diff --git a/MagicQuill/.DS_Store b/MagicQuill/.DS_Store
deleted file mode 100644
index 92f255efe283219850b962b09db1053a14ccd5ca..0000000000000000000000000000000000000000
Binary files a/MagicQuill/.DS_Store and /dev/null differ
diff --git a/MagicQuill/brushnet/brushnet.json b/MagicQuill/brushnet/brushnet.json
deleted file mode 100644
index 65713bfcd0113271496bd06fe6b57299822e0f76..0000000000000000000000000000000000000000
--- a/MagicQuill/brushnet/brushnet.json
+++ /dev/null
@@ -1,58 +0,0 @@
-{
- "_class_name": "BrushNetModel",
- "_diffusers_version": "0.27.0.dev0",
- "_name_or_path": "runs/logs/brushnet_randommask/checkpoint-100000",
- "act_fn": "silu",
- "addition_embed_type": null,
- "addition_embed_type_num_heads": 64,
- "addition_time_embed_dim": null,
- "attention_head_dim": 8,
- "block_out_channels": [
- 320,
- 640,
- 1280,
- 1280
- ],
- "brushnet_conditioning_channel_order": "rgb",
- "class_embed_type": null,
- "conditioning_channels": 5,
- "conditioning_embedding_out_channels": [
- 16,
- 32,
- 96,
- 256
- ],
- "cross_attention_dim": 768,
- "down_block_types": [
- "DownBlock2D",
- "DownBlock2D",
- "DownBlock2D",
- "DownBlock2D"
- ],
- "downsample_padding": 1,
- "encoder_hid_dim": null,
- "encoder_hid_dim_type": null,
- "flip_sin_to_cos": true,
- "freq_shift": 0,
- "global_pool_conditions": false,
- "in_channels": 4,
- "layers_per_block": 2,
- "mid_block_scale_factor": 1,
- "mid_block_type": "MidBlock2D",
- "norm_eps": 1e-05,
- "norm_num_groups": 32,
- "num_attention_heads": null,
- "num_class_embeds": null,
- "only_cross_attention": false,
- "projection_class_embeddings_input_dim": null,
- "resnet_time_scale_shift": "default",
- "transformer_layers_per_block": 1,
- "up_block_types": [
- "UpBlock2D",
- "UpBlock2D",
- "UpBlock2D",
- "UpBlock2D"
- ],
- "upcast_attention": false,
- "use_linear_projection": false
-}
diff --git a/MagicQuill/brushnet/brushnet.py b/MagicQuill/brushnet/brushnet.py
deleted file mode 100644
index aed1cfde30b1ab27286066746058b7b1afcd8a84..0000000000000000000000000000000000000000
--- a/MagicQuill/brushnet/brushnet.py
+++ /dev/null
@@ -1,949 +0,0 @@
-from dataclasses import dataclass
-from typing import Any, Dict, List, Optional, Tuple, Union
-
-import torch
-from torch import nn
-from torch.nn import functional as F
-
-from diffusers.configuration_utils import ConfigMixin, register_to_config
-from diffusers.utils import BaseOutput, logging
-from diffusers.models.attention_processor import (
- ADDED_KV_ATTENTION_PROCESSORS,
- CROSS_ATTENTION_PROCESSORS,
- AttentionProcessor,
- AttnAddedKVProcessor,
- AttnProcessor,
-)
-from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
-from diffusers.models.modeling_utils import ModelMixin
-
-from .unet_2d_blocks import (
- CrossAttnDownBlock2D,
- DownBlock2D,
- UNetMidBlock2D,
- UNetMidBlock2DCrossAttn,
- get_down_block,
- get_mid_block,
- get_up_block,
- MidBlock2D
-)
-
-from .unet_2d_condition import UNet2DConditionModel
-
-
-logger = logging.get_logger(__name__) # pylint: disable=invalid-name
-
-
-@dataclass
-class BrushNetOutput(BaseOutput):
- """
- The output of [`BrushNetModel`].
-
- Args:
- up_block_res_samples (`tuple[torch.Tensor]`):
- A tuple of upsample activations at different resolutions for each upsampling block. Each tensor should
- be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
- used to condition the original UNet's upsampling activations.
- down_block_res_samples (`tuple[torch.Tensor]`):
- A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
- be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
- used to condition the original UNet's downsampling activations.
- mid_down_block_re_sample (`torch.Tensor`):
- The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
- `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
- Output can be used to condition the original UNet's middle block activation.
- """
-
- up_block_res_samples: Tuple[torch.Tensor]
- down_block_res_samples: Tuple[torch.Tensor]
- mid_block_res_sample: torch.Tensor
-
-
-class BrushNetModel(ModelMixin, ConfigMixin):
- """
- A BrushNet model.
-
- Args:
- in_channels (`int`, defaults to 4):
- The number of channels in the input sample.
- flip_sin_to_cos (`bool`, defaults to `True`):
- Whether to flip the sin to cos in the time embedding.
- freq_shift (`int`, defaults to 0):
- The frequency shift to apply to the time embedding.
- down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
- The tuple of downsample blocks to use.
- mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
- Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
- `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
- up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
- The tuple of upsample blocks to use.
- only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
- block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
- The tuple of output channels for each block.
- layers_per_block (`int`, defaults to 2):
- The number of layers per block.
- downsample_padding (`int`, defaults to 1):
- The padding to use for the downsampling convolution.
- mid_block_scale_factor (`float`, defaults to 1):
- The scale factor to use for the mid block.
- act_fn (`str`, defaults to "silu"):
- The activation function to use.
- norm_num_groups (`int`, *optional*, defaults to 32):
- The number of groups to use for the normalization. If None, normalization and activation layers is skipped
- in post-processing.
- norm_eps (`float`, defaults to 1e-5):
- The epsilon to use for the normalization.
- cross_attention_dim (`int`, defaults to 1280):
- The dimension of the cross attention features.
- transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
- The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
- [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
- [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
- encoder_hid_dim (`int`, *optional*, defaults to None):
- If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
- dimension to `cross_attention_dim`.
- encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
- If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
- embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
- attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
- The dimension of the attention heads.
- use_linear_projection (`bool`, defaults to `False`):
- class_embed_type (`str`, *optional*, defaults to `None`):
- The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
- `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
- addition_embed_type (`str`, *optional*, defaults to `None`):
- Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
- "text". "text" will use the `TextTimeEmbedding` layer.
- num_class_embeds (`int`, *optional*, defaults to 0):
- Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
- class conditioning with `class_embed_type` equal to `None`.
- upcast_attention (`bool`, defaults to `False`):
- resnet_time_scale_shift (`str`, defaults to `"default"`):
- Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
- projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
- The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
- `class_embed_type="projection"`.
- brushnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
- The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
- conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
- The tuple of output channel for each block in the `conditioning_embedding` layer.
- global_pool_conditions (`bool`, defaults to `False`):
- TODO(Patrick) - unused parameter.
- addition_embed_type_num_heads (`int`, defaults to 64):
- The number of heads to use for the `TextTimeEmbedding` layer.
- """
-
- _supports_gradient_checkpointing = True
-
- @register_to_config
- def __init__(
- self,
- in_channels: int = 4,
- conditioning_channels: int = 5,
- flip_sin_to_cos: bool = True,
- freq_shift: int = 0,
- down_block_types: Tuple[str, ...] = (
- "DownBlock2D",
- "DownBlock2D",
- "DownBlock2D",
- "DownBlock2D",
- ),
- mid_block_type: Optional[str] = "UNetMidBlock2D",
- up_block_types: Tuple[str, ...] = (
- "UpBlock2D",
- "UpBlock2D",
- "UpBlock2D",
- "UpBlock2D",
- ),
- only_cross_attention: Union[bool, Tuple[bool]] = False,
- block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
- layers_per_block: int = 2,
- downsample_padding: int = 1,
- mid_block_scale_factor: float = 1,
- act_fn: str = "silu",
- norm_num_groups: Optional[int] = 32,
- norm_eps: float = 1e-5,
- cross_attention_dim: int = 1280,
- transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
- encoder_hid_dim: Optional[int] = None,
- encoder_hid_dim_type: Optional[str] = None,
- attention_head_dim: Union[int, Tuple[int, ...]] = 8,
- num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
- use_linear_projection: bool = False,
- class_embed_type: Optional[str] = None,
- addition_embed_type: Optional[str] = None,
- addition_time_embed_dim: Optional[int] = None,
- num_class_embeds: Optional[int] = None,
- upcast_attention: bool = False,
- resnet_time_scale_shift: str = "default",
- projection_class_embeddings_input_dim: Optional[int] = None,
- brushnet_conditioning_channel_order: str = "rgb",
- conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
- global_pool_conditions: bool = False,
- addition_embed_type_num_heads: int = 64,
- ):
- super().__init__()
-
- # If `num_attention_heads` is not defined (which is the case for most models)
- # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
- # The reason for this behavior is to correct for incorrectly named variables that were introduced
- # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
- # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
- # which is why we correct for the naming here.
- num_attention_heads = num_attention_heads or attention_head_dim
-
- # Check inputs
- if len(down_block_types) != len(up_block_types):
- raise ValueError(
- f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
- )
-
- if len(block_out_channels) != len(down_block_types):
- raise ValueError(
- f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
- )
-
- if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
- raise ValueError(
- f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
- )
-
- if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
- raise ValueError(
- f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
- )
-
- if isinstance(transformer_layers_per_block, int):
- transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
-
- # input
- conv_in_kernel = 3
- conv_in_padding = (conv_in_kernel - 1) // 2
- self.conv_in_condition = nn.Conv2d(
- in_channels+conditioning_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
- )
-
- # time
- time_embed_dim = block_out_channels[0] * 4
- self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
- timestep_input_dim = block_out_channels[0]
- self.time_embedding = TimestepEmbedding(
- timestep_input_dim,
- time_embed_dim,
- act_fn=act_fn,
- )
-
- if encoder_hid_dim_type is None and encoder_hid_dim is not None:
- encoder_hid_dim_type = "text_proj"
- self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
- logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
-
- if encoder_hid_dim is None and encoder_hid_dim_type is not None:
- raise ValueError(
- f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
- )
-
- if encoder_hid_dim_type == "text_proj":
- self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
- elif encoder_hid_dim_type == "text_image_proj":
- # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
- # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
- self.encoder_hid_proj = TextImageProjection(
- text_embed_dim=encoder_hid_dim,
- image_embed_dim=cross_attention_dim,
- cross_attention_dim=cross_attention_dim,
- )
-
- elif encoder_hid_dim_type is not None:
- raise ValueError(
- f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
- )
- else:
- self.encoder_hid_proj = None
-
- # class embedding
- if class_embed_type is None and num_class_embeds is not None:
- self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
- elif class_embed_type == "timestep":
- self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
- elif class_embed_type == "identity":
- self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
- elif class_embed_type == "projection":
- if projection_class_embeddings_input_dim is None:
- raise ValueError(
- "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
- )
- # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
- # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
- # 2. it projects from an arbitrary input dimension.
- #
- # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
- # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
- # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
- self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
- else:
- self.class_embedding = None
-
- if addition_embed_type == "text":
- if encoder_hid_dim is not None:
- text_time_embedding_from_dim = encoder_hid_dim
- else:
- text_time_embedding_from_dim = cross_attention_dim
-
- self.add_embedding = TextTimeEmbedding(
- text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
- )
- elif addition_embed_type == "text_image":
- # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
- # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
- self.add_embedding = TextImageTimeEmbedding(
- text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
- )
- elif addition_embed_type == "text_time":
- self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
- self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
-
- elif addition_embed_type is not None:
- raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
-
- self.down_blocks = nn.ModuleList([])
- self.brushnet_down_blocks = nn.ModuleList([])
-
- if isinstance(only_cross_attention, bool):
- only_cross_attention = [only_cross_attention] * len(down_block_types)
-
- if isinstance(attention_head_dim, int):
- attention_head_dim = (attention_head_dim,) * len(down_block_types)
-
- if isinstance(num_attention_heads, int):
- num_attention_heads = (num_attention_heads,) * len(down_block_types)
-
- # down
- output_channel = block_out_channels[0]
-
- brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_down_blocks.append(brushnet_block)
-
- for i, down_block_type in enumerate(down_block_types):
- input_channel = output_channel
- output_channel = block_out_channels[i]
- is_final_block = i == len(block_out_channels) - 1
-
- down_block = get_down_block(
- down_block_type,
- num_layers=layers_per_block,
- transformer_layers_per_block=transformer_layers_per_block[i],
- in_channels=input_channel,
- out_channels=output_channel,
- temb_channels=time_embed_dim,
- add_downsample=not is_final_block,
- resnet_eps=norm_eps,
- resnet_act_fn=act_fn,
- resnet_groups=norm_num_groups,
- cross_attention_dim=cross_attention_dim,
- num_attention_heads=num_attention_heads[i],
- attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
- downsample_padding=downsample_padding,
- use_linear_projection=use_linear_projection,
- only_cross_attention=only_cross_attention[i],
- upcast_attention=upcast_attention,
- resnet_time_scale_shift=resnet_time_scale_shift,
- )
- self.down_blocks.append(down_block)
-
- for _ in range(layers_per_block):
- brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_down_blocks.append(brushnet_block)
-
- if not is_final_block:
- brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_down_blocks.append(brushnet_block)
-
- # mid
- mid_block_channel = block_out_channels[-1]
-
- brushnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_mid_block = brushnet_block
-
- self.mid_block = get_mid_block(
- mid_block_type,
- transformer_layers_per_block=transformer_layers_per_block[-1],
- in_channels=mid_block_channel,
- temb_channels=time_embed_dim,
- resnet_eps=norm_eps,
- resnet_act_fn=act_fn,
- output_scale_factor=mid_block_scale_factor,
- resnet_time_scale_shift=resnet_time_scale_shift,
- cross_attention_dim=cross_attention_dim,
- num_attention_heads=num_attention_heads[-1],
- resnet_groups=norm_num_groups,
- use_linear_projection=use_linear_projection,
- upcast_attention=upcast_attention,
- )
-
- # count how many layers upsample the images
- self.num_upsamplers = 0
-
- # up
- reversed_block_out_channels = list(reversed(block_out_channels))
- reversed_num_attention_heads = list(reversed(num_attention_heads))
- reversed_transformer_layers_per_block = (list(reversed(transformer_layers_per_block)))
- only_cross_attention = list(reversed(only_cross_attention))
-
- output_channel = reversed_block_out_channels[0]
-
- self.up_blocks = nn.ModuleList([])
- self.brushnet_up_blocks = nn.ModuleList([])
-
- for i, up_block_type in enumerate(up_block_types):
- is_final_block = i == len(block_out_channels) - 1
-
- prev_output_channel = output_channel
- output_channel = reversed_block_out_channels[i]
- input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
-
- # add upsample block for all BUT final layer
- if not is_final_block:
- add_upsample = True
- self.num_upsamplers += 1
- else:
- add_upsample = False
-
- up_block = get_up_block(
- up_block_type,
- num_layers=layers_per_block+1,
- transformer_layers_per_block=reversed_transformer_layers_per_block[i],
- in_channels=input_channel,
- out_channels=output_channel,
- prev_output_channel=prev_output_channel,
- temb_channels=time_embed_dim,
- add_upsample=add_upsample,
- resnet_eps=norm_eps,
- resnet_act_fn=act_fn,
- resolution_idx=i,
- resnet_groups=norm_num_groups,
- cross_attention_dim=cross_attention_dim,
- num_attention_heads=reversed_num_attention_heads[i],
- use_linear_projection=use_linear_projection,
- only_cross_attention=only_cross_attention[i],
- upcast_attention=upcast_attention,
- resnet_time_scale_shift=resnet_time_scale_shift,
- attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
- )
- self.up_blocks.append(up_block)
- prev_output_channel = output_channel
-
- for _ in range(layers_per_block+1):
- brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_up_blocks.append(brushnet_block)
-
- if not is_final_block:
- brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_up_blocks.append(brushnet_block)
-
-
- @classmethod
- def from_unet(
- cls,
- unet: UNet2DConditionModel,
- brushnet_conditioning_channel_order: str = "rgb",
- conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
- load_weights_from_unet: bool = True,
- conditioning_channels: int = 5,
- ):
- r"""
- Instantiate a [`BrushNetModel`] from [`UNet2DConditionModel`].
-
- Parameters:
- unet (`UNet2DConditionModel`):
- The UNet model weights to copy to the [`BrushNetModel`]. All configuration options are also copied
- where applicable.
- """
- transformer_layers_per_block = (
- unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
- )
- encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
- encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
- addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
- addition_time_embed_dim = (
- unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
- )
-
- brushnet = cls(
- in_channels=unet.config.in_channels,
- conditioning_channels=conditioning_channels,
- flip_sin_to_cos=unet.config.flip_sin_to_cos,
- freq_shift=unet.config.freq_shift,
- down_block_types=["DownBlock2D" for block_name in unet.config.down_block_types],
- mid_block_type='MidBlock2D',
- up_block_types=["UpBlock2D" for block_name in unet.config.down_block_types],
- only_cross_attention=unet.config.only_cross_attention,
- block_out_channels=unet.config.block_out_channels,
- layers_per_block=unet.config.layers_per_block,
- downsample_padding=unet.config.downsample_padding,
- mid_block_scale_factor=unet.config.mid_block_scale_factor,
- act_fn=unet.config.act_fn,
- norm_num_groups=unet.config.norm_num_groups,
- norm_eps=unet.config.norm_eps,
- cross_attention_dim=unet.config.cross_attention_dim,
- transformer_layers_per_block=transformer_layers_per_block,
- encoder_hid_dim=encoder_hid_dim,
- encoder_hid_dim_type=encoder_hid_dim_type,
- attention_head_dim=unet.config.attention_head_dim,
- num_attention_heads=unet.config.num_attention_heads,
- use_linear_projection=unet.config.use_linear_projection,
- class_embed_type=unet.config.class_embed_type,
- addition_embed_type=addition_embed_type,
- addition_time_embed_dim=addition_time_embed_dim,
- num_class_embeds=unet.config.num_class_embeds,
- upcast_attention=unet.config.upcast_attention,
- resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
- projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
- brushnet_conditioning_channel_order=brushnet_conditioning_channel_order,
- conditioning_embedding_out_channels=conditioning_embedding_out_channels,
- )
-
- if load_weights_from_unet:
- conv_in_condition_weight=torch.zeros_like(brushnet.conv_in_condition.weight)
- conv_in_condition_weight[:,:4,...]=unet.conv_in.weight
- conv_in_condition_weight[:,4:8,...]=unet.conv_in.weight
- brushnet.conv_in_condition.weight=torch.nn.Parameter(conv_in_condition_weight)
- brushnet.conv_in_condition.bias=unet.conv_in.bias
-
- brushnet.time_proj.load_state_dict(unet.time_proj.state_dict())
- brushnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
-
- if brushnet.class_embedding:
- brushnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
-
- brushnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(),strict=False)
- brushnet.mid_block.load_state_dict(unet.mid_block.state_dict(),strict=False)
- brushnet.up_blocks.load_state_dict(unet.up_blocks.state_dict(),strict=False)
-
- return brushnet
-
- @property
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
- def attn_processors(self) -> Dict[str, AttentionProcessor]:
- r"""
- Returns:
- `dict` of attention processors: A dictionary containing all attention processors used in the model with
- indexed by its weight name.
- """
- # set recursively
- processors = {}
-
- def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
- if hasattr(module, "get_processor"):
- processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
-
- for sub_name, child in module.named_children():
- fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
-
- return processors
-
- for name, module in self.named_children():
- fn_recursive_add_processors(name, module, processors)
-
- return processors
-
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
- def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
- r"""
- Sets the attention processor to use to compute attention.
-
- Parameters:
- processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
- The instantiated processor class or a dictionary of processor classes that will be set as the processor
- for **all** `Attention` layers.
-
- If `processor` is a dict, the key needs to define the path to the corresponding cross attention
- processor. This is strongly recommended when setting trainable attention processors.
-
- """
- count = len(self.attn_processors.keys())
-
- if isinstance(processor, dict) and len(processor) != count:
- raise ValueError(
- f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
- f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
- )
-
- def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
- if hasattr(module, "set_processor"):
- if not isinstance(processor, dict):
- module.set_processor(processor)
- else:
- module.set_processor(processor.pop(f"{name}.processor"))
-
- for sub_name, child in module.named_children():
- fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
-
- for name, module in self.named_children():
- fn_recursive_attn_processor(name, module, processor)
-
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
- def set_default_attn_processor(self):
- """
- Disables custom attention processors and sets the default attention implementation.
- """
- if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
- processor = AttnAddedKVProcessor()
- elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
- processor = AttnProcessor()
- else:
- raise ValueError(
- f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
- )
-
- self.set_attn_processor(processor)
-
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
- def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
- r"""
- Enable sliced attention computation.
-
- When this option is enabled, the attention module splits the input tensor in slices to compute attention in
- several steps. This is useful for saving some memory in exchange for a small decrease in speed.
-
- Args:
- slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
- When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
- `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
- provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
- must be a multiple of `slice_size`.
- """
- sliceable_head_dims = []
-
- def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
- if hasattr(module, "set_attention_slice"):
- sliceable_head_dims.append(module.sliceable_head_dim)
-
- for child in module.children():
- fn_recursive_retrieve_sliceable_dims(child)
-
- # retrieve number of attention layers
- for module in self.children():
- fn_recursive_retrieve_sliceable_dims(module)
-
- num_sliceable_layers = len(sliceable_head_dims)
-
- if slice_size == "auto":
- # half the attention head size is usually a good trade-off between
- # speed and memory
- slice_size = [dim // 2 for dim in sliceable_head_dims]
- elif slice_size == "max":
- # make smallest slice possible
- slice_size = num_sliceable_layers * [1]
-
- slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
-
- if len(slice_size) != len(sliceable_head_dims):
- raise ValueError(
- f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
- f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
- )
-
- for i in range(len(slice_size)):
- size = slice_size[i]
- dim = sliceable_head_dims[i]
- if size is not None and size > dim:
- raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
-
- # Recursively walk through all the children.
- # Any children which exposes the set_attention_slice method
- # gets the message
- def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
- if hasattr(module, "set_attention_slice"):
- module.set_attention_slice(slice_size.pop())
-
- for child in module.children():
- fn_recursive_set_attention_slice(child, slice_size)
-
- reversed_slice_size = list(reversed(slice_size))
- for module in self.children():
- fn_recursive_set_attention_slice(module, reversed_slice_size)
-
- def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
- if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
- module.gradient_checkpointing = value
-
- def forward(
- self,
- sample: torch.FloatTensor,
- encoder_hidden_states: torch.Tensor,
- brushnet_cond: torch.FloatTensor,
- timestep = None,
- time_emb = None,
- conditioning_scale: float = 1.0,
- class_labels: Optional[torch.Tensor] = None,
- timestep_cond: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- guess_mode: bool = False,
- return_dict: bool = True,
- debug = False,
- ) -> Union[BrushNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
- """
- The [`BrushNetModel`] forward method.
-
- Args:
- sample (`torch.FloatTensor`):
- The noisy input tensor.
- timestep (`Union[torch.Tensor, float, int]`):
- The number of timesteps to denoise an input.
- encoder_hidden_states (`torch.Tensor`):
- The encoder hidden states.
- brushnet_cond (`torch.FloatTensor`):
- The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
- conditioning_scale (`float`, defaults to `1.0`):
- The scale factor for BrushNet outputs.
- class_labels (`torch.Tensor`, *optional*, defaults to `None`):
- Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
- timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
- Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
- timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
- embeddings.
- attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
- An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
- is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
- negative values to the attention scores corresponding to "discard" tokens.
- added_cond_kwargs (`dict`):
- Additional conditions for the Stable Diffusion XL UNet.
- cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
- A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
- guess_mode (`bool`, defaults to `False`):
- In this mode, the BrushNet encoder tries its best to recognize the input content of the input even if
- you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
- return_dict (`bool`, defaults to `True`):
- Whether or not to return a [`~models.brushnet.BrushNetOutput`] instead of a plain tuple.
-
- Returns:
- [`~models.brushnet.BrushNetOutput`] **or** `tuple`:
- If `return_dict` is `True`, a [`~models.brushnet.BrushNetOutput`] is returned, otherwise a tuple is
- returned where the first element is the sample tensor.
- """
-
- # check channel order
- channel_order = self.config.brushnet_conditioning_channel_order
-
- if channel_order == "rgb":
- # in rgb order by default
- ...
- elif channel_order == "bgr":
- brushnet_cond = torch.flip(brushnet_cond, dims=[1])
- else:
- raise ValueError(f"unknown `brushnet_conditioning_channel_order`: {channel_order}")
-
- # prepare attention_mask
- if attention_mask is not None:
- attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
- attention_mask = attention_mask.unsqueeze(1)
-
- if timestep is None and time_emb is None:
- raise ValueError(f"`timestep` and `emb` are both None")
-
- #print("BN: sample.device", sample.device)
- #print("BN: TE.device", self.time_embedding.linear_1.weight.device)
-
- if timestep is not None:
- # 1. time
- timesteps = timestep
- if not torch.is_tensor(timesteps):
- # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
- # This would be a good case for the `match` statement (Python 3.10+)
- is_mps = sample.device.type == "mps"
- if isinstance(timestep, float):
- dtype = torch.float32 if is_mps else torch.float64
- else:
- dtype = torch.int32 if is_mps else torch.int64
- timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
- elif len(timesteps.shape) == 0:
- timesteps = timesteps[None].to(sample.device)
-
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
- timesteps = timesteps.expand(sample.shape[0])
-
- t_emb = self.time_proj(timesteps)
-
- # timesteps does not contain any weights and will always return f32 tensors
- # but time_embedding might actually be running in fp16. so we need to cast here.
- # there might be better ways to encapsulate this.
- t_emb = t_emb.to(dtype=sample.dtype)
-
- #print("t_emb.device =",t_emb.device)
-
- emb = self.time_embedding(t_emb, timestep_cond)
- aug_emb = None
-
- #print('emb.shape', emb.shape)
-
- if self.class_embedding is not None:
- if class_labels is None:
- raise ValueError("class_labels should be provided when num_class_embeds > 0")
-
- if self.config.class_embed_type == "timestep":
- class_labels = self.time_proj(class_labels)
-
- class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
- emb = emb + class_emb
-
- if self.config.addition_embed_type is not None:
- if self.config.addition_embed_type == "text":
- aug_emb = self.add_embedding(encoder_hidden_states)
-
- elif self.config.addition_embed_type == "text_time":
- if "text_embeds" not in added_cond_kwargs:
- raise ValueError(
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
- )
- text_embeds = added_cond_kwargs.get("text_embeds")
- if "time_ids" not in added_cond_kwargs:
- raise ValueError(
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
- )
- time_ids = added_cond_kwargs.get("time_ids")
- time_embeds = self.add_time_proj(time_ids.flatten())
- time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
-
- add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
- add_embeds = add_embeds.to(emb.dtype)
- aug_emb = self.add_embedding(add_embeds)
-
- #print('text_embeds', text_embeds.shape, 'time_ids', time_ids.shape, 'time_embeds', time_embeds.shape, 'add__embeds', add_embeds.shape, 'aug_emb', aug_emb.shape)
-
- emb = emb + aug_emb if aug_emb is not None else emb
- else:
- emb = time_emb
-
- # 2. pre-process
-
- brushnet_cond=torch.concat([sample,brushnet_cond],1)
- sample = self.conv_in_condition(brushnet_cond)
-
- # 3. down
- down_block_res_samples = (sample,)
- for downsample_block in self.down_blocks:
- if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
- sample, res_samples = downsample_block(
- hidden_states=sample,
- temb=emb,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=attention_mask,
- cross_attention_kwargs=cross_attention_kwargs,
- )
- else:
- sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
-
- down_block_res_samples += res_samples
-
- # 4. PaintingNet down blocks
- brushnet_down_block_res_samples = ()
- for down_block_res_sample, brushnet_down_block in zip(down_block_res_samples, self.brushnet_down_blocks):
- down_block_res_sample = brushnet_down_block(down_block_res_sample)
- brushnet_down_block_res_samples = brushnet_down_block_res_samples + (down_block_res_sample,)
-
-
- # 5. mid
- if self.mid_block is not None:
- if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
- sample = self.mid_block(
- sample,
- emb,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=attention_mask,
- cross_attention_kwargs=cross_attention_kwargs,
- )
- else:
- sample = self.mid_block(sample, emb)
-
- # 6. BrushNet mid blocks
- brushnet_mid_block_res_sample = self.brushnet_mid_block(sample)
-
- # 7. up
- up_block_res_samples = ()
- for i, upsample_block in enumerate(self.up_blocks):
- is_final_block = i == len(self.up_blocks) - 1
-
- res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
- down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
-
- # if we have not reached the final block and need to forward the
- # upsample size, we do it here
- if not is_final_block:
- upsample_size = down_block_res_samples[-1].shape[2:]
-
- if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
- sample, up_res_samples = upsample_block(
- hidden_states=sample,
- temb=emb,
- res_hidden_states_tuple=res_samples,
- encoder_hidden_states=encoder_hidden_states,
- cross_attention_kwargs=cross_attention_kwargs,
- upsample_size=upsample_size,
- attention_mask=attention_mask,
- return_res_samples=True
- )
- else:
- sample, up_res_samples = upsample_block(
- hidden_states=sample,
- temb=emb,
- res_hidden_states_tuple=res_samples,
- upsample_size=upsample_size,
- return_res_samples=True
- )
-
- up_block_res_samples += up_res_samples
-
- # 8. BrushNet up blocks
- brushnet_up_block_res_samples = ()
- for up_block_res_sample, brushnet_up_block in zip(up_block_res_samples, self.brushnet_up_blocks):
- up_block_res_sample = brushnet_up_block(up_block_res_sample)
- brushnet_up_block_res_samples = brushnet_up_block_res_samples + (up_block_res_sample,)
-
- # 6. scaling
- if guess_mode and not self.config.global_pool_conditions:
- scales = torch.logspace(-1, 0, len(brushnet_down_block_res_samples) + 1 + len(brushnet_up_block_res_samples), device=sample.device) # 0.1 to 1.0
- scales = scales * conditioning_scale
-
- brushnet_down_block_res_samples = [sample * scale for sample, scale in zip(brushnet_down_block_res_samples, scales[:len(brushnet_down_block_res_samples)])]
- brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * scales[len(brushnet_down_block_res_samples)]
- brushnet_up_block_res_samples = [sample * scale for sample, scale in zip(brushnet_up_block_res_samples, scales[len(brushnet_down_block_res_samples)+1:])]
- else:
- brushnet_down_block_res_samples = [sample * conditioning_scale for sample in brushnet_down_block_res_samples]
- brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * conditioning_scale
- brushnet_up_block_res_samples = [sample * conditioning_scale for sample in brushnet_up_block_res_samples]
-
-
- if self.config.global_pool_conditions:
- brushnet_down_block_res_samples = [
- torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_down_block_res_samples
- ]
- brushnet_mid_block_res_sample = torch.mean(brushnet_mid_block_res_sample, dim=(2, 3), keepdim=True)
- brushnet_up_block_res_samples = [
- torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_up_block_res_samples
- ]
-
- if not return_dict:
- return (brushnet_down_block_res_samples, brushnet_mid_block_res_sample, brushnet_up_block_res_samples)
-
- return BrushNetOutput(
- down_block_res_samples=brushnet_down_block_res_samples,
- mid_block_res_sample=brushnet_mid_block_res_sample,
- up_block_res_samples=brushnet_up_block_res_samples
- )
-
-
-def zero_module(module):
- for p in module.parameters():
- nn.init.zeros_(p)
- return module
diff --git a/MagicQuill/brushnet/brushnet_ca.py b/MagicQuill/brushnet/brushnet_ca.py
deleted file mode 100644
index 780a87b23f30e2192a19469c506a22056ea52ba7..0000000000000000000000000000000000000000
--- a/MagicQuill/brushnet/brushnet_ca.py
+++ /dev/null
@@ -1,983 +0,0 @@
-from dataclasses import dataclass
-from typing import Any, Dict, List, Optional, Tuple, Union
-
-import torch
-from torch import nn
-
-from diffusers.configuration_utils import ConfigMixin, register_to_config
-from diffusers.utils import BaseOutput, logging
-from diffusers.models.attention_processor import (
- ADDED_KV_ATTENTION_PROCESSORS,
- CROSS_ATTENTION_PROCESSORS,
- AttentionProcessor,
- AttnAddedKVProcessor,
- AttnProcessor,
-)
-from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
-from diffusers.models.modeling_utils import ModelMixin
-
-from .unet_2d_blocks import (
- CrossAttnDownBlock2D,
- DownBlock2D,
- UNetMidBlock2D,
- UNetMidBlock2DCrossAttn,
- get_down_block,
- get_mid_block,
- get_up_block,
- MidBlock2D
-)
-
-from .unet_2d_condition import UNet2DConditionModel
-
-
-logger = logging.get_logger(__name__) # pylint: disable=invalid-name
-
-
-@dataclass
-class BrushNetOutput(BaseOutput):
- """
- The output of [`BrushNetModel`].
-
- Args:
- up_block_res_samples (`tuple[torch.Tensor]`):
- A tuple of upsample activations at different resolutions for each upsampling block. Each tensor should
- be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
- used to condition the original UNet's upsampling activations.
- down_block_res_samples (`tuple[torch.Tensor]`):
- A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
- be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
- used to condition the original UNet's downsampling activations.
- mid_down_block_re_sample (`torch.Tensor`):
- The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
- `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
- Output can be used to condition the original UNet's middle block activation.
- """
-
- up_block_res_samples: Tuple[torch.Tensor]
- down_block_res_samples: Tuple[torch.Tensor]
- mid_block_res_sample: torch.Tensor
-
-
-class BrushNetModel(ModelMixin, ConfigMixin):
- """
- A BrushNet model.
-
- Args:
- in_channels (`int`, defaults to 4):
- The number of channels in the input sample.
- flip_sin_to_cos (`bool`, defaults to `True`):
- Whether to flip the sin to cos in the time embedding.
- freq_shift (`int`, defaults to 0):
- The frequency shift to apply to the time embedding.
- down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
- The tuple of downsample blocks to use.
- mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
- Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
- `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
- up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
- The tuple of upsample blocks to use.
- only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
- block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
- The tuple of output channels for each block.
- layers_per_block (`int`, defaults to 2):
- The number of layers per block.
- downsample_padding (`int`, defaults to 1):
- The padding to use for the downsampling convolution.
- mid_block_scale_factor (`float`, defaults to 1):
- The scale factor to use for the mid block.
- act_fn (`str`, defaults to "silu"):
- The activation function to use.
- norm_num_groups (`int`, *optional*, defaults to 32):
- The number of groups to use for the normalization. If None, normalization and activation layers is skipped
- in post-processing.
- norm_eps (`float`, defaults to 1e-5):
- The epsilon to use for the normalization.
- cross_attention_dim (`int`, defaults to 1280):
- The dimension of the cross attention features.
- transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
- The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
- [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
- [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
- encoder_hid_dim (`int`, *optional*, defaults to None):
- If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
- dimension to `cross_attention_dim`.
- encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
- If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
- embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
- attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
- The dimension of the attention heads.
- use_linear_projection (`bool`, defaults to `False`):
- class_embed_type (`str`, *optional*, defaults to `None`):
- The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
- `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
- addition_embed_type (`str`, *optional*, defaults to `None`):
- Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
- "text". "text" will use the `TextTimeEmbedding` layer.
- num_class_embeds (`int`, *optional*, defaults to 0):
- Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
- class conditioning with `class_embed_type` equal to `None`.
- upcast_attention (`bool`, defaults to `False`):
- resnet_time_scale_shift (`str`, defaults to `"default"`):
- Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
- projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
- The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
- `class_embed_type="projection"`.
- brushnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
- The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
- conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
- The tuple of output channel for each block in the `conditioning_embedding` layer.
- global_pool_conditions (`bool`, defaults to `False`):
- TODO(Patrick) - unused parameter.
- addition_embed_type_num_heads (`int`, defaults to 64):
- The number of heads to use for the `TextTimeEmbedding` layer.
- """
-
- _supports_gradient_checkpointing = True
-
- @register_to_config
- def __init__(
- self,
- in_channels: int = 4,
- conditioning_channels: int = 5,
- flip_sin_to_cos: bool = True,
- freq_shift: int = 0,
- down_block_types: Tuple[str, ...] = (
- "CrossAttnDownBlock2D",
- "CrossAttnDownBlock2D",
- "CrossAttnDownBlock2D",
- "DownBlock2D",
- ),
- mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
- up_block_types: Tuple[str, ...] = (
- "UpBlock2D",
- "CrossAttnUpBlock2D",
- "CrossAttnUpBlock2D",
- "CrossAttnUpBlock2D",
- ),
- only_cross_attention: Union[bool, Tuple[bool]] = False,
- block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
- layers_per_block: int = 2,
- downsample_padding: int = 1,
- mid_block_scale_factor: float = 1,
- act_fn: str = "silu",
- norm_num_groups: Optional[int] = 32,
- norm_eps: float = 1e-5,
- cross_attention_dim: int = 1280,
- transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
- encoder_hid_dim: Optional[int] = None,
- encoder_hid_dim_type: Optional[str] = None,
- attention_head_dim: Union[int, Tuple[int, ...]] = 8,
- num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
- use_linear_projection: bool = False,
- class_embed_type: Optional[str] = None,
- addition_embed_type: Optional[str] = None,
- addition_time_embed_dim: Optional[int] = None,
- num_class_embeds: Optional[int] = None,
- upcast_attention: bool = False,
- resnet_time_scale_shift: str = "default",
- projection_class_embeddings_input_dim: Optional[int] = None,
- brushnet_conditioning_channel_order: str = "rgb",
- conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
- global_pool_conditions: bool = False,
- addition_embed_type_num_heads: int = 64,
- ):
- super().__init__()
-
- # If `num_attention_heads` is not defined (which is the case for most models)
- # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
- # The reason for this behavior is to correct for incorrectly named variables that were introduced
- # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
- # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
- # which is why we correct for the naming here.
- num_attention_heads = num_attention_heads or attention_head_dim
-
- # Check inputs
- if len(down_block_types) != len(up_block_types):
- raise ValueError(
- f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
- )
-
- if len(block_out_channels) != len(down_block_types):
- raise ValueError(
- f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
- )
-
- if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
- raise ValueError(
- f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
- )
-
- if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
- raise ValueError(
- f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
- )
-
- if isinstance(transformer_layers_per_block, int):
- transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
-
- # input
- conv_in_kernel = 3
- conv_in_padding = (conv_in_kernel - 1) // 2
- self.conv_in_condition = nn.Conv2d(
- in_channels + conditioning_channels,
- block_out_channels[0],
- kernel_size=conv_in_kernel,
- padding=conv_in_padding,
- )
-
- # time
- time_embed_dim = block_out_channels[0] * 4
- self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
- timestep_input_dim = block_out_channels[0]
- self.time_embedding = TimestepEmbedding(
- timestep_input_dim,
- time_embed_dim,
- act_fn=act_fn,
- )
-
- if encoder_hid_dim_type is None and encoder_hid_dim is not None:
- encoder_hid_dim_type = "text_proj"
- self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
- logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
-
- if encoder_hid_dim is None and encoder_hid_dim_type is not None:
- raise ValueError(
- f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
- )
-
- if encoder_hid_dim_type == "text_proj":
- self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
- elif encoder_hid_dim_type == "text_image_proj":
- # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
- # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
- self.encoder_hid_proj = TextImageProjection(
- text_embed_dim=encoder_hid_dim,
- image_embed_dim=cross_attention_dim,
- cross_attention_dim=cross_attention_dim,
- )
-
- elif encoder_hid_dim_type is not None:
- raise ValueError(
- f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
- )
- else:
- self.encoder_hid_proj = None
-
- # class embedding
- if class_embed_type is None and num_class_embeds is not None:
- self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
- elif class_embed_type == "timestep":
- self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
- elif class_embed_type == "identity":
- self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
- elif class_embed_type == "projection":
- if projection_class_embeddings_input_dim is None:
- raise ValueError(
- "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
- )
- # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
- # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
- # 2. it projects from an arbitrary input dimension.
- #
- # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
- # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
- # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
- self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
- else:
- self.class_embedding = None
-
- if addition_embed_type == "text":
- if encoder_hid_dim is not None:
- text_time_embedding_from_dim = encoder_hid_dim
- else:
- text_time_embedding_from_dim = cross_attention_dim
-
- self.add_embedding = TextTimeEmbedding(
- text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
- )
- elif addition_embed_type == "text_image":
- # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
- # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
- self.add_embedding = TextImageTimeEmbedding(
- text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
- )
- elif addition_embed_type == "text_time":
- self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
- self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
-
- elif addition_embed_type is not None:
- raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
-
- self.down_blocks = nn.ModuleList([])
- self.brushnet_down_blocks = nn.ModuleList([])
-
- if isinstance(only_cross_attention, bool):
- only_cross_attention = [only_cross_attention] * len(down_block_types)
-
- if isinstance(attention_head_dim, int):
- attention_head_dim = (attention_head_dim,) * len(down_block_types)
-
- if isinstance(num_attention_heads, int):
- num_attention_heads = (num_attention_heads,) * len(down_block_types)
-
- # down
- output_channel = block_out_channels[0]
-
- brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_down_blocks.append(brushnet_block)
-
- for i, down_block_type in enumerate(down_block_types):
- input_channel = output_channel
- output_channel = block_out_channels[i]
- is_final_block = i == len(block_out_channels) - 1
-
- down_block = get_down_block(
- down_block_type,
- num_layers=layers_per_block,
- transformer_layers_per_block=transformer_layers_per_block[i],
- in_channels=input_channel,
- out_channels=output_channel,
- temb_channels=time_embed_dim,
- add_downsample=not is_final_block,
- resnet_eps=norm_eps,
- resnet_act_fn=act_fn,
- resnet_groups=norm_num_groups,
- cross_attention_dim=cross_attention_dim,
- num_attention_heads=num_attention_heads[i],
- attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
- downsample_padding=downsample_padding,
- use_linear_projection=use_linear_projection,
- only_cross_attention=only_cross_attention[i],
- upcast_attention=upcast_attention,
- resnet_time_scale_shift=resnet_time_scale_shift,
- )
- self.down_blocks.append(down_block)
-
- for _ in range(layers_per_block):
- brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_down_blocks.append(brushnet_block)
-
- if not is_final_block:
- brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_down_blocks.append(brushnet_block)
-
- # mid
- mid_block_channel = block_out_channels[-1]
-
- brushnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_mid_block = brushnet_block
-
- self.mid_block = get_mid_block(
- mid_block_type,
- transformer_layers_per_block=transformer_layers_per_block[-1],
- in_channels=mid_block_channel,
- temb_channels=time_embed_dim,
- resnet_eps=norm_eps,
- resnet_act_fn=act_fn,
- output_scale_factor=mid_block_scale_factor,
- resnet_time_scale_shift=resnet_time_scale_shift,
- cross_attention_dim=cross_attention_dim,
- num_attention_heads=num_attention_heads[-1],
- resnet_groups=norm_num_groups,
- use_linear_projection=use_linear_projection,
- upcast_attention=upcast_attention,
- )
-
- # count how many layers upsample the images
- self.num_upsamplers = 0
-
- # up
- reversed_block_out_channels = list(reversed(block_out_channels))
- reversed_num_attention_heads = list(reversed(num_attention_heads))
- reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
- only_cross_attention = list(reversed(only_cross_attention))
-
- output_channel = reversed_block_out_channels[0]
-
- self.up_blocks = nn.ModuleList([])
- self.brushnet_up_blocks = nn.ModuleList([])
-
- for i, up_block_type in enumerate(up_block_types):
- is_final_block = i == len(block_out_channels) - 1
-
- prev_output_channel = output_channel
- output_channel = reversed_block_out_channels[i]
- input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
-
- # add upsample block for all BUT final layer
- if not is_final_block:
- add_upsample = True
- self.num_upsamplers += 1
- else:
- add_upsample = False
-
- up_block = get_up_block(
- up_block_type,
- num_layers=layers_per_block + 1,
- transformer_layers_per_block=reversed_transformer_layers_per_block[i],
- in_channels=input_channel,
- out_channels=output_channel,
- prev_output_channel=prev_output_channel,
- temb_channels=time_embed_dim,
- add_upsample=add_upsample,
- resnet_eps=norm_eps,
- resnet_act_fn=act_fn,
- resolution_idx=i,
- resnet_groups=norm_num_groups,
- cross_attention_dim=cross_attention_dim,
- num_attention_heads=reversed_num_attention_heads[i],
- use_linear_projection=use_linear_projection,
- only_cross_attention=only_cross_attention[i],
- upcast_attention=upcast_attention,
- resnet_time_scale_shift=resnet_time_scale_shift,
- attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
- )
- self.up_blocks.append(up_block)
- prev_output_channel = output_channel
-
- for _ in range(layers_per_block + 1):
- brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_up_blocks.append(brushnet_block)
-
- if not is_final_block:
- brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_up_blocks.append(brushnet_block)
-
- @classmethod
- def from_unet(
- cls,
- unet: UNet2DConditionModel,
- brushnet_conditioning_channel_order: str = "rgb",
- conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
- load_weights_from_unet: bool = True,
- conditioning_channels: int = 5,
- ):
- r"""
- Instantiate a [`BrushNetModel`] from [`UNet2DConditionModel`].
-
- Parameters:
- unet (`UNet2DConditionModel`):
- The UNet model weights to copy to the [`BrushNetModel`]. All configuration options are also copied
- where applicable.
- """
- transformer_layers_per_block = (
- unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
- )
- encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
- encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
- addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
- addition_time_embed_dim = (
- unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
- )
-
- brushnet = cls(
- in_channels=unet.config.in_channels,
- conditioning_channels=conditioning_channels,
- flip_sin_to_cos=unet.config.flip_sin_to_cos,
- freq_shift=unet.config.freq_shift,
- # down_block_types=['DownBlock2D','DownBlock2D','DownBlock2D','DownBlock2D'],
- down_block_types=[
- "CrossAttnDownBlock2D",
- "CrossAttnDownBlock2D",
- "CrossAttnDownBlock2D",
- "DownBlock2D",
- ],
- # mid_block_type='MidBlock2D',
- mid_block_type="UNetMidBlock2DCrossAttn",
- # up_block_types=['UpBlock2D','UpBlock2D','UpBlock2D','UpBlock2D'],
- up_block_types=["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"],
- only_cross_attention=unet.config.only_cross_attention,
- block_out_channels=unet.config.block_out_channels,
- layers_per_block=unet.config.layers_per_block,
- downsample_padding=unet.config.downsample_padding,
- mid_block_scale_factor=unet.config.mid_block_scale_factor,
- act_fn=unet.config.act_fn,
- norm_num_groups=unet.config.norm_num_groups,
- norm_eps=unet.config.norm_eps,
- cross_attention_dim=unet.config.cross_attention_dim,
- transformer_layers_per_block=transformer_layers_per_block,
- encoder_hid_dim=encoder_hid_dim,
- encoder_hid_dim_type=encoder_hid_dim_type,
- attention_head_dim=unet.config.attention_head_dim,
- num_attention_heads=unet.config.num_attention_heads,
- use_linear_projection=unet.config.use_linear_projection,
- class_embed_type=unet.config.class_embed_type,
- addition_embed_type=addition_embed_type,
- addition_time_embed_dim=addition_time_embed_dim,
- num_class_embeds=unet.config.num_class_embeds,
- upcast_attention=unet.config.upcast_attention,
- resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
- projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
- brushnet_conditioning_channel_order=brushnet_conditioning_channel_order,
- conditioning_embedding_out_channels=conditioning_embedding_out_channels,
- )
-
- if load_weights_from_unet:
- conv_in_condition_weight = torch.zeros_like(brushnet.conv_in_condition.weight)
- conv_in_condition_weight[:, :4, ...] = unet.conv_in.weight
- conv_in_condition_weight[:, 4:8, ...] = unet.conv_in.weight
- brushnet.conv_in_condition.weight = torch.nn.Parameter(conv_in_condition_weight)
- brushnet.conv_in_condition.bias = unet.conv_in.bias
-
- brushnet.time_proj.load_state_dict(unet.time_proj.state_dict())
- brushnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
-
- if brushnet.class_embedding:
- brushnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
-
- brushnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False)
- brushnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False)
- brushnet.up_blocks.load_state_dict(unet.up_blocks.state_dict(), strict=False)
-
- return brushnet.to(unet.dtype)
-
- @property
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
- def attn_processors(self) -> Dict[str, AttentionProcessor]:
- r"""
- Returns:
- `dict` of attention processors: A dictionary containing all attention processors used in the model with
- indexed by its weight name.
- """
- # set recursively
- processors = {}
-
- def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
- if hasattr(module, "get_processor"):
- processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
-
- for sub_name, child in module.named_children():
- fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
-
- return processors
-
- for name, module in self.named_children():
- fn_recursive_add_processors(name, module, processors)
-
- return processors
-
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
- def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
- r"""
- Sets the attention processor to use to compute attention.
-
- Parameters:
- processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
- The instantiated processor class or a dictionary of processor classes that will be set as the processor
- for **all** `Attention` layers.
-
- If `processor` is a dict, the key needs to define the path to the corresponding cross attention
- processor. This is strongly recommended when setting trainable attention processors.
-
- """
- count = len(self.attn_processors.keys())
-
- if isinstance(processor, dict) and len(processor) != count:
- raise ValueError(
- f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
- f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
- )
-
- def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
- if hasattr(module, "set_processor"):
- if not isinstance(processor, dict):
- module.set_processor(processor)
- else:
- module.set_processor(processor.pop(f"{name}.processor"))
-
- for sub_name, child in module.named_children():
- fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
-
- for name, module in self.named_children():
- fn_recursive_attn_processor(name, module, processor)
-
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
- def set_default_attn_processor(self):
- """
- Disables custom attention processors and sets the default attention implementation.
- """
- if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
- processor = AttnAddedKVProcessor()
- elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
- processor = AttnProcessor()
- else:
- raise ValueError(
- f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
- )
-
- self.set_attn_processor(processor)
-
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
- def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
- r"""
- Enable sliced attention computation.
-
- When this option is enabled, the attention module splits the input tensor in slices to compute attention in
- several steps. This is useful for saving some memory in exchange for a small decrease in speed.
-
- Args:
- slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
- When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
- `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
- provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
- must be a multiple of `slice_size`.
- """
- sliceable_head_dims = []
-
- def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
- if hasattr(module, "set_attention_slice"):
- sliceable_head_dims.append(module.sliceable_head_dim)
-
- for child in module.children():
- fn_recursive_retrieve_sliceable_dims(child)
-
- # retrieve number of attention layers
- for module in self.children():
- fn_recursive_retrieve_sliceable_dims(module)
-
- num_sliceable_layers = len(sliceable_head_dims)
-
- if slice_size == "auto":
- # half the attention head size is usually a good trade-off between
- # speed and memory
- slice_size = [dim // 2 for dim in sliceable_head_dims]
- elif slice_size == "max":
- # make smallest slice possible
- slice_size = num_sliceable_layers * [1]
-
- slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
-
- if len(slice_size) != len(sliceable_head_dims):
- raise ValueError(
- f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
- f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
- )
-
- for i in range(len(slice_size)):
- size = slice_size[i]
- dim = sliceable_head_dims[i]
- if size is not None and size > dim:
- raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
-
- # Recursively walk through all the children.
- # Any children which exposes the set_attention_slice method
- # gets the message
- def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
- if hasattr(module, "set_attention_slice"):
- module.set_attention_slice(slice_size.pop())
-
- for child in module.children():
- fn_recursive_set_attention_slice(child, slice_size)
-
- reversed_slice_size = list(reversed(slice_size))
- for module in self.children():
- fn_recursive_set_attention_slice(module, reversed_slice_size)
-
- def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
- if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
- module.gradient_checkpointing = value
-
- def forward(
- self,
- sample: torch.FloatTensor,
- timestep: Union[torch.Tensor, float, int],
- encoder_hidden_states: torch.Tensor,
- brushnet_cond: torch.FloatTensor,
- conditioning_scale: float = 1.0,
- class_labels: Optional[torch.Tensor] = None,
- timestep_cond: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- guess_mode: bool = False,
- return_dict: bool = True,
- debug=False,
- ) -> Union[BrushNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
- """
- The [`BrushNetModel`] forward method.
-
- Args:
- sample (`torch.FloatTensor`):
- The noisy input tensor.
- timestep (`Union[torch.Tensor, float, int]`):
- The number of timesteps to denoise an input.
- encoder_hidden_states (`torch.Tensor`):
- The encoder hidden states.
- brushnet_cond (`torch.FloatTensor`):
- The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
- conditioning_scale (`float`, defaults to `1.0`):
- The scale factor for BrushNet outputs.
- class_labels (`torch.Tensor`, *optional*, defaults to `None`):
- Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
- timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
- Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
- timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
- embeddings.
- attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
- An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
- is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
- negative values to the attention scores corresponding to "discard" tokens.
- added_cond_kwargs (`dict`):
- Additional conditions for the Stable Diffusion XL UNet.
- cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
- A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
- guess_mode (`bool`, defaults to `False`):
- In this mode, the BrushNet encoder tries its best to recognize the input content of the input even if
- you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
- return_dict (`bool`, defaults to `True`):
- Whether or not to return a [`~models.brushnet.BrushNetOutput`] instead of a plain tuple.
-
- Returns:
- [`~models.brushnet.BrushNetOutput`] **or** `tuple`:
- If `return_dict` is `True`, a [`~models.brushnet.BrushNetOutput`] is returned, otherwise a tuple is
- returned where the first element is the sample tensor.
- """
- # check channel order
- channel_order = self.config.brushnet_conditioning_channel_order
-
- if channel_order == "rgb":
- # in rgb order by default
- ...
- elif channel_order == "bgr":
- brushnet_cond = torch.flip(brushnet_cond, dims=[1])
- else:
- raise ValueError(f"unknown `brushnet_conditioning_channel_order`: {channel_order}")
-
- if debug: print('BrushNet CA: attn mask')
-
- # prepare attention_mask
- if attention_mask is not None:
- attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
- attention_mask = attention_mask.unsqueeze(1)
-
- if debug: print('BrushNet CA: time')
-
- # 1. time
- timesteps = timestep
- if not torch.is_tensor(timesteps):
- # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
- # This would be a good case for the `match` statement (Python 3.10+)
- is_mps = sample.device.type == "mps"
- if isinstance(timestep, float):
- dtype = torch.float32 if is_mps else torch.float64
- else:
- dtype = torch.int32 if is_mps else torch.int64
- timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
- elif len(timesteps.shape) == 0:
- timesteps = timesteps[None].to(sample.device)
-
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
- timesteps = timesteps.expand(sample.shape[0])
-
- t_emb = self.time_proj(timesteps)
-
- # timesteps does not contain any weights and will always return f32 tensors
- # but time_embedding might actually be running in fp16. so we need to cast here.
- # there might be better ways to encapsulate this.
- t_emb = t_emb.to(dtype=sample.dtype)
-
- emb = self.time_embedding(t_emb, timestep_cond)
- aug_emb = None
-
- if self.class_embedding is not None:
- if class_labels is None:
- raise ValueError("class_labels should be provided when num_class_embeds > 0")
-
- if self.config.class_embed_type == "timestep":
- class_labels = self.time_proj(class_labels)
-
- class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
- emb = emb + class_emb
-
- if self.config.addition_embed_type is not None:
- if self.config.addition_embed_type == "text":
- aug_emb = self.add_embedding(encoder_hidden_states)
-
- elif self.config.addition_embed_type == "text_time":
- if "text_embeds" not in added_cond_kwargs:
- raise ValueError(
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
- )
- text_embeds = added_cond_kwargs.get("text_embeds")
- if "time_ids" not in added_cond_kwargs:
- raise ValueError(
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
- )
- time_ids = added_cond_kwargs.get("time_ids")
- time_embeds = self.add_time_proj(time_ids.flatten())
- time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
-
- add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
- add_embeds = add_embeds.to(emb.dtype)
- aug_emb = self.add_embedding(add_embeds)
-
- emb = emb + aug_emb if aug_emb is not None else emb
-
- if debug: print('BrushNet CA: pre-process')
-
-
- # 2. pre-process
- brushnet_cond = torch.concat([sample, brushnet_cond], 1)
- sample = self.conv_in_condition(brushnet_cond)
-
- if debug: print('BrushNet CA: down')
-
- # 3. down
- down_block_res_samples = (sample,)
- for downsample_block in self.down_blocks:
- if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
- if debug: print('BrushNet CA (down block with XA): ', type(downsample_block))
- sample, res_samples = downsample_block(
- hidden_states=sample,
- temb=emb,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=attention_mask,
- cross_attention_kwargs=cross_attention_kwargs,
- debug=debug,
- )
- else:
- if debug: print('BrushNet CA (down block): ', type(downsample_block))
- sample, res_samples = downsample_block(hidden_states=sample, temb=emb, debug=debug)
-
- down_block_res_samples += res_samples
-
- if debug: print('BrushNet CA: PP down')
-
- # 4. PaintingNet down blocks
- brushnet_down_block_res_samples = ()
- for down_block_res_sample, brushnet_down_block in zip(down_block_res_samples, self.brushnet_down_blocks):
- down_block_res_sample = brushnet_down_block(down_block_res_sample)
- brushnet_down_block_res_samples = brushnet_down_block_res_samples + (down_block_res_sample,)
-
- if debug: print('BrushNet CA: PP mid')
-
- # 5. mid
- if self.mid_block is not None:
- if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
- sample = self.mid_block(
- sample,
- emb,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=attention_mask,
- cross_attention_kwargs=cross_attention_kwargs,
- )
- else:
- sample = self.mid_block(sample, emb)
-
- if debug: print('BrushNet CA: mid')
-
- # 6. BrushNet mid blocks
- brushnet_mid_block_res_sample = self.brushnet_mid_block(sample)
-
- if debug: print('BrushNet CA: PP up')
-
- # 7. up
- up_block_res_samples = ()
- for i, upsample_block in enumerate(self.up_blocks):
- is_final_block = i == len(self.up_blocks) - 1
-
- res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
- down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
-
- # if we have not reached the final block and need to forward the
- # upsample size, we do it here
- if not is_final_block:
- upsample_size = down_block_res_samples[-1].shape[2:]
-
- if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
- sample, up_res_samples = upsample_block(
- hidden_states=sample,
- temb=emb,
- res_hidden_states_tuple=res_samples,
- encoder_hidden_states=encoder_hidden_states,
- cross_attention_kwargs=cross_attention_kwargs,
- upsample_size=upsample_size,
- attention_mask=attention_mask,
- return_res_samples=True,
- )
- else:
- sample, up_res_samples = upsample_block(
- hidden_states=sample,
- temb=emb,
- res_hidden_states_tuple=res_samples,
- upsample_size=upsample_size,
- return_res_samples=True,
- )
-
- up_block_res_samples += up_res_samples
-
- if debug: print('BrushNet CA: up')
-
- # 8. BrushNet up blocks
- brushnet_up_block_res_samples = ()
- for up_block_res_sample, brushnet_up_block in zip(up_block_res_samples, self.brushnet_up_blocks):
- up_block_res_sample = brushnet_up_block(up_block_res_sample)
- brushnet_up_block_res_samples = brushnet_up_block_res_samples + (up_block_res_sample,)
-
- if debug: print('BrushNet CA: scaling')
-
- # 6. scaling
- if guess_mode and not self.config.global_pool_conditions:
- scales = torch.logspace(
- -1,
- 0,
- len(brushnet_down_block_res_samples) + 1 + len(brushnet_up_block_res_samples),
- device=sample.device,
- ) # 0.1 to 1.0
- scales = scales * conditioning_scale
-
- brushnet_down_block_res_samples = [
- sample * scale
- for sample, scale in zip(
- brushnet_down_block_res_samples, scales[: len(brushnet_down_block_res_samples)]
- )
- ]
- brushnet_mid_block_res_sample = (
- brushnet_mid_block_res_sample * scales[len(brushnet_down_block_res_samples)]
- )
- brushnet_up_block_res_samples = [
- sample * scale
- for sample, scale in zip(
- brushnet_up_block_res_samples, scales[len(brushnet_down_block_res_samples) + 1 :]
- )
- ]
- else:
- brushnet_down_block_res_samples = [
- sample * conditioning_scale for sample in brushnet_down_block_res_samples
- ]
- brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * conditioning_scale
- brushnet_up_block_res_samples = [sample * conditioning_scale for sample in brushnet_up_block_res_samples]
-
- if self.config.global_pool_conditions:
- brushnet_down_block_res_samples = [
- torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_down_block_res_samples
- ]
- brushnet_mid_block_res_sample = torch.mean(brushnet_mid_block_res_sample, dim=(2, 3), keepdim=True)
- brushnet_up_block_res_samples = [
- torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_up_block_res_samples
- ]
-
- if debug: print('BrushNet CA: finish')
-
- if not return_dict:
- return (brushnet_down_block_res_samples, brushnet_mid_block_res_sample, brushnet_up_block_res_samples)
-
- return BrushNetOutput(
- down_block_res_samples=brushnet_down_block_res_samples,
- mid_block_res_sample=brushnet_mid_block_res_sample,
- up_block_res_samples=brushnet_up_block_res_samples,
- )
-
-
-def zero_module(module):
- for p in module.parameters():
- nn.init.zeros_(p)
- return module
diff --git a/MagicQuill/brushnet/brushnet_xl.json b/MagicQuill/brushnet/brushnet_xl.json
deleted file mode 100644
index c1a3c655549879fb2e9d7441ec71eef5167eac12..0000000000000000000000000000000000000000
--- a/MagicQuill/brushnet/brushnet_xl.json
+++ /dev/null
@@ -1,63 +0,0 @@
-{
- "_class_name": "BrushNetModel",
- "_diffusers_version": "0.27.0.dev0",
- "_name_or_path": "runs/logs/brushnetsdxl_randommask/checkpoint-80000",
- "act_fn": "silu",
- "addition_embed_type": "text_time",
- "addition_embed_type_num_heads": 64,
- "addition_time_embed_dim": 256,
- "attention_head_dim": [
- 5,
- 10,
- 20
- ],
- "block_out_channels": [
- 320,
- 640,
- 1280
- ],
- "brushnet_conditioning_channel_order": "rgb",
- "class_embed_type": null,
- "conditioning_channels": 5,
- "conditioning_embedding_out_channels": [
- 16,
- 32,
- 96,
- 256
- ],
- "cross_attention_dim": 2048,
- "down_block_types": [
- "DownBlock2D",
- "DownBlock2D",
- "DownBlock2D"
- ],
- "downsample_padding": 1,
- "encoder_hid_dim": null,
- "encoder_hid_dim_type": null,
- "flip_sin_to_cos": true,
- "freq_shift": 0,
- "global_pool_conditions": false,
- "in_channels": 4,
- "layers_per_block": 2,
- "mid_block_scale_factor": 1,
- "mid_block_type": "MidBlock2D",
- "norm_eps": 1e-05,
- "norm_num_groups": 32,
- "num_attention_heads": null,
- "num_class_embeds": null,
- "only_cross_attention": false,
- "projection_class_embeddings_input_dim": 2816,
- "resnet_time_scale_shift": "default",
- "transformer_layers_per_block": [
- 1,
- 2,
- 10
- ],
- "up_block_types": [
- "UpBlock2D",
- "UpBlock2D",
- "UpBlock2D"
- ],
- "upcast_attention": null,
- "use_linear_projection": true
-}
diff --git a/MagicQuill/brushnet/powerpaint.json b/MagicQuill/brushnet/powerpaint.json
deleted file mode 100644
index 4d7c73e9f5654cd775db99a0d77234765f808e6c..0000000000000000000000000000000000000000
--- a/MagicQuill/brushnet/powerpaint.json
+++ /dev/null
@@ -1,57 +0,0 @@
-{
- "_class_name": "BrushNetModel",
- "_diffusers_version": "0.27.2",
- "act_fn": "silu",
- "addition_embed_type": null,
- "addition_embed_type_num_heads": 64,
- "addition_time_embed_dim": null,
- "attention_head_dim": 8,
- "block_out_channels": [
- 320,
- 640,
- 1280,
- 1280
- ],
- "brushnet_conditioning_channel_order": "rgb",
- "class_embed_type": null,
- "conditioning_channels": 5,
- "conditioning_embedding_out_channels": [
- 16,
- 32,
- 96,
- 256
- ],
- "cross_attention_dim": 768,
- "down_block_types": [
- "CrossAttnDownBlock2D",
- "CrossAttnDownBlock2D",
- "CrossAttnDownBlock2D",
- "DownBlock2D"
- ],
- "downsample_padding": 1,
- "encoder_hid_dim": null,
- "encoder_hid_dim_type": null,
- "flip_sin_to_cos": true,
- "freq_shift": 0,
- "global_pool_conditions": false,
- "in_channels": 4,
- "layers_per_block": 2,
- "mid_block_scale_factor": 1,
- "mid_block_type": "UNetMidBlock2DCrossAttn",
- "norm_eps": 1e-05,
- "norm_num_groups": 32,
- "num_attention_heads": null,
- "num_class_embeds": null,
- "only_cross_attention": false,
- "projection_class_embeddings_input_dim": null,
- "resnet_time_scale_shift": "default",
- "transformer_layers_per_block": 1,
- "up_block_types": [
- "UpBlock2D",
- "CrossAttnUpBlock2D",
- "CrossAttnUpBlock2D",
- "CrossAttnUpBlock2D"
- ],
- "upcast_attention": false,
- "use_linear_projection": false
-}
diff --git a/MagicQuill/brushnet/powerpaint_utils.py b/MagicQuill/brushnet/powerpaint_utils.py
deleted file mode 100644
index bcbb1f715bd33ef79064361be41c99309a176424..0000000000000000000000000000000000000000
--- a/MagicQuill/brushnet/powerpaint_utils.py
+++ /dev/null
@@ -1,496 +0,0 @@
-import copy
-import random
-
-import torch
-import torch.nn as nn
-from transformers import CLIPTokenizer
-from typing import Any, List, Optional, Union
-
-class TokenizerWrapper:
- """Tokenizer wrapper for CLIPTokenizer. Only support CLIPTokenizer
- currently. This wrapper is modified from https://github.com/huggingface/dif
- fusers/blob/e51f19aee82c8dd874b715a09dbc521d88835d68/src/diffusers/loaders.
- py#L358 # noqa.
-
- Args:
- from_pretrained (Union[str, os.PathLike], optional): The *model id*
- of a pretrained model or a path to a *directory* containing
- model weights and config. Defaults to None.
- from_config (Union[str, os.PathLike], optional): The *model id*
- of a pretrained model or a path to a *directory* containing
- model weights and config. Defaults to None.
-
- *args, **kwargs: If `from_pretrained` is passed, *args and **kwargs
- will be passed to `from_pretrained` function. Otherwise, *args
- and **kwargs will be used to initialize the model by
- `self._module_cls(*args, **kwargs)`.
- """
-
- def __init__(self, tokenizer: CLIPTokenizer):
- self.wrapped = tokenizer
- self.token_map = {}
-
- def __getattr__(self, name: str) -> Any:
- if name in self.__dict__:
- return getattr(self, name)
- #if name == "wrapped":
- # return getattr(self, 'wrapped')#super().__getattr__("wrapped")
-
- try:
- return getattr(self.wrapped, name)
- except AttributeError:
- raise AttributeError(
- "'name' cannot be found in both "
- f"'{self.__class__.__name__}' and "
- f"'{self.__class__.__name__}.tokenizer'."
- )
-
- def try_adding_tokens(self, tokens: Union[str, List[str]], *args, **kwargs):
- """Attempt to add tokens to the tokenizer.
-
- Args:
- tokens (Union[str, List[str]]): The tokens to be added.
- """
- num_added_tokens = self.wrapped.add_tokens(tokens, *args, **kwargs)
- assert num_added_tokens != 0, (
- f"The tokenizer already contains the token {tokens}. Please pass "
- "a different `placeholder_token` that is not already in the "
- "tokenizer."
- )
-
- def get_token_info(self, token: str) -> dict:
- """Get the information of a token, including its start and end index in
- the current tokenizer.
-
- Args:
- token (str): The token to be queried.
-
- Returns:
- dict: The information of the token, including its start and end
- index in current tokenizer.
- """
- token_ids = self.__call__(token).input_ids
- start, end = token_ids[1], token_ids[-2] + 1
- return {"name": token, "start": start, "end": end}
-
- def add_placeholder_token(self, placeholder_token: str, *args, num_vec_per_token: int = 1, **kwargs):
- """Add placeholder tokens to the tokenizer.
-
- Args:
- placeholder_token (str): The placeholder token to be added.
- num_vec_per_token (int, optional): The number of vectors of
- the added placeholder token.
- *args, **kwargs: The arguments for `self.wrapped.add_tokens`.
- """
- output = []
- if num_vec_per_token == 1:
- self.try_adding_tokens(placeholder_token, *args, **kwargs)
- output.append(placeholder_token)
- else:
- output = []
- for i in range(num_vec_per_token):
- ith_token = placeholder_token + f"_{i}"
- self.try_adding_tokens(ith_token, *args, **kwargs)
- output.append(ith_token)
-
- for token in self.token_map:
- if token in placeholder_token:
- raise ValueError(
- f"The tokenizer already has placeholder token {token} "
- f"that can get confused with {placeholder_token} "
- "keep placeholder tokens independent"
- )
- self.token_map[placeholder_token] = output
-
- def replace_placeholder_tokens_in_text(
- self, text: Union[str, List[str]], vector_shuffle: bool = False, prop_tokens_to_load: float = 1.0
- ) -> Union[str, List[str]]:
- """Replace the keywords in text with placeholder tokens. This function
- will be called in `self.__call__` and `self.encode`.
-
- Args:
- text (Union[str, List[str]]): The text to be processed.
- vector_shuffle (bool, optional): Whether to shuffle the vectors.
- Defaults to False.
- prop_tokens_to_load (float, optional): The proportion of tokens to
- be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0.
-
- Returns:
- Union[str, List[str]]: The processed text.
- """
- if isinstance(text, list):
- output = []
- for i in range(len(text)):
- output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=vector_shuffle))
- return output
-
- for placeholder_token in self.token_map:
- if placeholder_token in text:
- tokens = self.token_map[placeholder_token]
- tokens = tokens[: 1 + int(len(tokens) * prop_tokens_to_load)]
- if vector_shuffle:
- tokens = copy.copy(tokens)
- random.shuffle(tokens)
- text = text.replace(placeholder_token, " ".join(tokens))
- return text
-
- def replace_text_with_placeholder_tokens(self, text: Union[str, List[str]]) -> Union[str, List[str]]:
- """Replace the placeholder tokens in text with the original keywords.
- This function will be called in `self.decode`.
-
- Args:
- text (Union[str, List[str]]): The text to be processed.
-
- Returns:
- Union[str, List[str]]: The processed text.
- """
- if isinstance(text, list):
- output = []
- for i in range(len(text)):
- output.append(self.replace_text_with_placeholder_tokens(text[i]))
- return output
-
- for placeholder_token, tokens in self.token_map.items():
- merged_tokens = " ".join(tokens)
- if merged_tokens in text:
- text = text.replace(merged_tokens, placeholder_token)
- return text
-
- def __call__(
- self,
- text: Union[str, List[str]],
- *args,
- vector_shuffle: bool = False,
- prop_tokens_to_load: float = 1.0,
- **kwargs,
- ):
- """The call function of the wrapper.
-
- Args:
- text (Union[str, List[str]]): The text to be tokenized.
- vector_shuffle (bool, optional): Whether to shuffle the vectors.
- Defaults to False.
- prop_tokens_to_load (float, optional): The proportion of tokens to
- be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0
- *args, **kwargs: The arguments for `self.wrapped.__call__`.
- """
- replaced_text = self.replace_placeholder_tokens_in_text(
- text, vector_shuffle=vector_shuffle, prop_tokens_to_load=prop_tokens_to_load
- )
-
- return self.wrapped.__call__(replaced_text, *args, **kwargs)
-
- def encode(self, text: Union[str, List[str]], *args, **kwargs):
- """Encode the passed text to token index.
-
- Args:
- text (Union[str, List[str]]): The text to be encode.
- *args, **kwargs: The arguments for `self.wrapped.__call__`.
- """
- replaced_text = self.replace_placeholder_tokens_in_text(text)
- return self.wrapped(replaced_text, *args, **kwargs)
-
- def decode(self, token_ids, return_raw: bool = False, *args, **kwargs) -> Union[str, List[str]]:
- """Decode the token index to text.
-
- Args:
- token_ids: The token index to be decoded.
- return_raw: Whether keep the placeholder token in the text.
- Defaults to False.
- *args, **kwargs: The arguments for `self.wrapped.decode`.
-
- Returns:
- Union[str, List[str]]: The decoded text.
- """
- text = self.wrapped.decode(token_ids, *args, **kwargs)
- if return_raw:
- return text
- replaced_text = self.replace_text_with_placeholder_tokens(text)
- return replaced_text
-
- def __repr__(self):
- """The representation of the wrapper."""
- s = super().__repr__()
- prefix = f"Wrapped Module Class: {self._module_cls}\n"
- prefix += f"Wrapped Module Name: {self._module_name}\n"
- if self._from_pretrained:
- prefix += f"From Pretrained: {self._from_pretrained}\n"
- s = prefix + s
- return s
-
-
-class EmbeddingLayerWithFixes(nn.Module):
- """The revised embedding layer to support external embeddings. This design
- of this class is inspired by https://github.com/AUTOMATIC1111/stable-
- diffusion-webui/blob/22bcc7be428c94e9408f589966c2040187245d81/modules/sd_hi
- jack.py#L224 # noqa.
-
- Args:
- wrapped (nn.Emebdding): The embedding layer to be wrapped.
- external_embeddings (Union[dict, List[dict]], optional): The external
- embeddings added to this layer. Defaults to None.
- """
-
- def __init__(self, wrapped: nn.Embedding, external_embeddings: Optional[Union[dict, List[dict]]] = None):
- super().__init__()
- self.wrapped = wrapped
- self.num_embeddings = wrapped.weight.shape[0]
-
- self.external_embeddings = []
- if external_embeddings:
- self.add_embeddings(external_embeddings)
-
- self.trainable_embeddings = nn.ParameterDict()
-
- @property
- def weight(self):
- """Get the weight of wrapped embedding layer."""
- return self.wrapped.weight
-
- def check_duplicate_names(self, embeddings: List[dict]):
- """Check whether duplicate names exist in list of 'external
- embeddings'.
-
- Args:
- embeddings (List[dict]): A list of embedding to be check.
- """
- names = [emb["name"] for emb in embeddings]
- assert len(names) == len(set(names)), (
- "Found duplicated names in 'external_embeddings'. Name list: " f"'{names}'"
- )
-
- def check_ids_overlap(self, embeddings):
- """Check whether overlap exist in token ids of 'external_embeddings'.
-
- Args:
- embeddings (List[dict]): A list of embedding to be check.
- """
- ids_range = [[emb["start"], emb["end"], emb["name"]] for emb in embeddings]
- ids_range.sort() # sort by 'start'
- # check if 'end' has overlapping
- for idx in range(len(ids_range) - 1):
- name1, name2 = ids_range[idx][-1], ids_range[idx + 1][-1]
- assert ids_range[idx][1] <= ids_range[idx + 1][0], (
- f"Found ids overlapping between embeddings '{name1}' " f"and '{name2}'."
- )
-
- def add_embeddings(self, embeddings: Optional[Union[dict, List[dict]]]):
- """Add external embeddings to this layer.
-
- Use case:
-
- >>> 1. Add token to tokenizer and get the token id.
- >>> tokenizer = TokenizerWrapper('openai/clip-vit-base-patch32')
- >>> # 'how much' in kiswahili
- >>> tokenizer.add_placeholder_tokens('ngapi', num_vec_per_token=4)
- >>>
- >>> 2. Add external embeddings to the model.
- >>> new_embedding = {
- >>> 'name': 'ngapi', # 'how much' in kiswahili
- >>> 'embedding': torch.ones(1, 15) * 4,
- >>> 'start': tokenizer.get_token_info('kwaheri')['start'],
- >>> 'end': tokenizer.get_token_info('kwaheri')['end'],
- >>> 'trainable': False # if True, will registry as a parameter
- >>> }
- >>> embedding_layer = nn.Embedding(10, 15)
- >>> embedding_layer_wrapper = EmbeddingLayerWithFixes(embedding_layer)
- >>> embedding_layer_wrapper.add_embeddings(new_embedding)
- >>>
- >>> 3. Forward tokenizer and embedding layer!
- >>> input_text = ['hello, ngapi!', 'hello my friend, ngapi?']
- >>> input_ids = tokenizer(
- >>> input_text, padding='max_length', truncation=True,
- >>> return_tensors='pt')['input_ids']
- >>> out_feat = embedding_layer_wrapper(input_ids)
- >>>
- >>> 4. Let's validate the result!
- >>> assert (out_feat[0, 3: 7] == 2.3).all()
- >>> assert (out_feat[2, 5: 9] == 2.3).all()
-
- Args:
- embeddings (Union[dict, list[dict]]): The external embeddings to
- be added. Each dict must contain the following 4 fields: 'name'
- (the name of this embedding), 'embedding' (the embedding
- tensor), 'start' (the start token id of this embedding), 'end'
- (the end token id of this embedding). For example:
- `{name: NAME, start: START, end: END, embedding: torch.Tensor}`
- """
- if isinstance(embeddings, dict):
- embeddings = [embeddings]
-
- self.external_embeddings += embeddings
- self.check_duplicate_names(self.external_embeddings)
- self.check_ids_overlap(self.external_embeddings)
-
- # set for trainable
- added_trainable_emb_info = []
- for embedding in embeddings:
- trainable = embedding.get("trainable", False)
- if trainable:
- name = embedding["name"]
- embedding["embedding"] = torch.nn.Parameter(embedding["embedding"])
- self.trainable_embeddings[name] = embedding["embedding"]
- added_trainable_emb_info.append(name)
-
- added_emb_info = [emb["name"] for emb in embeddings]
- added_emb_info = ", ".join(added_emb_info)
- print(f"Successfully add external embeddings: {added_emb_info}.", "current")
-
- if added_trainable_emb_info:
- added_trainable_emb_info = ", ".join(added_trainable_emb_info)
- print("Successfully add trainable external embeddings: " f"{added_trainable_emb_info}", "current")
-
- def replace_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
- """Replace external input ids to 0.
-
- Args:
- input_ids (torch.Tensor): The input ids to be replaced.
-
- Returns:
- torch.Tensor: The replaced input ids.
- """
- input_ids_fwd = input_ids.clone()
- input_ids_fwd[input_ids_fwd >= self.num_embeddings] = 0
- return input_ids_fwd
-
- def replace_embeddings(
- self, input_ids: torch.Tensor, embedding: torch.Tensor, external_embedding: dict
- ) -> torch.Tensor:
- """Replace external embedding to the embedding layer. Noted that, in
- this function we use `torch.cat` to avoid inplace modification.
-
- Args:
- input_ids (torch.Tensor): The original token ids. Shape like
- [LENGTH, ].
- embedding (torch.Tensor): The embedding of token ids after
- `replace_input_ids` function.
- external_embedding (dict): The external embedding to be replaced.
-
- Returns:
- torch.Tensor: The replaced embedding.
- """
- new_embedding = []
-
- name = external_embedding["name"]
- start = external_embedding["start"]
- end = external_embedding["end"]
- target_ids_to_replace = [i for i in range(start, end)]
- ext_emb = external_embedding["embedding"]
-
- # do not need to replace
- if not (input_ids == start).any():
- return embedding
-
- # start replace
- s_idx, e_idx = 0, 0
- while e_idx < len(input_ids):
- if input_ids[e_idx] == start:
- if e_idx != 0:
- # add embedding do not need to replace
- new_embedding.append(embedding[s_idx:e_idx])
-
- # check if the next embedding need to replace is valid
- actually_ids_to_replace = [int(i) for i in input_ids[e_idx : e_idx + end - start]]
- assert actually_ids_to_replace == target_ids_to_replace, (
- f"Invalid 'input_ids' in position: {s_idx} to {e_idx}. "
- f"Expect '{target_ids_to_replace}' for embedding "
- f"'{name}' but found '{actually_ids_to_replace}'."
- )
-
- new_embedding.append(ext_emb)
-
- s_idx = e_idx + end - start
- e_idx = s_idx + 1
- else:
- e_idx += 1
-
- if e_idx == len(input_ids):
- new_embedding.append(embedding[s_idx:e_idx])
-
- return torch.cat(new_embedding, dim=0)
-
- def forward(self, input_ids: torch.Tensor, external_embeddings: Optional[List[dict]] = None):
- """The forward function.
-
- Args:
- input_ids (torch.Tensor): The token ids shape like [bz, LENGTH] or
- [LENGTH, ].
- external_embeddings (Optional[List[dict]]): The external
- embeddings. If not passed, only `self.external_embeddings`
- will be used. Defaults to None.
-
- input_ids: shape like [bz, LENGTH] or [LENGTH].
- """
- assert input_ids.ndim in [1, 2]
- if input_ids.ndim == 1:
- input_ids = input_ids.unsqueeze(0)
-
- if external_embeddings is None and not self.external_embeddings:
- return self.wrapped(input_ids)
-
- input_ids_fwd = self.replace_input_ids(input_ids)
- inputs_embeds = self.wrapped(input_ids_fwd)
-
- vecs = []
-
- if external_embeddings is None:
- external_embeddings = []
- elif isinstance(external_embeddings, dict):
- external_embeddings = [external_embeddings]
- embeddings = self.external_embeddings + external_embeddings
-
- for input_id, embedding in zip(input_ids, inputs_embeds):
- new_embedding = embedding
- for external_embedding in embeddings:
- new_embedding = self.replace_embeddings(input_id, new_embedding, external_embedding)
- vecs.append(new_embedding)
-
- return torch.stack(vecs)
-
-
-
-def add_tokens(
- tokenizer, text_encoder, placeholder_tokens: list, initialize_tokens: list = None, num_vectors_per_token: int = 1
-):
- """Add token for training.
-
- # TODO: support add tokens as dict, then we can load pretrained tokens.
- """
- if initialize_tokens is not None:
- assert len(initialize_tokens) == len(
- placeholder_tokens
- ), "placeholder_token should be the same length as initialize_token"
- for ii in range(len(placeholder_tokens)):
- tokenizer.add_placeholder_token(placeholder_tokens[ii], num_vec_per_token=num_vectors_per_token)
-
- # text_encoder.set_embedding_layer()
- embedding_layer = text_encoder.text_model.embeddings.token_embedding
- text_encoder.text_model.embeddings.token_embedding = EmbeddingLayerWithFixes(embedding_layer)
- embedding_layer = text_encoder.text_model.embeddings.token_embedding
-
- assert embedding_layer is not None, (
- "Do not support get embedding layer for current text encoder. " "Please check your configuration."
- )
- initialize_embedding = []
- if initialize_tokens is not None:
- for ii in range(len(placeholder_tokens)):
- init_id = tokenizer(initialize_tokens[ii]).input_ids[1]
- temp_embedding = embedding_layer.weight[init_id]
- initialize_embedding.append(temp_embedding[None, ...].repeat(num_vectors_per_token, 1))
- else:
- for ii in range(len(placeholder_tokens)):
- init_id = tokenizer("a").input_ids[1]
- temp_embedding = embedding_layer.weight[init_id]
- len_emb = temp_embedding.shape[0]
- init_weight = (torch.rand(num_vectors_per_token, len_emb) - 0.5) / 2.0
- initialize_embedding.append(init_weight)
-
- # initialize_embedding = torch.cat(initialize_embedding,dim=0)
-
- token_info_all = []
- for ii in range(len(placeholder_tokens)):
- token_info = tokenizer.get_token_info(placeholder_tokens[ii])
- token_info["embedding"] = initialize_embedding[ii]
- token_info["trainable"] = True
- token_info_all.append(token_info)
- embedding_layer.add_embeddings(token_info_all)
diff --git a/MagicQuill/brushnet/unet_2d_blocks.py b/MagicQuill/brushnet/unet_2d_blocks.py
deleted file mode 100644
index 4a083673867f2568d499480f7dcec1480b20ead0..0000000000000000000000000000000000000000
--- a/MagicQuill/brushnet/unet_2d_blocks.py
+++ /dev/null
@@ -1,3907 +0,0 @@
-# Copyright 2024 The HuggingFace Team. All rights reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-from typing import Any, Dict, Optional, Tuple, Union
-
-import numpy as np
-import torch
-import torch.nn.functional as F
-from torch import nn
-
-from diffusers.utils import deprecate, is_torch_version, logging
-from diffusers.utils.torch_utils import apply_freeu
-from diffusers.models.activations import get_activation
-from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
-from diffusers.models.normalization import AdaGroupNorm
-from diffusers.models.resnet import (
- Downsample2D,
- FirDownsample2D,
- FirUpsample2D,
- KDownsample2D,
- KUpsample2D,
- ResnetBlock2D,
- ResnetBlockCondNorm2D,
- Upsample2D,
-)
-from diffusers.models.transformers.dual_transformer_2d import DualTransformer2DModel
-from diffusers.models.transformers.transformer_2d import Transformer2DModel
-
-
-logger = logging.get_logger(__name__) # pylint: disable=invalid-name
-
-
-def get_down_block(
- down_block_type: str,
- num_layers: int,
- in_channels: int,
- out_channels: int,
- temb_channels: int,
- add_downsample: bool,
- resnet_eps: float,
- resnet_act_fn: str,
- transformer_layers_per_block: int = 1,
- num_attention_heads: Optional[int] = None,
- resnet_groups: Optional[int] = None,
- cross_attention_dim: Optional[int] = None,
- downsample_padding: Optional[int] = None,
- dual_cross_attention: bool = False,
- use_linear_projection: bool = False,
- only_cross_attention: bool = False,
- upcast_attention: bool = False,
- resnet_time_scale_shift: str = "default",
- attention_type: str = "default",
- resnet_skip_time_act: bool = False,
- resnet_out_scale_factor: float = 1.0,
- cross_attention_norm: Optional[str] = None,
- attention_head_dim: Optional[int] = None,
- downsample_type: Optional[str] = None,
- dropout: float = 0.0,
-):
- # If attn head dim is not defined, we default it to the number of heads
- if attention_head_dim is None:
- logger.warning(
- f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
- )
- attention_head_dim = num_attention_heads
-
- down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
- if down_block_type == "DownBlock2D":
- return DownBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- dropout=dropout,
- add_downsample=add_downsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_groups=resnet_groups,
- downsample_padding=downsample_padding,
- resnet_time_scale_shift=resnet_time_scale_shift,
- )
- elif down_block_type == "ResnetDownsampleBlock2D":
- return ResnetDownsampleBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- dropout=dropout,
- add_downsample=add_downsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_groups=resnet_groups,
- resnet_time_scale_shift=resnet_time_scale_shift,
- skip_time_act=resnet_skip_time_act,
- output_scale_factor=resnet_out_scale_factor,
- )
- elif down_block_type == "AttnDownBlock2D":
- if add_downsample is False:
- downsample_type = None
- else:
- downsample_type = downsample_type or "conv" # default to 'conv'
- return AttnDownBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- dropout=dropout,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_groups=resnet_groups,
- downsample_padding=downsample_padding,
- attention_head_dim=attention_head_dim,
- resnet_time_scale_shift=resnet_time_scale_shift,
- downsample_type=downsample_type,
- )
- elif down_block_type == "CrossAttnDownBlock2D":
- if cross_attention_dim is None:
- raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
- return CrossAttnDownBlock2D(
- num_layers=num_layers,
- transformer_layers_per_block=transformer_layers_per_block,
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- dropout=dropout,
- add_downsample=add_downsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_groups=resnet_groups,
- downsample_padding=downsample_padding,
- cross_attention_dim=cross_attention_dim,
- num_attention_heads=num_attention_heads,
- dual_cross_attention=dual_cross_attention,
- use_linear_projection=use_linear_projection,
- only_cross_attention=only_cross_attention,
- upcast_attention=upcast_attention,
- resnet_time_scale_shift=resnet_time_scale_shift,
- attention_type=attention_type,
- )
- elif down_block_type == "SimpleCrossAttnDownBlock2D":
- if cross_attention_dim is None:
- raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
- return SimpleCrossAttnDownBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- dropout=dropout,
- add_downsample=add_downsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_groups=resnet_groups,
- cross_attention_dim=cross_attention_dim,
- attention_head_dim=attention_head_dim,
- resnet_time_scale_shift=resnet_time_scale_shift,
- skip_time_act=resnet_skip_time_act,
- output_scale_factor=resnet_out_scale_factor,
- only_cross_attention=only_cross_attention,
- cross_attention_norm=cross_attention_norm,
- )
- elif down_block_type == "SkipDownBlock2D":
- return SkipDownBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- dropout=dropout,
- add_downsample=add_downsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- downsample_padding=downsample_padding,
- resnet_time_scale_shift=resnet_time_scale_shift,
- )
- elif down_block_type == "AttnSkipDownBlock2D":
- return AttnSkipDownBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- dropout=dropout,
- add_downsample=add_downsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- attention_head_dim=attention_head_dim,
- resnet_time_scale_shift=resnet_time_scale_shift,
- )
- elif down_block_type == "DownEncoderBlock2D":
- return DownEncoderBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- dropout=dropout,
- add_downsample=add_downsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_groups=resnet_groups,
- downsample_padding=downsample_padding,
- resnet_time_scale_shift=resnet_time_scale_shift,
- )
- elif down_block_type == "AttnDownEncoderBlock2D":
- return AttnDownEncoderBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- dropout=dropout,
- add_downsample=add_downsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_groups=resnet_groups,
- downsample_padding=downsample_padding,
- attention_head_dim=attention_head_dim,
- resnet_time_scale_shift=resnet_time_scale_shift,
- )
- elif down_block_type == "KDownBlock2D":
- return KDownBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- dropout=dropout,
- add_downsample=add_downsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- )
- elif down_block_type == "KCrossAttnDownBlock2D":
- return KCrossAttnDownBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- dropout=dropout,
- add_downsample=add_downsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- cross_attention_dim=cross_attention_dim,
- attention_head_dim=attention_head_dim,
- add_self_attention=True if not add_downsample else False,
- )
- raise ValueError(f"{down_block_type} does not exist.")
-
-
-def get_mid_block(
- mid_block_type: str,
- temb_channels: int,
- in_channels: int,
- resnet_eps: float,
- resnet_act_fn: str,
- resnet_groups: int,
- output_scale_factor: float = 1.0,
- transformer_layers_per_block: int = 1,
- num_attention_heads: Optional[int] = None,
- cross_attention_dim: Optional[int] = None,
- dual_cross_attention: bool = False,
- use_linear_projection: bool = False,
- mid_block_only_cross_attention: bool = False,
- upcast_attention: bool = False,
- resnet_time_scale_shift: str = "default",
- attention_type: str = "default",
- resnet_skip_time_act: bool = False,
- cross_attention_norm: Optional[str] = None,
- attention_head_dim: Optional[int] = 1,
- dropout: float = 0.0,
-):
- if mid_block_type == "UNetMidBlock2DCrossAttn":
- return UNetMidBlock2DCrossAttn(
- transformer_layers_per_block=transformer_layers_per_block,
- in_channels=in_channels,
- temb_channels=temb_channels,
- dropout=dropout,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- resnet_time_scale_shift=resnet_time_scale_shift,
- cross_attention_dim=cross_attention_dim,
- num_attention_heads=num_attention_heads,
- resnet_groups=resnet_groups,
- dual_cross_attention=dual_cross_attention,
- use_linear_projection=use_linear_projection,
- upcast_attention=upcast_attention,
- attention_type=attention_type,
- )
- elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
- return UNetMidBlock2DSimpleCrossAttn(
- in_channels=in_channels,
- temb_channels=temb_channels,
- dropout=dropout,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- cross_attention_dim=cross_attention_dim,
- attention_head_dim=attention_head_dim,
- resnet_groups=resnet_groups,
- resnet_time_scale_shift=resnet_time_scale_shift,
- skip_time_act=resnet_skip_time_act,
- only_cross_attention=mid_block_only_cross_attention,
- cross_attention_norm=cross_attention_norm,
- )
- elif mid_block_type == "UNetMidBlock2D":
- return UNetMidBlock2D(
- in_channels=in_channels,
- temb_channels=temb_channels,
- dropout=dropout,
- num_layers=0,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- resnet_groups=resnet_groups,
- resnet_time_scale_shift=resnet_time_scale_shift,
- add_attention=False,
- )
- elif mid_block_type == "MidBlock2D":
- return MidBlock2D(
- in_channels=in_channels,
- temb_channels=temb_channels,
- dropout=dropout,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- resnet_time_scale_shift=resnet_time_scale_shift,
- resnet_groups=resnet_groups,
- use_linear_projection=use_linear_projection,
- )
- elif mid_block_type is None:
- return None
- else:
- raise ValueError(f"unknown mid_block_type : {mid_block_type}")
-
-
-def get_up_block(
- up_block_type: str,
- num_layers: int,
- in_channels: int,
- out_channels: int,
- prev_output_channel: int,
- temb_channels: int,
- add_upsample: bool,
- resnet_eps: float,
- resnet_act_fn: str,
- resolution_idx: Optional[int] = None,
- transformer_layers_per_block: int = 1,
- num_attention_heads: Optional[int] = None,
- resnet_groups: Optional[int] = None,
- cross_attention_dim: Optional[int] = None,
- dual_cross_attention: bool = False,
- use_linear_projection: bool = False,
- only_cross_attention: bool = False,
- upcast_attention: bool = False,
- resnet_time_scale_shift: str = "default",
- attention_type: str = "default",
- resnet_skip_time_act: bool = False,
- resnet_out_scale_factor: float = 1.0,
- cross_attention_norm: Optional[str] = None,
- attention_head_dim: Optional[int] = None,
- upsample_type: Optional[str] = None,
- dropout: float = 0.0,
-) -> nn.Module:
- # If attn head dim is not defined, we default it to the number of heads
- if attention_head_dim is None:
- logger.warning(
- f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
- )
- attention_head_dim = num_attention_heads
-
- up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
- if up_block_type == "UpBlock2D":
- return UpBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- prev_output_channel=prev_output_channel,
- temb_channels=temb_channels,
- resolution_idx=resolution_idx,
- dropout=dropout,
- add_upsample=add_upsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_groups=resnet_groups,
- resnet_time_scale_shift=resnet_time_scale_shift,
- )
- elif up_block_type == "ResnetUpsampleBlock2D":
- return ResnetUpsampleBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- prev_output_channel=prev_output_channel,
- temb_channels=temb_channels,
- resolution_idx=resolution_idx,
- dropout=dropout,
- add_upsample=add_upsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_groups=resnet_groups,
- resnet_time_scale_shift=resnet_time_scale_shift,
- skip_time_act=resnet_skip_time_act,
- output_scale_factor=resnet_out_scale_factor,
- )
- elif up_block_type == "CrossAttnUpBlock2D":
- if cross_attention_dim is None:
- raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
- return CrossAttnUpBlock2D(
- num_layers=num_layers,
- transformer_layers_per_block=transformer_layers_per_block,
- in_channels=in_channels,
- out_channels=out_channels,
- prev_output_channel=prev_output_channel,
- temb_channels=temb_channels,
- resolution_idx=resolution_idx,
- dropout=dropout,
- add_upsample=add_upsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_groups=resnet_groups,
- cross_attention_dim=cross_attention_dim,
- num_attention_heads=num_attention_heads,
- dual_cross_attention=dual_cross_attention,
- use_linear_projection=use_linear_projection,
- only_cross_attention=only_cross_attention,
- upcast_attention=upcast_attention,
- resnet_time_scale_shift=resnet_time_scale_shift,
- attention_type=attention_type,
- )
- elif up_block_type == "SimpleCrossAttnUpBlock2D":
- if cross_attention_dim is None:
- raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
- return SimpleCrossAttnUpBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- prev_output_channel=prev_output_channel,
- temb_channels=temb_channels,
- resolution_idx=resolution_idx,
- dropout=dropout,
- add_upsample=add_upsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_groups=resnet_groups,
- cross_attention_dim=cross_attention_dim,
- attention_head_dim=attention_head_dim,
- resnet_time_scale_shift=resnet_time_scale_shift,
- skip_time_act=resnet_skip_time_act,
- output_scale_factor=resnet_out_scale_factor,
- only_cross_attention=only_cross_attention,
- cross_attention_norm=cross_attention_norm,
- )
- elif up_block_type == "AttnUpBlock2D":
- if add_upsample is False:
- upsample_type = None
- else:
- upsample_type = upsample_type or "conv" # default to 'conv'
-
- return AttnUpBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- prev_output_channel=prev_output_channel,
- temb_channels=temb_channels,
- resolution_idx=resolution_idx,
- dropout=dropout,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_groups=resnet_groups,
- attention_head_dim=attention_head_dim,
- resnet_time_scale_shift=resnet_time_scale_shift,
- upsample_type=upsample_type,
- )
- elif up_block_type == "SkipUpBlock2D":
- return SkipUpBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- prev_output_channel=prev_output_channel,
- temb_channels=temb_channels,
- resolution_idx=resolution_idx,
- dropout=dropout,
- add_upsample=add_upsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_time_scale_shift=resnet_time_scale_shift,
- )
- elif up_block_type == "AttnSkipUpBlock2D":
- return AttnSkipUpBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- prev_output_channel=prev_output_channel,
- temb_channels=temb_channels,
- resolution_idx=resolution_idx,
- dropout=dropout,
- add_upsample=add_upsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- attention_head_dim=attention_head_dim,
- resnet_time_scale_shift=resnet_time_scale_shift,
- )
- elif up_block_type == "UpDecoderBlock2D":
- return UpDecoderBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- resolution_idx=resolution_idx,
- dropout=dropout,
- add_upsample=add_upsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_groups=resnet_groups,
- resnet_time_scale_shift=resnet_time_scale_shift,
- temb_channels=temb_channels,
- )
- elif up_block_type == "AttnUpDecoderBlock2D":
- return AttnUpDecoderBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- resolution_idx=resolution_idx,
- dropout=dropout,
- add_upsample=add_upsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- resnet_groups=resnet_groups,
- attention_head_dim=attention_head_dim,
- resnet_time_scale_shift=resnet_time_scale_shift,
- temb_channels=temb_channels,
- )
- elif up_block_type == "KUpBlock2D":
- return KUpBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- resolution_idx=resolution_idx,
- dropout=dropout,
- add_upsample=add_upsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- )
- elif up_block_type == "KCrossAttnUpBlock2D":
- return KCrossAttnUpBlock2D(
- num_layers=num_layers,
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- resolution_idx=resolution_idx,
- dropout=dropout,
- add_upsample=add_upsample,
- resnet_eps=resnet_eps,
- resnet_act_fn=resnet_act_fn,
- cross_attention_dim=cross_attention_dim,
- attention_head_dim=attention_head_dim,
- )
-
- raise ValueError(f"{up_block_type} does not exist.")
-
-
-class AutoencoderTinyBlock(nn.Module):
- """
- Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
- blocks.
-
- Args:
- in_channels (`int`): The number of input channels.
- out_channels (`int`): The number of output channels.
- act_fn (`str`):
- ` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
-
- Returns:
- `torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
- `out_channels`.
- """
-
- def __init__(self, in_channels: int, out_channels: int, act_fn: str):
- super().__init__()
- act_fn = get_activation(act_fn)
- self.conv = nn.Sequential(
- nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
- act_fn,
- nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
- act_fn,
- nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
- )
- self.skip = (
- nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
- if in_channels != out_channels
- else nn.Identity()
- )
- self.fuse = nn.ReLU()
-
- def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
- return self.fuse(self.conv(x) + self.skip(x))
-
-
-class UNetMidBlock2D(nn.Module):
- """
- A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.
-
- Args:
- in_channels (`int`): The number of input channels.
- temb_channels (`int`): The number of temporal embedding channels.
- dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
- num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
- resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
- resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
- The type of normalization to apply to the time embeddings. This can help to improve the performance of the
- model on tasks with long-range temporal dependencies.
- resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
- resnet_groups (`int`, *optional*, defaults to 32):
- The number of groups to use in the group normalization layers of the resnet blocks.
- attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
- resnet_pre_norm (`bool`, *optional*, defaults to `True`):
- Whether to use pre-normalization for the resnet blocks.
- add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
- attention_head_dim (`int`, *optional*, defaults to 1):
- Dimension of a single attention head. The number of attention heads is determined based on this value and
- the number of input channels.
- output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
-
- Returns:
- `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
- in_channels, height, width)`.
-
- """
-
- def __init__(
- self,
- in_channels: int,
- temb_channels: int,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default", # default, spatial
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- attn_groups: Optional[int] = None,
- resnet_pre_norm: bool = True,
- add_attention: bool = True,
- attention_head_dim: int = 1,
- output_scale_factor: float = 1.0,
- ):
- super().__init__()
- resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
- self.add_attention = add_attention
-
- if attn_groups is None:
- attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None
-
- # there is always at least one resnet
- if resnet_time_scale_shift == "spatial":
- resnets = [
- ResnetBlockCondNorm2D(
- in_channels=in_channels,
- out_channels=in_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm="spatial",
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- )
- ]
- else:
- resnets = [
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=in_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- ]
- attentions = []
-
- if attention_head_dim is None:
- logger.warning(
- f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
- )
- attention_head_dim = in_channels
-
- for _ in range(num_layers):
- if self.add_attention:
- attentions.append(
- Attention(
- in_channels,
- heads=in_channels // attention_head_dim,
- dim_head=attention_head_dim,
- rescale_output_factor=output_scale_factor,
- eps=resnet_eps,
- norm_num_groups=attn_groups,
- spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
- residual_connection=True,
- bias=True,
- upcast_softmax=True,
- _from_deprecated_attn_block=True,
- )
- )
- else:
- attentions.append(None)
-
- if resnet_time_scale_shift == "spatial":
- resnets.append(
- ResnetBlockCondNorm2D(
- in_channels=in_channels,
- out_channels=in_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm="spatial",
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- )
- )
- else:
- resnets.append(
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=in_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
-
- self.attentions = nn.ModuleList(attentions)
- self.resnets = nn.ModuleList(resnets)
-
- def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
- hidden_states = self.resnets[0](hidden_states, temb)
- for attn, resnet in zip(self.attentions, self.resnets[1:]):
- if attn is not None:
- hidden_states = attn(hidden_states, temb=temb)
- hidden_states = resnet(hidden_states, temb)
-
- return hidden_states
-
-
-class UNetMidBlock2DCrossAttn(nn.Module):
- def __init__(
- self,
- in_channels: int,
- temb_channels: int,
- dropout: float = 0.0,
- num_layers: int = 1,
- transformer_layers_per_block: Union[int, Tuple[int]] = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- num_attention_heads: int = 1,
- output_scale_factor: float = 1.0,
- cross_attention_dim: int = 1280,
- dual_cross_attention: bool = False,
- use_linear_projection: bool = False,
- upcast_attention: bool = False,
- attention_type: str = "default",
- ):
- super().__init__()
-
- self.has_cross_attention = True
- self.num_attention_heads = num_attention_heads
- resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
-
- # support for variable transformer layers per block
- if isinstance(transformer_layers_per_block, int):
- transformer_layers_per_block = [transformer_layers_per_block] * num_layers
-
- # there is always at least one resnet
- resnets = [
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=in_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- ]
- attentions = []
-
- for i in range(num_layers):
- if not dual_cross_attention:
- attentions.append(
- Transformer2DModel(
- num_attention_heads,
- in_channels // num_attention_heads,
- in_channels=in_channels,
- num_layers=transformer_layers_per_block[i],
- cross_attention_dim=cross_attention_dim,
- norm_num_groups=resnet_groups,
- use_linear_projection=use_linear_projection,
- upcast_attention=upcast_attention,
- attention_type=attention_type,
- )
- )
- else:
- attentions.append(
- DualTransformer2DModel(
- num_attention_heads,
- in_channels // num_attention_heads,
- in_channels=in_channels,
- num_layers=1,
- cross_attention_dim=cross_attention_dim,
- norm_num_groups=resnet_groups,
- )
- )
- resnets.append(
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=in_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
-
- self.attentions = nn.ModuleList(attentions)
- self.resnets = nn.ModuleList(resnets)
-
- self.gradient_checkpointing = False
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- temb: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- ) -> torch.FloatTensor:
- if cross_attention_kwargs is not None:
- if cross_attention_kwargs.get("scale", None) is not None:
- logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
-
- hidden_states = self.resnets[0](hidden_states, temb)
- for attn, resnet in zip(self.attentions, self.resnets[1:]):
- if self.training and self.gradient_checkpointing:
-
- def create_custom_forward(module, return_dict=None):
- def custom_forward(*inputs):
- if return_dict is not None:
- return module(*inputs, return_dict=return_dict)
- else:
- return module(*inputs)
-
- return custom_forward
-
- ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- cross_attention_kwargs=cross_attention_kwargs,
- attention_mask=attention_mask,
- encoder_attention_mask=encoder_attention_mask,
- return_dict=False,
- )[0]
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet),
- hidden_states,
- temb,
- **ckpt_kwargs,
- )
- else:
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- cross_attention_kwargs=cross_attention_kwargs,
- attention_mask=attention_mask,
- encoder_attention_mask=encoder_attention_mask,
- return_dict=False,
- )[0]
- hidden_states = resnet(hidden_states, temb)
-
- return hidden_states
-
-
-class UNetMidBlock2DSimpleCrossAttn(nn.Module):
- def __init__(
- self,
- in_channels: int,
- temb_channels: int,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- attention_head_dim: int = 1,
- output_scale_factor: float = 1.0,
- cross_attention_dim: int = 1280,
- skip_time_act: bool = False,
- only_cross_attention: bool = False,
- cross_attention_norm: Optional[str] = None,
- ):
- super().__init__()
-
- self.has_cross_attention = True
-
- self.attention_head_dim = attention_head_dim
- resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
-
- self.num_heads = in_channels // self.attention_head_dim
-
- # there is always at least one resnet
- resnets = [
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=in_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- skip_time_act=skip_time_act,
- )
- ]
- attentions = []
-
- for _ in range(num_layers):
- processor = (
- AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
- )
-
- attentions.append(
- Attention(
- query_dim=in_channels,
- cross_attention_dim=in_channels,
- heads=self.num_heads,
- dim_head=self.attention_head_dim,
- added_kv_proj_dim=cross_attention_dim,
- norm_num_groups=resnet_groups,
- bias=True,
- upcast_softmax=True,
- only_cross_attention=only_cross_attention,
- cross_attention_norm=cross_attention_norm,
- processor=processor,
- )
- )
- resnets.append(
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=in_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- skip_time_act=skip_time_act,
- )
- )
-
- self.attentions = nn.ModuleList(attentions)
- self.resnets = nn.ModuleList(resnets)
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- temb: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- ) -> torch.FloatTensor:
- cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
- if cross_attention_kwargs.get("scale", None) is not None:
- logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
-
- if attention_mask is None:
- # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
- mask = None if encoder_hidden_states is None else encoder_attention_mask
- else:
- # when attention_mask is defined: we don't even check for encoder_attention_mask.
- # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
- # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
- # then we can simplify this whole if/else block to:
- # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
- mask = attention_mask
-
- hidden_states = self.resnets[0](hidden_states, temb)
- for attn, resnet in zip(self.attentions, self.resnets[1:]):
- # attn
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=mask,
- **cross_attention_kwargs,
- )
-
- # resnet
- hidden_states = resnet(hidden_states, temb)
-
- return hidden_states
-
-
-class MidBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- temb_channels: int,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- output_scale_factor: float = 1.0,
- use_linear_projection: bool = False,
- ):
- super().__init__()
-
- self.has_cross_attention = False
- resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
-
- # there is always at least one resnet
- resnets = [
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=in_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- ]
-
- for i in range(num_layers):
- resnets.append(
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=in_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
-
- self.resnets = nn.ModuleList(resnets)
-
- self.gradient_checkpointing = False
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- temb: Optional[torch.FloatTensor] = None,
- ) -> torch.FloatTensor:
- lora_scale = 1.0
- hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
- for resnet in self.resnets[1:]:
- if self.training and self.gradient_checkpointing:
-
- def create_custom_forward(module, return_dict=None):
- def custom_forward(*inputs):
- if return_dict is not None:
- return module(*inputs, return_dict=return_dict)
- else:
- return module(*inputs)
-
- return custom_forward
-
- ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet),
- hidden_states,
- temb,
- **ckpt_kwargs,
- )
- else:
- hidden_states = resnet(hidden_states, temb, scale=lora_scale)
-
- return hidden_states
-
-
-class AttnDownBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- temb_channels: int,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- attention_head_dim: int = 1,
- output_scale_factor: float = 1.0,
- downsample_padding: int = 1,
- downsample_type: str = "conv",
- ):
- super().__init__()
- resnets = []
- attentions = []
- self.downsample_type = downsample_type
-
- if attention_head_dim is None:
- logger.warning(
- f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
- )
- attention_head_dim = out_channels
-
- for i in range(num_layers):
- in_channels = in_channels if i == 0 else out_channels
- resnets.append(
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
- attentions.append(
- Attention(
- out_channels,
- heads=out_channels // attention_head_dim,
- dim_head=attention_head_dim,
- rescale_output_factor=output_scale_factor,
- eps=resnet_eps,
- norm_num_groups=resnet_groups,
- residual_connection=True,
- bias=True,
- upcast_softmax=True,
- _from_deprecated_attn_block=True,
- )
- )
-
- self.attentions = nn.ModuleList(attentions)
- self.resnets = nn.ModuleList(resnets)
-
- if downsample_type == "conv":
- self.downsamplers = nn.ModuleList(
- [
- Downsample2D(
- out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
- )
- ]
- )
- elif downsample_type == "resnet":
- self.downsamplers = nn.ModuleList(
- [
- ResnetBlock2D(
- in_channels=out_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- down=True,
- )
- ]
- )
- else:
- self.downsamplers = None
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- temb: Optional[torch.FloatTensor] = None,
- upsample_size: Optional[int] = None,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
- cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
- if cross_attention_kwargs.get("scale", None) is not None:
- logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
-
- output_states = ()
-
- for resnet, attn in zip(self.resnets, self.attentions):
- hidden_states = resnet(hidden_states, temb)
- hidden_states = attn(hidden_states, **cross_attention_kwargs)
- output_states = output_states + (hidden_states,)
-
- if self.downsamplers is not None:
- for downsampler in self.downsamplers:
- if self.downsample_type == "resnet":
- hidden_states = downsampler(hidden_states, temb=temb)
- else:
- hidden_states = downsampler(hidden_states)
-
- output_states += (hidden_states,)
-
- return hidden_states, output_states
-
-
-class CrossAttnDownBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- temb_channels: int,
- dropout: float = 0.0,
- num_layers: int = 1,
- transformer_layers_per_block: Union[int, Tuple[int]] = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- num_attention_heads: int = 1,
- cross_attention_dim: int = 1280,
- output_scale_factor: float = 1.0,
- downsample_padding: int = 1,
- add_downsample: bool = True,
- dual_cross_attention: bool = False,
- use_linear_projection: bool = False,
- only_cross_attention: bool = False,
- upcast_attention: bool = False,
- attention_type: str = "default",
- ):
- super().__init__()
- resnets = []
- attentions = []
-
- self.has_cross_attention = True
- self.num_attention_heads = num_attention_heads
- if isinstance(transformer_layers_per_block, int):
- transformer_layers_per_block = [transformer_layers_per_block] * num_layers
-
- for i in range(num_layers):
- in_channels = in_channels if i == 0 else out_channels
- resnets.append(
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
- if not dual_cross_attention:
- attentions.append(
- Transformer2DModel(
- num_attention_heads,
- out_channels // num_attention_heads,
- in_channels=out_channels,
- num_layers=transformer_layers_per_block[i],
- cross_attention_dim=cross_attention_dim,
- norm_num_groups=resnet_groups,
- use_linear_projection=use_linear_projection,
- only_cross_attention=only_cross_attention,
- upcast_attention=upcast_attention,
- attention_type=attention_type,
- )
- )
- else:
- attentions.append(
- DualTransformer2DModel(
- num_attention_heads,
- out_channels // num_attention_heads,
- in_channels=out_channels,
- num_layers=1,
- cross_attention_dim=cross_attention_dim,
- norm_num_groups=resnet_groups,
- )
- )
- self.attentions = nn.ModuleList(attentions)
- self.resnets = nn.ModuleList(resnets)
-
- if add_downsample:
- self.downsamplers = nn.ModuleList(
- [
- Downsample2D(
- out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
- )
- ]
- )
- else:
- self.downsamplers = None
-
- self.gradient_checkpointing = False
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- temb: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- additional_residuals: Optional[torch.FloatTensor] = None,
- down_block_add_samples: Optional[torch.FloatTensor] = None,
- debug = False,
- ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
-
- if debug: print(' XAD2: forward')
-
- if cross_attention_kwargs is not None:
- if cross_attention_kwargs.get("scale", None) is not None:
- logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
-
- output_states = ()
-
- blocks = list(zip(self.resnets, self.attentions))
-
- for i, (resnet, attn) in enumerate(blocks):
- if self.training and self.gradient_checkpointing:
-
- def create_custom_forward(module, return_dict=None):
- def custom_forward(*inputs):
- if return_dict is not None:
- return module(*inputs, return_dict=return_dict)
- else:
- return module(*inputs)
-
- return custom_forward
-
- ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet),
- hidden_states,
- temb,
- **ckpt_kwargs,
- )
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- cross_attention_kwargs=cross_attention_kwargs,
- attention_mask=attention_mask,
- encoder_attention_mask=encoder_attention_mask,
- return_dict=False,
- )[0]
- else:
- if debug: print(' XAD2: resnet hs #', i, hidden_states.shape)
- if debug and temb is not None: print(' XAD2: resnet temb #', i, temb.shape)
-
- hidden_states = resnet(hidden_states, temb)
-
- if debug: print(' XAD2: attn hs #', i, hidden_states.shape)
- if debug and encoder_hidden_states is not None: print(' XAD2: attn ehs #', i, encoder_hidden_states.shape)
-
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- cross_attention_kwargs=cross_attention_kwargs,
- attention_mask=attention_mask,
- encoder_attention_mask=encoder_attention_mask,
- return_dict=False,
- )[0]
-
- # apply additional residuals to the output of the last pair of resnet and attention blocks
- if i == len(blocks) - 1 and additional_residuals is not None:
-
- if debug: print(' XAD2: add res', additional_residuals.shape)
-
- hidden_states = hidden_states + additional_residuals
-
- if down_block_add_samples is not None:
-
- if debug: print(' XAD2: add samples', down_block_add_samples.shape)
-
- hidden_states = hidden_states + down_block_add_samples.pop(0)
-
- if debug: print(' XAD2: output', hidden_states.shape)
-
- output_states = output_states + (hidden_states,)
-
- if self.downsamplers is not None:
- for downsampler in self.downsamplers:
- hidden_states = downsampler(hidden_states)
-
- if down_block_add_samples is not None:
- hidden_states = hidden_states + down_block_add_samples.pop(0) # todo: add before or after
-
- output_states = output_states + (hidden_states,)
-
- if debug:
- print(' XAD2: finish')
- for st in output_states:
- print(' XAD2: ',st.shape)
-
- return hidden_states, output_states
-
-
-class DownBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- temb_channels: int,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- output_scale_factor: float = 1.0,
- add_downsample: bool = True,
- downsample_padding: int = 1,
- ):
- super().__init__()
- resnets = []
-
- for i in range(num_layers):
- in_channels = in_channels if i == 0 else out_channels
- resnets.append(
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
-
- self.resnets = nn.ModuleList(resnets)
-
- if add_downsample:
- self.downsamplers = nn.ModuleList(
- [
- Downsample2D(
- out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
- )
- ]
- )
- else:
- self.downsamplers = None
-
- self.gradient_checkpointing = False
-
- def forward(
- self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None,
- down_block_add_samples: Optional[torch.FloatTensor] = None, *args, **kwargs
- ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
- if len(args) > 0 or kwargs.get("scale", None) is not None:
- deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
- deprecate("scale", "1.0.0", deprecation_message)
-
- output_states = ()
-
- if kwargs.get("debug", False): print(' D2: forward', hidden_states.shape)
-
- for resnet in self.resnets:
- if self.training and self.gradient_checkpointing:
-
- def create_custom_forward(module):
- def custom_forward(*inputs):
- return module(*inputs)
-
- return custom_forward
-
- if is_torch_version(">=", "1.11.0"):
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
- )
- else:
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet), hidden_states, temb
- )
- else:
-
- if kwargs.get("debug", False): print(' D2: resnet', hidden_states.shape)
-
- hidden_states = resnet(hidden_states, temb)
-
- if down_block_add_samples is not None:
- hidden_states = hidden_states + down_block_add_samples.pop(0)
-
- output_states = output_states + (hidden_states,)
-
- if self.downsamplers is not None:
- for downsampler in self.downsamplers:
- hidden_states = downsampler(hidden_states)
-
- if down_block_add_samples is not None:
- hidden_states = hidden_states + down_block_add_samples.pop(0) # todo: add before or after
-
- output_states = output_states + (hidden_states,)
-
- if kwargs.get("debug", False): print(' D2: finish', hidden_states.shape)
-
- return hidden_states, output_states
-
-
-class DownEncoderBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- output_scale_factor: float = 1.0,
- add_downsample: bool = True,
- downsample_padding: int = 1,
- ):
- super().__init__()
- resnets = []
-
- for i in range(num_layers):
- in_channels = in_channels if i == 0 else out_channels
- if resnet_time_scale_shift == "spatial":
- resnets.append(
- ResnetBlockCondNorm2D(
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=None,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm="spatial",
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- )
- )
- else:
- resnets.append(
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=None,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
-
- self.resnets = nn.ModuleList(resnets)
-
- if add_downsample:
- self.downsamplers = nn.ModuleList(
- [
- Downsample2D(
- out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
- )
- ]
- )
- else:
- self.downsamplers = None
-
- def forward(self, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
- if len(args) > 0 or kwargs.get("scale", None) is not None:
- deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
- deprecate("scale", "1.0.0", deprecation_message)
-
- for resnet in self.resnets:
- hidden_states = resnet(hidden_states, temb=None)
-
- if self.downsamplers is not None:
- for downsampler in self.downsamplers:
- hidden_states = downsampler(hidden_states)
-
- return hidden_states
-
-
-class AttnDownEncoderBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- attention_head_dim: int = 1,
- output_scale_factor: float = 1.0,
- add_downsample: bool = True,
- downsample_padding: int = 1,
- ):
- super().__init__()
- resnets = []
- attentions = []
-
- if attention_head_dim is None:
- logger.warning(
- f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
- )
- attention_head_dim = out_channels
-
- for i in range(num_layers):
- in_channels = in_channels if i == 0 else out_channels
- if resnet_time_scale_shift == "spatial":
- resnets.append(
- ResnetBlockCondNorm2D(
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=None,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm="spatial",
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- )
- )
- else:
- resnets.append(
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=None,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
- attentions.append(
- Attention(
- out_channels,
- heads=out_channels // attention_head_dim,
- dim_head=attention_head_dim,
- rescale_output_factor=output_scale_factor,
- eps=resnet_eps,
- norm_num_groups=resnet_groups,
- residual_connection=True,
- bias=True,
- upcast_softmax=True,
- _from_deprecated_attn_block=True,
- )
- )
-
- self.attentions = nn.ModuleList(attentions)
- self.resnets = nn.ModuleList(resnets)
-
- if add_downsample:
- self.downsamplers = nn.ModuleList(
- [
- Downsample2D(
- out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
- )
- ]
- )
- else:
- self.downsamplers = None
-
- def forward(self, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
- if len(args) > 0 or kwargs.get("scale", None) is not None:
- deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
- deprecate("scale", "1.0.0", deprecation_message)
-
- for resnet, attn in zip(self.resnets, self.attentions):
- hidden_states = resnet(hidden_states, temb=None)
- hidden_states = attn(hidden_states)
-
- if self.downsamplers is not None:
- for downsampler in self.downsamplers:
- hidden_states = downsampler(hidden_states)
-
- return hidden_states
-
-
-class AttnSkipDownBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- temb_channels: int,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_pre_norm: bool = True,
- attention_head_dim: int = 1,
- output_scale_factor: float = np.sqrt(2.0),
- add_downsample: bool = True,
- ):
- super().__init__()
- self.attentions = nn.ModuleList([])
- self.resnets = nn.ModuleList([])
-
- if attention_head_dim is None:
- logger.warning(
- f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
- )
- attention_head_dim = out_channels
-
- for i in range(num_layers):
- in_channels = in_channels if i == 0 else out_channels
- self.resnets.append(
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=min(in_channels // 4, 32),
- groups_out=min(out_channels // 4, 32),
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
- self.attentions.append(
- Attention(
- out_channels,
- heads=out_channels // attention_head_dim,
- dim_head=attention_head_dim,
- rescale_output_factor=output_scale_factor,
- eps=resnet_eps,
- norm_num_groups=32,
- residual_connection=True,
- bias=True,
- upcast_softmax=True,
- _from_deprecated_attn_block=True,
- )
- )
-
- if add_downsample:
- self.resnet_down = ResnetBlock2D(
- in_channels=out_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=min(out_channels // 4, 32),
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- use_in_shortcut=True,
- down=True,
- kernel="fir",
- )
- self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
- self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
- else:
- self.resnet_down = None
- self.downsamplers = None
- self.skip_conv = None
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- temb: Optional[torch.FloatTensor] = None,
- skip_sample: Optional[torch.FloatTensor] = None,
- *args,
- **kwargs,
- ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]:
- if len(args) > 0 or kwargs.get("scale", None) is not None:
- deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
- deprecate("scale", "1.0.0", deprecation_message)
-
- output_states = ()
-
- for resnet, attn in zip(self.resnets, self.attentions):
- hidden_states = resnet(hidden_states, temb)
- hidden_states = attn(hidden_states)
- output_states += (hidden_states,)
-
- if self.downsamplers is not None:
- hidden_states = self.resnet_down(hidden_states, temb)
- for downsampler in self.downsamplers:
- skip_sample = downsampler(skip_sample)
-
- hidden_states = self.skip_conv(skip_sample) + hidden_states
-
- output_states += (hidden_states,)
-
- return hidden_states, output_states, skip_sample
-
-
-class SkipDownBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- temb_channels: int,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_pre_norm: bool = True,
- output_scale_factor: float = np.sqrt(2.0),
- add_downsample: bool = True,
- downsample_padding: int = 1,
- ):
- super().__init__()
- self.resnets = nn.ModuleList([])
-
- for i in range(num_layers):
- in_channels = in_channels if i == 0 else out_channels
- self.resnets.append(
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=min(in_channels // 4, 32),
- groups_out=min(out_channels // 4, 32),
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
-
- if add_downsample:
- self.resnet_down = ResnetBlock2D(
- in_channels=out_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=min(out_channels // 4, 32),
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- use_in_shortcut=True,
- down=True,
- kernel="fir",
- )
- self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
- self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
- else:
- self.resnet_down = None
- self.downsamplers = None
- self.skip_conv = None
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- temb: Optional[torch.FloatTensor] = None,
- skip_sample: Optional[torch.FloatTensor] = None,
- *args,
- **kwargs,
- ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]:
- if len(args) > 0 or kwargs.get("scale", None) is not None:
- deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
- deprecate("scale", "1.0.0", deprecation_message)
-
- output_states = ()
-
- for resnet in self.resnets:
- hidden_states = resnet(hidden_states, temb)
- output_states += (hidden_states,)
-
- if self.downsamplers is not None:
- hidden_states = self.resnet_down(hidden_states, temb)
- for downsampler in self.downsamplers:
- skip_sample = downsampler(skip_sample)
-
- hidden_states = self.skip_conv(skip_sample) + hidden_states
-
- output_states += (hidden_states,)
-
- return hidden_states, output_states, skip_sample
-
-
-class ResnetDownsampleBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- temb_channels: int,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- output_scale_factor: float = 1.0,
- add_downsample: bool = True,
- skip_time_act: bool = False,
- ):
- super().__init__()
- resnets = []
-
- for i in range(num_layers):
- in_channels = in_channels if i == 0 else out_channels
- resnets.append(
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- skip_time_act=skip_time_act,
- )
- )
-
- self.resnets = nn.ModuleList(resnets)
-
- if add_downsample:
- self.downsamplers = nn.ModuleList(
- [
- ResnetBlock2D(
- in_channels=out_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- skip_time_act=skip_time_act,
- down=True,
- )
- ]
- )
- else:
- self.downsamplers = None
-
- self.gradient_checkpointing = False
-
- def forward(
- self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, *args, **kwargs
- ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
- if len(args) > 0 or kwargs.get("scale", None) is not None:
- deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
- deprecate("scale", "1.0.0", deprecation_message)
-
- output_states = ()
-
- for resnet in self.resnets:
- if self.training and self.gradient_checkpointing:
-
- def create_custom_forward(module):
- def custom_forward(*inputs):
- return module(*inputs)
-
- return custom_forward
-
- if is_torch_version(">=", "1.11.0"):
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
- )
- else:
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet), hidden_states, temb
- )
- else:
- hidden_states = resnet(hidden_states, temb)
-
- output_states = output_states + (hidden_states,)
-
- if self.downsamplers is not None:
- for downsampler in self.downsamplers:
- hidden_states = downsampler(hidden_states, temb)
-
- output_states = output_states + (hidden_states,)
-
- return hidden_states, output_states
-
-
-class SimpleCrossAttnDownBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- temb_channels: int,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- attention_head_dim: int = 1,
- cross_attention_dim: int = 1280,
- output_scale_factor: float = 1.0,
- add_downsample: bool = True,
- skip_time_act: bool = False,
- only_cross_attention: bool = False,
- cross_attention_norm: Optional[str] = None,
- ):
- super().__init__()
-
- self.has_cross_attention = True
-
- resnets = []
- attentions = []
-
- self.attention_head_dim = attention_head_dim
- self.num_heads = out_channels // self.attention_head_dim
-
- for i in range(num_layers):
- in_channels = in_channels if i == 0 else out_channels
- resnets.append(
- ResnetBlock2D(
- in_channels=in_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- skip_time_act=skip_time_act,
- )
- )
-
- processor = (
- AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
- )
-
- attentions.append(
- Attention(
- query_dim=out_channels,
- cross_attention_dim=out_channels,
- heads=self.num_heads,
- dim_head=attention_head_dim,
- added_kv_proj_dim=cross_attention_dim,
- norm_num_groups=resnet_groups,
- bias=True,
- upcast_softmax=True,
- only_cross_attention=only_cross_attention,
- cross_attention_norm=cross_attention_norm,
- processor=processor,
- )
- )
- self.attentions = nn.ModuleList(attentions)
- self.resnets = nn.ModuleList(resnets)
-
- if add_downsample:
- self.downsamplers = nn.ModuleList(
- [
- ResnetBlock2D(
- in_channels=out_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- skip_time_act=skip_time_act,
- down=True,
- )
- ]
- )
- else:
- self.downsamplers = None
-
- self.gradient_checkpointing = False
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- temb: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
- cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
- if cross_attention_kwargs.get("scale", None) is not None:
- logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
-
- output_states = ()
-
- if attention_mask is None:
- # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
- mask = None if encoder_hidden_states is None else encoder_attention_mask
- else:
- # when attention_mask is defined: we don't even check for encoder_attention_mask.
- # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
- # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
- # then we can simplify this whole if/else block to:
- # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
- mask = attention_mask
-
- for resnet, attn in zip(self.resnets, self.attentions):
- if self.training and self.gradient_checkpointing:
-
- def create_custom_forward(module, return_dict=None):
- def custom_forward(*inputs):
- if return_dict is not None:
- return module(*inputs, return_dict=return_dict)
- else:
- return module(*inputs)
-
- return custom_forward
-
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=mask,
- **cross_attention_kwargs,
- )
- else:
- hidden_states = resnet(hidden_states, temb)
-
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=mask,
- **cross_attention_kwargs,
- )
-
- output_states = output_states + (hidden_states,)
-
- if self.downsamplers is not None:
- for downsampler in self.downsamplers:
- hidden_states = downsampler(hidden_states, temb)
-
- output_states = output_states + (hidden_states,)
-
- return hidden_states, output_states
-
-
-class KDownBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- temb_channels: int,
- dropout: float = 0.0,
- num_layers: int = 4,
- resnet_eps: float = 1e-5,
- resnet_act_fn: str = "gelu",
- resnet_group_size: int = 32,
- add_downsample: bool = False,
- ):
- super().__init__()
- resnets = []
-
- for i in range(num_layers):
- in_channels = in_channels if i == 0 else out_channels
- groups = in_channels // resnet_group_size
- groups_out = out_channels // resnet_group_size
-
- resnets.append(
- ResnetBlockCondNorm2D(
- in_channels=in_channels,
- out_channels=out_channels,
- dropout=dropout,
- temb_channels=temb_channels,
- groups=groups,
- groups_out=groups_out,
- eps=resnet_eps,
- non_linearity=resnet_act_fn,
- time_embedding_norm="ada_group",
- conv_shortcut_bias=False,
- )
- )
-
- self.resnets = nn.ModuleList(resnets)
-
- if add_downsample:
- # YiYi's comments- might be able to use FirDownsample2D, look into details later
- self.downsamplers = nn.ModuleList([KDownsample2D()])
- else:
- self.downsamplers = None
-
- self.gradient_checkpointing = False
-
- def forward(
- self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, *args, **kwargs
- ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
- if len(args) > 0 or kwargs.get("scale", None) is not None:
- deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
- deprecate("scale", "1.0.0", deprecation_message)
-
- output_states = ()
-
- for resnet in self.resnets:
- if self.training and self.gradient_checkpointing:
-
- def create_custom_forward(module):
- def custom_forward(*inputs):
- return module(*inputs)
-
- return custom_forward
-
- if is_torch_version(">=", "1.11.0"):
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
- )
- else:
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet), hidden_states, temb
- )
- else:
- hidden_states = resnet(hidden_states, temb)
-
- output_states += (hidden_states,)
-
- if self.downsamplers is not None:
- for downsampler in self.downsamplers:
- hidden_states = downsampler(hidden_states)
-
- return hidden_states, output_states
-
-
-class KCrossAttnDownBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- temb_channels: int,
- cross_attention_dim: int,
- dropout: float = 0.0,
- num_layers: int = 4,
- resnet_group_size: int = 32,
- add_downsample: bool = True,
- attention_head_dim: int = 64,
- add_self_attention: bool = False,
- resnet_eps: float = 1e-5,
- resnet_act_fn: str = "gelu",
- ):
- super().__init__()
- resnets = []
- attentions = []
-
- self.has_cross_attention = True
-
- for i in range(num_layers):
- in_channels = in_channels if i == 0 else out_channels
- groups = in_channels // resnet_group_size
- groups_out = out_channels // resnet_group_size
-
- resnets.append(
- ResnetBlockCondNorm2D(
- in_channels=in_channels,
- out_channels=out_channels,
- dropout=dropout,
- temb_channels=temb_channels,
- groups=groups,
- groups_out=groups_out,
- eps=resnet_eps,
- non_linearity=resnet_act_fn,
- time_embedding_norm="ada_group",
- conv_shortcut_bias=False,
- )
- )
- attentions.append(
- KAttentionBlock(
- out_channels,
- out_channels // attention_head_dim,
- attention_head_dim,
- cross_attention_dim=cross_attention_dim,
- temb_channels=temb_channels,
- attention_bias=True,
- add_self_attention=add_self_attention,
- cross_attention_norm="layer_norm",
- group_size=resnet_group_size,
- )
- )
-
- self.resnets = nn.ModuleList(resnets)
- self.attentions = nn.ModuleList(attentions)
-
- if add_downsample:
- self.downsamplers = nn.ModuleList([KDownsample2D()])
- else:
- self.downsamplers = None
-
- self.gradient_checkpointing = False
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- temb: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
- cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
- if cross_attention_kwargs.get("scale", None) is not None:
- logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
-
- output_states = ()
-
- for resnet, attn in zip(self.resnets, self.attentions):
- if self.training and self.gradient_checkpointing:
-
- def create_custom_forward(module, return_dict=None):
- def custom_forward(*inputs):
- if return_dict is not None:
- return module(*inputs, return_dict=return_dict)
- else:
- return module(*inputs)
-
- return custom_forward
-
- ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet),
- hidden_states,
- temb,
- **ckpt_kwargs,
- )
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- emb=temb,
- attention_mask=attention_mask,
- cross_attention_kwargs=cross_attention_kwargs,
- encoder_attention_mask=encoder_attention_mask,
- )
- else:
- hidden_states = resnet(hidden_states, temb)
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- emb=temb,
- attention_mask=attention_mask,
- cross_attention_kwargs=cross_attention_kwargs,
- encoder_attention_mask=encoder_attention_mask,
- )
-
- if self.downsamplers is None:
- output_states += (None,)
- else:
- output_states += (hidden_states,)
-
- if self.downsamplers is not None:
- for downsampler in self.downsamplers:
- hidden_states = downsampler(hidden_states)
-
- return hidden_states, output_states
-
-
-class AttnUpBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- prev_output_channel: int,
- out_channels: int,
- temb_channels: int,
- resolution_idx: int = None,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- attention_head_dim: int = 1,
- output_scale_factor: float = 1.0,
- upsample_type: str = "conv",
- ):
- super().__init__()
- resnets = []
- attentions = []
-
- self.upsample_type = upsample_type
-
- if attention_head_dim is None:
- logger.warning(
- f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
- )
- attention_head_dim = out_channels
-
- for i in range(num_layers):
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
-
- resnets.append(
- ResnetBlock2D(
- in_channels=resnet_in_channels + res_skip_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
- attentions.append(
- Attention(
- out_channels,
- heads=out_channels // attention_head_dim,
- dim_head=attention_head_dim,
- rescale_output_factor=output_scale_factor,
- eps=resnet_eps,
- norm_num_groups=resnet_groups,
- residual_connection=True,
- bias=True,
- upcast_softmax=True,
- _from_deprecated_attn_block=True,
- )
- )
-
- self.attentions = nn.ModuleList(attentions)
- self.resnets = nn.ModuleList(resnets)
-
- if upsample_type == "conv":
- self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
- elif upsample_type == "resnet":
- self.upsamplers = nn.ModuleList(
- [
- ResnetBlock2D(
- in_channels=out_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- up=True,
- )
- ]
- )
- else:
- self.upsamplers = None
-
- self.resolution_idx = resolution_idx
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
- temb: Optional[torch.FloatTensor] = None,
- upsample_size: Optional[int] = None,
- *args,
- **kwargs,
- ) -> torch.FloatTensor:
- if len(args) > 0 or kwargs.get("scale", None) is not None:
- deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
- deprecate("scale", "1.0.0", deprecation_message)
-
- for resnet, attn in zip(self.resnets, self.attentions):
- # pop res hidden states
- res_hidden_states = res_hidden_states_tuple[-1]
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-
- hidden_states = resnet(hidden_states, temb)
- hidden_states = attn(hidden_states)
-
- if self.upsamplers is not None:
- for upsampler in self.upsamplers:
- if self.upsample_type == "resnet":
- hidden_states = upsampler(hidden_states, temb=temb)
- else:
- hidden_states = upsampler(hidden_states)
-
- return hidden_states
-
-
-class CrossAttnUpBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- prev_output_channel: int,
- temb_channels: int,
- resolution_idx: Optional[int] = None,
- dropout: float = 0.0,
- num_layers: int = 1,
- transformer_layers_per_block: Union[int, Tuple[int]] = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- num_attention_heads: int = 1,
- cross_attention_dim: int = 1280,
- output_scale_factor: float = 1.0,
- add_upsample: bool = True,
- dual_cross_attention: bool = False,
- use_linear_projection: bool = False,
- only_cross_attention: bool = False,
- upcast_attention: bool = False,
- attention_type: str = "default",
- ):
- super().__init__()
- resnets = []
- attentions = []
-
- self.has_cross_attention = True
- self.num_attention_heads = num_attention_heads
-
- if isinstance(transformer_layers_per_block, int):
- transformer_layers_per_block = [transformer_layers_per_block] * num_layers
-
- for i in range(num_layers):
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
-
- resnets.append(
- ResnetBlock2D(
- in_channels=resnet_in_channels + res_skip_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
- if not dual_cross_attention:
- attentions.append(
- Transformer2DModel(
- num_attention_heads,
- out_channels // num_attention_heads,
- in_channels=out_channels,
- num_layers=transformer_layers_per_block[i],
- cross_attention_dim=cross_attention_dim,
- norm_num_groups=resnet_groups,
- use_linear_projection=use_linear_projection,
- only_cross_attention=only_cross_attention,
- upcast_attention=upcast_attention,
- attention_type=attention_type,
- )
- )
- else:
- attentions.append(
- DualTransformer2DModel(
- num_attention_heads,
- out_channels // num_attention_heads,
- in_channels=out_channels,
- num_layers=1,
- cross_attention_dim=cross_attention_dim,
- norm_num_groups=resnet_groups,
- )
- )
- self.attentions = nn.ModuleList(attentions)
- self.resnets = nn.ModuleList(resnets)
-
- if add_upsample:
- self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
- else:
- self.upsamplers = None
-
- self.gradient_checkpointing = False
- self.resolution_idx = resolution_idx
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
- temb: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- upsample_size: Optional[int] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- return_res_samples: Optional[bool]=False,
- up_block_add_samples: Optional[torch.FloatTensor] = None,
- ) -> torch.FloatTensor:
- if cross_attention_kwargs is not None:
- if cross_attention_kwargs.get("scale", None) is not None:
- logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
-
- is_freeu_enabled = (
- getattr(self, "s1", None)
- and getattr(self, "s2", None)
- and getattr(self, "b1", None)
- and getattr(self, "b2", None)
- )
- if return_res_samples:
- output_states=()
-
- for resnet, attn in zip(self.resnets, self.attentions):
- # pop res hidden states
- res_hidden_states = res_hidden_states_tuple[-1]
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
-
- # FreeU: Only operate on the first two stages
- if is_freeu_enabled:
- hidden_states, res_hidden_states = apply_freeu(
- self.resolution_idx,
- hidden_states,
- res_hidden_states,
- s1=self.s1,
- s2=self.s2,
- b1=self.b1,
- b2=self.b2,
- )
-
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-
- if self.training and self.gradient_checkpointing:
-
- def create_custom_forward(module, return_dict=None):
- def custom_forward(*inputs):
- if return_dict is not None:
- return module(*inputs, return_dict=return_dict)
- else:
- return module(*inputs)
-
- return custom_forward
-
- ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet),
- hidden_states,
- temb,
- **ckpt_kwargs,
- )
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- cross_attention_kwargs=cross_attention_kwargs,
- attention_mask=attention_mask,
- encoder_attention_mask=encoder_attention_mask,
- return_dict=False,
- )[0]
- else:
- hidden_states = resnet(hidden_states, temb)
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- cross_attention_kwargs=cross_attention_kwargs,
- attention_mask=attention_mask,
- encoder_attention_mask=encoder_attention_mask,
- return_dict=False,
- )[0]
- if return_res_samples:
- output_states = output_states + (hidden_states,)
- if up_block_add_samples is not None:
- hidden_states = hidden_states + up_block_add_samples.pop(0)
-
- if self.upsamplers is not None:
- for upsampler in self.upsamplers:
- hidden_states = upsampler(hidden_states, upsample_size)
- if return_res_samples:
- output_states = output_states + (hidden_states,)
- if up_block_add_samples is not None:
- hidden_states = hidden_states + up_block_add_samples.pop(0)
-
- if return_res_samples:
- return hidden_states, output_states
- else:
- return hidden_states
-
-class UpBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- prev_output_channel: int,
- out_channels: int,
- temb_channels: int,
- resolution_idx: Optional[int] = None,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- output_scale_factor: float = 1.0,
- add_upsample: bool = True,
- ):
- super().__init__()
- resnets = []
-
- for i in range(num_layers):
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
-
- resnets.append(
- ResnetBlock2D(
- in_channels=resnet_in_channels + res_skip_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
-
- self.resnets = nn.ModuleList(resnets)
-
- if add_upsample:
- self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
- else:
- self.upsamplers = None
-
- self.gradient_checkpointing = False
- self.resolution_idx = resolution_idx
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
- temb: Optional[torch.FloatTensor] = None,
- upsample_size: Optional[int] = None,
- return_res_samples: Optional[bool]=False,
- up_block_add_samples: Optional[torch.FloatTensor] = None,
- *args,
- **kwargs,
- ) -> torch.FloatTensor:
- if len(args) > 0 or kwargs.get("scale", None) is not None:
- deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
- deprecate("scale", "1.0.0", deprecation_message)
-
- is_freeu_enabled = (
- getattr(self, "s1", None)
- and getattr(self, "s2", None)
- and getattr(self, "b1", None)
- and getattr(self, "b2", None)
- )
- if return_res_samples:
- output_states = ()
-
- for resnet in self.resnets:
- # pop res hidden states
- res_hidden_states = res_hidden_states_tuple[-1]
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
-
- # FreeU: Only operate on the first two stages
- if is_freeu_enabled:
- hidden_states, res_hidden_states = apply_freeu(
- self.resolution_idx,
- hidden_states,
- res_hidden_states,
- s1=self.s1,
- s2=self.s2,
- b1=self.b1,
- b2=self.b2,
- )
-
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-
- if self.training and self.gradient_checkpointing:
-
- def create_custom_forward(module):
- def custom_forward(*inputs):
- return module(*inputs)
-
- return custom_forward
-
- if is_torch_version(">=", "1.11.0"):
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
- )
- else:
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet), hidden_states, temb
- )
- else:
- hidden_states = resnet(hidden_states, temb)
-
- if return_res_samples:
- output_states = output_states + (hidden_states,)
- if up_block_add_samples is not None:
- hidden_states = hidden_states + up_block_add_samples.pop(0) # todo: add before or after
-
- if self.upsamplers is not None:
- for upsampler in self.upsamplers:
- hidden_states = upsampler(hidden_states, upsample_size)
-
- if return_res_samples:
- output_states = output_states + (hidden_states,)
- if up_block_add_samples is not None:
- hidden_states = hidden_states + up_block_add_samples.pop(0) # todo: add before or after
-
- if return_res_samples:
- return hidden_states, output_states
- else:
- return hidden_states
-
-
-class UpDecoderBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- resolution_idx: Optional[int] = None,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default", # default, spatial
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- output_scale_factor: float = 1.0,
- add_upsample: bool = True,
- temb_channels: Optional[int] = None,
- ):
- super().__init__()
- resnets = []
-
- for i in range(num_layers):
- input_channels = in_channels if i == 0 else out_channels
-
- if resnet_time_scale_shift == "spatial":
- resnets.append(
- ResnetBlockCondNorm2D(
- in_channels=input_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm="spatial",
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- )
- )
- else:
- resnets.append(
- ResnetBlock2D(
- in_channels=input_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
-
- self.resnets = nn.ModuleList(resnets)
-
- if add_upsample:
- self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
- else:
- self.upsamplers = None
-
- self.resolution_idx = resolution_idx
-
- def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
- for resnet in self.resnets:
- hidden_states = resnet(hidden_states, temb=temb)
-
- if self.upsamplers is not None:
- for upsampler in self.upsamplers:
- hidden_states = upsampler(hidden_states)
-
- return hidden_states
-
-
-class AttnUpDecoderBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- resolution_idx: Optional[int] = None,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- attention_head_dim: int = 1,
- output_scale_factor: float = 1.0,
- add_upsample: bool = True,
- temb_channels: Optional[int] = None,
- ):
- super().__init__()
- resnets = []
- attentions = []
-
- if attention_head_dim is None:
- logger.warning(
- f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
- )
- attention_head_dim = out_channels
-
- for i in range(num_layers):
- input_channels = in_channels if i == 0 else out_channels
-
- if resnet_time_scale_shift == "spatial":
- resnets.append(
- ResnetBlockCondNorm2D(
- in_channels=input_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm="spatial",
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- )
- )
- else:
- resnets.append(
- ResnetBlock2D(
- in_channels=input_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
-
- attentions.append(
- Attention(
- out_channels,
- heads=out_channels // attention_head_dim,
- dim_head=attention_head_dim,
- rescale_output_factor=output_scale_factor,
- eps=resnet_eps,
- norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None,
- spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
- residual_connection=True,
- bias=True,
- upcast_softmax=True,
- _from_deprecated_attn_block=True,
- )
- )
-
- self.attentions = nn.ModuleList(attentions)
- self.resnets = nn.ModuleList(resnets)
-
- if add_upsample:
- self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
- else:
- self.upsamplers = None
-
- self.resolution_idx = resolution_idx
-
- def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
- for resnet, attn in zip(self.resnets, self.attentions):
- hidden_states = resnet(hidden_states, temb=temb)
- hidden_states = attn(hidden_states, temb=temb)
-
- if self.upsamplers is not None:
- for upsampler in self.upsamplers:
- hidden_states = upsampler(hidden_states)
-
- return hidden_states
-
-
-class AttnSkipUpBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- prev_output_channel: int,
- out_channels: int,
- temb_channels: int,
- resolution_idx: Optional[int] = None,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_pre_norm: bool = True,
- attention_head_dim: int = 1,
- output_scale_factor: float = np.sqrt(2.0),
- add_upsample: bool = True,
- ):
- super().__init__()
- self.attentions = nn.ModuleList([])
- self.resnets = nn.ModuleList([])
-
- for i in range(num_layers):
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
-
- self.resnets.append(
- ResnetBlock2D(
- in_channels=resnet_in_channels + res_skip_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=min(resnet_in_channels + res_skip_channels // 4, 32),
- groups_out=min(out_channels // 4, 32),
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
-
- if attention_head_dim is None:
- logger.warning(
- f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
- )
- attention_head_dim = out_channels
-
- self.attentions.append(
- Attention(
- out_channels,
- heads=out_channels // attention_head_dim,
- dim_head=attention_head_dim,
- rescale_output_factor=output_scale_factor,
- eps=resnet_eps,
- norm_num_groups=32,
- residual_connection=True,
- bias=True,
- upcast_softmax=True,
- _from_deprecated_attn_block=True,
- )
- )
-
- self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
- if add_upsample:
- self.resnet_up = ResnetBlock2D(
- in_channels=out_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=min(out_channels // 4, 32),
- groups_out=min(out_channels // 4, 32),
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- use_in_shortcut=True,
- up=True,
- kernel="fir",
- )
- self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- self.skip_norm = torch.nn.GroupNorm(
- num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
- )
- self.act = nn.SiLU()
- else:
- self.resnet_up = None
- self.skip_conv = None
- self.skip_norm = None
- self.act = None
-
- self.resolution_idx = resolution_idx
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
- temb: Optional[torch.FloatTensor] = None,
- skip_sample=None,
- *args,
- **kwargs,
- ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
- if len(args) > 0 or kwargs.get("scale", None) is not None:
- deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
- deprecate("scale", "1.0.0", deprecation_message)
-
- for resnet in self.resnets:
- # pop res hidden states
- res_hidden_states = res_hidden_states_tuple[-1]
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-
- hidden_states = resnet(hidden_states, temb)
-
- hidden_states = self.attentions[0](hidden_states)
-
- if skip_sample is not None:
- skip_sample = self.upsampler(skip_sample)
- else:
- skip_sample = 0
-
- if self.resnet_up is not None:
- skip_sample_states = self.skip_norm(hidden_states)
- skip_sample_states = self.act(skip_sample_states)
- skip_sample_states = self.skip_conv(skip_sample_states)
-
- skip_sample = skip_sample + skip_sample_states
-
- hidden_states = self.resnet_up(hidden_states, temb)
-
- return hidden_states, skip_sample
-
-
-class SkipUpBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- prev_output_channel: int,
- out_channels: int,
- temb_channels: int,
- resolution_idx: Optional[int] = None,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_pre_norm: bool = True,
- output_scale_factor: float = np.sqrt(2.0),
- add_upsample: bool = True,
- upsample_padding: int = 1,
- ):
- super().__init__()
- self.resnets = nn.ModuleList([])
-
- for i in range(num_layers):
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
-
- self.resnets.append(
- ResnetBlock2D(
- in_channels=resnet_in_channels + res_skip_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
- groups_out=min(out_channels // 4, 32),
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- )
- )
-
- self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
- if add_upsample:
- self.resnet_up = ResnetBlock2D(
- in_channels=out_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=min(out_channels // 4, 32),
- groups_out=min(out_channels // 4, 32),
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- use_in_shortcut=True,
- up=True,
- kernel="fir",
- )
- self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- self.skip_norm = torch.nn.GroupNorm(
- num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
- )
- self.act = nn.SiLU()
- else:
- self.resnet_up = None
- self.skip_conv = None
- self.skip_norm = None
- self.act = None
-
- self.resolution_idx = resolution_idx
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
- temb: Optional[torch.FloatTensor] = None,
- skip_sample=None,
- *args,
- **kwargs,
- ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
- if len(args) > 0 or kwargs.get("scale", None) is not None:
- deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
- deprecate("scale", "1.0.0", deprecation_message)
-
- for resnet in self.resnets:
- # pop res hidden states
- res_hidden_states = res_hidden_states_tuple[-1]
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-
- hidden_states = resnet(hidden_states, temb)
-
- if skip_sample is not None:
- skip_sample = self.upsampler(skip_sample)
- else:
- skip_sample = 0
-
- if self.resnet_up is not None:
- skip_sample_states = self.skip_norm(hidden_states)
- skip_sample_states = self.act(skip_sample_states)
- skip_sample_states = self.skip_conv(skip_sample_states)
-
- skip_sample = skip_sample + skip_sample_states
-
- hidden_states = self.resnet_up(hidden_states, temb)
-
- return hidden_states, skip_sample
-
-
-class ResnetUpsampleBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- prev_output_channel: int,
- out_channels: int,
- temb_channels: int,
- resolution_idx: Optional[int] = None,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- output_scale_factor: float = 1.0,
- add_upsample: bool = True,
- skip_time_act: bool = False,
- ):
- super().__init__()
- resnets = []
-
- for i in range(num_layers):
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
-
- resnets.append(
- ResnetBlock2D(
- in_channels=resnet_in_channels + res_skip_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- skip_time_act=skip_time_act,
- )
- )
-
- self.resnets = nn.ModuleList(resnets)
-
- if add_upsample:
- self.upsamplers = nn.ModuleList(
- [
- ResnetBlock2D(
- in_channels=out_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- skip_time_act=skip_time_act,
- up=True,
- )
- ]
- )
- else:
- self.upsamplers = None
-
- self.gradient_checkpointing = False
- self.resolution_idx = resolution_idx
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
- temb: Optional[torch.FloatTensor] = None,
- upsample_size: Optional[int] = None,
- *args,
- **kwargs,
- ) -> torch.FloatTensor:
- if len(args) > 0 or kwargs.get("scale", None) is not None:
- deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
- deprecate("scale", "1.0.0", deprecation_message)
-
- for resnet in self.resnets:
- # pop res hidden states
- res_hidden_states = res_hidden_states_tuple[-1]
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-
- if self.training and self.gradient_checkpointing:
-
- def create_custom_forward(module):
- def custom_forward(*inputs):
- return module(*inputs)
-
- return custom_forward
-
- if is_torch_version(">=", "1.11.0"):
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
- )
- else:
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet), hidden_states, temb
- )
- else:
- hidden_states = resnet(hidden_states, temb)
-
- if self.upsamplers is not None:
- for upsampler in self.upsamplers:
- hidden_states = upsampler(hidden_states, temb)
-
- return hidden_states
-
-
-class SimpleCrossAttnUpBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- prev_output_channel: int,
- temb_channels: int,
- resolution_idx: Optional[int] = None,
- dropout: float = 0.0,
- num_layers: int = 1,
- resnet_eps: float = 1e-6,
- resnet_time_scale_shift: str = "default",
- resnet_act_fn: str = "swish",
- resnet_groups: int = 32,
- resnet_pre_norm: bool = True,
- attention_head_dim: int = 1,
- cross_attention_dim: int = 1280,
- output_scale_factor: float = 1.0,
- add_upsample: bool = True,
- skip_time_act: bool = False,
- only_cross_attention: bool = False,
- cross_attention_norm: Optional[str] = None,
- ):
- super().__init__()
- resnets = []
- attentions = []
-
- self.has_cross_attention = True
- self.attention_head_dim = attention_head_dim
-
- self.num_heads = out_channels // self.attention_head_dim
-
- for i in range(num_layers):
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
-
- resnets.append(
- ResnetBlock2D(
- in_channels=resnet_in_channels + res_skip_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- skip_time_act=skip_time_act,
- )
- )
-
- processor = (
- AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
- )
-
- attentions.append(
- Attention(
- query_dim=out_channels,
- cross_attention_dim=out_channels,
- heads=self.num_heads,
- dim_head=self.attention_head_dim,
- added_kv_proj_dim=cross_attention_dim,
- norm_num_groups=resnet_groups,
- bias=True,
- upcast_softmax=True,
- only_cross_attention=only_cross_attention,
- cross_attention_norm=cross_attention_norm,
- processor=processor,
- )
- )
- self.attentions = nn.ModuleList(attentions)
- self.resnets = nn.ModuleList(resnets)
-
- if add_upsample:
- self.upsamplers = nn.ModuleList(
- [
- ResnetBlock2D(
- in_channels=out_channels,
- out_channels=out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=resnet_groups,
- dropout=dropout,
- time_embedding_norm=resnet_time_scale_shift,
- non_linearity=resnet_act_fn,
- output_scale_factor=output_scale_factor,
- pre_norm=resnet_pre_norm,
- skip_time_act=skip_time_act,
- up=True,
- )
- ]
- )
- else:
- self.upsamplers = None
-
- self.gradient_checkpointing = False
- self.resolution_idx = resolution_idx
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
- temb: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- upsample_size: Optional[int] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- ) -> torch.FloatTensor:
- cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
- if cross_attention_kwargs.get("scale", None) is not None:
- logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
-
- if attention_mask is None:
- # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
- mask = None if encoder_hidden_states is None else encoder_attention_mask
- else:
- # when attention_mask is defined: we don't even check for encoder_attention_mask.
- # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
- # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
- # then we can simplify this whole if/else block to:
- # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
- mask = attention_mask
-
- for resnet, attn in zip(self.resnets, self.attentions):
- # resnet
- # pop res hidden states
- res_hidden_states = res_hidden_states_tuple[-1]
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-
- if self.training and self.gradient_checkpointing:
-
- def create_custom_forward(module, return_dict=None):
- def custom_forward(*inputs):
- if return_dict is not None:
- return module(*inputs, return_dict=return_dict)
- else:
- return module(*inputs)
-
- return custom_forward
-
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=mask,
- **cross_attention_kwargs,
- )
- else:
- hidden_states = resnet(hidden_states, temb)
-
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=mask,
- **cross_attention_kwargs,
- )
-
- if self.upsamplers is not None:
- for upsampler in self.upsamplers:
- hidden_states = upsampler(hidden_states, temb)
-
- return hidden_states
-
-
-class KUpBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- temb_channels: int,
- resolution_idx: int,
- dropout: float = 0.0,
- num_layers: int = 5,
- resnet_eps: float = 1e-5,
- resnet_act_fn: str = "gelu",
- resnet_group_size: Optional[int] = 32,
- add_upsample: bool = True,
- ):
- super().__init__()
- resnets = []
- k_in_channels = 2 * out_channels
- k_out_channels = in_channels
- num_layers = num_layers - 1
-
- for i in range(num_layers):
- in_channels = k_in_channels if i == 0 else out_channels
- groups = in_channels // resnet_group_size
- groups_out = out_channels // resnet_group_size
-
- resnets.append(
- ResnetBlockCondNorm2D(
- in_channels=in_channels,
- out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=groups,
- groups_out=groups_out,
- dropout=dropout,
- non_linearity=resnet_act_fn,
- time_embedding_norm="ada_group",
- conv_shortcut_bias=False,
- )
- )
-
- self.resnets = nn.ModuleList(resnets)
-
- if add_upsample:
- self.upsamplers = nn.ModuleList([KUpsample2D()])
- else:
- self.upsamplers = None
-
- self.gradient_checkpointing = False
- self.resolution_idx = resolution_idx
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
- temb: Optional[torch.FloatTensor] = None,
- upsample_size: Optional[int] = None,
- *args,
- **kwargs,
- ) -> torch.FloatTensor:
- if len(args) > 0 or kwargs.get("scale", None) is not None:
- deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
- deprecate("scale", "1.0.0", deprecation_message)
-
- res_hidden_states_tuple = res_hidden_states_tuple[-1]
- if res_hidden_states_tuple is not None:
- hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)
-
- for resnet in self.resnets:
- if self.training and self.gradient_checkpointing:
-
- def create_custom_forward(module):
- def custom_forward(*inputs):
- return module(*inputs)
-
- return custom_forward
-
- if is_torch_version(">=", "1.11.0"):
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
- )
- else:
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet), hidden_states, temb
- )
- else:
- hidden_states = resnet(hidden_states, temb)
-
- if self.upsamplers is not None:
- for upsampler in self.upsamplers:
- hidden_states = upsampler(hidden_states)
-
- return hidden_states
-
-
-class KCrossAttnUpBlock2D(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- temb_channels: int,
- resolution_idx: int,
- dropout: float = 0.0,
- num_layers: int = 4,
- resnet_eps: float = 1e-5,
- resnet_act_fn: str = "gelu",
- resnet_group_size: int = 32,
- attention_head_dim: int = 1, # attention dim_head
- cross_attention_dim: int = 768,
- add_upsample: bool = True,
- upcast_attention: bool = False,
- ):
- super().__init__()
- resnets = []
- attentions = []
-
- is_first_block = in_channels == out_channels == temb_channels
- is_middle_block = in_channels != out_channels
- add_self_attention = True if is_first_block else False
-
- self.has_cross_attention = True
- self.attention_head_dim = attention_head_dim
-
- # in_channels, and out_channels for the block (k-unet)
- k_in_channels = out_channels if is_first_block else 2 * out_channels
- k_out_channels = in_channels
-
- num_layers = num_layers - 1
-
- for i in range(num_layers):
- in_channels = k_in_channels if i == 0 else out_channels
- groups = in_channels // resnet_group_size
- groups_out = out_channels // resnet_group_size
-
- if is_middle_block and (i == num_layers - 1):
- conv_2d_out_channels = k_out_channels
- else:
- conv_2d_out_channels = None
-
- resnets.append(
- ResnetBlockCondNorm2D(
- in_channels=in_channels,
- out_channels=out_channels,
- conv_2d_out_channels=conv_2d_out_channels,
- temb_channels=temb_channels,
- eps=resnet_eps,
- groups=groups,
- groups_out=groups_out,
- dropout=dropout,
- non_linearity=resnet_act_fn,
- time_embedding_norm="ada_group",
- conv_shortcut_bias=False,
- )
- )
- attentions.append(
- KAttentionBlock(
- k_out_channels if (i == num_layers - 1) else out_channels,
- k_out_channels // attention_head_dim
- if (i == num_layers - 1)
- else out_channels // attention_head_dim,
- attention_head_dim,
- cross_attention_dim=cross_attention_dim,
- temb_channels=temb_channels,
- attention_bias=True,
- add_self_attention=add_self_attention,
- cross_attention_norm="layer_norm",
- upcast_attention=upcast_attention,
- )
- )
-
- self.resnets = nn.ModuleList(resnets)
- self.attentions = nn.ModuleList(attentions)
-
- if add_upsample:
- self.upsamplers = nn.ModuleList([KUpsample2D()])
- else:
- self.upsamplers = None
-
- self.gradient_checkpointing = False
- self.resolution_idx = resolution_idx
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
- temb: Optional[torch.FloatTensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- upsample_size: Optional[int] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- ) -> torch.FloatTensor:
- res_hidden_states_tuple = res_hidden_states_tuple[-1]
- if res_hidden_states_tuple is not None:
- hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)
-
- for resnet, attn in zip(self.resnets, self.attentions):
- if self.training and self.gradient_checkpointing:
-
- def create_custom_forward(module, return_dict=None):
- def custom_forward(*inputs):
- if return_dict is not None:
- return module(*inputs, return_dict=return_dict)
- else:
- return module(*inputs)
-
- return custom_forward
-
- ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
- hidden_states = torch.utils.checkpoint.checkpoint(
- create_custom_forward(resnet),
- hidden_states,
- temb,
- **ckpt_kwargs,
- )
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- emb=temb,
- attention_mask=attention_mask,
- cross_attention_kwargs=cross_attention_kwargs,
- encoder_attention_mask=encoder_attention_mask,
- )
- else:
- hidden_states = resnet(hidden_states, temb)
- hidden_states = attn(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- emb=temb,
- attention_mask=attention_mask,
- cross_attention_kwargs=cross_attention_kwargs,
- encoder_attention_mask=encoder_attention_mask,
- )
-
- if self.upsamplers is not None:
- for upsampler in self.upsamplers:
- hidden_states = upsampler(hidden_states)
-
- return hidden_states
-
-
-# can potentially later be renamed to `No-feed-forward` attention
-class KAttentionBlock(nn.Module):
- r"""
- A basic Transformer block.
-
- Parameters:
- dim (`int`): The number of channels in the input and output.
- num_attention_heads (`int`): The number of heads to use for multi-head attention.
- attention_head_dim (`int`): The number of channels in each head.
- dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
- cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
- attention_bias (`bool`, *optional*, defaults to `False`):
- Configure if the attention layers should contain a bias parameter.
- upcast_attention (`bool`, *optional*, defaults to `False`):
- Set to `True` to upcast the attention computation to `float32`.
- temb_channels (`int`, *optional*, defaults to 768):
- The number of channels in the token embedding.
- add_self_attention (`bool`, *optional*, defaults to `False`):
- Set to `True` to add self-attention to the block.
- cross_attention_norm (`str`, *optional*, defaults to `None`):
- The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
- group_size (`int`, *optional*, defaults to 32):
- The number of groups to separate the channels into for group normalization.
- """
-
- def __init__(
- self,
- dim: int,
- num_attention_heads: int,
- attention_head_dim: int,
- dropout: float = 0.0,
- cross_attention_dim: Optional[int] = None,
- attention_bias: bool = False,
- upcast_attention: bool = False,
- temb_channels: int = 768, # for ada_group_norm
- add_self_attention: bool = False,
- cross_attention_norm: Optional[str] = None,
- group_size: int = 32,
- ):
- super().__init__()
- self.add_self_attention = add_self_attention
-
- # 1. Self-Attn
- if add_self_attention:
- self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
- self.attn1 = Attention(
- query_dim=dim,
- heads=num_attention_heads,
- dim_head=attention_head_dim,
- dropout=dropout,
- bias=attention_bias,
- cross_attention_dim=None,
- cross_attention_norm=None,
- )
-
- # 2. Cross-Attn
- self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
- self.attn2 = Attention(
- query_dim=dim,
- cross_attention_dim=cross_attention_dim,
- heads=num_attention_heads,
- dim_head=attention_head_dim,
- dropout=dropout,
- bias=attention_bias,
- upcast_attention=upcast_attention,
- cross_attention_norm=cross_attention_norm,
- )
-
- def _to_3d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor:
- return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)
-
- def _to_4d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor:
- return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- # TODO: mark emb as non-optional (self.norm2 requires it).
- # requires assessing impact of change to positional param interface.
- emb: Optional[torch.FloatTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
- ) -> torch.FloatTensor:
- cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
- if cross_attention_kwargs.get("scale", None) is not None:
- logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
-
- # 1. Self-Attention
- if self.add_self_attention:
- norm_hidden_states = self.norm1(hidden_states, emb)
-
- height, weight = norm_hidden_states.shape[2:]
- norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
-
- attn_output = self.attn1(
- norm_hidden_states,
- encoder_hidden_states=None,
- attention_mask=attention_mask,
- **cross_attention_kwargs,
- )
- attn_output = self._to_4d(attn_output, height, weight)
-
- hidden_states = attn_output + hidden_states
-
- # 2. Cross-Attention/None
- norm_hidden_states = self.norm2(hidden_states, emb)
-
- height, weight = norm_hidden_states.shape[2:]
- norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
- attn_output = self.attn2(
- norm_hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask,
- **cross_attention_kwargs,
- )
- attn_output = self._to_4d(attn_output, height, weight)
-
- hidden_states = attn_output + hidden_states
-
- return hidden_states
diff --git a/MagicQuill/brushnet/unet_2d_condition.py b/MagicQuill/brushnet/unet_2d_condition.py
deleted file mode 100644
index 088e0efdba9f481c57137e5413e795fcca74c6a5..0000000000000000000000000000000000000000
--- a/MagicQuill/brushnet/unet_2d_condition.py
+++ /dev/null
@@ -1,1355 +0,0 @@
-# Copyright 2024 The HuggingFace Team. All rights reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-from dataclasses import dataclass
-from typing import Any, Dict, List, Optional, Tuple, Union
-
-import torch
-import torch.nn as nn
-import torch.utils.checkpoint
-
-from diffusers.configuration_utils import ConfigMixin, register_to_config
-from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
-from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
-from diffusers.models.activations import get_activation
-from diffusers.models.attention_processor import (
- ADDED_KV_ATTENTION_PROCESSORS,
- CROSS_ATTENTION_PROCESSORS,
- Attention,
- AttentionProcessor,
- AttnAddedKVProcessor,
- AttnProcessor,
-)
-from diffusers.models.embeddings import (
- GaussianFourierProjection,
- GLIGENTextBoundingboxProjection,
- ImageHintTimeEmbedding,
- ImageProjection,
- ImageTimeEmbedding,
- TextImageProjection,
- TextImageTimeEmbedding,
- TextTimeEmbedding,
- TimestepEmbedding,
- Timesteps,
-)
-from diffusers.models.modeling_utils import ModelMixin
-from .unet_2d_blocks import (
- get_down_block,
- get_mid_block,
- get_up_block,
-)
-
-
-logger = logging.get_logger(__name__) # pylint: disable=invalid-name
-
-
-@dataclass
-class UNet2DConditionOutput(BaseOutput):
- """
- The output of [`UNet2DConditionModel`].
-
- Args:
- sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
- """
-
- sample: torch.FloatTensor = None
-
-
-class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
- r"""
- A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
- shaped output.
-
- This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
- for all models (such as downloading or saving).
-
- Parameters:
- sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
- Height and width of input/output sample.
- in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
- out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
- center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
- flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
- Whether to flip the sin to cos in the time embedding.
- freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
- down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
- The tuple of downsample blocks to use.
- mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
- Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
- `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
- up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
- The tuple of upsample blocks to use.
- only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
- Whether to include self-attention in the basic transformer blocks, see
- [`~models.attention.BasicTransformerBlock`].
- block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
- The tuple of output channels for each block.
- layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
- downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
- mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
- dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
- act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
- norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
- If `None`, normalization and activation layers is skipped in post-processing.
- norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
- cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
- The dimension of the cross attention features.
- transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
- The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
- [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
- [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
- reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
- The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
- blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
- [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
- [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
- encoder_hid_dim (`int`, *optional*, defaults to None):
- If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
- dimension to `cross_attention_dim`.
- encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
- If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
- embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
- attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
- num_attention_heads (`int`, *optional*):
- The number of attention heads. If not defined, defaults to `attention_head_dim`
- resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
- for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
- class_embed_type (`str`, *optional*, defaults to `None`):
- The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
- `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
- addition_embed_type (`str`, *optional*, defaults to `None`):
- Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
- "text". "text" will use the `TextTimeEmbedding` layer.
- addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
- Dimension for the timestep embeddings.
- num_class_embeds (`int`, *optional*, defaults to `None`):
- Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
- class conditioning with `class_embed_type` equal to `None`.
- time_embedding_type (`str`, *optional*, defaults to `positional`):
- The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
- time_embedding_dim (`int`, *optional*, defaults to `None`):
- An optional override for the dimension of the projected time embedding.
- time_embedding_act_fn (`str`, *optional*, defaults to `None`):
- Optional activation function to use only once on the time embeddings before they are passed to the rest of
- the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
- timestep_post_act (`str`, *optional*, defaults to `None`):
- The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
- time_cond_proj_dim (`int`, *optional*, defaults to `None`):
- The dimension of `cond_proj` layer in the timestep embedding.
- conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
- conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
- projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
- `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
- class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
- embeddings with the class embeddings.
- mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
- Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
- `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
- `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
- otherwise.
- """
-
- _supports_gradient_checkpointing = True
-
- @register_to_config
- def __init__(
- self,
- sample_size: Optional[int] = None,
- in_channels: int = 4,
- out_channels: int = 4,
- center_input_sample: bool = False,
- flip_sin_to_cos: bool = True,
- freq_shift: int = 0,
- down_block_types: Tuple[str] = (
- "CrossAttnDownBlock2D",
- "CrossAttnDownBlock2D",
- "CrossAttnDownBlock2D",
- "DownBlock2D",
- ),
- mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
- up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
- only_cross_attention: Union[bool, Tuple[bool]] = False,
- block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
- layers_per_block: Union[int, Tuple[int]] = 2,
- downsample_padding: int = 1,
- mid_block_scale_factor: float = 1,
- dropout: float = 0.0,
- act_fn: str = "silu",
- norm_num_groups: Optional[int] = 32,
- norm_eps: float = 1e-5,
- cross_attention_dim: Union[int, Tuple[int]] = 1280,
- transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
- reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
- encoder_hid_dim: Optional[int] = None,
- encoder_hid_dim_type: Optional[str] = None,
- attention_head_dim: Union[int, Tuple[int]] = 8,
- num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
- dual_cross_attention: bool = False,
- use_linear_projection: bool = False,
- class_embed_type: Optional[str] = None,
- addition_embed_type: Optional[str] = None,
- addition_time_embed_dim: Optional[int] = None,
- num_class_embeds: Optional[int] = None,
- upcast_attention: bool = False,
- resnet_time_scale_shift: str = "default",
- resnet_skip_time_act: bool = False,
- resnet_out_scale_factor: float = 1.0,
- time_embedding_type: str = "positional",
- time_embedding_dim: Optional[int] = None,
- time_embedding_act_fn: Optional[str] = None,
- timestep_post_act: Optional[str] = None,
- time_cond_proj_dim: Optional[int] = None,
- conv_in_kernel: int = 3,
- conv_out_kernel: int = 3,
- projection_class_embeddings_input_dim: Optional[int] = None,
- attention_type: str = "default",
- class_embeddings_concat: bool = False,
- mid_block_only_cross_attention: Optional[bool] = None,
- cross_attention_norm: Optional[str] = None,
- addition_embed_type_num_heads: int = 64,
- ):
- super().__init__()
-
- self.sample_size = sample_size
-
- if num_attention_heads is not None:
- raise ValueError(
- "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
- )
-
- # If `num_attention_heads` is not defined (which is the case for most models)
- # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
- # The reason for this behavior is to correct for incorrectly named variables that were introduced
- # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
- # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
- # which is why we correct for the naming here.
- num_attention_heads = num_attention_heads or attention_head_dim
-
- # Check inputs
- self._check_config(
- down_block_types=down_block_types,
- up_block_types=up_block_types,
- only_cross_attention=only_cross_attention,
- block_out_channels=block_out_channels,
- layers_per_block=layers_per_block,
- cross_attention_dim=cross_attention_dim,
- transformer_layers_per_block=transformer_layers_per_block,
- reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
- attention_head_dim=attention_head_dim,
- num_attention_heads=num_attention_heads,
- )
-
- # input
- conv_in_padding = (conv_in_kernel - 1) // 2
- self.conv_in = nn.Conv2d(
- in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
- )
-
- # time
- time_embed_dim, timestep_input_dim = self._set_time_proj(
- time_embedding_type,
- block_out_channels=block_out_channels,
- flip_sin_to_cos=flip_sin_to_cos,
- freq_shift=freq_shift,
- time_embedding_dim=time_embedding_dim,
- )
-
- self.time_embedding = TimestepEmbedding(
- timestep_input_dim,
- time_embed_dim,
- act_fn=act_fn,
- post_act_fn=timestep_post_act,
- cond_proj_dim=time_cond_proj_dim,
- )
-
- self._set_encoder_hid_proj(
- encoder_hid_dim_type,
- cross_attention_dim=cross_attention_dim,
- encoder_hid_dim=encoder_hid_dim,
- )
-
- # class embedding
- self._set_class_embedding(
- class_embed_type,
- act_fn=act_fn,
- num_class_embeds=num_class_embeds,
- projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
- time_embed_dim=time_embed_dim,
- timestep_input_dim=timestep_input_dim,
- )
-
- self._set_add_embedding(
- addition_embed_type,
- addition_embed_type_num_heads=addition_embed_type_num_heads,
- addition_time_embed_dim=addition_time_embed_dim,
- cross_attention_dim=cross_attention_dim,
- encoder_hid_dim=encoder_hid_dim,
- flip_sin_to_cos=flip_sin_to_cos,
- freq_shift=freq_shift,
- projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
- time_embed_dim=time_embed_dim,
- )
-
- if time_embedding_act_fn is None:
- self.time_embed_act = None
- else:
- self.time_embed_act = get_activation(time_embedding_act_fn)
-
- self.down_blocks = nn.ModuleList([])
- self.up_blocks = nn.ModuleList([])
-
- if isinstance(only_cross_attention, bool):
- if mid_block_only_cross_attention is None:
- mid_block_only_cross_attention = only_cross_attention
-
- only_cross_attention = [only_cross_attention] * len(down_block_types)
-
- if mid_block_only_cross_attention is None:
- mid_block_only_cross_attention = False
-
- if isinstance(num_attention_heads, int):
- num_attention_heads = (num_attention_heads,) * len(down_block_types)
-
- if isinstance(attention_head_dim, int):
- attention_head_dim = (attention_head_dim,) * len(down_block_types)
-
- if isinstance(cross_attention_dim, int):
- cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
-
- if isinstance(layers_per_block, int):
- layers_per_block = [layers_per_block] * len(down_block_types)
-
- if isinstance(transformer_layers_per_block, int):
- transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
-
- if class_embeddings_concat:
- # The time embeddings are concatenated with the class embeddings. The dimension of the
- # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
- # regular time embeddings
- blocks_time_embed_dim = time_embed_dim * 2
- else:
- blocks_time_embed_dim = time_embed_dim
-
- # down
- output_channel = block_out_channels[0]
- for i, down_block_type in enumerate(down_block_types):
- input_channel = output_channel
- output_channel = block_out_channels[i]
- is_final_block = i == len(block_out_channels) - 1
-
- down_block = get_down_block(
- down_block_type,
- num_layers=layers_per_block[i],
- transformer_layers_per_block=transformer_layers_per_block[i],
- in_channels=input_channel,
- out_channels=output_channel,
- temb_channels=blocks_time_embed_dim,
- add_downsample=not is_final_block,
- resnet_eps=norm_eps,
- resnet_act_fn=act_fn,
- resnet_groups=norm_num_groups,
- cross_attention_dim=cross_attention_dim[i],
- num_attention_heads=num_attention_heads[i],
- downsample_padding=downsample_padding,
- dual_cross_attention=dual_cross_attention,
- use_linear_projection=use_linear_projection,
- only_cross_attention=only_cross_attention[i],
- upcast_attention=upcast_attention,
- resnet_time_scale_shift=resnet_time_scale_shift,
- attention_type=attention_type,
- resnet_skip_time_act=resnet_skip_time_act,
- resnet_out_scale_factor=resnet_out_scale_factor,
- cross_attention_norm=cross_attention_norm,
- attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
- dropout=dropout,
- )
- self.down_blocks.append(down_block)
-
- # mid
- self.mid_block = get_mid_block(
- mid_block_type,
- temb_channels=blocks_time_embed_dim,
- in_channels=block_out_channels[-1],
- resnet_eps=norm_eps,
- resnet_act_fn=act_fn,
- resnet_groups=norm_num_groups,
- output_scale_factor=mid_block_scale_factor,
- transformer_layers_per_block=transformer_layers_per_block[-1],
- num_attention_heads=num_attention_heads[-1],
- cross_attention_dim=cross_attention_dim[-1],
- dual_cross_attention=dual_cross_attention,
- use_linear_projection=use_linear_projection,
- mid_block_only_cross_attention=mid_block_only_cross_attention,
- upcast_attention=upcast_attention,
- resnet_time_scale_shift=resnet_time_scale_shift,
- attention_type=attention_type,
- resnet_skip_time_act=resnet_skip_time_act,
- cross_attention_norm=cross_attention_norm,
- attention_head_dim=attention_head_dim[-1],
- dropout=dropout,
- )
-
- # count how many layers upsample the images
- self.num_upsamplers = 0
-
- # up
- reversed_block_out_channels = list(reversed(block_out_channels))
- reversed_num_attention_heads = list(reversed(num_attention_heads))
- reversed_layers_per_block = list(reversed(layers_per_block))
- reversed_cross_attention_dim = list(reversed(cross_attention_dim))
- reversed_transformer_layers_per_block = (
- list(reversed(transformer_layers_per_block))
- if reverse_transformer_layers_per_block is None
- else reverse_transformer_layers_per_block
- )
- only_cross_attention = list(reversed(only_cross_attention))
-
- output_channel = reversed_block_out_channels[0]
- for i, up_block_type in enumerate(up_block_types):
- is_final_block = i == len(block_out_channels) - 1
-
- prev_output_channel = output_channel
- output_channel = reversed_block_out_channels[i]
- input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
-
- # add upsample block for all BUT final layer
- if not is_final_block:
- add_upsample = True
- self.num_upsamplers += 1
- else:
- add_upsample = False
-
- up_block = get_up_block(
- up_block_type,
- num_layers=reversed_layers_per_block[i] + 1,
- transformer_layers_per_block=reversed_transformer_layers_per_block[i],
- in_channels=input_channel,
- out_channels=output_channel,
- prev_output_channel=prev_output_channel,
- temb_channels=blocks_time_embed_dim,
- add_upsample=add_upsample,
- resnet_eps=norm_eps,
- resnet_act_fn=act_fn,
- resolution_idx=i,
- resnet_groups=norm_num_groups,
- cross_attention_dim=reversed_cross_attention_dim[i],
- num_attention_heads=reversed_num_attention_heads[i],
- dual_cross_attention=dual_cross_attention,
- use_linear_projection=use_linear_projection,
- only_cross_attention=only_cross_attention[i],
- upcast_attention=upcast_attention,
- resnet_time_scale_shift=resnet_time_scale_shift,
- attention_type=attention_type,
- resnet_skip_time_act=resnet_skip_time_act,
- resnet_out_scale_factor=resnet_out_scale_factor,
- cross_attention_norm=cross_attention_norm,
- attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
- dropout=dropout,
- )
- self.up_blocks.append(up_block)
- prev_output_channel = output_channel
-
- # out
- if norm_num_groups is not None:
- self.conv_norm_out = nn.GroupNorm(
- num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
- )
-
- self.conv_act = get_activation(act_fn)
-
- else:
- self.conv_norm_out = None
- self.conv_act = None
-
- conv_out_padding = (conv_out_kernel - 1) // 2
- self.conv_out = nn.Conv2d(
- block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
- )
-
- self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
-
- def _check_config(
- self,
- down_block_types: Tuple[str],
- up_block_types: Tuple[str],
- only_cross_attention: Union[bool, Tuple[bool]],
- block_out_channels: Tuple[int],
- layers_per_block: Union[int, Tuple[int]],
- cross_attention_dim: Union[int, Tuple[int]],
- transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
- reverse_transformer_layers_per_block: bool,
- attention_head_dim: int,
- num_attention_heads: Optional[Union[int, Tuple[int]]],
- ):
- if len(down_block_types) != len(up_block_types):
- raise ValueError(
- f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
- )
-
- if len(block_out_channels) != len(down_block_types):
- raise ValueError(
- f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
- )
-
- if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
- raise ValueError(
- f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
- )
-
- if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
- raise ValueError(
- f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
- )
-
- if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
- raise ValueError(
- f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
- )
-
- if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
- raise ValueError(
- f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
- )
-
- if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
- raise ValueError(
- f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
- )
- if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
- for layer_number_per_block in transformer_layers_per_block:
- if isinstance(layer_number_per_block, list):
- raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
-
- def _set_time_proj(
- self,
- time_embedding_type: str,
- block_out_channels: int,
- flip_sin_to_cos: bool,
- freq_shift: float,
- time_embedding_dim: int,
- ) -> Tuple[int, int]:
- if time_embedding_type == "fourier":
- time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
- if time_embed_dim % 2 != 0:
- raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
- self.time_proj = GaussianFourierProjection(
- time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
- )
- timestep_input_dim = time_embed_dim
- elif time_embedding_type == "positional":
- time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
-
- self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
- timestep_input_dim = block_out_channels[0]
- else:
- raise ValueError(
- f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
- )
-
- return time_embed_dim, timestep_input_dim
-
- def _set_encoder_hid_proj(
- self,
- encoder_hid_dim_type: Optional[str],
- cross_attention_dim: Union[int, Tuple[int]],
- encoder_hid_dim: Optional[int],
- ):
- if encoder_hid_dim_type is None and encoder_hid_dim is not None:
- encoder_hid_dim_type = "text_proj"
- self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
- logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
-
- if encoder_hid_dim is None and encoder_hid_dim_type is not None:
- raise ValueError(
- f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
- )
-
- if encoder_hid_dim_type == "text_proj":
- self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
- elif encoder_hid_dim_type == "text_image_proj":
- # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
- # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
- self.encoder_hid_proj = TextImageProjection(
- text_embed_dim=encoder_hid_dim,
- image_embed_dim=cross_attention_dim,
- cross_attention_dim=cross_attention_dim,
- )
- elif encoder_hid_dim_type == "image_proj":
- # Kandinsky 2.2
- self.encoder_hid_proj = ImageProjection(
- image_embed_dim=encoder_hid_dim,
- cross_attention_dim=cross_attention_dim,
- )
- elif encoder_hid_dim_type is not None:
- raise ValueError(
- f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
- )
- else:
- self.encoder_hid_proj = None
-
- def _set_class_embedding(
- self,
- class_embed_type: Optional[str],
- act_fn: str,
- num_class_embeds: Optional[int],
- projection_class_embeddings_input_dim: Optional[int],
- time_embed_dim: int,
- timestep_input_dim: int,
- ):
- if class_embed_type is None and num_class_embeds is not None:
- self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
- elif class_embed_type == "timestep":
- self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
- elif class_embed_type == "identity":
- self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
- elif class_embed_type == "projection":
- if projection_class_embeddings_input_dim is None:
- raise ValueError(
- "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
- )
- # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
- # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
- # 2. it projects from an arbitrary input dimension.
- #
- # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
- # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
- # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
- self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
- elif class_embed_type == "simple_projection":
- if projection_class_embeddings_input_dim is None:
- raise ValueError(
- "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
- )
- self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
- else:
- self.class_embedding = None
-
- def _set_add_embedding(
- self,
- addition_embed_type: str,
- addition_embed_type_num_heads: int,
- addition_time_embed_dim: Optional[int],
- flip_sin_to_cos: bool,
- freq_shift: float,
- cross_attention_dim: Optional[int],
- encoder_hid_dim: Optional[int],
- projection_class_embeddings_input_dim: Optional[int],
- time_embed_dim: int,
- ):
- if addition_embed_type == "text":
- if encoder_hid_dim is not None:
- text_time_embedding_from_dim = encoder_hid_dim
- else:
- text_time_embedding_from_dim = cross_attention_dim
-
- self.add_embedding = TextTimeEmbedding(
- text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
- )
- elif addition_embed_type == "text_image":
- # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
- # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
- self.add_embedding = TextImageTimeEmbedding(
- text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
- )
- elif addition_embed_type == "text_time":
- self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
- self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
- elif addition_embed_type == "image":
- # Kandinsky 2.2
- self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
- elif addition_embed_type == "image_hint":
- # Kandinsky 2.2 ControlNet
- self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
- elif addition_embed_type is not None:
- raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
-
- def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
- if attention_type in ["gated", "gated-text-image"]:
- positive_len = 768
- if isinstance(cross_attention_dim, int):
- positive_len = cross_attention_dim
- elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
- positive_len = cross_attention_dim[0]
-
- feature_type = "text-only" if attention_type == "gated" else "text-image"
- self.position_net = GLIGENTextBoundingboxProjection(
- positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
- )
-
- @property
- def attn_processors(self) -> Dict[str, AttentionProcessor]:
- r"""
- Returns:
- `dict` of attention processors: A dictionary containing all attention processors used in the model with
- indexed by its weight name.
- """
- # set recursively
- processors = {}
-
- def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
- if hasattr(module, "get_processor"):
- processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
-
- for sub_name, child in module.named_children():
- fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
-
- return processors
-
- for name, module in self.named_children():
- fn_recursive_add_processors(name, module, processors)
-
- return processors
-
- def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
- r"""
- Sets the attention processor to use to compute attention.
-
- Parameters:
- processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
- The instantiated processor class or a dictionary of processor classes that will be set as the processor
- for **all** `Attention` layers.
-
- If `processor` is a dict, the key needs to define the path to the corresponding cross attention
- processor. This is strongly recommended when setting trainable attention processors.
-
- """
- count = len(self.attn_processors.keys())
-
- if isinstance(processor, dict) and len(processor) != count:
- raise ValueError(
- f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
- f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
- )
-
- def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
- if hasattr(module, "set_processor"):
- if not isinstance(processor, dict):
- module.set_processor(processor)
- else:
- module.set_processor(processor.pop(f"{name}.processor"))
-
- for sub_name, child in module.named_children():
- fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
-
- for name, module in self.named_children():
- fn_recursive_attn_processor(name, module, processor)
-
- def set_default_attn_processor(self):
- """
- Disables custom attention processors and sets the default attention implementation.
- """
- if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
- processor = AttnAddedKVProcessor()
- elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
- processor = AttnProcessor()
- else:
- raise ValueError(
- f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
- )
-
- self.set_attn_processor(processor)
-
- def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
- r"""
- Enable sliced attention computation.
-
- When this option is enabled, the attention module splits the input tensor in slices to compute attention in
- several steps. This is useful for saving some memory in exchange for a small decrease in speed.
-
- Args:
- slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
- When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
- `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
- provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
- must be a multiple of `slice_size`.
- """
- sliceable_head_dims = []
-
- def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
- if hasattr(module, "set_attention_slice"):
- sliceable_head_dims.append(module.sliceable_head_dim)
-
- for child in module.children():
- fn_recursive_retrieve_sliceable_dims(child)
-
- # retrieve number of attention layers
- for module in self.children():
- fn_recursive_retrieve_sliceable_dims(module)
-
- num_sliceable_layers = len(sliceable_head_dims)
-
- if slice_size == "auto":
- # half the attention head size is usually a good trade-off between
- # speed and memory
- slice_size = [dim // 2 for dim in sliceable_head_dims]
- elif slice_size == "max":
- # make smallest slice possible
- slice_size = num_sliceable_layers * [1]
-
- slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
-
- if len(slice_size) != len(sliceable_head_dims):
- raise ValueError(
- f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
- f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
- )
-
- for i in range(len(slice_size)):
- size = slice_size[i]
- dim = sliceable_head_dims[i]
- if size is not None and size > dim:
- raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
-
- # Recursively walk through all the children.
- # Any children which exposes the set_attention_slice method
- # gets the message
- def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
- if hasattr(module, "set_attention_slice"):
- module.set_attention_slice(slice_size.pop())
-
- for child in module.children():
- fn_recursive_set_attention_slice(child, slice_size)
-
- reversed_slice_size = list(reversed(slice_size))
- for module in self.children():
- fn_recursive_set_attention_slice(module, reversed_slice_size)
-
- def _set_gradient_checkpointing(self, module, value=False):
- if hasattr(module, "gradient_checkpointing"):
- module.gradient_checkpointing = value
-
- def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
- r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
-
- The suffixes after the scaling factors represent the stage blocks where they are being applied.
-
- Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
- are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
-
- Args:
- s1 (`float`):
- Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
- mitigate the "oversmoothing effect" in the enhanced denoising process.
- s2 (`float`):
- Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
- mitigate the "oversmoothing effect" in the enhanced denoising process.
- b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
- b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
- """
- for i, upsample_block in enumerate(self.up_blocks):
- setattr(upsample_block, "s1", s1)
- setattr(upsample_block, "s2", s2)
- setattr(upsample_block, "b1", b1)
- setattr(upsample_block, "b2", b2)
-
- def disable_freeu(self):
- """Disables the FreeU mechanism."""
- freeu_keys = {"s1", "s2", "b1", "b2"}
- for i, upsample_block in enumerate(self.up_blocks):
- for k in freeu_keys:
- if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
- setattr(upsample_block, k, None)
-
- def fuse_qkv_projections(self):
- """
- Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
- are fused. For cross-attention modules, key and value projection matrices are fused.
-
-
-
- This API is 🧪 experimental.
-
-
- """
- self.original_attn_processors = None
-
- for _, attn_processor in self.attn_processors.items():
- if "Added" in str(attn_processor.__class__.__name__):
- raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
-
- self.original_attn_processors = self.attn_processors
-
- for module in self.modules():
- if isinstance(module, Attention):
- module.fuse_projections(fuse=True)
-
- def unfuse_qkv_projections(self):
- """Disables the fused QKV projection if enabled.
-
-
-
- This API is 🧪 experimental.
-
-
-
- """
- if self.original_attn_processors is not None:
- self.set_attn_processor(self.original_attn_processors)
-
- def unload_lora(self):
- """Unloads LoRA weights."""
- deprecate(
- "unload_lora",
- "0.28.0",
- "Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().",
- )
- for module in self.modules():
- if hasattr(module, "set_lora_layer"):
- module.set_lora_layer(None)
-
- def get_time_embed(
- self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
- ) -> Optional[torch.Tensor]:
- timesteps = timestep
- if not torch.is_tensor(timesteps):
- # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
- # This would be a good case for the `match` statement (Python 3.10+)
- is_mps = sample.device.type == "mps"
- if isinstance(timestep, float):
- dtype = torch.float32 if is_mps else torch.float64
- else:
- dtype = torch.int32 if is_mps else torch.int64
- timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
- elif len(timesteps.shape) == 0:
- timesteps = timesteps[None].to(sample.device)
-
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
- timesteps = timesteps.expand(sample.shape[0])
-
- t_emb = self.time_proj(timesteps)
- # `Timesteps` does not contain any weights and will always return f32 tensors
- # but time_embedding might actually be running in fp16. so we need to cast here.
- # there might be better ways to encapsulate this.
- t_emb = t_emb.to(dtype=sample.dtype)
- return t_emb
-
- def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
- class_emb = None
- if self.class_embedding is not None:
- if class_labels is None:
- raise ValueError("class_labels should be provided when num_class_embeds > 0")
-
- if self.config.class_embed_type == "timestep":
- class_labels = self.time_proj(class_labels)
-
- # `Timesteps` does not contain any weights and will always return f32 tensors
- # there might be better ways to encapsulate this.
- class_labels = class_labels.to(dtype=sample.dtype)
-
- class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
- return class_emb
-
- def get_aug_embed(
- self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
- ) -> Optional[torch.Tensor]:
- aug_emb = None
- if self.config.addition_embed_type == "text":
- aug_emb = self.add_embedding(encoder_hidden_states)
- elif self.config.addition_embed_type == "text_image":
- # Kandinsky 2.1 - style
- if "image_embeds" not in added_cond_kwargs:
- raise ValueError(
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
- )
-
- image_embs = added_cond_kwargs.get("image_embeds")
- text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
- aug_emb = self.add_embedding(text_embs, image_embs)
- elif self.config.addition_embed_type == "text_time":
- # SDXL - style
- if "text_embeds" not in added_cond_kwargs:
- raise ValueError(
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
- )
- text_embeds = added_cond_kwargs.get("text_embeds")
- if "time_ids" not in added_cond_kwargs:
- raise ValueError(
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
- )
- time_ids = added_cond_kwargs.get("time_ids")
- time_embeds = self.add_time_proj(time_ids.flatten())
- time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
- add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
- add_embeds = add_embeds.to(emb.dtype)
- aug_emb = self.add_embedding(add_embeds)
- elif self.config.addition_embed_type == "image":
- # Kandinsky 2.2 - style
- if "image_embeds" not in added_cond_kwargs:
- raise ValueError(
- f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
- )
- image_embs = added_cond_kwargs.get("image_embeds")
- aug_emb = self.add_embedding(image_embs)
- elif self.config.addition_embed_type == "image_hint":
- # Kandinsky 2.2 - style
- if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
- raise ValueError(
- f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
- )
- image_embs = added_cond_kwargs.get("image_embeds")
- hint = added_cond_kwargs.get("hint")
- aug_emb = self.add_embedding(image_embs, hint)
- return aug_emb
-
- def process_encoder_hidden_states(
- self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
- ) -> torch.Tensor:
- if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
- encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
- elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
- # Kandinsky 2.1 - style
- if "image_embeds" not in added_cond_kwargs:
- raise ValueError(
- f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
- )
-
- image_embeds = added_cond_kwargs.get("image_embeds")
- encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
- elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
- # Kandinsky 2.2 - style
- if "image_embeds" not in added_cond_kwargs:
- raise ValueError(
- f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
- )
- image_embeds = added_cond_kwargs.get("image_embeds")
- encoder_hidden_states = self.encoder_hid_proj(image_embeds)
- elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
- if "image_embeds" not in added_cond_kwargs:
- raise ValueError(
- f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
- )
- image_embeds = added_cond_kwargs.get("image_embeds")
- image_embeds = self.encoder_hid_proj(image_embeds)
- encoder_hidden_states = (encoder_hidden_states, image_embeds)
- return encoder_hidden_states
-
- def forward(
- self,
- sample: torch.FloatTensor,
- timestep: Union[torch.Tensor, float, int],
- encoder_hidden_states: torch.Tensor,
- class_labels: Optional[torch.Tensor] = None,
- timestep_cond: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
- down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
- mid_block_additional_residual: Optional[torch.Tensor] = None,
- down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- return_dict: bool = True,
- down_block_add_samples: Optional[Tuple[torch.Tensor]] = None,
- mid_block_add_sample: Optional[Tuple[torch.Tensor]] = None,
- up_block_add_samples: Optional[Tuple[torch.Tensor]] = None,
- ) -> Union[UNet2DConditionOutput, Tuple]:
- r"""
- The [`UNet2DConditionModel`] forward method.
-
- Args:
- sample (`torch.FloatTensor`):
- The noisy input tensor with the following shape `(batch, channel, height, width)`.
- timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
- encoder_hidden_states (`torch.FloatTensor`):
- The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
- class_labels (`torch.Tensor`, *optional*, defaults to `None`):
- Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
- timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
- Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
- through the `self.time_embedding` layer to obtain the timestep embeddings.
- attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
- An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
- is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
- negative values to the attention scores corresponding to "discard" tokens.
- cross_attention_kwargs (`dict`, *optional*):
- A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
- `self.processor` in
- [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
- added_cond_kwargs: (`dict`, *optional*):
- A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
- are passed along to the UNet blocks.
- down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
- A tuple of tensors that if specified are added to the residuals of down unet blocks.
- mid_block_additional_residual: (`torch.Tensor`, *optional*):
- A tensor that if specified is added to the residual of the middle unet block.
- down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
- additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
- encoder_attention_mask (`torch.Tensor`):
- A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
- `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
- which adds large negative values to the attention scores corresponding to "discard" tokens.
- return_dict (`bool`, *optional*, defaults to `True`):
- Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
- tuple.
-
- Returns:
- [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
- If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
- otherwise a `tuple` is returned where the first element is the sample tensor.
- """
- # By default samples have to be AT least a multiple of the overall upsampling factor.
- # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
- # However, the upsampling interpolation output size can be forced to fit any upsampling size
- # on the fly if necessary.
- default_overall_up_factor = 2**self.num_upsamplers
-
- # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
- forward_upsample_size = False
- upsample_size = None
-
- for dim in sample.shape[-2:]:
- if dim % default_overall_up_factor != 0:
- # Forward upsample size to force interpolation output size.
- forward_upsample_size = True
- break
-
- # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
- # expects mask of shape:
- # [batch, key_tokens]
- # adds singleton query_tokens dimension:
- # [batch, 1, key_tokens]
- # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
- # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
- # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
- if attention_mask is not None:
- # assume that mask is expressed as:
- # (1 = keep, 0 = discard)
- # convert mask into a bias that can be added to attention scores:
- # (keep = +0, discard = -10000.0)
- attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
- attention_mask = attention_mask.unsqueeze(1)
-
- # convert encoder_attention_mask to a bias the same way we do for attention_mask
- if encoder_attention_mask is not None:
- encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
- encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
-
- # 0. center input if necessary
- if self.config.center_input_sample:
- sample = 2 * sample - 1.0
-
- # 1. time
- t_emb = self.get_time_embed(sample=sample, timestep=timestep)
- emb = self.time_embedding(t_emb, timestep_cond)
- aug_emb = None
-
- class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
- if class_emb is not None:
- if self.config.class_embeddings_concat:
- emb = torch.cat([emb, class_emb], dim=-1)
- else:
- emb = emb + class_emb
-
- aug_emb = self.get_aug_embed(
- emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
- )
- if self.config.addition_embed_type == "image_hint":
- aug_emb, hint = aug_emb
- sample = torch.cat([sample, hint], dim=1)
-
- emb = emb + aug_emb if aug_emb is not None else emb
-
- if self.time_embed_act is not None:
- emb = self.time_embed_act(emb)
-
- encoder_hidden_states = self.process_encoder_hidden_states(
- encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
- )
-
- # 2. pre-process
- sample = self.conv_in(sample)
-
- # 2.5 GLIGEN position net
- if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
- cross_attention_kwargs = cross_attention_kwargs.copy()
- gligen_args = cross_attention_kwargs.pop("gligen")
- cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
-
- # 3. down
- # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
- # to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
- if cross_attention_kwargs is not None:
- cross_attention_kwargs = cross_attention_kwargs.copy()
- lora_scale = cross_attention_kwargs.pop("scale", 1.0)
- else:
- lora_scale = 1.0
-
- if USE_PEFT_BACKEND:
- # weight the lora layers by setting `lora_scale` for each PEFT layer
- scale_lora_layers(self, lora_scale)
-
- is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
- # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
- is_adapter = down_intrablock_additional_residuals is not None
- # maintain backward compatibility for legacy usage, where
- # T2I-Adapter and ControlNet both use down_block_additional_residuals arg
- # but can only use one or the other
- is_brushnet = down_block_add_samples is not None and mid_block_add_sample is not None and up_block_add_samples is not None
- if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
- deprecate(
- "T2I should not use down_block_additional_residuals",
- "1.3.0",
- "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
- and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
- for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
- standard_warn=False,
- )
- down_intrablock_additional_residuals = down_block_additional_residuals
- is_adapter = True
-
- down_block_res_samples = (sample,)
-
- if is_brushnet:
- sample = sample + down_block_add_samples.pop(0)
-
- for downsample_block in self.down_blocks:
- if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
- # For t2i-adapter CrossAttnDownBlock2D
- additional_residuals = {}
- if is_adapter and len(down_intrablock_additional_residuals) > 0:
- additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
-
- i = len(down_block_add_samples)
-
- if is_brushnet and len(down_block_add_samples)>0:
- additional_residuals["down_block_add_samples"] = [down_block_add_samples.pop(0)
- for _ in range(len(downsample_block.resnets)+(downsample_block.downsamplers !=None))]
-
- sample, res_samples = downsample_block(
- hidden_states=sample,
- temb=emb,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=attention_mask,
- cross_attention_kwargs=cross_attention_kwargs,
- encoder_attention_mask=encoder_attention_mask,
- **additional_residuals,
- )
- else:
- additional_residuals = {}
-
- i = len(down_block_add_samples)
-
- if is_brushnet and len(down_block_add_samples)>0:
- additional_residuals["down_block_add_samples"] = [down_block_add_samples.pop(0)
- for _ in range(len(downsample_block.resnets)+(downsample_block.downsamplers !=None))]
-
- sample, res_samples = downsample_block(hidden_states=sample, temb=emb, **additional_residuals)
- if is_adapter and len(down_intrablock_additional_residuals) > 0:
- sample += down_intrablock_additional_residuals.pop(0)
-
- down_block_res_samples += res_samples
-
- if is_controlnet:
- new_down_block_res_samples = ()
-
- for down_block_res_sample, down_block_additional_residual in zip(
- down_block_res_samples, down_block_additional_residuals
- ):
- down_block_res_sample = down_block_res_sample + down_block_additional_residual
- new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
-
- down_block_res_samples = new_down_block_res_samples
-
- # 4. mid
- if self.mid_block is not None:
- if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
- sample = self.mid_block(
- sample,
- emb,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=attention_mask,
- cross_attention_kwargs=cross_attention_kwargs,
- encoder_attention_mask=encoder_attention_mask,
- )
- else:
- sample = self.mid_block(sample, emb)
-
- # To support T2I-Adapter-XL
- if (
- is_adapter
- and len(down_intrablock_additional_residuals) > 0
- and sample.shape == down_intrablock_additional_residuals[0].shape
- ):
- sample += down_intrablock_additional_residuals.pop(0)
-
- if is_controlnet:
- sample = sample + mid_block_additional_residual
-
- if is_brushnet:
- sample = sample + mid_block_add_sample
-
- # 5. up
- for i, upsample_block in enumerate(self.up_blocks):
- is_final_block = i == len(self.up_blocks) - 1
-
- res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
- down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
-
- # if we have not reached the final block and need to forward the
- # upsample size, we do it here
- if not is_final_block and forward_upsample_size:
- upsample_size = down_block_res_samples[-1].shape[2:]
-
- if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
- additional_residuals = {}
-
- i = len(up_block_add_samples)
-
- if is_brushnet and len(up_block_add_samples)>0:
- additional_residuals["up_block_add_samples"] = [up_block_add_samples.pop(0)
- for _ in range(len(upsample_block.resnets)+(upsample_block.upsamplers !=None))]
-
- sample = upsample_block(
- hidden_states=sample,
- temb=emb,
- res_hidden_states_tuple=res_samples,
- encoder_hidden_states=encoder_hidden_states,
- cross_attention_kwargs=cross_attention_kwargs,
- upsample_size=upsample_size,
- attention_mask=attention_mask,
- encoder_attention_mask=encoder_attention_mask,
- **additional_residuals,
- )
- else:
- additional_residuals = {}
-
- i = len(up_block_add_samples)
-
- if is_brushnet and len(up_block_add_samples)>0:
- additional_residuals["up_block_add_samples"] = [up_block_add_samples.pop(0)
- for _ in range(len(upsample_block.resnets)+(upsample_block.upsamplers !=None))]
-
- sample = upsample_block(
- hidden_states=sample,
- temb=emb,
- res_hidden_states_tuple=res_samples,
- upsample_size=upsample_size,
- **additional_residuals,
- )
-
- # 6. post-process
- if self.conv_norm_out:
- sample = self.conv_norm_out(sample)
- sample = self.conv_act(sample)
- sample = self.conv_out(sample)
-
- if USE_PEFT_BACKEND:
- # remove `lora_scale` from each PEFT layer
- unscale_lora_layers(self, lora_scale)
-
- if not return_dict:
- return (sample,)
-
- return UNet2DConditionOutput(sample=sample)
diff --git a/MagicQuill/brushnet_nodes.py b/MagicQuill/brushnet_nodes.py
deleted file mode 100644
index 1b7a4175380d7c3fbe6ae869a19c4b359161dc27..0000000000000000000000000000000000000000
--- a/MagicQuill/brushnet_nodes.py
+++ /dev/null
@@ -1,1094 +0,0 @@
-import os
-import types
-from typing import Tuple
-
-import torch
-import torchvision.transforms as T
-import torch.nn.functional as F
-from accelerate import init_empty_weights, load_checkpoint_and_dispatch
-import sys
-
-import comfy.sd
-import comfy.utils
-import comfy.model_management
-import comfy.sd1_clip
-import comfy.ldm.models.autoencoder
-import comfy.supported_models
-
-import folder_paths
-
-from .model_patch import add_model_patch_option, patch_model_function_wrapper
-from .brushnet.brushnet import BrushNetModel
-from .brushnet.brushnet_ca import BrushNetModel as PowerPaintModel
-from .brushnet.powerpaint_utils import TokenizerWrapper, add_tokens
-
-current_directory = os.path.dirname(os.path.abspath(__file__))
-brushnet_config_file = os.path.join(current_directory, 'brushnet', 'brushnet.json')
-brushnet_xl_config_file = os.path.join(current_directory, 'brushnet', 'brushnet_xl.json')
-powerpaint_config_file = os.path.join(current_directory,'brushnet', 'powerpaint.json')
-
-sd15_scaling_factor = 0.18215
-sdxl_scaling_factor = 0.13025
-
-print(sys.path)
-ModelsToUnload = [comfy.sd1_clip.SD1ClipModel,
- comfy.ldm.models.autoencoder.AutoencoderKL
- ]
-
-
-class BrushNetLoader:
- @classmethod
- def INPUT_TYPES(self):
- self.inpaint_files = get_files_with_extension('inpaint')
- return {"required":
- {
- "brushnet": ([file for file in self.inpaint_files], ),
- "dtype": (['float16', 'bfloat16', 'float32', 'float64'], ),
- },
- }
-
- CATEGORY = "inpaint"
- RETURN_TYPES = ("BRMODEL",)
- RETURN_NAMES = ("brushnet",)
-
- FUNCTION = "brushnet_loading"
-
- def brushnet_loading(self, brushnet, dtype):
- brushnet_file = os.path.join(self.inpaint_files[brushnet], brushnet)
- print('BrushNet model file:', brushnet_file)
- is_SDXL = False
- is_PP = False
- sd = comfy.utils.load_torch_file(brushnet_file)
- brushnet_down_block, brushnet_mid_block, brushnet_up_block, keys = brushnet_blocks(sd)
- del sd
- if brushnet_down_block == 24 and brushnet_mid_block == 2 and brushnet_up_block == 30:
- is_SDXL = False
- if keys == 322:
- is_PP = False
- print('BrushNet model type: SD1.5')
- else:
- is_PP = True
- print('PowerPaint model type: SD1.5')
- elif brushnet_down_block == 18 and brushnet_mid_block == 2 and brushnet_up_block == 22:
- print('BrushNet model type: Loading SDXL')
- is_SDXL = True
- is_PP = False
- else:
- raise Exception("Unknown BrushNet model")
-
- with init_empty_weights():
- if is_SDXL:
- brushnet_config = BrushNetModel.load_config(brushnet_xl_config_file)
- brushnet_model = BrushNetModel.from_config(brushnet_config)
- elif is_PP:
- brushnet_config = PowerPaintModel.load_config(powerpaint_config_file)
- brushnet_model = PowerPaintModel.from_config(brushnet_config)
- else:
- brushnet_config = BrushNetModel.load_config(brushnet_config_file)
- brushnet_model = BrushNetModel.from_config(brushnet_config)
-
- if is_PP:
- print("PowerPaint model file:", brushnet_file)
- else:
- print("BrushNet model file:", brushnet_file)
-
- if dtype == 'float16':
- torch_dtype = torch.float16
- elif dtype == 'bfloat16':
- torch_dtype = torch.bfloat16
- elif dtype == 'float32':
- torch_dtype = torch.float32
- else:
- torch_dtype = torch.float64
-
- brushnet_model = load_checkpoint_and_dispatch(
- brushnet_model,
- brushnet_file,
- device_map="sequential",
- max_memory=None,
- offload_folder=None,
- offload_state_dict=False,
- dtype=torch_dtype,
- force_hooks=False,
- )
-
- if is_PP:
- print("PowerPaint model is loaded")
- elif is_SDXL:
- print("BrushNet SDXL model is loaded")
- else:
- print("BrushNet SD1.5 model is loaded")
-
- return ({"brushnet": brushnet_model, "SDXL": is_SDXL, "PP": is_PP, "dtype": torch_dtype}, )
-
-
-class PowerPaintCLIPLoader:
-
- @classmethod
- def INPUT_TYPES(self):
- self.inpaint_files = get_files_with_extension('inpaint', ['.bin'])
- self.clip_files = get_files_with_extension('clip')
- return {"required":
- {
- "base": ([file for file in self.clip_files], ),
- "powerpaint": ([file for file in self.inpaint_files], ),
- },
- }
-
- CATEGORY = "inpaint"
- RETURN_TYPES = ("CLIP",)
- RETURN_NAMES = ("clip",)
-
- FUNCTION = "ppclip_loading"
-
- def ppclip_loading(self, base, powerpaint):
- base_CLIP_file = os.path.join(self.clip_files[base], base)
- pp_CLIP_file = os.path.join(self.inpaint_files[powerpaint], powerpaint)
-
- pp_clip = comfy.sd.load_clip(ckpt_paths=[base_CLIP_file])
-
- print('PowerPaint base CLIP file: ', base_CLIP_file)
-
- pp_tokenizer = TokenizerWrapper(pp_clip.tokenizer.clip_l.tokenizer)
- pp_text_encoder = pp_clip.patcher.model.clip_l.transformer
-
- add_tokens(
- tokenizer = pp_tokenizer,
- text_encoder = pp_text_encoder,
- placeholder_tokens = ["P_ctxt", "P_shape", "P_obj"],
- initialize_tokens = ["a", "a", "a"],
- num_vectors_per_token = 10,
- )
-
- pp_text_encoder.load_state_dict(comfy.utils.load_torch_file(pp_CLIP_file), strict=False)
-
- print('PowerPaint CLIP file: ', pp_CLIP_file)
-
- pp_clip.tokenizer.clip_l.tokenizer = pp_tokenizer
- pp_clip.patcher.model.clip_l.transformer = pp_text_encoder
-
- return (pp_clip,)
-
-
-class PowerPaint:
-
- @classmethod
- def INPUT_TYPES(s):
- return {"required":
- {
- "model": ("MODEL",),
- "vae": ("VAE", ),
- "image": ("IMAGE",),
- "mask": ("MASK",),
- "powerpaint": ("BRMODEL", ),
- "clip": ("CLIP", ),
- "positive": ("CONDITIONING", ),
- "negative": ("CONDITIONING", ),
- "fitting" : ("FLOAT", {"default": 1.0, "min": 0.3, "max": 1.0}),
- "function": (['text guided', 'shape guided', 'object removal', 'context aware', 'image outpainting'], ),
- "scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
- "start_at": ("INT", {"default": 0, "min": 0, "max": 10000}),
- "end_at": ("INT", {"default": 10000, "min": 0, "max": 10000}),
- "save_memory": (['none', 'auto', 'max'], ),
- },
- }
-
- CATEGORY = "inpaint"
- RETURN_TYPES = ("MODEL","CONDITIONING","CONDITIONING","LATENT",)
- RETURN_NAMES = ("model","positive","negative","latent",)
-
- FUNCTION = "model_update"
-
- def model_update(self, model, vae, image, mask, powerpaint, clip, positive, negative, fitting, function, scale, start_at, end_at, save_memory):
-
- is_SDXL, is_PP = check_compatibilty(model, powerpaint)
- if not is_PP:
- raise Exception("BrushNet model was loaded, please use BrushNet node")
-
- # Make a copy of the model so that we're not patching it everywhere in the workflow.
- model = model.clone()
-
- # prepare image and mask
- # no batches for original image and mask
- masked_image, mask = prepare_image(image, mask)
-
- batch = masked_image.shape[0]
- #width = masked_image.shape[2]
- #height = masked_image.shape[1]
-
- if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'):
- scaling_factor = model.model.model_config.latent_format.scale_factor
- else:
- scaling_factor = sd15_scaling_factor
-
- torch_dtype = powerpaint['dtype']
-
- # prepare conditioning latents
- conditioning_latents = get_image_latents(masked_image, mask, vae, scaling_factor)
- conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
- conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
-
- # prepare embeddings
-
- if function == "object removal":
- promptA = "P_ctxt"
- promptB = "P_ctxt"
- negative_promptA = "P_obj"
- negative_promptB = "P_obj"
- print('You should add to positive prompt: "empty scene blur"')
- #positive = positive + " empty scene blur"
- elif function == "context aware":
- promptA = "P_ctxt"
- promptB = "P_ctxt"
- negative_promptA = ""
- negative_promptB = ""
- #positive = positive + " empty scene"
- print('You should add to positive prompt: "empty scene"')
- elif function == "shape guided":
- promptA = "P_shape"
- promptB = "P_ctxt"
- negative_promptA = "P_shape"
- negative_promptB = "P_ctxt"
- elif function == "image outpainting":
- promptA = "P_ctxt"
- promptB = "P_ctxt"
- negative_promptA = "P_obj"
- negative_promptB = "P_obj"
- #positive = positive + " empty scene"
- print('You should add to positive prompt: "empty scene"')
- else:
- promptA = "P_obj"
- promptB = "P_obj"
- negative_promptA = "P_obj"
- negative_promptB = "P_obj"
-
- tokens = clip.tokenize(promptA)
- prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False)
-
- tokens = clip.tokenize(negative_promptA)
- negative_prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False)
-
- tokens = clip.tokenize(promptB)
- prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False)
-
- tokens = clip.tokenize(negative_promptB)
- negative_prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False)
-
- prompt_embeds_pp = (prompt_embedsA * fitting + (1.0 - fitting) * prompt_embedsB).to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
- negative_prompt_embeds_pp = (negative_prompt_embedsA * fitting + (1.0 - fitting) * negative_prompt_embedsB).to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
-
- # unload vae and CLIPs
- del vae
- del clip
- for loaded_model in comfy.model_management.current_loaded_models:
- if type(loaded_model.model.model) in ModelsToUnload:
- comfy.model_management.current_loaded_models.remove(loaded_model)
- loaded_model.model_unload()
- del loaded_model
-
- # apply patch to model
-
- brushnet_conditioning_scale = scale
- control_guidance_start = start_at
- control_guidance_end = end_at
-
- if save_memory != 'none':
- powerpaint['brushnet'].set_attention_slice(save_memory)
-
- add_brushnet_patch(model,
- powerpaint['brushnet'],
- torch_dtype,
- conditioning_latents,
- (brushnet_conditioning_scale, control_guidance_start, control_guidance_end),
- negative_prompt_embeds_pp, prompt_embeds_pp,
- None, None, None,
- False)
-
- latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], device=powerpaint['brushnet'].device)
-
- return (model, positive, negative, {"samples":latent},)
-
-
-class BrushNet:
-
- @classmethod
- def INPUT_TYPES(s):
- return {"required":
- {
- "model": ("MODEL",),
- "vae": ("VAE", ),
- "image": ("IMAGE",),
- "mask": ("MASK",),
- "brushnet": ("BRMODEL", ),
- "positive": ("CONDITIONING", ),
- "negative": ("CONDITIONING", ),
- "scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
- "start_at": ("INT", {"default": 0, "min": 0, "max": 10000}),
- "end_at": ("INT", {"default": 10000, "min": 0, "max": 10000}),
- },
- }
-
- CATEGORY = "inpaint"
- RETURN_TYPES = ("MODEL","CONDITIONING","CONDITIONING","LATENT",)
- RETURN_NAMES = ("model","positive","negative","latent",)
-
- FUNCTION = "model_update"
-
- def model_update(self, model, vae, image, mask, brushnet, positive, negative, scale, start_at, end_at):
-
- is_SDXL, is_PP = check_compatibilty(model, brushnet)
-
- if is_PP:
- raise Exception("PowerPaint model was loaded, please use PowerPaint node")
-
- # Make a copy of the model so that we're not patching it everywhere in the workflow.
- model = model.clone()
-
- # prepare image and mask
- # no batches for original image and mask
- masked_image, mask = prepare_image(image, mask)
-
- batch = masked_image.shape[0]
- width = masked_image.shape[2]
- height = masked_image.shape[1]
-
- if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'):
- scaling_factor = model.model.model_config.latent_format.scale_factor
- elif is_SDXL:
- scaling_factor = sdxl_scaling_factor
- else:
- scaling_factor = sd15_scaling_factor
-
- torch_dtype = brushnet['dtype']
-
- # prepare conditioning latents
- conditioning_latents = get_image_latents(masked_image, mask, vae, scaling_factor)
- conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
- conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
-
- # unload vae
- del vae
- for loaded_model in comfy.model_management.current_loaded_models:
- if type(loaded_model.model.model) in ModelsToUnload:
- comfy.model_management.current_loaded_models.remove(loaded_model)
- loaded_model.model_unload()
- del loaded_model
-
- # prepare embeddings
-
- prompt_embeds = positive[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
- negative_prompt_embeds = negative[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
-
- max_tokens = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
- if prompt_embeds.shape[1] < max_tokens:
- multiplier = max_tokens // 77 - prompt_embeds.shape[1] // 77
- prompt_embeds = torch.concat([prompt_embeds] + [prompt_embeds[:,-77:,:]] * multiplier, dim=1)
- print('BrushNet: negative prompt more than 75 tokens:', negative_prompt_embeds.shape, 'multiplying prompt_embeds')
- if negative_prompt_embeds.shape[1] < max_tokens:
- multiplier = max_tokens // 77 - negative_prompt_embeds.shape[1] // 77
- negative_prompt_embeds = torch.concat([negative_prompt_embeds] + [negative_prompt_embeds[:,-77:,:]] * multiplier, dim=1)
- print('BrushNet: positive prompt more than 75 tokens:', prompt_embeds.shape, 'multiplying negative_prompt_embeds')
-
- if len(positive[0]) > 1 and 'pooled_output' in positive[0][1] and positive[0][1]['pooled_output'] is not None:
- pooled_prompt_embeds = positive[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
- else:
- print('BrushNet: positive conditioning has not pooled_output')
- if is_SDXL:
- print('BrushNet will not produce correct results')
- pooled_prompt_embeds = torch.empty([2, 1280], device=brushnet['brushnet'].device).to(dtype=torch_dtype)
-
- if len(negative[0]) > 1 and 'pooled_output' in negative[0][1] and negative[0][1]['pooled_output'] is not None:
- negative_pooled_prompt_embeds = negative[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
- else:
- print('BrushNet: negative conditioning has not pooled_output')
- if is_SDXL:
- print('BrushNet will not produce correct results')
- negative_pooled_prompt_embeds = torch.empty([1, pooled_prompt_embeds.shape[1]], device=brushnet['brushnet'].device).to(dtype=torch_dtype)
-
- time_ids = torch.FloatTensor([[height, width, 0., 0., height, width]]).to(dtype=torch_dtype).to(brushnet['brushnet'].device)
-
- if not is_SDXL:
- pooled_prompt_embeds = None
- negative_pooled_prompt_embeds = None
- time_ids = None
-
- # apply patch to model
-
- brushnet_conditioning_scale = scale
- control_guidance_start = start_at
- control_guidance_end = end_at
-
- add_brushnet_patch(model,
- brushnet['brushnet'],
- torch_dtype,
- conditioning_latents,
- (brushnet_conditioning_scale, control_guidance_start, control_guidance_end),
- prompt_embeds, negative_prompt_embeds,
- pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids,
- False)
-
- latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], device=brushnet['brushnet'].device)
-
- return (model, positive, negative, {"samples":latent},)
-
-
-class BlendInpaint:
-
- @classmethod
- def INPUT_TYPES(s):
- return {"required":
- {
- "inpaint": ("IMAGE",),
- "original": ("IMAGE",),
- "mask": ("MASK",),
- "kernel": ("INT", {"default": 10, "min": 1, "max": 1000}),
- "sigma": ("FLOAT", {"default": 10.0, "min": 0.01, "max": 1000}),
- },
- "optional":
- {
- "origin": ("VECTOR",),
- },
- }
-
- CATEGORY = "inpaint"
- RETURN_TYPES = ("IMAGE","MASK",)
- RETURN_NAMES = ("image","MASK",)
-
- FUNCTION = "blend_inpaint"
-
- def blend_inpaint(self, inpaint: torch.Tensor, original: torch.Tensor, mask, kernel: int, sigma:int, origin=None) -> Tuple[torch.Tensor]:
-
- original, mask = check_image_mask(original, mask, 'Blend Inpaint')
-
- if len(inpaint.shape) < 4:
- # image tensor shape should be [B, H, W, C], but batch somehow is missing
- inpaint = inpaint[None,:,:,:]
-
- if inpaint.shape[0] < original.shape[0]:
- print("Blend Inpaint gets batch of original images (%d) but only (%d) inpaint images" % (original.shape[0], inpaint.shape[0]))
- original= original[:inpaint.shape[0],:,:]
- mask = mask[:inpaint.shape[0],:,:]
-
- if inpaint.shape[0] > original.shape[0]:
- # batch over inpaint
- count = 0
- original_list = []
- mask_list = []
- origin_list = []
- while (count < inpaint.shape[0]):
- for i in range(original.shape[0]):
- original_list.append(original[i][None,:,:,:])
- mask_list.append(mask[i][None,:,:])
- if origin is not None:
- origin_list.append(origin[i][None,:])
- count += 1
- if count >= inpaint.shape[0]:
- break
- original = torch.concat(original_list, dim=0)
- mask = torch.concat(mask_list, dim=0)
- if origin is not None:
- origin = torch.concat(origin_list, dim=0)
-
- if kernel % 2 == 0:
- kernel += 1
- transform = T.GaussianBlur(kernel_size=(kernel, kernel), sigma=(sigma, sigma))
-
- ret = []
- blurred = []
- for i in range(inpaint.shape[0]):
- if origin is None:
- blurred_mask = transform(mask[i][None,None,:,:]).to(original.device).to(original.dtype)
- blurred.append(blurred_mask[0])
-
- result = torch.nn.functional.interpolate(
- inpaint[i][None,:,:,:].permute(0, 3, 1, 2),
- size=(
- original[i].shape[0],
- original[i].shape[1],
- )
- ).permute(0, 2, 3, 1).to(original.device).to(original.dtype)
- else:
- # got mask from CutForInpaint
- height, width, _ = original[i].shape
- x0 = origin[i][0].item()
- y0 = origin[i][1].item()
-
- if mask[i].shape[0] < height or mask[i].shape[1] < width:
- padded_mask = F.pad(input=mask[i], pad=(x0, width-x0-mask[i].shape[1],
- y0, height-y0-mask[i].shape[0]), mode='constant', value=0)
- else:
- padded_mask = mask[i]
- blurred_mask = transform(padded_mask[None,None,:,:]).to(original.device).to(original.dtype)
- blurred.append(blurred_mask[0][0])
-
- result = F.pad(input=inpaint[i], pad=(0, 0, x0, width-x0-inpaint[i].shape[1],
- y0, height-y0-inpaint[i].shape[0]), mode='constant', value=0)
- result = result[None,:,:,:].to(original.device).to(original.dtype)
-
- ret.append(original[i] * (1.0 - blurred_mask[0][0][:,:,None]) + result[0] * blurred_mask[0][0][:,:,None])
-
- return (torch.stack(ret), torch.stack(blurred), )
-
-
-class CutForInpaint:
-
- @classmethod
- def INPUT_TYPES(s):
- return {"required":
- {
- "image": ("IMAGE",),
- "mask": ("MASK",),
- "width": ("INT", {"default": 512, "min": 64, "max": 2048}),
- "height": ("INT", {"default": 512, "min": 64, "max": 2048}),
- },
- }
-
- CATEGORY = "inpaint"
- RETURN_TYPES = ("IMAGE","MASK","VECTOR",)
- RETURN_NAMES = ("image","mask","origin",)
-
- FUNCTION = "cut_for_inpaint"
-
- def cut_for_inpaint(self, image: torch.Tensor, mask: torch.Tensor, width: int, height: int):
-
- image, mask = check_image_mask(image, mask, 'BrushNet')
-
- ret = []
- msk = []
- org = []
- for i in range(image.shape[0]):
- x0, y0, w, h = cut_with_mask(mask[i], width, height)
- ret.append((image[i][y0:y0+h,x0:x0+w,:]))
- msk.append((mask[i][y0:y0+h,x0:x0+w]))
- org.append(torch.IntTensor([x0,y0]))
-
- return (torch.stack(ret), torch.stack(msk), torch.stack(org), )
-
-
-#### Utility function
-
-def get_files_with_extension(folder_name, extension=['.safetensors']):
-
- try:
- folders = folder_paths.get_folder_paths(folder_name)
- except:
- folders = []
-
- if not folders:
- folders = [os.path.join(folder_paths.models_dir, folder_name)]
- if not os.path.isdir(folders[0]):
- folders = [os.path.join(folder_paths.base_path, folder_name)]
- if not os.path.isdir(folders[0]):
- return {}
-
- filtered_folders = []
- for x in folders:
- if not os.path.isdir(x):
- continue
- the_same = False
- for y in filtered_folders:
- if os.path.samefile(x, y):
- the_same = True
- break
- if not the_same:
- filtered_folders.append(x)
-
- if not filtered_folders:
- return {}
-
- output = {}
- for x in filtered_folders:
- files, folders_all = folder_paths.recursive_search(x, excluded_dir_names=[".git"])
- filtered_files = folder_paths.filter_files_extensions(files, extension)
-
- for f in filtered_files:
- output[f] = x
-
- return output
-
-
-# get blocks from state_dict so we could know which model it is
-def brushnet_blocks(sd):
- brushnet_down_block = 0
- brushnet_mid_block = 0
- brushnet_up_block = 0
- for key in sd:
- if 'brushnet_down_block' in key:
- brushnet_down_block += 1
- if 'brushnet_mid_block' in key:
- brushnet_mid_block += 1
- if 'brushnet_up_block' in key:
- brushnet_up_block += 1
- return (brushnet_down_block, brushnet_mid_block, brushnet_up_block, len(sd))
-
-
-# Check models compatibility
-def check_compatibilty(model, brushnet):
- is_SDXL = False
- is_PP = False
- if isinstance(model.model.model_config, comfy.supported_models.SD15):
- print('Base model type: SD1.5')
- is_SDXL = False
- if brushnet["SDXL"]:
- raise Exception("Base model is SD15, but BrushNet is SDXL type")
- if brushnet["PP"]:
- is_PP = True
- elif isinstance(model.model.model_config, comfy.supported_models.SDXL):
- print('Base model type: SDXL')
- is_SDXL = True
- if not brushnet["SDXL"]:
- raise Exception("Base model is SDXL, but BrushNet is SD15 type")
- else:
- print('Base model type: ', type(model.model.model_config))
- raise Exception("Unsupported model type: " + str(type(model.model.model_config)))
-
- return (is_SDXL, is_PP)
-
-
-def check_image_mask(image, mask, name):
- if len(image.shape) < 4:
- # image tensor shape should be [B, H, W, C], but batch somehow is missing
- image = image[None,:,:,:]
-
- if len(mask.shape) > 3:
- # mask tensor shape should be [B, H, W] but we get [B, H, W, C], image may be?
