", - -12.094558715820312 - ], - [ - "monetary", - -12.094756126403809 - ], - [ - "▁embodiment", - -12.094756126403809 - ], - [ - "▁jocuri", - -12.094846725463867 - ], - [ - "▁impreuna", - -12.094939231872559 - ], - [ - "▁Lyon", - -12.094985961914062 - ], - [ - "keeping", - -12.095157623291016 - ], - [ - "▁Starting", - -12.095202445983887 - ], - [ - "▁începe", - -12.095357894897461 - ], - [ - "▁clay", - -12.095440864562988 - ], - [ - "bildung", - -12.095444679260254 - ], - [ - "Technologie", - -12.095513343811035 - ], - [ - "toxic", - -12.095624923706055 - ], - [ - "▁gasit", - -12.095819473266602 - ], - [ - "rott", - -12.095870018005371 - ], - [ - "brook", - -12.095935821533203 - ], - [ - "▁wann", - -12.096029281616211 - ], - [ - "▁lined", - -12.09610366821289 - ], - [ - "▁Chelsea", - -12.096223831176758 - ], - [ - "▁Orlando", - -12.096224784851074 - ], - [ - "▁Otherwise", - -12.096267700195312 - ], - [ - "▁debit", - -12.096273422241211 - ], - [ - "▁entsprechend", - -12.09648323059082 - ], - [ - "nism", - -12.09654426574707 - ], - [ - "issen", - -12.09664535522461 - ], - [ - "▁rendez", - -12.096646308898926 - ], - [ - "▁processus", - -12.096745491027832 - ], - [ - "mbi", - -12.096890449523926 - ], - [ - "▁Graduate", - -12.096960067749023 - ], - [ - "▁cozy", - -12.097119331359863 - ], - [ - "▁Freunde", - -12.097320556640625 - ], - [ - "▁teme", - -12.097389221191406 - ], - [ - "▁bias", - -12.097548484802246 - ], - [ - "102", - -12.09756851196289 - ], - [ - "terrorism", - -12.09770679473877 - ], - [ - "threatening", - -12.097756385803223 - ], - [ - "ни", - -12.097776412963867 - ], - [ - "▁Sonntag", - -12.098062515258789 - ], - [ - "▁efect", - -12.098116874694824 - ], - [ - "▁prayers", - -12.098134994506836 - ], - [ - "▁backpack", - -12.09841537475586 - ], - [ - "?)", - -12.098489761352539 - ], - [ - "▁searches", - -12.098788261413574 - ], - [ - "ouverture", - -12.09880256652832 - ], - [ - "▁sustained", - -12.098865509033203 - ], - [ - "hawk", - -12.098869323730469 - ], - [ - "messe", - -12.098958969116211 - ], - [ - "▁prototype", - -12.098989486694336 - ], - [ - "▁stră", - -12.09903335571289 - ], - [ - "▁Neo", - -12.099040985107422 - ], - [ - "▁29,", - -12.099109649658203 - ], - [ - "izo", - -12.099306106567383 - ], - [ - "▁Anton", - -12.099333763122559 - ], - [ - "SIS", - -12.099564552307129 - ], - [ - "pendant", - -12.099617958068848 - ], - [ - "▁passive", - -12.099813461303711 - ], - [ - "▁Aaron", - -12.099824905395508 - ], - [ - "▁Karen", - -12.099831581115723 - ], - [ - "▁Bildung", - -12.09994888305664 - ], - [ - "ario", - -12.099949836730957 - ], - [ - "▁regulator", - -12.100006103515625 - ], - [ - "gruppe", - -12.100032806396484 - ], - [ - "stepped", - -12.100053787231445 - ], - [ - "▁interventions", - -12.10014533996582 - ], - [ - "▁rounds", - -12.100149154663086 - ], - [ - "▁Khan", - -12.10020637512207 - ], - [ - "▁railway", - -12.10028076171875 - ], - [ - "▁souvenir", - -12.100296974182129 - ], - [ - "▁Plans", - -12.100336074829102 - ], - [ - "aille", - -12.100372314453125 - ], - [ - "▁billing", - -12.100473403930664 - ], - [ - "▁Spiele", - -12.100541114807129 - ], - [ - "▁supermarket", - -12.100556373596191 - ], - [ - "▁flows", - -12.100625991821289 - ], - [ - "▁PayPal", - -12.100641250610352 - ], - [ - "▁tribe", - -12.10067081451416 - ], - [ - "anni", - -12.100780487060547 - ], - [ - "▁rides", - -12.100934982299805 - ], - [ - "▁Orleans", - -12.101009368896484 - ], - [ - "▁evaluated", - -12.101021766662598 - ], - [ - "founder", - -12.10106372833252 - ], - [ - "▁Feld", - -12.101212501525879 - ], - [ - "▁altele", - -12.10122299194336 - ], - [ - "▁thermo", - -12.101290702819824 - ], - [ - "ugh", - -12.101330757141113 - ], - [ - "▁adus", - -12.101375579833984 - ], - [ - "▁Taiwan", - -12.101396560668945 - ], - [ - "▁clause", - -12.101409912109375 - ], - [ - "oxi", - -12.101465225219727 - ], - [ - "alcool", - -12.101495742797852 - ], - [ - "▁Noi", - -12.101531982421875 - ], - [ - "rub", - -12.101540565490723 - ], - [ - "▁dosar", - -12.101582527160645 - ], - [ - "▁Nelson", - -12.101751327514648 - ], - [ - "fassung", - -12.102316856384277 - ], - [ - "▁Kill", - -12.102489471435547 - ], - [ - "▁Standards", - -12.102490425109863 - ], - [ - "▁upward", - -12.102653503417969 - ], - [ - "▁Coloring", - -12.102664947509766 - ], - [ - "Designed", - -12.102754592895508 - ], - [ - "▁Nou", - -12.10281753540039 - ], - [ - "▁borrow", - -12.102940559387207 - ], - [ - "▁Poll", - -12.10321044921875 - ], - [ - "▁antibiotic", - -12.103277206420898 - ], - [ - "▁fabrication", - -12.103388786315918 - ], - [ - "quo", - -12.103432655334473 - ], - [ - "▁crimes", - -12.103464126586914 - ], - [ - "▁nahe", - -12.103484153747559 - ], - [ - "▁aplicat", - -12.103565216064453 - ], - [ - "OST", - -12.1035737991333 - ], - [ - "▁Beijing", - -12.103599548339844 - ], - [ - "fight", - -12.103612899780273 - ], - [ - "▁lodge", - -12.103612899780273 - ], - [ - "dreh", - -12.103922843933105 - ], - [ - "▁harness", - -12.104036331176758 - ], - [ - "▁noiembrie", - -12.104151725769043 - ], - [ - "ounded", - -12.104161262512207 - ], - [ - "▁Imp", - -12.1041841506958 - ], - [ - "▁nächste", - -12.104275703430176 - ], - [ - "funktion", - -12.104476928710938 - ], - [ - "exploitation", - -12.104569435119629 - ], - [ - "▁Ready", - -12.10457706451416 - ], - [ - "▁Plate", - -12.104598999023438 - ], - [ - "▁octombrie", - -12.104706764221191 - ], - [ - "▁considerat", - -12.104982376098633 - ], - [ - "▁Xbox", - -12.105067253112793 - ], - [ - "mind", - -12.105107307434082 - ], - [ - "▁Lind", - -12.105111122131348 - ], - [ - "runde", - -12.105352401733398 - ], - [ - "mination", - -12.105374336242676 - ], - [ - "▁memori", - -12.105377197265625 - ], - [ - "▁cere", - -12.105389595031738 - ], - [ - "barkeit", - -12.105517387390137 - ], - [ - "▁găsi", - -12.105761528015137 - ], - [ - "2.1", - -12.105863571166992 - ], - [ - "▁Finding", - -12.105891227722168 - ], - [ - "▁static", - -12.106405258178711 - ], - [ - "court", - -12.106439590454102 - ], - [ - "▁Gem", - -12.106489181518555 - ], - [ - "▁pièce", - -12.106494903564453 - ], - [ - "▁reel", - -12.10651969909668 - ], - [ - "▁manuscript", - -12.106560707092285 - ], - [ - "▁complications", - -12.106578826904297 - ], - [ - "▁controlling", - -12.106585502624512 - ], - [ - "▁favour", - -12.106738090515137 - ], - [ - "▁advancement", - -12.106739044189453 - ], - [ - "▁Radi", - -12.106870651245117 - ], - [ - "▁faites", - -12.107076644897461 - ], - [ - "▁ordin", - -12.107131958007812 - ], - [ - "sorted", - -12.107152938842773 - ], - [ - "▁1982", - -12.10715389251709 - ], - [ - "▁brutal", - -12.107154846191406 - ], - [ - "▁Guy", - -12.107226371765137 - ], - [ - "▁accomplishment", - -12.107248306274414 - ], - [ - "▁wer", - -12.107329368591309 - ], - [ - "▁withdraw", - -12.107460975646973 - ], - [ - "abilitate", - -12.1075439453125 - ], - [ - "▁NBA", - -12.107625961303711 - ], - [ - "▁Benefit", - -12.107675552368164 - ], - [ - "▁divide", - -12.107824325561523 - ], - [ - "induced", - -12.107913970947266 - ], - [ - "▁văzut", - -12.108049392700195 - ], - [ - "▁peel", - -12.10807991027832 - ], - [ - "▁joints", - -12.108160972595215 - ], - [ - "▁enthalten", - -12.108301162719727 - ], - [ - "▁spy", - -12.108397483825684 - ], - [ - "▁occasional", - -12.108437538146973 - ], - [ - "warm", - -12.108514785766602 - ], - [ - "ême", - -12.108542442321777 - ], - [ - "▁Betriebs", - -12.108551979064941 - ], - [ - "▁Ioan", - -12.1087064743042 - ], - [ - "▁balloon", - -12.108809471130371 - ], - [ - "▁leap", - -12.108869552612305 - ], - [ - "pelled", - -12.109000205993652 - ], - [ - "▁realise", - -12.109073638916016 - ], - [ - "▁Retail", - -12.109118461608887 - ], - [ - "▁Farben", - -12.109151840209961 - ], - [ - "▁Kennedy", - -12.10916519165039 - ], - [ - "▁Firma", - -12.109196662902832 - ], - [ - "▁tineri", - -12.10934066772461 - ], - [ - "tub", - -12.109354019165039 - ], - [ - "PORT", - -12.109381675720215 - ], - [ - "▁stiff", - -12.109416007995605 - ], - [ - "▁notable", - -12.109476089477539 - ], - [ - "tler", - -12.109498023986816 - ], - [ - "▁utile", - -12.10958480834961 - ], - [ - "▁jouer", - -12.109674453735352 - ], - [ - "▁Primary", - -12.109735488891602 - ], - [ - "▁retailer", - -12.109764099121094 - ], - [ - "▁jederzeit", - -12.109808921813965 - ], - [ - "▁amend", - -12.109817504882812 - ], - [ - "▁sagte", - -12.109845161437988 - ], - [ - "atch", - -12.10995864868164 - ], - [ - "ution", - -12.110008239746094 - ], - [ - "once", - -12.110018730163574 - ], - [ - "ended", - -12.1100435256958 - ], - [ - "▁literary", - -12.11013126373291 - ], - [ - "▁wrist", - -12.110281944274902 - ], - [ - "vii", - -12.11036205291748 - ], - [ - "scriere", - -12.110367774963379 - ], - [ - "▁compassion", - -12.110443115234375 - ], - [ - "▁Milan", - -12.110474586486816 - ], - [ - "▁Dach", - -12.110490798950195 - ], - [ - "▁problèmes", - -12.110630989074707 - ], - [ - "▁Pré", - -12.110687255859375 - ], - [ - "▁Feder", - -12.110759735107422 - ], - [ - "Dr", - -12.110814094543457 - ], - [ - "Spr", - -12.110908508300781 - ], - [ - "▁né", - -12.110969543457031 - ], - [ - "François", - -12.111023902893066 - ], - [ - "▁Shu", - -12.111115455627441 - ], - [ - "▁poison", - -12.111154556274414 - ], - [ - "zier", - -12.111176490783691 - ], - [ - "▁attain", - -12.11124038696289 - ], - [ - "▁switching", - -12.111310958862305 - ], - [ - "▁vibration", - -12.111348152160645 - ], - [ - "▁Tablet", - -12.11136531829834 - ], - [ - "▁Lern", - -12.11148452758789 - ], - [ - "offrir", - -12.111660957336426 - ], - [ - "123", - -12.11168098449707 - ], - [ - "cheapest", - -12.11173152923584 - ], - [ - "▁numărul", - -12.111764907836914 - ], - [ - "break", - -12.11180305480957 - ], - [ - "cyto", - -12.111836433410645 - ], - [ - "▁Mississippi", - -12.111955642700195 - ], - [ - "▁dragon", - -12.11207389831543 - ], - [ - "fir", - -12.112176895141602 - ], - [ - "▁fête", - -12.112180709838867 - ], - [ - "▁Wait", - -12.112350463867188 - ], - [ - "buy", - -12.112359046936035 - ], - [ - "având", - -12.112391471862793 - ], - [ - "▁Scar", - -12.112517356872559 - ], - [ - "▁Hund", - -12.112586975097656 - ], - [ - "bug", - -12.112807273864746 - ], - [ - "▁classique", - -12.112811088562012 - ], - [ - "▁tenant", - -12.112860679626465 - ], - [ - "▁Walt", - -12.11296272277832 - ], - [ - "▁timber", - -12.11296272277832 - ], - [ - "inscription", - -12.11300277709961 - ], - [ - "BD", - -12.113016128540039 - ], - [ - "▁Commissioner", - -12.113018989562988 - ], - [ - "▁casinos", - -12.11306095123291 - ], - [ - "▁prochain", - -12.113168716430664 - ], - [ - "▁rustic", - -12.11349868774414 - ], - [ - "▁Kent", - -12.113607406616211 - ], - [ - "▁Deci", - -12.113761901855469 - ], - [ - "ли", - -12.113855361938477 - ], - [ - "▁crossed", - -12.113861083984375 - ], - [ - "▁delightful", - -12.113869667053223 - ], - [ - "▁metres", - -12.113872528076172 - ], - [ - "▁scandal", - -12.113906860351562 - ], - [ - "▁activitate", - -12.113986015319824 - ], - [ - "▁nimeni", - -12.114009857177734 - ], - [ - "ease", - -12.11402416229248 - ], - [ - "▁revenues", - -12.1140775680542 - ], - [ - "▁partially", - -12.114187240600586 - ], - [ - "AE", - -12.114263534545898 - ], - [ - "nique", - -12.114410400390625 - ], - [ - "▁fixtures", - -12.114426612854004 - ], - [ - "▁pupils", - -12.114694595336914 - ], - [ - "Lib", - -12.11471176147461 - ], - [ - "analyse", - -12.114739418029785 - ], - [ - "▁Oracle", - -12.114767074584961 - ], - [ - "troph", - -12.114859580993652 - ], - [ - "▁detected", - -12.114879608154297 - ], - [ - "▁servant", - -12.11507797241211 - ], - [ - "▁badly", - -12.115121841430664 - ], - [ - "comparing", - -12.115150451660156 - ], - [ - "abs", - -12.115238189697266 - ], - [ - "▁fotografi", - -12.115443229675293 - ], - [ - "▁Million", - -12.115541458129883 - ], - [ - "▁Gordon", - -12.11557388305664 - ], - [ - "▁Smok", - -12.115592002868652 - ], - [ - "▁Essay", - -12.11565113067627 - ], - [ - "eptic", - -12.115665435791016 - ], - [ - "▁Transportation", - -12.115728378295898 - ], - [ - "/2019", - -12.115767478942871 - ], - [ - "▁alignment", - -12.115778923034668 - ], - [ - "▁laut", - -12.11578369140625 - ], - [ - "stände", - -12.115791320800781 - ], - [ - "▁concerts", - -12.115811347961426 - ], - [ - "▁weekends", - -12.11589241027832 - ], - [ - "▁obstacles", - -12.115941047668457 - ], - [ - "wür", - -12.115964889526367 - ], - [ - "▁Fisher", - -12.116219520568848 - ], - [ - "▁supervisor", - -12.116242408752441 - ], - [ - "▁traders", - -12.116262435913086 - ], - [ - "▁scary", - -12.116484642028809 - ], - [ - "▁Grove", - -12.116538047790527 - ], - [ - "▁expose", - -12.116583824157715 - ], - [ - "▁enemies", - -12.116630554199219 - ], - [ - "▁Lux", - -12.11667537689209 - ], - [ - "▁Berufs", - -12.11672306060791 - ], - [ - "▁Sheet", - -12.116780281066895 - ], - [ - "▁Natürlich", - -12.116819381713867 - ], - [ - "▁examined", - -12.116886138916016 - ], - [ - "pursuing", - -12.116920471191406 - ], - [ - "▁pools", - -12.116923332214355 - ], - [ - "▁Thompson", - -12.117005348205566 - ], - [ - "▁SAP", - -12.117010116577148 - ], - [ - "claiming", - -12.117053985595703 - ], - [ - "buried", - -12.117055892944336 - ], - [ - "assurance", - -12.117138862609863 - ], - [ - "▁sandwich", - -12.117195129394531 - ], - [ - "uber", - -12.117310523986816 - ], - [ - "▁laisse", - -12.117321968078613 - ], - [ - "peak", - -12.117348670959473 - ], - [ - "spring", - -12.1173677444458 - ], - [ - "▁august", - -12.117369651794434 - ], - [ - "▁benötigt", - -12.11738109588623 - ], - [ - "▁achievements", - -12.117470741271973 - ], - [ - "coala", - -12.117478370666504 - ], - [ - "▁scr", - -12.117842674255371 - ], - [ - "gesagt", - -12.118122100830078 - ], - [ - "▁envelope", - -12.118141174316406 - ], - [ - "▁mapping", - -12.118169784545898 - ], - [ - "▁Suche", - -12.118298530578613 - ], - [ - "first", - -12.118329048156738 - ], - [ - "▁Quin", - -12.118447303771973 - ], - [ - "räu", - -12.118561744689941 - ], - [ - "▁răs", - -12.118583679199219 - ], - [ - "chemical", - -12.118597984313965 - ], - [ - "dad", - -12.118927955627441 - ], - [ - "formation", - -12.118983268737793 - ], - [ - "▁cushion", - -12.119026184082031 - ], - [ - "▁Maß", - -12.119046211242676 - ], - [ - "07.", - -12.119184494018555 - ], - [ - "▁perioadă", - -12.119257926940918 - ], - [ - "▁Wunsch", - -12.11925983428955 - ], - [ - "▁joi", - -12.119423866271973 - ], - [ - "▁$25", - -12.119482040405273 - ], - [ - "▁uploaded", - -12.11952018737793 - ], - [ - "▁hobby", - -12.119633674621582 - ], - [ - "▁septembrie", - -12.119633674621582 - ], - [ - "▁Dimension", - -12.119634628295898 - ], - [ - "▁domeniu", - -12.119661331176758 - ], - [ - "▁Tourism", - -12.119747161865234 - ], - [ - "▁fais", - -12.119800567626953 - ], - [ - "aches", - -12.119919776916504 - ], - [ - "neck", - -12.119969367980957 - ], - [ - "▁Chip", - -12.119982719421387 - ], - [ - "▁Tisch", - -12.1199951171875 - ], - [ - "▁Pai", - -12.120006561279297 - ], - [ - "▁Butter", - -12.120083808898926 - ], - [ - "▁altor", - -12.120133399963379 - ], - [ - "cultural", - -12.120182991027832 - ], - [ - "▁bases", - -12.12028980255127 - ], - [ - "▁Christopher", - -12.120396614074707 - ], - [ - "Kindle", - -12.120401382446289 - ], - [ - "▁bathrooms", - -12.12049388885498 - ], - [ - "▁civilian", - -12.12052059173584 - ], - [ - "▁Architecture", - -12.12058162689209 - ], - [ - "heiten", - -12.120641708374023 - ], - [ - "otte", - -12.120763778686523 - ], - [ - "ри", - -12.120784759521484 - ], - [ - "wash", - -12.120792388916016 - ], - [ - "▁evenimente", - -12.12086296081543 - ], - [ - "lade", - -12.121132850646973 - ], - [ - "▁ermöglicht", - -12.121140480041504 - ], - [ - "Port", - -12.121149063110352 - ], - [ - "▁Horn", - -12.12119197845459 - ], - [ - "▁Housing", - -12.121232032775879 - ], - [ - "▁Profit", - -12.121304512023926 - ], - [ - "▁stressed", - -12.12136459350586 - ], - [ - "▁70%", - -12.121431350708008 - ], - [ - "laying", - -12.121458053588867 - ], - [ - "▁specialize", - -12.121490478515625 - ], - [ - "▁Published", - -12.121519088745117 - ], - [ - "corp", - -12.121554374694824 - ], - [ - "▁revision", - -12.121611595153809 - ], - [ - "▁sail", - -12.121804237365723 - ], - [ - "courtesy", - -12.121909141540527 - ], - [ - "tax", - -12.1219482421875 - ], - [ - "▁perfekt", - -12.122018814086914 - ], - [ - "▁Risk", - -12.122088432312012 - ], - [ - "▁chaleur", - -12.122129440307617 - ], - [ - "ych", - -12.122132301330566 - ], - [ - "▁spine", - -12.12218189239502 - ], - [ - "▁holders", - -12.122264862060547 - ], - [ - "▁Speaking", - -12.122271537780762 - ], - [ - "▁Bernard", - -12.122400283813477 - ], - [ - "incarc", - -12.122532844543457 - ], - [ - "shalb", - -12.122639656066895 - ], - [ - "Potrivit", - -12.12264633178711 - ], - [ - "arising", - -12.122654914855957 - ], - [ - "▁kingdom", - -12.122665405273438 - ], - [ - "▁potato", - -12.122766494750977 - ], - [ - "▁promoted", - -12.122814178466797 - ], - [ - "▁judges", - -12.1228609085083 - ], - [ - "▁naturelle", - -12.122992515563965 - ], - [ - "▁Kindern", - -12.123022079467773 - ], - [ - "schicht", - -12.123047828674316 - ], - [ - "▁Drag", - -12.123066902160645 - ], - [ - "atta", - -12.123132705688477 - ], - [ - "soient", - -12.123249053955078 - ], - [ - "INS", - -12.12336540222168 - ], - [ - "▁legislative", - -12.123642921447754 - ], - [ - "▁teens", - -12.123785018920898 - ], - [ - "▁Fotos", - -12.123842239379883 - ], - [ - "▁illustrations", - -12.12392520904541 - ], - [ - "möglichkeiten", - -12.12415599822998 - ], - [ - "Votre", - -12.124194145202637 - ], - [ - "▁tarif", - -12.124195098876953 - ], - [ - "cli", - -12.124488830566406 - ], - [ - "▁landlord", - -12.12473201751709 - ], - [ - "cine", - -12.124743461608887 - ], - [ - "▁bot", - -12.124798774719238 - ], - [ - "enhancing", - -12.12491226196289 - ], - [ - "▁März", - -12.12491226196289 - ], - [ - "▁succès", - -12.125106811523438 - ], - [ - "▁disclose", - -12.125120162963867 - ], - [ - "▁Geräte", - -12.125321388244629 - ], - [ - "▁Magn", - -12.125422477722168 - ], - [ - "dessous", - -12.12580680847168 - ], - [ - "▁miracle", - -12.125862121582031 - ], - [ - "▁travailler", - -12.125933647155762 - ], - [ - "▁herb", - -12.125945091247559 - ], - [ - "-01", - -12.126049041748047 - ], - [ - "litre", - -12.126104354858398 - ], - [ - "▁tău", - -12.126120567321777 - ], - [ - "ACC", - -12.126190185546875 - ], - [ - "▁diminu", - -12.126275062561035 - ], - [ - "itzer", - -12.126317024230957 - ], - [ - "▁personenbezogen", - -12.126395225524902 - ], - [ - "▁Pure", - -12.126436233520508 - ], - [ - "▁influences", - -12.12668228149414 - ], - [ - "ană", - -12.126765251159668 - ], - [ - "▁proposer", - -12.126856803894043 - ], - [ - "▁longest", - -12.12692642211914 - ], - [ - "euses", - -12.127080917358398 - ], - [ - "/1", - -12.127487182617188 - ], - [ - "hafte", - -12.127716064453125 - ], - [ - "▁Dich", - -12.127761840820312 - ], - [ - "▁candle", - -12.128026962280273 - ], - [ - "ouche", - -12.128191947937012 - ], - [ - "installation", - -12.128241539001465 - ], - [ - "▁Includes", - -12.128280639648438 - ], - [ - "▁entfernt", - -12.12831974029541 - ], - [ - "traf", - -12.128499031066895 - ], - [ - "▁None", - -12.128508567810059 - ], - [ - "▁produc", - -12.128510475158691 - ], - [ - "held", - -12.128519058227539 - ], - [ - "graphic", - -12.128531455993652 - ], - [ - "▁demographic", - -12.128584861755371 - ], - [ - "ingham", - -12.1287841796875 - ], - [ - "schul", - -12.128812789916992 - ], - [ - "▁sneak", - -12.128843307495117 - ], - [ - "laub", - -12.128889083862305 - ], - [ - "▁thickness", - -12.12911605834961 - ], - [ - "▁killer", - -12.129297256469727 - ], - [ - "▁entsprechende", - -12.129344940185547 - ], - [ - "▁theft", - -12.129396438598633 - ], - [ - "▁Jerusalem", - -12.129457473754883 - ], - [ - "Adapt", - -12.129495620727539 - ], - [ - "▁updating", - -12.129497528076172 - ], - [ - "tete", - -12.12954330444336 - ], - [ - "▁warming", - -12.129701614379883 - ], - [ - "anlage", - -12.129739761352539 - ], - [ - "▁lenders", - -12.129814147949219 - ], - [ - "mobile", - -12.130008697509766 - ], - [ - "▁Package", - -12.130080223083496 - ], - [ - "▁Volume", - -12.130152702331543 - ], - [ - "---", - -12.130167007446289 - ], - [ - "▁Others", - -12.130173683166504 - ], - [ - "content", - -12.130188941955566 - ], - [ - "tement", - -12.130253791809082 - ], - [ - "bildet", - -12.13027572631836 - ], - [ - "▁washer", - -12.13053035736084 - ], - [ - "▁freelance", - -12.130623817443848 - ], - [ - "▁fein", - -12.130753517150879 - ], - [ - "▁catering", - -12.130851745605469 - ], - [ - "▁warmth", - -12.130911827087402 - ], - [ - "▁Month", - -12.131103515625 - ], - [ - "▁Federation", - -12.131134033203125 - ], - [ - "▁editorial", - -12.13121223449707 - ], - [ - "▁Shopping", - -12.131241798400879 - ], - [ - "▁efort", - -12.131296157836914 - ], - [ - "▁damp", - -12.131314277648926 - ], - [ - "▁declined", - -12.131332397460938 - ], - [ - "▁1978", - -12.13135051727295 - ], - [ - "6,000", - -12.131355285644531 - ], - [ - "location", - -12.131551742553711 - ], - [ - "▁blogger", - -12.131572723388672 - ], - [ - "▁goodness", - -12.131826400756836 - ], - [ - "▁Purchase", - -12.132119178771973 - ], - [ - "▁suspended", - -12.132159233093262 - ], - [ - "▁assessed", - -12.132201194763184 - ], - [ - "rada", - -12.132286071777344 - ], - [ - "▁Lac", - -12.132291793823242 - ], - [ - "▁angeboten", - -12.13235092163086 - ], - [ - "▁Wetter", - -12.132370948791504 - ], - [ - "ores", - -12.13243579864502 - ], - [ - "▁fourni", - -12.132476806640625 - ], - [ - "▁retire", - -12.13269329071045 - ], - [ - "▁Baptist", - -12.132741928100586 - ], - [ - "▁Saison", - -12.13277530670166 - ], - [ - "Bar", - -12.132794380187988 - ], - [ - "▁dossier", - -12.132979393005371 - ], - [ - "brow", - -12.133044242858887 - ], - [ - "▁Kaffee", - -12.133071899414062 - ], - [ - "-25", - -12.133463859558105 - ], - [ - "▁festivals", - -12.133599281311035 - ], - [ - "▁sellers", - -12.133716583251953 - ], - [ - "Ü", - -12.13393783569336 - ], - [ - "▁publisher", - -12.133960723876953 - ], - [ - "▁Designs", - -12.133970260620117 - ], - [ - "▁putut", - -12.13400936126709 - ], - [ - "▁Built", - -12.134417533874512 - ], - [ - "▁recreational", - -12.134476661682129 - ], - [ - "▁european", - -12.134514808654785 - ], - [ - "▁binary", - -12.134631156921387 - ], - [ - "▁Nieder", - -12.134764671325684 - ], - [ - "taking", - -12.1348237991333 - ], - [ - "▁Lots", - -12.13494873046875 - ], - [ - "▁recognised", - -12.135031700134277 - ], - [ - "ssant", - -12.135063171386719 - ], - [ - "ITE", - -12.135271072387695 - ], - [ - "oom", - -12.135298728942871 - ], - [ - "▁Kre", - -12.135310173034668 - ], - [ - "▁pipes", - -12.135631561279297 - ], - [ - "▁hinge", - -12.135653495788574 - ], - [ - "▁enterprises", - -12.135664939880371 - ], - [ - "▁texts", - -12.13583755493164 - ], - [ - "Organiz", - -12.136080741882324 - ], - [ - "▁suivre", - -12.136124610900879 - ], - [ - "noc", - -12.136157989501953 - ], - [ - "fair", - -12.136194229125977 - ], - [ - "▁darkness", - -12.136305809020996 - ], - [ - "▁Whi", - -12.13631534576416 - ], - [ - "natural", - -12.136321067810059 - ], - [ - "Bas", - -12.136422157287598 - ], - [ - "▁tribute", - -12.136443138122559 - ], - [ - "▁Naţional", - -12.136573791503906 - ], - [ - "hara", - -12.136622428894043 - ], - [ - "▁catégorie", - -12.136697769165039 - ], - [ - "▁Schedule", - -12.136698722839355 - ], - [ - "▁lernen", - -12.13671875 - ], - [ - "▁Plastic", - -12.136725425720215 - ], - [ - "▁giveaway", - -12.13675594329834 - ], - [ - "▁Ideen", - -12.136906623840332 - ], - [ - "▁circa", - -12.13718032836914 - ], - [ - "▁lice", - -12.137242317199707 - ], - [ - "▁Meinung", - -12.137264251708984 - ], - [ - "▁beside", - -12.137566566467285 - ], - [ - "▁vazut", - -12.137673377990723 - ], - [ - "strom", - -12.137749671936035 - ], - [ - "boro", - -12.137775421142578 - ], - [ - "▁Soon", - -12.137796401977539 - ], - [ - "dozens", - -12.137896537780762 - ], - [ - "▁Arena", - -12.137943267822266 - ], - [ - "▁viața", - -12.137989044189453 - ], - [ - "▁Impact", - -12.138082504272461 - ], - [ - "current", - -12.138106346130371 - ], - [ - "FM", - -12.138117790222168 - ], - [ - "▁coil", - -12.138657569885254 - ], - [ - "gold", - -12.138679504394531 - ], - [ - "▁spate", - -12.138679504394531 - ], - [ - "1.4", - -12.13875675201416 - ], - [ - "solution", - -12.138769149780273 - ], - [ - "▁Wayne", - -12.138835906982422 - ], - [ - "▁queen", - -12.138898849487305 - ], - [ - "illion", - -12.139022827148438 - ], - [ - "greifen", - -12.139127731323242 - ], - [ - "▁Bil", - -12.139174461364746 - ], - [ - "rote", - -12.139185905456543 - ], - [ - "END", - -12.13918685913086 - ], - [ - "äl", - -12.139206886291504 - ], - [ - "▁reçu", - -12.139378547668457 - ], - [ - "flower", - -12.139495849609375 - ], - [ - "▁draws", - -12.139519691467285 - ], - [ - "plant", - -12.139605522155762 - ], - [ - "2010", - -12.139702796936035 - ], - [ - "▁oper", - -12.139762878417969 - ], - [ - "▁conserve", - -12.139777183532715 - ], - [ - "▁sprinkle", - -12.13984203338623 - ], - [ - "mode", - -12.139924049377441 - ], - [ - "▁lifting", - -12.139941215515137 - ], - [ - "▁Institution", - -12.139951705932617 - ], - [ - "Când", - -12.14001750946045 - ], - [ - "Aus", - -12.140048027038574 - ], - [ - "▁fears", - -12.140054702758789 - ], - [ - "▁appointments", - -12.140079498291016 - ], - [ - "oarele", - -12.140162467956543 - ], - [ - "▁duck", - -12.140193939208984 - ], - [ - "▁stadium", - -12.140213012695312 - ], - [ - "▁vezi", - -12.140227317810059 - ], - [ - "▁lap", - -12.140315055847168 - ], - [ - "▁proceeds", - -12.140382766723633 - ], - [ - "geschlossen", - -12.140412330627441 - ], - [ - "▁tren", - -12.140478134155273 - ], - [ - "VS", - -12.140536308288574 - ], - [ - "▁vais", - -12.140800476074219 - ], - [ - "ținut", - -12.140859603881836 - ], - [ - "▁Concert", - -12.140928268432617 - ], - [ - "▁planting", - -12.141008377075195 - ], - [ - "▁honour", - -12.141069412231445 - ], - [ - "▁gras", - -12.141071319580078 - ], - [ - "woo", - -12.141092300415039 - ], - [ - "▁Hero", - -12.141282081604004 - ], - [ - "▁stimulate", - -12.14134407043457 - ], - [ - "▁überhaupt", - -12.141426086425781 - ], - [ - "▁bounce", - -12.14148235321045 - ], - [ - "oodle", - -12.14151382446289 - ], - [ - "▁packs", - -12.141576766967773 - ], - [ - "▁Poker", - -12.14158821105957 - ], - [ - "▁acea", - -12.141684532165527 - ], - [ - "▁parish", - -12.141754150390625 - ], - [ - "-24", - -12.141766548156738 - ], - [ - "▁iTunes", - -12.141874313354492 - ], - [ - "▁lumière", - -12.141948699951172 - ], - [ - "third", - -12.142024993896484 - ], - [ - "▁dynamics", - -12.142038345336914 - ], - [ - "Unless", - -12.142162322998047 - ], - [ - "▁immense", - -12.142416000366211 - ], - [ - "▁Sec", - -12.142781257629395 - ], - [ - "lois", - -12.143009185791016 - ], - [ - "époque", - -12.14302921295166 - ], - [ - "NB", - -12.143139839172363 - ], - [ - "written", - -12.143210411071777 - ], - [ - "▁logement", - -12.143226623535156 - ], - [ - "submitting", - -12.143295288085938 - ], - [ - "▁Quand", - -12.14331340789795 - ], - [ - "▁foi", - -12.143322944641113 - ], - [ - "▁catalogue", - -12.143351554870605 - ], - [ - "nova", - -12.14343547821045 - ], - [ - "▁prezentat", - -12.143527030944824 - ], - [ - "▁tart", - -12.143877983093262 - ], - [ - "те", - -12.143912315368652 - ], - [ - "hack", - -12.143916130065918 - ], - [ - "▁Politic", - -12.144003868103027 - ], - [ - "▁18,", - -12.144048690795898 - ], - [ - "▁ignored", - -12.144145965576172 - ], - [ - "▁spoon", - -12.144245147705078 - ], - [ - "▁Joy", - -12.144280433654785 - ], - [ - "▁reside", - -12.144482612609863 - ], - [ - ".99", - -12.144488334655762 - ], - [ - "lytic", - -12.144625663757324 - ], - [ - "▁bogat", - -12.144643783569336 - ], - [ - "▁nurses", - -12.144845008850098 - ], - [ - "▁funcţi", - -12.145029067993164 - ], - [ - "▁produselor", - -12.145038604736328 - ], - [ - "▁Associates", - -12.145069122314453 - ], - [ - "Est", - -12.14511489868164 - ], - [ - "▁peanut", - -12.145187377929688 - ], - [ - "▁résultat", - -12.145257949829102 - ], - [ - "08.", - -12.145424842834473 - ], - [ - "▁Astro", - -12.145439147949219 - ], - [ - "▁personnelle", - -12.145527839660645 - ], - [ - "320", - -12.145668983459473 - ], - [ - "▁Grab", - -12.145748138427734 - ], - [ - "éco", - -12.145801544189453 - ], - [ - "▁clasic", - -12.145857810974121 - ], - [ - "offre", - -12.14588451385498 - ], - [ - "▁idee", - -12.14589786529541 - ], - [ - "▁cheat", - -12.146259307861328 - ], - [ - "▁Flug", - -12.146286964416504 - ], - [ - "▁1500", - -12.146413803100586 - ], - [ - "▁kurze", - -12.14643383026123 - ], - [ - "With", - -12.146512985229492 - ], - [ - "▁Half", - -12.146575927734375 - ], - [ - "▁disciplines", - -12.146642684936523 - ], - [ - "sorption", - -12.14669132232666 - ], - [ - "▁greutate", - -12.146927833557129 - ], - [ - "mä", - -12.146940231323242 - ], - [ - "▁Literatur", - -12.146956443786621 - ], - [ - "3/", - -12.147016525268555 - ], - [ - "4.0", - -12.147095680236816 - ], - [ - "▁déco", - -12.147119522094727 - ], - [ - "▁Fuß", - -12.147233963012695 - ], - [ - "▁Deutsche", - -12.147289276123047 - ], - [ - "▁abundance", - -12.14746379852295 - ], - [ - "▁Luther", - -12.14750862121582 - ], - [ - "▁nutritional", - -12.147562980651855 - ], - [ - "▁Jude", - -12.147687911987305 - ], - [ - "AY", - -12.14786148071289 - ], - [ - "▁chore", - -12.147916793823242 - ], - [ - "▁Kro", - -12.148006439208984 - ], - [ - "▁alin", - -12.14801025390625 - ], - [ - "lösung", - -12.148030281066895 - ], - [ - "▁geworden", - -12.148238182067871 - ], - [ - "▁sociaux", - -12.148255348205566 - ], - [ - "▁Spark", - -12.1486177444458 - ], - [ - "▁phenomenon", - -12.148624420166016 - ], - [ - "ICA", - -12.148805618286133 - ], - [ - "▁Ran", - -12.148836135864258 - ], - [ - "▁Schwarz", - -12.148959159851074 - ], - [ - "▁1983", - -12.148985862731934 - ], - [ - "ет", - -12.148990631103516 - ], - [ - "möglich", - -12.149084091186523 - ], - [ - "vocation", - -12.149087905883789 - ], - [ - "▁Organic", - -12.14926815032959 - ], - [ - "Oh", - -12.149408340454102 - ], - [ - "▁blockchain", - -12.149422645568848 - ], - [ - "▁Bă", - -12.149515151977539 - ], - [ - "▁Bass", - -12.14953899383545 - ], - [ - "enie", - -12.149687767028809 - ], - [ - "▁rêve", - -12.149807929992676 - ], - [ - "▁Rap", - -12.149986267089844 - ], - [ - "▁democratic", - -12.150044441223145 - ], - [ - "▁Chart", - -12.150167465209961 - ], - [ - "▁Voi", - -12.150189399719238 - ], - [ - "process", - -12.150263786315918 - ], - [ - "▁preach", - -12.150389671325684 - ], - [ - "tient", - -12.150456428527832 - ], - [ - "▁Train", - -12.150468826293945 - ], - [ - "▁Reihe", - -12.150472640991211 - ], - [ - "help", - -12.150514602661133 - ], - [ - "1.6", - -12.150547981262207 - ], - [ - "▁cazuri", - -12.150547981262207 - ], - [ - "▁chap", - -12.150559425354004 - ], - [ - "aktiv", - -12.150632858276367 - ], - [ - "▁2006.", - -12.15079116821289 - ], - [ - "iene", - -12.150849342346191 - ], - [ - "▁BBQ", - -12.150969505310059 - ], - [ - "dauer", - -12.151028633117676 - ], - [ - "2).", - -12.151226997375488 - ], - [ - "▁Monat", - -12.151277542114258 - ], - [ - "Generally", - -12.151285171508789 - ], - [ - "▁bracelet", - -12.151336669921875 - ], - [ - "▁cartoon", - -12.151349067687988 - ], - [ - "▁pui", - -12.151488304138184 - ], - [ - "temp", - -12.151506423950195 - ], - [ - "▁Particip", - -12.151555061340332 - ], - [ - "▁dumneavoastră", - -12.151725769042969 - ], - [ - "▁Gin", - -12.151824951171875 - ], - [ - "iunile", - -12.151829719543457 - ], - [ - "reise", - -12.151849746704102 - ], - [ - "▁einzige", - -12.15189266204834 - ], - [ - "ANCE", - -12.15192985534668 - ], - [ - "▁humble", - -12.151951789855957 - ], - [ - "claim", - -12.152093887329102 - ], - [ - "LV", - -12.152143478393555 - ], - [ - "▁confiance", - -12.152270317077637 - ], - [ - "▁Trading", - -12.152535438537598 - ], - [ - "▁Fabric", - -12.152770042419434 - ], - [ - "▁Duke", - -12.152851104736328 - ], - [ - "spieler", - -12.152937889099121 - ], - [ - "▁reject", - -12.152987480163574 - ], - [ - "▁crise", - -12.153170585632324 - ], - [ - "▁borders", - -12.153196334838867 - ], - [ - "▁Vehicle", - -12.153279304504395 - ], - [ - "zeiten", - -12.153481483459473 - ], - [ - "enrolled", - -12.153514862060547 - ], - [ - "venue", - -12.153555870056152 - ], - [ - "▁forests", - -12.153564453125 - ], - [ - "vascular", - -12.15358829498291 - ], - [ - "▁phrases", - -12.153661727905273 - ], - [ - "▁receptor", - -12.15368366241455 - ], - [ - "schied", - -12.153687477111816 - ], - [ - "▁soirée", - -12.153785705566406 - ], - [ - "▁partener", - -12.153987884521484 - ], - [ - "▁Jobs", - -12.15417194366455 - ], - [ - "▁segments", - -12.154216766357422 - ], - [ - "▁violate", - -12.154438972473145 - ], - [ - "▁viable", - -12.154500007629395 - ], - [ - "▁encountered", - -12.154533386230469 - ], - [ - "▁travelers", - -12.154552459716797 - ], - [ - "▁împ", - -12.154679298400879 - ], - [ - "▁convince", - -12.154693603515625 - ], - [ - "▁mailing", - -12.154693603515625 - ], - [ - "▁Zahn", - -12.154698371887207 - ], - [ - "attend", - -12.15477466583252 - ], - [ - "▁eBay", - -12.154836654663086 - ], - [ - "▁Emergency", - -12.154844284057617 - ], - [ - "wirtschaft", - -12.154882431030273 - ], - [ - "▁scholars", - -12.154947280883789 - ], - [ - "▁considerably", - -12.155118942260742 - ], - [ - "▁combo", - -12.1551513671875 - ], - [ - "hiver", - -12.155198097229004 - ], - [ - "▁mysterious", - -12.15522575378418 - ], - [ - "▁Degree", - -12.155234336853027 - ], - [ - "▁fate", - -12.155242919921875 - ], - [ - "▁transplant", - -12.155281066894531 - ], - [ - "▁samedi", - -12.155400276184082 - ], - [ - "unit", - -12.155519485473633 - ], - [ - "▁moyenne", - -12.155611991882324 - ], - [ - "▁Liverpool", - -12.155614852905273 - ], - [ - "▁Champions", - -12.155728340148926 - ], - [ - "zzle", - -12.155824661254883 - ], - [ - "▁arena", - -12.156228065490723 - ], - [ - "▁Pipe", - -12.15633487701416 - ], - [ - "▁waterproof", - -12.156356811523438 - ], - [ - "▁eternal", - -12.156463623046875 - ], - [ - "Whenever", - -12.156503677368164 - ], - [ - "▁Hop", - -12.156535148620605 - ], - [ - "▁Betrieb", - -12.156816482543945 - ], - [ - "gne", - -12.15692138671875 - ], - [ - "▁spe", - -12.156975746154785 - ], - [ - "▁Corner", - -12.157078742980957 - ], - [ - "▁devenir", - -12.157118797302246 - ], - [ - "ambiance", - -12.157144546508789 - ], - [ - "▁Graham", - -12.157200813293457 - ], - [ - "▁desires", - -12.157289505004883 - ], - [ - "▁Applications", - -12.157291412353516 - ], - [ - "▁genutzt", - -12.157477378845215 - ], - [ - "tek", - -12.157612800598145 - ], - [ - "▁Career", - -12.157641410827637 - ], - [ - "▁staple", - -12.157695770263672 - ], - [ - "▁Dodge", - -12.157817840576172 - ], - [ - "▁strictly", - -12.157889366149902 - ], - [ - "▁Gruppen", - -12.157952308654785 - ], - [ - "▁Finanz", - -12.157981872558594 - ], - [ - "▁sporting", - -12.15809440612793 - ], - [ - "▁Wieder", - -12.158127784729004 - ], - [ - "anny", - -12.158208847045898 - ], - [ - "▁bucura", - -12.158233642578125 - ], - [ - "▁Pest", - -12.15824031829834 - ], - [ - "▁circles", - -12.158246994018555 - ], - [ - "▁richtige", - -12.158309936523438 - ], - [ - "▁cycles", - -12.158379554748535 - ], - [ - "static", - -12.15845012664795 - ], - [ - "lasting", - -12.15847396850586 - ], - [ - "▁calcium", - -12.158549308776855 - ], - [ - "▁digest", - -12.158697128295898 - ], - [ - "Enfin", - -12.158865928649902 - ], - [ - "▁stressful", - -12.158951759338379 - ], - [ - "▁schemes", - -12.158981323242188 - ], - [ - "▁décision", - -12.158987045288086 - ], - [ - "▁comercial", - -12.15907096862793 - ], - [ - "işti", - -12.159098625183105 - ], - [ - "▁Comic", - -12.15910816192627 - ], - [ - "▁extensions", - -12.159140586853027 - ], - [ - "▁Sieg", - -12.159168243408203 - ], - [ - "▁pine", - -12.15919017791748 - ], - [ - "ieß", - -12.159272193908691 - ], - [ - "▁Images", - -12.159427642822266 - ], - [ - "▁Mensch", - -12.159668922424316 - ], - [ - "Pap", - -12.159773826599121 - ], - [ - "▁crops", - -12.15994930267334 - ], - [ - "▁sheep", - -12.159996032714844 - ], - [ - "▁istoric", - -12.160001754760742 - ], - [ - "▁Assessment", - -12.160035133361816 - ], - [ - "▁mounting", - -12.16035270690918 - ], - [ - "wirken", - -12.160469055175781 - ], - [ - "▁augment", - -12.160469055175781 - ], - [ - "▁picioare", - -12.160542488098145 - ], - [ - "organisme", - -12.160590171813965 - ], - [ - "▁Monitor", - -12.16060733795166 - ], - [ - "▁celles", - -12.160642623901367 - ], - [ - "▁Maison", - -12.160709381103516 - ], - [ - "notified", - -12.160783767700195 - ], - [ - "▁chew", - -12.160831451416016 - ], - [ - "▁bleu", - -12.16083812713623 - ], - [ - "dow", - -12.160844802856445 - ], - [ - "▁Grav", - -12.16097354888916 - ], - [ - "▁curtains", - -12.160975456237793 - ], - [ - "▁Campus", - -12.161076545715332 - ], - [ - "▁controversial", - -12.161087036132812 - ], - [ - "▁soutien", - -12.161189079284668 - ], - [ - "▁Dell", - -12.1613187789917 - ], - [ - "▁instrumental", - -12.161431312561035 - ], - [ - "▁Nan", - -12.161514282226562 - ], - [ - "▁prom", - -12.161520957946777 - ], - [ - "▁spatial", - -12.161523818969727 - ], - [ - "Similarly", - -12.161558151245117 - ], - [ - "▁Gala", - -12.161601066589355 - ], - [ - "ultimul", - -12.16162109375 - ], - [ - "▁Vom", - -12.161761283874512 - ], - [ - "▁Foot", - -12.161784172058105 - ], - [ - "bike", - -12.1618013381958 - ], - [ - "▁acids", - -12.161979675292969 - ], - [ - "entend", - -12.162002563476562 - ], - [ - "ivă", - -12.162040710449219 - ], - [ - "▁Weitere", - -12.162124633789062 - ], - [ - "▁vitamins", - -12.162131309509277 - ], - [ - "▁enhancement", - -12.16234016418457 - ], - [ - "▁Cruise", - -12.162367820739746 - ], - [ - "assemble", - -12.162385940551758 - ], - [ - "▁spécifique", - -12.162459373474121 - ], - [ - "affaires", - -12.16261100769043 - ], - [ - "▁indispensable", - -12.1626558303833 - ], - [ - "▁logistics", - -12.16283130645752 - ], - [ - "▁manche", - -12.162919044494629 - ], - [ - "▁dealt", - -12.16297435760498 - ], - [ - "▁favorable", - -12.163036346435547 - ], - [ - "▁unwanted", - -12.163047790527344 - ], - [ - "▁handmade", - -12.163065910339355 - ], - [ - "▁Regi", - -12.163102149963379 - ], - [ - "safe", - -12.163134574890137 - ], - [ - "persoanele", - -12.163202285766602 - ], - [ - "▁destinat", - -12.163252830505371 - ], - [ - "▁Maxi", - -12.163299560546875 - ], - [ - "▁salmon", - -12.163454055786133 - ], - [ - "wag", - -12.163578033447266 - ], - [ - "210", - -12.163769721984863 - ], - [ - "▁warned", - -12.163865089416504 - ], - [ - "läuft", - -12.16386604309082 - ], - [ - "agging", - -12.163931846618652 - ], - [ - "▁responsabil", - -12.16398811340332 - ], - [ - "▁presse", - -12.164271354675293 - ], - [ - "▁amis", - -12.164305686950684 - ], - [ - "▁rolls", - -12.164377212524414 - ], - [ - "control", - -12.164405822753906 - ], - [ - "▁Manufacturer", - -12.164422988891602 - ], - [ - "hnen", - -12.164449691772461 - ], - [ - "▁buget", - -12.164546012878418 - ], - [ - "OW", - -12.16467571258545 - ], - [ - "etro", - -12.164745330810547 - ], - [ - "▁communauté", - -12.164837837219238 - ], - [ - "unci", - -12.164944648742676 - ], - [ - "▁Chine", - -12.164952278137207 - ], - [ - "combines", - -12.16501235961914 - ], - [ - "▁learners", - -12.165046691894531 - ], - [ - "STE", - -12.165055274963379 - ], - [ - "ckel", - -12.16511344909668 - ], - [ - "Service", - -12.165169715881348 - ], - [ - "▁veröffentlicht", - -12.165209770202637 - ], - [ - "besides", - -12.165266036987305 - ], - [ - "getragen", - -12.165349960327148 - ], - [ - "▁opponent", - -12.165521621704102 - ], - [ - "▁volum", - -12.165533065795898 - ], - [ - "▁confusing", - -12.165802001953125 - ], - [ - "invasive", - -12.165813446044922 - ], - [ - "▁conseils", - -12.165881156921387 - ], - [ - "▁vibe", - -12.165928840637207 - ], - [ - "View", - -12.166062355041504 - ], - [ - "oară", - -12.166086196899414 - ], - [ - "Link", - -12.166261672973633 - ], - [ - "▁holy", - -12.166261672973633 - ], - [ - "▁crema", - -12.16629409790039 - ], - [ - "▁Michelle", - -12.166303634643555 - ], - [ - "▁Wien", - -12.166383743286133 - ], - [ - "▁undertake", - -12.166404724121094 - ], - [ - "▁Photograph", - -12.166421890258789 - ], - [ - "humain", - -12.16645336151123 - ], - [ - "▁Hang", - -12.166545867919922 - ], - [ - "designed", - -12.16657829284668 - ], - [ - "▁analyses", - -12.166614532470703 - ], - [ - "▁compose", - -12.166653633117676 - ], - [ - "▁substantially", - -12.166765213012695 - ], - [ - "▁marking", - -12.166772842407227 - ], - [ - "▁campagne", - -12.166826248168945 - ], - [ - "▁$15", - -12.166828155517578 - ], - [ - "pharma", - -12.166972160339355 - ], - [ - "▁playoff", - -12.1669921875 - ], - [ - "▁momentum", - -12.167091369628906 - ], - [ - "Temp", - -12.16714096069336 - ], - [ - "▁vinegar", - -12.167143821716309 - ], - [ - "▁descriptions", - -12.167581558227539 - ], - [ - "christ", - -12.167656898498535 - ], - [ - "wore", - -12.16773509979248 - ], - [ - "ITY", - -12.167768478393555 - ], - [ - "stehen", - -12.167771339416504 - ], - [ - "▁insulation", - -12.1677827835083 - ], - [ - "grav", - -12.167842864990234 - ], - [ - "2.2", - -12.167887687683105 - ], - [ - "▁Explore", - -12.168028831481934 - ], - [ - "▁dye", - -12.168127059936523 - ], - [ - "stair", - -12.168155670166016 - ], - [ - "artisan", - -12.168207168579102 - ], - [ - "▁zoom", - -12.168285369873047 - ], - [ - "▁turkey", - -12.168573379516602 - ], - [ - "▁locksmith", - -12.168577194213867 - ], - [ - "▁sewing", - -12.168610572814941 - ], - [ - "▁modeling", - -12.168627738952637 - ], - [ - "lied", - -12.16870403289795 - ], - [ - "adel", - -12.168773651123047 - ], - [ - "▁Going", - -12.168785095214844 - ], - [ - "WH", - -12.168798446655273 - ], - [ - "▁deserves", - -12.168919563293457 - ], - [ - "▁arriving", - -12.168960571289062 - ], - [ - "OFF", - -12.169039726257324 - ], - [ - "torului", - -12.169109344482422 - ], - [ - "ucked", - -12.16921615600586 - ], - [ - "▁approached", - -12.169351577758789 - ], - [ - "▁élevé", - -12.169354438781738 - ], - [ - "▁quotidien", - -12.169416427612305 - ], - [ - "▁derzeit", - -12.16942024230957 - ], - [ - "nutzt", - -12.169656753540039 - ], - [ - "science", - -12.169729232788086 - ], - [ - "▁Emma", - -12.169841766357422 - ], - [ - "▁builds", - -12.169879913330078 - ], - [ - "▁Logo", - -12.169949531555176 - ], - [ - "▁clouds", - -12.170061111450195 - ], - [ - "inflammatory", - -12.170141220092773 - ], - [ - "țiuni", - -12.170199394226074 - ], - [ - "▁Cisco", - -12.17025089263916 - ], - [ - "▁würden", - -12.170254707336426 - ], - [ - "▁Shaw", - -12.170256614685059 - ], - [ - "▁Ell", - -12.170266151428223 - ], - [ - "avance", - -12.1703519821167 - ], - [ - "anglais", - -12.170365333557129 - ], - [ - "weil", - -12.170368194580078 - ], - [ - "▁singura", - -12.170464515686035 - ], - [ - "ACK", - -12.170489311218262 - ], - [ - "likewise", - -12.170522689819336 - ], - [ - "ographie", - -12.170646667480469 - ], - [ - "liegen", - -12.17088508605957 - ], - [ - "▁Crow", - -12.170964241027832 - ], - [ - "▁unic", - -12.171187400817871 - ], - [ - "▁Ale", - -12.171241760253906 - ], - [ - "▁păstr", - -12.17125129699707 - ], - [ - "▁informal", - -12.171337127685547 - ], - [ - "650", - -12.17136287689209 - ], - [ - "Benz", - -12.171489715576172 - ], - [ - "▁antenna", - -12.171540260314941 - ], - [ - "▁pagini", - -12.171552658081055 - ], - [ - "▁lansat", - -12.171561241149902 - ], - [ - "▁Fans", - -12.171576499938965 - ], - [ - "taine", - -12.171822547912598 - ], - [ - "JO", - -12.171853065490723 - ], - [ - "▁Tips", - -12.172091484069824 - ], - [ - "cir", - -12.172130584716797 - ], - [ - "nou", - -12.172384262084961 - ], - [ - "▁planted", - -12.17241382598877 - ], - [ - "▁steering", - -12.172423362731934 - ], - [ - "▁Waren", - -12.172475814819336 - ], - [ - "▁clearance", - -12.172515869140625 - ], - [ - "▁Moscow", - -12.172516822814941 - ], - [ - "▁Faith", - -12.172534942626953 - ], - [ - "▁Pizza", - -12.172572135925293 - ], - [ - "▁Tank", - -12.17273998260498 - ], - [ - "QUE", - -12.172783851623535 - ], - [ - "▁studii", - -12.172804832458496 - ], - [ - "éné", - -12.172829627990723 - ], - [ - "▁guerre", - -12.1728515625 - ], - [ - "▁celebr", - -12.173083305358887 - ], - [ - "▁Factory", - -12.173111915588379 - ], - [ - "▁Browse", - -12.173198699951172 - ], - [ - "▁Request", - -12.17323112487793 - ], - [ - "▁taxpayer", - -12.173311233520508 - ], - [ - "▁assert", - -12.173562049865723 - ], - [ - "unternehmen", - -12.173588752746582 - ], - [ - "▁Ergebnis", - -12.173687934875488 - ], - [ - "▁Antwort", - -12.173727035522461 - ], - [ - "▁Photography", - -12.173808097839355 - ], - [ - "▁plă", - -12.173866271972656 - ], - [ - "IME", - -12.173982620239258 - ], - [ - "▁prochaine", - -12.174074172973633 - ], - [ - "ajouter", - -12.174103736877441 - ], - [ - "▁buffet", - -12.174227714538574 - ], - [ - "▁pixels", - -12.174239158630371 - ], - [ - "▁pledge", - -12.174250602722168 - ], - [ - "▁Inhalt", - -12.17435359954834 - ], - [ - "▁chase", - -12.174384117126465 - ], - [ - "Flow", - -12.174493789672852 - ], - [ - "▁melodi", - -12.174872398376465 - ], - [ - "▁Abu", - -12.174991607666016 - ], - [ - "▁1979", - -12.175042152404785 - ], - [ - "▁Photos", - -12.175042152404785 - ], - [ - "▁qualifications", - -12.175148963928223 - ], - [ - "▁zis", - -12.175213813781738 - ], - [ - "IAL", - -12.175354957580566 - ], - [ - "▁lender", - -12.175390243530273 - ], - [ - "▁indiferent", - -12.175494194030762 - ], - [ - "▁behaviors", - -12.175506591796875 - ], - [ - "▁flowing", - -12.175531387329102 - ], - [ - "▁zweite", - -12.1756010055542 - ], - [ - "abl", - -12.175765037536621 - ], - [ - "Schw", - -12.176004409790039 - ], - [ - "opi", - -12.176030158996582 - ], - [ - "ggi", - -12.176164627075195 - ], - [ - "▁depart", - -12.176314353942871 - ], - [ - "▁garde", - -12.17640209197998 - ], - [ - "▁tuition", - -12.176490783691406 - ], - [ - "fälle", - -12.17650032043457 - ], - [ - "▁determina", - -12.17652702331543 - ], - [ - "▁spice", - -12.176627159118652 - ], - [ - "▁petites", - -12.176777839660645 - ], - [ - "kot", - -12.176973342895508 - ], - [ - "▁intersection", - -12.177242279052734 - ], - [ - "hak", - -12.177248001098633 - ], - [ - "▁autumn", - -12.177284240722656 - ], - [ - "▁verbunden", - -12.177284240722656 - ], - [ - "▁ferme", - -12.177287101745605 - ], - [ - "PN", - -12.17733097076416 - ], - [ - "▁insurer", - -12.177390098571777 - ], - [ - "arten", - -12.177401542663574 - ], - [ - "▁Turkish", - -12.177715301513672 - ], - [ - "▁shoulders", - -12.177732467651367 - ], - [ - "=>", - -12.177742004394531 - ], - [ - "▁Nike", - -12.177760124206543 - ], - [ - "uire", - -12.177763938903809 - ], - [ - "▁Chile", - -12.177811622619629 - ], - [ - "jon", - -12.177842140197754 - ], - [ - "▁fragrance", - -12.177884101867676 - ], - [ - "▁bean", - -12.177908897399902 - ], - [ - "ips", - -12.178108215332031 - ], - [ - "assuming", - -12.178191184997559 - ], - [ - "liens", - -12.178215026855469 - ], - [ - "tocmai", - -12.178267478942871 - ], - [ - "▁60%", - -12.178301811218262 - ], - [ - "ipped", - -12.178384780883789 - ], - [ - "DIS", - -12.178473472595215 - ], - [ - "▁predicted", - -12.178537368774414 - ], - [ - "▁Picture", - -12.178555488586426 - ], - [ - "Bahn", - -12.178796768188477 - ], - [ - "104", - -12.178854942321777 - ], - [ - "tended", - -12.178958892822266 - ], - [ - "▁approve", - -12.179031372070312 - ], - [ - "▁magasin", - -12.17908000946045 - ], - [ - "▁mindset", - -12.179208755493164 - ], - [ - "rase", - -12.179363250732422 - ], - [ - "grand", - -12.179469108581543 - ], - [ - "▁Principal", - -12.17947769165039 - ], - [ - "▁informații", - -12.17959976196289 - ], - [ - "▁legătur", - -12.179628372192383 - ], - [ - "▁Farb", - -12.179692268371582 - ], - [ - "▁Dieu", - -12.179710388183594 - ], - [ - "▁alliance", - -12.180378913879395 - ], - [ - "weiligen", - -12.180397987365723 - ], - [ - "▁Câ", - -12.18048095703125 - ], - [ - "▁counseling", - -12.180521011352539 - ], - [ - "▁traveled", - -12.180533409118652 - ], - [ - "▁translated", - -12.180558204650879 - ], - [ - "▁carne", - -12.180679321289062 - ], - [ - "aked", - -12.180707931518555 - ], - [ - "▁LCD", - -12.180868148803711 - ], - [ - "▁Folge", - -12.180909156799316 - ], - [ - "▁Erfahrungen", - -12.18093204498291 - ], - [ - "▁1981", - -12.18106460571289 - ], - [ - "▁răspuns", - -12.181075096130371 - ], - [ - "itori", - -12.18117618560791 - ], - [ - "▁elementary", - -12.181200981140137 - ], - [ - "▁vorbei", - -12.18127727508545 - ], - [ - "▁cargo", - -12.181361198425293 - ], - [ - "disciplinary", - -12.18140983581543 - ], - [ - "WR", - -12.181492805480957 - ], - [ - "▁counterpart", - -12.18162727355957 - ], - [ - "family", - -12.181641578674316 - ], - [ - "▁viață", - -12.181644439697266 - ], - [ - "▁Definition", - -12.18167495727539 - ], - [ - "▁Cow", - -12.18171501159668 - ], - [ - "fällig", - -12.182003021240234 - ], - [ - "▁Sicht", - -12.182025909423828 - ], - [ - "▁mum", - -12.182145118713379 - ], - [ - "▁Mediterranean", - -12.182275772094727 - ], - [ - "nev", - -12.182278633117676 - ], - [ - "bü", - -12.182293891906738 - ], - [ - "▁slave", - -12.182293891906738 - ], - [ - "schnitt", - -12.18233871459961 - ], - [ - "▁firme", - -12.182430267333984 - ], - [ - "▁spill", - -12.182454109191895 - ], - [ - "▁wages", - -12.182592391967773 - ], - [ - "▁refine", - -12.182615280151367 - ], - [ - "▁upgraded", - -12.182632446289062 - ], - [ - "▁gospel", - -12.182698249816895 - ], - [ - "▁quartier", - -12.182744979858398 - ], - [ - "▁#2", - -12.182772636413574 - ], - [ - "▁Situation", - -12.18298625946045 - ], - [ - "▁suggesting", - -12.183075904846191 - ], - [ - "▁acne", - -12.183113098144531 - ], - [ - "▁Murray", - -12.183337211608887 - ], - [ - "▁Ian", - -12.183469772338867 - ], - [ - "hören", - -12.183489799499512 - ], - [ - "bia", - -12.183603286743164 - ], - [ - "▁Bewegung", - -12.183684349060059 - ], - [ - "▁abzu", - -12.18379020690918 - ], - [ - "reveals", - -12.183795928955078 - ], - [ - "friend", - -12.184025764465332 - ], - [ - "▁Connecticut", - -12.18407917022705 - ], - [ - "▁Testament", - -12.184151649475098 - ], - [ - "▁Lit", - -12.184199333190918 - ], - [ - "▁Ship", - -12.184209823608398 - ], - [ - "▁minunat", - -12.184344291687012 - ], - [ - "▁Moving", - -12.184346199035645 - ], - [ - "▁Device", - -12.184486389160156 - ], - [ - "▁Bake", - -12.18453598022461 - ], - [ - "▁qualification", - -12.184633255004883 - ], - [ - "▁challenged", - -12.184640884399414 - ], - [ - "▁Hinweis", - -12.184721946716309 - ], - [ - "▁sechs", - -12.184769630432129 - ], - [ - "та", - -12.184903144836426 - ], - [ - "120", - -12.184904098510742 - ], - [ - "licht", - -12.184940338134766 - ], - [ - "▁supervision", - -12.185022354125977 - ], - [ - "▁milestone", - -12.18503189086914 - ], - [ - "zeig", - -12.185050964355469 - ], - [ - "▁emphasize", - -12.185224533081055 - ], - [ - "▁complain", - -12.185232162475586 - ], - [ - "sack", - -12.185341835021973 - ], - [ - "▁rebuild", - -12.185445785522461 - ], - [ - "projekt", - -12.18548583984375 - ], - [ - "▁saint", - -12.185644149780273 - ], - [ - "lette", - -12.185752868652344 - ], - [ - "rade", - -12.18580150604248 - ], - [ - "▁pacient", - -12.185893058776855 - ], - [ - "signed", - -12.186169624328613 - ], - [ - "▁mil", - -12.186261177062988 - ], - [ - "cali", - -12.186266899108887 - ], - [ - "▁brochure", - -12.186487197875977 - ], - [ - "▁Bulgaria", - -12.186488151550293 - ], - [ - "Har", - -12.186623573303223 - ], - [ - "DH", - -12.186697006225586 - ], - [ - "▁jumping", - -12.186712265014648 - ], - [ - "ären", - -12.186732292175293 - ], - [ - "▁tactics", - -12.186911582946777 - ], - [ - "▁soleil", - -12.187030792236328 - ], - [ - "lessness", - -12.18705940246582 - ], - [ - "steigen", - -12.187085151672363 - ], - [ - "▁Brief", - -12.187117576599121 - ], - [ - "▁Oz", - -12.18718433380127 - ], - [ - "credit", - -12.187239646911621 - ], - [ - "glass", - -12.187241554260254 - ], - [ - "▁Baltimore", - -12.187292098999023 - ], - [ - "varies", - -12.187445640563965 - ], - [ - "sourced", - -12.187575340270996 - ], - [ - "▁documented", - -12.187604904174805 - ], - [ - "▁devine", - -12.187664985656738 - ], - [ - "möglichst", - -12.187732696533203 - ], - [ - "▁früher", - -12.187756538391113 - ], - [ - "outefois", - -12.18790054321289 - ], - [ - "▁Engagement", - -12.187934875488281 - ], - [ - "▁anumit", - -12.18806266784668 - ], - [ - "▁1930", - -12.188186645507812 - ], - [ - "▁Aufgaben", - -12.188214302062988 - ], - [ - "▁lineup", - -12.188227653503418 - ], - [ - "▁Cad", - -12.188349723815918 - ], - [ - "améliorer", - -12.188437461853027 - ], - [ - "▁februarie", - -12.188499450683594 - ], - [ - "▁cancellation", - -12.188529968261719 - ], - [ - "▁locks", - -12.188577651977539 - ], - [ - "▁modèles", - -12.188711166381836 - ], - [ - "▁breakdown", - -12.188748359680176 - ], - [ - "Ticket", - -12.188810348510742 - ], - [ - "▁Chen", - -12.188855171203613 - ], - [ - "▁Competition", - -12.188910484313965 - ], - [ - "▁median", - -12.18896770477295 - ], - [ - "rische", - -12.189159393310547 - ], - [ - "▁multipli", - -12.189269065856934 - ], - [ - "▁Belgium", - -12.189305305480957 - ], - [ - "▁Physical", - -12.189308166503906 - ], - [ - "▁parameter", - -12.189432144165039 - ], - [ - "▁carrot", - -12.189435005187988 - ], - [ - "▁mandat", - -12.189617156982422 - ], - [ - "▁towel", - -12.189697265625 - ], - [ - "▁insured", - -12.189825057983398 - ], - [ - "PRI", - -12.189868927001953 - ], - [ - "etter", - -12.189915657043457 - ], - [ - "▁Oder", - -12.190083503723145 - ], - [ - "argued", - -12.190171241760254 - ], - [ - "FB", - -12.190196990966797 - ], - [ - "versicherung", - -12.190197944641113 - ], - [ - "abila", - -12.190251350402832 - ], - [ - "▁Coin", - -12.190324783325195 - ], - [ - "around", - -12.19050121307373 - ], - [ - "▁Lorsqu", - -12.190773963928223 - ], - [ - "valent", - -12.190918922424316 - ], - [ - "▁weltweit", - -12.19092082977295 - ], - [ - "Mod", - -12.191039085388184 - ], - [ - "▁defect", - -12.191044807434082 - ], - [ - "ibly", - -12.191136360168457 - ], - [ - "▁Juan", - -12.191153526306152 - ], - [ - "▁Jur", - -12.191171646118164 - ], - [ - "large", - -12.191307067871094 - ], - [ - "▁indicators", - -12.191461563110352 - ], - [ - "invest", - -12.19168472290039 - ], - [ - "▁rehabilitation", - -12.191705703735352 - ], - [ - "nag", - -12.191823959350586 - ], - [ - "▁Grundlage", - -12.191829681396484 - ], - [ - "▁Strategy", - -12.192131042480469 - ], - [ - "▁supérieur", - -12.192173957824707 - ], - [ - "▁orbit", - -12.192281723022461 - ], - [ - "▁Auftrag", - -12.192360877990723 - ], - [ - "▁Verb", - -12.192441940307617 - ], - [ - "ANA", - -12.19256591796875 - ], - [ - "▁trimis", - -12.192611694335938 - ], - [ - "▁Rub", - -12.192704200744629 - ], - [ - "institu", - -12.192732810974121 - ], - [ - "▁inspect", - -12.1927490234375 - ], - [ - "▁Princess", - -12.192757606506348 - ], - [ - "especially", - -12.192777633666992 - ], - [ - "▁combinations", - -12.192793846130371 - ], - [ - "▁gaze", - -12.192842483520508 - ], - [ - "elemente", - -12.192970275878906 - ], - [ - "deal", - -12.192980766296387 - ], - [ - "polis", - -12.193157196044922 - ], - [ - "shaw", - -12.193168640136719 - ], - [ - "▁Republicans", - -12.193203926086426 - ], - [ - "aded", - -12.193244934082031 - ], - [ - "▁Louisiana", - -12.193364143371582 - ], - [ - "▁Ville", - -12.193368911743164 - ], - [ - "▁afterwards", - -12.193389892578125 - ], - [ - "ONG", - -12.193608283996582 - ], - [ - "▁dryer", - -12.193636894226074 - ], - [ - "▁Manhattan", - -12.19374942779541 - ], - [ - "▁recomanda", - -12.19412612915039 - ], - [ - "▁juca", - -12.194253921508789 - ], - [ - "▁Crown", - -12.194260597229004 - ], - [ - "▁flesh", - -12.194347381591797 - ], - [ - "sichtig", - -12.194358825683594 - ], - [ - "▁rempli", - -12.19437026977539 - ], - [ - "▁deposits", - -12.19438362121582 - ], - [ - "▁Voll", - -12.194599151611328 - ], - [ - "▁analysts", - -12.194672584533691 - ], - [ - "▁Krieg", - -12.19484806060791 - ], - [ - "▁Rosa", - -12.19495964050293 - ], - [ - "▁Supply", - -12.194964408874512 - ], - [ - "GF", - -12.19497013092041 - ], - [ - "idad", - -12.195098876953125 - ], - [ - "▁flush", - -12.195103645324707 - ], - [ - "▁circular", - -12.195355415344238 - ], - [ - "▁național", - -12.195379257202148 - ], - [ - "▁lorsqu", - -12.195441246032715 - ], - [ - "▁analyst", - -12.195459365844727 - ], - [ - "▁Jahrhundert", - -12.195586204528809 - ], - [ - "▁biology", - -12.195713996887207 - ], - [ - "copy", - -12.195733070373535 - ], - [ - "▁bringt", - -12.195765495300293 - ], - [ - "▁Gospel", - -12.195780754089355 - ], - [ - "▁sorgen", - -12.195842742919922 - ], - [ - "zeichnung", - -12.196181297302246 - ], - [ - "chair", - -12.196197509765625 - ], - [ - "EB", - -12.19636344909668 - ], - [ - "▁Beth", - -12.1964111328125 - ], - [ - "115", - -12.196416854858398 - ], - [ - "▁Neue", - -12.196479797363281 - ], - [ - "▁faible", - -12.196599960327148 - ], - [ - "▁methodology", - -12.196603775024414 - ], - [ - "spiele", - -12.196647644042969 - ], - [ - "▁cherry", - -12.196727752685547 - ], - [ - "▁Mak", - -12.196802139282227 - ], - [ - "▁volet", - -12.196982383728027 - ], - [ - "funk", - -12.197196006774902 - ], - [ - "▁aktuelle", - -12.197372436523438 - ], - [ - "▁Yahoo", - -12.197408676147461 - ], - [ - "▁Zusammenarbeit", - -12.197669982910156 - ], - [ - "▁Serve", - -12.197754859924316 - ], - [ - "▁simpler", - -12.197978019714355 - ], - [ - "intégr", - -12.197990417480469 - ], - [ - "ndlich", - -12.198083877563477 - ], - [ - "▁actress", - -12.198320388793945 - ], - [ - "▁reuse", - -12.198332786560059 - ], - [ - "▁reviewing", - -12.198405265808105 - ], - [ - "statt", - -12.198457717895508 - ], - [ - "▁diving", - -12.198469161987305 - ], - [ - "▁Național", - -12.198677062988281 - ], - [ - "voi", - -12.19873332977295 - ], - [ - "Disc", - -12.198812484741211 - ], - [ - "▁Mineral", - -12.19886302947998 - ], - [ - "▁emit", - -12.199007034301758 - ], - [ - "witz", - -12.199078559875488 - ], - [ - "▁forgot", - -12.19909954071045 - ], - [ - "▁dim", - -12.199115753173828 - ], - [ - "upper", - -12.19947624206543 - ], - [ - "sichtlich", - -12.19949722290039 - ], - [ - "▁parcours", - -12.199670791625977 - ], - [ - "8:00", - -12.199697494506836 - ], - [ - "▁keyword", - -12.199701309204102 - ], - [ - "▁upgrades", - -12.199763298034668 - ], - [ - "kunden", - -12.200177192687988 - ], - [ - "▁Seg", - -12.200257301330566 - ], - [ - "▁Circle", - -12.200289726257324 - ], - [ - "▁ginger", - -12.200336456298828 - ], - [ - "mment", - -12.200516700744629 - ], - [ - "▁expenditure", - -12.200655937194824 - ], - [ - "▁parle", - -12.200693130493164 - ], - [ - "▁Counsel", - -12.200722694396973 - ], - [ - "▁Gui", - -12.200722694396973 - ], - [ - "resident", - -12.20103645324707 - ], - [ - "▁benchmark", - -12.20103931427002 - ], - [ - "▁Elektro", - -12.201064109802246 - ], - [ - "▁réalité", - -12.201064109802246 - ], - [ - "▁ridiculous", - -12.201067924499512 - ], - [ - "▁necklace", - -12.20108699798584 - ], - [ - "nian", - -12.201117515563965 - ], - [ - "▁Move", - -12.20113468170166 - ], - [ - "▁elevated", - -12.201204299926758 - ], - [ - "WE", - -12.201281547546387 - ], - [ - "▁Drum", - -12.20132064819336 - ], - [ - "▁Delivery", - -12.201350212097168 - ], - [ - "indicating", - -12.201452255249023 - ], - [ - "▁Benjamin", - -12.201472282409668 - ], - [ - "▁Samuel", - -12.2014741897583 - ], - [ - "bene", - -12.201666831970215 - ], - [ - "▁experienta", - -12.201676368713379 - ], - [ - "▁rocket", - -12.201839447021484 - ], - [ - "▁fossil", - -12.201883316040039 - ], - [ - "▁festive", - -12.20193099975586 - ], - [ - "▁conscience", - -12.201964378356934 - ], - [ - "▁bacon", - -12.202136993408203 - ], - [ - "▁aero", - -12.202159881591797 - ], - [ - "public", - -12.202187538146973 - ], - [ - "▁zic", - -12.202218055725098 - ], - [ - "ombre", - -12.202356338500977 - ], - [ - "▁Drain", - -12.202550888061523 - ], - [ - "7.5", - -12.202672004699707 - ], - [ - "▁Deutschen", - -12.202703475952148 - ], - [ - "reportedly", - -12.202754974365234 - ], - [ - "▁Français", - -12.203105926513672 - ], - [ - "▁enzyme", - -12.203106880187988 - ], - [ - "▁inquiry", - -12.203117370605469 - ], - [ - "▁presque", - -12.203193664550781 - ], - [ - "▁Airlines", - -12.203228950500488 - ], - [ - "▁Salon", - -12.203237533569336 - ], - [ - "▁Volunteer", - -12.203310012817383 - ], - [ - "▁modular", - -12.203349113464355 - ], - [ - "ón", - -12.203364372253418 - ], - [ - "NH", - -12.203449249267578 - ], - [ - "▁souhaite", - -12.203516960144043 - ], - [ - "social", - -12.203659057617188 - ], - [ - "▁Include", - -12.203729629516602 - ], - [ - "▁Decor", - -12.2037992477417 - ], - [ - "dded", - -12.203965187072754 - ], - [ - "▁Außen", - -12.203969955444336 - ], - [ - "rendu", - -12.20412540435791 - ], - [ - "▁MBA", - -12.204150199890137 - ], - [ - "▁columns", - -12.204155921936035 - ], - [ - "▁Wing", - -12.204436302185059 - ], - [ - "▁landmark", - -12.204442977905273 - ], - [ - "schritt", - -12.204594612121582 - ], - [ - "▁désir", - -12.204630851745605 - ], - [ - "(5)", - -12.204680442810059 - ], - [ - "▁réseaux", - -12.204693794250488 - ], - [ - "income", - -12.204710960388184 - ], - [ - "▁revised", - -12.204819679260254 - ], - [ - "HY", - -12.204863548278809 - ], - [ - "▁Explorer", - -12.204873085021973 - ], - [ - "▁Lam", - -12.204877853393555 - ], - [ - "▁almond", - -12.204910278320312 - ], - [ - "▁faux", - -12.204910278320312 - ], - [ - "opt", - -12.204923629760742 - ], - [ - "Out", - -12.204939842224121 - ], - [ - "▁virtue", - -12.205025672912598 - ], - [ - "▁Chocolate", - -12.205151557922363 - ], - [ - "▁spannend", - -12.205305099487305 - ], - [ - "▁spices", - -12.205327033996582 - ], - [ - "▁Climate", - -12.205560684204102 - ], - [ - "▁Residential", - -12.205560684204102 - ], - [ - "gung", - -12.205700874328613 - ], - [ - "▁filtr", - -12.20606803894043 - ], - [ - "circ", - -12.206123352050781 - ], - [ - "sisted", - -12.206172943115234 - ], - [ - "▁dedicat", - -12.206243515014648 - ], - [ - "▁foil", - -12.206387519836426 - ], - [ - "▁uita", - -12.206392288208008 - ], - [ - "▁lié", - -12.206402778625488 - ], - [ - "▁Demo", - -12.206409454345703 - ], - [ - "▁spoil", - -12.2064208984375 - ], - [ - "Cu", - -12.206448554992676 - ], - [ - "naut", - -12.206525802612305 - ], - [ - "▁configured", - -12.206535339355469 - ], - [ - "UK", - -12.206543922424316 - ], - [ - "▁disagree", - -12.20656967163086 - ], - [ - "Medic", - -12.206767082214355 - ], - [ - "cosm", - -12.207074165344238 - ], - [ - "Toute", - -12.207109451293945 - ], - [ - "▁beneficia", - -12.207170486450195 - ], - [ - "fassen", - -12.207327842712402 - ], - [ - "▁bail", - -12.207337379455566 - ], - [ - "igue", - -12.207439422607422 - ], - [ - "▁Mă", - -12.20744800567627 - ], - [ - "▁strips", - -12.20748519897461 - ], - [ - "▁Dritte", - -12.207537651062012 - ], - [ - "▁putere", - -12.207597732543945 - ], - [ - "Play", - -12.20763111114502 - ], - [ - "▁Samstag", - -12.207632064819336 - ], - [ - "▁households", - -12.207791328430176 - ], - [ - "▁persistent", - -12.207914352416992 - ], - [ - "uben", - -12.207942962646484 - ], - [ - "Web", - -12.20809555053711 - ], - [ - "▁scenery", - -12.20820140838623 - ], - [ - "▁défini", - -12.208257675170898 - ], - [ - "news", - -12.208337783813477 - ], - [ - "eira", - -12.208428382873535 - ], - [ - "▁Mumbai", - -12.208438873291016 - ], - [ - "▁Ward", - -12.208558082580566 - ], - [ - "▁ladder", - -12.2086181640625 - ], - [ - "▁plaque", - -12.208623886108398 - ], - [ - "nés", - -12.208639144897461 - ], - [ - "▁condamn", - -12.20864486694336 - ], - [ - "▁attribute", - -12.208687782287598 - ], - [ - "atti", - -12.20873737335205 - ], - [ - "▁Emily", - -12.208953857421875 - ], - [ - "▁pleine", - -12.20896053314209 - ], - [ - "▁automatisch", - -12.209004402160645 - ], - [ - "ifies", - -12.209052085876465 - ], - [ - "onna", - -12.209104537963867 - ], - [ - "▁inject", - -12.209157943725586 - ], - [ - "▁evolve", - -12.209297180175781 - ], - [ - "▁breeze", - -12.209299087524414 - ], - [ - "▁montre", - -12.209415435791016 - ], - [ - "▁memorial", - -12.209425926208496 - ], - [ - "ämlich", - -12.209465026855469 - ], - [ - "NBC", - -12.209589958190918 - ], - [ - "▁1940", - -12.209836959838867 - ], - [ - "▁trouvé", - -12.209892272949219 - ], - [ - "when", - -12.209914207458496 - ], - [ - "▁Büro", - -12.209959983825684 - ], - [ - "▁probability", - -12.209978103637695 - ], - [ - "cute", - -12.21006965637207 - ], - [ - "▁sturdy", - -12.210078239440918 - ], - [ - "AMP", - -12.210165023803711 - ], - [ - "▁Constantin", - -12.210283279418945 - ], - [ - "▁batter", - -12.21037483215332 - ], - [ - "▁bist", - -12.210470199584961 - ], - [ - "▁streams", - -12.210528373718262 - ], - [ - "rushing", - -12.21057415008545 - ], - [ - "▁shaft", - -12.21065902709961 - ], - [ - "▁proprii", - -12.210722923278809 - ], - [ - "émi", - -12.21074390411377 - ], - [ - "online", - -12.210817337036133 - ], - [ - "▁vanity", - -12.210870742797852 - ], - [ - "▁mural", - -12.210878372192383 - ], - [ - "▁distinguish", - -12.210905075073242 - ], - [ - "▁niciun", - -12.211191177368164 - ], - [ - "▁européenne", - -12.211252212524414 - ], - [ - "▁secretary", - -12.211289405822754 - ], - [ - "▁gaps", - -12.211492538452148 - ], - [ - "▁realm", - -12.211499214172363 - ], - [ - "▁elastic", - -12.211504936218262 - ], - [ - "▁Avoid", - -12.211519241333008 - ], - [ - "▁mauvais", - -12.211931228637695 - ], - [ - "▁innovations", - -12.212663650512695 - ], - [ - "▁suprem", - -12.212776184082031 - ], - [ - "▁vederea", - -12.212817192077637 - ], - [ - "wenden", - -12.212892532348633 - ], - [ - "-40", - -12.213075637817383 - ], - [ - "prenant", - -12.213155746459961 - ], - [ - "utilisateur", - -12.213210105895996 - ], - [ - "▁Oliver", - -12.213228225708008 - ], - [ - "111", - -12.21326732635498 - ], - [ - "▁manifestation", - -12.213382720947266 - ], - [ - "▁Rachel", - -12.213458061218262 - ], - [ - "agog", - -12.21348762512207 - ], - [ - "▁seamless", - -12.213534355163574 - ], - [ - "▁Employee", - -12.213576316833496 - ], - [ - "▁dimanche", - -12.213582038879395 - ], - [ - "▁banii", - -12.213631629943848 - ], - [ - "▁Ruth", - -12.213781356811523 - ], - [ - "▁Roy", - -12.21385383605957 - ], - [ - "▁homeless", - -12.2139253616333 - ], - [ - "▁Lower", - -12.213932037353516 - ], - [ - "health", - -12.21393871307373 - ], - [ - "▁atenti", - -12.2140474319458 - ], - [ - "▁touched", - -12.214183807373047 - ], - [ - "May", - -12.214195251464844 - ], - [ - "▁Buc", - -12.214225769042969 - ], - [ - "▁explored", - -12.214393615722656 - ], - [ - "▁declare", - -12.214461326599121 - ], - [ - "▁garment", - -12.214469909667969 - ], - [ - "▁buzz", - -12.214483261108398 - ], - [ - "▁rappel", - -12.214662551879883 - ], - [ - "▁uscat", - -12.214903831481934 - ], - [ - "▁Hyper", - -12.214914321899414 - ], - [ - "Etat", - -12.215007781982422 - ], - [ - "▁Titel", - -12.215035438537598 - ], - [ - "product", - -12.215191841125488 - ], - [ - "woman", - -12.215280532836914 - ], - [ - "▁Gab", - -12.215450286865234 - ], - [ - "▁advances", - -12.215615272521973 - ], - [ - "2/", - -12.215753555297852 - ], - [ - "prone", - -12.215770721435547 - ], - [ - "kö", - -12.215986251831055 - ], - [ - "▁counting", - -12.21599292755127 - ], - [ - "Sollte", - -12.216043472290039 - ], - [ - "▁Konzept", - -12.216063499450684 - ], - [ - "▁backgrounds", - -12.216153144836426 - ], - [ - "jährige", - -12.216154098510742 - ], - [ - "▁Alltag", - -12.216187477111816 - ], - [ - "▁metrics", - -12.21619701385498 - ], - [ - "▁illustrated", - -12.216222763061523 - ], - [ - "▁Charge", - -12.21631908416748 - ], - [ - "▁thoughtful", - -12.216423034667969 - ], - [ - "gesetz", - -12.216527938842773 - ], - [ - "pfen", - -12.216611862182617 - ], - [ - "▁déroul", - -12.216713905334473 - ], - [ - "▁checkout", - -12.216876029968262 - ], - [ - "quette", - -12.216936111450195 - ], - [ - "▁pierdut", - -12.2170991897583 - ], - [ - "▁Seat", - -12.217140197753906 - ], - [ - "▁linen", - -12.217193603515625 - ], - [ - "archiv", - -12.217245101928711 - ], - [ - "arna", - -12.217254638671875 - ], - [ - "importe", - -12.21742057800293 - ], - [ - "▁PHP", - -12.217496871948242 - ], - [ - "▁Parents", - -12.217503547668457 - ], - [ - "▁Birmingham", - -12.217513084411621 - ], - [ - "▁Integr", - -12.217588424682617 - ], - [ - "▁Mason", - -12.217607498168945 - ], - [ - "zieht", - -12.217781066894531 - ], - [ - "▁camps", - -12.217803001403809 - ], - [ - "OG", - -12.21786117553711 - ], - [ - "▁syrup", - -12.217927932739258 - ], - [ - "▁Cookies", - -12.217928886413574 - ], - [ - "▁Comfort", - -12.217955589294434 - ], - [ - "ută", - -12.217976570129395 - ], - [ - "abia", - -12.217979431152344 - ], - [ - "zeci", - -12.218003273010254 - ], - [ - "▁Gardens", - -12.218009948730469 - ], - [ - "▁incidents", - -12.218149185180664 - ], - [ - "▁participat", - -12.218235969543457 - ], - [ - "▁glimpse", - -12.218342781066895 - ], - [ - "5.5", - -12.218437194824219 - ], - [ - "▁dealers", - -12.218469619750977 - ], - [ - "▁Grande", - -12.218565940856934 - ], - [ - "▁raid", - -12.218944549560547 - ], - [ - "owing", - -12.21903133392334 - ], - [ - "▁contrary", - -12.219109535217285 - ], - [ - "Earlier", - -12.219138145446777 - ], - [ - "tien", - -12.21916389465332 - ], - [ - "drop", - -12.219169616699219 - ], - [ - "▁angajat", - -12.219359397888184 - ], - [ - "▁procesul", - -12.219515800476074 - ], - [ - "▁focal", - -12.219564437866211 - ], - [ - "▁impart", - -12.219703674316406 - ], - [ - "▁Abschluss", - -12.219749450683594 - ], - [ - "carui", - -12.219830513000488 - ], - [ - "insul", - -12.220277786254883 - ], - [ - "▁creamy", - -12.220283508300781 - ], - [ - "eille", - -12.22032356262207 - ], - [ - "suppl", - -12.220335960388184 - ], - [ - "▁Heaven", - -12.220471382141113 - ], - [ - "éna", - -12.220667839050293 - ], - [ - "▁swap", - -12.220739364624023 - ], - [ - "▁vreau", - -12.220762252807617 - ], - [ - "▁Bryan", - -12.220809936523438 - ], - [ - "▁Zug", - -12.220815658569336 - ], - [ - "▁glance", - -12.220848083496094 - ], - [ - "▁elimin", - -12.220900535583496 - ], - [ - "▁yeux", - -12.221084594726562 - ], - [ - "wehr", - -12.221238136291504 - ], - [ - "2.5", - -12.221287727355957 - ], - [ - "▁poses", - -12.221364974975586 - ], - [ - "▁parcel", - -12.221585273742676 - ], - [ - "▁Apartment", - -12.221749305725098 - ], - [ - "▁NASA", - -12.221768379211426 - ], - [ - "▁bénéfici", - -12.22187614440918 - ], - [ - "▁Umgebung", - -12.221890449523926 - ], - [ - "asia", - -12.221946716308594 - ], - [ - "abi", - -12.221967697143555 - ], - [ - "coup", - -12.222002983093262 - ], - [ - "synchron", - -12.222017288208008 - ], - [ - "▁Sicherheits", - -12.222029685974121 - ], - [ - "bic", - -12.222076416015625 - ], - [ - "▁distract", - -12.222148895263672 - ], - [ - "▁rentals", - -12.222163200378418 - ], - [ - "constru", - -12.222290992736816 - ], - [ - "curs", - -12.222345352172852 - ], - [ - "genannten", - -12.222386360168457 - ], - [ - "▁Shanghai", - -12.222501754760742 - ], - [ - "▁vague", - -12.222504615783691 - ], - [ - "▁Leather", - -12.22250747680664 - ], - [ - "▁Vintage", - -12.222532272338867 - ], - [ - "pointing", - -12.22259521484375 - ], - [ - "avant", - -12.22268295288086 - ], - [ - "gues", - -12.222949028015137 - ], - [ - "sweise", - -12.22302532196045 - ], - [ - "▁Greater", - -12.223065376281738 - ], - [ - "fig", - -12.22310733795166 - ], - [ - "▁Blut", - -12.223217964172363 - ], - [ - "▁Stellen", - -12.22326946258545 - ], - [ - "▁isolation", - -12.22337818145752 - ], - [ - "▁overhead", - -12.22338581085205 - ], - [ - "▁wondered", - -12.223508834838867 - ], - [ - "essai", - -12.223609924316406 - ], - [ - "aves", - -12.2236328125 - ], - [ - "▁Shore", - -12.223637580871582 - ], - [ - "▁INC", - -12.223709106445312 - ], - [ - "rufen", - -12.223980903625488 - ], - [ - "▁magnifique", - -12.224069595336914 - ], - [ - "▁intéressant", - -12.224072456359863 - ], - [ - "▁tanks", - -12.224075317382812 - ], - [ - "▁Tun", - -12.224367141723633 - ], - [ - "▁approaching", - -12.224390029907227 - ], - [ - "▁relay", - -12.224479675292969 - ], - [ - "▁Küche", - -12.224529266357422 - ], - [ - "describing", - -12.224587440490723 - ], - [ - "▁Certification", - -12.224588394165039 - ], - [ - "▁Breakfast", - -12.224597930908203 - ], - [ - "▁Frame", - -12.224891662597656 - ], - [ - "▁Stoff", - -12.224909782409668 - ], - [ - "▁victime", - -12.224924087524414 - ], - [ - "Observ", - -12.224943161010742 - ], - [ - "▁gutter", - -12.224989891052246 - ], - [ - "standard", - -12.225220680236816 - ], - [ - "▁Sci", - -12.225244522094727 - ], - [ - "▁sept", - -12.225377082824707 - ], - [ - "▁Potter", - -12.225423812866211 - ], - [ - "letter", - -12.22577953338623 - ], - [ - "▁tobacco", - -12.225852012634277 - ], - [ - "▁threatened", - -12.22591781616211 - ], - [ - "MW", - -12.225936889648438 - ], - [ - "▁Cher", - -12.225944519042969 - ], - [ - "0.1", - -12.225957870483398 - ], - [ - "mitted", - -12.22596263885498 - ], - [ - "zustellen", - -12.225967407226562 - ], - [ - "dominated", - -12.226165771484375 - ], - [ - "/16", - -12.22623348236084 - ], - [ - "POS", - -12.226317405700684 - ], - [ - "▁Zin", - -12.226373672485352 - ], - [ - "▁Okay", - -12.226381301879883 - ], - [ - "▁projected", - -12.226405143737793 - ], - [ - "▁selber", - -12.226548194885254 - ], - [ - "▁proiectului", - -12.2266206741333 - ], - [ - "▁Shell", - -12.226683616638184 - ], - [ - "▁cartridge", - -12.226706504821777 - ], - [ - "Message", - -12.2267484664917 - ], - [ - "haben", - -12.226799964904785 - ], - [ - "▁slides", - -12.226829528808594 - ], - [ - "▁gleichzeitig", - -12.226886749267578 - ], - [ - "▁Racing", - -12.227051734924316 - ], - [ - "▁20,", - -12.227070808410645 - ], - [ - "▁separat", - -12.227094650268555 - ], - [ - "▁repeatedly", - -12.227110862731934 - ], - [ - "▁casting", - -12.22728157043457 - ], - [ - "▁sacred", - -12.227283477783203 - ], - [ - "verfahren", - -12.227387428283691 - ], - [ - "▁echilibr", - -12.227514266967773 - ], - [ - "▁rebel", - -12.2277250289917 - ], - [ - "säu", - -12.227794647216797 - ], - [ - "ummy", - -12.227815628051758 - ], - [ - "▁backing", - -12.227889060974121 - ], - [ - "▁sponsors", - -12.227912902832031 - ], - [ - "▁Stress", - -12.22802448272705 - ], - [ - "▁Rules", - -12.228083610534668 - ], - [ - "▁render", - -12.228241920471191 - ], - [ - "▁funktioniert", - -12.228384971618652 - ], - [ - "▁Pearl", - -12.228472709655762 - ], - [ - "▁Scho", - -12.228527069091797 - ], - [ - "schwer", - -12.228595733642578 - ], - [ - "▁descoperit", - -12.228702545166016 - ], - [ - "holen", - -12.228720664978027 - ], - [ - "imposed", - -12.228960990905762 - ], - [ - "▁appearing", - -12.228968620300293 - ], - [ - "▁höher", - -12.229082107543945 - ], - [ - "▁Victorian", - -12.229111671447754 - ], - [ - "▁founding", - -12.229155540466309 - ], - [ - "▁Polish", - -12.229239463806152 - ], - [ - "▁anume", - -12.229248046875 - ], - [ - "Box", - -12.229488372802734 - ], - [ - "▁intrat", - -12.229598999023438 - ], - [ - "▁Inspiration", - -12.229610443115234 - ], - [ - "▁Canyon", - -12.229625701904297 - ], - [ - "▁Franklin", - -12.22974681854248 - ], - [ - "▁susceptible", - -12.22982120513916 - ], - [ - "trap", - -12.229839324951172 - ], - [ - "▁Roma", - -12.23000717163086 - ], - [ - "▁ethics", - -12.230009078979492 - ], - [ - "▁Privat", - -12.230027198791504 - ], - [ - "▁journalists", - -12.230090141296387 - ], - [ - "▁Universität", - -12.230246543884277 - ], - [ - "▁conditioner", - -12.230308532714844 - ], - [ - "folge", - -12.230327606201172 - ], - [ - "kirche", - -12.230416297912598 - ], - [ - "gehalten", - -12.230530738830566 - ], - [ - "midi", - -12.230570793151855 - ], - [ - "▁radar", - -12.230619430541992 - ], - [ - "▁Yard", - -12.230775833129883 - ], - [ - "▁professionnelle", - -12.230863571166992 - ], - [ - "▁Orchestra", - -12.230870246887207 - ], - [ - "▁immigrants", - -12.230870246887207 - ], - [ - "▁refined", - -12.230929374694824 - ], - [ - "▁Bishop", - -12.231036186218262 - ], - [ - "string", - -12.231095314025879 - ], - [ - "▁majoritatea", - -12.231231689453125 - ], - [ - "▁workflow", - -12.23123836517334 - ], - [ - "▁întreg", - -12.231306076049805 - ], - [ - "went", - -12.231563568115234 - ], - [ - "▁trat", - -12.231689453125 - ], - [ - "felul", - -12.23176383972168 - ], - [ - "▁hardwood", - -12.231821060180664 - ], - [ - "▁Task", - -12.231867790222168 - ], - [ - "branded", - -12.231921195983887 - ], - [ - "▁cinq", - -12.231966018676758 - ], - [ - "▁curb", - -12.232041358947754 - ], - [ - "▁Discount", - -12.232043266296387 - ], - [ - "▁Episode", - -12.232131958007812 - ], - [ - "▁Knowledge", - -12.232144355773926 - ], - [ - "▁tricky", - -12.232173919677734 - ], - [ - "▁characteristic", - -12.232233047485352 - ], - [ - "▁plata", - -12.23226261138916 - ], - [ - "▁Labour", - -12.23232650756836 - ], - [ - "▁Tha", - -12.232372283935547 - ], - [ - "▁Liefer", - -12.232430458068848 - ], - [ - "▁Reader", - -12.232471466064453 - ], - [ - "▁Linda", - -12.232521057128906 - ], - [ - "ittlerweile", - -12.232552528381348 - ], - [ - "defining", - -12.232564926147461 - ], - [ - "▁delayed", - -12.232635498046875 - ], - [ - "▁Bewertung", - -12.232674598693848 - ], - [ - "▁Unique", - -12.232791900634766 - ], - [ - "▁Champion", - -12.232866287231445 - ], - [ - "2008", - -12.232897758483887 - ], - [ - "▁conclu", - -12.232934951782227 - ], - [ - "▁câștig", - -12.2329740524292 - ], - [ - "▁scheduling", - -12.2329740524292 - ], - [ - "▁sailing", - -12.233116149902344 - ], - [ - "▁Storm", - -12.23318862915039 - ], - [ - "▁Stil", - -12.23320198059082 - ], - [ - "▁Album", - -12.233211517333984 - ], - [ - "▁ultime", - -12.233343124389648 - ], - [ - "url", - -12.233369827270508 - ], - [ - "▁terrific", - -12.23339557647705 - ], - [ - "▁remedy", - -12.233396530151367 - ], - [ - "▁Around", - -12.233592987060547 - ], - [ - "▁Kni", - -12.233756065368652 - ], - [ - "etty", - -12.23376750946045 - ], - [ - "Managing", - -12.233809471130371 - ], - [ - "▁Bedeutung", - -12.233816146850586 - ], - [ - "▁earthquake", - -12.233817100524902 - ], - [ - "▁Telefon", - -12.233818054199219 - ], - [ - "▁Upper", - -12.233869552612305 - ], - [ - "▁validation", - -12.233892440795898 - ], - [ - "-22", - -12.233997344970703 - ], - [ - "▁queue", - -12.23401165008545 - ], - [ - "tinde", - -12.234025001525879 - ], - [ - "built", - -12.234047889709473 - ], - [ - "▁voix", - -12.234125137329102 - ], - [ - "▁Resource", - -12.234126091003418 - ], - [ - "ţiuni", - -12.234143257141113 - ], - [ - "▁satisfying", - -12.234299659729004 - ], - [ - "▁Kohl", - -12.234441757202148 - ], - [ - "▁Materials", - -12.234618186950684 - ], - [ - "▁esp", - -12.234732627868652 - ], - [ - "enseignement", - -12.234773635864258 - ], - [ - "danach", - -12.234883308410645 - ], - [ - "peux", - -12.234932899475098 - ], - [ - "▁deployed", - -12.235113143920898 - ], - [ - "▁1976", - -12.235126495361328 - ], - [ - "ușor", - -12.235334396362305 - ], - [ - "élection", - -12.235380172729492 - ], - [ - "ettes", - -12.235437393188477 - ], - [ - "▁Madison", - -12.235506057739258 - ], - [ - "108", - -12.235685348510742 - ], - [ - "berger", - -12.235696792602539 - ], - [ - "▁pedal", - -12.235702514648438 - ], - [ - "▁quasi", - -12.235820770263672 - ], - [ - "▁lend", - -12.235843658447266 - ], - [ - "VER", - -12.235940933227539 - ], - [ - "▁chapters", - -12.236002922058105 - ], - [ - "▁idei", - -12.23600959777832 - ], - [ - "Deine", - -12.236034393310547 - ], - [ - "▁endure", - -12.236092567443848 - ], - [ - "▁Studios", - -12.236259460449219 - ], - [ - "structure", - -12.236274719238281 - ], - [ - "▁puiss", - -12.236370086669922 - ], - [ - "▁Morning", - -12.236443519592285 - ], - [ - "guide", - -12.236462593078613 - ], - [ - "▁Wave", - -12.236617088317871 - ], - [ - "▁banque", - -12.236879348754883 - ], - [ - "änd", - -12.236912727355957 - ], - [ - "oubli", - -12.237070083618164 - ], - [ - "▁mixer", - -12.237125396728516 - ], - [ - "▁remedi", - -12.237210273742676 - ], - [ - "▁scop", - -12.237421989440918 - ], - [ - "▁Rosen", - -12.237561225891113 - ], - [ - "▁spital", - -12.23773193359375 - ], - [ - "blau", - -12.237811088562012 - ], - [ - "▁financiar", - -12.237865447998047 - ], - [ - "avour", - -12.237871170043945 - ], - [ - "Def", - -12.238025665283203 - ], - [ - "▁socket", - -12.238076210021973 - ], - [ - "▁occurring", - -12.238360404968262 - ], - [ - "▁munci", - -12.238368034362793 - ], - [ - "▁realiza", - -12.238426208496094 - ], - [ - "▁beating", - -12.2384614944458 - ], - [ - "▁Phillip", - -12.238490104675293 - ], - [ - "▁courant", - -12.238509178161621 - ], - [ - "Auto", - -12.238608360290527 - ], - [ - "▁Lager", - -12.238685607910156 - ], - [ - "▁folos", - -12.238696098327637 - ], - [ - "▁moyens", - -12.238770484924316 - ], - [ - "▁Ec", - -12.238780975341797 - ], - [ - "▁Strip", - -12.238788604736328 - ], - [ - "sparen", - -12.238848686218262 - ], - [ - "▁Nintendo", - -12.238886833190918 - ], - [ - "▁Murphy", - -12.238912582397461 - ], - [ - "▁flux", - -12.239034652709961 - ], - [ - "▁mots", - -12.239034652709961 - ], - [ - "▁rechts", - -12.239045143127441 - ], - [ - "▁cardio", - -12.239142417907715 - ], - [ - "avoiding", - -12.239343643188477 - ], - [ - "érer", - -12.239453315734863 - ], - [ - "hiel", - -12.239461898803711 - ], - [ - "▁rezistent", - -12.239521980285645 - ], - [ - "close", - -12.23954963684082 - ], - [ - "hésitez", - -12.239596366882324 - ], - [ - "Hz", - -12.239631652832031 - ], - [ - "▁elaborate", - -12.239689826965332 - ], - [ - "▁permanently", - -12.239709854125977 - ], - [ - "▁Pittsburgh", - -12.239734649658203 - ], - [ - "▁counties", - -12.239819526672363 - ], - [ - "▁bookmark", - -12.239919662475586 - ], - [ - "▁Label", - -12.239965438842773 - ], - [ - "▁Freude", - -12.239974021911621 - ], - [ - "▁preferat", - -12.239986419677734 - ], - [ - "▁Mein", - -12.239995002746582 - ], - [ - "▁Crew", - -12.240218162536621 - ], - [ - "▁clips", - -12.240253448486328 - ], - [ - "8,000", - -12.240263938903809 - ], - [ - "▁recognise", - -12.240311622619629 - ], - [ - "ință", - -12.240365028381348 - ], - [ - "▁prieteni", - -12.240447044372559 - ], - [ - "Heute", - -12.240522384643555 - ], - [ - "ancienne", - -12.240534782409668 - ], - [ - "▁annoying", - -12.240583419799805 - ], - [ - "▁awful", - -12.240704536437988 - ], - [ - "▁Comments", - -12.240774154663086 - ], - [ - "▁musician", - -12.240830421447754 - ], - [ - "▁Elite", - -12.241023063659668 - ], - [ - "▁patri", - -12.241024017333984 - ], - [ - "▁Coupon", - -12.241037368774414 - ], - [ - "▁Farbe", - -12.241097450256348 - ], - [ - "▁contribui", - -12.241110801696777 - ], - [ - "hari", - -12.241294860839844 - ], - [ - "▁activitati", - -12.24161148071289 - ], - [ - "▁Traum", - -12.2416410446167 - ], - [ - "1.8", - -12.24170207977295 - ], - [ - "▁Healthcare", - -12.24172306060791 - ], - [ - "▁refresh", - -12.241943359375 - ], - [ - "▁Maha", - -12.242060661315918 - ], - [ - "▁dép", - -12.242082595825195 - ], - [ - "▁Studien", - -12.242314338684082 - ], - [ - "▁spectacol", - -12.242378234863281 - ], - [ - "impro", - -12.24254035949707 - ], - [ - "▁commentaire", - -12.242544174194336 - ], - [ - "ported", - -12.242570877075195 - ], - [ - "▁reclam", - -12.242612838745117 - ], - [ - "▁Verkauf", - -12.242634773254395 - ], - [ - "▁newspapers", - -12.242661476135254 - ], - [ - "▁iubit", - -12.242838859558105 - ], - [ - "▁Kenne", - -12.242844581604004 - ], - [ - "▁Consultant", - -12.242958068847656 - ], - [ - "▁stau", - -12.242986679077148 - ], - [ - "TON", - -12.243057250976562 - ], - [ - "▁Fehler", - -12.243070602416992 - ], - [ - "▁lettre", - -12.243167877197266 - ], - [ - "▁investigator", - -12.243172645568848 - ], - [ - "▁quantities", - -12.243184089660645 - ], - [ - "ogram", - -12.243208885192871 - ], - [ - "avaient", - -12.24323844909668 - ], - [ - "▁reducere", - -12.243265151977539 - ], - [ - "Lite", - -12.243402481079102 - ], - [ - "kurs", - -12.243443489074707 - ], - [ - "pré", - -12.24383544921875 - ], - [ - "pap", - -12.243898391723633 - ], - [ - "▁Männer", - -12.243983268737793 - ], - [ - "▁gauche", - -12.244022369384766 - ], - [ - "▁ähnlich", - -12.244027137756348 - ], - [ - "▁sunlight", - -12.244063377380371 - ], - [ - "▁rester", - -12.24422550201416 - ], - [ - "jumped", - -12.244586944580078 - ], - [ - "▁exclusiv", - -12.24463176727295 - ], - [ - "▁electoral", - -12.244640350341797 - ], - [ - "▁Portal", - -12.244650840759277 - ], - [ - "ulent", - -12.244688987731934 - ], - [ - "▁sonst", - -12.24474048614502 - ], - [ - "entraîne", - -12.24483585357666 - ], - [ - "▁repas", - -12.244837760925293 - ], - [ - "▁redus", - -12.244858741760254 - ], - [ - "aku", - -12.244866371154785 - ], - [ - "▁Graphic", - -12.245251655578613 - ], - [ - "▁geringe", - -12.24539566040039 - ], - [ - "plätze", - -12.245474815368652 - ], - [ - "Trebuie", - -12.245479583740234 - ], - [ - "▁rezultate", - -12.245479583740234 - ], - [ - "▁configure", - -12.245683670043945 - ], - [ - "▁PV", - -12.245834350585938 - ], - [ - "▁insect", - -12.246109962463379 - ], - [ - "▁Reviews", - -12.246129035949707 - ], - [ - "releasing", - -12.246186256408691 - ], - [ - "▁appliance", - -12.246246337890625 - ], - [ - "▁oferte", - -12.246482849121094 - ], - [ - "▁WILL", - -12.246484756469727 - ], - [ - "rion", - -12.246499061584473 - ], - [ - "▁Cole", - -12.246582984924316 - ], - [ - "▁1975", - -12.246650695800781 - ], - [ - "Admin", - -12.24677848815918 - ], - [ - "▁parade", - -12.246800422668457 - ], - [ - "▁mélange", - -12.24692153930664 - ], - [ - "▁shortage", - -12.247007369995117 - ], - [ - "▁Measure", - -12.247400283813477 - ], - [ - "anchmal", - -12.24742603302002 - ], - [ - "▁transfers", - -12.247432708740234 - ], - [ - "▁sistemului", - -12.247573852539062 - ], - [ - "▁deschide", - -12.247819900512695 - ], - [ - "▁Künstler", - -12.247821807861328 - ], - [ - "▁Plain", - -12.247848510742188 - ], - [ - "▁messaging", - -12.247855186462402 - ], - [ - "▁metabolism", - -12.247879981994629 - ], - [ - "fill", - -12.248031616210938 - ], - [ - "▁Bomb", - -12.24814224243164 - ], - [ - "usine", - -12.248208045959473 - ], - [ - "▁restart", - -12.248233795166016 - ], - [ - "▁Discussion", - -12.248336791992188 - ], - [ - "smith", - -12.248472213745117 - ], - [ - "▁Bh", - -12.248607635498047 - ], - [ - "▁sap", - -12.248689651489258 - ], - [ - "Moo", - -12.248714447021484 - ], - [ - "▁indirect", - -12.248785972595215 - ], - [ - "▁eingesetzt", - -12.248863220214844 - ], - [ - "▁Hip", - -12.248870849609375 - ], - [ - "▁iulie", - -12.249113082885742 - ], - [ - "▁atac", - -12.249201774597168 - ], - [ - "▁passport", - -12.2492036819458 - ], - [ - "▁Egyptian", - -12.249290466308594 - ], - [ - "▁soluți", - -12.249349594116211 - ], - [ - "▁cakes", - -12.249356269836426 - ], - [ - "▁Fellow", - -12.24949836730957 - ], - [ - "▁collision", - -12.249533653259277 - ], - [ - "▁abundant", - -12.249961853027344 - ], - [ - "▁Wonder", - -12.24997329711914 - ], - [ - "▁theories", - -12.249991416931152 - ], - [ - "landed", - -12.250046730041504 - ], - [ - "▁meantime", - -12.2500638961792 - ], - [ - "schlüsse", - -12.25022029876709 - ], - [ - "▁helicopter", - -12.25039005279541 - ], - [ - "Voici", - -12.250479698181152 - ], - [ - "▁Honey", - -12.25049877166748 - ], - [ - "▁deleted", - -12.250511169433594 - ], - [ - "▁Projekte", - -12.250523567199707 - ], - [ - "▁gasi", - -12.2506742477417 - ], - [ - "applique", - -12.25068473815918 - ], - [ - "TAL", - -12.250699043273926 - ], - [ - "notch", - -12.250699996948242 - ], - [ - "▁Response", - -12.250818252563477 - ], - [ - "▁deveni", - -12.250818252563477 - ], - [ - "▁regulate", - -12.250829696655273 - ], - [ - "▁vegetarian", - -12.25083065032959 - ], - [ - "▁Pastor", - -12.250880241394043 - ], - [ - "▁Strong", - -12.250940322875977 - ], - [ - "▁élèves", - -12.251055717468262 - ], - [ - "▁alimente", - -12.25113582611084 - ], - [ - "graphy", - -12.251181602478027 - ], - [ - "▁spirits", - -12.251266479492188 - ], - [ - "▁Cau", - -12.251282691955566 - ], - [ - "determin", - -12.251304626464844 - ], - [ - "arilor", - -12.251382827758789 - ], - [ - "▁masura", - -12.251470565795898 - ], - [ - "RAN", - -12.251500129699707 - ], - [ - "marked", - -12.251564979553223 - ], - [ - "cuba", - -12.251602172851562 - ], - [ - "omni", - -12.251609802246094 - ], - [ - "▁detox", - -12.251662254333496 - ], - [ - "▁quartz", - -12.251741409301758 - ], - [ - "▁Bug", - -12.25177001953125 - ], - [ - "▁Sugar", - -12.25185775756836 - ], - [ - "▁opponents", - -12.25197982788086 - ], - [ - "▁solved", - -12.25207805633545 - ], - [ - "semn", - -12.252257347106934 - ], - [ - "▁Prepare", - -12.252558708190918 - ], - [ - "ffel", - -12.252586364746094 - ], - [ - "▁Highlight", - -12.252608299255371 - ], - [ - "▁curent", - -12.252618789672852 - ], - [ - "▁praktisch", - -12.252626419067383 - ], - [ - "▁lending", - -12.252676963806152 - ], - [ - "▁minority", - -12.252752304077148 - ], - [ - "Free", - -12.252970695495605 - ], - [ - "business", - -12.252997398376465 - ], - [ - "▁outlook", - -12.253097534179688 - ], - [ - "▁assessments", - -12.253168106079102 - ], - [ - "▁Brother", - -12.253266334533691 - ], - [ - "▁partager", - -12.25326919555664 - ], - [ - "▁Brun", - -12.25329303741455 - ], - [ - "▁pedestrian", - -12.25339412689209 - ], - [ - "anța", - -12.253413200378418 - ], - [ - "▁recycled", - -12.253457069396973 - ], - [ - "▁quicker", - -12.253626823425293 - ], - [ - "▁lamps", - -12.253683090209961 - ], - [ - "▁nationally", - -12.253813743591309 - ], - [ - "▁Supplier", - -12.253823280334473 - ], - [ - "ograph", - -12.253936767578125 - ], - [ - "engage", - -12.253981590270996 - ], - [ - "▁Marg", - -12.254131317138672 - ], - [ - "▁aplicare", - -12.254181861877441 - ], - [ - "▁scared", - -12.254194259643555 - ], - [ - "▁accredited", - -12.254255294799805 - ], - [ - "▁outils", - -12.25436019897461 - ], - [ - "▁bâtiment", - -12.254446029663086 - ], - [ - "▁existed", - -12.254586219787598 - ], - [ - "gegangen", - -12.254619598388672 - ], - [ - "▁elevation", - -12.25463581085205 - ], - [ - "▁Tradition", - -12.254670143127441 - ], - [ - "▁Gericht", - -12.254677772521973 - ], - [ - "hub", - -12.254680633544922 - ], - [ - "strahl", - -12.25473690032959 - ], - [ - "build", - -12.254796981811523 - ], - [ - "▁Customers", - -12.25487232208252 - ], - [ - "klasse", - -12.254890441894531 - ], - [ - "▁pierre", - -12.254895210266113 - ], - [ - "(2)", - -12.255006790161133 - ], - [ - "Life", - -12.255125999450684 - ], - [ - "▁bachelor", - -12.25513744354248 - ], - [ - "▁quad", - -12.255195617675781 - ], - [ - "▁dispozitiv", - -12.25523567199707 - ], - [ - "106", - -12.255266189575195 - ], - [ - "▁suburb", - -12.255495071411133 - ], - [ - "▁1977", - -12.255586624145508 - ], - [ - "▁Alzheimer", - -12.255973815917969 - ], - [ - "▁spicy", - -12.255988121032715 - ], - [ - "▁spreading", - -12.256002426147461 - ], - [ - "nötigen", - -12.256078720092773 - ], - [ - "▁novels", - -12.256104469299316 - ], - [ - "▁responsabilité", - -12.256141662597656 - ], - [ - "▁Bud", - -12.256332397460938 - ], - [ - "▁desirable", - -12.256407737731934 - ], - [ - "TOR", - -12.256444931030273 - ], - [ - "five", - -12.256547927856445 - ], - [ - "▁Firmen", - -12.256860733032227 - ], - [ - "oeuvre", - -12.257075309753418 - ], - [ - "grass", - -12.257233619689941 - ], - [ - "▁practically", - -12.257277488708496 - ], - [ - "▁runners", - -12.257281303405762 - ], - [ - "▁mothers", - -12.257341384887695 - ], - [ - "Shop", - -12.257345199584961 - ], - [ - "▁Chicken", - -12.257408142089844 - ], - [ - "▁License", - -12.257593154907227 - ], - [ - "▁Bach", - -12.25765323638916 - ], - [ - "earliest", - -12.257729530334473 - ], - [ - "▁replica", - -12.25774097442627 - ], - [ - "▁haunt", - -12.257833480834961 - ], - [ - "▁materi", - -12.257854461669922 - ], - [ - "▁Finland", - -12.257893562316895 - ], - [ - "▁europene", - -12.257919311523438 - ], - [ - "abilă", - -12.257944107055664 - ], - [ - "cati", - -12.258007049560547 - ], - [ - "▁cholesterol", - -12.258132934570312 - ], - [ - "...).", - -12.258151054382324 - ], - [ - "cardi", - -12.25838565826416 - ], - [ - "▁(12", - -12.258387565612793 - ], - [ - "analyzed", - -12.258506774902344 - ], - [ - "▁respondents", - -12.258591651916504 - ], - [ - "▁höchste", - -12.258646011352539 - ], - [ - "▁Kern", - -12.258647918701172 - ], - [ - "▁knapp", - -12.258781433105469 - ], - [ - "▁Someone", - -12.258955001831055 - ], - [ - "▁équipé", - -12.258997917175293 - ], - [ - "credited", - -12.259106636047363 - ], - [ - "▁numar", - -12.259163856506348 - ], - [ - "▁Ace", - -12.259185791015625 - ], - [ - "zentrum", - -12.2592191696167 - ], - [ - "nehmer", - -12.259270668029785 - ], - [ - "arrivée", - -12.259282112121582 - ], - [ - "ELE", - -12.259291648864746 - ], - [ - "clean", - -12.259418487548828 - ], - [ - "Boost", - -12.259538650512695 - ], - [ - "call", - -12.259575843811035 - ], - [ - "▁Polizei", - -12.259659767150879 - ], - [ - "▁Januar", - -12.259663581848145 - ], - [ - "▁Tile", - -12.259681701660156 - ], - [ - "▁traduc", - -12.259744644165039 - ], - [ - "▁promptly", - -12.259773254394531 - ], - [ - "limit", - -12.259809494018555 - ], - [ - "▁recharge", - -12.2598237991333 - ], - [ - "▁wipe", - -12.259862899780273 - ], - [ - "▁Norway", - -12.26001262664795 - ], - [ - "▁Municipal", - -12.260077476501465 - ], - [ - "▁medieval", - -12.260117530822754 - ], - [ - "▁Treat", - -12.26021671295166 - ], - [ - "Orient", - -12.260283470153809 - ], - [ - "▁Stewart", - -12.260294914245605 - ], - [ - "▁lol", - -12.26039981842041 - ], - [ - "appartement", - -12.260522842407227 - ], - [ - "▁payer", - -12.260655403137207 - ], - [ - "▁splash", - -12.260723114013672 - ], - [ - "doubtedly", - -12.260726928710938 - ], - [ - "dry", - -12.260846138000488 - ], - [ - "▁Forex", - -12.260939598083496 - ], - [ - "▁Edinburgh", - -12.260943412780762 - ], - [ - "▁Traditional", - -12.261032104492188 - ], - [ - "▁1968", - -12.261134147644043 - ], - [ - "▁glow", - -12.261248588562012 - ], - [ - "Alternatively", - -12.261265754699707 - ], - [ - "▁partly", - -12.261354446411133 - ], - [ - "égi", - -12.261401176452637 - ], - [ - "▁Prices", - -12.261640548706055 - ], - [ - "haupt", - -12.261651992797852 - ], - [ - "▁sentences", - -12.261711120605469 - ], - [ - "ouvre", - -12.261735916137695 - ], - [ - "▁Liter", - -12.261746406555176 - ], - [ - "▁Important", - -12.2620267868042 - ], - [ - "▁Collins", - -12.262077331542969 - ], - [ - "▁reproduce", - -12.262106895446777 - ], - [ - "▁selten", - -12.262124061584473 - ], - [ - "▁Mitte", - -12.262170791625977 - ], - [ - "OA", - -12.262174606323242 - ], - [ - "▁Sister", - -12.262358665466309 - ], - [ - "▁responding", - -12.262385368347168 - ], - [ - "▁ballot", - -12.262455940246582 - ], - [ - "▁Nutrition", - -12.262460708618164 - ], - [ - "occurrence", - -12.26246452331543 - ], - [ - "Atunci", - -12.262604713439941 - ], - [ - "▁hockey", - -12.262680053710938 - ], - [ - "▁undertaking", - -12.262697219848633 - ], - [ - "▁educators", - -12.262885093688965 - ], - [ - "▁Swedish", - -12.262893676757812 - ], - [ - "▁Recovery", - -12.262894630432129 - ], - [ - "▁circum", - -12.262910842895508 - ], - [ - "▁chains", - -12.263084411621094 - ], - [ - "▁genug", - -12.263113021850586 - ], - [ - "▁Pil", - -12.263227462768555 - ], - [ - "▁farms", - -12.263265609741211 - ], - [ - "▁simplicity", - -12.263336181640625 - ], - [ - "-21", - -12.263399124145508 - ], - [ - "▁partition", - -12.263493537902832 - ], - [ - "▁Relations", - -12.26360034942627 - ], - [ - "zentrale", - -12.263794898986816 - ], - [ - "lapse", - -12.263855934143066 - ], - [ - "▁toast", - -12.263862609863281 - ], - [ - "▁citi", - -12.263946533203125 - ], - [ - "▁longtemps", - -12.263984680175781 - ], - [ - "maj", - -12.264448165893555 - ], - [ - "▁Cin", - -12.264483451843262 - ], - [ - "zeichen", - -12.264504432678223 - ], - [ - "▁Zoo", - -12.264567375183105 - ], - [ - "▁frisch", - -12.264570236206055 - ], - [ - "▁permettra", - -12.264595031738281 - ], - [ - "▁Liberty", - -12.264642715454102 - ], - [ - "▁playground", - -12.264873504638672 - ], - [ - "▁Mate", - -12.265031814575195 - ], - [ - "▁evolving", - -12.265066146850586 - ], - [ - "national", - -12.265207290649414 - ], - [ - "▁signifie", - -12.265279769897461 - ], - [ - "▁Related", - -12.265292167663574 - ], - [ - "NES", - -12.265337944030762 - ], - [ - "euil", - -12.265473365783691 - ], - [ - "▁struggles", - -12.265542030334473 - ], - [ - "▁instinct", - -12.265628814697266 - ], - [ - "arbre", - -12.26608943939209 - ], - [ - "▁commands", - -12.266222953796387 - ], - [ - "▁frumoase", - -12.26637077331543 - ], - [ - "▁watches", - -12.266779899597168 - ], - [ - "NM", - -12.266804695129395 - ], - [ - "▁influential", - -12.266807556152344 - ], - [ - "▁gewesen", - -12.266901969909668 - ], - [ - "▁Pictures", - -12.267224311828613 - ], - [ - "▁HVAC", - -12.267242431640625 - ], - [ - "▁skate", - -12.26732063293457 - ], - [ - "▁Robot", - -12.267327308654785 - ], - [ - "▁Boys", - -12.267404556274414 - ], - [ - "▁Mutter", - -12.267425537109375 - ], - [ - "▁marques", - -12.267539024353027 - ], - [ - "utiliser", - -12.267793655395508 - ], - [ - "▁amazed", - -12.267799377441406 - ], - [ - "ächtig", - -12.26783275604248 - ], - [ - "▁Success", - -12.267870903015137 - ], - [ - "gramm", - -12.267956733703613 - ], - [ - "▁1972", - -12.267956733703613 - ], - [ - "▁marina", - -12.268269538879395 - ], - [ - "▁lou", - -12.268321990966797 - ], - [ - "▁précis", - -12.268380165100098 - ], - [ - "ographic", - -12.268482208251953 - ], - [ - "people", - -12.26848316192627 - ], - [ - "fahr", - -12.268547058105469 - ], - [ - "▁Contemporary", - -12.268550872802734 - ], - [ - "▁frustrating", - -12.26858139038086 - ], - [ - "chide", - -12.268704414367676 - ], - [ - "1.5", - -12.268807411193848 - ], - [ - "▁ankle", - -12.268850326538086 - ], - [ - "▁proximity", - -12.268986701965332 - ], - [ - "▁Leute", - -12.269006729125977 - ], - [ - "UA", - -12.269031524658203 - ], - [ - "union", - -12.269131660461426 - ], - [ - "▁recovered", - -12.269133567810059 - ], - [ - "▁sword", - -12.269216537475586 - ], - [ - "▁Mut", - -12.26923942565918 - ], - [ - "▁Rin", - -12.269360542297363 - ], - [ - "▁lectures", - -12.26942253112793 - ], - [ - "▁licensing", - -12.269423484802246 - ], - [ - "MAC", - -12.269498825073242 - ], - [ - "▁commute", - -12.269776344299316 - ], - [ - "Acesta", - -12.269858360290527 - ], - [ - "▁Koch", - -12.270088195800781 - ], - [ - "▁depozit", - -12.270119667053223 - ], - [ - "▁erstmal", - -12.270163536071777 - ], - [ - "arhi", - -12.270271301269531 - ], - [ - "▁Normal", - -12.270462036132812 - ], - [ - "EZ", - -12.270464897155762 - ], - [ - "ărilor", - -12.270986557006836 - ], - [ - "▁favoris", - -12.271041870117188 - ], - [ - "▁$9", - -12.271050453186035 - ], - [ - "▁Lawrence", - -12.271172523498535 - ], - [ - "▁fixing", - -12.271200180053711 - ], - [ - "▁researching", - -12.271288871765137 - ], - [ - "▁Pant", - -12.271467208862305 - ], - [ - "▁candid", - -12.271490097045898 - ], - [ - "▁Arkansas", - -12.27160930633545 - ], - [ - "▁bitcoin", - -12.271612167358398 - ], - [ - "ва", - -12.271645545959473 - ], - [ - "▁Finger", - -12.271692276000977 - ], - [ - "▁SRL", - -12.271718978881836 - ], - [ - "Arg", - -12.271797180175781 - ], - [ - "trade", - -12.271903991699219 - ], - [ - "▁extraction", - -12.271941184997559 - ], - [ - "▁footprint", - -12.2720308303833 - ], - [ - "▁folosite", - -12.272085189819336 - ], - [ - "▁Flex", - -12.272184371948242 - ], - [ - "▁dys", - -12.272294998168945 - ], - [ - "▁Wright", - -12.272343635559082 - ], - [ - "▁multitude", - -12.272378921508789 - ], - [ - "▁Chu", - -12.272494316101074 - ], - [ - "▁Jerry", - -12.27249526977539 - ], - [ - "▁notebook", - -12.272722244262695 - ], - [ - "▁SIM", - -12.272932052612305 - ], - [ - "dietary", - -12.272963523864746 - ], - [ - "▁polished", - -12.272984504699707 - ], - [ - "▁carriers", - -12.272993087768555 - ], - [ - "▁cardiac", - -12.27299976348877 - ], - [ - "▁burned", - -12.273038864135742 - ], - [ - "▁sealed", - -12.273062705993652 - ], - [ - "▁pumps", - -12.273224830627441 - ], - [ - "▁consumed", - -12.273233413696289 - ], - [ - "▁Teaching", - -12.273446083068848 - ], - [ - "▁daughters", - -12.27348518371582 - ], - [ - "serviciile", - -12.273600578308105 - ], - [ - "▁Teams", - -12.273690223693848 - ], - [ - "▁avoided", - -12.273903846740723 - ], - [ - "▁compagnie", - -12.274019241333008 - ], - [ - "▁mașin", - -12.274024963378906 - ], - [ - "▁Sean", - -12.27418041229248 - ], - [ - "▁arunc", - -12.274208068847656 - ], - [ - "kräfte", - -12.274238586425781 - ], - [ - "vani", - -12.274255752563477 - ], - [ - "Metall", - -12.27437973022461 - ], - [ - "2009", - -12.274449348449707 - ], - [ - "moi", - -12.274688720703125 - ], - [ - "▁THAT", - -12.274700164794922 - ], - [ - "▁Ny", - -12.274809837341309 - ], - [ - "▁countertops", - -12.274860382080078 - ], - [ - "Pod", - -12.274938583374023 - ], - [ - "amente", - -12.274943351745605 - ], - [ - "▁offshore", - -12.275001525878906 - ], - [ - "luti", - -12.275087356567383 - ], - [ - "parked", - -12.275160789489746 - ], - [ - "ajout", - -12.275247573852539 - ], - [ - "Shirt", - -12.275328636169434 - ], - [ - "▁3/4", - -12.275389671325684 - ], - [ - "▁gratuite", - -12.27543830871582 - ], - [ - "mètres", - -12.27557373046875 - ], - [ - "▁Wish", - -12.2755765914917 - ], - [ - "▁holistic", - -12.27558422088623 - ], - [ - "gren", - -12.275607109069824 - ], - [ - "compiled", - -12.275660514831543 - ], - [ - "▁innocent", - -12.275779724121094 - ], - [ - "▁sorte", - -12.275787353515625 - ], - [ - "▁insulin", - -12.275792121887207 - ], - [ - "▁Academic", - -12.275996208190918 - ], - [ - "▁acrylic", - -12.27600383758545 - ], - [ - "▁hinzu", - -12.27616024017334 - ], - [ - "▁compression", - -12.27619457244873 - ], - [ - "▁viral", - -12.276220321655273 - ], - [ - "▁stereo", - -12.2764892578125 - ], - [ - "▁Concept", - -12.276542663574219 - ], - [ - "▁Margaret", - -12.276659965515137 - ], - [ - "▁consolidation", - -12.276875495910645 - ], - [ - "Figure", - -12.277058601379395 - ], - [ - "zzo", - -12.277061462402344 - ], - [ - "▁Egg", - -12.277098655700684 - ], - [ - "weiterhin", - -12.277213096618652 - ], - [ - "▁Vista", - -12.277252197265625 - ], - [ - "▁necessity", - -12.277316093444824 - ], - [ - "▁kayak", - -12.277490615844727 - ], - [ - "▁consensus", - -12.277535438537598 - ], - [ - "▁Katz", - -12.277602195739746 - ], - [ - "▁Warren", - -12.277640342712402 - ], - [ - "▁custody", - -12.277755737304688 - ], - [ - "++", - -12.277759552001953 - ], - [ - "▁paiement", - -12.277782440185547 - ], - [ - "▁foul", - -12.277878761291504 - ], - [ - "Chaque", - -12.277934074401855 - ], - [ - "▁Syrian", - -12.277998924255371 - ], - [ - "▁photographers", - -12.278056144714355 - ], - [ - "▁dismiss", - -12.278270721435547 - ], - [ - "▁Gaz", - -12.278526306152344 - ], - [ - "▁développer", - -12.278529167175293 - ], - [ - "▁Dakota", - -12.27863883972168 - ], - [ - "▁cardiovascular", - -12.278642654418945 - ], - [ - "▁tattoo", - -12.278858184814453 - ], - [ - "▁Lighting", - -12.278918266296387 - ], - [ - "▁nowhere", - -12.278940200805664 - ], - [ - "vada", - -12.27895450592041 - ], - [ - "▁Favor", - -12.279084205627441 - ], - [ - "ruled", - -12.2791748046875 - ], - [ - "▁Dating", - -12.2793550491333 - ], - [ - "gain", - -12.279963493347168 - ], - [ - "rism", - -12.28016471862793 - ], - [ - "coloured", - -12.280169486999512 - ], - [ - "▁refugees", - -12.280184745788574 - ], - [ - "▁Schm", - -12.2803955078125 - ], - [ - "▁happily", - -12.280402183532715 - ], - [ - "▁specification", - -12.280607223510742 - ], - [ - "WM", - -12.280736923217773 - ], - [ - "▁intro", - -12.280823707580566 - ], - [ - "rack", - -12.28097915649414 - ], - [ - "characterized", - -12.28107738494873 - ], - [ - "▁externe", - -12.281136512756348 - ], - [ - "▁arrives", - -12.28114128112793 - ], - [ - "WO", - -12.281181335449219 - ], - [ - "bericht", - -12.281233787536621 - ], - [ - "▁delays", - -12.281242370605469 - ], - [ - "▁Flight", - -12.281256675720215 - ], - [ - "1-3", - -12.281524658203125 - ], - [ - "▁Singh", - -12.281548500061035 - ], - [ - "▁shifting", - -12.281651496887207 - ], - [ - "▁dashboard", - -12.281729698181152 - ], - [ - "▁lieux", - -12.281781196594238 - ], - [ - "▁validate", - -12.281901359558105 - ], - [ - "▁uniquement", - -12.281963348388672 - ], - [ - "clip", - -12.28199291229248 - ], - [ - "cov", - -12.282132148742676 - ], - [ - "▁tendance", - -12.282215118408203 - ], - [ - "èle", - -12.282258033752441 - ], - [ - "▁incepe", - -12.282261848449707 - ], - [ - "▁chunk", - -12.282585144042969 - ], - [ - "▁Nr", - -12.28266716003418 - ], - [ - "▁Montana", - -12.282674789428711 - ], - [ - "▁sticks", - -12.28277587890625 - ], - [ - "▁caps", - -12.28309154510498 - ], - [ - "▁Jimmy", - -12.283167839050293 - ], - [ - "▁Levi", - -12.283285140991211 - ], - [ - "▁cables", - -12.28345012664795 - ], - [ - "▁SB", - -12.283550262451172 - ], - [ - "▁thème", - -12.2836275100708 - ], - [ - "ADA", - -12.283672332763672 - ], - [ - "▁garant", - -12.283686637878418 - ], - [ - "▁Joint", - -12.283820152282715 - ], - [ - "▁partage", - -12.28398323059082 - ], - [ - "schreib", - -12.284119606018066 - ], - [ - "ether", - -12.28420352935791 - ], - [ - "▁Klima", - -12.284303665161133 - ], - [ - "▁medicines", - -12.284317016601562 - ], - [ - "▁pH", - -12.284320831298828 - ], - [ - "Architect", - -12.284378051757812 - ], - [ - "știi", - -12.284396171569824 - ], - [ - "▁retrouve", - -12.284700393676758 - ], - [ - "▁posture", - -12.284753799438477 - ], - [ - "Feature", - -12.284773826599121 - ], - [ - "▁drying", - -12.284884452819824 - ], - [ - "trifft", - -12.28488826751709 - ], - [ - "ibi", - -12.285079002380371 - ], - [ - "▁rezerv", - -12.285116195678711 - ], - [ - "▁Vă", - -12.28518009185791 - ], - [ - "▁Speaker", - -12.285282135009766 - ], - [ - "▁illustration", - -12.285319328308105 - ], - [ - "oooo", - -12.285419464111328 - ], - [ - "▁initiated", - -12.285518646240234 - ], - [ - "PK", - -12.285545349121094 - ], - [ - "▁algorithms", - -12.285630226135254 - ], - [ - "▁zice", - -12.285757064819336 - ], - [ - "WI", - -12.28581428527832 - ], - [ - "urgence", - -12.285823822021484 - ], - [ - "▁bloggers", - -12.285887718200684 - ], - [ - "▁realitate", - -12.285894393920898 - ], - [ - "eks", - -12.28598690032959 - ], - [ - "▁cushions", - -12.286149024963379 - ], - [ - "▁Kri", - -12.286224365234375 - ], - [ - "▁réalisation", - -12.286396026611328 - ], - [ - "▁Photoshop", - -12.286407470703125 - ], - [ - "cret", - -12.286462783813477 - ], - [ - "faire", - -12.286613464355469 - ], - [ - "▁Cei", - -12.286782264709473 - ], - [ - "ICO", - -12.286789894104004 - ], - [ - "Contin", - -12.28681755065918 - ], - [ - "▁Builder", - -12.286916732788086 - ], - [ - "look", - -12.28698444366455 - ], - [ - "▁tenants", - -12.287023544311523 - ], - [ - "▁gloves", - -12.287113189697266 - ], - [ - "Day", - -12.287169456481934 - ], - [ - "firmly", - -12.28725814819336 - ], - [ - "CIA", - -12.287352561950684 - ], - [ - "▁TVA", - -12.28741455078125 - ], - [ - "▁notifications", - -12.287446975708008 - ], - [ - "▁Higher", - -12.287459373474121 - ], - [ - "▁Weihnachts", - -12.287491798400879 - ], - [ - "▁blur", - -12.287755012512207 - ], - [ - "ов", - -12.288087844848633 - ], - [ - "feder", - -12.288159370422363 - ], - [ - "▁explosion", - -12.288171768188477 - ], - [ - "▁Fenster", - -12.288189888000488 - ], - [ - "▁junge", - -12.288225173950195 - ], - [ - "▁Highland", - -12.288230895996094 - ], - [ - "▁Lü", - -12.288290023803711 - ], - [ - "▁Alba", - -12.28832721710205 - ], - [ - "▁Dort", - -12.288338661193848 - ], - [ - "▁recruiting", - -12.28835391998291 - ], - [ - "▁Multiple", - -12.288549423217773 - ], - [ - "▁animated", - -12.288604736328125 - ], - [ - "▁Virgin", - -12.288637161254883 - ], - [ - "1000", - -12.288676261901855 - ], - [ - "▁resin", - -12.288700103759766 - ], - [ - "▁matrix", - -12.288826942443848 - ], - [ - "irri", - -12.289011001586914 - ], - [ - "▁chiffre", - -12.28904914855957 - ], - [ - "▁Corps", - -12.289252281188965 - ], - [ - "▁advocacy", - -12.28927230834961 - ], - [ - "▁pozitiv", - -12.289274215698242 - ], - [ - "▁pouss", - -12.289451599121094 - ], - [ - "événement", - -12.28950309753418 - ], - [ - "▁pielii", - -12.289717674255371 - ], - [ - "onnais", - -12.289750099182129 - ], - [ - "▁Statement", - -12.289754867553711 - ], - [ - "crimin", - -12.289868354797363 - ], - [ - "hidrat", - -12.289942741394043 - ], - [ - "▁Jugendliche", - -12.290057182312012 - ], - [ - "TRI", - -12.290223121643066 - ], - [ - "erra", - -12.290240287780762 - ], - [ - "chat", - -12.290321350097656 - ], - [ - "▁traits", - -12.290359497070312 - ], - [ - "▁incentives", - -12.29038143157959 - ], - [ - "▁accelerate", - -12.290568351745605 - ], - [ - "woven", - -12.290633201599121 - ], - [ - "UST", - -12.290688514709473 - ], - [ - "▁premiers", - -12.290717124938965 - ], - [ - "▁Ferien", - -12.290755271911621 - ], - [ - "▁mariage", - -12.290796279907227 - ], - [ - "▁financially", - -12.290801048278809 - ], - [ - "gesellschaft", - -12.290863037109375 - ], - [ - "▁situaţi", - -12.290865898132324 - ], - [ - "▁quoted", - -12.291373252868652 - ], - [ - "▁periodic", - -12.291421890258789 - ], - [ - "▁chaos", - -12.291543960571289 - ], - [ - "▁remodel", - -12.29159927368164 - ], - [ - "▁Contractor", - -12.291641235351562 - ], - [ - "▁recuper", - -12.291729927062988 - ], - [ - "▁driveway", - -12.291755676269531 - ], - [ - "▁entertain", - -12.291765213012695 - ], - [ - "▁condus", - -12.291769027709961 - ], - [ - "▁chefs", - -12.29184341430664 - ], - [ - "pak", - -12.291866302490234 - ], - [ - "▁possède", - -12.291948318481445 - ], - [ - "▁outreach", - -12.291984558105469 - ], - [ - "▁navig", - -12.292036056518555 - ], - [ - "▁renewal", - -12.292071342468262 - ], - [ - "▁Rice", - -12.292309761047363 - ], - [ - "▁Czech", - -12.292398452758789 - ], - [ - "▁entstehen", - -12.292445182800293 - ], - [ - "▁droite", - -12.292448997497559 - ], - [ - "▁Investor", - -12.292497634887695 - ], - [ - "▁Soci", - -12.29250431060791 - ], - [ - "▁scalp", - -12.292622566223145 - ], - [ - "▁politiques", - -12.292815208435059 - ], - [ - "▁plaintiff", - -12.292841911315918 - ], - [ - "extending", - -12.29287052154541 - ], - [ - "▁paperwork", - -12.29300594329834 - ], - [ - "vizi", - -12.293142318725586 - ], - [ - "assisting", - -12.29317569732666 - ], - [ - "local", - -12.293272972106934 - ], - [ - "▁Wear", - -12.293323516845703 - ], - [ - "▁descend", - -12.293340682983398 - ], - [ - "▁Wikipedia", - -12.293513298034668 - ], - [ - "▁Consiliului", - -12.293516159057617 - ], - [ - "▁Nokia", - -12.293540000915527 - ], - [ - "▁facult", - -12.293560028076172 - ], - [ - "▁altogether", - -12.293851852416992 - ], - [ - "▁rankings", - -12.29391860961914 - ], - [ - "▁downloading", - -12.293953895568848 - ], - [ - "QU", - -12.294007301330566 - ], - [ - "▁Olive", - -12.294041633605957 - ], - [ - "▁backdrop", - -12.294110298156738 - ], - [ - "▁recomandat", - -12.294116020202637 - ], - [ - "▁Faculty", - -12.294184684753418 - ], - [ - "ANS", - -12.294220924377441 - ], - [ - "▁fracture", - -12.294225692749023 - ], - [ - "job", - -12.29448127746582 - ], - [ - "▁anticipate", - -12.294525146484375 - ], - [ - "▁drift", - -12.294543266296387 - ], - [ - "▁Marco", - -12.294632911682129 - ], - [ - "▁witnessed", - -12.294700622558594 - ], - [ - "▁comprend", - -12.294974327087402 - ], - [ - "▁bulb", - -12.29504680633545 - ], - [ - "▁shallow", - -12.295059204101562 - ], - [ - "stärke", - -12.295063972473145 - ], - [ - "▁Jessica", - -12.295080184936523 - ], - [ - "▁démarche", - -12.29508113861084 - ], - [ - "▁traditionally", - -12.29508113861084 - ], - [ - "Deputy", - -12.295093536376953 - ], - [ - "▁rivers", - -12.295260429382324 - ], - [ - "▁livraison", - -12.29531192779541 - ], - [ - "▁lacking", - -12.295421600341797 - ], - [ - "▁remodeling", - -12.295426368713379 - ], - [ - "▁acesteia", - -12.295514106750488 - ], - [ - "▁grosse", - -12.295669555664062 - ], - [ - "▁propus", - -12.295833587646484 - ], - [ - "lessly", - -12.29587459564209 - ], - [ - "▁Kredit", - -12.295931816101074 - ], - [ - "reputable", - -12.295981407165527 - ], - [ - "▁Sell", - -12.2960205078125 - ], - [ - "▁Crime", - -12.296111106872559 - ], - [ - "Ent", - -12.296310424804688 - ], - [ - "finity", - -12.296422004699707 - ], - [ - "▁Complex", - -12.296500205993652 - ], - [ - "easing", - -12.296638488769531 - ], - [ - "dynamic", - -12.296670913696289 - ], - [ - "▁eaten", - -12.296727180480957 - ], - [ - "gezogen", - -12.296734809875488 - ], - [ - "▁2004,", - -12.296774864196777 - ], - [ - "▁Muslims", - -12.296822547912598 - ], - [ - "▁Sprache", - -12.296883583068848 - ], - [ - "▁Truth", - -12.296927452087402 - ], - [ - "▁guarantees", - -12.296928405761719 - ], - [ - "/5", - -12.29712963104248 - ], - [ - "”).", - -12.297135353088379 - ], - [ - "▁Medium", - -12.2972993850708 - ], - [ - "▁décidé", - -12.297445297241211 - ], - [ - "▁balcony", - -12.29747200012207 - ], - [ - "leuchte", - -12.297502517700195 - ], - [ - "hik", - -12.297849655151367 - ], - [ - "▁Agriculture", - -12.298221588134766 - ], - [ - "▁securities", - -12.298221588134766 - ], - [ - "Probably", - -12.298224449157715 - ], - [ - "▁macar", - -12.29824161529541 - ], - [ - "▁Signal", - -12.298399925231934 - ], - [ - "lake", - -12.298677444458008 - ], - [ - "▁compétences", - -12.298726081848145 - ], - [ - "▁proprietary", - -12.298812866210938 - ], - [ - "allons", - -12.298850059509277 - ], - [ - "▁belongs", - -12.298916816711426 - ], - [ - "▁missile", - -12.298958778381348 - ], - [ - "țiune", - -12.298999786376953 - ], - [ - "▁Integration", - -12.299116134643555 - ], - [ - "▁testimony", - -12.299120903015137 - ], - [ - "▁wesentlich", - -12.299142837524414 - ], - [ - "▁donors", - -12.299152374267578 - ], - [ - "▁pivot", - -12.299202919006348 - ], - [ - "▁Uber", - -12.299219131469727 - ], - [ - "▁databases", - -12.299281120300293 - ], - [ - "▁studi", - -12.299317359924316 - ], - [ - "totdeauna", - -12.299351692199707 - ], - [ - "▁briefly", - -12.299449920654297 - ], - [ - "▁livr", - -12.29952335357666 - ], - [ - "▁CRM", - -12.299581527709961 - ], - [ - "gone", - -12.299697875976562 - ], - [ - "10)", - -12.299761772155762 - ], - [ - "▁zilele", - -12.299920082092285 - ], - [ - "Basically", - -12.300008773803711 - ], - [ - "▁medie", - -12.300041198730469 - ], - [ - "spotted", - -12.30006217956543 - ], - [ - "▁troubles", - -12.30009937286377 - ], - [ - "▁acknowledged", - -12.300176620483398 - ], - [ - "350", - -12.300185203552246 - ], - [ - "LB", - -12.300273895263672 - ], - [ - "Phy", - -12.30038833618164 - ], - [ - "natal", - -12.300397872924805 - ], - [ - "illé", - -12.300445556640625 - ], - [ - "bilder", - -12.300625801086426 - ], - [ - "▁apples", - -12.300636291503906 - ], - [ - "graphical", - -12.300889015197754 - ], - [ - "organiser", - -12.301024436950684 - ], - [ - "▁ochii", - -12.301040649414062 - ], - [ - "glas", - -12.301178932189941 - ], - [ - "CAP", - -12.301180839538574 - ], - [ - "▁Doors", - -12.301331520080566 - ], - [ - "▁Eis", - -12.30156135559082 - ], - [ - "tipuri", - -12.301590919494629 - ], - [ - "▁Worth", - -12.301684379577637 - ], - [ - "izează", - -12.301719665527344 - ], - [ - "nunț", - -12.30180549621582 - ], - [ - "▁Trip", - -12.30186653137207 - ], - [ - "ISS", - -12.301976203918457 - ], - [ - "efficient", - -12.30201530456543 - ], - [ - "Luckily", - -12.302099227905273 - ], - [ - "▁vase", - -12.302133560180664 - ], - [ - "▁gay", - -12.302343368530273 - ], - [ - "▁certificates", - -12.302434921264648 - ], - [ - "riad", - -12.302549362182617 - ], - [ - "stab", - -12.302570343017578 - ], - [ - "affiche", - -12.302604675292969 - ], - [ - "▁iPod", - -12.302645683288574 - ], - [ - "▁aștept", - -12.302726745605469 - ], - [ - "▁$500", - -12.302751541137695 - ], - [ - "▁Catherine", - -12.302952766418457 - ], - [ - "▁Circuit", - -12.302957534790039 - ], - [ - "▁ranch", - -12.303045272827148 - ], - [ - "▁consequence", - -12.303118705749512 - ], - [ - "listened", - -12.303131103515625 - ], - [ - "▁Options", - -12.303187370300293 - ], - [ - "feed", - -12.30318832397461 - ], - [ - "▁adviser", - -12.303248405456543 - ], - [ - "▁présenter", - -12.30333423614502 - ], - [ - "substant", - -12.30337905883789 - ], - [ - "▁Flag", - -12.303604125976562 - ], - [ - "▁Keith", - -12.30366325378418 - ], - [ - "▁inima", - -12.303709983825684 - ], - [ - "▁substrate", - -12.30373764038086 - ], - [ - "▁charger", - -12.303803443908691 - ], - [ - "▁reporter", - -12.303844451904297 - ], - [ - "ütz", - -12.304068565368652 - ], - [ - "▁unten", - -12.30417537689209 - ], - [ - "▁sympa", - -12.304542541503906 - ], - [ - "▁defeated", - -12.304600715637207 - ], - [ - "ändig", - -12.304644584655762 - ], - [ - "individu", - -12.304747581481934 - ], - [ - "▁Straßen", - -12.304774284362793 - ], - [ - "▁Nepal", - -12.304791450500488 - ], - [ - "million", - -12.304803848266602 - ], - [ - "▁Cake", - -12.30499267578125 - ], - [ - "▁investigations", - -12.30526065826416 - ], - [ - "▁inspector", - -12.3054780960083 - ], - [ - "▁Campbell", - -12.305486679077148 - ], - [ - "▁consommation", - -12.305489540100098 - ], - [ - "▁Ministerul", - -12.305628776550293 - ], - [ - "Advisory", - -12.305749893188477 - ], - [ - "▁Leistungs", - -12.305939674377441 - ], - [ - "▁Pull", - -12.306157112121582 - ], - [ - "▁lover", - -12.306194305419922 - ], - [ - "▁trunk", - -12.306380271911621 - ], - [ - "▁folosesc", - -12.30639934539795 - ], - [ - "pom", - -12.306558609008789 - ], - [ - "wunder", - -12.306794166564941 - ], - [ - "▁happier", - -12.306801795959473 - ], - [ - "▁embark", - -12.30689525604248 - ], - [ - "▁mediul", - -12.3069486618042 - ], - [ - "riff", - -12.306973457336426 - ], - [ - "▁copilul", - -12.307039260864258 - ], - [ - "ommage", - -12.307126998901367 - ], - [ - "rechnung", - -12.307218551635742 - ], - [ - "NU", - -12.307220458984375 - ], - [ - "▁fellowship", - -12.307395935058594 - ], - [ - "▁Mental", - -12.307403564453125 - ], - [ - "▁fever", - -12.3074312210083 - ], - [ - "▁silly", - -12.307547569274902 - ], - [ - "Object", - -12.30756664276123 - ], - [ - "NV", - -12.307591438293457 - ], - [ - "от", - -12.30774974822998 - ], - [ - "▁Strand", - -12.307762145996094 - ], - [ - "▁Exist", - -12.30777359008789 - ], - [ - "warum", - -12.307832717895508 - ], - [ - "CY", - -12.307848930358887 - ], - [ - "kä", - -12.307856559753418 - ], - [ - "!!!!!", - -12.307869911193848 - ], - [ - "▁moarte", - -12.30793571472168 - ], - [ - "▁waterfall", - -12.308024406433105 - ], - [ - "left", - -12.30815601348877 - ], - [ - "▁Nursing", - -12.308225631713867 - ], - [ - "▁invalid", - -12.30826187133789 - ], - [ - "struktur", - -12.308385848999023 - ], - [ - "Allerdings", - -12.30838680267334 - ], - [ - "étranger", - -12.30838680267334 - ], - [ - "▁prost", - -12.308517456054688 - ], - [ - "▁Parent", - -12.308562278747559 - ], - [ - "▁întreag", - -12.308611869812012 - ], - [ - "▁compensate", - -12.308871269226074 - ], - [ - "▁sometime", - -12.308955192565918 - ], - [ - "graduate", - -12.308968544006348 - ], - [ - "▁Carter", - -12.30898380279541 - ], - [ - "▁crap", - -12.308998107910156 - ], - [ - "▁mathematics", - -12.309067726135254 - ], - [ - "resemble", - -12.309069633483887 - ], - [ - "Dame", - -12.309152603149414 - ], - [ - "▁Swa", - -12.309198379516602 - ], - [ - "▁celebrity", - -12.309239387512207 - ], - [ - "▁verified", - -12.309338569641113 - ], - [ - "▁Behind", - -12.309349060058594 - ], - [ - "carbon", - -12.309432983398438 - ], - [ - "▁gateway", - -12.309490203857422 - ], - [ - "▁ambitious", - -12.30952262878418 - ], - [ - "▁Wellness", - -12.30966567993164 - ], - [ - "30,000", - -12.30968189239502 - ], - [ - "defined", - -12.309929847717285 - ], - [ - "specializes", - -12.310121536254883 - ], - [ - "▁Chase", - -12.310199737548828 - ], - [ - "HF", - -12.310233116149902 - ], - [ - "ABLE", - -12.310348510742188 - ], - [ - "▁Ehr", - -12.310467720031738 - ], - [ - "▁régime", - -12.310480117797852 - ], - [ - "▁awake", - -12.310487747192383 - ], - [ - "▁seafood", - -12.310487747192383 - ], - [ - "leading", - -12.310554504394531 - ], - [ - "▁Rule", - -12.310602188110352 - ], - [ - "verkehr", - -12.310726165771484 - ], - [ - "erem", - -12.310737609863281 - ], - [ - "▁1973", - -12.310795783996582 - ], - [ - "personal", - -12.311171531677246 - ], - [ - "ența", - -12.311330795288086 - ], - [ - "apprend", - -12.311396598815918 - ], - [ - "faisant", - -12.311420440673828 - ], - [ - "▁Sounds", - -12.31151008605957 - ], - [ - "▁Launch", - -12.31151294708252 - ], - [ - "half", - -12.311636924743652 - ], - [ - "▁verre", - -12.311859130859375 - ], - [ - "▁Regular", - -12.31207275390625 - ], - [ - "▁Nancy", - -12.312142372131348 - ], - [ - "quelles", - -12.312161445617676 - ], - [ - "▁erhält", - -12.312169075012207 - ], - [ - "▁socks", - -12.3121919631958 - ], - [ - "lamp", - -12.312387466430664 - ], - [ - "▁durchgeführt", - -12.312472343444824 - ], - [ - "▁advertise", - -12.31260871887207 - ], - [ - "powered", - -12.312653541564941 - ], - [ - "▁concur", - -12.312699317932129 - ], - [ - "▁ressources", - -12.31293773651123 - ], - [ - "▁allocation", - -12.312986373901367 - ], - [ - "chon", - -12.313041687011719 - ], - [ - "▁Larry", - -12.313177108764648 - ], - [ - "lässig", - -12.313254356384277 - ], - [ - "OLD", - -12.313493728637695 - ], - [ - "itty", - -12.313599586486816 - ], - [ - "▁immuno", - -12.313645362854004 - ], - [ - "▁(+", - -12.313651084899902 - ], - [ - "▁Essential", - -12.313674926757812 - ], - [ - "▁semaines", - -12.313719749450684 - ], - [ - "Ru", - -12.31375503540039 - ], - [ - "▁Gear", - -12.313764572143555 - ], - [ - "völlig", - -12.313850402832031 - ], - [ - "liga", - -12.31391716003418 - ], - [ - "▁Neg", - -12.314082145690918 - ], - [ - "▁gratitude", - -12.31408977508545 - ], - [ - "aventure", - -12.314108848571777 - ], - [ - "▁frustrated", - -12.314115524291992 - ], - [ - "▁retrait", - -12.31422233581543 - ], - [ - "▁statut", - -12.314231872558594 - ], - [ - "550", - -12.31434440612793 - ], - [ - "ла", - -12.314428329467773 - ], - [ - "risto", - -12.314448356628418 - ], - [ - "WAY", - -12.314607620239258 - ], - [ - "▁pigment", - -12.314652442932129 - ], - [ - "Selon", - -12.314715385437012 - ], - [ - "stil", - -12.3148775100708 - ], - [ - "▁Marin", - -12.315055847167969 - ], - [ - "ashi", - -12.315085411071777 - ], - [ - "▁contine", - -12.31519889831543 - ], - [ - "▁Economics", - -12.315200805664062 - ], - [ - "both", - -12.3152437210083 - ], - [ - "▁Dou", - -12.31527328491211 - ], - [ - "Fel", - -12.315373420715332 - ], - [ - "UNT", - -12.315434455871582 - ], - [ - "▁grandmother", - -12.31548023223877 - ], - [ - "▁domicile", - -12.315678596496582 - ], - [ - "▁buffer", - -12.31574535369873 - ], - [ - "▁fuse", - -12.315815925598145 - ], - [ - "▁dosage", - -12.315821647644043 - ], - [ - "▁Nici", - -12.315839767456055 - ], - [ - "▁worries", - -12.315908432006836 - ], - [ - "▁Rail", - -12.3159818649292 - ], - [ - "uneori", - -12.315990447998047 - ], - [ - "▁Sierra", - -12.316030502319336 - ], - [ - "▁porni", - -12.316032409667969 - ], - [ - "▁NOTE", - -12.316056251525879 - ], - [ - "▁tendency", - -12.316065788269043 - ], - [ - "Set", - -12.316256523132324 - ], - [ - "▁Hof", - -12.31629753112793 - ], - [ - "▁Ruhe", - -12.316300392150879 - ], - [ - "harm", - -12.316360473632812 - ], - [ - "▁Developer", - -12.316367149353027 - ], - [ - "suing", - -12.316400527954102 - ], - [ - "persönlichen", - -12.31658935546875 - ], - [ - "▁agréable", - -12.316596031188965 - ], - [ - "commissioned", - -12.316696166992188 - ], - [ - "▁1974", - -12.31672191619873 - ], - [ - "▁1969", - -12.316758155822754 - ], - [ - "▁regl", - -12.316996574401855 - ], - [ - "▁terror", - -12.317042350769043 - ], - [ - "▁température", - -12.317051887512207 - ], - [ - "▁Archiv", - -12.31706714630127 - ], - [ - "▁Military", - -12.317140579223633 - ], - [ - "▁König", - -12.317290306091309 - ], - [ - "▁forex", - -12.31737232208252 - ], - [ - "wiki", - -12.31745719909668 - ], - [ - "thetic", - -12.317506790161133 - ], - [ - "alaturi", - -12.317974090576172 - ], - [ - "▁montant", - -12.3179931640625 - ], - [ - "▁maladie", - -12.318044662475586 - ], - [ - "gust", - -12.318151473999023 - ], - [ - "▁demander", - -12.318164825439453 - ], - [ - "avocat", - -12.318191528320312 - ], - [ - "▁sci", - -12.318192481994629 - ], - [ - "▁Wireless", - -12.318214416503906 - ], - [ - "▁Dein", - -12.318220138549805 - ], - [ - "▁trio", - -12.3183012008667 - ], - [ - "▁Same", - -12.318395614624023 - ], - [ - "Datei", - -12.318464279174805 - ], - [ - "▁alerg", - -12.318578720092773 - ], - [ - "crowded", - -12.318657875061035 - ], - [ - "▁Punkt", - -12.318853378295898 - ], - [ - "▁sanctions", - -12.318864822387695 - ], - [ - "stating", - -12.318922996520996 - ], - [ - "▁discusse", - -12.318949699401855 - ], - [ - "▁Eigen", - -12.319068908691406 - ], - [ - "▁sănătate", - -12.31911563873291 - ], - [ - "▁correspondence", - -12.319211959838867 - ], - [ - "cred", - -12.319331169128418 - ], - [ - "VG", - -12.319347381591797 - ], - [ - "▁différence", - -12.319347381591797 - ], - [ - "▁Montreal", - -12.319391250610352 - ], - [ - "▁masini", - -12.319398880004883 - ], - [ - "iata", - -12.319487571716309 - ], - [ - "▁sampling", - -12.319574356079102 - ], - [ - "▁Gib", - -12.319831848144531 - ], - [ - "▁sheer", - -12.319944381713867 - ], - [ - "330", - -12.319947242736816 - ], - [ - "CHI", - -12.319990158081055 - ], - [ - "▁damn", - -12.320030212402344 - ], - [ - "▁Advisor", - -12.320201873779297 - ], - [ - "Typically", - -12.320302963256836 - ], - [ - "ssé", - -12.320352554321289 - ], - [ - "quart", - -12.320361137390137 - ], - [ - "chete", - -12.320385932922363 - ], - [ - "▁Puerto", - -12.32049560546875 - ], - [ - "2-1", - -12.32050609588623 - ], - [ - "NN", - -12.320674896240234 - ], - [ - "▁styling", - -12.320707321166992 - ], - [ - "rud", - -12.320777893066406 - ], - [ - "од", - -12.320856094360352 - ], - [ - "▁Hydro", - -12.320941925048828 - ], - [ - "▁Cable", - -12.320961952209473 - ], - [ - "video", - -12.320974349975586 - ], - [ - "▁Wirkung", - -12.321194648742676 - ], - [ - "▁noble", - -12.321270942687988 - ], - [ - "▁Sonder", - -12.32129192352295 - ], - [ - "mati", - -12.321317672729492 - ], - [ - "850", - -12.321395874023438 - ], - [ - "▁Richmond", - -12.32143497467041 - ], - [ - "▁niciodată", - -12.321442604064941 - ], - [ - "AO", - -12.321527481079102 - ], - [ - "▁altered", - -12.321648597717285 - ], - [ - "▁(15", - -12.32168960571289 - ], - [ - "▁Motiv", - -12.322052001953125 - ], - [ - "AKE", - -12.322089195251465 - ], - [ - "▁bestimmte", - -12.322172164916992 - ], - [ - "6.5", - -12.322176933288574 - ], - [ - "hectare", - -12.322333335876465 - ], - [ - "atorită", - -12.322335243225098 - ], - [ - "▁phases", - -12.322447776794434 - ], - [ - "▁Nova", - -12.322566032409668 - ], - [ - "ordinateur", - -12.322579383850098 - ], - [ - "▁corrupt", - -12.322813034057617 - ], - [ - "error", - -12.322895050048828 - ], - [ - "▁attacked", - -12.323005676269531 - ], - [ - "▁Kirche", - -12.323019981384277 - ], - [ - "heir", - -12.323040962219238 - ], - [ - "Das", - -12.323254585266113 - ], - [ - "▁anxious", - -12.323258399963379 - ], - [ - "▁Doc", - -12.323386192321777 - ], - [ - "▁Roth", - -12.323415756225586 - ], - [ - "▁Cine", - -12.32388687133789 - ], - [ - "▁auditor", - -12.324418067932129 - ], - [ - "▁beverage", - -12.324586868286133 - ], - [ - "▁précédent", - -12.324637413024902 - ], - [ - "▁deploy", - -12.324837684631348 - ], - [ - "▁accessibility", - -12.324843406677246 - ], - [ - "▁cage", - -12.324885368347168 - ], - [ - "▁Contra", - -12.324934005737305 - ], - [ - "Best", - -12.324952125549316 - ], - [ - "iji", - -12.324972152709961 - ], - [ - "▁père", - -12.325060844421387 - ], - [ - "▁scenic", - -12.32511043548584 - ], - [ - "synthesis", - -12.325165748596191 - ], - [ - "ßen", - -12.32534408569336 - ], - [ - "▁Videos", - -12.325482368469238 - ], - [ - "▁refus", - -12.325484275817871 - ], - [ - "stimmen", - -12.3255615234375 - ], - [ - "▁sleek", - -12.325577735900879 - ], - [ - "artige", - -12.32563591003418 - ], - [ - "mari", - -12.32568359375 - ], - [ - "▁excelent", - -12.325740814208984 - ], - [ - "▁negativ", - -12.325806617736816 - ], - [ - "▁blocking", - -12.32590103149414 - ], - [ - "spricht", - -12.326001167297363 - ], - [ - "▁discomfort", - -12.32602310180664 - ], - [ - "▁stratégie", - -12.32602310180664 - ], - [ - "▁Datenschutz", - -12.326078414916992 - ], - [ - "curg", - -12.326128005981445 - ], - [ - "▁lapte", - -12.326432228088379 - ], - [ - "▁acasă", - -12.326491355895996 - ], - [ - "▁ausschließlich", - -12.32653522491455 - ], - [ - "▁unbedingt", - -12.326802253723145 - ], - [ - "▁Linie", - -12.32689380645752 - ], - [ - "▁subscribers", - -12.327019691467285 - ], - [ - "109", - -12.32702350616455 - ], - [ - "▁Waste", - -12.32712173461914 - ], - [ - "▁Planung", - -12.327231407165527 - ], - [ - "▁visually", - -12.32734489440918 - ], - [ - "utilizarea", - -12.327370643615723 - ], - [ - "uba", - -12.327381134033203 - ], - [ - "▁fifteen", - -12.327411651611328 - ], - [ - "▁légère", - -12.327411651611328 - ], - [ - "ința", - -12.327446937561035 - ], - [ - "▁tolerance", - -12.327460289001465 - ], - [ - "▁piscine", - -12.327536582946777 - ], - [ - "▁nails", - -12.327569007873535 - ], - [ - "▁accus", - -12.327693939208984 - ], - [ - "▁coeur", - -12.327773094177246 - ], - [ - "freie", - -12.327849388122559 - ], - [ - "enţă", - -12.32812213897705 - ], - [ - "▁glucose", - -12.328336715698242 - ], - [ - "▁Jar", - -12.32838249206543 - ], - [ - "▁commencer", - -12.328387260437012 - ], - [ - "▁eliminating", - -12.328414916992188 - ], - [ - "▁mutation", - -12.32844352722168 - ], - [ - "▁afirma", - -12.328444480895996 - ], - [ - "▁Consulting", - -12.328454971313477 - ], - [ - "adia", - -12.328543663024902 - ], - [ - "zog", - -12.328604698181152 - ], - [ - "▁pielea", - -12.328658103942871 - ], - [ - "rton", - -12.328706741333008 - ], - [ - "exercice", - -12.3287935256958 - ], - [ - "namely", - -12.328847885131836 - ], - [ - "▁ajutor", - -12.3289155960083 - ], - [ - "▁markers", - -12.328917503356934 - ], - [ - "▁gardening", - -12.328932762145996 - ], - [ - "Karte", - -12.329038619995117 - ], - [ - "▁Pump", - -12.329142570495605 - ], - [ - "▁Dual", - -12.329169273376465 - ], - [ - "▁pratiques", - -12.329349517822266 - ], - [ - "▁behavioral", - -12.329358100891113 - ], - [ - "▁construire", - -12.329511642456055 - ], - [ - "▁Leonard", - -12.329596519470215 - ], - [ - "ediglich", - -12.329630851745605 - ], - [ - "ubbed", - -12.3297758102417 - ], - [ - "NK", - -12.329792022705078 - ], - [ - "shell", - -12.329912185668945 - ], - [ - "▁persönliche", - -12.329996109008789 - ], - [ - "ecuring", - -12.329998970031738 - ], - [ - "beaten", - -12.33000373840332 - ], - [ - "ALE", - -12.330053329467773 - ], - [ - "▁puppy", - -12.33023452758789 - ], - [ - "▁capac", - -12.33027458190918 - ], - [ - "▁seventh", - -12.330394744873047 - ], - [ - "▁nursery", - -12.330400466918945 - ], - [ - "▁Rum", - -12.330419540405273 - ], - [ - "▁exquisite", - -12.330423355102539 - ], - [ - "▁Legi", - -12.330483436584473 - ], - [ - "▁persist", - -12.330497741699219 - ], - [ - "bacterial", - -12.330548286437988 - ], - [ - "▁cereal", - -12.330572128295898 - ], - [ - "▁principe", - -12.330693244934082 - ], - [ - "chip", - -12.330766677856445 - ], - [ - "rush", - -12.330832481384277 - ], - [ - "▁funnel", - -12.330904006958008 - ], - [ - "▁calitatea", - -12.331024169921875 - ], - [ - "ibă", - -12.33104419708252 - ], - [ - "▁reign", - -12.331086158752441 - ], - [ - "▁congregation", - -12.331120491027832 - ], - [ - "▁obtine", - -12.331270217895508 - ], - [ - "▁découverte", - -12.331286430358887 - ], - [ - "▁gama", - -12.331315040588379 - ], - [ - "▁judec", - -12.33132553100586 - ], - [ - "Plan", - -12.331351280212402 - ], - [ - "▁gesture", - -12.331539154052734 - ], - [ - "öffentlichen", - -12.331644058227539 - ], - [ - "▁imported", - -12.331693649291992 - ], - [ - "▁rotate", - -12.331747055053711 - ], - [ - "blown", - -12.331756591796875 - ], - [ - "▁Protein", - -12.331827163696289 - ], - [ - "parfaitement", - -12.331832885742188 - ], - [ - "ondo", - -12.331868171691895 - ], - [ - "ologists", - -12.331890106201172 - ], - [ - "▁neighborhoods", - -12.331989288330078 - ], - [ - "▁Pope", - -12.33202075958252 - ], - [ - "▁museums", - -12.332194328308105 - ], - [ - "▁porter", - -12.332330703735352 - ], - [ - "▁kiss", - -12.332335472106934 - ], - [ - "pdf", - -12.332354545593262 - ], - [ - "sided", - -12.332359313964844 - ], - [ - "▁gern", - -12.332395553588867 - ], - [ - "bedingungen", - -12.332496643066406 - ], - [ - "▁Ride", - -12.332582473754883 - ], - [ - "Apoi", - -12.332584381103516 - ], - [ - "▁bestehen", - -12.332603454589844 - ], - [ - "5\"", - -12.33285903930664 - ], - [ - "bob", - -12.332862854003906 - ], - [ - "ficient", - -12.33303165435791 - ], - [ - "premise", - -12.333086967468262 - ], - [ - "▁Clip", - -12.333112716674805 - ], - [ - "▁concours", - -12.333213806152344 - ], - [ - "olar", - -12.333281517028809 - ], - [ - "▁Centr", - -12.333356857299805 - ], - [ - "outlined", - -12.333429336547852 - ], - [ - "▁observa", - -12.333511352539062 - ], - [ - "▁negotiate", - -12.333537101745605 - ], - [ - "▁Partnership", - -12.33358383178711 - ], - [ - "clock", - -12.333662033081055 - ], - [ - "roasted", - -12.333755493164062 - ], - [ - "Pourquoi", - -12.33391284942627 - ], - [ - "▁Marshall", - -12.334005355834961 - ], - [ - "▁Gerade", - -12.334052085876465 - ], - [ - "▁pachet", - -12.334160804748535 - ], - [ - "▁preliminary", - -12.334162712097168 - ], - [ - "▁tragic", - -12.334200859069824 - ], - [ - "author", - -12.334268569946289 - ], - [ - "▁Gov", - -12.334309577941895 - ], - [ - "▁comunic", - -12.334403991699219 - ], - [ - "▁coordinator", - -12.334410667419434 - ], - [ - "YA", - -12.33445930480957 - ], - [ - "▁Steam", - -12.33476734161377 - ], - [ - "▁Nag", - -12.334796905517578 - ], - [ - "▁Kara", - -12.334851264953613 - ], - [ - "▁Gang", - -12.334858894348145 - ], - [ - "aurez", - -12.334868431091309 - ], - [ - "▁horrible", - -12.334869384765625 - ], - [ - "▁Luxury", - -12.335076332092285 - ], - [ - "▁encouragement", - -12.335169792175293 - ], - [ - "▁conceptual", - -12.335250854492188 - ], - [ - "▁constituent", - -12.335431098937988 - ], - [ - "nvelop", - -12.335494041442871 - ], - [ - "ucc", - -12.335500717163086 - ], - [ - "▁conçu", - -12.335542678833008 - ], - [ - "pfel", - -12.33559513092041 - ], - [ - "special", - -12.335700988769531 - ], - [ - "▁Growth", - -12.335834503173828 - ], - [ - "cada", - -12.335916519165039 - ], - [ - "▁oamenilor", - -12.335976600646973 - ], - [ - "▁vendredi", - -12.336021423339844 - ], - [ - "▁coupe", - -12.336055755615234 - ], - [ - "▁Danke", - -12.336134910583496 - ], - [ - "reflects", - -12.336181640625 - ], - [ - "▁girlfriend", - -12.336273193359375 - ], - [ - "▁diffuse", - -12.336325645446777 - ], - [ - "HER", - -12.336328506469727 - ], - [ - "storing", - -12.336464881896973 - ], - [ - "ailing", - -12.336591720581055 - ], - [ - "▁Desi", - -12.336601257324219 - ], - [ - "stitution", - -12.336832046508789 - ], - [ - "▁adun", - -12.336844444274902 - ], - [ - "▁Partie", - -12.336869239807129 - ], - [ - "▁tissues", - -12.336958885192871 - ], - [ - "▁discovering", - -12.337154388427734 - ], - [ - "Jacques", - -12.337178230285645 - ], - [ - "lungs", - -12.33724594116211 - ], - [ - "▁Handy", - -12.337261199951172 - ], - [ - "centric", - -12.337285995483398 - ], - [ - "slav", - -12.337442398071289 - ], - [ - "▁sights", - -12.337560653686523 - ], - [ - "▁Category", - -12.337644577026367 - ], - [ - "▁Einrichtung", - -12.337957382202148 - ], - [ - "▁Robinson", - -12.33804702758789 - ], - [ - "▁Terra", - -12.338150978088379 - ], - [ - "▁creep", - -12.338167190551758 - ], - [ - "▁Lob", - -12.338184356689453 - ], - [ - "001", - -12.33820629119873 - ], - [ - "kop", - -12.338208198547363 - ], - [ - "Emb", - -12.338292121887207 - ], - [ - "▁forgive", - -12.338391304016113 - ], - [ - "▁icons", - -12.33847427368164 - ], - [ - "electric", - -12.3385009765625 - ], - [ - "▁faucet", - -12.338516235351562 - ], - [ - "▁invisible", - -12.3386812210083 - ], - [ - "sprach", - -12.338801383972168 - ], - [ - "▁beachten", - -12.33881664276123 - ], - [ - "rahm", - -12.338833808898926 - ], - [ - "▁Teacher", - -12.338919639587402 - ], - [ - "Fab", - -12.339070320129395 - ], - [ - "▁joue", - -12.339101791381836 - ], - [ - "▁Popular", - -12.339120864868164 - ], - [ - "▁Februar", - -12.339171409606934 - ], - [ - "sound", - -12.339251518249512 - ], - [ - "▁(0", - -12.339317321777344 - ], - [ - "▁Compare", - -12.33938980102539 - ], - [ - "▁pads", - -12.339455604553223 - ], - [ - "270", - -12.339498519897461 - ], - [ - "ousse", - -12.339548110961914 - ], - [ - "▁UAE", - -12.339786529541016 - ], - [ - "izări", - -12.339787483215332 - ], - [ - "▁bonuses", - -12.33993911743164 - ], - [ - "▁switches", - -12.3400239944458 - ], - [ - "▁Brothers", - -12.340166091918945 - ], - [ - "▁environmentally", - -12.340171813964844 - ], - [ - "vista", - -12.340264320373535 - ], - [ - "▁intentions", - -12.3402738571167 - ], - [ - "▁Terri", - -12.340301513671875 - ], - [ - "▁diabet", - -12.34030532836914 - ], - [ - "▁prese", - -12.340333938598633 - ], - [ - "▁parcurs", - -12.340389251708984 - ], - [ - "Warum", - -12.340449333190918 - ], - [ - "▁credentials", - -12.340455055236816 - ], - [ - "▁PLA", - -12.34046459197998 - ], - [ - "▁instruct", - -12.340470314025879 - ], - [ - "▁benefic", - -12.340633392333984 - ], - [ - "write", - -12.340675354003906 - ], - [ - "▁poids", - -12.340773582458496 - ], - [ - "▁Anspruch", - -12.340923309326172 - ], - [ - "▁avocado", - -12.340923309326172 - ], - [ - "▁inevitable", - -12.340923309326172 - ], - [ - "▁poorly", - -12.340950965881348 - ], - [ - "karte", - -12.340994834899902 - ], - [ - "▁Publishing", - -12.340999603271484 - ], - [ - "odată", - -12.341140747070312 - ], - [ - "▁scientifique", - -12.341157913208008 - ], - [ - "▁lăsa", - -12.341262817382812 - ], - [ - "▁secol", - -12.34131908416748 - ], - [ - "▁nevertheless", - -12.341392517089844 - ], - [ - "SAT", - -12.341597557067871 - ], - [ - "280", - -12.341651916503906 - ], - [ - "▁prevederi", - -12.341670989990234 - ], - [ - "▁chrome", - -12.342002868652344 - ], - [ - "institut", - -12.342267036437988 - ], - [ - "richtigen", - -12.34228515625 - ], - [ - "▁grief", - -12.342338562011719 - ], - [ - "▁penalties", - -12.342373847961426 - ], - [ - "▁Bayern", - -12.34238052368164 - ], - [ - "▁caramel", - -12.342473983764648 - ], - [ - "Now", - -12.342495918273926 - ], - [ - "Stiftung", - -12.342576026916504 - ], - [ - "country", - -12.342737197875977 - ], - [ - "dication", - -12.34278678894043 - ], - [ - "▁Chor", - -12.342801094055176 - ], - [ - "▁rămâne", - -12.342936515808105 - ], - [ - "▁TOP", - -12.34300708770752 - ], - [ - "▁complète", - -12.34301471710205 - ], - [ - "▁Marian", - -12.34302806854248 - ], - [ - "▁Avant", - -12.343121528625488 - ], - [ - "▁Shower", - -12.343156814575195 - ], - [ - "treu", - -12.34316349029541 - ], - [ - "▁chop", - -12.34321403503418 - ], - [ - "▁comfortably", - -12.343220710754395 - ], - [ - "▁autism", - -12.34323787689209 - ], - [ - "▁Sind", - -12.34328556060791 - ], - [ - "▁(20", - -12.343340873718262 - ], - [ - "▁Cinema", - -12.343414306640625 - ], - [ - "compania", - -12.343606948852539 - ], - [ - "▁Lex", - -12.343622207641602 - ], - [ - "▁Sofa", - -12.343716621398926 - ], - [ - "dru", - -12.343753814697266 - ], - [ - "▁verification", - -12.343770027160645 - ], - [ - "▁Immer", - -12.343825340270996 - ], - [ - "lomb", - -12.343829154968262 - ], - [ - "meric", - -12.34385871887207 - ], - [ - "▁slower", - -12.34398365020752 - ], - [ - "▁propag", - -12.344090461730957 - ], - [ - "Inter", - -12.344097137451172 - ], - [ - "selling", - -12.34418773651123 - ], - [ - "▁Bright", - -12.344269752502441 - ], - [ - "condition", - -12.344280242919922 - ], - [ - "PDF", - -12.344291687011719 - ], - [ - "oyez", - -12.344391822814941 - ], - [ - "▁Fried", - -12.344420433044434 - ], - [ - "▁Nazi", - -12.34443187713623 - ], - [ - "▁Buffalo", - -12.344447135925293 - ], - [ - "▁Sue", - -12.344449043273926 - ], - [ - "▁Rhein", - -12.34468936920166 - ], - [ - "▁Klaus", - -12.344889640808105 - ], - [ - "▁indiqu", - -12.344963073730469 - ], - [ - "echte", - -12.344996452331543 - ], - [ - "▁frecvent", - -12.345165252685547 - ], - [ - "▁conveniently", - -12.345187187194824 - ], - [ - "▁Moi", - -12.345197677612305 - ], - [ - "▁greenhouse", - -12.345220565795898 - ], - [ - "▁rédui", - -12.34524154663086 - ], - [ - "▁lengthy", - -12.34542179107666 - ], - [ - "verband", - -12.345534324645996 - ], - [ - "inţă", - -12.345622062683105 - ], - [ - "▁rigorous", - -12.345625877380371 - ], - [ - "▁Finish", - -12.34580135345459 - ], - [ - "▁FBI", - -12.346052169799805 - ], - [ - "cultura", - -12.346083641052246 - ], - [ - "▁compartment", - -12.346110343933105 - ], - [ - "▁pretend", - -12.346117973327637 - ], - [ - "▁assembled", - -12.346212387084961 - ], - [ - "▁Nie", - -12.34639835357666 - ], - [ - "fession", - -12.34640884399414 - ], - [ - "▁£2", - -12.34642219543457 - ], - [ - "algré", - -12.3468017578125 - ], - [ - "▁anterior", - -12.346817970275879 - ], - [ - "▁Wissenschaft", - -12.34683609008789 - ], - [ - "▁Harbor", - -12.346923828125 - ], - [ - "lix", - -12.346985816955566 - ], - [ - "=\"", - -12.347049713134766 - ], - [ - "▁breathtaking", - -12.34705638885498 - ], - [ - "▁Stern", - -12.34708309173584 - ], - [ - "▁Internetseite", - -12.347132682800293 - ], - [ - "▁locker", - -12.347216606140137 - ], - [ - "▁feather", - -12.34726619720459 - ], - [ - "Serv", - -12.347297668457031 - ], - [ - "▁snake", - -12.347332000732422 - ], - [ - "▁Border", - -12.347396850585938 - ], - [ - "▁undergo", - -12.347518920898438 - ], - [ - "▁petrol", - -12.347558975219727 - ], - [ - "▁dealership", - -12.3475923538208 - ], - [ - "▁commander", - -12.347596168518066 - ], - [ - "▁Monate", - -12.347599983215332 - ], - [ - "▁Guardian", - -12.347665786743164 - ], - [ - "▁Todd", - -12.347774505615234 - ], - [ - "Ann", - -12.347825050354004 - ], - [ - "ibilité", - -12.347918510437012 - ], - [ - "▁Quarter", - -12.347987174987793 - ], - [ - "▁portray", - -12.348097801208496 - ], - [ - "▁Tai", - -12.34813404083252 - ], - [ - "▁strikes", - -12.348224639892578 - ], - [ - "illage", - -12.348381042480469 - ], - [ - "▁IRS", - -12.348417282104492 - ], - [ - "▁lupta", - -12.348455429077148 - ], - [ - "▁Sper", - -12.348493576049805 - ], - [ - "PRO", - -12.348530769348145 - ], - [ - "▁Export", - -12.348549842834473 - ], - [ - "▁crypto", - -12.348587989807129 - ], - [ - "▁barbecue", - -12.348692893981934 - ], - [ - "▁portions", - -12.348787307739258 - ], - [ - "▁explicit", - -12.348793983459473 - ], - [ - "▁angenehm", - -12.348834037780762 - ], - [ - "▁marathon", - -12.348946571350098 - ], - [ - "▁apartament", - -12.348982810974121 - ], - [ - "▁Eva", - -12.349079132080078 - ], - [ - "plate", - -12.349181175231934 - ], - [ - "viel", - -12.34925365447998 - ], - [ - "FIN", - -12.34926986694336 - ], - [ - "dependent", - -12.34935188293457 - ], - [ - "▁cercet", - -12.34942626953125 - ], - [ - "▁midnight", - -12.349499702453613 - ], - [ - "copie", - -12.349563598632812 - ], - [ - "▁companii", - -12.349621772766113 - ], - [ - "▁tenu", - -12.349660873413086 - ], - [ - "1/2", - -12.349662780761719 - ], - [ - "2.4", - -12.349693298339844 - ], - [ - "abri", - -12.349699974060059 - ], - [ - "▁warn", - -12.34980297088623 - ], - [ - "▁luggage", - -12.349875450134277 - ], - [ - "numarul", - -12.349968910217285 - ], - [ - "▁contour", - -12.350014686584473 - ], - [ - "▁Ghost", - -12.350016593933105 - ], - [ - "Angaben", - -12.35012435913086 - ], - [ - "▁unemployment", - -12.350296020507812 - ], - [ - "▁rău", - -12.350380897521973 - ], - [ - "▁dispatch", - -12.350445747375488 - ], - [ - "investissement", - -12.350547790527344 - ], - [ - "▁passt", - -12.35057258605957 - ], - [ - "▁Germania", - -12.350578308105469 - ], - [ - "▁webpage", - -12.350651741027832 - ], - [ - "▁reservations", - -12.350688934326172 - ], - [ - "▁Kai", - -12.350743293762207 - ], - [ - "▁Cav", - -12.350890159606934 - ], - [ - "▁Patient", - -12.351109504699707 - ], - [ - "ер", - -12.351213455200195 - ], - [ - "▁Belle", - -12.351236343383789 - ], - [ - "▁Nashville", - -12.351296424865723 - ], - [ - "▁Talent", - -12.351332664489746 - ], - [ - "ouvrage", - -12.351364135742188 - ], - [ - "▁bekommt", - -12.351365089416504 - ], - [ - "USA", - -12.351430892944336 - ], - [ - "CES", - -12.351432800292969 - ], - [ - "▁Peru", - -12.351499557495117 - ], - [ - "▁erkennen", - -12.35153579711914 - ], - [ - "prinde", - -12.351569175720215 - ], - [ - "▁constitution", - -12.351922035217285 - ], - [ - "itatile", - -12.351998329162598 - ], - [ - "bah", - -12.352147102355957 - ], - [ - "▁avail", - -12.352148056030273 - ], - [ - "▁disponibile", - -12.352149963378906 - ], - [ - "hér", - -12.352258682250977 - ], - [ - "ол", - -12.352411270141602 - ], - [ - "▁startups", - -12.352435111999512 - ], - [ - "▁carton", - -12.352485656738281 - ], - [ - "▁Newsletter", - -12.35251235961914 - ], - [ - "éti", - -12.352560997009277 - ], - [ - "▁investigating", - -12.352779388427734 - ], - [ - "itul", - -12.352925300598145 - ], - [ - "touch", - -12.352962493896484 - ], - [ - "Sport", - -12.353137016296387 - ], - [ - "AME", - -12.353203773498535 - ], - [ - "MIN", - -12.353222846984863 - ], - [ - "metry", - -12.353371620178223 - ], - [ - "icy", - -12.353492736816406 - ], - [ - "▁Luna", - -12.35351848602295 - ], - [ - "▁asthma", - -12.353614807128906 - ], - [ - "▁conduc", - -12.35365104675293 - ], - [ - "▁Ari", - -12.35369873046875 - ], - [ - "trust", - -12.353832244873047 - ], - [ - "▁defines", - -12.353894233703613 - ], - [ - "▁Blend", - -12.353927612304688 - ], - [ - "azo", - -12.353989601135254 - ], - [ - "▁sweep", - -12.354169845581055 - ], - [ - "lope", - -12.354331016540527 - ], - [ - "ţinut", - -12.35439682006836 - ], - [ - "WD", - -12.354503631591797 - ], - [ - "▁appetite", - -12.354619979858398 - ], - [ - "▁Seed", - -12.354753494262695 - ], - [ - "Friend", - -12.354854583740234 - ], - [ - "▁repet", - -12.354876518249512 - ], - [ - "▁throat", - -12.354936599731445 - ], - [ - "philosoph", - -12.355141639709473 - ], - [ - "▁connaître", - -12.355156898498535 - ], - [ - "▁Counter", - -12.355299949645996 - ], - [ - "▁Anforderungen", - -12.35533332824707 - ], - [ - "▁Polit", - -12.355363845825195 - ], - [ - "▁Weather", - -12.3554048538208 - ], - [ - "bow", - -12.355423927307129 - ], - [ - "▁recreation", - -12.355484008789062 - ], - [ - "▁culinary", - -12.355571746826172 - ], - [ - "▁plage", - -12.355609893798828 - ], - [ - "▁Cruz", - -12.355659484863281 - ], - [ - "▁equip", - -12.355668067932129 - ], - [ - "▁Recent", - -12.355697631835938 - ], - [ - "LED", - -12.355767250061035 - ], - [ - "▁steak", - -12.355772972106934 - ], - [ - "▁belly", - -12.355880737304688 - ], - [ - "photo", - -12.356130599975586 - ], - [ - "▁lakes", - -12.35623836517334 - ], - [ - "▁intact", - -12.356287956237793 - ], - [ - "▁spiral", - -12.356386184692383 - ], - [ - "▁Billy", - -12.356468200683594 - ], - [ - "▁Understanding", - -12.356534957885742 - ], - [ - "▁Lay", - -12.356558799743652 - ], - [ - "▁roster", - -12.356632232666016 - ], - [ - "▁admire", - -12.356647491455078 - ], - [ - "▁android", - -12.356732368469238 - ], - [ - "▁technician", - -12.356734275817871 - ], - [ - "gène", - -12.356818199157715 - ], - [ - "motiv", - -12.356954574584961 - ], - [ - "▁Boat", - -12.356988906860352 - ], - [ - "▁genießen", - -12.357000350952148 - ], - [ - "▁Geschmack", - -12.357001304626465 - ], - [ - "▁heroes", - -12.3570556640625 - ], - [ - "▁1800", - -12.357137680053711 - ], - [ - "numeroase", - -12.35776138305664 - ], - [ - "▁anschließend", - -12.357802391052246 - ], - [ - "▁Spur", - -12.357813835144043 - ], - [ - "▁clarify", - -12.35784912109375 - ], - [ - "▁warmer", - -12.357889175415039 - ], - [ - "▁Ranch", - -12.357955932617188 - ], - [ - "▁simti", - -12.358024597167969 - ], - [ - "Thank", - -12.35838508605957 - ], - [ - "▁freight", - -12.358434677124023 - ], - [ - "▁administrators", - -12.358453750610352 - ], - [ - "Reg", - -12.358588218688965 - ], - [ - "Această", - -12.358670234680176 - ], - [ - "▁legume", - -12.358741760253906 - ], - [ - "▁utilizare", - -12.358786582946777 - ], - [ - "CON", - -12.358904838562012 - ], - [ - "urgi", - -12.358917236328125 - ], - [ - "▁Gesicht", - -12.358920097351074 - ], - [ - "▁counselor", - -12.358954429626465 - ], - [ - "▁mondiale", - -12.359009742736816 - ], - [ - "helm", - -12.359137535095215 - ], - [ - "▁Promo", - -12.359156608581543 - ], - [ - "▁Schweiz", - -12.35917854309082 - ], - [ - "Ich", - -12.35929012298584 - ], - [ - "▁intalni", - -12.359295845031738 - ], - [ - "▁Bloom", - -12.359318733215332 - ], - [ - "▁Score", - -12.359362602233887 - ], - [ - "▁Fruit", - -12.35944652557373 - ], - [ - "▁constraints", - -12.359447479248047 - ], - [ - "▁farmer", - -12.359745979309082 - ], - [ - "▁précise", - -12.359807014465332 - ], - [ - "evaluating", - -12.359868049621582 - ], - [ - "▁Period", - -12.359891891479492 - ], - [ - "byte", - -12.359893798828125 - ], - [ - "wah", - -12.360025405883789 - ], - [ - "Mac", - -12.360123634338379 - ], - [ - "iron", - -12.360197067260742 - ], - [ - "′", - -12.360337257385254 - ], - [ - "▁tehnic", - -12.360539436340332 - ], - [ - "▁legat", - -12.36054515838623 - ], - [ - "▁Pilot", - -12.360574722290039 - ], - [ - "▁Carpet", - -12.36064624786377 - ], - [ - "TEN", - -12.360812187194824 - ], - [ - "▁shareholders", - -12.36082649230957 - ], - [ - "vină", - -12.360880851745605 - ], - [ - "▁parole", - -12.360939979553223 - ], - [ - "ătă", - -12.360984802246094 - ], - [ - "bbing", - -12.361000061035156 - ], - [ - "▁switched", - -12.361002922058105 - ], - [ - "▁Petro", - -12.361010551452637 - ], - [ - "▁Vertrags", - -12.36111831665039 - ], - [ - "cham", - -12.361178398132324 - ], - [ - "wang", - -12.361284255981445 - ], - [ - "▁Bean", - -12.36139965057373 - ], - [ - "minister", - -12.361442565917969 - ], - [ - "▁Wu", - -12.361522674560547 - ], - [ - "▁Olympics", - -12.361539840698242 - ], - [ - "tipul", - -12.361542701721191 - ], - [ - "▁Citi", - -12.36166763305664 - ], - [ - "▁Fold", - -12.361873626708984 - ], - [ - "▁Partei", - -12.361940383911133 - ], - [ - "▁centrale", - -12.361984252929688 - ], - [ - "île", - -12.362032890319824 - ], - [ - "pflicht", - -12.362175941467285 - ], - [ - "heli", - -12.362398147583008 - ], - [ - "▁erwartet", - -12.362414360046387 - ], - [ - "▁oferta", - -12.362458229064941 - ], - [ - "▁NHS", - -12.36246395111084 - ], - [ - "annon", - -12.362570762634277 - ], - [ - "▁Rud", - -12.362701416015625 - ], - [ - "▁Stuttgart", - -12.362737655639648 - ], - [ - "▁rămas", - -12.362746238708496 - ], - [ - "▁eliminated", - -12.36275577545166 - ], - [ - "▁hiding", - -12.362797737121582 - ], - [ - "▁cadeau", - -12.362832069396973 - ], - [ - "▁mock", - -12.363115310668945 - ], - [ - "▁elder", - -12.363333702087402 - ], - [ - "▁Liz", - -12.363364219665527 - ], - [ - "aji", - -12.363544464111328 - ], - [ - "▁endlich", - -12.363653182983398 - ], - [ - "sufficient", - -12.363668441772461 - ], - [ - "▁zusätzliche", - -12.363712310791016 - ], - [ - "scient", - -12.363757133483887 - ], - [ - "▁Adjust", - -12.363883972167969 - ], - [ - "▁incentive", - -12.363945007324219 - ], - [ - "▁Papa", - -12.364012718200684 - ], - [ - "▁Pharma", - -12.364041328430176 - ], - [ - "▁conflicts", - -12.364107131958008 - ], - [ - "zählen", - -12.364113807678223 - ], - [ - "▁chien", - -12.364118576049805 - ], - [ - "KB", - -12.36413288116455 - ], - [ - "ultimi", - -12.364188194274902 - ], - [ - "▁Jul", - -12.36421012878418 - ], - [ - "▁Male", - -12.36422061920166 - ], - [ - "▁viewer", - -12.36427116394043 - ], - [ - "▁Sector", - -12.364328384399414 - ], - [ - "▁REAL", - -12.364344596862793 - ], - [ - "▁arbitr", - -12.36436939239502 - ], - [ - "resistant", - -12.364399909973145 - ], - [ - "▁Bristol", - -12.364423751831055 - ], - [ - "▁shy", - -12.364540100097656 - ], - [ - "SW", - -12.364593505859375 - ], - [ - "▁Kirk", - -12.36460018157959 - ], - [ - "centrul", - -12.364653587341309 - ], - [ - "▁Venezuela", - -12.364657402038574 - ], - [ - "▁communicating", - -12.364657402038574 - ], - [ - "▁Chemical", - -12.364663124084473 - ], - [ - "▁surprises", - -12.364843368530273 - ], - [ - "▁Jamie", - -12.364933967590332 - ], - [ - "▁Heavy", - -12.364965438842773 - ], - [ - "▁turnover", - -12.36498737335205 - ], - [ - "▁étudiants", - -12.365114212036133 - ], - [ - "welcher", - -12.365124702453613 - ], - [ - "▁preturi", - -12.365200996398926 - ], - [ - "▁Mono", - -12.365283966064453 - ], - [ - "▁paddle", - -12.365309715270996 - ], - [ - "▁accountability", - -12.365364074707031 - ], - [ - "OUS", - -12.365592956542969 - ], - [ - "▁marketers", - -12.365762710571289 - ], - [ - "fection", - -12.365900993347168 - ], - [ - "▁Outside", - -12.365921020507812 - ], - [ - "▁Jefferson", - -12.366114616394043 - ], - [ - "oaie", - -12.36617660522461 - ], - [ - "tenue", - -12.366275787353516 - ], - [ - "HU", - -12.366329193115234 - ], - [ - "Très", - -12.36639404296875 - ], - [ - "valoarea", - -12.36642837524414 - ], - [ - "103", - -12.366482734680176 - ], - [ - "▁Privacy", - -12.366580963134766 - ], - [ - "▁Leistungen", - -12.366598129272461 - ], - [ - "(3)", - -12.36662483215332 - ], - [ - "▁études", - -12.366734504699707 - ], - [ - "sko", - -12.366750717163086 - ], - [ - "drum", - -12.366822242736816 - ], - [ - "▁lamb", - -12.366842269897461 - ], - [ - "▁nicio", - -12.367094993591309 - ], - [ - "▁NATO", - -12.367104530334473 - ], - [ - "▁Freitag", - -12.367178916931152 - ], - [ - "▁precedent", - -12.367178916931152 - ], - [ - "▁partenaires", - -12.367202758789062 - ], - [ - "▁companiei", - -12.367234230041504 - ], - [ - "▁Plaza", - -12.367249488830566 - ], - [ - "▁disruption", - -12.367274284362793 - ], - [ - "▁violations", - -12.367338180541992 - ], - [ - "▁Reference", - -12.367446899414062 - ], - [ - "▁habitants", - -12.36770248413086 - ], - [ - "▁compost", - -12.36776351928711 - ], - [ - "▁citoyen", - -12.367785453796387 - ], - [ - "▁Historical", - -12.367857933044434 - ], - [ - "vollen", - -12.36793327331543 - ], - [ - "▁Eck", - -12.36815357208252 - ], - [ - "▁lumii", - -12.368180274963379 - ], - [ - "▁reusit", - -12.368278503417969 - ], - [ - "genic", - -12.368307113647461 - ], - [ - "Why", - -12.368436813354492 - ], - [ - "ASE", - -12.368474006652832 - ], - [ - "▁athlete", - -12.36854076385498 - ], - [ - "▁Spitze", - -12.368559837341309 - ], - [ - "▁schimbat", - -12.368566513061523 - ], - [ - "▁anonymous", - -12.368850708007812 - ], - [ - "jedes", - -12.368856430053711 - ], - [ - "exclu", - -12.368874549865723 - ], - [ - "factor", - -12.369199752807617 - ], - [ - "▁Dezember", - -12.369231224060059 - ], - [ - "▁scientist", - -12.369373321533203 - ], - [ - "▁likelihood", - -12.36947250366211 - ], - [ - "▁Rhode", - -12.369488716125488 - ], - [ - "▁Balance", - -12.369521141052246 - ], - [ - "istoria", - -12.36959457397461 - ], - [ - "▁Neil", - -12.369780540466309 - ], - [ - "▁bush", - -12.369919776916504 - ], - [ - "▁Ergebnisse", - -12.369935989379883 - ], - [ - "▁Sinn", - -12.369956016540527 - ], - [ - "▁spezielle", - -12.370128631591797 - ], - [ - "▁jucat", - -12.37015438079834 - ], - [ - "▁spite", - -12.370179176330566 - ], - [ - "▁Ultimate", - -12.370365142822266 - ], - [ - "▁fructe", - -12.370401382446289 - ], - [ - "▁asleep", - -12.370441436767578 - ], - [ - "▁Goal", - -12.370539665222168 - ], - [ - "▁PAR", - -12.370631217956543 - ], - [ - "▁rows", - -12.370705604553223 - ], - [ - "▁Fol", - -12.3709135055542 - ], - [ - "▁durata", - -12.370945930480957 - ], - [ - "▁traditionnel", - -12.37100887298584 - ], - [ - "▁tema", - -12.37122917175293 - ], - [ - "▁crédit", - -12.371232986450195 - ], - [ - "smallest", - -12.371358871459961 - ], - [ - "▁amino", - -12.371358871459961 - ], - [ - "▁elephant", - -12.371405601501465 - ], - [ - "▁tubes", - -12.371685028076172 - ], - [ - "▁Verwendung", - -12.371719360351562 - ], - [ - "▁Excellence", - -12.371889114379883 - ], - [ - "▁utilities", - -12.371962547302246 - ], - [ - "frau", - -12.372111320495605 - ], - [ - "▁poze", - -12.3721342086792 - ], - [ - "août", - -12.372307777404785 - ], - [ - "ango", - -12.372514724731445 - ], - [ - "give", - -12.372532844543457 - ], - [ - "▁appelé", - -12.372576713562012 - ], - [ - "▁yeast", - -12.372671127319336 - ], - [ - "▁enrollment", - -12.372676849365234 - ], - [ - "organiz", - -12.3727445602417 - ], - [ - "▁asociat", - -12.372753143310547 - ], - [ - "▁cattle", - -12.372772216796875 - ], - [ - "▁Solution", - -12.372798919677734 - ], - [ - "evoke", - -12.372807502746582 - ], - [ - "▁Hampshire", - -12.372857093811035 - ], - [ - "▁yeah", - -12.372878074645996 - ], - [ - "▁Argentina", - -12.372928619384766 - ], - [ - "▁abnormal", - -12.373022079467773 - ], - [ - "▁Heights", - -12.373082160949707 - ], - [ - "▁Mitchell", - -12.373099327087402 - ], - [ - "▁Quad", - -12.373350143432617 - ], - [ - "▁textures", - -12.373382568359375 - ], - [ - "▁coalition", - -12.373384475708008 - ], - [ - "▁dataset", - -12.37338924407959 - ], - [ - "World", - -12.373438835144043 - ], - [ - "ständ", - -12.373456001281738 - ], - [ - "▁groove", - -12.373476028442383 - ], - [ - "▁emotionally", - -12.373562812805176 - ], - [ - "▁preciz", - -12.373636245727539 - ], - [ - "kte", - -12.373741149902344 - ], - [ - "berechtigt", - -12.373828887939453 - ], - [ - "▁1971", - -12.373888969421387 - ], - [ - "grandes", - -12.373907089233398 - ], - [ - "▁Broadway", - -12.37391185760498 - ], - [ - "▁comunicat", - -12.373994827270508 - ], - [ - "nui", - -12.37402629852295 - ], - [ - "GER", - -12.374079704284668 - ], - [ - "pick", - -12.374125480651855 - ], - [ - "inscrit", - -12.37414264678955 - ], - [ - "▁Gross", - -12.374258995056152 - ], - [ - "▁McDonald", - -12.374310493469238 - ], - [ - "▁Zero", - -12.374330520629883 - ], - [ - "▁Halb", - -12.374341011047363 - ], - [ - "▁caractère", - -12.374553680419922 - ], - [ - "▁doctrine", - -12.374553680419922 - ], - [ - "▁Sinne", - -12.37458610534668 - ], - [ - "MLS", - -12.374594688415527 - ], - [ - "▁réel", - -12.374759674072266 - ], - [ - "▁Ful", - -12.37476921081543 - ], - [ - "limiting", - -12.37483024597168 - ], - [ - "▁Gan", - -12.374870300292969 - ], - [ - "▁exclude", - -12.37490463256836 - ], - [ - "imba", - -12.374974250793457 - ], - [ - "rolul", - -12.374991416931152 - ], - [ - "▁veggies", - -12.375059127807617 - ], - [ - "▁fasci", - -12.375092506408691 - ], - [ - "▁oval", - -12.375173568725586 - ], - [ - "▁contacter", - -12.375221252441406 - ], - [ - "▁linking", - -12.375279426574707 - ], - [ - "▁knit", - -12.375308990478516 - ], - [ - "▁enroll", - -12.375504493713379 - ], - [ - "▁dédié", - -12.375533103942871 - ], - [ - "▁renting", - -12.375541687011719 - ], - [ - "▁genera", - -12.37567138671875 - ], - [ - "citing", - -12.375691413879395 - ], - [ - "▁bend", - -12.375700950622559 - ], - [ - "guin", - -12.375752449035645 - ], - [ - "▁caregiver", - -12.375768661499023 - ], - [ - "▁könnt", - -12.375791549682617 - ], - [ - "▁Scripture", - -12.375795364379883 - ], - [ - "▁Mic", - -12.375899314880371 - ], - [ - "▁Denmark", - -12.37590217590332 - ], - [ - "▁qualifying", - -12.375917434692383 - ], - [ - "▁costumes", - -12.375958442687988 - ], - [ - "▁dwelling", - -12.37601375579834 - ], - [ - "▁recrut", - -12.376099586486816 - ], - [ - "▁bedding", - -12.37618637084961 - ], - [ - "gesprochen", - -12.376253128051758 - ], - [ - "▁editors", - -12.376386642456055 - ], - [ - "/12", - -12.37657642364502 - ], - [ - "▁cumparat", - -12.376583099365234 - ], - [ - "fiction", - -12.376730918884277 - ], - [ - "▁spinal", - -12.376740455627441 - ], - [ - "▁pathway", - -12.376799583435059 - ], - [ - "▁vârst", - -12.37683391571045 - ], - [ - "mba", - -12.376874923706055 - ], - [ - "▁enthusiastic", - -12.37692642211914 - ], - [ - "▁Watt", - -12.37697982788086 - ], - [ - "symptom", - -12.376992225646973 - ], - [ - "▁pup", - -12.37712287902832 - ], - [ - "▁glorious", - -12.377225875854492 - ], - [ - "▁fața", - -12.377228736877441 - ], - [ - "▁prohibited", - -12.377256393432617 - ], - [ - "vergleich", - -12.377286911010742 - ], - [ - "▁suspected", - -12.377334594726562 - ], - [ - "▁Railway", - -12.377381324768066 - ], - [ - "▁Aujourd", - -12.377469062805176 - ], - [ - "▁Patients", - -12.377476692199707 - ], - [ - "▁séance", - -12.377501487731934 - ], - [ - "▁contraire", - -12.377503395080566 - ], - [ - "▁cuvânt", - -12.37771224975586 - ], - [ - "▁trotzdem", - -12.37773609161377 - ], - [ - "émission", - -12.377795219421387 - ], - [ - "▁bore", - -12.37782096862793 - ], - [ - "▁safeguard", - -12.377851486206055 - ], - [ - "▁galleries", - -12.37820053100586 - ], - [ - "cron", - -12.378268241882324 - ], - [ - "▁Rica", - -12.378335952758789 - ], - [ - "fläche", - -12.37839126586914 - ], - [ - "▁Slow", - -12.37842082977295 - ], - [ - "▁vara", - -12.378549575805664 - ], - [ - "▁Swan", - -12.378564834594727 - ], - [ - "▁compounds", - -12.378564834594727 - ], - [ - "▁Slo", - -12.378621101379395 - ], - [ - "▁accommodations", - -12.378621101379395 - ], - [ - "▁Putin", - -12.378708839416504 - ], - [ - "▁undertaken", - -12.378767967224121 - ], - [ - "▁prépar", - -12.37879467010498 - ], - [ - "▁gandi", - -12.37881088256836 - ], - [ - "sediul", - -12.378924369812012 - ], - [ - "▁Nathan", - -12.379143714904785 - ], - [ - "▁fountain", - -12.379173278808594 - ], - [ - "▁mère", - -12.379194259643555 - ], - [ - "fatty", - -12.379201889038086 - ], - [ - "▁concentrated", - -12.379241943359375 - ], - [ - "richtung", - -12.379300117492676 - ], - [ - "▁appropriately", - -12.37955379486084 - ], - [ - "107", - -12.379631996154785 - ], - [ - "▁shark", - -12.379735946655273 - ], - [ - "▁Topic", - -12.379867553710938 - ], - [ - "▁Ausstellung", - -12.379880905151367 - ], - [ - "▁SUA", - -12.380267143249512 - ], - [ - "SER", - -12.380359649658203 - ], - [ - "▁Nicole", - -12.38039779663086 - ], - [ - "▁utilisateurs", - -12.380620956420898 - ], - [ - "▁Brazilian", - -12.380753517150879 - ], - [ - "▁continut", - -12.380865097045898 - ], - [ - "▁sanatate", - -12.380881309509277 - ], - [ - "faudra", - -12.380882263183594 - ], - [ - "nahm", - -12.380938529968262 - ], - [ - "▁Specific", - -12.381153106689453 - ], - [ - "aiba", - -12.381199836730957 - ], - [ - "cepând", - -12.381296157836914 - ], - [ - "▁Beer", - -12.381366729736328 - ], - [ - "roni", - -12.381616592407227 - ], - [ - "kay", - -12.381636619567871 - ], - [ - "▁gravity", - -12.381844520568848 - ], - [ - "▁verfügt", - -12.381856918334961 - ], - [ - "7:30", - -12.381878852844238 - ], - [ - "▁Players", - -12.381945610046387 - ], - [ - "▁Industries", - -12.38198184967041 - ], - [ - "punkte", - -12.382119178771973 - ], - [ - "▁yacht", - -12.382135391235352 - ], - [ - "-04", - -12.382149696350098 - ], - [ - "onné", - -12.382192611694336 - ], - [ - "▁Cards", - -12.382221221923828 - ], - [ - "▁fete", - -12.382420539855957 - ], - [ - "breaking", - -12.38257884979248 - ], - [ - "baum", - -12.382621765136719 - ], - [ - "nada", - -12.382651329040527 - ], - [ - "▁geplant", - -12.382750511169434 - ], - [ - "genuinely", - -12.382766723632812 - ], - [ - "talk", - -12.382871627807617 - ], - [ - "▁disadvantage", - -12.382920265197754 - ], - [ - "▁shutter", - -12.383003234863281 - ], - [ - "virus", - -12.38302230834961 - ], - [ - "▁cricket", - -12.38308048248291 - ], - [ - "▁comenzi", - -12.383102416992188 - ], - [ - "hier", - -12.383170127868652 - ], - [ - "▁aufzu", - -12.383198738098145 - ], - [ - "▁Rez", - -12.38321304321289 - ], - [ - "▁conclusions", - -12.383329391479492 - ], - [ - "▁Wang", - -12.383509635925293 - ], - [ - "Darüber", - -12.383524894714355 - ], - [ - "▁CSS", - -12.383573532104492 - ], - [ - "CW", - -12.383780479431152 - ], - [ - "▁Chr", - -12.383790969848633 - ], - [ - "▁traded", - -12.383843421936035 - ], - [ - "▁Schon", - -12.384265899658203 - ], - [ - "mped", - -12.38429069519043 - ], - [ - "▁alloy", - -12.384385108947754 - ], - [ - "AVE", - -12.38451099395752 - ], - [ - "▁imagery", - -12.384542465209961 - ], - [ - "▁resurse", - -12.38479995727539 - ], - [ - "▁Thunder", - -12.384834289550781 - ], - [ - "▁schimbare", - -12.384860038757324 - ], - [ - "▁Youtube", - -12.38499927520752 - ], - [ - "▁Monster", - -12.385189056396484 - ], - [ - "phil", - -12.385234832763672 - ], - [ - "▁bébé", - -12.385284423828125 - ], - [ - "Creating", - -12.385428428649902 - ], - [ - "ănă", - -12.385466575622559 - ], - [ - "▁Staat", - -12.385504722595215 - ], - [ - "adică", - -12.385531425476074 - ], - [ - "▁boyfriend", - -12.385552406311035 - ], - [ - "▁Winner", - -12.385594367980957 - ], - [ - "▁disputes", - -12.385653495788574 - ], - [ - "▁lush", - -12.3856840133667 - ], - [ - "▁CMS", - -12.385719299316406 - ], - [ - "▁locaux", - -12.385725021362305 - ], - [ - "▁Verfahren", - -12.38576889038086 - ], - [ - "▁Café", - -12.385786056518555 - ], - [ - "▁Vorstand", - -12.385870933532715 - ], - [ - "▁lucrat", - -12.385960578918457 - ], - [ - "▁Root", - -12.38602352142334 - ], - [ - "▁decis", - -12.386059761047363 - ], - [ - "▁Shadow", - -12.386062622070312 - ], - [ - "▁countryside", - -12.386067390441895 - ], - [ - "▁analiza", - -12.386114120483398 - ], - [ - "obos", - -12.38616943359375 - ], - [ - "opera", - -12.386175155639648 - ], - [ - "actu", - -12.386207580566406 - ], - [ - "▁Songs", - -12.3864164352417 - ], - [ - "reifen", - -12.38648509979248 - ], - [ - "▁hilft", - -12.386650085449219 - ], - [ - "region", - -12.386727333068848 - ], - [ - "▁categoria", - -12.387001991271973 - ], - [ - "capturing", - -12.38701343536377 - ], - [ - "▁1967", - -12.387025833129883 - ], - [ - "▁optimized", - -12.387032508850098 - ], - [ - "▁Dim", - -12.387353897094727 - ], - [ - "▁adapté", - -12.387447357177734 - ], - [ - "zeichnet", - -12.387524604797363 - ], - [ - "▁strada", - -12.387625694274902 - ], - [ - "fulness", - -12.38774585723877 - ], - [ - "▁technically", - -12.38774585723877 - ], - [ - "▁marker", - -12.387757301330566 - ], - [ - "▁vizita", - -12.387808799743652 - ], - [ - "▁imperative", - -12.387986183166504 - ], - [ - "▁pensé", - -12.38802719116211 - ], - [ - "▁drilling", - -12.388030052185059 - ], - [ - "ISA", - -12.38818073272705 - ], - [ - "▁Massage", - -12.388201713562012 - ], - [ - "▁Terry", - -12.388238906860352 - ], - [ - "▁pourtant", - -12.38835334777832 - ], - [ - "▁declaration", - -12.388440132141113 - ], - [ - "▁instructors", - -12.388453483581543 - ], - [ - "Eventually", - -12.38847827911377 - ], - [ - "▁banned", - -12.38847827911377 - ], - [ - "MAT", - -12.388520240783691 - ], - [ - "▁medici", - -12.38856315612793 - ], - [ - "▁Warm", - -12.388615608215332 - ], - [ - "▁trec", - -12.388731002807617 - ], - [ - "▁ecran", - -12.388763427734375 - ], - [ - "▁goat", - -12.388838768005371 - ], - [ - "▁manipulation", - -12.388850212097168 - ], - [ - "▁mayor", - -12.388898849487305 - ], - [ - "▁unterwegs", - -12.388975143432617 - ], - [ - "▁journals", - -12.3890380859375 - ], - [ - "▁hedge", - -12.389239311218262 - ], - [ - "Merc", - -12.389300346374512 - ], - [ - "▁joueurs", - -12.389411926269531 - ], - [ - "▁Religion", - -12.3894624710083 - ], - [ - "▁Mountains", - -12.389477729797363 - ], - [ - "▁renewed", - -12.389497756958008 - ], - [ - "▁Limit", - -12.389543533325195 - ], - [ - "ikea", - -12.389771461486816 - ], - [ - "▁utiliza", - -12.38977336883545 - ], - [ - "sogenannte", - -12.389808654785156 - ], - [ - "0.2", - -12.389836311340332 - ], - [ - "▁Organ", - -12.38987922668457 - ], - [ - "▁Shakespeare", - -12.389952659606934 - ], - [ - "▁Maintenance", - -12.38995361328125 - ], - [ - "▁Wärme", - -12.389954566955566 - ], - [ - "▁Northwest", - -12.390060424804688 - ], - [ - "▁numit", - -12.390106201171875 - ], - [ - "▁mica", - -12.390165328979492 - ], - [ - "turm", - -12.390168190002441 - ], - [ - "▁motivate", - -12.390250205993652 - ], - [ - "▁Staats", - -12.390355110168457 - ], - [ - "optimum", - -12.390487670898438 - ], - [ - "▁sortir", - -12.390546798706055 - ], - [ - "▁Asset", - -12.390555381774902 - ], - [ - "▁hervorragend", - -12.390692710876465 - ], - [ - "▁commentary", - -12.39071273803711 - ], - [ - "▁actuellement", - -12.390732765197754 - ], - [ - "NER", - -12.390765190124512 - ], - [ - "NL", - -12.390789985656738 - ], - [ - "ritt", - -12.390803337097168 - ], - [ - "▁Wirtschafts", - -12.390813827514648 - ], - [ - "träger", - -12.390840530395508 - ], - [ - "▁Versand", - -12.390870094299316 - ], - [ - "▁nostri", - -12.390953063964844 - ], - [ - "▁enorm", - -12.391227722167969 - ], - [ - "▁whale", - -12.391260147094727 - ], - [ - "▁Aufgabe", - -12.391277313232422 - ], - [ - "▁unfair", - -12.391291618347168 - ], - [ - "▁Cord", - -12.391315460205078 - ], - [ - "incorporating", - -12.39134693145752 - ], - [ - "luck", - -12.39157772064209 - ], - [ - "Afrique", - -12.39168643951416 - ], - [ - "▁coated", - -12.391857147216797 - ], - [ - "▁india", - -12.391908645629883 - ], - [ - "▁temporarily", - -12.39193058013916 - ], - [ - "▁ciuda", - -12.392097473144531 - ], - [ - "▁coral", - -12.392184257507324 - ], - [ - "▁wirkt", - -12.392203330993652 - ], - [ - "▁folding", - -12.392309188842773 - ], - [ - "wichtigsten", - -12.392398834228516 - ], - [ - "impacted", - -12.392422676086426 - ], - [ - "▁wählen", - -12.392423629760742 - ], - [ - "▁differentiate", - -12.392492294311523 - ], - [ - "▁froid", - -12.392544746398926 - ], - [ - "▁hug", - -12.39255142211914 - ], - [ - "▁construi", - -12.39255428314209 - ], - [ - "▁membru", - -12.392603874206543 - ], - [ - "▁masculin", - -12.392667770385742 - ], - [ - "partisan", - -12.392711639404297 - ], - [ - "▁schimba", - -12.392725944519043 - ], - [ - "▁economies", - -12.392827987670898 - ], - [ - "▁Abraham", - -12.392914772033691 - ], - [ - "wesen", - -12.393013954162598 - ], - [ - "enia", - -12.393026351928711 - ], - [ - "▁answering", - -12.393080711364746 - ], - [ - "▁activități", - -12.39309024810791 - ], - [ - "▁mémoire", - -12.393160820007324 - ], - [ - "▁versucht", - -12.393305778503418 - ], - [ - "ember", - -12.39333438873291 - ], - [ - "▁instala", - -12.39334774017334 - ], - [ - "▁eligibility", - -12.393407821655273 - ], - [ - "▁enjoyment", - -12.393409729003906 - ], - [ - "▁Arme", - -12.39350414276123 - ], - [ - "although", - -12.393534660339355 - ], - [ - "▁encompass", - -12.393596649169922 - ], - [ - "▁zufrieden", - -12.393658638000488 - ], - [ - "Script", - -12.393691062927246 - ], - [ - "KG", - -12.39385986328125 - ], - [ - "▁adhesive", - -12.393902778625488 - ], - [ - "▁Verkehrs", - -12.393908500671387 - ], - [ - "▁monitored", - -12.394103050231934 - ], - [ - "▁Conservation", - -12.394148826599121 - ], - [ - "hav", - -12.394156455993652 - ], - [ - "▁Above", - -12.394174575805664 - ], - [ - "▁Former", - -12.394241333007812 - ], - [ - "▁Certain", - -12.394250869750977 - ], - [ - "saving", - -12.394311904907227 - ], - [ - "▁Pun", - -12.394390106201172 - ], - [ - "▁awkward", - -12.394397735595703 - ], - [ - "▁Pretty", - -12.394410133361816 - ], - [ - "▁scanning", - -12.394417762756348 - ], - [ - "layer", - -12.394527435302734 - ], - [ - "motor", - -12.39453125 - ], - [ - "▁beginnt", - -12.39455795288086 - ], - [ - "▁affiliated", - -12.394681930541992 - ], - [ - "▁archives", - -12.394686698913574 - ], - [ - "▁sunshine", - -12.394892692565918 - ], - [ - "kha", - -12.394988059997559 - ], - [ - "▁investigated", - -12.395149230957031 - ], - [ - "▁fantas", - -12.395277976989746 - ], - [ - "▁united", - -12.395355224609375 - ], - [ - "allegedly", - -12.395373344421387 - ], - [ - "▁Eugen", - -12.3955078125 - ], - [ - "▁proprie", - -12.395843505859375 - ], - [ - "uca", - -12.396183013916016 - ], - [ - "DES", - -12.396187782287598 - ], - [ - "ştii", - -12.396190643310547 - ], - [ - "▁Running", - -12.39620590209961 - ], - [ - "lbstverständlich", - -12.396248817443848 - ], - [ - "index", - -12.396300315856934 - ], - [ - "▁studiu", - -12.396512031555176 - ], - [ - "URE", - -12.396553039550781 - ], - [ - "gültig", - -12.396627426147461 - ], - [ - "▁lundi", - -12.396649360656738 - ], - [ - "▁Zucker", - -12.396650314331055 - ], - [ - "▁positively", - -12.396721839904785 - ], - [ - "folgenden", - -12.396758079528809 - ], - [ - "anță", - -12.396800994873047 - ], - [ - "▁clan", - -12.396866798400879 - ], - [ - "▁literacy", - -12.396879196166992 - ], - [ - "▁ober", - -12.39699935913086 - ], - [ - "John", - -12.397003173828125 - ], - [ - "greg", - -12.39700984954834 - ], - [ - "▁titlu", - -12.397049903869629 - ], - [ - "▁ţări", - -12.39707088470459 - ], - [ - "Bra", - -12.397100448608398 - ], - [ - "▁Evans", - -12.397164344787598 - ], - [ - "modern", - -12.397172927856445 - ], - [ - "▁hauteur", - -12.397353172302246 - ], - [ - "refers", - -12.397416114807129 - ], - [ - "▁plasma", - -12.397575378417969 - ], - [ - "▁optic", - -12.397595405578613 - ], - [ - "▁shampoo", - -12.397619247436523 - ], - [ - "▁cheek", - -12.397727966308594 - ], - [ - "opted", - -12.397741317749023 - ], - [ - "▁persönlich", - -12.397832870483398 - ], - [ - "▁1945", - -12.398118019104004 - ], - [ - "ICI", - -12.398193359375 - ], - [ - "biotic", - -12.398222923278809 - ], - [ - "▁Beruf", - -12.398372650146484 - ], - [ - "▁trez", - -12.398383140563965 - ], - [ - "▁diploma", - -12.398388862609863 - ], - [ - "nahmen", - -12.398421287536621 - ], - [ - "▁curl", - -12.398625373840332 - ], - [ - "▁agricole", - -12.398824691772461 - ], - [ - "▁recomand", - -12.398844718933105 - ], - [ - "▁pediatric", - -12.398862838745117 - ], - [ - "Fiecare", - -12.39887523651123 - ], - [ - "Anlage", - -12.398906707763672 - ], - [ - "weiß", - -12.398974418640137 - ], - [ - "elecommunication", - -12.39898681640625 - ], - [ - "hog", - -12.399184226989746 - ], - [ - "▁Stamp", - -12.399364471435547 - ], - [ - "▁Tipp", - -12.399369239807129 - ], - [ - "▁kindness", - -12.399415969848633 - ], - [ - "▁Marina", - -12.399577140808105 - ], - [ - "▁Gleich", - -12.39963436126709 - ], - [ - "▁grij", - -12.39970588684082 - ], - [ - "▁desperate", - -12.39974594116211 - ], - [ - "▁recordings", - -12.399842262268066 - ], - [ - "▁neglect", - -12.399861335754395 - ], - [ - "▁inherent", - -12.400035858154297 - ], - [ - "▁Rezept", - -12.400138854980469 - ], - [ - "▁soins", - -12.400164604187012 - ], - [ - "▁brut", - -12.400250434875488 - ], - [ - "▁revolutionary", - -12.400495529174805 - ], - [ - "▁liberté", - -12.400530815124512 - ], - [ - "cours", - -12.400945663452148 - ], - [ - "▁Similar", - -12.401247024536133 - ], - [ - "▁cheveux", - -12.40136432647705 - ], - [ - "▁ieftin", - -12.401599884033203 - ], - [ - "▁promovare", - -12.40160846710205 - ], - [ - "▁grains", - -12.401729583740234 - ], - [ - "ти", - -12.401749610900879 - ], - [ - "▁fonctionnement", - -12.401789665222168 - ], - [ - "▁Coming", - -12.401832580566406 - ], - [ - "▁analytical", - -12.401847839355469 - ], - [ - "▁simplify", - -12.401856422424316 - ], - [ - "▁chambres", - -12.401893615722656 - ], - [ - "▁fifty", - -12.401930809020996 - ], - [ - "jour", - -12.402070999145508 - ], - [ - "▁(17", - -12.402194023132324 - ], - [ - "cărui", - -12.402292251586914 - ], - [ - "▁harmony", - -12.402352333068848 - ], - [ - "grin", - -12.402355194091797 - ], - [ - "▁drunk", - -12.402359962463379 - ], - [ - "260", - -12.402374267578125 - ], - [ - "3-5", - -12.40243148803711 - ], - [ - "▁articole", - -12.402442932128906 - ], - [ - "▁flooding", - -12.402482986450195 - ], - [ - "halle", - -12.402580261230469 - ], - [ - "▁defects", - -12.40276050567627 - ], - [ - "▁rifle", - -12.402839660644531 - ], - [ - "▁Boc", - -12.402843475341797 - ], - [ - "▁Athletic", - -12.40284538269043 - ], - [ - "▁acordat", - -12.40292739868164 - ], - [ - "AIR", - -12.402969360351562 - ], - [ - "▁entwickeln", - -12.403104782104492 - ], - [ - "▁Advance", - -12.403188705444336 - ], - [ - "▁Heil", - -12.403216361999512 - ], - [ - "Stainless", - -12.403345108032227 - ], - [ - "▁Psychology", - -12.40337085723877 - ], - [ - "▁omul", - -12.403435707092285 - ], - [ - "▁Arbeiten", - -12.403494834899902 - ], - [ - "▁rabbit", - -12.403495788574219 - ], - [ - "▁méta", - -12.40351390838623 - ], - [ - "ismul", - -12.403534889221191 - ], - [ - "▁Herausforderung", - -12.403594970703125 - ], - [ - "▁Euch", - -12.403654098510742 - ], - [ - "geschichte", - -12.40390682220459 - ], - [ - "▁Milk", - -12.404057502746582 - ], - [ - "▁pregăt", - -12.404065132141113 - ], - [ - "▁Standort", - -12.404141426086426 - ], - [ - "Val", - -12.404180526733398 - ], - [ - "▁Ronald", - -12.404350280761719 - ], - [ - "▁Werbe", - -12.404558181762695 - ], - [ - "▁restrict", - -12.404658317565918 - ], - [ - "▁tablespoon", - -12.404844284057617 - ], - [ - "▁Amendment", - -12.404845237731934 - ], - [ - "▁Johnny", - -12.404914855957031 - ], - [ - "▁lively", - -12.404938697814941 - ], - [ - "ORD", - -12.405147552490234 - ], - [ - "▁mulţi", - -12.40523624420166 - ], - [ - "èrent", - -12.405241012573242 - ], - [ - "Every", - -12.405277252197266 - ], - [ - "eignet", - -12.405296325683594 - ], - [ - "GD", - -12.40546989440918 - ], - [ - "▁Ghana", - -12.405628204345703 - ], - [ - "▁wealthy", - -12.40576171875 - ], - [ - "▁advocates", - -12.405818939208984 - ], - [ - "▁Campaign", - -12.40584659576416 - ], - [ - "▁posters", - -12.405964851379395 - ], - [ - "flug", - -12.406011581420898 - ], - [ - "▁métier", - -12.406139373779297 - ], - [ - "kir", - -12.406148910522461 - ], - [ - "bond", - -12.406176567077637 - ], - [ - "datorita", - -12.406188011169434 - ], - [ - "▁Hochzeit", - -12.406230926513672 - ], - [ - "▁effectué", - -12.406271934509277 - ], - [ - "▁angles", - -12.40654182434082 - ], - [ - "▁Electrical", - -12.406705856323242 - ], - [ - "▁Administrator", - -12.40674114227295 - ], - [ - "▁spur", - -12.407389640808105 - ], - [ - "▁größere", - -12.407444953918457 - ], - [ - "woke", - -12.407515525817871 - ], - [ - "▁gewinnen", - -12.407689094543457 - ], - [ - "▁ajută", - -12.407712936401367 - ], - [ - "▁ventilation", - -12.407853126525879 - ], - [ - "▁viaţa", - -12.407853126525879 - ], - [ - "▁Dinner", - -12.408079147338867 - ], - [ - "respond", - -12.408095359802246 - ], - [ - "▁OEM", - -12.408120155334473 - ], - [ - "▁affair", - -12.4081392288208 - ], - [ - "▁öffentlich", - -12.408143043518066 - ], - [ - "ENS", - -12.408209800720215 - ], - [ - "▁Cent", - -12.408224105834961 - ], - [ - "▁făc", - -12.408267974853516 - ], - [ - "▁Doppel", - -12.408285140991211 - ], - [ - "▁fericit", - -12.408363342285156 - ], - [ - "▁coordon", - -12.40845775604248 - ], - [ - "geht", - -12.408547401428223 - ], - [ - "▁perfekte", - -12.408610343933105 - ], - [ - "▁sportive", - -12.408700942993164 - ], - [ - "▁proiectul", - -12.40870189666748 - ], - [ - "▁deadly", - -12.408804893493652 - ], - [ - "Geschäft", - -12.408822059631348 - ], - [ - "▁inspirational", - -12.408854484558105 - ], - [ - "+1", - -12.409013748168945 - ], - [ - "▁pearl", - -12.409022331237793 - ], - [ - "▁scrub", - -12.409036636352539 - ], - [ - "▁scheint", - -12.409079551696777 - ], - [ - "poo", - -12.409147262573242 - ], - [ - "▁Pier", - -12.409220695495605 - ], - [ - "▁commented", - -12.409285545349121 - ], - [ - "lute", - -12.409302711486816 - ], - [ - "▁cancelled", - -12.409488677978516 - ], - [ - "Win", - -12.409605979919434 - ], - [ - "▁payroll", - -12.409781455993652 - ], - [ - "▁varsta", - -12.409881591796875 - ], - [ - "stuffed", - -12.410097122192383 - ], - [ - "▁beads", - -12.410138130187988 - ], - [ - "▁poems", - -12.410356521606445 - ], - [ - "pokesman", - -12.410399436950684 - ], - [ - "▁checklist", - -12.410523414611816 - ], - [ - "▁Mich", - -12.410636901855469 - ], - [ - "GEN", - -12.410676002502441 - ], - [ - "▁Lau", - -12.410783767700195 - ], - [ - "▁stie", - -12.410965919494629 - ], - [ - "▁Lovely", - -12.4110107421875 - ], - [ - "▁Anschluss", - -12.411062240600586 - ], - [ - "▁personaj", - -12.41108226776123 - ], - [ - "▁ausgestattet", - -12.411121368408203 - ], - [ - "▁beginners", - -12.411163330078125 - ], - [ - "▁noon", - -12.411189079284668 - ], - [ - "▁celule", - -12.41128921508789 - ], - [ - "Trans", - -12.411324501037598 - ], - [ - "boot", - -12.411331176757812 - ], - [ - "▁drumul", - -12.41136646270752 - ], - [ - "gruppen", - -12.41140079498291 - ], - [ - "étend", - -12.41140365600586 - ], - [ - "▁risques", - -12.411405563354492 - ], - [ - "acclaimed", - -12.411447525024414 - ], - [ - "▁celelalte", - -12.411617279052734 - ], - [ - "▁condiţii", - -12.411620140075684 - ], - [ - "▁skiing", - -12.411685943603516 - ], - [ - "▁optimale", - -12.411689758300781 - ], - [ - "technology", - -12.411773681640625 - ], - [ - "▁renew", - -12.411784172058105 - ], - [ - "Cloud", - -12.41179084777832 - ], - [ - "▁damaging", - -12.411905288696289 - ], - [ - "GT", - -12.412219047546387 - ], - [ - "▁Reform", - -12.41230583190918 - ], - [ - "vedem", - -12.412349700927734 - ], - [ - "▁indicat", - -12.412461280822754 - ], - [ - "▁Maker", - -12.412467002868652 - ], - [ - "▁lichid", - -12.412582397460938 - ], - [ - "3.1", - -12.412614822387695 - ], - [ - "păt", - -12.412620544433594 - ], - [ - "lumina", - -12.41264820098877 - ], - [ - "▁Situ", - -12.412806510925293 - ], - [ - "▁Archives", - -12.412857055664062 - ], - [ - "▁allergies", - -12.41287899017334 - ], - [ - "▁Cameron", - -12.412883758544922 - ], - [ - "▁Immun", - -12.412899017333984 - ], - [ - "wissenschaftlich", - -12.41301441192627 - ], - [ - "▁supplémentaire", - -12.413128852844238 - ], - [ - "▁puterea", - -12.413261413574219 - ], - [ - "Lab", - -12.413331985473633 - ], - [ - "inspired", - -12.413384437561035 - ], - [ - "▁shrink", - -12.413403511047363 - ], - [ - "▁voit", - -12.413426399230957 - ], - [ - "▁chopped", - -12.413467407226562 - ], - [ - "▁Franz", - -12.413537979125977 - ], - [ - "oku", - -12.413652420043945 - ], - [ - "▁suppress", - -12.413673400878906 - ], - [ - "▁impress", - -12.413751602172852 - ], - [ - "▁Liga", - -12.413755416870117 - ], - [ - "▁Eight", - -12.41378402709961 - ], - [ - "720", - -12.413795471191406 - ], - [ - "▁securely", - -12.413870811462402 - ], - [ - "KU", - -12.413934707641602 - ], - [ - "modell", - -12.413992881774902 - ], - [ - "Ensure", - -12.414154052734375 - ], - [ - "größte", - -12.414204597473145 - ], - [ - "▁réuni", - -12.414215087890625 - ], - [ - "▁Internal", - -12.41423225402832 - ], - [ - "▁Punkte", - -12.414320945739746 - ], - [ - "▁replicate", - -12.414412498474121 - ], - [ - "▁spreadsheet", - -12.414434432983398 - ], - [ - "▁Hindu", - -12.414549827575684 - ], - [ - "▁Cham", - -12.414578437805176 - ], - [ - "nati", - -12.414670944213867 - ], - [ - "imply", - -12.414679527282715 - ], - [ - "funded", - -12.414894104003906 - ], - [ - "▁charitable", - -12.414896011352539 - ], - [ - "▁imagined", - -12.415014266967773 - ], - [ - "hausen", - -12.41517448425293 - ], - [ - "Keeping", - -12.415239334106445 - ], - [ - "▁attitudes", - -12.415287971496582 - ], - [ - "esque", - -12.415365219116211 - ], - [ - "▁Tennis", - -12.415409088134766 - ], - [ - "Jeremy", - -12.415410041809082 - ], - [ - "▁majeur", - -12.415475845336914 - ], - [ - "▁stii", - -12.4155912399292 - ], - [ - "▁herbal", - -12.415790557861328 - ], - [ - "▁cauta", - -12.41580867767334 - ], - [ - "▁voluntary", - -12.415828704833984 - ], - [ - "wohl", - -12.415877342224121 - ], - [ - "▁ideea", - -12.41588306427002 - ], - [ - "▁WW", - -12.415899276733398 - ], - [ - "▁erneut", - -12.416010856628418 - ], - [ - "größten", - -12.416094779968262 - ], - [ - "Grâce", - -12.416159629821777 - ], - [ - "▁Köln", - -12.416193008422852 - ], - [ - "▁mobilier", - -12.416199684143066 - ], - [ - "▁fool", - -12.416254043579102 - ], - [ - "▁Calcul", - -12.416295051574707 - ], - [ - "attaque", - -12.41637897491455 - ], - [ - "▁digestive", - -12.41656494140625 - ], - [ - "performance", - -12.416647911071777 - ], - [ - "▁homeowner", - -12.41675853729248 - ], - [ - "▁hunger", - -12.4169282913208 - ], - [ - "2.3", - -12.41696834564209 - ], - [ - "▁Sort", - -12.417085647583008 - ], - [ - "▁Dennis", - -12.41723918914795 - ], - [ - "▁certificat", - -12.417250633239746 - ], - [ - "▁Canal", - -12.417337417602539 - ], - [ - "▁Yesterday", - -12.417424201965332 - ], - [ - "▁sausage", - -12.417499542236328 - ], - [ - "▁perdu", - -12.417736053466797 - ], - [ - "ösen", - -12.417741775512695 - ], - [ - "▁preserved", - -12.417750358581543 - ], - [ - "▁trendy", - -12.4177885055542 - ], - [ - "▁iubire", - -12.417935371398926 - ], - [ - "▁grandfather", - -12.417961120605469 - ], - [ - "▁shoppers", - -12.41820240020752 - ], - [ - "▁verschieden", - -12.418252944946289 - ], - [ - "▁gagner", - -12.41826343536377 - ], - [ - "▁lucra", - -12.418437004089355 - ], - [ - "metru", - -12.418464660644531 - ], - [ - "buz", - -12.418469429016113 - ], - [ - "▁flourish", - -12.418484687805176 - ], - [ - "affin", - -12.418523788452148 - ], - [ - "▁Pflanzen", - -12.41858196258545 - ], - [ - "agh", - -12.418588638305664 - ], - [ - "▁Gill", - -12.418660163879395 - ], - [ - "▁Kä", - -12.418671607971191 - ], - [ - "▁Wege", - -12.41876220703125 - ], - [ - "▁Liberal", - -12.418929100036621 - ], - [ - "▁Glasgow", - -12.418944358825684 - ], - [ - "Objekt", - -12.4189453125 - ], - [ - "▁Huawei", - -12.4189453125 - ], - [ - "appropri", - -12.418986320495605 - ], - [ - "▁genius", - -12.419037818908691 - ], - [ - "▁brokers", - -12.419068336486816 - ], - [ - "▁themed", - -12.41918659210205 - ], - [ - "▁barre", - -12.419210433959961 - ], - [ - "1.7", - -12.419219017028809 - ], - [ - "▁Electro", - -12.419303894042969 - ], - [ - "▁umbrella", - -12.419333457946777 - ], - [ - "▁advisory", - -12.419417381286621 - ], - [ - "▁comport", - -12.419421195983887 - ], - [ - "▁neuer", - -12.419452667236328 - ], - [ - "▁Wick", - -12.419568061828613 - ], - [ - "wak", - -12.419618606567383 - ], - [ - "▁Woman", - -12.419695854187012 - ], - [ - "▁lesser", - -12.419843673706055 - ], - [ - "▁replied", - -12.419987678527832 - ], - [ - "▁représente", - -12.420050621032715 - ], - [ - "▁thé", - -12.420135498046875 - ], - [ - "Deutsch", - -12.420428276062012 - ], - [ - "Cat", - -12.420483589172363 - ], - [ - "▁équipes", - -12.420534133911133 - ], - [ - "▁spider", - -12.420578956604004 - ], - [ - "▁Gaming", - -12.420589447021484 - ], - [ - "▁Liste", - -12.420592308044434 - ], - [ - "▁affection", - -12.420639038085938 - ], - [ - "lipsa", - -12.420982360839844 - ], - [ - "▁Spider", - -12.420987129211426 - ], - [ - "▁Julia", - -12.421034812927246 - ], - [ - "anlagen", - -12.421159744262695 - ], - [ - "Kon", - -12.421363830566406 - ], - [ - "nței", - -12.421368598937988 - ], - [ - "▁Verwaltung", - -12.421483993530273 - ], - [ - "▁raspuns", - -12.421489715576172 - ], - [ - "samt", - -12.421491622924805 - ], - [ - "▁creștere", - -12.421512603759766 - ], - [ - "▁decorate", - -12.421701431274414 - ], - [ - "▁Chain", - -12.422021865844727 - ], - [ - "ów", - -12.422050476074219 - ], - [ - "0-0", - -12.422104835510254 - ], - [ - "▁Cran", - -12.422407150268555 - ], - [ - "▁streak", - -12.42242431640625 - ], - [ - "ор", - -12.422517776489258 - ], - [ - "▁căuta", - -12.422754287719727 - ], - [ - "wende", - -12.422801971435547 - ], - [ - "▁haine", - -12.42280387878418 - ], - [ - "▁landscaping", - -12.423009872436523 - ], - [ - "▁historian", - -12.423016548156738 - ], - [ - "▁grandchildren", - -12.423033714294434 - ], - [ - "▁crawl", - -12.423056602478027 - ], - [ - "▁Cub", - -12.423239707946777 - ], - [ - "▁nécessaires", - -12.423515319824219 - ], - [ - "▁swift", - -12.42352294921875 - ], - [ - "▁calculation", - -12.423656463623047 - ], - [ - "▁acteurs", - -12.423715591430664 - ], - [ - "VT", - -12.423752784729004 - ], - [ - "▁Hristos", - -12.423778533935547 - ], - [ - "▁slices", - -12.423850059509277 - ], - [ - "See", - -12.424203872680664 - ], - [ - "▁Bran", - -12.424233436584473 - ], - [ - "Symbol", - -12.424449920654297 - ], - [ - "▁allowance", - -12.424492835998535 - ], - [ - "▁Effective", - -12.424537658691406 - ], - [ - "▁Wünsche", - -12.424539566040039 - ], - [ - "▁shiny", - -12.424569129943848 - ], - [ - "▁professionalism", - -12.424715995788574 - ], - [ - "/6", - -12.424970626831055 - ], - [ - "▁terrasse", - -12.425087928771973 - ], - [ - "▁researcher", - -12.425156593322754 - ], - [ - "▁fragile", - -12.425203323364258 - ], - [ - "▁greeting", - -12.425274848937988 - ], - [ - "freien", - -12.4253511428833 - ], - [ - "▁valuation", - -12.425372123718262 - ], - [ - "▁incur", - -12.425386428833008 - ], - [ - "▁Zwischen", - -12.425559997558594 - ], - [ - "▁comfy", - -12.425569534301758 - ], - [ - "▁méthode", - -12.42569351196289 - ], - [ - "▁Pirate", - -12.425816535949707 - ], - [ - "▁Moto", - -12.425822257995605 - ], - [ - "(6)", - -12.425823211669922 - ], - [ - "▁devin", - -12.42582893371582 - ], - [ - "▁civic", - -12.425837516784668 - ], - [ - "usage", - -12.425889015197754 - ], - [ - "▁istorie", - -12.425945281982422 - ], - [ - "▁piste", - -12.425955772399902 - ], - [ - "▁Rug", - -12.426091194152832 - ], - [ - "pä", - -12.426129341125488 - ], - [ - "▁matur", - -12.426148414611816 - ], - [ - "CAS", - -12.426155090332031 - ], - [ - "TIC", - -12.42618465423584 - ], - [ - "▁Reduce", - -12.426234245300293 - ], - [ - "▁commemorat", - -12.426321983337402 - ], - [ - "▁cease", - -12.42653751373291 - ], - [ - "unterschiedliche", - -12.42656421661377 - ], - [ - "▁cinnamon", - -12.426581382751465 - ], - [ - "▁Font", - -12.426583290100098 - ], - [ - "▁justify", - -12.426751136779785 - ], - [ - "deteriorat", - -12.426797866821289 - ], - [ - "▁Schön", - -12.42684555053711 - ], - [ - "plain", - -12.426993370056152 - ], - [ - "frist", - -12.427002906799316 - ], - [ - "▁helmet", - -12.42712116241455 - ], - [ - "▁statute", - -12.42721939086914 - ], - [ - "accept", - -12.427236557006836 - ], - [ - "▁1,5", - -12.42724323272705 - ], - [ - "▁recon", - -12.42724323272705 - ], - [ - "▁Möbel", - -12.427348136901855 - ], - [ - "▁idées", - -12.427367210388184 - ], - [ - "automat", - -12.427552223205566 - ], - [ - "Team", - -12.42758846282959 - ], - [ - "▁performers", - -12.427688598632812 - ], - [ - "▁microphone", - -12.427722930908203 - ], - [ - "impotriva", - -12.427775382995605 - ], - [ - "▁pillows", - -12.42780876159668 - ], - [ - "▁accountable", - -12.427812576293945 - ], - [ - "▁strings", - -12.42782974243164 - ], - [ - "hydrate", - -12.427835464477539 - ], - [ - "▁Yan", - -12.427865028381348 - ], - [ - "starea", - -12.427918434143066 - ], - [ - "▁présenté", - -12.42793083190918 - ], - [ - "▁extensively", - -12.428048133850098 - ], - [ - "äst", - -12.428114891052246 - ], - [ - "▁correlation", - -12.428115844726562 - ], - [ - "bespoke", - -12.428119659423828 - ], - [ - "▁creste", - -12.428196907043457 - ], - [ - "▁Armenia", - -12.428248405456543 - ], - [ - "nose", - -12.428426742553711 - ], - [ - "▁strengthening", - -12.428604125976562 - ], - [ - "▁Horizon", - -12.428627014160156 - ], - [ - "▁obesity", - -12.428627967834473 - ], - [ - "seasoned", - -12.428686141967773 - ], - [ - "▁screenshot", - -12.428736686706543 - ], - [ - "girl", - -12.42875862121582 - ], - [ - "▁hardest", - -12.428826332092285 - ], - [ - "▁weakness", - -12.428855895996094 - ], - [ - "effectuer", - -12.429012298583984 - ], - [ - "▁Florence", - -12.429034233093262 - ], - [ - "▁Europene", - -12.429062843322754 - ], - [ - "triggered", - -12.429333686828613 - ], - [ - "Apparently", - -12.42939567565918 - ], - [ - "▁diagnose", - -12.42943286895752 - ], - [ - "rushed", - -12.429494857788086 - ], - [ - "▁trotz", - -12.429516792297363 - ], - [ - "▁spécial", - -12.429680824279785 - ], - [ - "▁lumi", - -12.429783821105957 - ], - [ - "7:00", - -12.429877281188965 - ], - [ - "▁publicat", - -12.429903984069824 - ], - [ - "ос", - -12.430086135864258 - ], - [ - "▁hue", - -12.430136680603027 - ], - [ - "▁termination", - -12.430139541625977 - ], - [ - "▁Nam", - -12.430240631103516 - ], - [ - "Well", - -12.430376052856445 - ], - [ - "▁Extract", - -12.430441856384277 - ], - [ - "atiile", - -12.43062686920166 - ], - [ - "▁vivid", - -12.43076229095459 - ], - [ - "hrs", - -12.430858612060547 - ], - [ - "▁povesti", - -12.430984497070312 - ], - [ - "stehenden", - -12.430988311767578 - ], - [ - "▁informieren", - -12.431070327758789 - ], - [ - "employed", - -12.431133270263672 - ], - [ - "▁armor", - -12.431180953979492 - ], - [ - "▁Columbus", - -12.431191444396973 - ], - [ - "Registr", - -12.431200981140137 - ], - [ - "▁Kamera", - -12.431203842163086 - ], - [ - "▁ugly", - -12.431203842163086 - ], - [ - "outil", - -12.431234359741211 - ], - [ - "▁evenly", - -12.43134593963623 - ], - [ - "lungul", - -12.431349754333496 - ], - [ - "koch", - -12.431439399719238 - ], - [ - "▁Dig", - -12.431450843811035 - ], - [ - "purely", - -12.431489944458008 - ], - [ - "▁Surf", - -12.431560516357422 - ], - [ - "rilla", - -12.431628227233887 - ], - [ - "▁Watson", - -12.43171215057373 - ], - [ - "trug", - -12.431719779968262 - ], - [ - "figuring", - -12.431784629821777 - ], - [ - "▁competitor", - -12.431807518005371 - ], - [ - "▁humid", - -12.431889533996582 - ], - [ - "▁Lawyer", - -12.43189811706543 - ], - [ - "Added", - -12.43205451965332 - ], - [ - "▁salva", - -12.432056427001953 - ], - [ - "▁drainage", - -12.4321870803833 - ], - [ - "Featuring", - -12.432220458984375 - ], - [ - "▁Pel", - -12.43234634399414 - ], - [ - "▁acasa", - -12.432611465454102 - ], - [ - "▁expectation", - -12.43265438079834 - ], - [ - "gibt", - -12.432663917541504 - ], - [ - "▁marginal", - -12.432831764221191 - ], - [ - "ceni", - -12.433028221130371 - ], - [ - "▁européen", - -12.433065414428711 - ], - [ - "clav", - -12.433090209960938 - ], - [ - "▁Shot", - -12.433167457580566 - ], - [ - "commun", - -12.43322467803955 - ], - [ - "▁Calendar", - -12.433247566223145 - ], - [ - "▁trek", - -12.433348655700684 - ], - [ - "rechtliche", - -12.433406829833984 - ], - [ - "▁Perry", - -12.43342399597168 - ], - [ - "▁surge", - -12.433484077453613 - ], - [ - "geschäft", - -12.433504104614258 - ], - [ - "paced", - -12.433793067932129 - ], - [ - "depend", - -12.433871269226074 - ], - [ - "▁Sache", - -12.433947563171387 - ], - [ - "▁Example", - -12.433998107910156 - ], - [ - "▁lider", - -12.434118270874023 - ], - [ - "▁nochmal", - -12.434240341186523 - ], - [ - "▁Present", - -12.434243202209473 - ], - [ - "KW", - -12.434335708618164 - ], - [ - "prompted", - -12.434350967407227 - ], - [ - "logique", - -12.434444427490234 - ], - [ - "Université", - -12.434466361999512 - ], - [ - "lith", - -12.434489250183105 - ], - [ - "▁Gefahr", - -12.434579849243164 - ], - [ - "▁Acid", - -12.434625625610352 - ], - [ - "objets", - -12.434791564941406 - ], - [ - "▁societies", - -12.434791564941406 - ], - [ - "▁distraction", - -12.434816360473633 - ], - [ - "▁puissance", - -12.434934616088867 - ], - [ - "▁alleviat", - -12.435026168823242 - ], - [ - "▁Capitol", - -12.435050010681152 - ], - [ - "▁Heim", - -12.435129165649414 - ], - [ - "judicial", - -12.435230255126953 - ], - [ - "▁nowadays", - -12.435309410095215 - ], - [ - "▁Hammer", - -12.435317039489746 - ], - [ - "▁metallic", - -12.435327529907227 - ], - [ - "▁distr", - -12.435388565063477 - ], - [ - "▁dispos", - -12.435397148132324 - ], - [ - "profile", - -12.435408592224121 - ], - [ - "▁Nicolas", - -12.435602188110352 - ], - [ - "▁presa", - -12.435760498046875 - ], - [ - "augh", - -12.43578052520752 - ], - [ - "schuss", - -12.435787200927734 - ], - [ - "▁Diana", - -12.436062812805176 - ], - [ - "4-5", - -12.436097145080566 - ], - [ - "▁Chapel", - -12.43612003326416 - ], - [ - "▁zahar", - -12.436150550842285 - ], - [ - "âmb", - -12.4362154006958 - ], - [ - "▁Tarif", - -12.436264991760254 - ], - [ - "▁devastating", - -12.436339378356934 - ], - [ - "6:00", - -12.4364013671875 - ], - [ - "▁100,000", - -12.43645191192627 - ], - [ - "NIC", - -12.436580657958984 - ], - [ - "▁Lucas", - -12.436612129211426 - ], - [ - "▁bequem", - -12.436662673950195 - ], - [ - "▁Motion", - -12.436698913574219 - ], - [ - "7,000", - -12.436701774597168 - ], - [ - "▁malware", - -12.436708450317383 - ], - [ - "▁avenue", - -12.436723709106445 - ], - [ - "▁manger", - -12.436747550964355 - ], - [ - "▁Queensland", - -12.436857223510742 - ], - [ - "▁Papier", - -12.436861991882324 - ], - [ - "▁Increase", - -12.436880111694336 - ], - [ - "▁implies", - -12.436954498291016 - ], - [ - "▁äußer", - -12.43697452545166 - ], - [ - "▁Meine", - -12.436980247497559 - ], - [ - "Reuters", - -12.437155723571777 - ], - [ - "▁Belt", - -12.437232971191406 - ], - [ - "Educat", - -12.437251091003418 - ], - [ - "▁Aktion", - -12.437355041503906 - ], - [ - "schläge", - -12.437372207641602 - ], - [ - "▁înregistrat", - -12.437426567077637 - ], - [ - "▁Ortho", - -12.43756103515625 - ], - [ - "▁bulbs", - -12.437761306762695 - ], - [ - "kap", - -12.437793731689453 - ], - [ - "▁peinture", - -12.437901496887207 - ], - [ - "▁Lounge", - -12.437907218933105 - ], - [ - "▁Tampa", - -12.438008308410645 - ], - [ - "ifiziert", - -12.438100814819336 - ], - [ - "kinder", - -12.438172340393066 - ], - [ - "▁comparativ", - -12.438281059265137 - ], - [ - "häuser", - -12.438323974609375 - ], - [ - "incarn", - -12.438363075256348 - ], - [ - "▁amazon", - -12.438464164733887 - ], - [ - "▁Southeast", - -12.438505172729492 - ], - [ - "▁economical", - -12.438667297363281 - ], - [ - "▁broth", - -12.438697814941406 - ], - [ - "▁Secure", - -12.438750267028809 - ], - [ - "damals", - -12.438875198364258 - ], - [ - "▁Elementary", - -12.438921928405762 - ], - [ - "▁Wildlife", - -12.438995361328125 - ], - [ - "▁Jewel", - -12.439001083374023 - ], - [ - "▁protocols", - -12.439297676086426 - ], - [ - "▁zbor", - -12.4393892288208 - ], - [ - "▁enthusiasts", - -12.439398765563965 - ], - [ - "▁Mirror", - -12.439444541931152 - ], - [ - "▁soak", - -12.439537048339844 - ], - [ - "▁Sad", - -12.439574241638184 - ], - [ - "▁dishwasher", - -12.439957618713379 - ], - [ - "▁vollständig", - -12.440186500549316 - ], - [ - "▁Vermont", - -12.440407752990723 - ], - [ - "▁caut", - -12.440449714660645 - ], - [ - "▁fournisseur", - -12.440475463867188 - ], - [ - "▁Concrete", - -12.44047737121582 - ], - [ - "▁Instant", - -12.440595626831055 - ], - [ - "▁reveni", - -12.440597534179688 - ], - [ - "▁Surface", - -12.44059944152832 - ], - [ - "zumindest", - -12.440713882446289 - ], - [ - "▁feast", - -12.440725326538086 - ], - [ - "▁stretching", - -12.440803527832031 - ], - [ - "ERA", - -12.440997123718262 - ], - [ - "▁Scholarship", - -12.441020965576172 - ], - [ - "▁vineyard", - -12.4410400390625 - ], - [ - "▁régulièrement", - -12.441083908081055 - ], - [ - "▁patches", - -12.441093444824219 - ], - [ - "▁Gamb", - -12.44113540649414 - ], - [ - "▁Vereins", - -12.441152572631836 - ], - [ - "ège", - -12.441372871398926 - ], - [ - "▁constitutional", - -12.441411018371582 - ], - [ - "erreur", - -12.441413879394531 - ], - [ - "▁Colombia", - -12.441514015197754 - ], - [ - "UF", - -12.441618919372559 - ], - [ - "aider", - -12.441665649414062 - ], - [ - "cision", - -12.44180965423584 - ], - [ - "▁publishers", - -12.441913604736328 - ], - [ - "▁prelua", - -12.441967964172363 - ], - [ - "▁keiner", - -12.441990852355957 - ], - [ - "▁amid", - -12.442020416259766 - ], - [ - "▁quantitative", - -12.442031860351562 - ], - [ - "▁decay", - -12.442058563232422 - ], - [ - "▁distinguished", - -12.4420747756958 - ], - [ - "▁Gründe", - -12.442209243774414 - ], - [ - "▁statului", - -12.442362785339355 - ], - [ - "CAT", - -12.442436218261719 - ], - [ - "allow", - -12.442481994628906 - ], - [ - "▁mathematical", - -12.442550659179688 - ], - [ - "▁tragedy", - -12.44255542755127 - ], - [ - "▁heels", - -12.442609786987305 - ], - [ - "opia", - -12.44265365600586 - ], - [ - "▁merger", - -12.4428071975708 - ], - [ - "dispositif", - -12.442813873291016 - ], - [ - "▁pneu", - -12.44283390045166 - ], - [ - "elte", - -12.443058013916016 - ], - [ - "▁Introduction", - -12.443070411682129 - ], - [ - "▁biscuit", - -12.443134307861328 - ], - [ - "▁leftover", - -12.443275451660156 - ], - [ - "▁tester", - -12.443314552307129 - ], - [ - "▁Terre", - -12.443380355834961 - ], - [ - "▁Oui", - -12.44338321685791 - ], - [ - "▁rar", - -12.443520545959473 - ], - [ - "▁beverages", - -12.443666458129883 - ], - [ - "▁parenting", - -12.443892478942871 - ], - [ - "1-0", - -12.444053649902344 - ], - [ - "▁Barry", - -12.44417667388916 - ], - [ - "▁Lynn", - -12.444209098815918 - ], - [ - "▁Tyler", - -12.444262504577637 - ], - [ - "▁fotbal", - -12.44437026977539 - ], - [ - "dron", - -12.444475173950195 - ], - [ - "▁donor", - -12.44455623626709 - ], - [ - "▁drape", - -12.444558143615723 - ], - [ - "▁positioning", - -12.444963455200195 - ], - [ - "▁Tang", - -12.445006370544434 - ], - [ - "▁overwhelmed", - -12.445161819458008 - ], - [ - "▁perte", - -12.445192337036133 - ], - [ - "▁blender", - -12.445302963256836 - ], - [ - "TG", - -12.445467948913574 - ], - [ - "GHz", - -12.445490837097168 - ], - [ - "▁administrat", - -12.445719718933105 - ], - [ - "▁glaube", - -12.445771217346191 - ], - [ - "Char", - -12.445947647094727 - ], - [ - "impression", - -12.44627571105957 - ], - [ - "proving", - -12.446297645568848 - ], - [ - "▁Inner", - -12.446434020996094 - ], - [ - "root", - -12.446501731872559 - ], - [ - "▁Gedanken", - -12.446508407592773 - ], - [ - "▁underway", - -12.446596145629883 - ], - [ - "coat", - -12.44660758972168 - ], - [ - "▁thereof", - -12.446663856506348 - ], - [ - "rius", - -12.446700096130371 - ], - [ - "▁intermediate", - -12.446751594543457 - ], - [ - "gmail", - -12.446869850158691 - ], - [ - "114", - -12.446893692016602 - ], - [ - "▁interfere", - -12.446908950805664 - ], - [ - "▁Found", - -12.446930885314941 - ], - [ - "LF", - -12.447071075439453 - ], - [ - "▁equality", - -12.447099685668945 - ], - [ - "▁concurrent", - -12.44710636138916 - ], - [ - "akh", - -12.447107315063477 - ], - [ - "▁touching", - -12.44715690612793 - ], - [ - "▁curiosity", - -12.447235107421875 - ], - [ - "▁rendering", - -12.447263717651367 - ], - [ - "▁1964", - -12.447442054748535 - ], - [ - "sorge", - -12.447468757629395 - ], - [ - "ARC", - -12.447505950927734 - ], - [ - "▁Desktop", - -12.44752311706543 - ], - [ - "▁Tak", - -12.44760799407959 - ], - [ - "filtration", - -12.447651863098145 - ], - [ - "▁gates", - -12.4478759765625 - ], - [ - "Sehr", - -12.44791316986084 - ], - [ - "▁spatiu", - -12.44798755645752 - ], - [ - "▁Leg", - -12.448103904724121 - ], - [ - "▁aviation", - -12.448277473449707 - ], - [ - "wandel", - -12.44827938079834 - ], - [ - "▁Shar", - -12.448323249816895 - ], - [ - "▁Volks", - -12.448409080505371 - ], - [ - "maz", - -12.448698997497559 - ], - [ - "governmental", - -12.44874095916748 - ], - [ - "euros", - -12.448819160461426 - ], - [ - "avantage", - -12.448823928833008 - ], - [ - "sitzt", - -12.448856353759766 - ], - [ - "IER", - -12.448920249938965 - ], - [ - "▁Theory", - -12.44894027709961 - ], - [ - "Cependant", - -12.44907283782959 - ], - [ - "▁Teachers", - -12.449080467224121 - ], - [ - "anspruch", - -12.449095726013184 - ], - [ - "▁afecta", - -12.449139595031738 - ], - [ - "enko", - -12.449193000793457 - ], - [ - "▁breeding", - -12.449198722839355 - ], - [ - "▁Peak", - -12.449457168579102 - ], - [ - "▁găsit", - -12.449516296386719 - ], - [ - "▁măsuri", - -12.4495267868042 - ], - [ - "edia", - -12.449625968933105 - ], - [ - "biz", - -12.449640274047852 - ], - [ - "zum", - -12.449776649475098 - ], - [ - "▁schwierig", - -12.449847221374512 - ], - [ - "Sense", - -12.450050354003906 - ], - [ - "▁Jump", - -12.450081825256348 - ], - [ - "▁cocktails", - -12.450108528137207 - ], - [ - "abhängig", - -12.45012378692627 - ], - [ - "realised", - -12.450140953063965 - ], - [ - "▁programul", - -12.450214385986328 - ], - [ - "▁prévu", - -12.450238227844238 - ], - [ - "▁twitter", - -12.450372695922852 - ], - [ - "Union", - -12.450400352478027 - ], - [ - "▁Marathon", - -12.45040225982666 - ], - [ - "▁Christianity", - -12.450432777404785 - ], - [ - "▁Alberta", - -12.450811386108398 - ], - [ - "einheit", - -12.45097827911377 - ], - [ - "▁wellbeing", - -12.450982093811035 - ], - [ - "phen", - -12.451166152954102 - ], - [ - "▁Charleston", - -12.451180458068848 - ], - [ - "▁uncover", - -12.451323509216309 - ], - [ - "▁humaine", - -12.451464653015137 - ], - [ - "▁bleeding", - -12.451531410217285 - ], - [ - "▁manipul", - -12.451532363891602 - ], - [ - "▁humidity", - -12.451570510864258 - ], - [ - "▁Puis", - -12.451748847961426 - ], - [ - "▁aktuell", - -12.451922416687012 - ], - [ - "▁Nissan", - -12.451943397521973 - ], - [ - "▁Eisen", - -12.45202922821045 - ], - [ - "treiben", - -12.452059745788574 - ], - [ - "cios", - -12.452073097229004 - ], - [ - "ikh", - -12.452381134033203 - ], - [ - "acquiring", - -12.452466011047363 - ], - [ - "▁Wallpaper", - -12.452488899230957 - ], - [ - "▁rond", - -12.452558517456055 - ], - [ - "▁Doug", - -12.45267391204834 - ], - [ - "sourcing", - -12.452696800231934 - ], - [ - "▁1900", - -12.452825546264648 - ], - [ - "▁buni", - -12.452913284301758 - ], - [ - "vest", - -12.452916145324707 - ], - [ - "▁Bangladesh", - -12.452990531921387 - ], - [ - "Home", - -12.453160285949707 - ], - [ - "▁wrinkle", - -12.453252792358398 - ], - [ - "rado", - -12.453290939331055 - ], - [ - "▁Pain", - -12.45334243774414 - ], - [ - "▁herzlich", - -12.453354835510254 - ], - [ - "MRI", - -12.453426361083984 - ], - [ - "UG", - -12.453631401062012 - ], - [ - "▁Desk", - -12.453679084777832 - ], - [ - "▁remarc", - -12.453718185424805 - ], - [ - "▁sodium", - -12.453857421875 - ], - [ - "▁Jede", - -12.453892707824707 - ], - [ - "▁réelle", - -12.453959465026855 - ], - [ - "▁Polar", - -12.454068183898926 - ], - [ - "▁activists", - -12.454273223876953 - ], - [ - "lasted", - -12.454300880432129 - ], - [ - "Some", - -12.45432186126709 - ], - [ - "ISE", - -12.454338073730469 - ], - [ - "▁peine", - -12.454671859741211 - ], - [ - "▁crude", - -12.454852104187012 - ], - [ - "Maur", - -12.454916954040527 - ], - [ - "▁forcing", - -12.454933166503906 - ], - [ - "▁politici", - -12.454970359802246 - ], - [ - "▁condiții", - -12.454988479614258 - ], - [ - "▁Saving", - -12.454999923706055 - ], - [ - "▁descoperi", - -12.455020904541016 - ], - [ - "avenir", - -12.455055236816406 - ], - [ - "Akt", - -12.455069541931152 - ], - [ - "▁vocabulary", - -12.45509147644043 - ], - [ - "▁pont", - -12.455168724060059 - ], - [ - "West", - -12.45518970489502 - ], - [ - "lenk", - -12.455278396606445 - ], - [ - "▁Verbraucher", - -12.455367088317871 - ], - [ - "affects", - -12.455448150634766 - ], - [ - "▁Flower", - -12.455543518066406 - ], - [ - "▁Nebraska", - -12.455617904663086 - ], - [ - "▁assortment", - -12.455618858337402 - ], - [ - "hock", - -12.455619812011719 - ], - [ - "▁discounted", - -12.455803871154785 - ], - [ - "▁Sensor", - -12.455840110778809 - ], - [ - "Lie", - -12.45588207244873 - ], - [ - "▁Volkswagen", - -12.455887794494629 - ], - [ - "isseur", - -12.455888748168945 - ], - [ - "indice", - -12.455936431884766 - ], - [ - "▁scanner", - -12.455986022949219 - ], - [ - "fashioned", - -12.456040382385254 - ], - [ - "▁postal", - -12.456141471862793 - ], - [ - "ouvrir", - -12.45615291595459 - ], - [ - "▁seminars", - -12.45622444152832 - ], - [ - "ioase", - -12.456232070922852 - ], - [ - "▁Stanley", - -12.456260681152344 - ], - [ - "Various", - -12.456335067749023 - ], - [ - "essentiel", - -12.45650577545166 - ], - [ - "▁administered", - -12.456693649291992 - ], - [ - "▁concession", - -12.456748008728027 - ], - [ - "▁mould", - -12.456789016723633 - ], - [ - "▁strongest", - -12.456826210021973 - ], - [ - "Erlebnis", - -12.456933975219727 - ], - [ - "▁ehemalige", - -12.456933975219727 - ], - [ - "▁Tale", - -12.457234382629395 - ], - [ - "▁Buyer", - -12.457353591918945 - ], - [ - "ück", - -12.457578659057617 - ], - [ - "▁Kommentar", - -12.457720756530762 - ], - [ - "▁Schrift", - -12.457756996154785 - ], - [ - "Design", - -12.457792282104492 - ], - [ - "▁stirring", - -12.457937240600586 - ], - [ - "▁towels", - -12.457987785339355 - ], - [ - "▁$30", - -12.458101272583008 - ], - [ - "sprache", - -12.458279609680176 - ], - [ - "▁Regierung", - -12.458346366882324 - ], - [ - "▁nachhaltig", - -12.458406448364258 - ], - [ - "▁électronique", - -12.458515167236328 - ], - [ - "▁Andrei", - -12.458587646484375 - ], - [ - "because", - -12.458647727966309 - ], - [ - "informatique", - -12.458650588989258 - ], - [ - "IGHT", - -12.4586820602417 - ], - [ - "stepping", - -12.4586820602417 - ], - [ - "▁gris", - -12.458748817443848 - ], - [ - "vious", - -12.458773612976074 - ], - [ - "▁upside", - -12.4591064453125 - ], - [ - "▁Examples", - -12.459108352661133 - ], - [ - "IU", - -12.459110260009766 - ], - [ - "▁princess", - -12.459111213684082 - ], - [ - "spielen", - -12.45921516418457 - ], - [ - "legung", - -12.45950984954834 - ], - [ - "▁reflecting", - -12.4597806930542 - ], - [ - "▁Processing", - -12.459939002990723 - ], - [ - "▁jungle", - -12.460033416748047 - ], - [ - "▁insects", - -12.46006965637207 - ], - [ - "▁Sibiu", - -12.460220336914062 - ], - [ - "160", - -12.460259437561035 - ], - [ - "▁interessante", - -12.460267066955566 - ], - [ - "▁multimedia", - -12.460455894470215 - ], - [ - "essel", - -12.46049690246582 - ], - [ - "/18", - -12.460647583007812 - ], - [ - "nière", - -12.460683822631836 - ], - [ - "ministru", - -12.46072006225586 - ], - [ - "▁implants", - -12.460826873779297 - ], - [ - "▁Settings", - -12.461360931396484 - ], - [ - "▁invaluable", - -12.461432456970215 - ], - [ - "stains", - -12.461448669433594 - ], - [ - "onym", - -12.461518287658691 - ], - [ - "▁searched", - -12.461570739746094 - ], - [ - "▁disappointment", - -12.461628913879395 - ], - [ - "▁Iranian", - -12.461630821228027 - ], - [ - "▁questionnaire", - -12.461630821228027 - ], - [ - "Founder", - -12.46178913116455 - ], - [ - "▁Bericht", - -12.461792945861816 - ], - [ - "▁youngest", - -12.461896896362305 - ], - [ - "▁Automatic", - -12.461956024169922 - ], - [ - "▁plecat", - -12.46203327178955 - ], - [ - "geber", - -12.462119102478027 - ], - [ - "soweit", - -12.462124824523926 - ], - [ - "▁unfold", - -12.462236404418945 - ], - [ - "▁befinden", - -12.462274551391602 - ], - [ - "▁susţin", - -12.462637901306152 - ], - [ - "▁Mack", - -12.462675094604492 - ], - [ - "▁dificil", - -12.462757110595703 - ], - [ - "enseigne", - -12.463038444519043 - ], - [ - "▁vitamine", - -12.463047981262207 - ], - [ - "▁Memory", - -12.463092803955078 - ], - [ - "ripping", - -12.463129043579102 - ], - [ - "drin", - -12.463146209716797 - ], - [ - "3.2", - -12.463278770446777 - ], - [ - "▁verstehen", - -12.463287353515625 - ], - [ - "▁scaun", - -12.46341323852539 - ], - [ - "▁procédure", - -12.46380615234375 - ], - [ - "▁molecules", - -12.463911056518555 - ], - [ - "▁Anzahl", - -12.46391487121582 - ], - [ - "▁yogurt", - -12.464071273803711 - ], - [ - "▁Dominic", - -12.464113235473633 - ], - [ - "▁shocked", - -12.464156150817871 - ], - [ - "▁zilei", - -12.464269638061523 - ], - [ - "▁Heiz", - -12.464412689208984 - ], - [ - "▁Educational", - -12.464571952819824 - ], - [ - "BN", - -12.464577674865723 - ], - [ - "analyzing", - -12.464601516723633 - ], - [ - "hair", - -12.464676856994629 - ], - [ - "spiegel", - -12.464871406555176 - ], - [ - "▁illusion", - -12.464889526367188 - ], - [ - "BG", - -12.46505355834961 - ], - [ - "deductible", - -12.46513557434082 - ], - [ - "▁adj", - -12.4651460647583 - ], - [ - "▁accessory", - -12.465166091918945 - ], - [ - "▁Draw", - -12.465167999267578 - ], - [ - "▁airlines", - -12.46518611907959 - ], - [ - "▁satisfai", - -12.46536636352539 - ], - [ - "▁architects", - -12.465447425842285 - ], - [ - "istische", - -12.465508460998535 - ], - [ - "▁Healthy", - -12.465539932250977 - ], - [ - "großer", - -12.465669631958008 - ], - [ - "▁comunicare", - -12.465764999389648 - ], - [ - "▁Meyer", - -12.46577262878418 - ], - [ - "▁reproduction", - -12.465882301330566 - ], - [ - "▁Manufacturing", - -12.465929985046387 - ], - [ - "immobilier", - -12.465930938720703 - ], - [ - "▁Unterschied", - -12.465958595275879 - ], - [ - "▁cumpara", - -12.466029167175293 - ], - [ - "▁duplicate", - -12.466094017028809 - ], - [ - "▁(16", - -12.466096878051758 - ], - [ - "▁detector", - -12.466279983520508 - ], - [ - "▁observat", - -12.466387748718262 - ], - [ - "▁1965", - -12.466682434082031 - ], - [ - "▁Fantasy", - -12.466728210449219 - ], - [ - "▁brauchen", - -12.466728210449219 - ], - [ - "▁Participants", - -12.466780662536621 - ], - [ - "▁décide", - -12.466817855834961 - ], - [ - "▁kicke", - -12.466819763183594 - ], - [ - "▁SSL", - -12.466885566711426 - ], - [ - "360", - -12.466989517211914 - ], - [ - "Anim", - -12.467019081115723 - ], - [ - "▁cupcake", - -12.467031478881836 - ], - [ - "▁Lamb", - -12.467107772827148 - ], - [ - "▁Sä", - -12.467155456542969 - ], - [ - "ntă", - -12.46738052368164 - ], - [ - "▁Pig", - -12.467421531677246 - ], - [ - "1,000", - -12.467677116394043 - ], - [ - "nhof", - -12.467782020568848 - ], - [ - "▁discret", - -12.467947959899902 - ], - [ - "▁deloc", - -12.467991828918457 - ], - [ - "▁Bücher", - -12.467999458312988 - ], - [ - "chor", - -12.468042373657227 - ], - [ - "course", - -12.468070030212402 - ], - [ - "▁cough", - -12.468076705932617 - ], - [ - "▁erstellt", - -12.468087196350098 - ], - [ - "▁Than", - -12.468097686767578 - ], - [ - "stätte", - -12.46812915802002 - ], - [ - "▁exceptionally", - -12.468162536621094 - ], - [ - "▁semnal", - -12.468186378479004 - ], - [ - "▁Interessen", - -12.468329429626465 - ], - [ - "ле", - -12.468356132507324 - ], - [ - "xx", - -12.468402862548828 - ], - [ - "▁Veterans", - -12.468422889709473 - ], - [ - "▁Kreuz", - -12.468683242797852 - ], - [ - "▁Nachricht", - -12.468701362609863 - ], - [ - "treated", - -12.468894004821777 - ], - [ - "▁tide", - -12.469230651855469 - ], - [ - "▁nonetheless", - -12.469390869140625 - ], - [ - "▁Subject", - -12.469439506530762 - ], - [ - "▁Stau", - -12.469440460205078 - ], - [ - "▁stickers", - -12.469463348388672 - ], - [ - "Alp", - -12.46950912475586 - ], - [ - "▁flagship", - -12.469541549682617 - ], - [ - "▁trimite", - -12.469619750976562 - ], - [ - "▁polyester", - -12.469664573669434 - ], - [ - "▁locui", - -12.469671249389648 - ], - [ - "▁chili", - -12.46968936920166 - ], - [ - "▁Browser", - -12.469808578491211 - ], - [ - "sieg", - -12.469809532165527 - ], - [ - "▁Arabic", - -12.469876289367676 - ], - [ - "blich", - -12.47001838684082 - ], - [ - "▁wunderbar", - -12.470090866088867 - ], - [ - "▁furnishings", - -12.470210075378418 - ], - [ - "rtie", - -12.470243453979492 - ], - [ - "8.5", - -12.470742225646973 - ], - [ - "▁Sponsor", - -12.471016883850098 - ], - [ - "▁glitter", - -12.471280097961426 - ], - [ - "▁piaț", - -12.471402168273926 - ], - [ - "▁interviewed", - -12.471519470214844 - ], - [ - "▁Statistics", - -12.471529006958008 - ], - [ - "▁cerc", - -12.47154712677002 - ], - [ - "augmentation", - -12.47155475616455 - ], - [ - "▁Navi", - -12.471558570861816 - ], - [ - "▁Begriff", - -12.47156047821045 - ], - [ - "▁știu", - -12.471596717834473 - ], - [ - "▁unabhängig", - -12.471778869628906 - ], - [ - "▁könnten", - -12.471978187561035 - ], - [ - "▁travaille", - -12.472000122070312 - ], - [ - "▁companie", - -12.472027778625488 - ], - [ - "▁Scientific", - -12.472061157226562 - ], - [ - "▁Outlook", - -12.472091674804688 - ], - [ - "▁fairy", - -12.472158432006836 - ], - [ - "zam", - -12.472282409667969 - ], - [ - "bak", - -12.472448348999023 - ], - [ - "▁Traffic", - -12.472596168518066 - ], - [ - "gerät", - -12.472671508789062 - ], - [ - "▁freezing", - -12.472701072692871 - ], - [ - "▁broadband", - -12.4727201461792 - ], - [ - "110", - -12.47279167175293 - ], - [ - "▁revenu", - -12.472887992858887 - ], - [ - "listed", - -12.472900390625 - ], - [ - "▁Rico", - -12.472941398620605 - ], - [ - "Laure", - -12.472990036010742 - ], - [ - "ATA", - -12.473112106323242 - ], - [ - "▁participer", - -12.47313117980957 - ], - [ - "▁sponsorship", - -12.473235130310059 - ], - [ - "▁distress", - -12.473286628723145 - ], - [ - "▁Brisbane", - -12.47339916229248 - ], - [ - "schönen", - -12.473437309265137 - ], - [ - "▁fizice", - -12.473465919494629 - ], - [ - "▁Political", - -12.47362232208252 - ], - [ - "uhr", - -12.473657608032227 - ], - [ - "▁procedura", - -12.473713874816895 - ], - [ - "▁hervor", - -12.473770141601562 - ], - [ - "melted", - -12.473776817321777 - ], - [ - "▁Emp", - -12.47384262084961 - ], - [ - "▁Ernährung", - -12.4739351272583 - ], - [ - "▁Pendant", - -12.473944664001465 - ], - [ - "▁recipients", - -12.474047660827637 - ], - [ - "Claude", - -12.474133491516113 - ], - [ - "▁regimen", - -12.47415828704834 - ], - [ - "expo", - -12.474346160888672 - ], - [ - "adevăr", - -12.47437858581543 - ], - [ - "▁critically", - -12.474440574645996 - ], - [ - "▁grabbe", - -12.474468231201172 - ], - [ - "▁Kann", - -12.474474906921387 - ], - [ - "▁directeur", - -12.474613189697266 - ], - [ - "gator", - -12.474908828735352 - ], - [ - "problem", - -12.474910736083984 - ], - [ - "scribe", - -12.474913597106934 - ], - [ - "▁exig", - -12.474920272827148 - ], - [ - "Tri", - -12.474969863891602 - ], - [ - "▁aqua", - -12.475631713867188 - ], - [ - "appréci", - -12.47569465637207 - ], - [ - "▁viaţă", - -12.47571849822998 - ], - [ - "▁dominate", - -12.475865364074707 - ], - [ - "disc", - -12.475889205932617 - ], - [ - "▁conseiller", - -12.47603988647461 - ], - [ - "▁shuttle", - -12.476180076599121 - ], - [ - "▁Status", - -12.47623062133789 - ], - [ - "▁ausreichend", - -12.476371765136719 - ], - [ - "▁spät", - -12.476411819458008 - ], - [ - "▁remainder", - -12.476417541503906 - ], - [ - "wett", - -12.476430892944336 - ], - [ - "schlossen", - -12.476491928100586 - ], - [ - "PAC", - -12.476505279541016 - ], - [ - "▁suprafata", - -12.476617813110352 - ], - [ - "5.000", - -12.476673126220703 - ], - [ - "supplying", - -12.47673225402832 - ], - [ - "▁uniquely", - -12.476905822753906 - ], - [ - "▁retard", - -12.476929664611816 - ], - [ - "▁Bang", - -12.477006912231445 - ], - [ - "ieuse", - -12.477087020874023 - ], - [ - "▁Ted", - -12.477248191833496 - ], - [ - "▁ermöglichen", - -12.47732925415039 - ], - [ - "▁builders", - -12.477380752563477 - ], - [ - "▁proximité", - -12.477423667907715 - ], - [ - "▁unforgettable", - -12.477423667907715 - ], - [ - "256", - -12.477446556091309 - ], - [ - "fähigkeit", - -12.477550506591797 - ], - [ - "▁procurement", - -12.477561950683594 - ], - [ - "▁Gewicht", - -12.477693557739258 - ], - [ - "▁potentiel", - -12.47778606414795 - ], - [ - "▁topping", - -12.478300094604492 - ], - [ - "▁canada", - -12.478304862976074 - ], - [ - "▁Destin", - -12.478355407714844 - ], - [ - "▁Knowing", - -12.478411674499512 - ], - [ - "▁retained", - -12.478426933288574 - ], - [ - "▁zinc", - -12.478470802307129 - ], - [ - "▁worrying", - -12.478655815124512 - ], - [ - "faţa", - -12.478676795959473 - ], - [ - "▁initi", - -12.478837966918945 - ], - [ - "ORI", - -12.4788818359375 - ], - [ - "▁refuz", - -12.478921890258789 - ], - [ - "bruch", - -12.479202270507812 - ], - [ - "▁impun", - -12.479233741760254 - ], - [ - "▁persoană", - -12.479308128356934 - ], - [ - "EAR", - -12.479347229003906 - ], - [ - "bedarf", - -12.479368209838867 - ], - [ - "▁Gebiet", - -12.47940731048584 - ], - [ - "▁Roof", - -12.479436874389648 - ], - [ - "▁negligence", - -12.47957706451416 - ], - [ - "security", - -12.479618072509766 - ], - [ - "▁accesorii", - -12.479641914367676 - ], - [ - "▁unclear", - -12.479667663574219 - ], - [ - "▁securitate", - -12.479848861694336 - ], - [ - "▁spotlight", - -12.479896545410156 - ], - [ - "▁speziell", - -12.479923248291016 - ], - [ - "▁mentally", - -12.479942321777344 - ], - [ - "▁preservation", - -12.48011589050293 - ], - [ - "▁Promotion", - -12.480156898498535 - ], - [ - "partnered", - -12.480274200439453 - ], - [ - "▁Hinter", - -12.48031997680664 - ], - [ - "▁punishment", - -12.480359077453613 - ], - [ - "▁grease", - -12.480713844299316 - ], - [ - "▁NW", - -12.480714797973633 - ], - [ - "▁curse", - -12.480897903442383 - ], - [ - "ckle", - -12.48101806640625 - ], - [ - "▁Hire", - -12.481043815612793 - ], - [ - "▁Whole", - -12.481088638305664 - ], - [ - "▁basse", - -12.481289863586426 - ], - [ - "▁DNS", - -12.481427192687988 - ], - [ - "flamm", - -12.481560707092285 - ], - [ - "▁scoop", - -12.481574058532715 - ], - [ - "Norm", - -12.481663703918457 - ], - [ - "▁Surgery", - -12.481735229492188 - ], - [ - "▁widget", - -12.481741905212402 - ], - [ - "connected", - -12.481863021850586 - ], - [ - "autorité", - -12.481961250305176 - ], - [ - "▁utilis", - -12.482096672058105 - ], - [ - "▁formă", - -12.482185363769531 - ], - [ - "▁clearing", - -12.482307434082031 - ], - [ - "▁jumătate", - -12.482815742492676 - ], - [ - "größe", - -12.482831954956055 - ], - [ - "▁Tief", - -12.482852935791016 - ], - [ - "épi", - -12.482939720153809 - ], - [ - "zunehmen", - -12.483174324035645 - ], - [ - "▁touchdown", - -12.48318099975586 - ], - [ - "▁scholarships", - -12.483236312866211 - ], - [ - "▁dementia", - -12.483319282531738 - ], - [ - "▁Jeder", - -12.48333740234375 - ], - [ - "▁nightmare", - -12.483379364013672 - ], - [ - "▁Raw", - -12.48342514038086 - ], - [ - "absorbed", - -12.483468055725098 - ], - [ - "lohnt", - -12.483484268188477 - ], - [ - "quent", - -12.483580589294434 - ], - [ - "interest", - -12.483626365661621 - ], - [ - "OSS", - -12.483649253845215 - ], - [ - "▁Leaf", - -12.483667373657227 - ], - [ - "▁timeless", - -12.48381519317627 - ], - [ - "DY", - -12.483865737915039 - ], - [ - "▁Remote", - -12.483907699584961 - ], - [ - "chner", - -12.483938217163086 - ], - [ - "▁Pam", - -12.484014511108398 - ], - [ - "urban", - -12.484060287475586 - ], - [ - "во", - -12.484146118164062 - ], - [ - "▁Kunde", - -12.484166145324707 - ], - [ - "▁Laptop", - -12.484169006347656 - ], - [ - "finder", - -12.484336853027344 - ], - [ - "▁Pole", - -12.484567642211914 - ], - [ - "2.8", - -12.484588623046875 - ], - [ - "finished", - -12.484670639038086 - ], - [ - "▁prophet", - -12.484697341918945 - ], - [ - "mailed", - -12.484758377075195 - ], - [ - "2-0", - -12.4849214553833 - ], - [ - "▁disciples", - -12.484949111938477 - ], - [ - "▁intriguing", - -12.484980583190918 - ], - [ - "IRA", - -12.485033988952637 - ], - [ - "petit", - -12.485077857971191 - ], - [ - "▁Membership", - -12.485097885131836 - ], - [ - "▁provincial", - -12.485177040100098 - ], - [ - "▁Prüfung", - -12.485292434692383 - ], - [ - "-50", - -12.485450744628906 - ], - [ - "▁cryptocurrency", - -12.485522270202637 - ], - [ - "▁journalism", - -12.485536575317383 - ], - [ - "▁Downtown", - -12.485593795776367 - ], - [ - "inserted", - -12.485655784606934 - ], - [ - "▁Direction", - -12.485718727111816 - ], - [ - "lipid", - -12.485732078552246 - ], - [ - "▁Sebastian", - -12.485793113708496 - ], - [ - "fordert", - -12.48591136932373 - ], - [ - "Originally", - -12.485989570617676 - ], - [ - "tipp", - -12.486048698425293 - ], - [ - "verantwortlich", - -12.486064910888672 - ], - [ - "▁wheelchair", - -12.486085891723633 - ], - [ - "▁structura", - -12.48609733581543 - ], - [ - "▁Danny", - -12.486138343811035 - ], - [ - "999", - -12.486284255981445 - ], - [ - "▁Schiff", - -12.486380577087402 - ], - [ - "formally", - -12.486408233642578 - ], - [ - "focused", - -12.486428260803223 - ], - [ - "▁Vater", - -12.486478805541992 - ], - [ - "▁Dear", - -12.486599922180176 - ], - [ - "▁reinforce", - -12.486794471740723 - ], - [ - "proprietar", - -12.48690414428711 - ], - [ - "▁Kyle", - -12.487004280090332 - ], - [ - "În", - -12.487015724182129 - ], - [ - "▁servir", - -12.487268447875977 - ], - [ - "length", - -12.48730754852295 - ], - [ - "▁showroom", - -12.48735237121582 - ], - [ - "reli", - -12.487473487854004 - ], - [ - "▁Brü", - -12.487529754638672 - ], - [ - "▁Schle", - -12.487634658813477 - ], - [ - "▁profond", - -12.487773895263672 - ], - [ - "▁Superior", - -12.487826347351074 - ], - [ - "▁lifted", - -12.487844467163086 - ], - [ - "highlighting", - -12.487850189208984 - ], - [ - "▁Connection", - -12.48793888092041 - ], - [ - "▁similarly", - -12.487998962402344 - ], - [ - "▁diferit", - -12.488005638122559 - ], - [ - "▁sweater", - -12.488014221191406 - ], - [ - "État", - -12.48803997039795 - ], - [ - "rooted", - -12.488069534301758 - ], - [ - "▁sleeves", - -12.488236427307129 - ], - [ - "де", - -12.488264083862305 - ], - [ - "▁Laboratory", - -12.488265991210938 - ], - [ - "ündig", - -12.488719940185547 - ], - [ - "▁Viking", - -12.488741874694824 - ], - [ - "▁Origin", - -12.48878002166748 - ], - [ - "▁vibr", - -12.488812446594238 - ], - [ - "199", - -12.488974571228027 - ], - [ - "▁yummy", - -12.489001274108887 - ], - [ - "STAR", - -12.489140510559082 - ], - [ - "▁repro", - -12.489152908325195 - ], - [ - "▁Kirchen", - -12.489229202270508 - ], - [ - "hopper", - -12.48925495147705 - ], - [ - "zza", - -12.489335060119629 - ], - [ - "▁vitesse", - -12.48934555053711 - ], - [ - "▁minimalist", - -12.489412307739258 - ], - [ - "▁Election", - -12.489420890808105 - ], - [ - "draw", - -12.489501953125 - ], - [ - "▁candles", - -12.48959732055664 - ], - [ - "▁Mund", - -12.489615440368652 - ], - [ - "urged", - -12.489901542663574 - ], - [ - "▁cânt", - -12.489917755126953 - ], - [ - "Ultimately", - -12.49002742767334 - ], - [ - "▁Lift", - -12.490124702453613 - ], - [ - "loaded", - -12.490334510803223 - ], - [ - "demand", - -12.490508079528809 - ], - [ - "▁aleg", - -12.490621566772461 - ], - [ - "▁Discovery", - -12.490755081176758 - ], - [ - "▁Vienna", - -12.490960121154785 - ], - [ - "▁Kategorie", - -12.490961074829102 - ], - [ - "▁Cotton", - -12.490962028503418 - ], - [ - "▁$200", - -12.491043090820312 - ], - [ - "▁Drei", - -12.491052627563477 - ], - [ - "▁reicht", - -12.491168975830078 - ], - [ - "speicher", - -12.491231918334961 - ], - [ - "▁Immobilien", - -12.491483688354492 - ], - [ - "gefühl", - -12.491509437561035 - ], - [ - "make", - -12.491525650024414 - ], - [ - "pell", - -12.49155044555664 - ], - [ - "▁dull", - -12.491598129272461 - ], - [ - "▁arbeitet", - -12.491681098937988 - ], - [ - "retaining", - -12.491700172424316 - ], - [ - "losen", - -12.491707801818848 - ], - [ - "match", - -12.491876602172852 - ], - [ - "-60", - -12.491880416870117 - ], - [ - "▁ecological", - -12.492000579833984 - ], - [ - "▁vend", - -12.492051124572754 - ], - [ - "▁grammar", - -12.492061614990234 - ], - [ - "▁1:1", - -12.492225646972656 - ], - [ - "grilled", - -12.492279052734375 - ], - [ - "geordnet", - -12.492321014404297 - ], - [ - "▁Pav", - -12.49236011505127 - ], - [ - "▁Depot", - -12.492368698120117 - ], - [ - "▁Walking", - -12.492372512817383 - ], - [ - "teamed", - -12.492402076721191 - ], - [ - "▁torque", - -12.492537498474121 - ], - [ - "▁Venture", - -12.492659568786621 - ], - [ - "▁beginner", - -12.49269962310791 - ], - [ - "▁Monaten", - -12.492712020874023 - ], - [ - "▁Pune", - -12.493054389953613 - ], - [ - "connect", - -12.493075370788574 - ], - [ - "▁textbook", - -12.493132591247559 - ], - [ - "▁unprecedented", - -12.49314022064209 - ], - [ - "▁implied", - -12.493168830871582 - ], - [ - "▁cubic", - -12.493668556213379 - ], - [ - "enthält", - -12.493696212768555 - ], - [ - "▁Brenn", - -12.49388313293457 - ], - [ - "▁Expect", - -12.49394416809082 - ], - [ - "▁lever", - -12.4939603805542 - ], - [ - "veux", - -12.49399185180664 - ], - [ - "▁Claire", - -12.494112968444824 - ], - [ - "Acc", - -12.49432373046875 - ], - [ - "▁Typ", - -12.494478225708008 - ], - [ - "▁smoothie", - -12.494501113891602 - ], - [ - "▁Idaho", - -12.494780540466309 - ], - [ - "▁spati", - -12.494802474975586 - ], - [ - "▁bénéficier", - -12.49488353729248 - ], - [ - "▁Kle", - -12.495161056518555 - ], - [ - "▁serviciilor", - -12.495169639587402 - ], - [ - "▁prohibit", - -12.495267868041992 - ], - [ - "EAD", - -12.495417594909668 - ], - [ - "▁Turner", - -12.495418548583984 - ], - [ - "▁elibera", - -12.49543571472168 - ], - [ - "▁payday", - -12.495464324951172 - ], - [ - "▁prolong", - -12.495466232299805 - ], - [ - "▁sued", - -12.495481491088867 - ], - [ - "▁Devil", - -12.495536804199219 - ], - [ - "▁Skills", - -12.495552062988281 - ], - [ - "▁Marcel", - -12.495553970336914 - ], - [ - "▁silhouette", - -12.495601654052734 - ], - [ - "▁preț", - -12.495742797851562 - ], - [ - "▁Gö", - -12.495747566223145 - ], - [ - "▁Creator", - -12.495774269104004 - ], - [ - "fed", - -12.4959077835083 - ], - [ - "Cap", - -12.495997428894043 - ], - [ - "▁dedicate", - -12.496042251586914 - ], - [ - "0000", - -12.496124267578125 - ], - [ - "▁VAT", - -12.496259689331055 - ], - [ - "▁Firefox", - -12.496443748474121 - ], - [ - "▁therapies", - -12.496477127075195 - ], - [ - "▁screws", - -12.496662139892578 - ], - [ - "▁Province", - -12.496697425842285 - ], - [ - "▁problematic", - -12.496871948242188 - ], - [ - "▁Vid", - -12.496915817260742 - ], - [ - "▁Lost", - -12.496950149536133 - ], - [ - "▁elegance", - -12.497520446777344 - ], - [ - "▁Elegant", - -12.497525215148926 - ], - [ - "ignant", - -12.497573852539062 - ], - [ - "▁darin", - -12.497649192810059 - ], - [ - "▁anonym", - -12.497669219970703 - ], - [ - "▁vegeta", - -12.49767780303955 - ], - [ - "incoming", - -12.497762680053711 - ], - [ - "▁pills", - -12.497846603393555 - ], - [ - "governing", - -12.497893333435059 - ], - [ - "▁Haven", - -12.497920989990234 - ], - [ - "paper", - -12.497947692871094 - ], - [ - "räume", - -12.497979164123535 - ], - [ - "paw", - -12.498099327087402 - ], - [ - "▁spelling", - -12.498283386230469 - ], - [ - "ambele", - -12.498318672180176 - ], - [ - "▁reprezentat", - -12.498371124267578 - ], - [ - "▁mâ", - -12.49853515625 - ], - [ - "wirtschaftliche", - -12.498558044433594 - ], - [ - "▁valabil", - -12.498579025268555 - ], - [ - "▁konkret", - -12.498618125915527 - ], - [ - "▁financier", - -12.498619079589844 - ], - [ - "▁irre", - -12.499135971069336 - ], - [ - "▁Silicon", - -12.499171257019043 - ], - [ - "Viv", - -12.499181747436523 - ], - [ - "▁viruses", - -12.49927043914795 - ], - [ - "▁CNN", - -12.499324798583984 - ], - [ - "▁erleben", - -12.499482154846191 - ], - [ - "gina", - -12.499492645263672 - ], - [ - "punctul", - -12.49951457977295 - ], - [ - "▁Sfânt", - -12.499753952026367 - ], - [ - "▁Manage", - -12.499811172485352 - ], - [ - "▁payable", - -12.499984741210938 - ], - [ - "▁practitioner", - -12.500143051147461 - ], - [ - "▁conférence", - -12.50026798248291 - ], - [ - "▁drought", - -12.50027084350586 - ], - [ - "▁devote", - -12.500361442565918 - ], - [ - "wertung", - -12.500420570373535 - ], - [ - "stabil", - -12.5004301071167 - ], - [ - "▁balcon", - -12.500553131103516 - ], - [ - "▁Lebensmittel", - -12.500603675842285 - ], - [ - "COL", - -12.500950813293457 - ], - [ - "▁Domnul", - -12.501093864440918 - ], - [ - "carved", - -12.501359939575195 - ], - [ - "▁preparat", - -12.5014009475708 - ], - [ - "101", - -12.501537322998047 - ], - [ - "▁specimen", - -12.501580238342285 - ], - [ - "urgeon", - -12.501596450805664 - ], - [ - "LIC", - -12.50163459777832 - ], - [ - "Plattform", - -12.501643180847168 - ], - [ - "▁ramas", - -12.501739501953125 - ], - [ - "▁copilului", - -12.501791954040527 - ], - [ - "bacter", - -12.501812934875488 - ], - [ - "körper", - -12.501940727233887 - ], - [ - "▁Kru", - -12.501981735229492 - ], - [ - "▁Employ", - -12.502055168151855 - ], - [ - "office", - -12.502080917358398 - ], - [ - "▁simmer", - -12.502120018005371 - ], - [ - "qualität", - -12.502137184143066 - ], - [ - "▁freshly", - -12.502215385437012 - ], - [ - "▁Nine", - -12.50223159790039 - ], - [ - "▁tonnes", - -12.50223445892334 - ], - [ - "boden", - -12.502236366271973 - ], - [ - "enquête", - -12.50240707397461 - ], - [ - "▁Colour", - -12.502481460571289 - ], - [ - "▁Diagram", - -12.502495765686035 - ], - [ - "▁gewählt", - -12.502516746520996 - ], - [ - "▁viitoare", - -12.502538681030273 - ], - [ - "▁reporters", - -12.502913475036621 - ], - [ - "guer", - -12.502991676330566 - ], - [ - "▁Kombination", - -12.503021240234375 - ], - [ - "▁qualitative", - -12.50302505493164 - ], - [ - "Centrul", - -12.503131866455078 - ], - [ - "avy", - -12.503170013427734 - ], - [ - "▁Eng", - -12.503175735473633 - ], - [ - "▁sufletul", - -12.50327205657959 - ], - [ - "▁germ", - -12.503412246704102 - ], - [ - "▁prevented", - -12.503448486328125 - ], - [ - "appelle", - -12.503533363342285 - ], - [ - "gins", - -12.503556251525879 - ], - [ - "▁Skype", - -12.503585815429688 - ], - [ - "conditioned", - -12.503617286682129 - ], - [ - "▁clutch", - -12.503641128540039 - ], - [ - "environ", - -12.503694534301758 - ], - [ - "3.3", - -12.503774642944336 - ], - [ - "▁webinar", - -12.503866195678711 - ], - [ - "▁forty", - -12.504104614257812 - ], - [ - "▁Medicaid", - -12.504127502441406 - ], - [ - "▁dismissed", - -12.504167556762695 - ], - [ - "▁siblings", - -12.504168510437012 - ], - [ - "▁Jaw", - -12.504196166992188 - ], - [ - "guiding", - -12.504220962524414 - ], - [ - "cigarette", - -12.504374504089355 - ], - [ - "▁Shah", - -12.504681587219238 - ], - [ - "▁Lehrer", - -12.504684448242188 - ], - [ - "▁muscular", - -12.504694938659668 - ], - [ - "spatele", - -12.504796981811523 - ], - [ - "▁réduction", - -12.504836082458496 - ], - [ - "▁fixes", - -12.504851341247559 - ], - [ - "Span", - -12.50511646270752 - ], - [ - "▁Hudson", - -12.505231857299805 - ], - [ - "development", - -12.505250930786133 - ], - [ - "▁excluded", - -12.50525951385498 - ], - [ - "Democrat", - -12.505260467529297 - ], - [ - "▁nominal", - -12.505317687988281 - ], - [ - "purpose", - -12.50540828704834 - ], - [ - "▁bored", - -12.505500793457031 - ], - [ - "espèce", - -12.50550651550293 - ], - [ - "▁(30", - -12.5055570602417 - ], - [ - "Neither", - -12.505608558654785 - ], - [ - "hänge", - -12.505610466003418 - ], - [ - "square", - -12.505728721618652 - ], - [ - "voller", - -12.505736351013184 - ], - [ - "▁pertinent", - -12.505783081054688 - ], - [ - "▁Wool", - -12.50595474243164 - ], - [ - "settling", - -12.50607681274414 - ], - [ - "fangen", - -12.506148338317871 - ], - [ - "▁Testing", - -12.506152153015137 - ], - [ - "distin", - -12.506196022033691 - ], - [ - "▁Marken", - -12.506227493286133 - ], - [ - "▁Beta", - -12.506300926208496 - ], - [ - "▁fulfilling", - -12.506339073181152 - ], - [ - "Leider", - -12.506357192993164 - ], - [ - "black", - -12.506389617919922 - ], - [ - "occupe", - -12.50658893585205 - ], - [ - "itățile", - -12.506688117980957 - ], - [ - "Pay", - -12.506887435913086 - ], - [ - "▁bandwidth", - -12.506890296936035 - ], - [ - "▁neighbourhood", - -12.506918907165527 - ], - [ - "▁Gutschein", - -12.506922721862793 - ], - [ - "degree", - -12.507055282592773 - ], - [ - "ivité", - -12.507116317749023 - ], - [ - "4.1", - -12.507169723510742 - ], - [ - "▁tätig", - -12.507170677185059 - ], - [ - "topic", - -12.507242202758789 - ], - [ - "ätz", - -12.507243156433105 - ], - [ - "these", - -12.50733470916748 - ], - [ - "▁propriété", - -12.507438659667969 - ], - [ - "▁innings", - -12.507458686828613 - ], - [ - "▁Prevention", - -12.50754165649414 - ], - [ - "▁Saw", - -12.507585525512695 - ], - [ - "▁opener", - -12.507752418518066 - ], - [ - "entwicklung", - -12.507824897766113 - ], - [ - "▁Johann", - -12.507865905761719 - ], - [ - "▁statistic", - -12.507881164550781 - ], - [ - "oids", - -12.507966995239258 - ], - [ - "▁Delaware", - -12.508000373840332 - ], - [ - "▁Isle", - -12.508001327514648 - ], - [ - "▁accompagn", - -12.508028984069824 - ], - [ - "▁Risiko", - -12.508079528808594 - ], - [ - "▁Conform", - -12.508268356323242 - ], - [ - "zeichnen", - -12.508395195007324 - ], - [ - "▁acuz", - -12.508479118347168 - ], - [ - "▁Mort", - -12.508524894714355 - ], - [ - "Fällen", - -12.50853157043457 - ], - [ - "▁blended", - -12.50871467590332 - ], - [ - "found", - -12.50872802734375 - ], - [ - "▁gestalten", - -12.50874137878418 - ], - [ - "▁Découvrez", - -12.508830070495605 - ], - [ - "▁Wett", - -12.508956909179688 - ], - [ - "▁débat", - -12.508990287780762 - ], - [ - "▁Tire", - -12.509007453918457 - ], - [ - "benz", - -12.509037017822266 - ], - [ - "Yes", - -12.509074211120605 - ], - [ - "▁pierde", - -12.509110450744629 - ], - [ - "▁niciodata", - -12.509121894836426 - ], - [ - "▁precipit", - -12.509145736694336 - ], - [ - "▁lazy", - -12.509334564208984 - ], - [ - "▁creature", - -12.509370803833008 - ], - [ - "Wettbewerb", - -12.509385108947754 - ], - [ - "▁Explo", - -12.509496688842773 - ], - [ - "wolf", - -12.509657859802246 - ], - [ - "▁conséquence", - -12.509662628173828 - ], - [ - "▁jewellery", - -12.509662628173828 - ], - [ - "▁Extension", - -12.509735107421875 - ], - [ - "▁transmitted", - -12.509872436523438 - ], - [ - "▁darker", - -12.509973526000977 - ], - [ - "▁simbol", - -12.510065078735352 - ], - [ - "kim", - -12.510069847106934 - ], - [ - "▁proteja", - -12.510098457336426 - ], - [ - "▁Copper", - -12.510189056396484 - ], - [ - "mitglied", - -12.510218620300293 - ], - [ - "▁explosive", - -12.510222434997559 - ], - [ - "▁Nicolae", - -12.510223388671875 - ], - [ - "▁intricate", - -12.510231971740723 - ], - [ - "lati", - -12.510313034057617 - ], - [ - "Mark", - -12.510334014892578 - ], - [ - "▁Porsche", - -12.510339736938477 - ], - [ - "▁Revenue", - -12.510479927062988 - ], - [ - "4.2", - -12.510613441467285 - ], - [ - "certain", - -12.510836601257324 - ], - [ - "▁Coaching", - -12.510879516601562 - ], - [ - "▁allocated", - -12.510879516601562 - ], - [ - "▁optimiz", - -12.511017799377441 - ], - [ - "▁heel", - -12.511205673217773 - ], - [ - "▁indigenous", - -12.511330604553223 - ], - [ - "▁vineri", - -12.511396408081055 - ], - [ - "▁Inspector", - -12.51145076751709 - ], - [ - "▁colleague", - -12.5115327835083 - ], - [ - "ANG", - -12.511649131774902 - ], - [ - "éducation", - -12.511887550354004 - ], - [ - "▁Geschenk", - -12.51188850402832 - ], - [ - "channel", - -12.511899948120117 - ], - [ - "▁trapped", - -12.511954307556152 - ], - [ - "BF", - -12.511974334716797 - ], - [ - "▁firing", - -12.512086868286133 - ], - [ - "▁chlor", - -12.512103080749512 - ], - [ - "▁Carlos", - -12.512115478515625 - ], - [ - "▁proxy", - -12.512128829956055 - ], - [ - "▁pinch", - -12.512167930603027 - ], - [ - "▁Pete", - -12.512201309204102 - ], - [ - "phospho", - -12.512458801269531 - ], - [ - "▁waiver", - -12.51246452331543 - ], - [ - "▁Croatia", - -12.512480735778809 - ], - [ - "▁behave", - -12.51258373260498 - ], - [ - "▁frig", - -12.512676239013672 - ], - [ - "▁Vorteil", - -12.51279067993164 - ], - [ - "▁wichtiger", - -12.512837409973145 - ], - [ - "........", - -12.512929916381836 - ], - [ - "▁flick", - -12.513007164001465 - ], - [ - "▁Stanford", - -12.51306438446045 - ], - [ - "öse", - -12.513096809387207 - ], - [ - "▁Fernseh", - -12.513099670410156 - ], - [ - "▁vélo", - -12.51322078704834 - ], - [ - "reisen", - -12.513304710388184 - ], - [ - "residing", - -12.513504981994629 - ], - [ - "▁Taste", - -12.513580322265625 - ], - [ - "▁disappeared", - -12.513630867004395 - ], - [ - "▁Hood", - -12.513776779174805 - ], - [ - "▁fabriqu", - -12.514046669006348 - ], - [ - "▁Jake", - -12.514470100402832 - ], - [ - "Lastly", - -12.51462173461914 - ], - [ - "▁furnace", - -12.514673233032227 - ], - [ - "▁Ottawa", - -12.51473331451416 - ], - [ - "▁dictate", - -12.514742851257324 - ], - [ - "zece", - -12.514817237854004 - ], - [ - "protect", - -12.514932632446289 - ], - [ - "FU", - -12.51495361328125 - ], - [ - "Stack", - -12.514954566955566 - ], - [ - "▁teilweise", - -12.515018463134766 - ], - [ - "▁Publisher", - -12.51506233215332 - ], - [ - "▁lutte", - -12.515159606933594 - ], - [ - "202", - -12.515178680419922 - ], - [ - "psy", - -12.515190124511719 - ], - [ - "▁wünschen", - -12.515238761901855 - ], - [ - "▁pathways", - -12.515356063842773 - ], - [ - "ivitate", - -12.515559196472168 - ], - [ - "▁continuă", - -12.515658378601074 - ], - [ - "ziemlich", - -12.515791893005371 - ], - [ - "verted", - -12.515812873840332 - ], - [ - "▁sequel", - -12.515839576721191 - ], - [ - "tinct", - -12.51599407196045 - ], - [ - "vette", - -12.516020774841309 - ], - [ - "▁exceeding", - -12.516032218933105 - ], - [ - "▁Yorkshire", - -12.51607608795166 - ], - [ - "▁cleanse", - -12.51613998413086 - ], - [ - "Sadly", - -12.516159057617188 - ], - [ - "▁präsentiert", - -12.516164779663086 - ], - [ - "angled", - -12.516311645507812 - ], - [ - "tude", - -12.516339302062988 - ], - [ - "chain", - -12.516371726989746 - ], - [ - "▁Oakland", - -12.51639175415039 - ], - [ - "xia", - -12.516514778137207 - ], - [ - "▁foremost", - -12.51653003692627 - ], - [ - "▁incomplete", - -12.516786575317383 - ], - [ - "▁restriction", - -12.516905784606934 - ], - [ - "▁whatsoever", - -12.516908645629883 - ], - [ - "▁shipment", - -12.517017364501953 - ], - [ - "**", - -12.517059326171875 - ], - [ - "Aici", - -12.517110824584961 - ], - [ - "PART", - -12.517247200012207 - ], - [ - "▁grams", - -12.517251014709473 - ], - [ - "▁Folk", - -12.517457008361816 - ], - [ - "▁encryption", - -12.517467498779297 - ], - [ - "▁Alfred", - -12.517748832702637 - ], - [ - "▁Veränderung", - -12.517749786376953 - ], - [ - "▁privately", - -12.517817497253418 - ], - [ - "£", - -12.517909049987793 - ], - [ - "▁Sonne", - -12.51799201965332 - ], - [ - "kow", - -12.518117904663086 - ], - [ - "▁CBS", - -12.518172264099121 - ], - [ - "▁Feuer", - -12.518198013305664 - ], - [ - "▁crushed", - -12.518230438232422 - ], - [ - "▁cazare", - -12.518270492553711 - ], - [ - "▁beraten", - -12.518401145935059 - ], - [ - "envoi", - -12.518423080444336 - ], - [ - "▁genannt", - -12.51843547821045 - ], - [ - "▁Lok", - -12.518472671508789 - ], - [ - "nox", - -12.518569946289062 - ], - [ - "wishing", - -12.518759727478027 - ], - [ - "▁freak", - -12.518759727478027 - ], - [ - "rasi", - -12.51879596710205 - ], - [ - "▁calculations", - -12.518888473510742 - ], - [ - "▁sprechen", - -12.51890754699707 - ], - [ - "5:00", - -12.519062042236328 - ], - [ - "▁Gam", - -12.519074440002441 - ], - [ - "▁invasion", - -12.519159317016602 - ], - [ - "ZA", - -12.519230842590332 - ], - [ - "aiming", - -12.519327163696289 - ], - [ - "▁näher", - -12.519404411315918 - ], - [ - "▁Maßnahmen", - -12.519433975219727 - ], - [ - "▁măsură", - -12.519490242004395 - ], - [ - "▁Bestellung", - -12.519610404968262 - ], - [ - "▁gown", - -12.519665718078613 - ], - [ - "▁oblige", - -12.519747734069824 - ], - [ - "länder", - -12.51977825164795 - ], - [ - "posi", - -12.519853591918945 - ], - [ - "▁Earn", - -12.51988410949707 - ], - [ - "▁dubl", - -12.51999282836914 - ], - [ - "▁sticky", - -12.520100593566895 - ], - [ - "▁litter", - -12.520181655883789 - ], - [ - "▁Salz", - -12.520257949829102 - ], - [ - "▁Matter", - -12.520272254943848 - ], - [ - "▁Driving", - -12.520275115966797 - ], - [ - "▁pursu", - -12.520285606384277 - ], - [ - "ographer", - -12.520390510559082 - ], - [ - "▁touring", - -12.520400047302246 - ], - [ - "opter", - -12.520444869995117 - ], - [ - "▁fierce", - -12.520475387573242 - ], - [ - "▁Audit", - -12.520480155944824 - ], - [ - "▁imperi", - -12.520755767822266 - ], - [ - "▁positiv", - -12.520780563354492 - ], - [ - "règles", - -12.520849227905273 - ], - [ - "▁bouton", - -12.520990371704102 - ], - [ - "▁victorie", - -12.520990371704102 - ], - [ - "▁manuel", - -12.521015167236328 - ], - [ - "▁await", - -12.52103042602539 - ], - [ - "▁transformer", - -12.521041870117188 - ], - [ - "▁cupboard", - -12.52108383178711 - ], - [ - "▁Hag", - -12.521117210388184 - ], - [ - "naj", - -12.521214485168457 - ], - [ - "▁annoncé", - -12.52139663696289 - ], - [ - "▁scolaire", - -12.521401405334473 - ], - [ - "▁étape", - -12.521482467651367 - ], - [ - "▁pirate", - -12.521761894226074 - ], - [ - "▁Rated", - -12.521794319152832 - ], - [ - "LOT", - -12.521846771240234 - ], - [ - "▁natura", - -12.521944046020508 - ], - [ - "oga", - -12.522336959838867 - ], - [ - "Read", - -12.522388458251953 - ], - [ - "idio", - -12.522444725036621 - ], - [ - "▁recession", - -12.522698402404785 - ], - [ - "veţi", - -12.522761344909668 - ], - [ - "▁blossom", - -12.523082733154297 - ], - [ - "▁lunar", - -12.523141860961914 - ], - [ - "▁inhibit", - -12.52316951751709 - ], - [ - "gemein", - -12.523219108581543 - ], - [ - "▁Historic", - -12.523262023925781 - ], - [ - "▁HTTP", - -12.523370742797852 - ], - [ - "misiune", - -12.5234956741333 - ], - [ - "▁Manda", - -12.523601531982422 - ], - [ - "▁Hurricane", - -12.523643493652344 - ], - [ - "Strat", - -12.523646354675293 - ], - [ - "▁populaire", - -12.523756980895996 - ], - [ - "▁useless", - -12.523762702941895 - ], - [ - "▁Leipzig", - -12.523924827575684 - ], - [ - "▁Krankheit", - -12.52392578125 - ], - [ - "▁Bonne", - -12.52397346496582 - ], - [ - "▁tissu", - -12.52399730682373 - ], - [ - "▁Baum", - -12.523998260498047 - ], - [ - "▁BUT", - -12.524152755737305 - ], - [ - "▁Mondial", - -12.52423095703125 - ], - [ - "▁triangle", - -12.524242401123047 - ], - [ - "▁Tesla", - -12.524250984191895 - ], - [ - "▁pământ", - -12.52430534362793 - ], - [ - "▁aminte", - -12.524726867675781 - ], - [ - "▁vehicul", - -12.524770736694336 - ], - [ - "▁cerut", - -12.52482795715332 - ], - [ - "▁respiratory", - -12.524836540222168 - ], - [ - "▁rayon", - -12.524993896484375 - ], - [ - "▁gestaltet", - -12.525067329406738 - ], - [ - "310", - -12.525139808654785 - ], - [ - "pfl", - -12.525239944458008 - ], - [ - "▁shrimp", - -12.525337219238281 - ], - [ - "▁reconnu", - -12.525409698486328 - ], - [ - "ologique", - -12.525476455688477 - ], - [ - "▁unity", - -12.525674819946289 - ], - [ - "Speicher", - -12.52569580078125 - ], - [ - "▁Movement", - -12.525794982910156 - ], - [ - "ddling", - -12.52581787109375 - ], - [ - "OE", - -12.525818824768066 - ], - [ - "▁Resolution", - -12.525863647460938 - ], - [ - "esteem", - -12.525898933410645 - ], - [ - "▁Teen", - -12.526288986206055 - ], - [ - "▁believing", - -12.526463508605957 - ], - [ - "▁Tipps", - -12.526481628417969 - ], - [ - "jpg", - -12.526494026184082 - ], - [ - "▁obs", - -12.526519775390625 - ], - [ - "SHA", - -12.526702880859375 - ], - [ - "▁quietly", - -12.526907920837402 - ], - [ - "setting", - -12.52712345123291 - ], - [ - "▁elevator", - -12.527185440063477 - ], - [ - "phor", - -12.527194023132324 - ], - [ - "Just", - -12.52725887298584 - ], - [ - "▁legatura", - -12.52739143371582 - ], - [ - "elected", - -12.527414321899414 - ], - [ - "▁disclosed", - -12.527419090270996 - ], - [ - "quarter", - -12.52743148803711 - ], - [ - "zzy", - -12.527461051940918 - ], - [ - "▁gata", - -12.527491569519043 - ], - [ - "SAN", - -12.527532577514648 - ], - [ - "▁Cathedral", - -12.527592658996582 - ], - [ - "192", - -12.527656555175781 - ], - [ - "▁RBI", - -12.527726173400879 - ], - [ - "▁Seller", - -12.527798652648926 - ], - [ - "▁urine", - -12.527807235717773 - ], - [ - "▁Hardware", - -12.527966499328613 - ], - [ - "▁steadi", - -12.527993202209473 - ], - [ - "percussion", - -12.528158187866211 - ], - [ - "▁francez", - -12.528172492980957 - ], - [ - "▁rude", - -12.528202056884766 - ], - [ - "bod", - -12.528223037719727 - ], - [ - "cession", - -12.528249740600586 - ], - [ - "▁HTC", - -12.528372764587402 - ], - [ - "HB", - -12.528576850891113 - ], - [ - "▁descent", - -12.528644561767578 - ], - [ - "▁Painting", - -12.528681755065918 - ], - [ - "119", - -12.528684616088867 - ], - [ - "sagen", - -12.52877426147461 - ], - [ - "▁salvation", - -12.52880573272705 - ], - [ - "arro", - -12.528814315795898 - ], - [ - "0.3", - -12.52886962890625 - ], - [ - "▁Duck", - -12.52890396118164 - ], - [ - "Mit", - -12.529052734375 - ], - [ - "да", - -12.52927017211914 - ], - [ - "▁Diesel", - -12.529322624206543 - ], - [ - "▁Medal", - -12.529413223266602 - ], - [ - "▁interim", - -12.529439926147461 - ], - [ - "▁montagne", - -12.529439926147461 - ], - [ - "▁Pixel", - -12.529631614685059 - ], - [ - "LINE", - -12.529806137084961 - ], - [ - "▁dureri", - -12.529938697814941 - ], - [ - "▁Bengal", - -12.529990196228027 - ], - [ - "Legea", - -12.530080795288086 - ], - [ - "▁Strecke", - -12.530094146728516 - ], - [ - "▁schneller", - -12.53012752532959 - ], - [ - "▁Karten", - -12.5301513671875 - ], - [ - "cion", - -12.530241966247559 - ], - [ - "▁Coco", - -12.53037166595459 - ], - [ - "troisième", - -12.53052806854248 - ], - [ - "401", - -12.530616760253906 - ], - [ - "▁sandwiches", - -12.530704498291016 - ], - [ - "▁folosind", - -12.530920028686523 - ], - [ - "▁Folgen", - -12.530953407287598 - ], - [ - "▁triumph", - -12.530991554260254 - ], - [ - "▁Hintergrund", - -12.530996322631836 - ], - [ - "▁revelation", - -12.531084060668945 - ], - [ - "ôme", - -12.531222343444824 - ], - [ - "▁Nex", - -12.531245231628418 - ], - [ - "jährigen", - -12.531295776367188 - ], - [ - "▁militant", - -12.531296730041504 - ], - [ - "▁fabricant", - -12.531671524047852 - ], - [ - "iano", - -12.531713485717773 - ], - [ - "▁formulation", - -12.53188705444336 - ], - [ - "integrating", - -12.532050132751465 - ], - [ - "▁Items", - -12.532142639160156 - ], - [ - "▁contractual", - -12.532320976257324 - ], - [ - "AIDS", - -12.532424926757812 - ], - [ - "▁pitcher", - -12.532610893249512 - ], - [ - "▁Snap", - -12.532623291015625 - ], - [ - "▁systematic", - -12.532663345336914 - ], - [ - "▁referendum", - -12.532694816589355 - ], - [ - "gau", - -12.53281021118164 - ], - [ - "administration", - -12.532917022705078 - ], - [ - "▁speci", - -12.532981872558594 - ], - [ - "ieni", - -12.532998085021973 - ], - [ - "prox", - -12.533186912536621 - ], - [ - "▁bouquet", - -12.533241271972656 - ], - [ - "▁sinnvoll", - -12.533270835876465 - ], - [ - "▁Fleisch", - -12.533309936523438 - ], - [ - "ktuell", - -12.533381462097168 - ], - [ - "▁mushrooms", - -12.533408164978027 - ], - [ - "▁Straf", - -12.533470153808594 - ], - [ - "▁cresc", - -12.533491134643555 - ], - [ - "TEM", - -12.533502578735352 - ], - [ - "▁vindec", - -12.53352165222168 - ], - [ - "▁Drama", - -12.533540725708008 - ], - [ - "chief", - -12.533550262451172 - ], - [ - "▁müsst", - -12.533614158630371 - ], - [ - "▁Warner", - -12.533662796020508 - ], - [ - "118", - -12.533761024475098 - ], - [ - "▁saptamana", - -12.533831596374512 - ], - [ - "▁animaux", - -12.53412914276123 - ], - [ - "▁Directory", - -12.534146308898926 - ], - [ - "▁entgegen", - -12.53415584564209 - ], - [ - "▁deduction", - -12.534156799316406 - ], - [ - "▁Strategic", - -12.53426456451416 - ], - [ - "▁rats", - -12.534419059753418 - ], - [ - "▁Moses", - -12.534448623657227 - ], - [ - "eko", - -12.534564971923828 - ], - [ - "strict", - -12.534590721130371 - ], - [ - "▁Ashley", - -12.534603118896484 - ], - [ - "mik", - -12.534622192382812 - ], - [ - "▁relocate", - -12.534668922424316 - ], - [ - "▁whip", - -12.534738540649414 - ], - [ - "central", - -12.534750938415527 - ], - [ - "mack", - -12.534892082214355 - ], - [ - "stufe", - -12.534961700439453 - ], - [ - "▁Metropolitan", - -12.5349702835083 - ], - [ - "▁croissance", - -12.534974098205566 - ], - [ - "▁celebrities", - -12.535021781921387 - ], - [ - "▁Geh", - -12.53507137298584 - ], - [ - "▁verifica", - -12.535196304321289 - ], - [ - "▁satisfac", - -12.535211563110352 - ], - [ - "▁Julian", - -12.535271644592285 - ], - [ - "▁remotely", - -12.535432815551758 - ], - [ - "▁Safari", - -12.535542488098145 - ], - [ - "▁Chic", - -12.53557014465332 - ], - [ - "▁clamp", - -12.535818099975586 - ], - [ - "▁Schnee", - -12.535918235778809 - ], - [ - "grown", - -12.536069869995117 - ], - [ - "▁Character", - -12.536110877990723 - ], - [ - "▁charities", - -12.536137580871582 - ], - [ - "Thankfully", - -12.536625862121582 - ], - [ - "▁țară", - -12.53681468963623 - ], - [ - "IZ", - -12.536816596984863 - ], - [ - "Vielleicht", - -12.536999702453613 - ], - [ - "▁Pon", - -12.537108421325684 - ], - [ - "gegen", - -12.53711986541748 - ], - [ - "chez", - -12.537185668945312 - ], - [ - "Black", - -12.537544250488281 - ], - [ - "▁alimentare", - -12.537555694580078 - ], - [ - "▁verloren", - -12.537562370300293 - ], - [ - "▁predictions", - -12.537657737731934 - ], - [ - "Founded", - -12.53795337677002 - ], - [ - "▁femeie", - -12.538022994995117 - ], - [ - "wahrscheinlich", - -12.538107872009277 - ], - [ - "▁squeeze", - -12.53819465637207 - ], - [ - "▁verfügbar", - -12.538259506225586 - ], - [ - "▁hygiene", - -12.538393020629883 - ], - [ - "voire", - -12.538667678833008 - ], - [ - "▁birou", - -12.538901329040527 - ], - [ - "▁initiate", - -12.538921356201172 - ], - [ - "▁Patriot", - -12.539009094238281 - ], - [ - "▁Income", - -12.539159774780273 - ], - [ - "▁marry", - -12.539310455322266 - ], - [ - "lokal", - -12.539336204528809 - ], - [ - "logic", - -12.53940486907959 - ], - [ - "▁Abstract", - -12.53966236114502 - ], - [ - "▁grundsätzlich", - -12.539822578430176 - ], - [ - "▁tariff", - -12.539886474609375 - ], - [ - "▁definitiv", - -12.539892196655273 - ], - [ - "paz", - -12.53989315032959 - ], - [ - "Result", - -12.539921760559082 - ], - [ - "1:30", - -12.54005241394043 - ], - [ - "▁Latest", - -12.540075302124023 - ], - [ - "▁Dauer", - -12.540155410766602 - ], - [ - "Med", - -12.540275573730469 - ], - [ - "gewicht", - -12.540348052978516 - ], - [ - "▁Gaza", - -12.540430068969727 - ], - [ - "▁Newton", - -12.540769577026367 - ], - [ - "Dokument", - -12.540897369384766 - ], - [ - "formular", - -12.540945053100586 - ], - [ - "ILE", - -12.540964126586914 - ], - [ - "▁surse", - -12.541040420532227 - ], - [ - "MH", - -12.54116153717041 - ], - [ - "▁Arctic", - -12.541255950927734 - ], - [ - "▁ISBN", - -12.541274070739746 - ], - [ - "▁quarterback", - -12.541315078735352 - ], - [ - "▁absurd", - -12.541555404663086 - ], - [ - "▁Zusammenhang", - -12.541561126708984 - ], - [ - "▁Module", - -12.54156494140625 - ], - [ - "mented", - -12.541667938232422 - ], - [ - "worthy", - -12.541797637939453 - ], - [ - "▁célèbre", - -12.541828155517578 - ], - [ - "▁maritime", - -12.541836738586426 - ], - [ - "▁Reed", - -12.541938781738281 - ], - [ - "▁threaten", - -12.542037010192871 - ], - [ - "▁Satz", - -12.542095184326172 - ], - [ - "▁sticking", - -12.542203903198242 - ], - [ - "▁transcript", - -12.542372703552246 - ], - [ - "▁Morgen", - -12.542425155639648 - ], - [ - "▁Förder", - -12.542435646057129 - ], - [ - "▁Gottes", - -12.542572021484375 - ], - [ - "▁Coordinator", - -12.542648315429688 - ], - [ - "LOG", - -12.54265022277832 - ], - [ - "EAN", - -12.542677879333496 - ], - [ - "▁préparation", - -12.54273509979248 - ], - [ - "▁Brass", - -12.542799949645996 - ], - [ - "Așa", - -12.542853355407715 - ], - [ - "▁Utiliz", - -12.54294490814209 - ], - [ - "framed", - -12.542973518371582 - ], - [ - "▁asphalt", - -12.543050765991211 - ], - [ - "116", - -12.543061256408691 - ], - [ - "▁historically", - -12.54310417175293 - ], - [ - "▁doamn", - -12.543176651000977 - ], - [ - "Air", - -12.543293952941895 - ], - [ - "▁economist", - -12.543838500976562 - ], - [ - "fresh", - -12.54384994506836 - ], - [ - "engine", - -12.543906211853027 - ], - [ - "▁Rücken", - -12.543919563293457 - ], - [ - "▁worthwhile", - -12.544124603271484 - ], - [ - "▁Therapie", - -12.544140815734863 - ], - [ - "▁Joshua", - -12.544151306152344 - ], - [ - "sicherheit", - -12.544175148010254 - ], - [ - "▁scena", - -12.544254302978516 - ], - [ - "ifiant", - -12.54433822631836 - ], - [ - "/20", - -12.54442024230957 - ], - [ - "fehl", - -12.544469833374023 - ], - [ - "karten", - -12.544515609741211 - ], - [ - "501", - -12.544656753540039 - ], - [ - "▁vide", - -12.544673919677734 - ], - [ - "▁miliarde", - -12.544699668884277 - ], - [ - "▁trillion", - -12.54470157623291 - ], - [ - "oudre", - -12.544761657714844 - ], - [ - "nderung", - -12.544803619384766 - ], - [ - "▁inquiries", - -12.544992446899414 - ], - [ - "▁echipe", - -12.545034408569336 - ], - [ - "▁investiga", - -12.545040130615234 - ], - [ - "▁detailing", - -12.545042991638184 - ], - [ - "VIS", - -12.545086860656738 - ], - [ - "▁geographical", - -12.545157432556152 - ], - [ - "▁authentication", - -12.54519271850586 - ], - [ - "▁Schwa", - -12.545201301574707 - ], - [ - "▁Scri", - -12.545230865478516 - ], - [ - "▁discourage", - -12.54527473449707 - ], - [ - "Pass", - -12.54529094696045 - ], - [ - "▁scattered", - -12.54529857635498 - ], - [ - "▁langsam", - -12.545300483703613 - ], - [ - "telles", - -12.545380592346191 - ], - [ - "▁ramane", - -12.5454740524292 - ], - [ - "▁inhibitor", - -12.545486450195312 - ], - [ - "▁Habit", - -12.54556941986084 - ], - [ - "▁10:00", - -12.545577049255371 - ], - [ - "▁rezultat", - -12.545595169067383 - ], - [ - "äck", - -12.545943260192871 - ], - [ - ",000.", - -12.545979499816895 - ], - [ - "▁remedies", - -12.546103477478027 - ], - [ - "▁comportament", - -12.546195983886719 - ], - [ - "namen", - -12.546229362487793 - ], - [ - "▁#3", - -12.546327590942383 - ], - [ - "enstein", - -12.546493530273438 - ], - [ - "▁relevance", - -12.546516418457031 - ], - [ - "▁présentation", - -12.54655933380127 - ], - [ - "MHz", - -12.546648979187012 - ], - [ - "EMA", - -12.546661376953125 - ], - [ - "▁palace", - -12.546709060668945 - ], - [ - "▁vizibil", - -12.546723365783691 - ], - [ - "▁griev", - -12.546820640563965 - ], - [ - "▁severely", - -12.54688549041748 - ], - [ - "expert", - -12.546942710876465 - ], - [ - "▁ravi", - -12.54696273803711 - ], - [ - "▁feasible", - -12.547002792358398 - ], - [ - "▁Wholesale", - -12.547009468078613 - ], - [ - "▁graduat", - -12.547077178955078 - ], - [ - "Kü", - -12.547094345092773 - ], - [ - "▁quotation", - -12.547157287597656 - ], - [ - "/11", - -12.54716968536377 - ], - [ - "lutter", - -12.547415733337402 - ], - [ - "▁dice", - -12.547467231750488 - ], - [ - "modal", - -12.547749519348145 - ], - [ - "ggling", - -12.547819137573242 - ], - [ - "▁considér", - -12.547986030578613 - ], - [ - "▁Insel", - -12.548097610473633 - ], - [ - "▁Database", - -12.5483980178833 - ], - [ - "icism", - -12.548508644104004 - ], - [ - "▁quarterly", - -12.54851245880127 - ], - [ - "▁formule", - -12.548558235168457 - ], - [ - "▁renouvel", - -12.54873275756836 - ], - [ - "▁Treasure", - -12.548737525939941 - ], - [ - "▁1962", - -12.548844337463379 - ], - [ - "▁republic", - -12.549111366271973 - ], - [ - "▁États", - -12.549254417419434 - ], - [ - "▁salut", - -12.549356460571289 - ], - [ - "HK", - -12.54941463470459 - ], - [ - "▁Bali", - -12.549427032470703 - ], - [ - "▁Rechnung", - -12.549447059631348 - ], - [ - "fruit", - -12.54945182800293 - ], - [ - "lays", - -12.549467086791992 - ], - [ - "LAS", - -12.54951000213623 - ], - [ - "inclin", - -12.549708366394043 - ], - [ - "▁Cré", - -12.549813270568848 - ], - [ - "▁compt", - -12.54985237121582 - ], - [ - "țiilor", - -12.550056457519531 - ], - [ - "heft", - -12.550111770629883 - ], - [ - "▁Comisi", - -12.55024242401123 - ], - [ - "▁Nurse", - -12.550516128540039 - ], - [ - "loid", - -12.550540924072266 - ], - [ - "grove", - -12.550761222839355 - ], - [ - "▁Copy", - -12.550867080688477 - ], - [ - "▁Kampf", - -12.550873756408691 - ], - [ - "izată", - -12.550945281982422 - ], - [ - "würdig", - -12.551244735717773 - ], - [ - "-2018", - -12.551305770874023 - ], - [ - "ozo", - -12.551350593566895 - ], - [ - "▁integriert", - -12.551397323608398 - ], - [ - "▁réunion", - -12.551448822021484 - ], - [ - "▁mică", - -12.551520347595215 - ], - [ - "▁Chau", - -12.551595687866211 - ], - [ - "▁allegations", - -12.551626205444336 - ], - [ - "▁shaping", - -12.551640510559082 - ], - [ - "▁transcription", - -12.551671981811523 - ], - [ - "▁Monica", - -12.551711082458496 - ], - [ - "▁torture", - -12.551795959472656 - ], - [ - "▁cooperative", - -12.551962852478027 - ], - [ - "▁invité", - -12.551987648010254 - ], - [ - "▁bamboo", - -12.552204132080078 - ], - [ - "▁Thinking", - -12.55232048034668 - ], - [ - "▁gratis", - -12.552392959594727 - ], - [ - "117", - -12.55267333984375 - ], - [ - "renz", - -12.55279541015625 - ], - [ - "▁Fußball", - -12.552823066711426 - ], - [ - "▁Gram", - -12.552873611450195 - ], - [ - "sprung", - -12.55290412902832 - ], - [ - "▁Schluss", - -12.55308723449707 - ], - [ - "▁Diploma", - -12.553345680236816 - ], - [ - "▁apparatus", - -12.553363800048828 - ], - [ - "notably", - -12.553483963012695 - ], - [ - "▁exercit", - -12.553532600402832 - ], - [ - "ământ", - -12.553536415100098 - ], - [ - "▁masses", - -12.553610801696777 - ], - [ - "▁preuve", - -12.553642272949219 - ], - [ - "great", - -12.553754806518555 - ], - [ - "▁Drink", - -12.553792953491211 - ], - [ - "islam", - -12.553828239440918 - ], - [ - "ARM", - -12.553914070129395 - ], - [ - "indre", - -12.554404258728027 - ], - [ - "DW", - -12.554410934448242 - ], - [ - "▁Flowers", - -12.554500579833984 - ], - [ - "▁pill", - -12.554574966430664 - ], - [ - "▁objectifs", - -12.554594039916992 - ], - [ - "▁Bezug", - -12.554659843444824 - ], - [ - "▁assumptions", - -12.55466365814209 - ], - [ - "▁vesti", - -12.554742813110352 - ], - [ - "route", - -12.554783821105957 - ], - [ - "▁Bangkok", - -12.554815292358398 - ], - [ - "▁seamlessly", - -12.55482006072998 - ], - [ - "config", - -12.554882049560547 - ], - [ - "▁username", - -12.554890632629395 - ], - [ - "unsure", - -12.555024147033691 - ], - [ - "▁poser", - -12.555129051208496 - ], - [ - "▁impozit", - -12.555246353149414 - ], - [ - "▁metode", - -12.555333137512207 - ], - [ - "defending", - -12.555347442626953 - ], - [ - "▁Nic", - -12.555431365966797 - ], - [ - "▁Vertrag", - -12.555508613586426 - ], - [ - "▁plăcut", - -12.55552864074707 - ], - [ - "▁Pou", - -12.555675506591797 - ], - [ - "UCH", - -12.555785179138184 - ], - [ - "▁Fein", - -12.555903434753418 - ], - [ - "reading", - -12.555994987487793 - ], - [ - "snip", - -12.55604076385498 - ], - [ - "▁Livre", - -12.556401252746582 - ], - [ - "lander", - -12.556509971618652 - ], - [ - "▁hydraulic", - -12.556559562683105 - ], - [ - "veiled", - -12.556563377380371 - ], - [ - "intr", - -12.556609153747559 - ], - [ - "▁Domnului", - -12.556641578674316 - ], - [ - "▁$0.", - -12.556713104248047 - ], - [ - "▁kilometers", - -12.556753158569336 - ], - [ - "spann", - -12.556870460510254 - ], - [ - "▁credibility", - -12.556892395019531 - ], - [ - "▁eBook", - -12.556953430175781 - ], - [ - "VERY", - -12.556994438171387 - ], - [ - "▁Charm", - -12.557122230529785 - ], - [ - "Evangeli", - -12.557193756103516 - ], - [ - "▁anderer", - -12.557193756103516 - ], - [ - "▁Entry", - -12.557195663452148 - ], - [ - "ffy", - -12.5573148727417 - ], - [ - "▁Exc", - -12.55737018585205 - ], - [ - "▁Omega", - -12.557446479797363 - ], - [ - "▁Funktionen", - -12.557455062866211 - ], - [ - "▁Gay", - -12.55752182006836 - ], - [ - "▁acht", - -12.557608604431152 - ], - [ - "colored", - -12.557615280151367 - ], - [ - "itude", - -12.557634353637695 - ], - [ - "▁accompagné", - -12.557645797729492 - ], - [ - "▁unfortunate", - -12.557981491088867 - ], - [ - "▁DIN", - -12.558091163635254 - ], - [ - "▁installment", - -12.558252334594727 - ], - [ - "▁indépendant", - -12.558307647705078 - ], - [ - "These", - -12.558364868164062 - ], - [ - "mitten", - -12.558394432067871 - ], - [ - "thank", - -12.558470726013184 - ], - [ - "▁Trek", - -12.558721542358398 - ], - [ - "üchte", - -12.55874252319336 - ], - [ - "▁cuir", - -12.55875015258789 - ], - [ - "▁turbo", - -12.558802604675293 - ], - [ - "Table", - -12.558847427368164 - ], - [ - "▁Extrem", - -12.558866500854492 - ], - [ - "▁advertisements", - -12.55915355682373 - ], - [ - "▁chaîne", - -12.559206008911133 - ], - [ - "▁corridor", - -12.559473991394043 - ], - [ - "▁râ", - -12.559651374816895 - ], - [ - "▁Opening", - -12.559718132019043 - ], - [ - "Get", - -12.559747695922852 - ], - [ - "▁storytelling", - -12.55976676940918 - ], - [ - "▁severity", - -12.559771537780762 - ], - [ - "4\"", - -12.559956550598145 - ], - [ - "▁parasit", - -12.559967994689941 - ], - [ - "angebot", - -12.56002426147461 - ], - [ - "Data", - -12.56005573272705 - ], - [ - "listen", - -12.560086250305176 - ], - [ - "▁vârstă", - -12.560094833374023 - ], - [ - "▁swallow", - -12.56025505065918 - ], - [ - "TRE", - -12.560321807861328 - ], - [ - "▁daunting", - -12.56035041809082 - ], - [ - "▁Oli", - -12.560481071472168 - ], - [ - "▁definitive", - -12.56066608428955 - ], - [ - "▁rezerva", - -12.560667037963867 - ], - [ - "/15", - -12.560807228088379 - ], - [ - "▁Landschaft", - -12.560887336730957 - ], - [ - "▁Automotive", - -12.560934066772461 - ], - [ - "▁convers", - -12.56113052368164 - ], - [ - "▁thru", - -12.561139106750488 - ], - [ - "▁Township", - -12.561140060424805 - ], - [ - "▁tilt", - -12.56119441986084 - ], - [ - "▁Criminal", - -12.561227798461914 - ], - [ - "riez", - -12.561407089233398 - ], - [ - "▁Parking", - -12.561440467834473 - ], - [ - "▁humanitarian", - -12.561518669128418 - ], - [ - "▁Kilometer", - -12.561529159545898 - ], - [ - "controlled", - -12.56189250946045 - ], - [ - "▁Klick", - -12.561910629272461 - ], - [ - "support", - -12.56199836730957 - ], - [ - "handed", - -12.562005996704102 - ], - [ - "ämtliche", - -12.562104225158691 - ], - [ - "access", - -12.562232971191406 - ], - [ - "▁eleven", - -12.562232971191406 - ], - [ - "▁ferry", - -12.56229305267334 - ], - [ - "zieren", - -12.562620162963867 - ], - [ - "▁Gebrauch", - -12.562688827514648 - ], - [ - "▁vigoare", - -12.562689781188965 - ], - [ - "MON", - -12.562756538391113 - ], - [ - "fox", - -12.562886238098145 - ], - [ - "bestimmten", - -12.562894821166992 - ], - [ - "▁Gur", - -12.563069343566895 - ], - [ - "▁Mannschaft", - -12.563146591186523 - ], - [ - "▁patrol", - -12.563173294067383 - ], - [ - "▁casă", - -12.563376426696777 - ], - [ - "▁Stories", - -12.563380241394043 - ], - [ - "▁robotic", - -12.563425064086914 - ], - [ - "tiri", - -12.563576698303223 - ], - [ - "gewiesen", - -12.5636568069458 - ], - [ - "CV", - -12.563722610473633 - ], - [ - "▁parinti", - -12.563899040222168 - ], - [ - "▁Owen", - -12.563931465148926 - ], - [ - "▁Katie", - -12.564116477966309 - ], - [ - "▁Combine", - -12.56422233581543 - ], - [ - "enfalls", - -12.56442928314209 - ], - [ - "▁financière", - -12.564447402954102 - ], - [ - "▁parliament", - -12.564549446105957 - ], - [ - "▁Weekend", - -12.564616203308105 - ], - [ - "▁Sonic", - -12.564757347106934 - ], - [ - "▁fixture", - -12.56479263305664 - ], - [ - "majorité", - -12.56497573852539 - ], - [ - "▁gravel", - -12.565028190612793 - ], - [ - "realizate", - -12.565109252929688 - ], - [ - "examining", - -12.565113067626953 - ], - [ - "▁grim", - -12.5653657913208 - ], - [ - "▁stabili", - -12.565458297729492 - ], - [ - "▁Wochenende", - -12.56551456451416 - ], - [ - "▁Hebrew", - -12.565597534179688 - ], - [ - "▁Harrison", - -12.565799713134766 - ], - [ - "▁boundary", - -12.565858840942383 - ], - [ - "40,000", - -12.565902709960938 - ], - [ - "▁Ambassador", - -12.566208839416504 - ], - [ - "▁scoate", - -12.566229820251465 - ], - [ - "ffin", - -12.56623363494873 - ], - [ - "▁crème", - -12.566269874572754 - ], - [ - "▁obiecte", - -12.566378593444824 - ], - [ - "enţa", - -12.566763877868652 - ], - [ - "▁subsidiary", - -12.566797256469727 - ], - [ - "▁Franco", - -12.56688404083252 - ], - [ - "▁visuel", - -12.567042350769043 - ], - [ - "▁uitat", - -12.56708812713623 - ], - [ - "▁revisit", - -12.567122459411621 - ], - [ - "▁Camping", - -12.567150115966797 - ], - [ - "▁Divine", - -12.567304611206055 - ], - [ - "4-6", - -12.567323684692383 - ], - [ - "▁Brandon", - -12.567378997802734 - ], - [ - "ма", - -12.567450523376465 - ], - [ - "sofern", - -12.56745433807373 - ], - [ - "ntweder", - -12.56748104095459 - ], - [ - "▁Shoot", - -12.567618370056152 - ], - [ - "étais", - -12.56771183013916 - ], - [ - "SPEC", - -12.567930221557617 - ], - [ - "▁dreapta", - -12.567973136901855 - ], - [ - "▁repaired", - -12.568055152893066 - ], - [ - "pyr", - -12.568136215209961 - ], - [ - "▁warranties", - -12.568175315856934 - ], - [ - "▁représent", - -12.568263053894043 - ], - [ - "ADE", - -12.568293571472168 - ], - [ - "▁selective", - -12.56836223602295 - ], - [ - "▁Banking", - -12.568441390991211 - ], - [ - "▁ergonomic", - -12.568562507629395 - ], - [ - "...”", - -12.568602561950684 - ], - [ - "▁willingness", - -12.56867790222168 - ], - [ - "isser", - -12.568784713745117 - ], - [ - "▁confection", - -12.568961143493652 - ], - [ - "admi", - -12.569009780883789 - ], - [ - "▁Freizeit", - -12.569023132324219 - ], - [ - "▁illuminate", - -12.569151878356934 - ], - [ - "▁Repeat", - -12.569170951843262 - ], - [ - "▁Zeitpunkt", - -12.56933879852295 - ], - [ - "claimed", - -12.569439888000488 - ], - [ - "▁erhältlich", - -12.569480895996094 - ], - [ - "▁paysage", - -12.569537162780762 - ], - [ - "▁Atom", - -12.569890022277832 - ], - [ - "▁Graf", - -12.570086479187012 - ], - [ - "▁firmware", - -12.570093154907227 - ], - [ - "▁Swift", - -12.570180892944336 - ], - [ - "▁cercetare", - -12.57018756866455 - ], - [ - "▁internațional", - -12.570330619812012 - ], - [ - "▁zombie", - -12.570330619812012 - ], - [ - "▁Spread", - -12.57050609588623 - ], - [ - "ECO", - -12.57056999206543 - ], - [ - "▁Gestaltung", - -12.570758819580078 - ], - [ - "rast", - -12.570858001708984 - ], - [ - "▁perfume", - -12.5709228515625 - ], - [ - "▁roulette", - -12.570924758911133 - ], - [ - "▁distill", - -12.57096004486084 - ], - [ - "▁Produkten", - -12.570992469787598 - ], - [ - "225", - -12.571310043334961 - ], - [ - "facing", - -12.571371078491211 - ], - [ - "▁paradigm", - -12.571514129638672 - ], - [ - "▁Rah", - -12.571532249450684 - ], - [ - "▁Renault", - -12.571846961975098 - ], - [ - "willig", - -12.571864128112793 - ], - [ - "▁Vet", - -12.571890830993652 - ], - [ - "▁reprezenta", - -12.572126388549805 - ], - [ - "stoß", - -12.572185516357422 - ], - [ - "▁Weiß", - -12.5722074508667 - ], - [ - "▁Solo", - -12.572210311889648 - ], - [ - "▁Jin", - -12.572646141052246 - ], - [ - "▁Brussels", - -12.572693824768066 - ], - [ - "▁Tournament", - -12.572693824768066 - ], - [ - "▁proced", - -12.572710037231445 - ], - [ - "▁Rabbi", - -12.572835922241211 - ], - [ - "▁gameplay", - -12.572851181030273 - ], - [ - "▁ATM", - -12.572901725769043 - ], - [ - "▁firearm", - -12.572906494140625 - ], - [ - "revealing", - -12.573003768920898 - ], - [ - "schütz", - -12.57310676574707 - ], - [ - "▁Absolutely", - -12.573288917541504 - ], - [ - "▁interference", - -12.573433876037598 - ], - [ - "▁Employment", - -12.573558807373047 - ], - [ - "▁chord", - -12.57356071472168 - ], - [ - "▁oportun", - -12.573585510253906 - ], - [ - "▁frontier", - -12.573770523071289 - ], - [ - "▁Lunch", - -12.573891639709473 - ], - [ - "bread", - -12.57397174835205 - ], - [ - "▁rendered", - -12.573976516723633 - ], - [ - "5.1", - -12.573984146118164 - ], - [ - "▁motif", - -12.574066162109375 - ], - [ - "▁Schlag", - -12.574227333068848 - ], - [ - "113", - -12.574264526367188 - ], - [ - "▁Deux", - -12.574288368225098 - ], - [ - "▁surplus", - -12.574309349060059 - ], - [ - "ALS", - -12.574417114257812 - ], - [ - "▁abortion", - -12.574472427368164 - ], - [ - "▁airplane", - -12.574475288391113 - ], - [ - "▁migrants", - -12.574501991271973 - ], - [ - "kli", - -12.574539184570312 - ], - [ - "▁crochet", - -12.57454776763916 - ], - [ - "fahrer", - -12.574671745300293 - ], - [ - "▁reconstruction", - -12.57471752166748 - ], - [ - "▁difer", - -12.574752807617188 - ], - [ - "▁Conserv", - -12.57478141784668 - ], - [ - "▁NSW", - -12.57479476928711 - ], - [ - "▁regim", - -12.574844360351562 - ], - [ - "▁Except", - -12.574904441833496 - ], - [ - "▁trage", - -12.574978828430176 - ], - [ - "▁Consiliul", - -12.575058937072754 - ], - [ - "▁Bedarf", - -12.575064659118652 - ], - [ - "▁additive", - -12.5750732421875 - ], - [ - "know", - -12.5751371383667 - ], - [ - "▁sauna", - -12.57517147064209 - ], - [ - "▁mortality", - -12.575201034545898 - ], - [ - "kräftig", - -12.575358390808105 - ], - [ - "▁Own", - -12.575445175170898 - ], - [ - "nzo", - -12.575519561767578 - ], - [ - "▁villes", - -12.575543403625488 - ], - [ - "▁recette", - -12.575749397277832 - ], - [ - "▁attacking", - -12.575799942016602 - ], - [ - "beruf", - -12.57608699798584 - ], - [ - "▁integrat", - -12.57612419128418 - ], - [ - "realizarea", - -12.576201438903809 - ], - [ - "▁exemption", - -12.57628345489502 - ], - [ - "GW", - -12.576285362243652 - ], - [ - "▁Nano", - -12.576395034790039 - ], - [ - "SCH", - -12.576440811157227 - ], - [ - "▁honesty", - -12.576457023620605 - ], - [ - "▁Arriv", - -12.576515197753906 - ], - [ - "▁gland", - -12.576542854309082 - ], - [ - "▁proactive", - -12.576746940612793 - ], - [ - "▁agile", - -12.576837539672852 - ], - [ - "▁kernel", - -12.576844215393066 - ], - [ - "▁nurture", - -12.576860427856445 - ], - [ - "▁Patent", - -12.576963424682617 - ], - [ - "▁excursi", - -12.577189445495605 - ], - [ - "pulsion", - -12.577326774597168 - ], - [ - "stellte", - -12.577351570129395 - ], - [ - "ständige", - -12.577421188354492 - ], - [ - "▁Rebecca", - -12.577436447143555 - ], - [ - "▁Securities", - -12.577436447143555 - ], - [ - "mètre", - -12.577446937561035 - ], - [ - "LOW", - -12.577469825744629 - ], - [ - "▁consilier", - -12.577537536621094 - ], - [ - "▁Architekt", - -12.577733993530273 - ], - [ - "▁china", - -12.57777214050293 - ], - [ - "älfte", - -12.577778816223145 - ], - [ - "▁Combin", - -12.577795028686523 - ], - [ - "480", - -12.577999114990234 - ], - [ - "liv", - -12.578021049499512 - ], - [ - "▁peur", - -12.578067779541016 - ], - [ - "keep", - -12.57822322845459 - ], - [ - "▁Verhalten", - -12.578324317932129 - ], - [ - "▁peek", - -12.578446388244629 - ], - [ - "▁dient", - -12.578550338745117 - ], - [ - "▁prevazut", - -12.578625679016113 - ], - [ - "Emmanuel", - -12.57862663269043 - ], - [ - "▁incidence", - -12.57862663269043 - ], - [ - "▁Framework", - -12.578715324401855 - ], - [ - "dass", - -12.578816413879395 - ], - [ - "artiste", - -12.578874588012695 - ], - [ - "▁Accept", - -12.578971862792969 - ], - [ - "▁plunge", - -12.579073905944824 - ], - [ - "chauff", - -12.579118728637695 - ], - [ - "▁guilt", - -12.579156875610352 - ], - [ - "▁senator", - -12.57945442199707 - ], - [ - "▁disable", - -12.579776763916016 - ], - [ - "▁partout", - -12.579901695251465 - ], - [ - "JC", - -12.580045700073242 - ], - [ - "▁Highly", - -12.580150604248047 - ], - [ - "▁beneficii", - -12.58021068572998 - ], - [ - "fibro", - -12.580347061157227 - ], - [ - "interpreted", - -12.580550193786621 - ], - [ - "▁genauso", - -12.58056354522705 - ], - [ - "▁basil", - -12.580601692199707 - ], - [ - "▁Angst", - -12.580697059631348 - ], - [ - "rzte", - -12.580933570861816 - ], - [ - "Master", - -12.58112907409668 - ], - [ - "▁french", - -12.581324577331543 - ], - [ - "▁Duration", - -12.581343650817871 - ], - [ - "HM", - -12.581402778625488 - ], - [ - "▁Bert", - -12.581518173217773 - ], - [ - "▁1963", - -12.581534385681152 - ], - [ - "▁warrior", - -12.581604957580566 - ], - [ - "2007", - -12.581696510314941 - ], - [ - "▁recycle", - -12.581722259521484 - ], - [ - "▁fertiliz", - -12.581808090209961 - ], - [ - "▁hatch", - -12.581809997558594 - ], - [ - "ISH", - -12.581811904907227 - ], - [ - "luft", - -12.582321166992188 - ], - [ - "▁crying", - -12.582452774047852 - ], - [ - "▁activist", - -12.5824613571167 - ], - [ - "schränkt", - -12.582500457763672 - ], - [ - "▁diff", - -12.582500457763672 - ], - [ - "▁Demand", - -12.58262825012207 - ], - [ - "▁transported", - -12.582669258117676 - ], - [ - "▁Remodel", - -12.582686424255371 - ], - [ - "▁Etats", - -12.582704544067383 - ], - [ - "ANI", - -12.582777976989746 - ], - [ - "▁spéciale", - -12.582804679870605 - ], - [ - "▁Konzert", - -12.582805633544922 - ], - [ - "▁Bedürfnisse", - -12.58281135559082 - ], - [ - "▁overlooked", - -12.582864761352539 - ], - [ - "▁cutter", - -12.582974433898926 - ], - [ - "klär", - -12.58311939239502 - ], - [ - "▁Materialien", - -12.583135604858398 - ], - [ - "▁gewisse", - -12.583388328552246 - ], - [ - "bull", - -12.583499908447266 - ], - [ - "Good", - -12.583513259887695 - ], - [ - "Gig", - -12.583616256713867 - ], - [ - "Logic", - -12.583736419677734 - ], - [ - "▁Schlaf", - -12.583970069885254 - ], - [ - "▁Yankee", - -12.583996772766113 - ], - [ - "▁Batman", - -12.584020614624023 - ], - [ - "▁funcție", - -12.584166526794434 - ], - [ - "▁partenariat", - -12.584294319152832 - ], - [ - "▁Antrag", - -12.584348678588867 - ], - [ - "▁Pill", - -12.584519386291504 - ], - [ - "▁tram", - -12.584637641906738 - ], - [ - "▁Minor", - -12.58465576171875 - ], - [ - "pertaining", - -12.584678649902344 - ], - [ - "▁apropiere", - -12.584843635559082 - ], - [ - "▁Barack", - -12.584965705871582 - ], - [ - "schön", - -12.585174560546875 - ], - [ - "▁Sandy", - -12.585182189941406 - ], - [ - "kilometre", - -12.585192680358887 - ], - [ - "▁diy", - -12.585234642028809 - ], - [ - "▁1966", - -12.585453987121582 - ], - [ - "gelassen", - -12.585485458374023 - ], - [ - "▁Trial", - -12.585592269897461 - ], - [ - "▁Bauer", - -12.585603713989258 - ], - [ - "▁assumption", - -12.585648536682129 - ], - [ - "birth", - -12.585668563842773 - ], - [ - "rechnen", - -12.585861206054688 - ], - [ - "▁meci", - -12.585867881774902 - ], - [ - "▁gloss", - -12.585906982421875 - ], - [ - "▁sewer", - -12.58593463897705 - ], - [ - "▁Stimme", - -12.585955619812012 - ], - [ - "▁Fortune", - -12.585967063903809 - ], - [ - "▁Lösungen", - -12.586007118225098 - ], - [ - "▁impresi", - -12.586074829101562 - ], - [ - "schlaf", - -12.586089134216309 - ], - [ - "prüfung", - -12.586097717285156 - ], - [ - "▁instalat", - -12.586198806762695 - ], - [ - "▁picturesque", - -12.586233139038086 - ], - [ - "vait", - -12.586240768432617 - ], - [ - "8.1", - -12.58629035949707 - ], - [ - "▁călători", - -12.586392402648926 - ], - [ - "▁dix", - -12.586400032043457 - ], - [ - "▁furnished", - -12.586411476135254 - ], - [ - "▁dolari", - -12.586445808410645 - ], - [ - "▁regener", - -12.586562156677246 - ], - [ - "▁astazi", - -12.586621284484863 - ], - [ - "▁Sprach", - -12.586750030517578 - ], - [ - "delà", - -12.586846351623535 - ], - [ - "avec", - -12.58694076538086 - ], - [ - "▁Buddhist", - -12.586990356445312 - ], - [ - "▁alphabet", - -12.586990356445312 - ], - [ - "▁berichtet", - -12.587201118469238 - ], - [ - "ideally", - -12.587209701538086 - ], - [ - "▁annuel", - -12.587421417236328 - ], - [ - "▁laughing", - -12.587532997131348 - ], - [ - "▁Zustand", - -12.587639808654785 - ], - [ - "cini", - -12.587692260742188 - ], - [ - "solid", - -12.587724685668945 - ], - [ - "▁Broker", - -12.587868690490723 - ], - [ - "▁developmental", - -12.5879545211792 - ], - [ - "▁Summary", - -12.588191032409668 - ], - [ - "▁Trinity", - -12.58819580078125 - ], - [ - "▁sucre", - -12.58821964263916 - ], - [ - "▁sandal", - -12.588231086730957 - ], - [ - "PEN", - -12.588274955749512 - ], - [ - "gewinn", - -12.588486671447754 - ], - [ - "olé", - -12.588555335998535 - ], - [ - "matric", - -12.58865737915039 - ], - [ - "xton", - -12.588695526123047 - ], - [ - "werten", - -12.588740348815918 - ], - [ - "▁Dust", - -12.588765144348145 - ], - [ - "▁Journey", - -12.588791847229004 - ], - [ - "▁Rush", - -12.588793754577637 - ], - [ - "▁NCAA", - -12.588839530944824 - ], - [ - "▁allgemeine", - -12.588926315307617 - ], - [ - "▁Universe", - -12.589007377624512 - ], - [ - "▁connais", - -12.589099884033203 - ], - [ - "▁quantité", - -12.58912467956543 - ], - [ - "▁Kab", - -12.589150428771973 - ], - [ - "▁purse", - -12.589150428771973 - ], - [ - "Health", - -12.589210510253906 - ], - [ - "▁apărut", - -12.589288711547852 - ], - [ - "▁bypass", - -12.589313507080078 - ], - [ - "pronounced", - -12.58936595916748 - ], - [ - "▁magnitude", - -12.589393615722656 - ], - [ - "▁Walmart", - -12.589394569396973 - ], - [ - "ède", - -12.589409828186035 - ], - [ - "▁serum", - -12.589590072631836 - ], - [ - "▁baseline", - -12.589765548706055 - ], - [ - "STER", - -12.589932441711426 - ], - [ - "▁ONLY", - -12.590052604675293 - ], - [ - "▁individuell", - -12.590086936950684 - ], - [ - "▁Ghi", - -12.590139389038086 - ], - [ - "▁Ruby", - -12.59020709991455 - ], - [ - "▁Chal", - -12.590241432189941 - ], - [ - "▁Vier", - -12.590261459350586 - ], - [ - "5.0", - -12.5903902053833 - ], - [ - "▁fog", - -12.590519905090332 - ], - [ - "esel", - -12.590557098388672 - ], - [ - "▁Python", - -12.590598106384277 - ], - [ - "▁urmează", - -12.590608596801758 - ], - [ - "▁trustworthy", - -12.590639114379883 - ], - [ - "hört", - -12.590729713439941 - ], - [ - "▁tâche", - -12.59078311920166 - ], - [ - "Patri", - -12.590799331665039 - ], - [ - "▁grind", - -12.590928077697754 - ], - [ - "▁Raven", - -12.590934753417969 - ], - [ - "▁poursuiv", - -12.590951919555664 - ], - [ - "▁simpli", - -12.591140747070312 - ], - [ - "▁echo", - -12.591165542602539 - ], - [ - "▁Attention", - -12.591313362121582 - ], - [ - "Against", - -12.591402053833008 - ], - [ - "GET", - -12.59148120880127 - ], - [ - "▁turistic", - -12.591535568237305 - ], - [ - "▁tenure", - -12.59158992767334 - ], - [ - "▁alimentaire", - -12.591651916503906 - ], - [ - "Who", - -12.59172248840332 - ], - [ - "▁ändern", - -12.591729164123535 - ], - [ - "▁rebound", - -12.591778755187988 - ], - [ - "grenze", - -12.591849327087402 - ], - [ - "▁Fame", - -12.592093467712402 - ], - [ - "▁Kick", - -12.592215538024902 - ], - [ - "▁Detail", - -12.59228801727295 - ], - [ - "▁Push", - -12.592308044433594 - ], - [ - "production", - -12.592430114746094 - ], - [ - "▁Candidates", - -12.59244441986084 - ], - [ - "▁reușit", - -12.592484474182129 - ], - [ - "istischen", - -12.592525482177734 - ], - [ - "lassung", - -12.592649459838867 - ], - [ - "▁Hann", - -12.592713356018066 - ], - [ - "espère", - -12.592965126037598 - ], - [ - "▁vergessen", - -12.593008041381836 - ], - [ - "▁smiling", - -12.593010902404785 - ], - [ - "▁devotion", - -12.593016624450684 - ], - [ - "▁pastry", - -12.593071937561035 - ], - [ - "Add", - -12.593390464782715 - ], - [ - "▁authorization", - -12.593494415283203 - ], - [ - "▁Suisse", - -12.593568801879883 - ], - [ - "▁Berkeley", - -12.593611717224121 - ], - [ - "▁Guild", - -12.593660354614258 - ], - [ - "▁choir", - -12.593748092651367 - ], - [ - "learning", - -12.593802452087402 - ], - [ - "▁Tanz", - -12.593894004821777 - ], - [ - "mardi", - -12.594076156616211 - ], - [ - "▁rezultatele", - -12.594191551208496 - ], - [ - "▁earrings", - -12.594218254089355 - ], - [ - "▁turbine", - -12.594223976135254 - ], - [ - "▁jeudi", - -12.594284057617188 - ], - [ - "terapie", - -12.594576835632324 - ], - [ - "regain", - -12.59461498260498 - ], - [ - "SET", - -12.594643592834473 - ], - [ - "▁Hände", - -12.594681739807129 - ], - [ - "▁Globe", - -12.594683647155762 - ], - [ - "frag", - -12.594775199890137 - ], - [ - "▁Treasury", - -12.594820976257324 - ], - [ - "▁hazardous", - -12.594820976257324 - ], - [ - "▁Fahrt", - -12.594928741455078 - ], - [ - "▁fulfilled", - -12.594966888427734 - ], - [ - "▁manga", - -12.594987869262695 - ], - [ - "▁composé", - -12.595067977905273 - ], - [ - "▁ABS", - -12.595132827758789 - ], - [ - "▁preced", - -12.595197677612305 - ], - [ - "▁beauté", - -12.595233917236328 - ], - [ - "▁interessant", - -12.59526252746582 - ], - [ - "▁lieber", - -12.595324516296387 - ], - [ - "▁Kö", - -12.595378875732422 - ], - [ - "EMS", - -12.595410346984863 - ], - [ - "FER", - -12.595413208007812 - ], - [ - "▁eure", - -12.595427513122559 - ], - [ - "▁plumber", - -12.595427513122559 - ], - [ - "Love", - -12.595463752746582 - ], - [ - "▁Marcus", - -12.595635414123535 - ], - [ - "▁registry", - -12.595637321472168 - ], - [ - "▁uncle", - -12.595696449279785 - ], - [ - "▁neuf", - -12.595728874206543 - ], - [ - "▁Fläche", - -12.59575080871582 - ], - [ - "▁restaur", - -12.595815658569336 - ], - [ - "▁noticeable", - -12.595833778381348 - ], - [ - "▁riches", - -12.595871925354004 - ], - [ - "occupy", - -12.596031188964844 - ], - [ - "▁hurricane", - -12.596031188964844 - ], - [ - "▁gespeichert", - -12.596033096313477 - ], - [ - "▁Bordeaux", - -12.596039772033691 - ], - [ - "▁Maj", - -12.59637451171875 - ], - [ - "Applied", - -12.596439361572266 - ], - [ - "▁compter", - -12.596575736999512 - ], - [ - "impact", - -12.59663200378418 - ], - [ - "▁Improve", - -12.596758842468262 - ], - [ - "▁Calif", - -12.596832275390625 - ], - [ - "▁desfășur", - -12.596939086914062 - ], - [ - "▁packaged", - -12.597001075744629 - ], - [ - "180", - -12.59703540802002 - ], - [ - "devenu", - -12.597042083740234 - ], - [ - "▁Battery", - -12.597243309020996 - ], - [ - "▁objection", - -12.597254753112793 - ], - [ - "▁anual", - -12.597305297851562 - ], - [ - "▁Landscape", - -12.59731674194336 - ], - [ - "IQ", - -12.597403526306152 - ], - [ - "grès", - -12.597586631774902 - ], - [ - "▁witnesses", - -12.597750663757324 - ], - [ - "enţial", - -12.597764015197754 - ], - [ - "▁plateau", - -12.597779273986816 - ], - [ - "▁bilete", - -12.59783935546875 - ], - [ - "▁Bronze", - -12.59786605834961 - ], - [ - "▁Kiss", - -12.597946166992188 - ], - [ - "▁Serge", - -12.598093032836914 - ], - [ - "atomic", - -12.598145484924316 - ], - [ - "▁renovated", - -12.59817886352539 - ], - [ - "player", - -12.598212242126465 - ], - [ - "▁dirig", - -12.598291397094727 - ], - [ - "▁Îm", - -12.598296165466309 - ], - [ - "▁plimb", - -12.59843635559082 - ], - [ - "▁ambassador", - -12.598455429077148 - ], - [ - "▁apropiat", - -12.598455429077148 - ], - [ - "▁adaug", - -12.598602294921875 - ], - [ - "ogenic", - -12.59872055053711 - ], - [ - "kämpfe", - -12.598779678344727 - ], - [ - "▁Hillary", - -12.598907470703125 - ], - [ - "yak", - -12.598942756652832 - ], - [ - "General", - -12.59925365447998 - ], - [ - "▁Zugang", - -12.599400520324707 - ], - [ - "▁fertil", - -12.599457740783691 - ], - [ - "incat", - -12.599536895751953 - ], - [ - "assessing", - -12.599587440490723 - ], - [ - "▁Cincinnati", - -12.59967041015625 - ], - [ - "▁convincing", - -12.599685668945312 - ], - [ - "sadly", - -12.59974479675293 - ], - [ - "kunde", - -12.599801063537598 - ], - [ - "ambul", - -12.599913597106934 - ], - [ - "▁familii", - -12.599974632263184 - ], - [ - "juri", - -12.60007095336914 - ], - [ - "ionen", - -12.600102424621582 - ], - [ - "▁Wirtschaft", - -12.600130081176758 - ], - [ - "contract", - -12.600135803222656 - ], - [ - "punem", - -12.600151062011719 - ], - [ - "handlung", - -12.600394248962402 - ], - [ - "▁fournir", - -12.600455284118652 - ], - [ - "▁Ambi", - -12.600663185119629 - ], - [ - "▁Isaac", - -12.600663185119629 - ], - [ - "▁praying", - -12.6007719039917 - ], - [ - "▁Italien", - -12.600848197937012 - ], - [ - "233", - -12.600850105285645 - ], - [ - "spawn", - -12.600913047790527 - ], - [ - "▁legii", - -12.60092544555664 - ], - [ - "▁zuvor", - -12.601018905639648 - ], - [ - "▁comune", - -12.601030349731445 - ], - [ - "official", - -12.601165771484375 - ], - [ - "144", - -12.601290702819824 - ], - [ - "izeaza", - -12.601329803466797 - ], - [ - "▁Keller", - -12.601372718811035 - ], - [ - "ORE", - -12.601378440856934 - ], - [ - "122", - -12.601485252380371 - ], - [ - "incurred", - -12.60150146484375 - ], - [ - "CHA", - -12.601579666137695 - ], - [ - "▁Herzen", - -12.601590156555176 - ], - [ - "▁reasoning", - -12.6016263961792 - ], - [ - "affaire", - -12.601849555969238 - ], - [ - "ooth", - -12.601890563964844 - ], - [ - "155", - -12.601998329162598 - ], - [ - "▁invented", - -12.602113723754883 - ], - [ - "▁Comun", - -12.602140426635742 - ], - [ - "zähl", - -12.602179527282715 - ], - [ - "geliefert", - -12.602212905883789 - ], - [ - "explorer", - -12.602213859558105 - ], - [ - "nect", - -12.602326393127441 - ], - [ - "▁mercredi", - -12.602408409118652 - ], - [ - "▁volonté", - -12.602408409118652 - ], - [ - "easy", - -12.602453231811523 - ], - [ - "▁feat", - -12.602490425109863 - ], - [ - "rented", - -12.602580070495605 - ], - [ - "▁converter", - -12.602592468261719 - ], - [ - "Verhältnis", - -12.602713584899902 - ], - [ - "▁Iceland", - -12.602792739868164 - ], - [ - "▁pretul", - -12.602933883666992 - ], - [ - "▁Vorstellung", - -12.602960586547852 - ], - [ - "▁hydrogen", - -12.603096008300781 - ], - [ - "▁pouvai", - -12.603097915649414 - ], - [ - "▁dawn", - -12.603153228759766 - ], - [ - "▁Georg", - -12.603269577026367 - ], - [ - "▁cautious", - -12.603367805480957 - ], - [ - "▁Pattern", - -12.603464126586914 - ], - [ - "▁Ox", - -12.603602409362793 - ], - [ - "▁decizie", - -12.603676795959473 - ], - [ - "REC", - -12.603889465332031 - ], - [ - "▁Mortgage", - -12.60393238067627 - ], - [ - "attributed", - -12.603973388671875 - ], - [ - "floor", - -12.603992462158203 - ], - [ - "▁Wichtig", - -12.604207992553711 - ], - [ - "enseignant", - -12.604265213012695 - ], - [ - "▁civilization", - -12.604302406311035 - ], - [ - "▁dispozitie", - -12.60450553894043 - ], - [ - "▁geographic", - -12.604543685913086 - ], - [ - "▁Kun", - -12.604607582092285 - ], - [ - "LIN", - -12.604679107666016 - ], - [ - "▁auzit", - -12.604707717895508 - ], - [ - "except", - -12.604761123657227 - ], - [ - "▁superbe", - -12.604904174804688 - ], - [ - "▁installé", - -12.605000495910645 - ], - [ - "▁Peninsula", - -12.605154037475586 - ], - [ - "▁norme", - -12.605164527893066 - ], - [ - "elul", - -12.60517406463623 - ], - [ - "▁Experten", - -12.605256080627441 - ], - [ - "expression", - -12.605295181274414 - ], - [ - "Christ", - -12.605320930480957 - ], - [ - "▁Fuel", - -12.605369567871094 - ], - [ - "▁muffin", - -12.605485916137695 - ], - [ - "▁lecteur", - -12.605521202087402 - ], - [ - "▁gifted", - -12.605589866638184 - ], - [ - "▁Japon", - -12.605602264404297 - ], - [ - "▁SSD", - -12.605644226074219 - ], - [ - "▁Calgary", - -12.605765342712402 - ], - [ - "▁hooked", - -12.605876922607422 - ], - [ - "▁Joan", - -12.605896949768066 - ], - [ - "▁tangible", - -12.606083869934082 - ], - [ - "FW", - -12.606225967407227 - ], - [ - "olli", - -12.6062593460083 - ], - [ - "▁Platinum", - -12.606376647949219 - ], - [ - "▁miniature", - -12.606392860412598 - ], - [ - "▁lump", - -12.606608390808105 - ], - [ - "ologische", - -12.60689926147461 - ], - [ - "▁Istanbul", - -12.606987953186035 - ], - [ - "▁Compar", - -12.607060432434082 - ], - [ - "tropic", - -12.607256889343262 - ], - [ - "KING", - -12.607279777526855 - ], - [ - "Präsident", - -12.607297897338867 - ], - [ - "▁fotografii", - -12.607303619384766 - ], - [ - "hoped", - -12.607451438903809 - ], - [ - "▁pâte", - -12.607601165771484 - ], - [ - "▁mercy", - -12.60760498046875 - ], - [ - "▁quiz", - -12.607619285583496 - ], - [ - "demonstrating", - -12.607678413391113 - ], - [ - "▁douce", - -12.607832908630371 - ], - [ - "▁Vest", - -12.607841491699219 - ], - [ - "▁Harvey", - -12.6082181930542 - ], - [ - "▁breit", - -12.608227729797363 - ], - [ - "▁Bereits", - -12.608291625976562 - ], - [ - "▁breakthrough", - -12.608316421508789 - ], - [ - "▁masterpiece", - -12.608320236206055 - ], - [ - "▁Chester", - -12.60838794708252 - ], - [ - "▁indiqué", - -12.608451843261719 - ], - [ - "hook", - -12.60857105255127 - ], - [ - "statutory", - -12.608596801757812 - ], - [ - "▁Direkt", - -12.608617782592773 - ], - [ - "▁specs", - -12.608708381652832 - ], - [ - "Drive", - -12.608725547790527 - ], - [ - "▁survivors", - -12.608826637268066 - ], - [ - "▁jackpot", - -12.608840942382812 - ], - [ - "▁garder", - -12.608872413635254 - ], - [ - "▁Geburtstag", - -12.60887336730957 - ], - [ - "145", - -12.608963966369629 - ], - [ - "▁Clay", - -12.609028816223145 - ], - [ - "▁WHO", - -12.60906982421875 - ], - [ - "▁Ellen", - -12.609393119812012 - ], - [ - "▁bonheur", - -12.609440803527832 - ], - [ - "▁hazards", - -12.609440803527832 - ], - [ - "▁Kaiser", - -12.609488487243652 - ], - [ - "▁tightly", - -12.609506607055664 - ], - [ - "Universitatea", - -12.609529495239258 - ], - [ - "▁rinse", - -12.609533309936523 - ], - [ - "▁passant", - -12.609640121459961 - ], - [ - "▁sânge", - -12.609832763671875 - ], - [ - "▁peuple", - -12.60983657836914 - ], - [ - "jungen", - -12.609975814819336 - ], - [ - "▁inappropriate", - -12.610054969787598 - ], - [ - "▁mitigate", - -12.610066413879395 - ], - [ - "MID", - -12.610221862792969 - ], - [ - "▁telecom", - -12.610297203063965 - ], - [ - "▁plaj", - -12.610316276550293 - ], - [ - "▁presupune", - -12.610361099243164 - ], - [ - "acco", - -12.61038875579834 - ], - [ - "expressing", - -12.610654830932617 - ], - [ - "▁Symphony", - -12.61066722869873 - ], - [ - "temperatur", - -12.610710144042969 - ], - [ - "▁activităţi", - -12.610800743103027 - ], - [ - "▁amended", - -12.610847473144531 - ], - [ - "▁rehab", - -12.610909461975098 - ], - [ - "▁sportiv", - -12.611004829406738 - ], - [ - "hotel", - -12.611031532287598 - ], - [ - "branche", - -12.61103630065918 - ], - [ - "▁Noch", - -12.611079216003418 - ], - [ - "▁1961", - -12.611238479614258 - ], - [ - "release", - -12.611359596252441 - ], - [ - "blaze", - -12.611381530761719 - ], - [ - "Adv", - -12.61139965057373 - ], - [ - "Line", - -12.611671447753906 - ], - [ - "▁financiare", - -12.61184310913086 - ], - [ - "▁chauffage", - -12.611919403076172 - ], - [ - "мо", - -12.61192512512207 - ], - [ - "schuhe", - -12.612035751342773 - ], - [ - "blé", - -12.612040519714355 - ], - [ - "▁Echo", - -12.612468719482422 - ], - [ - "▁remarks", - -12.61253547668457 - ], - [ - "scriu", - -12.612629890441895 - ], - [ - "Vir", - -12.612701416015625 - ], - [ - "War", - -12.61271858215332 - ], - [ - "atifs", - -12.613006591796875 - ], - [ - "RING", - -12.613082885742188 - ], - [ - "▁Instruction", - -12.613150596618652 - ], - [ - "▁verlassen", - -12.613155364990234 - ], - [ - "▁ergänz", - -12.613234519958496 - ], - [ - "▁Emil", - -12.613248825073242 - ], - [ - "▁empire", - -12.613263130187988 - ], - [ - "▁Einkauf", - -12.613306999206543 - ], - [ - "utigen", - -12.613329887390137 - ], - [ - "▁audition", - -12.613390922546387 - ], - [ - "travelled", - -12.61347484588623 - ], - [ - "ло", - -12.613579750061035 - ], - [ - "▁infinite", - -12.613720893859863 - ], - [ - "▁Lieblings", - -12.613749504089355 - ], - [ - "▁vân", - -12.613754272460938 - ], - [ - "▁spinning", - -12.613778114318848 - ], - [ - "converting", - -12.614031791687012 - ], - [ - "▁uncertain", - -12.61415958404541 - ], - [ - "restul", - -12.614168167114258 - ], - [ - "▁colourful", - -12.61420726776123 - ], - [ - "▁accountant", - -12.614338874816895 - ], - [ - "bourg", - -12.614532470703125 - ], - [ - "▁structuri", - -12.614538192749023 - ], - [ - "▁Booking", - -12.61465835571289 - ], - [ - "intéresse", - -12.614683151245117 - ], - [ - "▁coordinated", - -12.614753723144531 - ], - [ - "▁precaution", - -12.61497688293457 - ], - [ - "▁Cheese", - -12.615015983581543 - ], - [ - "▁surfing", - -12.615192413330078 - ], - [ - "▁souffr", - -12.61524486541748 - ], - [ - "▁Menu", - -12.615447998046875 - ], - [ - "▁arthritis", - -12.615593910217285 - ], - [ - "▁headphones", - -12.615601539611816 - ], - [ - "▁upgrading", - -12.615602493286133 - ], - [ - "▁apparel", - -12.615653038024902 - ], - [ - "▁Haushalt", - -12.61572551727295 - ], - [ - "▁Personally", - -12.615815162658691 - ], - [ - "▁insane", - -12.615950584411621 - ], - [ - "▁fonduri", - -12.616083145141602 - ], - [ - "▁entier", - -12.616239547729492 - ], - [ - "▁Herbst", - -12.616264343261719 - ], - [ - "▁cyclist", - -12.616331100463867 - ], - [ - "▁filmmaker", - -12.616741180419922 - ], - [ - "▁Portuguese", - -12.616829872131348 - ], - [ - "▁nominee", - -12.616851806640625 - ], - [ - "▁Yang", - -12.616857528686523 - ], - [ - "▁slate", - -12.616943359375 - ], - [ - "▁entièrement", - -12.616974830627441 - ], - [ - "▁Umgang", - -12.617049217224121 - ], - [ - "shifted", - -12.617135047912598 - ], - [ - "▁défaut", - -12.617138862609863 - ], - [ - "heiz", - -12.617246627807617 - ], - [ - "▁Seal", - -12.617379188537598 - ], - [ - "▁servicing", - -12.617451667785645 - ], - [ - "marketing", - -12.617562294006348 - ], - [ - "▁demandé", - -12.617755889892578 - ], - [ - "TING", - -12.617841720581055 - ], - [ - "▁modifier", - -12.617907524108887 - ], - [ - "lysis", - -12.617966651916504 - ], - [ - "▁suplimentare", - -12.618117332458496 - ], - [ - "OTHER", - -12.618359565734863 - ], - [ - "Graph", - -12.618379592895508 - ], - [ - "▁coincide", - -12.618448257446289 - ], - [ - "governed", - -12.618598937988281 - ], - [ - "▁locking", - -12.618638038635254 - ], - [ - "▁Properties", - -12.618685722351074 - ], - [ - "▁Panama", - -12.61876392364502 - ], - [ - "▁Coupe", - -12.618846893310547 - ], - [ - "songwriter", - -12.618978500366211 - ], - [ - "exhibited", - -12.618988990783691 - ], - [ - "▁semnificativ", - -12.618995666503906 - ], - [ - "▁purchaser", - -12.619004249572754 - ], - [ - "▁puff", - -12.619097709655762 - ], - [ - "Back", - -12.619105339050293 - ], - [ - "fragt", - -12.61919116973877 - ], - [ - "▁deputy", - -12.619362831115723 - ], - [ - "▁revien", - -12.619556427001953 - ], - [ - "▁Christine", - -12.619558334350586 - ], - [ - "▁Cities", - -12.619573593139648 - ], - [ - "▁Charakter", - -12.61961555480957 - ], - [ - "atteindre", - -12.619625091552734 - ], - [ - "▁fou", - -12.619635581970215 - ], - [ - "▁obligatoire", - -12.619643211364746 - ], - [ - "INA", - -12.619791030883789 - ], - [ - "etc", - -12.6198148727417 - ], - [ - "▁newborn", - -12.620091438293457 - ], - [ - "▁explicitly", - -12.620116233825684 - ], - [ - "simplest", - -12.620203018188477 - ], - [ - "▁plateforme", - -12.62023639678955 - ], - [ - "ordinate", - -12.620291709899902 - ], - [ - "displaying", - -12.620346069335938 - ], - [ - "▁messy", - -12.620464324951172 - ], - [ - "gespielt", - -12.620466232299805 - ], - [ - "▁electron", - -12.62061882019043 - ], - [ - "▁Dreh", - -12.620796203613281 - ], - [ - "▁ambient", - -12.620976448059082 - ], - [ - "340", - -12.620979309082031 - ], - [ - "▁directive", - -12.62109375 - ], - [ - "▁Vall", - -12.621152877807617 - ], - [ - "ookie", - -12.621206283569336 - ], - [ - "▁wasted", - -12.621304512023926 - ], - [ - "CIS", - -12.621367454528809 - ], - [ - "lude", - -12.621378898620605 - ], - [ - "rach", - -12.621472358703613 - ], - [ - "▁gasest", - -12.62150764465332 - ], - [ - "▁miros", - -12.62150764465332 - ], - [ - "transforming", - -12.621536254882812 - ], - [ - "▁Milwaukee", - -12.621787071228027 - ], - [ - "▁uncommon", - -12.621789932250977 - ], - [ - "▁tableau", - -12.621841430664062 - ], - [ - "geräte", - -12.621952056884766 - ], - [ - "ophil", - -12.622139930725098 - ], - [ - "▁Jeep", - -12.62220287322998 - ], - [ - "▁wreck", - -12.622422218322754 - ], - [ - "LAND", - -12.622434616088867 - ], - [ - "attach", - -12.622566223144531 - ], - [ - "▁Panther", - -12.622634887695312 - ], - [ - "9:30", - -12.622777938842773 - ], - [ - "▁induce", - -12.622974395751953 - ], - [ - "▁privest", - -12.623006820678711 - ], - [ - "Ident", - -12.623047828674316 - ], - [ - "▁illnesses", - -12.623076438903809 - ], - [ - "▁inhabitants", - -12.623138427734375 - ], - [ - "▁fehlen", - -12.623357772827148 - ], - [ - "obtenu", - -12.623391151428223 - ], - [ - "▁gegründet", - -12.623655319213867 - ], - [ - "ARA", - -12.623711585998535 - ], - [ - "3-2", - -12.623835563659668 - ], - [ - "▁milliards", - -12.623968124389648 - ], - [ - "▁Bü", - -12.624001502990723 - ], - [ - "▁angegeben", - -12.624102592468262 - ], - [ - "TUR", - -12.624143600463867 - ], - [ - "▁arab", - -12.624166488647461 - ], - [ - "▁Scientist", - -12.624275207519531 - ], - [ - "▁minut", - -12.624394416809082 - ], - [ - "▁beast", - -12.624481201171875 - ], - [ - "▁accidentally", - -12.624573707580566 - ], - [ - "WN", - -12.624579429626465 - ], - [ - "▁Ralph", - -12.624588966369629 - ], - [ - "hängt", - -12.62462329864502 - ], - [ - "▁Erik", - -12.624639511108398 - ], - [ - "▁différent", - -12.624711990356445 - ], - [ - "▁conformitate", - -12.624842643737793 - ], - [ - "thriving", - -12.624900817871094 - ], - [ - "▁Piece", - -12.625123023986816 - ], - [ - "plasm", - -12.625152587890625 - ], - [ - "▁erwarten", - -12.62520980834961 - ], - [ - "owski", - -12.62523365020752 - ], - [ - "prayed", - -12.625293731689453 - ], - [ - "three", - -12.625542640686035 - ], - [ - "▁soundtrack", - -12.625651359558105 - ], - [ - "guru", - -12.625709533691406 - ], - [ - "▁cracked", - -12.625710487365723 - ], - [ - "▁adh", - -12.625823020935059 - ], - [ - "▁maître", - -12.625834465026855 - ], - [ - "▁Oberfläche", - -12.62585735321045 - ], - [ - "▁crab", - -12.625886917114258 - ], - [ - "▁Foster", - -12.625944137573242 - ], - [ - "▁gemütlich", - -12.626145362854004 - ], - [ - "SIC", - -12.626226425170898 - ], - [ - "ième", - -12.626298904418945 - ], - [ - "▁Few", - -12.626330375671387 - ], - [ - "gérer", - -12.626360893249512 - ], - [ - "2006", - -12.626456260681152 - ], - [ - "cool", - -12.626498222351074 - ], - [ - "▁dispune", - -12.626523971557617 - ], - [ - "recevoir", - -12.626577377319336 - ], - [ - "▁Bak", - -12.626585960388184 - ], - [ - "▁steer", - -12.62659740447998 - ], - [ - "ICS", - -12.626733779907227 - ], - [ - "▁Brett", - -12.626733779907227 - ], - [ - "▁downside", - -12.626751899719238 - ], - [ - "▁residency", - -12.62678050994873 - ], - [ - "important", - -12.626991271972656 - ], - [ - "ubb", - -12.627073287963867 - ], - [ - "mony", - -12.627259254455566 - ], - [ - "▁leasing", - -12.627341270446777 - ], - [ - "▁Gir", - -12.62735366821289 - ], - [ - "▁Biology", - -12.627364158630371 - ], - [ - "▁Colin", - -12.627463340759277 - ], - [ - "▁complicat", - -12.627775192260742 - ], - [ - "▁regroup", - -12.627899169921875 - ], - [ - "SPA", - -12.627950668334961 - ], - [ - "▁Veranstaltungen", - -12.627986907958984 - ], - [ - "convicted", - -12.628019332885742 - ], - [ - "▁Wonderful", - -12.628636360168457 - ], - [ - "züge", - -12.628799438476562 - ], - [ - "yton", - -12.628813743591309 - ], - [ - "EMENT", - -12.628887176513672 - ], - [ - "▁bent", - -12.62893009185791 - ], - [ - "heben", - -12.629231452941895 - ], - [ - "▁Sustainable", - -12.62926959991455 - ], - [ - "▁Newcastle", - -12.629276275634766 - ], - [ - "mother", - -12.629507064819336 - ], - [ - "▁eighth", - -12.629572868347168 - ], - [ - "▁atmosfer", - -12.629582405090332 - ], - [ - "expériment", - -12.629584312438965 - ], - [ - "▁Interest", - -12.629608154296875 - ], - [ - "▁successes", - -12.62964153289795 - ], - [ - "▁preschool", - -12.629802703857422 - ], - [ - "▁Funeral", - -12.629900932312012 - ], - [ - "blast", - -12.630083084106445 - ], - [ - "▁dimensiuni", - -12.630125999450684 - ], - [ - "▁Dow", - -12.630167007446289 - ], - [ - "▁pulp", - -12.63022518157959 - ], - [ - "▁Heather", - -12.630356788635254 - ], - [ - "▁erstellen", - -12.63044261932373 - ], - [ - "locating", - -12.630470275878906 - ], - [ - "direct", - -12.630475997924805 - ], - [ - "▁tractor", - -12.630494117736816 - ], - [ - "growing", - -12.630576133728027 - ], - [ - "▁inventor", - -12.630587577819824 - ], - [ - "ASA", - -12.63060188293457 - ], - [ - "insta", - -12.630732536315918 - ], - [ - "yana", - -12.63082504272461 - ], - [ - "▁squash", - -12.630839347839355 - ], - [ - "▁Basketball", - -12.630853652954102 - ], - [ - "AMA", - -12.631041526794434 - ], - [ - "insel", - -12.631093978881836 - ], - [ - "▁Fisch", - -12.631138801574707 - ], - [ - "▁metaphor", - -12.631221771240234 - ], - [ - "TES", - -12.631304740905762 - ], - [ - "▁conduce", - -12.631308555603027 - ], - [ - "stehende", - -12.631370544433594 - ], - [ - "▁FAQ", - -12.631475448608398 - ], - [ - "▁bezeichnet", - -12.631658554077148 - ], - [ - "wendung", - -12.631706237792969 - ], - [ - "▁Commonwealth", - -12.631776809692383 - ], - [ - "▁bait", - -12.631793975830078 - ], - [ - "▁Umsetzung", - -12.631834030151367 - ], - [ - "▁Equi", - -12.632063865661621 - ], - [ - "▁validity", - -12.632109642028809 - ], - [ - "Off", - -12.63222599029541 - ], - [ - "▁produsul", - -12.632314682006836 - ], - [ - "▁sensory", - -12.632363319396973 - ], - [ - "▁Imperial", - -12.632501602172852 - ], - [ - "▁Dick", - -12.632542610168457 - ], - [ - "kampf", - -12.632596969604492 - ], - [ - "▁Arzt", - -12.63267993927002 - ], - [ - "▁Reason", - -12.63267993927002 - ], - [ - "ITS", - -12.63270092010498 - ], - [ - "URL", - -12.632720947265625 - ], - [ - "demonstrates", - -12.632725715637207 - ], - [ - "▁dépend", - -12.632753372192383 - ], - [ - "NAS", - -12.632970809936523 - ], - [ - "▁funcți", - -12.633031845092773 - ], - [ - "▁vulnerability", - -12.633085250854492 - ], - [ - "2.7", - -12.633143424987793 - ], - [ - "layered", - -12.633152961730957 - ], - [ - "escence", - -12.633206367492676 - ], - [ - "▁République", - -12.633346557617188 - ], - [ - "▁Lust", - -12.633377075195312 - ], - [ - "▁sute", - -12.633381843566895 - ], - [ - "▁autonomous", - -12.633661270141602 - ], - [ - "Biserica", - -12.633662223815918 - ], - [ - "▁Chuck", - -12.633749961853027 - ], - [ - "▁protéger", - -12.6339750289917 - ], - [ - "rrell", - -12.634061813354492 - ], - [ - "▁Schaden", - -12.634062767028809 - ], - [ - "prennent", - -12.634100914001465 - ], - [ - "maß", - -12.6343412399292 - ], - [ - "OV", - -12.634453773498535 - ], - [ - "▁Wake", - -12.63450813293457 - ], - [ - "produire", - -12.634635925292969 - ], - [ - "▁Elder", - -12.634749412536621 - ], - [ - "Max", - -12.634839057922363 - ], - [ - "▁Chemistry", - -12.634918212890625 - ], - [ - "▁gourmet", - -12.634918212890625 - ], - [ - "erri", - -12.634967803955078 - ], - [ - "ени", - -12.635085105895996 - ], - [ - "▁Gru", - -12.635147094726562 - ], - [ - "▁vorbit", - -12.635408401489258 - ], - [ - "▁precede", - -12.635455131530762 - ], - [ - "▁randomly", - -12.635489463806152 - ], - [ - "▁efecte", - -12.63563060760498 - ], - [ - "▁calatori", - -12.635668754577637 - ], - [ - "▁Poor", - -12.635765075683594 - ], - [ - "List", - -12.635781288146973 - ], - [ - "▁regula", - -12.635964393615723 - ], - [ - "▁organisé", - -12.636028289794922 - ], - [ - "Div", - -12.636076927185059 - ], - [ - "▁volunteering", - -12.636423110961914 - ], - [ - "▁horr", - -12.636449813842773 - ], - [ - "9.99", - -12.636487007141113 - ], - [ - "▁UPS", - -12.636513710021973 - ], - [ - "▁englez", - -12.63652229309082 - ], - [ - "▁Eden", - -12.636523246765137 - ], - [ - "GG", - -12.63659954071045 - ], - [ - "▁typing", - -12.63664722442627 - ], - [ - "Likewise", - -12.636700630187988 - ], - [ - "▁stabilize", - -12.636737823486328 - ], - [ - "physio", - -12.636747360229492 - ], - [ - "ми", - -12.636785507202148 - ], - [ - "▁protagonist", - -12.636808395385742 - ], - [ - "▁velvet", - -12.636812210083008 - ], - [ - "schrank", - -12.636861801147461 - ], - [ - "▁Allah", - -12.63693618774414 - ], - [ - "▁forefront", - -12.636968612670898 - ], - [ - "▁salaries", - -12.637001037597656 - ], - [ - "▁prediction", - -12.637041091918945 - ], - [ - "▁Advent", - -12.637182235717773 - ], - [ - "politik", - -12.637280464172363 - ], - [ - "▁Heimat", - -12.637350082397461 - ], - [ - "ducted", - -12.637380599975586 - ], - [ - "ASH", - -12.637386322021484 - ], - [ - "▁Mold", - -12.637773513793945 - ], - [ - "▁publi", - -12.63784122467041 - ], - [ - "▁Vil", - -12.637892723083496 - ], - [ - "▁stu", - -12.637925148010254 - ], - [ - "INTE", - -12.638032913208008 - ], - [ - "▁fave", - -12.638151168823242 - ], - [ - "▁grounded", - -12.638175010681152 - ], - [ - "▁Anything", - -12.638184547424316 - ], - [ - "vik", - -12.638481140136719 - ], - [ - "Bank", - -12.63853645324707 - ], - [ - "deserved", - -12.638550758361816 - ], - [ - "machen", - -12.63874626159668 - ], - [ - "▁rugged", - -12.638751029968262 - ], - [ - "▁Nest", - -12.638901710510254 - ], - [ - "▁profund", - -12.639043807983398 - ], - [ - "▁quantum", - -12.639067649841309 - ], - [ - "▁funcționa", - -12.639118194580078 - ], - [ - "klu", - -12.639158248901367 - ], - [ - "▁consulter", - -12.63917350769043 - ], - [ - "MED", - -12.639286994934082 - ], - [ - "▁câştig", - -12.639334678649902 - ], - [ - "▁săptămâni", - -12.639334678649902 - ], - [ - "questioned", - -12.639517784118652 - ], - [ - "▁Trop", - -12.639530181884766 - ], - [ - "▁convo", - -12.639533042907715 - ], - [ - "▁sparkling", - -12.639533996582031 - ], - [ - "▁specialise", - -12.639566421508789 - ], - [ - "▁pancake", - -12.639726638793945 - ], - [ - "habitude", - -12.639727592468262 - ], - [ - "phal", - -12.640009880065918 - ], - [ - "▁Roche", - -12.640158653259277 - ], - [ - "▁personalities", - -12.640250205993652 - ], - [ - "▁Venice", - -12.640308380126953 - ], - [ - "▁comerciale", - -12.640379905700684 - ], - [ - "▁wounded", - -12.64075756072998 - ], - [ - "▁oraş", - -12.640864372253418 - ], - [ - "▁Pepper", - -12.641044616699219 - ], - [ - "▁Tourist", - -12.641094207763672 - ], - [ - "▁Mull", - -12.64116382598877 - ], - [ - "▁dignity", - -12.641234397888184 - ], - [ - "▁Fixed", - -12.641291618347168 - ], - [ - "çant", - -12.64130687713623 - ], - [ - "▁spectator", - -12.641402244567871 - ], - [ - "▁somn", - -12.641685485839844 - ], - [ - "▁ständig", - -12.641820907592773 - ], - [ - "▁resilience", - -12.641866683959961 - ], - [ - "▁Malta", - -12.642251014709473 - ], - [ - "▁problemele", - -12.642253875732422 - ], - [ - "▁Martha", - -12.642254829406738 - ], - [ - "▁extern", - -12.642267227172852 - ], - [ - "embre", - -12.642379760742188 - ], - [ - "▁médical", - -12.642526626586914 - ], - [ - "fordern", - -12.64256477355957 - ], - [ - "nji", - -12.642592430114746 - ], - [ - "▁aboard", - -12.642740249633789 - ], - [ - "▁sidewalk", - -12.642759323120117 - ], - [ - "WIN", - -12.642775535583496 - ], - [ - "▁Bobby", - -12.642842292785645 - ], - [ - "▁umfangreiche", - -12.642876625061035 - ], - [ - "leid", - -12.64292049407959 - ], - [ - "▁compens", - -12.642967224121094 - ], - [ - "▁juge", - -12.64299488067627 - ], - [ - "gerufen", - -12.64311408996582 - ], - [ - "▁médicament", - -12.643135070800781 - ], - [ - "▁1918", - -12.643155097961426 - ], - [ - "▁blanche", - -12.643163681030273 - ], - [ - "▁pleasing", - -12.643220901489258 - ], - [ - "▁propria", - -12.643471717834473 - ], - [ - "ergebnisse", - -12.643503189086914 - ], - [ - "▁retrouv", - -12.643571853637695 - ], - [ - "urteil", - -12.643592834472656 - ], - [ - "▁Draft", - -12.64361572265625 - ], - [ - "▁concluzi", - -12.643671035766602 - ], - [ - "centralized", - -12.643789291381836 - ], - [ - "▁Hannah", - -12.64382266998291 - ], - [ - "grija", - -12.64392375946045 - ], - [ - "▁Exercise", - -12.643972396850586 - ], - [ - "RAL", - -12.644001960754395 - ], - [ - "creme", - -12.64408016204834 - ], - [ - "High", - -12.644126892089844 - ], - [ - "clude", - -12.644131660461426 - ], - [ - "Considering", - -12.644208908081055 - ], - [ - "▁Guarantee", - -12.644404411315918 - ], - [ - "▁cuptor", - -12.644436836242676 - ], - [ - "ivität", - -12.64468002319336 - ], - [ - "▁Southwest", - -12.644882202148438 - ], - [ - "▁vivant", - -12.644890785217285 - ], - [ - "Your", - -12.64498519897461 - ], - [ - "▁Stunde", - -12.645003318786621 - ], - [ - "▁Ethernet", - -12.645040512084961 - ], - [ - "angebote", - -12.645078659057617 - ], - [ - "▁Sage", - -12.645271301269531 - ], - [ - "▁Boeing", - -12.645295143127441 - ], - [ - "▁$300", - -12.645381927490234 - ], - [ - "2-4", - -12.64546012878418 - ], - [ - "▁nécessit", - -12.645516395568848 - ], - [ - "▁ferment", - -12.645599365234375 - ], - [ - "▁Anmeldung", - -12.64567756652832 - ], - [ - "▁exhausted", - -12.645758628845215 - ], - [ - "▁Schloss", - -12.645772933959961 - ], - [ - "▁Replacement", - -12.645859718322754 - ], - [ - "▁Aussi", - -12.645933151245117 - ], - [ - "jection", - -12.646127700805664 - ], - [ - "978", - -12.64615535736084 - ], - [ - "▁siège", - -12.646258354187012 - ], - [ - "crest", - -12.646310806274414 - ], - [ - "▁jumatate", - -12.646312713623047 - ], - [ - "effizient", - -12.646317481994629 - ], - [ - "▁colaborare", - -12.6464262008667 - ], - [ - "HQ", - -12.646615028381348 - ], - [ - "130", - -12.646695137023926 - ], - [ - "culaire", - -12.646907806396484 - ], - [ - "▁Jamaica", - -12.646952629089355 - ], - [ - "▁cardboard", - -12.64731216430664 - ], - [ - "▁technische", - -12.64731502532959 - ], - [ - "▁cereri", - -12.647507667541504 - ], - [ - "▁contradict", - -12.647570610046387 - ], - [ - "▁irrigation", - -12.647586822509766 - ], - [ - "Nume", - -12.64765739440918 - ], - [ - "▁Bier", - -12.647714614868164 - ], - [ - "▁livrare", - -12.647903442382812 - ], - [ - "▁reservoir", - -12.647906303405762 - ], - [ - "vâr", - -12.648130416870117 - ], - [ - "▁galben", - -12.648213386535645 - ], - [ - "▁Geneva", - -12.648303985595703 - ], - [ - "▁lightning", - -12.648418426513672 - ], - [ - "wished", - -12.64842414855957 - ], - [ - "▁Blind", - -12.648481369018555 - ], - [ - "Interested", - -12.648499488830566 - ], - [ - "▁Primări", - -12.648627281188965 - ], - [ - "anthropo", - -12.648954391479492 - ], - [ - "▁Transaction", - -12.648961067199707 - ], - [ - "▁marcat", - -12.648971557617188 - ], - [ - "▁gelegen", - -12.649077415466309 - ], - [ - "▁contemporain", - -12.649182319641113 - ], - [ - "▁politică", - -12.649182319641113 - ], - [ - "▁1948", - -12.64928150177002 - ], - [ - "▁Mik", - -12.649287223815918 - ], - [ - "▁preţ", - -12.649310111999512 - ], - [ - "moor", - -12.649312973022461 - ], - [ - "ANN", - -12.649432182312012 - ], - [ - "▁constructive", - -12.649454116821289 - ], - [ - "konzept", - -12.649502754211426 - ], - [ - "▁entendu", - -12.649511337280273 - ], - [ - "▁Genesis", - -12.649541854858398 - ], - [ - "arzt", - -12.649581909179688 - ], - [ - "▁Allgemein", - -12.64970874786377 - ], - [ - "▁Derby", - -12.649725914001465 - ], - [ - "Class", - -12.649762153625488 - ], - [ - "▁$12", - -12.649770736694336 - ], - [ - "▁Tube", - -12.6498441696167 - ], - [ - "▁Contribu", - -12.649847030639648 - ], - [ - "▁HAVE", - -12.649860382080078 - ], - [ - "▁oxide", - -12.64986515045166 - ], - [ - "▁producator", - -12.649941444396973 - ], - [ - "▁Bench", - -12.650132179260254 - ], - [ - "▁comprehend", - -12.650139808654785 - ], - [ - "▁Damen", - -12.650494575500488 - ], - [ - "▁Garant", - -12.65056037902832 - ], - [ - "▁disappointing", - -12.650614738464355 - ], - [ - "▁réalisée", - -12.650693893432617 - ], - [ - "▁comportement", - -12.65072250366211 - ], - [ - "▁clash", - -12.650753021240234 - ], - [ - "▁curry", - -12.65076732635498 - ], - [ - "▁Lebanon", - -12.65078067779541 - ], - [ - "▁Romaniei", - -12.650784492492676 - ], - [ - "▁reprise", - -12.650840759277344 - ], - [ - "▁perceive", - -12.65095329284668 - ], - [ - "▁weaknesses", - -12.65101146697998 - ], - [ - "▁aminti", - -12.651057243347168 - ], - [ - "▁Concern", - -12.651103973388672 - ], - [ - "shadow", - -12.651310920715332 - ], - [ - "▁basin", - -12.651311874389648 - ], - [ - "moral", - -12.652063369750977 - ], - [ - "▁Hughes", - -12.652101516723633 - ], - [ - "Psych", - -12.652266502380371 - ], - [ - "▁Lieferung", - -12.65227222442627 - ], - [ - "▁serrurier", - -12.652379035949707 - ], - [ - "ussi", - -12.652386665344238 - ], - [ - "▁timpului", - -12.6524658203125 - ], - [ - "üm", - -12.652629852294922 - ], - [ - "▁Vladimir", - -12.652701377868652 - ], - [ - "▁Jag", - -12.65279483795166 - ], - [ - "▁verific", - -12.652849197387695 - ], - [ - "▁Pru", - -12.652894020080566 - ], - [ - "▁Laut", - -12.653285026550293 - ], - [ - "ITA", - -12.653287887573242 - ], - [ - "usually", - -12.653294563293457 - ], - [ - "▁carrière", - -12.65341854095459 - ], - [ - "▁extracted", - -12.653663635253906 - ], - [ - "kultur", - -12.653679847717285 - ], - [ - "öpfe", - -12.653932571411133 - ], - [ - "▁rejection", - -12.654016494750977 - ], - [ - "▁Hydr", - -12.654062271118164 - ], - [ - "▁informaţii", - -12.654098510742188 - ], - [ - "▁tolerate", - -12.654122352600098 - ], - [ - "▁cinéma", - -12.654302597045898 - ], - [ - "traumatic", - -12.654305458068848 - ], - [ - "produkt", - -12.654450416564941 - ], - [ - "▁Contest", - -12.654560089111328 - ], - [ - "lotte", - -12.654570579528809 - ], - [ - "▁Pension", - -12.65461254119873 - ], - [ - "▁Advertising", - -12.654623985290527 - ], - [ - "▁payout", - -12.654772758483887 - ], - [ - "▁Amanda", - -12.65481185913086 - ], - [ - "Elect", - -12.65485668182373 - ], - [ - "▁interiorul", - -12.654996871948242 - ], - [ - "stay", - -12.655348777770996 - ], - [ - "▁feminine", - -12.655352592468262 - ], - [ - "▁întâmplă", - -12.655437469482422 - ], - [ - "▁insult", - -12.65562915802002 - ], - [ - "▁chocolat", - -12.65567398071289 - ], - [ - "▁noroc", - -12.655750274658203 - ], - [ - "▁centr", - -12.655781745910645 - ], - [ - "▁Bühne", - -12.655858039855957 - ], - [ - "mighty", - -12.6558837890625 - ], - [ - "▁Buddha", - -12.655908584594727 - ], - [ - "▁parental", - -12.655997276306152 - ], - [ - "storm", - -12.656451225280762 - ], - [ - "recurring", - -12.6565523147583 - ], - [ - "▁luxe", - -12.656588554382324 - ], - [ - "niște", - -12.656728744506836 - ], - [ - "cuit", - -12.656839370727539 - ], - [ - "▁ausgewählt", - -12.656880378723145 - ], - [ - "▁dumb", - -12.657047271728516 - ], - [ - "IPS", - -12.657127380371094 - ], - [ - "▁Thir", - -12.65717887878418 - ], - [ - "Definitely", - -12.657195091247559 - ], - [ - "▁hilarious", - -12.657195091247559 - ], - [ - "▁rainbow", - -12.657231330871582 - ], - [ - "▁Bravo", - -12.657251358032227 - ], - [ - "▁entstanden", - -12.657259941101074 - ], - [ - "itorul", - -12.657269477844238 - ], - [ - "▁prosperity", - -12.657299041748047 - ], - [ - "▁Bord", - -12.657336235046387 - ], - [ - "▁familiei", - -12.657363891601562 - ], - [ - "▁scade", - -12.657425880432129 - ], - [ - "wöhn", - -12.657426834106445 - ], - [ - "▁ingrediente", - -12.65743637084961 - ], - [ - "RAD", - -12.657441139221191 - ], - [ - "▁tăi", - -12.657472610473633 - ], - [ - "bours", - -12.65747356414795 - ], - [ - "ATI", - -12.657540321350098 - ], - [ - "▁Blake", - -12.65761661529541 - ], - [ - "▁Implement", - -12.657712936401367 - ], - [ - "▁Beziehung", - -12.657838821411133 - ], - [ - "finanz", - -12.657953262329102 - ], - [ - "intestin", - -12.658513069152832 - ], - [ - "ließen", - -12.658535957336426 - ], - [ - "▁récent", - -12.658594131469727 - ], - [ - "▁laminate", - -12.658692359924316 - ], - [ - "▁Hör", - -12.65876579284668 - ], - [ - "▁personnalisé", - -12.658804893493652 - ], - [ - "edel", - -12.65890121459961 - ], - [ - "▁advertisement", - -12.658902168273926 - ], - [ - "▁pinterest", - -12.658921241760254 - ], - [ - "185", - -12.659058570861816 - ], - [ - "identité", - -12.65938949584961 - ], - [ - "▁Brick", - -12.659408569335938 - ], - [ - "Glu", - -12.65941047668457 - ], - [ - "▁attendant", - -12.659571647644043 - ], - [ - "▁Flip", - -12.659614562988281 - ], - [ - "attracting", - -12.659662246704102 - ], - [ - "functional", - -12.659703254699707 - ], - [ - "conceived", - -12.659772872924805 - ], - [ - "▁summarize", - -12.659773826599121 - ], - [ - "adjusting", - -12.659809112548828 - ], - [ - "CAL", - -12.660041809082031 - ], - [ - "▁Operating", - -12.660076141357422 - ], - [ - "zzi", - -12.66008472442627 - ], - [ - "▁Rover", - -12.6603364944458 - ], - [ - "▁versuchen", - -12.6603364944458 - ], - [ - "▁articulate", - -12.660600662231445 - ], - [ - "▁privé", - -12.660614013671875 - ], - [ - "▁consequent", - -12.660663604736328 - ], - [ - "EAT", - -12.660690307617188 - ], - [ - "▁Marsh", - -12.660696983337402 - ], - [ - "▁teenage", - -12.660717964172363 - ], - [ - "▁Renaissance", - -12.660740852355957 - ], - [ - "▁furnizor", - -12.660883903503418 - ], - [ - "▁Desert", - -12.660894393920898 - ], - [ - "unicipiului", - -12.66104793548584 - ], - [ - "▁ulterior", - -12.661065101623535 - ], - [ - "▁Ebene", - -12.661280632019043 - ], - [ - "▁monkey", - -12.661351203918457 - ], - [ - "▁enclosed", - -12.661389350891113 - ], - [ - "▁profitability", - -12.66139030456543 - ], - [ - "▁Evolution", - -12.661628723144531 - ], - [ - "▁adica", - -12.661670684814453 - ], - [ - "▁Structure", - -12.661709785461426 - ], - [ - "▁primer", - -12.661761283874512 - ], - [ - "▁asigură", - -12.662001609802246 - ], - [ - "▁Manuel", - -12.662220001220703 - ], - [ - "polita", - -12.662267684936523 - ], - [ - "▁Portable", - -12.662286758422852 - ], - [ - "fecți", - -12.662413597106934 - ], - [ - "▁obscure", - -12.662424087524414 - ], - [ - "▁Atlas", - -12.662436485290527 - ], - [ - "fährt", - -12.662679672241211 - ], - [ - "▁clinician", - -12.662837982177734 - ], - [ - "fuhr", - -12.66310977935791 - ], - [ - "▁matériaux", - -12.663113594055176 - ], - [ - "écrire", - -12.663142204284668 - ], - [ - "▁suspicious", - -12.6632080078125 - ], - [ - "pore", - -12.663263320922852 - ], - [ - "▁outdated", - -12.663304328918457 - ], - [ - "▁Mädchen", - -12.663328170776367 - ], - [ - "rcis", - -12.663420677185059 - ], - [ - "nicht", - -12.663463592529297 - ], - [ - "holding", - -12.663561820983887 - ], - [ - "▁heavier", - -12.66366195678711 - ], - [ - "ezimal", - -12.663960456848145 - ], - [ - "▁silicone", - -12.66397476196289 - ], - [ - "punerea", - -12.664108276367188 - ], - [ - "▁begeistert", - -12.664237976074219 - ], - [ - "2004", - -12.664283752441406 - ], - [ - "▁predecessor", - -12.664299011230469 - ], - [ - "▁overlap", - -12.664369583129883 - ], - [ - "▁digging", - -12.664376258850098 - ], - [ - "▁Upgrade", - -12.664407730102539 - ], - [ - "▁interesat", - -12.664543151855469 - ], - [ - "▁spinach", - -12.66456127166748 - ], - [ - "▁politice", - -12.664626121520996 - ], - [ - "activity", - -12.664831161499023 - ], - [ - "▁Rating", - -12.66484546661377 - ], - [ - "▁serrure", - -12.664846420288086 - ], - [ - "▁tânăr", - -12.664959907531738 - ], - [ - "▁WHAT", - -12.664970397949219 - ], - [ - "▁railroad", - -12.664989471435547 - ], - [ - "▁avid", - -12.665081024169922 - ], - [ - "▁Sophie", - -12.665084838867188 - ], - [ - "preferably", - -12.665173530578613 - ], - [ - "▁Fourth", - -12.665431022644043 - ], - [ - "kommenden", - -12.665452003479004 - ], - [ - "QUI", - -12.665478706359863 - ], - [ - "lohn", - -12.665505409240723 - ], - [ - "▁promis", - -12.665611267089844 - ], - [ - "▁shrub", - -12.665621757507324 - ], - [ - "nummer", - -12.66579818725586 - ], - [ - "▁dinosaur", - -12.665922164916992 - ], - [ - "▁Lucky", - -12.665937423706055 - ], - [ - "relates", - -12.666038513183594 - ], - [ - "▁FROM", - -12.666049003601074 - ], - [ - "▁racism", - -12.66610336303711 - ], - [ - "physical", - -12.66611385345459 - ], - [ - "alcoholic", - -12.666119575500488 - ], - [ - "▁reef", - -12.666126251220703 - ], - [ - "▁centru", - -12.66618824005127 - ], - [ - "université", - -12.66622257232666 - ], - [ - "▁visage", - -12.666232109069824 - ], - [ - "ităţile", - -12.666253089904785 - ], - [ - "▁Gent", - -12.666345596313477 - ], - [ - "zugeben", - -12.66643238067627 - ], - [ - "▁paradise", - -12.66646957397461 - ], - [ - "fuel", - -12.666505813598633 - ], - [ - "ografie", - -12.666568756103516 - ], - [ - "▁TIP", - -12.666730880737305 - ], - [ - "schreibung", - -12.66683292388916 - ], - [ - "▁bark", - -12.666840553283691 - ], - [ - "accéder", - -12.666895866394043 - ], - [ - "▁contamination", - -12.666937828063965 - ], - [ - "▁swelling", - -12.666950225830078 - ], - [ - "▁optimistic", - -12.666974067687988 - ], - [ - "▁differential", - -12.667015075683594 - ], - [ - "▁Arad", - -12.667030334472656 - ], - [ - "toxins", - -12.667075157165527 - ], - [ - "▁übernehmen", - -12.667091369628906 - ], - [ - "▁anime", - -12.667143821716309 - ], - [ - "actuel", - -12.667462348937988 - ], - [ - "▁bientôt", - -12.667525291442871 - ], - [ - "▁Patio", - -12.66761302947998 - ], - [ - "▁baisse", - -12.667630195617676 - ], - [ - "▁sprint", - -12.66773796081543 - ], - [ - "▁bilden", - -12.66811466217041 - ], - [ - "VAL", - -12.668132781982422 - ], - [ - "▁réflexion", - -12.668220520019531 - ], - [ - "hopping", - -12.668242454528809 - ], - [ - "genesis", - -12.66834545135498 - ], - [ - "achtet", - -12.668435096740723 - ], - [ - "▁chinois", - -12.668525695800781 - ], - [ - "▁dezvoltat", - -12.668795585632324 - ], - [ - "arguably", - -12.66884708404541 - ], - [ - "▁Protocol", - -12.66884708404541 - ], - [ - "▁Sterling", - -12.668862342834473 - ], - [ - "▁Cave", - -12.668975830078125 - ], - [ - "▁Condo", - -12.66921615600586 - ], - [ - "▁erhöht", - -12.669235229492188 - ], - [ - "typische", - -12.669416427612305 - ], - [ - "merged", - -12.669439315795898 - ], - [ - "▁accumulation", - -12.669560432434082 - ], - [ - "sicherlich", - -12.669569969177246 - ], - [ - "kW", - -12.669620513916016 - ], - [ - "▁schriftlich", - -12.669757843017578 - ], - [ - "▁Vorteile", - -12.669918060302734 - ], - [ - "▁Northeast", - -12.669922828674316 - ], - [ - "frunt", - -12.669941902160645 - ], - [ - "istik", - -12.670003890991211 - ], - [ - "erster", - -12.670035362243652 - ], - [ - "▁Assistance", - -12.670150756835938 - ], - [ - "▁Fantastic", - -12.670150756835938 - ], - [ - "▁bărbat", - -12.670150756835938 - ], - [ - "▁Grinding", - -12.670151710510254 - ], - [ - "▁diffusion", - -12.670161247253418 - ], - [ - "▁vreun", - -12.670331954956055 - ], - [ - "▁Butler", - -12.670342445373535 - ], - [ - "▁Cherry", - -12.670352935791016 - ], - [ - "▁visualization", - -12.670540809631348 - ], - [ - "Paket", - -12.670572280883789 - ], - [ - "blin", - -12.670619010925293 - ], - [ - "▁cadou", - -12.670705795288086 - ], - [ - "▁Celtic", - -12.670754432678223 - ], - [ - "alegerea", - -12.670894622802734 - ], - [ - "▁Dorf", - -12.671035766601562 - ], - [ - "▁Noir", - -12.671185493469238 - ], - [ - "payment", - -12.67126750946045 - ], - [ - "▁Caroline", - -12.671334266662598 - ], - [ - "▁Berry", - -12.671359062194824 - ], - [ - "▁professeur", - -12.67147445678711 - ], - [ - "▁gratuitement", - -12.671503067016602 - ], - [ - "Suntem", - -12.671523094177246 - ], - [ - "IAN", - -12.671738624572754 - ], - [ - "▁fingerprint", - -12.671780586242676 - ], - [ - "▁controversy", - -12.671781539916992 - ], - [ - "▁fled", - -12.671875 - ], - [ - "▁Pokémon", - -12.67210865020752 - ], - [ - "excluding", - -12.67211627960205 - ], - [ - "▁friction", - -12.672161102294922 - ], - [ - "therapie", - -12.67225456237793 - ], - [ - "/7", - -12.672398567199707 - ], - [ - "▁designation", - -12.672442436218262 - ], - [ - "▁Belgia", - -12.672704696655273 - ], - [ - "▁cursuri", - -12.672836303710938 - ], - [ - "model", - -12.672840118408203 - ], - [ - "super", - -12.672987937927246 - ], - [ - "▁réduit", - -12.673028945922852 - ], - [ - "▁implicit", - -12.673177719116211 - ], - [ - "athlon", - -12.673227310180664 - ], - [ - "anniversaire", - -12.673416137695312 - ], - [ - "▁teaspoon", - -12.673416137695312 - ], - [ - "▁corrosion", - -12.673418998718262 - ], - [ - "▁überzeugt", - -12.673418998718262 - ], - [ - "▁flawless", - -12.673421859741211 - ], - [ - "▁vegetation", - -12.673477172851562 - ], - [ - "▁iarna", - -12.673507690429688 - ], - [ - "▁psychologist", - -12.673591613769531 - ], - [ - "hora", - -12.673625946044922 - ], - [ - "gab", - -12.67387580871582 - ], - [ - "▁soothing", - -12.674084663391113 - ], - [ - "▁stew", - -12.674141883850098 - ], - [ - "▁wager", - -12.674172401428223 - ], - [ - "▁tinere", - -12.674322128295898 - ], - [ - "▁baut", - -12.674323081970215 - ], - [ - "ecunoscut", - -12.674352645874023 - ], - [ - "gearbeitet", - -12.674422264099121 - ], - [ - "▁functi", - -12.674480438232422 - ], - [ - "▁dürfte", - -12.674724578857422 - ], - [ - "▁média", - -12.674724578857422 - ], - [ - "▁campanie", - -12.67475700378418 - ], - [ - "▁Distribu", - -12.674817085266113 - ], - [ - "▁mentoring", - -12.674959182739258 - ], - [ - "▁criz", - -12.675020217895508 - ], - [ - "findest", - -12.675056457519531 - ], - [ - "▁Vasile", - -12.675058364868164 - ], - [ - "▁compassionate", - -12.675115585327148 - ], - [ - "▁Tudor", - -12.675140380859375 - ], - [ - "▁flare", - -12.675260543823242 - ], - [ - "intreaga", - -12.675283432006836 - ], - [ - "gaz", - -12.6753511428833 - ], - [ - "▁porcelain", - -12.675379753112793 - ], - [ - "▁expedition", - -12.675520896911621 - ], - [ - "▁Azure", - -12.67553997039795 - ], - [ - "räumen", - -12.675549507141113 - ], - [ - "eiro", - -12.675567626953125 - ], - [ - "variante", - -12.675804138183594 - ], - [ - "▁Lucy", - -12.675825119018555 - ], - [ - "ôle", - -12.675909996032715 - ], - [ - "▁revenir", - -12.67602252960205 - ], - [ - "▁stained", - -12.676040649414062 - ], - [ - "▁falsch", - -12.676166534423828 - ], - [ - "▁incorpor", - -12.676166534423828 - ], - [ - "merkt", - -12.676187515258789 - ], - [ - "▁achten", - -12.6762056350708 - ], - [ - "▁hello", - -12.676290512084961 - ], - [ - "selben", - -12.676422119140625 - ], - [ - "ifty", - -12.676525115966797 - ], - [ - "▁Feier", - -12.67653751373291 - ], - [ - "1.000", - -12.676557540893555 - ], - [ - "▁Patch", - -12.676583290100098 - ], - [ - "peptid", - -12.676846504211426 - ], - [ - "▁recovering", - -12.676898956298828 - ], - [ - "Symptom", - -12.677020072937012 - ], - [ - "▁Auckland", - -12.677020072937012 - ], - [ - "▁retrieve", - -12.677328109741211 - ], - [ - "▁800-", - -12.67733097076416 - ], - [ - "schlagen", - -12.677473068237305 - ], - [ - "▁lourd", - -12.677562713623047 - ], - [ - "▁Purple", - -12.67760181427002 - ], - [ - "▁mittels", - -12.677776336669922 - ], - [ - "▁Düsseldorf", - -12.67800521850586 - ], - [ - "▁getaway", - -12.67803955078125 - ], - [ - "▁Cedar", - -12.678061485290527 - ], - [ - "▁Function", - -12.678241729736328 - ], - [ - "▁bizarre", - -12.67833423614502 - ], - [ - "4.3", - -12.67849063873291 - ], - [ - "▁fundraiser", - -12.67866325378418 - ], - [ - "geared", - -12.678780555725098 - ], - [ - "▁privée", - -12.678781509399414 - ], - [ - "▁Bonjour", - -12.67894458770752 - ], - [ - "Gar", - -12.67895793914795 - ], - [ - "▁Lloyd", - -12.678991317749023 - ], - [ - "▁Reinigung", - -12.6790132522583 - ], - [ - "▁Geno", - -12.679155349731445 - ], - [ - "▁Teilnahme", - -12.67919635772705 - ], - [ - "pian", - -12.679362297058105 - ], - [ - "sammelt", - -12.679368019104004 - ], - [ - "Pad", - -12.679755210876465 - ], - [ - "▁Troy", - -12.67976188659668 - ], - [ - "HG", - -12.679943084716797 - ], - [ - "▁klein", - -12.679962158203125 - ], - [ - "▁lettuce", - -12.679978370666504 - ], - [ - "▁patrimoine", - -12.679978370666504 - ], - [ - "▁cooker", - -12.680055618286133 - ], - [ - "▁accesibil", - -12.680137634277344 - ], - [ - "▁Spray", - -12.680201530456543 - ], - [ - "▁negotiation", - -12.68047046661377 - ], - [ - "▁jewel", - -12.680480003356934 - ], - [ - "▁dynamique", - -12.68063735961914 - ], - [ - "▁plastique", - -12.68067741394043 - ], - [ - "▁Limo", - -12.680682182312012 - ], - [ - "▁Funk", - -12.68069076538086 - ], - [ - "▁omului", - -12.680702209472656 - ], - [ - "title", - -12.680768013000488 - ], - [ - "curved", - -12.68082046508789 - ], - [ - "▁Lemon", - -12.680851936340332 - ], - [ - "förder", - -12.680891990661621 - ], - [ - "▁bewusst", - -12.681112289428711 - ], - [ - "inevitably", - -12.681296348571777 - ], - [ - "▁derivative", - -12.681297302246094 - ], - [ - "2:30", - -12.681300163269043 - ], - [ - "komfort", - -12.681305885314941 - ], - [ - "original", - -12.681480407714844 - ], - [ - "sanct", - -12.681540489196777 - ], - [ - "▁matte", - -12.6815767288208 - ], - [ - "empêche", - -12.681628227233887 - ], - [ - "▁jucător", - -12.681634902954102 - ], - [ - "▁attentive", - -12.681640625 - ], - [ - "▁recunoscut", - -12.681674003601074 - ], - [ - "▁Brush", - -12.68167495727539 - ], - [ - "▁consommateur", - -12.68183422088623 - ], - [ - "érence", - -12.682063102722168 - ], - [ - "typical", - -12.682084083557129 - ], - [ - "strategie", - -12.682205200195312 - ], - [ - "Effekt", - -12.682290077209473 - ], - [ - "▁Alcohol", - -12.682292938232422 - ], - [ - "oji", - -12.682333946228027 - ], - [ - "▁ruler", - -12.682357788085938 - ], - [ - "▁Norwegian", - -12.682615280151367 - ], - [ - "▁PlayStation", - -12.682615280151367 - ], - [ - "▁Hook", - -12.682747840881348 - ], - [ - "▁viewpoint", - -12.682759284973145 - ], - [ - "THER", - -12.682841300964355 - ], - [ - "420", - -12.682888984680176 - ], - [ - "Consequently", - -12.68294620513916 - ], - [ - "▁entschieden", - -12.68294620513916 - ], - [ - "▁Trag", - -12.68295669555664 - ], - [ - "▁Dawn", - -12.683003425598145 - ], - [ - "▁fuss", - -12.68301773071289 - ], - [ - "*****", - -12.683040618896484 - ], - [ - "▁Bullet", - -12.683140754699707 - ], - [ - "CAM", - -12.683155059814453 - ], - [ - "▁wonderfully", - -12.683201789855957 - ], - [ - "▁parlamentar", - -12.683263778686523 - ], - [ - "▁geometric", - -12.683307647705078 - ], - [ - "talement", - -12.683321952819824 - ], - [ - "/2018", - -12.683577537536621 - ], - [ - "▁oversight", - -12.684036254882812 - ], - [ - "kindly", - -12.684080123901367 - ], - [ - "therm", - -12.684305191040039 - ], - [ - "▁treaba", - -12.6846342086792 - ], - [ - "▁Trim", - -12.68471908569336 - ], - [ - "▁intelege", - -12.684842109680176 - ], - [ - "cino", - -12.685032844543457 - ], - [ - "▁straw", - -12.68508529663086 - ], - [ - "Tru", - -12.685251235961914 - ], - [ - "▁Television", - -12.68530559539795 - ], - [ - "Trader", - -12.68538761138916 - ], - [ - "▁Passion", - -12.685394287109375 - ], - [ - "rescu", - -12.685622215270996 - ], - [ - "Nicol", - -12.685635566711426 - ], - [ - "luj", - -12.685805320739746 - ], - [ - "▁mijloace", - -12.685921669006348 - ], - [ - "▁Removal", - -12.685922622680664 - ], - [ - "▁1944", - -12.686034202575684 - ], - [ - "▁shortcut", - -12.686159133911133 - ], - [ - "▁Fett", - -12.686258316040039 - ], - [ - "largement", - -12.686371803283691 - ], - [ - "▁altern", - -12.686446189880371 - ], - [ - "▁cleansing", - -12.686562538146973 - ], - [ - "▁Qatar", - -12.686692237854004 - ], - [ - "▁Ceci", - -12.686826705932617 - ], - [ - "▁weave", - -12.686848640441895 - ], - [ - "schmerz", - -12.686878204345703 - ], - [ - "▁dots", - -12.686888694763184 - ], - [ - "Télécharger", - -12.68691635131836 - ], - [ - "▁Conduct", - -12.686944007873535 - ], - [ - "bekannten", - -12.687325477600098 - ], - [ - "▁lungime", - -12.687344551086426 - ], - [ - "▁Ferrari", - -12.687390327453613 - ], - [ - "▁totusi", - -12.687605857849121 - ], - [ - "▁Anniversary", - -12.687911033630371 - ], - [ - "▁wilderness", - -12.687911987304688 - ], - [ - "▁Christoph", - -12.687939643859863 - ], - [ - "▁Nikon", - -12.688112258911133 - ], - [ - "▁Digi", - -12.68818473815918 - ], - [ - "▁Blumen", - -12.688190460205078 - ], - [ - "▁altul", - -12.688249588012695 - ], - [ - "▁Parish", - -12.688321113586426 - ], - [ - "czy", - -12.688393592834473 - ], - [ - "▁temper", - -12.688401222229004 - ], - [ - "▁Powder", - -12.688576698303223 - ], - [ - "▁Arnold", - -12.688577651977539 - ], - [ - "capacitatea", - -12.688687324523926 - ], - [ - "nderungen", - -12.688787460327148 - ], - [ - "▁utilization", - -12.688859939575195 - ], - [ - "99%", - -12.688942909240723 - ], - [ - "▁Fear", - -12.689099311828613 - ], - [ - "JE", - -12.689165115356445 - ], - [ - "▁Simpson", - -12.689239501953125 - ], - [ - "▁Podcast", - -12.68924617767334 - ], - [ - "▁Cardinal", - -12.689290046691895 - ], - [ - "▁Distribution", - -12.689315795898438 - ], - [ - "▁Drawing", - -12.689373970031738 - ], - [ - "▁tint", - -12.689412117004395 - ], - [ - "▁hran", - -12.68945598602295 - ], - [ - "▁Slide", - -12.68960189819336 - ], - [ - "▁Vertrauen", - -12.689654350280762 - ], - [ - "cloth", - -12.68971061706543 - ], - [ - "▁redirect", - -12.689728736877441 - ], - [ - "126", - -12.689842224121094 - ], - [ - "▁constituie", - -12.68985652923584 - ], - [ - "Mai", - -12.690070152282715 - ], - [ - "▁idol", - -12.690088272094727 - ], - [ - "▁tehnice", - -12.690163612365723 - ], - [ - "dip", - -12.690393447875977 - ], - [ - "▁soldier", - -12.690400123596191 - ], - [ - "▁Ordin", - -12.690409660339355 - ], - [ - "wobe", - -12.69050407409668 - ], - [ - "▁Brent", - -12.69058895111084 - ], - [ - "▁Sudan", - -12.690597534179688 - ], - [ - "6000", - -12.690619468688965 - ], - [ - "turism", - -12.690689086914062 - ], - [ - "▁Rocky", - -12.690744400024414 - ], - [ - "naming", - -12.69092082977295 - ], - [ - "▁entrepreneurial", - -12.690925598144531 - ], - [ - "hearted", - -12.690962791442871 - ], - [ - "ayne", - -12.69097900390625 - ], - [ - "▁hover", - -12.691081047058105 - ], - [ - "▁skull", - -12.691279411315918 - ], - [ - "▁tribal", - -12.691407203674316 - ], - [ - "▁crafting", - -12.691543579101562 - ], - [ - "bewertungen", - -12.691569328308105 - ], - [ - "▁decizii", - -12.691625595092773 - ], - [ - "obwohl", - -12.691655158996582 - ], - [ - "▁compromised", - -12.691875457763672 - ], - [ - "▁quelqu", - -12.69195556640625 - ], - [ - "▁Hilton", - -12.692075729370117 - ], - [ - "▁maturity", - -12.692095756530762 - ], - [ - "gelesen", - -12.692100524902344 - ], - [ - "▁harbor", - -12.69210433959961 - ], - [ - "▁maple", - -12.692326545715332 - ], - [ - "▁développ", - -12.6924409866333 - ], - [ - "▁Nobody", - -12.692517280578613 - ], - [ - "équipement", - -12.69255542755127 - ], - [ - "121", - -12.69274616241455 - ], - [ - "140", - -12.692827224731445 - ], - [ - "▁artistes", - -12.692914962768555 - ], - [ - "▁depune", - -12.692941665649414 - ], - [ - "▁erase", - -12.693129539489746 - ], - [ - "▁erzählt", - -12.693197250366211 - ], - [ - "▁Hyundai", - -12.69323444366455 - ], - [ - "▁impairment", - -12.69323444366455 - ], - [ - "▁conving", - -12.693279266357422 - ], - [ - "chasing", - -12.693426132202148 - ], - [ - "▁Claus", - -12.693438529968262 - ], - [ - "▁adaptée", - -12.693687438964844 - ], - [ - "▁Raz", - -12.693740844726562 - ], - [ - "rugs", - -12.693796157836914 - ], - [ - "▁urme", - -12.69387435913086 - ], - [ - "Nonetheless", - -12.693902015686035 - ], - [ - "▁Cemetery", - -12.693902969360352 - ], - [ - "umps", - -12.693906784057617 - ], - [ - "ACA", - -12.694003105163574 - ], - [ - "▁perioade", - -12.694235801696777 - ], - [ - "▁slogan", - -12.694263458251953 - ], - [ - "▁downward", - -12.694441795349121 - ], - [ - "eidig", - -12.694446563720703 - ], - [ - "RAC", - -12.69444751739502 - ], - [ - "▁inaugur", - -12.694496154785156 - ], - [ - "се", - -12.694588661193848 - ], - [ - "▁înțeleg", - -12.694608688354492 - ], - [ - "▁hopeful", - -12.694635391235352 - ], - [ - "▁customization", - -12.6946439743042 - ], - [ - "▁prisoners", - -12.694708824157715 - ], - [ - "▁Rau", - -12.695270538330078 - ], - [ - "▁Pitt", - -12.695389747619629 - ], - [ - "ături", - -12.695542335510254 - ], - [ - "▁metabolic", - -12.695842742919922 - ], - [ - "▁Zach", - -12.695868492126465 - ], - [ - "▁umfassende", - -12.695914268493652 - ], - [ - "▁révél", - -12.695950508117676 - ], - [ - "131", - -12.696052551269531 - ], - [ - "ismului", - -12.696062088012695 - ], - [ - "▁Sac", - -12.696076393127441 - ], - [ - "efficacité", - -12.69624137878418 - ], - [ - "cruci", - -12.69625473022461 - ], - [ - "bisschen", - -12.69632339477539 - ], - [ - "▁Oster", - -12.696324348449707 - ], - [ - "lowered", - -12.6964693069458 - ], - [ - "▁Ausland", - -12.69674015045166 - ], - [ - "▁Pub", - -12.696794509887695 - ], - [ - "▁Marseille", - -12.696925163269043 - ], - [ - "▁Charter", - -12.696959495544434 - ], - [ - "howcasing", - -12.697010040283203 - ], - [ - "risti", - -12.6971435546875 - ], - [ - "▁thermostat", - -12.697151184082031 - ], - [ - "▁Clin", - -12.697233200073242 - ], - [ - "▁entsteht", - -12.697246551513672 - ], - [ - "Choosing", - -12.697248458862305 - ], - [ - "▁Schmerz", - -12.697284698486328 - ], - [ - "▁Till", - -12.697307586669922 - ], - [ - "▁Polo", - -12.697399139404297 - ], - [ - "▁proceduri", - -12.697402000427246 - ], - [ - "▁Believe", - -12.697444915771484 - ], - [ - "▁playful", - -12.697514533996582 - ], - [ - "▁verändert", - -12.697588920593262 - ], - [ - "▁pairing", - -12.697654724121094 - ], - [ - "MAG", - -12.69784927368164 - ], - [ - "leiste", - -12.69788932800293 - ], - [ - "▁testimonial", - -12.697916030883789 - ], - [ - "▁Economy", - -12.697916984558105 - ], - [ - "▁Wechsel", - -12.697918891906738 - ], - [ - "wirkung", - -12.69801139831543 - ], - [ - "▁exceeded", - -12.698030471801758 - ], - [ - "South", - -12.698067665100098 - ], - [ - "create", - -12.698221206665039 - ], - [ - "▁davantage", - -12.698270797729492 - ], - [ - "Log", - -12.69831657409668 - ], - [ - "▁irregular", - -12.698587417602539 - ], - [ - "VB", - -12.698691368103027 - ], - [ - "▁Rö", - -12.698741912841797 - ], - [ - "▁intreb", - -12.698881149291992 - ], - [ - "▁penser", - -12.698920249938965 - ], - [ - "▁déclaré", - -12.698923110961914 - ], - [ - "▁Tommy", - -12.699026107788086 - ], - [ - "2,500", - -12.699163436889648 - ], - [ - "▁Uganda", - -12.699260711669922 - ], - [ - "contacting", - -12.699445724487305 - ], - [ - "▁apreciat", - -12.699485778808594 - ], - [ - "▁beginnen", - -12.6995210647583 - ], - [ - "▁Gain", - -12.699580192565918 - ], - [ - "Office", - -12.69969654083252 - ], - [ - "ermittlung", - -12.699710845947266 - ], - [ - "▁Admission", - -12.699727058410645 - ], - [ - "▁Earl", - -12.6997652053833 - ], - [ - "▁Aviation", - -12.699833869934082 - ], - [ - "▁apologize", - -12.699929237365723 - ], - [ - "▁enclosure", - -12.699929237365723 - ], - [ - "▁Lack", - -12.69998836517334 - ], - [ - "wife", - -12.699995994567871 - ], - [ - "▁rotating", - -12.700016975402832 - ], - [ - "▁hergestellt", - -12.700020790100098 - ], - [ - "▁repository", - -12.70002269744873 - ], - [ - "TK", - -12.700149536132812 - ], - [ - "▁lectur", - -12.700190544128418 - ], - [ - "▁reflex", - -12.700286865234375 - ], - [ - "▁Harmon", - -12.700401306152344 - ], - [ - "▁vrem", - -12.700479507446289 - ], - [ - "▁Strange", - -12.70055103302002 - ], - [ - "▁champagne", - -12.700615882873535 - ], - [ - "▁oscil", - -12.700647354125977 - ], - [ - "sensitive", - -12.700677871704102 - ], - [ - "▁Sheriff", - -12.700841903686523 - ], - [ - "PRES", - -12.700956344604492 - ], - [ - "▁vow", - -12.70123291015625 - ], - [ - "▁dioxide", - -12.701276779174805 - ], - [ - "ен", - -12.701374053955078 - ], - [ - "▁corpului", - -12.701376914978027 - ], - [ - "▁prevăzut", - -12.70160961151123 - ], - [ - "India", - -12.701827049255371 - ], - [ - "hausse", - -12.70189094543457 - ], - [ - "▁clienți", - -12.701957702636719 - ], - [ - "▁entour", - -12.70202350616455 - ], - [ - "▁Sharp", - -12.70209789276123 - ], - [ - "▁teatru", - -12.702285766601562 - ], - [ - "▁Grow", - -12.702327728271484 - ], - [ - "▁caravan", - -12.70234203338623 - ], - [ - "▁sieben", - -12.702420234680176 - ], - [ - "▁cunosc", - -12.702502250671387 - ], - [ - "Bereichen", - -12.702527046203613 - ], - [ - "▁Benutzer", - -12.702619552612305 - ], - [ - "▁Ethiopia", - -12.702619552612305 - ], - [ - "▁Physics", - -12.702619552612305 - ], - [ - "preserving", - -12.70263385772705 - ], - [ - "ал", - -12.702712059020996 - ], - [ - "▁aerial", - -12.70272159576416 - ], - [ - "▁nouvel", - -12.702741622924805 - ], - [ - "▁stamped", - -12.702954292297363 - ], - [ - "▁inaugural", - -12.702970504760742 - ], - [ - "▁medicinal", - -12.702999114990234 - ], - [ - "Quite", - -12.703028678894043 - ], - [ - "accumulated", - -12.703165054321289 - ], - [ - "register", - -12.703271865844727 - ], - [ - "▁Falcon", - -12.70327377319336 - ], - [ - "▁boiling", - -12.703301429748535 - ], - [ - "▁advertised", - -12.703339576721191 - ], - [ - "collect", - -12.703362464904785 - ], - [ - "albeit", - -12.703418731689453 - ], - [ - "▁Organis", - -12.703473091125488 - ], - [ - "luate", - -12.703536033630371 - ], - [ - "▁préféré", - -12.70369815826416 - ], - [ - "▁frumoasa", - -12.703968048095703 - ], - [ - "▁truc", - -12.704092979431152 - ], - [ - "▁Fä", - -12.704154968261719 - ], - [ - "▁dome", - -12.704180717468262 - ], - [ - "Mobile", - -12.704191207885742 - ], - [ - "▁redeem", - -12.704198837280273 - ], - [ - "IONS", - -12.70422077178955 - ], - [ - "▁țări", - -12.704235076904297 - ], - [ - "▁singular", - -12.704385757446289 - ], - [ - "▁livestock", - -12.704425811767578 - ], - [ - "▁démont", - -12.704427719116211 - ], - [ - "clés", - -12.704527854919434 - ], - [ - "music", - -12.704561233520508 - ], - [ - "▁explicat", - -12.704602241516113 - ], - [ - "▁Fellowship", - -12.704703330993652 - ], - [ - "▁electrode", - -12.704760551452637 - ], - [ - "129", - -12.704977035522461 - ], - [ - "▁Rescue", - -12.704983711242676 - ], - [ - "▁Rocket", - -12.705159187316895 - ], - [ - "OSE", - -12.705301284790039 - ], - [ - "▁Sacramento", - -12.705317497253418 - ], - [ - "▁Haiti", - -12.705357551574707 - ], - [ - "▁Erwachsene", - -12.705390930175781 - ], - [ - "▁Terminal", - -12.70541000366211 - ], - [ - "URI", - -12.705453872680664 - ], - [ - "▁Rural", - -12.70549201965332 - ], - [ - "▁achizitiona", - -12.70552921295166 - ], - [ - "▁identifiable", - -12.705655097961426 - ], - [ - "▁gekauft", - -12.705659866333008 - ], - [ - "▁improper", - -12.705673217773438 - ], - [ - "lashes", - -12.705751419067383 - ], - [ - "vorbim", - -12.705751419067383 - ], - [ - "▁hinder", - -12.705862045288086 - ], - [ - "▁Grenz", - -12.705878257751465 - ], - [ - "Nav", - -12.705955505371094 - ], - [ - "alimentation", - -12.705972671508789 - ], - [ - "▁Cottage", - -12.7059965133667 - ], - [ - "▁nötig", - -12.706197738647461 - ], - [ - "▁cuprinde", - -12.70622444152832 - ], - [ - "session", - -12.706256866455078 - ], - [ - "▁Separat", - -12.70634651184082 - ], - [ - "▁besuchen", - -12.706672668457031 - ], - [ - "▁noodles", - -12.706684112548828 - ], - [ - "▁ballet", - -12.706696510314941 - ], - [ - "WG", - -12.706731796264648 - ], - [ - "▁Duty", - -12.706871032714844 - ], - [ - "▁porc", - -12.706944465637207 - ], - [ - "▁booster", - -12.70698356628418 - ], - [ - "galerie", - -12.707056045532227 - ], - [ - "▁Lance", - -12.707119941711426 - ], - [ - "▁déplac", - -12.707178115844727 - ], - [ - "▁rugby", - -12.707240104675293 - ], - [ - "▁upholstery", - -12.707345962524414 - ], - [ - "▁bustl", - -12.70736312866211 - ], - [ - "▁Dealer", - -12.70740032196045 - ], - [ - "▁genome", - -12.707414627075195 - ], - [ - "▁citizenship", - -12.707466125488281 - ], - [ - "rora", - -12.707515716552734 - ], - [ - "ARK", - -12.707776069641113 - ], - [ - "▁Semi", - -12.707820892333984 - ], - [ - "▁Improvement", - -12.707892417907715 - ], - [ - "▁negru", - -12.708142280578613 - ], - [ - "▁Bruxelles", - -12.70836067199707 - ], - [ - "flüge", - -12.70837688446045 - ], - [ - "▁Technique", - -12.708392143249512 - ], - [ - "▁Obst", - -12.708413124084473 - ], - [ - "2020", - -12.708560943603516 - ], - [ - "▁gek", - -12.708593368530273 - ], - [ - "▁drepturi", - -12.708600997924805 - ], - [ - "▁Logan", - -12.708605766296387 - ], - [ - "gelöst", - -12.70863151550293 - ], - [ - "▁grandparents", - -12.708702087402344 - ], - [ - "phin", - -12.708950996398926 - ], - [ - "▁dwell", - -12.709037780761719 - ], - [ - "▁Nobel", - -12.709151268005371 - ], - [ - "dial", - -12.70927906036377 - ], - [ - "▁spontan", - -12.709344863891602 - ], - [ - "advancing", - -12.70937728881836 - ], - [ - "starring", - -12.70947551727295 - ], - [ - "▁astea", - -12.709498405456543 - ], - [ - "igueur", - -12.709638595581055 - ], - [ - "▁Ancient", - -12.709700584411621 - ], - [ - "filter", - -12.70971965789795 - ], - [ - "Doar", - -12.709758758544922 - ], - [ - "▁Workers", - -12.709759712219238 - ], - [ - "Certainly", - -12.709906578063965 - ], - [ - "▁commencé", - -12.709914207458496 - ], - [ - "▁zipper", - -12.710001945495605 - ], - [ - "▁Selection", - -12.710070610046387 - ], - [ - "▁succ", - -12.710280418395996 - ], - [ - "headed", - -12.710345268249512 - ], - [ - "RIA", - -12.710350036621094 - ], - [ - "▁papa", - -12.710366249084473 - ], - [ - "▁profesionale", - -12.710394859313965 - ], - [ - "▁Zeichen", - -12.710402488708496 - ], - [ - "▁artisans", - -12.710489273071289 - ], - [ - "▁Geist", - -12.710585594177246 - ], - [ - "practic", - -12.710741996765137 - ], - [ - "▁ministrul", - -12.71076488494873 - ], - [ - "viens", - -12.710912704467773 - ], - [ - "prezintă", - -12.710919380187988 - ], - [ - "Integrated", - -12.710981369018555 - ], - [ - "▁rooftop", - -12.710989952087402 - ], - [ - "▁successor", - -12.710991859436035 - ], - [ - "OTO", - -12.711012840270996 - ], - [ - "liés", - -12.711027145385742 - ], - [ - "▁Diver", - -12.71121597290039 - ], - [ - "Specifically", - -12.711297988891602 - ], - [ - "▁calibr", - -12.711301803588867 - ], - [ - "KK", - -12.711341857910156 - ], - [ - "▁défense", - -12.711414337158203 - ], - [ - "▁english", - -12.711414337158203 - ], - [ - "verbrauch", - -12.711418151855469 - ], - [ - "▁attire", - -12.711433410644531 - ], - [ - "▁Recipe", - -12.711441040039062 - ], - [ - "équilibre", - -12.711457252502441 - ], - [ - "accumul", - -12.71157169342041 - ], - [ - "▁financement", - -12.71169662475586 - ], - [ - "rij", - -12.711962699890137 - ], - [ - "▁prince", - -12.711999893188477 - ], - [ - "▁préparer", - -12.7120361328125 - ], - [ - "surviving", - -12.71211051940918 - ], - [ - "operation", - -12.712233543395996 - ], - [ - "▁judet", - -12.71242904663086 - ], - [ - "▁Verantwortung", - -12.712433815002441 - ], - [ - "▁Vinyl", - -12.712536811828613 - ], - [ - "DEN", - -12.712584495544434 - ], - [ - "▁Tail", - -12.712589263916016 - ], - [ - "yearly", - -12.712590217590332 - ], - [ - "▁comisi", - -12.712613105773926 - ], - [ - "lava", - -12.71261978149414 - ], - [ - "▁succession", - -12.71264934539795 - ], - [ - "▁Whisk", - -12.713030815124512 - ], - [ - "▁precizat", - -12.713096618652344 - ], - [ - "▁unmittelbar", - -12.713117599487305 - ], - [ - "ICH", - -12.713139533996582 - ], - [ - "▁atteint", - -12.713199615478516 - ], - [ - "▁hometown", - -12.713268280029297 - ], - [ - "▁Zip", - -12.71328353881836 - ], - [ - "▁Weekly", - -12.71336841583252 - ], - [ - "▁crashes", - -12.713401794433594 - ], - [ - "▁Turbo", - -12.713421821594238 - ], - [ - "▁susține", - -12.713468551635742 - ], - [ - "▁Venus", - -12.713587760925293 - ], - [ - "▁finalement", - -12.713595390319824 - ], - [ - "rewarded", - -12.713693618774414 - ], - [ - "▁principau", - -12.713899612426758 - ], - [ - "▁régional", - -12.713979721069336 - ], - [ - "▁1958", - -12.714178085327148 - ], - [ - "▁Musical", - -12.714189529418945 - ], - [ - "▁stylist", - -12.714251518249512 - ], - [ - "cetate", - -12.714282035827637 - ], - [ - "gorge", - -12.71433162689209 - ], - [ - "▁espresso", - -12.714493751525879 - ], - [ - "überall", - -12.714576721191406 - ], - [ - "▁NHL", - -12.714593887329102 - ], - [ - "▁Dock", - -12.71472454071045 - ], - [ - "▁mosquito", - -12.71481704711914 - ], - [ - "▁forthcoming", - -12.714852333068848 - ], - [ - "▁Visitors", - -12.714881896972656 - ], - [ - "kro", - -12.714882850646973 - ], - [ - "_______", - -12.715048789978027 - ], - [ - "▁STEM", - -12.715105056762695 - ], - [ - "9.5", - -12.715141296386719 - ], - [ - "accompagne", - -12.715177536010742 - ], - [ - "▁Trick", - -12.715202331542969 - ], - [ - "▁endorsement", - -12.715400695800781 - ], - [ - "▁amplifier", - -12.715498924255371 - ], - [ - "▁malicious", - -12.715499877929688 - ], - [ - "▁roam", - -12.71552848815918 - ], - [ - "▁kennt", - -12.715635299682617 - ], - [ - "Connor", - -12.715690612792969 - ], - [ - "▁dysfunction", - -12.715828895568848 - ], - [ - "▁zuverlässig", - -12.715840339660645 - ], - [ - "▁corpul", - -12.71595573425293 - ], - [ - "▁boule", - -12.715967178344727 - ], - [ - "otti", - -12.715991973876953 - ], - [ - "440", - -12.716050148010254 - ], - [ - "▁mimic", - -12.716056823730469 - ], - [ - "farben", - -12.716129302978516 - ], - [ - "▁Wagner", - -12.716214179992676 - ], - [ - "Kom", - -12.7162504196167 - ], - [ - "▁miteinander", - -12.716269493103027 - ], - [ - "▁String", - -12.716296195983887 - ], - [ - "▁Ellis", - -12.716313362121582 - ], - [ - "▁Perth", - -12.716337203979492 - ], - [ - "▁temperatura", - -12.716381072998047 - ], - [ - "umbling", - -12.716397285461426 - ], - [ - "▁Medizin", - -12.716554641723633 - ], - [ - "▁KY", - -12.71660327911377 - ], - [ - "apei", - -12.716642379760742 - ], - [ - "counter", - -12.716647148132324 - ], - [ - "strich", - -12.71665096282959 - ], - [ - "▁Între", - -12.716652870178223 - ], - [ - "▁Cliff", - -12.716785430908203 - ], - [ - "▁foreclosure", - -12.716864585876465 - ], - [ - "................", - -12.716878890991211 - ], - [ - "Clearly", - -12.717028617858887 - ], - [ - "AJ", - -12.717057228088379 - ], - [ - "ndro", - -12.717180252075195 - ], - [ - "▁Arsenal", - -12.717206001281738 - ], - [ - "▁Recherche", - -12.717216491699219 - ], - [ - "Guests", - -12.717225074768066 - ], - [ - "▁besucht", - -12.717242240905762 - ], - [ - "wissen", - -12.717266082763672 - ], - [ - "fekt", - -12.717414855957031 - ], - [ - "hottest", - -12.717414855957031 - ], - [ - "▁Tomorrow", - -12.717547416687012 - ], - [ - "▁Signature", - -12.717557907104492 - ], - [ - "127", - -12.717583656311035 - ], - [ - "▁competence", - -12.71766471862793 - ], - [ - "Einige", - -12.717686653137207 - ], - [ - "patented", - -12.71782112121582 - ], - [ - "▁Exhibition", - -12.717889785766602 - ], - [ - "▁verbessern", - -12.717889785766602 - ], - [ - "▁Garcia", - -12.718043327331543 - ], - [ - "▁inquire", - -12.718278884887695 - ], - [ - "coping", - -12.718353271484375 - ], - [ - "▁linguri", - -12.71842098236084 - ], - [ - "▁trivia", - -12.718433380126953 - ], - [ - "▁începutul", - -12.718489646911621 - ], - [ - "▁parteneriat", - -12.7186279296875 - ], - [ - "tagen", - -12.718636512756348 - ], - [ - "▁engagé", - -12.718916893005371 - ], - [ - "▁chalk", - -12.718944549560547 - ], - [ - "▁fashionable", - -12.719416618347168 - ], - [ - "0.8", - -12.719635009765625 - ], - [ - "▁sticker", - -12.719751358032227 - ], - [ - "▁desperately", - -12.719765663146973 - ], - [ - "höhe", - -12.719903945922852 - ], - [ - "▁fericire", - -12.71994400024414 - ], - [ - "évaluation", - -12.719948768615723 - ], - [ - "▁Divide", - -12.719959259033203 - ], - [ - "▁indulge", - -12.719979286193848 - ], - [ - "fett", - -12.720014572143555 - ], - [ - "▁communal", - -12.72017765045166 - ], - [ - "▁mindful", - -12.720187187194824 - ], - [ - "dauert", - -12.720192909240723 - ], - [ - "▁veille", - -12.720263481140137 - ], - [ - "▁vér", - -12.720330238342285 - ], - [ - "▁Baseball", - -12.720373153686523 - ], - [ - "▁succeeded", - -12.720418930053711 - ], - [ - "▁Terrasse", - -12.720420837402344 - ], - [ - "irgend", - -12.720500946044922 - ], - [ - "▁Munich", - -12.720556259155273 - ], - [ - "weisung", - -12.72067642211914 - ], - [ - "metre", - -12.720916748046875 - ], - [ - "▁Raymond", - -12.721015930175781 - ], - [ - "▁chute", - -12.72102165222168 - ], - [ - "▁Accounting", - -12.721075057983398 - ], - [ - "▁pantry", - -12.721122741699219 - ], - [ - "▁underwater", - -12.721181869506836 - ], - [ - "ARI", - -12.721222877502441 - ], - [ - "lowed", - -12.721245765686035 - ], - [ - "numbered", - -12.721430778503418 - ], - [ - "REN", - -12.72148609161377 - ], - [ - "▁industriel", - -12.721489906311035 - ], - [ - "wäh", - -12.721531867980957 - ], - [ - "kenntnis", - -12.721631050109863 - ], - [ - "▁govern", - -12.721635818481445 - ], - [ - "strained", - -12.721661567687988 - ], - [ - "▁rythme", - -12.721689224243164 - ], - [ - "ин", - -12.72169303894043 - ], - [ - "▁burner", - -12.721723556518555 - ], - [ - "▁zählt", - -12.721790313720703 - ], - [ - "▁verte", - -12.721883773803711 - ], - [ - "▁Catalog", - -12.721896171569824 - ], - [ - "▁Bruno", - -12.721988677978516 - ], - [ - "0.7", - -12.721997261047363 - ], - [ - "▁litig", - -12.72207260131836 - ], - [ - "▁greet", - -12.722129821777344 - ], - [ - "▁stool", - -12.722393035888672 - ], - [ - "gression", - -12.722457885742188 - ], - [ - "▁Klassen", - -12.722491264343262 - ], - [ - "▁neon", - -12.722661018371582 - ], - [ - "▁Tall", - -12.722734451293945 - ], - [ - "▁satin", - -12.722895622253418 - ], - [ - "▁Bend", - -12.722915649414062 - ], - [ - "▁soluţi", - -12.723077774047852 - ], - [ - "▁styl", - -12.723196983337402 - ], - [ - "▁Siri", - -12.723358154296875 - ], - [ - "▁Sanders", - -12.723464012145996 - ], - [ - "▁spike", - -12.723499298095703 - ], - [ - "pinion", - -12.723854064941406 - ], - [ - "▁purta", - -12.724122047424316 - ], - [ - "CARE", - -12.724224090576172 - ], - [ - "▁creştere", - -12.724311828613281 - ], - [ - "▁fry", - -12.724374771118164 - ], - [ - "▁Schweizer", - -12.724400520324707 - ], - [ - "durchschnittlich", - -12.724411010742188 - ], - [ - "celaşi", - -12.724446296691895 - ], - [ - "▁deceased", - -12.724474906921387 - ], - [ - "▁Nerv", - -12.724668502807617 - ], - [ - "2-2", - -12.7247314453125 - ], - [ - "▁Stahl", - -12.724753379821777 - ], - [ - "▁workload", - -12.724834442138672 - ], - [ - "erhielt", - -12.724984169006348 - ], - [ - "▁hypothesis", - -12.725103378295898 - ], - [ - "bib", - -12.725110054016113 - ], - [ - "▁ţară", - -12.725116729736328 - ], - [ - "vaut", - -12.725122451782227 - ], - [ - "prehensi", - -12.725184440612793 - ], - [ - "▁Offering", - -12.725188255310059 - ], - [ - "▁dislike", - -12.725252151489258 - ], - [ - "▁firewall", - -12.725252151489258 - ], - [ - "mania", - -12.725255966186523 - ], - [ - "195", - -12.725278854370117 - ], - [ - "▁Champ", - -12.725324630737305 - ], - [ - "▁philosophical", - -12.725343704223633 - ], - [ - "länge", - -12.72553539276123 - ], - [ - "advisable", - -12.725785255432129 - ], - [ - "negotiating", - -12.725785255432129 - ], - [ - "Providing", - -12.725791931152344 - ], - [ - "▁1959", - -12.725801467895508 - ], - [ - "▁spyware", - -12.725831031799316 - ], - [ - "sharing", - -12.725837707519531 - ], - [ - "▁prévoi", - -12.725905418395996 - ], - [ - "▁jaune", - -12.7260103225708 - ], - [ - "schoss", - -12.726028442382812 - ], - [ - "▁obține", - -12.726129531860352 - ], - [ - "▁attraktiv", - -12.726489067077637 - ], - [ - "gemeinschaft", - -12.7265043258667 - ], - [ - "BV", - -12.726505279541016 - ], - [ - "Top", - -12.726617813110352 - ], - [ - "▁Sharon", - -12.726625442504883 - ], - [ - "bok", - -12.726675033569336 - ], - [ - "▁résist", - -12.726811408996582 - ], - [ - "Napoca", - -12.726822853088379 - ], - [ - "▁Uncategorized", - -12.726898193359375 - ], - [ - "▁trustee", - -12.726936340332031 - ], - [ - "▁remise", - -12.727025985717773 - ], - [ - "▁aştept", - -12.727165222167969 - ], - [ - "▁allergic", - -12.727206230163574 - ], - [ - "èvre", - -12.727211952209473 - ], - [ - "LAR", - -12.72734546661377 - ], - [ - "1.9", - -12.727497100830078 - ], - [ - "▁outbreak", - -12.727520942687988 - ], - [ - "▁trocken", - -12.727568626403809 - ], - [ - "▁laughter", - -12.727724075317383 - ], - [ - "▁Attend", - -12.727785110473633 - ], - [ - "jung", - -12.727822303771973 - ], - [ - "racking", - -12.727934837341309 - ], - [ - "ORS", - -12.728178024291992 - ], - [ - "▁rasp", - -12.728527069091797 - ], - [ - "VF", - -12.728551864624023 - ], - [ - "▁Tamil", - -12.72860050201416 - ], - [ - "124", - -12.728602409362793 - ], - [ - "▁Fiber", - -12.728714942932129 - ], - [ - "▁launches", - -12.728755950927734 - ], - [ - "Post", - -12.728777885437012 - ], - [ - "▁bucks", - -12.729072570800781 - ], - [ - "▁Nicholas", - -12.72923755645752 - ], - [ - "▁cărți", - -12.729255676269531 - ], - [ - "emper", - -12.729681968688965 - ], - [ - "Point", - -12.729689598083496 - ], - [ - "fraction", - -12.729753494262695 - ], - [ - "▁BIG", - -12.729804992675781 - ], - [ - "▁lancer", - -12.729829788208008 - ], - [ - "EVER", - -12.72997760772705 - ], - [ - "trend", - -12.73000431060791 - ], - [ - "▁remerci", - -12.730076789855957 - ], - [ - "▁prevalent", - -12.730168342590332 - ], - [ - "370", - -12.730290412902832 - ], - [ - "▁bestellen", - -12.730327606201172 - ], - [ - "Buying", - -12.730341911315918 - ], - [ - "▁Aufbau", - -12.730416297912598 - ], - [ - "▁opini", - -12.730416297912598 - ], - [ - "▁regiune", - -12.730663299560547 - ], - [ - "▁martial", - -12.73069953918457 - ], - [ - "LK", - -12.730754852294922 - ], - [ - "▁Feuerwehr", - -12.730974197387695 - ], - [ - "screened", - -12.73099422454834 - ], - [ - "Blue", - -12.73120403289795 - ], - [ - "▁analize", - -12.731237411499023 - ], - [ - "▁lure", - -12.731247901916504 - ], - [ - "▁internally", - -12.731283187866211 - ], - [ - "father", - -12.731322288513184 - ], - [ - "▁diplomatic", - -12.731343269348145 - ], - [ - "▁Activity", - -12.731464385986328 - ], - [ - "▁cliqu", - -12.73156452178955 - ], - [ - "▁adequately", - -12.731809616088867 - ], - [ - "▁Elena", - -12.73183822631836 - ], - [ - "▁Citizens", - -12.732102394104004 - ], - [ - "▁Länge", - -12.732295989990234 - ], - [ - "▁respectful", - -12.732300758361816 - ], - [ - "▁zuständig", - -12.73248291015625 - ], - [ - "▁réception", - -12.732584953308105 - ], - [ - "▁headset", - -12.732686996459961 - ], - [ - "▁awhile", - -12.732705116271973 - ], - [ - "▁speculation", - -12.732707977294922 - ], - [ - "▁WhatsApp", - -12.732714653015137 - ], - [ - "▁tulbur", - -12.732731819152832 - ], - [ - "▁voluntar", - -12.732758522033691 - ], - [ - "▁Studium", - -12.73277473449707 - ], - [ - "▁protector", - -12.732833862304688 - ], - [ - "▁Wrap", - -12.732840538024902 - ], - [ - "staat", - -12.732951164245605 - ], - [ - "▁judgement", - -12.733396530151367 - ], - [ - "unauthorized", - -12.733397483825684 - ], - [ - "Rank", - -12.733487129211426 - ], - [ - "pră", - -12.733503341674805 - ], - [ - "▁Paw", - -12.733627319335938 - ], - [ - "▁relev", - -12.733664512634277 - ], - [ - "▁arbor", - -12.733830451965332 - ], - [ - "stretches", - -12.733885765075684 - ], - [ - "nook", - -12.733906745910645 - ], - [ - "▁Tunis", - -12.733907699584961 - ], - [ - "▁shocking", - -12.734036445617676 - ], - [ - "▁oppress", - -12.73414421081543 - ], - [ - "10.1", - -12.7341890335083 - ], - [ - "▁ERP", - -12.734310150146484 - ], - [ - "wolle", - -12.7343168258667 - ], - [ - "▁Catch", - -12.734352111816406 - ], - [ - "Plus", - -12.734368324279785 - ], - [ - "Market", - -12.734445571899414 - ], - [ - "scribed", - -12.734536170959473 - ], - [ - "▁décoration", - -12.734594345092773 - ], - [ - "▁chanson", - -12.734607696533203 - ], - [ - "▁Midwest", - -12.734763145446777 - ], - [ - "▁Spencer", - -12.734795570373535 - ], - [ - "▁societate", - -12.734807968139648 - ], - [ - "curated", - -12.735087394714355 - ], - [ - "▁canopy", - -12.735135078430176 - ], - [ - "ат", - -12.735142707824707 - ], - [ - "Sig", - -12.73514461517334 - ], - [ - "▁witch", - -12.735153198242188 - ], - [ - "envoyer", - -12.735175132751465 - ], - [ - "▁$1,000", - -12.735230445861816 - ], - [ - "▁peripheral", - -12.735482215881348 - ], - [ - "nnouncing", - -12.735509872436523 - ], - [ - "perfect", - -12.73559284210205 - ], - [ - "▁warten", - -12.735748291015625 - ], - [ - "ELI", - -12.735822677612305 - ], - [ - "▁recap", - -12.735912322998047 - ], - [ - "dün", - -12.735978126525879 - ], - [ - "▁Spre", - -12.736029624938965 - ], - [ - "2005", - -12.736153602600098 - ], - [ - "▁réparation", - -12.73617935180664 - ], - [ - "▁extraordinar", - -12.736196517944336 - ], - [ - "existence", - -12.736337661743164 - ], - [ - "oanele", - -12.736467361450195 - ], - [ - "▁reprezentant", - -12.736474990844727 - ], - [ - "▁attacker", - -12.736490249633789 - ], - [ - "▁Berliner", - -12.73657512664795 - ], - [ - "experience", - -12.736649513244629 - ], - [ - "▁Monde", - -12.736800193786621 - ], - [ - "intervention", - -12.736956596374512 - ], - [ - "▁Einstellung", - -12.736977577209473 - ], - [ - "▁Valentin", - -12.737011909484863 - ], - [ - "▁zonă", - -12.737200736999512 - ], - [ - "occupant", - -12.737223625183105 - ], - [ - "▁mobilis", - -12.737260818481445 - ], - [ - "metall", - -12.737261772155762 - ], - [ - "evangeli", - -12.73729133605957 - ], - [ - "Adding", - -12.737326622009277 - ], - [ - "▁Roland", - -12.73735237121582 - ], - [ - "ENCE", - -12.737462043762207 - ], - [ - "▁Insul", - -12.737478256225586 - ], - [ - "tellement", - -12.737497329711914 - ], - [ - "▁Blogger", - -12.737499237060547 - ], - [ - "▁prote", - -12.737504005432129 - ], - [ - "▁Minimum", - -12.737574577331543 - ], - [ - "▁termic", - -12.737624168395996 - ], - [ - "▁Sachen", - -12.737859725952148 - ], - [ - "▁Maschinen", - -12.737863540649414 - ], - [ - "▁Dragnea", - -12.737926483154297 - ], - [ - "▁overtime", - -12.737967491149902 - ], - [ - "calorie", - -12.737968444824219 - ], - [ - "▁jene", - -12.73814868927002 - ], - [ - "▁Satan", - -12.738153457641602 - ], - [ - "▁currencies", - -12.73827075958252 - ], - [ - "▁echipamente", - -12.738329887390137 - ], - [ - "▁forgiveness", - -12.73843765258789 - ], - [ - "▁Pause", - -12.738479614257812 - ], - [ - "▁Witt", - -12.738529205322266 - ], - [ - "STOR", - -12.738632202148438 - ], - [ - "▁actuelle", - -12.738703727722168 - ], - [ - "▁Ard", - -12.738853454589844 - ], - [ - "▁Constitu", - -12.738880157470703 - ], - [ - "ghan", - -12.7388916015625 - ], - [ - "Make", - -12.738906860351562 - ], - [ - "▁garne", - -12.738947868347168 - ], - [ - "▁Hitler", - -12.738956451416016 - ], - [ - "▁rubbish", - -12.738973617553711 - ], - [ - "6.0", - -12.739025115966797 - ], - [ - "▁Giving", - -12.739177703857422 - ], - [ - "▁persever", - -12.73937702178955 - ], - [ - "wirk", - -12.7394380569458 - ], - [ - "liegenden", - -12.739455223083496 - ], - [ - "▁morceau", - -12.73946762084961 - ], - [ - "atty", - -12.73961067199707 - ], - [ - "▁Quebec", - -12.739669799804688 - ], - [ - "harmonie", - -12.739705085754395 - ], - [ - "Nummer", - -12.739721298217773 - ], - [ - "▁splendid", - -12.739747047424316 - ], - [ - "▁halfway", - -12.739808082580566 - ], - [ - "▁periodically", - -12.740071296691895 - ], - [ - "▁Ländern", - -12.740077018737793 - ], - [ - "▁AAA", - -12.740083694458008 - ], - [ - "▁Frost", - -12.740198135375977 - ], - [ - "▁heroin", - -12.740289688110352 - ], - [ - "▁bucurie", - -12.7403564453125 - ], - [ - "▁Pradesh", - -12.74036693572998 - ], - [ - "zusetzen", - -12.740405082702637 - ], - [ - "raising", - -12.740425109863281 - ], - [ - "▁furniz", - -12.740567207336426 - ], - [ - "▁convi", - -12.740575790405273 - ], - [ - "pictured", - -12.740911483764648 - ], - [ - "▁inadequate", - -12.741065979003906 - ], - [ - "▁aprobat", - -12.741069793701172 - ], - [ - "▁exercising", - -12.741083145141602 - ], - [ - "▁faisai", - -12.741138458251953 - ], - [ - "▁prosecution", - -12.741231918334961 - ], - [ - "380", - -12.741402626037598 - ], - [ - "▁Potential", - -12.74145793914795 - ], - [ - "▁Magi", - -12.741523742675781 - ], - [ - "From", - -12.741752624511719 - ], - [ - "batterie", - -12.74181079864502 - ], - [ - "▁poisson", - -12.74185562133789 - ], - [ - "▁Probe", - -12.741950988769531 - ], - [ - "▁pastel", - -12.741998672485352 - ], - [ - "▁tracked", - -12.742410659790039 - ], - [ - "▁advertisers", - -12.74251937866211 - ], - [ - "adevar", - -12.742537498474121 - ], - [ - "ит", - -12.742776870727539 - ], - [ - "▁Herren", - -12.742815971374512 - ], - [ - "EAM", - -12.742820739746094 - ], - [ - "▁scooter", - -12.742822647094727 - ], - [ - "requesting", - -12.742841720581055 - ], - [ - "dynamis", - -12.742949485778809 - ], - [ - "▁dahin", - -12.742961883544922 - ], - [ - "▁tweak", - -12.743061065673828 - ], - [ - "▁hail", - -12.743101119995117 - ], - [ - "▁întotdeauna", - -12.743160247802734 - ], - [ - "▁Publikum", - -12.743167877197266 - ], - [ - "▁panoramic", - -12.743167877197266 - ], - [ - "▁PRE", - -12.74331283569336 - ], - [ - "▁thrill", - -12.743361473083496 - ], - [ - "Open", - -12.743366241455078 - ], - [ - "▁Layer", - -12.74345588684082 - ], - [ - "▁Bosch", - -12.743459701538086 - ], - [ - "hull", - -12.743511199951172 - ], - [ - "▁născut", - -12.743518829345703 - ], - [ - "tausch", - -12.743559837341309 - ], - [ - "▁autoturism", - -12.743577003479004 - ], - [ - "▁crank", - -12.743701934814453 - ], - [ - "CLE", - -12.743735313415527 - ], - [ - "▁Frederick", - -12.74386978149414 - ], - [ - "mog", - -12.743887901306152 - ], - [ - "behalten", - -12.74396800994873 - ], - [ - "▁aunt", - -12.744050979614258 - ], - [ - "▁Triple", - -12.744141578674316 - ], - [ - "▁Ark", - -12.744242668151855 - ], - [ - "AUD", - -12.744440078735352 - ], - [ - "▁Candy", - -12.744505882263184 - ], - [ - "tama", - -12.744515419006348 - ], - [ - "▁Evaluation", - -12.744571685791016 - ], - [ - "▁Memphis", - -12.744571685791016 - ], - [ - "▁stellar", - -12.74457836151123 - ], - [ - "▁fabricat", - -12.744632720947266 - ], - [ - "▁terminat", - -12.744868278503418 - ], - [ - "▁domnul", - -12.744913101196289 - ], - [ - "▁keynote", - -12.744925498962402 - ], - [ - "▁dentistry", - -12.744951248168945 - ], - [ - "rift", - -12.745052337646484 - ], - [ - "▁bilan", - -12.745119094848633 - ], - [ - "2.6", - -12.745125770568848 - ], - [ - "undergoing", - -12.745210647583008 - ], - [ - "▁pseudo", - -12.745274543762207 - ], - [ - "▁maşin", - -12.745280265808105 - ], - [ - "▁munte", - -12.74555492401123 - ], - [ - "▁VW", - -12.745932579040527 - ], - [ - "▁Rab", - -12.74593448638916 - ], - [ - "▁sustine", - -12.745972633361816 - ], - [ - "▁Bedingungen", - -12.745977401733398 - ], - [ - "▁învăţ", - -12.745980262756348 - ], - [ - "▁pyramid", - -12.745983123779297 - ], - [ - "HEN", - -12.746020317077637 - ], - [ - "▁citrus", - -12.746058464050293 - ], - [ - "Code", - -12.746064186096191 - ], - [ - "▁Beginning", - -12.746164321899414 - ], - [ - "▁discourse", - -12.746249198913574 - ], - [ - "▁miercuri", - -12.746329307556152 - ], - [ - "▁producător", - -12.74637508392334 - ], - [ - "▁analys", - -12.746397972106934 - ], - [ - "▁Evan", - -12.7467041015625 - ], - [ - "138", - -12.746987342834473 - ], - [ - "▁târziu", - -12.74703311920166 - ], - [ - "▁relocation", - -12.747052192687988 - ], - [ - "decizia", - -12.74708080291748 - ], - [ - "tollen", - -12.74714183807373 - ], - [ - "TRO", - -12.747180938720703 - ], - [ - "▁runway", - -12.74719524383545 - ], - [ - "illet", - -12.747270584106445 - ], - [ - "▁serveur", - -12.747387886047363 - ], - [ - "bezogen", - -12.747427940368652 - ], - [ - "▁believers", - -12.747668266296387 - ], - [ - "determined", - -12.747711181640625 - ], - [ - "▁reinforced", - -12.74791431427002 - ], - [ - "▁wedge", - -12.748006820678711 - ], - [ - "methyl", - -12.74807357788086 - ], - [ - "MES", - -12.748188018798828 - ], - [ - "vpn", - -12.748374938964844 - ], - [ - "▁consta", - -12.74837875366211 - ], - [ - "▁vizitat", - -12.748420715332031 - ], - [ - "modul", - -12.748455047607422 - ], - [ - "▁routing", - -12.748528480529785 - ], - [ - "tempted", - -12.748540878295898 - ], - [ - "URS", - -12.748785018920898 - ], - [ - "apprentissage", - -12.748795509338379 - ], - [ - "▁Hungary", - -12.748796463012695 - ], - [ - "Previously", - -12.74880313873291 - ], - [ - "▁translator", - -12.748804092407227 - ], - [ - "▁resonate", - -12.748830795288086 - ], - [ - "201", - -12.748851776123047 - ], - [ - "3-0", - -12.749029159545898 - ], - [ - "▁reunion", - -12.749090194702148 - ], - [ - "▁palate", - -12.749096870422363 - ], - [ - "0.4", - -12.749171257019043 - ], - [ - "reheat", - -12.74924373626709 - ], - [ - "Roo", - -12.749261856079102 - ], - [ - "200,000", - -12.74940013885498 - ], - [ - "Bro", - -12.749431610107422 - ], - [ - "▁estimation", - -12.749468803405762 - ], - [ - "schneiden", - -12.749499320983887 - ], - [ - "▁Inspired", - -12.749506950378418 - ], - [ - "▁lottery", - -12.749539375305176 - ], - [ - "▁Friedrich", - -12.749887466430664 - ], - [ - "FIT", - -12.749913215637207 - ], - [ - "0.6", - -12.7499418258667 - ], - [ - "▁dagegen", - -12.74997615814209 - ], - [ - "▁Reb", - -12.750115394592285 - ], - [ - "▁Eigenschaften", - -12.75020694732666 - ], - [ - "▁molding", - -12.750361442565918 - ], - [ - "▁Harper", - -12.750548362731934 - ], - [ - "verwaltung", - -12.75055980682373 - ], - [ - "▁Schlüssel", - -12.75055980682373 - ], - [ - "▁desfasura", - -12.75055980682373 - ], - [ - "▁rencontrer", - -12.75055980682373 - ], - [ - "▁negoci", - -12.750581741333008 - ], - [ - "▁Leading", - -12.750615119934082 - ], - [ - "▁necesita", - -12.750652313232422 - ], - [ - "▁biking", - -12.750683784484863 - ], - [ - "▁jointly", - -12.75069808959961 - ], - [ - "▁crush", - -12.750702857971191 - ], - [ - "Vol", - -12.750768661499023 - ], - [ - "▁ebay", - -12.750836372375488 - ], - [ - "▁Shri", - -12.750991821289062 - ], - [ - "▁AMD", - -12.751029968261719 - ], - [ - "FG", - -12.751032829284668 - ], - [ - "Argentin", - -12.75120735168457 - ], - [ - "▁incercat", - -12.751431465148926 - ], - [ - "▁tidy", - -12.751628875732422 - ], - [ - "▁provoqu", - -12.751635551452637 - ], - [ - "▁Written", - -12.751649856567383 - ], - [ - "▁Kooperation", - -12.751666069030762 - ], - [ - "▁scripture", - -12.751952171325684 - ], - [ - "▁Pflicht", - -12.751974105834961 - ], - [ - "ficial", - -12.752013206481934 - ], - [ - "vremea", - -12.752013206481934 - ], - [ - "▁Growing", - -12.752115249633789 - ], - [ - "▁redesign", - -12.752119064331055 - ], - [ - "▁obstacle", - -12.752214431762695 - ], - [ - "▁rugam", - -12.752235412597656 - ], - [ - "▁SPD", - -12.752243995666504 - ], - [ - "165", - -12.752270698547363 - ], - [ - "fiz", - -12.752284049987793 - ], - [ - "▁startet", - -12.752326011657715 - ], - [ - "▁Principle", - -12.752327919006348 - ], - [ - "▁abdominal", - -12.752327919006348 - ], - [ - "▁podium", - -12.752528190612793 - ], - [ - "duty", - -12.752616882324219 - ], - [ - "bonne", - -12.752679824829102 - ], - [ - "▁Serbia", - -12.752687454223633 - ], - [ - "▁brunch", - -12.752839088439941 - ], - [ - "▁Personne", - -12.752975463867188 - ], - [ - "▁Idea", - -12.753034591674805 - ], - [ - "forementioned", - -12.753036499023438 - ], - [ - "▁chassis", - -12.753037452697754 - ], - [ - "gebühr", - -12.753050804138184 - ], - [ - "ucun", - -12.753061294555664 - ], - [ - "▁Maz", - -12.7531156539917 - ], - [ - "1-4", - -12.75318431854248 - ], - [ - "kleid", - -12.753273963928223 - ], - [ - "▁Volvo", - -12.753337860107422 - ], - [ - "brechen", - -12.753378868103027 - ], - [ - "▁homepage", - -12.753472328186035 - ], - [ - "fuz", - -12.753509521484375 - ], - [ - "▁abgeschlossen", - -12.753595352172852 - ], - [ - "▁gelungen", - -12.753658294677734 - ], - [ - "▁booklet", - -12.753711700439453 - ], - [ - "▁Ukrainian", - -12.753745079040527 - ], - [ - "▁Melissa", - -12.753746032714844 - ], - [ - "CENT", - -12.75379467010498 - ], - [ - "▁intégré", - -12.753806114196777 - ], - [ - "weighing", - -12.753827095031738 - ], - [ - "▁crumbl", - -12.753894805908203 - ], - [ - "▁bunk", - -12.754167556762695 - ], - [ - "krieg", - -12.754207611083984 - ], - [ - "▁freshman", - -12.754307746887207 - ], - [ - "alaya", - -12.754339218139648 - ], - [ - "Avem", - -12.754353523254395 - ], - [ - "▁Kne", - -12.754423141479492 - ], - [ - "▁upstairs", - -12.75448226928711 - ], - [ - "AIL", - -12.754508972167969 - ], - [ - "țul", - -12.75478744506836 - ], - [ - "▁Lecture", - -12.754817962646484 - ], - [ - "▁entdecken", - -12.754843711853027 - ], - [ - "▁GMT", - -12.754912376403809 - ], - [ - "▁Leitung", - -12.754937171936035 - ], - [ - "▁inclined", - -12.755170822143555 - ], - [ - "▁skillet", - -12.75555419921875 - ], - [ - "FN", - -12.755742073059082 - ], - [ - "▁Perform", - -12.755821228027344 - ], - [ - "shift", - -12.75583267211914 - ], - [ - "recognizing", - -12.755873680114746 - ], - [ - "▁concise", - -12.755873680114746 - ], - [ - "▁obsessed", - -12.755873680114746 - ], - [ - "▁removable", - -12.755873680114746 - ], - [ - "▁Relax", - -12.755888938903809 - ], - [ - "delegates", - -12.75605583190918 - ], - [ - "▁expedi", - -12.756074905395508 - ], - [ - "▁Schä", - -12.756138801574707 - ], - [ - "iete", - -12.756211280822754 - ], - [ - "▁reciproc", - -12.756229400634766 - ], - [ - "▁neutr", - -12.75625228881836 - ], - [ - "lactic", - -12.756314277648926 - ], - [ - "▁Nah", - -12.756328582763672 - ], - [ - "scene", - -12.7565279006958 - ], - [ - "▁Helm", - -12.756563186645508 - ], - [ - "▁Bewerbung", - -12.756671905517578 - ], - [ - "▁Cassi", - -12.75667953491211 - ], - [ - "▁Gelegenheit", - -12.756939888000488 - ], - [ - "▁reflective", - -12.757140159606934 - ], - [ - "▁încredere", - -12.757149696350098 - ], - [ - "▁cigarettes", - -12.75717544555664 - ], - [ - "▁Zusätzlich", - -12.757295608520508 - ], - [ - "▁intercept", - -12.75731372833252 - ], - [ - "▁Finn", - -12.757468223571777 - ], - [ - "▁ignor", - -12.757661819458008 - ], - [ - "gian", - -12.75766372680664 - ], - [ - "BRA", - -12.757740020751953 - ], - [ - "leader", - -12.757957458496094 - ], - [ - "nius", - -12.757981300354004 - ], - [ - "▁skies", - -12.757987022399902 - ], - [ - "▁nunta", - -12.758023262023926 - ], - [ - "▁grec", - -12.758041381835938 - ], - [ - "arranging", - -12.75816822052002 - ], - [ - "wartet", - -12.758231163024902 - ], - [ - "▁kostet", - -12.758377075195312 - ], - [ - "▁Entre", - -12.758541107177734 - ], - [ - "Mag", - -12.758575439453125 - ], - [ - "▁radiator", - -12.758598327636719 - ], - [ - "übrigens", - -12.758689880371094 - ], - [ - "Internet", - -12.758706092834473 - ], - [ - "▁connexion", - -12.758718490600586 - ], - [ - "▁prolonged", - -12.758854866027832 - ], - [ - "▁capabil", - -12.75914192199707 - ], - [ - "▁feeder", - -12.759217262268066 - ], - [ - "Initially", - -12.759223937988281 - ], - [ - "Green", - -12.75926685333252 - ], - [ - "▁passiert", - -12.759272575378418 - ], - [ - "▁courtyard", - -12.759299278259277 - ], - [ - "▁judeţ", - -12.759320259094238 - ], - [ - "▁Coalition", - -12.759431838989258 - ], - [ - "▁atmospheric", - -12.759431838989258 - ], - [ - "▁velocity", - -12.759431838989258 - ], - [ - "▁Frühstück", - -12.759432792663574 - ], - [ - "vacancies", - -12.759438514709473 - ], - [ - "unified", - -12.759538650512695 - ], - [ - "▁Ahmed", - -12.759538650512695 - ], - [ - "poured", - -12.759550094604492 - ], - [ - "▁Mikro", - -12.75959587097168 - ], - [ - "▁Klar", - -12.759661674499512 - ], - [ - "kommt", - -12.759681701660156 - ], - [ - "seated", - -12.759744644165039 - ], - [ - "musik", - -12.75976848602295 - ], - [ - "▁stimulation", - -12.759841918945312 - ], - [ - "▁solicitat", - -12.759880065917969 - ], - [ - "▁politically", - -12.760165214538574 - ], - [ - "restoring", - -12.760322570800781 - ], - [ - "▁Rag", - -12.760435104370117 - ], - [ - "▁officielle", - -12.760468482971191 - ], - [ - "▁Annie", - -12.760479927062988 - ], - [ - "▁tourne", - -12.760634422302246 - ], - [ - "▁Joel", - -12.760642051696777 - ], - [ - "blieben", - -12.760666847229004 - ], - [ - "▁repayment", - -12.760736465454102 - ], - [ - "▁Strategi", - -12.760781288146973 - ], - [ - "▁prietenii", - -12.760804176330566 - ], - [ - "▁Montgomery", - -12.760858535766602 - ], - [ - "▁résidence", - -12.760858535766602 - ], - [ - "▁sunglasses", - -12.760858535766602 - ], - [ - "▁1956", - -12.760882377624512 - ], - [ - "MEN", - -12.76093578338623 - ], - [ - "pouvant", - -12.760997772216797 - ], - [ - "375", - -12.761061668395996 - ], - [ - "directed", - -12.761173248291016 - ], - [ - "▁grinder", - -12.76120662689209 - ], - [ - "rträge", - -12.761279106140137 - ], - [ - "▁nickel", - -12.761299133300781 - ], - [ - "▁Maintain", - -12.761313438415527 - ], - [ - "▁Holmes", - -12.761392593383789 - ], - [ - "▁obtinut", - -12.76157283782959 - ], - [ - "▁walnut", - -12.761585235595703 - ], - [ - "▁consultancy", - -12.761640548706055 - ], - [ - "cooled", - -12.761651039123535 - ], - [ - "▁Brig", - -12.761711120605469 - ], - [ - "▁Produc", - -12.761873245239258 - ], - [ - "street", - -12.76187515258789 - ], - [ - "▁Einfach", - -12.761897087097168 - ], - [ - "North", - -12.762149810791016 - ], - [ - "▁PET", - -12.76220989227295 - ], - [ - "▁Président", - -12.762288093566895 - ], - [ - "▁produsului", - -12.762457847595215 - ], - [ - "literatur", - -12.762483596801758 - ], - [ - "133", - -12.762561798095703 - ], - [ - "▁recours", - -12.762591361999512 - ], - [ - "▁verpflichtet", - -12.76264476776123 - ], - [ - "▁Wur", - -12.762733459472656 - ], - [ - "▁psiholog", - -12.762796401977539 - ], - [ - "Veg", - -12.762871742248535 - ], - [ - "▁hype", - -12.762930870056152 - ], - [ - "augmenter", - -12.762974739074707 - ], - [ - "▁Welsh", - -12.763012886047363 - ], - [ - "mounted", - -12.763158798217773 - ], - [ - "▁Wann", - -12.763425827026367 - ], - [ - "▁gezeigt", - -12.763620376586914 - ], - [ - "▁memo", - -12.763631820678711 - ], - [ - "veterinary", - -12.763717651367188 - ], - [ - "▁Olympia", - -12.763717651367188 - ], - [ - "▁handsome", - -12.763871192932129 - ], - [ - "yama", - -12.763911247253418 - ], - [ - "studio", - -12.763912200927734 - ], - [ - "sozial", - -12.764020919799805 - ], - [ - "▁reap", - -12.764104843139648 - ], - [ - "▁didactic", - -12.764111518859863 - ], - [ - "▁Cookie", - -12.764126777648926 - ], - [ - "▁cooper", - -12.764230728149414 - ], - [ - "▁discern", - -12.76441478729248 - ], - [ - "▁Ubuntu", - -12.764433860778809 - ], - [ - "domain", - -12.76443862915039 - ], - [ - "▁plasa", - -12.764460563659668 - ], - [ - "hong", - -12.764585494995117 - ], - [ - "▁Freiheit", - -12.764662742614746 - ], - [ - "▁Gateway", - -12.764678001403809 - ], - [ - "▁poke", - -12.764796257019043 - ], - [ - "▁niedrig", - -12.76484203338623 - ], - [ - "▁corrected", - -12.764899253845215 - ], - [ - "▁predator", - -12.76490306854248 - ], - [ - "QA", - -12.76507568359375 - ], - [ - "Physio", - -12.765101432800293 - ], - [ - "MAS", - -12.765108108520508 - ], - [ - "▁sanctuary", - -12.765151023864746 - ], - [ - "▁aferent", - -12.76523494720459 - ], - [ - "▁perdre", - -12.765268325805664 - ], - [ - "▁recherch", - -12.765397071838379 - ], - [ - "ready", - -12.76559829711914 - ], - [ - "without", - -12.76560115814209 - ], - [ - "▁locuitori", - -12.765628814697266 - ], - [ - "▁Memo", - -12.765636444091797 - ], - [ - "▁Laden", - -12.765646934509277 - ], - [ - "danken", - -12.76577377319336 - ], - [ - "▁CNC", - -12.765861511230469 - ], - [ - "▁jealous", - -12.765881538391113 - ], - [ - "▁Background", - -12.765951156616211 - ], - [ - "▁Marx", - -12.765999794006348 - ], - [ - "▁Heli", - -12.766039848327637 - ], - [ - "▁osteo", - -12.766057968139648 - ], - [ - "▁rassembl", - -12.766162872314453 - ], - [ - "▁altceva", - -12.766226768493652 - ], - [ - "▁beschäftigt", - -12.766226768493652 - ], - [ - "▁accru", - -12.766266822814941 - ], - [ - "üft", - -12.766273498535156 - ], - [ - "▁sprout", - -12.766288757324219 - ], - [ - "endorf", - -12.76647663116455 - ], - [ - "▁specialitate", - -12.766483306884766 - ], - [ - "éanmoins", - -12.766586303710938 - ], - [ - "▁poign", - -12.766663551330566 - ], - [ - "▁mânca", - -12.766668319702148 - ], - [ - "▁stretched", - -12.766752243041992 - ], - [ - "fensiv", - -12.76677131652832 - ], - [ - "▁Auction", - -12.76683235168457 - ], - [ - "hints", - -12.766944885253906 - ], - [ - "▁typo", - -12.766983032226562 - ], - [ - "▁Rare", - -12.767003059387207 - ], - [ - "▁interruption", - -12.767043113708496 - ], - [ - "▁Mean", - -12.76709270477295 - ], - [ - "privileged", - -12.767108917236328 - ], - [ - "▁purtat", - -12.767129898071289 - ], - [ - "studie", - -12.767229080200195 - ], - [ - "offres", - -12.767248153686523 - ], - [ - "▁flap", - -12.76729679107666 - ], - [ - "▁rhetoric", - -12.767304420471191 - ], - [ - "▁snapshot", - -12.767325401306152 - ], - [ - "▁Conservative", - -12.767367362976074 - ], - [ - "▁taie", - -12.767416954040527 - ], - [ - "Game", - -12.767499923706055 - ], - [ - "▁naissance", - -12.767663955688477 - ], - [ - "Prof", - -12.767704963684082 - ], - [ - "qualified", - -12.767745971679688 - ], - [ - "▁suppression", - -12.767749786376953 - ], - [ - "▁răspunde", - -12.767765045166016 - ], - [ - "▁1/3", - -12.767803192138672 - ], - [ - "▁lieben", - -12.767858505249023 - ], - [ - "ù", - -12.767898559570312 - ], - [ - "america", - -12.767955780029297 - ], - [ - "▁Mum", - -12.768182754516602 - ], - [ - "▁Researchers", - -12.76827335357666 - ], - [ - "quip", - -12.768308639526367 - ], - [ - "▁fenomen", - -12.768383026123047 - ], - [ - "stools", - -12.768387794494629 - ], - [ - "▁commodity", - -12.768742561340332 - ], - [ - "▁rejuvenat", - -12.768745422363281 - ], - [ - "▁ausgezeichnet", - -12.76876449584961 - ], - [ - "▁păcate", - -12.768784523010254 - ], - [ - "3.6", - -12.76882553100586 - ], - [ - "zwei", - -12.768904685974121 - ], - [ - "accounted", - -12.768982887268066 - ], - [ - "▁Cycle", - -12.76900863647461 - ], - [ - "politischen", - -12.769031524658203 - ], - [ - "Normally", - -12.76904010772705 - ], - [ - "▁transcend", - -12.769158363342285 - ], - [ - "▁Classes", - -12.769268989562988 - ], - [ - "▁vene", - -12.769363403320312 - ], - [ - "protein", - -12.76942253112793 - ], - [ - "formulaire", - -12.76944351196289 - ], - [ - "▁endurance", - -12.769463539123535 - ], - [ - "▁Census", - -12.769464492797852 - ], - [ - "▁census", - -12.7694673538208 - ], - [ - "▁conțin", - -12.76952838897705 - ], - [ - "▁multinational", - -12.769563674926758 - ], - [ - "▁consomm", - -12.769572257995605 - ], - [ - "▁Porter", - -12.769762992858887 - ], - [ - "▁marvel", - -12.769777297973633 - ], - [ - "▁probable", - -12.769824028015137 - ], - [ - "dependable", - -12.770044326782227 - ], - [ - "▁crore", - -12.77015495300293 - ], - [ - "▁6:30", - -12.770224571228027 - ], - [ - "▁Bradley", - -12.77032470703125 - ], - [ - "molecule", - -12.770400047302246 - ], - [ - "inclusiv", - -12.770516395568848 - ], - [ - "▁privilégi", - -12.770543098449707 - ], - [ - "▁cerere", - -12.770611763000488 - ], - [ - "ouille", - -12.770696640014648 - ], - [ - "▁âgé", - -12.770787239074707 - ], - [ - "▁ghid", - -12.770801544189453 - ], - [ - "▁Controller", - -12.77082347869873 - ], - [ - "▁incredere", - -12.770988464355469 - ], - [ - "▁hostel", - -12.771015167236328 - ], - [ - "wissenschaft", - -12.771121978759766 - ], - [ - "▁cooperate", - -12.771183967590332 - ], - [ - "ки", - -12.771202087402344 - ], - [ - "▁Küchen", - -12.771384239196777 - ], - [ - "▁BIO", - -12.771406173706055 - ], - [ - "▁deliveries", - -12.771458625793457 - ], - [ - "▁urmări", - -12.771553993225098 - ], - [ - "▁überzeugen", - -12.771631240844727 - ], - [ - "Roofing", - -12.771703720092773 - ], - [ - "▁Adel", - -12.771737098693848 - ], - [ - "▁navy", - -12.77181339263916 - ], - [ - "▁cider", - -12.772101402282715 - ], - [ - "▁dulce", - -12.772109985351562 - ], - [ - "▁inspirat", - -12.772163391113281 - ], - [ - "allez", - -12.772164344787598 - ], - [ - "HH", - -12.77221965789795 - ], - [ - "▁Danish", - -12.7722749710083 - ], - [ - "CDC", - -12.7722806930542 - ], - [ - "▁Milch", - -12.772303581237793 - ], - [ - "▁Hockey", - -12.772346496582031 - ], - [ - "▁Smooth", - -12.772347450256348 - ], - [ - "▁FIFA", - -12.772361755371094 - ], - [ - "▁Devon", - -12.772364616394043 - ], - [ - "chung", - -12.772379875183105 - ], - [ - "▁villain", - -12.772420883178711 - ], - [ - "▁musée", - -12.772441864013672 - ], - [ - "tiennent", - -12.772557258605957 - ], - [ - "chou", - -12.772732734680176 - ], - [ - "kopf", - -12.772809982299805 - ], - [ - "printed", - -12.77281379699707 - ], - [ - "▁Depression", - -12.773076057434082 - ], - [ - "▁opioid", - -12.773082733154297 - ], - [ - "nomie", - -12.773098945617676 - ], - [ - "▁footwear", - -12.773211479187012 - ], - [ - "▁Cause", - -12.773260116577148 - ], - [ - "SEL", - -12.773515701293945 - ], - [ - "▁Roller", - -12.773523330688477 - ], - [ - "▁einzigartige", - -12.773589134216309 - ], - [ - "desea", - -12.773597717285156 - ], - [ - "▁nasty", - -12.773792266845703 - ], - [ - "formulated", - -12.773877143859863 - ], - [ - "breaker", - -12.773958206176758 - ], - [ - "▁goodies", - -12.773961067199707 - ], - [ - "▁sandy", - -12.774189949035645 - ], - [ - "method", - -12.77425479888916 - ], - [ - "▁Maple", - -12.774308204650879 - ], - [ - "gefragt", - -12.774435997009277 - ], - [ - "▁decreasing", - -12.774515151977539 - ], - [ - "ceşti", - -12.774555206298828 - ], - [ - "▁DUI", - -12.774563789367676 - ], - [ - "▁pierdere", - -12.774574279785156 - ], - [ - "▁brushes", - -12.77466869354248 - ], - [ - "▁Fully", - -12.774712562561035 - ], - [ - "filtered", - -12.774789810180664 - ], - [ - "ruins", - -12.774988174438477 - ], - [ - "Save", - -12.775114059448242 - ], - [ - "sweeping", - -12.7752046585083 - ], - [ - "PCR", - -12.775334358215332 - ], - [ - "▁folded", - -12.775337219238281 - ], - [ - "▁urca", - -12.775444030761719 - ], - [ - "▁clic", - -12.775484085083008 - ], - [ - "▁spécialiste", - -12.775614738464355 - ], - [ - "▁durfte", - -12.775686264038086 - ], - [ - "tuși", - -12.775871276855469 - ], - [ - "▁diligent", - -12.77596378326416 - ], - [ - "▁verdict", - -12.775972366333008 - ], - [ - "▁chaise", - -12.776039123535156 - ], - [ - "▁cleanup", - -12.776068687438965 - ], - [ - "▁Guitar", - -12.776076316833496 - ], - [ - "▁Dip", - -12.776142120361328 - ], - [ - "vru", - -12.776260375976562 - ], - [ - "▁cogn", - -12.776373863220215 - ], - [ - "something", - -12.776529312133789 - ], - [ - "hidr", - -12.776535034179688 - ], - [ - "ENG", - -12.776607513427734 - ], - [ - "Paul", - -12.776679039001465 - ], - [ - "▁reboot", - -12.776687622070312 - ], - [ - "savvy", - -12.776688575744629 - ], - [ - "▁Macron", - -12.776710510253906 - ], - [ - "▁Kino", - -12.77682876586914 - ], - [ - "232", - -12.776832580566406 - ], - [ - "▁gravit", - -12.776861190795898 - ], - [ - "ANC", - -12.776883125305176 - ], - [ - "▁petrecut", - -12.776944160461426 - ], - [ - "▁signage", - -12.776959419250488 - ], - [ - "odia", - -12.776987075805664 - ], - [ - "▁GRA", - -12.77712631225586 - ], - [ - "▁alegeril", - -12.777129173278809 - ], - [ - "leger", - -12.77717399597168 - ], - [ - "▁medicamente", - -12.777174949645996 - ], - [ - "pentru", - -12.777249336242676 - ], - [ - "▁collectif", - -12.777251243591309 - ], - [ - "▁Sohn", - -12.777298927307129 - ], - [ - "205", - -12.777313232421875 - ], - [ - "▁Reach", - -12.77733039855957 - ], - [ - "RAM", - -12.777400970458984 - ], - [ - "3.4", - -12.777405738830566 - ], - [ - "▁bleach", - -12.777409553527832 - ], - [ - "▁diligence", - -12.777414321899414 - ], - [ - "▁MORE", - -12.777440071105957 - ], - [ - "▁Critical", - -12.777471542358398 - ], - [ - "▁singură", - -12.77767276763916 - ], - [ - "▁adversar", - -12.777791023254395 - ], - [ - "▁Buzz", - -12.7778902053833 - ], - [ - "▁demeure", - -12.778063774108887 - ], - [ - "▁nephew", - -12.778141021728516 - ], - [ - "▁Boom", - -12.77817440032959 - ], - [ - "▁shining", - -12.77819538116455 - ], - [ - "▁sponge", - -12.778206825256348 - ], - [ - "liest", - -12.77841854095459 - ], - [ - "rseits", - -12.778690338134766 - ], - [ - "▁capita", - -12.778823852539062 - ], - [ - "esthesia", - -12.778867721557617 - ], - [ - "500,000", - -12.77895736694336 - ], - [ - "▁Pressure", - -12.77898120880127 - ], - [ - "ifikation", - -12.779021263122559 - ], - [ - "▁acceleration", - -12.779181480407715 - ], - [ - "▁Pfarr", - -12.779282569885254 - ], - [ - "▁imobil", - -12.779304504394531 - ], - [ - "▁pericol", - -12.779326438903809 - ], - [ - "▁flock", - -12.779454231262207 - ], - [ - "▁Scholar", - -12.77962875366211 - ], - [ - "▁Fusion", - -12.779630661010742 - ], - [ - "▁revolve", - -12.779637336730957 - ], - [ - "Plugin", - -12.779664993286133 - ], - [ - "▁Ruf", - -12.779691696166992 - ], - [ - "▁tehnici", - -12.780024528503418 - ], - [ - "voice", - -12.78005313873291 - ], - [ - "▁anomal", - -12.780203819274902 - ], - [ - "▁gefallen", - -12.780252456665039 - ], - [ - "▁Wyoming", - -12.780322074890137 - ], - [ - "▁9:00", - -12.780354499816895 - ], - [ - "packed", - -12.780461311340332 - ], - [ - "▁Zimbabwe", - -12.780686378479004 - ], - [ - "▁glücklich", - -12.780766487121582 - ], - [ - "ethanol", - -12.78077220916748 - ], - [ - "▁effektiv", - -12.780936241149902 - ], - [ - "▁saptamani", - -12.781049728393555 - ], - [ - "▁umfasst", - -12.781052589416504 - ], - [ - "▁Werbung", - -12.781103134155273 - ], - [ - "▁undermine", - -12.781164169311523 - ], - [ - "▁Lego", - -12.781322479248047 - ], - [ - "▁Rac", - -12.781323432922363 - ], - [ - "educating", - -12.781441688537598 - ], - [ - "leiten", - -12.781451225280762 - ], - [ - "derma", - -12.781518936157227 - ], - [ - "hängen", - -12.781597137451172 - ], - [ - "Lumin", - -12.781846046447754 - ], - [ - "▁PNL", - -12.781913757324219 - ], - [ - "▁volcano", - -12.782064437866211 - ], - [ - "▁Anfrage", - -12.782066345214844 - ], - [ - "▁resp", - -12.782124519348145 - ], - [ - "leigh", - -12.78217601776123 - ], - [ - "▁addict", - -12.782176971435547 - ], - [ - "WORK", - -12.782312393188477 - ], - [ - "▁FY", - -12.782322883605957 - ], - [ - "▁maneuver", - -12.782513618469238 - ], - [ - "flächen", - -12.782525062561035 - ], - [ - "zweck", - -12.782527923583984 - ], - [ - "tolerant", - -12.782609939575195 - ], - [ - "Davidson", - -12.78272533416748 - ], - [ - "▁meteor", - -12.782849311828613 - ], - [ - "▁Stephanie", - -12.78291130065918 - ], - [ - "▁plafon", - -12.783126831054688 - ], - [ - "technischen", - -12.78316879272461 - ], - [ - "unused", - -12.783193588256836 - ], - [ - "▁voulai", - -12.783228874206543 - ], - [ - "▁fehlt", - -12.783447265625 - ], - [ - "möglichen", - -12.783955574035645 - ], - [ - "▁Twenty", - -12.783968925476074 - ], - [ - "composing", - -12.783979415893555 - ], - [ - "▁rebate", - -12.78400707244873 - ], - [ - "Italie", - -12.784036636352539 - ], - [ - "▁goodbye", - -12.784058570861816 - ], - [ - "wild", - -12.784061431884766 - ], - [ - "▁lancé", - -12.784077644348145 - ], - [ - "▁wunderschöne", - -12.784083366394043 - ], - [ - "▁Frontier", - -12.784139633178711 - ], - [ - "▁murit", - -12.784313201904297 - ], - [ - "▁scump", - -12.78464412689209 - ], - [ - "OVER", - -12.784682273864746 - ], - [ - "▁meme", - -12.784709930419922 - ], - [ - "Super", - -12.784733772277832 - ], - [ - "▁Crack", - -12.784849166870117 - ], - [ - "rennen", - -12.784907341003418 - ], - [ - "▁interessiert", - -12.784941673278809 - ], - [ - "▁relaţi", - -12.784942626953125 - ], - [ - "▁factories", - -12.784975051879883 - ], - [ - "▁[...]", - -12.785066604614258 - ], - [ - "▁vizite", - -12.785075187683105 - ], - [ - "▁erfolgen", - -12.785199165344238 - ], - [ - "▁Hosting", - -12.785244941711426 - ], - [ - "▁localitate", - -12.78528118133545 - ], - [ - "▁chasse", - -12.785415649414062 - ], - [ - "▁Meadow", - -12.785465240478516 - ], - [ - "▁expansive", - -12.785513877868652 - ], - [ - "hov", - -12.785874366760254 - ], - [ - "Phil", - -12.785978317260742 - ], - [ - "illian", - -12.786107063293457 - ], - [ - "▁manipulate", - -12.786107063293457 - ], - [ - "informationen", - -12.786130905151367 - ], - [ - "▁profesionist", - -12.786162376403809 - ], - [ - "risen", - -12.786252975463867 - ], - [ - "frem", - -12.786300659179688 - ], - [ - "Act", - -12.78640079498291 - ], - [ - "supervised", - -12.786491394042969 - ], - [ - "▁capul", - -12.786506652832031 - ], - [ - "▁Craiova", - -12.786528587341309 - ], - [ - "▁victoire", - -12.786528587341309 - ], - [ - "▁guitarist", - -12.786680221557617 - ], - [ - "▁identific", - -12.786684036254883 - ], - [ - "democrat", - -12.786864280700684 - ], - [ - "Authentic", - -12.786894798278809 - ], - [ - "▁Autumn", - -12.786894798278809 - ], - [ - "▁bodi", - -12.787014961242676 - ], - [ - "April", - -12.787044525146484 - ], - [ - "▁Burger", - -12.787049293518066 - ], - [ - "▁BEST", - -12.787490844726562 - ], - [ - "▁torrent", - -12.78749942779541 - ], - [ - "UV", - -12.787567138671875 - ], - [ - "▁renal", - -12.787676811218262 - ], - [ - "founded", - -12.787693977355957 - ], - [ - "203", - -12.787956237792969 - ], - [ - "▁Flooring", - -12.78799057006836 - ], - [ - "▁kilogram", - -12.787994384765625 - ], - [ - "▁garantiert", - -12.788139343261719 - ], - [ - "▁fulfil", - -12.788204193115234 - ], - [ - "303", - -12.788330078125 - ], - [ - "▁schafft", - -12.788363456726074 - ], - [ - "▁butterfly", - -12.788365364074707 - ], - [ - "▁Stuart", - -12.788382530212402 - ], - [ - "▁Versuch", - -12.788392066955566 - ], - [ - "▁liking", - -12.788412094116211 - ], - [ - "▁chercher", - -12.788508415222168 - ], - [ - "▁wrapping", - -12.788527488708496 - ], - [ - "schrieb", - -12.788652420043945 - ], - [ - "▁abuz", - -12.788718223571777 - ], - [ - "▁maîtrise", - -12.788772583007812 - ], - [ - "EQ", - -12.788887977600098 - ], - [ - "▁Erinnerung", - -12.789095878601074 - ], - [ - "▁bridal", - -12.78909969329834 - ], - [ - "Rock", - -12.789118766784668 - ], - [ - "▁copied", - -12.789193153381348 - ], - [ - "Met", - -12.789206504821777 - ], - [ - "▁incep", - -12.789233207702637 - ], - [ - "▁sinus", - -12.789336204528809 - ], - [ - "▁Felix", - -12.789831161499023 - ], - [ - "▁Deluxe", - -12.789837837219238 - ], - [ - "▁GPU", - -12.789848327636719 - ], - [ - "Sie", - -12.790164947509766 - ], - [ - "lowering", - -12.790262222290039 - ], - [ - "▁Trotz", - -12.790282249450684 - ], - [ - "333", - -12.790417671203613 - ], - [ - "withstand", - -12.79055118560791 - ], - [ - "▁Aufenthalt", - -12.790566444396973 - ], - [ - "▁unhealthy", - -12.790567398071289 - ], - [ - "▁urbain", - -12.790573120117188 - ], - [ - "▁LOL", - -12.790702819824219 - ], - [ - "▁Ballet", - -12.79074478149414 - ], - [ - "▁Decoration", - -12.79083251953125 - ], - [ - "weist", - -12.790839195251465 - ], - [ - "▁Residence", - -12.790932655334473 - ], - [ - "▁Leeds", - -12.791055679321289 - ], - [ - "▁Genau", - -12.791084289550781 - ], - [ - "Imagin", - -12.791136741638184 - ], - [ - "▁suspicion", - -12.791300773620605 - ], - [ - "▁pêche", - -12.791301727294922 - ], - [ - "▁Soccer", - -12.791306495666504 - ], - [ - "▁protectie", - -12.791553497314453 - ], - [ - "ATS", - -12.791796684265137 - ], - [ - "stocked", - -12.791838645935059 - ], - [ - "▁gymnas", - -12.79184627532959 - ], - [ - "ASP", - -12.792027473449707 - ], - [ - "▁Independence", - -12.792037010192871 - ], - [ - "▁Wizard", - -12.792037963867188 - ], - [ - "▁nitrogen", - -12.79204273223877 - ], - [ - "amerikanische", - -12.7920503616333 - ], - [ - "▁Indianapolis", - -12.79205322265625 - ], - [ - "catches", - -12.792131423950195 - ], - [ - "stria", - -12.792275428771973 - ], - [ - "schätze", - -12.79235553741455 - ], - [ - "▁Räume", - -12.792387962341309 - ], - [ - "▁Interesting", - -12.792403221130371 - ], - [ - "bürger", - -12.79240608215332 - ], - [ - "sweet", - -12.792410850524902 - ], - [ - "Identify", - -12.792632102966309 - ], - [ - "EEN", - -12.792651176452637 - ], - [ - "▁£3", - -12.792654991149902 - ], - [ - "interacting", - -12.7926664352417 - ], - [ - "NYSE", - -12.792762756347656 - ], - [ - "▁Dynamics", - -12.79277515411377 - ], - [ - "▁modificări", - -12.792777061462402 - ], - [ - "▁Kumar", - -12.792936325073242 - ], - [ - "chette", - -12.79313850402832 - ], - [ - "▁presiune", - -12.79316234588623 - ], - [ - "arni", - -12.793164253234863 - ], - [ - "▁vielfältig", - -12.793221473693848 - ], - [ - "KC", - -12.793259620666504 - ], - [ - "▁Cuisine", - -12.793513298034668 - ], - [ - "▁australia", - -12.793885231018066 - ], - [ - "▁încet", - -12.794026374816895 - ], - [ - "▁caracteristic", - -12.794257164001465 - ], - [ - "▁cookbook", - -12.794501304626465 - ], - [ - "▁douleur", - -12.79453182220459 - ], - [ - "AVI", - -12.794593811035156 - ], - [ - "artikel", - -12.794740676879883 - ], - [ - "feta", - -12.79493522644043 - ], - [ - "▁fréquent", - -12.794987678527832 - ], - [ - "▁Prophet", - -12.795051574707031 - ], - [ - "▁dépense", - -12.795202255249023 - ], - [ - "▁Smile", - -12.795235633850098 - ], - [ - "▁lawmakers", - -12.79525375366211 - ], - [ - "▁Kollegen", - -12.795391082763672 - ], - [ - "▁Pir", - -12.79555606842041 - ], - [ - "serez", - -12.79561710357666 - ], - [ - "▁consumator", - -12.795656204223633 - ], - [ - "▁playlist", - -12.795730590820312 - ], - [ - "▁envisage", - -12.795733451843262 - ], - [ - "swept", - -12.795780181884766 - ], - [ - "▁Grim", - -12.795825004577637 - ], - [ - "▁widow", - -12.795836448669434 - ], - [ - "authorised", - -12.795886039733887 - ], - [ - "▁(...)", - -12.796035766601562 - ], - [ - "▁photographic", - -12.796060562133789 - ], - [ - "▁libertate", - -12.796173095703125 - ], - [ - "▁principalement", - -12.796201705932617 - ], - [ - "umming", - -12.796260833740234 - ], - [ - "▁Montréal", - -12.796465873718262 - ], - [ - "▁compilation", - -12.796468734741211 - ], - [ - "▁erlaubt", - -12.79647159576416 - ], - [ - "▁biblical", - -12.796518325805664 - ], - [ - "volume", - -12.796561241149902 - ], - [ - "5-7", - -12.796809196472168 - ], - [ - "▁Versch", - -12.79689884185791 - ], - [ - "▁Shark", - -12.796957015991211 - ], - [ - "ologne", - -12.796969413757324 - ], - [ - "4.4", - -12.797086715698242 - ], - [ - "decken", - -12.797112464904785 - ], - [ - "▁frequencies", - -12.797205924987793 - ], - [ - "▁inferior", - -12.79720687866211 - ], - [ - "visible", - -12.797321319580078 - ], - [ - "▁educator", - -12.797394752502441 - ], - [ - "▁soziale", - -12.797420501708984 - ], - [ - "▁billet", - -12.797523498535156 - ], - [ - "folosirea", - -12.797574996948242 - ], - [ - "▁aufgenommen", - -12.797590255737305 - ], - [ - "▁Thread", - -12.797649383544922 - ], - [ - "registering", - -12.797694206237793 - ], - [ - "▁Loop", - -12.797747611999512 - ], - [ - "innovation", - -12.79783821105957 - ], - [ - "▁elimination", - -12.797857284545898 - ], - [ - "136", - -12.797883987426758 - ], - [ - "▁fluctu", - -12.797892570495605 - ], - [ - "▁Mercury", - -12.79794692993164 - ], - [ - "▁bouche", - -12.797955513000488 - ], - [ - "▁hurdle", - -12.7979736328125 - ], - [ - "▁Bennett", - -12.798040390014648 - ], - [ - "STI", - -12.79818344116211 - ], - [ - "▁théâtre", - -12.798316955566406 - ], - [ - "▁confortable", - -12.798359870910645 - ], - [ - "▁Automobil", - -12.79838752746582 - ], - [ - "▁Donna", - -12.798399925231934 - ], - [ - "▁foyer", - -12.79841136932373 - ], - [ - "▁hollow", - -12.798465728759766 - ], - [ - "▁règlement", - -12.79861068725586 - ], - [ - "effi", - -12.798616409301758 - ], - [ - "▁sediment", - -12.79869270324707 - ], - [ - "▁Mä", - -12.798774719238281 - ], - [ - "▁faint", - -12.798833847045898 - ], - [ - "feti", - -12.79890251159668 - ], - [ - "▁Concord", - -12.798959732055664 - ], - [ - "▁Ladies", - -12.798990249633789 - ], - [ - "▁pregatit", - -12.799052238464355 - ], - [ - "▁Ensemble", - -12.79905891418457 - ], - [ - "▁Ingredient", - -12.79905891418457 - ], - [ - "▁Respond", - -12.79914379119873 - ], - [ - "▁impaired", - -12.799356460571289 - ], - [ - "▁Feedback", - -12.799430847167969 - ], - [ - "▁ultrasound", - -12.799461364746094 - ], - [ - "▁Guvernului", - -12.799617767333984 - ], - [ - "▁Unterricht", - -12.799654006958008 - ], - [ - "▁prosecut", - -12.799662590026855 - ], - [ - "spend", - -12.799732208251953 - ], - [ - "▁capitol", - -12.799800872802734 - ], - [ - "USD", - -12.799822807312012 - ], - [ - "observing", - -12.799947738647461 - ], - [ - "▁effortlessly", - -12.800045013427734 - ], - [ - "▁Setting", - -12.80010986328125 - ], - [ - "▁spontaneous", - -12.80020809173584 - ], - [ - "▁LEGO", - -12.800238609313965 - ], - [ - "initiative", - -12.800299644470215 - ], - [ - "▁Sak", - -12.800299644470215 - ], - [ - "Interestingly", - -12.800326347351074 - ], - [ - "▁Yale", - -12.800352096557617 - ], - [ - "▁größer", - -12.80038070678711 - ], - [ - "RIC", - -12.800406455993652 - ], - [ - "▁distracted", - -12.800436973571777 - ], - [ - "drafted", - -12.800484657287598 - ], - [ - "▁Brenda", - -12.800522804260254 - ], - [ - "monopol", - -12.800551414489746 - ], - [ - "städt", - -12.800580024719238 - ], - [ - "▁altar", - -12.80058765411377 - ], - [ - "▁Hannover", - -12.800596237182617 - ], - [ - "▁Spiritual", - -12.800702095031738 - ], - [ - "▁thriller", - -12.800747871398926 - ], - [ - "▁Schneider", - -12.800760269165039 - ], - [ - "▁accumulate", - -12.800817489624023 - ], - [ - "▁mediului", - -12.800822257995605 - ], - [ - "▁Mathematics", - -12.800914764404297 - ], - [ - "▁paradox", - -12.800986289978027 - ], - [ - "▁Sham", - -12.801230430603027 - ], - [ - "▁SITE", - -12.801375389099121 - ], - [ - "▁echipei", - -12.801508903503418 - ], - [ - "▁staircase", - -12.801660537719727 - ], - [ - "▁întrebări", - -12.801705360412598 - ], - [ - "Commerce", - -12.802020072937012 - ], - [ - "▁selfie", - -12.802353858947754 - ], - [ - "▁Pocket", - -12.802404403686523 - ], - [ - "▁niemand", - -12.80263614654541 - ], - [ - "Tool", - -12.802678108215332 - ], - [ - "igma", - -12.802695274353027 - ], - [ - "utilisant", - -12.802915573120117 - ], - [ - "▁negatively", - -12.80295181274414 - ], - [ - "Secondly", - -12.802955627441406 - ], - [ - "▁ROI", - -12.8030366897583 - ], - [ - "Arch", - -12.803121566772461 - ], - [ - "▁continuity", - -12.80318546295166 - ], - [ - "▁Prayer", - -12.803235054016113 - ], - [ - "inverse", - -12.803241729736328 - ], - [ - "▁Himmel", - -12.803336143493652 - ], - [ - "prinz", - -12.803478240966797 - ], - [ - "wichtigen", - -12.803496360778809 - ], - [ - "étage", - -12.803522109985352 - ], - [ - "summe", - -12.8036527633667 - ], - [ - "▁Zeitung", - -12.80366039276123 - ], - [ - "▁realization", - -12.803897857666016 - ], - [ - "▁influent", - -12.804291725158691 - ], - [ - "▁Valid", - -12.804357528686523 - ], - [ - "▁publicity", - -12.804439544677734 - ], - [ - "▁vertreten", - -12.804447174072266 - ], - [ - "▁Shoes", - -12.804609298706055 - ], - [ - "▁Diabetes", - -12.80463695526123 - ], - [ - "▁anticipation", - -12.804670333862305 - ], - [ - "▁Blank", - -12.8047456741333 - ], - [ - "asked", - -12.804899215698242 - ], - [ - "Power", - -12.804938316345215 - ], - [ - "arrelage", - -12.805140495300293 - ], - [ - "▁appraisal", - -12.80538272857666 - ], - [ - "▁harassment", - -12.805542945861816 - ], - [ - "Anzeige", - -12.805682182312012 - ], - [ - "liners", - -12.80584716796875 - ], - [ - "Firstly", - -12.805851936340332 - ], - [ - "transferring", - -12.805951118469238 - ], - [ - "▁Diane", - -12.806012153625488 - ], - [ - "▁1/2\"", - -12.80606746673584 - ], - [ - "▁adrenal", - -12.806131362915039 - ], - [ - "▁Prague", - -12.806208610534668 - ], - [ - "insertion", - -12.80635929107666 - ], - [ - "▁Fahrer", - -12.806465148925781 - ], - [ - "▁divin", - -12.806585311889648 - ], - [ - "▁douche", - -12.80673885345459 - ], - [ - "▁meticulous", - -12.806879043579102 - ], - [ - "▁IEEE", - -12.806981086730957 - ], - [ - "▁Rabatt", - -12.807259559631348 - ], - [ - "Runner", - -12.807342529296875 - ], - [ - "▁Leder", - -12.807429313659668 - ], - [ - "project", - -12.80745792388916 - ], - [ - "▁Split", - -12.807562828063965 - ], - [ - "Gold", - -12.807600021362305 - ], - [ - "5.00", - -12.807629585266113 - ], - [ - "iola", - -12.807655334472656 - ], - [ - "standardized", - -12.807890892028809 - ], - [ - "ordination", - -12.807984352111816 - ], - [ - "▁Egal", - -12.808158874511719 - ], - [ - "▁ruhig", - -12.808241844177246 - ], - [ - "▁judiciar", - -12.80837345123291 - ], - [ - "▁Nowadays", - -12.808374404907227 - ], - [ - "▁whistle", - -12.808374404907227 - ], - [ - "▁superhero", - -12.808379173278809 - ], - [ - "▁PowerPoint", - -12.808408737182617 - ], - [ - "flop", - -12.808420181274414 - ], - [ - "olph", - -12.808460235595703 - ], - [ - "▁pallet", - -12.808916091918945 - ], - [ - "posons", - -12.809005737304688 - ], - [ - "▁Listing", - -12.809032440185547 - ], - [ - "Tag", - -12.809075355529785 - ], - [ - "introductory", - -12.809122085571289 - ], - [ - "▁Profil", - -12.809123992919922 - ], - [ - "symmetric", - -12.809126853942871 - ], - [ - "▁aisle", - -12.809138298034668 - ], - [ - "▁ajouté", - -12.809147834777832 - ], - [ - "opathy", - -12.809149742126465 - ], - [ - "prezentate", - -12.809155464172363 - ], - [ - "▁hurry", - -12.809165000915527 - ], - [ - "Auth", - -12.809310913085938 - ], - [ - "▁Homepage", - -12.809435844421387 - ], - [ - "ashes", - -12.809489250183105 - ], - [ - "▁inklusive", - -12.809496879577637 - ], - [ - "populated", - -12.809502601623535 - ], - [ - "▁nein", - -12.809554100036621 - ], - [ - "▁syndicat", - -12.809690475463867 - ], - [ - "▁développé", - -12.809842109680176 - ], - [ - "▁Domestic", - -12.809877395629883 - ], - [ - "essay", - -12.809967994689941 - ], - [ - "Atelier", - -12.809980392456055 - ], - [ - "▁proceeding", - -12.810006141662598 - ], - [ - "▁SAS", - -12.810038566589355 - ], - [ - "task", - -12.810063362121582 - ], - [ - "▁blackjack", - -12.810114860534668 - ], - [ - "Key", - -12.810186386108398 - ], - [ - "thérapie", - -12.810247421264648 - ], - [ - "▁Cohen", - -12.810397148132324 - ], - [ - "Direct", - -12.810510635375977 - ], - [ - "▁Estimat", - -12.810517311096191 - ], - [ - "élève", - -12.810616493225098 - ], - [ - "cind", - -12.810640335083008 - ], - [ - "▁prezenț", - -12.810701370239258 - ], - [ - "▁notorious", - -12.810725212097168 - ], - [ - "climbed", - -12.810816764831543 - ], - [ - "▁flexibil", - -12.810830116271973 - ], - [ - "▁entlang", - -12.810855865478516 - ], - [ - "longed", - -12.81103515625 - ], - [ - "▁elbow", - -12.811078071594238 - ], - [ - "BH", - -12.811296463012695 - ], - [ - "▁Radu", - -12.811376571655273 - ], - [ - "▁lonely", - -12.811378479003906 - ], - [ - "ALA", - -12.811405181884766 - ], - [ - "Variante", - -12.811639785766602 - ], - [ - "▁Influen", - -12.81169319152832 - ], - [ - "▁Budapest", - -12.811747550964355 - ], - [ - "▁Gemüse", - -12.811747550964355 - ], - [ - "▁continental", - -12.811750411987305 - ], - [ - "ippo", - -12.811771392822266 - ], - [ - "▁Affordable", - -12.81212329864502 - ], - [ - "▁niece", - -12.812187194824219 - ], - [ - "oscopic", - -12.812190055847168 - ], - [ - "▁Grid", - -12.81222152709961 - ], - [ - "sliced", - -12.812270164489746 - ], - [ - "▁voici", - -12.812294006347656 - ], - [ - "aveam", - -12.812471389770508 - ], - [ - "▁Lars", - -12.812612533569336 - ], - [ - "APA", - -12.812657356262207 - ], - [ - "▁particulière", - -12.812858581542969 - ], - [ - "sorb", - -12.8128662109375 - ], - [ - "▁1955", - -12.812887191772461 - ], - [ - "▁solutii", - -12.812942504882812 - ], - [ - "loch", - -12.812960624694824 - ], - [ - "▁summon", - -12.813212394714355 - ], - [ - "wurf", - -12.813271522521973 - ], - [ - "▁protecți", - -12.813288688659668 - ], - [ - "2001", - -12.813499450683594 - ], - [ - "▁sophomore", - -12.813627243041992 - ], - [ - "▁Schwerpunkt", - -12.813628196716309 - ], - [ - "▁diplomat", - -12.813687324523926 - ], - [ - "▁artistique", - -12.813726425170898 - ], - [ - "▁accueille", - -12.813739776611328 - ], - [ - "Disp", - -12.813746452331543 - ], - [ - "inherited", - -12.813764572143555 - ], - [ - "▁COMP", - -12.813889503479004 - ], - [ - "▁envoyé", - -12.814046859741211 - ], - [ - "▁tuning", - -12.814056396484375 - ], - [ - "▁entspricht", - -12.814062118530273 - ], - [ - "▁exerc", - -12.81406307220459 - ], - [ - "▁accessoires", - -12.8140869140625 - ], - [ - "▁Automat", - -12.814348220825195 - ], - [ - "importance", - -12.814408302307129 - ], - [ - "▁travellers", - -12.814432144165039 - ], - [ - "seiten", - -12.814474105834961 - ], - [ - "▁slider", - -12.814481735229492 - ], - [ - "effect", - -12.814591407775879 - ], - [ - "▁siding", - -12.814669609069824 - ], - [ - "▁Crit", - -12.814780235290527 - ], - [ - "▁sportif", - -12.814827919006348 - ], - [ - "▁Accessories", - -12.81513500213623 - ], - [ - "▁Anteil", - -12.815184593200684 - ], - [ - "▁limbi", - -12.81519603729248 - ], - [ - "▁vendre", - -12.815269470214844 - ], - [ - "borg", - -12.815435409545898 - ], - [ - "▁Deposit", - -12.815508842468262 - ], - [ - "▁Hö", - -12.815717697143555 - ], - [ - "employé", - -12.8157320022583 - ], - [ - "▁Bangalore", - -12.815887451171875 - ], - [ - "▁itinerary", - -12.815888404846191 - ], - [ - "▁Deliver", - -12.816008567810059 - ], - [ - "dik", - -12.816024780273438 - ], - [ - "▁advent", - -12.816100120544434 - ], - [ - "▁Turk", - -12.81614875793457 - ], - [ - "▁Nico", - -12.816154479980469 - ], - [ - "organizarea", - -12.816161155700684 - ], - [ - "▁remport", - -12.816166877746582 - ], - [ - "▁tribunal", - -12.816266059875488 - ], - [ - "▁Rusia", - -12.8162841796875 - ], - [ - "glazed", - -12.816339492797852 - ], - [ - "▁destiné", - -12.816502571105957 - ], - [ - "304", - -12.816533088684082 - ], - [ - "album", - -12.816650390625 - ], - [ - "▁junction", - -12.81665325164795 - ], - [ - "▁Fleet", - -12.816664695739746 - ], - [ - "venant", - -12.81667423248291 - ], - [ - "▁buddy", - -12.816694259643555 - ], - [ - "▁neglected", - -12.816694259643555 - ], - [ - "▁Mask", - -12.816783905029297 - ], - [ - "▁testament", - -12.816844940185547 - ], - [ - "▁Basil", - -12.81690788269043 - ], - [ - "masă", - -12.816922187805176 - ], - [ - "▁racist", - -12.81692886352539 - ], - [ - "640", - -12.816990852355957 - ], - [ - "▁Standing", - -12.817028045654297 - ], - [ - "▁MUST", - -12.817266464233398 - ], - [ - "situation", - -12.817327499389648 - ], - [ - "▁informiert", - -12.817337036132812 - ], - [ - "ABA", - -12.817353248596191 - ], - [ - "▁Timothy", - -12.817397117614746 - ], - [ - "▁generosity", - -12.817397117614746 - ], - [ - "▁erscheint", - -12.817402839660645 - ], - [ - "▁verarbeitet", - -12.81740665435791 - ], - [ - "▁burial", - -12.817444801330566 - ], - [ - "▁limestone", - -12.817458152770996 - ], - [ - "▁1953", - -12.817480087280273 - ], - [ - "▁Lucr", - -12.817506790161133 - ], - [ - "small", - -12.817633628845215 - ], - [ - "aveau", - -12.81763744354248 - ], - [ - "versiune", - -12.81773567199707 - ], - [ - "▁inkl", - -12.81775951385498 - ], - [ - "▁Minneapolis", - -12.81777572631836 - ], - [ - "Spiel", - -12.81781005859375 - ], - [ - "▁encode", - -12.817895889282227 - ], - [ - "▁beforehand", - -12.818021774291992 - ], - [ - "▁Vital", - -12.818086624145508 - ], - [ - "▁socialist", - -12.818228721618652 - ], - [ - "inho", - -12.81824779510498 - ], - [ - "▁chapel", - -12.81825065612793 - ], - [ - "▁Monitoring", - -12.81838607788086 - ], - [ - "▁quotidienne", - -12.818404197692871 - ], - [ - "cloud", - -12.818506240844727 - ], - [ - "▁desfăşur", - -12.818531036376953 - ], - [ - "▁1952", - -12.818638801574707 - ], - [ - "▁Rü", - -12.818690299987793 - ], - [ - "▁Sigma", - -12.818804740905762 - ], - [ - "134", - -12.818835258483887 - ], - [ - "Sullivan", - -12.818909645080566 - ], - [ - "▁Bevölkerung", - -12.818909645080566 - ], - [ - "▁sufficiently", - -12.818953514099121 - ], - [ - "Check", - -12.818992614746094 - ], - [ - "rnie", - -12.8190336227417 - ], - [ - "contamin", - -12.819132804870605 - ], - [ - "▁gewonnen", - -12.81928825378418 - ], - [ - "▁bugetul", - -12.819376945495605 - ], - [ - "▁mustard", - -12.819414138793945 - ], - [ - "132", - -12.819478988647461 - ], - [ - "0.9", - -12.819535255432129 - ], - [ - "▁tratat", - -12.81957721710205 - ], - [ - "▁dilemma", - -12.819666862487793 - ], - [ - "▁versatility", - -12.819666862487793 - ], - [ - "▁clutter", - -12.819670677185059 - ], - [ - "▁Musk", - -12.81973934173584 - ], - [ - "▁Beide", - -12.819750785827637 - ], - [ - "hurst", - -12.819758415222168 - ], - [ - "atsu", - -12.819767951965332 - ], - [ - "absence", - -12.819784164428711 - ], - [ - "rebounds", - -12.819881439208984 - ], - [ - "6.1", - -12.820029258728027 - ], - [ - "Dia", - -12.820046424865723 - ], - [ - "▁siguranță", - -12.820060729980469 - ], - [ - "▁Blade", - -12.820072174072266 - ], - [ - "▁disrupt", - -12.820074081420898 - ], - [ - "▁visiteurs", - -12.820169448852539 - ], - [ - "tested", - -12.820282936096191 - ], - [ - "▁Lup", - -12.820353507995605 - ], - [ - "▁Rouge", - -12.820371627807617 - ], - [ - "▁asbestos", - -12.82042407989502 - ], - [ - "▁moisturize", - -12.820427894592285 - ], - [ - "▁acknowledg", - -12.82045841217041 - ], - [ - "▁procent", - -12.820467948913574 - ], - [ - "▁swear", - -12.82050895690918 - ], - [ - "▁911", - -12.820647239685059 - ], - [ - "präsent", - -12.820724487304688 - ], - [ - "▁cohort", - -12.82072639465332 - ], - [ - "▁intimid", - -12.820830345153809 - ], - [ - "JS", - -12.820849418640137 - ], - [ - "îm", - -12.82096004486084 - ], - [ - "▁Kunststoff", - -12.820963859558105 - ], - [ - "rison", - -12.820972442626953 - ], - [ - "▁praf", - -12.82097339630127 - ], - [ - "▁convient", - -12.821019172668457 - ], - [ - "▁partenaire", - -12.821088790893555 - ], - [ - "▁Verantwortlich", - -12.821182250976562 - ], - [ - "▁semiconductor", - -12.821182250976562 - ], - [ - "▁kürz", - -12.821187019348145 - ], - [ - "▁Bottom", - -12.821187973022461 - ], - [ - "▁tratamentul", - -12.82127571105957 - ], - [ - "Source", - -12.821331024169922 - ], - [ - "authored", - -12.82172679901123 - ], - [ - "robo", - -12.821867942810059 - ], - [ - "▁turf", - -12.82194709777832 - ], - [ - "▁liebe", - -12.821971893310547 - ], - [ - "▁Fotografi", - -12.821995735168457 - ], - [ - "Big", - -12.822064399719238 - ], - [ - "▁fireworks", - -12.822081565856934 - ], - [ - "▁presă", - -12.822135925292969 - ], - [ - "▁conceal", - -12.822269439697266 - ], - [ - "▁originated", - -12.82227897644043 - ], - [ - "▁biciclet", - -12.822319984436035 - ], - [ - "acești", - -12.822577476501465 - ], - [ - "▁mortar", - -12.822585105895996 - ], - [ - "▁Wunder", - -12.822626113891602 - ], - [ - "ionist", - -12.822696685791016 - ], - [ - "KM", - -12.822871208190918 - ], - [ - "▁Marion", - -12.822918891906738 - ], - [ - "produkte", - -12.822933197021484 - ], - [ - "▁Sprint", - -12.822999000549316 - ], - [ - "▁Nachde", - -12.8230619430542 - ], - [ - "▁verfüge", - -12.823100090026855 - ], - [ - "Marea", - -12.823177337646484 - ], - [ - "▁compressor", - -12.823253631591797 - ], - [ - "Arm", - -12.823290824890137 - ], - [ - "Auf", - -12.823311805725098 - ], - [ - "▁Polyester", - -12.823461532592773 - ], - [ - "▁Sheffield", - -12.823461532592773 - ], - [ - "illiard", - -12.823494911193848 - ], - [ - "▁misleading", - -12.82353401184082 - ], - [ - "multi", - -12.823749542236328 - ], - [ - "ripped", - -12.82381820678711 - ], - [ - "▁Cosmetic", - -12.82383918762207 - ], - [ - "▁Regal", - -12.823890686035156 - ], - [ - "▁authenticity", - -12.82414436340332 - ], - [ - "▁customizable", - -12.824219703674316 - ], - [ - "▁bathtub", - -12.824275016784668 - ], - [ - "▁Average", - -12.824292182922363 - ], - [ - "▁Muster", - -12.824522018432617 - ], - [ - "290", - -12.824529647827148 - ], - [ - "▁Ersatz", - -12.824570655822754 - ], - [ - "▁Might", - -12.824588775634766 - ], - [ - "published", - -12.82461929321289 - ], - [ - "▁Interpret", - -12.824640274047852 - ], - [ - "▁încep", - -12.82480239868164 - ], - [ - "▁proto", - -12.824851036071777 - ], - [ - "▁disque", - -12.824889183044434 - ], - [ - "▁Palestine", - -12.824980735778809 - ], - [ - "Over", - -12.824981689453125 - ], - [ - "▁verbessert", - -12.824983596801758 - ], - [ - "▁liefern", - -12.825017929077148 - ], - [ - "▁Handlung", - -12.825095176696777 - ], - [ - "▁Handels", - -12.825150489807129 - ], - [ - "▁eater", - -12.825201988220215 - ], - [ - "▁$40", - -12.825251579284668 - ], - [ - "illard", - -12.825334548950195 - ], - [ - "▁apariti", - -12.825413703918457 - ], - [ - "▁gag", - -12.825422286987305 - ], - [ - "▁chimic", - -12.825541496276855 - ], - [ - "▁Guru", - -12.825594902038574 - ], - [ - "▁Toilet", - -12.82571792602539 - ], - [ - "▁Tochter", - -12.825748443603516 - ], - [ - "▁Aurora", - -12.82579231262207 - ], - [ - "contro", - -12.825922966003418 - ], - [ - "▁GOP", - -12.825995445251465 - ], - [ - "Provence", - -12.826130867004395 - ], - [ - "▁Frieden", - -12.82614803314209 - ], - [ - "ăci", - -12.826216697692871 - ], - [ - "portée", - -12.826268196105957 - ], - [ - "▁upright", - -12.826300621032715 - ], - [ - "▁Physician", - -12.82650375366211 - ], - [ - "▁juridique", - -12.82650375366211 - ], - [ - "▁territorial", - -12.82650375366211 - ], - [ - "▁kindergarten", - -12.826505661010742 - ], - [ - "aéroport", - -12.826510429382324 - ], - [ - "▁whisper", - -12.826513290405273 - ], - [ - "▁capacities", - -12.826562881469727 - ], - [ - "dichte", - -12.826641082763672 - ], - [ - "▁Grenzen", - -12.826822280883789 - ], - [ - "▁Riv", - -12.82710075378418 - ], - [ - "épreuve", - -12.827266693115234 - ], - [ - "▁Scheme", - -12.827290534973145 - ], - [ - "mesures", - -12.827330589294434 - ], - [ - "▁Einfluss", - -12.827333450317383 - ], - [ - "appui", - -12.827713966369629 - ], - [ - "▁apuc", - -12.827827453613281 - ], - [ - "▁radiat", - -12.82794189453125 - ], - [ - "▁allergy", - -12.828035354614258 - ], - [ - "▁spear", - -12.828038215637207 - ], - [ - "▁Luxembourg", - -12.828086853027344 - ], - [ - "▁Registered", - -12.828115463256836 - ], - [ - "▁Shape", - -12.828198432922363 - ], - [ - "genie", - -12.828328132629395 - ], - [ - "nsonsten", - -12.828385353088379 - ], - [ - "▁Symposium", - -12.828412055969238 - ], - [ - "forderung", - -12.828474998474121 - ], - [ - "▁personalizat", - -12.82866096496582 - ], - [ - "▁ştiu", - -12.82875919342041 - ], - [ - "blatt", - -12.828804016113281 - ], - [ - "▁geometry", - -12.828807830810547 - ], - [ - "▁8:30", - -12.828831672668457 - ], - [ - "▁Fahrrad", - -12.828861236572266 - ], - [ - "After", - -12.828927040100098 - ], - [ - "▁ventilat", - -12.829072952270508 - ], - [ - "▁nylon", - -12.829190254211426 - ], - [ - "▁verkauft", - -12.829304695129395 - ], - [ - "öß", - -12.829345703125 - ], - [ - "▁Kath", - -12.829523086547852 - ], - [ - "▁Nuclear", - -12.829558372497559 - ], - [ - "▁Verizon", - -12.829560279846191 - ], - [ - "▁spokesperson", - -12.829560279846191 - ], - [ - "▁vietii", - -12.829560279846191 - ], - [ - "▁prescri", - -12.829629898071289 - ], - [ - "ру", - -12.829666137695312 - ], - [ - "6.2", - -12.829801559448242 - ], - [ - "▁spațiu", - -12.830018997192383 - ], - [ - "▁solvent", - -12.83006763458252 - ], - [ - ",000,000", - -12.830142974853516 - ], - [ - "reuen", - -12.830185890197754 - ], - [ - "plast", - -12.830245018005371 - ], - [ - "▁Activities", - -12.830334663391113 - ], - [ - "▁domni", - -12.83056926727295 - ], - [ - "▁trophy", - -12.830572128295898 - ], - [ - "▁saddle", - -12.830657958984375 - ], - [ - "▁renovat", - -12.830708503723145 - ], - [ - "▁bumper", - -12.830717086791992 - ], - [ - "▁penny", - -12.830741882324219 - ], - [ - "omato", - -12.830743789672852 - ], - [ - "AQ", - -12.83083438873291 - ], - [ - "kunst", - -12.830843925476074 - ], - [ - "hydrat", - -12.830860137939453 - ], - [ - "minder", - -12.830931663513184 - ], - [ - "trecerea", - -12.830949783325195 - ], - [ - "brush", - -12.831185340881348 - ], - [ - "TEC", - -12.83121395111084 - ], - [ - "Please", - -12.831253051757812 - ], - [ - "hydrated", - -12.831483840942383 - ], - [ - "ICAL", - -12.831636428833008 - ], - [ - "trauen", - -12.831639289855957 - ], - [ - "9,000", - -12.83175277709961 - ], - [ - "▁2030", - -12.831830024719238 - ], - [ - "▁Chennai", - -12.831854820251465 - ], - [ - "▁empirical", - -12.831854820251465 - ], - [ - "▁Subscribe", - -12.83206844329834 - ], - [ - "▁vorgestellt", - -12.832120895385742 - ], - [ - "▁Springfield", - -12.832159996032715 - ], - [ - "▁continuu", - -12.832311630249023 - ], - [ - "208", - -12.832351684570312 - ], - [ - "▁Bearing", - -12.83240795135498 - ], - [ - "2003", - -12.832572937011719 - ], - [ - "cheta", - -12.832608222961426 - ], - [ - "▁empathy", - -12.832623481750488 - ], - [ - "▁Alert", - -12.832817077636719 - ], - [ - "▁recreate", - -12.832879066467285 - ], - [ - "PJ", - -12.833159446716309 - ], - [ - "Name", - -12.83323860168457 - ], - [ - "▁Mouse", - -12.833405494689941 - ], - [ - "▁disturbing", - -12.833443641662598 - ], - [ - "▁leichter", - -12.83344841003418 - ], - [ - "▁cruel", - -12.833507537841797 - ], - [ - "▁detective", - -12.833531379699707 - ], - [ - "▁reimbursement", - -12.833626747131348 - ], - [ - "▁Gemeinschaft", - -12.833772659301758 - ], - [ - "▁adolescents", - -12.833772659301758 - ], - [ - "▁Reality", - -12.833954811096191 - ], - [ - "▁Stockholm", - -12.83415699005127 - ], - [ - "▁Gründen", - -12.834304809570312 - ], - [ - "▁Reflect", - -12.83432388305664 - ], - [ - "▁Palmer", - -12.834336280822754 - ], - [ - "▁treac", - -12.8343505859375 - ], - [ - "▁tentative", - -12.834497451782227 - ], - [ - "▁surrender", - -12.834677696228027 - ], - [ - "▁broadly", - -12.834734916687012 - ], - [ - "▁județ", - -12.834814071655273 - ], - [ - "▁Thu", - -12.834845542907715 - ], - [ - "wärts", - -12.834961891174316 - ], - [ - "▁crește", - -12.835074424743652 - ], - [ - "▁déplacement", - -12.835208892822266 - ], - [ - "blanc", - -12.835268020629883 - ], - [ - "▁£5", - -12.835308074951172 - ], - [ - "▁confidentiality", - -12.835320472717285 - ], - [ - "veraging", - -12.835444450378418 - ], - [ - "unité", - -12.835609436035156 - ], - [ - "clar", - -12.83564567565918 - ], - [ - "rigg", - -12.835693359375 - ], - [ - "honneur", - -12.835694313049316 - ], - [ - "▁adventurous", - -12.835694313049316 - ], - [ - "▁Nutzen", - -12.835758209228516 - ], - [ - "▁Kabel", - -12.835800170898438 - ], - [ - "empowering", - -12.836040496826172 - ], - [ - "verhalten", - -12.836042404174805 - ], - [ - "▁prevail", - -12.8361234664917 - ], - [ - "mashed", - -12.836138725280762 - ], - [ - "▁1947", - -12.83616828918457 - ], - [ - "function", - -12.836292266845703 - ], - [ - "niveaux", - -12.83633041381836 - ], - [ - "▁territories", - -12.836463928222656 - ], - [ - "▁Permanent", - -12.836465835571289 - ], - [ - "▁christmas", - -12.836471557617188 - ], - [ - "arguing", - -12.836490631103516 - ], - [ - "zukünftig", - -12.836654663085938 - ], - [ - "▁Eindruck", - -12.836817741394043 - ], - [ - "personalised", - -12.836854934692383 - ], - [ - "▁vecin", - -12.837211608886719 - ], - [ - "▁Affiliate", - -12.837234497070312 - ], - [ - "▁Silk", - -12.837249755859375 - ], - [ - "▁Tub", - -12.837440490722656 - ], - [ - "▁remont", - -12.837493896484375 - ], - [ - "▁sauber", - -12.837530136108398 - ], - [ - "gehörig", - -12.837562561035156 - ], - [ - "Maritime", - -12.83771800994873 - ], - [ - "▁Bö", - -12.837973594665527 - ], - [ - "▁1957", - -12.83800220489502 - ], - [ - "▁unparalleled", - -12.838005065917969 - ], - [ - "▁fulfillment", - -12.838042259216309 - ], - [ - "▁collage", - -12.838179588317871 - ], - [ - "fenders", - -12.838248252868652 - ], - [ - "▁neige", - -12.838275909423828 - ], - [ - "▁gamers", - -12.838325500488281 - ], - [ - "tefan", - -12.838339805603027 - ], - [ - "▁wifi", - -12.838349342346191 - ], - [ - "▁leisten", - -12.83835506439209 - ], - [ - "▁Verbesserung", - -12.838390350341797 - ], - [ - "▁composant", - -12.838400840759277 - ], - [ - "▁LORD", - -12.8384370803833 - ], - [ - "arrive", - -12.838472366333008 - ], - [ - "▁conquer", - -12.838562965393066 - ], - [ - "▁lentil", - -12.838767051696777 - ], - [ - "▁Sprech", - -12.838995933532715 - ], - [ - "▁substitution", - -12.839015007019043 - ], - [ - ".05.", - -12.839020729064941 - ], - [ - "FORM", - -12.839144706726074 - ], - [ - "cădere", - -12.839154243469238 - ], - [ - "▁canyon", - -12.839430809020996 - ], - [ - "▁capacitate", - -12.839442253112793 - ], - [ - "▁menace", - -12.839461326599121 - ], - [ - "▁Antique", - -12.839519500732422 - ], - [ - "▁dizaine", - -12.839550971984863 - ], - [ - "▁Saturn", - -12.839578628540039 - ], - [ - "▁gastro", - -12.83962631225586 - ], - [ - "▁Vand", - -12.839641571044922 - ], - [ - "▁africa", - -12.839682579040527 - ], - [ - "▁hackers", - -12.839702606201172 - ], - [ - "▁Bailey", - -12.839736938476562 - ], - [ - "ouette", - -12.839822769165039 - ], - [ - "hoch", - -12.839885711669922 - ], - [ - "étudiant", - -12.839973449707031 - ], - [ - "▁1600", - -12.840004920959473 - ], - [ - "utiliz", - -12.840167999267578 - ], - [ - "reinigung", - -12.840263366699219 - ], - [ - "▁mileage", - -12.84029483795166 - ], - [ - "▁consacré", - -12.840309143066406 - ], - [ - "▁Norfolk", - -12.840327262878418 - ], - [ - "stacked", - -12.840659141540527 - ], - [ - "anbieter", - -12.840731620788574 - ], - [ - "▁gewünschte", - -12.84073543548584 - ], - [ - "▁silicon", - -12.840761184692383 - ], - [ - "Ensuite", - -12.840794563293457 - ], - [ - "▁vendu", - -12.840850830078125 - ], - [ - "▁viteza", - -12.840851783752441 - ], - [ - "▁evaluare", - -12.840913772583008 - ], - [ - "▁contient", - -12.841036796569824 - ], - [ - "▁Viagra", - -12.841100692749023 - ], - [ - "▁circumstance", - -12.841283798217773 - ], - [ - "walker", - -12.841383934020996 - ], - [ - "▁Aluminium", - -12.84148120880127 - ], - [ - "ço", - -12.841556549072266 - ], - [ - "▁Kli", - -12.841643333435059 - ], - [ - "▁deliberately", - -12.841649055480957 - ], - [ - "▁gamble", - -12.841893196105957 - ], - [ - "▁nourri", - -12.841903686523438 - ], - [ - "▁sealing", - -12.84194278717041 - ], - [ - "▁Atmosphäre", - -12.842255592346191 - ], - [ - "▁erschien", - -12.842260360717773 - ], - [ - "▁brightness", - -12.842340469360352 - ], - [ - "autonomie", - -12.84251594543457 - ], - [ - "▁propel", - -12.842525482177734 - ], - [ - "▁Infrastructure", - -12.842642784118652 - ], - [ - "▁război", - -12.842642784118652 - ], - [ - "▁jelly", - -12.842684745788574 - ], - [ - "scalable", - -12.84280776977539 - ], - [ - "regal", - -12.84296703338623 - ], - [ - "▁sarcini", - -12.843031883239746 - ], - [ - "▁Dienstag", - -12.84304428100586 - ], - [ - "▁Receive", - -12.8430814743042 - ], - [ - "▁mango", - -12.843356132507324 - ], - [ - "▁compétition", - -12.84341812133789 - ], - [ - "▁Monument", - -12.843428611755371 - ], - [ - "▁mast", - -12.844159126281738 - ], - [ - "▁instructed", - -12.84425163269043 - ], - [ - "▁aventur", - -12.844277381896973 - ], - [ - "139", - -12.844298362731934 - ], - [ - "▁Parmi", - -12.84435749053955 - ], - [ - "confined", - -12.844416618347168 - ], - [ - "acious", - -12.844441413879395 - ], - [ - "▁simptome", - -12.844581604003906 - ], - [ - "▁Fischer", - -12.844897270202637 - ], - [ - "störung", - -12.844985008239746 - ], - [ - "▁bilateral", - -12.84504508972168 - ], - [ - "preşedintele", - -12.845274925231934 - ], - [ - "accueillir", - -12.845357894897461 - ], - [ - "▁Schmidt", - -12.845359802246094 - ], - [ - "litis", - -12.845373153686523 - ], - [ - "WL", - -12.8454008102417 - ], - [ - "▁Rise", - -12.845436096191406 - ], - [ - "▁streamline", - -12.845556259155273 - ], - [ - "sozialen", - -12.845585823059082 - ], - [ - "▁Emirates", - -12.845746040344238 - ], - [ - "▁encrypted", - -12.845746040344238 - ], - [ - "▁unfamiliar", - -12.845746040344238 - ], - [ - "established", - -12.84577751159668 - ], - [ - "▁Tätigkeit", - -12.845818519592285 - ], - [ - "▁unaware", - -12.845913887023926 - ], - [ - "2:00", - -12.8460054397583 - ], - [ - "macher", - -12.846013069152832 - ], - [ - "NSA", - -12.8461275100708 - ], - [ - "▁rutier", - -12.846177101135254 - ], - [ - "▁Trent", - -12.846212387084961 - ], - [ - "▁sickness", - -12.846277236938477 - ], - [ - "▁advert", - -12.846417427062988 - ], - [ - "▁Kranken", - -12.846426963806152 - ], - [ - "▁Sandra", - -12.846443176269531 - ], - [ - "▁Recreation", - -12.846449851989746 - ], - [ - "▁Evidence", - -12.846524238586426 - ], - [ - "▁Immigration", - -12.846524238586426 - ], - [ - "▁carriage", - -12.846524238586426 - ], - [ - "▁justified", - -12.84655475616455 - ], - [ - "▁veche", - -12.846579551696777 - ], - [ - "PGA", - -12.846604347229004 - ], - [ - "▁Carmen", - -12.846735000610352 - ], - [ - "▁Faites", - -12.846750259399414 - ], - [ - "▁erfüllt", - -12.84691333770752 - ], - [ - "▁voilà", - -12.846931457519531 - ], - [ - "▁împlin", - -12.846959114074707 - ], - [ - "deposited", - -12.84721565246582 - ], - [ - "▁decisiv", - -12.847241401672363 - ], - [ - "CSA", - -12.847249031066895 - ], - [ - "pathy", - -12.84726619720459 - ], - [ - "▁erweitert", - -12.847302436828613 - ], - [ - "▁liquor", - -12.847302436828613 - ], - [ - "▁resilient", - -12.847302436828613 - ], - [ - "▁walmart", - -12.847302436828613 - ], - [ - "▁fencing", - -12.847308158874512 - ], - [ - "▁dépasse", - -12.84731388092041 - ], - [ - "KT", - -12.847354888916016 - ], - [ - "▁fries", - -12.847368240356445 - ], - [ - "vadă", - -12.847421646118164 - ], - [ - "▁Spania", - -12.847478866577148 - ], - [ - "▁complètement", - -12.847725868225098 - ], - [ - "▁lucrari", - -12.84777545928955 - ], - [ - "▁Lieb", - -12.847908973693848 - ], - [ - "leistungen", - -12.847943305969238 - ], - [ - "198", - -12.847979545593262 - ], - [ - "▁Schnell", - -12.847997665405273 - ], - [ - "▁radius", - -12.84814453125 - ], - [ - "▁beneficiaries", - -12.848151206970215 - ], - [ - "▁northwest", - -12.848174095153809 - ], - [ - "▁#4", - -12.848223686218262 - ], - [ - "▁embryo", - -12.848492622375488 - ], - [ - "▁ditch", - -12.848791122436523 - ], - [ - "▁Seriously", - -12.848859786987305 - ], - [ - "oppel", - -12.848941802978516 - ], - [ - "▁stalk", - -12.849053382873535 - ], - [ - "écriture", - -12.849066734313965 - ], - [ - "512", - -12.84912109375 - ], - [ - "wiesen", - -12.849271774291992 - ], - [ - "▁Consum", - -12.849321365356445 - ], - [ - "▁lună", - -12.849405288696289 - ], - [ - "▁lantern", - -12.849441528320312 - ], - [ - "▁italian", - -12.849629402160645 - ], - [ - "▁achiziți", - -12.849639892578125 - ], - [ - "▁catalyst", - -12.849639892578125 - ], - [ - "▁Arbeitgeber", - -12.849662780761719 - ], - [ - "▁researched", - -12.8496675491333 - ], - [ - "▁drastically", - -12.849679946899414 - ], - [ - "versammlung", - -12.849735260009766 - ], - [ - "410", - -12.849800109863281 - ], - [ - "▁impus", - -12.850153923034668 - ], - [ - "▁interchange", - -12.850173950195312 - ], - [ - "▁pharmacie", - -12.850215911865234 - ], - [ - "Live", - -12.850354194641113 - ], - [ - "dents", - -12.850384712219238 - ], - [ - "▁charcoal", - -12.850419998168945 - ], - [ - "▁odihn", - -12.850420951843262 - ], - [ - "▁pistol", - -12.850444793701172 - ], - [ - "▁complaining", - -12.850576400756836 - ], - [ - "manager", - -12.850578308105469 - ], - [ - "themed", - -12.850578308105469 - ], - [ - "▁Chang", - -12.850650787353516 - ], - [ - "▁rookie", - -12.85070514678955 - ], - [ - "Great", - -12.850706100463867 - ], - [ - "▁smoker", - -12.850733757019043 - ], - [ - "▁Container", - -12.850812911987305 - ], - [ - "▁bancaire", - -12.850852966308594 - ], - [ - "▁Actual", - -12.850966453552246 - ], - [ - "füllen", - -12.850982666015625 - ], - [ - "forum", - -12.850985527038574 - ], - [ - "bleib", - -12.851073265075684 - ], - [ - "▁combi", - -12.851079940795898 - ], - [ - "smoked", - -12.851137161254883 - ], - [ - "difficultés", - -12.851161003112793 - ], - [ - "▁tactical", - -12.851240158081055 - ], - [ - "▁sichtbar", - -12.851483345031738 - ], - [ - "▁dreptate", - -12.851598739624023 - ], - [ - "ERT", - -12.85168743133545 - ], - [ - "▁Pond", - -12.85177993774414 - ], - [ - "▁Holly", - -12.851844787597656 - ], - [ - "erfolg", - -12.8518705368042 - ], - [ - "▁Nordic", - -12.851896286010742 - ], - [ - "évènement", - -12.851983070373535 - ], - [ - "embracing", - -12.851984024047852 - ], - [ - "▁Maximum", - -12.851984024047852 - ], - [ - "▁défend", - -12.85205078125 - ], - [ - "▁fruct", - -12.852056503295898 - ], - [ - "▁Conditioning", - -12.852099418640137 - ], - [ - "LG", - -12.852127075195312 - ], - [ - "exigence", - -12.852166175842285 - ], - [ - "amide", - -12.852187156677246 - ], - [ - "▁darunter", - -12.852208137512207 - ], - [ - "▁EVERY", - -12.852420806884766 - ], - [ - "▁comparat", - -12.85244083404541 - ], - [ - "boosting", - -12.852452278137207 - ], - [ - "▁Hawaiian", - -12.852553367614746 - ], - [ - "▁Geburt", - -12.852752685546875 - ], - [ - "deci", - -12.852782249450684 - ], - [ - "▁Apollo", - -12.852803230285645 - ], - [ - "▁schützen", - -12.852821350097656 - ], - [ - "tragere", - -12.852893829345703 - ], - [ - "Online", - -12.852904319763184 - ], - [ - "▁neural", - -12.852913856506348 - ], - [ - "▁lucrez", - -12.853188514709473 - ], - [ - "▁phenomenal", - -12.853253364562988 - ], - [ - "▁Height", - -12.853368759155273 - ], - [ - "coordinating", - -12.853548049926758 - ], - [ - "geschnitten", - -12.853631019592285 - ], - [ - "auront", - -12.853641510009766 - ], - [ - "▁administer", - -12.853644371032715 - ], - [ - "▁contend", - -12.853707313537598 - ], - [ - "▁crispy", - -12.853784561157227 - ], - [ - "chuck", - -12.854011535644531 - ], - [ - "▁Condition", - -12.8540678024292 - ], - [ - "gestaltung", - -12.854324340820312 - ], - [ - "▁Blvd", - -12.854331970214844 - ], - [ - "▁subjective", - -12.854470252990723 - ], - [ - "▁événements", - -12.854708671569824 - ], - [ - "▁Jenny", - -12.855131149291992 - ], - [ - "▁cumpăra", - -12.85519027709961 - ], - [ - "constructing", - -12.855262756347656 - ], - [ - "▁instructional", - -12.85539436340332 - ], - [ - "▁sterling", - -12.855446815490723 - ], - [ - "scrise", - -12.855470657348633 - ], - [ - "▁Boulevard", - -12.855551719665527 - ], - [ - "pipe", - -12.855620384216309 - ], - [ - "▁Pride", - -12.855748176574707 - ], - [ - "▁Kau", - -12.855751991271973 - ], - [ - "▁overhaul", - -12.855924606323242 - ], - [ - "▁Recruitment", - -12.855925559997559 - ], - [ - "▁thrilling", - -12.856218338012695 - ], - [ - "living", - -12.856302261352539 - ], - [ - "▁rămân", - -12.85645866394043 - ], - [ - "▁MOD", - -12.85661792755127 - ], - [ - "▁Newport", - -12.856675148010254 - ], - [ - "▁infectious", - -12.856688499450684 - ], - [ - "6-3", - -12.856860160827637 - ], - [ - "▁Apache", - -12.856976509094238 - ], - [ - "▁dependence", - -12.85698413848877 - ], - [ - "nutzung", - -12.857199668884277 - ], - [ - "praised", - -12.857211112976074 - ], - [ - "▁craving", - -12.857346534729004 - ], - [ - "▁cramp", - -12.857397079467773 - ], - [ - "▁mancare", - -12.857455253601074 - ], - [ - "▁entdeckt", - -12.857474327087402 - ], - [ - "▁Pioneer", - -12.857484817504883 - ], - [ - "▁Adelaide", - -12.857490539550781 - ], - [ - "2.0", - -12.857503890991211 - ], - [ - "168", - -12.857526779174805 - ], - [ - "▁Decorating", - -12.857611656188965 - ], - [ - "▁unpleasant", - -12.857854843139648 - ], - [ - "▁déclaration", - -12.857865333557129 - ], - [ - "▁Grafik", - -12.857908248901367 - ], - [ - "5-2", - -12.857937812805176 - ], - [ - "căci", - -12.857940673828125 - ], - [ - "▁invade", - -12.858171463012695 - ], - [ - "▁internaţional", - -12.858259201049805 - ], - [ - "▁fraudulent", - -12.858281135559082 - ], - [ - "▁crestere", - -12.858441352844238 - ], - [ - "ografic", - -12.858729362487793 - ], - [ - "plină", - -12.859140396118164 - ], - [ - "sunteti", - -12.859150886535645 - ], - [ - "/04", - -12.859176635742188 - ], - [ - "▁admis", - -12.85935115814209 - ], - [ - "▁mediation", - -12.859403610229492 - ], - [ - "ICC", - -12.859424591064453 - ], - [ - "roș", - -12.859660148620605 - ], - [ - "▁Aroma", - -12.8596773147583 - ], - [ - "1:00", - -12.859792709350586 - ], - [ - "gasesc", - -12.859822273254395 - ], - [ - "▁Defence", - -12.859850883483887 - ], - [ - "▁dictionary", - -12.859856605529785 - ], - [ - "▁Batterie", - -12.859865188598633 - ], - [ - "▁gesunde", - -12.85997486114502 - ], - [ - "146", - -12.860099792480469 - ], - [ - "▁mortal", - -12.860129356384277 - ], - [ - "▁Flughafen", - -12.860230445861816 - ], - [ - "hhh", - -12.860284805297852 - ], - [ - "▁novice", - -12.860342025756836 - ], - [ - "▁Develop", - -12.86043930053711 - ], - [ - "▁accidental", - -12.860516548156738 - ], - [ - "Muzeul", - -12.86054515838623 - ], - [ - "▁Jupiter", - -12.86062240600586 - ], - [ - "supposedly", - -12.860662460327148 - ], - [ - "energy", - -12.860758781433105 - ], - [ - "▁montrer", - -12.860764503479004 - ], - [ - "recalled", - -12.860795021057129 - ], - [ - "Press", - -12.860801696777344 - ], - [ - "▁postcard", - -12.86080265045166 - ], - [ - "target", - -12.86081600189209 - ], - [ - "▁vêtements", - -12.860881805419922 - ], - [ - "▁particle", - -12.860888481140137 - ], - [ - "professional", - -12.8608980178833 - ], - [ - "▁1949", - -12.860917091369629 - ], - [ - "yah", - -12.860980033874512 - ], - [ - "▁Spiegel", - -12.861017227172852 - ], - [ - "▁Jeffrey", - -12.861023902893066 - ], - [ - "fahrzeug", - -12.861027717590332 - ], - [ - "▁Plug", - -12.861051559448242 - ], - [ - "▁violin", - -12.861150741577148 - ], - [ - "▁condemn", - -12.861381530761719 - ], - [ - "▁conducere", - -12.861398696899414 - ], - [ - "▁Chevrolet", - -12.861412048339844 - ], - [ - "▁conceput", - -12.861461639404297 - ], - [ - "▁Merri", - -12.861493110656738 - ], - [ - "judging", - -12.861559867858887 - ], - [ - "embraced", - -12.86168098449707 - ], - [ - "▁Compact", - -12.861715316772461 - ], - [ - "▁château", - -12.861807823181152 - ], - [ - "etch", - -12.861945152282715 - ], - [ - "bedroom", - -12.861995697021484 - ], - [ - "People", - -12.862038612365723 - ], - [ - "25,000", - -12.86209774017334 - ], - [ - "ocyte", - -12.862146377563477 - ], - [ - "▁Lenovo", - -12.862205505371094 - ], - [ - "▁Hampton", - -12.862241744995117 - ], - [ - "5.2", - -12.862244606018066 - ], - [ - "▁progres", - -12.862266540527344 - ], - [ - "hoc", - -12.862288475036621 - ], - [ - "▁complementary", - -12.86241340637207 - ], - [ - "turned", - -12.862485885620117 - ], - [ - "mangel", - -12.862508773803711 - ], - [ - "▁Drew", - -12.862592697143555 - ], - [ - "épisode", - -12.86259651184082 - ], - [ - "▁Versorgung", - -12.86259651184082 - ], - [ - "▁ausdrücklich", - -12.86259651184082 - ], - [ - "ciune", - -12.862788200378418 - ], - [ - "▁sfârșit", - -12.862990379333496 - ], - [ - "Agricultural", - -12.862991333007812 - ], - [ - "▁caffeine", - -12.862991333007812 - ], - [ - "▁emergencies", - -12.862991333007812 - ], - [ - "▁unhappy", - -12.862991333007812 - ], - [ - "(7)", - -12.863043785095215 - ], - [ - "▁inlocui", - -12.863059043884277 - ], - [ - "▁Rochester", - -12.863153457641602 - ], - [ - "183", - -12.863155364990234 - ], - [ - "niz", - -12.863285064697266 - ], - [ - "tasche", - -12.863462448120117 - ], - [ - "▁Salle", - -12.86347484588623 - ], - [ - "cît", - -12.863478660583496 - ], - [ - "▁Singer", - -12.863489151000977 - ], - [ - "▁economically", - -12.863506317138672 - ], - [ - "▁ieși", - -12.863525390625 - ], - [ - "▁façade", - -12.86378288269043 - ], - [ - "Ohne", - -12.863801956176758 - ], - [ - "▁edible", - -12.863842964172363 - ], - [ - "Rob", - -12.863851547241211 - ], - [ - "▁(2014)", - -12.863859176635742 - ], - [ - "▁Zar", - -12.863919258117676 - ], - [ - "▁obey", - -12.863995552062988 - ], - [ - "Pack", - -12.864087104797363 - ], - [ - "▁Omni", - -12.864198684692383 - ], - [ - "▁Gilbert", - -12.864212036132812 - ], - [ - "▁Vlad", - -12.86429500579834 - ], - [ - "▁pauvre", - -12.864333152770996 - ], - [ - "▁secular", - -12.864383697509766 - ], - [ - "Center", - -12.864415168762207 - ], - [ - "▁Prospect", - -12.864457130432129 - ], - [ - "▁Noah", - -12.86450481414795 - ], - [ - "▁Interactive", - -12.86471176147461 - ], - [ - "▁centaine", - -12.86485767364502 - ], - [ - "▁cerebral", - -12.864971160888672 - ], - [ - "▁Novel", - -12.865013122558594 - ], - [ - "▁Käufer", - -12.865039825439453 - ], - [ - "werfen", - -12.865056991577148 - ], - [ - "▁reluctant", - -12.865143775939941 - ], - [ - "ес", - -12.86520004272461 - ], - [ - "Look", - -12.86521053314209 - ], - [ - "Erkrankung", - -12.86536693572998 - ], - [ - "▁cucumber", - -12.86536693572998 - ], - [ - "/2017", - -12.865399360656738 - ], - [ - "▁flank", - -12.865405082702637 - ], - [ - "opportunité", - -12.865667343139648 - ], - [ - "zugleich", - -12.865766525268555 - ], - [ - "RAT", - -12.865840911865234 - ], - [ - "▁avantages", - -12.865880012512207 - ], - [ - "▁außer", - -12.866008758544922 - ], - [ - "GV", - -12.866090774536133 - ], - [ - "▁Continental", - -12.866159439086914 - ], - [ - "▁affiliation", - -12.866159439086914 - ], - [ - "▁ursprünglich", - -12.86618423461914 - ], - [ - "▁hardship", - -12.866349220275879 - ], - [ - "âme", - -12.86647891998291 - ], - [ - "▁hallway", - -12.866576194763184 - ], - [ - "▁afară", - -12.866578102111816 - ], - [ - "western", - -12.866714477539062 - ], - [ - "▁Jacket", - -12.866802215576172 - ], - [ - "▁culturelle", - -12.866876602172852 - ], - [ - "▁glaci", - -12.866995811462402 - ], - [ - "metoda", - -12.867036819458008 - ], - [ - "▁clerk", - -12.867045402526855 - ], - [ - "▁ordinance", - -12.867185592651367 - ], - [ - "▁Initial", - -12.867197036743164 - ], - [ - "waking", - -12.86722469329834 - ], - [ - "▁Secondary", - -12.867366790771484 - ], - [ - "▁Solomon", - -12.867411613464355 - ], - [ - "glomer", - -12.867488861083984 - ], - [ - "SYS", - -12.867530822753906 - ], - [ - "▁Florin", - -12.867596626281738 - ], - [ - "ffentlich", - -12.867670059204102 - ], - [ - "▁Printer", - -12.867674827575684 - ], - [ - "▁dimineata", - -12.86774730682373 - ], - [ - "▁stripes", - -12.867748260498047 - ], - [ - "plugged", - -12.86776065826416 - ], - [ - "öhl", - -12.867836952209473 - ], - [ - "infused", - -12.867875099182129 - ], - [ - "▁Rubber", - -12.867895126342773 - ], - [ - "paved", - -12.867898941040039 - ], - [ - "▁Devi", - -12.867995262145996 - ], - [ - "▁subway", - -12.8681640625 - ], - [ - "▁gases", - -12.868306159973145 - ], - [ - "▁reguli", - -12.868371963500977 - ], - [ - "▁Rebel", - -12.868413925170898 - ], - [ - "▁destructive", - -12.868546485900879 - ], - [ - "▁oferind", - -12.868664741516113 - ], - [ - "9001", - -12.868876457214355 - ], - [ - "CRA", - -12.868912696838379 - ], - [ - "why", - -12.868932723999023 - ], - [ - "sensul", - -12.869036674499512 - ], - [ - "guter", - -12.869277000427246 - ], - [ - "Empfehlung", - -12.869338035583496 - ], - [ - "▁convertible", - -12.86953353881836 - ], - [ - "▁predominantly", - -12.869637489318848 - ], - [ - "▁Mentor", - -12.869649887084961 - ], - [ - "Practic", - -12.869720458984375 - ], - [ - "▁echipă", - -12.869754791259766 - ], - [ - "onsite", - -12.869853019714355 - ], - [ - "▁zunehmend", - -12.86994743347168 - ], - [ - "▁Harbour", - -12.870016098022461 - ], - [ - "▁pineapple", - -12.870133399963379 - ], - [ - "▁gasoline", - -12.870139122009277 - ], - [ - "▁Jaguar", - -12.870158195495605 - ], - [ - "kno", - -12.870259284973145 - ], - [ - "▁heap", - -12.870448112487793 - ], - [ - "▁fictional", - -12.870481491088867 - ], - [ - "fiinta", - -12.870753288269043 - ], - [ - "▁Amber", - -12.87081241607666 - ], - [ - "▁Exclusive", - -12.870929718017578 - ], - [ - "▁Pharmaceutical", - -12.870929718017578 - ], - [ - "▁unterscheide", - -12.871044158935547 - ], - [ - "▁1942", - -12.871116638183594 - ], - [ - "▁Ceiling", - -12.87115478515625 - ], - [ - "developed", - -12.871228218078613 - ], - [ - "▁consacr", - -12.87132453918457 - ], - [ - "▁Membr", - -12.871411323547363 - ], - [ - "erton", - -12.871447563171387 - ], - [ - "habitation", - -12.871685981750488 - ], - [ - "▁longevity", - -12.871726989746094 - ], - [ - "▁Starbucks", - -12.871728897094727 - ], - [ - "▁poat", - -12.871771812438965 - ], - [ - "▁commissioner", - -12.871794700622559 - ], - [ - "pedia", - -12.871938705444336 - ], - [ - "popped", - -12.872468948364258 - ], - [ - "versorgung", - -12.872525215148926 - ], - [ - "▁Aktivitäten", - -12.872525215148926 - ], - [ - "▁Betreuung", - -12.872525215148926 - ], - [ - "▁afacere", - -12.872968673706055 - ], - [ - "▁Mechanical", - -12.873323440551758 - ], - [ - "▁Leiter", - -12.873346328735352 - ], - [ - "▁scaling", - -12.873427391052246 - ], - [ - "▁Slim", - -12.87350082397461 - ], - [ - "▁temperaturi", - -12.873516082763672 - ], - [ - "ACH", - -12.873558044433594 - ], - [ - "▁jährlich", - -12.873682022094727 - ], - [ - "▁photographie", - -12.873722076416016 - ], - [ - "▁préalable", - -12.873725891113281 - ], - [ - "▁părinți", - -12.87372875213623 - ], - [ - "▁Farmers", - -12.873873710632324 - ], - [ - "▁Printable", - -12.873905181884766 - ], - [ - "Früh", - -12.873908996582031 - ], - [ - "approved", - -12.87398624420166 - ], - [ - "otro", - -12.874094009399414 - ], - [ - "▁veneer", - -12.874099731445312 - ], - [ - "▁Warriors", - -12.874122619628906 - ], - [ - "▁Approach", - -12.874149322509766 - ], - [ - "Share", - -12.874238967895508 - ], - [ - "▁buds", - -12.874252319335938 - ], - [ - "▁Într", - -12.874330520629883 - ], - [ - "glichen", - -12.87452507019043 - ], - [ - "▁anbieten", - -12.87452507019043 - ], - [ - "MET", - -12.874539375305176 - ], - [ - "amélioration", - -12.87468147277832 - ], - [ - "ländische", - -12.87468433380127 - ], - [ - "nsgesamt", - -12.874764442443848 - ], - [ - "einiger", - -12.874822616577148 - ], - [ - "▁Förderung", - -12.874876022338867 - ], - [ - "destroying", - -12.874910354614258 - ], - [ - "▁accreditation", - -12.874922752380371 - ], - [ - "reminiscent", - -12.875094413757324 - ], - [ - "▁retriev", - -12.87528133392334 - ], - [ - "▁Flü", - -12.875306129455566 - ], - [ - "▁Monsieur", - -12.875322341918945 - ], - [ - "German", - -12.87536334991455 - ], - [ - "Orice", - -12.875443458557129 - ], - [ - "künftig", - -12.875523567199707 - ], - [ - "▁vorbi", - -12.875639915466309 - ], - [ - "▁intentionally", - -12.875733375549316 - ], - [ - "▁îngrij", - -12.875743865966797 - ], - [ - "▁laughed", - -12.875850677490234 - ], - [ - "▁Fiction", - -12.875913619995117 - ], - [ - "▁inteligent", - -12.875914573669434 - ], - [ - "▁Translation", - -12.875953674316406 - ], - [ - "greete", - -12.875983238220215 - ], - [ - "▁énergétique", - -12.876123428344727 - ], - [ - "uncovered", - -12.876248359680176 - ], - [ - "▁évidemment", - -12.876523971557617 - ], - [ - "▁Vietnamese", - -12.876535415649414 - ], - [ - "▁Libya", - -12.876675605773926 - ], - [ - "▁Trailer", - -12.876734733581543 - ], - [ - "▁Wohl", - -12.876871109008789 - ], - [ - "▁Congo", - -12.87698745727539 - ], - [ - "▁freut", - -12.877002716064453 - ], - [ - "zauber", - -12.877090454101562 - ], - [ - "▁Pân", - -12.877142906188965 - ], - [ - "▁mentine", - -12.877333641052246 - ], - [ - "▁welding", - -12.877335548400879 - ], - [ - "▁Mircea", - -12.8773775100708 - ], - [ - "▁optimism", - -12.877455711364746 - ], - [ - "VEL", - -12.877504348754883 - ], - [ - "oilea", - -12.877540588378906 - ], - [ - "▁thereafter", - -12.877612113952637 - ], - [ - "▁André", - -12.877710342407227 - ], - [ - "forschung", - -12.877799987792969 - ], - [ - "running", - -12.878022193908691 - ], - [ - "▁hostile", - -12.878059387207031 - ], - [ - "Homme", - -12.87811279296875 - ], - [ - "▁Satellite", - -12.878129005432129 - ], - [ - "▁collagen", - -12.87841796875 - ], - [ - "▁concedi", - -12.878518104553223 - ], - [ - "▁produziert", - -12.87852954864502 - ], - [ - "▁virgin", - -12.878540992736816 - ], - [ - "frant", - -12.87857723236084 - ], - [ - "▁teammates", - -12.878744125366211 - ], - [ - "▁faceti", - -12.878802299499512 - ], - [ - "▁Restoration", - -12.87893295288086 - ], - [ - "▁detached", - -12.878935813903809 - ], - [ - "▁Instructor", - -12.878950119018555 - ], - [ - "montag", - -12.879227638244629 - ], - [ - "▁borrowing", - -12.879375457763672 - ], - [ - "▁Retro", - -12.879446983337402 - ], - [ - "▁behandelt", - -12.879536628723145 - ], - [ - "▁Aussage", - -12.879715919494629 - ], - [ - "▁snorkel", - -12.879734992980957 - ], - [ - "▁Proceedings", - -12.879754066467285 - ], - [ - "▁Judy", - -12.879776000976562 - ], - [ - "▁Wendy", - -12.879783630371094 - ], - [ - "artă", - -12.879920959472656 - ], - [ - "▁Vergangenheit", - -12.88013744354248 - ], - [ - "▁Gegner", - -12.880139350891113 - ], - [ - "▁ulcer", - -12.880166053771973 - ], - [ - "wirksam", - -12.880553245544434 - ], - [ - "▁închis", - -12.880560874938965 - ], - [ - "▁emission", - -12.88068962097168 - ], - [ - "ulescu", - -12.880754470825195 - ], - [ - "▁bancar", - -12.880819320678711 - ], - [ - "compromising", - -12.880924224853516 - ], - [ - "▁Priest", - -12.881156921386719 - ], - [ - "▁Progress", - -12.881318092346191 - ], - [ - "▁punish", - -12.88144588470459 - ], - [ - "▁Afin", - -12.881450653076172 - ], - [ - "▁Bog", - -12.881514549255371 - ], - [ - "lunii", - -12.881525039672852 - ], - [ - "▁ressembl", - -12.881570816040039 - ], - [ - "▁Creation", - -12.881644248962402 - ], - [ - "effet", - -12.881668090820312 - ], - [ - "Versicherung", - -12.881671905517578 - ], - [ - "médias", - -12.881672859191895 - ], - [ - "▁Kritik", - -12.881793975830078 - ], - [ - "idia", - -12.881896018981934 - ], - [ - "▁Wasch", - -12.881929397583008 - ], - [ - "UAL", - -12.882059097290039 - ], - [ - "Approximately", - -12.882149696350098 - ], - [ - "izari", - -12.882152557373047 - ], - [ - "▁Dortmund", - -12.882152557373047 - ], - [ - "▁contul", - -12.882343292236328 - ], - [ - "▁Airways", - -12.882408142089844 - ], - [ - "sicherung", - -12.882535934448242 - ], - [ - "échelle", - -12.882560729980469 - ], - [ - "ADD", - -12.882582664489746 - ], - [ - "DIA", - -12.88259506225586 - ], - [ - "kabel", - -12.882621765136719 - ], - [ - "Media", - -12.88268756866455 - ], - [ - "ampli", - -12.882894515991211 - ], - [ - "▁quarry", - -12.88295841217041 - ], - [ - "▁acoper", - -12.883072853088379 - ], - [ - "halter", - -12.883326530456543 - ], - [ - "▁solicitor", - -12.883684158325195 - ], - [ - "phosphat", - -12.883763313293457 - ], - [ - "▁drown", - -12.883773803710938 - ], - [ - "congratulat", - -12.884047508239746 - ], - [ - "▁uneven", - -12.884087562561035 - ], - [ - "▁rupe", - -12.884154319763184 - ], - [ - "▁heureux", - -12.88417911529541 - ], - [ - "caractéristiques", - -12.884221076965332 - ], - [ - "60,000", - -12.884283065795898 - ], - [ - "ambigu", - -12.884340286254883 - ], - [ - "224", - -12.884417533874512 - ], - [ - "dov", - -12.88454532623291 - ], - [ - "▁Naturally", - -12.884629249572754 - ], - [ - "▁Ernst", - -12.884634017944336 - ], - [ - "Camp", - -12.884757995605469 - ], - [ - "▁Worldwide", - -12.884909629821777 - ], - [ - "▁antrenament", - -12.885042190551758 - ], - [ - "▁jocul", - -12.88521671295166 - ], - [ - "▁broccoli", - -12.88537883758545 - ], - [ - "▁fascinated", - -12.88537883758545 - ], - [ - "▁Abbey", - -12.885387420654297 - ], - [ - "▁aquarium", - -12.885390281677246 - ], - [ - "HAN", - -12.885458946228027 - ], - [ - "chaffung", - -12.885480880737305 - ], - [ - "137", - -12.885503768920898 - ], - [ - "rumors", - -12.885515213012695 - ], - [ - "reliance", - -12.885557174682617 - ], - [ - "▁vaccination", - -12.8856782913208 - ], - [ - "responsabilitate", - -12.885777473449707 - ], - [ - "▁legislati", - -12.885782241821289 - ], - [ - "ATT", - -12.885826110839844 - ], - [ - "206", - -12.885896682739258 - ], - [ - "▁miere", - -12.885967254638672 - ], - [ - "▁rezultatul", - -12.885988235473633 - ], - [ - "părea", - -12.88599681854248 - ], - [ - "zuführen", - -12.886159896850586 - ], - [ - "▁Kompetenz", - -12.886187553405762 - ], - [ - "▁nickname", - -12.886195182800293 - ], - [ - "pilot", - -12.88620376586914 - ], - [ - "▁ninth", - -12.886252403259277 - ], - [ - "▁Tyr", - -12.886446952819824 - ], - [ - "▁misuse", - -12.886469841003418 - ], - [ - "▁SUP", - -12.886514663696289 - ], - [ - "▁Attack", - -12.88667106628418 - ], - [ - "Smart", - -12.88669490814209 - ], - [ - "▁Philosoph", - -12.886930465698242 - ], - [ - "▁Alege", - -12.886931419372559 - ], - [ - "▁femeile", - -12.886967658996582 - ], - [ - "▁Heating", - -12.88698673248291 - ], - [ - "▁Cricket", - -12.886999130249023 - ], - [ - "▁scholar", - -12.887049674987793 - ], - [ - "Model", - -12.887073516845703 - ], - [ - "▁stimulating", - -12.887182235717773 - ], - [ - "▁industrielle", - -12.887189865112305 - ], - [ - "▁phenomena", - -12.887303352355957 - ], - [ - "▁Nahrung", - -12.887414932250977 - ], - [ - "▁Conditioner", - -12.887433052062988 - ], - [ - "führ", - -12.887489318847656 - ], - [ - "▁révolution", - -12.88757610321045 - ], - [ - "plastic", - -12.887595176696777 - ], - [ - "▁approximate", - -12.887596130371094 - ], - [ - "▁dienen", - -12.887624740600586 - ], - [ - "▁obsession", - -12.887807846069336 - ], - [ - "▁rectangular", - -12.887807846069336 - ], - [ - "Allemagne", - -12.887808799743652 - ], - [ - "▁Tanzania", - -12.887824058532715 - ], - [ - "border", - -12.887884140014648 - ], - [ - "▁crashed", - -12.887958526611328 - ], - [ - "visor", - -12.887974739074707 - ], - [ - "▁autorizat", - -12.888072967529297 - ], - [ - "▁Champagne", - -12.888222694396973 - ], - [ - "längst", - -12.888238906860352 - ], - [ - "▁realities", - -12.888314247131348 - ], - [ - "▁Keyword", - -12.88831615447998 - ], - [ - "▁GUI", - -12.888495445251465 - ], - [ - "▁simplified", - -12.88865852355957 - ], - [ - "▁Rack", - -12.888681411743164 - ], - [ - "▁Zahlen", - -12.888693809509277 - ], - [ - "growth", - -12.888897895812988 - ], - [ - "▁rehearsal", - -12.888991355895996 - ], - [ - "▁Epic", - -12.888999938964844 - ], - [ - "▁réussite", - -12.889195442199707 - ], - [ - "▁politician", - -12.889263153076172 - ], - [ - "▁emoți", - -12.889378547668457 - ], - [ - "▁delegation", - -12.889449119567871 - ], - [ - "▁со", - -12.889464378356934 - ], - [ - "oversized", - -12.889477729797363 - ], - [ - "▁Motto", - -12.889481544494629 - ], - [ - "1860", - -12.889788627624512 - ], - [ - "▁defective", - -12.889803886413574 - ], - [ - "brewing", - -12.889852523803711 - ], - [ - "linguistic", - -12.890243530273438 - ], - [ - "▁Hopkins", - -12.890265464782715 - ], - [ - "▁(2012)", - -12.89030933380127 - ], - [ - "crease", - -12.890436172485352 - ], - [ - "▁Versicherungs", - -12.89052677154541 - ], - [ - "▁Noble", - -12.890752792358398 - ], - [ - "▁Bekannt", - -12.890896797180176 - ], - [ - "▁vorstellen", - -12.89095401763916 - ], - [ - "▁suburban", - -12.890970230102539 - ], - [ - "DAC", - -12.890995025634766 - ], - [ - "▁scatter", - -12.89103889465332 - ], - [ - "▁Artificial", - -12.8910551071167 - ], - [ - "▁reactor", - -12.891073226928711 - ], - [ - "▁modelling", - -12.89108943939209 - ], - [ - "▁Holder", - -12.891148567199707 - ], - [ - "athon", - -12.891149520874023 - ], - [ - "147", - -12.891190528869629 - ], - [ - "▁stagn", - -12.891257286071777 - ], - [ - "ARY", - -12.891261100769043 - ], - [ - "Space", - -12.89126968383789 - ], - [ - "▁Gibson", - -12.891718864440918 - ], - [ - "▁Investigator", - -12.89173698425293 - ], - [ - "▁1914", - -12.891818046569824 - ], - [ - "▁Muhammad", - -12.891868591308594 - ], - [ - "▁shove", - -12.892073631286621 - ], - [ - "▁erklären", - -12.892276763916016 - ], - [ - "▁abdomen", - -12.892277717590332 - ], - [ - "▁Mazda", - -12.892349243164062 - ], - [ - "▁hemo", - -12.892364501953125 - ], - [ - "National", - -12.892455101013184 - ], - [ - "starken", - -12.89267635345459 - ], - [ - "▁Cyprus", - -12.892683982849121 - ], - [ - "▁tread", - -12.892721176147461 - ], - [ - "▁sweetness", - -12.892725944519043 - ], - [ - "stunden", - -12.892790794372559 - ], - [ - "▁couverture", - -12.893059730529785 - ], - [ - "▁Successful", - -12.893060684204102 - ], - [ - "▁oublier", - -12.893171310424805 - ], - [ - "▁esential", - -12.893203735351562 - ], - [ - "estival", - -12.89321231842041 - ], - [ - "gnac", - -12.893280029296875 - ], - [ - "▁Basement", - -12.893457412719727 - ], - [ - "presumably", - -12.893497467041016 - ], - [ - "▁mourn", - -12.893561363220215 - ], - [ - "armée", - -12.893677711486816 - ], - [ - "148", - -12.893845558166504 - ], - [ - "▁residue", - -12.894006729125977 - ], - [ - "▁metalic", - -12.89404296875 - ], - [ - "▁Zell", - -12.89425277709961 - ], - [ - "Build", - -12.894280433654785 - ], - [ - "▁prevalence", - -12.894312858581543 - ], - [ - "▁wrestling", - -12.894312858581543 - ], - [ - "▁ascuns", - -12.894325256347656 - ], - [ - "Sacred", - -12.894340515136719 - ], - [ - "Tec", - -12.89438533782959 - ], - [ - "▁Kindergarten", - -12.894389152526855 - ], - [ - "bindung", - -12.894464492797852 - ], - [ - "▁ritm", - -12.894545555114746 - ], - [ - "▁triste", - -12.894651412963867 - ], - [ - "▁introdus", - -12.894758224487305 - ], - [ - "/2016", - -12.894824028015137 - ], - [ - "▁română", - -12.894899368286133 - ], - [ - "▁bibli", - -12.89490032196045 - ], - [ - "▁cigar", - -12.894913673400879 - ], - [ - "Rie", - -12.894990921020508 - ], - [ - "▁intentional", - -12.894999504089355 - ], - [ - "▁cuprins", - -12.895098686218262 - ], - [ - "remarkably", - -12.895129203796387 - ], - [ - "▁printemps", - -12.895133972167969 - ], - [ - "▁declining", - -12.895171165466309 - ], - [ - "Magazin", - -12.89552116394043 - ], - [ - "▁săptămână", - -12.895537376403809 - ], - [ - "▁vérifier", - -12.895549774169922 - ], - [ - "▁Speise", - -12.895584106445312 - ], - [ - "▁reteta", - -12.8956298828125 - ], - [ - "heed", - -12.895772933959961 - ], - [ - "▁Compliance", - -12.895946502685547 - ], - [ - "▁embroidery", - -12.895946502685547 - ], - [ - "cried", - -12.896025657653809 - ], - [ - "▁(„", - -12.896282196044922 - ], - [ - "▁heck", - -12.89629077911377 - ], - [ - "▁sadness", - -12.896501541137695 - ], - [ - "▁impulse", - -12.896585464477539 - ], - [ - "ATH", - -12.896740913391113 - ], - [ - "▁lavender", - -12.896773338317871 - ], - [ - "uiesc", - -12.896790504455566 - ], - [ - "▁Disorder", - -12.896876335144043 - ], - [ - "stroke", - -12.896991729736328 - ], - [ - "▁piaţ", - -12.8970365524292 - ], - [ - "ournée", - -12.897049903869629 - ], - [ - "▁Barnes", - -12.8971586227417 - ], - [ - "▁scăzut", - -12.897172927856445 - ], - [ - "▁équipements", - -12.89725112915039 - ], - [ - "OND", - -12.897375106811523 - ], - [ - "▁Compet", - -12.897424697875977 - ], - [ - "▁Bestell", - -12.89748477935791 - ], - [ - "▁immédiatement", - -12.897587776184082 - ], - [ - "aparut", - -12.89759635925293 - ], - [ - "▁rainfall", - -12.897882461547852 - ], - [ - "oreille", - -12.89797306060791 - ], - [ - "▁ministère", - -12.898014068603516 - ], - [ - "iris", - -12.898140907287598 - ], - [ - "dyna", - -12.898279190063477 - ], - [ - "drücken", - -12.898343086242676 - ], - [ - "▁détect", - -12.89834976196289 - ], - [ - "▁fonctionnalité", - -12.89840030670166 - ], - [ - "▁imbalance", - -12.89840030670166 - ], - [ - "▁unpredictable", - -12.89840030670166 - ], - [ - "▁literar", - -12.89846134185791 - ], - [ - "▁Windsor", - -12.898472785949707 - ], - [ - "▁Unlimited", - -12.898481369018555 - ], - [ - "colour", - -12.898674964904785 - ], - [ - "▁Portfolio", - -12.898810386657715 - ], - [ - "149", - -12.898883819580078 - ], - [ - "volution", - -12.898890495300293 - ], - [ - "▁folgende", - -12.899078369140625 - ], - [ - "▁arbitration", - -12.899105072021484 - ], - [ - "kicking", - -12.89913558959961 - ], - [ - "zügig", - -12.89923095703125 - ], - [ - "▁1941", - -12.899311065673828 - ], - [ - "▁Drake", - -12.89955997467041 - ], - [ - "▁ausführlich", - -12.899630546569824 - ], - [ - "▁chaussure", - -12.899630546569824 - ], - [ - "▁intestinal", - -12.89976692199707 - ], - [ - "▁pilgrim", - -12.900040626525879 - ], - [ - "▁Bark", - -12.900142669677734 - ], - [ - "between", - -12.900157928466797 - ], - [ - "disposed", - -12.900175094604492 - ], - [ - "▁Dylan", - -12.900218963623047 - ], - [ - "ств", - -12.900253295898438 - ], - [ - "NOR", - -12.900287628173828 - ], - [ - "traces", - -12.90038776397705 - ], - [ - "▁moindre", - -12.900500297546387 - ], - [ - "▁$10,000", - -12.900552749633789 - ], - [ - "212", - -12.900599479675293 - ], - [ - "wusste", - -12.900659561157227 - ], - [ - "▁predictable", - -12.900671005249023 - ], - [ - "poţi", - -12.900679588317871 - ], - [ - "▁Celsius", - -12.900860786437988 - ], - [ - "gebunden", - -12.90086841583252 - ], - [ - "▁Legacy", - -12.900891304016113 - ], - [ - "movers", - -12.90090274810791 - ], - [ - "▁concret", - -12.90098762512207 - ], - [ - "▁simpla", - -12.901050567626953 - ], - [ - "rechnet", - -12.901103973388672 - ], - [ - "▁certainty", - -12.901144981384277 - ], - [ - "entrepreneurship", - -12.901153564453125 - ], - [ - "kohl", - -12.901289939880371 - ], - [ - "▁curte", - -12.901311874389648 - ], - [ - "▁Forbes", - -12.901411056518555 - ], - [ - "▁Zusatz", - -12.901535987854004 - ], - [ - "blending", - -12.90163803100586 - ], - [ - "▁variat", - -12.901642799377441 - ], - [ - "▁galaxy", - -12.90168285369873 - ], - [ - "▁safari", - -12.90168571472168 - ], - [ - "▁municipalities", - -12.9017972946167 - ], - [ - "▁Drept", - -12.90180778503418 - ], - [ - "aufnahme", - -12.902128219604492 - ], - [ - "▁endorse", - -12.902223587036133 - ], - [ - "einrichtung", - -12.902244567871094 - ], - [ - "Sync", - -12.902270317077637 - ], - [ - "abide", - -12.902323722839355 - ], - [ - "brushed", - -12.902350425720215 - ], - [ - "▁actiune", - -12.902410507202148 - ], - [ - "quaint", - -12.902498245239258 - ], - [ - "▁volatility", - -12.902504920959473 - ], - [ - "▁repetitive", - -12.902505874633789 - ], - [ - "▁découvr", - -12.902560234069824 - ], - [ - "Totodat", - -12.902585983276367 - ], - [ - "▁românesc", - -12.902682304382324 - ], - [ - "▁tempting", - -12.902772903442383 - ], - [ - "thesis", - -12.902947425842285 - ], - [ - "secure", - -12.903013229370117 - ], - [ - "delt", - -12.903019905090332 - ], - [ - "▁şef", - -12.903167724609375 - ], - [ - "▁epidemic", - -12.903326988220215 - ], - [ - "▁Appliance", - -12.903327941894531 - ], - [ - "cearcă", - -12.903331756591797 - ], - [ - "▁lodging", - -12.903361320495605 - ], - [ - "▁photographed", - -12.903507232666016 - ], - [ - "geschlagen", - -12.903794288635254 - ], - [ - "▁Methodist", - -12.90380859375 - ], - [ - "▁Transit", - -12.90389347076416 - ], - [ - "▁Länder", - -12.903934478759766 - ], - [ - "villa", - -12.903986930847168 - ], - [ - "▁toilette", - -12.904031753540039 - ], - [ - "anno", - -12.904074668884277 - ], - [ - "▁Aufnahme", - -12.904091835021973 - ], - [ - "▁Coral", - -12.904099464416504 - ], - [ - "pourraient", - -12.904129981994629 - ], - [ - "▁digestion", - -12.904245376586914 - ], - [ - "▁Vacation", - -12.904274940490723 - ], - [ - "▁Rugby", - -12.904275894165039 - ], - [ - "MIC", - -12.904311180114746 - ], - [ - "▁choc", - -12.904417991638184 - ], - [ - "2002", - -12.904492378234863 - ], - [ - "gestion", - -12.904674530029297 - ], - [ - "▁Zoom", - -12.904745101928711 - ], - [ - "essor", - -12.904763221740723 - ], - [ - "weighed", - -12.904793739318848 - ], - [ - "▁dispus", - -12.904987335205078 - ], - [ - "▁redemption", - -12.90502643585205 - ], - [ - "▁plaster", - -12.905071258544922 - ], - [ - "▁Quilt", - -12.90507698059082 - ], - [ - "▁teritoriul", - -12.905088424682617 - ], - [ - "ndern", - -12.905097961425781 - ], - [ - "▁expired", - -12.905105590820312 - ], - [ - "▁Tribunal", - -12.905122756958008 - ], - [ - "occupation", - -12.9052152633667 - ], - [ - "▁woodland", - -12.905248641967773 - ], - [ - "vieux", - -12.905254364013672 - ], - [ - "▁Midland", - -12.905465126037598 - ], - [ - "gât", - -12.90571117401123 - ], - [ - "électricité", - -12.905800819396973 - ], - [ - "▁vanzare", - -12.905811309814453 - ], - [ - "biologi", - -12.905961036682129 - ], - [ - "▁vive", - -12.906060218811035 - ], - [ - "▁Alarm", - -12.906097412109375 - ], - [ - "▁experiență", - -12.9061279296875 - ], - [ - "▁Loch", - -12.906133651733398 - ], - [ - "▁Pedro", - -12.906194686889648 - ], - [ - "▁detergent", - -12.906217575073242 - ], - [ - "language", - -12.906554222106934 - ], - [ - "▁sedan", - -12.906655311584473 - ], - [ - "▁Brady", - -12.906736373901367 - ], - [ - "▁compus", - -12.906976699829102 - ], - [ - "▁landfill", - -12.906982421875 - ], - [ - "giu", - -12.907039642333984 - ], - [ - "beziehung", - -12.9070405960083 - ], - [ - "▁picior", - -12.907184600830078 - ], - [ - "ALI", - -12.907235145568848 - ], - [ - "▁Commander", - -12.907256126403809 - ], - [ - "EPS", - -12.907303810119629 - ], - [ - "▁Textil", - -12.907320022583008 - ], - [ - "▁industria", - -12.907339096069336 - ], - [ - "lox", - -12.907365798950195 - ], - [ - "▁eclectic", - -12.907453536987305 - ], - [ - "▁gracious", - -12.907477378845215 - ], - [ - "Uniunea", - -12.907525062561035 - ], - [ - "bps", - -12.90754222869873 - ], - [ - "▁entertained", - -12.907634735107422 - ], - [ - "depinde", - -12.907767295837402 - ], - [ - "▁daylight", - -12.907893180847168 - ], - [ - "▁résistance", - -12.907995223999023 - ], - [ - "ARN", - -12.908194541931152 - ], - [ - "▁unavailable", - -12.908201217651367 - ], - [ - "Curtea", - -12.908390045166016 - ], - [ - "▁pores", - -12.908502578735352 - ], - [ - "▁Tonight", - -12.908649444580078 - ], - [ - "▁datori", - -12.90869426727295 - ], - [ - "▁gezielt", - -12.908703804016113 - ], - [ - "▁rupture", - -12.90875244140625 - ], - [ - "▁disput", - -12.908848762512207 - ], - [ - "▁sonstige", - -12.908895492553711 - ], - [ - "▁Ordnung", - -12.90910816192627 - ], - [ - "▁beschrieben", - -12.909114837646484 - ], - [ - "▁Rainbow", - -12.90911865234375 - ], - [ - "▁Werkzeug", - -12.909136772155762 - ], - [ - "GIN", - -12.909354209899902 - ], - [ - "facilitating", - -12.909490585327148 - ], - [ - "hunt", - -12.90955638885498 - ], - [ - "▁Serving", - -12.909673690795898 - ], - [ - "Writ", - -12.909692764282227 - ], - [ - "requisite", - -12.909798622131348 - ], - [ - "▁Kerry", - -12.90989875793457 - ], - [ - "▁riesig", - -12.909957885742188 - ], - [ - "▁Healing", - -12.91030502319336 - ], - [ - "▁1954", - -12.910365104675293 - ], - [ - "▁mousse", - -12.910428047180176 - ], - [ - "▁Positive", - -12.910764694213867 - ], - [ - "embodie", - -12.910772323608398 - ], - [ - "▁penetrate", - -12.910774230957031 - ], - [ - "endorsed", - -12.910882949829102 - ], - [ - "▁situatia", - -12.910927772521973 - ], - [ - "▁Unity", - -12.911083221435547 - ], - [ - "142", - -12.911102294921875 - ], - [ - "▁farmhouse", - -12.911138534545898 - ], - [ - "▁Handbook", - -12.911368370056152 - ], - [ - "▁symbolic", - -12.911378860473633 - ], - [ - "pristine", - -12.911439895629883 - ], - [ - "moitié", - -12.911595344543457 - ], - [ - "▁Sessions", - -12.912017822265625 - ], - [ - "technisch", - -12.912116050720215 - ], - [ - "▁lesquel", - -12.912148475646973 - ], - [ - "▁electronically", - -12.912208557128906 - ], - [ - "▁modificat", - -12.912240982055664 - ], - [ - "▁adjoin", - -12.912242889404297 - ], - [ - "actualité", - -12.912256240844727 - ], - [ - "vati", - -12.91229248046875 - ], - [ - "VENT", - -12.912299156188965 - ], - [ - "▁salsa", - -12.912333488464355 - ], - [ - "acupunctur", - -12.912424087524414 - ], - [ - "▁Opportunity", - -12.912424087524414 - ], - [ - "▁Inspection", - -12.912425994873047 - ], - [ - "▁vereinbart", - -12.912425994873047 - ], - [ - "▁Residents", - -12.912426948547363 - ], - [ - "▁perennial", - -12.91242790222168 - ], - [ - "CHAN", - -12.912555694580078 - ], - [ - "Search", - -12.912572860717773 - ], - [ - "UTE", - -12.912696838378906 - ], - [ - "▁Lens", - -12.912703514099121 - ], - [ - "▁Banner", - -12.91281509399414 - ], - [ - "aménagement", - -12.912839889526367 - ], - [ - "▁Decision", - -12.91286849975586 - ], - [ - "▁ferr", - -12.912869453430176 - ], - [ - "▁Transformation", - -12.912878036499023 - ], - [ - "▁Stamm", - -12.912955284118652 - ], - [ - "▁Galerie", - -12.913003921508789 - ], - [ - "onny", - -12.913126945495605 - ], - [ - "▁caption", - -12.913195610046387 - ], - [ - "▁viitorul", - -12.91323471069336 - ], - [ - "▁professionelle", - -12.913281440734863 - ], - [ - "drepturile", - -12.913294792175293 - ], - [ - "ylon", - -12.913345336914062 - ], - [ - "Société", - -12.913387298583984 - ], - [ - "AIS", - -12.913456916809082 - ], - [ - "March", - -12.91350269317627 - ], - [ - "▁Rav", - -12.91357707977295 - ], - [ - "▁1946", - -12.913691520690918 - ], - [ - "accompagnement", - -12.913713455200195 - ], - [ - "Liviu", - -12.913716316223145 - ], - [ - "▁Appeal", - -12.913826942443848 - ], - [ - "▁sentir", - -12.913952827453613 - ], - [ - "▁Indigenous", - -12.914087295532227 - ], - [ - "▁wizard", - -12.914087295532227 - ], - [ - "▁collateral", - -12.914127349853516 - ], - [ - "▁Proof", - -12.914324760437012 - ], - [ - "▁prze", - -12.914398193359375 - ], - [ - "▁obținut", - -12.91450309753418 - ], - [ - "COP", - -12.914629936218262 - ], - [ - "▁obiect", - -12.914681434631348 - ], - [ - "▁isolate", - -12.914685249328613 - ], - [ - "▁nieder", - -12.914793014526367 - ], - [ - "TECH", - -12.914953231811523 - ], - [ - "▁Sharing", - -12.914998054504395 - ], - [ - "Ideally", - -12.915008544921875 - ], - [ - "▁naked", - -12.915059089660645 - ], - [ - "horaire", - -12.915130615234375 - ], - [ - "▁prelucrare", - -12.915180206298828 - ], - [ - "▁forcément", - -12.915349006652832 - ], - [ - "▁ESPN", - -12.915403366088867 - ], - [ - "▁southwest", - -12.9154634475708 - ], - [ - "▁Timber", - -12.915682792663574 - ], - [ - "kleidung", - -12.915748596191406 - ], - [ - "MJ", - -12.915854454040527 - ], - [ - "Ped", - -12.915889739990234 - ], - [ - "▁lymph", - -12.916181564331055 - ], - [ - "wärme", - -12.916399002075195 - ], - [ - "▁Olivia", - -12.916610717773438 - ], - [ - "Ziua", - -12.916705131530762 - ], - [ - "reihe", - -12.916747093200684 - ], - [ - "▁selfish", - -12.916752815246582 - ], - [ - "▁geography", - -12.916814804077148 - ], - [ - "▁etaj", - -12.916924476623535 - ], - [ - "▁acquis", - -12.91698932647705 - ], - [ - "▁rejoin", - -12.91701602935791 - ], - [ - "7.1", - -12.917097091674805 - ], - [ - "▁paix", - -12.91713809967041 - ], - [ - "tirer", - -12.917284965515137 - ], - [ - "▁clase", - -12.91745662689209 - ], - [ - "▁blink", - -12.917572021484375 - ], - [ - "▁Interface", - -12.917611122131348 - ], - [ - "nado", - -12.917655944824219 - ], - [ - "RIT", - -12.91777515411377 - ], - [ - "ESC", - -12.918120384216309 - ], - [ - "▁carving", - -12.918190002441406 - ], - [ - "▁articolul", - -12.918194770812988 - ], - [ - "▁wreath", - -12.918258666992188 - ], - [ - "▁propaganda", - -12.918266296386719 - ], - [ - "▁Pair", - -12.918267250061035 - ], - [ - "▁pamant", - -12.91831111907959 - ], - [ - "▁venituri", - -12.918357849121094 - ], - [ - "rtz", - -12.91835880279541 - ], - [ - "uddle", - -12.918529510498047 - ], - [ - "uille", - -12.918543815612793 - ], - [ - "▁embed", - -12.918654441833496 - ], - [ - "0.05", - -12.918655395507812 - ], - [ - "▁Brighton", - -12.918718338012695 - ], - [ - "estens", - -12.918742179870605 - ], - [ - "▁occupational", - -12.918862342834473 - ], - [ - "ем", - -12.918890953063965 - ], - [ - "wünsche", - -12.919081687927246 - ], - [ - "▁Poetry", - -12.91909408569336 - ], - [ - "▁visualize", - -12.919109344482422 - ], - [ - "Across", - -12.919121742248535 - ], - [ - "▁essentielle", - -12.919123649597168 - ], - [ - "beratung", - -12.919143676757812 - ], - [ - "▁Guidelines", - -12.91919231414795 - ], - [ - "▁Fehl", - -12.919198036193848 - ], - [ - "▁liberty", - -12.91921329498291 - ], - [ - "▁Investigation", - -12.91922378540039 - ], - [ - "▁sunrise", - -12.919266700744629 - ], - [ - "▁12:00", - -12.919541358947754 - ], - [ - "venind", - -12.919583320617676 - ], - [ - "▁lotion", - -12.919655799865723 - ], - [ - "conscious", - -12.91968822479248 - ], - [ - "logists", - -12.91973876953125 - ], - [ - "▁judecător", - -12.919893264770508 - ], - [ - "▁Ecuador", - -12.919928550720215 - ], - [ - "▁ambulance", - -12.91994857788086 - ], - [ - "▁Already", - -12.920026779174805 - ], - [ - "▁eröffnet", - -12.920090675354004 - ], - [ - "▁naval", - -12.92010498046875 - ], - [ - "▁imposibil", - -12.92011547088623 - ], - [ - "▁Merry", - -12.92011833190918 - ], - [ - "▁Duncan", - -12.920272827148438 - ], - [ - "▁léger", - -12.9203519821167 - ], - [ - "▁delta", - -12.920391082763672 - ], - [ - "▁Machinery", - -12.920578002929688 - ], - [ - "▁craftsmanship", - -12.920766830444336 - ], - [ - "▁angezeigt", - -12.9207763671875 - ], - [ - "▁formidable", - -12.9207763671875 - ], - [ - "▁Startup", - -12.920878410339355 - ], - [ - "venus", - -12.920969009399414 - ], - [ - "▁tannin", - -12.921019554138184 - ], - [ - "collaborating", - -12.921128273010254 - ], - [ - "▁abrupt", - -12.921152114868164 - ], - [ - "emergence", - -12.921171188354492 - ], - [ - "Dienstleistungen", - -12.921197891235352 - ], - [ - "▁liefert", - -12.921217918395996 - ], - [ - "engagement", - -12.921222686767578 - ], - [ - "▁maximise", - -12.921304702758789 - ], - [ - "modeled", - -12.9214448928833 - ], - [ - "▁crane", - -12.92148208618164 - ], - [ - "▁effortless", - -12.921540260314941 - ], - [ - "▁Buffet", - -12.92160701751709 - ], - [ - "8000", - -12.921648979187012 - ], - [ - "▁Überblick", - -12.921687126159668 - ], - [ - "micro", - -12.921981811523438 - ], - [ - "▁vergleichen", - -12.92204475402832 - ], - [ - "143", - -12.922080993652344 - ], - [ - "5.6", - -12.922094345092773 - ], - [ - "▁odata", - -12.922131538391113 - ], - [ - "▁interviu", - -12.922162055969238 - ], - [ - "▁poliţi", - -12.922375679016113 - ], - [ - "plated", - -12.922383308410645 - ], - [ - "Roman", - -12.922406196594238 - ], - [ - "▁satisfactory", - -12.922453880310059 - ], - [ - "▁unanimous", - -12.922459602355957 - ], - [ - "▁întâln", - -12.922464370727539 - ], - [ - "nonsense", - -12.922558784484863 - ], - [ - "▁HOW", - -12.922616004943848 - ], - [ - "prezinta", - -12.922639846801758 - ], - [ - "▁măsura", - -12.9226655960083 - ], - [ - "▁Fuji", - -12.92275619506836 - ], - [ - "▁Meaning", - -12.92278003692627 - ], - [ - "aspiring", - -12.922850608825684 - ], - [ - "▁Suceava", - -12.922863006591797 - ], - [ - "arba", - -12.922983169555664 - ], - [ - "pressive", - -12.922988891601562 - ], - [ - "▁creek", - -12.92301082611084 - ], - [ - "trakt", - -12.923023223876953 - ], - [ - "▁fluffy", - -12.923303604125977 - ], - [ - "▁bateau", - -12.923371315002441 - ], - [ - "ме", - -12.923545837402344 - ], - [ - "UNG", - -12.923609733581543 - ], - [ - "motifs", - -12.923907279968262 - ], - [ - "Type", - -12.923958778381348 - ], - [ - "perçu", - -12.924132347106934 - ], - [ - "singurul", - -12.924139022827148 - ], - [ - "▁(2011)", - -12.92418384552002 - ], - [ - "▁hemp", - -12.924263954162598 - ], - [ - "betroffenen", - -12.92431640625 - ], - [ - "▁sermon", - -12.924369812011719 - ], - [ - "AID", - -12.924545288085938 - ], - [ - "3.7", - -12.924627304077148 - ], - [ - "▁heiß", - -12.92463207244873 - ], - [ - "▁bolnav", - -12.924982070922852 - ], - [ - "First", - -12.924995422363281 - ], - [ - "▁interrupt", - -12.925040245056152 - ], - [ - "phag", - -12.925106048583984 - ], - [ - "235", - -12.925201416015625 - ], - [ - "▁discoveries", - -12.925262451171875 - ], - [ - "▁Wellington", - -12.925263404846191 - ], - [ - "▁wechseln", - -12.925298690795898 - ], - [ - "▁strategically", - -12.925379753112793 - ], - [ - "▁iphone", - -12.925440788269043 - ], - [ - "geteilt", - -12.925646781921387 - ], - [ - "generative", - -12.925748825073242 - ], - [ - "▁Monroe", - -12.925806045532227 - ], - [ - "▁Execut", - -12.925863265991211 - ], - [ - "▁knitting", - -12.925931930541992 - ], - [ - "▁Couple", - -12.925939559936523 - ], - [ - "▁Shade", - -12.926020622253418 - ], - [ - "▁Taj", - -12.926060676574707 - ], - [ - "950", - -12.926077842712402 - ], - [ - "boiled", - -12.92609977722168 - ], - [ - "▁mixes", - -12.926130294799805 - ], - [ - "betroffene", - -12.926156044006348 - ], - [ - "▁continuation", - -12.926169395446777 - ], - [ - "▁begleitet", - -12.926226615905762 - ], - [ - "▁numerical", - -12.926281929016113 - ], - [ - "▁(2013)", - -12.92630386352539 - ], - [ - "▁nourish", - -12.926399230957031 - ], - [ - "oricar", - -12.926485061645508 - ], - [ - "focus", - -12.926486015319824 - ], - [ - "▁Crazy", - -12.926651000976562 - ], - [ - "▁ascend", - -12.926671028137207 - ], - [ - "▁vinde", - -12.926855087280273 - ], - [ - "roar", - -12.926874160766602 - ], - [ - "Vac", - -12.926929473876953 - ], - [ - "▁Zuschauer", - -12.927068710327148 - ], - [ - "izeze", - -12.927179336547852 - ], - [ - "▁Mindest", - -12.92721939086914 - ], - [ - "lingual", - -12.927229881286621 - ], - [ - "▁violet", - -12.927264213562012 - ], - [ - "▁Opfer", - -12.927299499511719 - ], - [ - "ARS", - -12.927431106567383 - ], - [ - "4.7", - -12.92744255065918 - ], - [ - "millennial", - -12.927492141723633 - ], - [ - "▁striv", - -12.927639961242676 - ], - [ - "▁bishop", - -12.927680015563965 - ], - [ - "▁Durham", - -12.927708625793457 - ], - [ - "opathic", - -12.927817344665527 - ], - [ - "Where", - -12.927999496459961 - ], - [ - "▁Rider", - -12.928030014038086 - ], - [ - "▁Reid", - -12.928030967712402 - ], - [ - "stumbled", - -12.928156852722168 - ], - [ - "deep", - -12.92827320098877 - ], - [ - "▁11:00", - -12.928340911865234 - ], - [ - "▁Essex", - -12.928380966186523 - ], - [ - "▁Analyst", - -12.928397178649902 - ], - [ - "feel", - -12.928546905517578 - ], - [ - "▁rave", - -12.928601264953613 - ], - [ - "▁Eddie", - -12.928631782531738 - ], - [ - "▁communiqué", - -12.928756713867188 - ], - [ - "[/", - -12.928791046142578 - ], - [ - "▁Tho", - -12.929011344909668 - ], - [ - "ffentlichkeit", - -12.929019927978516 - ], - [ - "instrument", - -12.929126739501953 - ], - [ - "▁metropolitan", - -12.929179191589355 - ], - [ - "▁experienţ", - -12.929181098937988 - ], - [ - "East", - -12.929198265075684 - ], - [ - "Compared", - -12.929434776306152 - ], - [ - "worn", - -12.929484367370605 - ], - [ - "berufliche", - -12.92966365814209 - ], - [ - "▁Umstände", - -12.929710388183594 - ], - [ - "individuellen", - -12.929901123046875 - ], - [ - "siehe", - -12.929912567138672 - ], - [ - "▁sfarsit", - -12.929969787597656 - ], - [ - "▁Strength", - -12.929999351501465 - ], - [ - "▁prejudice", - -12.930024147033691 - ], - [ - "▁shutdown", - -12.930159568786621 - ], - [ - "chatting", - -12.93022346496582 - ], - [ - "▁Gerne", - -12.930227279663086 - ], - [ - "▁Yum", - -12.930305480957031 - ], - [ - "▁coastline", - -12.930387496948242 - ], - [ - "▁headboard", - -12.930623054504395 - ], - [ - "▁politische", - -12.930768966674805 - ], - [ - "Sub", - -12.930838584899902 - ], - [ - "▁Henderson", - -12.930870056152344 - ], - [ - "▁astonishing", - -12.930870056152344 - ], - [ - "▁Dresden", - -12.930871963500977 - ], - [ - "▁strawberry", - -12.93088436126709 - ], - [ - "prenez", - -12.930889129638672 - ], - [ - "▁Monaco", - -12.930912971496582 - ], - [ - "▁empowered", - -12.930953025817871 - ], - [ - "fäl", - -12.93109130859375 - ], - [ - "▁creier", - -12.931120872497559 - ], - [ - "▁Equ", - -12.931300163269043 - ], - [ - "▁Selling", - -12.931379318237305 - ], - [ - "▁$35", - -12.931483268737793 - ], - [ - "konto", - -12.931503295898438 - ], - [ - "▁Procedure", - -12.931715965270996 - ], - [ - "▁reduziert", - -12.931715965270996 - ], - [ - "▁royalty", - -12.931740760803223 - ], - [ - "wyn", - -12.931756019592285 - ], - [ - "▁Unfall", - -12.932141304016113 - ], - [ - "NAT", - -12.932161331176758 - ], - [ - "▁grafic", - -12.93251895904541 - ], - [ - "▁Collective", - -12.932563781738281 - ], - [ - "▁Computing", - -12.932564735412598 - ], - [ - "▁Established", - -12.932594299316406 - ], - [ - "▁zest", - -12.932598114013672 - ], - [ - "venez", - -12.932611465454102 - ], - [ - "follow", - -12.9326171875 - ], - [ - "▁Motivation", - -12.932640075683594 - ], - [ - "▁dictator", - -12.932755470275879 - ], - [ - "whichever", - -12.93281078338623 - ], - [ - "▁întâmpl", - -12.93293285369873 - ], - [ - "Flüchtling", - -12.932987213134766 - ], - [ - "EMI", - -12.933015823364258 - ], - [ - "404", - -12.933019638061523 - ], - [ - "ICK", - -12.93302059173584 - ], - [ - "emplacement", - -12.933191299438477 - ], - [ - "complete", - -12.933349609375 - ], - [ - "advising", - -12.933412551879883 - ], - [ - "▁Administrative", - -12.933481216430664 - ], - [ - "▁deviation", - -12.933496475219727 - ], - [ - "▁experienț", - -12.933500289916992 - ], - [ - "lethor", - -12.933996200561523 - ], - [ - "▁compress", - -12.934081077575684 - ], - [ - "rival", - -12.934173583984375 - ], - [ - "reprendre", - -12.934186935424805 - ], - [ - "ugi", - -12.934266090393066 - ], - [ - "▁Invitation", - -12.934267044067383 - ], - [ - "▁retina", - -12.934332847595215 - ], - [ - "▁farther", - -12.934335708618164 - ], - [ - "▁fenêtre", - -12.934799194335938 - ], - [ - "6-7", - -12.934815406799316 - ], - [ - "zhou", - -12.934834480285645 - ], - [ - "▁Piano", - -12.934840202331543 - ], - [ - "▁Congrats", - -12.935114860534668 - ], - [ - "▁Configur", - -12.935131072998047 - ], - [ - "▁superficial", - -12.935179710388184 - ], - [ - "▁melting", - -12.935315132141113 - ], - [ - "▁raspunde", - -12.935626983642578 - ], - [ - "▁drip", - -12.93564224243164 - ], - [ - "östlich", - -12.9358491897583 - ], - [ - "189", - -12.935925483703613 - ], - [ - "▁Ludwig", - -12.935959815979004 - ], - [ - "▁keto", - -12.935985565185547 - ], - [ - "▁Bogdan", - -12.936013221740723 - ], - [ - "▁contracted", - -12.936029434204102 - ], - [ - "▁revive", - -12.936100006103516 - ], - [ - "▁cristal", - -12.936232566833496 - ], - [ - "▁mailbox", - -12.936257362365723 - ], - [ - "președintele", - -12.936559677124023 - ], - [ - "▁seekers", - -12.936627388000488 - ], - [ - "func", - -12.936904907226562 - ], - [ - "▁Markus", - -12.93691349029541 - ], - [ - "Unter", - -12.936923027038574 - ], - [ - "▁übertragen", - -12.937003135681152 - ], - [ - "▁adaptive", - -12.937024116516113 - ], - [ - "caster", - -12.937051773071289 - ], - [ - "▁geek", - -12.937164306640625 - ], - [ - "▁réservation", - -12.937236785888672 - ], - [ - "▁irritation", - -12.937240600585938 - ], - [ - "▁HDMI", - -12.937346458435059 - ], - [ - "Seeing", - -12.937485694885254 - ], - [ - "▁genul", - -12.937569618225098 - ], - [ - "▁catastrophe", - -12.937662124633789 - ], - [ - "▁Tweet", - -12.937665939331055 - ], - [ - "TZ", - -12.937729835510254 - ], - [ - "▁credible", - -12.937946319580078 - ], - [ - "▁cobor", - -12.938064575195312 - ], - [ - "▁realizeaz", - -12.938159942626953 - ], - [ - "journal", - -12.938274383544922 - ], - [ - "▁shaking", - -12.938532829284668 - ], - [ - "3-6", - -12.938572883605957 - ], - [ - "▁beneficiaz", - -12.938605308532715 - ], - [ - "▁Frankreich", - -12.938633918762207 - ], - [ - "committing", - -12.9386568069458 - ], - [ - "AMS", - -12.938835144042969 - ], - [ - "▁Feli", - -12.939007759094238 - ], - [ - "▁Producer", - -12.939023971557617 - ], - [ - "▁übrig", - -12.93940544128418 - ], - [ - "gemeinde", - -12.939593315124512 - ], - [ - "should", - -12.939799308776855 - ], - [ - "▁neurons", - -12.939799308776855 - ], - [ - "▁Agenda", - -12.939833641052246 - ], - [ - "▁hashtag", - -12.939896583557129 - ], - [ - "▁confortabil", - -12.939897537231445 - ], - [ - "520", - -12.940008163452148 - ], - [ - "bonded", - -12.940033912658691 - ], - [ - "▁următoare", - -12.940191268920898 - ], - [ - "▁volatile", - -12.940223693847656 - ], - [ - "infamous", - -12.940225601196289 - ], - [ - "seară", - -12.940229415893555 - ], - [ - "▁Sorge", - -12.940346717834473 - ], - [ - "▁Beiträge", - -12.940420150756836 - ], - [ - "▁îndeplin", - -12.940449714660645 - ], - [ - "gespräch", - -12.940649032592773 - ], - [ - "▁joueur", - -12.940701484680176 - ], - [ - "▁outsourcing", - -12.940701484680176 - ], - [ - "▁Guvernul", - -12.940814018249512 - ], - [ - "6-2", - -12.940818786621094 - ], - [ - "▁prioritize", - -12.941068649291992 - ], - [ - "▁duminică", - -12.941076278686523 - ], - [ - "▁resignation", - -12.941076278686523 - ], - [ - "▁Converter", - -12.941079139709473 - ], - [ - "hereby", - -12.941155433654785 - ], - [ - "▁stresses", - -12.941299438476562 - ], - [ - "▁brun", - -12.941415786743164 - ], - [ - "▁elev", - -12.941423416137695 - ], - [ - "▁Skip", - -12.941479682922363 - ], - [ - "540", - -12.941499710083008 - ], - [ - "TURE", - -12.941603660583496 - ], - [ - "▁Lynch", - -12.941635131835938 - ], - [ - "▁preveni", - -12.941643714904785 - ], - [ - "compatible", - -12.941692352294922 - ], - [ - "surveyed", - -12.941702842712402 - ], - [ - "▁Ausnahme", - -12.941713333129883 - ], - [ - "▁medicul", - -12.941812515258789 - ], - [ - "▁subtil", - -12.941865921020508 - ], - [ - "▁Quali", - -12.941890716552734 - ], - [ - "▁techno", - -12.941900253295898 - ], - [ - "presently", - -12.94193172454834 - ], - [ - "▁Müller", - -12.941934585571289 - ], - [ - "DIRECT", - -12.941937446594238 - ], - [ - "schuld", - -12.941944122314453 - ], - [ - "▁Bloomberg", - -12.941994667053223 - ], - [ - "feuer", - -12.942181587219238 - ], - [ - "▁Pharmacy", - -12.942270278930664 - ], - [ - "▁Schnitt", - -12.942301750183105 - ], - [ - "186", - -12.942333221435547 - ], - [ - "peaks", - -12.942355155944824 - ], - [ - "▁Gemeinsam", - -12.94235897064209 - ], - [ - "▁récemment", - -12.94235897064209 - ], - [ - "▁Pascal", - -12.942490577697754 - ], - [ - "filmed", - -12.942523956298828 - ], - [ - "RCA", - -12.942548751831055 - ], - [ - "▁virtuelle", - -12.942622184753418 - ], - [ - "▁dotat", - -12.942630767822266 - ], - [ - "logisch", - -12.942717552185059 - ], - [ - "▁Luck", - -12.943005561828613 - ], - [ - "cosy", - -12.943132400512695 - ], - [ - "▁Awareness", - -12.943216323852539 - ], - [ - "▁gesetzlich", - -12.943263053894043 - ], - [ - "padded", - -12.943306922912598 - ], - [ - "▁Lotus", - -12.943395614624023 - ], - [ - "urging", - -12.9434175491333 - ], - [ - "▁mushroom", - -12.943426132202148 - ], - [ - "▁adultes", - -12.943527221679688 - ], - [ - "▁Coca", - -12.943571090698242 - ], - [ - "▁recev", - -12.943586349487305 - ], - [ - "▁mantra", - -12.943610191345215 - ], - [ - "▁practise", - -12.943644523620605 - ], - [ - "▁acceler", - -12.943663597106934 - ], - [ - "bolster", - -12.943756103515625 - ], - [ - "▁compressed", - -12.943818092346191 - ], - [ - "TIN", - -12.943899154663086 - ], - [ - "▁aromatic", - -12.944236755371094 - ], - [ - "geleitet", - -12.944408416748047 - ], - [ - "▁fibr", - -12.944443702697754 - ], - [ - "exécut", - -12.94444751739502 - ], - [ - "▁unconscious", - -12.94456958770752 - ], - [ - "HAR", - -12.944607734680176 - ], - [ - "▁Gregory", - -12.944661140441895 - ], - [ - "▁Manila", - -12.944738388061523 - ], - [ - "ozitate", - -12.944756507873535 - ], - [ - "exemplary", - -12.944803237915039 - ], - [ - "éventuel", - -12.944906234741211 - ], - [ - "▁Craciun", - -12.944930076599121 - ], - [ - "▁tehnologii", - -12.944931030273438 - ], - [ - "▁Despre", - -12.945138931274414 - ], - [ - "▁1917", - -12.945141792297363 - ], - [ - "▁upfront", - -12.945146560668945 - ], - [ - "▁Iulia", - -12.945280075073242 - ], - [ - "▁erwähnt", - -12.945359230041504 - ], - [ - "▁magnesium", - -12.945359230041504 - ], - [ - "▁descriptive", - -12.94536304473877 - ], - [ - "▁consumul", - -12.945364952087402 - ], - [ - "▁10-15", - -12.945423126220703 - ], - [ - "▁erfüllen", - -12.945611953735352 - ], - [ - "gig", - -12.945657730102539 - ], - [ - "430", - -12.945765495300293 - ], - [ - "▁Migration", - -12.945789337158203 - ], - [ - "bră", - -12.94579029083252 - ], - [ - "▁réforme", - -12.945863723754883 - ], - [ - "▁york", - -12.94610595703125 - ], - [ - "dritten", - -12.946109771728516 - ], - [ - "cumva", - -12.946182250976562 - ], - [ - "▁Alumni", - -12.946218490600586 - ], - [ - "▁Ceramic", - -12.946222305297852 - ], - [ - "▁rappelle", - -12.946236610412598 - ], - [ - "▁pianist", - -12.946248054504395 - ], - [ - "twisted", - -12.946306228637695 - ], - [ - "earned", - -12.946432113647461 - ], - [ - "▁Hose", - -12.946514129638672 - ], - [ - "156", - -12.946610450744629 - ], - [ - "▁Salmon", - -12.946687698364258 - ], - [ - "Level", - -12.946913719177246 - ], - [ - "▁swirl", - -12.947052001953125 - ], - [ - "erfahrung", - -12.947061538696289 - ], - [ - "▁liabilities", - -12.947078704833984 - ], - [ - "praxis", - -12.9470853805542 - ], - [ - "IPO", - -12.947089195251465 - ], - [ - "▁screaming", - -12.947092056274414 - ], - [ - "emphasized", - -12.947200775146484 - ], - [ - "DEA", - -12.947260856628418 - ], - [ - "▁dermatolog", - -12.947351455688477 - ], - [ - "▁pacate", - -12.947498321533203 - ], - [ - "▁ansamblu", - -12.947507858276367 - ], - [ - "▁beteiligt", - -12.947509765625 - ], - [ - "▁Needles", - -12.947574615478516 - ], - [ - "▁organisiert", - -12.947607040405273 - ], - [ - "Pacific", - -12.947639465332031 - ], - [ - "actual", - -12.947823524475098 - ], - [ - "prindere", - -12.94801139831543 - ], - [ - "▁Indoor", - -12.948348045349121 - ], - [ - "▁Gewalt", - -12.948431015014648 - ], - [ - "▁rezid", - -12.948507308959961 - ], - [ - "censor", - -12.948522567749023 - ], - [ - "▁unlawful", - -12.94882869720459 - ], - [ - "▁Explain", - -12.948873519897461 - ], - [ - "▁Flame", - -12.948897361755371 - ], - [ - "▁brachte", - -12.948941230773926 - ], - [ - "▁Mustang", - -12.94899845123291 - ], - [ - "ectomy", - -12.949044227600098 - ], - [ - "▁deliberate", - -12.949064254760742 - ], - [ - "▁sparkle", - -12.949225425720215 - ], - [ - "▁inchis", - -12.94926929473877 - ], - [ - "▁Cristian", - -12.949289321899414 - ], - [ - "▁facture", - -12.949291229248047 - ], - [ - "▁Grundstück", - -12.949292182922363 - ], - [ - "außerhalb", - -12.949300765991211 - ], - [ - "coast", - -12.949321746826172 - ], - [ - "anilor", - -12.949396133422852 - ], - [ - "255", - -12.94952392578125 - ], - [ - "nterdisciplinary", - -12.949576377868652 - ], - [ - "▁Isabel", - -12.949655532836914 - ], - [ - "▁Städte", - -12.949701309204102 - ], - [ - "▁cicl", - -12.949837684631348 - ], - [ - "▁Zeug", - -12.949905395507812 - ], - [ - "▁Muskel", - -12.949951171875 - ], - [ - "▁indirectly", - -12.950051307678223 - ], - [ - "▁Vorbereitung", - -12.950093269348145 - ], - [ - "MMA", - -12.95012378692627 - ], - [ - "▁pudding", - -12.950197219848633 - ], - [ - "rax", - -12.950389862060547 - ], - [ - "▁Stimmung", - -12.95052433013916 - ], - [ - "▁hierarchy", - -12.95052433013916 - ], - [ - "partie", - -12.950597763061523 - ], - [ - "▁elevate", - -12.950685501098633 - ], - [ - "▁Persian", - -12.950690269470215 - ], - [ - "forensic", - -12.95077896118164 - ], - [ - "Become", - -12.950854301452637 - ], - [ - "leicht", - -12.9508695602417 - ], - [ - "▁staging", - -12.950942039489746 - ], - [ - "▁fühlt", - -12.950965881347656 - ], - [ - "fenster", - -12.950979232788086 - ], - [ - "▁unbelievable", - -12.951089859008789 - ], - [ - "„", - -12.951260566711426 - ], - [ - "▁Guatemala", - -12.951387405395508 - ], - [ - "LET", - -12.95141315460205 - ], - [ - "▁buff", - -12.951454162597656 - ], - [ - "▁Primul", - -12.951626777648926 - ], - [ - "▁mainland", - -12.951702117919922 - ], - [ - "campus", - -12.951923370361328 - ], - [ - "▁gefällt", - -12.952075958251953 - ], - [ - "BAN", - -12.952153205871582 - ], - [ - "finish", - -12.952229499816895 - ], - [ - "accustomed", - -12.952251434326172 - ], - [ - "▁Businesses", - -12.95234203338623 - ], - [ - "▁întreb", - -12.95239543914795 - ], - [ - "▁recomandă", - -12.952425956726074 - ], - [ - "▁pellet", - -12.952474594116211 - ], - [ - "▁GST", - -12.952507972717285 - ], - [ - "SEA", - -12.952601432800293 - ], - [ - "▁categorie", - -12.952631950378418 - ], - [ - "▁convainc", - -12.95268440246582 - ], - [ - "▁considéré", - -12.952739715576172 - ], - [ - "rois", - -12.952853202819824 - ], - [ - "▁thrust", - -12.952898979187012 - ], - [ - "ijk", - -12.953001022338867 - ], - [ - "gefüllt", - -12.953118324279785 - ], - [ - "▁situatii", - -12.953327178955078 - ], - [ - "▁Jacksonville", - -12.95337200164795 - ], - [ - "▁bakery", - -12.953473091125488 - ], - [ - "▁Accident", - -12.953554153442383 - ], - [ - "▁urmeaza", - -12.953572273254395 - ], - [ - "▁crib", - -12.953593254089355 - ], - [ - "getroffen", - -12.953707695007324 - ], - [ - "Based", - -12.953877449035645 - ], - [ - "Including", - -12.95398235321045 - ], - [ - "▁Morocco", - -12.95398235321045 - ], - [ - "▁casserole", - -12.95398235321045 - ], - [ - "▁enquiry", - -12.953983306884766 - ], - [ - "▁pahar", - -12.954017639160156 - ], - [ - "▁Unternehmer", - -12.954025268554688 - ], - [ - "électro", - -12.954068183898926 - ], - [ - "Marie", - -12.95413589477539 - ], - [ - "▁Sno", - -12.954153060913086 - ], - [ - "▁prostate", - -12.954168319702148 - ], - [ - "▁Wallace", - -12.95426082611084 - ], - [ - "empre", - -12.954402923583984 - ], - [ - "▁Multumesc", - -12.954415321350098 - ], - [ - "White", - -12.954675674438477 - ], - [ - "brief", - -12.954751014709473 - ], - [ - "▁kitten", - -12.954751014709473 - ], - [ - "füh", - -12.954780578613281 - ], - [ - "▁mankind", - -12.954821586608887 - ], - [ - "ENE", - -12.95483112335205 - ], - [ - "▁Ethics", - -12.954848289489746 - ], - [ - "▁Realty", - -12.954946517944336 - ], - [ - "▁Emerg", - -12.954988479614258 - ], - [ - "7-8", - -12.955055236816406 - ], - [ - "museum", - -12.955096244812012 - ], - [ - "BRE", - -12.95518970489502 - ], - [ - "▁kilometri", - -12.955282211303711 - ], - [ - "oyaume", - -12.955286026000977 - ], - [ - "▁Cambodia", - -12.955288887023926 - ], - [ - "▁bruit", - -12.955304145812988 - ], - [ - "▁sépar", - -12.955334663391113 - ], - [ - "mastered", - -12.9554443359375 - ], - [ - "shake", - -12.955608367919922 - ], - [ - "▁liaison", - -12.955718994140625 - ], - [ - "▁Boulder", - -12.955719947814941 - ], - [ - "▁tortilla", - -12.955720901489258 - ], - [ - "▁Fokus", - -12.955731391906738 - ], - [ - "▁Blair", - -12.95573902130127 - ], - [ - "▁disturbance", - -12.955775260925293 - ], - [ - "geladen", - -12.955843925476074 - ], - [ - "▁sunscreen", - -12.955886840820312 - ], - [ - "▁reuș", - -12.955896377563477 - ], - [ - "▁Braun", - -12.956155776977539 - ], - [ - "▁existente", - -12.956157684326172 - ], - [ - "stift", - -12.956242561340332 - ], - [ - "▁preot", - -12.956387519836426 - ], - [ - "▁doved", - -12.956445693969727 - ], - [ - "sexual", - -12.956488609313965 - ], - [ - "meanwhile", - -12.956583976745605 - ], - [ - "▁legislature", - -12.956583976745605 - ], - [ - "▁vermeiden", - -12.956583976745605 - ], - [ - "▁inequality", - -12.95687484741211 - ], - [ - "▁turc", - -12.956881523132324 - ], - [ - "ви", - -12.95698070526123 - ], - [ - "▁Kontrolle", - -12.95702075958252 - ], - [ - "▁Ursache", - -12.95704174041748 - ], - [ - "▁confess", - -12.95704174041748 - ], - [ - "▁poetic", - -12.957109451293945 - ], - [ - "attention", - -12.957236289978027 - ], - [ - "textured", - -12.957386016845703 - ], - [ - "GES", - -12.957586288452148 - ], - [ - "6-4", - -12.957637786865234 - ], - [ - "Ray", - -12.957696914672852 - ], - [ - "chromat", - -12.957745552062988 - ], - [ - "▁insightful", - -12.957775115966797 - ], - [ - "▁Navigation", - -12.957887649536133 - ], - [ - "▁destiny", - -12.957887649536133 - ], - [ - "▁ergeben", - -12.957892417907715 - ], - [ - "▁versteh", - -12.958090782165527 - ], - [ - "301", - -12.958209037780762 - ], - [ - "▁Exterior", - -12.958321571350098 - ], - [ - "église", - -12.958322525024414 - ], - [ - "▁Failure", - -12.958322525024414 - ], - [ - "▁Patricia", - -12.958324432373047 - ], - [ - "▁geschützt", - -12.958328247070312 - ], - [ - "intrarea", - -12.95833969116211 - ], - [ - "▁Forward", - -12.958368301391602 - ], - [ - "▁Portrait", - -12.95844841003418 - ], - [ - "▁enregistré", - -12.958480834960938 - ], - [ - "▁wagon", - -12.958620071411133 - ], - [ - "stealing", - -12.958879470825195 - ], - [ - "▁Numero", - -12.958880424499512 - ], - [ - "▁tradui", - -12.958986282348633 - ], - [ - "▁klassische", - -12.959033966064453 - ], - [ - "▁profitieren", - -12.959043502807617 - ], - [ - "▁laboratories", - -12.95919132232666 - ], - [ - "▁reconnaissance", - -12.95919132232666 - ], - [ - "ку", - -12.959314346313477 - ], - [ - "▁Petersburg", - -12.959359169006348 - ], - [ - "▁fertility", - -12.959421157836914 - ], - [ - "▁Understand", - -12.959516525268555 - ], - [ - "dehors", - -12.959746360778809 - ], - [ - "▁Knox", - -12.959762573242188 - ], - [ - "software", - -12.959797859191895 - ], - [ - "▁Celebration", - -12.959823608398438 - ], - [ - "4.6", - -12.959897994995117 - ], - [ - "quino", - -12.959930419921875 - ], - [ - "▁endeavour", - -12.960073471069336 - ], - [ - "▁temptation", - -12.960136413574219 - ], - [ - "▁Registry", - -12.96035385131836 - ], - [ - "IMP", - -12.960502624511719 - ], - [ - "bedingt", - -12.960625648498535 - ], - [ - "▁$60", - -12.960846900939941 - ], - [ - "▁Kriterien", - -12.96093463897705 - ], - [ - "▁strawberries", - -12.960943222045898 - ], - [ - "▁conspiracy", - -12.96094799041748 - ], - [ - "▁pouch", - -12.960976600646973 - ], - [ - "▁Alexandria", - -12.961017608642578 - ], - [ - "▁Mick", - -12.961102485656738 - ], - [ - "extra", - -12.961114883422852 - ], - [ - "▁Operator", - -12.961151123046875 - ], - [ - "enduring", - -12.96132755279541 - ], - [ - "▁smash", - -12.961359024047852 - ], - [ - "Euro", - -12.961360931396484 - ], - [ - "▁Nouvelle", - -12.961370468139648 - ], - [ - "▁Raspberry", - -12.961370468139648 - ], - [ - "▁präsentieren", - -12.961380004882812 - ], - [ - "▁electrician", - -12.961404800415039 - ], - [ - "▁cheerful", - -12.961472511291504 - ], - [ - "▁chargé", - -12.961508750915527 - ], - [ - "▁Diskussion", - -12.961511611938477 - ], - [ - "▁surpass", - -12.961604118347168 - ], - [ - "▁Acces", - -12.961701393127441 - ], - [ - "tausend", - -12.961771011352539 - ], - [ - "▁vigorous", - -12.961808204650879 - ], - [ - "▁tava", - -12.961810111999512 - ], - [ - "CHO", - -12.96193790435791 - ], - [ - "▁1951", - -12.961941719055176 - ], - [ - "▁Umsatz", - -12.962019920349121 - ], - [ - "▁slavery", - -12.962055206298828 - ], - [ - "travel", - -12.962294578552246 - ], - [ - "▁correspondent", - -12.962297439575195 - ], - [ - "▁$150", - -12.962307929992676 - ], - [ - "▁stärker", - -12.962594985961914 - ], - [ - "Alb", - -12.96264362335205 - ], - [ - "▁Lopez", - -12.962682723999023 - ], - [ - "▁longueur", - -12.962767601013184 - ], - [ - "▁successive", - -12.962772369384766 - ], - [ - "▁(2015)", - -12.96278190612793 - ], - [ - "teig", - -12.962790489196777 - ], - [ - "custom", - -12.962944984436035 - ], - [ - "TIM", - -12.963099479675293 - ], - [ - "▁Escape", - -12.963174819946289 - ], - [ - "▁Sekunden", - -12.963349342346191 - ], - [ - "tiré", - -12.963444709777832 - ], - [ - "▁chantier", - -12.963489532470703 - ], - [ - "▁saturated", - -12.963555335998535 - ], - [ - "▁confrontation", - -12.963804244995117 - ], - [ - "▁biography", - -12.963805198669434 - ], - [ - "zuerst", - -12.9639892578125 - ], - [ - "▁rencontré", - -12.963991165161133 - ], - [ - "▁harmless", - -12.96412181854248 - ], - [ - "Branche", - -12.964139938354492 - ], - [ - "▁QR", - -12.964380264282227 - ], - [ - "▁Ereignis", - -12.964430809020996 - ], - [ - "▁verkaufen", - -12.96444320678711 - ], - [ - "0:00", - -12.96451187133789 - ], - [ - "Association", - -12.96469783782959 - ], - [ - "▁Santiago", - -12.964865684509277 - ], - [ - "Control", - -12.964993476867676 - ], - [ - "▁Angriff", - -12.9650297164917 - ], - [ - "lase", - -12.96505069732666 - ], - [ - "▁sfaturi", - -12.965224266052246 - ], - [ - "▁Comprehensive", - -12.965304374694824 - ], - [ - "▁Shepherd", - -12.965304374694824 - ], - [ - "▁exponential", - -12.965304374694824 - ], - [ - "▁penetration", - -12.965304374694824 - ], - [ - "▁comble", - -12.965394973754883 - ], - [ - "ionar", - -12.965557098388672 - ], - [ - "slept", - -12.965563774108887 - ], - [ - "▁Spice", - -12.965633392333984 - ], - [ - "mAh", - -12.965688705444336 - ], - [ - "▁Vertreter", - -12.965747833251953 - ], - [ - "fehler", - -12.965752601623535 - ], - [ - "▁Scroll", - -12.96599292755127 - ], - [ - "▁WARRANT", - -12.966179847717285 - ], - [ - "▁minimise", - -12.966326713562012 - ], - [ - "▁Dept", - -12.966474533081055 - ], - [ - "▁urinar", - -12.96661376953125 - ], - [ - "établir", - -12.966619491577148 - ], - [ - "verhältnis", - -12.966713905334473 - ], - [ - "▁glowing", - -12.966979026794434 - ], - [ - "kulturelle", - -12.966984748840332 - ], - [ - "▁Pediatric", - -12.967057228088379 - ], - [ - "▁inconvenience", - -12.967057228088379 - ], - [ - "Antoine", - -12.967121124267578 - ], - [ - "▁Heck", - -12.967164993286133 - ], - [ - "▁couches", - -12.967265129089355 - ], - [ - "▁1938", - -12.967331886291504 - ], - [ - "maybe", - -12.967333793640137 - ], - [ - "ETA", - -12.9673433303833 - ], - [ - "▁solaire", - -12.96748161315918 - ], - [ - "▁Zürich", - -12.967495918273926 - ], - [ - "computer", - -12.967545509338379 - ], - [ - "milk", - -12.96756362915039 - ], - [ - "он", - -12.967585563659668 - ], - [ - "modalitate", - -12.967608451843262 - ], - [ - "spanning", - -12.967655181884766 - ], - [ - "▁Crypto", - -12.96774959564209 - ], - [ - "▁Spotify", - -12.967935562133789 - ], - [ - "mycin", - -12.967944145202637 - ], - [ - "▁similarities", - -12.96811294555664 - ], - [ - "▁eclipse", - -12.968377113342285 - ], - [ - "Map", - -12.968610763549805 - ], - [ - "double", - -12.96861743927002 - ], - [ - "corporate", - -12.968734741210938 - ], - [ - "▁Hindi", - -12.968853950500488 - ], - [ - "battling", - -12.968866348266602 - ], - [ - "▁habituel", - -12.969098091125488 - ], - [ - "▁Transition", - -12.969196319580078 - ], - [ - "▁luptă", - -12.96920394897461 - ], - [ - "▁trainee", - -12.969219207763672 - ], - [ - "LIS", - -12.96922492980957 - ], - [ - "▁Vatican", - -12.969254493713379 - ], - [ - "Archived", - -12.9692964553833 - ], - [ - "Connect", - -12.969305038452148 - ], - [ - "▁prealabil", - -12.969307899475098 - ], - [ - "▁Chambre", - -12.969327926635742 - ], - [ - "stuhl", - -12.969440460205078 - ], - [ - "▁arrivé", - -12.969557762145996 - ], - [ - "▁Urteil", - -12.969575881958008 - ], - [ - "▁scrutiny", - -12.969818115234375 - ], - [ - "▁memoir", - -12.969854354858398 - ], - [ - "▁innovant", - -12.9699068069458 - ], - [ - "▁sublime", - -12.969943046569824 - ], - [ - "children", - -12.970004081726074 - ], - [ - "▁Handwerk", - -12.970056533813477 - ], - [ - "▁campuses", - -12.970268249511719 - ], - [ - "▁durabil", - -12.970502853393555 - ], - [ - "▁immersive", - -12.970632553100586 - ], - [ - "▁Magnet", - -12.970732688903809 - ], - [ - "läufe", - -12.970808029174805 - ], - [ - "▁Techno", - -12.970837593078613 - ], - [ - "MAP", - -12.9710693359375 - ], - [ - "7.2", - -12.971145629882812 - ], - [ - "▁Schwimm", - -12.971181869506836 - ], - [ - "BOOK", - -12.971186637878418 - ], - [ - "188", - -12.971441268920898 - ], - [ - "▁Supervisor", - -12.971498489379883 - ], - [ - "prévue", - -12.971691131591797 - ], - [ - "needed", - -12.971813201904297 - ], - [ - "▁creditors", - -12.971822738647461 - ], - [ - "▁brin", - -12.971837043762207 - ], - [ - "▁Neck", - -12.971900939941406 - ], - [ - "▁Salut", - -12.971988677978516 - ], - [ - "▁despair", - -12.972105979919434 - ], - [ - "▁Sauce", - -12.972261428833008 - ], - [ - "▁Westminster", - -12.972335815429688 - ], - [ - "▁langfristig", - -12.972335815429688 - ], - [ - "▁northeast", - -12.972365379333496 - ], - [ - "▁încercat", - -12.972399711608887 - ], - [ - "▁nausea", - -12.972408294677734 - ], - [ - "▁Paypal", - -12.972440719604492 - ], - [ - "▁Arrow", - -12.972469329833984 - ], - [ - "▁Travis", - -12.972633361816406 - ], - [ - "(2009)", - -12.972713470458984 - ], - [ - "▁Rising", - -12.972719192504883 - ], - [ - "termes", - -12.973097801208496 - ], - [ - "Australie", - -12.973154067993164 - ], - [ - "▁scarf", - -12.973187446594238 - ], - [ - "klassischen", - -12.97337818145752 - ], - [ - "▁boug", - -12.973466873168945 - ], - [ - "DOT", - -12.97360610961914 - ], - [ - "▁Trink", - -12.97361946105957 - ], - [ - "▁bestätigt", - -12.97365951538086 - ], - [ - "▁officiel", - -12.97370433807373 - ], - [ - "Produkt", - -12.973873138427734 - ], - [ - "DNA", - -12.974140167236328 - ], - [ - "▁*******", - -12.97426700592041 - ], - [ - "GAR", - -12.974271774291992 - ], - [ - "therapeut", - -12.974377632141113 - ], - [ - "187", - -12.974420547485352 - ], - [ - "▁Louisville", - -12.974493026733398 - ], - [ - "▁geöffnet", - -12.97462272644043 - ], - [ - "Watch", - -12.974640846252441 - ], - [ - "85%", - -12.974678993225098 - ], - [ - "▁Candida", - -12.974698066711426 - ], - [ - "▁Kathy", - -12.974703788757324 - ], - [ - "▁Animation", - -12.974711418151855 - ], - [ - "planung", - -12.974715232849121 - ], - [ - "woche", - -12.974730491638184 - ], - [ - "Video", - -12.974966049194336 - ], - [ - "▁Automation", - -12.97507095336914 - ], - [ - "▁foliage", - -12.97507381439209 - ], - [ - "▁evenimentului", - -12.975175857543945 - ], - [ - "SEN", - -12.975362777709961 - ], - [ - "▁Dialog", - -12.975372314453125 - ], - [ - "▁ZIP", - -12.975372314453125 - ], - [ - "▁vieții", - -12.97537612915039 - ], - [ - "▁passionné", - -12.975425720214844 - ], - [ - "▁WOW", - -12.97544002532959 - ], - [ - "ectiv", - -12.975464820861816 - ], - [ - "▁vorbesc", - -12.975482940673828 - ], - [ - "▁computational", - -12.975533485412598 - ], - [ - "▁idiot", - -12.97557258605957 - ], - [ - "▁stigma", - -12.97567081451416 - ], - [ - "▁multumesc", - -12.975870132446289 - ], - [ - "▁sărbători", - -12.975870132446289 - ], - [ - "▁Advantage", - -12.975906372070312 - ], - [ - "▁alegeri", - -12.976024627685547 - ], - [ - "▁philosopher", - -12.976031303405762 - ], - [ - "RIE", - -12.976117134094238 - ], - [ - "refundable", - -12.976221084594727 - ], - [ - "▁Sofia", - -12.97623348236084 - ], - [ - "▁încheiat", - -12.976313591003418 - ], - [ - "meilleures", - -12.976473808288574 - ], - [ - "critical", - -12.976744651794434 - ], - [ - "▁cavity", - -12.976766586303711 - ], - [ - "▁ressort", - -12.976792335510254 - ], - [ - "strong", - -12.976798057556152 - ], - [ - "▁Backup", - -12.976948738098145 - ], - [ - "▁Zeitraum", - -12.977023124694824 - ], - [ - "▁Szene", - -12.977027893066406 - ], - [ - "▁Candle", - -12.977173805236816 - ], - [ - "▁ciocolat", - -12.977198600769043 - ], - [ - "etched", - -12.977227210998535 - ], - [ - "ан", - -12.977302551269531 - ], - [ - "▁Anchor", - -12.977365493774414 - ], - [ - "equate", - -12.977470397949219 - ], - [ - "▁bulg", - -12.977476119995117 - ], - [ - "▁motorist", - -12.977524757385254 - ], - [ - "träglich", - -12.977736473083496 - ], - [ - "please", - -12.977936744689941 - ], - [ - "different", - -12.978011131286621 - ], - [ - "▁Accel", - -12.97813606262207 - ], - [ - "Proiectul", - -12.97829818725586 - ], - [ - "▁cabbage", - -12.97852897644043 - ], - [ - "▁télécharger", - -12.97852897644043 - ], - [ - "▁Presentation", - -12.97856330871582 - ], - [ - "▁Struktur", - -12.978621482849121 - ], - [ - "bücher", - -12.978650093078613 - ], - [ - "▁flatter", - -12.978672981262207 - ], - [ - "emprunt", - -12.979074478149414 - ], - [ - "▁oriental", - -12.979111671447754 - ], - [ - "▁Turnier", - -12.979166984558105 - ], - [ - "brücke", - -12.97917366027832 - ], - [ - "▁légumes", - -12.979416847229004 - ], - [ - "gerechnet", - -12.979595184326172 - ], - [ - "flooded", - -12.979621887207031 - ], - [ - "LER", - -12.979679107666016 - ], - [ - "üben", - -12.97973918914795 - ], - [ - "internaute", - -12.979888916015625 - ], - [ - "▁Austausch", - -12.979935646057129 - ], - [ - "gefordert", - -12.980034828186035 - ], - [ - "▁adoptat", - -12.980277061462402 - ], - [ - "▁erinnern", - -12.980305671691895 - ], - [ - "▁dolphin", - -12.980307579040527 - ], - [ - "▁Parkinson", - -12.980308532714844 - ], - [ - "büro", - -12.980310440063477 - ], - [ - "▁Crest", - -12.980368614196777 - ], - [ - "▁Ikea", - -12.980437278747559 - ], - [ - "▁ecologic", - -12.980470657348633 - ], - [ - "mplă", - -12.98065185546875 - ], - [ - "▁șef", - -12.980655670166016 - ], - [ - "coop", - -12.980868339538574 - ], - [ - "▁Carson", - -12.980900764465332 - ], - [ - "▁uşor", - -12.981054306030273 - ], - [ - "▁exert", - -12.981070518493652 - ], - [ - "▁countertop", - -12.981114387512207 - ], - [ - "ntended", - -12.981136322021484 - ], - [ - "▁Civic", - -12.981313705444336 - ], - [ - "▁attentes", - -12.98133373260498 - ], - [ - "gesetzlichen", - -12.981356620788574 - ], - [ - "frischen", - -12.981475830078125 - ], - [ - "▁Bottle", - -12.981636047363281 - ], - [ - "▁cautare", - -12.982080459594727 - ], - [ - "▁waterfront", - -12.982226371765137 - ], - [ - "▁centerpiece", - -12.982312202453613 - ], - [ - "▁Castel", - -12.982441902160645 - ], - [ - "510", - -12.98270034790039 - ], - [ - "capped", - -12.982709884643555 - ], - [ - "▁mattresses", - -12.982850074768066 - ], - [ - "▁readiness", - -12.982865333557129 - ], - [ - "diag", - -12.982970237731934 - ], - [ - "▁geändert", - -12.982980728149414 - ], - [ - "▁complained", - -12.983051300048828 - ], - [ - "▁diary", - -12.983073234558105 - ], - [ - "▁ceremonies", - -12.983144760131836 - ], - [ - "▁următor", - -12.983181953430176 - ], - [ - "▁Engel", - -12.983270645141602 - ], - [ - "▁disconnect", - -12.9832763671875 - ], - [ - "▁Silvi", - -12.983282089233398 - ], - [ - "▁eingerichtet", - -12.9834566116333 - ], - [ - "medizin", - -12.983512878417969 - ], - [ - "▁majestic", - -12.983869552612305 - ], - [ - "▁Random", - -12.983943939208984 - ], - [ - "▁Equity", - -12.984046936035156 - ], - [ - "▁Echipa", - -12.984111785888672 - ], - [ - "са", - -12.984163284301758 - ], - [ - "316", - -12.984179496765137 - ], - [ - "▁Formation", - -12.984183311462402 - ], - [ - "inland", - -12.98421859741211 - ], - [ - "appuy", - -12.984301567077637 - ], - [ - "TAN", - -12.984481811523438 - ], - [ - "slipped", - -12.984918594360352 - ], - [ - "Certains", - -12.985247611999512 - ], - [ - "▁Silber", - -12.98525333404541 - ], - [ - "▁reçoi", - -12.985257148742676 - ], - [ - "▁Monthly", - -12.985323905944824 - ], - [ - "calculating", - -12.985494613647461 - ], - [ - "▁scratches", - -12.98554515838623 - ], - [ - "▁concurrence", - -12.985654830932617 - ], - [ - "▁Stärke", - -12.985662460327148 - ], - [ - "▁intermediar", - -12.985751152038574 - ], - [ - "▁erlebt", - -12.98579216003418 - ], - [ - "gesellschaftlich", - -12.986037254333496 - ], - [ - "▁Volk", - -12.986041069030762 - ], - [ - "▁Ansprüche", - -12.986101150512695 - ], - [ - "▁cumulative", - -12.986103057861328 - ], - [ - "▁Randy", - -12.986183166503906 - ], - [ - "▁instituții", - -12.98622989654541 - ], - [ - "together", - -12.986489295959473 - ], - [ - "▁Sap", - -12.986539840698242 - ], - [ - "▁modificari", - -12.986551284790039 - ], - [ - "▁erosion", - -12.986572265625 - ], - [ - "▁wicked", - -12.986577033996582 - ], - [ - "soaked", - -12.986613273620605 - ], - [ - "▁cellar", - -12.9866361618042 - ], - [ - "ignoring", - -12.986726760864258 - ], - [ - "▁scarce", - -12.986815452575684 - ], - [ - "ueuse", - -12.98697280883789 - ], - [ - "▁bibliothèque", - -12.986995697021484 - ], - [ - "critères", - -12.987017631530762 - ], - [ - "▁overlay", - -12.987166404724121 - ], - [ - "IPA", - -12.98737907409668 - ], - [ - "director", - -12.987393379211426 - ], - [ - "▁Krishna", - -12.987444877624512 - ], - [ - "▁methodologies", - -12.987451553344727 - ], - [ - "iocese", - -12.987513542175293 - ], - [ - "▁saucepan", - -12.987713813781738 - ], - [ - "184", - -12.987948417663574 - ], - [ - "275", - -12.987981796264648 - ], - [ - "▁précieu", - -12.988165855407715 - ], - [ - "▁academy", - -12.9883394241333 - ], - [ - "460", - -12.988438606262207 - ], - [ - "ERN", - -12.988679885864258 - ], - [ - "▁emoti", - -12.988725662231445 - ], - [ - "▁télévision", - -12.988823890686035 - ], - [ - "EDIT", - -12.988901138305664 - ], - [ - "▁Valeri", - -12.989045143127441 - ], - [ - "▁Charity", - -12.98911190032959 - ], - [ - "Voilà", - -12.989297866821289 - ], - [ - "▁lipsit", - -12.989356994628906 - ], - [ - "▁unleash", - -12.989373207092285 - ], - [ - "▁suferit", - -12.989506721496582 - ], - [ - "▁Lifestyle", - -12.98953914642334 - ], - [ - "▁Edel", - -12.989603996276855 - ], - [ - "▁Derek", - -12.989643096923828 - ], - [ - "▁Manga", - -12.989801406860352 - ], - [ - "▁increment", - -12.989990234375 - ], - [ - "▁plötzlich", - -12.990133285522461 - ], - [ - "▁5:30", - -12.990208625793457 - ], - [ - "▁Republicii", - -12.990246772766113 - ], - [ - "▁capitalism", - -12.990293502807617 - ], - [ - "ROW", - -12.990510940551758 - ], - [ - "▁Paar", - -12.990523338317871 - ], - [ - "allée", - -12.99057674407959 - ], - [ - "▁motto", - -12.990610122680664 - ], - [ - "Schäden", - -12.990630149841309 - ], - [ - "▁£10", - -12.99063491821289 - ], - [ - "RIP", - -12.990728378295898 - ], - [ - "courir", - -12.990761756896973 - ], - [ - "rocky", - -12.990944862365723 - ], - [ - "▁Sunshine", - -12.991031646728516 - ], - [ - "▁chimney", - -12.991044998168945 - ], - [ - "▁préfér", - -12.991153717041016 - ], - [ - "▁relaxare", - -12.991189956665039 - ], - [ - "▁colabora", - -12.99134349822998 - ], - [ - "liefer", - -12.99142837524414 - ], - [ - "▁ordentlich", - -12.991486549377441 - ], - [ - "▁dauerhaft", - -12.991535186767578 - ], - [ - "kammer", - -12.991572380065918 - ], - [ - "▁Basket", - -12.991579055786133 - ], - [ - "Site", - -12.991657257080078 - ], - [ - "▁Regina", - -12.991716384887695 - ], - [ - "▁simulate", - -12.991868019104004 - ], - [ - "▁wrestle", - -12.991939544677734 - ], - [ - "wertig", - -12.991986274719238 - ], - [ - "▁Christie", - -12.992018699645996 - ], - [ - "download", - -12.992033004760742 - ], - [ - "▁torch", - -12.992213249206543 - ], - [ - "riya", - -12.992216110229492 - ], - [ - "▁Grie", - -12.992247581481934 - ], - [ - "bitten", - -12.992356300354004 - ], - [ - "▁spezialisiert", - -12.99238109588623 - ], - [ - "▁Parade", - -12.992408752441406 - ], - [ - "▁migraine", - -12.992830276489258 - ], - [ - "▁Armstrong", - -12.992846488952637 - ], - [ - "▁cutie", - -12.9928560256958 - ], - [ - "▁bullying", - -12.992889404296875 - ], - [ - "▁Estonia", - -12.99293041229248 - ], - [ - "▁harvested", - -12.992948532104492 - ], - [ - "▁Hunger", - -12.992971420288086 - ], - [ - "▁frapp", - -12.992999076843262 - ], - [ - "REM", - -12.993117332458496 - ], - [ - "sensor", - -12.993189811706543 - ], - [ - "▁GREAT", - -12.993293762207031 - ], - [ - "▁thyroid", - -12.993302345275879 - ], - [ - "▁mărturi", - -12.993335723876953 - ], - [ - "ocupă", - -12.993809700012207 - ], - [ - "▁Wealth", - -12.993812561035156 - ], - [ - "▁convins", - -12.993841171264648 - ], - [ - "141", - -12.993876457214355 - ], - [ - "▁vingt", - -12.993901252746582 - ], - [ - "▁revel", - -12.994054794311523 - ], - [ - "▁Adri", - -12.994083404541016 - ], - [ - "▁remix", - -12.994207382202148 - ], - [ - "▁fermentation", - -12.99425220489502 - ], - [ - "▁achiziti", - -12.994352340698242 - ], - [ - "dream", - -12.994426727294922 - ], - [ - "▁contemporan", - -12.994632720947266 - ], - [ - "▁youngsters", - -12.994685173034668 - ], - [ - "▁Hartford", - -12.994745254516602 - ], - [ - "▁Wagen", - -12.994988441467285 - ], - [ - "▁Celebr", - -12.995214462280273 - ], - [ - "leveraging", - -12.99527645111084 - ], - [ - "▁Iasi", - -12.99549674987793 - ], - [ - "tackling", - -12.9955415725708 - ], - [ - "▁intrinsic", - -12.995553970336914 - ], - [ - "▁Macedon", - -12.995603561401367 - ], - [ - "NIA", - -12.995784759521484 - ], - [ - "▁bliss", - -12.995905876159668 - ], - [ - "▁gradual", - -12.995908737182617 - ], - [ - "▁inregistrat", - -12.995981216430664 - ], - [ - "▁volleyball", - -12.995986938476562 - ], - [ - "▁offiziell", - -12.996054649353027 - ], - [ - "▁carré", - -12.99611759185791 - ], - [ - "Mostly", - -12.996174812316895 - ], - [ - "▁Harley", - -12.996193885803223 - ], - [ - "▁locati", - -12.996216773986816 - ], - [ - "▁Klo", - -12.996223449707031 - ], - [ - "▁Equal", - -12.996238708496094 - ], - [ - "▁citat", - -12.996369361877441 - ], - [ - "▁argint", - -12.996478080749512 - ], - [ - "prüft", - -12.996528625488281 - ], - [ - "▁Fence", - -12.996600151062012 - ], - [ - "positive", - -12.996988296508789 - ], - [ - "▁Kaz", - -12.997245788574219 - ], - [ - "▁distortion", - -12.997342109680176 - ], - [ - "▁sâmbătă", - -12.997342109680176 - ], - [ - "▁frontière", - -12.997346878051758 - ], - [ - "▁revanch", - -12.997394561767578 - ], - [ - "▁Held", - -12.997465133666992 - ], - [ - "▁Hobb", - -12.99776554107666 - ], - [ - "▁reuşit", - -12.997796058654785 - ], - [ - "deem", - -12.997880935668945 - ], - [ - "▁dorint", - -12.997902870178223 - ], - [ - "▁Anlagen", - -12.997908592224121 - ], - [ - "▁cheval", - -12.997973442077637 - ], - [ - "630", - -12.99806022644043 - ], - [ - "▁implementare", - -12.99808406829834 - ], - [ - "▁curator", - -12.99821662902832 - ], - [ - "▁legislator", - -12.998247146606445 - ], - [ - "▁potassium", - -12.998247146606445 - ], - [ - "▁veterinarian", - -12.998247146606445 - ], - [ - "▁domenii", - -12.998273849487305 - ], - [ - "▁revue", - -12.998310089111328 - ], - [ - "Vielen", - -12.998333930969238 - ], - [ - "africain", - -12.998570442199707 - ], - [ - "before", - -12.998680114746094 - ], - [ - "▁Bestandteil", - -12.998702049255371 - ], - [ - "▁(2010)", - -12.998767852783203 - ], - [ - "▁Arlington", - -12.999153137207031 - ], - [ - "▁Gründung", - -12.999153137207031 - ], - [ - "▁Sprinkle", - -12.999153137207031 - ], - [ - "▁Princeton", - -12.999186515808105 - ], - [ - "chirurg", - -12.999228477478027 - ], - [ - "▁laissé", - -12.999357223510742 - ], - [ - "whoever", - -12.999384880065918 - ], - [ - "▁pasture", - -12.999431610107422 - ], - [ - "ajute", - -12.999436378479004 - ], - [ - "▁joyful", - -12.999494552612305 - ], - [ - "etapa", - -12.999905586242676 - ], - [ - "ESP", - -13.000017166137695 - ], - [ - "▁Iohannis", - -13.000059127807617 - ], - [ - "▁10:30", - -13.000127792358398 - ], - [ - "▁Kingston", - -13.000140190124512 - ], - [ - "▁contender", - -13.000164031982422 - ], - [ - "▁Damage", - -13.000177383422852 - ], - [ - "▁schreibt", - -13.000482559204102 - ], - [ - "sstisch", - -13.000631332397461 - ], - [ - "Associated", - -13.00072956085205 - ], - [ - "▁disposable", - -13.000782012939453 - ], - [ - "veranstaltung", - -13.00096607208252 - ], - [ - "▁puppet", - -13.00100040435791 - ], - [ - "pong", - -13.001093864440918 - ], - [ - "▁Chronicle", - -13.001176834106445 - ], - [ - "222", - -13.001286506652832 - ], - [ - "intuit", - -13.001396179199219 - ], - [ - "inscrire", - -13.001429557800293 - ], - [ - "▁speeches", - -13.001431465148926 - ], - [ - "▁Eingang", - -13.001775741577148 - ], - [ - "▁Adidas", - -13.001875877380371 - ], - [ - "▁cemetery", - -13.001877784729004 - ], - [ - "▁juicy", - -13.001885414123535 - ], - [ - "▁wertvolle", - -13.0018892288208 - ], - [ - "▁militari", - -13.001917839050293 - ], - [ - "China", - -13.00196361541748 - ], - [ - "ecția", - -13.002041816711426 - ], - [ - "luster", - -13.002063751220703 - ], - [ - "auftrag", - -13.00234317779541 - ], - [ - "▁Marius", - -13.002523422241211 - ], - [ - "▁crossover", - -13.002555847167969 - ], - [ - "▁enthusiast", - -13.002555847167969 - ], - [ - "▁cantitate", - -13.002630233764648 - ], - [ - "▁animat", - -13.002634048461914 - ], - [ - "Park", - -13.002793312072754 - ], - [ - "▁unchanged", - -13.00279426574707 - ], - [ - "russia", - -13.00281810760498 - ], - [ - "instant", - -13.002833366394043 - ], - [ - "ţiunea", - -13.002835273742676 - ], - [ - "▁franchi", - -13.002920150756836 - ], - [ - "▁mobiliz", - -13.002963066101074 - ], - [ - "athlet", - -13.003013610839844 - ], - [ - "▁Cardio", - -13.0031099319458 - ], - [ - "▁supus", - -13.003119468688965 - ], - [ - "▁Griff", - -13.003137588500977 - ], - [ - "flakes", - -13.003217697143555 - ], - [ - "soluble", - -13.003250122070312 - ], - [ - "Known", - -13.003693580627441 - ], - [ - "leaking", - -13.003741264343262 - ], - [ - "▁Holocaust", - -13.004148483276367 - ], - [ - "gift", - -13.004197120666504 - ], - [ - "▁tradiţi", - -13.004359245300293 - ], - [ - "▁southeast", - -13.004498481750488 - ], - [ - "▁correspondant", - -13.00460147857666 - ], - [ - "Isaiah", - -13.004603385925293 - ], - [ - "▁diagonal", - -13.004606246948242 - ], - [ - "▁Probabil", - -13.004680633544922 - ], - [ - "▁dégust", - -13.004791259765625 - ], - [ - "▁Naval", - -13.004802703857422 - ], - [ - "▁cultivation", - -13.004839897155762 - ], - [ - "▁Vertrieb", - -13.004849433898926 - ], - [ - "▁pony", - -13.004854202270508 - ], - [ - "▁Throw", - -13.0050048828125 - ], - [ - "little", - -13.005010604858398 - ], - [ - "▁remarque", - -13.005074501037598 - ], - [ - "▁parcare", - -13.005085945129395 - ], - [ - "3.8", - -13.00518798828125 - ], - [ - "▁renunt", - -13.005330085754395 - ], - [ - "▁Rewards", - -13.005487442016602 - ], - [ - "▁Thur", - -13.005496978759766 - ], - [ - "▁underestimate", - -13.005515098571777 - ], - [ - "▁frankly", - -13.005516052246094 - ], - [ - "Bretagne", - -13.005517959594727 - ], - [ - "axial", - -13.005537986755371 - ], - [ - "▁identities", - -13.0055570602417 - ], - [ - "▁Harvest", - -13.00561237335205 - ], - [ - "▁skippe", - -13.00561237335205 - ], - [ - "▁Boutique", - -13.005670547485352 - ], - [ - "▁intuition", - -13.005746841430664 - ], - [ - "▁Rotary", - -13.00581169128418 - ], - [ - "▁SERVICE", - -13.005875587463379 - ], - [ - "▁refill", - -13.005915641784668 - ], - [ - "▁arcade", - -13.006060600280762 - ], - [ - "▁komme", - -13.006386756896973 - ], - [ - "▁irrelevant", - -13.006427764892578 - ], - [ - "▁Sortiment", - -13.006429672241211 - ], - [ - "▁scriitor", - -13.006488800048828 - ], - [ - "▁clicked", - -13.006516456604004 - ], - [ - "▁ciel", - -13.006610870361328 - ], - [ - "▁Caesar", - -13.00680160522461 - ], - [ - "hound", - -13.006803512573242 - ], - [ - "whipped", - -13.006843566894531 - ], - [ - "licate", - -13.006867408752441 - ], - [ - "▁formatting", - -13.006986618041992 - ], - [ - "▁mosaic", - -13.007028579711914 - ], - [ - "(2017)", - -13.007122039794922 - ], - [ - "777", - -13.007257461547852 - ], - [ - "▁Messenger", - -13.007342338562012 - ], - [ - "dulci", - -13.007369041442871 - ], - [ - "▁(2016)", - -13.007420539855957 - ], - [ - "▁popcorn", - -13.007425308227539 - ], - [ - "▁Presidential", - -13.007497787475586 - ], - [ - "▁brokerage", - -13.007564544677734 - ], - [ - "dachte", - -13.00762939453125 - ], - [ - "verkauf", - -13.00768756866455 - ], - [ - "▁pomme", - -13.007721900939941 - ], - [ - "▁fret", - -13.007822036743164 - ], - [ - "▁revere", - -13.007894515991211 - ], - [ - "▁Canvas", - -13.008092880249023 - ], - [ - "▁Nottingham", - -13.008255004882812 - ], - [ - "▁Refuge", - -13.008257865905762 - ], - [ - "▁injustice", - -13.008259773254395 - ], - [ - "▁External", - -13.008264541625977 - ], - [ - "dincolo", - -13.008304595947266 - ], - [ - "directing", - -13.008511543273926 - ], - [ - "▁Toulouse", - -13.008710861206055 - ], - [ - "▁cheltuieli", - -13.008746147155762 - ], - [ - "▁distrus", - -13.008816719055176 - ], - [ - "impôt", - -13.008912086486816 - ], - [ - "landschaft", - -13.008964538574219 - ], - [ - "passion", - -13.00897216796875 - ], - [ - "▁Hobby", - -13.009099006652832 - ], - [ - "significant", - -13.009115219116211 - ], - [ - "▁Guinea", - -13.009209632873535 - ], - [ - "pecializing", - -13.009237289428711 - ], - [ - "pozitie", - -13.009245872497559 - ], - [ - "bourne", - -13.009295463562012 - ], - [ - "▁mâini", - -13.00933837890625 - ], - [ - "▁CFR", - -13.009395599365234 - ], - [ - "▁Konflikt", - -13.009626388549805 - ], - [ - "▁Vodafone", - -13.009626388549805 - ], - [ - "OUG", - -13.009681701660156 - ], - [ - "▁Übersicht", - -13.009735107421875 - ], - [ - "negotiated", - -13.009903907775879 - ], - [ - "▁gliss", - -13.010042190551758 - ], - [ - "▁Kapital", - -13.010111808776855 - ], - [ - "QC", - -13.0101318359375 - ], - [ - "▁gentleman", - -13.01024341583252 - ], - [ - "Inde", - -13.010514259338379 - ], - [ - "▁immensely", - -13.010639190673828 - ], - [ - "Business", - -13.010702133178711 - ], - [ - "▁04/2", - -13.010882377624512 - ], - [ - "societatea", - -13.010973930358887 - ], - [ - "fluoxetine", - -13.011000633239746 - ], - [ - "▁Wachstum", - -13.011000633239746 - ], - [ - "▁récit", - -13.011011123657227 - ], - [ - "▁Preisvergleich", - -13.011034965515137 - ], - [ - "▁Mohammed", - -13.011460304260254 - ], - [ - "gefangen", - -13.011462211608887 - ], - [ - "▁calibration", - -13.011608123779297 - ], - [ - "bekam", - -13.011728286743164 - ], - [ - "▁FUN", - -13.011758804321289 - ], - [ - "wasting", - -13.011839866638184 - ], - [ - "▁prosper", - -13.011862754821777 - ], - [ - "▁Afghan", - -13.011919021606445 - ], - [ - "▁Heroes", - -13.011921882629395 - ], - [ - "▁VMware", - -13.011927604675293 - ], - [ - "exception", - -13.011969566345215 - ], - [ - "▁înlocui", - -13.01244831085205 - ], - [ - "Neu", - -13.01246452331543 - ], - [ - "initiation", - -13.01250171661377 - ], - [ - "▁Peel", - -13.01281452178955 - ], - [ - "▁cunoaste", - -13.012836456298828 - ], - [ - "▁menschliche", - -13.012849807739258 - ], - [ - "▁poarta", - -13.012852668762207 - ], - [ - "▁congestion", - -13.012930870056152 - ], - [ - "▁îmbunătăț", - -13.013103485107422 - ], - [ - "EUR", - -13.013171195983887 - ], - [ - "▁sushi", - -13.01326847076416 - ], - [ - "Jährige", - -13.01329517364502 - ], - [ - "espoir", - -13.013423919677734 - ], - [ - "inspected", - -13.013444900512695 - ], - [ - "▁etape", - -13.013677597045898 - ], - [ - "▁pharmacist", - -13.013754844665527 - ], - [ - "flect", - -13.013840675354004 - ], - [ - "Changing", - -13.013932228088379 - ], - [ - "▁radiant", - -13.014046669006348 - ], - [ - "Daddy", - -13.014275550842285 - ], - [ - "▁categorii", - -13.014360427856445 - ], - [ - "quête", - -13.014628410339355 - ], - [ - "▁skincare", - -13.014657020568848 - ], - [ - "hébergement", - -13.014674186706543 - ], - [ - "840", - -13.01477336883545 - ], - [ - "awaiting", - -13.014822006225586 - ], - [ - "▁murdered", - -13.014841079711914 - ], - [ - "▁proficient", - -13.014863967895508 - ], - [ - "▁chauffe", - -13.014899253845215 - ], - [ - "▁contur", - -13.014937400817871 - ], - [ - "▁rejoindre", - -13.015145301818848 - ], - [ - "▁foloseste", - -13.01521110534668 - ], - [ - "▁Grup", - -13.01535701751709 - ], - [ - "152", - -13.01541519165039 - ], - [ - "▁workspace", - -13.015438079833984 - ], - [ - "▁primitive", - -13.015546798706055 - ], - [ - "▁Ginger", - -13.015557289123535 - ], - [ - "▁chemotherapy", - -13.015595436096191 - ], - [ - "▁platinum", - -13.015596389770508 - ], - [ - "▁sarcina", - -13.01559829711914 - ], - [ - "▁revival", - -13.015820503234863 - ], - [ - "▁Meditation", - -13.016111373901367 - ], - [ - "▁Vogel", - -13.0161714553833 - ], - [ - "IMA", - -13.016359329223633 - ], - [ - "▁handset", - -13.016486167907715 - ], - [ - "▁Nachmittag", - -13.01651668548584 - ], - [ - "▁déchets", - -13.016517639160156 - ], - [ - "▁Cornwall", - -13.0165433883667 - ], - [ - "▁Curry", - -13.016605377197266 - ], - [ - "▁cuplu", - -13.016607284545898 - ], - [ - "▁Birth", - -13.016822814941406 - ], - [ - "forward", - -13.016936302185059 - ], - [ - "Dezvoltare", - -13.016977310180664 - ], - [ - "▁irgendwie", - -13.016980171203613 - ], - [ - "▁erzielt", - -13.016993522644043 - ], - [ - "LOS", - -13.01700496673584 - ], - [ - "▁overload", - -13.01708984375 - ], - [ - "▁repay", - -13.01713752746582 - ], - [ - "urlaub", - -13.017155647277832 - ], - [ - "7.0", - -13.01716423034668 - ], - [ - "▁Wheat", - -13.01748275756836 - ], - [ - "▁degrab", - -13.017488479614258 - ], - [ - "▁Brock", - -13.017491340637207 - ], - [ - "▁inhabit", - -13.0176362991333 - ], - [ - "▁Speech", - -13.017834663391113 - ], - [ - "directional", - -13.017862319946289 - ], - [ - "▁Mandel", - -13.017909049987793 - ], - [ - "▁erscheinen", - -13.01791763305664 - ], - [ - "consciously", - -13.018059730529785 - ], - [ - "▁sunet", - -13.0182523727417 - ], - [ - "▁stole", - -13.018259048461914 - ], - [ - "▁Utilis", - -13.018349647521973 - ], - [ - "▁obstruction", - -13.01852798461914 - ], - [ - "▁mindfulness", - -13.0186767578125 - ], - [ - "partnering", - -13.01868724822998 - ], - [ - "CSI", - -13.018819808959961 - ], - [ - "204", - -13.01905632019043 - ], - [ - "▁squirrel", - -13.019286155700684 - ], - [ - "▁Rwanda", - -13.01975154876709 - ], - [ - "▁hunters", - -13.019850730895996 - ], - [ - "▁revitaliz", - -13.02022647857666 - ], - [ - "▁avansat", - -13.020232200622559 - ], - [ - "▁Yamaha", - -13.020294189453125 - ], - [ - "foto", - -13.020435333251953 - ], - [ - "▁Vegan", - -13.020469665527344 - ], - [ - "▁pitched", - -13.02053165435791 - ], - [ - "▁Vortrag", - -13.020540237426758 - ], - [ - "traditional", - -13.020809173583984 - ], - [ - "offrent", - -13.021024703979492 - ], - [ - "▁Expression", - -13.021315574645996 - ], - [ - "▁apprécié", - -13.021354675292969 - ], - [ - "▁Christina", - -13.021408081054688 - ], - [ - "eilig", - -13.021464347839355 - ], - [ - "▁verhindern", - -13.021599769592285 - ], - [ - "culturii", - -13.021607398986816 - ], - [ - "Aşa", - -13.021703720092773 - ], - [ - "▁enamel", - -13.021756172180176 - ], - [ - "▁fördern", - -13.021771430969238 - ], - [ - "▁acheté", - -13.021798133850098 - ], - [ - "▁eventuell", - -13.021842956542969 - ], - [ - "▁Sino", - -13.021873474121094 - ], - [ - "▁totodat", - -13.022008895874023 - ], - [ - "accelerated", - -13.022202491760254 - ], - [ - "▁strengthened", - -13.02245044708252 - ], - [ - "corro", - -13.022482872009277 - ], - [ - "4,5", - -13.02253246307373 - ], - [ - "▁Beverly", - -13.022533416748047 - ], - [ - "ulevard", - -13.022615432739258 - ], - [ - "▁hamper", - -13.022644996643066 - ], - [ - "▁Tempe", - -13.02268123626709 - ], - [ - "▁Yacht", - -13.022799491882324 - ], - [ - "▁LGBT", - -13.022871017456055 - ], - [ - "▁fingertips", - -13.022991180419922 - ], - [ - "▁Auftraggeber", - -13.02299976348877 - ], - [ - "▁harbour", - -13.0230131149292 - ], - [ - "blew", - -13.0230712890625 - ], - [ - "▁ideology", - -13.023115158081055 - ], - [ - "▁covenant", - -13.023170471191406 - ], - [ - "▁faction", - -13.023419380187988 - ], - [ - "▁animé", - -13.023481369018555 - ], - [ - "energie", - -13.023515701293945 - ], - [ - "iterführende", - -13.02369499206543 - ], - [ - "▁MAI", - -13.023784637451172 - ], - [ - "▁pluie", - -13.023905754089355 - ], - [ - "▁cathedral", - -13.023919105529785 - ], - [ - "▁chiropractic", - -13.023919105529785 - ], - [ - "monies", - -13.023968696594238 - ], - [ - "▁contraction", - -13.024054527282715 - ], - [ - "pvc", - -13.024202346801758 - ], - [ - "staff", - -13.024209022521973 - ], - [ - "BIT", - -13.024216651916504 - ], - [ - "EET", - -13.024514198303223 - ], - [ - "▁sanction", - -13.024575233459473 - ], - [ - "▁Reiki", - -13.024709701538086 - ], - [ - "Trying", - -13.024772644042969 - ], - [ - "▁endangered", - -13.024847984313965 - ], - [ - "▁Emperor", - -13.024849891662598 - ], - [ - "▁empfi", - -13.024909973144531 - ], - [ - "animation", - -13.024998664855957 - ], - [ - "207", - -13.025029182434082 - ], - [ - "separating", - -13.02512264251709 - ], - [ - "▁lucrative", - -13.025148391723633 - ], - [ - "▁ortho", - -13.02524185180664 - ], - [ - "variété", - -13.025266647338867 - ], - [ - "hésit", - -13.025287628173828 - ], - [ - "nuances", - -13.025289535522461 - ], - [ - "▁$250", - -13.025394439697266 - ], - [ - "▁drumuri", - -13.025435447692871 - ], - [ - "▁unsafe", - -13.025446891784668 - ], - [ - "▁1943", - -13.025477409362793 - ], - [ - "▁automatique", - -13.025524139404297 - ], - [ - "billed", - -13.025585174560547 - ], - [ - "▁rectangle", - -13.02578067779541 - ], - [ - "▁Spannung", - -13.025781631469727 - ], - [ - "▁dévoil", - -13.025790214538574 - ], - [ - "▁perimeter", - -13.02580738067627 - ], - [ - "▁imaginative", - -13.02581787109375 - ], - [ - "actifs", - -13.025851249694824 - ], - [ - "neuve", - -13.0259428024292 - ], - [ - "leagă", - -13.026269912719727 - ], - [ - "gehende", - -13.026700973510742 - ], - [ - "▁Gorgeous", - -13.026708602905273 - ], - [ - "▁impeccable", - -13.026708602905273 - ], - [ - "▁Curtain", - -13.026718139648438 - ], - [ - "▁presume", - -13.026731491088867 - ], - [ - "surpassed", - -13.02687931060791 - ], - [ - "schiff", - -13.026927947998047 - ], - [ - "Allied", - -13.02699089050293 - ], - [ - "fanden", - -13.027080535888672 - ], - [ - "▁célébr", - -13.027174949645996 - ], - [ - "▁phénomène", - -13.027174949645996 - ], - [ - "▁Powell", - -13.027413368225098 - ], - [ - "jean", - -13.027631759643555 - ], - [ - "▁peculiar", - -13.027640342712402 - ], - [ - "▁Antarctic", - -13.027641296386719 - ], - [ - "▁gradient", - -13.027663230895996 - ], - [ - "▁brainstorm", - -13.027704238891602 - ], - [ - "échapp", - -13.027726173400879 - ], - [ - "Bot", - -13.027738571166992 - ], - [ - "cita", - -13.027743339538574 - ], - [ - "▁lumber", - -13.027752876281738 - ], - [ - "weichen", - -13.027852058410645 - ], - [ - "▁Halte", - -13.028024673461914 - ], - [ - "▁noștri", - -13.028107643127441 - ], - [ - "construction", - -13.028165817260742 - ], - [ - "DOC", - -13.028236389160156 - ], - [ - "▁aluat", - -13.028319358825684 - ], - [ - "streamlined", - -13.028462409973145 - ], - [ - "Bio", - -13.028494834899902 - ], - [ - "▁nutritious", - -13.028573036193848 - ], - [ - "▁délicat", - -13.0286283493042 - ], - [ - "▁sticla", - -13.028656959533691 - ], - [ - "OVE", - -13.028721809387207 - ], - [ - "▁panneau", - -13.028793334960938 - ], - [ - "▁hetero", - -13.028801918029785 - ], - [ - "▁annul", - -13.028839111328125 - ], - [ - "IDA", - -13.028935432434082 - ], - [ - "▁pitches", - -13.028960227966309 - ], - [ - "▁Edmonton", - -13.029040336608887 - ], - [ - "mediated", - -13.029136657714844 - ], - [ - "AFP", - -13.029139518737793 - ], - [ - "▁Tibetan", - -13.029228210449219 - ], - [ - "intégration", - -13.02934455871582 - ], - [ - "▁Rox", - -13.0294771194458 - ], - [ - "energia", - -13.02950668334961 - ], - [ - "▁reconnaît", - -13.029509544372559 - ], - [ - "▁ține", - -13.029525756835938 - ], - [ - "▁ignition", - -13.029534339904785 - ], - [ - "Foarte", - -13.029541015625 - ], - [ - "▁HOME", - -13.029545783996582 - ], - [ - "▁MLB", - -13.029545783996582 - ], - [ - "▁Wähle", - -13.029590606689453 - ], - [ - "▁Merkel", - -13.029658317565918 - ], - [ - "poarte", - -13.029664993286133 - ], - [ - "ALT", - -13.02979850769043 - ], - [ - "jenigen", - -13.029985427856445 - ], - [ - "▁conflit", - -13.029987335205078 - ], - [ - "▁buckle", - -13.029996871948242 - ], - [ - "▁cacao", - -13.030035018920898 - ], - [ - "▁représentation", - -13.030076026916504 - ], - [ - "incepand", - -13.030267715454102 - ], - [ - "▁Carroll", - -13.030306816101074 - ], - [ - "▁clientilor", - -13.030370712280273 - ], - [ - "▁immunity", - -13.030441284179688 - ], - [ - "oût", - -13.03044319152832 - ], - [ - "▁Witch", - -13.030488014221191 - ], - [ - "▁Wolfgang", - -13.030532836914062 - ], - [ - "▁prudent", - -13.030701637268066 - ], - [ - "fotograf", - -13.03084945678711 - ], - [ - "paar", - -13.030871391296387 - ], - [ - "ergeti", - -13.030927658081055 - ], - [ - "▁empowerment", - -13.031112670898438 - ], - [ - "▁Admir", - -13.03122329711914 - ], - [ - "▁complémentaire", - -13.031340599060059 - ], - [ - "▁angepasst", - -13.031376838684082 - ], - [ - "▁flirt", - -13.031376838684082 - ], - [ - "▁elektronische", - -13.031388282775879 - ], - [ - "▁stereotype", - -13.03140640258789 - ], - [ - "SIL", - -13.031465530395508 - ], - [ - "▁Realtor", - -13.031471252441406 - ], - [ - "Edit", - -13.031774520874023 - ], - [ - "requête", - -13.03181266784668 - ], - [ - "▁Herstellung", - -13.031815528869629 - ], - [ - "▁cyst", - -13.031947135925293 - ], - [ - "syndic", - -13.031994819641113 - ], - [ - "leni", - -13.032007217407227 - ], - [ - "▁fringe", - -13.032020568847656 - ], - [ - "▁Jardin", - -13.032032012939453 - ], - [ - "▁Vezi", - -13.032052993774414 - ], - [ - "▁Ausstattung", - -13.032312393188477 - ], - [ - "▁glide", - -13.032590866088867 - ], - [ - "▁Andere", - -13.032758712768555 - ], - [ - "▁Haftung", - -13.032781600952148 - ], - [ - "maßnahmen", - -13.032788276672363 - ], - [ - "▁recommandé", - -13.032790184020996 - ], - [ - "▁nave", - -13.032793998718262 - ], - [ - "viziune", - -13.033051490783691 - ], - [ - "▁stimulus", - -13.033098220825195 - ], - [ - "faulty", - -13.0331449508667 - ], - [ - "▁vicinity", - -13.033249855041504 - ], - [ - "▁turnaround", - -13.033445358276367 - ], - [ - "stammt", - -13.033846855163574 - ], - [ - "▁problemlos", - -13.033856391906738 - ], - [ - "▁Establish", - -13.03415298461914 - ], - [ - "▁Silva", - -13.034172058105469 - ], - [ - "▁muzică", - -13.034187316894531 - ], - [ - "▁theatrical", - -13.03421401977539 - ], - [ - "▁braid", - -13.034242630004883 - ], - [ - "▁blieb", - -13.034276962280273 - ], - [ - "158", - -13.034296989440918 - ], - [ - "▁ignorance", - -13.034330368041992 - ], - [ - "onset", - -13.034416198730469 - ], - [ - "zeitlich", - -13.034523963928223 - ], - [ - "▁Sink", - -13.034523963928223 - ], - [ - "▁caractéris", - -13.034594535827637 - ], - [ - "▁kreative", - -13.03465747833252 - ], - [ - "behörde", - -13.034677505493164 - ], - [ - "repairing", - -13.034680366516113 - ], - [ - "▁tumble", - -13.034757614135742 - ], - [ - "zione", - -13.034871101379395 - ], - [ - "▁Evil", - -13.03494644165039 - ], - [ - "▁popping", - -13.034952163696289 - ], - [ - "▁mutant", - -13.035025596618652 - ], - [ - "emme", - -13.035030364990234 - ], - [ - "▁Pleasant", - -13.035125732421875 - ], - [ - "▁appetizer", - -13.035125732421875 - ], - [ - "▁PLEASE", - -13.035126686096191 - ], - [ - "▁physiological", - -13.035128593444824 - ], - [ - "▁Facility", - -13.035131454467773 - ], - [ - "▁quirky", - -13.035131454467773 - ], - [ - "▁colectiv", - -13.035154342651367 - ], - [ - "151", - -13.035181999206543 - ], - [ - "August", - -13.03531551361084 - ], - [ - "▁Jewelry", - -13.035327911376953 - ], - [ - "▁ziar", - -13.035481452941895 - ], - [ - "▁puissant", - -13.035489082336426 - ], - [ - "▁Argument", - -13.035595893859863 - ], - [ - "▁Betracht", - -13.035621643066406 - ], - [ - "▁TRANS", - -13.035636901855469 - ], - [ - "Exception", - -13.036011695861816 - ], - [ - "nosti", - -13.036083221435547 - ], - [ - "▁Geographic", - -13.036155700683594 - ], - [ - "amazingly", - -13.036173820495605 - ], - [ - "▁météo", - -13.036181449890137 - ], - [ - "streit", - -13.036314010620117 - ], - [ - "▁idle", - -13.036439895629883 - ], - [ - "179", - -13.036441802978516 - ], - [ - "▁Bremen", - -13.036534309387207 - ], - [ - "▁Kläger", - -13.03653621673584 - ], - [ - "▁Grammy", - -13.036598205566406 - ], - [ - "▁Philosophy", - -13.036613464355469 - ], - [ - "▁utilizeaz", - -13.036779403686523 - ], - [ - "Accord", - -13.036897659301758 - ], - [ - "▁USDA", - -13.036986351013184 - ], - [ - "Continuing", - -13.037010192871094 - ], - [ - "geschenk", - -13.037178039550781 - ], - [ - "kredit", - -13.037248611450195 - ], - [ - "Laugh", - -13.037297248840332 - ], - [ - "oaring", - -13.037406921386719 - ], - [ - "▁Richter", - -13.037460327148438 - ], - [ - "▁Figur", - -13.037938117980957 - ], - [ - "▁inconsistent", - -13.037947654724121 - ], - [ - "cresterea", - -13.038069725036621 - ], - [ - "▁regeneration", - -13.038130760192871 - ], - [ - "speaking", - -13.03818416595459 - ], - [ - "▁nasal", - -13.03824234008789 - ], - [ - "▁partagé", - -13.038259506225586 - ], - [ - "▁Warranty", - -13.038419723510742 - ], - [ - "▁Mueller", - -13.038501739501953 - ], - [ - "formează", - -13.038734436035156 - ], - [ - "hundert", - -13.038745880126953 - ], - [ - "gemeldet", - -13.038893699645996 - ], - [ - "▁excursions", - -13.038912773132324 - ], - [ - "▁linii", - -13.039066314697266 - ], - [ - "gefährlich", - -13.039067268371582 - ], - [ - "▁schema", - -13.03907299041748 - ], - [ - "nişte", - -13.039131164550781 - ], - [ - "▁roadway", - -13.039132118225098 - ], - [ - "▁regression", - -13.039135932922363 - ], - [ - "▁mână", - -13.039366722106934 - ], - [ - "5.3", - -13.039373397827148 - ], - [ - "▁Spät", - -13.039734840393066 - ], - [ - "▁stubborn", - -13.039833068847656 - ], - [ - "efectele", - -13.040030479431152 - ], - [ - "▁atenţi", - -13.040136337280273 - ], - [ - "▁dovedit", - -13.04018497467041 - ], - [ - "▁Agile", - -13.040190696716309 - ], - [ - "denying", - -13.04023265838623 - ], - [ - "fluss", - -13.040620803833008 - ], - [ - "▁Calvin", - -13.04066276550293 - ], - [ - "Sculpt", - -13.04083251953125 - ], - [ - "égalité", - -13.040884971618652 - ], - [ - "ticket", - -13.040977478027344 - ], - [ - "marketed", - -13.041044235229492 - ], - [ - "holic", - -13.041173934936523 - ], - [ - "▁eCommerce", - -13.041346549987793 - ], - [ - "▁Slip", - -13.041369438171387 - ], - [ - "▁degradation", - -13.041736602783203 - ], - [ - "écart", - -13.041742324829102 - ], - [ - "AGR", - -13.041807174682617 - ], - [ - "▁burglar", - -13.041837692260742 - ], - [ - "▁conjug", - -13.041903495788574 - ], - [ - "LLP", - -13.04194164276123 - ], - [ - "couvrir", - -13.041997909545898 - ], - [ - "▁Hearing", - -13.042001724243164 - ], - [ - "▁canton", - -13.042006492614746 - ], - [ - "▁sixteen", - -13.042068481445312 - ], - [ - "▁Verlust", - -13.042097091674805 - ], - [ - "allied", - -13.042268753051758 - ], - [ - "Performing", - -13.042393684387207 - ], - [ - "▁évoqu", - -13.042519569396973 - ], - [ - "▁bookstore", - -13.042574882507324 - ], - [ - "▁intrebari", - -13.042627334594727 - ], - [ - "▁Hyderabad", - -13.042668342590332 - ], - [ - "▁repertoire", - -13.042668342590332 - ], - [ - "▁cablu", - -13.042678833007812 - ], - [ - "▁Costume", - -13.04269790649414 - ], - [ - "▁Shannon", - -13.042713165283203 - ], - [ - "▁glossy", - -13.042800903320312 - ], - [ - "▁cible", - -13.042876243591309 - ], - [ - "Saint", - -13.042984008789062 - ], - [ - "▁Ultima", - -13.043042182922363 - ], - [ - "▁teint", - -13.0432767868042 - ], - [ - "▁envision", - -13.043477058410645 - ], - [ - "▁thinner", - -13.043478965759277 - ], - [ - "ис", - -13.043609619140625 - ], - [ - "▁bladder", - -13.043615341186523 - ], - [ - "▁Prairie", - -13.043618202209473 - ], - [ - "▁puppies", - -13.043633460998535 - ], - [ - "▁overweight", - -13.043729782104492 - ], - [ - "destined", - -13.043925285339355 - ], - [ - "▁addictive", - -13.043935775756836 - ], - [ - "▁posé", - -13.043993949890137 - ], - [ - "▁mecanism", - -13.044112205505371 - ], - [ - "▁chorus", - -13.044466972351074 - ], - [ - "weder", - -13.044528007507324 - ], - [ - "▁begrüß", - -13.044562339782715 - ], - [ - "▁unsuccessful", - -13.044562339782715 - ], - [ - "executing", - -13.044564247131348 - ], - [ - "▁metadata", - -13.044611930847168 - ], - [ - "traiter", - -13.044620513916016 - ], - [ - "▁borrowed", - -13.044649124145508 - ], - [ - "▁aeroport", - -13.044679641723633 - ], - [ - "▁Bibli", - -13.044761657714844 - ], - [ - "▁youthful", - -13.044902801513672 - ], - [ - "▁Herbert", - -13.044913291931152 - ], - [ - "client", - -13.04500961303711 - ], - [ - "merci", - -13.04520034790039 - ], - [ - "▁Beast", - -13.045210838317871 - ], - [ - "▁Entrepreneur", - -13.045230865478516 - ], - [ - "▁Gelände", - -13.045256614685059 - ], - [ - "▁Packers", - -13.045268058776855 - ], - [ - "formarea", - -13.045469284057617 - ], - [ - "▁Kündigung", - -13.045511245727539 - ], - [ - "▁verdient", - -13.045515060424805 - ], - [ - "▁solutie", - -13.045530319213867 - ], - [ - "figuration", - -13.045611381530762 - ], - [ - "voluntarily", - -13.045622825622559 - ], - [ - "Gregor", - -13.045742988586426 - ], - [ - "▁Uncle", - -13.04589557647705 - ], - [ - "tarifs", - -13.045907020568848 - ], - [ - "▁écologique", - -13.045987129211426 - ], - [ - "▁Investition", - -13.045991897583008 - ], - [ - "exemplar", - -13.046127319335938 - ], - [ - "▁prevede", - -13.046144485473633 - ], - [ - "▁waive", - -13.046147346496582 - ], - [ - "▁Legion", - -13.046156883239746 - ], - [ - "similar", - -13.046247482299805 - ], - [ - "▁shareholder", - -13.04626750946045 - ], - [ - "▁oyster", - -13.046476364135742 - ], - [ - "▁Lightning", - -13.046530723571777 - ], - [ - "experimenting", - -13.04662799835205 - ], - [ - "▁replies", - -13.04663372039795 - ], - [ - "80,000", - -13.046757698059082 - ], - [ - "▁adept", - -13.04692554473877 - ], - [ - "▁Crăciun", - -13.046935081481934 - ], - [ - "▁sanatos", - -13.046935081481934 - ], - [ - "305", - -13.04699993133545 - ], - [ - "specialised", - -13.047069549560547 - ], - [ - "▁drummer", - -13.047189712524414 - ], - [ - "Applicants", - -13.04741096496582 - ], - [ - "objekt", - -13.04741096496582 - ], - [ - "▁Fifth", - -13.047446250915527 - ], - [ - "rgic", - -13.047567367553711 - ], - [ - "theater", - -13.047635078430176 - ], - [ - "▁terminé", - -13.047852516174316 - ], - [ - "▁Englisch", - -13.047894477844238 - ], - [ - "▁Oradea", - -13.047898292541504 - ], - [ - "possesses", - -13.0479097366333 - ], - [ - "illiers", - -13.047986030578613 - ], - [ - "▁refurbish", - -13.048110961914062 - ], - [ - "graphie", - -13.04814338684082 - ], - [ - "▁Booth", - -13.048174858093262 - ], - [ - "▁Ausdruck", - -13.048192977905273 - ], - [ - "▁Marriage", - -13.048361778259277 - ], - [ - "▁knives", - -13.048362731933594 - ], - [ - "▁Relief", - -13.048368453979492 - ], - [ - "▁Clerk", - -13.048392295837402 - ], - [ - "wait", - -13.048501014709473 - ], - [ - "▁probablement", - -13.048698425292969 - ], - [ - "▁suplimentar", - -13.048701286315918 - ], - [ - "dollar", - -13.048797607421875 - ], - [ - "English", - -13.04898452758789 - ], - [ - "866", - -13.049300193786621 - ], - [ - "▁Savannah", - -13.049314498901367 - ], - [ - "▁aftermath", - -13.049318313598633 - ], - [ - "phé", - -13.04932689666748 - ], - [ - "▁Plum", - -13.049417495727539 - ], - [ - "264", - -13.049566268920898 - ], - [ - "2.000", - -13.049582481384277 - ], - [ - "niei", - -13.049603462219238 - ], - [ - "ATP", - -13.049803733825684 - ], - [ - "mila", - -13.04985523223877 - ], - [ - "▁glut", - -13.049887657165527 - ], - [ - "gotta", - -13.049891471862793 - ], - [ - "schütt", - -13.049893379211426 - ], - [ - "klick", - -13.049996376037598 - ], - [ - "whether", - -13.050090789794922 - ], - [ - "▁Wade", - -13.050163269042969 - ], - [ - "▁Riley", - -13.050280570983887 - ], - [ - "Chancellor", - -13.050288200378418 - ], - [ - "▁nebun", - -13.050300598144531 - ], - [ - "▁aufgebaut", - -13.050374984741211 - ], - [ - "steigt", - -13.050423622131348 - ], - [ - "▁entirety", - -13.050494194030762 - ], - [ - "▁telefoane", - -13.05074691772461 - ], - [ - "▁Roulette", - -13.050763130187988 - ], - [ - "1700", - -13.050787925720215 - ], - [ - "▁lycée", - -13.050856590270996 - ], - [ - "rotary", - -13.051128387451172 - ], - [ - "benefited", - -13.051170349121094 - ], - [ - "▁Bisericii", - -13.051220893859863 - ], - [ - "▁Rehabilitation", - -13.051220893859863 - ], - [ - "▁lithium", - -13.051228523254395 - ], - [ - "imposing", - -13.051279067993164 - ], - [ - "176", - -13.051329612731934 - ], - [ - "▁thunder", - -13.051527976989746 - ], - [ - "ăsesc", - -13.052000045776367 - ], - [ - "▁Einblick", - -13.052010536193848 - ], - [ - "oiled", - -13.052151679992676 - ], - [ - "SSA", - -13.052181243896484 - ], - [ - "apparition", - -13.05224609375 - ], - [ - "▁Impress", - -13.052273750305176 - ], - [ - "▁Aboriginal", - -13.052297592163086 - ], - [ - "loos", - -13.052383422851562 - ], - [ - "▁Bread", - -13.052440643310547 - ], - [ - "177", - -13.052619934082031 - ], - [ - "VERS", - -13.052638053894043 - ], - [ - "▁Respect", - -13.05271053314209 - ], - [ - "▁Practical", - -13.053047180175781 - ], - [ - "drafting", - -13.05306339263916 - ], - [ - "си", - -13.053099632263184 - ], - [ - "▁faza", - -13.053109169006348 - ], - [ - "▁sovereign", - -13.053123474121094 - ], - [ - "▁Untersuchung", - -13.05314826965332 - ], - [ - "▁Niveau", - -13.053154945373535 - ], - [ - "transport", - -13.053182601928711 - ], - [ - "▁downstream", - -13.053293228149414 - ], - [ - "▁Milton", - -13.053383827209473 - ], - [ - "▁knob", - -13.053390502929688 - ], - [ - "employeur", - -13.053499221801758 - ], - [ - "▁furnish", - -13.053544044494629 - ], - [ - "weather", - -13.053564071655273 - ], - [ - "LAB", - -13.053646087646484 - ], - [ - "166", - -13.053853988647461 - ], - [ - "▁salaire", - -13.053937911987305 - ], - [ - "▁Carnival", - -13.054088592529297 - ], - [ - "4-0", - -13.054168701171875 - ], - [ - "▁Angle", - -13.054291725158691 - ], - [ - "▁José", - -13.054399490356445 - ], - [ - "architecture", - -13.054475784301758 - ], - [ - "▁Sunset", - -13.054574966430664 - ], - [ - "▁Absolut", - -13.054694175720215 - ], - [ - "▁herrlich", - -13.05470085144043 - ], - [ - "12%", - -13.054703712463379 - ], - [ - "▁Indo", - -13.054823875427246 - ], - [ - "▁Komfort", - -13.055049896240234 - ], - [ - "▁acțiuni", - -13.05505084991455 - ], - [ - "energize", - -13.055085182189941 - ], - [ - "▁Warning", - -13.055171966552734 - ], - [ - "▁Sunny", - -13.055216789245605 - ], - [ - "▁razor", - -13.055489540100098 - ], - [ - "▁psychic", - -13.055490493774414 - ], - [ - "▁convivial", - -13.055525779724121 - ], - [ - "Voraussetzungen", - -13.05555534362793 - ], - [ - "IMO", - -13.055622100830078 - ], - [ - "opérateur", - -13.055743217468262 - ], - [ - "▁langjährige", - -13.05575942993164 - ], - [ - "▁Spanie", - -13.055901527404785 - ], - [ - "pulmonary", - -13.056004524230957 - ], - [ - "▁Bingo", - -13.056050300598145 - ], - [ - "▁confession", - -13.056096076965332 - ], - [ - "▁Petru", - -13.056100845336914 - ], - [ - "▁prerequisite", - -13.056164741516113 - ], - [ - "▁dodge", - -13.056352615356445 - ], - [ - "▁McN", - -13.056436538696289 - ], - [ - "▁originate", - -13.056577682495117 - ], - [ - "▁nettoy", - -13.056612014770508 - ], - [ - "▁$14", - -13.056645393371582 - ], - [ - "▁Bride", - -13.05669116973877 - ], - [ - "▁noisy", - -13.05673885345459 - ], - [ - "▁Worcester", - -13.056963920593262 - ], - [ - "▁Surrey", - -13.056982040405273 - ], - [ - "harmonis", - -13.057110786437988 - ], - [ - "▁représentant", - -13.057304382324219 - ], - [ - "organisée", - -13.057475090026855 - ], - [ - "truction", - -13.057513236999512 - ], - [ - "injected", - -13.057597160339355 - ], - [ - "▁Suzuki", - -13.057924270629883 - ], - [ - "▁japonais", - -13.057924270629883 - ], - [ - "▁turquoise", - -13.057924270629883 - ], - [ - "▁Peut", - -13.058004379272461 - ], - [ - "▁Sequ", - -13.058028221130371 - ], - [ - "slated", - -13.058037757873535 - ], - [ - "▁Alma", - -13.058215141296387 - ], - [ - "▁gebraucht", - -13.05827522277832 - ], - [ - "gängig", - -13.058281898498535 - ], - [ - "▁commis", - -13.058377265930176 - ], - [ - "ACS", - -13.05856990814209 - ], - [ - "pressure", - -13.058664321899414 - ], - [ - "cured", - -13.05874252319336 - ], - [ - "▁Jackie", - -13.058757781982422 - ], - [ - "▁Kashmir", - -13.05888557434082 - ], - [ - "▁recruited", - -13.059000968933105 - ], - [ - "▁vécu", - -13.059011459350586 - ], - [ - "▁opus", - -13.059052467346191 - ], - [ - "kWh", - -13.05927562713623 - ], - [ - "▁tapping", - -13.059292793273926 - ], - [ - "▁tehnologie", - -13.05931282043457 - ], - [ - "▁Gentle", - -13.059365272521973 - ], - [ - "▁bombard", - -13.059372901916504 - ], - [ - "▁caméra", - -13.059427261352539 - ], - [ - "züglich", - -13.059431076049805 - ], - [ - "▁bingo", - -13.059453010559082 - ], - [ - "private", - -13.059496879577637 - ], - [ - "▁mediator", - -13.059642791748047 - ], - [ - "▁carbohydrates", - -13.059847831726074 - ], - [ - "▁workmanship", - -13.059849739074707 - ], - [ - "▁Combat", - -13.059853553771973 - ], - [ - "▁Mickey", - -13.059901237487793 - ], - [ - "▁distressed", - -13.059908866882324 - ], - [ - "lucrează", - -13.059924125671387 - ], - [ - "treatment", - -13.06007194519043 - ], - [ - "▁Einwohner", - -13.060330390930176 - ], - [ - "▁glaze", - -13.060386657714844 - ], - [ - "scholarly", - -13.06043529510498 - ], - [ - "ROC", - -13.060750007629395 - ], - [ - "▁Darwin", - -13.060774803161621 - ], - [ - "drückt", - -13.060775756835938 - ], - [ - "▁treadmill", - -13.060819625854492 - ], - [ - "ntz", - -13.060830116271973 - ], - [ - "620", - -13.061087608337402 - ], - [ - "surface", - -13.061148643493652 - ], - [ - "▁vieţii", - -13.0612211227417 - ], - [ - "990", - -13.061296463012695 - ], - [ - "▁doigt", - -13.061341285705566 - ], - [ - "▁explor", - -13.061450004577637 - ], - [ - "▁asistent", - -13.061670303344727 - ], - [ - "coloriage", - -13.061734199523926 - ], - [ - "▁Martinez", - -13.061758041381836 - ], - [ - "▁antibodies", - -13.061775207519531 - ], - [ - "Schülerinnen", - -13.061779975891113 - ], - [ - "Honestly", - -13.06178092956543 - ], - [ - "grabbing", - -13.061871528625488 - ], - [ - "▁Cardiff", - -13.061897277832031 - ], - [ - "▁Trophy", - -13.062084197998047 - ], - [ - "▁pupil", - -13.062117576599121 - ], - [ - "▁invoke", - -13.062161445617676 - ], - [ - "bezüglich", - -13.062193870544434 - ], - [ - "Anschließend", - -13.062275886535645 - ], - [ - "perks", - -13.062360763549805 - ], - [ - "530", - -13.062373161315918 - ], - [ - "▁emblem", - -13.062431335449219 - ], - [ - "770", - -13.062543869018555 - ], - [ - "clairement", - -13.062590599060059 - ], - [ - "▁sublinia", - -13.062597274780273 - ], - [ - "▁1910", - -13.062719345092773 - ], - [ - "▁Embassy", - -13.062740325927734 - ], - [ - "▁Valencia", - -13.062740325927734 - ], - [ - "▁catastrophic", - -13.062740325927734 - ], - [ - "▁simulator", - -13.06274700164795 - ], - [ - "Pierre", - -13.062766075134277 - ], - [ - "▁doorstep", - -13.062806129455566 - ], - [ - "▁rallie", - -13.062881469726562 - ], - [ - "▁șans", - -13.062891960144043 - ], - [ - "▁crosses", - -13.06300163269043 - ], - [ - "▁zodi", - -13.06312084197998 - ], - [ - "Next", - -13.06314754486084 - ], - [ - "▁rebuilt", - -13.063152313232422 - ], - [ - "▁panorama", - -13.063222885131836 - ], - [ - "196", - -13.06324291229248 - ], - [ - "▁erinnert", - -13.06370735168457 - ], - [ - "lism", - -13.06371784210205 - ], - [ - "opened", - -13.06383228302002 - ], - [ - "▁breakout", - -13.064126014709473 - ], - [ - "▁mosque", - -13.064153671264648 - ], - [ - "boc", - -13.064507484436035 - ], - [ - "▁grout", - -13.064568519592285 - ], - [ - "▁Gather", - -13.064582824707031 - ], - [ - "▁vampire", - -13.06467342376709 - ], - [ - "▁tandem", - -13.064684867858887 - ], - [ - "▁pastra", - -13.064702033996582 - ], - [ - "▁lösen", - -13.064794540405273 - ], - [ - "▁discontinu", - -13.064826965332031 - ], - [ - "fuses", - -13.064885139465332 - ], - [ - "▁identitate", - -13.064947128295898 - ], - [ - "BAC", - -13.064964294433594 - ], - [ - "▁$100,000", - -13.065122604370117 - ], - [ - "Finder", - -13.06515121459961 - ], - [ - "▁Leicester", - -13.065157890319824 - ], - [ - "▁1933", - -13.065159797668457 - ], - [ - "informatiile", - -13.065234184265137 - ], - [ - "lädt", - -13.065309524536133 - ], - [ - "iggle", - -13.065399169921875 - ], - [ - "▁Discuss", - -13.065462112426758 - ], - [ - "distributing", - -13.065470695495605 - ], - [ - "▁disappoint", - -13.065475463867188 - ], - [ - "ecţia", - -13.065611839294434 - ], - [ - "▁condiment", - -13.065640449523926 - ], - [ - "▁Marriott", - -13.065642356872559 - ], - [ - "▁entspannt", - -13.065644264221191 - ], - [ - "arbitrary", - -13.06564998626709 - ], - [ - "rühren", - -13.06574821472168 - ], - [ - "Intensiv", - -13.065771102905273 - ], - [ - "eliminare", - -13.065895080566406 - ], - [ - "muster", - -13.06594467163086 - ], - [ - "▁komplexe", - -13.066130638122559 - ], - [ - "▁(2008)", - -13.066184997558594 - ], - [ - "absolument", - -13.066349029541016 - ], - [ - "aloo", - -13.066420555114746 - ], - [ - "cererea", - -13.06655216217041 - ], - [ - "▁imobiliar", - -13.066696166992188 - ], - [ - "▁paramount", - -13.066705703735352 - ], - [ - "▁Vince", - -13.066723823547363 - ], - [ - "pov", - -13.067076683044434 - ], - [ - "▁conveyor", - -13.067549705505371 - ], - [ - "▁Natalie", - -13.067583084106445 - ], - [ - "▁Comedy", - -13.067623138427734 - ], - [ - "Developing", - -13.0678129196167 - ], - [ - "disputed", - -13.067878723144531 - ], - [ - "164", - -13.067911148071289 - ], - [ - "▁Communist", - -13.067949295043945 - ], - [ - "▁Bahnhof", - -13.06806468963623 - ], - [ - "dokument", - -13.068145751953125 - ], - [ - "▁Somali", - -13.06828498840332 - ], - [ - "▁Strasbourg", - -13.068503379821777 - ], - [ - "▁Technician", - -13.068550109863281 - ], - [ - "▁subsidies", - -13.068633079528809 - ], - [ - "judeţul", - -13.068723678588867 - ], - [ - "▁bible", - -13.068769454956055 - ], - [ - "gefahren", - -13.068855285644531 - ], - [ - "▁literal", - -13.068882942199707 - ], - [ - "▁diminish", - -13.068940162658691 - ], - [ - "Sfântul", - -13.0689697265625 - ], - [ - "▁doreșt", - -13.068978309631348 - ], - [ - "▁Xiaomi", - -13.069036483764648 - ], - [ - "▁planète", - -13.069130897521973 - ], - [ - "▁LTD", - -13.069175720214844 - ], - [ - "▁Zugriff", - -13.069196701049805 - ], - [ - "beginn", - -13.06921672821045 - ], - [ - "▁Einführung", - -13.069294929504395 - ], - [ - "▁coronar", - -13.069393157958984 - ], - [ - "lomi", - -13.0693941116333 - ], - [ - "▁Accueil", - -13.0695219039917 - ], - [ - "scanned", - -13.069528579711914 - ], - [ - "▁Banque", - -13.06952953338623 - ], - [ - "▁réaction", - -13.069531440734863 - ], - [ - "▁Hoffman", - -13.069546699523926 - ], - [ - "▁merveille", - -13.069637298583984 - ], - [ - "navigating", - -13.069719314575195 - ], - [ - "schalten", - -13.06984806060791 - ], - [ - "▁ieşi", - -13.070136070251465 - ], - [ - "1-6", - -13.070175170898438 - ], - [ - "▁frustr", - -13.070670127868652 - ], - [ - "▁réfléchi", - -13.0709810256958 - ], - [ - "▁difuz", - -13.071100234985352 - ], - [ - "▁freue", - -13.07121753692627 - ], - [ - "besuch", - -13.071349143981934 - ], - [ - "153", - -13.071386337280273 - ], - [ - "▁butterflies", - -13.071467399597168 - ], - [ - "▁terrifying", - -13.071467399597168 - ], - [ - "▁încuraj", - -13.071468353271484 - ], - [ - "▁Château", - -13.071470260620117 - ], - [ - "▁contingent", - -13.071474075317383 - ], - [ - "▁abusive", - -13.0714750289917 - ], - [ - "▁SharePoint", - -13.07148551940918 - ], - [ - "▁skating", - -13.071573257446289 - ], - [ - "▁militaire", - -13.07166576385498 - ], - [ - "▁Vig", - -13.071690559387207 - ], - [ - "omics", - -13.071840286254883 - ], - [ - "▁Blockchain", - -13.07197093963623 - ], - [ - "▁principii", - -13.071975708007812 - ], - [ - "▁permitting", - -13.071979522705078 - ], - [ - "optimisation", - -13.072270393371582 - ], - [ - "▁maintien", - -13.072328567504883 - ], - [ - "▁Aluminum", - -13.072442054748535 - ], - [ - "▁Plymouth", - -13.072443008422852 - ], - [ - "▁Weiterbildung", - -13.072457313537598 - ], - [ - "▁Finanzierung", - -13.072505950927734 - ], - [ - "▁Kerala", - -13.072514533996582 - ], - [ - "insulated", - -13.072668075561523 - ], - [ - "▁loaf", - -13.072802543640137 - ], - [ - "▁Sammlung", - -13.072929382324219 - ], - [ - "▁îndepărt", - -13.072930335998535 - ], - [ - "▁Gewerbe", - -13.072942733764648 - ], - [ - "udel", - -13.072988510131836 - ], - [ - "▁coursework", - -13.073104858398438 - ], - [ - "▁Darstellung", - -13.073246002197266 - ], - [ - "▁indeplin", - -13.073433876037598 - ], - [ - "▁Gandhi", - -13.073434829711914 - ], - [ - "tossed", - -13.07361888885498 - ], - [ - "ewed", - -13.073844909667969 - ], - [ - "▁classement", - -13.073884963989258 - ], - [ - "▁Protestant", - -13.073905944824219 - ], - [ - "▁frumoasă", - -13.073905944824219 - ], - [ - "▁pantalon", - -13.073906898498535 - ], - [ - "▁rivet", - -13.073966979980469 - ], - [ - "▁Echt", - -13.0741605758667 - ], - [ - "erviciului", - -13.07421588897705 - ], - [ - "fabricated", - -13.074322700500488 - ], - [ - "Compania", - -13.074372291564941 - ], - [ - "▁juvenile", - -13.074394226074219 - ], - [ - "▁souligne", - -13.07444953918457 - ], - [ - "▁chrono", - -13.07447338104248 - ], - [ - "▁VII", - -13.074594497680664 - ], - [ - "▁Kirch", - -13.074714660644531 - ], - [ - "catcher", - -13.075014114379883 - ], - [ - "salv", - -13.075263023376465 - ], - [ - "▁Enforcement", - -13.075370788574219 - ], - [ - "▁Penguin", - -13.075410842895508 - ], - [ - "kowski", - -13.075465202331543 - ], - [ - "▁2:1", - -13.075470924377441 - ], - [ - "gesundheit", - -13.075475692749023 - ], - [ - "▁unveil", - -13.075519561767578 - ], - [ - "bending", - -13.075531959533691 - ], - [ - "▁conecta", - -13.075579643249512 - ], - [ - "▁faim", - -13.075885772705078 - ], - [ - "▁MacBook", - -13.075969696044922 - ], - [ - "versuch", - -13.07600212097168 - ], - [ - "▁regiuni", - -13.076029777526855 - ], - [ - "▁Willow", - -13.076184272766113 - ], - [ - "▁finanziell", - -13.076303482055664 - ], - [ - "▁nurturing", - -13.076354026794434 - ], - [ - "impuls", - -13.076370239257812 - ], - [ - "▁funktionieren", - -13.076371192932129 - ], - [ - "▁rezult", - -13.076554298400879 - ], - [ - "▁spui", - -13.076593399047852 - ], - [ - "▁walkway", - -13.076653480529785 - ], - [ - "▁Rauch", - -13.076708793640137 - ], - [ - "169", - -13.076793670654297 - ], - [ - "610", - -13.076863288879395 - ], - [ - "▁scazut", - -13.0773286819458 - ], - [ - "▁Garrett", - -13.077329635620117 - ], - [ - "▁necesită", - -13.077352523803711 - ], - [ - "Articolul", - -13.077364921569824 - ], - [ - "numită", - -13.077371597290039 - ], - [ - "Coastal", - -13.077383041381836 - ], - [ - "▁canned", - -13.077421188354492 - ], - [ - "▁Friendly", - -13.077499389648438 - ], - [ - "dissolved", - -13.0775728225708 - ], - [ - "seid", - -13.077674865722656 - ], - [ - "▁feminin", - -13.077685356140137 - ], - [ - "▁fetch", - -13.077710151672363 - ], - [ - "▁Accent", - -13.077767372131348 - ], - [ - "phrase", - -13.077771186828613 - ], - [ - "effekt", - -13.077775955200195 - ], - [ - "▁Progressive", - -13.077777862548828 - ], - [ - "▁canadien", - -13.077820777893066 - ], - [ - "iety", - -13.077839851379395 - ], - [ - "eignen", - -13.077984809875488 - ], - [ - "paraître", - -13.07812213897705 - ], - [ - "▁asylum", - -13.07833194732666 - ], - [ - "▁Albany", - -13.078362464904785 - ], - [ - "▁remis", - -13.078386306762695 - ], - [ - "▁Joyce", - -13.078664779663086 - ], - [ - "schätzt", - -13.078784942626953 - ], - [ - "▁begleiten", - -13.078801155090332 - ], - [ - "▁Siemens", - -13.079007148742676 - ], - [ - "▁schlimm", - -13.079061508178711 - ], - [ - "▁Libra", - -13.079254150390625 - ], - [ - "▁Composite", - -13.079290390014648 - ], - [ - "▁écr", - -13.079315185546875 - ], - [ - "disciplina", - -13.079379081726074 - ], - [ - "▁premature", - -13.079630851745605 - ], - [ - "▁scopuri", - -13.079681396484375 - ], - [ - "ffnung", - -13.079715728759766 - ], - [ - "7000", - -13.079726219177246 - ], - [ - "▁conséquent", - -13.079780578613281 - ], - [ - "▁côte", - -13.079787254333496 - ], - [ - "celul", - -13.079872131347656 - ], - [ - "▁fourteen", - -13.079940795898438 - ], - [ - "▁Riverside", - -13.080077171325684 - ], - [ - "gemacht", - -13.08013916015625 - ], - [ - "▁volcanic", - -13.080272674560547 - ], - [ - "▁Salesforce", - -13.080315589904785 - ], - [ - "▁Granite", - -13.080317497253418 - ], - [ - "▁Zentral", - -13.080329895019531 - ], - [ - "▁Female", - -13.080341339111328 - ], - [ - "▁culmin", - -13.08047103881836 - ], - [ - "▁urmatoare", - -13.080547332763672 - ], - [ - "toxicity", - -13.080560684204102 - ], - [ - "▁mâna", - -13.080678939819336 - ], - [ - "▁Umfang", - -13.080764770507812 - ], - [ - "▁Encore", - -13.08077621459961 - ], - [ - "▁Edgar", - -13.080831527709961 - ], - [ - "▁négoci", - -13.080852508544922 - ], - [ - "njeux", - -13.080873489379883 - ], - [ - "▁variance", - -13.080917358398438 - ], - [ - "▁Functional", - -13.080973625183105 - ], - [ - "172", - -13.081046104431152 - ], - [ - "▁dissolve", - -13.0811185836792 - ], - [ - "förderung", - -13.081188201904297 - ], - [ - "▁Brilliant", - -13.081254959106445 - ], - [ - "▁comprehension", - -13.081254959106445 - ], - [ - "▁soybean", - -13.081254959106445 - ], - [ - "▁standalone", - -13.081255912780762 - ], - [ - "▁Communi", - -13.081303596496582 - ], - [ - "▁ajut", - -13.081313133239746 - ], - [ - "▁lavish", - -13.081338882446289 - ], - [ - "Ouest", - -13.081384658813477 - ], - [ - "▁Maggie", - -13.081385612487793 - ], - [ - "▁evolutionary", - -13.081550598144531 - ], - [ - "bowel", - -13.081575393676758 - ], - [ - "▁glyco", - -13.081626892089844 - ], - [ - "▁Happi", - -13.081706047058105 - ], - [ - "organising", - -13.081710815429688 - ], - [ - "▁übernimm", - -13.081727027893066 - ], - [ - "▁snowboard", - -13.081793785095215 - ], - [ - "▁prévention", - -13.081830024719238 - ], - [ - "▁Celebrate", - -13.082160949707031 - ], - [ - "▁pottery", - -13.082254409790039 - ], - [ - "▁Outstanding", - -13.082328796386719 - ], - [ - "▁toamna", - -13.082331657409668 - ], - [ - "▁graceful", - -13.082548141479492 - ], - [ - "197", - -13.082559585571289 - ], - [ - "strecke", - -13.082598686218262 - ], - [ - "▁medizinische", - -13.082733154296875 - ], - [ - "216", - -13.082839965820312 - ], - [ - "▁prune", - -13.082868576049805 - ], - [ - "Pourtant", - -13.083000183105469 - ], - [ - "▁Difference", - -13.083224296569824 - ], - [ - "▁factura", - -13.083830833435059 - ], - [ - "Mass", - -13.084161758422852 - ], - [ - "▁Enhanc", - -13.084190368652344 - ], - [ - "upholstered", - -13.084209442138672 - ], - [ - "▁übernommen", - -13.084209442138672 - ], - [ - "▁mitigation", - -13.084210395812988 - ], - [ - "▁Hidden", - -13.084219932556152 - ], - [ - "▁Häuser", - -13.084234237670898 - ], - [ - "▁Pavel", - -13.084403991699219 - ], - [ - "▁congress", - -13.084512710571289 - ], - [ - "▁antibody", - -13.084598541259766 - ], - [ - "▁stitches", - -13.084811210632324 - ], - [ - "▁colonies", - -13.084820747375488 - ], - [ - "Into", - -13.084900856018066 - ], - [ - "▁démo", - -13.084924697875977 - ], - [ - "▁MVP", - -13.085041046142578 - ], - [ - "▁replay", - -13.085062026977539 - ], - [ - "▁usoara", - -13.08522891998291 - ], - [ - "▁Breast", - -13.085278511047363 - ], - [ - "ooney", - -13.085336685180664 - ], - [ - "▁außen", - -13.085663795471191 - ], - [ - "▁Motorola", - -13.085695266723633 - ], - [ - "▁spalat", - -13.08578109741211 - ], - [ - "euillez", - -13.086088180541992 - ], - [ - "▁jeunesse", - -13.086170196533203 - ], - [ - "▁pastoral", - -13.086174011230469 - ], - [ - "▁Sussex", - -13.086185455322266 - ], - [ - "▁stencil", - -13.08619213104248 - ], - [ - "▁organismului", - -13.086504936218262 - ], - [ - "seized", - -13.086649894714355 - ], - [ - "▁întrebare", - -13.086865425109863 - ], - [ - "cliquez", - -13.086874961853027 - ], - [ - "5.7", - -13.086984634399414 - ], - [ - "▁Yama", - -13.087080955505371 - ], - [ - "painted", - -13.08708667755127 - ], - [ - "▁Swimming", - -13.087176322937012 - ], - [ - "Rhythm", - -13.087202072143555 - ], - [ - "▁sorrow", - -13.087210655212402 - ], - [ - "▁Movers", - -13.08731460571289 - ], - [ - "renforcer", - -13.08735466003418 - ], - [ - "▁Wach", - -13.087381362915039 - ], - [ - "0,00", - -13.087390899658203 - ], - [ - "▁glove", - -13.08753490447998 - ], - [ - "▁stâng", - -13.087669372558594 - ], - [ - "rgendwann", - -13.087687492370605 - ], - [ - "▁Philippine", - -13.08769416809082 - ], - [ - "▁anunțat", - -13.087716102600098 - ], - [ - "▁Coleman", - -13.087723731994629 - ], - [ - "affir", - -13.087918281555176 - ], - [ - "uleiul", - -13.08808422088623 - ], - [ - "▁Coconut", - -13.088197708129883 - ], - [ - "▁Supplement", - -13.088210105895996 - ], - [ - "haudiere", - -13.088293075561523 - ], - [ - "▁kettle", - -13.088313102722168 - ], - [ - "▁3,5", - -13.088370323181152 - ], - [ - "refurbished", - -13.088425636291504 - ], - [ - "esthétique", - -13.088665962219238 - ], - [ - "performing", - -13.088667869567871 - ], - [ - "▁Engag", - -13.088762283325195 - ], - [ - "Group", - -13.088801383972168 - ], - [ - "▁viande", - -13.088887214660645 - ], - [ - "▁oricum", - -13.088888168334961 - ], - [ - "Spitalul", - -13.089093208312988 - ], - [ - "▁cesse", - -13.089110374450684 - ], - [ - "▁contradiction", - -13.089130401611328 - ], - [ - "▁Chrysler", - -13.089154243469238 - ], - [ - "▁poultry", - -13.089154243469238 - ], - [ - "▁thirteen", - -13.089154243469238 - ], - [ - "▁sightseeing", - -13.089155197143555 - ], - [ - "▁Miguel", - -13.089158058166504 - ], - [ - "▁terminology", - -13.089334487915039 - ], - [ - "▁Genetic", - -13.089553833007812 - ], - [ - "commercial", - -13.08963394165039 - ], - [ - "gehoben", - -13.08965015411377 - ], - [ - "RIGHT", - -13.08995532989502 - ], - [ - "▁proprietate", - -13.089990615844727 - ], - [ - "▁Cannes", - -13.090012550354004 - ], - [ - "▁klicken", - -13.090023040771484 - ], - [ - "▁Belgique", - -13.0901460647583 - ], - [ - "tapped", - -13.09034538269043 - ], - [ - "kinetic", - -13.090569496154785 - ], - [ - "▁feuilles", - -13.090673446655273 - ], - [ - "whitening", - -13.090760231018066 - ], - [ - "Any", - -13.090946197509766 - ], - [ - "Manager", - -13.091099739074707 - ], - [ - "▁constatat", - -13.091106414794922 - ], - [ - "▁Myanmar", - -13.091140747070312 - ], - [ - "▁Examination", - -13.091142654418945 - ], - [ - "▁règle", - -13.091208457946777 - ], - [ - "▁umgesetzt", - -13.09128475189209 - ], - [ - "211", - -13.091336250305176 - ], - [ - "▁Herald", - -13.091449737548828 - ], - [ - "Alex", - -13.091680526733398 - ], - [ - "▁drauf", - -13.091707229614258 - ], - [ - "logger", - -13.091714859008789 - ], - [ - "▁pictur", - -13.09186840057373 - ], - [ - "▁Divi", - -13.09196949005127 - ], - [ - "▁furnizat", - -13.092089653015137 - ], - [ - "▁verzichten", - -13.092132568359375 - ], - [ - "▁Sergi", - -13.092199325561523 - ], - [ - "contaminated", - -13.09223747253418 - ], - [ - "▁Buddy", - -13.092243194580078 - ], - [ - "▁chilled", - -13.092268943786621 - ], - [ - "▁vorlieg", - -13.092317581176758 - ], - [ - "▁Claudia", - -13.092632293701172 - ], - [ - "▁miserable", - -13.092653274536133 - ], - [ - "▁sketches", - -13.092683792114258 - ], - [ - "schicken", - -13.092814445495605 - ], - [ - "since", - -13.0928373336792 - ], - [ - "2.9", - -13.092840194702148 - ], - [ - "▁sitzen", - -13.092928886413574 - ], - [ - "ceapa", - -13.093396186828613 - ], - [ - "respectarea", - -13.093438148498535 - ], - [ - "▁handheld", - -13.093448638916016 - ], - [ - "popular", - -13.093527793884277 - ], - [ - "calming", - -13.093603134155273 - ], - [ - "Govern", - -13.093632698059082 - ], - [ - "▁omega", - -13.093645095825195 - ], - [ - "▁Planner", - -13.093791007995605 - ], - [ - "enriched", - -13.093850135803223 - ], - [ - "154", - -13.093976974487305 - ], - [ - "▁autorisé", - -13.093989372253418 - ], - [ - "▁cadouri", - -13.09407901763916 - ], - [ - "▁vulnerabilities", - -13.094143867492676 - ], - [ - "▁Arbeitnehmer", - -13.094158172607422 - ], - [ - "éditeur", - -13.094234466552734 - ], - [ - "▁Anleitung", - -13.094317436218262 - ], - [ - "rubbing", - -13.094343185424805 - ], - [ - "▁autovehicul", - -13.094621658325195 - ], - [ - "▁öffnen", - -13.094621658325195 - ], - [ - "▁Napoleon", - -13.094622611999512 - ], - [ - "▁cliché", - -13.094637870788574 - ], - [ - "▁Schaf", - -13.09469985961914 - ], - [ - "regulating", - -13.094894409179688 - ], - [ - "▁Kühl", - -13.09490966796875 - ], - [ - "▁blush", - -13.094913482666016 - ], - [ - "▁discard", - -13.094992637634277 - ], - [ - "▁confine", - -13.095027923583984 - ], - [ - "▁Rodriguez", - -13.09511947631836 - ], - [ - "▁ADHD", - -13.095165252685547 - ], - [ - "▁Madame", - -13.09516716003418 - ], - [ - "▁résolution", - -13.095319747924805 - ], - [ - "▁flair", - -13.095369338989258 - ], - [ - "▁claw", - -13.095422744750977 - ], - [ - "▁1929", - -13.095643043518066 - ], - [ - "ETH", - -13.095672607421875 - ], - [ - "nähe", - -13.095804214477539 - ], - [ - "▁soothe", - -13.0958251953125 - ], - [ - "4.9", - -13.095833778381348 - ], - [ - "montée", - -13.095925331115723 - ], - [ - "confirming", - -13.095989227294922 - ], - [ - "continent", - -13.09613037109375 - ], - [ - "reiz", - -13.09643840789795 - ], - [ - "john", - -13.096577644348145 - ], - [ - "IONAL", - -13.096588134765625 - ], - [ - "▁exported", - -13.0966215133667 - ], - [ - "▁Prison", - -13.096651077270508 - ], - [ - "possessed", - -13.096952438354492 - ], - [ - "▁placebo", - -13.096991539001465 - ], - [ - "▁biodiversity", - -13.097116470336914 - ], - [ - "▁combustion", - -13.097116470336914 - ], - [ - "▁Plumbing", - -13.09711742401123 - ], - [ - "ixie", - -13.097124099731445 - ], - [ - "▁repetition", - -13.09715461730957 - ], - [ - "▁soumis", - -13.097372055053711 - ], - [ - "▁reduc", - -13.097671508789062 - ], - [ - "▁constrain", - -13.097759246826172 - ], - [ - "Anti", - -13.097760200500488 - ], - [ - "consolidated", - -13.097817420959473 - ], - [ - "214", - -13.098095893859863 - ], - [ - "▁breaches", - -13.098108291625977 - ], - [ - "infringement", - -13.098115921020508 - ], - [ - "▁drizzle", - -13.098115921020508 - ], - [ - "▁erhöhen", - -13.098116874694824 - ], - [ - "▁Somerset", - -13.098118782043457 - ], - [ - "▁blonde", - -13.098132133483887 - ], - [ - "▁Funny", - -13.09813404083252 - ], - [ - "tuşi", - -13.098149299621582 - ], - [ - "▁reinvent", - -13.098162651062012 - ], - [ - "▁sérieux", - -13.098247528076172 - ], - [ - "▁croire", - -13.098308563232422 - ], - [ - "general", - -13.098315238952637 - ], - [ - "▁Distance", - -13.098319053649902 - ], - [ - "▁VoIP", - -13.098348617553711 - ], - [ - "▁adăugat", - -13.098406791687012 - ], - [ - "matik", - -13.098546028137207 - ], - [ - "▁avatar", - -13.098647117614746 - ], - [ - "▁superstar", - -13.098804473876953 - ], - [ - "8.0", - -13.098814010620117 - ], - [ - "lusieurs", - -13.098982810974121 - ], - [ - "▁Judeţean", - -13.099117279052734 - ], - [ - "offenen", - -13.099128723144531 - ], - [ - "RAF", - -13.099133491516113 - ], - [ - "▁restroom", - -13.099207878112793 - ], - [ - "enfance", - -13.099348068237305 - ], - [ - "▁garnish", - -13.099499702453613 - ], - [ - "▁vermittelt", - -13.099631309509277 - ], - [ - "Histoire", - -13.099634170532227 - ], - [ - "cyan", - -13.100628852844238 - ], - [ - "Talk", - -13.100666046142578 - ], - [ - "▁Varianten", - -13.10069465637207 - ], - [ - "▁Lille", - -13.10085678100586 - ], - [ - "▁offenbar", - -13.10098934173584 - ], - [ - "▁rénovation", - -13.10112190246582 - ], - [ - "▁comentarii", - -13.101249694824219 - ], - [ - "▁Bedford", - -13.10130500793457 - ], - [ - "▁cercetări", - -13.101325988769531 - ], - [ - "▁précision", - -13.101337432861328 - ], - [ - "MRC", - -13.101358413696289 - ], - [ - "alterations", - -13.101476669311523 - ], - [ - "▁discours", - -13.101531028747559 - ], - [ - "äger", - -13.101577758789062 - ], - [ - "▁antreprenor", - -13.101622581481934 - ], - [ - "▁Oriental", - -13.101849555969238 - ], - [ - "conducerea", - -13.101868629455566 - ], - [ - "CBC", - -13.101932525634766 - ], - [ - "▁mince", - -13.101985931396484 - ], - [ - "▁presidency", - -13.10212516784668 - ], - [ - "▁lipstick", - -13.102167129516602 - ], - [ - "▁SERVICES", - -13.102237701416016 - ], - [ - "productive", - -13.10237979888916 - ], - [ - "Assad", - -13.102400779724121 - ], - [ - "▁efectiv", - -13.102540969848633 - ], - [ - "▁gestern", - -13.102596282958984 - ], - [ - "▁RGB", - -13.102606773376465 - ], - [ - "▁Transilvania", - -13.102627754211426 - ], - [ - "▁Raleigh", - -13.102670669555664 - ], - [ - "DOM", - -13.102702140808105 - ], - [ - "▁iesit", - -13.102806091308594 - ], - [ - "▁anuntat", - -13.102810859680176 - ], - [ - "▁automatiquement", - -13.102901458740234 - ], - [ - "▁proliferation", - -13.103130340576172 - ], - [ - "▁Maroc", - -13.103156089782715 - ], - [ - "▁prezenţ", - -13.10323429107666 - ], - [ - "▁Filipino", - -13.103296279907227 - ], - [ - "▁Traian", - -13.103351593017578 - ], - [ - "▁swimmer", - -13.10356616973877 - ], - [ - "▁Slovenia", - -13.103632926940918 - ], - [ - "phobia", - -13.103724479675293 - ], - [ - "curricular", - -13.103734016418457 - ], - [ - "jurnal", - -13.103825569152832 - ], - [ - "▁vorne", - -13.103870391845703 - ], - [ - "▁asuma", - -13.103875160217285 - ], - [ - "defended", - -13.104104995727539 - ], - [ - "▁imminent", - -13.104140281677246 - ], - [ - "favored", - -13.10417366027832 - ], - [ - "▁innovator", - -13.104179382324219 - ], - [ - "▁Salzburg", - -13.104289054870605 - ], - [ - "5.4", - -13.104452133178711 - ], - [ - "Safe", - -13.104597091674805 - ], - [ - "▁inteleg", - -13.104744911193848 - ], - [ - "▁charisma", - -13.104781150817871 - ], - [ - "nature", - -13.104784965515137 - ], - [ - "4.8", - -13.104942321777344 - ], - [ - "argues", - -13.105104446411133 - ], - [ - "▁dimensiune", - -13.105142593383789 - ], - [ - "▁subdivision", - -13.105142593383789 - ], - [ - "▁embarrassing", - -13.105144500732422 - ], - [ - "▁confuse", - -13.105207443237305 - ], - [ - "DIC", - -13.105460166931152 - ], - [ - "rubrique", - -13.10549545288086 - ], - [ - "dépendance", - -13.105598449707031 - ], - [ - "INCLUD", - -13.10565185546875 - ], - [ - "▁Griffin", - -13.10574722290039 - ], - [ - "157", - -13.105751037597656 - ], - [ - "▁revamp", - -13.105839729309082 - ], - [ - "▁umgehen", - -13.10595989227295 - ], - [ - "▁mențin", - -13.106231689453125 - ], - [ - "▁1937", - -13.106695175170898 - ], - [ - "eklagte", - -13.106766700744629 - ], - [ - "▁clientèle", - -13.106801986694336 - ], - [ - "▁campsite", - -13.10708999633789 - ], - [ - "▁florist", - -13.107144355773926 - ], - [ - "▁Ferguson", - -13.107159614562988 - ], - [ - "▁demolition", - -13.107160568237305 - ], - [ - "▁McCain", - -13.107254981994629 - ], - [ - "▁reckon", - -13.10733413696289 - ], - [ - "striped", - -13.107414245605469 - ], - [ - "▁sonore", - -13.107481002807617 - ], - [ - "migrated", - -13.107548713684082 - ], - [ - "▁fluorescent", - -13.107664108276367 - ], - [ - "▁Colegi", - -13.107762336730957 - ], - [ - "ianu", - -13.107860565185547 - ], - [ - "cruising", - -13.107882499694824 - ], - [ - "LINK", - -13.107965469360352 - ], - [ - "▁Cutting", - -13.108001708984375 - ], - [ - "ABILITY", - -13.108168601989746 - ], - [ - "▁Categories", - -13.108168601989746 - ], - [ - "▁erhoben", - -13.108168601989746 - ], - [ - "▁Cocktail", - -13.108169555664062 - ], - [ - "▁Generator", - -13.108177185058594 - ], - [ - "▁gesucht", - -13.108186721801758 - ], - [ - "▁telescope", - -13.10818862915039 - ], - [ - "KET", - -13.108192443847656 - ], - [ - "▁hilfreich", - -13.108192443847656 - ], - [ - "▁beneficiary", - -13.108585357666016 - ], - [ - "▁Winston", - -13.108636856079102 - ], - [ - "Auswirkungen", - -13.108675956726074 - ], - [ - "portrayed", - -13.108705520629883 - ], - [ - "▁Aspekte", - -13.108743667602539 - ], - [ - "ffected", - -13.108901023864746 - ], - [ - "eutic", - -13.108905792236328 - ], - [ - "International", - -13.109021186828613 - ], - [ - "attente", - -13.109078407287598 - ], - [ - "mentioning", - -13.109119415283203 - ], - [ - "launch", - -13.109129905700684 - ], - [ - "▁EURO", - -13.109152793884277 - ], - [ - "▁Fraser", - -13.109344482421875 - ], - [ - "▁Johannes", - -13.109408378601074 - ], - [ - "▁felicit", - -13.109477043151855 - ], - [ - "▁plâng", - -13.109522819519043 - ], - [ - "izant", - -13.10971736907959 - ], - [ - "▁reţe", - -13.109846115112305 - ], - [ - "Mech", - -13.109954833984375 - ], - [ - "▁algebra", - -13.110193252563477 - ], - [ - "▁surgeries", - -13.110257148742676 - ], - [ - "▁semifinal", - -13.110262870788574 - ], - [ - "▁intimidating", - -13.110288619995117 - ], - [ - "▁exkl", - -13.110604286193848 - ], - [ - "asigurarea", - -13.110918998718262 - ], - [ - "Tek", - -13.111136436462402 - ], - [ - "▁Einladung", - -13.111205101013184 - ], - [ - "▁similaire", - -13.111205101013184 - ], - [ - "▁bebelus", - -13.111221313476562 - ], - [ - "▁déclin", - -13.111400604248047 - ], - [ - "▁Console", - -13.111495018005371 - ], - [ - "RET", - -13.111573219299316 - ], - [ - "appli", - -13.111586570739746 - ], - [ - "45%", - -13.111663818359375 - ], - [ - "Evenimentul", - -13.111811637878418 - ], - [ - "sincerely", - -13.111812591552734 - ], - [ - "sammlung", - -13.112098693847656 - ], - [ - "Amérique", - -13.112220764160156 - ], - [ - "▁1919", - -13.112326622009277 - ], - [ - "regulation", - -13.112367630004883 - ], - [ - "gebäude", - -13.112726211547852 - ], - [ - "▁Perspektive", - -13.112726211547852 - ], - [ - "Espagne", - -13.112744331359863 - ], - [ - "▁Underground", - -13.11283016204834 - ], - [ - "secret", - -13.112833976745605 - ], - [ - "▁Aussicht", - -13.112874031066895 - ], - [ - "Photo", - -13.112977027893066 - ], - [ - "▁Brust", - -13.113144874572754 - ], - [ - "▁Sustainability", - -13.11323356628418 - ], - [ - "▁clădiri", - -13.11323356628418 - ], - [ - "▁librarian", - -13.11323356628418 - ], - [ - "▁HBO", - -13.113235473632812 - ], - [ - "▁Parallel", - -13.113240242004395 - ], - [ - "▁shimmer", - -13.113283157348633 - ], - [ - "▁schlicht", - -13.113292694091797 - ], - [ - "▁anticipat", - -13.113311767578125 - ], - [ - "▁foolish", - -13.11335563659668 - ], - [ - "▁Ability", - -13.11347484588623 - ], - [ - "▁ceremoni", - -13.11358642578125 - ], - [ - "▁Ablauf", - -13.11359977722168 - ], - [ - "icrobial", - -13.113606452941895 - ], - [ - "▁actiuni", - -13.11362361907959 - ], - [ - "▁Wilhelm", - -13.113761901855469 - ], - [ - "▁nennen", - -13.113775253295898 - ], - [ - "▁botez", - -13.113832473754883 - ], - [ - "Alpes", - -13.113912582397461 - ], - [ - "▁libér", - -13.11392593383789 - ], - [ - "▁sneakers", - -13.114052772521973 - ], - [ - "geschafft", - -13.114252090454102 - ], - [ - "▁downstairs", - -13.114261627197266 - ], - [ - "▁wrench", - -13.114294052124023 - ], - [ - "▁erheblich", - -13.11442756652832 - ], - [ - "▁alimentar", - -13.114710807800293 - ], - [ - "▁suger", - -13.11474323272705 - ], - [ - "analysis", - -13.114883422851562 - ], - [ - "öhn", - -13.114891052246094 - ], - [ - "▁Nantes", - -13.114895820617676 - ], - [ - "▁Arbor", - -13.114899635314941 - ], - [ - "ooze", - -13.115150451660156 - ], - [ - "▁facade", - -13.115229606628418 - ], - [ - "▁MySQL", - -13.115266799926758 - ], - [ - "▁Salvador", - -13.115266799926758 - ], - [ - "▁Schlafzimmer", - -13.115279197692871 - ], - [ - "▁autentic", - -13.115320205688477 - ], - [ - "▁prezint", - -13.115348815917969 - ], - [ - "▁campground", - -13.115397453308105 - ], - [ - "Query", - -13.11540412902832 - ], - [ - "bekannt", - -13.115598678588867 - ], - [ - "arcinia", - -13.115632057189941 - ], - [ - "▁stunt", - -13.115825653076172 - ], - [ - "▁informare", - -13.115830421447754 - ], - [ - "▁interzis", - -13.11584186553955 - ], - [ - "▁Burke", - -13.115995407104492 - ], - [ - "certified", - -13.11601734161377 - ], - [ - "▁clove", - -13.11605167388916 - ], - [ - "java", - -13.116271018981934 - ], - [ - "▁Vielfalt", - -13.116284370422363 - ], - [ - "gebung", - -13.116329193115234 - ], - [ - "▁9/11", - -13.116497993469238 - ], - [ - "▁disruptive", - -13.11650562286377 - ], - [ - "visual", - -13.116693496704102 - ], - [ - "▁anunţat", - -13.11679458618164 - ], - [ - "▁Plätze", - -13.116799354553223 - ], - [ - "▁reduceri", - -13.116920471191406 - ], - [ - "autorisation", - -13.116950035095215 - ], - [ - "▁ligament", - -13.11705207824707 - ], - [ - "▁învăța", - -13.117081642150879 - ], - [ - "läufig", - -13.117303848266602 - ], - [ - "▁Copenhagen", - -13.117303848266602 - ], - [ - "▁commodities", - -13.117303848266602 - ], - [ - "▁eindeutig", - -13.117313385009766 - ], - [ - "▁catheter", - -13.117321014404297 - ], - [ - "erklärung", - -13.117720603942871 - ], - [ - "▁intelectual", - -13.117814064025879 - ], - [ - "▁municipality", - -13.117891311645508 - ], - [ - "▁1936", - -13.11798095703125 - ], - [ - "rruption", - -13.118217468261719 - ], - [ - "▁Lafayette", - -13.118324279785156 - ], - [ - "▁berühmte", - -13.118324279785156 - ], - [ - "▁idylli", - -13.118325233459473 - ], - [ - "▁caldura", - -13.118447303771973 - ], - [ - "▁tablette", - -13.118535995483398 - ], - [ - "▁liquidity", - -13.118728637695312 - ], - [ - "NGOs", - -13.118885040283203 - ], - [ - "▁supliment", - -13.11889934539795 - ], - [ - "contact", - -13.119075775146484 - ], - [ - "lustig", - -13.119219779968262 - ], - [ - "▁watercolor", - -13.119319915771484 - ], - [ - "▁Tiffany", - -13.119344711303711 - ], - [ - "▁Glauben", - -13.119365692138672 - ], - [ - "Immobilie", - -13.119406700134277 - ], - [ - "▁stripped", - -13.119549751281738 - ], - [ - "▁Beatles", - -13.119601249694824 - ], - [ - "ани", - -13.119770050048828 - ], - [ - "▁lifespan", - -13.119986534118652 - ], - [ - "▁profondeur", - -13.120251655578613 - ], - [ - "▁durere", - -13.120329856872559 - ], - [ - "▁Lithuania", - -13.120367050170898 - ], - [ - "▁resurrection", - -13.120367050170898 - ], - [ - "▁suitcase", - -13.120535850524902 - ], - [ - "▁Plumber", - -13.120545387268066 - ], - [ - "criticized", - -13.120595932006836 - ], - [ - "feared", - -13.120756149291992 - ], - [ - "▁Aunt", - -13.120929718017578 - ], - [ - "otwithstanding", - -13.121068000793457 - ], - [ - "verständlich", - -13.12115478515625 - ], - [ - "fiber", - -13.121248245239258 - ], - [ - "headquartered", - -13.121390342712402 - ], - [ - "▁Perspective", - -13.121391296386719 - ], - [ - "▁semantic", - -13.121413230895996 - ], - [ - "VIEW", - -13.121431350708008 - ], - [ - "▁Ersatzteile", - -13.121567726135254 - ], - [ - "▁disgust", - -13.121685981750488 - ], - [ - "rrington", - -13.121834754943848 - ], - [ - "ässe", - -13.121922492980957 - ], - [ - "▁anerkannt", - -13.121956825256348 - ], - [ - "meaning", - -13.12203598022461 - ], - [ - "178", - -13.122039794921875 - ], - [ - "▁grupuri", - -13.1221284866333 - ], - [ - "ciones", - -13.122267723083496 - ], - [ - "▁Mobility", - -13.122414588928223 - ], - [ - "▁unstable", - -13.122422218322754 - ], - [ - "▁FULL", - -13.122456550598145 - ], - [ - "austausch", - -13.122491836547852 - ], - [ - "▁culminat", - -13.122549057006836 - ], - [ - "▁Roast", - -13.122742652893066 - ], - [ - "existant", - -13.122940063476562 - ], - [ - "167", - -13.123008728027344 - ], - [ - "tinerii", - -13.123040199279785 - ], - [ - "September", - -13.123115539550781 - ], - [ - "▁haircut", - -13.123274803161621 - ], - [ - "▁Tutorial", - -13.123440742492676 - ], - [ - "▁enquiries", - -13.123440742492676 - ], - [ - "▁livelihood", - -13.123440742492676 - ], - [ - "▁proficiency", - -13.123440742492676 - ], - [ - "▁pavement", - -13.123443603515625 - ], - [ - "▁Reservation", - -13.123445510864258 - ], - [ - "aimerai", - -13.123491287231445 - ], - [ - "▁laboratoire", - -13.123492240905762 - ], - [ - "leihen", - -13.123501777648926 - ], - [ - "ministerium", - -13.123518943786621 - ], - [ - "▁Concentr", - -13.12366008758545 - ], - [ - "▁swipe", - -13.12368106842041 - ], - [ - "extrêmement", - -13.123687744140625 - ], - [ - "cultivated", - -13.123708724975586 - ], - [ - "▁Converse", - -13.123845100402832 - ], - [ - "▁paycheck", - -13.123863220214844 - ], - [ - "olltest", - -13.123995780944824 - ], - [ - "▁Bauch", - -13.124022483825684 - ], - [ - "▁autobuz", - -13.124067306518555 - ], - [ - "attack", - -13.124094009399414 - ], - [ - "While", - -13.124311447143555 - ], - [ - "Retrouvez", - -13.124320983886719 - ], - [ - "▁Dolphin", - -13.124466896057129 - ], - [ - "▁Shelby", - -13.124480247497559 - ], - [ - "▁Diagnostic", - -13.124486923217773 - ], - [ - "▁reconcil", - -13.124558448791504 - ], - [ - "▁Iaşi", - -13.124733924865723 - ], - [ - "▁iubesc", - -13.124979972839355 - ], - [ - "▁Bestseller", - -13.124985694885254 - ], - [ - "▁antrenor", - -13.125035285949707 - ], - [ - "▁Imaging", - -13.125089645385742 - ], - [ - "▁priorité", - -13.125295639038086 - ], - [ - "▁brewery", - -13.125494003295898 - ], - [ - "▁residual", - -13.125494003295898 - ], - [ - "▁intermittent", - -13.125494956970215 - ], - [ - "Kollekt", - -13.125585556030273 - ], - [ - "▁Walsh", - -13.12558650970459 - ], - [ - "▁marvelous", - -13.125653266906738 - ], - [ - "canceled", - -13.125686645507812 - ], - [ - "174", - -13.125761985778809 - ], - [ - "normes", - -13.125837326049805 - ], - [ - "▁Tempo", - -13.125996589660645 - ], - [ - "▁Târgu", - -13.126008987426758 - ], - [ - "877", - -13.126165390014648 - ], - [ - "5-8", - -13.126190185546875 - ], - [ - "960", - -13.126486778259277 - ], - [ - "▁Scandinavia", - -13.1265230178833 - ], - [ - "▁prolific", - -13.126526832580566 - ], - [ - "lasi", - -13.126916885375977 - ], - [ - "glück", - -13.127097129821777 - ], - [ - "▁immersion", - -13.127204895019531 - ], - [ - "RSA", - -13.127323150634766 - ], - [ - "▁Polk", - -13.127340316772461 - ], - [ - "▁transmitter", - -13.12747859954834 - ], - [ - "▁Kleidung", - -13.12755298614502 - ], - [ - "▁Cosmo", - -13.127676963806152 - ], - [ - "▁1935", - -13.127788543701172 - ], - [ - "höhere", - -13.127906799316406 - ], - [ - "▁Tatsache", - -13.128074645996094 - ], - [ - "▁Outlet", - -13.1282377243042 - ], - [ - "▁canalisation", - -13.12824821472168 - ], - [ - "Mbps", - -13.128433227539062 - ], - [ - "▁skeptical", - -13.128582954406738 - ], - [ - "mplification", - -13.128617286682129 - ], - [ - "▁Advice", - -13.128618240356445 - ], - [ - "▁détaillé", - -13.128676414489746 - ], - [ - "660", - -13.128701210021973 - ], - [ - "▁eyebrow", - -13.128722190856934 - ], - [ - "▁HIGH", - -13.128898620605469 - ], - [ - "hnlich", - -13.129073143005371 - ], - [ - "▁depăș", - -13.12910270690918 - ], - [ - "▁procurori", - -13.129140853881836 - ], - [ - "▁refrain", - -13.129212379455566 - ], - [ - "▁geschaffen", - -13.12952995300293 - ], - [ - "justement", - -13.129663467407227 - ], - [ - "exposing", - -13.129700660705566 - ], - [ - "243", - -13.1298828125 - ], - [ - "sectorul", - -13.130104064941406 - ], - [ - "▁courrier", - -13.130180358886719 - ], - [ - "▁carcas", - -13.130199432373047 - ], - [ - "sitter", - -13.13022518157959 - ], - [ - "▁Schreiben", - -13.130335807800293 - ], - [ - "▁malfunction", - -13.130358695983887 - ], - [ - "poartă", - -13.130522727966309 - ], - [ - "raisons", - -13.130565643310547 - ], - [ - "▁HOT", - -13.130650520324707 - ], - [ - "▁refreshed", - -13.130730628967285 - ], - [ - "mânt", - -13.130744934082031 - ], - [ - "▁coefficient", - -13.13097858428955 - ], - [ - "▁instituţii", - -13.131194114685059 - ], - [ - "▁sanguin", - -13.131202697753906 - ], - [ - "▁ceci", - -13.131213188171387 - ], - [ - "▁garçon", - -13.131232261657715 - ], - [ - "deluxe", - -13.131237030029297 - ], - [ - "▁rectif", - -13.131311416625977 - ], - [ - "920", - -13.131364822387695 - ], - [ - "Exista", - -13.131428718566895 - ], - [ - "▁magnif", - -13.131568908691406 - ], - [ - "efficiencies", - -13.131681442260742 - ], - [ - "▁Mitsubishi", - -13.131681442260742 - ], - [ - "▁consortium", - -13.131681442260742 - ], - [ - "▁baggage", - -13.131683349609375 - ], - [ - "▁guild", - -13.131736755371094 - ], - [ - "▁sixty", - -13.13193130493164 - ], - [ - "▁Retreat", - -13.13245677947998 - ], - [ - "batting", - -13.132473945617676 - ], - [ - "470", - -13.132708549499512 - ], - [ - "▁Britanie", - -13.132718086242676 - ], - [ - "displaced", - -13.132734298706055 - ], - [ - "▁spați", - -13.132794380187988 - ], - [ - "▁exceptionnelle", - -13.13281536102295 - ], - [ - "▁authorize", - -13.132906913757324 - ], - [ - "▁prescribe", - -13.133187294006348 - ], - [ - "▁dépannage", - -13.133234024047852 - ], - [ - "▁sexuelle", - -13.133234024047852 - ], - [ - "valid", - -13.133275032043457 - ], - [ - "▁hymn", - -13.133752822875977 - ], - [ - "▁histories", - -13.133757591247559 - ], - [ - "▁oriunde", - -13.133764266967773 - ], - [ - "Pop", - -13.133785247802734 - ], - [ - "▁dispoziţi", - -13.133800506591797 - ], - [ - "ADI", - -13.133819580078125 - ], - [ - "Google", - -13.133830070495605 - ], - [ - "▁Autism", - -13.133918762207031 - ], - [ - "▁aggr", - -13.134354591369629 - ], - [ - "bleed", - -13.134618759155273 - ], - [ - "▁displacement", - -13.13478946685791 - ], - [ - "▁hobbies", - -13.13478946685791 - ], - [ - "▁anatomy", - -13.134799003601074 - ], - [ - "▁Klinik", - -13.134821891784668 - ], - [ - "▁CCTV", - -13.1348237991333 - ], - [ - "readable", - -13.134886741638184 - ], - [ - "ulph", - -13.134982109069824 - ], - [ - "metabol", - -13.135035514831543 - ], - [ - "▁rugăm", - -13.135037422180176 - ], - [ - "▁Scotia", - -13.135087013244629 - ], - [ - "▁Einheit", - -13.135211944580078 - ], - [ - "▁troupe", - -13.13581371307373 - ], - [ - "▁Practitioner", - -13.135828018188477 - ], - [ - "▁oarec", - -13.135909080505371 - ], - [ - "Appel", - -13.135998725891113 - ], - [ - "situația", - -13.136096000671387 - ], - [ - "▁Yemen", - -13.136353492736816 - ], - [ - "piping", - -13.136515617370605 - ], - [ - "blood", - -13.136772155761719 - ], - [ - "engraved", - -13.136866569519043 - ], - [ - "▁Cristina", - -13.136866569519043 - ], - [ - "▁inaccurate", - -13.136866569519043 - ], - [ - "savory", - -13.136878967285156 - ], - [ - "atism", - -13.136919021606445 - ], - [ - "▁dependency", - -13.137007713317871 - ], - [ - "▁assertion", - -13.137015342712402 - ], - [ - "▁intersect", - -13.137201309204102 - ], - [ - "DATA", - -13.137224197387695 - ], - [ - "▁britanic", - -13.1373872756958 - ], - [ - "▁sanitaire", - -13.137393951416016 - ], - [ - "▁PLUS", - -13.137436866760254 - ], - [ - "▁platter", - -13.137730598449707 - ], - [ - "▁reconsider", - -13.137802124023438 - ], - [ - "▁Swim", - -13.13786792755127 - ], - [ - "▁Scene", - -13.137896537780762 - ], - [ - "▁Reynolds", - -13.137907028198242 - ], - [ - "▁gesund", - -13.137922286987305 - ], - [ - "international", - -13.137959480285645 - ], - [ - "government", - -13.13804817199707 - ], - [ - "▁gemstone", - -13.138052940368652 - ], - [ - "▁reproductive", - -13.1381196975708 - ], - [ - "▁expressive", - -13.13820743560791 - ], - [ - "▁tranche", - -13.13842487335205 - ], - [ - "▁Niagara", - -13.138427734375 - ], - [ - "▁Studierende", - -13.138434410095215 - ], - [ - "▁crave", - -13.138607025146484 - ], - [ - "pathetic", - -13.138739585876465 - ], - [ - "▁1916", - -13.138858795166016 - ], - [ - "▁Thousand", - -13.138873100280762 - ], - [ - "uffed", - -13.138893127441406 - ], - [ - "▁Lancaster", - -13.138960838317871 - ], - [ - "▁revenge", - -13.138972282409668 - ], - [ - "▁melody", - -13.1389741897583 - ], - [ - "Suitable", - -13.138991355895996 - ], - [ - "▁beacon", - -13.139082908630371 - ], - [ - "▁MAY", - -13.139205932617188 - ], - [ - "livré", - -13.139216423034668 - ], - [ - "Virus", - -13.139391899108887 - ], - [ - "▁collaborator", - -13.139413833618164 - ], - [ - "produktion", - -13.139480590820312 - ], - [ - "▁iluminat", - -13.139593124389648 - ], - [ - "facets", - -13.13975715637207 - ], - [ - "▁expus", - -13.139784812927246 - ], - [ - "▁baptism", - -13.13999080657959 - ], - [ - "▁urgency", - -13.140016555786133 - ], - [ - "artery", - -13.14030647277832 - ], - [ - "▁eingeladen", - -13.14043140411377 - ], - [ - "▁entfernen", - -13.14051342010498 - ], - [ - "soaking", - -13.140555381774902 - ], - [ - "▁irré", - -13.140557289123535 - ], - [ - "▁purity", - -13.140700340270996 - ], - [ - "▁adăug", - -13.140731811523438 - ], - [ - "historischen", - -13.140777587890625 - ], - [ - "crezi", - -13.140793800354004 - ], - [ - "▁tarziu", - -13.141035079956055 - ], - [ - "▁Mozart", - -13.141040802001953 - ], - [ - "▁trimming", - -13.141056060791016 - ], - [ - "▁violat", - -13.141056060791016 - ], - [ - "▁Vermögen", - -13.14108943939209 - ], - [ - "▁Theorie", - -13.141114234924316 - ], - [ - "scheibe", - -13.14114761352539 - ], - [ - "Partidul", - -13.141324996948242 - ], - [ - "▁childcare", - -13.14133071899414 - ], - [ - "ajele", - -13.141345977783203 - ], - [ - "▁Punjab", - -13.141390800476074 - ], - [ - "6.3", - -13.14156436920166 - ], - [ - "▁recount", - -13.141571044921875 - ], - [ - "▁repel", - -13.141799926757812 - ], - [ - "vantage", - -13.1419095993042 - ], - [ - "6.4", - -13.141953468322754 - ], - [ - "▁comedian", - -13.142087936401367 - ], - [ - "▁snappe", - -13.142256736755371 - ], - [ - "PLE", - -13.142271041870117 - ], - [ - "▁rapper", - -13.142439842224121 - ], - [ - "▁Belfast", - -13.142657279968262 - ], - [ - "▁predictive", - -13.14271068572998 - ], - [ - "dépôt", - -13.1427583694458 - ], - [ - "flavored", - -13.142769813537598 - ], - [ - "chließlich", - -13.14293098449707 - ], - [ - "▁stump", - -13.142955780029297 - ], - [ - "▁lakh", - -13.142963409423828 - ], - [ - "3:30", - -13.143021583557129 - ], - [ - "▁cetățeni", - -13.1431245803833 - ], - [ - "▁Milliarden", - -13.143125534057617 - ], - [ - "Assurance", - -13.143128395080566 - ], - [ - "▁Marketplace", - -13.143329620361328 - ], - [ - "equipped", - -13.143423080444336 - ], - [ - "▁russe", - -13.143462181091309 - ], - [ - "Exactly", - -13.143651008605957 - ], - [ - "▁Venez", - -13.144125938415527 - ], - [ - "▁Pavilion", - -13.144171714782715 - ], - [ - "▁incontournable", - -13.144171714782715 - ], - [ - "▁slaughter", - -13.14417839050293 - ], - [ - "asteptam", - -13.144190788269043 - ], - [ - "▁Fighter", - -13.144196510314941 - ], - [ - "▁Landkreis", - -13.144278526306152 - ], - [ - "▁lumini", - -13.144312858581543 - ], - [ - "▁connaît", - -13.144615173339844 - ], - [ - "▁Breite", - -13.144674301147461 - ], - [ - "▁Disability", - -13.144774436950684 - ], - [ - "▁Alfa", - -13.144786834716797 - ], - [ - "▁poise", - -13.144895553588867 - ], - [ - "▁Alpen", - -13.144898414611816 - ], - [ - "betont", - -13.145031929016113 - ], - [ - "159", - -13.145161628723145 - ], - [ - "▁geprägt", - -13.145219802856445 - ], - [ - "▁intrigued", - -13.145219802856445 - ], - [ - "▁sympathy", - -13.145220756530762 - ], - [ - "societal", - -13.145225524902344 - ], - [ - "▁sédui", - -13.145243644714355 - ], - [ - "▁differentiation", - -13.145384788513184 - ], - [ - "▁aprobare", - -13.145744323730469 - ], - [ - "schirm", - -13.14585018157959 - ], - [ - "sagt", - -13.145956039428711 - ], - [ - "7.3", - -13.146101951599121 - ], - [ - "Bib", - -13.146263122558594 - ], - [ - "europäischen", - -13.146268844604492 - ], - [ - "▁Innovative", - -13.146268844604492 - ], - [ - "▁autonome", - -13.146330833435059 - ], - [ - "▁Objective", - -13.146400451660156 - ], - [ - "▁refusal", - -13.146551132202148 - ], - [ - "▁exposé", - -13.146719932556152 - ], - [ - "▁cetăţeni", - -13.146793365478516 - ], - [ - "▁stimmt", - -13.146798133850098 - ], - [ - "acordul", - -13.147162437438965 - ], - [ - "▁hormonal", - -13.147254943847656 - ], - [ - "intermédiaire", - -13.147319793701172 - ], - [ - "▁doubl", - -13.147374153137207 - ], - [ - "▁flute", - -13.147509574890137 - ], - [ - "▁Balkon", - -13.147523880004883 - ], - [ - "▁Florian", - -13.147607803344727 - ], - [ - "737", - -13.147614479064941 - ], - [ - "▁dritte", - -13.147639274597168 - ], - [ - "spitze", - -13.147685050964355 - ], - [ - "donnent", - -13.14778995513916 - ], - [ - "▁Zuhause", - -13.147850036621094 - ], - [ - "▁VIII", - -13.147852897644043 - ], - [ - "familien", - -13.148151397705078 - ], - [ - "▁sécurisé", - -13.148313522338867 - ], - [ - "▁glamour", - -13.148370742797852 - ], - [ - "▁societati", - -13.148370742797852 - ], - [ - "typique", - -13.1483793258667 - ], - [ - "▁addicted", - -13.148421287536621 - ], - [ - "▁Providence", - -13.148500442504883 - ], - [ - "▁Extended", - -13.148506164550781 - ], - [ - "▁Barbie", - -13.148513793945312 - ], - [ - "zustand", - -13.148516654968262 - ], - [ - "▁Sauna", - -13.148638725280762 - ], - [ - "▁propane", - -13.148663520812988 - ], - [ - "europa", - -13.148894309997559 - ], - [ - "glued", - -13.148940086364746 - ], - [ - "▁Mystery", - -13.148941993713379 - ], - [ - "▁travaillé", - -13.149106979370117 - ], - [ - "riol", - -13.149251937866211 - ], - [ - "fleisch", - -13.149288177490234 - ], - [ - "▁Eintritt", - -13.149327278137207 - ], - [ - "▁Syndrome", - -13.149422645568848 - ], - [ - "▁petroleum", - -13.149426460266113 - ], - [ - "▁genial", - -13.149433135986328 - ], - [ - "sponsored", - -13.149436950683594 - ], - [ - "▁Cindy", - -13.149436950683594 - ], - [ - "▁courier", - -13.149600982666016 - ], - [ - "▁Scrap", - -13.149640083312988 - ], - [ - "▁conţin", - -13.149724006652832 - ], - [ - "(2007)", - -13.149764060974121 - ], - [ - "▁gewährleisten", - -13.149949073791504 - ], - [ - "▁proprietor", - -13.15011215209961 - ], - [ - "▁cheque", - -13.15046215057373 - ], - [ - "maternity", - -13.150477409362793 - ], - [ - "▁Gustav", - -13.15048599243164 - ], - [ - "▁arterial", - -13.150497436523438 - ], - [ - "▁whiskey", - -13.150510787963867 - ], - [ - "▁concealed", - -13.150525093078613 - ], - [ - "thèque", - -13.150553703308105 - ], - [ - "felony", - -13.150579452514648 - ], - [ - "▁tweeted", - -13.150613784790039 - ], - [ - "OTA", - -13.150619506835938 - ], - [ - "nsel", - -13.150664329528809 - ], - [ - "▁coarse", - -13.150664329528809 - ], - [ - "▁identificat", - -13.150707244873047 - ], - [ - "▁variability", - -13.150716781616211 - ], - [ - "civ", - -13.150843620300293 - ], - [ - "▁drastic", - -13.150956153869629 - ], - [ - "▁hatred", - -13.151090621948242 - ], - [ - "▁Bürgermeister", - -13.151237487792969 - ], - [ - "▁utilizatorilor", - -13.15124225616455 - ], - [ - "OULD", - -13.15137004852295 - ], - [ - "rmaßen", - -13.151383399963379 - ], - [ - "▁windshield", - -13.151530265808105 - ], - [ - "▁Particular", - -13.151531219482422 - ], - [ - "▁Tunnel", - -13.151638984680176 - ], - [ - "▁litri", - -13.15164852142334 - ], - [ - "extrême", - -13.15180492401123 - ], - [ - "▁Schalt", - -13.151944160461426 - ], - [ - "paket", - -13.152159690856934 - ], - [ - "berlin", - -13.152169227600098 - ], - [ - "▁slujb", - -13.152193069458008 - ], - [ - "facilitated", - -13.152206420898438 - ], - [ - "Congressional", - -13.152510643005371 - ], - [ - "▁honeymoon", - -13.152585983276367 - ], - [ - "▁Provision", - -13.152697563171387 - ], - [ - "▁Outfit", - -13.152779579162598 - ], - [ - "udder", - -13.152814865112305 - ], - [ - "▁chandelier", - -13.153002738952637 - ], - [ - "donating", - -13.153132438659668 - ], - [ - "historic", - -13.15333080291748 - ], - [ - "organized", - -13.153508186340332 - ], - [ - "(8)", - -13.15356731414795 - ], - [ - "▁touristique", - -13.153610229492188 - ], - [ - "▁Roosevelt", - -13.153643608093262 - ], - [ - "▁Verständnis", - -13.153643608093262 - ], - [ - "▁prilej", - -13.153655052185059 - ], - [ - "Vanity", - -13.153806686401367 - ], - [ - "chilly", - -13.153964042663574 - ], - [ - "loyer", - -13.154031753540039 - ], - [ - "▁Zhang", - -13.154053688049316 - ], - [ - "▁Nouveau", - -13.154193878173828 - ], - [ - "Soft", - -13.154326438903809 - ], - [ - "▁motherboard", - -13.15441608428955 - ], - [ - "▁Erklärung", - -13.154701232910156 - ], - [ - "▁Tasmania", - -13.154702186584473 - ], - [ - "▁verändern", - -13.154703140258789 - ], - [ - "▁seldom", - -13.154711723327637 - ], - [ - "▁Karriere", - -13.154714584350586 - ], - [ - "▁Mixed", - -13.154902458190918 - ], - [ - "umfang", - -13.154970169067383 - ], - [ - "▁Strategies", - -13.155035972595215 - ], - [ - "CHAR", - -13.155051231384277 - ], - [ - "olitary", - -13.155075073242188 - ], - [ - "▁Persoan", - -13.1550874710083 - ], - [ - "bewegung", - -13.155242919921875 - ], - [ - "▁Ernest", - -13.155367851257324 - ], - [ - "withdrawn", - -13.155855178833008 - ], - [ - "▁stationary", - -13.155881881713867 - ], - [ - "▁bland", - -13.155939102172852 - ], - [ - "▁Replace", - -13.156059265136719 - ], - [ - "▁Londres", - -13.156290054321289 - ], - [ - "▁plural", - -13.156290054321289 - ], - [ - "▁concentrat", - -13.156515121459961 - ], - [ - "Maschine", - -13.156675338745117 - ], - [ - "▁Advocate", - -13.156820297241211 - ], - [ - "▁vermitteln", - -13.156824111938477 - ], - [ - "▁dispenser", - -13.156827926635742 - ], - [ - "▁tedious", - -13.15695858001709 - ], - [ - "▁Straight", - -13.15705394744873 - ], - [ - "▁Corona", - -13.157061576843262 - ], - [ - "▁monumental", - -13.157073020935059 - ], - [ - "▁migrate", - -13.15720272064209 - ], - [ - "▁verlieren", - -13.157366752624512 - ], - [ - "▁Lub", - -13.157482147216797 - ], - [ - "▁reinforcement", - -13.157827377319336 - ], - [ - "▁cherish", - -13.157843589782715 - ], - [ - "Veterinary", - -13.157881736755371 - ], - [ - "geschwindigkeit", - -13.157881736755371 - ], - [ - "▁féminin", - -13.157881736755371 - ], - [ - "▁Facilities", - -13.157964706420898 - ], - [ - "▁urmari", - -13.158050537109375 - ], - [ - "▁Vertical", - -13.158098220825195 - ], - [ - "echoe", - -13.158188819885254 - ], - [ - "toured", - -13.158548355102539 - ], - [ - "Served", - -13.158772468566895 - ], - [ - "más", - -13.158853530883789 - ], - [ - "license", - -13.158893585205078 - ], - [ - "misunderstanding", - -13.158944129943848 - ], - [ - "▁glamorous", - -13.158944129943848 - ], - [ - "BJP", - -13.158973693847656 - ], - [ - "▁découvert", - -13.159173965454102 - ], - [ - "schönsten", - -13.159517288208008 - ], - [ - "▁(2018)", - -13.159577369689941 - ], - [ - "▁orasului", - -13.159581184387207 - ], - [ - "328", - -13.159674644470215 - ], - [ - "thighs", - -13.159801483154297 - ], - [ - "éclairage", - -13.160008430480957 - ], - [ - "Oamenii", - -13.160009384155273 - ], - [ - "▁Transmission", - -13.16014575958252 - ], - [ - "▁transpir", - -13.16015911102295 - ], - [ - "▁președinte", - -13.160321235656738 - ], - [ - "finalists", - -13.160327911376953 - ], - [ - "genügend", - -13.160524368286133 - ], - [ - "▁Aufmerksamkeit", - -13.160539627075195 - ], - [ - "▁unglaublich", - -13.160539627075195 - ], - [ - "▁descarc", - -13.160604476928711 - ], - [ - "▁Couch", - -13.160683631896973 - ], - [ - "eaucoup", - -13.160788536071777 - ], - [ - "▁adidas", - -13.161075592041016 - ], - [ - "▁1-800-", - -13.161077499389648 - ], - [ - "▁Communities", - -13.161102294921875 - ], - [ - "▁Einkommen", - -13.161102294921875 - ], - [ - "▁Reagan", - -13.16114330291748 - ], - [ - "▁Stoke", - -13.161260604858398 - ], - [ - "▁Snapchat", - -13.161269187927246 - ], - [ - "éclat", - -13.161272048950195 - ], - [ - "▁auseinander", - -13.161367416381836 - ], - [ - "▁richesse", - -13.16137409210205 - ], - [ - "▁toggle", - -13.161396026611328 - ], - [ - "▁Zutaten", - -13.161606788635254 - ], - [ - "▁député", - -13.16161060333252 - ], - [ - "▁battlefield", - -13.161611557006836 - ], - [ - "▁spirituel", - -13.161611557006836 - ], - [ - "▁Shuttle", - -13.161632537841797 - ], - [ - "▁Aktien", - -13.161665916442871 - ], - [ - "hormon", - -13.161819458007812 - ], - [ - "connection", - -13.16187858581543 - ], - [ - "▁vizitatori", - -13.16191577911377 - ], - [ - "érité", - -13.161971092224121 - ], - [ - "truck", - -13.1619873046875 - ], - [ - "▁yourselves", - -13.162139892578125 - ], - [ - "▁Logistics", - -13.162140846252441 - ], - [ - "coveted", - -13.16215705871582 - ], - [ - "▁şedinţ", - -13.162671089172363 - ], - [ - "▁messenger", - -13.162703514099121 - ], - [ - "▁țar", - -13.162918090820312 - ], - [ - "▁Grau", - -13.163025856018066 - ], - [ - "chirurgie", - -13.163138389587402 - ], - [ - "▁Ressourcen", - -13.16320514678955 - ], - [ - "▁Jésus", - -13.163207054138184 - ], - [ - "▁acțiune", - -13.163208961486816 - ], - [ - "▁Bundesliga", - -13.163249015808105 - ], - [ - "Lizenz", - -13.163379669189453 - ], - [ - "ELLE", - -13.163908958435059 - ], - [ - "vraie", - -13.1639986038208 - ], - [ - "ruined", - -13.164018630981445 - ], - [ - "▁Marble", - -13.164109230041504 - ], - [ - "▁Zambia", - -13.164308547973633 - ], - [ - "▁Finnish", - -13.164366722106934 - ], - [ - "▁trackback", - -13.164488792419434 - ], - [ - "héros", - -13.16451644897461 - ], - [ - "▁réclam", - -13.164534568786621 - ], - [ - "locurile", - -13.164706230163574 - ], - [ - "tägliche", - -13.164753913879395 - ], - [ - "IFF", - -13.164824485778809 - ], - [ - "▁contextual", - -13.164938926696777 - ], - [ - "▁Elvis", - -13.165084838867188 - ], - [ - "▁Batch", - -13.165183067321777 - ], - [ - "▁appris", - -13.16519546508789 - ], - [ - "intensive", - -13.165404319763184 - ], - [ - "▁întâmplat", - -13.16565990447998 - ], - [ - "▁prelucr", - -13.16576099395752 - ], - [ - "flore", - -13.165873527526855 - ], - [ - "▁Alkohol", - -13.165877342224121 - ], - [ - "Konzern", - -13.165895462036133 - ], - [ - "Delete", - -13.166082382202148 - ], - [ - "öck", - -13.16612720489502 - ], - [ - "▁clientii", - -13.16614818572998 - ], - [ - "▁innovate", - -13.166224479675293 - ], - [ - "▁ASAP", - -13.166345596313477 - ], - [ - "crumbs", - -13.166425704956055 - ], - [ - "reusable", - -13.166489601135254 - ], - [ - "▁Beaver", - -13.166507720947266 - ], - [ - "▁rosii", - -13.166643142700195 - ], - [ - "Arr", - -13.166704177856445 - ], - [ - "▁Zubehör", - -13.166948318481445 - ], - [ - "▁stolz", - -13.166952133178711 - ], - [ - "▁$75", - -13.16695499420166 - ], - [ - "▁Frühling", - -13.166967391967773 - ], - [ - "▁disagreement", - -13.166988372802734 - ], - [ - "▁formulate", - -13.167381286621094 - ], - [ - "braking", - -13.167522430419922 - ], - [ - "▁submarine", - -13.167535781860352 - ], - [ - "▁identificare", - -13.167652130126953 - ], - [ - "lansarea", - -13.167659759521484 - ], - [ - "covered", - -13.167753219604492 - ], - [ - "benso", - -13.167859077453613 - ], - [ - "▁situatie", - -13.167989730834961 - ], - [ - "hilf", - -13.1681547164917 - ], - [ - "▁Southampton", - -13.168557167053223 - ], - [ - "▁intéressé", - -13.168557167053223 - ], - [ - "▁congressional", - -13.168572425842285 - ], - [ - "65%", - -13.168595314025879 - ], - [ - "▁Allison", - -13.168627738952637 - ], - [ - "Mainland", - -13.168726921081543 - ], - [ - "▁touchscreen", - -13.16882038116455 - ], - [ - "leitet", - -13.168922424316406 - ], - [ - "mnului", - -13.16958999633789 - ], - [ - "▁engagiert", - -13.169631004333496 - ], - [ - "joacă", - -13.16964340209961 - ], - [ - "▁$5,000", - -13.169652938842773 - ], - [ - "upscale", - -13.1697359085083 - ], - [ - "▁vérité", - -13.16983413696289 - ], - [ - "flüssig", - -13.170167922973633 - ], - [ - "Richtlinie", - -13.170169830322266 - ], - [ - "▁positif", - -13.170169830322266 - ], - [ - "▁diferenta", - -13.170175552368164 - ], - [ - "▁întâi", - -13.170707702636719 - ], - [ - "ethylene", - -13.170791625976562 - ], - [ - "kreuz", - -13.170913696289062 - ], - [ - "Surely", - -13.170990943908691 - ], - [ - "puneti", - -13.171002388000488 - ], - [ - "europe", - -13.171142578125 - ], - [ - "▁comunist", - -13.171271324157715 - ], - [ - "unterricht", - -13.171302795410156 - ], - [ - "▁Füll", - -13.171304702758789 - ], - [ - "▁Aberdeen", - -13.171792030334473 - ], - [ - "▁DSLR", - -13.171792030334473 - ], - [ - "▁functioneaza", - -13.171799659729004 - ], - [ - "▁benches", - -13.171807289123535 - ], - [ - "▁Alpine", - -13.171866416931152 - ], - [ - "phthal", - -13.172003746032715 - ], - [ - "▁counselling", - -13.17219066619873 - ], - [ - "▁erzielen", - -13.172323226928711 - ], - [ - "▁părinţi", - -13.172329902648926 - ], - [ - "▁besitzen", - -13.17236614227295 - ], - [ - "heavenly", - -13.172389030456543 - ], - [ - "▁masque", - -13.17281723022461 - ], - [ - "▁Legislature", - -13.172859191894531 - ], - [ - "▁Recycling", - -13.172861099243164 - ], - [ - "▁Derma", - -13.172883987426758 - ], - [ - "reunite", - -13.172926902770996 - ], - [ - "recettes", - -13.17310619354248 - ], - [ - "converge", - -13.173262596130371 - ], - [ - "▁compoziti", - -13.17327880859375 - ], - [ - "▁Nürnberg", - -13.173398971557617 - ], - [ - "760", - -13.173545837402344 - ], - [ - "▁entière", - -13.173674583435059 - ], - [ - "▁parchment", - -13.173944473266602 - ], - [ - "▁Aufwand", - -13.173945426940918 - ], - [ - "▁antivirus", - -13.174087524414062 - ], - [ - "▁remettr", - -13.17409610748291 - ], - [ - "▁NEVER", - -13.174243927001953 - ], - [ - "▁restrictive", - -13.174266815185547 - ], - [ - "▁beurre", - -13.174283027648926 - ], - [ - "▁frigider", - -13.174478530883789 - ], - [ - "acquisition", - -13.174642562866211 - ], - [ - "▁Correct", - -13.174866676330566 - ], - [ - "▁immortal", - -13.175017356872559 - ], - [ - "▁occupancy", - -13.175017356872559 - ], - [ - "▁Tucson", - -13.175019264221191 - ], - [ - "▁Dhabi", - -13.175025939941406 - ], - [ - "obligation", - -13.175033569335938 - ], - [ - "▁warfare", - -13.175037384033203 - ], - [ - "▁syntax", - -13.175045013427734 - ], - [ - "APS", - -13.175106048583984 - ], - [ - "мен", - -13.175209999084473 - ], - [ - "▁diferenț", - -13.175251960754395 - ], - [ - "wordpress", - -13.17549991607666 - ], - [ - "▁Wohnzimmer", - -13.175593376159668 - ], - [ - "oppo", - -13.175736427307129 - ], - [ - "▁miscare", - -13.175762176513672 - ], - [ - "companiilor", - -13.17581558227539 - ], - [ - "▁bezahlt", - -13.17584228515625 - ], - [ - "Sterne", - -13.175864219665527 - ], - [ - "inability", - -13.175898551940918 - ], - [ - "▁Hoffnung", - -13.176156044006348 - ], - [ - "▁românească", - -13.176176071166992 - ], - [ - "document", - -13.176177024841309 - ], - [ - "borrowers", - -13.17625904083252 - ], - [ - "▁rasa", - -13.176301956176758 - ], - [ - "▁bénéfice", - -13.176445960998535 - ], - [ - "▁Panda", - -13.17645263671875 - ], - [ - "▁cărţi", - -13.176730155944824 - ], - [ - "▁Vorgehen", - -13.17690658569336 - ], - [ - "▁afecteaz", - -13.176956176757812 - ], - [ - "▁diagnos", - -13.177050590515137 - ], - [ - "▁Dentistry", - -13.177180290222168 - ], - [ - "▁staggering", - -13.177180290222168 - ], - [ - "präsident", - -13.177181243896484 - ], - [ - "▁vocational", - -13.177239418029785 - ], - [ - "Combined", - -13.177287101745605 - ], - [ - "stère", - -13.177306175231934 - ], - [ - "▁frunze", - -13.177478790283203 - ], - [ - "OLI", - -13.177525520324707 - ], - [ - "▁răc", - -13.177752494812012 - ], - [ - "▁changé", - -13.177754402160645 - ], - [ - "▁reprezentanți", - -13.177757263183594 - ], - [ - "▁ausgeschlossen", - -13.177777290344238 - ], - [ - "Windows", - -13.177891731262207 - ], - [ - "sometimes", - -13.177898406982422 - ], - [ - "▁dargestellt", - -13.178120613098145 - ], - [ - "provoking", - -13.178263664245605 - ], - [ - "terribly", - -13.178264617919922 - ], - [ - "▁speculate", - -13.178274154663086 - ], - [ - "▁complément", - -13.178305625915527 - ], - [ - "▁(2006)", - -13.178306579589844 - ], - [ - "zulegen", - -13.178668022155762 - ], - [ - "▁définitive", - -13.178876876831055 - ], - [ - "considerare", - -13.17911148071289 - ], - [ - "▁Subaru", - -13.179354667663574 - ], - [ - "WAN", - -13.179390907287598 - ], - [ - "guessed", - -13.179417610168457 - ], - [ - "spannung", - -13.179479598999023 - ], - [ - "▁supernatural", - -13.179515838623047 - ], - [ - "▁Interstate", - -13.17957878112793 - ], - [ - "▁redundant", - -13.179891586303711 - ], - [ - "▁HUG", - -13.179893493652344 - ], - [ - "▁restauration", - -13.180006980895996 - ], - [ - "repute", - -13.180011749267578 - ], - [ - "coagul", - -13.180028915405273 - ], - [ - "tehnologia", - -13.18043327331543 - ], - [ - "warded", - -13.180444717407227 - ], - [ - "▁lobster", - -13.180469512939453 - ], - [ - "▁Hafen", - -13.180542945861816 - ], - [ - "▁Guess", - -13.18056583404541 - ], - [ - "seraient", - -13.181038856506348 - ], - [ - "▁trench", - -13.181156158447266 - ], - [ - "▁piept", - -13.181283950805664 - ], - [ - "categorized", - -13.181396484375 - ], - [ - "softer", - -13.1815185546875 - ], - [ - "▁feasibility", - -13.181519508361816 - ], - [ - "▁restructuring", - -13.181519508361816 - ], - [ - "▁GOOD", - -13.181537628173828 - ], - [ - "▁inspiré", - -13.181610107421875 - ], - [ - "▁spéci", - -13.18163013458252 - ], - [ - "▁Mattress", - -13.181686401367188 - ], - [ - "▁biologique", - -13.181702613830566 - ], - [ - "▁Crema", - -13.182043075561523 - ], - [ - "▁korrekt", - -13.182063102722168 - ], - [ - "▁imperfect", - -13.182205200195312 - ], - [ - "▁advantageous", - -13.182329177856445 - ], - [ - "9.00", - -13.182390213012695 - ], - [ - "PAL", - -13.182557106018066 - ], - [ - "▁Illustration", - -13.182607650756836 - ], - [ - "▁Katherine", - -13.182607650756836 - ], - [ - "▁cervical", - -13.182607650756836 - ], - [ - "▁hectic", - -13.182611465454102 - ], - [ - "▁Belastung", - -13.182615280151367 - ], - [ - "▁Laguna", - -13.182628631591797 - ], - [ - "▁Burton", - -13.182761192321777 - ], - [ - "nettoyage", - -13.182875633239746 - ], - [ - "Toward", - -13.183072090148926 - ], - [ - "continuare", - -13.183072090148926 - ], - [ - "▁acumulat", - -13.183106422424316 - ], - [ - "▁déposé", - -13.183216094970703 - ], - [ - "▁prestige", - -13.183269500732422 - ], - [ - "▁LNG", - -13.183525085449219 - ], - [ - "▁Dacia", - -13.183662414550781 - ], - [ - "▁concede", - -13.183691024780273 - ], - [ - "▁reconciliation", - -13.183822631835938 - ], - [ - "Sistemul", - -13.183877944946289 - ], - [ - "Speed", - -13.183937072753906 - ], - [ - "▁Implant", - -13.183977127075195 - ], - [ - "▁möchtest", - -13.184020042419434 - ], - [ - "▁Norton", - -13.184064865112305 - ], - [ - "▁cosmic", - -13.184181213378906 - ], - [ - "enregistrement", - -13.184247016906738 - ], - [ - "țării", - -13.18433952331543 - ], - [ - "Veröffentlichung", - -13.184786796569824 - ], - [ - "erlebnis", - -13.184786796569824 - ], - [ - "▁Carpenter", - -13.184786796569824 - ], - [ - "▁INFORMATION", - -13.184786796569824 - ], - [ - "invites", - -13.18481731414795 - ], - [ - "▁gewan", - -13.1849365234375 - ], - [ - "▁réservé", - -13.184986114501953 - ], - [ - "▁aquatic", - -13.184988021850586 - ], - [ - "▁Seoul", - -13.18507194519043 - ], - [ - "▁älter", - -13.185185432434082 - ], - [ - "▁classmates", - -13.185223579406738 - ], - [ - "gelangen", - -13.185253143310547 - ], - [ - "▁Camill", - -13.185285568237305 - ], - [ - "simo", - -13.185291290283203 - ], - [ - "▁dormitor", - -13.185333251953125 - ], - [ - "wahren", - -13.185354232788086 - ], - [ - "▁incremental", - -13.185357093811035 - ], - [ - "▁caci", - -13.185494422912598 - ], - [ - "mittlere", - -13.185752868652344 - ], - [ - "▁condominium", - -13.185877799987793 - ], - [ - "▁rainforest", - -13.185877799987793 - ], - [ - "▁championnat", - -13.185891151428223 - ], - [ - "▁interrupted", - -13.185921669006348 - ], - [ - "▁tactile", - -13.185930252075195 - ], - [ - "▁unconditional", - -13.185945510864258 - ], - [ - "▁reactive", - -13.186041831970215 - ], - [ - "▁Stretch", - -13.1861572265625 - ], - [ - "▁serene", - -13.18624210357666 - ], - [ - "570", - -13.186318397521973 - ], - [ - "igte", - -13.186376571655273 - ], - [ - "Louis", - -13.186410903930664 - ], - [ - "▁Mittelpunkt", - -13.186493873596191 - ], - [ - "EEP", - -13.18651294708252 - ], - [ - "▁vault", - -13.186552047729492 - ], - [ - "absolu", - -13.186893463134766 - ], - [ - "▁solidarity", - -13.186971664428711 - ], - [ - "CLICK", - -13.18708324432373 - ], - [ - "▁hustle", - -13.187090873718262 - ], - [ - "▁microscope", - -13.187105178833008 - ], - [ - "▁Recommended", - -13.187111854553223 - ], - [ - "âche", - -13.18716812133789 - ], - [ - "▁flashlight", - -13.187286376953125 - ], - [ - "modificarea", - -13.18754768371582 - ], - [ - "izaţi", - -13.18773078918457 - ], - [ - "planned", - -13.187899589538574 - ], - [ - "Download", - -13.187906265258789 - ], - [ - "▁gourmand", - -13.188064575195312 - ], - [ - "▁subsidiaries", - -13.188064575195312 - ], - [ - "orthodox", - -13.188135147094727 - ], - [ - "▁Auburn", - -13.188323020935059 - ], - [ - "▁exprimat", - -13.188336372375488 - ], - [ - "procédé", - -13.18861198425293 - ], - [ - "▁ressenti", - -13.188648223876953 - ], - [ - "▁stint", - -13.188678741455078 - ], - [ - "Essentially", - -13.189072608947754 - ], - [ - "▁Savior", - -13.189164161682129 - ], - [ - "▁Flood", - -13.189168930053711 - ], - [ - "▁neurological", - -13.189249038696289 - ], - [ - "▁strig", - -13.189340591430664 - ], - [ - "scended", - -13.189421653747559 - ], - [ - "▁Shiva", - -13.189483642578125 - ], - [ - "▁Sketch", - -13.189544677734375 - ], - [ - "▁monarch", - -13.18956184387207 - ], - [ - "▁Preview", - -13.189632415771484 - ], - [ - "▁bewegt", - -13.189811706542969 - ], - [ - "mapped", - -13.189818382263184 - ], - [ - "énorme", - -13.189962387084961 - ], - [ - "▁définition", - -13.189963340759277 - ], - [ - "▁nécessité", - -13.189984321594238 - ], - [ - "▁antren", - -13.190027236938477 - ], - [ - "▁Infant", - -13.190072059631348 - ], - [ - "▁incumbent", - -13.190255165100098 - ], - [ - "▁pavilion", - -13.190255165100098 - ], - [ - "▁Taliban", - -13.19025707244873 - ], - [ - "Easily", - -13.19025993347168 - ], - [ - "▁verteilt", - -13.19030475616455 - ], - [ - "▁Biblical", - -13.190320014953613 - ], - [ - "Christian", - -13.190333366394043 - ], - [ - "județul", - -13.190436363220215 - ], - [ - "Learning", - -13.19046688079834 - ], - [ - "▁Expand", - -13.19054126739502 - ], - [ - "▁Attach", - -13.19056224822998 - ], - [ - "consideră", - -13.190573692321777 - ], - [ - "einsatz", - -13.190574645996094 - ], - [ - "Numai", - -13.190585136413574 - ], - [ - "▁Eintrag", - -13.190597534179688 - ], - [ - "▁üblich", - -13.190607070922852 - ], - [ - "▁cumpără", - -13.19062614440918 - ], - [ - "escaped", - -13.190693855285645 - ], - [ - "▁Ortodox", - -13.190804481506348 - ], - [ - "▁obţinut", - -13.190805435180664 - ], - [ - "ecluded", - -13.191036224365234 - ], - [ - "▁brownie", - -13.191089630126953 - ], - [ - "▁regulament", - -13.191253662109375 - ], - [ - "▁Chaos", - -13.191302299499512 - ], - [ - "▁masiv", - -13.19132137298584 - ], - [ - "▁Gerald", - -13.191376686096191 - ], - [ - "▁Sigur", - -13.191380500793457 - ], - [ - "▁wavelength", - -13.191380500793457 - ], - [ - "▁retiring", - -13.191396713256836 - ], - [ - "▁exactement", - -13.191819190979004 - ], - [ - "ntino", - -13.191823959350586 - ], - [ - "▁Krebs", - -13.19194221496582 - ], - [ - "▁monatlich", - -13.191956520080566 - ], - [ - "▁aranj", - -13.192011833190918 - ], - [ - "▁priveşt", - -13.192099571228027 - ], - [ - "▁mecanic", - -13.192109107971191 - ], - [ - "money", - -13.192233085632324 - ], - [ - "parliamentary", - -13.1922607421875 - ], - [ - "▁probation", - -13.192427635192871 - ], - [ - "embroidered", - -13.192451477050781 - ], - [ - "▁amenajat", - -13.192451477050781 - ], - [ - "▁remnant", - -13.192451477050781 - ], - [ - "▁senzati", - -13.192472457885742 - ], - [ - "▁Declaration", - -13.192483901977539 - ], - [ - "farbe", - -13.192506790161133 - ], - [ - "▁skinny", - -13.19260311126709 - ], - [ - "Energi", - -13.192648887634277 - ], - [ - "verhältnisse", - -13.19288158416748 - ], - [ - "Recruit", - -13.192972183227539 - ], - [ - "frying", - -13.193161010742188 - ], - [ - "925", - -13.193294525146484 - ], - [ - "nstruire", - -13.193302154541016 - ], - [ - "toasted", - -13.193424224853516 - ], - [ - "▁nicotine", - -13.193551063537598 - ], - [ - "recessed", - -13.193570137023926 - ], - [ - "▁dialect", - -13.193572044372559 - ], - [ - "▁confisc", - -13.193575859069824 - ], - [ - "▁bubbl", - -13.193643569946289 - ], - [ - "▁Precision", - -13.193682670593262 - ], - [ - "▁sollicit", - -13.193842887878418 - ], - [ - "▁Moral", - -13.193977355957031 - ], - [ - "▁renseignements", - -13.194112777709961 - ], - [ - "UMP", - -13.194116592407227 - ], - [ - "ijn", - -13.194183349609375 - ], - [ - "▁fermeture", - -13.194320678710938 - ], - [ - "▁blueprint", - -13.19462776184082 - ], - [ - "▁groceries", - -13.194652557373047 - ], - [ - "möbel", - -13.194655418395996 - ], - [ - "▁Plenty", - -13.194657325744629 - ], - [ - "▁forfeit", - -13.194719314575195 - ], - [ - "méthodes", - -13.194915771484375 - ], - [ - "paving", - -13.19493293762207 - ], - [ - "outheastern", - -13.194979667663574 - ], - [ - "▁Overview", - -13.19503116607666 - ], - [ - "▁observers", - -13.195171356201172 - ], - [ - "▁Timișoara", - -13.19520378112793 - ], - [ - "noticing", - -13.195332527160645 - ], - [ - "▁Owl", - -13.195381164550781 - ], - [ - "▁1925", - -13.195517539978027 - ], - [ - "▁prüfen", - -13.195755004882812 - ], - [ - "▁Bewohner", - -13.195756912231445 - ], - [ - "▁Latvia", - -13.195770263671875 - ], - [ - "▁Tuscan", - -13.19577407836914 - ], - [ - "▁apprenticeship", - -13.195789337158203 - ], - [ - "▁courteous", - -13.1958646774292 - ], - [ - "adult", - -13.196023941040039 - ], - [ - "Licensed", - -13.196029663085938 - ], - [ - "abused", - -13.196762084960938 - ], - [ - "confidence", - -13.19678020477295 - ], - [ - "▁revolt", - -13.196782112121582 - ], - [ - "conference", - -13.196861267089844 - ], - [ - "genoss", - -13.196914672851562 - ], - [ - "▁răni", - -13.196944236755371 - ], - [ - "▁Intervention", - -13.196949005126953 - ], - [ - "▁primesc", - -13.196969985961914 - ], - [ - "trays", - -13.197041511535645 - ], - [ - "nozzle", - -13.197216033935547 - ], - [ - "▁splitting", - -13.197443962097168 - ], - [ - "▁könne", - -13.197507858276367 - ], - [ - "▁peisaj", - -13.197943687438965 - ], - [ - "▁academia", - -13.197962760925293 - ], - [ - "▁chakra", - -13.197979927062988 - ], - [ - "▁Abdul", - -13.1981201171875 - ], - [ - "▁Beschreibung", - -13.198225021362305 - ], - [ - "Regeln", - -13.19831371307373 - ], - [ - "eezy", - -13.198314666748047 - ], - [ - "▁problématique", - -13.198515892028809 - ], - [ - "▁Ausführung", - -13.198524475097656 - ], - [ - "▁reconnect", - -13.19868278503418 - ], - [ - "▁telefonic", - -13.198966026306152 - ], - [ - "▁Ethereum", - -13.199069023132324 - ], - [ - "▁Winnipeg", - -13.199069023132324 - ], - [ - "▁misconception", - -13.199069023132324 - ], - [ - "▁Verpackung", - -13.199070930480957 - ], - [ - "▁erzeugt", - -13.199097633361816 - ], - [ - "▁Identity", - -13.199104309082031 - ], - [ - "▁dunkle", - -13.199109077453613 - ], - [ - "sustaining", - -13.19916820526123 - ], - [ - "▁pereche", - -13.199178695678711 - ], - [ - "▁neîn", - -13.199239730834961 - ], - [ - "directorul", - -13.199291229248047 - ], - [ - "▁élabor", - -13.199584007263184 - ], - [ - "▁Hollow", - -13.19960880279541 - ], - [ - "▁getestet", - -13.199751853942871 - ], - [ - "▁Promote", - -13.199797630310059 - ], - [ - "agriculture", - -13.199920654296875 - ], - [ - "▁deosebir", - -13.199934005737305 - ], - [ - "▁neam", - -13.199999809265137 - ], - [ - "aufbau", - -13.200042724609375 - ], - [ - "▁susținut", - -13.200079917907715 - ], - [ - "fueled", - -13.200119018554688 - ], - [ - "▁impresionant", - -13.200177192687988 - ], - [ - "innate", - -13.20026969909668 - ], - [ - "grenzt", - -13.200340270996094 - ], - [ - "rescued", - -13.200514793395996 - ], - [ - "bestand", - -13.200559616088867 - ], - [ - "▁adjunct", - -13.200729370117188 - ], - [ - "▁Mischung", - -13.200754165649414 - ], - [ - "▁Lease", - -13.201258659362793 - ], - [ - "espagnol", - -13.201284408569336 - ], - [ - "▁Kickstarter", - -13.201284408569336 - ], - [ - "▁buzunar", - -13.201284408569336 - ], - [ - "▁buddies", - -13.20129108428955 - ], - [ - "käufe", - -13.201485633850098 - ], - [ - "cevoir", - -13.201582908630371 - ], - [ - "▁creşte", - -13.201675415039062 - ], - [ - "▁Cluster", - -13.201825141906738 - ], - [ - "▁obișnui", - -13.201838493347168 - ], - [ - "▁cassette", - -13.201889038085938 - ], - [ - "▁optisch", - -13.201947212219238 - ], - [ - "manned", - -13.20200252532959 - ], - [ - "schneid", - -13.202362060546875 - ], - [ - "Württemberg", - -13.202393531799316 - ], - [ - "shredded", - -13.202393531799316 - ], - [ - "▁botanical", - -13.20239543914795 - ], - [ - "characterization", - -13.202445983886719 - ], - [ - "▁Durchführung", - -13.202452659606934 - ], - [ - "▁tireless", - -13.20250129699707 - ], - [ - "lässlich", - -13.20254135131836 - ], - [ - "▁Merchant", - -13.202570915222168 - ], - [ - "joutez", - -13.20259952545166 - ], - [ - "▁amélior", - -13.202676773071289 - ], - [ - "fixed", - -13.202741622924805 - ], - [ - "kho", - -13.202760696411133 - ], - [ - "▁televizor", - -13.202948570251465 - ], - [ - "▁Davies", - -13.202964782714844 - ], - [ - "enceinte", - -13.203118324279785 - ], - [ - "▁Panorama", - -13.20350456237793 - ], - [ - "▁maternal", - -13.203507423400879 - ], - [ - "diversified", - -13.203513145446777 - ], - [ - "▁Jü", - -13.203570365905762 - ], - [ - "▁naz", - -13.203730583190918 - ], - [ - "▁plonge", - -13.2039213180542 - ], - [ - "geschickt", - -13.203944206237793 - ], - [ - "MIS", - -13.204215049743652 - ], - [ - "ragged", - -13.204553604125977 - ], - [ - "▁diarrhea", - -13.20461654663086 - ], - [ - "▁tsunami", - -13.20461654663086 - ], - [ - "▁Nikola", - -13.204625129699707 - ], - [ - "▁festivities", - -13.20464038848877 - ], - [ - "potting", - -13.20479965209961 - ], - [ - "▁telefonisch", - -13.204874038696289 - ], - [ - "TAR", - -13.204971313476562 - ], - [ - "▁schimbări", - -13.205023765563965 - ], - [ - "▁occidental", - -13.205172538757324 - ], - [ - "schloss", - -13.205179214477539 - ], - [ - "Print", - -13.205284118652344 - ], - [ - "▁autoritățil", - -13.205361366271973 - ], - [ - "idos", - -13.20556640625 - ], - [ - "mediocr", - -13.20559310913086 - ], - [ - "▁Decla", - -13.205686569213867 - ], - [ - "▁Elliott", - -13.205729484558105 - ], - [ - "▁pinpoint", - -13.205734252929688 - ], - [ - "▁disciple", - -13.20579719543457 - ], - [ - "▁Cairo", - -13.2058744430542 - ], - [ - "▁15-20", - -13.2059326171875 - ], - [ - "▁limbaj", - -13.20611572265625 - ], - [ - "▁retenu", - -13.206154823303223 - ], - [ - "▁Blüte", - -13.20628833770752 - ], - [ - "▁MINI", - -13.206467628479004 - ], - [ - "▁lumină", - -13.206567764282227 - ], - [ - "▁flawed", - -13.206846237182617 - ], - [ - "▁Belarus", - -13.207067489624023 - ], - [ - "Totul", - -13.207207679748535 - ], - [ - "hôte", - -13.207273483276367 - ], - [ - "▁verbringen", - -13.207315444946289 - ], - [ - "▁simultaneous", - -13.207344055175781 - ], - [ - "▁competiți", - -13.207402229309082 - ], - [ - "▁lancement", - -13.207413673400879 - ], - [ - "▁proprietati", - -13.207432746887207 - ], - [ - "▁angajator", - -13.207465171813965 - ], - [ - "▁ignorant", - -13.207674026489258 - ], - [ - "▁indicative", - -13.207700729370117 - ], - [ - "▁Bearbeitung", - -13.207961082458496 - ], - [ - "▁Ungaria", - -13.207961082458496 - ], - [ - "▁Sfint", - -13.208015441894531 - ], - [ - "▁Trojan", - -13.20804214477539 - ], - [ - "▁1911", - -13.208100318908691 - ], - [ - "▁reliabl", - -13.2081937789917 - ], - [ - "6-0", - -13.20827865600586 - ], - [ - "obst", - -13.208523750305176 - ], - [ - "▁relève", - -13.208579063415527 - ], - [ - "▁standpoint", - -13.208874702453613 - ], - [ - "ridden", - -13.208918571472168 - ], - [ - "▁Pdf", - -13.209005355834961 - ], - [ - "tatewide", - -13.209051132202148 - ], - [ - "Water", - -13.209062576293945 - ], - [ - "▁Pricing", - -13.209089279174805 - ], - [ - "▁protecţi", - -13.209168434143066 - ], - [ - "November", - -13.209615707397461 - ], - [ - "▁televiziune", - -13.20964241027832 - ], - [ - "Sodium", - -13.209881782531738 - ], - [ - "douceur", - -13.209942817687988 - ], - [ - "▁Flasche", - -13.210183143615723 - ], - [ - "3.9", - -13.210193634033203 - ], - [ - "▁electromagnetic", - -13.210195541381836 - ], - [ - "▁mitochondria", - -13.210195541381836 - ], - [ - "Suddenly", - -13.210199356079102 - ], - [ - "▁Drupal", - -13.210201263427734 - ], - [ - "▁supraveghere", - -13.210211753845215 - ], - [ - "▁cornea", - -13.210288047790527 - ], - [ - "räumt", - -13.210309982299805 - ], - [ - "▁healed", - -13.210410118103027 - ], - [ - "Roc", - -13.210649490356445 - ], - [ - "▁temporar", - -13.210707664489746 - ], - [ - "▁amaze", - -13.210770606994629 - ], - [ - "▁confrunta", - -13.210833549499512 - ], - [ - "Afterward", - -13.210836410522461 - ], - [ - "▁festgelegt", - -13.21084213256836 - ], - [ - "▁Kuchen", - -13.210844993591309 - ], - [ - "▁perpetual", - -13.210858345031738 - ], - [ - "systematically", - -13.211000442504883 - ], - [ - "▁coloan", - -13.211006164550781 - ], - [ - "▁extensi", - -13.211058616638184 - ], - [ - "▁Județean", - -13.211315155029297 - ], - [ - "▁amelior", - -13.211315155029297 - ], - [ - "▁illustrator", - -13.211315155029297 - ], - [ - "▁titanium", - -13.211344718933105 - ], - [ - "SMEs", - -13.211384773254395 - ], - [ - "taxable", - -13.211578369140625 - ], - [ - "▁Borough", - -13.211607933044434 - ], - [ - "verlust", - -13.211772918701172 - ], - [ - "ductive", - -13.21233081817627 - ], - [ - "▁Küste", - -13.212335586547852 - ], - [ - "▁végétal", - -13.212410926818848 - ], - [ - "▁breastfeeding", - -13.212435722351074 - ], - [ - "▁captivating", - -13.212435722351074 - ], - [ - "▁Chevy", - -13.212443351745605 - ], - [ - "▁aerospace", - -13.212469100952148 - ], - [ - "pozitia", - -13.213095664978027 - ], - [ - "Tutor", - -13.213199615478516 - ], - [ - "▁spum", - -13.213312149047852 - ], - [ - "curând", - -13.213419914245605 - ], - [ - "iscus", - -13.213458061218262 - ], - [ - "October", - -13.213495254516602 - ], - [ - "▁Reparatur", - -13.213557243347168 - ], - [ - "▁Servicii", - -13.213574409484863 - ], - [ - "▁Gonz", - -13.21357536315918 - ], - [ - "▁cybersecurity", - -13.21357536315918 - ], - [ - "▁UCLA", - -13.213678359985352 - ], - [ - "rissa", - -13.213835716247559 - ], - [ - "▁Kemp", - -13.213850021362305 - ], - [ - "▁piston", - -13.214046478271484 - ], - [ - "▁révèle", - -13.214118957519531 - ], - [ - "▁posséd", - -13.21412181854248 - ], - [ - "▁versehen", - -13.214129447937012 - ], - [ - "▁scrutin", - -13.214226722717285 - ], - [ - "donnant", - -13.21436882019043 - ], - [ - "▁Geschwindigkeit", - -13.214680671691895 - ], - [ - "▁Panasonic", - -13.214680671691895 - ], - [ - "audio", - -13.214700698852539 - ], - [ - "▁Packaging", - -13.214771270751953 - ], - [ - "phra", - -13.2147798538208 - ], - [ - "▁Letzte", - -13.214954376220703 - ], - [ - "insicht", - -13.215141296386719 - ], - [ - "▁sammeln", - -13.215243339538574 - ], - [ - "▁extins", - -13.215259552001953 - ], - [ - "▁collège", - -13.215266227722168 - ], - [ - "ancies", - -13.215343475341797 - ], - [ - "▁întâlnit", - -13.215350151062012 - ], - [ - "▁Servi", - -13.215392112731934 - ], - [ - "stattet", - -13.215493202209473 - ], - [ - "▁abstraction", - -13.215566635131836 - ], - [ - "▁candidature", - -13.215592384338379 - ], - [ - "ONU", - -13.215676307678223 - ], - [ - "▁raffle", - -13.215826988220215 - ], - [ - "▁Soldier", - -13.215834617614746 - ], - [ - "▁stipulate", - -13.215883255004883 - ], - [ - "▁vizual", - -13.215950012207031 - ], - [ - "lucht", - -13.216007232666016 - ], - [ - "▁circus", - -13.216068267822266 - ], - [ - "▁decree", - -13.216259002685547 - ], - [ - "immeuble", - -13.216367721557617 - ], - [ - "Store", - -13.216426849365234 - ], - [ - "randul", - -13.216622352600098 - ], - [ - "▁narration", - -13.216933250427246 - ], - [ - "implication", - -13.216958045959473 - ], - [ - "▁discontinued", - -13.216971397399902 - ], - [ - "▁Pilates", - -13.216989517211914 - ], - [ - "▁biais", - -13.21701431274414 - ], - [ - "panel", - -13.217325210571289 - ], - [ - "▁mower", - -13.217458724975586 - ], - [ - "▁Castro", - -13.21753978729248 - ], - [ - "pregătire", - -13.217641830444336 - ], - [ - "▁denomination", - -13.218062400817871 - ], - [ - "▁throttle", - -13.21806526184082 - ], - [ - "▁finition", - -13.218086242675781 - ], - [ - "▁clarification", - -13.218286514282227 - ], - [ - "laut", - -13.218366622924805 - ], - [ - "▁wastewater", - -13.2184419631958 - ], - [ - "▁Sanchez", - -13.218770980834961 - ], - [ - "▁Umfeld", - -13.2189359664917 - ], - [ - "▁consili", - -13.218997955322266 - ], - [ - "extrait", - -13.219013214111328 - ], - [ - "ionism", - -13.2190523147583 - ], - [ - "▁Cannabis", - -13.219186782836914 - ], - [ - "▁misconduct", - -13.219186782836914 - ], - [ - "▁shepherd", - -13.219186782836914 - ], - [ - "▁feminist", - -13.21919059753418 - ], - [ - "▁criterii", - -13.219212532043457 - ], - [ - "America", - -13.219219207763672 - ], - [ - "▁Telephone", - -13.219270706176758 - ], - [ - "▁Fritz", - -13.219438552856445 - ], - [ - "▁cheltui", - -13.219794273376465 - ], - [ - "▁Übung", - -13.219857215881348 - ], - [ - "făcută", - -13.22006893157959 - ], - [ - "▁străzi", - -13.220170021057129 - ], - [ - "influencing", - -13.220315933227539 - ], - [ - "▁Democracy", - -13.220321655273438 - ], - [ - "atorium", - -13.220376014709473 - ], - [ - "▁Stufe", - -13.220465660095215 - ], - [ - "▁Cornell", - -13.220660209655762 - ], - [ - "zugehen", - -13.22074031829834 - ], - [ - "▁coton", - -13.220804214477539 - ], - [ - "▁beinhaltet", - -13.220881462097168 - ], - [ - "▁kritisch", - -13.220884323120117 - ], - [ - "▁Kalender", - -13.22105884552002 - ], - [ - "▁Teig", - -13.221253395080566 - ], - [ - "cooked", - -13.221264839172363 - ], - [ - "▁diversité", - -13.221390724182129 - ], - [ - "recognizable", - -13.221446990966797 - ], - [ - "▁Dictionary", - -13.221446990966797 - ], - [ - "attribution", - -13.22145938873291 - ], - [ - "▁Teresa", - -13.221471786499023 - ], - [ - "▁Ahmad", - -13.221487998962402 - ], - [ - "HAM", - -13.221627235412598 - ], - [ - "▁floss", - -13.221668243408203 - ], - [ - "génie", - -13.2218599319458 - ], - [ - "▁Espa", - -13.221989631652832 - ], - [ - "hersteller", - -13.221993446350098 - ], - [ - "Musée", - -13.222001075744629 - ], - [ - "▁Crawford", - -13.222579002380371 - ], - [ - "▁Phantom", - -13.222579002380371 - ], - [ - "▁Jenkins", - -13.222640037536621 - ], - [ - "genauer", - -13.222774505615234 - ], - [ - "▁acţiuni", - -13.222885131835938 - ], - [ - "▁meciuri", - -13.22322940826416 - ], - [ - "▁verstärkt", - -13.22326374053955 - ], - [ - "▁troop", - -13.22341251373291 - ], - [ - "räder", - -13.223483085632324 - ], - [ - "Putting", - -13.223536491394043 - ], - [ - "NASDAQ", - -13.223712921142578 - ], - [ - "▁Buddhism", - -13.223712921142578 - ], - [ - "▁Religious", - -13.223712921142578 - ], - [ - "▁accommodating", - -13.223712921142578 - ], - [ - "▁lendemain", - -13.223712921142578 - ], - [ - "▁plywood", - -13.223714828491211 - ], - [ - "▁inflatable", - -13.223724365234375 - ], - [ - "▁sèche", - -13.223731994628906 - ], - [ - "▁fragil", - -13.223845481872559 - ], - [ - "▁Filip", - -13.224115371704102 - ], - [ - "▁Terrace", - -13.224274635314941 - ], - [ - "Biblio", - -13.22432804107666 - ], - [ - "resides", - -13.22448444366455 - ], - [ - "▁varf", - -13.22451114654541 - ], - [ - "Bildern", - -13.224528312683105 - ], - [ - "loß", - -13.224685668945312 - ], - [ - "555", - -13.224702835083008 - ], - [ - "▁astounding", - -13.224847793579102 - ], - [ - "▁brillant", - -13.224857330322266 - ], - [ - "▁Railroad", - -13.224871635437012 - ], - [ - "minimizing", - -13.224907875061035 - ], - [ - "▁Benedict", - -13.225019454956055 - ], - [ - "▁$400", - -13.225068092346191 - ], - [ - "▁schematic", - -13.225217819213867 - ], - [ - "Canada", - -13.225371360778809 - ], - [ - "▁psihic", - -13.225415229797363 - ], - [ - "▁avertiz", - -13.225497245788574 - ], - [ - "▁Breed", - -13.225550651550293 - ], - [ - "▁gradina", - -13.225606918334961 - ], - [ - "▁Liege", - -13.225822448730469 - ], - [ - "▁Retirement", - -13.225983619689941 - ], - [ - "▁pergola", - -13.226005554199219 - ], - [ - "▁Kuwait", - -13.2260103225708 - ], - [ - "▁logistic", - -13.22629451751709 - ], - [ - "▁captive", - -13.22651481628418 - ], - [ - "prepared", - -13.226568222045898 - ], - [ - "▁prononc", - -13.226568222045898 - ], - [ - "Celui", - -13.226676940917969 - ], - [ - "deutschland", - -13.227120399475098 - ], - [ - "▁devreme", - -13.227124214172363 - ], - [ - "▁părți", - -13.227270126342773 - ], - [ - "▁1934", - -13.227517127990723 - ], - [ - "▁ersetzt", - -13.227560997009277 - ], - [ - "▁frightening", - -13.227689743041992 - ], - [ - "▁fiecărui", - -13.227819442749023 - ], - [ - "correct", - -13.22799015045166 - ], - [ - "6.6", - -13.228057861328125 - ], - [ - "▁Manitoba", - -13.228259086608887 - ], - [ - "Chartered", - -13.228416442871094 - ], - [ - "▁părăs", - -13.228543281555176 - ], - [ - "Powered", - -13.228697776794434 - ], - [ - "impede", - -13.22876262664795 - ], - [ - "agonist", - -13.22878646850586 - ], - [ - "▁stratégique", - -13.228829383850098 - ], - [ - "▁vigilant", - -13.228830337524414 - ], - [ - "faceted", - -13.228930473327637 - ], - [ - "available", - -13.229308128356934 - ], - [ - "▁Promise", - -13.229388236999512 - ], - [ - "▁humorous", - -13.229446411132812 - ], - [ - "treibt", - -13.229449272155762 - ], - [ - "▁Patrol", - -13.229514122009277 - ], - [ - "huh", - -13.229523658752441 - ], - [ - "ztlich", - -13.229804039001465 - ], - [ - "▁rejet", - -13.2299165725708 - ], - [ - "odeur", - -13.229935646057129 - ], - [ - "usziehbar", - -13.22996997833252 - ], - [ - "▁gespannt", - -13.229972839355469 - ], - [ - "church", - -13.230018615722656 - ], - [ - "▁Popescu", - -13.230109214782715 - ], - [ - "▁einmalig", - -13.230518341064453 - ], - [ - "diluted", - -13.230551719665527 - ], - [ - "lighted", - -13.231070518493652 - ], - [ - "▁stattfinden", - -13.23111343383789 - ], - [ - "▁Reaktion", - -13.231183052062988 - ], - [ - "▁délivr", - -13.23134994506836 - ], - [ - "▁Helfer", - -13.231407165527344 - ], - [ - "Fiind", - -13.23142147064209 - ], - [ - "rmând", - -13.231507301330566 - ], - [ - "▁Beweis", - -13.231671333312988 - ], - [ - "▁Violet", - -13.231733322143555 - ], - [ - "kamera", - -13.231764793395996 - ], - [ - "▁Romney", - -13.231779098510742 - ], - [ - "▁Bradford", - -13.231800079345703 - ], - [ - "stellbar", - -13.231852531433105 - ], - [ - "▁roadmap", - -13.231921195983887 - ], - [ - "▁subconscious", - -13.23204231262207 - ], - [ - "contrasting", - -13.232138633728027 - ], - [ - "mécanisme", - -13.232254981994629 - ], - [ - "kämpft", - -13.232255935668945 - ], - [ - "▁Preston", - -13.232719421386719 - ], - [ - "▁Anliegen", - -13.232802391052246 - ], - [ - "▁necessities", - -13.232827186584473 - ], - [ - "▁detrimental", - -13.232828140258789 - ], - [ - "▁sprawl", - -13.232830047607422 - ], - [ - "▁Erfüllung", - -13.23287582397461 - ], - [ - "▁massacre", - -13.2329683303833 - ], - [ - "▁pietre", - -13.232987403869629 - ], - [ - "▁situații", - -13.233027458190918 - ], - [ - "vêtement", - -13.233080863952637 - ], - [ - "Listed", - -13.233144760131836 - ], - [ - "▁extravagant", - -13.233399391174316 - ], - [ - "▁axle", - -13.233525276184082 - ], - [ - "OTT", - -13.233663558959961 - ], - [ - "wildly", - -13.233744621276855 - ], - [ - "70,000", - -13.233797073364258 - ], - [ - "▁chauffeur", - -13.23384952545166 - ], - [ - "▁Brasov", - -13.233972549438477 - ], - [ - "▁Fähigkeiten", - -13.233972549438477 - ], - [ - "▁staatlich", - -13.234025001525879 - ], - [ - "outlines", - -13.234034538269043 - ], - [ - "▁aufmerksam", - -13.234545707702637 - ], - [ - "▁Relation", - -13.234749794006348 - ], - [ - "▁Stephan", - -13.234947204589844 - ], - [ - "yland", - -13.23494815826416 - ], - [ - "proclaimed", - -13.235086441040039 - ], - [ - "Wallet", - -13.235100746154785 - ], - [ - "verarbeitung", - -13.235118865966797 - ], - [ - "▁überraschen", - -13.235118865966797 - ], - [ - "▁Injury", - -13.235125541687012 - ], - [ - "▁horsepower", - -13.235237121582031 - ], - [ - "▁Tropical", - -13.23523998260498 - ], - [ - "▁wives", - -13.235459327697754 - ], - [ - "adherence", - -13.235677719116211 - ], - [ - "schätzung", - -13.235692977905273 - ], - [ - "▁coherent", - -13.235708236694336 - ], - [ - "parlament", - -13.23574161529541 - ], - [ - "▁stup", - -13.235852241516113 - ], - [ - "▁resonance", - -13.23626708984375 - ], - [ - "▁inheritance", - -13.236355781555176 - ], - [ - "commenced", - -13.23645305633545 - ], - [ - "▁supervise", - -13.236475944519043 - ], - [ - "▁facilitator", - -13.236488342285156 - ], - [ - "fares", - -13.236678123474121 - ], - [ - "▁Tibet", - -13.23672866821289 - ], - [ - "communication", - -13.236787796020508 - ], - [ - "yog", - -13.236806869506836 - ], - [ - "▁WLAN", - -13.236842155456543 - ], - [ - "▁Chili", - -13.23685073852539 - ], - [ - "▁Harold", - -13.2369966506958 - ], - [ - "▁Guerre", - -13.237005233764648 - ], - [ - "▁Femme", - -13.237146377563477 - ], - [ - "▁Lisbon", - -13.237231254577637 - ], - [ - "▁mulțumi", - -13.237415313720703 - ], - [ - "▁vorbereitet", - -13.237415313720703 - ], - [ - "▁aperture", - -13.237422943115234 - ], - [ - "▁Universities", - -13.237442016601562 - ], - [ - "▁reckless", - -13.237471580505371 - ], - [ - "▁Botschaft", - -13.237533569335938 - ], - [ - "▁Squad", - -13.238022804260254 - ], - [ - "▁buoy", - -13.238061904907227 - ], - [ - "participarea", - -13.238236427307129 - ], - [ - "stiinta", - -13.238389015197754 - ], - [ - "▁repeal", - -13.238415718078613 - ], - [ - "drilled", - -13.238489151000977 - ], - [ - "▁Conversation", - -13.238567352294922 - ], - [ - "▁subsid", - -13.238615036010742 - ], - [ - "anstalt", - -13.238741874694824 - ], - [ - "faktor", - -13.23874282836914 - ], - [ - "▁swamp", - -13.238790512084961 - ], - [ - "pflichtig", - -13.238921165466309 - ], - [ - "▁camion", - -13.238970756530762 - ], - [ - "▁gouvern", - -13.239032745361328 - ], - [ - "▁archaeological", - -13.239141464233398 - ], - [ - "▁glitch", - -13.239198684692383 - ], - [ - "average", - -13.239294052124023 - ], - [ - "▁coffre", - -13.239481925964355 - ], - [ - "▁Insert", - -13.239513397216797 - ], - [ - "▁colonne", - -13.2395601272583 - ], - [ - "▁Assess", - -13.23962116241455 - ], - [ - "▁batches", - -13.239716529846191 - ], - [ - "▁ammunition", - -13.239717483520508 - ], - [ - "▁scissors", - -13.239717483520508 - ], - [ - "▁Locksmith", - -13.239740371704102 - ], - [ - "▁Bollywood", - -13.239991188049316 - ], - [ - "expédi", - -13.240288734436035 - ], - [ - "▁descendants", - -13.24039363861084 - ], - [ - "▁unwilling", - -13.240506172180176 - ], - [ - "▁Noise", - -13.240649223327637 - ], - [ - "▁Directive", - -13.240660667419434 - ], - [ - "ATOR", - -13.240765571594238 - ], - [ - "▁Rajasthan", - -13.240870475769043 - ], - [ - "▁chaotic", - -13.240888595581055 - ], - [ - "▁NEED", - -13.24093246459961 - ], - [ - "▁părere", - -13.24095344543457 - ], - [ - "▁begonnen", - -13.241448402404785 - ], - [ - "▁Reef", - -13.241504669189453 - ], - [ - "▁vorgesehen", - -13.24161434173584 - ], - [ - "▁allocate", - -13.241826057434082 - ], - [ - "▁exceptionnel", - -13.241936683654785 - ], - [ - "▁gefertigt", - -13.24203872680664 - ], - [ - "fading", - -13.242072105407715 - ], - [ - "▁interpersonal", - -13.242178916931152 - ], - [ - "▁occupie", - -13.242204666137695 - ], - [ - "▁Teatr", - -13.242579460144043 - ], - [ - "▁kilomètres", - -13.242603302001953 - ], - [ - "▁verbinden", - -13.242608070373535 - ], - [ - "▁Frucht", - -13.242643356323242 - ], - [ - "augmented", - -13.242720603942871 - ], - [ - "▁twentieth", - -13.243181228637695 - ], - [ - "▁aggression", - -13.243183135986328 - ], - [ - "▁Miracle", - -13.243184089660645 - ], - [ - "▁peninsula", - -13.243184089660645 - ], - [ - "▁Fernando", - -13.243185043334961 - ], - [ - "▁autorităţil", - -13.243203163146973 - ], - [ - "▁Iisus", - -13.243217468261719 - ], - [ - "▁puck", - -13.243423461914062 - ], - [ - "titel", - -13.243454933166504 - ], - [ - "▁remake", - -13.243562698364258 - ], - [ - "freiheit", - -13.243563652038574 - ], - [ - "▁Belize", - -13.243590354919434 - ], - [ - "▁secundar", - -13.243779182434082 - ], - [ - "▁perpetrat", - -13.243786811828613 - ], - [ - "jedenfalls", - -13.243797302246094 - ], - [ - "linked", - -13.243820190429688 - ], - [ - "▁dégag", - -13.243918418884277 - ], - [ - "LAY", - -13.243926048278809 - ], - [ - "behandlung", - -13.244172096252441 - ], - [ - "▁1928", - -13.244193077087402 - ], - [ - "▁Nickel", - -13.244205474853516 - ], - [ - "rophy", - -13.244256973266602 - ], - [ - "▁autonomy", - -13.244338989257812 - ], - [ - "▁Treffen", - -13.244402885437012 - ], - [ - "▁groundbreaking", - -13.24445915222168 - ], - [ - "politisch", - -13.244484901428223 - ], - [ - "▁Vector", - -13.244553565979004 - ], - [ - "oricine", - -13.244684219360352 - ], - [ - "utilisées", - -13.244684219360352 - ], - [ - "plete", - -13.244771003723145 - ], - [ - "droht", - -13.244918823242188 - ], - [ - "▁alternativ", - -13.245104789733887 - ], - [ - "▁Bernie", - -13.245213508605957 - ], - [ - "▁embellish", - -13.245260238647461 - ], - [ - "▁Curriculum", - -13.24549674987793 - ], - [ - "herrscht", - -13.245525360107422 - ], - [ - "escalier", - -13.246126174926758 - ], - [ - "hian", - -13.246333122253418 - ], - [ - "ertaining", - -13.246387481689453 - ], - [ - "hitter", - -13.246430397033691 - ], - [ - "▁kompetente", - -13.24665641784668 - ], - [ - "▁trekking", - -13.246760368347168 - ], - [ - "EACH", - -13.246841430664062 - ], - [ - "▁Bedien", - -13.2470703125 - ], - [ - "starred", - -13.247169494628906 - ], - [ - "▁săptămâna", - -13.247236251831055 - ], - [ - "▁Gratuit", - -13.247239112854004 - ], - [ - "▁Jahrzehnte", - -13.247241020202637 - ], - [ - "ingénieur", - -13.24731731414795 - ], - [ - "▁Huang", - -13.24736213684082 - ], - [ - "Music", - -13.247401237487793 - ], - [ - "misiei", - -13.247544288635254 - ], - [ - "▁masuri", - -13.247733116149902 - ], - [ - "▁Achievement", - -13.247817039489746 - ], - [ - "▁Dorothy", - -13.247817039489746 - ], - [ - "blätter", - -13.247817993164062 - ], - [ - "éloign", - -13.247817993164062 - ], - [ - "▁Anglia", - -13.247990608215332 - ], - [ - "brach", - -13.248013496398926 - ], - [ - "▁Optimization", - -13.248085021972656 - ], - [ - "6.7", - -13.248170852661133 - ], - [ - "winkel", - -13.248210906982422 - ], - [ - "contenan", - -13.248347282409668 - ], - [ - "Astăzi", - -13.248398780822754 - ], - [ - "wiped", - -13.248441696166992 - ], - [ - "granting", - -13.248665809631348 - ], - [ - "▁plăti", - -13.248859405517578 - ], - [ - "▁Compensation", - -13.248979568481445 - ], - [ - "▁Verkäufer", - -13.248979568481445 - ], - [ - "▁angajați", - -13.248980522155762 - ], - [ - "▁diminished", - -13.24902057647705 - ], - [ - "employment", - -13.249250411987305 - ], - [ - "yahoo", - -13.249435424804688 - ], - [ - "▁détrui", - -13.249698638916016 - ], - [ - "▁suffisant", - -13.24982738494873 - ], - [ - "▁Moldovei", - -13.250144004821777 - ], - [ - "▁Pokemon", - -13.250144004821777 - ], - [ - "▁Malcolm", - -13.250144958496094 - ], - [ - "▁mysteries", - -13.250147819519043 - ], - [ - "▁Diversity", - -13.250149726867676 - ], - [ - "▁clinique", - -13.250327110290527 - ], - [ - "landais", - -13.250344276428223 - ], - [ - "▁campanii", - -13.250399589538574 - ], - [ - "▁témoignage", - -13.250439643859863 - ], - [ - "▁paralel", - -13.250467300415039 - ], - [ - "▁travailleurs", - -13.250576972961426 - ], - [ - "▁salvage", - -13.250580787658691 - ], - [ - "▁crayon", - -13.250732421875 - ], - [ - "immédiat", - -13.25085163116455 - ], - [ - "hopped", - -13.250958442687988 - ], - [ - "▁senzor", - -13.25102710723877 - ], - [ - "▁imbunatati", - -13.251073837280273 - ], - [ - "▁capitalize", - -13.2511568069458 - ], - [ - "▁Elephant", - -13.25130844116211 - ], - [ - "▁insomnia", - -13.25131607055664 - ], - [ - "▁Ansicht", - -13.251325607299805 - ], - [ - "▁lupte", - -13.251556396484375 - ], - [ - "▁genomic", - -13.251557350158691 - ], - [ - "▁Grape", - -13.251769065856934 - ], - [ - "MONT", - -13.25197982788086 - ], - [ - "métiers", - -13.252004623413086 - ], - [ - "▁Pierce", - -13.252123832702637 - ], - [ - "consulted", - -13.252388954162598 - ], - [ - "▁Responsible", - -13.252474784851074 - ], - [ - "symmetry", - -13.252476692199707 - ], - [ - "▁sulfur", - -13.252487182617188 - ], - [ - "▁înapoi", - -13.252510070800781 - ], - [ - "▁Junction", - -13.252549171447754 - ], - [ - "▁trilogy", - -13.252622604370117 - ], - [ - "▁unkompliziert", - -13.253059387207031 - ], - [ - "▁zugänglich", - -13.253059387207031 - ], - [ - "▁préfèr", - -13.253153800964355 - ], - [ - "oarelor", - -13.253361701965332 - ], - [ - "langage", - -13.253460884094238 - ], - [ - "admired", - -13.253589630126953 - ], - [ - "platform", - -13.253595352172852 - ], - [ - "▁pluralit", - -13.253616333007812 - ], - [ - "▁betrachtet", - -13.253643035888672 - ], - [ - "▁reproduc", - -13.253790855407715 - ], - [ - "exemple", - -13.25385570526123 - ], - [ - "▁conspir", - -13.254347801208496 - ], - [ - "▁pelvi", - -13.25437068939209 - ], - [ - "leased", - -13.254551887512207 - ], - [ - "▁souffle", - -13.254570960998535 - ], - [ - "▁approprié", - -13.254705429077148 - ], - [ - "absorbing", - -13.254817962646484 - ], - [ - "dividing", - -13.254855155944824 - ], - [ - "herently", - -13.255147933959961 - ], - [ - "▁blister", - -13.255179405212402 - ], - [ - "löst", - -13.255182266235352 - ], - [ - "Apotheke", - -13.255398750305176 - ], - [ - "▁Asociaţi", - -13.255424499511719 - ], - [ - "education", - -13.255904197692871 - ], - [ - "▁retract", - -13.255982398986816 - ], - [ - "▁appraise", - -13.255990982055664 - ], - [ - "▁Debbie", - -13.256075859069824 - ], - [ - "▁arhitect", - -13.256193161010742 - ], - [ - "▁Mohamed", - -13.256568908691406 - ], - [ - "▁îndrept", - -13.256568908691406 - ], - [ - "▁exhaustive", - -13.256753921508789 - ], - [ - "▁Notebook", - -13.257004737854004 - ], - [ - "crashing", - -13.257068634033203 - ], - [ - "▁Betreiber", - -13.257155418395996 - ], - [ - "▁présidentielle", - -13.257159233093262 - ], - [ - "▁Träger", - -13.257172584533691 - ], - [ - "▁noteworthy", - -13.257259368896484 - ], - [ - "▁séparé", - -13.257729530334473 - ], - [ - "▁doppelt", - -13.257795333862305 - ], - [ - "tină", - -13.258066177368164 - ], - [ - "Quelques", - -13.258085250854492 - ], - [ - "culoarea", - -13.258100509643555 - ], - [ - "▁ethic", - -13.258166313171387 - ], - [ - "▁cohesive", - -13.258329391479492 - ], - [ - "▁congratulations", - -13.258334159851074 - ], - [ - "▁sovereignty", - -13.25833797454834 - ], - [ - "▁Aplica", - -13.258413314819336 - ], - [ - "▁Covenant", - -13.25851058959961 - ], - [ - "▁multicultural", - -13.258591651916504 - ], - [ - "assemblée", - -13.258955001831055 - ], - [ - "▁petals", - -13.258974075317383 - ], - [ - "erode", - -13.259026527404785 - ], - [ - "▁porumb", - -13.259035110473633 - ], - [ - "▁Barrier", - -13.259050369262695 - ], - [ - "▁WWE", - -13.259085655212402 - ], - [ - "Etwa", - -13.259175300598145 - ], - [ - "▁recunosc", - -13.259271621704102 - ], - [ - "▁turtle", - -13.259415626525879 - ], - [ - "▁vârf", - -13.259444236755371 - ], - [ - "▁Ranking", - -13.259448051452637 - ], - [ - "▁sympathetic", - -13.259514808654785 - ], - [ - "exploded", - -13.2595796585083 - ], - [ - "▁influenț", - -13.259591102600098 - ], - [ - "▁Fireplace", - -13.25972843170166 - ], - [ - "▁Nachwuchs", - -13.260090827941895 - ], - [ - "▁empfohlen", - -13.260090827941895 - ], - [ - "Voir", - -13.260661125183105 - ], - [ - "▁Vimeo", - -13.26069164276123 - ], - [ - "▁weaving", - -13.260967254638672 - ], - [ - "beneficiar", - -13.261198043823242 - ], - [ - "▁balade", - -13.261216163635254 - ], - [ - "▁Mercy", - -13.261566162109375 - ], - [ - "3.000", - -13.26181697845459 - ], - [ - "Immediately", - -13.261857032775879 - ], - [ - "▁frosting", - -13.261868476867676 - ], - [ - "▁Fiscal", - -13.261882781982422 - ], - [ - "downloadable", - -13.26188850402832 - ], - [ - "▁Hwy", - -13.261902809143066 - ], - [ - "évoluer", - -13.261951446533203 - ], - [ - "▁vieille", - -13.2620210647583 - ], - [ - "heißen", - -13.262436866760254 - ], - [ - "▁étrangère", - -13.262446403503418 - ], - [ - "▁incapable", - -13.262490272521973 - ], - [ - "volunteered", - -13.262520790100098 - ], - [ - "fortunately", - -13.262564659118652 - ], - [ - "company", - -13.262738227844238 - ], - [ - "denkt", - -13.2627592086792 - ], - [ - "▁citesc", - -13.262818336486816 - ], - [ - "▁intrebare", - -13.262896537780762 - ], - [ - "pleasantly", - -13.262990951538086 - ], - [ - "▁Minecraft", - -13.263079643249512 - ], - [ - "▁Schmuck", - -13.26308536529541 - ], - [ - "▁maghiar", - -13.263099670410156 - ], - [ - "conductive", - -13.263339042663574 - ], - [ - "décrit", - -13.263534545898438 - ], - [ - "provide", - -13.26353931427002 - ], - [ - "▁depăş", - -13.263628959655762 - ], - [ - "ituated", - -13.263657569885254 - ], - [ - "▁trumpet", - -13.264216423034668 - ], - [ - "▁nastere", - -13.2642240524292 - ], - [ - "▁Région", - -13.264245986938477 - ], - [ - "Occupational", - -13.264411926269531 - ], - [ - "▁Grecia", - -13.264415740966797 - ], - [ - "▁Conclusion", - -13.26449203491211 - ], - [ - "▁collaborateurs", - -13.264927864074707 - ], - [ - "▁Alibaba", - -13.265398025512695 - ], - [ - "▁amplasat", - -13.265398979187012 - ], - [ - "▁Plastik", - -13.265992164611816 - ], - [ - "▁stash", - -13.266023635864258 - ], - [ - "▁Bonnie", - -13.266045570373535 - ], - [ - "▁ehrlich", - -13.266156196594238 - ], - [ - "▁contention", - -13.266193389892578 - ], - [ - "▁Oslo", - -13.266263008117676 - ], - [ - "englische", - -13.266319274902344 - ], - [ - "measurable", - -13.266439437866211 - ], - [ - "loppy", - -13.266470909118652 - ], - [ - "▁Refrigerat", - -13.266579627990723 - ], - [ - "▁remboursement", - -13.266580581665039 - ], - [ - "▁societăţi", - -13.266580581665039 - ], - [ - "translates", - -13.266607284545898 - ], - [ - "ichtigkeit", - -13.266685485839844 - ], - [ - "agentur", - -13.266741752624512 - ], - [ - "▁compute", - -13.266800880432129 - ], - [ - "berater", - -13.266921043395996 - ], - [ - "▁Georgetown", - -13.266945838928223 - ], - [ - "wolves", - -13.266951560974121 - ], - [ - "ceased", - -13.266959190368652 - ], - [ - "▁Binary", - -13.267030715942383 - ], - [ - "▁kontrolliert", - -13.267172813415527 - ], - [ - "informer", - -13.267416000366211 - ], - [ - "lehrer", - -13.267578125 - ], - [ - "lieferung", - -13.267709732055664 - ], - [ - "▁definit", - -13.267742156982422 - ], - [ - "chèque", - -13.267765045166016 - ], - [ - "▁clergy", - -13.267765045166016 - ], - [ - "▁ministries", - -13.267767906188965 - ], - [ - "▁plague", - -13.267779350280762 - ], - [ - "▁Jedi", - -13.267805099487305 - ], - [ - "▁Blackjack", - -13.268025398254395 - ], - [ - "▁subsection", - -13.26807689666748 - ], - [ - "▁Sachsen", - -13.268121719360352 - ], - [ - "valorile", - -13.268146514892578 - ], - [ - "molded", - -13.26816463470459 - ], - [ - "▁betroffen", - -13.268183708190918 - ], - [ - "▁adecvat", - -13.268229484558105 - ], - [ - "▁collègue", - -13.26835823059082 - ], - [ - "▁chinez", - -13.268392562866211 - ], - [ - "emelle", - -13.268695831298828 - ], - [ - "▁körperliche", - -13.268902778625488 - ], - [ - "▁titan", - -13.26891040802002 - ], - [ - "▁sophistication", - -13.268951416015625 - ], - [ - "▁provoke", - -13.268957138061523 - ], - [ - "▁pensii", - -13.269042015075684 - ], - [ - "▁Tucker", - -13.269377708435059 - ], - [ - "▁motoare", - -13.26943302154541 - ], - [ - "supported", - -13.269536972045898 - ], - [ - "▁Sicil", - -13.269697189331055 - ], - [ - "▁Ausgangs", - -13.26987361907959 - ], - [ - "▁verletzt", - -13.269908905029297 - ], - [ - "Ligue", - -13.269996643066406 - ], - [ - "▁organizatori", - -13.270026206970215 - ], - [ - "▁apprentice", - -13.270099639892578 - ], - [ - "▁Potato", - -13.270183563232422 - ], - [ - "▁Duft", - -13.27039623260498 - ], - [ - "▁medicament", - -13.270566940307617 - ], - [ - "Hôtel", - -13.270740509033203 - ], - [ - "▁Triangle", - -13.270842552185059 - ], - [ - "buted", - -13.271100044250488 - ], - [ - "▁Bentley", - -13.271336555480957 - ], - [ - "următoarele", - -13.271389961242676 - ], - [ - "animate", - -13.271404266357422 - ], - [ - "megapixel", - -13.271404266357422 - ], - [ - "einfachen", - -13.271514892578125 - ], - [ - "▁performanț", - -13.271544456481934 - ], - [ - "lurry", - -13.27184009552002 - ], - [ - "suffisamment", - -13.27192211151123 - ], - [ - "▁Weihnachten", - -13.27192211151123 - ], - [ - "▁Detective", - -13.27194595336914 - ], - [ - "▁lovit", - -13.272049903869629 - ], - [ - "▁blouse", - -13.27213191986084 - ], - [ - "▁hartie", - -13.272163391113281 - ], - [ - "vro", - -13.27225112915039 - ], - [ - "▁disastrous", - -13.272517204284668 - ], - [ - "vermutlich", - -13.2725191116333 - ], - [ - "▁Stafford", - -13.272527694702148 - ], - [ - "ehlt", - -13.272628784179688 - ], - [ - "▁vielseitig", - -13.272643089294434 - ], - [ - "Manifest", - -13.273274421691895 - ], - [ - "homage", - -13.27354907989502 - ], - [ - "menée", - -13.273566246032715 - ], - [ - "▁erläuter", - -13.27370834350586 - ], - [ - "▁volontaire", - -13.273709297180176 - ], - [ - "wrought", - -13.27371597290039 - ], - [ - "▁Naples", - -13.273719787597656 - ], - [ - "recommending", - -13.273759841918945 - ], - [ - "▁thermique", - -13.273774147033691 - ], - [ - "▁subtitle", - -13.273787498474121 - ], - [ - "▁Slam", - -13.273809432983398 - ], - [ - "▁necesitate", - -13.273809432983398 - ], - [ - "trimmed", - -13.274099349975586 - ], - [ - "urmatoarele", - -13.274178504943848 - ], - [ - "▁Sorin", - -13.274245262145996 - ], - [ - "▁compromis", - -13.274300575256348 - ], - [ - "overcoming", - -13.274477005004883 - ], - [ - "▁Samantha", - -13.274901390075684 - ], - [ - "dazzling", - -13.27490234375 - ], - [ - "▁Pearson", - -13.274903297424316 - ], - [ - "▁glazing", - -13.274911880493164 - ], - [ - "Revelation", - -13.274921417236328 - ], - [ - "destinée", - -13.275156021118164 - ], - [ - "öffnet", - -13.27515983581543 - ], - [ - "CERT", - -13.275327682495117 - ], - [ - "▁Sneak", - -13.275503158569336 - ], - [ - "proiectele", - -13.275605201721191 - ], - [ - "▁longitudinal", - -13.27609634399414 - ], - [ - "▁cocaine", - -13.276098251342773 - ], - [ - "▁universitar", - -13.276108741760254 - ], - [ - "▁refreshments", - -13.276166915893555 - ], - [ - "▁instanţ", - -13.276243209838867 - ], - [ - "▁kostenfrei", - -13.276397705078125 - ], - [ - "▁comédie", - -13.276451110839844 - ], - [ - "▁Locat", - -13.276725769042969 - ], - [ - "▁Albania", - -13.276732444763184 - ], - [ - "▁mécanique", - -13.276776313781738 - ], - [ - "messung", - -13.27683162689209 - ], - [ - "issus", - -13.277260780334473 - ], - [ - "pinned", - -13.277328491210938 - ], - [ - "▁sanft", - -13.277335166931152 - ], - [ - "▁geprüft", - -13.277435302734375 - ], - [ - "▁procè", - -13.277442932128906 - ], - [ - "▁Üb", - -13.277765274047852 - ], - [ - "5-0", - -13.277802467346191 - ], - [ - "▁Catering", - -13.277957916259766 - ], - [ - "▁prosperous", - -13.27801513671875 - ], - [ - "▁replication", - -13.278098106384277 - ], - [ - "▁obese", - -13.278441429138184 - ], - [ - "clerosis", - -13.278489112854004 - ], - [ - "▁Carnegie", - -13.278489112854004 - ], - [ - "▁Incredible", - -13.278489112854004 - ], - [ - "▁Teppich", - -13.278489112854004 - ], - [ - "▁crunchy", - -13.278489112854004 - ], - [ - "▁vomiting", - -13.278529167175293 - ], - [ - "▁sourire", - -13.278619766235352 - ], - [ - "publish", - -13.278948783874512 - ], - [ - "▁exterioar", - -13.279094696044922 - ], - [ - "▁forehead", - -13.279107093811035 - ], - [ - "▁climatique", - -13.279313087463379 - ], - [ - "▁conservator", - -13.279458999633789 - ], - [ - "▁Russland", - -13.279687881469727 - ], - [ - "▁kombiniert", - -13.279687881469727 - ], - [ - "▁Thrones", - -13.279688835144043 - ], - [ - "▁Griffith", - -13.27968978881836 - ], - [ - "▁fragrant", - -13.279695510864258 - ], - [ - "▁RSVP", - -13.279698371887207 - ], - [ - "klima", - -13.279751777648926 - ], - [ - "▁situație", - -13.279808044433594 - ], - [ - "deschiderea", - -13.280009269714355 - ], - [ - "▁moale", - -13.280033111572266 - ], - [ - "▁Trevor", - -13.280112266540527 - ], - [ - "ménager", - -13.28011417388916 - ], - [ - "deploying", - -13.280428886413574 - ], - [ - "▁Loft", - -13.280500411987305 - ], - [ - "▁Willkommen", - -13.28059196472168 - ], - [ - "▁Bezirks", - -13.280887603759766 - ], - [ - "▁Himself", - -13.280975341796875 - ], - [ - "▁quarant", - -13.28101634979248 - ], - [ - "▁1901", - -13.281079292297363 - ], - [ - "▁tripod", - -13.28136920928955 - ], - [ - "▁récolt", - -13.281553268432617 - ], - [ - "natură", - -13.281631469726562 - ], - [ - "School", - -13.281649589538574 - ], - [ - "contested", - -13.281773567199707 - ], - [ - "bwohl", - -13.281784057617188 - ], - [ - "Darren", - -13.281830787658691 - ], - [ - "medicine", - -13.281903266906738 - ], - [ - "▁Impuls", - -13.282041549682617 - ], - [ - "prevailing", - -13.282057762145996 - ], - [ - "▁orthodontic", - -13.282089233398438 - ], - [ - "▁sequential", - -13.282089233398438 - ], - [ - "▁Kolkata", - -13.28209114074707 - ], - [ - "▁séch", - -13.282100677490234 - ], - [ - "▁diaper", - -13.28212833404541 - ], - [ - "▁simplifie", - -13.282144546508789 - ], - [ - "▁reflux", - -13.282163619995117 - ], - [ - "▁Hypo", - -13.282242774963379 - ], - [ - "imprimer", - -13.282251358032227 - ], - [ - "▁Folosi", - -13.282401084899902 - ], - [ - "Info", - -13.282570838928223 - ], - [ - "▁Investiga", - -13.282801628112793 - ], - [ - "stabilirea", - -13.282845497131348 - ], - [ - "élis", - -13.283149719238281 - ], - [ - "ccessed", - -13.28320026397705 - ], - [ - "▁recyclable", - -13.283293724060059 - ], - [ - "▁forbidden", - -13.283295631408691 - ], - [ - "▁Colonel", - -13.283297538757324 - ], - [ - "▁nisip", - -13.28330135345459 - ], - [ - "▁Fundamental", - -13.283303260803223 - ], - [ - "▁nouveauté", - -13.283308029174805 - ], - [ - "khi", - -13.283357620239258 - ], - [ - "▁ecology", - -13.28339672088623 - ], - [ - "▁filament", - -13.283540725708008 - ], - [ - "▁relentless", - -13.283559799194336 - ], - [ - "▁Behavior", - -13.283669471740723 - ], - [ - "titulaire", - -13.283900260925293 - ], - [ - "▁administrativ", - -13.28404426574707 - ], - [ - "▁Vorlage", - -13.284209251403809 - ], - [ - "zeigte", - -13.28427791595459 - ], - [ - "▁Bäume", - -13.284497261047363 - ], - [ - "▁Kartoffel", - -13.284497261047363 - ], - [ - "▁Possible", - -13.284500122070312 - ], - [ - "▁perturb", - -13.28466510772705 - ], - [ - "▁Grigor", - -13.284717559814453 - ], - [ - "▁streng", - -13.284759521484375 - ], - [ - "▁vânzare", - -13.285101890563965 - ], - [ - "concentrating", - -13.285698890686035 - ], - [ - "▁rechtzeitig", - -13.2857027053833 - ], - [ - "▁eternity", - -13.28570556640625 - ], - [ - "▁Puzzle", - -13.28575611114502 - ], - [ - "▁malade", - -13.285775184631348 - ], - [ - "▁Metallic", - -13.285776138305664 - ], - [ - "▁Unterhaltung", - -13.285783767700195 - ], - [ - "▁4:00", - -13.285820960998535 - ], - [ - "▁magique", - -13.285908699035645 - ], - [ - "▁cellphone", - -13.285975456237793 - ], - [ - "▁inhibition", - -13.286023139953613 - ], - [ - "▁remplacement", - -13.286025047302246 - ], - [ - "▁WWII", - -13.286089897155762 - ], - [ - "Eff", - -13.286258697509766 - ], - [ - "kontakt", - -13.286832809448242 - ], - [ - "Update", - -13.286869049072266 - ], - [ - "▁Emerald", - -13.286910057067871 - ], - [ - "▁hammock", - -13.286910057067871 - ], - [ - "POWER", - -13.286917686462402 - ], - [ - "automne", - -13.286917686462402 - ], - [ - "▁(2004)", - -13.286961555480957 - ], - [ - "▁participanți", - -13.287012100219727 - ], - [ - "1998)", - -13.287014961242676 - ], - [ - "▁deletion", - -13.287186622619629 - ], - [ - "▁Proiect", - -13.287226676940918 - ], - [ - "IDENT", - -13.287504196166992 - ], - [ - "▁precis", - -13.287623405456543 - ], - [ - "▁limp", - -13.287676811218262 - ], - [ - "▁Pompe", - -13.287686347961426 - ], - [ - "▁ménage", - -13.28780746459961 - ], - [ - "▁Wahrheit", - -13.288119316101074 - ], - [ - "▁Intelligent", - -13.28812026977539 - ], - [ - "▁instability", - -13.2881441116333 - ], - [ - "insurance", - -13.288346290588379 - ], - [ - "▁Nursery", - -13.288352966308594 - ], - [ - "▁synonym", - -13.288427352905273 - ], - [ - "▁ignite", - -13.28848934173584 - ], - [ - "▁Vernon", - -13.28849983215332 - ], - [ - "purchase", - -13.288524627685547 - ], - [ - "▁disponibilité", - -13.288662910461426 - ], - [ - "▁producţi", - -13.28909969329834 - ], - [ - "▁Pentagon", - -13.289329528808594 - ], - [ - "▁illumination", - -13.289329528808594 - ], - [ - "▁obsolete", - -13.289329528808594 - ], - [ - "▁unacceptable", - -13.28933048248291 - ], - [ - "Gleichzeitig", - -13.289938926696777 - ], - [ - "rutsch", - -13.290071487426758 - ], - [ - "viziuni", - -13.290409088134766 - ], - [ - "▁Nicaragua", - -13.29054069519043 - ], - [ - "▁hesitation", - -13.290541648864746 - ], - [ - "▁nascut", - -13.290545463562012 - ], - [ - "▁Warehouse", - -13.29055404663086 - ], - [ - "geboten", - -13.290558815002441 - ], - [ - "▁Lagos", - -13.290844917297363 - ], - [ - "produced", - -13.290874481201172 - ], - [ - "cativa", - -13.291309356689453 - ], - [ - "▁Tracy", - -13.291326522827148 - ], - [ - "Projekt", - -13.291468620300293 - ], - [ - "▁malaria", - -13.291692733764648 - ], - [ - "▁Baldwin", - -13.291755676269531 - ], - [ - "Take", - -13.291791915893555 - ], - [ - "▁fluctuations", - -13.291844367980957 - ], - [ - "▁titular", - -13.29194450378418 - ], - [ - "bmw", - -13.291976928710938 - ], - [ - "▁brevet", - -13.29202651977539 - ], - [ - "étapes", - -13.292173385620117 - ], - [ - "wikipedia", - -13.292373657226562 - ], - [ - "▁corporal", - -13.292424201965332 - ], - [ - "▁Schönheit", - -13.2926664352417 - ], - [ - "utilizatorii", - -13.292695999145508 - ], - [ - "INFO", - -13.292807579040527 - ], - [ - "▁formularul", - -13.292900085449219 - ], - [ - "femi", - -13.292959213256836 - ], - [ - "Konferenz", - -13.29296875 - ], - [ - "▁carnival", - -13.29296875 - ], - [ - "▁Kräuter", - -13.292969703674316 - ], - [ - "▁gelernt", - -13.292981147766113 - ], - [ - "▁Sherman", - -13.293017387390137 - ], - [ - "▁persistence", - -13.293289184570312 - ], - [ - "▁Behörden", - -13.293577194213867 - ], - [ - "▁Frühjahr", - -13.293578147888184 - ], - [ - "▁Guvern", - -13.293649673461914 - ], - [ - "interpreting", - -13.293878555297852 - ], - [ - "▁nommé", - -13.294021606445312 - ], - [ - "consult", - -13.294035911560059 - ], - [ - "▁obligaţi", - -13.294184684753418 - ], - [ - "▁Newspaper", - -13.2942476272583 - ], - [ - "(2005)", - -13.294515609741211 - ], - [ - "pumped", - -13.294614791870117 - ], - [ - "▁autoritati", - -13.294634819030762 - ], - [ - "▁aplicatii", - -13.294644355773926 - ], - [ - "▁verhindert", - -13.294794082641602 - ], - [ - "▁évident", - -13.294794082641602 - ], - [ - "▁getrennt", - -13.294795036315918 - ], - [ - "▁Encourage", - -13.295403480529785 - ], - [ - "▁lurk", - -13.295432090759277 - ], - [ - "▁condemned", - -13.295455932617188 - ], - [ - "▁4:30", - -13.295502662658691 - ], - [ - "labelled", - -13.29576587677002 - ], - [ - "ordinea", - -13.295899391174316 - ], - [ - "▁pantofi", - -13.296012878417969 - ], - [ - "Default", - -13.296042442321777 - ], - [ - "▁beruh", - -13.296120643615723 - ], - [ - "/01/", - -13.296268463134766 - ], - [ - "league", - -13.296503067016602 - ], - [ - "▁couvert", - -13.296524047851562 - ], - [ - "▁competencies", - -13.296622276306152 - ], - [ - "▁mozzarella", - -13.296622276306152 - ], - [ - "jihad", - -13.29662799835205 - ], - [ - "▁gossip", - -13.29662799835205 - ], - [ - "▁Omaha", - -13.296628952026367 - ], - [ - "▁coincidence", - -13.296669960021973 - ], - [ - "▁Pinot", - -13.296710968017578 - ], - [ - "dotted", - -13.296789169311523 - ], - [ - "schilder", - -13.297197341918945 - ], - [ - "▁Munte", - -13.297224998474121 - ], - [ - "▁Vermieter", - -13.297232627868652 - ], - [ - "▁britannique", - -13.297232627868652 - ], - [ - "▁comentariu", - -13.297235488891602 - ], - [ - "abonnement", - -13.29725456237793 - ], - [ - "▁inventive", - -13.29727840423584 - ], - [ - "complie", - -13.297279357910156 - ], - [ - "composée", - -13.29734992980957 - ], - [ - "▁glatt", - -13.297684669494629 - ], - [ - "adorned", - -13.297842979431152 - ], - [ - "▁Opportunities", - -13.297842979431152 - ], - [ - "▁equilibrium", - -13.297842979431152 - ], - [ - "▁persuasive", - -13.297842979431152 - ], - [ - "▁achiziţi", - -13.297843933105469 - ], - [ - "▁déterminer", - -13.297843933105469 - ], - [ - "▁fleece", - -13.297857284545898 - ], - [ - "▁ivory", - -13.29786205291748 - ], - [ - "▁Genuss", - -13.297900199890137 - ], - [ - "Thousands", - -13.297930717468262 - ], - [ - "▁izolat", - -13.297965049743652 - ], - [ - "▁symbolize", - -13.298033714294434 - ], - [ - "gâteau", - -13.298051834106445 - ], - [ - "▁relații", - -13.298062324523926 - ], - [ - "▁Classroom", - -13.298144340515137 - ], - [ - "settlers", - -13.298155784606934 - ], - [ - "▁vremuri", - -13.298195838928223 - ], - [ - "▁Serial", - -13.29838752746582 - ], - [ - "▁boite", - -13.298399925231934 - ], - [ - "équivalent", - -13.298453330993652 - ], - [ - "▁benutzen", - -13.298454284667969 - ], - [ - "▁Recomand", - -13.298462867736816 - ], - [ - "▁Sinai", - -13.298968315124512 - ], - [ - "▁Advertise", - -13.29906940460205 - ], - [ - "▁Thermal", - -13.299206733703613 - ], - [ - "fiance", - -13.299471855163574 - ], - [ - "▁universitaire", - -13.299683570861816 - ], - [ - "▁rivière", - -13.299793243408203 - ], - [ - "▁reimburse", - -13.299907684326172 - ], - [ - "ţara", - -13.299932479858398 - ], - [ - "tician", - -13.30002498626709 - ], - [ - "intelligence", - -13.300041198730469 - ], - [ - "▁abgestimmt", - -13.300288200378418 - ], - [ - "▁compliqué", - -13.300288200378418 - ], - [ - "▁succulent", - -13.300297737121582 - ], - [ - "opéra", - -13.300395011901855 - ], - [ - "7-9", - -13.300456047058105 - ], - [ - "▁pierderi", - -13.300654411315918 - ], - [ - "extinction", - -13.30090045928955 - ], - [ - "▁Zweifel", - -13.30103874206543 - ], - [ - "ATCH", - -13.30112361907959 - ], - [ - "10,000", - -13.301222801208496 - ], - [ - "▁uninterrupted", - -13.301513671875 - ], - [ - "▁Eigentum", - -13.301517486572266 - ], - [ - "▁Utility", - -13.301517486572266 - ], - [ - "ско", - -13.301529884338379 - ], - [ - "▁tornado", - -13.301544189453125 - ], - [ - "▁Güte", - -13.301727294921875 - ], - [ - "▁pertain", - -13.301923751831055 - ], - [ - "painters", - -13.301993370056152 - ], - [ - "Help", - -13.3021240234375 - ], - [ - "▁străinătate", - -13.30212688446045 - ], - [ - "▁stammen", - -13.302170753479004 - ], - [ - "opposition", - -13.302229881286621 - ], - [ - "▁rhino", - -13.302233695983887 - ], - [ - "intervenir", - -13.302427291870117 - ], - [ - "▁hyperlink", - -13.302441596984863 - ], - [ - "höchst", - -13.302518844604492 - ], - [ - "roach", - -13.302627563476562 - ], - [ - "wSt", - -13.302687644958496 - ], - [ - "▁monastery", - -13.302740097045898 - ], - [ - "▁algae", - -13.302754402160645 - ], - [ - "▁shaving", - -13.302757263183594 - ], - [ - "présentent", - -13.302804946899414 - ], - [ - "Africa", - -13.302860260009766 - ], - [ - "eigener", - -13.303047180175781 - ], - [ - "▁glace", - -13.303153991699219 - ], - [ - "▁discurs", - -13.303179740905762 - ], - [ - "▁autograph", - -13.303204536437988 - ], - [ - "▁Conflict", - -13.303359031677246 - ], - [ - "▁școli", - -13.303411483764648 - ], - [ - "▁excerpt", - -13.303617477416992 - ], - [ - "correlated", - -13.303628921508789 - ], - [ - "empel", - -13.303841590881348 - ], - [ - "cryptocurrencies", - -13.30396842956543 - ], - [ - "▁symposium", - -13.30396842956543 - ], - [ - "▁gewohnt", - -13.303994178771973 - ], - [ - "PTSD", - -13.304070472717285 - ], - [ - "▁harmonic", - -13.304166793823242 - ], - [ - "discarded", - -13.304282188415527 - ], - [ - "▁Flint", - -13.304359436035156 - ], - [ - "Russia", - -13.304422378540039 - ], - [ - "▁ședinț", - -13.304583549499512 - ], - [ - "▁accusations", - -13.304727554321289 - ], - [ - "▁încălc", - -13.304827690124512 - ], - [ - "sendung", - -13.305152893066406 - ], - [ - "▁Chiropractic", - -13.305197715759277 - ], - [ - "▁excepți", - -13.305201530456543 - ], - [ - "▁proclaim", - -13.305201530456543 - ], - [ - "▁Flexible", - -13.305295944213867 - ], - [ - "▁Hüt", - -13.30538272857666 - ], - [ - "▁Baltic", - -13.30539608001709 - ], - [ - "▁inaltime", - -13.30553913116455 - ], - [ - "▁montré", - -13.305868148803711 - ], - [ - "exécution", - -13.305898666381836 - ], - [ - "partei", - -13.305961608886719 - ], - [ - "▁specifie", - -13.306072235107422 - ], - [ - "▁Jackpot", - -13.306105613708496 - ], - [ - "▁stumble", - -13.306134223937988 - ], - [ - "▁individuel", - -13.306161880493164 - ], - [ - "▁Veteran", - -13.306217193603516 - ], - [ - "▁Supplies", - -13.306428909301758 - ], - [ - "▁excavation", - -13.306428909301758 - ], - [ - "▁Libraries", - -13.306469917297363 - ], - [ - "▁prénom", - -13.306476593017578 - ], - [ - "WOOD", - -13.30650806427002 - ], - [ - "meciul", - -13.306917190551758 - ], - [ - "Chef", - -13.306938171386719 - ], - [ - "▁SUPER", - -13.306940078735352 - ], - [ - "Appeals", - -13.30696964263916 - ], - [ - "terapia", - -13.307113647460938 - ], - [ - "▁relatii", - -13.30713939666748 - ], - [ - "modifying", - -13.30748462677002 - ], - [ - "▁Regulament", - -13.307662010192871 - ], - [ - "▁bănci", - -13.307662963867188 - ], - [ - "▁agility", - -13.307666778564453 - ], - [ - "▁Magnetic", - -13.307674407958984 - ], - [ - "▁piatra", - -13.30767822265625 - ], - [ - "▁Governance", - -13.307680130004883 - ], - [ - "▁clown", - -13.30772876739502 - ], - [ - "▁Choir", - -13.308337211608887 - ], - [ - "aujourd", - -13.308548927307129 - ], - [ - "▁vendeur", - -13.308732032775879 - ], - [ - "ndererseits", - -13.308859825134277 - ], - [ - "▁Bahrain", - -13.3088960647583 - ], - [ - "▁Timisoara", - -13.3088960647583 - ], - [ - "▁exklusive", - -13.3088960647583 - ], - [ - "▁Population", - -13.309001922607422 - ], - [ - "▁nepo", - -13.309073448181152 - ], - [ - "▁relish", - -13.309085845947266 - ], - [ - "▁Pumpkin", - -13.309571266174316 - ], - [ - "▁détente", - -13.309784889221191 - ], - [ - "▁episcop", - -13.309860229492188 - ], - [ - "patterned", - -13.309929847717285 - ], - [ - "▁THANK", - -13.310132026672363 - ], - [ - "▁Widerspruch", - -13.310132026672363 - ], - [ - "▁Crisis", - -13.310189247131348 - ], - [ - "▁goose", - -13.310226440429688 - ], - [ - "▁couture", - -13.310307502746582 - ], - [ - "▁hinweg", - -13.310446739196777 - ], - [ - "supplemental", - -13.310486793518066 - ], - [ - "shingles", - -13.31060791015625 - ], - [ - "investir", - -13.310635566711426 - ], - [ - "▁steriliz", - -13.310759544372559 - ], - [ - "tractors", - -13.310761451721191 - ], - [ - "cellules", - -13.31078815460205 - ], - [ - "▁Gloria", - -13.310888290405273 - ], - [ - "▁teilnehmen", - -13.311092376708984 - ], - [ - "companiile", - -13.311248779296875 - ], - [ - "surfacing", - -13.311279296875 - ], - [ - "▁nostalgic", - -13.311368942260742 - ], - [ - "▁Badezimmer", - -13.311369895935059 - ], - [ - "▁conjoint", - -13.311370849609375 - ], - [ - "vacancy", - -13.31145191192627 - ], - [ - "▁homeland", - -13.311582565307617 - ], - [ - "▁Abschnitt", - -13.311625480651855 - ], - [ - "Cartea", - -13.311653137207031 - ], - [ - "SIA", - -13.311782836914062 - ], - [ - "▁explode", - -13.311786651611328 - ], - [ - "fostering", - -13.311959266662598 - ], - [ - "▁ceilalti", - -13.31198787689209 - ], - [ - "▁gentil", - -13.31214714050293 - ], - [ - "oplasty", - -13.31218433380127 - ], - [ - "bodied", - -13.312424659729004 - ], - [ - "▁1906", - -13.312499046325684 - ], - [ - "▁BlackBerry", - -13.312607765197754 - ], - [ - "▁Presbyterian", - -13.312607765197754 - ], - [ - "▁berücksichtigt", - -13.312607765197754 - ], - [ - "▁compartiment", - -13.312607765197754 - ], - [ - "▁compulsory", - -13.312607765197754 - ], - [ - "Millennial", - -13.312609672546387 - ], - [ - "▁sanitar", - -13.312638282775879 - ], - [ - "▁stink", - -13.312975883483887 - ], - [ - "lius", - -13.313047409057617 - ], - [ - "thankfully", - -13.313136100769043 - ], - [ - "modalité", - -13.313173294067383 - ], - [ - "▁cunoaște", - -13.313226699829102 - ], - [ - "Infrastruktur", - -13.313227653503418 - ], - [ - "▁studenți", - -13.313253402709961 - ], - [ - "Bref", - -13.313270568847656 - ], - [ - "London", - -13.31360149383545 - ], - [ - "▁Arduino", - -13.313847541809082 - ], - [ - "▁cilantro", - -13.313847541809082 - ], - [ - "▁Rafael", - -13.313848495483398 - ], - [ - "▁untersucht", - -13.313861846923828 - ], - [ - "▁martyr", - -13.31389331817627 - ], - [ - "▁Mormon", - -13.313984870910645 - ], - [ - "▁wicket", - -13.313996315002441 - ], - [ - "cherished", - -13.314335823059082 - ], - [ - "liquid", - -13.314417839050293 - ], - [ - "▁dorinț", - -13.314571380615234 - ], - [ - "lehnt", - -13.314717292785645 - ], - [ - "meisterschaft", - -13.31493091583252 - ], - [ - "fondateur", - -13.314971923828125 - ], - [ - "câble", - -13.315078735351562 - ], - [ - "▁erreichbar", - -13.315091133117676 - ], - [ - "▁footsteps", - -13.315094947814941 - ], - [ - "▁Kloster", - -13.31519889831543 - ], - [ - "▁multiplayer", - -13.315218925476074 - ], - [ - "▁substitu", - -13.315276145935059 - ], - [ - "▁Frisch", - -13.315526962280273 - ], - [ - "▁arsenal", - -13.315712928771973 - ], - [ - "explication", - -13.315866470336914 - ], - [ - "▁conexiun", - -13.315986633300781 - ], - [ - "muddy", - -13.316045761108398 - ], - [ - "▁Reifen", - -13.316120147705078 - ], - [ - "auraient", - -13.316132545471191 - ], - [ - "▁biologic", - -13.316136360168457 - ], - [ - "▁acquainted", - -13.316332817077637 - ], - [ - "▁shelving", - -13.316341400146484 - ], - [ - "Stunning", - -13.316373825073242 - ], - [ - "▁Clothing", - -13.316394805908203 - ], - [ - "▁kidding", - -13.316431999206543 - ], - [ - "excellent", - -13.316452026367188 - ], - [ - "▁susțin", - -13.316487312316895 - ], - [ - "bătut", - -13.316502571105957 - ], - [ - "elusive", - -13.3165283203125 - ], - [ - "werbung", - -13.316743850708008 - ], - [ - "slipping", - -13.316813468933105 - ], - [ - "▁configura", - -13.316926956176758 - ], - [ - "▁proaspat", - -13.31695556640625 - ], - [ - "▁apporté", - -13.317120552062988 - ], - [ - "▁démarr", - -13.317328453063965 - ], - [ - "Spezialist", - -13.317578315734863 - ], - [ - "▁obligați", - -13.317578315734863 - ], - [ - "▁societăți", - -13.317578315734863 - ], - [ - "▁malpractice", - -13.31757926940918 - ], - [ - "Hundreds", - -13.317609786987305 - ], - [ - "▁3:1", - -13.318138122558594 - ], - [ - "▁computation", - -13.31817626953125 - ], - [ - "▁Heilig", - -13.318528175354004 - ], - [ - "▁Helsinki", - -13.318824768066406 - ], - [ - "▁firefighters", - -13.318824768066406 - ], - [ - "▁obedience", - -13.318824768066406 - ], - [ - "▁evacuate", - -13.318825721740723 - ], - [ - "▁Floyd", - -13.318840026855469 - ], - [ - "▁Disneyland", - -13.318859100341797 - ], - [ - "Cathy", - -13.319069862365723 - ], - [ - "▁Broken", - -13.319278717041016 - ], - [ - "cript", - -13.319952011108398 - ], - [ - "▁Gewähr", - -13.320073127746582 - ], - [ - "▁embarrassed", - -13.320073127746582 - ], - [ - "▁Leicht", - -13.32007884979248 - ], - [ - "▁témoign", - -13.320379257202148 - ], - [ - "▁viteze", - -13.3206148147583 - ], - [ - "▁hallmark", - -13.320731163024902 - ], - [ - "uploads", - -13.32082462310791 - ], - [ - "▁Submission", - -13.320929527282715 - ], - [ - "▁croissant", - -13.321049690246582 - ], - [ - "awning", - -13.32105827331543 - ], - [ - "detecting", - -13.321198463439941 - ], - [ - "▁Bahamas", - -13.321322441101074 - ], - [ - "▁Kathleen", - -13.321325302124023 - ], - [ - "▁latch", - -13.321377754211426 - ], - [ - "▁pronounce", - -13.321380615234375 - ], - [ - "▁choke", - -13.321428298950195 - ], - [ - "▁$50,000", - -13.3215970993042 - ], - [ - "▁historische", - -13.321642875671387 - ], - [ - "jugé", - -13.321829795837402 - ], - [ - "▁MasterCard", - -13.321949005126953 - ], - [ - "▁Horror", - -13.321955680847168 - ], - [ - "spoiled", - -13.321958541870117 - ], - [ - "▁apariți", - -13.32202434539795 - ], - [ - "geschaltet", - -13.3225736618042 - ], - [ - "▁Londra", - -13.322578430175781 - ], - [ - "viction", - -13.322580337524414 - ], - [ - "▁Disaster", - -13.322593688964844 - ], - [ - "▁desigur", - -13.322601318359375 - ], - [ - "▁substanț", - -13.322601318359375 - ], - [ - "▁compiler", - -13.322613716125488 - ], - [ - "▁vanzari", - -13.32262897491455 - ], - [ - "▁Simulation", - -13.322669982910156 - ], - [ - "Occasionally", - -13.322842597961426 - ], - [ - "Seite", - -13.322884559631348 - ], - [ - "Linked", - -13.322938919067383 - ], - [ - "Roll", - -13.323015213012695 - ], - [ - "▁trajet", - -13.323244094848633 - ], - [ - "Molecular", - -13.323834419250488 - ], - [ - "▁pragmatic", - -13.323843002319336 - ], - [ - "judecată", - -13.323915481567383 - ], - [ - "ров", - -13.32400894165039 - ], - [ - "serrurerie", - -13.324024200439453 - ], - [ - "▁reconstruct", - -13.324129104614258 - ], - [ - "▁heureuse", - -13.324179649353027 - ], - [ - "▁knight", - -13.32422924041748 - ], - [ - "knowingly", - -13.324431419372559 - ], - [ - "▁perspectiva", - -13.324453353881836 - ], - [ - "ordinary", - -13.324604034423828 - ], - [ - "▁chaudière", - -13.324721336364746 - ], - [ - "Neill", - -13.324727058410645 - ], - [ - "cellulose", - -13.325080871582031 - ], - [ - "▁Delicious", - -13.325080871582031 - ], - [ - "▁incearca", - -13.325080871582031 - ], - [ - "▁retrospective", - -13.325080871582031 - ], - [ - "▁mundane", - -13.325081825256348 - ], - [ - "▁definiert", - -13.32508659362793 - ], - [ - "▁cockpit", - -13.325088500976562 - ], - [ - "Aktionen", - -13.325363159179688 - ], - [ - "▁distanț", - -13.325654029846191 - ], - [ - "▁diplôme", - -13.325708389282227 - ], - [ - "prepaid", - -13.325737953186035 - ], - [ - "▁Tabellen", - -13.325758934020996 - ], - [ - "▁economie", - -13.325770378112793 - ], - [ - "December", - -13.325826644897461 - ], - [ - "Punkten", - -13.32613754272461 - ], - [ - "▁Punch", - -13.32614517211914 - ], - [ - "Martin", - -13.326154708862305 - ], - [ - "▁Espresso", - -13.326314926147461 - ], - [ - "▁ubiquitous", - -13.326335906982422 - ], - [ - "▁Mongolia", - -13.326337814331055 - ], - [ - "▁collabor", - -13.326635360717773 - ], - [ - "▁Vordergrund", - -13.32696533203125 - ], - [ - "cameră", - -13.327091217041016 - ], - [ - "represented", - -13.327268600463867 - ], - [ - "▁AUTO", - -13.327446937561035 - ], - [ - "▁Ofert", - -13.327542304992676 - ], - [ - "neig", - -13.327593803405762 - ], - [ - "▁Hazard", - -13.327595710754395 - ], - [ - "▁Constanta", - -13.327596664428711 - ], - [ - "▁tumour", - -13.32759952545166 - ], - [ - "▁Neighborhood", - -13.327603340148926 - ], - [ - "▁detaliat", - -13.327619552612305 - ], - [ - "▁extraordinaire", - -13.327665328979492 - ], - [ - "▁Therapeutic", - -13.327686309814453 - ], - [ - "predicting", - -13.327693939208984 - ], - [ - "▁institutii", - -13.32776165008545 - ], - [ - "ifizierung", - -13.327797889709473 - ], - [ - "wählt", - -13.328207015991211 - ], - [ - "▁remarquable", - -13.32822322845459 - ], - [ - "Invent", - -13.328512191772461 - ], - [ - "▁foloseșt", - -13.328514099121094 - ], - [ - "öfte", - -13.328703880310059 - ], - [ - "▁discreet", - -13.328853607177734 - ], - [ - "▁Flickr", - -13.32885456085205 - ], - [ - "▁trésor", - -13.328856468200684 - ], - [ - "▁steroids", - -13.328872680664062 - ], - [ - "▁personnalité", - -13.328953742980957 - ], - [ - "▁Krankenhaus", - -13.32901668548584 - ], - [ - "▁affordability", - -13.329218864440918 - ], - [ - "deuten", - -13.329398155212402 - ], - [ - "Detailed", - -13.329412460327148 - ], - [ - "Walk", - -13.329444885253906 - ], - [ - "▁parallèle", - -13.329483032226562 - ], - [ - "thèse", - -13.329649925231934 - ], - [ - "▁gefördert", - -13.330117225646973 - ], - [ - "Greeting", - -13.33014965057373 - ], - [ - "gelistet", - -13.330172538757324 - ], - [ - "▁chlorine", - -13.330392837524414 - ], - [ - "behält", - -13.33039665222168 - ], - [ - "emption", - -13.330435752868652 - ], - [ - "▁mobilité", - -13.330601692199707 - ], - [ - "▁randonnée", - -13.330668449401855 - ], - [ - "habitant", - -13.330718040466309 - ], - [ - "zilla", - -13.331082344055176 - ], - [ - "▁Lili", - -13.331160545349121 - ], - [ - "▁répét", - -13.331341743469238 - ], - [ - "trucât", - -13.331376075744629 - ], - [ - "▁Hospice", - -13.331376075744629 - ], - [ - "▁grassroots", - -13.331377029418945 - ], - [ - "▁affiché", - -13.331393241882324 - ], - [ - "pears", - -13.331470489501953 - ], - [ - "▁linistit", - -13.331497192382812 - ], - [ - "▁Patron", - -13.331552505493164 - ], - [ - "▁Stalin", - -13.331626892089844 - ], - [ - "▁închiri", - -13.331751823425293 - ], - [ - "▁Apostol", - -13.332018852233887 - ], - [ - "▁poudre", - -13.332246780395508 - ], - [ - "▁piscin", - -13.332419395446777 - ], - [ - "merlin", - -13.33259391784668 - ], - [ - "limited", - -13.33260726928711 - ], - [ - "▁métallique", - -13.332639694213867 - ], - [ - "gazebo", - -13.33267879486084 - ], - [ - "weilige", - -13.332718849182129 - ], - [ - "prosecutors", - -13.33278751373291 - ], - [ - "Expert", - -13.33314323425293 - ], - [ - "Assemblée", - -13.333271980285645 - ], - [ - "▁fauna", - -13.333285331726074 - ], - [ - "▁Turtle", - -13.333353996276855 - ], - [ - "▁Consortium", - -13.333905220031738 - ], - [ - "▁assemblies", - -13.333905220031738 - ], - [ - "▁trajectory", - -13.333905220031738 - ], - [ - "▁Vineyard", - -13.333906173706055 - ], - [ - "▁Mehrwert", - -13.334037780761719 - ], - [ - "▁sunflower", - -13.334043502807617 - ], - [ - "develop", - -13.334060668945312 - ], - [ - "▁heroic", - -13.334100723266602 - ], - [ - "▁riscuri", - -13.334151268005371 - ], - [ - "oeuf", - -13.334300994873047 - ], - [ - "influence", - -13.334452629089355 - ], - [ - "▁Voraussetzung", - -13.334500312805176 - ], - [ - "utoritatea", - -13.334518432617188 - ], - [ - "Produsul", - -13.334654808044434 - ], - [ - "▁gewährleistet", - -13.335171699523926 - ], - [ - "▁brûl", - -13.335175514221191 - ], - [ - "▁Column", - -13.335184097290039 - ], - [ - "▁trousers", - -13.335209846496582 - ], - [ - "▁posterior", - -13.33521556854248 - ], - [ - "glyph", - -13.335251808166504 - ], - [ - "▁Happen", - -13.335280418395996 - ], - [ - "▁créateur", - -13.335667610168457 - ], - [ - "▁apostle", - -13.335898399353027 - ], - [ - "▁padding", - -13.335907936096191 - ], - [ - "▁Digitalisierung", - -13.335908889770508 - ], - [ - "▁Laurie", - -13.335915565490723 - ], - [ - "▁Erwerb", - -13.336065292358398 - ], - [ - "▁bătrân", - -13.336440086364746 - ], - [ - "▁harmonious", - -13.336441040039062 - ], - [ - "▁ailments", - -13.336456298828125 - ], - [ - "▁Venue", - -13.33650016784668 - ], - [ - "▁Motorcycle", - -13.336523056030273 - ], - [ - "▁cortex", - -13.336551666259766 - ], - [ - "▁Sunrise", - -13.336636543273926 - ], - [ - "Software", - -13.336775779724121 - ], - [ - "▁advocat", - -13.336934089660645 - ], - [ - "essentiellement", - -13.337422370910645 - ], - [ - "•", - -13.337494850158691 - ], - [ - "părut", - -13.337522506713867 - ], - [ - "▁Suffolk", - -13.337711334228516 - ], - [ - "▁righteousness", - -13.337711334228516 - ], - [ - "▁Shirley", - -13.337712287902832 - ], - [ - "▁Famous", - -13.337749481201172 - ], - [ - "▁emulate", - -13.337788581848145 - ], - [ - "vermögen", - -13.33788776397705 - ], - [ - "generated", - -13.337963104248047 - ], - [ - "Ecole", - -13.337977409362793 - ], - [ - "▁managerial", - -13.338086128234863 - ], - [ - "believe", - -13.338091850280762 - ], - [ - "▁récupére", - -13.338348388671875 - ], - [ - "▁recens", - -13.338531494140625 - ], - [ - "▁Barrett", - -13.338778495788574 - ], - [ - "▁courageous", - -13.338814735412598 - ], - [ - "9.95", - -13.338961601257324 - ], - [ - "▁Odyssey", - -13.338982582092285 - ], - [ - "▁Violence", - -13.338982582092285 - ], - [ - "▁concasseur", - -13.338982582092285 - ], - [ - "▁evacuation", - -13.338982582092285 - ], - [ - "▁kontinuierlich", - -13.338982582092285 - ], - [ - "▁epidemi", - -13.3389892578125 - ], - [ - "▁disconnected", - -13.339197158813477 - ], - [ - "frucht", - -13.339339256286621 - ], - [ - "Trustees", - -13.339348793029785 - ], - [ - "▁Massiv", - -13.339459419250488 - ], - [ - "gebucht", - -13.339473724365234 - ], - [ - "stütze", - -13.339526176452637 - ], - [ - "▁febr", - -13.339741706848145 - ], - [ - "honoured", - -13.339743614196777 - ], - [ - "▁digitiz", - -13.340079307556152 - ], - [ - "Image", - -13.34021282196045 - ], - [ - "▁Brunswick", - -13.34025764465332 - ], - [ - "▁Therapist", - -13.34026050567627 - ], - [ - "accessoire", - -13.340264320373535 - ], - [ - "▁croqu", - -13.340291023254395 - ], - [ - "Pflanz", - -13.34052848815918 - ], - [ - "dragging", - -13.340536117553711 - ], - [ - "▁Facilit", - -13.340750694274902 - ], - [ - "soucis", - -13.340765953063965 - ], - [ - "Asadar", - -13.34081745147705 - ], - [ - "▁Thames", - -13.341021537780762 - ], - [ - "▁cariera", - -13.341116905212402 - ], - [ - "▁mercury", - -13.341530799865723 - ], - [ - "▁Blessed", - -13.341533660888672 - ], - [ - "▁Whitney", - -13.341630935668945 - ], - [ - "▁géant", - -13.341926574707031 - ], - [ - "▁coordonnée", - -13.342217445373535 - ], - [ - "oidal", - -13.342623710632324 - ], - [ - "Wohnungen", - -13.342696189880371 - ], - [ - "▁Spectrum", - -13.34280776977539 - ], - [ - "▁Avengers", - -13.342808723449707 - ], - [ - "▁Gloucester", - -13.342808723449707 - ], - [ - "▁nützlich", - -13.342811584472656 - ], - [ - "▁toothbrush", - -13.342830657958984 - ], - [ - "▁Vanessa", - -13.342843055725098 - ], - [ - "Saxon", - -13.342947959899902 - ], - [ - "▁comunități", - -13.343165397644043 - ], - [ - "reprezentanţi", - -13.343175888061523 - ], - [ - "▁întâlnire", - -13.343225479125977 - ], - [ - "delve", - -13.343234062194824 - ], - [ - "▁technologique", - -13.343452453613281 - ], - [ - "Describe", - -13.343466758728027 - ], - [ - "▁constient", - -13.343501091003418 - ], - [ - "gestalt", - -13.343600273132324 - ], - [ - "▁Tribune", - -13.344090461730957 - ], - [ - "▁fiberglass", - -13.34412956237793 - ], - [ - "verbindung", - -13.344210624694824 - ], - [ - "sacrificing", - -13.344351768493652 - ], - [ - "▁Pablo", - -13.344470024108887 - ], - [ - "▁adanc", - -13.34525203704834 - ], - [ - "omia", - -13.345309257507324 - ], - [ - "hâte", - -13.345317840576172 - ], - [ - "▁Sanctuary", - -13.345366477966309 - ], - [ - "▁accolade", - -13.345368385314941 - ], - [ - "▁Wurzel", - -13.345398902893066 - ], - [ - "▁spacing", - -13.345433235168457 - ], - [ - "▁bedeutend", - -13.345481872558594 - ], - [ - "▁biased", - -13.345499992370605 - ], - [ - "randomized", - -13.345747947692871 - ], - [ - "▁agenți", - -13.345856666564941 - ], - [ - "▁excepţi", - -13.346012115478516 - ], - [ - "▁fișier", - -13.346028327941895 - ], - [ - "▁fisier", - -13.34664535522461 - ], - [ - "irrespective", - -13.346648216247559 - ], - [ - "▁Gardner", - -13.34665584564209 - ], - [ - "▁aprecia", - -13.346884727478027 - ], - [ - "▁Klu", - -13.347082138061523 - ], - [ - "▁apropie", - -13.347535133361816 - ], - [ - "▁echival", - -13.347784042358398 - ], - [ - "tauchen", - -13.347862243652344 - ], - [ - "▁hauptsächlich", - -13.347930908203125 - ], - [ - "▁pollutants", - -13.347930908203125 - ], - [ - "▁mammals", - -13.347931861877441 - ], - [ - "▁Landwirtschaft", - -13.347936630249023 - ], - [ - "▁stăpân", - -13.34793758392334 - ], - [ - "▁Prüf", - -13.347990989685059 - ], - [ - "▁Motorsport", - -13.34807300567627 - ], - [ - "Leaving", - -13.348352432250977 - ], - [ - "schädigung", - -13.348573684692383 - ], - [ - "▁calendrier", - -13.348573684692383 - ], - [ - "plikation", - -13.348655700683594 - ], - [ - "▁DOE", - -13.348655700683594 - ], - [ - "ред", - -13.348966598510742 - ], - [ - "Jahr", - -13.34913444519043 - ], - [ - "▁entitlement", - -13.34921646118164 - ], - [ - "schuldig", - -13.349217414855957 - ], - [ - "▁Münster", - -13.349218368530273 - ], - [ - "pository", - -13.349451065063477 - ], - [ - "▁numero", - -13.350220680236816 - ], - [ - "▁entsprechen", - -13.350383758544922 - ], - [ - "▁astronaut", - -13.350502967834473 - ], - [ - "▁hexagon", - -13.350502967834473 - ], - [ - "▁DAMAGE", - -13.350503921508789 - ], - [ - "▁Quartz", - -13.350504875183105 - ], - [ - "▁rédaction", - -13.350504875183105 - ], - [ - "▁replenish", - -13.350508689880371 - ], - [ - "▁amoureux", - -13.350523948669434 - ], - [ - "▁opțiun", - -13.350616455078125 - ], - [ - "Custom", - -13.350622177124023 - ], - [ - "▁Telekom", - -13.350639343261719 - ], - [ - "▁RFID", - -13.351163864135742 - ], - [ - "▁Scorpio", - -13.351264953613281 - ], - [ - "▁thirst", - -13.35152816772461 - ], - [ - "▁Kosovo", - -13.351791381835938 - ], - [ - "▁precursor", - -13.351794242858887 - ], - [ - "▁sarbatori", - -13.351810455322266 - ], - [ - "▁Daisy", - -13.351828575134277 - ], - [ - "▁Dropbox", - -13.351898193359375 - ], - [ - "Smith", - -13.351949691772461 - ], - [ - "contabil", - -13.352191925048828 - ], - [ - "▁monnaie", - -13.352437973022461 - ], - [ - "capsul", - -13.352577209472656 - ], - [ - "treff", - -13.352760314941406 - ], - [ - "beauftragte", - -13.352761268615723 - ], - [ - "industrial", - -13.353006362915039 - ], - [ - "responsables", - -13.353010177612305 - ], - [ - "▁FIRST", - -13.353080749511719 - ], - [ - "▁crezut", - -13.35308837890625 - ], - [ - "▁reseller", - -13.353107452392578 - ], - [ - "▁direcți", - -13.353154182434082 - ], - [ - "mouvoir", - -13.353294372558594 - ], - [ - "▁Invite", - -13.353431701660156 - ], - [ - "▁constructii", - -13.353440284729004 - ], - [ - "▁oublié", - -13.353577613830566 - ], - [ - "găseșt", - -13.353687286376953 - ], - [ - "▁végét", - -13.353755950927734 - ], - [ - "idine", - -13.35385799407959 - ], - [ - "▁Ajout", - -13.353951454162598 - ], - [ - "▁Shelf", - -13.354195594787598 - ], - [ - "HALL", - -13.35422420501709 - ], - [ - "▁nostalgia", - -13.35437297821045 - ], - [ - "▁ottoman", - -13.35437297821045 - ], - [ - "▁ambalaj", - -13.354398727416992 - ], - [ - "municipiul", - -13.354405403137207 - ], - [ - "NOVA", - -13.354500770568848 - ], - [ - "▁disregard", - -13.354997634887695 - ], - [ - "▁bijuterii", - -13.355018615722656 - ], - [ - "▁sorgfältig", - -13.355018615722656 - ], - [ - "vraient", - -13.355307579040527 - ], - [ - "▁backsplash", - -13.355669975280762 - ], - [ - "▁nuisance", - -13.355679512023926 - ], - [ - "▁Territory", - -13.35568618774414 - ], - [ - "▁surprins", - -13.355693817138672 - ], - [ - "enchanting", - -13.35571002960205 - ], - [ - "trospecti", - -13.355847358703613 - ], - [ - "▁dvd", - -13.356199264526367 - ], - [ - "Totally", - -13.356329917907715 - ], - [ - "▁Edelstahl", - -13.35696029663086 - ], - [ - "▁sequencing", - -13.356961250305176 - ], - [ - "▁Circus", - -13.35696792602539 - ], - [ - "▁ashamed", - -13.35696792602539 - ], - [ - "▁horrific", - -13.357028007507324 - ], - [ - "▁taiat", - -13.357033729553223 - ], - [ - "▁Angehörige", - -13.357125282287598 - ], - [ - "Michel", - -13.357256889343262 - ], - [ - "▁communion", - -13.357298851013184 - ], - [ - "▁psiho", - -13.357378959655762 - ], - [ - "losigkeit", - -13.357405662536621 - ], - [ - "dipping", - -13.357512474060059 - ], - [ - "▁profesională", - -13.357608795166016 - ], - [ - "Indiferent", - -13.357609748840332 - ], - [ - "▁crestin", - -13.357723236083984 - ], - [ - "wholesome", - -13.357796669006348 - ], - [ - "▁Welfare", - -13.358257293701172 - ], - [ - "▁plentiful", - -13.358257293701172 - ], - [ - "▁Triumph", - -13.358258247375488 - ], - [ - "▁fascination", - -13.358260154724121 - ], - [ - "▁vicious", - -13.358291625976562 - ], - [ - "▁Höchst", - -13.358294486999512 - ], - [ - "▁Dunkel", - -13.358386039733887 - ], - [ - "▁harass", - -13.358406066894531 - ], - [ - "ambogia", - -13.358475685119629 - ], - [ - "▁synonymous", - -13.358598709106445 - ], - [ - "bottom", - -13.35879898071289 - ], - [ - "▁bénévole", - -13.358906745910645 - ], - [ - "▁suprafaț", - -13.358906745910645 - ], - [ - "▁umplut", - -13.358997344970703 - ], - [ - "▁Teddy", - -13.359162330627441 - ], - [ - "breathable", - -13.359292984008789 - ], - [ - "▁Toshiba", - -13.3595552444458 - ], - [ - "▁seismic", - -13.359569549560547 - ], - [ - "▁dringend", - -13.359583854675293 - ], - [ - "▁cultură", - -13.359585762023926 - ], - [ - "▁Waffen", - -13.359665870666504 - ], - [ - "▁Bubble", - -13.359702110290527 - ], - [ - "▁Brigade", - -13.359759330749512 - ], - [ - "▁Blatt", - -13.36012077331543 - ], - [ - "▁scénario", - -13.36020565032959 - ], - [ - "allah", - -13.360396385192871 - ], - [ - "▁superintendent", - -13.360855102539062 - ], - [ - "pflanzen", - -13.360856056213379 - ], - [ - "▁kurzfristig", - -13.360856056213379 - ], - [ - "▁raspberry", - -13.360876083374023 - ], - [ - "▁Evident", - -13.360904693603516 - ], - [ - "▁inutile", - -13.361076354980469 - ], - [ - "prouvé", - -13.361104011535645 - ], - [ - "▁obtien", - -13.36141300201416 - ], - [ - "▁Matthias", - -13.361506462097168 - ], - [ - "▁déclench", - -13.361506462097168 - ], - [ - "Situationen", - -13.361529350280762 - ], - [ - "▁Disclaimer", - -13.362156867980957 - ], - [ - "▁loneliness", - -13.362156867980957 - ], - [ - "▁Gothic", - -13.362164497375488 - ], - [ - "▁humility", - -13.362165451049805 - ], - [ - "▁machiaj", - -13.362175941467285 - ], - [ - "▁Sophia", - -13.362178802490234 - ], - [ - "▁Forecast", - -13.362265586853027 - ], - [ - "IBLE", - -13.362456321716309 - ], - [ - "ivism", - -13.362480163574219 - ], - [ - "israel", - -13.36278247833252 - ], - [ - "▁kümmern", - -13.362809181213379 - ], - [ - "▁verbreitet", - -13.362825393676758 - ], - [ - "▁capacitor", - -13.362832069396973 - ], - [ - "deprived", - -13.3634614944458 - ], - [ - "unbiased", - -13.3634614944458 - ], - [ - "▁Dominique", - -13.3634614944458 - ], - [ - "▁Bamboo", - -13.363462448120117 - ], - [ - "▁Heinrich", - -13.363465309143066 - ], - [ - "individualized", - -13.363550186157227 - ], - [ - "▁ansprechen", - -13.363776206970215 - ], - [ - "ordinaire", - -13.363801002502441 - ], - [ - "▁Ucraina", - -13.364112854003906 - ], - [ - "▁militare", - -13.364115715026855 - ], - [ - "massif", - -13.364352226257324 - ], - [ - "▁emisiuni", - -13.364501953125 - ], - [ - "maladies", - -13.364622116088867 - ], - [ - "▁pneumonia", - -13.364765167236328 - ], - [ - "▁graffiti", - -13.364767074584961 - ], - [ - "▁Determine", - -13.3648099899292 - ], - [ - "▁Northwestern", - -13.364893913269043 - ], - [ - "▁grasimi", - -13.364897727966309 - ], - [ - "▁lebendig", - -13.364920616149902 - ], - [ - "▁cifre", - -13.364946365356445 - ], - [ - "▁accelerator", - -13.36533260345459 - ], - [ - "▁nib", - -13.365374565124512 - ], - [ - "▁Jocuri", - -13.365400314331055 - ], - [ - "▁außergewöhnlich", - -13.365402221679688 - ], - [ - "▁orchid", - -13.36542797088623 - ], - [ - "zugreifen", - -13.365530967712402 - ], - [ - "utilisent", - -13.365662574768066 - ], - [ - "▁nineteenth", - -13.366071701049805 - ], - [ - "improvisation", - -13.366072654724121 - ], - [ - "▁Disclosure", - -13.366072654724121 - ], - [ - "▁Überraschung", - -13.366072654724121 - ], - [ - "▁Casual", - -13.366093635559082 - ], - [ - "▁Witness", - -13.366093635559082 - ], - [ - "teacher", - -13.366125106811523 - ], - [ - "Printed", - -13.366129875183105 - ], - [ - "▁prețuri", - -13.366189956665039 - ], - [ - "rues", - -13.366216659545898 - ], - [ - "▁cerinte", - -13.366338729858398 - ], - [ - "rouvent", - -13.36662483215332 - ], - [ - "assembling", - -13.36673355102539 - ], - [ - "▁atenție", - -13.366769790649414 - ], - [ - "▁amintiri", - -13.366782188415527 - ], - [ - "▁sustinut", - -13.366805076599121 - ], - [ - "Digital", - -13.367257118225098 - ], - [ - "▁Deborah", - -13.36738109588623 - ], - [ - "gesichts", - -13.367382049560547 - ], - [ - "▁temperament", - -13.367440223693848 - ], - [ - "▁competency", - -13.367447853088379 - ], - [ - "▁dwarf", - -13.367515563964844 - ], - [ - "▁dureaz", - -13.367539405822754 - ], - [ - "habilit", - -13.367764472961426 - ], - [ - "leaned", - -13.3679838180542 - ], - [ - "▁illicit", - -13.368348121643066 - ], - [ - "Availability", - -13.368691444396973 - ], - [ - "▁Brașov", - -13.368691444396973 - ], - [ - "▁Pyramid", - -13.368691444396973 - ], - [ - "▁achievable", - -13.368691444396973 - ], - [ - "▁judiciaire", - -13.368691444396973 - ], - [ - "Übrigen", - -13.368693351745605 - ], - [ - "▁activism", - -13.368795394897461 - ], - [ - "▁boycott", - -13.368839263916016 - ], - [ - "Desigur", - -13.368927001953125 - ], - [ - "klingt", - -13.369264602661133 - ], - [ - "▁Leidenschaft", - -13.369346618652344 - ], - [ - "▁Richtig", - -13.369701385498047 - ], - [ - "▁Airbnb", - -13.370002746582031 - ], - [ - "▁învățământ", - -13.370002746582031 - ], - [ - "Kampagne", - -13.370004653930664 - ], - [ - "▁thumbnail", - -13.370014190673828 - ], - [ - "Bestimmungen", - -13.370016098022461 - ], - [ - "▁vollkommen", - -13.37001895904541 - ], - [ - "▁biomass", - -13.370027542114258 - ], - [ - "▁escalate", - -13.370030403137207 - ], - [ - "wächst", - -13.370085716247559 - ], - [ - "▁scăpa", - -13.370098114013672 - ], - [ - "▁résult", - -13.37014389038086 - ], - [ - "▁shrine", - -13.370217323303223 - ], - [ - "maximizing", - -13.370370864868164 - ], - [ - "avoue", - -13.370492935180664 - ], - [ - "dirigeants", - -13.370665550231934 - ], - [ - "▁cerveau", - -13.370672225952148 - ], - [ - "▁proast", - -13.370955467224121 - ], - [ - "▁contaminants", - -13.371325492858887 - ], - [ - "effectue", - -13.37151050567627 - ], - [ - "ediție", - -13.371539115905762 - ], - [ - "monetiz", - -13.371772766113281 - ], - [ - "▁deplasare", - -13.371976852416992 - ], - [ - "▁Sfant", - -13.37209415435791 - ], - [ - "ROOM", - -13.372113227844238 - ], - [ - "bushes", - -13.372151374816895 - ], - [ - "mairie", - -13.37251091003418 - ], - [ - "obligate", - -13.372528076171875 - ], - [ - "▁tug", - -13.372573852539062 - ], - [ - "▁Collector", - -13.372632026672363 - ], - [ - "▁annoyed", - -13.372633934020996 - ], - [ - "▁aerobic", - -13.372654914855957 - ], - [ - "▁integer", - -13.372830390930176 - ], - [ - "▁Upload", - -13.373249053955078 - ], - [ - "▁impartial", - -13.37346076965332 - ], - [ - "▁discuţi", - -13.373623847961426 - ], - [ - "gastrointestinal", - -13.37394905090332 - ], - [ - "▁chiropractor", - -13.37394905090332 - ], - [ - "▁treptat", - -13.373950004577637 - ], - [ - "▁fishermen", - -13.37395191192627 - ], - [ - "levitra", - -13.3739595413208 - ], - [ - "Gruppe", - -13.373964309692383 - ], - [ - "▁Apostle", - -13.373970985412598 - ], - [ - "▁conseillé", - -13.374068260192871 - ], - [ - "Isra", - -13.37421703338623 - ], - [ - "▁Persönlichkeit", - -13.374431610107422 - ], - [ - "▁cantitati", - -13.374459266662598 - ], - [ - "▁incredibil", - -13.374614715576172 - ], - [ - "▁Berater", - -13.374800682067871 - ], - [ - "▁propuneri", - -13.374835014343262 - ], - [ - "MEDIA", - -13.375236511230469 - ], - [ - "▁opaque", - -13.37526798248291 - ], - [ - "▁Nielsen", - -13.375269889831543 - ], - [ - "▁cartofi", - -13.375277519226074 - ], - [ - "▁Whale", - -13.37533950805664 - ], - [ - "erzeugen", - -13.375890731811523 - ], - [ - "▁knack", - -13.375931739807129 - ], - [ - "Kandidat", - -13.375936508178711 - ], - [ - "▁tradițional", - -13.375937461853027 - ], - [ - "zählige", - -13.375983238220215 - ], - [ - "▁Petroleum", - -13.376588821411133 - ], - [ - "▁deficiencies", - -13.376588821411133 - ], - [ - "▁persecution", - -13.376588821411133 - ], - [ - "▁zgomot", - -13.376588821411133 - ], - [ - "▁reiterate", - -13.376592636108398 - ], - [ - "▁Slice", - -13.376670837402344 - ], - [ - "▁envy", - -13.376704216003418 - ], - [ - "▁stomac", - -13.376851081848145 - ], - [ - "Donnell", - -13.376914978027344 - ], - [ - "▁primordial", - -13.377249717712402 - ], - [ - "reclining", - -13.377274513244629 - ], - [ - "PASS", - -13.377861976623535 - ], - [ - "▁Resistance", - -13.377910614013672 - ], - [ - "▁Widerruf", - -13.377911567687988 - ], - [ - "▁vodka", - -13.377911567687988 - ], - [ - "▁yolk", - -13.377912521362305 - ], - [ - "ollywood", - -13.377915382385254 - ], - [ - "▁truffle", - -13.377933502197266 - ], - [ - "▁Sänger", - -13.377955436706543 - ], - [ - "▁Kenntnis", - -13.377968788146973 - ], - [ - "▁Kiel", - -13.37803840637207 - ], - [ - "▁Mutual", - -13.378044128417969 - ], - [ - "▁saliva", - -13.37816047668457 - ], - [ - "▁renforce", - -13.378411293029785 - ], - [ - "▁mulch", - -13.378680229187012 - ], - [ - "▁reviste", - -13.378875732421875 - ], - [ - "lucrarea", - -13.378978729248047 - ], - [ - "▁multiply", - -13.379130363464355 - ], - [ - "▁marshmallow", - -13.379234313964844 - ], - [ - "▁Durchschnitt", - -13.379288673400879 - ], - [ - "▁Authorities", - -13.379426002502441 - ], - [ - "▁greed", - -13.379521369934082 - ], - [ - "Visiting", - -13.379638671875 - ], - [ - "Carlton", - -13.379727363586426 - ], - [ - "▁splend", - -13.37975025177002 - ], - [ - "▁Erkenntnisse", - -13.379898071289062 - ], - [ - "▁Russie", - -13.379916191101074 - ], - [ - "Agence", - -13.38007926940918 - ], - [ - "schickt", - -13.380288124084473 - ], - [ - "##", - -13.3804931640625 - ], - [ - "▁Erweiterung", - -13.380560874938965 - ], - [ - "▁Franchise", - -13.380560874938965 - ], - [ - "Dedicated", - -13.380563735961914 - ], - [ - "▁Wisdom", - -13.380569458007812 - ], - [ - "▁gagnant", - -13.380592346191406 - ], - [ - "planetary", - -13.380598068237305 - ], - [ - "▁affinity", - -13.380619049072266 - ], - [ - "▁préférence", - -13.380739212036133 - ], - [ - "▁intellect", - -13.380810737609863 - ], - [ - "▁Translat", - -13.380830764770508 - ], - [ - "▁Sultan", - -13.38089370727539 - ], - [ - "▁birouri", - -13.38101577758789 - ], - [ - "▁Academie", - -13.381224632263184 - ], - [ - "▁consequential", - -13.38138484954834 - ], - [ - "▁festgestellt", - -13.381402015686035 - ], - [ - "▁Chanel", - -13.381444931030273 - ], - [ - "▁soutenu", - -13.381875038146973 - ], - [ - "▁Montessori", - -13.381888389587402 - ], - [ - "▁equitable", - -13.381892204284668 - ], - [ - "▁théorie", - -13.381893157958984 - ], - [ - "▁primavara", - -13.3818941116333 - ], - [ - "▁Daughter", - -13.38189697265625 - ], - [ - "▁Dixon", - -13.381898880004883 - ], - [ - "▁unravel", - -13.38190746307373 - ], - [ - "Olimp", - -13.381915092468262 - ], - [ - "▁disturbed", - -13.381916999816895 - ], - [ - "▁novelty", - -13.382004737854004 - ], - [ - "synchronous", - -13.382113456726074 - ], - [ - "relevant", - -13.382166862487793 - ], - [ - "bourgeois", - -13.38251781463623 - ], - [ - "▁Parfum", - -13.38255500793457 - ], - [ - "▁Polonia", - -13.382563591003418 - ], - [ - "▁monoton", - -13.382781028747559 - ], - [ - "tratare", - -13.38302230834961 - ], - [ - "dumping", - -13.38318157196045 - ], - [ - "▁Bibliothek", - -13.383217811584473 - ], - [ - "▁Saskatchewan", - -13.383217811584473 - ], - [ - "▁experiential", - -13.383217811584473 - ], - [ - "▁verursacht", - -13.383217811584473 - ], - [ - "intègre", - -13.383218765258789 - ], - [ - "▁Intermediate", - -13.383275032043457 - ], - [ - "Israel", - -13.383476257324219 - ], - [ - "lucreaza", - -13.383495330810547 - ], - [ - "▁quantify", - -13.383862495422363 - ], - [ - "▁zahăr", - -13.383882522583008 - ], - [ - "▁încadr", - -13.383902549743652 - ], - [ - "Personalized", - -13.383946418762207 - ], - [ - "▁Chronic", - -13.384309768676758 - ], - [ - "hôpital", - -13.384549140930176 - ], - [ - "▁diskutiert", - -13.384549140930176 - ], - [ - "electrique", - -13.3848876953125 - ], - [ - "ethos", - -13.384978294372559 - ], - [ - "Nase", - -13.385059356689453 - ], - [ - "atmosphère", - -13.385214805603027 - ], - [ - "▁ungefähr", - -13.385215759277344 - ], - [ - "évaluer", - -13.385251998901367 - ], - [ - "▁scuz", - -13.385321617126465 - ], - [ - "haltige", - -13.38533878326416 - ], - [ - "January", - -13.38557243347168 - ], - [ - "▁Sharma", - -13.385603904724121 - ], - [ - "▁seizures", - -13.385881423950195 - ], - [ - "▁zucchini", - -13.385881423950195 - ], - [ - "▁Stadi", - -13.385885238647461 - ], - [ - "▁eccentric", - -13.385885238647461 - ], - [ - "▁offensichtlich", - -13.385909080505371 - ], - [ - "▁Irvine", - -13.385920524597168 - ], - [ - "cuprinse", - -13.38601303100586 - ], - [ - "▁Arbitr", - -13.386157035827637 - ], - [ - "Buenos", - -13.386183738708496 - ], - [ - "▁Shelter", - -13.386210441589355 - ], - [ - "CEPT", - -13.386454582214355 - ], - [ - "ouvri", - -13.386455535888672 - ], - [ - "acryl", - -13.386539459228516 - ], - [ - "▁Gourmet", - -13.38654899597168 - ], - [ - "scented", - -13.386595726013184 - ], - [ - "doubling", - -13.38659954071045 - ], - [ - "▁rafina", - -13.386608123779297 - ], - [ - "▁Vereinbarung", - -13.38721752166748 - ], - [ - "▁Dashboard", - -13.387218475341797 - ], - [ - "▁Sandwich", - -13.387218475341797 - ], - [ - "▁Riviera", - -13.387226104736328 - ], - [ - "échec", - -13.387237548828125 - ], - [ - "Giro", - -13.387253761291504 - ], - [ - "▁oasis", - -13.38725757598877 - ], - [ - "▁apology", - -13.3872709274292 - ], - [ - "▁YEAR", - -13.387272834777832 - ], - [ - "▁realtor", - -13.387504577636719 - ], - [ - "acheteur", - -13.38754653930664 - ], - [ - "▁larva", - -13.387613296508789 - ], - [ - "▁invitați", - -13.388097763061523 - ], - [ - "exhibiting", - -13.38830852508545 - ], - [ - "modernen", - -13.388331413269043 - ], - [ - "▁Collaboration", - -13.38855266571045 - ], - [ - "▁dezvălui", - -13.38855266571045 - ], - [ - "▁kiosk", - -13.38855266571045 - ], - [ - "▁Bermuda", - -13.388553619384766 - ], - [ - "Copiii", - -13.388564109802246 - ], - [ - "▁goddess", - -13.388581275939941 - ], - [ - "uplifting", - -13.388609886169434 - ], - [ - "▁simultan", - -13.388808250427246 - ], - [ - "▁episod", - -13.388884544372559 - ], - [ - "▁Braşov", - -13.38922119140625 - ], - [ - "cunoscută", - -13.389634132385254 - ], - [ - "▁Cherokee", - -13.389890670776367 - ], - [ - "▁Kazakhstan", - -13.389890670776367 - ], - [ - "▁Lauderdale", - -13.389890670776367 - ], - [ - "▁închisoare", - -13.389898300170898 - ], - [ - "▁Christchurch", - -13.389934539794922 - ], - [ - "▁influenţ", - -13.389982223510742 - ], - [ - "▁Meghan", - -13.390019416809082 - ], - [ - "▁Dienstleistung", - -13.390557289123535 - ], - [ - "▁cladiri", - -13.390564918518066 - ], - [ - "▁evrei", - -13.391148567199707 - ], - [ - "▁oatmeal", - -13.391230583190918 - ], - [ - "▁chronique", - -13.3912353515625 - ], - [ - "▁associée", - -13.391264915466309 - ], - [ - "▁Goose", - -13.391283988952637 - ], - [ - "gänz", - -13.391855239868164 - ], - [ - "▁Blätter", - -13.391901969909668 - ], - [ - "▁jurnalist", - -13.392212867736816 - ], - [ - "cedat", - -13.392263412475586 - ], - [ - "nommée", - -13.392315864562988 - ], - [ - "écrivain", - -13.392572402954102 - ], - [ - "▁epoxy", - -13.392577171325684 - ], - [ - "▁verlangt", - -13.392590522766113 - ], - [ - "Störung", - -13.392708778381348 - ], - [ - "▁Doyle", - -13.392729759216309 - ], - [ - "▁Philharmoni", - -13.392844200134277 - ], - [ - "▁déclare", - -13.393044471740723 - ], - [ - "effort", - -13.393045425415039 - ], - [ - "ström", - -13.393118858337402 - ], - [ - "▁cunoaşte", - -13.393244743347168 - ], - [ - "▁gigantic", - -13.3932466506958 - ], - [ - "któ", - -13.393378257751465 - ], - [ - "▁ilustr", - -13.393529891967773 - ], - [ - "▁frec", - -13.39371109008789 - ], - [ - "▁Syracuse", - -13.393916130065918 - ], - [ - "▁Einwilligung", - -13.393917083740234 - ], - [ - "▁miraculous", - -13.393917083740234 - ], - [ - "▁ökologisch", - -13.393917083740234 - ], - [ - "▁Simmons", - -13.393922805786133 - ], - [ - "▁albastru", - -13.393926620483398 - ], - [ - "besser", - -13.393962860107422 - ], - [ - "▁interioare", - -13.394006729125977 - ], - [ - "▁Trocken", - -13.394068717956543 - ], - [ - "niveau", - -13.39406967163086 - ], - [ - "▁Torah", - -13.394122123718262 - ], - [ - "▁beobachten", - -13.3945894241333 - ], - [ - "▁behandeln", - -13.394637107849121 - ], - [ - "staffed", - -13.394742965698242 - ], - [ - "hütte", - -13.394824028015137 - ], - [ - "Central", - -13.394939422607422 - ], - [ - "▁Freiburg", - -13.395198822021484 - ], - [ - "▁Netanyahu", - -13.395261764526367 - ], - [ - "▁Lexington", - -13.395302772521973 - ], - [ - "▁insotit", - -13.395492553710938 - ], - [ - "▁depasi", - -13.39560604095459 - ], - [ - "sewage", - -13.395853996276855 - ], - [ - "erkrankung", - -13.395951271057129 - ], - [ - "▁părţi", - -13.396234512329102 - ], - [ - "▁Nixon", - -13.39661693572998 - ], - [ - "Byron", - -13.396905899047852 - ], - [ - "▁varietat", - -13.39724063873291 - ], - [ - "▁Bildschirm", - -13.397299766540527 - ], - [ - "▁accompli", - -13.397424697875977 - ], - [ - "affirmed", - -13.397525787353516 - ], - [ - "▁phyto", - -13.397533416748047 - ], - [ - "sectiune", - -13.397592544555664 - ], - [ - "abteilung", - -13.397932052612305 - ], - [ - "▁voastre", - -13.397957801818848 - ], - [ - "GitHub", - -13.397958755493164 - ], - [ - "▁Jorge", - -13.39796257019043 - ], - [ - "ACTION", - -13.397972106933594 - ], - [ - "voastra", - -13.397984504699707 - ], - [ - "▁Peanut", - -13.397987365722656 - ], - [ - "▁bilingual", - -13.398011207580566 - ], - [ - "▁nourriture", - -13.39803695678711 - ], - [ - "▁Asphalt", - -13.398640632629395 - ], - [ - "emballage", - -13.399310111999512 - ], - [ - "▁sanitation", - -13.399310111999512 - ], - [ - "▁Dessert", - -13.399313926696777 - ], - [ - "intitulé", - -13.399322509765625 - ], - [ - "▁acţiune", - -13.399374008178711 - ], - [ - "▁Übersetzung", - -13.399402618408203 - ], - [ - "destinate", - -13.39941692352295 - ], - [ - "▁Goddess", - -13.399504661560059 - ], - [ - "poziție", - -13.399576187133789 - ], - [ - "denumirea", - -13.400002479553223 - ], - [ - "cantitatea", - -13.40002727508545 - ], - [ - "▁Stereo", - -13.400223731994629 - ], - [ - "object", - -13.400373458862305 - ], - [ - "▁décè", - -13.40058708190918 - ], - [ - "▁Handeln", - -13.400665283203125 - ], - [ - "▁ambience", - -13.400697708129883 - ], - [ - "▁Lindsay", - -13.4006986618042 - ], - [ - "▁tensiune", - -13.400781631469727 - ], - [ - "▁thrift", - -13.400788307189941 - ], - [ - "▁Optimiz", - -13.400843620300293 - ], - [ - "▁beantworten", - -13.401338577270508 - ], - [ - "▁magistrat", - -13.401342391967773 - ], - [ - "évidence", - -13.402016639709473 - ], - [ - "▁Eclipse", - -13.402016639709473 - ], - [ - "▁Ribbon", - -13.402016639709473 - ], - [ - "▁condensation", - -13.402016639709473 - ], - [ - "▁innocence", - -13.402018547058105 - ], - [ - "▁mascara", - -13.402023315429688 - ], - [ - "▁seventeen", - -13.402290344238281 - ], - [ - "▁compétent", - -13.402694702148438 - ], - [ - "bewertet", - -13.402717590332031 - ], - [ - "▁Muzic", - -13.40285587310791 - ], - [ - "complexities", - -13.402928352355957 - ], - [ - "ddington", - -13.403324127197266 - ], - [ - "Entwickler", - -13.403372764587402 - ], - [ - "masonry", - -13.4033784866333 - ], - [ - "Führer", - -13.403386116027832 - ], - [ - "▁awakening", - -13.403388977050781 - ], - [ - "▁lovitur", - -13.403806686401367 - ], - [ - "gebrochen", - -13.404068946838379 - ], - [ - "indexed", - -13.404478073120117 - ], - [ - "campania", - -13.404515266418457 - ], - [ - "▁Fountain", - -13.404730796813965 - ], - [ - "▁Joomla", - -13.404730796813965 - ], - [ - "▁Superintendent", - -13.404730796813965 - ], - [ - "▁Dahl", - -13.404742240905762 - ], - [ - "▁Benefici", - -13.404863357543945 - ], - [ - "optimiser", - -13.404919624328613 - ], - [ - "bursting", - -13.405380249023438 - ], - [ - "diplom", - -13.405427932739258 - ], - [ - "microsoft", - -13.405621528625488 - ], - [ - "▁correlate", - -13.405776977539062 - ], - [ - "▁arhitectura", - -13.405848503112793 - ], - [ - "▁lunette", - -13.40611743927002 - ], - [ - "Statistical", - -13.406147003173828 - ], - [ - "▁iarnă", - -13.406201362609863 - ], - [ - "▁importanț", - -13.406932830810547 - ], - [ - "sistence", - -13.407366752624512 - ], - [ - "associated", - -13.407402992248535 - ], - [ - "Occident", - -13.407452583312988 - ], - [ - "▁Heidelberg", - -13.407452583312988 - ], - [ - "▁acquaintance", - -13.407452583312988 - ], - [ - "Introducing", - -13.407453536987305 - ], - [ - "▁ripple", - -13.407480239868164 - ], - [ - "▁Childhood", - -13.407563209533691 - ], - [ - "drywall", - -13.407577514648438 - ], - [ - "Vreau", - -13.40771770477295 - ], - [ - "▁compétence", - -13.407967567443848 - ], - [ - "▁asteapta", - -13.408135414123535 - ], - [ - "▁duhovnic", - -13.408135414123535 - ], - [ - "▁învăţământ", - -13.408141136169434 - ], - [ - "encompassing", - -13.40829849243164 - ], - [ - "1997)", - -13.408370018005371 - ], - [ - "▁atractiv", - -13.408515930175781 - ], - [ - "Majoritatea", - -13.408775329589844 - ], - [ - "▁bungalow", - -13.40881633758545 - ], - [ - "▁Introduce", - -13.408817291259766 - ], - [ - "▁culprit", - -13.408817291259766 - ], - [ - "▁malheureusement", - -13.408817291259766 - ], - [ - "▁voudrai", - -13.408817291259766 - ], - [ - "Europäische", - -13.408825874328613 - ], - [ - "wunsch", - -13.408880233764648 - ], - [ - "▁înțeles", - -13.408892631530762 - ], - [ - "▁infestation", - -13.40889835357666 - ], - [ - "Bringing", - -13.409186363220215 - ], - [ - "▁Mehrheit", - -13.409229278564453 - ], - [ - "ски", - -13.409456253051758 - ], - [ - "▁procéder", - -13.409499168395996 - ], - [ - "grupului", - -13.409504890441895 - ], - [ - "▁dispoziti", - -13.40964412689209 - ], - [ - "▁snug", - -13.409950256347656 - ], - [ - "▁Afrika", - -13.41018295288086 - ], - [ - "▁Madagascar", - -13.41018295288086 - ], - [ - "Părinte", - -13.410195350646973 - ], - [ - "▁Clayton", - -13.410223960876465 - ], - [ - "▁antagonist", - -13.410239219665527 - ], - [ - "termeni", - -13.410250663757324 - ], - [ - "▁Literary", - -13.410391807556152 - ], - [ - "▁Babylon", - -13.410452842712402 - ], - [ - "▁überprüfen", - -13.410865783691406 - ], - [ - "▁duminica", - -13.410879135131836 - ], - [ - "farbig", - -13.410970687866211 - ], - [ - "nennt", - -13.411064147949219 - ], - [ - "annual", - -13.411487579345703 - ], - [ - "▁Qualcomm", - -13.41154956817627 - ], - [ - "▁Slovakia", - -13.41154956817627 - ], - [ - "▁plictis", - -13.411552429199219 - ], - [ - "▁prairie", - -13.411554336547852 - ], - [ - "▁Schatten", - -13.411622047424316 - ], - [ - "▁compléter", - -13.41223430633545 - ], - [ - "inauguration", - -13.412376403808594 - ], - [ - "▁apărare", - -13.412407875061035 - ], - [ - "▁întăr", - -13.412412643432617 - ], - [ - "▁pronunciation", - -13.412919044494629 - ], - [ - "▁bewährt", - -13.412919998168945 - ], - [ - "▁Viertel", - -13.413084983825684 - ], - [ - "▁Heidi", - -13.413252830505371 - ], - [ - "▁Gummi", - -13.413507461547852 - ], - [ - "▁veggie", - -13.413552284240723 - ], - [ - "▁monsieur", - -13.413604736328125 - ], - [ - "éveil", - -13.413630485534668 - ], - [ - "shipments", - -13.413928985595703 - ], - [ - "▁Medikamente", - -13.414290428161621 - ], - [ - "▁Johannesburg", - -13.414314270019531 - ], - [ - "▁ermittelt", - -13.414321899414062 - ], - [ - "▁bataille", - -13.414440155029297 - ], - [ - "extrem", - -13.414609909057617 - ], - [ - "▁1:2", - -13.414671897888184 - ], - [ - "Array", - -13.414725303649902 - ], - [ - "▁portail", - -13.414857864379883 - ], - [ - "▁găzdui", - -13.414977073669434 - ], - [ - "▁Calcium", - -13.41497802734375 - ], - [ - "▁Correction", - -13.415104866027832 - ], - [ - "bureaux", - -13.41528034210205 - ], - [ - "bestselling", - -13.415338516235352 - ], - [ - "Übungen", - -13.415420532226562 - ], - [ - "paramètres", - -13.415633201599121 - ], - [ - "▁Provincial", - -13.415663719177246 - ], - [ - "▁outrageous", - -13.415680885314941 - ], - [ - "▁Giveaway", - -13.415775299072266 - ], - [ - "▁LGBTQ", - -13.41589641571045 - ], - [ - "geklärt", - -13.416854858398438 - ], - [ - "▁Karlsruhe", - -13.417038917541504 - ], - [ - "▁esențial", - -13.417038917541504 - ], - [ - "avancée", - -13.41703987121582 - ], - [ - "hesitant", - -13.417040824890137 - ], - [ - "enlarged", - -13.417069435119629 - ], - [ - "▁inherit", - -13.417121887207031 - ], - [ - "Food", - -13.4171724319458 - ], - [ - "bucuria", - -13.417181015014648 - ], - [ - "▁BTW", - -13.417400360107422 - ], - [ - "associe", - -13.417579650878906 - ], - [ - "▁Möchte", - -13.417742729187012 - ], - [ - "demokrat", - -13.417789459228516 - ], - [ - "Turcia", - -13.417964935302734 - ], - [ - "forged", - -13.418370246887207 - ], - [ - "▁Zhao", - -13.418442726135254 - ], - [ - "▁cherries", - -13.418556213378906 - ], - [ - "▁evangelical", - -13.418631553649902 - ], - [ - "▁jüng", - -13.418792724609375 - ], - [ - "spans", - -13.41880989074707 - ], - [ - "▁străluc", - -13.41888427734375 - ], - [ - "▁geschie", - -13.41893196105957 - ], - [ - "▁Tattoo", - -13.419112205505371 - ], - [ - "sanitary", - -13.419114112854004 - ], - [ - "▁biopsy", - -13.419353485107422 - ], - [ - "▁imprumut", - -13.419795036315918 - ], - [ - "▁unreasonable", - -13.419795036315918 - ], - [ - "Funktion", - -13.419800758361816 - ], - [ - "▁prohibition", - -13.419904708862305 - ], - [ - "▁Prezent", - -13.419939041137695 - ], - [ - "boosted", - -13.419967651367188 - ], - [ - "▁chalet", - -13.420382499694824 - ], - [ - "▁tanar", - -13.420450210571289 - ], - [ - "Faktoren", - -13.420489311218262 - ], - [ - "▁Mozilla", - -13.420550346374512 - ], - [ - "▁Lambert", - -13.420760154724121 - ], - [ - "▁Cruci", - -13.420927047729492 - ], - [ - "▁Flugzeug", - -13.421198844909668 - ], - [ - "reassure", - -13.421205520629883 - ], - [ - "envisioned", - -13.421542167663574 - ], - [ - "Traditionally", - -13.421773910522461 - ], - [ - "▁parametri", - -13.42185115814209 - ], - [ - "▁unicorn", - -13.421891212463379 - ], - [ - "▁adéquat", - -13.421894073486328 - ], - [ - "▁Colonial", - -13.421915054321289 - ], - [ - "▁Kwa", - -13.422097206115723 - ], - [ - "▁SERV", - -13.422333717346191 - ], - [ - "tourism", - -13.422627449035645 - ], - [ - "▁Kiev", - -13.422974586486816 - ], - [ - "heightened", - -13.42309284210205 - ], - [ - "circulating", - -13.423099517822266 - ], - [ - "▁Kreditkarte", - -13.42310619354248 - ], - [ - "gedruckt", - -13.423110008239746 - ], - [ - "▁Depend", - -13.423120498657227 - ], - [ - "Style", - -13.423196792602539 - ], - [ - "▁Rettungs", - -13.42325496673584 - ], - [ - "wrongful", - -13.423418998718262 - ], - [ - "▁devour", - -13.423453330993652 - ], - [ - "▁manevr", - -13.423582077026367 - ], - [ - "carora", - -13.423628807067871 - ], - [ - "erfolgreichen", - -13.423723220825195 - ], - [ - "überwiegend", - -13.423942565917969 - ], - [ - "▁Sauvignon", - -13.423942565917969 - ], - [ - "händler", - -13.423944473266602 - ], - [ - "▁annotation", - -13.424009323120117 - ], - [ - "▁expans", - -13.424020767211914 - ], - [ - "▁recital", - -13.424080848693848 - ], - [ - "inhabited", - -13.424367904663086 - ], - [ - "OnePlus", - -13.424549102783203 - ], - [ - "Gästen", - -13.424588203430176 - ], - [ - "beliebig", - -13.424613952636719 - ], - [ - "▁Anonymous", - -13.424635887145996 - ], - [ - "▁Ansprechpartner", - -13.424635887145996 - ], - [ - "▁tamb", - -13.42464542388916 - ], - [ - "estimating", - -13.424670219421387 - ], - [ - "frequent", - -13.424769401550293 - ], - [ - "▁disciplin", - -13.425241470336914 - ], - [ - "▁plombier", - -13.425329208374023 - ], - [ - "▁teoretic", - -13.42533016204834 - ], - [ - "greift", - -13.425339698791504 - ], - [ - "▁Einschränkung", - -13.42537784576416 - ], - [ - "obscur", - -13.426115989685059 - ], - [ - "architecte", - -13.426233291625977 - ], - [ - "▁détour", - -13.42647647857666 - ], - [ - "▁spaghetti", - -13.426717758178711 - ], - [ - "croft", - -13.42693042755127 - ], - [ - "▁Grammar", - -13.426953315734863 - ], - [ - "▁investitii", - -13.427062034606934 - ], - [ - "▁glorif", - -13.427067756652832 - ], - [ - "architekt", - -13.427412033081055 - ], - [ - "Oricum", - -13.427451133728027 - ], - [ - "▁bruise", - -13.427692413330078 - ], - [ - "▁McCarthy", - -13.428107261657715 - ], - [ - "▁Uruguay", - -13.428107261657715 - ], - [ - "Produsele", - -13.428109169006348 - ], - [ - "▁Comparison", - -13.42811107635498 - ], - [ - "▁fondamental", - -13.42811107635498 - ], - [ - "▁stradă", - -13.428115844726562 - ], - [ - "▁Countries", - -13.428131103515625 - ], - [ - "▁guéri", - -13.42825698852539 - ], - [ - "▁bâti", - -13.428339004516602 - ], - [ - "▁blunt", - -13.428515434265137 - ], - [ - "▁Sistem", - -13.428645133972168 - ], - [ - "▁Betroffenen", - -13.428803443908691 - ], - [ - "efectuare", - -13.428823471069336 - ], - [ - "▁scharf", - -13.428899765014648 - ], - [ - "naps", - -13.429057121276855 - ], - [ - "▁plaid", - -13.429163932800293 - ], - [ - "▁investiții", - -13.429367065429688 - ], - [ - "evenimentele", - -13.42948055267334 - ], - [ - "▁Phuket", - -13.429499626159668 - ], - [ - "▁testosterone", - -13.429499626159668 - ], - [ - "▁scaffold", - -13.429500579833984 - ], - [ - "▁rasch", - -13.430022239685059 - ], - [ - "▁adânc", - -13.430076599121094 - ], - [ - "atteinte", - -13.430228233337402 - ], - [ - "▁educație", - -13.430320739746094 - ], - [ - "▁leopard", - -13.430893898010254 - ], - [ - "▁superioare", - -13.430893898010254 - ], - [ - "▁téléchargement", - -13.430893898010254 - ], - [ - "▁Weapon", - -13.431103706359863 - ], - [ - "favourable", - -13.431336402893066 - ], - [ - "nourishing", - -13.43143367767334 - ], - [ - "▁verfolgt", - -13.43160629272461 - ], - [ - "▁tablou", - -13.431633949279785 - ], - [ - "Algérie", - -13.431657791137695 - ], - [ - "Islam", - -13.431700706481934 - ], - [ - "faser", - -13.431825637817383 - ], - [ - "rhythm", - -13.432214736938477 - ], - [ - "▁Anthropolog", - -13.432291030883789 - ], - [ - "▁clôtur", - -13.432291030883789 - ], - [ - "spüren", - -13.432291984558105 - ], - [ - "▁Architectural", - -13.432294845581055 - ], - [ - "▁imaginary", - -13.432368278503418 - ], - [ - "cône", - -13.432456016540527 - ], - [ - "▁snuggl", - -13.432744026184082 - ], - [ - "disadvantaged", - -13.432745933532715 - ], - [ - "radically", - -13.4329195022583 - ], - [ - "Première", - -13.433011054992676 - ], - [ - "▁combinaison", - -13.433027267456055 - ], - [ - "▁Algeria", - -13.43303108215332 - ], - [ - "▁Wände", - -13.43317985534668 - ], - [ - "aesthetically", - -13.43336009979248 - ], - [ - "▁McKe", - -13.433368682861328 - ], - [ - "interroge", - -13.433473587036133 - ], - [ - "exclusive", - -13.433475494384766 - ], - [ - "▁Thomson", - -13.433688163757324 - ], - [ - "▁Gujarat", - -13.43368911743164 - ], - [ - "irgendwo", - -13.433690071105957 - ], - [ - "Severin", - -13.433767318725586 - ], - [ - "▁imitation", - -13.433926582336426 - ], - [ - "constructed", - -13.434194564819336 - ], - [ - "▁Montpellier", - -13.434388160705566 - ], - [ - "cedent", - -13.434539794921875 - ], - [ - "accelerating", - -13.434563636779785 - ], - [ - "dommages", - -13.4346284866333 - ], - [ - "lideri", - -13.434730529785156 - ], - [ - "▁Millennium", - -13.435089111328125 - ], - [ - "▁imprisonment", - -13.435089111328125 - ], - [ - "machining", - -13.435111999511719 - ], - [ - "▁anxiet", - -13.43521499633789 - ], - [ - "Contains", - -13.435298919677734 - ], - [ - "pleade", - -13.435563087463379 - ], - [ - "DOWN", - -13.43564510345459 - ], - [ - "geschehen", - -13.435797691345215 - ], - [ - "restaurant", - -13.435811996459961 - ], - [ - "Totusi", - -13.435839653015137 - ], - [ - "amintesc", - -13.436158180236816 - ], - [ - "▁Crisp", - -13.436233520507812 - ], - [ - "aduse", - -13.436278343200684 - ], - [ - "▁imposé", - -13.436351776123047 - ], - [ - "Jubiläum", - -13.436490058898926 - ], - [ - "▁Plaintiff", - -13.436491012573242 - ], - [ - "▁authoritative", - -13.436491966247559 - ], - [ - "▁rendition", - -13.436633110046387 - ], - [ - "Royce", - -13.436707496643066 - ], - [ - "1996)", - -13.436724662780762 - ], - [ - "Asociația", - -13.437192916870117 - ], - [ - "▁Gluten", - -13.437264442443848 - ], - [ - "feature", - -13.43741226196289 - ], - [ - "Behavioral", - -13.437454223632812 - ], - [ - "tearing", - -13.437763214111328 - ], - [ - "▁Entfernung", - -13.437894821166992 - ], - [ - "▁Responsibility", - -13.437894821166992 - ], - [ - "▁negligent", - -13.437894821166992 - ], - [ - "▁syllabus", - -13.437894821166992 - ], - [ - "▁Cycling", - -13.437895774841309 - ], - [ - "generell", - -13.438114166259766 - ], - [ - "customised", - -13.438392639160156 - ], - [ - "Management", - -13.43850326538086 - ], - [ - "▁timid", - -13.438518524169922 - ], - [ - "Tagged", - -13.438730239868164 - ], - [ - "▁susţinut", - -13.438809394836426 - ], - [ - "anchored", - -13.43892765045166 - ], - [ - "alternating", - -13.439055442810059 - ], - [ - "▁obligatoriu", - -13.439300537109375 - ], - [ - "▁reinstate", - -13.439456939697266 - ], - [ - "Können", - -13.43946361541748 - ], - [ - "▁Paol", - -13.439596176147461 - ], - [ - "öhr", - -13.439603805541992 - ], - [ - "▁Asociati", - -13.439876556396484 - ], - [ - "▁commenc", - -13.440285682678223 - ], - [ - "reinigt", - -13.440293312072754 - ], - [ - "commended", - -13.440350532531738 - ], - [ - "▁Proceed", - -13.440675735473633 - ], - [ - "beutel", - -13.440702438354492 - ], - [ - "▁Experimental", - -13.44070816040039 - ], - [ - "▁constellation", - -13.44070816040039 - ], - [ - "▁gepflegt", - -13.44070816040039 - ], - [ - "▁Ergänzung", - -13.440709114074707 - ], - [ - "Judith", - -13.440713882446289 - ], - [ - "▁Quartet", - -13.440720558166504 - ], - [ - "complemented", - -13.440742492675781 - ], - [ - "ausbildung", - -13.440750122070312 - ], - [ - "▁uncertainties", - -13.44077205657959 - ], - [ - "▁humiliat", - -13.440914154052734 - ], - [ - "luta", - -13.441121101379395 - ], - [ - "▁complexion", - -13.441482543945312 - ], - [ - "Serviciul", - -13.441612243652344 - ], - [ - "▁Toast", - -13.441722869873047 - ], - [ - "ummies", - -13.442425727844238 - ], - [ - "▁irit", - -13.442463874816895 - ], - [ - "producing", - -13.442585945129395 - ], - [ - "amenajare", - -13.442825317382812 - ], - [ - "▁béton", - -13.442828178405762 - ], - [ - "▁serpent", - -13.442851066589355 - ], - [ - "▁vizită", - -13.442996978759766 - ], - [ - "▁Beamte", - -13.443017959594727 - ], - [ - "▁Füße", - -13.443166732788086 - ], - [ - "▁Norwich", - -13.443531036376953 - ], - [ - "▁acronym", - -13.443531036376953 - ], - [ - "▁eradicate", - -13.443531036376953 - ], - [ - "▁solidarité", - -13.44353199005127 - ], - [ - "▁eggplant", - -13.443582534790039 - ], - [ - "▁sailors", - -13.443619728088379 - ], - [ - "waschen", - -13.444538116455078 - ], - [ - "Editura", - -13.444757461547852 - ], - [ - "▁erwerben", - -13.444944381713867 - ], - [ - "▁unconventional", - -13.444944381713867 - ], - [ - "▁boulder", - -13.444948196411133 - ], - [ - "Diplom", - -13.445013046264648 - ], - [ - "influx", - -13.446162223815918 - ], - [ - "▁Twelve", - -13.446361541748047 - ], - [ - "▁Sexual", - -13.44636344909668 - ], - [ - "numite", - -13.446369171142578 - ], - [ - "▁kontaktieren", - -13.446370124816895 - ], - [ - "▁strâns", - -13.44637680053711 - ], - [ - "▁précisément", - -13.446382522583008 - ], - [ - "empfindlich", - -13.446405410766602 - ], - [ - "▁divulg", - -13.446490287780762 - ], - [ - "▁delicat", - -13.446539878845215 - ], - [ - "compete", - -13.446542739868164 - ], - [ - "▁implique", - -13.446616172790527 - ], - [ - "implantation", - -13.44672966003418 - ], - [ - "frères", - -13.447328567504883 - ], - [ - "shedding", - -13.44758415222168 - ], - [ - "découvrez", - -13.447657585144043 - ], - [ - "rith", - -13.447735786437988 - ], - [ - "▁réglementation", - -13.447778701782227 - ], - [ - "▁transistor", - -13.447785377502441 - ], - [ - "inflated", - -13.447792053222656 - ], - [ - "▁Bluff", - -13.447887420654297 - ], - [ - "▁Aquarium", - -13.448526382446289 - ], - [ - "▁mananc", - -13.448638916015625 - ], - [ - "▁disinfect", - -13.448700904846191 - ], - [ - "tuft", - -13.448740005493164 - ], - [ - "Public", - -13.449081420898438 - ], - [ - "conceivabl", - -13.449197769165039 - ], - [ - "▁Cadillac", - -13.449197769165039 - ], - [ - "Assassin", - -13.449199676513672 - ], - [ - "issuance", - -13.449252128601074 - ], - [ - "▁Achtung", - -13.449287414550781 - ], - [ - "▁grundlegend", - -13.449909210205078 - ], - [ - "▁Băsescu", - -13.449910163879395 - ], - [ - "schaden", - -13.45014476776123 - ], - [ - "coached", - -13.450409889221191 - ], - [ - "▁betreffend", - -13.45046329498291 - ], - [ - "ergebnis", - -13.450541496276855 - ], - [ - "▁Lieutenant", - -13.4506196975708 - ], - [ - "WORLD", - -13.450620651245117 - ], - [ - "▁Moroccan", - -13.450620651245117 - ], - [ - "▁Butterfly", - -13.450621604919434 - ], - [ - "would", - -13.450737953186035 - ], - [ - "▁Metropol", - -13.451025009155273 - ], - [ - "lexic", - -13.451192855834961 - ], - [ - "comunitatea", - -13.45124340057373 - ], - [ - "vapeur", - -13.451456069946289 - ], - [ - "4.000", - -13.451559066772461 - ], - [ - "Pentru", - -13.451581954956055 - ], - [ - "üblichen", - -13.451613426208496 - ], - [ - "▁Général", - -13.451770782470703 - ], - [ - "▁Versailles", - -13.452046394348145 - ], - [ - "▁engraving", - -13.452046394348145 - ], - [ - "▁pédagogique", - -13.452192306518555 - ], - [ - "▁Policies", - -13.452759742736816 - ], - [ - "descending", - -13.453235626220703 - ], - [ - "stärkt", - -13.453349113464355 - ], - [ - "▁démocratie", - -13.453470230102539 - ], - [ - "▁granddaughter", - -13.453470230102539 - ], - [ - "▁buffalo", - -13.453474998474121 - ], - [ - "Datorita", - -13.45347785949707 - ], - [ - "hydroxy", - -13.453537940979004 - ], - [ - "▁ganduri", - -13.453566551208496 - ], - [ - "▁hijack", - -13.453624725341797 - ], - [ - "zahn", - -13.453699111938477 - ], - [ - "poziția", - -13.45406436920166 - ], - [ - "▁Zähne", - -13.454184532165527 - ], - [ - "▁grossesse", - -13.454296112060547 - ], - [ - "embassy", - -13.4548978805542 - ], - [ - "▁cérémonie", - -13.4548978805542 - ], - [ - "Rhône", - -13.454898834228516 - ], - [ - "▁Cabernet", - -13.454898834228516 - ], - [ - "▁Namibia", - -13.454902648925781 - ], - [ - "▁pedestal", - -13.454902648925781 - ], - [ - "▁Fighting", - -13.45490550994873 - ], - [ - "▁Threat", - -13.454962730407715 - ], - [ - "▁ideological", - -13.455047607421875 - ], - [ - "▁restitu", - -13.455183029174805 - ], - [ - "gelangt", - -13.455510139465332 - ], - [ - "Mitgliedern", - -13.455537796020508 - ], - [ - "acquérir", - -13.455613136291504 - ], - [ - "▁inferioar", - -13.45561695098877 - ], - [ - "Thierry", - -13.455619812011719 - ], - [ - "▁Entspannung", - -13.455638885498047 - ], - [ - "frequency", - -13.45566177368164 - ], - [ - "▁Fluid", - -13.455686569213867 - ], - [ - "▁betreut", - -13.455901145935059 - ], - [ - "Biological", - -13.455965995788574 - ], - [ - "▁Constanţa", - -13.456328392028809 - ], - [ - "▁beschäftigen", - -13.456328392028809 - ], - [ - "▁undesirable", - -13.456328392028809 - ], - [ - "▁protégé", - -13.456365585327148 - ], - [ - "▁nautical", - -13.456474304199219 - ], - [ - "▁sniff", - -13.456507682800293 - ], - [ - "Decizi", - -13.456510543823242 - ], - [ - "▁căldur", - -13.45706558227539 - ], - [ - "▁ideologi", - -13.457335472106934 - ], - [ - "Fraktion", - -13.457545280456543 - ], - [ - "collegiate", - -13.45776081085205 - ], - [ - "▁sănătos", - -13.45776081085205 - ], - [ - "▁Observatory", - -13.45776653289795 - ], - [ - "▁saturation", - -13.457769393920898 - ], - [ - "organizate", - -13.457771301269531 - ], - [ - "mergem", - -13.458321571350098 - ], - [ - "Publish", - -13.458451271057129 - ], - [ - "▁rattle", - -13.458460807800293 - ], - [ - "▁întâlniri", - -13.458663940429688 - ], - [ - "emporte", - -13.458741188049316 - ], - [ - "▁înscris", - -13.459046363830566 - ], - [ - "▁Patterson", - -13.459195137023926 - ], - [ - "▁ehrenamtlich", - -13.459195137023926 - ], - [ - "linux", - -13.459213256835938 - ], - [ - "conduire", - -13.45921802520752 - ], - [ - "▁absolven", - -13.459223747253418 - ], - [ - "▁einzigartig", - -13.459598541259766 - ], - [ - "▁_____", - -13.459803581237793 - ], - [ - "▁Beschäftigung", - -13.459912300109863 - ], - [ - "▁erfasst", - -13.459927558898926 - ], - [ - "▁Datum", - -13.459992408752441 - ], - [ - "raportul", - -13.460284233093262 - ], - [ - "ennemi", - -13.460460662841797 - ], - [ - "default", - -13.460643768310547 - ], - [ - "icillin", - -13.46066951751709 - ], - [ - "▁diamant", - -13.460671424865723 - ], - [ - "amerika", - -13.460684776306152 - ], - [ - "▁pescuit", - -13.46070384979248 - ], - [ - "▁grappl", - -13.460797309875488 - ], - [ - "▁Homeland", - -13.46082592010498 - ], - [ - "▁tromb", - -13.46112060546875 - ], - [ - "▁reduzieren", - -13.461349487304688 - ], - [ - "▁Statut", - -13.461593627929688 - ], - [ - "booming", - -13.461670875549316 - ], - [ - "fenced", - -13.461723327636719 - ], - [ - "measure", - -13.461888313293457 - ], - [ - "témoin", - -13.462069511413574 - ], - [ - "▁Inventory", - -13.462069511413574 - ], - [ - "▁circonstance", - -13.462069511413574 - ], - [ - "▁téléphonique", - -13.462069511413574 - ], - [ - "▁împiedic", - -13.46207046508789 - ], - [ - "▁Settlement", - -13.462072372436523 - ], - [ - "kannte", - -13.462076187133789 - ], - [ - "▁substantive", - -13.462385177612305 - ], - [ - "miterea", - -13.462642669677734 - ], - [ - "▁noştri", - -13.462790489196777 - ], - [ - "▁plăcere", - -13.462791442871094 - ], - [ - "▁eticheta", - -13.462823867797852 - ], - [ - "quickest", - -13.462993621826172 - ], - [ - "▁pasageri", - -13.463089942932129 - ], - [ - "▁Publi", - -13.463495254516602 - ], - [ - "▁Suzanne", - -13.463509559631348 - ], - [ - "▁bucătări", - -13.463509559631348 - ], - [ - "Regulatory", - -13.463510513305664 - ], - [ - "▁Mandarin", - -13.463647842407227 - ], - [ - "surgical", - -13.463947296142578 - ], - [ - "▁Smash", - -13.463950157165527 - ], - [ - "▁mândr", - -13.46403694152832 - ], - [ - "▁Unterkunft", - -13.464315414428711 - ], - [ - "moos", - -13.464374542236328 - ], - [ - "Camere", - -13.464510917663574 - ], - [ - "/03/", - -13.464651107788086 - ], - [ - "▁ethno", - -13.464677810668945 - ], - [ - "▁Eröffnung", - -13.46495246887207 - ], - [ - "▁Snyder", - -13.46495246887207 - ], - [ - "▁Wilmington", - -13.46495246887207 - ], - [ - "▁Canberra", - -13.464953422546387 - ], - [ - "▁Tahoe", - -13.464953422546387 - ], - [ - "▁slippery", - -13.464953422546387 - ], - [ - "▁Snake", - -13.464957237243652 - ], - [ - "▁turmeric", - -13.464963912963867 - ], - [ - "▁Cartoon", - -13.46499252319336 - ], - [ - "▁scrisoare", - -13.46500015258789 - ], - [ - "▁reprend", - -13.465425491333008 - ], - [ - "▁Konkurrenz", - -13.46567440032959 - ], - [ - "▁raisins", - -13.465693473815918 - ], - [ - "▁Werkstatt", - -13.465713500976562 - ], - [ - "▁agresiv", - -13.465795516967773 - ], - [ - "hugs", - -13.46615219116211 - ], - [ - "cazurile", - -13.46618938446045 - ], - [ - "spirited", - -13.466232299804688 - ], - [ - "▁britisch", - -13.466307640075684 - ], - [ - "spritz", - -13.466367721557617 - ], - [ - "auxiliary", - -13.46639633178711 - ], - [ - "interprétation", - -13.46639633178711 - ], - [ - "▁verbindet", - -13.46639633178711 - ], - [ - "▁fuzzy", - -13.466429710388184 - ], - [ - "▁turmoil", - -13.466432571411133 - ], - [ - "▁redefine", - -13.466819763183594 - ], - [ - "▁Kiwi", - -13.466890335083008 - ], - [ - "oiseaux", - -13.46712875366211 - ], - [ - "▁pamper", - -13.467146873474121 - ], - [ - "▁desfaso", - -13.46719741821289 - ], - [ - "▁pragu", - -13.467576026916504 - ], - [ - "prevenirea", - -13.467730522155762 - ], - [ - "▁convergence", - -13.467846870422363 - ], - [ - "tufted", - -13.467878341674805 - ], - [ - "brewed", - -13.467981338500977 - ], - [ - "villagers", - -13.468003273010254 - ], - [ - "▁Irving", - -13.468170166015625 - ], - [ - "nigsten", - -13.468660354614258 - ], - [ - "▁embod", - -13.468742370605469 - ], - [ - "Alicia", - -13.468938827514648 - ], - [ - "probably", - -13.469009399414062 - ], - [ - "divider", - -13.46904468536377 - ], - [ - "Attempt", - -13.469223022460938 - ], - [ - "▁Cognitive", - -13.469292640686035 - ], - [ - "▁Recognition", - -13.469292640686035 - ], - [ - "▁concierge", - -13.469292640686035 - ], - [ - "▁Semester", - -13.4692964553833 - ], - [ - "Economie", - -13.469417572021484 - ], - [ - "sortiment", - -13.469460487365723 - ], - [ - "shortest", - -13.46961498260498 - ], - [ - "üchtig", - -13.469650268554688 - ], - [ - "▁conveyanc", - -13.469978332519531 - ], - [ - "▁Ferdinand", - -13.470017433166504 - ], - [ - "▁permanence", - -13.470019340515137 - ], - [ - "▁incadr", - -13.470145225524902 - ], - [ - "▁estrogen", - -13.470290184020996 - ], - [ - "February", - -13.470661163330078 - ], - [ - "gedeckt", - -13.470704078674316 - ], - [ - "▁reagieren", - -13.470743179321289 - ], - [ - "▁meditate", - -13.470980644226074 - ], - [ - "simulated", - -13.471010208129883 - ], - [ - "▁supprimer", - -13.471468925476074 - ], - [ - "▁bumbac", - -13.47146987915039 - ], - [ - "▁vânzări", - -13.471477508544922 - ], - [ - "▁Kapitel", - -13.471478462219238 - ], - [ - "▁Weltkrieg", - -13.471513748168945 - ], - [ - "déposer", - -13.471674919128418 - ], - [ - "Asus", - -13.4718017578125 - ], - [ - "▁Communicat", - -13.471851348876953 - ], - [ - "Finished", - -13.47188949584961 - ], - [ - "▁Telegraph", - -13.472054481506348 - ], - [ - "▁Competitive", - -13.472196578979492 - ], - [ - "▁collectivités", - -13.472197532653809 - ], - [ - "▁protège", - -13.472199440002441 - ], - [ - "▁scallop", - -13.472219467163086 - ], - [ - "Happy", - -13.472335815429688 - ], - [ - "tehnică", - -13.472352981567383 - ], - [ - "▁Gestalt", - -13.47270393371582 - ], - [ - "▁benign", - -13.47295093536377 - ], - [ - "kraut", - -13.473149299621582 - ], - [ - "louer", - -13.473221778869629 - ], - [ - "▁Printr", - -13.47326946258545 - ], - [ - "mputation", - -13.473346710205078 - ], - [ - "▁dicke", - -13.473429679870605 - ], - [ - "▁Halifax", - -13.473650932312012 - ], - [ - "▁bounty", - -13.473650932312012 - ], - [ - "▁cauliflower", - -13.473650932312012 - ], - [ - "▁Survival", - -13.473654747009277 - ], - [ - "▁Chandler", - -13.473684310913086 - ], - [ - "▁bemüh", - -13.473760604858398 - ], - [ - "phro", - -13.473855972290039 - ], - [ - "Friday", - -13.474018096923828 - ], - [ - "particularly", - -13.474032402038574 - ], - [ - "arteries", - -13.474197387695312 - ], - [ - "Lösung", - -13.474771499633789 - ], - [ - "▁causal", - -13.474817276000977 - ], - [ - "▁recueilli", - -13.475075721740723 - ], - [ - "Stylish", - -13.47510814666748 - ], - [ - "schränke", - -13.47510814666748 - ], - [ - "▁francophone", - -13.47510814666748 - ], - [ - "▁limousine", - -13.47510814666748 - ], - [ - "▁statistiques", - -13.47510814666748 - ], - [ - "▁Kleider", - -13.475111961364746 - ], - [ - "▁dunkel", - -13.475127220153809 - ], - [ - "tätigkeit", - -13.475190162658691 - ], - [ - "▁punished", - -13.475257873535156 - ], - [ - "▁implică", - -13.475539207458496 - ], - [ - "▁inițial", - -13.475568771362305 - ], - [ - "▁Eminescu", - -13.475837707519531 - ], - [ - "▁expliqué", - -13.475837707519531 - ], - [ - "▁Eduard", - -13.475839614868164 - ], - [ - "▁psychologique", - -13.475870132446289 - ], - [ - "▁protejeaz", - -13.476580619812012 - ], - [ - "spül", - -13.476709365844727 - ], - [ - "▁Virtu", - -13.477021217346191 - ], - [ - "▁régulière", - -13.477044105529785 - ], - [ - "▁Outreach", - -13.477130889892578 - ], - [ - "▁Apprentice", - -13.47729778289795 - ], - [ - "▁compréhension", - -13.47729778289795 - ], - [ - "▁zwölf", - -13.47729778289795 - ], - [ - "Surgical", - -13.477315902709961 - ], - [ - "latéral", - -13.477417945861816 - ], - [ - "▁Ceremony", - -13.47803020477295 - ], - [ - "▁Shampoo", - -13.47803783416748 - ], - [ - "Global", - -13.478239059448242 - ], - [ - "▁paradis", - -13.478302955627441 - ], - [ - "Developed", - -13.478493690490723 - ], - [ - "▁figurine", - -13.478549003601074 - ], - [ - "sujets", - -13.478574752807617 - ], - [ - "▁Naomi", - -13.478772163391113 - ], - [ - "financed", - -13.478838920593262 - ], - [ - "forestry", - -13.478896141052246 - ], - [ - "▁Anregung", - -13.479494094848633 - ], - [ - "▁spectateur", - -13.479804039001465 - ], - [ - "▁exercitii", - -13.479815483093262 - ], - [ - "▁russisch", - -13.479888916015625 - ], - [ - "gefunden", - -13.479988098144531 - ], - [ - "schleunig", - -13.480225563049316 - ], - [ - "▁géographique", - -13.480225563049316 - ], - [ - "▁Delphi", - -13.480317115783691 - ], - [ - "Freddie", - -13.4806489944458 - ], - [ - "▁muzici", - -13.480958938598633 - ], - [ - "▁Edmund", - -13.48095989227295 - ], - [ - "finanzielle", - -13.481032371520996 - ], - [ - "(2003)", - -13.481319427490234 - ], - [ - "accentuate", - -13.481437683105469 - ], - [ - "overlapping", - -13.48151969909668 - ], - [ - "▁Pluto", - -13.481595993041992 - ], - [ - "românii", - -13.481683731079102 - ], - [ - "▁Timişoara", - -13.48169231414795 - ], - [ - "▁poivr", - -13.481754302978516 - ], - [ - "▁repris", - -13.481852531433105 - ], - [ - "▁Geschlecht", - -13.482426643371582 - ], - [ - "▁thieves", - -13.482426643371582 - ], - [ - "▁Transformer", - -13.482431411743164 - ], - [ - "▁shortcomings", - -13.482438087463379 - ], - [ - "▁aptitude", - -13.48244571685791 - ], - [ - "pitfalls", - -13.482468605041504 - ], - [ - "▁manicure", - -13.482577323913574 - ], - [ - "mystical", - -13.482723236083984 - ], - [ - "▁abolish", - -13.482833862304688 - ], - [ - "▁Zielgruppe", - -13.482873916625977 - ], - [ - "▁naţionale", - -13.483160972595215 - ], - [ - "▁trandafir", - -13.483160972595215 - ], - [ - "▁matematic", - -13.483193397521973 - ], - [ - "▁Hirsch", - -13.483257293701172 - ], - [ - "Fahr", - -13.483458518981934 - ], - [ - "connaissent", - -13.483476638793945 - ], - [ - "browned", - -13.483846664428711 - ], - [ - "▁bearbeitet", - -13.483881950378418 - ], - [ - "▁usturoi", - -13.483896255493164 - ], - [ - "▁Surprise", - -13.48389720916748 - ], - [ - "▁Tehran", - -13.483899116516113 - ], - [ - "▁BLACK", - -13.483901023864746 - ], - [ - "▁abonament", - -13.483904838562012 - ], - [ - "▁mêl", - -13.483972549438477 - ], - [ - "Angebot", - -13.484091758728027 - ], - [ - "ajungi", - -13.48410415649414 - ], - [ - "▁Woodland", - -13.48420524597168 - ], - [ - "▁gradini", - -13.484305381774902 - ], - [ - "▁Marilyn", - -13.48464584350586 - ], - [ - "kilometer", - -13.484880447387695 - ], - [ - "tempered", - -13.485230445861816 - ], - [ - "▁intimacy", - -13.485371589660645 - ], - [ - "▁thunderstorm", - -13.485373497009277 - ], - [ - "▁Uttar", - -13.485413551330566 - ], - [ - "▁varnish", - -13.485535621643066 - ], - [ - "opathie", - -13.485982894897461 - ], - [ - "▁școlar", - -13.48611068725586 - ], - [ - "▁raisonnable", - -13.486114501953125 - ], - [ - "proactively", - -13.486490249633789 - ], - [ - "▁gib", - -13.486536979675293 - ], - [ - "▁hospice", - -13.48684310913086 - ], - [ - "▁constă", - -13.486896514892578 - ], - [ - "▁Crescent", - -13.48690128326416 - ], - [ - "▁ambasad", - -13.486933708190918 - ], - [ - "hotărâre", - -13.486969947814941 - ], - [ - "▁fraîche", - -13.48709774017334 - ], - [ - "▁bundesweit", - -13.487581253051758 - ], - [ - "nsbesondere", - -13.487812042236328 - ], - [ - "▁intoarce", - -13.487863540649414 - ], - [ - "▁Schokolade", - -13.488319396972656 - ], - [ - "▁adjective", - -13.488319396972656 - ], - [ - "▁incalzire", - -13.488319396972656 - ], - [ - "▁Qualification", - -13.488320350646973 - ], - [ - "▁Bolivia", - -13.488324165344238 - ], - [ - "▁cruelty", - -13.488334655761719 - ], - [ - "pläne", - -13.48834228515625 - ], - [ - "▁solitude", - -13.488354682922363 - ], - [ - "▁Bosnia", - -13.488568305969238 - ], - [ - "rohr", - -13.488643646240234 - ], - [ - "▁regrette", - -13.48877239227295 - ], - [ - "zusammengestellt", - -13.48924732208252 - ], - [ - "▁Kardashian", - -13.489798545837402 - ], - [ - "▁Picasso", - -13.489798545837402 - ], - [ - "▁unverbindlich", - -13.489798545837402 - ], - [ - "▁Headquarters", - -13.489799499511719 - ], - [ - "métrage", - -13.4898099899292 - ], - [ - "▁Magento", - -13.489816665649414 - ], - [ - "▁exhibitors", - -13.489898681640625 - ], - [ - "utty", - -13.490381240844727 - ], - [ - "▁Fünf", - -13.490538597106934 - ], - [ - "▁Peugeot", - -13.490538597106934 - ], - [ - "▁verdienen", - -13.490538597106934 - ], - [ - "▁absolviert", - -13.49053955078125 - ], - [ - "schutzerklärung", - -13.490679740905762 - ], - [ - "sistemele", - -13.49089241027832 - ], - [ - "▁concrète", - -13.491279602050781 - ], - [ - "▁rhyme", - -13.491279602050781 - ], - [ - "▁Continuous", - -13.49128246307373 - ], - [ - "versprechen", - -13.491312026977539 - ], - [ - "▁Melanie", - -13.49202823638916 - ], - [ - "▁clienţi", - -13.492046356201172 - ], - [ - "luckily", - -13.492205619812012 - ], - [ - "▁counterfeit", - -13.492762565612793 - ], - [ - "▁locomotive", - -13.492889404296875 - ], - [ - "▁reacți", - -13.492908477783203 - ], - [ - "ampered", - -13.493005752563477 - ], - [ - "atenția", - -13.493011474609375 - ], - [ - "Suppose", - -13.493062973022461 - ], - [ - "hinweis", - -13.493464469909668 - ], - [ - "verletzung", - -13.493504524230957 - ], - [ - "▁mănânc", - -13.493504524230957 - ], - [ - "▁provoac", - -13.493507385253906 - ], - [ - "▁regizor", - -13.493511199951172 - ], - [ - "kundig", - -13.49352741241455 - ], - [ - "embarqu", - -13.493584632873535 - ], - [ - "Radio", - -13.493690490722656 - ], - [ - "Ministrul", - -13.493896484375 - ], - [ - "weakened", - -13.494214057922363 - ], - [ - "▁translucent", - -13.494247436523438 - ], - [ - "George", - -13.494380950927734 - ], - [ - "▁bacterii", - -13.494402885437012 - ], - [ - "intervalul", - -13.494803428649902 - ], - [ - "▁vizualiz", - -13.494832038879395 - ], - [ - "▁Feuchtigkeit", - -13.494991302490234 - ], - [ - "▁choisissez", - -13.494991302490234 - ], - [ - "▁plausible", - -13.494991302490234 - ], - [ - "▁perpetu", - -13.495122909545898 - ], - [ - "▁bucati", - -13.495194435119629 - ], - [ - "▁Giovanni", - -13.495735168457031 - ], - [ - "▁bluetooth", - -13.495736122131348 - ], - [ - "▁translating", - -13.49573802947998 - ], - [ - "▁Kyoto", - -13.495739936828613 - ], - [ - "▁homosexual", - -13.495745658874512 - ], - [ - "treabă", - -13.495820045471191 - ], - [ - "ntrepid", - -13.495983123779297 - ], - [ - "▁fachlich", - -13.496664047241211 - ], - [ - "Vaccin", - -13.496774673461914 - ], - [ - "▁Treib", - -13.497248649597168 - ], - [ - "varsity", - -13.497272491455078 - ], - [ - "▁Tavern", - -13.497278213500977 - ], - [ - "▁ensue", - -13.497330665588379 - ], - [ - "flexibel", - -13.497971534729004 - ], - [ - "retrieved", - -13.498102188110352 - ], - [ - "traditionellen", - -13.498230934143066 - ], - [ - "▁circulati", - -13.498546600341797 - ], - [ - "▁Diagnose", - -13.498717308044434 - ], - [ - "▁Strawberry", - -13.498717308044434 - ], - [ - "Societatea", - -13.49871826171875 - ], - [ - "expertise", - -13.498849868774414 - ], - [ - "▁naturii", - -13.499464988708496 - ], - [ - "▁4:1", - -13.499515533447266 - ], - [ - "Frequently", - -13.500210762023926 - ], - [ - "disproportionate", - -13.500210762023926 - ], - [ - "▁LIMITED", - -13.500210762023926 - ], - [ - "▁ancestral", - -13.500227928161621 - ], - [ - "▁Logistik", - -13.500237464904785 - ], - [ - "▁recolt", - -13.50042724609375 - ], - [ - "▁liebevoll", - -13.500436782836914 - ], - [ - "importing", - -13.500452041625977 - ], - [ - "aparatul", - -13.500458717346191 - ], - [ - "poziţia", - -13.500564575195312 - ], - [ - "facerilor", - -13.500658988952637 - ], - [ - "Submitted", - -13.50086784362793 - ], - [ - "ografia", - -13.501221656799316 - ], - [ - "onformément", - -13.50168228149414 - ], - [ - "▁dissemination", - -13.501708030700684 - ], - [ - "afli", - -13.501834869384766 - ], - [ - "luminous", - -13.502154350280762 - ], - [ - "▁draußen", - -13.502456665039062 - ], - [ - "▁Zauber", - -13.502535820007324 - ], - [ - "▁Ibrahim", - -13.503207206726074 - ], - [ - "▁eruption", - -13.503216743469238 - ], - [ - "écrite", - -13.50357723236084 - ], - [ - "avril", - -13.503898620605469 - ], - [ - "Increasing", - -13.504171371459961 - ], - [ - "hingeg", - -13.504411697387695 - ], - [ - "fidelity", - -13.504707336425781 - ], - [ - "étonnant", - -13.504707336425781 - ], - [ - "▁créativité", - -13.504707336425781 - ], - [ - "▁Required", - -13.504708290100098 - ], - [ - "▁Edison", - -13.504719734191895 - ], - [ - "▁Stuhl", - -13.504719734191895 - ], - [ - "outhwestern", - -13.506060600280762 - ], - [ - "▁Beschwerden", - -13.506210327148438 - ], - [ - "▁angajaţi", - -13.506210327148438 - ], - [ - "▁Currency", - -13.506211280822754 - ], - [ - "▁reagiert", - -13.506214141845703 - ], - [ - "Science", - -13.506229400634766 - ], - [ - "hospital", - -13.506253242492676 - ], - [ - "professionellen", - -13.50649356842041 - ], - [ - "▁Trouve", - -13.506768226623535 - ], - [ - "▁utopi", - -13.50683307647705 - ], - [ - "gypte", - -13.506928443908691 - ], - [ - "▁Konsequenz", - -13.506962776184082 - ], - [ - "▁pacienți", - -13.506962776184082 - ], - [ - "▁orizont", - -13.506988525390625 - ], - [ - "Corey", - -13.506999015808105 - ], - [ - "▁quartet", - -13.507009506225586 - ], - [ - "▁Sherlock", - -13.50710678100586 - ], - [ - "▁gagné", - -13.507237434387207 - ], - [ - "▁Jusqu", - -13.50732707977295 - ], - [ - "▁Clickfunnel", - -13.507465362548828 - ], - [ - "Survivor", - -13.507716178894043 - ], - [ - "▁Beethoven", - -13.507716178894043 - ], - [ - "▁Exemplar", - -13.507716178894043 - ], - [ - "▁Gonzalez", - -13.507716178894043 - ], - [ - "▁Illustrator", - -13.507716178894043 - ], - [ - "▁Verpflichtung", - -13.507718086242676 - ], - [ - "Possibly", - -13.507719993591309 - ], - [ - "Maintenant", - -13.507721900939941 - ], - [ - "▁incendiu", - -13.507721900939941 - ], - [ - "▁poêl", - -13.507747650146484 - ], - [ - "▁aşez", - -13.507757186889648 - ], - [ - "phenol", - -13.508248329162598 - ], - [ - "▁magician", - -13.508421897888184 - ], - [ - "éventuellement", - -13.508512496948242 - ], - [ - "▁amortiz", - -13.508736610412598 - ], - [ - "bouchage", - -13.50873851776123 - ], - [ - "▁Accommodation", - -13.509223937988281 - ], - [ - "▁Significant", - -13.509223937988281 - ], - [ - "▁rejoice", - -13.509223937988281 - ], - [ - "▁Lorraine", - -13.509224891662598 - ], - [ - "▁Necklace", - -13.509234428405762 - ], - [ - "▁hamburger", - -13.509273529052734 - ], - [ - "Enhanced", - -13.5095796585083 - ], - [ - "▁Audrey", - -13.509978294372559 - ], - [ - "▁considère", - -13.509986877441406 - ], - [ - "hafen", - -13.51050853729248 - ], - [ - "acordare", - -13.510509490966797 - ], - [ - "▁ediți", - -13.51075553894043 - ], - [ - "▁militia", - -13.510767936706543 - ], - [ - "captivate", - -13.510771751403809 - ], - [ - "▁rebellion", - -13.510777473449707 - ], - [ - "▁veranstalte", - -13.510844230651855 - ], - [ - "▁matelas", - -13.510859489440918 - ], - [ - "originating", - -13.510873794555664 - ], - [ - "Typical", - -13.51092529296875 - ], - [ - "▁législat", - -13.511360168457031 - ], - [ - "▁Kräfte", - -13.511488914489746 - ], - [ - "▁Eigentümer", - -13.511489868164062 - ], - [ - "▁gonfl", - -13.511608123779297 - ], - [ - "dispoziție", - -13.512028694152832 - ], - [ - "▁Fabulous", - -13.512246131896973 - ], - [ - "▁Guillaume", - -13.512246131896973 - ], - [ - "▁Genuine", - -13.512247085571289 - ], - [ - "selbe", - -13.512449264526367 - ], - [ - "(2002)", - -13.512616157531738 - ], - [ - "Einen", - -13.512908935546875 - ], - [ - "▁Snapdragon", - -13.513002395629883 - ], - [ - "▁plagiarism", - -13.513002395629883 - ], - [ - "▁Rendez", - -13.513019561767578 - ], - [ - "▁înregistrare", - -13.513033866882324 - ], - [ - "probiert", - -13.513081550598145 - ], - [ - "gestiegen", - -13.513153076171875 - ], - [ - "Teatrul", - -13.513370513916016 - ], - [ - "trove", - -13.513469696044922 - ], - [ - "ntsprechend", - -13.513566017150879 - ], - [ - "Städten", - -13.513691902160645 - ], - [ - "unforeseen", - -13.513760566711426 - ], - [ - "▁Meridian", - -13.513761520385742 - ], - [ - "▁Ministries", - -13.513763427734375 - ], - [ - "plaît", - -13.513769149780273 - ], - [ - "▁Telefonnummer", - -13.513772010803223 - ], - [ - "welded", - -13.513788223266602 - ], - [ - "pondere", - -13.513976097106934 - ], - [ - "▁funcţiona", - -13.514012336730957 - ], - [ - "▁politicieni", - -13.514187812805176 - ], - [ - "fleck", - -13.514240264892578 - ], - [ - "▁Nitro", - -13.514264106750488 - ], - [ - "wettbewerb", - -13.514518737792969 - ], - [ - "▁ingrijire", - -13.514518737792969 - ], - [ - "▁Gehirn", - -13.514521598815918 - ], - [ - "sigură", - -13.514904022216797 - ], - [ - "400,000", - -13.515237808227539 - ], - [ - "▁cataract", - -13.515277862548828 - ], - [ - "outskirt", - -13.515280723571777 - ], - [ - "▁Identification", - -13.515287399291992 - ], - [ - "▁imperfections", - -13.515317916870117 - ], - [ - "▁Dokumentation", - -13.515474319458008 - ], - [ - "Engine", - -13.515851974487305 - ], - [ - "extindere", - -13.516046524047852 - ], - [ - "bijoux", - -13.516797065734863 - ], - [ - "▁dărui", - -13.516802787780762 - ], - [ - "▁Moderator", - -13.516913414001465 - ], - [ - "biblio", - -13.517024040222168 - ], - [ - "енн", - -13.517024040222168 - ], - [ - "▁Relevan", - -13.51728630065918 - ], - [ - "ansprüche", - -13.517557144165039 - ], - [ - "épaisseur", - -13.517580032348633 - ], - [ - "▁emoţi", - -13.517677307128906 - ], - [ - "exacerbate", - -13.518318176269531 - ], - [ - "▁Wimbledon", - -13.518318176269531 - ], - [ - "▁Pandora", - -13.518319129943848 - ], - [ - "perhaps", - -13.518725395202637 - ], - [ - "certify", - -13.518762588500977 - ], - [ - "Strukturen", - -13.5189208984375 - ], - [ - "▁Kreativität", - -13.519079208374023 - ], - [ - "schlägt", - -13.51908016204834 - ], - [ - "▁certifié", - -13.51911735534668 - ], - [ - "/09/", - -13.519211769104004 - ], - [ - "▁suprafaţ", - -13.519493103027344 - ], - [ - "verständnis", - -13.519841194152832 - ], - [ - "presedintele", - -13.519842147827148 - ], - [ - "▁orthopedic", - -13.519842147827148 - ], - [ - "▁superioara", - -13.519843101501465 - ], - [ - "älteste", - -13.519903182983398 - ], - [ - "▁conducător", - -13.520153999328613 - ], - [ - "supplementary", - -13.520243644714355 - ], - [ - "wetlands", - -13.520438194274902 - ], - [ - "▁suprafete", - -13.520605087280273 - ], - [ - "▁aparțin", - -13.520951271057129 - ], - [ - "analiză", - -13.521014213562012 - ], - [ - "Uneori", - -13.52115535736084 - ], - [ - "Toujours", - -13.521368026733398 - ], - [ - "▁Nairobi", - -13.521368026733398 - ], - [ - "▁asparagus", - -13.521368026733398 - ], - [ - "▁crowdfunding", - -13.521368026733398 - ], - [ - "gutachten", - -13.521369934082031 - ], - [ - "smelling", - -13.521659851074219 - ], - [ - "▁elektrisch", - -13.521718978881836 - ], - [ - "begging", - -13.522055625915527 - ], - [ - "▁Renewable", - -13.522896766662598 - ], - [ - "▁Trouble", - -13.522896766662598 - ], - [ - "▁devastated", - -13.522896766662598 - ], - [ - "▁remplacé", - -13.522896766662598 - ], - [ - "▁schmeckt", - -13.522896766662598 - ], - [ - "▁exerciți", - -13.523005485534668 - ], - [ - "▁vermute", - -13.523650169372559 - ], - [ - "▁Constanța", - -13.523661613464355 - ], - [ - "expunere", - -13.523693084716797 - ], - [ - "▁Fitzgerald", - -13.52442741394043 - ], - [ - "▁Mechanism", - -13.524429321289062 - ], - [ - "▁underscore", - -13.524484634399414 - ], - [ - "poziţie", - -13.524901390075684 - ], - [ - "stöbern", - -13.525193214416504 - ], - [ - "▁littérature", - -13.525193214416504 - ], - [ - "▁împrumut", - -13.525193214416504 - ], - [ - "Vision", - -13.525771141052246 - ], - [ - "▁overwhelm", - -13.525773048400879 - ], - [ - "▁erweitern", - -13.525959968566895 - ], - [ - "skeletal", - -13.525960922241211 - ], - [ - "▁terrified", - -13.525960922241211 - ], - [ - "aggravate", - -13.525962829589844 - ], - [ - "▁Malawi", - -13.525969505310059 - ], - [ - "▁neuroscience", - -13.526009559631348 - ], - [ - "trecută", - -13.526097297668457 - ], - [ - "▁maestr", - -13.52634334564209 - ], - [ - "нов", - -13.526555061340332 - ], - [ - "▁Cobb", - -13.52667236328125 - ], - [ - "▁Schwangerschaft", - -13.526727676391602 - ], - [ - "▁internationaux", - -13.526727676391602 - ], - [ - "▁entspannen", - -13.526729583740234 - ], - [ - "▁Früchte", - -13.52676773071289 - ], - [ - "mâine", - -13.526805877685547 - ], - [ - "stützt", - -13.526938438415527 - ], - [ - "flipped", - -13.527076721191406 - ], - [ - "Palatul", - -13.527252197265625 - ], - [ - "▁Gérard", - -13.527496337890625 - ], - [ - "▁Kensington", - -13.527498245239258 - ], - [ - "chargée", - -13.52807331085205 - ], - [ - "iolo", - -13.528203964233398 - ], - [ - "▁excesiv", - -13.52904987335205 - ], - [ - "▁Gymnas", - -13.52962875366211 - ], - [ - "▁optimise", - -13.529678344726562 - ], - [ - "possibilités", - -13.529717445373535 - ], - [ - "▁periculoas", - -13.529810905456543 - ], - [ - "mechanical", - -13.529839515686035 - ], - [ - "▁confruntă", - -13.529868125915527 - ], - [ - "quatrième", - -13.530573844909668 - ], - [ - "▁Preservation", - -13.530573844909668 - ], - [ - "▁Juventus", - -13.530574798583984 - ], - [ - "vorsitzende", - -13.5305757522583 - ], - [ - "électora", - -13.530586242675781 - ], - [ - "▁fascinant", - -13.53061580657959 - ], - [ - "▁lagoon", - -13.530671119689941 - ], - [ - "referencing", - -13.53079605102539 - ], - [ - "appointed", - -13.530988693237305 - ], - [ - "Audible", - -13.531112670898438 - ], - [ - "sighted", - -13.531612396240234 - ], - [ - "▁gewünscht", - -13.532061576843262 - ], - [ - "▁Expedition", - -13.532115936279297 - ], - [ - "▁genunchi", - -13.532115936279297 - ], - [ - "▁PROVIDE", - -13.53211784362793 - ], - [ - "▁rosemary", - -13.532118797302246 - ], - [ - "▁cleanliness", - -13.532130241394043 - ], - [ - "commanded", - -13.53223991394043 - ], - [ - "ältere", - -13.532530784606934 - ], - [ - "ност", - -13.532547950744629 - ], - [ - "kühlen", - -13.532917976379395 - ], - [ - "mettez", - -13.533548355102539 - ], - [ - "connaitre", - -13.533661842346191 - ], - [ - "Qaeda", - -13.533662796020508 - ], - [ - "▁traumhaft", - -13.53366470336914 - ], - [ - "kommst", - -13.533666610717773 - ], - [ - "▁Abbott", - -13.533669471740723 - ], - [ - "▁Fool", - -13.533686637878418 - ], - [ - "▁médaill", - -13.533687591552734 - ], - [ - "▁genotyp", - -13.533693313598633 - ], - [ - "▁Fälle", - -13.53375244140625 - ], - [ - "▁actuator", - -13.533843994140625 - ], - [ - "CLASS", - -13.534042358398438 - ], - [ - "progressively", - -13.534421920776367 - ], - [ - "negative", - -13.53469467163086 - ], - [ - "bundled", - -13.535009384155273 - ], - [ - "▁dezbatere", - -13.535208702087402 - ], - [ - "kamagra", - -13.535237312316895 - ], - [ - "gardinen", - -13.535250663757324 - ], - [ - "unsecured", - -13.535271644592285 - ], - [ - "Assisted", - -13.535298347473145 - ], - [ - "Gymnasium", - -13.535386085510254 - ], - [ - "▁brusc", - -13.535591125488281 - ], - [ - "prinzip", - -13.535655975341797 - ], - [ - "Torrent", - -13.535964965820312 - ], - [ - "Presented", - -13.535967826843262 - ], - [ - "▁impressionnant", - -13.53628921508789 - ], - [ - "charakter", - -13.536758422851562 - ], - [ - "▁Acoustic", - -13.536762237548828 - ], - [ - "▁appartient", - -13.536763191223145 - ], - [ - "gesteuert", - -13.536879539489746 - ], - [ - "▁condiți", - -13.537089347839355 - ], - [ - "authentic", - -13.537313461303711 - ], - [ - "▁Erholung", - -13.537534713745117 - ], - [ - "▁Veranstalter", - -13.537534713745117 - ], - [ - "▁Filial", - -13.537665367126465 - ], - [ - "ruhigen", - -13.537714958190918 - ], - [ - "symptôme", - -13.538311004638672 - ], - [ - "▁Efficiency", - -13.538311004638672 - ], - [ - "▁stunned", - -13.538311004638672 - ], - [ - "▁sympathique", - -13.538311004638672 - ], - [ - "Uploaded", - -13.538352966308594 - ], - [ - "▁geistig", - -13.538453102111816 - ], - [ - "Pläne", - -13.538509368896484 - ], - [ - "▁Apartament", - -13.53855037689209 - ], - [ - "▁ușoar", - -13.539119720458984 - ], - [ - "▁locuinț", - -13.539122581481934 - ], - [ - "épouse", - -13.539166450500488 - ], - [ - "îngrijire", - -13.539215087890625 - ], - [ - "Obtain", - -13.539261817932129 - ], - [ - "Detect", - -13.539590835571289 - ], - [ - "▁Dumitru", - -13.539865493774414 - ], - [ - "▁refrigeration", - -13.539865493774414 - ], - [ - "ärztliche", - -13.539881706237793 - ], - [ - "efficiency", - -13.540032386779785 - ], - [ - "▁snail", - -13.540328979492188 - ], - [ - "gelände", - -13.540419578552246 - ], - [ - "expected", - -13.540620803833008 - ], - [ - "kompetenz", - -13.540643692016602 - ], - [ - "▁sfânt", - -13.540643692016602 - ], - [ - "océan", - -13.540685653686523 - ], - [ - "▁Plasma", - -13.540717124938965 - ], - [ - "▁vulgar", - -13.54075813293457 - ], - [ - "▁slump", - -13.541083335876465 - ], - [ - "autoimmune", - -13.541422843933105 - ], - [ - "▁Cynthia", - -13.541422843933105 - ], - [ - "▁dimineaţ", - -13.541422843933105 - ], - [ - "▁whimsical", - -13.541422843933105 - ], - [ - "▁evaporate", - -13.541488647460938 - ], - [ - "▁calorii", - -13.54186725616455 - ], - [ - "portion", - -13.54187297821045 - ], - [ - "crowned", - -13.5419282913208 - ], - [ - "▁întâmpin", - -13.54220199584961 - ], - [ - "▁Centenar", - -13.542620658874512 - ], - [ - "▁Genehmigung", - -13.54298210144043 - ], - [ - "▁Wahrscheinlich", - -13.54298210144043 - ], - [ - "▁accompaniment", - -13.54298210144043 - ], - [ - "▁Negoti", - -13.542984962463379 - ], - [ - "▁Vanilla", - -13.543000221252441 - ], - [ - "▁Receiv", - -13.543014526367188 - ], - [ - "▁bestseller", - -13.543052673339844 - ], - [ - "tendons", - -13.543069839477539 - ], - [ - "Reilly", - -13.543192863464355 - ], - [ - "▁refroidi", - -13.543731689453125 - ], - [ - "▁überrascht", - -13.543763160705566 - ], - [ - "Gitarre", - -13.543828964233398 - ], - [ - "wände", - -13.544173240661621 - ], - [ - "veniturile", - -13.544321060180664 - ], - [ - "▁portofoliu", - -13.54454517364502 - ], - [ - "▁temporaire", - -13.54454517364502 - ], - [ - "▁Dawson", - -13.544546127319336 - ], - [ - "foreseeable", - -13.544547080993652 - ], - [ - "▁Gastgeber", - -13.545344352722168 - ], - [ - "Access", - -13.545432090759277 - ], - [ - "▁Defender", - -13.545537948608398 - ], - [ - "▁Quarry", - -13.546109199523926 - ], - [ - "▁trolley", - -13.546110153198242 - ], - [ - "▁carburant", - -13.546111106872559 - ], - [ - "▁titluri", - -13.54631233215332 - ], - [ - "comparatively", - -13.546327590942383 - ], - [ - "nachfolgend", - -13.54659652709961 - ], - [ - "anfang", - -13.546740531921387 - ], - [ - "▁faszinieren", - -13.546891212463379 - ], - [ - "trăiesc", - -13.547082901000977 - ], - [ - "▁Travail", - -13.547159194946289 - ], - [ - "Contact", - -13.547235488891602 - ], - [ - "fashion", - -13.547245025634766 - ], - [ - "▁épais", - -13.547585487365723 - ], - [ - "plattform", - -13.547676086425781 - ], - [ - "ventricular", - -13.547677040100098 - ], - [ - "▁Portsmouth", - -13.547677993774414 - ], - [ - "▁împărat", - -13.54767894744873 - ], - [ - "▁vândut", - -13.547698020935059 - ], - [ - "▁evidenț", - -13.547708511352539 - ], - [ - "Purchasing", - -13.547877311706543 - ], - [ - "discerning", - -13.54804801940918 - ], - [ - "odonti", - -13.548080444335938 - ], - [ - "distilled", - -13.548316955566406 - ], - [ - "saveur", - -13.548447608947754 - ], - [ - "▁récompense", - -13.54845905303955 - ], - [ - "confortul", - -13.548552513122559 - ], - [ - "arbeitete", - -13.548787117004395 - ], - [ - "partenerii", - -13.549064636230469 - ], - [ - "mirrored", - -13.54908561706543 - ], - [ - "Dienstleister", - -13.549243927001953 - ], - [ - "▁Jakarta", - -13.549243927001953 - ], - [ - "▁WEBSITE", - -13.549243927001953 - ], - [ - "▁Acquisition", - -13.549262046813965 - ], - [ - "▁Miranda", - -13.549287796020508 - ], - [ - "Syndic", - -13.549356460571289 - ], - [ - "▁stadiu", - -13.549450874328613 - ], - [ - "▁Parchet", - -13.549498558044434 - ], - [ - "Générale", - -13.54954719543457 - ], - [ - "▁jpl", - -13.549579620361328 - ], - [ - "attainable", - -13.549949645996094 - ], - [ - "École", - -13.550041198730469 - ], - [ - "Sphere", - -13.550538063049316 - ], - [ - "obtainable", - -13.550592422485352 - ], - [ - "▁Sapphire", - -13.55081558227539 - ], - [ - "▁aérienne", - -13.55081558227539 - ], - [ - "▁bărbați", - -13.55081558227539 - ], - [ - "▁irritating", - -13.55081558227539 - ], - [ - "▁ultraviolet", - -13.550816535949707 - ], - [ - "untouched", - -13.550817489624023 - ], - [ - "▁Ramsey", - -13.550819396972656 - ], - [ - "titres", - -13.551087379455566 - ], - [ - "▁Coordinat", - -13.551218032836914 - ], - [ - "believable", - -13.551358222961426 - ], - [ - "▁Grundsätzlich", - -13.551602363586426 - ], - [ - "▁konsequent", - -13.551602363586426 - ], - [ - "▁Cerceta", - -13.551909446716309 - ], - [ - "dirigé", - -13.552116394042969 - ], - [ - "▁disturb", - -13.552151679992676 - ], - [ - "conciliation", - -13.552210807800293 - ], - [ - "▁gelöscht", - -13.552390098571777 - ], - [ - "▁sauvegarde", - -13.552391052246094 - ], - [ - "▁cavities", - -13.552393913269043 - ], - [ - "stunde", - -13.55241584777832 - ], - [ - "▁foloseasc", - -13.552430152893066 - ], - [ - "▁simpati", - -13.552873611450195 - ], - [ - "Chacun", - -13.553032875061035 - ], - [ - "adversaire", - -13.553178787231445 - ], - [ - "Eigentlich", - -13.55319881439209 - ], - [ - "defense", - -13.553593635559082 - ], - [ - "consider", - -13.553672790527344 - ], - [ - "▁Trinidad", - -13.553966522216797 - ], - [ - "▁strategist", - -13.553966522216797 - ], - [ - "distorted", - -13.553967475891113 - ], - [ - "▁hypothetical", - -13.553967475891113 - ], - [ - "▁ramburs", - -13.55396842956543 - ], - [ - "▁Mallorca", - -13.553970336914062 - ], - [ - "▁Domino", - -13.554018020629883 - ], - [ - "arrondissement", - -13.554756164550781 - ], - [ - "konferenz", - -13.554756164550781 - ], - [ - "▁Beleuchtung", - -13.554756164550781 - ], - [ - "aggregat", - -13.55484676361084 - ], - [ - "subsidize", - -13.554896354675293 - ], - [ - "shri", - -13.555503845214844 - ], - [ - "Kaufentscheidung", - -13.555545806884766 - ], - [ - "▁Hernandez", - -13.555545806884766 - ], - [ - "▁Upholster", - -13.555546760559082 - ], - [ - "atlantic", - -13.555614471435547 - ], - [ - "▁locuinte", - -13.555652618408203 - ], - [ - "integrates", - -13.55583381652832 - ], - [ - "ewusst", - -13.555878639221191 - ], - [ - "▁Avocado", - -13.556337356567383 - ], - [ - "Decorative", - -13.557014465332031 - ], - [ - "▁Corinthians", - -13.557127952575684 - ], - [ - "▁clădire", - -13.557127952575684 - ], - [ - "▁plomberie", - -13.557127952575684 - ], - [ - "vases", - -13.557143211364746 - ], - [ - "▁crippl", - -13.557247161865234 - ], - [ - "cluttered", - -13.557487487792969 - ], - [ - "departed", - -13.557807922363281 - ], - [ - "▁entscheidet", - -13.5579195022583 - ], - [ - "Certaine", - -13.558243751525879 - ], - [ - "honda", - -13.558294296264648 - ], - [ - "triggering", - -13.558527946472168 - ], - [ - "▁Erdogan", - -13.558712005615234 - ], - [ - "▁Widerstand", - -13.558712005615234 - ], - [ - "▁Bhutan", - -13.558713912963867 - ], - [ - "▁ascunde", - -13.558736801147461 - ], - [ - "▁shading", - -13.558748245239258 - ], - [ - "behavioural", - -13.559172630310059 - ], - [ - "▁transfér", - -13.55960750579834 - ], - [ - "versichert", - -13.559623718261719 - ], - [ - "▁vinovat", - -13.559646606445312 - ], - [ - "▁airfare", - -13.560142517089844 - ], - [ - "▁simplistic", - -13.56030559539795 - ], - [ - "▁Asigura", - -13.560320854187012 - ], - [ - "Chauffe", - -13.560480117797852 - ], - [ - "scrisă", - -13.560585975646973 - ], - [ - "trouvez", - -13.560702323913574 - ], - [ - "greasy", - -13.560709953308105 - ], - [ - "bottled", - -13.560809135437012 - ], - [ - "grouped", - -13.560934066772461 - ], - [ - "▁beeinflussen", - -13.561092376708984 - ], - [ - "▁chronological", - -13.561114311218262 - ], - [ - "(2000)", - -13.56127643585205 - ], - [ - "sheltered", - -13.561298370361328 - ], - [ - "Historically", - -13.561931610107422 - ], - [ - "piled", - -13.562012672424316 - ], - [ - "publicate", - -13.562378883361816 - ], - [ - "▁étudié", - -13.56268310546875 - ], - [ - "▁vertraut", - -13.562688827514648 - ], - [ - "▁Anpassung", - -13.562697410583496 - ], - [ - "cifra", - -13.562705993652344 - ], - [ - "▁recueil", - -13.562762260437012 - ], - [ - "enforceable", - -13.563183784484863 - ], - [ - "Distinguished", - -13.56347942352295 - ], - [ - "Empfänger", - -13.56347942352295 - ], - [ - "▁Acrylic", - -13.56347942352295 - ], - [ - "▁Encyclopedia", - -13.56347942352295 - ], - [ - "▁proaspete", - -13.56347942352295 - ], - [ - "▁unrealistic", - -13.56347942352295 - ], - [ - "▁Assignment", - -13.563481330871582 - ], - [ - "▁incubator", - -13.563491821289062 - ], - [ - "▁unilateral", - -13.563501358032227 - ], - [ - "elasticity", - -13.564398765563965 - ], - [ - "amintim", - -13.564475059509277 - ], - [ - "fournit", - -13.564553260803223 - ], - [ - "semblent", - -13.564763069152832 - ], - [ - "▁$69.", - -13.56496524810791 - ], - [ - "▁prominence", - -13.56507396697998 - ], - [ - "Übertragung", - -13.565075874328613 - ], - [ - "▁2014-11-", - -13.565075874328613 - ], - [ - "▁Giurgiu", - -13.565104484558105 - ], - [ - "étendue", - -13.565123558044434 - ], - [ - "ceputul", - -13.565187454223633 - ], - [ - "Schwierigkeiten", - -13.565872192382812 - ], - [ - "▁subtract", - -13.565881729125977 - ], - [ - "▁gesichert", - -13.56589126586914 - ], - [ - "▁uimit", - -13.565925598144531 - ], - [ - "▁mensuel", - -13.565967559814453 - ], - [ - "Vorgaben", - -13.566215515136719 - ], - [ - "▁legitimacy", - -13.566670417785645 - ], - [ - "▁Kendall", - -13.566673278808594 - ], - [ - "▁détach", - -13.566790580749512 - ], - [ - "▁kennenlernen", - -13.567469596862793 - ], - [ - "▁gewöhnlich", - -13.56747055053711 - ], - [ - "Octav", - -13.567917823791504 - ], - [ - "responsive", - -13.568169593811035 - ], - [ - "▁Mängel", - -13.568269729614258 - ], - [ - "▁mișcare", - -13.568269729614258 - ], - [ - "▁ludique", - -13.568270683288574 - ], - [ - "▁Exeter", - -13.568324089050293 - ], - [ - "▁respins", - -13.569114685058594 - ], - [ - "oraşului", - -13.569173812866211 - ], - [ - "▁sfârşit", - -13.56949520111084 - ], - [ - "BUSINESS", - -13.56987190246582 - ], - [ - "illustrating", - -13.56987190246582 - ], - [ - "▁Tottenham", - -13.56987190246582 - ], - [ - "▁pruning", - -13.569886207580566 - ], - [ - "▁Înainte", - -13.569904327392578 - ], - [ - "▁interesel", - -13.570096969604492 - ], - [ - "discovered", - -13.57031536102295 - ], - [ - "(0)", - -13.570572853088379 - ], - [ - "▁Bewerber", - -13.570673942565918 - ], - [ - "▁DESIGN", - -13.570673942565918 - ], - [ - "▁Orientierung", - -13.570686340332031 - ], - [ - "library", - -13.571041107177734 - ], - [ - "cheltuielile", - -13.571419715881348 - ], - [ - "▁Canterbury", - -13.571475982666016 - ], - [ - "▁intellectuelle", - -13.571477890014648 - ], - [ - "▁amalgam", - -13.571497917175293 - ], - [ - "▁Toledo", - -13.57150650024414 - ], - [ - "gezahlt", - -13.571531295776367 - ], - [ - "Veronica", - -13.571659088134766 - ], - [ - "deleting", - -13.571946144104004 - ], - [ - "▁Merlin", - -13.572442054748535 - ], - [ - "▁opérationnel", - -13.572554588317871 - ], - [ - "schmutz", - -13.572568893432617 - ], - [ - "hyroid", - -13.57279109954834 - ], - [ - "▁Compatible", - -13.57308292388916 - ], - [ - "▁Leopard", - -13.57308292388916 - ], - [ - "▁cylindrical", - -13.57308292388916 - ], - [ - "▁terrestrial", - -13.57308292388916 - ], - [ - "conferencing", - -13.573088645935059 - ], - [ - "▁Variety", - -13.573097229003906 - ], - [ - "▁Screw", - -13.573164939880371 - ], - [ - "character", - -13.573637962341309 - ], - [ - "shortened", - -13.573643684387207 - ], - [ - "▁întrerup", - -13.573736190795898 - ], - [ - "freude", - -13.573884010314941 - ], - [ - "▁dezbateri", - -13.573887825012207 - ], - [ - "viteză", - -13.574563026428223 - ], - [ - "formațiile", - -13.574600219726562 - ], - [ - "▁responsibly", - -13.574692726135254 - ], - [ - "Dimensiuni", - -13.574695587158203 - ], - [ - "Arrangement", - -13.57469654083252 - ], - [ - "▁Leisure", - -13.574712753295898 - ], - [ - "escaping", - -13.5750732421875 - ], - [ - "flexion", - -13.575104713439941 - ], - [ - "▁religieuse", - -13.575308799743652 - ], - [ - "crystalline", - -13.575457572937012 - ], - [ - "▁clasp", - -13.575520515441895 - ], - [ - "festigt", - -13.57554817199707 - ], - [ - "▁trouvai", - -13.57596206665039 - ], - [ - "cutaneous", - -13.576305389404297 - ], - [ - "▁carcinoma", - -13.576305389404297 - ], - [ - "▁juxtapos", - -13.576305389404297 - ], - [ - "assemblage", - -13.576306343078613 - ], - [ - "▁Messiah", - -13.576306343078613 - ], - [ - "▁Sleeve", - -13.576306343078613 - ], - [ - "▁șofer", - -13.576386451721191 - ], - [ - "/05/", - -13.57666301727295 - ], - [ - "▁expoziți", - -13.576703071594238 - ], - [ - "▁pătrun", - -13.577343940734863 - ], - [ - "▁Lydia", - -13.57739543914795 - ], - [ - "▁grădini", - -13.577919006347656 - ], - [ - "▁toothpaste", - -13.577919960021973 - ], - [ - "ordained", - -13.577921867370605 - ], - [ - "▁Renovation", - -13.577922821044922 - ], - [ - "voicing", - -13.578327178955078 - ], - [ - "président", - -13.578595161437988 - ], - [ - "▁gestartet", - -13.578728675842285 - ], - [ - "Multi", - -13.579121589660645 - ], - [ - "itinéraire", - -13.579537391662598 - ], - [ - "▁influenza", - -13.579537391662598 - ], - [ - "▁psychiatrist", - -13.579537391662598 - ], - [ - "▁schizophrenia", - -13.579537391662598 - ], - [ - "▁Magnolia", - -13.57953929901123 - ], - [ - "▁Scottsdale", - -13.579541206359863 - ], - [ - "▁interessieren", - -13.579548835754395 - ], - [ - "▁asfalt", - -13.579643249511719 - ], - [ - "▁Journalism", - -13.57977294921875 - ], - [ - "Multe", - -13.580089569091797 - ], - [ - "Westfalen", - -13.580347061157227 - ], - [ - "▁Vorschriften", - -13.580348014831543 - ], - [ - "Angleterre", - -13.58034896850586 - ], - [ - "sustainable", - -13.580354690551758 - ], - [ - "▁Retour", - -13.580589294433594 - ], - [ - "▁pâr", - -13.5809965133667 - ], - [ - "steigert", - -13.581120491027832 - ], - [ - "▁AMAZING", - -13.581157684326172 - ], - [ - "▁turbulent", - -13.581157684326172 - ], - [ - "costing", - -13.58155345916748 - ], - [ - "▁Carolyn", - -13.581634521484375 - ], - [ - "utti", - -13.581802368164062 - ], - [ - "dürftig", - -13.581968307495117 - ], - [ - "Keep", - -13.582038879394531 - ], - [ - "▁Théâtre", - -13.582780838012695 - ], - [ - "▁combustibil", - -13.582780838012695 - ], - [ - "▁halloween", - -13.582780838012695 - ], - [ - "▁emulator", - -13.582785606384277 - ], - [ - "▁povești", - -13.582785606384277 - ], - [ - "broyeur", - -13.582810401916504 - ], - [ - "▁émerg", - -13.582927703857422 - ], - [ - "overwhelmingly", - -13.583025932312012 - ], - [ - "regulă", - -13.583124160766602 - ], - [ - "goutte", - -13.583125114440918 - ], - [ - "▁Fertigung", - -13.583593368530273 - ], - [ - "constituted", - -13.584304809570312 - ], - [ - "▁QuickBooks", - -13.584406852722168 - ], - [ - "▁genealogy", - -13.584407806396484 - ], - [ - "▁laundering", - -13.584432601928711 - ], - [ - "▁échéan", - -13.584491729736328 - ], - [ - "Account", - -13.584601402282715 - ], - [ - "oyons", - -13.584792137145996 - ], - [ - "nitro", - -13.584905624389648 - ], - [ - "▁corespund", - -13.585219383239746 - ], - [ - "▁suggér", - -13.58527660369873 - ], - [ - "manipulated", - -13.585348129272461 - ], - [ - "deseori", - -13.585817337036133 - ], - [ - "permeabil", - -13.585912704467773 - ], - [ - "Australia", - -13.58594799041748 - ], - [ - "▁Erasmus", - -13.586034774780273 - ], - [ - "▁disrespect", - -13.586034774780273 - ], - [ - "▁trimestre", - -13.586038589477539 - ], - [ - "▁emanat", - -13.586103439331055 - ], - [ - "Schraub", - -13.58624267578125 - ], - [ - "distinctly", - -13.586319923400879 - ], - [ - "Germain", - -13.586637496948242 - ], - [ - "▁pedepse", - -13.5868501663208 - ], - [ - "réglage", - -13.5868558883667 - ], - [ - "făcute", - -13.587308883666992 - ], - [ - "▁garanteaz", - -13.587434768676758 - ], - [ - "▁unterlieg", - -13.587701797485352 - ], - [ - "▁cheddar", - -13.587712287902832 - ], - [ - "▁refugi", - -13.587756156921387 - ], - [ - "▁inférieur", - -13.587836265563965 - ], - [ - "dimension", - -13.588440895080566 - ], - [ - "▁erkennt", - -13.588570594787598 - ], - [ - "amitié", - -13.588632583618164 - ], - [ - "▁predominant", - -13.588680267333984 - ], - [ - "nourishe", - -13.588800430297852 - ], - [ - "exerce", - -13.588907241821289 - ], - [ - "▁disguise", - -13.589225769042969 - ], - [ - "▁traditi", - -13.589289665222168 - ], - [ - "▁Intellectual", - -13.5892972946167 - ], - [ - "▁imunitar", - -13.589299201965332 - ], - [ - "▁Cushion", - -13.589300155639648 - ], - [ - "▁erwachsene", - -13.589517593383789 - ], - [ - "▁Internațional", - -13.590115547180176 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ], - [ - "", - 0.0 - ] - ], - "byte_fallback": false - } -} \ No newline at end of file diff --git a/MagicQuill/comfy/t5_tokenizer/tokenizer_config.json b/MagicQuill/comfy/t5_tokenizer/tokenizer_config.json deleted file mode 100644 index 02020eb6d20746871e1ea93f14c4475cf9368f98..