- # take first mask, red channel
- mask = (mask[:,:,:,0])[:,:,:]
- elif len(mask.shape) < 3:
- # mask tensor shape should be [B, H, W] but batch somehow is missing
- mask = mask[None,:,:]
-
- if image.shape[0] > mask.shape[0]:
- print(name, "gets batch of images (%d) but only %d masks" % (image.shape[0], mask.shape[0]))
- if mask.shape[0] == 1:
- print(name, "will copy the mask to fill batch")
- mask = torch.cat([mask] * image.shape[0], dim=0)
- else:
- print(name, "will add empty masks to fill batch")
- empty_mask = torch.zeros([image.shape[0] - mask.shape[0], mask.shape[1], mask.shape[2]])
- mask = torch.cat([mask, empty_mask], dim=0)
- elif image.shape[0] < mask.shape[0]:
- print(name, "gets batch of images (%d) but too many (%d) masks" % (image.shape[0], mask.shape[0]))
- mask = mask[:image.shape[0],:,:]
-
- return (image, mask)
-
-
-# Prepare image and mask
-def prepare_image(image, mask):
-
- image, mask = check_image_mask(image, mask, 'BrushNet')
-
- print("BrushNet image.shape =", image.shape, "mask.shape =", mask.shape)
-
- if mask.shape[2] != image.shape[2] or mask.shape[1] != image.shape[1]:
- raise Exception("Image and mask should be the same size")
-
- # As a suggestion of inferno46n2 (https://github.com/nullquant/ComfyUI-BrushNet/issues/64)
- mask = mask.round()
-
- masked_image = image * (1.0 - mask[:,:,:,None])
-
- return (masked_image, mask)
-
-
-# Get origin of the mask
-def cut_with_mask(mask, width, height):
- iy, ix = (mask == 1).nonzero(as_tuple=True)
-
- h0, w0 = mask.shape
-
- if iy.numel() == 0:
- x_c = w0 / 2.0
- y_c = h0 / 2.0
- else:
- x_min = ix.min().item()
- x_max = ix.max().item()
- y_min = iy.min().item()
- y_max = iy.max().item()
-
- if x_max - x_min > width or y_max - y_min > height:
- raise Exception("Masked area is bigger than provided dimensions")
-
- x_c = (x_min + x_max) / 2.0
- y_c = (y_min + y_max) / 2.0
-
- width2 = width / 2.0
- height2 = height / 2.0
-
- if w0 <= width:
- x0 = 0
- w = w0
- else:
- x0 = max(0, x_c - width2)
- w = width
- if x0 + width > w0:
- x0 = w0 - width
-
- if h0 <= height:
- y0 = 0
- h = h0
- else:
- y0 = max(0, y_c - height2)
- h = height
- if y0 + height > h0:
- y0 = h0 - height
-
- return (int(x0), int(y0), int(w), int(h))
-
-
-# Prepare conditioning_latents
-@torch.inference_mode()
-def get_image_latents(masked_image, mask, vae, scaling_factor):
- processed_image = masked_image.to(vae.device)
- image_latents = vae.encode(processed_image[:,:,:,:3]) * scaling_factor
- processed_mask = 1. - mask[:,None,:,:]
- interpolated_mask = torch.nn.functional.interpolate(
- processed_mask,
- size=(
- image_latents.shape[-2],
- image_latents.shape[-1]
- )
- )
- interpolated_mask = interpolated_mask.to(image_latents.device)
-
- conditioning_latents = [image_latents, interpolated_mask]
-
- print('BrushNet CL: image_latents shape =', image_latents.shape, 'interpolated_mask shape =', interpolated_mask.shape)
-
- return conditioning_latents
-
-
-# Main function where magic happens
-@torch.inference_mode()
-def brushnet_inference(x, timesteps, transformer_options, debug):
- if 'model_patch' not in transformer_options:
- print('BrushNet inference: there is no model_patch key in transformer_options')
- return ([], 0, [])
- mp = transformer_options['model_patch']
- if 'brushnet' not in mp:
- print('BrushNet inference: there is no brushnet key in mdel_patch')
- return ([], 0, [])
- bo = mp['brushnet']
- if 'model' not in bo:
- print('BrushNet inference: there is no model key in brushnet')
- return ([], 0, [])
- brushnet = bo['model']
- if not (isinstance(brushnet, BrushNetModel) or isinstance(brushnet, PowerPaintModel)):
- print('BrushNet model is not a BrushNetModel class')
- return ([], 0, [])
-
- torch_dtype = bo['dtype']
- cl_list = bo['latents']
- brushnet_conditioning_scale, control_guidance_start, control_guidance_end = bo['controls']
- pe = bo['prompt_embeds']
- npe = bo['negative_prompt_embeds']
- ppe, nppe, time_ids = bo['add_embeds']
-
- #do_classifier_free_guidance = mp['free_guidance']
- do_classifier_free_guidance = len(transformer_options['cond_or_uncond']) > 1
-
- x = x.detach().clone()
- x = x.to(torch_dtype).to(brushnet.device)
-
- timesteps = timesteps.detach().clone()
- timesteps = timesteps.to(torch_dtype).to(brushnet.device)
-
- total_steps = mp['total_steps']
- step = mp['step']
-
- added_cond_kwargs = {}
-
- if do_classifier_free_guidance and step == 0:
- print('BrushNet inference: do_classifier_free_guidance is True')
-
- sub_idx = None
- if 'ad_params' in transformer_options and 'sub_idxs' in transformer_options['ad_params']:
- sub_idx = transformer_options['ad_params']['sub_idxs']
-
- # we have batch input images
- batch = cl_list[0].shape[0]
- # we have incoming latents
- latents_incoming = x.shape[0]
- # and we already got some
- latents_got = bo['latent_id']
- if step == 0 or batch > 1:
- print('BrushNet inference, step = %d: image batch = %d, got %d latents, starting from %d' \
- % (step, batch, latents_incoming, latents_got))
-
- image_latents = []
- masks = []
- prompt_embeds = []
- negative_prompt_embeds = []
- pooled_prompt_embeds = []
- negative_pooled_prompt_embeds = []
- if sub_idx:
- # AnimateDiff indexes detected
- if step == 0:
- print('BrushNet inference: AnimateDiff indexes detected and applied')
-
- batch = len(sub_idx)
-
- if do_classifier_free_guidance:
- for i in sub_idx:
- image_latents.append(cl_list[0][i][None,:,:,:])
- masks.append(cl_list[1][i][None,:,:,:])
- prompt_embeds.append(pe)
- negative_prompt_embeds.append(npe)
- pooled_prompt_embeds.append(ppe)
- negative_pooled_prompt_embeds.append(nppe)
- for i in sub_idx:
- image_latents.append(cl_list[0][i][None,:,:,:])
- masks.append(cl_list[1][i][None,:,:,:])
- else:
- for i in sub_idx:
- image_latents.append(cl_list[0][i][None,:,:,:])
- masks.append(cl_list[1][i][None,:,:,:])
- prompt_embeds.append(pe)
- pooled_prompt_embeds.append(ppe)
- else:
- # do_classifier_free_guidance = 2 passes, 1st pass is cond, 2nd is uncond
- continue_batch = True
- for i in range(latents_incoming):
- number = latents_got + i
- if number < batch:
- # 1st pass, cond
- image_latents.append(cl_list[0][number][None,:,:,:])
- masks.append(cl_list[1][number][None,:,:,:])
- prompt_embeds.append(pe)
- pooled_prompt_embeds.append(ppe)
- elif do_classifier_free_guidance and number < batch * 2:
- # 2nd pass, uncond
- image_latents.append(cl_list[0][number-batch][None,:,:,:])
- masks.append(cl_list[1][number-batch][None,:,:,:])
- negative_prompt_embeds.append(npe)
- negative_pooled_prompt_embeds.append(nppe)
- else:
- # latent batch
- image_latents.append(cl_list[0][0][None,:,:,:])
- masks.append(cl_list[1][0][None,:,:,:])
- prompt_embeds.append(pe)
- pooled_prompt_embeds.append(ppe)
- latents_got = -i
- continue_batch = False
-
- if continue_batch:
- # we don't have full batch yet
- if do_classifier_free_guidance:
- if number < batch * 2 - 1:
- bo['latent_id'] = number + 1
- else:
- bo['latent_id'] = 0
- else:
- if number < batch - 1:
- bo['latent_id'] = number + 1
- else:
- bo['latent_id'] = 0
- else:
- bo['latent_id'] = 0
-
- cl = []
- for il, m in zip(image_latents, masks):
- cl.append(torch.concat([il, m], dim=1))
- cl2apply = torch.concat(cl, dim=0)
-
- conditioning_latents = cl2apply.to(torch_dtype).to(brushnet.device)
-
- # print("BrushNet CL: conditioning_latents shape =", conditioning_latents.shape)
- # print("BrushNet CL: x shape =", x.shape)
-
- prompt_embeds.extend(negative_prompt_embeds)
- prompt_embeds = torch.concat(prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device)
-
- if ppe is not None:
- added_cond_kwargs = {}
- added_cond_kwargs['time_ids'] = torch.concat([time_ids] * latents_incoming, dim = 0).to(torch_dtype).to(brushnet.device)
-
- pooled_prompt_embeds.extend(negative_pooled_prompt_embeds)
- pooled_prompt_embeds = torch.concat(pooled_prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device)
- added_cond_kwargs['text_embeds'] = pooled_prompt_embeds
- else:
- added_cond_kwargs = None
-
- if x.shape[2] != conditioning_latents.shape[2] or x.shape[3] != conditioning_latents.shape[3]:
- if step == 0:
- print('BrushNet inference: image', conditioning_latents.shape, 'and latent', x.shape, 'have different size, resizing image')
- conditioning_latents = torch.nn.functional.interpolate(
- conditioning_latents, size=(
- x.shape[2],
- x.shape[3],
- ), mode='bicubic',
- ).to(torch_dtype).to(brushnet.device)
-
- if step == 0:
- print('BrushNet inference: sample', x.shape, ', CL', conditioning_latents.shape, 'dtype', torch_dtype)
-
- if debug: print('BrushNet: step =', step)
-
- if step < control_guidance_start or step > control_guidance_end:
- cond_scale = 0.0
- else:
- cond_scale = brushnet_conditioning_scale
-
- return brushnet(x,
- encoder_hidden_states=prompt_embeds,
- brushnet_cond=conditioning_latents,
- timestep = timesteps,
- conditioning_scale=cond_scale,
- guess_mode=False,
- added_cond_kwargs=added_cond_kwargs,
- return_dict=False,
- debug=debug,
- )
-
-
-# This is main patch function
-def add_brushnet_patch(model, brushnet, torch_dtype, conditioning_latents,
- controls,
- prompt_embeds, negative_prompt_embeds,
- pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids,
- debug):
-
- is_SDXL = isinstance(model.model.model_config, comfy.supported_models.SDXL)
-
- if is_SDXL:
- input_blocks = [[0, comfy.ops.disable_weight_init.Conv2d],
- [1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
- [2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
- [3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
- [4, comfy.ldm.modules.attention.SpatialTransformer],
- [5, comfy.ldm.modules.attention.SpatialTransformer],
- [6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
- [7, comfy.ldm.modules.attention.SpatialTransformer],
- [8, comfy.ldm.modules.attention.SpatialTransformer]]
- middle_block = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]
- output_blocks = [[0, comfy.ldm.modules.attention.SpatialTransformer],
- [1, comfy.ldm.modules.attention.SpatialTransformer],
- [2, comfy.ldm.modules.attention.SpatialTransformer],
- [2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
- [3, comfy.ldm.modules.attention.SpatialTransformer],
- [4, comfy.ldm.modules.attention.SpatialTransformer],
- [5, comfy.ldm.modules.attention.SpatialTransformer],
- [5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
- [6, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
- [7, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
- [8, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]]
- else:
- input_blocks = [[0, comfy.ops.disable_weight_init.Conv2d],
- [1, comfy.ldm.modules.attention.SpatialTransformer],
- [2, comfy.ldm.modules.attention.SpatialTransformer],
- [3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
- [4, comfy.ldm.modules.attention.SpatialTransformer],
- [5, comfy.ldm.modules.attention.SpatialTransformer],
- [6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
- [7, comfy.ldm.modules.attention.SpatialTransformer],
- [8, comfy.ldm.modules.attention.SpatialTransformer],
- [9, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
- [10, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
- [11, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]]
- middle_block = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]
- output_blocks = [[0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
- [1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
- [2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
- [2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
- [3, comfy.ldm.modules.attention.SpatialTransformer],
- [4, comfy.ldm.modules.attention.SpatialTransformer],
- [5, comfy.ldm.modules.attention.SpatialTransformer],
- [5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
- [6, comfy.ldm.modules.attention.SpatialTransformer],
- [7, comfy.ldm.modules.attention.SpatialTransformer],
- [8, comfy.ldm.modules.attention.SpatialTransformer],
- [8, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
- [9, comfy.ldm.modules.attention.SpatialTransformer],
- [10, comfy.ldm.modules.attention.SpatialTransformer],
- [11, comfy.ldm.modules.attention.SpatialTransformer]]
-
- def last_layer_index(block, tp):
- layer_list = []
- for layer in block:
- layer_list.append(type(layer))
- layer_list.reverse()
- if tp not in layer_list:
- return -1, layer_list.reverse()
- return len(layer_list) - 1 - layer_list.index(tp), layer_list
-
- def brushnet_forward(model, x, timesteps, transformer_options, control):
- if 'brushnet' not in transformer_options['model_patch']:
- input_samples = []
- mid_sample = 0
- output_samples = []
- else:
- # brushnet inference
- input_samples, mid_sample, output_samples = brushnet_inference(x, timesteps, transformer_options, debug)
-
- # give additional samples to blocks
- for i, tp in input_blocks:
- idx, layer_list = last_layer_index(model.input_blocks[i], tp)
- if idx < 0:
- print("BrushNet can't find", tp, "layer in", i,"input block:", layer_list)
- continue
- model.input_blocks[i][idx].add_sample_after = input_samples.pop(0) if input_samples else 0
-
- idx, layer_list = last_layer_index(model.middle_block, middle_block[1])
- if idx < 0:
- print("BrushNet can't find", middle_block[1], "layer in middle block", layer_list)
- model.middle_block[idx].add_sample_after = mid_sample
-
- for i, tp in output_blocks:
- idx, layer_list = last_layer_index(model.output_blocks[i], tp)
- if idx < 0:
- print("BrushNet can't find", tp, "layer in", i,"outnput block:", layer_list)
- continue
- model.output_blocks[i][idx].add_sample_after = output_samples.pop(0) if output_samples else 0
-
- patch_model_function_wrapper(model, brushnet_forward)
-
- to = add_model_patch_option(model)
- mp = to['model_patch']
- if 'brushnet' not in mp:
- mp['brushnet'] = {}
- bo = mp['brushnet']
-
- bo['model'] = brushnet
- bo['dtype'] = torch_dtype
- bo['latents'] = conditioning_latents
- bo['controls'] = controls
- bo['prompt_embeds'] = prompt_embeds
- bo['negative_prompt_embeds'] = negative_prompt_embeds
- bo['add_embeds'] = (pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids)
- bo['latent_id'] = 0
-
- # patch layers `forward` so we can apply brushnet
- def forward_patched_by_brushnet(self, x, *args, **kwargs):
- h = self.original_forward(x, *args, **kwargs)
- if hasattr(self, 'add_sample_after') and type(self):
- to_add = self.add_sample_after
- if torch.is_tensor(to_add):
- # interpolate due to RAUNet
- if h.shape[2] != to_add.shape[2] or h.shape[3] != to_add.shape[3]:
- to_add = torch.nn.functional.interpolate(to_add, size=(h.shape[2], h.shape[3]), mode='bicubic')
- h += to_add.to(h.dtype).to(h.device)
- else:
- h += self.add_sample_after
- self.add_sample_after = 0
- return h
-
- for i, block in enumerate(model.model.diffusion_model.input_blocks):
- for j, layer in enumerate(block):
- if not hasattr(layer, 'original_forward'):
- layer.original_forward = layer.forward
- layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
- layer.add_sample_after = 0
-
- for j, layer in enumerate(model.model.diffusion_model.middle_block):
- if not hasattr(layer, 'original_forward'):
- layer.original_forward = layer.forward
- layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
- layer.add_sample_after = 0
-
- for i, block in enumerate(model.model.diffusion_model.output_blocks):
- for j, layer in enumerate(block):
- if not hasattr(layer, 'original_forward'):
- layer.original_forward = layer.forward
- layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
- layer.add_sample_after = 0
diff --git a/MagicQuill/comfy/.DS_Store b/MagicQuill/comfy/.DS_Store
deleted file mode 100644
index 6929da02147a717f7f4ec1fa0a6d2f0a967729d3..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/.DS_Store and /dev/null differ
diff --git a/MagicQuill/comfy/checkpoint_pickle.py b/MagicQuill/comfy/checkpoint_pickle.py
deleted file mode 100644
index 206551d3c1cf0d654c907534629a800196ba138b..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/checkpoint_pickle.py
+++ /dev/null
@@ -1,13 +0,0 @@
-import pickle
-
-load = pickle.load
-
-class Empty:
- pass
-
-class Unpickler(pickle.Unpickler):
- def find_class(self, module, name):
- #TODO: safe unpickle
- if module.startswith("pytorch_lightning"):
- return Empty
- return super().find_class(module, name)
diff --git a/MagicQuill/comfy/cldm/__pycache__/cldm.cpython-310.pyc b/MagicQuill/comfy/cldm/__pycache__/cldm.cpython-310.pyc
deleted file mode 100644
index 9607a6650170ea6563fd708ba990c622b63f0e78..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/cldm/__pycache__/cldm.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/cldm/cldm.py b/MagicQuill/comfy/cldm/cldm.py
deleted file mode 100644
index 28076dd9251e12f050a280337eaf3b7504710ce0..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/cldm/cldm.py
+++ /dev/null
@@ -1,313 +0,0 @@
-#taken from: https://github.com/lllyasviel/ControlNet
-#and modified
-
-import torch
-import torch as th
-import torch.nn as nn
-
-from ..ldm.modules.diffusionmodules.util import (
- zero_module,
- timestep_embedding,
-)
-
-from ..ldm.modules.attention import SpatialTransformer
-from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
-from ..ldm.util import exists
-import comfy.ops
-
-class ControlledUnetModel(UNetModel):
- #implemented in the ldm unet
- pass
-
-class ControlNet(nn.Module):
- def __init__(
- self,
- image_size,
- in_channels,
- model_channels,
- hint_channels,
- num_res_blocks,
- dropout=0,
- channel_mult=(1, 2, 4, 8),
- conv_resample=True,
- dims=2,
- num_classes=None,
- use_checkpoint=False,
- dtype=torch.float32,
- num_heads=-1,
- num_head_channels=-1,
- num_heads_upsample=-1,
- use_scale_shift_norm=False,
- resblock_updown=False,
- use_new_attention_order=False,
- use_spatial_transformer=False, # custom transformer support
- transformer_depth=1, # custom transformer support
- context_dim=None, # custom transformer support
- n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
- legacy=True,
- disable_self_attentions=None,
- num_attention_blocks=None,
- disable_middle_self_attn=False,
- use_linear_in_transformer=False,
- adm_in_channels=None,
- transformer_depth_middle=None,
- transformer_depth_output=None,
- attn_precision=None,
- device=None,
- operations=comfy.ops.disable_weight_init,
- **kwargs,
- ):
- super().__init__()
- assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
- if use_spatial_transformer:
- assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
-
- if context_dim is not None:
- assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
- # from omegaconf.listconfig import ListConfig
- # if type(context_dim) == ListConfig:
- # context_dim = list(context_dim)
-
- if num_heads_upsample == -1:
- num_heads_upsample = num_heads
-
- if num_heads == -1:
- assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
-
- if num_head_channels == -1:
- assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
-
- self.dims = dims
- self.image_size = image_size
- self.in_channels = in_channels
- self.model_channels = model_channels
-
- if isinstance(num_res_blocks, int):
- self.num_res_blocks = len(channel_mult) * [num_res_blocks]
- else:
- if len(num_res_blocks) != len(channel_mult):
- raise ValueError("provide num_res_blocks either as an int (globally constant) or "
- "as a list/tuple (per-level) with the same length as channel_mult")
- self.num_res_blocks = num_res_blocks
-
- if disable_self_attentions is not None:
- # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
- assert len(disable_self_attentions) == len(channel_mult)
- if num_attention_blocks is not None:
- assert len(num_attention_blocks) == len(self.num_res_blocks)
- assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
-
- transformer_depth = transformer_depth[:]
-
- self.dropout = dropout
- self.channel_mult = channel_mult
- self.conv_resample = conv_resample
- self.num_classes = num_classes
- self.use_checkpoint = use_checkpoint
- self.dtype = dtype
- self.num_heads = num_heads
- self.num_head_channels = num_head_channels
- self.num_heads_upsample = num_heads_upsample
- self.predict_codebook_ids = n_embed is not None
-
- time_embed_dim = model_channels * 4
- self.time_embed = nn.Sequential(
- operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
- nn.SiLU(),
- operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
- )
-
- if self.num_classes is not None:
- if isinstance(self.num_classes, int):
- self.label_emb = nn.Embedding(num_classes, time_embed_dim)
- elif self.num_classes == "continuous":
- print("setting up linear c_adm embedding layer")
- self.label_emb = nn.Linear(1, time_embed_dim)
- elif self.num_classes == "sequential":
- assert adm_in_channels is not None
- self.label_emb = nn.Sequential(
- nn.Sequential(
- operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
- nn.SiLU(),
- operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
- )
- )
- else:
- raise ValueError()
-
- self.input_blocks = nn.ModuleList(
- [
- TimestepEmbedSequential(
- operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
- )
- ]
- )
- self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
-
- self.input_hint_block = TimestepEmbedSequential(
- operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
- nn.SiLU(),
- operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
- nn.SiLU(),
- operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
- nn.SiLU(),
- operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
- nn.SiLU(),
- operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
- nn.SiLU(),
- operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
- nn.SiLU(),
- operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
- nn.SiLU(),
- operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
- )
-
- self._feature_size = model_channels
- input_block_chans = [model_channels]
- ch = model_channels
- ds = 1
- for level, mult in enumerate(channel_mult):
- for nr in range(self.num_res_blocks[level]):
- layers = [
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- out_channels=mult * model_channels,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- dtype=self.dtype,
- device=device,
- operations=operations,
- )
- ]
- ch = mult * model_channels
- num_transformers = transformer_depth.pop(0)
- if num_transformers > 0:
- if num_head_channels == -1:
- dim_head = ch // num_heads
- else:
- num_heads = ch // num_head_channels
- dim_head = num_head_channels
- if legacy:
- #num_heads = 1
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
- if exists(disable_self_attentions):
- disabled_sa = disable_self_attentions[level]
- else:
- disabled_sa = False
-
- if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
- layers.append(
- SpatialTransformer(
- ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
- disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
- use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
- )
- )
- self.input_blocks.append(TimestepEmbedSequential(*layers))
- self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
- self._feature_size += ch
- input_block_chans.append(ch)
- if level != len(channel_mult) - 1:
- out_ch = ch
- self.input_blocks.append(
- TimestepEmbedSequential(
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- out_channels=out_ch,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- down=True,
- dtype=self.dtype,
- device=device,
- operations=operations
- )
- if resblock_updown
- else Downsample(
- ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
- )
- )
- )
- ch = out_ch
- input_block_chans.append(ch)
- self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
- ds *= 2
- self._feature_size += ch
-
- if num_head_channels == -1:
- dim_head = ch // num_heads
- else:
- num_heads = ch // num_head_channels
- dim_head = num_head_channels
- if legacy:
- #num_heads = 1
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
- mid_block = [
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- dtype=self.dtype,
- device=device,
- operations=operations
- )]
- if transformer_depth_middle >= 0:
- mid_block += [SpatialTransformer( # always uses a self-attn
- ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
- disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
- use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
- ),
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- dtype=self.dtype,
- device=device,
- operations=operations
- )]
- self.middle_block = TimestepEmbedSequential(*mid_block)
- self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
- self._feature_size += ch
-
- def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
- return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
-
- def forward(self, x, hint, timesteps, context, y=None, **kwargs):
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
- emb = self.time_embed(t_emb)
-
- guided_hint = self.input_hint_block(hint, emb, context)
-
- outs = []
-
- hs = []
- if self.num_classes is not None:
- assert y.shape[0] == x.shape[0]
- emb = emb + self.label_emb(y)
-
- h = x
- for module, zero_conv in zip(self.input_blocks, self.zero_convs):
- if guided_hint is not None:
- h = module(h, emb, context)
- h += guided_hint
- guided_hint = None
- else:
- h = module(h, emb, context)
- outs.append(zero_conv(h, emb, context))
-
- h = self.middle_block(h, emb, context)
- outs.append(self.middle_block_out(h, emb, context))
-
- return outs
-
diff --git a/MagicQuill/comfy/cli_args.py b/MagicQuill/comfy/cli_args.py
deleted file mode 100644
index fb0d37ce75081e3f4f38350cd6131c290a3fdd48..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/cli_args.py
+++ /dev/null
@@ -1,143 +0,0 @@
-import argparse
-import enum
-import comfy.options
-
-class EnumAction(argparse.Action):
- """
- Argparse action for handling Enums
- """
- def __init__(self, **kwargs):
- # Pop off the type value
- enum_type = kwargs.pop("type", None)
-
- # Ensure an Enum subclass is provided
- if enum_type is None:
- raise ValueError("type must be assigned an Enum when using EnumAction")
- if not issubclass(enum_type, enum.Enum):
- raise TypeError("type must be an Enum when using EnumAction")
-
- # Generate choices from the Enum
- choices = tuple(e.value for e in enum_type)
- kwargs.setdefault("choices", choices)
- kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
-
- super(EnumAction, self).__init__(**kwargs)
-
- self._enum = enum_type
-
- def __call__(self, parser, namespace, values, option_string=None):
- # Convert value back into an Enum
- value = self._enum(values)
- setattr(namespace, self.dest, value)
-
-
-parser = argparse.ArgumentParser()
-
-parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)")
-parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
-parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
-parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
-parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
-parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
-
-parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
-parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
-parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).")
-parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory.")
-parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
-parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
-parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
-cm_group = parser.add_mutually_exclusive_group()
-cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
-cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
-
-
-fp_group = parser.add_mutually_exclusive_group()
-fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
-fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
-
-fpunet_group = parser.add_mutually_exclusive_group()
-fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the UNET in bf16. This should only be used for testing stuff.")
-fpunet_group.add_argument("--fp16-unet", action="store_true", help="Store unet weights in fp16.")
-fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
-fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
-
-fpvae_group = parser.add_mutually_exclusive_group()
-fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
-fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
-fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
-
-parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
-
-fpte_group = parser.add_mutually_exclusive_group()
-fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
-fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
-fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
-fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
-
-parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
-
-parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
-
-parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.")
-
-class LatentPreviewMethod(enum.Enum):
- NoPreviews = "none"
- Auto = "auto"
- Latent2RGB = "latent2rgb"
- TAESD = "taesd"
-
-parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
-
-attn_group = parser.add_mutually_exclusive_group()
-attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
-attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
-attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
-
-parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
-
-upcast = parser.add_mutually_exclusive_group()
-upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.")
-upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
-
-
-vram_group = parser.add_mutually_exclusive_group()
-vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
-vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
-vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
-vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
-vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
-vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
-
-
-parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
-parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
-
-parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
-parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
-parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
-
-parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
-
-parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
-
-parser.add_argument("--verbose", action="store_true", help="Enables more debug prints.")
-
-
-if comfy.options.args_parsing:
- args = parser.parse_args()
-else:
- args = parser.parse_args([])
-
-if args.windows_standalone_build:
- args.auto_launch = True
-
-if args.disable_auto_launch:
- args.auto_launch = False
-
-import logging
-logging_level = logging.INFO
-if args.verbose:
- logging_level = logging.DEBUG
-
-logging.basicConfig(format="%(message)s", level=logging_level)
diff --git a/MagicQuill/comfy/clip_config_bigg.json b/MagicQuill/comfy/clip_config_bigg.json
deleted file mode 100644
index 32d82ff39ba66ba0be15ec101993e1c46cc3f7ab..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/clip_config_bigg.json
+++ /dev/null
@@ -1,23 +0,0 @@
-{
- "architectures": [
- "CLIPTextModel"
- ],
- "attention_dropout": 0.0,
- "bos_token_id": 0,
- "dropout": 0.0,
- "eos_token_id": 2,
- "hidden_act": "gelu",
- "hidden_size": 1280,
- "initializer_factor": 1.0,
- "initializer_range": 0.02,
- "intermediate_size": 5120,
- "layer_norm_eps": 1e-05,
- "max_position_embeddings": 77,
- "model_type": "clip_text_model",
- "num_attention_heads": 20,
- "num_hidden_layers": 32,
- "pad_token_id": 1,
- "projection_dim": 1280,
- "torch_dtype": "float32",
- "vocab_size": 49408
-}
diff --git a/MagicQuill/comfy/clip_model.py b/MagicQuill/comfy/clip_model.py
deleted file mode 100644
index 14f43c5687cb19c62fbaea3481a66f11f3b186c6..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/clip_model.py
+++ /dev/null
@@ -1,194 +0,0 @@
-import torch
-from comfy.ldm.modules.attention import optimized_attention_for_device
-
-class CLIPAttention(torch.nn.Module):
- def __init__(self, embed_dim, heads, dtype, device, operations):
- super().__init__()
-
- self.heads = heads
- self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
- self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
- self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
-
- self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
-
- def forward(self, x, mask=None, optimized_attention=None):
- q = self.q_proj(x)
- k = self.k_proj(x)
- v = self.v_proj(x)
-
- out = optimized_attention(q, k, v, self.heads, mask)
- return self.out_proj(out)
-
-ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
- "gelu": torch.nn.functional.gelu,
-}
-
-class CLIPMLP(torch.nn.Module):
- def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
- super().__init__()
- self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
- self.activation = ACTIVATIONS[activation]
- self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
-
- def forward(self, x):
- x = self.fc1(x)
- x = self.activation(x)
- x = self.fc2(x)
- return x
-
-class CLIPLayer(torch.nn.Module):
- def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
- super().__init__()
- self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
- self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
- self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
- self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
-
- def forward(self, x, mask=None, optimized_attention=None):
- x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
- x += self.mlp(self.layer_norm2(x))
- return x
-
-
-class CLIPEncoder(torch.nn.Module):
- def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
- super().__init__()
- self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
-
- def forward(self, x, mask=None, intermediate_output=None):
- optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
-
- if intermediate_output is not None:
- if intermediate_output < 0:
- intermediate_output = len(self.layers) + intermediate_output
-
- intermediate = None
- for i, l in enumerate(self.layers):
- x = l(x, mask, optimized_attention)
- if i == intermediate_output:
- intermediate = x.clone()
- return x, intermediate
-
-class CLIPEmbeddings(torch.nn.Module):
- def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None):
- super().__init__()
- self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
- self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
-
- def forward(self, input_tokens):
- return self.token_embedding(input_tokens) + self.position_embedding.weight
-
-
-class CLIPTextModel_(torch.nn.Module):
- def __init__(self, config_dict, dtype, device, operations):
- num_layers = config_dict["num_hidden_layers"]
- embed_dim = config_dict["hidden_size"]
- heads = config_dict["num_attention_heads"]
- intermediate_size = config_dict["intermediate_size"]
- intermediate_activation = config_dict["hidden_act"]
-
- super().__init__()
- self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device)
- self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
- self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
-
- def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
- x = self.embeddings(input_tokens)
- mask = None
- if attention_mask is not None:
- mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
- mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
-
- causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
- if mask is not None:
- mask += causal_mask
- else:
- mask = causal_mask
-
- x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
- x = self.final_layer_norm(x)
- if i is not None and final_layer_norm_intermediate:
- i = self.final_layer_norm(i)
-
- pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),]
- return x, i, pooled_output
-
-class CLIPTextModel(torch.nn.Module):
- def __init__(self, config_dict, dtype, device, operations):
- super().__init__()
- self.num_layers = config_dict["num_hidden_layers"]
- self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
- embed_dim = config_dict["hidden_size"]
- self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
- self.text_projection.weight.copy_(torch.eye(embed_dim))
- self.dtype = dtype
-
- def get_input_embeddings(self):
- return self.text_model.embeddings.token_embedding
-
- def set_input_embeddings(self, embeddings):
- self.text_model.embeddings.token_embedding = embeddings
-
- def forward(self, *args, **kwargs):
- x = self.text_model(*args, **kwargs)
- out = self.text_projection(x[2])
- return (x[0], x[1], out, x[2])
-
-
-class CLIPVisionEmbeddings(torch.nn.Module):
- def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, dtype=None, device=None, operations=None):
- super().__init__()
- self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
-
- self.patch_embedding = operations.Conv2d(
- in_channels=num_channels,
- out_channels=embed_dim,
- kernel_size=patch_size,
- stride=patch_size,
- bias=False,
- dtype=dtype,
- device=device
- )
-
- num_patches = (image_size // patch_size) ** 2
- num_positions = num_patches + 1
- self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
-
- def forward(self, pixel_values):
- embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
- return torch.cat([self.class_embedding.to(embeds.device).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight.to(embeds.device)
-
-
-class CLIPVision(torch.nn.Module):
- def __init__(self, config_dict, dtype, device, operations):
- super().__init__()
- num_layers = config_dict["num_hidden_layers"]
- embed_dim = config_dict["hidden_size"]
- heads = config_dict["num_attention_heads"]
- intermediate_size = config_dict["intermediate_size"]
- intermediate_activation = config_dict["hidden_act"]
-
- self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=torch.float32, device=device, operations=operations)
- self.pre_layrnorm = operations.LayerNorm(embed_dim)
- self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
- self.post_layernorm = operations.LayerNorm(embed_dim)
-
- def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
- x = self.embeddings(pixel_values)
- x = self.pre_layrnorm(x)
- #TODO: attention_mask?
- x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
- pooled_output = self.post_layernorm(x[:, 0, :])
- return x, i, pooled_output
-
-class CLIPVisionModelProjection(torch.nn.Module):
- def __init__(self, config_dict, dtype, device, operations):
- super().__init__()
- self.vision_model = CLIPVision(config_dict, dtype, device, operations)
- self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
-
- def forward(self, *args, **kwargs):
- x = self.vision_model(*args, **kwargs)
- out = self.visual_projection(x[2])
- return (x[0], x[1], out)
diff --git a/MagicQuill/comfy/clip_vision.py b/MagicQuill/comfy/clip_vision.py
deleted file mode 100644
index acc86be855667e2945d39d991783f4fcb707339d..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/clip_vision.py
+++ /dev/null
@@ -1,117 +0,0 @@
-from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
-import os
-import torch
-import json
-import logging
-
-import comfy.ops
-import comfy.model_patcher
-import comfy.model_management
-import comfy.utils
-import comfy.clip_model
-
-class Output:
- def __getitem__(self, key):
- return getattr(self, key)
- def __setitem__(self, key, item):
- setattr(self, key, item)
-
-def clip_preprocess(image, size=224):
- mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype)
- std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype)
- image = image.movedim(-1, 1)
- if not (image.shape[2] == size and image.shape[3] == size):
- scale = (size / min(image.shape[2], image.shape[3]))
- image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True)
- h = (image.shape[2] - size)//2
- w = (image.shape[3] - size)//2
- image = image[:,:,h:h+size,w:w+size]
- image = torch.clip((255. * image), 0, 255).round() / 255.0
- return (image - mean.view([3,1,1])) / std.view([3,1,1])
-
-class ClipVisionModel():
- def __init__(self, json_config):
- with open(json_config) as f:
- config = json.load(f)
-
- self.load_device = comfy.model_management.text_encoder_device()
- offload_device = comfy.model_management.text_encoder_offload_device()
- self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
- self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast)
- self.model.eval()
-
- self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
-
- def load_sd(self, sd):
- return self.model.load_state_dict(sd, strict=False)
-
- def get_sd(self):
- return self.model.state_dict()
-
- def encode_image(self, image):
- comfy.model_management.load_model_gpu(self.patcher)
- pixel_values = clip_preprocess(image.to(self.load_device)).float()
- out = self.model(pixel_values=pixel_values, intermediate_output=-2)
-
- outputs = Output()
- outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
- outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
- outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
- return outputs
-
-def convert_to_transformers(sd, prefix):
- sd_k = sd.keys()
- if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
- keys_to_replace = {
- "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
- "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
- "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
- "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
- "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
- "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
- "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
- }
-
- for x in keys_to_replace:
- if x in sd_k:
- sd[keys_to_replace[x]] = sd.pop(x)
-
- if "{}proj".format(prefix) in sd_k:
- sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
-
- sd = transformers_convert(sd, prefix, "vision_model.", 48)
- else:
- replace_prefix = {prefix: ""}
- sd = state_dict_prefix_replace(sd, replace_prefix)
- return sd
-
-def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
- if convert_keys:
- sd = convert_to_transformers(sd, prefix)
- if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
- json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
- elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
- json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
- elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
- json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
- else:
- return None
-
- clip = ClipVisionModel(json_config)
- m, u = clip.load_sd(sd)
- if len(m) > 0:
- logging.warning("missing clip vision: {}".format(m))
- u = set(u)
- keys = list(sd.keys())
- for k in keys:
- if k not in u:
- t = sd.pop(k)
- del t
- return clip
-
-def load(ckpt_path):
- sd = load_torch_file(ckpt_path)
- if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
- return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
- else:
- return load_clipvision_from_sd(sd)
diff --git a/MagicQuill/comfy/clip_vision_config_g.json b/MagicQuill/comfy/clip_vision_config_g.json
deleted file mode 100644
index 708e7e21ac3513a719d6a49e88e756f5ef7e2c8d..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/clip_vision_config_g.json
+++ /dev/null
@@ -1,18 +0,0 @@
-{
- "attention_dropout": 0.0,
- "dropout": 0.0,
- "hidden_act": "gelu",
- "hidden_size": 1664,
- "image_size": 224,
- "initializer_factor": 1.0,
- "initializer_range": 0.02,
- "intermediate_size": 8192,
- "layer_norm_eps": 1e-05,
- "model_type": "clip_vision_model",
- "num_attention_heads": 16,
- "num_channels": 3,
- "num_hidden_layers": 48,
- "patch_size": 14,
- "projection_dim": 1280,
- "torch_dtype": "float32"
-}
diff --git a/MagicQuill/comfy/clip_vision_config_h.json b/MagicQuill/comfy/clip_vision_config_h.json
deleted file mode 100644
index bb71be419a4be0ad5c8c157850de032a65593cb9..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/clip_vision_config_h.json
+++ /dev/null
@@ -1,18 +0,0 @@
-{
- "attention_dropout": 0.0,
- "dropout": 0.0,
- "hidden_act": "gelu",
- "hidden_size": 1280,
- "image_size": 224,
- "initializer_factor": 1.0,
- "initializer_range": 0.02,
- "intermediate_size": 5120,
- "layer_norm_eps": 1e-05,
- "model_type": "clip_vision_model",
- "num_attention_heads": 16,
- "num_channels": 3,
- "num_hidden_layers": 32,
- "patch_size": 14,
- "projection_dim": 1024,
- "torch_dtype": "float32"
-}
diff --git a/MagicQuill/comfy/clip_vision_config_vitl.json b/MagicQuill/comfy/clip_vision_config_vitl.json
deleted file mode 100644
index c59b8ed5a4c1f41fbcc9e6811d2c7dfe44273de7..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/clip_vision_config_vitl.json
+++ /dev/null
@@ -1,18 +0,0 @@
-{
- "attention_dropout": 0.0,
- "dropout": 0.0,
- "hidden_act": "quick_gelu",
- "hidden_size": 1024,
- "image_size": 224,
- "initializer_factor": 1.0,
- "initializer_range": 0.02,
- "intermediate_size": 4096,
- "layer_norm_eps": 1e-05,
- "model_type": "clip_vision_model",
- "num_attention_heads": 16,
- "num_channels": 3,
- "num_hidden_layers": 24,
- "patch_size": 14,
- "projection_dim": 768,
- "torch_dtype": "float32"
-}
diff --git a/MagicQuill/comfy/conds.py b/MagicQuill/comfy/conds.py
deleted file mode 100644
index 660690af8425209e6cc8d8b3e17185065e269a47..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/conds.py
+++ /dev/null
@@ -1,83 +0,0 @@
-import torch
-import math
-import comfy.utils
-
-
-def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
- return abs(a*b) // math.gcd(a, b)
-
-class CONDRegular:
- def __init__(self, cond):
- self.cond = cond
-
- def _copy_with(self, cond):
- return self.__class__(cond)
-
- def process_cond(self, batch_size, device, **kwargs):
- return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
-
- def can_concat(self, other):
- if self.cond.shape != other.cond.shape:
- return False
- return True
-
- def concat(self, others):
- conds = [self.cond]
- for x in others:
- conds.append(x.cond)
- return torch.cat(conds)
-
-class CONDNoiseShape(CONDRegular):
- def process_cond(self, batch_size, device, area, **kwargs):
- data = self.cond
- if area is not None:
- dims = len(area) // 2
- for i in range(dims):
- data = data.narrow(i + 2, area[i + dims], area[i])
-
- return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device))
-
-
-class CONDCrossAttn(CONDRegular):
- def can_concat(self, other):
- s1 = self.cond.shape
- s2 = other.cond.shape
- if s1 != s2:
- if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
- return False
-
- mult_min = lcm(s1[1], s2[1])
- diff = mult_min // min(s1[1], s2[1])
- if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
- return False
- return True
-
- def concat(self, others):
- conds = [self.cond]
- crossattn_max_len = self.cond.shape[1]
- for x in others:
- c = x.cond
- crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
- conds.append(c)
-
- out = []
- for c in conds:
- if c.shape[1] < crossattn_max_len:
- c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
- out.append(c)
- return torch.cat(out)
-
-class CONDConstant(CONDRegular):
- def __init__(self, cond):
- self.cond = cond
-
- def process_cond(self, batch_size, device, **kwargs):
- return self._copy_with(self.cond)
-
- def can_concat(self, other):
- if self.cond != other.cond:
- return False
- return True
-
- def concat(self, others):
- return self.cond
diff --git a/MagicQuill/comfy/controlnet.py b/MagicQuill/comfy/controlnet.py
deleted file mode 100644
index 8cf4a61a683392e51665a1d41906b3ab22885506..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/controlnet.py
+++ /dev/null
@@ -1,554 +0,0 @@
-import torch
-import math
-import os
-import logging
-import comfy.utils
-import comfy.model_management
-import comfy.model_detection
-import comfy.model_patcher
-import comfy.ops
-
-import comfy.cldm.cldm
-import comfy.t2i_adapter.adapter
-import comfy.ldm.cascade.controlnet
-
-
-def broadcast_image_to(tensor, target_batch_size, batched_number):
- current_batch_size = tensor.shape[0]
- #print(current_batch_size, target_batch_size)
- if current_batch_size == 1:
- return tensor
-
- per_batch = target_batch_size // batched_number
- tensor = tensor[:per_batch]
-
- if per_batch > tensor.shape[0]:
- tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
-
- current_batch_size = tensor.shape[0]
- if current_batch_size == target_batch_size:
- return tensor
- else:
- return torch.cat([tensor] * batched_number, dim=0)
-
-class ControlBase:
- def __init__(self, device=None):
- self.cond_hint_original = None
- self.cond_hint = None
- self.strength = 1.0
- self.timestep_percent_range = (0.0, 1.0)
- self.global_average_pooling = False
- self.timestep_range = None
- self.compression_ratio = 8
- self.upscale_algorithm = 'nearest-exact'
-
- if device is None:
- device = comfy.model_management.get_torch_device()
- self.device = device
- self.previous_controlnet = None
-
- def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)):
- self.cond_hint_original = cond_hint
- self.strength = strength
- self.timestep_percent_range = timestep_percent_range
- return self
-
- def pre_run(self, model, percent_to_timestep_function):
- self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
- if self.previous_controlnet is not None:
- self.previous_controlnet.pre_run(model, percent_to_timestep_function)
-
- def set_previous_controlnet(self, controlnet):
- self.previous_controlnet = controlnet
- return self
-
- def cleanup(self):
- if self.previous_controlnet is not None:
- self.previous_controlnet.cleanup()
- if self.cond_hint is not None:
- del self.cond_hint
- self.cond_hint = None
- self.timestep_range = None
-
- def get_models(self):
- out = []
- if self.previous_controlnet is not None:
- out += self.previous_controlnet.get_models()
- return out
-
- def copy_to(self, c):
- c.cond_hint_original = self.cond_hint_original
- c.strength = self.strength
- c.timestep_percent_range = self.timestep_percent_range
- c.global_average_pooling = self.global_average_pooling
- c.compression_ratio = self.compression_ratio
- c.upscale_algorithm = self.upscale_algorithm
-
- def inference_memory_requirements(self, dtype):
- if self.previous_controlnet is not None:
- return self.previous_controlnet.inference_memory_requirements(dtype)
- return 0
-
- def control_merge(self, control_input, control_output, control_prev, output_dtype):
- out = {'input':[], 'middle':[], 'output': []}
-
- if control_input is not None:
- for i in range(len(control_input)):
- key = 'input'
- x = control_input[i]
- if x is not None:
- x *= self.strength
- if x.dtype != output_dtype:
- x = x.to(output_dtype)
- out[key].insert(0, x)
-
- if control_output is not None:
- for i in range(len(control_output)):
- if i == (len(control_output) - 1):
- key = 'middle'
- index = 0
- else:
- key = 'output'
- index = i
- x = control_output[i]
- if x is not None:
- if self.global_average_pooling:
- x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
-
- x *= self.strength
- if x.dtype != output_dtype:
- x = x.to(output_dtype)
-
- out[key].append(x)
- if control_prev is not None:
- for x in ['input', 'middle', 'output']:
- o = out[x]
- for i in range(len(control_prev[x])):
- prev_val = control_prev[x][i]
- if i >= len(o):
- o.append(prev_val)
- elif prev_val is not None:
- if o[i] is None:
- o[i] = prev_val
- else:
- if o[i].shape[0] < prev_val.shape[0]:
- o[i] = prev_val + o[i]
- else:
- o[i] += prev_val
- return out
-
-class ControlNet(ControlBase):
- def __init__(self, control_model=None, global_average_pooling=False, device=None, load_device=None, manual_cast_dtype=None):
- super().__init__(device)
- self.control_model = control_model
- self.load_device = load_device
- if control_model is not None:
- self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
-
- self.global_average_pooling = global_average_pooling
- self.model_sampling_current = None
- self.manual_cast_dtype = manual_cast_dtype
-
- def get_control(self, x_noisy, t, cond, batched_number):
- control_prev = None
- if self.previous_controlnet is not None:
- control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
-
- if self.timestep_range is not None:
- if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
- if control_prev is not None:
- return control_prev
- else:
- return None
-
- dtype = self.control_model.dtype
- if self.manual_cast_dtype is not None:
- dtype = self.manual_cast_dtype
-
- output_dtype = x_noisy.dtype
- if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
- if self.cond_hint is not None:
- del self.cond_hint
- self.cond_hint = None
- self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio, self.upscale_algorithm, "center").to(dtype).to(self.device)
- if x_noisy.shape[0] != self.cond_hint.shape[0]:
- self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
-
- context = cond.get('crossattn_controlnet', cond['c_crossattn'])
- y = cond.get('y', None)
- if y is not None:
- y = y.to(dtype)
- timestep = self.model_sampling_current.timestep(t)
- x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
-
- control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y)
- return self.control_merge(None, control, control_prev, output_dtype)
-
- def copy(self):
- c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
- c.control_model = self.control_model
- c.control_model_wrapped = self.control_model_wrapped
- self.copy_to(c)
- return c
-
- def get_models(self):
- out = super().get_models()
- out.append(self.control_model_wrapped)
- return out
-
- def pre_run(self, model, percent_to_timestep_function):
- super().pre_run(model, percent_to_timestep_function)
- self.model_sampling_current = model.model_sampling
-
- def cleanup(self):
- self.model_sampling_current = None
- super().cleanup()
-
-class ControlLoraOps:
- class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp):
- def __init__(self, in_features: int, out_features: int, bias: bool = True,
- device=None, dtype=None) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- super().__init__()
- self.in_features = in_features
- self.out_features = out_features
- self.weight = None
- self.up = None
- self.down = None
- self.bias = None
-
- def forward(self, input):
- weight, bias = comfy.ops.cast_bias_weight(self, input)
- if self.up is not None:
- return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
- else:
- return torch.nn.functional.linear(input, weight, bias)
-
- class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
- def __init__(
- self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- padding=0,
- dilation=1,
- groups=1,
- bias=True,
- padding_mode='zeros',
- device=None,
- dtype=None
- ):
- super().__init__()
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.kernel_size = kernel_size
- self.stride = stride
- self.padding = padding
- self.dilation = dilation
- self.transposed = False
- self.output_padding = 0
- self.groups = groups
- self.padding_mode = padding_mode
-
- self.weight = None
- self.bias = None
- self.up = None
- self.down = None
-
-
- def forward(self, input):
- weight, bias = comfy.ops.cast_bias_weight(self, input)
- if self.up is not None:
- return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
- else:
- return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
-
-
-class ControlLora(ControlNet):
- def __init__(self, control_weights, global_average_pooling=False, device=None):
- ControlBase.__init__(self, device)
- self.control_weights = control_weights
- self.global_average_pooling = global_average_pooling
-
- def pre_run(self, model, percent_to_timestep_function):
- super().pre_run(model, percent_to_timestep_function)
- controlnet_config = model.model_config.unet_config.copy()
- controlnet_config.pop("out_channels")
- controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
- self.manual_cast_dtype = model.manual_cast_dtype
- dtype = model.get_dtype()
- if self.manual_cast_dtype is None:
- class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init):
- pass
- else:
- class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast):
- pass
- dtype = self.manual_cast_dtype
-
- controlnet_config["operations"] = control_lora_ops
- controlnet_config["dtype"] = dtype
- self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
- self.control_model.to(comfy.model_management.get_torch_device())
- diffusion_model = model.diffusion_model
- sd = diffusion_model.state_dict()
- cm = self.control_model.state_dict()
-
- for k in sd:
- weight = sd[k]
- try:
- comfy.utils.set_attr_param(self.control_model, k, weight)
- except:
- pass
-
- for k in self.control_weights:
- if k not in {"lora_controlnet"}:
- comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
-
- def copy(self):
- c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
- self.copy_to(c)
- return c
-
- def cleanup(self):
- del self.control_model
- self.control_model = None
- super().cleanup()
-
- def get_models(self):
- out = ControlBase.get_models(self)
- return out
-
- def inference_memory_requirements(self, dtype):
- return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
-
-def load_controlnet(ckpt_path, model=None):
- controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
- if "lora_controlnet" in controlnet_data:
- return ControlLora(controlnet_data)
-
- controlnet_config = None
- supported_inference_dtypes = None
-
- if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
- controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
- diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
- diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
- diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
-
- count = 0
- loop = True
- while loop:
- suffix = [".weight", ".bias"]
- for s in suffix:
- k_in = "controlnet_down_blocks.{}{}".format(count, s)
- k_out = "zero_convs.{}.0{}".format(count, s)
- if k_in not in controlnet_data:
- loop = False
- break
- diffusers_keys[k_in] = k_out
- count += 1
-
- count = 0
- loop = True
- while loop:
- suffix = [".weight", ".bias"]
- for s in suffix:
- if count == 0:
- k_in = "controlnet_cond_embedding.conv_in{}".format(s)
- else:
- k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
- k_out = "input_hint_block.{}{}".format(count * 2, s)
- if k_in not in controlnet_data:
- k_in = "controlnet_cond_embedding.conv_out{}".format(s)
- loop = False
- diffusers_keys[k_in] = k_out
- count += 1
-
- new_sd = {}
- for k in diffusers_keys:
- if k in controlnet_data:
- new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
-
- leftover_keys = controlnet_data.keys()
- if len(leftover_keys) > 0:
- logging.warning("leftover keys: {}".format(leftover_keys))
- controlnet_data = new_sd
-
- pth_key = 'control_model.zero_convs.0.0.weight'
- pth = False
- key = 'zero_convs.0.0.weight'
- if pth_key in controlnet_data:
- pth = True
- key = pth_key
- prefix = "control_model."
- elif key in controlnet_data:
- prefix = ""
- else:
- net = load_t2i_adapter(controlnet_data)
- if net is None:
- logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
- return net
-
- if controlnet_config is None:
- model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
- supported_inference_dtypes = model_config.supported_inference_dtypes
- controlnet_config = model_config.unet_config
-
- load_device = comfy.model_management.get_torch_device()
- if supported_inference_dtypes is None:
- unet_dtype = comfy.model_management.unet_dtype()
- else:
- unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)
-
- manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
- if manual_cast_dtype is not None:
- controlnet_config["operations"] = comfy.ops.manual_cast
- controlnet_config["dtype"] = unet_dtype
- controlnet_config.pop("out_channels")
- controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
- control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
-
- if pth:
- if 'difference' in controlnet_data:
- if model is not None:
- comfy.model_management.load_models_gpu([model])
- model_sd = model.model_state_dict()
- for x in controlnet_data:
- c_m = "control_model."
- if x.startswith(c_m):
- sd_key = "diffusion_model.{}".format(x[len(c_m):])
- if sd_key in model_sd:
- cd = controlnet_data[x]
- cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
- else:
- logging.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
-
- class WeightsLoader(torch.nn.Module):
- pass
- w = WeightsLoader()
- w.control_model = control_model
- missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
- else:
- missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
-
- if len(missing) > 0:
- logging.warning("missing controlnet keys: {}".format(missing))
-
- if len(unexpected) > 0:
- logging.debug("unexpected controlnet keys: {}".format(unexpected))
-
- global_average_pooling = False
- filename = os.path.splitext(ckpt_path)[0]
- if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
- global_average_pooling = True
-
- control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
- return control
-
-class T2IAdapter(ControlBase):
- def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None):
- super().__init__(device)
- self.t2i_model = t2i_model
- self.channels_in = channels_in
- self.control_input = None
- self.compression_ratio = compression_ratio
- self.upscale_algorithm = upscale_algorithm
-
- def scale_image_to(self, width, height):
- unshuffle_amount = self.t2i_model.unshuffle_amount
- width = math.ceil(width / unshuffle_amount) * unshuffle_amount
- height = math.ceil(height / unshuffle_amount) * unshuffle_amount
- return width, height
-
- def get_control(self, x_noisy, t, cond, batched_number):
- control_prev = None
- if self.previous_controlnet is not None:
- control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
-
- if self.timestep_range is not None:
- if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
- if control_prev is not None:
- return control_prev
- else:
- return None
-
- if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
- if self.cond_hint is not None:
- del self.cond_hint
- self.control_input = None
- self.cond_hint = None
- width, height = self.scale_image_to(x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio)
- self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, self.upscale_algorithm, "center").float().to(self.device)
- if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
- self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
- if x_noisy.shape[0] != self.cond_hint.shape[0]:
- self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
- if self.control_input is None:
- self.t2i_model.to(x_noisy.dtype)
- self.t2i_model.to(self.device)
- self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
- self.t2i_model.cpu()
-
- control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input))
- mid = None
- if self.t2i_model.xl == True:
- mid = control_input[-1:]
- control_input = control_input[:-1]
- return self.control_merge(control_input, mid, control_prev, x_noisy.dtype)
-
- def copy(self):
- c = T2IAdapter(self.t2i_model, self.channels_in, self.compression_ratio, self.upscale_algorithm)
- self.copy_to(c)
- return c
-
-def load_t2i_adapter(t2i_data):
- compression_ratio = 8
- upscale_algorithm = 'nearest-exact'
-
- if 'adapter' in t2i_data:
- t2i_data = t2i_data['adapter']
- if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format
- prefix_replace = {}
- for i in range(4):
- for j in range(2):
- prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
- prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2)
- prefix_replace["adapter."] = ""
- t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
- keys = t2i_data.keys()
-
- if "body.0.in_conv.weight" in keys:
- cin = t2i_data['body.0.in_conv.weight'].shape[1]
- model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
- elif 'conv_in.weight' in keys:
- cin = t2i_data['conv_in.weight'].shape[1]
- channel = t2i_data['conv_in.weight'].shape[0]
- ksize = t2i_data['body.0.block2.weight'].shape[2]
- use_conv = False
- down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
- if len(down_opts) > 0:
- use_conv = True
- xl = False
- if cin == 256 or cin == 768:
- xl = True
- model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
- elif "backbone.0.0.weight" in keys:
- model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.0.weight'].shape[1], proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
- compression_ratio = 32
- upscale_algorithm = 'bilinear'
- elif "backbone.10.blocks.0.weight" in keys:
- model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.weight'].shape[1], bottleneck_mode="large", proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
- compression_ratio = 1
- upscale_algorithm = 'nearest-exact'
- else:
- return None
-
- missing, unexpected = model_ad.load_state_dict(t2i_data)
- if len(missing) > 0:
- logging.warning("t2i missing {}".format(missing))
-
- if len(unexpected) > 0:
- logging.debug("t2i unexpected {}".format(unexpected))
-
- return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm)
diff --git a/MagicQuill/comfy/diffusers_convert.py b/MagicQuill/comfy/diffusers_convert.py
deleted file mode 100644
index ed2a45fea586284c7b881a2a7ab46983cd4baafb..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/diffusers_convert.py
+++ /dev/null
@@ -1,281 +0,0 @@
-import re
-import torch
-import logging
-
-# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
-
-# =================#
-# UNet Conversion #
-# =================#
-
-unet_conversion_map = [
- # (stable-diffusion, HF Diffusers)
- ("time_embed.0.weight", "time_embedding.linear_1.weight"),
- ("time_embed.0.bias", "time_embedding.linear_1.bias"),
- ("time_embed.2.weight", "time_embedding.linear_2.weight"),
- ("time_embed.2.bias", "time_embedding.linear_2.bias"),
- ("input_blocks.0.0.weight", "conv_in.weight"),
- ("input_blocks.0.0.bias", "conv_in.bias"),
- ("out.0.weight", "conv_norm_out.weight"),
- ("out.0.bias", "conv_norm_out.bias"),
- ("out.2.weight", "conv_out.weight"),
- ("out.2.bias", "conv_out.bias"),
-]
-
-unet_conversion_map_resnet = [
- # (stable-diffusion, HF Diffusers)
- ("in_layers.0", "norm1"),
- ("in_layers.2", "conv1"),
- ("out_layers.0", "norm2"),
- ("out_layers.3", "conv2"),
- ("emb_layers.1", "time_emb_proj"),
- ("skip_connection", "conv_shortcut"),
-]
-
-unet_conversion_map_layer = []
-# hardcoded number of downblocks and resnets/attentions...
-# would need smarter logic for other networks.
-for i in range(4):
- # loop over downblocks/upblocks
-
- for j in range(2):
- # loop over resnets/attentions for downblocks
- hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
- sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
- unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
-
- if i < 3:
- # no attention layers in down_blocks.3
- hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
- sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
- unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
-
- for j in range(3):
- # loop over resnets/attentions for upblocks
- hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
- sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
- unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
-
- if i > 0:
- # no attention layers in up_blocks.0
- hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
- sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
- unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
-
- if i < 3:
- # no downsample in down_blocks.3
- hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
- sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
- unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
-
- # no upsample in up_blocks.3
- hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
- sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}."
- unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
-
-hf_mid_atn_prefix = "mid_block.attentions.0."
-sd_mid_atn_prefix = "middle_block.1."
-unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
-
-for j in range(2):
- hf_mid_res_prefix = f"mid_block.resnets.{j}."
- sd_mid_res_prefix = f"middle_block.{2 * j}."
- unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
-
-
-def convert_unet_state_dict(unet_state_dict):
- # buyer beware: this is a *brittle* function,
- # and correct output requires that all of these pieces interact in
- # the exact order in which I have arranged them.
- mapping = {k: k for k in unet_state_dict.keys()}
- for sd_name, hf_name in unet_conversion_map:
- mapping[hf_name] = sd_name
- for k, v in mapping.items():
- if "resnets" in k:
- for sd_part, hf_part in unet_conversion_map_resnet:
- v = v.replace(hf_part, sd_part)
- mapping[k] = v
- for k, v in mapping.items():
- for sd_part, hf_part in unet_conversion_map_layer:
- v = v.replace(hf_part, sd_part)
- mapping[k] = v
- new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
- return new_state_dict
-
-
-# ================#
-# VAE Conversion #
-# ================#
-
-vae_conversion_map = [
- # (stable-diffusion, HF Diffusers)
- ("nin_shortcut", "conv_shortcut"),
- ("norm_out", "conv_norm_out"),
- ("mid.attn_1.", "mid_block.attentions.0."),
-]
-
-for i in range(4):
- # down_blocks have two resnets
- for j in range(2):
- hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
- sd_down_prefix = f"encoder.down.{i}.block.{j}."
- vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
-
- if i < 3:
- hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
- sd_downsample_prefix = f"down.{i}.downsample."
- vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
-
- hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
- sd_upsample_prefix = f"up.{3 - i}.upsample."
- vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
-
- # up_blocks have three resnets
- # also, up blocks in hf are numbered in reverse from sd
- for j in range(3):
- hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
- sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
- vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
-
-# this part accounts for mid blocks in both the encoder and the decoder
-for i in range(2):
- hf_mid_res_prefix = f"mid_block.resnets.{i}."
- sd_mid_res_prefix = f"mid.block_{i + 1}."
- vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
-
-vae_conversion_map_attn = [
- # (stable-diffusion, HF Diffusers)
- ("norm.", "group_norm."),
- ("q.", "query."),
- ("k.", "key."),
- ("v.", "value."),
- ("q.", "to_q."),
- ("k.", "to_k."),
- ("v.", "to_v."),
- ("proj_out.", "to_out.0."),
- ("proj_out.", "proj_attn."),
-]
-
-
-def reshape_weight_for_sd(w):
- # convert HF linear weights to SD conv2d weights
- return w.reshape(*w.shape, 1, 1)
-
-
-def convert_vae_state_dict(vae_state_dict):
- mapping = {k: k for k in vae_state_dict.keys()}
- for k, v in mapping.items():
- for sd_part, hf_part in vae_conversion_map:
- v = v.replace(hf_part, sd_part)
- mapping[k] = v
- for k, v in mapping.items():
- if "attentions" in k:
- for sd_part, hf_part in vae_conversion_map_attn:
- v = v.replace(hf_part, sd_part)
- mapping[k] = v
- new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
- weights_to_convert = ["q", "k", "v", "proj_out"]
- for k, v in new_state_dict.items():
- for weight_name in weights_to_convert:
- if f"mid.attn_1.{weight_name}.weight" in k:
- logging.debug(f"Reshaping {k} for SD format")
- new_state_dict[k] = reshape_weight_for_sd(v)
- return new_state_dict
-
-
-# =========================#
-# Text Encoder Conversion #
-# =========================#
-
-
-textenc_conversion_lst = [
- # (stable-diffusion, HF Diffusers)
- ("resblocks.", "text_model.encoder.layers."),
- ("ln_1", "layer_norm1"),
- ("ln_2", "layer_norm2"),
- (".c_fc.", ".fc1."),
- (".c_proj.", ".fc2."),
- (".attn", ".self_attn"),
- ("ln_final.", "transformer.text_model.final_layer_norm."),
- ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
- ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
-]
-protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
-textenc_pattern = re.compile("|".join(protected.keys()))
-
-# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
-code2idx = {"q": 0, "k": 1, "v": 2}
-
-# This function exists because at the time of writing torch.cat can't do fp8 with cuda
-def cat_tensors(tensors):
- x = 0
- for t in tensors:
- x += t.shape[0]
-
- shape = [x] + list(tensors[0].shape)[1:]
- out = torch.empty(shape, device=tensors[0].device, dtype=tensors[0].dtype)
-
- x = 0
- for t in tensors:
- out[x:x + t.shape[0]] = t
- x += t.shape[0]
-
- return out
-
-def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
- new_state_dict = {}
- capture_qkv_weight = {}
- capture_qkv_bias = {}
- for k, v in text_enc_dict.items():
- if not k.startswith(prefix):
- continue
- if (
- k.endswith(".self_attn.q_proj.weight")
- or k.endswith(".self_attn.k_proj.weight")
- or k.endswith(".self_attn.v_proj.weight")
- ):
- k_pre = k[: -len(".q_proj.weight")]
- k_code = k[-len("q_proj.weight")]
- if k_pre not in capture_qkv_weight:
- capture_qkv_weight[k_pre] = [None, None, None]
- capture_qkv_weight[k_pre][code2idx[k_code]] = v
- continue
-
- if (
- k.endswith(".self_attn.q_proj.bias")
- or k.endswith(".self_attn.k_proj.bias")
- or k.endswith(".self_attn.v_proj.bias")
- ):
- k_pre = k[: -len(".q_proj.bias")]
- k_code = k[-len("q_proj.bias")]
- if k_pre not in capture_qkv_bias:
- capture_qkv_bias[k_pre] = [None, None, None]
- capture_qkv_bias[k_pre][code2idx[k_code]] = v
- continue
-
- text_proj = "transformer.text_projection.weight"
- if k.endswith(text_proj):
- new_state_dict[k.replace(text_proj, "text_projection")] = v.transpose(0, 1).contiguous()
- else:
- relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
- new_state_dict[relabelled_key] = v
-
- for k_pre, tensors in capture_qkv_weight.items():
- if None in tensors:
- raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
- relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
- new_state_dict[relabelled_key + ".in_proj_weight"] = cat_tensors(tensors)
-
- for k_pre, tensors in capture_qkv_bias.items():
- if None in tensors:
- raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
- relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
- new_state_dict[relabelled_key + ".in_proj_bias"] = cat_tensors(tensors)
-
- return new_state_dict
-
-
-def convert_text_enc_state_dict(text_enc_dict):
- return text_enc_dict
-
-
diff --git a/MagicQuill/comfy/diffusers_load.py b/MagicQuill/comfy/diffusers_load.py
deleted file mode 100644
index 98b888a19399d5ea847d90e443737c89c9787cce..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/diffusers_load.py
+++ /dev/null
@@ -1,36 +0,0 @@
-import os
-
-import comfy.sd
-
-def first_file(path, filenames):
- for f in filenames:
- p = os.path.join(path, f)
- if os.path.exists(p):
- return p
- return None
-
-def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None):
- diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"]
- unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names)
- vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names)
-
- text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"]
- text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names)
- text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names)
-
- text_encoder_paths = [text_encoder1_path]
- if text_encoder2_path is not None:
- text_encoder_paths.append(text_encoder2_path)
-
- unet = comfy.sd.load_unet(unet_path)
-
- clip = None
- if output_clip:
- clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
-
- vae = None
- if output_vae:
- sd = comfy.utils.load_torch_file(vae_path)
- vae = comfy.sd.VAE(sd=sd)
-
- return (unet, clip, vae)
diff --git a/MagicQuill/comfy/extra_samplers/__pycache__/uni_pc.cpython-310.pyc b/MagicQuill/comfy/extra_samplers/__pycache__/uni_pc.cpython-310.pyc
deleted file mode 100644
index aa06b36d34bc3c37015864c481aa43477d2f19ae..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/extra_samplers/__pycache__/uni_pc.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/extra_samplers/uni_pc.py b/MagicQuill/comfy/extra_samplers/uni_pc.py
deleted file mode 100644
index a30d1d03f2e1001f462ce0fa2422a9a16ed279d8..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/extra_samplers/uni_pc.py
+++ /dev/null
@@ -1,875 +0,0 @@
-#code taken from: https://github.com/wl-zhao/UniPC and modified
-
-import torch
-import torch.nn.functional as F
-import math
-
-from tqdm.auto import trange, tqdm
-
-
-class NoiseScheduleVP:
- def __init__(
- self,
- schedule='discrete',
- betas=None,
- alphas_cumprod=None,
- continuous_beta_0=0.1,
- continuous_beta_1=20.,
- ):
- """Create a wrapper class for the forward SDE (VP type).
-
- ***
- Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
- We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
- ***
-
- The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
- We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
- Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
-
- log_alpha_t = self.marginal_log_mean_coeff(t)
- sigma_t = self.marginal_std(t)
- lambda_t = self.marginal_lambda(t)
-
- Moreover, as lambda(t) is an invertible function, we also support its inverse function:
-
- t = self.inverse_lambda(lambda_t)
-
- ===============================================================
-
- We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
-
- 1. For discrete-time DPMs:
-
- For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
- t_i = (i + 1) / N
- e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
- We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
-
- Args:
- betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
- alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
-
- Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
-
- **Important**: Please pay special attention for the args for `alphas_cumprod`:
- The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
- q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
- Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
- alpha_{t_n} = \sqrt{\hat{alpha_n}},
- and
- log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
-
-
- 2. For continuous-time DPMs:
-
- We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
- schedule are the default settings in DDPM and improved-DDPM:
-
- Args:
- beta_min: A `float` number. The smallest beta for the linear schedule.
- beta_max: A `float` number. The largest beta for the linear schedule.
- cosine_s: A `float` number. The hyperparameter in the cosine schedule.
- cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
- T: A `float` number. The ending time of the forward process.
-
- ===============================================================
-
- Args:
- schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
- 'linear' or 'cosine' for continuous-time DPMs.
- Returns:
- A wrapper object of the forward SDE (VP type).
-
- ===============================================================
-
- Example:
-
- # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
- >>> ns = NoiseScheduleVP('discrete', betas=betas)
-
- # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
- >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
-
- # For continuous-time DPMs (VPSDE), linear schedule:
- >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
-
- """
-
- if schedule not in ['discrete', 'linear', 'cosine']:
- raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
-
- self.schedule = schedule
- if schedule == 'discrete':
- if betas is not None:
- log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
- else:
- assert alphas_cumprod is not None
- log_alphas = 0.5 * torch.log(alphas_cumprod)
- self.total_N = len(log_alphas)
- self.T = 1.
- self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
- self.log_alpha_array = log_alphas.reshape((1, -1,))
- else:
- self.total_N = 1000
- self.beta_0 = continuous_beta_0
- self.beta_1 = continuous_beta_1
- self.cosine_s = 0.008
- self.cosine_beta_max = 999.
- self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
- self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
- self.schedule = schedule
- if schedule == 'cosine':
- # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
- # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
- self.T = 0.9946
- else:
- self.T = 1.
-
- def marginal_log_mean_coeff(self, t):
- """
- Compute log(alpha_t) of a given continuous-time label t in [0, T].
- """
- if self.schedule == 'discrete':
- return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
- elif self.schedule == 'linear':
- return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
- elif self.schedule == 'cosine':
- log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
- log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
- return log_alpha_t
-
- def marginal_alpha(self, t):
- """
- Compute alpha_t of a given continuous-time label t in [0, T].
- """
- return torch.exp(self.marginal_log_mean_coeff(t))
-
- def marginal_std(self, t):
- """
- Compute sigma_t of a given continuous-time label t in [0, T].
- """
- return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
-
- def marginal_lambda(self, t):
- """
- Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
- """
- log_mean_coeff = self.marginal_log_mean_coeff(t)
- log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
- return log_mean_coeff - log_std
-
- def inverse_lambda(self, lamb):
- """
- Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
- """
- if self.schedule == 'linear':
- tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
- Delta = self.beta_0**2 + tmp
- return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
- elif self.schedule == 'discrete':
- log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
- t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
- return t.reshape((-1,))
- else:
- log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
- t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
- t = t_fn(log_alpha)
- return t
-
-
-def model_wrapper(
- model,
- noise_schedule,
- model_type="noise",
- model_kwargs={},
- guidance_type="uncond",
- condition=None,
- unconditional_condition=None,
- guidance_scale=1.,
- classifier_fn=None,
- classifier_kwargs={},
-):
- """Create a wrapper function for the noise prediction model.
-
- DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
- firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
-
- We support four types of the diffusion model by setting `model_type`:
-
- 1. "noise": noise prediction model. (Trained by predicting noise).
-
- 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
-
- 3. "v": velocity prediction model. (Trained by predicting the velocity).
- The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
-
- [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
- arXiv preprint arXiv:2202.00512 (2022).
- [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
- arXiv preprint arXiv:2210.02303 (2022).
-
- 4. "score": marginal score function. (Trained by denoising score matching).
- Note that the score function and the noise prediction model follows a simple relationship:
- ```
- noise(x_t, t) = -sigma_t * score(x_t, t)
- ```
-
- We support three types of guided sampling by DPMs by setting `guidance_type`:
- 1. "uncond": unconditional sampling by DPMs.
- The input `model` has the following format:
- ``
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
- ``
-
- 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
- The input `model` has the following format:
- ``
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
- ``
-
- The input `classifier_fn` has the following format:
- ``
- classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
- ``
-
- [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
- in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
-
- 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
- The input `model` has the following format:
- ``
- model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
- ``
- And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
-
- [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
- arXiv preprint arXiv:2207.12598 (2022).
-
-
- The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
- or continuous-time labels (i.e. epsilon to T).
-
- We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
- ``
- def model_fn(x, t_continuous) -> noise:
- t_input = get_model_input_time(t_continuous)
- return noise_pred(model, x, t_input, **model_kwargs)
- ``
- where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
-
- ===============================================================
-
- Args:
- model: A diffusion model with the corresponding format described above.
- noise_schedule: A noise schedule object, such as NoiseScheduleVP.
- model_type: A `str`. The parameterization type of the diffusion model.
- "noise" or "x_start" or "v" or "score".
- model_kwargs: A `dict`. A dict for the other inputs of the model function.
- guidance_type: A `str`. The type of the guidance for sampling.
- "uncond" or "classifier" or "classifier-free".
- condition: A pytorch tensor. The condition for the guided sampling.
- Only used for "classifier" or "classifier-free" guidance type.
- unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
- Only used for "classifier-free" guidance type.
- guidance_scale: A `float`. The scale for the guided sampling.
- classifier_fn: A classifier function. Only used for the classifier guidance.
- classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
- Returns:
- A noise prediction model that accepts the noised data and the continuous time as the inputs.
- """
-
- def get_model_input_time(t_continuous):
- """
- Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
- For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
- For continuous-time DPMs, we just use `t_continuous`.
- """
- if noise_schedule.schedule == 'discrete':
- return (t_continuous - 1. / noise_schedule.total_N) * 1000.
- else:
- return t_continuous
-
- def noise_pred_fn(x, t_continuous, cond=None):
- if t_continuous.reshape((-1,)).shape[0] == 1:
- t_continuous = t_continuous.expand((x.shape[0]))
- t_input = get_model_input_time(t_continuous)
- output = model(x, t_input, **model_kwargs)
- if model_type == "noise":
- return output
- elif model_type == "x_start":
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
- dims = x.dim()
- return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
- elif model_type == "v":
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
- dims = x.dim()
- return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
- elif model_type == "score":
- sigma_t = noise_schedule.marginal_std(t_continuous)
- dims = x.dim()
- return -expand_dims(sigma_t, dims) * output
-
- def cond_grad_fn(x, t_input):
- """
- Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
- """
- with torch.enable_grad():
- x_in = x.detach().requires_grad_(True)
- log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
- return torch.autograd.grad(log_prob.sum(), x_in)[0]
-
- def model_fn(x, t_continuous):
- """
- The noise predicition model function that is used for DPM-Solver.
- """
- if t_continuous.reshape((-1,)).shape[0] == 1:
- t_continuous = t_continuous.expand((x.shape[0]))
- if guidance_type == "uncond":
- return noise_pred_fn(x, t_continuous)
- elif guidance_type == "classifier":
- assert classifier_fn is not None
- t_input = get_model_input_time(t_continuous)
- cond_grad = cond_grad_fn(x, t_input)
- sigma_t = noise_schedule.marginal_std(t_continuous)
- noise = noise_pred_fn(x, t_continuous)
- return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
- elif guidance_type == "classifier-free":
- if guidance_scale == 1. or unconditional_condition is None:
- return noise_pred_fn(x, t_continuous, cond=condition)
- else:
- x_in = torch.cat([x] * 2)
- t_in = torch.cat([t_continuous] * 2)
- c_in = torch.cat([unconditional_condition, condition])
- noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
- return noise_uncond + guidance_scale * (noise - noise_uncond)
-
- assert model_type in ["noise", "x_start", "v"]
- assert guidance_type in ["uncond", "classifier", "classifier-free"]
- return model_fn
-
-
-class UniPC:
- def __init__(
- self,
- model_fn,
- noise_schedule,
- predict_x0=True,
- thresholding=False,
- max_val=1.,
- variant='bh1',
- ):
- """Construct a UniPC.
-
- We support both data_prediction and noise_prediction.
- """
- self.model = model_fn
- self.noise_schedule = noise_schedule
- self.variant = variant
- self.predict_x0 = predict_x0
- self.thresholding = thresholding
- self.max_val = max_val
-
- def dynamic_thresholding_fn(self, x0, t=None):
- """
- The dynamic thresholding method.
- """
- dims = x0.dim()
- p = self.dynamic_thresholding_ratio
- s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
- s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
- x0 = torch.clamp(x0, -s, s) / s
- return x0
-
- def noise_prediction_fn(self, x, t):
- """
- Return the noise prediction model.
- """
- return self.model(x, t)
-
- def data_prediction_fn(self, x, t):
- """
- Return the data prediction model (with thresholding).
- """
- noise = self.noise_prediction_fn(x, t)
- dims = x.dim()
- alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
- x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
- if self.thresholding:
- p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
- s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
- s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
- x0 = torch.clamp(x0, -s, s) / s
- return x0
-
- def model_fn(self, x, t):
- """
- Convert the model to the noise prediction model or the data prediction model.
- """
- if self.predict_x0:
- return self.data_prediction_fn(x, t)
- else:
- return self.noise_prediction_fn(x, t)
-
- def get_time_steps(self, skip_type, t_T, t_0, N, device):
- """Compute the intermediate time steps for sampling.
- """
- if skip_type == 'logSNR':
- lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
- lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
- logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
- return self.noise_schedule.inverse_lambda(logSNR_steps)
- elif skip_type == 'time_uniform':
- return torch.linspace(t_T, t_0, N + 1).to(device)
- elif skip_type == 'time_quadratic':
- t_order = 2
- t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
- return t
- else:
- raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
-
- def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
- """
- Get the order of each step for sampling by the singlestep DPM-Solver.
- """
- if order == 3:
- K = steps // 3 + 1
- if steps % 3 == 0:
- orders = [3,] * (K - 2) + [2, 1]
- elif steps % 3 == 1:
- orders = [3,] * (K - 1) + [1]
- else:
- orders = [3,] * (K - 1) + [2]
- elif order == 2:
- if steps % 2 == 0:
- K = steps // 2
- orders = [2,] * K
- else:
- K = steps // 2 + 1
- orders = [2,] * (K - 1) + [1]
- elif order == 1:
- K = steps
- orders = [1,] * steps
- else:
- raise ValueError("'order' must be '1' or '2' or '3'.")
- if skip_type == 'logSNR':
- # To reproduce the results in DPM-Solver paper
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
- else:
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
- return timesteps_outer, orders
-
- def denoise_to_zero_fn(self, x, s):
- """
- Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
- """
- return self.data_prediction_fn(x, s)
-
- def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
- if len(t.shape) == 0:
- t = t.view(-1)
- if 'bh' in self.variant:
- return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
- else:
- assert self.variant == 'vary_coeff'
- return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
-
- def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
- print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
- ns = self.noise_schedule
- assert order <= len(model_prev_list)
-
- # first compute rks
- t_prev_0 = t_prev_list[-1]
- lambda_prev_0 = ns.marginal_lambda(t_prev_0)
- lambda_t = ns.marginal_lambda(t)
- model_prev_0 = model_prev_list[-1]
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
- log_alpha_t = ns.marginal_log_mean_coeff(t)
- alpha_t = torch.exp(log_alpha_t)
-
- h = lambda_t - lambda_prev_0
-
- rks = []
- D1s = []
- for i in range(1, order):
- t_prev_i = t_prev_list[-(i + 1)]
- model_prev_i = model_prev_list[-(i + 1)]
- lambda_prev_i = ns.marginal_lambda(t_prev_i)
- rk = (lambda_prev_i - lambda_prev_0) / h
- rks.append(rk)
- D1s.append((model_prev_i - model_prev_0) / rk)
-
- rks.append(1.)
- rks = torch.tensor(rks, device=x.device)
-
- K = len(rks)
- # build C matrix
- C = []
-
- col = torch.ones_like(rks)
- for k in range(1, K + 1):
- C.append(col)
- col = col * rks / (k + 1)
- C = torch.stack(C, dim=1)
-
- if len(D1s) > 0:
- D1s = torch.stack(D1s, dim=1) # (B, K)
- C_inv_p = torch.linalg.inv(C[:-1, :-1])
- A_p = C_inv_p
-
- if use_corrector:
- print('using corrector')
- C_inv = torch.linalg.inv(C)
- A_c = C_inv
-
- hh = -h if self.predict_x0 else h
- h_phi_1 = torch.expm1(hh)
- h_phi_ks = []
- factorial_k = 1
- h_phi_k = h_phi_1
- for k in range(1, K + 2):
- h_phi_ks.append(h_phi_k)
- h_phi_k = h_phi_k / hh - 1 / factorial_k
- factorial_k *= (k + 1)
-
- model_t = None
- if self.predict_x0:
- x_t_ = (
- sigma_t / sigma_prev_0 * x
- - alpha_t * h_phi_1 * model_prev_0
- )
- # now predictor
- x_t = x_t_
- if len(D1s) > 0:
- # compute the residuals for predictor
- for k in range(K - 1):
- x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
- # now corrector
- if use_corrector:
- model_t = self.model_fn(x_t, t)
- D1_t = (model_t - model_prev_0)
- x_t = x_t_
- k = 0
- for k in range(K - 1):
- x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
- x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
- else:
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
- x_t_ = (
- (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
- - (sigma_t * h_phi_1) * model_prev_0
- )
- # now predictor
- x_t = x_t_
- if len(D1s) > 0:
- # compute the residuals for predictor
- for k in range(K - 1):
- x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
- # now corrector
- if use_corrector:
- model_t = self.model_fn(x_t, t)
- D1_t = (model_t - model_prev_0)
- x_t = x_t_
- k = 0
- for k in range(K - 1):
- x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
- x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
- return x_t, model_t
-
- def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
- # print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
- ns = self.noise_schedule
- assert order <= len(model_prev_list)
- dims = x.dim()
-
- # first compute rks
- t_prev_0 = t_prev_list[-1]
- lambda_prev_0 = ns.marginal_lambda(t_prev_0)
- lambda_t = ns.marginal_lambda(t)
- model_prev_0 = model_prev_list[-1]
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
- alpha_t = torch.exp(log_alpha_t)
-
- h = lambda_t - lambda_prev_0
-
- rks = []
- D1s = []
- for i in range(1, order):
- t_prev_i = t_prev_list[-(i + 1)]
- model_prev_i = model_prev_list[-(i + 1)]
- lambda_prev_i = ns.marginal_lambda(t_prev_i)
- rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
- rks.append(rk)
- D1s.append((model_prev_i - model_prev_0) / rk)
-
- rks.append(1.)
- rks = torch.tensor(rks, device=x.device)
-
- R = []
- b = []
-
- hh = -h[0] if self.predict_x0 else h[0]
- h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
- h_phi_k = h_phi_1 / hh - 1
-
- factorial_i = 1
-
- if self.variant == 'bh1':
- B_h = hh
- elif self.variant == 'bh2':
- B_h = torch.expm1(hh)
- else:
- raise NotImplementedError()
-
- for i in range(1, order + 1):
- R.append(torch.pow(rks, i - 1))
- b.append(h_phi_k * factorial_i / B_h)
- factorial_i *= (i + 1)
- h_phi_k = h_phi_k / hh - 1 / factorial_i
-
- R = torch.stack(R)
- b = torch.tensor(b, device=x.device)
-
- # now predictor
- use_predictor = len(D1s) > 0 and x_t is None
- if len(D1s) > 0:
- D1s = torch.stack(D1s, dim=1) # (B, K)
- if x_t is None:
- # for order 2, we use a simplified version
- if order == 2:
- rhos_p = torch.tensor([0.5], device=b.device)
- else:
- rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
- else:
- D1s = None
-
- if use_corrector:
- # print('using corrector')
- # for order 1, we use a simplified version
- if order == 1:
- rhos_c = torch.tensor([0.5], device=b.device)
- else:
- rhos_c = torch.linalg.solve(R, b)
-
- model_t = None
- if self.predict_x0:
- x_t_ = (
- expand_dims(sigma_t / sigma_prev_0, dims) * x
- - expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
- )
-
- if x_t is None:
- if use_predictor:
- pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
- else:
- pred_res = 0
- x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
-
- if use_corrector:
- model_t = self.model_fn(x_t, t)
- if D1s is not None:
- corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
- else:
- corr_res = 0
- D1_t = (model_t - model_prev_0)
- x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
- else:
- x_t_ = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
- )
- if x_t is None:
- if use_predictor:
- pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
- else:
- pred_res = 0
- x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
-
- if use_corrector:
- model_t = self.model_fn(x_t, t)
- if D1s is not None:
- corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
- else:
- corr_res = 0
- D1_t = (model_t - model_prev_0)
- x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
- return x_t, model_t
-
-
- def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform',
- method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
- atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
- ):
- # t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
- # t_T = self.noise_schedule.T if t_start is None else t_start
- device = x.device
- steps = len(timesteps) - 1
- if method == 'multistep':
- assert steps >= order
- # timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
- assert timesteps.shape[0] - 1 == steps
- # with torch.no_grad():
- for step_index in trange(steps, disable=disable_pbar):
- if step_index == 0:
- vec_t = timesteps[0].expand((x.shape[0]))
- model_prev_list = [self.model_fn(x, vec_t)]
- t_prev_list = [vec_t]
- elif step_index < order:
- init_order = step_index
- # Init the first `order` values by lower order multistep DPM-Solver.
- # for init_order in range(1, order):
- vec_t = timesteps[init_order].expand(x.shape[0])
- x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
- if model_x is None:
- model_x = self.model_fn(x, vec_t)
- model_prev_list.append(model_x)
- t_prev_list.append(vec_t)
- else:
- extra_final_step = 0
- if step_index == (steps - 1):
- extra_final_step = 1
- for step in range(step_index, step_index + 1 + extra_final_step):
- vec_t = timesteps[step].expand(x.shape[0])
- if lower_order_final:
- step_order = min(order, steps + 1 - step)
- else:
- step_order = order
- # print('this step order:', step_order)
- if step == steps:
- # print('do not run corrector at the last step')
- use_corrector = False
- else:
- use_corrector = True
- x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
- for i in range(order - 1):
- t_prev_list[i] = t_prev_list[i + 1]
- model_prev_list[i] = model_prev_list[i + 1]
- t_prev_list[-1] = vec_t
- # We do not need to evaluate the final model value.
- if step < steps:
- if model_x is None:
- model_x = self.model_fn(x, vec_t)
- model_prev_list[-1] = model_x
- if callback is not None:
- callback({'x': x, 'i': step_index, 'denoised': model_prev_list[-1]})
- else:
- raise NotImplementedError()
- # if denoise_to_zero:
- # x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
- return x
-
-
-#############################################################
-# other utility functions
-#############################################################
-
-def interpolate_fn(x, xp, yp):
- """
- A piecewise linear function y = f(x), using xp and yp as keypoints.
- We implement f(x) in a differentiable way (i.e. applicable for autograd).
- The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
-
- Args:
- x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
- xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
- yp: PyTorch tensor with shape [C, K].
- Returns:
- The function values f(x), with shape [N, C].
- """
- N, K = x.shape[0], xp.shape[1]
- all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
- sorted_all_x, x_indices = torch.sort(all_x, dim=2)
- x_idx = torch.argmin(x_indices, dim=2)
- cand_start_idx = x_idx - 1
- start_idx = torch.where(
- torch.eq(x_idx, 0),
- torch.tensor(1, device=x.device),
- torch.where(
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
- ),
- )
- end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
- start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
- end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
- start_idx2 = torch.where(
- torch.eq(x_idx, 0),
- torch.tensor(0, device=x.device),
- torch.where(
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
- ),
- )
- y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
- start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
- end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
- cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
- return cand
-
-
-def expand_dims(v, dims):
- """
- Expand the tensor `v` to the dim `dims`.
-
- Args:
- `v`: a PyTorch tensor with shape [N].
- `dim`: a `int`.
- Returns:
- a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
- """
- return v[(...,) + (None,)*(dims - 1)]
-
-
-class SigmaConvert:
- schedule = ""
- def marginal_log_mean_coeff(self, sigma):
- return 0.5 * torch.log(1 / ((sigma * sigma) + 1))
-
- def marginal_alpha(self, t):
- return torch.exp(self.marginal_log_mean_coeff(t))
-
- def marginal_std(self, t):
- return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
-
- def marginal_lambda(self, t):
- """
- Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
- """
- log_mean_coeff = self.marginal_log_mean_coeff(t)
- log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
- return log_mean_coeff - log_std
-
-def predict_eps_sigma(model, input, sigma_in, **kwargs):
- sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1))
- input = input * ((sigma ** 2 + 1.0) ** 0.5)
- return (input - model(input, sigma_in, **kwargs)) / sigma
-
-
-def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
- timesteps = sigmas.clone()
- if sigmas[-1] == 0:
- timesteps = sigmas[:]
- timesteps[-1] = 0.001
- else:
- timesteps = sigmas.clone()
- ns = SigmaConvert()
-
- noise = noise / torch.sqrt(1.0 + timesteps[0] ** 2.0)
- model_type = "noise"
-
- model_fn = model_wrapper(
- lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs),
- ns,
- model_type=model_type,
- guidance_type="uncond",
- model_kwargs=extra_args,
- )
-
- order = min(3, len(timesteps) - 2)
- uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=variant)
- x = uni_pc.sample(noise, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
- x /= ns.marginal_alpha(timesteps[-1])
- return x
-
-def sample_unipc_bh2(model, noise, sigmas, extra_args=None, callback=None, disable=False):
- return sample_unipc(model, noise, sigmas, extra_args, callback, disable, variant='bh2')
\ No newline at end of file
diff --git a/MagicQuill/comfy/gligen.py b/MagicQuill/comfy/gligen.py
deleted file mode 100644
index 592522767e98bbe11b6e5e9411b1f734cbf92b9b..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/gligen.py
+++ /dev/null
@@ -1,343 +0,0 @@
-import torch
-from torch import nn
-from .ldm.modules.attention import CrossAttention
-from inspect import isfunction
-import comfy.ops
-ops = comfy.ops.manual_cast
-
-def exists(val):
- return val is not None
-
-
-def uniq(arr):
- return{el: True for el in arr}.keys()
-
-
-def default(val, d):
- if exists(val):
- return val
- return d() if isfunction(d) else d
-
-
-# feedforward
-class GEGLU(nn.Module):
- def __init__(self, dim_in, dim_out):
- super().__init__()
- self.proj = ops.Linear(dim_in, dim_out * 2)
-
- def forward(self, x):
- x, gate = self.proj(x).chunk(2, dim=-1)
- return x * torch.nn.functional.gelu(gate)
-
-
-class FeedForward(nn.Module):
- def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
- super().__init__()
- inner_dim = int(dim * mult)
- dim_out = default(dim_out, dim)
- project_in = nn.Sequential(
- ops.Linear(dim, inner_dim),
- nn.GELU()
- ) if not glu else GEGLU(dim, inner_dim)
-
- self.net = nn.Sequential(
- project_in,
- nn.Dropout(dropout),
- ops.Linear(inner_dim, dim_out)
- )
-
- def forward(self, x):
- return self.net(x)
-
-
-class GatedCrossAttentionDense(nn.Module):
- def __init__(self, query_dim, context_dim, n_heads, d_head):
- super().__init__()
-
- self.attn = CrossAttention(
- query_dim=query_dim,
- context_dim=context_dim,
- heads=n_heads,
- dim_head=d_head,
- operations=ops)
- self.ff = FeedForward(query_dim, glu=True)
-
- self.norm1 = ops.LayerNorm(query_dim)
- self.norm2 = ops.LayerNorm(query_dim)
-
- self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
- self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
-
- # this can be useful: we can externally change magnitude of tanh(alpha)
- # for example, when it is set to 0, then the entire model is same as
- # original one
- self.scale = 1
-
- def forward(self, x, objs):
-
- x = x + self.scale * \
- torch.tanh(self.alpha_attn) * self.attn(self.norm1(x), objs, objs)
- x = x + self.scale * \
- torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
-
- return x
-
-
-class GatedSelfAttentionDense(nn.Module):
- def __init__(self, query_dim, context_dim, n_heads, d_head):
- super().__init__()
-
- # we need a linear projection since we need cat visual feature and obj
- # feature
- self.linear = ops.Linear(context_dim, query_dim)
-
- self.attn = CrossAttention(
- query_dim=query_dim,
- context_dim=query_dim,
- heads=n_heads,
- dim_head=d_head,
- operations=ops)
- self.ff = FeedForward(query_dim, glu=True)
-
- self.norm1 = ops.LayerNorm(query_dim)
- self.norm2 = ops.LayerNorm(query_dim)
-
- self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
- self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
-
- # this can be useful: we can externally change magnitude of tanh(alpha)
- # for example, when it is set to 0, then the entire model is same as
- # original one
- self.scale = 1
-
- def forward(self, x, objs):
-
- N_visual = x.shape[1]
- objs = self.linear(objs)
-
- x = x + self.scale * torch.tanh(self.alpha_attn) * self.attn(
- self.norm1(torch.cat([x, objs], dim=1)))[:, 0:N_visual, :]
- x = x + self.scale * \
- torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
-
- return x
-
-
-class GatedSelfAttentionDense2(nn.Module):
- def __init__(self, query_dim, context_dim, n_heads, d_head):
- super().__init__()
-
- # we need a linear projection since we need cat visual feature and obj
- # feature
- self.linear = ops.Linear(context_dim, query_dim)
-
- self.attn = CrossAttention(
- query_dim=query_dim, context_dim=query_dim, dim_head=d_head, operations=ops)
- self.ff = FeedForward(query_dim, glu=True)
-
- self.norm1 = ops.LayerNorm(query_dim)
- self.norm2 = ops.LayerNorm(query_dim)
-
- self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
- self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
-
- # this can be useful: we can externally change magnitude of tanh(alpha)
- # for example, when it is set to 0, then the entire model is same as
- # original one
- self.scale = 1
-
- def forward(self, x, objs):
-
- B, N_visual, _ = x.shape
- B, N_ground, _ = objs.shape
-
- objs = self.linear(objs)
-
- # sanity check
- size_v = math.sqrt(N_visual)
- size_g = math.sqrt(N_ground)
- assert int(size_v) == size_v, "Visual tokens must be square rootable"
- assert int(size_g) == size_g, "Grounding tokens must be square rootable"
- size_v = int(size_v)
- size_g = int(size_g)
-
- # select grounding token and resize it to visual token size as residual
- out = self.attn(self.norm1(torch.cat([x, objs], dim=1)))[
- :, N_visual:, :]
- out = out.permute(0, 2, 1).reshape(B, -1, size_g, size_g)
- out = torch.nn.functional.interpolate(
- out, (size_v, size_v), mode='bicubic')
- residual = out.reshape(B, -1, N_visual).permute(0, 2, 1)
-
- # add residual to visual feature
- x = x + self.scale * torch.tanh(self.alpha_attn) * residual
- x = x + self.scale * \
- torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
-
- return x
-
-
-class FourierEmbedder():
- def __init__(self, num_freqs=64, temperature=100):
-
- self.num_freqs = num_freqs
- self.temperature = temperature
- self.freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs)
-
- @torch.no_grad()
- def __call__(self, x, cat_dim=-1):
- "x: arbitrary shape of tensor. dim: cat dim"
- out = []
- for freq in self.freq_bands:
- out.append(torch.sin(freq * x))
- out.append(torch.cos(freq * x))
- return torch.cat(out, cat_dim)
-
-
-class PositionNet(nn.Module):
- def __init__(self, in_dim, out_dim, fourier_freqs=8):
- super().__init__()
- self.in_dim = in_dim
- self.out_dim = out_dim
-
- self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
- self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy
-
- self.linears = nn.Sequential(
- ops.Linear(self.in_dim + self.position_dim, 512),
- nn.SiLU(),
- ops.Linear(512, 512),
- nn.SiLU(),
- ops.Linear(512, out_dim),
- )
-
- self.null_positive_feature = torch.nn.Parameter(
- torch.zeros([self.in_dim]))
- self.null_position_feature = torch.nn.Parameter(
- torch.zeros([self.position_dim]))
-
- def forward(self, boxes, masks, positive_embeddings):
- B, N, _ = boxes.shape
- masks = masks.unsqueeze(-1)
- positive_embeddings = positive_embeddings
-
- # embedding position (it may includes padding as placeholder)
- xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
-
- # learnable null embedding
- positive_null = self.null_positive_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
- xyxy_null = self.null_position_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
-
- # replace padding with learnable null embedding
- positive_embeddings = positive_embeddings * \
- masks + (1 - masks) * positive_null
- xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
-
- objs = self.linears(
- torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
- assert objs.shape == torch.Size([B, N, self.out_dim])
- return objs
-
-
-class Gligen(nn.Module):
- def __init__(self, modules, position_net, key_dim):
- super().__init__()
- self.module_list = nn.ModuleList(modules)
- self.position_net = position_net
- self.key_dim = key_dim
- self.max_objs = 30
- self.current_device = torch.device("cpu")
-
- def _set_position(self, boxes, masks, positive_embeddings):
- objs = self.position_net(boxes, masks, positive_embeddings)
- def func(x, extra_options):
- key = extra_options["transformer_index"]
- module = self.module_list[key]
- return module(x, objs.to(device=x.device, dtype=x.dtype))
- return func
-
- def set_position(self, latent_image_shape, position_params, device):
- batch, c, h, w = latent_image_shape
- masks = torch.zeros([self.max_objs], device="cpu")
- boxes = []
- positive_embeddings = []
- for p in position_params:
- x1 = (p[4]) / w
- y1 = (p[3]) / h
- x2 = (p[4] + p[2]) / w
- y2 = (p[3] + p[1]) / h
- masks[len(boxes)] = 1.0
- boxes += [torch.tensor((x1, y1, x2, y2)).unsqueeze(0)]
- positive_embeddings += [p[0]]
- append_boxes = []
- append_conds = []
- if len(boxes) < self.max_objs:
- append_boxes = [torch.zeros(
- [self.max_objs - len(boxes), 4], device="cpu")]
- append_conds = [torch.zeros(
- [self.max_objs - len(boxes), self.key_dim], device="cpu")]
-
- box_out = torch.cat(
- boxes + append_boxes).unsqueeze(0).repeat(batch, 1, 1)
- masks = masks.unsqueeze(0).repeat(batch, 1)
- conds = torch.cat(positive_embeddings +
- append_conds).unsqueeze(0).repeat(batch, 1, 1)
- return self._set_position(
- box_out.to(device),
- masks.to(device),
- conds.to(device))
-
- def set_empty(self, latent_image_shape, device):
- batch, c, h, w = latent_image_shape
- masks = torch.zeros([self.max_objs], device="cpu").repeat(batch, 1)
- box_out = torch.zeros([self.max_objs, 4],
- device="cpu").repeat(batch, 1, 1)
- conds = torch.zeros([self.max_objs, self.key_dim],
- device="cpu").repeat(batch, 1, 1)
- return self._set_position(
- box_out.to(device),
- masks.to(device),
- conds.to(device))
-
-
-def load_gligen(sd):
- sd_k = sd.keys()
- output_list = []
- key_dim = 768
- for a in ["input_blocks", "middle_block", "output_blocks"]:
- for b in range(20):
- k_temp = filter(lambda k: "{}.{}.".format(a, b)
- in k and ".fuser." in k, sd_k)
- k_temp = map(lambda k: (k, k.split(".fuser.")[-1]), k_temp)
-
- n_sd = {}
- for k in k_temp:
- n_sd[k[1]] = sd[k[0]]
- if len(n_sd) > 0:
- query_dim = n_sd["linear.weight"].shape[0]
- key_dim = n_sd["linear.weight"].shape[1]
-
- if key_dim == 768: # SD1.x
- n_heads = 8
- d_head = query_dim // n_heads
- else:
- d_head = 64
- n_heads = query_dim // d_head
-
- gated = GatedSelfAttentionDense(
- query_dim, key_dim, n_heads, d_head)
- gated.load_state_dict(n_sd, strict=False)
- output_list.append(gated)
-
- if "position_net.null_positive_feature" in sd_k:
- in_dim = sd["position_net.null_positive_feature"].shape[0]
- out_dim = sd["position_net.linears.4.weight"].shape[0]
-
- class WeightsLoader(torch.nn.Module):
- pass
- w = WeightsLoader()
- w.position_net = PositionNet(in_dim, out_dim)
- w.load_state_dict(sd, strict=False)
-
- gligen = Gligen(output_list, w.position_net, key_dim)
- return gligen
diff --git a/MagicQuill/comfy/k_diffusion/__pycache__/sampling.cpython-310.pyc b/MagicQuill/comfy/k_diffusion/__pycache__/sampling.cpython-310.pyc
deleted file mode 100644
index d73f59b875871a8131a0b5a885cc7db4ac962567..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/k_diffusion/__pycache__/sampling.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/k_diffusion/__pycache__/utils.cpython-310.pyc b/MagicQuill/comfy/k_diffusion/__pycache__/utils.cpython-310.pyc
deleted file mode 100644
index 43a20158030f452a5e5ba9c92b00d33f7d3c4aa0..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/k_diffusion/__pycache__/utils.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/k_diffusion/sampling.py b/MagicQuill/comfy/k_diffusion/sampling.py
deleted file mode 100644
index 5bb991e76a35d49157464731d993772b2cdfb013..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/k_diffusion/sampling.py
+++ /dev/null
@@ -1,843 +0,0 @@
-import math
-
-from scipy import integrate
-import torch
-from torch import nn
-import torchsde
-from tqdm.auto import trange, tqdm
-
-from . import utils
-
-
-def append_zero(x):
- return torch.cat([x, x.new_zeros([1])])
-
-
-def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
- """Constructs the noise schedule of Karras et al. (2022)."""
- ramp = torch.linspace(0, 1, n, device=device)
- min_inv_rho = sigma_min ** (1 / rho)
- max_inv_rho = sigma_max ** (1 / rho)
- sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
- return append_zero(sigmas).to(device)
-
-
-def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
- """Constructs an exponential noise schedule."""
- sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
- return append_zero(sigmas)
-
-
-def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
- """Constructs an polynomial in log sigma noise schedule."""
- ramp = torch.linspace(1, 0, n, device=device) ** rho
- sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
- return append_zero(sigmas)
-
-
-def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
- """Constructs a continuous VP noise schedule."""
- t = torch.linspace(1, eps_s, n, device=device)
- sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
- return append_zero(sigmas)
-
-
-def to_d(x, sigma, denoised):
- """Converts a denoiser output to a Karras ODE derivative."""
- return (x - denoised) / utils.append_dims(sigma, x.ndim)
-
-
-def get_ancestral_step(sigma_from, sigma_to, eta=1.):
- """Calculates the noise level (sigma_down) to step down to and the amount
- of noise to add (sigma_up) when doing an ancestral sampling step."""
- if not eta:
- return sigma_to, 0.
- sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
- sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
- return sigma_down, sigma_up
-
-
-def default_noise_sampler(x):
- return lambda sigma, sigma_next: torch.randn_like(x)
-
-
-class BatchedBrownianTree:
- """A wrapper around torchsde.BrownianTree that enables batches of entropy."""
-
- def __init__(self, x, t0, t1, seed=None, **kwargs):
- self.cpu_tree = True
- if "cpu" in kwargs:
- self.cpu_tree = kwargs.pop("cpu")
- t0, t1, self.sign = self.sort(t0, t1)
- w0 = kwargs.get('w0', torch.zeros_like(x))
- if seed is None:
- seed = torch.randint(0, 2 ** 63 - 1, []).item()
- self.batched = True
- try:
- assert len(seed) == x.shape[0]
- w0 = w0[0]
- except TypeError:
- seed = [seed]
- self.batched = False
- if self.cpu_tree:
- self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
- else:
- self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
-
- @staticmethod
- def sort(a, b):
- return (a, b, 1) if a < b else (b, a, -1)
-
- def __call__(self, t0, t1):
- t0, t1, sign = self.sort(t0, t1)
- if self.cpu_tree:
- w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
- else:
- w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
-
- return w if self.batched else w[0]
-
-
-class BrownianTreeNoiseSampler:
- """A noise sampler backed by a torchsde.BrownianTree.
-
- Args:
- x (Tensor): The tensor whose shape, device and dtype to use to generate
- random samples.
- sigma_min (float): The low end of the valid interval.
- sigma_max (float): The high end of the valid interval.
- seed (int or List[int]): The random seed. If a list of seeds is
- supplied instead of a single integer, then the noise sampler will
- use one BrownianTree per batch item, each with its own seed.
- transform (callable): A function that maps sigma to the sampler's
- internal timestep.
- """
-
- def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
- self.transform = transform
- t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
- self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
-
- def __call__(self, sigma, sigma_next):
- t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
- return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
-
-
-@torch.no_grad()
-def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
- """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
- extra_args = {} if extra_args is None else extra_args
- s_in = x.new_ones([x.shape[0]])
- for i in trange(len(sigmas) - 1, disable=disable):
- if s_churn > 0:
- gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
- sigma_hat = sigmas[i] * (gamma + 1)
- else:
- gamma = 0
- sigma_hat = sigmas[i]
-
- if gamma > 0:
- eps = torch.randn_like(x) * s_noise
- x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
- denoised = model(x, sigma_hat * s_in, **extra_args)
- d = to_d(x, sigma_hat, denoised)
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
- dt = sigmas[i + 1] - sigma_hat
- # Euler method
- x = x + d * dt
- return x
-
-
-@torch.no_grad()
-def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
- """Ancestral sampling with Euler method steps."""
- extra_args = {} if extra_args is None else extra_args
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
- s_in = x.new_ones([x.shape[0]])
- for i in trange(len(sigmas) - 1, disable=disable):
- denoised = model(x, sigmas[i] * s_in, **extra_args)
- sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
- d = to_d(x, sigmas[i], denoised)
- # Euler method
- dt = sigma_down - sigmas[i]
- x = x + d * dt
- if sigmas[i + 1] > 0:
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
- return x
-
-
-@torch.no_grad()
-def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
- """Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
- extra_args = {} if extra_args is None else extra_args
- s_in = x.new_ones([x.shape[0]])
- for i in trange(len(sigmas) - 1, disable=disable):
- if s_churn > 0:
- gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
- sigma_hat = sigmas[i] * (gamma + 1)
- else:
- gamma = 0
- sigma_hat = sigmas[i]
-
- sigma_hat = sigmas[i] * (gamma + 1)
- if gamma > 0:
- eps = torch.randn_like(x) * s_noise
- x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
- denoised = model(x, sigma_hat * s_in, **extra_args)
- d = to_d(x, sigma_hat, denoised)
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
- dt = sigmas[i + 1] - sigma_hat
- if sigmas[i + 1] == 0:
- # Euler method
- x = x + d * dt
- else:
- # Heun's method
- x_2 = x + d * dt
- denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
- d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
- d_prime = (d + d_2) / 2
- x = x + d_prime * dt
- return x
-
-
-@torch.no_grad()
-def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
- """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
- extra_args = {} if extra_args is None else extra_args
- s_in = x.new_ones([x.shape[0]])
- for i in trange(len(sigmas) - 1, disable=disable):
- if s_churn > 0:
- gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
- sigma_hat = sigmas[i] * (gamma + 1)
- else:
- gamma = 0
- sigma_hat = sigmas[i]
-
- if gamma > 0:
- eps = torch.randn_like(x) * s_noise
- x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
- denoised = model(x, sigma_hat * s_in, **extra_args)
- d = to_d(x, sigma_hat, denoised)
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
- if sigmas[i + 1] == 0:
- # Euler method
- dt = sigmas[i + 1] - sigma_hat
- x = x + d * dt
- else:
- # DPM-Solver-2
- sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
- dt_1 = sigma_mid - sigma_hat
- dt_2 = sigmas[i + 1] - sigma_hat
- x_2 = x + d * dt_1
- denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
- d_2 = to_d(x_2, sigma_mid, denoised_2)
- x = x + d_2 * dt_2
- return x
-
-
-@torch.no_grad()
-def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
- """Ancestral sampling with DPM-Solver second-order steps."""
- extra_args = {} if extra_args is None else extra_args
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
- s_in = x.new_ones([x.shape[0]])
- for i in trange(len(sigmas) - 1, disable=disable):
- denoised = model(x, sigmas[i] * s_in, **extra_args)
- sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
- d = to_d(x, sigmas[i], denoised)
- if sigma_down == 0:
- # Euler method
- dt = sigma_down - sigmas[i]
- x = x + d * dt
- else:
- # DPM-Solver-2
- sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
- dt_1 = sigma_mid - sigmas[i]
- dt_2 = sigma_down - sigmas[i]
- x_2 = x + d * dt_1
- denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
- d_2 = to_d(x_2, sigma_mid, denoised_2)
- x = x + d_2 * dt_2
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
- return x
-
-
-def linear_multistep_coeff(order, t, i, j):
- if order - 1 > i:
- raise ValueError(f'Order {order} too high for step {i}')
- def fn(tau):
- prod = 1.
- for k in range(order):
- if j == k:
- continue
- prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
- return prod
- return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
-
-
-@torch.no_grad()
-def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
- extra_args = {} if extra_args is None else extra_args
- s_in = x.new_ones([x.shape[0]])
- sigmas_cpu = sigmas.detach().cpu().numpy()
- ds = []
- for i in trange(len(sigmas) - 1, disable=disable):
- denoised = model(x, sigmas[i] * s_in, **extra_args)
- d = to_d(x, sigmas[i], denoised)
- ds.append(d)
- if len(ds) > order:
- ds.pop(0)
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
- cur_order = min(i + 1, order)
- coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
- x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
- return x
-
-
-class PIDStepSizeController:
- """A PID controller for ODE adaptive step size control."""
- def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8):
- self.h = h
- self.b1 = (pcoeff + icoeff + dcoeff) / order
- self.b2 = -(pcoeff + 2 * dcoeff) / order
- self.b3 = dcoeff / order
- self.accept_safety = accept_safety
- self.eps = eps
- self.errs = []
-
- def limiter(self, x):
- return 1 + math.atan(x - 1)
-
- def propose_step(self, error):
- inv_error = 1 / (float(error) + self.eps)
- if not self.errs:
- self.errs = [inv_error, inv_error, inv_error]
- self.errs[0] = inv_error
- factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
- factor = self.limiter(factor)
- accept = factor >= self.accept_safety
- if accept:
- self.errs[2] = self.errs[1]
- self.errs[1] = self.errs[0]
- self.h *= factor
- return accept
-
-
-class DPMSolver(nn.Module):
- """DPM-Solver. See https://arxiv.org/abs/2206.00927."""
-
- def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
- super().__init__()
- self.model = model
- self.extra_args = {} if extra_args is None else extra_args
- self.eps_callback = eps_callback
- self.info_callback = info_callback
-
- def t(self, sigma):
- return -sigma.log()
-
- def sigma(self, t):
- return t.neg().exp()
-
- def eps(self, eps_cache, key, x, t, *args, **kwargs):
- if key in eps_cache:
- return eps_cache[key], eps_cache
- sigma = self.sigma(t) * x.new_ones([x.shape[0]])
- eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
- if self.eps_callback is not None:
- self.eps_callback()
- return eps, {key: eps, **eps_cache}
-
- def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
- eps_cache = {} if eps_cache is None else eps_cache
- h = t_next - t
- eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
- x_1 = x - self.sigma(t_next) * h.expm1() * eps
- return x_1, eps_cache
-
- def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
- eps_cache = {} if eps_cache is None else eps_cache
- h = t_next - t
- eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
- s1 = t + r1 * h
- u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
- eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
- x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
- return x_2, eps_cache
-
- def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
- eps_cache = {} if eps_cache is None else eps_cache
- h = t_next - t
- eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
- s1 = t + r1 * h
- s2 = t + r2 * h
- u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
- eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
- u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
- eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
- x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
- return x_3, eps_cache
-
- def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
- if not t_end > t_start and eta:
- raise ValueError('eta must be 0 for reverse sampling')
-
- m = math.floor(nfe / 3) + 1
- ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
-
- if nfe % 3 == 0:
- orders = [3] * (m - 2) + [2, 1]
- else:
- orders = [3] * (m - 1) + [nfe % 3]
-
- for i in range(len(orders)):
- eps_cache = {}
- t, t_next = ts[i], ts[i + 1]
- if eta:
- sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
- t_next_ = torch.minimum(t_end, self.t(sd))
- su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
- else:
- t_next_, su = t_next, 0.
-
- eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
- denoised = x - self.sigma(t) * eps
- if self.info_callback is not None:
- self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})
-
- if orders[i] == 1:
- x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
- elif orders[i] == 2:
- x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
- else:
- x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
-
- x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
-
- return x
-
- def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
- if order not in {2, 3}:
- raise ValueError('order should be 2 or 3')
- forward = t_end > t_start
- if not forward and eta:
- raise ValueError('eta must be 0 for reverse sampling')
- h_init = abs(h_init) * (1 if forward else -1)
- atol = torch.tensor(atol)
- rtol = torch.tensor(rtol)
- s = t_start
- x_prev = x
- accept = True
- pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
- info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}
-
- while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
- eps_cache = {}
- t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
- if eta:
- sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
- t_ = torch.minimum(t_end, self.t(sd))
- su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
- else:
- t_, su = t, 0.
-
- eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
- denoised = x - self.sigma(s) * eps
-
- if order == 2:
- x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
- x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
- else:
- x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
- x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
- delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
- error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
- accept = pid.propose_step(error)
- if accept:
- x_prev = x_low
- x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
- s = t
- info['n_accept'] += 1
- else:
- info['n_reject'] += 1
- info['nfe'] += order
- info['steps'] += 1
-
- if self.info_callback is not None:
- self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info})
-
- return x, info
-
-
-@torch.no_grad()
-def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None):
- """DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
- if sigma_min <= 0 or sigma_max <= 0:
- raise ValueError('sigma_min and sigma_max must not be 0')
- with tqdm(total=n, disable=disable) as pbar:
- dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
- if callback is not None:
- dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
- return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler)
-
-
-@torch.no_grad()
-def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False):
- """DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
- if sigma_min <= 0 or sigma_max <= 0:
- raise ValueError('sigma_min and sigma_max must not be 0')
- with tqdm(disable=disable) as pbar:
- dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
- if callback is not None:
- dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
- x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler)
- if return_info:
- return x, info
- return x
-
-
-@torch.no_grad()
-def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
- """Ancestral sampling with DPM-Solver++(2S) second-order steps."""
- extra_args = {} if extra_args is None else extra_args
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
- s_in = x.new_ones([x.shape[0]])
- sigma_fn = lambda t: t.neg().exp()
- t_fn = lambda sigma: sigma.log().neg()
-
- for i in trange(len(sigmas) - 1, disable=disable):
- denoised = model(x, sigmas[i] * s_in, **extra_args)
- sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
- if sigma_down == 0:
- # Euler method
- d = to_d(x, sigmas[i], denoised)
- dt = sigma_down - sigmas[i]
- x = x + d * dt
- else:
- # DPM-Solver++(2S)
- t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
- r = 1 / 2
- h = t_next - t
- s = t + r * h
- x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
- denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
- x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
- # Noise addition
- if sigmas[i + 1] > 0:
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
- return x
-
-
-@torch.no_grad()
-def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
- """DPM-Solver++ (stochastic)."""
- if len(sigmas) <= 1:
- return x
-
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
- seed = extra_args.get("seed", None)
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
- extra_args = {} if extra_args is None else extra_args
- s_in = x.new_ones([x.shape[0]])
- sigma_fn = lambda t: t.neg().exp()
- t_fn = lambda sigma: sigma.log().neg()
-
- for i in trange(len(sigmas) - 1, disable=disable):
- denoised = model(x, sigmas[i] * s_in, **extra_args)
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
- if sigmas[i + 1] == 0:
- # Euler method
- d = to_d(x, sigmas[i], denoised)
- dt = sigmas[i + 1] - sigmas[i]
- x = x + d * dt
- else:
- # DPM-Solver++
- t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
- h = t_next - t
- s = t + h * r
- fac = 1 / (2 * r)
-
- # Step 1
- sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
- s_ = t_fn(sd)
- x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
- x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
- denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
-
- # Step 2
- sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
- t_next_ = t_fn(sd)
- denoised_d = (1 - fac) * denoised + fac * denoised_2
- x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
- x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
- return x
-
-
-@torch.no_grad()
-def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
- """DPM-Solver++(2M)."""
- extra_args = {} if extra_args is None else extra_args
- s_in = x.new_ones([x.shape[0]])
- sigma_fn = lambda t: t.neg().exp()
- t_fn = lambda sigma: sigma.log().neg()
- old_denoised = None
-
- for i in trange(len(sigmas) - 1, disable=disable):
- denoised = model(x, sigmas[i] * s_in, **extra_args)
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
- t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
- h = t_next - t
- if old_denoised is None or sigmas[i + 1] == 0:
- x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
- else:
- h_last = t - t_fn(sigmas[i - 1])
- r = h_last / h
- denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
- x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
- old_denoised = denoised
- return x
-
-@torch.no_grad()
-def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
- """DPM-Solver++(2M) SDE."""
- if len(sigmas) <= 1:
- return x
-
- if solver_type not in {'heun', 'midpoint'}:
- raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
-
- seed = extra_args.get("seed", None)
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
- extra_args = {} if extra_args is None else extra_args
- s_in = x.new_ones([x.shape[0]])
-
- old_denoised = None
- h_last = None
- h = None
-
- for i in trange(len(sigmas) - 1, disable=disable):
- denoised = model(x, sigmas[i] * s_in, **extra_args)
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
- if sigmas[i + 1] == 0:
- # Denoising step
- x = denoised
- else:
- # DPM-Solver++(2M) SDE
- t, s = -sigmas[i].log(), -sigmas[i + 1].log()
- h = s - t
- eta_h = eta * h
-
- x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
-
- if old_denoised is not None:
- r = h_last / h
- if solver_type == 'heun':
- x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
- elif solver_type == 'midpoint':
- x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
-
- if eta:
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
-
- old_denoised = denoised
- h_last = h
- return x
-
-@torch.no_grad()
-def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
- """DPM-Solver++(3M) SDE."""
-
- if len(sigmas) <= 1:
- return x
-
- seed = extra_args.get("seed", None)
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
- extra_args = {} if extra_args is None else extra_args
- s_in = x.new_ones([x.shape[0]])
-
- denoised_1, denoised_2 = None, None
- h, h_1, h_2 = None, None, None
-
- for i in trange(len(sigmas) - 1, disable=disable):
- denoised = model(x, sigmas[i] * s_in, **extra_args)
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
- if sigmas[i + 1] == 0:
- # Denoising step
- x = denoised
- else:
- t, s = -sigmas[i].log(), -sigmas[i + 1].log()
- h = s - t
- h_eta = h * (eta + 1)
-
- x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
-
- if h_2 is not None:
- r0 = h_1 / h
- r1 = h_2 / h
- d1_0 = (denoised - denoised_1) / r0
- d1_1 = (denoised_1 - denoised_2) / r1
- d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1)
- d2 = (d1_0 - d1_1) / (r0 + r1)
- phi_2 = h_eta.neg().expm1() / h_eta + 1
- phi_3 = phi_2 / h_eta - 0.5
- x = x + phi_2 * d1 - phi_3 * d2
- elif h_1 is not None:
- r = h_1 / h
- d = (denoised - denoised_1) / r
- phi_2 = h_eta.neg().expm1() / h_eta + 1
- x = x + phi_2 * d
-
- if eta:
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
-
- denoised_1, denoised_2 = denoised, denoised_1
- h_1, h_2 = h, h_1
- return x
-
-@torch.no_grad()
-def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
- if len(sigmas) <= 1:
- return x
-
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
- return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
-
-@torch.no_grad()
-def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
- if len(sigmas) <= 1:
- return x
-
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
- return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
-
-@torch.no_grad()
-def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
- if len(sigmas) <= 1:
- return x
-
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
- return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
-
-
-def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler):
- alpha_cumprod = 1 / ((sigma * sigma) + 1)
- alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1)
- alpha = (alpha_cumprod / alpha_cumprod_prev)
-
- mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt())
- if sigma_prev > 0:
- mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev)
- return mu
-
-def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None):
- extra_args = {} if extra_args is None else extra_args
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
- s_in = x.new_ones([x.shape[0]])
-
- for i in trange(len(sigmas) - 1, disable=disable):
- denoised = model(x, sigmas[i] * s_in, **extra_args)
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
- x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler)
- if sigmas[i + 1] != 0:
- x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0)
- return x
-
-
-@torch.no_grad()
-def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
- return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step)
-
-@torch.no_grad()
-def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
- extra_args = {} if extra_args is None else extra_args
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
- s_in = x.new_ones([x.shape[0]])
- for i in trange(len(sigmas) - 1, disable=disable):
- denoised = model(x, sigmas[i] * s_in, **extra_args)
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
-
- x = denoised
- if sigmas[i + 1] > 0:
- x = model.inner_model.inner_model.model_sampling.noise_scaling(sigmas[i + 1], noise_sampler(sigmas[i], sigmas[i + 1]), x)
- return x
-
-
-
-@torch.no_grad()
-def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
- # From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
- extra_args = {} if extra_args is None else extra_args
- s_in = x.new_ones([x.shape[0]])
- s_end = sigmas[-1]
- for i in trange(len(sigmas) - 1, disable=disable):
- gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
- eps = torch.randn_like(x) * s_noise
- sigma_hat = sigmas[i] * (gamma + 1)
- if gamma > 0:
- x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
- denoised = model(x, sigma_hat * s_in, **extra_args)
- d = to_d(x, sigma_hat, denoised)
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
- dt = sigmas[i + 1] - sigma_hat
- if sigmas[i + 1] == s_end:
- # Euler method
- x = x + d * dt
- elif sigmas[i + 2] == s_end:
-
- # Heun's method
- x_2 = x + d * dt
- denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
- d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
-
- w = 2 * sigmas[0]
- w2 = sigmas[i+1]/w
- w1 = 1 - w2
-
- d_prime = d * w1 + d_2 * w2
-
-
- x = x + d_prime * dt
-
- else:
- # Heun++
- x_2 = x + d * dt
- denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
- d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
- dt_2 = sigmas[i + 2] - sigmas[i + 1]
-
- x_3 = x_2 + d_2 * dt_2
- denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args)
- d_3 = to_d(x_3, sigmas[i + 2], denoised_3)
-
- w = 3 * sigmas[0]
- w2 = sigmas[i + 1] / w
- w3 = sigmas[i + 2] / w
- w1 = 1 - w2 - w3
-
- d_prime = w1 * d + w2 * d_2 + w3 * d_3
- x = x + d_prime * dt
- return x
diff --git a/MagicQuill/comfy/k_diffusion/utils.py b/MagicQuill/comfy/k_diffusion/utils.py
deleted file mode 100644
index a644df2f3cf82b32ac6e9bf2cb7bfc70c95e05f9..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/k_diffusion/utils.py
+++ /dev/null
@@ -1,313 +0,0 @@
-from contextlib import contextmanager
-import hashlib
-import math
-from pathlib import Path
-import shutil
-import urllib
-import warnings
-
-from PIL import Image
-import torch
-from torch import nn, optim
-from torch.utils import data
-
-
-def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'):
- """Apply passed in transforms for HuggingFace Datasets."""
- images = [transform(image.convert(mode)) for image in examples[image_key]]
- return {image_key: images}
-
-
-def append_dims(x, target_dims):
- """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
- dims_to_append = target_dims - x.ndim
- if dims_to_append < 0:
- raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
- expanded = x[(...,) + (None,) * dims_to_append]
- # MPS will get inf values if it tries to index into the new axes, but detaching fixes this.
- # https://github.com/pytorch/pytorch/issues/84364
- return expanded.detach().clone() if expanded.device.type == 'mps' else expanded
-
-
-def n_params(module):
- """Returns the number of trainable parameters in a module."""
- return sum(p.numel() for p in module.parameters())
-
-
-def download_file(path, url, digest=None):
- """Downloads a file if it does not exist, optionally checking its SHA-256 hash."""
- path = Path(path)
- path.parent.mkdir(parents=True, exist_ok=True)
- if not path.exists():
- with urllib.request.urlopen(url) as response, open(path, 'wb') as f:
- shutil.copyfileobj(response, f)
- if digest is not None:
- file_digest = hashlib.sha256(open(path, 'rb').read()).hexdigest()
- if digest != file_digest:
- raise OSError(f'hash of {path} (url: {url}) failed to validate')
- return path
-
-
-@contextmanager
-def train_mode(model, mode=True):
- """A context manager that places a model into training mode and restores
- the previous mode on exit."""
- modes = [module.training for module in model.modules()]
- try:
- yield model.train(mode)
- finally:
- for i, module in enumerate(model.modules()):
- module.training = modes[i]
-
-
-def eval_mode(model):
- """A context manager that places a model into evaluation mode and restores
- the previous mode on exit."""
- return train_mode(model, False)
-
-
-@torch.no_grad()
-def ema_update(model, averaged_model, decay):
- """Incorporates updated model parameters into an exponential moving averaged
- version of a model. It should be called after each optimizer step."""
- model_params = dict(model.named_parameters())
- averaged_params = dict(averaged_model.named_parameters())
- assert model_params.keys() == averaged_params.keys()
-
- for name, param in model_params.items():
- averaged_params[name].mul_(decay).add_(param, alpha=1 - decay)
-
- model_buffers = dict(model.named_buffers())
- averaged_buffers = dict(averaged_model.named_buffers())
- assert model_buffers.keys() == averaged_buffers.keys()
-
- for name, buf in model_buffers.items():
- averaged_buffers[name].copy_(buf)
-
-
-class EMAWarmup:
- """Implements an EMA warmup using an inverse decay schedule.
- If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are
- good values for models you plan to train for a million or more steps (reaches decay
- factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models
- you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
- 215.4k steps).
- Args:
- inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
- power (float): Exponential factor of EMA warmup. Default: 1.
- min_value (float): The minimum EMA decay rate. Default: 0.
- max_value (float): The maximum EMA decay rate. Default: 1.
- start_at (int): The epoch to start averaging at. Default: 0.
- last_epoch (int): The index of last epoch. Default: 0.
- """
-
- def __init__(self, inv_gamma=1., power=1., min_value=0., max_value=1., start_at=0,
- last_epoch=0):
- self.inv_gamma = inv_gamma
- self.power = power
- self.min_value = min_value
- self.max_value = max_value
- self.start_at = start_at
- self.last_epoch = last_epoch
-
- def state_dict(self):
- """Returns the state of the class as a :class:`dict`."""
- return dict(self.__dict__.items())
-
- def load_state_dict(self, state_dict):
- """Loads the class's state.
- Args:
- state_dict (dict): scaler state. Should be an object returned
- from a call to :meth:`state_dict`.
- """
- self.__dict__.update(state_dict)
-
- def get_value(self):
- """Gets the current EMA decay rate."""
- epoch = max(0, self.last_epoch - self.start_at)
- value = 1 - (1 + epoch / self.inv_gamma) ** -self.power
- return 0. if epoch < 0 else min(self.max_value, max(self.min_value, value))
-
- def step(self):
- """Updates the step count."""
- self.last_epoch += 1
-
-
-class InverseLR(optim.lr_scheduler._LRScheduler):
- """Implements an inverse decay learning rate schedule with an optional exponential
- warmup. When last_epoch=-1, sets initial lr as lr.
- inv_gamma is the number of steps/epochs required for the learning rate to decay to
- (1 / 2)**power of its original value.
- Args:
- optimizer (Optimizer): Wrapped optimizer.
- inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1.
- power (float): Exponential factor of learning rate decay. Default: 1.
- warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
- Default: 0.
- min_lr (float): The minimum learning rate. Default: 0.
- last_epoch (int): The index of last epoch. Default: -1.
- verbose (bool): If ``True``, prints a message to stdout for
- each update. Default: ``False``.
- """
-
- def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., min_lr=0.,
- last_epoch=-1, verbose=False):
- self.inv_gamma = inv_gamma
- self.power = power
- if not 0. <= warmup < 1:
- raise ValueError('Invalid value for warmup')
- self.warmup = warmup
- self.min_lr = min_lr
- super().__init__(optimizer, last_epoch, verbose)
-
- def get_lr(self):
- if not self._get_lr_called_within_step:
- warnings.warn("To get the last learning rate computed by the scheduler, "
- "please use `get_last_lr()`.")
-
- return self._get_closed_form_lr()
-
- def _get_closed_form_lr(self):
- warmup = 1 - self.warmup ** (self.last_epoch + 1)
- lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power
- return [warmup * max(self.min_lr, base_lr * lr_mult)
- for base_lr in self.base_lrs]
-
-
-class ExponentialLR(optim.lr_scheduler._LRScheduler):
- """Implements an exponential learning rate schedule with an optional exponential
- warmup. When last_epoch=-1, sets initial lr as lr. Decays the learning rate
- continuously by decay (default 0.5) every num_steps steps.
- Args:
- optimizer (Optimizer): Wrapped optimizer.
- num_steps (float): The number of steps to decay the learning rate by decay in.
- decay (float): The factor by which to decay the learning rate every num_steps
- steps. Default: 0.5.
- warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
- Default: 0.
- min_lr (float): The minimum learning rate. Default: 0.
- last_epoch (int): The index of last epoch. Default: -1.
- verbose (bool): If ``True``, prints a message to stdout for
- each update. Default: ``False``.
- """
-
- def __init__(self, optimizer, num_steps, decay=0.5, warmup=0., min_lr=0.,
- last_epoch=-1, verbose=False):
- self.num_steps = num_steps
- self.decay = decay
- if not 0. <= warmup < 1:
- raise ValueError('Invalid value for warmup')
- self.warmup = warmup
- self.min_lr = min_lr
- super().__init__(optimizer, last_epoch, verbose)
-
- def get_lr(self):
- if not self._get_lr_called_within_step:
- warnings.warn("To get the last learning rate computed by the scheduler, "
- "please use `get_last_lr()`.")
-
- return self._get_closed_form_lr()
-
- def _get_closed_form_lr(self):
- warmup = 1 - self.warmup ** (self.last_epoch + 1)
- lr_mult = (self.decay ** (1 / self.num_steps)) ** self.last_epoch
- return [warmup * max(self.min_lr, base_lr * lr_mult)
- for base_lr in self.base_lrs]
-
-
-def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
- """Draws samples from an lognormal distribution."""
- return (torch.randn(shape, device=device, dtype=dtype) * scale + loc).exp()
-
-
-def rand_log_logistic(shape, loc=0., scale=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
- """Draws samples from an optionally truncated log-logistic distribution."""
- min_value = torch.as_tensor(min_value, device=device, dtype=torch.float64)
- max_value = torch.as_tensor(max_value, device=device, dtype=torch.float64)
- min_cdf = min_value.log().sub(loc).div(scale).sigmoid()
- max_cdf = max_value.log().sub(loc).div(scale).sigmoid()
- u = torch.rand(shape, device=device, dtype=torch.float64) * (max_cdf - min_cdf) + min_cdf
- return u.logit().mul(scale).add(loc).exp().to(dtype)
-
-
-def rand_log_uniform(shape, min_value, max_value, device='cpu', dtype=torch.float32):
- """Draws samples from an log-uniform distribution."""
- min_value = math.log(min_value)
- max_value = math.log(max_value)
- return (torch.rand(shape, device=device, dtype=dtype) * (max_value - min_value) + min_value).exp()
-
-
-def rand_v_diffusion(shape, sigma_data=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
- """Draws samples from a truncated v-diffusion training timestep distribution."""
- min_cdf = math.atan(min_value / sigma_data) * 2 / math.pi
- max_cdf = math.atan(max_value / sigma_data) * 2 / math.pi
- u = torch.rand(shape, device=device, dtype=dtype) * (max_cdf - min_cdf) + min_cdf
- return torch.tan(u * math.pi / 2) * sigma_data
-
-
-def rand_split_log_normal(shape, loc, scale_1, scale_2, device='cpu', dtype=torch.float32):
- """Draws samples from a split lognormal distribution."""
- n = torch.randn(shape, device=device, dtype=dtype).abs()
- u = torch.rand(shape, device=device, dtype=dtype)
- n_left = n * -scale_1 + loc
- n_right = n * scale_2 + loc
- ratio = scale_1 / (scale_1 + scale_2)
- return torch.where(u < ratio, n_left, n_right).exp()
-
-
-class FolderOfImages(data.Dataset):
- """Recursively finds all images in a directory. It does not support
- classes/targets."""
-
- IMG_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp'}
-
- def __init__(self, root, transform=None):
- super().__init__()
- self.root = Path(root)
- self.transform = nn.Identity() if transform is None else transform
- self.paths = sorted(path for path in self.root.rglob('*') if path.suffix.lower() in self.IMG_EXTENSIONS)
-
- def __repr__(self):
- return f'FolderOfImages(root="{self.root}", len: {len(self)})'
-
- def __len__(self):
- return len(self.paths)
-
- def __getitem__(self, key):
- path = self.paths[key]
- with open(path, 'rb') as f:
- image = Image.open(f).convert('RGB')
- image = self.transform(image)
- return image,
-
-
-class CSVLogger:
- def __init__(self, filename, columns):
- self.filename = Path(filename)
- self.columns = columns
- if self.filename.exists():
- self.file = open(self.filename, 'a')
- else:
- self.file = open(self.filename, 'w')
- self.write(*self.columns)
-
- def write(self, *args):
- print(*args, sep=',', file=self.file, flush=True)
-
-
-@contextmanager
-def tf32_mode(cudnn=None, matmul=None):
- """A context manager that sets whether TF32 is allowed on cuDNN or matmul."""
- cudnn_old = torch.backends.cudnn.allow_tf32
- matmul_old = torch.backends.cuda.matmul.allow_tf32
- try:
- if cudnn is not None:
- torch.backends.cudnn.allow_tf32 = cudnn
- if matmul is not None:
- torch.backends.cuda.matmul.allow_tf32 = matmul
- yield
- finally:
- if cudnn is not None:
- torch.backends.cudnn.allow_tf32 = cudnn_old
- if matmul is not None:
- torch.backends.cuda.matmul.allow_tf32 = matmul_old
diff --git a/MagicQuill/comfy/latent_formats.py b/MagicQuill/comfy/latent_formats.py
deleted file mode 100644
index 4b4a9eda2ca513adf3f6a55db063bb4289be96a3..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/latent_formats.py
+++ /dev/null
@@ -1,141 +0,0 @@
-import torch
-
-class LatentFormat:
- scale_factor = 1.0
- latent_channels = 4
- latent_rgb_factors = None
- taesd_decoder_name = None
-
- def process_in(self, latent):
- return latent * self.scale_factor
-
- def process_out(self, latent):
- return latent / self.scale_factor
-
-class SD15(LatentFormat):
- def __init__(self, scale_factor=0.18215):
- self.scale_factor = scale_factor
- self.latent_rgb_factors = [
- # R G B
- [ 0.3512, 0.2297, 0.3227],
- [ 0.3250, 0.4974, 0.2350],
- [-0.2829, 0.1762, 0.2721],
- [-0.2120, -0.2616, -0.7177]
- ]
- self.taesd_decoder_name = "taesd_decoder"
-
-class SDXL(LatentFormat):
- scale_factor = 0.13025
-
- def __init__(self):
- self.latent_rgb_factors = [
- # R G B
- [ 0.3920, 0.4054, 0.4549],
- [-0.2634, -0.0196, 0.0653],
- [ 0.0568, 0.1687, -0.0755],
- [-0.3112, -0.2359, -0.2076]
- ]
- self.taesd_decoder_name = "taesdxl_decoder"
-
-class SDXL_Playground_2_5(LatentFormat):
- def __init__(self):
- self.scale_factor = 0.5
- self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1)
- self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1)
-
- self.latent_rgb_factors = [
- # R G B
- [ 0.3920, 0.4054, 0.4549],
- [-0.2634, -0.0196, 0.0653],
- [ 0.0568, 0.1687, -0.0755],
- [-0.3112, -0.2359, -0.2076]
- ]
- self.taesd_decoder_name = "taesdxl_decoder"
-
- def process_in(self, latent):
- latents_mean = self.latents_mean.to(latent.device, latent.dtype)
- latents_std = self.latents_std.to(latent.device, latent.dtype)
- return (latent - latents_mean) * self.scale_factor / latents_std
-
- def process_out(self, latent):
- latents_mean = self.latents_mean.to(latent.device, latent.dtype)
- latents_std = self.latents_std.to(latent.device, latent.dtype)
- return latent * latents_std / self.scale_factor + latents_mean
-
-
-class SD_X4(LatentFormat):
- def __init__(self):
- self.scale_factor = 0.08333
- self.latent_rgb_factors = [
- [-0.2340, -0.3863, -0.3257],
- [ 0.0994, 0.0885, -0.0908],
- [-0.2833, -0.2349, -0.3741],
- [ 0.2523, -0.0055, -0.1651]
- ]
-
-class SC_Prior(LatentFormat):
- latent_channels = 16
- def __init__(self):
- self.scale_factor = 1.0
- self.latent_rgb_factors = [
- [-0.0326, -0.0204, -0.0127],
- [-0.1592, -0.0427, 0.0216],
- [ 0.0873, 0.0638, -0.0020],
- [-0.0602, 0.0442, 0.1304],
- [ 0.0800, -0.0313, -0.1796],
- [-0.0810, -0.0638, -0.1581],
- [ 0.1791, 0.1180, 0.0967],
- [ 0.0740, 0.1416, 0.0432],
- [-0.1745, -0.1888, -0.1373],
- [ 0.2412, 0.1577, 0.0928],
- [ 0.1908, 0.0998, 0.0682],
- [ 0.0209, 0.0365, -0.0092],
- [ 0.0448, -0.0650, -0.1728],
- [-0.1658, -0.1045, -0.1308],
- [ 0.0542, 0.1545, 0.1325],
- [-0.0352, -0.1672, -0.2541]
- ]
-
-class SC_B(LatentFormat):
- def __init__(self):
- self.scale_factor = 1.0 / 0.43
- self.latent_rgb_factors = [
- [ 0.1121, 0.2006, 0.1023],
- [-0.2093, -0.0222, -0.0195],
- [-0.3087, -0.1535, 0.0366],
- [ 0.0290, -0.1574, -0.4078]
- ]
-
-class SD3(LatentFormat):
- latent_channels = 16
- def __init__(self):
- self.scale_factor = 1.5305
- self.shift_factor = 0.0609
- self.latent_rgb_factors = [
- [-0.0645, 0.0177, 0.1052],
- [ 0.0028, 0.0312, 0.0650],
- [ 0.1848, 0.0762, 0.0360],
- [ 0.0944, 0.0360, 0.0889],
- [ 0.0897, 0.0506, -0.0364],
- [-0.0020, 0.1203, 0.0284],
- [ 0.0855, 0.0118, 0.0283],
- [-0.0539, 0.0658, 0.1047],
- [-0.0057, 0.0116, 0.0700],
- [-0.0412, 0.0281, -0.0039],
- [ 0.1106, 0.1171, 0.1220],
- [-0.0248, 0.0682, -0.0481],
- [ 0.0815, 0.0846, 0.1207],
- [-0.0120, -0.0055, -0.0867],
- [-0.0749, -0.0634, -0.0456],
- [-0.1418, -0.1457, -0.1259]
- ]
- self.taesd_decoder_name = "taesd3_decoder"
-
- def process_in(self, latent):
- return (latent - self.shift_factor) * self.scale_factor
-
- def process_out(self, latent):
- return (latent / self.scale_factor) + self.shift_factor
-
-class StableAudio1(LatentFormat):
- latent_channels = 64
diff --git a/MagicQuill/comfy/ldm/.DS_Store b/MagicQuill/comfy/ldm/.DS_Store
deleted file mode 100644
index d0da439dffcc3253b60c3efbd08401ed8b1d1bf9..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/.DS_Store and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/__pycache__/util.cpython-310.pyc b/MagicQuill/comfy/ldm/__pycache__/util.cpython-310.pyc
deleted file mode 100644
index 4d31ebda5f4eae344a83438bacec2896e5d6c7b9..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/__pycache__/util.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/audio/__pycache__/autoencoder.cpython-310.pyc b/MagicQuill/comfy/ldm/audio/__pycache__/autoencoder.cpython-310.pyc
deleted file mode 100644
index 597f928a2baedd77d407f298208acd1c321f97e1..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/audio/__pycache__/autoencoder.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/audio/__pycache__/dit.cpython-310.pyc b/MagicQuill/comfy/ldm/audio/__pycache__/dit.cpython-310.pyc
deleted file mode 100644
index 1320d3d9a7caeaa211721822f32ee98ed9369ea6..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/audio/__pycache__/dit.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/audio/__pycache__/embedders.cpython-310.pyc b/MagicQuill/comfy/ldm/audio/__pycache__/embedders.cpython-310.pyc
deleted file mode 100644
index 0e6022d868f4f6a4b121fe3aa48d2c4c1582104e..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/audio/__pycache__/embedders.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/audio/autoencoder.py b/MagicQuill/comfy/ldm/audio/autoencoder.py
deleted file mode 100644
index 8123e66a50074d63bea45591f48e44723dbe5ebf..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/audio/autoencoder.py
+++ /dev/null
@@ -1,282 +0,0 @@
-# code adapted from: https://github.com/Stability-AI/stable-audio-tools
-
-import torch
-from torch import nn
-from typing import Literal, Dict, Any
-import math
-import comfy.ops
-ops = comfy.ops.disable_weight_init
-
-def vae_sample(mean, scale):
- stdev = nn.functional.softplus(scale) + 1e-4
- var = stdev * stdev
- logvar = torch.log(var)
- latents = torch.randn_like(mean) * stdev + mean
-
- kl = (mean * mean + var - logvar - 1).sum(1).mean()
-
- return latents, kl
-
-class VAEBottleneck(nn.Module):
- def __init__(self):
- super().__init__()
- self.is_discrete = False
-
- def encode(self, x, return_info=False, **kwargs):
- info = {}
-
- mean, scale = x.chunk(2, dim=1)
-
- x, kl = vae_sample(mean, scale)
-
- info["kl"] = kl
-
- if return_info:
- return x, info
- else:
- return x
-
- def decode(self, x):
- return x
-
-
-def snake_beta(x, alpha, beta):
- return x + (1.0 / (beta + 0.000000001)) * pow(torch.sin(x * alpha), 2)
-
-# Adapted from https://github.com/NVIDIA/BigVGAN/blob/main/activations.py under MIT license
-class SnakeBeta(nn.Module):
-
- def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
- super(SnakeBeta, self).__init__()
- self.in_features = in_features
-
- # initialize alpha
- self.alpha_logscale = alpha_logscale
- if self.alpha_logscale: # log scale alphas initialized to zeros
- self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
- self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
- else: # linear scale alphas initialized to ones
- self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
- self.beta = nn.Parameter(torch.ones(in_features) * alpha)
-
- # self.alpha.requires_grad = alpha_trainable
- # self.beta.requires_grad = alpha_trainable
-
- self.no_div_by_zero = 0.000000001
-
- def forward(self, x):
- alpha = self.alpha.unsqueeze(0).unsqueeze(-1).to(x.device) # line up with x to [B, C, T]
- beta = self.beta.unsqueeze(0).unsqueeze(-1).to(x.device)
- if self.alpha_logscale:
- alpha = torch.exp(alpha)
- beta = torch.exp(beta)
- x = snake_beta(x, alpha, beta)
-
- return x
-
-def WNConv1d(*args, **kwargs):
- try:
- return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
- except:
- return torch.nn.utils.weight_norm(ops.Conv1d(*args, **kwargs)) #support pytorch 2.1 and older
-
-def WNConvTranspose1d(*args, **kwargs):
- try:
- return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
- except:
- return torch.nn.utils.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) #support pytorch 2.1 and older
-
-def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
- if activation == "elu":
- act = torch.nn.ELU()
- elif activation == "snake":
- act = SnakeBeta(channels)
- elif activation == "none":
- act = torch.nn.Identity()
- else:
- raise ValueError(f"Unknown activation {activation}")
-
- if antialias:
- act = Activation1d(act)
-
- return act
-
-
-class ResidualUnit(nn.Module):
- def __init__(self, in_channels, out_channels, dilation, use_snake=False, antialias_activation=False):
- super().__init__()
-
- self.dilation = dilation
-
- padding = (dilation * (7-1)) // 2
-
- self.layers = nn.Sequential(
- get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
- WNConv1d(in_channels=in_channels, out_channels=out_channels,
- kernel_size=7, dilation=dilation, padding=padding),
- get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
- WNConv1d(in_channels=out_channels, out_channels=out_channels,
- kernel_size=1)
- )
-
- def forward(self, x):
- res = x
-
- #x = checkpoint(self.layers, x)
- x = self.layers(x)
-
- return x + res
-
-class EncoderBlock(nn.Module):
- def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False):
- super().__init__()
-
- self.layers = nn.Sequential(
- ResidualUnit(in_channels=in_channels,
- out_channels=in_channels, dilation=1, use_snake=use_snake),
- ResidualUnit(in_channels=in_channels,
- out_channels=in_channels, dilation=3, use_snake=use_snake),
- ResidualUnit(in_channels=in_channels,
- out_channels=in_channels, dilation=9, use_snake=use_snake),
- get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
- WNConv1d(in_channels=in_channels, out_channels=out_channels,
- kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)),
- )
-
- def forward(self, x):
- return self.layers(x)
-
-class DecoderBlock(nn.Module):
- def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False, use_nearest_upsample=False):
- super().__init__()
-
- if use_nearest_upsample:
- upsample_layer = nn.Sequential(
- nn.Upsample(scale_factor=stride, mode="nearest"),
- WNConv1d(in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=2*stride,
- stride=1,
- bias=False,
- padding='same')
- )
- else:
- upsample_layer = WNConvTranspose1d(in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2))
-
- self.layers = nn.Sequential(
- get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
- upsample_layer,
- ResidualUnit(in_channels=out_channels, out_channels=out_channels,
- dilation=1, use_snake=use_snake),
- ResidualUnit(in_channels=out_channels, out_channels=out_channels,
- dilation=3, use_snake=use_snake),
- ResidualUnit(in_channels=out_channels, out_channels=out_channels,
- dilation=9, use_snake=use_snake),
- )
-
- def forward(self, x):
- return self.layers(x)
-
-class OobleckEncoder(nn.Module):
- def __init__(self,
- in_channels=2,
- channels=128,
- latent_dim=32,
- c_mults = [1, 2, 4, 8],
- strides = [2, 4, 8, 8],
- use_snake=False,
- antialias_activation=False
- ):
- super().__init__()
-
- c_mults = [1] + c_mults
-
- self.depth = len(c_mults)
-
- layers = [
- WNConv1d(in_channels=in_channels, out_channels=c_mults[0] * channels, kernel_size=7, padding=3)
- ]
-
- for i in range(self.depth-1):
- layers += [EncoderBlock(in_channels=c_mults[i]*channels, out_channels=c_mults[i+1]*channels, stride=strides[i], use_snake=use_snake)]
-
- layers += [
- get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[-1] * channels),
- WNConv1d(in_channels=c_mults[-1]*channels, out_channels=latent_dim, kernel_size=3, padding=1)
- ]
-
- self.layers = nn.Sequential(*layers)
-
- def forward(self, x):
- return self.layers(x)
-
-
-class OobleckDecoder(nn.Module):
- def __init__(self,
- out_channels=2,
- channels=128,
- latent_dim=32,
- c_mults = [1, 2, 4, 8],
- strides = [2, 4, 8, 8],
- use_snake=False,
- antialias_activation=False,
- use_nearest_upsample=False,
- final_tanh=True):
- super().__init__()
-
- c_mults = [1] + c_mults
-
- self.depth = len(c_mults)
-
- layers = [
- WNConv1d(in_channels=latent_dim, out_channels=c_mults[-1]*channels, kernel_size=7, padding=3),
- ]
-
- for i in range(self.depth-1, 0, -1):
- layers += [DecoderBlock(
- in_channels=c_mults[i]*channels,
- out_channels=c_mults[i-1]*channels,
- stride=strides[i-1],
- use_snake=use_snake,
- antialias_activation=antialias_activation,
- use_nearest_upsample=use_nearest_upsample
- )
- ]
-
- layers += [
- get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[0] * channels),
- WNConv1d(in_channels=c_mults[0] * channels, out_channels=out_channels, kernel_size=7, padding=3, bias=False),
- nn.Tanh() if final_tanh else nn.Identity()
- ]
-
- self.layers = nn.Sequential(*layers)
-
- def forward(self, x):
- return self.layers(x)
-
-
-class AudioOobleckVAE(nn.Module):
- def __init__(self,
- in_channels=2,
- channels=128,
- latent_dim=64,
- c_mults = [1, 2, 4, 8, 16],
- strides = [2, 4, 4, 8, 8],
- use_snake=True,
- antialias_activation=False,
- use_nearest_upsample=False,
- final_tanh=False):
- super().__init__()
- self.encoder = OobleckEncoder(in_channels, channels, latent_dim * 2, c_mults, strides, use_snake, antialias_activation)
- self.decoder = OobleckDecoder(in_channels, channels, latent_dim, c_mults, strides, use_snake, antialias_activation,
- use_nearest_upsample=use_nearest_upsample, final_tanh=final_tanh)
- self.bottleneck = VAEBottleneck()
-
- def encode(self, x):
- return self.bottleneck.encode(self.encoder(x))
-
- def decode(self, x):
- return self.decoder(self.bottleneck.decode(x))
-
diff --git a/MagicQuill/comfy/ldm/audio/dit.py b/MagicQuill/comfy/ldm/audio/dit.py
deleted file mode 100644
index 1c1112c5e562c7bdef8e8a795f26803a3d398dd1..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/audio/dit.py
+++ /dev/null
@@ -1,888 +0,0 @@
-# code adapted from: https://github.com/Stability-AI/stable-audio-tools
-
-from comfy.ldm.modules.attention import optimized_attention
-import typing as tp
-
-import torch
-
-from einops import rearrange
-from torch import nn
-from torch.nn import functional as F
-import math
-
-class FourierFeatures(nn.Module):
- def __init__(self, in_features, out_features, std=1., dtype=None, device=None):
- super().__init__()
- assert out_features % 2 == 0
- self.weight = nn.Parameter(torch.empty(
- [out_features // 2, in_features], dtype=dtype, device=device))
-
- def forward(self, input):
- f = 2 * math.pi * input @ self.weight.T.to(dtype=input.dtype, device=input.device)
- return torch.cat([f.cos(), f.sin()], dim=-1)
-
-# norms
-class LayerNorm(nn.Module):
- def __init__(self, dim, bias=False, fix_scale=False, dtype=None, device=None):
- """
- bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
- """
- super().__init__()
-
- self.gamma = nn.Parameter(torch.empty(dim, dtype=dtype, device=device))
-
- if bias:
- self.beta = nn.Parameter(torch.empty(dim, dtype=dtype, device=device))
- else:
- self.beta = None
-
- def forward(self, x):
- beta = self.beta
- if self.beta is not None:
- beta = beta.to(dtype=x.dtype, device=x.device)
- return F.layer_norm(x, x.shape[-1:], weight=self.gamma.to(dtype=x.dtype, device=x.device), bias=beta)
-
-class GLU(nn.Module):
- def __init__(
- self,
- dim_in,
- dim_out,
- activation,
- use_conv = False,
- conv_kernel_size = 3,
- dtype=None,
- device=None,
- operations=None,
- ):
- super().__init__()
- self.act = activation
- self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim_in, dim_out * 2, conv_kernel_size, padding = (conv_kernel_size // 2), dtype=dtype, device=device)
- self.use_conv = use_conv
-
- def forward(self, x):
- if self.use_conv:
- x = rearrange(x, 'b n d -> b d n')
- x = self.proj(x)
- x = rearrange(x, 'b d n -> b n d')
- else:
- x = self.proj(x)
-
- x, gate = x.chunk(2, dim = -1)
- return x * self.act(gate)
-
-class AbsolutePositionalEmbedding(nn.Module):
- def __init__(self, dim, max_seq_len):
- super().__init__()
- self.scale = dim ** -0.5
- self.max_seq_len = max_seq_len
- self.emb = nn.Embedding(max_seq_len, dim)
-
- def forward(self, x, pos = None, seq_start_pos = None):
- seq_len, device = x.shape[1], x.device
- assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
-
- if pos is None:
- pos = torch.arange(seq_len, device = device)
-
- if seq_start_pos is not None:
- pos = (pos - seq_start_pos[..., None]).clamp(min = 0)
-
- pos_emb = self.emb(pos)
- pos_emb = pos_emb * self.scale
- return pos_emb
-
-class ScaledSinusoidalEmbedding(nn.Module):
- def __init__(self, dim, theta = 10000):
- super().__init__()
- assert (dim % 2) == 0, 'dimension must be divisible by 2'
- self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
-
- half_dim = dim // 2
- freq_seq = torch.arange(half_dim).float() / half_dim
- inv_freq = theta ** -freq_seq
- self.register_buffer('inv_freq', inv_freq, persistent = False)
-
- def forward(self, x, pos = None, seq_start_pos = None):
- seq_len, device = x.shape[1], x.device
-
- if pos is None:
- pos = torch.arange(seq_len, device = device)
-
- if seq_start_pos is not None:
- pos = pos - seq_start_pos[..., None]
-
- emb = torch.einsum('i, j -> i j', pos, self.inv_freq)
- emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
- return emb * self.scale
-
-class RotaryEmbedding(nn.Module):
- def __init__(
- self,
- dim,
- use_xpos = False,
- scale_base = 512,
- interpolation_factor = 1.,
- base = 10000,
- base_rescale_factor = 1.
- ):
- super().__init__()
- # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
- # has some connection to NTK literature
- # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
- base *= base_rescale_factor ** (dim / (dim - 2))
-
- inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
- self.register_buffer('inv_freq', inv_freq)
-
- assert interpolation_factor >= 1.
- self.interpolation_factor = interpolation_factor
-
- if not use_xpos:
- self.register_buffer('scale', None)
- return
-
- scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
-
- self.scale_base = scale_base
- self.register_buffer('scale', scale)
-
- def forward_from_seq_len(self, seq_len, device, dtype):
- # device = self.inv_freq.device
-
- t = torch.arange(seq_len, device=device, dtype=dtype)
- return self.forward(t)
-
- def forward(self, t):
- # device = self.inv_freq.device
- device = t.device
- dtype = t.dtype
-
- # t = t.to(torch.float32)
-
- t = t / self.interpolation_factor
-
- freqs = torch.einsum('i , j -> i j', t, self.inv_freq.to(dtype=dtype, device=device))
- freqs = torch.cat((freqs, freqs), dim = -1)
-
- if self.scale is None:
- return freqs, 1.
-
- power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
- scale = self.scale.to(dtype=dtype, device=device) ** rearrange(power, 'n -> n 1')
- scale = torch.cat((scale, scale), dim = -1)
-
- return freqs, scale
-
-def rotate_half(x):
- x = rearrange(x, '... (j d) -> ... j d', j = 2)
- x1, x2 = x.unbind(dim = -2)
- return torch.cat((-x2, x1), dim = -1)
-
-def apply_rotary_pos_emb(t, freqs, scale = 1):
- out_dtype = t.dtype
-
- # cast to float32 if necessary for numerical stability
- dtype = t.dtype #reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
- rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
- freqs, t = freqs.to(dtype), t.to(dtype)
- freqs = freqs[-seq_len:, :]
-
- if t.ndim == 4 and freqs.ndim == 3:
- freqs = rearrange(freqs, 'b n d -> b 1 n d')
-
- # partial rotary embeddings, Wang et al. GPT-J
- t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
- t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
-
- t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)
-
- return torch.cat((t, t_unrotated), dim = -1)
-
-class FeedForward(nn.Module):
- def __init__(
- self,
- dim,
- dim_out = None,
- mult = 4,
- no_bias = False,
- glu = True,
- use_conv = False,
- conv_kernel_size = 3,
- zero_init_output = True,
- dtype=None,
- device=None,
- operations=None,
- ):
- super().__init__()
- inner_dim = int(dim * mult)
-
- # Default to SwiGLU
-
- activation = nn.SiLU()
-
- dim_out = dim if dim_out is None else dim_out
-
- if glu:
- linear_in = GLU(dim, inner_dim, activation, dtype=dtype, device=device, operations=operations)
- else:
- linear_in = nn.Sequential(
- Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
- operations.Linear(dim, inner_dim, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device),
- Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
- activation
- )
-
- linear_out = operations.Linear(inner_dim, dim_out, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(inner_dim, dim_out, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device)
-
- # # init last linear layer to 0
- # if zero_init_output:
- # nn.init.zeros_(linear_out.weight)
- # if not no_bias:
- # nn.init.zeros_(linear_out.bias)
-
-
- self.ff = nn.Sequential(
- linear_in,
- Rearrange('b d n -> b n d') if use_conv else nn.Identity(),
- linear_out,
- Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
- )
-
- def forward(self, x):
- return self.ff(x)
-
-class Attention(nn.Module):
- def __init__(
- self,
- dim,
- dim_heads = 64,
- dim_context = None,
- causal = False,
- zero_init_output=True,
- qk_norm = False,
- natten_kernel_size = None,
- dtype=None,
- device=None,
- operations=None,
- ):
- super().__init__()
- self.dim = dim
- self.dim_heads = dim_heads
- self.causal = causal
-
- dim_kv = dim_context if dim_context is not None else dim
-
- self.num_heads = dim // dim_heads
- self.kv_heads = dim_kv // dim_heads
-
- if dim_context is not None:
- self.to_q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
- self.to_kv = operations.Linear(dim_kv, dim_kv * 2, bias=False, dtype=dtype, device=device)
- else:
- self.to_qkv = operations.Linear(dim, dim * 3, bias=False, dtype=dtype, device=device)
-
- self.to_out = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
-
- # if zero_init_output:
- # nn.init.zeros_(self.to_out.weight)
-
- self.qk_norm = qk_norm
-
-
- def forward(
- self,
- x,
- context = None,
- mask = None,
- context_mask = None,
- rotary_pos_emb = None,
- causal = None
- ):
- h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
-
- kv_input = context if has_context else x
-
- if hasattr(self, 'to_q'):
- # Use separate linear projections for q and k/v
- q = self.to_q(x)
- q = rearrange(q, 'b n (h d) -> b h n d', h = h)
-
- k, v = self.to_kv(kv_input).chunk(2, dim=-1)
-
- k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = kv_h), (k, v))
- else:
- # Use fused linear projection
- q, k, v = self.to_qkv(x).chunk(3, dim=-1)
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
-
- # Normalize q and k for cosine sim attention
- if self.qk_norm:
- q = F.normalize(q, dim=-1)
- k = F.normalize(k, dim=-1)
-
- if rotary_pos_emb is not None and not has_context:
- freqs, _ = rotary_pos_emb
-
- q_dtype = q.dtype
- k_dtype = k.dtype
-
- q = q.to(torch.float32)
- k = k.to(torch.float32)
- freqs = freqs.to(torch.float32)
-
- q = apply_rotary_pos_emb(q, freqs)
- k = apply_rotary_pos_emb(k, freqs)
-
- q = q.to(q_dtype)
- k = k.to(k_dtype)
-
- input_mask = context_mask
-
- if input_mask is None and not has_context:
- input_mask = mask
-
- # determine masking
- masks = []
- final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account
-
- if input_mask is not None:
- input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
- masks.append(~input_mask)
-
- # Other masks will be added here later
-
- if len(masks) > 0:
- final_attn_mask = ~or_reduce(masks)
-
- n, device = q.shape[-2], q.device
-
- causal = self.causal if causal is None else causal
-
- if n == 1 and causal:
- causal = False
-
- if h != kv_h:
- # Repeat interleave kv_heads to match q_heads
- heads_per_kv_head = h // kv_h
- k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
-
- out = optimized_attention(q, k, v, h, skip_reshape=True)
- out = self.to_out(out)
-
- if mask is not None:
- mask = rearrange(mask, 'b n -> b n 1')
- out = out.masked_fill(~mask, 0.)
-
- return out
-
-class ConformerModule(nn.Module):
- def __init__(
- self,
- dim,
- norm_kwargs = {},
- ):
-
- super().__init__()
-
- self.dim = dim
-
- self.in_norm = LayerNorm(dim, **norm_kwargs)
- self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
- self.glu = GLU(dim, dim, nn.SiLU())
- self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False)
- self.mid_norm = LayerNorm(dim, **norm_kwargs) # This is a batch norm in the original but I don't like batch norm
- self.swish = nn.SiLU()
- self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
-
- def forward(self, x):
- x = self.in_norm(x)
- x = rearrange(x, 'b n d -> b d n')
- x = self.pointwise_conv(x)
- x = rearrange(x, 'b d n -> b n d')
- x = self.glu(x)
- x = rearrange(x, 'b n d -> b d n')
- x = self.depthwise_conv(x)
- x = rearrange(x, 'b d n -> b n d')
- x = self.mid_norm(x)
- x = self.swish(x)
- x = rearrange(x, 'b n d -> b d n')
- x = self.pointwise_conv_2(x)
- x = rearrange(x, 'b d n -> b n d')
-
- return x
-
-class TransformerBlock(nn.Module):
- def __init__(
- self,
- dim,
- dim_heads = 64,
- cross_attend = False,
- dim_context = None,
- global_cond_dim = None,
- causal = False,
- zero_init_branch_outputs = True,
- conformer = False,
- layer_ix = -1,
- remove_norms = False,
- attn_kwargs = {},
- ff_kwargs = {},
- norm_kwargs = {},
- dtype=None,
- device=None,
- operations=None,
- ):
-
- super().__init__()
- self.dim = dim
- self.dim_heads = dim_heads
- self.cross_attend = cross_attend
- self.dim_context = dim_context
- self.causal = causal
-
- self.pre_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
-
- self.self_attn = Attention(
- dim,
- dim_heads = dim_heads,
- causal = causal,
- zero_init_output=zero_init_branch_outputs,
- dtype=dtype,
- device=device,
- operations=operations,
- **attn_kwargs
- )
-
- if cross_attend:
- self.cross_attend_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
- self.cross_attn = Attention(
- dim,
- dim_heads = dim_heads,
- dim_context=dim_context,
- causal = causal,
- zero_init_output=zero_init_branch_outputs,
- dtype=dtype,
- device=device,
- operations=operations,
- **attn_kwargs
- )
-
- self.ff_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
- self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, dtype=dtype, device=device, operations=operations,**ff_kwargs)
-
- self.layer_ix = layer_ix
-
- self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None
-
- self.global_cond_dim = global_cond_dim
-
- if global_cond_dim is not None:
- self.to_scale_shift_gate = nn.Sequential(
- nn.SiLU(),
- nn.Linear(global_cond_dim, dim * 6, bias=False)
- )
-
- nn.init.zeros_(self.to_scale_shift_gate[1].weight)
- #nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)
-
- def forward(
- self,
- x,
- context = None,
- global_cond=None,
- mask = None,
- context_mask = None,
- rotary_pos_emb = None
- ):
- if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
-
- scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(global_cond).unsqueeze(1).chunk(6, dim = -1)
-
- # self-attention with adaLN
- residual = x
- x = self.pre_norm(x)
- x = x * (1 + scale_self) + shift_self
- x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb)
- x = x * torch.sigmoid(1 - gate_self)
- x = x + residual
-
- if context is not None:
- x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
-
- if self.conformer is not None:
- x = x + self.conformer(x)
-
- # feedforward with adaLN
- residual = x
- x = self.ff_norm(x)
- x = x * (1 + scale_ff) + shift_ff
- x = self.ff(x)
- x = x * torch.sigmoid(1 - gate_ff)
- x = x + residual
-
- else:
- x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb)
-
- if context is not None:
- x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
-
- if self.conformer is not None:
- x = x + self.conformer(x)
-
- x = x + self.ff(self.ff_norm(x))
-
- return x
-
-class ContinuousTransformer(nn.Module):
- def __init__(
- self,
- dim,
- depth,
- *,
- dim_in = None,
- dim_out = None,
- dim_heads = 64,
- cross_attend=False,
- cond_token_dim=None,
- global_cond_dim=None,
- causal=False,
- rotary_pos_emb=True,
- zero_init_branch_outputs=True,
- conformer=False,
- use_sinusoidal_emb=False,
- use_abs_pos_emb=False,
- abs_pos_emb_max_length=10000,
- dtype=None,
- device=None,
- operations=None,
- **kwargs
- ):
-
- super().__init__()
-
- self.dim = dim
- self.depth = depth
- self.causal = causal
- self.layers = nn.ModuleList([])
-
- self.project_in = operations.Linear(dim_in, dim, bias=False, dtype=dtype, device=device) if dim_in is not None else nn.Identity()
- self.project_out = operations.Linear(dim, dim_out, bias=False, dtype=dtype, device=device) if dim_out is not None else nn.Identity()
-
- if rotary_pos_emb:
- self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32))
- else:
- self.rotary_pos_emb = None
-
- self.use_sinusoidal_emb = use_sinusoidal_emb
- if use_sinusoidal_emb:
- self.pos_emb = ScaledSinusoidalEmbedding(dim)
-
- self.use_abs_pos_emb = use_abs_pos_emb
- if use_abs_pos_emb:
- self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length)
-
- for i in range(depth):
- self.layers.append(
- TransformerBlock(
- dim,
- dim_heads = dim_heads,
- cross_attend = cross_attend,
- dim_context = cond_token_dim,
- global_cond_dim = global_cond_dim,
- causal = causal,
- zero_init_branch_outputs = zero_init_branch_outputs,
- conformer=conformer,
- layer_ix=i,
- dtype=dtype,
- device=device,
- operations=operations,
- **kwargs
- )
- )
-
- def forward(
- self,
- x,
- mask = None,
- prepend_embeds = None,
- prepend_mask = None,
- global_cond = None,
- return_info = False,
- **kwargs
- ):
- batch, seq, device = *x.shape[:2], x.device
-
- info = {
- "hidden_states": [],
- }
-
- x = self.project_in(x)
-
- if prepend_embeds is not None:
- prepend_length, prepend_dim = prepend_embeds.shape[1:]
-
- assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension'
-
- x = torch.cat((prepend_embeds, x), dim = -2)
-
- if prepend_mask is not None or mask is not None:
- mask = mask if mask is not None else torch.ones((batch, seq), device = device, dtype = torch.bool)
- prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), device = device, dtype = torch.bool)
-
- mask = torch.cat((prepend_mask, mask), dim = -1)
-
- # Attention layers
-
- if self.rotary_pos_emb is not None:
- rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device)
- else:
- rotary_pos_emb = None
-
- if self.use_sinusoidal_emb or self.use_abs_pos_emb:
- x = x + self.pos_emb(x)
-
- # Iterate over the transformer layers
- for layer in self.layers:
- x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
- # x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
-
- if return_info:
- info["hidden_states"].append(x)
-
- x = self.project_out(x)
-
- if return_info:
- return x, info
-
- return x
-
-class AudioDiffusionTransformer(nn.Module):
- def __init__(self,
- io_channels=64,
- patch_size=1,
- embed_dim=1536,
- cond_token_dim=768,
- project_cond_tokens=False,
- global_cond_dim=1536,
- project_global_cond=True,
- input_concat_dim=0,
- prepend_cond_dim=0,
- depth=24,
- num_heads=24,
- transformer_type: tp.Literal["continuous_transformer"] = "continuous_transformer",
- global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend",
- audio_model="",
- dtype=None,
- device=None,
- operations=None,
- **kwargs):
-
- super().__init__()
-
- self.dtype = dtype
- self.cond_token_dim = cond_token_dim
-
- # Timestep embeddings
- timestep_features_dim = 256
-
- self.timestep_features = FourierFeatures(1, timestep_features_dim, dtype=dtype, device=device)
-
- self.to_timestep_embed = nn.Sequential(
- operations.Linear(timestep_features_dim, embed_dim, bias=True, dtype=dtype, device=device),
- nn.SiLU(),
- operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device),
- )
-
- if cond_token_dim > 0:
- # Conditioning tokens
-
- cond_embed_dim = cond_token_dim if not project_cond_tokens else embed_dim
- self.to_cond_embed = nn.Sequential(
- operations.Linear(cond_token_dim, cond_embed_dim, bias=False, dtype=dtype, device=device),
- nn.SiLU(),
- operations.Linear(cond_embed_dim, cond_embed_dim, bias=False, dtype=dtype, device=device)
- )
- else:
- cond_embed_dim = 0
-
- if global_cond_dim > 0:
- # Global conditioning
- global_embed_dim = global_cond_dim if not project_global_cond else embed_dim
- self.to_global_embed = nn.Sequential(
- operations.Linear(global_cond_dim, global_embed_dim, bias=False, dtype=dtype, device=device),
- nn.SiLU(),
- operations.Linear(global_embed_dim, global_embed_dim, bias=False, dtype=dtype, device=device)
- )
-
- if prepend_cond_dim > 0:
- # Prepend conditioning
- self.to_prepend_embed = nn.Sequential(
- operations.Linear(prepend_cond_dim, embed_dim, bias=False, dtype=dtype, device=device),
- nn.SiLU(),
- operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
- )
-
- self.input_concat_dim = input_concat_dim
-
- dim_in = io_channels + self.input_concat_dim
-
- self.patch_size = patch_size
-
- # Transformer
-
- self.transformer_type = transformer_type
-
- self.global_cond_type = global_cond_type
-
- if self.transformer_type == "continuous_transformer":
-
- global_dim = None
-
- if self.global_cond_type == "adaLN":
- # The global conditioning is projected to the embed_dim already at this point
- global_dim = embed_dim
-
- self.transformer = ContinuousTransformer(
- dim=embed_dim,
- depth=depth,
- dim_heads=embed_dim // num_heads,
- dim_in=dim_in * patch_size,
- dim_out=io_channels * patch_size,
- cross_attend = cond_token_dim > 0,
- cond_token_dim = cond_embed_dim,
- global_cond_dim=global_dim,
- dtype=dtype,
- device=device,
- operations=operations,
- **kwargs
- )
- else:
- raise ValueError(f"Unknown transformer type: {self.transformer_type}")
-
- self.preprocess_conv = operations.Conv1d(dim_in, dim_in, 1, bias=False, dtype=dtype, device=device)
- self.postprocess_conv = operations.Conv1d(io_channels, io_channels, 1, bias=False, dtype=dtype, device=device)
-
- def _forward(
- self,
- x,
- t,
- mask=None,
- cross_attn_cond=None,
- cross_attn_cond_mask=None,
- input_concat_cond=None,
- global_embed=None,
- prepend_cond=None,
- prepend_cond_mask=None,
- return_info=False,
- **kwargs):
-
- if cross_attn_cond is not None:
- cross_attn_cond = self.to_cond_embed(cross_attn_cond)
-
- if global_embed is not None:
- # Project the global conditioning to the embedding dimension
- global_embed = self.to_global_embed(global_embed)
-
- prepend_inputs = None
- prepend_mask = None
- prepend_length = 0
- if prepend_cond is not None:
- # Project the prepend conditioning to the embedding dimension
- prepend_cond = self.to_prepend_embed(prepend_cond)
-
- prepend_inputs = prepend_cond
- if prepend_cond_mask is not None:
- prepend_mask = prepend_cond_mask
-
- if input_concat_cond is not None:
-
- # Interpolate input_concat_cond to the same length as x
- if input_concat_cond.shape[2] != x.shape[2]:
- input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest')
-
- x = torch.cat([x, input_concat_cond], dim=1)
-
- # Get the batch of timestep embeddings
- timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None]).to(x.dtype)) # (b, embed_dim)
-
- # Timestep embedding is considered a global embedding. Add to the global conditioning if it exists
- if global_embed is not None:
- global_embed = global_embed + timestep_embed
- else:
- global_embed = timestep_embed
-
- # Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer
- if self.global_cond_type == "prepend":
- if prepend_inputs is None:
- # Prepend inputs are just the global embed, and the mask is all ones
- prepend_inputs = global_embed.unsqueeze(1)
- prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)
- else:
- # Prepend inputs are the prepend conditioning + the global embed
- prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1)
- prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)], dim=1)
-
- prepend_length = prepend_inputs.shape[1]
-
- x = self.preprocess_conv(x) + x
-
- x = rearrange(x, "b c t -> b t c")
-
- extra_args = {}
-
- if self.global_cond_type == "adaLN":
- extra_args["global_cond"] = global_embed
-
- if self.patch_size > 1:
- x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size)
-
- if self.transformer_type == "x-transformers":
- output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, **extra_args, **kwargs)
- elif self.transformer_type == "continuous_transformer":
- output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, return_info=return_info, **extra_args, **kwargs)
-
- if return_info:
- output, info = output
- elif self.transformer_type == "mm_transformer":
- output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask, **extra_args, **kwargs)
-
- output = rearrange(output, "b t c -> b c t")[:,:,prepend_length:]
-
- if self.patch_size > 1:
- output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size)
-
- output = self.postprocess_conv(output) + output
-
- if return_info:
- return output, info
-
- return output
-
- def forward(
- self,
- x,
- timestep,
- context=None,
- context_mask=None,
- input_concat_cond=None,
- global_embed=None,
- negative_global_embed=None,
- prepend_cond=None,
- prepend_cond_mask=None,
- mask=None,
- return_info=False,
- control=None,
- transformer_options={},
- **kwargs):
- return self._forward(
- x,
- timestep,
- cross_attn_cond=context,
- cross_attn_cond_mask=context_mask,
- input_concat_cond=input_concat_cond,
- global_embed=global_embed,
- prepend_cond=prepend_cond,
- prepend_cond_mask=prepend_cond_mask,
- mask=mask,
- return_info=return_info,
- **kwargs
- )
diff --git a/MagicQuill/comfy/ldm/audio/embedders.py b/MagicQuill/comfy/ldm/audio/embedders.py
deleted file mode 100644
index 82a3210c60de10b4294335cd0001cb3e72b68bd6..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/audio/embedders.py
+++ /dev/null
@@ -1,108 +0,0 @@
-# code adapted from: https://github.com/Stability-AI/stable-audio-tools
-
-import torch
-import torch.nn as nn
-from torch import Tensor, einsum
-from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union
-from einops import rearrange
-import math
-import comfy.ops
-
-class LearnedPositionalEmbedding(nn.Module):
- """Used for continuous time"""
-
- def __init__(self, dim: int):
- super().__init__()
- assert (dim % 2) == 0
- half_dim = dim // 2
- self.weights = nn.Parameter(torch.empty(half_dim))
-
- def forward(self, x: Tensor) -> Tensor:
- x = rearrange(x, "b -> b 1")
- freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * math.pi
- fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
- fouriered = torch.cat((x, fouriered), dim=-1)
- return fouriered
-
-def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
- return nn.Sequential(
- LearnedPositionalEmbedding(dim),
- comfy.ops.manual_cast.Linear(in_features=dim + 1, out_features=out_features),
- )
-
-
-class NumberEmbedder(nn.Module):
- def __init__(
- self,
- features: int,
- dim: int = 256,
- ):
- super().__init__()
- self.features = features
- self.embedding = TimePositionalEmbedding(dim=dim, out_features=features)
-
- def forward(self, x: Union[List[float], Tensor]) -> Tensor:
- if not torch.is_tensor(x):
- device = next(self.embedding.parameters()).device
- x = torch.tensor(x, device=device)
- assert isinstance(x, Tensor)
- shape = x.shape
- x = rearrange(x, "... -> (...)")
- embedding = self.embedding(x)
- x = embedding.view(*shape, self.features)
- return x # type: ignore
-
-
-class Conditioner(nn.Module):
- def __init__(
- self,
- dim: int,
- output_dim: int,
- project_out: bool = False
- ):
-
- super().__init__()
-
- self.dim = dim
- self.output_dim = output_dim
- self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity()
-
- def forward(self, x):
- raise NotImplementedError()
-
-class NumberConditioner(Conditioner):
- '''
- Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings
- '''
- def __init__(self,
- output_dim: int,
- min_val: float=0,
- max_val: float=1
- ):
- super().__init__(output_dim, output_dim)
-
- self.min_val = min_val
- self.max_val = max_val
-
- self.embedder = NumberEmbedder(features=output_dim)
-
- def forward(self, floats, device=None):
- # Cast the inputs to floats
- floats = [float(x) for x in floats]
-
- if device is None:
- device = next(self.embedder.parameters()).device
-
- floats = torch.tensor(floats).to(device)
-
- floats = floats.clamp(self.min_val, self.max_val)
-
- normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val)
-
- # Cast floats to same type as embedder
- embedder_dtype = next(self.embedder.parameters()).dtype
- normalized_floats = normalized_floats.to(embedder_dtype)
-
- float_embeds = self.embedder(normalized_floats).unsqueeze(1)
-
- return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)]
diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/common.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/common.cpython-310.pyc
deleted file mode 100644
index 3a9ea796d0c4086f3ebb206a54854854753acbfa..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/cascade/__pycache__/common.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/controlnet.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/controlnet.cpython-310.pyc
deleted file mode 100644
index 5c8f72c9827aba12665b962386139aeee28c951c..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/cascade/__pycache__/controlnet.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_a.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_a.cpython-310.pyc
deleted file mode 100644
index 7eed682b6a5f0bde97d31a7b300f630b7d5bbd78..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_a.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_b.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_b.cpython-310.pyc
deleted file mode 100644
index 91226e7ab8aabee452a15165b1a37cc686a5e539..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_b.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c.cpython-310.pyc
deleted file mode 100644
index 0daa227d63a708765dd499be35082dcef1212d56..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c_coder.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c_coder.cpython-310.pyc
deleted file mode 100644
index 1a556f78558b85c7299efc4575c471d1e076ceef..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c_coder.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/cascade/common.py b/MagicQuill/comfy/ldm/cascade/common.py
deleted file mode 100644
index 124902c09a4599e97a4e4c80f9d83b9d44eab22e..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/cascade/common.py
+++ /dev/null
@@ -1,161 +0,0 @@
-"""
- This file is part of ComfyUI.
- Copyright (C) 2024 Stability AI
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
-"""
-
-import torch
-import torch.nn as nn
-from comfy.ldm.modules.attention import optimized_attention
-
-class Linear(torch.nn.Linear):
- def reset_parameters(self):
- return None
-
-class Conv2d(torch.nn.Conv2d):
- def reset_parameters(self):
- return None
-
-class OptimizedAttention(nn.Module):
- def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
- super().__init__()
- self.heads = nhead
-
- self.to_q = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
- self.to_k = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
- self.to_v = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
-
- self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
-
- def forward(self, q, k, v):
- q = self.to_q(q)
- k = self.to_k(k)
- v = self.to_v(v)
-
- out = optimized_attention(q, k, v, self.heads)
-
- return self.out_proj(out)
-
-class Attention2D(nn.Module):
- def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
- super().__init__()
- self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations)
- # self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device)
-
- def forward(self, x, kv, self_attn=False):
- orig_shape = x.shape
- x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
- if self_attn:
- kv = torch.cat([x, kv], dim=1)
- # x = self.attn(x, kv, kv, need_weights=False)[0]
- x = self.attn(x, kv, kv)
- x = x.permute(0, 2, 1).view(*orig_shape)
- return x
-
-
-def LayerNorm2d_op(operations):
- class LayerNorm2d(operations.LayerNorm):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
-
- def forward(self, x):
- return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
- return LayerNorm2d
-
-class GlobalResponseNorm(nn.Module):
- "from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
- def __init__(self, dim, dtype=None, device=None):
- super().__init__()
- self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device))
- self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device))
-
- def forward(self, x):
- Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
- Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
- return self.gamma.to(device=x.device, dtype=x.dtype) * (x * Nx) + self.beta.to(device=x.device, dtype=x.dtype) + x
-
-
-class ResBlock(nn.Module):
- def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0, dtype=None, device=None, operations=None): # , num_heads=4, expansion=2):
- super().__init__()
- self.depthwise = operations.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c, dtype=dtype, device=device)
- # self.depthwise = SAMBlock(c, num_heads, expansion)
- self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
- self.channelwise = nn.Sequential(
- operations.Linear(c + c_skip, c * 4, dtype=dtype, device=device),
- nn.GELU(),
- GlobalResponseNorm(c * 4, dtype=dtype, device=device),
- nn.Dropout(dropout),
- operations.Linear(c * 4, c, dtype=dtype, device=device)
- )
-
- def forward(self, x, x_skip=None):
- x_res = x
- x = self.norm(self.depthwise(x))
- if x_skip is not None:
- x = torch.cat([x, x_skip], dim=1)
- x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
- return x + x_res
-
-
-class AttnBlock(nn.Module):
- def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, dtype=None, device=None, operations=None):
- super().__init__()
- self.self_attn = self_attn
- self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
- self.attention = Attention2D(c, nhead, dropout, dtype=dtype, device=device, operations=operations)
- self.kv_mapper = nn.Sequential(
- nn.SiLU(),
- operations.Linear(c_cond, c, dtype=dtype, device=device)
- )
-
- def forward(self, x, kv):
- kv = self.kv_mapper(kv)
- x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
- return x
-
-
-class FeedForwardBlock(nn.Module):
- def __init__(self, c, dropout=0.0, dtype=None, device=None, operations=None):
- super().__init__()
- self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
- self.channelwise = nn.Sequential(
- operations.Linear(c, c * 4, dtype=dtype, device=device),
- nn.GELU(),
- GlobalResponseNorm(c * 4, dtype=dtype, device=device),
- nn.Dropout(dropout),
- operations.Linear(c * 4, c, dtype=dtype, device=device)
- )
-
- def forward(self, x):
- x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
- return x
-
-
-class TimestepBlock(nn.Module):
- def __init__(self, c, c_timestep, conds=['sca'], dtype=None, device=None, operations=None):
- super().__init__()
- self.mapper = operations.Linear(c_timestep, c * 2, dtype=dtype, device=device)
- self.conds = conds
- for cname in conds:
- setattr(self, f"mapper_{cname}", operations.Linear(c_timestep, c * 2, dtype=dtype, device=device))
-
- def forward(self, x, t):
- t = t.chunk(len(self.conds) + 1, dim=1)
- a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
- for i, c in enumerate(self.conds):
- ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
- a, b = a + ac, b + bc
- return x * (1 + a) + b
diff --git a/MagicQuill/comfy/ldm/cascade/controlnet.py b/MagicQuill/comfy/ldm/cascade/controlnet.py
deleted file mode 100644
index 5dac5939409a3c9851e768f412eb42a97a9a4381..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/cascade/controlnet.py
+++ /dev/null
@@ -1,93 +0,0 @@
-"""
- This file is part of ComfyUI.
- Copyright (C) 2024 Stability AI
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
-"""
-
-import torch
-import torchvision
-from torch import nn
-from .common import LayerNorm2d_op
-
-
-class CNetResBlock(nn.Module):
- def __init__(self, c, dtype=None, device=None, operations=None):
- super().__init__()
- self.blocks = nn.Sequential(
- LayerNorm2d_op(operations)(c, dtype=dtype, device=device),
- nn.GELU(),
- operations.Conv2d(c, c, kernel_size=3, padding=1),
- LayerNorm2d_op(operations)(c, dtype=dtype, device=device),
- nn.GELU(),
- operations.Conv2d(c, c, kernel_size=3, padding=1),
- )
-
- def forward(self, x):
- return x + self.blocks(x)
-
-
-class ControlNet(nn.Module):
- def __init__(self, c_in=3, c_proj=2048, proj_blocks=None, bottleneck_mode=None, dtype=None, device=None, operations=nn):
- super().__init__()
- if bottleneck_mode is None:
- bottleneck_mode = 'effnet'
- self.proj_blocks = proj_blocks
- if bottleneck_mode == 'effnet':
- embd_channels = 1280
- self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
- if c_in != 3:
- in_weights = self.backbone[0][0].weight.data
- self.backbone[0][0] = operations.Conv2d(c_in, 24, kernel_size=3, stride=2, bias=False, dtype=dtype, device=device)
- if c_in > 3:
- # nn.init.constant_(self.backbone[0][0].weight, 0)
- self.backbone[0][0].weight.data[:, :3] = in_weights[:, :3].clone()
- else:
- self.backbone[0][0].weight.data = in_weights[:, :c_in].clone()
- elif bottleneck_mode == 'simple':
- embd_channels = c_in
- self.backbone = nn.Sequential(
- operations.Conv2d(embd_channels, embd_channels * 4, kernel_size=3, padding=1, dtype=dtype, device=device),
- nn.LeakyReLU(0.2, inplace=True),
- operations.Conv2d(embd_channels * 4, embd_channels, kernel_size=3, padding=1, dtype=dtype, device=device),
- )
- elif bottleneck_mode == 'large':
- self.backbone = nn.Sequential(
- operations.Conv2d(c_in, 4096 * 4, kernel_size=1, dtype=dtype, device=device),
- nn.LeakyReLU(0.2, inplace=True),
- operations.Conv2d(4096 * 4, 1024, kernel_size=1, dtype=dtype, device=device),
- *[CNetResBlock(1024, dtype=dtype, device=device, operations=operations) for _ in range(8)],
- operations.Conv2d(1024, 1280, kernel_size=1, dtype=dtype, device=device),
- )
- embd_channels = 1280
- else:
- raise ValueError(f'Unknown bottleneck mode: {bottleneck_mode}')
- self.projections = nn.ModuleList()
- for _ in range(len(proj_blocks)):
- self.projections.append(nn.Sequential(
- operations.Conv2d(embd_channels, embd_channels, kernel_size=1, bias=False, dtype=dtype, device=device),
- nn.LeakyReLU(0.2, inplace=True),
- operations.Conv2d(embd_channels, c_proj, kernel_size=1, bias=False, dtype=dtype, device=device),
- ))
- # nn.init.constant_(self.projections[-1][-1].weight, 0) # zero output projection
- self.xl = False
- self.input_channels = c_in
- self.unshuffle_amount = 8
-
- def forward(self, x):
- x = self.backbone(x)
- proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)]
- for i, idx in enumerate(self.proj_blocks):
- proj_outputs[idx] = self.projections[i](x)
- return proj_outputs
diff --git a/MagicQuill/comfy/ldm/cascade/stage_a.py b/MagicQuill/comfy/ldm/cascade/stage_a.py
deleted file mode 100644
index ca8867eaf35cbc57eb5d925082b7e2bb7b36932d..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/cascade/stage_a.py
+++ /dev/null
@@ -1,255 +0,0 @@
-"""
- This file is part of ComfyUI.
- Copyright (C) 2024 Stability AI
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
-"""
-
-import torch
-from torch import nn
-from torch.autograd import Function
-
-class vector_quantize(Function):
- @staticmethod
- def forward(ctx, x, codebook):
- with torch.no_grad():
- codebook_sqr = torch.sum(codebook ** 2, dim=1)
- x_sqr = torch.sum(x ** 2, dim=1, keepdim=True)
-
- dist = torch.addmm(codebook_sqr + x_sqr, x, codebook.t(), alpha=-2.0, beta=1.0)
- _, indices = dist.min(dim=1)
-
- ctx.save_for_backward(indices, codebook)
- ctx.mark_non_differentiable(indices)
-
- nn = torch.index_select(codebook, 0, indices)
- return nn, indices
-
- @staticmethod
- def backward(ctx, grad_output, grad_indices):
- grad_inputs, grad_codebook = None, None
-
- if ctx.needs_input_grad[0]:
- grad_inputs = grad_output.clone()
- if ctx.needs_input_grad[1]:
- # Gradient wrt. the codebook
- indices, codebook = ctx.saved_tensors
-
- grad_codebook = torch.zeros_like(codebook)
- grad_codebook.index_add_(0, indices, grad_output)
-
- return (grad_inputs, grad_codebook)
-
-
-class VectorQuantize(nn.Module):
- def __init__(self, embedding_size, k, ema_decay=0.99, ema_loss=False):
- """
- Takes an input of variable size (as long as the last dimension matches the embedding size).
- Returns one tensor containing the nearest neigbour embeddings to each of the inputs,
- with the same size as the input, vq and commitment components for the loss as a touple
- in the second output and the indices of the quantized vectors in the third:
- quantized, (vq_loss, commit_loss), indices
- """
- super(VectorQuantize, self).__init__()
-
- self.codebook = nn.Embedding(k, embedding_size)
- self.codebook.weight.data.uniform_(-1./k, 1./k)
- self.vq = vector_quantize.apply
-
- self.ema_decay = ema_decay
- self.ema_loss = ema_loss
- if ema_loss:
- self.register_buffer('ema_element_count', torch.ones(k))
- self.register_buffer('ema_weight_sum', torch.zeros_like(self.codebook.weight))
-
- def _laplace_smoothing(self, x, epsilon):
- n = torch.sum(x)
- return ((x + epsilon) / (n + x.size(0) * epsilon) * n)
-
- def _updateEMA(self, z_e_x, indices):
- mask = nn.functional.one_hot(indices, self.ema_element_count.size(0)).float()
- elem_count = mask.sum(dim=0)
- weight_sum = torch.mm(mask.t(), z_e_x)
-
- self.ema_element_count = (self.ema_decay * self.ema_element_count) + ((1-self.ema_decay) * elem_count)
- self.ema_element_count = self._laplace_smoothing(self.ema_element_count, 1e-5)
- self.ema_weight_sum = (self.ema_decay * self.ema_weight_sum) + ((1-self.ema_decay) * weight_sum)
-
- self.codebook.weight.data = self.ema_weight_sum / self.ema_element_count.unsqueeze(-1)
-
- def idx2vq(self, idx, dim=-1):
- q_idx = self.codebook(idx)
- if dim != -1:
- q_idx = q_idx.movedim(-1, dim)
- return q_idx
-
- def forward(self, x, get_losses=True, dim=-1):
- if dim != -1:
- x = x.movedim(dim, -1)
- z_e_x = x.contiguous().view(-1, x.size(-1)) if len(x.shape) > 2 else x
- z_q_x, indices = self.vq(z_e_x, self.codebook.weight.detach())
- vq_loss, commit_loss = None, None
- if self.ema_loss and self.training:
- self._updateEMA(z_e_x.detach(), indices.detach())
- # pick the graded embeddings after updating the codebook in order to have a more accurate commitment loss
- z_q_x_grd = torch.index_select(self.codebook.weight, dim=0, index=indices)
- if get_losses:
- vq_loss = (z_q_x_grd - z_e_x.detach()).pow(2).mean()
- commit_loss = (z_e_x - z_q_x_grd.detach()).pow(2).mean()
-
- z_q_x = z_q_x.view(x.shape)
- if dim != -1:
- z_q_x = z_q_x.movedim(-1, dim)
- return z_q_x, (vq_loss, commit_loss), indices.view(x.shape[:-1])
-
-
-class ResBlock(nn.Module):
- def __init__(self, c, c_hidden):
- super().__init__()
- # depthwise/attention
- self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
- self.depthwise = nn.Sequential(
- nn.ReplicationPad2d(1),
- nn.Conv2d(c, c, kernel_size=3, groups=c)
- )
-
- # channelwise
- self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
- self.channelwise = nn.Sequential(
- nn.Linear(c, c_hidden),
- nn.GELU(),
- nn.Linear(c_hidden, c),
- )
-
- self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
-
- # Init weights
- def _basic_init(module):
- if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
- torch.nn.init.xavier_uniform_(module.weight)
- if module.bias is not None:
- nn.init.constant_(module.bias, 0)
-
- self.apply(_basic_init)
-
- def _norm(self, x, norm):
- return norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
-
- def forward(self, x):
- mods = self.gammas
-
- x_temp = self._norm(x, self.norm1) * (1 + mods[0]) + mods[1]
- try:
- x = x + self.depthwise(x_temp) * mods[2]
- except: #operation not implemented for bf16
- x_temp = self.depthwise[0](x_temp.float()).to(x.dtype)
- x = x + self.depthwise[1](x_temp) * mods[2]
-
- x_temp = self._norm(x, self.norm2) * (1 + mods[3]) + mods[4]
- x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5]
-
- return x
-
-
-class StageA(nn.Module):
- def __init__(self, levels=2, bottleneck_blocks=12, c_hidden=384, c_latent=4, codebook_size=8192):
- super().__init__()
- self.c_latent = c_latent
- c_levels = [c_hidden // (2 ** i) for i in reversed(range(levels))]
-
- # Encoder blocks
- self.in_block = nn.Sequential(
- nn.PixelUnshuffle(2),
- nn.Conv2d(3 * 4, c_levels[0], kernel_size=1)
- )
- down_blocks = []
- for i in range(levels):
- if i > 0:
- down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
- block = ResBlock(c_levels[i], c_levels[i] * 4)
- down_blocks.append(block)
- down_blocks.append(nn.Sequential(
- nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
- nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
- ))
- self.down_blocks = nn.Sequential(*down_blocks)
- self.down_blocks[0]
-
- self.codebook_size = codebook_size
- self.vquantizer = VectorQuantize(c_latent, k=codebook_size)
-
- # Decoder blocks
- up_blocks = [nn.Sequential(
- nn.Conv2d(c_latent, c_levels[-1], kernel_size=1)
- )]
- for i in range(levels):
- for j in range(bottleneck_blocks if i == 0 else 1):
- block = ResBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4)
- up_blocks.append(block)
- if i < levels - 1:
- up_blocks.append(
- nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
- padding=1))
- self.up_blocks = nn.Sequential(*up_blocks)
- self.out_block = nn.Sequential(
- nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
- nn.PixelShuffle(2),
- )
-
- def encode(self, x, quantize=False):
- x = self.in_block(x)
- x = self.down_blocks(x)
- if quantize:
- qe, (vq_loss, commit_loss), indices = self.vquantizer.forward(x, dim=1)
- return qe, x, indices, vq_loss + commit_loss * 0.25
- else:
- return x
-
- def decode(self, x):
- x = self.up_blocks(x)
- x = self.out_block(x)
- return x
-
- def forward(self, x, quantize=False):
- qe, x, _, vq_loss = self.encode(x, quantize)
- x = self.decode(qe)
- return x, vq_loss
-
-
-class Discriminator(nn.Module):
- def __init__(self, c_in=3, c_cond=0, c_hidden=512, depth=6):
- super().__init__()
- d = max(depth - 3, 3)
- layers = [
- nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
- nn.LeakyReLU(0.2),
- ]
- for i in range(depth - 1):
- c_in = c_hidden // (2 ** max((d - i), 0))
- c_out = c_hidden // (2 ** max((d - 1 - i), 0))
- layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
- layers.append(nn.InstanceNorm2d(c_out))
- layers.append(nn.LeakyReLU(0.2))
- self.encoder = nn.Sequential(*layers)
- self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
- self.logits = nn.Sigmoid()
-
- def forward(self, x, cond=None):
- x = self.encoder(x)
- if cond is not None:
- cond = cond.view(cond.size(0), cond.size(1), 1, 1, ).expand(-1, -1, x.size(-2), x.size(-1))
- x = torch.cat([x, cond], dim=1)
- x = self.shuffle(x)
- x = self.logits(x)
- return x
diff --git a/MagicQuill/comfy/ldm/cascade/stage_b.py b/MagicQuill/comfy/ldm/cascade/stage_b.py
deleted file mode 100644
index 7c3d8feabd826accc702b6e6e598b61b4a739194..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/cascade/stage_b.py
+++ /dev/null
@@ -1,256 +0,0 @@
-"""
- This file is part of ComfyUI.
- Copyright (C) 2024 Stability AI
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
-"""
-
-import math
-import torch
-from torch import nn
-from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock
-
-class StageB(nn.Module):
- def __init__(self, c_in=4, c_out=4, c_r=64, patch_size=2, c_cond=1280, c_hidden=[320, 640, 1280, 1280],
- nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]],
- block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]], level_config=['CT', 'CT', 'CTA', 'CTA'], c_clip=1280,
- c_clip_seq=4, c_effnet=16, c_pixels=3, kernel_size=3, dropout=[0, 0, 0.0, 0.0], self_attn=True,
- t_conds=['sca'], stable_cascade_stage=None, dtype=None, device=None, operations=None):
- super().__init__()
- self.dtype = dtype
- self.c_r = c_r
- self.t_conds = t_conds
- self.c_clip_seq = c_clip_seq
- if not isinstance(dropout, list):
- dropout = [dropout] * len(c_hidden)
- if not isinstance(self_attn, list):
- self_attn = [self_attn] * len(c_hidden)
-
- # CONDITIONING
- self.effnet_mapper = nn.Sequential(
- operations.Conv2d(c_effnet, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device),
- nn.GELU(),
- operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device),
- LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
- )
- self.pixels_mapper = nn.Sequential(
- operations.Conv2d(c_pixels, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device),
- nn.GELU(),
- operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device),
- LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
- )
- self.clip_mapper = operations.Linear(c_clip, c_cond * c_clip_seq, dtype=dtype, device=device)
- self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
-
- self.embedding = nn.Sequential(
- nn.PixelUnshuffle(patch_size),
- operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device),
- LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
- )
-
- def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
- if block_type == 'C':
- return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations)
- elif block_type == 'A':
- return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations)
- elif block_type == 'F':
- return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations)
- elif block_type == 'T':
- return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations)
- else:
- raise Exception(f'Block type {block_type} not supported')
-
- # BLOCKS
- # -- down blocks
- self.down_blocks = nn.ModuleList()
- self.down_downscalers = nn.ModuleList()
- self.down_repeat_mappers = nn.ModuleList()
- for i in range(len(c_hidden)):
- if i > 0:
- self.down_downscalers.append(nn.Sequential(
- LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
- operations.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2, dtype=dtype, device=device),
- ))
- else:
- self.down_downscalers.append(nn.Identity())
- down_block = nn.ModuleList()
- for _ in range(blocks[0][i]):
- for block_type in level_config[i]:
- block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
- down_block.append(block)
- self.down_blocks.append(down_block)
- if block_repeat is not None:
- block_repeat_mappers = nn.ModuleList()
- for _ in range(block_repeat[0][i] - 1):
- block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
- self.down_repeat_mappers.append(block_repeat_mappers)
-
- # -- up blocks
- self.up_blocks = nn.ModuleList()
- self.up_upscalers = nn.ModuleList()
- self.up_repeat_mappers = nn.ModuleList()
- for i in reversed(range(len(c_hidden))):
- if i > 0:
- self.up_upscalers.append(nn.Sequential(
- LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
- operations.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2, dtype=dtype, device=device),
- ))
- else:
- self.up_upscalers.append(nn.Identity())
- up_block = nn.ModuleList()
- for j in range(blocks[1][::-1][i]):
- for k, block_type in enumerate(level_config[i]):
- c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
- block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i],
- self_attn=self_attn[i])
- up_block.append(block)
- self.up_blocks.append(up_block)
- if block_repeat is not None:
- block_repeat_mappers = nn.ModuleList()
- for _ in range(block_repeat[1][::-1][i] - 1):
- block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
- self.up_repeat_mappers.append(block_repeat_mappers)
-
- # OUTPUT
- self.clf = nn.Sequential(
- LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
- operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device),
- nn.PixelShuffle(patch_size),
- )
-
- # --- WEIGHT INIT ---
- # self.apply(self._init_weights) # General init
- # nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings
- # nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings
- # nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings
- # nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings
- # nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings
- # torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
- # nn.init.constant_(self.clf[1].weight, 0) # outputs
- #
- # # blocks
- # for level_block in self.down_blocks + self.up_blocks:
- # for block in level_block:
- # if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
- # block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
- # elif isinstance(block, TimestepBlock):
- # for layer in block.modules():
- # if isinstance(layer, nn.Linear):
- # nn.init.constant_(layer.weight, 0)
- #
- # def _init_weights(self, m):
- # if isinstance(m, (nn.Conv2d, nn.Linear)):
- # torch.nn.init.xavier_uniform_(m.weight)
- # if m.bias is not None:
- # nn.init.constant_(m.bias, 0)
-
- def gen_r_embedding(self, r, max_positions=10000):
- r = r * max_positions
- half_dim = self.c_r // 2
- emb = math.log(max_positions) / (half_dim - 1)
- emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
- emb = r[:, None] * emb[None, :]
- emb = torch.cat([emb.sin(), emb.cos()], dim=1)
- if self.c_r % 2 == 1: # zero pad
- emb = nn.functional.pad(emb, (0, 1), mode='constant')
- return emb
-
- def gen_c_embeddings(self, clip):
- if len(clip.shape) == 2:
- clip = clip.unsqueeze(1)
- clip = self.clip_mapper(clip).view(clip.size(0), clip.size(1) * self.c_clip_seq, -1)
- clip = self.clip_norm(clip)
- return clip
-
- def _down_encode(self, x, r_embed, clip):
- level_outputs = []
- block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
- for down_block, downscaler, repmap in block_group:
- x = downscaler(x)
- for i in range(len(repmap) + 1):
- for block in down_block:
- if isinstance(block, ResBlock) or (
- hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
- ResBlock)):
- x = block(x)
- elif isinstance(block, AttnBlock) or (
- hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
- AttnBlock)):
- x = block(x, clip)
- elif isinstance(block, TimestepBlock) or (
- hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
- TimestepBlock)):
- x = block(x, r_embed)
- else:
- x = block(x)
- if i < len(repmap):
- x = repmap[i](x)
- level_outputs.insert(0, x)
- return level_outputs
-
- def _up_decode(self, level_outputs, r_embed, clip):
- x = level_outputs[0]
- block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
- for i, (up_block, upscaler, repmap) in enumerate(block_group):
- for j in range(len(repmap) + 1):
- for k, block in enumerate(up_block):
- if isinstance(block, ResBlock) or (
- hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
- ResBlock)):
- skip = level_outputs[i] if k == 0 and i > 0 else None
- if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
- x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear',
- align_corners=True)
- x = block(x, skip)
- elif isinstance(block, AttnBlock) or (
- hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
- AttnBlock)):
- x = block(x, clip)
- elif isinstance(block, TimestepBlock) or (
- hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
- TimestepBlock)):
- x = block(x, r_embed)
- else:
- x = block(x)
- if j < len(repmap):
- x = repmap[j](x)
- x = upscaler(x)
- return x
-
- def forward(self, x, r, effnet, clip, pixels=None, **kwargs):
- if pixels is None:
- pixels = x.new_zeros(x.size(0), 3, 8, 8)
-
- # Process the conditioning embeddings
- r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
- for c in self.t_conds:
- t_cond = kwargs.get(c, torch.zeros_like(r))
- r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1)
- clip = self.gen_c_embeddings(clip)
-
- # Model Blocks
- x = self.embedding(x)
- x = x + self.effnet_mapper(
- nn.functional.interpolate(effnet, size=x.shape[-2:], mode='bilinear', align_corners=True))
- x = x + nn.functional.interpolate(self.pixels_mapper(pixels), size=x.shape[-2:], mode='bilinear',
- align_corners=True)
- level_outputs = self._down_encode(x, r_embed, clip)
- x = self._up_decode(level_outputs, r_embed, clip)
- return self.clf(x)
-
- def update_weights_ema(self, src_model, beta=0.999):
- for self_params, src_params in zip(self.parameters(), src_model.parameters()):
- self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
- for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
- self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
diff --git a/MagicQuill/comfy/ldm/cascade/stage_c.py b/MagicQuill/comfy/ldm/cascade/stage_c.py
deleted file mode 100644
index c85da1f01c1d862de5906e73fc746fc92eb51304..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/cascade/stage_c.py
+++ /dev/null
@@ -1,273 +0,0 @@
-"""
- This file is part of ComfyUI.
- Copyright (C) 2024 Stability AI
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
-"""
-
-import torch
-from torch import nn
-import math
-from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock
-# from .controlnet import ControlNetDeliverer
-
-class UpDownBlock2d(nn.Module):
- def __init__(self, c_in, c_out, mode, enabled=True, dtype=None, device=None, operations=None):
- super().__init__()
- assert mode in ['up', 'down']
- interpolation = nn.Upsample(scale_factor=2 if mode == 'up' else 0.5, mode='bilinear',
- align_corners=True) if enabled else nn.Identity()
- mapping = operations.Conv2d(c_in, c_out, kernel_size=1, dtype=dtype, device=device)
- self.blocks = nn.ModuleList([interpolation, mapping] if mode == 'up' else [mapping, interpolation])
-
- def forward(self, x):
- for block in self.blocks:
- x = block(x)
- return x
-
-
-class StageC(nn.Module):
- def __init__(self, c_in=16, c_out=16, c_r=64, patch_size=1, c_cond=2048, c_hidden=[2048, 2048], nhead=[32, 32],
- blocks=[[8, 24], [24, 8]], block_repeat=[[1, 1], [1, 1]], level_config=['CTA', 'CTA'],
- c_clip_text=1280, c_clip_text_pooled=1280, c_clip_img=768, c_clip_seq=4, kernel_size=3,
- dropout=[0.0, 0.0], self_attn=True, t_conds=['sca', 'crp'], switch_level=[False], stable_cascade_stage=None,
- dtype=None, device=None, operations=None):
- super().__init__()
- self.dtype = dtype
- self.c_r = c_r
- self.t_conds = t_conds
- self.c_clip_seq = c_clip_seq
- if not isinstance(dropout, list):
- dropout = [dropout] * len(c_hidden)
- if not isinstance(self_attn, list):
- self_attn = [self_attn] * len(c_hidden)
-
- # CONDITIONING
- self.clip_txt_mapper = operations.Linear(c_clip_text, c_cond, dtype=dtype, device=device)
- self.clip_txt_pooled_mapper = operations.Linear(c_clip_text_pooled, c_cond * c_clip_seq, dtype=dtype, device=device)
- self.clip_img_mapper = operations.Linear(c_clip_img, c_cond * c_clip_seq, dtype=dtype, device=device)
- self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
-
- self.embedding = nn.Sequential(
- nn.PixelUnshuffle(patch_size),
- operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device),
- LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6)
- )
-
- def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
- if block_type == 'C':
- return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations)
- elif block_type == 'A':
- return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations)
- elif block_type == 'F':
- return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations)
- elif block_type == 'T':
- return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations)
- else:
- raise Exception(f'Block type {block_type} not supported')
-
- # BLOCKS
- # -- down blocks
- self.down_blocks = nn.ModuleList()
- self.down_downscalers = nn.ModuleList()
- self.down_repeat_mappers = nn.ModuleList()
- for i in range(len(c_hidden)):
- if i > 0:
- self.down_downscalers.append(nn.Sequential(
- LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
- UpDownBlock2d(c_hidden[i - 1], c_hidden[i], mode='down', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations)
- ))
- else:
- self.down_downscalers.append(nn.Identity())
- down_block = nn.ModuleList()
- for _ in range(blocks[0][i]):
- for block_type in level_config[i]:
- block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
- down_block.append(block)
- self.down_blocks.append(down_block)
- if block_repeat is not None:
- block_repeat_mappers = nn.ModuleList()
- for _ in range(block_repeat[0][i] - 1):
- block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
- self.down_repeat_mappers.append(block_repeat_mappers)
-
- # -- up blocks
- self.up_blocks = nn.ModuleList()
- self.up_upscalers = nn.ModuleList()
- self.up_repeat_mappers = nn.ModuleList()
- for i in reversed(range(len(c_hidden))):
- if i > 0:
- self.up_upscalers.append(nn.Sequential(
- LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6),
- UpDownBlock2d(c_hidden[i], c_hidden[i - 1], mode='up', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations)
- ))
- else:
- self.up_upscalers.append(nn.Identity())
- up_block = nn.ModuleList()
- for j in range(blocks[1][::-1][i]):
- for k, block_type in enumerate(level_config[i]):
- c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
- block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i],
- self_attn=self_attn[i])
- up_block.append(block)
- self.up_blocks.append(up_block)
- if block_repeat is not None:
- block_repeat_mappers = nn.ModuleList()
- for _ in range(block_repeat[1][::-1][i] - 1):
- block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
- self.up_repeat_mappers.append(block_repeat_mappers)
-
- # OUTPUT
- self.clf = nn.Sequential(
- LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
- operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device),
- nn.PixelShuffle(patch_size),
- )
-
- # --- WEIGHT INIT ---
- # self.apply(self._init_weights) # General init
- # nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) # conditionings
- # nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02) # conditionings
- # nn.init.normal_(self.clip_img_mapper.weight, std=0.02) # conditionings
- # torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
- # nn.init.constant_(self.clf[1].weight, 0) # outputs
- #
- # # blocks
- # for level_block in self.down_blocks + self.up_blocks:
- # for block in level_block:
- # if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
- # block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
- # elif isinstance(block, TimestepBlock):
- # for layer in block.modules():
- # if isinstance(layer, nn.Linear):
- # nn.init.constant_(layer.weight, 0)
- #
- # def _init_weights(self, m):
- # if isinstance(m, (nn.Conv2d, nn.Linear)):
- # torch.nn.init.xavier_uniform_(m.weight)
- # if m.bias is not None:
- # nn.init.constant_(m.bias, 0)
-
- def gen_r_embedding(self, r, max_positions=10000):
- r = r * max_positions
- half_dim = self.c_r // 2
- emb = math.log(max_positions) / (half_dim - 1)
- emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
- emb = r[:, None] * emb[None, :]
- emb = torch.cat([emb.sin(), emb.cos()], dim=1)
- if self.c_r % 2 == 1: # zero pad
- emb = nn.functional.pad(emb, (0, 1), mode='constant')
- return emb
-
- def gen_c_embeddings(self, clip_txt, clip_txt_pooled, clip_img):
- clip_txt = self.clip_txt_mapper(clip_txt)
- if len(clip_txt_pooled.shape) == 2:
- clip_txt_pooled = clip_txt_pooled.unsqueeze(1)
- if len(clip_img.shape) == 2:
- clip_img = clip_img.unsqueeze(1)
- clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.c_clip_seq, -1)
- clip_img = self.clip_img_mapper(clip_img).view(clip_img.size(0), clip_img.size(1) * self.c_clip_seq, -1)
- clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1)
- clip = self.clip_norm(clip)
- return clip
-
- def _down_encode(self, x, r_embed, clip, cnet=None):
- level_outputs = []
- block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
- for down_block, downscaler, repmap in block_group:
- x = downscaler(x)
- for i in range(len(repmap) + 1):
- for block in down_block:
- if isinstance(block, ResBlock) or (
- hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
- ResBlock)):
- if cnet is not None:
- next_cnet = cnet.pop()
- if next_cnet is not None:
- x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear',
- align_corners=True).to(x.dtype)
- x = block(x)
- elif isinstance(block, AttnBlock) or (
- hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
- AttnBlock)):
- x = block(x, clip)
- elif isinstance(block, TimestepBlock) or (
- hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
- TimestepBlock)):
- x = block(x, r_embed)
- else:
- x = block(x)
- if i < len(repmap):
- x = repmap[i](x)
- level_outputs.insert(0, x)
- return level_outputs
-
- def _up_decode(self, level_outputs, r_embed, clip, cnet=None):
- x = level_outputs[0]
- block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
- for i, (up_block, upscaler, repmap) in enumerate(block_group):
- for j in range(len(repmap) + 1):
- for k, block in enumerate(up_block):
- if isinstance(block, ResBlock) or (
- hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
- ResBlock)):
- skip = level_outputs[i] if k == 0 and i > 0 else None
- if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
- x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear',
- align_corners=True)
- if cnet is not None:
- next_cnet = cnet.pop()
- if next_cnet is not None:
- x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear',
- align_corners=True).to(x.dtype)
- x = block(x, skip)
- elif isinstance(block, AttnBlock) or (
- hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
- AttnBlock)):
- x = block(x, clip)
- elif isinstance(block, TimestepBlock) or (
- hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
- TimestepBlock)):
- x = block(x, r_embed)
- else:
- x = block(x)
- if j < len(repmap):
- x = repmap[j](x)
- x = upscaler(x)
- return x
-
- def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, **kwargs):
- # Process the conditioning embeddings
- r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
- for c in self.t_conds:
- t_cond = kwargs.get(c, torch.zeros_like(r))
- r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1)
- clip = self.gen_c_embeddings(clip_text, clip_text_pooled, clip_img)
-
- if control is not None:
- cnet = control.get("input")
- else:
- cnet = None
-
- # Model Blocks
- x = self.embedding(x)
- level_outputs = self._down_encode(x, r_embed, clip, cnet)
- x = self._up_decode(level_outputs, r_embed, clip, cnet)
- return self.clf(x)
-
- def update_weights_ema(self, src_model, beta=0.999):
- for self_params, src_params in zip(self.parameters(), src_model.parameters()):
- self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
- for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
- self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
diff --git a/MagicQuill/comfy/ldm/cascade/stage_c_coder.py b/MagicQuill/comfy/ldm/cascade/stage_c_coder.py
deleted file mode 100644
index 0cb7c49fc90c434553954772cbf522e1f4a88955..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/cascade/stage_c_coder.py
+++ /dev/null
@@ -1,95 +0,0 @@
-"""
- This file is part of ComfyUI.
- Copyright (C) 2024 Stability AI
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
-"""
-import torch
-import torchvision
-from torch import nn
-
-
-# EfficientNet
-class EfficientNetEncoder(nn.Module):
- def __init__(self, c_latent=16):
- super().__init__()
- self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
- self.mapper = nn.Sequential(
- nn.Conv2d(1280, c_latent, kernel_size=1, bias=False),
- nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1
- )
- self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406]))
- self.std = nn.Parameter(torch.tensor([0.229, 0.224, 0.225]))
-
- def forward(self, x):
- x = x * 0.5 + 0.5
- x = (x - self.mean.view([3,1,1])) / self.std.view([3,1,1])
- o = self.mapper(self.backbone(x))
- return o
-
-
-# Fast Decoder for Stage C latents. E.g. 16 x 24 x 24 -> 3 x 192 x 192
-class Previewer(nn.Module):
- def __init__(self, c_in=16, c_hidden=512, c_out=3):
- super().__init__()
- self.blocks = nn.Sequential(
- nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
- nn.GELU(),
- nn.BatchNorm2d(c_hidden),
-
- nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
- nn.GELU(),
- nn.BatchNorm2d(c_hidden),
-
- nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
- nn.GELU(),
- nn.BatchNorm2d(c_hidden // 2),
-
- nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
- nn.GELU(),
- nn.BatchNorm2d(c_hidden // 2),
-
- nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
- nn.GELU(),
- nn.BatchNorm2d(c_hidden // 4),
-
- nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
- nn.GELU(),
- nn.BatchNorm2d(c_hidden // 4),
-
- nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
- nn.GELU(),
- nn.BatchNorm2d(c_hidden // 4),
-
- nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
- nn.GELU(),
- nn.BatchNorm2d(c_hidden // 4),
-
- nn.Conv2d(c_hidden // 4, c_out, kernel_size=1),
- )
-
- def forward(self, x):
- return (self.blocks(x) - 0.5) * 2.0
-
-class StageC_coder(nn.Module):
- def __init__(self):
- super().__init__()
- self.previewer = Previewer()
- self.encoder = EfficientNetEncoder()
-
- def encode(self, x):
- return self.encoder(x)
-
- def decode(self, x):
- return self.previewer(x)
diff --git a/MagicQuill/comfy/ldm/models/__pycache__/autoencoder.cpython-310.pyc b/MagicQuill/comfy/ldm/models/__pycache__/autoencoder.cpython-310.pyc
deleted file mode 100644
index 81d431efe1ab89c23b0df5fa48cb159c51a23e6c..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/models/__pycache__/autoencoder.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/models/autoencoder.py b/MagicQuill/comfy/ldm/models/autoencoder.py
deleted file mode 100644
index f5f4de2883078dadee058aef437901069588321b..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/models/autoencoder.py
+++ /dev/null
@@ -1,226 +0,0 @@
-import torch
-from contextlib import contextmanager
-from typing import Any, Dict, List, Optional, Tuple, Union
-
-from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
-
-from comfy.ldm.util import instantiate_from_config
-from comfy.ldm.modules.ema import LitEma
-import comfy.ops
-
-class DiagonalGaussianRegularizer(torch.nn.Module):
- def __init__(self, sample: bool = True):
- super().__init__()
- self.sample = sample
-
- def get_trainable_parameters(self) -> Any:
- yield from ()
-
- def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
- log = dict()
- posterior = DiagonalGaussianDistribution(z)
- if self.sample:
- z = posterior.sample()
- else:
- z = posterior.mode()
- kl_loss = posterior.kl()
- kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
- log["kl_loss"] = kl_loss
- return z, log
-
-
-class AbstractAutoencoder(torch.nn.Module):
- """
- This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators,
- unCLIP models, etc. Hence, it is fairly general, and specific features
- (e.g. discriminator training, encoding, decoding) must be implemented in subclasses.
- """
-
- def __init__(
- self,
- ema_decay: Union[None, float] = None,
- monitor: Union[None, str] = None,
- input_key: str = "jpg",
- **kwargs,
- ):
- super().__init__()
-
- self.input_key = input_key
- self.use_ema = ema_decay is not None
- if monitor is not None:
- self.monitor = monitor
-
- if self.use_ema:
- self.model_ema = LitEma(self, decay=ema_decay)
- logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
-
- def get_input(self, batch) -> Any:
- raise NotImplementedError()
-
- def on_train_batch_end(self, *args, **kwargs):
- # for EMA computation
- if self.use_ema:
- self.model_ema(self)
-
- @contextmanager
- def ema_scope(self, context=None):
- if self.use_ema:
- self.model_ema.store(self.parameters())
- self.model_ema.copy_to(self)
- if context is not None:
- logpy.info(f"{context}: Switched to EMA weights")
- try:
- yield None
- finally:
- if self.use_ema:
- self.model_ema.restore(self.parameters())
- if context is not None:
- logpy.info(f"{context}: Restored training weights")
-
- def encode(self, *args, **kwargs) -> torch.Tensor:
- raise NotImplementedError("encode()-method of abstract base class called")
-
- def decode(self, *args, **kwargs) -> torch.Tensor:
- raise NotImplementedError("decode()-method of abstract base class called")
-
- def instantiate_optimizer_from_config(self, params, lr, cfg):
- logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config")
- return get_obj_from_str(cfg["target"])(
- params, lr=lr, **cfg.get("params", dict())
- )
-
- def configure_optimizers(self) -> Any:
- raise NotImplementedError()
-
-
-class AutoencodingEngine(AbstractAutoencoder):
- """
- Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL
- (we also restore them explicitly as special cases for legacy reasons).
- Regularizations such as KL or VQ are moved to the regularizer class.
- """
-
- def __init__(
- self,
- *args,
- encoder_config: Dict,
- decoder_config: Dict,
- regularizer_config: Dict,
- **kwargs,
- ):
- super().__init__(*args, **kwargs)
-
- self.encoder: torch.nn.Module = instantiate_from_config(encoder_config)
- self.decoder: torch.nn.Module = instantiate_from_config(decoder_config)
- self.regularization: AbstractRegularizer = instantiate_from_config(
- regularizer_config
- )
-
- def get_last_layer(self):
- return self.decoder.get_last_layer()
-
- def encode(
- self,
- x: torch.Tensor,
- return_reg_log: bool = False,
- unregularized: bool = False,
- ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
- z = self.encoder(x)
- if unregularized:
- return z, dict()
- z, reg_log = self.regularization(z)
- if return_reg_log:
- return z, reg_log
- return z
-
- def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor:
- x = self.decoder(z, **kwargs)
- return x
-
- def forward(
- self, x: torch.Tensor, **additional_decode_kwargs
- ) -> Tuple[torch.Tensor, torch.Tensor, dict]:
- z, reg_log = self.encode(x, return_reg_log=True)
- dec = self.decode(z, **additional_decode_kwargs)
- return z, dec, reg_log
-
-
-class AutoencodingEngineLegacy(AutoencodingEngine):
- def __init__(self, embed_dim: int, **kwargs):
- self.max_batch_size = kwargs.pop("max_batch_size", None)
- ddconfig = kwargs.pop("ddconfig")
- super().__init__(
- encoder_config={
- "target": "comfy.ldm.modules.diffusionmodules.model.Encoder",
- "params": ddconfig,
- },
- decoder_config={
- "target": "comfy.ldm.modules.diffusionmodules.model.Decoder",
- "params": ddconfig,
- },
- **kwargs,
- )
- self.quant_conv = comfy.ops.disable_weight_init.Conv2d(
- (1 + ddconfig["double_z"]) * ddconfig["z_channels"],
- (1 + ddconfig["double_z"]) * embed_dim,
- 1,
- )
- self.post_quant_conv = comfy.ops.disable_weight_init.Conv2d(embed_dim, ddconfig["z_channels"], 1)
- self.embed_dim = embed_dim
-
- def get_autoencoder_params(self) -> list:
- params = super().get_autoencoder_params()
- return params
-
- def encode(
- self, x: torch.Tensor, return_reg_log: bool = False
- ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
- if self.max_batch_size is None:
- z = self.encoder(x)
- z = self.quant_conv(z)
- else:
- N = x.shape[0]
- bs = self.max_batch_size
- n_batches = int(math.ceil(N / bs))
- z = list()
- for i_batch in range(n_batches):
- z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs])
- z_batch = self.quant_conv(z_batch)
- z.append(z_batch)
- z = torch.cat(z, 0)
-
- z, reg_log = self.regularization(z)
- if return_reg_log:
- return z, reg_log
- return z
-
- def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor:
- if self.max_batch_size is None:
- dec = self.post_quant_conv(z)
- dec = self.decoder(dec, **decoder_kwargs)
- else:
- N = z.shape[0]
- bs = self.max_batch_size
- n_batches = int(math.ceil(N / bs))
- dec = list()
- for i_batch in range(n_batches):
- dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs])
- dec_batch = self.decoder(dec_batch, **decoder_kwargs)
- dec.append(dec_batch)
- dec = torch.cat(dec, 0)
-
- return dec
-
-
-class AutoencoderKL(AutoencodingEngineLegacy):
- def __init__(self, **kwargs):
- if "lossconfig" in kwargs:
- kwargs["loss_config"] = kwargs.pop("lossconfig")
- super().__init__(
- regularizer_config={
- "target": (
- "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"
- )
- },
- **kwargs,
- )
diff --git a/MagicQuill/comfy/ldm/modules/__pycache__/attention.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/__pycache__/attention.cpython-310.pyc
deleted file mode 100644
index a44f34018795428c0803f163f12305f415c521d4..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/modules/__pycache__/attention.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/modules/__pycache__/ema.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/__pycache__/ema.cpython-310.pyc
deleted file mode 100644
index 9493eaf691ef0d4ad636b42cdeecb41fdc9019cf..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/modules/__pycache__/ema.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/modules/__pycache__/sub_quadratic_attention.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/__pycache__/sub_quadratic_attention.cpython-310.pyc
deleted file mode 100644
index 916aeaa3d201ae74b5e06ece945c57697af20981..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/modules/__pycache__/sub_quadratic_attention.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/modules/attention.py b/MagicQuill/comfy/ldm/modules/attention.py
deleted file mode 100644
index 65a8bcf42b81c318e87f4ed19b4f9a43d8f4d610..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/modules/attention.py
+++ /dev/null
@@ -1,865 +0,0 @@
-import math
-import torch
-import torch.nn.functional as F
-from torch import nn, einsum
-from einops import rearrange, repeat
-from typing import Optional
-import logging
-
-from .diffusionmodules.util import AlphaBlender, timestep_embedding
-from .sub_quadratic_attention import efficient_dot_product_attention
-
-from comfy import model_management
-
-if model_management.xformers_enabled():
- import xformers
- import xformers.ops
-
-from comfy.cli_args import args
-import comfy.ops
-ops = comfy.ops.disable_weight_init
-
-FORCE_UPCAST_ATTENTION_DTYPE = model_management.force_upcast_attention_dtype()
-
-def get_attn_precision(attn_precision):
- if args.dont_upcast_attention:
- return None
- if FORCE_UPCAST_ATTENTION_DTYPE is not None:
- return FORCE_UPCAST_ATTENTION_DTYPE
- return attn_precision
-
-def exists(val):
- return val is not None
-
-
-def uniq(arr):
- return{el: True for el in arr}.keys()
-
-
-def default(val, d):
- if exists(val):
- return val
- return d
-
-
-def max_neg_value(t):
- return -torch.finfo(t.dtype).max
-
-
-def init_(tensor):
- dim = tensor.shape[-1]
- std = 1 / math.sqrt(dim)
- tensor.uniform_(-std, std)
- return tensor
-
-
-# feedforward
-class GEGLU(nn.Module):
- def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops):
- super().__init__()
- self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
-
- def forward(self, x):
- x, gate = self.proj(x).chunk(2, dim=-1)
- return x * F.gelu(gate)
-
-
-class FeedForward(nn.Module):
- def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops):
- super().__init__()
- inner_dim = int(dim * mult)
- dim_out = default(dim_out, dim)
- project_in = nn.Sequential(
- operations.Linear(dim, inner_dim, dtype=dtype, device=device),
- nn.GELU()
- ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
-
- self.net = nn.Sequential(
- project_in,
- nn.Dropout(dropout),
- operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
- )
-
- def forward(self, x):
- return self.net(x)
-
-def Normalize(in_channels, dtype=None, device=None):
- return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
-
-def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
- attn_precision = get_attn_precision(attn_precision)
-
- if skip_reshape:
- b, _, _, dim_head = q.shape
- else:
- b, _, dim_head = q.shape
- dim_head //= heads
-
- scale = dim_head ** -0.5
-
- h = heads
- if skip_reshape:
- q, k, v = map(
- lambda t: t.reshape(b * heads, -1, dim_head),
- (q, k, v),
- )
- else:
- q, k, v = map(
- lambda t: t.unsqueeze(3)
- .reshape(b, -1, heads, dim_head)
- .permute(0, 2, 1, 3)
- .reshape(b * heads, -1, dim_head)
- .contiguous(),
- (q, k, v),
- )
-
- # force cast to fp32 to avoid overflowing
- if attn_precision == torch.float32:
- sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
- else:
- sim = einsum('b i d, b j d -> b i j', q, k) * scale
-
- del q, k
-
- if exists(mask):
- if mask.dtype == torch.bool:
- mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention
- max_neg_value = -torch.finfo(sim.dtype).max
- mask = repeat(mask, 'b j -> (b h) () j', h=h)
- sim.masked_fill_(~mask, max_neg_value)
- else:
- if len(mask.shape) == 2:
- bs = 1
- else:
- bs = mask.shape[0]
- mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
- sim.add_(mask)
-
- # attention, what we cannot get enough of
- sim = sim.softmax(dim=-1)
-
- out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
- out = (
- out.unsqueeze(0)
- .reshape(b, heads, -1, dim_head)
- .permute(0, 2, 1, 3)
- .reshape(b, -1, heads * dim_head)
- )
- return out
-
-
-def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False):
- attn_precision = get_attn_precision(attn_precision)
-
- if skip_reshape:
- b, _, _, dim_head = query.shape
- else:
- b, _, dim_head = query.shape
- dim_head //= heads
-
- scale = dim_head ** -0.5
-
- if skip_reshape:
- query = query.reshape(b * heads, -1, dim_head)
- value = value.reshape(b * heads, -1, dim_head)
- key = key.reshape(b * heads, -1, dim_head).movedim(1, 2)
- else:
- query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
- value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
- key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
-
-
- dtype = query.dtype
- upcast_attention = attn_precision == torch.float32 and query.dtype != torch.float32
- if upcast_attention:
- bytes_per_token = torch.finfo(torch.float32).bits//8
- else:
- bytes_per_token = torch.finfo(query.dtype).bits//8
- batch_x_heads, q_tokens, _ = query.shape
- _, _, k_tokens = key.shape
- qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
-
- mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
-
- kv_chunk_size_min = None
- kv_chunk_size = None
- query_chunk_size = None
-
- for x in [4096, 2048, 1024, 512, 256]:
- count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
- if count >= k_tokens:
- kv_chunk_size = k_tokens
- query_chunk_size = x
- break
-
- if query_chunk_size is None:
- query_chunk_size = 512
-
- if mask is not None:
- if len(mask.shape) == 2:
- bs = 1
- else:
- bs = mask.shape[0]
- mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
-
- hidden_states = efficient_dot_product_attention(
- query,
- key,
- value,
- query_chunk_size=query_chunk_size,
- kv_chunk_size=kv_chunk_size,
- kv_chunk_size_min=kv_chunk_size_min,
- use_checkpoint=False,
- upcast_attention=upcast_attention,
- mask=mask,
- )
-
- hidden_states = hidden_states.to(dtype)
-
- hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
- return hidden_states
-
-def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
- attn_precision = get_attn_precision(attn_precision)
-
- if skip_reshape:
- b, _, _, dim_head = q.shape
- else:
- b, _, dim_head = q.shape
- dim_head //= heads
-
- scale = dim_head ** -0.5
-
- h = heads
- if skip_reshape:
- q, k, v = map(
- lambda t: t.reshape(b * heads, -1, dim_head),
- (q, k, v),
- )
- else:
- q, k, v = map(
- lambda t: t.unsqueeze(3)
- .reshape(b, -1, heads, dim_head)
- .permute(0, 2, 1, 3)
- .reshape(b * heads, -1, dim_head)
- .contiguous(),
- (q, k, v),
- )
-
- r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
-
- mem_free_total = model_management.get_free_memory(q.device)
-
- if attn_precision == torch.float32:
- element_size = 4
- upcast = True
- else:
- element_size = q.element_size()
- upcast = False
-
- gb = 1024 ** 3
- tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
- modifier = 3
- mem_required = tensor_size * modifier
- steps = 1
-
-
- if mem_required > mem_free_total:
- steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
- # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
- # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
-
- if steps > 64:
- max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
- raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
- f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
-
- if mask is not None:
- if len(mask.shape) == 2:
- bs = 1
- else:
- bs = mask.shape[0]
- mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
-
- # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
- first_op_done = False
- cleared_cache = False
- while True:
- try:
- slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
- for i in range(0, q.shape[1], slice_size):
- end = i + slice_size
- if upcast:
- with torch.autocast(enabled=False, device_type = 'cuda'):
- s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
- else:
- s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
-
- if mask is not None:
- if len(mask.shape) == 2:
- s1 += mask[i:end]
- else:
- s1 += mask[:, i:end]
-
- s2 = s1.softmax(dim=-1).to(v.dtype)
- del s1
- first_op_done = True
-
- r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
- del s2
- break
- except model_management.OOM_EXCEPTION as e:
- if first_op_done == False:
- model_management.soft_empty_cache(True)
- if cleared_cache == False:
- cleared_cache = True
- logging.warning("out of memory error, emptying cache and trying again")
- continue
- steps *= 2
- if steps > 64:
- raise e
- logging.warning("out of memory error, increasing steps and trying again {}".format(steps))
- else:
- raise e
-
- del q, k, v
-
- r1 = (
- r1.unsqueeze(0)
- .reshape(b, heads, -1, dim_head)
- .permute(0, 2, 1, 3)
- .reshape(b, -1, heads * dim_head)
- )
- return r1
-
-BROKEN_XFORMERS = False
-try:
- x_vers = xformers.__version__
- # XFormers bug confirmed on all versions from 0.0.21 to 0.0.26 (q with bs bigger than 65535 gives CUDA error)
- BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20")
-except:
- pass
-
-def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
- if skip_reshape:
- b, _, _, dim_head = q.shape
- else:
- b, _, dim_head = q.shape
- dim_head //= heads
-
- disabled_xformers = False
-
- if BROKEN_XFORMERS:
- if b * heads > 65535:
- disabled_xformers = True
-
- if not disabled_xformers:
- if torch.jit.is_tracing() or torch.jit.is_scripting():
- disabled_xformers = True
-
- if disabled_xformers:
- return attention_pytorch(q, k, v, heads, mask)
-
- if skip_reshape:
- q, k, v = map(
- lambda t: t.reshape(b * heads, -1, dim_head),
- (q, k, v),
- )
- else:
- q, k, v = map(
- lambda t: t.reshape(b, -1, heads, dim_head),
- (q, k, v),
- )
-
- if mask is not None:
- pad = 8 - q.shape[1] % 8
- mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
- mask_out[:, :, :mask.shape[-1]] = mask
- mask = mask_out[:, :, :mask.shape[-1]]
-
- out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
-
- if skip_reshape:
- out = (
- out.unsqueeze(0)
- .reshape(b, heads, -1, dim_head)
- .permute(0, 2, 1, 3)
- .reshape(b, -1, heads * dim_head)
- )
- else:
- out = (
- out.reshape(b, -1, heads * dim_head)
- )
-
- return out
-
-def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
- if skip_reshape:
- b, _, _, dim_head = q.shape
- else:
- b, _, dim_head = q.shape
- dim_head //= heads
- q, k, v = map(
- lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
- (q, k, v),
- )
-
- out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
- out = (
- out.transpose(1, 2).reshape(b, -1, heads * dim_head)
- )
- return out
-
-
-optimized_attention = attention_basic
-
-if model_management.xformers_enabled():
- logging.info("Using xformers cross attention")
- optimized_attention = attention_xformers
-elif model_management.pytorch_attention_enabled():
- logging.info("Using pytorch cross attention")
- optimized_attention = attention_pytorch
-else:
- if args.use_split_cross_attention:
- logging.info("Using split optimization for cross attention")
- optimized_attention = attention_split
- else:
- logging.info("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
- optimized_attention = attention_sub_quad
-
-optimized_attention_masked = optimized_attention
-
-def optimized_attention_for_device(device, mask=False, small_input=False):
- if small_input:
- if model_management.pytorch_attention_enabled():
- return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases
- else:
- return attention_basic
-
- if device == torch.device("cpu"):
- return attention_sub_quad
-
- if mask:
- return optimized_attention_masked
-
- return optimized_attention
-
-
-class CrossAttention(nn.Module):
- def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=ops):
- super().__init__()
- inner_dim = dim_head * heads
- context_dim = default(context_dim, query_dim)
- self.attn_precision = attn_precision
-
- self.heads = heads
- self.dim_head = dim_head
-
- self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
- self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
- self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
-
- self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
-
- def forward(self, x, context=None, value=None, mask=None):
- q = self.to_q(x)
- context = default(context, x)
- k = self.to_k(context)
- if value is not None:
- v = self.to_v(value)
- del value
- else:
- v = self.to_v(context)
-
- if mask is None:
- out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
- else:
- out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
- return self.to_out(out)
-
-
-class BasicTransformerBlock(nn.Module):
- def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None,
- disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, attn_precision=None, dtype=None, device=None, operations=ops):
- super().__init__()
-
- self.ff_in = ff_in or inner_dim is not None
- if inner_dim is None:
- inner_dim = dim
-
- self.is_res = inner_dim == dim
- self.attn_precision = attn_precision
-
- if self.ff_in:
- self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device)
- self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
-
- self.disable_self_attn = disable_self_attn
- self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
- context_dim=context_dim if self.disable_self_attn else None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn
- self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
-
- if disable_temporal_crossattention:
- if switch_temporal_ca_to_sa:
- raise ValueError
- else:
- self.attn2 = None
- else:
- context_dim_attn2 = None
- if not switch_temporal_ca_to_sa:
- context_dim_attn2 = context_dim
-
- self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2,
- heads=n_heads, dim_head=d_head, dropout=dropout, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) # is self-attn if context is none
- self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
-
- self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
- self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
- self.n_heads = n_heads
- self.d_head = d_head
- self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
-
- def forward(self, x, context=None, transformer_options={}):
- extra_options = {}
- block = transformer_options.get("block", None)
- block_index = transformer_options.get("block_index", 0)
- transformer_patches = {}
- transformer_patches_replace = {}
-
- for k in transformer_options:
- if k == "patches":
- transformer_patches = transformer_options[k]
- elif k == "patches_replace":
- transformer_patches_replace = transformer_options[k]
- else:
- extra_options[k] = transformer_options[k]
-
- extra_options["n_heads"] = self.n_heads
- extra_options["dim_head"] = self.d_head
- extra_options["attn_precision"] = self.attn_precision
-
- if self.ff_in:
- x_skip = x
- x = self.ff_in(self.norm_in(x))
- if self.is_res:
- x += x_skip
-
- n = self.norm1(x)
- if self.disable_self_attn:
- context_attn1 = context
- else:
- context_attn1 = None
- value_attn1 = None
-
- if "attn1_patch" in transformer_patches:
- patch = transformer_patches["attn1_patch"]
- if context_attn1 is None:
- context_attn1 = n
- value_attn1 = context_attn1
- for p in patch:
- n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
-
- if block is not None:
- transformer_block = (block[0], block[1], block_index)
- else:
- transformer_block = None
- attn1_replace_patch = transformer_patches_replace.get("attn1", {})
- block_attn1 = transformer_block
- if block_attn1 not in attn1_replace_patch:
- block_attn1 = block
-
- if block_attn1 in attn1_replace_patch:
- if context_attn1 is None:
- context_attn1 = n
- value_attn1 = n
- n = self.attn1.to_q(n)
- context_attn1 = self.attn1.to_k(context_attn1)
- value_attn1 = self.attn1.to_v(value_attn1)
- n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
- n = self.attn1.to_out(n)
- else:
- n = self.attn1(n, context=context_attn1, value=value_attn1)
-
- if "attn1_output_patch" in transformer_patches:
- patch = transformer_patches["attn1_output_patch"]
- for p in patch:
- n = p(n, extra_options)
-
- x += n
- if "middle_patch" in transformer_patches:
- patch = transformer_patches["middle_patch"]
- for p in patch:
- x = p(x, extra_options)
-
- if self.attn2 is not None:
- n = self.norm2(x)
- if self.switch_temporal_ca_to_sa:
- context_attn2 = n
- else:
- context_attn2 = context
- value_attn2 = None
- if "attn2_patch" in transformer_patches:
- patch = transformer_patches["attn2_patch"]
- value_attn2 = context_attn2
- for p in patch:
- n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
-
- attn2_replace_patch = transformer_patches_replace.get("attn2", {})
- block_attn2 = transformer_block
- if block_attn2 not in attn2_replace_patch:
- block_attn2 = block
-
- if block_attn2 in attn2_replace_patch:
- if value_attn2 is None:
- value_attn2 = context_attn2
- n = self.attn2.to_q(n)
- context_attn2 = self.attn2.to_k(context_attn2)
- value_attn2 = self.attn2.to_v(value_attn2)
- n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
- n = self.attn2.to_out(n)
- else:
- n = self.attn2(n, context=context_attn2, value=value_attn2)
-
- if "attn2_output_patch" in transformer_patches:
- patch = transformer_patches["attn2_output_patch"]
- for p in patch:
- n = p(n, extra_options)
-
- x += n
- if self.is_res:
- x_skip = x
- x = self.ff(self.norm3(x))
- if self.is_res:
- x += x_skip
-
- return x
-
-
-class SpatialTransformer(nn.Module):
- """
- Transformer block for image-like data.
- First, project the input (aka embedding)
- and reshape to b, t, d.
- Then apply standard transformer action.
- Finally, reshape to image
- NEW: use_linear for more efficiency instead of the 1x1 convs
- """
- def __init__(self, in_channels, n_heads, d_head,
- depth=1, dropout=0., context_dim=None,
- disable_self_attn=False, use_linear=False,
- use_checkpoint=True, attn_precision=None, dtype=None, device=None, operations=ops):
- super().__init__()
- if exists(context_dim) and not isinstance(context_dim, list):
- context_dim = [context_dim] * depth
- self.in_channels = in_channels
- inner_dim = n_heads * d_head
- self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
- if not use_linear:
- self.proj_in = operations.Conv2d(in_channels,
- inner_dim,
- kernel_size=1,
- stride=1,
- padding=0, dtype=dtype, device=device)
- else:
- self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
-
- self.transformer_blocks = nn.ModuleList(
- [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
- disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)
- for d in range(depth)]
- )
- if not use_linear:
- self.proj_out = operations.Conv2d(inner_dim,in_channels,
- kernel_size=1,
- stride=1,
- padding=0, dtype=dtype, device=device)
- else:
- self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
- self.use_linear = use_linear
-
- def forward(self, x, context=None, transformer_options={}):
- # note: if no context is given, cross-attention defaults to self-attention
- if not isinstance(context, list):
- context = [context] * len(self.transformer_blocks)
- b, c, h, w = x.shape
- x_in = x
- x = self.norm(x)
- if not self.use_linear:
- x = self.proj_in(x)
- x = x.movedim(1, 3).flatten(1, 2).contiguous()
- if self.use_linear:
- x = self.proj_in(x)
- for i, block in enumerate(self.transformer_blocks):
- transformer_options["block_index"] = i
- x = block(x, context=context[i], transformer_options=transformer_options)
- if self.use_linear:
- x = self.proj_out(x)
- x = x.reshape(x.shape[0], h, w, x.shape[-1]).movedim(3, 1).contiguous()
- if not self.use_linear:
- x = self.proj_out(x)
- return x + x_in
-
-
-class SpatialVideoTransformer(SpatialTransformer):
- def __init__(
- self,
- in_channels,
- n_heads,
- d_head,
- depth=1,
- dropout=0.0,
- use_linear=False,
- context_dim=None,
- use_spatial_context=False,
- timesteps=None,
- merge_strategy: str = "fixed",
- merge_factor: float = 0.5,
- time_context_dim=None,
- ff_in=False,
- checkpoint=False,
- time_depth=1,
- disable_self_attn=False,
- disable_temporal_crossattention=False,
- max_time_embed_period: int = 10000,
- attn_precision=None,
- dtype=None, device=None, operations=ops
- ):
- super().__init__(
- in_channels,
- n_heads,
- d_head,
- depth=depth,
- dropout=dropout,
- use_checkpoint=checkpoint,
- context_dim=context_dim,
- use_linear=use_linear,
- disable_self_attn=disable_self_attn,
- attn_precision=attn_precision,
- dtype=dtype, device=device, operations=operations
- )
- self.time_depth = time_depth
- self.depth = depth
- self.max_time_embed_period = max_time_embed_period
-
- time_mix_d_head = d_head
- n_time_mix_heads = n_heads
-
- time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)
-
- inner_dim = n_heads * d_head
- if use_spatial_context:
- time_context_dim = context_dim
-
- self.time_stack = nn.ModuleList(
- [
- BasicTransformerBlock(
- inner_dim,
- n_time_mix_heads,
- time_mix_d_head,
- dropout=dropout,
- context_dim=time_context_dim,
- # timesteps=timesteps,
- checkpoint=checkpoint,
- ff_in=ff_in,
- inner_dim=time_mix_inner_dim,
- disable_self_attn=disable_self_attn,
- disable_temporal_crossattention=disable_temporal_crossattention,
- attn_precision=attn_precision,
- dtype=dtype, device=device, operations=operations
- )
- for _ in range(self.depth)
- ]
- )
-
- assert len(self.time_stack) == len(self.transformer_blocks)
-
- self.use_spatial_context = use_spatial_context
- self.in_channels = in_channels
-
- time_embed_dim = self.in_channels * 4
- self.time_pos_embed = nn.Sequential(
- operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device),
- nn.SiLU(),
- operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device),
- )
-
- self.time_mixer = AlphaBlender(
- alpha=merge_factor, merge_strategy=merge_strategy
- )
-
- def forward(
- self,
- x: torch.Tensor,
- context: Optional[torch.Tensor] = None,
- time_context: Optional[torch.Tensor] = None,
- timesteps: Optional[int] = None,
- image_only_indicator: Optional[torch.Tensor] = None,
- transformer_options={}
- ) -> torch.Tensor:
- _, _, h, w = x.shape
- x_in = x
- spatial_context = None
- if exists(context):
- spatial_context = context
-
- if self.use_spatial_context:
- assert (
- context.ndim == 3
- ), f"n dims of spatial context should be 3 but are {context.ndim}"
-
- if time_context is None:
- time_context = context
- time_context_first_timestep = time_context[::timesteps]
- time_context = repeat(
- time_context_first_timestep, "b ... -> (b n) ...", n=h * w
- )
- elif time_context is not None and not self.use_spatial_context:
- time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
- if time_context.ndim == 2:
- time_context = rearrange(time_context, "b c -> b 1 c")
-
- x = self.norm(x)
- if not self.use_linear:
- x = self.proj_in(x)
- x = rearrange(x, "b c h w -> b (h w) c")
- if self.use_linear:
- x = self.proj_in(x)
-
- num_frames = torch.arange(timesteps, device=x.device)
- num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
- num_frames = rearrange(num_frames, "b t -> (b t)")
- t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype)
- emb = self.time_pos_embed(t_emb)
- emb = emb[:, None, :]
-
- for it_, (block, mix_block) in enumerate(
- zip(self.transformer_blocks, self.time_stack)
- ):
- transformer_options["block_index"] = it_
- x = block(
- x,
- context=spatial_context,
- transformer_options=transformer_options,
- )
-
- x_mix = x
- x_mix = x_mix + emb
-
- B, S, C = x_mix.shape
- x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
- x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
- x_mix = rearrange(
- x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
- )
-
- x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator)
-
- if self.use_linear:
- x = self.proj_out(x)
- x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
- if not self.use_linear:
- x = self.proj_out(x)
- out = x + x_in
- return out
-
-
diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__init__.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index e7c31affcb019acd38bbc538a44747fad8231bc8..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/mmdit.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/mmdit.cpython-310.pyc
deleted file mode 100644
index f3c8582fa5c185ebccd289c3687b04917e7111ff..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/mmdit.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc
deleted file mode 100644
index 6f91913a653281d8642a907da39f9681fcde0c51..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc
deleted file mode 100644
index 5162ad8678d12de4dc426b24543352bf01285156..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc
deleted file mode 100644
index 5e8398c7590e2c08b248b2693d27a87dbb04a647..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc
deleted file mode 100644
index bbaaa651179daa5ae5f0908873ddeb1587b88572..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/mmdit.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/mmdit.py
deleted file mode 100644
index 20d3a321a02ae36943022ba0b831c45d49f6b15d..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/modules/diffusionmodules/mmdit.py
+++ /dev/null
@@ -1,962 +0,0 @@
-import logging
-import math
-from typing import Dict, Optional
-
-import numpy as np
-import torch
-import torch.nn as nn
-from .. import attention
-from einops import rearrange, repeat
-
-def default(x, y):
- if x is not None:
- return x
- return y
-
-class Mlp(nn.Module):
- """ MLP as used in Vision Transformer, MLP-Mixer and related networks
- """
- def __init__(
- self,
- in_features,
- hidden_features=None,
- out_features=None,
- act_layer=nn.GELU,
- norm_layer=None,
- bias=True,
- drop=0.,
- use_conv=False,
- dtype=None,
- device=None,
- operations=None,
- ):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- drop_probs = drop
- linear_layer = partial(operations.Conv2d, kernel_size=1) if use_conv else operations.Linear
-
- self.fc1 = linear_layer(in_features, hidden_features, bias=bias, dtype=dtype, device=device)
- self.act = act_layer()
- self.drop1 = nn.Dropout(drop_probs)
- self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
- self.fc2 = linear_layer(hidden_features, out_features, bias=bias, dtype=dtype, device=device)
- self.drop2 = nn.Dropout(drop_probs)
-
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop1(x)
- x = self.norm(x)
- x = self.fc2(x)
- x = self.drop2(x)
- return x
-
-class PatchEmbed(nn.Module):
- """ 2D Image to Patch Embedding
- """
- dynamic_img_pad: torch.jit.Final[bool]
-
- def __init__(
- self,
- img_size: Optional[int] = 224,
- patch_size: int = 16,
- in_chans: int = 3,
- embed_dim: int = 768,
- norm_layer = None,
- flatten: bool = True,
- bias: bool = True,
- strict_img_size: bool = True,
- dynamic_img_pad: bool = True,
- dtype=None,
- device=None,
- operations=None,
- ):
- super().__init__()
- self.patch_size = (patch_size, patch_size)
- if img_size is not None:
- self.img_size = (img_size, img_size)
- self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)])
- self.num_patches = self.grid_size[0] * self.grid_size[1]
- else:
- self.img_size = None
- self.grid_size = None
- self.num_patches = None
-
- # flatten spatial dim and transpose to channels last, kept for bwd compat
- self.flatten = flatten
- self.strict_img_size = strict_img_size
- self.dynamic_img_pad = dynamic_img_pad
-
- self.proj = operations.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias, dtype=dtype, device=device)
- self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
-
- def forward(self, x):
- B, C, H, W = x.shape
- # if self.img_size is not None:
- # if self.strict_img_size:
- # _assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).")
- # _assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).")
- # elif not self.dynamic_img_pad:
- # _assert(
- # H % self.patch_size[0] == 0,
- # f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})."
- # )
- # _assert(
- # W % self.patch_size[1] == 0,
- # f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})."
- # )
- if self.dynamic_img_pad:
- pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
- pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
- x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode='reflect')
- x = self.proj(x)
- if self.flatten:
- x = x.flatten(2).transpose(1, 2) # NCHW -> NLC
- x = self.norm(x)
- return x
-
-def modulate(x, shift, scale):
- if shift is None:
- shift = torch.zeros_like(scale)
- return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
-
-
-#################################################################################
-# Sine/Cosine Positional Embedding Functions #
-#################################################################################
-
-
-def get_2d_sincos_pos_embed(
- embed_dim,
- grid_size,
- cls_token=False,
- extra_tokens=0,
- scaling_factor=None,
- offset=None,
-):
- """
- grid_size: int of the grid height and width
- return:
- pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
- """
- grid_h = np.arange(grid_size, dtype=np.float32)
- grid_w = np.arange(grid_size, dtype=np.float32)
- grid = np.meshgrid(grid_w, grid_h) # here w goes first
- grid = np.stack(grid, axis=0)
- if scaling_factor is not None:
- grid = grid / scaling_factor
- if offset is not None:
- grid = grid - offset
-
- grid = grid.reshape([2, 1, grid_size, grid_size])
- pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
- if cls_token and extra_tokens > 0:
- pos_embed = np.concatenate(
- [np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0
- )
- return pos_embed
-
-
-def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
- assert embed_dim % 2 == 0
-
- # use half of dimensions to encode grid_h
- emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
- emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
-
- emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
- return emb
-
-
-def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
- """
- embed_dim: output dimension for each position
- pos: a list of positions to be encoded: size (M,)
- out: (M, D)
- """
- assert embed_dim % 2 == 0
- omega = np.arange(embed_dim // 2, dtype=np.float64)
- omega /= embed_dim / 2.0
- omega = 1.0 / 10000**omega # (D/2,)
-
- pos = pos.reshape(-1) # (M,)
- out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
-
- emb_sin = np.sin(out) # (M, D/2)
- emb_cos = np.cos(out) # (M, D/2)
-
- emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
- return emb
-
-def get_1d_sincos_pos_embed_from_grid_torch(embed_dim, pos, device=None, dtype=torch.float32):
- omega = torch.arange(embed_dim // 2, device=device, dtype=dtype)
- omega /= embed_dim / 2.0
- omega = 1.0 / 10000**omega # (D/2,)
- pos = pos.reshape(-1) # (M,)
- out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
- emb_sin = torch.sin(out) # (M, D/2)
- emb_cos = torch.cos(out) # (M, D/2)
- emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
- return emb
-
-def get_2d_sincos_pos_embed_torch(embed_dim, w, h, val_center=7.5, val_magnitude=7.5, device=None, dtype=torch.float32):
- small = min(h, w)
- val_h = (h / small) * val_magnitude
- val_w = (w / small) * val_magnitude
- grid_h, grid_w = torch.meshgrid(torch.linspace(-val_h + val_center, val_h + val_center, h, device=device, dtype=dtype), torch.linspace(-val_w + val_center, val_w + val_center, w, device=device, dtype=dtype), indexing='ij')
- emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype)
- emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype)
- emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D)
- return emb
-
-
-#################################################################################
-# Embedding Layers for Timesteps and Class Labels #
-#################################################################################
-
-
-class TimestepEmbedder(nn.Module):
- """
- Embeds scalar timesteps into vector representations.
- """
-
- def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
- super().__init__()
- self.mlp = nn.Sequential(
- operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device),
- nn.SiLU(),
- operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
- )
- self.frequency_embedding_size = frequency_embedding_size
-
- @staticmethod
- def timestep_embedding(t, dim, max_period=10000):
- """
- Create sinusoidal timestep embeddings.
- :param t: a 1-D Tensor of N indices, one per batch element.
- These may be fractional.
- :param dim: the dimension of the output.
- :param max_period: controls the minimum frequency of the embeddings.
- :return: an (N, D) Tensor of positional embeddings.
- """
- half = dim // 2
- freqs = torch.exp(
- -math.log(max_period)
- * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
- / half
- )
- args = t[:, None].float() * freqs[None]
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
- if dim % 2:
- embedding = torch.cat(
- [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
- )
- if torch.is_floating_point(t):
- embedding = embedding.to(dtype=t.dtype)
- return embedding
-
- def forward(self, t, dtype, **kwargs):
- t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
- t_emb = self.mlp(t_freq)
- return t_emb
-
-
-class VectorEmbedder(nn.Module):
- """
- Embeds a flat vector of dimension input_dim
- """
-
- def __init__(self, input_dim: int, hidden_size: int, dtype=None, device=None, operations=None):
- super().__init__()
- self.mlp = nn.Sequential(
- operations.Linear(input_dim, hidden_size, bias=True, dtype=dtype, device=device),
- nn.SiLU(),
- operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
- )
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- emb = self.mlp(x)
- return emb
-
-
-#################################################################################
-# Core DiT Model #
-#################################################################################
-
-
-def split_qkv(qkv, head_dim):
- qkv = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, -1, head_dim).movedim(2, 0)
- return qkv[0], qkv[1], qkv[2]
-
-def optimized_attention(qkv, num_heads):
- return attention.optimized_attention(qkv[0], qkv[1], qkv[2], num_heads)
-
-class SelfAttention(nn.Module):
- ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug")
-
- def __init__(
- self,
- dim: int,
- num_heads: int = 8,
- qkv_bias: bool = False,
- qk_scale: Optional[float] = None,
- proj_drop: float = 0.0,
- attn_mode: str = "xformers",
- pre_only: bool = False,
- qk_norm: Optional[str] = None,
- rmsnorm: bool = False,
- dtype=None,
- device=None,
- operations=None,
- ):
- super().__init__()
- self.num_heads = num_heads
- self.head_dim = dim // num_heads
-
- self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
- if not pre_only:
- self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
- self.proj_drop = nn.Dropout(proj_drop)
- assert attn_mode in self.ATTENTION_MODES
- self.attn_mode = attn_mode
- self.pre_only = pre_only
-
- if qk_norm == "rms":
- self.ln_q = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device)
- self.ln_k = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device)
- elif qk_norm == "ln":
- self.ln_q = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device)
- self.ln_k = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device)
- elif qk_norm is None:
- self.ln_q = nn.Identity()
- self.ln_k = nn.Identity()
- else:
- raise ValueError(qk_norm)
-
- def pre_attention(self, x: torch.Tensor) -> torch.Tensor:
- B, L, C = x.shape
- qkv = self.qkv(x)
- q, k, v = split_qkv(qkv, self.head_dim)
- q = self.ln_q(q).reshape(q.shape[0], q.shape[1], -1)
- k = self.ln_k(k).reshape(q.shape[0], q.shape[1], -1)
- return (q, k, v)
-
- def post_attention(self, x: torch.Tensor) -> torch.Tensor:
- assert not self.pre_only
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- qkv = self.pre_attention(x)
- x = optimized_attention(
- qkv, num_heads=self.num_heads
- )
- x = self.post_attention(x)
- return x
-
-
-class RMSNorm(torch.nn.Module):
- def __init__(
- self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6, device=None, dtype=None
- ):
- """
- Initialize the RMSNorm normalization layer.
- Args:
- dim (int): The dimension of the input tensor.
- eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
- Attributes:
- eps (float): A small value added to the denominator for numerical stability.
- weight (nn.Parameter): Learnable scaling parameter.
- """
- super().__init__()
- self.eps = eps
- self.learnable_scale = elementwise_affine
- if self.learnable_scale:
- self.weight = nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
- else:
- self.register_parameter("weight", None)
-
- def _norm(self, x):
- """
- Apply the RMSNorm normalization to the input tensor.
- Args:
- x (torch.Tensor): The input tensor.
- Returns:
- torch.Tensor: The normalized tensor.
- """
- return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
-
- def forward(self, x):
- """
- Forward pass through the RMSNorm layer.
- Args:
- x (torch.Tensor): The input tensor.
- Returns:
- torch.Tensor: The output tensor after applying RMSNorm.
- """
- x = self._norm(x)
- if self.learnable_scale:
- return x * self.weight.to(device=x.device, dtype=x.dtype)
- else:
- return x
-
-
-class SwiGLUFeedForward(nn.Module):
- def __init__(
- self,
- dim: int,
- hidden_dim: int,
- multiple_of: int,
- ffn_dim_multiplier: Optional[float] = None,
- ):
- """
- Initialize the FeedForward module.
-
- Args:
- dim (int): Input dimension.
- hidden_dim (int): Hidden dimension of the feedforward layer.
- multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
- ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
-
- Attributes:
- w1 (ColumnParallelLinear): Linear transformation for the first layer.
- w2 (RowParallelLinear): Linear transformation for the second layer.
- w3 (ColumnParallelLinear): Linear transformation for the third layer.
-
- """
- super().__init__()
- hidden_dim = int(2 * hidden_dim / 3)
- # custom dim factor multiplier
- if ffn_dim_multiplier is not None:
- hidden_dim = int(ffn_dim_multiplier * hidden_dim)
- hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
-
- self.w1 = nn.Linear(dim, hidden_dim, bias=False)
- self.w2 = nn.Linear(hidden_dim, dim, bias=False)
- self.w3 = nn.Linear(dim, hidden_dim, bias=False)
-
- def forward(self, x):
- return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x))
-
-
-class DismantledBlock(nn.Module):
- """
- A DiT block with gated adaptive layer norm (adaLN) conditioning.
- """
-
- ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug")
-
- def __init__(
- self,
- hidden_size: int,
- num_heads: int,
- mlp_ratio: float = 4.0,
- attn_mode: str = "xformers",
- qkv_bias: bool = False,
- pre_only: bool = False,
- rmsnorm: bool = False,
- scale_mod_only: bool = False,
- swiglu: bool = False,
- qk_norm: Optional[str] = None,
- dtype=None,
- device=None,
- operations=None,
- **block_kwargs,
- ):
- super().__init__()
- assert attn_mode in self.ATTENTION_MODES
- if not rmsnorm:
- self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
- else:
- self.norm1 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6)
- self.attn = SelfAttention(
- dim=hidden_size,
- num_heads=num_heads,
- qkv_bias=qkv_bias,
- attn_mode=attn_mode,
- pre_only=pre_only,
- qk_norm=qk_norm,
- rmsnorm=rmsnorm,
- dtype=dtype,
- device=device,
- operations=operations
- )
- if not pre_only:
- if not rmsnorm:
- self.norm2 = operations.LayerNorm(
- hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device
- )
- else:
- self.norm2 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6)
- mlp_hidden_dim = int(hidden_size * mlp_ratio)
- if not pre_only:
- if not swiglu:
- self.mlp = Mlp(
- in_features=hidden_size,
- hidden_features=mlp_hidden_dim,
- act_layer=lambda: nn.GELU(approximate="tanh"),
- drop=0,
- dtype=dtype,
- device=device,
- operations=operations
- )
- else:
- self.mlp = SwiGLUFeedForward(
- dim=hidden_size,
- hidden_dim=mlp_hidden_dim,
- multiple_of=256,
- )
- self.scale_mod_only = scale_mod_only
- if not scale_mod_only:
- n_mods = 6 if not pre_only else 2
- else:
- n_mods = 4 if not pre_only else 1
- self.adaLN_modulation = nn.Sequential(
- nn.SiLU(), operations.Linear(hidden_size, n_mods * hidden_size, bias=True, dtype=dtype, device=device)
- )
- self.pre_only = pre_only
-
- def pre_attention(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
- if not self.pre_only:
- if not self.scale_mod_only:
- (
- shift_msa,
- scale_msa,
- gate_msa,
- shift_mlp,
- scale_mlp,
- gate_mlp,
- ) = self.adaLN_modulation(c).chunk(6, dim=1)
- else:
- shift_msa = None
- shift_mlp = None
- (
- scale_msa,
- gate_msa,
- scale_mlp,
- gate_mlp,
- ) = self.adaLN_modulation(
- c
- ).chunk(4, dim=1)
- qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa))
- return qkv, (
- x,
- gate_msa,
- shift_mlp,
- scale_mlp,
- gate_mlp,
- )
- else:
- if not self.scale_mod_only:
- (
- shift_msa,
- scale_msa,
- ) = self.adaLN_modulation(
- c
- ).chunk(2, dim=1)
- else:
- shift_msa = None
- scale_msa = self.adaLN_modulation(c)
- qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa))
- return qkv, None
-
- def post_attention(self, attn, x, gate_msa, shift_mlp, scale_mlp, gate_mlp):
- assert not self.pre_only
- x = x + gate_msa.unsqueeze(1) * self.attn.post_attention(attn)
- x = x + gate_mlp.unsqueeze(1) * self.mlp(
- modulate(self.norm2(x), shift_mlp, scale_mlp)
- )
- return x
-
- def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
- assert not self.pre_only
- qkv, intermediates = self.pre_attention(x, c)
- attn = optimized_attention(
- qkv,
- num_heads=self.attn.num_heads,
- )
- return self.post_attention(attn, *intermediates)
-
-
-def block_mixing(*args, use_checkpoint=True, **kwargs):
- if use_checkpoint:
- return torch.utils.checkpoint.checkpoint(
- _block_mixing, *args, use_reentrant=False, **kwargs
- )
- else:
- return _block_mixing(*args, **kwargs)
-
-
-def _block_mixing(context, x, context_block, x_block, c):
- context_qkv, context_intermediates = context_block.pre_attention(context, c)
-
- x_qkv, x_intermediates = x_block.pre_attention(x, c)
-
- o = []
- for t in range(3):
- o.append(torch.cat((context_qkv[t], x_qkv[t]), dim=1))
- qkv = tuple(o)
-
- attn = optimized_attention(
- qkv,
- num_heads=x_block.attn.num_heads,
- )
- context_attn, x_attn = (
- attn[:, : context_qkv[0].shape[1]],
- attn[:, context_qkv[0].shape[1] :],
- )
-
- if not context_block.pre_only:
- context = context_block.post_attention(context_attn, *context_intermediates)
-
- else:
- context = None
- x = x_block.post_attention(x_attn, *x_intermediates)
- return context, x
-
-
-class JointBlock(nn.Module):
- """just a small wrapper to serve as a fsdp unit"""
-
- def __init__(
- self,
- *args,
- **kwargs,
- ):
- super().__init__()
- pre_only = kwargs.pop("pre_only")
- qk_norm = kwargs.pop("qk_norm", None)
- self.context_block = DismantledBlock(*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs)
- self.x_block = DismantledBlock(*args, pre_only=False, qk_norm=qk_norm, **kwargs)
-
- def forward(self, *args, **kwargs):
- return block_mixing(
- *args, context_block=self.context_block, x_block=self.x_block, **kwargs
- )
-
-
-class FinalLayer(nn.Module):
- """
- The final layer of DiT.
- """
-
- def __init__(
- self,
- hidden_size: int,
- patch_size: int,
- out_channels: int,
- total_out_channels: Optional[int] = None,
- dtype=None,
- device=None,
- operations=None,
- ):
- super().__init__()
- self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
- self.linear = (
- operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
- if (total_out_channels is None)
- else operations.Linear(hidden_size, total_out_channels, bias=True, dtype=dtype, device=device)
- )
- self.adaLN_modulation = nn.Sequential(
- nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)
- )
-
- def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
- shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
- x = modulate(self.norm_final(x), shift, scale)
- x = self.linear(x)
- return x
-
-class SelfAttentionContext(nn.Module):
- def __init__(self, dim, heads=8, dim_head=64, dtype=None, device=None, operations=None):
- super().__init__()
- dim_head = dim // heads
- inner_dim = dim
-
- self.heads = heads
- self.dim_head = dim_head
-
- self.qkv = operations.Linear(dim, dim * 3, bias=True, dtype=dtype, device=device)
-
- self.proj = operations.Linear(inner_dim, dim, dtype=dtype, device=device)
-
- def forward(self, x):
- qkv = self.qkv(x)
- q, k, v = split_qkv(qkv, self.dim_head)
- x = optimized_attention((q.reshape(q.shape[0], q.shape[1], -1), k, v), self.heads)
- return self.proj(x)
-
-class ContextProcessorBlock(nn.Module):
- def __init__(self, context_size, dtype=None, device=None, operations=None):
- super().__init__()
- self.norm1 = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
- self.attn = SelfAttentionContext(context_size, dtype=dtype, device=device, operations=operations)
- self.norm2 = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
- self.mlp = Mlp(in_features=context_size, hidden_features=(context_size * 4), act_layer=lambda: nn.GELU(approximate="tanh"), drop=0, dtype=dtype, device=device, operations=operations)
-
- def forward(self, x):
- x += self.attn(self.norm1(x))
- x += self.mlp(self.norm2(x))
- return x
-
-class ContextProcessor(nn.Module):
- def __init__(self, context_size, num_layers, dtype=None, device=None, operations=None):
- super().__init__()
- self.layers = torch.nn.ModuleList([ContextProcessorBlock(context_size, dtype=dtype, device=device, operations=operations) for i in range(num_layers)])
- self.norm = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
-
- def forward(self, x):
- for i, l in enumerate(self.layers):
- x = l(x)
- return self.norm(x)
-
-class MMDiT(nn.Module):
- """
- Diffusion model with a Transformer backbone.
- """
-
- def __init__(
- self,
- input_size: int = 32,
- patch_size: int = 2,
- in_channels: int = 4,
- depth: int = 28,
- # hidden_size: Optional[int] = None,
- # num_heads: Optional[int] = None,
- mlp_ratio: float = 4.0,
- learn_sigma: bool = False,
- adm_in_channels: Optional[int] = None,
- context_embedder_config: Optional[Dict] = None,
- compile_core: bool = False,
- use_checkpoint: bool = False,
- register_length: int = 0,
- attn_mode: str = "torch",
- rmsnorm: bool = False,
- scale_mod_only: bool = False,
- swiglu: bool = False,
- out_channels: Optional[int] = None,
- pos_embed_scaling_factor: Optional[float] = None,
- pos_embed_offset: Optional[float] = None,
- pos_embed_max_size: Optional[int] = None,
- num_patches = None,
- qk_norm: Optional[str] = None,
- qkv_bias: bool = True,
- context_processor_layers = None,
- context_size = 4096,
- dtype = None, #TODO
- device = None,
- operations = None,
- ):
- super().__init__()
- self.dtype = dtype
- self.learn_sigma = learn_sigma
- self.in_channels = in_channels
- default_out_channels = in_channels * 2 if learn_sigma else in_channels
- self.out_channels = default(out_channels, default_out_channels)
- self.patch_size = patch_size
- self.pos_embed_scaling_factor = pos_embed_scaling_factor
- self.pos_embed_offset = pos_embed_offset
- self.pos_embed_max_size = pos_embed_max_size
-
- # hidden_size = default(hidden_size, 64 * depth)
- # num_heads = default(num_heads, hidden_size // 64)
-
- # apply magic --> this defines a head_size of 64
- self.hidden_size = 64 * depth
- num_heads = depth
-
- self.num_heads = num_heads
-
- self.x_embedder = PatchEmbed(
- input_size,
- patch_size,
- in_channels,
- self.hidden_size,
- bias=True,
- strict_img_size=self.pos_embed_max_size is None,
- dtype=dtype,
- device=device,
- operations=operations
- )
- self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations)
-
- self.y_embedder = None
- if adm_in_channels is not None:
- assert isinstance(adm_in_channels, int)
- self.y_embedder = VectorEmbedder(adm_in_channels, self.hidden_size, dtype=dtype, device=device, operations=operations)
-
- if context_processor_layers is not None:
- self.context_processor = ContextProcessor(context_size, context_processor_layers, dtype=dtype, device=device, operations=operations)
- else:
- self.context_processor = None
-
- self.context_embedder = nn.Identity()
- if context_embedder_config is not None:
- if context_embedder_config["target"] == "torch.nn.Linear":
- self.context_embedder = operations.Linear(**context_embedder_config["params"], dtype=dtype, device=device)
-
- self.register_length = register_length
- if self.register_length > 0:
- self.register = nn.Parameter(torch.randn(1, register_length, self.hidden_size, dtype=dtype, device=device))
-
- # num_patches = self.x_embedder.num_patches
- # Will use fixed sin-cos embedding:
- # just use a buffer already
- if num_patches is not None:
- self.register_buffer(
- "pos_embed",
- torch.empty(1, num_patches, self.hidden_size, dtype=dtype, device=device),
- )
- else:
- self.pos_embed = None
-
- self.use_checkpoint = use_checkpoint
- self.joint_blocks = nn.ModuleList(
- [
- JointBlock(
- self.hidden_size,
- num_heads,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- attn_mode=attn_mode,
- pre_only=i == depth - 1,
- rmsnorm=rmsnorm,
- scale_mod_only=scale_mod_only,
- swiglu=swiglu,
- qk_norm=qk_norm,
- dtype=dtype,
- device=device,
- operations=operations
- )
- for i in range(depth)
- ]
- )
-
- self.final_layer = FinalLayer(self.hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
-
- if compile_core:
- assert False
- self.forward_core_with_concat = torch.compile(self.forward_core_with_concat)
-
- def cropped_pos_embed(self, hw, device=None):
- p = self.x_embedder.patch_size[0]
- h, w = hw
- # patched size
- h = (h + 1) // p
- w = (w + 1) // p
- if self.pos_embed is None:
- return get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=device)
- assert self.pos_embed_max_size is not None
- assert h <= self.pos_embed_max_size, (h, self.pos_embed_max_size)
- assert w <= self.pos_embed_max_size, (w, self.pos_embed_max_size)
- top = (self.pos_embed_max_size - h) // 2
- left = (self.pos_embed_max_size - w) // 2
- spatial_pos_embed = rearrange(
- self.pos_embed,
- "1 (h w) c -> 1 h w c",
- h=self.pos_embed_max_size,
- w=self.pos_embed_max_size,
- )
- spatial_pos_embed = spatial_pos_embed[:, top : top + h, left : left + w, :]
- spatial_pos_embed = rearrange(spatial_pos_embed, "1 h w c -> 1 (h w) c")
- # print(spatial_pos_embed, top, left, h, w)
- # # t = get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, 7.875, 7.875, device=device) #matches exactly for 1024 res
- # t = get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, 7.5, 7.5, device=device) #scales better
- # # print(t)
- # return t
- return spatial_pos_embed
-
- def unpatchify(self, x, hw=None):
- """
- x: (N, T, patch_size**2 * C)
- imgs: (N, H, W, C)
- """
- c = self.out_channels
- p = self.x_embedder.patch_size[0]
- if hw is None:
- h = w = int(x.shape[1] ** 0.5)
- else:
- h, w = hw
- h = (h + 1) // p
- w = (w + 1) // p
- assert h * w == x.shape[1]
-
- x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
- x = torch.einsum("nhwpqc->nchpwq", x)
- imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
- return imgs
-
- def forward_core_with_concat(
- self,
- x: torch.Tensor,
- c_mod: torch.Tensor,
- context: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- if self.register_length > 0:
- context = torch.cat(
- (
- repeat(self.register, "1 ... -> b ...", b=x.shape[0]),
- default(context, torch.Tensor([]).type_as(x)),
- ),
- 1,
- )
-
- # context is B, L', D
- # x is B, L, D
- for block in self.joint_blocks:
- context, x = block(
- context,
- x,
- c=c_mod,
- use_checkpoint=self.use_checkpoint,
- )
-
- x = self.final_layer(x, c_mod) # (N, T, patch_size ** 2 * out_channels)
- return x
-
- def forward(
- self,
- x: torch.Tensor,
- t: torch.Tensor,
- y: Optional[torch.Tensor] = None,
- context: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- """
- Forward pass of DiT.
- x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
- t: (N,) tensor of diffusion timesteps
- y: (N,) tensor of class labels
- """
-
- if self.context_processor is not None:
- context = self.context_processor(context)
-
- hw = x.shape[-2:]
- x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
- c = self.t_embedder(t, dtype=x.dtype) # (N, D)
- if y is not None and self.y_embedder is not None:
- y = self.y_embedder(y) # (N, D)
- c = c + y # (N, D)
-
- if context is not None:
- context = self.context_embedder(context)
-
- x = self.forward_core_with_concat(x, c, context)
-
- x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W)
- return x[:,:,:hw[-2],:hw[-1]]
-
-
-class OpenAISignatureMMDITWrapper(MMDiT):
- def forward(
- self,
- x: torch.Tensor,
- timesteps: torch.Tensor,
- context: Optional[torch.Tensor] = None,
- y: Optional[torch.Tensor] = None,
- **kwargs,
- ) -> torch.Tensor:
- return super().forward(x, timesteps, context=context, y=y)
-
diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/model.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/model.py
deleted file mode 100644
index 04eb83b2181253e3a88f7945f75e017060e02ebf..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/modules/diffusionmodules/model.py
+++ /dev/null
@@ -1,650 +0,0 @@
-# pytorch_diffusion + derived encoder decoder
-import math
-import torch
-import torch.nn as nn
-import numpy as np
-from typing import Optional, Any
-import logging
-
-from comfy import model_management
-import comfy.ops
-ops = comfy.ops.disable_weight_init
-
-if model_management.xformers_enabled_vae():
- import xformers
- import xformers.ops
-
-def get_timestep_embedding(timesteps, embedding_dim):
- """
- This matches the implementation in Denoising Diffusion Probabilistic Models:
- From Fairseq.
- Build sinusoidal embeddings.
- This matches the implementation in tensor2tensor, but differs slightly
- from the description in Section 3.5 of "Attention Is All You Need".
- """
- assert len(timesteps.shape) == 1
-
- half_dim = embedding_dim // 2
- emb = math.log(10000) / (half_dim - 1)
- emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
- emb = emb.to(device=timesteps.device)
- emb = timesteps.float()[:, None] * emb[None, :]
- emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
- if embedding_dim % 2 == 1: # zero pad
- emb = torch.nn.functional.pad(emb, (0,1,0,0))
- return emb
-
-
-def nonlinearity(x):
- # swish
- return x*torch.sigmoid(x)
-
-
-def Normalize(in_channels, num_groups=32):
- return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
-
-
-class Upsample(nn.Module):
- def __init__(self, in_channels, with_conv):
- super().__init__()
- self.with_conv = with_conv
- if self.with_conv:
- self.conv = ops.Conv2d(in_channels,
- in_channels,
- kernel_size=3,
- stride=1,
- padding=1)
-
- def forward(self, x):
- try:
- x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
- except: #operation not implemented for bf16
- b, c, h, w = x.shape
- out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device)
- split = 8
- l = out.shape[1] // split
- for i in range(0, out.shape[1], l):
- out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype)
- del x
- x = out
-
- if self.with_conv:
- x = self.conv(x)
- return x
-
-
-class Downsample(nn.Module):
- def __init__(self, in_channels, with_conv):
- super().__init__()
- self.with_conv = with_conv
- if self.with_conv:
- # no asymmetric padding in torch conv, must do it ourselves
- self.conv = ops.Conv2d(in_channels,
- in_channels,
- kernel_size=3,
- stride=2,
- padding=0)
-
- def forward(self, x):
- if self.with_conv:
- pad = (0,1,0,1)
- x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
- x = self.conv(x)
- else:
- x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
- return x
-
-
-class ResnetBlock(nn.Module):
- def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
- dropout, temb_channels=512):
- super().__init__()
- self.in_channels = in_channels
- out_channels = in_channels if out_channels is None else out_channels
- self.out_channels = out_channels
- self.use_conv_shortcut = conv_shortcut
-
- self.swish = torch.nn.SiLU(inplace=True)
- self.norm1 = Normalize(in_channels)
- self.conv1 = ops.Conv2d(in_channels,
- out_channels,
- kernel_size=3,
- stride=1,
- padding=1)
- if temb_channels > 0:
- self.temb_proj = ops.Linear(temb_channels,
- out_channels)
- self.norm2 = Normalize(out_channels)
- self.dropout = torch.nn.Dropout(dropout, inplace=True)
- self.conv2 = ops.Conv2d(out_channels,
- out_channels,
- kernel_size=3,
- stride=1,
- padding=1)
- if self.in_channels != self.out_channels:
- if self.use_conv_shortcut:
- self.conv_shortcut = ops.Conv2d(in_channels,
- out_channels,
- kernel_size=3,
- stride=1,
- padding=1)
- else:
- self.nin_shortcut = ops.Conv2d(in_channels,
- out_channels,
- kernel_size=1,
- stride=1,
- padding=0)
-
- def forward(self, x, temb):
- h = x
- h = self.norm1(h)
- h = self.swish(h)
- h = self.conv1(h)
-
- if temb is not None:
- h = h + self.temb_proj(self.swish(temb))[:,:,None,None]
-
- h = self.norm2(h)
- h = self.swish(h)
- h = self.dropout(h)
- h = self.conv2(h)
-
- if self.in_channels != self.out_channels:
- if self.use_conv_shortcut:
- x = self.conv_shortcut(x)
- else:
- x = self.nin_shortcut(x)
-
- return x+h
-
-def slice_attention(q, k, v):
- r1 = torch.zeros_like(k, device=q.device)
- scale = (int(q.shape[-1])**(-0.5))
-
- mem_free_total = model_management.get_free_memory(q.device)
-
- gb = 1024 ** 3
- tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
- modifier = 3 if q.element_size() == 2 else 2.5
- mem_required = tensor_size * modifier
- steps = 1
-
- if mem_required > mem_free_total:
- steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
-
- while True:
- try:
- slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
- for i in range(0, q.shape[1], slice_size):
- end = i + slice_size
- s1 = torch.bmm(q[:, i:end], k) * scale
-
- s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
- del s1
-
- r1[:, :, i:end] = torch.bmm(v, s2)
- del s2
- break
- except model_management.OOM_EXCEPTION as e:
- model_management.soft_empty_cache(True)
- steps *= 2
- if steps > 128:
- raise e
- logging.warning("out of memory error, increasing steps and trying again {}".format(steps))
-
- return r1
-
-def normal_attention(q, k, v):
- # compute attention
- b,c,h,w = q.shape
-
- q = q.reshape(b,c,h*w)
- q = q.permute(0,2,1) # b,hw,c
- k = k.reshape(b,c,h*w) # b,c,hw
- v = v.reshape(b,c,h*w)
-
- r1 = slice_attention(q, k, v)
- h_ = r1.reshape(b,c,h,w)
- del r1
- return h_
-
-def xformers_attention(q, k, v):
- # compute attention
- B, C, H, W = q.shape
- q, k, v = map(
- lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
- (q, k, v),
- )
-
- try:
- out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
- out = out.transpose(1, 2).reshape(B, C, H, W)
- except NotImplementedError as e:
- out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
- return out
-
-def pytorch_attention(q, k, v):
- # compute attention
- B, C, H, W = q.shape
- q, k, v = map(
- lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
- (q, k, v),
- )
-
- try:
- out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
- out = out.transpose(2, 3).reshape(B, C, H, W)
- except model_management.OOM_EXCEPTION as e:
- logging.warning("scaled_dot_product_attention OOMed: switched to slice attention")
- out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
- return out
-
-
-class AttnBlock(nn.Module):
- def __init__(self, in_channels):
- super().__init__()
- self.in_channels = in_channels
-
- self.norm = Normalize(in_channels)
- self.q = ops.Conv2d(in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0)
- self.k = ops.Conv2d(in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0)
- self.v = ops.Conv2d(in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0)
- self.proj_out = ops.Conv2d(in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0)
-
- if model_management.xformers_enabled_vae():
- logging.info("Using xformers attention in VAE")
- self.optimized_attention = xformers_attention
- elif model_management.pytorch_attention_enabled():
- logging.info("Using pytorch attention in VAE")
- self.optimized_attention = pytorch_attention
- else:
- logging.info("Using split attention in VAE")
- self.optimized_attention = normal_attention
-
- def forward(self, x):
- h_ = x
- h_ = self.norm(h_)
- q = self.q(h_)
- k = self.k(h_)
- v = self.v(h_)
-
- h_ = self.optimized_attention(q, k, v)
-
- h_ = self.proj_out(h_)
-
- return x+h_
-
-
-def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
- return AttnBlock(in_channels)
-
-
-class Model(nn.Module):
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
- resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
- super().__init__()
- if use_linear_attn: attn_type = "linear"
- self.ch = ch
- self.temb_ch = self.ch*4
- self.num_resolutions = len(ch_mult)
- self.num_res_blocks = num_res_blocks
- self.resolution = resolution
- self.in_channels = in_channels
-
- self.use_timestep = use_timestep
- if self.use_timestep:
- # timestep embedding
- self.temb = nn.Module()
- self.temb.dense = nn.ModuleList([
- ops.Linear(self.ch,
- self.temb_ch),
- ops.Linear(self.temb_ch,
- self.temb_ch),
- ])
-
- # downsampling
- self.conv_in = ops.Conv2d(in_channels,
- self.ch,
- kernel_size=3,
- stride=1,
- padding=1)
-
- curr_res = resolution
- in_ch_mult = (1,)+tuple(ch_mult)
- self.down = nn.ModuleList()
- for i_level in range(self.num_resolutions):
- block = nn.ModuleList()
- attn = nn.ModuleList()
- block_in = ch*in_ch_mult[i_level]
- block_out = ch*ch_mult[i_level]
- for i_block in range(self.num_res_blocks):
- block.append(ResnetBlock(in_channels=block_in,
- out_channels=block_out,
- temb_channels=self.temb_ch,
- dropout=dropout))
- block_in = block_out
- if curr_res in attn_resolutions:
- attn.append(make_attn(block_in, attn_type=attn_type))
- down = nn.Module()
- down.block = block
- down.attn = attn
- if i_level != self.num_resolutions-1:
- down.downsample = Downsample(block_in, resamp_with_conv)
- curr_res = curr_res // 2
- self.down.append(down)
-
- # middle
- self.mid = nn.Module()
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
- out_channels=block_in,
- temb_channels=self.temb_ch,
- dropout=dropout)
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
- out_channels=block_in,
- temb_channels=self.temb_ch,
- dropout=dropout)
-
- # upsampling
- self.up = nn.ModuleList()
- for i_level in reversed(range(self.num_resolutions)):
- block = nn.ModuleList()
- attn = nn.ModuleList()
- block_out = ch*ch_mult[i_level]
- skip_in = ch*ch_mult[i_level]
- for i_block in range(self.num_res_blocks+1):
- if i_block == self.num_res_blocks:
- skip_in = ch*in_ch_mult[i_level]
- block.append(ResnetBlock(in_channels=block_in+skip_in,
- out_channels=block_out,
- temb_channels=self.temb_ch,
- dropout=dropout))
- block_in = block_out
- if curr_res in attn_resolutions:
- attn.append(make_attn(block_in, attn_type=attn_type))
- up = nn.Module()
- up.block = block
- up.attn = attn
- if i_level != 0:
- up.upsample = Upsample(block_in, resamp_with_conv)
- curr_res = curr_res * 2
- self.up.insert(0, up) # prepend to get consistent order
-
- # end
- self.norm_out = Normalize(block_in)
- self.conv_out = ops.Conv2d(block_in,
- out_ch,
- kernel_size=3,
- stride=1,
- padding=1)
-
- def forward(self, x, t=None, context=None):
- #assert x.shape[2] == x.shape[3] == self.resolution
- if context is not None:
- # assume aligned context, cat along channel axis
- x = torch.cat((x, context), dim=1)
- if self.use_timestep:
- # timestep embedding
- assert t is not None
- temb = get_timestep_embedding(t, self.ch)
- temb = self.temb.dense[0](temb)
- temb = nonlinearity(temb)
- temb = self.temb.dense[1](temb)
- else:
- temb = None
-
- # downsampling
- hs = [self.conv_in(x)]
- for i_level in range(self.num_resolutions):
- for i_block in range(self.num_res_blocks):
- h = self.down[i_level].block[i_block](hs[-1], temb)
- if len(self.down[i_level].attn) > 0:
- h = self.down[i_level].attn[i_block](h)
- hs.append(h)
- if i_level != self.num_resolutions-1:
- hs.append(self.down[i_level].downsample(hs[-1]))
-
- # middle
- h = hs[-1]
- h = self.mid.block_1(h, temb)
- h = self.mid.attn_1(h)
- h = self.mid.block_2(h, temb)
-
- # upsampling
- for i_level in reversed(range(self.num_resolutions)):
- for i_block in range(self.num_res_blocks+1):
- h = self.up[i_level].block[i_block](
- torch.cat([h, hs.pop()], dim=1), temb)
- if len(self.up[i_level].attn) > 0:
- h = self.up[i_level].attn[i_block](h)
- if i_level != 0:
- h = self.up[i_level].upsample(h)
-
- # end
- h = self.norm_out(h)
- h = nonlinearity(h)
- h = self.conv_out(h)
- return h
-
- def get_last_layer(self):
- return self.conv_out.weight
-
-
-class Encoder(nn.Module):
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
- resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
- **ignore_kwargs):
- super().__init__()
- if use_linear_attn: attn_type = "linear"
- self.ch = ch
- self.temb_ch = 0
- self.num_resolutions = len(ch_mult)
- self.num_res_blocks = num_res_blocks
- self.resolution = resolution
- self.in_channels = in_channels
-
- # downsampling
- self.conv_in = ops.Conv2d(in_channels,
- self.ch,
- kernel_size=3,
- stride=1,
- padding=1)
-
- curr_res = resolution
- in_ch_mult = (1,)+tuple(ch_mult)
- self.in_ch_mult = in_ch_mult
- self.down = nn.ModuleList()
- for i_level in range(self.num_resolutions):
- block = nn.ModuleList()
- attn = nn.ModuleList()
- block_in = ch*in_ch_mult[i_level]
- block_out = ch*ch_mult[i_level]
- for i_block in range(self.num_res_blocks):
- block.append(ResnetBlock(in_channels=block_in,
- out_channels=block_out,
- temb_channels=self.temb_ch,
- dropout=dropout))
- block_in = block_out
- if curr_res in attn_resolutions:
- attn.append(make_attn(block_in, attn_type=attn_type))
- down = nn.Module()
- down.block = block
- down.attn = attn
- if i_level != self.num_resolutions-1:
- down.downsample = Downsample(block_in, resamp_with_conv)
- curr_res = curr_res // 2
- self.down.append(down)
-
- # middle
- self.mid = nn.Module()
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
- out_channels=block_in,
- temb_channels=self.temb_ch,
- dropout=dropout)
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
- out_channels=block_in,
- temb_channels=self.temb_ch,
- dropout=dropout)
-
- # end
- self.norm_out = Normalize(block_in)
- self.conv_out = ops.Conv2d(block_in,
- 2*z_channels if double_z else z_channels,
- kernel_size=3,
- stride=1,
- padding=1)
-
- def forward(self, x):
- # timestep embedding
- temb = None
- # downsampling
- h = self.conv_in(x)
- for i_level in range(self.num_resolutions):
- for i_block in range(self.num_res_blocks):
- h = self.down[i_level].block[i_block](h, temb)
- if len(self.down[i_level].attn) > 0:
- h = self.down[i_level].attn[i_block](h)
- if i_level != self.num_resolutions-1:
- h = self.down[i_level].downsample(h)
-
- # middle
- h = self.mid.block_1(h, temb)
- h = self.mid.attn_1(h)
- h = self.mid.block_2(h, temb)
-
- # end
- h = self.norm_out(h)
- h = nonlinearity(h)
- h = self.conv_out(h)
- return h
-
-
-class Decoder(nn.Module):
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
- resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
- conv_out_op=ops.Conv2d,
- resnet_op=ResnetBlock,
- attn_op=AttnBlock,
- **ignorekwargs):
- super().__init__()
- if use_linear_attn: attn_type = "linear"
- self.ch = ch
- self.temb_ch = 0
- self.num_resolutions = len(ch_mult)
- self.num_res_blocks = num_res_blocks
- self.resolution = resolution
- self.in_channels = in_channels
- self.give_pre_end = give_pre_end
- self.tanh_out = tanh_out
-
- # compute in_ch_mult, block_in and curr_res at lowest res
- in_ch_mult = (1,)+tuple(ch_mult)
- block_in = ch*ch_mult[self.num_resolutions-1]
- curr_res = resolution // 2**(self.num_resolutions-1)
- self.z_shape = (1,z_channels,curr_res,curr_res)
- logging.debug("Working with z of shape {} = {} dimensions.".format(
- self.z_shape, np.prod(self.z_shape)))
-
- # z to block_in
- self.conv_in = ops.Conv2d(z_channels,
- block_in,
- kernel_size=3,
- stride=1,
- padding=1)
-
- # middle
- self.mid = nn.Module()
- self.mid.block_1 = resnet_op(in_channels=block_in,
- out_channels=block_in,
- temb_channels=self.temb_ch,
- dropout=dropout)
- self.mid.attn_1 = attn_op(block_in)
- self.mid.block_2 = resnet_op(in_channels=block_in,
- out_channels=block_in,
- temb_channels=self.temb_ch,
- dropout=dropout)
-
- # upsampling
- self.up = nn.ModuleList()
- for i_level in reversed(range(self.num_resolutions)):
- block = nn.ModuleList()
- attn = nn.ModuleList()
- block_out = ch*ch_mult[i_level]
- for i_block in range(self.num_res_blocks+1):
- block.append(resnet_op(in_channels=block_in,
- out_channels=block_out,
- temb_channels=self.temb_ch,
- dropout=dropout))
- block_in = block_out
- if curr_res in attn_resolutions:
- attn.append(attn_op(block_in))
- up = nn.Module()
- up.block = block
- up.attn = attn
- if i_level != 0:
- up.upsample = Upsample(block_in, resamp_with_conv)
- curr_res = curr_res * 2
- self.up.insert(0, up) # prepend to get consistent order
-
- # end
- self.norm_out = Normalize(block_in)
- self.conv_out = conv_out_op(block_in,
- out_ch,
- kernel_size=3,
- stride=1,
- padding=1)
-
- def forward(self, z, **kwargs):
- #assert z.shape[1:] == self.z_shape[1:]
- self.last_z_shape = z.shape
-
- # timestep embedding
- temb = None
-
- # z to block_in
- h = self.conv_in(z)
-
- # middle
- h = self.mid.block_1(h, temb, **kwargs)
- h = self.mid.attn_1(h, **kwargs)
- h = self.mid.block_2(h, temb, **kwargs)
-
- # upsampling
- for i_level in reversed(range(self.num_resolutions)):
- for i_block in range(self.num_res_blocks+1):
- h = self.up[i_level].block[i_block](h, temb, **kwargs)
- if len(self.up[i_level].attn) > 0:
- h = self.up[i_level].attn[i_block](h, **kwargs)
- if i_level != 0:
- h = self.up[i_level].upsample(h)
-
- # end
- if self.give_pre_end:
- return h
-
- h = self.norm_out(h)
- h = nonlinearity(h)
- h = self.conv_out(h, **kwargs)
- if self.tanh_out:
- h = torch.tanh(h)
- return h
diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/openaimodel.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/openaimodel.py
deleted file mode 100644
index ba8fc2c4a0626456256b474049580f597f4e9ca6..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/modules/diffusionmodules/openaimodel.py
+++ /dev/null
@@ -1,892 +0,0 @@
-from abc import abstractmethod
-
-import torch as th
-import torch.nn as nn
-import torch.nn.functional as F
-from einops import rearrange
-import logging
-
-from .util import (
- checkpoint,
- avg_pool_nd,
- zero_module,
- timestep_embedding,
- AlphaBlender,
-)
-from ..attention import SpatialTransformer, SpatialVideoTransformer, default
-from comfy.ldm.util import exists
-import comfy.ops
-ops = comfy.ops.disable_weight_init
-
-class TimestepBlock(nn.Module):
- """
- Any module where forward() takes timestep embeddings as a second argument.
- """
-
- @abstractmethod
- def forward(self, x, emb):
- """
- Apply the module to `x` given `emb` timestep embeddings.
- """
-
-#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index"
-def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None):
- for layer in ts:
- if isinstance(layer, VideoResBlock):
- x = layer(x, emb, num_video_frames, image_only_indicator)
- elif isinstance(layer, TimestepBlock):
- x = layer(x, emb)
- elif isinstance(layer, SpatialVideoTransformer):
- x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options)
- if "transformer_index" in transformer_options:
- transformer_options["transformer_index"] += 1
- elif isinstance(layer, SpatialTransformer):
- x = layer(x, context, transformer_options)
- if "transformer_index" in transformer_options:
- transformer_options["transformer_index"] += 1
- elif isinstance(layer, Upsample):
- x = layer(x, output_shape=output_shape)
- else:
- x = layer(x)
- return x
-
-class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
- """
- A sequential module that passes timestep embeddings to the children that
- support it as an extra input.
- """
-
- def forward(self, *args, **kwargs):
- return forward_timestep_embed(self, *args, **kwargs)
-
-class Upsample(nn.Module):
- """
- An upsampling layer with an optional convolution.
- :param channels: channels in the inputs and outputs.
- :param use_conv: a bool determining if a convolution is applied.
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
- upsampling occurs in the inner-two dimensions.
- """
-
- def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
- super().__init__()
- self.channels = channels
- self.out_channels = out_channels or channels
- self.use_conv = use_conv
- self.dims = dims
- if use_conv:
- self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
-
- def forward(self, x, output_shape=None):
- assert x.shape[1] == self.channels
- if self.dims == 3:
- shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
- if output_shape is not None:
- shape[1] = output_shape[3]
- shape[2] = output_shape[4]
- else:
- shape = [x.shape[2] * 2, x.shape[3] * 2]
- if output_shape is not None:
- shape[0] = output_shape[2]
- shape[1] = output_shape[3]
-
- x = F.interpolate(x, size=shape, mode="nearest")
- if self.use_conv:
- x = self.conv(x)
- return x
-
-class Downsample(nn.Module):
- """
- A downsampling layer with an optional convolution.
- :param channels: channels in the inputs and outputs.
- :param use_conv: a bool determining if a convolution is applied.
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
- downsampling occurs in the inner-two dimensions.
- """
-
- def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
- super().__init__()
- self.channels = channels
- self.out_channels = out_channels or channels
- self.use_conv = use_conv
- self.dims = dims
- stride = 2 if dims != 3 else (1, 2, 2)
- if use_conv:
- self.op = operations.conv_nd(
- dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
- )
- else:
- assert self.channels == self.out_channels
- self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
-
- def forward(self, x):
- assert x.shape[1] == self.channels
- return self.op(x)
-
-
-class ResBlock(TimestepBlock):
- """
- A residual block that can optionally change the number of channels.
- :param channels: the number of input channels.
- :param emb_channels: the number of timestep embedding channels.
- :param dropout: the rate of dropout.
- :param out_channels: if specified, the number of out channels.
- :param use_conv: if True and out_channels is specified, use a spatial
- convolution instead of a smaller 1x1 convolution to change the
- channels in the skip connection.
- :param dims: determines if the signal is 1D, 2D, or 3D.
- :param use_checkpoint: if True, use gradient checkpointing on this module.
- :param up: if True, use this block for upsampling.
- :param down: if True, use this block for downsampling.
- """
-
- def __init__(
- self,
- channels,
- emb_channels,
- dropout,
- out_channels=None,
- use_conv=False,
- use_scale_shift_norm=False,
- dims=2,
- use_checkpoint=False,
- up=False,
- down=False,
- kernel_size=3,
- exchange_temb_dims=False,
- skip_t_emb=False,
- dtype=None,
- device=None,
- operations=ops
- ):
- super().__init__()
- self.channels = channels
- self.emb_channels = emb_channels
- self.dropout = dropout
- self.out_channels = out_channels or channels
- self.use_conv = use_conv
- self.use_checkpoint = use_checkpoint
- self.use_scale_shift_norm = use_scale_shift_norm
- self.exchange_temb_dims = exchange_temb_dims
-
- if isinstance(kernel_size, list):
- padding = [k // 2 for k in kernel_size]
- else:
- padding = kernel_size // 2
-
- self.in_layers = nn.Sequential(
- operations.GroupNorm(32, channels, dtype=dtype, device=device),
- nn.SiLU(),
- operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device),
- )
-
- self.updown = up or down
-
- if up:
- self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
- self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
- elif down:
- self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
- self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
- else:
- self.h_upd = self.x_upd = nn.Identity()
-
- self.skip_t_emb = skip_t_emb
- if self.skip_t_emb:
- self.emb_layers = None
- self.exchange_temb_dims = False
- else:
- self.emb_layers = nn.Sequential(
- nn.SiLU(),
- operations.Linear(
- emb_channels,
- 2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
- ),
- )
- self.out_layers = nn.Sequential(
- operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
- nn.SiLU(),
- nn.Dropout(p=dropout),
- operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device)
- ,
- )
-
- if self.out_channels == channels:
- self.skip_connection = nn.Identity()
- elif use_conv:
- self.skip_connection = operations.conv_nd(
- dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device
- )
- else:
- self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
-
- def forward(self, x, emb):
- """
- Apply the block to a Tensor, conditioned on a timestep embedding.
- :param x: an [N x C x ...] Tensor of features.
- :param emb: an [N x emb_channels] Tensor of timestep embeddings.
- :return: an [N x C x ...] Tensor of outputs.
- """
- return checkpoint(
- self._forward, (x, emb), self.parameters(), self.use_checkpoint
- )
-
-
- def _forward(self, x, emb):
- if self.updown:
- in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
- h = in_rest(x)
- h = self.h_upd(h)
- x = self.x_upd(x)
- h = in_conv(h)
- else:
- h = self.in_layers(x)
-
- emb_out = None
- if not self.skip_t_emb:
- emb_out = self.emb_layers(emb).type(h.dtype)
- while len(emb_out.shape) < len(h.shape):
- emb_out = emb_out[..., None]
- if self.use_scale_shift_norm:
- out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
- h = out_norm(h)
- if emb_out is not None:
- scale, shift = th.chunk(emb_out, 2, dim=1)
- h *= (1 + scale)
- h += shift
- h = out_rest(h)
- else:
- if emb_out is not None:
- if self.exchange_temb_dims:
- emb_out = emb_out.movedim(1, 2)
- h = h + emb_out
- h = self.out_layers(h)
- return self.skip_connection(x) + h
-
-
-class VideoResBlock(ResBlock):
- def __init__(
- self,
- channels: int,
- emb_channels: int,
- dropout: float,
- video_kernel_size=3,
- merge_strategy: str = "fixed",
- merge_factor: float = 0.5,
- out_channels=None,
- use_conv: bool = False,
- use_scale_shift_norm: bool = False,
- dims: int = 2,
- use_checkpoint: bool = False,
- up: bool = False,
- down: bool = False,
- dtype=None,
- device=None,
- operations=ops
- ):
- super().__init__(
- channels,
- emb_channels,
- dropout,
- out_channels=out_channels,
- use_conv=use_conv,
- use_scale_shift_norm=use_scale_shift_norm,
- dims=dims,
- use_checkpoint=use_checkpoint,
- up=up,
- down=down,
- dtype=dtype,
- device=device,
- operations=operations
- )
-
- self.time_stack = ResBlock(
- default(out_channels, channels),
- emb_channels,
- dropout=dropout,
- dims=3,
- out_channels=default(out_channels, channels),
- use_scale_shift_norm=False,
- use_conv=False,
- up=False,
- down=False,
- kernel_size=video_kernel_size,
- use_checkpoint=use_checkpoint,
- exchange_temb_dims=True,
- dtype=dtype,
- device=device,
- operations=operations
- )
- self.time_mixer = AlphaBlender(
- alpha=merge_factor,
- merge_strategy=merge_strategy,
- rearrange_pattern="b t -> b 1 t 1 1",
- )
-
- def forward(
- self,
- x: th.Tensor,
- emb: th.Tensor,
- num_video_frames: int,
- image_only_indicator = None,
- ) -> th.Tensor:
- x = super().forward(x, emb)
-
- x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
- x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
-
- x = self.time_stack(
- x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames)
- )
- x = self.time_mixer(
- x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator
- )
- x = rearrange(x, "b c t h w -> (b t) c h w")
- return x
-
-
-class Timestep(nn.Module):
- def __init__(self, dim):
- super().__init__()
- self.dim = dim
-
- def forward(self, t):
- return timestep_embedding(t, self.dim)
-
-def apply_control(h, control, name):
- if control is not None and name in control and len(control[name]) > 0:
- ctrl = control[name].pop()
- if ctrl is not None:
- try:
- h += ctrl
- except:
- logging.warning("warning control could not be applied {} {}".format(h.shape, ctrl.shape))
- return h
-
-class UNetModel(nn.Module):
- """
- The full UNet model with attention and timestep embedding.
- :param in_channels: channels in the input Tensor.
- :param model_channels: base channel count for the model.
- :param out_channels: channels in the output Tensor.
- :param num_res_blocks: number of residual blocks per downsample.
- :param dropout: the dropout probability.
- :param channel_mult: channel multiplier for each level of the UNet.
- :param conv_resample: if True, use learned convolutions for upsampling and
- downsampling.
- :param dims: determines if the signal is 1D, 2D, or 3D.
- :param num_classes: if specified (as an int), then this model will be
- class-conditional with `num_classes` classes.
- :param use_checkpoint: use gradient checkpointing to reduce memory usage.
- :param num_heads: the number of attention heads in each attention layer.
- :param num_heads_channels: if specified, ignore num_heads and instead use
- a fixed channel width per attention head.
- :param num_heads_upsample: works with num_heads to set a different number
- of heads for upsampling. Deprecated.
- :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
- :param resblock_updown: use residual blocks for up/downsampling.
- :param use_new_attention_order: use a different attention pattern for potentially
- increased efficiency.
- """
-
- def __init__(
- self,
- image_size,
- in_channels,
- model_channels,
- out_channels,
- num_res_blocks,
- dropout=0,
- channel_mult=(1, 2, 4, 8),
- conv_resample=True,
- dims=2,
- num_classes=None,
- use_checkpoint=False,
- dtype=th.float32,
- num_heads=-1,
- num_head_channels=-1,
- num_heads_upsample=-1,
- use_scale_shift_norm=False,
- resblock_updown=False,
- use_new_attention_order=False,
- use_spatial_transformer=False, # custom transformer support
- transformer_depth=1, # custom transformer support
- context_dim=None, # custom transformer support
- n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
- legacy=True,
- disable_self_attentions=None,
- num_attention_blocks=None,
- disable_middle_self_attn=False,
- use_linear_in_transformer=False,
- adm_in_channels=None,
- transformer_depth_middle=None,
- transformer_depth_output=None,
- use_temporal_resblock=False,
- use_temporal_attention=False,
- time_context_dim=None,
- extra_ff_mix_layer=False,
- use_spatial_context=False,
- merge_strategy=None,
- merge_factor=0.0,
- video_kernel_size=None,
- disable_temporal_crossattention=False,
- max_ddpm_temb_period=10000,
- attn_precision=None,
- device=None,
- operations=ops,
- ):
- super().__init__()
-
- if context_dim is not None:
- assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
- # from omegaconf.listconfig import ListConfig
- # if type(context_dim) == ListConfig:
- # context_dim = list(context_dim)
-
- if num_heads_upsample == -1:
- num_heads_upsample = num_heads
-
- if num_heads == -1:
- assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
-
- if num_head_channels == -1:
- assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
-
- self.in_channels = in_channels
- self.model_channels = model_channels
- self.out_channels = out_channels
-
- if isinstance(num_res_blocks, int):
- self.num_res_blocks = len(channel_mult) * [num_res_blocks]
- else:
- if len(num_res_blocks) != len(channel_mult):
- raise ValueError("provide num_res_blocks either as an int (globally constant) or "
- "as a list/tuple (per-level) with the same length as channel_mult")
- self.num_res_blocks = num_res_blocks
-
- if disable_self_attentions is not None:
- # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
- assert len(disable_self_attentions) == len(channel_mult)
- if num_attention_blocks is not None:
- assert len(num_attention_blocks) == len(self.num_res_blocks)
-
- transformer_depth = transformer_depth[:]
- transformer_depth_output = transformer_depth_output[:]
-
- self.dropout = dropout
- self.channel_mult = channel_mult
- self.conv_resample = conv_resample
- self.num_classes = num_classes
- self.use_checkpoint = use_checkpoint
- self.dtype = dtype
- self.num_heads = num_heads
- self.num_head_channels = num_head_channels
- self.num_heads_upsample = num_heads_upsample
- self.use_temporal_resblocks = use_temporal_resblock
- self.predict_codebook_ids = n_embed is not None
-
- self.default_num_video_frames = None
-
- time_embed_dim = model_channels * 4
- self.time_embed = nn.Sequential(
- operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
- nn.SiLU(),
- operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
- )
-
- if self.num_classes is not None:
- if isinstance(self.num_classes, int):
- self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device)
- elif self.num_classes == "continuous":
- logging.debug("setting up linear c_adm embedding layer")
- self.label_emb = nn.Linear(1, time_embed_dim)
- elif self.num_classes == "sequential":
- assert adm_in_channels is not None
- self.label_emb = nn.Sequential(
- nn.Sequential(
- operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
- nn.SiLU(),
- operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
- )
- )
- else:
- raise ValueError()
-
- self.input_blocks = nn.ModuleList(
- [
- TimestepEmbedSequential(
- operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
- )
- ]
- )
- self._feature_size = model_channels
- input_block_chans = [model_channels]
- ch = model_channels
- ds = 1
-
- def get_attention_layer(
- ch,
- num_heads,
- dim_head,
- depth=1,
- context_dim=None,
- use_checkpoint=False,
- disable_self_attn=False,
- ):
- if use_temporal_attention:
- return SpatialVideoTransformer(
- ch,
- num_heads,
- dim_head,
- depth=depth,
- context_dim=context_dim,
- time_context_dim=time_context_dim,
- dropout=dropout,
- ff_in=extra_ff_mix_layer,
- use_spatial_context=use_spatial_context,
- merge_strategy=merge_strategy,
- merge_factor=merge_factor,
- checkpoint=use_checkpoint,
- use_linear=use_linear_in_transformer,
- disable_self_attn=disable_self_attn,
- disable_temporal_crossattention=disable_temporal_crossattention,
- max_time_embed_period=max_ddpm_temb_period,
- attn_precision=attn_precision,
- dtype=self.dtype, device=device, operations=operations
- )
- else:
- return SpatialTransformer(
- ch, num_heads, dim_head, depth=depth, context_dim=context_dim,
- disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer,
- use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
- )
-
- def get_resblock(
- merge_factor,
- merge_strategy,
- video_kernel_size,
- ch,
- time_embed_dim,
- dropout,
- out_channels,
- dims,
- use_checkpoint,
- use_scale_shift_norm,
- down=False,
- up=False,
- dtype=None,
- device=None,
- operations=ops
- ):
- if self.use_temporal_resblocks:
- return VideoResBlock(
- merge_factor=merge_factor,
- merge_strategy=merge_strategy,
- video_kernel_size=video_kernel_size,
- channels=ch,
- emb_channels=time_embed_dim,
- dropout=dropout,
- out_channels=out_channels,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- down=down,
- up=up,
- dtype=dtype,
- device=device,
- operations=operations
- )
- else:
- return ResBlock(
- channels=ch,
- emb_channels=time_embed_dim,
- dropout=dropout,
- out_channels=out_channels,
- use_checkpoint=use_checkpoint,
- dims=dims,
- use_scale_shift_norm=use_scale_shift_norm,
- down=down,
- up=up,
- dtype=dtype,
- device=device,
- operations=operations
- )
-
- for level, mult in enumerate(channel_mult):
- for nr in range(self.num_res_blocks[level]):
- layers = [
- get_resblock(
- merge_factor=merge_factor,
- merge_strategy=merge_strategy,
- video_kernel_size=video_kernel_size,
- ch=ch,
- time_embed_dim=time_embed_dim,
- dropout=dropout,
- out_channels=mult * model_channels,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- dtype=self.dtype,
- device=device,
- operations=operations,
- )
- ]
- ch = mult * model_channels
- num_transformers = transformer_depth.pop(0)
- if num_transformers > 0:
- if num_head_channels == -1:
- dim_head = ch // num_heads
- else:
- num_heads = ch // num_head_channels
- dim_head = num_head_channels
- if legacy:
- #num_heads = 1
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
- if exists(disable_self_attentions):
- disabled_sa = disable_self_attentions[level]
- else:
- disabled_sa = False
-
- if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
- layers.append(get_attention_layer(
- ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
- disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint)
- )
- self.input_blocks.append(TimestepEmbedSequential(*layers))
- self._feature_size += ch
- input_block_chans.append(ch)
- if level != len(channel_mult) - 1:
- out_ch = ch
- self.input_blocks.append(
- TimestepEmbedSequential(
- get_resblock(
- merge_factor=merge_factor,
- merge_strategy=merge_strategy,
- video_kernel_size=video_kernel_size,
- ch=ch,
- time_embed_dim=time_embed_dim,
- dropout=dropout,
- out_channels=out_ch,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- down=True,
- dtype=self.dtype,
- device=device,
- operations=operations
- )
- if resblock_updown
- else Downsample(
- ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
- )
- )
- )
- ch = out_ch
- input_block_chans.append(ch)
- ds *= 2
- self._feature_size += ch
-
- if num_head_channels == -1:
- dim_head = ch // num_heads
- else:
- num_heads = ch // num_head_channels
- dim_head = num_head_channels
- if legacy:
- #num_heads = 1
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
- mid_block = [
- get_resblock(
- merge_factor=merge_factor,
- merge_strategy=merge_strategy,
- video_kernel_size=video_kernel_size,
- ch=ch,
- time_embed_dim=time_embed_dim,
- dropout=dropout,
- out_channels=None,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- dtype=self.dtype,
- device=device,
- operations=operations
- )]
-
- self.middle_block = None
- if transformer_depth_middle >= -1:
- if transformer_depth_middle >= 0:
- mid_block += [get_attention_layer( # always uses a self-attn
- ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
- disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint
- ),
- get_resblock(
- merge_factor=merge_factor,
- merge_strategy=merge_strategy,
- video_kernel_size=video_kernel_size,
- ch=ch,
- time_embed_dim=time_embed_dim,
- dropout=dropout,
- out_channels=None,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- dtype=self.dtype,
- device=device,
- operations=operations
- )]
- self.middle_block = TimestepEmbedSequential(*mid_block)
- self._feature_size += ch
-
- self.output_blocks = nn.ModuleList([])
- for level, mult in list(enumerate(channel_mult))[::-1]:
- for i in range(self.num_res_blocks[level] + 1):
- ich = input_block_chans.pop()
- layers = [
- get_resblock(
- merge_factor=merge_factor,
- merge_strategy=merge_strategy,
- video_kernel_size=video_kernel_size,
- ch=ch + ich,
- time_embed_dim=time_embed_dim,
- dropout=dropout,
- out_channels=model_channels * mult,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- dtype=self.dtype,
- device=device,
- operations=operations
- )
- ]
- ch = model_channels * mult
- num_transformers = transformer_depth_output.pop()
- if num_transformers > 0:
- if num_head_channels == -1:
- dim_head = ch // num_heads
- else:
- num_heads = ch // num_head_channels
- dim_head = num_head_channels
- if legacy:
- #num_heads = 1
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
- if exists(disable_self_attentions):
- disabled_sa = disable_self_attentions[level]
- else:
- disabled_sa = False
-
- if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
- layers.append(
- get_attention_layer(
- ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
- disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint
- )
- )
- if level and i == self.num_res_blocks[level]:
- out_ch = ch
- layers.append(
- get_resblock(
- merge_factor=merge_factor,
- merge_strategy=merge_strategy,
- video_kernel_size=video_kernel_size,
- ch=ch,
- time_embed_dim=time_embed_dim,
- dropout=dropout,
- out_channels=out_ch,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- up=True,
- dtype=self.dtype,
- device=device,
- operations=operations
- )
- if resblock_updown
- else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations)
- )
- ds //= 2
- self.output_blocks.append(TimestepEmbedSequential(*layers))
- self._feature_size += ch
-
- self.out = nn.Sequential(
- operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
- nn.SiLU(),
- zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
- )
- if self.predict_codebook_ids:
- self.id_predictor = nn.Sequential(
- operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
- operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
- #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
- )
-
- def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
- """
- Apply the model to an input batch.
- :param x: an [N x C x ...] Tensor of inputs.
- :param timesteps: a 1-D batch of timesteps.
- :param context: conditioning plugged in via crossattn
- :param y: an [N] Tensor of labels, if class-conditional.
- :return: an [N x C x ...] Tensor of outputs.
- """
- transformer_options["original_shape"] = list(x.shape)
- transformer_options["transformer_index"] = 0
- transformer_patches = transformer_options.get("patches", {})
-
- num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
- image_only_indicator = kwargs.get("image_only_indicator", None)
- time_context = kwargs.get("time_context", None)
-
- assert (y is not None) == (
- self.num_classes is not None
- ), "must specify y if and only if the model is class-conditional"
- hs = []
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
- emb = self.time_embed(t_emb)
-
- if self.num_classes is not None:
- assert y.shape[0] == x.shape[0]
- emb = emb + self.label_emb(y)
-
- h = x
- for id, module in enumerate(self.input_blocks):
- transformer_options["block"] = ("input", id)
- h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
- h = apply_control(h, control, 'input')
- if "input_block_patch" in transformer_patches:
- patch = transformer_patches["input_block_patch"]
- for p in patch:
- h = p(h, transformer_options)
-
- hs.append(h)
- if "input_block_patch_after_skip" in transformer_patches:
- patch = transformer_patches["input_block_patch_after_skip"]
- for p in patch:
- h = p(h, transformer_options)
-
- transformer_options["block"] = ("middle", 0)
- if self.middle_block is not None:
- h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
- h = apply_control(h, control, 'middle')
-
-
- for id, module in enumerate(self.output_blocks):
- transformer_options["block"] = ("output", id)
- hsp = hs.pop()
- hsp = apply_control(hsp, control, 'output')
-
- if "output_block_patch" in transformer_patches:
- patch = transformer_patches["output_block_patch"]
- for p in patch:
- h, hsp = p(h, hsp, transformer_options)
-
- h = th.cat([h, hsp], dim=1)
- del hsp
- if len(hs) > 0:
- output_shape = hs[-1].shape
- else:
- output_shape = None
- h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
- h = h.type(x.dtype)
- if self.predict_codebook_ids:
- return self.id_predictor(h)
- else:
- return self.out(h)
diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/upscaling.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/upscaling.py
deleted file mode 100644
index f5ac7c2f9138d6d34cda735d2201225d46831154..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/modules/diffusionmodules/upscaling.py
+++ /dev/null
@@ -1,85 +0,0 @@
-import torch
-import torch.nn as nn
-import numpy as np
-from functools import partial
-
-from .util import extract_into_tensor, make_beta_schedule
-from comfy.ldm.util import default
-
-
-class AbstractLowScaleModel(nn.Module):
- # for concatenating a downsampled image to the latent representation
- def __init__(self, noise_schedule_config=None):
- super(AbstractLowScaleModel, self).__init__()
- if noise_schedule_config is not None:
- self.register_schedule(**noise_schedule_config)
-
- def register_schedule(self, beta_schedule="linear", timesteps=1000,
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
- betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
- cosine_s=cosine_s)
- alphas = 1. - betas
- alphas_cumprod = np.cumprod(alphas, axis=0)
- alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
-
- timesteps, = betas.shape
- self.num_timesteps = int(timesteps)
- self.linear_start = linear_start
- self.linear_end = linear_end
- assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
-
- to_torch = partial(torch.tensor, dtype=torch.float32)
-
- self.register_buffer('betas', to_torch(betas))
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
- self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
-
- # calculations for diffusion q(x_t | x_{t-1}) and others
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
-
- def q_sample(self, x_start, t, noise=None, seed=None):
- if noise is None:
- if seed is None:
- noise = torch.randn_like(x_start)
- else:
- noise = torch.randn(x_start.size(), dtype=x_start.dtype, layout=x_start.layout, generator=torch.manual_seed(seed)).to(x_start.device)
- return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start +
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise)
-
- def forward(self, x):
- return x, None
-
- def decode(self, x):
- return x
-
-
-class SimpleImageConcat(AbstractLowScaleModel):
- # no noise level conditioning
- def __init__(self):
- super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
- self.max_noise_level = 0
-
- def forward(self, x):
- # fix to constant noise level
- return x, torch.zeros(x.shape[0], device=x.device).long()
-
-
-class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
- def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
- super().__init__(noise_schedule_config=noise_schedule_config)
- self.max_noise_level = max_noise_level
-
- def forward(self, x, noise_level=None, seed=None):
- if noise_level is None:
- noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
- else:
- assert isinstance(noise_level, torch.Tensor)
- z = self.q_sample(x, noise_level, seed=seed)
- return z, noise_level
-
-
-
diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/util.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/util.py
deleted file mode 100644
index ce14ad5e18cf1c8f821878f395cc1bab50fad476..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/modules/diffusionmodules/util.py
+++ /dev/null
@@ -1,306 +0,0 @@
-# adopted from
-# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
-# and
-# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
-# and
-# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
-#
-# thanks!
-
-
-import os
-import math
-import torch
-import torch.nn as nn
-import numpy as np
-from einops import repeat, rearrange
-
-from comfy.ldm.util import instantiate_from_config
-
-class AlphaBlender(nn.Module):
- strategies = ["learned", "fixed", "learned_with_images"]
-
- def __init__(
- self,
- alpha: float,
- merge_strategy: str = "learned_with_images",
- rearrange_pattern: str = "b t -> (b t) 1 1",
- ):
- super().__init__()
- self.merge_strategy = merge_strategy
- self.rearrange_pattern = rearrange_pattern
-
- assert (
- merge_strategy in self.strategies
- ), f"merge_strategy needs to be in {self.strategies}"
-
- if self.merge_strategy == "fixed":
- self.register_buffer("mix_factor", torch.Tensor([alpha]))
- elif (
- self.merge_strategy == "learned"
- or self.merge_strategy == "learned_with_images"
- ):
- self.register_parameter(
- "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
- )
- else:
- raise ValueError(f"unknown merge strategy {self.merge_strategy}")
-
- def get_alpha(self, image_only_indicator: torch.Tensor, device) -> torch.Tensor:
- # skip_time_mix = rearrange(repeat(skip_time_mix, 'b -> (b t) () () ()', t=t), '(b t) 1 ... -> b 1 t ...', t=t)
- if self.merge_strategy == "fixed":
- # make shape compatible
- # alpha = repeat(self.mix_factor, '1 -> b () t () ()', t=t, b=bs)
- alpha = self.mix_factor.to(device)
- elif self.merge_strategy == "learned":
- alpha = torch.sigmoid(self.mix_factor.to(device))
- # make shape compatible
- # alpha = repeat(alpha, '1 -> s () ()', s = t * bs)
- elif self.merge_strategy == "learned_with_images":
- if image_only_indicator is None:
- alpha = rearrange(torch.sigmoid(self.mix_factor.to(device)), "... -> ... 1")
- else:
- alpha = torch.where(
- image_only_indicator.bool(),
- torch.ones(1, 1, device=image_only_indicator.device),
- rearrange(torch.sigmoid(self.mix_factor.to(image_only_indicator.device)), "... -> ... 1"),
- )
- alpha = rearrange(alpha, self.rearrange_pattern)
- # make shape compatible
- # alpha = repeat(alpha, '1 -> s () ()', s = t * bs)
- else:
- raise NotImplementedError()
- return alpha
-
- def forward(
- self,
- x_spatial,
- x_temporal,
- image_only_indicator=None,
- ) -> torch.Tensor:
- alpha = self.get_alpha(image_only_indicator, x_spatial.device)
- x = (
- alpha.to(x_spatial.dtype) * x_spatial
- + (1.0 - alpha).to(x_spatial.dtype) * x_temporal
- )
- return x
-
-
-def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
- if schedule == "linear":
- betas = (
- torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
- )
-
- elif schedule == "cosine":
- timesteps = (
- torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
- )
- alphas = timesteps / (1 + cosine_s) * np.pi / 2
- alphas = torch.cos(alphas).pow(2)
- alphas = alphas / alphas[0]
- betas = 1 - alphas[1:] / alphas[:-1]
- betas = torch.clamp(betas, min=0, max=0.999)
-
- elif schedule == "squaredcos_cap_v2": # used for karlo prior
- # return early
- return betas_for_alpha_bar(
- n_timestep,
- lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
- )
-
- elif schedule == "sqrt_linear":
- betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
- elif schedule == "sqrt":
- betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
- else:
- raise ValueError(f"schedule '{schedule}' unknown.")
- return betas
-
-
-def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
- if ddim_discr_method == 'uniform':
- c = num_ddpm_timesteps // num_ddim_timesteps
- ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
- elif ddim_discr_method == 'quad':
- ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
- else:
- raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
-
- # assert ddim_timesteps.shape[0] == num_ddim_timesteps
- # add one to get the final alpha values right (the ones from first scale to data during sampling)
- steps_out = ddim_timesteps + 1
- if verbose:
- print(f'Selected timesteps for ddim sampler: {steps_out}')
- return steps_out
-
-
-def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
- # select alphas for computing the variance schedule
- alphas = alphacums[ddim_timesteps]
- alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
-
- # according the the formula provided in https://arxiv.org/abs/2010.02502
- sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
- if verbose:
- print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
- print(f'For the chosen value of eta, which is {eta}, '
- f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
- return sigmas, alphas, alphas_prev
-
-
-def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
- """
- Create a beta schedule that discretizes the given alpha_t_bar function,
- which defines the cumulative product of (1-beta) over time from t = [0,1].
- :param num_diffusion_timesteps: the number of betas to produce.
- :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
- produces the cumulative product of (1-beta) up to that
- part of the diffusion process.
- :param max_beta: the maximum beta to use; use values lower than 1 to
- prevent singularities.
- """
- betas = []
- for i in range(num_diffusion_timesteps):
- t1 = i / num_diffusion_timesteps
- t2 = (i + 1) / num_diffusion_timesteps
- betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
- return np.array(betas)
-
-
-def extract_into_tensor(a, t, x_shape):
- b, *_ = t.shape
- out = a.gather(-1, t)
- return out.reshape(b, *((1,) * (len(x_shape) - 1)))
-
-
-def checkpoint(func, inputs, params, flag):
- """
- Evaluate a function without caching intermediate activations, allowing for
- reduced memory at the expense of extra compute in the backward pass.
- :param func: the function to evaluate.
- :param inputs: the argument sequence to pass to `func`.
- :param params: a sequence of parameters `func` depends on but does not
- explicitly take as arguments.
- :param flag: if False, disable gradient checkpointing.
- """
- if flag:
- args = tuple(inputs) + tuple(params)
- return CheckpointFunction.apply(func, len(inputs), *args)
- else:
- return func(*inputs)
-
-
-class CheckpointFunction(torch.autograd.Function):
- @staticmethod
- def forward(ctx, run_function, length, *args):
- ctx.run_function = run_function
- ctx.input_tensors = list(args[:length])
- ctx.input_params = list(args[length:])
- ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
- "dtype": torch.get_autocast_gpu_dtype(),
- "cache_enabled": torch.is_autocast_cache_enabled()}
- with torch.no_grad():
- output_tensors = ctx.run_function(*ctx.input_tensors)
- return output_tensors
-
- @staticmethod
- def backward(ctx, *output_grads):
- ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
- with torch.enable_grad(), \
- torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
- # Fixes a bug where the first op in run_function modifies the
- # Tensor storage in place, which is not allowed for detach()'d
- # Tensors.
- shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
- output_tensors = ctx.run_function(*shallow_copies)
- input_grads = torch.autograd.grad(
- output_tensors,
- ctx.input_tensors + ctx.input_params,
- output_grads,
- allow_unused=True,
- )
- del ctx.input_tensors
- del ctx.input_params
- del output_tensors
- return (None, None) + input_grads
-
-
-def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
- """
- Create sinusoidal timestep embeddings.
- :param timesteps: a 1-D Tensor of N indices, one per batch element.
- These may be fractional.
- :param dim: the dimension of the output.
- :param max_period: controls the minimum frequency of the embeddings.
- :return: an [N x dim] Tensor of positional embeddings.
- """
- if not repeat_only:
- half = dim // 2
- freqs = torch.exp(
- -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
- )
- args = timesteps[:, None].float() * freqs[None]
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
- if dim % 2:
- embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
- else:
- embedding = repeat(timesteps, 'b -> b d', d=dim)
- return embedding
-
-
-def zero_module(module):
- """
- Zero out the parameters of a module and return it.
- """
- for p in module.parameters():
- p.detach().zero_()
- return module
-
-
-def scale_module(module, scale):
- """
- Scale the parameters of a module and return it.
- """
- for p in module.parameters():
- p.detach().mul_(scale)
- return module
-
-
-def mean_flat(tensor):
- """
- Take the mean over all non-batch dimensions.
- """
- return tensor.mean(dim=list(range(1, len(tensor.shape))))
-
-
-def avg_pool_nd(dims, *args, **kwargs):
- """
- Create a 1D, 2D, or 3D average pooling module.
- """
- if dims == 1:
- return nn.AvgPool1d(*args, **kwargs)
- elif dims == 2:
- return nn.AvgPool2d(*args, **kwargs)
- elif dims == 3:
- return nn.AvgPool3d(*args, **kwargs)
- raise ValueError(f"unsupported dimensions: {dims}")
-
-
-class HybridConditioner(nn.Module):
-
- def __init__(self, c_concat_config, c_crossattn_config):
- super().__init__()
- self.concat_conditioner = instantiate_from_config(c_concat_config)
- self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
-
- def forward(self, c_concat, c_crossattn):
- c_concat = self.concat_conditioner(c_concat)
- c_crossattn = self.crossattn_conditioner(c_crossattn)
- return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
-
-
-def noise_like(shape, device, repeat=False):
- repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
- noise = lambda: torch.randn(shape, device=device)
- return repeat_noise() if repeat else noise()
diff --git a/MagicQuill/comfy/ldm/modules/distributions/__init__.py b/MagicQuill/comfy/ldm/modules/distributions/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/MagicQuill/comfy/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index 6d1e54b91ddc4820f3d7ff25864bd0c77a9ed401..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc
deleted file mode 100644
index 1ec2f27d8b30129ef1b7ff9967ee0ecfcfa4ac82..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/modules/distributions/distributions.py b/MagicQuill/comfy/ldm/modules/distributions/distributions.py
deleted file mode 100644
index f2b8ef901130efc171aa69742ca0244d94d3f2e9..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/modules/distributions/distributions.py
+++ /dev/null
@@ -1,92 +0,0 @@
-import torch
-import numpy as np
-
-
-class AbstractDistribution:
- def sample(self):
- raise NotImplementedError()
-
- def mode(self):
- raise NotImplementedError()
-
-
-class DiracDistribution(AbstractDistribution):
- def __init__(self, value):
- self.value = value
-
- def sample(self):
- return self.value
-
- def mode(self):
- return self.value
-
-
-class DiagonalGaussianDistribution(object):
- def __init__(self, parameters, deterministic=False):
- self.parameters = parameters
- self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
- self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
- self.deterministic = deterministic
- self.std = torch.exp(0.5 * self.logvar)
- self.var = torch.exp(self.logvar)
- if self.deterministic:
- self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
-
- def sample(self):
- x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
- return x
-
- def kl(self, other=None):
- if self.deterministic:
- return torch.Tensor([0.])
- else:
- if other is None:
- return 0.5 * torch.sum(torch.pow(self.mean, 2)
- + self.var - 1.0 - self.logvar,
- dim=[1, 2, 3])
- else:
- return 0.5 * torch.sum(
- torch.pow(self.mean - other.mean, 2) / other.var
- + self.var / other.var - 1.0 - self.logvar + other.logvar,
- dim=[1, 2, 3])
-
- def nll(self, sample, dims=[1,2,3]):
- if self.deterministic:
- return torch.Tensor([0.])
- logtwopi = np.log(2.0 * np.pi)
- return 0.5 * torch.sum(
- logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
- dim=dims)
-
- def mode(self):
- return self.mean
-
-
-def normal_kl(mean1, logvar1, mean2, logvar2):
- """
- source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
- Compute the KL divergence between two gaussians.
- Shapes are automatically broadcasted, so batches can be compared to
- scalars, among other use cases.
- """
- tensor = None
- for obj in (mean1, logvar1, mean2, logvar2):
- if isinstance(obj, torch.Tensor):
- tensor = obj
- break
- assert tensor is not None, "at least one argument must be a Tensor"
-
- # Force variances to be Tensors. Broadcasting helps convert scalars to
- # Tensors, but it does not work for torch.exp().
- logvar1, logvar2 = [
- x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
- for x in (logvar1, logvar2)
- ]
-
- return 0.5 * (
- -1.0
- + logvar2
- - logvar1
- + torch.exp(logvar1 - logvar2)
- + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
- )
diff --git a/MagicQuill/comfy/ldm/modules/ema.py b/MagicQuill/comfy/ldm/modules/ema.py
deleted file mode 100644
index bded25019b9bcbcd0260f0b8185f8c7859ca58c4..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/modules/ema.py
+++ /dev/null
@@ -1,80 +0,0 @@
-import torch
-from torch import nn
-
-
-class LitEma(nn.Module):
- def __init__(self, model, decay=0.9999, use_num_upates=True):
- super().__init__()
- if decay < 0.0 or decay > 1.0:
- raise ValueError('Decay must be between 0 and 1')
-
- self.m_name2s_name = {}
- self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
- self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
- else torch.tensor(-1, dtype=torch.int))
-
- for name, p in model.named_parameters():
- if p.requires_grad:
- # remove as '.'-character is not allowed in buffers
- s_name = name.replace('.', '')
- self.m_name2s_name.update({name: s_name})
- self.register_buffer(s_name, p.clone().detach().data)
-
- self.collected_params = []
-
- def reset_num_updates(self):
- del self.num_updates
- self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
-
- def forward(self, model):
- decay = self.decay
-
- if self.num_updates >= 0:
- self.num_updates += 1
- decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
-
- one_minus_decay = 1.0 - decay
-
- with torch.no_grad():
- m_param = dict(model.named_parameters())
- shadow_params = dict(self.named_buffers())
-
- for key in m_param:
- if m_param[key].requires_grad:
- sname = self.m_name2s_name[key]
- shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
- shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
- else:
- assert not key in self.m_name2s_name
-
- def copy_to(self, model):
- m_param = dict(model.named_parameters())
- shadow_params = dict(self.named_buffers())
- for key in m_param:
- if m_param[key].requires_grad:
- m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
- else:
- assert not key in self.m_name2s_name
-
- def store(self, parameters):
- """
- Save the current parameters for restoring later.
- Args:
- parameters: Iterable of `torch.nn.Parameter`; the parameters to be
- temporarily stored.
- """
- self.collected_params = [param.clone() for param in parameters]
-
- def restore(self, parameters):
- """
- Restore the parameters stored with the `store` method.
- Useful to validate the model with EMA parameters without affecting the
- original optimization process. Store the parameters before the
- `copy_to` method. After validation (or model saving), use this to
- restore the former parameters.
- Args:
- parameters: Iterable of `torch.nn.Parameter`; the parameters to be
- updated with the stored parameters.
- """
- for c_param, param in zip(self.collected_params, parameters):
- param.data.copy_(c_param.data)
diff --git a/MagicQuill/comfy/ldm/modules/encoders/__init__.py b/MagicQuill/comfy/ldm/modules/encoders/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/MagicQuill/comfy/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc
deleted file mode 100644
index a566ac9a9493be54bc741558ef231673d52b1e0c..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/modules/encoders/__pycache__/noise_aug_modules.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/encoders/__pycache__/noise_aug_modules.cpython-310.pyc
deleted file mode 100644
index 48a940aead8f17d74a707a5b918592276ae4dbb9..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/ldm/modules/encoders/__pycache__/noise_aug_modules.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/ldm/modules/encoders/noise_aug_modules.py b/MagicQuill/comfy/ldm/modules/encoders/noise_aug_modules.py
deleted file mode 100644
index a5d8660301636fde75808cba50afa539cf1162e0..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/modules/encoders/noise_aug_modules.py
+++ /dev/null
@@ -1,35 +0,0 @@
-from ..diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
-from ..diffusionmodules.openaimodel import Timestep
-import torch
-
-class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):
- def __init__(self, *args, clip_stats_path=None, timestep_dim=256, **kwargs):
- super().__init__(*args, **kwargs)
- if clip_stats_path is None:
- clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim)
- else:
- clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu")
- self.register_buffer("data_mean", clip_mean[None, :], persistent=False)
- self.register_buffer("data_std", clip_std[None, :], persistent=False)
- self.time_embed = Timestep(timestep_dim)
-
- def scale(self, x):
- # re-normalize to centered mean and unit variance
- x = (x - self.data_mean.to(x.device)) * 1. / self.data_std.to(x.device)
- return x
-
- def unscale(self, x):
- # back to original data stats
- x = (x * self.data_std.to(x.device)) + self.data_mean.to(x.device)
- return x
-
- def forward(self, x, noise_level=None, seed=None):
- if noise_level is None:
- noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
- else:
- assert isinstance(noise_level, torch.Tensor)
- x = self.scale(x)
- z = self.q_sample(x, noise_level, seed=seed)
- z = self.unscale(z)
- noise_level = self.time_embed(noise_level)
- return z, noise_level
diff --git a/MagicQuill/comfy/ldm/modules/sub_quadratic_attention.py b/MagicQuill/comfy/ldm/modules/sub_quadratic_attention.py
deleted file mode 100644
index 1bc4138c318125047bf7a58237fd8cbf45f2ed72..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/modules/sub_quadratic_attention.py
+++ /dev/null
@@ -1,274 +0,0 @@
-# original source:
-# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py
-# license:
-# MIT
-# credit:
-# Amin Rezaei (original author)
-# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks)
-# implementation of:
-# Self-attention Does Not Need O(n2) Memory":
-# https://arxiv.org/abs/2112.05682v2
-
-from functools import partial
-import torch
-from torch import Tensor
-from torch.utils.checkpoint import checkpoint
-import math
-import logging
-
-try:
- from typing import Optional, NamedTuple, List, Protocol
-except ImportError:
- from typing import Optional, NamedTuple, List
- from typing_extensions import Protocol
-
-from torch import Tensor
-from typing import List
-
-from comfy import model_management
-
-def dynamic_slice(
- x: Tensor,
- starts: List[int],
- sizes: List[int],
-) -> Tensor:
- slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
- return x[slicing]
-
-class AttnChunk(NamedTuple):
- exp_values: Tensor
- exp_weights_sum: Tensor
- max_score: Tensor
-
-class SummarizeChunk(Protocol):
- @staticmethod
- def __call__(
- query: Tensor,
- key_t: Tensor,
- value: Tensor,
- ) -> AttnChunk: ...
-
-class ComputeQueryChunkAttn(Protocol):
- @staticmethod
- def __call__(
- query: Tensor,
- key_t: Tensor,
- value: Tensor,
- ) -> Tensor: ...
-
-def _summarize_chunk(
- query: Tensor,
- key_t: Tensor,
- value: Tensor,
- scale: float,
- upcast_attention: bool,
- mask,
-) -> AttnChunk:
- if upcast_attention:
- with torch.autocast(enabled=False, device_type = 'cuda'):
- query = query.float()
- key_t = key_t.float()
- attn_weights = torch.baddbmm(
- torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
- query,
- key_t,
- alpha=scale,
- beta=0,
- )
- else:
- attn_weights = torch.baddbmm(
- torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
- query,
- key_t,
- alpha=scale,
- beta=0,
- )
- max_score, _ = torch.max(attn_weights, -1, keepdim=True)
- max_score = max_score.detach()
- attn_weights -= max_score
- if mask is not None:
- attn_weights += mask
- torch.exp(attn_weights, out=attn_weights)
- exp_weights = attn_weights.to(value.dtype)
- exp_values = torch.bmm(exp_weights, value)
- max_score = max_score.squeeze(-1)
- return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
-
-def _query_chunk_attention(
- query: Tensor,
- key_t: Tensor,
- value: Tensor,
- summarize_chunk: SummarizeChunk,
- kv_chunk_size: int,
- mask,
-) -> Tensor:
- batch_x_heads, k_channels_per_head, k_tokens = key_t.shape
- _, _, v_channels_per_head = value.shape
-
- def chunk_scanner(chunk_idx: int, mask) -> AttnChunk:
- key_chunk = dynamic_slice(
- key_t,
- (0, 0, chunk_idx),
- (batch_x_heads, k_channels_per_head, kv_chunk_size)
- )
- value_chunk = dynamic_slice(
- value,
- (0, chunk_idx, 0),
- (batch_x_heads, kv_chunk_size, v_channels_per_head)
- )
- if mask is not None:
- mask = mask[:,:,chunk_idx:chunk_idx + kv_chunk_size]
-
- return summarize_chunk(query, key_chunk, value_chunk, mask=mask)
-
- chunks: List[AttnChunk] = [
- chunk_scanner(chunk, mask) for chunk in torch.arange(0, k_tokens, kv_chunk_size)
- ]
- acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks)))
- chunk_values, chunk_weights, chunk_max = acc_chunk
-
- global_max, _ = torch.max(chunk_max, 0, keepdim=True)
- max_diffs = torch.exp(chunk_max - global_max)
- chunk_values *= torch.unsqueeze(max_diffs, -1)
- chunk_weights *= max_diffs
-
- all_values = chunk_values.sum(dim=0)
- all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
- return all_values / all_weights
-
-# TODO: refactor CrossAttention#get_attention_scores to share code with this
-def _get_attention_scores_no_kv_chunking(
- query: Tensor,
- key_t: Tensor,
- value: Tensor,
- scale: float,
- upcast_attention: bool,
- mask,
-) -> Tensor:
- if upcast_attention:
- with torch.autocast(enabled=False, device_type = 'cuda'):
- query = query.float()
- key_t = key_t.float()
- attn_scores = torch.baddbmm(
- torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
- query,
- key_t,
- alpha=scale,
- beta=0,
- )
- else:
- attn_scores = torch.baddbmm(
- torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
- query,
- key_t,
- alpha=scale,
- beta=0,
- )
-
- if mask is not None:
- attn_scores += mask
- try:
- attn_probs = attn_scores.softmax(dim=-1)
- del attn_scores
- except model_management.OOM_EXCEPTION:
- logging.warning("ran out of memory while running softmax in _get_attention_scores_no_kv_chunking, trying slower in place softmax instead")
- attn_scores -= attn_scores.max(dim=-1, keepdim=True).values
- torch.exp(attn_scores, out=attn_scores)
- summed = torch.sum(attn_scores, dim=-1, keepdim=True)
- attn_scores /= summed
- attn_probs = attn_scores
-
- hidden_states_slice = torch.bmm(attn_probs.to(value.dtype), value)
- return hidden_states_slice
-
-class ScannedChunk(NamedTuple):
- chunk_idx: int
- attn_chunk: AttnChunk
-
-def efficient_dot_product_attention(
- query: Tensor,
- key_t: Tensor,
- value: Tensor,
- query_chunk_size=1024,
- kv_chunk_size: Optional[int] = None,
- kv_chunk_size_min: Optional[int] = None,
- use_checkpoint=True,
- upcast_attention=False,
- mask = None,
-):
- """Computes efficient dot-product attention given query, transposed key, and value.
- This is efficient version of attention presented in
- https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements.
- Args:
- query: queries for calculating attention with shape of
- `[batch * num_heads, tokens, channels_per_head]`.
- key_t: keys for calculating attention with shape of
- `[batch * num_heads, channels_per_head, tokens]`.
- value: values to be used in attention with shape of
- `[batch * num_heads, tokens, channels_per_head]`.
- query_chunk_size: int: query chunks size
- kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens)
- kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done).
- use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference)
- Returns:
- Output of shape `[batch * num_heads, query_tokens, channels_per_head]`.
- """
- batch_x_heads, q_tokens, q_channels_per_head = query.shape
- _, _, k_tokens = key_t.shape
- scale = q_channels_per_head ** -0.5
-
- kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens)
- if kv_chunk_size_min is not None:
- kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min)
-
- if mask is not None and len(mask.shape) == 2:
- mask = mask.unsqueeze(0)
-
- def get_query_chunk(chunk_idx: int) -> Tensor:
- return dynamic_slice(
- query,
- (0, chunk_idx, 0),
- (batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head)
- )
-
- def get_mask_chunk(chunk_idx: int) -> Tensor:
- if mask is None:
- return None
- chunk = min(query_chunk_size, q_tokens)
- return mask[:,chunk_idx:chunk_idx + chunk]
-
- summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention)
- summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
- compute_query_chunk_attn: ComputeQueryChunkAttn = partial(
- _get_attention_scores_no_kv_chunking,
- scale=scale,
- upcast_attention=upcast_attention
- ) if k_tokens <= kv_chunk_size else (
- # fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw)
- partial(
- _query_chunk_attention,
- kv_chunk_size=kv_chunk_size,
- summarize_chunk=summarize_chunk,
- )
- )
-
- if q_tokens <= query_chunk_size:
- # fast-path for when there's just 1 query chunk
- return compute_query_chunk_attn(
- query=query,
- key_t=key_t,
- value=value,
- mask=mask,
- )
-
- # TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance,
- # and pass slices to be mutated, instead of torch.cat()ing the returned slices
- res = torch.cat([
- compute_query_chunk_attn(
- query=get_query_chunk(i * query_chunk_size),
- key_t=key_t,
- value=value,
- mask=get_mask_chunk(i * query_chunk_size)
- ) for i in range(math.ceil(q_tokens / query_chunk_size))
- ], dim=1)
- return res
diff --git a/MagicQuill/comfy/ldm/modules/temporal_ae.py b/MagicQuill/comfy/ldm/modules/temporal_ae.py
deleted file mode 100644
index 2992aeafc35ae8ca9e4ecac236810fa5a1fb84ad..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/modules/temporal_ae.py
+++ /dev/null
@@ -1,245 +0,0 @@
-import functools
-from typing import Callable, Iterable, Union
-
-import torch
-from einops import rearrange, repeat
-
-import comfy.ops
-ops = comfy.ops.disable_weight_init
-
-from .diffusionmodules.model import (
- AttnBlock,
- Decoder,
- ResnetBlock,
-)
-from .diffusionmodules.openaimodel import ResBlock, timestep_embedding
-from .attention import BasicTransformerBlock
-
-def partialclass(cls, *args, **kwargs):
- class NewCls(cls):
- __init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
-
- return NewCls
-
-
-class VideoResBlock(ResnetBlock):
- def __init__(
- self,
- out_channels,
- *args,
- dropout=0.0,
- video_kernel_size=3,
- alpha=0.0,
- merge_strategy="learned",
- **kwargs,
- ):
- super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
- if video_kernel_size is None:
- video_kernel_size = [3, 1, 1]
- self.time_stack = ResBlock(
- channels=out_channels,
- emb_channels=0,
- dropout=dropout,
- dims=3,
- use_scale_shift_norm=False,
- use_conv=False,
- up=False,
- down=False,
- kernel_size=video_kernel_size,
- use_checkpoint=False,
- skip_t_emb=True,
- )
-
- self.merge_strategy = merge_strategy
- if self.merge_strategy == "fixed":
- self.register_buffer("mix_factor", torch.Tensor([alpha]))
- elif self.merge_strategy == "learned":
- self.register_parameter(
- "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
- )
- else:
- raise ValueError(f"unknown merge strategy {self.merge_strategy}")
-
- def get_alpha(self, bs):
- if self.merge_strategy == "fixed":
- return self.mix_factor
- elif self.merge_strategy == "learned":
- return torch.sigmoid(self.mix_factor)
- else:
- raise NotImplementedError()
-
- def forward(self, x, temb, skip_video=False, timesteps=None):
- b, c, h, w = x.shape
- if timesteps is None:
- timesteps = b
-
- x = super().forward(x, temb)
-
- if not skip_video:
- x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
-
- x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
-
- x = self.time_stack(x, temb)
-
- alpha = self.get_alpha(bs=b // timesteps).to(x.device)
- x = alpha * x + (1.0 - alpha) * x_mix
-
- x = rearrange(x, "b c t h w -> (b t) c h w")
- return x
-
-
-class AE3DConv(ops.Conv2d):
- def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
- super().__init__(in_channels, out_channels, *args, **kwargs)
- if isinstance(video_kernel_size, Iterable):
- padding = [int(k // 2) for k in video_kernel_size]
- else:
- padding = int(video_kernel_size // 2)
-
- self.time_mix_conv = ops.Conv3d(
- in_channels=out_channels,
- out_channels=out_channels,
- kernel_size=video_kernel_size,
- padding=padding,
- )
-
- def forward(self, input, timesteps=None, skip_video=False):
- if timesteps is None:
- timesteps = input.shape[0]
- x = super().forward(input)
- if skip_video:
- return x
- x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
- x = self.time_mix_conv(x)
- return rearrange(x, "b c t h w -> (b t) c h w")
-
-
-class AttnVideoBlock(AttnBlock):
- def __init__(
- self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
- ):
- super().__init__(in_channels)
- # no context, single headed, as in base class
- self.time_mix_block = BasicTransformerBlock(
- dim=in_channels,
- n_heads=1,
- d_head=in_channels,
- checkpoint=False,
- ff_in=True,
- )
-
- time_embed_dim = self.in_channels * 4
- self.video_time_embed = torch.nn.Sequential(
- ops.Linear(self.in_channels, time_embed_dim),
- torch.nn.SiLU(),
- ops.Linear(time_embed_dim, self.in_channels),
- )
-
- self.merge_strategy = merge_strategy
- if self.merge_strategy == "fixed":
- self.register_buffer("mix_factor", torch.Tensor([alpha]))
- elif self.merge_strategy == "learned":
- self.register_parameter(
- "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
- )
- else:
- raise ValueError(f"unknown merge strategy {self.merge_strategy}")
-
- def forward(self, x, timesteps=None, skip_time_block=False):
- if skip_time_block:
- return super().forward(x)
-
- if timesteps is None:
- timesteps = x.shape[0]
-
- x_in = x
- x = self.attention(x)
- h, w = x.shape[2:]
- x = rearrange(x, "b c h w -> b (h w) c")
-
- x_mix = x
- num_frames = torch.arange(timesteps, device=x.device)
- num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
- num_frames = rearrange(num_frames, "b t -> (b t)")
- t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
- emb = self.video_time_embed(t_emb) # b, n_channels
- emb = emb[:, None, :]
- x_mix = x_mix + emb
-
- alpha = self.get_alpha().to(x.device)
- x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
- x = alpha * x + (1.0 - alpha) * x_mix # alpha merge
-
- x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
- x = self.proj_out(x)
-
- return x_in + x
-
- def get_alpha(
- self,
- ):
- if self.merge_strategy == "fixed":
- return self.mix_factor
- elif self.merge_strategy == "learned":
- return torch.sigmoid(self.mix_factor)
- else:
- raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")
-
-
-
-def make_time_attn(
- in_channels,
- attn_type="vanilla",
- attn_kwargs=None,
- alpha: float = 0,
- merge_strategy: str = "learned",
-):
- return partialclass(
- AttnVideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy
- )
-
-
-class Conv2DWrapper(torch.nn.Conv2d):
- def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor:
- return super().forward(input)
-
-
-class VideoDecoder(Decoder):
- available_time_modes = ["all", "conv-only", "attn-only"]
-
- def __init__(
- self,
- *args,
- video_kernel_size: Union[int, list] = 3,
- alpha: float = 0.0,
- merge_strategy: str = "learned",
- time_mode: str = "conv-only",
- **kwargs,
- ):
- self.video_kernel_size = video_kernel_size
- self.alpha = alpha
- self.merge_strategy = merge_strategy
- self.time_mode = time_mode
- assert (
- self.time_mode in self.available_time_modes
- ), f"time_mode parameter has to be in {self.available_time_modes}"
-
- if self.time_mode != "attn-only":
- kwargs["conv_out_op"] = partialclass(AE3DConv, video_kernel_size=self.video_kernel_size)
- if self.time_mode not in ["conv-only", "only-last-conv"]:
- kwargs["attn_op"] = partialclass(make_time_attn, alpha=self.alpha, merge_strategy=self.merge_strategy)
- if self.time_mode not in ["attn-only", "only-last-conv"]:
- kwargs["resnet_op"] = partialclass(VideoResBlock, video_kernel_size=self.video_kernel_size, alpha=self.alpha, merge_strategy=self.merge_strategy)
-
- super().__init__(*args, **kwargs)
-
- def get_last_layer(self, skip_time_mix=False, **kwargs):
- if self.time_mode == "attn-only":
- raise NotImplementedError("TODO")
- else:
- return (
- self.conv_out.time_mix_conv.weight
- if not skip_time_mix
- else self.conv_out.weight
- )
diff --git a/MagicQuill/comfy/ldm/util.py b/MagicQuill/comfy/ldm/util.py
deleted file mode 100644
index 8c09ca1c72f7ceb3f9d7f9546aae5561baf62b13..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ldm/util.py
+++ /dev/null
@@ -1,197 +0,0 @@
-import importlib
-
-import torch
-from torch import optim
-import numpy as np
-
-from inspect import isfunction
-from PIL import Image, ImageDraw, ImageFont
-
-
-def log_txt_as_img(wh, xc, size=10):
- # wh a tuple of (width, height)
- # xc a list of captions to plot
- b = len(xc)
- txts = list()
- for bi in range(b):
- txt = Image.new("RGB", wh, color="white")
- draw = ImageDraw.Draw(txt)
- font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
- nc = int(40 * (wh[0] / 256))
- lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
-
- try:
- draw.text((0, 0), lines, fill="black", font=font)
- except UnicodeEncodeError:
- print("Cant encode string for logging. Skipping.")
-
- txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
- txts.append(txt)
- txts = np.stack(txts)
- txts = torch.tensor(txts)
- return txts
-
-
-def ismap(x):
- if not isinstance(x, torch.Tensor):
- return False
- return (len(x.shape) == 4) and (x.shape[1] > 3)
-
-
-def isimage(x):
- if not isinstance(x,torch.Tensor):
- return False
- return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
-
-
-def exists(x):
- return x is not None
-
-
-def default(val, d):
- if exists(val):
- return val
- return d() if isfunction(d) else d
-
-
-def mean_flat(tensor):
- """
- https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
- Take the mean over all non-batch dimensions.
- """
- return tensor.mean(dim=list(range(1, len(tensor.shape))))
-
-
-def count_params(model, verbose=False):
- total_params = sum(p.numel() for p in model.parameters())
- if verbose:
- print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
- return total_params
-
-
-def instantiate_from_config(config):
- if not "target" in config:
- if config == '__is_first_stage__':
- return None
- elif config == "__is_unconditional__":
- return None
- raise KeyError("Expected key `target` to instantiate.")
- return get_obj_from_str(config["target"])(**config.get("params", dict()))
-
-
-def get_obj_from_str(string, reload=False):
- module, cls = string.rsplit(".", 1)
- if reload:
- module_imp = importlib.import_module(module)
- importlib.reload(module_imp)
- return getattr(importlib.import_module(module, package=None), cls)
-
-
-class AdamWwithEMAandWings(optim.Optimizer):
- # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
- def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using
- weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code
- ema_power=1., param_names=()):
- """AdamW that saves EMA versions of the parameters."""
- if not 0.0 <= lr:
- raise ValueError("Invalid learning rate: {}".format(lr))
- if not 0.0 <= eps:
- raise ValueError("Invalid epsilon value: {}".format(eps))
- if not 0.0 <= betas[0] < 1.0:
- raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
- if not 0.0 <= betas[1] < 1.0:
- raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
- if not 0.0 <= weight_decay:
- raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
- if not 0.0 <= ema_decay <= 1.0:
- raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
- defaults = dict(lr=lr, betas=betas, eps=eps,
- weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
- ema_power=ema_power, param_names=param_names)
- super().__init__(params, defaults)
-
- def __setstate__(self, state):
- super().__setstate__(state)
- for group in self.param_groups:
- group.setdefault('amsgrad', False)
-
- @torch.no_grad()
- def step(self, closure=None):
- """Performs a single optimization step.
- Args:
- closure (callable, optional): A closure that reevaluates the model
- and returns the loss.
- """
- loss = None
- if closure is not None:
- with torch.enable_grad():
- loss = closure()
-
- for group in self.param_groups:
- params_with_grad = []
- grads = []
- exp_avgs = []
- exp_avg_sqs = []
- ema_params_with_grad = []
- state_sums = []
- max_exp_avg_sqs = []
- state_steps = []
- amsgrad = group['amsgrad']
- beta1, beta2 = group['betas']
- ema_decay = group['ema_decay']
- ema_power = group['ema_power']
-
- for p in group['params']:
- if p.grad is None:
- continue
- params_with_grad.append(p)
- if p.grad.is_sparse:
- raise RuntimeError('AdamW does not support sparse gradients')
- grads.append(p.grad)
-
- state = self.state[p]
-
- # State initialization
- if len(state) == 0:
- state['step'] = 0
- # Exponential moving average of gradient values
- state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
- # Exponential moving average of squared gradient values
- state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
- if amsgrad:
- # Maintains max of all exp. moving avg. of sq. grad. values
- state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
- # Exponential moving average of parameter values
- state['param_exp_avg'] = p.detach().float().clone()
-
- exp_avgs.append(state['exp_avg'])
- exp_avg_sqs.append(state['exp_avg_sq'])
- ema_params_with_grad.append(state['param_exp_avg'])
-
- if amsgrad:
- max_exp_avg_sqs.append(state['max_exp_avg_sq'])
-
- # update the steps for each param group update
- state['step'] += 1
- # record the step after step update
- state_steps.append(state['step'])
-
- optim._functional.adamw(params_with_grad,
- grads,
- exp_avgs,
- exp_avg_sqs,
- max_exp_avg_sqs,
- state_steps,
- amsgrad=amsgrad,
- beta1=beta1,
- beta2=beta2,
- lr=group['lr'],
- weight_decay=group['weight_decay'],
- eps=group['eps'],
- maximize=False)
-
- cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power)
- for param, ema_param in zip(params_with_grad, ema_params_with_grad):
- ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
-
- return loss
\ No newline at end of file
diff --git a/MagicQuill/comfy/lora.py b/MagicQuill/comfy/lora.py
deleted file mode 100644
index 082a8b3cba49572b6360539a3ac4fa3660fb7725..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/lora.py
+++ /dev/null
@@ -1,266 +0,0 @@
-import comfy.utils
-import logging
-
-LORA_CLIP_MAP = {
- "mlp.fc1": "mlp_fc1",
- "mlp.fc2": "mlp_fc2",
- "self_attn.k_proj": "self_attn_k_proj",
- "self_attn.q_proj": "self_attn_q_proj",
- "self_attn.v_proj": "self_attn_v_proj",
- "self_attn.out_proj": "self_attn_out_proj",
-}
-
-
-def load_lora(lora, to_load):
- patch_dict = {}
- loaded_keys = set()
- for x in to_load:
- alpha_name = "{}.alpha".format(x)
- alpha = None
- if alpha_name in lora.keys():
- alpha = lora[alpha_name].item()
- loaded_keys.add(alpha_name)
-
- dora_scale_name = "{}.dora_scale".format(x)
- dora_scale = None
- if dora_scale_name in lora.keys():
- dora_scale = lora[dora_scale_name]
- loaded_keys.add(dora_scale_name)
-
- regular_lora = "{}.lora_up.weight".format(x)
- diffusers_lora = "{}_lora.up.weight".format(x)
- diffusers2_lora = "{}.lora_B.weight".format(x)
- diffusers3_lora = "{}.lora.up.weight".format(x)
- transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
- A_name = None
-
- if regular_lora in lora.keys():
- A_name = regular_lora
- B_name = "{}.lora_down.weight".format(x)
- mid_name = "{}.lora_mid.weight".format(x)
- elif diffusers_lora in lora.keys():
- A_name = diffusers_lora
- B_name = "{}_lora.down.weight".format(x)
- mid_name = None
- elif diffusers2_lora in lora.keys():
- A_name = diffusers2_lora
- B_name = "{}.lora_A.weight".format(x)
- mid_name = None
- elif diffusers3_lora in lora.keys():
- A_name = diffusers3_lora
- B_name = "{}.lora.down.weight".format(x)
- mid_name = None
- elif transformers_lora in lora.keys():
- A_name = transformers_lora
- B_name ="{}.lora_linear_layer.down.weight".format(x)
- mid_name = None
-
- if A_name is not None:
- mid = None
- if mid_name is not None and mid_name in lora.keys():
- mid = lora[mid_name]
- loaded_keys.add(mid_name)
- patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale))
- loaded_keys.add(A_name)
- loaded_keys.add(B_name)
-
-
- ######## loha
- hada_w1_a_name = "{}.hada_w1_a".format(x)
- hada_w1_b_name = "{}.hada_w1_b".format(x)
- hada_w2_a_name = "{}.hada_w2_a".format(x)
- hada_w2_b_name = "{}.hada_w2_b".format(x)
- hada_t1_name = "{}.hada_t1".format(x)
- hada_t2_name = "{}.hada_t2".format(x)
- if hada_w1_a_name in lora.keys():
- hada_t1 = None
- hada_t2 = None
- if hada_t1_name in lora.keys():
- hada_t1 = lora[hada_t1_name]
- hada_t2 = lora[hada_t2_name]
- loaded_keys.add(hada_t1_name)
- loaded_keys.add(hada_t2_name)
-
- patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale))
- loaded_keys.add(hada_w1_a_name)
- loaded_keys.add(hada_w1_b_name)
- loaded_keys.add(hada_w2_a_name)
- loaded_keys.add(hada_w2_b_name)
-
-
- ######## lokr
- lokr_w1_name = "{}.lokr_w1".format(x)
- lokr_w2_name = "{}.lokr_w2".format(x)
- lokr_w1_a_name = "{}.lokr_w1_a".format(x)
- lokr_w1_b_name = "{}.lokr_w1_b".format(x)
- lokr_t2_name = "{}.lokr_t2".format(x)
- lokr_w2_a_name = "{}.lokr_w2_a".format(x)
- lokr_w2_b_name = "{}.lokr_w2_b".format(x)
-
- lokr_w1 = None
- if lokr_w1_name in lora.keys():
- lokr_w1 = lora[lokr_w1_name]
- loaded_keys.add(lokr_w1_name)
-
- lokr_w2 = None
- if lokr_w2_name in lora.keys():
- lokr_w2 = lora[lokr_w2_name]
- loaded_keys.add(lokr_w2_name)
-
- lokr_w1_a = None
- if lokr_w1_a_name in lora.keys():
- lokr_w1_a = lora[lokr_w1_a_name]
- loaded_keys.add(lokr_w1_a_name)
-
- lokr_w1_b = None
- if lokr_w1_b_name in lora.keys():
- lokr_w1_b = lora[lokr_w1_b_name]
- loaded_keys.add(lokr_w1_b_name)
-
- lokr_w2_a = None
- if lokr_w2_a_name in lora.keys():
- lokr_w2_a = lora[lokr_w2_a_name]
- loaded_keys.add(lokr_w2_a_name)
-
- lokr_w2_b = None
- if lokr_w2_b_name in lora.keys():
- lokr_w2_b = lora[lokr_w2_b_name]
- loaded_keys.add(lokr_w2_b_name)
-
- lokr_t2 = None
- if lokr_t2_name in lora.keys():
- lokr_t2 = lora[lokr_t2_name]
- loaded_keys.add(lokr_t2_name)
-
- if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
- patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale))
-
- #glora
- a1_name = "{}.a1.weight".format(x)
- a2_name = "{}.a2.weight".format(x)
- b1_name = "{}.b1.weight".format(x)
- b2_name = "{}.b2.weight".format(x)
- if a1_name in lora:
- patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale))
- loaded_keys.add(a1_name)
- loaded_keys.add(a2_name)
- loaded_keys.add(b1_name)
- loaded_keys.add(b2_name)
-
- w_norm_name = "{}.w_norm".format(x)
- b_norm_name = "{}.b_norm".format(x)
- w_norm = lora.get(w_norm_name, None)
- b_norm = lora.get(b_norm_name, None)
-
- if w_norm is not None:
- loaded_keys.add(w_norm_name)
- patch_dict[to_load[x]] = ("diff", (w_norm,))
- if b_norm is not None:
- loaded_keys.add(b_norm_name)
- patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,))
-
- diff_name = "{}.diff".format(x)
- diff_weight = lora.get(diff_name, None)
- if diff_weight is not None:
- patch_dict[to_load[x]] = ("diff", (diff_weight,))
- loaded_keys.add(diff_name)
-
- diff_bias_name = "{}.diff_b".format(x)
- diff_bias = lora.get(diff_bias_name, None)
- if diff_bias is not None:
- patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,))
- loaded_keys.add(diff_bias_name)
-
- for x in lora.keys():
- if x not in loaded_keys:
- logging.warning("lora key not loaded: {}".format(x))
-
- return patch_dict
-
-def model_lora_keys_clip(model, key_map={}):
- sdk = model.state_dict().keys()
-
- text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
- clip_l_present = False
- for b in range(32): #TODO: clean up
- for c in LORA_CLIP_MAP:
- k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
- if k in sdk:
- lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
- key_map[lora_key] = k
- lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
- key_map[lora_key] = k
- lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
- key_map[lora_key] = k
-
- k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
- if k in sdk:
- lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
- key_map[lora_key] = k
- lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
- key_map[lora_key] = k
- clip_l_present = True
- lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
- key_map[lora_key] = k
-
- k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
- if k in sdk:
- if clip_l_present:
- lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
- key_map[lora_key] = k
- lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
- key_map[lora_key] = k
- else:
- lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
- key_map[lora_key] = k
- lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
- key_map[lora_key] = k
- lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config
- key_map[lora_key] = k
-
-
- k = "clip_g.transformer.text_projection.weight"
- if k in sdk:
- key_map["lora_prior_te_text_projection"] = k #cascade lora?
- # key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too
- # key_map["lora_te_text_projection"] = k
-
- return key_map
-
-def model_lora_keys_unet(model, key_map={}):
- sd = model.state_dict()
- sdk = sd.keys()
-
- for k in sdk:
- if k.startswith("diffusion_model.") and k.endswith(".weight"):
- key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
- key_map["lora_unet_{}".format(key_lora)] = k
- key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config
-
- diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
- for k in diffusers_keys:
- if k.endswith(".weight"):
- unet_key = "diffusion_model.{}".format(diffusers_keys[k])
- key_lora = k[:-len(".weight")].replace(".", "_")
- key_map["lora_unet_{}".format(key_lora)] = unet_key
-
- diffusers_lora_prefix = ["", "unet."]
- for p in diffusers_lora_prefix:
- diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
- if diffusers_lora_key.endswith(".to_out.0"):
- diffusers_lora_key = diffusers_lora_key[:-2]
- key_map[diffusers_lora_key] = unet_key
-
- if isinstance(model, comfy.model_base.SD3): #Diffusers lora SD3
- for i in range(model.model_config.unet_config.get("depth", 0)):
- k = "transformer.transformer_blocks.{}.attn.".format(i)
- qkv = "diffusion_model.joint_blocks.{}.x_block.attn.qkv.weight".format(i)
- proj = "diffusion_model.joint_blocks.{}.x_block.attn.proj.weight".format(i)
- if qkv in sd:
- offset = sd[qkv].shape[0] // 3
- key_map["{}to_q".format(k)] = (qkv, (0, 0, offset))
- key_map["{}to_k".format(k)] = (qkv, (0, offset, offset))
- key_map["{}to_v".format(k)] = (qkv, (0, offset * 2, offset))
- key_map["{}to_out.0".format(k)] = proj
-
- return key_map
diff --git a/MagicQuill/comfy/model_base.py b/MagicQuill/comfy/model_base.py
deleted file mode 100644
index f45b375dee5aac1475686828acfada038799b046..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/model_base.py
+++ /dev/null
@@ -1,629 +0,0 @@
-import torch
-import logging
-from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
-from comfy.ldm.cascade.stage_c import StageC
-from comfy.ldm.cascade.stage_b import StageB
-from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
-from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
-from comfy.ldm.modules.diffusionmodules.mmdit import OpenAISignatureMMDITWrapper
-import comfy.ldm.audio.dit
-import comfy.ldm.audio.embedders
-import comfy.model_management
-import comfy.conds
-import comfy.ops
-from enum import Enum
-from . import utils
-import comfy.latent_formats
-import math
-
-class ModelType(Enum):
- EPS = 1
- V_PREDICTION = 2
- V_PREDICTION_EDM = 3
- STABLE_CASCADE = 4
- EDM = 5
- FLOW = 6
- V_PREDICTION_CONTINUOUS = 7
-
-
-from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV
-
-
-def model_sampling(model_config, model_type):
- s = ModelSamplingDiscrete
-
- if model_type == ModelType.EPS:
- c = EPS
- elif model_type == ModelType.V_PREDICTION:
- c = V_PREDICTION
- elif model_type == ModelType.V_PREDICTION_EDM:
- c = V_PREDICTION
- s = ModelSamplingContinuousEDM
- elif model_type == ModelType.FLOW:
- c = comfy.model_sampling.CONST
- s = comfy.model_sampling.ModelSamplingDiscreteFlow
- elif model_type == ModelType.STABLE_CASCADE:
- c = EPS
- s = StableCascadeSampling
- elif model_type == ModelType.EDM:
- c = EDM
- s = ModelSamplingContinuousEDM
- elif model_type == ModelType.V_PREDICTION_CONTINUOUS:
- c = V_PREDICTION
- s = ModelSamplingContinuousV
-
- class ModelSampling(s, c):
- pass
-
- return ModelSampling(model_config)
-
-
-class BaseModel(torch.nn.Module):
- def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel):
- super().__init__()
-
- unet_config = model_config.unet_config
- self.latent_format = model_config.latent_format
- self.model_config = model_config
- self.manual_cast_dtype = model_config.manual_cast_dtype
-
- if not unet_config.get("disable_unet_model_creation", False):
- if self.manual_cast_dtype is not None:
- operations = comfy.ops.manual_cast
- else:
- operations = comfy.ops.disable_weight_init
- self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
- if comfy.model_management.force_channels_last():
- self.diffusion_model.to(memory_format=torch.channels_last)
- logging.debug("using channels last mode for diffusion model")
- self.model_type = model_type
- self.model_sampling = model_sampling(model_config, model_type)
-
- self.adm_channels = unet_config.get("adm_in_channels", None)
- if self.adm_channels is None:
- self.adm_channels = 0
-
- self.concat_keys = ()
- logging.info("model_type {}".format(model_type.name))
- logging.debug("adm {}".format(self.adm_channels))
-
- def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
- sigma = t
- xc = self.model_sampling.calculate_input(sigma, x)
- if c_concat is not None:
- xc = torch.cat([xc] + [c_concat], dim=1)
-
- context = c_crossattn
- dtype = self.get_dtype()
-
- if self.manual_cast_dtype is not None:
- dtype = self.manual_cast_dtype
-
- xc = xc.to(dtype)
- t = self.model_sampling.timestep(t).float()
- context = context.to(dtype)
- extra_conds = {}
- for o in kwargs:
- extra = kwargs[o]
- if hasattr(extra, "dtype"):
- if extra.dtype != torch.int and extra.dtype != torch.long:
- extra = extra.to(dtype)
- extra_conds[o] = extra
-
- model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
- return self.model_sampling.calculate_denoised(sigma, model_output, x)
-
- def get_dtype(self):
- return self.diffusion_model.dtype
-
- def is_adm(self):
- return self.adm_channels > 0
-
- def encode_adm(self, **kwargs):
- return None
-
- def extra_conds(self, **kwargs):
- out = {}
- if len(self.concat_keys) > 0:
- cond_concat = []
- denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
- concat_latent_image = kwargs.get("concat_latent_image", None)
- if concat_latent_image is None:
- concat_latent_image = kwargs.get("latent_image", None)
- else:
- concat_latent_image = self.process_latent_in(concat_latent_image)
-
- noise = kwargs.get("noise", None)
- device = kwargs["device"]
-
- if concat_latent_image.shape[1:] != noise.shape[1:]:
- concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
-
- concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])
-
- if denoise_mask is not None:
- if len(denoise_mask.shape) == len(noise.shape):
- denoise_mask = denoise_mask[:,:1]
-
- denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1]))
- if denoise_mask.shape[-2:] != noise.shape[-2:]:
- denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center")
- denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0])
-
- for ck in self.concat_keys:
- if denoise_mask is not None:
- if ck == "mask":
- cond_concat.append(denoise_mask.to(device))
- elif ck == "masked_image":
- cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
- else:
- if ck == "mask":
- cond_concat.append(torch.ones_like(noise)[:,:1])
- elif ck == "masked_image":
- cond_concat.append(self.blank_inpaint_image_like(noise))
- data = torch.cat(cond_concat, dim=1)
- out['c_concat'] = comfy.conds.CONDNoiseShape(data)
-
- adm = self.encode_adm(**kwargs)
- if adm is not None:
- out['y'] = comfy.conds.CONDRegular(adm)
-
- cross_attn = kwargs.get("cross_attn", None)
- if cross_attn is not None:
- out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
-
- cross_attn_cnet = kwargs.get("cross_attn_controlnet", None)
- if cross_attn_cnet is not None:
- out['crossattn_controlnet'] = comfy.conds.CONDCrossAttn(cross_attn_cnet)
-
- c_concat = kwargs.get("noise_concat", None)
- if c_concat is not None:
- out['c_concat'] = comfy.conds.CONDNoiseShape(c_concat)
-
- return out
-
- def load_model_weights(self, sd, unet_prefix=""):
- to_load = {}
- keys = list(sd.keys())
- for k in keys:
- if k.startswith(unet_prefix):
- to_load[k[len(unet_prefix):]] = sd.pop(k)
-
- to_load = self.model_config.process_unet_state_dict(to_load)
- m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
- if len(m) > 0:
- logging.warning("unet missing: {}".format(m))
-
- if len(u) > 0:
- logging.warning("unet unexpected: {}".format(u))
- del to_load
- return self
-
- def process_latent_in(self, latent):
- return self.latent_format.process_in(latent)
-
- def process_latent_out(self, latent):
- return self.latent_format.process_out(latent)
-
- def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
- extra_sds = []
- if clip_state_dict is not None:
- extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict))
- if vae_state_dict is not None:
- extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict))
- if clip_vision_state_dict is not None:
- extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
-
- unet_state_dict = self.diffusion_model.state_dict()
- unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
-
- if self.model_type == ModelType.V_PREDICTION:
- unet_state_dict["v_pred"] = torch.tensor([])
-
- for sd in extra_sds:
- unet_state_dict.update(sd)
-
- return unet_state_dict
-
- def set_inpaint(self):
- self.concat_keys = ("mask", "masked_image")
- def blank_inpaint_image_like(latent_image):
- blank_image = torch.ones_like(latent_image)
- # these are the values for "zero" in pixel space translated to latent space
- blank_image[:,0] *= 0.8223
- blank_image[:,1] *= -0.6876
- blank_image[:,2] *= 0.6364
- blank_image[:,3] *= 0.1380
- return blank_image
- self.blank_inpaint_image_like = blank_inpaint_image_like
-
- def memory_required(self, input_shape):
- if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
- dtype = self.get_dtype()
- if self.manual_cast_dtype is not None:
- dtype = self.manual_cast_dtype
- #TODO: this needs to be tweaked
- area = input_shape[0] * math.prod(input_shape[2:])
- return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024)
- else:
- #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
- area = input_shape[0] * math.prod(input_shape[2:])
- return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
-
-
-def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
- adm_inputs = []
- weights = []
- noise_aug = []
- for unclip_cond in unclip_conditioning:
- for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
- weight = unclip_cond["strength"]
- noise_augment = unclip_cond["noise_augmentation"]
- noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
- c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device), seed=seed)
- adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
- weights.append(weight)
- noise_aug.append(noise_augment)
- adm_inputs.append(adm_out)
-
- if len(noise_aug) > 1:
- adm_out = torch.stack(adm_inputs).sum(0)
- noise_augment = noise_augment_merge
- noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
- c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
- adm_out = torch.cat((c_adm, noise_level_emb), 1)
-
- return adm_out
-
-class SD21UNCLIP(BaseModel):
- def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
- super().__init__(model_config, model_type, device=device)
- self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)
-
- def encode_adm(self, **kwargs):
- unclip_conditioning = kwargs.get("unclip_conditioning", None)
- device = kwargs["device"]
- if unclip_conditioning is None:
- return torch.zeros((1, self.adm_channels))
- else:
- return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10)
-
-def sdxl_pooled(args, noise_augmentor):
- if "unclip_conditioning" in args:
- return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor, seed=args.get("seed", 0) - 10)[:,:1280]
- else:
- return args["pooled_output"]
-
-class SDXLRefiner(BaseModel):
- def __init__(self, model_config, model_type=ModelType.EPS, device=None):
- super().__init__(model_config, model_type, device=device)
- self.embedder = Timestep(256)
- self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
-
- def encode_adm(self, **kwargs):
- clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
- width = kwargs.get("width", 768)
- height = kwargs.get("height", 768)
- crop_w = kwargs.get("crop_w", 0)
- crop_h = kwargs.get("crop_h", 0)
-
- if kwargs.get("prompt_type", "") == "negative":
- aesthetic_score = kwargs.get("aesthetic_score", 2.5)
- else:
- aesthetic_score = kwargs.get("aesthetic_score", 6)
-
- out = []
- out.append(self.embedder(torch.Tensor([height])))
- out.append(self.embedder(torch.Tensor([width])))
- out.append(self.embedder(torch.Tensor([crop_h])))
- out.append(self.embedder(torch.Tensor([crop_w])))
- out.append(self.embedder(torch.Tensor([aesthetic_score])))
- flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
- return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
-
-class SDXL(BaseModel):
- def __init__(self, model_config, model_type=ModelType.EPS, device=None):
- super().__init__(model_config, model_type, device=device)
- self.embedder = Timestep(256)
- self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
-
- def encode_adm(self, **kwargs):
- clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
- width = kwargs.get("width", 768)
- height = kwargs.get("height", 768)
- crop_w = kwargs.get("crop_w", 0)
- crop_h = kwargs.get("crop_h", 0)
- target_width = kwargs.get("target_width", width)
- target_height = kwargs.get("target_height", height)
-
- out = []
- out.append(self.embedder(torch.Tensor([height])))
- out.append(self.embedder(torch.Tensor([width])))
- out.append(self.embedder(torch.Tensor([crop_h])))
- out.append(self.embedder(torch.Tensor([crop_w])))
- out.append(self.embedder(torch.Tensor([target_height])))
- out.append(self.embedder(torch.Tensor([target_width])))
- flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
- return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
-
-class SVD_img2vid(BaseModel):
- def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
- super().__init__(model_config, model_type, device=device)
- self.embedder = Timestep(256)
-
- def encode_adm(self, **kwargs):
- fps_id = kwargs.get("fps", 6) - 1
- motion_bucket_id = kwargs.get("motion_bucket_id", 127)
- augmentation = kwargs.get("augmentation_level", 0)
-
- out = []
- out.append(self.embedder(torch.Tensor([fps_id])))
- out.append(self.embedder(torch.Tensor([motion_bucket_id])))
- out.append(self.embedder(torch.Tensor([augmentation])))
-
- flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
- return flat
-
- def extra_conds(self, **kwargs):
- out = {}
- adm = self.encode_adm(**kwargs)
- if adm is not None:
- out['y'] = comfy.conds.CONDRegular(adm)
-
- latent_image = kwargs.get("concat_latent_image", None)
- noise = kwargs.get("noise", None)
- device = kwargs["device"]
-
- if latent_image is None:
- latent_image = torch.zeros_like(noise)
-
- if latent_image.shape[1:] != noise.shape[1:]:
- latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
-
- latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
-
- out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
-
- cross_attn = kwargs.get("cross_attn", None)
- if cross_attn is not None:
- out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
-
- if "time_conditioning" in kwargs:
- out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"])
-
- out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0])
- return out
-
-class SV3D_u(SVD_img2vid):
- def encode_adm(self, **kwargs):
- augmentation = kwargs.get("augmentation_level", 0)
-
- out = []
- out.append(self.embedder(torch.flatten(torch.Tensor([augmentation]))))
-
- flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
- return flat
-
-class SV3D_p(SVD_img2vid):
- def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
- super().__init__(model_config, model_type, device=device)
- self.embedder_512 = Timestep(512)
-
- def encode_adm(self, **kwargs):
- augmentation = kwargs.get("augmentation_level", 0)
- elevation = kwargs.get("elevation", 0) #elevation and azimuth are in degrees here
- azimuth = kwargs.get("azimuth", 0)
- noise = kwargs.get("noise", None)
-
- out = []
- out.append(self.embedder(torch.flatten(torch.Tensor([augmentation]))))
- out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(90 - torch.Tensor([elevation])), 360.0))))
- out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(torch.Tensor([azimuth])), 360.0))))
-
- out = list(map(lambda a: utils.resize_to_batch_size(a, noise.shape[0]), out))
- return torch.cat(out, dim=1)
-
-
-class Stable_Zero123(BaseModel):
- def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None):
- super().__init__(model_config, model_type, device=device)
- self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device)
- self.cc_projection.weight.copy_(cc_projection_weight)
- self.cc_projection.bias.copy_(cc_projection_bias)
-
- def extra_conds(self, **kwargs):
- out = {}
-
- latent_image = kwargs.get("concat_latent_image", None)
- noise = kwargs.get("noise", None)
-
- if latent_image is None:
- latent_image = torch.zeros_like(noise)
-
- if latent_image.shape[1:] != noise.shape[1:]:
- latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
-
- latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
-
- out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
-
- cross_attn = kwargs.get("cross_attn", None)
- if cross_attn is not None:
- if cross_attn.shape[-1] != 768:
- cross_attn = self.cc_projection(cross_attn)
- out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
- return out
-
-class SD_X4Upscaler(BaseModel):
- def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
- super().__init__(model_config, model_type, device=device)
- self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350)
-
- def extra_conds(self, **kwargs):
- out = {}
-
- image = kwargs.get("concat_image", None)
- noise = kwargs.get("noise", None)
- noise_augment = kwargs.get("noise_augmentation", 0.0)
- device = kwargs["device"]
- seed = kwargs["seed"] - 10
-
- noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment)
-
- if image is None:
- image = torch.zeros_like(noise)[:,:3]
-
- if image.shape[1:] != noise.shape[1:]:
- image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
-
- noise_level = torch.tensor([noise_level], device=device)
- if noise_augment > 0:
- image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed)
-
- image = utils.resize_to_batch_size(image, noise.shape[0])
-
- out['c_concat'] = comfy.conds.CONDNoiseShape(image)
- out['y'] = comfy.conds.CONDRegular(noise_level)
- return out
-
-class IP2P:
- def extra_conds(self, **kwargs):
- out = {}
-
- image = kwargs.get("concat_latent_image", None)
- noise = kwargs.get("noise", None)
- device = kwargs["device"]
-
- if image is None:
- image = torch.zeros_like(noise)
-
- if image.shape[1:] != noise.shape[1:]:
- image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
-
- image = utils.resize_to_batch_size(image, noise.shape[0])
-
- out['c_concat'] = comfy.conds.CONDNoiseShape(self.process_ip2p_image_in(image))
- adm = self.encode_adm(**kwargs)
- if adm is not None:
- out['y'] = comfy.conds.CONDRegular(adm)
- return out
-
-class SD15_instructpix2pix(IP2P, BaseModel):
- def __init__(self, model_config, model_type=ModelType.EPS, device=None):
- super().__init__(model_config, model_type, device=device)
- self.process_ip2p_image_in = lambda image: image
-
-class SDXL_instructpix2pix(IP2P, SDXL):
- def __init__(self, model_config, model_type=ModelType.EPS, device=None):
- super().__init__(model_config, model_type, device=device)
- if model_type == ModelType.V_PREDICTION_EDM:
- self.process_ip2p_image_in = lambda image: comfy.latent_formats.SDXL().process_in(image) #cosxl ip2p
- else:
- self.process_ip2p_image_in = lambda image: image #diffusers ip2p
-
-
-class StableCascade_C(BaseModel):
- def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
- super().__init__(model_config, model_type, device=device, unet_model=StageC)
- self.diffusion_model.eval().requires_grad_(False)
-
- def extra_conds(self, **kwargs):
- out = {}
- clip_text_pooled = kwargs["pooled_output"]
- if clip_text_pooled is not None:
- out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled)
-
- if "unclip_conditioning" in kwargs:
- embeds = []
- for unclip_cond in kwargs["unclip_conditioning"]:
- weight = unclip_cond["strength"]
- embeds.append(unclip_cond["clip_vision_output"].image_embeds.unsqueeze(0) * weight)
- clip_img = torch.cat(embeds, dim=1)
- else:
- clip_img = torch.zeros((1, 1, 768))
- out["clip_img"] = comfy.conds.CONDRegular(clip_img)
- out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
- out["crp"] = comfy.conds.CONDRegular(torch.zeros((1,)))
-
- cross_attn = kwargs.get("cross_attn", None)
- if cross_attn is not None:
- out['clip_text'] = comfy.conds.CONDCrossAttn(cross_attn)
- return out
-
-
-class StableCascade_B(BaseModel):
- def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
- super().__init__(model_config, model_type, device=device, unet_model=StageB)
- self.diffusion_model.eval().requires_grad_(False)
-
- def extra_conds(self, **kwargs):
- out = {}
- noise = kwargs.get("noise", None)
-
- clip_text_pooled = kwargs["pooled_output"]
- if clip_text_pooled is not None:
- out['clip'] = comfy.conds.CONDRegular(clip_text_pooled)
-
- #size of prior doesn't really matter if zeros because it gets resized but I still want it to get batched
- prior = kwargs.get("stable_cascade_prior", torch.zeros((1, 16, (noise.shape[2] * 4) // 42, (noise.shape[3] * 4) // 42), dtype=noise.dtype, layout=noise.layout, device=noise.device))
-
- out["effnet"] = comfy.conds.CONDRegular(prior)
- out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
- return out
-
-
-class SD3(BaseModel):
- def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
- super().__init__(model_config, model_type, device=device, unet_model=OpenAISignatureMMDITWrapper)
-
- def encode_adm(self, **kwargs):
- return kwargs["pooled_output"]
-
- def extra_conds(self, **kwargs):
- out = super().extra_conds(**kwargs)
- cross_attn = kwargs.get("cross_attn", None)
- if cross_attn is not None:
- out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
- return out
-
- def memory_required(self, input_shape):
- if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
- dtype = self.get_dtype()
- if self.manual_cast_dtype is not None:
- dtype = self.manual_cast_dtype
- #TODO: this probably needs to be tweaked
- area = input_shape[0] * input_shape[2] * input_shape[3]
- return (area * comfy.model_management.dtype_size(dtype) * 0.012) * (1024 * 1024)
- else:
- area = input_shape[0] * input_shape[2] * input_shape[3]
- return (area * 0.3) * (1024 * 1024)
-
-
-class StableAudio1(BaseModel):
- def __init__(self, model_config, seconds_start_embedder_weights, seconds_total_embedder_weights, model_type=ModelType.V_PREDICTION_CONTINUOUS, device=None):
- super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.audio.dit.AudioDiffusionTransformer)
- self.seconds_start_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512)
- self.seconds_total_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512)
- self.seconds_start_embedder.load_state_dict(seconds_start_embedder_weights)
- self.seconds_total_embedder.load_state_dict(seconds_total_embedder_weights)
-
- def extra_conds(self, **kwargs):
- out = {}
-
- noise = kwargs.get("noise", None)
- device = kwargs["device"]
-
- seconds_start = kwargs.get("seconds_start", 0)
- seconds_total = kwargs.get("seconds_total", int(noise.shape[-1] / 21.53))
-
- seconds_start_embed = self.seconds_start_embedder([seconds_start])[0].to(device)
- seconds_total_embed = self.seconds_total_embedder([seconds_total])[0].to(device)
-
- global_embed = torch.cat([seconds_start_embed, seconds_total_embed], dim=-1).reshape((1, -1))
- out['global_embed'] = comfy.conds.CONDRegular(global_embed)
-
- cross_attn = kwargs.get("cross_attn", None)
- if cross_attn is not None:
- cross_attn = torch.cat([cross_attn.to(device), seconds_start_embed.repeat((cross_attn.shape[0], 1, 1)), seconds_total_embed.repeat((cross_attn.shape[0], 1, 1))], dim=1)
- out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
- return out
diff --git a/MagicQuill/comfy/model_detection.py b/MagicQuill/comfy/model_detection.py
deleted file mode 100644
index 4843e6a4a27409fe31b5a3758961169124ed0dfe..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/model_detection.py
+++ /dev/null
@@ -1,433 +0,0 @@
-import comfy.supported_models
-import comfy.supported_models_base
-import math
-import logging
-
-def count_blocks(state_dict_keys, prefix_string):
- count = 0
- while True:
- c = False
- for k in state_dict_keys:
- if k.startswith(prefix_string.format(count)):
- c = True
- break
- if c == False:
- break
- count += 1
- return count
-
-def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
- context_dim = None
- use_linear_in_transformer = False
-
- transformer_prefix = prefix + "1.transformer_blocks."
- transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
- if len(transformer_keys) > 0:
- last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
- context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
- use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
- time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict
- time_stack_cross = '{}1.time_stack.0.attn2.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn2.to_q.weight'.format(prefix) in state_dict
- return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross
- return None
-
-def detect_unet_config(state_dict, key_prefix):
- state_dict_keys = list(state_dict.keys())
-
- if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model
- unet_config = {}
- unet_config["in_channels"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[1]
- patch_size = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[2]
- unet_config["patch_size"] = patch_size
- unet_config["out_channels"] = state_dict['{}final_layer.linear.weight'.format(key_prefix)].shape[0] // (patch_size * patch_size)
-
- unet_config["depth"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] // 64
- unet_config["input_size"] = None
- y_key = '{}y_embedder.mlp.0.weight'.format(key_prefix)
- if y_key in state_dict_keys:
- unet_config["adm_in_channels"] = state_dict[y_key].shape[1]
-
- context_key = '{}context_embedder.weight'.format(key_prefix)
- if context_key in state_dict_keys:
- in_features = state_dict[context_key].shape[1]
- out_features = state_dict[context_key].shape[0]
- unet_config["context_embedder_config"] = {"target": "torch.nn.Linear", "params": {"in_features": in_features, "out_features": out_features}}
- num_patches_key = '{}pos_embed'.format(key_prefix)
- if num_patches_key in state_dict_keys:
- num_patches = state_dict[num_patches_key].shape[1]
- unet_config["num_patches"] = num_patches
- unet_config["pos_embed_max_size"] = round(math.sqrt(num_patches))
-
- rms_qk = '{}joint_blocks.0.context_block.attn.ln_q.weight'.format(key_prefix)
- if rms_qk in state_dict_keys:
- unet_config["qk_norm"] = "rms"
-
- unet_config["pos_embed_scaling_factor"] = None #unused for inference
- context_processor = '{}context_processor.layers.0.attn.qkv.weight'.format(key_prefix)
- if context_processor in state_dict_keys:
- unet_config["context_processor_layers"] = count_blocks(state_dict_keys, '{}context_processor.layers.'.format(key_prefix) + '{}.')
- return unet_config
-
- if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade
- unet_config = {}
- text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix)
- if text_mapper_name in state_dict_keys:
- unet_config['stable_cascade_stage'] = 'c'
- w = state_dict[text_mapper_name]
- if w.shape[0] == 1536: #stage c lite
- unet_config['c_cond'] = 1536
- unet_config['c_hidden'] = [1536, 1536]
- unet_config['nhead'] = [24, 24]
- unet_config['blocks'] = [[4, 12], [12, 4]]
- elif w.shape[0] == 2048: #stage c full
- unet_config['c_cond'] = 2048
- elif '{}clip_mapper.weight'.format(key_prefix) in state_dict_keys:
- unet_config['stable_cascade_stage'] = 'b'
- w = state_dict['{}down_blocks.1.0.channelwise.0.weight'.format(key_prefix)]
- if w.shape[-1] == 640:
- unet_config['c_hidden'] = [320, 640, 1280, 1280]
- unet_config['nhead'] = [-1, -1, 20, 20]
- unet_config['blocks'] = [[2, 6, 28, 6], [6, 28, 6, 2]]
- unet_config['block_repeat'] = [[1, 1, 1, 1], [3, 3, 2, 2]]
- elif w.shape[-1] == 576: #stage b lite
- unet_config['c_hidden'] = [320, 576, 1152, 1152]
- unet_config['nhead'] = [-1, 9, 18, 18]
- unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]]
- unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]]
- return unet_config
-
- if '{}transformer.rotary_pos_emb.inv_freq'.format(key_prefix) in state_dict_keys: #stable audio dit
- unet_config = {}
- unet_config["audio_model"] = "dit1.0"
- return unet_config
-
- unet_config = {
- "use_checkpoint": False,
- "image_size": 32,
- "use_spatial_transformer": True,
- "legacy": False
- }
-
- y_input = '{}label_emb.0.0.weight'.format(key_prefix)
- if y_input in state_dict_keys:
- unet_config["num_classes"] = "sequential"
- unet_config["adm_in_channels"] = state_dict[y_input].shape[1]
- else:
- unet_config["adm_in_channels"] = None
-
- model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0]
- in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1]
-
- out_key = '{}out.2.weight'.format(key_prefix)
- if out_key in state_dict:
- out_channels = state_dict[out_key].shape[0]
- else:
- out_channels = 4
-
- num_res_blocks = []
- channel_mult = []
- attention_resolutions = []
- transformer_depth = []
- transformer_depth_output = []
- context_dim = None
- use_linear_in_transformer = False
-
- video_model = False
- video_model_cross = False
-
- current_res = 1
- count = 0
-
- last_res_blocks = 0
- last_channel_mult = 0
-
- input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.')
- for count in range(input_block_count):
- prefix = '{}input_blocks.{}.'.format(key_prefix, count)
- prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1)
-
- block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
- if len(block_keys) == 0:
- break
-
- block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys)))
-
- if "{}0.op.weight".format(prefix) in block_keys: #new layer
- num_res_blocks.append(last_res_blocks)
- channel_mult.append(last_channel_mult)
-
- current_res *= 2
- last_res_blocks = 0
- last_channel_mult = 0
- out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
- if out is not None:
- transformer_depth_output.append(out[0])
- else:
- transformer_depth_output.append(0)
- else:
- res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
- if res_block_prefix in block_keys:
- last_res_blocks += 1
- last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels
-
- out = calculate_transformer_depth(prefix, state_dict_keys, state_dict)
- if out is not None:
- transformer_depth.append(out[0])
- if context_dim is None:
- context_dim = out[1]
- use_linear_in_transformer = out[2]
- video_model = out[3]
- video_model_cross = out[4]
- else:
- transformer_depth.append(0)
-
- res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output)
- if res_block_prefix in block_keys_output:
- out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
- if out is not None:
- transformer_depth_output.append(out[0])
- else:
- transformer_depth_output.append(0)
-
-
- num_res_blocks.append(last_res_blocks)
- channel_mult.append(last_channel_mult)
- if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys:
- transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
- elif "{}middle_block.0.in_layers.0.weight".format(key_prefix) in state_dict_keys:
- transformer_depth_middle = -1
- else:
- transformer_depth_middle = -2
-
- unet_config["in_channels"] = in_channels
- unet_config["out_channels"] = out_channels
- unet_config["model_channels"] = model_channels
- unet_config["num_res_blocks"] = num_res_blocks
- unet_config["transformer_depth"] = transformer_depth
- unet_config["transformer_depth_output"] = transformer_depth_output
- unet_config["channel_mult"] = channel_mult
- unet_config["transformer_depth_middle"] = transformer_depth_middle
- unet_config['use_linear_in_transformer'] = use_linear_in_transformer
- unet_config["context_dim"] = context_dim
-
- if video_model:
- unet_config["extra_ff_mix_layer"] = True
- unet_config["use_spatial_context"] = True
- unet_config["merge_strategy"] = "learned_with_images"
- unet_config["merge_factor"] = 0.0
- unet_config["video_kernel_size"] = [3, 1, 1]
- unet_config["use_temporal_resblock"] = True
- unet_config["use_temporal_attention"] = True
- unet_config["disable_temporal_crossattention"] = not video_model_cross
- else:
- unet_config["use_temporal_resblock"] = False
- unet_config["use_temporal_attention"] = False
-
- return unet_config
-
-def model_config_from_unet_config(unet_config, state_dict=None):
- for model_config in comfy.supported_models.models:
- if model_config.matches(unet_config, state_dict):
- return model_config(unet_config)
-
- logging.error("no match {}".format(unet_config))
- return None
-
-def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False):
- unet_config = detect_unet_config(state_dict, unet_key_prefix)
- model_config = model_config_from_unet_config(unet_config, state_dict)
- if model_config is None and use_base_if_no_match:
- return comfy.supported_models_base.BASE(unet_config)
- else:
- return model_config
-
-def unet_prefix_from_state_dict(state_dict):
- if "model.model.postprocess_conv.weight" in state_dict: #audio models
- unet_key_prefix = "model.model."
- else:
- unet_key_prefix = "model.diffusion_model."
- return unet_key_prefix
-
-def convert_config(unet_config):
- new_config = unet_config.copy()
- num_res_blocks = new_config.get("num_res_blocks", None)
- channel_mult = new_config.get("channel_mult", None)
-
- if isinstance(num_res_blocks, int):
- num_res_blocks = len(channel_mult) * [num_res_blocks]
-
- if "attention_resolutions" in new_config:
- attention_resolutions = new_config.pop("attention_resolutions")
- transformer_depth = new_config.get("transformer_depth", None)
- transformer_depth_middle = new_config.get("transformer_depth_middle", None)
-
- if isinstance(transformer_depth, int):
- transformer_depth = len(channel_mult) * [transformer_depth]
- if transformer_depth_middle is None:
- transformer_depth_middle = transformer_depth[-1]
- t_in = []
- t_out = []
- s = 1
- for i in range(len(num_res_blocks)):
- res = num_res_blocks[i]
- d = 0
- if s in attention_resolutions:
- d = transformer_depth[i]
-
- t_in += [d] * res
- t_out += [d] * (res + 1)
- s *= 2
- transformer_depth = t_in
- transformer_depth_output = t_out
- new_config["transformer_depth"] = t_in
- new_config["transformer_depth_output"] = t_out
- new_config["transformer_depth_middle"] = transformer_depth_middle
-
- new_config["num_res_blocks"] = num_res_blocks
- return new_config
-
-
-def unet_config_from_diffusers_unet(state_dict, dtype=None):
- match = {}
- transformer_depth = []
-
- attn_res = 1
- down_blocks = count_blocks(state_dict, "down_blocks.{}")
- for i in range(down_blocks):
- attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}')
- res_blocks = count_blocks(state_dict, "down_blocks.{}.resnets.".format(i) + '{}')
- for ab in range(attn_blocks):
- transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}')
- transformer_depth.append(transformer_count)
- if transformer_count > 0:
- match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1]
-
- attn_res *= 2
- if attn_blocks == 0:
- for i in range(res_blocks):
- transformer_depth.append(0)
-
- match["transformer_depth"] = transformer_depth
-
- match["model_channels"] = state_dict["conv_in.weight"].shape[0]
- match["in_channels"] = state_dict["conv_in.weight"].shape[1]
- match["adm_in_channels"] = None
- if "class_embedding.linear_1.weight" in state_dict:
- match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1]
- elif "add_embedding.linear_1.weight" in state_dict:
- match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1]
-
- SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
- 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
- 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
- SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384,
- 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4,
- 'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0],
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
- SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2],
- 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True,
- 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
- SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
- 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
- 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
- SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
- 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
- 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
- SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None,
- 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
- 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8,
- 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
- SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
- 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1,
- 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1],
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
- SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
- 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0,
- 'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0],
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
- SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320,
- 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
- 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
- SDXL_diffusers_ip2p = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 8, 'model_channels': 320,
- 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
- 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
- SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
- 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4],
- 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
- Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
- 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2],
- 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
- KOALA_700M = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
- 'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 5], 'transformer_depth_output': [0, 0, 2, 2, 5, 5],
- 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
- KOALA_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
- 'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 6], 'transformer_depth_output': [0, 0, 2, 2, 6, 6],
- 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 6, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
- SD09_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1],
- 'transformer_depth': [1, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True,
- 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1],
- 'use_temporal_attention': False, 'use_temporal_resblock': False, 'disable_self_attentions': [True, False, False]}
-
- SD_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
- 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1],
- 'transformer_depth': [0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': False,
- 'context_dim': 768, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 1, 1, 1, 1],
- 'use_temporal_attention': False, 'use_temporal_resblock': False}
-
-
- supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p]
-
- for unet_config in supported_models:
- matches = True
- for k in match:
- if match[k] != unet_config[k]:
- matches = False
- break
- if matches:
- return convert_config(unet_config)
- return None
-
-def model_config_from_diffusers_unet(state_dict):
- unet_config = unet_config_from_diffusers_unet(state_dict)
- if unet_config is not None:
- return model_config_from_unet_config(unet_config)
- return None
diff --git a/MagicQuill/comfy/model_management.py b/MagicQuill/comfy/model_management.py
deleted file mode 100644
index 047193290fa27199431300679b1dcfc64383ab85..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/model_management.py
+++ /dev/null
@@ -1,957 +0,0 @@
-import psutil
-import logging
-from enum import Enum
-from comfy.cli_args import args
-import torch
-import sys
-import platform
-
-class VRAMState(Enum):
- DISABLED = 0 #No vram present: no need to move models to vram
- NO_VRAM = 1 #Very low vram: enable all the options to save vram
- LOW_VRAM = 2
- NORMAL_VRAM = 3
- HIGH_VRAM = 4
- SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
-
-class CPUState(Enum):
- GPU = 0
- CPU = 1
- MPS = 2
-
-# Determine VRAM State
-vram_state = VRAMState.NORMAL_VRAM
-set_vram_to = VRAMState.NORMAL_VRAM
-cpu_state = CPUState.GPU
-
-total_vram = 0
-
-lowvram_available = True
-xpu_available = False
-
-if args.deterministic:
- logging.info("Using deterministic algorithms for pytorch")
- torch.use_deterministic_algorithms(True, warn_only=True)
-
-directml_enabled = False
-if args.directml is not None:
- import torch_directml
- directml_enabled = True
- device_index = args.directml
- if device_index < 0:
- directml_device = torch_directml.device()
- else:
- directml_device = torch_directml.device(device_index)
- logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index)))
- # torch_directml.disable_tiled_resources(True)
- lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
-
-try:
- import intel_extension_for_pytorch as ipex
- if torch.xpu.is_available():
- xpu_available = True
-except:
- pass
-
-try:
- if torch.backends.mps.is_available():
- cpu_state = CPUState.MPS
- import torch.mps
-except:
- pass
-
-if args.cpu:
- cpu_state = CPUState.CPU
-
-def is_intel_xpu():
- global cpu_state
- global xpu_available
- if cpu_state == CPUState.GPU:
- if xpu_available:
- return True
- return False
-
-def get_torch_device():
- global directml_enabled
- global cpu_state
- if directml_enabled:
- global directml_device
- return directml_device
- if cpu_state == CPUState.MPS:
- return torch.device("mps")
- if cpu_state == CPUState.CPU:
- return torch.device("cpu")
- else:
- if is_intel_xpu():
- return torch.device("xpu", torch.xpu.current_device())
- else:
- return torch.device(torch.cuda.current_device())
-
-def get_total_memory(dev=None, torch_total_too=False):
- global directml_enabled
- if dev is None:
- dev = get_torch_device()
-
- if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
- mem_total = psutil.virtual_memory().total
- mem_total_torch = mem_total
- else:
- if directml_enabled:
- mem_total = 1024 * 1024 * 1024 #TODO
- mem_total_torch = mem_total
- elif is_intel_xpu():
- stats = torch.xpu.memory_stats(dev)
- mem_reserved = stats['reserved_bytes.all.current']
- mem_total_torch = mem_reserved
- mem_total = torch.xpu.get_device_properties(dev).total_memory
- else:
- stats = torch.cuda.memory_stats(dev)
- mem_reserved = stats['reserved_bytes.all.current']
- _, mem_total_cuda = torch.cuda.mem_get_info(dev)
- mem_total_torch = mem_reserved
- mem_total = mem_total_cuda
-
- if torch_total_too:
- return (mem_total, mem_total_torch)
- else:
- return mem_total
-
-total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
-total_ram = psutil.virtual_memory().total / (1024 * 1024)
-logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
-
-try:
- logging.info("pytorch version: {}".format(torch.version.__version__))
-except:
- pass
-
-try:
- OOM_EXCEPTION = torch.cuda.OutOfMemoryError
-except:
- OOM_EXCEPTION = Exception
-
-XFORMERS_VERSION = ""
-XFORMERS_ENABLED_VAE = True
-if args.disable_xformers:
- XFORMERS_IS_AVAILABLE = False
-else:
- try:
- import xformers
- import xformers.ops
- XFORMERS_IS_AVAILABLE = True
- try:
- XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
- except:
- pass
- try:
- XFORMERS_VERSION = xformers.version.__version__
- logging.info("xformers version: {}".format(XFORMERS_VERSION))
- if XFORMERS_VERSION.startswith("0.0.18"):
- logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
- logging.warning("Please downgrade or upgrade xformers to a different version.\n")
- XFORMERS_ENABLED_VAE = False
- except:
- pass
- except:
- XFORMERS_IS_AVAILABLE = False
-
-def is_nvidia():
- global cpu_state
- if cpu_state == CPUState.GPU:
- if torch.version.cuda:
- return True
- return False
-
-ENABLE_PYTORCH_ATTENTION = False
-if args.use_pytorch_cross_attention:
- ENABLE_PYTORCH_ATTENTION = True
- XFORMERS_IS_AVAILABLE = False
-
-VAE_DTYPES = [torch.float32]
-
-try:
- if is_nvidia():
- torch_version = torch.version.__version__
- if int(torch_version[0]) >= 2:
- if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
- ENABLE_PYTORCH_ATTENTION = True
- if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
- VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES
- if is_intel_xpu():
- if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
- ENABLE_PYTORCH_ATTENTION = True
-except:
- pass
-
-if is_intel_xpu():
- VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES
-
-if args.cpu_vae:
- VAE_DTYPES = [torch.float32]
-
-
-if ENABLE_PYTORCH_ATTENTION:
- torch.backends.cuda.enable_math_sdp(True)
- torch.backends.cuda.enable_flash_sdp(True)
- torch.backends.cuda.enable_mem_efficient_sdp(True)
-
-if args.lowvram:
- set_vram_to = VRAMState.LOW_VRAM
- lowvram_available = True
-elif args.novram:
- set_vram_to = VRAMState.NO_VRAM
-elif args.highvram or args.gpu_only:
- vram_state = VRAMState.HIGH_VRAM
-
-FORCE_FP32 = False
-FORCE_FP16 = False
-if args.force_fp32:
- logging.info("Forcing FP32, if this improves things please report it.")
- FORCE_FP32 = True
-
-if args.force_fp16:
- logging.info("Forcing FP16.")
- FORCE_FP16 = True
-
-if lowvram_available:
- if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
- vram_state = set_vram_to
-
-
-if cpu_state != CPUState.GPU:
- vram_state = VRAMState.DISABLED
-
-if cpu_state == CPUState.MPS:
- vram_state = VRAMState.SHARED
-
-logging.info(f"Set vram state to: {vram_state.name}")
-
-DISABLE_SMART_MEMORY = args.disable_smart_memory
-
-if DISABLE_SMART_MEMORY:
- logging.info("Disabling smart memory management")
-
-def get_torch_device_name(device):
- if hasattr(device, 'type'):
- if device.type == "cuda":
- try:
- allocator_backend = torch.cuda.get_allocator_backend()
- except:
- allocator_backend = ""
- return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
- else:
- return "{}".format(device.type)
- elif is_intel_xpu():
- return "{} {}".format(device, torch.xpu.get_device_name(device))
- else:
- return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
-
-try:
- logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
-except:
- logging.warning("Could not pick default device.")
-
-
-current_loaded_models = []
-
-def module_size(module):
- module_mem = 0
- sd = module.state_dict()
- for k in sd:
- t = sd[k]
- module_mem += t.nelement() * t.element_size()
- return module_mem
-
-class LoadedModel:
- def __init__(self, model):
- self.model = model
- self.device = model.load_device
- self.weights_loaded = False
- self.real_model = None
- self.currently_used = True
-
- def model_memory(self):
- return self.model.model_size()
-
- def model_memory_required(self, device):
- if device == self.model.current_device:
- return 0
- else:
- return self.model_memory()
-
- def model_load(self, lowvram_model_memory=0, force_patch_weights=False):
- patch_model_to = self.device
-
- self.model.model_patches_to(self.device)
- self.model.model_patches_to(self.model.model_dtype())
-
- load_weights = not self.weights_loaded
-
- try:
- if lowvram_model_memory > 0 and load_weights:
- self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights)
- else:
- self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights)
- except Exception as e:
- self.model.unpatch_model(self.model.offload_device)
- self.model_unload()
- raise e
-
- if is_intel_xpu() and not args.disable_ipex_optimize:
- self.real_model = ipex.optimize(self.real_model.eval(), graph_mode=True, concat_linear=True)
-
- self.weights_loaded = True
- return self.real_model
-
- def should_reload_model(self, force_patch_weights=False):
- if force_patch_weights and self.model.lowvram_patch_counter > 0:
- return True
- return False
-
- def model_unload(self, unpatch_weights=True):
- self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights)
- self.model.model_patches_to(self.model.offload_device)
- self.weights_loaded = self.weights_loaded and not unpatch_weights
- self.real_model = None
-
- def __eq__(self, other):
- return self.model is other.model
-
-def minimum_inference_memory():
- return (1024 * 1024 * 1024)
-
-def unload_model_clones(model, unload_weights_only=True, force_unload=True):
- to_unload = []
- for i in range(len(current_loaded_models)):
- if model.is_clone(current_loaded_models[i].model):
- to_unload = [i] + to_unload
-
- if len(to_unload) == 0:
- return True
-
- same_weights = 0
- for i in to_unload:
- if model.clone_has_same_weights(current_loaded_models[i].model):
- same_weights += 1
-
- if same_weights == len(to_unload):
- unload_weight = False
- else:
- unload_weight = True
-
- if not force_unload:
- if unload_weights_only and unload_weight == False:
- return None
-
- for i in to_unload:
- logging.debug("unload clone {} {}".format(i, unload_weight))
- current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)
-
- return unload_weight
-
-def free_memory(memory_required, device, keep_loaded=[]):
- unloaded_model = []
- can_unload = []
-
- for i in range(len(current_loaded_models) -1, -1, -1):
- shift_model = current_loaded_models[i]
- if shift_model.device == device:
- if shift_model not in keep_loaded:
- can_unload.append((sys.getrefcount(shift_model.model), shift_model.model_memory(), i))
- shift_model.currently_used = False
-
- for x in sorted(can_unload):
- i = x[-1]
- if not DISABLE_SMART_MEMORY:
- if get_free_memory(device) > memory_required:
- break
- current_loaded_models[i].model_unload()
- unloaded_model.append(i)
-
- for i in sorted(unloaded_model, reverse=True):
- current_loaded_models.pop(i)
-
- if len(unloaded_model) > 0:
- soft_empty_cache()
- else:
- if vram_state != VRAMState.HIGH_VRAM:
- mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
- if mem_free_torch > mem_free_total * 0.25:
- soft_empty_cache()
-
-def load_models_gpu(models, memory_required=0, force_patch_weights=False):
- global vram_state
-
- inference_memory = minimum_inference_memory()
- extra_mem = max(inference_memory, memory_required)
-
- models = set(models)
-
- models_to_load = []
- models_already_loaded = []
- for x in models:
- loaded_model = LoadedModel(x)
- loaded = None
-
- try:
- loaded_model_index = current_loaded_models.index(loaded_model)
- except:
- loaded_model_index = None
-
- if loaded_model_index is not None:
- loaded = current_loaded_models[loaded_model_index]
- if loaded.should_reload_model(force_patch_weights=force_patch_weights): #TODO: cleanup this model reload logic
- current_loaded_models.pop(loaded_model_index).model_unload(unpatch_weights=True)
- loaded = None
- else:
- loaded.currently_used = True
- models_already_loaded.append(loaded)
-
- if loaded is None:
- if hasattr(x, "model"):
- logging.info(f"Requested to load {x.model.__class__.__name__}")
- models_to_load.append(loaded_model)
-
- if len(models_to_load) == 0:
- devs = set(map(lambda a: a.device, models_already_loaded))
- for d in devs:
- if d != torch.device("cpu"):
- free_memory(extra_mem, d, models_already_loaded)
- return
-
- logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
-
- total_memory_required = {}
- for loaded_model in models_to_load:
- if unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) == True:#unload clones where the weights are different
- total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
-
- for device in total_memory_required:
- if device != torch.device("cpu"):
- free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
-
- for loaded_model in models_to_load:
- weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded
- if weights_unloaded is not None:
- loaded_model.weights_loaded = not weights_unloaded
-
- for loaded_model in models_to_load:
- model = loaded_model.model
- torch_dev = model.load_device
- if is_device_cpu(torch_dev):
- vram_set_state = VRAMState.DISABLED
- else:
- vram_set_state = vram_state
- lowvram_model_memory = 0
- if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
- model_size = loaded_model.model_memory_required(torch_dev)
- current_free_mem = get_free_memory(torch_dev)
- lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
- if model_size <= (current_free_mem - inference_memory): #only switch to lowvram if really necessary
- lowvram_model_memory = 0
-
- if vram_set_state == VRAMState.NO_VRAM:
- lowvram_model_memory = 64 * 1024 * 1024
-
- cur_loaded_model = loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights)
- current_loaded_models.insert(0, loaded_model)
- return
-
-
-def load_model_gpu(model):
- return load_models_gpu([model])
-
-def loaded_models(only_currently_used=False):
- output = []
- for m in current_loaded_models:
- if only_currently_used:
- if not m.currently_used:
- continue
-
- output.append(m.model)
- return output
-
-def cleanup_models(keep_clone_weights_loaded=False):
- to_delete = []
- for i in range(len(current_loaded_models)):
- if sys.getrefcount(current_loaded_models[i].model) <= 2:
- if not keep_clone_weights_loaded:
- to_delete = [i] + to_delete
- #TODO: find a less fragile way to do this.
- elif sys.getrefcount(current_loaded_models[i].real_model) <= 3: #references from .real_model + the .model
- to_delete = [i] + to_delete
-
- for i in to_delete:
- x = current_loaded_models.pop(i)
- x.model_unload()
- del x
-
-def dtype_size(dtype):
- dtype_size = 4
- if dtype == torch.float16 or dtype == torch.bfloat16:
- dtype_size = 2
- elif dtype == torch.float32:
- dtype_size = 4
- else:
- try:
- dtype_size = dtype.itemsize
- except: #Old pytorch doesn't have .itemsize
- pass
- return dtype_size
-
-def unet_offload_device():
- if vram_state == VRAMState.HIGH_VRAM:
- return get_torch_device()
- else:
- return torch.device("cpu")
-
-def unet_inital_load_device(parameters, dtype):
- torch_dev = get_torch_device()
- if vram_state == VRAMState.HIGH_VRAM:
- return torch_dev
-
- cpu_dev = torch.device("cpu")
- if DISABLE_SMART_MEMORY:
- return cpu_dev
-
- model_size = dtype_size(dtype) * parameters
-
- mem_dev = get_free_memory(torch_dev)
- mem_cpu = get_free_memory(cpu_dev)
- if mem_dev > mem_cpu and model_size < mem_dev:
- return torch_dev
- else:
- return cpu_dev
-
-def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
- if args.bf16_unet:
- return torch.bfloat16
- if args.fp16_unet:
- return torch.float16
- if args.fp8_e4m3fn_unet:
- return torch.float8_e4m3fn
- if args.fp8_e5m2_unet:
- return torch.float8_e5m2
- if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
- if torch.float16 in supported_dtypes:
- return torch.float16
- if should_use_bf16(device, model_params=model_params, manual_cast=True):
- if torch.bfloat16 in supported_dtypes:
- return torch.bfloat16
- return torch.float32
-
-# None means no manual cast
-def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
- if weight_dtype == torch.float32:
- return None
-
- fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
- if fp16_supported and weight_dtype == torch.float16:
- return None
-
- bf16_supported = should_use_bf16(inference_device)
- if bf16_supported and weight_dtype == torch.bfloat16:
- return None
-
- if fp16_supported and torch.float16 in supported_dtypes:
- return torch.float16
-
- elif bf16_supported and torch.bfloat16 in supported_dtypes:
- return torch.bfloat16
- else:
- return torch.float32
-
-def text_encoder_offload_device():
- if args.gpu_only:
- return get_torch_device()
- else:
- return torch.device("cpu")
-
-def text_encoder_device():
- if args.gpu_only:
- return get_torch_device()
- elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
- if should_use_fp16(prioritize_performance=False):
- return get_torch_device()
- else:
- return torch.device("cpu")
- else:
- return torch.device("cpu")
-
-def text_encoder_dtype(device=None):
- if args.fp8_e4m3fn_text_enc:
- return torch.float8_e4m3fn
- elif args.fp8_e5m2_text_enc:
- return torch.float8_e5m2
- elif args.fp16_text_enc:
- return torch.float16
- elif args.fp32_text_enc:
- return torch.float32
-
- if is_device_cpu(device):
- return torch.float16
-
- return torch.float16
-
-
-def intermediate_device():
- if args.gpu_only:
- return get_torch_device()
- else:
- return torch.device("cpu")
-
-def vae_device():
- if args.cpu_vae:
- return torch.device("cpu")
- return get_torch_device()
-
-def vae_offload_device():
- if args.gpu_only:
- return get_torch_device()
- else:
- return torch.device("cpu")
-
-def vae_dtype(device=None, allowed_dtypes=[]):
- global VAE_DTYPES
- if args.fp16_vae:
- return torch.float16
- elif args.bf16_vae:
- return torch.bfloat16
- elif args.fp32_vae:
- return torch.float32
-
- for d in allowed_dtypes:
- if d == torch.float16 and should_use_fp16(device, prioritize_performance=False):
- return d
- if d in VAE_DTYPES:
- return d
-
- return VAE_DTYPES[0]
-
-def get_autocast_device(dev):
- if hasattr(dev, 'type'):
- return dev.type
- return "cuda"
-
-def supports_dtype(device, dtype): #TODO
- if dtype == torch.float32:
- return True
- if is_device_cpu(device):
- return False
- if dtype == torch.float16:
- return True
- if dtype == torch.bfloat16:
- return True
- return False
-
-def supports_cast(device, dtype): #TODO
- if dtype == torch.float32:
- return True
- if dtype == torch.float16:
- return True
- if is_device_mps(device):
- return False
- if directml_enabled: #TODO: test this
- return False
- if dtype == torch.bfloat16:
- return True
- if dtype == torch.float8_e4m3fn:
- return True
- if dtype == torch.float8_e5m2:
- return True
- return False
-
-def device_supports_non_blocking(device):
- if is_device_mps(device):
- return False #pytorch bug? mps doesn't support non blocking
- if is_intel_xpu():
- return False
- if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews)
- return False
- if directml_enabled:
- return False
- return True
-
-def device_should_use_non_blocking(device):
- if not device_supports_non_blocking(device):
- return False
- return False
- # return True #TODO: figure out why this causes memory issues on Nvidia and possibly others
-
-def force_channels_last():
- if args.force_channels_last:
- return True
-
- #TODO
- return False
-
-def cast_to_device(tensor, device, dtype, copy=False):
- device_supports_cast = False
- if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
- device_supports_cast = True
- elif tensor.dtype == torch.bfloat16:
- if hasattr(device, 'type') and device.type.startswith("cuda"):
- device_supports_cast = True
- elif is_intel_xpu():
- device_supports_cast = True
-
- non_blocking = device_should_use_non_blocking(device)
-
- if device_supports_cast:
- if copy:
- if tensor.device == device:
- return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
- return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
- else:
- return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
- else:
- return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
-
-def xformers_enabled():
- global directml_enabled
- global cpu_state
- if cpu_state != CPUState.GPU:
- return False
- if is_intel_xpu():
- return False
- if directml_enabled:
- return False
- return XFORMERS_IS_AVAILABLE
-
-
-def xformers_enabled_vae():
- enabled = xformers_enabled()
- if not enabled:
- return False
-
- return XFORMERS_ENABLED_VAE
-
-def pytorch_attention_enabled():
- global ENABLE_PYTORCH_ATTENTION
- return ENABLE_PYTORCH_ATTENTION
-
-def pytorch_attention_flash_attention():
- global ENABLE_PYTORCH_ATTENTION
- if ENABLE_PYTORCH_ATTENTION:
- #TODO: more reliable way of checking for flash attention?
- if is_nvidia(): #pytorch flash attention only works on Nvidia
- return True
- if is_intel_xpu():
- return True
- return False
-
-def force_upcast_attention_dtype():
- upcast = args.force_upcast_attention
- try:
- if platform.mac_ver()[0] in ['14.5']: #black image bug on OSX Sonoma 14.5
- upcast = True
- except:
- pass
- if upcast:
- return torch.float32
- else:
- return None
-
-def get_free_memory(dev=None, torch_free_too=False):
- global directml_enabled
- if dev is None:
- dev = get_torch_device()
-
- if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
- mem_free_total = psutil.virtual_memory().available
- mem_free_torch = mem_free_total
- else:
- if directml_enabled:
- mem_free_total = 1024 * 1024 * 1024 #TODO
- mem_free_torch = mem_free_total
- elif is_intel_xpu():
- stats = torch.xpu.memory_stats(dev)
- mem_active = stats['active_bytes.all.current']
- mem_reserved = stats['reserved_bytes.all.current']
- mem_free_torch = mem_reserved - mem_active
- mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved
- mem_free_total = mem_free_xpu + mem_free_torch
- else:
- stats = torch.cuda.memory_stats(dev)
- mem_active = stats['active_bytes.all.current']
- mem_reserved = stats['reserved_bytes.all.current']
- mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
- mem_free_torch = mem_reserved - mem_active
- mem_free_total = mem_free_cuda + mem_free_torch
-
- if torch_free_too:
- return (mem_free_total, mem_free_torch)
- else:
- return mem_free_total
-
-def cpu_mode():
- global cpu_state
- return cpu_state == CPUState.CPU
-
-def mps_mode():
- global cpu_state
- return cpu_state == CPUState.MPS
-
-def is_device_type(device, type):
- if hasattr(device, 'type'):
- if (device.type == type):
- return True
- return False
-
-def is_device_cpu(device):
- return is_device_type(device, 'cpu')
-
-def is_device_mps(device):
- return is_device_type(device, 'mps')
-
-def is_device_cuda(device):
- return is_device_type(device, 'cuda')
-
-def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
- global directml_enabled
-
- if device is not None:
- if is_device_cpu(device):
- return False
-
- if FORCE_FP16:
- return True
-
- if device is not None:
- if is_device_mps(device):
- return True
-
- if FORCE_FP32:
- return False
-
- if directml_enabled:
- return False
-
- if mps_mode():
- return True
-
- if cpu_mode():
- return False
-
- if is_intel_xpu():
- return True
-
- if torch.version.hip:
- return True
-
- props = torch.cuda.get_device_properties("cuda")
- if props.major >= 8:
- return True
-
- if props.major < 6:
- return False
-
- fp16_works = False
- #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
- #when the model doesn't actually fit on the card
- #TODO: actually test if GP106 and others have the same type of behavior
- nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
- for x in nvidia_10_series:
- if x in props.name.lower():
- fp16_works = True
-
- if fp16_works or manual_cast:
- free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
- if (not prioritize_performance) or model_params * 4 > free_model_memory:
- return True
-
- if props.major < 7:
- return False
-
- #FP16 is just broken on these cards
- nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
- for x in nvidia_16_series:
- if x in props.name:
- return False
-
- return True
-
-def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
- if device is not None:
- if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
- return False
-
- if device is not None: #TODO not sure about mps bf16 support
- if is_device_mps(device):
- return False
-
- if FORCE_FP32:
- return False
-
- if directml_enabled:
- return False
-
- if cpu_mode() or mps_mode():
- return False
-
- if is_intel_xpu():
- return True
-
- if device is None:
- device = torch.device("cuda")
-
- props = torch.cuda.get_device_properties(device)
- if props.major >= 8:
- return True
-
- bf16_works = torch.cuda.is_bf16_supported()
-
- if bf16_works or manual_cast:
- free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
- if (not prioritize_performance) or model_params * 4 > free_model_memory:
- return True
-
- return False
-
-def soft_empty_cache(force=False):
- global cpu_state
- if cpu_state == CPUState.MPS:
- torch.mps.empty_cache()
- elif is_intel_xpu():
- torch.xpu.empty_cache()
- elif torch.cuda.is_available():
- if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
- torch.cuda.empty_cache()
- torch.cuda.ipc_collect()
-
-def unload_all_models():
- free_memory(1e30, get_torch_device())
-
-
-def resolve_lowvram_weight(weight, model, key): #TODO: remove
- print("WARNING: The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.")
- return weight
-
-#TODO: might be cleaner to put this somewhere else
-import threading
-
-class InterruptProcessingException(Exception):
- pass
-
-interrupt_processing_mutex = threading.RLock()
-
-interrupt_processing = False
-def interrupt_current_processing(value=True):
- global interrupt_processing
- global interrupt_processing_mutex
- with interrupt_processing_mutex:
- interrupt_processing = value
-
-def processing_interrupted():
- global interrupt_processing
- global interrupt_processing_mutex
- with interrupt_processing_mutex:
- return interrupt_processing
-
-def throw_exception_if_processing_interrupted():
- global interrupt_processing
- global interrupt_processing_mutex
- with interrupt_processing_mutex:
- if interrupt_processing:
- interrupt_processing = False
- raise InterruptProcessingException()
diff --git a/MagicQuill/comfy/model_patcher.py b/MagicQuill/comfy/model_patcher.py
deleted file mode 100644
index 44b82795f3000afe134cdbafb3e8ab918982ae0c..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/model_patcher.py
+++ /dev/null
@@ -1,541 +0,0 @@
-import torch
-import copy
-import inspect
-import logging
-import uuid
-
-import comfy.utils
-import comfy.model_management
-from comfy.types import UnetWrapperFunction
-
-
-def weight_decompose(dora_scale, weight, lora_diff, alpha, strength):
- dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32)
- lora_diff *= alpha
- weight_calc = weight + lora_diff.type(weight.dtype)
- weight_norm = (
- weight_calc.transpose(0, 1)
- .reshape(weight_calc.shape[1], -1)
- .norm(dim=1, keepdim=True)
- .reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
- .transpose(0, 1)
- )
-
- weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
- if strength != 1.0:
- weight_calc -= weight
- weight += strength * (weight_calc)
- else:
- weight[:] = weight_calc
- return weight
-
-
-def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None):
- to = model_options["transformer_options"].copy()
-
- if "patches_replace" not in to:
- to["patches_replace"] = {}
- else:
- to["patches_replace"] = to["patches_replace"].copy()
-
- if name not in to["patches_replace"]:
- to["patches_replace"][name] = {}
- else:
- to["patches_replace"][name] = to["patches_replace"][name].copy()
-
- if transformer_index is not None:
- block = (block_name, number, transformer_index)
- else:
- block = (block_name, number)
- to["patches_replace"][name][block] = patch
- model_options["transformer_options"] = to
- return model_options
-
-class ModelPatcher:
- def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False):
- self.size = size
- self.model = model
- self.patches = {}
- self.backup = {}
- self.object_patches = {}
- self.object_patches_backup = {}
- self.model_options = {"transformer_options":{}}
- self.model_size()
- self.load_device = load_device
- self.offload_device = offload_device
- if current_device is None:
- self.current_device = self.offload_device
- else:
- self.current_device = current_device
-
- self.weight_inplace_update = weight_inplace_update
- self.model_lowvram = False
- self.lowvram_patch_counter = 0
- self.patches_uuid = uuid.uuid4()
-
- def model_size(self):
- if self.size > 0:
- return self.size
- self.size = comfy.model_management.module_size(self.model)
- return self.size
-
- def clone(self):
- n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update)
- n.patches = {}
- for k in self.patches:
- n.patches[k] = self.patches[k][:]
- n.patches_uuid = self.patches_uuid
-
- n.object_patches = self.object_patches.copy()
- n.model_options = copy.deepcopy(self.model_options)
- n.backup = self.backup
- n.object_patches_backup = self.object_patches_backup
- return n
-
- def is_clone(self, other):
- if hasattr(other, 'model') and self.model is other.model:
- return True
- return False
-
- def clone_has_same_weights(self, clone):
- if not self.is_clone(clone):
- return False
-
- if len(self.patches) == 0 and len(clone.patches) == 0:
- return True
-
- if self.patches_uuid == clone.patches_uuid:
- if len(self.patches) != len(clone.patches):
- logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.")
- else:
- return True
-
- def memory_required(self, input_shape):
- return self.model.memory_required(input_shape=input_shape)
-
- def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
- if len(inspect.signature(sampler_cfg_function).parameters) == 3:
- self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
- else:
- self.model_options["sampler_cfg_function"] = sampler_cfg_function
- if disable_cfg1_optimization:
- self.model_options["disable_cfg1_optimization"] = True
-
- def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
- self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
- if disable_cfg1_optimization:
- self.model_options["disable_cfg1_optimization"] = True
-
- def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction):
- self.model_options["model_function_wrapper"] = unet_wrapper_function
-
- def set_model_denoise_mask_function(self, denoise_mask_function):
- self.model_options["denoise_mask_function"] = denoise_mask_function
-
- def set_model_patch(self, patch, name):
- to = self.model_options["transformer_options"]
- if "patches" not in to:
- to["patches"] = {}
- to["patches"][name] = to["patches"].get(name, []) + [patch]
-
- def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
- self.model_options = set_model_options_patch_replace(self.model_options, patch, name, block_name, number, transformer_index=transformer_index)
-
- def set_model_attn1_patch(self, patch):
- self.set_model_patch(patch, "attn1_patch")
-
- def set_model_attn2_patch(self, patch):
- self.set_model_patch(patch, "attn2_patch")
-
- def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
- self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)
-
- def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
- self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)
-
- def set_model_attn1_output_patch(self, patch):
- self.set_model_patch(patch, "attn1_output_patch")
-
- def set_model_attn2_output_patch(self, patch):
- self.set_model_patch(patch, "attn2_output_patch")
-
- def set_model_input_block_patch(self, patch):
- self.set_model_patch(patch, "input_block_patch")
-
- def set_model_input_block_patch_after_skip(self, patch):
- self.set_model_patch(patch, "input_block_patch_after_skip")
-
- def set_model_output_block_patch(self, patch):
- self.set_model_patch(patch, "output_block_patch")
-
- def add_object_patch(self, name, obj):
- self.object_patches[name] = obj
-
- def get_model_object(self, name):
- if name in self.object_patches:
- return self.object_patches[name]
- else:
- if name in self.object_patches_backup:
- return self.object_patches_backup[name]
- else:
- return comfy.utils.get_attr(self.model, name)
-
- def model_patches_to(self, device):
- to = self.model_options["transformer_options"]
- if "patches" in to:
- patches = to["patches"]
- for name in patches:
- patch_list = patches[name]
- for i in range(len(patch_list)):
- if hasattr(patch_list[i], "to"):
- patch_list[i] = patch_list[i].to(device)
- if "patches_replace" in to:
- patches = to["patches_replace"]
- for name in patches:
- patch_list = patches[name]
- for k in patch_list:
- if hasattr(patch_list[k], "to"):
- patch_list[k] = patch_list[k].to(device)
- if "model_function_wrapper" in self.model_options:
- wrap_func = self.model_options["model_function_wrapper"]
- if hasattr(wrap_func, "to"):
- self.model_options["model_function_wrapper"] = wrap_func.to(device)
-
- def model_dtype(self):
- if hasattr(self.model, "get_dtype"):
- return self.model.get_dtype()
-
- def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
- p = set()
- model_sd = self.model.state_dict()
- for k in patches:
- offset = None
- if isinstance(k, str):
- key = k
- else:
- offset = k[1]
- key = k[0]
-
- if key in model_sd:
- p.add(k)
- current_patches = self.patches.get(key, [])
- current_patches.append((strength_patch, patches[k], strength_model, offset))
- self.patches[key] = current_patches
-
- self.patches_uuid = uuid.uuid4()
- return list(p)
-
- def get_key_patches(self, filter_prefix=None):
- comfy.model_management.unload_model_clones(self)
- model_sd = self.model_state_dict()
- p = {}
- for k in model_sd:
- if filter_prefix is not None:
- if not k.startswith(filter_prefix):
- continue
- if k in self.patches:
- p[k] = [model_sd[k]] + self.patches[k]
- else:
- p[k] = (model_sd[k],)
- return p
-
- def model_state_dict(self, filter_prefix=None):
- sd = self.model.state_dict()
- keys = list(sd.keys())
- if filter_prefix is not None:
- for k in keys:
- if not k.startswith(filter_prefix):
- sd.pop(k)
- return sd
-
- def patch_weight_to_device(self, key, device_to=None):
- if key not in self.patches:
- return
-
- weight = comfy.utils.get_attr(self.model, key)
-
- inplace_update = self.weight_inplace_update
-
- if key not in self.backup:
- self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update)
-
- if device_to is not None:
- temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
- else:
- temp_weight = weight.to(torch.float32, copy=True)
- out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
- if inplace_update:
- comfy.utils.copy_to_param(self.model, key, out_weight)
- else:
- comfy.utils.set_attr_param(self.model, key, out_weight)
-
- def patch_model(self, device_to=None, patch_weights=True):
- for k in self.object_patches:
- old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
- if k not in self.object_patches_backup:
- self.object_patches_backup[k] = old
-
- if patch_weights:
- model_sd = self.model_state_dict()
- for key in self.patches:
- if key not in model_sd:
- logging.warning("could not patch. key doesn't exist in model: {}".format(key))
- continue
-
- self.patch_weight_to_device(key, device_to)
-
- if device_to is not None:
- self.model.to(device_to)
- self.current_device = device_to
-
- return self.model
-
- def patch_model_lowvram(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False):
- self.patch_model(device_to, patch_weights=False)
-
- logging.info("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024)))
- class LowVramPatch:
- def __init__(self, key, model_patcher):
- self.key = key
- self.model_patcher = model_patcher
- def __call__(self, weight):
- return self.model_patcher.calculate_weight(self.model_patcher.patches[self.key], weight, self.key)
-
- mem_counter = 0
- patch_counter = 0
- for n, m in self.model.named_modules():
- lowvram_weight = False
- if hasattr(m, "comfy_cast_weights"):
- module_mem = comfy.model_management.module_size(m)
- if mem_counter + module_mem >= lowvram_model_memory:
- lowvram_weight = True
-
- weight_key = "{}.weight".format(n)
- bias_key = "{}.bias".format(n)
-
- if lowvram_weight:
- if weight_key in self.patches:
- if force_patch_weights:
- self.patch_weight_to_device(weight_key)
- else:
- m.weight_function = LowVramPatch(weight_key, self)
- patch_counter += 1
- if bias_key in self.patches:
- if force_patch_weights:
- self.patch_weight_to_device(bias_key)
- else:
- m.bias_function = LowVramPatch(bias_key, self)
- patch_counter += 1
-
- m.prev_comfy_cast_weights = m.comfy_cast_weights
- m.comfy_cast_weights = True
- else:
- if hasattr(m, "weight"):
- self.patch_weight_to_device(weight_key, device_to)
- self.patch_weight_to_device(bias_key, device_to)
- m.to(device_to)
- mem_counter += comfy.model_management.module_size(m)
- logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
-
- self.model_lowvram = True
- self.lowvram_patch_counter = patch_counter
- return self.model
-
- def calculate_weight(self, patches, weight, key):
- for p in patches:
- strength = p[0]
- v = p[1]
- strength_model = p[2]
- offset = p[3]
-
- old_weight = None
- if offset is not None:
- old_weight = weight
- weight = weight.narrow(offset[0], offset[1], offset[2])
-
- if strength_model != 1.0:
- weight *= strength_model
-
- if isinstance(v, list):
- v = (self.calculate_weight(v[1:], v[0].clone(), key), )
-
- if len(v) == 1:
- patch_type = "diff"
- elif len(v) == 2:
- patch_type = v[0]
- v = v[1]
-
- if patch_type == "diff":
- w1 = v[0]
- if strength != 0.0:
- if w1.shape != weight.shape:
- logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
- else:
- weight += strength * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)
- elif patch_type == "lora": #lora/locon
- mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
- mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
- dora_scale = v[4]
- if v[2] is not None:
- alpha = v[2] / mat2.shape[0]
- else:
- alpha = 1.0
-
- if v[3] is not None:
- #locon mid weights, hopefully the math is fine because I didn't properly test it
- mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32)
- final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
- mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
- try:
- lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
- if dora_scale is not None:
- weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength)
- else:
- weight += ((strength * alpha) * lora_diff).type(weight.dtype)
- except Exception as e:
- logging.error("ERROR {} {} {}".format(patch_type, key, e))
- elif patch_type == "lokr":
- w1 = v[0]
- w2 = v[1]
- w1_a = v[3]
- w1_b = v[4]
- w2_a = v[5]
- w2_b = v[6]
- t2 = v[7]
- dora_scale = v[8]
- dim = None
-
- if w1 is None:
- dim = w1_b.shape[0]
- w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32),
- comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32))
- else:
- w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32)
-
- if w2 is None:
- dim = w2_b.shape[0]
- if t2 is None:
- w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32),
- comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32))
- else:
- w2 = torch.einsum('i j k l, j r, i p -> p r k l',
- comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
- comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32),
- comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32))
- else:
- w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32)
-
- if len(w2.shape) == 4:
- w1 = w1.unsqueeze(2).unsqueeze(2)
- if v[2] is not None and dim is not None:
- alpha = v[2] / dim
- else:
- alpha = 1.0
-
- try:
- lora_diff = torch.kron(w1, w2).reshape(weight.shape)
- if dora_scale is not None:
- weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength)
- else:
- weight += ((strength * alpha) * lora_diff).type(weight.dtype)
- except Exception as e:
- logging.error("ERROR {} {} {}".format(patch_type, key, e))
- elif patch_type == "loha":
- w1a = v[0]
- w1b = v[1]
- if v[2] is not None:
- alpha = v[2] / w1b.shape[0]
- else:
- alpha = 1.0
-
- w2a = v[3]
- w2b = v[4]
- dora_scale = v[7]
- if v[5] is not None: #cp decomposition
- t1 = v[5]
- t2 = v[6]
- m1 = torch.einsum('i j k l, j r, i p -> p r k l',
- comfy.model_management.cast_to_device(t1, weight.device, torch.float32),
- comfy.model_management.cast_to_device(w1b, weight.device, torch.float32),
- comfy.model_management.cast_to_device(w1a, weight.device, torch.float32))
-
- m2 = torch.einsum('i j k l, j r, i p -> p r k l',
- comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
- comfy.model_management.cast_to_device(w2b, weight.device, torch.float32),
- comfy.model_management.cast_to_device(w2a, weight.device, torch.float32))
- else:
- m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32),
- comfy.model_management.cast_to_device(w1b, weight.device, torch.float32))
- m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32),
- comfy.model_management.cast_to_device(w2b, weight.device, torch.float32))
-
- try:
- lora_diff = (m1 * m2).reshape(weight.shape)
- if dora_scale is not None:
- weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength)
- else:
- weight += ((strength * alpha) * lora_diff).type(weight.dtype)
- except Exception as e:
- logging.error("ERROR {} {} {}".format(patch_type, key, e))
- elif patch_type == "glora":
- if v[4] is not None:
- alpha = v[4] / v[0].shape[0]
- else:
- alpha = 1.0
-
- dora_scale = v[5]
-
- a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
- a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
- b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
- b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)
-
- try:
- lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)).reshape(weight.shape)
- if dora_scale is not None:
- weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength)
- else:
- weight += ((strength * alpha) * lora_diff).type(weight.dtype)
- except Exception as e:
- logging.error("ERROR {} {} {}".format(patch_type, key, e))
- else:
- logging.warning("patch type not recognized {} {}".format(patch_type, key))
-
- if old_weight is not None:
- weight = old_weight
-
- return weight
-
- def unpatch_model(self, device_to=None, unpatch_weights=True):
- if unpatch_weights:
- if self.model_lowvram:
- for m in self.model.modules():
- if hasattr(m, "prev_comfy_cast_weights"):
- m.comfy_cast_weights = m.prev_comfy_cast_weights
- del m.prev_comfy_cast_weights
- m.weight_function = None
- m.bias_function = None
-
- self.model_lowvram = False
- self.lowvram_patch_counter = 0
-
- keys = list(self.backup.keys())
-
- if self.weight_inplace_update:
- for k in keys:
- comfy.utils.copy_to_param(self.model, k, self.backup[k])
- else:
- for k in keys:
- comfy.utils.set_attr_param(self.model, k, self.backup[k])
-
- self.backup.clear()
-
- if device_to is not None:
- self.model.to(device_to)
- self.current_device = device_to
-
- keys = list(self.object_patches_backup.keys())
- for k in keys:
- comfy.utils.set_attr(self.model, k, self.object_patches_backup[k])
-
- self.object_patches_backup.clear()
diff --git a/MagicQuill/comfy/model_sampling.py b/MagicQuill/comfy/model_sampling.py
deleted file mode 100644
index 6bd3a5d79a5ad466d31fcae278d4f1a94a1b6645..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/model_sampling.py
+++ /dev/null
@@ -1,272 +0,0 @@
-import torch
-from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
-import math
-
-class EPS:
- def calculate_input(self, sigma, noise):
- sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
- return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
-
- def calculate_denoised(self, sigma, model_output, model_input):
- sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
- return model_input - model_output * sigma
-
- def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
- if max_denoise:
- noise = noise * torch.sqrt(1.0 + sigma ** 2.0)
- else:
- noise = noise * sigma
-
- noise += latent_image
- return noise
-
- def inverse_noise_scaling(self, sigma, latent):
- return latent
-
-class V_PREDICTION(EPS):
- def calculate_denoised(self, sigma, model_output, model_input):
- sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
- return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
-
-class EDM(V_PREDICTION):
- def calculate_denoised(self, sigma, model_output, model_input):
- sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
- return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
-
-class CONST:
- def calculate_input(self, sigma, noise):
- return noise
-
- def calculate_denoised(self, sigma, model_output, model_input):
- sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
- return model_input - model_output * sigma
-
- def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
- return sigma * noise + (1.0 - sigma) * latent_image
-
- def inverse_noise_scaling(self, sigma, latent):
- return latent / (1.0 - sigma)
-
-class ModelSamplingDiscrete(torch.nn.Module):
- def __init__(self, model_config=None):
- super().__init__()
-
- if model_config is not None:
- sampling_settings = model_config.sampling_settings
- else:
- sampling_settings = {}
-
- beta_schedule = sampling_settings.get("beta_schedule", "linear")
- linear_start = sampling_settings.get("linear_start", 0.00085)
- linear_end = sampling_settings.get("linear_end", 0.012)
-
- self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3)
- self.sigma_data = 1.0
-
- def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
- if given_betas is not None:
- betas = given_betas
- else:
- betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
- alphas = 1. - betas
- alphas_cumprod = torch.cumprod(alphas, dim=0)
-
- timesteps, = betas.shape
- self.num_timesteps = int(timesteps)
- self.linear_start = linear_start
- self.linear_end = linear_end
-
- # self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
- # self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
- # self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
-
- sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
- self.set_sigmas(sigmas)
-
- def set_sigmas(self, sigmas):
- self.register_buffer('sigmas', sigmas.float())
- self.register_buffer('log_sigmas', sigmas.log().float())
-
- @property
- def sigma_min(self):
- return self.sigmas[0]
-
- @property
- def sigma_max(self):
- return self.sigmas[-1]
-
- def timestep(self, sigma):
- log_sigma = sigma.log()
- dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
- return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
-
- def sigma(self, timestep):
- t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1))
- low_idx = t.floor().long()
- high_idx = t.ceil().long()
- w = t.frac()
- log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
- return log_sigma.exp().to(timestep.device)
-
- def percent_to_sigma(self, percent):
- if percent <= 0.0:
- return 999999999.9
- if percent >= 1.0:
- return 0.0
- percent = 1.0 - percent
- return self.sigma(torch.tensor(percent * 999.0)).item()
-
-class ModelSamplingDiscreteEDM(ModelSamplingDiscrete):
- def timestep(self, sigma):
- return 0.25 * sigma.log()
-
- def sigma(self, timestep):
- return (timestep / 0.25).exp()
-
-class ModelSamplingContinuousEDM(torch.nn.Module):
- def __init__(self, model_config=None):
- super().__init__()
- if model_config is not None:
- sampling_settings = model_config.sampling_settings
- else:
- sampling_settings = {}
-
- sigma_min = sampling_settings.get("sigma_min", 0.002)
- sigma_max = sampling_settings.get("sigma_max", 120.0)
- sigma_data = sampling_settings.get("sigma_data", 1.0)
- self.set_parameters(sigma_min, sigma_max, sigma_data)
-
- def set_parameters(self, sigma_min, sigma_max, sigma_data):
- self.sigma_data = sigma_data
- sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp()
-
- self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers
- self.register_buffer('log_sigmas', sigmas.log())
-
- @property
- def sigma_min(self):
- return self.sigmas[0]
-
- @property
- def sigma_max(self):
- return self.sigmas[-1]
-
- def timestep(self, sigma):
- return 0.25 * sigma.log()
-
- def sigma(self, timestep):
- return (timestep / 0.25).exp()
-
- def percent_to_sigma(self, percent):
- if percent <= 0.0:
- return 999999999.9
- if percent >= 1.0:
- return 0.0
- percent = 1.0 - percent
-
- log_sigma_min = math.log(self.sigma_min)
- return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
-
-
-class ModelSamplingContinuousV(ModelSamplingContinuousEDM):
- def timestep(self, sigma):
- return sigma.atan() / math.pi * 2
-
- def sigma(self, timestep):
- return (timestep * math.pi / 2).tan()
-
-
-def time_snr_shift(alpha, t):
- if alpha == 1.0:
- return t
- return alpha * t / (1 + (alpha - 1) * t)
-
-class ModelSamplingDiscreteFlow(torch.nn.Module):
- def __init__(self, model_config=None):
- super().__init__()
- if model_config is not None:
- sampling_settings = model_config.sampling_settings
- else:
- sampling_settings = {}
-
- self.set_parameters(shift=sampling_settings.get("shift", 1.0))
-
- def set_parameters(self, shift=1.0, timesteps=1000):
- self.shift = shift
- ts = self.sigma(torch.arange(1, timesteps + 1, 1))
- self.register_buffer('sigmas', ts)
-
- @property
- def sigma_min(self):
- return self.sigmas[0]
-
- @property
- def sigma_max(self):
- return self.sigmas[-1]
-
- def timestep(self, sigma):
- return sigma * 1000
-
- def sigma(self, timestep):
- return time_snr_shift(self.shift, timestep / 1000)
-
- def percent_to_sigma(self, percent):
- if percent <= 0.0:
- return 1.0
- if percent >= 1.0:
- return 0.0
- return 1.0 - percent
-
-class StableCascadeSampling(ModelSamplingDiscrete):
- def __init__(self, model_config=None):
- super().__init__()
-
- if model_config is not None:
- sampling_settings = model_config.sampling_settings
- else:
- sampling_settings = {}
-
- self.set_parameters(sampling_settings.get("shift", 1.0))
-
- def set_parameters(self, shift=1.0, cosine_s=8e-3):
- self.shift = shift
- self.cosine_s = torch.tensor(cosine_s)
- self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2
-
- #This part is just for compatibility with some schedulers in the codebase
- self.num_timesteps = 10000
- sigmas = torch.empty((self.num_timesteps), dtype=torch.float32)
- for x in range(self.num_timesteps):
- t = (x + 1) / self.num_timesteps
- sigmas[x] = self.sigma(t)
-
- self.set_sigmas(sigmas)
-
- def sigma(self, timestep):
- alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod)
-
- if self.shift != 1.0:
- var = alpha_cumprod
- logSNR = (var/(1-var)).log()
- logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift))
- alpha_cumprod = logSNR.sigmoid()
-
- alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999)
- return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5
-
- def timestep(self, sigma):
- var = 1 / ((sigma * sigma) + 1)
- var = var.clamp(0, 1.0)
- s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device)
- t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
- return t
-
- def percent_to_sigma(self, percent):
- if percent <= 0.0:
- return 999999999.9
- if percent >= 1.0:
- return 0.0
-
- percent = 1.0 - percent
- return self.sigma(torch.tensor(percent))
diff --git a/MagicQuill/comfy/ops.py b/MagicQuill/comfy/ops.py
deleted file mode 100644
index 0f1ceb5746356a2c7cc3cd6107449a2ee65fe820..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/ops.py
+++ /dev/null
@@ -1,204 +0,0 @@
-"""
- This file is part of ComfyUI.
- Copyright (C) 2024 Stability AI
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
-"""
-
-import torch
-import comfy.model_management
-
-def cast_bias_weight(s, input):
- bias = None
- non_blocking = comfy.model_management.device_should_use_non_blocking(input.device)
- if s.bias is not None:
- bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
- if s.bias_function is not None:
- bias = s.bias_function(bias)
- weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
- if s.weight_function is not None:
- weight = s.weight_function(weight)
- return weight, bias
-
-class CastWeightBiasOp:
- comfy_cast_weights = False
- weight_function = None
- bias_function = None
-
-class disable_weight_init:
- class Linear(torch.nn.Linear, CastWeightBiasOp):
- def reset_parameters(self):
- return None
-
- def forward_comfy_cast_weights(self, input):
- weight, bias = cast_bias_weight(self, input)
- return torch.nn.functional.linear(input, weight, bias)
-
- def forward(self, *args, **kwargs):
- if self.comfy_cast_weights:
- return self.forward_comfy_cast_weights(*args, **kwargs)
- else:
- return super().forward(*args, **kwargs)
-
- class Conv1d(torch.nn.Conv1d, CastWeightBiasOp):
- def reset_parameters(self):
- return None
-
- def forward_comfy_cast_weights(self, input):
- weight, bias = cast_bias_weight(self, input)
- return self._conv_forward(input, weight, bias)
-
- def forward(self, *args, **kwargs):
- if self.comfy_cast_weights:
- return self.forward_comfy_cast_weights(*args, **kwargs)
- else:
- return super().forward(*args, **kwargs)
-
- class Conv2d(torch.nn.Conv2d, CastWeightBiasOp):
- def reset_parameters(self):
- return None
-
- def forward_comfy_cast_weights(self, input):
- weight, bias = cast_bias_weight(self, input)
- return self._conv_forward(input, weight, bias)
-
- def forward(self, *args, **kwargs):
- if self.comfy_cast_weights:
- return self.forward_comfy_cast_weights(*args, **kwargs)
- else:
- return super().forward(*args, **kwargs)
-
- class Conv3d(torch.nn.Conv3d, CastWeightBiasOp):
- def reset_parameters(self):
- return None
-
- def forward_comfy_cast_weights(self, input):
- weight, bias = cast_bias_weight(self, input)
- return self._conv_forward(input, weight, bias)
-
- def forward(self, *args, **kwargs):
- if self.comfy_cast_weights:
- return self.forward_comfy_cast_weights(*args, **kwargs)
- else:
- return super().forward(*args, **kwargs)
-
- class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp):
- def reset_parameters(self):
- return None
-
- def forward_comfy_cast_weights(self, input):
- weight, bias = cast_bias_weight(self, input)
- return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
-
- def forward(self, *args, **kwargs):
- if self.comfy_cast_weights:
- return self.forward_comfy_cast_weights(*args, **kwargs)
- else:
- return super().forward(*args, **kwargs)
-
-
- class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp):
- def reset_parameters(self):
- return None
-
- def forward_comfy_cast_weights(self, input):
- if self.weight is not None:
- weight, bias = cast_bias_weight(self, input)
- else:
- weight = None
- bias = None
- return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
-
- def forward(self, *args, **kwargs):
- if self.comfy_cast_weights:
- return self.forward_comfy_cast_weights(*args, **kwargs)
- else:
- return super().forward(*args, **kwargs)
-
- class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp):
- def reset_parameters(self):
- return None
-
- def forward_comfy_cast_weights(self, input, output_size=None):
- num_spatial_dims = 2
- output_padding = self._output_padding(
- input, output_size, self.stride, self.padding, self.kernel_size,
- num_spatial_dims, self.dilation)
-
- weight, bias = cast_bias_weight(self, input)
- return torch.nn.functional.conv_transpose2d(
- input, weight, bias, self.stride, self.padding,
- output_padding, self.groups, self.dilation)
-
- def forward(self, *args, **kwargs):
- if self.comfy_cast_weights:
- return self.forward_comfy_cast_weights(*args, **kwargs)
- else:
- return super().forward(*args, **kwargs)
-
- class ConvTranspose1d(torch.nn.ConvTranspose1d, CastWeightBiasOp):
- def reset_parameters(self):
- return None
-
- def forward_comfy_cast_weights(self, input, output_size=None):
- num_spatial_dims = 1
- output_padding = self._output_padding(
- input, output_size, self.stride, self.padding, self.kernel_size,
- num_spatial_dims, self.dilation)
-
- weight, bias = cast_bias_weight(self, input)
- return torch.nn.functional.conv_transpose1d(
- input, weight, bias, self.stride, self.padding,
- output_padding, self.groups, self.dilation)
-
- def forward(self, *args, **kwargs):
- if self.comfy_cast_weights:
- return self.forward_comfy_cast_weights(*args, **kwargs)
- else:
- return super().forward(*args, **kwargs)
-
- @classmethod
- def conv_nd(s, dims, *args, **kwargs):
- if dims == 2:
- return s.Conv2d(*args, **kwargs)
- elif dims == 3:
- return s.Conv3d(*args, **kwargs)
- else:
- raise ValueError(f"unsupported dimensions: {dims}")
-
-
-class manual_cast(disable_weight_init):
- class Linear(disable_weight_init.Linear):
- comfy_cast_weights = True
-
- class Conv1d(disable_weight_init.Conv1d):
- comfy_cast_weights = True
-
- class Conv2d(disable_weight_init.Conv2d):
- comfy_cast_weights = True
-
- class Conv3d(disable_weight_init.Conv3d):
- comfy_cast_weights = True
-
- class GroupNorm(disable_weight_init.GroupNorm):
- comfy_cast_weights = True
-
- class LayerNorm(disable_weight_init.LayerNorm):
- comfy_cast_weights = True
-
- class ConvTranspose2d(disable_weight_init.ConvTranspose2d):
- comfy_cast_weights = True
-
- class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
- comfy_cast_weights = True
diff --git a/MagicQuill/comfy/options.py b/MagicQuill/comfy/options.py
deleted file mode 100644
index f7f8af41ebd8b9669ef0ef21827ea6195bcb4752..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/options.py
+++ /dev/null
@@ -1,6 +0,0 @@
-
-args_parsing = False
-
-def enable_args_parsing(enable=True):
- global args_parsing
- args_parsing = enable
diff --git a/MagicQuill/comfy/sa_t5.py b/MagicQuill/comfy/sa_t5.py
deleted file mode 100644
index 37be5287e22d6e9c458f543beaaba5729a775d13..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/sa_t5.py
+++ /dev/null
@@ -1,22 +0,0 @@
-from comfy import sd1_clip
-from transformers import T5TokenizerFast
-import comfy.t5
-import os
-
-class T5BaseModel(sd1_clip.SDClipModel):
- def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None):
- textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_base.json")
- super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.t5.T5, enable_attention_masks=True, zero_out_masked=True)
-
-class T5BaseTokenizer(sd1_clip.SDTokenizer):
- def __init__(self, embedding_directory=None):
- tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
- super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128)
-
-class SAT5Tokenizer(sd1_clip.SD1Tokenizer):
- def __init__(self, embedding_directory=None):
- super().__init__(embedding_directory=embedding_directory, clip_name="t5base", tokenizer=T5BaseTokenizer)
-
-class SAT5Model(sd1_clip.SD1ClipModel):
- def __init__(self, device="cpu", dtype=None, **kwargs):
- super().__init__(device=device, dtype=dtype, clip_name="t5base", clip_model=T5BaseModel, **kwargs)
diff --git a/MagicQuill/comfy/sample.py b/MagicQuill/comfy/sample.py
deleted file mode 100644
index 98dcaca7f38e76754bdce7fffaccf620fd0ba497..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/sample.py
+++ /dev/null
@@ -1,50 +0,0 @@
-import torch
-import comfy.model_management
-import comfy.samplers
-import comfy.utils
-import numpy as np
-import logging
-
-def prepare_noise(latent_image, seed, noise_inds=None):
- """
- creates random noise given a latent image and a seed.