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/t5_tokenizer/tokenizer_config.json +++ /dev/null @@ -1,939 +0,0 @@ -{ - "added_tokens_decoder": { - "0": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "1": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "2": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32000": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32001": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32002": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32003": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32004": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32005": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32006": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32007": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32008": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32009": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32010": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32011": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32012": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32013": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32014": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32015": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32016": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32017": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32018": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32019": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32020": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32021": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32022": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32023": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32024": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32025": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32026": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32027": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32028": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32029": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32030": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32031": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32032": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32033": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32034": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32035": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32036": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32037": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32038": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32039": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32040": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32041": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32042": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32043": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32044": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32045": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32046": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32047": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32048": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32049": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32050": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32051": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32052": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32053": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32054": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32055": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32056": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32057": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32058": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32059": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32060": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32061": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32062": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32063": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32064": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32065": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32066": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32067": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32068": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32069": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32070": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32071": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32072": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32073": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32074": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32075": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32076": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32077": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32078": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32079": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32080": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32081": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32082": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32083": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32084": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32085": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32086": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32087": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32088": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32089": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32090": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32091": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32092": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32093": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32094": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32095": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32096": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32097": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32098": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - }, - "32099": { - "content": "", - "lstrip": false, - "normalized": false, - "rstrip": false, - "single_word": false, - "special": true - } - }, - "additional_special_tokens": [ - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "", - "" - ], - "clean_up_tokenization_spaces": true, - "eos_token": "", - "extra_ids": 100, - "legacy": false, - "model_max_length": 512, - "pad_token": "", - "sp_model_kwargs": {}, - "tokenizer_class": "T5Tokenizer", - "unk_token": "" -} diff --git a/MagicQuill/comfy/taesd/__pycache__/taesd.cpython-310.pyc b/MagicQuill/comfy/taesd/__pycache__/taesd.cpython-310.pyc deleted file mode 100644 index 0932688b81b27dafa7b884340ea11b1ed5748839..0000000000000000000000000000000000000000 Binary files a/MagicQuill/comfy/taesd/__pycache__/taesd.cpython-310.pyc and /dev/null differ diff --git a/MagicQuill/comfy/taesd/taesd.py b/MagicQuill/comfy/taesd/taesd.py deleted file mode 100644 index ce36f1a84dae599a35e84a8da3462408c0f0ccc6..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/taesd/taesd.py +++ /dev/null @@ -1,79 +0,0 @@ -#!/usr/bin/env python3 -""" -Tiny AutoEncoder for Stable Diffusion -(DNN for encoding / decoding SD's latent space) -""" -import torch -import torch.nn as nn - -import comfy.utils -import comfy.ops - -def conv(n_in, n_out, **kwargs): - return comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 3, padding=1, **kwargs) - -class Clamp(nn.Module): - def forward(self, x): - return torch.tanh(x / 3) * 3 - -class Block(nn.Module): - def __init__(self, n_in, n_out): - super().__init__() - self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out)) - self.skip = comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity() - self.fuse = nn.ReLU() - def forward(self, x): - return self.fuse(self.conv(x) + self.skip(x)) - -def Encoder(latent_channels=4): - return nn.Sequential( - conv(3, 64), Block(64, 64), - conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), - conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), - conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), - conv(64, latent_channels), - ) - - -def Decoder(latent_channels=4): - return nn.Sequential( - Clamp(), conv(latent_channels, 64), nn.ReLU(), - Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), - Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), - Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), - Block(64, 64), conv(64, 3), - ) - -class TAESD(nn.Module): - latent_magnitude = 3 - latent_shift = 0.5 - - def __init__(self, encoder_path=None, decoder_path=None, latent_channels=4): - """Initialize pretrained TAESD on the given device from the given checkpoints.""" - super().__init__() - self.taesd_encoder = Encoder(latent_channels=latent_channels) - self.taesd_decoder = Decoder(latent_channels=latent_channels) - self.vae_scale = torch.nn.Parameter(torch.tensor(1.0)) - self.vae_shift = torch.nn.Parameter(torch.tensor(0.0)) - if encoder_path is not None: - self.taesd_encoder.load_state_dict(comfy.utils.load_torch_file(encoder_path, safe_load=True)) - if decoder_path is not None: - self.taesd_decoder.load_state_dict(comfy.utils.load_torch_file(decoder_path, safe_load=True)) - - @staticmethod - def scale_latents(x): - """raw latents -> [0, 1]""" - return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1) - - @staticmethod - def unscale_latents(x): - """[0, 1] -> raw latents""" - return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude) - - def decode(self, x): - x_sample = self.taesd_decoder((x - self.vae_shift) * self.vae_scale) - x_sample = x_sample.sub(0.5).mul(2) - return x_sample - - def encode(self, x): - return (self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale) + self.vae_shift diff --git a/MagicQuill/comfy/types.py b/MagicQuill/comfy/types.py deleted file mode 100644 index 70cf4b158e5f969192c0c11d9bd461964aaea5b5..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/types.py +++ /dev/null @@ -1,32 +0,0 @@ -import torch -from typing import Callable, Protocol, TypedDict, Optional, List - - -class UnetApplyFunction(Protocol): - """Function signature protocol on comfy.model_base.BaseModel.apply_model""" - - def __call__(self, x: torch.Tensor, t: torch.Tensor, **kwargs) -> torch.Tensor: - pass - - -class UnetApplyConds(TypedDict): - """Optional conditions for unet apply function.""" - - c_concat: Optional[torch.Tensor] - c_crossattn: Optional[torch.Tensor] - control: Optional[torch.Tensor] - transformer_options: Optional[dict] - - -class UnetParams(TypedDict): - # Tensor of shape [B, C, H, W] - input: torch.Tensor - # Tensor of shape [B] - timestep: torch.Tensor - c: UnetApplyConds - # List of [0, 1], [0], [1], ... - # 0 means conditional, 1 means conditional unconditional - cond_or_uncond: List[int] - - -UnetWrapperFunction = Callable[[UnetApplyFunction, UnetParams], torch.Tensor] diff --git a/MagicQuill/comfy/utils.py b/MagicQuill/comfy/utils.py deleted file mode 100644 index 884404cceb39ebfafffa2e712f2a95d6b69f6c7e..0000000000000000000000000000000000000000 --- a/MagicQuill/comfy/utils.py +++ /dev/null @@ -1,483 +0,0 @@ -import torch -import math -import struct -import comfy.checkpoint_pickle -import safetensors.torch -import numpy as np -from PIL import Image -import logging - -def load_torch_file(ckpt, safe_load=False, device=None): - if device is None: - device = torch.device("cpu") - if ckpt.lower().endswith(".safetensors"): - sd = safetensors.torch.load_file(ckpt, device=device.type) - else: - if safe_load: - if not 'weights_only' in torch.load.__code__.co_varnames: - logging.warning("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.") - safe_load = False - if safe_load: - pl_sd = torch.load(ckpt, map_location=device, weights_only=True) - else: - pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle) - if "global_step" in pl_sd: - logging.debug(f"Global Step: {pl_sd['global_step']}") - if "state_dict" in pl_sd: - sd = pl_sd["state_dict"] - else: - sd = pl_sd - return sd - -def save_torch_file(sd, ckpt, metadata=None): - if metadata is not None: - safetensors.torch.save_file(sd, ckpt, metadata=metadata) - else: - safetensors.torch.save_file(sd, ckpt) - -def calculate_parameters(sd, prefix=""): - params = 0 - for k in sd.keys(): - if k.startswith(prefix): - params += sd[k].nelement() - return params - -def state_dict_key_replace(state_dict, keys_to_replace): - for x in keys_to_replace: - if x in state_dict: - state_dict[keys_to_replace[x]] = state_dict.pop(x) - return state_dict - -def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False): - if filter_keys: - out = {} - else: - out = state_dict - for rp in replace_prefix: - replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys()))) - for x in replace: - w = state_dict.pop(x[0]) - out[x[1]] = w - return out - - -def transformers_convert(sd, prefix_from, prefix_to, number): - keys_to_replace = { - "{}positional_embedding": "{}embeddings.position_embedding.weight", - "{}token_embedding.weight": "{}embeddings.token_embedding.weight", - "{}ln_final.weight": "{}final_layer_norm.weight", - "{}ln_final.bias": "{}final_layer_norm.bias", - } - - for k in keys_to_replace: - x = k.format(prefix_from) - if x in sd: - sd[keys_to_replace[k].format(prefix_to)] = sd.pop(x) - - resblock_to_replace = { - "ln_1": "layer_norm1", - "ln_2": "layer_norm2", - "mlp.c_fc": "mlp.fc1", - "mlp.c_proj": "mlp.fc2", - "attn.out_proj": "self_attn.out_proj", - } - - for resblock in range(number): - for x in resblock_to_replace: - for y in ["weight", "bias"]: - k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y) - k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y) - if k in sd: - sd[k_to] = sd.pop(k) - - for y in ["weight", "bias"]: - k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y) - if k_from in sd: - weights = sd.pop(k_from) - shape_from = weights.shape[0] // 3 - for x in range(3): - p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"] - k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y) - sd[k_to] = weights[shape_from*x:shape_from*(x + 1)] - - return sd - -def clip_text_transformers_convert(sd, prefix_from, prefix_to): - sd = transformers_convert(sd, prefix_from, "{}text_model.".format(prefix_to), 32) - - tp = "{}text_projection.weight".format(prefix_from) - if tp in sd: - sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp) - - tp = "{}text_projection".format(prefix_from) - if tp in sd: - sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp).transpose(0, 1).contiguous() - return sd - - -UNET_MAP_ATTENTIONS = { - "proj_in.weight", - "proj_in.bias", - "proj_out.weight", - "proj_out.bias", - "norm.weight", - "norm.bias", -} - -TRANSFORMER_BLOCKS = { - "norm1.weight", - "norm1.bias", - "norm2.weight", - "norm2.bias", - "norm3.weight", - "norm3.bias", - "attn1.to_q.weight", - "attn1.to_k.weight", - "attn1.to_v.weight", - "attn1.to_out.0.weight", - "attn1.to_out.0.bias", - "attn2.to_q.weight", - "attn2.to_k.weight", - "attn2.to_v.weight", - "attn2.to_out.0.weight", - "attn2.to_out.0.bias", - "ff.net.0.proj.weight", - "ff.net.0.proj.bias", - "ff.net.2.weight", - "ff.net.2.bias", -} - -UNET_MAP_RESNET = { - "in_layers.2.weight": "conv1.weight", - "in_layers.2.bias": "conv1.bias", - "emb_layers.1.weight": "time_emb_proj.weight", - "emb_layers.1.bias": "time_emb_proj.bias", - "out_layers.3.weight": "conv2.weight", - "out_layers.3.bias": "conv2.bias", - "skip_connection.weight": "conv_shortcut.weight", - "skip_connection.bias": "conv_shortcut.bias", - "in_layers.0.weight": "norm1.weight", - "in_layers.0.bias": "norm1.bias", - "out_layers.0.weight": "norm2.weight", - "out_layers.0.bias": "norm2.bias", -} - -UNET_MAP_BASIC = { - ("label_emb.0.0.weight", "class_embedding.linear_1.weight"), - ("label_emb.0.0.bias", "class_embedding.linear_1.bias"), - ("label_emb.0.2.weight", "class_embedding.linear_2.weight"), - ("label_emb.0.2.bias", "class_embedding.linear_2.bias"), - ("label_emb.0.0.weight", "add_embedding.linear_1.weight"), - ("label_emb.0.0.bias", "add_embedding.linear_1.bias"), - ("label_emb.0.2.weight", "add_embedding.linear_2.weight"), - ("label_emb.0.2.bias", "add_embedding.linear_2.bias"), - ("input_blocks.0.0.weight", "conv_in.weight"), - ("input_blocks.0.0.bias", "conv_in.bias"), - ("out.0.weight", "conv_norm_out.weight"), - ("out.0.bias", "conv_norm_out.bias"), - ("out.2.weight", "conv_out.weight"), - ("out.2.bias", "conv_out.bias"), - ("time_embed.0.weight", "time_embedding.linear_1.weight"), - ("time_embed.0.bias", "time_embedding.linear_1.bias"), - ("time_embed.2.weight", "time_embedding.linear_2.weight"), - ("time_embed.2.bias", "time_embedding.linear_2.bias") -} - -def unet_to_diffusers(unet_config): - if "num_res_blocks" not in unet_config: - return {} - num_res_blocks = unet_config["num_res_blocks"] - channel_mult = unet_config["channel_mult"] - transformer_depth = unet_config["transformer_depth"][:] - transformer_depth_output = unet_config["transformer_depth_output"][:] - num_blocks = len(channel_mult) - - transformers_mid = unet_config.get("transformer_depth_middle", None) - - diffusers_unet_map = {} - for x in range(num_blocks): - n = 1 + (num_res_blocks[x] + 1) * x - for i in range(num_res_blocks[x]): - for b in UNET_MAP_RESNET: - diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b) - num_transformers = transformer_depth.pop(0) - if num_transformers > 0: - for b in UNET_MAP_ATTENTIONS: - diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b) - for t in range(num_transformers): - for b in TRANSFORMER_BLOCKS: - diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b) - n += 1 - for k in ["weight", "bias"]: - diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k) - - i = 0 - for b in UNET_MAP_ATTENTIONS: - diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b) - for t in range(transformers_mid): - for b in TRANSFORMER_BLOCKS: - diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b) - - for i, n in enumerate([0, 2]): - for b in UNET_MAP_RESNET: - diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b) - - num_res_blocks = list(reversed(num_res_blocks)) - for x in range(num_blocks): - n = (num_res_blocks[x] + 1) * x - l = num_res_blocks[x] + 1 - for i in range(l): - c = 0 - for b in UNET_MAP_RESNET: - diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b) - c += 1 - num_transformers = transformer_depth_output.pop() - if num_transformers > 0: - c += 1 - for b in UNET_MAP_ATTENTIONS: - diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b) - for t in range(num_transformers): - for b in TRANSFORMER_BLOCKS: - diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b) - if i == l - 1: - for k in ["weight", "bias"]: - diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k) - n += 1 - - for k in UNET_MAP_BASIC: - diffusers_unet_map[k[1]] = k[0] - - return diffusers_unet_map - -def repeat_to_batch_size(tensor, batch_size, dim=0): - if tensor.shape[dim] > batch_size: - return tensor.narrow(dim, 0, batch_size) - elif tensor.shape[dim] < batch_size: - return tensor.repeat(dim * [1] + [math.ceil(batch_size / tensor.shape[dim])] + [1] * (len(tensor.shape) - 1 - dim)).narrow(dim, 0, batch_size) - return tensor - -def resize_to_batch_size(tensor, batch_size): - in_batch_size = tensor.shape[0] - if in_batch_size == batch_size: - return tensor - - if batch_size <= 1: - return tensor[:batch_size] - - output = torch.empty([batch_size] + list(tensor.shape)[1:], dtype=tensor.dtype, device=tensor.device) - if batch_size < in_batch_size: - scale = (in_batch_size - 1) / (batch_size - 1) - for i in range(batch_size): - output[i] = tensor[min(round(i * scale), in_batch_size - 1)] - else: - scale = in_batch_size / batch_size - for i in range(batch_size): - output[i] = tensor[min(math.floor((i + 0.5) * scale), in_batch_size - 1)] - - return output - -def convert_sd_to(state_dict, dtype): - keys = list(state_dict.keys()) - for k in keys: - state_dict[k] = state_dict[k].to(dtype) - return state_dict - -def safetensors_header(safetensors_path, max_size=100*1024*1024): - with open(safetensors_path, "rb") as f: - header = f.read(8) - length_of_header = struct.unpack(' max_size: - return None - return f.read(length_of_header) - -def set_attr(obj, attr, value): - attrs = attr.split(".") - for name in attrs[:-1]: - obj = getattr(obj, name) - prev = getattr(obj, attrs[-1]) - setattr(obj, attrs[-1], value) - return prev - -def set_attr_param(obj, attr, value): - return set_attr(obj, attr, torch.nn.Parameter(value, requires_grad=False)) - -def copy_to_param(obj, attr, value): - # inplace update tensor instead of replacing it - attrs = attr.split(".") - for name in attrs[:-1]: - obj = getattr(obj, name) - prev = getattr(obj, attrs[-1]) - prev.data.copy_(value) - -def get_attr(obj, attr): - attrs = attr.split(".") - for name in attrs: - obj = getattr(obj, name) - return obj - -def bislerp(samples, width, height): - def slerp(b1, b2, r): - '''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC''' - - c = b1.shape[-1] - - #norms - b1_norms = torch.norm(b1, dim=-1, keepdim=True) - b2_norms = torch.norm(b2, dim=-1, keepdim=True) - - #normalize - b1_normalized = b1 / b1_norms - b2_normalized = b2 / b2_norms - - #zero when norms are zero - b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0 - b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0 - - #slerp - dot = (b1_normalized*b2_normalized).sum(1) - omega = torch.acos(dot) - so = torch.sin(omega) - - #technically not mathematically correct, but more pleasing? - res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized - res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c) - - #edge cases for same or polar opposites - res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] - res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1] - return res - - def generate_bilinear_data(length_old, length_new, device): - coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) - coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear") - ratios = coords_1 - coords_1.floor() - coords_1 = coords_1.to(torch.int64) - - coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1 - coords_2[:,:,:,-1] -= 1 - coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear") - coords_2 = coords_2.to(torch.int64) - return ratios, coords_1, coords_2 - - orig_dtype = samples.dtype - samples = samples.float() - n,c,h,w = samples.shape - h_new, w_new = (height, width) - - #linear w - ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device) - coords_1 = coords_1.expand((n, c, h, -1)) - coords_2 = coords_2.expand((n, c, h, -1)) - ratios = ratios.expand((n, 1, h, -1)) - - pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c)) - pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c)) - ratios = ratios.movedim(1, -1).reshape((-1,1)) - - result = slerp(pass_1, pass_2, ratios) - result = result.reshape(n, h, w_new, c).movedim(-1, 1) - - #linear h - ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device) - coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new)) - coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new)) - ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new)) - - pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c)) - pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c)) - ratios = ratios.movedim(1, -1).reshape((-1,1)) - - result = slerp(pass_1, pass_2, ratios) - result = result.reshape(n, h_new, w_new, c).movedim(-1, 1) - return result.to(orig_dtype) - -def lanczos(samples, width, height): - images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples] - images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images] - images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images] - result = torch.stack(images) - return result.to(samples.device, samples.dtype) - -def common_upscale(samples, width, height, upscale_method, crop): - if crop == "center": - old_width = samples.shape[3] - old_height = samples.shape[2] - old_aspect = old_width / old_height - new_aspect = width / height - x = 0 - y = 0 - if old_aspect > new_aspect: - x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) - elif old_aspect < new_aspect: - y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) - s = samples[:,:,y:old_height-y,x:old_width-x] - else: - s = samples - - if upscale_method == "bislerp": - return bislerp(s, width, height) - elif upscale_method == "lanczos": - return lanczos(s, width, height) - else: - return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) - -def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap): - return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap))) - -@torch.inference_mode() -def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None): - output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device=output_device) - for b in range(samples.shape[0]): - s = samples[b:b+1] - out = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device) - out_div = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device) - for y in range(0, s.shape[2], tile_y - overlap): - for x in range(0, s.shape[3], tile_x - overlap): - x = max(0, min(s.shape[-1] - overlap, x)) - y = max(0, min(s.shape[-2] - overlap, y)) - s_in = s[:,:,y:y+tile_y,x:x+tile_x] - - ps = function(s_in).to(output_device) - mask = torch.ones_like(ps) - feather = round(overlap * upscale_amount) - for t in range(feather): - mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1)) - mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1)) - mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1)) - mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1)) - out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask - out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask - if pbar is not None: - pbar.update(1) - - output[b:b+1] = out/out_div - return output - -PROGRESS_BAR_ENABLED = True -def set_progress_bar_enabled(enabled): - global PROGRESS_BAR_ENABLED - PROGRESS_BAR_ENABLED = enabled - -PROGRESS_BAR_HOOK = None -def set_progress_bar_global_hook(function): - global PROGRESS_BAR_HOOK - PROGRESS_BAR_HOOK = function - -class ProgressBar: - def __init__(self, total): - global PROGRESS_BAR_HOOK - self.total = total - self.current = 0 - self.hook = PROGRESS_BAR_HOOK - - def update_absolute(self, value, total=None, preview=None): - if total is not None: - self.total = total - if value > self.total: - value = self.total - self.current = value - if self.hook is not None: - self.hook(self.current, self.total, preview) - - def update(self, value): - self.update_absolute(self.current + value) diff --git a/MagicQuill/comfyui_utils.py b/MagicQuill/comfyui_utils.py deleted file mode 100644 index 718a2417fc60b78bf83c4f449a2c68011a8b3202..0000000000000000000000000000000000000000 --- a/MagicQuill/comfyui_utils.py +++ /dev/null @@ -1,403 +0,0 @@ -import os -import folder_paths -import comfy.diffusers_load -import comfy.samplers -import comfy.sample -import comfy.sd -import comfy.utils -import comfy.controlnet -import comfy.clip_vision -import comfy.model_management -from comfy.cli_args import args -import torch -import torch.nn as nn -import numpy as np -import latent_preview -from PIL import Image -from einops import rearrange -import scipy.ndimage -import sys -import cv2 -from magic_utils import HWC3, apply_color, common_input_validate, resize_image_with_pad -from pidi import pidinet - - -supported_pt_extensions = set(['.ckpt', '.pt', '.bin', '.pth', '.safetensors', '.pkl']) -folder_names_and_paths = {} - -base_path = os.path.dirname(os.path.realpath(__file__)) -models_dir = os.path.join(base_path, "../models") - -folder_names_and_paths["checkpoints"] = ([os.path.join(models_dir, "checkpoints")], supported_pt_extensions) -folder_names_and_paths["configs"] = ([os.path.join(models_dir, "configs")], [".yaml"]) - -folder_names_and_paths["loras"] = ([os.path.join(models_dir, "loras")], supported_pt_extensions) -folder_names_and_paths["vae"] = ([os.path.join(models_dir, "vae")], supported_pt_extensions) -folder_names_and_paths["clip"] = ([os.path.join(models_dir, "clip")], supported_pt_extensions) -folder_names_and_paths["unet"] = ([os.path.join(models_dir, "unet")], supported_pt_extensions) -folder_names_and_paths["clip_vision"] = ([os.path.join(models_dir, "clip_vision")], supported_pt_extensions) -folder_names_and_paths["style_models"] = ([os.path.join(models_dir, "style_models")], supported_pt_extensions) -folder_names_and_paths["embeddings"] = ([os.path.join(models_dir, "embeddings")], supported_pt_extensions) -folder_names_and_paths["diffusers"] = ([os.path.join(models_dir, "diffusers")], ["folder"]) -folder_names_and_paths["vae_approx"] = ([os.path.join(models_dir, "vae_approx")], supported_pt_extensions) - -folder_names_and_paths["controlnet"] = ([os.path.join(models_dir, "controlnet"), os.path.join(models_dir, "t2i_adapter")], supported_pt_extensions) -folder_names_and_paths["gligen"] = ([os.path.join(models_dir, "gligen")], supported_pt_extensions) -folder_names_and_paths["upscale_models"] = ([os.path.join(models_dir, "upscale_models")], supported_pt_extensions) -folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions) -folder_names_and_paths["photomaker"] = ([os.path.join(models_dir, "photomaker")], supported_pt_extensions) -folder_names_and_paths["classifiers"] = ([os.path.join(models_dir, "classifiers")], {""}) - -def common_annotator_call(model, tensor_image, input_batch=False, show_pbar=True, **kwargs): - if "detect_resolution" in kwargs: - del kwargs["detect_resolution"] #Prevent weird case? - - if "resolution" in kwargs: - detect_resolution = kwargs["resolution"] if type(kwargs["resolution"]) == int and kwargs["resolution"] >= 64 else 512 - del kwargs["resolution"] - else: - detect_resolution = 512 - - if input_batch: - np_images = np.asarray(tensor_image * 255., dtype=np.uint8) - np_results = model(np_images, output_type="np", detect_resolution=detect_resolution, **kwargs) - return torch.from_numpy(np_results.astype(np.float32) / 255.0) - - batch_size = tensor_image.shape[0] - if show_pbar: - pbar = comfy.utils.ProgressBar(batch_size) - out_tensor = None - for i, image in enumerate(tensor_image): - np_image = np.asarray(image.cpu() * 255., dtype=np.uint8) - np_result = model(np_image, output_type="np", detect_resolution=detect_resolution, **kwargs) - out = torch.from_numpy(np_result.astype(np.float32) / 255.0) - if out_tensor is None: - out_tensor = torch.zeros(batch_size, *out.shape, dtype=torch.float32) - out_tensor[i] = out - if show_pbar: - pbar.update(1) - return out_tensor - -class CheckpointLoaderSimple: - def load_checkpoint(self, ckpt_name): - ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) - print("Loading checkpoint from:", ckpt_path) - out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings")) - return out[:3] - -class ControlNetLoader: - def load_controlnet(self, control_net_name): - controlnet_path = folder_paths.get_full_path("controlnet", control_net_name) - controlnet = comfy.controlnet.load_controlnet(controlnet_path) - return (controlnet, ) - -class ControlNetApplyAdvanced: - def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent): - if strength == 0: - return (positive, negative) - - control_hint = image.movedim(-1,1) - cnets = {} - - out = [] - for conditioning in [positive, negative]: - c = [] - for t in conditioning: - d = t[1].copy() - - prev_cnet = d.get('control', None) - if prev_cnet in cnets: - c_net = cnets[prev_cnet] - else: - c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent)) - c_net.set_previous_controlnet(prev_cnet) - cnets[prev_cnet] = c_net - - d['control'] = c_net - d['control_apply_to_uncond'] = False - n = [t[0], d] - c.append(n) - out.append(c) - return (out[0], out[1]) - -class CLIPTextEncode: - def encode(self, clip, text): - tokens = clip.tokenize(text) - cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) - return ([[cond, {"pooled_output": pooled}]], ) - -class KSampler: - def common_ksampler(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): - latent_image = latent["samples"] - latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image) - - if disable_noise: - noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") - else: - batch_inds = latent["batch_index"] if "batch_index" in latent else None - noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds) - - noise_mask = None - if "noise_mask" in latent: - noise_mask = latent["noise_mask"] - - callback = latent_preview.prepare_callback(model, steps) - disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED - samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, - denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step, - force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) - out = latent.copy() - out["samples"] = samples - return (out, ) - - def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0): - return self.common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise) - -class VAEDecode: - def decode(self, vae, samples): - return (vae.decode(samples["samples"]), ) - -class ColorDetector: - def __call__(self, input_image=None, detect_resolution=2048, output_type=None, **kwargs): - input_image, output_type = common_input_validate(input_image, output_type, **kwargs) - input_image = HWC3(input_image) - detected_map = HWC3(apply_color(input_image, detect_resolution)) - - if output_type == "pil": - detected_map = Image.fromarray(detected_map) - - return detected_map - -class Color_Preprocessor: - def execute(self, image, resolution=512, **kwargs): - return (common_annotator_call(ColorDetector(), image, resolution=resolution), ) - -norm_layer = nn.InstanceNorm2d -class ResidualBlock(nn.Module): - def __init__(self, in_features): - super(ResidualBlock, self).__init__() - - conv_block = [ nn.ReflectionPad2d(1), - nn.Conv2d(in_features, in_features, 3), - norm_layer(in_features), - nn.ReLU(inplace=True), - nn.ReflectionPad2d(1), - nn.Conv2d(in_features, in_features, 3), - norm_layer(in_features) - ] - - self.conv_block = nn.Sequential(*conv_block) - - def forward(self, x): - return x + self.conv_block(x) - -class Generator(nn.Module): - def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): - super(Generator, self).__init__() - - # Initial convolution block - model0 = [ nn.ReflectionPad2d(3), - nn.Conv2d(input_nc, 64, 7), - norm_layer(64), - nn.ReLU(inplace=True) ] - self.model0 = nn.Sequential(*model0) - - # Downsampling - model1 = [] - in_features = 64 - out_features = in_features*2 - for _ in range(2): - model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), - norm_layer(out_features), - nn.ReLU(inplace=True) ] - in_features = out_features - out_features = in_features*2 - self.model1 = nn.Sequential(*model1) - - model2 = [] - # Residual blocks - for _ in range(n_residual_blocks): - model2 += [ResidualBlock(in_features)] - self.model2 = nn.Sequential(*model2) - - # Upsampling - model3 = [] - out_features = in_features//2 - for _ in range(2): - model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), - norm_layer(out_features), - nn.ReLU(inplace=True) ] - in_features = out_features - out_features = in_features//2 - self.model3 = nn.Sequential(*model3) - - # Output layer - model4 = [ nn.ReflectionPad2d(3), - nn.Conv2d(64, output_nc, 7)] - if sigmoid: - model4 += [nn.Sigmoid()] - - self.model4 = nn.Sequential(*model4) - - def forward(self, x, cond=None): - out = self.model0(x) - out = self.model1(out) - out = self.model2(out) - out = self.model3(out) - out = self.model4(out) - - return out - -class LineartDetector: - def __init__(self, model, coarse_model): - self.model = model - self.model_coarse = coarse_model - self.device = "cpu" - - @classmethod - def from_pretrained(cls): - current_dir = os.path.dirname(os.path.abspath(__file__)) - model_path = os.path.join(current_dir, "../models/preprocessor/sk_model.pth") - coarse_model_path = os.path.join(current_dir, "../models/preprocessor/sk_model2.pth") - - # print("model_path:", model_path) - model = Generator(3, 1, 3) - model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) - model.eval() - - coarse_model = Generator(3, 1, 3) - coarse_model.load_state_dict(torch.load(coarse_model_path, map_location=torch.device('cpu'))) - coarse_model.eval() - - return cls(model, coarse_model) - - def to(self, device): - self.model.to(device) - self.model_coarse.to(device) - self.device = device - return self - - def __call__(self, input_image, coarse=False, detect_resolution=512, output_type="pil", upscale_method="INTER_CUBIC", **kwargs): - input_image, output_type = common_input_validate(input_image, output_type, **kwargs) - detected_map, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) - - model = self.model_coarse if coarse else self.model - assert detected_map.ndim == 3 - with torch.no_grad(): - image = torch.from_numpy(detected_map).float().to(self.device) - image = image / 255.0 - image = rearrange(image, 'h w c -> 1 c h w') - line = model(image)[0][0] - - line = line.cpu().numpy() - line = (line * 255.0).clip(0, 255).astype(np.uint8) - - detected_map = HWC3(line) - detected_map = remove_pad(255 - detected_map) - - if output_type == "pil": - detected_map = Image.fromarray(detected_map) - - return detected_map - -class LineArt_Preprocessor: - def execute(self, image, resolution=512, **kwargs): - model = LineartDetector.from_pretrained().to(comfy.model_management.get_torch_device()) - print("model.device:", model.device) - out = common_annotator_call(model, image, resolution=resolution, apply_filter=False, coarse = kwargs["coarse"] == "enable") - del model - return (out, ) - -def nms(x, t, s): - x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) - - f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) - f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) - f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) - f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) - - y = np.zeros_like(x) - - for f in [f1, f2, f3, f4]: - np.putmask(y, cv2.dilate(x, kernel=f) == x, x) - - z = np.zeros_like(y, dtype=np.uint8) - z[y > t] = 255 - return z - -class PidiNetDetector: - def __init__(self, netNetwork): - self.netNetwork = netNetwork - self.device = "cpu" - - @classmethod - def from_pretrained(cls, filename="table5_pidinet.pth"): - current_dir = os.path.dirname(os.path.abspath(__file__)) - model_path = os.path.join(current_dir, f"../models/preprocessor/{filename}") - - netNetwork = pidinet() - netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(model_path)['state_dict'].items()}) - netNetwork.eval() - - return cls(netNetwork) - - def to(self, device): - self.netNetwork.to(device) - self.device = device - return self - - def __call__(self, input_image, detect_resolution=512, safe=False, output_type="pil", scribble=False, apply_filter=True, upscale_method="INTER_CUBIC", **kwargs): - input_image, output_type = common_input_validate(input_image, output_type, **kwargs) - detected_map, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) - - detected_map = detected_map[:, :, ::-1].copy() - with torch.no_grad(): - image_pidi = torch.from_numpy(detected_map).float().to(self.device) - image_pidi = image_pidi / 255.0 - image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w') - edge = self.netNetwork(image_pidi)[-1] - edge = edge.cpu().numpy() - if apply_filter: - edge = edge > 0.5 - edge = (edge * 255.0).clip(0, 255).astype(np.uint8) - - detected_map = edge[0, 0] - - if scribble: - detected_map = nms(detected_map, 127, 3.0) - detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) - detected_map[detected_map > 4] = 255 - detected_map[detected_map < 255] = 0 - - detected_map = HWC3(remove_pad(detected_map)) - - if output_type == "pil": - detected_map = Image.fromarray(detected_map) - - return detected_map - -class GrowMask: - def expand_mask(self, mask, expand, tapered_corners): - c = 0 if tapered_corners else 1 - kernel = np.array([[c, 1, c], - [1, 1, 1], - [c, 1, c]]) - mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])) - out = [] - for m in mask: - output = m.numpy() - for _ in range(abs(expand)): - if expand < 0: - output = scipy.ndimage.grey_erosion(output, footprint=kernel) - else: - output = scipy.ndimage.grey_dilation(output, footprint=kernel) - output = torch.from_numpy(output) - out.append(output) - return (torch.stack(out, dim=0),) - -class PIDINET_Preprocessor: - def execute(self, image, resolution=512, **kwargs): - model = PidiNetDetector.from_pretrained().to(comfy.model_management.get_torch_device()) - out = common_annotator_call(model, image, resolution=resolution, safe=True) - del model - return (out, ) \ No newline at end of file diff --git a/MagicQuill/folder_paths.py b/MagicQuill/folder_paths.py deleted file mode 100644 index 5e8f6874aa3453d8b1ef22501f91c1841806adf7..0000000000000000000000000000000000000000 --- a/MagicQuill/folder_paths.py +++ /dev/null @@ -1,269 +0,0 @@ -import os -import time -import logging -from typing import Set, List, Dict, Tuple - -supported_pt_extensions: Set[str] = set(['.ckpt', '.pt', '.bin', '.pth', '.safetensors', '.pkl']) - -SupportedFileExtensionsType = Set[str] -ScanPathType = List[str] -folder_names_and_paths: Dict[str, Tuple[ScanPathType, SupportedFileExtensionsType]] = {} - -base_path = os.path.dirname(os.path.realpath(__file__)) -models_dir = os.path.join(base_path, "../models") - -folder_names_and_paths["checkpoints"] = ([os.path.join(models_dir, "checkpoints")], supported_pt_extensions) -folder_names_and_paths["configs"] = ([os.path.join(models_dir, "configs")], [".yaml"]) - -folder_names_and_paths["loras"] = ([os.path.join(models_dir, "loras")], supported_pt_extensions) -folder_names_and_paths["vae"] = ([os.path.join(models_dir, "vae")], supported_pt_extensions) -folder_names_and_paths["clip"] = ([os.path.join(models_dir, "clip")], supported_pt_extensions) -folder_names_and_paths["unet"] = ([os.path.join(models_dir, "unet")], supported_pt_extensions) -folder_names_and_paths["clip_vision"] = ([os.path.join(models_dir, "clip_vision")], supported_pt_extensions) -folder_names_and_paths["style_models"] = ([os.path.join(models_dir, "style_models")], supported_pt_extensions) -folder_names_and_paths["embeddings"] = ([os.path.join(models_dir, "embeddings")], supported_pt_extensions) -folder_names_and_paths["diffusers"] = ([os.path.join(models_dir, "diffusers")], ["folder"]) -folder_names_and_paths["vae_approx"] = ([os.path.join(models_dir, "vae_approx")], supported_pt_extensions) - -folder_names_and_paths["controlnet"] = ([os.path.join(models_dir, "controlnet"), os.path.join(models_dir, "t2i_adapter")], supported_pt_extensions) -folder_names_and_paths["gligen"] = ([os.path.join(models_dir, "gligen")], supported_pt_extensions) - -folder_names_and_paths["upscale_models"] = ([os.path.join(models_dir, "upscale_models")], supported_pt_extensions) - -folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions) - -folder_names_and_paths["photomaker"] = ([os.path.join(models_dir, "photomaker")], supported_pt_extensions) - -folder_names_and_paths["classifiers"] = ([os.path.join(models_dir, "classifiers")], {""}) - -output_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output") -temp_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp") -input_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input") -user_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "user") - -filename_list_cache = {} - -if not os.path.exists(input_directory): - try: - os.makedirs(input_directory) - except: - logging.error("Failed to create input directory") - -def set_output_directory(output_dir): - global output_directory - output_directory = output_dir - -def set_temp_directory(temp_dir): - global temp_directory - temp_directory = temp_dir - -def set_input_directory(input_dir): - global input_directory - input_directory = input_dir - -def get_output_directory(): - global output_directory - return output_directory - -def get_temp_directory(): - global temp_directory - return temp_directory - -def get_input_directory(): - global input_directory - return input_directory - - -#NOTE: used in http server so don't put folders that should not be accessed remotely -def get_directory_by_type(type_name): - if type_name == "output": - return get_output_directory() - if type_name == "temp": - return get_temp_directory() - if type_name == "input": - return get_input_directory() - return None - - -# determine base_dir rely on annotation if name is 'filename.ext [annotation]' format -# otherwise use default_path as base_dir -def annotated_filepath(name): - if name.endswith("[output]"): - base_dir = get_output_directory() - name = name[:-9] - elif name.endswith("[input]"): - base_dir = get_input_directory() - name = name[:-8] - elif name.endswith("[temp]"): - base_dir = get_temp_directory() - name = name[:-7] - else: - return name, None - - return name, base_dir - - -def get_annotated_filepath(name, default_dir=None): - name, base_dir = annotated_filepath(name) - - if base_dir is None: - if default_dir is not None: - base_dir = default_dir - else: - base_dir = get_input_directory() # fallback path - - return os.path.join(base_dir, name) - - -def exists_annotated_filepath(name): - name, base_dir = annotated_filepath(name) - - if base_dir is None: - base_dir = get_input_directory() # fallback path - - filepath = os.path.join(base_dir, name) - return os.path.exists(filepath) - - -def add_model_folder_path(folder_name, full_folder_path): - global folder_names_and_paths - if folder_name in folder_names_and_paths: - folder_names_and_paths[folder_name][0].append(full_folder_path) - else: - folder_names_and_paths[folder_name] = ([full_folder_path], set()) - -def get_folder_paths(folder_name): - return folder_names_and_paths[folder_name][0][:] - -def recursive_search(directory, excluded_dir_names=None): - if not os.path.isdir(directory): - return [], {} - - if excluded_dir_names is None: - excluded_dir_names = [] - - result = [] - dirs = {} - - # Attempt to add the initial directory to dirs with error handling - try: - dirs[directory] = os.path.getmtime(directory) - except FileNotFoundError: - logging.warning(f"Warning: Unable to access {directory}. Skipping this path.") - - logging.debug("recursive file list on directory {}".format(directory)) - for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True): - subdirs[:] = [d for d in subdirs if d not in excluded_dir_names] - for file_name in filenames: - relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory) - result.append(relative_path) - - for d in subdirs: - path = os.path.join(dirpath, d) - try: - dirs[path] = os.path.getmtime(path) - except FileNotFoundError: - logging.warning(f"Warning: Unable to access {path}. Skipping this path.") - continue - logging.debug("found {} files".format(len(result))) - return result, dirs - -def filter_files_extensions(files, extensions): - return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions or len(extensions) == 0, files))) - - - -def get_full_path(folder_name, filename): - global folder_names_and_paths - if folder_name not in folder_names_and_paths: - return None - folders = folder_names_and_paths[folder_name] - filename = os.path.relpath(os.path.join("/", filename), "/") - for x in folders[0]: - full_path = os.path.join(x, filename) - if os.path.isfile(full_path): - return full_path - elif os.path.islink(full_path): - logging.warning("WARNING path {} exists but doesn't link anywhere, skipping.".format(full_path)) - - return None - -def get_filename_list_(folder_name): - global folder_names_and_paths - output_list = set() - folders = folder_names_and_paths[folder_name] - output_folders = {} - for x in folders[0]: - files, folders_all = recursive_search(x, excluded_dir_names=[".git"]) - output_list.update(filter_files_extensions(files, folders[1])) - output_folders = {**output_folders, **folders_all} - - return (sorted(list(output_list)), output_folders, time.perf_counter()) - -def cached_filename_list_(folder_name): - global filename_list_cache - global folder_names_and_paths - if folder_name not in filename_list_cache: - return None - out = filename_list_cache[folder_name] - - for x in out[1]: - time_modified = out[1][x] - folder = x - if os.path.getmtime(folder) != time_modified: - return None - - folders = folder_names_and_paths[folder_name] - for x in folders[0]: - if os.path.isdir(x): - if x not in out[1]: - return None - - return out - -def get_filename_list(folder_name): - out = cached_filename_list_(folder_name) - if out is None: - out = get_filename_list_(folder_name) - global filename_list_cache - filename_list_cache[folder_name] = out - return list(out[0]) - -def get_save_image_path(filename_prefix, output_dir, image_width=0, image_height=0): - def map_filename(filename): - prefix_len = len(os.path.basename(filename_prefix)) - prefix = filename[:prefix_len + 1] - try: - digits = int(filename[prefix_len + 1:].split('_')[0]) - except: - digits = 0 - return (digits, prefix) - - def compute_vars(input, image_width, image_height): - input = input.replace("%width%", str(image_width)) - input = input.replace("%height%", str(image_height)) - return input - - filename_prefix = compute_vars(filename_prefix, image_width, image_height) - - subfolder = os.path.dirname(os.path.normpath(filename_prefix)) - filename = os.path.basename(os.path.normpath(filename_prefix)) - - full_output_folder = os.path.join(output_dir, subfolder) - - if os.path.commonpath((output_dir, os.path.abspath(full_output_folder))) != output_dir: - err = "**** ERROR: Saving image outside the output folder is not allowed." + \ - "\n full_output_folder: " + os.path.abspath(full_output_folder) + \ - "\n output_dir: " + output_dir + \ - "\n commonpath: " + os.path.commonpath((output_dir, os.path.abspath(full_output_folder))) - logging.error(err) - raise Exception(err) - - try: - counter = max(filter(lambda a: os.path.normcase(a[1][:-1]) == os.path.normcase(filename) and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1 - except ValueError: - counter = 1 - except FileNotFoundError: - os.makedirs(full_output_folder, exist_ok=True) - counter = 1 - return full_output_folder, filename, counter, subfolder, filename_prefix diff --git a/MagicQuill/latent_preview.py b/MagicQuill/latent_preview.py deleted file mode 100644 index 1a6b71e90a2c15b115ffd0eaac5fd321067bdeaf..0000000000000000000000000000000000000000 --- a/MagicQuill/latent_preview.py +++ /dev/null @@ -1,99 +0,0 @@ -import torch -from PIL import Image -import struct -import numpy as np -from comfy.cli_args import args, LatentPreviewMethod -from comfy.taesd.taesd import TAESD -import comfy.model_management -import folder_paths -import comfy.utils -import logging -import gradio as gr - -MAX_PREVIEW_RESOLUTION = 512 - -def preview_to_image(latent_image): - latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1 - .mul(0xFF) # to 0..255 - ).to(device="cpu", dtype=torch.uint8, non_blocking=comfy.model_management.device_supports_non_blocking(latent_image.device)) - - return Image.fromarray(latents_ubyte.numpy()) - -class LatentPreviewer: - def decode_latent_to_preview(self, x0): - pass - - def decode_latent_to_preview_image(self, preview_format, x0): - preview_image = self.decode_latent_to_preview(x0) - return ("JPEG", preview_image, MAX_PREVIEW_RESOLUTION) - -class TAESDPreviewerImpl(LatentPreviewer): - def __init__(self, taesd): - self.taesd = taesd - - def decode_latent_to_preview(self, x0): - x_sample = self.taesd.decode(x0[:1])[0].movedim(0, 2) - return preview_to_image(x_sample) - - -class Latent2RGBPreviewer(LatentPreviewer): - def __init__(self, latent_rgb_factors): - self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu") - - def decode_latent_to_preview(self, x0): - self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device) - latent_image = x0[0].permute(1, 2, 0) @ self.latent_rgb_factors - return preview_to_image(latent_image) - - -def get_previewer(device, latent_format): - previewer = None - method = args.preview_method - if method != LatentPreviewMethod.NoPreviews: - # TODO previewer methods - taesd_decoder_path = None - if latent_format.taesd_decoder_name is not None: - taesd_decoder_path = next( - (fn for fn in folder_paths.get_filename_list("vae_approx") - if fn.startswith(latent_format.taesd_decoder_name)), - "" - ) - taesd_decoder_path = folder_paths.get_full_path("vae_approx", taesd_decoder_path) - - if method == LatentPreviewMethod.Auto: - method = LatentPreviewMethod.Latent2RGB - - if method == LatentPreviewMethod.TAESD: - if taesd_decoder_path: - taesd = TAESD(None, taesd_decoder_path, latent_channels=latent_format.latent_channels).to(device) - previewer = TAESDPreviewerImpl(taesd) - else: - logging.warning("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format(latent_format.taesd_decoder_name)) - - if previewer is None: - if latent_format.latent_rgb_factors is not None: - previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors) - return previewer - -def prepare_callback(model, steps, x0_output_dict=None): - preview_format = "JPEG" - if preview_format not in ["JPEG", "PNG"]: - preview_format = "JPEG" - - previewer = get_previewer(model.load_device, model.model.latent_format) - - pbar = comfy.utils.ProgressBar(steps) - gradio_progress = gr.Progress() - gradio_bar = gradio_progress.tqdm(range(steps)) - # print(type(gradio_bar)) - def callback(step, x0, x, total_steps): - if x0_output_dict is not None: - x0_output_dict["x0"] = x0 - - preview_bytes = None - if previewer: - preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0) - pbar.update_absolute(step + 1, total_steps, preview_bytes) - gradio_bar.update(1) - return callback - diff --git a/MagicQuill/llava_new.py b/MagicQuill/llava_new.py deleted file mode 100644 index 4bbc34f7da7e23855d5cfdc827969fdde03961bf..0000000000000000000000000000000000000000 --- a/MagicQuill/llava_new.py +++ /dev/null @@ -1,111 +0,0 @@ -import torch -from transformers import TextStreamer -import webcolors -import os -import random -from collections import Counter -import numpy as np -from torchvision import transforms -from .magic_utils import get_colored_contour, find_different_colors, get_bounding_box_from_mask -from .LLaVA.llava.conversation import conv_templates, SeparatorStyle -from .LLaVA.llava.model.builder import load_pretrained_model -from .LLaVA.llava.mm_utils import get_model_name_from_path, expand2square, tokenizer_image_token -from .LLaVA.llava.constants import ( - IMAGE_TOKEN_INDEX, - DEFAULT_IMAGE_TOKEN, - DEFAULT_IM_START_TOKEN, - DEFAULT_IM_END_TOKEN, - IMAGE_PLACEHOLDER, -) -import re - -class LLaVAModel: - def __init__(self): - current_dir = os.path.dirname(os.path.abspath(__file__)) - model_path = os.path.join(current_dir, "../models/llava-v1.5-7b-finetune-clean") - self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model( - model_path=model_path, - model_base=None, - model_name=get_model_name_from_path(model_path), - load_4bit=True - ) - - def generate_description(self, images, question): - qs = question - image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN - if IMAGE_PLACEHOLDER in qs: - if self.model.config.mm_use_im_start_end: - qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) - else: - qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) - else: - if self.model.config.mm_use_im_start_end: - qs = image_token_se + "\n" + qs - else: - qs = DEFAULT_IMAGE_TOKEN + "\n" + qs - - images_tensor = [] - image_sizes = [] - to_pil = transforms.ToPILImage() - for image in images: - image = image.clone().permute(2, 0, 1).cpu() - image = to_pil(image) - image_sizes.append(image.size) - image = expand2square(image, tuple(int(x) for x in self.image_processor.image_mean)) - image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] - images_tensor.append(image.half()) - - conv = conv_templates["llava_v1"].copy() - conv.append_message(conv.roles[0], qs) - conv.append_message(conv.roles[1], None) - prompt = conv.get_prompt() - - input_ids = ( - tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") - .unsqueeze(0) - .cuda() - ) - - with torch.inference_mode(): - output_ids = self.model.generate( - input_ids, - images=images_tensor, - image_sizes=image_sizes, - temperature=0.2, - do_sample=True, - use_cache=True, - ) - outputs = self.tokenizer.decode(output_ids[0]).strip() - outputs = outputs.split('>')[1].split('<')[0] - # print(outputs) - return outputs - - def process(self, image, colored_image, add_mask): - description = "" - answer1 = "" - answer2 = "" - - image_with_sketch = image.clone() - if torch.sum(add_mask).item() > 0: - x_min, y_min, x_max, y_max = get_bounding_box_from_mask(add_mask) - # print(x_min, y_min, x_max, y_max) - question = f"This is an 'I draw, you guess' game. I will upload an image containing some sketches. To help you locate the sketch, I will give you the normalized bounding box coordinates of the sketch where their original coordinates are divided by the image width and height. The top-left corner of the bounding box is at ({x_min}, {y_min}), and the bottom-right corner is at ({x_max}, {y_max}). Now tell me, what am I trying to draw with these sketches in the image?" - # image_with_sketch[add_mask > 0.5] = 1.0 - bool_add_mask = add_mask > 0.5 - mean_brightness = image_with_sketch[bool_add_mask].mean() - if mean_brightness > 0.8: - image_with_sketch[bool_add_mask] = 0.0 - else: - image_with_sketch[bool_add_mask] = 1.0 - answer1 = self.generate_description([image_with_sketch.squeeze() * 255], question) - print(answer1) - - if not torch.equal(image, colored_image): - color = find_different_colors(image.squeeze() * 255, colored_image.squeeze() * 255) - image_with_bbox, colored_mask = get_colored_contour(colored_image.squeeze() * 255, image.squeeze() * 255) - x_min, y_min, x_max, y_max = get_bounding_box_from_mask(colored_mask) - question = f"The user will upload an image containing some contours in red color. To help you locate the contour, I will give you the normalized bounding box coordinates where their original coordinates are divided by the image width and height. The top-left corner of the bounding box is at ({x_min}, {y_min}), and the bottom-right corner is at ({x_max}, {y_max}). You need to identify what is inside the contours using a single word or phrase." - answer2 = color + ', ' + self.generate_description([image_with_bbox.squeeze() * 255], question) - print(answer2) - - return (description, answer1, answer2) \ No newline at end of file diff --git a/MagicQuill/magic_utils.py b/MagicQuill/magic_utils.py deleted file mode 100644 index 61696f913e941aa85dc8232e2fba61ab5e4fe200..0000000000000000000000000000000000000000 --- a/MagicQuill/magic_utils.py +++ /dev/null @@ -1,203 +0,0 @@ -import webcolors -import random -from collections import Counter -import numpy as np -from torchvision import transforms -import cv2 # OpenCV -import torch -import warnings -import os - - - -def HWC3(x): - assert x.dtype == np.uint8 - if x.ndim == 2: - x = x[:, :, None] - assert x.ndim == 3 - H, W, C = x.shape - assert C == 1 or C == 3 or C == 4 - if C == 3: - return x - if C == 1: - return np.concatenate([x, x, x], axis=2) - if C == 4: - color = x[:, :, 0:3].astype(np.float32) - alpha = x[:, :, 3:4].astype(np.float32) / 255.0 - y = color * alpha + 255.0 * (1.0 - alpha) - y = y.clip(0, 255).astype(np.uint8) - return y - -def common_input_validate(input_image, output_type, **kwargs): - if "img" in kwargs: - warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning) - input_image = kwargs.pop("img") - - if "return_pil" in kwargs: - warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) - output_type = "pil" if kwargs["return_pil"] else "np" - - if type(output_type) is bool: - warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") - if output_type: - output_type = "pil" - - if input_image is None: - raise ValueError("input_image must be defined.") - - if not isinstance(input_image, np.ndarray): - input_image = np.array(input_image, dtype=np.uint8) - output_type = output_type or "pil" - else: - output_type = output_type or "np" - - return (input_image, output_type) - -def cv2_resize_shortest_edge(image, size): - h, w = image.shape[:2] - if h < w: - new_h = size - new_w = int(round(w / h * size)) - else: - new_w = size - new_h = int(round(h / w * size)) - resized_image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_AREA) - return resized_image - -def apply_color(img, res=512): - img = cv2_resize_shortest_edge(img, res) - h, w = img.shape[:2] - - input_img_color = cv2.resize(img, (w//64, h//64), interpolation=cv2.INTER_CUBIC) - input_img_color = cv2.resize(input_img_color, (w, h), interpolation=cv2.INTER_NEAREST) - return input_img_color - -UPSCALE_METHODS = ["INTER_NEAREST", "INTER_LINEAR", "INTER_AREA", "INTER_CUBIC", "INTER_LANCZOS4"] -def get_upscale_method(method_str): - assert method_str in UPSCALE_METHODS, f"Method {method_str} not found in {UPSCALE_METHODS}" - return getattr(cv2, method_str) - -def pad64(x): - return int(np.ceil(float(x) / 64.0) * 64 - x) - -def safer_memory(x): - # Fix many MAC/AMD problems - return np.ascontiguousarray(x.copy()).copy() - -def resize_image_with_pad(input_image, resolution, upscale_method = "", skip_hwc3=False, mode='edge'): - if skip_hwc3: - img = input_image - else: - img = HWC3(input_image) - H_raw, W_raw, _ = img.shape - if resolution == 0: - return img, lambda x: x - k = float(resolution) / float(min(H_raw, W_raw)) - H_target = int(np.round(float(H_raw) * k)) - W_target = int(np.round(float(W_raw) * k)) - img = cv2.resize(img, (W_target, H_target), interpolation=get_upscale_method(upscale_method) if k > 1 else cv2.INTER_AREA) - H_pad, W_pad = pad64(H_target), pad64(W_target) - img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode=mode) - - def remove_pad(x): - return safer_memory(x[:H_target, :W_target, ...]) - - return safer_memory(img_padded), remove_pad - -def draw_contour(img, mask): - mask_np = mask.numpy().astype(np.uint8) * 255 - img_np = img.numpy() - img_np = img_np.astype(np.uint8) - img_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) - - kernel = np.ones((5, 5), np.uint8) - mask_dilated = cv2.dilate(mask_np, kernel, iterations=3) - contours, _ = cv2.findContours(mask_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) - for contour in contours: - cv2.drawContours(img_bgr, [contour], -1, (0, 0, 255), thickness=10) - img_np = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) - transform = transforms.ToTensor() - img_tensor = transform(img_np) - - img_tensor = img_tensor.permute(1, 2, 0) - - return img_tensor.unsqueeze(0) - -def get_colored_contour(img1, img2, threshold=10): - diff = torch.abs(img1 - img2).float() - diff_gray = torch.mean(diff, dim=-1) - mask = diff_gray > threshold - - return draw_contour(img2, mask), mask - -def closest_colour(requested_colour): - min_colours = {} - for key, name in webcolors.CSS3_HEX_TO_NAMES.items(): - r_c, g_c, b_c = webcolors.hex_to_rgb(key) - rd = (r_c - requested_colour[0].item()) ** 2 - gd = (g_c - requested_colour[1].item()) ** 2 - bd = (b_c - requested_colour[2].item()) ** 2 - min_colours[(rd + gd + bd)] = name - return min_colours[min(min_colours.keys())] - -def rgb_to_name(rgb_tuple): - try: - return webcolors.rgb_to_name(rgb_tuple) - except ValueError: - closest_name = closest_colour(rgb_tuple) - return closest_name - -def find_different_colors(img1, img2, threshold=10): - img1 = img1.to(torch.uint8) - img2 = img2.to(torch.uint8) - diff = torch.abs(img1 - img2).float().mean(dim=-1) - diff_mask = diff > threshold - diff_indices = torch.nonzero(diff_mask, as_tuple=True) - - if len(diff_indices[0]) > 100: - sampled_indices = random.sample(range(len(diff_indices[0])), 100) - sampled_diff_indices = (diff_indices[0][sampled_indices], diff_indices[1][sampled_indices]) - else: - sampled_diff_indices = diff_indices - - diff_colors = img2[sampled_diff_indices[0], sampled_diff_indices[1], :] - color_names = [rgb_to_name(tuple(color)) for color in diff_colors] - name_counter = Counter(color_names) - filtered_colors = {name: count for name, count in name_counter.items() if count > 10} - sorted_color_names = [name for name, count in sorted(filtered_colors.items(), key=lambda item: item[1], reverse=True)] - if len(sorted_color_names) >= 3: - return "colorful" - unique_color_names_str = ', '.join(sorted_color_names) - return unique_color_names_str - -def get_bounding_box_from_mask(mask, padded=False): - # Ensure the mask is a binary mask (0s and 1s) - mask = mask.squeeze() - rows, cols = torch.where(mask > 0.5) - if len(rows) == 0 or len(cols) == 0: - return (0, 0, 0, 0) - height, width = mask.shape - if padded: - padded_size = max(width, height) - if width < height: - offset_x = (padded_size - width) / 2 - offset_y = 0 - else: - offset_y = (padded_size - height) / 2 - offset_x = 0 - # Find the bounding box coordinates - top_left_x = round(float((torch.min(cols).item() + offset_x) / padded_size), 3) - bottom_right_x = round(float((torch.max(cols).item() + offset_x) / padded_size), 3) - top_left_y = round(float((torch.min(rows).item() + offset_y) / padded_size), 3) - bottom_right_y = round(float((torch.max(rows).item() + offset_y) / padded_size), 3) - else: - offset_x = 0 - offset_y = 0 - - top_left_x = round(float(torch.min(cols).item() / width), 3) - bottom_right_x = round(float(torch.max(cols).item() / width), 3) - top_left_y = round(float(torch.min(rows).item() / height), 3) - bottom_right_y = round(float(torch.max(rows).item() / height), 3) - - - return (top_left_x, top_left_y, bottom_right_x, bottom_right_y) \ No newline at end of file diff --git a/MagicQuill/model_patch.py b/MagicQuill/model_patch.py deleted file mode 100644 index e31113f8a07d0b10749d124e7d0a2e2220f2d212..0000000000000000000000000000000000000000 --- a/MagicQuill/model_patch.py +++ /dev/null @@ -1,138 +0,0 @@ -import torch -import comfy - - -# Check and add 'model_patch' to model.model_options['transformer_options'] -def add_model_patch_option(model): - if 'transformer_options' not in model.model_options: - model.model_options['transformer_options'] = {} - to = model.model_options['transformer_options'] - if "model_patch" not in to: - to["model_patch"] = {} - return to - - -# Patch model with model_function_wrapper -def patch_model_function_wrapper(model, forward_patch, remove=False): - - def brushnet_model_function_wrapper(apply_model_method, options_dict): - to = options_dict['c']['transformer_options'] - - control = None - if 'control' in options_dict['c']: - control = options_dict['c']['control'] - - x = options_dict['input'] - timestep = options_dict['timestep'] - - # check if there are patches to execute - if 'model_patch' not in to or 'forward' not in to['model_patch']: - return apply_model_method(x, timestep, **options_dict['c']) - - mp = to['model_patch'] - unet = mp['unet'] - - all_sigmas = mp['all_sigmas'] - sigma = to['sigmas'][0].item() - total_steps = all_sigmas.shape[0] - 1 - step = torch.argmin((all_sigmas - sigma).abs()).item() - - mp['step'] = step - mp['total_steps'] = total_steps - - # comfy.model_base.apply_model - xc = model.model.model_sampling.calculate_input(timestep, x) - if 'c_concat' in options_dict['c'] and options_dict['c']['c_concat'] is not None: - xc = torch.cat([xc] + [options_dict['c']['c_concat']], dim=1) - t = model.model.model_sampling.timestep(timestep).float() - # execute all patches - for method in mp['forward']: - method(unet, xc, t, to, control) - - return apply_model_method(x, timestep, **options_dict['c']) - - if "model_function_wrapper" in model.model_options and model.model_options["model_function_wrapper"]: - print('BrushNet is going to replace existing model_function_wrapper:', model.model_options["model_function_wrapper"]) - model.set_model_unet_function_wrapper(brushnet_model_function_wrapper) - - to = add_model_patch_option(model) - mp = to['model_patch'] - - if isinstance(model.model.model_config, comfy.supported_models.SD15): - mp['SDXL'] = False - elif isinstance(model.model.model_config, comfy.supported_models.SDXL): - mp['SDXL'] = True - else: - print('Base model type: ', type(model.model.model_config)) - raise Exception("Unsupported model type: ", type(model.model.model_config)) - - if 'forward' not in mp: - mp['forward'] = [] - - if remove: - if forward_patch in mp['forward']: - mp['forward'].remove(forward_patch) - else: - mp['forward'].append(forward_patch) - - mp['unet'] = model.model.diffusion_model - mp['step'] = 0 - mp['total_steps'] = 1 - - # apply patches to code - if comfy.samplers.sample.__doc__ is None or 'BrushNet' not in comfy.samplers.sample.__doc__: - comfy.samplers.original_sample = comfy.samplers.sample - comfy.samplers.sample = modified_sample - - if comfy.ldm.modules.diffusionmodules.openaimodel.apply_control.__doc__ is None or \ - 'BrushNet' not in comfy.ldm.modules.diffusionmodules.openaimodel.apply_control.__doc__: - comfy.ldm.modules.diffusionmodules.openaimodel.original_apply_control = comfy.ldm.modules.diffusionmodules.openaimodel.apply_control - comfy.ldm.modules.diffusionmodules.openaimodel.apply_control = modified_apply_control - - -# Model needs current step number and cfg at inference step. It is possible to write a custom KSampler but I'd like to use ComfyUI's one. -# The first versions had modified_common_ksampler, but it broke custom KSampler nodes -def modified_sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, - latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None): - ''' - Modified by BrushNet nodes - ''' - cfg_guider = comfy.samplers.CFGGuider(model) - cfg_guider.set_conds(positive, negative) - cfg_guider.set_cfg(cfg) - - ### Modified part ###################################################################### - # - to = add_model_patch_option(model) - to['model_patch']['all_sigmas'] = sigmas - # - #sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at) - #sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at) - # - # - #if math.isclose(cfg, 1.0) and model_options.get("disable_cfg1_optimization", False) == False: - # to['model_patch']['free_guidance'] = False - #else: - # to['model_patch']['free_guidance'] = True - # - ####################################################################################### - - return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) - - -# To use Controlnet with RAUNet it is much easier to modify apply_control a little -def modified_apply_control(h, control, name): - ''' - Modified by BrushNet nodes - ''' - if control is not None and name in control and len(control[name]) > 0: - ctrl = control[name].pop() - if ctrl is not None: - if h.shape[2] != ctrl.shape[2] or h.shape[3] != ctrl.shape[3]: - ctrl = torch.nn.functional.interpolate(ctrl, size=(h.shape[2], h.shape[3]), mode='bicubic').to(h.dtype).to(h.device) - try: - h += ctrl - except: - print.warning("warning control could not be applied {} {}".format(h.shape, ctrl.shape)) - return h - diff --git a/MagicQuill/pidi.py b/MagicQuill/pidi.py deleted file mode 100644 index 13dcaf42a8b2aff722a62d366727e9ab72894cd9..0000000000000000000000000000000000000000 --- a/MagicQuill/pidi.py +++ /dev/null @@ -1,667 +0,0 @@ -""" -Author: Zhuo Su, Wenzhe Liu -Date: Feb 18, 2021 -""" - -import math - -import cv2 -import numpy as np -import torch -import torch.nn as nn -import torch.nn.functional as F - - -def img2tensor(imgs, bgr2rgb=True, float32=True): - """Numpy array to tensor. - - Args: - imgs (list[ndarray] | ndarray): Input images. - bgr2rgb (bool): Whether to change bgr to rgb. - float32 (bool): Whether to change to float32. - - Returns: - list[tensor] | tensor: Tensor images. If returned results only have - one element, just return tensor. - """ - - def _totensor(img, bgr2rgb, float32): - if img.shape[2] == 3 and bgr2rgb: - if img.dtype == 'float64': - img = img.astype('float32') - img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) - img = torch.from_numpy(img.transpose(2, 0, 1)) - if float32: - img = img.float() - return img - - if isinstance(imgs, list): - return [_totensor(img, bgr2rgb, float32) for img in imgs] - else: - return _totensor(imgs, bgr2rgb, float32) - -nets = { - 'baseline': { - 'layer0': 'cv', - 'layer1': 'cv', - 'layer2': 'cv', - 'layer3': 'cv', - 'layer4': 'cv', - 'layer5': 'cv', - 'layer6': 'cv', - 'layer7': 'cv', - 'layer8': 'cv', - 'layer9': 'cv', - 'layer10': 'cv', - 'layer11': 'cv', - 'layer12': 'cv', - 'layer13': 'cv', - 'layer14': 'cv', - 'layer15': 'cv', - }, - 'c-v15': { - 'layer0': 'cd', - 'layer1': 'cv', - 'layer2': 'cv', - 'layer3': 'cv', - 'layer4': 'cv', - 'layer5': 'cv', - 'layer6': 'cv', - 'layer7': 'cv', - 'layer8': 'cv', - 'layer9': 'cv', - 'layer10': 'cv', - 'layer11': 'cv', - 'layer12': 'cv', - 'layer13': 'cv', - 'layer14': 'cv', - 'layer15': 'cv', - }, - 'a-v15': { - 'layer0': 'ad', - 'layer1': 'cv', - 'layer2': 'cv', - 'layer3': 'cv', - 'layer4': 'cv', - 'layer5': 'cv', - 'layer6': 'cv', - 'layer7': 'cv', - 'layer8': 'cv', - 'layer9': 'cv', - 'layer10': 'cv', - 'layer11': 'cv', - 'layer12': 'cv', - 'layer13': 'cv', - 'layer14': 'cv', - 'layer15': 'cv', - }, - 'r-v15': { - 'layer0': 'rd', - 'layer1': 'cv', - 'layer2': 'cv', - 'layer3': 'cv', - 'layer4': 'cv', - 'layer5': 'cv', - 'layer6': 'cv', - 'layer7': 'cv', - 'layer8': 'cv', - 'layer9': 'cv', - 'layer10': 'cv', - 'layer11': 'cv', - 'layer12': 'cv', - 'layer13': 'cv', - 'layer14': 'cv', - 'layer15': 'cv', - }, - 'cvvv4': { - 'layer0': 'cd', - 'layer1': 'cv', - 'layer2': 'cv', - 'layer3': 'cv', - 'layer4': 'cd', - 'layer5': 'cv', - 'layer6': 'cv', - 'layer7': 'cv', - 'layer8': 'cd', - 'layer9': 'cv', - 'layer10': 'cv', - 'layer11': 'cv', - 'layer12': 'cd', - 'layer13': 'cv', - 'layer14': 'cv', - 'layer15': 'cv', - }, - 'avvv4': { - 'layer0': 'ad', - 'layer1': 'cv', - 'layer2': 'cv', - 'layer3': 'cv', - 'layer4': 'ad', - 'layer5': 'cv', - 'layer6': 'cv', - 'layer7': 'cv', - 'layer8': 'ad', - 'layer9': 'cv', - 'layer10': 'cv', - 'layer11': 'cv', - 'layer12': 'ad', - 'layer13': 'cv', - 'layer14': 'cv', - 'layer15': 'cv', - }, - 'rvvv4': { - 'layer0': 'rd', - 'layer1': 'cv', - 'layer2': 'cv', - 'layer3': 'cv', - 'layer4': 'rd', - 'layer5': 'cv', - 'layer6': 'cv', - 'layer7': 'cv', - 'layer8': 'rd', - 'layer9': 'cv', - 'layer10': 'cv', - 'layer11': 'cv', - 'layer12': 'rd', - 'layer13': 'cv', - 'layer14': 'cv', - 'layer15': 'cv', - }, - 'cccv4': { - 'layer0': 'cd', - 'layer1': 'cd', - 'layer2': 'cd', - 'layer3': 'cv', - 'layer4': 'cd', - 'layer5': 'cd', - 'layer6': 'cd', - 'layer7': 'cv', - 'layer8': 'cd', - 'layer9': 'cd', - 'layer10': 'cd', - 'layer11': 'cv', - 'layer12': 'cd', - 'layer13': 'cd', - 'layer14': 'cd', - 'layer15': 'cv', - }, - 'aaav4': { - 'layer0': 'ad', - 'layer1': 'ad', - 'layer2': 'ad', - 'layer3': 'cv', - 'layer4': 'ad', - 'layer5': 'ad', - 'layer6': 'ad', - 'layer7': 'cv', - 'layer8': 'ad', - 'layer9': 'ad', - 'layer10': 'ad', - 'layer11': 'cv', - 'layer12': 'ad', - 'layer13': 'ad', - 'layer14': 'ad', - 'layer15': 'cv', - }, - 'rrrv4': { - 'layer0': 'rd', - 'layer1': 'rd', - 'layer2': 'rd', - 'layer3': 'cv', - 'layer4': 'rd', - 'layer5': 'rd', - 'layer6': 'rd', - 'layer7': 'cv', - 'layer8': 'rd', - 'layer9': 'rd', - 'layer10': 'rd', - 'layer11': 'cv', - 'layer12': 'rd', - 'layer13': 'rd', - 'layer14': 'rd', - 'layer15': 'cv', - }, - 'c16': { - 'layer0': 'cd', - 'layer1': 'cd', - 'layer2': 'cd', - 'layer3': 'cd', - 'layer4': 'cd', - 'layer5': 'cd', - 'layer6': 'cd', - 'layer7': 'cd', - 'layer8': 'cd', - 'layer9': 'cd', - 'layer10': 'cd', - 'layer11': 'cd', - 'layer12': 'cd', - 'layer13': 'cd', - 'layer14': 'cd', - 'layer15': 'cd', - }, - 'a16': { - 'layer0': 'ad', - 'layer1': 'ad', - 'layer2': 'ad', - 'layer3': 'ad', - 'layer4': 'ad', - 'layer5': 'ad', - 'layer6': 'ad', - 'layer7': 'ad', - 'layer8': 'ad', - 'layer9': 'ad', - 'layer10': 'ad', - 'layer11': 'ad', - 'layer12': 'ad', - 'layer13': 'ad', - 'layer14': 'ad', - 'layer15': 'ad', - }, - 'r16': { - 'layer0': 'rd', - 'layer1': 'rd', - 'layer2': 'rd', - 'layer3': 'rd', - 'layer4': 'rd', - 'layer5': 'rd', - 'layer6': 'rd', - 'layer7': 'rd', - 'layer8': 'rd', - 'layer9': 'rd', - 'layer10': 'rd', - 'layer11': 'rd', - 'layer12': 'rd', - 'layer13': 'rd', - 'layer14': 'rd', - 'layer15': 'rd', - }, - 'carv4': { - 'layer0': 'cd', - 'layer1': 'ad', - 'layer2': 'rd', - 'layer3': 'cv', - 'layer4': 'cd', - 'layer5': 'ad', - 'layer6': 'rd', - 'layer7': 'cv', - 'layer8': 'cd', - 'layer9': 'ad', - 'layer10': 'rd', - 'layer11': 'cv', - 'layer12': 'cd', - 'layer13': 'ad', - 'layer14': 'rd', - 'layer15': 'cv', - }, - } - -def createConvFunc(op_type): - assert op_type in ['cv', 'cd', 'ad', 'rd'], 'unknown op type: %s' % str(op_type) - if op_type == 'cv': - return F.conv2d - - if op_type == 'cd': - def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1): - assert dilation in [1, 2], 'dilation for cd_conv should be in 1 or 2' - assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for cd_conv should be 3x3' - assert padding == dilation, 'padding for cd_conv set wrong' - - weights_c = weights.sum(dim=[2, 3], keepdim=True) - yc = F.conv2d(x, weights_c, stride=stride, padding=0, groups=groups) - y = F.conv2d(x, weights, bias, stride=stride, padding=padding, dilation=dilation, groups=groups) - return y - yc - return func - elif op_type == 'ad': - def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1): - assert dilation in [1, 2], 'dilation for ad_conv should be in 1 or 2' - assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for ad_conv should be 3x3' - assert padding == dilation, 'padding for ad_conv set wrong' - - shape = weights.shape - weights = weights.view(shape[0], shape[1], -1) - weights_conv = (weights - weights[:, :, [3, 0, 1, 6, 4, 2, 7, 8, 5]]).view(shape) # clock-wise - y = F.conv2d(x, weights_conv, bias, stride=stride, padding=padding, dilation=dilation, groups=groups) - return y - return func - elif op_type == 'rd': - def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1): - assert dilation in [1, 2], 'dilation for rd_conv should be in 1 or 2' - assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for rd_conv should be 3x3' - padding = 2 * dilation - - shape = weights.shape - if weights.is_cuda: - buffer = torch.cuda.FloatTensor(shape[0], shape[1], 5 * 5).fill_(0) - else: - buffer = torch.zeros(shape[0], shape[1], 5 * 5).to(weights.device) - weights = weights.view(shape[0], shape[1], -1) - buffer[:, :, [0, 2, 4, 10, 14, 20, 22, 24]] = weights[:, :, 1:] - buffer[:, :, [6, 7, 8, 11, 13, 16, 17, 18]] = -weights[:, :, 1:] - buffer[:, :, 12] = 0 - buffer = buffer.view(shape[0], shape[1], 5, 5) - y = F.conv2d(x, buffer, bias, stride=stride, padding=padding, dilation=dilation, groups=groups) - return y - return func - else: - print('impossible to be here unless you force that') - return None - -class Conv2d(nn.Module): - def __init__(self, pdc, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False): - super(Conv2d, self).__init__() - if in_channels % groups != 0: - raise ValueError('in_channels must be divisible by groups') - if out_channels % groups != 0: - raise ValueError('out_channels must be divisible by groups') - self.in_channels = in_channels - self.out_channels = out_channels - self.kernel_size = kernel_size - self.stride = stride - self.padding = padding - self.dilation = dilation - self.groups = groups - self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size, kernel_size)) - if bias: - self.bias = nn.Parameter(torch.Tensor(out_channels)) - else: - self.register_parameter('bias', None) - self.reset_parameters() - self.pdc = pdc - - def reset_parameters(self): - nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) - if self.bias is not None: - fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight) - bound = 1 / math.sqrt(fan_in) - nn.init.uniform_(self.bias, -bound, bound) - - def forward(self, input): - - return self.pdc(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) - -class CSAM(nn.Module): - """ - Compact Spatial Attention Module - """ - def __init__(self, channels): - super(CSAM, self).__init__() - - mid_channels = 4 - self.relu1 = nn.ReLU() - self.conv1 = nn.Conv2d(channels, mid_channels, kernel_size=1, padding=0) - self.conv2 = nn.Conv2d(mid_channels, 1, kernel_size=3, padding=1, bias=False) - self.sigmoid = nn.Sigmoid() - nn.init.constant_(self.conv1.bias, 0) - - def forward(self, x): - y = self.relu1(x) - y = self.conv1(y) - y = self.conv2(y) - y = self.sigmoid(y) - - return x * y - -class CDCM(nn.Module): - """ - Compact Dilation Convolution based Module - """ - def __init__(self, in_channels, out_channels): - super(CDCM, self).__init__() - - self.relu1 = nn.ReLU() - self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) - self.conv2_1 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=5, padding=5, bias=False) - self.conv2_2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=7, padding=7, bias=False) - self.conv2_3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=9, padding=9, bias=False) - self.conv2_4 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=11, padding=11, bias=False) - nn.init.constant_(self.conv1.bias, 0) - - def forward(self, x): - x = self.relu1(x) - x = self.conv1(x) - x1 = self.conv2_1(x) - x2 = self.conv2_2(x) - x3 = self.conv2_3(x) - x4 = self.conv2_4(x) - return x1 + x2 + x3 + x4 - - -class MapReduce(nn.Module): - """ - Reduce feature maps into a single edge map - """ - def __init__(self, channels): - super(MapReduce, self).__init__() - self.conv = nn.Conv2d(channels, 1, kernel_size=1, padding=0) - nn.init.constant_(self.conv.bias, 0) - - def forward(self, x): - return self.conv(x) - - -class PDCBlock(nn.Module): - def __init__(self, pdc, inplane, ouplane, stride=1): - super(PDCBlock, self).__init__() - self.stride=stride - - self.stride=stride - if self.stride > 1: - self.pool = nn.MaxPool2d(kernel_size=2, stride=2) - self.shortcut = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0) - self.conv1 = Conv2d(pdc, inplane, inplane, kernel_size=3, padding=1, groups=inplane, bias=False) - self.relu2 = nn.ReLU() - self.conv2 = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0, bias=False) - - def forward(self, x): - if self.stride > 1: - x = self.pool(x) - y = self.conv1(x) - y = self.relu2(y) - y = self.conv2(y) - if self.stride > 1: - x = self.shortcut(x) - y = y + x - return y - -class PDCBlock_converted(nn.Module): - """ - CPDC, APDC can be converted to vanilla 3x3 convolution - RPDC can be converted to vanilla 5x5 convolution - """ - def __init__(self, pdc, inplane, ouplane, stride=1): - super(PDCBlock_converted, self).__init__() - self.stride=stride - - if self.stride > 1: - self.pool = nn.MaxPool2d(kernel_size=2, stride=2) - self.shortcut = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0) - if pdc == 'rd': - self.conv1 = nn.Conv2d(inplane, inplane, kernel_size=5, padding=2, groups=inplane, bias=False) - else: - self.conv1 = nn.Conv2d(inplane, inplane, kernel_size=3, padding=1, groups=inplane, bias=False) - self.relu2 = nn.ReLU() - self.conv2 = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0, bias=False) - - def forward(self, x): - if self.stride > 1: - x = self.pool(x) - y = self.conv1(x) - y = self.relu2(y) - y = self.conv2(y) - if self.stride > 1: - x = self.shortcut(x) - y = y + x - return y - -class PiDiNet(nn.Module): - def __init__(self, inplane, pdcs, dil=None, sa=False, convert=False): - super(PiDiNet, self).__init__() - self.sa = sa - if dil is not None: - assert isinstance(dil, int), 'dil should be an int' - self.dil = dil - - self.fuseplanes = [] - - self.inplane = inplane - if convert: - if pdcs[0] == 'rd': - init_kernel_size = 5 - init_padding = 2 - else: - init_kernel_size = 3 - init_padding = 1 - self.init_block = nn.Conv2d(3, self.inplane, - kernel_size=init_kernel_size, padding=init_padding, bias=False) - block_class = PDCBlock_converted - else: - self.init_block = Conv2d(pdcs[0], 3, self.inplane, kernel_size=3, padding=1) - block_class = PDCBlock - - self.block1_1 = block_class(pdcs[1], self.inplane, self.inplane) - self.block1_2 = block_class(pdcs[2], self.inplane, self.inplane) - self.block1_3 = block_class(pdcs[3], self.inplane, self.inplane) - self.fuseplanes.append(self.inplane) # C - - inplane = self.inplane - self.inplane = self.inplane * 2 - self.block2_1 = block_class(pdcs[4], inplane, self.inplane, stride=2) - self.block2_2 = block_class(pdcs[5], self.inplane, self.inplane) - self.block2_3 = block_class(pdcs[6], self.inplane, self.inplane) - self.block2_4 = block_class(pdcs[7], self.inplane, self.inplane) - self.fuseplanes.append(self.inplane) # 2C - - inplane = self.inplane - self.inplane = self.inplane * 2 - self.block3_1 = block_class(pdcs[8], inplane, self.inplane, stride=2) - self.block3_2 = block_class(pdcs[9], self.inplane, self.inplane) - self.block3_3 = block_class(pdcs[10], self.inplane, self.inplane) - self.block3_4 = block_class(pdcs[11], self.inplane, self.inplane) - self.fuseplanes.append(self.inplane) # 4C - - self.block4_1 = block_class(pdcs[12], self.inplane, self.inplane, stride=2) - self.block4_2 = block_class(pdcs[13], self.inplane, self.inplane) - self.block4_3 = block_class(pdcs[14], self.inplane, self.inplane) - self.block4_4 = block_class(pdcs[15], self.inplane, self.inplane) - self.fuseplanes.append(self.inplane) # 4C - - self.conv_reduces = nn.ModuleList() - if self.sa and self.dil is not None: - self.attentions = nn.ModuleList() - self.dilations = nn.ModuleList() - for i in range(4): - self.dilations.append(CDCM(self.fuseplanes[i], self.dil)) - self.attentions.append(CSAM(self.dil)) - self.conv_reduces.append(MapReduce(self.dil)) - elif self.sa: - self.attentions = nn.ModuleList() - for i in range(4): - self.attentions.append(CSAM(self.fuseplanes[i])) - self.conv_reduces.append(MapReduce(self.fuseplanes[i])) - elif self.dil is not None: - self.dilations = nn.ModuleList() - for i in range(4): - self.dilations.append(CDCM(self.fuseplanes[i], self.dil)) - self.conv_reduces.append(MapReduce(self.dil)) - else: - for i in range(4): - self.conv_reduces.append(MapReduce(self.fuseplanes[i])) - - self.classifier = nn.Conv2d(4, 1, kernel_size=1) # has bias - nn.init.constant_(self.classifier.weight, 0.25) - nn.init.constant_(self.classifier.bias, 0) - - # print('initialization done') - - def get_weights(self): - conv_weights = [] - bn_weights = [] - relu_weights = [] - for pname, p in self.named_parameters(): - if 'bn' in pname: - bn_weights.append(p) - elif 'relu' in pname: - relu_weights.append(p) - else: - conv_weights.append(p) - - return conv_weights, bn_weights, relu_weights - - def forward(self, x): - H, W = x.size()[2:] - - x = self.init_block(x) - - x1 = self.block1_1(x) - x1 = self.block1_2(x1) - x1 = self.block1_3(x1) - - x2 = self.block2_1(x1) - x2 = self.block2_2(x2) - x2 = self.block2_3(x2) - x2 = self.block2_4(x2) - - x3 = self.block3_1(x2) - x3 = self.block3_2(x3) - x3 = self.block3_3(x3) - x3 = self.block3_4(x3) - - x4 = self.block4_1(x3) - x4 = self.block4_2(x4) - x4 = self.block4_3(x4) - x4 = self.block4_4(x4) - - x_fuses = [] - if self.sa and self.dil is not None: - for i, xi in enumerate([x1, x2, x3, x4]): - x_fuses.append(self.attentions[i](self.dilations[i](xi))) - elif self.sa: - for i, xi in enumerate([x1, x2, x3, x4]): - x_fuses.append(self.attentions[i](xi)) - elif self.dil is not None: - for i, xi in enumerate([x1, x2, x3, x4]): - x_fuses.append(self.dilations[i](xi)) - else: - x_fuses = [x1, x2, x3, x4] - - e1 = self.conv_reduces[0](x_fuses[0]) - e1 = F.interpolate(e1, (H, W), mode="bilinear", align_corners=False) - - e2 = self.conv_reduces[1](x_fuses[1]) - e2 = F.interpolate(e2, (H, W), mode="bilinear", align_corners=False) - - e3 = self.conv_reduces[2](x_fuses[2]) - e3 = F.interpolate(e3, (H, W), mode="bilinear", align_corners=False) - - e4 = self.conv_reduces[3](x_fuses[3]) - e4 = F.interpolate(e4, (H, W), mode="bilinear", align_corners=False) - - outputs = [e1, e2, e3, e4] - - output = self.classifier(torch.cat(outputs, dim=1)) - #if not self.training: - # return torch.sigmoid(output) - - outputs.append(output) - outputs = [torch.sigmoid(r) for r in outputs] - return outputs - -def config_model(model): - model_options = list(nets.keys()) - assert model in model_options, \ - 'unrecognized model, please choose from %s' % str(model_options) - - # print(str(nets[model])) - - pdcs = [] - for i in range(16): - layer_name = 'layer%d' % i - op = nets[model][layer_name] - pdcs.append(createConvFunc(op)) - - return pdcs - -def pidinet(): - pdcs = config_model('carv4') - dil = 24 #if args.dil else None - return PiDiNet(60, pdcs, dil=dil, sa=True) \ No newline at end of file diff --git a/MagicQuill/scribble_color_edit.py b/MagicQuill/scribble_color_edit.py deleted file mode 100644 index 5761fb108f37786090a882ce8a76438153146af3..0000000000000000000000000000000000000000 --- a/MagicQuill/scribble_color_edit.py +++ /dev/null @@ -1,125 +0,0 @@ -import torch.nn.functional as F -import torch -import numpy as np -from PIL import Image -import os -import sys -sys.path.append(os.path.dirname(os.path.abspath(__file__))) - -from .brushnet_nodes import BrushNetLoader, BrushNet, BlendInpaint, get_files_with_extension -from .comfyui_utils import CheckpointLoaderSimple, ControlNetLoader, ControlNetApplyAdvanced, CLIPTextEncode, KSampler, VAEDecode, GrowMask, PIDINET_Preprocessor, LineArt_Preprocessor, Color_Preprocessor - -class ScribbleColorEditModel(): - def __init__(self): - self.checkpoint_loader = CheckpointLoaderSimple() - self.clip_text_encoder = CLIPTextEncode() - self.mask_processor = GrowMask() - self.controlnet_loader = ControlNetLoader() - self.scribble_processor = PIDINET_Preprocessor() - self.lineart_processor = LineArt_Preprocessor() - self.color_processor = Color_Preprocessor() - self.brushnet_loader = BrushNetLoader() - self.brushnet_node = BrushNet() - self.controlnet_apply = ControlNetApplyAdvanced() - self.ksampler = KSampler() - self.vae_decoder = VAEDecode() - self.blender = BlendInpaint() - self.ckpt_name = os.path.normpath("SD1.5/realisticVisionV60B1_v51VAE.safetensors") - with torch.no_grad(): - self.model, self.clip, self.vae = self.checkpoint_loader.load_checkpoint(self.ckpt_name) - self.load_models('SD1.5', 'float16') - - def load_models(self, base_model_version="SD1.5", dtype='float16'): - if base_model_version == "SD1.5": - edge_controlnet_name = "control_v11p_sd15_scribble.safetensors" - color_controlnet_name = "color_finetune.safetensors" - brushnet_name = os.path.normpath("brushnet/random_mask_brushnet_ckpt/diffusion_pytorch_model.safetensors") - else: - raise ValueError("Invalid base_model_version, not supported yet!!!: {}".format(base_model_version)) - self.edge_controlnet = self.controlnet_loader.load_controlnet(edge_controlnet_name)[0] - self.color_controlnet = self.controlnet_loader.load_controlnet(color_controlnet_name)[0] - self.brushnet_loader.inpaint_files = get_files_with_extension('inpaint') - print("self.brushnet_loader.inpaint_files: ", get_files_with_extension('inpaint')) - self.brushnet = self.brushnet_loader.brushnet_loading(brushnet_name, dtype)[0] - - def process(self, ckpt_name, image, colored_image, positive_prompt, negative_prompt, mask, add_mask, remove_mask, grow_size, stroke_as_edge, fine_edge, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler, base_model_version='SD1.5', dtype='float16', palette_resolution=2048): - if ckpt_name != self.ckpt_name: - self.ckpt_name = ckpt_name - with torch.no_grad(): - self.model, self.clip, self.vae = self.checkpoint_loader.load_checkpoint(ckpt_name) - if not hasattr(self, 'edge_controlnet') or not hasattr(self, 'color_controlnet') or not hasattr(self, 'brushnet'): - self.load_models(base_model_version, dtype) - positive = self.clip_text_encoder.encode(self.clip, positive_prompt)[0] - negative = self.clip_text_encoder.encode(self.clip, negative_prompt)[0] - # Grow Mask for Color Editing - mask = self.mask_processor.expand_mask(mask, expand=grow_size, tapered_corners=True)[0] - # Realistic Lineart - image_copy = image.clone() - if stroke_as_edge == "disable": - bool_add_mask = add_mask > 0.5 - mean_brightness = image_copy[bool_add_mask].mean() - if mean_brightness > 0.8: - image_copy[bool_add_mask] = 0.0 - else: - image_copy[bool_add_mask] = 1.0 - - - if not torch.equal(image, colored_image): - print("Apply color controlnet") - color_output = self.color_processor.execute(colored_image, resolution=palette_resolution)[0] - lineart_output = self.lineart_processor.execute(image, resolution=512, coarse=False)[0] - positive, negative = self.controlnet_apply.apply_controlnet(positive, negative, self.color_controlnet, color_output, color_strength, 0.0, 1.0) - positive, negative = self.controlnet_apply.apply_controlnet(positive, negative, self.edge_controlnet, lineart_output, 0.8, 0.0, 1.0) - else: - print("Apply edge controlnet") - # Resize masks to match the dimensions of lineart_output - color_output = self.color_processor.execute(image, resolution=palette_resolution)[0] - if fine_edge == "enable": - lineart_output = self.lineart_processor.execute(image, resolution=512, coarse=False)[0] - else: - lineart_output = self.scribble_processor.execute(image, resolution=512)[0] - add_mask_resized = F.interpolate(add_mask.unsqueeze(0).unsqueeze(0).float(), size=(1, lineart_output.shape[1], lineart_output.shape[2]), mode='nearest').squeeze(0).squeeze(0) - remove_mask_resized = F.interpolate(remove_mask.unsqueeze(0).unsqueeze(0).float(), size=(1, lineart_output.shape[1], lineart_output.shape[2]), mode='nearest').squeeze(0).squeeze(0) - - bool_add_mask_resized = (add_mask_resized > 0.5) - bool_remove_mask_resized = (remove_mask_resized > 0.5) - - if stroke_as_edge == "enable": - lineart_output[bool_remove_mask_resized] = 0.0 - lineart_output[bool_add_mask_resized] = 1.0 - else: - lineart_output[bool_remove_mask_resized & ~bool_add_mask_resized] = 0.0 - positive, negative = self.controlnet_apply.apply_controlnet(positive, negative, self.edge_controlnet, lineart_output, edge_strength, 0.0, 1.0) - - # BrushNet - model, positive, negative, latent = self.brushnet_node.model_update( - model=self.model, - vae=self.vae, - image=image, - mask=mask, - brushnet=self.brushnet, - positive=positive, - negative=negative, - scale=inpaint_strength, - start_at=0, - end_at=10000 - ) - - # KSampler Node - latent_samples = self.ksampler.sample( - model=model, - seed=seed, - steps=steps, - cfg=cfg, - sampler_name=sampler_name, - scheduler=scheduler, - positive=positive, - negative=negative, - latent_image=latent, - )[0] - - final_image = self.vae_decoder.decode(self.vae, latent_samples)[0] - final_image = self.blender.blend_inpaint(final_image, image, mask, kernel=10, sigma=10.0)[0] - - # Return the final image - return (latent_samples, final_image, lineart_output, color_output)