- optional arg skip can be used to skip and discard x number of noise generations for a given seed
- """
- generator = torch.manual_seed(seed)
- if noise_inds is None:
- return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
-
- unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
- noises = []
- for i in range(unique_inds[-1]+1):
- noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
- if i in unique_inds:
- noises.append(noise)
- noises = [noises[i] for i in inverse]
- noises = torch.cat(noises, axis=0)
- return noises
-
-def fix_empty_latent_channels(model, latent_image):
- latent_channels = model.get_model_object("latent_format").latent_channels #Resize the empty latent image so it has the right number of channels
- if latent_channels != latent_image.shape[1] and torch.count_nonzero(latent_image) == 0:
- latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_channels, dim=1)
- return latent_image
-
-def prepare_sampling(model, noise_shape, positive, negative, noise_mask):
- logging.warning("Warning: comfy.sample.prepare_sampling isn't used anymore and can be removed")
- return model, positive, negative, noise_mask, []
-
-def cleanup_additional_models(models):
- logging.warning("Warning: comfy.sample.cleanup_additional_models isn't used anymore and can be removed")
-
-def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
- sampler = comfy.samplers.KSampler(model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
-
- samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed)
- samples = samples.to(comfy.model_management.intermediate_device())
- return samples
-
-def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None):
- samples = comfy.samplers.sample(model, noise, positive, negative, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
- samples = samples.to(comfy.model_management.intermediate_device())
- return samples
diff --git a/MagicQuill/comfy/sampler_helpers.py b/MagicQuill/comfy/sampler_helpers.py
deleted file mode 100644
index a18abd9e9c7e82ad3e3b0ca014b2dadcb2127e92..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/sampler_helpers.py
+++ /dev/null
@@ -1,76 +0,0 @@
-import torch
-import comfy.model_management
-import comfy.conds
-
-def prepare_mask(noise_mask, shape, device):
- """ensures noise mask is of proper dimensions"""
- noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
- noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
- noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0])
- noise_mask = noise_mask.to(device)
- return noise_mask
-
-def get_models_from_cond(cond, model_type):
- models = []
- for c in cond:
- if model_type in c:
- models += [c[model_type]]
- return models
-
-def convert_cond(cond):
- out = []
- for c in cond:
- temp = c[1].copy()
- model_conds = temp.get("model_conds", {})
- if c[0] is not None:
- model_conds["c_crossattn"] = comfy.conds.CONDCrossAttn(c[0]) #TODO: remove
- temp["cross_attn"] = c[0]
- temp["model_conds"] = model_conds
- out.append(temp)
- return out
-
-def get_additional_models(conds, dtype):
- """loads additional models in conditioning"""
- cnets = []
- gligen = []
-
- for k in conds:
- cnets += get_models_from_cond(conds[k], "control")
- gligen += get_models_from_cond(conds[k], "gligen")
-
- control_nets = set(cnets)
-
- inference_memory = 0
- control_models = []
- for m in control_nets:
- control_models += m.get_models()
- inference_memory += m.inference_memory_requirements(dtype)
-
- gligen = [x[1] for x in gligen]
- models = control_models + gligen
- return models, inference_memory
-
-def cleanup_additional_models(models):
- """cleanup additional models that were loaded"""
- for m in models:
- if hasattr(m, 'cleanup'):
- m.cleanup()
-
-
-def prepare_sampling(model, noise_shape, conds):
- device = model.load_device
- real_model = None
- models, inference_memory = get_additional_models(conds, model.model_dtype())
- comfy.model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory)
- real_model = model.model
-
- return real_model, conds, models
-
-def cleanup_models(conds, models):
- cleanup_additional_models(models)
-
- control_cleanup = []
- for k in conds:
- control_cleanup += get_models_from_cond(conds[k], "control")
-
- cleanup_additional_models(set(control_cleanup))
diff --git a/MagicQuill/comfy/samplers.py b/MagicQuill/comfy/samplers.py
deleted file mode 100644
index 656e0a28f4a41406420b4182220ec9d7055dd185..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/samplers.py
+++ /dev/null
@@ -1,794 +0,0 @@
-from .k_diffusion import sampling as k_diffusion_sampling
-from .extra_samplers import uni_pc
-import torch
-import collections
-from comfy import model_management
-import math
-import logging
-import comfy.sampler_helpers
-
-def get_area_and_mult(conds, x_in, timestep_in):
- dims = tuple(x_in.shape[2:])
- area = None
- strength = 1.0
-
- if 'timestep_start' in conds:
- timestep_start = conds['timestep_start']
- if timestep_in[0] > timestep_start:
- return None
- if 'timestep_end' in conds:
- timestep_end = conds['timestep_end']
- if timestep_in[0] < timestep_end:
- return None
- if 'area' in conds:
- area = list(conds['area'])
- if 'strength' in conds:
- strength = conds['strength']
-
- input_x = x_in
- if area is not None:
- for i in range(len(dims)):
- area[i] = min(input_x.shape[i + 2] - area[len(dims) + i], area[i])
- input_x = input_x.narrow(i + 2, area[len(dims) + i], area[i])
-
- if 'mask' in conds:
- # Scale the mask to the size of the input
- # The mask should have been resized as we began the sampling process
- mask_strength = 1.0
- if "mask_strength" in conds:
- mask_strength = conds["mask_strength"]
- mask = conds['mask']
- assert(mask.shape[1:] == x_in.shape[2:])
-
- mask = mask[:input_x.shape[0]]
- if area is not None:
- for i in range(len(dims)):
- mask = mask.narrow(i + 1, area[len(dims) + i], area[i])
-
- mask = mask * mask_strength
- mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
- else:
- mask = torch.ones_like(input_x)
- mult = mask * strength
-
- if 'mask' not in conds and area is not None:
- rr = 8
- for i in range(len(dims)):
- if area[len(dims) + i] != 0:
- for t in range(rr):
- m = mult.narrow(i + 2, t, 1)
- m *= ((1.0/rr) * (t + 1))
- if (area[i] + area[len(dims) + i]) < x_in.shape[i + 2]:
- for t in range(rr):
- m = mult.narrow(i + 2, area[i] - 1 - t, 1)
- m *= ((1.0/rr) * (t + 1))
-
- conditioning = {}
- model_conds = conds["model_conds"]
- for c in model_conds:
- conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)
-
- control = conds.get('control', None)
-
- patches = None
- if 'gligen' in conds:
- gligen = conds['gligen']
- patches = {}
- gligen_type = gligen[0]
- gligen_model = gligen[1]
- if gligen_type == "position":
- gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
- else:
- gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
-
- patches['middle_patch'] = [gligen_patch]
-
- cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches'])
- return cond_obj(input_x, mult, conditioning, area, control, patches)
-
-def cond_equal_size(c1, c2):
- if c1 is c2:
- return True
- if c1.keys() != c2.keys():
- return False
- for k in c1:
- if not c1[k].can_concat(c2[k]):
- return False
- return True
-
-def can_concat_cond(c1, c2):
- if c1.input_x.shape != c2.input_x.shape:
- return False
-
- def objects_concatable(obj1, obj2):
- if (obj1 is None) != (obj2 is None):
- return False
- if obj1 is not None:
- if obj1 is not obj2:
- return False
- return True
-
- if not objects_concatable(c1.control, c2.control):
- return False
-
- if not objects_concatable(c1.patches, c2.patches):
- return False
-
- return cond_equal_size(c1.conditioning, c2.conditioning)
-
-def cond_cat(c_list):
- c_crossattn = []
- c_concat = []
- c_adm = []
- crossattn_max_len = 0
-
- temp = {}
- for x in c_list:
- for k in x:
- cur = temp.get(k, [])
- cur.append(x[k])
- temp[k] = cur
-
- out = {}
- for k in temp:
- conds = temp[k]
- out[k] = conds[0].concat(conds[1:])
-
- return out
-
-def calc_cond_batch(model, conds, x_in, timestep, model_options):
- out_conds = []
- out_counts = []
- to_run = []
-
- for i in range(len(conds)):
- out_conds.append(torch.zeros_like(x_in))
- out_counts.append(torch.ones_like(x_in) * 1e-37)
-
- cond = conds[i]
- if cond is not None:
- for x in cond:
- p = get_area_and_mult(x, x_in, timestep)
- if p is None:
- continue
-
- to_run += [(p, i)]
-
- while len(to_run) > 0:
- first = to_run[0]
- first_shape = first[0][0].shape
- to_batch_temp = []
- for x in range(len(to_run)):
- if can_concat_cond(to_run[x][0], first[0]):
- to_batch_temp += [x]
-
- to_batch_temp.reverse()
- to_batch = to_batch_temp[:1]
-
- free_memory = model_management.get_free_memory(x_in.device)
- for i in range(1, len(to_batch_temp) + 1):
- batch_amount = to_batch_temp[:len(to_batch_temp)//i]
- input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
- if model.memory_required(input_shape) < free_memory:
- to_batch = batch_amount
- break
-
- input_x = []
- mult = []
- c = []
- cond_or_uncond = []
- area = []
- control = None
- patches = None
- for x in to_batch:
- o = to_run.pop(x)
- p = o[0]
- input_x.append(p.input_x)
- mult.append(p.mult)
- c.append(p.conditioning)
- area.append(p.area)
- cond_or_uncond.append(o[1])
- control = p.control
- patches = p.patches
-
- batch_chunks = len(cond_or_uncond)
- input_x = torch.cat(input_x)
- c = cond_cat(c)
- timestep_ = torch.cat([timestep] * batch_chunks)
-
- if control is not None:
- c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
-
- transformer_options = {}
- if 'transformer_options' in model_options:
- transformer_options = model_options['transformer_options'].copy()
-
- if patches is not None:
- if "patches" in transformer_options:
- cur_patches = transformer_options["patches"].copy()
- for p in patches:
- if p in cur_patches:
- cur_patches[p] = cur_patches[p] + patches[p]
- else:
- cur_patches[p] = patches[p]
- transformer_options["patches"] = cur_patches
- else:
- transformer_options["patches"] = patches
-
- transformer_options["cond_or_uncond"] = cond_or_uncond[:]
- transformer_options["sigmas"] = timestep
-
- c['transformer_options'] = transformer_options
-
- if 'model_function_wrapper' in model_options:
- output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
- else:
- output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
-
- for o in range(batch_chunks):
- cond_index = cond_or_uncond[o]
- a = area[o]
- if a is None:
- out_conds[cond_index] += output[o] * mult[o]
- out_counts[cond_index] += mult[o]
- else:
- out_c = out_conds[cond_index]
- out_cts = out_counts[cond_index]
- dims = len(a) // 2
- for i in range(dims):
- out_c = out_c.narrow(i + 2, a[i + dims], a[i])
- out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
- out_c += output[o] * mult[o]
- out_cts += mult[o]
-
- for i in range(len(out_conds)):
- out_conds[i] /= out_counts[i]
-
- return out_conds
-
-def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove
- logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
- return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
-
-def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}, cond=None, uncond=None):
- if "sampler_cfg_function" in model_options:
- args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
- "cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
- cfg_result = x - model_options["sampler_cfg_function"](args)
- else:
- cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
-
- for fn in model_options.get("sampler_post_cfg_function", []):
- args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
- "sigma": timestep, "model_options": model_options, "input": x}
- cfg_result = fn(args)
-
- return cfg_result
-
-#The main sampling function shared by all the samplers
-#Returns denoised
-def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
- if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
- uncond_ = None
- else:
- uncond_ = uncond
-
- conds = [cond, uncond_]
- out = calc_cond_batch(model, conds, x, timestep, model_options)
- return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_)
-
-
-class KSamplerX0Inpaint:
- def __init__(self, model, sigmas):
- self.inner_model = model
- self.sigmas = sigmas
- def __call__(self, x, sigma, denoise_mask, model_options={}, seed=None):
- if denoise_mask is not None:
- if "denoise_mask_function" in model_options:
- denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas})
- latent_mask = 1. - denoise_mask
- x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask
- out = self.inner_model(x, sigma, model_options=model_options, seed=seed)
- if denoise_mask is not None:
- out = out * denoise_mask + self.latent_image * latent_mask
- return out
-
-def simple_scheduler(model_sampling, steps):
- s = model_sampling
- sigs = []
- ss = len(s.sigmas) / steps
- for x in range(steps):
- sigs += [float(s.sigmas[-(1 + int(x * ss))])]
- sigs += [0.0]
- return torch.FloatTensor(sigs)
-
-def ddim_scheduler(model_sampling, steps):
- s = model_sampling
- sigs = []
- ss = max(len(s.sigmas) // steps, 1)
- x = 1
- while x < len(s.sigmas):
- sigs += [float(s.sigmas[x])]
- x += ss
- sigs = sigs[::-1]
- sigs += [0.0]
- return torch.FloatTensor(sigs)
-
-def normal_scheduler(model_sampling, steps, sgm=False, floor=False):
- s = model_sampling
- start = s.timestep(s.sigma_max)
- end = s.timestep(s.sigma_min)
-
- if sgm:
- timesteps = torch.linspace(start, end, steps + 1)[:-1]
- else:
- timesteps = torch.linspace(start, end, steps)
-
- sigs = []
- for x in range(len(timesteps)):
- ts = timesteps[x]
- sigs.append(s.sigma(ts))
- sigs += [0.0]
- return torch.FloatTensor(sigs)
-
-def get_mask_aabb(masks):
- if masks.numel() == 0:
- return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
-
- b = masks.shape[0]
-
- bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
- is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
- for i in range(b):
- mask = masks[i]
- if mask.numel() == 0:
- continue
- if torch.max(mask != 0) == False:
- is_empty[i] = True
- continue
- y, x = torch.where(mask)
- bounding_boxes[i, 0] = torch.min(x)
- bounding_boxes[i, 1] = torch.min(y)
- bounding_boxes[i, 2] = torch.max(x)
- bounding_boxes[i, 3] = torch.max(y)
-
- return bounding_boxes, is_empty
-
-def resolve_areas_and_cond_masks_multidim(conditions, dims, device):
- # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
- # While we're doing this, we can also resolve the mask device and scaling for performance reasons
- for i in range(len(conditions)):
- c = conditions[i]
- if 'area' in c:
- area = c['area']
- if area[0] == "percentage":
- modified = c.copy()
- a = area[1:]
- a_len = len(a) // 2
- area = ()
- for d in range(len(dims)):
- area += (max(1, round(a[d] * dims[d])),)
- for d in range(len(dims)):
- area += (round(a[d + a_len] * dims[d]),)
-
- modified['area'] = area
- c = modified
- conditions[i] = c
-
- if 'mask' in c:
- mask = c['mask']
- mask = mask.to(device=device)
- modified = c.copy()
- if len(mask.shape) == len(dims):
- mask = mask.unsqueeze(0)
- if mask.shape[1:] != dims:
- mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=dims, mode='bilinear', align_corners=False).squeeze(1)
-
- if modified.get("set_area_to_bounds", False): #TODO: handle dim != 2
- bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
- boxes, is_empty = get_mask_aabb(bounds)
- if is_empty[0]:
- # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
- modified['area'] = (8, 8, 0, 0)
- else:
- box = boxes[0]
- H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
- H = max(8, H)
- W = max(8, W)
- area = (int(H), int(W), int(Y), int(X))
- modified['area'] = area
-
- modified['mask'] = mask
- conditions[i] = modified
-
-def resolve_areas_and_cond_masks(conditions, h, w, device):
- logging.warning("WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.")
- return resolve_areas_and_cond_masks_multidim(conditions, [h, w], device)
-
-def create_cond_with_same_area_if_none(conds, c): #TODO: handle dim != 2
- if 'area' not in c:
- return
-
- c_area = c['area']
- smallest = None
- for x in conds:
- if 'area' in x:
- a = x['area']
- if c_area[2] >= a[2] and c_area[3] >= a[3]:
- if a[0] + a[2] >= c_area[0] + c_area[2]:
- if a[1] + a[3] >= c_area[1] + c_area[3]:
- if smallest is None:
- smallest = x
- elif 'area' not in smallest:
- smallest = x
- else:
- if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
- smallest = x
- else:
- if smallest is None:
- smallest = x
- if smallest is None:
- return
- if 'area' in smallest:
- if smallest['area'] == c_area:
- return
-
- out = c.copy()
- out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
- conds += [out]
-
-def calculate_start_end_timesteps(model, conds):
- s = model.model_sampling
- for t in range(len(conds)):
- x = conds[t]
-
- timestep_start = None
- timestep_end = None
- if 'start_percent' in x:
- timestep_start = s.percent_to_sigma(x['start_percent'])
- if 'end_percent' in x:
- timestep_end = s.percent_to_sigma(x['end_percent'])
-
- if (timestep_start is not None) or (timestep_end is not None):
- n = x.copy()
- if (timestep_start is not None):
- n['timestep_start'] = timestep_start
- if (timestep_end is not None):
- n['timestep_end'] = timestep_end
- conds[t] = n
-
-def pre_run_control(model, conds):
- s = model.model_sampling
- for t in range(len(conds)):
- x = conds[t]
-
- timestep_start = None
- timestep_end = None
- percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
- if 'control' in x:
- x['control'].pre_run(model, percent_to_timestep_function)
-
-def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
- cond_cnets = []
- cond_other = []
- uncond_cnets = []
- uncond_other = []
- for t in range(len(conds)):
- x = conds[t]
- if 'area' not in x:
- if name in x and x[name] is not None:
- cond_cnets.append(x[name])
- else:
- cond_other.append((x, t))
- for t in range(len(uncond)):
- x = uncond[t]
- if 'area' not in x:
- if name in x and x[name] is not None:
- uncond_cnets.append(x[name])
- else:
- uncond_other.append((x, t))
-
- if len(uncond_cnets) > 0:
- return
-
- for x in range(len(cond_cnets)):
- temp = uncond_other[x % len(uncond_other)]
- o = temp[0]
- if name in o and o[name] is not None:
- n = o.copy()
- n[name] = uncond_fill_func(cond_cnets, x)
- uncond += [n]
- else:
- n = o.copy()
- n[name] = uncond_fill_func(cond_cnets, x)
- uncond[temp[1]] = n
-
-def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
- for t in range(len(conds)):
- x = conds[t]
- params = x.copy()
- params["device"] = device
- params["noise"] = noise
- default_width = None
- if len(noise.shape) >= 4: #TODO: 8 multiple should be set by the model
- default_width = noise.shape[3] * 8
- params["width"] = params.get("width", default_width)
- params["height"] = params.get("height", noise.shape[2] * 8)
- params["prompt_type"] = params.get("prompt_type", prompt_type)
- for k in kwargs:
- if k not in params:
- params[k] = kwargs[k]
-
- out = model_function(**params)
- x = x.copy()
- model_conds = x['model_conds'].copy()
- for k in out:
- model_conds[k] = out[k]
- x['model_conds'] = model_conds
- conds[t] = x
- return conds
-
-class Sampler:
- def sample(self):
- pass
-
- def max_denoise(self, model_wrap, sigmas):
- max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
- sigma = float(sigmas[0])
- return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
-
-KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
- "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
- "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"]
-
-class KSAMPLER(Sampler):
- def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
- self.sampler_function = sampler_function
- self.extra_options = extra_options
- self.inpaint_options = inpaint_options
-
- def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
- extra_args["denoise_mask"] = denoise_mask
- model_k = KSamplerX0Inpaint(model_wrap, sigmas)
- model_k.latent_image = latent_image
- if self.inpaint_options.get("random", False): #TODO: Should this be the default?
- generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
- model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
- else:
- model_k.noise = noise
-
- noise = model_wrap.inner_model.model_sampling.noise_scaling(sigmas[0], noise, latent_image, self.max_denoise(model_wrap, sigmas))
-
- k_callback = None
- total_steps = len(sigmas) - 1
- if callback is not None:
- k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
-
- samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options)
- samples = model_wrap.inner_model.model_sampling.inverse_noise_scaling(sigmas[-1], samples)
- return samples
-
-
-def ksampler(sampler_name, extra_options={}, inpaint_options={}):
- if sampler_name == "dpm_fast":
- def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable):
- if len(sigmas) <= 1:
- return noise
-
- sigma_min = sigmas[-1]
- if sigma_min == 0:
- sigma_min = sigmas[-2]
- total_steps = len(sigmas) - 1
- return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable)
- sampler_function = dpm_fast_function
- elif sampler_name == "dpm_adaptive":
- def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable, **extra_options):
- if len(sigmas) <= 1:
- return noise
-
- sigma_min = sigmas[-1]
- if sigma_min == 0:
- sigma_min = sigmas[-2]
- return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable, **extra_options)
- sampler_function = dpm_adaptive_function
- else:
- sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))
-
- return KSAMPLER(sampler_function, extra_options, inpaint_options)
-
-
-def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None):
- for k in conds:
- conds[k] = conds[k][:]
- resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device)
-
- for k in conds:
- calculate_start_end_timesteps(model, conds[k])
-
- if hasattr(model, 'extra_conds'):
- for k in conds:
- conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
-
- #make sure each cond area has an opposite one with the same area
- for k in conds:
- for c in conds[k]:
- for kk in conds:
- if k != kk:
- create_cond_with_same_area_if_none(conds[kk], c)
-
- for k in conds:
- pre_run_control(model, conds[k])
-
- if "positive" in conds:
- positive = conds["positive"]
- for k in conds:
- if k != "positive":
- apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), conds[k], 'control', lambda cond_cnets, x: cond_cnets[x])
- apply_empty_x_to_equal_area(positive, conds[k], 'gligen', lambda cond_cnets, x: cond_cnets[x])
-
- return conds
-
-class CFGGuider:
- def __init__(self, model_patcher):
- self.model_patcher = model_patcher
- self.model_options = model_patcher.model_options
- self.original_conds = {}
- self.cfg = 1.0
-
- def set_conds(self, positive, negative):
- self.inner_set_conds({"positive": positive, "negative": negative})
-
- def set_cfg(self, cfg):
- self.cfg = cfg
-
- def inner_set_conds(self, conds):
- for k in conds:
- self.original_conds[k] = comfy.sampler_helpers.convert_cond(conds[k])
-
- def __call__(self, *args, **kwargs):
- return self.predict_noise(*args, **kwargs)
-
- def predict_noise(self, x, timestep, model_options={}, seed=None):
- return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed)
-
- def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed):
- if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
- latent_image = self.inner_model.process_latent_in(latent_image)
-
- self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed)
-
- extra_args = {"model_options": self.model_options, "seed":seed}
-
- samples = sampler.sample(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
- return self.inner_model.process_latent_out(samples.to(torch.float32))
-
- def sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
- if sigmas.shape[-1] == 0:
- return latent_image
-
- self.conds = {}
- for k in self.original_conds:
- self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))
-
- self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds)
- device = self.model_patcher.load_device
-
- if denoise_mask is not None:
- denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
-
- noise = noise.to(device)
- latent_image = latent_image.to(device)
- sigmas = sigmas.to(device)
-
- output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
-
- comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
- del self.inner_model
- del self.conds
- del self.loaded_models
- return output
-
-
-def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
- cfg_guider = CFGGuider(model)
- cfg_guider.set_conds(positive, negative)
- cfg_guider.set_cfg(cfg)
- return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
-
-
-SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
-SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]
-
-def calculate_sigmas(model_sampling, scheduler_name, steps):
- if scheduler_name == "karras":
- sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max))
- elif scheduler_name == "exponential":
- sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max))
- elif scheduler_name == "normal":
- sigmas = normal_scheduler(model_sampling, steps)
- elif scheduler_name == "simple":
- sigmas = simple_scheduler(model_sampling, steps)
- elif scheduler_name == "ddim_uniform":
- sigmas = ddim_scheduler(model_sampling, steps)
- elif scheduler_name == "sgm_uniform":
- sigmas = normal_scheduler(model_sampling, steps, sgm=True)
- else:
- logging.error("error invalid scheduler {}".format(scheduler_name))
- return sigmas
-
-def sampler_object(name):
- if name == "uni_pc":
- sampler = KSAMPLER(uni_pc.sample_unipc)
- elif name == "uni_pc_bh2":
- sampler = KSAMPLER(uni_pc.sample_unipc_bh2)
- elif name == "ddim":
- sampler = ksampler("euler", inpaint_options={"random": True})
- else:
- sampler = ksampler(name)
- return sampler
-
-class KSampler:
- SCHEDULERS = SCHEDULER_NAMES
- SAMPLERS = SAMPLER_NAMES
- DISCARD_PENULTIMATE_SIGMA_SAMPLERS = set(('dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2'))
-
- def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
- self.model = model
- self.device = device
- if scheduler not in self.SCHEDULERS:
- scheduler = self.SCHEDULERS[0]
- if sampler not in self.SAMPLERS:
- sampler = self.SAMPLERS[0]
- self.scheduler = scheduler
- self.sampler = sampler
- self.set_steps(steps, denoise)
- self.denoise = denoise
- self.model_options = model_options
-
- def calculate_sigmas(self, steps):
- sigmas = None
-
- discard_penultimate_sigma = False
- if self.sampler in self.DISCARD_PENULTIMATE_SIGMA_SAMPLERS:
- steps += 1
- discard_penultimate_sigma = True
-
- sigmas = calculate_sigmas(self.model.get_model_object("model_sampling"), self.scheduler, steps)
-
- if discard_penultimate_sigma:
- sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
- return sigmas
-
- def set_steps(self, steps, denoise=None):
- self.steps = steps
- if denoise is None or denoise > 0.9999:
- self.sigmas = self.calculate_sigmas(steps).to(self.device)
- else:
- if denoise <= 0.0:
- self.sigmas = torch.FloatTensor([])
- else:
- new_steps = int(steps/denoise)
- sigmas = self.calculate_sigmas(new_steps).to(self.device)
- self.sigmas = sigmas[-(steps + 1):]
-
- def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
- if sigmas is None:
- sigmas = self.sigmas
-
- if last_step is not None and last_step < (len(sigmas) - 1):
- sigmas = sigmas[:last_step + 1]
- if force_full_denoise:
- sigmas[-1] = 0
-
- if start_step is not None:
- if start_step < (len(sigmas) - 1):
- sigmas = sigmas[start_step:]
- else:
- if latent_image is not None:
- return latent_image
- else:
- return torch.zeros_like(noise)
-
- sampler = sampler_object(self.sampler)
-
- return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
diff --git a/MagicQuill/comfy/sd.py b/MagicQuill/comfy/sd.py
deleted file mode 100644
index cfbf8fa4d201cee3f8ee04b662fe35a99d60677b..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/sd.py
+++ /dev/null
@@ -1,624 +0,0 @@
-import torch
-from enum import Enum
-import logging
-
-from comfy import model_management
-from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
-from .ldm.cascade.stage_a import StageA
-from .ldm.cascade.stage_c_coder import StageC_coder
-from .ldm.audio.autoencoder import AudioOobleckVAE
-import yaml
-
-import comfy.utils
-
-from . import clip_vision
-from . import gligen
-from . import diffusers_convert
-from . import model_detection
-
-from . import sd1_clip
-from . import sd2_clip
-from . import sdxl_clip
-from . import sd3_clip
-from . import sa_t5
-
-import comfy.model_patcher
-import comfy.lora
-import comfy.t2i_adapter.adapter
-import comfy.supported_models_base
-import comfy.taesd.taesd
-
-def load_model_weights(model, sd):
- m, u = model.load_state_dict(sd, strict=False)
- m = set(m)
- unexpected_keys = set(u)
-
- k = list(sd.keys())
- for x in k:
- if x not in unexpected_keys:
- w = sd.pop(x)
- del w
- if len(m) > 0:
- logging.warning("missing {}".format(m))
- return model
-
-def load_clip_weights(model, sd):
- k = list(sd.keys())
- for x in k:
- if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
- y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
- sd[y] = sd.pop(x)
-
- if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
- ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
- if ids.dtype == torch.float32:
- sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
-
- sd = comfy.utils.clip_text_transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.")
- return load_model_weights(model, sd)
-
-
-def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
- key_map = {}
- if model is not None:
- key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
- if clip is not None:
- key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
-
- loaded = comfy.lora.load_lora(lora, key_map)
- if model is not None:
- new_modelpatcher = model.clone()
- k = new_modelpatcher.add_patches(loaded, strength_model)
- else:
- k = ()
- new_modelpatcher = None
-
- if clip is not None:
- new_clip = clip.clone()
- k1 = new_clip.add_patches(loaded, strength_clip)
- else:
- k1 = ()
- new_clip = None
- k = set(k)
- k1 = set(k1)
- for x in loaded:
- if (x not in k) and (x not in k1):
- logging.warning("NOT LOADED {}".format(x))
-
- return (new_modelpatcher, new_clip)
-
-
-class CLIP:
- def __init__(self, target=None, embedding_directory=None, no_init=False):
- if no_init:
- return
- params = target.params.copy()
- clip = target.clip
- tokenizer = target.tokenizer
-
- load_device = model_management.text_encoder_device()
- offload_device = model_management.text_encoder_offload_device()
- params['device'] = offload_device
- dtype = model_management.text_encoder_dtype(load_device)
- params['dtype'] = dtype
-
- self.cond_stage_model = clip(**(params))
-
- for dt in self.cond_stage_model.dtypes:
- if not model_management.supports_cast(load_device, dt):
- load_device = offload_device
-
- self.tokenizer = tokenizer(embedding_directory=embedding_directory)
- self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
- self.layer_idx = None
- logging.debug("CLIP model load device: {}, offload device: {}".format(load_device, offload_device))
-
- def clone(self):
- n = CLIP(no_init=True)
- n.patcher = self.patcher.clone()
- n.cond_stage_model = self.cond_stage_model
- n.tokenizer = self.tokenizer
- n.layer_idx = self.layer_idx
- return n
-
- def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
- return self.patcher.add_patches(patches, strength_patch, strength_model)
-
- def clip_layer(self, layer_idx):
- self.layer_idx = layer_idx
-
- def tokenize(self, text, return_word_ids=False):
- return self.tokenizer.tokenize_with_weights(text, return_word_ids)
-
- def encode_from_tokens(self, tokens, return_pooled=False):
- self.cond_stage_model.reset_clip_options()
-
- if self.layer_idx is not None:
- self.cond_stage_model.set_clip_options({"layer": self.layer_idx})
-
- if return_pooled == "unprojected":
- self.cond_stage_model.set_clip_options({"projected_pooled": False})
-
- self.load_model()
- cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
- if return_pooled:
- return cond, pooled
- return cond
-
- def encode(self, text):
- tokens = self.tokenize(text)
- return self.encode_from_tokens(tokens)
-
- def load_sd(self, sd, full_model=False):
- if full_model:
- return self.cond_stage_model.load_state_dict(sd, strict=False)
- else:
- return self.cond_stage_model.load_sd(sd)
-
- def get_sd(self):
- return self.cond_stage_model.state_dict()
-
- def load_model(self):
- model_management.load_model_gpu(self.patcher)
- return self.patcher
-
- def get_key_patches(self):
- return self.patcher.get_key_patches()
-
-class VAE:
- def __init__(self, sd=None, device=None, config=None, dtype=None):
- if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
- sd = diffusers_convert.convert_vae_state_dict(sd)
-
- self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
- self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
- self.downscale_ratio = 8
- self.upscale_ratio = 8
- self.latent_channels = 4
- self.output_channels = 3
- self.process_input = lambda image: image * 2.0 - 1.0
- self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
- self.working_dtypes = [torch.bfloat16, torch.float32]
-
- if config is None:
- if "decoder.mid.block_1.mix_factor" in sd:
- encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
- decoder_config = encoder_config.copy()
- decoder_config["video_kernel_size"] = [3, 1, 1]
- decoder_config["alpha"] = 0.0
- self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
- encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config},
- decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config})
- elif "taesd_decoder.1.weight" in sd:
- self.latent_channels = sd["taesd_decoder.1.weight"].shape[1]
- self.first_stage_model = comfy.taesd.taesd.TAESD(latent_channels=self.latent_channels)
- elif "vquantizer.codebook.weight" in sd: #VQGan: stage a of stable cascade
- self.first_stage_model = StageA()
- self.downscale_ratio = 4
- self.upscale_ratio = 4
- #TODO
- #self.memory_used_encode
- #self.memory_used_decode
- self.process_input = lambda image: image
- self.process_output = lambda image: image
- elif "backbone.1.0.block.0.1.num_batches_tracked" in sd: #effnet: encoder for stage c latent of stable cascade
- self.first_stage_model = StageC_coder()
- self.downscale_ratio = 32
- self.latent_channels = 16
- new_sd = {}
- for k in sd:
- new_sd["encoder.{}".format(k)] = sd[k]
- sd = new_sd
- elif "blocks.11.num_batches_tracked" in sd: #previewer: decoder for stage c latent of stable cascade
- self.first_stage_model = StageC_coder()
- self.latent_channels = 16
- new_sd = {}
- for k in sd:
- new_sd["previewer.{}".format(k)] = sd[k]
- sd = new_sd
- elif "encoder.backbone.1.0.block.0.1.num_batches_tracked" in sd: #combined effnet and previewer for stable cascade
- self.first_stage_model = StageC_coder()
- self.downscale_ratio = 32
- self.latent_channels = 16
- elif "decoder.conv_in.weight" in sd:
- #default SD1.x/SD2.x VAE parameters
- ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
-
- if 'encoder.down.2.downsample.conv.weight' not in sd and 'decoder.up.3.upsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE
- ddconfig['ch_mult'] = [1, 2, 4]
- self.downscale_ratio = 4
- self.upscale_ratio = 4
-
- self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
- if 'quant_conv.weight' in sd:
- self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4)
- else:
- self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
- encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
- decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
- elif "decoder.layers.0.weight_v" in sd:
- self.first_stage_model = AudioOobleckVAE()
- self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype)
- self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype)
- self.latent_channels = 64
- self.output_channels = 2
- self.upscale_ratio = 2048
- self.downscale_ratio = 2048
- self.process_output = lambda audio: audio
- self.process_input = lambda audio: audio
- self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
- else:
- logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
- self.first_stage_model = None
- return
- else:
- self.first_stage_model = AutoencoderKL(**(config['params']))
- self.first_stage_model = self.first_stage_model.eval()
-
- m, u = self.first_stage_model.load_state_dict(sd, strict=False)
- if len(m) > 0:
- logging.warning("Missing VAE keys {}".format(m))
-
- if len(u) > 0:
- logging.debug("Leftover VAE keys {}".format(u))
-
- if device is None:
- device = model_management.vae_device()
- self.device = device
- offload_device = model_management.vae_offload_device()
- if dtype is None:
- dtype = model_management.vae_dtype(self.device, self.working_dtypes)
- self.vae_dtype = dtype
- self.first_stage_model.to(self.vae_dtype)
- self.output_device = model_management.intermediate_device()
-
- self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
- logging.debug("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
-
- def vae_encode_crop_pixels(self, pixels):
- dims = pixels.shape[1:-1]
- for d in range(len(dims)):
- x = (dims[d] // self.downscale_ratio) * self.downscale_ratio
- x_offset = (dims[d] % self.downscale_ratio) // 2
- if x != dims[d]:
- pixels = pixels.narrow(d + 1, x_offset, x)
- return pixels
-
- def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
- steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
- steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
- steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
- pbar = comfy.utils.ProgressBar(steps)
-
- decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
- output = self.process_output(
- (comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) +
- comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) +
- comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar))
- / 3.0)
- return output
-
- def decode_tiled_1d(self, samples, tile_x=128, overlap=64):
- output = torch.empty((samples.shape[0], self.output_channels) + tuple(map(lambda a: a * self.upscale_ratio, samples.shape[2:])), device=self.output_device)
-
- for j in range(samples.shape[0]):
- for i in range(0, samples.shape[-1], tile_x - overlap):
- f = i
- t = i + tile_x
- output[j:j+1,:,f * self.upscale_ratio:t * self.upscale_ratio] = self.first_stage_model.decode(samples[j:j+1,:,f:t].to(self.vae_dtype).to(self.device)).float()
-
- return output
-
- def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
- steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
- steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
- steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
- pbar = comfy.utils.ProgressBar(steps)
-
- encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
- samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
- samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
- samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
- samples /= 3.0
- return samples
-
- def decode(self, samples_in):
- try:
- memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
- model_management.load_models_gpu([self.patcher], memory_required=memory_used)
- free_memory = model_management.get_free_memory(self.device)
- batch_number = int(free_memory / memory_used)
- batch_number = max(1, batch_number)
-
- pixel_samples = torch.empty((samples_in.shape[0], self.output_channels) + tuple(map(lambda a: a * self.upscale_ratio, samples_in.shape[2:])), device=self.output_device)
- for x in range(0, samples_in.shape[0], batch_number):
- samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
- pixel_samples[x:x+batch_number] = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float())
- except model_management.OOM_EXCEPTION as e:
- logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
- if len(samples_in.shape) == 3:
- pixel_samples = self.decode_tiled_1d(samples_in)
- else:
- pixel_samples = self.decode_tiled_(samples_in)
-
- pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1)
- return pixel_samples
-
- def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
- model_management.load_model_gpu(self.patcher)
- output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
- return output.movedim(1,-1)
-
- def encode(self, pixel_samples):
- pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
- pixel_samples = pixel_samples.movedim(-1,1)
- try:
- memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
- model_management.load_models_gpu([self.patcher], memory_required=memory_used)
- free_memory = model_management.get_free_memory(self.device)
- batch_number = int(free_memory / memory_used)
- batch_number = max(1, batch_number)
- samples = torch.empty((pixel_samples.shape[0], self.latent_channels) + tuple(map(lambda a: a // self.downscale_ratio, pixel_samples.shape[2:])), device=self.output_device)
- for x in range(0, pixel_samples.shape[0], batch_number):
- pixels_in = self.process_input(pixel_samples[x:x+batch_number]).to(self.vae_dtype).to(self.device)
- samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
-
- except model_management.OOM_EXCEPTION as e:
- logging.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
- samples = self.encode_tiled_(pixel_samples)
-
- return samples
-
- def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
- pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
- model_management.load_model_gpu(self.patcher)
- pixel_samples = pixel_samples.movedim(-1,1)
- samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
- return samples
-
- def get_sd(self):
- return self.first_stage_model.state_dict()
-
-class StyleModel:
- def __init__(self, model, device="cpu"):
- self.model = model
-
- def get_cond(self, input):
- return self.model(input.last_hidden_state)
-
-
-def load_style_model(ckpt_path):
- model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
- keys = model_data.keys()
- if "style_embedding" in keys:
- model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
- else:
- raise Exception("invalid style model {}".format(ckpt_path))
- model.load_state_dict(model_data)
- return StyleModel(model)
-
-class CLIPType(Enum):
- STABLE_DIFFUSION = 1
- STABLE_CASCADE = 2
- SD3 = 3
- STABLE_AUDIO = 4
-
-def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION):
- clip_data = []
- for p in ckpt_paths:
- clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
-
- class EmptyClass:
- pass
-
- for i in range(len(clip_data)):
- if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
- clip_data[i] = comfy.utils.clip_text_transformers_convert(clip_data[i], "", "")
- else:
- if "text_projection" in clip_data[i]:
- clip_data[i]["text_projection.weight"] = clip_data[i]["text_projection"].transpose(0, 1) #old models saved with the CLIPSave node
-
- clip_target = EmptyClass()
- clip_target.params = {}
- if len(clip_data) == 1:
- if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
- if clip_type == CLIPType.STABLE_CASCADE:
- clip_target.clip = sdxl_clip.StableCascadeClipModel
- clip_target.tokenizer = sdxl_clip.StableCascadeTokenizer
- else:
- clip_target.clip = sdxl_clip.SDXLRefinerClipModel
- clip_target.tokenizer = sdxl_clip.SDXLTokenizer
- elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
- clip_target.clip = sd2_clip.SD2ClipModel
- clip_target.tokenizer = sd2_clip.SD2Tokenizer
- elif "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in clip_data[0]:
- dtype_t5 = clip_data[0]["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"].dtype
- clip_target.clip = sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, dtype_t5=dtype_t5)
- clip_target.tokenizer = sd3_clip.SD3Tokenizer
- elif "encoder.block.0.layer.0.SelfAttention.k.weight" in clip_data[0]:
- clip_target.clip = sa_t5.SAT5Model
- clip_target.tokenizer = sa_t5.SAT5Tokenizer
- else:
- clip_target.clip = sd1_clip.SD1ClipModel
- clip_target.tokenizer = sd1_clip.SD1Tokenizer
- elif len(clip_data) == 2:
- if clip_type == CLIPType.SD3:
- clip_target.clip = sd3_clip.sd3_clip(clip_l=True, clip_g=True, t5=False)
- clip_target.tokenizer = sd3_clip.SD3Tokenizer
- else:
- clip_target.clip = sdxl_clip.SDXLClipModel
- clip_target.tokenizer = sdxl_clip.SDXLTokenizer
- elif len(clip_data) == 3:
- clip_target.clip = sd3_clip.SD3ClipModel
- clip_target.tokenizer = sd3_clip.SD3Tokenizer
-
- clip = CLIP(clip_target, embedding_directory=embedding_directory)
- for c in clip_data:
- m, u = clip.load_sd(c)
- if len(m) > 0:
- logging.warning("clip missing: {}".format(m))
-
- if len(u) > 0:
- logging.debug("clip unexpected: {}".format(u))
- return clip
-
-def load_gligen(ckpt_path):
- data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
- model = gligen.load_gligen(data)
- if model_management.should_use_fp16():
- model = model.half()
- return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
-
-def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
- logging.warning("Warning: The load checkpoint with config function is deprecated and will eventually be removed, please use the other one.")
- model, clip, vae, _ = load_checkpoint_guess_config(ckpt_path, output_vae=output_vae, output_clip=output_clip, output_clipvision=False, embedding_directory=embedding_directory, output_model=True)
- #TODO: this function is a mess and should be removed eventually
- if config is None:
- with open(config_path, 'r') as stream:
- config = yaml.safe_load(stream)
- model_config_params = config['model']['params']
- clip_config = model_config_params['cond_stage_config']
- scale_factor = model_config_params['scale_factor']
-
- if "parameterization" in model_config_params:
- if model_config_params["parameterization"] == "v":
- m = model.clone()
- class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingDiscrete, comfy.model_sampling.V_PREDICTION):
- pass
- m.add_object_patch("model_sampling", ModelSamplingAdvanced(model.model.model_config))
- model = m
-
- layer_idx = clip_config.get("params", {}).get("layer_idx", None)
- if layer_idx is not None:
- clip.clip_layer(layer_idx)
-
- return (model, clip, vae)
-
-def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True):
- sd = comfy.utils.load_torch_file(ckpt_path)
- sd_keys = sd.keys()
- clip = None
- clipvision = None
- vae = None
- model = None
- model_patcher = None
- clip_target = None
-
- diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
- parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix)
- load_device = model_management.get_torch_device()
-
- model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix)
- unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
- manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
- model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
-
- if model_config is None:
- raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
-
- if model_config.clip_vision_prefix is not None:
- if output_clipvision:
- clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
-
- if output_model:
- inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
- offload_device = model_management.unet_offload_device()
- model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
- model.load_model_weights(sd, diffusion_model_prefix)
-
- if output_vae:
- vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
- vae_sd = model_config.process_vae_state_dict(vae_sd)
- vae = VAE(sd=vae_sd)
-
- if output_clip:
- clip_target = model_config.clip_target(state_dict=sd)
- if clip_target is not None:
- clip_sd = model_config.process_clip_state_dict(sd)
- if len(clip_sd) > 0:
- clip = CLIP(clip_target, embedding_directory=embedding_directory)
- m, u = clip.load_sd(clip_sd, full_model=True)
- if len(m) > 0:
- m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
- if len(m_filter) > 0:
- logging.warning("clip missing: {}".format(m))
- else:
- logging.debug("clip missing: {}".format(m))
-
- if len(u) > 0:
- logging.debug("clip unexpected {}:".format(u))
- else:
- logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
-
- left_over = sd.keys()
- if len(left_over) > 0:
- logging.debug("left over keys: {}".format(left_over))
-
- if output_model:
- model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
- if inital_load_device != torch.device("cpu"):
- logging.info("loaded straight to GPU")
- model_management.load_model_gpu(model_patcher)
-
- return (model_patcher, clip, vae, clipvision)
-
-
-def load_unet_state_dict(sd): #load unet in diffusers format
- parameters = comfy.utils.calculate_parameters(sd)
- unet_dtype = model_management.unet_dtype(model_params=parameters)
- load_device = model_management.get_torch_device()
-
- if "input_blocks.0.0.weight" in sd or 'clf.1.weight' in sd: #ldm or stable cascade
- model_config = model_detection.model_config_from_unet(sd, "")
- if model_config is None:
- return None
- new_sd = sd
-
- else: #diffusers
- model_config = model_detection.model_config_from_diffusers_unet(sd)
- if model_config is None:
- return None
-
- diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config)
-
- new_sd = {}
- for k in diffusers_keys:
- if k in sd:
- new_sd[diffusers_keys[k]] = sd.pop(k)
- else:
- logging.warning("{} {}".format(diffusers_keys[k], k))
-
- offload_device = model_management.unet_offload_device()
- unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
- manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
- model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
- model = model_config.get_model(new_sd, "")
- model = model.to(offload_device)
- model.load_model_weights(new_sd, "")
- left_over = sd.keys()
- if len(left_over) > 0:
- logging.info("left over keys in unet: {}".format(left_over))
- return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
-
-def load_unet(unet_path):
- sd = comfy.utils.load_torch_file(unet_path)
- model = load_unet_state_dict(sd)
- if model is None:
- logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
- raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
- return model
-
-def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}):
- clip_sd = None
- load_models = [model]
- if clip is not None:
- load_models.append(clip.load_model())
- clip_sd = clip.get_sd()
-
- model_management.load_models_gpu(load_models, force_patch_weights=True)
- clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
- sd = model.model.state_dict_for_saving(clip_sd, vae.get_sd(), clip_vision_sd)
- for k in extra_keys:
- sd[k] = extra_keys[k]
-
- comfy.utils.save_torch_file(sd, output_path, metadata=metadata)
diff --git a/MagicQuill/comfy/sd1_clip.py b/MagicQuill/comfy/sd1_clip.py
deleted file mode 100644
index 911af0a7e8c4501cbb9d55d1b43debd43a21ccbd..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/sd1_clip.py
+++ /dev/null
@@ -1,530 +0,0 @@
-import os
-
-from transformers import CLIPTokenizer
-import comfy.ops
-import torch
-import traceback
-import zipfile
-from . import model_management
-import comfy.clip_model
-import json
-import logging
-
-def gen_empty_tokens(special_tokens, length):
- start_token = special_tokens.get("start", None)
- end_token = special_tokens.get("end", None)
- pad_token = special_tokens.get("pad")
- output = []
- if start_token is not None:
- output.append(start_token)
- if end_token is not None:
- output.append(end_token)
- output += [pad_token] * (length - len(output))
- return output
-
-class ClipTokenWeightEncoder:
- def encode_token_weights(self, token_weight_pairs):
- to_encode = list()
- max_token_len = 0
- has_weights = False
- for x in token_weight_pairs:
- tokens = list(map(lambda a: a[0], x))
- max_token_len = max(len(tokens), max_token_len)
- has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
- to_encode.append(tokens)
-
- sections = len(to_encode)
- if has_weights or sections == 0:
- to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))
-
- out, pooled = self.encode(to_encode)
- if pooled is not None:
- first_pooled = pooled[0:1].to(model_management.intermediate_device())
- else:
- first_pooled = pooled
-
- output = []
- for k in range(0, sections):
- z = out[k:k+1]
- if has_weights:
- z_empty = out[-1]
- for i in range(len(z)):
- for j in range(len(z[i])):
- weight = token_weight_pairs[k][j][1]
- if weight != 1.0:
- z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
- output.append(z)
-
- if (len(output) == 0):
- return out[-1:].to(model_management.intermediate_device()), first_pooled
- return torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled
-
-class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
- """Uses the CLIP transformer encoder for text (from huggingface)"""
- LAYERS = [
- "last",
- "pooled",
- "hidden"
- ]
- def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
- freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
- special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False,
- return_projected_pooled=True): # clip-vit-base-patch32
- super().__init__()
- assert layer in self.LAYERS
-
- if textmodel_json_config is None:
- textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
-
- with open(textmodel_json_config) as f:
- config = json.load(f)
-
- self.transformer = model_class(config, dtype, device, comfy.ops.manual_cast)
- self.num_layers = self.transformer.num_layers
-
- self.max_length = max_length
- if freeze:
- self.freeze()
- self.layer = layer
- self.layer_idx = None
- self.special_tokens = special_tokens
-
- self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
- self.enable_attention_masks = enable_attention_masks
- self.zero_out_masked = zero_out_masked
-
- self.layer_norm_hidden_state = layer_norm_hidden_state
- self.return_projected_pooled = return_projected_pooled
-
- if layer == "hidden":
- assert layer_idx is not None
- assert abs(layer_idx) < self.num_layers
- self.set_clip_options({"layer": layer_idx})
- self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled)
-
- def freeze(self):
- self.transformer = self.transformer.eval()
- #self.train = disabled_train
- for param in self.parameters():
- param.requires_grad = False
-
- def set_clip_options(self, options):
- layer_idx = options.get("layer", self.layer_idx)
- self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
- if layer_idx is None or abs(layer_idx) > self.num_layers:
- self.layer = "last"
- else:
- self.layer = "hidden"
- self.layer_idx = layer_idx
-
- def reset_clip_options(self):
- self.layer = self.options_default[0]
- self.layer_idx = self.options_default[1]
- self.return_projected_pooled = self.options_default[2]
-
- def set_up_textual_embeddings(self, tokens, current_embeds):
- out_tokens = []
- next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
- embedding_weights = []
-
- for x in tokens:
- tokens_temp = []
- for y in x:
- if isinstance(y, int):
- if y == token_dict_size: #EOS token
- y = -1
- tokens_temp += [y]
- else:
- if y.shape[0] == current_embeds.weight.shape[1]:
- embedding_weights += [y]
- tokens_temp += [next_new_token]
- next_new_token += 1
- else:
- logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(y.shape[0], current_embeds.weight.shape[1]))
- while len(tokens_temp) < len(x):
- tokens_temp += [self.special_tokens["pad"]]
- out_tokens += [tokens_temp]
-
- n = token_dict_size
- if len(embedding_weights) > 0:
- new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
- new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
- for x in embedding_weights:
- new_embedding.weight[n] = x
- n += 1
- new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding
- self.transformer.set_input_embeddings(new_embedding)
-
- processed_tokens = []
- for x in out_tokens:
- processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one
-
- return processed_tokens
-
- def forward(self, tokens):
- backup_embeds = self.transformer.get_input_embeddings()
- device = backup_embeds.weight.device
- tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
- tokens = torch.LongTensor(tokens).to(device)
-
- attention_mask = None
- if self.enable_attention_masks:
- attention_mask = torch.zeros_like(tokens)
- end_token = self.special_tokens.get("end", -1)
- for x in range(attention_mask.shape[0]):
- for y in range(attention_mask.shape[1]):
- attention_mask[x, y] = 1
- if tokens[x, y] == end_token:
- break
-
- outputs = self.transformer(tokens, attention_mask, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
- self.transformer.set_input_embeddings(backup_embeds)
-
- if self.layer == "last":
- z = outputs[0].float()
- else:
- z = outputs[1].float()
-
- if self.zero_out_masked and attention_mask is not None:
- z *= attention_mask.unsqueeze(-1).float()
-
- pooled_output = None
- if len(outputs) >= 3:
- if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None:
- pooled_output = outputs[3].float()
- elif outputs[2] is not None:
- pooled_output = outputs[2].float()
-
- return z, pooled_output
-
- def encode(self, tokens):
- return self(tokens)
-
- def load_sd(self, sd):
- return self.transformer.load_state_dict(sd, strict=False)
-
-def parse_parentheses(string):
- result = []
- current_item = ""
- nesting_level = 0
- for char in string:
- if char == "(":
- if nesting_level == 0:
- if current_item:
- result.append(current_item)
- current_item = "("
- else:
- current_item = "("
- else:
- current_item += char
- nesting_level += 1
- elif char == ")":
- nesting_level -= 1
- if nesting_level == 0:
- result.append(current_item + ")")
- current_item = ""
- else:
- current_item += char
- else:
- current_item += char
- if current_item:
- result.append(current_item)
- return result
-
-def token_weights(string, current_weight):
- a = parse_parentheses(string)
- out = []
- for x in a:
- weight = current_weight
- if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
- x = x[1:-1]
- xx = x.rfind(":")
- weight *= 1.1
- if xx > 0:
- try:
- weight = float(x[xx+1:])
- x = x[:xx]
- except:
- pass
- out += token_weights(x, weight)
- else:
- out += [(x, current_weight)]
- return out
-
-def escape_important(text):
- text = text.replace("\\)", "\0\1")
- text = text.replace("\\(", "\0\2")
- return text
-
-def unescape_important(text):
- text = text.replace("\0\1", ")")
- text = text.replace("\0\2", "(")
- return text
-
-def safe_load_embed_zip(embed_path):
- with zipfile.ZipFile(embed_path) as myzip:
- names = list(filter(lambda a: "data/" in a, myzip.namelist()))
- names.reverse()
- for n in names:
- with myzip.open(n) as myfile:
- data = myfile.read()
- number = len(data) // 4
- length_embed = 1024 #sd2.x
- if number < 768:
- continue
- if number % 768 == 0:
- length_embed = 768 #sd1.x
- num_embeds = number // length_embed
- embed = torch.frombuffer(data, dtype=torch.float)
- out = embed.reshape((num_embeds, length_embed)).clone()
- del embed
- return out
-
-def expand_directory_list(directories):
- dirs = set()
- for x in directories:
- dirs.add(x)
- for root, subdir, file in os.walk(x, followlinks=True):
- dirs.add(root)
- return list(dirs)
-
-def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
- if isinstance(embedding_directory, str):
- embedding_directory = [embedding_directory]
-
- embedding_directory = expand_directory_list(embedding_directory)
-
- valid_file = None
- for embed_dir in embedding_directory:
- embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name))
- embed_dir = os.path.abspath(embed_dir)
- try:
- if os.path.commonpath((embed_dir, embed_path)) != embed_dir:
- continue
- except:
- continue
- if not os.path.isfile(embed_path):
- extensions = ['.safetensors', '.pt', '.bin']
- for x in extensions:
- t = embed_path + x
- if os.path.isfile(t):
- valid_file = t
- break
- else:
- valid_file = embed_path
- if valid_file is not None:
- break
-
- if valid_file is None:
- return None
-
- embed_path = valid_file
-
- embed_out = None
-
- try:
- if embed_path.lower().endswith(".safetensors"):
- import safetensors.torch
- embed = safetensors.torch.load_file(embed_path, device="cpu")
- else:
- if 'weights_only' in torch.load.__code__.co_varnames:
- try:
- embed = torch.load(embed_path, weights_only=True, map_location="cpu")
- except:
- embed_out = safe_load_embed_zip(embed_path)
- else:
- embed = torch.load(embed_path, map_location="cpu")
- except Exception as e:
- logging.warning("{}\n\nerror loading embedding, skipping loading: {}".format(traceback.format_exc(), embedding_name))
- return None
-
- if embed_out is None:
- if 'string_to_param' in embed:
- values = embed['string_to_param'].values()
- embed_out = next(iter(values))
- elif isinstance(embed, list):
- out_list = []
- for x in range(len(embed)):
- for k in embed[x]:
- t = embed[x][k]
- if t.shape[-1] != embedding_size:
- continue
- out_list.append(t.reshape(-1, t.shape[-1]))
- embed_out = torch.cat(out_list, dim=0)
- elif embed_key is not None and embed_key in embed:
- embed_out = embed[embed_key]
- else:
- values = embed.values()
- embed_out = next(iter(values))
- return embed_out
-
-class SDTokenizer:
- def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True, min_length=None):
- if tokenizer_path is None:
- tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
- self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
- self.max_length = max_length
- self.min_length = min_length
-
- empty = self.tokenizer('')["input_ids"]
- if has_start_token:
- self.tokens_start = 1
- self.start_token = empty[0]
- self.end_token = empty[1]
- else:
- self.tokens_start = 0
- self.start_token = None
- self.end_token = empty[0]
- self.pad_with_end = pad_with_end
- self.pad_to_max_length = pad_to_max_length
-
- vocab = self.tokenizer.get_vocab()
- self.inv_vocab = {v: k for k, v in vocab.items()}
- self.embedding_directory = embedding_directory
- self.max_word_length = 8
- self.embedding_identifier = "embedding:"
- self.embedding_size = embedding_size
- self.embedding_key = embedding_key
-
- def _try_get_embedding(self, embedding_name:str):
- '''
- Takes a potential embedding name and tries to retrieve it.
- Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
- '''
- embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
- if embed is None:
- stripped = embedding_name.strip(',')
- if len(stripped) < len(embedding_name):
- embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
- return (embed, embedding_name[len(stripped):])
- return (embed, "")
-
-
- def tokenize_with_weights(self, text:str, return_word_ids=False):
- '''
- Takes a prompt and converts it to a list of (token, weight, word id) elements.
- Tokens can both be integer tokens and pre computed CLIP tensors.
- Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
- Returned list has the dimensions NxM where M is the input size of CLIP
- '''
- if self.pad_with_end:
- pad_token = self.end_token
- else:
- pad_token = 0
-
- text = escape_important(text)
- parsed_weights = token_weights(text, 1.0)
-
- #tokenize words
- tokens = []
- for weighted_segment, weight in parsed_weights:
- to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
- to_tokenize = [x for x in to_tokenize if x != ""]
- for word in to_tokenize:
- #if we find an embedding, deal with the embedding
- if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
- embedding_name = word[len(self.embedding_identifier):].strip('\n')
- embed, leftover = self._try_get_embedding(embedding_name)
- if embed is None:
- logging.warning(f"warning, embedding:{embedding_name} does not exist, ignoring")
- else:
- if len(embed.shape) == 1:
- tokens.append([(embed, weight)])
- else:
- tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
- #if we accidentally have leftover text, continue parsing using leftover, else move on to next word
- if leftover != "":
- word = leftover
- else:
- continue
- #parse word
- tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
-
- #reshape token array to CLIP input size
- batched_tokens = []
- batch = []
- if self.start_token is not None:
- batch.append((self.start_token, 1.0, 0))
- batched_tokens.append(batch)
- for i, t_group in enumerate(tokens):
- #determine if we're going to try and keep the tokens in a single batch
- is_large = len(t_group) >= self.max_word_length
-
- while len(t_group) > 0:
- if len(t_group) + len(batch) > self.max_length - 1:
- remaining_length = self.max_length - len(batch) - 1
- #break word in two and add end token
- if is_large:
- batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
- batch.append((self.end_token, 1.0, 0))
- t_group = t_group[remaining_length:]
- #add end token and pad
- else:
- batch.append((self.end_token, 1.0, 0))
- if self.pad_to_max_length:
- batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
- #start new batch
- batch = []
- if self.start_token is not None:
- batch.append((self.start_token, 1.0, 0))
- batched_tokens.append(batch)
- else:
- batch.extend([(t,w,i+1) for t,w in t_group])
- t_group = []
-
- #fill last batch
- batch.append((self.end_token, 1.0, 0))
- if self.pad_to_max_length:
- batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
- if self.min_length is not None and len(batch) < self.min_length:
- batch.extend([(pad_token, 1.0, 0)] * (self.min_length - len(batch)))
-
- if not return_word_ids:
- batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
-
- return batched_tokens
-
-
- def untokenize(self, token_weight_pair):
- return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
-
-
-class SD1Tokenizer:
- def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer):
- self.clip_name = clip_name
- self.clip = "clip_{}".format(self.clip_name)
- setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory))
-
- def tokenize_with_weights(self, text:str, return_word_ids=False):
- out = {}
- out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
- return out
-
- def untokenize(self, token_weight_pair):
- return getattr(self, self.clip).untokenize(token_weight_pair)
-
-
-class SD1ClipModel(torch.nn.Module):
- def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, **kwargs):
- super().__init__()
- self.clip_name = clip_name
- self.clip = "clip_{}".format(self.clip_name)
- setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))
-
- self.dtypes = set()
- if dtype is not None:
- self.dtypes.add(dtype)
-
- def set_clip_options(self, options):
- getattr(self, self.clip).set_clip_options(options)
-
- def reset_clip_options(self):
- getattr(self, self.clip).reset_clip_options()
-
- def encode_token_weights(self, token_weight_pairs):
- token_weight_pairs = token_weight_pairs[self.clip_name]
- out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
- return out, pooled
-
- def load_sd(self, sd):
- return getattr(self, self.clip).load_sd(sd)
diff --git a/MagicQuill/comfy/sd1_clip_config.json b/MagicQuill/comfy/sd1_clip_config.json
deleted file mode 100644
index 0158a1fd52727adf22359238285afafb150f66f2..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/sd1_clip_config.json
+++ /dev/null
@@ -1,25 +0,0 @@
-{
- "_name_or_path": "openai/clip-vit-large-patch14",
- "architectures": [
- "CLIPTextModel"
- ],
- "attention_dropout": 0.0,
- "bos_token_id": 0,
- "dropout": 0.0,
- "eos_token_id": 2,
- "hidden_act": "quick_gelu",
- "hidden_size": 768,
- "initializer_factor": 1.0,
- "initializer_range": 0.02,
- "intermediate_size": 3072,
- "layer_norm_eps": 1e-05,
- "max_position_embeddings": 77,
- "model_type": "clip_text_model",
- "num_attention_heads": 12,
- "num_hidden_layers": 12,
- "pad_token_id": 1,
- "projection_dim": 768,
- "torch_dtype": "float32",
- "transformers_version": "4.24.0",
- "vocab_size": 49408
-}
diff --git a/MagicQuill/comfy/sd1_tokenizer/merges.txt b/MagicQuill/comfy/sd1_tokenizer/merges.txt
deleted file mode 100644
index 76e821f1b6f0a9709293c3b6b51ed90980b3166b..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/sd1_tokenizer/merges.txt
+++ /dev/null
@@ -1,48895 +0,0 @@
-#version: 0.2
-i n
-t h
-a n
-r e
-a r
-e r
-th e
-in g
-o u
-o n
-s t
-o r
-e n
-o n
-a l
-a t
-e r
-i t
-i n
-t o
-r o
-i s
-l e
-i c
-a t
-an d
-e d
-o f
-c h
-o r
-e s
-i l
-e l
-s t
-a c
-o m
-a m
-l o
-a n
-a y
-s h
-r i
-l i
-t i
-f or
-n e
-ð Ł
-r a
-h a
-d e
-o l
-v e
-s i
-u r
-a l
-s e
-' s
-u n
-d i
-b e
-l a
-w h
-o o
-d ay
-e n
-m a
-n o
-l e
-t o
-ou r
-i r
-g h
-w it
-i t
-y o
-a s
-s p
-th is
-t s
-at i
-yo u
-wit h
-a d
-i s
-a b
-l y
-w e
-th e
-t e
-a s
-a g
-v i
-p p
-s u
-h o
-m y
-. .
-b u
-c om
-s e
-er s
-m e
-m e
-al l
-c on
-m o
-k e
-g e
-ou t
-en t
-c o
-f e
-v er
-a r
-f ro
-a u
-p o
-c e
-gh t
-ar e
-s s
-fro m
-c h
-t r
-ou n
-on e
-b y
-d o
-t h
-w or
-er e
-k e
-p ro
-f or
-d s
-b o
-t a
-w e
-g o
-h e
-t er
-in g
-d e
-b e
-ati on
-m or
-a y
-e x
-il l
-p e
-k s
-s c
-l u
-f u
-q u
-v er
-ðŁ ĺ
-j u
-m u
-at e
-an d
-v e
-k ing
-m ar
-o p
-h i
-.. .
-p re
-a d
-r u
-th at
-j o
-o f
-c e
-ne w
-a m
-a p
-g re
-s s
-d u
-no w
-y e
-t ing
-y our
-it y
-n i
-c i
-p ar
-g u
-f i
-a f
-p er
-t er
-u p
-s o
-g i
-on s
-g r
-g e
-b r
-p l
-' t
-m i
-in e
-we e
-b i
-u s
-sh o
-ha ve
-to day
-a v
-m an
-en t
-ac k
-ur e
-ou r
-â Ģ
-c u
-l d
-lo o
-i m
-ic e
-s om
-f in
-re d
-re n
-oo d
-w as
-ti on
-p i
-i r
-th er
-t y
-p h
-ar d
-e c
-! !
-m on
-mor e
-w ill
-t ra
-c an
-c ol
-p u
-t e
-w n
-m b
-s o
-it i
-ju st
-n ing
-h ere
-t u
-p a
-p r
-bu t
-wh at
-al ly
-f ir
-m in
-c a
-an t
-s a
-t ed
-e v
-m ent
-f a
-ge t
-am e
-ab out
-g ra
-no t
-ha pp
-ay s
-m an
-h is
-ti me
-li ke
-g h
-ha s
-th an
-lo ve
-ar t
-st e
-d ing
-h e
-c re
-w s
-w at
-d er
-it e
-s er
-ac e
-ag e
-en d
-st r
-a w
-st or
-r e
-c ar
-el l
-al l
-p s
-f ri
-p ho
-p or
-d o
-a k
-w i
-f re
-wh o
-sh i
-b oo
-s on
-el l
-wh en
-il l
-ho w
-gre at
-w in
-e l
-b l
-s si
-al i
-som e
-ðŁ Ĵ
-t on
-d er
-le s
-p la
-ï ¸
-e d
-s ch
-h u
-on g
-d on
-k i
-s h
-an n
-c or
-. .
-oun d
-a z
-in e
-ar y
-fu l
-st u
-ou ld
-st i
-g o
-se e
-ab le
-ar s
-l l
-m is
-b er
-c k
-w a
-en ts
-n o
-si g
-f e
-fir st
-e t
-sp e
-ac k
-i f
-ou s
-' m
-st er
-a pp
-an g
-an ce
-an s
-g ood
-b re
-e ver
-the y
-t ic
-com e
-of f
-b ack
-as e
-ing s
-ol d
-i ght
-f o
-h er
-happ y
-p ic
-it s
-v ing
-u s
-m at
-h om
-d y
-e m
-s k
-y ing
-the ir
-le d
-r y
-u l
-h ar
-c k
-t on
-on al
-h el
-r ic
-b ir
-vi e
-w ay
-t ri
-d a
-p le
-b ro
-st o
-oo l
-ni ght
-tr u
-b a
-re ad
-re s
-ye ar
-f r
-t or
-al s
-c oun
-c la
-t ure
-v el
-at ed
-le c
-en d
-th ing
-v o
-ic i
-be st
-c an
-wor k
-la st
-af ter
-en ce
-p ri
-p e
-e s
-i l
-âĢ ¦
-d re
-y s
-o ver
-i es
-ðŁ ij
-com m
-t w
-in k
-s un
-c l
-li fe
-t t
-a ch
-l and
-s y
-t re
-t al
-p ol
-s m
-du c
-s al
-f t
-' re
-ch e
-w ar
-t ur
-ati ons
-ac h
-m s
-il e
-p m
-ou gh
-at e
-st ar
-wee k
-! !!
-c lu
-th ere
-n er
-t om
-s el
-ï¸ ı
-wor ld
-v es
-c am
-go t
-in ter
-of f
-u m
-ton ight
-o ther
-h ou
-loo k
-j e
-i d
-si on
-be au
-at t
-el i
-or t
-re c
-f f
-st er
-su pp
-g en
-be en
-il y
-te am
-m m
-i c
-pe op
-it t
-at s
-on ly
-mb er
-en g
-b ri
-m p
-k now
-b ur
-b ar
-in s
-lo w
-sh e
-ro w
-â Ŀ
-t ro
-peop le
-vi a
-lo w
-ag a
-be t
-x t
-f ac
-ch ar
-e ar
-w al
-s en
-f am
-b le
-n ati
-is h
-n or
-g ame
-li ve
-s co
-le y
-d on
-ic k
-b all
-ver y
-the se
-p an
-i a
-at ing
-c r
-a re
-g ir
-ma ke
-st re
-sho w
-. "
-f l
-u p
-d r
-than ks
-il li
-w om
-st s
-i g
-s ur
-ever y
-c ur
-vie w
-le t
-in to
-mo st
-n a
-in di
-g ar
-ha d
-s ou
-v ed
-an t
-iti on
-ma de
-f ol
-un i
-it ed
-ðŁ ı
-ic al
-th r
-read y
-ch ec
-d ra
-k es
-boo k
-e p
-si c
-mor ning
-ne ws
-c au
-c t
-w ell
-an c
-pho to
-th an
-or s
-bir th
-g g
-ou t
-ne xt
-som e
-en ing
-stor y
-ch ri
-do wn
-hom e
-f fe
-fre e
-d a
-b or
-f il
-ci al
-than k
-si de
-le ar
-qu e
-l ine
-t en
-at es
-ye ars
-m y
-pho to
-beau ti
-ri ght
-n u
-for m
-shi p
-b an
-th er
-d ays
-g am
-as on
-g y
-ðŁ İ
-birth day
-se t
-ic k
-e t
-st ill
-com ing
-ta ke
-ðŁ ĩ
-b b
-s ol
-s on
-d en
-e p
-mu sic
-the m
-de n
-wh y
-f oo
-c ra
-am az
-w n
-h ol
-t ting
-w r
-u e
-ma g
-c ro
-l an
-c lo
-b ra
-a k
-s ing
-c al
-re ad
-' ve
-jo h
-b ab
-d ri
-b lo
-bi g
-er ic
-in t
-t or
-tr y
-l a
-le g
-hou se
-m ic
-v al
-beauti ful
-l itt
-chec k
-ne w
-ver s
-s w
-ar i
-pla y
-h er
-âĢ ĵ
-w in
-m a
-con gr
-sch ool
-f un
-. @
-he al
-ic h
-d el
-wh ere
-l on
-ke t
-tw o
-mu ch
-wat ch
-v en
-d ed
-a st
-k ed
-b as
-go ing
-m p
-e ver
-w ays
-ro o
-de sig
-l y
-s ed
-to p
-l in
-ch an
-to o
-it ing
-d ent
-gh ts
-t y
-sp o
-ne ed
-b lu
-in st
-be ing
-âĿ ¤
-w el
-l s
-hi m
-m ay
-st ing
-n a
-el y
-litt le
-g a
-n at
-tom or
-m c
-h on
-w ant
-a ir
-pi c
-am eric
-p er
-le ss
-wee k
-ve l
-a h
-c ap
-ch am
-g er
-ti m
-tomor row
-ne ss
-st ate
-h al
-ser v
-z e
-o s
-p at
-v is
-ex c
-s in
-f f
-c ity
-c en
-an y
-b el
-su mm
-t in
-w ould
-loo king
-k o
-ce le
-fam ily
-m er
-po w
-hel p
-bu s
-c o
-c le
-sel f
-en s
-ic s
-th o
-an i
-ch o
-le ad
-b s
-t wee
-th ink
-for e
-ch il
-vi de
-di d
-al e
-ch i
-v il
-en ds
-w ing
-p as
-' ll
-v ol
-s a
-g s
-man y
-j ec
-be fore
-gra ph
-n y
-ur ing
-w il
-d d
-bu il
-f av
-st ed
-tr an
-l ing
-ou d
-d ge
-fi el
-nati onal
-st a
-c er
-w ere
-in a
-se ason
-c ou
-n ed
-amaz ing
-ti ons
-cele br
-n s
-a th
-he ad
-s day
-d ar
-lo c
-v in
-an other
-g oo
-s at
-n y
-jo in
-pre s
-s es
-s ing
-an a
-in ing
-.. ..
-c our
-ï¸ ı
-ac t
-cau se
-li ght
-am s
-t a
-b al
-f c
-hi gh
-off ici
-t t
-chri st
-d ic
-d ay
-ra l
-h or
-: )
-vi si
-n am
-o b
-ma s
-gh t
-re ally
-t un
-fin d
-thr ough
-por t
-u t
-ti ve
-st y
-n e
-or e
-ðŁĺ Ĥ
-supp ort
-ne ver
-ev en
-ðŁ Ķ
-h a
-y a
-l d
-u k
-r an
-j am
-wi th
-me di
-d es
-ne y
-ch ing
-al e
-h y
-k in
-! !
-d y
-pl ace
-al so
-b le
-wh ich
-bl ack
-b li
-s ay
-par k
-pl ay
-ir e
-vide o
-week end
-a il
-ke y
-p t
-w ard
-fri day
-d in
-ine ss
-g ro
-b en
-al ways
-t ball
-ag o
-m il
-c y
-pro duc
-di sc
-un der
-ple ase
-sp or
-fu ll
-e y
-ðŁ Ļ
-is e
-iti es
-c at
-k no
-u se
-fo re
-k er
-ar t
-hi gh
-op en
-s an
-e f
-our s
-sh ed
-st ri
-d ro
-aga in
-i m
-ðŁ ĵ
-en jo
-fu n
-ge tting
-p en
-g er
-c li
-an y
-ever y
-e u
-wom en
-â ľ
-e st
-c ould
-r y
-" @
-th ou
-sh a
-comm un
-b er
-d ents
-di s
-wh ile
-aw ay
-di o
-h am
-g la
-d ate
-k a
-mis s
-un ch
-w on
-in f
-roo m
-g a
-re al
-ex per
-di rec
-sh ould
-sp r
-g ol
-l ong
-bet ter
-or i
-e y
-i ence
-il s
-z z
-h an
-f ound
-v s
-â Ļ
-po st
-ti c
-par t
-m en
-ren ce
-ce ss
-v ic
-s il
-sho p
-ðŁĺ Ĥ
-f ood
-v al
-sti c
-y ou
-s ays
-e lec
-st ar
-o c
-l and
-i d
-c tion
-fiel d
-s of
-st art
-wat er
-fri ends
-on es
-ðŁ Į
-f la
-f ar
-wh ite
-par ty
-in st
-gr ou
-t v
-every one
-m ent
-j a
-ch a
-pr in
-an ts
-d uring
-l at
-l ar
-we st
-th en
-k a
-y oun
-in sp
-in te
-we en
-visi t
-aga inst
-re le
-he ad
-c es
-to wn
-loo ks
-th re
-re gi
-ren t
-pro jec
-gir l
-se ar
-w o
-m om
-c ar
-h un
-pu bli
-d i
-p le
-c all
-c ri
-u m
-for d
-per fe
-fri end
-h ard
-ssi on
-te st
-pla ying
-ar ound
-be cause
-ke ts
-me et
-sat ur
-ar ti
-wor k
-j un
-v en
-r un
-me mber
-por t
-su per
-t wit
-s am
-el s
-t ly
-ad v
-ati ve
-at h
-s ure
-av ail
-la r
-s qu
-ar ds
-ev ent
-m en
-l l
-o ver
-lo gy
-it al
-tim es
-m al
-b ack
-c oo
-ma king
-st ru
-â ģ
-it u
-sh ar
-g an
-c as
-s n
-summ er
-pic ture
-f an
-h in
-christ mas
-c y
-pr oud
-cham pi
-desig n
-pp ing
-ho pe
-c a
-avail able
-ma y
-we d
-photo graph
-spe cial
-sal e
-sto p
-er y
-a we
-al ity
-hi story
-am a
-pre si
-b ru
-wor king
-d one
-d r
-k en
-fe at
-w ood
-ate st
-sun day
-mo vi
-vel y
-s le
-f ace
-sp ec
-stu dents
-b y
-ha m
-sp on
-bus iness
-d at
-i e
-i p
-so ci
-g lo
-h and
-re cor
-r s
-me e
-ke ep
-p ur
-heal th
-sh e
-com ple
-go d
-da vi
-col lec
-li st
-r a
-clu b
-t ers
-in clu
-th ings
-pl an
-â ĺ
-joh n
-sh ing
-at ul
-so on
-blu e
-g or
-satur day
-w on
-congr atul
-se e
-âĿ¤ ï¸ı
-tho se
-ðŁĺ į
-fin al
-d ou
-it h
-o wn
-ro ad
-t our
-a st
-indi a
-ti l
-n d
-f er
-fav or
-su l
-lear n
-fir e
-ju st
-grou p
-a h
-r ac
-bo dy
-u r
-c are
-à ¸
-p lo
-o h
-po s
-gi ve
-te ch
-su b
-c ent
-er ing
-y m
-il ity
-f ic
-lon don
-v ir
-gu ys
-b a
-ðŁ ¤
-bab y
-sc re
-ðŁĺ į
-tru mp
-un der
-chan ge
-i an
-col le
-ss es
-l er
-ss ed
-n ice
-ann oun
-pow er
-s ar
-a king
-min i
-s li
-s wee
-k ar
-fu l
-c ru
-ac tion
-a ther
-) .
-st and
-de vel
-a a
-g an
-le ft
-lo l
-re l
-tran s
-m ents
-in t
-e f
-man ag
-di g
-gen er
-do wn
-p au
-ti v
-k u
-th ur
-k en
-st on
-f ans
-tal k
-twee t
-t oo
-sty le
-pro te
-se con
-fr on
-awe some
-g l
-p al
-ne t
-s or
-la u
-g on
-sin ce
-t ty
-ser ies
-me mor
-b eli
-fil m
-di d
-di es
-o t
-congratul ations
-p ra
-e ve
-w oo
-offici al
-su c
-in cre
-b on
-par t
-pp ed
-cla ss
-si ve
-bo y
-cu l
-perfe ct
-t ou
-d am
-wel come
-foo tball
-h i
-p ap
-wa it
-ad a
-congr ats
-youn g
-exc ited
-re ce
-j an
-v a
-re d
-st ra
-medi a
-' d
-do es
-le t
-mu l
-ill s
-gre en
-m el
-to ge
-fu ture
-ye ster
-vers ity
-for m
-ta in
-i de
-ch es
-ki ds
-qu i
-ha ha
-de ta
-bi g
-favor ite
-gir ls
-con tin
-do m
-sear ch
-u al
-a ir
-d ers
-mon th
-c er
-yester day
-commun ity
-ad e
-do g
-vil le
-ic es
-d eli
-sy ste
-ru n
-is m
-he art
-c up
-en ti
-fe w
-presi dent
-e ds
-un til
-fe sti
-o k
-f lo
-sa id
-ol e
-me d
-tra vel
-Â £
-ph one
-toge ther
-fa st
-lo t
-gam es
-sh ir
-bet ween
-y es
-th ers
-do ing
-m ac
-at or
-b and
-fol low
-projec t
-devel op
-di ffe
-con fe
-spe ci
-ca st
-y s
-bo ard
-r d
-i al
-sh oo
-r am
-ha ving
-sh are
-fol low
-on e
-n ame
-m r
-pu t
-disc u
-or y
-c ame
-ou s
-s ite
-twit ter
-t b
-t it
-fin ally
-z ed
-su per
-com pan
-us ing
-all s
-li st
-r is
-sho t
-g al
-t ar
-de l
-joh n
-âĢ Ķ
-some thing
-ra m
-inte re
-wh e
-b it
-ðŁ į
-stre et
-oun d
-a i
-tic kets
-movi e
-re al
-k y
-ta king
-o pp
-c c
-l am
-m oun
-in ve
-bl ack
-us ed
-on line
-y or
-loc al
-gu e
-c ks
-o w
-ge st
-bo ys
-illi on
-con t
-re ci
-in ed
-eu ro
-no w
-se en
-p h
-te ach
-de f
-sou th
-su ch
-aw ard
-mu st
-is su
-ca re
-fe el
-p lu
-l atest
-spor ts
-we b
-te x
-e ment
-s k
-fi c
-w an
-te ch
-o t
-bo x
-n er
-fre e
-t al
-a sh
-c ase
-ho t
-won der
-mee ting
-er a
-ch all
-ðŁ IJ
-jo b
-il i
-c ool
-j our
-th s
-m o
-f el
-di e
-mic ha
-e le
-te am
-serv ice
-st and
-ma kes
-p ing
-ear ly
-com es
-e k
-ho li
-v ers
-ag ue
-s au
-thre e
-mon day
-fa shi
-some one
-th ro
-se a
-b ad
-supp or
-tur n
-ur y
-m ing
-photograph y
-n ic
-mar k
-pre tty
-ss ing
-wat ching
-me mb
-ar ri
-coun ty
-be ach
-fr an
-cen ter
-pol ice
-b at
-publi c
-t an
-pre ss
-s af
-s y
-ge ts
-ro y
-n ers
-y our
-bu y
-st ers
-sho w
-as ed
-chil dre
-af ric
-in es
-sp ace
-sc ri
-h all
-pa in
-ar ing
-hom e
-m ur
-heal th
-ch ed
-s and
-rece i
-gu y
-e a
-americ an
-re si
-childre n
-- -
-i ri
-ing ton
-coun try
-ro ss
-le n
-ann a
-boo ks
-b c
-e ce
-d om
-lo vely
-k h
-pe t
-g y
-g ri
-st age
-off ice
-ro ck
-m on
-b ay
-t able
-su n
-m ed
-th in
-l or
-f low
-( @
-uni versity
-stor e
-fron t
-goo d
-z a
-vo te
-nor th
-he y
-an im
-or der
-mi d
-with out
-a de
-re member
-mar ket
-? ?
-mu s
-tra ining
-e duc
-bu t
-co ver
-st an
-sc en
-b la
-bre ak
-l ou
-s ame
-g old
-a in
-o s
-bo th
-l it
-ver n
-a i
-al bu
-p a
-enjo y
-be g
-ell ing
-thur sday
-inf o
-s an
-americ a
-ha ir
-te l
-mar ch
-con cer
-colle ge
-confe rence
-ap p
-h our
-ch ang
-â ļ
-s our
-ol s
-we ather
-w ar
-p hi
-festi val
-secon d
-cu te
-pr ac
-en er
-str y
-le a
-pol it
-s av
-se n
-o w
-m i
-ne ar
-ou ght
-z e
-co ffe
-w illi
-d an
-se y
-davi d
-e se
-f an
-de ci
-the at
-no v
-ati on
-tr ac
-sc i
-re view
-c el
-e m
-u n
-ju ly
-or ig
-ti on
-d ru
-form er
-st ay
-af ter
-in v
-too k
-dat a
-b al
-tu es
-d an
-ev ening
-ðŁĺĤ ðŁĺĤ
-d ol
-u res
-pro vi
-t s
-e st
-sig n
-j ac
-u k
-s ong
-ye t
-bo w
-in du
-j ap
-h oo
-po int
-any one
-z y
-i st
-h ur
-it al
-buil ding
-wom an
-ch ur
-j er
-per for
-co ach
-le ague
-ce ss
-ne t
-i mag
-nati on
-br it
-qu e
-aw ards
-ag es
-wor ks
-c ed
-man ce
-l ate
-ig n
-mon ey
-tru e
-i i
-t ell
-pl ac
-p ac
-as y
-wor ld
-be hin
-im port
-read ing
-gra m
-gi ving
-me t
-h it
-for ward
-st om
-pres ent
-jun e
-so cial
-no on
-mar t
-hal f
-s we
-go vern
-k er
-deta ils
-li sh
-_ _
-ac y
-si a
-ber t
-f all
-! !!!
-) ,
-th i
-d iti
-sp ort
-k ing
-f it
-st af
-c at
-mu se
-cen tr
-y er
-con tro
-b loo
-wal k
-ac tu
-did n
-li m
-lear ning
-re search
-wed ne
-au th
-h ours
-k y
-f ar
-h en
-.. ..
-it ch
-ri l
-str ong
-sk y
-que sti
-jam es
-r on
-d g
-f ur
-c in
-do es
-app ro
-mar ke
-tu res
-ful ly
-ch at
-behin d
-te m
-fin i
-mis sion
-b att
-fe el
-he av
-every thing
-b ar
-w ish
-pre mi
-i ma
-exper ience
-e ach
-re port
-swee t
-tic s
-spr ing
-re spon
-syste m
-vic tor
-l in
-sa w
-al ready
-gh ter
-f le
-ã ĥ
-br ing
-albu m
-- -
-ell s
-st an
-to m
-inter national
-w ent
-an ni
-mat ch
-pp er
-st one
-sm all
-ra in
-fashi on
-are a
-v an
-ag ram
-k o
-thou ght
-wor th
-v an
-m er
-coffe e
-it es
-g n
-arti st
-c on
-ar ch
-c ir
-se cre
-gr ound
-is o
-h and
-co m
-bri dge
-h s
-x i
-l ink
-pu l
-sp l
-r ace
-f li
-ri ver
-g as
-di sco
-d al
-play er
-f it
-photo s
-it y
-o k
-j or
-tr a
-ap ril
-ad s
-a di
-sol u
-beau ty
-do or
-me ss
-up date
-ali a
-sch o
-en ed
-mom ent
-sco t
-sc ience
-i or
-ti es
-ac ross
-ous ly
-sh es
-does n
-p age
-wat er
-m illion
-cla ssi
-l ic
-ca st
-form ation
-micha el
-ell o
-s mo
-in ts
-vi sion
-op ening
-ld n
-au str
-tues day
-win ner
-po ssi
-r ound
-shir t
-di t
-b o
-u es
-il led
-al ong
-tri p
-star ting
-im pro
-k an
-per son
-no t
-re co
-ne eds
-c le
-li e
-re st
-r ing
-win ter
-si mp
-mo m
-be er
-fac e
-tor s
-us a
-collec tion
-ge or
-se ssion
-tr ying
-la s
-la ke
-j en
-orig in
-stu dent
-se cur
-v in
-pic s
-ex pe
-com p
-gon na
-e qu
-b ad
-le y
-a u
-memb ers
-bre ak
-w all
-gi c
-din ner
-bu l
-insp ir
-r i
-min d
-ic a
-win ning
-tal king
-t ren
-s is
-t en
-wonder ful
-s now
-he ar
-th om
-no thing
-gu i
-st in
-blo g
-fe st
-b un
-le e
-war ds
-ch ance
-dre ss
-re n
-pau l
-p es
-tech no
-ru ssi
-c ard
-e ast
-mar i
-w ine
-t i
-la w
-str ic
-k i
-ap e
-au gu
-pro fe
-as h
-cour se
-ma il
-ren tly
-d un
-m un
-lo ve
-is land
-dri ve
-s l
-end ed
-ma in
-lo st
-nat ure
-âĿ¤ ï¸ı
-ch ic
-re por
-p in
-pr o
-st ation
-ce p
-ta kes
-compan y
-go es
-on d
-ma ch
-ra dio
-d ad
-ro ck
-j a
-p ay
-champi on
-e e
-in de
-tt a
-ati c
-t ab
-beli eve
-ener gy
-z i
-t at
-wor d
-on ce
-re sul
-y l
-and re
-an o
-inst agram
-clo se
-t am
-cu stom
-w a
-con om
-sho ws
-li fe
-k in
-ro b
-t age
-n ation
-al most
-list en
-sa ve
-re li
-ac e
-mar y
-tre e
-for get
-j ack
-wa iting
-direc tor
-h ill
-bor n
-te mp
-f l
-st e
-on a
-sing le
-wedne sday
-un ited
-in o
-@ _
-ne l
-celebr ate
-en ding
-de al
-j i
-can ada
-hu ge
-tr ack
-âĢ ¢
-f y
-fan ta
-an g
-yor k
-rele ase
-p un
-ep iso
-wor ds
-t our
-p ack
-i gh
-classi c
-perfor mance
-ke t
-after noon
-recor d
-win s
-pro ble
-âĿ ¤
-f our
-b ed
-ban k
-d ance
-s la
-cal led
-mi ght
-a p
-pa st
-ðŁ ļ
-diffe rent
-it e
-gi ft
-ssi ve
-chur ch
-c us
-pro gram
-ho tel
-ic e
-ma d
-secur ity
-en ge
-d c
-en ough
-st a
-e ty
-de ad
-g un
-he ar
-m ir
-hu man
-gre ss
-oun ds
-pi ece
-bre aking
-gar den
-fi ght
-vie ws
-f ish
-star ted
-run ning
-gre en
-ser i
-s m
-as k
-d or
-de ath
-e conom
-er i
-ir d
-s er
-l unch
-âģ ¦
-bo x
-nat u
-ba se
-b an
-f al
-glo bal
-wil d
-wo w
-out side
-mo ve
-le ad
-an al
-muse um
-on g
-ha w
-pow er
-than k
-b ac
-char ac
-cam pa
-dig ital
-r o
-op er
-de v
-w ol
-p ati
-f a
-m ale
-pap er
-ill ing
-c s
-â ĥ
-educ ation
-ta ken
-e ffe
-m ou
-s ad
-" .
-bas ed
-staf f
-inclu ding
-li ving
-a c
-ch ina
-mo b
-stor m
-lu ck
-ph il
-o o
-y n
-tra vel
-k el
-ti al
-pr ice
-boo k
-import ant
-bi o
-p ool
-ny c
-f ab
-lo ad
-? !
-chall enge
-cr y
-ser ve
-we ar
-bu s
-ta in
-nu mber
-ro r
-k at
-i z
-th ough
-ho sp
-m m
-fa ir
-ut es
-ho t
-po p
-fi ed
-cam p
-develop ment
-li br
-c ali
-em s
-âģ¦ @
-b ol
-is ed
-stand ing
-mo del
-it a
-g le
-bro wn
-ima ge
-ve red
-for ce
-o il
-par tic
-sh u
-da ily
-la w
-se c
-cla ss
-cam p
-holi day
-cl in
-k ers
-pres ent
-gam e
-incre di
-er ship
-inter view
-b ill
-du e
-and y
-ab o
-in nov
-ke y
-ac ade
-p il
-mo der
-st ars
-br and
-f er
-wee ks
-con si
-pr e
-sa fe
-wr it
-di um
-la unch
-marke ting
-ann ual
-as si
-cour t
-la dy
-c ted
-and a
-in side
-chil d
-opp or
-sm ith
-centr e
-gu e
-âģ ©
-f ren
-st y
-for t
-ent ly
-is n
-ke ep
-to ber
-on y
-bo y
-al d
-col la
-de mo
-le vel
-com pet
-ad o
-b our
-fanta stic
-m ate
-s u
-sou th
-oppor tun
-vers ary
-lat er
-bu d
-face book
-la un
-ster n
-p it
-! "
-ma j
-gr am
-tb t
-fi re
-happ y
-a ks
-wh ole
-actu ally
-ill er
-ell a
-lo ts
-al ex
-an ge
-lan ds
-ðŁĺ Ń
-en ter
-r ou
-episo de
-p ed
-in ten
-sh ire
-wh o
-pl an
-h o
-ca ke
-we st
-mag az
-fre sh
-c c
-n ar
-ch ris
-wr iting
-w er
-n om
-l o
-mi dd
-dre am
-o l
-ti onal
-de b
-> >
-be come
-s i
-gr and
-all ing
-hi stor
-ri de
-i red
-saf e
-que en
-ci l
-in tro
-vi l
-d ani
-.. .
-ar tic
-st at
-sh ort
-or ing
-sel fi
-mis si
-do c
-b it
-g all
-b om
-i re
-se lec
-d ition
-ðŁĶ ¥
-fri end
-be at
-gh ting
-ðŁĺ Ĭ
-pe ace
-ex hi
-ant a
-ab ility
-il lu
-j on
-qu ality
-tri bu
-m es
-play ers
-fa ir
-cu t
-c ab
-suc cess
-b i
-su s
-pro mo
-sch e
-an ge
-ic o
-comm it
-cat ch
-ill a
-kin d
-feel ing
-qu o
-s ay
-anni versary
-spo t
-mo ther
-an e
-p end
-your self
-op s
-app le
-min utes
-p o
-gr and
-ri es
-ha ha
-care er
-ed ition
-de c
-ric k
-am i
-concer t
-iti ve
-ge ous
-d ly
-t te
-adv ent
-i g
-li ghts
-ak er
-sk y
-âĥ £
-r ay
-fini shed
-w ay
-s d
-ac coun
-ðŁĴ ķ
-ck y
-ch el
-lit er
-pain ting
-lo s
-st un
-techno logy
-n as
-ma r
-b il
-afric a
-ki e
-ey es
-gol f
-plu s
-ni a
-it ec
-serv ices
-wed ding
-kno wn
-te le
-.. ...
-star ts
-pa ren
-w ants
-ati onal
-mon ths
-win do
-fav our
-er t
-magaz ine
-ex clu
-re ve
-b c
-origin al
-e ss
-n al
-an ti
-st ro
-t ice
-stu dy
-à ¤
-v ac
-nation al
-fi ve
-ra in
-ve ment
-u te
-ver se
-em er
-ar my
-possi ble
-gue ss
-val ley
-ther n
-cro w
-m r
-col or
-on to
-pic k
-cle ar
-dar k
-t ac
-wan ted
-it ting
-can cer
-govern ment
-di e
-ri se
-z ing
-col d
-f oun
-stu dio
-str ation
-bro ther
-a head
-sh el
-mic ro
-ic ally
-d au
-sig ned
-vi ol
-a x
-as se
-i o
-w re
-spl ay
-ch ick
-augu st
-pl at
-ti ps
-sp i
-hu man
-e asy
-lo gi
-mi ke
-gro w
-ag re
-w w
-sh ad
-mo tiv
-wi de
-tur ns
-om g
-v ar
-de fin
-su g
-j im
-ðŁĶ ¥
-t d
-campa ign
-nam ed
-re tweet
-co p
-t v
-le av
-k is
-dou ble
-s mar
-issu e
-vil la
-in formation
-li es
-sto ck
-n t
-di stric
-sh or
-mi x
-er o
-se p
-me x
-see ing
-li ve
-re min
-co de
-g ur
-s c
-wil d
-l un
-h ood
-spo t
-fa ther
-fore ver
-up d
-tra f
-f ly
-ne ed
-gra du
-tra in
-ma ke
-s ab
-be y
-si ze
-lead er
-tal ks
-e u
-lo g
-fo x
-gor geous
-le ss
-le ts
-sur pri
-my self
-no te
-li ves
-f ru
-lo ved
-se ver
-de m
-j i
-so c
-h old
-do gs
-n i
-â ŀ
-lea ve
-air port
-ben ef
-ex pl
-shi ps
-comple te
-ach i
-gre at
-vin tage
-j ack
-ro c
-woo d
-pri v
-off er
-ey e
-ver sion
-te a
-co ach
-off ic
-w ell
-g en
-s at
-h h
-you th
-o x
-? "
-m t
-mi x
-g g
-d le
-natu ral
-buil d
-break fast
-thin king
-theat re
-mo on
-ber g
-go als
-geor ge
-en e
-exc ell
-il ing
-tun e
-y ed
-g ate
-m it
-net work
-jo e
-h ello
-f b
-tu be
-we aring
-ath le
-stru c
-har d
-gla ss
-g ers
-thro w
-g es
-b t
-indu stry
-manag ement
-ali st
-go al
-stre am
-y el
-a vi
-ici ous
-o thers
-s ki
-chri sti
-bir d
-e sc
-m in
-tr o
-l t
-j an
-im p
-ri ghts
-sh a
-or gan
-cent ral
-ar a
-ro ll
-favour ite
-che ster
-el se
-p ay
-car s
-m ine
-ste p
-prac tice
-maj or
-h ang
-ðŁĺ ĺ
-n on
-v ari
-eng ine
-vol un
-di a
-i led
-arch itec
-p ink
-d s
-th y
-wa sh
-web site
-ba g
-contro l
-el li
-f ra
-an sw
-d ence
-y u
-r on
-ol a
-g in
-dr in
-li c
-cou ple
-sp ar
-g on
-cre ate
-c t
-celebr ating
-de ep
-e at
-te e
-vo ice
-dro p
-vis it
-at ors
-sta dium
-f t
-w is
-ro l
-gra de
-fam il
-po ints
-re pre
-w as
-traf fic
-jap an
-or g
-hon or
-tex as
-man u
-âĻ ¥
-safe ty
-re r
-b ag
-em plo
-rele ased
-re gu
-ak a
-n av
-ro le
-sen ior
-spec t
-cro ss
-lin es
-be st
-p ack
-s in
-ti e
-mis sing
-sun set
-li ber
-is ing
-j ay
-sk i
-champion ship
-ac tiv
-la dies
-play ed
-y y
-pu bl
-al o
-pri de
-s r
-pa ki
-lu x
-sur vi
-ck ed
-e ts
-cho col
-austr alia
-par is
-mi les
-h at
-ment al
-al a
-me an
-mob ile
-en a
-in si
-f ound
-chi ef
-t ag
-incredi ble
-re turn
-Ã ©
-goo gle
-fren ch
-cre w
-hal lo
-ali an
-j az
-ch er
-sil ver
-nor th
-eng lish
-base ball
-c af
-lim ited
-follow ing
-app reci
-ear th
-k ir
-ve mber
-w ed
-p tion
-g ed
-oc tober
-fl ori
-c r
-en cy
-ga ve
-lor d
-stu ff
-ber ry
-po st
-sm ile
-bro ad
-st ate
-gg er
-me ans
-ic y
-gu n
-y o
-ma ster
-bur g
-han ds
-ni e
-/ /
-uni on
-brit ish
-big gest
-distric t
-am ing
-h il
-o ce
-per son
-pas s
-en vir
-scho ols
-arri ved
-anc es
-insp ired
-ex pla
-be n
-libr ary
-bo tt
-am p
-ste ph
-cont act
-b ang
-m s
-cali for
-t old
-batt le
-b b
-chic ago
-âľ ¨
-str ate
-sh i
-de ce
-- )
-ad d
-la b
-j ones
-leg end
-cast le
-ing er
-st ance
-be l
-ur a
-re fu
-lead ers
-po t
-se x
-h ic
-artic le
-ki d
-fr ance
-x x
-ex e
-gui de
-volun te
-pr int
-al i
-ce o
-twee ts
-w x
-scen e
-vol u
-ant i
-h an
-as soci
-shar ing
-ro se
-mini ster
-sh er
-in ste
-cle an
-demo cr
-po ster
-sk in
-p sy
-pro per
-cra zy
-i am
-o re
-in i
-any thing
-po d
-mo ving
-cl ick
-ex plo
-com b
-cra ft
-f i
-bloo d
-is ra
-publ ic
-d ent
-ol ym
-eng land
-a si
-ch er
-fac t
-envir on
-har ry
-g one
-me dic
-enjo ying
-just ice
-j r
-indi an
-wi fe
-s ound
-t es
-dra wing
-p al
-ide a
-cr it
-ju li
-il er
-war m
-cl ar
-thou ghts
-def en
-coun cil
-intro duc
-di ed
-jan u
-an i
-s end
-li er
-m l
-intere sting
-tra de
-win d
-b ay
-s ac
-anc y
-sour ce
-b es
-org ani
-ar ly
-lar ge
-ff ici
-ta g
-u t
-de sp
-o es
-tit le
-sy m
-pic tures
-op en
-wom en
-sho wing
-ri a
-le ast
-lead ership
-cur rent
-elec tr
-val ent
-list ening
-c key
-gener al
-de ser
-du ce
-; )
-c ent
-ðŁĺį ðŁĺį
-sco tt
-po or
-selfi e
-ev ents
-i on
-wr ong
-de v
-h ill
-sep te
-cul ture
-l ine
-sor ry
-s ent
-si ster
-ce pt
-k ri
-no vember
-ar i
-announ ce
-z ation
-br an
-g ent
-d u
-l en
-per s
-f m
-mart in
-o p
-e mb
-om e
-midd le
-suc cess
-pe ter
-janu ary
-f lu
-rac ing
-d av
-bi ke
-ðŁı »
-pe t
-shoo t
-profe ssi
-feat uring
-septe mber
-now playing
-sta ur
-z a
-on ic
-qu ick
-bas ke
-spe aking
-mil it
-z er
-chick en
-b ell
-s ad
-co ast
-lo ving
-y ers
-d j
-pan el
-ver age
-s wit
-ic ks
-b ou
-califor nia
-s am
-paren ts
-er o
-k illed
-ph ys
-jo bs
-mi gr
-an th
-e mo
-hallo ween
-and er
-c m
-compet ition
-e ag
-s ket
-sp ir
-may be
-exclu sive
-app e
-jour ney
-scre en
-for d
-i o
-h ate
-u g
-sou l
-her o
-soci ety
-sy n
-gu it
-n h
-d j
-as es
-im pre
-ti me
-sal es
-d d
-f ts
-summ it
-stun ning
-om s
-tur ned
-cle an
-sof t
-be at
-re staur
-de red
-en ces
-ma gic
-di o
-sh ine
-gu est
-health y
-exhi b
-stor ies
-po pu
-n is
-el a
-bel ow
-fun ny
-resul ts
-s ne
-cur rently
-ar d
-down load
-f light
-m al
-f ine
-p ad
-ch u
-ent ed
-h at
-ðŁij ı
-ste ve
-j o
-mar k
-r at
-b all
-p c
-p on
-b by
-o li
-ar ts
-as ure
-bow l
-att ack
-mi c
-de ar
-ran ge
-en ter
-chocol ate
-br illi
-ac cess
-, "
-? ??
-ch ap
-con st
-t n
-mat ter
-blu e
-gall ery
-em p
-work shop
-lead ing
-y ours
-baske tball
-w anna
-th u
-_ _
-mar ri
-sle ep
-bi a
-ch e
-ma d
-imp act
-o wn
-si r
-chan nel
-euro pe
-e sp
-k itch
-hosp ital
-w ra
-roy al
-f s
-ne u
-qu ar
-ne y
-ac ks
-ch ase
-pp y
-st al
-at ely
-ti m
-dece mber
-r are
-per form
-cre am
-we ight
-ch oo
-ni ght
-ha ven
-fr anc
-kh an
-buil t
-hel ping
-tru st
-ty pe
-gol den
-ta x
-s now
-s wi
-di sa
-questi ons
-ve y
-li ght
-c n
-cl oud
-thom as
-ag ed
-sh ou
-te ams
-gr an
-re ason
-a a
-you tube
-v p
-pi zz
-manag er
-bur y
-cre dit
-tre at
-ma x
-i k
-ma in
-g ing
-de ad
-pro bab
-ye ah
-ã Ĥ
-br and
-so li
-pl ant
-ta yl
-gir l
-ðŁĺ Ń
-nam ent
-au to
-mess age
-ko re
-n ur
-ter r
-ag u
-ma p
-sen ting
-lo ves
-gi ves
-g ab
-z en
-ro bert
-con fir
-w ars
-o m
-sta in
-cam era
-and er
-won der
-a b
-ca p
-s old
-su it
-wal king
-contin ue
-effe c
-dau ghter
-d anc
-cha in
-mul ti
-ki d
-y an
-champi on
-v o
-ta ins
-ho st
-min i
-mis sed
-re sc
-ly n
-fin ish
-del icious
-s as
-tayl or
-i b
-pro mis
-produc ts
-moun tain
-flori da
-regi ster
-tre at
-rec ent
-fe male
-boo th
-mat t
-ve hic
-s op
-mo tor
-suppor ting
-phi c
-ex tre
-dr ink
-lan e
-th ird
-p s
-con stru
-ce re
-far m
-ðŁİ ī
-tu red
-ðŁij ī
-c ats
-a j
-gi e
-shoo ting
-as ked
-paki stan
-am e
-m b
-g il
-leg al
-squ are
-in vol
-dra w
-oo oo
-!! !!
-opportun ity
-p y
-e i
-b ts
-teach er
-charac ter
-john son
-br on
-ly wood
-ch ine
-c ing
-c ine
-d ge
-gam ing
-russi a
-ci a
-quo te
-ric h
-go v
-flow ers
-sp iri
-st in
-grow th
-ðŁı ¼
-comm er
-j uni
-mu m
-r an
-s na
-a ren
-c b
-ac tor
-col or
-si t
-pa ir
-ch i
-bo w
-acade my
-hel d
-r ang
-me tal
-y l
-ac tive
-probab ly
-t ch
-need ed
-spe e
-cho ice
-ital y
-ry an
-ðŁĩ º
-flow er
-v it
-m n
-found ation
-b ak
-si ons
-ne igh
-f loo
-he ard
-re mo
-fre sh
-ing ing
-re f
-to wn
-cl ou
-je sus
-spiri t
-cou ldn
-z es
-ðŁĴ Ļ
-willi ams
-pro ce
-moder n
-pro cess
-sho es
-cre ated
-tri c
-issu es
-ann e
-att en
-de but
-h r
-n it
-sti g
-a po
-e ps
-z u
-ã Ģ
-si x
-car ds
-lan gu
-fam ous
-tour nament
-se l
-e bay
-y n
-st on
-k ick
-announ ced
-k am
-vo c
-brilli ant
-hou se
-che ese
-war ri
-mus ic
-ho ckey
-ðŁĺĤ ðŁĺĤ
-sk ills
-au tom
-smar t
-med ical
-mon y
-e x
-gu ar
-gi ve
-pers onal
-ven tion
-al li
-pre ss
-flo or
-m c
-victor y
-hi m
-simp le
-th or
-ðŁĩº ðŁĩ
-ta il
-lu cky
-ale x
-qu ite
-bo t
-ssi ons
-chall eng
-c ann
-amaz on
-h ell
-b ought
-) :
-ed y
-secre t
-produc tion
-inde pend
-de fe
-ad ded
-p r
-p ag
-be d
-gre atest
-with in
-j ay
-ðŁ ¥
-ire land
-re ly
-s d
-te xt
-dri ving
-pro gram
-spe ed
-col um
-str on
-Ã ©
-fore st
-â ĸ
-mach ine
-co in
-sc ar
-oun t
-bi e
-¡ ï¸ı
-por tra
-comm on
-wre st
-recei ved
-kno w
-inve st
-pl ans
-ac cor
-ad op
-ter y
-re ali
-p p
-k al
-art work
-me an
-go d
-inste ad
-an ci
-motiv ation
-as ing
-inspir ation
-up coming
-polit ical
-euro pe
-m ers
-heav y
-ðŁij į
-fe bru
-scot land
-ou gh
-b t
-bo ss
-sche du
-spe ak
-n ick
-u red
-in o
-e k
-ri sk
-tor y
-pres ents
-b on
-ru g
-st ates
-exhib ition
-il o
-m ill
-br ought
-: -)
-tou ri
-com e
-offici ally
-champi ons
-do ors
-re p
-po se
-ex tra
-k ings
-soc cer
-squ ad
-app lic
-at a
-some times
-t ari
-excell ent
-ðŁĺ ĺ
-stra ight
-car ol
-ri p
-âĢ į
-gra phic
-m ol
-elec tion
-febru ary
-as ons
-l i
-di r
-m t
-n ick
-u su
-m rs
-com ics
-inst itu
-cor por
-v i
-ðŁĻ ı
-tu ral
-di se
-ac ci
-we are
-am ong
-sho pping
-t ill
-wh at
-cha ir
-sp an
-chine se
-innov ation
-jo y
-k it
-cent ury
-ob ama
-ph ili
-f c
-re ach
-c iti
-ul ous
-n on
-d ang
-happ ening
-bur n
-p el
-or ange
-d v
-k ick
-cla im
-ing ham
-ph y
-no v
-pod cast
-wh i
-ni ghts
-ear lier
-be ar
-la h
-exc iting
-or a
-gi ven
-s lo
-memor ies
-contin ues
-produc t
-gh o
-c d
-kno ws
-ðŁİ ī
-publi shed
-discu ss
-y ard
-i phone
-tri es
-w all
-fe b
-are n
-tru th
-win ners
-tu re
-diti onal
-milit ary
-proble m
-m and
-do g
-lo ss
-c ric
-can adi
-ve ter
-villa ge
-" ,
-y r
-un g
-don ald
-ag ing
-bir ds
-sci enti
-le s
-th is
-regi on
-tic al
-itt en
-il a
-ðŁĺ İ
-d ad
-di am
-abo ve
-st ren
-li t
-p ir
-la b
-fo cus
-bus y
-d ur
-app ly
-s ma
-auth or
-ac i
-exe cu
-dom in
-re la
-jack son
-at o
-wash ington
-ðŁĻ Į
-k ill
-popu lar
-ce ment
-ro ad
-e ating
-loc ation
-v ent
-ar re
-n an
-cu sto
-advent ure
-or din
-spor t
-ul t
-lo ck
-questi on
-dri ver
-land sc
-on i
-k ins
-p d
-jor dan
-te red
-k k
-a f
-chil d
-s p
-just in
-en i
-s elling
-z o
-wh it
-bo ston
-partic ip
-sig ning
-happ ened
-he at
-m am
-dre ams
-lo ws
-gra ph
-the day
-head ing
-br o
-ble ssed
-vi c
-ve gas
-h d
-in ning
-ro man
-and ro
-den ti
-u se
-c it
-pro gress
-writ er
-bo b
-ff s
-gro wing
-b ly
-aw are
-ex am
-sp ent
-be t
-sc ore
-bey ond
-do cu
-ad el
-s f
-cou ra
-colla bor
-in c
-priv ate
-bo at
-* *
-z one
-p ha
-b ill
-to tal
-plan ning
-to wards
-plac es
-pre view
-cre ative
-dam n
-ide as
-se ems
-po ten
-say ing
-di splay
-s w
-a qu
-lou is
-by e
-li l
-e mail
-we stern
-ger many
-ell er
-re s
-f ant
-ment ary
-de als
-ric hard
-jer sey
-stren g
-ra d
-pizz a
-mon d
-w are
-l ac
-g i
-ar chi
-c d
-yel low
-rec ently
-re ach
-à ¹
-kitch en
-desig ned
-tr y
-g al
-restaur ant
-at ure
-w w
-j as
-l ma
-ðŁij Į
-pa in
-av o
-min ute
-sch ol
-ther ap
-tic ket
-d ry
-jap an
-diti ons
-ter ri
-sel ves
-happ en
-t up
-ma g
-cop y
-sh er
-free dom
-f ile
-speci ally
-tor onto
-lo ad
-g ary
-re y
-answ er
-lo y
-cau ght
-pri ze
-u ne
-fic ation
-ni ger
-sy d
-tou ch
-feat ure
-jaz z
-recor ds
-him self
-di sh
-ro ber
-spot ted
-ma ster
-wa ve
-fin als
-bu ll
-for um
-al d
-re comm
-ch a
-a e
-d oo
-inst ru
-tru ly
-l g
-in k
-bro thers
-de st
-j im
-m it
-clo sed
-is on
-tri ed
-s anta
-af fe
-w an
-hor se
-g row
-camp us
-rel ation
-nati ve
-jour n
-go v
-o ct
-k it
-b ound
-part ner
-re ma
-crow d
-! )
-c alls
-ra il
-qu ali
-solu tion
-con test
-con vers
-sn ap
-b ase
-in iti
-ta x
-y e
-ent repre
-it or
-constru ction
-foo d
-present ed
-n ings
-cli mate
-k m
-mo del
-b j
-blo ck
-present ation
-dre am
-fi x
-c alling
-bus ine
-con gress
-under stand
-we b
-val ue
-ï¸ı âĥ£
-mex ico
-it ely
-ki m
-char ity
-ref lec
-bl an
-fl ying
-anal y
-famil ies
-b and
-reci pe
-celebr ation
-ac cep
-ar y
-to t
-g b
-intere sted
-cap tain
-âĻ ¥
-ti p
-ab sol
-bra z
-inve stig
-o logy
-de c
-tru ck
-ver ing
-c lear
-don t
-go tta
-ad vis
-beg ins
-ma ss
-de scri
-blo ck
-k im
-davi d
-son gs
-memor ial
-feat ures
-su stain
-' .
-gra b
-jo se
-v a
-con serv
-se ts
-man chester
-fi ghting
-de gre
-ag a
-in d
-sle ep
-pos ition
-ha ir
-sig ns
-pol icy
-it o
-al ert
-st am
-sp end
-w y
-absol ut
-d m
-anim al
-my ster
-success ful
-proble ms
-ro bo
-k ay
-gar den
-p d
-may or
-d ale
-t ol
-off ers
-vis iting
-friend ly
-tre es
-offic er
-accoun t
-ke vin
-ðŁij į
-gi ant
-contin u
-con su
-tr act
-n fl
-ðŁĺ Ĭ
-h q
-b ility
-a ar
-dis ney
-te en
-on ed
-wh ite
-tra iler
-de dic
-al one
-absolut ely
-dig ital
-willi am
-in ation
-s wa
-e e
-enti re
-ger man
-ro ll
-h its
-co st
-st ay
-th a
-ali ve
-accor ding
-co t
-liter ally
-her it
-re ti
-haha ha
-exper i
-li kes
-g t
-ste el
-__ __
-ch air
-christi an
-to wer
-diffe rence
-m d
-tre ss
-mi d
-prin ce
-afric an
-fe der
-foo t
-car ri
-ser ved
-r ice
-sh all
-feat ured
-ck er
-rec ru
-po e
-sen se
-ni fic
-com edy
-cont ent
-f at
-po sted
-con tribu
-tim ate
-li ver
-mb le
-inter net
-ag e
-europe an
-cl ing
-gla d
-ff ic
-sc o
-ak es
-el le
-ter min
-ton y
-p ale
-col our
-seri ous
-pat ri
-movi es
-b m
-professi onal
-ad o
-al u
-br inging
-f alls
-isra el
-ter m
-langu age
-bro ok
-man n
-commun ic
-can not
-ac ti
-p he
-y an
-entrepre ne
-tur key
-log ical
-lon g
-ar m
-ur s
-work ers
-ing ly
-gg s
-ri c
-tu al
-recei ve
-op ens
-ge ar
-soci al
-fe et
-c king
-ad ver
-fin an
-fe els
-sp la
-h r
-ea ster
-bra in
-ã ģ
-fi g
-le dge
-ne arly
-prote ct
-ma ssive
-e th
-aw a
-ðŁĺ ģ
-y rs
-aware ness
-defin itely
-k n
-imag ine
-k u
-syste ms
-ðŁij ı
-f as
-li k
-provi de
-am o
-disco ver
-inf lu
-ma ker
-g az
-fit ness
-stre et
-er s
-te d
-w c
-ys is
-pos itive
-hel ped
-que st
-andre w
-bra d
-b in
-hang ing
-l ing
-bri ght
-se ction
-ma ss
-ðŁĻ Į
-follow ers
-ho sting
-tem por
-fla g
-a ve
-let ter
-k ur
-re qui
-of ten
-cry p
-su ff
-âļ ½
-russi an
-treat ment
-al le
-ha y
-l an
-keep ing
-hol y
-power ful
-pre dic
-fun d
-e specially
-windo w
-je wel
-il y
-ðŁĴ ľ
-gener ation
-app a
-seri ously
-o d
-ðŁĺĤðŁĺĤ ðŁĺĤ
-cer ti
-iri sh
-ðŁij Į
-mi ami
-be th
-v ity
-se cu
-che f
-cri me
-graph y
-ma x
-arti sts
-re volu
-gu ard
-spee ch
-u c
-upd ates
-fac es
-st ant
-chang ed
-repor ts
-low er
-pe ar
-n c
-k il
-loo ked
-spe aker
-s f
-re spect
-ok ay
-oce an
-s itting
-architec ture
-tra il
-se at
-i ra
-le g
-japan ese
-d am
-u lar
-sw im
-polit ics
-finan cial
-ol d
-mou th
-at temp
-de stin
-fi shing
-atten tion
-me m
-chang es
-deci ded
-reli gi
-g in
-c av
-z z
-ad am
-ma c
-wr ite
-beg in
-sc ul
-al ter
-is s
-ath on
-imag es
-m oo
-jo ined
-ðŁĺ ī
-âŀ ¡ï¸ı
-pas sed
-mu sli
-h ir
-lar gest
-cam er
-com ic
-gh ted
-rug by
-bur gh
-gg ing
-te sting
-pre par
-lau gh
-al ed
-impro ve
-beli ev
-adv ice
-sha res
-he art
-tur ning
-s b
-t el
-caf e
-n es
-dani el
-pat ter
-t z
-se tt
-par k
-c and
-st ick
-happ ens
-bri an
-ne west
-e pic
-ad or
-ki es
-war ning
-anim als
-custo m
-ar c
-di an
-gol d
-cor e
-t f
-c ity
-pan ts
-re ality
-con fi
-in ju
-fo x
-gu il
-k new
-âĺ º
-cor rec
-itu de
-d den
-. #
-re duc
-pas s
-f on
-y a
-ow ner
-re turns
-n c
-e ast
-ap ol
-in sur
-th o
-si m
-juni or
-be e
-ang el
-att le
-elec tric
-hor ror
-cra sh
-e ye
-pat h
-sou thern
-emplo ye
-ge o
-t an
-ha z
-r ally
-ðŁı »
-proper ty
-was n
-enjo yed
-gre y
-g as
-bre w
-nor thern
-hol ding
-g p
-ta ke
-ch art
-ly n
-dr ama
-z o
-pa id
-throw back
-cu p
-discu ssion
-down town
-w ill
-le w
-b is
-t ary
-bre ad
-up on
-r ate
-teach ers
-it ation
-anc ed
-cy cle
-choo se
-d c
-ir an
-co w
-da ve
-ra ise
-prin cess
-fa ith
-- >
-indu stri
-sp ain
-guit ar
-fac ts
-m n
-sp en
-cour te
-go tt
-projec ts
-au di
-o sc
-pe ter
-s and
-intere st
-happ iness
-ven ue
-sol di
-surpri se
-poten tial
-per io
-custom er
-i i
-g ni
-manu fac
-e co
-bro ken
-sing er
-vel s
-wal es
-hu s
-in j
-f our
-tal ent
-d ying
-mat the
-fil m
-jo ining
-s ell
-j ar
-lma o
-sur ger
-bb c
-sour ces
-au stin
-ni k
-char les
-f am
-prin ci
-ange l
-cas h
-lo t
-o red
-pla ys
-pl ate
-don e
-memor y
-br ings
-n ba
-solu tions
-teach ing
-gr ace
-cir cu
-hel ps
-foun der
-mar y
-expl ore
-de cor
-par ts
-ch o
-inte gr
-ha u
-is es
-pu tting
-in er
-r it
-v y
-mic hel
-blu es
-every day
-for ms
-bi o
-ye ar
-p in
-t ter
-spr ing
-) )
-po t
-al ing
-perform ing
-sh an
-plan et
-mus ical
-head s
-it alian
-stru gg
-âĢį âĻ
-w ings
-pu mp
-h h
-tr ou
-a id
-pri me
-ear th
-pa int
-mon t
-am y
-bb c
-fab ulous
-fru it
-andro id
-bour ne
-cere mony
-enti al
-? ?
-deb ate
-on ing
-dra ft
-sol ar
-t x
-j am
-cor n
-!! !!!
-bro o
-mil k
-po sed
-o hi
-mo vement
-b ren
-part ner
-p g
-et te
-ar ies
-sh out
-n g
-leav ing
-t ells
-sen s
-ta ste
-kel ly
-wor l
-gy m
-ric h
-e gy
-pi d
-ma s
-â Ĥ
-courte sy
-fran k
-incre ase
-wr itten
-pp ers
-re l
-ha i
-s as
-s ound
-tt i
-w ich
-ri ver
-.. ."
-a g
-fel low
-ro me
-sm all
-gen cy
-ic an
-lux ury
-pro of
-me t
-wild life
-mom ents
-ra ther
-cor ner
-com pe
-canadi an
-lik ely
-therap y
-li am
-econom ic
-indi e
-rou te
-fi ght
-ho pe
-se tting
-ant ly
-cro ss
-fant asy
-de e
-sket ch
-comp li
-ym i
-ru les
-engine ering
-fig ure
-ro w
-. ,
-f w
-syd ney
-w ou
-t ation
-dre w
-us es
-the re
-sp read
-struc ture
-pat rick
-appa rently
-ro s
-h ills
-w we
-ann y
-com mission
-di v
-f ying
-con sul
-anal ysis
-ex i
-ten nis
-vehic le
-ðŁĺŃ ðŁĺŃ
-as s
-high ly
-op ened
-b ann
-ðŁĴ Ļ
-mp h
-wi shing
-v or
-fi f
-give away
-r r
-ra y
-je ss
-g at
-ic ymi
-x it
-high est
-yor k
-pi e
-invol ved
-high er
-ri e
-mal ay
-int elli
-desp ite
-che e
-sar ah
-be an
-reco gni
-ar sen
-tal ented
-pas sion
-ic h
-ab c
-lead s
-dise ase
-v is
-se c
-pre senting
-m illi
-hol e
-sho ts
-de part
-surger y
-gov t
-b in
-du al
-e vi
-lon ger
-ev ol
-scre en
-portra it
-et c
-lo se
-ch at
-p en
-p i
-om a
-s ick
-er c
-compan ies
-en try
-plan e
-gr y
-ven e
-liver pool
-premi ere
-sha red
-a red
-fil ms
-ir a
-holi days
-cric ket
-ici an
-v ing
-. )
-ul timate
-di vision
-con duc
-se pt
-for ces
-mon t
-s mart
-disa pp
-sun shine
-in d
-b less
-ma de
-col ors
-fran k
-ir on
-bott le
-s go
-m ood
-j ason
-er ic
-bir th
-te en
-respon se
-tar get
-state ment
-fe ar
-th el
-al um
-ar ab
-bl in
-direc tion
-ste ps
-er ial
-wor ked
-at l
-ðŁĴ ķ
-fel t
-pol i
-scen es
-hom es
-b ell
-e at
-ate ful
-t in
-l ace
-fol ks
-p se
-an n
-wis dom
-fa v
-but ter
-s r
-are as
-sm oo
-bi z
-dg es
-app o
-mo re
-the m
-effe ct
-windo ws
-sun ny
-cap ital
-tot ally
-c ities
-gr ant
-mb ers
-s low
-au tu
-il ities
-w ro
-ri sing
-st ics
-viol ence
-i gh
-qu ot
-h it
-t c
-herit age
-bu ff
-ne s
-z ar
-den tial
-ex ac
-ed ge
-de ep
-aren a
-be came
-benef its
-mar ks
-mb er
-a z
-am es
-pre ci
-dra gon
-re g
-d ings
-do s
-ðŁĴ ª
-n el
-s ity
-me al
-di st
-leg end
-pur chase
-pic al
-st ick
-f at
-du ba
-profe ss
-car to
-pro f
-coun tries
-respon si
-se qu
-fa b
-tribu te
-hon ored
-prac tic
-pur ple
-an ton
-pa red
-t ough
-summ er
-environ ment
-s ons
-ðŁĻ ı
-m ps
-gi es
-her oes
-t elling
-hen ry
-f en
-know ledge
-Ģ ï¸ı
-f r
-ne g
-u re
-ac king
-hear ts
-s oo
-hol lywood
-ju mp
-sau ce
-schedu le
-tur n
-yo ga
-cre ating
-c ket
-cre ek
-â Ń
-custom ers
-ma dri
-gu l
-asse mb
-moun t
-c ell
-to p
-st al
-dav is
-t wi
-sig n
-premi er
-iti ons
-he aring
-un k
-pati ents
-app ear
-heav en
-al ty
-doc tor
-a e
-plat form
-je ff
-ðŁĵ ·
-regi onal
-bi d
-box ing
-ex ten
-or ity
-a w
-w ise
-il le
-sever al
-bi e
-s itu
-sy ria
-âľ ħ
-remin der
-enter tain
-li on
-part ners
-in n
-ph ar
-f au
-pl s
-expe cted
-sug ar
-deci sion
-s b
-ch ron
-associ ation
-leav es
-vis ited
-sh ap
-ðŁĴ ĸ
-fur ther
-h ann
-w i
-run s
-l er
-fun ding
-fil led
-.. ....
-tin y
-han g
-or g
-co ol
-se min
-ðŁı Ĩ
-spon s
-nav y
-sa int
-dru g
-d al
-r oun
-co vered
-tra ditional
-invest ment
-de te
-al ism
-f low
-n is
-sun rise
-fe at
-f ted
-we ird
-je re
-ve gan
-medic ine
-an o
-ac cu
-deli very
-temp le
-chang ing
-wil son
-phili pp
-re fe
-n d
-is er
-g ay
-r and
-ati ves
-t ely
-p and
-intelli g
-g are
-am bas
-de mon
-commit tee
-strate gy
-refu ge
-bud get
-prote c
-pi er
-ex press
-nom in
-econom y
-al low
-ic on
-gal ax
-o h
-indi vi
-dem and
-vir gin
-lu ke
-ali sts
-man i
-s mi
-ju dge
-ent y
-mic hi
-resul t
-am ed
-spe aks
-' ,
-hou ston
-sh in
-b ing
-fl y
-ch em
-au to
-v as
-ge t
-ar m
-thank s
-d in
-gan g
-x x
-si on
-loc ated
-p l
-jo sh
-in fo
-jo ins
-adver ti
-ot d
-el d
-si e
-re asons
-v ent
-ðŁĩºðŁĩ ¸
-â ł
-convers ation
-stu di
-ðŁĶ¥ ðŁĶ¥
-go s
-s ounds
-un it
-mu sc
-ge l
-ack ed
-pac i
-co s
-de re
-u u
-a o
-la m
-inspir ing
-ar ms
-tw are
-mat ters
-ad dic
-du de
-ex t
-cri sis
-b ath
-me et
-sing h
-expe ct
-del hi
-resc ue
-wor st
-au g
-shi pping
-ser ving
-st o
-dar k
-ac es
-histor ic
-landsc ape
-desig ner
-b illion
-gr ateful
-wa ke
-e ve
-m iller
-hou sing
-dy nam
-is co
-be ha
-sh op
-pr ou
-e as
-a sia
-e ding
-k on
-depart ment
-aw ar
-mar ine
-in ci
-photograph er
-ta pe
-lo go
-r ings
-d it
--- --
-vin yl
-w c
-vo ting
-se ven
-ambas sad
-dal las
-t u
-com ment
-k ra
-b les
-w ag
-u d
-au dio
-stri ke
-offici al
-o ts
-me tho
-to ols
-ra di
-al an
-hun t
-wat ched
-a ke
-fa ke
-drin king
-mer ry
-m l
-b day
-ri o
-ni ke
-c ant
-re pe
-co stu
-mur der
-ak ers
-ch ers
-ou ts
-beg inning
-so s
-ad es
-n in
-not es
-wro te
-sol o
-c i
-li ghting
-ur ban
-bre xit
-att end
-shir ts
-pla yo
-ac tress
-pl ic
-stand ard
-quot es
-par ade
-anci ent
-Â ©
-tur ing
-re e
-pri mary
-fla sh
-citi z
-mat es
-ste in
-z i
-clin ton
-sk in
-gen e
-hu m
-g ar
-t le
-y i
-fo cu
-de an
-pl ants
-cy ber
-b u
-om e
-ho p
-ad dress
-ti x
-gi fts
-relation ship
-sub scri
-fe ed
-exac tly
-haw ks
-ex o
-stre ss
-s n
-arre sted
-an e
-sof tware
-z ero
-the me
-mu mb
-im migr
-mi a
-make up
-ple asure
-uni vers
-har b
-eng ine
-ap er
-r in
-br a
-institu te
-le ather
-al th
-sing ing
-co s
-gh ty
-me as
-st ic
-si de
-insur ance
-co t
-pit ch
-moun tains
-cri min
-su pre
-valent ine
-at er
-wou ldn
-sc ale
-rel ated
-re gar
-star tup
-pack ed
-mi ke
-week ly
-p ts
-coun t
-ha r
-gott en
-min d
-ber lin
-con ditions
-swit ch
-cor n
-sa ve
-g li
-emer gency
-tun ed
-sto ck
-discu ssing
-every body
-s day
-whe ther
-wrest ling
-ec es
-gen der
-ch en
-ðŁij Ģ
-madri d
-mar athon
-e gg
-i er
-th x
-as king
-kore a
-wol f
-ay a
-g m
-g au
-at ory
-v r
-gra ss
-k illing
-b ble
-ur o
-un i
-e th
-sh ore
-th en
-re ale
-bot tom
-ex erc
-k ar
-or ies
-ad ri
-san ds
-se x
-. '
-volunte ers
-per form
-par liam
-inclu de
-deli ghted
-execu tive
-fu el
-kis s
-ã ħ
-char ge
-h u
-ca kes
-ve t
-g lu
-agre e
-pr ices
-n au
-h l
-g ru
-ra j
-streng th
-b ic
-sp ending
-al es
-av en
-b last
-: (
-yo f
-nor mal
-si x
-qu ick
-se a
-d aw
-mee ts
-lo vers
-upd ated
-po tat
-comple ted
-coo k
-opportun ities
-p ure
-organ ic
-tem per
-c am
-avo id
-par king
-duba i
-and o
-di stri
-to y
-comple tely
-don ald
-tri al
-bas s
-b oun
-back ground
-v as
-mar vel
-lu m
-ru s
-t ool
-com missi
-throw back
-fin ding
-is lam
-! ?
-st op
-e vil
-or al
-resi dents
-i denti
-o ak
-ðŁİ ¶
-l il
-span ish
-chap ter
-sto pped
-direc t
-ho sted
-pic ked
-lab our
-lew is
-defen se
-à ®
-health care
-wh is
-mat h
-pe ak
-ra ised
-fi x
-bu ll
-th ir
-chel sea
-fol k
-tr e
-can di
-pau l
-ei ther
-ad am
-poe try
-jewel ry
-ðŁ ¦
-pr ay
-Ø §
-g c
-o z
-wi shes
-fore ign
-sun g
-lear ned
-en e
-n ing
-micha el
-illu stration
-legend ary
-w av
-b au
-ðŁļ ¨
-cal end
-stre ets
-â Ĩ
-mon ster
-bu ck
-g r
-scho ol
-ba th
-wa ste
-ne ck
-ha wa
-be ach
-re plac
-jec t
-on er
-fac tory
-coun t
-ðŁĵ ¸
-mor gan
-der ing
-se an
-steph en
-de p
-no vel
-vide os
-ic al
-press ure
-arsen al
-ex pre
-ir s
-tren ding
-ss a
-fla sh
-re sear
-thr ough
-profess or
-scul p
-to s
-gg ed
-mm a
-be e
-a pe
-hun ter
-am i
-he i
-pla stic
-bu cks
-uni verse
-le gen
-niger ia
-ple ased
-ri s
-thin ks
-autu mn
-i ds
-d is
-anth ony
-ðŁı ½
-ak ed
-gla sses
-fin ance
-z er
-k as
-con tract
-nu mbers
-sh aw
-partner ship
-t il
-laun ched
-s al
-victor ia
-theat er
-usu al
-nam es
-perio d
-eli za
-i th
-bar cel
-ro cks
-bag s
-mat e
-distri bu
-j on
-di ffic
-ali zed
-cur ren
-sco red
-b ha
-du blin
-ro se
-in ted
-soli d
-beha vi
-wal ker
-simp ly
-garden s
-head ed
-in i
-ohi o
-we ap
-f o
-gl en
-e state
-ran dom
-th under
-thr u
-k ill
-jac ket
-it i
-entertain ment
-thanks giving
-ent al
-en coura
-el o
-a ther
-tan k
-high lights
-f ting
-ru le
-model s
-bor der
-bj p
-hus band
-in done
-ken ya
-be ars
-al o
-n inten
-pi x
-str o
-or ders
-sal ad
-ro ads
-n or
-l ation
-sop hi
-ðŁı ¼
-pi eces
-b one
-min s
-inclu des
-nu tr
-phi l
-s ent
-fun dra
-ga in
-bor ough
-n ad
-mon day
-activ ity
-it ems
-be coming
-ken ne
-de tro
-car di
-gue sts
-u x
-world wide
-sever e
-new s
-thank ful
-fic tion
-ve ge
-m all
-si an
-er al
-inj ury
-le e
-men u
-danc ing
-scot ti
-exam ple
-( #
-na i
-studi os
-ba i
-ðŁĴ Ľ
-j av
-diam ond
-vin ce
-ric k
-prote ction
-lin col
-cham ps
-appro ach
-d ar
-m ile
-clou ds
-je ff
-in fin
-l ers
-p les
-pe ace
-go p
-âĻ ¡
-tech n
-str a
-a verage
-ef fort
-introduc ing
-di versity
-austr alian
-am p
-boo st
-s ke
-pati ent
-appreci ate
-ici ans
-pu r
-f ell
-woo ds
-illu str
-ðŁ ĸ
-ag ency
-ac tions
-brit ain
-under way
-se attle
-el and
-ag o
-f ill
-stre aming
-pro test
-challeng es
-ky o
-et sy
-coo king
-exper t
-ru ss
-rain bow
-commer cial
-sp in
-be ats
-c ry
-val u
-el i
-th row
-gr ams
-le vels
-michi gan
-c ad
-ador able
-const itu
-w s
-pu b
-mid night
-th at
-net fli
-braz il
-die go
-regu lar
-jo y
-âĤ ¬
-li qu
-ea stern
-k ni
-fl at
-n p
-bro wn
-w er
-se y
-tt ers
-ac ting
-v anc
-cy cling
-program me
-ra w
-comple x
-tat too
-throwback thursday
-se ssions
-ro oms
-si ght
-speci es
-bom b
-lau gh
-ke eps
-mo on
-offic ers
-con ver
-t r
-ha sh
-t ack
-ri ous
-ad ap
-a j
-reco gn
-ex po
-sug ge
-confir med
-rol ling
-dre ssing
-ic t
-fri day
-ph ones
-ri dge
-con cept
-ro y
-ke ys
-ef for
-c ate
-k ne
-ev en
-l ay
-commun ities
-mo d
-n az
-every where
-al ab
-bit coin
-ban ks
-out door
-feder al
-sto res
-h p
-c al
-m ely
-sig nific
-be ar
-re public
-clo ser
-al lah
-pic k
-x d
-pal ace
-ch ill
-b am
-er ous
-un a
-al len
-out standing
-olym pic
-supp ly
-fi gu
-v au
-l p
-char lie
-un es
-> >>
-legen ds
-ici al
-co ast
-benef it
-mul ti
-f its
-far mers
-am ount
-si sters
-har ve
-hon ey
-que en
-b ers
-pl ann
-âŃ IJ
-m u
-barcel ona
-al ber
-stat us
-re main
-ex tra
-c andy
-vi ous
-âľ Į
-o v
-warri ors
--- >
-ju mp
-am ar
-x mas
-stu dies
-i ors
-k or
-don ate
-pre p
-fi sh
-im a
-pain ted
-ad mini
-co splay
-spor ts
-dro ps
-fi ghter
-evi dence
-ðŁĴ ª
-la ke
-ro b
-cine ma
-pro file
-Ã ±
-stan ds
-leg acy
-sh ape
-ro of
-ci vil
-i ans
-sy l
-sh am
-vo ted
-re tail
-ph illi
-li sted
-du ty
-n b
-th es
-f are
-au ction
-ffici al
-stor ms
-d p
-l oun
-sh ops
-al y
-ani me
-multi ple
-ðŁĺį ðŁĺį
-psy cho
-je an
-ap art
-candi date
-gg y
-con f
-jose ph
-w ick
-me at
-fr ame
-c l
-for got
-ph y
-f ing
-li ed
-re p
-se ed
-f all
-u fc
-nu t
-lin d
-mo de
-fiel ds
-en ce
-s ley
-ðŁ¤ Ķ
-ch ill
-follow ed
-announ ces
-cor ru
-tro phy
-them selves
-ac le
-al du
-k ong
-l on
-s v
-bro ke
-ander son
-ta i
-stor y
-tempor ary
-activ ities
-k ati
-ari z
-cry stal
-spo ke
-extre mely
-tra ding
-ðŁĴ ļ
-Ã ¼
-in ch
-ed in
-out fit
-equ ip
-ma di
-form ed
-be ef
-po p
-ti ger
-this day
-ti red
-neigh b
-re tro
-is a
-un t
-t as
-kan sas
-de st
-secon ds
-ta y
-hur ric
-o u
-galax y
-dad dy
-bro w
-bur ger
-en ced
-de sk
-ac cur
-secre tary
-el ite
-k ab
-ch in
-touri sm
-bud dy
-ici de
-dre ssed
-u d
-vac ation
-che ers
-com for
-charac ters
-j et
-bu ying
-l ins
-n ap
-reale state
-li e
-af c
-i ii
-f ame
-n r
-b at
-ag ent
-ma kers
-âĢ ¼
-sec tor
-op ti
-le on
-di et
-pra yer
-hi p
-mi r
-le x
-br y
-an a
-pas sing
-w en
-reco very
-ak i
-po pul
-res ort
-mar ia
-stu ck
-read s
-ti er
-perfe c
-netfli x
-p oo
-cham p
-o c
-re duce
-we red
-comm ents
-cla im
-acci dent
-s ag
-h ack
-sal t
-kin da
-k iller
-i os
-z y
-ex change
-lec ture
-eng er
-ic king
-t au
-reve als
-pri son
-z om
-gh an
-u l
-jour nal
-i ot
-tr in
-jon a
-govern or
-cap e
-quar ter
-spec tive
-impre ssive
-bab ies
-t x
-m ill
-o y
-har ri
-jo int
-su e
-collabor ation
-tren d
-revolu tion
-re new
-alum ni
-ge tt
-sh ell
-sun day
-ent u
-ni c
-donald trump
-block chain
-paci fic
-expla ins
-sp y
-ad voc
-par adi
-to f
-star ring
-p av
-fe ed
-br ac
-smo ke
-ham p
-y am
-to kyo
-si mon
-d h
-e ffici
-phys ical
-n j
-ell i
-s low
-gradu ate
-americ ans
-ti fy
-f red
-ap ore
-fin ds
-rob in
-we t
-not ice
-se mi
-un ve
-k om
-pil ot
-scre ening
-da ily
-ðŁĴ Ĺ
-roy al
-sp a
-vo tes
-n ag
-wh ate
-att ending
-exper im
-ad dition
-k ate
-sto l
-m ali
-foo t
-chri st
-ch an
-de e
-lic en
-glo bal
-mo ore
-ti a
-bri gh
-myster y
-y ay
-âĿ¤ï¸ı âĿ¤ï¸ı
-cre ati
-me chan
-clo ck
-di c
-âĢ Ķ
-pp er
-al ph
-through out
-al low
-re sources
-selec tion
-ham il
-bb q
-aa aa
-virgin ia
-dis ney
-en g
-so red
-drin ks
-f ancy
-consi der
-end a
-jan e
-hand made
-du l
-on tari
-i us
-s ville
-color ado
-whate ver
-whe el
-promis e
-ne ver
-desig ns
-ab ly
-sex ual
-vanc ou
-at i
-con vention
-cul tural
-sing apore
-pro mo
-load ed
-gla sgo
-pp l
-n oo
-ke e
-ste m
-men tion
-i do
-cru ise
-ri ding
-be comes
-be y
-âļ½ ï¸ı
-tw in
-dedic ated
-na sh
-de si
-work out
-jen ni
-i v
-grou ps
-rela x
-pho eni
-li ft
-mix ed
-m ck
-p c
-mu st
-me tro
-ci es
-y ar
-a im
-ang er
-i e
-rec y
-marri ed
-dro pped
-eng ag
-le st
-ambassad or
-op h
-de s
-w ick
-assi stant
-nat ur
-fa il
-l td
-shor t
-k ap
-sha w
-bi gger
-rema ins
-crit ical
-sur vey
-co verage
-er son
-win d
-n b
-bil ly
-let es
-ac ts
-jim my
-at lan
-al and
-t c
-import ance
-dam age
-f g
-stor age
-tw t
-bon d
-bal ance
-cr ying
-pu ppy
-vo te
-pu sh
-ðŁĴ ľ
-pol y
-me l
-lon don
-terr ori
-effec tive
-corpor ate
-atl anta
-jac o
-nas a
-gre ek
-sen ate
-i sh
-ev a
-intellig ence
-effor ts
-al co
-k un
-h all
-di ag
-claim s
-fir st
-h b
-ba e
-v ul
-pu ll
-Â °
-se par
-spe ed
-vic ti
-on thisday
-audi ence
-r ates
-te ach
-fil ming
-bu sh
-son g
-y um
-br un
-ra ine
-aw a
-par ks
-ð Ŀ
-ra bb
-ra ch
-ra id
-reach ed
-ra il
-mo ves
-selec ted
-fr i
-ra ising
-om y
-st ones
-su k
-franc isco
-cas es
-cap it
-con fu
-w tf
-po ke
-equip ment
-gre g
-ess ential
-off ering
-ne x
-pi es
-be c
-cre ation
-chair man
-cro wn
-w al
-john ny
-shi ft
-ne ck
-ban g
-bir d
-ðŁĺ ı
-du ck
-re serve
-de pu
-ma sters
-over all
-no tic
-ju ice
-sne ak
-che er
-cla sses
-eag les
-n ca
-car pet
-ci vil
-coach es
-har ris
-u ps
-b alls
-dec or
-mar tin
-ro s
-v ice
-announ cement
-who se
-ti gers
-ste red
-c ts
-dr am
-ste el
-youn g
-inst all
-supp o
-recor ding
-de ck
-se ats
-l der
-ang le
-bo t
-sty les
-elec tions
-for tun
-n ab
-but ter
-ari an
-ka sh
-in ner
-ou red
-be ast
-we i
-ic onic
-exper ts
-ne cess
-b eng
-jam es
-li a
-gre ece
-ðŁĵ ·
-ðŁĺ ģ
-good bye
-m itch
-tw ice
-mumb ai
-ste am
-ru sh
-med al
-ne tt
-fashi on
-t ar
-r s
-sav ing
-ric ul
-l m
-sleep ing
-brook lyn
-mis s
-sen ding
-disco vered
-sp here
-of theday
-k icks
-missi ons
-w right
-er n
-ght ly
-i ous
-mel bourne
-star tu
-mo ved
-car ry
-d ak
-ag ues
-bel gi
-e ma
-way ne
-do t
-er ie
-pe l
-it unes
-matthe w
-no body
-est ab
-cal m
-win ds
-lu c
-prep are
-tren ds
-exerc ise
-adv ant
-ðŁĴ ¯
-athle tics
-app s
-c tions
-adv ance
-laun ches
-litt le
-real donaldtrump
-eliza beth
-carol ina
-hu b
-hi dden
-n w
-us er
-pol l
-great er
-mo st
-f ed
-p at
-life style
-s ati
-sco res
-marri age
-l r
-aven ue
-de serve
-ri f
-ðŁ Ĺ
-wat ch
-champion ships
-gr ay
-en ni
-cot ton
-g om
-whe re
-pack age
-su m
-ab solu
-new ly
-foo ds
-ty ler
-assemb ly
-musli m
-ban k
-re memb
-op tions
-produc er
-land o
-fun ds
-u pper
-shad ow
-pro gre
-co p
-ing e
-leg s
-detro it
-hill ary
-jo se
-gi ants
-sou p
-sustain able
-t us
-clo thes
-roc king
-n z
-min ne
-mat eri
-bru ce
-ear t
-ca sting
-independ ent
-thou sands
-ta h
-de cl
-veter ans
-li ons
-wra p
-âĢ ¦
-de ss
-bl ing
-st ine
-e ggs
-o on
-clo sing
-z ay
-at t
-bac on
-fa il
-ariz ona
-de pre
-gho st
-new sp
-w ers
-vi p
-li ked
-id ent
-volunte er
-ad ult
-pu pp
-cir cle
-mat erial
-degre e
-gro wn
-boo m
-calend ar
-su r
-vie wing
-ath letes
-ch and
-re ll
-asi an
-en tr
-vol ley
-victi ms
-bo dy
-m ama
-trans fer
-ge ek
-in dic
-sav ed
-ma i
-g ent
-it s
-loun ge
-k ol
-the ory
-situ ation
-is lands
-ar th
-z oo
-floo d
-vi ously
-show ed
-parliam ent
-ch ev
-el ine
-at trac
-ab ad
-ta il
-h rs
-lu s
-por tu
-gor y
-provi des
-to ys
-de ath
-in fe
-an ce
-g le
-li am
-lo ver
-hu d
-dv d
-reve aled
-g w
-re ment
-ca the
-l ying
-ra dio
-der by
-stor s
-che mi
-hosp it
-âľ ¨
-' :
-ilo ve
-le mon
-re public
-s ni
-ne ss
-do or
-re action
-pre gn
-fla v
-schol ar
-spo tify
-is ation
-vis ual
-aw are
-spon sored
-jo ke
-less ons
-leg is
-lo ck
-si mil
-ðŁĺ ĭ
-kin d
-la y
-ma h
-ho ping
-vancou ver
-as er
-clean ing
-gal a
-thre at
-la p
-ach e
-ro mance
-ex pen
-re post
-z am
-e pi
-mir ror
-o ak
-ad ul
-bat man
-s lu
-l c
-vie wed
-re views
-d ates
-indone sia
-acti vi
-off en
-lea f
-i si
-ag ricul
-costu me
-s ites
-spir itu
-appear ance
-ir y
-st air
-applic ation
-spec tac
-ic ity
-ski es
-hand le
-pun k
-paradi se
-t n
-de al
-provi ding
-do c
-recei ving
-bre w
-micro soft
-Ã ¶
-fer r
-me tro
-th ail
-y um
-car ter
-Ã ¡
-gent le
-bre aks
-coo per
-show case
-cu tting
-egy pt
-bab y
-semin ar
-gl ori
-ss on
-fa ve
-re hear
-lo tte
-la dy
-al as
-pre p
-deli vered
-nu clear
-ir o
-engag ement
-at ta
-con ven
-z an
-gl ory
-hol ds
-busine sses
-str ange
-sch e
-it self
-gra d
-mar kets
-f alling
-st ats
-ge on
-bu dd
-li s
-she et
-thi si
-co lo
-deser t
-regi stration
-ig n
-expla in
-inter ior
-la ws
-writ ers
-spr ings
-k r
-fri ed
-blo om
-inf ra
-a o
-cre d
-pa st
-line up
-bo o
-bre a
-boo ts
-celebr ity
-att acks
-bro ok
-ev es
-ex cu
-cher ry
-oo p
-fas cin
-boy friend
-se as
-n ine
-effec ts
-po wered
-k ha
-ðŁĺ Ģ
-sh out
-con dition
-i j
-her o
-enter pri
-win ter
-applic ations
-sho e
-g el
-batt le
-pro grams
-w art
-ðŁĴ ¥
-ra p
-ho l
-dang erous
-di a
-coun ter
-ric s
-i or
-k night
-co at
-emo tional
-at ures
-d as
-whe el
-fore cast
-tran sport
-glasgo w
-king dom
-prepar ing
-im medi
-ff in
-awar ded
-prin ting
-ro man
-fight ers
-any more
-bel t
-p ine
-win e
-x i
-employe es
-logi es
-al led
-de mo
-birth day
-ange les
-lo g
-dri vers
-neck lace
-k ath
-s it
-athle te
-ef s
-s burg
-pur pose
-resi stance
-rele ases
-t is
-vari ous
-deli ver
-ch al
-s anc
-opp o
-cra w
-neu ro
-dr a
-suppor ters
-sna p
-diffic ult
-swe ar
-logi st
-pa th
-attemp t
-à ¥
-swim ming
-ste ve
-hur t
-inclu ded
-b ap
-wa re
-ðŁĴ ĭ
-end ers
-ja ke
-le eds
-cli mb
-l b
-im ple
-li sa
-clo thing
-ðŁĺ İ
-d t
-com pla
-sw ing
-stra w
-v als
-k le
-us ers
-stor m
-cu ts
-ontari o
-p an
-hand some
-i ow
-ar gu
-chec king
-scotti sh
-Ķ ï¸ı
-si er
-em ma
-po d
-patter n
-de sh
-en h
-ed ward
-t ing
-k h
-hal f
-lincol n
-mo ther
-al leg
-r c
-volley ball
-d n
-g ay
-all y
-le ton
-gro ve
-l oud
-adv anced
-re spec
-cli ent
-supre me
-thail and
-ho w
-gi g
-to i
-do t
-dol lar
-ðŁij ĩ
-p it
-r b
-h n
-produc ed
-gg ers
-âĨ Ĵ
-ml b
-can vas
-fin eart
-us d
-in the
-p son
-actu al
-s l
-t b
-ip ad
-en sure
-u mb
-w d
-sk a
-mar s
-k end
-f eli
-th ing
-count down
-absolu te
-r out
-dra l
-p y
-inju red
-min t
-hun ting
-mm er
-s age
-li gh
-ac ity
-ex pan
-mur ray
-ar o
-sec ure
-four th
-eag le
-reli ef
-st akes
-industri al
-clar k
-under standing
-see m
-pl enty
-sil ver
-cla u
-thre at
-sa il
-pro duce
-ab str
-is is
-b r
-eng ers
-wor ry
-bie ber
-s j
-just in
-reali ze
-ky le
-esp n
-fil ter
-s ch
-ty pes
-game dev
-d ing
-twit ter
-soldi ers
-p om
-car bon
-y ards
-child hood
-ri ed
-ke l
-ele ph
-t ons
-key note
-qui et
-wi re
-po sting
-is sa
-repre senting
-bac ks
-alex ander
-celebr ates
-ta ining
-| |
-ch or
-esc ape
-pe ek
-ti ves
-fiel d
-ssi e
-im pac
-spons or
-r c
-we dd
-cann ab
-si des
-trac ks
-com par
-con trac
-techn ical
-bi ble
-expl oring
-sh are
-tra v
-n ate
-ill o
-sc ru
-m ingham
-gun s
-of the
-sh ame
-se es
-ca tho
-ac cess
-ce l
-repor ted
-Â »
-mari o
-p ad
-hope fully
-ou se
-y on
-disapp o
-ol o
-p itt
-pa c
-ga p
-cru sh
-s g
-k le
-ge m
-emp ire
-dir ty
-a is
-avi ation
-ze aland
-fac ing
-high way
-d anny
-spi der
-ot ta
-ðŁĺ Ħ
-w y
-col ours
-in fl
-co sts
-olym pics
-au s
-h m
-ho ward
-pas ses
-lau ren
-mu sh
-op in
-r ho
-disc ount
-oper ation
-em ily
-mm m
-cham ber
-d il
-to yo
-shi p
-sam u
-pic tured
-un ic
-po l
-keep er
-carto on
-st en
-ig nor
-n ations
-n l
-ta sting
-deta il
-offici als
-mo tor
-franc is
-ed itor
-ðŁij ĩ
-pe ts
-rang ers
-t g
-r n
-w ri
-nic hol
-i se
-spo ts
-ani e
-chec k
-tri ple
-ku mar
-spe akers
-ic ing
-pre pared
-ab use
-friend ship
-mon th
-swi m
-air e
-sc ent
-hamil ton
-indi an
-j es
-yum my
-te ars
-da wn
-i zed
-worl ds
-ðŁ ķ
-b illi
-st one
-n hs
-ba sic
-p or
-st le
-ir on
-ol der
-cle vel
-e ing
-ðŁĺįðŁĺį ðŁĺį
-prin ts
-fir m
-air craft
-fin est
-devel op
-aar on
-t z
-gra ham
-own ers
-fo li
-less on
-qu es
-bab e
-cra ft
-ph en
-ju n
-bir mingham
-v ine
-ll er
-i an
-fineart america
-evol u
-st ab
-im per
-war d
-com ic
-wi z
-inv ited
-du ke
-mat ch
-por ts
-ro ger
-diag no
-ke pt
-te st
-vis u
-r hy
-so c
-to x
-b aker
-sur face
-co vers
-man s
-b its
-x box
-ff le
-n an
-gar d
-h art
-wat ers
-v illa
-re tro
-light ning
-catho lic
-democr acy
-neigh bor
-pen n
-cr an
-jona than
-la ura
-vi bes
-su b
-coach ing
-clear ly
-uk raine
-bra ve
-commit ment
-t all
-mar t
-ra p
-mo di
-sco tt
-bro s
-show er
-ðŁı ¾
-âĺº ï¸ı
-cou sin
-appro ach
-br e
-com pos
-hil ari
-phil ly
-g ad
-quick ly
-ri an
-t m
-vir tual
-hou ses
-k t
-phoeni x
-w ire
-ff y
-b unch
-anc ing
-tal e
-snap chat
-star ter
-h t
-k icking
-ap art
-th y
-) !
-blo gger
-it z
-com fort
-ang els
-w ash
-" :
-ar gent
-re quest
-hon est
-mi ghty
-bo bby
-k g
-ro l
-thou se
-ex po
-h c
-tab les
-mag ical
-po sts
-de m
-n w
-or lando
-ab er
-* **
-ðŁĺ ľ
-environ mental
-trans formation
-mi le
-w ic
-hir ing
-ma ine
-bo ar
-r ying
-ti s
-nit ure
-twee ted
-anton io
-opin ion
-fin ale
-di y
-f is
-th in
-trou ble
-le go
-fi les
-qu art
-sp a
-curren cy
-cli mate
-fan art
-rail way
-sp ace
-ban ds
-dani el
-mo tion
-l eng
-hol der
-oc cu
-mar ie
-cathe dral
-bu zz
-bi es
-nas car
-bm w
-bat tery
-char lotte
-doc tor
-zz le
-se ven
-in san
-d dy
-st en
-lab or
-thr illed
-se ren
-docu mentary
-wav es
-cer tain
-can did
-allow ed
-ninten do
-star wars
-ta p
-home made
-d les
-ther ing
-bre e
-emp ty
-pi ano
-pos iti
-coun try
-por k
-pu ts
-per ry
-m atic
-spot light
-ti st
-or ities
-we alth
-c p
-bar bar
-commit ted
-as sau
-pro fit
-e ight
-hu l
-fini shing
-run ner
-ss o
-insp ec
-char ged
-christ op
-lo sing
-co al
-ho o
-ele v
-de le
-mo ham
-don ation
-c able
-clin ic
-j in
-manag ed
-ter ing
-â ¬
-ur ban
-depu ty
-bb er
-bur n
-acade mic
-o tt
-sta ke
-it er
-sto wn
-ack er
-advent ures
-ad ams
-gre g
-pro m
-vo l
-ac qu
-con gre
-pa int
-citiz ens
-c all
-af ford
-v c
-as ks
-the tic
-independ ence
-â Ľ
-h itting
-bl on
-fu ture
-â ı
-in no
-gen e
-bo ards
-di stance
-se t
-re mem
-th al
-pre vent
-l ang
-ob jec
-su sp
-mat t
-in duc
-bor o
-pi one
-re di
-vir tu
-prin ted
-sco pe
-shar k
-suc ce
-a stron
-il legal
-j ag
-c ting
-ine e
-at o
-rob in
-nutr ition
-b f
-du tch
-b n
-fur niture
-for gotten
-at ar
-ru p
-hy per
-bran ch
-communic ation
-degre es
-on ia
-un cle
-promo te
-or che
-wi i
-j s
-but ton
-ma jor
-c bs
-bri stol
-premi um
-ordin ary
-e dit
-m g
-we ed
-st even
-: '
-gu s
-te s
-cap tured
-dru gs
-do w
-wr ites
-bi shop
-whe els
-ali zation
-disco very
-w r
-rach el
-ne il
-hy dr
-cu test
-entreprene ur
-kore an
-ore gon
-ul ty
-perfec tly
-suppor ted
-histor ical
-t wins
-ell y
-we l
-de vil
-in come
-scienti sts
-de leg
-h en
-on i
-ic ed
-gi o
-cur ry
-reve al
-e g
-buff alo
-n ol
-op era
-camer on
-haha haha
-j ab
-gradu ation
-cra ig
-r al
-i f
-organi zation
-le ge
-g ang
-su d
-edin burgh
-l ack
-fli es
-g ate
-thr ones
-q b
-the real
-e leg
-pp in
-c les
-jam ie
-tn am
-cryp to
-ou l
-p ages
-a se
-roo ts
-stu pid
-a did
-boo t
-prote in
-s ap
-si um
-su s
-end or
-fun ction
-don t
-en na
-ch y
-squ e
-wor ker
-m tv
-e a
-k an
-ðŁĴ ļ
-mu s
-professi on
-t to
-oper ations
-al lo
-c tor
-inv ite
-sc and
-ou th
-z im
-lin ks
-cli ents
-sam sung
-discu sses
-n ell
-ul tra
-some where
-ste wart
-ine t
-de z
-b out
-fac tor
-ti an
-tr ans
-jere my
-d b
-ðŁĩ ¬
-or n
-develop ing
-spo l
-coo per
-ma u
-rememb ering
-tre k
-famil y
-sen iors
-fo ster
-att ended
-w ing
-trans form
-ele mentary
-hor iz
-li sting
-malay sia
-it ch
-warri or
-philipp ines
-russ ell
-m end
-initi ative
-cre ep
-to ps
-br iti
-a ur
-shar p
-adverti sing
-ug ly
-achi ev
-materi als
-bu g
-dev ice
-bon us
-fac ility
-col e
-nh l
-y as
-plann ed
-pol e
-excell ence
-tr ick
-con fl
-r p
-achi eve
-lo an
-swa g
-jess ica
-ho we
-p our
-sc u
-z oo
-r ated
-dre sses
-re bel
-mex ican
-co ordin
-me ss
-atlan tic
-t l
-osc ar
-wal ks
-phar mac
-investig ation
-... #
-cc i
-eas ily
-monday motivation
-y ment
-au ti
-for ced
-ar med
-colle agues
-pap ers
-pro per
-sha ke
-bu c
-le an
-exhi bit
-e vement
-co tt
-bi z
-sp er
-k ent
-sw an
-/ @
-girl friend
-haw k
-âĺ Ģï¸ı
-mon o
-ðŁĴ Ľ
-stat ue
-ðŁĺ ³
-ra s
-te eth
-preci ous
-t ile
-p am
-swi ft
-v ali
-no se
-dr unk
-experi ences
-come back
-gen ius
-wor se
-sh ef
-ra d
-ed it
-hon our
-au spol
-lar ry
-h ire
-gor don
-achi evement
-.... ....
-su icide
-alter native
-su p
-sur roun
-sha ke
-ke ith
-pe pper
-tur k
-crimin al
-be ck
-su m
-w alls
-cn n
-an tic
-of fe
-col li
-win es
-high light
-hawa ii
-emb ar
-l fc
-ðŁĩ ®
-m v
-> >
-at mo
-wor d
-car l
-shout out
-bre wing
-ì Ŀ
-do f
-s ic
-hot test
-col on
-hh h
-shu t
-low ing
-volu me
-apart ment
-agre ement
-de stro
-we e
-religi ous
-iow a
-ro d
-land ing
-re present
-ðŁĵ· :
-la s
-usu ally
-h l
-c ac
-sal v
-al ong
-laugh ing
-be ans
-remin ds
-pha se
-some body
-ma sk
-ran ked
-dest roy
-sc i
-âĢ¼ ï¸ı
-gab ri
-le o
-ro a
-fa iled
-si l
-refuge es
-re vi
-r ing
-ber ries
-coo kies
-y y
-conserv ation
-sh ab
-human s
-de termin
-a in
-ni all
-as su
-mb a
-fro m
-extre me
-vic es
-commer ce
-ght ful
-or dered
-suppor ts
-re cap
-v or
-dro pping
-correc t
-pay ing
-mean ing
-n j
-qui z
-" #
-busine ss
-ðŁĩ® ðŁĩ
-indi gen
-du st
-box es
-bl ind
-x xx
-zz y
-ðŁĩ¬ ðŁĩ
-ss els
-s ant
-dd le
-hilari ous
-desig n
-wonder ing
-vehic les
-k re
-ju d
-rece ption
-par ker
-Ã Ń
-pri vi
-hy dro
-sof tball
-pol lu
-lo cked
-ba h
-e ar
-scri pt
-di vi
-br ace
-geor ge
-the ast
-bel o
-j al
-tion ary
-dent al
-roc ket
-pur ch
-sh ak
-manufac turing
-e z
-it is
-con cep
-tb all
-ch s
-direc ted
-pra yers
-oo k
-phil os
-vari ety
-che ss
-ser ver
-g and
-bal ti
-ðŁĵ ¸
-sel y
-cru z
-spectac ular
-bur ning
-re present
-i z
-t one
-mer ce
-h ell
-bed room
-estab li
-bo l
-com mon
-ãĥ »
-ab or
-kit ty
-hei ghts
-re pair
-willi am
-qu ake
-alab ama
-popul ation
-re v
-re tt
-i sts
-n ite
-le m
-a ha
-clevel and
-r m
-po ver
-ob se
-mon tre
-man ia
-Â ®
-con ne
-car ni
-sh ah
-f y
-u a
-sc or
-strugg le
-bo b
-' '
-appro pri
-deci de
-ff ed
-ca ster
-s ort
-hun gry
-dra g
-ا Ù
-gr ounds
-d w
-sli ghtly
-car din
-dead line
-bron ze
-web in
-bar ry
-sil ence
-e uro
-op tion
-ear n
-ðŁĴ ĸ
-howe ver
-na ren
-na ils
-bath room
-v ine
-ph d
-min ing
-gar age
-( )
-shou lder
-defe at
-di r
-o v
-liber ty
-ple as
-x on
-com pre
-a v
-j in
-ab les
-sil ent
-fam ili
-vis its
-di pl
-ha bit
-milli ons
-regar ding
-innov ative
-sen ator
-r ts
-v on
-k l
-wh il
-requi red
-âĿ Ħ
-lu v
-presi dential
-po cket
-hun dre
-sho wn
-fro zen
-to ward
-fa st
-confi dence
-r ough
-indivi dual
-qu et
-ðŁı ½
-dom e
-fi fa
-engine er
-z en
-re mix
-ðŁĺ ĥ
-pl ant
-min or
-robin son
-as y
-pul led
-cer tain
-potat o
-( :
-pre s
-oc ca
-w it
-it em
-si e
-d ating
-thom pson
-own ed
-an u
-vi e
-te dly
-good night
-ex cept
-ðŁĮ Ł
-ira q
-ki e
-ren ces
-li p
-simil ar
-sau di
-vi g
-arth ur
-pic ks
-mil an
-hon da
-ma xi
-o g
-ste st
-ar ch
-analy tics
-ba sti
-pear l
-ter ry
-hor se
-ast ro
-ac ce
-laun ching
-inter national
-s no
-ta sty
-den ver
-ir l
-pe te
-tor n
-advant age
-var sity
-" "
-sol e
-g c
-lan g
-demon str
-ol ds
-un ity
-ne ts
-insp ire
-cre te
-nash ville
-nel son
-e ter
-wal k
-hy un
-m ack
-tre as
-see king
-ra ge
-bru sh
-ab and
-whil st
-co con
-h ong
-shel ter
-i p
-possi bly
-so o
-it ed
-â Ħ
-rac es
-war ming
-qu in
-tele vision
-mat ches
-ra pi
-ment al
-pal m
-jenni fer
-rol ls
-indi ana
-b ars
-cat ching
-resc u
-candid ates
-fa re
-âł Ģ
-se o
-vie tnam
-alph a
-michel le
-visi ble
-re gre
-wn ed
-app le
-li p
-f fe
-li z
-york shire
-ha il
-se asons
-be gan
-m d
-k c
-la p
-fascin ating
-hel p
-ur y
-u ms
-nu ts
-se m
-along side
-bri dge
-ori al
-o ve
-world cup
-briti sh
-comfor table
-i ve
-hot els
-fair s
-hor ri
-so x
-d ining
-stre am
-bar ri
-ss y
-w im
-ter ms
-v u
-pe re
-l ens
-wal ked
-r or
-l ars
-shi eld
-dou bt
-pro to
-cro ssing
-me ant
-medi um
-ad ding
-e b
-che ap
-fun c
-pap er
-bran ds
-ry an
-feed back
-col lins
-un known
-tro pical
-sand wich
-fal len
-for mu
-selec t
-lo ads
-answ ers
-or i
-mag a
-d or
-du o
-ali e
-dru m
-ur i
-de er
-sou l
-sh ut
-âĺ º
-sto len
-don ated
-bu zz
-patri ots
-ha l
-na sty
-nomin ated
-mon te
-ki a
-th ri
-ing u
-te sts
-pe tro
-ðŁij ij
-ho sts
-ne st
-to pic
-pat ch
-m my
-hu gh
-ab ilities
-ma the
-s miles
-g b
-ag enda
-insi ghts
-chi p
-ph an
-fail ure
-dg ers
-ha i
-signific ant
-sho ck
-ru ral
-gl am
-figu res
-pot us
-o ta
-mini stry
-appe ars
-fe ar
-r h
-americ an
-h att
-son y
-fi res
-e di
-n ou
-e qui
-wh en
-univers al
-mad ness
-i x
-sculp ture
-b ach
-t to
-swe den
-et a
-en to
-develop ed
-month ly
-ma ps
-ra h
-le d
-del ta
-sa ints
-is lam
-ben ch
-fif th
-v ard
-so cks
-wel coming
-j e
-tur ner
-v b
-ad i
-nor way
-ad y
-hurric ane
-por sche
-tra dition
-ex am
-newsp aper
-lu ci
-a ver
-ide al
-d na
-madi son
-ðŁ §
-wit ness
-ac ou
-insi ght
-si mon
-robo t
-sna ke
-n bc
-ac o
-ro ss
-sh ment
-religi on
-ch ann
-in su
-camp bell
-inst alled
-we ather
-hor ses
-ol i
-rober t
-k az
-ðŁı Ģ
-veter an
-th read
-quar ter
-ea sier
-cap ture
-hi pho
-law rence
-roman tic
-pas sion
-cl ay
-ox ford
-th ai
-stu dying
-fi a
-elec ted
-most ly
-c b
-tu mb
-âĢįâĻ Ĥ
-x l
-sh an
-fa ster
-ev ans
-sli de
-sh ri
-see k
-mi es
-chemi stry
-pump kin
-tu m
-, ,
-ro om
-fi red
-li ps
-pres ence
-af f
-brew ery
-arri ve
-sw ag
-photo graph
-pen gu
-chi ps
-at tor
-val ues
-accur ate
-con temporary
-princi pal
-cannab is
-ari o
-any where
-gi a
-democr ats
-buil dings
-li ved
-ap s
-neg ative
-m are
-bal lo
-li on
-diam on
-loo k
-re form
-tom my
-il la
-tre ats
-hundre ds
-port land
-wor thy
-ex cep
-ar ia
-ido l
-be er
-cd n
-y u
-aw k
-ðŁĩ ¨
-c ells
-Ã ³
-ident ity
-dra wn
-de vil
-f inger
-th am
-ðŁij Ĭ
-ear ned
-fin tech
-dol ph
-twee ting
-evolu tion
-ðŁĵ į
-est im
-m vp
-n one
-ðŁĩºðŁĩ ¸
-toyo ta
-au x
-mar in
-b old
-l bs
-ste ak
-mur phy
-it able
-lou is
-sol ve
-pi a
-sk ir
-ill ino
-webin ar
-ban ana
-lo v
-th on
-vo ters
-afford able
-defe ated
-lm fa
-air lines
-super b
-any way
-deb t
-bo red
-ver si
-me tal
-responsi ble
-m k
-s se
-f ay
-cau sed
-f p
-recomm end
-pla za
-spor ting
-alli ance
-au stri
-n n
-t ours
-surpri sed
-arti f
-th under
-sur ve
-wor e
-bri ef
-necess ary
-z ie
-ash ley
-dra ke
-r t
-kni fe
-im mun
-char ges
-a the
-bri de
-rep ly
-g av
-broad cast
-pu er
-brace let
-cap acity
-harve st
-id k
-perfor man
-d ding
-il ers
-par a
-jam a
-pro vince
-ch in
-id ers
-har i
-te aser
-ch en
-re stor
-r at
-fl at
-col om
-ðŁĴ ŀ
-ðŁĩ¨ ðŁĩ
-smoo th
-r t
-p itch
-stay ing
-isra eli
-t cot
-per spective
-do ck
-open er
-lo vel
-x o
-class room
-l ington
-go al
-kenne dy
-sh am
-sp aces
-mitch ell
-home coming
-uk i
-claim ed
-recru it
-ing o
-mu fc
-mon it
-g roo
-resi dent
-per cent
-per man
-otta wa
-int ment
-an xi
-stand ards
-wor ship
-sche me
-f x
-pot ter
-bi an
-athle tic
-af gh
-s se
-sat ell
-par ties
-âĿ¤ âĿ¤
-infra structure
-rela x
-mo du
-wor n
-smo king
-y ach
-practic es
-wc w
-am b
-dome stic
-tay lor
-k entu
-provi ded
-mo di
-ve g
-" ...
-ob serv
-ðŁĺ ©
-be ard
-m our
-an gry
-ðŁĺ ±
-startu ps
-woo den
-di ve
-na il
-anti que
-ro ses
-torn ado
-m at
-^ ^
-su spect
-far m
-de vices
-me ga
-tu l
-scholar ship
-ge e
-disa ster
-arri val
-po in
-mar c
-kati e
-bb ed
-fal se
-deser ves
-ric hard
-ju ana
-fre y
-tion ed
-hy bri
-r w
-sar ah
-ach i
-c ure
-o le
-mor ris
-ch ic
-broad way
-la bel
-pa k
-pover ty
-gol f
-e red
-f u
-er ies
-be es
-alo gue
-st el
-wire less
-je wish
-ti de
-blo cked
-life time
-b har
-sp lit
-am ster
-th i
-jo shu
-br unch
-ha ps
-s for
-oo ps
-ka poor
-hi king
-suppo sed
-ro of
-re as
-tra in
-ti ght
-tru mp
-bas ically
-r r
-ea red
-see ds
-entr ance
-c p
-wi e
-son ic
-vic tim
-he re
-e h
-ear rings
-sal mon
-arc tic
-an ne
-dou gla
-corru ption
-hann ah
-ha sn
-vo ices
-con ce
-att a
-fle et
-clin ical
-democr atic
-ton y
-st ood
-le f
-twit ch
-a il
-honest ly
-incre ased
-dro me
-don na
-accep ted
-visit ors
-ap ar
-ad or
-p ar
-jer ry
-ra i
-brand on
-ab u
-!! !!!!
-me me
-in gh
-glori ous
-b hu
-pu mp
-j ol
-li ke
-fi sher
-ma z
-ag an
-destin ation
-play list
-le tters
-gen u
-br ace
-celebr ated
-bann er
-r he
-dra gon
-ðŁĺ ħ
-sig nature
-gre y
-âľ Ķï¸ı
-al ice
-be red
-ph er
-ber n
-ca th
-ga thering
-sc oring
-influ ence
-sm iling
-de pt
-lo cal
-a x
-ac u
-reti rement
-hon or
-her self
-chem ical
-asse ss
-y all
-fre qu
-appreci ation
-ac a
-cho ir
-cu z
-so il
-c il
-repor ting
-u h
-enterpri se
-gr at
-jaco b
-ru m
-fe e
-j ak
-sp in
-bi kes
-phi a
-ste re
-p is
-bloo d
-t att
-ra ft
-war ren
-sh eri
-back stage
-mar sh
-hash tag
-ther ine
-re in
-game day
-guar an
-reci pes
-min ds
-stron ger
-issu ed
-bic y
-n ak
-ment ed
-sc ary
-u x
-pre vious
-tt le
-th ats
-ac tors
-u ma
-tin a
-bun ny
-promo tion
-u ss
-oli ver
-montre al
-what s
-appreci ated
-la kes
-excu se
-kno wing
-pri zes
-musc le
-shad es
-sco t
-ing redi
-electr onic
-ju an
-comb at
-s ri
-e h
-turk ish
-l om
-stri kes
-pri son
-re e
-po pe
-vi d
-ol dest
-dol l
-sw iss
-certi fied
-cli p
-re turning
-lat or
-le igh
-tt es
-wat son
-heal ing
-el im
-per haps
-ha ss
-k au
-d der
-mou se
-new castle
-indigen ous
-wel comes
-co le
-tau ght
-no ise
-appe ar
-jo e
-can on
-wedne sday
-u tah
-c tive
-dri ven
-i v
-c ell
-stri p
-ac c
-focu sed
-ar rest
-sto cks
-wo o
-â Ĺ
-notic ed
-shad o
-di spla
-ter ror
-bor ne
-secon d
-que ens
-wo ke
-ja il
-no tt
-cam bridge
-har t
-se af
-fa x
-ac cept
-âĺ ħ
-goo ds
-k at
-t win
-h s
-thou sand
-s ins
-su ite
-amp ton
-ar n
-rele v
-ric har
-hoo ps
-n bc
-class ic
-p ab
-soldi er
-de plo
-le ans
-install ation
-cla sh
-le ban
-ee e
-ti re
-belo ved
-fu sion
-travel ing
-ne i
-coo kie
-glo be
-phys ics
-s q
-co l
-wol ves
-d l
-ex it
-" -
-foo tball
-le af
-ster ling
-hi de
-minne so
-fresh man
-natu re
-indi e
-supp lies
-bri s
-iri sh
-ink tober
-doo dle
-ic op
-mess ages
-adul ts
-recor ded
-fix ed
-ar do
-offe red
-under ground
-dr one
-p ine
-ma inten
-and re
-ham mer
-s x
-r ound
-hi ke
-bra d
-ro me
-fu ll
-on ey
-ro ws
-colum bia
-archi ves
-appro ved
-bat ch
-illino is
-recogn ition
-shou ldn
-fo g
-nca a
-ke vin
-human ity
-al though
-pow ers
-p ou
-s ar
-pe st
-alco hol
-con sci
-phil adel
-en o
-t m
-ok la
-cate gory
-particip ate
-accu sed
-bri ef
-po em
-clu bs
-consul t
-ja b
-big data
-amster dam
-ac ing
-certi fic
-n u
-d at
-impro ved
-and y
-campa ig
-pale stin
-p ace
-mo bi
-feel ings
-wol f
-bra in
-pro pos
-inter active
-prin ce
-inde x
-c is
-cha e
-peace ful
-co vering
-ac o
-cour ses
-mon key
-re place
-b l
-bloo dy
-tal es
-brigh ton
-neighbor hood
-g ates
-spiritu al
-af raid
-bre ast
-b ones
-ðŁij ī
-vide o
-w au
-tou ch
-inju ries
-car l
-ri x
-une x
-âĢ ¢
-fre d
-consi dered
-thu si
-an ch
-on y
-u sa
-graph ics
-ac re
-ðŁĺ ©
-com memor
-com mod
-go ti
-guar dian
-star bucks
-pre vention
-haha haha
-admini stration
-portu gal
-fac ulty
-bet a
-ul a
-al bert
-bre ath
-er i
-le tting
-tr ic
-ment ation
-incredi bly
-ten nes
-v d
-ðŁĻ Ī
-ed die
-br ick
-gr ill
-bt w
-wat ches
-resear chers
-t ney
-ni e
-p as
-a ster
-vi br
-poke mon
-ch rome
-go at
-pitt s
-il ly
-festi ve
-y d
-can al
-ðŁ Ĩ
-fi es
-car los
-re que
-partic i
-tra ins
-sam ple
-temper ature
-sym ph
-pic king
-in door
-z ers
-playo ffs
-____ ____
-ap es
-ly rics
-islam ic
-performan ces
-d ick
-spar k
-se as
-hom a
-gr ound
-disc i
-employe e
-com mu
-alas ka
-al an
-fe ast
-dg ing
-ban king
-manu el
-slow ly
-tru cks
-mc car
-oo o
-sc rat
-orche stra
-indivi du
-m x
-bre ath
-stair s
-equ ality
-bla ke
-loc ations
-cocon ut
-balti more
-aa a
-l c
-ðŁı Ĩ
-har vey
-resi st
-immigr ation
-adid as
-fil i
-re f
-lg bt
-mo s
-pp i
-ken ny
-terr or
-ban e
-apol is
-s g
-social media
-ka i
-hon est
-as sas
-bol lywood
-âĢįâĻ Ģï¸ı
-ferr ari
-hor n
-cryp to
-bo om
-mainten ance
-i di
-s man
-w l
-ext ended
-in sul
-ve s
-go sp
-tr i
-pi g
-tar ge
-cel er
-st ati
-sm h
-ri dic
-appe al
-? )
-con clu
-cos me
-she ep
-christop her
-en thusi
-po lish
-me ts
-oun ded
-sustain ability
-creati vity
-con crete
-ra i
-ali en
-ble ss
-te es
-clu b
-ro t
-bo s
-ex ist
-perfe ction
-lu ck
-rock y
-expen sive
-mean while
-happy birthday
-pre t
-thr iller
-ca ve
-playo ff
-som er
-l u
-le x
-def ence
-am writing
-home less
-pro phe
-ch et
-past or
-ðŁ¤ £
-land er
-ww w
-Ģ ï¸ı
-tic a
-! #
-o tic
-rad ar
-po sters
-pow der
-po li
-ha un
-tra p
-bl in
-assau lt
-shor ts
-re y
-sh y
-squ ir
-rac ist
-gar lic
-fu r
-remo te
-sm ell
-impre ssed
-fing ers
-âł Ģ
-din o
-le ment
-s nu
-promo ting
-str ing
-produc tive
-b age
-ma son
-ra z
-direc tly
-j k
-ev al
-ðŁij Ĭ
-doc tors
-co w
-ri der
-st v
-re move
-w u
-na than
-ro d
-n r
-= >
-affe cted
-inve st
-mp tion
-g inger
-o d
-agricul ture
-s que
-mu g
-coun ting
-ke e
-mag nific
-coo k
-ani stan
-roo t
-plac ed
-sym po
-gh ana
-un d
-che er
-thro wing
-secre ts
-f illing
-opti mi
-butter fly
-bu bb
-ðŁĺ ī
-terri ble
-d g
-sil k
-obse ssed
-lo u
-ai de
-sal ute
-mon u
-philadel phia
-scienti fic
-i st
-u ae
-dess ert
-bott les
-can yon
-ðŁĺ Ī
-car ib
-o ther
-w ich
-re source
-guil ty
-un d
-le on
-e ss
-kan e
-el e
-tra iner
-he im
-an te
-man age
-roo kie
-tre ated
-po ses
-rs vp
-cau ses
-aw ak
-je well
-le tt
-on ics
-tit les
-cardi ff
-g aga
-bu mp
-use ful
-? !
-loo se
-bb ing
-: :
-argent ina
-de bu
-cy cl
-wh el
-dis gu
-j el
-k ills
-bio logy
-ex ter
-tra sh
-bo dies
-tr am
-circu it
-expe ct
-la ds
-w ells
-sho t
-ge e
-naren dr
-fa stest
-b ent
-b ills
-mar shall
-h ats
-intro duce
-citi zen
-im possible
-gi b
-az z
-net working
-r ant
-thin k
-in dy
-st ops
-f theday
-bri an
-* *
-amo di
-dom e
-coura ge
-pac king
-af fairs
-g n
-si zed
-ent ary
-pol and
-swit zer
-afgh anistan
-w u
-ten der
-subscri be
-mo sco
-att end
-republic an
-hon ey
-âĢ ĭ
-si mul
-we ster
-foo die
-or o
-midd le
-ab t
-co pies
-ma je
-narendr amodi
-ty pical
-inspir ational
-vit am
-wis con
-cu bs
-tiv ity
-h ali
-e ars
-k ay
-d are
-mari juana
-cu rious
-an ia
-tom ato
-re mind
-ðŁĩ ·
-sc ared
-cou p
-po et
-land ed
-ri d
-wra pped
-mor ri
-climb ing
-e ws
-fe eding
-con tra
-tho logy
-gri d
-ti vely
-read er
-la ser
-di ving
-di g
-lat in
-ti ed
-shake spe
-o ci
-ad m
-show ers
-chu ck
-mar cus
-oo s
-kne e
-o live
-ow l
-dy lan
-an no
-g ym
-deci sions
-well ness
-arri ves
-sati s
-chri s
-thur s
-ðŁ¤ £
-inter views
-thank you
-switzer land
-over night
-journ alist
-ser ves
-vol can
-.... ...
-plo t
-nic ol
-car rying
-mag ne
-tre asure
-ex p
-be ver
-ðŁĺ ¢
-mar ty
-mo le
-don ations
-recogni zed
-b h
-du s
-sh ann
-al do
-success fully
-ent e
-ðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤ
-cab inet
-cu is
-tit led
-d as
-so l
-strate gies
-deli vering
-ad ds
-ani an
-ne ther
-ðŁĴ ĥ
-con tain
-su its
-pa irs
-to dd
-rel la
-ro pe
-ci o
-cro p
-paint ings
-su z
-re jec
-bu st
-d h
-fra ud
-m h
-contro l
-je al
-destroy ed
-al lows
-wo ol
-minneso ta
-om en
-j u
-sympo sium
-d af
-lim it
-accoun ts
-load ing
-inter n
-re solution
-hol land
-qu al
-meet ings
-gra ve
-cam ping
-v am
-re nov
-liber al
-am ber
-gre e
-hu mb
-fe ver
-el ing
-broo ks
-à ²
-be th
-ad ed
-al t
-ro e
-perform ed
-jo sh
-frank lin
-nic ole
-de ss
-bb s
-m g
-net works
-min im
-al t
-weap ons
-gu y
-jas on
-g ha
-harb our
-at on
-pra ise
-kentu cky
-bel fast
-st icks
-blo ss
-ho pes
-an thro
-famili ar
-wa it
-ch ile
-depre ssion
-la x
-je ts
-le ice
-recei ves
-si er
-an k
-de x
-inde ed
-fle xi
-fab ric
-lam b
-hel icop
-am anda
-âĢĶ âĢĶ
-compe te
-sn ack
-techno logies
-sy rian
-mom s
-mu ham
-cho sen
-an at
-dev on
-shar ks
-re t
-fundra iser
-selfi es
-st ations
-communic ations
-tennes see
-tu tor
-ro t
-valu able
-dynam ic
-nur se
-i ed
-earth quake
-deser ved
-a ve
-sar a
-stre tch
-dougla s
-ne pal
-Ã §
-ob viously
-d ame
-ra pe
-any body
-k w
-pat rol
-hol ders
-h anna
-info graphic
-ec o
-be ating
-stan ley
-bo ats
-ri bb
-e z
-wit ch
-inv a
-ac id
-boar ding
-- @
-gi l
-da ve
-care ers
-opp os
-l loy
-in ter
-do pe
-re su
-j agu
-sh ade
-in dy
-on ist
-rel ations
-ag en
-ab le
-inci dent
-me ter
-shar ma
-id r
-pro ve
-immedi ately
-tro ops
-am an
-g low
-gaz a
-blo cks
-person al
-chron ic
-all er
-si d
-sh r
-whats app
-lu cy
-ar chae
-ho u
-journ alism
-our selves
-go t
-the med
-shap ed
-we ak
-cas ual
-leng th
-sla m
-ab bey
-e v
-coun ter
-est a
-reci pi
-cha pel
-expan sion
-sel f
-suff ering
-sp ice
-n z
-sp art
-desp er
-boo king
-quart ers
-y on
-ðŁĴ Ĺ
-p k
-continu ed
-- #
-man hatt
-tal ked
-sh en
-com bo
-hybri d
-je ans
-liqu id
-se al
-re tweets
-ac celer
-collec tive
-t as
-: ))
-profession als
-ra w
-o tt
-su san
-ir ing
-okla homa
-re ven
-survi val
-cre ator
-tran sit
-st ac
-sur f
-i k
-ed iting
-ch illing
-bai ley
-ste al
-ra ble
-pa rent
-hun ger
-sn app
-collec t
-philos oph
-dedic ation
-c f
-c m
-le ep
-repe at
-re ha
-un fortun
-a er
-a ero
-abstr act
-mon itor
-ag ents
-bu l
-sci ence
-harb or
-drag ons
-floo ding
-ac compli
-d ash
-juli a
-the red
-tues day
-cy ber
-b low
-ta ined
-le m
-refe rence
-pp o
-ne goti
-char le
-con nor
-au lt
-access ories
-commissi oner
-rain y
-re ar
-advis ory
-luc as
-ma id
-co al
-k av
-pol o
-ðŁı ¾
-tran sport
-mar gare
-straw berry
-bur ns
-gre ens
-ne v
-partici pants
-col in
-belgi um
-col our
-in form
-d ell
-br on
-cal y
-kick off
-strate gic
-re union
-hon ors
-li b
-egy p
-âŃIJ ï¸ı
-hy po
-si zes
-regi stered
-bet es
-relax ing
-bloo m
-inten se
-valent ines
-insan e
-w wii
-p x
-tri o
-bla de
-wiscon sin
-con e
-plat in
-ali ze
-ra ven
-incre asing
-indi ans
-il ian
-bl u
-rabb it
-exten sion
-je f
-au di
-fer ry
-s ell
-a day
-us b
-swe at
-cham pag
-metho d
-mem ph
-assi st
-s by
-ca pe
-remo ved
-mag n
-v t
-r ams
-f bi
-tack le
-phe w
-h on
-motor cycle
-su spec
-eleph ant
-sub ject
-let te
-da iry
-whe at
-awk ward
-ac t
-tro l
-mit ted
-zay n
-sheri ff
-ene my
-con s
-ke tt
-bul ls
-ev alu
-bt c
-satell ite
-ho lo
-por ter
-dia betes
-bet ter
-rele asing
-sur f
-: -
-se basti
-collec ting
-en cing
-e thi
-go ds
-al ley
-health y
-m ills
-sma sh
-co pper
-cr ack
-read ers
-sp ac
-licen se
-bas ket
-bang la
-en tic
-om i
-m ere
-si vely
-anim ation
-lan es
-dent ally
-chill in
-fi e
-k aren
-dep th
-li pse
-n g
-ri p
-mel o
-sand y
-ðŁijı ðŁijı
-vin cent
-nu t
-hu g
-who le
-cre ates
-? ???
-âĿ¤ï¸ı âĿ¤ï¸ı
-bak ed
-up grade
-rober ts
-har a
-carib bean
-auth entic
-mb s
-mosco w
-attor ney
-wi ki
-ch lo
-hu ll
-cor k
-" !
-sty lish
-ðŁĵ¸ :
-di ary
-impro ving
-ex pand
-bri ght
-pollu tion
-k nights
-person ality
-chec ked
-fac ilities
-z el
-bow ling
-gu er
-ðŁİ Ĥ
-on going
-un its
-hoo k
-be ck
-confl ict
-to dd
-far ming
-educ ational
-k ak
-cla y
-stro ke
-bel ly
-explo re
-mill enni
-th m
-loo p
-sm s
-consi st
-cir ca
-br yan
-d ab
-youn ger
-soli dar
-pp a
-experi enced
-b ella
-bo ard
-shef field
-steph en
-consu mer
-sub mit
-spon sor
-t ang
-ag gre
-comb ined
-trac king
-sand ers
-b az
-survi ve
-fer red
-equ al
-se p
-re ed
-str ong
-priv acy
-st ap
-un g
-ac ry
-pa sta
-pir ates
-ag er
-fair y
-du p
-introduc ed
-wi p
-let s
-spr ay
-ðŁĵ º
-gre w
-a sts
-pitts burgh
-new york
-jo ey
-lau ren
-tra de
-ch op
-pi pe
-cla ire
-behavi or
-v ap
-cre ws
-lap top
-ðŁ¤ Ĺ
-che ster
-disci pl
-d f
-out doors
-k s
-go ver
-super star
-cas ino
-far mer
-; -)
-re turned
-ðŁı Ī
-ma il
-roa sted
-co sta
-v ill
-pe z
-gard ening
-distribu tion
-sh ining
-inve stors
-ra sp
-dec ades
-reali zed
-bar n
-p ti
-st able
-ut d
-pan thers
-m ens
-b n
-ca de
-bu cket
-yn n
-when ever
-wa ke
-da is
-ber nie
-lo dge
-ju lie
-atmo sphere
-ðŁĺĺ ðŁĺĺ
-major ity
-par ti
-exc it
-cu t
-me h
-musli ms
-be gun
-fli ghts
-vene ss
-ce me
-po sing
-so le
-g ou
-dark ness
-pe ach
-cel tic
-auth ority
-grand ma
-ful ness
-smi th
-speci fic
-gar cia
-co ins
-good ness
-aldu b
-recru iting
-den nis
-gar y
-sle eve
-weap on
-pl z
-disco ver
-harri son
-recruit ment
-ja i
-ch im
-com pared
-tom s
-mo thers
-am y
-archi ve
-t ask
-ben jam
-se g
-law yer
-al um
-inve sting
-mi e
-che z
-j p
-a ke
-fl am
-wall paper
-âĻ¥ ï¸ı
-t ton
-che st
-favor ites
-we igh
-coo lest
-r ating
-relev ant
-lo gan
-ma ple
-run ners
-pri or
-peop le
-ma ur
-terrori st
-te sted
-carni val
-su spen
-me asure
-m v
-cyber security
-app ren
-terror ism
-o z
-v ital
-ni es
-gon z
-fun ded
-twi st
-assess ment
-die sel
-en for
-colum n
-ad dressing
-ca sts
-pay ment
-x ton
-fi er
-, '
-la st
-ne e
-un less
-clo se
-sk ill
-cuis ine
-fun eral
-ti les
-a un
-k ru
-relation ships
-ðŁĴ ¯
-ev ent
-âĢįâĻĤ ï¸ı
-kind ness
-pro posed
-acou stic
-a es
-defen der
-dan ce
-h tt
-w at
-vo y
-ðŁ¤ ĺ
-au s
-cli ff
-sear ching
-beauti fully
-in qu
-at l
-speci alist
-ðŁIJ ¶
-da i
-tra ils
-class ics
-inst ant
-v ous
-re venue
-mar ch
-kir k
-fr inge
-fire works
-tri via
-âĺ ħ
-tr action
-wal ter
-mo to
-l ily
-att itude
-cli mb
-sc an
-sav ings
-c w
-fa ith
-cred its
-ab led
-gra ff
-auto graph
-he he
-ran ch
-ha d
-ro gers
-ðŁĮ ¹
-f in
-re qu
-fol k
-ad ditional
-lyn n
-u ber
-dol lars
-lo gic
-wor th
-so m
-the sis
-p ound
-bi c
-st ur
-cer am
-spen cer
-en tered
-v amp
-organi zed
-âľ Ī
-pp s
-tr on
-merce des
-no ti
-compet itive
-do w
-ous ness
-vic tor
-gr illed
-na i
-pu tin
-ab ra
-bl ame
-alex and
-anim al
-dec ent
-p ent
-inter ior
-:' )
-but ler
-bal let
-ðŁĴ Ķ
-albu ms
-down s
-la d
-si r
-pla in
-p ers
-blon de
-dis c
-paki stan
-se ment
-ga a
-w age
-ch as
-man i
-co ps
-terr it
-lo l
-lau ghter
-ri vers
-magnific ent
-lam p
-w b
-new sle
-char ts
-ble ssing
-p unch
-lon gest
-fl oral
-cu tie
-fare well
-sto pping
-mb b
-bu d
-chee se
-de cla
-si m
-mc donald
-de ter
-you th
-t ch
-fre der
-kin dle
-fer n
-at or
-as leep
-p ond
-spr int
-p ounds
-la zy
-gh e
-fundra ising
-dead ly
-gran de
-dou g
-he y
-lin da
-consi dering
-i um
-gol den
-vi k
-auth ors
-di ss
-u ally
-appropri ate
-mor ning
-y le
-hon oring
-foli o
-be c
-re bec
-fin land
-formu la
-corn wall
-sh ay
-cau sing
-bl end
-sig nal
-t ent
-kash mir
-nation als
-har mony
-sc out
-acce ssi
-he ight
-medi eval
-impro vement
-ke es
-prac tical
-car d
-de par
-hu n
-om ing
-cal gary
-ste l
-bu bble
-gur u
-ma h
-unex pe
-n h
-ed a
-me at
-i ge
-si o
-god dess
-in ches
-tun es
-br itt
-sti on
-ra j
-âĻ «
-mer cy
-ðŁĴ ĺ
-sen ds
-i est
-pol ici
-val e
-reduc ed
-as ap
-vi jay
-defen sive
-celebr ations
-ri ders
-med itation
-har mon
-g ing
-Â ¡
-program ming
-in au
-sud den
-m h
-replac ement
-sk u
-j ar
-gra des
-ta st
-k itt
-brand ing
-k aw
-boo t
-f ought
-p ays
-g f
-iz ation
-ho p
-k k
-activi st
-v end
-coast al
-cha os
-ðŁĶ ´
-se me
-bill board
-li fting
-cu mb
-sc al
-ðŁĸ ¤
-stru ck
-l v
-indie dev
-beat en
-jun gle
-al right
-destin y
-m ing
-k c
-ch ances
-om an
-q atar
-cra f
-tra ined
-pri x
-char m
-o tive
-s mu
-e c
-and ers
-hand ed
-al ban
-certain ly
-arri ving
-i ze
-sa i
-tr ack
-pain ter
-hu mble
-appo intment
-head line
-manag ing
-mo d
-as pe
-andre a
-Ã ¤
-ethi op
-un ited
-exi st
-bal i
-k ad
-n t
-d red
-re x
-recogni ze
-tam pa
-be ers
-ati a
-he els
-no te
-transport ation
-tur tle
-re de
-hipho p
-sp icy
-sp urs
-⬠ĩ
-cor p
-ther n
-to ast
-hur ry
-proper ties
-ma ge
-mar co
-ele ments
-bou ti
-syn drome
-ms g
-develop er
-gra ders
-he im
-re sil
-off ices
-del ay
-di men
-vin tag
-barbar a
-ðŁĺ ±
-vene zu
-cu lar
-fac ed
-bar n
-ðŁĺ Ĩ
-survi vor
-wor m
-confu sed
-passion ate
-Ø ±
-identi fy
-electr icity
-sou ls
-brad ley
-repor tedly
-lun ch
-shel f
-eli a
-swee t
-smoo th
-emplo yment
-am el
-manhatt an
-ste am
-oun ts
-ye p
-li ving
-un e
-descri be
-ca res
-man ila
-sha wn
-ac ted
-bas h
-st even
-re st
-pet ition
-div ine
-wel sh
-rac e
-platin um
-ðŁĮ ¸
-p b
-extra ordinary
-solidar ity
-m all
-on ion
-schedu led
-game of
-fer gu
-de ms
-nor m
-p k
-tri als
-polici es
-publi shing
-st ole
-fron t
-charac ter
-van ia
-ex ce
-sti e
-sc a
-resi dential
-sa iling
-ðŁĶ¥ðŁĶ¥ ðŁĶ¥
-spons ors
-th ick
-champag ne
-she pher
-continu ing
-ven ice
-per th
-na p
-a ster
-y ak
-un limited
-cho ices
-ne o
-hi v
-repor ter
-bru ssels
-f old
-dy s
-se mi
-la wn
-it alia
-wi fi
-as k
-em ed
-fr ame
-monit oring
-ste ad
-i da
-gr in
-is a
-fli p
-re stric
-offen sive
-atta ched
-di sh
-wh y
-philli ps
-gre et
-p als
-mix tape
-v ou
-fiel der
-spar k
-alber ta
-g len
-ca sh
-s ri
-u ri
-ro dri
-entreprene urs
-climate change
-p sy
-d le
-em ents
-lin ked
-nether lands
-acci dentally
-oppos ition
-vel vet
-ra ys
-c w
-om o
-m f
-lmfa o
-newsle tter
-: )
-toi let
-liter ature
-di sp
-phili p
-uni form
-sudden ly
-head er
-cool er
--- -
-prou d
-bri g
-nis san
-scienti st
-j ah
-con centr
-pac ks
-appo inted
-so ap
-eng age
-cho se
-âĻ ¡
-se tup
-jeal ous
-har ry
-g ation
-tun nel
-te mp
-osc ars
-dec ade
-recomm ended
-child ren
-ab a
-anxi ety
-ve ments
-sal on
-pho too
-organi z
-mach ines
-ab s
-vil le
-hy pe
-ti ff
-emer ging
-av geek
-[ #
-contribu tion
-bra dy
-re sto
-g mail
-fit z
-photo shoot
-hel met
-h t
-eleg ant
-ug anda
-nur sing
-or leans
-pen n
-na h
-foo tage
-em a
-w o
-w ad
-concer ns
-ve re
-re mark
-who ever
-str ang
-p t
-qu it
-sh ang
-histor y
-s ick
-perman ent
-ill ness
-col d
-visi on
-he m
-ar row
-con vic
-pin k
-oc cup
-bal d
-ex hau
-u of
-am o
-on t
-ãĥ »
-adop t
-la id
-smo ked
-inter pre
-ess enti
-associ ated
-b d
-bb y
-fi er
-inst all
-dipl om
-con diti
-c f
-w ak
-any a
-gr aci
-fi sher
-s ss
-ap r
-il it
-mus ician
-symph ony
-cor d
-h ack
-le gi
-l v
-bless ings
-hum or
-sc ra
-e ti
-min ster
-trav elling
-bu sh
-jewell ery
-li me
-!! !
-pregn ant
-pe e
-lo b
-cap ital
-ip a
-pen cil
-la bor
-duc ks
-prou dly
-wedd ing
-dere k
-m w
-pe g
-valent ine
-an gu
-re treat
-pro spect
-dang er
-vul ner
-up set
-, #
-sr k
-x im
-thur sday
-n fl
-kis ses
-re ds
-cr ack
-re ward
-c u
-ko k
-me te
-aband oned
-it t
-me als
-sp ell
-stan bul
-del ays
-ru m
-le op
-gu m
-no va
-super man
-ch ick
-m is
-dram atic
-inno cent
-r ounds
-re c
-auti sm
-bangla desh
-mor al
-mo vie
-sp oo
-k la
-âĥ £
-ou ting
-mess i
-ab road
-loo kin
-a im
-q i
-st ack
-colla ge
-à ¯
-hud son
-sc an
-ho e
-ch au
-oc cur
-comm ander
-ho les
-ðŁİ Ħ
-bi as
-v on
-stick er
-ma k
-responsi bility
-colum bus
-sa int
-ed mon
-rac ism
-far ms
-w en
-gul f
-may o
-!!!! !!!!
-corpor ation
-ba chel
-el a
-inter nal
-je ep
-fol lows
-di alogue
-de rer
-smart phone
-he len
-rich mond
-equ ity
-s land
-b g
-ne ar
-av i
-memph is
-we ir
-discu ssed
-bad ge
-p up
-mi stake
-phen omen
-un ite
-ðŁ Ľ
-de pic
-ri des
-in augu
-n at
-sof twitter
-comb ination
-gosp el
-âļ ¾
-ad mission
-retro gaming
-ðŁIJ ¾
-sch u
-mb o
-jun ction
-al arm
-à ¦
-gr ac
-kh ali
-k ul
-m ale
-cap tion
-wi sh
-te re
-cor ps
-ru bber
-play station
-er in
-effici ent
-l or
-jo kes
-in ary
-nor man
-lu is
-inaugu ral
-ch ed
-âļ½ ï¸ı
-di p
-to e
-str at
-aa c
-am u
-pi er
-co tt
-comm and
-tt en
-sn oo
-cu be
-clo ses
-class ical
-s word
-expre ssion
-reach ing
-n app
-co st
-affe ct
-ric o
-gi f
-brea the
-tri be
-or tho
-h ay
-l g
-fri es
-n m
-hi ding
-richar ds
-en de
-mic ro
-capit ol
-cop y
-ro m
-regi me
-mary land
-tax i
-di al
-embar ra
-un believ
-ch t
-v s
-elim in
-o dd
-pen ny
-sound track
-l ings
-trans ition
-rema ining
-a is
-mali k
-? !?
-rand om
-def end
-ul tra
-tru m
-danc er
-st ol
-dri ve
-a ver
-ro ast
-defin ition
-se an
-excit ement
-partic ul
-su rely
-sh av
-ber y
-di shes
-com m
-is ol
-i am
-ob li
-gho st
-hugh es
-chi efs
-b as
-conserv ative
-speci al
-fe min
-sh ri
-n ancy
-inte l
-tu ne
-ðŁĩ ª
-jo el
-gg le
-mo to
-ðŁĺ Ķ
-bu ck
-d ag
-antic ip
-mont ana
-gu id
-fro g
-ec raft
-op e
-dri ves
-nu mer
-x y
-color ful
-wednesday wisdom
-illu min
-bey on
-inau gur
-deep ly
-pre fer
-for tune
-coo ked
-ti ble
-âĺ ķ
-swe ater
-it ter
-tt y
-u i
-gi e
-com plic
-~ ~
-tax es
-cu ps
-di verse
-sam anth
-âłĢ âłĢ
-ba king
-sy mp
-wa i
-be half
-mer cur
-travel s
-ðŁİī ðŁİ
-or ia
-eng aged
-jump ing
-reti red
-n aked
-p uni
-speed way
-sci ences
-rehear sal
-on ym
-dy ou
-pl ates
-r ati
-kri sh
-jaz z
-car ol
-ra f
-pen alty
-tim eline
-ru by
-engine ers
-ra f
-bel le
-do se
-che on
-esc ap
-me g
-ran k
-or d
-me gan
-mer ch
-ec lipse
-âĺº ï¸ı
-ple dge
-kir k
-per si
-leice ster
-sa k
-w k
-saf ely
-yy y
-je t
-promis ed
-j c
-en ne
-no ah
-re no
-re a
-ðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤ
-tra il
-ðŁij Ģ
-f d
-soo o
-ri min
-w k
-ภ²
-i al
-x ox
-bis cu
-d ale
-fan dom
-particip ating
-fla g
-privi lege
-pe ach
-mach ine
-bo ston
-gro ss
-o g
-mir acle
-adop tion
-u ss
-mon sters
-be ij
-clar ke
-pu shing
-pra ying
-ar o
-d n
-ell is
-apol lo
-od ds
-refuge e
-to w
-b p
-ðŁĩ¬ðŁĩ §
-h end
-app eared
-memb ership
-pe an
-du m
-viol ent
-v y
-potat oes
-aw w
-greet ings
-t ts
-ac on
-sh ane
-photograph ed
-cra b
-temper atures
-cu ba
-c fc
-wel com
-he l
-in nings
-m k
-co de
-kno ck
-gra ss
-swe dish
-p ta
-ick y
-v at
-lin ing
-s q
-sa p
-ar c
-announ cing
-sk ins
-cit yof
-br ing
-co x
-gam er
-it arian
-i da
-h d
-ros se
-sad ly
-ge o
-âļ ¡ï¸ı
-tag s
-fa ther
-chan ge
-l ance
-whis key
-adel aide
-te c
-stick ers
-marke t
-class y
-bad ass
-flo rence
-lin er
-fro st
-k ate
-ac on
-scand al
-es sex
-ðŁĺ ı
-vi vi
-dr ill
-blo ggers
-recomm end
-d ha
-ac res
-ro ma
-bu y
-gro cer
-er ia
-ma har
-ff er
-patter ns
-ver i
-com pu
-st ev
-ang a
-ment or
-do o
-it ali
-cdn poli
-on ly
-conduc t
-elec tro
-de f
-wh ale
-prepar ation
-bicy cle
-vi ral
-turn out
-bra ss
-qu ad
-hospit ality
-pack aging
-den cy
-ceme tery
-abo ard
-dre aming
-pic ture
-t all
-inv ent
-ad mi
-o e
-tem ps
-qu an
-fun dam
-pro mp
-resi dence
-mu d
-sour i
-âĦ ¢
-graff iti
-gi f
-d nd
-com p
-s war
-pe eps
-pale stine
-devil s
-san g
-assi stance
-bi ke
-missi ssi
-inter viewed
-ne phew
-dru ms
-v and
-gentle men
-n sw
-inst a
-leban on
-ee ee
-oli via
-ver y
-rou gh
-industri es
-m ation
-ðŁĺ Ĵ
-bar rel
-n ay
-po ps
-moder n
-ill y
-are st
-on ents
-protec ting
-v ans
-e o
-vi kings
-restaur ants
-re ck
-jac kie
-andre w
-w illing
-he ath
-citiz en
-disc rimin
-๠Ī
-stu art
-m ys
-hi p
-tran sp
-" ?
-te x
-su shi
-ke d
-cro ssed
-dist ur
-pe dia
-f ate
-some how
-mo th
-proce ssing
-is s
-r in
-u ts
-yy c
-ver t
-lg bt
-re id
-on to
-arab ia
-habit at
-= =
-stre ak
-simp son
-addic tion
-wim ble
-deli vers
-challeng ing
-ðŁİ ¶
-fran ch
-e du
-s me
-ai ds
-hur st
-th am
-tari an
-remem bered
-palestin ian
-fe es
-tru m
-sket ch
-ur u
-fit ting
-jes se
-ðŁĶ¥ ðŁĶ¥
----- ----
-ba ch
-ici a
-colo red
-da h
-associ ate
-int el
-s eller
-p u
-stu ffed
-ac s
-b s
-sh in
-cooper ation
-certific ate
-ab u
-ingredi ents
-re v
-in ge
-el der
-christi an
-bun dle
-th ic
-dir t
-beij ing
-comm it
-ted dy
-ed u
-to day
-s field
-w yn
-confir ms
-lo o
-j v
-ene ss
-al pha
-vir us
-ari um
-gr ind
-bri dges
-introduc tion
-pol ls
-bac ter
-z ach
-termin al
-ra iders
-fla vor
-zom bie
-vo d
-sp reading
-gameof thrones
-effici ency
-lat ely
-ale m
-twee t
-cri mes
-cl er
-de y
-dg ed
-hy un
-pay ments
-cir cus
-ðŁĺŃ ðŁĺŃ
-mis souri
-lu b
-episo des
-c age
-po s
-mat ching
-tumb lr
-lin ed
-ge st
-am bi
-nar r
-ing ton
-regu l
-blo wn
-is le
-co co
-on don
-joshu a
-tour ing
-sm a
-sau sage
-best friend
-bo eing
-desi re
-sav age
-ra pper
-de vo
-te ar
-take over
-cow boys
-po ker
-par ag
-pp e
-h int
-we ars
-se th
-ro les
-l anc
-man ga
-form at
-fl yer
-c ay
-mo or
-ba ke
-spla sh
-v ad
-ker ala
-proce eds
-sil ly
-reflec tion
-di str
-wi d
-su it
-ci vic
-yan kees
-by n
-migr ation
-di stin
-or ch
-fe mini
-quali fying
-tu ri
-o be
-hun dred
-cra p
-wan g
-mathe mat
-bu re
-expo sure
-fergu son
-seme ster
-re serv
-pl ym
-a hu
-fac ial
-wa x
-wor ried
-ca b
-vi o
-as a
-co d
-to pics
-p cs
-hal o
-rescu ed
-horiz on
-ar k
-âļ ª
-hol ly
-el f
-ul ti
-pu p
-quali fied
-attend ance
-ati vely
-destro y
-y c
-for th
-photoo ftheday
-c ents
-ic eland
-meas ures
-de sk
-port folio
-artic les
-direc tors
-dat ab
-e w
-creep y
-oun ding
-hon oured
-mi st
-j it
-men tioned
-port able
-iti c
-d ann
-friday feeling
-am id
-ti ger
-scri p
-helicop ter
-hard ware
-expl or
-work place
-austri a
-beat les
-ber nar
-spi der
-disc o
-cul t
-lim its
-shor tly
-fin al
-nin ja
-lu ke
-le bron
-wal mart
-o il
-van illa
-shi re
-ye g
-ak y
-c s
-bl er
-collec ted
-t g
-rol led
-speci als
-b ff
-pier re
-sh im
-vi er
-flash back
-restor ation
-individu als
-pro d
-fre aking
-tu rer
-o a
-re fre
-mor oc
-gre et
-re yn
-care ful
-our ing
-u sh
-is d
-g ill
-vie w
-thunder storm
-b led
-pic nic
-guar di
-pi g
-ar k
-syl vania
-bann ed
-u cl
-vi jay
-ori um
-av engers
-believ es
-eu r
-monu ment
-concer ned
-la bs
-ber g
-a ap
-vi sh
-sing les
-can cel
-z el
-ar ab
-ru th
-too th
-ar ta
-sh af
-chair s
-r ack
-dise ases
-crow d
-cl y
-fle x
-christ ma
-artif icial
-tom at
-fin e
-dra ws
-advoc ate
-fran ce
-Ù Ĭ
-ðŁĺ ³
-heav y
-s our
-compre hen
-no ble
-aa p
-hin du
-cor al
-g ars
-ow en
-n l
-st all
-yel low
-mar ina
-in ver
-suppor t
-tou gh
-promis es
-pi e
-master piece
-sco re
-for ce
-mor tg
-crypto currency
-o x
-r ors
-rock in
-pro vin
-ho g
-no stal
-oak land
-pat rick
-inclu sion
-tra ffic
-ah med
-a ha
-lux ury
-con secu
-de mon
-âĸ º
-b lowing
-st ag
-: "
-encoura ge
-ben e
-sku ll
-do dge
-bu ster
-kin son
-wit ne
-er ror
-lo west
-fel low
-à °
-sh re
-bl ur
-vir gin
-compos er
-sli p
-mor nings
-ga ins
-tab le
-gra in
-ari st
-braz ilian
-w we
-tu es
-ribb on
-an ag
-di st
-sac rif
-em brace
-entreprene ur
-af fili
-de o
-t ali
-touri st
-fat al
-ì Ĭ
-autom atic
-ðŁĩ µ
-we ak
-wel fare
-confir m
-benjam in
-fi ghts
-alleg ed
-me ad
-strugg ling
-pro secu
-che f
-Ã ¨
-propos al
-er n
-ðŁĺ Ħ
-dy k
-on gs
-hon g
-m ack
-mel on
-on ent
-ru sh
-d ap
-tol er
-pro pag
-c ze
-trans lation
-wal let
-cott age
-sa il
-constitu tion
-ðŁĴ Ģ
-mun ici
-fav or
-storm hour
-i h
-ðŁĺ Į
-approach ing
-pin ned
-j ed
-niger ian
-n ach
-sh at
-particul arly
-mc don
-camer as
-anni e
-admini str
-he at
-electr ical
-char ming
-gib son
-bouti que
-ex posed
-ac tor
-pil low
-beach es
-genu ine
-margare t
-ben nett
-lou isi
-pos itions
-el y
-shin y
-ten tion
-architec t
-ren tal
-ac qui
-goo gle
-sub way
-mom ent
-ðŁļ ¨
-ri m
-metho ds
-cy cli
-nor folk
-Ù Ī
-over whel
-ra pid
-we ar
-happy birthday
-progre ssive
-ðŁĴ ¥
-co gn
-pap a
-f ool
-philosoph y
-pol ar
-jim my
-wi g
-ðŁĴ ĭ
-oper ating
-reduc tion
-ph i
-fla gs
-to the
-o di
-a res
-k oo
-k ang
-ar kansas
-ash ton
-wimble don
-sci fi
-attrac tive
-mississi ppi
-logi sts
-ral ph
-la bel
-gradu ates
-ma ha
-home town
-âľĮ ï¸ı
-foun ded
-on the
-li z
-trans l
-mini mum
-pre sti
-ta m
-gener ations
-re bel
-journ alists
-par am
-mc m
-acry lic
-death s
-tes la
-w t
-bry ant
-jer us
-i stanbul
-muham mad
-ri ley
-k ris
-work shops
-is o
-coun ts
-stre t
-prote cted
-trin ity
-man ual
-r hin
-r il
-pleas ant
-le mon
-ner d
-har der
-dar ren
-bur y
-ra h
-bas is
-mi gu
-occa sion
-li sts
-âĿ¤ï¸ıâĿ¤ï¸ı âĿ¤ï¸ı
-e b
-de cre
-hamp ton
-ìĿ ´
-tra vis
-trans form
-puer to
-nh l
-av oc
-tri ps
-unexpe cted
-ve t
-di dyou
-bar ber
-st ages
-m son
-re presented
-for t
-l al
-pp le
-nic ely
-ignor e
-qu il
-qu inn
-h k
-carri er
-remin ded
-am ong
-pass enger
-el len
-gue z
-sc ape
-mu ral
-youn gest
-ma sh
-d ill
-rout ine
-stain less
-jack son
-gand hi
-th al
-on ers
-edit orial
-convers ations
-sd ale
-autom ation
-i ke
-า à¸
-ðŁĩ ª
-hau l
-la ying
-men tions
-am en
-abor tion
-i bi
-coun ties
-ca therine
-man ds
-jam e
-roll er
-au t
-n am
-o logical
-cep tion
-ran king
-tox ic
-sn acks
-victor ian
-bang kok
-psycho logy
-re g
-ang ela
-respon d
-sty le
-sophi e
-dak ota
-achiev ed
-mar ked
-imper ial
-in as
-glo ves
-sli m
-confi dent
-att acked
-gg er
-lon ely
-valentine sday
-re b
-craft beer
-orig in
-zim bab
-ce iling
-te ens
-other wise
-w b
-f ers
-day sof
-advis or
-y ah
-âĻ ª
-en der
-republic ans
-av a
-skir t
-pi pel
-chi e
-jan e
-ja x
-ðŁĺ ĭ
-âľ Ĭ
-j ays
-bre tt
-bal o
-cru cial
-d har
-as is
-de au
-lloy d
-chat ting
-âĿĦ ï¸ı
-rel ay
-remark able
-n s
-we t
-bris bane
-ðŁĶ ´
-tion ally
-f k
-la yer
-house hold
-consecu tive
-es is
-pend ant
-st ir
-crit ic
-su gar
-photo shop
-pa res
-arti stic
-do dgers
-c un
-cra fted
-am end
-bo at
-âŃIJ ï¸ı
-egyp tian
-sa w
-tra ge
-small er
-ox y
-pa ired
-nex t
-i res
-tac o
-o y
-u c
-st i
-a erial
-: //
-dr o
-dot com
-gg ins
-r pg
-ay e
-le an
-stri ker
-lo bby
-prote sts
-pri ority
-congre ss
-am ate
-inv it
-r ington
-mom my
-th us
-allow ing
-pione er
-enfor cement
-g ori
-tal k
-dra g
-du mb
-bul let
-san ge
-er y
-tar gets
-ðŁĩ ¦
-he ather
-consi der
-seaf ood
-ve st
-ris ks
-% .
-p g
-sac red
-he ating
-kick ed
-tto t
-. -
-chan di
-co ven
-po ol
-pul se
-i a
-ro ster
-shakespe are
-es a
-car go
-pean ut
-tro op
-ac tion
-tab let
-home work
-cast le
-stru ction
-mus icians
-free zing
-bu tt
-justin bieber
-j j
-bah rain
-an them
-au dit
-didyou know
-na vig
-guid ance
-âĸ ¶
-tur f
-n un
-fic ations
-ye men
-char ging
-x c
-bron cos
-su bur
-p ale
-bor ing
-among st
-for the
-em per
-om fg
-p j
-expe cting
-ðŁĴ «
-st l
-ad min
-expect ations
-sw an
-shoo t
-oooo o
-min ent
-ãĢ IJ
-wall ace
-stan g
-satur day
-adop ted
-dou bles
-hom ie
-ome z
-d han
-vent ure
-surroun ding
-fi le
-mob ility
-de es
-w ski
-broo ke
-emb ro
-re members
-kar a
-test im
-bo tan
-m tv
-sacrif ice
-jerus alem
-d l
-Â ´
-proper ly
-ili on
-as i
-leg it
-co pe
-m cla
-recy cling
-lar ger
-ðŁĴ ĵ
-pat ric
-gener ous
-ja red
-p f
-mol ly
-thom as
-ju dges
-h b
-sor ts
-bl vd
-o ven
-enter ing
-plan es
-be et
-integr ation
-boo ked
-fre ed
-ver n
-ash es
-to pped
-de pot
-welcom ed
-ren a
-m ick
-d and
-see ks
-gam er
-ran kings
-ren e
-mu t
-whis ky
-fire fighters
-gu es
-ga ther
-tour ney
-de men
-y ang
-new ton
-autom otive
-back yard
-deta iled
-mi st
-to bac
-fi ber
-un usual
-grat itude
-sp are
-ne ys
-: *
-per i
-flo ating
-fin alist
-don ating
-dre ss
-bro ad
-be the
-econom ics
-tai wan
-ed wards
-plu g
-pra iri
-val en
-bab a
-f ad
-an as
-har per
-dis order
-app lied
-p att
-bi kin
-li ver
-cu ri
-carol ine
-ann er
-juli an
-wal king
-mal col
-screen shot
-co ding
-skin care
-activi sts
-myster ious
-ex act
-blo cking
-mercur y
-bat ter
-du mp
-âľ Į
-en se
-li sh
-ridic ulous
-prote sters
-ðŁĻ Ī
-lu st
-swe at
-as s
-ali ke
-co dy
-re ments
-win ds
-as pir
-vi enna
-pra y
-.. .@
-bo i
-cand le
-assi sts
-te e
-der son
-p ony
-f ence
-con spir
-âĺħ âĺħ
-oo th
-e pic
-ba rely
-a unt
-b am
-diamon ds
-end less
-scre ens
-can cer
-gr o
-p st
-pro spec
-mo sque
-help ful
-ou ri
-bro ther
-gu jar
-cri sti
-ine z
-to wers
-ad dresses
-gra y
-bur ton
-re tweeted
-ðŁ¤ Ķ
-n ity
-du ck
-super vis
-jo an
-kin der
-sanc tu
-pi ed
-âı °
-ł ï¸ı
-m ati
-reven ge
-ce ster
-eli fe
-desig ners
-back ed
-bo li
-wei ght
-cou ch
-su res
-s its
-shri mp
-la gos
-auth orities
-os ity
-hol ly
-compu ting
-fac tors
-ab e
-pan els
-ram ad
-sent ence
-missi on
-hol m
-r b
-d ads
-shang hai
-mon ey
-she ets
-sk ate
-thre w
-cup cakes
-infin ite
-l is
-practic ing
-ess ay
-ka i
-as ci
-mo b
-u gh
-hol mes
-re gg
-ik h
-mo ck
-collec tions
-pe p
-o va
-sal t
-nan dez
-co y
-thre ats
-tex ts
-cin nam
-pregn ancy
-pen ding
-stam p
-flow er
-g is
-agre ed
-pay ne
-ro ver
-ph ra
-sof t
-f fin
-fa thers
-pass engers
-aw ays
-al a
-h es
-li van
-in s
-samu el
-ingu i
-h of
-j j
-chen nai
-cat al
-om ic
-he ath
-ni ece
-pump ed
-integr ated
-are l
-no m
-produc tivity
-wan ting
-vis a
-di ana
-tw il
-it v
-cam ps
-ro wing
-d ley
-black and
-gu ards
-b ells
-re verse
-vi be
-ric ky
-mo ss
-ny t
-âĺ Ģï¸ı
-el le
-tro y
-cu dd
-ev an
-women s
-fo to
-mi stakes
-wick ed
-mi l
-c led
-me mes
-co smo
-schol ar
-ren o
-ðŁĺ Ģ
-v ents
-# âĢ¦
-terrori sts
-ca sey
-cardin als
-ðŁĺĬ ðŁĺĬ
-venezu ela
-bol a
-liter acy
-t w
-en o
-con tains
-au stin
-fin anci
-ev an
-har vard
-origin ally
-chev ro
-her ald
-nott ingham
-manag ers
-âŀ ¡
-accep ting
-wal sh
-tutor ial
-entrepreneur ship
-yach t
-requi rements
-glen n
-pe de
-unfortun ately
-ach ing
-dais y
-gi an
-night mare
-âĿ Ĺ
-r ina
-b art
-ema ils
-oppo site
-who m
-sa ke
-pu zzle
-da shi
-par ty
-blan ket
-bus es
-lo re
-beau ty
-reas on
-pun jab
-winds or
-func tional
-exi sting
-hel lo
-gli mp
-con vin
-la k
-scre aming
-rebec ca
-bli ss
-north west
-infin ity
-cosme tics
-pul ling
-coffe e
-pl ing
-op ho
-colom bia
-interior design
-( +
-emo tions
-sa c
-sun glasses
-sav es
-d f
-six th
-al y
-ðŁĺ »
-de en
-dev ast
-polit icians
-lac rosse
-g u
-pe i
-jav a
-comb ine
-coal ition
-er ts
-survi v
-ch ad
-stri an
-n n
-de vi
-coun c
-concer n
-contro ller
-bre ast
-j ury
-tu m
-introduc es
-la di
-mobi le
-al z
-ste ady
-nur ses
-h acking
-on line
-oce an
-ðŁİ Ħ
-a am
-ju ven
-ic c
-louisi ana
-ar te
-street art
-is on
-wn s
-fr m
-p anda
-no ir
-main tain
-del ay
-symp toms
-thor n
-ge ome
-ter n
-carri ed
-p ru
-pan or
-as sy
-per u
-clou d
-sp ra
-pe di
-e ste
-tag ged
-ðŁĺ Ŀ
-shado ws
-naz i
-ا٠Ħ
-cor ri
-âĻ¥ âĻ¥
-j ad
-ðŁĩ «
-form al
-spo ken
-ðŁĮ ŀ
-enjo y
-lo pez
-out look
-in ho
-w ander
-Ù ħ
-ma ya
-pe e
-d ine
-ãĢ ij
-brief ing
-suppor ter
-ar ily
-ght ers
-natur ally
-doctor who
-j en
-v ar
-new year
-re se
-si mm
-re x
-con sequ
-tomat oes
-bur st
-bra vo
-bur gers
-cr acking
-nor theast
-bi om
-mush room
-mar que
-dou ble
-ni er
-v ag
-tw enty
-key board
-win ni
-jama ica
-par ish
-: -
-mental health
-ali zing
-ren der
-wa king
-ðŁİ Ĥ
-g ly
-na than
-wa shing
-mel issa
-jun g
-loy al
-chil i
-song writer
-guit arist
-bo wie
-neighb ors
-onym ous
-as set
-ta i
-head quarters
-ðŁĮ Ī
-i hear
-ci gare
-sur g
-) "
-re pl
-dar ling
-ðŁĻ Ħ
-z ak
-sa re
-ãħ ĭ
-mic key
-ware house
-mass age
-ine es
-did nt
-i w
-hur ts
-eng aging
-mag ic
-women in
-k itten
-mor s
-c art
-tit ans
-colle ague
-compe ting
-er an
-k hal
-mar ble
-dem and
-del ight
-et ary
-bli zz
-lou ise
-m ls
-fini shes
-experim ent
-conduc ted
-electr onics
-itt ers
-car ing
-wh ats
-sym bol
-jun g
-e cu
-pi x
-con text
-char ger
-ðŁĺ ĩ
-re ig
-fra g
-ë ĭ
-ch ad
-tru e
-ker ry
-def ending
-a int
-au ton
-check out
-bar nes
-less ly
-d t
-m me
-clou dy
-second ary
-are z
-_ :
-app a
-const ant
-" )
-ve ts
-jo b
-i ent
-ðŁĺŃðŁĺŃ ðŁĺŃ
-m j
-fren ch
-di ver
-davi es
-hh hh
-e book
-๠ī
-mar iti
-bree ze
-susp ended
-mat o
-vi et
-ra hu
-se i
-bol t
-en ary
-le is
-kar l
-fr amed
-expla ining
-ab c
-de aling
-nat o
-ja ke
-exp and
-leon ard
-establi shed
-du b
-ar men
-el led
-voc al
-nichol as
-ori ent
-k yo
-illustr ated
-ah h
-danc ers
-milli on
-ge ta
-po pp
-as u
-mur dered
-gi ble
-sto ked
-gri ffin
-maxi mum
-adri an
-en counter
-ther o
-david son
-ðŁį »
-holi day
-ev o
-asse ts
-car son
-memor able
-âļ ½
-ob am
-represent ative
-cb d
-tr icks
-vo gue
-vo ice
-mm mm
-sebasti an
-cli f
-ath y
-par alle
-ðŁ¤ ·
-pa k
-ev acu
-e ats
-ا Ø
-tou ched
-organ ised
-spir its
-can ad
-gui ded
-frame work
-ðŁĮ Ł
-pe d
-natur al
-ag ar
-replac ed
-anch or
-ti t
-sha h
-organ is
-super ior
-r n
-ch ro
-eric a
-st ill
-cor on
-chu ck
-loc ks
-or gan
-ro sen
-sc am
-ben ed
-/ #
-ke en
-tre vor
-vamp ire
-sor ted
-! '
-af ford
-in tro
-gr ace
-ðŁĺ ľ
-sau r
-kick starter
-influ en
-v u
-y up
-po c
-ðŁİ ¥
-a ar
-s ang
-tre k
-et sy
-tb h
-scre am
-chevro let
-pix el
-shepher d
-an or
-gabri el
-tw ood
-sd cc
-me ters
-develop ers
-clo sure
-v w
-twit ch
-ì Ĺ
-se oul
-pr ice
-ho g
-n ish
-hill ary
-scrat ch
-in cen
-wag on
-dis ability
-pan ther
-ch ats
-g d
-wit z
-sus sex
-l ate
-den mark
-ger ald
-cancel led
-net te
-i x
-nav al
-bap tist
-te t
-y ad
-ma th
-ho y
-r andy
-po int
-intel lec
-fru its
-w ool
-gu in
-pr on
-the ft
-con dem
-mar ry
-n ola
-architec ts
-cin cin
-roc kets
-gentle man
-ex plan
-t ate
-do e
-ra ises
-wild life
-w l
-insi der
-blan c
-w p
-for sale
-ny c
-po well
-unbeliev able
-pen s
-goo dies
-mu stang
-p ens
-st ays
-squ ash
-xox o
-near by
-ever ton
-co co
-le agu
-k han
-stu d
-south west
-con struc
-s worth
-cro atia
-le a
-su ms
-aim s
-e an
-van ess
-iti ous
-pa thy
-arc ade
-b end
-sugge sts
-sac ram
-roy als
-ri er
-em ir
-in cl
-an k
-clar k
-ri ght
-vac c
-ठ¾
-tan e
-li b
-u sc
-sal es
-hu h
-s ally
-ver a
-p ga
-gro ws
-dru m
-tre e
-eth ics
-sug gest
-is ab
-se aled
-pre viously
-anim ated
-ab du
-ri ses
-glo b
-pre dat
-scar f
-del ic
-om ar
-ll i
-sx sw
-py thon
-ne bra
-fun k
-reflec t
-pav ilion
-tic ally
-ch asing
-bak ery
-inva sion
-ko h
-believ ed
-co hen
-con qu
-cra fts
-nat i
-cle ver
-govern ance
-sam ples
-fa ils
-â Ķ
-ti mo
-r itu
-stri king
-inclu sive
-sho cking
-can t
-requi res
-dra wings
-ภŃ
-purch ased
-du m
-z ach
-war ner
-con sole
-man sion
-foun tain
-circu m
-e sh
-is land
-mil k
-pro fits
-hali fax
-ri val
-âľĪ ï¸ı
-jen ny
-sand ra
-ny e
-k elly
-y al
-qu ad
-no s
-inste in
-fin alists
-mid fielder
-cu e
-excep tional
-a an
-sa pp
-gett in
-sa a
-f ati
-sl ice
-vol k
-s wal
-la sting
-sum mary
-it as
-sm o
-s z
-âĺ Ĩ
-ip l
-fl ames
-ene ws
-ha v
-hoo die
-pitch er
-win dy
-re vol
-centr al
-ton ite
-ðŁİī ðŁİī
-sol ved
-mil wau
-organiz ations
-wee ts
-re fin
-s th
-ãĥ ¼
-el in
-ton a
-cinnam on
-ðŁİ ¨
-ðŁİ ģ
-ron aldo
-pen insu
-ome ga
-el ds
-desig ning
-e igh
-blu et
-ben z
-nu g
-ash a
-robo ts
-su dan
-choo sing
-en do
-ser ge
-clo sely
-hand y
-fing er
-be ing
-ar te
-survi ved
-fl ame
-mile stone
-gu t
-d war
-fu tures
-é e
-el o
-fri dge
-eli c
-ou ch
-u b
-p v
-tit an
-col lar
-st ation
-nev ada
-aur ora
-r d
-dun can
-âģ ł
-bri en
-mar sh
-Ð ¾
-to tal
-ch ry
-s ers
-su ffe
-ra chel
-colle ge
-to days
-cour ts
-ch it
-re united
-gym na
-gen esis
-be side
-re presentation
-ch ant
-collec tor
-ra k
-ath ens
-ni gh
-mun ich
-langu ages
-fl u
-particip ation
-__ _
-c v
-spec trum
-so da
-co ver
-refe ren
-ab bo
-ap a
-public ation
-ed m
-mon ica
-ar my
-ðŁļ Ģ
-div or
-dr y
-stre ams
-robo tics
-ci der
-bull ying
-appro val
-sto ke
-plat forms
-sier ra
-ex tin
-i b
-ha yes
-succe ed
-suff er
-at ically
-da i
-lyn ch
-h ound
-del ines
-ack now
-d ated
-exclu sively
-he res
-fac ilit
-dam aged
-char ter
-la kers
-fal con
-unve iled
-wel ove
-e ase
-pati ence
-l one
-gent le
-gene tic
-produc ing
-g our
-shann on
-bil ities
-zimbab we
-p int
-dau ghters
-liter ary
-bel le
-cl am
-surroun ded
-k any
-ne il
-pir ate
-rang er
-hb d
-nat alie
-bel ong
-olym pi
-emb assy
-sc ol
-en er
-ak in
-lo ren
-b h
-: /
-di va
-den im
-hi pp
-ðŁĩµ ðŁĩ
-arn old
-? '
-we ren
-em power
-dis abled
-man or
-rasp berry
-b af
-aw ful
-dru mmer
-kar dashi
-n ash
-machine learning
-ch u
-rebel s
-tim ing
-mon roe
-ton gue
-ran ge
-pup ils
-re ss
-amaz on
-b z
-har ley
-pal mer
-ballo on
-s ings
-ic ec
-j b
-c ers
-g ps
-whi st
-ri se
-l t
-oo oo
-c attle
-shoo ter
-vod ka
-uc l
-mt g
-le sli
-jon as
-di spo
-at ric
-ste in
-vintag e
-fir ms
-flo yd
-cow boy
-soo oo
-is aac
-war craft
-disney land
-beauti ful
-be am
-franch ise
-bu n
-k ag
-an on
-tur bo
-swee p
-made in
-kar achi
-dete ctive
-penn sylvania
-contro versi
-vitam in
-a side
-chron ic
-descri bes
-remo val
-ha h
-ap er
-ten ed
-u to
-bad ly
-mir ac
-f ry
-ye a
-in jec
-ther mal
-comp act
-th or
-te ed
-ur gent
-l ite
-g illi
-sop hom
-ic o
-che m
-p m
-for k
-fre ak
-ch ak
-recipi ent
-i y
-ni k
-model ing
-c ans
-ðŁı Ģ
-del ux
-se am
-surviv ors
-rad ical
-investig ating
-reli able
-f m
-tur t
-ligh thouse
-to ol
-go wn
-) )
-bo ts
-auto graph
-a id
-bu ffe
-h mm
-horri ble
-ssi onal
-ann i
-๠Ģ
-k its
-sch i
-eter nal
-hu ss
-sens itive
-r u
-tast es
-chec ks
-im o
-por tion
-sk ate
-e den
-half time
-fri ed
-ri hanna
-ti se
-fl ick
-ca in
-s gt
-âľ Ķ
-sh au
-sta ined
-ra ffle
-dro ve
-sal man
-princi ples
-sh o
-ar u
-je ss
-gu ine
-gar bage
-my an
-jel ly
-dis ru
-z ia
-q ld
-ent ries
-la v
-fle w
-ad mit
-objec ts
-comp are
-ny times
-cann es
-p n
-suff ol
-ro c
-d ana
-e gg
-hi st
-coun sel
-' !
-phy si
-imag ination
-ad just
-explo sion
-plym outh
-hor ror
-elli ott
-bour ne
-de x
-bre ed
-au dio
-lob ster
-disappo inted
-nation wide
-( (
-incre ases
-austr ali
-ce dar
-star ing
-rac ial
-e is
-g mt
-visi ons
-stay ed
-discu ssions
-de an
-cur tis
-mai den
-stel lar
-happ iest
-h wy
-pre season
-car av
-mon days
-hospit als
-glimp se
-schol ars
-ja i
-ter race
-ann a
-goo se
-gra ded
-lot us
-hun g
-grocer y
-stam ps
-emper or
-sc oop
-in ser
-c as
-exist ence
-he al
-fal cons
-mar vel
-reduc ing
-terri fic
-magne tic
-perfor ms
-bar re
-p us
-tre ating
-ic on
-w h
-decla red
-tra uma
-do d
-come dian
-nik on
-bu gs
-as m
-mont gom
-ibi za
-comprehen sive
-ha s
-san ti
-fellow ship
-da sh
-p sal
-louis ville
-sp y
-fau lt
-d the
-fi led
-vi sta
-de sc
-fe ars
-you tu
-sp s
-es p
-ri g
-cri me
-ber ger
-wonder land
-k ent
-in formed
-stev ens
-my th
-ast on
-ir i
-visit or
-at ri
-produc ers
-al la
-person ally
-separ ate
-agen cies
-af ri
-il an
-spo ke
-n ina
-squ ad
-di ves
-de pend
-li v
-fier ce
-enter taining
-cha in
-sc at
-bor ders
-pal ette
-sp ro
-os is
-der by
-tobac co
-zi o
-willi e
-ju vent
-zoo m
-hol y
-enti rely
-af e
-mart inez
-be ds
-pe a
-bull dogs
-ðŁĩª ðŁĩ
-ib m
-ne on
-ethiop ia
-team mates
-plan ting
-tw er
-any time
-for bes
-ó n
-run way
-ner vous
-ro ger
-p ile
-ch anc
-apo caly
-u w
-o i
-dr ought
-territ ory
-br ick
-cre atures
-go in
-w aff
-gre n
-sou theast
-je an
-am bul
-ed ited
-stra p
-c v
-aar on
-ãĥ» ãĥ»
-t su
-descri ption
-kin dly
-clu tch
-im mer
-en or
-women sday
-or ange
-ra g
-ob vious
-hy der
-chann els
-man go
-me yer
-ra ining
-ge tty
-pil gri
-coordin ator
-up load
-ninten do
-don uts
-san chez
-app arel
-j r
-zz i
-, @
-jeff erson
-accessi ble
-great ly
-e id
-initi al
-budd ha
-par is
-ma scot
-â¬ĩ ï¸ı
-sch war
-si ri
-sp inning
-mortg age
-e cho
-end ange
-ge dly
-chlo e
-enh ance
-kar nat
-k ry
-explo res
-ðŁĴ ģ
-af fair
-ic als
-all a
-dar t
-dolph ins
-diffe rences
-squir rel
-au gh
-dr ones
-ell en
-re store
-pa w
-un for
-pi ke
-hil ton
-colla b
-consu mers
-co inci
-out comes
-pp p
-a q
-coup on
-li est
-si ms
-k ho
-av es
-spo on
-pu dding
-cor byn
-hat ers
-ex ams
-sla ve
-. !
-p sa
-app les
-tam il
-se d
-co ke
-zz o
-lo sange
-car bon
-cla ir
-... )
-k hu
-cra ig
-explor ation
-sanctu ary
-su e
-al way
-demen tia
-won ders
-super hero
-pakistan i
-brown s
-bluet ooth
-lo cker
-mar c
-ev entu
-delux e
-rodri guez
-âĿ¤ âĿ¤
-ro bb
-ðŁĴ ¦
-lin ux
-ten s
-intellig ent
-se ed
-vo ter
-s ler
-pe aks
-inter n
-teen age
-peninsu la
-hand ling
-ti e
-cou sins
-wen dy
-me e
-à¹Ģ à¸
-din o
-ðŁĴ °
-ðŁĺ ĥ
-ze e
-s bury
-trage dy
-b k
-bo re
-z in
-war ns
-idi ot
-tou ching
-contin ental
-tac os
-saf ari
-wa shed
-po dium
-morri son
-fore sts
-c bc
-al on
-partic ular
-be ads
-inv ented
-lo ch
-li ghter
-where ver
-i de
-docu ments
-a we
-k r
-no where
-min er
-st it
-ro x
-contribu te
-har dy
-cl an
-ob ject
-ca it
-ðŁĴķ ðŁĴķ
-happ ier
-vege tables
-t art
-g ag
-nom inee
-heav ily
-pan ic
-j d
-there sa
-at m
-u ph
-s fc
-su ri
-drin k
-n al
-re vel
-k l
-avoc ado
-nom ination
-ma donna
-shar on
-malcol m
-control led
-sh ers
-revi val
-legis lation
-shoo ts
-n in
-comm entary
-pro s
-human rights
-str anger
-mit ch
-pipel ine
-leg ally
-th u
-gil bert
-tol l
-gran ted
-gh s
-ir anian
-refre shing
-du k
-ab i
-pri me
-jose ph
-mo sa
-stati stics
-produc tions
-mer ry
-pat el
-sa x
-human itarian
-struc tures
-e missions
-town s
-fre el
-ster ing
-rat ings
-alle gedly
-cab in
-st l
-w ade
-fl yers
-tri m
-promis ing
-z u
-bal lot
-compar ison
-free ze
-ou ter
-great ness
-as sign
-snow y
-r ale
-tor ies
-med iter
-kno ck
-consult ant
-cincin nati
-analy st
-sc oo
-je ws
-appro xim
-pu re
-portra its
-cy rus
-ation al
-lo ans
-acqu is
-el u
-accep table
-uni on
-water color
-ru st
-batt les
-per fu
-seas onal
-ser ial
-mind set
-ri ot
-fel d
-enni al
-clo set
-pri est
-tan ks
-int l
-scre w
-bu m
-ab dul
-ou x
-expla ined
-ric a
-imag ing
-law yers
-bu ried
-ãĥ»ãĥ» ãĥ»
-ear l
-âĢ ķ
-l ton
-resto red
-stri pes
-fo ss
-de mands
-ste aling
-alex is
-mun d
-ak er
-ur us
-war dro
-hu gs
-gen re
-e go
-Ù Ħ
-particip ated
-bab es
-ban quet
-ti ous
-he mi
-ds b
-lo st
-milwau kee
-jen ner
-ge m
-ou tra
-lo ses
-id i
-re ps
-ðŁİ §
-regu lation
-fla w
-f ang
-vibr ant
-ram p
-ra ins
-well being
-so viet
-vie wers
-de po
-libr aries
-bi go
-ser y
-g ill
-de struction
-co z
-c x
-bri dal
-al ds
-plan ted
-amate ur
-lu d
-che ering
-show cas
-pro file
-i u
-ver tical
-pack ers
-wiz ard
-ski p
-s light
-be au
-air ways
-mu ch
-re ra
-ðŁĮ Ĭ
-ab sor
-pati o
-pack ages
-s ells
-ment ally
-ðŁĺ ¢
-reyn olds
-k are
-tri bun
-wal t
-kn it
-ta ste
-sur rey
-boun ce
-cre ature
-b are
-bet ting
-su re
-mi ley
-laugh s
-al ore
-cy n
-t l
-arti st
-ann ah
-war mer
-dynam ics
-lunch time
-mariti me
-vulner able
-ðŁĴ ĥ
-wol ver
-dur ham
-const antly
-am in
-si bl
-: @
-bul let
-k ach
-angel o
-wil der
-doo m
-desk top
-law suit
-k ca
-hen derson
-inv iting
-bet ty
-ta wards
-ra fa
-le aked
-and i
-ge ms
-af l
-vel o
-mediter ran
-pro be
-to tten
-steph anie
-sn ation
-com be
-q s
-over come
-assas sin
-ra v
-fil ip
-winni peg
-sh il
-determin ed
-k as
-ou tre
-regre t
-gui des
-aa a
-ðŁĺ Ī
-wi ves
-mani fe
-er ly
-sm y
-sh ima
-x ing
-pix el
-jac ob
-ac commod
-to y
-on o
-po o
-ti er
-an swe
-ðŁĴ ģ
-ro sa
-le ase
-bel ongs
-th ar
-eventu ally
-nei ther
-go a
-ski ing
-at ra
-ag h
-broad casting
-f ury
-py ram
-d ice
-volk swag
-wom ens
-provi der
-bom bs
-miss ile
-whi p
-d ick
-nor we
-back up
-el der
-mat ure
-concer ts
-gi ous
-sque e
-good morning
-bra ves
-^ _
-au ssie
-lun a
-mal es
-he ck
-for tn
-rome o
-steel ers
-p n
-pe er
-re presents
-Â «
-kat y
-migu el
-requ ire
-cha ins
-l ur
-immedi ate
-ti mber
-âĸ¶ ï¸ı
-advoc acy
-ex port
-an z
-tiff any
-auth or
-ðŁİ Ī
-du des
-chil ly
-hi d
-har m
-bu g
-mon ster
-terri er
-tu c
-story telling
-ta k
-in ti
-immigr ants
-b is
-reach es
-com passion
-john ny
-contribu tions
-ðŁIJ ¶
-mechan ical
-impre ssion
-ran ks
-ko be
-men ting
-bloss om
-pab lo
-buil der
-bom bing
-tw el
-sul livan
-om o
-pe te
-de mi
-ku dos
-w bb
-t gif
-mass ach
-neighb or
-che fs
-eng ines
-pun e
-ga ined
-phan tom
-s days
-ext end
-gr an
-cent ers
-jac qu
-dat asci
-sleep y
-el vis
-answe red
-s lot
-con y
-flexi ble
-ti ally
-le tics
-% ,
-andre ws
-si ble
-mom ma
-vin o
-do x
-invit ational
-twil ight
-j ade
-ill ery
-joh ns
-f ou
-p v
--- ->
-break down
-billi on
-prin ter
-mon d
-c bc
-mag gie
-legi on
-du b
-kur t
-po or
-paren ting
-regi ons
-bikin i
-be ware
-si onal
-au burn
-kid ding
-amp les
-sp an
-con tempor
-c ic
-ha bits
-ak o
-pre fe
-bud dies
-it z
-em ily
-person nel
-moun tain
-ver sus
-ðŁĺ ¬
-ear ning
-s ink
-dar i
-u u
-s win
-i ster
-bru tal
-n ac
-kat a
-clo th
-am and
-ðŁĶ Ĺ
-ne o
-alu min
-week ends
-nebra ska
-co des
-delay ed
-brun o
-pro ven
-in c
-i ght
-fl an
-or o
-lam bert
-regu lat
-w f
-massach use
-kardashi an
-bern ard
-fi esta
-volcan o
-grand pa
-anc a
-d re
-st itu
-mean ing
-fo am
-au ck
-at ed
-r l
-hot el
-pers ons
-dy nasty
-ell or
-ma i
-am ne
-sty ling
-avi er
-e g
-vege tarian
-, âĢ¦
-foun ders
-sta in
-g d
-cy cles
-sky line
-trac tor
-exi sts
-tra l
-kid ney
-mar il
-inst ag
-se tte
-addic t
-tri angle
-flash back
-controversi al
-z on
-p ins
-i as
-tr ay
-town ship
-deleg ates
-sp am
-h ms
-cr ane
-peop les
-o lo
-fac tion
-but es
-on ica
-deleg ation
-new profile
-eli er
-mc a
-w and
-g ely
-losange les
-ber ke
-ti ve
-dis rup
-zz a
-cas a
-jor dan
-ford shire
-ga thered
-ic hi
-atten dees
-à¸Ń à¸
-pe ppers
-co in
-bour bon
-ern ity
-ro tary
-behavi our
-jere my
-team work
-compli ance
-tre mend
-ðŁĩ §
-bu hari
-cam bo
-bu yers
-ha gen
-bu ds
-bay ern
-mon te
-sm ells
-an za
-ath lon
-descri bed
-work force
-gi ving
-ap i
-invest ments
-da il
-sel ena
-datab ase
-th um
-mor tal
-stu dent
-bu yer
-do ver
-gar ten
-att le
-loy alty
-gen oci
-holo cau
-theat ers
-ru ling
-ven us
-pat ent
-ch un
-ab by
-awa ke
-mass acre
-bang alore
-break ing
-simm ons
-ju sti
-hal e
-ed chat
-gg les
-haw k
-mar king
-head lines
-stro m
-co ve
-breath taking
-med als
-hair cut
-christ ine
-tele graph
-gujar at
-ju ra
-can e
-sho re
-propag anda
-mu eller
-.... ....
-sa vi
-stom ach
-thro ws
-ta b
-war m
-j ong
-reno wned
-hi r
-ra is
-mush rooms
-guaran teed
-bo a
-m j
-revolu tionary
-certi fication
-bru ins
-jo in
-w es
-pas sport
-c g
-sex u
-cap able
-w v
-ton es
-jac kets
-ac compan
-spin ach
-fore ver
-bla ir
-wat ts
-g l
-cou ples
-prairi e
-newprofile pic
-logi stics
-massachuse tts
-jagu ar
-o id
-we al
-under water
-mo z
-y i
-ma ths
-myan mar
-pre ps
-suffe red
-tr ace
-wal i
-ah hh
-bor g
-st itch
-cu lin
-real ise
-infe ction
-discrimin ation
-sh ame
-an kle
-hu mid
-y t
-brac ket
-tru ck
-tri u
-ea ster
-commun ity
-post card
-invol ving
-ty ler
-car amel
-over view
-ex amples
-integr ity
-base ment
-instru ments
-ani um
-at us
-gh er
-laun dry
-achi eve
-gen eva
-pr icing
-hyder abad
-beli ef
-me ta
-j aw
-accoun ting
-lead er
-cristi ano
-cou ture
-cy p
-vis ed
-, ,,
-k nu
-h ick
-break er
-br am
-ra b
-mo or
-ham as
-gradu ating
-pupp ies
-ak h
-ta h
-ach es
-ri e
-op ini
-g ta
-re ign
-tra gic
-re ver
-p ill
-pine apple
-tou ches
-da re
-le ys
-il o
-inter iors
-sc outs
-bar t
-en zie
-don o
-bro ck
-christi ans
-ense mble
-Â ·
-cine mas
-new port
-air line
-win ston
-le igh
-cont ents
-pre scri
-ur ge
-tr out
-fic ally
-il ia
-sub si
-are r
-âļ¾ ï¸ı
-w ounded
-ðŁĻ Ĥ
-pe pper
-ðŁĴ ŀ
-fit ted
-af f
-re sur
-thursday thoughts
-z ero
-archae ology
-di v
-je e
-i on
-awa iting
-co zy
-beauti es
-bal d
-dat a
-gri zz
-stal k
-kin ds
-cle ared
-jess ic
-regu lar
-ali ens
-plac e
-bo s
-bi zar
-thisi s
-ðŁĴ Ģ
-totten ham
-ma fia
-s lam
-ari ana
-car roll
-back pack
-care y
-uni v
-r g
-pe p
-dig it
-tatt oos
-ag on
-volunte ering
-diffe ren
-consu mption
-ka thr
-head phones
-t shirt
-o b
-ele ment
-re tail
-sh ru
-al gori
-contain er
-consci ous
-fi l
-com ing
-ra sh
-u rope
-def ine
-gi or
-femini st
-flow ing
-rout es
-gl aci
-fer t
-somer set
-ant es
-twee ps
-$ $
-h our
-endange red
-year sof
-ro h
-po pped
-bac king
-ba sil
-bra ke
-mon aco
-lgbt q
-pra gue
-ut ility
-cas si
-gate way
-haun ted
-sch ul
-ðŁİ µ
-shou ld
-walking dead
-comple ting
-dann y
-montgom ery
-pengu in
-ss i
-mer chandi
-ðŁij ij
-chur ch
-h ates
-cap tain
-brea thing
-ce t
-fair ly
-approach es
-compan ion
-surpri sing
-kany e
-pe y
-hin di
-targe ted
-lor ds
-de ut
-di gging
-ger man
-ru t
-ener gy
-close st
-y un
-apo logi
-ภ±
-s ack
-ru p
-dd y
-port al
-d ough
-b ats
-ðŁĵ °
-at ur
-graph er
-pi res
-mo tors
-ðŁĮ ¹
-j c
-dan g
-tu k
-clu e
-us c
-pag e
-d less
-bro ws
-ju s
-ad ing
-re marks
-oo m
-car dio
-ste fan
-arm strong
-âĢ¢ âĢ¢
-ni est
-belgi an
-bi op
-so y
-lo f
-í ĥ
-q t
-flashback friday
-ce e
-ģ à¸
-wre ck
-mar ines
-amend ment
-wardro be
-vo y
-bur ned
-guit ars
-ra inf
-li fel
-ssi l
-oun ce
-exter nal
-c key
-me sh
-she ikh
-inv itation
-sugge sti
-pop corn
-phenomen al
-an onymous
-tun a
-chic ago
-o val
-del y
-loc als
-( &
-pro f
-no vel
-fin der
-spar ks
-la ven
-in fu
-nic ks
-qu ant
-ra e
-exe c
-dist ingui
-st ances
-mu tual
-sh al
-unve ils
-edmon ton
-zan ia
-a dio
-vie wer
-brad ford
-audit orium
-qu is
-re act
-htt p
-l ero
-chee ky
-impac ts
-ta k
-ed t
-desper ate
-t ay
-ì Ħ
-sett le
-bar gain
-resu me
-un ite
-thro wn
-ke st
-se ys
-mar ching
-am it
-decl ine
-sch ar
-me tr
-stan ford
-lin ke
-ber ra
-dol ls
-rug by
-jam i
-b or
-road trip
-dino saur
-mi k
-sun der
-re m
-b k
-over seas
-nau ghty
-imple mentation
-iam srk
-lun cheon
-fir ing
-mi ami
-pere z
-the e
-z on
-gi fted
-con version
-ceram ic
-¡ ï¸ı
-pe dro
-ì Ĩ
-v ick
-! @
-he ed
-si d
-b w
-docu ment
-pl un
-gr ants
-fant asy
-predic tions
-vali d
-car ved
-gradu ated
-ðŁijį ðŁı»
-nation ally
-ch y
-af l
-re sso
-blan k
-ri vals
-j ig
-e ties
-om ics
-une mp
-b ound
-sk o
-inspec tion
-par al
-high s
-cri sp
-b ans
-ob a
-[ @
-co spla
-costu mes
-rec all
-mou th
-ni gel
-b ts
-ter a
-ko v
-do cs
-west minster
-dic t
-gra vity
-kar i
-ro gue
-t ted
-war k
-ida ho
-w end
-aw i
-queen sland
-proce sses
-cli ffe
-m ick
-com pens
-op ol
-the y
-cl ari
-wiki pedia
-salman khan
-haz ard
-pre ston
-swee test
-pd f
-che es
-tr ilo
-south africa
-bur nt
-( $
-con tain
-t p
-sub mitted
-sound cloud
-at u
-re z
-word press
-corru pt
-n f
-ma ker
-í ķ
-par as
-adv ent
-ri al
-ca fe
-fo ssil
-!!!! !!!
-co ws
-c j
-sp ur
-institu tions
-land mark
-ent it
-re ut
-h is
-alz heim
-we mb
-regg ae
-mo squ
-st at
-identi fied
-deal er
-re am
-re land
-ten sion
-ðŁĩ ©
-wra pping
-deep er
-fr at
-red dit
-ar is
-moroc co
-.. "
-b low
-ma pping
-pri orities
-ing a
-swa p
-re wards
-conspir acy
-creati ve
-c j
-congre ssional
-vau lt
-ple x
-sophom ore
-shad ow
-ele ss
-ðŁĺ ħ
-dar ts
-aldu b
-anno ying
-pro ps
-n as
-alumin um
-h bo
-offen se
-j ill
-oni ons
-la ur
-ta e
-har dest
-sh ro
-ga ining
-meas ure
-ed tech
-cyp rus
-tar a
-ang eli
-car lo
-go on
-all i
-im plic
-ju pit
-resil ience
-ha il
-bal anced
-) ...
-joy ce
-gr a
-th eli
-defin ed
-shi pped
-main ly
-min a
-l m
-sac ri
-o ber
-p im
-claim ing
-ent ers
-co rey
-bo k
-cri ed
-cool ing
-dani elle
-pharmac y
-thor ough
-ca ke
-k lo
-outre ach
-z ens
-digital marketing
-val ent
-sn p
-her b
-mr w
-caf é
-cap tures
-no tre
-triu mph
-pan cakes
-cu mber
-spi ke
-d ation
-bi gg
-sp er
-crit ical
-am al
-too th
-foun ding
-a stro
-' #
-quan tum
-th ames
-un c
-pri de
-air bus
-kno cked
-un defeated
-mediterran ean
-cal cu
-clo wn
-sens or
-ham mer
-for give
-cu shi
-ber ry
-maje stic
-elec t
-polit an
-g ta
-k ari
-bur ke
-sea hawks
-volkswag en
-re i
-landsc apes
-cas u
-grand father
-list ened
-/ /
-star trek
-rainf all
-fur ry
-vi er
-star k
-rif le
-ff a
-leg es
-hillary clinton
-min us
-correc tly
-architec tural
-pre ce
-up side
-box er
-ðŁĻĮ ðŁı¼
-is ai
-de t
-pro vo
-tis sue
-spoo ky
-ve led
-re con
-prospec ts
-que bec
-âļ «
-ig no
-anat omy
-shap es
-w p
-p interest
-hor e
-an es
-pick up
-ti p
-pra desh
-hu gh
-co e
-po k
-gram my
-well ington
-sti gate
-ri gh
-lea p
-king ston
-scen ic
-go sh
-v ani
-au g
-s ary
-zi er
-bure au
-lin son
-con te
-fra gr
-all an
-g aw
-lan a
-colli sion
-surve ill
-ren ais
-ar range
-s ali
-do in
-br ance
-bren dan
-our se
-in coming
-suspen sion
-à ´
-l la
-educ ators
-in tri
-da e
-bio graphy
-bul gar
-villa in
-go thic
-rw anda
-e w
-may or
-meet up
-democr at
-mor gan
-su dden
-te sco
-car rot
-bom ber
-mck in
-re ne
-fun day
-agricul tural
-haha h
-show time
-form ing
-col a
-scor pi
-quo te
-po ppy
-s life
-d az
-tu b
-ne n
-mo t
-ðŁĺ »
-s ore
-elder ly
-o ve
-skin ny
-um i
-anc o
-man ship
-we re
-g v
-k ah
-fol ding
-ne at
-samanth a
-dan ish
-uk rain
-humid ity
-nu tri
-jak arta
-cand les
-oooo oooo
-at ile
-streng th
-i bra
-bap ti
-charle ston
-fr ames
-girl s
-clear ing
-glu ten
-# #
-super natural
-ju bi
-ph one
-he in
-dr un
-le ak
-invest or
-y er
-dom ain
-ball room
-mi sh
-app li
-off shore
-bla ze
-dor o
-âĺķ ï¸ı
-win ery
-shar if
-ad ore
-n ir
-saf er
-si gh
-as cri
-strong ly
-trac y
-ck er
-ol l
-faith ful
-ey ed
-deli ghtful
-vis m
-karnat aka
-tit an
-wh ar
-jer seys
-re fur
-heav en
-gri p
-pan ama
-pre li
-glu ten
-o dd
-cont ent
-pon ti
-tion ing
-e commerce
-feder ation
-flaw less
-ge ar
-ti res
-by r
-pol ice
-cu ban
-tri butes
-tic ul
-chur ches
-nur sery
-di aries
-muse ums
-snapp ed
-i van
-wi ght
-touri sts
-ramad an
-t rent
-prophe t
-won dered
-focu sing
-hi d
-ic ons
-i q
-ambul ance
-pi st
-fun niest
-time less
-sr ilan
-bu ys
-ki ds
-colour ful
-a shi
-ch ir
-mu m
-ðŁĵ ļ
-let ter
-x en
-reut ers
-pre serve
-in ting
-ste p
-fu ji
-uni ver
-i u
-show down
-po ems
-surveill ance
-suspec ted
-ta e
-sol ving
-tom b
-mother sday
-car pen
-recru it
-pil ots
-bro c
-mix ing
-fri days
-ty r
-represent atives
-tra pped
-abdu l
-free style
-clu ster
-âļ łï¸ı
-k d
-sk ill
-pit t
-ex o
-commer ci
-muse um
-loc ally
-g ina
-no bel
-immun e
-fr ac
-cap su
-main ed
-attemp ts
-bull dog
-be spoke
-sing ers
-sp elling
-seg ment
-nat ures
-tic k
-lip stick
-clean er
-gett able
-preci sion
-âĢ¼ ï¸ı
-th ood
-re ef
-no pe
-bill y
-di gi
-mu si
-ri val
-figu red
-tal ity
-sun ny
-ber k
-aw ww
-awa its
-un real
-co pen
-asy lum
-ex otic
-bu en
-mo ck
-en able
-arch y
-fr a
-pla stic
-al mond
-amp li
-displa ys
-abbo tt
-s me
-x p
-ðŁĻ ĥ
-graph ic
-i ved
-mar a
-cau tion
-lea ks
-en berg
-ul u
-unic orn
-cann on
-appren tic
-ðŁĺĺ ðŁĺĺ
-b ball
-wil low
-at ics
-am as
-manufac turer
-campaig ns
-port ers
-flo ors
-l su
-ty pe
-ke j
-honor ary
-it im
-to le
-min ecraft
-d x
-ma sh
-ri o
-consequ ences
-ron ald
-go ssi
-suffol k
-mu se
-r bi
-live music
-i van
-ðŁİ ¤
-le u
-patri ot
-man it
-lan ca
-home decor
-de ar
-sig ma
-ti de
-str ings
-v ita
-sequ el
-try na
-inve stigate
-bor is
-ve gan
-barri er
-mind fulness
-web b
-hu stle
-in da
-tan zania
-str ay
-tex as
-c ag
-diagno sis
-wom an
-g w
-ob session
-l ative
-nu fc
-fl ynn
-moment um
-sof a
-wal d
-vege table
-tu cker
-supp er
-se ab
-ar ro
-se ag
-ven ting
-counc ill
-sp lat
-cal cul
-.. #
-com fy
-odi sha
-sto pp
-war fare
-ca es
-à ¨
-co y
-price less
-in sec
-ðŁĺ Ľ
-contro ls
-empower ment
-datasci ence
-per pe
-gen ic
-e res
-tru deau
-man o
-sla very
-expand ing
-ma he
-fa iling
-s aga
-photograph s
-cre st
-re on
-surf ing
-hi e
-ðŁį Ģ
-ja e
-fel lows
-south ampton
-sol om
-ce ster
-tab ility
-hor n
-se ct
-he e
-cole man
-at las
-explo rer
-consul tation
-copy right
-organi zing
-den ied
-mon keys
-noo dles
-br is
-fl or
-dou gh
-bon ds
-sho cked
-eco system
-care fully
-w m
-apart ments
-cur ve
-san diego
-must ard
-comm en
-cere mon
-e ch
-ru th
-ðŁĻĮ ðŁı»
-hawa i
-fil med
-te ar
-as ingly
-ca ir
-wat t
-instru ment
-ou tta
-ye ol
-river side
-ë °
-. :
-nor wich
-alo g
-migr ants
-new man
-ri de
-spr ink
-targe ting
-beli eve
-tor ch
-reflec ts
-per mission
-ff man
-ene mies
-bas ics
-se ized
-sun days
-le i
-hass an
-en do
-h c
-st ad
-le ments
-kk kk
-nan o
-shar k
-man a
-on ic
-treat ments
-ear ly
-collabor ative
-shu ttle
-bran ches
-mis ses
-mained cm
-ap ers
-ky le
-carri e
-leis ure
-sh et
-bir ding
-adv ances
-ðŁĵ Ŀ
-popu lar
-di ane
-a be
-re war
-neigh bour
-k pop
-remem brance
-play ground
-ru b
-krish na
-e bola
-inqu iry
-ep a
-lu min
-organ isation
-abra ham
-norm ally
-pre ten
-jan et
-w t
-ðŁĴ İ
-encoura ging
-a stic
-bu mp
-syd ney
-s z
-ss ss
-gar rett
-ðŁĵ »
-consul ting
-roman ia
-spo tting
-chanc ellor
-ar ma
-presti gious
-ðĿ IJ
-t ad
-cry st
-compe tit
-rati o
-cat aly
-bro w
-j ur
-vi king
-commu te
-y day
-la yers
-du mb
-esc al
-genoci de
-f ill
-gu pta
-ste pping
-se i
-fo to
-wild cats
-col i
-projec t
-ear nings
-st r
-ge ons
-comple tion
-b m
-decor ated
-craw ford
-af ghan
-sc are
-visi bility
-hi b
-direc tion
-stro ll
-christ ina
-alter nate
-cl are
-sty list
-be hold
-s ance
-leop ard
-acqui red
-narr ative
-ash i
-the a
-?? ??
-pe as
-at ch
-sli des
-le en
-renew able
-eng lish
-qu ir
-co aster
-r x
-fo ols
-match day
-mis m
-amaz ing
-z ig
-ke ting
-won t
-to wel
-di ab
-sta ke
-n m
-mel t
-e than
-gra pe
-polit ician
-sm en
-í ĺ
-re o
-wedd ings
-cat cher
-or acle
-me mo
-ðŁĮ ´
-ec k
-rob bie
-norwe gian
-oper ator
-am or
-se wing
-ju l
-x ie
-u v
-fif ty
-me ga
-tatt oo
-liber als
-u pri
-traffic king
-richard son
-su v
-ki p
-mess y
-tremend ous
-gl ou
-cour tney
-la d
-stere o
-my ers
-i dio
-^_ ^
-man ning
-dy e
-w d
-thr one
-jun k
-as u
-provin cial
-k ook
-wr c
-fine art
-hamp shire
-renais sance
-b red
-fall out
-s j
-sn l
-al am
-tor ture
-fy i
-sh ines
-pa w
-ch ar
-hen ry
-c row
-aci ous
-di an
-pa ige
-ba re
-stock holm
-scen ery
-ðŁĩ ·
-jef frey
-pu sh
-decor ation
-ne d
-cu te
-brig ade
-laven der
-inv ites
-e sports
-vo ir
-dri ed
-tran spl
-sur geon
-no vels
-pul ls
-son y
-lun ar
-man e
-i vy
-fru str
-dor set
-sa i
-tor res
-ssi on
-shut down
-suggesti ons
-writ ing
-e o
-battle field
-u ga
-ðŁIJ ¾
-vac u
-spl ac
-g it
-u g
-high land
-% )
-mer maid
-sacram ento
-ta ils
-p w
-ka h
-t ell
-enh anced
-ì ķ
-auck land
-cru el
-ðŁ¤ ©
-au dre
-sail or
-gram mar
-g love
-de on
-infl am
-fresh ly
-k ell
-zi p
-christi e
-mil d
-di xon
-instru ctor
-g ence
-ãħ ł
-sub jec
-constitu tional
-crow ds
-in visible
-ru ins
-da k
-si p
-pla que
-p ouring
-comple x
-z ine
-ste ad
-f let
-trans mission
-lo way
-ar un
-incre asingly
-au d
-transp aren
-cro wned
-sc oun
-blizz ard
-lux u
-fi ers
-achieve ments
-hun ters
-rock ed
-bas in
-vio let
-pro ves
-achiev ing
-pro sper
-se ga
-flo at
-vi an
-xi v
-pol ic
-tur a
-approxim ately
-wander lust
-keep ers
-geta way
-co d
-pol is
-br yan
-col ts
-tal ents
-yo gur
-gluten free
-wri st
-gr y
-cze ch
-ðŁİ Ī
-ev ille
-ðŁı Ī
-to x
-dani els
-am er
-bi ds
-weare one
-me tab
-g t
-boy z
-pd x
-pos session
-pu shed
-shr ine
-reali stic
-tri gger
-na vi
-ru mors
-n af
-jen kins
-tr un
-comm uni
-Ã Ĺ
-gam ers
-arm or
-moham med
-bal cony
-y ah
-stron gest
-rhy thm
-unfor gettable
-k p
-ho bb
-custo dy
-greg or
-r ita
-aes thetic
-il ation
-sponsor ing
-n ay
-kid napp
-sh s
-ra jas
-me g
-signific antly
-butt ons
-la c
-ver sions
-essenti als
-opini ons
-k ro
-d printing
-wi dely
-d k
-ur an
-y al
-reque sted
-c n
-cur ric
-plu m
-gr un
-v m
-dev on
-m yo
-rel ation
-juvent us
-rou ge
-min ority
-min es
-jupit er
-n ine
-oxy gen
-fran kie
-une sco
-fab ric
-disgu sting
-sal man
-dete ction
-lan ka
-d ac
-ðŁĩ« ðŁĩ·
-argu ment
-shel ves
-cel tics
-rober to
-pi gs
-he dge
-fau l
-pow ering
-butter flies
-fi r
-re make
-att i
-com o
-emp ha
-kend all
-poke mon
-se ating
-d ans
-bald win
-ðŁij »
-lesli e
-one direction
-ti mber
-im an
-fon t
-e der
-di on
-ste ph
-for mat
-gre gory
-pro p
-he x
-ru in
-sor y
-inf er
-n aw
-bar ak
-sd gs
-kar ao
-lu sh
-v ander
-end ent
-g is
-a fro
-soc cer
-ay an
-t uni
-lun g
-da yof
-alex a
-mar ath
-addic ted
-ag ile
-hy gi
-light weight
-ì §
-mand ela
-jo ey
-anc y
-hu m
-bi r
-memor ial
-jim in
-ging er
-v ak
-jav ascri
-cro ps
-orig ins
-d ari
-pi per
-im port
-aggre ssive
-predic tion
-re pairs
-cr acker
-voy age
-ni ke
-mu mmy
-linke din
-country side
-bor der
-gla ss
-per t
-s als
-sho e
-autograph ed
-wal nut
-colle gi
-sal ary
-pa iring
-ðŁĮ ¸
-cath ol
-swee the
-defe ats
-streng then
-roof top
-impro vements
-barri ers
-ur u
-t ally
-ru led
-ðŁĨ ļ
-nai ja
-emo ji
-per cent
-gi o
-pro bs
-on ce
-adm its
-pa ths
-li ar
-day tona
-pe ters
-cal i
-cal li
-mu g
-o sa
-ap h
-ab y
-hy de
-eth nic
-pla ins
-ol f
-haha hahaha
-holi c
-?! ?!
-su bli
-bl acks
-mo t
-gh ton
-lo vin
-b rent
-bar u
-l ati
-de w
-ate au
-q a
-pain ful
-bu sters
-st atic
-ðŁĩ¨ðŁĩ ¦
-note book
-out fits
-si es
-r f
-floo ds
-Ñ Ģ
-thro at
-su ici
-ro vers
-beng al
-pre pares
-blo g
-mini ature
-Ø ¨
-am phi
-com b
-r sp
-in timate
-green e
-Ì ĩ
-al tar
-surg ical
-ves sel
-... ?
-gav in
-g ator
-threat ened
-z ar
-rob bery
-di er
-promo ted
-y g
-x s
-su bs
-inter viewing
-threat ening
-do zen
-me ado
-water fall
-nintendo switch
-cal um
-mini sters
-dro p
-univers ities
-war ned
-tac tics
-ðŁĩ ²
-refu se
-ad ju
-v ast
-ðŁĺ ´
-mc fc
-lib ya
-no filter
-distribu ted
-re ser
-ron nie
-de co
-javascri pt
-mon k
-intere sts
-fle x
-mar tha
-sti es
-oo d
-ðŁ¤£ ðŁ¤£
-e un
-b ali
-g omez
-sti mul
-moder ate
-d ity
-ir is
-stra w
-consist ent
-direc tions
-adop t
-sal sa
-cro o
-reco vered
-black friday
-lan caster
-accep t
-weareone exo
-buil ds
-free man
-air plane
-diti on
-bel ong
-jam ie
-pit ching
-li f
-om in
-cri spy
-pre pping
-ve g
-chan g
-accompli shed
-graci as
-dolph in
-elec tor
-culin ary
-super bowl
-wal a
-pur suit
-black berry
-be an
-cardin al
-pro ved
-immigr ant
-stric tly
-holocau st
-pass age
-ha us
-cou p
-pur se
-har ass
-< <
-le ed
-ado be
-st ad
-legis lat
-par ked
-pri yan
-sil va
-kri st
-s the
-fun ky
-ig a
-sett lement
-ph s
-t mrw
-stre ssed
-hun t
-ho ckey
-treas ures
-cham bers
-ol u
-hu t
-mar ley
-tex ture
-wilder ness
-mm ing
-poten tially
-om aha
-ju dy
-to es
-spo iler
-distingui shed
-feli x
-ah u
-recommend ations
-zom bies
-hit ler
-tri ple
-colla pse
-motiv ated
-ulti mat
-gg ling
-so y
-ci gar
-fo ren
-vine yard
-gl itter
-fin dings
-colon ial
-hun ter
-eri k
-den s
-beet le
-lot te
-sub tle
-s matter
-tru sted
-experim ental
-nam ents
-ðŁĺ Ĩ
-regi on
-acquis ition
-bre eding
-quarter back
-am reading
-oo td
-ru de
-initi atives
-st out
-hy ung
-out come
-al fred
-mic s
-exper tise
-bacter ia
-pengu ins
-jump er
-valen cia
-bar k
-ing day
-sell ers
-contrac ts
-hou ston
-commissi oned
-adap tation
-swan sea
-santi ago
-common wealth
-ju dging
-sub mission
-sco rer
-tom my
-ñ o
-ex quis
-fil ing
-explan ation
-alli son
-wemb ley
-ri dge
-chev y
-san tos
-own ership
-cogn itive
-favour ites
-sh ed
-phil anthro
-dele ted
-go dd
-s nor
-gui delines
-ff ing
-je ep
-cli ps
-sw amp
-an or
-guil d
-bol ton
-spring field
-munici pal
-goal keeper
-ye on
-ðŁĺįðŁĺį ðŁĺįðŁĺį
-ãħĭ ãħĭ
-water front
-gra ve
-contempor ary
-ar ity
-ÃŃ a
-sle eps
-sy rup
-al am
-pi re
-co yo
-moto gp
-ty son
-kej ri
-cir cul
-sing ly
-cr unch
-complic ated
-nostal gia
-k op
-mo ve
-k ale
-mac ro
-mid west
-h ans
-tri bal
-nu de
-௠į
-bey once
-congratul ate
-cat er
-leagu e
-ðŁĻ Ĭ
-la dder
-cra shed
-tech nic
-karao ke
-harass ment
-ro ts
-experi encing
-kri sten
-ðŁĩ ³
-ðŁ¤ Ĺ
-reflec tions
-guin ness
-illustr ator
-ðŁĻı ðŁı»
-cen ter
-nar row
-comm ons
-regul ations
-Ù Ĩ
-har m
-cro ft
-cu ssion
-hong kong
-st ical
-intern ship
-zo e
-cho p
-hoo ds
-estim ated
-batter ies
-berke ley
-smooth ie
-shau n
-cro s
-~ ~
-cam pe
-hu mp
-b g
-proto type
-cl ick
-shaw n
-re viewed
-tem pl
-p f
-jed i
-blo gs
-ray mond
-as th
-ba h
-av ail
-scot ch
-leaf s
-nik ki
-to k
-hol low
-ur ges
-of t
-un like
-lat in
-u e
-cat ering
-mil i
-alter nati
-ma ver
-Ð ¸
-ag le
-pre order
-lu x
-cu cu
-ðŁijı ðŁijı
-t art
-âĿ¤âĿ¤ âĿ¤
-arab ic
-rapi dly
-ar rang
-all en
-travel tuesday
-pa ws
-flo ws
-st ability
-flu id
-ca pp
-can berra
-uu uu
-sp ani
-demon stration
-m la
-plac ement
-m w
-presi dents
-awe som
-bever ly
-ani st
-ne al
-father sday
-referen dum
-la hore
-o aks
-deb bie
-half way
-gho sts
-de bor
-matthe ws
-fi at
-t fw
-pre sen
-rob i
-de d
-bro ck
-laugh ed
-am ounts
-bam boo
-kinder garten
-eat en
-mtv hottest
-break out
-u sic
-fra ser
-legis lative
-p ang
-modu le
-sam my
-go ver
-ear ns
-expe dition
-gar h
-concep ts
-char lie
-la va
-bachel or
-veg gies
-deter mine
-el lie
-un locked
-fru it
-dal la
-cou pe
-wash ington
-depo sit
-iv ory
-pau la
-chic ag
-gu cci
-ðŁİ ĥ
-cul tiv
-pier ce
-li fted
-stu mb
-re cover
-musc les
-conduc ting
-cb s
-mcla ren
-sophi a
-cel lu
-oce ans
-up loaded
-game play
-mal dives
-kim ber
-avo i
-rac er
-ca ine
-cav s
-h ana
-li ga
-ra ven
-inter vention
-inaugur ation
-oo h
-at traction
-merchandi se
-tune in
-li king
-juni ors
-int ended
-att acking
-aqu arium
-i wd
-comp onents
-sur ing
-cent u
-yogur t
-ðŁı ĥ
-show room
-op tical
-ty our
-ju dge
-yi eld
-an to
-pl c
-transparen cy
-recy cled
-chi ef
-ar om
-ambassad ors
-plan et
-âĿĦ ï¸ı
-om ed
-vaness a
-cour t
-mar gar
-hal ey
-v r
-reg ina
-pd ates
-hi span
-live stream
-âģ £
-ya hoo
-gal la
-secu red
-w ir
-bene ath
-off l
-n il
-am b
-ye g
-out let
-u te
-pe ep
-lind say
-bent ley
-... !
-he el
-trilo gy
-vo s
-ty re
-there fore
-tor onto
-ab i
-simp li
-ja e
-exten sive
-eleph ants
-s or
-orient ation
-im peach
-re play
-constru cted
-peter son
-pa is
-por ted
-custom s
-colla p
-ad u
-high lands
-sal em
-shel by
-ko vic
-stra in
-ro sie
-sen ators
-snap s
-bo bb
-suz uki
-bla des
-k p
-lo lo
-gener ate
-si ght
-ma e
-struc tural
-predic t
-jump ed
-ah mad
-sun g
-just ice
-gla m
-vol vo
-jubi lee
-de tention
-lo sses
-pu ri
-every time
-Ð °
-ra o
-ed ge
-li mer
-rese mb
-har old
-re tri
-sacri fic
-surpri ses
-am c
-srilan ka
-bar bie
-men s
-fin n
-ag s
-ukrain ian
-em brac
-î IJ
-flav ors
-hom er
-lau re
-ou th
-pr iced
-ver de
-fir m
-ah s
-cu b
-tre y
-par anor
-pro fit
-in dv
-who a
-har sh
-al ot
-crit ics
-hu bby
-fi gur
-gi ra
-ca stro
-chan el
-in put
-origin als
-ten ant
-yy yy
-ture rs
-lincol n
-co on
-lear n
-ch ou
-ac are
-o les
-din er
-hy p
-bizar re
-mc r
-let sgo
-decor ating
-ðŁĮ İ
-al ison
-ar vin
-f d
-reha b
-mccar thy
-lot tery
-da h
-minne apolis
-eli gible
-diagno sed
-emer ald
-destin ations
-s ans
-or y
-bla zers
-n v
-ba il
-digital art
-no c
-mal ta
-sol ar
-pi pes
-alleg ations
-no ck
-po pe
-bri d
-premi er
-n x
-present ations
-ef a
-bo ws
-val ve
-opp onent
-Į ë
-visu al
-ing le
-cate gor
-e ter
-po is
-dan i
-at tract
-neu tral
-th ene
-cra shes
-fred die
-ut ili
-c st
-awak ening
-slo ven
-quali fy
-pro of
-fair y
-le v
-fre ight
-enjo ys
-cup cake
-flav our
-â ķ
-protec tive
-ðŁijı ðŁı»
-is u
-ad mir
-h mmm
-continu ous
-ai res
-rap tors
-showcas ing
-y uk
-pa ste
-follow er
-instru ctions
-sp ru
-@ __
-the o
-debu ts
-ve tte
-sto w
-es of
-ach ed
-sul tan
-sand wich
-som alia
-franc o
-car ne
-flu ffy
-al pine
-jas mine
-he ated
-viol in
-ple ss
-divor ce
-per former
-phi es
-port sm
-dar a
-kir by
-lo p
-chill i
-for th
-sky pe
-ðŁĩ®ðŁĩ ¹
-celebr ities
-ed y
-ve e
-po ison
-ey el
-gra bs
-ssi c
-un o
-wester n
-rail road
-am er
-numer ous
-s v
-fo w
-fi st
-âĢ ĭ
-reque sts
-mar tial
-em my
-accept ance
-lau ra
-ภ´
-er up
-hyun dai
-out lander
-u tt
-wrest le
-esp resso
-demand ing
-g dp
-geo graphy
-sas kat
-tro ll
-confe der
-su es
-se m
-be ts
-t ful
-to sh
-teach es
-col oured
-gal way
-mac y
-dis orders
-bb cra
-at em
-fen der
-lit ter
-e sh
-provi ders
-renov ation
-nomin ate
-ps g
-nomin ations
-jen na
-shar p
-some day
-z ur
-bra ins
-che shire
-pre y
-hu go
-Â ¿
-to ken
-r v
-car r
-tac tical
-zel da
-kay la
-fern ando
-photograph ers
-j our
-umb rella
-woo dy
-congress man
-du mp
-le vy
-ju an
-d azz
-sign als
-la in
-an u
-mic hel
-por ch
-al den
-sibl ings
-y ale
-pe el
-sw ick
-gg in
-ll c
-k ale
-s con
-il d
-pat reon
-re el
-qu in
-wit t
-mar ty
-moo dy
-ton i
-der y
-g ators
-speci fically
-dd in
-ly on
-tr ick
-meado ws
-p j
-bor gh
-vi k
-tu r
-bron x
-pu ff
-lan tern
-ðŁ¤ ¦
-g ently
-be stie
-fac t
-refu sed
-fas ci
-mp y
-ðŁĶ µ
-cross over
-mead ow
-indian apolis
-duc ation
-sle y
-loo m
-mix er
-new music
-film maker
-prosper ity
-li m
-week end
-cre amy
-neu tr
-lu ther
-h v
-nor thern
-tw o
-h ra
-cat ches
-appear ances
-ha bit
-kitt ens
-n v
-illa c
-inf an
-regar dless
-liz ard
-dun k
-cur tain
-ac om
-in tu
-ve z
-e min
-fl ats
-calend ars
-em power
-ru ined
-hun gary
-vi d
-we x
-u lum
-aber deen
-o sa
-k t
-ma ssi
-se emed
-s den
-' ?
-tele phone
-de fi
-insp ires
-me ow
-z ones
-bl ind
-pl y
-tuc son
-advent ure
-ge d
-oy ster
-ðŁijıðŁijı ðŁijı
-out put
-tt t
-metal lic
-sma sh
-ucl a
-sco ts
-perfe ct
-lu cy
-regular ly
-sp ic
-rel ative
-ath ers
-mis e
-batt ling
-deci des
-mat a
-occu pied
-random ly
-cat softwitter
-gi an
-ball y
-al ties
-al lies
-im men
-sy rac
-ðŁĴľ ðŁĴľ
-l lan
-au r
-k ut
-lam ar
-affe cts
-n ra
-star war
-ðŁ¤ ĺ
-sc ram
-en chan
-pro cess
-luxu rious
-ar ray
-sher lock
-comp ati
-dor f
-stre ss
-m su
-s with
-sal a
-sof instagram
-fo il
-under stood
-qu ay
-r p
-c ade
-ja w
-en ab
-en coun
-ðŁİī :
-do ck
-satur n
-mu ll
-lay out
-ra rely
-happ ily
-fix ture
-or ph
-over looking
-her bs
-m itt
-pil lar
-nol an
-pe tty
-str y
-u i
-mu k
-o res
-o vers
-á µ
-re creation
-we sley
-ri t
-kejri wal
-sto cking
-g v
-subscri bers
-moo se
-ma e
-ber t
-opp re
-assign ment
-u ro
-high lighting
-cal vin
-we igh
-cambo dia
-av on
-ke m
-dis abilities
-read y
-char gers
-p ads
-iz ing
-illi an
-tru ste
-col leges
-associ ates
-alban y
-mil ton
-cr on
-bu r
-har dly
-si ghts
-anti ques
-e cho
-surpri singly
-ha iti
-cap t
-ph p
-op io
-ine quality
-equ al
-ken y
-sch mid
-autograph s
-ren t
-qu er
-cit rus
-challeng ed
-te c
-epi de
-fe st
-z hou
-li me
-citizen ship
-cry stal
-convin ced
-mess enger
-copen hagen
-âĿĹ ï¸ı
-war ran
-develop ments
-ï¸ı âĥ£
-fore x
-hi ro
-sne akers
-xi de
-vi va
-stere o
-bat ting
-ss el
-ho st
-beng al
-critic ism
-q c
-cr un
-attemp ted
-ry e
-determin ation
-cre ations
-d read
-label s
-pos se
-anc er
-joh an
-si ster
-partner ships
-les bian
-k st
-guaran tee
-bar o
-fix ing
-ma son
-m ous
-chem icals
-t less
-bio diversity
-par o
-bhar at
-ac ol
-refu ge
-en te
-t iti
-dys sey
-respon ds
-lef to
-in er
-se vel
-rahu l
-ol ine
-frank fur
-cho reo
-enjoy able
-c to
-strugg les
-wood land
-heavy weight
-gen s
-rece p
-ac cred
-ðŁĺ ¡
-trans formed
-list en
-at op
-n k
-sur ge
-be re
-gover nor
-prison ers
-clau de
-t ill
-mu lator
-emo tion
-water loo
-star t
-ðŁĩ º
-clean ed
-grand mother
-fear less
-afric an
-astron omy
-ðŁı ģ
-ภĻ
-the world
-su itable
-anth ony
-k and
-tt en
-meaning ful
-disc lo
-jaco bs
-Ã ¸
-tom linson
-ghe tti
-ty pho
-sub stan
-as co
-te k
-nag ar
-mu d
-am on
-vacc ine
-f ty
-fle sh
-no el
-infl ation
-portu gue
-glam our
-tra m
-v re
-te qu
-roun dup
-w yn
-rejec ted
-mosa ic
-si ghting
-cal f
-o ta
-com position
-go pro
-gonz ale
-e ed
-b ard
-tu e
-effec tively
-we en
-al to
-ri bs
-rel ate
-thir sty
-fu rious
-di m
-ch ard
-perfu me
-s ny
-chur chill
-k of
-master class
-wa ve
-ðŁĶ µ
-er in
-own s
-to be
-sk illed
-te m
-go f
-en i
-tor i
-cra zy
-l ick
-resi stant
-ici al
-ag ar
-! :
-g ali
-del aware
-bl itz
-koh li
-pu ck
-avail ability
-hi malay
-influ ential
-cro chet
-victor i
-read ing
-ho bby
-vie t
-j as
-en gra
-sk ul
-ðŁĩ² ðŁĩ
-educ ate
-tech no
-distric ts
-blu es
-se tt
-seven th
-lear ns
-ee ee
-apocaly pse
-hang out
-cru el
-mu tu
-bru h
-hel en
-she er
-c tion
-kle in
-tex ans
-ce real
-sh ine
-ne red
-gra s
-am bro
-f ella
-hin du
-matthe w
-li ma
-mir anda
-je wel
-so ho
-euro vision
-neighb ours
-chand ler
-be sides
-ðŁ¥ °
-ast ros
-thu mbs
-ren ault
-ra ve
-hi red
-ðŁĸ ¤
-it ary
-z or
-bla zer
-k ine
-ea u
-kat y
-dc comics
-pe c
-ro dgers
-water proof
-kill ers
-super int
-pre serv
-as so
-brew ers
-promo tional
-sc am
-villa ges
-sket ches
-ju icy
-for life
-au dit
-so lo
-fundam ental
-len e
-philipp ine
-t end
-conserv atives
-sponsor ship
-dd le
-a ine
-h tc
-os i
-hul k
-w af
-ภĻ
-evalu ation
-ant ine
-sle e
-robert son
-roo sevel
-ag i
-sophi stic
-emplo yers
-bubb les
-ko wski
-inter action
-sh u
-bou le
-ic an
-j are
-han k
-leg itim
-k nicks
-kar ma
-recei ver
-per ks
-u h
-sta ir
-sun i
-labor atory
-gra ves
-voc als
-oo t
-c ture
-thri ve
-tic o
-ãĥ ³
-b w
-carto ons
-mcdon alds
-dra w
-y ung
-pl er
-li d
-eth ical
-groo ve
-ent a
-international womensday
-pat ron
-wor ries
-ðŁİ ħ
-ðŁij ĭ
-ka therine
-di az
-tor i
-bach chan
-tru st
-min eral
-ic om
-buil ders
-bor n
-col oring
-lat te
-ca se
-revolu tion
-tra der
-ox id
-chi pot
-inst antly
-sou thern
-se hun
-pro b
-her nandez
-lis bon
-hu awe
-p ong
-me a
-ro oney
-wheel chair
-ke en
-be tt
-cor in
-regulat ory
-di splac
-ka ren
-sch em
-sun sets
-wh ales
-remin is
-he p
-hi de
-mar cel
-pand ora
-do yle
-th fc
-ot to
-no kia
-trans gender
-ko v
-hawai ian
-sha ve
-so vere
-exc er
-nick i
-pu g
-st or
-ro th
-wee t
-leg al
-dig nity
-po w
-hom age
-ðŁĩ³ ðŁĩ
-s re
-can on
-la x
-wo ah
-quart z
-ñ a
-gree ting
-flick r
-nai robi
-advoc ates
-an c
-vi i
-eu gene
-th ra
-c re
-el an
-pen sion
-th letics
-ton i
-re agan
-x v
-sto re
-ben ch
-har lem
-todd ler
-sent enced
-âĻ¥ ï¸ı
-glob ally
-che aper
-u f
-ma m
-nic o
-ik u
-tho u
-ni st
-dam i
-th ala
-rho des
-sal e
-bow ls
-â Ī
-las vegas
-sanc tions
-adm ire
-mat ched
-un able
-travel er
-ele ven
-straw berries
-âĢĶâĢĶ âĢĶâĢĶ
-stu dio
-jac ques
-im s
-valu ed
-s no
-cheese cake
-n xt
-e os
-s x
-f x
-ton ic
-hat ch
-chic ks
-gra ds
-hand ic
-r ory
-as p
-ri pped
-denti st
-n en
-lu fc
-âľ Ĭ
-di ge
-hop kins
-sher man
-f da
-for all
-ash ley
-str and
-h y
-liqu or
-buffe t
-ess ence
-phar ma
-suri ya
-ðŁĴĻ ðŁĴĻ
-festi vals
-z an
-re fresh
-pur ple
-uni forms
-kenne th
-= )
-as an
-hel sin
-transform ers
-k ali
-person alized
-chal k
-bo bby
-â Į
-the mes
-depar ture
-prin t
-illustr ations
-qui et
-agre es
-gri ff
-Ø ³
-m iti
-toge ther
-conven ience
-ab ar
-car lo
-turt les
-info sec
-some what
-ar lington
-scholar ships
-emir ates
-mu ms
-st ella
-auton om
-fe ather
-g ore
-nom inees
-fragr ance
-Ñ Ĥ
-w ong
-thea stern
-gr e
-z illa
-is i
-bump er
-go o
-do zens
-ab duc
-âļª ï¸ı
-o ils
-don ors
-sil icon
-i pod
-fortn ite
-ðŁĴ ¨
-tor o
-spark ling
-consci ousness
-pal a
-nu m
-moun ted
-ffin s
-thi eves
-team mate
-pra b
-om er
-ta pes
-bo d
-mit su
-ste w
-e re
-p bs
-tu sc
-lo we
-ra de
-parliam entary
-h m
-ed gar
-ðŁijĩ ðŁijĩ
-to a
-a gh
-hon i
-s late
-ge ek
-ap t
-hard t
-ta p
-horiz on
-grow th
-make over
-hi l
-paper back
-id an
-reha bil
-gi u
-possi bilities
-let tu
-fran co
-bo ss
-ach er
-does nt
-mo e
-ta ker
-huss ain
-ml k
-di l
-th ia
-ham a
-real ised
-raven s
-curric ulum
-m ith
-k night
-ted x
-r v
-isai ah
-cumb ria
-birth days
-f ing
-pre z
-mu barak
-exquis ite
-clear ance
-y en
-par i
-ev o
-Ã º
-modi fied
-app lying
-imple ment
-disco vering
-chap man
-indie game
-dis k
-crowd funding
-mach in
-li vel
-sty led
-âĿ Į
-ma king
-rehear sals
-nutr iti
-subscri ption
-and ro
-cre ators
-car ries
-ky lie
-cam den
-appren tice
-tax pay
-c ca
-tuesday thoughts
-pis sed
-er man
-dete c
-freed om
-mer i
-.. !
-psal m
-sun light
-per spec
-be ings
-book store
-rock star
-fun ctions
-p ence
-fav es
-z n
-obam acare
-sp ill
-coven try
-pi geon
-pi vo
-ba it
-kol kata
-av al
-don or
-wa h
-privi leg
-tra ditions
-rajas than
-ten ess
-portugue se
-yn es
-tack les
-de fic
-tor n
-pol ling
-thor ne
-in a
-bened ict
-bar ry
-cal ories
-ver dict
-save the
-nor ton
-off ice
-main stream
-impro ves
-fr on
-respon ding
-real tor
-scotti sh
-de clar
-r l
-shi v
-supp lier
-re sting
-swee ts
-qu i
-. âĢ¦
-whit ney
-startu p
-thank you
-teach er
-h alls
-ha ve
-hand made
-pro ving
-quar tet
-ro chester
-li an
-virtu al
-mend es
-of icial
-mid lands
-x box
-meas uring
-o vo
-accommod ation
-bri des
-collegi ate
-intellec tual
-in car
-ni ag
-ðŁį ·
-sf w
-coco a
-co ats
-civil ians
-presi dency
-mat rix
-sweethe art
-tri athlon
-wag ner
-ra dic
-plann er
-the o
-execu tion
-k um
-the walkingdead
-sc ar
-ro tation
-blo gging
-bom b
-re son
-bb les
-st are
-assi sted
-e do
-brand ed
-war nings
-thor pe
-acknow le
-satis fied
-sho res
-ri d
-dor a
-phys ically
-bi gh
-appro ves
-ha h
-ric al
-vers atile
-pret end
-lu m
-ab hi
-ye e
-sp it
-ãĢ Į
-dj s
-ash tra
-j t
-ven ues
-gram mys
-cy clo
-tr acker
-over watch
-repl ica
-el yn
-nr l
-lind sey
-hom o
-ballo ons
-kitch en
-si s
-am os
-ende av
-ðŁĴ »
-a rec
-thu g
-hoo ked
-hr c
-new york
-bur gh
-americ as
-patric ia
-ug u
-ap athy
-ha st
-psy chi
-cor k
-petro l
-ðŁİ ¬
-ak u
-po pping
-psycho logical
-au x
-g ma
-cad illac
-wa ste
-auth ent
-bri stol
-nam e
-que er
-to ber
-jer ry
-com in
-ch ant
-privileg ed
-op ar
-lo ser
-tex t
-mar ker
-stri es
-equ ally
-ak i
-christ mas
-gare th
-ble w
-em ma
-imag in
-se als
-che at
-conditi oning
-j ana
-ren s
-dar ies
-o asis
-disc ounts
-coun cil
-i ka
-shir ley
-vou cher
-al ps
-w x
-q r
-dri ft
-attemp ting
-ut c
-Ø ª
-gonzale z
-m f
-jo ker
-paralle l
-pa re
-aspe cts
-proce du
-n p
-am a
-rale igh
-bright en
-gu ire
-radi ation
-cre scent
-ho b
-il le
-str and
-v ore
-n ard
-che st
-di wali
-av atar
-al der
-d ling
-pa thetic
-ðŁĴ ĺ
-spir it
-jor ge
-film making
-ðŁĻı ðŁĻı
-challeng er
-b j
-down town
-ht ml
-ade qu
-twi sted
-in ely
-( '
-wra ps
-oper ational
-y ne
-n us
-mag net
-market place
-health ier
-snap shot
-dam on
-inter ven
-fe derer
-ow ls
-biscu its
-j p
-ro deo
-blue berry
-lec tion
-fron tier
-summ ers
-re yes
-pede strian
-go l
-caf fe
-refur bi
-bou lder
-me ghan
-speci alty
-la ss
-e i
-suspec ts
-appro x
-rr r
-ra th
-st im
-cru shed
-he d
-wh un
-lo af
-cr ore
-river a
-gene tics
-so ck
-wa sted
-ny pd
-answ ering
-do ve
-bel la
-ol in
-du n
-fi ji
-pre tty
-spar kle
-y un
-j d
-euro pa
-li fts
-am ber
-mu r
-te k
-boy d
-roy alty
-in do
-ri b
-go tham
-ti est
-inst alling
-ke mp
-the photo
-cos mic
-) ))
-whole sale
-loy ment
-eas y
-su ing
-sett led
-af p
-pro ver
-suppor tive
-re es
-ne ath
-deli ber
-c é
-wel come
-pic oftheday
-new born
-pat ty
-sun s
-si est
-fl int
-diffe rently
-spo ilers
-troop er
-g ins
-cor y
-look out
-equi pped
-ta pe
-to by
-resear cher
-u sh
-ke yes
-al ma
-induc tion
-k w
-k har
-sl ick
-bri de
-e ur
-cra ving
-book ings
-ch es
-tr unk
-vern on
-sp her
-cryst als
-rel atively
-pom pe
-uni ons
-val ley
-par a
-w ant
-ok c
-de af
-ser gio
-len non
-sh ay
-cr a
-v at
-he e
-t we
-liqu id
-pol y
-ðŁİ ģ
-b ent
-be aring
-motor sport
-bar be
-te sti
-han i
-fin ancing
-astron aut
-water colour
-ri sh
-comic con
-gar t
-wr ong
-ber n
-it an
-ste pped
-fil ters
-c low
-me x
-dem ons
-all o
-expand ed
-comm and
-et ers
-go ats
-si ri
-y r
-pot tery
-mari on
-i le
-el an
-san to
-person a
-du ke
-hom eless
-li ghted
-wheel er
-chang er
-cab bage
-sur real
-ham burg
-sma shed
-str an
-k not
-i art
-ob i
-be dro
-di al
-th ick
-b ingo
-fu s
-vacu um
-con ve
-ati ve
-accur acy
-accoun t
-re fer
-ri z
-spider man
-ban a
-r ite
-u b
-ab s
-medic al
-lin k
-si em
-> >>>
-be tra
-g lowing
-re actions
-pupp et
-spa ghetti
-ang s
-re medi
-pray for
-roy ce
-char lotte
-£ ï¸ı
-gh et
-affe cting
-ro de
-soci alist
-mo ses
-az i
-o it
-re porters
-cd t
-ap ing
-s nat
-minim al
-wa ist
-sie ge
->> >>
-ri g
-schmid t
-h are
-ec a
-thor n
-he mp
-es the
-cly de
-th a
-don ut
-moham ed
-ling erie
-le gg
-carpen ter
-perform ers
-de a
-imag ined
-cur se
-la sh
-ct r
-agu a
-ro ar
-gr i
-ro le
-j fk
-resur rec
-roosevel t
-maril yn
-sm alle
-will is
-wa ited
-char ities
-the res
-li k
-origin al
-car i
-c ough
-cru ci
-la gun
-contra st
-k ou
-arm our
-re moving
-t ent
-maz da
-bri ghter
-thi ef
-cor ner
-tequ ila
-buzz ing
-al bi
-p am
-az ure
-disc oun
-pixel art
-possi bility
-ham ont
-tra des
-bu da
-hi ve
-vers y
-fin ch
-tran spa
-em i
-terri fying
-in qui
-g ba
-sub stitu
-collec ti
-plac ing
-cin dy
-k ann
-pa tho
-diamon d
-mour inho
-guine a
-anthro po
-air s
-pu mps
-ì ļ
-pas o
-cur ling
-an ita
-resi dency
-ne wh
-jo on
-cigare tte
-que ue
-ex trac
-gam es
-spl en
-ex press
-public ly
-bon nie
-tribun e
-ba ek
-reason able
-c or
-timo thy
-she eran
-Ä ±
-f dn
-su tton
-concentr ation
-carav an
-x avier
-al ger
-cy lin
-freder ick
-ner ve
-pe ak
-lettu ce
-j ail
-pre game
-kav an
-up graded
-eco logy
-squad ron
-gra pes
-goo g
-pa stry
-ðŁĹ £
-ãĥ¼ ãĥ
-mil ano
-awa z
-presen ter
-ðŁĮ ¿
-her d
-king s
-tem plate
-fl our
-h v
-k ley
-i ya
-spe c
-at er
-frankfur t
-co ch
-tex ting
-del i
-communi st
-regi ment
-ele anor
-anticip ated
-ðŁijĮ ðŁı»
-thephoto hour
-ran o
-survi ving
-simul ation
-daw son
-ar in
-aqu a
-m or
-âĢ¦ .
-cin o
-ira qi
-sh az
-dun dee
-we s
-dra u
-hann ah
-s news
-occup ation
-ste en
-x m
-ang les
-sett ings
-gur u
-kno x
-or ca
-shap ing
-w ent
-dr illing
-zz ie
-br i
-kis sing
-fin d
-ma ine
-âŃIJï¸ı âŃIJï¸ı
-ðŁĮ į
-lar ry
-bu sted
-ta vern
-acti vely
-- "
-replac ing
-no d
-un lock
-. "
-âŀ ¤
-affili ate
-to w
-l n
-happy newyear
-di f
-j m
-green wich
-contro versy
-daw g
-con dol
-sav annah
-compens ation
-touch down
-te o
-amb itious
-embro i
-convic ted
-iart g
-bar ack
-tr ance
-testim ony
-au dition
-thum b
-my ths
-be x
-que z
-orch id
-den y
-entit led
-hoo d
-gr ant
-in box
-blue jays
-r illa
-smalle st
-bur den
-in famous
-divi ded
-boun daries
-t ter
-el t
-wy oming
-be verage
-me sm
-one ws
-budd hist
-y ana
-as sad
-is ms
-bar rett
-predic ted
-back to
-tw it
-e there
-cap tains
-escap ed
-ay o
-lam borgh
-gard ner
-la ps
-k al
-adverti sement
-insec ts
-na po
-am en
-ac y
-r and
-g k
-te h
-k athle
-tri dge
-pan cake
-at ro
-pyram id
-bu la
-paral ym
-gau ge
-en cies
-tom y
-biscu it
-but cher
-quali fier
-coun ty
-ke i
-po ols
-dar ker
-should ers
-ðŁĩºðŁĩ¸ ðŁĩºðŁĩ¸
-sp re
-( "
-writ ers
-g m
-ðŁİ ĵ
-k nit
-hu ff
-mt b
-philli es
-o st
-den is
-g art
-licen sed
-inter face
-ex cel
-d well
-from the
-co fficial
-az zi
-appear ing
-fore st
-n ana
-ke ith
-manufac turers
-beck ham
-) ?
-e se
-col ony
-delic ate
-ut ter
-mc in
-transpl ant
-pre ferred
-par d
-ari e
-hu b
-po ds
-perspec tives
-pic t
-del u
-app er
-be than
-p mo
-crimin als
-femin ism
-sh ack
-circum stances
-fel las
-prote sting
-wa x
-sugge sted
-t ator
-dre w
-om ni
-fa ke
-kath y
-re b
-del ine
-ber ni
-mi sty
-ðŁij ©
-er able
-break through
-men swear
-millenni als
-chan yeol
-la z
-inser t
-rep lies
-phra se
-n x
-ihear tawards
-audre y
-gran ite
-rac ec
-ori e
-ter ra
-innov ations
-britt any
-at eral
-pe ar
-bio logical
-sh ments
-institu tion
-m sn
-frequ ency
-d man
-neg lec
-t f
-ste fan
-fox news
-ty po
-comm s
-sequ ence
-car men
-wh ites
-econom ist
-exe ter
-se um
-re sorts
-cas ually
-bun de
-divi de
-Ø ¹
-ga g
-cre ed
-reti re
-cau cus
-rapi ds
-wrestle mania
-tul sa
-sunder land
-fundam ent
-o di
-yam aha
-v ary
-intri gu
-el se
-be acon
-an gie
-tra ded
-tran sm
-g ents
-kn itting
-gal ac
-ðĿ Ĺ
-u to
-sea side
-hol t
-re rs
-far go
-train ers
-mon soon
-b ale
-sou ght
-mad die
-h w
-co li
-fr an
-fav s
-ðŁĴ Ķ
-int ent
-r ally
-s bs
-lemon ade
-barack obama
-bre ad
-stick y
-explo sive
-chel ten
-t j
-as soc
-ram en
-hom ies
-v log
-mi ster
-lor d
-âĢįâĻ Ģï¸ı
-aly ssa
-sketch book
-ru mble
-cat ch
-migr ant
-discipl ine
-un likely
-chronic les
-fl ora
-sl ams
-am id
-s boro
-coo p
-ju mps
-tran qu
-mel is
-sof ia
-en ri
-gab e
-sy ri
-nicol as
-cha i
-w v
-be cky
-foo ty
-ta o
-suppo se
-ðŁĺįðŁĺį ðŁĺįðŁĺį
-plu sh
-ri sh
-ðŁ¤ ĵ
-k ha
-satur days
-ac cent
-he c
-lim it
-carl ton
-wi red
-taylor swift
-ðŁĺ ij
-sq l
-har ro
-recipi ents
-g at
-go p
-th of
-amaz ed
-gh an
-ðŁıĨ ðŁıĨ
-por to
-cla re
-di stant
-na c
-ohi o
-ðŁĻı ðŁı¼
-mt n
-anti bio
-dino sa
-me sa
-par tial
-b v
-lear nt
-lov ato
-questi on
-ex tract
-gossi p
-gi bb
-niag ara
-ðŁij ¨
-displa yed
-so oner
-ste vie
-nug gets
-ml n
-bro m
-tur b
-give aways
-stu pi
-bl ink
-c ili
-conven ient
-mo h
-vi ve
-f ric
-cau se
-cham ber
-cu les
-ne arest
-is se
-small biz
-t j
-canadi ans
-smar ter
-bra sil
-ra re
-que tte
-w ha
-cand le
-at omic
-ðŁijį ðŁijį
-warri or
-relax ed
-stri ps
-ne ur
-k ka
-r fc
-jen sen
-reco vering
-respon ses
-sal am
-ortho dox
-acti ve
-ell ers
-n it
-âŃ IJ
-metro politan
-centu ries
-vi da
-gra ding
-transpa rent
-sim ple
-do ts
-superint endent
-elev ator
-autom ated
-red skins
-ima m
-summer time
-jona than
-ge aring
-michel le
-confl ic
-m ice
-to te
-publi sh
-pa x
-) -
-na iled
-á ´
-tele scope
-ser bia
-ba b
-ape u
-st ically
-sen ti
-r ats
-isol ated
-grou p
-hat red
-paranor mal
-stan ley
-ali on
-safe ty
-l s
-ठ°
-nex us
-alexand ra
-mas ks
-+ +
-tr on
-au k
-brother hood
-brow se
-mix es
-sim one
-mu sk
-appro ve
-lo la
-ex p
-per th
-fu turi
-un seen
-d m
-chel se
-sc outing
-o we
-portsm outh
-k ram
-mi ze
-di spen
-su p
-d lc
-adver t
-tere sa
-is le
-cy cle
-met all
-shi elds
-marin ers
-ra z
-ing en
-fun d
-an go
-jon es
-o ka
-mad den
-broc coli
-domin ic
-situ ations
-mer o
-cric ke
-puni shment
-d b
-sha king
-ðŁĺ ļ
-m q
-ari ans
-le h
-cla w
-we ds
-d ure
-ni el
-j elly
-gour met
-tra ders
-le vi
-w ages
-kne es
-wi se
-heaven ly
-avi d
-melo dy
-z ack
-ban anas
-apprentic e
-pro p
-fun ny
-o de
-respec ted
-me gan
-fe wer
-dra fted
-med it
-gra pe
-us army
-cru sad
-vo cali
-prepar ations
-non sense
-us age
-th r
-ro th
-wiz ards
-insi de
-promo tions
-mon a
-red sox
-si g
-eleg ance
-ch ia
-univer sal
-ãĢ į
-ra ja
-un ga
-pol lin
-filip ino
-ak a
-t sun
-ik on
-bi king
-decor ations
-z ac
-cade ts
-hum our
-ag m
-re ppin
-vac cin
-elo ve
-u w
-dia be
-galla gher
-az er
-do l
-a while
-pro minent
-wel sh
-t ann
-' )
-bi en
-wa g
-in al
-c wc
-wic ket
-ur st
-q anon
-x e
-out door
-dun n
-star r
-co logy
-ric ky
-u efa
-reb ounds
-s music
-inf ant
-ðŁĻ ĭ
-so p
-u mber
-hand ing
-beg in
-sor ting
-ha sh
-sp ati
-re k
-buda pest
-black hawks
-dele te
-ro m
-can did
-auth ori
-de bris
-spe cul
-inter section
-marri ott
-im ran
-ðŁĺģ ðŁĺģ
-cru ises
-ram sey
-rafa el
-aware ness
-vas cular
-beyon cé
-ru g
-ðŁĺ Į
-festi v
-ar am
-s able
-bas il
-p ill
-flo oring
-un beaten
-implic ations
-u f
-w ound
-for ge
-poin ting
-po ts
-popular ity
-ðŁijı ðŁı»
-mani pul
-s lots
-deb ates
-abs ence
-ver mont
-never forget
-wri st
-gl oria
-ren ce
-hu sk
-mel ting
-ðŁİ Ł
-br aces
-tim ely
-transform ing
-am ps
-ma k
-po e
-ah an
-gener ally
-nd p
-ale ppo
-unic ef
-pro fs
-nor d
-ma sk
-jackson ville
-v v
-sh ells
-bloom ing
-oper ators
-char coal
-ne ville
-ma gi
-chi p
-sam a
-ir an
-re forms
-accu mul
-ru e
-æ ľ
-web sites
-ga on
-devast ating
-sto s
-glaci er
-ra pp
-chipot le
-pr a
-or ous
-rom ney
-seas on
-decor ative
-c isco
-dit ch
-compla in
-ll o
-assu me
-ðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤðŁĺĤ
-n els
-cent ric
-ft w
-car rots
-tat a
-can ter
-per ience
-li ers
-demo s
-bl unt
-oper ate
-reserv ations
-le ah
-sub stance
-di son
-an te
-elec tion
-v ue
-squ are
-non profit
-ca a
-f su
-y am
-ãĤ ¤
-v ladi
-comple tes
-mar i
-philli p
-ne ill
-er as
-ka it
-men do
-mahar ashtra
-g p
-dan e
-provi dence
-ther apeu
-juven ile
-me mo
-in corpor
-aa aa
-seven teen
-teen ager
-Ã £
-or ns
-wi de
-cu teness
-tw d
-ff les
-bar a
-com edy
-over time
-y az
-bar on
-unemp loyment
-ðŁij ĭ
-exter ior
-den se
-cent res
-match up
-history month
-artif icial
-qu it
-e sk
-war n
-cr itic
-j af
-ðŁĵ ²
-inform ative
-fu els
-recy cle
-nam ing
-stri pe
-sol ic
-mole cular
-dee pi
-con vo
-s sel
-na e
-de scent
-ti z
-accoun tability
-ter ry
-r ito
-sl ay
-em o
-dem ol
-sens ation
-co v
-tor e
-round table
-y ol
-excu ses
-ॠį
-tur quo
-hh hh
-pod casts
-cele b
-me ssi
-li o
-man n
-contribu ted
-u z
-gener ator
-ele ts
-veg gie
-indu l
-en suring
-detro it
-pun jab
-tran spor
-instru ction
-ad d
-por cel
-pan eli
-cir cles
-persi st
-clay ton
-sp n
-dog softwitter
-is nt
-sp r
-retail ers
-p w
-hun gar
-el ena
-mon aster
-gu atem
-je ssie
-an z
-ra shi
-fle e
-car ving
-fau x
-l al
-hen ri
-d jo
-du ll
-s ana
-lar a
-glo be
-cri mson
-com pass
-pau se
-na b
-lion el
-ba ths
-u fo
-invent ory
-sin gh
-sat an
-ðŁĩ ¸
-ce ments
-in form
-gener ated
-bi den
-av g
-tas ks
-de er
-sa u
-ja iled
-pa stel
-sc c
-na il
-steel e
-per is
-lamborgh ini
-pur sue
-mar gin
-u ch
-bo sch
-dra in
-cl ara
-bo m
-lat ino
-web ster
-rose mary
-r ha
-s oun
-billion aire
-not ch
-percent age
-con or
-' "
-hom es
-earth day
-h ort
-big gest
-di sin
-wal ton
-edit ors
-im ma
-om ar
-equi valent
-pharmac eu
-ah med
-cam eo
-han ni
-under rated
-ge ment
-micro bi
-v oo
-honor able
-obe sity
-âļ ¡ï¸ı
-limer ick
-invol vement
-st agram
-boule vard
-bur g
-blackand white
-liber ation
-fi ve
-inter im
-sm m
-rival ry
-cap abilities
-stat ements
-thu mb
-ve d
-sw ans
-bar ber
-e que
-seren a
-hel m
-noo dle
-sam pling
-n awaz
-sing le
-thunder storms
-sh on
-in ev
-ë ¯
-to pp
-orch ard
-bi an
-ðŁĺ Ķ
-door step
-salv ation
-marke ting
-r ons
-cle mson
-ra vi
-in take
-stand with
-sin a
-ha iku
-ple y
-elector al
-ph illy
-la ys
-electr ic
-cap turing
-u pp
-er gy
-believ ing
-cul tures
-es day
-inva sive
-ed ed
-spee ch
-end ur
-viet nam
-boy cott
-pe de
-deli ver
-ðŁĴĸ ðŁĴĸ
-mer chant
-st ir
-den ies
-poc kets
-o ti
-cu ddle
-ro land
-mm ed
-den ed
-lear ners
-hoo p
-sour cing
-h acked
-di m
-environ ments
-ben son
-jud icial
-wor cester
-pear ls
-govern ments
-arri vals
-cor ners
-tun ing
-la bour
-y m
-or dering
-le wi
-i fe
-hygi ene
-thou ghtful
-indone sian
-campaig ning
-princi ple
-assau l
-ru bb
-at v
-wil ly
-en tre
-il i
-ph on
-du ties
-âĻ¥ âĻ¥
-sn akes
-lo op
-am ar
-conver tible
-bon ding
-ment oring
-max well
-ethere um
-destro ying
-ax is
-ca iro
-fin nish
-sho ck
-ðŁĺ IJ
-cal eb
-com a
-pe dal
-co re
-contin ent
-el son
-temp o
-helsin ki
-ac p
-tack ling
-st ated
-bl a
-dou b
-sma shing
-a ja
-camer on
-disru ption
-warm th
-being salmankhan
-bullet in
-o de
-syrac use
-ar an
-mc gregor
-bul k
-an ton
-confir mation
-sp ine
-im ran
-instru c
-jac ks
-chi o
-pal m
-str e
-embarra ssing
-un t
-elimin ate
-to ss
-c ise
-a ws
-oni sts
-sh inee
-jo s
-ho se
-li vely
-opp onents
-mo vements
-recogni zing
-sandwich es
-sh akes
-exerc ises
-se at
-profe ssion
-merry christmas
-lu gg
-adopt dont
-mar vin
-byr ne
-un le
-he t
-ku wait
-rah man
-aspe ct
-humb led
-gen es
-f and
-long time
-) ;
-cam pu
-an gus
-ðŁijį ðŁı¼
-q uran
-sle eves
-s lic
-¸ ë
-twel ve
-your e
-i ke
-go gh
-b st
-dic tionary
-reflec ting
-to on
-yar n
-em bed
-ðŁı ´
-re serves
-floo ded
-ver iz
-du sk
-estab lish
-pro li
-au d
-ritu al
-or bit
-declar ation
-recor dings
-cam o
-cas sette
-good luck
-cu tter
-bo p
-b ho
-che ating
-paci fic
-ma res
-tim er
-col t
-tr ous
-tomor row
-han sen
-ci e
-w ang
-ban i
-circu lar
-ac ute
-far mer
-co ys
-p se
-ir ving
-w j
-haw kins
-b ison
-ur day
-cru ising
-o te
-k ath
-whi stle
-your selves
-ant is
-sla sh
-thorough ly
-ke sh
-ser ie
-ex em
-en ig
-guil d
-sh red
-ho gan
-ap o
-ä ¸
-pu zz
-ne tball
-au ssi
-panor ama
-ws j
-av is
-ar ming
-hum ph
-brow ser
-cri es
-fo ggy
-mat te
-ðŁĮ »
-it er
-tal lest
-by ron
-cap tiv
-je su
-any ways
-flag ship
-p ton
-we y
-fay ette
-financi al
-f oul
-solom on
-jenni fer
-cucu mber
-ar gue
-tex tile
-wrest ler
-john ston
-pa stor
-ðŁĺŃðŁĺŃ ðŁĺŃðŁĺŃ
-cac tus
-edi ble
-re served
-ric hie
-met res
-ingredi ent
-h ella
-un to
-ch ol
-cele bs
-po ets
-gra ham
-hay den
-coinci dence
-b aw
-communic ate
-flet cher
-/ -
-tole do
-ecu ador
-coun sel
-s laughter
-line ar
-at p
-os u
-jo el
-ev ed
-conqu er
-ru stic
-plic ity
-recogn ise
-room mate
-cr acked
-jas per
-ph er
-ðŁĮ º
-wo ven
-mo ist
-ff c
-ste ering
-ni sh
-stand ings
-frequ ent
-ar di
-haz el
-as msg
-bau m
-d art
-si dd
-nat h
-ch ero
-card board
-c ss
-n sfw
-pa ir
-ðŁĺį ðŁĺĺ
-occur red
-homeless ness
-mal one
-ph e
-xi a
-pad dy
-decl are
-theat re
-b f
-per sian
-ta d
-ax e
-susp icious
-lam b
-mu cho
-sen ior
-st as
-k ite
-st ing
-gra d
-k af
-wat ering
-Ø ¯
-spi ral
-th ms
-educ ator
-jer ome
-of c
-clo ck
-su l
-pe mb
-.... .....
-park way
-de aux
-restric tions
-m ons
-need le
-e j
-le agues
-water melon
-am an
-pl enary
-max im
-w ab
-coming soon
-bry ce
-vi gil
-super market
-fortun ate
-turquo ise
-presi dent
-li v
-inter ns
-feel in
-fix tures
-stun t
-st aged
-premi eres
-lo k
-prac titi
-shor tage
-log ne
-ve c
-con cor
-roc ke
-li g
-com posed
-syn thetic
-di p
-cam ila
-ch is
-j ou
-su san
-eye brows
-supp lement
-satis faction
-moham mad
-ti bet
-house of
-pu n
-as sam
-shado whun
-psy ched
-se duc
-mand atory
-her bert
-sc allo
-stream ers
-proto col
-block buster
-produc es
-sch nei
-lau rel
-tri be
-time hop
-pl a
-mod elling
-tv time
-mtv stars
-wi dow
-me tric
-ch am
-con do
-flow ering
-ale c
-d ms
-inten sity
-Â ¨
-mccar tney
-islam abad
-k b
-f fi
-ph al
-anal og
-f ond
-h acks
-positi vity
-treat y
-sub marine
-conne ct
-sel en
-categor ies
-cu b
-organi ze
-si k
-quote oftheday
-remin ding
-am or
-loc king
-ðŁijı ðŁı¼
-comp ound
-et te
-b out
-rec ur
-fe rence
-mi zz
-tren d
-hip ster
-for tress
-forth coming
-preli min
-o dyssey
-ang p
-del ici
-even ings
-ðŁĶ ¹
-i q
-d w
-da ir
-kathr yn
-christian ity
-moon light
-ha b
-wh oo
-f bf
-se th
-genu inely
-pa x
-char ity
-deplo yed
-b nb
-bu cs
-ju dg
-con ge
-plant ation
-im press
-car a
-sc lub
-sco py
-land ers
-compla ints
-b ama
-re build
-x y
-real ism
-sh our
-le in
-brac elets
-mer a
-assas sin
-an chor
-ðŁijĮ ðŁı¼
-lin en
-con fron
-chronic le
-comm ent
-cat alog
-il les
-gor ge
-me try
-jung kook
-love my
-sent in
-se em
-fit ness
-alli ed
-ts man
-digital transformation
-pr an
-lo ft
-min ton
-alden richards
-en vel
-cher ish
-certain ty
-zz z
-rhin o
-per kins
-en rich
-cape town
-ome ter
-sec tions
-ske leton
-def enders
-ðŁĺ Ŀ
-pen c
-bri t
-ja h
-capital ism
-ðŁ¥ ĩ
-baz aar
-re me
-ex t
-kk k
-conver t
-stor my
-b ye
-kar an
-chry sler
-ad os
-pre ssed
-syn c
-ation day
-dang er
-bad ges
-refu ses
-em powering
-ly m
-ex ports
-adoptdont shop
-ðŁĩ ¯
-th c
-awa ited
-focu ses
-fin ed
-o at
-haha hah
-âģ ©
-n family
-fi ona
-luck ily
-thr illing
-ty ping
-out break
-di es
-he u
-craw l
-ne sses
-o ath
-scri pts
-gee ks
-ðŁIJ Ŀ
-p b
-mathemat ics
-al is
-________ ________
-gymna stics
-acti vism
-recommend ation
-gre n
-wa in
-cour ty
-n apol
-cau li
-hor nets
-g als
-jo ckey
-dir ty
-at ar
-enor mous
-pe st
-greg ation
-an os
-ii ii
-def ends
-black historymonth
-at x
-mb c
-lugg age
-wit ch
-co b
-la sts
-cu m
-gg g
-ba thing
-n ar
-ce bu
-ðŁį ĥ
-navig ation
-min e
-re jo
-ðŁİ Ģ
-gif tide
-re ta
-use less
-pu ll
-defic it
-al lu
-ati me
-it v
-tr illion
-pu e
-ac ies
-proce dure
-l ori
-jen ny
-c ad
-ul ously
-dr ac
-promo tes
-ing the
-can u
-woo hoo
-na omi
-zar dari
-ts u
-be ir
-sd g
-le ver
-we ber
-ab ud
-lun d
-crow ded
-deplo yment
-ter rain
-ken ny
-ho f
-witne ssed
-lo ch
-j k
-bul ly
-w ren
-poe try
-do ff
-ww i
-mo red
-din i
-cul ture
-promp t
-Â ¥
-maur ice
-to pps
-r m
-cor respon
-ab out
-jewel s
-gi br
-eag le
-ðŁĺĺ ðŁĺĺðŁĺĺ
-l ending
-sou ven
-ç Ķ
-contemporary art
-establi shment
-j ong
-âĢ¦ "
-gat or
-patri otic
-mc coy
-v ape
-human e
-feli z
-coach ella
-re posting
-ste als
-fu ller
-n ering
-at ra
-( -
-bla ke
-he ather
-wor ms
-discipl inary
-rede mption
-y ard
-am in
-" @_
-d nc
-t ds
-k appa
-ne wark
-comm its
-spe ars
-j ams
-t and
-msn bc
-inter medi
-aim ed
-at ic
-teen th
-observ ation
-kash mir
-kavan augh
-ou l
-san francisco
-re u
-bel ated
-cho w
-pass word
-st ills
-deta ined
-sar i
-day ton
-dar ren
-itali an
-ar th
-amu sic
-ar bit
-w m
-v m
-he m
-dou g
-my r
-a sho
-pre v
-vin d
-bra h
-sta g
-ภµ
-pre views
-gu k
-con taining
-leon ardo
-sad dle
-ru shing
-st av
-lon gh
-gam bling
-ve gas
-reserv ation
-end ale
-bal a
-fl a
-vari ant
-he dge
-bulgar ia
-nat ali
-we aver
-sol st
-encoura ged
-ap c
-as parag
-ne st
-cycli sts
-fe l
-ìĬ ¤
-overwhel ming
-pey ton
-j it
-a post
-mb le
-ble eding
-neighbour hood
-a very
-expre ssions
-mac donald
-gi gs
-mon ds
-illu sion
-n ct
-cam ero
-over head
-my th
-ol y
-vi o
-et v
-lau rie
-unve iling
-pri or
-con n
-iron man
-di ff
-day in
-crit ici
-con go
-re vision
-wal e
-direc tor
-p ines
-black pink
-gar ner
-cur ated
-manit oba
-h ac
-common ly
-bar ton
-.... #
-mor tality
-live smatter
-philos op
-shor ter
-con vince
-fre ak
-vend ors
-insi ghtful
-el ly
-sens ors
-e led
-s berg
-weight loss
-u kip
-sp ur
-priv ate
-qu a
-ss c
-, ...
-supervis or
-advis er
-amaz ingly
-less er
-at es
-mah on
-oooo oo
-sar as
-pmo india
-waff le
-un ders
-toler ance
-sculp tures
-her sh
-kno cking
-smo ke
-cathol ic
-gri m
-tra veled
-fli p
-ge off
-dinosa urs
-sle pt
-scar let
-ok i
-compla int
-ob sc
-nam i
-la g
-cross fit
-u fc
-mc cain
-refe ree
-sad ness
-pen ny
-li eu
-mo de
-ki er
-vol s
-w is
-el on
-she a
-ba o
-son ia
-cla ire
-em manuel
-moist ure
-di gest
-vi ii
-t eller
-ch on
-access ory
-night club
-foss il
-aw an
-hu sky
-ab original
-brand on
-ffici ent
-cou gars
-ste d
-ad mitted
-igno red
-content marketing
-ag as
-v ase
-execu ted
-negoti ations
-she ad
-n and
-tab lets
-go th
-ts al
-d fw
-on ep
-protec tor
-sp ho
-gaz ette
-andre as
-ss er
-comp ilation
-ha v
-contain ers
-bro ker
-soc al
-porcel ain
-hy uk
-air ing
-ðŁĴ °
-publi sher
-scen ario
-spart ans
-re viewing
-itu des
-ed el
-pear son
-ba sh
-mau i
-a ad
-ðŁĮ Ĭ
-li u
-ul ate
-program mes
-fav our
-web design
-real ty
-motiv ational
-cro sses
-' ...
-bus ch
-adjust able
-ar jun
-mist ak
-dimen sion
-pi stol
-weigh s
-en y
-unve il
-indy car
-gor don
-f ade
-fran ken
-qual ities
-bet t
-loc ate
-ker r
-sp c
-confu sion
-ne e
-luck y
-bas es
-dep ends
-fire fighter
-ol a
-re t
-mar oon
-ðŁĶ Ĭ
-w am
-defin ing
-whe at
-bi l
-é s
-b hai
-psy ch
-ta u
-ic ans
-thi k
-ob ile
-inspec tor
-ìĨ Įë
-ill on
-go s
-ev angel
-fa i
-si st
-voc ation
-bur ge
-chi stan
-renew ed
-enthusi asm
-en ting
-ag ri
-ike a
-m sc
-aero space
-sens iti
-memo ir
-hosp ice
-co caine
-der ry
-mechan ics
-Ħ à¸
-tin o
-reduc es
-collec tors
-in justice
-supp re
-v ana
-ab un
-nap a
-su sa
-os lo
-e ff
-en core
-lic ence
-ched dar
-z al
-moun t
-ðŁĴ IJ
-threat ens
-!! "
-archi e
-fu tsal
-scu ba
-jo s
-gn on
-se xi
-s official
-compar ing
-domin ant
-tof theday
-fa it
-propos als
-gi ft
-y as
-cn c
-l r
-ha b
-reser voir
-beli efs
-gener al
-mar ti
-t d
-est e
-ì ł
-wi l
-ðŁij ¯
-ðŁĶ «
-sp x
-et work
-excer pt
-e instein
-hir o
-sil hou
-team ed
-per ception
-corri dor
-mental health
-hin ts
-ben ny
-induc ted
-sw x
-wi desp
-spe ak
-cher yl
-dru g
-ðŁĺ ķ
-h f
-asparag us
-myster ies
-fitz gerald
-off er
-therap ist
-care er
-dam aging
-ts d
-per u
-wei bo
-y ay
-phoeni x
-disc re
-mac book
-bar ker
-stig ma
-sp read
-roc kies
-kang ar
-bri dg
-pa i
-bi shop
-ta iled
-capsu le
-ðŁĴ ĵ
-ge of
-roy ale
-short listed
-o ste
-ash amed
-ch app
-key e
-cl a
-screen shot
-austri an
-nati ve
-en ight
-juli et
-michel e
-ðŁĮ ´
-travel ers
-pi l
-football er
-win chester
-ðŁĻ Ħ
-azer bai
-gold eng
-organis ations
-interpre tation
-predat or
-ofthe week
-lo gan
-pok é
-mari e
-cal la
-t nt
-cin de
-ge tic
-fit fam
-gra v
-ow ens
-ðŁĮ ±
-shoot out
-sal is
-commissi ons
-co he
-p tic
-ni xon
-hi a
-amb ition
-mar ine
-cruel ty
-t k
-cru de
-sal ty
-jim a
-mon go
-ir ony
-on wards
-arre sts
-strang ers
-ig er
-cycli st
-ra g
-exten ds
-tra dio
-bour g
-mo i
-el la
-e able
-lex us
-au l
-der a
-histor ian
-mor ton
-ti ff
-man ner
-ko t
-d k
-po inted
-mar qu
-a an
-en ey
-du blin
-on poli
-em ili
-secre t
-fl o
-âļ ¡
-ba j
-ste ep
-accompan ied
-rum ours
-dev i
-purch asing
-fi g
-pu b
-sch oo
-autonom ous
-go alie
-x ia
-autom atically
-re vers
-ter o
-fu ku
-titan ic
-shoo k
-sand als
-see kers
-exc av
-nor dic
-bigo live
-ba ke
-r att
-z ak
-ne p
-ðŁĺ ¤
-cand y
-billi ons
-book worm
-pp et
-à ³
-sur faces
-sc ars
-phil ip
-do gg
-ci gars
-co te
-transl ated
-cur ator
-sin dh
-han gover
-bre wer
-on es
-el ton
-ðŁĴª ðŁı¼
-mar cu
-elli ot
-righ te
-di oce
-ru ss
-rail ways
-grand son
-as cen
-apo logy
-awa it
-mob ili
-re spir
-parti san
-oli vi
-stri ke
-yo o
-white house
-expre ssed
-pu ps
-bed ford
-cul tur
-fro gs
-fly ing
-cav ali
-c ds
-fri ger
-street photography
-re solve
-tali ban
-kan g
-cru shing
-ju m
-ðŁĺ Ĵ
-william son
-tan g
-cur ly
-t man
-veter an
-fa ire
-artificial intelligence
-un anim
-pre n
-back drop
-fr ances
-oc cer
-doro thy
-work ing
-ar thr
-conver ted
-day light
-serv ant
-pad dle
-compla ining
-thir ty
-nad al
-ak u
-ibra him
-ad dressed
-p iss
-green house
-batt alion
-si mulator
-out lets
-embroi dery
-ðŁĵ ±
-fis cal
-ger ard
-sas sy
-ðŁİī ðŁİīðŁİī
-vent ures
-mer it
-public ity
-ðŁij Ī
-sophistic ated
-c tu
-conven tional
-condol ences
-isra el
-tra dition
-ar an
-te ss
-gla d
-ðŁĺĬ ðŁĺĬ
-correc tion
-ge on
-am d
-or ship
-be ast
-ch ment
-ì ŀ
-nic o
-wk nd
-wel s
-cushi on
-beli e
-vo c
-idio ts
-under neath
-pu ma
-corn ell
-en ation
-lu l
-swa ch
-ab ig
-u rer
-mi e
-form erly
-ca f
-er nal
-chor us
-juli us
-sen ator
-âľ į
-wh ir
-salv ador
-ph d
-uni fied
-boo ster
-graph ical
-w rec
-son ny
-mi z
-dere rs
-s all
-ven s
-tusc any
-wi d
-y ong
-kur ds
-w az
-trol ls
-mac ro
-cat urday
-pre ssing
-sa sha
-cent ennial
-gu sts
-em c
-be fore
-den ise
-cu st
-ðŁĵ ¢
-lo oo
-base l
-eng land
-y olo
-ar du
-manife sto
-do ha
-ì ľ
-kni ves
-bourne mouth
-bi bl
-bar b
-al icia
-Ø ©
-com er
-cycl one
-g it
-ane ws
-character i
-vent ura
-in tra
-sf giants
-hu t
-be a
-dar win
-ell er
-al v
-re ese
-bl y
-kar an
-conclu sion
-man ny
-fla kes
-unite blue
-nad u
-co pp
-ed ges
-lanca shire
-i als
-o tta
-philipp e
-l ent
-che e
-ment ors
-festi val
-an ism
-compli mentary
-r j
-pu g
-d ine
-we i
-cli ffs
-sar my
-ti veness
-treas ury
-il and
-after math
-rabb i
-ou n
-bou quet
-herit age
-zi on
-sur render
-shen an
-in ks
-kar l
-gh ty
-pol icing
-exam ination
-ce y
-per su
-measure ment
-hydro gen
-lu han
-âłĢâłĢ âłĢâłĢ
-war i
-о Ð
-j y
-fow ler
-mis h
-al fre
-âĺ ij
-bb naija
-cat alogue
-recogn ised
-sa ver
-hu skies
-col in
-mun do
-si va
-p ng
-discoun ted
-man utd
-fre sno
-de vin
-prelimin ary
-tro phies
-pla stics
-du g
-pro cu
-indi go
-g ard
-dy lan
-pit ches
-ground breaking
-in son
-bl ac
-an thology
-f h
-expl ic
-r ard
-admi ral
-so chi
-la shes
-splen did
-en vy
-ad v
-sex y
-festiv ities
-stic king
-bi b
-thr ill
-op p
-ari el
-botan ical
-endur ance
-fe males
-br icks
-vat ican
-black pool
-ber mu
-br ough
-roll er
-bi d
-sue de
-sloven ia
-mm ing
-ml b
-med alist
-di ans
-rehabil itation
-ne on
-s go
-li thu
-ram os
-z ed
-pi anist
-inten sive
-broad band
-stu dy
-peter sburg
-lu ca
-ah hhh
-phys ician
-dill on
-tele com
-gri ef
-mu n
-ac ro
-si ded
-s ly
-blo ws
-classic cars
-tri um
-ar gy
-? :
-h ri
-marsh mal
-âĢ ĵ
-to pping
-war saw
-tran sc
-preserv ation
-b av
-re friger
-experim ents
-ä º
-gl it
-sli ga
-g age
-fac tor
-flav ours
-br ony
-sp o
-cook book
-carri age
-aw ay
-ny fw
-on ian
-w g
-simp sons
-ro lex
-ðŁı ¿
-cro sby
-ãħ ¤
-cre di
-syn dic
-pu bs
-ali fe
-poor ly
-mac ed
-ðŁĺ ŀ
-behin dthe
-w enger
-n ats
-ðŁİ Ł
-rubb ish
-procedu res
-typho on
-opho bia
-er do
-fu el
-vi era
-bu mps
-millenni um
-new zealand
-lec tures
-it on
-mil ky
-respon ded
-ê °
-landsc ape
-.. @
-bo ther
-âĸ ¶
-z hang
-huawe i
-tu ition
-s worn
-in u
-y or
-pa olo
-au ditions
-ab il
-malay sian
-ho ps
-fe athers
-mp le
-au ts
-ã o
-boun ty
-ic he
-ì ĺ
-sh q
-pin ot
-ge ars
-disapp ear
-video games
-t na
-alzheim er
-ðŁĮ ŀ
-a ji
-under wear
-swit ching
-sign age
-o scar
-ec on
-dro w
-cl int
-pl ated
-gun dy
-emb lem
-ho es
-ici st
-nel ly
-juni or
-road show
-miner als
-at le
-alexand ria
-ac claimed
-v ell
-shi va
-ad he
-en ne
-amne sty
-h ounds
-councill or
-ðŁĴ ¦
-aes the
-part nering
-influ enced
-mag no
-fl are
-extin ction
-civil ian
-maje sty
-va il
-law makers
-rac ks
-mc c
-ori an
-sp ices
-er rors
-may er
-co ca
-pa i
-s ooooo
-reti ring
-ba thro
-ðŁĻĮ ðŁĻĮ
-âĸ ª
-su f
-endor sement
-buil ding
-broo ch
-pal la
-arvin d
-ag ent
-kar ate
-r hi
-c tv
-ta ine
-um m
-ba x
-reig ns
-uni of
-enterpri ses
-adel e
-fla ke
-at tire
-bru ce
-ba hamas
-gra vy
-sa in
-che ek
-tri vi
-lo v
-e en
-bb lo
-lady gaga
-itt a
-. "-
-du stin
-observ atory
-eigh th
-bloom berg
-kh s
-f cc
-gi st
-commemor ate
-ve er
-sexu ality
-ed c
-nic ole
-vac ancy
-u ser
-son a
-:' (
-dipl oma
-t end
-up grades
-Å Ł
-jura ssic
-cardi ac
-dr s
-widesp read
-Ã ł
-dail ies
-vend or
-sim plicity
-wi der
-len ses
-supp lements
-de pos
-ob served
-vin es
-parti ally
-renew al
-collabor ate
-ali g
-fin ity
-ph u
-zz y
-pe tit
-ðŁĵ ħ
-z in
-i gu
-sm ack
-fall on
-ðŁĵ £
-back wards
-comp onent
-o so
-compati ble
-bin ding
-zur ich
-thom e
-w ounds
-ly ric
-fresh men
-sne aky
-fi bro
-di et
-emplo yer
-in sect
-h ated
-sch er
-raz or
-n sw
-boo ker
-califor ni
-av fc
-Â °
-preten ding
-pep si
-al is
-un titled
-k art
-grand parents
-e the
-o ck
-lux emb
-visu als
-small business
-abdul lah
-min ho
-su baru
-h ra
-reve aling
-heart breaking
-clar ity
-am g
-sl r
-** **
-âŀ ĸ
-recor d
-ici ary
-min ded
-ye h
-exce ssive
-knu ck
-icec ream
-tru th
-ev ic
-ta stic
-ant arc
-ren dering
-, ,
-mit t
-loren zo
-st patrick
-bound ary
-zi g
-vo cab
-osa ka
-fur n
-tu n
-gu l
-s ounding
-blo gger
-utter ly
-g af
-adv ancing
-l cd
-mar gin
-lifel ong
-solst ice
-sh ra
-wa its
-ple ar
-bre ach
-en ligh
-ad er
-itt le
-c ation
-ho on
-stu died
-?? ???
-k ash
-ev angeli
-ps l
-wei ghts
-met als
-ty res
-tur no
-wi e
-car b
-g ale
-se al
-sun ite
-am ic
-patter son
-á n
-eu ph
-up stairs
-quali fiers
-khali fa
-apple music
-ìĨĮë ħ
-vau ghan
-al ter
-cru iser
-mu a
-t ana
-kat rina
-id ols
-spo iled
-secre tly
-fi bre
-part nered
-um es
-gi ov
-com et
-screenshot saturday
-k eller
-fil tr
-fe t
-con way
-pe u
-bad minton
-gi d
-m ound
-don key
-bu ff
-lea ther
-lar gely
-bro ch
-int ments
-am use
-r k
-sto ve
-impac ted
-con t
-cr acks
-prison er
-bar i
-contrac tor
-ori oles
-domin ate
-pol ar
-am elia
-dr c
-ðŁijĮ ðŁijĮ
-vi st
-su arez
-injec tion
-blo oms
-ðŁļ¨ ðŁļ¨
-sti ff
-pay pal
-sno wing
-thur sdays
-goo se
-we dge
-educ ated
-weak ness
-de cker
-abud ha
-bree zy
-Û Į
-hope ful
-o bi
-rai der
-gh am
-de u
-se ve
-par tly
-fu t
-infu sed
-mer ri
-than e
-some time
-hu e
-me in
-cre dit
-sli ding
-ran de
-cher ry
-dead pool
-sh ol
-ar am
-under wood
-sky e
-distur bing
-m nt
-poli shed
-guardi ans
-ha dn
-pic asso
-ari us
-ak shay
-ir ri
-j h
-happ en
-la kh
-dal ton
-at the
-s well
-mar sha
-re h
-cour s
-j kt
-top us
-serv ice
-r ink
-hack ers
-dono van
-hor o
-tc m
-may hem
-cha se
-dev ops
-ken sing
-sc up
-sh ere
-quali fication
-c live
-ton g
-n ancy
-mar is
-der dale
-ber man
-cinde rella
-jol ly
-ci c
-loo t
-collecti bles
-hom icide
-g ge
-epide mic
-su ites
-mu ddy
-gi mme
-e rec
-- *
-tal la
-lis le
-embro ide
-ðŁĩ© ðŁĩª
-veriz on
-ve ctor
-be anie
-arti san
-ga in
-flo res
-vi gil
-u so
-ðŁĻı ðŁı½
-grin ding
-gh er
-air ports
-respon sive
-shaf t
-can cel
-ceremon ies
-e me
-at ari
-bru shes
-eag er
-bo hemi
-children s
-yan kee
-ma a
-suspen se
-mor an
-mac ar
-sun flower
-cre w
-vo id
-ke ar
-fashi oned
-jen nings
-sunday funday
-sub missions
-me ad
-her man
-wa i
-crit ically
-le um
-baek hyun
-for cing
-co bra
-ãģ ®
-acqu ire
-al k
-ge ology
-pri mar
-import antly
-ire z
-bunde sliga
-curi osity
-sen a
-stric t
-con soli
-win ters
-ven om
-chelten ham
-ðŁį º
-cen a
-t at
-ba in
-glo ver
-under cover
-as ses
-car n
-memorial day
-am eli
-i rene
-ch on
-syn thesis
-spe edy
-mitsu bi
-sla yer
-compos ite
-under stands
-pe w
-inter rup
-hen ri
-mor row
-an om
-thof july
-g lee
-thre e
-ðŁĺ ®
-and hi
-ch att
-renew ables
-ye s
-trans fers
-!!!! !!!!
-bab u
-du ter
-lo ops
-pe ers
-o ilers
-pau lo
-ic ation
-h mu
-war a
-mer cer
-hom eland
-fu ji
-ale y
-year book
-re m
-re en
-ab sur
-bo is
-] :
-caes ar
-shot gun
-kur dish
-o ren
-ra e
-anci es
-ty pic
-f h
-def ault
-re plic
-lu k
-trans actions
-r ys
-infan try
-ðŁį ¾
-cho w
-chick ens
-ba gh
-wy att
-ay e
-gg i
-bre ws
-ed itions
-mi ra
-commen cement
-pre su
-peris cope
-ic hi
-guatem ala
-zam bia
-pain ts
-wit ches
-wan i
-un dere
-cro y
-vo ws
-us mc
-hear ted
-theat res
-shu ffle
-le vel
-mul tic
-squee ze
-fer n
-app et
-post al
-mal t
-on board
-ld nt
-co o
-s sc
-k ac
-ðŁĺ ĩ
-sc rap
-mar cos
-deal ers
-ann u
-mill er
-co ve
-ul ary
-vladi mir
-be ef
-th ur
-pick led
-se same
-bengal uru
-mo tt
-kathle en
-hi st
-no tor
-dr ank
-du chess
-snow fall
-e ff
-tin y
-j n
-sy our
-speci alists
-scot us
-bay lor
-eve rest
-mali bu
-pre m
-harm ful
-l ali
-b ates
-g ye
-differen ti
-and ra
-geome try
-el over
-black out
-== ==
-ko ta
-inter act
-asi an
-la yo
-samu rai
-fi del
-exhau sted
-gla di
-pd t
-spher ic
-anti qu
-guit ar
-stu ri
-ho pper
-ang le
-f ills
-sla p
-mi th
-rod ney
-ong i
-in som
-pre venting
-cassi dy
-ap ho
-ore gon
-lo in
-ham mond
-contribu ting
-f n
-gar ri
-ori on
-comp elling
-escap ing
-aim ing
-plu mb
-bi stro
-be asts
-concer ning
-bo e
-do pp
-shop local
-stumb led
-âĤ ¹
-naz is
-âĢįâĻĤ ï¸ı
-gest ure
-war ts
-us open
-hi ggins
-char li
-hang s
-bom bers
-° :
-fe eds
-c ch
-st il
-nic ola
-ðŁĵ º
-clam ation
-tro pic
-af ro
-ou k
-expen ses
-der rick
-al ine
-fa w
-reg ard
-im er
-sat in
-thi um
-ry der
-pear l
-te ss
-mm mmm
-sen ses
-ðŁĩ ¹
-positi ve
-exhau st
-occu r
-nor ris
-lil ly
-is les
-direc ting
-yo fficial
-count less
-sam ar
-on stage
-flo ck
-mir rors
-arch er
-mo i
-k d
-vi v
-in os
-si kh
-le i
-sen sory
-br its
-kno x
-chest nut
-op y
-coli seum
-z af
-di vin
-adap ter
-:) ))
-tem ple
-ku n
-hel mets
-t df
-gu ide
-m old
-o ids
-lu ther
-he is
-monaster y
-sp ree
-k lu
-brit ney
-jagu ars
-gre ats
-c cc
-ky rie
-machin ery
-cric ket
-re ro
-ab o
-aspir ing
-semi finals
-ale ss
-sig natures
-var d
-me th
-her bal
-hol den
-king dom
-ap or
-reg gie
-ore o
-palestin ians
-em mys
-sec tional
-ro i
-ney mar
-qu el
-cu ll
-l ka
-haz el
-estim ate
-ul ties
-go w
-be a
-purch ases
-bel ts
-protec ts
-m é
-gue ssing
-bb o
-clau dia
-fr acking
-jon ny
-el k
-cel tic
-al mighty
-ra je
-courty ard
-ig i
-can es
-ðŁĴª ðŁı»
-bank rup
-le thal
-âľĮ ï¸ı
-graphic design
-vad er
-penc ils
-rough ly
-dan te
-m fg
-const ell
-cam el
-j b
-bloss oms
-en to
-balo chistan
-cine mato
-ill ard
-jer sey
-con sent
-dent ed
-con templ
-sch er
-hol i
-lou gh
-st our
-a yo
-begin ners
-cur b
-v hs
-a jax
-du ff
-av eng
-dom est
-commit ting
-ai red
-cha p
-hedge hog
-disappo inting
-freel ance
-in land
-char ms
-ðŁĺį âĿ¤ï¸ı
-ai sh
-m x
-buck le
-ti dal
-per mit
-bo ating
-ra cha
-kend rick
-b ello
-b hi
-ple a
-estim ates
-l b
-apo logies
-jay a
-bb l
-ast oni
-inter state
-main taining
-el bow
-mu p
-ep it
-ðŁĺ ¡
-viol ations
-def end
-be h
-sl c
-am ir
-pur i
-ti um
-fi fa
-blur ry
-scri m
-ðŁĻı ðŁı¾
-ma ple
-rel atives
-âĺ Ŀ
-cho c
-con nor
-⾨ ⾨
-whi sp
-list ings
-ma ze
-than king
-ri dd
-grass roots
-shi fting
-desper ately
-gor illa
-den i
-ju les
-stra th
-g ley
-ja in
-bu ick
-t anner
-ðŁĴ Ŀ
-ga e
-pri m
-it ors
-n ano
-separ ation
-armen ia
-bor deaux
-ðŁ ħ
-pj net
-bu rial
-e bon
-glo ss
-re new
-gri er
-spe eds
-comic books
-sym boli
-pur poses
-ãħł ãħł
-spati al
-no table
-ci on
-n ps
-ho ffman
-nor man
-rt g
-du sty
-situ ated
-tr an
-k fc
-em en
-nic kel
-hast ings
-sett ling
-gr it
-l ena
-w aw
-art s
-gu m
-ca regi
-le wis
-sapp hire
-rememb er
-embed ded
-t lc
-bl at
-serge ant
-el sa
-boot camp
-bow man
-photo graphic
-pill ars
-direction ers
-classi fied
-no is
-ve er
-barre ls
-wh oop
-ðŁĺ± ðŁĺ±
-fe male
-petro leum
-medi a
-e fc
-poké mon
-ठķ
-enthusi astic
-var un
-pro files
-pedi atric
-acci dents
-con rad
-jan g
-jo jo
-ac or
-ob server
-l f
-live stock
-for gi
-fo s
-el m
-an and
-go e
-c ere
-avoi ding
-gri t
-om an
-thank fully
-scat tered
-nick y
-cylin der
-chees y
-di ver
-mahe sh
-cav es
-ear liest
-qu inte
-subjec ts
-b end
-gul f
-vocali st
-glu e
-pat ches
-un stopp
-sny der
-demonstr ating
-pi o
-hor ns
-wic kets
-and the
-r ama
-yo on
-stra ight
-bed time
-or ang
-bul lets
-sa urus
-min ers
-inci dents
-! ...
-ðŁİ ¸
-ag ers
-hand les
-stat es
-in ity
-d ons
-incredi ble
-emin em
-avi v
-ru dy
-moz art
-folk lore
-appli ances
-mt l
-fre y
-di as
-hu a
-page ant
-stri ve
-im prison
-bul lish
-r ana
-al erts
-bb mas
-hy per
-derby shire
-re cre
-re dd
-debor ah
-cosmo s
-law son
-mel anie
-psy cho
-ho or
-doo dles
-sni per
-shad y
-man tle
-canadi an
-new year
-inter actions
-separ ated
-cor ds
-spiritu ality
-ap u
-it o
-p ct
-pel osi
-rebel lion
-se iz
-wor cester
-sec tors
-ul i
-san ta
-Ð µ
-ðŁĩªðŁĩ ¸
-bi ased
-class ical
-gam ma
-dee plear
-emer ge
-back er
-sur ance
-hand crafted
-ðŁİ ¥
-franc is
-mill an
-ic i
-cro wn
-wo w
-stri ped
-un fair
-relax ation
-³ ï¸ı
-embrac ing
-she alth
-pale o
-martin i
-dist illery
-wr ink
-or k
-na th
-hay ley
-cour thouse
-si ber
-sa di
-quiet ly
-mel t
-m sm
-me h
-smart phones
-rel ent
-pp ing
-war wick
-co logne
-gli a
-cot ton
-pro g
-lon e
-ip sw
-star ters
-expan ds
-u mp
-su ed
-ski pper
-infe ctions
-ing le
-Ã ¡
-cler k
-demonstr ate
-ac ar
-ðŁĺĤðŁĺĤ ðŁĺĤ
-ti bet
-bun s
-alo m
-demol ition
-ssi a
-g st
-[ ]
-so ar
-âĺ Ģ
-ðŁĺ ª
-ðŁĵ Ĭ
-dee pest
-beyon d
-are t
-att ends
-activ ated
-di mit
-âļª ï¸ı
-high lighted
-magaz ines
-rum or
-az za
-steph ens
-dol ph
-sho ckey
-mat s
-we av
-mel an
-serv ers
-tra um
-ku sh
-æ Ĺ
-bab ys
-pa z
-a al
-la use
-break ers
-canter bury
-ul ture
-mi ri
-euro s
-tane ous
-impre ssions
-du tch
-il d
-gh i
-pur due
-adequ ate
-l p
-sy ner
-ang ler
-du rable
-gal ore
-ro wn
-mg mt
-ðŁĵ Į
-lu cia
-âĺij ï¸ı
-zay n
-bor row
-. (
-north umber
-cru sh
-eng a
-su sh
-extra vag
-t out
-ma hal
-ali stic
-ther mo
-gall eries
-es se
-chi bi
-attrac tions
-lex ington
-legislat ure
-docu mented
-resi den
-brow nies
-w f
-st ool
-plan ets
-sho ppers
-conduc tor
-ms p
-tr icky
-fru ity
-end ra
-feel the
-whi pped
-hair style
-re fer
-oo k
-oc topus
-audi ences
-ku mar
-after no
-op tim
-c fl
-ni p
-gen i
-alpha bet
-ann ab
-lam in
-accep ts
-l ng
-ðŁĺ «
-t ine
-ac om
-cheer leaders
-t k
-gr on
-v g
-k ung
-ja x
-dha bi
-r ss
-mack enzie
-beir ut
-clean up
-gy psy
-st ell
-bur ger
-hurric anes
-educ ation
-st ina
-âĻ¡ âĻ¡
-unfortun ate
-jere mi
-bad ger
-at ers
-: âĢ¦
-ter ra
-subli me
-stu d
-y mca
-mr u
-duter te
-bren nan
-bul b
-mel o
-yl on
-hack er
-c red
-gu d
-as an
-pad illa
-embroide red
-vietnam ese
-pione ers
-projec tion
-re boot
-id c
-an ey
-pri mer
-suff ers
-win ding
-p on
-sto day
-mor n
-u ch
-all in
-adid as
-eliza beth
-tu ck
-o graphy
-ðŁļ Ģ
-be g
-os borne
-ghet to
-r h
-cn n
-ir ma
-ma kin
-cab les
-mur ders
-oc ks
-inst a
-al as
-si k
-cu ff
-la re
-foo dies
-o vic
-at om
-geome tric
-em pathy
-ภµ
-cent enary
-newsp apers
-administr ative
-ðŁİ Ĭ
-sti ve
-contrac tors
-le tt
-tas mania
-awesom eness
-den sity
-ve en
-prince ton
-frequ ently
-re ject
-gh i
-modu lar
-ceram ics
-sh ag
-ki wi
-can vas
-sweat shirt
-an j
-ti mm
-napol i
-il er
-appe als
-hamil ton
-ma yo
-we ave
-arrang ed
-whar f
-occu py
-b vb
-as aki
-ot ter
-nor m
-vi es
-de tox
-tion al
-dere k
-id ad
-ad missions
-constitu ency
-u pper
-woo t
-allo y
-se ve
-lu b
-un comfortable
-ed win
-ab re
-d wight
-ar che
-virtu ally
-sp ol
-pri e
-ai i
-er r
-swit ch
-bar ack
-se ok
-cou l
-wn t
-pou l
-o live
-caffe ine
-cardi ff
-notor ious
-de mp
-ex cess
-bar r
-t ford
-a jay
-bump ed
-my thology
-shel ley
-fal con
-shakespe are
-must angs
-no ted
-bon e
-civil ization
-sy d
-par sons
-un official
-hy ped
-sp ends
-oppo sed
-v ings
-space x
-noti fication
-deci ding
-bio tech
-out si
-sal ah
-! .
-fe d
-ss y
-c ms
-bad gers
-cr o
-ela ine
-n ba
-dy our
-n ant
-honey moon
-climb ed
-conom y
-ath a
-m ell
-ne bula
-nature photography
-juli e
-bm x
-inve sted
-mon o
-lieu tenant
-wat kins
-techn ician
-o se
-ka e
-ì Ľ
-mc queen
-pre ach
-trav eller
-flexi bility
-ze bra
-reta iler
-p ant
-ben der
-brand t
-squ id
-war rant
-veri fied
-cas s
-pier cing
-hon ours
-t ying
-mor ris
-kis sed
-op rah
-panor amic
-me i
-splat oon
-wich ita
-ari as
-gal li
-indy ref
-good times
-athe ist
-confe ssion
-ow ski
-re pping
-ad ditions
-mechan ism
-z im
-j ans
-su f
-cho pped
-beg innings
-vitam ins
-ãħ¤ ãħ¤
-or th
-po les
-ru b
-antarc tica
-indie film
-web cam
-ket ch
-bre tt
-cle ment
-her on
-defe ating
-hydr o
-buc ket
-wand ering
-sid ney
-future of
-b inge
-on ies
-knock out
-administr ator
-syn the
-l ent
-jan i
-bar ley
-premier league
-ner ds
-cr m
-bra s
-bot any
-evol ved
-rot ter
-ro wed
-tum or
-weal thy
-Â Ń
-mon arch
-li shed
-da hl
-ðŁİ ĥ
-bu ch
-ken yan
-Ø §
-red ness
-assemb led
-se mit
-hud der
-shro p
-ran i
-lear ning
-mor y
-iti a
-geo graphic
-worl dof
-f b
-pho sp
-boo gie
-am ped
-? ...
-che w
-dwar f
-ar us
-s sen
-ru sty
-recru its
-h k
-gar de
-app lause
-vol umes
-invol ves
-ta c
-hand bag
-trans late
-ffe l
-se ym
-aqu atic
-trans fer
-zo di
-and r
-acade mia
-cr ater
-te z
-ar se
-adap t
-col oni
-snow man
-mal i
-hang in
-di schar
-oy sters
-pho e
-colon el
-w ba
-hispan ic
-thri ving
-sh y
-ag les
-sales force
-cre me
-so les
-la fayette
-â ī
-ter ia
-ach a
-sp erson
-go go
-car ly
-the ore
-am ore
-vo x
-af t
-ãĤ ¹
-stap le
-mu ffin
-di agram
-ino x
-su stained
-av ent
-me ta
-arbit r
-dec ay
-ado le
-Ð ½
-ec ol
-ph o
-n k
-o cu
-gr anny
-ç a
-luxemb our
-stad t
-alber to
-le vit
-am as
-d x
-or phan
-co bb
-as c
-lo gy
-immen se
-chan ts
-off line
-p ent
-bre x
-w inger
-plan e
-i el
-nichol s
-ca thy
-nar uto
-low ed
-/ //
-ignor ance
-cat astro
-you ts
-sch en
-buil d
-haz i
-s ine
-critical role
-du g
-dete ct
-lo gs
-en amel
-stpatrick sday
-ed die
-co pa
-cigare ttes
-ho ff
-kay a
-la goon
-ra pha
-air borne
-choo se
-puer tor
-ke v
-gui ding
-fro sty
-bor ough
-mir a
-ðŁİ Ĭ
-cade t
-anu sh
-yo gi
-e ger
-fl ing
-slo pe
-nin th
-we ston
-foot wear
-f n
-may weather
-a am
-pla in
-stair case
-witne sses
-work outs
-ro bust
-dex ter
-co hort
-ðŁļ Ĺ
-sp ell
-ha ze
-o om
-organ ising
-wild fire
-cont acts
-av on
-min o
-upd ating
-ðŁį »
-li thium
-ing ual
-k is
-au ga
-lo com
-de duc
-u da
-th ak
-boy le
-mp er
-hot tie
-eri k
-re vised
-is la
-travel photography
-oo za
-en qui
-confe rences
-clo ver
-g room
-cur ves
-live on
-per f
-displac ed
-bo log
-xx xx
-ðŁĺ© ðŁĺ©
-te al
-ve ssels
-rain forest
-cal ci
-pan ther
-gira ffe
-ta sted
-imag ery
-pad res
-day time
-bas s
-ri pe
-opio id
-nu e
-vin yl
-invent or
-sen s
-process or
-mu t
-gad gets
-bibl ical
-shann on
-jacqu eline
-car y
-the resistance
-ali en
-n vi
-co sy
-bi har
-fo ley
-ren d
-mu gs
-fa ken
-cl one
-ni allo
-gra bbed
-chi hu
-power house
-n tt
-chero kee
-spon ge
-imple menting
-rh ine
-le one
-ðŁį Ģ
-pret tiest
-infra red
-impro v
-swit ched
-tu bes
-con tr
-bl k
-projec ted
-be aver
-yo t
-bbcra dio
-thi gh
-per secu
-apologi ze
-w ack
-po ster
-oli ver
-az a
-lou d
-( ?)
-f the
-women shi
-spar row
-blu sh
-us able
-sc ales
-it ative
-peu ge
-ne eding
-legg ings
-glam orous
-mat ur
-c z
-wat t
-da b
-tam ar
-et sym
-bau er
-heart felt
-h n
-else where
-bir ch
-alu mini
-hu ck
-e me
-j l
-traf ford
-d z
-por tions
-ana sta
-arthr itis
-esp n
-ber gen
-viol ation
-yo shi
-c z
-northumber land
-clo sures
-ðŁĩ¯ ðŁĩ
-smi ley
-r w
-tel ugu
-inten si
-gre gg
-ve ga
-dun geon
-south bound
-ba il
-domin ican
-semi final
-chap ters
-h itch
-van ity
-trans iti
-recomm ends
-sati sf
-bar ca
-queen s
-( (
-de struc
-stra it
-ra vi
-dess erts
-in tru
-har am
-k os
-fo e
-fat ty
-pais ley
-magn itude
-dri dge
-com ey
-schem es
-vision ary
-our t
-down loaded
-ðŁĻĮ ðŁı½
-gd pr
-lan i
-p wc
-gu ad
-nic est
-stake holders
-re ferred
-george town
-arvind kejriwal
-schnei der
-in doors
-all star
-strand ed
-gen der
-ze pp
-ma sses
-ðŁIJ ±
-pati ently
-bl dg
-z ab
-we arab
-vi vid
-he ck
-d ella
-sy mb
-je opar
-la ger
-à ª
-comb ines
-ne c
-br ay
-flo p
-tx wx
-jo ys
-pon t
-pro found
-sur round
-mad hu
-ma ble
-ay r
-te as
-n sa
-open ly
-er nest
-ãĥ ©
-to po
-g na
-anti oxid
-ti an
-e tr
-c ello
-ma thi
-gener osity
-b iting
-man ic
-kel sey
-chee ks
-ten der
-w th
-pron oun
-ultimat ely
-gu sta
-ari anag
-ger ry
-ble ed
-red dy
-mic h
-mitsubi shi
-oper ated
-sex ually
-ma u
-cl lr
-vi ds
-co c
-mel ted
-ðŁĮ Ī
-q ld
-ite ch
-instru mental
-end game
-ðŁĵ ĸ
-ener gi
-brow nie
-tam il
-at in
-domin ated
-pra ises
-fire place
-sens ational
-men a
-k arti
-un prece
-ru pt
-ori ental
-mc cor
-tour naments
-scen ter
-re eves
-prescri ption
-sam e
-fra u
-tru ffle
-em bo
-roman s
-bla sts
-techno logical
-pr at
-b sb
-y ar
-tren dy
-ac l
-al ad
-ðŁį ģ
-o hh
-bankrup t
-tho ven
-regar ds
-is er
-war wick
-vine yards
-real m
-niallo fficial
-do ta
-ge mini
-to do
-v able
-¨ ¨
-la u
-wre ath
-ju ve
-nat asha
-le ver
-lor i
-hor ser
-cc tv
-air bnb
-es anders
-sin clair
-ema biggest
-high school
-con test
-optimi stic
-t te
-ðŁĴķ ðŁĴķ
-ss d
-ye e
-hel ena
-con sen
-ric ks
-jes se
-an ic
-ðŁİ ¯
-re acts
-ro be
-independ ence
-vol tage
-m ington
-s ant
-à¸Ļ à¸
--------- --------
-sentin el
-ke tt
-rehear sing
-aaaa aaaa
-sof the
-stir ling
-sear ch
-wi gan
-stand out
-sna il
-pent agon
-Ä ģ
-ch lor
-cru st
-net any
-chemi st
-disapp eared
-ric ardo
-sp iders
-bo se
-war ren
-me ssing
-bann ers
-gu el
-par ach
-ma id
-coun ted
-epi le
-bon fire
-speech less
-se tter
-meas ured
-rejec ts
-nik ki
-le ster
-foren sic
-fab rics
-alo ha
-pre served
-wat ford
-deta iling
-dar th
-bo u
-car ly
-... '
-tail gate
-noti fications
-å ¤
-pas sive
-trous ers
-balo ch
-ro ther
-typic ally
-Ã ¥
-sp it
-wi z
-sic ily
-technic ally
-ex pose
-st age
-hu bb
-cre am
-cap s
-po ke
-sle ek
-ju ne
-tempor arily
-de z
-awak ens
-l ame
-_ -
-ji ha
-tues days
-advis ed
-advis ors
-exi sted
-dis agree
-news room
-lo sers
-world tour
-dr ying
-al di
-har ness
-foot print
-hobb it
-p mln
-i ro
-que red
-asse ss
-gaz e
-sa b
-th ian
-í Ĭ
-ti f
-ob serve
-ev il
-dra wer
-swee p
-cor y
-co dy
-kyo to
-cal lum
-n inj
-lau rent
-be i
-sket ching
-custom ized
-du r
-regre ts
-knox ville
-ìķ Ħ
-mess aging
-grac ie
-abun dance
-bi dding
-bre wed
-fl ouri
-therapeu tic
-alt itude
-ho gs
-bur ner
-elec tro
-wonder fully
-he ater
-post pon
-li very
-r all
-ad as
-a ac
-sau l
-brook lyn
-play house
-âĻ¥âĻ¥ âĻ¥
-char itable
-in y
-z ah
-compet itions
-be av
-plu gged
-o is
-do om
-astron om
-speci alized
-max i
-ta ps
-cellu lar
-depre ssed
-folklore thursday
-cri b
-e mul
-ë° ©
-fi gh
-ru z
-car lisle
-spe ar
-side walk
-de i
-depend ent
-lac es
-nh s
-ðŁĮ Ļ
-reali zing
-net work
-ric he
-re gin
-re fresh
-st ral
-pa thology
-pla id
-psyched elic
-hin d
-u ka
-algori thm
-lin king
-progre ssi
-fe y
-d ade
-hydr ated
-b ant
-fam ed
-cot sw
-bo ise
-as c
-rac ing
-ja vier
-ww en
-mar lins
-poo p
-swe pt
-toni ghts
-we f
-ani me
-slo vak
-âŀĸ âŀĸ
-cla us
-lem me
-cli ppers
-re ls
-arianag rande
-r te
-ko t
-thal apathy
-hungar ian
-zu ma
-y von
-is u
-jour neys
-clin ics
-be be
-ww f
-n ws
-super heroes
-er it
-sle ague
-identi fication
-mo tto
-ba i
-sour ced
-ill er
-ap i
-pri se
-unprece dented
-dam as
-tuni sia
-dra in
-undere stim
-e ther
-quarter ly
-rewar ding
-al ham
-wolver ine
-cab ine
-hyp no
-nad ine
-hav ana
-da e
-ðŁĵ Ī
-dr on
-read ings
-b ati
-pic o
-mer ci
-iti an
-wal kers
-el ope
-mi key
-god zilla
-bur lington
-abu ja
-social ism
-at ility
-sh ell
-harry potter
-g no
-ab ur
-re leg
-fel ici
-ro gen
-neuro science
-inst in
-ath am
-vou chers
-j arre
-fu se
-def ici
-monte rey
-de port
-mid day
-pp ard
-fre ed
-ame ter
-wil t
-n ingham
-pr att
-liber ty
-slo gan
-o to
-pr i
-co ated
-c pd
-ne tt
-il las
-mal awi
-evol ve
-accessi bility
-ðŁĶ¥ðŁĶ¥ ðŁĶ¥ðŁĶ¥
-or nament
-b p
-el is
-son line
-chi ro
-fl ick
-ib m
-ar ak
-en ables
-gar land
-san e
-cu ties
-tri p
-rotter dam
-n ys
-lam ps
-lu cas
-bo g
-ra ils
-travel led
-hic ks
-en u
-sab ha
-scru b
-hi er
-hart ford
-fo o
-fer nandez
-tre vor
-mat tress
-appo intments
-ale j
-fe i
-o logist
-saf ar
-oc ta
-sr c
-sha un
-ambi ent
-dri c
-bi ker
-she e
-must ache
-h ta
-bo one
-her ty
-car dio
-bra kes
-rec ital
-consi sts
-overwhel med
-cau l
-robb ins
-im it
-al th
-ur l
-bi bli
-on ne
-black livesmatter
-diffic ulties
-tel ang
-tall er
-ðŁĵ Ĩ
-deb ating
-bur rito
-mo vember
-strength ening
-bo e
-te stam
-mirac les
-base ball
-re nee
-ðŁijī ðŁı»
-al fa
-âĺ ĺ
-unstopp able
-ec s
-g mo
-giftide as
-path way
-fen cing
-ðŁİ ¤
-b ham
-ra s
-sk o
-d led
-thel ast
-magn um
-bin ary
-wil de
-wil der
-wh ati
-barbe cue
-h ism
-can oe
-kur di
-eli ve
-advant ages
-mad ame
-bi er
-mis sing
-enter tain
-air force
-y ama
-c is
-hash tags
-j is
-ve il
-dream y
-ten se
-may ward
-ch ateau
-hunt ington
-âļ ĵ
-v all
-up on
-bl ouse
-dun es
-ðŁĺ ´
-fert ility
-m ole
-curren cies
-st u
-ber lin
-toa sted
-div as
-wal t
-lar k
-por a
-hit ter
-um er
-chil led
-bal ancing
-fa is
-y in
-or tiz
-east enders
-h ate
-ur al
-ap ril
-tim el
-à ±
-per o
-sto cked
-respec ts
-th t
-best friends
-giving tuesday
-be ad
-inv ent
-im i
-nap les
-comb ining
-tok ens
-thir st
-ma sc
-par rot
-sp u
-dent on
-* -*
-t res
-subur ban
-wid th
-si ve
-con tender
-siri us
-lo k
-troop ers
-outra ge
-tur bo
-frag ile
-me ssed
-do h
-disc ord
-netany ahu
-re sign
-forgi veness
-mo han
-mun ch
-cam ou
-identi fying
-enab ling
-hot ter
-thorn ton
-jai pur
-ar ya
-ðŁı» âĢįâĻĢï¸ı
-mu staf
-maj ors
-o ke
-du ffy
-roh ing
-til t
-ðŁĩ®ðŁĩ ³
-rock star
-she ep
-hend rix
-ra v
-in vention
-do u
-lagun a
-gru mpy
-sw is
-im pe
-) '
-you ths
-bun ker
-st ache
-oppo se
-indi es
-acceler ate
-ml p
-ed en
-w ann
-k ail
-akshay kumar
-su pt
-pol ym
-midd leton
-extra ordin
-wil son
-australi an
-alumini um
-way ne
-alum nus
-mat ics
-gri m
-er nie
-opp a
-competit ors
-rand all
-h ence
-decla res
-pre aching
-sha he
-can e
-sustain able
-stap les
-le dge
-ad ena
-doctor al
-bur gundy
-decor ate
-ren dered
-ri sen
-pr ank
-di or
-bee thoven
-flo or
-ac com
-to t
-ho dg
-touri sm
-say in
-objec tive
-mar kers
-premi ership
-en abled
-camou fla
-gi ant
-Ñ ģ
-smo key
-ric ket
-pan g
-de pending
-s ation
-evol ving
-inter cep
-cen sus
-tof the
-re en
-mendo za
-trum pet
-marke ters
-an it
-ðŁĻ Ĭ
-north western
-v la
-foto gra
-blackand white
-che wan
-wi g
-tro om
-ginger bread
-k n
-ro mero
-n fc
-or chi
-fun ko
-sour ce
-f s
-ra ped
-o st
-tar ot
-ann ually
-ðŁĺ ¬
-r ill
-del av
-.. !!
-se s
-can n
-medic are
-ph el
-ape x
-guardi an
-rema ined
-r pm
-a ñ
-story month
-instag ood
-neighb our
-p ing
-sem ite
-my stic
-as cot
-mat er
-hand ful
-dang ers
-ti d
-ana heim
-opol y
-sh allow
-nami bia
-tor ia
-procu rement
-big bang
-announ cements
-prosecu tor
-beng als
-sal le
-en roll
-ga stro
-sugge stion
-ba k
-ha ul
-budd hism
-berni esanders
-flu te
-fati gue
-cyn thia
-cho i
-ir win
-gu a
-str ous
-h p
-ba p
-satisf ying
-play a
-ðŁİ ¼
-inst ap
-al ice
-t p
-irri gation
-ðŁĩ¬ðŁĩ §
-in tric
-clu es
-ple x
-sa x
-he pat
-dump ed
-signific ance
-by u
-medic ation
-pro v
-tough est
-corn ish
-âŀ ľ
-kel ley
-u v
-si zz
-si bling
-me st
-di stor
-diplom atic
-aun tie
-b hat
-son ic
-bren da
-pump kins
-ro ch
-black burn
-ur ged
-shi a
-arrange ments
-floo d
-sa unders
-lec turer
-nou ri
-popul ations
-diplom acy
-consist ently
-ðŁ¤ Ļ
-t mund
-cauli flower
-l ily
-vocab ulary
-vari eties
-coo ker
-up town
-qu ent
-mo sa
-re inde
-velo city
-spru ce
-social medi
-i ber
-volun tary
-proce ssed
-bal tic
-y ang
-leban ese
-d p
-dol ly
-arrange ment
-y uri
-cran berry
-kal yan
-elev ation
-cli ff
-pu shes
-ìĬ ¤
-sil ic
-co wx
-eter nity
-sla ves
-vine gar
-glou cester
-con tained
-breaking news
-aga inst
-renov ated
-norm andy
-hero in
-ys m
-mo ds
-gre ek
-un di
-tren ch
-v h
-encoura ges
-head ache
-gr ange
-: '
-ever green
-Ù Ĭ
-reck on
-ab used
-th ru
-cho ice
-ti dy
-col der
-scho ice
-ha in
-bru m
-li ars
-bre it
-yor ker
-sh ack
-he idi
-micha els
-sco pic
-fasci st
-play ful
-ca c
-yas ss
-sh ad
-.. ?
-qu en
-ram irez
-clif ton
-pr s
-best fan
-âģ ł
-gener ating
-head set
-disappo intment
-abstr act
-bo iled
-paren thood
-azerbai jan
-exhib iting
-bom bay
-oli vier
-ko so
-un lea
-mat ernity
-iz er
-si ves
-r hu
-col l
-saskat chewan
-fre akin
-de k
-na g
-stab ili
-ðŁį ķ
-organi zer
-bo sses
-ar u
-u va
-at able
-ta un
-after wards
-fert ili
-ver ge
-az i
-mor ph
-๠ģà¸
-jer k
-cosme tic
-ko w
-stru st
-ap ache
-post cards
-for mul
-ì ĭ
-spin al
-jack pot
-elec tri
-Ã Ń
-lo y
-gra der
-diab lo
-ar di
-he sit
-f w
-arch ery
-pa sh
-the ories
-repe al
-re live
-per cy
-âĺ Ĩ
-im in
-syn chron
-sham poo
-coup ons
-o to
-la i
-thou ght
-luxembour g
-mo v
-ðŁĺ ¥
-ge mma
-se ated
-m ga
-strat ford
-un certainty
-shi fts
-est o
-fo ol
-fire arms
-cor rie
-ki ki
-appa rent
-p ills
-olym pia
-fi d
-elev ated
-de cks
-ignor ing
-av alan
-ro v
-whist le
-p tsd
-milit ants
-robo tic
-pac ers
-quil t
-bankrupt cy
-lic h
-per cussion
-celebr ity
-al s
-( ;
-su t
-pokemon go
-h g
-off s
-gibr altar
-scre ams
-billi e
-gen ome
-mar in
-be ams
-arch bishop
-em in
-bedro oms
-g ated
-ol ly
-warran ty
-at own
-cudd les
-gun na
-k ic
-vi ve
-cy mru
-nar row
-pro b
-le o
-refe rences
-manufac tured
-cho pper
-brun swick
-sem is
-don ia
-r ye
-man o
-hur ting
-? #
-hol li
-investig ations
-c els
-ðŁĵ ŀ
-le ster
-temp les
-sto rey
-mc mahon
-toi lets
-wo of
-ï¸ İ
-le verage
-at om
-night mares
-victor ious
-haun ting
-custom er
-ag i
-yo ongi
-mon ty
-ver onica
-w ur
-inti mid
-blan kets
-volu tion
-j m
-âĺ İ
-am on
-jud ith
-ðŁĺİ ðŁĺİ
-distr acted
-dri p
-hurric ane
-and es
-revel ation
-tro op
-ab leg
-col lin
-tibet an
-wor rying
-inter nationally
-eat er
-camero on
-brad or
-y uk
-ðŁĴĹ ðŁĴĹ
-tra k
-slo pes
-ci er
-ne a
-ol er
-ta ka
-albi on
-volcan ic
-am n
-a fi
-ob stac
-face time
-ger ing
-n pr
-metall ica
-organ ic
-ðŁĴ ¡
-ki dd
-d ances
-pemb ro
-wash er
-m its
-om er
-emo tionally
-tan go
-ip o
-do cks
-scan ning
-spec s
-tho m
-the ology
-emer gen
-om i
-g pa
-selec tions
-un necessary
-ima ge
-ter s
-induc ed
-gi gan
-rent als
-supp lied
-m fa
-shan kar
-lat er
-pa jam
-cla ve
-Ù ģ
-ma hin
-carl son
-avi an
-ano va
-kati e
-aj ith
-design ated
-chocol ates
-investig ators
-gla zed
-prin cess
-er ry
-ra gn
-ou rable
-hr u
-sun dance
-peuge ot
-steam punk
-gh lin
-gre ase
-hi res
-z ap
-per ce
-j ill
-tom e
-he hehe
-joy ful
-mae stro
-ni shed
-gene alo
-v ich
-p its
-fox es
-good man
-emer son
-lo bes
-con verse
-o ats
-thom son
-ra him
-mal ware
-ah i
-man kind
-re sin
-im g
-sw ood
-kin der
-sc roll
-ar a
-sak ura
-ro bbed
-xi on
-ny a
-c ism
-ce dar
-be in
-mour ning
-tor to
-heath row
-done gal
-bar b
-hydr ation
-k or
-elim ination
-su pdates
-hill s
-appe ti
-star red
-ko m
-gw en
-dd d
-cra y
-sc anner
-personal ised
-seren ity
-re design
-meta ph
-box ed
-judg ment
-no se
-ë ¹
-er ad
-ac ne
-supp liers
-ener getic
-v om
-as ap
-ðŁĶ ¸
-ir vine
-hat ch
-la ss
-ad ren
-waff les
-accur ately
-ici o
-itt le
-se un
-occup y
-web cam
-thene w
-ent es
-ga i
-j w
-accoun table
-vis or
-ir rit
-licen sing
-hudder sfield
-gen ie
-ðŁİ ¾
-atmo spheric
-ten sions
-spart an
-clif ford
-ol an
-north bound
-ame en
-cen sor
-u el
-ster y
-$ $
-far rell
-hy ster
-cl t
-se dan
-rep lied
-descri bing
-micro wave
-sla b
-pro sp
-assi sting
-ru bio
-e than
-hh hhh
-gu ay
-z man
-ra ise
-roll ing
-o e
-n ile
-ambro se
-scar borough
-hero ic
-coo ks
-mor t
-chop ra
-ðŁĮ ·
-to b
-shav ing
-stac ey
-dor m
-motor sports
-wi ki
-fol ds
-sp iced
-stress ful
-liter al
-fu dge
-pe ggy
-wa ite
-tre sses
-se sh
-pr ic
-ðŁİ ħ
-fri ght
-r va
-mumb ai
-po m
-tt v
-cel lar
-tom e
-andro id
-dor is
-tsun ami
-tin der
-o ec
-m wc
-dor tmund
-no thin
-l iti
-so u
-believe in
-at u
-kno cks
-mag ni
-ss sss
-ro hit
-ine ws
-ang i
-m andy
-ke ttle
-intermedi ate
-av ant
-cur l
-endor sed
-ori o
-ur t
-consider ation
-wi res
-shel ters
-b ino
-vik ram
-imple mented
-ly dia
-bu k
-paro dy
-c news
-under graduate
-canu cks
-sam i
-polit ically
-ro tten
-gh z
-tex tiles
-over load
-moder ni
-recre ational
-fli r
-bat on
-typo graphy
-ov ation
-intrigu ing
-pilgri mage
-al ge
-ad ays
-tcm party
-sp elled
-cur ls
-boo ze
-ste m
-ann es
-ir ls
-spon ge
-sho pper
-sig nation
-bra ss
-mi stress
-le ah
-beg inner
-lau derdale
-augu st
-pre school
-ta ping
-tai pei
-execu tives
-b d
-rhe tor
-esc or
-immun o
-deeplear ning
-stat ues
-it us
-manu script
-ly ric
-cor vette
-mol ly
-la ge
-de p
-cn bc
-le st
-je ssi
-fi fe
-griff ith
-oppo sing
-ran g
-dr ills
-respec tful
-p ity
-d ell
-har ding
-play boy
-blo ke
-shut out
-k ili
-o sp
-se attle
-bc poli
-mis es
-journ als
-team ing
-es ther
-fre ddy
-Ķ ï¸ı
-metr ics
-no tre
-gar ry
-for ty
-navi gate
-perio ds
-bened ic
-j id
-da w
-ance stors
-restor ing
-con g
-aller gy
-tit anium
-c ence
-lean ing
-ab bas
-v ast
-uc f
-roof ing
-e man
-seve rely
-vo gue
-ve au
-in bound
-d z
-tane ously
-stret ching
-man chester
-dr yer
-dav is
-kan th
-the game
-it ted
-re tain
-el les
-conge stion
-frat ernity
-ol lie
-lo ki
-fre ely
-cho o
-pon y
-sc ep
-tab ly
-bal t
-rock n
-di me
-lo gging
-ðŁį ·
-ad u
-ha voc
-water ford
-char is
-swee tie
-run ning
-ner d
-erdo gan
-z ara
-weigh ing
-fif ty
-pre cise
-low ell
-kurdi stan
-r yo
-or th
-syn th
-lin ers
-phenomen on
-art illery
-il legally
-constru ct
-nostal gic
-gar th
-al ta
-shel ton
-a sean
-w ander
-dur ban
-di versi
-bon o
-cl on
-le man
-sh un
-obstac les
-appet ite
-fe eder
-respir atory
-di xie
-formu la
-an to
-so ber
-extin ct
-au c
-ing les
-legitim ate
-; ;
-min nie
-ipsw ich
-dram atically
-ðŁijı ðŁı¼
-ingh am
-milit ary
-mon et
-us navy
-for k
-dun no
-play er
-q otd
-st oo
-ex or
-ethiop ian
-film fest
-pe red
-c ate
-sau di
-in ner
-sin cere
-tion ality
-ale e
-de eds
-cooper ative
-ir onic
-cro cod
-br ary
-post season
-cam per
-can ary
-e in
-exten sions
-nb d
-sher wood
-spo kane
-hu mp
-jit su
-ê ¹
-dar yl
-p si
-stab bed
-offer ings
-expe cts
-cav al
-body building
-fr aming
-f ca
-ye arly
-bom bed
-sk il
-resear ching
-jud iciary
-gree ted
-tu dor
-mil o
-innov ate
-ðŁĺ Ľ
-r hs
-ru by
-contribu tor
-fam er
-soci ally
-m lin
-fi ery
-ut ter
-beau t
-it os
-de voted
-rain bow
-bar ney
-pe ren
-ar jun
-r na
-gab by
-ut i
-hann ity
-pick le
-ser v
-qu akes
-pp e
-fe m
-wh itec
-j n
-victor ies
-ðŁ§ ¡
-gol fer
-congratul ates
-resul ting
-mechan ic
-ur ve
-cen tered
-kie v
-an s
-in cub
-< <
-c mo
-bestfan army
-dap h
-en ham
-on cology
-ku sh
-t xt
-ori ented
-fashion able
-c sr
-sa hara
-r ack
-pd p
-han son
-ภĩ
-ti ers
-ra r
-pan am
-in sky
-sa hi
-testam ent
-asth ma
-in her
-fisher ies
-or der
-ho we
-gall on
-ep is
-suz anne
-drow ning
-paneli sts
-ðŁĺ ²
-ë ¦
-al ach
-commemor ative
-at tribu
-ðŁij »
-mo o
-visi onal
-week sary
-gu st
-ak in
-poin te
-ee e
-di spar
-ni pp
-dent al
-st all
-pi an
-bor e
-ul ster
-tic k
-ir r
-tae hyung
-micro phone
-bermu da
-ga ard
-el er
-plumb ing
-hu gely
-âļ« ï¸ı
-race way
-cam bridge
-mar cel
-burn ley
-to ast
-holly wood
-fa sting
-me red
-hib ition
-ca pped
-benef icial
-ow ning
-cont amin
-arab ian
-to on
-cap ac
-hul u
-sm ir
-nutri ents
-se in
-graph s
-con ditional
-ðŁij ħ
-or ac
-play in
-nor the
-tor nad
-mar ian
-ju mbo
-lex i
-incredible india
-road to
-uk one
-confu sing
-sp h
-shan k
-pi ed
-mq m
-positi vely
-sher ry
-path ways
-consi ders
-tof u
-argu ments
-resil ient
-che tt
-with dra
-ter o
-ated ly
-sw ana
-he b
-fli ght
-har ley
-decre ase
-kind le
-book shop
-³ ï¸ı
-marty rs
-sm ur
-mc cl
-concer to
-sti me
-rejo ice
-app lau
-cle ment
-mer kel
-jai me
-im mortal
-isle of
-mar co
-youtu ber
-stal king
-me too
-st ack
-sp ouse
-u st
-lu v
-âļ¾ ï¸ı
-eque strian
-ev ing
-fl in
-nick name
-the big
-as ar
-st acks
-wal ker
-bor a
-kidnapp ed
-hur ling
-humb old
-rec alls
-co pper
-ann is
-se o
-mer ger
-mu ir
-ad dy
-ðŁĴª ðŁĴª
-be x
-cr acy
-con an
-congratul ation
-mid st
-âĻ ¬
-for bi
-op tic
-cr ate
-crocod ile
-mad agas
-secur ing
-ast on
-o gue
-savi or
-salis bury
-love it
-fuji film
-cast les
-as st
-ar rows
-sp acious
-tr s
-poly vore
-progre ssion
-m ri
-nel son
-bi m
-indic ator
-o da
-pe pe
-re signation
-gu t
-sne aker
-log ically
-az y
-are lla
-te aring
-jo shi
-ssion ism
-q pr
-mari ah
-p x
-ble ed
-mi an
-med ley
-we iss
-ker ry
-gat ory
-at al
-madi son
-av enger
-nab y
-pl and
-gi les
-fresh water
-d ington
-ta j
-demonstr ates
-n tv
-bul bs
-sunday morning
-pe ake
-souven ir
-wa h
-ton nes
-m kt
-complex ity
-con den
-ross i
-b ing
-y ds
-su k
-n go
-mid land
-ol y
-life is
-ri pple
-mo reno
-dd ers
-tu s
-á ĥ
-bou l
-x a
-hol dings
-wn y
-shadowhun ters
-ke i
-asp ire
-m ous
-ow en
-so ak
-skir ts
-moun taine
-stor ming
-ch rome
-ri ots
-sar ato
-amaz e
-less ness
-nav ar
-crit eria
-ra fa
-indul ge
-ay er
-por to
-nam o
-........ ........
-yi elds
-val le
-j h
-mac ron
-sa ins
-dur ant
-tra ilers
-wo t
-confeder ate
-sh rin
-id ol
-form ally
-ten e
-motor cycles
-than g
-no de
-bang er
-dal y
-p ats
-enroll ment
-au ctions
-at al
-ar bor
-lo gos
-de arest
-trans action
-dom ingo
-fle a
-ser mon
-de ck
-sin cere
-questi oning
-juli o
-was p
-pre tz
-armen ian
-k ham
-inflam mation
-picture sque
-acci dental
-film makers
-ðŁĺ ļ
-ðŁĴ į
-ca sey
-so b
-yee zy
-good will
-parag ra
-ss ly
-fe ather
-dy ed
-assassin ation
-na de
-b cs
-app lies
-femin ine
-fe u
-ext ent
-depu ties
-l ack
-psy chic
-go i
-kill ings
-pse u
-ðŁ¤ ª
-un c
-mar l
-tan e
-mck enna
-sur fer
-influ ences
-free way
-hack ney
-mal aria
-el and
-te au
-rema stered
-Ø ±
-raz or
-gg y
-cor ro
-lak sh
-fla ir
-honest y
-hoor ay
-de pp
-am c
-wedne sdays
-q a
-ed its
-- $
-se villa
-dou bled
-human ities
-c cot
-som os
-r ine
-af a
-si oux
-re construction
-wel ding
-th reads
-am ish
-encoura gement
-po der
-bo ck
-bal m
-p tions
-stand up
-accompli shments
-guar ding
-convic tion
-ac ion
-napo leon
-depic ting
-att ack
-su i
-wear able
-âĸª ï¸ı
-pot ter
-esc ort
-vis e
-to ts
-bo on
-event profs
-angu lar
-womenshi storymonth
-bar row
-sch i
-ac comp
-ti k
-l end
-kensing ton
-wol fe
-st acked
-cra shing
-exhi bit
-wing ed
-sab rina
-ma sa
-k ms
-alway s
-et t
-pla sma
-counsel ing
-pick les
-nfl draft
-mr s
-inev itable
-coura geous
-staf ford
-writers life
-ho s
-e j
-gh yun
-trade mark
-adri an
-influen cer
-coron ation
-ra ging
-explo red
-usa f
-excep tion
-eu x
-tan ker
-sw ami
-pac ket
-ðŁij¨ âĢį
-f en
-she en
-a ero
-j l
-re gal
-nw t
-au ster
-meh ta
-char ge
-a ste
-b ate
-inf eld
-racec ourse
-collap sed
-fle ece
-z il
-al lie
-alternati ves
-geor ges
-ðŁĵ į
-quir ky
-fc b
-nat geo
-philanthro py
-bra i
-every day
-ðŁIJ °
-ach ers
-ja an
-fin es
-q i
-fisher man
-distin ct
-gri mes
-nation alist
-comm ence
-ro wn
-âĢ ³
-z ing
-f ter
-hr w
-baro que
-bl ender
-kitt y
-hoo ks
-c ited
-w anda
-consen sus
-reinde er
-an and
-supp ly
-me ds
-v n
-ol ph
-rat chet
-shel don
-secur ities
-ë°© íĥ
-cro m
-mosqu ito
-j eric
-im mac
-dimen sions
-â ¤
-di ssi
-sponge bob
-dami en
-steven son
-jo anne
-del ish
-yi kes
-than x
-surve ys
-postpon ed
-alco holic
-al ised
-ðŁĻı ðŁı»
-do ch
-sen tim
-mered ith
-com pares
-b ago
-happy days
-mo ss
-ãħ ĭ
-ne c
-gn ment
-frustr ated
-comb in
-ri v
-ec lec
-col lo
-compli ment
-actor slife
-ct to
-nic ar
-op hon
-apar the
-man t
-ja de
-trol ley
-optimi zation
-eye on
-eco logical
-qui st
-ep he
-ॠĩ
-cin co
-appo ints
-old school
-c pr
-behavi oral
-min aj
-:- (
-tag ging
-ev al
-jo aqu
-ðŁĺ «
-ha k
-de me
-jama ican
-so s
-hy att
-hand book
-libr arian
-hanni bal
-pump ing
-ch om
-f man
-ga i
-hu ll
-respon ders
-green ville
-n us
-vau gh
-ðŁİī ðŁİī
-ta xi
-gold berg
-man tra
-te ase
-forbi dden
-metho dist
-ati vity
-* ***
-ec t
-mc gr
-Ħ ëĭ
-se b
-amid st
-disapp ear
-thy ro
-phili ps
-er ina
-v icious
-stream er
-million aire
-ma p
-str ick
-hack athon
-gh a
-ed ic
-mi ka
-pe ck
-ill i
-anto ine
-ar ca
-op tic
-ma ure
-ðŁĩ¦ ðŁĩº
-cla shes
-man ly
-âĺ ģ
-al var
-and res
-me i
-el m
-ww ww
-al tered
-l te
-ê¹ Ģ
-mo jo
-for rest
-thal ai
-non t
-spee ches
-acknow ledge
-ign ite
-x factor
-ðŁ¥ Ĥ
-mead ow
-disru pt
-debu ted
-scrim mage
-pharmaceu tical
-fi dd
-found ations
-philosop her
-et al
-publi shers
-bo ys
-c ke
-ru gged
-opti mism
-re be
-phil harmon
-nar cis
-ral lies
-lu is
-go blue
-fol ded
-un acceptable
-optim al
-li sa
-pol aro
-+ .
-en za
-âĿ £ï¸ı
-mon opoly
-grace ful
-dair y
-du a
-diffic ulty
-judge ment
-o si
-mer sey
-flu x
-new found
-ter ns
-dimen sional
-in vic
-al ba
-am it
-abudha bi
-alger ia
-autom obile
-the ad
-lo tion
-acceler ator
-vac ant
-iti on
-lu f
-al ic
-pl l
-bla zing
-ba z
-sen e
-ðŁij ¼
-villa ins
-direc tory
-eis en
-to ck
-broch ure
-ri pp
-hb d
-zayn malik
-nic he
-lo lol
-certific ates
-mor se
-fac up
-x ham
-un wanted
-im ports
-carne gie
-fan sign
-mo u
-r alph
-destroy er
-sw ing
-trek king
-cili ation
-pit bull
-g aps
-ho well
-defin itive
-mc le
-f ps
-et z
-bol ly
-lyn n
-gan o
-at ure
-fur suit
-co il
-na v
-but ts
-tro jans
-eu re
-en ko
-sch umer
-horri fic
-install ment
-br b
-subur bs
-a bel
-vi r
-de sh
-cun ningham
-ðŁIJ »
-span n
-sch we
-ke mp
-tr u
-ste alth
-qu es
-le w
-deli ghts
-ko ch
-hu mili
-cr iti
-il t
-sp ells
-mi ley
-car ic
-ðŁį ´
-lc fc
-substitu te
-oun g
-? !!
-af fir
-predic table
-class of
-er r
-cy press
-chand ra
-age ing
-__ __
-ther land
-don caster
-el in
-yo shi
-sail ors
-har ris
-jo anna
-niger ians
-h ers
-pla gue
-pro cra
-k no
-can ton
-busine s
-un h
-pra kash
-c in
-bow en
-co ating
-m als
-be gging
-smith son
-ponti ac
-sp ies
-dam ian
-pl ine
-und ant
-al ta
-one ss
-shame less
-da q
-bb m
-wal es
-stam pede
-ser um
-Ù Ĩ
-cataly st
-x n
-ab sc
-free zer
-ch un
-ari os
-mc cre
-fore head
-he ars
-damas cus
-tac oma
-ardu ino
-encoun ters
-stan ton
-lg b
-ab as
-" ..
-ke te
-drac ula
-ele m
-g ne
-zepp elin
-la brador
-pul p
-op tional
-or n
-russi ans
-san itation
-hil ary
-etsym ntt
-pen alties
-au st
-ig ans
-olympi an
-medic aid
-vers ace
-va pe
-re stra
-pe ep
-sexi est
-st alls
-di le
-the a
-punjab i
-pupp y
-tuesday motivation
-ðŁĵ ļ
-the flash
-roc ket
-mo dest
-chihu ahu
-on na
-k sa
-hur dles
-ca ve
-fail ures
-sp lit
-bo ho
-gur l
-disappo int
-ho ward
-nug get
-fran z
-stal ert
-kaz akh
-for getting
-sch ri
-ag ate
-am at
-eve rett
-du et
-veter inary
-juli an
-ch ills
-bra ve
-ghost busters
-lan do
-gre ets
-profit able
-d é
-ti r
-ze e
-om en
-pd x
-gray son
-har i
-fix es
-stab bing
-swim mer
-symb ols
-compli ments
-po se
-func tioning
-th nx
-gi r
-corpor ations
-bar low
-lo e
-off season
-distin ctive
-marvel ous
-nik on
-enri que
-ky u
-ja ws
-amo to
-lom bar
-travel blogger
-fa h
-ouri sm
-tri stan
-so e
-ce ase
-ðŁı ħ
-z ac
-mck enzie
-taxpay ers
-swim suit
-bl o
-les ley
-kan sas
-w ks
-ki el
-provo king
-my les
-str ing
-kangar oo
-galac tic
-fif th
-s ke
-we ir
-ll is
-mat ory
-ðŁĩ ¿
-un ci
-re productive
-roo ting
-ti des
-gad get
-.... ......
-alex ander
-bow ler
-scre w
-apo log
-eri ka
-wal ters
-shet ty
-lan e
-ban ter
-as ant
-me so
-v ain
-" ""
-us i
-fer din
-accomp lish
-man sfield
-bom bar
-collabor ating
-cla p
-it ure
-s da
-smo ky
-na k
-im person
-car la
-com ra
-bur gl
-lo co
-ti es
-in hi
-trac ey
-se is
-diss er
-rr rr
-dra y
-prote ct
-cor ona
-hun ger
-ck en
-c eli
-trou bled
-predat ors
-fic tional
-shav ed
-riche st
-metab oli
-ful ham
-gro oming
-mono chrome
-wa sting
-as co
-ast e
-ti sta
-remedi es
-ung soo
-south end
-perman ently
-bu mble
-procra stin
-ident ical
-practic ally
-ma scul
-su ke
-assu red
-val erie
-devi ant
-grizz lies
-thi er
-pur a
-ne pal
-not ts
-bil ateral
-spo il
-car mel
-cine matic
-ph l
-ni fty
-ma o
-hypo cri
-la ser
-pan try
-mathemat ical
-el isa
-coordin ation
-bel mont
-a it
-radi ant
-bo iler
-man g
-f ag
-cr c
-h ams
-br in
-â¬ĩ ï¸ı
-famil ia
-âĿ £
-sab er
-ru pert
-gg an
-rit z
-mic h
-sal ford
-le vi
-gra l
-ðŁĴ ¤
-n ino
-ce d
-business man
-ul tr
-sim ply
-compre ssion
-pa ins
-hal t
-ë°©íĥ Ħ
-landsc aping
-n f
-croo ked
-er d
-itt in
-ddle ston
-sur passed
-ino a
-da g
-bl en
-exten ding
-at ing
-al gae
-ball er
-u mar
-snoo ker
-col lu
-flo wn
-thu b
-ridic ulously
-ki sh
-op le
-di re
-as ser
-ari sto
-sc iss
-h ating
-trou ble
-syl via
-suc cul
-plo ts
-sincere ly
-al er
-laure ate
-br ack
-att n
-rif les
-me to
-collec tible
-cu omo
-conte stant
-consist ency
-ant z
-rang es
-abig ail
-de b
-mini ster
-grow ers
-an oo
-hoo ver
-dream er
-nu cle
-resear ch
-mi y
-sha hid
-ma v
-d honi
-cin i
-do j
-hin dus
-part ying
-dal i
-alon so
-inform al
-clark son
-it ton
-ki an
-cit yo
-mor i
-la sted
-as pen
-libr ary
-susp ici
-qu at
-den ial
-fol der
-ch ori
-swee ping
-eni x
-ðŁį Ĥ
-Ø Ń
-nas car
-handmade hour
-mou l
-heat wave
-em er
-exam ine
-ib n
-gr ind
-po v
-tion ist
-m bo
-she ila
-integr ate
-om es
-take away
-cer v
-con nie
-tic ket
-ce led
-bi en
-visu ally
-madagas car
-sor ry
-gu i
-park run
-tra its
-la be
-pois oning
-ॠĢ
-vi able
-bohemi an
-denti stry
-bad os
-spr outs
-mask ed
-te ddy
-ðŁĺ ·
-sa f
-sa as
-ji ang
-ti ght
-spe aker
-withdra wal
-bc n
-as signed
-class rooms
-fle ming
-ðŁĴ «
-super girl
-tot als
-table top
-e books
-horizon tal
-cra z
-flu sh
-j ard
-c dc
-er son
-ãħ ł
-green wood
-ni h
-co x
-ad a
-lit re
-go ing
-v icky
-cur ved
-lou ie
-gra ins
-hy e
-lon ge
-reme dy
-tra inee
-san jay
-super stars
-ma ser
-man u
-s age
-wh l
-ðŁĺĤ ðŁĺŃ
-ðŁijį ðŁı»
-m sd
-en z
-rab hu
-j oo
-gh u
-ac er
-e po
-resurrec tion
-justice for
-bl ended
-mo da
-avalan che
-france sco
-re spective
-g s
-ye ast
-wel ch
-devo tion
-ge tin
-athe ism
-am ic
-carol yn
-lo c
-ld nont
-ave c
-us da
-le gged
-bra very
-b lower
-cow boy
-he h
-sti ble
-buff al
-chann el
-run chat
-âĺķ ï¸ı
-ide ology
-best seller
-y oo
-pe anu
-bon ne
-fel ic
-edi son
-fr actu
-naren dra
-pp ets
-seym our
-ri viera
-he ctor
-necess arily
-bi anca
-soci eties
-the best
-w g
-sent ences
-win k
-vacc ines
-pal ooza
-jam ming
-as f
-mp us
-agre ements
-ec k
-ba c
-hon ore
-com pul
-wild cat
-im posed
-yo ga
-hud son
-can celed
-l ich
-fu zzy
-es que
-ch uk
-w vu
-se k
-fli pping
-r hon
-wi shed
-wh a
-cap ability
-len ovo
-ìĨĮëħ Ħëĭ
-vi vo
-tv d
-nor a
-sil k
-pas adena
-yo semite
-valu ation
-clo cks
-u ber
-mr c
-dar kest
-au bre
-ss o
-bell y
-wrest lers
-kill in
-lou der
-buck ley
-ge el
-ad on
-un s
-appe aling
-ðŁij ¯
-semit ism
-list ens
-fit z
-ãĥ³ ãĥ
-ny lon
-ar ty
-seem ingly
-hal a
-su ited
-et y
-she ds
-mu ffins
-ap ric
-um ents
-u ta
-jam mu
-chelse afc
-star z
-yo ko
-roo t
-clean sing
-di ar
-pione ering
-ihear tradio
-dig iti
-fin dyour
-can o
-ðŁĴ İ
-z ol
-spac ecraft
-six ers
-moi sturi
-b ile
-ti sts
-hor ton
-rang ing
-colum bi
-mete oro
-senti ment
-ep l
-foo th
-text book
-drain age
-r ly
-sc ue
-imran khan
-ðŁĴ ¸
-margar ita
-ed dy
-predic ts
-gamer gate
-advis e
-growth hacking
-love you
-ug and
-v f
-beng hazi
-s later
-ne wor
-ch el
-independence day
-p np
-cul len
-hoo dies
-num bered
-brit t
-t sa
-kl tu
-s ages
-mom o
-onep lus
-col l
-gu ts
-w ta
-mesm eri
-enh ancing
-chiro prac
-j is
-teen agers
-m one
-constell ation
-sweep stakes
-e ze
-slovak ia
-la ye
-pear ce
-wa ver
-po gba
-k ron
-sur geons
-mar x
-ti d
-gg a
-desc end
-p ours
-upri sing
-wal la
-sab bath
-bachel ore
-mack in
-k am
-peter borough
-hor a
-ðŁĮŁ ðŁĮŁ
-think big
-r j
-hy drau
-sp al
-univers it
-ðŁı ī
-mail online
-league of
-ten ants
-w ally
-lan ce
-heav ens
-dd r
-bol ts
-am ir
-i phone
-ci gar
-en du
-re i
-el abor
-r inging
-john son
-characteri stics
-sal oon
-algori thms
-tal kin
-m tn
-di ve
-region als
-ff ice
-hat i
-deviant art
-so tto
-shir o
-l ama
-k we
-f aded
-por ting
-tu mmy
-est ates
-buen os
-ðŁ¦ ģ
-beli ever
-pen etr
-dar n
-sp ite
-can opy
-fashi oni
-t illa
-pet als
-eli jah
-bra wl
-marty r
-ë°©íĥĦ ìĨĮëħĦëĭ
-mid town
-eric h
-d apper
-sm town
-me gam
-ww w
-le le
-on s
-cat fish
-fir th
-fossil friday
-ball park
-th aw
-pot ent
-illi e
-cre ep
-car p
-so ap
-gun dam
-infe c
-yy yyy
-ठ¨
-z ag
-rit t
-calcu lator
-bo ca
-ok o
-to ad
-threat en
-refin ed
-olym pic
-accompli shment
-bacter ial
-a ji
-tat um
-feli z
-she ed
-j at
-th ic
-jam al
-ðĿ ĺ
-lin a
-ðŁIJ ¯
-jo king
-yot po
-pin ch
-ak ron
-her b
-motiv ation
-li a
-ho stage
-cre ek
-gam ble
-russ ell
-patt i
-fo tos
-c pc
-bro ken
-back the
-cla ys
-u mm
-stock ton
-mat ernal
-ü r
-la kel
-cent ury
-be k
-infe cted
-ภ¡
-smack down
-man ned
-ta hoe
-sm es
-bas a
-su la
-augu sta
-. *
-rohing ya
-gre ed
-counsel or
-silhou ette
-gra vit
-cla use
-' -
-bo bc
-occa sions
-now adays
-dic tat
-be ard
-n ally
-brigh test
-kab ul
-inc india
-dhan ush
-archae ological
-che ape
-mizz ou
-d hi
-ov ski
-bax ter
-asse mble
-Ã ¢
-gi gi
-ac am
-wis ely
-haz ard
-north ampton
-âľĪ ï¸ı
-me th
-bla sting
-re unite
-mu lus
-ali zes
-t read
-mil a
-ed ward
-ko va
-pe sto
-ðŁij ¶
-vit z
-hydrau lic
-refurbi shed
-mo tel
-isab ella
-hom me
-sever ance
-uph ol
-mis erable
-f ari
-lat ter
-ef er
-crack ers
-es l
-ac io
-yy j
-in an
-ec b
-z ind
-pan as
-tru cking
-re ed
-sh aker
-burge ss
-em pire
-ag nes
-n ington
-art works
-fr s
-ti le
-bi ome
-eu n
-ch ong
-americ ana
-god father
-go blin
-i shi
-! ).
-temp ted
-gen omics
-mand ate
-ck y
-ðŁĴĻ ðŁĴĽ
-som ali
-br andy
-in ven
-spoke sperson
-pc b
-yu an
-h g
-fa z
-starwar s
-ro wan
-blue grass
-don g
-d day
-trin idad
-er ton
-ban ning
-re tention
-cu red
-tober fest
-re set
-we is
-deta ched
-behindthe scenes
-immun ity
-ph a
-bra y
-ðŁij ½
-ran cho
-ram say
-est onia
-nd tv
-] .
-cab aret
-tar o
-d v
-show cases
-plu m
-ðŁij ¸
-son oma
-pre pa
-memor ab
-e stu
-drive way
-u les
-magn us
-x r
-nn n
-much as
-en ge
-stre amed
-fore stry
-audio book
-tro y
-reck less
-kil om
-ru ler
-ra k
-proce ssion
-i ons
-po ole
-noc tur
-wh s
-farm house
-per a
-par me
-hypocri sy
-s ics
-v ant
-cas k
-holi stic
-au st
-Ð ¿
-in do
-ðŁij© âĢį
-di so
-disp atch
-ol sen
-make it
-en nis
-cent re
-ar range
-ðŁĮ ¼
-sal ted
-ea siest
-f ate
-reg atta
-mo zz
-ac an
-sin i
-g ically
-ch ops
-chick en
-work in
-ha gg
-invol ve
-wee ds
-book day
-wake up
-ky r
-michel in
-fu ss
-re juven
-vac ancies
-incar cer
-m st
-sc ents
-sovere ign
-kick er
-à §
-bo d
-âĢĶ >
-sa h
-mob il
-shrop shire
-oph one
-dress er
-mis suni
-hep burn
-i mo
-foli age
-diagno stic
-as san
-cycl ing
-guil t
-c sa
-puertor ico
-win elover
-wake field
-do ggy
-k he
-pa pp
-co g
-al lot
-cu ck
-poe tic
-mi o
-re vit
-mag ician
-ç ¥
-ant enna
-west wood
-mber g
-lux e
-oat meal
-Ø ¬
-te at
-ffe e
-sear ches
-l ly
-plu to
-el on
-let tering
-inno cence
-fa i
-ann on
-telang ana
-ma it
-neu ral
-can ni
-ar oma
-a stor
-fe x
-co cac
-mon etary
-f ent
-un sure
-' @
-indi rec
-teh ran
-isol ation
-li bs
-make up
-merce des
-ff y
-he tero
-de o
-sco m
-cur sed
-veteran sday
-franken stein
-shre ws
-de co
-ge ese
-lefto ver
-ha did
-vari able
-acade mics
-carol in
-under going
-vari ation
-na h
-ssi er
-gamer sunite
-pur suing
-emer ged
-ll ers
-control ling
-ro aring
-mete or
-vol t
-daw gs
-be aver
-is life
-bathro oms
-aci onal
-pre vent
-lake district
-in als
-y ani
-gra bbing
-sac ks
-le z
-sw ay
-k ool
-time s
-klo pp
-la de
-con cord
-resul ted
-revi ve
-recon ciliation
-ol and
-az z
-gir o
-mand arin
-de en
-nutriti onal
-is coming
-van i
-aw www
-der ived
-love your
-stop the
-shou ting
-nov ak
-ðŁĻĮ ðŁı¾
-lo af
-displa ying
-sunday with
-ma guire
-ch eri
-ðŁı Ł
-re match
-qu ic
-Ú ©
-y in
-ðŁĺ ¹
-ili ve
-z ip
-our ke
-down loads
-sw at
-missi ss
-care rs
-t ment
-proper ty
-hahahaha haha
-gi bbs
-sur rey
-ar ise
-tic ism
-sti a
-ir ling
-fro g
-co se
-bas sist
-fore ig
-lea u
-pil lows
-hol la
-eli e
-disclo sure
-peanu ts
-inte ch
-ww c
-plun ge
-trium ph
-cor i
-sli ppers
-ðŁĻı ðŁĻı
-neutr ality
-ma re
-hair y
-gang ster
-hu mming
-cust ard
-mer lin
-ale a
-s by
-dam p
-mo han
-ver bal
-j st
-gu tted
-b jor
-un finished
-ðŁĩ¯ðŁĩ µ
-un happy
-âļ« ï¸ı
-by pass
-at su
-fis cher
-sa v
-afric ans
-re use
-mid way
-demo lished
-ger rard
-her cules
-Ä Ł
-medic ines
-cl icking
-sur round
-jo ong
-wav ing
-tri bes
-wet lands
-offici el
-argu ing
-l le
-do va
-su zy
-club house
-ne gro
-ob tain
-ga o
-gl ance
-assi st
-ch os
-ãĤ ¢
-âĺ ķ
-adri d
-occur s
-st ans
-par don
-livel i
-emplo yed
-re visit
-ff xiv
-bb le
-ne aring
-min er
-ðŁĺ ¹
-giov anni
-up to
-mar vell
-mar se
-to wels
-cb n
-engine ered
-y elling
-spart an
-si ans
-ðŁĻĮ ðŁı¼
-se v
-coyo te
-sta di
-t cm
-app en
-shenan igans
-open access
-so aked
-ma squ
-le vine
-stro kes
-l k
-aparthe id
-hipho p
-char don
-may may
-ha asan
-stri pped
-fr o
-scri ption
-f ton
-h f
-pri sons
-marsh al
-ķ ãĤ
-an cho
-com promise
-classi fication
-buzz feed
-bblo ggers
-deser ving
-) /
-s way
-ob o
-camp ers
-poder nfamily
-p oured
-bri e
-squir rels
-se ize
-: #
-le k
-ti mb
-st acy
-nas daq
-repe atedly
-br at
-mi ghty
-competit or
-mah one
-de si
-o ke
-bm w
-shi e
-f cb
-cheape st
-minim alist
-par amount
-n ate
-har as
-insan ity
-lat eral
-ment ality
-mo zam
-ta pped
-yad av
-u sp
-b way
-the od
-bil t
-ra ids
-em press
-adap ted
-pat ron
-nut shell
-ag ra
-be aded
-sundaywith marsha
-vi king
-proce ed
-main tained
-thinkbig sundaywithmarsha
-sn es
-mus ica
-to wer
-ch ab
-bo k
-sm t
-insul t
-harve sting
-windo w
-ru ther
-be ige
-dec al
-indic ate
-ma iling
-ri ft
-po le
-ander son
-ch oral
-sp ride
-l ili
-ev elyn
-imrankhan pti
-.... "
-ke red
-un dp
-water falls
-se ars
-le mans
-world series
-ri el
-ani e
-app ar
-score rs
-lam p
-a than
-phys icians
-qu inoa
-refu sing
-vu itton
-unle ash
-s la
-pat i
-shou ts
-inten tions
-fo amed
-europe an
-neighbor hoods
-me er
-man son
-du h
-br at
-con es
-bow l
-kazakh stan
-ठ¿
-in appropriate
-del hi
-ketch up
-ful ton
-s ys
-consul t
-gar field
-to go
-f ml
-f led
-b ds
-facilit ate
-ree bok
-selfi e
-elev ate
-activ ate
-bi ble
-ca wx
-b ys
-cam ille
-sy ou
-sk ool
-her t
-w bc
-ple dges
-recor der
-po sh
-ac re
-so aking
-mat il
-v sco
-shoot ings
-pla r
-e con
-ðŁĻĮ ðŁı»
-rashi d
-u bi
-ðŁ¤ ¤
-sw inging
-wi pe
-rap tor
-m su
-music video
-dur ham
-at tic
-apar ty
-fe tus
-activ ation
-aa z
-motiv ate
-ðŁĴķ ðŁĴķðŁĴķ
-j al
-ठ®
-ag on
-sche er
-stal ker
-fo ster
-az zo
-tele gram
-vi gor
-s laugh
-screen shots
-entrepre neu
-kri stin
-inten tion
-ch illi
-fr action
-don a
-ge a
-tc u
-s ite
-la k
-em il
-d nt
-bor o
-wil kinson
-re cu
-ato day
-t anya
-bl anco
-cd n
-brilli antly
-g cc
-ac c
-evacu ated
-ther ine
-den ny
-cait lin
-she pard
-pou ch
-hand held
-sou theastern
-ha a
-Ã ´
-re solutions
-led ger
-sr in
-r ar
-shat tered
-chim ney
-im with
-mete or
-hand led
-ra ke
-town send
-en han
-shi py
-duc t
-tw x
-inflam matory
-war hammer
-theat rical
-gro s
-sk ar
-sco tty
-ni el
-tit o
-tin i
-conne ction
-_ .
-goldeng lobes
-sha q
-ðŁı ³ï¸ı
-hall way
-fron ts
-effec tiveness
-gla ston
-d hs
-ex pi
-to h
-c pl
-sc s
-re o
-ha g
-resemb lance
-hor an
-abu sive
-qu er
-virtu e
-cho lester
-a q
-shan e
-m ce
-carri ers
-di stress
-re wind
-Â ¡
-voo doo
-int act
-ann o
-ðŁĺ ¤
-pi led
-adi a
-ãĥ ³
-en ow
-di gs
-light ly
-goo fy
-turb ine
-governor s
-con te
-re open
-pa h
-i ve
-cra fting
-swee ps
-jo di
-an de
-zu cker
-kaw aii
-o ko
-v ai
-out line
-kri sti
-ts n
-insp o
-qu int
-fil thy
-lyn ne
-listen ers
-depar ting
-or d
-t weed
-, &
-ale k
-sel fish
-nor ther
-recogni zes
-i ps
-be s
-a ed
-w ills
-pe at
-surround ings
-mon uments
-ais le
-be cker
-la v
-quant ity
-v ah
-helicop ters
-tu cked
-alv arez
-sha pe
-o bey
-ad diti
-road side
-m ite
-bl ers
-ep age
-j au
-ignor ant
-b ins
-lu lu
-x o
-c fo
-ee eee
-apprentice ship
-shef fiel
-to i
-ho k
-faken ews
-deplo y
-aid an
-husk ers
-ãĢ İ
-west brook
-mi ster
-confi gur
-car r
-fic a
-proceed ings
-ha w
-ste ak
-mur derer
-pay day
-a jo
-p vc
-don ates
-bi af
-nom nom
-be it
-k ali
-x rp
-ahmed abad
-se mic
-che y
-x tra
-an twer
-head lining
-squ ares
-roun ded
-flu ore
-bol d
-disa sters
-am oo
-gener ic
-cran es
-brief ly
-gi g
-auster ity
-anticip ation
-for ti
-treas urer
-cann y
-ce cil
-dete cted
-check list
-ภ§
-pam ela
-bar bados
-an field
-hear ty
-tx lege
-peren ni
-arro g
-ing ram
-âĹ ı
-ty ne
-spo on
-r ation
-am ba
-m be
-cam el
-h hs
-york shire
-reflec tive
-fre aks
-to k
-ju do
-partic les
-du bs
-ban jo
-accred itation
-prover bs
-over dose
-inte gral
-gu ang
-mc s
-super car
-af b
-al vin
-ail s
-x tre
-st aging
-tw ent
-rabb its
-mar o
-inste m
-dol l
-cr ay
-sant ana
-ble ach
-mini ons
-che ap
-man t
-di vers
-catal onia
-lo is
-mat ri
-cou gar
-kay ak
-e gre
-p so
-a ia
-å ®
-char lton
-tr acked
-sc ari
-pe tt
-f wd
-x in
-gra vel
-br ic
-bigg boss
-ar den
-hu gging
-pal ms
-st v
-li mb
-the movie
-handic ap
-ri me
-z ai
-stu b
-indi a
-lithu ania
-rhy th
-p ita
-maced onia
-high ered
-brid get
-schwar z
-ske let
-hi kes
-ant arctic
-c ps
-mash up
-Ð °
-n ell
-chand ra
-he ir
-an us
-sher idan
-mi mi
-muse u
-bec ca
-an ir
-bar rie
-dioce se
-compar able
-ðŁı³ï¸ı âĢį
-yuk on
-me p
-hor mon
-mer ic
-al f
-con quered
-christ church
-ðŁĴĻ ðŁĴĻ
-hazard ous
-poo h
-cont ing
-retro spective
-par ame
-na ir
-con sor
-ho tra
-astoni shing
-cater pillar
-u man
-ti sm
-t vs
-serv ic
-croy don
-mor ales
-c g
-cu m
-te ur
-scan ada
-s all
-magno lia
-el ise
-th our
-à® ¿
-ag omez
-phel ps
-ë°©íĥĦìĨĮëħĦëĭ ¨
-wh os
-weav ing
-si sd
-pro poses
-cro ws
-pre sale
-econom ies
-bernar do
-sha hid
-air show
-mc cann
-hor ticul
-nr l
-du el
-mongo lia
-tou lou
-requi rement
-struc tured
-ed i
-o lives
-he a
-cu ter
-Ð º
-enthusi ast
-harri et
-domin ion
-sub mer
-ðŁį ĥ
-sa ab
-nes burg
-mo ff
-def ended
-bur t
-rewar ded
-gold man
-op tics
-khali d
-house holds
-buc kets
-ce cil
-che ss
-substan tial
-ef l
-oper ation
-evalu ate
-st n
-rece ssion
-l ll
-tom as
-tru ths
-ak bar
-s words
-p act
-embarra ss
-ha o
-ay urve
-scrip ture
-ny cc
-op t
-di ameter
-sc ented
-organi zers
-re lat
-ha e
-dream ers
-de se
-ðŁĮ »
-restric ted
-n ale
-r hp
-dol an
-mun ster
-ha ired
-consult ants
-jo ints
-hu mil
-d ill
-relent less
-t é
-af il
-ut ilities
-japan ese
-condem n
-pet ite
-colli de
-q f
-peach es
-cou rier
-l ore
-âĺİ ï¸ı
-reli ability
-ch uk
-ðŁĻ ĥ
-stu res
-ge ther
-ho stel
-bi er
-- _-
-â ĩ
-e ze
-ta ilo
-di ent
-blu ff
-chu ffed
-pil ip
-mon arch
-e em
-bu chan
-b ick
-op au
-ku ps
-ภ¢
-pist ons
-sp ins
-m and
-ce st
-bur ne
-v ile
-cher ries
-bec kett
-need les
-pan ch
-ë Ĥ
-haha h
-trou bles
-insi sts
-do you
-g mc
-mor tar
-deleg ate
-in n
-g anda
-sin atra
-ठ¤
-spee ding
-pu pil
-pre mises
-ali gnment
-pi kach
-as us
-j alan
-Ø µ
-lime stone
-fol kl
-parme san
-ce il
-mo y
-shawn mendes
-ac up
-hu st
-ot es
-med ina
-ma di
-gta v
-censor ship
-ar g
-swe eney
-sy kes
-col o
-foot steps
-cann ed
-adv ance
-gta online
-healthy living
-ðŁį ¾
-a ig
-p ality
-oc s
-he brew
-im minent
-berk shire
-jeremi ah
-out going
-bak er
-entr ata
-ma ids
-gro ves
-bo c
-a del
-m fw
-con science
-arm ys
-nut ella
-conte stalert
-novel ist
-la h
-ban ker
-marque z
-ðŁı ¡
-to ff
-out age
-gr p
-ðŁĺŃðŁĺŃ ðŁĺŃðŁĺŃ
-musc le
-du dley
-nvi dia
-mi di
-m uni
-ess ays
-dat ac
-car ter
-ภ£
-t ans
-i ves
-public ations
-al er
-ok wx
-il u
-cu tt
-har p
-out law
-luther an
-br ill
-bo lic
-do well
-green land
-be sties
-path i
-pay ton
-gue st
-har den
-ðŁ¤ ©
-ann ed
-evacu ation
-po ised
-mc der
-b han
-o i
-envel ope
-ci d
-ca vi
-ta pas
-book review
-grey hound
-âĻ ª
-fe ud
-lun gs
-for te
-rai der
-ff er
-oni x
-dep end
-yn wa
-rel ating
-de vs
-ðŁĴ IJ
-acqui res
-d ha
-j yo
-priv ati
-can ine
-k b
-cra b
-sar din
-imag ining
-k j
-em por
-down hill
-ne z
-ta eyeon
-nick imin
-gb p
-à µ
-w ap
-sec co
-ma shed
-ðŁĴ¥ ðŁĴ¥
-augu stine
-diss ol
-dic tator
-â ĵ
-vi per
-ed fringe
-vau x
-hard work
-book let
-no x
-chi ff
-ðŁĴ ¨
-observ ations
-xbox one
-u sher
-ke er
-lu p
-dal las
-cal gary
-ma dra
-di ous
-k bs
-wood ward
-hero ine
-lu mber
-sea world
-o ws
-mc ke
-maver ick
-gu la
-cross roads
-fan g
-s ade
-nik ol
-chee tah
-me c
-pp g
-er ick
-ðŁİ µ
-tox ic
-bj j
-viol a
-sp ire
-ch ino
-tra vis
-institu tional
-ha as
-low ry
-w ac
-ea e
-hu mid
-mp ton
-ru ck
-je w
-c ine
-zim mer
-se f
-bhar at
-fre es
-aam ir
-ðŁĴ ħ
-z inc
-wan e
-multi player
-royal wedding
-e el
-preci pit
-qu ery
-kimber ly
-isa bel
-ful fill
-ig an
-vau l
-pan e
-sc y
-dig it
-gun n
-u tah
-dog day
-fi on
-xia omi
-da c
-el ast
-cha vez
-ro blo
-g ine
-ten th
-ab h
-ke to
-hur dle
-na dia
-memorab ilia
-ha bs
-qu an
-h w
-hv ac
-pix ar
-ec cle
-kram er
-accu ses
-ðŁĴļ ðŁĴļ
-per se
-mean time
-wa hl
-atle tico
-âĢ¢âĢ¢ âĢ¢âĢ¢
-ott oman
-no vo
-k us
-conne cted
-tru sts
-d mv
-spen cer
-rahu lg
-do ve
-sto kes
-bolog na
-enthusi asts
-Ã ª
-rockstar games
-ted cruz
-du ras
-s acked
-late x
-immer sive
-cer t
-lu cin
-princi pals
-fa res
-sa ils
-far n
-am ent
-saf fron
-quent in
-check point
-fer ris
-ex cur
-ðŁijī ðŁı¼
-bai ley
-se h
-ter re
-mad am
-s band
-wan derers
-cumber batch
-yy c
-digit ally
-blackandwhite photography
-roll in
-moroc can
-ðŁĮ ħ
-din ner
-d well
-to om
-m ye
-ez ra
-cp fc
-war hol
-me er
-jon ah
-no aa
-s gate
-so on
-secu lar
-g ating
-ti o
-dri ver
-si ssy
-assan ge
-ta th
-ed mund
-bobc ats
-ra ji
-po stage
-stu ds
-m gm
-kat o
-edin burgh
-meet the
-shir t
-fa a
-mens fashion
-sp reads
-wi m
-car ts
-phoe be
-j ars
-bot swana
-Ù Ĥ
-ed war
-sk ar
-ri ve
-gu sty
-c tv
-ferdin and
-su therland
-nickimin aj
-k v
-si us
-bee ch
-re z
-desi res
-on ial
-camp o
-quar ry
-lor raine
-gil more
-ig gy
-µ ï¸ı
-ho pping
-avi z
-ðŁĮ º
-uni sex
-dedic ate
-att itudes
-ste er
-jun kie
-rail way
-y b
-whi sper
-key an
-k us
-ju g
-di x
-a ins
-sum mon
-ov ich
-sy ed
-her ald
-ma ison
-me ded
-wild flower
-main land
-ri sky
-ru kh
-over looked
-ki c
-destro ys
-nam an
-ki p
-z ano
-champion sleague
-ban dit
-quin cy
-smi le
-cal vin
-open ings
-ta pp
-ol ulu
-spec tro
-accred ited
-ap k
-pra ised
-bar nett
-pol len
-premi ered
-selen agomez
-tou red
-screen ings
-uu u
-mis o
-en se
-adam lambert
-guel ph
-har yana
-hu tto
-le ar
-l tc
-po ached
-brex it
-æ Ŀ
-tt c
-pa vement
-mon gers
-ro e
-ad ers
-ling ton
-particip ant
-ca red
-ga il
-y ates
-lan tic
-dash board
-jo o
-feli pe
-ssi onist
-bu m
-s end
-a eri
-thu gs
-luci fer
-a he
-dete ctor
-fil ly
-gas oline
-ham per
-hump day
-the ta
-the band
-fore casts
-o hhh
-lo bb
-hol l
-cp u
-az u
-ad ar
-hai ley
-bu b
-car t
-quo ted
-an archy
-pan cre
-twit art
-al den
-st ash
-the less
-or ni
-belie bers
-mor mon
-partic le
-avi ation
-⬠Ĩ
-webcam toy
-sad dened
-cru is
-ham let
-n ct
-roll ins
-marque e
-saw yer
-reli ance
-a ura
-di ec
-soo thing
-sig nings
-ak is
-Ã ³
-at kins
-aer op
-ðŁĮ ¿
-y ab
-sh ari
-con nol
-du bbed
-manufac ture
-convin cing
-feelthe bern
-ra u
-pu lit
-on ec
-gem stone
-ur ging
-bag u
-ga h
-aci ds
-fi anc
-zodi ac
-sn oop
-her rera
-initi ated
-ven ge
-profess ors
-pro di
-stron ger
-e mission
-bb a
-hal le
-ta pp
-haw an
-wh im
-compe ted
-myr tle
-ir port
-cold play
-ach e
-ske p
-m son
-ss ic
-calli graphy
-swim mers
-me y
-pp c
-thri ft
-po c
-re places
-commu ter
-âģ¦ âģ¦@
-go ers
-lo gue
-para dig
-bas kets
-sensiti vity
-joh an
-atl antis
-& &
-suit case
-anxi ous
-l h
-str i
-gal loway
-stre ad
-war den
-gr ounded
-ffici ency
-li feat
-reli c
-disgu ise
-island ers
-f cofficial
-classical music
-b mc
-en field
-bi que
-oak ley
-bat man
-sla ying
-ner ves
-mul tit
-calci um
-projec tor
-scott sdale
-ant ino
-gri ps
-kim mel
-des mond
-prote stors
-hi atus
-metaboli sm
-conclu ded
-press er
-ti pping
-sli de
-e to
-hun ting
-aus open
-ri k
-pp ery
-innov ators
-pitch ers
-ag ger
-fun gi
-z ad
-proli fic
-rockn roll
-bl ames
-ct ar
-stam ford
-q ad
-mozz arella
-insan ely
-den ver
-ph ouse
-nom ad
-ï ¿
-s ris
-pro du
-hen ley
-pag an
-am trak
-ru bi
-in cl
-tu tor
-sco tia
-wo es
-sing apo
-fun nel
-turn bull
-know ledge
-gri mm
-real madrid
-we are
-missi les
-con sol
-emo jis
-sne ak
-smi ths
-ru iz
-br ou
-i el
-ha ver
-ðŁĮ ļ
-kin gof
-basil ica
-circul ation
-prin ters
-ta pping
-ri dley
-dra gged
-ha j
-writ er
-fundament als
-personal ities
-me tre
-stereo types
-bur le
-best of
-n ffc
-ha th
-mini stries
-a ali
-trac ing
-pav ed
-ł ï¸ı
-g ic
-insp ire
-tu g
-ha re
-repe ated
-ex pon
-lol li
-rho de
-pre cin
-install ations
-instag ram
-az ar
-i es
-sole ly
-du kes
-mission ary
-van guard
-fursuit friday
-on d
-pol ari
-ma st
-har an
-jos é
-jack ed
-ec oun
-al ities
-ne ph
-ra vel
-moder ated
-sco w
-s fb
-uru guay
-as o
-ni g
-au du
-p ints
-lat ina
-ben z
-m itting
-char ted
-mat ology
-cit ro
-biop ic
-ðŁij Ń
-djo kovic
-fox y
-agu il
-so to
-an ada
-sin king
-sc rap
-hair s
-bethan y
-fact friday
-ðŁIJ IJ
-unlea shed
-) (
-contra dic
-ram on
-coast line
-y ong
-sn sd
-li gan
-p ome
-mit age
-ge tt
-wat i
-ri sk
-so aring
-bru sh
-f pl
-av an
-å Ĩ
-lar son
-sh ear
-mul til
-blu r
-multi media
-chun ky
-par i
-n ani
-weir d
-cholester ol
-char les
-dream ed
-tan ning
-puzz les
-fr am
-hand ball
-ch ag
-beli ze
-al u
-bang s
-Ñ Ħ
-detec tives
-mc g
-ish q
-bo thered
-saf c
-mp ing
-ten eri
-g ays
-sail or
-an gi
-mul ticul
-gue ssed
-ros é
-high ways
-bro om
-chatt anoo
-- '
-see ker
-on ed
-at f
-lu c
-> <
-bar i
-per cep
-jewel ry
-as ph
-sor row
-sl ing
-mam moth
-jac kie
-ë §
-wilt shire
-sa o
-can cell
-im paired
-tor ial
-bre ed
-guy en
-jud ice
-tit le
-pro spective
-applic ants
-ðŁį Ĭ
-epis cop
-e id
-b yo
-stock ings
-ðŁĴĥ ðŁĴĥ
-ll p
-sna g
-keep it
-l ough
-ol son
-matur ity
-!! !"
-cop ter
-i sha
-bl i
-wil mington
-tr youts
-th ai
-ðŁ¥ ³
-pe bble
-kra ft
-f p
-Â º
-ssi vely
-li vin
-contest ants
-tex tures
-jo an
-h dr
-film festival
-prov ence
-wi do
-op end
-c si
-sto wn
-cro ati
-ad just
-host ile
-analy sts
-il an
-cu ppa
-bru m
-newfound land
-good win
-me tt
-mall orca
-plu gs
-bu k
-bb hutto
-wrest le
-sa ire
-sho pped
-for za
-le head
-vi vo
-ba st
-ro xy
-reg is
-hard working
-hon olulu
-desp air
-young sters
-ni g
-impro mp
-roll tide
-de emed
-tre ason
-ru shed
-for ged
-ff f
-pikach u
-bri ggs
-do it
-ac cent
-la us
-gla ze
-compet ent
-a ho
-photo g
-mid field
-le go
-har vard
-min orities
-re illy
-slic ed
-once upon
-initi ally
-financi ally
-landscape photography
-har dro
-qu o
-mm ers
-par kinson
-smu gg
-read iness
-bru tally
-glou cester
-mp ed
-bbhutto zardari
-mur der
-ye d
-dat aviz
-sr t
-dow ning
-bi ans
-m ü
-fle ck
-fli pped
-s ly
-brilli ance
-ri m
-k um
-bubb a
-ko i
-knit ted
-sor g
-ma is
-ðŁĮ ²
-ti ss
-su stain
-sen su
-ak han
-zi est
-exam ines
-chardon nay
-user name
-short list
-re bs
-on o
-dar ing
-hard wood
-che que
-righte ous
-light ening
-dir k
-shra dd
-du ra
-down stairs
-sh al
-ami gos
-ru ff
-s law
-ri es
-red nation
-man us
-ðŁĩ§ ðŁĩ·
-distin ction
-u bun
-dur an
-mi gra
-thi ans
-la ver
-domest ic
-k x
-jaz zy
-justi fy
-belong ing
-insul ation
-color stv
-drun ken
-chann eling
-qu and
-xi ii
-enligh ten
-kan o
-fati ma
-teen choice
-terri fied
-p ba
-as ley
-met museum
-dun e
-pack er
-ki o
-ðŁĴľ ðŁĴľ
-bo iler
-fas cism
-ar mored
-back grounds
-in mates
-embarra ssed
-defin es
-th d
-we go
-silic one
-lo on
-el ding
-bor rowed
-he mp
-ak sh
-kaw asaki
-br y
-de af
-kill er
-dispo sal
-ðŁĩ °
-glaston bury
-un covered
-o xide
-po ff
-d ant
-k j
-ku ro
-dri zzle
-peop les
-fe e
-pro pri
-dd lovato
-pi ggy
-ot is
-aller gies
-u bis
-pengu in
-ser a
-vi z
-prosp erous
-ici des
-tornad oes
-sene gal
-web cast
-sto red
-enchan ted
-bb cone
-bay area
-entrepreneu rial
-rednation rising
-experim enting
-ang an
-lot to
-they re
-por e
-er p
-seren e
-east wood
-bro kers
-bar ge
-stal lion
-timber lake
-tailo red
-dy stop
-b ate
-lat ors
-di xit
-bran son
-dynam o
-ky lie
-shame ful
-bt wn
-spring time
-mix ture
-s ounded
-lu ton
-dad es
-mal a
-op ra
-en ic
-rahulg andhi
-se wer
-~~ ~~
-ky u
-nor theastern
-ca er
-bc u
-nir vana
-kitch ens
-ous y
-al m
-river dale
-hid den
-fl int
-sp d
-pat rons
-katy perry
-au gh
-exhib itions
-sm c
-shu ts
-at ore
-da in
-some thing
-ber th
-bo g
-por ter
-gen to
-con cussion
-ang lic
-ro we
-gr illing
-scar lett
-master ing
-mor nin
-comm ented
-si me
-si zing
-christ y
-ce os
-st m
-at ry
-tari ffs
-vac ation
-pre judice
-p su
-paren tal
-far age
-can a
-cap com
-koso vo
-you re
-men stru
-stal in
-grape fruit
-br an
-che sa
-dav en
-exc el
-!! )
-๠Į
-distribu tor
-ce a
-bride sma
-millenni al
-wa in
-ob serving
-mis ery
-plan etary
-expo sing
-bra ised
-comp ton
-don gha
-q l
-spring steen
-th ul
-syl ve
-cab o
-pal ad
-niel sen
-gaz ing
-ba ja
-r oud
-orchi ds
-johan nesburg
-se man
-d ji
-oper ative
-affe ction
-eclec tic
-at c
-mut ant
-aw x
-nic e
-mel bourne
-indu lg
-tu lip
-dias pora
-wel p
-big gie
-mississ auga
-retri ever
-or an
-tam my
-c ta
-hipp o
-seas oned
-ger mans
-eng v
-marvell ous
-im f
-rela ys
-mon tan
-maur iti
-me ister
-as surance
-reig ning
-su fficient
-han e
-no thing
-pos se
-nav y
-in love
-brigh ton
-en qu
-ch ung
-sweat y
-es c
-cal ed
-man s
-nicar agua
-sl ices
-mo cha
-washington post
-bb n
-dam ned
-grow ing
-en burg
-lo an
-me s
-wh oops
-believ ers
-spi el
-vo daf
-l at
-s led
-cricke ter
-brown e
-golf ers
-bar ra
-wat chers
-lu igi
-sw amy
-mom s
-pit ched
-san tor
-cr s
-si re
-sc amp
-bo de
-ste war
-jon ny
-ent ity
-pac qui
-mind ful
-min india
-bear ded
-temp t
-scorpi on
-eat on
-authori zed
-ar to
-s vp
-op athy
-cch ini
-house music
-disney world
-âĢĶ @
-pro pose
-di y
-expen se
-ten g
-pupp ets
-sm el
-d aca
-per ry
-fin n
-boo sting
-lefto vers
-cou gs
-satell ites
-man y
-az e
-g ong
-fi e
-metho do
-fer ries
-ðŁ¤Ķ ðŁ¤Ķ
-explore rs
-load er
-attrac ted
-il ton
-godd amn
-pi azza
-doc tr
-sav ing
-paragra ph
-visu alization
-may ors
-work flow
-ack les
-ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ
-ठ¸
-twer k
-clu t
-lo ver
-te ases
-si an
-o te
-deter ior
-accor d
-l fw
-swar ovski
-nat al
-tra ps
-k ina
-analy ze
-laye red
-bever ages
-un it
-ran som
-pe shaw
-dest ined
-astro logy
-si pping
-miley cyrus
-cam ino
-marshmal low
-bli ss
-out back
-fa q
-int oler
-humil ity
-po ppin
-hallo ween
-mon tene
-op hy
-nu n
-tattoo ed
-a as
-ðŁĮ ³
-dale y
-qual ity
-du sa
-fisher men
-swi f
-ter rac
-st au
-le in
-trol ling
-ship ment
-garden er
-march madness
-head band
-gr t
-bur nett
-w and
-!!!! !!!!!
-gh e
-du x
-hu d
-war ner
-ðŁĩ ¦
-ex ile
-rescu e
-rat a
-d han
-duc ati
-dro wn
-bl ends
-spi e
-alli gator
-simul taneously
-broo ke
-u ke
-k har
-comm union
-ri ka
-ford fc
-chin atown
-you rown
-me y
-can al
-syste matic
-de pri
-ox ford
-an il
-w ut
-equ ation
-be z
-fle ur
-the good
-lang ley
-ad ity
-ed ith
-al fie
-о ÑĤ
-en cry
-br ill
-ex emp
-ce sar
-mb ling
-ab ri
-sc icom
-j ing
-school ing
-mi ka
-mechan isms
-impromp tu
-rhe a
-moo re
-crime a
-be sto
-wri ght
-el ders
-ro ds
-kam al
-folkl ore
-be et
-mini on
-reli eve
-thr o
-team usa
-pas cal
-made with
-boli via
-itt i
-free bies
-desi red
-best selling
-l iness
-la den
-ke ane
-mi sts
-hipp ie
-atta chment
-@ /
-se w
-flan agan
-âĿĹ ï¸ı
-supre mac
-stl cards
-si as
-q u
-rh ys
-ste ep
-val leys
-v w
-pav ing
-disp at
-al ison
-por te
-id u
-new sc
-soc ket
-mo s
-co star
-re vo
-prote ins
-stanley cup
-m cal
-ear ring
-se cs
-mc lean
-cap ric
-nick elo
-ad en
-v c
-shou se
-adap tive
-maxi mize
-entertain er
-pro se
-gri ffi
-six teen
-lam ar
-mi rage
-saudi arabia
-awe ather
-ru st
-in filtr
-fashion week
-ðŁĺĬðŁĺĬ ðŁĺĬ
-selec tive
-bubb le
-a den
-fen nel
-deci sive
-m ta
-mock ing
-mb les
-st amp
-mu le
-bernar do
-gr in
-po tt
-j ingle
-vet tel
-colom bian
-cam o
-motivation monday
-ba han
-p ly
-dh ary
-k ami
-x men
-sleep er
-gar a
-my sti
-confi dential
-conflic ts
-p neu
-ce s
-insur tech
-clean se
-me rely
-va is
-tu x
-the great
-shar on
-ma j
-hol a
-eco systems
-aj ay
-aa j
-hu sh
-har mon
-backto school
-wiki leaks
-reflec ted
-ðŁĺ ĵ
-commemor ating
-ac et
-buck ingham
-messi ah
-tu ous
-hor net
-to be
-d q
-he ine
-mi g
-pl ate
-nichol son
-sp ie
-cumber land
-nor mal
-pho bia
-happy halloween
-city fc
-mc el
-gilli an
-ke to
-lu de
-de mise
-su ga
-str ate
-mcgr ath
-visit scotland
-foo led
-cb r
-gc se
-col ori
-po td
-missuni verse
-fin ances
-ma poli
-for ks
-Ø ´
-cann on
-medic inal
-ðŁĹ ĵ
-kh o
-wre ck
-pan to
-bag el
-gu ll
-syndic ate
-ic y
-pr c
-ki en
-zi ka
-ti sh
-pe ta
-c co
-li za
-ch ut
-ex traction
-el g
-gl i
-fu eled
-pos it
-respec tively
-leice ster
-br ink
-vulner ability
-im ported
-e sha
-ðŁ¦ ħ
-r ural
-re ll
-gam ing
-atlan tic
-aband on
-no ah
-re solved
-pro state
-aller gic
-ps d
-âĺ ¹
-dun geon
-fang irl
-illumin ated
-m hs
-white sox
-d ently
-ck o
-endor se
-over ly
-dazz ling
-prior iti
-night life
-ut il
-be have
-flam en
-east bound
-ðŁĴ Ł
-ilove you
-gov uk
-mozam bique
-alle gi
-dr i
-testim onial
-ath s
-ì§ Ģ
-mm y
-shab by
-pro secco
-friend ships
-cal am
-dam ages
-off set
-jura ssic
-jun o
-arre ll
-ðŁĴ ©
-interven tions
-dare devil
-car ver
-run away
-ran e
-truste es
-ha ute
-dep ths
-ðŁİ Ń
-me in
-sacrific es
-con cier
-ne sting
-i zzy
-me tam
-ilove my
-ur ine
-du lu
-mal hotra
-ve ins
-night ly
-co at
-an di
-he witt
-lon el
-ci ble
-wr ite
-jen nie
-sant ac
-ĸ ï¸ı
-str ato
-singapo re
-sop rano
-kri sten
-cheer ful
-flee twood
-fa iri
-m eli
-wa st
-tur nt
-sfor sale
-sc rolling
-angel ina
-ren dition
-jeric ho
-nick y
-or b
-fla vo
-patri ot
-ash eville
-sick ness
-re fund
-aggre ssion
-b pl
-ãĥ ĥ
-elu sive
-thi story
-hang er
-bu ffs
-vil las
-at kinson
-sp h
-ja it
-decl ined
-wo k
-supre macy
-oo tball
-ey ang
-ðŁİ ĵ
-s ford
-ath i
-consu me
-road ster
-e so
-u pro
-reci pe
-au f
-uc i
-ar on
-oo oh
-cs go
-re ich
-mc d
-min ute
-ladi es
-pun k
-rut gers
-mee k
-ariz on
-ta j
-land lord
-de gra
-autu mn
-lyn x
-us f
-b hi
-fairy tale
-dongha e
-bet sy
-explo ded
-chen nai
-op a
-pro tag
-br ant
-ðŁĵ °:
-g f
-pal li
-ðŁı¼ âĢįâĻĢï¸ı
-su t
-ill ini
-colum nist
-shir tless
-de centr
-sear ched
-ec or
-bu ggy
-s ack
-ðŁĺĤ ðŁĺŃ
-de t
-ther i
-or naments
-bring back
-to v
-quarter finals
-ic he
-con stra
-gi er
-buchan an
-vi x
-kay aking
-mu stread
-swal low
-mel b
-sc af
-op al
-may oral
-har at
-ðŁ¦ ĭ
-schedu les
-id f
-ha gue
-ro z
-a ah
-d mc
-du plic
-ca che
-orph an
-frac ture
-rec on
-ch av
-bun nies
-al ain
-mustaf a
-ðŁİ Ļ
-vac ations
-dynam ite
-tex ted
-broad caster
-ðŁĴ £
-ste amed
-rock er
-di etary
-luxury travel
-inaugur ated
-sa wards
-vaugh n
-lincoln shire
-click ed
-kra ja
-f anc
-remo ves
-layo ffs
-mc far
-bre eds
-win nie
-jon ghyun
-incen tive
-vari ations
-pat ton
-atur day
-persist ent
-pr un
-pi ers
-dal es
-æ ĸ
-breast feeding
-r ance
-ta wa
-Ĥ âĸ
-mur doch
-cap tive
-thi stle
-nic a
-commod ity
-cou ldnt
-board walk
-graci ous
-practiti oners
-n gc
-scru m
-ner o
-camoufla ge
-col on
-he i
-phys icist
-saturday morning
-ten er
-si won
-colum ns
-bru ne
-y vr
-ba ir
-reti res
-hal am
-cab er
-shaz am
-min u
-cas cade
-milk shake
-gri d
-d ren
-vin cent
-so dium
-plat ter
-cheer leader
-chen ko
-y ak
-elimin ated
-ty po
-y man
-re think
-âĿ Ĺ
-ts ville
-bernardo kath
-ex tr
-ðŁĺģ ðŁĺģðŁĺģ
-ta o
-re per
-mo ths
-em powered
-c iting
-transpor ted
-mon ks
-san at
-cle ars
-bachelore tte
-camp bell
-racha el
-har le
-hand ler
-climb s
-inter ference
-rele ase
-sh and
-r bs
-hr h
-ãģ ª
-val le
-r é
-sli me
-w akes
-chu bby
-slo an
-el ves
-ath en
-attor neys
-micro scope
-ston er
-sc aling
-o be
-c out
-se man
-mid week
-bal sam
-ðŁĺį âĿ¤
-ti ful
-v ish
-lo tta
-ri pping
-re mn
-ti re
-le ap
-ha vent
-la by
-hi mach
-whisp ers
-we in
-ðŁİ ¸
-wild flowers
-se le
-u cc
-li ability
-az ine
-sw ings
-k ya
-ta ir
-re main
-e do
-flo ps
-poc ket
-grand ad
-exam iner
-gr is
-ffe ct
-ðŁijĬ ðŁı»
-stud ded
-heart beat
-de acon
-firm ly
-infec tious
-ste f
-out lines
-le asing
-cla ws
-sen se
-tab s
-hoo t
-mo sul
-spa wn
-co a
-hog warts
-ve in
-alban ia
-manu el
-b ino
-vaux hall
-scot land
-go bucks
-mat ty
-phy sio
-tor ino
-const able
-investig ated
-s lower
-mistak en
-bay er
-wild fires
-vo ic
-x on
-time to
-chas sis
-bar ric
-pi on
-bald head
-woo k
-regi str
-dra fts
-b hs
-li gue
-l ick
-staf fordshire
-baf ta
-dar ry
-je anne
-ven ding
-cor p
-⼠³ï¸ı
-kid dos
-fen way
-ca o
-west bound
-ðŁĺ Ļ
-dv r
-quick er
-bla h
-goo die
-ðŁĴĭ ðŁĴĭ
-vo x
-esp er
-fac ade
-cor relation
-red bull
-rou p
-decl ining
-chi ve
-mc gee
-tur o
-in der
-f eller
-fu g
-il ysm
-mar di
-peshaw ar
-ki eran
-ine ma
-meat balls
-pe ck
-depre ssing
-sen sing
-gi z
-dd ington
-spring watch
-ro aming
-yellow stone
-horse shoe
-am man
-week day
-ol or
-ðŁ¥ °
-boo sts
-spr int
-scar ves
-je e
-bee tro
-cl an
-all the
-ìĦ ¸ë
-enlighten ment
-ado be
-re generation
-? @
-cont ag
-yach ts
-to u
-mor a
-en voy
-r ani
-go li
-dhanush kraja
-wood working
-streng ths
-se di
-disc s
-ar ina
-sc on
-lit e
-ano ther
-ðŁ¥ Ĭ
-ye men
-gu ern
-sav vy
-lo yed
-biom ed
-heart break
-comra des
-milli e
-pat ch
-un f
-jar vis
-bl aming
-commemor ation
-ge y
-å ¥
-cardio vascular
-alig ned
-docu ment
-. ?
-aesthe tics
-em u
-the irs
-le h
-ps ic
-si f
-pl ateau
-ex pend
-domin ating
-rob es
-mauriti us
-excep tionally
-hom er
-discover ies
-bra un
-ten nant
-insul in
-ðŁİ ®
-car bs
-te as
-? !"
-zi e
-franco is
-brow sing
-th ol
-cla rence
-hel per
-ob tained
-cas sie
-le es
-! ,
-pome gran
-hu bs
-presti ge
-] [
-mach er
-bott led
-pun ch
-pi pe
-o ch
-gall ons
-deliver ies
-u ra
-un day
-mon de
-depic ts
-re gency
-outra geous
-khal ed
-car o
-he arti
-za g
-develop mental
-over coming
-stati stical
-flavo red
-for ds
-cre atives
-lau rence
-di as
-sun screen
-in ked
-pre acher
-n ul
-impac ting
-auti stic
-âļ Ķï¸ı
-o ss
-pel icans
-cele ste
-v b
-ru mp
-mc gra
-fair fax
-hu mor
-bbc news
-row ling
-cal der
-seam less
-ag ne
-p ti
-mix ed
-t shirts
-mer ci
-b tob
-women instem
-genealo gy
-pre ven
-l our
-cra dle
-gi use
-Ð ¾
-chron o
-fair ness
-chocol ate
-tor y
-as da
-pre scott
-stret ched
-al man
-u il
-re charge
-in tre
-ob st
-hosp ital
-hay ward
-teneri fe
-fried man
-vap ing
-confe ssions
-ye ah
-bal li
-luck now
-cor pse
-sculp tor
-amp ton
-t pp
-indic ates
-sur plus
-tru man
-ðĿ Ļ
-sin ha
-in vo
-sovere ign
-ke v
-establi shing
-engra ved
-assu ming
-ðŁı ģ
-sou za
-fab i
-ton ed
-oun ge
-del oit
-dow ney
-no ble
-om or
-car tridge
-ðŁı IJ
-u hur
-hol loway
-succe sses
-r sa
-âĦ ¢
-ma zz
-tw d
-disc ourse
-. <
-y at
-satis fy
-com pri
-ठ¹
-graph ite
-disser tation
-ar ter
-í Ķ
-b ally
-zom bi
-ly ons
-a ic
-u bc
-pra da
-e il
-da x
-cla i
-grand daughter
-extravag anza
-chall enge
-ðŁ¤ ŀ
-po ver
-primar ily
-dad dy
-man a
-bi kers
-inqui ries
-da un
-fel ine
-gener ative
-he f
-benef iting
-lind sey
-pol ka
-demonstr ated
-al le
-rand y
-o su
-low key
-weir dest
-red bull
-our y
-n ous
-wood stock
-cre denti
-nic er
-g ado
-aly ss
-ap h
-prepa redness
-station ary
-incorpor ated
-dy er
-sarato ga
-cele sti
-: "
-antibio tics
-or gs
-inde fin
-ap ron
-и Ð
-fif teen
-no f
-ðŁĶ Ŀ
-ph x
-te ga
-m z
-organiz ational
-on air
-band ung
-pleas ures
-mor i
-secre tari
-rac coon
-ca shi
-pil ates
-k on
-geof frey
-la o
-kam p
-depart ments
-back packing
-an am
-Ã «
-crack down
-aun ty
-on do
-li zzie
-ph ers
-cu n
-ðŁĩ ±
-k pop
-pu t
-inten tional
-connol ly
-bar clays
-hs fb
-swin don
-u ku
-s ally
-a int
-âľ ħ
-pen ang
-up lifting
-epile psy
-inter ro
-bun gal
-go ku
-blue berries
-ठ¦
-u ssia
-sil ky
-mou red
-i stic
-bri efs
-me ats
-go b
-ch aser
-state wide
-pra sad
-gl itch
-ar in
-ban ff
-memb er
-ðŁĺŃ âĿ¤ï¸ı
-lo ving
-hall a
-ภ¡
-smo kers
-yak u
-scicom m
-physi o
-sw ol
-lem ons
-gel ato
-ch ool
-capit als
-ki stan
-ti ghts
-spi kes
-trav ellers
-ik lan
-commissi oning
-ar ine
-emabiggest fans
-empha sis
-front line
-pad dock
-destruc tive
-ba ha
-l inger
-je wish
-shet land
-mc gin
-mon key
-ko z
-s one
-raj ini
-te h
-y en
-c vs
-masqu er
-gir ly
-we sle
-was nt
-bro dy
-termin ator
-gil le
-mag gi
-bir die
-jeopar dy
-cu bic
-vm ware
-intric ate
-an up
-to pia
-east on
-sab res
-investig ates
-bu sting
-bil ingual
-valent ino
-in format
-fer re
-advent ur
-hydr ate
-for sy
-az iz
-san to
-e de
-whist ler
-continu ously
-d ham
-un used
-ji had
-addic tive
-vi dy
-do b
-i do
-fi ed
-ni versary
-n one
-fu er
-ðŁĺį ðŁĺĺ
-coven ant
-prin table
-immac ulate
-o em
-cl t
-serv ants
-consu med
-un released
-sc um
-pack aged
-me re
-ìĦ¸ë ¸
-to by
-ta f
-spo ons
-me al
-f ball
-fair field
-jan et
-silver stone
-dart mouth
-follow me
-voy ager
-kom bat
-anni ver
-ene w
-mag dal
-ho ve
-sa th
-grizz ly
-car di
-gart ner
-sand y
-kan ye
-post ure
-po ign
-im pulse
-radio logy
-horiz ons
-si am
-aish war
-= =>
-no che
-tr is
-el yn
-com me
-du i
-ce c
-councill ors
-cudd ling
-creep ing
-loc ke
-manag es
-trans ferred
-ne cks
-di er
-dan o
-v ick
-lun ches
-d he
-en sures
-cri ss
-ul ster
-bann on
-cont enders
-sp am
-sweet ness
-med al
-hon duras
-arc tic
-ultra sound
-in fr
-disco vers
-ei ffel
-ca sters
-ru ben
-du st
-awe ed
-atri um
-lest we
-se ared
-ðŁĵº :
-ty ne
-ex changes
-little mix
-l le
-astron auts
-hersh ey
-work day
-kno b
-so v
-re signs
-today show
-der man
-an th
-af c
-ta ster
-sw oo
-sa eed
-per ing
-narrow ly
-rn li
-best buy
-panas onic
-obst acle
-farmer s
-ðŁİ Ļ
-pa wan
-ki est
-ang ers
-absur d
-oh my
-sin o
-pist achi
-sp ice
-giu li
-prime time
-ko w
-k ens
-ex agger
-! ?!
-u ba
-midd les
-ju dd
-e jec
-slam med
-pen sions
-of a
-re create
-b hp
-xx l
-liver pool
-thre sh
-pur ity
-ni eu
-hol ics
-wr ath
-ra do
-gli o
-am ma
-dile mma
-cr u
-lets go
-.... @
-âĿ ĵ
-sugge sting
-tru mps
-hor us
-f v
-ic om
-refer ring
-predic tive
-tar ts
-ge tte
-so ck
-glo ssy
-pin ky
-al ec
-thy me
-ou ra
-thero ad
-pe tr
-cr am
-p fi
-dv n
-me ier
-incen tives
-tun nels
-mobi l
-rec ap
-extra s
-upri ght
-rev amp
-per severance
-, -
-ot p
-mir ror
-ar wx
-ger ry
-ma her
-g or
-hom epage
-am is
-ag ra
-made le
-best friend
-sirius xm
-bun dles
-admir ing
-t dsb
-ðŁį ģ
-ch as
-slow ing
-ro h
-wall papers
-âĢ¦ /
-tek ken
-gang s
-tal a
-lind say
-shou l
-line backer
-tool kit
-ur anium
-caly p
-ab rams
-mat thi
-ðŁı ¿
-hon ourable
-da yo
-ver sail
-tan k
-st c
-fr itz
-spl end
-pat ag
-anno yed
-on day
-devast ated
-chattanoo ga
-national ism
-mas sey
-jen n
-tail or
-dev gn
-org ans
-zu cchini
-on fox
-sat ire
-wex ford
-dis grace
-no to
-vol ta
-âĿ¤ï¸ıâĿ¤ï¸ı âĿ¤ï¸ıâĿ¤ï¸ı
-à ¶
-home owners
-poin ter
-m cr
-au sten
-day sto
-mo ons
-pal ma
-gra zing
-e so
-influen cers
-shahid kapoor
-compli ant
-measure ments
-develop s
-y d
-par l
-p vt
-rand olph
-tor tured
-ger ald
-eli as
-deepi kap
-war mup
-hick ory
-g ap
-co ffin
-am our
-re neg
-moun ting
-seven s
-ig le
-hi er
-dec ad
-tri ght
-esc apes
-wer ner
-t fl
-ful filled
-ni ger
-sour dough
-re aper
-choo ses
-spin ner
-week nd
-fil tered
-sh uk
-kat i
-old ham
-open source
-kh anna
-at elier
-conne c
-opho bic
-gla s
-complic ations
-ar son
-counc ils
-sm ol
-as sy
-lur king
-ling ui
-han ks
-e in
-Ù ħ
-ru gs
-n guyen
-nou veau
-men ace
-le v
-alad din
-ru ining
-round about
-k m
-con or
-shoo ps
-may day
-traum atic
-prab has
-ka iser
-k ita
-rou ter
-pe dro
-re tar
-stun ner
-spani sh
-distur bed
-acade my
-e learning
-wit ty
-sen g
-fer al
-av y
-sta b
-ke aton
-ur du
-ko to
-hu i
-coo ke
-ari an
-the personal
-u ma
-se ap
-a sting
-rhetor ic
-hand writing
-munici pality
-consor tium
-ðŁIJ Ł
-glasgo w
-ra ya
-eli za
-polym er
-bro th
-prac ti
-correspon dent
-addic ts
-gay le
-ail ing
-o fe
-p li
-hear tw
-st itch
-sight ings
-prie sts
-sam o
-slo th
-good wood
-roc co
-sab c
-summ it
-l ace
-pres ley
-itt en
-cin cy
-thepersonal network
-s week
-pe gas
-af con
-regi stry
-ci m
-le th
-dic ap
-cand ice
-flu ent
-sm ack
-pede stri
-al oud
-car ac
-priyan kach
-p gh
-ir ons
-dol ce
-lat via
-dece ased
-thero ck
-cla p
-cen e
-fo am
-morris sey
-gre t
-essenti ally
-com cast
-be agle
-argu es
-ing ed
-- âĢ¦
-sa g
-ha san
-ðŁĻ Ĩ
-ðŁį °
-nh ra
-kann ada
-indic ators
-on er
-bri xton
-at as
-screen play
-sor ority
-sha heed
-he em
-class mates
-tain ment
-es i
-breast cancer
-zucker berg
-aur or
-en cia
-ref ers
-kae per
-vor tex
-com part
-lym ph
-photograph ing
-ste ff
-rest ling
-par sley
-mom ento
-th man
-lac king
-du tt
-ocu lus
-fin o
-fren zy
-ra sc
-der n
-dis missed
-noo k
-met gala
-sh ill
-rapha el
-maver icks
-exhib its
-eag erly
-c pa
-amen ities
-. âłĢ
-exo dus
-ern st
-lit a
-deal t
-womens march
-i ain
-score board
-campe ones
-c en
-ti ki
-garri son
-fidel ity
-bra g
-road map
-psy chop
-lo e
-ble u
-ðŁijĬ ðŁı¼
-sau vi
-spr inger
-temp tation
-ru dolph
-ac ura
-wic z
-parach ute
-stro l
-len ny
-zi k
-dom s
-nb af
-al pac
-vivi an
-ro ve
-pre et
-perpe tu
-sna ke
-air soft
-infl atable
-prin ces
-ati e
-ffe y
-pati ent
-m ire
-chel le
-sl ack
-groo vy
-# :
-up loading
-!!!!!!!! !!!!!!!!
-siem ens
-provi sion
-v fx
-need y
-f ats
-to poli
-bhu tto
-sa thletics
-alu ms
-t winning
-south western
-adop ting
-last night
-man ne
-la ga
-tw ell
-ac ia
--- --
-eye wear
-hur ley
-fle e
-sa ch
-pe cker
-cost ly
-is k
-cr ates
-polic y
-ero sion
-in go
-wer k
-ðŁIJ į
-torto ise
-therap ies
-inter net
-chihuahu a
-ri ps
-fre i
-ed or
-tai ji
-t fc
-do d
-demp sey
-christ in
-chen g
-hi ps
-gra eme
-com passionate
-cavali ers
-histor ic
-soul ful
-crimin al
-ja c
-vin ci
-expi red
-sur at
-turi smo
-k ona
-se aweed
-ber ts
-le ica
-expre ssing
-a al
-wor t
-break fast
-her ring
-am used
-rhu barb
-mar tian
-cospla yer
-y ash
-stri al
-ra ul
-refer ral
-dw ts
-j w
-ad ler
-cur tains
-gu r
-val ence
-tyr one
-sw fc
-coach ed
-re born
-diabe tic
-cho ke
-nor folk
-investig ative
-ðŁĴ¯ ðŁĴ¯
-z id
-v mas
-phi e
-objec tives
-âľ ĭ
-over due
-di vers
-mat su
-ðŁİŁ ï¸ı
-casu alties
-ภ§
-al k
-stand ardi
-re alist
-arti facts
-pand or
-ke x
-in vin
-( !)
-ine y
-par aly
-mr t
-fay e
-the voice
-on ga
-de ed
-skin ner
-az wx
-speci men
-priyankach opra
-nu evo
-bar kley
-toulou se
-resu mes
-football ers
-cit i
-fe tch
-è re
-lestwe forget
-ðŁĻ ĭ
-ch unk
-dri fting
-manipul ation
-equ als
-pu tt
-ky ungsoo
-âĿ¤ï¸ı #
-ela stic
-par ano
-fo y
-do ping
-cin cy
-ss ler
-interrup ted
-al ay
-ado res
-ame thy
-con voy
-ãĢ ı
-Ĭ ãģ
-black list
-gener als
-sa chin
-bru shed
-oun ces
-non stop
-illi ams
-bt sarmy
-u av
-ru ff
-bur ma
-bi k
-defen ce
-schul tz
-bo asts
-lonel iness
-go re
-trans forms
-alum na
-@ @
-ra ppers
-ne hru
-car o
-himalay an
-wearab les
-ge h
-pepper mint
-re development
-flam ingo
-cos by
-big baldhead
-ag ri
-bare foot
-sco pes
-re gram
-gh ana
-ðŁİ «
-i heart
-sa die
-carri e
-microbi al
-ku ala
-sk ater
-quer que
-âĻ ©
-gen res
-reas oning
-ch ased
-as o
-sli pped
-en can
-vam os
-ker s
-ad verse
-mo il
-commod ities
-with you
-sil ent
-hy pe
-an de
-am ination
-whi spe
-lit z
-âļ½ï¸ı âļ½ï¸ı
-ri ff
-pp y
-lam bs
-gan esh
-ab sent
-regu lator
-marse ille
-en roll
-par cel
-wa p
-by rd
-ðŁĩ Ń
-tu ber
-country music
-par l
-contro llers
-responsi bilities
-we y
-ch ate
-montene gro
-chic o
-mil an
-l ms
-tra inees
-appropri ately
-un certain
-popp ies
-ed sheeran
-nutr itious
-gar o
-deut sch
-awe some
-ãĥ ¼
-comfor tably
-land marks
-et i
-re usable
-daniel le
-ro sal
-co les
-just ic
-c cs
-f anny
-ni m
-mc u
-clin ch
-at ene
-mer ge
-im db
-ang lo
-uc cino
-pan ini
-an not
-bur berry
-feat ure
-predic ting
-fashioni sta
-s ask
-imag inary
-mm o
-south sudan
-spe ar
-hu bble
-jo inthe
-coyo tes
-sli go
-ko dak
-sit com
-polaro id
-roo ted
-corru p
-ðŁĻĮ ðŁĻĮ
-bris ban
-at z
-ah l
-re my
-tal ent
-aval on
-ra da
-pau line
-locom otive
-go ons
-ne mo
-maser ati
-ic u
-stu tt
-histor ically
-sm b
-pres by
-avo id
-so oners
-rhine stone
-w ad
-ri sing
-tro t
-mo des
-reg ent
-optimi ze
-re ece
-sm u
-ver ti
-newyork city
-cor tez
-ra c
-in case
-sin c
-fiel ding
-e tta
-tiff any
-al monds
-sad dle
-k rat
-mat ter
-g low
-star ving
-gl o
-cra ppy
-sl ur
-st d
-monit ors
-recei pt
-maymay entrata
-mc il
-un is
-rain bows
-cal dwell
-pacqui ao
-j op
-a fe
-hoo k
-es sen
-wiz ard
-medi an
-fla ws
-com s
-âĿ Ħ
-ing h
-ha ynes
-anton io
-tem plates
-ou ter
-na w
-cardi gan
-bel grade
-ðŁĴ ī
-hom o
-a ise
-ro pes
-no ve
-what you
-tri gge
-concep tion
-ad ukone
-na di
-fri ars
-sw er
-adju sted
-hot line
-san ity
-kau r
-down loading
-c gi
-ten or
-eth nic
-app alach
-ภ¸
-pa g
-gol ds
-on set
-investig ator
-car tel
-peace fully
-jarre tt
-cat alan
-poli o
-n um
-fru stration
-dhar ma
-my life
-âľĮ ðŁı»
-aber deen
-mu sa
-bin der
-spark ly
-fle eing
-instin ct
-co ping
-domin ance
-ill ers
-er a
-u conn
-lo oms
-living ston
-gal i
-he s
-c ma
-bel a
-se ley
-mon k
-la ch
-mar x
-Â ´
-m erica
-woman in
-es sex
-ra ina
-jim i
-nep tune
-z ack
-chine se
-mart ins
-chand elier
-her n
-with us
-ear l
-asph alt
-modu les
-st p
-ul la
-psychi atric
-mile age
-captiv ating
-si der
-men to
-mor t
-tran ce
-tal bot
-ab by
-ì ĥ
-âľĮ ðŁı¼
-j ak
-daw n
-turn up
-scre wed
-fe ds
-blue print
-ðŁĴĸ ðŁĴĸ
-har sh
-er os
-insom nia
-ban kers
-ta emin
-mis conduct
-hu mber
-gi di
-edu ardo
-con a
-musc ular
-consu ming
-ra sh
-don nie
-di pped
-col lie
-samu el
-melt down
-ðŁĺįðŁĺį ðŁĺį
-me z
-exam ining
-schwar tz
-pri stine
-ðŁIJ Ŀ
-ve it
-ful filling
-an esthe
-gue sses
-dra ft
-som me
-soli d
-pati onal
-ho ped
-evolu tionary
-all er
-enter tained
-sli ps
-lud wig
-conclu des
-sen sible
-bon net
-cra ze
-tra s
-haz ards
-const antine
-ed ics
-star trek
-to c
-occu pational
-in cheon
-deepikap adukone
-pizz as
-new comer
-de part
-oppre ssion
-ebon y
-foss ils
-tro jan
-el en
-ste aks
-k hou
-positi oning
-ug by
-red cross
-ak h
-dol ce
-us mnt
-pp en
-dil ig
-ma vs
-call er
-cost ello
-⼠Ħ
-dy n
-thing s
-rhin os
-a xi
-sar kar
-con vocation
-att ers
-ss ss
-fun gus
-eu gen
-russ o
-squ at
-w sb
-eli on
-william sburg
-s off
-defici ency
-be arer
-o kin
-key stone
-t wain
-cal ming
-break able
-wa res
-horser acing
-com bs
-bun ting
-u it
-t land
-ðŁĴĻðŁĴĻ ðŁĴĻ
-ga stron
-sab ot
-ick ers
-commissi oners
-sen ate
-ii ot
-ath ena
-nit rogen
-an tony
-ero tic
-di alo
-mis sou
-hypo cr
-âľ Ī
-kaeper nick
-can v
-d roo
-clevel and
-o sh
-mon sta
-stefan o
-^ )
-sh ul
-po ison
-ha e
-commerci als
-ma ul
-nit ro
-co worker
-alo e
-vap or
-t ents
-russi an
-qu id
-question able
-mid get
-po ker
-girl friends
-sin the
-erit rea
-ten ure
-depos its
-buc keyes
-spot ter
-theod ore
-trin ity
-joaqu in
-u cci
-follow the
-caf c
-mp a
-ðŁIJ »
-plo tting
-dom ino
-ta ek
-sion ally
-dicap rio
-pa p
-car mel
-ig er
-bt cc
-beth le
-www bigbaldhead
-foo die
-bagh dad
-mason ry
-off ended
-à ·
-ภģ
-sc ro
-vers es
-ori ent
-ar ches
-pi yu
-know your
-gre e
-ta kers
-gu ard
-dish on
-bucket list
-bha fc
-war dly
-ðŁİīðŁİ Ĭ
-leigh ton
-pe w
-stra y
-assaul ted
-in hal
-ly fe
-amar keting
-l x
-kat z
-ubun tu
-me o
-carto onist
-turno ver
-mi z
-dis like
-mul len
-mo f
-bl and
-hi des
-emer ges
-chori zo
-truste e
-ma hog
-lan sing
-paralym pic
-fa int
-fa una
-ch al
-sn ar
-cat h
-bent on
-cast illo
-sli ppery
-apric ot
-oec d
-bar o
-l z
-he ming
-clow ns
-co workers
-peru vian
-commu ters
-y ell
-ðŁļ ´
-under ing
-v j
-tt p
-fli pk
-w ana
-soc ent
-Ĥâĸ Ĥâĸ
-ठĤ
-oo sa
-jag ger
-di sm
-e less
-d ham
-cali f
-a official
-ec lip
-harro gate
-gra pp
-com rade
-n tr
-concentr ate
-thi ghs
-bit coin
-bel arus
-ë ĵ
-end uring
-now watching
-industri al
-pi p
-ar on
-ar at
-Â ®
-whit by
-oooo ooo
-sa ree
-tic als
-mis leading
-yo on
-year s
-sle igh
-roman ian
-sciss ors
-vam pires
-ac up
-ab ba
-th weeksary
-cent ri
-fl ye
-u o
-c bi
-bu ena
-sin d
-mar ino
-bur r
-re building
-ठ²
-anniver saire
-ac ca
-ðŁĴĢ ðŁĴĢ
-gett ing
-tu lips
-wolf pack
-âľį ï¸ı
-more than
-ta kin
-ðŁ¤ĺ ðŁı»
-u be
-mon ic
-dou bts
-mo wer
-co balt
-don ne
-specul ation
-argu ably
-kak u
-htt ps
-prosecu tion
-din ah
-stam atic
-disclo sed
-bever ly
-fl wx
-cra bs
-extraordin aire
-war mest
-imper i
-o logists
-trac es
-par c
-lake side
-am r
-ter i
-hour ly
-domin ation
-ar row
-shrews bury
-ance stry
-wr angler
-trigge red
-pen sac
-roo ster
-survi ves
-a on
-bo ko
-val or
-love is
-la g
-pe y
-fo cal
-out laws
-bl anc
-artic ho
-wit s
-marsh all
-die go
-support small
-u ca
-sa h
-je et
-syn ago
-gover ning
-ðŁĴ ¬
-sal ads
-cre ate
-miri am
-cen sored
-ami de
-no u
-z eta
-allegi ance
-* )
-bl m
-ric an
-pa stors
-oly mpus
-blo c
-whir l
-star ry
-pr one
-y k
-p ne
-congratul ating
-be v
-so ber
-love island
-sa ir
-an ing
-tutor ials
-q e
-lun d
-in ist
-cle ver
-taxpay er
-ali z
-wren ch
-dd ling
-cap ri
-h pa
-ðŁı» âĢįâĻĤï¸ı
-na j
-o j
-futuri stic
-jelly fish
-ðŁĶ¥ðŁĶ¥ ðŁĶ¥ðŁĶ¥
-cel ery
-plan k
-fil a
-ne me
-un healthy
-lec tions
-ðŁ§ ¡
-rit chie
-n ws
-mi kha
-wonder woman
-âĢ İ
-hip stamatic
-ka g
-ðŁĴľðŁĴľ ðŁĴľ
-poul try
-mo w
-wor ds
-lo ff
-ðŁ¤£ ðŁ¤£
-relat able
-re mixes
-keny atta
-ke m
-re signed
-fo d
-stra igh
-j lo
-hu tch
-box ers
-colle en
-mag s
-instruc tional
-ko l
-attrac ts
-pra g
-account ant
-go ggles
-br u
-th ole
-mar row
-leu ke
-oc to
-pon ds
-bubb ly
-he ist
-ìĹ ij
-im p
-a har
-ha unt
-hall mark
-psy ch
-kkkk kkkk
-col umb
-jump suit
-cost co
-si delines
-ag gies
-over turned
-ni b
-key chain
-fu k
-f af
-mi am
-assist ants
-cy cled
-ri der
-dam mit
-red wings
-mag es
-kin s
-ì Ĥ
-ho d
-son t
-carol ine
-" '
-cu le
-bra id
-fel ony
-ar ities
-ruther ford
-depic tion
-isab elle
-ro ach
-k day
-fifth harmony
-em y
-li gam
-bari sta
-albu querque
-gro ss
-ðŁį º
-oo ks
-ðŁij ¼
-dun can
-try in
-jag s
-g ould
-li tho
-âģ £
-а Ð
-sam my
-tun g
-cas ser
-apo lo
-aaaa a
-man g
-as ics
-sh en
-p ye
-tur bul
-ss p
-saint sfc
-on lin
-n anny
-he ster
-do z
-ภĶ
-th read
-ren ts
-kh and
-ðŁĴª ðŁı½
-un conditional
-rob son
-car re
-ph on
-sacrific ed
-Â £
-auto s
-par ker
-oc a
-log in
-kee gan
-hard cover
-dough nuts
-ðŁĮ İ
-spit fire
-refresh ments
-saskat oon
-commod ore
-j f
-rub ber
-halam adrid
-child care
-stra da
-io m
-ri k
-dak ar
-ther mom
-cro pped
-gar u
-ali k
-ven i
-i ft
-si ka
-ritu als
-z ul
-e ch
-Â ©
-su dan
-l land
-i me
-do cker
-ì ¤
-fe ared
-fa o
-wal ter
-no g
-mutu als
-l h
-ali gn
-mon ia
-concep tart
-ðŁĻı ðŁı¼
-sco e
-compet ence
-sw ine
-ly me
-laun ch
-green er
-abstract art
-inqu is
-gran ada
-ga elic
-flu ff
-d backs
-grave yard
-ba be
-acade mic
-adventur ous
-joh ann
-~ !
-bi bi
-| #
-pl ings
-gett y
-as b
-âĿ¤ï¸ı @
-staf f
-religi ons
-bang or
-world bookday
-me gh
-de vin
-ash ore
-meri dian
-gi thub
-qui z
-all stars
-be stest
-ir resi
-ack er
-do te
-war rington
-pol ly
-newor leans
-cr ou
-wi gs
-che y
-smithson ian
-la sag
-de tour
-bor is
-stra ps
-mari ah
-inten tionally
-ko h
-ðŁį ¸
-ssi an
-mar issa
-cor al
-episcop al
-casu alty
-tom o
-supply chain
-sam p
-on go
-ro o
-cavi ar
-p fw
-clau dio
-buff alo
-s ations
-mat ty
-snap back
-l ds
-al arms
-mat te
-âĺ Ķï¸ı
-conditi oner
-d ors
-he x
-fi zz
-a stri
-sus sex
-secur ity
-qa eda
-all star
-cocac ola
-as one
-cl icks
-sc ans
-mu te
-he avier
-ðŁİ §
-âĺ ŀ
-lv l
-book boost
-youtu be
-fla shes
-f jor
-c su
-explo de
-do dge
-cair n
-gonz ales
-th ill
-pel le
-hart ley
-renew able
-re tin
-e stre
-costar ica
-shipy ard
-nc fc
-pri ya
-a ghan
-an ath
-plu gin
-co rey
-re bound
-or u
-kat rin
-hor mone
-gi m
-mahin dra
-s sus
-park land
-har per
-fanta stic
-infer no
-ep ilo
-wrest ling
-fe ct
-c it
-ac oun
-to ssed
-monu mental
-char tered
-bu st
-pe tra
-âĮ ļ
-wildflower hour
-sweat ers
-* .
-bl er
-ate ch
-go wan
-demo graphic
-bra l
-suici de
-renov ations
-vu el
-sin ister
-ar mani
-miso gy
-ph arrell
-nap s
-un iting
-crusad ers
-cor gi
-insu red
-than i
-no or
-g q
-d ada
-bicy cles
-snu ggle
-sch an
-ten berg
-ss al
-fe mme
-bo il
-½ ï¸ı
-re ap
-occur ring
-hus sein
-divi d
-sto ke
-sh alom
-na ia
-o lic
-frustr ating
-Ù ĩ
-ig s
-gro ver
-scen arios
-n ds
-bru tality
-med alli
-bu on
-sas s
-skate boarding
-ony x
-lor ry
-ny u
-gau tam
-mm ings
-gu g
-end i
-lo thian
-comm ando
-chal k
-ph ora
-asse ssing
-ti gh
-crun chy
-ad ay
-is l
-ci ara
-pilgri ms
-kam al
-p to
-brit anni
-t ani
-sm c
-l ure
-app store
-ab y
-golf ing
-cl c
-fa u
-an as
-shu tting
-regul ated
-carn age
-scow boys
-all enge
-c ma
-humbold t
-rel le
-ku mb
-her i
-refin ery
-sound check
-d wayne
-bos nia
-i sp
-the alth
-anni v
-relev ance
-my a
-bag gage
-dre ad
-s bc
-th ed
-bu h
-hi jab
-lo id
-ke w
-c te
-respec t
-lovel ies
-cu bes
-celebr ate
-dir t
-sav ers
-_ ,
-gar ment
-pulit zer
-mas jid
-beat port
-al arts
-encry ption
-s ner
-ple ads
-found ry
-sym metry
-ru mi
-birth place
-scallo ps
-supp le
-pivo tal
-t ati
-no de
-so d
-pro xim
-tr ics
-col dest
-bren t
-mand u
-cla ir
-e ach
-and alu
-hi ddleston
-ðŁIJ º
-mel ts
-v ance
-pin n
-se ments
-scre ened
-sa chs
-o bl
-ic ha
-âĺĺ ï¸ı
-school ers
-heal ed
-lo gged
-ðŁ¤ĺ ðŁı¼
-ic us
-bore dom
-b ish
-b ffs
-tal king
-sure sh
-hoo kem
-de on
-de fl
-ei leen
-ðŁį ķ
-women intech
-ri sotto
-rang er
-adverti se
-ภģà¸
-tel ly
-la go
-dart moor
-d ong
-sk ates
-lo go
-un ner
-mail box
-ma sala
-lo oooo
-amethy st
-che wing
-c bb
-australi ans
-rc mp
-game art
-# ...
-kor n
-extre mism
-fruit ful
-anci ent
-pu bg
-pol ite
-wh it
-mur als
-m gr
-line man
-dav ao
-ste ms
-ten nis
-av age
-tu pac
-gigan tic
-hs bc
-auto biography
-up the
-ี à¹Ī
-re gal
-fig uring
-ku l
-mis sy
-hoo p
-gra s
-for ums
-back lash
-abduc ted
-p nw
-min ic
-bu tt
-bott oms
-at on
-ven g
-ðŁĮ ı
-del aney
-prab hu
-fan club
-over haul
-health ye
-sy no
-aa f
-ren amed
-kim i
-un cle
-man city
-se u
-qu anti
-este em
-um in
-en zo
-mel vin
-under go
-j har
-far ah
-coast ers
-humph rey
-mh z
-children s
-^ .
-d hi
-disrup tive
-integr ating
-r nb
-over sized
-a ide
-ne au
-docu mentation
-ðŁijĢ ðŁijĢ
-pal o
-hear th
-ri yad
-pun ctu
-abc news
-secu res
-boy band
-bir ch
-ju co
-tra ff
-legislat ors
-bay a
-ãĤ ¯
-no ises
-collec ts
-s warm
-k ner
-bi shops
-stur geon
-snapp ing
-mo l
-fre aky
-chair person
-tro p
-lyn ch
-car cin
-art sy
-e sto
-cha i
-fl ur
-inv ali
-sau sages
-im el
-j or
-fun fact
-wit ter
-puni shed
-ac ons
-h ya
-re versi
-em c
-dif fu
-z x
-sp aw
-cla d
-d mit
-hol land
-fre sco
-pay roll
-ab undant
-stu ffing
-mor o
-c ny
-boy cott
-wend y
-ele ven
-pro voc
-pil ot
-tr x
-be ad
-climate action
-ri on
-assi e
-ì ĸ
-o sm
-islam ic
-ho ar
-good reads
-al ici
-afterno ons
-spoke sman
-jo lie
-it as
-masc ara
-âĻ© âĻ«
-pre vail
-beetro ot
-lu jah
-k li
-dod ger
-Â »
-ru le
-l n
-scre am
-ho bart
-col bert
-r tc
-er m
-pat ro
-quo ting
-s live
-que st
-non fiction
-semin ary
-prosecu tors
-ve st
-express way
-g ge
-nau tical
-et f
-ðŁİīðŁİ Ĭ
-dur ation
-cha ired
-the film
-fab io
-she h
-can o
-ðŁĴª ðŁı»
-with draw
-! :)
-cor pus
-phen om
-yel p
-la wn
-ent om
-snapp er
-but te
-pin ball
-pro xy
-libr e
-alle vi
-n ada
-gabri el
-fo wl
-eure ka
-daph ne
-tu nes
-pun ched
-wh ore
-jo g
-ren tial
-man ners
-o pe
-wh ufc
-gu th
-revol t
-sne aker
-philharmon ic
-ho ste
-sovereign ty
-ðŁĻıðŁĻı ðŁĻı
-fish ing
-sci art
-fe ta
-i pp
-dump ing
-kel own
-gir i
-dig its
-sal u
-san jay
-twee ters
-sp as
-col chester
-sc ab
-ma dd
-๠Ħà¸
-Ä ĩ
-ged don
-march for
-do p
-maure en
-un plugged
-di do
-fashion blogger
-up a
-mex ic
-tar y
-pol ye
-jame son
-v t
-grin der
-mad dy
-consult ancy
-¬ ë
-leagueof legends
-ac cents
-um ni
-jane iro
-tu ss
-h ens
-ampli fier
-to shi
-pret tier
-pre vents
-new town
-red wood
-vant age
-ball ard
-ar tof
-a she
-a sion
-lac ey
-ap at
-gro ve
-ภĦ
-rw and
-real tors
-tra itor
-bed ding
-ö r
-zi on
-fla shing
-cam pan
-boom er
-secretari at
-ab ol
-liti gation
-cont amination
-se dly
-shred ded
-in for
-do herty
-bench mark
-ro che
-skate board
-sho vel
-i zz
-to pper
-o ster
-laby rin
-autu m
-k ong
-hum mus
-vi z
-tech news
-kla us
-am using
-socialmedi amarketing
-i des
-cast ell
-ste e
-underestim ate
-cal ab
-pa ign
-b illing
-unanim ously
-g mb
-fly fishing
-hath away
-commerci al
-colour ing
-skul ls
-pivo t
-te p
-tb c
-motor way
-x press
-construc tive
-pu k
-under lying
-kir sten
-mani ac
-cha o
-se ma
-chiff on
-ðŁijĮ ðŁı»
-ver ona
-kom o
-stan doff
-wi ped
-c ated
-bla ir
-wor kin
-m sc
-bethle hem
-swi pe
-unexpe c
-pe es
-pe tri
-orig ami
-ðŁij ħ
-mex ico
-flav or
-ru dd
-cannab is
-mar u
-ri ddle
-wor shi
-sil on
-sch at
-ap se
-tang er
-bi ous
-e er
-questi oned
-o zar
-dan k
-angle sey
-char an
-bak u
-compe ten
-re pri
-bat ter
-sa xon
-cal ves
-leng ths
-$ $$
-âŀ ¡ï¸ı
-immer sion
-ga unt
-car ry
-cy to
-b anda
-shu tt
-experi ence
-el gin
-mous se
-ta z
-ê µ
-in correct
-en z
-b ham
-mor on
-so ver
-ar un
-ti pped
-la ble
-de arly
-bau tista
-í Ļ
-mor tal
-woo p
-dt la
-sho cks
-dav os
-ðŁĵ Ŀ
-swim wear
-her man
-ðŁijĩ ðŁijĩ
-z ir
-neglec ted
-grac ed
-campu ses
-av s
-ar ora
-swach hb
-live pd
-ac cra
-enqui ries
-shoo ters
-kur t
-vancou ver
-brad ley
-gar da
-g ü
-ol la
-attrac ting
-up ton
-ne win
-lu mia
-furn ace
-ev ers
-e on
-sw a
-roo kies
-a oc
-v ss
-bris ket
-tor ch
-yo da
-heart land
-tac o
-ph ony
-food bank
-ab bey
-bab ylon
-u y
-gre ate
-expre sses
-d andy
-sc apes
-survi vor
-ron d
-e ci
-ha vin
-ab el
-chil dish
-tor que
-wav y
-ur self
-kanye west
-year of
-ale stine
-o brien
-al fon
-sk ag
-kore an
-anchor age
-val eri
-de w
-ðŁİ ¨
-land slide
-car ole
-christ en
-go phers
-af i
-priyan ka
-q q
-power of
-it te
-pc so
-tw ol
-pr y
-intellec tu
-guer rero
-pi les
-wish list
-w ren
-time table
-ë ı
-prodi gy
-gibb ons
-. /
-ne ur
-anz ac
-mur ray
-vie st
-pla ster
-la ir
-art gallery
-inter continental
-g br
-bell ator
-nam joon
-mam mals
-am el
-y aw
-saras ota
-cam ar
-bud ding
-sum mari
-aco sta
-la sh
-ey ou
-post graduate
-instruc tors
-ti g
-const ant
-were wolf
-ic os
-cla s
-glen n
-bud ge
-ðŁĻ Ĥ
-er ta
-sta ins
-persecu tion
-cumb ri
-o ch
-syner gy
-hu ang
-scand in
-mid terms
-comment ator
-regar ded
-perpe tual
-bo iling
-al p
-lan ge
-sch le
-fac eli
-twee ta
-ri dden
-ok toberfest
-charlotte sville
-ik lan
-jo u
-ch atham
-b sc
-ðŁį ¦
-stra uss
-mel low
-xx xx
-happy hour
-re actor
-ww er
-distr action
-at orial
-ðŁĴª ðŁı¼
-twin peaks
-fay ette
-a or
-ko k
-bro om
-sy fy
-ou se
-am ag
-Ø ·
-ubis oft
-lu lu
-hall mark
-stu art
-it ya
-si deline
-venge ance
-re lu
-sex ism
-boun cing
-un ites
-gu stav
-te ssa
-stu mp
-pro clamation
-ima x
-divid end
-col by
-ðŁį İ
-play wright
-un safe
-co smo
-ðŁĩ²ðŁĩ ½
-cup board
-constitu ents
-ang lia
-ram page
-ðŁĺįðŁĺį ðŁĺįðŁĺįðŁĺį
-than ked
-take aways
-shro ff
-de bat
-kh ur
-conduc ts
-format s
-à ©
-port age
-graph ers
-u ten
-pre m
-mo ines
-condem ns
-s ous
-l ps
-f cs
-deal ership
-leuke mia
-bure au
-ski d
-guardi ola
-ca ster
-thir d
-avoi ded
-en cyclo
-c sr
-vi xx
-analy zing
-she ar
-dulu th
-shap iro
-chan ting
-stre sses
-as be
-mil itia
-ãĥ ª
-col lin
-arsen e
-sure sh
-teach ings
-yi xing
-sh ill
-nu des
-sv u
-clear water
-war ped
-pro life
-artist son
-it u
-versail les
-galax y
-ax el
-spring st
-cal a
-hu hu
-sc u
-commit ments
-exe ter
-poign ant
-mo tion
-conserv atory
-row dy
-rec alled
-mu sk
-emb elli
-so the
-âĺ Ģ
-sto pper
-sch ild
-to pe
-el mo
-zi el
-j om
-barn sley
-snow den
-on tour
-jour ney
-hills borough
-par ole
-w ts
-mo ving
-ag ility
-tiv o
-ff ers
-kindle unlimited
-g wen
-ann an
-ah mad
-tex tured
-hepat itis
-dra m
-insi ders
-tis sues
-ãĥ Ħ
-fc barcelona
-cr atic
-na acp
-pe can
-f gm
-custom ize
-concer t
-g sm
-pe g
-p one
-justin trudeau
-super cars
-happy holidays
-bu lar
-ado x
-lap tops
-digital health
-destin ation
-gradu ally
-áĥ ¦
-popp y
-ss l
-inhi bit
-star light
-of fro
-glo omy
-x per
-hal der
-im plants
-le to
-hass el
-a as
-un told
-en ci
-liber ia
-or an
-con tests
-il ah
-sma g
-sc out
-mari anne
-cr yo
-schedu ling
-lo s
-kan e
-stutt gart
-ne se
-law rence
-da in
-pho tom
-car ou
-ภ£
-g wy
-national dogday
-roa sting
-band camp
-kentu cky
-stret ches
-ke rel
-ca she
-ãĤ ¸
-sta x
-tran si
-dog gie
-at ric
-hal le
-ci vic
-brow ning
-lein ster
-cat day
-high land
-joy ous
-in cumb
-or lando
-ro mo
-col ton
-del ta
-car ab
-ro tc
-aster oid
-goose bumps
-mo logy
-yo ko
-an ds
-tomor rows
-red carpet
-sm p
-ca sio
-ðŁ¤£ðŁ¤£ ðŁ¤£
-se au
-rejec tion
-rot ating
-bi partisan
-th un
-mat i
-bon i
-ol l
-ener gye
-do it
-l j
-mother hood
-lou ise
-neck laces
-el ite
-ni x
-l cs
-en v
-gl u
-le sh
-cran k
-su sie
-m clau
-so tu
-crow ley
-rat ri
-use d
-bre ton
-alfre do
-ye o
-travel pics
-ti pp
-elli son
-sax ophone
-me red
-heu ghan
-ta ine
-f es
-vi ro
-suppo sedly
-i as
-dige stive
-y le
-li zzy
-wildlife photography
-bri anna
-west field
-ra ined
-am her
-ðŁĺĦ ðŁĺĦ
-distribu te
-bott om
-pre serving
-oil and
-craf ty
-de scen
-col ling
-shakespeare sunday
-r wc
-ang led
-ci an
-t ations
-mon tage
-me yers
-france sca
-ðŁĮ ·
-wi ggins
-san ford
-volunte er
-car ra
-bar k
-vari ed
-pl in
-am u
-kap il
-rock ers
-qu ind
-br ane
-in mate
-ent al
-impro vis
-michi gan
-re tweeting
-progre ssing
-mercedes benz
-smo ker
-physi ology
-dor ado
-watt pad
-h wa
-sr bachchan
-w ga
-vol atility
-hi re
-ac ap
-wn ba
-hein z
-stit ches
-kidnapp ing
-bur ys
-lim b
-f itters
-thumb nail
-ton e
-mir and
-desi rable
-ad dison
-tar an
-tamil nadu
-spec tator
-soci ology
-amit shah
-remo tely
-âĻ ¦
-ham id
-r ds
-g lee
-smooth ly
-sch ro
-er c
-lali ga
-he als
-us f
-ni shi
-d hu
-un il
-h le
-tro mb
-bhu tan
-pilip inas
-se ung
-whit man
-te y
-min ce
-snow boarding
-re au
-k ker
-av o
-zach ary
-ran veer
-ti k
-gover n
-qu al
-beck y
-anthropo logy
-att en
-grocer ies
-de bit
-war p
-sil icon
-hawa ii
-ðŁĴ ħ
-pomegran ate
-pe er
-orang es
-people schoice
-end ure
-ðŁĴĽ ðŁĴĽ
-ãĤ¹ ãĥ
-ac ial
-a haha
-stu k
-imper ial
-bl ond
-pow der
-kno ts
-vin ce
-wood lands
-den a
-watch in
-mat cha
-ma hat
-galax ies
-middles brough
-k ö
-stre e
-resc ues
-wal do
-lero y
-desp ic
-real ities
-tm nt
-ha q
-un o
-pe c
-bolly wood
-blin ds
-design thinking
-he ms
-and hra
-ab sen
-fan s
-ste ch
-shire hour
-bla ine
-shak ti
-pu rely
-ðŁı ı
-tra fal
-ke ynes
-gr ate
-to bias
-spon taneous
-satur ated
-caval ry
-pri sc
-ðŁĺ ij
-wh t
-pas si
-~~ ~
-vir at
-patt inson
-la o
-weir do
-sym pathy
-ju da
-occa sionally
-cred ited
-stat u
-es co
-hil ly
-esc ape
-dischar ge
-se er
-may nard
-sud bury
-z lat
-or al
-we er
-encoun tered
-sm elling
-over sight
-ê ¸
-that cher
-mack ay
-you can
-fre ep
-freed oms
-prophe cy
-ho e
-ishq ba
-dra ke
-qu its
-pel led
-tur k
-o vi
-wesle yan
-new music
-leg g
-ch eng
-h illi
-ay y
-pan ties
-ad versity
-ad jac
-vaccin ation
-ju ke
-ga c
-exce ed
-time sof
-sta ining
-ep cot
-v ital
-up ward
-bethe sda
-apar k
-ma hi
-camp fire
-enchan ting
-rha pso
-h z
-na ver
-fa x
-vali dation
-ac ad
-ny r
-as ym
-coordin ated
-depar ted
-all ery
-var ies
-spr ite
-chap lin
-ss occer
-s wat
-bre t
-relu ct
-tunes app
-super star
-reminis cing
-o co
-home grown
-dough nut
-un canny
-la pd
-thyro id
-! âĿ¤ï¸ı
-botan ic
-bre s
-sp ade
-i ste
-echo es
-du lil
-bur sting
-qui ero
-ðŁij İ
-loy ola
-amuse ment
-ha ils
-sleep y
-burgl ary
-âľ ı
-ro gue
-cot land
-mo ors
-low er
-wic ked
-ðŁĶ Ĭ
-compet iti
-argent ine
-yvon ne
-karti keyan
-ili ary
-gat sby
-precin ct
-six ty
-na ji
-cam s
-practiti oner
-ðŁĺ³ ðŁĺ³
-pu ne
-neg li
-juli en
-inv aded
-cali br
-cla m
-duba i
-mu k
-lan tic
-produc t
-fe dex
-ï¸ı :
-eu ra
-dari us
-s ling
-virtual reality
-home stead
-ðŁı³ï¸ıâĢį ðŁĮĪ
-pac ed
-in ha
-pul mon
-la zy
-premi ering
-ma stered
-in he
-con gregation
-ba jo
-sport ing
-new jersey
-hor ny
-lma oo
-leng thy
-du t
-yo gh
-swe aring
-philosoph ical
-pap ua
-in ski
-know les
-dy ke
-âĢ ²
-to ken
-mc guire
-ri ot
-probab ility
-mc con
-gro s
-su mat
-c ite
-da a
-on da
-mad dow
-che w
-board games
-spar ked
-re claimed
-ad hd
-ny se
-imwith her
-equ inox
-boo ths
-balsam ic
-ha zy
-dor chester
-ag os
-se aw
-moder ator
-seri ea
-ander sen
-pilgri m
-âŃIJ âŃIJ
-itch en
-hal li
-x ton
-nathan iel
-mun ition
-celesti al
-ga f
-zo om
-mark le
-pen thouse
-cal e
-s fa
-bar king
-tu cket
-em ery
-cal orie
-li que
-ad ar
-mc nam
-tor tilla
-wood pecker
-mo town
-bad ger
-ayr shire
-scram ble
-dd ay
-cra ziest
-per rie
-cho co
-cast e
-i ot
-wre cked
-selec ting
-uss r
-gra ft
-pun t
-lab ou
-ir st
-ba ek
-Û Į
-su ki
-que u
-ach at
-te ster
-aug mented
-wc vb
-sin ks
-ðŁĵ »
-ra ke
-inter ne
-be cause
-belle vue
-une arth
-light en
-ðŁĺ £
-turn around
-labe led
-unemp loyed
-twitter kurds
-le ia
-h ye
-great er
-ðŁIJ İ
-tim ed
-i red
-e tt
-limit ations
-cab e
-s out
-bee ch
-anni hil
-re trac
-yo ona
-ang er
-den nis
-supp lying
-di z
-" (
-sc ur
-gun man
-su ho
-sauvi gnon
-ภ¥
-wi ley
-land on
-choreo graphy
-pre historic
-ðŁı ĥ
-var gas
-assess ments
-pinn acle
-di i
-chamber lain
-ì Ī
-v p
-present ers
-deut sche
-sun shine
-sal utes
-r one
-bu siest
-- .-
-motor ists
-hemi sphere
-al wx
-ps p
-ow a
-den ying
-cho c
-gu tier
-han uk
-mus kete
-jait ley
-se wage
-t ame
-thin kers
-shi m
-se quo
-pap ar
-middle east
-k wa
-ke g
-patag onia
-no y
-bar ça
-take off
-he a
-à ¬
-n sc
-g dc
-ðŁij Ī
-mou stache
-mel ania
-thr a
-â¬Ĩ ï¸ı
-pier ced
-ze us
-fon ts
-ber a
-it iner
-q atar
-contr ary
-ire land
-i fy
-ou los
-commun al
-fin s
-un paid
-pa a
-ðŁijĩ ðŁı»
-ri os
-ou p
-f iller
-cafe teria
-ภŃ
-kas i
-cali ber
-z ulu
-v sco
-ts ford
-dragon fly
-smo kin
-pi st
-psycho logist
-diplom at
-we bs
-buc cane
-à® ¾
-motiv ational
-du ne
-ba e
-c fs
-with out
-er on
-i ac
-ate e
-pen sion
-fra zier
-en sis
-sk is
-par ting
-ger y
-territ ories
-nach os
-eni ght
-ever lasting
-msd honi
-tel e
-sp un
-po di
-sab ah
-environ mentally
-ce ase
-beau mont
-mar ta
-kel vin
-ho ff
-sun il
-n da
-co b
-sh ale
-ree dus
-un boxing
-u bio
-re opened
-n all
-capsu les
-mar r
-himalay as
-swee ter
-ja z
-f mr
-twee ter
-dha ka
-na u
-de mi
-d fs
-ta urus
-fad ing
-it utes
-ci p
-over flow
-jef frey
-don ny
-car tunesapp
-ðŁį ij
-prefe cture
-danc ed
-c pt
-ple asing
-ital k
-earth quakes
-ul ation
-hi o
-ãĢ ĭ
-ant an
-nutri ent
-de ere
-selec ts
-enrich ment
-r iti
-tram pol
-bl amed
-j ia
-contribu tors
-chesa peake
-pi geons
-tribun al
-mad uro
-w su
-ilo ve
-effici ently
-dar cy
-war ms
-ar ra
-ec u
-ho wer
-strugg led
-rajini kanth
-ðŁĺ¢ ðŁĺ¢
-hou sing
-str at
-eli x
-disp ro
-raf fic
-thi erry
-na sty
-c fb
-staf fing
-al ma
-back ers
-hen son
-sky walker
-reale state
-roo s
-ness y
-chan ce
-cair ns
-c ci
-pe dal
-ly ft
-cross word
-wait er
-only in
-kru ger
-k ir
-alej andro
-car tier
-car rera
-re paired
-ou at
-un clear
-un breakable
-today in
-qu eries
-jo dy
-gen ital
-win ner
-to l
-kelown a
-fascin ated
-ãĥ ¬
-sris ri
-squ ared
-spr ung
-negoti ate
-priv ately
-av en
->> >>>
-g ical
-gav in
-chester field
-zu mba
-or r
-nat alia
-impeach ment
-mn l
-car at
-criti que
-credi ble
-trac y
-tan i
-musi k
-jig saw
-gam bia
-tol kien
-fe u
-as per
-sav ory
-fo xx
-f itt
-mar lon
-l rt
-v ell
-p br
-imprison ed
-i om
-chu l
-wind shield
-kay e
-ba a
-chor d
-s art
-al gon
-minister ial
-nat geo
-la zio
-nor ms
-ðŁijį ðŁijį
-lic king
-fut bol
-un sung
-dalla scowboys
-sh red
-distur b
-dev ine
-be ards
-ch f
-b day
-ro sso
-ig or
-ay i
-si ren
-k air
-sti les
-ro f
-mag nets
-un cover
-mou se
-bang ing
-si ghted
-spe ople
-impac t
-row land
-kir a
-environ ment
-love the
-p sis
-mish ra
-gl endale
-ca jun
-o che
-de ception
-sex ist
-stra ws
-s ga
-buff er
-apost le
-sp l
-pop up
-ðŁļ Ĺ
-r g
-up er
-ball in
-i dy
-occa sional
-national park
-ðŁı Ĭ
-u an
-innov ation
-ภ«
-te aparty
-re tte
-counter fe
-b ha
-rec s
-ig en
-ðŁĮ IJ
-humming bird
-cu r
-ha ven
-la zar
-pue blo
-: :
-zi onist
-op ath
-inver ness
-promo ter
-carto on
-cabine ts
-mahog any
-surve ying
-r ational
-feel ing
-testi fy
-so w
-oc on
-ภ¢
-ne el
-mar is
-sol itary
-che mo
-rad cliffe
-sim ons
-ros ary
-new er
-jo die
-re tali
-pra wn
-pad dy
-hen ge
-k ala
-im plant
-at y
-bren twood
-par adox
-ene z
-re designed
-p our
-wy d
-al de
-௠ģ
-sol d
-biomed ical
-๠Ĥ
-tt tt
-mat teo
-ys er
-new ton
-de bun
-ner dy
-loo l
-wo on
-elisa beth
-ec c
-wh i
-ach o
-salv age
-sal aries
-qu ity
-navig ating
-oph thal
-con soles
-re built
-o pec
-ast ers
-sho red
-set list
-kathr yn
-rhy mes
-re visiting
-ash ish
-li ft
-re post
-sole il
-âı ±
-weal th
-sa at
-we c
-king james
-flipk art
-field work
-se gu
-mo dal
-bu b
-are rs
-ðŁį Ĵ
-clo oney
-pad dington
-necess ity
-guth rie
-pen te
-li mo
-jo sie
-ar tin
-en c
-l hs
-betra yal
-info graphics
-i er
-mo a
-hear ings
-bon jour
-sym bolic
-ag ro
-wed ges
-krist ina
-wild flower
-athle tic
-photograph y
-pe sh
-ca hill
-chi lean
-gou l
-fi oren
-ðŁij ¶
-z il
-sk im
-bad oo
-deli a
-tre ble
-n cc
-ðŁĩ¦ ðŁĩ
-a house
-bul lock
-sol itude
-ا٠Ĩ
-can cers
-futureof work
-hu tch
-water shed
-war mongers
-sp illed
-colom bo
-mo th
-associ ations
-weigh ed
-global goals
-not just
-christ i
-tor g
-swe ating
-man eu
-clu sters
-âĢ¼ï¸ı âĢ¼ï¸ı
-ta ped
-ul y
-tru sting
-yu suf
-te in
-ra b
-, ,,,
-sin ai
-audi ble
-explic it
-cro wns
-sch iz
-at least
-ðŁĹ £
-de bra
-je suit
-ene gger
-z hen
-one sie
-i it
-ss f
-gur gaon
-chak ra
-bear cats
-k ran
-k awa
-reque sting
-han over
-g end
-sor os
-mer cy
-lovel y
-do omed
-tim my
-ku z
-ul l
-ab ram
-sa ison
-ãĥ «
-clean ers
-re mo
-circu its
-bar red
-o th
-mo ist
-madele ine
-gall o
-u j
-per mits
-hea viest
-car ols
-az te
-gior gio
-flo ats
-decl aring
-us rc
-min at
-craf ts
-pri ma
-conven i
-nickelo deon
-danc ing
-ceremon ial
-blo gg
-tw p
-anglic an
-she k
-k nick
-( ((
-hubb ard
-harve y
-hit man
-fen g
-we some
-for za
-s word
-op us
-bro m
-gi bility
-z al
-m unch
-dance hall
-gre edy
-hd mi
-re birth
-ðŁĺĭ ðŁĺĭ
-s world
-figur ine
-com post
-k f
-engra ving
-gior no
-st ana
-k man
-ham ster
-compos ers
-aj e
-func tionality
-pol k
-is ons
-air planes
-te se
-hor rors
-musc at
-gi ven
-sp ence
-ðŁĩ¸ ðŁĩ
-eli ot
-ach illes
-fre ck
-crypto currencies
-sou ther
-hal o
-bor neo
-polit ic
-hahahaha h
-up state
-si ena
-obsc ure
-hau sen
-lloy d
-happy friday
-motor bike
-bon a
-americ as
-hol s
-- (
-spor ty
-un aware
-reven ues
-christop her
-bank sy
-av an
-ev apor
-com press
-eyel iner
-to dos
-buff y
-renewable energy
-ly rical
-ar chan
-rapi st
-fair trade
-lma ooo
-beat z
-pro active
-la pse
-ir ical
-revers al
-po de
-mcin tyre
-mac au
-ãĥ ķãĤ
-nash grier
-f sa
-g all
-çĶ Ł
-perpe tr
-il ya
-configur ation
-% ;
-str ange
-rac i
-ภĩ
-pic kups
-kov sky
-mam mal
-w ps
-g able
-compar ative
-z h
-save our
-da vey
-on etsy
-mu ssels
-mis er
-cri stina
-electr on
-cra ve
-lo ren
-precipit ation
-m z
-ðŁį «
-vin cen
-snow board
-no ida
-ah n
-marin ated
-g tr
-town hall
-min is
-bethe l
-adv an
-su ra
-shi el
-fur ry
-ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤ
-lyn d
-so il
-sc ence
-sen eca
-shar jah
-dick ens
-credenti als
-av ar
-per k
-requ iring
-pre fer
-j ian
-de ca
-r ach
-ing for
-del e
-be ep
-ðŁĴ »
-cis ely
-hu ddle
-green sboro
-haw king
-ho ax
-hang ar
-ç ľ
-mis o
-lo vin
-gre ta
-ab ad
-logi e
-at an
-snow flake
-mahe sh
-fear the
-al kal
-bobb lehead
-ba hn
-ju dged
-fu tu
-feli x
-ðŁį ĵ
-pi ke
-der iv
-notic es
-au er
-dis super
-or da
-wi pes
-am ino
-stri kers
-foo tb
-dram as
-pun ching
-score less
-heming way
-bi h
-bal lad
-chat ter
-am mo
-kle in
-fabric ation
-kari m
-z end
-hi sto
-vol ta
-rock y
-marke ter
-xtre me
-sequ encing
-paradig m
-cle ats
-boom ing
-âģł âģł
-block ade
-promp ts
-yogh urt
-pur pose
-nu r
-regu late
-nois y
-ing rid
-bird watching
-bar tender
-Ù ĥ
-wor dof
-cha otic
-shor ty
-el dest
-z app
-onceupon atime
-fl yo
-rit os
-mike quind
-ðŁIJ ´
-regi stering
-. ]
-ad ol
-gg gg
-pur ge
-kid lit
-ar bor
-val ves
-synago gue
-o th
-unanim ous
-veri fication
-dar rell
-ãģ Ħ
-vander bilt
-tape stry
-pro sper
-did dy
-dra fting
-de cep
-marqu is
-st int
-michael jackson
-pee led
-men us
-bb b
-sc are
-ema il
-wri gley
-it is
-f ell
-some thin
-bar ra
-ed gar
-di pping
-pu ddle
-sla de
-lear ner
-jal en
-ðŁ§ IJ
-the daily
-mikequind azzi
-ju x
-iq bal
-mckin ney
-ra iser
-ef an
-dr one
-cat o
-pic ket
-cro we
-l att
-uk o
-giuse ppe
-hin i
-synthe si
-ponti fex
-song writing
-to d
-swit ches
-din ners
-h q
-gabri elle
-pensac ola
-cir cle
-expo ses
-ev s
-riyad h
-pro men
-o ck
-sa j
-cit ation
-brew co
-jo si
-ep aper
-dri f
-point less
-tang led
-cri pp
-line ups
-fairi es
-daz e
-mour n
-bla dder
-sal z
-bur undi
-book mark
-the people
-sub sequ
-princi pal
-sk er
-court ney
-a oki
-rac ers
-ad m
-mom a
-critical role
-hou n
-shed ding
-sa ka
-ace ous
-mck ay
-hus bands
-Â ½
-me da
-accu sations
-ro sel
-nc is
-witne ssing
-or ama
-go ds
-hil ton
-el man
-ÃŃ n
-meg ap
-cra ven
-announ cer
-crit eri
-sheffiel dissuper
-milit ant
-consu l
-hoo ded
-aby ss
-b x
-ma dam
-lo cu
-mary am
-manic ure
-grat is
-ac tresses
-ros ario
-this dayin
-king ly
-gn ome
-cel ine
-r ous
-he el
-lil ac
-vish al
-ab h
-thor ns
-s ls
-ne al
-construc ting
-be ren
-s lang
-ma ins
-far ra
-sar ko
-pai ge
-gu iller
-l ala
-ice berg
-nou n
-plann ers
-u mmm
-ou ses
-ill ary
-ma an
-box ing
-zi pper
-srin agar
-migu el
-o str
-mp o
-responsi bly
-lan terns
-appli ance
-x b
-gren ade
-neglec t
-dy sle
-ham mock
-ne ctar
-wit cher
-r gv
-di ence
-ser bian
-seed ed
-cru z
-bi sh
-sp he
-e q
-sky rim
-alge bra
-phil ately
-bungal ow
-ge off
-y ves
-demand ed
-consider ations
-the vamp
-pawan kalyan
-co ded
-grit ty
-erup tion
-se infeld
-uni denti
-ëĭ Ī
-wor m
-ac us
-se ung
-dun g
-ro land
-su d
-di visions
-ab lanc
-shor test
-j f
-p oun
-plant based
-be to
-tough er
-mc o
-don et
-mark us
-v fl
-ðŁı ł
-open ing
-co ward
-caber net
-o xi
-burle sque
-sand ra
-su mo
-consi st
-tho t
-cay man
-motor ola
-gutier rez
-d slr
-y w
-no bel
-nov ice
-moms demand
-grun ge
-sp or
-d cc
-pre sses
-sli st
-allot ment
-voc ational
-ft c
-pu ja
-lo ven
-utt arak
-tan dem
-sh ep
-come dians
-anat om
-cant wait
-healthye ating
-west side
-mar gins
-chi ang
-asbe stos
-stupi dity
-proble matic
-fit bit
-: $
-ceil ings
-shu a
-protec tions
-bio tic
-beng ali
-re sts
-bien nale
-tim o
-cul min
-e minent
-affe ction
-unbeliev ably
-individu ally
-canvas sing
-wh itt
-nov asco
-chin son
-h pe
-go w
-gloucester shire
-pa o
-thresh old
-chev ron
-s ine
-we ther
-pp ie
-aqu ino
-antwer p
-âĸ ¬
-po on
-inst af
-equ ine
-cinemato graphy
-nbaf inals
-vali ant
-kil kenny
-te rence
-syste mic
-sr l
-p ound
-made ira
-pl ough
-tre cht
-mat ed
-mp d
-ransom ware
-ph in
-li qui
-bb ce
-boom er
-i standwith
-con ju
-r te
-nar a
-foo lish
-da shing
-vier nes
-br ite
-da u
-juni per
-ai da
-you now
-ra zer
-de i
-repe ating
-comfor ting
-adjac ent
-e to
-ca sted
-chat ur
-mu er
-syn th
-san itary
-mac le
-independ ent
-law ful
-e erie
-h or
-ðŁĴ Ń
-am rit
-vel o
-station ery
-mu f
-may may
-contempl ating
-elabor ate
-gre gor
-dri es
-ac col
-ภļ
-schwarz enegger
-ill nesses
-day break
-follow back
-collu sion
-electr onic
-jo vi
-hiro shima
-ta w
-hom ec
-mic ah
-qu itting
-fro sting
-ben fica
-hel i
-s ical
-pic cad
-corpor ate
-ment orship
-you are
-sing er
-shi va
-ru ne
-ing er
-ri um
-play able
-doo p
-wil low
-ter re
-ni p
-at d
-war bler
-profession ally
-er ase
-proce ed
-pedestri ans
-mis chief
-ben ding
-alas kan
-c kett
-mo p
-dd les
-shut ter
-ge ared
-atene o
-ma deline
-g ations
-o sha
-der ick
-sw ild
-an gry
-pat ents
-hun k
-decre ased
-fr y
-ðŁĴĸðŁĴĸ ðŁĴĸ
-sal on
-quant ities
-d ario
-ni gel
-ku ma
-jen n
-happ ye
-xx x
-rex perience
-pro s
-au sch
-rele ssly
-ham burger
-fuku shima
-er ne
-stat ec
-ren d
-may field
-j one
-lef ty
-bern stein
-sm il
-gener ates
-fore station
-band its
-ta yo
-r ca
-ac ci
-rodri go
-kn app
-elo vers
-vege tation
-u ral
-le ft
-ħ ï¸ı
-worl dre
-sur i
-embar k
-w son
-ba you
-mu ller
-mo vers
-ðŁķ º
-presby ter
-l f
-cre e
-bat b
-sal am
-demonstr ations
-an ec
-n pc
-it ics
-to graphy
-re inst
-thur st
-tal e
-off ences
-smart city
-bro tha
-ofthe year
-in valuable
-ear n
-ðŁijı ðŁı½
-kre mlin
-gra dy
-town fc
-guern sey
-ma ha
-contag ious
-dre x
-be en
-( £
-nati vity
-k tm
-somer halder
-comp ounds
-íķ ĺ
-" âĢ¦
-af g
-ott news
-h ound
-fire fly
-cil an
-donet sk
-volunte ered
-ak ira
-è ª
-sing ul
-st h
-dro wned
-mand o
-he ir
-ðŁİīðŁİ Ī
-tax is
-y uki
-vel d
-k ans
-el k
-ran ts
-hash tag
-t eng
-ro g
-a at
-gru b
-e ber
-in india
-colo ssus
-sig ni
-so ever
-mile stones
-der o
-differen tial
-phu ket
-master mind
-an gh
-mel ani
-bro ker
-actor vijay
-stun ned
-continu ity
-af fl
-vo cal
-perenni al
-fianc é
-in complete
-hun ts
-re issue
-domin ates
-tur meric
-ro am
-ri on
-bag ged
-nas sau
-fu t
-x ox
-national trust
-jo ye
-san o
-hearth stone
-dis respect
-le es
-h se
-siber ian
-offe e
-re stock
-wolf gang
-re gan
-plan o
-un wind
-re par
-mil le
-] ,
-skul l
-fat ally
-concep tual
-ðŁĮ ²
-f é
-ber to
-b ms
-u a
-mag na
-notre dame
-le te
-la undering
-heartw arming
-buffe tt
-go at
-pe abo
-wind mill
-v ac
-continu ally
-az alea
-mem brane
-can cels
-make yourown
-athe red
-p to
-tor pe
-ðŁĺ ł
-ðŁĴ §
-sc ares
-le aking
-z et
-pix els
-ac i
-kh il
-marath i
-ðŁĻı ðŁı½
-u la
-tam u
-chandi garh
-z agre
-aa b
-pronoun ced
-aubre y
-sand er
-pun ta
-har low
-ic elan
-celebr atory
-so t
-unci ation
-stru ly
-mc dowell
-deepi ka
-remin ders
-my stical
-ct c
-chat ted
-s ica
-bar gains
-ch hat
-ru bin
-m net
-oiland gas
-pel ican
-o at
-mor ality
-k our
-i h
-nu clear
-gc u
-ric her
-vene zia
-m ma
-le ith
-ac company
-rich mond
-sports net
-ba ahu
-smu ggling
-mm i
-ðŁĩ®ðŁĩ ª
-twi sts
-sahi b
-.... .
-amb itions
-il lo
-histor ical
-fo rec
-show biz
-pon ies
-chas ers
-remo del
-will ing
-prince sses
-am ple
-cushi ons
-ac les
-lot r
-da ch
-an the
-in corporate
-new bury
-ki ri
-fried rich
-ab v
-ball ers
-alber t
-ðŁij Ń
-let i
-nan op
-ci de
-anal o
-n sf
-)) ))
-griffi ths
-valen ci
-ro ano
-fun run
-babys itting
-ca day
-ent re
-u ck
-slu g
-tic al
-the sims
-ro ar
-car ney
-g am
-sto we
-fi d
-bun ny
-sham rock
-pe cu
-mol ina
-go cougs
-con tributes
-transform ation
-mo y
-v aj
-sever y
-antioxid ants
-thir teen
-sight seeing
-l j
-reversi ble
-odd ly
-hoo kah
-nou vel
-hal al
-fe i
-stab les
-mul t
-ho pped
-bra ids
-inter change
-ghana ian
-ww ww
-eth no
-con junction
-ago v
-ye ti
-earth and
-ts p
-con serve
-heir loom
-metaph or
-woo f
-tor io
-self less
-n wa
-em ilia
-yl ene
-y xe
-gi ar
-moder ating
-pro bz
-b fi
-ne er
-du mmy
-hanuk kah
-we bber
-k v
-eye brow
-dag ger
-su mp
-ra ges
-ork ney
-tb o
-hal sey
-assign ments
-tr onic
-scri b
-co on
-an war
-# âĢİ
-jal ape
-flori da
-qu aid
-haw keyes
-âĻ¡ âĻ¡
-street car
-ro g
-dat lantic
-gran ola
-un changed
-expect ation
-Ù ĩ
-mar lin
-gu mmy
-ðŁĻı ðŁı¾
-awareness month
-oil painting
-mu th
-per ch
-jun to
-villa gers
-mor g
-che ated
-web comic
-the future
-d ps
-la kings
-men tioning
-vo or
-ident ities
-accor d
-mc gu
-l pga
-rum our
-massi vely
-m pls
-heal y
-d ate
-sp oli
-re visited
-on t
-al and
-scru tiny
-lakel and
-bl ending
-< /
-an kara
-jami edor
-metab olic
-f ences
-ann y
-å ħ
-semic on
-oo tt
-space ship
-wack y
-le ta
-ap ac
-she e
-in herit
-do res
-ðŁĩ¨ðŁĩ ¦
-gent e
-tw ick
-ri ms
-gal ve
-de ville
-king fisher
-scorpi o
-ow l
-al ar
-vari an
-ðŁĹ ĵ
-vene tian
-star dust
-then orth
-q ing
-har rington
-consul ate
-spectac le
-ho bbs
-tur ks
-gre er
-mat ing
-ðŁİ Ģ
-ðŁĮ Ģ
-direc ts
-í ĭ
-pompe o
-vo iced
-la os
-tz u
-pro me
-pri sm
-mer c
-fortun ately
-bc fc
-mcdon nell
-not sorry
-smi led
-t ba
-for war
-mid term
-dar by
-we instein
-up grading
-wol ff
-bron co
-cab ello
-ðŁ¥ ĩ
-fi able
-shar pe
-bat tered
-sat o
-myth ical
-instap ic
-pre pped
-eni um
-e spo
-di aper
-explan ations
-who pping
-ragn ar
-pe el
-antibio tic
-l acks
-harri son
-li sm
-au l
-qu ail
-martin a
-sent encing
-sc ams
-di di
-tr onics
-ãħł ãħł
-go ff
-za in
-param ore
-cha ined
-clin ton
-li ff
-cott ages
-em on
-reve rend
-consu mer
-ce an
-t any
-lum pur
-e bay
-sto ol
-ðŁĺ» ðŁĺ»
-ta pro
-h ath
-modern art
-just ine
-prover b
-app y
-tra x
-mani fest
-am bu
-nai k
-pe pp
-r sd
-mer chants
-kitch ener
-shi fted
-li zz
-âĺħâĺħ âĺħâĺħ
-âĢĶâĢĶâĢĶâĢĶ âĢĶâĢĶâĢĶâĢĶ
-uto pia
-tom o
-ou ted
-com ers
-chiroprac tic
-book club
-cin dy
-pro hibition
-se uss
-ë¯ ¼
-thin kin
-rr rr
-go fund
-t ack
-om b
-catastro phic
-ling u
-guild ford
-bo td
-ॠĭ
-plan ter
-^ ^
-win k
-kath mandu
-sto ppers
-smooth ies
-re efs
-hin d
-bell amy
-Ħ ë
-waste water
-vo or
-nat l
-! ]
-re el
-y ap
-scoo by
-work space
-corin thians
-bl un
-obli gation
-g bbo
-dy son
-cra vings
-ell ington
-dap l
-wre xham
-earthand clouds
-uk runchat
-positi oned
-kal b
-four square
-jo ck
-im pending
-even ing
-ath y
-pro claimed
-c ites
-ann apolis
-san i
-mar th
-ir l
-accom mo
-ka a
-fin a
-y aa
-di sper
-ec ar
-bha k
-will y
-ðŁĺĢ ðŁĺĢ
-mcder mott
-mo j
-gener ational
-u said
-train ing
-lon ely
-lo res
-impe cc
-âĢ IJ
-beav ers
-ma ki
-he b
-aap l
-å ı
-wolver hampton
-leader board
-me u
-c fa
-easter n
-hu r
-civil war
-ou rage
-hor ned
-le high
-awar ds
-evi dent
-gi gab
-r ous
-ma del
-ro byn
-ur gently
-k ors
-en as
-heis man
-bam bam
-fab ian
-f om
-evalu ating
-assemb ly
-out sourcing
-hun tsville
-ðŁĶ ª
-justi fied
-cashi er
-sp aper
-buc keye
-analy tical
-illumin ati
-au tho
-o j
-sha de
-geel ong
-wh ey
-he aton
-terri bly
-ele k
-un charted
-sd live
-moto cross
-her mes
-dar shan
-dar lington
-cash mere
-gri pping
-cilan tro
-pun ish
-... :
-ðŁĴ Ħ
-inst ance
-der i
-lo bal
-muk her
-sp ar
-thin ker
-fre mont
-com piled
-color ado
-vig ne
-sm d
-whe ad
-villa ge
-le ek
-formula e
-ta res
-persist ence
-?? ????
-ped ago
-he z
-alzheim ers
-vul ture
-off ence
-is great
-suff ra
-kick in
-h mmmm
-broad way
-ï¸ı @
-art i
-alli son
-endor ses
-ry u
-lolli pop
-soy bean
-kend all
-cer a
-inv ade
-( ðŁĵ·:
-conver ter
-car pets
-ho bo
-fr it
-pe ac
-es qu
-ern an
-ou f
-an il
-di ffer
-ch ing
-bre cht
-sp g
-daven port
-stra va
-sever n
-n gos
-stor ians
-fe te
-parame dic
-j hb
-al amo
-sne aking
-gold coast
-roof s
-isi l
-depic ted
-projec tions
-nu mb
-o ss
-ep i
-glu cose
-zid ane
-infin iti
-íĺ Ħ
-ran som
-ton ics
-fal k
-g ler
-ou tw
-re ss
-week ly
-the on
-n ole
-ðŁĩªðŁĩ º
-vol ley
-sum mar
-neg ativity
-sam son
-ye w
-aus votes
-ju l
-ju dy
-f art
-pra yed
-pal ate
-multicul tural
-double header
-cycl ones
-pier re
-ãģ ¨
-âĺ łï¸ı
-rt w
-conver ting
-wir ral
-l ari
-ir relevant
-austin mahone
-an che
-ya an
-sd f
-$ .
-explo ding
-ulti mate
-prof ici
-gofund me
-cell ence
-ep stein
-bul lied
-sep tic
-à® ¤
-lu mber
-cu ff
-vsco cam
-pl or
-ภ¥
-se ok
-ro to
-venezu elan
-sor ta
-spir ited
-daniel padilla
-team sisd
-radio active
-icelan dic
-ðŁĴ ¤
-ver e
-accommo date
-shi pp
-ot ter
-ol ina
-e go
-su la
-san antonio
-de as
-simil arities
-âļ ¾
-y om
-bro ward
-å °
-can cun
-veri fy
-on te
-candle light
-ìł ķ
-inf ants
-az am
-ðŁĺ °
-le ven
-un stable
-bloom ington
-x ford
-con tour
-y p
-innov ator
-histor ies
-po y
-lolo lol
-ex pires
-cat alo
-bill boards
-an ab
-el ic
-novasco tia
-fa ire
-ìĿ ´
-rock well
-gr ille
-az tec
-joh or
-ur struly
-fi ren
-dun lop
-id le
-port man
-jo es
-tx hsfb
-hol m
-cham ele
-under world
-lo ss
-ti em
-therap ists
-past ure
-pa ste
-ing now
-vul can
-ra gon
-lar kin
-o shi
-ho co
-child hood
-umb rel
-success or
-kath y
-iz en
-° ï¸ı
-share holders
-ol ga
-ai b
-he ap
-fl aming
-ro u
-air tel
-rat t
-z ane
-vo w
-thor ough
-sn ag
-par th
-un conscious
-ve y
-new release
-gh ee
-croati an
-facilit ating
-swan son
-astor ia
-to logy
-master y
-ðŁ¤ ij
-bil bao
-trou pe
-the ori
-chey enne
-ro tt
-shore line
-gra sso
-master chef
-+ )
-vi x
-ellen show
-as g
-an ak
-ku ya
-safar ilive
-debu ting
-blu m
-list ener
-v ins
-book shelf
-smart cities
-makeyourown lane
-; ;
-ðŁIJ ¯
-ri zz
-on ward
-bull dog
-bear ish
-vir uses
-fri gh
-lin den
-we iser
-sn t
-gon a
-dre sden
-fl anders
-cu k
-wheel ing
-ba u
-atu esday
-surf ers
-swi ft
-mc call
-arbitr ation
-aw d
-mon c
-b ine
-at x
-re fr
-mi ro
-po sey
-n are
-rit ter
-âģ ¦
-play book
-blow out
-sports manship
-s oooooo
-malay alam
-gri ms
-bur bank
-infin ity
-sar gent
-oit nb
-joseph ine
-ski pping
-par kin
-excur sion
-semin ars
-jo har
-par tridge
-post game
-ll ll
-blan che
-temp ting
-m na
-lu ka
-is ers
-to ffee
-bar ron
-he mmings
-sa e
-go hawks
-cu pid
-li mbs
-con se
-un common
-z ada
-head shot
-so ils
-pione er
-mam ma
-sem itic
-pan dey
-jamiedor nan
-spl its
-vel a
-son i
-ra ff
-t mobile
-âŀ ĸ
-pra wns
-lit er
-enjo yment
-egg plant
-tu b
-cultur al
-us ic
-suspici on
-sy cam
-summ ed
-ma du
-ho ck
-up wards
-eye ing
-ri ve
-assas sins
-âĤ ¬
-out fy
-chi ves
-t ner
-la is
-por ridge
-sad dest
-w cc
-vick i
-sna ils
-biz italk
-mill an
-ðŁĮ į
-sam oa
-j ing
-mi key
-gu j
-chel ms
-eli gibility
-arma da
-thro p
-surger ies
-ãĤ ¿
-mo hawk
-ex its
-me m
-is lington
-c me
-land fill
-kait lyn
-ðŁİ ¼
-combin ations
-tomorrow land
-ver b
-cor a
-pre cisely
-na om
-ðŁĨ ķ
-shr ink
-sof tly
-merce de
-mand el
-poo dle
-ball erina
-sop h
-jux ta
-y at
-ary an
-hesit ate
-lo wered
-gu lar
-dungeon sand
-ron an
-my ri
-sp f
-men opau
-gra sp
-pa thi
-fe asi
-fla w
-shi story
-ste ward
-gg le
-fay re
-cli que
-credi bility
-yo g
-sec tion
-mu sko
-se ville
-no tt
-cal m
-mate o
-indic ted
-fi ba
-by l
-lin o
-u kin
-!! #
-enig ma
-siri us
-bu sc
-ðŁį Ĭ
-mac kerel
-psal ms
-a at
-tomorrow spaper
-ðŁĺ ĸ
-p fc
-........ ...
-shre k
-mul let
-o sh
-danger ously
-immen sely
-am ur
-ðŁį Ĥ
-pro por
-sy a
-london marathon
-abo ve
-obli gatory
-pro v
-ra cha
-alex is
-pri mary
-sh h
-ether net
-d stv
-cou gar
-un lucky
-ni l
-steak house
-mel a
-fc bayern
-cause way
-ca therine
-fluore scent
-nx t
-to kyo
-au sp
-releg ation
-qui zz
-shored itch
-proud tobe
-promo s
-inter acting
-home brew
-da esh
-w pg
-stead ily
-provin ces
-bal lots
-i ah
-al to
-< <<
-you u
-ri ley
-prefe rence
-tra verse
-incen se
-am munition
-ho dges
-# @
-hail state
-tart an
-witch craft
-vent ilation
-liber tarian
-! âĢ¦
-ow es
-% !
-ong chang
-bru shing
-le ic
-fi ber
-under attack
-down load
-ex pir
-hy o
-pompe y
-mc bride
-y ag
-stre e
-com bat
-ten ding
-ai ra
-gug gen
-ab ra
-in na
-fli ps
-aw al
-m ach
-dol lar
-inspir ations
-z um
-o du
-it ty
-video game
-aqu aman
-har u
-bel fast
-je b
-but ch
-us gs
-calcu lus
-go yal
-mor gen
-x finity
-stand up
-contrac ep
-sab re
-na be
-in secure
-gener ously
-epit ome
-l w
-t ca
-narr atives
-don nell
-pand as
-ber gh
-tu t
-ker al
-fel icity
-br ampton
-quinte t
-nom ore
-ðŁĶ ij
-lo i
-alham dulil
-ðŁĶ¥ ðŁĶĹ
-ston er
-shaw l
-clin ical
-bren dan
-gon e
-fla wed
-tri ppy
-j g
-al location
-po aching
-ve vo
-mo cks
-lef tist
-bon uses
-condem ned
-abil ity
-st ating
-microbi ome
-bio logist
-for you
-wahl berg
-ss or
-ift ar
-w ul
-ÑĦ оÑĤ
-pom er
-me me
-ver te
-tre ll
-tra it
-in let
-hormon es
-deliber ately
-vill ar
-battle ship
-p bl
-tw enti
-ho kies
-dal ail
-say a
-may fair
-han s
-die ts
-⾨ ⾨
-od in
-hot spur
-pap i
-k ana
-k amp
-fin na
-flo tus
-ti ans
-unic orns
-tribe ca
-chang ers
-fore ground
-out a
-inv aders
-gett ys
-tomorrowspaper stoday
-mac millan
-hand written
-w fp
-u de
-state of
-base d
-âĺģ ï¸ı
-cas m
-psy ched
-histor ians
-fol d
-d da
-ag grav
-p ans
-green way
-au sv
-ðŁĺ ¶
-shradd ha
-inde x
-be sti
-zim mer
-t ness
-eye shadow
-ot te
-go ts
-distribu ting
-pro min
-yo l
-ace a
-tram rahim
-hoo per
-supre me
-jam min
-intu itive
-quali fications
-sli m
-sid di
-jay ne
-tri pping
-g tx
-pun s
-e manuel
-om g
-mid summer
-in to
-succul ent
-ri en
-new mexico
-o or
-hoo king
-in f
-ðŁ¤ Ŀ
-flir ting
-na hi
-g friend
-t ps
-hel ix
-z s
-on ie
-ct f
-kri s
-irresi stible
-fla p
-ðŁijıðŁı» ðŁijıðŁı»
-us wnt
-ru d
-ram ps
-pin oy
-ot w
-lol z
-low ering
-favor ite
-t mc
-phra ses
-her mi
-aver aging
-em br
-ben o
-estu ary
-sle eve
-ribb ons
-ta sh
-ภ¹
-x f
-aw gs
-sun ited
-brew eries
-anir ud
-pun ches
-ol die
-ip ads
-wi fey
-land lords
-d ji
-gun ner
-íķ ´
-tex an
-ex op
-cas sandra
-s off
-ðŁļ «
-igh ton
-bak ers
-awareness week
-v all
-ear p
-bts bbmas
-apologi zes
-âļĵ ï¸ı
-was ps
-states man
-snat ch
-watch dog
-ra fi
-after party
-spi ke
-j er
-peri ph
-r nc
-mu ll
-le en
-shi es
-li eu
-urstruly mahesh
-mer ton
-de sai
-shi f
-ðŁĮ ±
-pe dic
-gos ling
-arrang ing
-ww g
-gen y
-you uu
-netfli x
-e ttes
-k wi
-bernar dino
-am iga
-Ø ¨
-kashmir i
-t ings
-emer itus
-de cat
-ab domin
-dc i
-pha ses
-d jan
-be am
-op ry
-i shed
-the ellenshow
-the st
-habit ats
-to ons
-mclau ghlin
-ri pper
-micro biology
-tal aga
-clu eless
-ss u
-cro che
-bro mance
-longe vity
-zagre b
-prev ented
-tra ve
-spo ilt
-darry l
-migra ine
-al cat
-dd dd
-vi v
-ser pent
-mat tel
-jam a
-con quest
-î Ħ
-sam sung
-presbyter ian
-ket ch
-fire fox
-mo tif
-le c
-cho pping
-cher no
-j ann
-ðŁIJ °
-pro lon
-wake up
-conver gence
-mersey side
-heart broken
-lo oming
-hal lucin
-mai ze
-commun ism
-mo h
-twitter storians
-serge y
-res eller
-favor able
-ed gy
-re iter
-mal aga
-live me
-ka hn
-pul sion
-big g
-kim kardashian
-ati o
-tyr anny
-ru ption
-q ant
-pro ven
-by z
-pu shaw
-kri stin
-e er
-tar dis
-ri z
-awak en
-mi ko
-un documented
-path finder
-indirec t
-resemb les
-h ler
-conce aled
-scand al
-re im
-d nb
-cr itters
-attend ant
-apprentice ships
-aa u
-scre amed
-l su
-fa h
-har bour
-ed d
-bat sman
-li ss
-mi sha
-spani el
-it f
-advan cement
-fa c
-close up
-cecil ia
-medi c
-narcis si
-lav ish
-gi ac
-ma ys
-le it
-wine wednesday
-pushaw ard
-let to
-curren ts
-bug atti
-out ine
-w j
-un do
-ler osis
-devo tional
-ðŁij «
-on na
-fais al
-sa una
-himach al
-am ii
-à® ®
-di zzy
-screen writing
-ph x
-sp n
-ick i
-ag irl
-fi shes
-wb z
-pi m
-bo ar
-ac id
-! ..
-rocke feller
-n ga
-dra stically
-simpli fy
-dru mming
-autum nal
-gur mee
-lor de
-jo ann
-give up
-b our
-am ura
-der land
-sim pler
-wat son
-tri dent
-concor dia
-bel lum
-bre k
-dum plings
-vi on
-dungeonsand dragons
-sp ri
-ascen sion
-wil datlantic
-u st
-rob ins
-legi on
-insi st
-jar o
-gue ss
-so b
-bigh it
-pool side
-negoti ating
-mc gill
-bil d
-techn icians
-miti gation
-ajay devgn
-b to
-ant en
-cosmo politan
-ðŁĺĬðŁĺĬ ðŁĺĬðŁĺĬ
-patri oti
-temp er
-promen ade
-nav ajo
-nam m
-wrink les
-dc fc
-le ach
-bru nette
-r f
-cout inho
-al ti
-tradition ally
-op tome
-na z
-accord ingly
-rec ard
-de ets
-sw ell
-po sure
-whit ening
-strang er
-illi on
-here ford
-u wu
-ro bber
-cotsw olds
-cl en
-gor ge
-nam aste
-re lish
-gri ff
-adren aline
-bla sio
-val e
-ê ²
-toler ate
-rail minindia
-jen sen
-ho ven
-el lu
-ob sole
-eisen hower
-unidenti fied
-than niversary
-body guard
-Ø ¯
-i dge
-sch al
-stock port
-sn i
-re taining
-po po
-pix ie
-oli thic
-ki er
-ha jj
-sa z
-cor bin
-!!!! !!!!!!
-v it
-me gat
-de h
-circu it
-af fleck
-theore tical
-hope less
-u ab
-slu mp
-b ice
-jam med
-let stalk
-can i
-side ways
-labyrin th
-re fs
-ha hn
-jare d
-ðŁį ¹
-jam bo
-ph yl
-enhan cement
-c tr
-ful lest
-se ye
-do ba
-cho ic
-yo s
-cb j
-andr é
-re watch
-pri ma
-doctr ine
-for gets
-u hm
-ar ound
-u le
-art lovers
-shi raz
-har th
-ex tor
-Å ¡
-unexpec tedly
-eli us
-y x
-em my
-se ac
-ðŁijĩðŁijĩ ðŁijĩ
-correc ted
-com bu
-wom anc
-cou gh
-what son
-publi shes
-divers ity
-back bone
-lock down
-mesmeri zing
-nor te
-ma b
-desig ner
-í ģ
-ra gh
-mole cules
-get outside
-the beatles
-semicon duc
-nach o
-lun es
-ham mers
-sul tan
-o on
-fe ren
-att ach
-ar qu
-uttarak hand
-s ash
-; -
-tre ad
-i ko
-ar thur
-scandin avian
-r ation
-ga el
-charge able
-fish y
-v ma
-hand bags
-char a
-ay ne
-de fam
-sett lers
-qad ri
-pal ais
-in wx
-apocaly ptic
-poo ja
-a es
-at ories
-proof ing
-n lp
-ts la
-v ina
-li do
-dee phouse
-informat ics
-v v
-pp ings
-di ss
-Ã ¯
-uhur u
-st ony
-betra yed
-b aff
-my ra
-as pen
-allow ance
-tam ara
-ci f
-cor bett
-ser ge
-di go
-ambi gu
-pain ters
-p cr
-p ca
-nom s
-lo ft
-ve e
-opend ata
-ðŁIJ ±
-alex andre
-identi fies
-fantasy football
-re production
-brom ley
-ware agle
-mm er
-p ss
-cu es
-ay at
-hut chinson
-sar ac
-jack man
-ira h
-ap ink
-col s
-aussi es
-ex ecs
-day ton
-ðŁĻ Ĩ
-im v
-har am
-chuck le
-authent icity
-ar do
-incub ator
-ภª
-photo shopped
-embrac ed
-fight for
-gor man
-zz zz
-schol astic
-cri sps
-te apo
-mid night
-ga ine
-col lier
-s ate
-de tte
-å Ń
-imag ine
-i ff
-tw ili
-i fication
-teat ro
-nor ma
-es ur
-emergen cies
-rise up
-r inger
-hass le
-cait lyn
-tranqu il
-vers a
-se b
-over look
-gin i
-bo go
-se re
-may ne
-henri k
-contamin ated
-rhapso dy
-pro portion
-wildatlantic way
-âģ© .
-organis ers
-tran e
-stand ard
-sper m
-laun cher
-ric ci
-her ts
-paper work
-showcas ed
-mer yl
-pen a
-p imp
-disa strous
-^. ^
-phar a
-x is
-fron tal
-sw irl
-sp ills
-swag ger
-smart watch
-sizz ling
-savi our
-cat ar
-bb cr
-refurbi shment
-dr is
-citro en
-absor b
-patrioti sm
-il leg
-chro mo
-fresh ers
-ru s
-lim iting
-ef ish
-down ed
-man dir
-hazel nut
-p all
-mac on
-disappear ing
-quali fies
-bo on
-bar racks
-am ine
-gen dere
-ðŁļ ĺ
-j es
-ãĥ Ń
-qu ito
-middle weight
-sch au
-quad ru
-aci ones
-limit less
-ðŁijĮ ðŁı½
-ch man
-ar av
-regulat ors
-it up
-batter sea
-mil ford
-g z
-tic king
-gh ou
-cru shes
-tu tu
-dread ful
-fam ine
-for change
-dalail ama
-ðŁĴ į
-whit aker
-hash mi
-h us
-vo d
-bet te
-aa ah
-iso o
-ðŁ¥ Ī
-ha ar
-la ine
-b v
-all day
-spr out
-indie games
-free bie
-gree ks
-but ler
-ill in
-ha al
-ware ness
-si ma
-public health
-gam a
-wa a
-oun g
-goo oo
-okin awa
-off enders
-im pose
-ho c
-young ster
-story teller
-sc ap
-figh ter
-+ ,
-whit es
-music monday
-re za
-go ducks
-bri a
-mi um
-cas per
-cru mbs
-a ad
-marti alarts
-ch p
-ri gged
-tn g
-harve sted
-sa k
-do jo
-mill wall
-b nw
-oc d
-histor yof
-t mr
-si rens
-fan ci
-caregi vers
-vir a
-son i
-recur ring
-acknowle dged
-ðŁı Ł
-oph ile
-bu cky
-stre ssing
-roo k
-di gger
-vi val
-san do
-fle et
-si ers
-sel caday
-refre shed
-anti fa
-a que
-po lo
-disappear ance
-de mb
-âĮļ ï¸ı
-ren ted
-ber ger
-g mb
-cu la
-ss al
-goo dy
-u hh
-marcel o
-w anna
-soft ware
-shop small
-turt le
-tom as
-fri sco
-ðŁĺį ðŁĴķ
-jim enez
-c su
-day z
-an do
-wyn ne
-choreo grapher
-cerv ical
-trail blazers
-ed g
-zend aya
-travel blog
-el s
-whole some
-co g
-lab out
-ar ney
-del le
-su isse
-ma si
-ine se
-om be
-fi ddle
-re claim
-pa u
-wat cher
-sla in
-ber ty
-opti mum
-el ites
-min is
-tur key
-patro ls
-ger ard
-au reli
-wild ly
-wal tz
-br gy
-w ob
-cre st
-+ ++
-ve z
-fro sted
-davi do
-the x
-param edics
-p into
-han k
-du pont
-ur g
-fo stering
-micro poetry
-spec tre
----- >
-ne uro
-fri da
-music al
-galve ston
-e ffic
-sc ape
-pal azzo
-th all
-pro visional
-p js
-au re
-ðŁĶ ľ
-mam amoo
-kit ties
-cre e
-wa k
-lo ool
-lu pus
-cn blue
-Ã º
-ðŁİ ¬
-rac ed
-tro se
-om as
-stri de
-co ors
-⤠µï¸ı
-in comparable
-cy ril
-broad er
-arec lipse
-ðŁį Ķ
-inter val
-ti ru
-co working
-w aco
-a ham
-a bee
-flouri sh
-the times
-ol ini
-kick boxing
-lu cer
-at la
-as un
-casser ole
-mi aw
-lobb ying
-jan ice
-cir que
-re flex
-le ary
-sanat omy
-tem pest
-se mb
-mur dering
-us av
-ro bo
-on et
-p cc
-nati ves
-life of
-sa ha
-ruth less
-rel ates
-appeti zer
-pye ongchang
-nor d
-er u
-a thing
-ug ly
-pl ying
-bran ce
-organ ise
-kend ra
-dat o
-chees es
-par ma
-burn out
-a stra
-pre toria
-adjust ment
-uk u
-sl o
-li ken
-fav ors
-cli ve
-be ets
-snow donia
-go tv
-sy n
-open house
-pan i
-portra yed
-sl ated
-me cca
-ren al
-supportsmall streamers
-staf fs
-da o
-bi ker
-vik tor
-tit us
-admi red
-ðŁĵ ±
-hurric an
-he ats
-gl ory
-photo genic
-mer i
-de por
-burn ham
-or angu
-dj ing
-impre ssionism
-ign ition
-ca i
-w ynn
-de pe
-cove ted
-colla gen
-sau s
-or nam
-administr ators
-ss on
-nh politics
-hahahaha hahahaha
-aspir ations
-r gb
-swol len
-so we
-sc r
-diver gent
-hou ghton
-han oi
-d ory
-ni ki
-land ry
-b cci
-ðŁijĮ ðŁijĮ
-is mail
-tri pod
-her d
-bhat t
-dress age
-tab by
-ingu ish
-hur on
-à³ į
-Ã ł
-to das
-evangel ical
-chor ds
-st john
-slo ppy
-marty r
-face book
-ali ght
-sen sei
-kath niel
-r ites
-zi one
-u o
-revel ations
-weight lifting
-pan o
-nc wx
-ac ton
-à® ķ
-Ø ²
-som a
-ภĹ
-respec ting
-mar che
-fore man
-be tty
-ki k
-shi bu
-po on
-argy le
-k swx
-et z
-mar bella
-brac kets
-stand by
-fire side
-defi ance
-v ex
-britanni a
-in habit
-appo int
-piyu sh
-le ash
-sci ento
-fla sk
-sen na
-> :
-at roc
-sand erson
-id lib
-dhan ush
-ðŁĺ Ļ
-en thr
-hit ch
-de dly
-al ley
-dor k
-mon do
-cudd ly
-mis sin
-ye sss
-night ing
-j pn
-w ary
-ump ire
-ma z
-ê ³
-bab s
-ĭ ãģ
-stan ford
-posse ssed
-exce eded
-ðŁĶ ¶
-wall art
-tra p
-j il
-hi bis
-sp ying
-scri be
-khali l
-trans lator
-lu mb
-di zed
-ch c
-super vision
-shut ter
-ja g
-_ *
-yester days
-ms f
-hi hi
-gonz aga
-gille spie
-vive k
-ec static
-this morning
-ch us
-ed es
-ston ed
-be es
-ðŁĩ¹ ðŁĩ
-tur in
-ho ver
-at rics
-ster n
-sam heughan
-auti sm
-mi ya
-eye witness
-writ ings
-travel tips
-chut ney
-px rtg
-keny ans
-my stic
-k rit
-/ $
-red head
-world ly
-am us
-op la
-le ve
-gab bana
-se en
-o clock
-gang a
-keen an
-sc ent
-ol dies
-go green
-corner stone
-comp ly
-con cours
-ðŁİ¶ ðŁİ¶
-ha an
-con fis
-aw son
-cle op
-î Ģ
-su zu
-sau té
-al gar
-subscri ber
-este emed
-ãĤ¤ ãĥ
-worth while
-mel rose
-flo ck
-bri ghtly
-viol inist
-p ere
-sli pping
-and co
-si gh
-ha van
-cu lo
-m sa
-fibro sis
-matil da
-ra fting
-aw ard
-ë ª
-mm mm
-ge aux
-ste iner
-sin n
-help ers
-beet les
-ai mee
-tai wan
-pistachi o
-mac beth
-m zan
-descend ants
-on sale
-in r
-il m
-grou se
-sa ig
-mo w
-bi gre
-adjust ments
-tu la
-mathe w
-transl ates
-mu h
-bol lah
-ðŁĴĽ ðŁĴĻ
-amo res
-ab outs
-bomb shell
-bla ster
-x avi
-s ns
-k roger
-ga ther
-erad ic
-daf t
-chem o
-ben ches
-ðŁĩ© ðŁĩ
-ut v
-our a
-n ko
-gator ade
-biaf ra
-ok state
-im danielpadilla
-dom ains
-open ingday
-kid do
-do i
-ric e
-day care
-mac millan
-ba thurst
-cheer leading
-ðŁ¦ ģ
-cash back
-k won
-hob bies
-exem pl
-ries ling
-âļ ª
-ag les
-ny s
-every thing
-nav is
-ad di
-magne sium
-faceli ft
-ark ham
-grand es
-extre mist
-don at
-vit ality
-pump kin
-be tta
-sl td
-arti san
-li by
-pe aked
-ah hhhh
-mary am
-assi m
-un sc
-ment e
-al aya
-low ers
-ar as
-gri ev
-le ip
-gr ati
-cri ses
-spr ints
-exe cute
-w to
-ms d
-mag ical
-re viewer
-spark les
-juke box
-ðŁĺĤ âĿ¤ï¸ı
-pay back
-licen ses
-dun kin
-bel t
-lake wood
-h ateful
-bud gets
-rev amped
-ph erson
-ky iv
-went worth
-ro sen
-cru ise
-gi ggle
-def star
-assassin scre
-ym outh
-win kle
-w fc
-band wagon
-b kk
-w iring
-kear ney
-south side
-pe tit
-! ðŁĺį
-nor dic
-mir za
-mu gabe
-v l
-scon es
-k tv
-sand al
-du c
-m alls
-ðŁĴŀ ðŁĴŀ
-it c
-al ay
-im pair
-un rest
-flo ss
-c é
-ab ou
-var ying
-muse o
-ser ver
-di ya
-hibis cus
-ero y
-mer ritt
-fin dom
-f pp
-un usually
-go tt
-conting ent
-ali aa
-ball on
-jo l
-hi ked
-zy me
-ay r
-ag n
-ga z
-perio dic
-spar ty
-practi sing
-lin ton
-tal is
-cy pri
-womanin biz
-radio disney
-ðŁĮ ¼
-jump ers
-endo cr
-ðŁļ¨ ðŁļ¨
-and on
-shar apo
-mi er
-ma sonic
-fac tories
-vi en
-bb ers
-ìĽ IJ
-hol d
-ke bab
-be ak
-approach ed
-ac milan
-mun ro
-ko sher
-excell ency
-negoti ation
-walt disneyworld
-cr ouch
-te asing
-suppre ssion
-en ya
-b ce
-transformation tuesday
-cal lie
-vis was
-p gat
-ic ted
-end ings
-esc u
-recru ited
-it fc
-collabor ations
-g ino
-snu ck
-ausch witz
-i fc
-x ii
-ke sha
-ger vais
-clo ak
-x l
-sa ad
-prob ation
-pre cau
-mac in
-anasta si
-le k
-e azy
-daysof code
-mariah carey
-yo g
-stit ched
-boy friends
-sh ar
-ph ile
-ag u
-twin kle
-phi shing
-week ender
-ic ton
-gurmee tramrahim
-al ton
-l eness
-all an
-pen ultimate
-kry stal
-go u
-lan de
-dis mant
-ab using
-nor se
-pat erson
-ed mun
-ap an
-xi umin
-sk el
-cat walk
-re act
-wal led
-t angle
-br yn
-ve to
-super moon
-cas ablanc
-appreci ates
-ski d
-bo th
-catal ina
-ele ague
-cyber monday
-cau tious
-ðŁ¤ ĵ
-nov o
-hamp ton
-ha ye
-jose f
-var an
-lo bos
-roano ke
-orph ans
-tt in
-squ ads
-ishqba aaz
-black panther
-e tu
-k sh
-cru mble
-cess na
-reli eved
-scul ly
-pollin ators
-explore canada
-ki es
-kam loops
-kir an
-pri mal
-sett lements
-hot spot
-brain storming
-ce dric
-bi ennial
-sh ant
-âĻ¡âĻ¡ âĻ¡
-do on
-hear n
-walk way
-fe m
-ve al
-deport ation
-tox ins
-elimin ating
-descen ding
-by the
-bla sphe
-ha sta
-comple ment
-as cent
-ri ga
-provo st
-âĸ ª
-wee ping
-anti semitism
-employe e
-unearth ed
-pin o
-natali e
-bla d
-ang ola
-lock heed
-in ian
-ag r
-ni ster
-im pala
-m ke
-fan atic
-âĺħ âĺħ
-ðŁij ¸
-lu ch
-simpli fied
-gall ery
-econom ic
-cy borg
-con i
-sel ma
-in ception
-ko ala
-dv ds
-cre sted
-m mor
-visi ble
-n sd
-ðŁĻĮ ðŁı½
-w under
-refriger ator
-re opening
-e era
-carou sel
-as p
-balli stic
-victor y
-mo tive
-tre y
-sharapo va
-si i
-mon ter
-int end
-west chester
-sp e
-cy mb
-vi dal
-ll ama
-uni v
-fin er
-crafts manship
-jazz fest
-b ch
-ag gio
-n cc
-lamb da
-tranqu ility
-cis co
-ba den
-so bbing
-of i
-go ta
-ru mored
-war med
-ore an
-ac ton
-mar ci
-gh ani
-âľ ĵ
-as sorted
-pembro ke
-pen elope
-da f
-at ty
-aim o
-pretz el
-carni val
-than os
-ko chi
-mer sal
-ham radio
-ar twit
-cas c
-guer rilla
-kush ner
-k app
-al ise
-todd lers
-steward ship
-o tti
-ter ri
-tem pe
-rest less
-vit o
-zay ed
-rsp b
-pi on
-hi ppo
-haw thorne
-in as
-am ily
-nut cracker
-lo p
-d ali
-tro pic
-ðŁ¤ ł
-ul o
-jare dle
-py rene
-pale o
-usa ir
-m ould
-it ated
-gene tically
-biom ass
-ðŁĩ³ðŁĩ ±
-do dd
-practic ed
-monarch s
-un manned
-m buhari
-am al
-photo gra
-ko ol
-bren don
-ju ices
-cu re
-world bank
-poin ters
-ðŁĴ Ŀ
-tur f
-le ds
-bor ussia
-bapti sm
-warwick shire
-moun ts
-gay o
-be gg
-co pied
-asi ans
-k g
-moder nist
-gi d
-front man
-concentr ated
-y t
-sc avenger
-iron ically
-adi c
-ps n
-ðŁ¥ ī
-cultur ally
-yu v
-mac arthur
-fertili zer
-be withyou
-ri gor
-min ors
-z oning
-âĸ ł
-ri r
-adole scent
-vin ny
-ren g
-sand stone
-gu et
-we sth
-ple dged
-lac ed
-sp ide
-v ai
-ty coon
-seiz ure
-du p
-appalach ian
-ro k
-cathol ics
-sey chel
-posse ss
-la ger
-jo di
-cham p
-stra s
-d ina
-cent uri
-cal der
-blur ay
-ðŁĩ¨ðŁĩ ³
-mo do
-an nette
-youtu bers
-chap s
-ang ling
-label ing
-a qui
-pk wy
-ly le
-bi sexual
-lit ur
-dug out
-li bby
-grey sanatomy
-sub stances
-august us
-rall ying
-fi del
-ing ue
-äº º
-hallmark channel
-tooth brush
-m á
-adi rond
-ag gi
-ðŁĵį :
-cru sade
-tax ation
-k z
-i ver
-dou bling
-room ie
-wa b
-en rolled
-az on
-a ju
-grand children
-as df
-ðŁ¥ º
-mat ic
-ough ton
-utili ze
-ðŁĴ £
-pon der
-rais in
-dys function
-co bain
-butter nut
-e man
-su red
-dri an
-and friends
-with the
-on omy
-heine ken
-bri dal
-leader ship
-pyram ids
-deutsch land
-jo cel
-bo wel
-y qr
-horse power
-be acon
-ing eni
-gra dient
-fer mented
-mo om
-thing y
-pot assi
-wrist band
-bor d
-bo died
-ðŁĺŃ ðŁĺį
-ma pp
-ka u
-cyber punk
-ph ish
-loo king
-co ates
-ap ur
-am ie
-uk labour
-at in
-g la
-adop table
-shel by
-v illi
-ri ya
-m ingly
-cli mber
-bumble bee
-ðŁĺ ¸
-c sd
-âĿ ¥
-hospit alized
-c ki
-hat er
-ch r
-re tina
-it a
-fan base
-beat rice
-gwy ne
-go ss
-fo s
-favor ited
-swachhb harat
-mal ade
-mon mouth
-" [
-si van
-sh hh
-command ing
-sains burys
-wee d
-g man
-ss w
-rep tile
-iv y
-tro pics
-roll ers
-over cast
-ex position
-masquer ade
-man crush
-wa ist
-spr inter
-sle et
-le vin
-j pg
-_ (
-o pel
-explo it
-ap a
-po we
-wrec king
-jong in
-or b
-er ick
-bo sco
-pra ising
-ber tr
-to wing
-in security
-ku t
-resto cked
-rr p
-prescri bed
-trafal gar
-per t
-g ases
-app rais
-g har
-music als
-âĸ¬ âĸ¬
-mc fad
-ag ony
-conditi on
-equi p
-shi k
-atra vel
-ðŁĩ¿ ðŁĩ¦
-ke h
-abduc tion
-pe oria
-wil kins
-g ms
-as d
-ev i
-ðŁĴĹ ðŁĴĹðŁĴĹ
-u z
-mo c
-halle lujah
-guad alu
-lou vre
-dra wing
-go ve
-ph ant
-fri e
-web dev
-program mer
-z able
-games com
-clari fy
-li th
-kin ky
-âĿ £
-labour doorstep
-son ata
-ju ris
-mai den
-vi adu
-buch arest
-conditi oned
-capit alist
-u de
-ps b
-sp ca
-lul la
-footh ills
-kay o
-bon d
-wom b
-roun der
-ce sar
-bur sts
-ap ra
-sw oon
-sab rin
-fra grant
-cle arer
-ku brick
-cli max
-jour no
-ag le
-ðŁı½ âĢįâĻĢï¸ı
-poo ch
-hal e
-sol it
-sal mon
-organis ms
-bron son
-art en
-hodg son
-alo ve
-vent ure
-bb i
-ae a
-ðŁIJ ¢
-ld n
-d nr
-o zone
-el las
-man ny
-azz ur
-un beat
-tru ffles
-th ong
-ma ñ
-las ers
-ley e
-gettys burg
-back packs
-or is
-ma ison
-craw ling
-la bra
-cl ing
-dra gging
-ste al
-dou bt
-de van
-ck ers
-agent sof
-photo bomb
-elon musk
-abo y
-dist ances
-story line
-sp i
-nor than
-europe ans
-wh ale
-ser pent
-ðŁļ ²
-fi or
-tr it
-ox o
-awar ding
-class mate
-su fc
-smar test
-rich es
-pr k
-big foot
-ar mb
-bi polar
-dw elling
-om ars
-k wan
-gri me
-m eng
-freder ick
-navar ro
-sorry notsorry
-jaredle to
-pa ve
-sl ack
-barn sley
-att ar
-evic tion
-accumul ation
-o ir
-cat chy
-wel ter
-vik as
-has see
-nik ita
-mo yes
-mathe ws
-shi v
-gat wick
-pro filing
-compan ions
-mar rake
-an tics
-ðŁĻĮðŁĻĮ ðŁĻĮ
-se se
-bo i
-bart lett
-poison ous
-ab uses
-ym m
-kam pala
-guggen heim
-imv kohli
-dol om
-bre e
-thro ttle
-gare th
-fitz patrick
-un ya
-par ad
-mar got
-j nr
-we a
-potassi um
-p nc
-disgu ised
-cra sh
-ren ergy
-ill ic
-coup led
-ni els
-ci ones
-æĹ ¥
-im ent
-despic able
-d ye
-what cha
-conne ctions
-paralym pics
-gaunt let
-wait rose
-suici dal
-star ship
-vap or
-st ou
-law maker
-coo led
-si mo
-then o
-offro ad
-ja den
-bas que
-vick y
-lu kaku
-centr o
-tri sh
-strate gist
-medic ations
-hor st
-b fc
-gra il
-sharp ly
-ad itya
-tom b
-kau fman
-tri pad
-sam ba
-pastor al
-brit ney
-sag an
-hill side
-mas ons
-sar a
-z one
-x u
-to tes
-rob bie
-app en
-mon tag
-der o
-short film
-charis matic
-tat ors
-ki ba
-and ri
-al arming
-split ting
-ic ar
-th ug
-scari est
-sylve ster
-an an
-u trecht
-a difference
-me ade
-bu ster
-air strikes
-cu ffs
-account ants
-ðŁĺ¡ ðŁĺ¡
-new t
-bo tt
-issu ing
-cl ancy
-wwen etwork
-kyu hyun
-rese mble
-pajam as
-sin k
-kin ney
-sul ph
-or k
-li es
-la gh
-or ton
-ra hul
-d sc
-we will
-re am
-collo qui
-shar ia
-hec tic
-sar casm
-land er
-tm z
-endor f
-ro z
-ham mered
-fri s
-w adi
-pope francis
-he it
-flash light
-un born
-op es
-hol iness
-ðŁIJ ¦
-nach t
-im sa
-gr acing
-bj p
-ver ts
-c sc
-home owner
-a que
-bigo try
-anni e
-bag h
-âĿ¤ï¸ı ðŁĺį
-car i
-thom p
-dispo sable
-cardio logy
-pat ented
-hh hhhh
-ld r
-stephen son
-cro res
-fan ning
-cli mat
-ðŁijį ðŁijįðŁijį
-ðŁijį ðŁı¼
-aer on
-piccad illy
-bank rupt
-sil via
-emplo y
-don ny
-commen ting
-screen writer
-io ta
-ce an
-anc ers
-tu an
-street wear
-ठ¯
-sk ine
-esp a
-asi f
-os ce
-she ppard
-more cam
-bott le
-der s
-orac le
-google play
-aver aged
-edmon ton
-steph an
-sister hood
-cru sted
-stag gering
-methodo logy
-congress woman
-c abo
-tri ggers
-mil ky
-gli de
-tooth paste
-room mates
-nu ff
-gu am
-sprink les
-alternati ve
-wat fordfc
-uof t
-hal ey
-cont acted
-bun dy
-pro stitu
-gh ar
-pre ston
-on site
-hil ar
-g ts
-c att
-hamp stead
-? ?!
-ðŁĩ§ ðŁĩ
-bbc qt
-aless andro
-resi st
-ma idan
-t ko
-shad ing
-pin up
-gal lo
-sin u
-at ec
-fun k
-ac lu
-stri des
-rhy me
-wet land
-bbc springwatch
-t ins
-wild card
-st our
-flamen co
-pau la
-onto logy
-gang sta
-am ade
-ãĤ «
-t bs
-skelet al
-run ner
-jard in
-harri er
-hun ted
-z hen
-believein film
-de mean
-au diti
-re start
-chon dri
-âĿ¤ï¸ı ðŁĴĻ
-mcla ren
-ga b
-sh um
-au sa
-lewi sham
-y pg
-k jv
-fur nished
-dor o
-bon ded
-mor ty
-lat itude
-_ )
-lo va
-water ways
-vin ai
-shor th
-drun k
-c ay
-ay ana
-kap lan
-capp uccino
-spr o
-life boat
-has bro
-spol ice
-tor on
-do ing
-dam n
-sh ree
-foun tains
-ent ation
-mar u
-boar der
-to pless
-j ada
-chan ning
-ul ls
-en closure
-gib son
-fractu red
-brit ton
-Ã ¶
-t ous
-por th
-dra f
-tra iling
-mar gate
-eli fe
-down ward
-lin n
-gla des
-girl power
-ak rish
-u ki
-ron da
-ts c
-appreci ationday
-vis ing
-lo om
-ðŁį ³
-mex ican
-ar gos
-y ya
-jad ine
-south port
-d end
-si sta
-rede em
-men g
-bra xton
-antioxid ant
-s key
-mp g
-fin ding
-vibr ation
-ce u
-kh art
-di mini
-cl ine
-shel ly
-hin es
-ī ï¸ı
-to pical
-no ver
-ma xx
-prim itive
-illustr ate
-b ounds
-tren ton
-join tly
-breed ers
-u chi
-wakeup america
-b ada
-ðŁĹ £ï¸ı
-gu acam
-sp heres
-pere gr
-youth ful
-lo lo
-bir min
-t ly
-jeremy corbyn
-defe cts
-co sm
-a rent
-v aa
-bag els
-medi ac
-cori ander
-ic ago
-g haz
-ab bas
-re model
-struc turing
-pu m
-out law
-ad ani
-r bc
-gul ls
-n li
-confu se
-ðŁijĩ ðŁı¼
-vil a
-mcnam ara
-correc tions
-mug hal
-ser i
-re gain
-ss b
-lea ve
-haha hah
-gran de
-di stressed
-re chargeable
-ho a
-hou sed
-sti l
-attribu ted
-opath ic
-di ps
-pri t
-head phone
-conclu de
-pil o
-he t
-ut sa
-nit in
-je m
-sni ppet
-tutor ing
-op er
-sun k
-en sla
-cha u
-ac orn
-quinte ss
-ran kin
-affili ated
-our lives
-cl int
-se ater
-isa ac
-ba shing
-sme ar
-nur se
-doo dling
-" ;
-sa ku
-atroc ities
-im am
-g fs
-viol ating
-comm end
-brad shaw
-er ville
-b illed
-b be
-thul hu
-i phones
-moo se
-di os
-re w
-me thane
-strang ely
-whis ky
-ti ghtly
-spiel berg
-radi us
-notic ing
-wi f
-ig nati
-i fa
-ap is
-w ali
-ha itian
-bu shes
-y z
-v l
-ex ited
-asse l
-tru ec
-dom en
-ash er
-in king
-newyear seve
-hend ricks
-bat i
-ìĿ´ ì
-rich ter
-mon santo
-con line
-agre at
-ðŁ¤ ¯
-master pieces
-ar n
-rough s
-cle ve
-se v
-fashi ons
-to ya
-sh ail
-cop eland
-aqu ari
-dec als
-are you
-y aya
-a str
-fon t
-ml m
-ar ca
-pp or
-pol lock
-xper ia
-conserv ation
-chain saw
-ag gie
-?! ?!?
-si le
-sh on
-ìĹ IJ
-note books
-marque tte
-de us
-bb led
-spic er
-mc cabe
-nor wich
-modi fication
-boo sted
-stru m
-sales man
-bang le
-nis san
-hez bollah
-brea sts
-a af
-anth us
-sk er
-ow ed
-her os
-gi fs
-fo sters
-eat ers
-du es
-_ /
-lymph oma
-sf am
-me gal
-afri di
-ag ic
-p amp
-jeal ousy
-ðŁijĮ ðŁı¼
-calcul ate
-napp ing
-g ale
-ðŁ¦ Ħ
-lub bock
-assu med
-ren ting
-íĥ ľ
-subur b
-ãĤ ·
-tech nic
-u cla
-in front
-gar net
-ster oids
-stri ving
-ho war
-mo ver
-le ton
-bull do
-is in
-ci ao
-sn z
-fore front
-d ams
-mid wife
-ma wards
-cla pton
-we in
-subsi dies
-spr oud
-rother ham
-phan tom
-ar ach
-spi el
-rac ket
-sel amat
-no on
-l bc
-enti ally
-ðŁĴ ¸
-sil ve
-m oud
-kine tic
-y asi
-ðŁİ ©
-o ol
-mi ku
-i za
-fer a
-flo ren
-barber shop
-groo t
-z est
-ne ars
-stan is
-z and
-police man
-juris dic
-form ations
-appar atus
-sp d
-arti fact
-to sc
-motiv ating
-womanc rush
-re dro
-diagno stics
-ra za
-out fitters
-el xn
-dod gy
-ry n
-sh d
-ortho don
-ol de
-jay anti
-bal ances
-quic kest
-can ton
-friday reads
-! *
-na a
-a ak
-ðŁĶ ·
-behavi ors
-rasp berries
-ä »
-polit ical
-cam il
-å ľ
-di k
-ast ounding
-lie be
-novel ty
-tur moil
-sul ly
-spring break
-hon ouring
-cc g
-ðŁı Ĵ
-my little
-ky c
-pro ms
-ðŁķ Ĭ
-Ã ¨
-bi ge
-av ril
-ðŁĩµðŁĩ °
-mari on
-as ants
-sur ya
-oc tag
-luf than
-ac ron
-fayette ville
-ti que
-love s
-en ca
-de kalb
-ta ver
-de vote
-aux iliary
-joh annes
-tread mill
-ay an
-qu r
-donald son
-cher yl
-" ....
-s ven
-kir sty
-gun ners
-ra dish
-o ahu
-v sky
-i ble
-con course
-b ps
-elo qu
-ash ford
-te bow
-roblo x
-ma da
-dri ving
-th day
-spro ject
-m ms
-band ed
-. !!
-libr arians
-flan nel
-intoler ance
-her al
-ç µ
-neme sis
-list a
-tar ak
-cry pt
-star plus
-vish nu
-sc ale
-cr is
-% ),
-j illian
-regg ae
-pegas us
-ol in
-ip ment
-man ic
-l fc
-godd ard
-ite am
-parl our
-anch ors
-lee minho
-talla hassee
-ant it
-d ho
-kid ney
-y ash
-batt led
-az ad
-gar is
-faul kner
-sni ff
-papar azzi
-ed m
-phy llis
-con tested
-aa ay
-se ca
-k ton
-vel ve
-rain ier
-for um
-tam pab
-ho sp
-trac tors
-ox fordshire
-no tion
-guang zhou
-ðŁĺ ¯
-ref ill
-wednesday motivation
-sli der
-mukher jee
-pr att
-fon taine
-alph on
-af ar
-ts i
-pest icides
-fi ends
-mo cking
-bra w
-tran sat
-do ses
-co res
-hom ophobia
-docu menting
-zlat an
-con doms
-s é
-sun set
-kun st
-ton ga
-ภª
-v ation
-sp ray
-chow der
-ra ps
-palla dium
-nor wood
-music history
-hoo ker
-si si
-osp rey
-ph ys
-conce ded
-bob cat
-ar mad
-ze it
-Ù Ħ
-ðŁĺģ ðŁĺģ
-mer idi
-ðŁĩ· ðŁĩº
-corn wall
-! ),
-touch downs
-ze it
-chal et
-mm m
-al che
-gor illa
-fo ss
-ati ku
-lumin ous
-ivan ka
-be ek
-sta res
-sw iss
-âĿ¤âĿ¤ âĿ¤âĿ¤
-scru bs
-me ath
-gusta v
-jo gging
-confe tti
-as os
-ers fc
-breit bart
-applic able
-autho red
-ya ho
-h in
-displac ement
-j v
-ðŁĮ¹ ðŁĮ¹
-ot c
-non profits
-diec ast
-gu sto
-inte stin
-c ages
-me en
-lu kas
-moon ey
-ðŁĺ ·
-very day
-tor ah
-is sion
-wa c
-lever aging
-ish able
-cu se
-le wood
-may an
-turn table
-ju ice
-tru sty
-tu p
-eti quette
-supervis ors
-stu n
-gu zman
-confe ren
-ric o
-fe ast
-back ward
-pol aris
-mic he
-jo g
-h ing
-field house
-vel ing
-sho cker
-esc ence
-ठ¾
-vi be
-anasta sia
-mar ched
-kill ing
-Ķ ë
-fe tt
-exop lan
-... (
-snow day
-lo h
-ir ani
-la khs
-del a
-po caly
-boom ers
-dictat orship
-ac er
-tur keys
-quarter final
-muskete ers
-ðŁĴĽ ðŁĴļ
-sf x
-museum week
-sc ala
-ri sis
-( ðŁĵ·
-ãĢ Ĥ
-z ies
-bo eh
-hu es
-lu sci
-dol a
-impeach trump
-roo d
-don caster
-tor re
-hero es
-fo yer
-tar i
-blur red
-ke w
-frank ly
-dro id
-ap al
-Ð ¼
-y af
-bre t
-par agu
-cac ao
-ðŁĻĮ ðŁı¾
-ru e
-head aches
-shaw ty
-char ley
-pal er
-go wns
-correc tional
-ðŁĺ© ðŁĺ©
-breaking bad
-ol ing
-da p
-endeav our
-cit adel
-tra d
-incumb ent
-medit ate
-foo ted
-ðŁĴ µ
-shab bat
-dayof the
-wil lem
-gal way
-to red
-marri age
-f illion
-sleeve less
-aud itor
-jin young
-invin cible
-kad una
-a and
-volcan oes
-mon eti
-indie gogo
-buccane ers
-ðŁijī ðŁı½
-ãĢ Ĥ
-lay ton
-cuck oo
-hu mber
-buzz er
-Ï ī
-to re
-stra ins
-sto m
-pa ine
-s we
-du ff
-z ou
-si mi
-li pp
-ur n
-se agu
-ðŁĶ ®
-sun dae
-hi c
-ðŁĺ ¨
-bull pen
-u per
-flyo ver
-al dridge
-glo bes
-ali es
-ken zie
-ge es
-y cle
-sp lin
-mag enta
-j ha
-bal u
-gh orn
-ti pper
-wick er
-taste of
-con clave
-ch ale
-inv asi
-cat er
-dio xide
-me gab
-win n
-at p
-transform ative
-nest led
-hi g
-bri dging
-lil ies
-chee red
-bad dest
-sc rolls
-real is
-dipl o
-ðŁĶ «
-conce ssion
-prefe rences
-explo des
-er gon
-introduc tory
-ine au
-ch af
-som es
-land rover
-spir ation
-sex y
-sco recard
-illustr ates
-soul mate
-wi en
-inter disciplinary
-fore casting
-ent ities
-glu ed
-en lar
-cur t
-percep tions
-boot leg
-mi re
-asho k
-v az
-hor ne
-cal le
-ac ulture
-ther oy
-night time
-oc al
-character design
-ar mist
-ðŁĺı ðŁĺı
-yah oo
-ac eae
-to se
-even to
-sou t
-nay anth
-wh om
-v are
-ri gging
-gen us
-hi ve
-com mands
-sti e
-day a
-ethan ol
-en f
-hi fi
-flu ence
-cle mson
-re invent
-thermom eter
-humor ous
-emer ging
-aci ón
-ðŁĺĺ ðŁĺį
-s ity
-haw ke
-accompan ying
-t ility
-ðŁĺ ª
-re cess
-protag onist
-l ery
-dun dal
-int l
-britt any
-q bs
-off the
-marri ages
-how to
-viol ated
-adel aide
-wit t
-lanc er
-pak v
-hu me
-st ade
-bra gging
-ou tright
-ad c
-super st
-real time
-cu res
-garden ers
-ero ck
-dale jr
-ver o
-bar tol
-mo ti
-mc fly
-v pn
-st ink
-over rated
-guer ra
-e tis
-ath ome
-twd family
-th ab
-tn x
-rafa el
-family travel
-x ley
-sat anic
-equ ations
-ru dy
-wal dorf
-stan i
-tu be
-meas les
-zimmer man
-obli gations
-i ously
-bow ser
-trans former
-sho ppe
-shak en
-gh ouse
-to d
-ke tball
-share holder
-mar ca
-kp mg
-ak an
-given chy
-coast al
-au th
-roller coaster
-mar ches
-coordin ate
-cine ma
-apprentic es
-par lor
-mit o
-men on
-consider able
-bar re
-glo ss
-enh ances
-jaz eera
-fal mouth
-thra sh
-stat en
-k zn
-eng el
-samanth ap
-flo ppy
-sal om
-ðŁıĨ ðŁıĨ
-w ack
-deliber ate
-osc ill
-herit ag
-du sted
-orni thology
-pad dle
-fer ns
-bar un
-cl ans
-anticip ate
-a ay
-mat ically
-é ĩ
-tu mble
-post man
-unic ef
-tro tter
-op d
-leaf let
-ge ist
-cease fire
-scre ws
-cre ation
-wal nuts
-longh orns
-under statement
-ab b
-proxim ity
-na x
-un ity
-turn pike
-orda ined
-dub step
-chak ra
-me ch
-love her
-look alike
-donne in
-vir on
-Ù Ī
-bang ers
-vari ants
-out dated
-in ta
-cri sto
-sp elt
-food and
-f on
-stefan i
-margin al
-hu tton
-ti ara
-tel ford
-qu en
-fair grounds
-que tta
-mikha il
-heal er
-v ball
-ty re
-under grad
-gl end
-hom ers
-scri bed
-main tains
-po che
-mis sal
-mar ko
-u as
-á n
-sh p
-con vey
-pad re
-sab a
-pu glia
-madhu ri
-pa xton
-chap lain
-n ago
-ca si
-... !!!
-fli rt
-sal eh
-k are
-di re
-stam ped
-extre me
-ðŁĺĥ ðŁĺĥ
-ho ppy
-guadalu pe
-advant aged
-eu char
-p low
-un n
-mac qu
-port land
-cla sh
-pe s
-lou bout
-y p
-keep ing
-arca dia
-fran kie
-fi u
-de th
-encyclo pedia
-si ze
-inve sts
-ðŁį ©
-geo logical
-fran ç
-con front
-ðŁĺ ¥
-d ys
-af m
-tex an
-graph ene
-repost app
-ac f
-ur sula
-gaz a
-dd led
-fu m
-wsb tv
-m be
-fron tiers
-chrono graph
-ke s
-inter faith
-tab oo
-spar ta
-won do
-flori st
-em braces
-ca w
-no el
-arch ers
-ðŁIJ ·
-roman o
-ban an
-sh akers
-melo dies
-geo thermal
-se phora
-ìļ °
-оР´
-pro c
-hand shake
-pan de
-popul ated
-slow down
-hor tons
-registr ations
-un deni
-lan ts
-pas sover
-thak ur
-li ef
-adhe sive
-pe tal
-micro scopy
-memph is
-confir ming
-air drop
-mesm er
-perce ived
-ming le
-lifel ine
-gh j
-worcester shire
-pas sions
-ach er
-el lar
-ah o
-firen ze
-bar ang
-letter man
-hat field
-lu cha
-je ter
-e shop
-william s
-horo scope
-pre de
-east bourne
-dur ga
-di version
-al trin
-seis mic
-premi osm
-nar co
-ti r
-ori g
-or m
-land fall
-ci ous
-lin do
-max ine
-x ico
-tra y
-os wald
-c ba
-ric otta
-n cr
-mar au
-ภ²
-gladi ator
-ch ery
-lun g
-u me
-po psic
-lon ging
-can als
-ta ya
-decentr alized
-sho pp
-pres sures
-mahar aj
-eti had
-wal greens
-succe ssion
-sign aling
-li g
-staf fer
-north korea
-def ying
-as ma
-de g
-peri meter
-oak ville
-m sk
-balti more
-rece ip
-de ple
-ðŁĺŃ ðŁĺĤ
-jambo ree
-> .<
-rsp b
-puni sher
-consider ably
-in tothe
-pari sian
-acceler ated
-polye ster
-low es
-fr ying
-sauté ed
-mou ths
-seychel les
-ra x
-go dis
-dak ota
-house wives
-the me
-mat inee
-black bird
-ye sung
-pre fers
-pelle gr
-in ated
-trun ks
-stronger together
-re pet
-re pairing
-ped als
-toler ant
-her r
-dun ne
-indic ation
-decat ur
-b tv
-exhibit ors
-ik on
-friday motivation
-bra gg
-live tweet
-al ves
-womens art
-foreig ners
-wal lets
-min dy
-lan ey
-bb in
-tv miaw
-lif ter
-tar get
-tam e
-dr ou
-astro photography
-mp c
-g pu
-nord strom
-fric tion
-run off
-lov able
-sp nfamily
-ext ingui
-bloo dy
-sch el
-arti stry
-sw ish
-scar ce
-ph ils
-max im
-pos sum
-com promised
-sty li
-sc fc
-is sa
-birmin gham
-sket ched
-angel ica
-ordin ance
-je ts
-conqu er
-ðŁĺ IJ
-online shopping
-s ori
-reason ably
-nue stro
-ar turo
-ch l
-benef ici
-spho to
-wel t
-ni kk
-ðŁ¤ ŀ
-dan ao
-for mid
-as se
-af irst
-âľ Ĥ
-gil lette
-as sor
-an onym
-sel ca
-fe mi
-bear able
-y and
-ar mory
-cre pe
-celtic fc
-bra vo
-in expensive
-de lec
-ge cko
-new market
-snow flakes
-kab ir
-con tra
-can ning
-mor pho
-gar wal
-ðŁĴĥ ðŁı»
-fight ing
-mu tation
-woo dy
-ju gg
-gr aces
-premiosm tvmiaw
-kenne dy
-gu p
-sa e
-op ha
-off spring
-fini sher
-bet ts
-span ning
-mar j
-h one
-sh ing
-contin ents
-samanthap rabhu
-un related
-l acy
-explo sions
-benjam in
-sophi e
-no ting
-micro soft
-as sen
-a hoy
-i ker
-ho fer
-mo e
-ah madi
-yan n
-an ak
-ma hi
-be u
-aha h
-creep er
-baahu bali
-am at
-pri ory
-haw keye
-deloit te
-sko da
-print making
-assemb ling
-mirac ulous
-no ch
-sw o
-leg a
-oper ates
-border lands
-eli e
-stron gh
-rep tiles
-pir ate
-un fold
-Â ¯
-qual comm
-un predictable
-ot r
-rose wood
-direc tional
-counsel ors
-corn ell
-liber ated
-j ad
-ir regular
-bulgar ian
-high ness
-vodaf one
-sw ild
-mini mize
-gra zie
-๠ĩ
-r stats
-stre ep
-ome tric
-humb le
-lu mp
-l ille
-b ü
-home depot
-tripad visor
-ki wan
-a via
-er z
-ex ico
-du f
-blu men
-mi zing
-ar ma
-in im
-con stan
-sor a
-ju al
-au n
-tw ell
-tren ches
-her a
-r k
-po plar
-recipe oftheday
-ll an
-bhu ban
-short ages
-ing don
-bridge water
-ðŁIJ ĺ
-fortn ite
-cam den
-un cture
-pro w
-colon ies
-t ks
-n go
-b hm
-live pd
-spl ace
-sli ke
-happye aster
-ter rence
-revol ver
-j ed
-yy yy
-office of
-m ts
-exist ential
-r ourke
-explore bc
-sse d
-pri est
-vix en
-si ding
-k pa
-a har
-ju ic
-ob struc
-foren sics
-uk mfg
-cancell ation
-we ary
-ab q
-ele c
-pri zed
-deb ts
-me zz
-salv atore
-m dc
-gre tte
-c gc
-th on
-snow storm
-ts ch
-cook ery
-å ¹
-wa xing
-n acional
-mur s
-ra ve
-cap es
-ger main
-dri pping
-sub mitting
-ome lette
-iter ation
-aj es
-shim mer
-fu eling
-ðŁĩ§ ðŁĩª
-li po
-bo bble
-un follow
-islam ist
-hi ber
-cat s
-agentsof shield
-sen si
-____ _
-ster ia
-inst al
-ausp icious
-har row
-over land
-femini sts
-inst ant
-char iot
-blind ness
-sp ed
-sc arec
-nu it
-mini atures
-ho seok
-glo ck
-fifa worldcup
-e te
-dis m
-we iner
-ex foli
-ear ts
-ภĶ
-my art
-man il
-iss ant
-form a
-in cu
-buffal ob
-in tim
-mc cul
-anj ali
-po po
-un doub
-hil a
-fun gal
-thank ful
-fu tur
-en dish
-ren ds
-th ar
-she ff
-ring o
-nichol ls
-io wa
-po tom
-cl ams
-ãģ Ħ
-acon f
-stadi ums
-di mp
-di k
-residen ces
-do v
-caric ature
-seagu ll
-kl m
-confe ss
-sla pped
-cele b
-turb ines
-pp v
-nur ture
-el ab
-.... .#
-tu ff
-de press
-al far
-amii bo
-di spon
-e wing
-que er
-friend s
-for re
-âĺ ¼
-sw t
-aqu arius
-head liner
-cur d
-fi gs
-o tters
-love fl
-kare em
-go vegan
-fri yay
-consol ation
-at ri
-ì§ Ħ
-âĺĿ ï¸ı
-poly ne
-gu ed
-o ya
-la us
-intestin al
-cam illa
-scal p
-pi r
-leed s
-horri fying
-bore tum
-dand elion
-fer rer
-ell ic
-as x
-so ren
-re loaded
-ale ague
-navig ator
-ine tte
-add ams
-al chemist
-ak shay
-dystop ian
-awe c
-n aya
-al isa
-ai led
-ag or
-avi ator
-ali zer
-smo bile
-findyour park
-cop ying
-to ddy
-sh ti
-mon ger
-cal houn
-nap kin
-break up
-y atra
-se thu
-ric hi
-eras mus
-fer ry
-am ore
-prac tise
-bo bo
-power point
-oo se
-li ffe
-chin a
-sh ka
-fad navis
-du ane
-war on
-fal se
-ðŁļ Ĥ
-wa shes
-disc ip
-==== ====
-g k
-ab b
-stub born
-medi eval
-p ci
-ðŁį ª
-maril yn
-h yo
-man di
-cr i
-prede cess
-continu ation
-om usic
-s lat
-wh al
-mall ory
-bon n
-shen zhen
-ca i
-âĺ ĥ
-sa fest
-for wards
-dra wers
-bla sted
-sle e
-mor phe
-mb ta
-dumb ass
-ÑĦоÑĤ о
-alhamdulil lah
-ec lub
-al beit
-heal ey
-ayurve da
-adverti sed
-cro cs
-itt les
-bry son
-be i
-nj pw
-honore e
-fu sed
-ðŁĶ ĺ
-mul tin
-n aga
-de parts
-ko p
-kin o
-jhar khand
-ed na
-ax le
-mil ton
-supremac ist
-marrake ch
-domin ic
-tran script
-] [#
-: ).
-wo c
-sur rounds
-o gil
-leaf lets
-co well
-whe w
-tru de
-proli fer
-succe s
-sports man
-con dom
-po che
-k up
-imprison ment
-{ }
-scram bled
-å Ľ
-ka ine
-cell phone
-metam or
-con i
-remn ants
-ee z
-down pour
-afterno on
-exerc ising
-ber ser
-architec ture
-wick low
-m ns
-is p
-bo c
-n iss
-mn wild
-stu mble
-r si
-lu ffy
-sil en
-dd ad
-bul lies
-haw ker
-bb cc
-scu ba
-e pp
-que ts
-for aging
-pal let
-ha di
-cinemato grapher
-cat chers
-to aster
-k hi
-lite coin
-kid lit
-amher st
-maur icio
-ip ad
-mar malade
-fe y
-don nelly
-g to
-est as
-cere bral
-ant grasso
-zz led
-vir gil
-swa pped
-ðŁĺħ ðŁĺħ
-no dapl
-greate st
-nhl bruins
-fra ser
-b mo
-ane w
-. âĿ¤ï¸ı
-se gregation
-remark ably
-mccor mick
-lo gger
-er as
-contrac ting
-âłĢ âłĢ
-yor ks
-uku lele
-touch screen
-de cked
-ben n
-south wark
-ra vin
-nu mis
-ðŁ¤ Ļ
-ru t
-gre co
-eth ic
-red neck
-ar r
-t cs
-ih ri
-ðŁĩ« ðŁĩ·
-l k
-inher ited
-zy k
-viadu ct
-marty red
-hi gu
-ss n
-be in
-street style
-fer gie
-bank of
-æĹ ¥
-stake holder
-exempl ary
-cre ss
-ess a
-ero tica
-intre pid
-gom es
-bra un
-bethan y
-bang tan
-pulmon ary
-m illing
-doctor ate
-trump russia
-ठ°
-s ani
-bl att
-pla u
-depri ved
-t le
-ful ly
-bour n
-st ak
-lufthan sa
-kio sk
-far oo
-def y
-bad an
-ðŁĺĺ âĿ¤ï¸ı
-rit z
-tri sha
-ran ds
-middle sex
-arab s
-pro j
-sport scenter
-repe ats
-iv f
-bleed blue
-as sure
-o bs
-territ orial
-ele n
-bever ley
-ann ah
-âĿ¤ï¸ıâĿ¤ï¸ı âĿ¤ï¸ıâĿ¤ï¸ı
-z l
-for good
-science fiction
-gla u
-son ya
-pri th
-st weets
-mix ers
-mari o
-ant elope
-writing community
-went z
-den ham
-be di
-sf o
-harley davidson
-look book
-immuno therapy
-or phe
-es ville
-ed ged
-tas k
-sb ball
-corro sion
-kilom eters
-co sting
-play back
-ke ke
-di visi
-u ter
-re location
-yel led
-pen g
-up beat
-ser ve
-âļ ł
-hal en
-stir ring
-reh man
-en v
-schu macher
-frag ment
-alkal ine
-sb k
-resil i
-share point
-rol lover
-tra sh
-counter part
-âĻ «
-ob itu
-à ½
-ãĤ ¹
-mul berry
-ðŁİ Ĩ
-auton omy
-spra ying
-nat l
-love you
-fran ki
-nu k
-esc ar
-can teen
-ali baba
-de plor
-mole cule
-pu d
-fort night
-blon die
-sp hin
-portra yal
-ta che
-bu te
-consi sting
-freep alestine
-c sp
-im mort
-d ns
-ðŁĴ¥ ðŁĴ¥
-tour de
-coo king
-archi val
-ga thers
-bit t
-b anc
-pre mature
-snow ball
-poetry day
-lou dly
-fug itive
-ed ay
-em ra
-ðŁĩ¸ ðŁĩª
-sci en
-node js
-jur gen
-je ong
-band ana
-un is
-fox sports
-v andy
-pro visions
-wee p
-tu k
-i ko
-h oun
-zig gy
-z r
-fil let
-bat a
-tin k
-con e
-we want
-k ilo
-hor ace
-sl t
-sc t
-stay tuned
-victor ia
-umb ria
-att acker
-ingham shire
-fright ening
-no ir
-fr at
-con tempt
-lia ison
-ho i
-br ink
-tr ill
-ni agar
-kick ass
-dun das
-not my
-rho de
-bu mble
-no xi
-fa g
-spec tators
-mancrush monday
-jin ping
-distr act
-dais y
-wal den
-portra it
-ar thistory
-vol tron
-ev el
-is c
-ac m
-r ite
-na o
-de ported
-swe ats
-ru fus
-lo bo
-labor day
-gam o
-ihri thik
-bl it
-abdomin al
-ãħ¤ãħ¤ ãħ¤ãħ¤
-i it
-e q
-bu sy
-allu arjun
-un disclosed
-de ton
-pro create
-ki l
-ðŁİĤ ðŁİĤ
-mitch ell
-ki i
-inherit ance
-al p
-jo burg
-pat rolling
-compul sory
-un signed
-ni am
-l ga
-eshop suk
-tr illi
-ma w
-appreci ating
-rock ab
-mañ ana
-an tal
-mal vern
-roy o
-grand prix
-sut ton
-go ftheday
-dig i
-ãħĭãħĭ ãħĭãħĭ
-t les
-varan asi
-erec ted
-discip les
-cont act
-ðŁĺ µ
-li d
-⬠ĩ
-scen tre
-radi ator
-ing tips
-trans itions
-thursday motivation
-chem ical
-separ ati
-sal is
-mi m
-geo graphical
-book fest
-/ .
-âľ ĭ
-v ae
-cur rie
-ag garwal
-acceler ation
-the ses
-lg m
-u mass
-pro portions
-nat a
-ani ans
-ku ch
-be acons
-ap r
-@ #
-ðŁĴª ðŁı¾
-nu ke
-sher aton
-ki o
-ma kati
-polit ico
-mor ale
-ì Ļ
-econom ically
-gg ly
-ss en
-pa stries
-intern ships
-vic ente
-fanta ken
-aveng ers
-accu se
-slee pover
-indic ated
-the dream
-ster one
-ren ders
-fro st
-ou i
-gre gg
-d ore
-⾨ ⾨⾨
-pu gs
-sat y
-nu mb
-hems worth
-tam i
-la ssic
-schi ff
-igle sias
-ag awa
-] "
-re shi
-game stop
-divor ced
-theat er
-clau di
-un conventional
-prophe ts
-ac in
-twel f
-tow ering
-t ml
-sc lerosis
-k wan
-ge ts
-distur b
-na ira
-ener g
-pir acy
-pru itt
-noti fied
-hen na
-bra m
-ground water
-bl s
-opti mis
-$ )
-luci e
-biz hour
-fang irling
-gr ills
-or l
-ver se
-c ina
-law less
-artistson twitter
-tele vised
-marshmal lows
-radio head
-bar r
-m fc
-bre vi
-mmor pg
-g aya
-âĸ «
-sub titles
-j t
-disney land
-to bago
-nh m
-groo ve
-fi awec
-" /
-ba o
-scra bble
-om ni
-ff l
-um c
-si mba
-ali er
-ter rell
-plu me
-mi di
-dig nit
-co c
-bru t
-ad ata
-alche my
-d sm
-ðŁĺĨ ðŁĺĨ
-win try
-spa res
-cu er
-conclu sions
-to ys
-od or
-fl ann
-gar vey
-scrip tions
-inspec tions
-cat ap
-ang lo
-st louis
-heim er
-at ay
-tr ich
-en yc
-chil ds
-vent il
-mont p
-guiller mo
-circu lare
-z ell
-mode led
-craf tsman
-al ina
-stimul ation
-cashe w
-ju das
-best of
-to ire
-susp ends
-scol lege
-real ising
-by tes
-bloo ds
-as si
-ðŁĴ ¿
-o hs
-ðŁį ĭ
-scallo p
-ठµ
-gi fting
-camo gie
-wil kes
-o zzy
-ðŁ¤ ¤
-ver onic
-sav oy
-deme tri
-baby girl
-ðŁĺį ðŁĺŃ
-so x
-cly de
-induc tee
-count down
-self care
-ठľ
-vi ka
-tor re
-phd chat
-pe ars
-aw h
-suff rage
-le sn
-admir ation
-mp p
-shark week
-schul z
-santor ini
-clo ver
-( *
-stras bourg
-ex iting
-so yu
-finger print
-che a
-ãĢ ľ
-vin dic
-song writers
-so a
-prou der
-nam a
-= ))
-simple st
-delici ously
-gil les
-u q
-mn wx
-ep p
-sh un
-ken nel
-fall on
-ðŁIJ £
-sin d
-tra gically
-out es
-modern ism
-co ke
-gy n
-spi on
-âĺ¹ ï¸ı
-le am
-compress or
-apolog ise
-twent yon
-fan atics
-âĻ »
-sco tsman
-sa wa
-ko u
-as er
-ภļ
-welter weight
-phen om
-twick enham
-stri a
-p out
-ka z
-gi am
-cd p
-ho y
-emplo y
-red mond
-ภĦà¸
-sm ere
-trance family
-proto cols
-pie ce
-lu iz
-iter acy
-carl s
-united states
-har med
-phd life
-ch aw
-foot prints
-l é
-cho ker
-z ana
-sli pper
-eric sson
-insul ting
-articho ke
-advis ing
-acquis itions
-op or
-mut ations
-re ar
-ॠģ
-pod cast
-wi ther
-kun g
-íĺ ¸
-win slow
-di apers
-ðŁĵ¸ @
-ec ker
-col lar
-hu ey
-gi ro
-mono gram
-kas ich
-si veness
-malay si
-arom atic
-gre s
-gali leo
-u ji
-rob b
-dr m
-none theless
-as a
-: >
-lo a
-l np
-at work
-ag t
-laksh mi
-pipel ines
-id al
-stre l
-re all
-chain z
-stone wall
-san sk
-ðŁı ´
-pied mont
-hoste ss
-ci u
-t é
-analy ses
-wil helm
-scott y
-rw by
-mosqu it
-use mb
-qu ins
-ðŁij İ
-tu cker
-s conf
-speci fications
-psychi atry
-broo kes
-s ils
-ol af
-de to
-co di
-cli p
-fil th
-womancrush wednesday
-go to
-ang erous
-be ale
-w tc
-paneli st
-ne x
-lar sen
-emili o
-tab leau
-h itters
-conce ived
-americ ani
-or tega
-mar di
-Ñ ĥ
-pain tball
-thir sty
-new yorker
-etis ation
-go ss
-we aker
-u gh
-tro ll
-har ga
-du al
-ght ning
-at ine
-ðŁĺİ ðŁĺİðŁĺİ
-cook out
-pyrene es
-po ss
-authent ication
-sports wear
-yun ho
-kir o
-archi pel
-shen ko
-ren der
-nov ation
-divin ity
-ðŁij £
-su fi
-humb ling
-ge opol
-devote es
-wait ress
-tr ough
-py ro
-i ba
-bl ing
-gra f
-epilo ts
-bt r
-of tball
-bas king
-domin os
-so om
-r ath
-sher yl
-qu el
-astronom ical
-wel d
-track list
-sig nee
-slee pless
-com man
-ch ron
-summ on
-pure michigan
-cri spr
-sli p
-la gi
-ra q
-um u
-thal ap
-char med
-scru mp
-quad copter
-ski p
-peter sen
-mun i
-ðŁĮ ¾
-mon aghan
-tra ys
-ick ed
-canad aday
-te gr
-ï¿ ½
-hot ness
-heavy metal
-ab ar
-gop debate
-az ul
-spider man
-sun flowers
-ľ ë
-web comics
-bar d
-Ð ²
-nichol as
-slu sh
-ram an
-mark ham
-ffici al
-ff ler
-íĬ ¸
-ple ss
-anush ka
-to to
-sk aters
-pro wrestling
-compet es
-ay ala
-myster y
-thr ills
-mp g
-independ ently
-y ul
-imper ative
-formid able
-tire less
-st acking
-ton gues
-mal tese
-pot ts
-mat ti
-char ting
-chill out
-super nova
-ome o
-sky sports
-nu tty
-ðŁĹĵ ï¸ı
-ro han
-insp ired
-concier ge
-ser ra
-ma kk
-gal at
-chi pp
-ye v
-ì £
-reim bur
-op ul
-kimber ley
-i eee
-bre men
-ch itec
-or in
-nak u
-bon kers
-foo ty
-emer gence
-ðŁĨ ĺ
-sti p
-serge i
-zo ey
-ai me
-wou ld
-dy es
-destin y
-vinai grette
-dri er
-circulare conomy
-an archi
-ss r
-sch el
-cin er
-gro om
-determin ing
-gar min
-cal ais
-incarcer ation
-bu kit
-no i
-chelms ford
-mckin ley
-chi pped
-belong ed
-tu mors
-str oud
-mi i
-influen za
-wwen xt
-tun dra
-tele communications
-cat sofinstagram
-t ages
-beat ty
-o du
-ml kday
-oo per
-dang le
-ak ley
-cru mb
-anti gua
-ti mbers
-rou hani
-ðŁĴª ðŁĴªðŁĴª
-ha fi
-... !!
-w cs
-coo p
-sn c
-lit res
-ãĢ Ĭ
-ha z
-co z
-k ant
-green field
-cur ti
-y ale
-flye agles
-what soever
-wor thing
-rou lette
-flyeagles fly
-un da
-a inted
-stand ing
-lusci ous
-h pc
-effic acy
-ash land
-me ghan
-ky wx
-n pr
-bath tub
-ac os
-h ani
-mar cor
-man tis
-da isi
-bo ba
-ab bie
-mu til
-vi al
-spy der
-po z
-g ti
-el fie
-nigh tw
-metro id
-anton i
-mad die
-dh ry
-dar lings
-ten ds
-taek wondo
-atlan ta
-me ow
-chlo e
-ãĥ İ
-ym es
-siber ia
-k con
-gu es
-mar iner
-fac il
-azz le
-[ ...
-han nover
-bav aria
-vir go
-te uk
-u sps
-) #
-wall a
-sam pson
-need less
-ver bally
-hay ley
-bow led
-pi us
-lam pard
-ham string
-vol vo
-road safety
-cho king
-sor bet
-a hem
-healthy food
-brai ded
-horticul ture
-cr ative
-che ek
-ad do
-the force
-ko ko
-schiz oph
-j ie
-w ada
-twentyon epilots
-h bcu
-pro ton
-pau ls
-lou isa
-lat am
-kyr gy
-com pac
-sd k
-sap i
-?? ?
-liber alism
-ep silon
-ai den
-w usa
-spra yed
-baske tball
-kim ono
-blue wave
-ali as
-ë§ Ī
-mug shot
-ce c
-do gre
-ad ora
-ðŁĵ· @
-kra kow
-intrigu ed
-exhau sting
-astron omer
-ven ison
-lady bug
-ci v
-bra e
-us m
-bri be
-acup uncture
-pembro ke
-ke ating
-chi e
-y ad
-t si
-sm i
-see ding
-gate shead
-lis boa
-gy p
-canv ass
-ðŁĶ´ âļªï¸ı
-op i
-ni r
-soci etal
-ly te
-ati es
-c sm
-ar tery
-al in
-aka poor
-abstr acts
-âĢ¦ âĢ¦
-teen wolf
-ne we
-travel gram
-sentim ental
-per ched
-han del
-ho ek
-f ay
-coordin ating
-anim ate
-man ian
-effor t
-jer ky
-f ck
-adri enne
-ma bly
-tra ding
-my el
-spi ro
-sol a
-stor ing
-over drive
-monday morning
-dream team
-pul se
-bon di
-ber nie
-pgat our
-tri poli
-son am
-plat t
-âļ ¡
-ag roup
-îIJ Ĵ
-inv ading
-v cu
-k ell
-ñ os
-un dead
-pod casting
-mercede sam
-mana fort
-cor tex
-que so
-impecc able
-pal mer
-wil doz
-sport sc
-guacam ole
-dispen ser
-cate gori
-stun ts
-per il
-invit ations
-dune din
-xi e
-achi eves
-saf er
-pre ds
-ph an
-knuck les
-k ak
-igno res
-lovemy job
-aru ba
-ound ation
-datac enter
-co vert
-gr ing
-cou ple
-ا ر
-vol i
-mc cle
-arti sans
-lu do
-kal am
-arom a
-under taker
-hu la
-wiz kid
-gu mb
-god frey
-bakers field
-ker n
-engine er
-car ve
-pal in
-guaran tees
-pe bbles
-b ays
-zi eg
-fin k
-â¬ĩï¸ı â¬ĩï¸ı
-down pours
-ro chelle
-rasp berry
-ðŁĺ ®
-gra phies
-stom p
-caf es
-ari zed
-utt ar
-cal vary
-dri e
-crusad er
-bus an
-tux edo
-si u
-seam us
-cul tured
-blan chard
-town house
-ge red
-butter milk
-flu ctu
-roger federer
-hel i
-ðŁ¦ ĥ
-u ous
-ram esh
-mu ppets
-email marketing
-ye ss
-br ice
-ri zio
-pel o
-donnein arte
-u rable
-inve stin
-bump ing
-raji v
-sav a
-thro wer
-fore x
-o hhhh
-th rust
-pull man
-r fid
-sep sis
-le ed
-fri ght
-roun ding
-ne b
-ph ins
-ai sha
-utili zing
-squ ats
-gold smith
-j ic
-bo ks
-vau s
-i po
-exclu sion
-tari ff
-po kes
-min al
-land s
-en force
-washington dc
-or char
-g x
-mar ys
-ey our
-aussi e
-bak ers
-un popular
-latin os
-lar ge
-pu tnam
-bol o
-wa de
-pel o
-di zz
-ob struction
-fla ppy
-weare the
-depend ence
-pajam a
-e te
-y ann
-e wan
-disc la
-a ay
-kar ina
-e ic
-an trim
-w soc
-neg atively
-kai do
-fotogra fia
-dh ru
-colo ssal
-mcle od
-k wang
-mani pu
-ex hilar
-us atoday
-summer slam
-co les
-tapro om
-unbeat able
-de ma
-tic ks
-k ling
-fil s
-campaig ners
-ภķ
-brew ster
-audu bon
-qu ay
-ch s
-ki gali
-d ler
-strength ens
-som al
-sign ingday
-gol ds
-pig ment
-orche stral
-g q
-lin kin
-ðŁı ĩ
-ta w
-algar ve
-ho v
-ear le
-gold fish
-am ig
-ex er
-ben in
-dru id
-ðŁIJ ¸
-she m
-quat tro
-mer cen
-men te
-incorpor ating
-bon anza
-state fair
-en de
-concep tions
-e es
-âĻ¥ï¸ı âĻ¥ï¸ı
-d son
-fire arm
-orb ital
-we h
-multi p
-fo b
-requi em
-p light
-thou se
-sa id
-oc re
-remem brance
-n old
-chi pping
-be v
-er t
-ca thy
-sy m
-ri ggs
-m ley
-dialo gues
-sl ender
-how l
-gau teng
-wd w
-to bi
-smo kes
-im plo
-b pm
-ad n
-mom basa
-cap sul
-bloom field
-artic ul
-cle o
-goog led
-flu ffy
-l ard
-en zyme
-ve sti
-ibra hi
-fl ame
-e mea
-out ages
-dispro por
-ble ak
-an sel
-ick er
-st louis
-stock market
-good friday
-sau lt
-stal led
-pro m
-ep som
-b é
-the se
-sau ces
-me w
-lit fest
-pre d
-re u
-kar ak
-si enna
-ell in
-bio technology
-ï¸ıâĥ£ -
-tac tic
-sa in
-por k
-mon za
-ka j
-lu sh
-compart ment
-chang ing
-shraddha kapoor
-fo al
-ar tem
-cu ando
-can ola
-ori ente
-me sse
-d ited
-br c
-box er
-bbc two
-s st
-ment day
-em ing
-de wey
-kof i
-âŀĸâŀĸ âŀĸâŀĸ
-reali zation
-smo l
-tw ood
-san je
-flag staff
-ber wick
-cor set
-can ary
-whistle blower
-et ched
-com posing
-squee zed
-bow er
-auto desk
-ne h
-mathi eu
-ba ja
-Å Ĥ
-hy dra
-da im
-am eri
-insi sted
-mer lot
-gar ros
-heart news
-gaine sville
-cut ler
-bo de
-ðŁĺī ðŁĺī
-lew es
-scoun try
-g sa
-us u
-cc m
-god awgs
-phara oh
-cra e
-mor ley
-hyp noti
-f ades
-neur ons
-fu zz
-ing co
-high landers
-star k
-vig ne
-pac kets
-amar illo
-reu ben
-insul ts
-bas ic
-vec tor
-n me
-ac ruz
-tro s
-transm itter
-ðŁĺ ŀ
-interpre t
-ðŁĺ ²
-pre quel
-mc gowan
-dis semin
-ðŁĴĺ ðŁĴĺ
-mascul inity
-indie gamedev
-ali ve
-te t
-pe tal
-ema iled
-ar med
-ko o
-he er
-ba ird
-super junior
-metro polis
-delav in
-decl ines
-stit utes
-Û ģ
-p tbo
-g lan
-cho res
-e aling
-chri ssy
-ste mc
-vi an
-assassin ated
-pron ounce
-illeg als
-discover y
-cav ill
-fri fotos
-f al
-so i
-sabot age
-t int
-p dc
-ðŁİīðŁİ Ī
-ãĤ Ĭãģ
-ji o
-endeav or
-in sig
-commit tees
-she arer
-me tz
-mar rying
-h dd
-g by
-fre t
-tri sh
-pu l
-scrip ted
-sa ki
-l w
-ke ye
-shim i
-nan aimo
-ca h
-Ã «
-tem pered
-ici an
-du gg
-dish washer
-air field
-s rugby
-gr inch
-y st
-r ms
-mahat ma
-lan kan
-disc ar
-dige stion
-no des
-l ls
-om ic
-gu tter
-tis garh
-feder ico
-election day
-bo he
-master card
-fire ball
-âľ Ķï¸ı
-oy ster
-p ong
-do k
-en route
-m vc
-beat the
-ali stair
-shu b
-sh aming
-cherno byl
-ghi bli
-the s
-pin ion
-d bs
-sal ts
-ic tion
-epi ph
-nc pol
-in convenience
-whit ley
-inspec ting
-wood ley
-wi ener
-skil let
-no les
-m ca
-h ina
-a sha
-willing ness
-well ness
-tam ed
-show time
-dis advantaged
-ber nat
-us n
-mission aries
-coun selling
-arrog ant
-quant itative
-leg alization
-ho dge
-energye fficiency
-cameron dallas
-pos sessions
-p bb
-harris burg
-v g
-hindu ism
-happy thanksgiving
-fi b
-re acting
-tweeta picture
-pol iti
-mu ppet
-hur rah
-pac e
-coast guard
-guar ded
-as am
-par ry
-fore very
-x q
-oom f
-ke anu
-j ind
-ri st
-customer service
-sac red
-ðŁĺ º
-ton er
-occur rence
-mat u
-val dez
-red d
-is ak
-power rangers
-pe asant
-raj ini
-abra ham
-e mil
-car do
-tr il
-hair styles
-obsole te
-sam pler
-direc tive
-delavin kisses
-ver ton
-glo s
-sp ay
-paler mo
-com ets
-man ziel
-chicag of
-ski pped
-pic torial
-h ant
-b mi
-a ol
-re opens
-pad dling
-devo s
-fra ud
-bas eline
-que ues
-sp ired
-sn are
-eu ve
-descri ptions
-daisi es
-ca ching
-gall eria
-tri mmed
-stin o
-recy cla
-ic ular
-bir ken
-raw lings
-fli x
-chic as
-b gt
-lik eli
-argy ll
-thel ove
-ga ston
-bl anca
-ha k
-f one
-sailor moon
-h aci
-ima c
-fl yn
-de can
-bel les
-ap ic
-zo g
-taun ton
-con stance
-lasag na
-ker nel
-in ka
-har bor
-collec tively
-calcul ated
-av ille
-shil pa
-pur du
-gi mm
-fun er
-a est
-pembroke shire
-nighting ale
-n unes
-hyper tension
-hu bert
-sli ders
-infer tility
-comm ended
-transat lantic
-metr ical
-!! @
-Å Ł
-ss g
-bac ca
-inver ted
-fun factfriday
-it ans
-albu m
-acqu ainted
-ri er
-whel an
-sar ab
-mu e
-snoo ze
-pi ff
-agre eing
-sp itting
-jer maine
-n ye
-âľı ï¸ı
-am bush
-ze ph
-con greg
-univers ity
-s app
-wann abe
-pat rice
-ib d
-do glo
-fri dges
-sun d
-king ston
-ar gon
-kam en
-hardro ck
-ds ley
-do lores
-ì °
-ota ku
-pi ping
-be having
-âŃIJï¸ıâŃIJï¸ı âŃIJï¸ı
-blue bird
-an sari
-teapo t
-fire work
-cro p
-log ans
-ty ped
-thick ness
-ig ers
-c fp
-dys functional
-contra sting
-et ty
-aston martin
-tx st
-dra grace
-at tributes
-marath on
-manu scripts
-john stone
-ðŁĺ± ðŁĺ±
-bo er
-ay u
-aru gula
-poo rest
-con du
-assu mption
-anag h
-no h
-delav in
-sit ter
-g ö
-mor ow
-kick start
-com i
-gl acial
-ghe ad
-ba in
-ker shaw
-en dof
-fre ud
-om at
-i af
-hu g
-sign up
-each other
-defin ite
-tu bing
-shak ira
-ðŁijı ðŁı½
-uu uu
-sw in
-sham bles
-ol as
-sk ell
-brit ain
-kn w
-clu tter
-om y
-j ens
-hang ed
-city scape
-scra ps
-un locking
-dead liest
-er no
-breast cancer
-a it
-inspec t
-fu ri
-ðŁĴ Į
-ku d
-ju le
-or ah
-mi ds
-m dt
-bur gring
-r attle
-pu sa
-stal k
-cle ans
-iss ance
-z ek
-worth it
-nam eis
-musko ka
-council man
-urban art
-bar rac
-un solved
-tu l
-g ita
-white board
-soy beans
-em ent
-cont i
-saturday motivation
-conveni ently
-doc king
-t ado
-âı ©
-sp ino
-puppy love
-po f
-fabric ated
-robb ers
-adop ts
-ti fied
-kk r
-indulg ence
-notic eable
-macqu arie
-chap el
-sensu al
-ki ko
-melan oma
-lore tta
-li ance
-ab en
-sp lus
-ga al
-ac ele
-lib dems
-compar isons
-ðŁĮ µ
-rhy thms
-mer y
-en capsul
-nap ier
-ðŁijĮ ðŁijĮðŁijĮ
-ðŁij IJ
-plat z
-fre sno
-re formed
-ran bir
-el it
-the best
-bhu shan
-vin nie
-impro vised
-s ittin
-re created
-e ba
-ec ker
-ac rob
-pon te
-cor d
-gi ddy
-eur usd
-fe ver
-intu ition
-gar i
-dum mies
-bud weiser
-amend ments
-te tra
-sch nit
-ay as
-mar ys
-ci st
-k ani
-ker mit
-ðŁĺ±ðŁĺ± ðŁĺ±
-tin ker
-strol ling
-di visional
-niger i
-omin ous
-menstru al
-kar ab
-k hy
-bw fc
-pan handle
-l illi
-well er
-stra pped
-son the
-transfer ring
-ethe real
-sne aks
-ru dol
-gab les
-jac king
-cin code
-for tune
-canadi ens
-con for
-ab normal
-frank lin
-tit a
-mu la
-persi st
-cu ties
-ki el
-ðŁĩ± ðŁĩ
-her mann
-aw k
-fi asco
-ko to
-we ta
-hi ker
-budd y
-preven tive
-mcgra w
-game boy
-forsy th
-top shop
-si ob
-sad h
-in tram
-follow art
-so aps
-dragon ball
-ou x
-morri son
-๠ĥ
-lu bric
-adul thood
-morri sons
-âļ łï¸ı
-her mo
-ta ka
-stall one
-mis use
-team gb
-ra gha
-con fined
-at y
-hom ophobic
-nw o
-sky news
-ho ya
-ac rosse
-wi iu
-pur ée
-jed dah
-ðŁ¤ §
-advis ers
-ph ine
-an is
-scrump tious
-ë° ķ
-c ke
-vin y
-ter m
-s dc
-o do
-home school
-vas c
-leop ards
-debor ah
-illic it
-cur ran
-as roma
-nau ght
-mar ig
-brand i
-em p
-ðŁĺį ðŁijĮ
-î Į
-su spend
-lu z
-initi ation
-sch aft
-jensen ackles
-craw ler
-post doc
-des ks
-trail blazer
-den omin
-tri x
-no ise
-po et
-± ï¸ı
-s mug
-vol atile
-proof s
-pharmac ist
-sardin ia
-mash able
-kim chi
-co ed
-schal ke
-doo dled
-c sw
-sh ur
-ro x
-do k
-chris brown
-mathemat ician
-ab ound
-ang elic
-rock ford
-d ole
-yor kers
-ms n
-g man
-xavi er
-bor rowing
-mark ings
-longh orn
-k ja
-diver ted
-mm it
-euph oria
-ay yy
-te a
-pa h
-ck i
-un cut
-li ven
-ky ung
-fan art
-mer ing
-red ding
-amo vie
-gri di
-c thulhu
-schol arly
-ju dah
-th bewithyou
-eu calyp
-ðŁIJ ķ
-hert fordshire
-cour troom
-by u
-auc tioned
-ple ase
-mar cia
-ê° ĵ
-succe eded
-el as
-arvin d
-t lot
-saig on
-re tt
-ra kesh
-fd ny
-as en
-se bring
-gladi ators
-you know
-v lad
-gol a
-par ap
-ÑĢ и
-sab cnews
-one team
-oh l
-sun e
-ri j
-cd c
-star gate
-run down
-plat o
-ph c
-chat ter
-ra viol
-mn f
-mand ala
-li et
-ภķ
-mari a
-hun gover
-consoli dation
-fer rell
-tradition al
-ilove art
-gal ap
-ðŁı Į
-que zon
-espa ña
-ðŁĩ¨ðŁĩ Ń
-ho bby
-steam boat
-mali gn
-guil lau
-pro hi
-its me
-íĥ Ģ
-in scription
-al z
-mari an
-k ade
-mm on
-adju sting
-ne sts
-intern ally
-ci r
-vik ram
-mal ala
-k ph
-fel icia
-the real
-cap tivity
-at is
-marcor ubio
-kale ido
-che v
-mano j
-le more
-gent ri
-vi ps
-tro pe
-" âĢĶ
-pair ings
-mal nutrition
-fr ay
-desig nation
-brun omars
-az e
-tor rential
-pan zer
-ga il
-under the
-the ological
-schizoph re
-dazz le
-freder ic
-mo par
-ad illa
-so ggy
-ra un
-medi ocre
-colo rec
-i fe
-p inst
-blu ef
-Â ²
-world water
-gir oud
-clar inet
-ad olf
-tar antino
-receip ts
-assu mp
-ðŁij Ł
-coffe es
-âľĬ ðŁı¾
-du plex
-s of
-r x
-lin o
-timber wolves
-pan dit
-mo tm
-e ga
-ay ama
-ach s
-outsi der
-ll en
-co er
-til ly
-cheese burger
-ma ds
-ple dis
-emp ty
-national parks
-az iz
-p mi
-jun kies
-f ener
-sq n
-è s
-gener ation
-cleop atra
-bhuban es
-mosqu es
-ty free
-popp ins
-tw c
-or well
-n age
-ka whi
-hol low
-dal ai
-¨¨ ¨¨
-ou ro
-m health
-gi on
-az o
-vis as
-reneg ade
-re ic
-w sop
-ðŁĴļ ðŁĴĽ
-e chel
-tox icity
-mü n
-bun k
-stimul ating
-asth our
-\ '
-ep h
-ende mic
-cn bc
-shrin king
-peabo dy
-michel angelo
-can yon
-wal e
-su mi
-si ders
-inu it
-? .
-profession alism
-dr acing
-plat oon
-p ons
-out bound
-maple leafs
-de sol
-cen cy
-a than
-ver ma
-ru bbing
-ok an
-ðŁij ł
-mull ins
-authent ic
-Å į
-alman ac
-ga ia
-bb q
-on imo
-ke h
-ty a
-tou ts
-y av
-re posit
-, .
-wi ght
-se eyou
-cal lof
-done sia
-bar gaining
-gr anth
-sd su
-amphi theater
-p su
-re watching
-wine tasting
-peak district
-dete cting
-thur man
-phe e
-èª ķ
-u mich
-re r
-sculp ted
-go le
-name sake
-ðŁĶ ģ
-serv icing
-bau gh
-pu gh
-pen cil
-dar th
-munch kin
-at orium
-ten ers
-sun y
-rolling stones
-mag ing
-star rer
-i dris
-fe instein
-ag ron
-âĺºï¸ı âĺºï¸ı
-supervis ed
-chamele on
-aggre gate
-succe ssive
-mo gul
-inst yle
-pol dark
-custom e
-ohio state
-ha ya
-ci des
-broker age
-angel ou
-fifa wwc
-de forestation
-al ton
-pam ph
-hu gged
-ho bo
-change able
-ku ber
-bur roughs
-demon etisation
-cape cod
-vers atility
-or ice
-le ila
-womenin science
-tu a
-he dges
-embarrass ment
-ali fe
-so ars
-ni ghter
-hy mn
-gi pp
-chas u
-tech s
-ni all
-k illa
-hi ka
-cam els
-valu e
-Â ¢
-sc oops
-mah moud
-clu sive
-adri ana
-pac o
-oz il
-un as
-transl ations
-whispe rer
-s bi
-bu xton
-bio tics
-indi ffe
-ken ney
-k lar
-et ching
-barra best
-inst ability
-se ine
-vo tel
-blo gged
-whis key
-my space
-t ant
-lan dia
-give back
-illu s
-aw ak
-ac ab
-f bloggers
-cloud computing
-blat ant
-syri ans
-band ra
-sty n
-an em
-ke ted
-kar thik
-barun sob
-pin ot
-gu bernat
-gay e
-arti ste
-i fied
-conven tions
-hu an
-geni uses
-eeee ee
-fol ly
-somer ville
-pride month
-ðŁĩºðŁĩ¸ ðŁĩºðŁĩ¸
-chemo therapy
-paul s
-bak ar
-ìĦ¸ë¸ IJ
-taiwan ese
-fol lo
-c ss
-re ign
-nn nn
-fla un
-catastro phe
-iti es
-frag ments
-extre mists
-ym oun
-car men
-eze kiel
-conne cting
-se h
-man ta
-remodel ing
-we ymouth
-at oms
-ce m
-ne well
-lu mi
-the open
-mo c
-mili band
-g land
-z shq
-mag gie
-mani acs
-m sp
-ad y
-cre ams
-le anne
-e sta
-py g
-af finity
-pray er
-dun bar
-ligh troom
-ac adi
-wyn onna
-roman tic
-state dept
-sick le
-wh os
-lam o
-et our
-fin ity
-shru b
-shar pen
-pun dit
-ed on
-af ore
-mar s
-jeff ery
-ter ps
-medal list
-kath arine
-accu sing
-ta z
-roy d
-from home
-confron tation
-alle gh
-ðŁijī ðŁijī
-refresh er
-ran veer
-never land
-jo jo
-lu crative
-en am
-ca ver
-pa edi
-man jaro
-flu ids
-the ssal
-oppre ssed
-mu ss
-joh anna
-Ø ®
-cn g
-buil dthe
-sett les
-s ith
-fu ego
-cl amp
-ar ag
-pay er
-ted x
-mand y
-inter stellar
-fr c
-ch and
-b cc
-mo lo
-len til
-johan sson
-grims by
-nature lovers
-ðŁļ¨ ðŁļ¨ðŁļ¨
-shin de
-x in
-international dayof
-transiti onal
-sat a
-cad dy
-wo d
-if u
-ha ys
-holl yo
-j ang
-ir c
-co im
-grad able
-" "
-ðŁį ´
-ঠ¾
-a el
-n yo
-west lake
-time out
-sof i
-phenom ena
-cultiv ation
-ag no
-un armed
-so t
-con j
-gen o
-royal navy
-nutriti on
-fair mont
-ti relessly
-sn g
-re ty
-mic a
-lu cent
-slo ane
-droo l
-riz al
-od ell
-critici zed
-. '"
-la ze
-deser ted
-co der
-pra s
-l illian
-itiner ary
-dav y
-an ap
-whi pping
-hobo ken
-kare ena
-çľ Ł
-vi us
-ter n
-nan tucket
-mis understood
-bu laga
-st ant
-chin ook
-z am
-reli es
-d ss
-ed mond
-sket chy
-m ell
-fe x
-rec tor
-dist ill
-day dream
-wine maker
-ri pley
-billion aires
-hel ene
-ati f
-cul prit
-bertr and
-wou ldnt
-ma pped
-v ak
-gla dly
-parliam ent
-kidlit art
-ware ness
-goli ath
-âĨ ĵ
-view point
-tat ted
-fu ls
-dor sey
-ang lers
-li ds
-ki ya
-bow les
-be h
-b ite
-compati bility
-ance stral
-pro x
-beha ved
-gubernat orial
-ch field
-sab an
-z h
-teen y
-shibu ya
-holli day
-pan cy
-âĿĦï¸ı âĿĦï¸ı
-seun gri
-? ,
-ðŁĩ¦ ðŁĩ·
-im itation
-impac tful
-any i
-gene vie
-añ os
-bate man
-gli der
-af ar
-ra sheed
-effor tless
-sh war
-dach sh
-er un
-at os
-kin i
-ch d
-kha ki
-k lin
-felici dades
-bel o
-as l
-to ppers
-fin ley
-stac ey
-rigor ous
-kar ting
-le ppard
-car michael
-be ret
-c se
-ak hi
-mer ingue
-ab an
-ha ke
-ger i
-er jee
-re sto
-comm anders
-pr it
-fl or
-ad ven
-ex termin
-remain der
-å IJ
-es g
-martin o
-lulla by
-| @
-mi gn
-in store
-big bang
-cor di
-cau ley
-ante bellum
-dg ate
-cro ck
-span dex
-scaf folding
-ore os
-ê°ĵ ìĦ¸ë¸IJ
-pom ona
-ma uro
-uni versi
-re mi
-af ootball
-t ant
-sm alls
-ne h
-worl do
-tropic al
-mor ph
-jav elin
-gla r
-arqu itec
-reminis cent
-tu bs
-spide y
-make u
-syl la
-progressi ves
-blo t
-shor ten
-keep in
-ch ak
-ang st
-super food
-decad ent
-ston y
-neuro logical
-ar boretum
-ann ak
-fe ma
-per cu
-dis respectful
-small biz
-lo x
-co om
-c sc
-bs bi
-pre valence
-him ss
-esp an
-mo ga
-fr ampton
-sky map
-mas se
-levi athan
-( ).
-noctur nal
-car ameli
-ang or
-amne sia
-outsi ders
-she alth
-rhin o
-ant ag
-ag io
-ðŁĴ° ðŁĴ°
-take me
-kab addi
-c si
-m sh
-coch rane
-thessal oni
-sil a
-ha us
-du sting
-obe se
-mack lemore
-mani sh
-len in
-m dc
-gro wn
-shef field
-s rs
-ke le
-car son
-ch um
-dah lia
-can tore
-opp o
-how ling
-cyber crime
-sur realism
-sc ran
-fa iz
-thre n
-rac ists
-r out
-pk not
-se mana
-sin i
-mc cull
-ma chi
-alfon so
-y b
-sar dar
-kend rick
-den g
-reci pro
-on f
-doom sday
-bri bery
-custom iz
-art is
-c pi
-ðŁĻĪ ðŁĻĪ
-sla va
-let te
-en s
-âĿ¤ï¸ı ðŁĺĺ
-cra yon
-ad an
-tr c
-migr ate
-simp son
-row ers
-king sley
-farmers market
-shee han
-ne phe
-bor non
-car ton
-mic key
-all ure
-u lu
-sli pknot
-heb do
-gui do
-dog celebration
-online marketing
-acceler ating
-) ..
-origin ated
-macar oni
-ed tech
-out field
-mit z
-disc us
-adverti ser
-man or
-ha shi
-descri p
-cap ita
-ful bright
-recep tor
-con n
-con ey
-spion age
-r attle
-pre st
-u li
-blog post
-acker ay
-) âĢ¦
-red velvet
-mat th
-inspir ing
-b sd
-ker ri
-po con
-mil lar
-re pur
-accent ure
-ä ¹
-ram bo
-ragnar ok
-dele ting
-british museum
-pat ory
-leip zig
-flori an
-sci fi
-in ers
-br ate
-yo y
-melis sa
-ab er
-ma sa
-po te
-mosquit oes
-transpl ant
-r pa
-; ))
-bast ille
-yl an
-joye ux
-melo dic
-cap tions
-atri st
-roch dale
-gott i
-pew die
-cuties aturday
-who is
-aqu aculture
-tiv a
-sp el
-he ss
-ha ji
-fred die
-co per
-brand o
-v k
-photo book
-* ,
-my dayin
-micha ela
-brune i
-sr ini
-in te
-Ä ±
-de ol
-d fc
-separ ately
-bun d
-ve sts
-to c
-me ck
-rein forced
-constra ints
-car roll
-sq ft
-re ver
-cam per
-bird man
-in action
-gener ators
-triumph ant
-pe sts
-o vo
-gy pt
-al amo
-sc aled
-suresh pp
-sd n
-is mo
-gi os
-) @
-justic eleague
-restaur ant
-gab i
-den gue
-next gen
-exemp li
-ap ex
-inspir ational
-down side
-kid z
-u pl
-et na
-alvar o
-fel dman
-bar net
-m ha
-es ch
-bloo ded
->>>> >>>>
-kan i
-ho fficial
-casablanc a
-bir ds
-ty ga
-sw amp
-o day
-new castle
-nb ap
-ci sion
-cho ols
-af lo
-ne p
-mon ton
-ak b
-super model
-down time
-th os
-sc wx
-snoo py
-ag greg
-yo ke
-nor cal
-we tt
-prolon ged
-me tast
-beat er
-f ta
-t lap
-disgu sted
-y h
-voice over
-itch y
-ip c
-ðŁİ ¾
-phe asant
-stra its
-ram pant
-j g
-fer til
-assu res
-fortun es
-sal inas
-liz ards
-kett le
-i bs
-cyn thi
-he g
-mc cr
-soccer oos
-happen ings
-cor den
-ðŁĺĤ ðŁijĮ
-t ches
-egre t
-wolver ines
-congratul ated
-ho gg
-bott ling
-wr i
-fer ri
-bo sch
-af ire
-og den
-s jo
-j dm
-sv t
-con tex
-tol lywood
-min k
-me se
-super sonic
-op oulos
-å ¸
-âĶ ģ
-knuck le
-gu ise
-gam i
-chu cky
-z inger
-radi al
-compla ined
-bo da
-fe tal
-discipl ines
-cor ro
-ðŁĩ®ðŁĩ ¹
-op ted
-filtr ation
-ad nan
-em cee
-mi stre
-insom ni
-fer gus
-tra jec
-on don
-med tech
-tanger ine
-madra s
-gru e
-cab s
-z hu
-sureshpp rabhu
-insul ated
-day swild
-pp m
-band ai
-v day
-s ff
-squ id
-lo thing
-not dead
-expre ssive
-cu ll
-ala stair
-x u
-up front
-fish ers
-en es
-um d
-dis missal
-sti er
-sel s
-lu st
-re active
-prote ster
-eyel ashes
-al im
-goo de
-gre eng
-da ir
-com pen
-anush ka
-proto typing
-ma pu
-bear ings
-ðŁIJ Ł
-for me
-bsbi botany
-timo thy
-out skirts
-am bed
-are tha
-wend ell
-stre aks
-ni m
-k pk
-sne e
-fit ter
-quo ta
-p ate
-win ning
-ðŁį Ń
-sho pping
-ma inst
-cul ver
-ste vie
-mcfad den
-counter parts
-gren fell
-fol som
-dor set
-tech crunch
-⬠ħï¸ı
-tip tuesday
-us l
-tre x
-geor gie
-ranveer official
-lic ks
-se wn
-k f
-' âĢ¦
-jap s
-p ate
-orth op
-fe sta
-stra s
-mon tal
-hammer smith
-fore most
-wido ws
-mad re
-ite z
-mito chondri
-lig ans
-z ona
-cari bou
-m ss
-andre i
-weather channel
-gh c
-: ...
-ta ft
-awe ather
-al isation
-bru tal
-bliss ful
-nik ola
-mal icious
-q m
-mpg vip
-bro die
-bl itz
-applau d
-dri bb
-v ague
-dog go
-transl ating
-interpre ted
-hat ched
-ge tyour
-benefici aries
-spar ring
-caes ars
-aw illiams
-la hat
-bro ke
-ti mp
-virtu es
-rel ying
-pie tro
-k tn
-ici sts
-pab lo
-lou i
-a ag
-pn pp
-cha st
-pul ses
-fini sh
-usair force
-type writer
-thomp son
-dog s
-ut to
-ãģ į
-sand al
-new ly
-do ge
-z w
-wan kers
-ne gr
-mu cha
-determin es
-black fish
-sk unk
-mu ps
-instru ment
-phy to
-daysto go
-skin ned
-hai der
-con ten
-ðŁIJ¾ ðŁIJ¾
-we iler
-undoub tedly
-chair ing
-wall is
-sh ard
-zind abad
-adul t
-absor ption
-pre sto
-deplo ying
-drum mond
-battle front
-seag ulls
-how dy
-juda ism
-des de
-part ition
-âľ Ŀ
-no logy
-national bestfriend
-lesn ar
-film fare
-co asts
-christen sen
-ac an
-mb u
-co pped
-ru bble
-sw c
-fun nier
-far ther
-where as
-nano technology
-with stand
-pil low
-bow ers
-to pe
-it ly
-con fit
-ma kar
-comfor ts
-bo sh
-cli pper
-bal la
-sti k
-mil b
-safe guard
-musi que
-eas port
-ya z
-pad ded
-bad er
-fore ign
-chop in
-archi ve
-o ka
-tran sporting
-tml talk
-aj it
-consequ ence
-sc roo
-ff o
-collabor ated
-pug chat
-ye mi
-jav ed
-au burn
-o of
-ma w
-sau cer
-miti gate
-i les
-evangeli st
-ter ie
-re cl
-indic tment
-cat a
-bright ness
-may the
-whim sical
-un lv
-key word
-cu min
-med way
-west world
-tra w
-im posing
-form ity
-coul ter
-ab z
-ny pd
-grass i
-kel sey
-qld pol
-clock work
-f dr
-di anne
-âĺ ij
-ad h
-p ann
-bra vely
-ae ge
-un lawful
-ver di
-pocaly pse
-phar o
-kar la
-reson ance
-ma stiff
-la dak
-bu u
-ma iled
-hi i
-craw ley
-tor rent
-mach ado
-liby an
-effort lessly
-fal sely
-q vist
-ke ef
-craf thour
-cheri shed
-val kyrie
-s ari
-kal amaz
-be he
-ðŁĮ Ļ
-th im
-ro ddy
-col trane
-but chers
-ach im
-wk end
-awk ward
-cab rera
-:) )))
-fran c
-decl an
-con dos
-a ja
-pandor amusic
-char ter
-ph ill
-mon trose
-hatch back
-handic app
-gre aves
-eucalyp tus
-ut most
-t son
-bur ton
-mid wives
-in cur
-ðŁĺį #
-moo d
-compre ssed
-tom a
-must ang
-mo g
-as ana
-te stic
-sho tel
-in sol
-cor sair
-nh q
-ben ny
-sm ma
-kap ur
-in con
-jon as
-ener gies
-don al
-as ad
-se z
-n pa
-archi ved
-stimul ate
-do p
-hy d
-gri eving
-ãĥ Ī
-ron a
-why te
-tree house
-ss ell
-sand ro
-ko bo
-ther most
-se clu
-hi ya
-ge ez
-mam as
-prisc illa
-flav oured
-fas s
-w old
-maker space
-cospla y
-p tv
-happy valentinesday
-sequo ia
-love craft
-gu an
-d tm
-ci i
-yoko hama
-pos thum
-re q
-ðŁĶµ âļªï¸ı
-galat asar
-dol by
-hamp tons
-disturb ance
-stone henge
-ok c
-disrup ting
-month sary
-jun gle
-head lights
-du stin
-micro sof
-happy mothersday
-ko ko
-gra zi
-te sto
-na idu
-mal ay
-ari al
-ru mb
-ab oo
-har man
-tra pe
-spo ils
-je ho
-go dly
-lock screen
-z un
-pi ous
-ma gento
-l enders
-prob able
-corpor al
-m our
-aw al
-su a
-call me
-ton ne
-go vin
-devast ation
-x j
-gear box
-war lock
-per me
-it ate
-gaza underattack
-du val
-paras ite
-clement e
-le th
-i va
-fro zen
-tho les
-to bin
-cair n
-s ill
-luc kiest
-conver ts
-st ale
-pan cra
-euro pale
-wis dom
-sch ur
-ì ¶
-verti go
-bi j
-u bc
-nu re
-righte ousness
-mt c
-factor y
-ver st
-revers ed
-hur i
-hee chul
-fab er
-ar r
-ul ous
-ven om
-ph at
-green ery
-bra dy
-Ã ¦
-: ((
-never giveup
-di sha
-mo ta
-health care
-dun ham
-dex po
-den zel
-bb ins
-f ics
-wh am
-mc g
-eli an
-wat a
-str alia
-tel lu
-pe sky
-spin off
-ar moured
-re acted
-do fficial
-te du
-sag ar
-mor ally
-paralle led
-fi os
-dow ner
-dau gh
-re do
-world cup
-tari q
-bar ne
-glaci ers
-oc cult
-barbar ian
-her mosa
-!! !)
-y ur
-inter nation
-p ss
-sit u
-p int
-american air
-sw am
-dopp ler
-ðŁĴĻ ðŁĴľ
-cincode mayo
-le van
-hell enic
-mc ne
-ju di
-yu h
-st x
-qu are
-ðŁĺĤ .
-sti g
-g els
-mot ley
-hard work
-euro zone
-e ad
-ç¥ Ń
-seab ir
-ci us
-la id
-alpac a
-presu mably
-pewdie pie
-boo ted
-am ari
-tam ine
-sol ace
-bar row
-acade mies
-x ian
-om ination
-dun geons
-b ma
-de ity
-ai k
-stab il
-hir a
-affection ate
-ving ne
-new port
-ãħĭ ãħĭ
-thir ds
-re tains
-aroma therapy
-ski er
-ni ma
-do pe
-cr inge
-con domin
-to or
-anim ator
-sar aj
-seas cape
-minim alism
-lake shore
-calla way
-berg man
-ठĹ
-whisp ering
-stupi d
-ri ghtful
-requ is
-ir n
-se va
-ut pol
-tuber culo
-squ ish
-de but
-govern mental
-christ ine
-all man
-weap on
-s ito
-bur i
-lo lita
-leaf y
-fu ch
-tin ted
-mck en
-a hahaha
-ðŁĩµðŁĩ ¹
-repe al
-ne gan
-ðŁķ Ĭ
-tail gating
-game insight
-ðŁıŁ ï¸ı
-yaku za
-z t
-ti ring
-pro posing
-bow lers
-tra itors
-ak shi
-cler gy
-cit o
-up sets
-tu scal
-symph onic
-sil ently
-shu ff
-black well
-ðŁĺĤ )
-ko be
-rober to
-ri dg
-dc u
-mer ino
-ft p
-east side
-. ~
-nb l
-mn leg
-ts for
-frau dul
-ca pping
-in my
-gymna st
-ston es
-ss in
-twe aks
-shag gy
-oak land
-dem sin
-sang ria
-mm va
-hen nessy
-down ton
-ri ghtly
-in it
-aga ve
-ob last
-northe ast
-friend ship
-dal a
-tro phy
-ðŁij ½
-mag in
-margar itas
-ê ·
-ww fc
-fa sh
-di ke
-cu d
-char t
-ðŁij ®
-refuge es
-jop lin
-n cs
-imp y
-firm ware
-pas cu
-flam in
-health tech
-bell letstalk
-w aka
-ol ls
-la go
-co wan
-bombar dier
-sh ome
-ðŁĻ ħ
-mc master
-na ve
-well s
-u ta
-tell ers
-mis fits
-kap il
-face off
-af firm
-a pro
-whit epaper
-super yacht
-speci mens
-al located
-... ,
-- __
-ka w
-dachsh und
-djo ker
-s work
-qui ere
-or um
-ðŁIJ ł
-som m
-c mt
-ingh our
-skin ny
-lgb ti
-gi ggles
-break away
-resear ched
-par ity
-my al
-ms l
-re tained
-si vity
-make inindia
-sol ves
-defam ation
-wal tham
-sri racha
-road way
-concep tu
-al in
-iw ant
-å Ī
-del ft
-tender loin
-ga ins
-faul ts
-sw ire
-st ellen
-pol lo
-dy ne
-bornon thisday
-asdf ghj
-sq l
-sali m
-advis es
-vo ip
-ìĹij ìĨ
-un touched
-she il
-ontari o
-uph ill
-so bre
-de shi
-nov ella
-du tton
-craw fish
-ا٠Ĩ
-ma a
-tw ine
-kal in
-ðŁĩµðŁĩ Ń
-ye ss
-brook s
-hoo siers
-ton ka
-umbrel las
-ay ers
-ate am
-acqu iring
-su ction
-ä n
-wi es
-tari ans
-soci o
-mat tb
-shepher ds
-o so
-charity tuesday
-s logans
-ninj as
-al bat
-by te
-bash ir
-trampol ine
-mydayin la
-i ja
-bas el
-ror y
-gol die
-fi rec
-un noticed
-pecu liar
-sch a
-ker son
-mour ns
-liquid ity
-qu ipment
-hi bs
-ar s
-aeron au
-slide show
-sla bs
-delici ousness
-sk itchen
-hta fc
-full erton
-cre ighton
-aer ob
-procrastin ation
-az ores
-white hall
-uss occer
-medi ation
-djoker nole
-and me
-um en
-noxi ous
-jo ss
-ili fe
-anni vers
-sudan ese
-et res
-under mine
-whole foods
-diso be
-kor i
-ade le
-eli z
-can ti
-al on
-gymna sium
-sarko die
-meteoro logist
-yl de
-ste en
-stamp collecting
-nas al
-lo tt
-fran ks
-ex ol
-ack i
-good year
-animal rights
-y les
-vio lets
-mm es
-s thel
-ra pping
-tu scan
-wai ver
-tur ner
-eat local
-northe asthour
-anim ations
-tom morow
-t sh
-ff ame
-bra e
-pe tron
-glam our
-br yn
-d cs
-bal es
-ðŁĶ ¶
-bro v
-bre v
-b ons
-physi que
-car ne
-x e
-elix ir
-vol ved
-l oma
-ìľ ł
-æ ĺ
-van u
-ri gs
-bal ance
-va res
-bon ita
-sprink le
-perfec to
-di on
-le ak
-calcu tta
-o ba
-d ma
-c mon
-tun er
-pneu monia
-bo gus
-apolo ge
-cl ough
-bor ne
-)) ))
-revi ved
-o varian
-ner f
-c legg
-fan fest
-cho u
-reali zes
-mc n
-li gu
-leg alize
-just saying
-for ster
-bo sni
-k hi
-in dom
-hei del
-en cryp
-si ss
-ed di
-mar bles
-brisban e
-y ing
-pre paid
-wal sall
-cooper ate
-orche str
-mar isa
-ho wie
-che wy
-bren ner
-andro meda
-e gan
-sto cki
-cav endish
-ag an
-ban o
-de ir
-go g
-bl k
-re thinking
-ch ig
-rhe u
-sni p
-p eng
-semin ole
-m swx
-an nex
-lyn da
-lewisham ilton
-cu mul
-tb l
-dolph in
-agu ero
-........ ....
-pre lude
-at our
-gr anger
-too ting
-ro tun
-dis ar
-home items
-da res
-**** ****
-ðŁij Ĩ
-compre h
-jin x
-as well
-iri e
-circul ating
-ðŁIJ ¥
-over board
-cultiv ate
-rhe tt
-oriente ering
-ca k
-bal kans
-s itt
-jas min
-britney spears
-ro tor
-se aling
-g bc
-oc ci
-f as
-eman cip
-com er
-war time
-tic kle
-son ny
-pac es
-log g
-at rix
-sr p
-g win
-do bbs
-uz be
-the wanted
-dru sh
-ex tru
-m icky
-honore es
-dar win
-re dux
-mm j
-ram i
-jalape ño
-io c
-do ver
-ju ju
-whit ney
-s eng
-en ly
-au ch
-archipel ago
-vigil ant
-man gal
-wil dest
-parano id
-hal i
-bb ly
-sanc tioned
-real ms
-con co
-u ddin
-c sk
-play time
-libr a
-sav ag
-oc tane
-rec tan
-re turn
-par rish
-mor rha
-cc p
-c mu
-sa iled
-se vent
-ro sie
-pil ing
-he w
-boar ded
-seg ments
-neph ro
-( .
-cr ats
-bak es
-ðŁį ¸
-back tothe
-sibl ing
-kirk land
-ke o
-gu wa
-bre ads
-ðŁĺľ ðŁĺľ
-t q
-haras sed
-ga u
-wil bur
-j isoo
-ep er
-li sam
-tri ppin
-sh ino
-ru kh
-beast mode
-cho a
-inst aweather
-rich land
-gar i
-fe z
-cowboy snation
-fur suit
-k run
-a en
-sycam ore
-se gun
-ent ennial
-di h
-o ax
-demsin philly
-ðŁĻ Ģ
-sn hl
-pen nies
-pass words
-ma kin
-ty e
-d eng
-kni gh
-jeep life
-hel pline
-a for
-zz zz
-ste amy
-pic ker
-iter ate
-happen ingnow
-ki b
-bloom berg
-martyr dom
-bul ly
-assor tment
-a hora
-zo e
-no i
-illu stri
-agar wal
-p sc
-electr onica
-recruit er
-gar diner
-rad ha
-naf ta
-dot net
-pi ero
-geor g
-bel s
-ðŁĺĤ ðŁĺį
-tuberculo sis
-run nin
-mor is
-haul ing
-ev oc
-bre thren
-sha ir
-frame works
-a stu
-ri gid
-ku ma
-kre me
-jin nah
-insu rers
-ny u
-f ere
-nol lywood
-good vibes
-- ...
-toi le
-sk ril
-instaweather pro
-cze ch
-pa vel
-one piece
-nike plus
-fi let
-cav ity
-ðŁı½ âĢįâĻĤï¸ı
-ðŁİ £
-dra stic
-dail ys
-siam ese
-re bu
-oste o
-lar k
-f re
-sh elling
-p é
-glad ys
-ðŁıĢ ðŁıĢ
-gusta ve
-submer ged
-grand stand
-att u
-won t
-f pv
-b ley
-jon i
-ang ames
-weigh ted
-al ou
-ठ¶
-les bians
-f j
-anni es
-am l
-dor ia
-dav in
-be ta
-can c
-madewith unity
-ha j
-bad lands
-mu l
-blu ec
-pa wn
-cov ington
-neuro logy
-htt weets
-dysle xia
-thel ove
-ne at
-fork lift
-autom ate
-une ven
-monte ss
-he in
-ha g
-rel ics
-competiti veness
-can elo
-mar tens
-bullet proof
-sk ittles
-g ya
-pri mo
-americ afirst
-woo o
-abor tions
-?? !!
-ma che
-ld ers
-rl ly
-preli ms
-direc t
-cour se
-swa in
-super cell
-ec centric
-sting ray
-ple ts
-wil cox
-west in
-okan agan
-kir an
-car bo
-bomb ings
-ra rest
-bo h
-gaw d
-di gg
-mo ana
-enti rety
-en closed
-dodge ball
-par ton
-milky way
-at r
-thorough bred
-re ally
-qant as
-epiph any
-ine e
-aero smith
-spi eth
-ar thro
-ell ini
-du bu
-bra ving
-âļ½ âļ½
-re structuring
-illumin ate
-equ ili
-mp i
-ash ton
-pony tail
-ma scots
-flat tering
-cru m
-ast a
-à® °
-stranger things
-bar nab
-ر ÙĬ
-make shift
-got cha
-will am
-cho irs
-kilom etres
-gho sh
-eu than
-dol ly
-un ning
-the ar
-cre we
-w sw
-j ace
-dis miss
-ke an
-ho ta
-kh at
-~ >
-thir u
-ren dez
-hart man
-tee ssi
-cas ca
-z ah
-hydr ange
-fo d
-aw p
-mzan si
-thick er
-nago ya
-ne va
-sti que
-cast el
-dam ian
-there by
-ji ang
-ale k
-music islife
-ra q
-calla han
-gou ache
-somal iland
-sean hannity
-ra heem
-lo se
-elo ve
-whar ton
-rectan gular
-illustr ating
-har ne
-auti sma
-scra pped
-ell and
-decre e
-nag pur
-ki pp
-so re
-n md
-ma as
-gun a
-gart ner
-bel li
-then ight
-je on
-gendere quality
-gi ver
-a el
-gar ments
-ne u
-mardi gras
-mar sden
-ro wer
-pollu ted
-camer aman
-vin od
-be asley
-cro c
-ji u
-hollyo aks
-anesthe sia
-al les
-ste ward
-lati mes
-ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸ ðŁĩºðŁĩ¸
-tic ian
-gor ia
-come dic
-ðŁ¤Ķ ðŁ¤ĶðŁ¤Ķ
-nai ve
-sli ons
-ł Ī
-bur glar
-ðŁĺŃðŁĺŃ ðŁĺŃðŁĺŃðŁĺŃ
-york shi
-se ñ
-fan boy
-lau rel
-inci dence
-potom ac
-rober ta
-presi den
-pr yor
-os bourne
-w ku
-te me
-pal ae
-ðŁ¥ º
-re boun
-itu de
-red dish
-k hand
-coloni alism
-north carolina
-ðĿ Ĵ
-manne quin
-lady bird
-ta sty
-knowledge able
-g shore
-ðŁĮ Į
-à® ©
-qu aker
-salz burg
-med alists
-chy na
-bridesma id
-ma ori
-ro p
-outra ged
-in adequate
-truck ers
-al ana
-ìĿ ¼
-ri x
-oooo oooo
-command ments
-lam beth
-aa j
-eco friendly
-bla z
-morecam be
-boun cy
-rou x
-rai ded
-mi zed
-sh c
-gaw x
-labor atories
-ru bs
-rest room
-consult ations
-ca jun
-virgin i
-so ir
-rev ue
-ple in
-wag er
-ç ¹
-we do
-growing up
-! ðŁĺĬ
-face ted
-sin ners
-ho vering
-ti ene
-seas oning
-an ja
-leg go
-il is
-fla x
-dev o
-ash ram
-mati sse
-ker i
-go wer
-bo tox
-mar shes
-unh cr
-ts m
-opti mus
-dun i
-stu ffs
-so k
-order ly
-n bad
-islam ophobia
-raviol i
-fab er
-cre ds
-won ka
-in fusion
-over weight
-daily news
-assi mil
-acol lege
-medalli on
-kili manjaro
-sti ff
-tham es
-sun ken
-th ard
-my dubai
-hilari ously
-han nel
-plu mber
-fair view
-separ ating
-rasc al
-qui en
-necess ities
-confeder ation
-ll ll
-: ]
-weak nesses
-bron co
-ra ffles
-el ot
-ãĤ¸ ãĥ
-advent calendar
-ðŁİ ¹
-stra vel
-tun ic
-k su
-im peach
-e spionage
-! -
-di ment
-cur rant
-bio de
-commu ting
-by ron
-ðŁĴĵ ðŁĴĵ
-shad ed
-tr uro
-cray ons
-ar ne
-h sc
-fre aked
-dram ati
-fle ek
-u cd
-marl borough
-^ -
-cross ings
-mal o
-black ops
-bin ance
-cho ked
-chen ey
-pl o
-ge stures
-val edic
-ryan air
-rem ington
-v cs
-mc kee
-ec z
-be gs
-nail art
-mayor of
-happy fathersday
-war t
-pet itions
-n ingly
-clean energy
-bro x
-sl alom
-exist ent
-ab ay
-ug liest
-tom p
-stom a
-sel by
-goal scorer
-ben ji
-overwhel mingly
-lan s
-semiconduc tor
-south korea
-re scheduled
-sk yl
-en listed
-dow ski
-si del
-rosen berg
-nas ser
-white head
-pri us
-har are
-en n
-ry der
-í Ĥ
-mon g
-clas ico
-transpor ter
-po tty
-is me
-** ***
-vic e
-sk it
-ode ssa
-l mp
-her n
-raci ally
-pin oy
-paragu ay
-obitu ary
-go es
-bu cha
-side walks
-angu lar
-un constitutional
-transiti oning
-i bu
-gu ys
-un packing
-oooo oo
-black girl
-ber gs
-Â ¯
-wordof theday
-trump train
-thunder bolt
-m si
-fasci sts
-ठ¬
-t sk
-collap ses
-raje sh
-loveis love
-migr ating
-set back
-ðŁĺĬ âĿ¤ï¸ı
-t els
-safety first
-nar rated
-jae joong
-un answered
-lique ur
-en nes
-dal go
-bill ings
-salt water
-mer maids
-lon gs
-clap ham
-we arec
-pic collage
-n ach
-h ace
-pois oned
-lo th
-ag na
-adel rey
-guar dia
-poli shing
-peace keeping
-d all
-p isa
-la pland
-process ors
-de andre
-so bs
-p once
-dra ins
-c be
-ðŁİ¥ :
-spla sh
-meat ball
-fon tana
-worcester shirehour
-ne v
-bri sk
-b int
-ac r
-po x
-cay enne
-skril lex
-j fc
-hahahaha hahaha
-gla s
-en gul
-tempor al
-oni zed
-con cre
-com pose
-vibr ations
-plant ers
-fer t
-criticalrole fanart
-t bli
-sch allenge
-huck abee
-munici pal
-iam bic
-radi os
-ne vis
-dura bility
-mc cla
-horse back
-inst itutes
-ful fill
-atta ch
-ate ur
-ak an
-resi sting
-illumin ation
-hand le
-hair care
-om ent
-macle od
-ka iser
-g no
-bear down
-ly f
-gl omer
-distor tion
-z m
-san k
-roo sters
-is now
-as ports
-ag en
-wo ken
-st george
-ro mper
-my le
-econom ists
-ru to
-t will
-health and
-d ito
-ws l
-tair p
-pra kash
-mic heal
-h ts
-w rights
-kat su
-fioren tina
-defen seman
-d itch
-var sity
-texan scheer
-ba ham
-sc anned
-we il
-seduc tive
-ðŁijį ðŁı½
-fu e
-er win
-dav ison
-ter ran
-moo ds
-wool f
-re source
-@ .
-cu sh
-ðŁį °
-regre ssion
-cur led
-la zer
-jo anne
-ab bott
-mo z
-down ers
-mm mmmm
-valent ina
-k hair
-dream t
-cro ok
-che k
-ste aming
-nephe ws
-cl eric
-as ober
-indefin itely
-w ye
-us news
-joy ce
-flu shing
-wynonna earp
-ron do
-kis s
-hot dog
-bar ns
-sax ophon
-far ley
-gas p
-decre asing
-al way
-pe x
-l sd
-shi ft
-p outine
-ra zz
-rescu ing
-ni ko
-ho ch
-cc l
-u aap
-n ts
-m car
-il wx
-conqu ering
-ket tering
-stur dy
-delay ing
-sto k
-vani shed
-cath ar
-bin gham
-in v
-ic hiro
-he mo
-budge ting
-[... ]
-be ss
-sebasti an
-slow ed
-ðĿ ij
-musli m
-stun s
-acton climate
-ve a
-se ton
-rose tta
-oun t
-hard in
-flu id
-ca w
-ðŁ¥ Ĥ
-yach t
-un l
-sp hy
-provoc ative
-or ic
-is back
-__ _
-nicol as
-gy an
-loo se
-fl in
-reb ate
-: ::
-! "@
-com icon
-she ff
-down stream
-chic hester
-beach life
-mom life
-diabe te
-ar ra
-van e
-ok u
-ye o
-man go
-try out
-app ell
-he irs
-arjun a
-dd u
-na veen
-movi c
-soci alists
-s back
-criteri on
-soyu z
-k her
-da z
-yol anda
-wine oclock
-re ina
-one w
-leon ard
-en dez
-u bs
-support local
-facilit ated
-carameli zed
-b pa
-vuel ta
-my tho
-m ami
-spe are
-nbap layoffs
-fe vre
-nick jonas
-im print
-c so
-craig slist
-la salle
-gi deon
-ha doop
-dis regard
-w ud
-tu c
-ma gee
-acou stics
-ta a
-qui e
-pol a
-cr t
-dw yer
-dis sec
-capit ol
-men tion
-kn oll
-he igh
-fin ders
-plac ements
-l se
-indi ra
-gur i
-madhuri dixit
-kingdom s
-iambic pent
-geor gina
-je ky
-conflic ting
-bay an
-aga tha
-uph old
-dr on
-vic ar
-ex pat
-periph eral
-pe ssi
-fa f
-ance stor
-? ..
-wid get
-pun c
-comm enced
-beav s
-air waves
-ad dis
-po a
-de sses
-co den
-vu e
-ru pee
-kar in
-spo ck
-m sy
-ภ°
-pr ick
-fill more
-ti fication
-thing sto
-sar de
-em ile
-pere ira
-n ad
-bright ening
-arre sting
-wo king
-usc g
-sp ill
-raspberry pi
-hu go
-ite c
-is ma
-cuff links
-optimi zed
-oc c
-mi wx
-en ka
-el ited
-afford able
-sa kh
-coron ado
-ho h
-at ul
-ai oli
-jim cantore
-accoun ted
-vin ay
-her mit
-groo ves
-ran ch
-r illa
-we tter
-ou tof
-veter in
-ni kov
-ki an
-fair banks
-ram apho
-n iti
-k ko
-ru sty
-ne stle
-tv xq
-shahe er
-âĿ¤âĿ¤ âĿ¤âĿ¤
-penn ant
-gem stones
-dem debate
-ðŁIJ Ĭ
-auton ews
-support indiefilm
-mach o
-ve x
-new sat
-ne ti
-conce ssions
-can died
-yof the
-mac au
-den ds
-cricke ters
-san iti
-mari ano
-gh at
-ar toftheday
-¡ ľ
-e gos
-gen oa
-chat bots
-bri er
-al labout
-mon ty
-spi ed
-r tr
-comfor t
-sni ppets
-real time
-gra in
-exam ined
-en lightening
-tt u
-god bless
-release the
-sing ular
-ki ans
-ha ka
-sor ren
-defe ct
-mar g
-equ ities
-d orian
-su ka
-per l
-aishwar ya
-pul lover
-preci sion
-fair way
-ne ve
-rive ting
-vill anova
-en com
-ak o
-passion ately
-europale ague
-siem pre
-x vi
-enligh tened
-c fr
-âĺħâĺħ âĺħâĺħ
-wast eland
-is f
-new comers
-emergen cy
-amphi theatre
-- .
-text books
-figur ative
-tre mb
-pe sc
-ab hin
-ab bot
-ac acia
-har ds
-por sche
-kau ai
-el isa
-car rick
-abo u
-elli er
-be ch
-neu tron
-galap agos
-ru ben
-in nis
-how to
-nun s
-sab ine
-i ac
-clin ched
-no tori
-fi ves
-cairn gor
-per i
-gr c
-ðŁĴ¯ ðŁĴ¯
-mal m
-twelf th
-di ff
-rout ines
-marty n
-lin den
-synthesi zer
-nu mber
-game cube
-fal kirk
-byz antine
-queu ing
-gr ill
-scal able
-char red
-rou ting
-her bali
-gri zz
-ðŁĺŃðŁĺŃ ðŁĺŃ
-tol l
-termin als
-l pc
-ab d
-war mups
-remo vable
-¯ \
-vi go
-pap aya
-ne ve
-lov ingly
-jo kers
-ib les
-sse tt
-poten ti
-pel e
-gi gi
-sadi q
-leg acy
-son o
-ru pees
-retar ded
-ele e
-par r
-fi ance
-ey re
-say ers
-pend ants
-mak nae
-al bans
-adap ting
-p ff
-pu berty
-ji u
-ing rad
-hypocr ite
-diplom ats
-phys ical
-rob by
-bon sai
-ãģ ·
-f att
-catal unya
-âľ ĸï¸ı
-ro ma
-more land
-so e
-conver sions
-stl blues
-shol m
-gra ssy
-pra do
-on u
-assaul ting
-> _
-sett es
-dis graceful
-aph ra
-âļ½ï¸ı âļ½ï¸ı
-ठª
-kil n
-goal tender
-s ru
-philanthro pist
-b als
-th n
-stu den
-sando val
-dogre scue
-eli ons
-asse ssed
-lar go
-hec tares
-sh rm
-sa if
-cle avage
-no ches
-n ene
-fat alities
-cur ing
-clean ser
-al es
-p vp
-south bank
-pizz eria
-marsh als
-kni fe
-an dover
-tbli ghtning
-sr sly
-ou te
-digi mon
-timesof india
-prome the
-le bo
-f su
-wit z
-rever e
-man as
-mam ba
-ch ica
-gu an
-exhibit or
-csr racing
-d ere
-xx xxx
-gu sta
-story time
-ston ey
-organ ics
-and u
-se am
-min ogue
-anushka sharma
-ab a
-ðŁİĻ ï¸ı
-ugand an
-chro matic
-as sn
-document aries
-sh t
-ru paul
-loy d
-k ats
-e us
-ite ch
-me dusa
-pan ty
-kel logg
-et to
-talla de
-sha a
-do st
-p ms
-mari ana
-je ster
-croo ks
-ðŁĶ ¬
-min danao
-ind hoven
-ðŁ¤ ª
-le xi
-tv n
-jan is
-co te
-ãģ Ĩ
-ser rano
-iw m
-ðŁIJ ¬
-k ke
-distribu tors
-cap u
-counterfe it
-camp site
-ag gie
-ðŁĺ ¼
-chhat tisgarh
-~ @
-state u
-san di
-prevent able
-cl s
-can ne
-mm c
-i ver
-sa haran
-pal is
-night out
-do s
-ap ia
-absc bn
-manag erial
-aro se
-mo wx
-aro sa
-ðŁĮ ³
-under dog
-remo ver
-astronom ers
-lent ils
-su scep
-smoo ther
-pend leton
-fau cet
-e mory
-dal mati
-af cb
-tic us
-exem pt
-en rol
-d heim
-ðŁIJ º
-restric tion
-star fish
-sto w
-snor kel
-thunder birds
-she ad
-homo sexual
-dy n
-as li
-andre tti
-dou che
-dom o
-tar mac
-slu mber
-pr onto
-first dayof
-mini ature
-mari achi
-argu s
-recomm ending
-mobi les
-in ce
-illustri ous
-or c
-adver ts
-gr its
-wea sel
-pag oda
-over pass
-gre ys
-maxi mus
-arma gh
-wood land
-sun ni
-ðŁĴ ī
-ë Ŀ
-ti one
-soci o
-ho s
-ðŁ¤Ĺ ðŁ¤Ĺ
-wind sor
-subsequ ent
-munch ies
-id h
-exclu ding
-e mi
-cu th
-z ai
-week days
-law suits
-barn ard
-Ø ª
-pe tting
-net es
-mul ligan
-pharmac ists
-ra quel
-e ton
-cran ston
-gil ded
-cle ary
-ce ph
-ra a
-pam per
-lombar di
-as in
-sher ry
-pro d
-for te
-ari anism
-buffalob ills
-æľ ¬
-ðŁĶ¥ #
-uu u
-just ices
-car ina
-nat in
-mas low
-dro oling
-cog nac
-cam ber
-el ong
-r dr
-in en
-convic tions
-am use
-tro ck
-harm less
-visit ation
-gen omic
-bl and
-beno it
-chim p
-tuscal oosa
-gre asy
-x po
-gil t
-se q
-per mitted
-christma seve
-book s
-mu e
-old school
-human right
-be ati
-ðŁĶ Ŀ
-sh at
-sculp ting
-h wan
-fern andes
-sci utto
-fu entes
-endeav ors
-maid stone
-un paralleled
-shou ted
-queen of
-mer c
-band ic
-ve da
-sel angor
-pi le
-ja han
-intimid ating
-disapp ears
-cl ich
-za ha
-w urst
-hi v
-fod ils
-cor dless
-aaaa aa
-hy dra
-bel inda
-e els
-bu f
-su staining
-rugby league
-no c
-brig itte
-( ðŁĵ¸:
-tromb one
-soo the
-smo g
-ad p
-stab le
-ing ley
-diagno se
-ms g
-we ss
-tic keting
-one e
-nsw pol
-e up
-auto psy
-adity anath
-sun down
-river front
-si ya
-p is
-hier archy
-dur ango
-di jk
-ren shaw
-he aps
-epide mi
-david bowie
-interne tof
-dd i
-nation ality
-mb ar
-air y
-win der
-w alia
-elli ott
-c x
-bav arian
-pl att
-an tw
-wi wx
-sof ter
-ne ha
-h eller
-th and
-dani ela
-bo ast
-degra dation
-ðŁĴ¦ ðŁĴ¦
-transform ing
-man e
-av ut
-ðŁĺĪ ðŁĺĪ
-vo ter
-the e
-t ate
-pu ff
-in door
-sop roud
-boy ce
-boris johnson
-wait in
-immun ology
-ðŁıĨðŁıĨ ðŁıĨ
-âĿ Į
-street food
-liz asober
-cavali er
-c elia
-need le
-motor ing
-g ato
-, )
-ra de
-harve st
-t ms
-jar pad
-on ey
-air men
-v re
-impair ment
-abhi shek
-snoo p
-l ant
-fam ously
-bl ou
-s ze
-g ander
-un touch
-tu f
-dee jay
-col lateral
-b ind
-ðŁļ ©
-pin ning
-ic n
-' ;
-the economist
-ul tram
-worldwater day
-ti poff
-the i
-feed ers
-campa ign
-sc umb
-day weekend
-yo m
-pe dic
-h ough
-ps v
-pl in
-on de
-boston marathon
-az zy
-* _*
-con ley
-thi ago
-hoo o
-gal erie
-luci d
-je tt
-gl itz
-final fantasy
-achiev ers
-y ung
-peregr ine
-op hi
-dam es
-biom ar
-âĺĢï¸ı âĺĢï¸ı
-sk c
-l ics
-fl ank
-ar rahman
-ho of
-uphol stery
-t ats
-wo z
-Â ¿
-snor ing
-ra er
-l ju
-ap d
-pl ating
-kan u
-im ation
-fragr ances
-m ra
-mor ay
-mo tt
-im muni
-hearti es
-bho pal
-tim ers
-g ata
-color way
-car nation
-win get
-si ghs
-s ville
-optimi st
-chate au
-olympi ans
-ci o
-singer songwriter
-ny o
-fi bers
-bur ch
-ag ro
-mil ne
-ig bo
-cr amer
-ation als
-dan ube
-pad ma
-nor mani
-en forced
-bre ck
-boeh ner
-ar den
-sur rendered
-pros thetic
-om a
-ha iled
-calcul ations
-w fa
-bi b
-fcb live
-fon da
-west coast
-que sts
-friend ly
-to wie
-fit ch
-bal ot
-star dom
-scrat ching
-ho sa
-thi ka
-o ven
-stro ke
-out post
-pharmaceu ticals
-hi kari
-mu y
-af d
-fallon tonight
-squ at
-or u
-dra ined
-chocol at
-ë¯ ¼
-wor ths
-ri b
-mu j
-that s
-residen te
-it el
-boo st
-mi gos
-mul led
-la a
-etsy shop
-don keys
-me k
-p tc
-flin ders
-e hs
-ro hit
-mu ir
-g ad
-compos itions
-åĨ Ļ
-combu stion
-i kh
-yemen i
-wav ed
-gar ci
-ak os
-oo ds
-fu sion
-se que
-s lan
-pl ur
-kic chasu
-shenan do
-s ams
-worl den
-horo witz
-with me
-mic robes
-k ki
-ðŁĴĶ ðŁĴĶ
-w su
-patch work
-fre er
-y aki
-the art
-symboli sm
-mil er
-bt n
-ma bu
-side kick
-motiv ates
-sag itt
-natur als
-serv iced
-ps ori
-pa ola
-qu ig
-i badan
-gi ggs
-ë ³
-sciento logy
-si oux
-salam at
-d res
-cad bury
-d hawan
-ci ón
-_ '
-swa pping
-maris ka
-james bond
-explo sives
-ay les
-af er
-s agu
-cen sor
-tom a
-jeff erson
-ring ed
-par tist
-ir responsible
-aguil ar
-vac ay
-equ itable
-altrin cham
-ac ur
-man ish
-ger min
-schoo led
-pu tter
-ed ad
-nav al
-toast y
-sol areclipse
-dish u
-coy ne
-ac co
-mu ck
-mar an
-el os
-len der
-cro ix
-worth less
-ha ber
-gun men
-ðŁį ĵ
-zen ith
-t enders
-hur st
-hol tz
-itali ans
-car low
-u cd
-characteri stic
-bun g
-av l
-u th
-sa sia
-rs l
-red man
-neighbor ing
-green peace
-sti ps
-follow party
-y gk
-en os
-omni bus
-na issance
-chri ssy
-secu re
-call back
-ji hoon
-memor y
-block er
-l anta
-daf fodils
-bil t
-ffer ty
-fau st
-ie c
-nipp les
-so g
-m nd
-jagu ar
-bol dly
-ab poli
-pro position
-gun sense
-evan sville
-cu tters
-we go
-dou n
-do x
-stal lions
-ka j
-shi ppers
-j awa
-vol o
-le ven
-pap rika
-kov ich
-jor di
-induc tees
-app alling
-dial ysis
-allevi ate
-âĢĶ âĢĶ
-pie ter
-mid wi
-q tr
-juli ette
-inter mission
-haw ks
-act ment
-one ill
-k lin
-vam ps
-fam ous
-cou ld
-autom obi
-da an
-west end
-elli p
-nh c
-mel anch
-web series
-ton gue
-snat ched
-smy th
-tan gible
-sl i
-e asing
-bar stool
-over lay
-afford ability
-ting ed
-ter as
-ay ush
-wanna one
-rh ine
-dan a
-sh ana
-kend al
-fer tile
-w ir
-repl eni
-lar vae
-is ro
-con vos
-ab brevi
-u cc
-hun gry
-bur rows
-ag er
-nav i
-mat in
-du per
-cer n
-ma don
-ķ ï¸ı
-é ģ
-tu ps
-hy att
-sh ep
-friday night
-wis er
-hei di
-hat ton
-p gh
-foun tain
-wrist bands
-ahmadi yya
-aeri al
-subscri bed
-so los
-m ace
-sla yed
-for fe
-dul ce
-christ mass
-arun jaitley
-viol ate
-ob stru
-ni eces
-w vu
-idy l
-fa ze
-pre serves
-infr inge
-premi ers
-inter vals
-agen cy
-( ©
-stand alone
-di mes
-bo er
-param eters
-ge tit
-ðŁĺĺðŁĺĺ ðŁĺĺðŁĺĺ
-tu lane
-for given
-scol l
-mb ps
-smash bros
-rob bi
-prima vera
-ali st
-ghost ly
-ay at
-ye ats
-impre ssionist
-ear phones
-caul field
-wai kiki
-sal ute
-sc ou
-mu ay
-louis vuitton
-bak hta
-ado g
-inven tions
-hur d
-forec lo
-stream line
-thalai var
-ch snews
-will ard
-t sn
-euro parl
-cru sher
-my sore
-gro wer
-ra ping
-pat ti
-g den
-sm w
-muf ti
-kid man
-ab r
-soun ders
-skep tical
-ðŁĶ İ
-sun dar
-i me
-fer g
-feather weight
-ar lington
-pas qu
-ag azine
-wearab le
-nati c
-mccl ure
-inter mitt
-hor de
-six ties
-car te
-bha v
-ze al
-experi ential
-ador ned
-som mer
-eno te
-hypo thesis
-stin ky
-pro to
-dead lines
-vo gel
-mus ings
-monc ton
-gu ter
-f le
-aci on
-voice of
-ta sha
-inhabit ants
-type face
-s ba
-bts x
-ðŁĶ Ĵ
-wor x
-u hc
-jo ko
-cell ars
-gor o
-continu um
-... &
-weather cee
-ha p
-sr k
-ris ers
-lonely planet
-un named
-co eur
-ðŁį Į
-the world
-ili ke
-fa sten
-ami go
-ri ba
-ramapho sa
-staf fers
-had ley
-? ?"
-fi ore
-sal ut
-hu ff
-bez os
-Ñ ĭ
-ra der
-kam ala
-in line
-fill ers
-um atic
-all in
-shat ter
-re in
-o ku
-ch ases
-fla gged
-baby metal
-water stones
-ts b
-cut out
-op hel
-aam a
-rockab illy
-sto lic
-jet blue
-ich ick
-down ton
-uzbe kistan
-pat na
-la q
-gr ange
-) _/
-subsi di
-sc p
-newsc ast
-it sa
-twee tyour
-e mor
-archae ologists
-uni fication
-por ta
-q x
-protec tors
-pro hib
-charis ma
-car tag
-ren fre
-scul pt
-guwa hati
-de ma
-boo p
-unf pa
-dex ter
-lay la
-alleg es
-sou ps
-never again
-l ys
-cal c
-bar oness
-visu alize
-ger ber
-absor bed
-i ers
-a han
-fon tein
-detec tors
-verst appen
-sv c
-formul ated
-ac dc
-li x
-in competent
-bh k
-lour des
-water house
-snow ed
-appreci ative
-sig ma
-lizasober ano
-pen ned
-pay check
-tall inn
-fanc afe
-par isi
-av alley
-vi g
-ru fc
-hard ship
-so cute
-po ise
-ì ¹
-roth schild
-k ly
-???? ????
-l hp
-il ay
-f hs
-am ad
-ide als
-brad bury
-bal boa
-nic ot
-kid nap
-wol ve
-tas manian
-op t
-matthi as
-ãĥ³ ãĤ
-super markets
-mylittle pony
-me lee
-li ster
-gr oun
-fe dora
-kind ness
-en en
-bra hms
-¯\ _(
-ros well
-mar lene
-ic u
-re formation
-or ail
-he brides
-dispar ities
-terrac otta
-swal lows
-re id
-influ encing
-flu or
-den e
-tum our
-blon des
-thunder bird
-sh eva
-moga dishu
-ka b
-cre eps
-i ving
-ene ed
-anno y
-âĶ Ģ
-intri gue
-enqu iry
-ar aj
-tur al
-kuber netes
-end lessly
-divi dends
-tor a
-ti sh
-commemor ates
-un ra
-tri b
-pon ty
-ne m
-diss ent
-brew ingco
-ðŁĺ ½
-nor mali
-bi of
-( ...
-chil len
-ì£ ¼
-mell on
-av is
-mccor mack
-ing ra
-enrich ed
-custome rexperience
-testo sterone
-snu g
-sett i
-ger onimo
-inqui rer
-bre aches
-very thing
-bloom ing
-mu ra
-dispo s
-bi de
-de va
-shade sof
-in trin
-sh ev
-s ven
-nayanth ara
-gan esha
-c ws
-ber ta
-label led
-use um
-nick named
-ma han
-car uso
-ap ur
-ðŁij Ĩ
-w q
-orphan age
-discar ded
-mag nu
-lu e
-je on
-bridge port
-pac ing
-mercur y
-( ðŁĵ¸
-marx ist
-amphi bious
-transplant ation
-stit ching
-then burg
-gradu al
-ãĤ Į
-ro ft
-ma ils
-ine c
-guy ana
-dopp elg
-ver o
-re write
-head less
-harb augh
-gate way
-car sforsale
-sw i
-st is
-mach t
-un de
-sura baya
-stap leton
-nur turing
-mil ner
-ya o
-lma oooo
-ko sh
-arsen al
-k ame
-er ry
-ar royo
-dis misses
-ru bbed
-rc b
-lew d
-dil u
-and or
-vi de
-ur in
-inter sec
-ha ar
-al b
-year swith
-app leton
-é al
-ul livan
-suc cu
-monter rey
-d mx
-artem is
-ron nie
-farm land
-s football
-gro tto
-anth i
-ãĢ ģ
-à® Ł
-vid ya
-jimmy fallon
-ൠį
-t zer
-gravit ational
-w thr
-u hhh
-e hr
-tin ker
-ti juana
-scran ton
-ram charan
-bar clay
-re van
-m si
-ka p
-wr s
-we thenorth
-tor al
-sat u
-gro m
-fac ep
-erick son
-z yn
-se dge
-oo dle
-spur sofficial
-ds p
-sic ilian
-soli hull
-recei vers
-ladak h
-hend rick
-ther i
-presi ding
-mc guinness
-litt ers
-gun nar
-gh oul
-wi b
-n tv
-kar o
-fro ck
-b lau
-ampli fy
-all is
-ul lah
-memo irs
-kh loe
-intercep tions
-pet day
-lo oney
-con fin
-ch ay
-piyush goyal
-frequ encies
-ut z
-event ual
-warm ly
-obli vion
-an ka
-ta it
-âĿ¤ï¸ı .
-director ial
-ru lers
-prince s
-mu ck
-stur ridge
-deu ce
-abri dged
-bagu ette
-un cles
-pen du
-min ding
-forre ster
-av ila
-wall er
-wall street
-ment or
-hin o
-high way
-crom well
-fanart friday
-mb i
-co yle
-a hi
-tro ve
-spie gel
-pay tm
-mcin tosh
-jan sen
-nit i
-nash ville
-len o
-leicester shire
-le gos
-dic t
-ðŁĵ ½
-sp ad
-beverly hills
-sy rah
-separ ates
-z ain
-un fit
-dra gs
-tan ia
-over flowing
-hri thik
-haw thorn
-z ani
-mac far
-fi de
-to tem
-pe ds
-fundament ally
-cal ico
-sin ner
-j ä
-hil de
-ds d
-ten ay
-ta hit
-mil f
-lie b
-inform ing
-up lift
-ra el
-mortg ages
-lec t
-ii ii
-guillau me
-compos ites
-old smobile
-l end
-gar th
-com mish
-bapti zed
-scorpi ons
-ru cker
-bringback our
-alli ance
-thalap athy
-tal i
-sp ans
-eri dge
-wither spoon
-lin da
-sky lar
-kor n
-hom s
-Ä į
-sil enced
-caf fe
-ar ty
-dist inguish
-to wed
-pun g
-jessic a
-ear nest
-beau fort
-t ama
-study abroad
-si khs
-new bie
-nav ratri
-mar ble
-loun ging
-lit ter
-dal it
-so sa
-iz es
-gra de
-com promising
-tr iton
-de tta
-v j
-chau ffe
-spec tral
-powe red
-montess ori
-artic ulate
-hal ton
-al co
-ye y
-mn twins
-acoun ty
-ðŁijı ðŁı¾
-âī Ī
-mad men
-kal a
-gru m
-chi k
-ati s
-su me
-akh tar
-job search
-high lighter
-bo ath
-âĦ ¹
-tar zan
-lam bo
-âĽĦ ï¸ı
-ox fam
-dump ster
-pretz els
-mac os
-incl ined
-fac tual
-adverti sers
-shu i
-pu ree
-ml pfi
-anti dote
-cap o
-pa str
-merc ado
-but ton
-ar min
-ag g
-lol la
-horri bly
-er rands
-christop he
-time snow
-monday motiv
-li ss
-scand als
-mc i
-dispropor tion
-âĺ İ
-sur pass
-samar itan
-so tho
-pu rest
-fl att
-trivi atuesday
-delec table
-leop old
-hermi one
-chou dhary
-en rich
-¡ ¡
-subsi diary
-ine qualities
-bachel or
-auto immune
-la kota
-i hop
-ad jec
-the simpsons
-sh es
-se k
-gret chen
-up stream
-hin akhan
-coper nic
-x tina
-lu g
-tough ness
-e ad
-cli pped
-bi us
-sl v
-fah ren
-dee pak
-ca u
-x an
-im mature
-dig ni
-bo bs
-shred ding
-but tery
-accommod ations
-de ven
-chun ks
-super league
-sky bet
-kil dare
-je et
-ë į
-ce k
-wrec ks
-pro pane
-oh l
-tb d
-quo i
-trum pp
-mi mo
-reluct ant
-ver ne
-o ic
-ma gh
-ar nau
-se ver
-li dge
-stair way
-kicchasu deep
-ðŁĶ º
-mach ining
-aama admi
-ot i
-c da
-al it
-pan y
-inst alls
-ac ct
-e shop
-di em
-hard well
-fulfill ment
-sc afe
-qu ack
-extrac ts
-swee tened
-fi ghton
-f di
-d inger
-wal tham
-us ur
-refe rees
-seok jin
-gran n
-af rin
-th n
-sch af
-par cels
-bet is
-amar ine
-nom an
-kh tar
-mor itz
-cou pling
-bar ons
-ðŁIJ ¸
-Ã ¸
-sl p
-sad ler
-x ander
-tri ad
-mc millan
-kh z
-divi ding
-ìĹijìĨ Į
-dar yl
-zed d
-le ys
-pla ques
-flu ori
-tipper ary
-on nell
-di dier
-lang ford
-im c
-the sun
-bir dies
-ar cha
-ye ssss
-t di
-dar ia
-cand ace
-al tam
-pal aces
-ch it
-sant am
-event ful
-book of
-ad b
-mon stax
-cre ole
-co el
-âĸ ½
-we aren
-sten nis
-she ath
-ati sm
-gron ingen
-mlpfi m
-le pre
-wrong ly
-rsp ca
-rendez vous
-acknowle dging
-pel vic
-solic itor
-sla ys
-nue stra
-lo d
-is lander
-fer oci
-fashion show
-ra ss
-dge on
-adole scents
-sma shes
-negli gence
-grate ful
-ved ere
-sw oop
-ing l
-apol ice
-vand alism
-gan n
-jo ao
-di supdates
-zimbab we
-under age
-radi ance
-w of
-bour geo
-pla s
-cr ani
-gh ue
-wrec kem
-warran ts
-re form
-jim mie
-at wood
-ys l
-neil himself
-l bj
-i man
-tan to
-nois se
-ver bs
-equip o
-al together
-mam ent
-l ice
-dou glass
-tier ney
-pri med
-j hal
-furn itu
-braz ili
-v ill
-past els
-n ison
-u ff
-paral ysis
-jay e
-im po
-ðŁij ģ
-strate gically
-pakistan is
-was sup
-super bike
-thank u
-tru elove
-sha ikh
-israel is
-vi p
-to g
-li en
-la ker
-grey hounds
-cul ars
-bian chi
-balot elli
-ar ran
-loo s
-str ates
-he bron
-ar vo
-sunder land
-the al
-tomb stone
-sand man
-c pac
-thanks giving
-love him
-lat ino
-an in
-aka if
-ĭ ãĤ
-tor quay
-di est
-alli anz
-ðŁĺ ķ
-golf club
-cl lr
-wal cott
-sch nau
-promp ted
-nomin ating
-len nox
-val et
-mon ro
-may ward
-e ph
-ðŁĶ Ķ
-inter oper
-r da
-re flex
-arm chair
-ê° ķ
-stri pper
-por ti
-ph arm
-ham za
-ni reland
-ne ue
-h pv
-port foli
-sun burn
-fris bee
-be al
-bapti ste
-x h
-ty m
-pr ati
-o vers
-haz rat
-deser t
-der ry
-us ky
-em mett
-ach arya
-)_/ ¯
-shu d
-may a
-ham ill
-ra im
-nr c
-fitt ings
-cur vy
-ðŁı ĩ
-ster ling
-ॠĢ
-wal kin
-short cuts
-mil ly
-ast ur
-alpha be
-pl i
-pe z
-miss you
-rad ford
-ml g
-ta eyang
-notjust lakes
-du mps
-seren dip
-le ur
-ra ving
-e ster
-de priv
-absc bn
-ðŁijĩ ðŁı»
-scar city
-o cr
-mean ings
-cap t
-da hl
-fer mentation
-bri oche
-to win
-out lander
-massi mo
-en cro
-ðŁ¥ ³
-buil t
-po tam
-kir i
-tm w
-monit ored
-k ites
-peoples vote
-gray son
-íģ ¬
-afri ka
-a dies
-i vote
-gy ne
-g annon
-di x
-c mc
-ou ral
-fox andfriends
-bel i
-ig ne
-gl an
-katrin akaif
-co politics
-qual itative
-p si
-lu cci
-disc oura
-âĺ ®
-kel li
-gau tam
-carac as
-reale st
-pu la
-in us
-hill top
-make aw
-atten borough
-tw y
-r arity
-peck ham
-ma hon
-corn elius
-clin icians
-ton line
-tb i
-paradi se
-ka si
-inev it
-fresh ness
-colling wood
-lun atic
-defen se
-cop d
-in fra
-wain wright
-sains bury
-alab am
-te ma
-lac o
-chec ker
-releg ated
-tren t
-stal ks
-huff post
-bhubanes war
-ast ral
-share your
-prim rose
-hi me
-cat an
-end ment
-en dow
-cle mens
-mal oney
-hil ary
-game time
-den ise
-collabor ators
-b wo
-radic als
-gue tta
-ici on
-au a
-snap matic
-sat chel
-excav ation
-base man
-s ão
-gn ation
-fel d
-surve y
-shah zad
-ma st
-anirud hofficial
-tru cker
-ot ago
-geo graph
-ethe l
-âļ¡ï¸ı âļ¡ï¸ı
-s ver
-mu tt
-internetof things
-ancho red
-wh ouse
-bang la
-bal main
-ç¹ ĭãģ
-break fa
-á Ģ
-twi ster
-te tris
-ca v
-stag s
-g z
-au b
-stor med
-hel ens
-yar mouth
-st asy
-gustav o
-co sc
-vin son
-up p
-sc ricket
-assump tions
-app e
-nu h
-u er
-pre mise
-n aga
-e amon
-coron ary
-na f
-north side
-el mer
-ro tar
-out lining
-el f
-re surg
-kat elyn
-in can
-hyster ia
-ce e
-am bani
-pro lly
-Į ãĤĬãģ
-ax es
-san jose
-rem brandt
-mag pie
-even ly
-scor sese
-qu aint
-f g
-b buk
-indian football
-weare all
-spd wy
-pis ces
-ec g
-âĺħâĺħâĺħâĺħ âĺħ
-pre orders
-: |
-ni pple
-sal azar
-ju me
-jail break
-min n
-bas sett
-ze tta
-jef free
-ad jun
-tic on
-san diego
-drink local
-chol era
-solic itors
-o bo
-com post
-ni an
-wr a
-tre ach
-ic ic
-profession al
-del ve
-leg ate
-histor ia
-cro issant
-con noisse
-nam o
-palli ative
-chem trails
-i ority
-global warming
-comic art
-behavi oural
-re sted
-li as
-cli mates
-Ł ãģĦ
-rut land
-nou rish
-menopau se
-hot ties
-demen ti
-ve spa
-mel ville
-anal ogue
-tz man
-str ung
-im perfect
-gl are
-cir cling
-ros berg
-rec o
-oc ity
-lo ire
-em be
-do ssier
-ne el
-nan do
-me a
-gal vani
-fin esse
-ag p
-berke ley
-asi m
-âĺº âĺº
-quil ted
-ish ere
-un matched
-po tion
-for z
-at re
-selfi es
-juli ana
-ðŁļ ¶
-âĸ º
-mel ton
-âłĢâłĢâłĢâłĢ âłĢâłĢâłĢâłĢ
-spin rilla
-pur cell
-ed p
-at leti
-tony awards
-ra ja
-pro gno
-mol ten
-stu ff
-p ally
-nobel prize
-âĻ» ï¸ı
-spiritu al
-spe ake
-sa sha
-bri um
-tru ss
-critici ze
-assassinscre ed
-yor uba
-u lo
-fire man
-workin progress
-ef cc
-fla res
-ro bot
-hi kers
-cl l
-shado wing
-pat sy
-leh man
-c ns
-å ±
-guad al
-à± į
-ra pe
-r honda
-paralle ls
-son ja
-langu age
-land ings
-z ola
-cr amps
-bur ning
-apprais al
-jol la
-ham m
-kas a
-gul ly
-f go
-uly sses
-ri be
-ðŁĴ Ħ
-ib u
-eti enne
-bri ar
-fin ely
-comb ating
-y ql
-go tham
-we chat
-to paz
-primar ies
-l se
-iz z
-hel e
-dispon ible
-cy stic
-bel ichick
-th rush
-kansas city
-ge om
-soli di
-red bubble
-by stand
-cambridge shire
-par fait
-ast le
-ow o
-ind ore
-stom ping
-sm elly
-ðŁ¤ ĸ
-locom o
-adm itting
-hol me
-clock wise
-min sk
-mc co
-for get
-ev p
-cam ra
-ab ella
-yo tes
-universit yof
-mé xico
-silver ado
-ric ket
-crom bie
-pu j
-eradic ate
-deli ght
-y go
-glam ping
-vic a
-du ggan
-coun ters
-cf d
-sc our
-react js
-pu ram
-paras ites
-in ki
-vill en
-stel la
-li mbo
-ang as
-k cr
-ðŁĴļðŁĴļ ðŁĴļ
-vap ori
-mum ford
-oli gar
-à ¼
-al oo
-boo ties
-ad r
-k elli
-dru mmers
-av ici
-nature uk
-ron al
-in trac
-un splash
-le che
-g oma
-el ine
-envir o
-bi onic
-bu eno
-mi k
-av in
-star ling
-em powers
-cake day
-boy cot
-ðŁĴļ ðŁĴļ
-ðŁĮ¸ ðŁĮ¸
-v ach
-m ci
-fractu res
-ger i
-sk ing
-exclu ded
-lu ce
-ja ve
-ig gy
-evi den
-aki stan
-a wn
-mor als
-luci fer
-ha ban
-tumb ling
-sunday motivation
-mo sley
-captain america
-sch icago
-the one
-mo td
-d ts
-ðŁIJ ¼
-rep ell
-ii i
-locu st
-geo spatial
-mer sey
-immer se
-desc end
-ber nade
-j s
-boat sales
-win der
-cran k
-sing leton
-candid acy
-ben a
-ðŁı» âĢį
-high lander
-ol t
-k prs
-healthy lifestyle
-four teen
-end the
-ith aca
-circul ated
-r ans
-pre valent
-ha vas
-splend or
-roo ster
-kalamaz oo
-jewell ers
-enne dy
-rou sey
-es y
-cann ons
-ornam ental
-// //
-ren don
-win ne
-mol ding
-eid mubarak
-coun tess
-simon a
-ha wa
-fo es
-du ster
-sb u
-por tray
-mar ries
-goo dday
-cho co
-achi ever
-ðŁĺ¹ ðŁĺ¹
-pre neur
-tr amp
-tom i
-n bat
-garden chat
-farra khan
-ever glades
-ab ru
-sou sa
-se ce
-homes wee
-terre strial
-bar it
-sri devi
-ol u
-mel inda
-f rick
-can dies
-ðŁĺŃ ðŁĴķ
-qu reshi
-family fun
-exor cist
-cardin al
-ny t
-dies el
-cu mulus
-capric orn
-si ology
-lor na
-dou gie
-an die
-super sport
-c fl
-п ÑĢи
-say ang
-pe ek
-ภĬ
-lo be
-j em
-ing lis
-gg led
-c sn
-amne sty
-chu ps
-ba es
-sau er
-ðŁı IJ
-mongo lian
-en et
-back street
-dr illed
-acce ssing
-ce o
-b se
-ai ken
-pur r
-wor sen
-whe res
-war k
-testi fying
-bu ri
-bla st
-aw g
-ðŁĵ ĭ
-re defining
-hear ing
-u ci
-c mp
-bon i
-tail oring
-ta ji
-noc chi
-em t
-stephen king
-ne et
-compla ins
-campaig ner
-luci ano
-twili ght
-ti esto
-pas sports
-flo yd
-cathe dr
-na ked
-caregi ver
-b coz
-ade cides
-ku ri
-ly k
-br aries
-dren ched
-disc lose
-ðŁĴª ðŁı½
-le blanc
-je tty
-gar ty
-chip mun
-b su
-rhyth mic
-ic z
-fri d
-anne x
-ame x
-solo ist
-lanc ers
-arro whead
-speci fication
-simul ated
-na is
-inver te
-bo wing
-wor ship
-f z
-abo ss
-sha q
-ì¶ ķ
-challeng ers
-an arch
-aamaadmi party
-ãħĭãħĭ ãħĭ
-suffol k
-so corro
-sn ell
-cla dding
-absor bing
-shaw a
-particip ates
-ðŁį Ķ
-book stores
-bak u
-seap ort
-ko jima
-gab y
-pack ard
-electr ician
-let it
-mo wing
-fa wad
-young jae
-hot mail
-men ing
-u rie
-intim acy
-con ti
-: ")
-lifeis good
-in ciner
-i dri
-craz iness
-jour nos
-fran chi
-bott len
-al da
-ff es
-k x
-south we
-air a
-clay ton
-sco ti
-f j
-bri ga
-ðŁ¤ĺ ðŁı»
-demonstr ators
-y z
-stor k
-na q
-casc ades
-travel chat
-plat a
-pad ma
-fran ci
-at tain
-bat girl
-lom bard
-hoo s
-d dos
-neon atal
-discla imer
-r ss
-r ant
-di sen
-tex aste
-so cal
-frac tal
-cam ry
-stri fe
-sn acking
-mu h
-sant ander
-mor ons
-gra f
-par ades
-hu ston
-dru pal
-mi ento
-kir stel
-hy de
-vom it
-forti fied
-sphin x
-da v
-bir yani
-win nings
-s baseball
-mer ged
-lovel ondon
-ling ering
-dream big
-car leton
-liveli hood
-djan go
-astri d
-gri ds
-down e
-bru ised
-s ne
-scarec row
-hel ium
-f nc
-bi ggs
-an ter
-restor ative
-em pires
-ab del
-life style
-kiwan is
-colloqui um
-me en
-pr ick
-anti que
-ze b
-mi mic
-edmon ds
-ðŁijĬ ðŁijĬ
-q ing
-pp el
-mc gill
-interpre ting
-âŀ ķ
-rash ad
-do ka
-narr ator
-electro magnetic
-ash by
-sau ra
-iran deal
-âģ īï¸ı
-krish nan
-in di
-ff en
-bre a
-os man
-multin ational
-chi ppe
-recruit ers
-aus biz
-p ounding
-re gen
-cur sor
-refu sal
-mac s
-in ak
-ax ial
-wa ifu
-up cycled
-hindu stan
-cas sini
-carly le
-scrat ches
-re ef
-man atee
-eat ery
-ðŁĵ ¢
-un condition
-sen pai
-on ther
-comic book
-pro sciutto
-de mar
-mi se
-ma ge
-fre ec
-aye sha
-al der
-android games
-ley ton
-ho ck
-door way
-chicagof ire
-aali yah
-sw elling
-bi x
-. ðŁĺĤ
-evan kirstel
-torpe do
-kon stant
-genevie ve
-ma ia
-ha user
-do torg
-hide ous
-fi k
-sp raw
-e ek
-z appa
-wan dered
-' '
-ra jan
-bam bi
-( $)
-wid ening
-tool box
-sa ir
-illumin ating
-pra ys
-out patient
-i w
-day o
-lo b
-sw fl
-sha des
-gu ms
-coo kin
-ko di
-gri ffin
-traum ati
-ste a
-slaugh tered
-god bless
-air time
-pseu do
-b sa
-hau led
-ar if
-à¸Ńภĩ
-le l
-wc po
-mil iti
-char ters
-worl da
-ru k
-k gs
-digital india
-is able
-idyl lic
-esp ino
-marie tta
-e bo
-team canada
-ab our
-wil ton
-rock stars
-fav ored
-phys ic
-wrink le
-tb r
-d print
-ball arat
-ad al
-z ey
-ðŁĺį ðŁĶ¥
-tom lin
-mt r
-pal sy
-fener bah
-tight en
-phil ia
-ir oning
-ry u
-b ant
-enqu ire
-ca ir
-abur ger
-tru n
-green berg
-chau han
-ir ina
-sh ani
-trend setter
-pre tt
-zaf ar
-alo ve
-v ici
-pan ic
-no o
-lu stre
-disrup ted
-bal lis
-son sof
-mon si
-inst ac
-ake st
-ëĭ ¤
-kw ame
-horror movies
-distric t
-sau cy
-mb an
-ar mies
-with drawn
-med ics
-loft us
-er oom
-be kind
-ar ns
-all on
-un ison
-davi ds
-cr at
-nicot ine
-so or
-sm x
-on co
-cospla ying
-zombi es
-har ms
-e ger
-ro sy
-moon shine
-fe in
-ce tt
-du brov
-reg ents
-ben itez
-ðŁijıðŁı¼ ðŁijıðŁı¼
-ste c
-m alia
-prioriti ze
-ic eland
-ft se
-v amo
-lam ont
-homo sexuality
-bre es
-regu i
-cb p
-te j
-sky sports
-deter gent
-sha sta
-de rel
-conserv ancy
-colori zed
-accol ades
-vis o
-show your
-nan ow
-bice ps
-us ability
-bi m
-dailys ketch
-pearl jam
-stran gest
-mega deth
-broad casts
-bar ren
-ar ton
-chri ss
-confi gu
-lu res
-is the
-e ul
-railway ana
-global health
-gi anni
-u aap
-s lum
-consci ously
-ab re
-n up
-bud get
-v ada
-e sch
-real ness
-er ased
-th unt
-be z
-armist ice
-ðŁij ¹
-sh run
-o led
-driver less
-ðŁ¤· ðŁı»âĢįâĻĢï¸ı
-won dr
-sk an
-sal aam
-mother land
-h wang
-gen o
-gang nam
-tw right
-endor sing
-en ic
-ador ation
-pau sed
-patric ks
-do cked
-plat te
-ff xv
-ethnic ity
-auto show
-side show
-after life
-re located
-orphan ed
-food network
-dare to
-and ra
-sla ps
-v live
-swim s
-re imagined
-mist le
-re vise
-real ity
-bhar ti
-ðŁĴĻ ðŁĴĽ
-late st
-prou dest
-gra sses
-lan yard
-fresh est
-carcin oma
-anom aly
-zieg ler
-sum ner
-ly rix
-gor g
-is d
-av el
-swild life
-me squ
-john cena
-euro league
-sab er
-master ful
-yar ra
-cogn ition
-jacob son
-abo lic
-sir loin
-shuk la
-moj ito
-su pere
-st weet
-me z
-e sa
-rudol f
-gur a
-where you
-tt m
-win s
-trust worthy
-ny k
-bra den
-table top
-good food
-es on
-be k
-lingui stic
-gra ys
-ch ath
-h cs
-mon i
-de ans
-cu ssions
-ch ell
-slo ws
-he mi
-d app
-shar pie
-boo sters
-a os
-str ack
-se dona
-mu eller
-hard wick
-or nate
-thor a
-sal ud
-o twol
-ch um
-mi ho
-for age
-thel ittle
-tear ful
-ones elf
-min dy
-sm g
-gmb h
-emer ald
-ðŁĶ´ âļªï¸ı
-tu tti
-recep tions
-re vising
-i brox
-tope ka
-sal ami
-expan se
-i books
-dob son
-cli o
-at s
-ðŁļ Į
-mo ha
-is ance
-shu tters
-moo t
-jan ine
-marvel comics
-jor dani
-pos er
-kenne th
-hy ung
-de ja
-ase ball
-speci ality
-eu ston
-classic car
-had ith
-ðŁIJ ī
-chas ing
-iz o
-gros ven
-ag lia
-thisdayin history
-t row
-om ile
-hu ar
-by n
-sal ine
-div ine
-demon ic
-ty ran
-han dover
-revit alization
-pa ella
-cryp tic
-se dg
-m end
-dun kirk
-bre d
-wal d
-sport scar
-a ard
-whe aton
-da ener
-k lan
-br t
-bakhta war
-spi res
-schu bert
-ro ti
-poli sh
-o se
-ag ame
-wonder con
-prote stant
-bo sa
-ðŁĺ Ł
-d ü
-joy ride
-ger trude
-âĿ Ŀ
-gil a
-v h
-tw a
-tra v
-swal lowed
-star ve
-la in
-ent ren
-rei ki
-su kh
-cra ic
-az u
-web page
-kee fe
-hypo the
-hir sch
-hel le
-camp ground
-w amy
-tra vi
-sha hi
-san deep
-ru i
-han uman
-dw p
-reposit ory
-no or
-no ff
-un real
-p ell
-black history
-har vick
-ma scar
-pay ee
-pa sha
-gastron omy
-d ÃŃ
-ai g
-rosen thal
-open day
-embelli shed
-t tip
-sun bathing
-go pack
-end ome
-ï¸ı #
-invali d
-final four
-st fu
-squish y
-ra sta
-mo sch
-jam esc
-die trich
-sel a
-mel b
-el vi
-t dp
-sun i
-sli t
-j ha
-bi za
-spi ked
-l li
-l illard
-vam pi
-syno psis
-az har
-kendrick lamar
-ĮãĤĬãģ ŁãģĦ
-heart less
-country file
-air play
-arrog ance
-pre e
-virtu oso
-ãħłãħł ãħłãħł
-raj u
-le bu
-for ward
-tu g
-dro s
-mondaymotiv aton
-concep cion
-thel o
-pad i
-looo ol
-ÑĢ од
-it ss
-eth ical
-end uro
-__ :
-expend iture
-mon ste
-mas king
-terri ers
-ib is
-e mber
-cu mple
-punctu ation
-pi per
-ir vin
-ade e
-yy yyyy
-flash backs
-cel sius
-don nie
-bo gota
-ben evol
-the script
-shil pa
-pro se
-fin dia
-ze ke
-ne ko
-do ves
-blues lyrix
-fro sh
-sowe to
-mp lo
-al ai
-sab i
-raq qa
-wf tv
-stro ller
-ian somerhalder
-ðŁĶ ª
-an on
-mo seley
-! ?!?
-sta king
-mol y
-car tri
-c sg
-ast or
-transc end
-ma er
-de ux
-cow girl
-sas k
-pun ter
-ma ken
-o ates
-love tt
-grow ler
-sag in
-v n
-ssi ble
-officeof rg
-y mc
-sab ar
-faul ty
-ap ha
-ak on
-ðŁij «
-snow don
-ae w
-raise the
-ðĿ ĵ
-grue some
-clement ine
-sp ing
-lat a
-worlden viron
-mi mic
-can aria
-bakhtawar bz
-ao a
-fal a
-ãĤ Ń
-avi va
-you uuu
-thi gh
-la dders
-gu mbo
-tz ky
-fu zz
-plastic pollution
-est ate
-strength ened
-k ant
-dr in
-cal vert
-transform ational
-frigh tened
-mac lean
-elited angerous
-ear thy
-t son
-to da
-j nu
-.. ,
-mic hal
-i ban
-je ong
-is real
-sim coe
-exclu sives
-blue bells
-ben e
-te u
-pil sner
-pens ke
-athe ists
-m pu
-cartag ena
-ðŁĴĹ ðŁĴĹ
-million aires
-kk kk
-it ar
-subscri ptions
-remo te
-ma fi
-hin ton
-w cc
-ho k
-ds b
-ab leton
-sevent y
-pun ks
-e indhoven
-sh one
-mcfar lane
-lim popo
-empha si
-Ã ¼
-sin fo
-pe tre
-man grove
-ch ino
-ber tie
-play lists
-push awards
-p af
-deb bie
-c do
-r ino
-ðŁı¾ âĢįâĻĤï¸ı
-fol ke
-bon nar
-th ine
-sl an
-hal ter
-evi e
-aw some
-vul tures
-spar ky
-seiz ures
-âľ Ķ
-ram one
-ine ffe
-al n
-pro ctor
-ast ra
-the voice
-gro te
-sci on
-dead line
-am aya
-tain ted
-patter ned
-exce eding
-cross fit
-kay lee
-drop box
-ru shes
-tack led
-mo by
-retro gamer
-n cbd
-benef itting
-shay kh
-guild hall
-gen try
-dream cast
-dread ed
-bun dled
-th aw
-revol ving
-n pt
-kylie jenner
-imagin ative
-ron i
-over came
-family time
-ds burg
-car naval
-relation ship
-recogni zable
-cor oner
-ho le
-fan fic
-emir ates
-bur ritos
-analy se
-thin ner
-ne es
-galli poli
-bl r
-cat woman
--- >>
-au lt
-ada ily
-nau ghty
-ili o
-solit aire
-mtv br
-jocel yn
-arun ach
-rep ent
-south gate
-hy acin
-essenti al
-fent on
-and um
-it or
-go pal
-sl inger
-po sei
-aw il
-wi elding
-ra ila
-eli as
-a sto
-Ã ¤
-tend ency
-str ata
-ker t
-< -
-im acele
-da es
-sti mulus
-han ley
-fit nes
-ec stasy
-lim ous
-ha iling
-ðŁ¤ Ń
-chis wick
-tar ies
-sla v
-pul i
-moderni zation
-black mail
-b ingham
-h fx
-+ +
-ðŁĩ®ðŁĩ ³
-ni v
-we a
-profess or
-k off
-bol ster
-su ave
-sequ ences
-pepper oni
-not te
-dre n
-ãģ¨ ç¹ĭãģ
-hs v
-o ga
-ap tly
-z ad
-excel si
-rin ka
-mol dova
-min n
-ma bel
-conferen cing
-bas ing
-of er
-ob si
-hamill himself
-care less
-brief ed
-inhe rent
-par ish
-dub nation
-town sville
-sar awak
-gee ky
-doncaster isgreat
-was abi
-gu p
-phen o
-dra inthe
-carrie underwood
-ble eds
-bbc world
-ane w
-alta f
-dul wich
-ani ston
-w ti
-sumat ra
-gra fton
-bl n
-me ster
-bode ga
-re go
-es q
-an jo
-sump tuous
-mai sie
-ï¿ ½
-wil t
-jak ob
-el vis
-se pul
-mu ster
-air pollution
-president e
-happy monday
-exten sively
-fl ondon
-t ls
-play ing
-pe ed
-din ho
-var dy
-pi ka
-n iro
-au cus
-ðŁį ¦
-nu ll
-el ondon
-juvent us
-imag ines
-dis ab
-lit o
-d ura
-work places
-promo te
-mc caf
-wood work
-waw x
-à® ª
-tt ino
-shar i
-sem per
-better together
-ðŁijĬ ðŁı»
-ze bra
-pon dering
-en chil
-ho m
-cosm ic
-tan z
-mo cked
-ec cc
-ath ed
-abo lish
-prop eller
-paris agreement
-assemb lies
-indu stry
-fraudul ent
-pe sa
-chang min
-ax x
-ðŁĴ µ
-irr ational
-cu sa
-ramad han
-octa via
-on elove
-jac ki
-bar ak
-taxi der
-seri ous
-nathan fillion
-mc en
-ch k
-po part
-grav ity
-copp ola
-reading fc
-illu sions
-j ig
-ww x
-re sh
-ex porting
-buzz ard
-âĻ ¤
-p cm
-lan apar
-ko s
-arom as
-antal ya
-ww dc
-ven a
-phil a
-ball in
-ðŁij Ħ
-quin ta
-ma o
-f ery
-eigh ty
-sentim ents
-safe guarding
-r wa
-pu ffs
-luc ille
-de cath
-sl u
-nu gent
-de ter
-braz il
-ze iss
-super bowl
-subsi dy
-alter n
-hi dalgo
-enz ymes
-ä ½
-tag ne
-hair dresser
-adri en
-walk out
-oppo ses
-can tina
-bed side
-af an
-ðŁĶ Ĺ
-prophe tic
-dan es
-un successful
-super charged
-pk k
-exem ption
-hart le
-secu lar
-cli pping
-br s
-united way
-c net
-pat chy
-ha gan
-e en
-âļ ľ
-var a
-sym pathi
-never trump
-affir mation
-om f
-ny cfc
-ma ja
-sur ro
-keer th
-up scale
-sandal wood
-mon archy
-kno bs
-å ĭ
-po tholes
-hunger games
-ter races
-na sir
-coun sell
-welcome to
-wa q
-se aman
-m ita
-stun ningly
-on theroad
-in ability
-) !!
-bon go
-ant v
-sp ut
-worldenviron mentday
-resu sc
-y td
-fi m
-eun hyuk
-sa chin
-rose anne
-cler mont
-ape c
-am ina
-v ening
-n antes
-al most
-sin us
-ex as
-ty l
-ti en
-ple ad
-lanc s
-bur naby
-re k
-jo om
-observ ers
-disco graphy
-cl g
-âĻ ¦
-sn ack
-r ti
-o ily
-crystal li
-bru te
-web development
-topp ings
-la f
-an is
-ad der
-reli ving
-car lin
-battle of
-we g
-syri an
-pon t
-n dc
-lagh ate
-yu ma
-sp p
-p iti
-ro bbing
-mart ing
-rey kja
-raj put
-nc ds
-kie wicz
-âĢ¢ âĢ¢
-vam pire
-substan tially
-opio ids
-nepal i
-k line
-ar oo
-under stand
-lit t
-u it
-thro mbo
-sar ies
-qu ot
-b alling
-t tr
-s gh
-philip p
-br ant
-ac l
-m ello
-whit taker
-. ;
-defi ant
-b gc
-repl ying
-mir ren
-metamor pho
-sch wab
-bul ge
-utili zed
-pick ering
-par don
-d sa
-ภĪ
-doo ley
-cumul ative
-Ð »
-ur gency
-e mir
-+ /-
-¦ Ī
-ot as
-âı ³
-station ed
-grape vine
-ar ac
-karan johar
-f ancy
-sau l
-coo gs
-lgbt q
-ا٠ħ
-jav i
-u mmer
-pl l
-den is
-dai pur
-pu ffin
-lewi sham
-fand om
-co pe
-ves matter
-s ve
-hel pless
-deo dor
-ostr ich
-kaz an
-friday the
-con dor
-v x
-sophom ores
-rob les
-cu tt
-cli mbers
-ë¦ ¬
-sle g
-sn f
-mac ys
-hydr ating
-grou pe
-po yn
-mou lin
-hg tv
-lmfa ooo
-sulph ur
-asdfghj kl
-annab elle
-hump back
-bra ved
-viswas am
-multi purpose
-hu midi
-escor ted
-barb ican
-f ad
-cor sa
-ðŁ¤ «
-pi ppa
-here to
-can y
-ser gi
-or cas
-o vie
-ed ou
-s any
-glob alization
-man cini
-food truck
-f is
-defi brill
-sch re
-sma fia
-love wins
-la ut
-k aka
-hol lande
-game on
-resurg ence
-out side
-olympi ad
-int an
-abstr action
-rapi d
-pal om
-cal le
-jas min
-attack ers
-swag g
-mit ra
-ky lo
-à® ²
-her mitage
-gor do
-e ira
-so sfam
-roll out
-exc ite
-sy nod
-mer rill
-c als
-as sa
-liveli hoods
-ju ve
-the black
-gopack go
-ant lers
-alban ian
-wool ly
-qu iche
-puri fication
-are th
-smar thome
-ne k
-all blacks
-mex icans
-is m
-ger ms
-comple xion
-mar ck
-u shi
-ðŁIJ IJ
-char l
-ca stic
-till erson
-giuli ani
-biode gradable
-mal bec
-bo is
-ju bil
-im es
-r ame
-gene tic
-esp nu
-ch ley
-so ho
-go pher
-g sc
-buu ren
-cu be
-bridesma ids
-webin ars
-to e
-mani pur
-viol ently
-notic ias
-ex changing
-chi ev
-replac eable
-muay thai
-bu ss
-sp il
-instal ment
-div ya
-cait lin
-o lim
-fil tering
-whirl wind
-sta red
-prior it
-pr am
-pompe ii
-mono logue
-k ite
-bu ka
-âĢ¦ ..
-vac cine
-bre ro
-woz ni
-sol ent
-re ferr
-my rt
-gridi ron
-galatasar ay
-fro ze
-clare mont
-ðŁ¥ ĥ
-victori as
-ssel dorf
-pa stures
-net neutrality
-ch or
-ðŁij ģ
-ಠ¿
-we ho
-symp tom
-jo sel
-in ous
-dragon con
-power ball
-p te
-four thofjuly
-ec la
-ear buds
-where abouts
-salt life
-depriv ation
-ch ter
-wi ggle
-syste m
-ps st
-ch az
-d any
-ri mo
-oax aca
-lanapar rilla
-barcel on
-melanch oly
-way back
-ho tro
-n si
-l illy
-kur o
-ja han
-intellec t
-board game
-ðŁı Ĭ
-sneak peek
-k prc
-jail s
-cand el
-zan zi
-mor timer
-star ch
-ra gs
-p fa
-long live
-k art
-gir ona
-cro cker
-christop h
-precau tions
-war ship
-per m
-paren t
-van gogh
-gif ford
-allegh eny
-ra yn
-ut m
-sten cil
-rec alling
-pen ney
-z azzle
-ìĥ Ŀ
-hin ds
-aren as
-nu ev
-law ler
-gu in
-do this
-ðŁij ķ
-ì¶ķ íķĺ
-we g
-ti b
-ri din
-complex es
-turbul ent
-pe sos
-de marcus
-vall arta
-sam sun
-kis ses
-hein rich
-deport es
-wil ms
-ur d
-then ext
-inki gayo
-ho wi
-fir sts
-carri age
-clean liness
-mas war
-is ch
-ax el
-si zzle
-road house
-fr ans
-ent ourage
-co bble
-boo th
-benedic t
-tal on
-fc u
-year ofthe
-ray on
-raider nation
-fo yle
-ko val
-pi anos
-l pg
-bur mese
-man ure
-geo caching
-cosc ino
-b np
-fer ra
-stro phy
-mar ais
-ce es
-legen dof
-kat niss
-eno ch
-av ed
-you know
-d prk
-ðŁĺ¢ ðŁĺ¢
-sp un
-pro st
-sor rows
-cent red
-ke a
-gal icia
-? ðŁ¤Ķ
-ÑĢод а
-bou chard
-ðŁĴĻ ðŁĴľ
-yu i
-seed lings
-jon ah
-reco vers
-ny rd
-board room
-su ma
-my japs
-tun g
-sha i
-ir gc
-eli o
-wag ons
-ka shi
-polic emen
-john nie
-ale coscino
-shop ify
-dot ted
-de tri
-va w
-to fficial
-in your
-chal mers
-trac ed
-no vi
-by es
-ari el
-nipp on
-la pel
-gri ez
-b gs
-fool ing
-d ita
-vijay sethu
-nm wx
-as ot
-kr anti
-hel m
-ve di
-sic kest
-mo chi
-k abo
-shru bs
-he red
-b sp
-sq m
-ham r
-dul kar
-anth a
-nr f
-avoid ance
-at en
-publi x
-be arers
-nas i
-ha p
-h ells
-ðŁĸ ¥
-ภ·
-thelast jedi
-oh wx
-ðŁį «
-wa hoo
-there se
-rec aps
-ss nhq
-bird photography
-v ay
-pet ti
-pau lo
-bel vedere
-( *
-gr l
-du vet
-c pec
-sa it
-por sch
-meas urable
-avi ators
-fre mantle
-bre en
-on om
-me and
-life saving
-eu ref
-en don
-embar as
-aira sia
-el is
-dun kin
-star magic
-s ill
-porto bello
-ki efer
-ex e
-mu ted
-ãģ ¦
-we thepeople
-logi a
-liber al
-theforce awakens
-min ed
-haun ts
-freck les
-care taker
-s india
-âķ IJ
-dev lin
-list on
-direction er
-oh n
-fi garo
-em manuel
-du bois
-cl ones
-bru ise
-ðŁİĪ ðŁİī
-disin fe
-der matology
-as r
-s watch
-dis comfort
-tam anna
-pi day
-mack en
-k atic
-delu sional
-shaw nee
-gu d
-al bino
-p ali
-din gh
-cucu mbers
-coffe y
-anticip ating
-treas ured
-web summit
-shel tered
-sav or
-pedago gy
-m gs
-sh ma
-s bu
-den ali
-cam pos
-bubble gum
-o ir
-le aps
-y ler
-r one
-sansk rit
-min t
-meat less
-futuri st
-du de
-a vel
-prote sted
-squ ire
-z aki
-sz n
-har court
-cycl one
-bour dain
-gather ings
-d ant
-advent urer
-parag on
-alt man
-dd ing
-ban erjee
-snorkel ing
-mother well
-mis sy
-en der
-glo ws
-ki wis
-chick pea
-por o
-e fron
-app t
-u y
-speci fied
-gab by
-e strada
-com bos
-bour bon
-vin i
-var un
-steph ani
-key words
-car vings
-amit abh
-wr ought
-tw al
-re els
-clu bbing
-ubi quit
-cri t
-ambed kar
-æ Ļ
-prun ing
-vaccin ated
-boe ing
-s ks
-lo ona
-hypno sis
-edel man
-pho l
-he w
-colo sse
-mckin sey
-u on
-to te
-sacrific ing
-ox i
-n ang
-e mu
-пÑĢи ÑĢода
-m th
-kers wednesday
-argu ed
-timel apse
-ris king
-regul ating
-ni gh
-likeli hood
-cu bic
-au ction
-rein for
-pi stor
-no ses
-ye l
-snu ggles
-pe i
-jean ette
-ta ku
-ri th
-guy z
-ภŀ
-y te
-ver ted
-pay soff
-jau regui
-hoo ligans
-procedu ral
-mi b
-har dy
-el eng
-chec kers
-all ine
-the met
-prou dof
-keerth yofficial
-collabor ator
-ni u
-infl icted
-adv ani
-re twee
-memor iam
-f icial
-ti ghter
-sal em
-re viewers
-br ics
-ben digo
-am ell
-tur kish
-sush maswar
-paul son
-pal awan
-mol lie
-stitch er
-s burgh
-ir u
-hay dn
-en ers
-aro a
-u zzi
-saraj evo
-hel a
-apol lo
-nine ty
-vac a
-sp on
-vent u
-jel ena
-hei fer
-avo ids
-sp ine
-pri ze
-mar ist
-re creating
-me de
-woo den
-find lay
-ro fl
-n di
-compreh end
-yu go
-y ü
-to work
-u fos
-son ar
-pi ston
-recor ding
-tent ative
-art forsale
-pel lets
-fre do
-ÙĪ ر
-mu ses
-custom ization
-pro found
-is ner
-ide ally
-si am
-plan kton
-cm dr
-man ger
-fran ken
-customiz able
-ठ®
-walk away
-swi vel
-vast ly
-no ton
-lex a
-ex moor
-z as
-tan te
-reduc tions
-lol ly
-hip sters
-benef ited
-ë ²
-ww www
-mascul ine
-fi ji
-dre y
-ph ill
-ane ous
-nic ol
-men dez
-disapp ro
-ch ner
-through s
-shen mue
-east man
-ðŁIJ İ
-yu ck
-under tale
-re ys
-go beavs
-eng en
-c na
-mer r
-bir k
-ãģ¨ç¹ĭãģ ĮãĤĬãģŁãģĦ
-âĥ£ @
-yn na
-ste ed
-offen der
-at um
-vani shing
-presi denti
-love them
-g nocchi
-fri ggin
-per il
-mad hya
-ag ne
-dee jay
-mar nock
-m tb
-fold able
-@ ___
-stand re
-bron x
-bow ski
-fin ite
-cro ckett
-b sf
-ge tit
-seren awilliams
-mir o
-ignati us
-sla y
-rin se
-fon due
-sel dom
-s more
-gan i
-dy ce
-dmit ry
-cru mb
-late post
-pri mark
-oh ana
-flor als
-do a
-remembrance day
-d ds
-azi one
-toon ami
-air port
-æĿ ±
-th ad
-fi st
-dine sh
-dr who
-ad words
-admi rer
-pro je
-kyrgy z
-à «
-manife station
-le wan
-j ic
-thi bau
-le ased
-van ity
-nouri shed
-never theless
-aug mente
-fu elled
-che ad
-wil shere
-ru di
-p z
-my co
-mor ro
-herbali fe
-hardro ck
-de man
-dre ality
-sp ades
-ce vic
-bha i
-bar on
-ultimat efan
-hou news
-to bi
-stru t
-ke el
-affili ation
-the masters
-sm al
-hu e
-este ban
-con v
-om nic
-datab ases
-co v
-ter ti
-st g
-snoop dogg
-metab ol
-leth bridge
-ðŁı» âĢįâĻĢï¸ı
-year ling
-residente vil
-nws l
-iy aki
-griez mann
-c ous
-ðŁĵĿ :
-tor ian
-sam i
-ðŁĶ¥ðŁĶ¥ ðŁĶ¥ðŁĶ¥ðŁĶ¥
-g are
-alli ances
-whit field
-we ther
-refin ing
-coy i
-kra ken
-ðŁĺĺ âĿ¤
-singul arity
-lil i
-h ns
-bol dand
-waw rinka
-misogy ny
-lo vers
-c q
-b dg
-ad ona
-gar ter
-women of
-sc d
-recogn ising
-mun a
-str ou
-sign alling
-lare do
-hell boy
-alek sand
-un available
-pedi atric
-as in
-mer ia
-ri shi
-futuri sm
-w ye
-polari zed
-e we
-pro pel
-in forms
-cre ase
-~ "
-arti ston
-like for
-heidel berg
-er ra
-life in
-len ny
-inter rupt
-cohe rent
-ca z
-vick ers
-le veled
-f bs
-cab ins
-bu mmed
-apost les
-we h
-ten don
-souven irs
-infu ri
-pier ce
-asse t
-m las
-go th
-di ggin
-ann as
-yl or
-th waite
-sw el
-pan era
-mur derers
-croo ked
-bs go
-ac u
-a on
-re an
-one of
-ko hl
-bloo dh
-pest icide
-lost dog
-fle xing
-ëĤ ĺ
-su pra
-eter nally
-ðŁļ Ļ
-pa olo
-ol an
-mom o
-is elle
-captain marvel
-s lou
-mistak enly
-akhi lesh
-mer t
-il inan
-bu on
-bal kan
-mir ro
-mill en
-der ail
-dam on
-tit i
-bi os
-re don
-pic ard
-par te
-ðŁ¤ Ł
-Ø º
-son ics
-fir sth
-dd c
-veg ans
-tur ban
-ni gan
-lot tie
-lyn don
-star buck
-pink floyd
-life styles
-am ara
-a she
-r sc
-val a
-sm er
-cw gc
-cli ent
-buen as
-jag an
-coo ps
-ðŁijij ðŁijij
-speci alizes
-snag ged
-g lar
-ben net
-wildlife wednesday
-bow den
-pi k
-art in
-empor ium
-ar l
-re ba
-pas ser
-disappo ints
-additi ve
-âľĬ ðŁı½
-bay er
-missou la
-ha skell
-comm ences
-ni x
-ne man
-explo ited
-plastic surgery
-cc d
-aso cial
-vo t
-sie gel
-fro ome
-kap am
-far a
-e ha
-pro bes
-mw f
-meet ing
-p bb
-ak ins
-mistle toe
-kingdom hearts
-for kids
-ec r
-bal e
-escor ts
-adidas originals
-k wa
-k ts
-hallo ffame
-ðŁĺį .
-wag s
-pot ted
-o wing
-honey comb
-he fty
-uro logy
-mer le
-b pd
-stri pping
-re ich
-k state
-gu ay
-yon ge
-shak ti
-g loom
-bat t
-son om
-n ery
-el ba
-blan ks
-hel le
-triple ts
-bom bay
-ak arta
-ab ia
-transm itted
-rol f
-ja is
-angular js
-fi erc
-m ss
-trac e
-ॠĩ
-tom bs
-old man
-kom bucha
-fo l
-e health
-cere als
-are lli
-in ari
-ðŁĴ ©
-wo l
-liber ties
-fa wn
-af firm
-nun avut
-hyster ical
-k drama
-art es
-âĢ¢âĢ¢âĢ¢âĢ¢ âĢ¢âĢ¢âĢ¢âĢ¢
-valent in
-man slaughter
-gal es
-eo in
-energi zed
-del s
-with draws
-st les
-sar castic
-ram esh
-incredi bles
-lock hart
-ya wn
-ultimatefan live
-oooooooo oooooooo
-mu en
-guru dev
-te er
-pe eling
-new snow
-lingui stics
-direc tv
-ag end
-uni lever
-ru ger
-han dedly
-ero se
-li mel
-the c
-royal ties
-fini shers
-nr g
-m gt
-fid get
-com ps
-bac on
-aggre ssively
-ab it
-ch â
-tar de
-slu gger
-q anda
-gre ening
-d ats
-ensla ved
-spec tor
-o ye
-fre ef
-b hand
-stop brexit
-mis conceptions
-cav a
-ðŁĺįðŁĺįðŁĺįðŁĺį ðŁĺįðŁĺįðŁĺįðŁĺį
-multit asking
-hou sel
-ferre ira
-cen time
-ank les
-jo dh
-hel ly
-fro me
-out tuesday
-nar nia
-bal aji
-l bloggers
-jyo ti
-ðŁį ĩ
-lan cia
-cap ri
-y ap
-nat ash
-down fall
-." âĢĶ
-Ã ®
-ligam ent
-coat ings
-ai ded
-hi ko
-fall ing
-encryp ted
-yeg food
-infringe ment
-cu di
-ce p
-ðŁĺį ðŁĺĤ
-tra d
-super rugby
-ed win
-wh iche
-vi meo
-lay ne
-in vigor
-he he
-dubrov nik
-bie ber
-u tr
-sham an
-op ers
-ham ill
-en ig
-di f
-ar um
-scrap book
-min h
-diver gence
-mckin non
-life time
-guter res
-wil le
-ple as
-patt y
-mic ron
-k z
-dom aine
-ru sher
-m ds
-ches ney
-screw driver
-âģ© ,
-sle dge
-hau er
-chan a
-stam ina
-sprink ler
-pl n
-he ff
-bol ton
-om on
-car rington
-accor dion
-jor ge
-inter ception
-in puts
-gu ll
-tran scription
-vanu atu
-it ical
-eth os
-tic h
-spac ey
-pee king
-u mi
-ha ger
-psycho tic
-illi an
-illi a
-bonnar oo
-an ese
-pu c
-laghate parth
-en hall
-econom ical
-dre dge
-% -
-u we
-tu bular
-scoun cil
-pe asants
-fl er
-tumb ler
-he p
-ford ham
-row ley
-initi als
-ev asion
-er nation
-plu gins
-coch ran
-c attle
-acid ity
-ðŁİĬ ðŁİī
-re grann
-jump man
-ef ace
-x ma
-patri archy
-esco bar
-cristi an
-tip ton
-nu eva
-hack ney
-back seat
-kill arney
-aid an
-sta dion
-simul taneous
-ida ho
-a je
-u th
-figu re
-clo s
-bur k
-volun tar
-rec ite
-macfar lane
-cur few
-bou do
-w gn
-sti x
-sla p
-scrat ched
-philli p
-jour ne
-ex pelled
-wa z
-u ke
-tati ana
-ou e
-ho pp
-dimit ri
-ðŁĵ £
-mato logist
-electri fying
-blu ffs
-bill smafia
-az cardinals
-y aa
-x mas
-shar a
-r ith
-g ills
-dre s
-bar ton
-authori zation
-imperi alism
-home of
-to do
-foot path
-band width
-visit spain
-moh sin
-erup ted
-mi ki
-insig nia
-mike l
-ss h
-ger a
-bank holiday
-aw an
-t weak
-star craft
-e al
-construc tion
-skelet ons
-le ep
-ine m
-bar clay
-ship wreck
-monsi eur
-yo h
-ron t
-form ative
-ser o
-le p
-horse man
-hoo sier
-haz mat
-cylin ders
-cen ti
-ðŁĴ¥ðŁĴ¥ ðŁĴ¥
-re em
-na ire
-mus ically
-gras shopper
-est onian
-termin ology
-ro main
-blogger rt
-tox in
-stan ce
-cultiv ated
-an ast
-ðŁIJ į
-shi mano
-go pher
-ene i
-recycla ble
-gam ification
-fight for
-c q
-avoc ados
-ke ys
-eli ke
-gly cer
-shak ur
-mobili zation
-gal ley
-expla in
-ex changed
-pe th
-obe dience
-illa ge
-en nis
-ãĥ ŀ
-wi v
-walla bies
-ma ar
-ig ers
-fin tech
-fin alized
-wo j
-meaning less
-in field
-onna ise
-e et
-bron te
-pass ages
-ðŁij §
-strick land
-northern lights
-lom ond
-h tc
-wr ay
-shi fter
-di alog
-ðŁį į
->> >>>>
-te atime
-ste ch
-sic huan
-qu ill
-fran ca
-comple mentary
-bar rington
-marcu s
-mal am
-goo oo
-for sa
-elec tra
-af s
-âĹ Ĩ
-tri fe
-sn azzy
-fo lia
-and olan
-after dark
-wood son
-stra de
-litt lest
-o gun
-con wy
-co wards
-ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤðŁĺĤ
-íĬ ¸
-se ul
-mur phy
-dun ks
-kapil shar
-jo achim
-wom ack
-equal ity
-aver ages
-a ine
-ðŁ¦ Ī
-tac ular
-dis ability
-u ked
-mid century
-bar thol
-teas ers
-tab ern
-nj caa
-sp out
-op i
-ku bball
-bl om
-so ar
-popu lism
-meth yl
-ðŁijĬ ðŁı¼
-o spre
-alo ils
-ðŁĵ ĸ
-ðŁĮ ļ
-x er
-sp illing
-publ ica
-car dam
-adi sh
-sa cha
-p kg
-bu da
-lyric ist
-i bc
-gru mp
-ho ver
-hal ep
-anti body
-anem one
-âĻ¥âĻ¥ âĻ¥âĻ¥
-m cl
-litho graph
-cc u
-s fest
-path ic
-calli ster
-otta wa
-gun sn
-rut ger
-hali but
-en vision
-differenti ate
-ðŁļĢ ðŁļĢ
-pir an
-lat el
-uc n
-trou bad
-ra ine
-fierc ely
-learn english
-lea se
-wex mondays
-em it
-dray ton
-bur rell
-scuba diving
-hol ler
-dr u
-clo cked
-w ral
-ap ro
-trans lucent
-w bo
-patri arch
-mo ja
-lan nister
-fish ery
-ne derland
-mil dly
-mi rai
-ma ko
-ja p
-ðŁĺ©ðŁĺ© ðŁĺ©
-pro statec
-p anna
-ar ama
-under taking
-tomp kins
-ne op
-soli ds
-sav oury
-e ames
-cut lery
-wood bridge
-steam er
-ri zzo
-wild cat
-rat na
-lamin ated
-kin eni
-jal ap
-ai des
-acknowle dges
-?! ?!?!
-! ðŁİī
-w afc
-mag gio
-ha ves
-dar je
-of i
-gr il
-v asi
-bru x
-mo hd
-fake speare
-arn old
-r mb
-for be
-wal leye
-ro di
-therapeu tics
-strate gi
-ob ste
-mu dder
-download able
-dd ings
-d ca
-asi angames
-campe on
-appropri ation
-th century
-ram atta
-dra ped
-bul lion
-mu c
-one x
-se greg
-ophel ia
-bod ily
-âĿ¤ ðŁĺį
-wi zar
-te ased
-ade my
-to id
-sur a
-lazar us
-sn ickers
-ma se
-lo h
-bow ed
-bibli o
-x change
-har lan
-gho shal
-flavor ful
-bha gat
-alle z
-whiche ver
-ten stein
-disc er
-organ iser
-mt g
-dream liner
-t se
-hok kaido
-mo k
-indulg ent
-hick man
-blin ded
-al yn
-aaa ah
-sp ool
-lough borough
-inter pret
-et v
-aristo tle
-optimi zing
-avici i
-madu rai
-ju li
-naw az
-mat chups
-ab ide
-paint ing
-w elling
-vel i
-octag on
-in scribed
-po king
-plac er
-life cycle
-kili g
-g sp
-eli ves
-cle ments
-na sheed
-me sut
-incarcer ated
-dist illed
-wal ang
-delic acy
-del gado
-che z
-ch ita
-ad ero
-tu x
-pati l
-o do
-abh cosmetics
-tv c
-p bc
-in accurate
-hardwork paysoff
-ball er
-quot ation
-merchandi sing
-ga stri
-defen ses
-dro gba
-bex hill
-ban kno
-win ona
-si eg
-p gs
-hahah ha
-agu chi
-su bram
-mirac le
-de sch
-li bre
-ba cher
-ent ine
-bbcra di
-lou dest
-r ps
-pi erc
-fr yer
-storm trooper
-rafael nadal
-pas co
-exhau stion
-epic onetsy
-rc tid
-kel lie
-ga ines
-d bz
-sm riti
-s bridge
-lim ited
-cla w
-technic al
-bio graphical
-ado red
-ภ°
-exclu de
-ac adia
-key boards
-fur man
-so ca
-sur u
-ni ps
-sw aps
-server less
-run e
-pu ffy
-north ampton
-nish ings
-hen der
-cartri dges
-gun shot
-ðŁĵ ¹
-fil ament
-respon dents
-pey ton
-mountaine er
-mer ging
-life span
-intimid ation
-p afc
-nl wx
-expan sive
-pur r
-f ck
-ca e
-at ti
-tele thon
-so hn
-mend el
-lo pes
-dor i
-un broken
-te red
-tast ings
-in active
-disin tegr
-t assel
-share the
-pi ano
-is lay
-air space
-z awa
-ricci ardo
-ming ton
-fresh er
-cur ry
-re vs
-pharo ah
-h mv
-exhilar ating
-wh oo
-lin kin
-kri spy
-competen cy
-ste wards
-ne bu
-kat su
-ad mins
-baz ar
-as ar
-giving back
-s summit
-song z
-lin us
-raj kumar
-farm ington
-fanta sia
-ðŁĺ´ ðŁĺ´
-so bri
-lis se
-barry more
-pri sm
-blo b
-sen ew
-mono xide
-exp ire
-eigh teen
-di pper
-xi ao
-kil t
-hin ch
-bbc sport
-bam boo
-p ter
-ex al
-ðŁ¦ ĭ
-ham lin
-expe ditions
-star gazing
-food security
-wy lie
-ul f
-st ingly
-on storm
-lo eb
-bro ome
-bn ha
-pancre atic
-eli ve
-!!!!!!!! !!!
-ther apper
-ortho pedic
-avengers endgame
-antit rust
-ìļ °
-go te
-om d
-off side
-gy llen
-win eries
-white water
-ad l
-lu pita
-exce eds
-consi sted
-chew bacca
-ash leigh
-nhl jets
-is san
-sh ld
-hay at
-cran berries
-ðŁ¤ĺ ðŁı½
-rock the
-spring training
-fall out
-dairy free
-wa j
-un decided
-so wn
-rc n
-north wales
-htt r
-fu mble
-d its
-comp elled
-popu list
-min ted
-blan chett
-. ''
-pro pulsion
-m illa
-au berg
-her tz
-h ta
-u daipur
-serendip ity
-azte cs
-als ace
-ðŁIJ ij
-lu n
-sho es
-char li
-gar za
-ðŁĴ Ł
-pro biotics
-fox tv
-ol is
-mi ff
-loc alized
-diffu ser
-si gue
-fun ko
-rend ous
-ðŁĴ ij
-jeky ll
diff --git a/MagicQuill/comfy/sd1_tokenizer/special_tokens_map.json b/MagicQuill/comfy/sd1_tokenizer/special_tokens_map.json
deleted file mode 100644
index 2c2130b544c0c5a72d5d00da071ba130a9800fb2..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/sd1_tokenizer/special_tokens_map.json
+++ /dev/null
@@ -1,24 +0,0 @@
-{
- "bos_token": {
- "content": "<|startoftext|>",
- "lstrip": false,
- "normalized": true,
- "rstrip": false,
- "single_word": false
- },
- "eos_token": {
- "content": "<|endoftext|>",
- "lstrip": false,
- "normalized": true,
- "rstrip": false,
- "single_word": false
- },
- "pad_token": "<|endoftext|>",
- "unk_token": {
- "content": "<|endoftext|>",
- "lstrip": false,
- "normalized": true,
- "rstrip": false,
- "single_word": false
- }
-}
diff --git a/MagicQuill/comfy/sd1_tokenizer/tokenizer_config.json b/MagicQuill/comfy/sd1_tokenizer/tokenizer_config.json
deleted file mode 100644
index 5ba7bf706515bc60487ad0e1816b4929b82542d6..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/sd1_tokenizer/tokenizer_config.json
+++ /dev/null
@@ -1,34 +0,0 @@
-{
- "add_prefix_space": false,
- "bos_token": {
- "__type": "AddedToken",
- "content": "<|startoftext|>",
- "lstrip": false,
- "normalized": true,
- "rstrip": false,
- "single_word": false
- },
- "do_lower_case": true,
- "eos_token": {
- "__type": "AddedToken",
- "content": "<|endoftext|>",
- "lstrip": false,
- "normalized": true,
- "rstrip": false,
- "single_word": false
- },
- "errors": "replace",
- "model_max_length": 77,
- "name_or_path": "openai/clip-vit-large-patch14",
- "pad_token": "<|endoftext|>",
- "special_tokens_map_file": "./special_tokens_map.json",
- "tokenizer_class": "CLIPTokenizer",
- "unk_token": {
- "__type": "AddedToken",
- "content": "<|endoftext|>",
- "lstrip": false,
- "normalized": true,
- "rstrip": false,
- "single_word": false
- }
-}
diff --git a/MagicQuill/comfy/sd1_tokenizer/vocab.json b/MagicQuill/comfy/sd1_tokenizer/vocab.json
deleted file mode 100644
index 469be27c5c010538f845f518c4f5e8574c78f7c8..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/sd1_tokenizer/vocab.json
+++ /dev/null
@@ -1,49410 +0,0 @@
-{
- "!": 0,
- "!!": 1443,
- "!!!": 11194,
- "!!!!": 4003,
- "!!!!!!!!": 11281,
- "!!!!!!!!!!!!!!!!": 30146,
- "!!!!!!!!!!!": 49339,
- "!!!!!!!!!!": 35579,
- "!!!!!!!!!": 28560,
- "!!!!!!!!": 21622,
- "!!!!!!!": 15203,
- "!!!!!!": 9168,
- "!!!!!": 5203,
- "!!!!": 2360,
- "!!!\"": 28048,
- "!!!)": 42532,
- "!!!": 995,
- "!!\"": 20556,
- "!!#": 34997,
- "!!)": 28352,
- "!!": 748,
- "!!@": 40705,
- "!\"": 2947,
- "!\"@": 43819,
- "!#": 9670,
- "!'": 13222,
- "!),": 37904,
- "!).": 26225,
- "!)": 4571,
- "!*": 37737,
- "!,": 29325,
- "!-": 43499,
- "!...": 22121,
- "!..": 35475,
- "!.": 22517,
- "!:)": 31671,
- "!:": 17545,
- "!": 256,
- "!?!": 29767,
- "!?!?": 47081,
- "!?": 6004,
- "!@": 15117,
- "!]": 34466,
- "!âĢ¦": 35068,
- "!âĿ¤ï¸ı": 32559,
- "!ðŁİī": 49085,
- "!ðŁĺĬ": 43434,
- "!ðŁĺį": 36438,
- "\"": 1,
- "\"!": 10377,
- "\"\"": 41530,
- "\"\"\"": 25539,
- "\"\"": 8575,
- "\"#": 8345,
- "\"'": 31065,
- "\"(": 32741,
- "\")": 13112,
- "\",": 4332,
- "\"-": 9375,
- "\"....": 37785,
- "\"...": 9049,
- "\"..": 25403,
- "\".": 2811,
- "\"/": 39486,
- "\":": 7811,
- "\";": 37549,
- "\"": 257,
- "\"?": 11727,
- "\"@": 1512,
- "\"@_": 20236,
- "\"[": 36930,
- "\"âĢ¦": 33993,
- "\"âĢĶ": 41151,
- "#": 2,
- "##": 15483,
- "#...": 31491,
- "#:": 30144,
- "#": 258,
- "#@": 35062,
- "#âĢ¦": 12834,
- "#âĢİ": 34262,
- "$": 3,
- "$$": 24233,
- "$$$": 31859,
- "$$": 14929,
- "$)": 39460,
- "$.": 34682,
- "$": 259,
- "%": 4,
- "%!": 35070,
- "%),": 37819,
- "%)": 16063,
- "%,": 14505,
- "%-": 48784,
- "%.": 12475,
- "%;": 33379,
- "%": 260,
- "&": 5,
- "&&": 27791,
- "&": 261,
- "'": 6,
- "'!": 13781,
- "'\"": 19479,
- "'#": 15319,
- "''": 46594,
- "''": 8445,
- "')": 19175,
- "',": 5662,
- "'-": 26152,
- "'...": 20474,
- "'.": 4645,
- "':": 7182,
- "';": 44517,
- "'": 262,
- "'?": 17242,
- "'@": 26397,
- "'d": 1896,
- "'ll": 1342,
- "'m": 880,
- "'re": 982,
- "'s": 568,
- "'t": 713,
- "'ve": 1200,
- "'âĢ¦": 42120,
- "(": 7,
- "(!)": 30253,
- "(\"": 18741,
- "(#": 6229,
- "($)": 46597,
- "($": 15186,
- "(&": 15042,
- "('": 18235,
- "((": 22944,
- "(((": 33287,
- "((": 13796,
- "().": 41737,
- "()": 8475,
- "(*": 48004,
- "(*": 39575,
- "(+": 12903,
- "(-": 20228,
- "(...": 45159,
- "(.": 43055,
- "(:": 8528,
- "(;": 23983,
- "(": 263,
- "(?)": 22885,
- "(@": 2181,
- "(£": 33987,
- "(©": 44886,
- "(ðŁĵ·:": 34610,
- "(ðŁĵ·": 37999,
- "(ðŁĵ¸:": 44422,
- "(ðŁĵ¸": 45204,
- ")": 8,
- ")!!": 47518,
- ")!": 7805,
- ")\"": 13046,
- ")#": 39981,
- ")'": 23613,
- ")(": 27956,
- "))": 13720,
- "))))": 42911,
- "))))": 34181,
- ")))": 18305,
- "))": 5167,
- "),": 2361,
- ")-": 19034,
- ")...": 15274,
- ")..": 41822,
- ").": 1818,
- ")/": 26616,
- "):": 4143,
- ");": 19686,
- ")": 264,
- ")?": 18765,
- ")@": 41928,
- ")_/": 45028,
- ")_/¯": 45781,
- ")âĢ¦": 41844,
- "*": 9,
- "*)": 30956,
- "**": 9825,
- "****": 21326,
- "********": 42974,
- "*****": 43571,
- "****": 25167,
- "***": 7829,
- "**": 4441,
- "*,": 41895,
- "*-*": 23568,
- "*.": 31304,
- "*": 265,
- "*_*": 44535,
- "+": 10,
- "+)": 34810,
- "++": 47298,
- "+++": 35986,
- "++": 19056,
- "+,": 35885,
- "+.": 25238,
- "+/-": 47614,
- "+": 266,
- ",": 11,
- ",\"": 3823,
- ",#": 11215,
- ",&": 26905,
- ",'": 10599,
- ",)": 44493,
- ",,": 21340,
- ",,,,": 33225,
- ",,,": 14811,
- ",,": 8844,
- ",-": 29821,
- ",...": 20365,
- ",.": 41277,
- ",": 267,
- ",@": 13975,
- ",âĢ¦": 14601,
- "-": 12,
- "-\"": 18646,
- "-#": 10151,
- "-$": 24946,
- "-'": 28010,
- "-(": 33345,
- "-)": 3535,
- "-*": 21527,
- "--": 2154,
- "----": 5753,
- "--------": 11772,
- "----------------": 23122,
- "----": 30164,
- "---->": 35999,
- "---": 11079,
- "--->": 14518,
- "--": 2432,
- "-->": 6422,
- "-->>": 47252,
- "-.-": 32765,
- "-...": 43147,
- "-.": 44040,
- "-": 268,
- "->": 5081,
- "-@": 10087,
- "-_-": 27227,
- "-__": 42718,
- "-âĢ¦": 30047,
- ".": 13,
- ".!!": 37805,
- ".!": 14030,
- ".\"": 18650,
- ".\"-": 21234,
- ".\"": 1081,
- ".\"âĢĶ": 48703,
- ".#": 5014,
- ".'\"": 41558,
- ".''": 49379,
- ".'": 5938,
- ".(": 22294,
- ".)": 5376,
- ".*": 26145,
- ".,": 5276,
- ".-": 12481,
- "..": 608,
- "..!!": 23707,
- "..!": 17994,
- "..\"": 15229,
- "..#": 15735,
- "..,": 47143,
- "...": 3002,
- "...!!!": 38351,
- "...!!": 39915,
- "...!": 16860,
- "...\"": 5240,
- "...#": 8195,
- "...&": 44979,
- "...'": 23167,
- "...(": 37981,
- "...)": 14040,
- "...,": 42717,
- "....": 2386,
- "....\"": 26689,
- "....#": 20346,
- ".....": 34151,
- ".....#": 38867,
- "........": 8246,
- "................": 24855,
- "............": 42965,
- "...........": 35008,
- "..........": 25526,
- ".........": 19881,
- "........": 14720,
- ".......": 9917,
- "......": 5590,
- ".....": 3104,
- "....": 1390,
- "....@": 29790,
- "...:": 34570,
- "...": 678,
- "...?": 16388,
- "...@": 12672,
- "..": 852,
- "..?": 23875,
- "..@": 21124,
- "./": 31975,
- ".:": 15811,
- ".;": 47596,
- ".": 269,
- ".<": 29442,
- ".?": 29294,
- ".@": 1230,
- ".]": 33511,
- ".~": 42651,
- ".âĢ¦": 18047,
- ".âĿ¤ï¸ı": 39085,
- ".âłĢ": 30097,
- ".ðŁĺĤ": 46580,
- "/": 14,
- "/#": 13217,
- "/$": 36266,
- "/-": 19811,
- "/.": 39382,
- "//": 15348,
- "////": 46271,
- "///": 22734,
- "//": 3502,
- "/": 270,
- "/@": 8216,
- "0": 15,
- "0": 271,
- "1": 16,
- "1": 272,
- "2": 17,
- "2": 273,
- "3": 18,
- "3": 274,
- "4": 19,
- "4": 275,
- "5": 20,
- "5": 276,
- "6": 21,
- "6": 277,
- "7": 22,
- "7": 278,
- "8": 23,
- "8": 279,
- "9": 24,
- "9": 280,
- ":": 25,
- ":\"": 29498,
- ":\")": 46432,
- ":\"": 12089,
- ":#": 26625,
- ":$": 33769,
- ":'": 8017,
- ":'(": 21250,
- ":')": 10701,
- ":'": 23851,
- ":((": 42496,
- ":(": 5965,
- ":)": 11070,
- ":))))": 42339,
- ":)))": 21840,
- ":))": 10164,
- ":).": 39010,
- ":)": 1408,
- ":*": 12617,
- ":-": 13021,
- ":-(": 25137,
- ":-)": 4223,
- ":-": 10323,
- ":...": 42140,
- "://": 12441,
- ":/": 13604,
- "::": 33077,
- ":::": 43818,
- "::": 9788,
- ":": 281,
- ":>": 39677,
- ":@": 14339,
- ":]": 43486,
- ":|": 45986,
- ":âĢ¦": 22365,
- ";": 26,
- ";))": 41873,
- ";)": 3661,
- ";-": 35657,
- ";-)": 10475,
- ";;": 34824,
- ";;": 24492,
- ";": 282,
- "<": 27,
- "<-": 47280,
- "": 34308,
- "<<": 24588,
- "<": 283,
- "<<": 16482,
- "<<<": 35054,
- "<|endoftext|>": 49407,
- "<|startoftext|>": 49406,
- "=": 28,
- "=))": 39587,
- "=)": 17840,
- "=": 284,
- "==": 11748,
- "====": 21734,
- "========": 38952,
- "==>": 29688,
- "=>": 9714,
- ">": 29,
- ">.<": 38507,
- ">:": 36196,
- ">": 285,
- "><": 28015,
- ">>": 8270,
- ">>": 2988,
- ">>>": 6395,
- ">>>>": 18461,
- ">>>>": 18435,
- ">>>>>": 32972,
- ">>>>>>": 48947,
- ">>>>>>>>": 41947,
- ">_": 44144,
- "?": 30,
- "?!": 9785,
- "?!!": 25342,
- "?!\"": 29315,
- "?!": 2835,
- "?!?!": 16349,
- "?!?!?!": 49084,
- "?!?!?": 37619,
- "?!?": 11395,
- "?\"": 3283,
- "?#": 24018,
- "?'": 13610,
- "?)": 9626,
- "?,": 41628,
- "?...": 22641,
- "?..": 43905,
- "?.": 41251,
- "?:": 21067,
- "?": 286,
- "??": 5195,
- "??!!": 43219,
- "??!": 37341,
- "??\"": 44996,
- "??": 2197,
- "???": 40017,
- "???": 3824,
- "????": 15936,
- "????": 10362,
- "?????": 21370,
- "??????": 34589,
- "????????": 45091,
- "?@": 29258,
- "?ðŁ¤Ķ": 47928,
- "@": 31,
- "@#": 39397,
- "@.": 43730,
- "@/": 28639,
- "@": 287,
- "@@": 30314,
- "@_": 2692,
- "@__": 17042,
- "@___": 48308,
- "A": 32,
- "A": 288,
- "B": 33,
- "B": 289,
- "C": 34,
- "C": 290,
- "D": 35,
- "D": 291,
- "E": 36,
- "E": 292,
- "F": 37,
- "F": 293,
- "G": 38,
- "G": 294,
- "H": 39,
- "H": 295,
- "I": 40,
- "I": 296,
- "J": 41,
- "J": 297,
- "K": 42,
- "K": 298,
- "L": 43,
- "L": 299,
- "M": 44,
- "M": 300,
- "N": 45,
- "N": 301,
- "O": 46,
- "O": 302,
- "P": 47,
- "P": 303,
- "Q": 48,
- "Q": 304,
- "R": 49,
- "R": 305,
- "S": 50,
- "S": 306,
- "T": 51,
- "T": 307,
- "U": 52,
- "U": 308,
- "V": 53,
- "V": 309,
- "W": 54,
- "W": 310,
- "X": 55,
- "X": 311,
- "Y": 56,
- "Y": 312,
- "Z": 57,
- "Z": 313,
- "[": 58,
- "[#": 11115,
- "[...": 39975,
- "[...]": 43790,
- "[": 314,
- "[@": 15148,
- "[]": 22240,
- "\\": 59,
- "\\'": 41239,
- "\\": 315,
- "]": 60,
- "]\"": 39434,
- "],": 34067,
- "].": 26262,
- "]:": 21641,
- "]": 316,
- "][#": 39009,
- "][": 29329,
- "^": 61,
- "^)": 30720,
- "^-": 43516,
- "^.": 31552,
- "^.^": 35791,
- "^": 317,
- "^^": 34454,
- "^^": 9064,
- "^_": 14423,
- "^_^": 15995,
- "_": 62,
- "_'": 44701,
- "_(": 36951,
- "_)": 37393,
- "_*": 36237,
- "_,": 31417,
- "_-": 23193,
- "_.": 26841,
- "_/": 37647,
- "_:": 13109,
- "_": 318,
- "__": 2355,
- "__:": 47043,
- "__": 3838,
- "___": 43812,
- "___": 13530,
- "____": 4727,
- "____": 25350,
- "_____": 38803,
- "________": 9549,
- "________________": 20115,
- "`": 63,
- "`": 319,
- "a": 64,
- "a": 320,
- "aa": 1821,
- "aa": 3894,
- "aaa": 14376,
- "aaa": 9583,
- "aaaa": 6727,
- "aaaa": 19336,
- "aaaaa": 31095,
- "aaaaaa": 44413,
- "aaaaaaaa": 23126,
- "aaaah": 49151,
- "aaah": 35856,
- "aaay": 37846,
- "aab": 34108,
- "aac": 23251,
- "aac": 11346,
- "aad": 20464,
- "aad": 35894,
- "aaf": 37638,
- "aaf": 31534,
- "aag": 42174,
- "aah": 28990,
- "aaj": 28727,
- "aaj": 43411,
- "aak": 37739,
- "aal": 22268,
- "aal": 30208,
- "aali": 27896,
- "aaliyah": 46577,
- "aam": 12943,
- "aam": 22775,
- "aama": 45018,
- "aamaadmi": 45563,
- "aamaadmiparty": 46406,
- "aamir": 27456,
- "aan": 20705,
- "aan": 13426,
- "aand": 38054,
- "aap": 12023,
- "aap": 12052,
- "aapl": 34516,
- "aar": 4695,
- "aar": 13234,
- "aard": 46932,
- "aaron": 13948,
- "aaron": 7709,
- "aas": 28542,
- "aas": 32205,
- "aat": 34018,
- "aat": 35004,
- "aau": 35426,
- "aay": 38281,
- "aay": 40249,
- "aaz": 26770,
- "ab": 596,
- "ab": 3937,
- "aba": 44204,
- "aba": 11102,
- "abad": 33444,
- "abad": 7155,
- "aban": 41662,
- "aband": 8595,
- "abandon": 28805,
- "abandoned": 11227,
- "abar": 17860,
- "abar": 39805,
- "abas": 25402,
- "abay": 43542,
- "abb": 38954,
- "abb": 38297,
- "abba": 30870,
- "abbas": 37494,
- "abbas": 24412,
- "abbey": 31927,
- "abbey": 10132,
- "abbie": 39949,
- "abbo": 13536,
- "abbot": 44046,
- "abbott": 43737,
- "abbott": 15649,
- "abbrevi": 44843,
- "abby": 30586,
- "abby": 14694,
- "abc": 13137,
- "abc": 5334,
- "abcnews": 31566,
- "abd": 44093,
- "abdel": 46511,
- "abdomin": 35335,
- "abdominal": 39328,
- "abdu": 13361,
- "abduc": 17884,
- "abducted": 31520,
- "abduction": 36984,
- "abdul": 14227,
- "abdul": 15593,
- "abdullah": 21317,
- "abe": 15856,
- "abe": 12734,
- "abee": 36037,
- "abel": 31938,
- "abel": 25318,
- "abella": 46156,
- "aben": 40865,
- "aber": 7828,
- "aber": 41867,
- "aberdeen": 30539,
- "aberdeen": 17236,
- "abh": 27484,
- "abh": 33649,
- "abhcosmetics": 49189,
- "abhi": 18113,
- "abhin": 44045,
- "abhishek": 44502,
- "abi": 16867,
- "abi": 14161,
- "abia": 48604,
- "abide": 49163,
- "abig": 20863,
- "abigail": 25686,
- "abil": 21135,
- "abilities": 8724,
- "ability": 35146,
- "ability": 3024,
- "abit": 48668,
- "ablanc": 33716,
- "able": 10102,
- "able": 863,
- "abled": 10655,
- "ableg": 24055,
- "ables": 8486,
- "ableton": 47169,
- "ably": 6748,
- "abnormal": 40934,
- "abo": 2889,
- "abo": 21861,
- "aboard": 11661,
- "abol": 31768,
- "abolic": 46827,
- "abolish": 47403,
- "aboo": 42433,
- "abor": 8416,
- "aboriginal": 20422,
- "abortion": 12336,
- "abortions": 43218,
- "aboss": 46401,
- "abou": 36455,
- "abou": 44053,
- "abound": 41037,
- "abour": 46637,
- "about": 20204,
- "about": 781,
- "abouts": 36339,
- "above": 35019,
- "above": 4348,
- "aboy": 37077,
- "abpoli": 44779,
- "abq": 38767,
- "abr": 44932,
- "abra": 10694,
- "abra": 35087,
- "abraham": 40623,
- "abraham": 15869,
- "abram": 33255,
- "abrams": 29852,
- "abre": 22472,
- "abre": 46756,
- "abri": 28605,
- "abridged": 45333,
- "abroad": 11253,
- "abru": 46295,
- "abs": 18431,
- "abs": 11109,
- "absc": 25389,
- "abscbn": 44260,
- "abscbn": 45810,
- "absen": 32453,
- "absence": 19240,
- "absent": 30363,
- "absol": 4624,
- "absolu": 7055,
- "absolut": 4666,
- "absolute": 7501,
- "absolutely": 4703,
- "absor": 14303,
- "absorb": 35806,
- "absorbed": 45059,
- "absorbing": 46412,
- "absorption": 42210,
- "abstr": 7530,
- "abstract": 23885,
- "abstract": 10197,
- "abstractart": 31170,
- "abstraction": 47696,
- "abstracts": 40065,
- "absur": 21639,
- "absurd": 29757,
- "abt": 9850,
- "abu": 9167,
- "abu": 11787,
- "abud": 20180,
- "abudha": 21450,
- "abudhabi": 25256,
- "abuja": 23371,
- "abun": 20544,
- "abundance": 23236,
- "abundant": 31611,
- "abur": 23377,
- "aburger": 46660,
- "abuse": 7678,
- "abused": 23855,
- "abuses": 37132,
- "abusing": 36558,
- "abusive": 26858,
- "abv": 34172,
- "aby": 16342,
- "aby": 31378,
- "abyss": 33632,
- "abz": 42292,
- "ac": 546,
- "ac": 2816,
- "aca": 9213,
- "acab": 41388,
- "acacia": 44047,
- "acad": 32537,
- "acade": 2892,
- "academia": 22662,
- "academic": 31178,
- "academic": 7935,
- "academics": 26417,
- "academies": 42569,
- "academy": 29968,
- "academy": 4041,
- "acadi": 41455,
- "acadia": 49236,
- "acam": 26172,
- "acan": 42227,
- "acan": 26318,
- "acap": 32357,
- "acar": 22232,
- "acare": 16961,
- "acc": 26805,
- "acc": 9318,
- "acca": 30883,
- "acce": 8564,
- "acceler": 10161,
- "accelerate": 23619,
- "accelerated": 38513,
- "accelerating": 41821,
- "acceleration": 39387,
- "accelerator": 25261,
- "accent": 28110,
- "accent": 18931,
- "accents": 31738,
- "accenture": 41853,
- "accep": 4616,
- "accept": 16447,
- "accept": 9338,
- "acceptable": 14209,
- "acceptance": 17090,
- "accepted": 9159,
- "accepting": 12855,
- "accepts": 22338,
- "access": 7596,
- "access": 3822,
- "accessi": 10787,
- "accessibility": 23407,
- "accessible": 13977,
- "accessing": 46339,
- "accessories": 10220,
- "accessory": 20417,
- "acci": 4263,
- "acci": 33943,
- "accident": 6608,
- "accidental": 24895,
- "accidentally": 11061,
- "accidents": 22072,
- "acclaimed": 21172,
- "acco": 44730,
- "accol": 33858,
- "accolades": 46731,
- "accom": 23658,
- "accommo": 34495,
- "accommod": 14386,
- "accommodate": 34708,
- "accommodation": 18066,
- "accommodations": 45536,
- "accomp": 24985,
- "accompan": 14746,
- "accompanied": 20715,
- "accompany": 34142,
- "accompanying": 38179,
- "accompli": 10205,
- "accomplish": 25542,
- "accomplished": 16462,
- "accomplishment": 26100,
- "accomplishments": 24965,
- "accor": 4182,
- "accord": 34293,
- "accord": 28513,
- "according": 4717,
- "accordingly": 35535,
- "accordion": 48760,
- "accoun": 3081,
- "account": 18424,
- "account": 4684,
- "accountability": 19377,
- "accountable": 24216,
- "accountant": 31026,
- "accountants": 37222,
- "accounted": 43951,
- "accounting": 14805,
- "accounts": 9974,
- "accra": 31900,
- "accred": 17451,
- "accreditation": 27015,
- "accredited": 27647,
- "acct": 45569,
- "accu": 5618,
- "accumul": 19275,
- "accumulation": 37112,
- "accur": 6551,
- "accuracy": 18423,
- "accurate": 8858,
- "accurately": 24206,
- "accusations": 33615,
- "accuse": 39414,
- "accused": 9434,
- "accuses": 27496,
- "accusing": 41474,
- "acdc": 45067,
- "ace": 2675,
- "ace": 804,
- "acea": 35219,
- "aceae": 38153,
- "acele": 40868,
- "aceous": 33610,
- "acer": 37990,
- "acer": 25809,
- "aces": 5725,
- "acet": 28735,
- "acf": 38389,
- "ach": 972,
- "ach": 987,
- "acha": 22686,
- "acharya": 45780,
- "achat": 32706,
- "ache": 27771,
- "ache": 7214,
- "ached": 17048,
- "acher": 38442,
- "acher": 17936,
- "achers": 25051,
- "aches": 14823,
- "achi": 3264,
- "achi": 9087,
- "achiev": 8160,
- "achieve": 14798,
- "achieve": 8175,
- "achieved": 12359,
- "achievement": 8245,
- "achievements": 16114,
- "achiever": 46286,
- "achievers": 44544,
- "achieves": 40123,
- "achieving": 16120,
- "achilles": 33327,
- "achim": 42335,
- "aching": 12864,
- "acho": 33130,
- "achs": 41195,
- "aci": 4359,
- "aci": 34100,
- "acia": 30163,
- "acial": 32422,
- "acid": 35474,
- "acid": 10085,
- "acidity": 48800,
- "acids": 27751,
- "acies": 20162,
- "acin": 39442,
- "acing": 9442,
- "acio": 26202,
- "acion": 44965,
- "acion": 24968,
- "acional": 26435,
- "aciones": 35832,
- "acious": 16020,
- "acity": 7511,
- "ación": 38175,
- "ack": 877,
- "ack": 725,
- "acked": 5698,
- "acker": 31201,
- "acker": 7940,
- "ackeray": 41843,
- "acki": 42857,
- "acking": 5515,
- "ackles": 28503,
- "acknow": 13563,
- "acknowle": 18100,
- "acknowledge": 25209,
- "acknowledged": 35913,
- "acknowledges": 49083,
- "acknowledging": 45645,
- "acks": 3858,
- "acl": 47593,
- "acl": 23073,
- "acle": 6504,
- "acles": 34164,
- "aclu": 37354,
- "acm": 39317,
- "acmilan": 36500,
- "acne": 24195,
- "aco": 9463,
- "aco": 8800,
- "acol": 17431,
- "acollege": 43468,
- "acom": 17224,
- "acom": 22342,
- "acon": 11621,
- "acon": 11571,
- "aconf": 38851,
- "acons": 31599,
- "acor": 22076,
- "acorn": 37537,
- "acos": 39943,
- "acosta": 31994,
- "acou": 8794,
- "acoun": 31295,
- "acounty": 45449,
- "acoustic": 10616,
- "acoustics": 43873,
- "acp": 19627,
- "acqu": 7946,
- "acquainted": 40713,
- "acqui": 12194,
- "acquire": 21576,
- "acquired": 15932,
- "acquires": 27376,
- "acquiring": 42785,
- "acquis": 14207,
- "acquisition": 16543,
- "acquisitions": 39649,
- "acr": 43648,
- "acre": 26749,
- "acre": 9493,
- "acres": 11630,
- "acro": 21060,
- "acrob": 40891,
- "acron": 37770,
- "across": 2500,
- "acrosse": 40979,
- "acruz": 40455,
- "acry": 10440,
- "acrylic": 12252,
- "acs": 11782,
- "act": 10305,
- "act": 1393,
- "acted": 10971,
- "acti": 4786,
- "acting": 6319,
- "action": 12493,
- "action": 1816,
- "actions": 6271,
- "activ": 3430,
- "activate": 26737,
- "activated": 22249,
- "activation": 26769,
- "active": 19009,
- "active": 4046,
- "actively": 18645,
- "activi": 7230,
- "activism": 20117,
- "activist": 10850,
- "activists": 12649,
- "activities": 6514,
- "activity": 6206,
- "actment": 44807,
- "acton": 36167,
- "acton": 36697,
- "actonclimate": 43797,
- "actor": 12181,
- "actor": 4035,
- "actors": 9255,
- "actorslife": 25117,
- "actorvijay": 34033,
- "actress": 5805,
- "actresses": 33639,
- "acts": 6816,
- "actu": 2375,
- "actual": 7488,
- "actually": 2955,
- "acu": 9204,
- "acu": 48475,
- "aculture": 38145,
- "acup": 30869,
- "acup": 27278,
- "acupuncture": 40043,
- "acur": 44719,
- "acura": 30120,
- "acus": 33710,
- "acute": 19734,
- "acy": 18717,
- "acy": 2356,
- "ad": 594,
- "ad": 680,
- "ada": 25785,
- "ada": 1886,
- "adaily": 47254,
- "adal": 46646,
- "adam": 6037,
- "adam": 4944,
- "adamlambert": 27659,
- "adams": 7942,
- "adan": 41802,
- "adani": 37499,
- "adap": 6341,
- "adapt": 22666,
- "adaptation": 16566,
- "adapted": 26657,
- "adapter": 21839,
- "adapting": 44120,
- "adaptive": 28672,
- "adar": 27702,
- "adar": 32681,
- "adas": 23250,
- "adata": 39500,
- "aday": 31367,
- "aday": 10280,
- "adays": 24337,
- "adb": 45630,
- "adc": 38201,
- "add": 19408,
- "add": 3536,
- "addams": 38912,
- "added": 4149,
- "adder": 47557,
- "addi": 36378,
- "addic": 5709,
- "addict": 14614,
- "addicted": 16275,
- "addiction": 11751,
- "addictive": 29638,
- "addicts": 29997,
- "adding": 8676,
- "addis": 43911,
- "addison": 32369,
- "additi": 26927,
- "addition": 6698,
- "additional": 10666,
- "additions": 22575,
- "additive": 48546,
- "addo": 40001,
- "address": 5834,
- "addressed": 20817,
- "addresses": 12702,
- "addressing": 10594,
- "adds": 9944,
- "addy": 24746,
- "ade": 2194,
- "ade": 1928,
- "adecides": 46374,
- "aded": 9994,
- "adee": 47054,
- "adel": 4434,
- "adel": 27308,
- "adelaide": 38193,
- "adelaide": 11611,
- "adele": 42843,
- "adele": 21220,
- "adelrey": 43627,
- "ademy": 49123,
- "aden": 28669,
- "aden": 28688,
- "adena": 23648,
- "adequ": 18232,
- "adequate": 22281,
- "ader": 21365,
- "adero": 49185,
- "aders": 27672,
- "ades": 5793,
- "adh": 42301,
- "adhd": 32649,
- "adhe": 21175,
- "adhesive": 38429,
- "adi": 2486,
- "adi": 8779,
- "adia": 26874,
- "adic": 36780,
- "adid": 8086,
- "adidas": 22396,
- "adidas": 9589,
- "adidasoriginals": 48575,
- "adies": 45834,
- "adifference": 37217,
- "adilla": 41167,
- "ading": 15000,
- "adio": 15060,
- "adirond": 36843,
- "adish": 49009,
- "adity": 28596,
- "aditya": 37186,
- "adityanath": 44437,
- "adjac": 32517,
- "adjacent": 33836,
- "adjec": 45512,
- "adju": 16413,
- "adjun": 45995,
- "adjust": 13784,
- "adjust": 28073,
- "adjustable": 20476,
- "adjusted": 30515,
- "adjusting": 41132,
- "adjustment": 36081,
- "adjustments": 36331,
- "adl": 49351,
- "adler": 30222,
- "adm": 9892,
- "adm": 33604,
- "admi": 11666,
- "admin": 12528,
- "admini": 6434,
- "administr": 12174,
- "administration": 9502,
- "administrative": 22424,
- "administrator": 22603,
- "administrators": 36123,
- "admins": 49297,
- "admir": 17031,
- "admiral": 21013,
- "admiration": 39569,
- "admire": 17791,
- "admired": 36103,
- "admirer": 48344,
- "admiring": 29835,
- "admission": 11315,
- "admissions": 22463,
- "admit": 13769,
- "admits": 16332,
- "admitted": 20427,
- "admitting": 46148,
- "adn": 40339,
- "adnan": 42037,
- "ado": 4775,
- "ado": 2933,
- "adobe": 29256,
- "adobe": 16484,
- "adog": 44913,
- "adol": 33512,
- "adole": 22704,
- "adolescent": 36793,
- "adolescents": 45656,
- "adolf": 41179,
- "adon": 25907,
- "adona": 48419,
- "adop": 4183,
- "adopt": 16441,
- "adopt": 11159,
- "adoptable": 36905,
- "adoptdont": 19674,
- "adoptdontshop": 20089,
- "adopted": 12538,
- "adopting": 30158,
- "adoption": 11544,
- "adopts": 40853,
- "ador": 4992,
- "ador": 9162,
- "adora": 40031,
- "adorable": 6298,
- "adoration": 46781,
- "adore": 15502,
- "adored": 49233,
- "adores": 30290,
- "adorned": 44953,
- "ados": 20079,
- "adox": 32188,
- "adp": 44426,
- "adr": 46189,
- "adren": 24204,
- "adrenaline": 35552,
- "adri": 5935,
- "adrian": 25012,
- "adrian": 13163,
- "adriana": 41363,
- "adrid": 26562,
- "adrien": 47469,
- "adrienne": 40081,
- "ads": 2485,
- "adu": 16882,
- "adu": 24446,
- "adukone": 30511,
- "adul": 7222,
- "adult": 42209,
- "adult": 7115,
- "adulthood": 40964,
- "adults": 9391,
- "adv": 1647,
- "adv": 21018,
- "advan": 33411,
- "advance": 27291,
- "advance": 7022,
- "advanced": 7465,
- "advancement": 35437,
- "advances": 15852,
- "advancing": 21355,
- "advani": 48189,
- "advant": 7017,
- "advantage": 8573,
- "advantaged": 38361,
- "advantages": 23506,
- "adven": 41670,
- "advent": 3071,
- "advent": 15199,
- "adventcalendar": 43492,
- "adventur": 29627,
- "adventure": 17251,
- "adventure": 4377,
- "adventurer": 48098,
- "adventures": 7941,
- "adventurous": 31179,
- "adver": 4806,
- "adverse": 30348,
- "adversity": 32516,
- "advert": 19080,
- "adverti": 5682,
- "advertise": 31473,
- "advertised": 38987,
- "advertisement": 18713,
- "advertiser": 41829,
- "advertisers": 45472,
- "advertising": 8158,
- "adverts": 44306,
- "advice": 4973,
- "advis": 4634,
- "advise": 25962,
- "advised": 23196,
- "adviser": 20367,
- "advisers": 40984,
- "advises": 42761,
- "advising": 39648,
- "advisor": 12380,
- "advisors": 23197,
- "advisory": 10224,
- "advoc": 6657,
- "advocacy": 14443,
- "advocate": 12044,
- "advocates": 17757,
- "adwords": 48343,
- "ady": 41446,
- "ady": 8781,
- "ae": 5548,
- "ae": 4542,
- "aea": 37048,
- "aed": 26912,
- "aege": 42304,
- "ael": 41533,
- "ael": 43340,
- "aen": 43085,
- "aer": 10195,
- "aeri": 27685,
- "aerial": 44866,
- "aerial": 12440,
- "aero": 10196,
- "aero": 25026,
- "aerob": 42824,
- "aeron": 37286,
- "aeronau": 42816,
- "aerop": 27735,
- "aerosmith": 43253,
- "aerospace": 20530,
- "aes": 10617,
- "aes": 35677,
- "aest": 40694,
- "aesthe": 21181,
- "aesthetic": 16179,
- "aesthetics": 29295,
- "aew": 47108,
- "af": 702,
- "af": 4391,
- "afa": 24953,
- "afan": 47474,
- "afar": 41637,
- "afar": 37866,
- "afb": 27022,
- "afc": 29742,
- "afc": 6571,
- "afcb": 44276,
- "afcon": 30019,
- "afd": 44626,
- "afe": 30487,
- "afe": 13912,
- "afer": 44707,
- "aff": 8849,
- "aff": 14864,
- "affair": 13998,
- "affairs": 9830,
- "affe": 4556,
- "affect": 11361,
- "affected": 9715,
- "affecting": 18448,
- "affection": 33780,
- "affection": 28381,
- "affectionate": 42578,
- "affects": 17285,
- "affili": 12120,
- "affiliate": 18652,
- "affiliated": 37540,
- "affiliation": 48377,
- "affinity": 41451,
- "affir": 25343,
- "affirm": 42711,
- "affirm": 48625,
- "affirmation": 47495,
- "affl": 34036,
- "affleck": 35584,
- "afford": 7951,
- "afford": 13223,
- "affordability": 44828,
- "affordable": 43944,
- "affordable": 8926,
- "afg": 33994,
- "afgh": 9029,
- "afghan": 15919,
- "afghanistan": 9836,
- "afi": 24074,
- "afi": 31958,
- "afil": 27209,
- "afire": 42010,
- "afirst": 38601,
- "afl": 15132,
- "afl": 14356,
- "aflo": 41959,
- "afm": 38385,
- "afootball": 41694,
- "afor": 43102,
- "afore": 41468,
- "afp": 18311,
- "afraid": 9474,
- "afri": 13888,
- "afric": 2136,
- "africa": 3093,
- "african": 17471,
- "african": 4736,
- "africans": 26534,
- "afridi": 37651,
- "afrika": 45833,
- "afrin": 45586,
- "afro": 16267,
- "afro": 21795,
- "afs": 48960,
- "aft": 22693,
- "after": 2278,
- "after": 953,
- "afterdark": 48966,
- "afterlife": 46790,
- "aftermath": 20958,
- "afterno": 22330,
- "afternoon": 39035,
- "afternoon": 2716,
- "afternoons": 31631,
- "afterparty": 35305,
- "afterwards": 23911,
- "ag": 602,
- "ag": 5241,
- "aga": 1050,
- "aga": 4654,
- "again": 1495,
- "against": 23838,
- "against": 1601,
- "agame": 46943,
- "agan": 42946,
- "agan": 9178,
- "agar": 13199,
- "agar": 17544,
- "agarwal": 43117,
- "agas": 20430,
- "agate": 25454,
- "agatha": 43896,
- "agave": 42671,
- "agawa": 39433,
- "agazine": 44942,
- "age": 4758,
- "age": 805,
- "aged": 3889,
- "ageing": 25349,
- "agen": 10101,
- "agen": 43696,
- "agencies": 13887,
- "agency": 44885,
- "agency": 6270,
- "agend": 48653,
- "agenda": 8728,
- "agent": 21210,
- "agent": 6576,
- "agents": 10199,
- "agentsof": 37074,
- "agentsofshield": 38801,
- "ager": 44847,
- "ager": 10443,
- "agers": 22123,
- "ages": 2321,
- "agg": 45482,
- "aggarwal": 39386,
- "agger": 27836,
- "aggi": 36844,
- "aggie": 44244,
- "aggie": 37618,
- "aggies": 31047,
- "aggio": 36685,
- "aggrav": 35203,
- "aggre": 10426,
- "aggreg": 41968,
- "aggregate": 41318,
- "aggression": 28900,
- "aggressive": 16295,
- "aggressively": 48667,
- "agh": 17917,
- "agh": 14402,
- "aghan": 31276,
- "agi": 24036,
- "agi": 17645,
- "agic": 37652,
- "agile": 16276,
- "agility": 32161,
- "aging": 4336,
- "agio": 41746,
- "agirl": 35469,
- "agle": 37035,
- "agle": 16702,
- "agles": 36374,
- "agles": 22679,
- "aglia": 46912,
- "agm": 19162,
- "agn": 36474,
- "agna": 43626,
- "agne": 29374,
- "agne": 48303,
- "agnes": 26213,
- "agno": 41540,
- "ago": 6276,
- "ago": 1468,
- "agomez": 27127,
- "agon": 26775,
- "agon": 14901,
- "agony": 36977,
- "agor": 38920,
- "agos": 32657,
- "agov": 34227,
- "agp": 46048,
- "agr": 36639,
- "agra": 26660,
- "agra": 29830,
- "agram": 2447,
- "agre": 3180,
- "agreat": 37594,
- "agree": 5953,
- "agreed": 12774,
- "agreeing": 40720,
- "agreement": 8286,
- "agreements": 25865,
- "agrees": 17854,
- "agri": 20527,
- "agri": 30326,
- "agricul": 7234,
- "agricultural": 15440,
- "agriculture": 9720,
- "agro": 33178,
- "agro": 44589,
- "agron": 41314,
- "agroup": 40099,
- "ags": 16926,
- "agt": 39681,
- "agu": 3922,
- "agu": 36544,
- "agua": 18482,
- "aguchi": 49206,
- "ague": 2095,
- "aguero": 42964,
- "agues": 7000,
- "aguil": 27946,
- "aguilar": 44715,
- "ah": 1772,
- "ah": 1288,
- "aha": 12082,
- "aha": 8429,
- "ahah": 38661,
- "ahaha": 32423,
- "ahahaha": 42620,
- "aham": 36036,
- "ahan": 45061,
- "ahan": 19255,
- "ahar": 31038,
- "ahar": 38760,
- "ahe": 27688,
- "ahead": 3158,
- "ahem": 39995,
- "ahh": 13152,
- "ahhh": 14769,
- "ahhhh": 21054,
- "ahhhhh": 36392,
- "ahi": 45349,
- "ahi": 24154,
- "ahl": 30433,
- "ahmad": 32167,
- "ahmad": 16902,
- "ahmadi": 38656,
- "ahmadiyya": 44865,
- "ahmed": 19491,
- "ahmed": 12081,
- "ahmedabad": 26966,
- "ahn": 33405,
- "aho": 28114,
- "aho": 38444,
- "ahora": 43113,
- "ahouse": 33197,
- "ahoy": 38652,
- "ahs": 16937,
- "ahu": 11908,
- "ahu": 16515,
- "ai": 2014,
- "ai": 2215,
- "aia": 27046,
- "aib": 34780,
- "aic": 29454,
- "aid": 13723,
- "aid": 5182,
- "aida": 33830,
- "aidan": 48814,
- "aidan": 26945,
- "aide": 31558,
- "aide": 9746,
- "aided": 48707,
- "aiden": 40020,
- "aides": 49082,
- "aids": 11759,
- "aig": 27295,
- "aig": 46989,
- "aii": 22478,
- "aik": 42575,
- "aiken": 46342,
- "ail": 1457,
- "ail": 9154,
- "ailed": 38919,
- "ailing": 29999,
- "ails": 27024,
- "aim": 6787,
- "aim": 11255,
- "aime": 39872,
- "aimed": 20247,
- "aimee": 36318,
- "aiming": 21768,
- "aimo": 36706,
- "aims": 13326,
- "ain": 8326,
- "ain": 2210,
- "aine": 48983,
- "aine": 17634,
- "ains": 27621,
- "aint": 29543,
- "aint": 13099,
- "ainted": 39933,
- "aioli": 43949,
- "air": 1281,
- "air": 1922,
- "aira": 35085,
- "aira": 46444,
- "airasia": 48020,
- "airbnb": 23098,
- "airborne": 22755,
- "airbus": 15324,
- "aircraft": 7706,
- "airdrop": 38434,
- "aire": 7682,
- "aired": 21938,
- "aires": 17034,
- "airfield": 40525,
- "airforce": 23511,
- "airing": 20453,
- "airline": 14847,
- "airlines": 8929,
- "airmen": 44499,
- "airplane": 16451,
- "airplanes": 33319,
- "airplay": 47024,
- "airpollution": 47362,
- "airport": 48337,
- "airport": 3259,
- "airports": 21543,
- "airs": 18539,
- "airshow": 27139,
- "airsoft": 30134,
- "airspace": 49280,
- "airstrikes": 37220,
- "airtel": 34784,
- "airtime": 46617,
- "airwaves": 43910,
- "airways": 14299,
- "airy": 44453,
- "ais": 7616,
- "ais": 11393,
- "aise": 30505,
- "aish": 21946,
- "aisha": 40211,
- "aishwar": 29687,
- "aishwarya": 44019,
- "aisle": 26917,
- "ait": 25613,
- "ait": 40814,
- "aj": 3990,
- "aj": 6342,
- "aja": 42343,
- "aja": 19633,
- "ajax": 21933,
- "ajay": 22494,
- "ajay": 28726,
- "ajaydevgn": 35515,
- "aje": 48818,
- "aje": 33315,
- "ajes": 38791,
- "aji": 26102,
- "aji": 21153,
- "ajit": 42261,
- "ajith": 24118,
- "ajo": 26958,
- "aju": 36855,
- "ak": 819,
- "ak": 1196,
- "aka": 19154,
- "aka": 3412,
- "akaif": 45736,
- "akan": 43678,
- "akan": 38244,
- "akapoor": 40064,
- "akarta": 48603,
- "akb": 41962,
- "akbar": 27180,
- "ake": 10558,
- "ake": 5776,
- "aked": 6115,
- "aker": 14245,
- "aker": 3074,
- "akers": 5788,
- "akes": 4764,
- "akest": 46679,
- "akh": 14821,
- "akh": 30660,
- "akhan": 28158,
- "akhi": 41660,
- "akhilesh": 48495,
- "akhtar": 45458,
- "aki": 18173,
- "aki": 6592,
- "akin": 24630,
- "akin": 13601,
- "aking": 1809,
- "akins": 48568,
- "akira": 34001,
- "akis": 27732,
- "akistan": 46221,
- "akley": 39908,
- "ako": 44027,
- "ako": 14541,
- "akon": 47105,
- "akos": 44659,
- "akrish": 37434,
- "akron": 26115,
- "aks": 2953,
- "aksh": 28226,
- "akshay": 21483,
- "akshay": 38914,
- "akshaykumar": 23624,
- "akshi": 42634,
- "aku": 18151,
- "aku": 20815,
- "aky": 11977,
- "al": 526,
- "al": 566,
- "ala": 12783,
- "ala": 3449,
- "alab": 6365,
- "alabam": 45880,
- "alabama": 8422,
- "alach": 24622,
- "alad": 23074,
- "aladdin": 29951,
- "alai": 47072,
- "alain": 28999,
- "alam": 16612,
- "alam": 16012,
- "alamo": 41922,
- "alamo": 34632,
- "alan": 9563,
- "alan": 5773,
- "alana": 43405,
- "aland": 34304,
- "aland": 6819,
- "alar": 34333,
- "alarm": 11321,
- "alarming": 37209,
- "alarms": 31236,
- "alarts": 31422,
- "alas": 7276,
- "alas": 22412,
- "alaska": 9562,
- "alaskan": 33898,
- "alastair": 42062,
- "alay": 30289,
- "alay": 36450,
- "alaya": 36397,
- "alb": 45248,
- "alba": 25254,
- "alban": 10882,
- "albania": 29170,
- "albanian": 47721,
- "albans": 44119,
- "albany": 17359,
- "albat": 42797,
- "albeit": 38984,
- "alber": 6413,
- "albert": 34174,
- "albert": 9507,
- "alberta": 11048,
- "alberto": 22714,
- "albi": 18512,
- "albino": 48062,
- "albion": 24071,
- "albu": 2216,
- "album": 40712,
- "album": 2431,
- "albums": 10705,
- "albuquerque": 31079,
- "alcat": 35361,
- "alche": 37909,
- "alchemist": 38913,
- "alchemy": 39501,
- "alco": 6848,
- "alco": 45446,
- "alcohol": 9426,
- "alcoholic": 25098,
- "ald": 4539,
- "ald": 2928,
- "alda": 46440,
- "alde": 33114,
- "alden": 17155,
- "alden": 27710,
- "aldenrichards": 20051,
- "alder": 18220,
- "alder": 46571,
- "aldi": 23204,
- "aldo": 9933,
- "aldridge": 38084,
- "alds": 14285,
- "aldu": 6505,
- "aldub": 10532,
- "aldub": 15247,
- "ale": 1440,
- "ale": 1336,
- "alea": 26518,
- "aleague": 38909,
- "alec": 29804,
- "alec": 19954,
- "alecoscino": 47948,
- "aled": 4970,
- "alee": 24515,
- "alej": 23440,
- "alejandro": 32950,
- "alek": 26906,
- "alek": 43310,
- "aleksand": 48429,
- "alem": 11825,
- "aleppo": 19258,
- "aler": 25674,
- "aler": 27335,
- "alert": 4662,
- "alerts": 22144,
- "ales": 44171,
- "ales": 5962,
- "aless": 21864,
- "alessandro": 37344,
- "alestine": 31945,
- "alex": 2959,
- "alex": 4134,
- "alexa": 16273,
- "alexand": 10696,
- "alexander": 25527,
- "alexander": 7563,
- "alexandra": 19054,
- "alexandre": 35711,
- "alexandria": 21171,
- "alexis": 35023,
- "alexis": 14243,
- "aley": 21635,
- "alf": 27098,
- "alfa": 23482,
- "alfar": 38870,
- "alfie": 28598,
- "alfon": 31947,
- "alfonso": 41784,
- "alfre": 20982,
- "alfred": 16553,
- "alfredo": 32291,
- "algae": 25654,
- "algar": 36291,
- "algarve": 40290,
- "alge": 24336,
- "algebra": 33694,
- "alger": 18568,
- "algeria": 25257,
- "algon": 33007,
- "algori": 14912,
- "algorithm": 23295,
- "algorithms": 26039,
- "alham": 23352,
- "alhamdulil": 35129,
- "alhamdulillah": 38982,
- "ali": 835,
- "ali": 3558,
- "alia": 2492,
- "aliaa": 36468,
- "alian": 3464,
- "alias": 40026,
- "alibaba": 39231,
- "alic": 25265,
- "alice": 23759,
- "alice": 9192,
- "alici": 31630,
- "alicia": 20914,
- "alie": 8697,
- "alien": 22846,
- "alien": 9639,
- "aliens": 14883,
- "alier": 39493,
- "alies": 38086,
- "alife": 41347,
- "alife": 21100,
- "alig": 21272,
- "alight": 36157,
- "align": 31160,
- "aligned": 29292,
- "alignment": 27267,
- "alik": 31141,
- "alike": 12665,
- "alim": 42075,
- "alin": 42746,
- "alin": 40063,
- "alina": 39529,
- "aline": 21799,
- "aling": 5169,
- "alion": 19049,
- "alis": 21308,
- "alis": 20114,
- "alisa": 38918,
- "alisation": 42143,
- "alise": 36718,
- "alised": 25099,
- "alism": 5607,
- "alison": 28653,
- "alison": 16970,
- "alist": 44900,
- "alist": 3320,
- "alistair": 40551,
- "alistic": 22302,
- "alists": 5653,
- "alit": 45566,
- "alities": 27925,
- "ality": 1694,
- "alive": 40467,
- "alive": 4716,
- "aliz": 30979,
- "alization": 8026,
- "alize": 10268,
- "alized": 6141,
- "alizer": 38922,
- "alizes": 26181,
- "alizing": 13023,
- "alk": 30246,
- "alk": 21577,
- "alkal": 33450,
- "alkaline": 39210,
- "all": 813,
- "all": 615,
- "alla": 13884,
- "alla": 14000,
- "allabout": 43996,
- "allah": 6378,
- "allan": 36552,
- "allan": 15404,
- "allblacks": 47728,
- "allday": 35862,
- "alle": 4870,
- "alle": 29478,
- "alled": 7379,
- "alleg": 7456,
- "allegations": 16992,
- "alleged": 12133,
- "allegedly": 14177,
- "alleges": 45051,
- "allegh": 41479,
- "allegheny": 47851,
- "allegi": 28832,
- "allegiance": 30955,
- "allen": 16712,
- "allen": 6386,
- "allenge": 31387,
- "aller": 10116,
- "aller": 30630,
- "allergic": 28809,
- "allergies": 28247,
- "allergy": 24408,
- "allery": 32542,
- "alles": 43354,
- "allevi": 31682,
- "alleviate": 44799,
- "alley": 36205,
- "alley": 10329,
- "allez": 49137,
- "alli": 4123,
- "alli": 15268,
- "alliance": 45404,
- "alliance": 8945,
- "alliances": 48403,
- "allianz": 45740,
- "allie": 25040,
- "allied": 20045,
- "allies": 17277,
- "alligator": 28574,
- "allin": 45007,
- "allin": 22395,
- "alline": 48182,
- "alling": 2992,
- "allis": 45309,
- "allison": 34602,
- "allison": 16578,
- "allman": 42611,
- "allo": 8107,
- "allo": 18389,
- "allocated": 42716,
- "allocation": 35139,
- "allon": 46693,
- "allot": 26363,
- "allotment": 33750,
- "allow": 5645,
- "allow": 6722,
- "allowance": 35696,
- "allowed": 7885,
- "allowing": 12458,
- "allows": 9966,
- "alloy": 22467,
- "alls": 1997,
- "allstar": 31247,
- "allstar": 22974,
- "allstars": 31198,
- "allthe": 29253,
- "allu": 20157,
- "alluarjun": 39333,
- "allure": 41814,
- "ally": 7461,
- "ally": 769,
- "alm": 28303,
- "alma": 32933,
- "alma": 18337,
- "alman": 29394,
- "almanac": 41268,
- "almighty": 21898,
- "almond": 15646,
- "almonds": 30468,
- "almost": 47534,
- "almost": 2671,
- "aln": 47203,
- "alo": 3435,
- "alo": 6183,
- "aloe": 30728,
- "alog": 15813,
- "alogue": 9101,
- "aloha": 23160,
- "aloils": 49002,
- "alom": 22236,
- "alon": 14097,
- "alon": 42846,
- "alone": 4702,
- "along": 8300,
- "along": 2528,
- "alongside": 8646,
- "alonso": 25704,
- "aloo": 46187,
- "alore": 14323,
- "alot": 16945,
- "alou": 43180,
- "aloud": 30028,
- "alove": 46669,
- "alove": 37045,
- "alp": 32020,
- "alp": 39342,
- "alpac": 30128,
- "alpaca": 42561,
- "alph": 6720,
- "alpha": 11807,
- "alpha": 8624,
- "alphabe": 45796,
- "alphabet": 22335,
- "alphon": 37865,
- "alpine": 17055,
- "alps": 18191,
- "already": 2426,
- "alright": 10866,
- "als": 23982,
- "als": 938,
- "alsace": 49388,
- "also": 1446,
- "alt": 9995,
- "alt": 10006,
- "alta": 24470,
- "alta": 25378,
- "altaf": 47342,
- "altam": 45624,
- "altar": 16385,
- "alter": 4949,
- "alter": 21393,
- "altered": 25201,
- "altern": 47463,
- "alternate": 15926,
- "alternati": 16699,
- "alternative": 37327,
- "alternative": 8248,
- "alternatives": 25041,
- "alth": 23463,
- "alth": 5863,
- "although": 9421,
- "alti": 35531,
- "alties": 17276,
- "altitude": 23241,
- "altman": 48100,
- "alto": 35053,
- "alto": 17518,
- "altogether": 45689,
- "alton": 41331,
- "alton": 36550,
- "altrin": 38458,
- "altrincham": 44718,
- "alty": 5546,
- "alu": 4776,
- "alu": 27991,
- "alum": 5404,
- "alum": 10553,
- "alumin": 14563,
- "alumini": 22908,
- "aluminium": 23631,
- "aluminum": 15251,
- "alumna": 30313,
- "alumni": 6646,
- "alumnus": 23633,
- "alums": 30155,
- "alv": 20928,
- "alvar": 25196,
- "alvarez": 26924,
- "alvaro": 41941,
- "alves": 38547,
- "alvin": 27023,
- "alway": 14046,
- "alway": 43764,
- "always": 24997,
- "always": 1466,
- "alwx": 32768,
- "aly": 6468,
- "aly": 12910,
- "alyn": 49150,
- "alyss": 29490,
- "alyssa": 18898,
- "alz": 12936,
- "alz": 41128,
- "alzheim": 15212,
- "alzheimer": 21151,
- "alzheimers": 34592,
- "am": 548,
- "am": 687,
- "ama": 18206,
- "ama": 1696,
- "amad": 45095,
- "amade": 37366,
- "amag": 32049,
- "amal": 15315,
- "amal": 36753,
- "aman": 19890,
- "aman": 10110,
- "amand": 14560,
- "amanda": 10036,
- "amar": 6424,
- "amar": 19607,
- "amara": 48522,
- "amari": 42565,
- "amarillo": 40449,
- "amarine": 45591,
- "amarketing": 30788,
- "amas": 22716,
- "amas": 15667,
- "amat": 38664,
- "amat": 25455,
- "amate": 12453,
- "amateur": 14287,
- "amaya": 47210,
- "amaz": 1185,
- "amaze": 24846,
- "amazed": 18944,
- "amazing": 15949,
- "amazing": 1370,
- "amazingly": 20368,
- "amazon": 13630,
- "amazon": 4140,
- "amb": 9042,
- "amb": 16853,
- "amba": 27003,
- "ambani": 45967,
- "ambas": 5634,
- "ambassad": 5758,
- "ambassador": 6795,
- "ambassadors": 16832,
- "ambed": 42089,
- "ambedkar": 48131,
- "amber": 18292,
- "amber": 9986,
- "ambi": 11844,
- "ambient": 23447,
- "ambigu": 35702,
- "ambition": 20673,
- "ambitions": 34152,
- "ambitious": 18666,
- "ambro": 17585,
- "ambrose": 24253,
- "ambu": 34423,
- "ambul": 13944,
- "ambulance": 15555,
- "ambush": 40725,
- "amc": 24942,
- "amc": 16921,
- "amd": 20845,
- "ame": 3995,
- "ame": 780,
- "amed": 5660,
- "ameen": 24229,
- "amel": 31988,
- "amel": 10960,
- "ameli": 21599,
- "amelia": 21433,
- "amell": 48198,
- "amen": 18716,
- "amen": 12335,
- "amend": 12425,
- "amendment": 15019,
- "amendments": 40901,
- "amenities": 30096,
- "ament": 27528,
- "amer": 17081,
- "amer": 16147,
- "ameri": 40422,
- "americ": 1283,
- "america": 2224,
- "americafirst": 43216,
- "american": 8746,
- "american": 2151,
- "americana": 26221,
- "americanair": 42538,
- "americani": 39726,
- "americans": 6676,
- "americas": 33343,
- "americas": 18142,
- "ames": 5469,
- "ameter": 23393,
- "amethy": 30291,
- "amethyst": 31485,
- "amex": 46390,
- "amg": 21324,
- "amher": 32311,
- "amherst": 39065,
- "ami": 6100,
- "ami": 3065,
- "amic": 25824,
- "amic": 21383,
- "amid": 18908,
- "amid": 11953,
- "amide": 30952,
- "amidst": 25172,
- "amie": 36901,
- "amig": 40294,
- "amiga": 35329,
- "amigo": 44991,
- "amigos": 28176,
- "amii": 35462,
- "amiibo": 38871,
- "amily": 36732,
- "amin": 14337,
- "amin": 20235,
- "amina": 47531,
- "amination": 30355,
- "amine": 35823,
- "aming": 3507,
- "amino": 33464,
- "amir": 26029,
- "amir": 21973,
- "amis": 29829,
- "amish": 24958,
- "amit": 15083,
- "amit": 25255,
- "amitabh": 48124,
- "amitshah": 32374,
- "aml": 43185,
- "amma": 29786,
- "amman": 29243,
- "ammo": 33474,
- "ammunition": 35060,
- "amn": 24073,
- "amne": 14596,
- "amnesia": 41741,
- "amnesty": 46330,
- "amnesty": 21177,
- "amo": 4833,
- "amo": 11156,
- "amodi": 9826,
- "amon": 17492,
- "amon": 24046,
- "among": 12310,
- "among": 4265,
- "amongst": 12520,
- "amoo": 26977,
- "amor": 19977,
- "amor": 15973,
- "amore": 38937,
- "amore": 22691,
- "amores": 36338,
- "amos": 18133,
- "amoto": 25492,
- "amount": 6403,
- "amounts": 16747,
- "amour": 29908,
- "amovie": 41062,
- "amp": 3521,
- "amp": 6259,
- "amped": 22640,
- "amphi": 16379,
- "amphibious": 45206,
- "amphitheater": 41285,
- "amphitheatre": 44039,
- "ample": 34162,
- "amples": 14536,
- "ampli": 15647,
- "amplifier": 31743,
- "amplify": 45308,
- "amps": 19252,
- "ampton": 29410,
- "ampton": 9347,
- "amr": 30916,
- "amreading": 16546,
- "amrit": 33849,
- "ams": 1396,
- "amster": 9110,
- "amsterdam": 9441,
- "amtrak": 27855,
- "amu": 11347,
- "amu": 32336,
- "amur": 35014,
- "amura": 35487,
- "amus": 36269,
- "amuse": 21421,
- "amuse": 44367,
- "amused": 30212,
- "amusement": 32570,
- "amusic": 20266,
- "amusing": 31789,
- "amwriting": 9660,
- "amy": 10547,
- "amy": 5187,
- "an": 514,
- "an": 550,
- "ana": 6588,
- "ana": 1388,
- "anab": 34742,
- "anada": 27948,
- "anag": 12115,
- "anagh": 40774,
- "anaheim": 23728,
- "anak": 34814,
- "anak": 38658,
- "anal": 2785,
- "analo": 34179,
- "analog": 19963,
- "analogue": 46031,
- "analy": 4611,
- "analyse": 47246,
- "analyses": 39695,
- "analysis": 5296,
- "analyst": 14198,
- "analysts": 28075,
- "analytical": 34550,
- "analytics": 8558,
- "analyze": 28519,
- "analyzing": 32107,
- "anam": 29525,
- "anan": 37215,
- "anand": 25073,
- "anand": 22083,
- "anap": 41566,
- "anarch": 46405,
- "anarchi": 39879,
- "anarchy": 27707,
- "anas": 31382,
- "anas": 12633,
- "anast": 48902,
- "anasta": 22915,
- "anastasi": 36534,
- "anastasia": 37975,
- "anat": 10045,
- "anath": 31277,
- "anatom": 33759,
- "anatomy": 15376,
- "anc": 1124,
- "anc": 17758,
- "anca": 14583,
- "ance": 7165,
- "ance": 884,
- "anced": 5071,
- "ancer": 17415,
- "ancers": 37296,
- "ances": 3515,
- "ancestor": 43904,
- "ancestors": 24405,
- "ancestral": 41615,
- "ancestry": 30922,
- "anch": 9489,
- "anche": 34679,
- "ancho": 26610,
- "anchor": 20030,
- "anchor": 13201,
- "anchorage": 31950,
- "anchored": 45926,
- "anchors": 37830,
- "anci": 4192,
- "ancient": 31495,
- "ancient": 5810,
- "ancies": 21647,
- "ancing": 7797,
- "anco": 15459,
- "ancy": 16282,
- "ancy": 3633,
- "and": 672,
- "and": 537,
- "anda": 2911,
- "andalu": 31443,
- "andco": 36302,
- "ande": 26889,
- "ande": 30354,
- "ander": 3740,
- "ander": 3935,
- "anders": 10880,
- "andersen": 32661,
- "anderson": 26683,
- "anderson": 6510,
- "andes": 24052,
- "andfriends": 36871,
- "andhi": 21617,
- "andhra": 32452,
- "andi": 28870,
- "andi": 14354,
- "andie": 46318,
- "andme": 42831,
- "ando": 35950,
- "ando": 5986,
- "andolan": 48965,
- "andon": 36488,
- "andor": 45243,
- "andover": 44177,
- "andr": 22661,
- "andra": 46795,
- "andra": 21730,
- "andre": 2657,
- "andre": 9400,
- "andrea": 10895,
- "andreas": 20444,
- "andrei": 42137,
- "andres": 25197,
- "andretti": 44291,
- "andrew": 11717,
- "andrew": 4847,
- "andrews": 14506,
- "andri": 37208,
- "andro": 4417,
- "andro": 17980,
- "android": 24284,
- "android": 5191,
- "androidgames": 46572,
- "andromeda": 42942,
- "andré": 35609,
- "ands": 32257,
- "andthe": 22111,
- "andu": 44200,
- "andum": 47266,
- "andy": 9447,
- "andy": 2888,
- "ane": 5846,
- "ane": 3051,
- "anec": 33965,
- "anem": 41395,
- "anemone": 49019,
- "aneous": 48273,
- "anes": 15381,
- "anese": 48778,
- "anesthe": 30622,
- "anesthesia": 43353,
- "anew": 39084,
- "anew": 47341,
- "anews": 20919,
- "aney": 22387,
- "anfield": 26993,
- "ang": 883,
- "ang": 2704,
- "anga": 11641,
- "angames": 43178,
- "angan": 28264,
- "angas": 46180,
- "ange": 2960,
- "ange": 3039,
- "angel": 5029,
- "angel": 5130,
- "angela": 12354,
- "angeles": 7382,
- "angeli": 15265,
- "angelic": 41038,
- "angelica": 38582,
- "angelina": 28890,
- "angelo": 14342,
- "angelou": 41328,
- "angels": 7809,
- "anger": 32737,
- "anger": 6788,
- "angerous": 39716,
- "angers": 29756,
- "angh": 34030,
- "angi": 28003,
- "angi": 24301,
- "angie": 18859,
- "angle": 21749,
- "angle": 6946,
- "angled": 32322,
- "angler": 22284,
- "anglers": 41608,
- "angles": 18627,
- "anglesey": 31850,
- "anglia": 32076,
- "anglic": 28322,
- "anglican": 33284,
- "angling": 36824,
- "anglo": 39515,
- "anglo": 30408,
- "ango": 19090,
- "angola": 36636,
- "angor": 41740,
- "angp": 19992,
- "angry": 33910,
- "angry": 9054,
- "angs": 18441,
- "angst": 41714,
- "angu": 11209,
- "angular": 43584,
- "angular": 24981,
- "angularjs": 48608,
- "angus": 19688,
- "ani": 1326,
- "ani": 3624,
- "ania": 9866,
- "anian": 9945,
- "anians": 39393,
- "anic": 23113,
- "anie": 26697,
- "anie": 7671,
- "anil": 28589,
- "anil": 34619,
- "anim": 2190,
- "animal": 10697,
- "animal": 4668,
- "animalrights": 42859,
- "animals": 4995,
- "animate": 40076,
- "animated": 13360,
- "animation": 10344,
- "animations": 42870,
- "animator": 42591,
- "anime": 23314,
- "anime": 6469,
- "anin": 45735,
- "aning": 30972,
- "anir": 27089,
- "anirud": 35278,
- "anirudhofficial": 45917,
- "anis": 40986,
- "anis": 47556,
- "anism": 20947,
- "anist": 16729,
- "anistan": 9727,
- "aniston": 47344,
- "anit": 23683,
- "anita": 18544,
- "anium": 14794,
- "anj": 22443,
- "anja": 43440,
- "anjali": 38834,
- "anjo": 47353,
- "ank": 13339,
- "ank": 10029,
- "anka": 45324,
- "ankara": 34309,
- "ankle": 14777,
- "ankles": 48688,
- "ann": 850,
- "ann": 5424,
- "anna": 13821,
- "anna": 2160,
- "annab": 22336,
- "annabelle": 47661,
- "annah": 39166,
- "annah": 14327,
- "annak": 41720,
- "annan": 32166,
- "annapolis": 34491,
- "annas": 48467,
- "anne": 9139,
- "anne": 4083,
- "anned": 27352,
- "anner": 12642,
- "annes": 24343,
- "annette": 36821,
- "annex": 42958,
- "annex": 46389,
- "anni": 2438,
- "anni": 13728,
- "annie": 37270,
- "annie": 12173,
- "annies": 43184,
- "annihil": 32734,
- "annis": 24742,
- "anniv": 31399,
- "anniver": 29671,
- "annivers": 42836,
- "anniversaire": 30882,
- "anniversary": 3048,
- "anno": 9901,
- "anno": 26871,
- "annon": 26385,
- "annot": 30411,
- "announ": 1806,
- "announce": 3682,
- "announced": 4103,
- "announcement": 6932,
- "announcements": 23735,
- "announcer": 33626,
- "announces": 6500,
- "announcing": 11593,
- "annoy": 45138,
- "annoyed": 29863,
- "annoying": 15248,
- "annu": 21698,
- "annual": 2906,
- "annually": 23703,
- "anny": 34313,
- "anny": 5291,
- "ano": 5617,
- "ano": 2658,
- "anom": 21612,
- "anomaly": 46811,
- "anon": 47079,
- "anon": 13667,
- "anonym": 38605,
- "anonymous": 15036,
- "anoo": 25690,
- "anor": 13243,
- "anor": 16596,
- "anos": 20132,
- "another": 29274,
- "another": 1380,
- "anova": 24116,
- "ans": 24586,
- "ans": 885,
- "ansari": 40748,
- "ansel": 40356,
- "answ": 3369,
- "answe": 14391,
- "answer": 4518,
- "answered": 14499,
- "answering": 18280,
- "answers": 8692,
- "ant": 1103,
- "ant": 773,
- "anta": 3023,
- "antag": 41745,
- "antal": 39355,
- "antalya": 47440,
- "antan": 32899,
- "antarc": 21338,
- "antarctic": 27077,
- "antarctica": 22587,
- "ante": 19311,
- "ante": 9769,
- "antebellum": 41683,
- "antelope": 39177,
- "anten": 35517,
- "antenna": 26370,
- "anter": 46508,
- "antes": 14927,
- "antgrasso": 39074,
- "anth": 3737,
- "anth": 29741,
- "antha": 47981,
- "anthe": 34167,
- "anthem": 12504,
- "anthi": 45261,
- "anthology": 21009,
- "anthony": 17477,
- "anthony": 6113,
- "anthro": 10019,
- "anthropo": 18538,
- "anthropology": 32407,
- "anthus": 37639,
- "anti": 3120,
- "anti": 3564,
- "antibio": 18954,
- "antibiotic": 34387,
- "antibiotics": 29499,
- "antibody": 49018,
- "antic": 8260,
- "anticip": 11435,
- "anticipate": 38280,
- "anticipated": 18605,
- "anticipating": 48067,
- "anticipation": 26983,
- "antics": 37126,
- "antidote": 45476,
- "antifa": 35926,
- "antigua": 39910,
- "antine": 17641,
- "antino": 27818,
- "antioxid": 23010,
- "antioxidant": 37452,
- "antioxidants": 34208,
- "antiqu": 21745,
- "antique": 46517,
- "antique": 9060,
- "antiques": 17365,
- "antis": 19748,
- "antisemitism": 36630,
- "antit": 37833,
- "antitrust": 49343,
- "antlers": 47720,
- "antly": 5265,
- "anto": 16826,
- "anto": 24486,
- "antoine": 25188,
- "anton": 5497,
- "anton": 19644,
- "antoni": 39958,
- "antonio": 30497,
- "antonio": 7842,
- "antony": 30707,
- "antrim": 40252,
- "ants": 1589,
- "antv": 47520,
- "antw": 44460,
- "antwer": 26970,
- "antwerp": 33797,
- "antz": 25684,
- "anu": 8537,
- "anu": 17152,
- "anup": 29617,
- "anus": 27084,
- "anush": 22765,
- "anushka": 42080,
- "anushka": 39822,
- "anushkasharma": 44203,
- "anwar": 34261,
- "anxi": 9021,
- "anxiety": 11103,
- "anxious": 27793,
- "any": 1307,
- "any": 1504,
- "anya": 11173,
- "anybody": 10071,
- "anyi": 41632,
- "anymore": 7372,
- "anyone": 2302,
- "anything": 3582,
- "anytime": 13924,
- "anyway": 8931,
- "anyways": 19778,
- "anywhere": 8863,
- "anz": 14445,
- "anz": 19425,
- "anza": 14669,
- "anzac": 31977,
- "ao": 7313,
- "ao": 5703,
- "aoa": 47119,
- "aoc": 31918,
- "aofficial": 30840,
- "aoki": 33602,
- "aol": 40643,
- "aon": 30928,
- "aon": 48476,
- "aor": 32044,
- "aos": 46860,
- "ap": 688,
- "ap": 2728,
- "apa": 36954,
- "apa": 13537,
- "apac": 34320,
- "apache": 23921,
- "apal": 38017,
- "apan": 36562,
- "apar": 9161,
- "apark": 32528,
- "apart": 6474,
- "apart": 7803,
- "aparthe": 25121,
- "apartheid": 26597,
- "apartment": 8285,
- "apartments": 15791,
- "aparty": 26767,
- "apat": 31755,
- "apathy": 18145,
- "apc": 20300,
- "apd": 44563,
- "ape": 6098,
- "ape": 2609,
- "apec": 47530,
- "aper": 13681,
- "aper": 5858,
- "apers": 15846,
- "apes": 9550,
- "apeu": 19040,
- "apex": 41935,
- "apex": 23712,
- "aph": 16341,
- "aph": 29491,
- "apha": 47104,
- "apho": 21758,
- "aphra": 44147,
- "api": 23342,
- "api": 14674,
- "apia": 44259,
- "apic": 40679,
- "aping": 18456,
- "apink": 35725,
- "apis": 37575,
- "apk": 27648,
- "apo": 4089,
- "apo": 19758,
- "apocaly": 13932,
- "apocalypse": 17571,
- "apocalyptic": 35675,
- "apol": 5023,
- "apolice": 45663,
- "apolis": 9598,
- "apollo": 48213,
- "apollo": 11554,
- "apolo": 31094,
- "apolog": 25530,
- "apologe": 42908,
- "apologi": 14977,
- "apologies": 21959,
- "apologise": 39608,
- "apologize": 22879,
- "apologizes": 35298,
- "apology": 20768,
- "apor": 21871,
- "apore": 6679,
- "apost": 20309,
- "apostle": 33051,
- "apostles": 48457,
- "app": 882,
- "app": 2231,
- "appa": 4884,
- "appa": 13110,
- "appalach": 30523,
- "appalachian": 36806,
- "appalling": 44797,
- "appar": 26698,
- "apparatus": 37716,
- "apparel": 13972,
- "apparent": 23963,
- "apparently": 5287,
- "appe": 3748,
- "appe": 45949,
- "appeal": 9625,
- "appealing": 25909,
- "appeals": 22447,
- "appear": 5544,
- "appear": 9308,
- "appearance": 7238,
- "appearances": 17214,
- "appeared": 11561,
- "appearing": 18759,
- "appears": 8743,
- "appell": 43833,
- "appen": 37201,
- "appen": 26589,
- "apper": 18780,
- "appet": 21686,
- "appeti": 24179,
- "appetite": 24481,
- "appetizer": 36065,
- "applau": 24713,
- "applaud": 42152,
- "applause": 22650,
- "apple": 8629,
- "apple": 3055,
- "applemusic": 21390,
- "apples": 14032,
- "appleton": 45250,
- "appli": 15495,
- "appliance": 33677,
- "appliances": 22134,
- "applic": 4235,
- "applicable": 37927,
- "applicants": 28035,
- "application": 7241,
- "applications": 7341,
- "applied": 12636,
- "applies": 24910,
- "apply": 4356,
- "applying": 17965,
- "appo": 5433,
- "appoint": 36190,
- "appointed": 11087,
- "appointment": 10890,
- "appointments": 23439,
- "appoints": 25132,
- "apprais": 36972,
- "appraisal": 46108,
- "appreci": 3474,
- "appreciate": 6263,
- "appreciated": 9264,
- "appreciates": 36573,
- "appreciating": 39352,
- "appreciation": 9212,
- "appreciationday": 37438,
- "appreciative": 45074,
- "appren": 10582,
- "apprentic": 15662,
- "apprentice": 19122,
- "apprentice": 17985,
- "apprentices": 38252,
- "apprenticeship": 26939,
- "apprenticeships": 35425,
- "appro": 2398,
- "approach": 7781,
- "approach": 6241,
- "approached": 36499,
- "approaches": 14962,
- "approaching": 12164,
- "appropri": 8446,
- "appropriate": 10768,
- "appropriately": 30383,
- "appropriation": 49110,
- "approval": 13549,
- "approve": 19064,
- "approved": 9412,
- "approves": 18107,
- "approx": 18266,
- "approxim": 14201,
- "approximately": 16128,
- "apps": 7020,
- "appstore": 31377,
- "appt": 48112,
- "appy": 34420,
- "apr": 39396,
- "apr": 11177,
- "apra": 37027,
- "apric": 25923,
- "apricot": 30815,
- "april": 23548,
- "april": 2484,
- "apro": 42712,
- "apro": 49051,
- "apron": 29502,
- "aps": 8868,
- "apse": 31843,
- "apt": 17921,
- "aptly": 47313,
- "apu": 22166,
- "apur": 36900,
- "apur": 45193,
- "aq": 14018,
- "aq": 26862,
- "aqu": 4458,
- "aqua": 18613,
- "aquaculture": 41885,
- "aquaman": 35098,
- "aquari": 37605,
- "aquarium": 16814,
- "aquarius": 38879,
- "aquatic": 22658,
- "aque": 35927,
- "aque": 37268,
- "aqui": 36826,
- "aquino": 33796,
- "ar": 516,
- "ar": 625,
- "ara": 24161,
- "ara": 3340,
- "arab": 5405,
- "arab": 12028,
- "arabia": 11746,
- "arabian": 24663,
- "arabic": 16709,
- "arabs": 39155,
- "arac": 47620,
- "arach": 37689,
- "arag": 41502,
- "araj": 45142,
- "arak": 23416,
- "aram": 19223,
- "aram": 21473,
- "arama": 49066,
- "aran": 20839,
- "aran": 19641,
- "aras": 36399,
- "arat": 30856,
- "arav": 35836,
- "arbit": 20267,
- "arbitr": 22702,
- "arbitration": 34845,
- "arbor": 33516,
- "arbor": 24878,
- "arboretum": 41719,
- "arc": 4997,
- "arc": 11592,
- "arca": 25189,
- "arca": 37612,
- "arcade": 13331,
- "arcadia": 38372,
- "arch": 2458,
- "arch": 8557,
- "archa": 45619,
- "archae": 10121,
- "archaeological": 26163,
- "archaeologists": 45035,
- "archaeology": 14868,
- "archan": 33359,
- "archbishop": 23994,
- "arche": 22474,
- "archer": 21824,
- "archers": 38407,
- "archery": 23935,
- "arches": 30771,
- "archi": 4479,
- "archie": 20557,
- "archipel": 39750,
- "archipelago": 43025,
- "architec": 3359,
- "architect": 12192,
- "architects": 13290,
- "architectural": 15360,
- "architecture": 39038,
- "architecture": 4920,
- "archival": 39249,
- "archive": 42257,
- "archive": 10548,
- "archived": 42379,
- "archives": 9411,
- "archy": 15643,
- "arctic": 29716,
- "arctic": 9138,
- "ard": 3793,
- "ard": 746,
- "arden": 44600,
- "arden": 27057,
- "ardi": 23932,
- "ardi": 19837,
- "ardo": 35735,
- "ardo": 9394,
- "ards": 1654,
- "ardu": 20906,
- "arduino": 25398,
- "are": 1076,
- "are": 631,
- "area": 2445,
- "areas": 5429,
- "arec": 18136,
- "areclipse": 36030,
- "ared": 5369,
- "arel": 12798,
- "arella": 24784,
- "arelli": 48619,
- "aren": 4033,
- "aren": 4318,
- "arena": 5463,
- "arenas": 47860,
- "arent": 37487,
- "arer": 14857,
- "arers": 33159,
- "ares": 12224,
- "arest": 11708,
- "aret": 22247,
- "areth": 47725,
- "aretha": 42090,
- "areyou": 37607,
- "arez": 13108,
- "arg": 27285,
- "argent": 7812,
- "argentina": 9789,
- "argentine": 32582,
- "argon": 40737,
- "argos": 37443,
- "argu": 7440,
- "arguably": 30899,
- "argue": 19788,
- "argued": 48153,
- "argues": 30045,
- "arguing": 26549,
- "argument": 16224,
- "arguments": 24693,
- "argus": 44300,
- "argy": 21066,
- "argyle": 36179,
- "argyll": 40667,
- "ari": 1221,
- "ari": 3681,
- "aria": 8883,
- "arial": 42431,
- "arian": 29980,
- "arian": 6953,
- "ariana": 14892,
- "arianag": 23025,
- "arianagrande": 23321,
- "arianism": 44351,
- "arians": 19104,
- "arias": 22567,
- "arie": 18774,
- "ariel": 47959,
- "ariel": 21025,
- "aries": 5213,
- "arif": 46621,
- "arily": 12993,
- "arin": 29564,
- "arin": 18612,
- "arina": 29271,
- "arine": 29586,
- "aring": 2142,
- "ario": 8862,
- "arios": 25392,
- "aris": 15227,
- "arise": 26490,
- "arist": 12110,
- "aristo": 25666,
- "aristotle": 49156,
- "arities": 31069,
- "arity": 16608,
- "arium": 11809,
- "arius": 21482,
- "ariz": 6516,
- "arized": 40167,
- "arizon": 28936,
- "arizona": 7106,
- "arjun": 24565,
- "arjun": 20477,
- "arjuna": 43835,
- "ark": 11921,
- "ark": 12010,
- "arkansas": 12227,
- "arkham": 36381,
- "arl": 48542,
- "arlington": 44940,
- "arlington": 17865,
- "arly": 3637,
- "arm": 5671,
- "arm": 4793,
- "arma": 15887,
- "arma": 38716,
- "armad": 37897,
- "armada": 34938,
- "armagh": 44313,
- "armani": 31314,
- "armb": 37096,
- "armchair": 45757,
- "armed": 40471,
- "armed": 8202,
- "armen": 13145,
- "armenia": 22008,
- "armenian": 24891,
- "armies": 46686,
- "armin": 45481,
- "arming": 19766,
- "armist": 38150,
- "armistice": 46765,
- "armor": 16167,
- "armored": 28214,
- "armory": 38610,
- "armour": 18503,
- "armoured": 42514,
- "arms": 5706,
- "armstrong": 15005,
- "army": 13541,
- "army": 3133,
- "armys": 27311,
- "arn": 9348,
- "arn": 37597,
- "arnau": 45556,
- "arne": 43509,
- "arney": 35962,
- "arnold": 49096,
- "arnold": 13609,
- "arns": 46692,
- "aro": 7514,
- "aro": 11551,
- "aroa": 48209,
- "arom": 16831,
- "aroma": 40143,
- "aroma": 26390,
- "aromas": 47439,
- "aromatherapy": 42584,
- "aromatic": 39669,
- "aron": 30855,
- "aron": 28926,
- "aroo": 47581,
- "arora": 31897,
- "arosa": 44264,
- "arose": 44262,
- "around": 35615,
- "around": 1630,
- "arqu": 35654,
- "arquitec": 41703,
- "arr": 39106,
- "arr": 42489,
- "arra": 32918,
- "arra": 43827,
- "arrahman": 44554,
- "arran": 45722,
- "arrang": 16711,
- "arrange": 15410,
- "arrange": 26311,
- "arranged": 22451,
- "arrangement": 23822,
- "arrangements": 23792,
- "arranging": 35321,
- "array": 17293,
- "arre": 4374,
- "arrell": 28846,
- "arrest": 9320,
- "arrested": 5845,
- "arresting": 43930,
- "arrests": 20683,
- "arri": 2115,
- "arrival": 9073,
- "arrivals": 19583,
- "arrive": 8851,
- "arrived": 3514,
- "arrives": 9905,
- "arriving": 10884,
- "arro": 15729,
- "arrog": 26997,
- "arrogance": 47025,
- "arrogant": 40582,
- "arrow": 30920,
- "arrow": 11149,
- "arrowhead": 46393,
- "arrows": 24768,
- "arroyo": 45237,
- "ars": 42815,
- "ars": 864,
- "arse": 22665,
- "arsen": 5330,
- "arsenal": 45234,
- "arsenal": 6084,
- "arsene": 32117,
- "arson": 29937,
- "art": 1486,
- "art": 794,
- "arta": 12031,
- "arte": 13482,
- "arte": 12947,
- "artem": 40387,
- "artemis": 45256,
- "arten": 37043,
- "arter": 29449,
- "artery": 40062,
- "artes": 48629,
- "artforsale": 48239,
- "artgallery": 31982,
- "arth": 7146,
- "arth": 20265,
- "arthistory": 39313,
- "arthr": 20807,
- "arthritis": 22916,
- "arthro": 43255,
- "arthur": 35660,
- "arthur": 8550,
- "arti": 1635,
- "arti": 34601,
- "artic": 3003,
- "articho": 30937,
- "artichoke": 39647,
- "article": 3550,
- "articles": 11939,
- "articul": 40343,
- "articulate": 45444,
- "artif": 8950,
- "artifact": 37718,
- "artifacts": 30249,
- "artificial": 19357,
- "artificial": 12040,
- "artificialintelligence": 20799,
- "artillery": 24465,
- "artin": 33168,
- "artin": 48540,
- "artis": 41794,
- "artisan": 36389,
- "artisan": 21535,
- "artisans": 40140,
- "artist": 14326,
- "artist": 2456,
- "artiste": 41402,
- "artistic": 12421,
- "artiston": 48443,
- "artistry": 38570,
- "artists": 4899,
- "artistson": 32127,
- "artistsontwitter": 39469,
- "artlovers": 35617,
- "arto": 28464,
- "artof": 31751,
- "artoftheday": 43990,
- "arton": 46744,
- "arts": 22040,
- "arts": 3812,
- "artsy": 31588,
- "arturo": 38591,
- "artwit": 36713,
- "artwork": 4188,
- "artworks": 26215,
- "arty": 45417,
- "arty": 25916,
- "aru": 13757,
- "aru": 23907,
- "aruba": 40131,
- "arugula": 40770,
- "arum": 48732,
- "arun": 16105,
- "arun": 31877,
- "arunach": 47260,
- "arunjaitley": 44874,
- "arus": 22644,
- "arvin": 16971,
- "arvind": 21209,
- "arvind": 41079,
- "arvindkejriwal": 22971,
- "arvo": 45726,
- "arwx": 29824,
- "ary": 4617,
- "ary": 856,
- "arya": 23594,
- "aryan": 34966,
- "as": 587,
- "as": 601,
- "asa": 39676,
- "asa": 11914,
- "asad": 42376,
- "asaki": 22455,
- "asam": 40603,
- "asan": 22379,
- "asan": 17841,
- "asana": 42363,
- "asant": 25536,
- "asants": 37766,
- "asap": 24199,
- "asap": 10822,
- "asar": 24733,
- "asar": 49299,
- "asb": 31186,
- "asbe": 32113,
- "asbestos": 33765,
- "asc": 22720,
- "asc": 23305,
- "ascen": 20767,
- "ascension": 35499,
- "ascent": 36625,
- "asci": 12753,
- "asco": 25578,
- "asco": 17488,
- "ascot": 23723,
- "ascri": 15506,
- "asd": 36988,
- "asda": 29391,
- "asdf": 36857,
- "asdfghj": 42758,
- "asdfghjkl": 47660,
- "ase": 8083,
- "ase": 894,
- "asean": 24472,
- "aseball": 46903,
- "ased": 2134,
- "asen": 41085,
- "aser": 39615,
- "aser": 7209,
- "ases": 3762,
- "asf": 25863,
- "asg": 34813,
- "ash": 2067,
- "ash": 2612,
- "asha": 40572,
- "asha": 13472,
- "ashamed": 20633,
- "ashby": 46531,
- "ashe": 48523,
- "ashe": 31752,
- "asher": 37585,
- "ashes": 12587,
- "asheville": 28897,
- "ashford": 37796,
- "ashi": 15563,
- "ashi": 15934,
- "ashish": 33145,
- "ashland": 39938,
- "ashleigh": 49356,
- "ashley": 17825,
- "ashley": 8957,
- "asho": 20273,
- "ashok": 38141,
- "ashore": 31194,
- "ashram": 43445,
- "ashton": 43264,
- "ashton": 12228,
- "ashtra": 18118,
- "asi": 3596,
- "asi": 12562,
- "asia": 5741,
- "asian": 21737,
- "asian": 7128,
- "asiangames": 49108,
- "asians": 36771,
- "asics": 31097,
- "aside": 13676,
- "asif": 37302,
- "asim": 46050,
- "asin": 48432,
- "asin": 44347,
- "asing": 4194,
- "asingly": 15803,
- "asion": 31753,
- "asis": 12398,
- "ask": 11027,
- "ask": 2765,
- "asked": 3993,
- "asking": 5914,
- "asks": 7953,
- "asl": 41650,
- "asleep": 10749,
- "asley": 28206,
- "asli": 44290,
- "asm": 13851,
- "asma": 38497,
- "asmsg": 19839,
- "aso": 30343,
- "aso": 27932,
- "asober": 43749,
- "asocial": 48557,
- "ason": 1163,
- "asone": 31249,
- "asons": 4249,
- "asos": 37924,
- "asot": 47968,
- "asp": 17814,
- "asp": 36666,
- "asparag": 20301,
- "asparagus": 20604,
- "aspe": 10894,
- "aspect": 19681,
- "aspects": 18203,
- "aspen": 35695,
- "aspen": 25712,
- "asper": 32991,
- "asph": 28019,
- "asphalt": 30574,
- "aspir": 12669,
- "aspirations": 36127,
- "aspire": 24836,
- "aspiring": 21862,
- "asports": 43695,
- "asr": 48052,
- "asroma": 41000,
- "ass": 12664,
- "ass": 5301,
- "assa": 47715,
- "assad": 18699,
- "assam": 19930,
- "assan": 26352,
- "assange": 27565,
- "assas": 9603,
- "assassin": 14366,
- "assassin": 20029,
- "assassinated": 40488,
- "assassination": 24907,
- "assassins": 34918,
- "assassinscre": 36428,
- "assassinscreed": 46082,
- "assau": 7908,
- "assaul": 19596,
- "assault": 9679,
- "assaulted": 30785,
- "assaulting": 44143,
- "asse": 3166,
- "asse": 38600,
- "assel": 37582,
- "assemb": 5531,
- "assemble": 26169,
- "assembled": 22627,
- "assemblies": 47406,
- "assembling": 38670,
- "assembly": 34542,
- "assembly": 7059,
- "assen": 38651,
- "asser": 25665,
- "asses": 21596,
- "assess": 9209,
- "assess": 23211,
- "assessed": 44160,
- "assessing": 31364,
- "assessment": 10590,
- "assessments": 32753,
- "asset": 48463,
- "asset": 13039,
- "assets": 13170,
- "assi": 2907,
- "assi": 39540,
- "assie": 31624,
- "assign": 14190,
- "assigned": 25767,
- "assignment": 17342,
- "assignments": 34257,
- "assim": 36394,
- "assimil": 43467,
- "assist": 26558,
- "assist": 10286,
- "assistance": 11685,
- "assistant": 6799,
- "assistants": 31054,
- "assisted": 18095,
- "assisting": 24243,
- "assists": 12675,
- "assn": 44208,
- "asso": 17617,
- "assoc": 18891,
- "associ": 3566,
- "associate": 11777,
- "associated": 11164,
- "associates": 17358,
- "association": 5578,
- "associations": 33209,
- "assor": 38604,
- "assorted": 36701,
- "assortment": 43112,
- "asst": 24767,
- "assu": 8328,
- "assume": 19294,
- "assumed": 37661,
- "assuming": 29422,
- "assump": 41182,
- "assumption": 40773,
- "assumptions": 45948,
- "assurance": 28408,
- "assure": 39161,
- "assured": 25591,
- "assures": 41988,
- "assy": 29940,
- "assy": 12963,
- "ast": 1761,
- "ast": 1242,
- "asta": 43269,
- "aste": 25033,
- "aste": 25579,
- "aster": 11013,
- "aster": 9526,
- "asteroid": 32253,
- "asters": 33139,
- "asth": 16684,
- "asthma": 24610,
- "asthour": 41238,
- "astic": 15876,
- "asting": 29984,
- "astle": 46141,
- "asto": 47275,
- "aston": 24760,
- "aston": 13879,
- "astoni": 21962,
- "astonishing": 27110,
- "astonmartin": 40760,
- "astor": 26391,
- "astor": 47086,
- "astoria": 34798,
- "astounding": 37748,
- "astr": 37609,
- "astra": 47205,
- "astra": 36079,
- "astral": 45889,
- "astri": 31243,
- "astrid": 46499,
- "astro": 8563,
- "astro": 15318,
- "astrology": 28526,
- "astron": 7982,
- "astronaut": 18376,
- "astronauts": 29733,
- "astronom": 23264,
- "astronomer": 40036,
- "astronomers": 44268,
- "astronomical": 39775,
- "astronomy": 17472,
- "astrophotography": 38559,
- "astros": 17598,
- "asts": 10452,
- "astu": 43137,
- "astur": 45795,
- "asu": 13157,
- "asu": 16001,
- "asun": 36044,
- "asure": 3813,
- "asus": 27269,
- "aswell": 42978,
- "asx": 38906,
- "asy": 8524,
- "asy": 2333,
- "asylum": 15638,
- "asym": 32539,
- "at": 527,
- "at": 536,
- "ata": 4236,
- "atable": 23909,
- "atal": 24877,
- "atal": 24797,
- "atan": 33446,
- "atar": 20128,
- "atar": 7995,
- "atari": 21549,
- "atas": 30057,
- "atay": 39518,
- "atc": 28383,
- "atch": 15938,
- "atd": 33890,
- "ate": 992,
- "ate": 671,
- "ateam": 42784,
- "ateau": 16359,
- "atec": 37352,
- "atech": 31306,
- "ated": 14589,
- "ated": 943,
- "atedly": 24698,
- "atee": 32839,
- "ateful": 5419,
- "atelier": 29932,
- "ately": 3862,
- "atem": 17116,
- "aten": 47984,
- "atene": 30405,
- "ateneo": 33904,
- "ater": 18597,
- "ater": 5877,
- "ateral": 18819,
- "aters": 22364,
- "ates": 20370,
- "ates": 1150,
- "atest": 1705,
- "ateur": 43677,
- "atf": 28013,
- "ath": 1374,
- "ath": 1649,
- "atha": 22530,
- "atham": 23383,
- "athan": 41260,
- "athan": 26701,
- "athe": 8963,
- "athed": 47402,
- "atheism": 25823,
- "atheist": 22571,
- "atheists": 47155,
- "athen": 29112,
- "athena": 30705,
- "athens": 13524,
- "ather": 6171,
- "ather": 1817,
- "athered": 34091,
- "athers": 17266,
- "athi": 28918,
- "athing": 36069,
- "athle": 3310,
- "athlete": 7388,
- "athletes": 7125,
- "athletic": 33182,
- "athletic": 9028,
- "athletics": 7019,
- "athlon": 14670,
- "athome": 38217,
- "athon": 4951,
- "aths": 28835,
- "athy": 34488,
- "athy": 13183,
- "ati": 591,
- "ati": 6751,
- "atia": 10908,
- "atic": 20248,
- "atic": 2647,
- "atically": 13558,
- "atics": 15666,
- "atie": 30137,
- "aties": 40060,
- "atif": 41592,
- "atiku": 37912,
- "atile": 15474,
- "atility": 23373,
- "atime": 20158,
- "atin": 36903,
- "atin": 23047,
- "atine": 39741,
- "ating": 25653,
- "ating": 1074,
- "atio": 35401,
- "ation": 2265,
- "ation": 656,
- "ational": 14205,
- "ational": 3108,
- "ationals": 44593,
- "ationday": 20082,
- "ations": 986,
- "atis": 45456,
- "atis": 41142,
- "atism": 45638,
- "ative": 18422,
- "ative": 1648,
- "atively": 11929,
- "atives": 5629,
- "ativity": 25166,
- "atkins": 27734,
- "atkinson": 28908,
- "atl": 5411,
- "atl": 10629,
- "atla": 36043,
- "atlan": 6818,
- "atlanta": 39964,
- "atlanta": 6839,
- "atlantic": 28804,
- "atlantic": 8189,
- "atlantis": 27790,
- "atlas": 15775,
- "atle": 21170,
- "atleast": 33231,
- "atleti": 46067,
- "atletico": 27501,
- "atm": 14127,
- "atmo": 8271,
- "atmosphere": 10506,
- "atmospheric": 24223,
- "ato": 7987,
- "ato": 4364,
- "atoday": 26799,
- "atom": 22418,
- "atom": 24031,
- "atomic": 18996,
- "atoms": 41434,
- "aton": 31525,
- "aton": 10012,
- "atop": 17455,
- "ator": 10748,
- "ator": 1962,
- "atore": 28314,
- "atorial": 32040,
- "atories": 35678,
- "atorium": 41306,
- "ators": 3389,
- "atory": 5920,
- "atos": 41643,
- "atour": 42967,
- "atown": 24000,
- "atp": 38105,
- "atp": 19817,
- "atr": 43247,
- "atra": 20227,
- "atra": 14401,
- "atravel": 36981,
- "atre": 46057,
- "atri": 13882,
- "atri": 38889,
- "atric": 32238,
- "atric": 13652,
- "atrics": 36253,
- "atrist": 41879,
- "atrium": 29725,
- "atrix": 43003,
- "atro": 18724,
- "atroc": 36197,
- "atrocities": 37551,
- "atry": 28334,
- "ats": 46890,
- "ats": 1032,
- "atsu": 26531,
- "att": 1017,
- "att": 7103,
- "atta": 7282,
- "atta": 9146,
- "attach": 43676,
- "attach": 35653,
- "attached": 11038,
- "attachment": 28638,
- "attack": 24971,
- "attack": 3815,
- "attacked": 12366,
- "attacker": 39288,
- "attackers": 47701,
- "attacking": 16813,
- "attacks": 7321,
- "attain": 46459,
- "attar": 37110,
- "attemp": 4933,
- "attempt": 7409,
- "attempted": 17408,
- "attempting": 18195,
- "attempts": 15610,
- "atten": 4084,
- "atten": 32408,
- "attenborough": 45860,
- "attend": 9841,
- "attend": 5802,
- "attendance": 11928,
- "attendant": 35424,
- "attended": 8140,
- "attendees": 14648,
- "attending": 6696,
- "attends": 22248,
- "attention": 4936,
- "atters": 30675,
- "atthe": 21489,
- "atti": 49265,
- "atti": 16235,
- "attic": 26766,
- "attire": 21222,
- "attitude": 10648,
- "attitudes": 27611,
- "attle": 14685,
- "attle": 5030,
- "attn": 25677,
- "attor": 8856,
- "attorney": 10372,
- "attorneys": 29113,
- "attrac": 7154,
- "attract": 17010,
- "attracted": 28493,
- "attracting": 31909,
- "attraction": 16807,
- "attractions": 22307,
- "attractive": 12231,
- "attracts": 31024,
- "attribu": 24624,
- "attributed": 37520,
- "attributes": 40763,
- "attu": 43173,
- "atty": 36705,
- "atu": 15191,
- "atu": 24295,
- "atuesday": 34841,
- "atul": 1744,
- "atul": 43948,
- "atum": 48295,
- "atur": 14986,
- "aturday": 29027,
- "ature": 25305,
- "ature": 4490,
- "atures": 7358,
- "atus": 14795,
- "atv": 19598,
- "atwood": 45680,
- "atwork": 39680,
- "atx": 34849,
- "atx": 20136,
- "aty": 40974,
- "aty": 33107,
- "atz": 30432,
- "au": 627,
- "au": 2566,
- "aua": 45906,
- "aub": 45938,
- "auberg": 49382,
- "aubre": 25899,
- "aubrey": 34110,
- "auburn": 42269,
- "auburn": 14534,
- "auc": 24489,
- "auch": 43024,
- "auck": 14588,
- "auckland": 16072,
- "auction": 48160,
- "auction": 6462,
- "auctioned": 41073,
- "auctions": 24876,
- "aucus": 47374,
- "aud": 16107,
- "aud": 19711,
- "audi": 5091,
- "audi": 10277,
- "audible": 33227,
- "audience": 6863,
- "audiences": 22328,
- "audio": 13792,
- "audio": 5766,
- "audiobook": 26282,
- "audit": 12505,
- "audit": 17625,
- "auditi": 37377,
- "audition": 18673,
- "auditions": 21134,
- "auditor": 38050,
- "auditorium": 15063,
- "audre": 16075,
- "audrey": 18812,
- "audu": 27934,
- "audubon": 40275,
- "auer": 33460,
- "auf": 28924,
- "aug": 15397,
- "aug": 5720,
- "auga": 22797,
- "augh": 28310,
- "augh": 14005,
- "augmente": 48356,
- "augmented": 32708,
- "augu": 2610,
- "august": 24353,
- "august": 3171,
- "augusta": 26144,
- "augustine": 27397,
- "augustus": 36835,
- "auk": 19058,
- "aul": 20695,
- "aul": 34391,
- "ault": 47253,
- "ault": 10219,
- "aun": 10608,
- "aun": 38721,
- "aunt": 12685,
- "auntie": 23783,
- "aunty": 29528,
- "aur": 8156,
- "aur": 17282,
- "aura": 27728,
- "aure": 36010,
- "aureli": 35980,
- "auror": 30067,
- "aurora": 13500,
- "aus": 10624,
- "aus": 7630,
- "ausa": 37384,
- "ausbiz": 46543,
- "ausch": 33926,
- "auschwitz": 36523,
- "ausopen": 27831,
- "ausp": 35039,
- "auspicious": 38806,
- "auspol": 8241,
- "aussi": 19762,
- "aussie": 40230,
- "aussie": 14424,
- "aussies": 35727,
- "aust": 26301,
- "aust": 25418,
- "austen": 29885,
- "auster": 25030,
- "austerity": 26982,
- "austin": 12845,
- "austin": 5125,
- "austinmahone": 34678,
- "austr": 2518,
- "australi": 13798,
- "australia": 3444,
- "australian": 23630,
- "australian": 6258,
- "australians": 31488,
- "austri": 8946,
- "austria": 11960,
- "austrian": 20638,
- "ausv": 35206,
- "ausvotes": 34661,
- "aut": 12343,
- "auth": 2381,
- "auth": 38247,
- "authent": 18158,
- "authentic": 41266,
- "authentic": 10369,
- "authentication": 39746,
- "authenticity": 35734,
- "autho": 34552,
- "author": 14447,
- "author": 4358,
- "authored": 37928,
- "authori": 19207,
- "authorities": 12729,
- "authority": 10524,
- "authorization": 48854,
- "authorized": 28463,
- "authors": 10765,
- "auti": 8200,
- "autism": 36256,
- "autism": 11244,
- "autisma": 43324,
- "autistic": 29360,
- "auto": 3917,
- "auto": 5668,
- "autobiography": 31509,
- "autodesk": 40415,
- "autograph": 10657,
- "autograph": 13722,
- "autographed": 16309,
- "autographs": 17376,
- "autoimmune": 45509,
- "autom": 4114,
- "automate": 43203,
- "automated": 19022,
- "automatic": 12126,
- "automatically": 20725,
- "automation": 12328,
- "automobi": 44813,
- "automobile": 25258,
- "automotive": 12607,
- "auton": 13100,
- "autonews": 43975,
- "autonom": 17870,
- "autonomous": 20722,
- "autonomy": 39223,
- "autopsy": 44436,
- "autos": 31118,
- "autoshow": 46788,
- "auts": 21140,
- "autu": 5445,
- "autum": 31783,
- "autumn": 28940,
- "autumn": 6110,
- "autumnal": 35481,
- "aux": 18154,
- "aux": 8909,
- "auxiliary": 37778,
- "av": 722,
- "av": 8484,
- "ava": 12385,
- "avage": 31505,
- "avail": 1651,
- "avail": 16686,
- "availability": 17551,
- "available": 1685,
- "aval": 18012,
- "avalan": 23970,
- "avalanche": 25815,
- "avalley": 45082,
- "avalon": 30436,
- "avan": 27971,
- "avan": 33351,
- "avant": 24305,
- "avar": 33423,
- "avatar": 18219,
- "ave": 10062,
- "ave": 4860,
- "avec": 25828,
- "aved": 47918,
- "avel": 46817,
- "avel": 48088,
- "aven": 5963,
- "aven": 32971,
- "aveng": 21935,
- "avenger": 24799,
- "avengers": 39413,
- "avengers": 12016,
- "avengersendgame": 49342,
- "avent": 22700,
- "avenue": 7042,
- "aver": 8788,
- "aver": 11403,
- "average": 6254,
- "averaged": 37310,
- "averages": 48982,
- "averaging": 35266,
- "avery": 20313,
- "aves": 14023,
- "avfc": 21304,
- "avg": 19452,
- "avgeek": 11114,
- "avi": 3324,
- "avi": 11297,
- "avia": 38710,
- "avian": 24115,
- "aviation": 27717,
- "aviation": 7617,
- "aviator": 38921,
- "aviators": 48011,
- "avici": 46192,
- "avicii": 49158,
- "avid": 19118,
- "avier": 14598,
- "avila": 45339,
- "aville": 40689,
- "avin": 46204,
- "avis": 45163,
- "avis": 19765,
- "aviv": 22130,
- "aviva": 47122,
- "aviz": 27607,
- "avl": 44749,
- "avo": 4496,
- "avo": 32400,
- "avoc": 12291,
- "avocado": 14135,
- "avocados": 48911,
- "avoi": 16797,
- "avoid": 30448,
- "avoid": 5983,
- "avoidance": 47983,
- "avoided": 32103,
- "avoiding": 22086,
- "avoids": 48220,
- "avon": 22790,
- "avon": 17348,
- "avril": 37763,
- "avs": 31896,
- "avut": 44472,
- "avy": 29973,
- "aw": 808,
- "aw": 5557,
- "awa": 4820,
- "awa": 6872,
- "await": 20769,
- "awaited": 20092,
- "awaiting": 14872,
- "awaits": 15635,
- "awak": 9776,
- "awak": 41387,
- "awake": 14695,
- "awaken": 35412,
- "awakening": 17017,
- "awakens": 23191,
- "awal": 42447,
- "awal": 35090,
- "awan": 48869,
- "awan": 20420,
- "awar": 5745,
- "award": 36310,
- "award": 2047,
- "awarded": 7368,
- "awarding": 37089,
- "awards": 34528,
- "awards": 2320,
- "aware": 4427,
- "aware": 7196,
- "awareness": 19217,
- "awareness": 4823,
- "awarenessmonth": 34278,
- "awarenessweek": 35294,
- "away": 21088,
- "away": 1520,
- "aways": 12782,
- "awaz": 18586,
- "awd": 34846,
- "awe": 1693,
- "awe": 14106,
- "aweather": 42142,
- "aweather": 28681,
- "awec": 38916,
- "aweed": 29724,
- "awesom": 16727,
- "awesome": 30390,
- "awesome": 1848,
- "awesomeness": 22430,
- "awful": 13617,
- "awg": 46350,
- "awgs": 35275,
- "awh": 39566,
- "awhile": 19171,
- "awi": 15167,
- "awil": 47271,
- "awilliams": 42163,
- "awk": 8888,
- "awk": 40943,
- "awkward": 42337,
- "awkward": 10304,
- "awn": 46222,
- "awp": 43300,
- "aws": 19658,
- "awsome": 47196,
- "awson": 36286,
- "aww": 11568,
- "awww": 15634,
- "awwww": 26460,
- "awx": 28385,
- "ax": 3165,
- "ax": 9203,
- "axe": 19861,
- "axel": 47889,
- "axel": 32131,
- "axes": 45970,
- "axi": 30672,
- "axial": 46550,
- "axis": 19614,
- "axle": 39003,
- "axx": 47411,
- "ay": 658,
- "ay": 551,
- "aya": 5917,
- "ayala": 39827,
- "ayama": 41194,
- "ayan": 37781,
- "ayan": 16269,
- "ayana": 37400,
- "ayas": 40904,
- "ayat": 44902,
- "ayat": 35720,
- "aye": 21661,
- "aye": 12446,
- "ayer": 24852,
- "ayers": 42783,
- "ayesha": 46570,
- "ayi": 33025,
- "ayles": 44706,
- "ayne": 35669,
- "ayo": 21929,
- "ayo": 18708,
- "ayr": 23002,
- "ayr": 36473,
- "ayrshire": 32687,
- "ays": 785,
- "ayu": 40769,
- "ayurve": 27185,
- "ayurveda": 38986,
- "ayush": 44831,
- "ayy": 32514,
- "ayyy": 41052,
- "az": 854,
- "az": 5468,
- "aza": 22883,
- "azad": 37838,
- "azalea": 34087,
- "azam": 34727,
- "azar": 27911,
- "azcardinals": 48846,
- "aze": 41157,
- "aze": 28485,
- "azer": 19169,
- "azerbai": 20649,
- "azerbaijan": 23888,
- "azhar": 47019,
- "azi": 23914,
- "azi": 18452,
- "azine": 29140,
- "azione": 48335,
- "aziz": 41205,
- "aziz": 29630,
- "azo": 41227,
- "azon": 36854,
- "azores": 42826,
- "azte": 33270,
- "aztec": 34749,
- "aztecs": 49387,
- "azu": 27701,
- "azu": 46963,
- "azul": 39807,
- "azure": 18514,
- "azwx": 30262,
- "azy": 24783,
- "azz": 9817,
- "azz": 26453,
- "azza": 22255,
- "azzi": 18758,
- "azzle": 39974,
- "azzo": 26779,
- "azzur": 37055,
- "azzy": 44534,
- "añ": 23716,
- "años": 41634,
- "b": 65,
- "b": 321,
- "ba": 932,
- "ba": 1792,
- "baa": 33004,
- "baahu": 34145,
- "baahubali": 38663,
- "bab": 1202,
- "bab": 19039,
- "baba": 12631,
- "babe": 31177,
- "babe": 7716,
- "babes": 14253,
- "babies": 6635,
- "babs": 36217,
- "babu": 21623,
- "baby": 7268,
- "baby": 1794,
- "babygirl": 39554,
- "babylon": 31928,
- "babymetal": 45013,
- "babys": 22266,
- "babysitting": 34186,
- "bac": 2791,
- "bac": 25867,
- "bacca": 40708,
- "bach": 11773,
- "bach": 8758,
- "bachchan": 17690,
- "bachel": 11283,
- "bachelor": 45508,
- "bachelor": 16766,
- "bachelore": 26009,
- "bachelorette": 29093,
- "bacher": 49211,
- "back": 1663,
- "back": 893,
- "backbone": 35635,
- "backdrop": 20802,
- "backed": 12721,
- "backer": 22183,
- "backers": 32934,
- "background": 5994,
- "backgrounds": 28215,
- "backing": 14935,
- "backlash": 31519,
- "backpack": 14894,
- "backpacking": 29524,
- "backpacks": 37063,
- "backs": 7562,
- "backseat": 48812,
- "backstage": 9236,
- "backstreet": 46337,
- "backthe": 26127,
- "backto": 18703,
- "backtoschool": 28730,
- "backtothe": 43059,
- "backup": 14415,
- "backward": 37964,
- "backwards": 21283,
- "backyard": 12608,
- "bacon": 48666,
- "bacon": 7104,
- "bacter": 11814,
- "bacteria": 16556,
- "bacterial": 26101,
- "bad": 2564,
- "bad": 2103,
- "bada": 37475,
- "badan": 39149,
- "badass": 11616,
- "baddest": 38112,
- "baden": 36690,
- "bader": 42254,
- "badge": 11301,
- "badger": 32686,
- "badger": 22363,
- "badgers": 22521,
- "badges": 20084,
- "badlands": 43192,
- "badly": 13684,
- "badminton": 21412,
- "badoo": 33192,
- "bados": 25755,
- "bae": 32834,
- "bae": 6855,
- "baek": 18557,
- "baek": 32702,
- "baekhyun": 21572,
- "baes": 46332,
- "baf": 13616,
- "baff": 35693,
- "bafta": 29199,
- "bag": 3408,
- "bag": 3365,
- "bage": 9698,
- "bagel": 28777,
- "bagels": 37489,
- "baggage": 31402,
- "bagged": 34047,
- "bagh": 21659,
- "bagh": 37271,
- "baghdad": 30763,
- "bago": 25105,
- "bags": 6136,
- "bagu": 27749,
- "baguette": 45334,
- "bah": 8372,
- "bah": 16685,
- "baha": 29592,
- "baham": 43718,
- "bahamas": 21224,
- "bahan": 28704,
- "bahn": 33452,
- "bahrain": 12503,
- "bai": 6232,
- "bai": 23339,
- "bail": 22933,
- "bail": 16986,
- "bailey": 27535,
- "bailey": 10180,
- "bain": 40784,
- "bain": 21593,
- "bair": 29059,
- "baird": 40474,
- "bait": 18010,
- "baj": 20713,
- "baja": 40418,
- "baja": 28374,
- "bajo": 32619,
- "bak": 4059,
- "bak": 23742,
- "bakar": 41414,
- "bake": 20736,
- "bake": 11878,
- "baked": 10364,
- "baker": 27303,
- "baker": 7743,
- "bakers": 35293,
- "bakers": 40231,
- "bakersfield": 40149,
- "bakery": 13377,
- "bakes": 43057,
- "bakhta": 44912,
- "bakhtawar": 46937,
- "bakhtawarbz": 47118,
- "baking": 11467,
- "baku": 46417,
- "baku": 31852,
- "bal": 1398,
- "bal": 2282,
- "bala": 20291,
- "balaji": 48694,
- "balance": 42894,
- "balance": 6827,
- "balanced": 15273,
- "balances": 37733,
- "balancing": 23541,
- "balboa": 45098,
- "balcony": 16169,
- "bald": 11153,
- "bald": 14875,
- "baldhead": 29191,
- "baldwin": 16242,
- "bale": 48573,
- "bale": 18873,
- "bales": 42879,
- "bali": 16432,
- "bali": 10900,
- "balkan": 48499,
- "balkans": 42987,
- "ball": 3807,
- "ball": 1069,
- "balla": 42246,
- "ballad": 33472,
- "ballarat": 46645,
- "ballard": 31750,
- "baller": 49194,
- "baller": 25655,
- "ballerina": 34962,
- "ballers": 34173,
- "ballet": 10703,
- "balli": 29406,
- "ballin": 47444,
- "ballin": 33057,
- "balling": 47588,
- "ballis": 46675,
- "ballistic": 36667,
- "ballo": 8871,
- "ballon": 36469,
- "balloon": 13634,
- "balloons": 18130,
- "ballot": 14185,
- "ballots": 35051,
- "ballpark": 26080,
- "ballroom": 15493,
- "balls": 6927,
- "bally": 17275,
- "bally": 29451,
- "balm": 24962,
- "balmain": 45929,
- "balo": 12395,
- "baloch": 23173,
- "balochistan": 21918,
- "balot": 44615,
- "balotelli": 45721,
- "bals": 44154,
- "balsam": 29121,
- "balsamic": 32654,
- "balt": 24441,
- "balti": 8400,
- "baltic": 23817,
- "baltimore": 38502,
- "baltimore": 9582,
- "balu": 38093,
- "bam": 6383,
- "bam": 12686,
- "bama": 20021,
- "bambam": 34538,
- "bambi": 46596,
- "bamboo": 49322,
- "bamboo": 16748,
- "ban": 1159,
- "ban": 2777,
- "bana": 18428,
- "banan": 38410,
- "banana": 8922,
- "bananas": 19121,
- "banc": 39252,
- "band": 4613,
- "band": 1963,
- "banda": 31865,
- "bandai": 42054,
- "bandana": 39265,
- "bandcamp": 32229,
- "banded": 37804,
- "bandic": 44400,
- "bandit": 27639,
- "bandits": 33940,
- "bandra": 41393,
- "bands": 7858,
- "bandung": 29512,
- "bandwagon": 36432,
- "bandwidth": 48859,
- "bane": 9597,
- "banerjee": 48102,
- "banff": 29565,
- "bang": 3524,
- "bang": 6907,
- "bangalore": 14697,
- "banger": 24872,
- "bangers": 38311,
- "banging": 33033,
- "bangkok": 12351,
- "bangla": 10339,
- "bangla": 45928,
- "bangladesh": 11245,
- "bangle": 37634,
- "bangor": 31190,
- "bangs": 27992,
- "bangtan": 39131,
- "bani": 19732,
- "banjo": 27014,
- "bank": 7061,
- "bank": 2723,
- "banker": 27316,
- "bankers": 30599,
- "bankholiday": 48868,
- "banking": 9566,
- "bankno": 49201,
- "bankof": 39120,
- "bankrup": 21904,
- "bankrupt": 23077,
- "bankrupt": 37288,
- "bankruptcy": 23978,
- "banks": 6367,
- "banksy": 33350,
- "bann": 5304,
- "banned": 12012,
- "banner": 9185,
- "banners": 23145,
- "banning": 26246,
- "bannon": 29710,
- "bano": 42947,
- "banquet": 14254,
- "bans": 15146,
- "bant": 23301,
- "bant": 46657,
- "banter": 25535,
- "bao": 39487,
- "bao": 20408,
- "bap": 7415,
- "bap": 23754,
- "bapti": 15477,
- "baptism": 36765,
- "baptist": 13274,
- "baptiste": 45770,
- "baptized": 45400,
- "bar": 1040,
- "bar": 2411,
- "bara": 19345,
- "barack": 18670,
- "barack": 22481,
- "barackobama": 18885,
- "barak": 47419,
- "barak": 16260,
- "barang": 38446,
- "barb": 24173,
- "barb": 20913,
- "barbados": 26992,
- "barbar": 7906,
- "barbara": 10937,
- "barbarian": 42530,
- "barbe": 18372,
- "barbecue": 23501,
- "barber": 19517,
- "barber": 12296,
- "barbershop": 37707,
- "barbican": 47668,
- "barbie": 16923,
- "barca": 22942,
- "barcel": 6134,
- "barcelon": 47820,
- "barcelona": 6412,
- "barclay": 48877,
- "barclay": 45276,
- "barclays": 29538,
- "bard": 39812,
- "bard": 17514,
- "bare": 16023,
- "bare": 14318,
- "barefoot": 30327,
- "barely": 12684,
- "bargain": 15076,
- "bargaining": 41282,
- "bargains": 34126,
- "barge": 28272,
- "bari": 21428,
- "bari": 28016,
- "barista": 31078,
- "barit": 46300,
- "bark": 32333,
- "bark": 16560,
- "barker": 20618,
- "barking": 32676,
- "barkley": 30266,
- "barley": 22607,
- "barlow": 25483,
- "barn": 10490,
- "barn": 10942,
- "barnab": 43272,
- "barnard": 44332,
- "barne": 42527,
- "barnes": 13102,
- "barnet": 41943,
- "barnett": 27650,
- "barney": 24563,
- "barns": 43759,
- "barnsley": 37109,
- "barnsley": 32153,
- "baro": 17422,
- "baro": 30817,
- "baron": 48371,
- "baron": 19349,
- "baroness": 45056,
- "barons": 45596,
- "baroque": 25065,
- "barr": 39473,
- "barr": 22492,
- "barra": 28442,
- "barra": 33542,
- "barrabest": 41376,
- "barrac": 40835,
- "barracks": 35822,
- "barre": 13840,
- "barre": 38257,
- "barred": 33261,
- "barrel": 11703,
- "barrels": 22059,
- "barren": 46743,
- "barrett": 18701,
- "barri": 8660,
- "barric": 29189,
- "barrie": 27090,
- "barrier": 15706,
- "barriers": 16321,
- "barrington": 48954,
- "barron": 34881,
- "barrow": 42568,
- "barrow": 24983,
- "barry": 18028,
- "barry": 8461,
- "barrymore": 49310,
- "bars": 8616,
- "barstool": 44826,
- "bart": 14838,
- "bart": 12870,
- "bartender": 33498,
- "barthol": 48989,
- "bartlett": 37130,
- "bartol": 38209,
- "barton": 48853,
- "barton": 20345,
- "baru": 16356,
- "barun": 38278,
- "barunsob": 41398,
- "barça": 32788,
- "bas": 1244,
- "bas": 11420,
- "basa": 26142,
- "base": 2776,
- "base": 4579,
- "baseball": 23479,
- "baseball": 3470,
- "based": 35196,
- "based": 2812,
- "basel": 42803,
- "basel": 20903,
- "baseline": 40648,
- "baseman": 45910,
- "basement": 14792,
- "bases": 20496,
- "bash": 20462,
- "bash": 10972,
- "bashing": 37545,
- "bashir": 42799,
- "basic": 40452,
- "basic": 7696,
- "basically": 9125,
- "basics": 15825,
- "basil": 19225,
- "basil": 14936,
- "basilica": 27879,
- "basin": 16117,
- "basing": 47321,
- "basis": 12278,
- "baske": 3713,
- "basket": 10338,
- "basketball": 40023,
- "basketball": 3835,
- "baskets": 27787,
- "basking": 39769,
- "basque": 37175,
- "bass": 22831,
- "bass": 5992,
- "bassett": 45992,
- "bassist": 26496,
- "bast": 28092,
- "basti": 8559,
- "bastille": 41874,
- "bat": 2121,
- "bat": 6575,
- "bata": 39277,
- "batb": 33962,
- "batch": 9413,
- "bate": 25034,
- "bate": 28277,
- "bateman": 41635,
- "bates": 21727,
- "batgirl": 46460,
- "bath": 6064,
- "bath": 5713,
- "bathing": 20144,
- "bathro": 21201,
- "bathroom": 8470,
- "bathrooms": 26434,
- "baths": 19442,
- "bathtub": 39942,
- "bathurst": 36365,
- "bati": 23362,
- "bati": 37589,
- "batman": 27811,
- "batman": 7223,
- "baton": 24331,
- "bats": 14984,
- "batsman": 35432,
- "batt": 2407,
- "batt": 48595,
- "battalion": 20820,
- "batter": 12654,
- "batter": 31855,
- "battered": 34375,
- "batteries": 16666,
- "battersea": 35839,
- "battery": 7870,
- "batting": 17401,
- "battle": 7344,
- "battle": 3528,
- "battled": 37837,
- "battlefield": 16055,
- "battlefront": 42214,
- "battleof": 47560,
- "battles": 14213,
- "battleship": 35165,
- "battling": 17268,
- "bau": 6055,
- "bau": 34840,
- "bauer": 22903,
- "baugh": 41301,
- "baum": 19840,
- "bautista": 31881,
- "bav": 21075,
- "bavaria": 39977,
- "bavarian": 44458,
- "baw": 19808,
- "bax": 21216,
- "baxter": 26168,
- "bay": 3631,
- "bay": 2174,
- "baya": 31573,
- "bayan": 43895,
- "bayarea": 28260,
- "bayer": 48548,
- "bayer": 29183,
- "bayern": 14666,
- "baylor": 21721,
- "bayou": 33955,
- "bays": 40156,
- "baz": 10430,
- "baz": 25268,
- "bazaar": 20070,
- "bazar": 49298,
- "bb": 1174,
- "bb": 3529,
- "bba": 27762,
- "bball": 15664,
- "bbb": 33535,
- "bbc": 5123,
- "bbc": 5188,
- "bbcc": 39052,
- "bbce": 33818,
- "bbcnews": 29370,
- "bbcone": 28259,
- "bbcqt": 37343,
- "bbcr": 35802,
- "bbcra": 17115,
- "bbcradi": 49213,
- "bbcradio": 22876,
- "bbcsport": 49321,
- "bbcspringwatch": 37358,
- "bbctwo": 40395,
- "bbcworld": 47340,
- "bbe": 37559,
- "bbed": 9077,
- "bber": 7933,
- "bbers": 36494,
- "bbhutto": 28085,
- "bbhuttozardari": 28135,
- "bbi": 37047,
- "bbin": 38553,
- "bbing": 9787,
- "bbins": 42504,
- "bbl": 21961,
- "bble": 26570,
- "bble": 5924,
- "bbled": 37626,
- "bbles": 18093,
- "bblo": 21231,
- "bbloggers": 26614,
- "bbly": 43031,
- "bbm": 25382,
- "bbmas": 22145,
- "bbn": 28427,
- "bbnaija": 20984,
- "bbo": 21892,
- "bbq": 41270,
- "bbq": 6726,
- "bbs": 10002,
- "bbuk": 45978,
- "bby": 11166,
- "bby": 3810,
- "bc": 3116,
- "bc": 2162,
- "bcc": 41509,
- "bcci": 36138,
- "bce": 36510,
- "bcfc": 34359,
- "bch": 36684,
- "bcn": 25766,
- "bcoz": 46373,
- "bcpoli": 24389,
- "bcs": 24909,
- "bcu": 28299,
- "bd": 24358,
- "bd": 11165,
- "bday": 33022,
- "bday": 5781,
- "bdg": 48418,
- "bds": 26732,
- "be": 571,
- "be": 655,
- "bea": 21886,
- "bea": 20925,
- "beach": 6068,
- "beach": 2117,
- "beaches": 12183,
- "beachlife": 43824,
- "beacon": 36883,
- "beacon": 18858,
- "beacons": 39395,
- "bead": 31621,
- "bead": 23557,
- "beaded": 26661,
- "beads": 14099,
- "beagle": 30044,
- "beak": 36498,
- "beal": 45769,
- "beale": 39717,
- "beam": 35339,
- "beam": 13663,
- "beams": 23993,
- "bean": 16471,
- "bean": 5328,
- "beanie": 21534,
- "beans": 8302,
- "bear": 6375,
- "bear": 4298,
- "bearable": 38608,
- "bearcats": 33242,
- "beard": 26157,
- "beard": 9052,
- "bearded": 28459,
- "beardown": 43687,
- "beards": 33020,
- "bearer": 30686,
- "bearers": 47986,
- "bearing": 18370,
- "bearings": 42083,
- "bearish": 34829,
- "bears": 6182,
- "beasley": 43349,
- "beast": 20847,
- "beast": 6957,
- "beastmode": 43076,
- "beasts": 21771,
- "beat": 3774,
- "beat": 3018,
- "beaten": 10864,
- "beater": 41974,
- "beati": 44386,
- "beating": 10078,
- "beatles": 11961,
- "beatport": 31421,
- "beatrice": 36922,
- "beats": 6289,
- "beatthe": 40550,
- "beatty": 39903,
- "beatz": 33363,
- "beau": 1016,
- "beau": 14298,
- "beaufort": 45423,
- "beaumont": 32857,
- "beaut": 24559,
- "beauti": 1154,
- "beauties": 14874,
- "beautiful": 13662,
- "beautiful": 1215,
- "beautifully": 10627,
- "beauty": 12881,
- "beauty": 2488,
- "beav": 23260,
- "beaver": 26432,
- "beaver": 22874,
- "beavers": 34513,
- "beavs": 43909,
- "bebe": 23331,
- "bec": 6899,
- "bec": 10773,
- "became": 5464,
- "because": 32714,
- "because": 1631,
- "becca": 27088,
- "bech": 44055,
- "beck": 8256,
- "beck": 10396,
- "becker": 26918,
- "beckett": 27249,
- "beckham": 18764,
- "becky": 32406,
- "becky": 18921,
- "become": 2989,
- "becomes": 6766,
- "becoming": 6208,
- "bed": 4152,
- "bed": 2722,
- "bedding": 31761,
- "bedford": 20779,
- "bedi": 39181,
- "bedro": 18415,
- "bedroom": 8411,
- "bedrooms": 23996,
- "beds": 13914,
- "bedside": 47473,
- "bedtime": 22115,
- "bee": 6097,
- "bee": 5028,
- "beech": 32733,
- "beech": 27596,
- "beef": 21703,
- "beef": 6529,
- "beek": 37915,
- "been": 33986,
- "been": 1025,
- "beep": 33432,
- "beer": 8885,
- "beer": 2544,
- "beers": 10907,
- "bees": 36249,
- "bees": 9100,
- "beet": 12582,
- "beet": 28621,
- "beethoven": 23656,
- "beetle": 16534,
- "beetles": 36317,
- "beetro": 29251,
- "beetroot": 31638,
- "beets": 36087,
- "before": 20898,
- "before": 1348,
- "beg": 2219,
- "beg": 22401,
- "began": 8636,
- "begg": 36769,
- "begging": 25371,
- "begin": 19197,
- "begin": 4947,
- "beginner": 24351,
- "beginners": 21930,
- "beginning": 5791,
- "beginnings": 22581,
- "begins": 4635,
- "begs": 43531,
- "begun": 10514,
- "beh": 21971,
- "beh": 41612,
- "beha": 5737,
- "behalf": 11470,
- "behave": 28825,
- "behaved": 41617,
- "behavi": 6149,
- "behaving": 40745,
- "behavior": 10461,
- "behavioral": 25135,
- "behaviors": 37741,
- "behaviour": 14655,
- "behavioural": 46019,
- "behe": 42329,
- "behin": 2335,
- "behind": 2403,
- "behindthe": 21104,
- "behindthescenes": 26253,
- "behold": 15929,
- "bei": 38991,
- "bei": 23227,
- "beige": 26677,
- "beij": 11547,
- "beijing": 11796,
- "bein": 39117,
- "bein": 24168,
- "being": 13481,
- "being": 1265,
- "beings": 17998,
- "beingsalmankhan": 19637,
- "beir": 20176,
- "beirut": 22352,
- "beit": 26963,
- "bek": 46846,
- "bek": 26135,
- "bekind": 46691,
- "bel": 1308,
- "bel": 3543,
- "bela": 30555,
- "belarus": 30849,
- "belated": 20256,
- "belfast": 35100,
- "belfast": 10015,
- "belgi": 7001,
- "belgian": 15008,
- "belgium": 10239,
- "belgrade": 30502,
- "beli": 1859,
- "beli": 45842,
- "belichick": 46132,
- "belie": 20854,
- "beliebers": 27714,
- "belief": 14802,
- "beliefs": 20575,
- "believ": 4972,
- "believe": 15819,
- "believe": 2649,
- "believed": 13380,
- "believein": 24294,
- "believeinfilm": 37375,
- "believer": 26057,
- "believers": 28434,
- "believes": 12017,
- "believing": 19551,
- "belinda": 44415,
- "belize": 27990,
- "bell": 5417,
- "bell": 3718,
- "bella": 18282,
- "bella": 10418,
- "bellamy": 34461,
- "bellator": 31985,
- "belle": 13587,
- "belle": 11496,
- "belles": 40678,
- "bellevue": 32715,
- "belli": 43335,
- "bellletstalk": 42695,
- "bello": 21954,
- "bells": 12811,
- "bellum": 35493,
- "belly": 25901,
- "belly": 10404,
- "belmont": 25612,
- "belo": 8379,
- "belo": 41649,
- "belong": 16453,
- "belong": 13596,
- "belonged": 39893,
- "belonging": 28193,
- "belongs": 14395,
- "beloved": 9363,
- "below": 3788,
- "bels": 43127,
- "belt": 36416,
- "belt": 7373,
- "belts": 21888,
- "belvedere": 48003,
- "ben": 1465,
- "ben": 3518,
- "bena": 46249,
- "bench": 17770,
- "bench": 8771,
- "benches": 36349,
- "benchmark": 31775,
- "bend": 22100,
- "bend": 13332,
- "bender": 22551,
- "bendigo": 48197,
- "bending": 33897,
- "bene": 12091,
- "bene": 47151,
- "beneath": 16850,
- "bened": 13216,
- "benedic": 24402,
- "benedict": 47896,
- "benedict": 18027,
- "benef": 3260,
- "benefici": 38593,
- "beneficial": 24660,
- "beneficiaries": 42160,
- "benefit": 6399,
- "benefited": 48266,
- "benefiting": 29474,
- "benefits": 5465,
- "benefitting": 47222,
- "benevol": 47060,
- "benfica": 33873,
- "beng": 6962,
- "bengal": 17404,
- "bengal": 16374,
- "bengali": 33774,
- "bengals": 23737,
- "bengaluru": 21707,
- "benghazi": 25967,
- "benin": 40296,
- "benitez": 46711,
- "benjam": 10550,
- "benjamin": 38647,
- "benjamin": 12131,
- "benji": 43548,
- "benn": 39097,
- "bennet": 48536,
- "bennett": 12186,
- "benny": 42369,
- "benny": 20595,
- "beno": 35268,
- "benoit": 44373,
- "benson": 19578,
- "bent": 9809,
- "bent": 18369,
- "bentley": 16859,
- "benton": 30812,
- "benz": 27937,
- "benz": 13470,
- "ber": 867,
- "ber": 1516,
- "bera": 32802,
- "bere": 17458,
- "bered": 9193,
- "beren": 33654,
- "beret": 41658,
- "berg": 12022,
- "berg": 3294,
- "bergen": 22918,
- "berger": 35933,
- "berger": 13873,
- "bergh": 35120,
- "bergman": 42597,
- "bergs": 43592,
- "berk": 15633,
- "berke": 14639,
- "berkeley": 46049,
- "berkeley": 16667,
- "berkshire": 27300,
- "berlin": 23532,
- "berlin": 5891,
- "berman": 21514,
- "bermu": 21032,
- "bermuda": 24644,
- "bern": 9195,
- "bern": 18382,
- "bernade": 46242,
- "bernar": 11962,
- "bernard": 14579,
- "bernardino": 35328,
- "bernardo": 27137,
- "bernardo": 28696,
- "bernardokath": 29081,
- "bernat": 40578,
- "berni": 18798,
- "bernie": 40093,
- "bernie": 10503,
- "berniesanders": 23745,
- "bernstein": 33936,
- "berra": 15089,
- "berries": 8319,
- "berry": 15334,
- "berry": 3488,
- "bers": 6408,
- "berser": 39037,
- "bert": 17340,
- "bert": 2358,
- "berta": 45187,
- "berth": 28317,
- "bertie": 47182,
- "berto": 34073,
- "bertr": 36962,
- "bertrand": 41594,
- "berts": 30205,
- "berty": 35973,
- "berwick": 40407,
- "bery": 11411,
- "bes": 26911,
- "bes": 3635,
- "beside": 13519,
- "besides": 17596,
- "bespoke": 15612,
- "bess": 43791,
- "best": 3419,
- "best": 949,
- "bestbuy": 29749,
- "bestest": 31199,
- "bestfan": 23880,
- "bestfanarmy": 24590,
- "bestfriend": 29832,
- "bestfriend": 11856,
- "bestfriends": 23555,
- "besti": 35210,
- "bestie": 17188,
- "besties": 27346,
- "besto": 28615,
- "bestof": 27892,
- "bestof": 39533,
- "bestseller": 25841,
- "bestselling": 28632,
- "bet": 1051,
- "bet": 4430,
- "beta": 43188,
- "beta": 9505,
- "betes": 10255,
- "beth": 9993,
- "beth": 4892,
- "bethan": 18781,
- "bethany": 39130,
- "bethany": 27952,
- "bethe": 12624,
- "bethel": 33410,
- "bethesda": 32527,
- "bethle": 30760,
- "bethlehem": 31827,
- "betis": 45590,
- "beto": 33721,
- "betra": 18436,
- "betrayal": 33171,
- "betrayed": 35692,
- "bets": 17107,
- "betsy": 28946,
- "bett": 17715,
- "bett": 20489,
- "betta": 36387,
- "bette": 35855,
- "better": 10320,
- "better": 1539,
- "bettertogether": 47392,
- "betting": 14319,
- "betts": 38637,
- "betty": 36175,
- "betty": 14350,
- "between": 1957,
- "beu": 38660,
- "bev": 40324,
- "bev": 30968,
- "bever": 9924,
- "beverage": 18694,
- "beverages": 28521,
- "beverley": 39165,
- "beverly": 30906,
- "beverly": 16728,
- "beverlyhills": 45363,
- "beware": 14532,
- "bewithyou": 36787,
- "bex": 18676,
- "bex": 24748,
- "bexhill": 49200,
- "bey": 3234,
- "bey": 6767,
- "beyon": 11447,
- "beyonce": 16632,
- "beyoncé": 19219,
- "beyond": 22246,
- "beyond": 4432,
- "bez": 28592,
- "bez": 46764,
- "bezos": 45000,
- "bf": 19858,
- "bf": 7990,
- "bfc": 37183,
- "bff": 11984,
- "bffs": 31462,
- "bfi": 34244,
- "bg": 16674,
- "bg": 11295,
- "bgc": 47598,
- "bgs": 47963,
- "bgt": 40665,
- "bh": 9930,
- "bh": 13603,
- "bha": 6144,
- "bha": 33068,
- "bhafc": 30779,
- "bhagat": 49136,
- "bhai": 48370,
- "bhai": 20508,
- "bhak": 34501,
- "bham": 31874,
- "bham": 23491,
- "bhan": 27356,
- "bhand": 48679,
- "bhar": 9108,
- "bharat": 27454,
- "bharat": 17430,
- "bharti": 46803,
- "bhat": 23784,
- "bhatt": 36143,
- "bhav": 44950,
- "bhi": 28943,
- "bhi": 21955,
- "bhk": 45070,
- "bhm": 38741,
- "bho": 19721,
- "bhopal": 44573,
- "bhp": 29776,
- "bhs": 29195,
- "bhu": 9172,
- "bhuban": 38729,
- "bhubanes": 41213,
- "bhubaneswar": 45888,
- "bhushan": 40884,
- "bhutan": 32391,
- "bhutto": 30153,
- "bi": 717,
- "bi": 3035,
- "bia": 3841,
- "biaf": 26961,
- "biafra": 36355,
- "bian": 19531,
- "bian": 9027,
- "bianca": 25854,
- "bianchi": 45720,
- "bians": 28141,
- "bias": 11268,
- "biased": 22178,
- "bib": 44607,
- "bib": 21022,
- "bibi": 31182,
- "bibl": 20912,
- "bible": 26738,
- "bible": 7583,
- "bibli": 23465,
- "biblical": 22841,
- "biblio": 49131,
- "bic": 5960,
- "bic": 10675,
- "bice": 35589,
- "biceps": 46735,
- "bick": 27238,
- "bicy": 9247,
- "bicycle": 11652,
- "bicycles": 31326,
- "bid": 21035,
- "bid": 5553,
- "bidding": 23237,
- "bide": 45178,
- "biden": 19451,
- "bids": 16148,
- "bie": 5561,
- "bie": 4173,
- "bieber": 48725,
- "bieber": 7535,
- "bien": 19176,
- "bien": 25742,
- "biennale": 33776,
- "biennial": 36609,
- "bier": 27226,
- "bier": 23508,
- "bies": 7867,
- "big": 1915,
- "big": 1205,
- "bigbaldhead": 30325,
- "bigbang": 41680,
- "bigbang": 23734,
- "bigdata": 9440,
- "bige": 37762,
- "bigfoot": 37095,
- "bigg": 15312,
- "bigg": 35399,
- "biggboss": 27056,
- "bigger": 6806,
- "biggest": 19483,
- "biggest": 3505,
- "biggie": 28392,
- "biggs": 46507,
- "bigh": 18106,
- "bighit": 35508,
- "bigo": 14278,
- "bigolive": 20735,
- "bigotry": 37269,
- "bigre": 36330,
- "bih": 33471,
- "bihar": 22849,
- "bij": 42478,
- "bik": 30306,
- "bike": 11686,
- "bike": 3701,
- "biker": 36100,
- "biker": 23449,
- "bikers": 29468,
- "bikes": 9227,
- "bikin": 12638,
- "biking": 19157,
- "bikini": 14531,
- "bil": 3092,
- "bil": 20506,
- "bilateral": 25599,
- "bilbao": 34802,
- "bild": 35512,
- "bile": 25943,
- "bilingual": 29623,
- "bilities": 13582,
- "bility": 4694,
- "bill": 4444,
- "bill": 2886,
- "billboard": 10856,
- "billboards": 34741,
- "billed": 37558,
- "billi": 7693,
- "billie": 23990,
- "billing": 31797,
- "billings": 43615,
- "billion": 14520,
- "billion": 5729,
- "billionaire": 19475,
- "billionaires": 41590,
- "billions": 20742,
- "bills": 9810,
- "billsmafia": 48845,
- "billy": 15626,
- "billy": 6814,
- "bilt": 44770,
- "bilt": 26654,
- "bim": 46737,
- "bim": 24775,
- "bin": 4849,
- "bin": 5346,
- "binance": 43520,
- "binary": 23497,
- "bind": 44513,
- "binder": 30541,
- "binding": 21287,
- "bine": 34848,
- "bing": 24818,
- "bing": 5665,
- "binge": 22600,
- "bingham": 43785,
- "bingham": 47296,
- "bingo": 18418,
- "bino": 29172,
- "bino": 24313,
- "bins": 26934,
- "bint": 43647,
- "bio": 2830,
- "bio": 5162,
- "biode": 43502,
- "biodegradable": 47740,
- "biodiversity": 17428,
- "biof": 45158,
- "biographical": 49232,
- "biography": 15423,
- "biological": 18821,
- "biologist": 35149,
- "biology": 9796,
- "biom": 13010,
- "biomar": 44549,
- "biomass": 36746,
- "biome": 26218,
- "biomed": 29280,
- "biomedical": 33117,
- "bionic": 46201,
- "biop": 15009,
- "biopic": 27942,
- "bios": 48505,
- "biotech": 22514,
- "biotechnology": 40375,
- "biotic": 33773,
- "biotics": 41371,
- "bious": 31845,
- "bipartisan": 32266,
- "bipolar": 37097,
- "bique": 27809,
- "bir": 921,
- "bir": 16284,
- "birch": 31569,
- "birch": 22907,
- "bird": 6908,
- "bird": 3329,
- "birdie": 29612,
- "birdies": 45618,
- "birding": 15851,
- "birdman": 41915,
- "birdphotography": 47999,
- "birds": 41951,
- "birds": 4337,
- "birdwatching": 33497,
- "birk": 48289,
- "birken": 40661,
- "birmin": 37482,
- "birmingham": 38580,
- "birmingham": 7720,
- "birth": 1128,
- "birth": 5397,
- "birthday": 7381,
- "birthday": 1166,
- "birthdays": 17954,
- "birthplace": 31429,
- "biryani": 46489,
- "bis": 5064,
- "bis": 14461,
- "biscu": 11532,
- "biscuit": 18731,
- "biscuits": 18248,
- "bisexual": 36829,
- "bish": 33690,
- "bish": 31461,
- "bishop": 20625,
- "bishop": 8024,
- "bishops": 31579,
- "bison": 19741,
- "bistro": 21770,
- "bit": 3010,
- "bit": 2010,
- "bitcoin": 30848,
- "bitcoin": 6366,
- "bite": 41613,
- "biting": 23016,
- "bits": 7747,
- "bitt": 39251,
- "bius": 45525,
- "bix": 46579,
- "biz": 8212,
- "biz": 5431,
- "biza": 47013,
- "bizar": 14886,
- "bizarre": 16965,
- "bizhour": 39462,
- "bizitalk": 34929,
- "bj": 4592,
- "bj": 18229,
- "bjj": 27437,
- "bjor": 26525,
- "bjp": 37264,
- "bjp": 6178,
- "bk": 15099,
- "bk": 14083,
- "bkk": 36433,
- "bl": 833,
- "bl": 9467,
- "bla": 2205,
- "bla": 19630,
- "blac": 21008,
- "black": 2025,
- "black": 1449,
- "blackand": 12809,
- "blackandwhite": 23688,
- "blackandwhite": 19506,
- "blackandwhitephotography": 27544,
- "blackberry": 16470,
- "blackbird": 38526,
- "blackburn": 23789,
- "blackfish": 42193,
- "blackfriday": 16445,
- "blackgirl": 43591,
- "blackhawks": 19203,
- "blackhistory": 46982,
- "blackhistorymonth": 20135,
- "blacklist": 30295,
- "blacklivesmatter": 23467,
- "blackmail": 47295,
- "blackops": 43519,
- "blackout": 21733,
- "blackpanther": 36592,
- "blackpink": 20339,
- "blackpool": 21031,
- "blacks": 16351,
- "blackwell": 42642,
- "blad": 36635,
- "bladder": 33593,
- "blade": 10264,
- "blades": 16893,
- "blah": 29212,
- "blaine": 32457,
- "blair": 31824,
- "blair": 14749,
- "blake": 20229,
- "blake": 9579,
- "blame": 10695,
- "blamed": 32906,
- "blames": 27841,
- "blaming": 29287,
- "blan": 4609,
- "blanc": 30936,
- "blanc": 13301,
- "blanca": 40670,
- "blanchard": 40177,
- "blanche": 34875,
- "blanchett": 49378,
- "blanco": 26801,
- "bland": 44372,
- "bland": 30799,
- "blank": 15134,
- "blanket": 12878,
- "blankets": 24042,
- "blanks": 48599,
- "blasio": 35553,
- "blasphe": 36622,
- "blast": 46349,
- "blast": 5964,
- "blasted": 38976,
- "blaster": 36341,
- "blasting": 26178,
- "blasts": 23067,
- "blat": 22048,
- "blatant": 41391,
- "blatt": 39138,
- "blau": 45307,
- "blaz": 43413,
- "blaze": 15497,
- "blazer": 17606,
- "blazers": 16984,
- "blazing": 25267,
- "bldg": 22981,
- "ble": 1447,
- "ble": 1059,
- "bleach": 27034,
- "bleak": 40355,
- "bled": 12006,
- "bleed": 23027,
- "bleed": 24791,
- "bleedblue": 39160,
- "bleeding": 20311,
- "bleeds": 47339,
- "blen": 25651,
- "blend": 10780,
- "blended": 25813,
- "blender": 25066,
- "blending": 34307,
- "blends": 28572,
- "bler": 31305,
- "bler": 11979,
- "blers": 26930,
- "bles": 5763,
- "bless": 9640,
- "bless": 5387,
- "blessed": 4411,
- "blessing": 10729,
- "blessings": 11185,
- "bleu": 30114,
- "blew": 18176,
- "bley": 43176,
- "bli": 1450,
- "bli": 28051,
- "blin": 9678,
- "blin": 5406,
- "blind": 17248,
- "blind": 8351,
- "blinded": 49149,
- "blindness": 38812,
- "blinds": 32449,
- "bling": 39764,
- "bling": 7097,
- "blink": 18976,
- "bliss": 28531,
- "bliss": 12893,
- "blissful": 42145,
- "blit": 39327,
- "blitz": 42151,
- "blitz": 17548,
- "blizz": 13075,
- "blizzard": 16111,
- "blk": 42950,
- "blk": 22872,
- "blm": 30957,
- "bln": 47348,
- "blo": 1204,
- "blo": 25505,
- "blob": 49312,
- "bloc": 30961,
- "block": 4638,
- "block": 4593,
- "blockade": 33489,
- "blockbuster": 19939,
- "blockchain": 6653,
- "blocked": 9106,
- "blocker": 44767,
- "blocking": 12652,
- "blocks": 10113,
- "blog": 16376,
- "blog": 2589,
- "blogg": 33282,
- "blogged": 41380,
- "blogger": 21352,
- "blogger": 7806,
- "bloggerrt": 48898,
- "bloggers": 11627,
- "blogging": 18090,
- "blogpost": 41842,
- "blogs": 16682,
- "bloke": 24384,
- "blom": 48996,
- "blon": 7958,
- "blond": 32426,
- "blonde": 10711,
- "blondes": 45130,
- "blondie": 39236,
- "bloo": 2373,
- "blood": 9231,
- "blood": 3590,
- "blooded": 41946,
- "bloodh": 48480,
- "bloods": 39539,
- "bloody": 38568,
- "bloody": 9468,
- "bloom": 7311,
- "bloom": 10257,
- "bloomberg": 43109,
- "bloomberg": 21238,
- "bloomfield": 40342,
- "blooming": 45175,
- "blooming": 19266,
- "bloomington": 34731,
- "blooms": 21439,
- "bloss": 10017,
- "blossom": 14472,
- "blossoms": 21916,
- "blot": 41710,
- "blou": 44506,
- "blouse": 23525,
- "blow": 15230,
- "blow": 10211,
- "blower": 25832,
- "blowing": 12087,
- "blown": 11848,
- "blowout": 34857,
- "blows": 21063,
- "blr": 47250,
- "bls": 39458,
- "blu": 1263,
- "blu": 10273,
- "blue": 3829,
- "blue": 1746,
- "bluebells": 47150,
- "blueberries": 29551,
- "blueberry": 18251,
- "bluebird": 40747,
- "bluec": 43194,
- "bluef": 41174,
- "bluegrass": 26241,
- "bluejays": 18684,
- "blueprint": 30594,
- "blues": 17566,
- "blues": 5159,
- "blueslyrix": 47068,
- "bluet": 13469,
- "bluetooth": 14052,
- "bluewave": 40025,
- "bluff": 27232,
- "bluffs": 48844,
- "blum": 34818,
- "blumen": 38714,
- "blun": 34472,
- "blunt": 19305,
- "blur": 12102,
- "blur": 27976,
- "bluray": 36818,
- "blurred": 38013,
- "blurry": 21977,
- "blush": 22889,
- "blvd": 12578,
- "bly": 20930,
- "bly": 4426,
- "bm": 4773,
- "bm": 15916,
- "bma": 42573,
- "bmc": 27807,
- "bmi": 40642,
- "bmo": 39083,
- "bms": 34074,
- "bmw": 26637,
- "bmw": 7869,
- "bmx": 22535,
- "bn": 10496,
- "bn": 7992,
- "bnb": 20010,
- "bnha": 49336,
- "bnp": 47910,
- "bnw": 35903,
- "bo": 647,
- "bo": 2525,
- "boa": 14732,
- "boar": 7837,
- "boar": 35473,
- "board": 10419,
- "board": 1972,
- "boarded": 43052,
- "boarder": 37414,
- "boardgame": 47829,
- "boardgames": 32646,
- "boarding": 10086,
- "boardroom": 47937,
- "boards": 7963,
- "boardwalk": 29043,
- "boast": 44467,
- "boasts": 30309,
- "boat": 12426,
- "boat": 4440,
- "boath": 45461,
- "boating": 21951,
- "boats": 10080,
- "boatsales": 46244,
- "bob": 8444,
- "bob": 4423,
- "boba": 39948,
- "bobb": 16891,
- "bobble": 38796,
- "bobblehead": 33451,
- "bobby": 17847,
- "bobby": 7816,
- "bobc": 26153,
- "bobcat": 37896,
- "bobcats": 27568,
- "bobo": 38939,
- "bobs": 45533,
- "boc": 27307,
- "boc": 39042,
- "boca": 26094,
- "bock": 24961,
- "bod": 17904,
- "bod": 26340,
- "boda": 42030,
- "bode": 28452,
- "bode": 40429,
- "bodega": 47350,
- "bodied": 36892,
- "bodies": 9799,
- "bodily": 49119,
- "body": 7132,
- "body": 1774,
- "bodybuilding": 24538,
- "bodyguard": 35565,
- "boe": 23476,
- "boe": 21773,
- "boeh": 38002,
- "boehner": 44599,
- "boeing": 48135,
- "boeing": 11857,
- "boer": 44889,
- "boer": 40768,
- "bog": 23426,
- "bog": 28318,
- "bogo": 35769,
- "bogota": 47059,
- "bogus": 42907,
- "boh": 43238,
- "bohe": 40541,
- "bohemi": 21552,
- "bohemian": 25753,
- "boho": 25444,
- "boi": 37129,
- "boi": 12673,
- "boil": 31332,
- "boiled": 23886,
- "boiler": 28212,
- "boiler": 25615,
- "boiling": 32019,
- "bois": 47742,
- "bois": 21640,
- "boise": 23304,
- "bok": 26671,
- "bok": 15289,
- "boko": 30929,
- "boks": 40216,
- "bol": 2860,
- "bol": 8413,
- "bola": 12840,
- "bold": 26975,
- "bold": 8911,
- "boldand": 48413,
- "boldly": 44778,
- "boli": 12722,
- "bolic": 27343,
- "bolivia": 28628,
- "bollah": 36336,
- "bolly": 25302,
- "bollywood": 32448,
- "bollywood": 9604,
- "bolo": 40236,
- "bolog": 22818,
- "bologna": 27513,
- "bolster": 47304,
- "bolt": 13131,
- "bolton": 48757,
- "bolton": 16598,
- "bolts": 26028,
- "bom": 3012,
- "bom": 19469,
- "bomb": 18091,
- "bomb": 6331,
- "bombar": 25544,
- "bombardier": 42700,
- "bombay": 48602,
- "bombay": 23890,
- "bombed": 24542,
- "bomber": 15436,
- "bombers": 21786,
- "bombing": 14475,
- "bombings": 43236,
- "bombs": 14410,
- "bombshell": 36340,
- "bon": 1871,
- "bon": 4216,
- "bona": 33342,
- "bonanza": 40304,
- "bond": 37022,
- "bond": 6826,
- "bonded": 37390,
- "bondi": 40092,
- "bonding": 19609,
- "bonds": 15786,
- "bone": 22502,
- "bone": 6195,
- "bones": 9476,
- "bonfire": 23151,
- "bongo": 47519,
- "boni": 32269,
- "boni": 46356,
- "bonita": 42896,
- "bonjour": 33176,
- "bonkers": 39865,
- "bonn": 38969,
- "bonnar": 47191,
- "bonnaroo": 48777,
- "bonne": 25844,
- "bonnet": 30636,
- "bonnie": 18555,
- "bono": 24476,
- "bons": 42883,
- "bonsai": 44129,
- "bonus": 8164,
- "bonuses": 35144,
- "boo": 824,
- "boo": 7317,
- "boogie": 22639,
- "book": 2828,
- "book": 1116,
- "bookboost": 31257,
- "bookclub": 34438,
- "bookday": 26327,
- "booked": 12584,
- "booker": 21302,
- "bookfest": 39381,
- "booking": 10145,
- "bookings": 18345,
- "booklet": 27405,
- "bookmark": 33596,
- "bookof": 45629,
- "bookreview": 27362,
- "books": 44382,
- "books": 2161,
- "bookshelf": 34821,
- "bookshop": 24705,
- "bookstore": 17999,
- "bookstores": 46416,
- "bookworm": 20743,
- "boom": 9609,
- "boom": 7121,
- "boomer": 33819,
- "boomer": 31766,
- "boomers": 37988,
- "booming": 33487,
- "boon": 24979,
- "boon": 35821,
- "boone": 23453,
- "boop": 45047,
- "boost": 44639,
- "boost": 6260,
- "boosted": 37631,
- "booster": 20877,
- "boosters": 46859,
- "boosting": 28480,
- "boosts": 29247,
- "boot": 10843,
- "boot": 8087,
- "bootcamp": 22051,
- "booted": 42564,
- "booth": 47895,
- "booth": 3971,
- "booths": 32653,
- "booties": 46188,
- "bootleg": 38139,
- "boots": 7319,
- "booze": 24341,
- "bop": 19720,
- "bor": 1141,
- "bor": 15093,
- "bora": 24736,
- "bord": 36891,
- "bordeaux": 22009,
- "border": 16304,
- "border": 6177,
- "borderlands": 38676,
- "borders": 13900,
- "bore": 14084,
- "bore": 24638,
- "bored": 8933,
- "boredom": 31460,
- "boretum": 38902,
- "borg": 14770,
- "borgh": 17180,
- "boring": 12519,
- "boris": 31212,
- "boris": 15704,
- "borisjohnson": 44481,
- "born": 17695,
- "born": 2683,
- "borne": 42910,
- "borne": 9328,
- "borneo": 33332,
- "bornon": 41811,
- "bornonthisday": 42757,
- "boro": 26796,
- "boro": 7974,
- "borough": 22761,
- "borough": 6203,
- "borrow": 22293,
- "borrowed": 28224,
- "borrowing": 41045,
- "borussia": 36764,
- "bos": 14885,
- "bos": 9644,
- "bosa": 46946,
- "bosch": 42009,
- "bosch": 19466,
- "bosco": 36960,
- "bose": 23142,
- "bosh": 42244,
- "bosni": 42924,
- "bosnia": 31396,
- "boss": 17935,
- "boss": 4206,
- "bosses": 23906,
- "boston": 11540,
- "boston": 4399,
- "bostonmarathon": 44533,
- "bot": 4136,
- "bot": 6947,
- "botan": 12554,
- "botanic": 32560,
- "botanical": 21026,
- "botany": 22612,
- "botd": 34451,
- "both": 36575,
- "both": 2212,
- "bother": 21125,
- "bothered": 27997,
- "botox": 43449,
- "bots": 13721,
- "botswana": 27584,
- "bott": 3520,
- "bott": 37225,
- "bottle": 37306,
- "bottle": 5392,
- "bottled": 29331,
- "bottlen": 46439,
- "bottles": 9754,
- "bottling": 42006,
- "bottom": 32314,
- "bottom": 5931,
- "bottoms": 31524,
- "bou": 3728,
- "bou": 23165,
- "bouchard": 47930,
- "boudo": 48827,
- "bought": 4142,
- "boul": 24830,
- "boulder": 18260,
- "boule": 17652,
- "boulevard": 19504,
- "boun": 5993,
- "bounce": 14316,
- "bouncing": 32060,
- "bouncy": 43415,
- "bound": 15140,
- "bound": 4567,
- "boundaries": 18690,
- "boundary": 21344,
- "bounds": 37469,
- "bounty": 21142,
- "bouquet": 20961,
- "bour": 2934,
- "bour": 35486,
- "bourbon": 48118,
- "bourbon": 14652,
- "bourdain": 48095,
- "bourg": 20690,
- "bourgeo": 45672,
- "bourn": 39143,
- "bourne": 13789,
- "bourne": 5192,
- "bournemouth": 20911,
- "bout": 19982,
- "bout": 8123,
- "bouti": 10926,
- "boutique": 12179,
- "bow": 2297,
- "bow": 4040,
- "bowden": 48538,
- "bowed": 49130,
- "bowel": 36880,
- "bowen": 25368,
- "bower": 40414,
- "bowers": 42238,
- "bowie": 13036,
- "bowing": 46398,
- "bowl": 26719,
- "bowl": 3814,
- "bowled": 39987,
- "bowler": 25528,
- "bowlers": 42632,
- "bowles": 41611,
- "bowling": 10390,
- "bowls": 17787,
- "bowman": 22052,
- "bows": 17000,
- "bowser": 38234,
- "bowski": 48311,
- "box": 2774,
- "box": 2063,
- "boxed": 24190,
- "boxer": 40394,
- "boxer": 15363,
- "boxers": 31019,
- "boxes": 8350,
- "boxing": 33669,
- "boxing": 5554,
- "boy": 2927,
- "boy": 1876,
- "boyband": 31568,
- "boyce": 44480,
- "boycot": 46208,
- "boycott": 31615,
- "boycott": 19559,
- "boyd": 18295,
- "boyfriend": 7328,
- "boyfriends": 36541,
- "boyle": 22802,
- "boys": 25223,
- "boys": 2034,
- "boyz": 16152,
- "bp": 23410,
- "bp": 11558,
- "bpa": 43855,
- "bpd": 48587,
- "bpl": 28901,
- "bpm": 40338,
- "bps": 37794,
- "br": 711,
- "br": 7532,
- "bra": 1195,
- "bra": 5860,
- "brac": 6663,
- "brace": 8376,
- "brace": 9183,
- "bracelet": 8969,
- "bracelets": 20027,
- "braces": 19249,
- "brack": 25676,
- "bracket": 14780,
- "brackets": 36183,
- "brad": 4848,
- "brad": 9405,
- "bradbury": 45097,
- "braden": 46842,
- "bradford": 15062,
- "bradley": 31905,
- "bradley": 10952,
- "brador": 24062,
- "bradshaw": 37556,
- "brady": 42494,
- "brady": 11117,
- "brae": 42874,
- "brae": 40040,
- "brag": 30110,
- "bragg": 38545,
- "bragging": 38199,
- "brah": 20276,
- "brahms": 45114,
- "brai": 25048,
- "braid": 31067,
- "braided": 39997,
- "braids": 34221,
- "brain": 9454,
- "brain": 4812,
- "brains": 17129,
- "brainstorming": 36607,
- "braised": 28363,
- "brake": 14937,
- "brakes": 23456,
- "bral": 31309,
- "bram": 14815,
- "bram": 39456,
- "brampton": 35124,
- "bran": 3684,
- "bran": 28348,
- "brance": 36072,
- "brance": 15413,
- "branch": 7998,
- "branches": 15843,
- "brand": 3910,
- "brand": 2896,
- "branded": 18097,
- "brandi": 41003,
- "branding": 10841,
- "brando": 41892,
- "brandon": 20423,
- "brandon": 9166,
- "brands": 8681,
- "brandt": 22552,
- "brandy": 26232,
- "brane": 32340,
- "branson": 28280,
- "brant": 28951,
- "brant": 47592,
- "braries": 46377,
- "brary": 24520,
- "bras": 22611,
- "brasil": 18991,
- "brass": 24348,
- "brass": 11655,
- "brat": 26717,
- "brat": 26631,
- "brate": 41864,
- "braun": 39129,
- "braun": 29309,
- "brave": 25461,
- "brave": 7769,
- "braved": 47663,
- "bravely": 42303,
- "bravery": 25831,
- "braves": 14422,
- "braving": 43258,
- "bravo": 38613,
- "bravo": 13006,
- "braw": 37871,
- "brawl": 26066,
- "braxton": 37451,
- "bray": 26256,
- "bray": 22993,
- "braz": 4625,
- "brazil": 47459,
- "brazil": 6305,
- "brazili": 45697,
- "brazilian": 12111,
- "brb": 25316,
- "brc": 40393,
- "bre": 887,
- "bre": 7782,
- "brea": 7318,
- "brea": 46538,
- "breach": 21363,
- "breaches": 45173,
- "bread": 18886,
- "bread": 5066,
- "breads": 43064,
- "break": 2206,
- "break": 2568,
- "breakable": 30691,
- "breakaway": 42732,
- "breakdown": 14519,
- "breaker": 14814,
- "breakers": 22270,
- "breakfa": 45931,
- "breakfast": 30210,
- "breakfast": 3290,
- "breaking": 14698,
- "breaking": 2755,
- "breakingbad": 38032,
- "breakingnews": 23837,
- "breakout": 16752,
- "breaks": 7263,
- "breakthrough": 18802,
- "breakup": 38931,
- "breast": 12930,
- "breast": 9475,
- "breastcancer": 40813,
- "breastcancer": 30065,
- "breastfeeding": 29033,
- "breasts": 37637,
- "breath": 9508,
- "breath": 9576,
- "breathe": 11364,
- "breathing": 14959,
- "breathtaking": 14709,
- "brecht": 34622,
- "breck": 44598,
- "bred": 46929,
- "bred": 16008,
- "bree": 7892,
- "bree": 37138,
- "breed": 28030,
- "breed": 13791,
- "breeders": 37472,
- "breeding": 16544,
- "breeds": 29021,
- "breen": 48013,
- "brees": 46721,
- "breeze": 13125,
- "breezy": 21451,
- "breit": 23864,
- "breitbart": 37926,
- "brek": 35494,
- "bremen": 39861,
- "bren": 5209,
- "brenda": 23786,
- "brendan": 35134,
- "brendan": 15414,
- "brendon": 36756,
- "brennan": 22372,
- "brenner": 42941,
- "brent": 31439,
- "brent": 16355,
- "brentwood": 33108,
- "brero": 47781,
- "bres": 32561,
- "bret": 38020,
- "bret": 32548,
- "brethren": 43134,
- "breton": 32290,
- "brett": 22591,
- "brett": 12394,
- "brev": 42882,
- "brevi": 39475,
- "brew": 5048,
- "brew": 7253,
- "brewco": 33582,
- "brewed": 23238,
- "brewer": 20756,
- "breweries": 35277,
- "brewers": 17618,
- "brewery": 8850,
- "brewing": 8275,
- "brewingco": 45155,
- "brews": 21663,
- "brewster": 40274,
- "brex": 22726,
- "brexit": 27666,
- "brexit": 5801,
- "brgy": 35983,
- "bri": 1036,
- "bri": 18636,
- "bria": 35890,
- "brian": 9824,
- "brian": 4989,
- "brianna": 32308,
- "briar": 46119,
- "bribe": 40042,
- "bribery": 41792,
- "bric": 27055,
- "brice": 40190,
- "brick": 13937,
- "brick": 9518,
- "bricks": 21029,
- "brics": 48196,
- "brid": 16995,
- "bridal": 36875,
- "bridal": 14284,
- "bride": 18342,
- "bride": 8964,
- "brides": 18067,
- "bridesma": 28356,
- "bridesmaid": 43399,
- "bridesmaids": 47754,
- "bridg": 20623,
- "bridge": 8647,
- "bridge": 2465,
- "bridgeport": 45201,
- "bridges": 11811,
- "bridget": 27073,
- "bridgewater": 38732,
- "bridging": 38109,
- "brie": 26622,
- "brief": 9435,
- "brief": 8954,
- "briefed": 47326,
- "briefing": 12991,
- "briefly": 26980,
- "briefs": 29557,
- "brien": 13504,
- "brier": 43995,
- "brig": 11081,
- "briga": 46448,
- "brigade": 16032,
- "briggs": 28108,
- "brigh": 6710,
- "bright": 10383,
- "bright": 4852,
- "brighten": 18208,
- "brightening": 43929,
- "brighter": 18507,
- "brightest": 26159,
- "brightly": 36298,
- "brightness": 42280,
- "brighton": 28416,
- "brighton": 9470,
- "brigitte": 44421,
- "brill": 27342,
- "brill": 28601,
- "brilli": 3821,
- "brilliance": 28146,
- "brilliant": 4106,
- "brilliantly": 26803,
- "brin": 25620,
- "bring": 11596,
- "bring": 2430,
- "bringback": 28969,
- "bringbackour": 45403,
- "bringing": 4777,
- "brings": 5138,
- "brink": 39296,
- "brink": 28796,
- "brioche": 45818,
- "bris": 9385,
- "bris": 15783,
- "brisban": 30431,
- "brisbane": 42932,
- "brisbane": 12407,
- "brisk": 43646,
- "brisket": 31920,
- "bristol": 18159,
- "bristol": 8010,
- "brit": 2318,
- "brit": 20066,
- "britain": 40802,
- "britain": 6272,
- "britanni": 31373,
- "britannia": 36188,
- "brite": 33827,
- "briti": 8155,
- "british": 8651,
- "british": 3504,
- "britishmuseum": 41858,
- "britney": 37192,
- "britney": 21853,
- "britneyspears": 42990,
- "brits": 21832,
- "britt": 10811,
- "britt": 25976,
- "brittany": 38187,
- "brittany": 18818,
- "britton": 37422,
- "brium": 46079,
- "brixton": 30056,
- "bro": 927,
- "bro": 4410,
- "broad": 3491,
- "broad": 12623,
- "broadband": 21050,
- "broadcast": 8967,
- "broadcaster": 29005,
- "broadcasting": 14403,
- "broadcasts": 46742,
- "broader": 36029,
- "broadway": 34599,
- "broadway": 9092,
- "broc": 15587,
- "broccoli": 19094,
- "broch": 21419,
- "brochure": 25275,
- "brock": 14841,
- "brock": 16745,
- "brodie": 42150,
- "brody": 29608,
- "broke": 42165,
- "broke": 6509,
- "broken": 26126,
- "broken": 5107,
- "broker": 34032,
- "broker": 20449,
- "brokerage": 41327,
- "brokers": 28271,
- "brom": 18972,
- "brom": 33296,
- "bromance": 35353,
- "bromley": 35715,
- "bron": 4011,
- "bron": 10243,
- "bronco": 43488,
- "bronco": 34370,
- "broncos": 12516,
- "bronson": 37042,
- "bronte": 48936,
- "bronx": 48310,
- "bronx": 17183,
- "brony": 21084,
- "bronze": 8459,
- "broo": 5204,
- "brooch": 21207,
- "brook": 4782,
- "brook": 7322,
- "brooke": 28576,
- "brooke": 12549,
- "brookes": 39707,
- "brooklyn": 23253,
- "brooklyn": 6983,
- "brooks": 42779,
- "brooks": 9991,
- "broom": 32046,
- "broom": 28008,
- "broome": 49335,
- "bros": 7776,
- "broth": 29994,
- "brotha": 33974,
- "brother": 12697,
- "brother": 3157,
- "brotherhood": 19059,
- "brothers": 4548,
- "brou": 27874,
- "brough": 21033,
- "brought": 4222,
- "brov": 42881,
- "brow": 6547,
- "brow": 15895,
- "broward": 34719,
- "brown": 6315,
- "brown": 2866,
- "browne": 28440,
- "brownie": 23045,
- "brownies": 22312,
- "browning": 32241,
- "browns": 14051,
- "brows": 14998,
- "browse": 19060,
- "browser": 19768,
- "browsing": 29318,
- "brox": 43539,
- "brs": 47485,
- "brt": 46936,
- "bru": 1698,
- "bru": 31028,
- "bruce": 21223,
- "bruce": 7085,
- "bruh": 17575,
- "bruins": 14736,
- "bruise": 48048,
- "bruised": 46502,
- "brum": 23862,
- "brum": 28078,
- "brun": 6870,
- "brunch": 9113,
- "brune": 29057,
- "brunei": 41898,
- "brunette": 35528,
- "bruno": 14568,
- "brunomars": 41156,
- "brunswick": 24012,
- "brush": 27969,
- "brush": 8594,
- "brushed": 30298,
- "brushes": 21550,
- "brushing": 35072,
- "brussels": 11020,
- "brut": 39499,
- "brutal": 42144,
- "brutal": 14556,
- "brutality": 31348,
- "brutally": 28132,
- "brute": 47552,
- "brux": 49093,
- "bry": 6587,
- "bry": 28228,
- "bryan": 16134,
- "bryan": 10412,
- "bryant": 12256,
- "bryce": 19895,
- "bryn": 36569,
- "bryn": 42877,
- "bryson": 38990,
- "bs": 11783,
- "bs": 1329,
- "bsa": 46619,
- "bsb": 23070,
- "bsbi": 41728,
- "bsbibotany": 42086,
- "bsc": 32031,
- "bsd": 41848,
- "bse": 46341,
- "bsf": 48314,
- "bsgo": 48474,
- "bsp": 47977,
- "bst": 19698,
- "bsu": 46385,
- "bt": 3317,
- "bt": 4205,
- "btc": 10315,
- "btcc": 30759,
- "btn": 44681,
- "bto": 35516,
- "btob": 29379,
- "btr": 39767,
- "bts": 15154,
- "bts": 4007,
- "btsarmy": 30302,
- "btsbbmas": 35297,
- "btsx": 44971,
- "btv": 38541,
- "btw": 9520,
- "btwn": 28284,
- "bu": 609,
- "bu": 5831,
- "bub": 27704,
- "bub": 33158,
- "bubb": 9739,
- "bubba": 28149,
- "bubble": 28687,
- "bubble": 10799,
- "bubblegum": 48078,
- "bubbles": 17648,
- "bubbly": 31034,
- "buc": 8207,
- "buccane": 32830,
- "buccaneers": 38058,
- "buch": 22623,
- "bucha": 43582,
- "buchan": 27237,
- "buchanan": 28975,
- "bucharest": 37013,
- "buck": 6061,
- "buck": 11433,
- "bucket": 22596,
- "bucket": 10498,
- "bucketlist": 30778,
- "buckets": 27168,
- "buckeye": 34549,
- "buckeyes": 30741,
- "buckingham": 28736,
- "buckle": 21948,
- "buckley": 25905,
- "bucks": 6103,
- "bucky": 35916,
- "bucs": 20011,
- "bud": 2942,
- "bud": 10737,
- "buda": 18520,
- "buda": 49012,
- "budapest": 19202,
- "budd": 7296,
- "buddha": 13981,
- "buddhism": 23744,
- "buddhist": 18697,
- "buddies": 14543,
- "budding": 31992,
- "buddy": 40948,
- "buddy": 6557,
- "budge": 32005,
- "budget": 46758,
- "budget": 5639,
- "budgeting": 43789,
- "budgets": 36419,
- "buds": 14665,
- "budweiser": 40900,
- "buen": 15640,
- "buena": 30876,
- "buenas": 48529,
- "bueno": 46202,
- "buenos": 26055,
- "buf": 44417,
- "buff": 5456,
- "buff": 21416,
- "buffal": 25836,
- "buffalo": 31231,
- "buffalo": 8054,
- "buffalob": 38831,
- "buffalobills": 44352,
- "buffe": 13724,
- "buffer": 33050,
- "buffet": 17829,
- "buffett": 34081,
- "buffs": 28906,
- "buffy": 33356,
- "bug": 14453,
- "bug": 8162,
- "bugatti": 35451,
- "buggy": 28963,
- "bugs": 13850,
- "buh": 31406,
- "buhari": 14661,
- "buick": 22000,
- "buil": 1354,
- "build": 22739,
- "build": 3289,
- "builder": 14474,
- "builders": 17694,
- "building": 21206,
- "building": 2307,
- "buildings": 8866,
- "builds": 16449,
- "buildthe": 41497,
- "built": 45824,
- "built": 3874,
- "buk": 28084,
- "buk": 24317,
- "buka": 47778,
- "bukit": 39888,
- "bul": 2572,
- "bul": 10200,
- "bula": 18726,
- "bulaga": 41575,
- "bular": 32187,
- "bulb": 22373,
- "bulbs": 24808,
- "bulgar": 15424,
- "bulgaria": 20295,
- "bulgarian": 38693,
- "bulge": 47603,
- "bulk": 19643,
- "bull": 4537,
- "bull": 6029,
- "bulldo": 37675,
- "bulldog": 34828,
- "bulldog": 15611,
- "bulldogs": 13916,
- "bullet": 14340,
- "bullet": 12465,
- "bulletin": 19638,
- "bulletproof": 43212,
- "bullets": 22117,
- "bullied": 34689,
- "bullies": 39050,
- "bullion": 49114,
- "bullish": 22142,
- "bullock": 33198,
- "bullpen": 38081,
- "bulls": 10313,
- "bully": 43111,
- "bully": 20190,
- "bullying": 13548,
- "bum": 27683,
- "bum": 14226,
- "bumble": 25585,
- "bumble": 39303,
- "bumblebee": 36911,
- "bummed": 48456,
- "bump": 9783,
- "bump": 15877,
- "bumped": 22495,
- "bumper": 17881,
- "bumping": 40196,
- "bumps": 21115,
- "bun": 2591,
- "bun": 13665,
- "bunch": 7796,
- "bund": 41905,
- "bunde": 18841,
- "bundesliga": 21582,
- "bundle": 11793,
- "bundled": 47228,
- "bundles": 29834,
- "bundy": 37332,
- "bung": 44748,
- "bungal": 29549,
- "bungalow": 33696,
- "bunk": 41236,
- "bunker": 23615,
- "bunnies": 28998,
- "bunny": 34198,
- "bunny": 9258,
- "buns": 22235,
- "bunting": 30695,
- "buon": 31350,
- "buon": 48498,
- "bur": 1039,
- "bur": 17362,
- "burbank": 34862,
- "burberry": 30412,
- "burch": 44588,
- "burden": 18687,
- "bure": 11902,
- "bureau": 32098,
- "bureau": 15400,
- "burg": 19505,
- "burg": 3499,
- "burge": 20522,
- "burger": 22356,
- "burger": 6548,
- "burgers": 13007,
- "burgess": 26211,
- "burgh": 18141,
- "burgh": 4965,
- "burgl": 25554,
- "burglar": 43365,
- "burglary": 32573,
- "burgring": 40823,
- "burgundy": 23650,
- "buri": 46348,
- "buri": 42614,
- "burial": 22012,
- "buried": 14233,
- "burk": 48822,
- "burke": 15340,
- "burle": 27891,
- "burlesque": 33732,
- "burlington": 23370,
- "burma": 30305,
- "burmese": 47906,
- "burn": 7934,
- "burn": 4285,
- "burnaby": 47541,
- "burne": 27246,
- "burned": 15022,
- "burner": 23243,
- "burnett": 28558,
- "burnham": 36111,
- "burning": 46107,
- "burning": 8405,
- "burnley": 24653,
- "burnout": 36078,
- "burns": 10234,
- "burnt": 15185,
- "burr": 30879,
- "burrell": 49045,
- "burrito": 23473,
- "burritos": 47245,
- "burroughs": 41337,
- "burrows": 44846,
- "burst": 13005,
- "bursting": 32566,
- "bursts": 37026,
- "burt": 27162,
- "burton": 42354,
- "burton": 12704,
- "burundi": 33595,
- "bury": 12276,
- "bury": 3899,
- "burys": 32362,
- "bus": 1319,
- "bus": 2840,
- "busan": 40172,
- "busc": 35000,
- "busch": 20475,
- "buses": 12879,
- "bush": 11191,
- "bush": 6867,
- "bushes": 37578,
- "busiest": 32764,
- "busine": 4598,
- "busines": 25364,
- "business": 8346,
- "business": 1716,
- "businesses": 7287,
- "businessman": 25635,
- "buss": 47764,
- "bust": 31299,
- "bust": 9959,
- "busted": 18643,
- "buster": 37219,
- "buster": 12094,
- "busters": 16362,
- "busting": 29622,
- "busy": 39332,
- "busy": 4354,
- "but": 2201,
- "but": 767,
- "butch": 35102,
- "butcher": 18732,
- "butchers": 42334,
- "bute": 39240,
- "butes": 14630,
- "butler": 35867,
- "butler": 10702,
- "butt": 12500,
- "butt": 31523,
- "butte": 31678,
- "butter": 5427,
- "butter": 6952,
- "butterflies": 16232,
- "butterfly": 9738,
- "buttermilk": 40180,
- "butternut": 36867,
- "buttery": 45535,
- "button": 45480,
- "button": 8007,
- "buttons": 16188,
- "butts": 25309,
- "buu": 42313,
- "buuren": 47752,
- "buxton": 41370,
- "buy": 11632,
- "buy": 2131,
- "buyer": 14682,
- "buyers": 14663,
- "buying": 6566,
- "buys": 15560,
- "buzz": 7866,
- "buzz": 8706,
- "buzzard": 47434,
- "buzzer": 38064,
- "buzzfeed": 26613,
- "buzzing": 18511,
- "bv": 18958,
- "bv": 35861,
- "bvb": 22454,
- "bw": 17672,
- "bw": 15120,
- "bway": 26652,
- "bwfc": 40918,
- "bwo": 45902,
- "bx": 33633,
- "by": 1713,
- "by": 638,
- "bye": 20076,
- "bye": 4460,
- "byes": 47958,
- "byl": 34994,
- "byn": 46917,
- "byn": 11890,
- "byo": 28039,
- "bypass": 26530,
- "byr": 15534,
- "byrd": 30369,
- "byrne": 19676,
- "byron": 43504,
- "byron": 19775,
- "bys": 26740,
- "bystand": 46138,
- "byte": 42798,
- "bytes": 39538,
- "bythe": 36621,
- "byu": 41072,
- "byu": 23770,
- "byz": 35406,
- "byzantine": 44081,
- "bz": 13631,
- "bé": 40365,
- "bü": 38706,
- "c": 66,
- "c": 322,
- "ca": 772,
- "ca": 1684,
- "caa": 19316,
- "cab": 3033,
- "cab": 11912,
- "cabaret": 26263,
- "cabbage": 18407,
- "cabe": 32731,
- "cabello": 34371,
- "caber": 29062,
- "cabernet": 33730,
- "cabin": 14178,
- "cabine": 23354,
- "cabinet": 9937,
- "cabinets": 33083,
- "cabins": 48455,
- "cable": 7925,
- "cables": 22408,
- "cabo": 37318,
- "cabo": 28370,
- "cabrera": 42338,
- "cabs": 42048,
- "cac": 8298,
- "cac": 23872,
- "cacao": 38022,
- "cache": 28993,
- "caching": 40655,
- "cactus": 19794,
- "cad": 6297,
- "cad": 20166,
- "caday": 34187,
- "cadbury": 44698,
- "caddy": 41521,
- "cade": 10497,
- "cade": 17306,
- "cadet": 22764,
- "cadets": 19160,
- "cadillac": 18156,
- "cae": 49264,
- "caer": 28298,
- "caes": 15740,
- "caesar": 21642,
- "caesars": 42162,
- "caf": 3471,
- "caf": 20867,
- "cafc": 30748,
- "cafe": 15201,
- "cafe": 4979,
- "cafes": 40166,
- "cafeteria": 32817,
- "caffe": 18258,
- "caffe": 45416,
- "caffeine": 22487,
- "café": 15304,
- "cag": 15714,
- "cage": 11838,
- "cages": 37939,
- "cah": 40519,
- "cahill": 33185,
- "cai": 38971,
- "cai": 36116,
- "cain": 13747,
- "caine": 16799,
- "cair": 15804,
- "cair": 46659,
- "cairn": 31264,
- "cairn": 42467,
- "cairngor": 44067,
- "cairns": 32941,
- "cairo": 19615,
- "cait": 14116,
- "caitlin": 47768,
- "caitlin": 26809,
- "caitlyn": 35763,
- "cajun": 43425,
- "cajun": 33044,
- "cak": 42986,
- "cake": 15295,
- "cake": 2972,
- "cakeday": 46207,
- "cakes": 5950,
- "cal": 1198,
- "cal": 6372,
- "cala": 32133,
- "calab": 31795,
- "calais": 39886,
- "calam": 28841,
- "calc": 45055,
- "calci": 22824,
- "calcium": 27815,
- "calcu": 15328,
- "calcul": 15734,
- "calculate": 37656,
- "calculated": 40688,
- "calculations": 44605,
- "calculator": 26093,
- "calculus": 35104,
- "calcutta": 42901,
- "calder": 29372,
- "calder": 36817,
- "caldwell": 30484,
- "cale": 32674,
- "caleb": 19619,
- "caled": 28421,
- "calend": 6057,
- "calendar": 7122,
- "calendars": 17229,
- "calf": 17508,
- "calgary": 27415,
- "calgary": 10797,
- "calhoun": 38929,
- "cali": 2857,
- "cali": 16337,
- "caliber": 32820,
- "calibr": 32597,
- "calico": 45379,
- "calif": 30839,
- "califor": 3526,
- "californi": 21303,
- "california": 3729,
- "call": 7950,
- "call": 1620,
- "calla": 20658,
- "callahan": 43313,
- "callaway": 42596,
- "callback": 44764,
- "calle": 47699,
- "calle": 38144,
- "called": 2726,
- "caller": 30666,
- "calli": 16338,
- "callie": 36512,
- "calligraphy": 27775,
- "calling": 4597,
- "callister": 49026,
- "callme": 42449,
- "callof": 41280,
- "calls": 4572,
- "callum": 23224,
- "calm": 34990,
- "calm": 7011,
- "calming": 30690,
- "calorie": 32679,
- "calories": 18029,
- "cals": 47714,
- "calum": 16405,
- "calvary": 40169,
- "calvert": 47134,
- "calves": 31857,
- "calvin": 27642,
- "calvin": 17345,
- "caly": 10244,
- "calyp": 29851,
- "cam": 1004,
- "cam": 5982,
- "camar": 31991,
- "camber": 44362,
- "cambo": 14662,
- "cambodia": 17347,
- "cambridge": 24651,
- "cambridge": 9334,
- "cambridgeshire": 46139,
- "camden": 38735,
- "camden": 17984,
- "came": 1986,
- "camel": 27005,
- "camel": 21914,
- "camels": 41357,
- "cameo": 19492,
- "camer": 4961,
- "camera": 3934,
- "cameraman": 43347,
- "cameras": 12172,
- "camero": 20320,
- "cameron": 19634,
- "cameron": 8057,
- "camerondallas": 40587,
- "cameroon": 24061,
- "camil": 37745,
- "camila": 19919,
- "camilla": 38897,
- "camille": 26741,
- "camino": 28529,
- "camo": 28702,
- "camo": 19716,
- "camogie": 39547,
- "camou": 23588,
- "camoufla": 23667,
- "camouflage": 29049,
- "camp": 2854,
- "camp": 2877,
- "campa": 2793,
- "campaig": 9448,
- "campaign": 44524,
- "campaign": 3193,
- "campaigner": 46364,
- "campaigners": 40272,
- "campaigning": 19594,
- "campaigns": 15669,
- "campan": 31765,
- "campbell": 29094,
- "campbell": 8806,
- "campe": 16672,
- "campeon": 49109,
- "campeones": 30105,
- "camper": 41914,
- "camper": 24522,
- "campers": 26619,
- "campfire": 32530,
- "campground": 46969,
- "camping": 9982,
- "campo": 27600,
- "campos": 48077,
- "camps": 12806,
- "campsite": 44243,
- "campu": 19687,
- "campus": 4560,
- "campuses": 31895,
- "camra": 46155,
- "camry": 46472,
- "cams": 32590,
- "can": 950,
- "can": 753,
- "cana": 28341,
- "canad": 13193,
- "canada": 2698,
- "canadaday": 39800,
- "canadi": 4329,
- "canadian": 22160,
- "canadian": 5255,
- "canadians": 18989,
- "canadiens": 40932,
- "canal": 28585,
- "canal": 9535,
- "canals": 38483,
- "canaria": 47117,
- "canary": 40409,
- "canary": 24523,
- "canberra": 16719,
- "canc": 43189,
- "cancel": 12026,
- "cancel": 21546,
- "canceled": 25874,
- "cancell": 28027,
- "cancellation": 38765,
- "cancelled": 13270,
- "cancels": 34089,
- "cancer": 12690,
- "cancer": 3148,
- "cancers": 33201,
- "cancun": 34721,
- "cand": 4986,
- "candace": 45623,
- "candel": 47834,
- "candi": 6034,
- "candice": 30024,
- "candid": 7884,
- "candid": 19206,
- "candidacy": 46248,
- "candidate": 6475,
- "candidates": 8619,
- "candied": 43982,
- "candies": 46305,
- "candle": 18995,
- "candle": 12674,
- "candlelight": 34724,
- "candles": 15472,
- "candy": 20741,
- "candy": 6417,
- "cane": 23644,
- "cane": 14716,
- "canelo": 43210,
- "canes": 21902,
- "cani": 35592,
- "canine": 27380,
- "cann": 4139,
- "cann": 23709,
- "cannab": 7577,
- "cannabis": 31837,
- "cannabis": 8861,
- "canne": 44252,
- "canned": 27290,
- "cannes": 13773,
- "canni": 26389,
- "canning": 38621,
- "cannon": 28771,
- "cannon": 15661,
- "cannons": 46269,
- "cannot": 4785,
- "canny": 26986,
- "cano": 31668,
- "cano": 25937,
- "canoe": 23503,
- "canola": 40389,
- "canon": 17749,
- "canon": 9310,
- "canopy": 26061,
- "cans": 13707,
- "cant": 13395,
- "cant": 5784,
- "canteen": 39230,
- "canter": 19301,
- "canterbury": 22271,
- "canti": 42845,
- "cantina": 47472,
- "canton": 37735,
- "canton": 25363,
- "cantore": 41769,
- "cantwait": 33760,
- "canu": 20171,
- "canucks": 24321,
- "canv": 30714,
- "canvas": 22441,
- "canvas": 7483,
- "canvass": 40054,
- "canvassing": 33783,
- "cany": 47674,
- "canyon": 41246,
- "canyon": 9755,
- "cao": 29207,
- "cap": 1289,
- "cap": 3938,
- "capabilities": 19512,
- "capability": 25885,
- "capable": 14742,
- "capac": 24665,
- "capacity": 8970,
- "capcom": 28342,
- "cape": 10288,
- "cape": 6631,
- "capecod": 41339,
- "capes": 38785,
- "capetown": 20059,
- "capit": 6889,
- "capita": 41833,
- "capital": 11198,
- "capital": 5439,
- "capitalism": 20068,
- "capitalist": 37015,
- "capitals": 29579,
- "capitol": 43880,
- "capitol": 11375,
- "capo": 45477,
- "capp": 16718,
- "capped": 24659,
- "capping": 42656,
- "cappuccino": 37402,
- "capri": 48699,
- "capri": 30982,
- "capric": 28667,
- "capricorn": 46314,
- "caps": 23185,
- "capsu": 15608,
- "capsul": 40341,
- "capsule": 20627,
- "capsules": 32870,
- "capt": 45815,
- "capt": 17369,
- "captain": 14958,
- "captain": 4621,
- "captainamerica": 46229,
- "captainmarvel": 48492,
- "captains": 18706,
- "caption": 11327,
- "captions": 41878,
- "captiv": 19776,
- "captivating": 30580,
- "captive": 29038,
- "captivity": 41141,
- "capture": 8818,
- "captured": 8020,
- "captures": 15305,
- "capturing": 19548,
- "capu": 44241,
- "car": 811,
- "car": 1615,
- "cara": 20016,
- "carab": 32251,
- "carac": 30029,
- "caracas": 45854,
- "caramel": 14788,
- "carameli": 41739,
- "caramelized": 43854,
- "carat": 32981,
- "carav": 13814,
- "caravan": 18566,
- "carb": 21379,
- "carbo": 43235,
- "carbon": 14038,
- "carbon": 7549,
- "carbs": 29313,
- "carcin": 31587,
- "carcinoma": 46810,
- "card": 10793,
- "card": 2601,
- "cardam": 49008,
- "cardboard": 19845,
- "cardi": 6211,
- "cardi": 29677,
- "cardiac": 21256,
- "cardiff": 22488,
- "cardiff": 9781,
- "cardigan": 30501,
- "cardin": 8457,
- "cardinal": 46310,
- "cardinal": 16472,
- "cardinals": 12837,
- "cardio": 15003,
- "cardio": 23455,
- "cardiology": 37276,
- "cardiovascular": 29291,
- "cardo": 40625,
- "cards": 4094,
- "care": 2050,
- "care": 1776,
- "cared": 27675,
- "career": 20609,
- "career": 3061,
- "careers": 10090,
- "careful": 11999,
- "carefully": 15789,
- "caregi": 22042,
- "caregiver": 46372,
- "caregivers": 35909,
- "careless": 47325,
- "carers": 26484,
- "cares": 10968,
- "caretaker": 48037,
- "carey": 14895,
- "cargo": 12490,
- "cari": 18497,
- "cari": 37273,
- "carib": 9757,
- "caribbean": 10368,
- "caribou": 42135,
- "caric": 25337,
- "caricature": 38857,
- "carina": 44357,
- "caring": 13083,
- "carl": 8273,
- "carl": 9482,
- "carla": 25552,
- "carleton": 46496,
- "carlin": 47559,
- "carlisle": 23276,
- "carlo": 17861,
- "carlo": 15266,
- "carlos": 9538,
- "carlow": 44745,
- "carls": 39635,
- "carlson": 24114,
- "carlton": 18934,
- "carly": 23166,
- "carly": 22689,
- "carlyle": 46555,
- "carmel": 30757,
- "carmel": 25601,
- "carmen": 41427,
- "carmen": 18834,
- "carmichael": 41657,
- "carn": 21597,
- "carnage": 31385,
- "carnation": 44577,
- "carnaval": 47238,
- "carne": 17053,
- "carne": 42885,
- "carnegie": 25287,
- "carney": 34194,
- "carni": 8438,
- "carnival": 36708,
- "carnival": 10577,
- "caro": 30317,
- "caro": 29344,
- "carol": 4242,
- "carol": 11489,
- "carole": 31955,
- "carolin": 26418,
- "carolina": 7027,
- "caroline": 31064,
- "caroline": 12641,
- "carols": 33269,
- "carolyn": 25825,
- "carou": 32224,
- "carousel": 36665,
- "carp": 26085,
- "carpen": 15584,
- "carpenter": 18475,
- "carpet": 6922,
- "carpets": 34612,
- "carr": 26951,
- "carr": 17136,
- "carra": 32332,
- "carre": 31114,
- "carrera": 32952,
- "carri": 4739,
- "carriage": 47885,
- "carriage": 21087,
- "carrick": 44052,
- "carrie": 30334,
- "carrie": 15848,
- "carried": 12960,
- "carrier": 12308,
- "carriers": 26865,
- "carries": 17982,
- "carrieunderwood": 47338,
- "carrington": 48759,
- "carroll": 41911,
- "carroll": 14893,
- "carrot": 15435,
- "carrots": 19299,
- "carry": 31863,
- "carry": 6998,
- "carrying": 9920,
- "cars": 3346,
- "carsforsale": 45222,
- "carson": 41766,
- "carson": 13171,
- "cart": 27705,
- "cart": 13065,
- "cartag": 45042,
- "cartagena": 47157,
- "carte": 44949,
- "cartel": 30529,
- "carter": 27330,
- "carter": 7260,
- "cartier": 32951,
- "carto": 5487,
- "carton": 41812,
- "cartoon": 33082,
- "cartoon": 7651,
- "cartoonist": 30793,
- "cartoons": 17673,
- "cartri": 47084,
- "cartridge": 29432,
- "cartridges": 49249,
- "carts": 27581,
- "cartunesapp": 32888,
- "caruso": 45192,
- "carve": 40152,
- "carved": 15127,
- "carver": 28850,
- "carving": 19428,
- "carvings": 48123,
- "cary": 22844,
- "cas": 1671,
- "cas": 13831,
- "casa": 14643,
- "casablanc": 36572,
- "casablanca": 41950,
- "casc": 36714,
- "casca": 43296,
- "cascade": 29065,
- "cascades": 46454,
- "case": 17698,
- "case": 2068,
- "cases": 6888,
- "casey": 24899,
- "casey": 12836,
- "cash": 11050,
- "cash": 5131,
- "cashback": 36368,
- "cashe": 32233,
- "cashew": 39531,
- "cashi": 29517,
- "cashier": 34547,
- "cashmere": 34566,
- "casi": 38350,
- "casino": 10473,
- "casio": 32261,
- "cask": 26299,
- "casm": 35198,
- "casper": 35892,
- "cass": 22556,
- "cassandra": 35289,
- "casser": 31093,
- "casserole": 36045,
- "cassette": 19717,
- "cassi": 14942,
- "cassidy": 21757,
- "cassie": 29323,
- "cassini": 46554,
- "cast": 2509,
- "cast": 1970,
- "caste": 32693,
- "casted": 33838,
- "castel": 43306,
- "castell": 31792,
- "caster": 32101,
- "caster": 8449,
- "casters": 29721,
- "castic": 47737,
- "castillo": 30813,
- "casting": 7087,
- "castle": 12496,
- "castle": 3540,
- "castles": 24766,
- "castro": 16950,
- "casts": 10595,
- "casu": 15345,
- "casual": 10129,
- "casually": 18840,
- "casualties": 30244,
- "casualty": 31222,
- "cat": 1481,
- "cat": 2368,
- "cata": 42279,
- "catal": 12792,
- "catalan": 30532,
- "catalina": 36576,
- "catalo": 34740,
- "catalog": 20036,
- "catalogue": 20985,
- "catalonia": 27039,
- "catalunya": 44132,
- "cataly": 15894,
- "catalyst": 25387,
- "catan": 45893,
- "catap": 39514,
- "catar": 35801,
- "catastro": 22736,
- "catastrophe": 41422,
- "catastrophic": 34448,
- "catch": 18901,
- "catch": 3042,
- "catcher": 15965,
- "catchers": 39060,
- "catches": 17213,
- "catching": 8617,
- "catchy": 37114,
- "catday": 32243,
- "cate": 6357,
- "cate": 24510,
- "cated": 31823,
- "categor": 17006,
- "categori": 40117,
- "categories": 19971,
- "category": 9432,
- "cater": 16634,
- "cater": 38101,
- "catering": 16697,
- "caterpillar": 27111,
- "catfish": 26077,
- "cath": 9196,
- "cath": 30811,
- "cathar": 43784,
- "cathe": 7174,
- "cathedr": 46370,
- "cathedral": 7865,
- "catherine": 35035,
- "catherine": 12339,
- "catho": 7595,
- "cathol": 16315,
- "catholic": 20382,
- "catholic": 7757,
- "catholics": 36808,
- "cathy": 40326,
- "cathy": 22731,
- "cation": 21367,
- "cato": 33558,
- "cats": 38800,
- "cats": 3989,
- "catsofinstagram": 39901,
- "catsoftwitter": 17273,
- "catt": 37339,
- "cattle": 48799,
- "cattle": 13644,
- "caturday": 20892,
- "catwalk": 36565,
- "catwoman": 47251,
- "cau": 1121,
- "cau": 45529,
- "caucus": 18847,
- "caught": 4520,
- "caul": 23460,
- "cauley": 41682,
- "caulfield": 44906,
- "cauli": 20123,
- "cauliflower": 23802,
- "cause": 18982,
- "cause": 1394,
- "caused": 8940,
- "causes": 9775,
- "causeway": 35034,
- "causing": 10779,
- "caution": 15656,
- "cautious": 36579,
- "cav": 4942,
- "cav": 45935,
- "cava": 48682,
- "caval": 24537,
- "cavali": 20783,
- "cavalier": 44488,
- "cavaliers": 30194,
- "cavalry": 32467,
- "cave": 25441,
- "cave": 9654,
- "cavendish": 42945,
- "caver": 41487,
- "caves": 22096,
- "cavi": 27360,
- "caviar": 31228,
- "cavill": 40492,
- "cavity": 43156,
- "cavs": 16800,
- "caw": 38405,
- "caw": 43804,
- "cawx": 26739,
- "cay": 11876,
- "cay": 37399,
- "cayenne": 43650,
- "cayman": 33737,
- "caz": 48451,
- "cb": 4034,
- "cb": 8830,
- "cba": 38472,
- "cbb": 31487,
- "cbc": 14096,
- "cbc": 14523,
- "cbd": 13176,
- "cbe": 43639,
- "cbi": 30875,
- "cbj": 35608,
- "cbn": 26579,
- "cbp": 46723,
- "cbr": 28762,
- "cbs": 16788,
- "cbs": 8009,
- "cc": 2976,
- "cc": 2021,
- "cca": 17987,
- "ccc": 21856,
- "ccd": 48556,
- "ccg": 37755,
- "cch": 21789,
- "cchini": 28467,
- "cci": 32942,
- "cci": 8196,
- "ccl": 43773,
- "ccm": 40435,
- "cco": 28786,
- "ccot": 24950,
- "ccp": 43045,
- "ccs": 30400,
- "cctv": 23097,
- "ccu": 49023,
- "cd": 4308,
- "cd": 4480,
- "cda": 45565,
- "cdc": 41098,
- "cdc": 25779,
- "cdn": 8886,
- "cdn": 26802,
- "cdnpoli": 11645,
- "cdo": 47187,
- "cdp": 39624,
- "cds": 20784,
- "cdt": 18455,
- "ce": 685,
- "ce": 629,
- "cea": 28355,
- "cean": 34409,
- "cean": 37295,
- "cease": 32856,
- "cease": 25499,
- "ceasefire": 38291,
- "cebu": 20146,
- "cec": 29694,
- "cec": 40029,
- "cecil": 26987,
- "cecil": 27169,
- "cecilia": 35440,
- "ced": 25634,
- "ced": 2323,
- "cedar": 24167,
- "cedar": 13799,
- "cedric": 36608,
- "cee": 45966,
- "cee": 15015,
- "cees": 47914,
- "ceil": 27275,
- "ceiling": 12374,
- "ceilings": 33770,
- "cek": 45544,
- "cel": 2269,
- "cel": 7597,
- "cele": 1314,
- "celeb": 38862,
- "celeb": 19393,
- "celebr": 1372,
- "celebrate": 31414,
- "celebrate": 2694,
- "celebrated": 9184,
- "celebrates": 7564,
- "celebrating": 3382,
- "celebration": 4615,
- "celebrations": 10825,
- "celebratory": 34115,
- "celebrities": 17071,
- "celebrity": 23981,
- "celebrity": 7320,
- "celebs": 19803,
- "celed": 25741,
- "celer": 9621,
- "celery": 30990,
- "celeste": 29364,
- "celesti": 29497,
- "celestial": 32669,
- "celi": 25567,
- "celia": 44489,
- "celine": 33644,
- "cell": 9316,
- "cell": 5533,
- "cellar": 24282,
- "cellars": 44976,
- "cellence": 34687,
- "cello": 23013,
- "cellphone": 39029,
- "cells": 8890,
- "cellu": 16791,
- "cellular": 23268,
- "cels": 24021,
- "celsius": 47057,
- "celtic": 21897,
- "celtic": 10523,
- "celticfc": 38612,
- "celtics": 16226,
- "cem": 41435,
- "ceme": 10517,
- "cement": 4369,
- "cements": 19448,
- "cemetery": 11660,
- "cen": 1306,
- "cen": 30106,
- "cena": 21591,
- "cence": 24410,
- "cency": 41259,
- "cene": 30038,
- "censor": 24230,
- "censor": 44709,
- "censored": 30951,
- "censorship": 27284,
- "census": 23677,
- "cent": 1784,
- "cent": 3662,
- "centenary": 22422,
- "centennial": 20895,
- "center": 16651,
- "center": 2119,
- "centered": 24584,
- "centers": 14494,
- "centi": 48889,
- "centime": 48687,
- "centr": 2370,
- "central": 13448,
- "central": 3339,
- "centre": 26310,
- "centre": 2916,
- "centred": 47925,
- "centres": 19354,
- "centri": 30872,
- "centric": 19297,
- "centro": 37178,
- "cents": 11934,
- "centu": 16818,
- "centuri": 36816,
- "centuries": 19014,
- "century": 26134,
- "century": 4275,
- "ceo": 46340,
- "ceo": 3559,
- "ceos": 28332,
- "cep": 2632,
- "cep": 48714,
- "ceph": 44343,
- "cept": 3678,
- "ception": 12346,
- "cer": 1364,
- "cer": 1925,
- "cera": 34608,
- "ceram": 10677,
- "ceramic": 15112,
- "ceramics": 22438,
- "cere": 3984,
- "cere": 22085,
- "cereal": 17581,
- "cereals": 48618,
- "cerebral": 39073,
- "ceremon": 15796,
- "ceremonial": 33281,
- "ceremonies": 21547,
- "ceremony": 5193,
- "cern": 44851,
- "cers": 13638,
- "cert": 27522,
- "certain": 8526,
- "certain": 7883,
- "certainly": 10883,
- "certainty": 20054,
- "certi": 4888,
- "certific": 9443,
- "certificate": 11786,
- "certificates": 25281,
- "certification": 14735,
- "certified": 9288,
- "cerv": 25738,
- "cervical": 35953,
- "ces": 28715,
- "ces": 1604,
- "cesar": 37025,
- "cesar": 28603,
- "cess": 2314,
- "cess": 1554,
- "cessna": 36596,
- "cest": 27245,
- "cester": 15769,
- "cester": 12718,
- "cet": 14960,
- "cett": 46708,
- "ceu": 37457,
- "cevic": 48369,
- "cey": 20971,
- "cf": 10189,
- "cf": 11171,
- "cfa": 34521,
- "cfb": 32931,
- "cfc": 11577,
- "cfd": 46171,
- "cfl": 46320,
- "cfl": 22332,
- "cfo": 26937,
- "cfp": 40756,
- "cfr": 44033,
- "cfs": 32835,
- "cg": 27118,
- "cg": 14740,
- "cgc": 38775,
- "cgi": 30520,
- "ch": 540,
- "ch": 634,
- "cha": 1587,
- "cha": 4541,
- "chab": 26670,
- "chad": 13095,
- "chad": 12923,
- "chae": 9460,
- "chaf": 38123,
- "chag": 27989,
- "chai": 31590,
- "chai": 18919,
- "chain": 13898,
- "chain": 3946,
- "chained": 34402,
- "chains": 14438,
- "chainsaw": 37617,
- "chainz": 39687,
- "chair": 4728,
- "chair": 4269,
- "chaired": 31664,
- "chairing": 42205,
- "chairman": 6901,
- "chairperson": 31584,
- "chairs": 12033,
- "chak": 13702,
- "chak": 41713,
- "chakra": 38304,
- "chakra": 33241,
- "chal": 7397,
- "chal": 30809,
- "chale": 38099,
- "chalet": 37907,
- "chalk": 31362,
- "chalk": 17846,
- "chall": 2073,
- "challeng": 4138,
- "challenge": 29462,
- "challenge": 2836,
- "challenged": 17380,
- "challenger": 18228,
- "challengers": 46404,
- "challenges": 6280,
- "challenging": 11754,
- "chalmers": 47955,
- "cham": 1290,
- "cham": 19951,
- "chamber": 18983,
- "chamber": 7642,
- "chamberlain": 32756,
- "chambers": 16501,
- "chamele": 34759,
- "chameleon": 41317,
- "champ": 36813,
- "champ": 6602,
- "champag": 10283,
- "champagne": 11007,
- "champi": 1680,
- "champion": 2643,
- "champion": 3950,
- "champions": 4227,
- "championship": 3429,
- "championships": 7047,
- "championsleague": 27638,
- "champs": 6240,
- "chan": 1255,
- "chan": 6704,
- "chana": 48752,
- "chanc": 13931,
- "chance": 32940,
- "chance": 2594,
- "chancellor": 15886,
- "chances": 10870,
- "chand": 7126,
- "chand": 41508,
- "chandelier": 30570,
- "chandi": 12482,
- "chandigarh": 34106,
- "chandler": 17595,
- "chandra": 27082,
- "chandra": 25348,
- "chanel": 16951,
- "chang": 2233,
- "chang": 16461,
- "change": 11608,
- "change": 1799,
- "changeable": 41335,
- "changed": 4907,
- "changer": 18406,
- "changers": 35185,
- "changes": 4938,
- "changing": 40384,
- "changing": 5621,
- "changmin": 47410,
- "chann": 8804,
- "channel": 25837,
- "channel": 3847,
- "channeling": 28197,
- "channels": 13961,
- "channing": 37417,
- "chant": 18165,
- "chant": 13521,
- "chanting": 32111,
- "chants": 22723,
- "chanyeol": 18805,
- "chao": 31815,
- "chaos": 10853,
- "chaotic": 33501,
- "chap": 3825,
- "chap": 21939,
- "chapel": 40859,
- "chapel": 10137,
- "chaplain": 38348,
- "chaplin": 32545,
- "chapman": 17968,
- "chapp": 20634,
- "chaps": 36823,
- "chapter": 6014,
- "chapters": 22936,
- "char": 1054,
- "char": 16017,
- "chara": 35668,
- "charac": 2792,
- "character": 10997,
- "character": 4009,
- "characterdesign": 38149,
- "characteri": 20920,
- "characteristic": 44747,
- "characteristics": 26037,
- "characters": 6564,
- "charan": 31851,
- "charcoal": 19268,
- "chard": 17524,
- "chardon": 26599,
- "chardonnay": 28161,
- "charge": 25032,
- "charge": 5948,
- "chargeable": 35664,
- "charged": 7916,
- "charger": 13090,
- "chargers": 17352,
- "charges": 8962,
- "charging": 12514,
- "chariot": 38811,
- "charis": 24449,
- "charisma": 45041,
- "charismatic": 37205,
- "charitable": 23256,
- "charities": 18493,
- "charity": 20008,
- "charity": 4607,
- "charitytuesday": 42794,
- "charl": 47736,
- "charle": 10217,
- "charles": 27983,
- "charles": 5127,
- "charleston": 15478,
- "charley": 38027,
- "charli": 21784,
- "charli": 49392,
- "charlie": 16764,
- "charlie": 6393,
- "charlotte": 18445,
- "charlotte": 7871,
- "charlottesville": 32027,
- "charlton": 27048,
- "charm": 10876,
- "charmed": 39790,
- "charming": 12177,
- "charms": 21944,
- "charred": 44085,
- "chart": 42685,
- "chart": 5053,
- "charted": 27939,
- "charter": 42345,
- "charter": 13569,
- "chartered": 31298,
- "charters": 46626,
- "charting": 39841,
- "charts": 10728,
- "chas": 10717,
- "chas": 29838,
- "chase": 21503,
- "chase": 3859,
- "chased": 30342,
- "chaser": 29560,
- "chasers": 34158,
- "chases": 45011,
- "chasing": 46909,
- "chasing": 13376,
- "chassis": 29188,
- "chast": 42176,
- "chasu": 41352,
- "chat": 5355,
- "chat": 2402,
- "chatbots": 43994,
- "chate": 30377,
- "chateau": 44582,
- "chateau": 23520,
- "chath": 46849,
- "chatham": 32030,
- "chats": 13263,
- "chatt": 21618,
- "chattanoo": 28009,
- "chattanooga": 29866,
- "chatted": 34124,
- "chatter": 33473,
- "chatter": 41103,
- "chatting": 12401,
- "chatur": 33839,
- "chau": 11263,
- "chau": 37536,
- "chauffe": 45440,
- "chauhan": 46663,
- "chav": 28997,
- "chavez": 27480,
- "chaw": 39639,
- "chay": 45317,
- "chaz": 47815,
- "chc": 36233,
- "chd": 41645,
- "che": 983,
- "che": 3842,
- "chea": 39580,
- "chead": 48358,
- "cheap": 27036,
- "cheap": 8678,
- "cheape": 26164,
- "cheaper": 17776,
- "cheapest": 26640,
- "cheat": 18180,
- "cheated": 34285,
- "cheating": 19722,
- "chec": 1113,
- "check": 7672,
- "check": 1217,
- "checked": 10387,
- "checker": 45883,
- "checkers": 48181,
- "checking": 7441,
- "checklist": 26989,
- "checkout": 13101,
- "checkpoint": 27531,
- "checks": 13737,
- "ched": 11341,
- "ched": 2146,
- "cheddar": 20551,
- "chee": 5326,
- "chee": 20944,
- "cheek": 40000,
- "cheek": 21227,
- "cheeks": 23019,
- "cheeky": 15068,
- "cheer": 9733,
- "cheer": 6918,
- "cheered": 38111,
- "cheerful": 28882,
- "cheering": 14289,
- "cheerleader": 29072,
- "cheerleaders": 22343,
- "cheerleading": 36366,
- "cheers": 6562,
- "chees": 15182,
- "cheese": 10738,
- "cheese": 4108,
- "cheeseburger": 41200,
- "cheesecake": 17803,
- "cheeses": 36076,
- "cheesy": 22093,
- "cheetah": 27431,
- "chef": 12137,
- "chef": 4895,
- "chefs": 14486,
- "chek": 43745,
- "chel": 3084,
- "chel": 25970,
- "chell": 46854,
- "chelle": 30141,
- "chelms": 34936,
- "chelmsford": 39890,
- "chelse": 19071,
- "chelsea": 6031,
- "chelseafc": 25927,
- "chelten": 18889,
- "cheltenham": 21589,
- "chem": 5667,
- "chem": 13698,
- "chemi": 7179,
- "chemical": 39376,
- "chemical": 9208,
- "chemicals": 17426,
- "chemist": 23138,
- "chemistry": 8841,
- "chemo": 33095,
- "chemo": 36348,
- "chemotherapy": 41412,
- "chemtrails": 46015,
- "chen": 5907,
- "chen": 8983,
- "cheney": 43522,
- "cheng": 32512,
- "cheng": 30190,
- "chenko": 29073,
- "chennai": 28948,
- "chennai": 12791,
- "cheon": 11498,
- "cheque": 28168,
- "cher": 3597,
- "cher": 3466,
- "cheri": 26471,
- "cherish": 20053,
- "cherished": 42325,
- "cherno": 35376,
- "chernobyl": 40554,
- "chero": 19844,
- "cherokee": 22860,
- "cherries": 27248,
- "cherry": 21470,
- "cherry": 7325,
- "chers": 5789,
- "chery": 38478,
- "cheryl": 37784,
- "cheryl": 20600,
- "ches": 18346,
- "ches": 1910,
- "chesa": 28349,
- "chesapeake": 32909,
- "cheshire": 17130,
- "chesney": 48747,
- "chess": 27170,
- "chess": 8397,
- "chest": 18217,
- "chest": 10563,
- "chester": 10466,
- "chester": 3343,
- "chesterfield": 32975,
- "chestnut": 21834,
- "chet": 9663,
- "chett": 24695,
- "chev": 7152,
- "chev": 41145,
- "chevro": 12850,
- "chevrolet": 13240,
- "chevron": 33792,
- "chevy": 16581,
- "chew": 32645,
- "chew": 22642,
- "chewan": 23689,
- "chewbacca": 49355,
- "chewing": 31486,
- "chewy": 42940,
- "chey": 26968,
- "chey": 31208,
- "cheyenne": 34805,
- "chez": 49183,
- "chez": 10556,
- "chf": 33021,
- "chfield": 41619,
- "chhat": 34127,
- "chhattisgarh": 44246,
- "chi": 1337,
- "chi": 4039,
- "chia": 19147,
- "chiang": 33764,
- "chibi": 22306,
- "chic": 2627,
- "chic": 9091,
- "chica": 44190,
- "chicag": 16778,
- "chicago": 15038,
- "chicago": 3530,
- "chicagof": 40638,
- "chicagofire": 46576,
- "chicas": 40664,
- "chichester": 43823,
- "chick": 3170,
- "chick": 11238,
- "chicken": 26322,
- "chicken": 3717,
- "chickens": 21658,
- "chickpea": 48109,
- "chicks": 17810,
- "chico": 30379,
- "chie": 40046,
- "chie": 12388,
- "chief": 16830,
- "chief": 3455,
- "chiefs": 11419,
- "chiev": 47761,
- "chiff": 27407,
- "chiffon": 31817,
- "chig": 42952,
- "chihu": 22857,
- "chihuahu": 25437,
- "chihuahua": 30181,
- "chik": 45455,
- "chil": 1333,
- "child": 4392,
- "child": 2913,
- "childcare": 31133,
- "childhood": 34772,
- "childhood": 7551,
- "childish": 31939,
- "childre": 2135,
- "children": 11101,
- "children": 2153,
- "childrens": 31551,
- "childrens": 21553,
- "childs": 39521,
- "chile": 10022,
- "chilean": 33186,
- "chili": 13033,
- "chill": 6498,
- "chill": 6382,
- "chilled": 23540,
- "chillen": 45160,
- "chilli": 26787,
- "chilli": 17067,
- "chillin": 10347,
- "chilling": 10179,
- "chillout": 39842,
- "chills": 25460,
- "chilly": 14450,
- "chim": 10543,
- "chimney": 26821,
- "chimp": 44374,
- "chin": 6555,
- "chin": 8979,
- "china": 38943,
- "china": 2817,
- "chinatown": 28582,
- "chine": 4013,
- "chinese": 30568,
- "chinese": 4271,
- "ching": 34621,
- "ching": 1439,
- "chino": 47181,
- "chino": 27440,
- "chinook": 41577,
- "chinson": 33786,
- "chio": 19650,
- "chip": 19271,
- "chip": 8730,
- "chipmun": 46384,
- "chipot": 17702,
- "chipotle": 19284,
- "chipp": 39854,
- "chippe": 46541,
- "chipped": 39892,
- "chipping": 40323,
- "chips": 8855,
- "chir": 15564,
- "chiro": 23413,
- "chiroprac": 25987,
- "chiropractic": 34437,
- "chis": 19920,
- "chistan": 20523,
- "chiswick": 47290,
- "chit": 13515,
- "chit": 45626,
- "chita": 49184,
- "chitec": 39862,
- "chive": 29222,
- "chives": 34921,
- "chk": 47424,
- "chl": 38592,
- "chley": 47748,
- "chlo": 10374,
- "chloe": 39966,
- "chloe": 13992,
- "chlor": 23135,
- "chman": 35835,
- "chment": 20848,
- "chner": 48277,
- "cho": 1327,
- "cho": 5150,
- "choa": 43077,
- "choc": 32772,
- "choc": 21983,
- "choco": 46285,
- "choco": 32692,
- "chocol": 3443,
- "chocolat": 44631,
- "chocolate": 29389,
- "chocolate": 3820,
- "chocolates": 24120,
- "choi": 23749,
- "choic": 35606,
- "choice": 23857,
- "choice": 4051,
- "choices": 11016,
- "choir": 9214,
- "choirs": 43277,
- "choke": 30231,
- "choked": 43521,
- "choker": 39642,
- "choking": 39993,
- "chol": 19802,
- "cholera": 45999,
- "cholester": 26861,
- "cholesterol": 27982,
- "chom": 25151,
- "chon": 20416,
- "chon": 21601,
- "chondri": 37379,
- "chong": 26220,
- "choo": 3869,
- "choo": 24437,
- "chool": 29578,
- "chools": 41958,
- "choose": 22756,
- "choose": 5073,
- "chooses": 29923,
- "choosing": 13475,
- "chop": 10458,
- "chop": 16663,
- "chopin": 42256,
- "chopped": 22580,
- "chopper": 24011,
- "chopping": 35375,
- "chopra": 24258,
- "chops": 26321,
- "chor": 7567,
- "chor": 47795,
- "choral": 26684,
- "chord": 33005,
- "chords": 36152,
- "choreo": 17443,
- "choreographer": 35952,
- "choreography": 32749,
- "chores": 40483,
- "chori": 25718,
- "chorizo": 30802,
- "chorus": 20869,
- "chos": 26559,
- "chose": 11090,
- "chosen": 10044,
- "chou": 16960,
- "chou": 42917,
- "choudhary": 45503,
- "chow": 20257,
- "chow": 21657,
- "chowder": 37886,
- "chp": 35896,
- "chr": 36918,
- "chri": 1135,
- "chris": 9907,
- "chris": 2978,
- "chrisbrown": 41035,
- "chriss": 46745,
- "chrissy": 44762,
- "chrissy": 40485,
- "christ": 1403,
- "christ": 6703,
- "christchurch": 27100,
- "christen": 31956,
- "christensen": 42226,
- "christi": 3328,
- "christi": 33213,
- "christian": 11792,
- "christian": 4729,
- "christianity": 20000,
- "christians": 14842,
- "christie": 16084,
- "christin": 30189,
- "christina": 15925,
- "christine": 42610,
- "christine": 14712,
- "christma": 12039,
- "christmas": 18174,
- "christmas": 1677,
- "christmaseve": 44381,
- "christmass": 44873,
- "christop": 7917,
- "christoph": 47844,
- "christophe": 45486,
- "christopher": 33349,
- "christopher": 9630,
- "christy": 28331,
- "chro": 13207,
- "chromatic": 44207,
- "chrome": 24843,
- "chrome": 9529,
- "chromo": 35809,
- "chron": 5577,
- "chron": 39781,
- "chronic": 10115,
- "chronic": 13677,
- "chronicle": 20034,
- "chronicles": 18905,
- "chrono": 29387,
- "chronograph": 38397,
- "chry": 13508,
- "chrysler": 20078,
- "chs": 40277,
- "chs": 8391,
- "chsnews": 44919,
- "cht": 11384,
- "chter": 47811,
- "chu": 3799,
- "chu": 13622,
- "chubby": 29109,
- "chuck": 13211,
- "chuck": 9894,
- "chuckle": 35733,
- "chucky": 42026,
- "chuffed": 27233,
- "chuk": 25878,
- "chuk": 27221,
- "chul": 33001,
- "chum": 46869,
- "chum": 41767,
- "chun": 14693,
- "chun": 25391,
- "chung": 28418,
- "chunk": 30275,
- "chunks": 45538,
- "chunky": 27978,
- "chups": 46331,
- "chur": 2309,
- "church": 14956,
- "church": 2735,
- "churches": 15539,
- "churchill": 17527,
- "chus": 36246,
- "chut": 28788,
- "chutney": 36261,
- "chy": 15131,
- "chy": 8096,
- "chyna": 43398,
- "châ": 48669,
- "ci": 698,
- "ci": 5798,
- "cia": 4019,
- "cial": 1143,
- "cian": 32323,
- "ciao": 37677,
- "ciara": 31369,
- "cible": 28873,
- "cic": 14539,
- "cic": 21517,
- "cid": 27359,
- "cide": 34178,
- "cider": 13547,
- "cides": 41326,
- "cie": 19730,
- "cier": 24067,
- "cies": 6785,
- "cif": 35698,
- "cigar": 26031,
- "cigar": 16525,
- "cigare": 13044,
- "cigarette": 18548,
- "cigarettes": 22750,
- "cigars": 20750,
- "cii": 42408,
- "cil": 9217,
- "cil": 2998,
- "cilan": 33998,
- "cilantro": 34568,
- "cili": 18977,
- "ciliation": 25294,
- "cim": 30021,
- "cin": 2396,
- "cin": 25367,
- "cina": 39467,
- "cincin": 13291,
- "cincinnati": 14197,
- "cinco": 25131,
- "cincode": 40930,
- "cincodemayo": 42542,
- "cincy": 30015,
- "cincy": 30286,
- "cinde": 20660,
- "cinderella": 21515,
- "cindy": 34439,
- "cindy": 18532,
- "cine": 4015,
- "cine": 27451,
- "cinema": 38251,
- "cinema": 6443,
- "cinemas": 14845,
- "cinematic": 25602,
- "cinemato": 21919,
- "cinematographer": 39059,
- "cinematography": 33802,
- "ciner": 39882,
- "cing": 4014,
- "cini": 25699,
- "cinnam": 12768,
- "cinnamon": 13460,
- "cino": 18616,
- "cio": 44584,
- "cio": 9954,
- "cion": 22024,
- "ciones": 37155,
- "cious": 38466,
- "cip": 32884,
- "cir": 2459,
- "cir": 41135,
- "circa": 10411,
- "circle": 33574,
- "circle": 7117,
- "circles": 19411,
- "circling": 46036,
- "circu": 5143,
- "circuit": 35583,
- "circuit": 9801,
- "circuits": 33260,
- "circul": 16618,
- "circular": 19733,
- "circulare": 39525,
- "circulareconomy": 39878,
- "circulated": 46258,
- "circulating": 42980,
- "circulation": 27880,
- "circum": 13406,
- "circumstances": 18786,
- "circus": 11833,
- "cirque": 36049,
- "cis": 9459,
- "cis": 23513,
- "cisco": 36689,
- "cisco": 19290,
- "cise": 19657,
- "cisely": 33434,
- "cision": 41957,
- "cism": 24166,
- "cist": 40906,
- "cit": 4420,
- "cit": 31294,
- "citadel": 38036,
- "citation": 33581,
- "cite": 32641,
- "cited": 25069,
- "cites": 34490,
- "citi": 4280,
- "citi": 30270,
- "cities": 5441,
- "citing": 29088,
- "citiz": 5816,
- "citizen": 11720,
- "citizen": 9814,
- "citizens": 7949,
- "citizenship": 17386,
- "cito": 42636,
- "citro": 27941,
- "citroen": 35805,
- "citrus": 17379,
- "city": 5002,
- "city": 1305,
- "cityfc": 28751,
- "cityo": 25709,
- "cityof": 11595,
- "cityscape": 40808,
- "ciu": 39693,
- "cius": 42559,
- "civ": 40039,
- "civic": 32240,
- "civic": 11888,
- "civil": 6923,
- "civil": 6450,
- "civilian": 21187,
- "civilians": 18076,
- "civilization": 22503,
- "civilwar": 34524,
- "ción": 44700,
- "cj": 15238,
- "cj": 15205,
- "ck": 916,
- "ck": 868,
- "cke": 25224,
- "cke": 40989,
- "cked": 3441,
- "cken": 25566,
- "cker": 15509,
- "cker": 4744,
- "ckers": 37073,
- "cket": 5525,
- "ckett": 33899,
- "ckey": 15029,
- "ckey": 3657,
- "cki": 36916,
- "cki": 41055,
- "cking": 4805,
- "cko": 28818,
- "cks": 2031,
- "cky": 26229,
- "cky": 3083,
- "cl": 969,
- "cl": 6482,
- "cla": 940,
- "cla": 20636,
- "clad": 31606,
- "cladding": 46411,
- "clai": 29459,
- "claim": 4290,
- "claim": 6607,
- "claimed": 9010,
- "claiming": 15286,
- "claims": 6852,
- "clair": 31441,
- "clair": 14039,
- "claire": 20410,
- "claire": 10460,
- "clam": 13588,
- "clam": 32598,
- "clamation": 21793,
- "clamp": 41501,
- "clams": 38849,
- "clan": 29252,
- "clan": 14114,
- "clancy": 37227,
- "clans": 38279,
- "clap": 30037,
- "clap": 25546,
- "clapham": 43619,
- "clapton": 37683,
- "clar": 3617,
- "clara": 19468,
- "clare": 18948,
- "clare": 15927,
- "claremont": 47789,
- "clarence": 29320,
- "clari": 15175,
- "clarify": 37004,
- "clarinet": 41178,
- "clarity": 21323,
- "clark": 13340,
- "clark": 7521,
- "clarke": 11548,
- "clarkson": 25706,
- "clas": 32003,
- "clash": 38367,
- "clash": 9359,
- "clashes": 25193,
- "clasico": 43567,
- "class": 2876,
- "class": 1874,
- "classes": 6919,
- "classi": 2507,
- "classic": 9353,
- "classic": 2713,
- "classical": 22179,
- "classical": 11355,
- "classicalmusic": 27806,
- "classiccar": 46906,
- "classiccars": 21064,
- "classics": 10634,
- "classification": 26612,
- "classified": 22056,
- "classmate": 37090,
- "classmates": 30062,
- "classof": 25345,
- "classroom": 9001,
- "classrooms": 25768,
- "classy": 11615,
- "clau": 7526,
- "claude": 17461,
- "claudi": 39439,
- "claudia": 21893,
- "claudio": 31230,
- "claus": 23317,
- "clause": 26151,
- "clave": 24111,
- "claw": 49230,
- "claw": 19106,
- "claws": 29161,
- "clay": 10402,
- "clay": 8823,
- "clays": 26128,
- "clayton": 46445,
- "clayton": 19413,
- "clc": 31380,
- "cle": 1321,
- "cle": 2537,
- "clean": 3572,
- "clean": 3772,
- "cleaned": 17468,
- "cleanenergy": 43538,
- "cleaner": 15619,
- "cleaners": 33258,
- "cleaning": 7210,
- "cleanliness": 47886,
- "cleans": 40827,
- "cleanse": 28717,
- "cleanser": 44170,
- "cleansing": 25931,
- "cleanup": 22353,
- "clear": 4631,
- "clear": 3143,
- "clearance": 17959,
- "cleared": 14880,
- "clearer": 37031,
- "clearing": 15481,
- "clearly": 7767,
- "clears": 29092,
- "clearwater": 32124,
- "cleary": 44342,
- "cleats": 33486,
- "cleavage": 44165,
- "cled": 12827,
- "clegg": 42915,
- "clemens": 45896,
- "clement": 22592,
- "clement": 24714,
- "clemente": 42461,
- "clementine": 47112,
- "clements": 49175,
- "clemson": 38170,
- "clemson": 19537,
- "clen": 35547,
- "cleo": 40344,
- "cleop": 36287,
- "cleopatra": 41212,
- "cler": 11828,
- "clergy": 42635,
- "cleric": 43748,
- "clerk": 22230,
- "clermont": 47529,
- "cles": 8077,
- "cleve": 37599,
- "clevel": 7701,
- "cleveland": 30716,
- "cleveland": 8430,
- "clever": 30977,
- "clever": 13385,
- "clg": 47546,
- "cli": 1503,
- "clich": 44407,
- "click": 16676,
- "click": 3585,
- "clicked": 29015,
- "clicking": 26542,
- "clicks": 31250,
- "client": 48528,
- "client": 7467,
- "clients": 8114,
- "clif": 13182,
- "cliff": 23827,
- "cliff": 10625,
- "cliffe": 15170,
- "clifford": 24226,
- "cliffs": 20953,
- "clifton": 23878,
- "climat": 37283,
- "climate": 7854,
- "climate": 4589,
- "climateaction": 31622,
- "climatechange": 11055,
- "climates": 46022,
- "climax": 37033,
- "climb": 7421,
- "climb": 10649,
- "climbed": 22528,
- "climber": 36910,
- "climbers": 47648,
- "climbing": 9877,
- "climbs": 29098,
- "clin": 2879,
- "clinch": 30404,
- "clinched": 44064,
- "cline": 37460,
- "cling": 37068,
- "cling": 4760,
- "clinic": 7926,
- "clinical": 35133,
- "clinical": 9148,
- "clinicians": 45866,
- "clinics": 23330,
- "clint": 37542,
- "clint": 21160,
- "clinton": 34403,
- "clinton": 5820,
- "clio": 46889,
- "clip": 39712,
- "clip": 9289,
- "clipped": 45524,
- "clipper": 42245,
- "clippers": 23319,
- "clipping": 47484,
- "clips": 16594,
- "clique": 34983,
- "clive": 36086,
- "clive": 21509,
- "cll": 46091,
- "cllr": 45743,
- "cllr": 23034,
- "clo": 1194,
- "cloak": 36528,
- "clock": 19878,
- "clock": 6716,
- "clocked": 49049,
- "clocks": 25895,
- "clockwise": 46150,
- "clockwork": 42297,
- "clon": 24477,
- "clone": 22854,
- "clones": 48047,
- "clooney": 33161,
- "clos": 48821,
- "close": 10603,
- "close": 2660,
- "closed": 4552,
- "closely": 13478,
- "closer": 6377,
- "closes": 11354,
- "closest": 14975,
- "closet": 14221,
- "closeup": 35439,
- "closing": 7101,
- "closure": 13249,
- "closures": 22923,
- "cloth": 14559,
- "clothes": 7080,
- "clothing": 7425,
- "clou": 4069,
- "cloud": 12965,
- "cloud": 3887,
- "cloudcomputing": 41390,
- "clouds": 6244,
- "cloudy": 13106,
- "clough": 42909,
- "clover": 39574,
- "clover": 22812,
- "clow": 18386,
- "clown": 15329,
- "clowns": 30820,
- "cls": 44251,
- "clt": 29651,
- "clt": 24236,
- "clu": 996,
- "club": 9642,
- "club": 1736,
- "clubbing": 48128,
- "clubhouse": 26553,
- "clubs": 9437,
- "clue": 14994,
- "clueless": 35350,
- "clues": 23764,
- "clusive": 41362,
- "cluster": 15595,
- "clusters": 33217,
- "clut": 28507,
- "clutch": 13953,
- "clutter": 40804,
- "cly": 12037,
- "clyde": 39557,
- "clyde": 18469,
- "cm": 10190,
- "cm": 3741,
- "cma": 30554,
- "cma": 31388,
- "cmc": 45839,
- "cmdr": 48250,
- "cme": 34946,
- "cmo": 24589,
- "cmon": 42904,
- "cmp": 46355,
- "cms": 22520,
- "cmt": 42727,
- "cmu": 43046,
- "cn": 3886,
- "cn": 16200,
- "cna": 48287,
- "cnbc": 41242,
- "cnbc": 24371,
- "cnblue": 36018,
- "cnc": 20571,
- "cnet": 47487,
- "cnews": 24319,
- "cng": 41496,
- "cnn": 22405,
- "cnn": 8259,
- "cns": 46095,
- "cny": 31614,
- "co": 622,
- "co": 1320,
- "coa": 29167,
- "coach": 3275,
- "coach": 2312,
- "coached": 30228,
- "coachella": 20222,
- "coaches": 6924,
- "coaching": 7766,
- "coal": 10227,
- "coal": 7919,
- "coalition": 12920,
- "coast": 6398,
- "coast": 3720,
- "coastal": 38246,
- "coastal": 10852,
- "coaster": 15944,
- "coasters": 31548,
- "coastguard": 40601,
- "coastline": 27959,
- "coasts": 42225,
- "coat": 28869,
- "coat": 7356,
- "coated": 23401,
- "coates": 36899,
- "coating": 25369,
- "coatings": 48706,
- "coats": 18075,
- "cob": 20140,
- "cob": 32863,
- "cobain": 36866,
- "cobalt": 30896,
- "cobb": 22719,
- "cobble": 47894,
- "cobra": 21574,
- "coc": 23036,
- "coc": 39498,
- "coca": 21197,
- "cocac": 26393,
- "cocacola": 31248,
- "cocaine": 20534,
- "coch": 18599,
- "cochran": 48798,
- "cochrane": 41752,
- "coco": 11850,
- "coco": 13316,
- "cocoa": 18074,
- "cocon": 8597,
- "coconut": 9581,
- "cod": 16132,
- "cod": 11915,
- "code": 11582,
- "code": 3217,
- "coded": 33703,
- "coden": 43914,
- "coder": 41561,
- "codes": 14566,
- "codi": 39711,
- "coding": 12647,
- "cody": 23222,
- "cody": 12666,
- "coe": 15386,
- "coed": 41028,
- "coel": 45633,
- "coer": 41198,
- "coeur": 44986,
- "coffe": 2255,
- "coffee": 12898,
- "coffee": 2453,
- "coffees": 41184,
- "coffey": 48066,
- "cofficial": 18757,
- "coffin": 29907,
- "cog": 26362,
- "cog": 35960,
- "cogn": 12210,
- "cognac": 44361,
- "cognition": 46825,
- "cognitive": 16584,
- "cohe": 20669,
- "cohen": 13381,
- "coherent": 48450,
- "cohort": 22782,
- "coil": 25307,
- "coim": 41528,
- "coin": 14651,
- "coin": 4170,
- "coinci": 14015,
- "coincidence": 19807,
- "coins": 10530,
- "coke": 39602,
- "coke": 14035,
- "col": 754,
- "col": 9371,
- "cola": 15444,
- "colbert": 31647,
- "colby": 32068,
- "colchester": 31715,
- "cold": 11146,
- "cold": 3153,
- "colder": 23859,
- "coldest": 31438,
- "coldplay": 27770,
- "cole": 9305,
- "cole": 8166,
- "coleman": 15774,
- "coles": 40265,
- "coles": 30398,
- "coli": 18877,
- "coli": 15910,
- "colin": 20989,
- "colin": 10238,
- "coliseum": 21836,
- "coll": 25982,
- "coll": 23898,
- "colla": 2929,
- "collab": 14013,
- "collabor": 4437,
- "collaborate": 21271,
- "collaborated": 42265,
- "collaborating": 25545,
- "collaboration": 6642,
- "collaborations": 36520,
- "collaborative": 15841,
- "collaborator": 48186,
- "collaborators": 45901,
- "collage": 11258,
- "collagen": 36120,
- "collap": 16881,
- "collapse": 16520,
- "collapsed": 25037,
- "collapses": 43601,
- "collar": 39662,
- "collar": 13497,
- "collateral": 44512,
- "colle": 1801,
- "colleague": 13067,
- "colleagues": 8203,
- "collec": 1733,
- "collect": 10186,
- "collected": 11980,
- "collecti": 18530,
- "collectible": 25680,
- "collectibles": 21519,
- "collecting": 10325,
- "collection": 2548,
- "collections": 12760,
- "collective": 10162,
- "collectively": 40687,
- "collector": 13522,
- "collectors": 20540,
- "collects": 31576,
- "colleen": 31020,
- "college": 13512,
- "college": 2229,
- "colleges": 17357,
- "collegi": 16311,
- "collegiate": 18068,
- "colli": 8262,
- "collide": 27214,
- "collie": 30611,
- "collier": 35748,
- "collin": 24056,
- "collin": 32116,
- "colling": 32319,
- "collingwood": 45873,
- "collins": 8684,
- "collision": 15407,
- "collo": 25115,
- "colloqui": 37243,
- "colloquium": 46514,
- "collu": 25658,
- "collusion": 33864,
- "colo": 7300,
- "colo": 27288,
- "cologne": 22216,
- "cology": 19187,
- "colom": 8987,
- "colombia": 12901,
- "colombian": 28701,
- "colombo": 33207,
- "colon": 8280,
- "colon": 29050,
- "colonel": 22674,
- "coloni": 22667,
- "colonial": 16530,
- "colonialism": 43385,
- "colonies": 38738,
- "colony": 18767,
- "color": 4036,
- "color": 3140,
- "colorado": 34580,
- "colorado": 6742,
- "colorec": 41171,
- "colored": 11775,
- "colorful": 11444,
- "colori": 28764,
- "coloring": 17696,
- "colorized": 46730,
- "colors": 5389,
- "colorstv": 28195,
- "colorway": 44576,
- "colossal": 40258,
- "colosse": 48142,
- "colossus": 34022,
- "colour": 10240,
- "colour": 4769,
- "coloured": 17111,
- "colourful": 15562,
- "colouring": 31803,
- "colours": 7626,
- "cols": 35726,
- "colt": 19726,
- "colton": 32249,
- "coltrane": 42333,
- "colts": 16135,
- "colum": 4164,
- "columb": 31043,
- "columbi": 25947,
- "columbia": 9410,
- "columbus": 11273,
- "column": 10593,
- "columnist": 28958,
- "columns": 29056,
- "com": 610,
- "com": 2464,
- "coma": 19620,
- "comb": 3587,
- "comb": 16380,
- "combat": 35083,
- "combat": 9275,
- "combating": 46121,
- "combe": 14363,
- "combin": 25112,
- "combination": 11312,
- "combinations": 34950,
- "combine": 12919,
- "combined": 10427,
- "combines": 22991,
- "combining": 23561,
- "combo": 10155,
- "combos": 48117,
- "combs": 30694,
- "combu": 35629,
- "combustion": 44654,
- "comcast": 30043,
- "come": 4225,
- "come": 891,
- "comeback": 8234,
- "comedian": 13848,
- "comedians": 33758,
- "comedic": 43360,
- "comedy": 19346,
- "comedy": 4749,
- "comer": 42997,
- "comer": 20916,
- "comers": 34436,
- "comes": 2091,
- "comet": 21405,
- "comets": 40636,
- "comey": 22957,
- "comfor": 6563,
- "comfort": 44000,
- "comfort": 7808,
- "comfortable": 8652,
- "comfortably": 30392,
- "comforting": 33835,
- "comforts": 42243,
- "comfy": 15736,
- "comi": 40781,
- "comic": 7729,
- "comic": 4962,
- "comicart": 46018,
- "comicbook": 46564,
- "comicbooks": 22018,
- "comiccon": 18379,
- "comicon": 43820,
- "comics": 4256,
- "comin": 18164,
- "coming": 14916,
- "coming": 1171,
- "comingsoon": 19894,
- "comm": 965,
- "comm": 11413,
- "comman": 39780,
- "command": 18391,
- "command": 11350,
- "commander": 11265,
- "commanders": 41667,
- "commanding": 36933,
- "commandments": 43409,
- "commando": 31361,
- "commands": 38163,
- "comme": 29692,
- "commemor": 9495,
- "commemorate": 21242,
- "commemorates": 45149,
- "commemorating": 28734,
- "commemoration": 29288,
- "commemorative": 24623,
- "commen": 15795,
- "commence": 25059,
- "commenced": 43908,
- "commencement": 21666,
- "commences": 48551,
- "commend": 37555,
- "commended": 40702,
- "comment": 20035,
- "comment": 5761,
- "commentary": 14146,
- "commentator": 32016,
- "commented": 28328,
- "commenting": 37292,
- "comments": 6606,
- "commer": 4028,
- "commerce": 8333,
- "commerci": 15601,
- "commercial": 31802,
- "commercial": 6287,
- "commercials": 30724,
- "commish": 45399,
- "commissi": 6000,
- "commission": 5292,
- "commissioned": 16565,
- "commissioner": 10221,
- "commissioners": 30702,
- "commissioning": 29585,
- "commissions": 20668,
- "commit": 3041,
- "commit": 11797,
- "commitment": 7770,
- "commitments": 32136,
- "commits": 20241,
- "committed": 7907,
- "committee": 5636,
- "committees": 40504,
- "committing": 21937,
- "commod": 9496,
- "commodities": 30350,
- "commodity": 29041,
- "commodore": 31129,
- "common": 8414,
- "common": 4176,
- "commonly": 20344,
- "commons": 16653,
- "commonwealth": 16569,
- "comms": 18832,
- "commu": 9561,
- "commun": 1515,
- "communal": 32809,
- "communi": 16164,
- "communic": 4784,
- "communicate": 19809,
- "communication": 7999,
- "communications": 10052,
- "communion": 28579,
- "communism": 35387,
- "communist": 18602,
- "communities": 6361,
- "community": 14784,
- "community": 1927,
- "commute": 15898,
- "commuter": 27782,
- "commuters": 30823,
- "commuting": 43503,
- "como": 16236,
- "comp": 2561,
- "comp": 11679,
- "compac": 40014,
- "compact": 13690,
- "compan": 1995,
- "companies": 5361,
- "companion": 14963,
- "companions": 37124,
- "company": 2634,
- "compar": 7580,
- "comparable": 27092,
- "comparative": 33388,
- "compare": 13771,
- "compared": 10544,
- "compares": 25104,
- "comparing": 20564,
- "comparison": 14186,
- "comparisons": 40870,
- "compart": 30072,
- "compartment": 40383,
- "compass": 19438,
- "compassion": 14463,
- "compassionate": 30193,
- "compati": 17295,
- "compatibility": 41614,
- "compatible": 21286,
- "compe": 5254,
- "compelled": 49375,
- "compelling": 21766,
- "compen": 42079,
- "compens": 15172,
- "compensation": 18663,
- "compet": 2932,
- "compete": 10038,
- "competed": 27767,
- "competen": 31853,
- "competence": 31165,
- "competency": 49293,
- "competent": 28113,
- "competes": 39826,
- "competing": 13068,
- "competit": 15892,
- "competiti": 32581,
- "competition": 3742,
- "competitions": 23259,
- "competitive": 10687,
- "competitiveness": 43209,
- "competitor": 26633,
- "competitors": 23638,
- "compilation": 20446,
- "compiled": 34579,
- "compla": 7428,
- "complain": 19292,
- "complained": 42029,
- "complaining": 20812,
- "complains": 46363,
- "complaint": 20391,
- "complaints": 20020,
- "comple": 1730,
- "complement": 36624,
- "complementary": 48953,
- "complete": 3263,
- "completed": 5976,
- "completely": 5989,
- "completes": 19321,
- "completing": 14949,
- "completion": 15915,
- "complex": 16099,
- "complex": 6324,
- "complexes": 47870,
- "complexion": 47732,
- "complexity": 24815,
- "compli": 5270,
- "compliance": 14658,
- "compliant": 29893,
- "complic": 11460,
- "complicated": 16621,
- "complications": 29936,
- "compliment": 25116,
- "complimentary": 20948,
- "compliments": 25477,
- "comply": 36281,
- "component": 21284,
- "components": 16816,
- "compos": 7783,
- "compose": 43659,
- "composed": 19916,
- "composer": 12104,
- "composers": 33314,
- "composing": 40412,
- "composite": 21606,
- "composites": 45395,
- "composition": 17510,
- "compositions": 44652,
- "compost": 46002,
- "compost": 33307,
- "compound": 19980,
- "compounds": 33991,
- "compre": 8483,
- "compreh": 42976,
- "comprehen": 12050,
- "comprehend": 48230,
- "comprehensive": 13854,
- "compress": 33353,
- "compressed": 42359,
- "compression": 25638,
- "compressor": 39607,
- "compri": 29445,
- "compromise": 26611,
- "compromised": 38576,
- "compromising": 45436,
- "comps": 48665,
- "compton": 28364,
- "compu": 11639,
- "compul": 25869,
- "compulsory": 39345,
- "computing": 12732,
- "comra": 25553,
- "comrade": 30844,
- "comrades": 29282,
- "coms": 30493,
- "con": 616,
- "con": 2457,
- "cona": 30605,
- "conan": 24750,
- "conce": 9145,
- "concealed": 35419,
- "conceded": 37895,
- "conceived": 39725,
- "concentr": 11085,
- "concentrate": 30846,
- "concentrated": 36776,
- "concentration": 18565,
- "concep": 8389,
- "concepcion": 47035,
- "concept": 6353,
- "conceptart": 31162,
- "conception": 30510,
- "conceptions": 40307,
- "concepts": 16763,
- "conceptu": 42745,
- "conceptual": 34070,
- "concer": 2228,
- "concern": 12928,
- "concerned": 12020,
- "concerning": 21772,
- "concerns": 11134,
- "concert": 32180,
- "concert": 3066,
- "concerto": 24710,
- "concerts": 14418,
- "concession": 38117,
- "concessions": 43981,
- "concier": 28859,
- "concierge": 39850,
- "conclave": 38098,
- "conclu": 9627,
- "conclude": 37525,
- "concluded": 27825,
- "concludes": 30634,
- "conclusion": 20932,
- "conclusions": 39507,
- "conco": 43034,
- "concor": 19913,
- "concord": 26448,
- "concordia": 35492,
- "concours": 36282,
- "concourse": 37793,
- "concre": 43658,
- "concrete": 9637,
- "concussion": 28321,
- "condem": 13287,
- "condemn": 27212,
- "condemned": 35145,
- "condemns": 32092,
- "conden": 24816,
- "conditi": 11170,
- "condition": 36978,
- "condition": 7336,
- "conditional": 24671,
- "conditioned": 37014,
- "conditioner": 31239,
- "conditioning": 18181,
- "conditions": 5892,
- "condo": 19952,
- "condol": 18661,
- "condolences": 20836,
- "condom": 39021,
- "condomin": 42589,
- "condoms": 37878,
- "condor": 47643,
- "condos": 42342,
- "condu": 40772,
- "conduc": 5379,
- "conduct": 11647,
- "conducted": 13080,
- "conducting": 16787,
- "conductor": 22317,
- "conducts": 32084,
- "cone": 39279,
- "cone": 10266,
- "cones": 26718,
- "coney": 41837,
- "conf": 6477,
- "confe": 1968,
- "confeder": 17104,
- "confederate": 24864,
- "confederation": 43484,
- "conferen": 37961,
- "conference": 2230,
- "conferences": 22811,
- "conferencing": 47320,
- "confess": 38860,
- "confession": 22572,
- "confessions": 29404,
- "confetti": 37923,
- "confi": 5005,
- "confidence": 8510,
- "confident": 12365,
- "confidential": 28712,
- "configu": 46746,
- "configur": 26950,
- "configuration": 33378,
- "confin": 45316,
- "confined": 40973,
- "confir": 3930,
- "confirm": 12130,
- "confirmation": 19645,
- "confirmed": 6346,
- "confirming": 38433,
- "confirms": 11803,
- "confis": 36285,
- "confit": 42241,
- "confl": 8173,
- "conflic": 19029,
- "conflict": 10397,
- "conflicting": 43894,
- "conflicts": 28713,
- "confor": 40933,
- "confron": 20033,
- "confront": 38382,
- "confrontation": 41478,
- "confu": 6890,
- "confuse": 37503,
- "confused": 10946,
- "confusing": 24683,
- "confusion": 20493,
- "cong": 24407,
- "conge": 20013,
- "congestion": 24432,
- "congo": 20334,
- "congr": 1227,
- "congrats": 1887,
- "congratul": 1750,
- "congratulate": 16633,
- "congratulated": 42004,
- "congratulates": 24580,
- "congratulating": 30967,
- "congratulation": 24751,
- "congratulations": 1864,
- "congre": 7947,
- "congreg": 40727,
- "congregation": 32618,
- "congress": 12452,
- "congress": 4599,
- "congressional": 15239,
- "congressman": 17145,
- "congresswoman": 37317,
- "coni": 39031,
- "coni": 36651,
- "conj": 41543,
- "conju": 33821,
- "conjunction": 34226,
- "conley": 44536,
- "conline": 37593,
- "conn": 41836,
- "conn": 20329,
- "conne": 8437,
- "connec": 29933,
- "connect": 19969,
- "connected": 27506,
- "connecting": 41429,
- "connection": 26840,
- "connections": 37161,
- "connie": 25739,
- "connoisse": 46012,
- "connol": 27739,
- "connolly": 29537,
- "connor": 21984,
- "connor": 10218,
- "conom": 2664,
- "conomy": 22529,
- "conor": 29955,
- "conor": 19478,
- "conqu": 13382,
- "conquer": 38585,
- "conquer": 19821,
- "conquered": 27099,
- "conquering": 43778,
- "conquest": 35367,
- "conrad": 22073,
- "cons": 10311,
- "consci": 9427,
- "conscience": 27310,
- "conscious": 14914,
- "consciously": 46755,
- "consciousness": 17894,
- "conse": 34887,
- "consecu": 12084,
- "consecutive": 12413,
- "consen": 23110,
- "consensus": 25071,
- "consent": 21922,
- "consequ": 13003,
- "consequence": 42262,
- "consequences": 15682,
- "conserv": 4649,
- "conservancy": 46729,
- "conservation": 37616,
- "conservation": 8322,
- "conservative": 11421,
- "conservatives": 17631,
- "conservatory": 32140,
- "conserve": 34231,
- "consi": 2899,
- "consider": 12471,
- "consider": 6734,
- "considerable": 38256,
- "considerably": 38510,
- "consideration": 24310,
- "considerations": 33700,
- "considered": 9487,
- "considering": 10761,
- "considers": 24691,
- "consist": 10410,
- "consist": 33735,
- "consisted": 49354,
- "consistency": 25683,
- "consistent": 16439,
- "consistently": 23799,
- "consisting": 39241,
- "consists": 23458,
- "consol": 27869,
- "consolation": 38888,
- "console": 13403,
- "consoles": 33136,
- "consoli": 21586,
- "consolidation": 41111,
- "consor": 27108,
- "consortium": 29988,
- "conspir": 12680,
- "conspiracy": 15236,
- "const": 3826,
- "constable": 29179,
- "constan": 38718,
- "constance": 40682,
- "constant": 32000,
- "constant": 13111,
- "constantine": 30640,
- "constantly": 14336,
- "constell": 21913,
- "constellation": 25991,
- "constitu": 6299,
- "constituency": 22464,
- "constituents": 32075,
- "constitution": 12157,
- "constitutional": 16091,
- "constra": 28973,
- "constraints": 41910,
- "constru": 3983,
- "construc": 13321,
- "construct": 24467,
- "constructed": 16876,
- "constructing": 33653,
- "construction": 48873,
- "construction": 4585,
- "constructive": 31810,
- "consu": 4689,
- "consul": 5295,
- "consul": 33630,
- "consulate": 34341,
- "consult": 9438,
- "consult": 26727,
- "consultancy": 31735,
- "consultant": 14196,
- "consultants": 27203,
- "consultation": 15777,
- "consultations": 43424,
- "consulting": 15883,
- "consume": 28919,
- "consumed": 29653,
- "consumer": 34408,
- "consumer": 10422,
- "consumers": 14014,
- "consuming": 30607,
- "consumption": 14904,
- "cont": 2036,
- "cont": 21425,
- "contact": 39367,
- "contact": 3523,
- "contacted": 37331,
- "contacts": 22789,
- "contag": 29259,
- "contagious": 33984,
- "contain": 9948,
- "contain": 15187,
- "contained": 23836,
- "container": 14913,
- "containers": 20448,
- "containing": 20281,
- "contains": 12844,
- "contamin": 24662,
- "contaminated": 35773,
- "contamination": 31770,
- "conte": 15402,
- "conte": 26882,
- "contempl": 21924,
- "contemplating": 33854,
- "contempor": 14538,
- "contemporary": 16607,
- "contemporary": 8859,
- "contemporaryart": 20212,
- "contempt": 39293,
- "conten": 42201,
- "contender": 23573,
- "contenders": 29711,
- "content": 15526,
- "content": 4750,
- "contentmarketing": 20429,
- "contents": 14850,
- "contest": 23103,
- "contest": 4576,
- "contestalert": 27313,
- "contestant": 25682,
- "contestants": 28062,
- "contested": 37845,
- "contests": 32210,
- "contex": 42015,
- "context": 13089,
- "conti": 46431,
- "conti": 40842,
- "contin": 1918,
- "continent": 19623,
- "continental": 14089,
- "continents": 38642,
- "conting": 27104,
- "contingent": 36467,
- "continu": 4688,
- "continually": 34086,
- "continuation": 38964,
- "continue": 3942,
- "continued": 10150,
- "continues": 4305,
- "continuing": 11009,
- "continuity": 34035,
- "continuous": 17033,
- "continuously": 29634,
- "continuum": 44978,
- "contour": 34733,
- "contr": 22871,
- "contra": 9880,
- "contra": 38620,
- "contrac": 7581,
- "contracep": 35109,
- "contract": 6120,
- "contracting": 39091,
- "contractor": 21429,
- "contractors": 22427,
- "contracts": 16563,
- "contradic": 27957,
- "contrary": 32805,
- "contrast": 18501,
- "contrasting": 40758,
- "contribu": 4753,
- "contribute": 14112,
- "contributed": 19397,
- "contributes": 34203,
- "contributing": 21762,
- "contribution": 11116,
- "contributions": 14465,
- "contributor": 24553,
- "contributors": 32908,
- "contro": 2372,
- "control": 9963,
- "control": 3366,
- "controlled": 14140,
- "controller": 12929,
- "controllers": 30374,
- "controlling": 26427,
- "controls": 15746,
- "controversi": 13674,
- "controversial": 14617,
- "controversy": 18659,
- "conv": 48382,
- "conve": 18421,
- "conven": 7283,
- "conveni": 33278,
- "convenience": 17859,
- "convenient": 18978,
- "conveniently": 40844,
- "convention": 6752,
- "conventional": 20835,
- "conventions": 41404,
- "conver": 6336,
- "convergence": 35381,
- "convers": 4577,
- "conversation": 5690,
- "conversations": 12326,
- "converse": 24149,
- "conversion": 15111,
- "conversions": 44137,
- "convert": 20074,
- "converted": 20808,
- "converter": 34611,
- "convertible": 19608,
- "converting": 34674,
- "converts": 42470,
- "convey": 38342,
- "convic": 11150,
- "convicted": 18668,
- "conviction": 24967,
- "convictions": 44366,
- "convin": 12889,
- "convince": 20351,
- "convinced": 17388,
- "convincing": 27742,
- "convo": 19372,
- "convocation": 30674,
- "convos": 44842,
- "convoy": 30292,
- "conway": 21410,
- "conwy": 48971,
- "cony": 14501,
- "coo": 1664,
- "coo": 21691,
- "coogs": 47624,
- "cook": 9726,
- "cook": 5977,
- "cookbook": 21086,
- "cooke": 29979,
- "cooked": 11452,
- "cooker": 23806,
- "cookery": 38779,
- "cookie": 9367,
- "cookies": 8320,
- "cookin": 46610,
- "cooking": 39248,
- "cooking": 6283,
- "cookout": 39743,
- "cooks": 24256,
- "cool": 5594,
- "cool": 2077,
- "cooled": 37170,
- "cooler": 11078,
- "coolest": 10566,
- "cooling": 15291,
- "coom": 41726,
- "coon": 34260,
- "coon": 16958,
- "coop": 39917,
- "coop": 18910,
- "cooper": 7264,
- "cooper": 8133,
- "cooperate": 42936,
- "cooperation": 11785,
- "cooperative": 24517,
- "coops": 48531,
- "coordin": 8187,
- "coordinate": 38250,
- "coordinated": 32540,
- "coordinating": 40075,
- "coordination": 25611,
- "coordinator": 13967,
- "coors": 36025,
- "cop": 3196,
- "cop": 7070,
- "copa": 22749,
- "copd": 45876,
- "cope": 47635,
- "cope": 12564,
- "copeland": 37604,
- "copen": 15637,
- "copenhagen": 17390,
- "coper": 41891,
- "copernic": 45519,
- "copied": 36770,
- "copies": 9851,
- "coping": 30545,
- "copolitics": 45846,
- "copp": 20937,
- "copped": 42229,
- "copper": 24741,
- "copper": 10333,
- "coppola": 47427,
- "cops": 10719,
- "copter": 28049,
- "copy": 11376,
- "copy": 4509,
- "copying": 38925,
- "copyright": 15778,
- "cor": 851,
- "cor": 18559,
- "cora": 34953,
- "coral": 31220,
- "coral": 12054,
- "corbett": 35699,
- "corbin": 35578,
- "corbyn": 14026,
- "cord": 40893,
- "cord": 11181,
- "corden": 41999,
- "cordi": 41681,
- "cordless": 44412,
- "cords": 22164,
- "core": 19622,
- "core": 5000,
- "cores": 37874,
- "corey": 31279,
- "corey": 15288,
- "corgi": 31320,
- "cori": 26508,
- "coriander": 37491,
- "corin": 17716,
- "corinthians": 34471,
- "cork": 18148,
- "cork": 10376,
- "corn": 5202,
- "corn": 5894,
- "cornelius": 45865,
- "cornell": 38689,
- "cornell": 20859,
- "corner": 18509,
- "corner": 5253,
- "corners": 19584,
- "cornerstone": 36280,
- "cornish": 23774,
- "cornwall": 37903,
- "cornwall": 10777,
- "coron": 13210,
- "corona": 25564,
- "coronado": 43946,
- "coronary": 45955,
- "coronation": 25014,
- "coroner": 47241,
- "corp": 29203,
- "corp": 10918,
- "corpor": 4258,
- "corporal": 42445,
- "corporate": 33877,
- "corporate": 6838,
- "corporation": 11282,
- "corporations": 25482,
- "corps": 11330,
- "corpse": 29408,
- "corpus": 31672,
- "correc": 5011,
- "correct": 8340,
- "corrected": 35628,
- "correction": 20843,
- "correctional": 38030,
- "corrections": 37507,
- "correctly": 15359,
- "correlation": 29218,
- "correspon": 20203,
- "correspondent": 29996,
- "corri": 12974,
- "corridor": 20592,
- "corrie": 23961,
- "corro": 24936,
- "corro": 42033,
- "corrosion": 39191,
- "corru": 6501,
- "corrup": 30429,
- "corrupt": 15194,
- "corruption": 9141,
- "corsa": 47670,
- "corsair": 42367,
- "corset": 40408,
- "cortex": 40109,
- "cortez": 30461,
- "corvette": 24367,
- "cory": 23221,
- "cory": 18329,
- "cos": 5865,
- "cos": 5700,
- "cosby": 30324,
- "cosc": 45944,
- "coscino": 47909,
- "cose": 26495,
- "cosm": 37486,
- "cosme": 9628,
- "cosmetic": 23918,
- "cosmetics": 12896,
- "cosmic": 47398,
- "cosmic": 18304,
- "cosmo": 12829,
- "cosmo": 32072,
- "cosmopolitan": 35518,
- "cosmos": 22151,
- "cospla": 15149,
- "cosplay": 42401,
- "cosplay": 6435,
- "cosplayer": 30215,
- "cosplaying": 46701,
- "cost": 11360,
- "cost": 4713,
- "costa": 10480,
- "costar": 28659,
- "costarica": 31272,
- "costco": 31045,
- "costello": 30667,
- "costing": 39193,
- "costly": 30170,
- "costs": 7628,
- "costu": 5786,
- "costume": 7235,
- "costumes": 15150,
- "cosy": 22848,
- "cot": 4718,
- "cot": 5871,
- "cote": 44234,
- "cote": 20751,
- "cotland": 32576,
- "cotsw": 23303,
- "cotswolds": 35546,
- "cott": 8211,
- "cott": 11349,
- "cottage": 12155,
- "cottages": 34405,
- "cotton": 22218,
- "cotton": 7050,
- "cou": 1368,
- "couch": 12724,
- "cougar": 35028,
- "cougar": 27042,
- "cougars": 20425,
- "cough": 35631,
- "cough": 18498,
- "cougs": 28482,
- "coul": 22483,
- "could": 44812,
- "could": 1510,
- "couldn": 4072,
- "couldnt": 29042,
- "coulter": 42291,
- "coun": 939,
- "counc": 12927,
- "council": 18187,
- "council": 3620,
- "councill": 15732,
- "councillor": 21179,
- "councillors": 29695,
- "councilman": 40833,
- "councils": 29938,
- "counsel": 13780,
- "counsel": 19814,
- "counseling": 25000,
- "counsell": 47510,
- "counselling": 40581,
- "counselor": 26148,
- "counselors": 38688,
- "count": 6073,
- "count": 5887,
- "countdown": 39559,
- "countdown": 7500,
- "counted": 23149,
- "counter": 10134,
- "counter": 7352,
- "counterfe": 33067,
- "counterfeit": 44242,
- "counterpart": 39216,
- "counterparts": 42106,
- "counters": 46170,
- "countess": 46276,
- "counties": 12338,
- "counting": 9723,
- "countless": 21819,
- "countries": 5489,
- "country": 7896,
- "country": 2157,
- "countryfile": 47023,
- "countrymusic": 30372,
- "countryside": 16303,
- "counts": 12264,
- "county": 18734,
- "county": 2116,
- "coup": 9871,
- "coup": 16479,
- "coupe": 16773,
- "couple": 40136,
- "couple": 3377,
- "coupled": 37153,
- "couples": 14752,
- "coupling": 45595,
- "coupon": 14019,
- "coupons": 23945,
- "cour": 1391,
- "coura": 4436,
- "courage": 9828,
- "courageous": 25005,
- "courier": 27217,
- "cours": 21493,
- "course": 43225,
- "course": 2613,
- "courses": 9464,
- "court": 16837,
- "court": 2908,
- "courte": 5088,
- "courtesy": 5228,
- "courthouse": 22205,
- "courtney": 33601,
- "courtney": 15990,
- "courtroom": 41071,
- "courts": 13514,
- "courty": 20121,
- "courtyard": 21900,
- "cous": 48397,
- "cousin": 7780,
- "cousins": 14073,
- "cout": 29118,
- "coutinho": 35530,
- "couture": 14808,
- "cov": 19384,
- "cov": 48385,
- "cove": 21700,
- "cove": 14708,
- "coven": 12483,
- "covenant": 29647,
- "coventry": 18007,
- "cover": 13534,
- "cover": 2202,
- "coverage": 6810,
- "covered": 5603,
- "covering": 9462,
- "covers": 7745,
- "covert": 40134,
- "coveted": 36119,
- "covington": 43196,
- "cow": 5076,
- "cow": 9706,
- "cowan": 42699,
- "coward": 33729,
- "cowards": 48972,
- "cowboy": 25833,
- "cowboy": 13657,
- "cowboys": 11864,
- "cowboysnation": 43082,
- "cowell": 39015,
- "cowgirl": 47090,
- "coworker": 30727,
- "coworkers": 30821,
- "coworking": 36034,
- "cows": 15204,
- "cowx": 23831,
- "cox": 25784,
- "cox": 11597,
- "coy": 12765,
- "coy": 15742,
- "coyi": 48407,
- "coyle": 45348,
- "coyne": 44729,
- "coyo": 16614,
- "coyote": 26586,
- "coyotes": 30423,
- "coys": 19736,
- "coz": 39922,
- "coz": 14282,
- "cozy": 14873,
- "cp": 7905,
- "cp": 9130,
- "cpa": 30095,
- "cpac": 45731,
- "cpc": 26125,
- "cpd": 23402,
- "cpec": 48007,
- "cpfc": 27553,
- "cpi": 41795,
- "cpl": 26852,
- "cpr": 25134,
- "cps": 27078,
- "cpt": 32892,
- "cpu": 27700,
- "cq": 48910,
- "cq": 48417,
- "cr": 1075,
- "cr": 3483,
- "cra": 1184,
- "cra": 18362,
- "crab": 27382,
- "crab": 11574,
- "crabs": 30908,
- "crack": 11222,
- "crack": 10334,
- "crackdown": 29527,
- "cracked": 19826,
- "cracker": 16298,
- "crackers": 26200,
- "cracking": 13008,
- "cracks": 21426,
- "cracy": 24749,
- "cradle": 29384,
- "crae": 40438,
- "craf": 10873,
- "craft": 7717,
- "craft": 3588,
- "craftbeer": 12371,
- "crafted": 12424,
- "crafthour": 42324,
- "crafting": 26886,
- "crafts": 33276,
- "crafts": 13383,
- "craftsman": 39528,
- "craftsmanship": 36682,
- "crafty": 32317,
- "craic": 46962,
- "craig": 14042,
- "craig": 8061,
- "craigslist": 43865,
- "cram": 29809,
- "cramer": 44592,
- "cramps": 46106,
- "cran": 7761,
- "cranberries": 49361,
- "cranberry": 23824,
- "crane": 14626,
- "cranes": 26979,
- "crani": 45674,
- "crank": 46246,
- "crank": 32283,
- "cranston": 44340,
- "crap": 11899,
- "crappy": 30475,
- "crash": 37150,
- "crash": 5033,
- "crashed": 16638,
- "crashes": 17013,
- "crashing": 24991,
- "crat": 46696,
- "crate": 24756,
- "crater": 22663,
- "crates": 30172,
- "cratic": 32175,
- "crative": 39999,
- "crats": 43056,
- "crave": 33397,
- "craven": 33625,
- "craving": 18344,
- "cravings": 34476,
- "craw": 7400,
- "crawfish": 42772,
- "crawford": 15918,
- "crawl": 20106,
- "crawler": 41012,
- "crawley": 42316,
- "crawling": 37066,
- "cray": 24184,
- "cray": 27032,
- "crayon": 41801,
- "crayons": 43508,
- "craz": 25776,
- "craze": 30637,
- "craziest": 32690,
- "craziness": 46436,
- "crazy": 17540,
- "crazy": 3578,
- "crc": 25618,
- "cre": 798,
- "cre": 17762,
- "cream": 23184,
- "cream": 3867,
- "creams": 41447,
- "creamy": 17206,
- "crease": 48441,
- "create": 30949,
- "create": 3380,
- "created": 4080,
- "creates": 10361,
- "creati": 6714,
- "creating": 5524,
- "creation": 38293,
- "creation": 6900,
- "creations": 17411,
- "creative": 15237,
- "creative": 4450,
- "creatives": 29352,
- "creativity": 9636,
- "creator": 10173,
- "creators": 17981,
- "creature": 14317,
- "creatures": 13938,
- "cred": 7314,
- "cred": 22377,
- "credenti": 29487,
- "credentials": 33422,
- "credi": 21097,
- "credibility": 34984,
- "credible": 32983,
- "credit": 21467,
- "credit": 3900,
- "credited": 32480,
- "credits": 10654,
- "creds": 43462,
- "cree": 33961,
- "cree": 36014,
- "creed": 18845,
- "creek": 26120,
- "creek": 5526,
- "creep": 8153,
- "creep": 26084,
- "creeper": 38662,
- "creeping": 29697,
- "creeps": 45135,
- "creepy": 11943,
- "creighton": 42823,
- "creme": 22681,
- "creole": 45632,
- "crepe": 38611,
- "crescent": 18211,
- "cress": 39124,
- "crest": 35985,
- "crest": 15760,
- "crested": 36656,
- "crete": 8584,
- "crew": 21560,
- "crew": 3462,
- "crewe": 43284,
- "crews": 10463,
- "cri": 1621,
- "cri": 38962,
- "crib": 23271,
- "cric": 4328,
- "cricke": 19098,
- "cricket": 21859,
- "cricket": 5373,
- "cricketer": 28439,
- "cricketers": 43986,
- "cried": 15290,
- "cries": 19769,
- "crime": 13872,
- "crime": 4896,
- "crimea": 28614,
- "crimes": 11827,
- "crimin": 5874,
- "criminal": 30197,
- "criminal": 8255,
- "criminals": 18783,
- "crimson": 19437,
- "cringe": 42588,
- "cripp": 33588,
- "cris": 37818,
- "crises": 36403,
- "crisis": 5712,
- "crisp": 15145,
- "crispr": 39784,
- "crisps": 35744,
- "crispy": 16458,
- "criss": 29708,
- "cristi": 12699,
- "cristian": 48808,
- "cristiano": 14807,
- "cristina": 33395,
- "cristo": 38315,
- "crit": 3613,
- "crit": 48130,
- "criteri": 33627,
- "criteria": 24849,
- "criterion": 43841,
- "criti": 25333,
- "critic": 12417,
- "critic": 19361,
- "critical": 15314,
- "critical": 6808,
- "critically": 21570,
- "criticalrole": 33606,
- "criticalrole": 22742,
- "criticalrolefanart": 43663,
- "critici": 20333,
- "criticism": 17405,
- "criticize": 46081,
- "criticized": 41557,
- "critics": 16946,
- "critique": 32982,
- "critters": 35423,
- "crm": 22610,
- "cro": 1192,
- "cro": 22522,
- "croati": 28072,
- "croatia": 13323,
- "croatian": 34795,
- "croc": 43350,
- "croche": 35352,
- "crochet": 17554,
- "crock": 41685,
- "crocker": 47843,
- "crockett": 48313,
- "crocod": 24519,
- "crocodile": 24757,
- "crocs": 38988,
- "croft": 16657,
- "croissant": 46011,
- "croix": 44735,
- "crom": 25082,
- "crombie": 46162,
- "cromwell": 45345,
- "cron": 17361,
- "croo": 16443,
- "crook": 43744,
- "crooked": 48473,
- "crooked": 25644,
- "crooks": 44226,
- "crop": 40751,
- "crop": 9955,
- "cropped": 31139,
- "crops": 16290,
- "crore": 18274,
- "crores": 37281,
- "cros": 16670,
- "crosby": 21095,
- "cross": 5266,
- "cross": 3417,
- "crossed": 11731,
- "crosses": 20473,
- "crossfit": 47214,
- "crossfit": 20395,
- "crossing": 8673,
- "crossings": 43517,
- "crossover": 17194,
- "crossroads": 27427,
- "crossword": 32945,
- "crou": 31206,
- "crouch": 36506,
- "crow": 3138,
- "crow": 16019,
- "crowd": 12036,
- "crowd": 4570,
- "crowded": 20182,
- "crowdfunding": 17971,
- "crowds": 16092,
- "crowe": 33560,
- "crowley": 32287,
- "crown": 22190,
- "crown": 6902,
- "crowned": 16109,
- "crowns": 33229,
- "crows": 27134,
- "croy": 21676,
- "croydon": 27116,
- "crs": 28449,
- "crt": 43877,
- "cru": 1815,
- "cru": 29788,
- "cruci": 18499,
- "crucial": 12396,
- "crude": 20677,
- "cruel": 16073,
- "cruel": 17573,
- "cruelty": 20675,
- "cruis": 27721,
- "cruise": 36425,
- "cruise": 6764,
- "cruiser": 21394,
- "cruises": 19214,
- "cruising": 19743,
- "crum": 43268,
- "crumb": 48327,
- "crumb": 39909,
- "crumble": 36595,
- "crumbs": 35893,
- "crun": 17407,
- "crunch": 16620,
- "crunchy": 31366,
- "crusad": 19133,
- "crusade": 36846,
- "crusader": 40171,
- "crusaders": 31319,
- "crush": 22296,
- "crush": 7610,
- "crushed": 18270,
- "crusher": 44923,
- "crushes": 35844,
- "crushing": 20790,
- "crust": 23136,
- "crusted": 37314,
- "cruz": 33689,
- "cruz": 8403,
- "cry": 2837,
- "cry": 6290,
- "crying": 6828,
- "cryo": 32215,
- "cryp": 4865,
- "crypt": 37814,
- "cryptic": 46925,
- "crypto": 8080,
- "crypto": 9608,
- "cryptocurrencies": 33329,
- "cryptocurrency": 12070,
- "cryst": 15891,
- "crystal": 17387,
- "crystal": 6517,
- "crystalli": 47551,
- "crystals": 18350,
- "cs": 11978,
- "cs": 2804,
- "csa": 26355,
- "csc": 41727,
- "csc": 37266,
- "csd": 36913,
- "cse": 41659,
- "csg": 47085,
- "csgo": 28928,
- "csi": 41750,
- "csi": 28070,
- "csk": 43036,
- "csm": 40061,
- "csn": 46329,
- "cso": 43864,
- "csp": 39243,
- "csr": 32105,
- "csr": 24598,
- "csrracing": 44193,
- "css": 41418,
- "css": 19846,
- "cst": 17016,
- "csu": 35948,
- "csu": 31261,
- "csw": 41031,
- "ct": 3381,
- "ct": 1122,
- "cta": 28397,
- "ctar": 27842,
- "ctc": 34123,
- "cte": 31410,
- "cted": 2910,
- "ctf": 35250,
- "cthulhu": 41064,
- "cting": 7985,
- "ction": 17578,
- "ction": 1569,
- "ctions": 7021,
- "ctive": 9313,
- "cto": 17445,
- "ctor": 8108,
- "ctr": 35602,
- "ctr": 18481,
- "cts": 6936,
- "ctto": 25118,
- "ctu": 20834,
- "cture": 17668,
- "ctv": 21213,
- "ctv": 27590,
- "cu": 729,
- "cu": 11224,
- "cuando": 40388,
- "cub": 16938,
- "cub": 19972,
- "cuba": 11576,
- "cuban": 15536,
- "cube": 47753,
- "cube": 11353,
- "cubes": 31413,
- "cubic": 48159,
- "cubic": 29614,
- "cubs": 9858,
- "cuck": 26364,
- "cuckoo": 38062,
- "cucu": 16705,
- "cucumber": 19787,
- "cucumbers": 48065,
- "cud": 42684,
- "cudd": 12820,
- "cuddle": 19568,
- "cuddles": 24001,
- "cuddling": 29696,
- "cuddly": 36208,
- "cudi": 48713,
- "cue": 13424,
- "cuer": 39506,
- "cues": 35719,
- "cuff": 34693,
- "cuff": 22414,
- "cufflinks": 43938,
- "cuffs": 37221,
- "cuis": 9938,
- "cuisine": 10605,
- "cuk": 34838,
- "cul": 1877,
- "cula": 35935,
- "cular": 10940,
- "culars": 45719,
- "cule": 31066,
- "cules": 18984,
- "culin": 14772,
- "culinary": 16466,
- "cull": 21880,
- "cull": 42061,
- "cullen": 25973,
- "culmin": 33778,
- "culo": 36305,
- "culprit": 41593,
- "cult": 11965,
- "cultiv": 16781,
- "cultivate": 42983,
- "cultivated": 48901,
- "cultivation": 41539,
- "cultur": 20780,
- "cultural": 34908,
- "cultural": 6753,
- "culturally": 36783,
- "culture": 20197,
- "culture": 3673,
- "cultured": 40176,
- "cultures": 19552,
- "culver": 42103,
- "cum": 20142,
- "cum": 27119,
- "cumb": 10858,
- "cumber": 15309,
- "cumberbatch": 27541,
- "cumberland": 28747,
- "cumbri": 32010,
- "cumbria": 17953,
- "cumin": 42285,
- "cumple": 47050,
- "cumul": 42961,
- "cumulative": 47610,
- "cumulus": 46313,
- "cun": 12423,
- "cun": 29532,
- "cunningham": 25321,
- "cuomo": 25681,
- "cup": 5059,
- "cup": 1937,
- "cupboard": 32074,
- "cupcake": 17025,
- "cupcakes": 12747,
- "cupid": 34885,
- "cuppa": 28077,
- "cups": 11463,
- "cur": 1092,
- "cur": 33073,
- "curated": 20341,
- "curator": 20753,
- "curb": 21931,
- "curd": 38881,
- "cure": 36758,
- "cure": 9088,
- "cured": 26248,
- "cures": 38204,
- "curfew": 48826,
- "curi": 12640,
- "curing": 44169,
- "curiosity": 21583,
- "curious": 9865,
- "curl": 24306,
- "curled": 43734,
- "curling": 18543,
- "curls": 24340,
- "curly": 20795,
- "curran": 40999,
- "currant": 43501,
- "curren": 6142,
- "currencies": 23530,
- "currency": 7853,
- "current": 3653,
- "currently": 3792,
- "currents": 35450,
- "curric": 16201,
- "curriculum": 17947,
- "currie": 39385,
- "curry": 49285,
- "curry": 8051,
- "curse": 18479,
- "cursed": 26408,
- "cursor": 46546,
- "curt": 38137,
- "curtain": 17223,
- "curtains": 30223,
- "curti": 39925,
- "curtis": 13808,
- "curve": 15792,
- "curved": 25789,
- "curves": 22814,
- "curvy": 45788,
- "cus": 2736,
- "cusa": 47414,
- "cuse": 37950,
- "cush": 43731,
- "cushi": 15333,
- "cushion": 20853,
- "cushions": 34163,
- "cussion": 16658,
- "cussions": 46853,
- "cust": 20900,
- "custard": 26516,
- "custo": 4376,
- "custody": 16176,
- "custom": 2662,
- "custom": 4996,
- "custome": 41323,
- "customer": 24035,
- "customer": 5102,
- "customerexperience": 45167,
- "customers": 5528,
- "customerservice": 40611,
- "customiz": 41793,
- "customizable": 48253,
- "customization": 48244,
- "customize": 32179,
- "customized": 23229,
- "customs": 16880,
- "cut": 10511,
- "cut": 3032,
- "cute": 16031,
- "cute": 2242,
- "cuteness": 19342,
- "cuter": 27151,
- "cutest": 8032,
- "cuth": 44328,
- "cutie": 10733,
- "cuties": 40939,
- "cuties": 23420,
- "cutiesaturday": 41883,
- "cutler": 40428,
- "cutlery": 49073,
- "cutout": 45016,
- "cuts": 7435,
- "cutt": 27338,
- "cutt": 47647,
- "cutter": 19719,
- "cutters": 44783,
- "cutting": 7266,
- "cuz": 9215,
- "cv": 13531,
- "cv": 13947,
- "cvs": 29603,
- "cw": 10652,
- "cw": 11065,
- "cwc": 19179,
- "cwgc": 48527,
- "cws": 45186,
- "cx": 44457,
- "cx": 14283,
- "cy": 1470,
- "cy": 1678,
- "cyber": 5830,
- "cyber": 10210,
- "cybercrime": 41772,
- "cybermonday": 36578,
- "cyberpunk": 36896,
- "cybersecurity": 10581,
- "cyborg": 36650,
- "cycl": 9791,
- "cycle": 19083,
- "cycle": 5072,
- "cycled": 31055,
- "cycles": 14605,
- "cycli": 12201,
- "cycling": 26353,
- "cycling": 6321,
- "cyclist": 20686,
- "cyclists": 20303,
- "cyclo": 18122,
- "cyclone": 48094,
- "cyclone": 20917,
- "cyclones": 34669,
- "cylin": 18569,
- "cylinder": 22092,
- "cylinders": 48888,
- "cymb": 36677,
- "cymru": 24005,
- "cyn": 14324,
- "cynthi": 41994,
- "cynthia": 23748,
- "cyp": 14809,
- "cypress": 25347,
- "cypri": 36481,
- "cyprus": 15263,
- "cyril": 36028,
- "cyrus": 14204,
- "cystic": 46131,
- "cyto": 31864,
- "cz": 22898,
- "cz": 22921,
- "cze": 12152,
- "czech": 43151,
- "czech": 16141,
- "cé": 36454,
- "cé": 18317,
- "d": 67,
- "d": 323,
- "da": 925,
- "da": 1140,
- "daa": 32642,
- "daan": 44814,
- "dab": 10413,
- "dab": 22900,
- "dac": 16222,
- "dac": 27478,
- "daca": 28477,
- "dach": 34166,
- "dachsh": 41641,
- "dachshund": 42720,
- "dad": 4346,
- "dad": 2639,
- "dada": 31325,
- "daddy": 29466,
- "daddy": 6546,
- "dade": 23299,
- "dades": 28289,
- "dads": 12741,
- "dae": 23358,
- "dae": 15422,
- "daener": 46934,
- "daes": 47282,
- "daesh": 35047,
- "daf": 9972,
- "daf": 36704,
- "daffodils": 44769,
- "daft": 36347,
- "dag": 11434,
- "dag": 25650,
- "dagger": 34251,
- "dah": 16976,
- "dah": 11776,
- "dahl": 45816,
- "dahl": 22621,
- "dahlia": 41768,
- "dai": 13559,
- "dai": 10632,
- "dail": 14676,
- "dailies": 21260,
- "daily": 6689,
- "daily": 2873,
- "dailynews": 43466,
- "dailys": 43160,
- "dailysketch": 46738,
- "daim": 40421,
- "dain": 32222,
- "dain": 28315,
- "daipur": 47631,
- "dair": 19998,
- "dair": 42078,
- "dairy": 25243,
- "dairy": 10302,
- "dairyfree": 49366,
- "dais": 10502,
- "daisi": 39947,
- "daisies": 40654,
- "daisy": 39310,
- "daisy": 12865,
- "dak": 6999,
- "dak": 16095,
- "dakar": 31137,
- "dakota": 38522,
- "dakota": 12358,
- "dal": 2476,
- "dal": 5601,
- "dala": 42675,
- "dalai": 41222,
- "dalail": 35169,
- "dalailama": 35849,
- "dale": 11533,
- "dale": 4677,
- "dalejr": 38207,
- "dales": 29031,
- "daley": 28544,
- "dalgo": 43614,
- "dali": 36735,
- "dali": 25703,
- "dalit": 45432,
- "dall": 43631,
- "dalla": 16772,
- "dallas": 27414,
- "dallas": 5759,
- "dallascowboys": 33016,
- "dalmati": 44275,
- "dalton": 21488,
- "daly": 24873,
- "dam": 1880,
- "dam": 4926,
- "damage": 6822,
- "damaged": 13568,
- "damages": 28842,
- "damaging": 20610,
- "damas": 23345,
- "damascus": 25396,
- "dame": 10069,
- "dames": 44548,
- "dami": 17783,
- "damian": 43307,
- "damian": 25375,
- "damien": 25090,
- "dammit": 31057,
- "damn": 37409,
- "damn": 4451,
- "damned": 28428,
- "damon": 48503,
- "damon": 18244,
- "damp": 26520,
- "dams": 37680,
- "dan": 2257,
- "dan": 2284,
- "dana": 44834,
- "dana": 13777,
- "danao": 38598,
- "danc": 3945,
- "dance": 10619,
- "dance": 2724,
- "danced": 32891,
- "dancehall": 33300,
- "dancer": 11400,
- "dancers": 13153,
- "dances": 24083,
- "dancing": 33280,
- "dancing": 6226,
- "dand": 12593,
- "dandelion": 38903,
- "dandy": 31932,
- "dane": 19330,
- "danes": 47477,
- "dang": 4283,
- "dang": 14992,
- "danger": 20083,
- "danger": 11212,
- "dangerous": 7350,
- "dangerously": 35012,
- "dangers": 23726,
- "dangle": 39907,
- "dani": 3001,
- "dani": 17009,
- "daniel": 7859,
- "daniel": 4981,
- "daniela": 44466,
- "danielle": 30396,
- "danielle": 15292,
- "danielpadilla": 34702,
- "daniels": 16146,
- "danish": 15467,
- "dank": 31849,
- "dann": 11951,
- "danny": 14950,
- "danny": 7621,
- "dano": 29703,
- "dans": 16241,
- "dant": 48097,
- "dant": 28237,
- "dante": 21911,
- "danube": 44594,
- "dany": 47816,
- "dao": 36099,
- "dap": 12149,
- "dap": 38034,
- "daph": 24591,
- "daphne": 31687,
- "dapl": 34478,
- "dapp": 46857,
- "dapper": 26071,
- "daq": 25381,
- "dar": 1377,
- "dar": 6242,
- "dara": 17064,
- "darby": 34366,
- "darcy": 32916,
- "dare": 14833,
- "dare": 9863,
- "daredevil": 28849,
- "dares": 42973,
- "dareto": 46794,
- "dari": 16292,
- "dari": 14552,
- "daria": 45622,
- "daries": 18184,
- "daring": 28166,
- "dario": 33918,
- "darius": 32606,
- "darje": 49089,
- "dark": 5724,
- "dark": 3144,
- "darker": 18737,
- "darkest": 25898,
- "darkness": 10521,
- "darling": 13048,
- "darlings": 39961,
- "darlington": 34565,
- "darn": 26059,
- "darrell": 33522,
- "darren": 20263,
- "darren": 12275,
- "darry": 29200,
- "darryl": 35359,
- "darshan": 34564,
- "dart": 14001,
- "dart": 19841,
- "darth": 41304,
- "darth": 23164,
- "dartmoor": 31477,
- "dartmouth": 29667,
- "darts": 15246,
- "darwin": 43013,
- "darwin": 20926,
- "daryl": 45607,
- "daryl": 24532,
- "das": 9940,
- "das": 7359,
- "dash": 13858,
- "dash": 10206,
- "dashboard": 27679,
- "dashi": 12876,
- "dashing": 33825,
- "dat": 1717,
- "dat": 9445,
- "data": 14876,
- "data": 2281,
- "datab": 11941,
- "database": 14678,
- "databases": 48384,
- "datac": 27329,
- "datacenter": 40133,
- "datasci": 14496,
- "datascience": 15748,
- "dataviz": 28138,
- "date": 34300,
- "date": 1524,
- "dated": 13564,
- "dates": 7228,
- "dating": 8534,
- "dation": 15311,
- "datlantic": 34270,
- "dato": 36075,
- "dats": 48674,
- "dau": 3162,
- "dau": 33828,
- "daugh": 42523,
- "daughter": 3944,
- "daughters": 13585,
- "daun": 29470,
- "dav": 3700,
- "dav": 46488,
- "davao": 31502,
- "dave": 10089,
- "dave": 5077,
- "daven": 28350,
- "davenport": 34624,
- "davey": 33391,
- "davi": 1732,
- "david": 4640,
- "david": 2259,
- "davidbowie": 44448,
- "davido": 35989,
- "davids": 46695,
- "davidson": 13166,
- "davies": 13120,
- "davin": 43187,
- "davis": 24426,
- "davis": 5536,
- "davison": 43725,
- "davos": 31887,
- "davy": 41565,
- "daw": 5971,
- "daw": 24404,
- "dawg": 18660,
- "dawgs": 26431,
- "dawn": 30590,
- "dawn": 7689,
- "dawson": 18611,
- "dax": 29458,
- "day": 1405,
- "day": 575,
- "daya": 38165,
- "daybreak": 33862,
- "daycare": 36363,
- "daydream": 41587,
- "dayin": 20332,
- "daylight": 20809,
- "dayo": 29856,
- "dayo": 46605,
- "dayof": 16272,
- "dayofthe": 38043,
- "days": 1161,
- "daysof": 12379,
- "daysofcode": 36537,
- "daysto": 29886,
- "daystogo": 42198,
- "dayswild": 42052,
- "daytime": 22830,
- "dayton": 35729,
- "dayton": 20262,
- "daytona": 16335,
- "dayweekend": 44526,
- "dayz": 35949,
- "daz": 15449,
- "daz": 43844,
- "daze": 33591,
- "dazz": 17149,
- "dazzle": 41164,
- "dazzling": 28821,
- "db": 19100,
- "db": 8128,
- "dbacks": 31175,
- "dbs": 40558,
- "dbz": 49226,
- "dc": 5074,
- "dc": 2743,
- "dca": 49107,
- "dcc": 33747,
- "dccomics": 17610,
- "dcfc": 35526,
- "dci": 35336,
- "dcs": 42878,
- "dcu": 42647,
- "dd": 1353,
- "dd": 3766,
- "dda": 35202,
- "ddad": 39049,
- "dday": 32689,
- "dday": 26243,
- "ddc": 48513,
- "ddd": 24183,
- "dddd": 35362,
- "dden": 5013,
- "dder": 9300,
- "dders": 24827,
- "ddi": 44450,
- "ddin": 17175,
- "dding": 48101,
- "dding": 8974,
- "ddings": 49106,
- "ddington": 29238,
- "ddle": 17633,
- "ddle": 8357,
- "ddled": 38392,
- "ddles": 33901,
- "ddleston": 25647,
- "ddling": 30981,
- "ddlovato": 28244,
- "ddos": 46463,
- "ddr": 26027,
- "dds": 48334,
- "ddu": 43836,
- "ddy": 14981,
- "ddy": 7876,
- "de": 561,
- "de": 654,
- "dea": 18477,
- "deacon": 29155,
- "dead": 3906,
- "dead": 2747,
- "deadliest": 40811,
- "deadline": 47209,
- "deadline": 8458,
- "deadlines": 44959,
- "deadly": 10756,
- "deadpool": 21471,
- "deaf": 28229,
- "deaf": 18358,
- "deal": 7249,
- "deal": 2696,
- "dealer": 15218,
- "dealers": 21697,
- "dealership": 32096,
- "dealing": 13138,
- "deals": 4469,
- "dealt": 30101,
- "dean": 13807,
- "dean": 5828,
- "deandre": 43635,
- "deans": 46852,
- "dear": 15696,
- "dear": 3817,
- "dearest": 24880,
- "dearly": 31880,
- "deas": 34715,
- "death": 7163,
- "death": 2767,
- "deaths": 12253,
- "deau": 12399,
- "deaux": 19883,
- "deb": 2987,
- "deb": 25687,
- "debat": 32082,
- "debate": 5196,
- "debates": 19239,
- "debating": 23472,
- "debbie": 47186,
- "debbie": 16735,
- "debit": 32410,
- "debor": 16738,
- "deborah": 40997,
- "deborah": 22150,
- "debra": 33233,
- "debris": 19208,
- "debt": 8932,
- "debts": 38770,
- "debu": 9790,
- "debun": 33123,
- "debut": 42608,
- "debut": 4085,
- "debuted": 25215,
- "debuting": 34817,
- "debuts": 17044,
- "dec": 3063,
- "dec": 4628,
- "deca": 33428,
- "decad": 29914,
- "decade": 11099,
- "decadent": 41716,
- "decades": 10488,
- "decal": 26678,
- "decals": 37606,
- "decan": 40677,
- "decat": 35334,
- "decath": 47455,
- "decatur": 38540,
- "decay": 22703,
- "dece": 3534,
- "deceased": 30035,
- "december": 3864,
- "decent": 10698,
- "decentr": 28960,
- "decentralized": 38485,
- "decep": 33529,
- "deception": 33046,
- "deci": 2262,
- "decide": 8447,
- "decided": 4939,
- "decides": 17269,
- "deciding": 22513,
- "decision": 5575,
- "decisions": 9903,
- "decisive": 28690,
- "deck": 24885,
- "deck": 6943,
- "decked": 39096,
- "decker": 21449,
- "decks": 23968,
- "decl": 7091,
- "decla": 10739,
- "declan": 42341,
- "declar": 18040,
- "declaration": 19714,
- "declare": 19856,
- "declared": 13845,
- "declares": 23641,
- "declaring": 33273,
- "decline": 15084,
- "declined": 28911,
- "declines": 40478,
- "declining": 29221,
- "deco": 26412,
- "deco": 16422,
- "decor": 5148,
- "decor": 6928,
- "decorate": 23651,
- "decorated": 15917,
- "decorating": 16968,
- "decoration": 16029,
- "decorations": 19158,
- "decorative": 19289,
- "decre": 12284,
- "decrease": 24703,
- "decreased": 33913,
- "decreasing": 43763,
- "decree": 43327,
- "ded": 16744,
- "ded": 1241,
- "dedic": 4701,
- "dedicate": 27610,
- "dedicated": 6770,
- "dedication": 10188,
- "dedly": 36204,
- "deduc": 22799,
- "dee": 5268,
- "dee": 6705,
- "deed": 30260,
- "deeds": 24516,
- "deejay": 48304,
- "deejay": 44511,
- "deemed": 28102,
- "deen": 26456,
- "deen": 12912,
- "deep": 5462,
- "deep": 3383,
- "deepak": 45528,
- "deeper": 15224,
- "deepest": 22245,
- "deephouse": 35684,
- "deepi": 19371,
- "deepika": 34120,
- "deepikap": 29903,
- "deepikapadukone": 30646,
- "deeplear": 22181,
- "deeplearning": 24362,
- "deeply": 11449,
- "deer": 19454,
- "deer": 8700,
- "deere": 32901,
- "dees": 12547,
- "deets": 35537,
- "def": 2044,
- "def": 11649,
- "defam": 35670,
- "defamation": 42741,
- "default": 21650,
- "defe": 4148,
- "defeat": 8477,
- "defeated": 8927,
- "defeating": 22594,
- "defeats": 16317,
- "defect": 44013,
- "defects": 37485,
- "defen": 3619,
- "defence": 30307,
- "defence": 9659,
- "defend": 21970,
- "defend": 11397,
- "defended": 27161,
- "defender": 10618,
- "defenders": 20063,
- "defending": 13098,
- "defends": 20134,
- "defense": 45875,
- "defense": 6021,
- "defenseman": 43714,
- "defenses": 49198,
- "defensive": 10824,
- "defi": 17244,
- "defiance": 36186,
- "defiant": 47597,
- "defibrill": 47684,
- "defic": 18022,
- "defici": 23387,
- "deficiency": 30685,
- "deficit": 20156,
- "defin": 3188,
- "define": 14919,
- "defined": 15278,
- "defines": 28218,
- "defining": 20504,
- "definite": 40793,
- "definitely": 4824,
- "definition": 11405,
- "definitive": 25298,
- "defl": 31467,
- "deforestation": 41330,
- "defstar": 36427,
- "defy": 39148,
- "defying": 38496,
- "deg": 38498,
- "degra": 28939,
- "degradation": 44468,
- "degre": 4653,
- "degree": 7119,
- "degrees": 8000,
- "deh": 35582,
- "dei": 33833,
- "dei": 23279,
- "deir": 42948,
- "deity": 42574,
- "deja": 46902,
- "dek": 23901,
- "dekalb": 37775,
- "del": 1233,
- "del": 2003,
- "dela": 37986,
- "delaney": 31528,
- "delav": 23706,
- "delavin": 40477,
- "delavin": 40776,
- "delavinkisses": 40631,
- "delaware": 17547,
- "delay": 12955,
- "delay": 10934,
- "delayed": 14567,
- "delaying": 43781,
- "delays": 11232,
- "dele": 7922,
- "dele": 33431,
- "delec": 38615,
- "delectable": 45500,
- "deleg": 8046,
- "delegate": 27259,
- "delegates": 14623,
- "delegation": 14632,
- "delete": 19204,
- "deleted": 16588,
- "deleting": 41857,
- "delft": 42749,
- "delgado": 49182,
- "delhi": 26723,
- "delhi": 5717,
- "deli": 1932,
- "deli": 18601,
- "delia": 33193,
- "deliber": 18316,
- "deliberate": 38271,
- "deliberately": 35163,
- "delic": 13366,
- "delicacy": 49181,
- "delicate": 18768,
- "delici": 19993,
- "delicious": 3959,
- "deliciously": 39589,
- "deliciousness": 42819,
- "delight": 46165,
- "delight": 13073,
- "delighted": 5943,
- "delightful": 15513,
- "delights": 25330,
- "deline": 18797,
- "delines": 13562,
- "delish": 25093,
- "deliver": 19561,
- "deliver": 7396,
- "delivered": 7278,
- "deliveries": 29336,
- "delivering": 9943,
- "delivers": 11753,
- "delivery": 5619,
- "dell": 24381,
- "dell": 10242,
- "della": 22986,
- "delle": 35963,
- "deloit": 29428,
- "deloitte": 38667,
- "dels": 48636,
- "delta": 32250,
- "delta": 8768,
- "delu": 18779,
- "delusional": 48059,
- "delux": 13709,
- "deluxe": 14056,
- "delve": 46008,
- "dely": 15040,
- "dem": 3251,
- "dem": 7825,
- "dema": 40268,
- "dema": 45046,
- "deman": 48366,
- "demand": 13072,
- "demand": 5650,
- "demanded": 33699,
- "demanding": 17099,
- "demands": 14241,
- "demar": 46566,
- "demarcus": 47873,
- "demb": 35930,
- "demdebate": 43973,
- "deme": 25143,
- "demean": 37376,
- "demen": 12604,
- "dementi": 46028,
- "dementia": 14047,
- "demetri": 39553,
- "demi": 32879,
- "demi": 14480,
- "demise": 28756,
- "demo": 2930,
- "demo": 7380,
- "democr": 3573,
- "democracy": 7758,
- "democrat": 15431,
- "democratic": 9149,
- "democrats": 8865,
- "demographic": 31308,
- "demol": 19382,
- "demolished": 26537,
- "demolition": 22237,
- "demon": 5635,
- "demon": 12085,
- "demonetisation": 41338,
- "demonic": 46920,
- "demons": 18388,
- "demonstr": 8579,
- "demonstrate": 22231,
- "demonstrated": 29477,
- "demonstrates": 24806,
- "demonstrating": 22107,
- "demonstration": 16722,
- "demonstrations": 33964,
- "demonstrators": 46450,
- "demos": 19304,
- "demp": 22490,
- "dempsey": 30188,
- "dems": 10989,
- "demsin": 42664,
- "demsinphilly": 43091,
- "den": 1177,
- "den": 1181,
- "dena": 32431,
- "denali": 48076,
- "dence": 3370,
- "dency": 11659,
- "dend": 37447,
- "dends": 43985,
- "dene": 45128,
- "dened": 19571,
- "deng": 43098,
- "deng": 41788,
- "dengue": 41932,
- "denham": 39180,
- "deni": 21995,
- "denial": 25716,
- "denied": 15780,
- "denies": 19565,
- "denim": 13606,
- "denis": 47630,
- "denis": 18750,
- "denise": 45900,
- "denise": 20899,
- "denmark": 13268,
- "dennis": 32738,
- "dennis": 10534,
- "denny": 26808,
- "denomin": 41016,
- "dens": 16533,
- "dense": 19353,
- "density": 22431,
- "dent": 3593,
- "dent": 1258,
- "dental": 24635,
- "dental": 8382,
- "dentally": 10346,
- "dented": 21923,
- "denti": 4418,
- "dential": 5459,
- "dentist": 17816,
- "dentistry": 25754,
- "dently": 28817,
- "denton": 23567,
- "dents": 1517,
- "denver": 27847,
- "denver": 8569,
- "deny": 18679,
- "denying": 32771,
- "denzel": 42503,
- "deo": 26406,
- "deo": 12121,
- "deodor": 47639,
- "deol": 41902,
- "deon": 31466,
- "deon": 16079,
- "dep": 6079,
- "dep": 24370,
- "depar": 10794,
- "depart": 5343,
- "depart": 30649,
- "departed": 32541,
- "departing": 26902,
- "department": 5744,
- "departments": 29523,
- "departs": 38998,
- "departure": 17850,
- "depe": 36118,
- "depend": 13894,
- "depend": 27371,
- "dependence": 40243,
- "dependent": 23280,
- "depending": 23673,
- "depends": 20497,
- "depic": 11307,
- "depicted": 34637,
- "depicting": 24970,
- "depiction": 31071,
- "depicts": 29340,
- "deple": 38504,
- "deplo": 9356,
- "deplor": 39232,
- "deploy": 26944,
- "deployed": 20009,
- "deploying": 42212,
- "deployment": 20183,
- "depo": 14276,
- "depor": 36110,
- "deport": 23389,
- "deportation": 36617,
- "deported": 39320,
- "deportes": 47878,
- "depos": 21266,
- "deposit": 16775,
- "deposits": 30740,
- "depot": 12589,
- "depp": 24941,
- "depre": 7107,
- "depress": 38869,
- "depressed": 23269,
- "depressing": 29235,
- "depression": 10023,
- "depri": 28587,
- "depriv": 45809,
- "deprivation": 47810,
- "deprived": 39140,
- "dept": 9201,
- "depth": 10350,
- "depths": 28855,
- "depu": 6912,
- "deputies": 24914,
- "deputy": 7932,
- "der": 839,
- "der": 801,
- "dera": 20696,
- "derail": 48502,
- "derby": 13904,
- "derby": 7177,
- "derbyshire": 22147,
- "derdale": 21513,
- "dere": 5701,
- "dere": 44194,
- "dered": 3776,
- "derek": 22461,
- "derek": 11205,
- "derel": 46728,
- "derer": 11289,
- "derers": 20882,
- "deri": 34573,
- "derick": 33908,
- "dering": 6076,
- "deriv": 33458,
- "derived": 26461,
- "derland": 35488,
- "derman": 29740,
- "dermatology": 48051,
- "dern": 30086,
- "dero": 37203,
- "dero": 34026,
- "derrick": 21798,
- "derry": 45777,
- "derry": 20535,
- "ders": 37307,
- "ders": 1923,
- "derson": 12677,
- "dery": 17172,
- "des": 6797,
- "des": 1437,
- "desai": 35316,
- "desc": 13866,
- "descen": 32318,
- "descend": 26004,
- "descend": 46241,
- "descendants": 36323,
- "descending": 36620,
- "descent": 19375,
- "desch": 49209,
- "descri": 4637,
- "describe": 10967,
- "described": 14671,
- "describes": 13678,
- "describing": 24239,
- "descrip": 41832,
- "description": 13951,
- "descriptions": 40653,
- "desde": 42218,
- "dese": 27195,
- "deser": 3659,
- "desert": 45776,
- "desert": 7301,
- "deserted": 41560,
- "deserve": 7043,
- "deserved": 10061,
- "deserves": 9079,
- "deserving": 26615,
- "desh": 25320,
- "desh": 7448,
- "deshi": 42769,
- "desi": 6772,
- "desi": 26635,
- "desig": 1250,
- "design": 8359,
- "design": 1681,
- "designated": 24119,
- "designation": 41155,
- "designed": 4486,
- "designer": 35640,
- "designer": 5728,
- "designers": 12720,
- "designing": 13467,
- "designs": 6747,
- "designthinking": 32450,
- "desirable": 32368,
- "desire": 11858,
- "desired": 28631,
- "desires": 27598,
- "desk": 11937,
- "desk": 6550,
- "desks": 41014,
- "desktop": 14345,
- "desmond": 27821,
- "desol": 41258,
- "desp": 3642,
- "despair": 28097,
- "desper": 10144,
- "desperate": 15072,
- "desperately": 21993,
- "despic": 32442,
- "despicable": 37158,
- "despite": 5325,
- "dess": 7096,
- "dess": 10001,
- "dessert": 9753,
- "desserts": 22948,
- "desses": 43913,
- "dest": 6540,
- "dest": 4549,
- "destin": 4934,
- "destination": 32191,
- "destination": 9179,
- "destinations": 16981,
- "destined": 28525,
- "destiny": 39875,
- "destiny": 10867,
- "destro": 8287,
- "destroy": 8308,
- "destroy": 11930,
- "destroyed": 9965,
- "destroyer": 25291,
- "destroying": 19613,
- "destroys": 27634,
- "destruc": 22945,
- "destruction": 14281,
- "destructive": 29591,
- "det": 28966,
- "det": 15366,
- "deta": 1914,
- "detached": 26252,
- "detail": 7657,
- "detailed": 12609,
- "detailing": 23163,
- "details": 2353,
- "detained": 20260,
- "dete": 5606,
- "detec": 17991,
- "detect": 22744,
- "detected": 26988,
- "detecting": 41290,
- "detection": 16220,
- "detective": 13672,
- "detectives": 27994,
- "detector": 27689,
- "detectors": 45063,
- "detention": 16908,
- "deter": 10742,
- "deter": 47458,
- "detergent": 46726,
- "deterior": 28512,
- "determin": 8325,
- "determination": 17410,
- "determine": 16768,
- "determined": 14371,
- "determines": 42192,
- "determining": 39884,
- "deth": 38375,
- "deto": 39710,
- "deton": 39335,
- "detour": 31211,
- "detox": 22459,
- "detri": 47951,
- "detro": 6210,
- "detroit": 19404,
- "detroit": 7073,
- "detta": 45438,
- "dette": 35750,
- "deu": 21457,
- "deuce": 45332,
- "deus": 37625,
- "deut": 14970,
- "deutsch": 30389,
- "deutsche": 32760,
- "deutschland": 36878,
- "deux": 47089,
- "dev": 2797,
- "dev": 3670,
- "deva": 45179,
- "devan": 37072,
- "devast": 12913,
- "devastated": 29865,
- "devastating": 19280,
- "devastation": 42452,
- "devel": 1820,
- "develop": 1966,
- "develop": 7708,
- "developed": 8763,
- "developer": 10929,
- "developers": 13248,
- "developing": 8131,
- "development": 2855,
- "developmental": 29347,
- "developments": 17393,
- "develops": 29895,
- "deven": 45537,
- "devgn": 29871,
- "devi": 12926,
- "devi": 20717,
- "deviant": 25593,
- "deviantart": 26046,
- "device": 8163,
- "devices": 9067,
- "devil": 8894,
- "devil": 8043,
- "deville": 34329,
- "devils": 11683,
- "devin": 31193,
- "devin": 20996,
- "devine": 33019,
- "devlin": 48040,
- "devo": 11861,
- "devo": 43444,
- "devon": 16205,
- "devon": 10046,
- "devops": 21504,
- "devos": 40646,
- "devote": 37777,
- "devoted": 24561,
- "devotees": 39759,
- "devotion": 25821,
- "devotional": 35456,
- "devs": 27374,
- "dew": 31952,
- "dew": 16358,
- "dewey": 40399,
- "dex": 10030,
- "dex": 13790,
- "dexpo": 42502,
- "dexter": 45049,
- "dexter": 22781,
- "dey": 11829,
- "dez": 23190,
- "dez": 8122,
- "df": 12908,
- "df": 10468,
- "dfc": 41903,
- "dfs": 32880,
- "dfw": 20439,
- "dg": 2394,
- "dg": 9742,
- "dgate": 41684,
- "dge": 4016,
- "dge": 1360,
- "dged": 11830,
- "dgeon": 45655,
- "dgers": 8733,
- "dges": 5432,
- "dging": 9565,
- "dh": 6669,
- "dh": 9960,
- "dha": 11629,
- "dha": 27377,
- "dhabi": 22349,
- "dhaka": 32877,
- "dham": 29635,
- "dham": 30838,
- "dhan": 12542,
- "dhan": 28569,
- "dhanush": 26162,
- "dhanush": 36200,
- "dhanushkraja": 29266,
- "dhar": 12397,
- "dharma": 30536,
- "dhary": 28706,
- "dhawan": 44699,
- "dhe": 29706,
- "dheim": 44280,
- "dhi": 31553,
- "dhi": 26166,
- "dho": 37834,
- "dhoni": 25698,
- "dhru": 40257,
- "dhry": 39960,
- "dhs": 26849,
- "dhu": 32387,
- "di": 570,
- "di": 1618,
- "dia": 7351,
- "dia": 3357,
- "diab": 15954,
- "diabe": 19167,
- "diabete": 43826,
- "diabetes": 10319,
- "diabetic": 30230,
- "diablo": 23931,
- "diag": 6851,
- "diagno": 7736,
- "diagnose": 44429,
- "diagnosed": 16979,
- "diagnosis": 15715,
- "diagnostic": 26351,
- "diagnostics": 37723,
- "diagram": 22697,
- "dial": 18416,
- "dial": 11381,
- "dialo": 30709,
- "dialog": 48945,
- "dialogue": 11288,
- "dialogues": 40330,
- "dialysis": 44798,
- "diam": 4347,
- "diameter": 27189,
- "diamon": 8873,
- "diamond": 18535,
- "diamond": 6235,
- "diamonds": 12687,
- "dian": 16021,
- "dian": 4998,
- "diana": 12803,
- "diane": 15855,
- "dianne": 42299,
- "dians": 21041,
- "diaper": 34382,
- "diapers": 39659,
- "diar": 25932,
- "diaries": 15541,
- "diary": 10380,
- "dias": 22137,
- "dias": 29354,
- "diaspora": 28390,
- "diaz": 17688,
- "dic": 1404,
- "dic": 6717,
- "dicap": 30023,
- "dicaprio": 30755,
- "dice": 14406,
- "dick": 14413,
- "dick": 9554,
- "dickens": 33421,
- "dict": 45360,
- "dict": 15159,
- "dictat": 26156,
- "dictator": 27399,
- "dictatorship": 37989,
- "dictionary": 19699,
- "did": 1861,
- "did": 1335,
- "diddy": 33527,
- "didi": 34396,
- "didier": 45614,
- "didn": 2376,
- "didnt": 13057,
- "dido": 31725,
- "didyou": 12295,
- "didyouknow": 12506,
- "die": 3150,
- "die": 2082,
- "diec": 27729,
- "diecast": 37936,
- "died": 3622,
- "diego": 30940,
- "diego": 6306,
- "diem": 45571,
- "dience": 33686,
- "dient": 27231,
- "dier": 29702,
- "dier": 16394,
- "dies": 20104,
- "dies": 1862,
- "diesel": 46312,
- "diesel": 10591,
- "diest": 45739,
- "diet": 21295,
- "diet": 6582,
- "dietary": 29009,
- "dietrich": 47005,
- "diets": 35173,
- "dif": 18656,
- "dif": 48731,
- "diff": 44073,
- "diff": 20331,
- "diffe": 1967,
- "differ": 34620,
- "differen": 14903,
- "difference": 4731,
- "differences": 14003,
- "different": 2731,
- "differenti": 21729,
- "differential": 34027,
- "differentiate": 49032,
- "differently": 18325,
- "diffic": 6140,
- "difficult": 7405,
- "difficulties": 23468,
- "difficulty": 25245,
- "diffu": 31603,
- "diffuser": 49400,
- "dig": 1831,
- "dig": 9887,
- "dige": 17820,
- "digest": 20413,
- "digestion": 40533,
- "digestive": 32304,
- "digg": 43240,
- "digger": 35919,
- "diggin": 48466,
- "digging": 14971,
- "digi": 15627,
- "digi": 39361,
- "digimon": 44181,
- "digit": 14899,
- "digit": 27472,
- "digital": 4704,
- "digital": 2794,
- "digitalart": 16987,
- "digitalhealth": 32190,
- "digitalindia": 46630,
- "digitally": 27543,
- "digitalmarketing": 15299,
- "digitaltransformation": 20047,
- "digiti": 25935,
- "digits": 31710,
- "digni": 45532,
- "dignit": 39497,
- "dignity": 17744,
- "digo": 35701,
- "digs": 26877,
- "dih": 43089,
- "dii": 32755,
- "dijk": 44444,
- "dik": 38854,
- "dik": 37747,
- "dike": 42683,
- "dil": 7643,
- "dil": 17942,
- "dile": 25428,
- "dilemma": 29787,
- "dilig": 30664,
- "dill": 12318,
- "dill": 27206,
- "dillon": 21056,
- "dilu": 45242,
- "dim": 19576,
- "dim": 17523,
- "dime": 24443,
- "dimen": 10935,
- "dimension": 20479,
- "dimensional": 25252,
- "dimensions": 25086,
- "diment": 43500,
- "dimes": 44888,
- "dimini": 37459,
- "dimit": 22250,
- "dimitri": 48840,
- "dimp": 38853,
- "din": 1462,
- "din": 5673,
- "dina": 36815,
- "dinah": 30903,
- "dine": 20951,
- "dine": 12989,
- "diner": 16963,
- "dinesh": 48341,
- "ding": 7545,
- "ding": 796,
- "dinger": 45580,
- "dingh": 48064,
- "dings": 5473,
- "dington": 24804,
- "dinho": 47370,
- "dini": 20196,
- "dining": 8658,
- "dinner": 27548,
- "dinner": 2571,
- "dinners": 33570,
- "dino": 9692,
- "dino": 14077,
- "dinosa": 18955,
- "dinosaur": 15095,
- "dinosaurs": 20387,
- "dio": 3779,
- "dio": 1521,
- "dioce": 20763,
- "diocese": 27091,
- "dion": 42899,
- "dion": 16250,
- "dior": 23655,
- "dios": 37563,
- "dious": 27417,
- "dioxide": 38102,
- "dip": 19918,
- "dip": 11343,
- "dipl": 8490,
- "diplo": 38115,
- "diplom": 11169,
- "diploma": 21251,
- "diplomacy": 23798,
- "diplomat": 32828,
- "diplomatic": 23782,
- "diplomats": 44126,
- "dipped": 30610,
- "dipper": 49317,
- "dipping": 33544,
- "dips": 37522,
- "dir": 4251,
- "dir": 8478,
- "dire": 38355,
- "dire": 25664,
- "direc": 1534,
- "direct": 43224,
- "direct": 6016,
- "directed": 8392,
- "directing": 21817,
- "direction": 15923,
- "direction": 5407,
- "directional": 38687,
- "directioner": 48042,
- "directioners": 22055,
- "directions": 16440,
- "directive": 40630,
- "directly": 9701,
- "director": 20337,
- "director": 2681,
- "directorial": 45327,
- "directors": 11940,
- "directory": 25272,
- "directs": 34349,
- "directv": 48652,
- "dirk": 28171,
- "dirt": 31415,
- "dirt": 11795,
- "dirty": 20127,
- "dirty": 7615,
- "dis": 1518,
- "dis": 6112,
- "disa": 3882,
- "disab": 47380,
- "disabilities": 17350,
- "disability": 48986,
- "disability": 13261,
- "disabled": 13613,
- "disadvantaged": 40577,
- "disagree": 23199,
- "disapp": 5384,
- "disappear": 21148,
- "disappear": 25173,
- "disappearance": 35929,
- "disappeared": 23139,
- "disappearing": 35819,
- "disappears": 44406,
- "disappo": 7605,
- "disappoint": 25446,
- "disappointed": 13794,
- "disappointing": 21941,
- "disappointment": 23884,
- "disappoints": 48545,
- "disappro": 48276,
- "disar": 42971,
- "disaster": 9072,
- "disasters": 26976,
- "disastrous": 35790,
- "disc": 1472,
- "disc": 10712,
- "discar": 40532,
- "discarded": 45197,
- "discer": 49140,
- "dischar": 22671,
- "discharge": 32485,
- "disci": 9559,
- "discip": 38951,
- "discipl": 10467,
- "disciples": 39366,
- "disciplinary": 20232,
- "discipline": 18903,
- "disciplines": 42032,
- "discla": 40248,
- "disclaimer": 46465,
- "disclo": 17481,
- "disclose": 46379,
- "disclosed": 30905,
- "disclosure": 26502,
- "disco": 2475,
- "disco": 11964,
- "discography": 47545,
- "discomfort": 48054,
- "discord": 23582,
- "discoun": 18515,
- "discount": 7638,
- "discounted": 20993,
- "discounts": 18186,
- "discoura": 45850,
- "discourse": 29441,
- "discover": 10539,
- "discover": 4834,
- "discovered": 6986,
- "discoveries": 29308,
- "discovering": 17967,
- "discovers": 29719,
- "discovery": 40491,
- "discovery": 8027,
- "discre": 20616,
- "discrimin": 11721,
- "discrimination": 14775,
- "discs": 29270,
- "discu": 1984,
- "discus": 41828,
- "discuss": 4312,
- "discussed": 11300,
- "discusses": 8116,
- "discussing": 5900,
- "discussion": 5060,
- "discussions": 13806,
- "dise": 4262,
- "disease": 5336,
- "diseases": 12035,
- "disen": 46468,
- "disgrace": 29877,
- "disgraceful": 44146,
- "disgu": 9793,
- "disguise": 27803,
- "disguised": 37149,
- "disgusted": 41977,
- "disgusting": 16218,
- "dish": 11039,
- "dish": 4531,
- "disha": 42498,
- "dishes": 11412,
- "dishon": 30777,
- "dishu": 44728,
- "dishwasher": 40524,
- "disin": 19484,
- "disinfe": 48050,
- "disintegr": 49275,
- "disk": 17970,
- "dislike": 30796,
- "dism": 30836,
- "dism": 38821,
- "dismant": 36557,
- "dismiss": 43287,
- "dismissal": 42068,
- "dismissed": 30087,
- "dismisses": 45238,
- "disney": 6729,
- "disney": 4696,
- "disneyland": 39481,
- "disneyland": 13661,
- "disneyworld": 28469,
- "diso": 26305,
- "disobe": 42841,
- "dison": 19310,
- "disorder": 12635,
- "disorders": 17114,
- "disp": 11073,
- "dispar": 24633,
- "disparities": 45122,
- "dispat": 28652,
- "dispatch": 26306,
- "dispen": 19077,
- "dispenser": 40116,
- "disper": 34499,
- "displa": 9326,
- "displac": 17718,
- "displaced": 22817,
- "displacement": 37931,
- "display": 4456,
- "displayed": 18967,
- "displaying": 26468,
- "displays": 15648,
- "dispo": 13651,
- "dispon": 38872,
- "disponible": 46130,
- "dispos": 45177,
- "disposable": 37275,
- "disposal": 28231,
- "dispro": 32927,
- "dispropor": 40354,
- "disproportion": 45492,
- "disregard": 43869,
- "disrespect": 34055,
- "disrespectful": 41723,
- "disru": 13763,
- "disrup": 14641,
- "disrupt": 25214,
- "disrupted": 46674,
- "disrupting": 42419,
- "disruption": 19635,
- "disruptive": 31554,
- "diss": 10766,
- "diss": 35688,
- "dissec": 43879,
- "dissemin": 40463,
- "dissent": 45154,
- "disser": 25560,
- "dissertation": 29448,
- "dissi": 25088,
- "dissol": 27398,
- "dissuper": 33461,
- "dist": 5479,
- "dist": 12116,
- "distance": 7964,
- "distances": 37078,
- "distant": 18949,
- "distill": 41586,
- "distilled": 49179,
- "distillery": 22200,
- "distin": 11892,
- "distinct": 25056,
- "distinction": 28183,
- "distinctive": 25486,
- "distingui": 15053,
- "distinguish": 45418,
- "distinguished": 16513,
- "distor": 23781,
- "distortion": 43690,
- "distr": 11885,
- "distract": 39309,
- "distracted": 24049,
- "distraction": 32039,
- "distress": 26866,
- "distressed": 37515,
- "distri": 5987,
- "distribu": 6138,
- "distribute": 32313,
- "distributed": 16419,
- "distributing": 35216,
- "distribution": 10484,
- "distributor": 28354,
- "distributors": 44240,
- "distric": 3208,
- "district": 46683,
- "district": 3506,
- "districts": 17565,
- "distur": 11732,
- "disturb": 33018,
- "disturb": 39449,
- "disturbance": 42416,
- "disturbed": 29967,
- "disturbing": 21476,
- "disupdates": 45667,
- "dit": 5752,
- "dit": 2524,
- "dita": 47965,
- "ditch": 43715,
- "ditch": 19291,
- "dited": 40392,
- "diti": 2363,
- "dition": 16452,
- "dition": 3015,
- "ditional": 4322,
- "ditions": 4503,
- "dito": 43705,
- "dits": 49374,
- "dity": 16436,
- "dium": 2903,
- "div": 5293,
- "div": 14869,
- "diva": 13605,
- "divas": 23534,
- "dive": 26042,
- "dive": 9058,
- "diver": 13119,
- "diver": 22094,
- "divergence": 48735,
- "divergent": 36132,
- "divers": 30241,
- "divers": 27038,
- "diverse": 11464,
- "diversi": 24475,
- "diversion": 38457,
- "diversity": 35634,
- "diversity": 6257,
- "diverted": 41049,
- "dives": 13893,
- "divi": 8375,
- "divid": 31337,
- "divide": 18842,
- "divided": 18689,
- "dividend": 32067,
- "dividends": 45146,
- "dividing": 45605,
- "divin": 21838,
- "divine": 46919,
- "divine": 10976,
- "diving": 9886,
- "divinity": 39754,
- "divisi": 39196,
- "division": 5378,
- "divisional": 40912,
- "divisions": 33715,
- "divor": 13543,
- "divorce": 17060,
- "divorced": 39437,
- "divya": 47767,
- "diwali": 18218,
- "dix": 45838,
- "dix": 27620,
- "dixie": 24484,
- "dixit": 28279,
- "dixon": 16086,
- "diy": 28472,
- "diy": 7845,
- "diya": 36459,
- "diz": 32740,
- "dized": 36232,
- "dizz": 40239,
- "dizzy": 35464,
- "dj": 3761,
- "dj": 3723,
- "djan": 35338,
- "django": 46498,
- "dji": 35284,
- "dji": 28379,
- "djing": 36113,
- "djo": 19432,
- "djoker": 42721,
- "djokernole": 42830,
- "djokovic": 27944,
- "djs": 18117,
- "dk": 20702,
- "dk": 16196,
- "dl": 12558,
- "dl": 9373,
- "dlc": 19079,
- "dle": 11057,
- "dle": 3287,
- "dled": 23494,
- "dler": 40279,
- "dles": 7890,
- "dless": 14997,
- "dley": 12808,
- "dling": 18221,
- "dly": 3069,
- "dm": 19070,
- "dm": 4667,
- "dma": 42903,
- "dman": 18826,
- "dmc": 28991,
- "dmit": 31607,
- "dmitry": 48326,
- "dms": 19955,
- "dmv": 27508,
- "dmx": 45255,
- "dn": 11552,
- "dn": 7459,
- "dna": 8790,
- "dnb": 35422,
- "dnc": 20237,
- "dnd": 11678,
- "dnr": 37051,
- "dns": 39245,
- "dnt": 26795,
- "do": 639,
- "do": 818,
- "doa": 48332,
- "dob": 29640,
- "doba": 35605,
- "dobbs": 43006,
- "dobson": 46888,
- "doc": 3009,
- "doc": 7251,
- "doch": 25101,
- "dock": 17311,
- "dock": 8997,
- "docked": 46784,
- "docker": 31152,
- "docking": 40845,
- "docks": 24091,
- "docs": 15157,
- "doctor": 7872,
- "doctor": 5547,
- "doctoral": 23649,
- "doctorate": 39134,
- "doctors": 9705,
- "doctorwho": 12996,
- "doctr": 28497,
- "doctrine": 35612,
- "docu": 4433,
- "document": 29293,
- "document": 15121,
- "documentaries": 44209,
- "documentary": 7881,
- "documentation": 31560,
- "documented": 22310,
- "documenting": 37876,
- "documents": 14105,
- "dod": 13847,
- "dod": 30187,
- "dodd": 36748,
- "dodge": 31263,
- "dodge": 12093,
- "dodgeball": 43244,
- "dodger": 31641,
- "dodgers": 12422,
- "dodgy": 37727,
- "doe": 13296,
- "does": 2397,
- "does": 1897,
- "doesn": 2503,
- "doesnt": 17937,
- "dof": 8277,
- "doff": 20193,
- "dofficial": 42516,
- "dog": 4326,
- "dog": 1929,
- "dogcelebration": 41819,
- "dogday": 27475,
- "doge": 42187,
- "dogg": 20749,
- "doggie": 32237,
- "doggo": 42155,
- "doggy": 26359,
- "doglo": 40733,
- "dogre": 40030,
- "dogrescue": 44158,
- "dogs": 42182,
- "dogs": 3255,
- "dogsoftwitter": 19415,
- "doh": 23581,
- "doha": 20908,
- "doherty": 31774,
- "doi": 36361,
- "doin": 15412,
- "doing": 37408,
- "doing": 1960,
- "doit": 32272,
- "doit": 28109,
- "doj": 25700,
- "dojo": 35901,
- "dok": 40547,
- "dok": 41034,
- "doka": 46528,
- "dol": 2287,
- "dol": 19170,
- "dola": 38005,
- "dolan": 27200,
- "dolby": 42414,
- "dolce": 30033,
- "dolce": 30661,
- "dole": 41040,
- "doll": 27031,
- "doll": 9286,
- "dollar": 35092,
- "dollar": 7474,
- "dollars": 10669,
- "dolls": 15090,
- "dolly": 43281,
- "dolly": 23821,
- "dolom": 37137,
- "dolores": 40741,
- "dolph": 8900,
- "dolph": 22257,
- "dolphin": 42963,
- "dolphin": 16464,
- "dolphins": 14002,
- "dom": 2164,
- "dom": 1919,
- "domain": 15492,
- "domaine": 48744,
- "domains": 36358,
- "dome": 8515,
- "dome": 9827,
- "domen": 37584,
- "domest": 21936,
- "domestic": 28189,
- "domestic": 9043,
- "domin": 4361,
- "dominance": 30546,
- "dominant": 20565,
- "dominate": 21431,
- "dominated": 23048,
- "dominates": 34043,
- "dominating": 29303,
- "domination": 30919,
- "domingo": 24882,
- "dominic": 39007,
- "dominic": 19095,
- "dominican": 22934,
- "dominion": 27155,
- "domino": 30752,
- "dominos": 39770,
- "domo": 44293,
- "doms": 30126,
- "don": 1067,
- "don": 847,
- "dona": 26789,
- "donal": 42375,
- "donald": 5990,
- "donald": 4335,
- "donaldson": 37783,
- "donaldtrump": 6652,
- "donat": 36384,
- "donate": 6429,
- "donated": 8705,
- "donates": 26960,
- "donating": 12621,
- "donation": 7924,
- "donations": 9928,
- "doncaster": 38008,
- "doncaster": 25352,
- "doncasterisgreat": 47333,
- "done": 5136,
- "done": 1700,
- "donegal": 24172,
- "donesia": 41281,
- "donet": 33724,
- "donetsk": 33999,
- "dong": 26242,
- "dong": 31478,
- "dongha": 28365,
- "donghae": 28945,
- "donia": 24014,
- "donkey": 21415,
- "donkeys": 44644,
- "donna": 9158,
- "donne": 30897,
- "donnein": 38308,
- "donneinarte": 40193,
- "donnell": 35118,
- "donnelly": 39070,
- "donnie": 47058,
- "donnie": 30609,
- "donny": 37291,
- "donny": 32887,
- "dono": 14840,
- "donor": 18013,
- "donors": 17887,
- "donovan": 21499,
- "dons": 22127,
- "dont": 8094,
- "dont": 4632,
- "donut": 18471,
- "donuts": 13970,
- "doo": 4543,
- "doo": 11643,
- "doodle": 9388,
- "doodled": 41030,
- "doodles": 22156,
- "doodling": 37548,
- "dooley": 47609,
- "doom": 23263,
- "doom": 14344,
- "doomed": 33251,
- "doomsday": 41791,
- "doon": 36612,
- "doop": 33886,
- "door": 7188,
- "door": 2489,
- "doors": 4228,
- "doorstep": 19533,
- "doorway": 46575,
- "dop": 42381,
- "dop": 31722,
- "dope": 42587,
- "dope": 10094,
- "doping": 30285,
- "dopp": 21774,
- "doppelg": 45216,
- "doppler": 42540,
- "dor": 2766,
- "dor": 8695,
- "dora": 18104,
- "dorado": 32350,
- "dorchester": 32656,
- "dore": 39423,
- "dores": 34323,
- "dorf": 17296,
- "dori": 49270,
- "doria": 43186,
- "dorian": 44016,
- "doris": 24285,
- "dork": 36206,
- "dorm": 24263,
- "doro": 15498,
- "doro": 37389,
- "dorothy": 20805,
- "dors": 31240,
- "dorset": 42109,
- "dorset": 16047,
- "dorsey": 41607,
- "dortmund": 24290,
- "dory": 36135,
- "dos": 44258,
- "dos": 5474,
- "dose": 11497,
- "doses": 37873,
- "dossier": 46042,
- "dost": 44222,
- "dot": 7473,
- "dot": 7004,
- "dota": 23085,
- "dotcom": 12443,
- "dote": 31202,
- "dothis": 47864,
- "dotnet": 43124,
- "dotorg": 46587,
- "dots": 19019,
- "dotted": 47950,
- "dou": 1756,
- "dou": 23608,
- "doub": 19631,
- "double": 13013,
- "double": 3200,
- "doubled": 24948,
- "doubleheader": 34668,
- "doubles": 12539,
- "doubling": 36850,
- "doubt": 37071,
- "doubt": 8671,
- "doubts": 30894,
- "douche": 44292,
- "doug": 20271,
- "doug": 10758,
- "dough": 15785,
- "dough": 14983,
- "doughnut": 32555,
- "doughnuts": 31124,
- "dougie": 46317,
- "dougla": 9140,
- "douglas": 10065,
- "douglass": 45692,
- "doun": 44785,
- "dov": 38856,
- "dova": 26551,
- "dove": 27511,
- "dove": 18281,
- "dover": 43019,
- "dover": 14683,
- "doves": 47067,
- "dow": 8022,
- "dow": 10688,
- "dowell": 27344,
- "down": 1833,
- "down": 1136,
- "downe": 46501,
- "downed": 35814,
- "downer": 42522,
- "downers": 43739,
- "downey": 29429,
- "downfall": 48702,
- "downhill": 27387,
- "downing": 28140,
- "download": 35076,
- "download": 3794,
- "downloadable": 49105,
- "downloaded": 22961,
- "downloading": 30519,
- "downloads": 26481,
- "downpour": 39034,
- "downpours": 40160,
- "downs": 10706,
- "downside": 41937,
- "downstairs": 28174,
- "downstream": 43822,
- "downtime": 41964,
- "downton": 45023,
- "downton": 42668,
- "downtown": 18230,
- "downtown": 5061,
- "downward": 37430,
- "dowski": 43556,
- "dox": 44786,
- "dox": 14510,
- "doyle": 17728,
- "doyou": 27256,
- "doz": 31106,
- "dozen": 16401,
- "dozens": 17883,
- "dp": 23820,
- "dp": 6465,
- "dprint": 46644,
- "dprinting": 16194,
- "dprk": 47920,
- "dps": 34288,
- "dq": 28741,
- "dr": 1084,
- "dr": 1701,
- "dra": 1114,
- "dra": 7402,
- "drac": 20168,
- "dracing": 41253,
- "dracula": 25405,
- "draf": 37426,
- "draft": 30624,
- "draft": 5198,
- "drafted": 19129,
- "drafting": 33528,
- "drafts": 29194,
- "drag": 8452,
- "drag": 12463,
- "dragged": 27884,
- "dragging": 37069,
- "dragon": 9187,
- "dragon": 5471,
- "dragonball": 40959,
- "dragoncon": 47802,
- "dragonfly": 32824,
- "dragons": 10203,
- "dragrace": 40762,
- "drags": 45368,
- "drain": 23347,
- "drain": 19467,
- "drainage": 25953,
- "drained": 44630,
- "drains": 43638,
- "drainthe": 47337,
- "drake": 32504,
- "drake": 8958,
- "dral": 7503,
- "dram": 6937,
- "dram": 32170,
- "drama": 5055,
- "dramas": 33467,
- "dramati": 43512,
- "dramatic": 11240,
- "dramatically": 24495,
- "drank": 21712,
- "draped": 49113,
- "drastic": 43159,
- "drastically": 35478,
- "drau": 18621,
- "draw": 17675,
- "draw": 4001,
- "drawer": 23219,
- "drawers": 38975,
- "drawing": 36996,
- "drawing": 3610,
- "drawings": 13397,
- "drawn": 8893,
- "draws": 12043,
- "dray": 25562,
- "drayton": 49044,
- "drc": 21434,
- "dre": 960,
- "dre": 14584,
- "dread": 17412,
- "dread": 31403,
- "dreaded": 47227,
- "dreadful": 35846,
- "dreality": 48367,
- "dream": 4595,
- "dream": 2984,
- "dreambig": 46495,
- "dreamcast": 47226,
- "dreamed": 27984,
- "dreamer": 25692,
- "dreamers": 27194,
- "dreaming": 11662,
- "dreamliner": 49143,
- "dreams": 4405,
- "dreamt": 43743,
- "dreamteam": 40090,
- "dreamy": 23517,
- "dred": 10903,
- "dredge": 48783,
- "dren": 29068,
- "dren": 47309,
- "drenched": 46378,
- "dres": 48852,
- "dres": 44697,
- "dresden": 34836,
- "dress": 12622,
- "dress": 2595,
- "dressage": 36144,
- "dressed": 6559,
- "dresser": 26346,
- "dresses": 8184,
- "dressing": 6348,
- "drew": 18792,
- "drew": 5281,
- "drex": 33985,
- "drey": 48271,
- "dri": 1203,
- "dri": 28833,
- "drian": 36870,
- "dribb": 42153,
- "dric": 23448,
- "dridge": 22956,
- "drie": 40170,
- "dried": 16037,
- "drier": 39877,
- "dries": 33857,
- "drif": 33585,
- "drift": 18194,
- "drifting": 30276,
- "drill": 11626,
- "drilled": 46338,
- "drilling": 18634,
- "drills": 24378,
- "drin": 3375,
- "drin": 47133,
- "drink": 14131,
- "drink": 3979,
- "drinking": 5778,
- "drinklocal": 45998,
- "drinks": 6732,
- "drip": 24050,
- "dripping": 38787,
- "dris": 35804,
- "drive": 11402,
- "drive": 2620,
- "driven": 9314,
- "driver": 27563,
- "driver": 4383,
- "driverless": 46769,
- "drivers": 7384,
- "drives": 11441,
- "driveway": 26273,
- "driving": 37800,
- "driving": 4161,
- "drizzle": 28240,
- "drm": 39674,
- "dro": 1494,
- "dro": 12442,
- "drogba": 49199,
- "droid": 38016,
- "drome": 9157,
- "dron": 43898,
- "dron": 23360,
- "drone": 33557,
- "drone": 9397,
- "drones": 14006,
- "droo": 30715,
- "drool": 41554,
- "drooling": 44360,
- "drop": 16407,
- "drop": 3387,
- "dropbox": 47216,
- "dropped": 6792,
- "dropping": 8339,
- "drops": 6437,
- "dros": 47033,
- "drou": 38558,
- "drought": 13935,
- "drove": 13753,
- "drow": 21159,
- "drown": 28571,
- "drowned": 34005,
- "drowning": 24618,
- "drs": 21257,
- "dru": 2275,
- "dru": 49048,
- "drug": 20601,
- "drug": 5600,
- "drugs": 8021,
- "druid": 40297,
- "drum": 13353,
- "drum": 8698,
- "drummer": 13618,
- "drummers": 46191,
- "drumming": 35480,
- "drummond": 42213,
- "drums": 11690,
- "drun": 15488,
- "drunk": 37398,
- "drunk": 8232,
- "drunken": 28196,
- "drupal": 46481,
- "drush": 43009,
- "drwho": 48342,
- "dry": 13544,
- "dry": 4501,
- "dryer": 24425,
- "drying": 23203,
- "ds": 3361,
- "ds": 646,
- "dsa": 47607,
- "dsb": 47168,
- "dsb": 14257,
- "dsburg": 47237,
- "dsc": 37240,
- "dsd": 45383,
- "dsley": 40740,
- "dslr": 33740,
- "dsm": 39502,
- "dson": 40310,
- "dsp": 45291,
- "dss": 41580,
- "dstv": 35027,
- "dt": 13104,
- "dt": 7427,
- "dthe": 13863,
- "dtla": 31885,
- "dtm": 42407,
- "dts": 46233,
- "du": 691,
- "du": 3686,
- "dua": 25244,
- "dual": 39739,
- "dual": 5347,
- "duane": 38946,
- "dub": 14526,
- "dub": 13144,
- "duba": 5485,
- "dubai": 32599,
- "dubai": 5985,
- "dubbed": 27740,
- "dublin": 20707,
- "dublin": 6145,
- "dubnation": 47329,
- "dubois": 48046,
- "dubrov": 46709,
- "dubrovnik": 48724,
- "dubs": 27013,
- "dubstep": 38303,
- "dubu": 43257,
- "duc": 979,
- "duc": 36446,
- "ducati": 28570,
- "ducation": 17197,
- "duce": 3660,
- "duchess": 21713,
- "duck": 12708,
- "duck": 6910,
- "ducks": 11202,
- "duct": 26829,
- "dude": 48087,
- "dude": 5710,
- "dudes": 14449,
- "dudley": 27324,
- "due": 2887,
- "duel": 27143,
- "dues": 37646,
- "duet": 25457,
- "duf": 38713,
- "duff": 38071,
- "duff": 21934,
- "duffy": 23599,
- "dug": 22743,
- "dug": 21000,
- "dugg": 40523,
- "duggan": 46169,
- "dugout": 36831,
- "duh": 26716,
- "dui": 29693,
- "duk": 14160,
- "duke": 18402,
- "duke": 7732,
- "dukes": 27914,
- "dul": 6738,
- "dulce": 44872,
- "dulil": 32565,
- "dulkar": 47980,
- "dull": 19433,
- "dulu": 28865,
- "duluth": 32109,
- "dulwich": 47343,
- "dum": 13400,
- "dum": 11564,
- "dumb": 15901,
- "dumb": 12464,
- "dumbass": 38980,
- "dummies": 40899,
- "dummy": 34246,
- "dump": 12655,
- "dump": 17146,
- "dumped": 23768,
- "dumping": 31707,
- "dumplings": 35495,
- "dumps": 45804,
- "dumpster": 45467,
- "dun": 2616,
- "dun": 18284,
- "dunbar": 41453,
- "duncan": 31084,
- "duncan": 13502,
- "dundal": 38185,
- "dundas": 39300,
- "dundee": 18619,
- "dune": 32833,
- "dune": 28208,
- "dunedin": 40121,
- "dunes": 23526,
- "dung": 33712,
- "dungeon": 28812,
- "dungeon": 22931,
- "dungeons": 42572,
- "dungeonsand": 34970,
- "dungeonsanddragons": 35497,
- "dunham": 42501,
- "duni": 43454,
- "dunk": 17222,
- "dunkin": 48022,
- "dunkin": 36415,
- "dunkirk": 46928,
- "dunks": 48977,
- "dunlop": 34753,
- "dunn": 19185,
- "dunne": 38538,
- "dunno": 24502,
- "duo": 8696,
- "dup": 36805,
- "dup": 10445,
- "duper": 44850,
- "duplex": 41186,
- "duplic": 28992,
- "dupont": 35994,
- "dur": 4355,
- "dur": 23230,
- "dura": 28173,
- "dura": 47382,
- "durability": 43671,
- "durable": 22285,
- "duran": 28185,
- "durango": 44443,
- "durant": 24861,
- "duras": 27518,
- "duration": 31663,
- "durban": 24474,
- "dure": 19108,
- "durga": 38456,
- "durham": 26765,
- "durham": 14335,
- "during": 1590,
- "dus": 9931,
- "dusa": 28546,
- "dusk": 19708,
- "dust": 29723,
- "dust": 8349,
- "dusted": 38274,
- "duster": 46280,
- "dustin": 42423,
- "dustin": 21235,
- "dusting": 41756,
- "dusty": 22029,
- "dut": 32625,
- "dutch": 22277,
- "dutch": 7991,
- "duter": 21624,
- "duterte": 22371,
- "duties": 19603,
- "dutt": 30081,
- "dutton": 42771,
- "duty": 6458,
- "duval": 42459,
- "duvet": 48006,
- "dux": 28562,
- "dv": 4288,
- "dv": 26265,
- "dvd": 7170,
- "dvds": 36655,
- "dvn": 29811,
- "dvr": 29210,
- "dw": 8455,
- "dw": 19997,
- "dwar": 13487,
- "dwarf": 22643,
- "dwayne": 31395,
- "dwell": 27549,
- "dwell": 18755,
- "dwelling": 37098,
- "dwight": 22473,
- "dwp": 46976,
- "dwts": 30220,
- "dwyer": 43878,
- "dx": 22717,
- "dx": 15679,
- "dy": 1444,
- "dy": 907,
- "dyce": 48325,
- "dye": 37159,
- "dye": 15997,
- "dyed": 24906,
- "dyer": 29495,
- "dyes": 39874,
- "dying": 5115,
- "dyk": 12142,
- "dyke": 32632,
- "dylan": 21004,
- "dylan": 9900,
- "dyn": 44289,
- "dyn": 30669,
- "dynam": 5735,
- "dynamic": 10057,
- "dynamics": 14329,
- "dynamite": 29003,
- "dynamo": 28281,
- "dynasty": 14593,
- "dyne": 42756,
- "dyou": 11484,
- "dyour": 22525,
- "dys": 11022,
- "dys": 38384,
- "dysfunction": 36865,
- "dysfunctional": 40757,
- "dysle": 33681,
- "dyslexia": 43199,
- "dyson": 34475,
- "dyssey": 17435,
- "dystop": 28276,
- "dystopian": 38915,
- "dz": 24421,
- "dz": 22913,
- "dé": 25466,
- "dü": 46948,
- "dÃŃ": 46988,
- "e": 68,
- "e": 324,
- "ea": 2150,
- "ea": 8100,
- "eable": 20693,
- "each": 31442,
- "each": 2416,
- "eachother": 40792,
- "ead": 42556,
- "ead": 45523,
- "eae": 27446,
- "eag": 3743,
- "eager": 21551,
- "eagerly": 30094,
- "eagle": 20207,
- "eagle": 7517,
- "eagles": 6920,
- "eal": 48872,
- "ealing": 40484,
- "eames": 49072,
- "eamon": 45954,
- "ean": 13327,
- "ear": 1055,
- "ear": 8373,
- "earbuds": 47807,
- "eared": 9127,
- "earl": 30573,
- "earl": 14235,
- "earle": 40292,
- "earlier": 4297,
- "earliest": 22097,
- "early": 15840,
- "early": 2090,
- "earn": 33977,
- "earn": 8465,
- "earned": 8898,
- "earnest": 45422,
- "earning": 14550,
- "earnings": 15912,
- "earns": 16760,
- "earp": 35296,
- "earphones": 44905,
- "earring": 28664,
- "earrings": 9136,
- "ears": 9861,
- "eart": 7086,
- "earth": 5184,
- "earth": 3475,
- "earthand": 34229,
- "earthandclouds": 34480,
- "earthday": 19481,
- "earthquake": 10060,
- "earthquakes": 32895,
- "earthy": 47139,
- "earts": 38824,
- "eas": 5740,
- "ease": 13574,
- "easier": 8817,
- "easiest": 26314,
- "easily": 8197,
- "easing": 44825,
- "easport": 42251,
- "east": 5022,
- "east": 2602,
- "eastbound": 28827,
- "eastbourne": 38455,
- "eastenders": 23545,
- "easter": 14783,
- "easter": 4811,
- "eastern": 34522,
- "eastern": 6311,
- "eastman": 48280,
- "easton": 29619,
- "eastside": 42650,
- "eastwood": 28270,
- "easy": 18308,
- "easy": 3176,
- "eat": 5418,
- "eat": 3384,
- "eaten": 16750,
- "eater": 24060,
- "eaters": 37645,
- "eatery": 46559,
- "eating": 4371,
- "eatlocal": 42868,
- "eaton": 28462,
- "eats": 13188,
- "eau": 17608,
- "eazy": 36536,
- "eb": 12283,
- "eb": 8677,
- "eba": 40889,
- "ebay": 34412,
- "ebay": 4099,
- "eber": 34020,
- "ebo": 46635,
- "ebola": 15864,
- "ebon": 22013,
- "ebony": 30651,
- "ebook": 13122,
- "ebooks": 25774,
- "ec": 747,
- "ec": 10879,
- "eca": 18465,
- "ecar": 34500,
- "ecb": 26205,
- "ecc": 33128,
- "eccc": 47401,
- "eccentric": 43228,
- "eccle": 27494,
- "ece": 2163,
- "eces": 5905,
- "ecg": 45983,
- "ech": 15797,
- "ech": 31147,
- "echel": 41233,
- "echo": 17366,
- "echo": 13989,
- "echoes": 32564,
- "eci": 31936,
- "eck": 25866,
- "eck": 15969,
- "ecker": 39661,
- "ecker": 40890,
- "ecla": 47806,
- "eclec": 25114,
- "eclectic": 28382,
- "eclip": 30841,
- "eclipse": 11505,
- "eclub": 38983,
- "eco": 5106,
- "eco": 10077,
- "ecofriendly": 43412,
- "ecol": 22706,
- "ecological": 25127,
- "ecology": 18578,
- "ecommerce": 15529,
- "econ": 26755,
- "econ": 21158,
- "econom": 2768,
- "economic": 36649,
- "economic": 5259,
- "economical": 48782,
- "economically": 39406,
- "economics": 12625,
- "economies": 27136,
- "economist": 18836,
- "economists": 43701,
- "economy": 5644,
- "ecor": 28962,
- "ecosystem": 15788,
- "ecosystems": 28725,
- "ecoun": 27924,
- "ecr": 48572,
- "ecraft": 11439,
- "ecs": 23485,
- "ecstasy": 47286,
- "ecstatic": 36244,
- "ect": 25168,
- "ecu": 13087,
- "ecu": 32919,
- "ecuador": 19813,
- "ecz": 43530,
- "ed": 843,
- "ed": 538,
- "eda": 10804,
- "edad": 44724,
- "eday": 39258,
- "edc": 21245,
- "edchat": 14702,
- "edd": 35431,
- "eddi": 42930,
- "eddie": 22748,
- "eddie": 9517,
- "eddy": 25959,
- "ede": 29632,
- "eded": 19555,
- "edel": 20460,
- "edelman": 48139,
- "eden": 23621,
- "eden": 13741,
- "eder": 16249,
- "edes": 36247,
- "edfringe": 27402,
- "edg": 35955,
- "edgar": 33543,
- "edgar": 17914,
- "edge": 16914,
- "edge": 5461,
- "edged": 39188,
- "edges": 20938,
- "edgy": 35393,
- "edi": 8750,
- "edi": 27148,
- "edible": 19795,
- "edic": 25184,
- "edics": 30641,
- "edin": 6524,
- "edinburgh": 27574,
- "edinburgh": 8068,
- "eding": 5742,
- "edison": 25846,
- "edit": 8239,
- "edit": 8013,
- "edited": 13945,
- "edith": 28597,
- "editing": 10178,
- "edition": 3062,
- "editions": 21664,
- "editor": 7661,
- "editorial": 12325,
- "editors": 19486,
- "edits": 24945,
- "edm": 37843,
- "edm": 13539,
- "edmon": 11275,
- "edmond": 41581,
- "edmonds": 46520,
- "edmonton": 37311,
- "edmonton": 15058,
- "edmun": 36561,
- "edmund": 27567,
- "edna": 39002,
- "edo": 29145,
- "edo": 18096,
- "edon": 41467,
- "edor": 30184,
- "edou": 47678,
- "edp": 46066,
- "eds": 1941,
- "edsheeran": 30386,
- "edt": 15071,
- "edtech": 41825,
- "edtech": 15262,
- "edu": 11757,
- "edu": 11799,
- "eduardo": 30604,
- "educ": 2200,
- "educate": 17563,
- "educated": 21447,
- "education": 22358,
- "education": 2806,
- "educational": 10400,
- "educator": 19875,
- "educators": 15420,
- "edwar": 27586,
- "edward": 26184,
- "edward": 7450,
- "edwards": 12627,
- "edwin": 48718,
- "edwin": 22471,
- "edy": 17072,
- "edy": 4144,
- "ee": 2644,
- "ee": 4708,
- "eed": 17513,
- "eee": 24632,
- "eee": 9361,
- "eeee": 11696,
- "eeee": 17570,
- "eeeee": 26938,
- "eeeeee": 41407,
- "eek": 46591,
- "eel": 27462,
- "eels": 44416,
- "eem": 27236,
- "een": 47490,
- "een": 21230,
- "eer": 35409,
- "eer": 31846,
- "eera": 36664,
- "eerie": 33846,
- "ees": 40308,
- "eet": 48935,
- "eez": 39033,
- "ef": 1490,
- "ef": 1829,
- "efa": 16999,
- "eface": 48804,
- "efan": 33556,
- "efc": 22065,
- "efcc": 46087,
- "efer": 26199,
- "eff": 20548,
- "eff": 21715,
- "effe": 2808,
- "effec": 3943,
- "effect": 5436,
- "effective": 6837,
- "effectively": 17516,
- "effectiveness": 26847,
- "effects": 7331,
- "effic": 36004,
- "efficacy": 39937,
- "effici": 6670,
- "efficiency": 11823,
- "efficient": 11334,
- "efficiently": 32915,
- "effor": 6356,
- "effort": 40078,
- "effort": 6255,
- "effortless": 41639,
- "effortlessly": 42320,
- "efforts": 6847,
- "efish": 35813,
- "efl": 27172,
- "efron": 48111,
- "efs": 7389,
- "eg": 8053,
- "eg": 14599,
- "ega": 41193,
- "egan": 42943,
- "eger": 46704,
- "eger": 22767,
- "egg": 13778,
- "egg": 5911,
- "eggplant": 34906,
- "eggs": 7099,
- "ego": 34712,
- "ego": 14250,
- "egos": 43992,
- "egre": 27044,
- "egret": 42002,
- "egy": 5224,
- "egyp": 10250,
- "egypt": 7267,
- "egyptian": 12428,
- "eh": 9277,
- "eh": 9135,
- "eha": 48563,
- "ehealth": 48617,
- "ehr": 45271,
- "ehs": 44648,
- "ei": 4006,
- "ei": 18264,
- "eic": 40251,
- "eid": 28038,
- "eid": 13979,
- "eidmubarak": 46275,
- "eiffel": 29720,
- "eigh": 13468,
- "eight": 7910,
- "eighteen": 49316,
- "eighth": 21237,
- "eighty": 47449,
- "eil": 29457,
- "eileen": 31468,
- "ein": 29944,
- "ein": 24524,
- "eindhoven": 47172,
- "eing": 7702,
- "einstein": 20587,
- "eira": 47708,
- "eis": 13802,
- "eisen": 25273,
- "eisenhower": 35562,
- "either": 6036,
- "ej": 19887,
- "ej": 25009,
- "ejec": 29771,
- "ek": 4212,
- "ek": 2092,
- "el": 544,
- "el": 832,
- "ela": 11284,
- "ela": 3787,
- "elab": 38866,
- "elabor": 26034,
- "elaborate": 33855,
- "elaine": 22523,
- "elan": 17763,
- "elan": 18399,
- "eland": 24930,
- "eland": 6275,
- "elas": 41078,
- "elast": 27479,
- "elastic": 30282,
- "elba": 48598,
- "elbow": 21965,
- "eld": 5684,
- "elder": 11791,
- "elder": 14416,
- "elderly": 15455,
- "elders": 28617,
- "eldest": 33503,
- "elding": 28223,
- "elds": 13466,
- "ele": 2084,
- "ele": 9766,
- "eleague": 36577,
- "eleanor": 18604,
- "elearning": 29969,
- "elec": 1564,
- "elec": 38768,
- "elect": 15336,
- "elected": 8828,
- "election": 19312,
- "election": 4247,
- "electionday": 40540,
- "elections": 6949,
- "elector": 16465,
- "electoral": 19544,
- "electr": 3654,
- "electra": 48959,
- "electri": 23927,
- "electric": 19547,
- "electric": 5031,
- "electrical": 12176,
- "electrician": 46422,
- "electricity": 10950,
- "electrifying": 48843,
- "electro": 11648,
- "electro": 23244,
- "electromagnetic": 46530,
- "electron": 33396,
- "electronic": 33865,
- "electronic": 9273,
- "electronica": 43119,
- "electronics": 13081,
- "eled": 20357,
- "elee": 44112,
- "eleg": 8075,
- "elegance": 19146,
- "elegant": 11124,
- "elek": 34559,
- "elem": 25406,
- "element": 14909,
- "elementary": 8143,
- "elements": 10925,
- "elen": 30654,
- "elen": 39164,
- "elena": 19421,
- "eleng": 48180,
- "eleph": 7554,
- "elephant": 10299,
- "elephants": 16871,
- "eler": 24646,
- "eless": 15244,
- "eless": 30837,
- "elets": 19400,
- "elev": 7921,
- "elevate": 26736,
- "elevated": 23967,
- "elevation": 23826,
- "elevator": 19021,
- "eleven": 31617,
- "eleven": 17795,
- "elf": 45961,
- "elf": 11924,
- "elfie": 39955,
- "elg": 28790,
- "elgin": 31868,
- "eli": 1018,
- "eli": 6292,
- "elia": 10956,
- "elian": 42508,
- "elias": 47274,
- "elias": 29902,
- "elic": 34743,
- "elic": 13492,
- "elie": 38677,
- "elie": 26501,
- "elier": 14634,
- "elife": 37429,
- "elife": 12719,
- "eligibility": 34937,
- "eligible": 16978,
- "elijah": 26065,
- "elike": 48913,
- "elim": 9296,
- "elimin": 11386,
- "eliminate": 19655,
- "eliminated": 29075,
- "eliminating": 36619,
- "elimination": 24176,
- "elin": 25353,
- "elin": 13458,
- "eline": 46199,
- "eline": 7153,
- "eling": 9990,
- "elio": 47943,
- "elion": 30682,
- "elions": 44159,
- "eliot": 33326,
- "elis": 23411,
- "elis": 48021,
- "elisa": 25610,
- "elisa": 44051,
- "elisabeth": 33127,
- "elise": 27124,
- "elit": 40882,
- "elite": 32277,
- "elite": 6553,
- "elited": 43943,
- "elitedangerous": 47138,
- "elites": 35975,
- "elius": 35623,
- "elive": 49338,
- "elive": 23505,
- "elives": 49174,
- "elix": 32926,
- "elixir": 42887,
- "eliz": 42844,
- "eliza": 6132,
- "eliza": 29992,
- "elizabeth": 22397,
- "elizabeth": 7026,
- "elk": 34013,
- "elk": 21896,
- "ell": 826,
- "ell": 812,
- "ella": 20692,
- "ella": 2957,
- "elland": 43326,
- "ellar": 38443,
- "ellas": 37053,
- "elle": 12818,
- "elle": 4765,
- "elled": 13146,
- "ellen": 14007,
- "ellen": 12312,
- "ellenshow": 34812,
- "eller": 20927,
- "eller": 4465,
- "ellers": 19010,
- "elles": 24431,
- "elli": 3367,
- "elli": 6673,
- "ellic": 38905,
- "ellie": 16769,
- "ellier": 44054,
- "ellin": 40374,
- "elling": 2220,
- "ellington": 34477,
- "ellini": 43256,
- "elliot": 20761,
- "elliott": 44456,
- "elliott": 13788,
- "ellip": 44816,
- "ellis": 11553,
- "ellison": 32295,
- "ello": 2512,
- "ellor": 14594,
- "ells": 2433,
- "ellu": 35560,
- "elly": 8041,
- "elly": 20355,
- "elm": 25199,
- "elm": 22082,
- "elman": 33622,
- "elmer": 45958,
- "elmo": 32150,
- "elo": 6170,
- "elo": 13490,
- "elon": 26381,
- "elon": 20406,
- "elondon": 47377,
- "elong": 44363,
- "elonmusk": 37076,
- "elope": 23367,
- "eloqu": 37795,
- "elos": 44733,
- "elot": 43490,
- "elove": 43319,
- "elove": 19165,
- "elover": 21732,
- "elovers": 33946,
- "els": 35958,
- "els": 1645,
- "elsa": 22050,
- "else": 18857,
- "else": 3344,
- "elsewhere": 22906,
- "elson": 19624,
- "elt": 18692,
- "elton": 20758,
- "elu": 14208,
- "elusive": 28903,
- "elves": 29111,
- "elvi": 47008,
- "elvis": 47359,
- "elvis": 14498,
- "elxn": 37726,
- "ely": 12189,
- "ely": 1273,
- "elyn": 29691,
- "elyn": 18126,
- "em": 908,
- "em": 2270,
- "ema": 7002,
- "ema": 11131,
- "emabiggest": 23101,
- "emabiggestfans": 29587,
- "email": 33537,
- "email": 4462,
- "emailed": 40470,
- "emailmarketing": 40188,
- "emails": 12871,
- "eman": 24416,
- "eman": 36868,
- "emancip": 42996,
- "emanuel": 35232,
- "emb": 3692,
- "embar": 8266,
- "embaras": 48019,
- "embark": 33953,
- "embarra": 11382,
- "embarrass": 27183,
- "embarrassed": 28217,
- "embarrassing": 19653,
- "embarrassment": 41346,
- "embassy": 13598,
- "embe": 46041,
- "embed": 19703,
- "embedded": 22046,
- "embelli": 32144,
- "embellished": 46992,
- "ember": 47049,
- "emblem": 21163,
- "embo": 23065,
- "embr": 35267,
- "embrac": 16928,
- "embrace": 12118,
- "embraced": 35739,
- "embraces": 38404,
- "embracing": 22196,
- "embro": 12550,
- "embroi": 18667,
- "embroide": 21530,
- "embroidered": 22381,
- "embroidery": 20823,
- "emc": 20897,
- "emc": 31602,
- "emcee": 42038,
- "eme": 22910,
- "eme": 21548,
- "emea": 40352,
- "emed": 11028,
- "emen": 22033,
- "ement": 40841,
- "ement": 2057,
- "ements": 11058,
- "emer": 3132,
- "emer": 25727,
- "emerald": 46878,
- "emerald": 16980,
- "emerge": 22182,
- "emerged": 26425,
- "emergen": 24096,
- "emergence": 39867,
- "emergencies": 35759,
- "emergency": 44038,
- "emergency": 5897,
- "emerges": 30801,
- "emerging": 38174,
- "emerging": 11113,
- "emeritus": 35333,
- "emerson": 24147,
- "emery": 32678,
- "emi": 44327,
- "emi": 18525,
- "emil": 26794,
- "emil": 40624,
- "emile": 43926,
- "emili": 20709,
- "emilia": 34238,
- "emilio": 39722,
- "emily": 14545,
- "emily": 7640,
- "emin": 17227,
- "emin": 23995,
- "eminem": 22129,
- "eminent": 33779,
- "eming": 40398,
- "emir": 13337,
- "emir": 47613,
- "emirates": 47244,
- "emirates": 17867,
- "emission": 27761,
- "emissions": 14172,
- "emit": 49043,
- "emma": 18177,
- "emma": 7445,
- "emmanuel": 48045,
- "emmanuel": 20411,
- "emmett": 45779,
- "emmy": 35625,
- "emmy": 17089,
- "emmys": 21875,
- "emo": 3738,
- "emo": 19381,
- "emoji": 16327,
- "emojis": 27870,
- "emon": 34406,
- "emor": 45034,
- "emory": 44274,
- "emotion": 17464,
- "emotional": 7357,
- "emotionally": 24088,
- "emotions": 12904,
- "emp": 3831,
- "emp": 41004,
- "empathy": 22420,
- "emper": 12522,
- "emperor": 13828,
- "empha": 16237,
- "emphasi": 47176,
- "emphasis": 29588,
- "empire": 26212,
- "empire": 7614,
- "empires": 46510,
- "emplo": 3409,
- "employ": 37290,
- "employ": 39626,
- "employe": 5037,
- "employed": 26567,
- "employee": 36631,
- "employee": 9560,
- "employees": 7377,
- "employer": 21296,
- "employers": 17647,
- "employment": 10959,
- "empor": 27386,
- "emporium": 48541,
- "empower": 13612,
- "empower": 17230,
- "empowered": 29087,
- "empowering": 20086,
- "empowerment": 15747,
- "empowers": 46206,
- "empress": 26656,
- "empty": 41203,
- "empty": 7893,
- "emra": 39259,
- "ems": 2858,
- "emt": 46360,
- "emu": 48149,
- "emu": 29296,
- "emul": 23272,
- "emy": 31076,
- "en": 524,
- "en": 576,
- "ena": 3452,
- "enab": 17308,
- "enable": 15642,
- "enabled": 23666,
- "enables": 23417,
- "enabling": 23590,
- "enam": 41486,
- "enamel": 22746,
- "enary": 13132,
- "enas": 34536,
- "enation": 20860,
- "enberg": 15658,
- "enburg": 28430,
- "enc": 33169,
- "enca": 37774,
- "encan": 30345,
- "encapsul": 40874,
- "ence": 6495,
- "ence": 954,
- "enced": 6549,
- "ences": 3777,
- "enchan": 17290,
- "enchanted": 28258,
- "enchanting": 32531,
- "enchil": 47396,
- "enci": 32207,
- "encia": 30068,
- "encies": 18729,
- "encing": 10326,
- "enclosed": 43243,
- "enclosure": 37419,
- "encom": 44026,
- "encore": 20549,
- "encoun": 17309,
- "encounter": 13164,
- "encountered": 32492,
- "encounters": 25399,
- "encoura": 6169,
- "encourage": 12090,
- "encouraged": 20299,
- "encouragement": 24959,
- "encourages": 23848,
- "encouraging": 15875,
- "encro": 45822,
- "encry": 28600,
- "encryp": 42928,
- "encrypted": 48710,
- "encryption": 31423,
- "ency": 3484,
- "encyclo": 32104,
- "encyclopedia": 38376,
- "end": 945,
- "end": 806,
- "enda": 6735,
- "endale": 20290,
- "endange": 13990,
- "endangered": 14931,
- "ende": 11373,
- "ende": 40306,
- "endeav": 18134,
- "endeavor": 40502,
- "endeavors": 44394,
- "endeavour": 38035,
- "ended": 2622,
- "endemic": 41241,
- "endent": 16265,
- "ender": 48106,
- "ender": 12383,
- "enders": 7418,
- "endez": 43850,
- "endgame": 23042,
- "endi": 31359,
- "ending": 2695,
- "endings": 36516,
- "endish": 38841,
- "endless": 12688,
- "endlessly": 45145,
- "endment": 45894,
- "endo": 13476,
- "endo": 15830,
- "endocr": 36486,
- "endof": 40786,
- "endome": 46996,
- "endon": 48018,
- "endor": 8092,
- "endorf": 37249,
- "endorse": 28819,
- "endorsed": 24307,
- "endorsement": 21205,
- "endorses": 34603,
- "endorsing": 46779,
- "endow": 45895,
- "endra": 22321,
- "ends": 1339,
- "endthe": 46256,
- "endu": 26032,
- "endur": 19557,
- "endurance": 21027,
- "endure": 32419,
- "enduring": 30851,
- "enduro": 47042,
- "ene": 3297,
- "ene": 6049,
- "ened": 2494,
- "eneed": 45137,
- "enegger": 33235,
- "enei": 48906,
- "enemies": 15824,
- "enemy": 10310,
- "enen": 45113,
- "ener": 2244,
- "ener": 13600,
- "energ": 39451,
- "energetic": 24197,
- "energi": 23044,
- "energies": 42374,
- "energized": 48635,
- "energy": 14974,
- "energy": 2650,
- "energye": 32271,
- "energyefficiency": 40586,
- "eners": 48208,
- "enes": 42066,
- "eness": 11806,
- "enet": 46336,
- "enew": 29672,
- "enews": 13442,
- "eney": 20706,
- "enez": 33110,
- "enf": 38167,
- "enfield": 27808,
- "enfor": 10592,
- "enforce": 40224,
- "enforced": 44597,
- "enforcement": 12460,
- "eng": 1035,
- "eng": 6730,
- "enga": 22297,
- "engag": 6793,
- "engage": 11089,
- "engaged": 11475,
- "engagement": 7281,
- "engaging": 13060,
- "enge": 26279,
- "enge": 2742,
- "engel": 38265,
- "engen": 48286,
- "enger": 6618,
- "engers": 7533,
- "engine": 3355,
- "engine": 5857,
- "engineer": 40151,
- "engineer": 8517,
- "engineered": 26580,
- "engineering": 5273,
- "engineers": 11494,
- "engines": 14487,
- "england": 20904,
- "england": 3595,
- "english": 15942,
- "english": 3469,
- "engra": 17560,
- "engraved": 29421,
- "engraving": 33309,
- "engul": 43655,
- "engv": 28401,
- "enh": 7449,
- "enhall": 48781,
- "enham": 24592,
- "enhan": 26827,
- "enhance": 13993,
- "enhanced": 16070,
- "enhancement": 35601,
- "enhances": 38259,
- "enhancing": 25986,
- "eni": 4395,
- "eni": 17538,
- "enic": 46780,
- "enic": 28292,
- "enig": 19754,
- "enig": 48730,
- "enight": 32848,
- "enight": 20640,
- "enigma": 34998,
- "ening": 1133,
- "enium": 34380,
- "enix": 25720,
- "enjo": 1498,
- "enjoy": 12981,
- "enjoy": 2218,
- "enjoyable": 17444,
- "enjoyed": 5045,
- "enjoying": 3603,
- "enjoyment": 34905,
- "enjoys": 17024,
- "enka": 43942,
- "enko": 25312,
- "enlar": 38136,
- "enligh": 21364,
- "enlighten": 28200,
- "enlightened": 44032,
- "enlightening": 44005,
- "enlightenment": 29255,
- "enlisted": 43555,
- "enly": 43023,
- "enn": 43563,
- "enna": 8095,
- "enne": 21176,
- "enne": 11518,
- "ennedy": 46266,
- "ennes": 43613,
- "enni": 7049,
- "ennial": 14220,
- "ennis": 48923,
- "ennis": 26309,
- "eno": 9429,
- "eno": 12843,
- "enoch": 47917,
- "enor": 13955,
- "enormous": 20129,
- "enos": 44759,
- "enote": 44955,
- "enough": 2744,
- "enow": 26876,
- "enqu": 28417,
- "enqui": 22810,
- "enquire": 46658,
- "enquiries": 31901,
- "enquiry": 45141,
- "enri": 18915,
- "enrich": 20058,
- "enrich": 45504,
- "enriched": 45166,
- "enrichment": 32903,
- "enrique": 25489,
- "enrol": 44279,
- "enroll": 23739,
- "enroll": 30366,
- "enrolled": 36853,
- "enrollment": 24875,
- "enroute": 40548,
- "ens": 41799,
- "ens": 1323,
- "ense": 12657,
- "ense": 27658,
- "ensemble": 14843,
- "ensis": 32842,
- "ensla": 37535,
- "enslaved": 48675,
- "ensure": 7492,
- "ensures": 29707,
- "ensuring": 19403,
- "ent": 724,
- "ent": 621,
- "enta": 17681,
- "ental": 32342,
- "ental": 6168,
- "entary": 9833,
- "entation": 37412,
- "ente": 17433,
- "ente": 9935,
- "ented": 3800,
- "entennial": 43088,
- "enter": 2963,
- "enter": 3819,
- "entered": 10679,
- "entering": 12580,
- "enterpri": 7339,
- "enterprise": 9220,
- "enterprises": 21219,
- "enters": 15287,
- "entertain": 5566,
- "entertain": 23510,
- "entertained": 30631,
- "entertainer": 28674,
- "entertaining": 13897,
- "entertainment": 6166,
- "entes": 24213,
- "enthr": 36202,
- "enthusi": 9631,
- "enthusiasm": 20525,
- "enthusiast": 27153,
- "enthusiastic": 22068,
- "enthusiasts": 27514,
- "enti": 1938,
- "ential": 5194,
- "entially": 37695,
- "entic": 10340,
- "entine": 49212,
- "enting": 20526,
- "entire": 4709,
- "entirely": 13911,
- "entirety": 43242,
- "entit": 15209,
- "entities": 38134,
- "entitled": 18680,
- "entity": 28455,
- "ently": 2922,
- "ento": 21917,
- "ento": 8762,
- "entom": 31676,
- "entourage": 47893,
- "entr": 7129,
- "entrance": 9129,
- "entrata": 27304,
- "entre": 34188,
- "entre": 19600,
- "entren": 46959,
- "entrepre": 4583,
- "entreprene": 4789,
- "entrepreneu": 26784,
- "entrepreneur": 12119,
- "entrepreneur": 8033,
- "entrepreneurial": 28261,
- "entrepreneurs": 11054,
- "entrepreneurship": 12858,
- "entries": 13766,
- "entry": 5362,
- "ents": 870,
- "entu": 6650,
- "enty": 5657,
- "enu": 23430,
- "env": 32280,
- "env": 39207,
- "envel": 20052,
- "envelope": 27358,
- "envir": 3512,
- "enviro": 46200,
- "environ": 3599,
- "environment": 33039,
- "environment": 5501,
- "environmental": 7831,
- "environmentally": 32855,
- "environments": 19577,
- "envision": 49031,
- "envoy": 29263,
- "envy": 21017,
- "eny": 20482,
- "enya": 36509,
- "enyc": 39520,
- "enz": 25805,
- "enz": 31873,
- "enza": 25239,
- "enzie": 14839,
- "enzo": 31543,
- "enzyme": 40348,
- "enzymes": 47465,
- "eo": 16054,
- "eo": 11712,
- "eoin": 48634,
- "eon": 31915,
- "eos": 17805,
- "ep": 1178,
- "ep": 1117,
- "epa": 15866,
- "epage": 26931,
- "epaper": 33584,
- "epcot": 32524,
- "eper": 43071,
- "eph": 45752,
- "eph": 41240,
- "ephe": 25129,
- "epi": 7219,
- "epi": 34641,
- "epic": 12683,
- "epic": 4991,
- "epiconetsy": 49222,
- "epide": 17382,
- "epidemi": 44447,
- "epidemic": 21522,
- "epile": 23150,
- "epilepsy": 29547,
- "epilo": 31291,
- "epilots": 39766,
- "epiph": 40561,
- "epiphany": 43251,
- "epis": 24616,
- "episcop": 28037,
- "episcopal": 31221,
- "episo": 2708,
- "episode": 2965,
- "episodes": 11837,
- "epit": 21967,
- "epitome": 35114,
- "epl": 25950,
- "epo": 25810,
- "epp": 39054,
- "epp": 39593,
- "eps": 4090,
- "epsilon": 40019,
- "epsom": 40364,
- "epstein": 34688,
- "eq": 39331,
- "eq": 33692,
- "equ": 2563,
- "equal": 17373,
- "equal": 10433,
- "equality": 48981,
- "equality": 9578,
- "equally": 18172,
- "equals": 30278,
- "equation": 28591,
- "equations": 38225,
- "eque": 19518,
- "equestrian": 24728,
- "equi": 8752,
- "equili": 43262,
- "equine": 33801,
- "equinox": 32652,
- "equip": 6526,
- "equip": 36979,
- "equipment": 6893,
- "equipo": 45688,
- "equipped": 18331,
- "equitable": 44717,
- "equities": 44015,
- "equity": 11293,
- "equivalent": 19489,
- "er": 517,
- "er": 528,
- "era": 30548,
- "era": 2072,
- "erable": 18801,
- "erad": 24194,
- "eradic": 36346,
- "eradicate": 46164,
- "eral": 6222,
- "eran": 13069,
- "eras": 19325,
- "eras": 39090,
- "erase": 33893,
- "erased": 46762,
- "erasmus": 38935,
- "erc": 5360,
- "erc": 32382,
- "erd": 25645,
- "erdo": 21112,
- "erdogan": 24453,
- "ere": 17907,
- "ere": 642,
- "erec": 21526,
- "erected": 39365,
- "ered": 9097,
- "eres": 15751,
- "ergon": 38120,
- "ergy": 19550,
- "eri": 2769,
- "eri": 9509,
- "eria": 11634,
- "erial": 5409,
- "eric": 1206,
- "eric": 5396,
- "erica": 13208,
- "erich": 26070,
- "erick": 27434,
- "erick": 36959,
- "erickson": 45286,
- "ericsson": 39645,
- "eridge": 45408,
- "erie": 7005,
- "eries": 9099,
- "erik": 22805,
- "erik": 16532,
- "erika": 25531,
- "erin": 17532,
- "erin": 11333,
- "erina": 25176,
- "ering": 1785,
- "erit": 23335,
- "eritrea": 30738,
- "erjee": 41665,
- "erly": 14380,
- "erm": 31649,
- "erman": 17990,
- "ern": 6992,
- "ern": 12140,
- "ernal": 20868,
- "ernan": 34617,
- "ernation": 48796,
- "erne": 33930,
- "ernest": 23006,
- "ernie": 23636,
- "ernity": 14653,
- "erno": 40812,
- "ernst": 30099,
- "ero": 3211,
- "ero": 3732,
- "erock": 38206,
- "eron": 32837,
- "eroom": 46690,
- "eros": 30597,
- "erose": 48657,
- "erosion": 30174,
- "erotic": 30708,
- "erotica": 39126,
- "erous": 6384,
- "eroy": 36461,
- "erp": 28268,
- "err": 22479,
- "err": 25346,
- "erra": 48446,
- "errands": 45485,
- "error": 12097,
- "errors": 21195,
- "erry": 45236,
- "erry": 24124,
- "ers": 4840,
- "ers": 612,
- "ersfc": 37925,
- "ership": 2884,
- "erson": 25780,
- "erson": 6811,
- "ert": 40325,
- "ert": 3112,
- "erta": 32007,
- "erton": 26245,
- "erts": 12921,
- "eru": 36068,
- "erun": 41642,
- "erup": 17093,
- "erupted": 48862,
- "eruption": 33705,
- "erville": 37557,
- "erwin": 43724,
- "ery": 12467,
- "ery": 1692,
- "erz": 38711,
- "es": 957,
- "es": 542,
- "esa": 46834,
- "esa": 12489,
- "esanders": 23099,
- "esc": 3330,
- "esc": 28420,
- "escal": 15902,
- "escap": 11499,
- "escape": 32484,
- "escape": 7568,
- "escaped": 18707,
- "escapes": 29916,
- "escaping": 21767,
- "escar": 39229,
- "escence": 37972,
- "esch": 46760,
- "esch": 41945,
- "esco": 32482,
- "escobar": 48807,
- "escor": 24360,
- "escort": 24976,
- "escorted": 47667,
- "escorts": 48574,
- "escu": 36517,
- "esday": 19553,
- "ese": 18766,
- "ese": 2260,
- "esg": 41674,
- "esh": 17119,
- "esh": 13407,
- "esha": 28799,
- "eshop": 38451,
- "eshop": 45570,
- "eshopsuk": 39349,
- "esi": 30064,
- "esis": 12414,
- "esk": 19359,
- "esl": 26201,
- "eso": 29890,
- "eso": 28921,
- "esof": 17047,
- "eson": 46845,
- "esp": 3849,
- "esp": 13870,
- "espa": 37301,
- "espan": 41731,
- "españa": 41118,
- "especially": 4878,
- "esper": 29216,
- "espino": 46633,
- "espionage": 43498,
- "espn": 22917,
- "espn": 7540,
- "espnu": 47747,
- "espo": 34381,
- "esports": 16035,
- "espresso": 17098,
- "esq": 47352,
- "esqu": 34616,
- "esque": 25877,
- "ess": 3118,
- "ess": 9764,
- "essa": 39125,
- "essay": 12751,
- "essays": 27328,
- "esse": 22305,
- "essen": 30489,
- "essence": 17830,
- "essenti": 11163,
- "essential": 47264,
- "essential": 6895,
- "essentially": 30042,
- "essentials": 16191,
- "essex": 30563,
- "essex": 11623,
- "est": 2291,
- "est": 1509,
- "esta": 41449,
- "esta": 10135,
- "estab": 7010,
- "establi": 8412,
- "establish": 19709,
- "established": 13143,
- "establishing": 29420,
- "establishment": 20213,
- "estas": 39072,
- "estate": 47130,
- "estate": 6159,
- "estates": 26054,
- "este": 12968,
- "este": 20579,
- "esteban": 48381,
- "esteem": 31541,
- "esteemed": 36293,
- "ester": 45808,
- "esthe": 18468,
- "esther": 24393,
- "estim": 8904,
- "estimate": 21883,
- "estimated": 16665,
- "estimates": 21957,
- "esto": 31589,
- "esto": 23958,
- "estonia": 26260,
- "estonian": 48895,
- "estrada": 48116,
- "estre": 31271,
- "estu": 26272,
- "estuary": 35269,
- "esur": 35758,
- "esville": 39187,
- "esy": 46268,
- "et": 1169,
- "et": 875,
- "eta": 8761,
- "etal": 25221,
- "etary": 13074,
- "etc": 5353,
- "etched": 40411,
- "etching": 41375,
- "ete": 38820,
- "ete": 40245,
- "eter": 8587,
- "eter": 17007,
- "eternal": 13732,
- "eternally": 48486,
- "eternity": 23832,
- "eters": 18392,
- "etf": 31661,
- "eth": 4819,
- "eth": 5927,
- "ethan": 24245,
- "ethan": 15958,
- "ethanol": 38166,
- "ethe": 21312,
- "ethel": 45921,
- "ether": 23349,
- "ethere": 18705,
- "ethereal": 40925,
- "ethereum": 19612,
- "ethernet": 35026,
- "ethi": 10327,
- "ethic": 39104,
- "ethical": 47041,
- "ethical": 17679,
- "ethics": 13355,
- "ethiop": 10897,
- "ethiopia": 13920,
- "ethiopian": 24507,
- "ethnic": 30522,
- "ethnic": 16344,
- "ethnicity": 46787,
- "ethno": 34225,
- "ethos": 48768,
- "eti": 11188,
- "eti": 30394,
- "etienne": 46118,
- "eties": 15137,
- "etihad": 38489,
- "etiquette": 37957,
- "etis": 38216,
- "etisation": 39733,
- "etna": 41940,
- "eto": 27829,
- "eto": 33837,
- "eton": 44339,
- "etour": 41462,
- "etr": 23012,
- "etres": 42838,
- "ets": 3442,
- "etsy": 13237,
- "etsy": 6282,
- "etsym": 22902,
- "etsymntt": 25416,
- "etsyshop": 44643,
- "ett": 32729,
- "ett": 24998,
- "etta": 30466,
- "ette": 19981,
- "ette": 5212,
- "ettes": 35326,
- "etto": 44219,
- "etty": 40759,
- "etu": 36593,
- "etv": 49155,
- "etv": 20325,
- "etwork": 20585,
- "ety": 25920,
- "ety": 2746,
- "etz": 36181,
- "etz": 25301,
- "eu": 1506,
- "eu": 3238,
- "eucalyp": 41068,
- "eucalyptus": 42351,
- "euchar": 38362,
- "eugen": 30678,
- "eugene": 17760,
- "eul": 46749,
- "eun": 16431,
- "eun": 26219,
- "eunhyuk": 47526,
- "eup": 44435,
- "euph": 21386,
- "euphoria": 41051,
- "eur": 18343,
- "eur": 12018,
- "eura": 32605,
- "eure": 25311,
- "euref": 48017,
- "eureka": 31686,
- "euro": 2039,
- "euro": 8463,
- "euroleague": 46821,
- "europa": 18290,
- "europale": 42473,
- "europaleague": 44029,
- "europarl": 44922,
- "europe": 4198,
- "europe": 3848,
- "european": 26712,
- "european": 4759,
- "europeans": 37082,
- "euros": 22274,
- "eurovision": 17593,
- "eurozone": 42555,
- "eurusd": 40895,
- "eus": 44214,
- "euston": 46905,
- "euthan": 43280,
- "euve": 40652,
- "eux": 25019,
- "ev": 776,
- "ev": 10133,
- "eva": 6845,
- "evacu": 13187,
- "evacuated": 26806,
- "evacuation": 27353,
- "eval": 25139,
- "eval": 9703,
- "evalu": 10314,
- "evaluate": 27174,
- "evaluating": 34541,
- "evaluation": 17640,
- "evan": 12821,
- "evan": 12847,
- "evangel": 20518,
- "evangeli": 21372,
- "evangelical": 36151,
- "evangelist": 42275,
- "evankirstel": 46581,
- "evans": 8836,
- "evansville": 44782,
- "evapor": 33352,
- "evasion": 48795,
- "eve": 5732,
- "eve": 1866,
- "eved": 19820,
- "evel": 39315,
- "evelyn": 26687,
- "evement": 8210,
- "even": 6359,
- "even": 1427,
- "evening": 34487,
- "evening": 2285,
- "evenings": 19994,
- "evenly": 45974,
- "event": 10612,
- "event": 1655,
- "eventful": 45628,
- "evento": 38155,
- "eventprofs": 24980,
- "events": 3667,
- "eventu": 14055,
- "eventual": 45321,
- "eventually": 14397,
- "ever": 888,
- "ever": 1247,
- "everest": 21722,
- "everett": 25456,
- "everglades": 46294,
- "evergreen": 23852,
- "everlasting": 32849,
- "evers": 31914,
- "everton": 13315,
- "every": 1091,
- "every": 1505,
- "everybody": 5901,
- "everyday": 25049,
- "everyday": 5160,
- "everyone": 1584,
- "everything": 36376,
- "everything": 2410,
- "everytime": 16911,
- "everywhere": 6364,
- "eves": 7323,
- "evi": 5348,
- "evi": 36989,
- "evic": 21336,
- "eviction": 37111,
- "eviden": 46220,
- "evidence": 6439,
- "evident": 34529,
- "evie": 47195,
- "evil": 23218,
- "evil": 6006,
- "eville": 16143,
- "eving": 24729,
- "evo": 17962,
- "evo": 13169,
- "evoc": 43133,
- "evol": 5350,
- "evolu": 7725,
- "evolution": 8902,
- "evolutionary": 30629,
- "evolve": 23406,
- "evolved": 22613,
- "evolving": 23675,
- "evp": 46154,
- "evs": 33576,
- "ew": 11942,
- "ew": 15428,
- "ewan": 40247,
- "ewe": 48438,
- "ewing": 38873,
- "ews": 9878,
- "ex": 659,
- "ex": 4118,
- "exac": 5460,
- "exact": 12651,
- "exactly": 5840,
- "exagger": 29766,
- "exal": 49324,
- "exam": 4428,
- "exam": 8785,
- "examination": 20970,
- "examine": 25728,
- "examined": 44004,
- "examiner": 29149,
- "examines": 28160,
- "examining": 30616,
- "example": 6228,
- "examples": 14790,
- "exams": 14028,
- "exas": 47536,
- "exc": 1302,
- "excav": 20733,
- "excavation": 45909,
- "exce": 10999,
- "exceed": 32521,
- "exceeded": 36221,
- "exceeding": 47213,
- "exceeds": 49353,
- "excel": 28351,
- "excel": 18754,
- "excell": 3298,
- "excellence": 8171,
- "excellency": 36503,
- "excellent": 4239,
- "excelsi": 47315,
- "excep": 8882,
- "except": 8541,
- "exception": 25018,
- "exceptional": 13425,
- "exceptionally": 29306,
- "excer": 17737,
- "excerpt": 20586,
- "excess": 22491,
- "excessive": 21332,
- "exchange": 6616,
- "exchanged": 48919,
- "exchanges": 29730,
- "exchanging": 47760,
- "excit": 10510,
- "excite": 47711,
- "excited": 1889,
- "excitement": 11407,
- "exciting": 4300,
- "exclu": 3114,
- "exclude": 49235,
- "excluded": 46216,
- "excluding": 44326,
- "exclusion": 40219,
- "exclusive": 3747,
- "exclusively": 13565,
- "exclusives": 47149,
- "excu": 7324,
- "excur": 27533,
- "excursion": 34869,
- "excuse": 9266,
- "excuses": 19388,
- "exe": 3554,
- "exe": 48027,
- "exec": 15052,
- "execs": 35728,
- "execu": 4360,
- "execute": 36405,
- "executed": 20432,
- "execution": 18085,
- "executive": 5944,
- "executives": 24357,
- "exem": 19753,
- "exemp": 28602,
- "exempl": 36371,
- "exemplary": 39123,
- "exempli": 41934,
- "exempt": 44278,
- "exemption": 47481,
- "exer": 40295,
- "exerc": 5932,
- "exercise": 7016,
- "exercises": 19669,
- "exercising": 39036,
- "exeter": 32137,
- "exeter": 18837,
- "exfoli": 38823,
- "exhau": 11154,
- "exhaust": 21812,
- "exhausted": 21741,
- "exhausting": 40035,
- "exhaustion": 49221,
- "exhi": 3022,
- "exhib": 3783,
- "exhibit": 24992,
- "exhibit": 8209,
- "exhibiting": 23889,
- "exhibition": 4219,
- "exhibitions": 28311,
- "exhibitor": 44192,
- "exhibitors": 38542,
- "exhibits": 30093,
- "exhilar": 40262,
- "exhilarating": 49289,
- "exi": 5297,
- "exico": 38712,
- "exile": 28566,
- "exist": 10899,
- "exist": 9645,
- "existed": 23198,
- "existence": 13832,
- "existent": 43541,
- "existential": 38752,
- "existing": 12886,
- "exists": 14608,
- "exit": 9374,
- "exited": 37581,
- "exiting": 39577,
- "exits": 34943,
- "exmoor": 48260,
- "exo": 15600,
- "exo": 5842,
- "exodus": 30098,
- "exol": 42856,
- "exop": 35288,
- "exoplan": 37980,
- "exor": 24506,
- "exorcist": 46309,
- "exotic": 15639,
- "exp": 9923,
- "exp": 19066,
- "expan": 7512,
- "expand": 10382,
- "expand": 13141,
- "expanded": 18390,
- "expanding": 15755,
- "expands": 22223,
- "expanse": 46886,
- "expansion": 10138,
- "expansive": 49261,
- "expat": 43900,
- "expe": 2560,
- "expect": 9802,
- "expect": 5716,
- "expectation": 34273,
- "expectations": 12529,
- "expected": 5573,
- "expecting": 12525,
- "expects": 24536,
- "expedition": 16761,
- "expeditions": 49327,
- "expelled": 48834,
- "expen": 7216,
- "expend": 29302,
- "expenditure": 47044,
- "expense": 28473,
- "expenses": 21797,
- "expensive": 9649,
- "exper": 1533,
- "experi": 4723,
- "experience": 31867,
- "experience": 2415,
- "experienced": 10417,
- "experiences": 8233,
- "experiencing": 16643,
- "experiential": 44952,
- "experim": 6697,
- "experiment": 13079,
- "experimental": 16539,
- "experimenting": 28263,
- "experiments": 21077,
- "expert": 6284,
- "expertise": 16555,
- "experts": 6960,
- "expi": 26850,
- "expir": 35077,
- "expire": 49315,
- "expired": 30200,
- "expires": 34739,
- "expl": 3261,
- "expla": 3517,
- "explain": 48918,
- "explain": 7304,
- "explained": 14229,
- "explaining": 13136,
- "explains": 6655,
- "explan": 13294,
- "explanation": 16577,
- "explanations": 34383,
- "explic": 21011,
- "explicit": 33228,
- "explo": 3586,
- "explode": 31262,
- "exploded": 28947,
- "explodes": 38119,
- "exploding": 34683,
- "exploit": 36953,
- "exploited": 48554,
- "explor": 11958,
- "exploration": 14043,
- "explore": 10405,
- "explore": 5147,
- "explorebc": 38754,
- "explorecanada": 36600,
- "explored": 25016,
- "explorer": 15776,
- "explorers": 28491,
- "explores": 13996,
- "exploring": 7584,
- "explosion": 13785,
- "explosions": 38646,
- "explosive": 18888,
- "explosives": 44705,
- "expo": 7820,
- "expo": 6344,
- "expon": 27905,
- "export": 14444,
- "exporting": 47433,
- "exports": 20088,
- "expose": 23181,
- "exposed": 12180,
- "exposes": 33575,
- "exposing": 28362,
- "exposition": 36943,
- "exposure": 11903,
- "expre": 6085,
- "express": 18553,
- "express": 5642,
- "expressed": 20777,
- "expresses": 31931,
- "expressing": 30207,
- "expression": 11357,
- "expressions": 20314,
- "expressive": 42060,
- "expressway": 31658,
- "exquis": 16575,
- "exquisite": 17958,
- "ext": 5711,
- "ext": 20072,
- "exten": 5555,
- "extend": 14492,
- "extended": 9614,
- "extending": 25652,
- "extends": 20688,
- "extension": 10275,
- "extensions": 24525,
- "extensive": 16870,
- "extensively": 47365,
- "extent": 24913,
- "exter": 9797,
- "exterior": 19352,
- "extermin": 41671,
- "external": 15028,
- "extin": 13553,
- "extinct": 24488,
- "extinction": 21186,
- "extingui": 38567,
- "extor": 35620,
- "extr": 29082,
- "extra": 6416,
- "extra": 4231,
- "extrac": 18550,
- "extract": 18962,
- "extraction": 28789,
- "extracts": 45576,
- "extraordin": 23628,
- "extraordinaire": 30909,
- "extraordinary": 10982,
- "extras": 29817,
- "extravag": 22299,
- "extravaganza": 29461,
- "extre": 3978,
- "extreme": 38357,
- "extreme": 8331,
- "extremely": 6519,
- "extremism": 31493,
- "extremist": 36383,
- "extremists": 41425,
- "extru": 43010,
- "ey": 1541,
- "ey": 1477,
- "eyang": 28915,
- "eye": 5034,
- "eye": 3272,
- "eyebrow": 34250,
- "eyebrows": 19923,
- "eyed": 15512,
- "eyeing": 34916,
- "eyel": 17075,
- "eyelashes": 42074,
- "eyeliner": 33354,
- "eyeon": 25126,
- "eyes": 3095,
- "eyeshadow": 35213,
- "eyewear": 30165,
- "eyewitness": 36258,
- "eyou": 31996,
- "eyour": 40229,
- "eyre": 44115,
- "ez": 10082,
- "ez": 8387,
- "eze": 25993,
- "eze": 27229,
- "ezekiel": 41428,
- "ezra": 27552,
- "f": 69,
- "f": 325,
- "fa": 778,
- "fa": 2800,
- "faa": 27577,
- "fab": 2833,
- "fab": 5492,
- "faber": 43461,
- "faber": 42488,
- "fabi": 29425,
- "fabian": 34539,
- "fabio": 31666,
- "fabric": 16217,
- "fabric": 10033,
- "fabricated": 40851,
- "fabrication": 33476,
- "fabrics": 23159,
- "fabulous": 5189,
- "fac": 1053,
- "fac": 35438,
- "facade": 29217,
- "face": 2545,
- "face": 1710,
- "facebook": 36156,
- "facebook": 2943,
- "faced": 10941,
- "faceli": 32023,
- "facelift": 36380,
- "faceoff": 42710,
- "facep": 45285,
- "faces": 4905,
- "faceted": 43435,
- "facetime": 24076,
- "facial": 11909,
- "facil": 39973,
- "facilit": 13567,
- "facilitate": 26733,
- "facilitated": 43853,
- "facilitating": 34796,
- "facilities": 10388,
- "facility": 8165,
- "facing": 7619,
- "fact": 17189,
- "fact": 3598,
- "factfriday": 27953,
- "faction": 14629,
- "factor": 21082,
- "factor": 8124,
- "factories": 36492,
- "factors": 12733,
- "factory": 42483,
- "factory": 6072,
- "facts": 5085,
- "factual": 45471,
- "faculty": 9504,
- "facup": 25283,
- "fad": 12632,
- "fad": 47669,
- "fade": 20486,
- "faded": 26051,
- "fades": 40441,
- "fading": 32882,
- "fadnavis": 38945,
- "faf": 31052,
- "faf": 43903,
- "fag": 25617,
- "fag": 39305,
- "fah": 25495,
- "fah": 35429,
- "fahren": 45527,
- "fai": 20519,
- "fai": 26384,
- "fail": 7105,
- "fail": 6801,
- "failed": 8314,
- "failing": 15757,
- "fails": 13388,
- "failure": 8732,
- "failures": 25442,
- "faint": 30807,
- "fair": 3031,
- "fair": 2849,
- "fairbanks": 43962,
- "faire": 34745,
- "faire": 20798,
- "fairfax": 29368,
- "fairfield": 29664,
- "fairgrounds": 38325,
- "fairi": 28884,
- "fairies": 33590,
- "fairly": 14961,
- "fairmont": 41547,
- "fairness": 29388,
- "fairs": 8655,
- "fairtrade": 33361,
- "fairview": 43479,
- "fairway": 44022,
- "fairy": 17021,
- "fairy": 10444,
- "fairytale": 28944,
- "fais": 23542,
- "faisal": 35459,
- "fait": 20567,
- "faith": 10653,
- "faith": 5080,
- "faithful": 15511,
- "faiz": 41775,
- "fake": 18794,
- "fake": 5777,
- "faken": 22853,
- "fakenews": 26943,
- "fakespeare": 49095,
- "fal": 2778,
- "fal": 40494,
- "fala": 47120,
- "falcon": 22498,
- "falcon": 13571,
- "falcons": 13834,
- "falk": 34648,
- "falkirk": 44080,
- "fall": 6489,
- "fall": 2359,
- "fallen": 8688,
- "falling": 48709,
- "falling": 7293,
- "fallon": 39596,
- "fallon": 21281,
- "fallontonight": 44627,
- "fallout": 49365,
- "fallout": 16009,
- "falls": 4778,
- "falmouth": 38261,
- "false": 38948,
- "false": 9078,
- "falsely": 42321,
- "fam": 1058,
- "fam": 5128,
- "fame": 6573,
- "famed": 23302,
- "famer": 24554,
- "famil": 3395,
- "famili": 8488,
- "familia": 25622,
- "familiar": 10020,
- "families": 4612,
- "family": 8137,
- "family": 1315,
- "familyfun": 46308,
- "familytime": 47236,
- "familytravel": 38222,
- "famine": 35847,
- "famous": 44811,
- "famous": 4096,
- "famously": 44505,
- "fan": 1675,
- "fan": 2261,
- "fanart": 41059,
- "fanart": 7855,
- "fanartfriday": 45346,
- "fanatic": 36643,
- "fanatics": 39610,
- "fanbase": 36921,
- "fanboy": 43369,
- "fanc": 29017,
- "fancafe": 45080,
- "fanci": 35908,
- "fanclub": 31530,
- "fancy": 47622,
- "fancy": 6733,
- "fand": 19684,
- "fandom": 47634,
- "fandom": 11534,
- "fanfest": 42916,
- "fanfic": 47243,
- "fang": 14269,
- "fang": 27428,
- "fangirl": 28813,
- "fangirling": 39463,
- "fanning": 37282,
- "fanny": 30401,
- "fans": 32454,
- "fans": 1840,
- "fansign": 25288,
- "fant": 4467,
- "fanta": 2703,
- "fantaken": 39412,
- "fantasia": 49306,
- "fantastic": 31289,
- "fantastic": 2935,
- "fantasy": 15124,
- "fantasy": 5267,
- "fantasyfootball": 35713,
- "fao": 31155,
- "faq": 28533,
- "far": 1578,
- "far": 2384,
- "fara": 48562,
- "farage": 28340,
- "farah": 31547,
- "fare": 8620,
- "fare": 6461,
- "fares": 27525,
- "farewell": 10734,
- "fargo": 18870,
- "fari": 26197,
- "farley": 43761,
- "farm": 9066,
- "farm": 3985,
- "farmer": 19735,
- "farmer": 10474,
- "farmers": 29752,
- "farmers": 6402,
- "farmersmarket": 41808,
- "farmhouse": 26293,
- "farming": 10399,
- "farmington": 49305,
- "farmland": 45258,
- "farms": 11277,
- "farn": 27527,
- "faroo": 39147,
- "farra": 33657,
- "farrakhan": 46293,
- "farrell": 24234,
- "fart": 34664,
- "farther": 42233,
- "fas": 4830,
- "fas": 42995,
- "fasci": 17191,
- "fascin": 7327,
- "fascinated": 32964,
- "fascinating": 8640,
- "fascism": 28213,
- "fascist": 23870,
- "fascists": 43598,
- "fash": 42682,
- "fashi": 2099,
- "fashion": 6976,
- "fashion": 2444,
- "fashionable": 24597,
- "fashionblogger": 31726,
- "fashioned": 21563,
- "fashioni": 26062,
- "fashionista": 30415,
- "fashions": 37601,
- "fashionshow": 45653,
- "fashionweek": 28684,
- "fass": 42398,
- "fast": 8509,
- "fast": 1953,
- "fasten": 44990,
- "faster": 8835,
- "fastest": 9808,
- "fasting": 24656,
- "fat": 4751,
- "fat": 5484,
- "fatal": 12124,
- "fatalities": 44168,
- "fatally": 34069,
- "fate": 26315,
- "fate": 11734,
- "father": 11607,
- "father": 3224,
- "fathers": 12780,
- "fathersday": 16731,
- "fati": 13430,
- "fatigue": 23747,
- "fatima": 28202,
- "fats": 30151,
- "fatt": 44131,
- "fatty": 22953,
- "fau": 5571,
- "fau": 31381,
- "faucet": 44273,
- "faul": 16230,
- "faulkner": 37840,
- "fault": 13862,
- "faults": 42752,
- "faulty": 47103,
- "fauna": 30808,
- "faust": 44772,
- "faux": 19429,
- "fav": 1355,
- "fav": 5426,
- "fave": 7272,
- "faves": 18003,
- "favor": 1766,
- "favor": 12160,
- "favorable": 35392,
- "favored": 46640,
- "favorite": 35262,
- "favorite": 1916,
- "favorited": 36926,
- "favorites": 10564,
- "favors": 36085,
- "favour": 3111,
- "favour": 20469,
- "favourite": 3342,
- "favourites": 16585,
- "favs": 18879,
- "faw": 21800,
- "fawad": 46425,
- "fawn": 48624,
- "fax": 32535,
- "fax": 9337,
- "fay": 8939,
- "fay": 40074,
- "faye": 30257,
- "fayette": 32043,
- "fayette": 19782,
- "fayetteville": 37771,
- "fayre": 34982,
- "faz": 26238,
- "faze": 44880,
- "fb": 22637,
- "fb": 3307,
- "fball": 29663,
- "fbf": 20004,
- "fbi": 10293,
- "fbloggers": 41389,
- "fbs": 48454,
- "fc": 4278,
- "fc": 1399,
- "fca": 24540,
- "fcb": 26639,
- "fcb": 25045,
- "fcbarcelona": 32174,
- "fcbayern": 35033,
- "fcblive": 44608,
- "fcc": 21240,
- "fck": 40080,
- "fck": 49263,
- "fcofficial": 27805,
- "fcs": 32095,
- "fcu": 47898,
- "fd": 16972,
- "fd": 11525,
- "fda": 17823,
- "fdi": 45579,
- "fdn": 18563,
- "fdny": 41084,
- "fdr": 42298,
- "fe": 623,
- "fe": 873,
- "fear": 8744,
- "fear": 5402,
- "feared": 31154,
- "fearless": 17470,
- "fears": 13867,
- "fearthe": 33449,
- "feasi": 34977,
- "feast": 37963,
- "feast": 9564,
- "feat": 1703,
- "feat": 5611,
- "feather": 24905,
- "feather": 17871,
- "feathers": 21138,
- "featherweight": 44939,
- "feature": 30413,
- "feature": 4527,
- "featured": 4743,
- "features": 4643,
- "featuring": 3706,
- "feb": 4317,
- "febru": 4202,
- "february": 4248,
- "fect": 31293,
- "fed": 22518,
- "fed": 7035,
- "feder": 4737,
- "federal": 6369,
- "federation": 15530,
- "federer": 18246,
- "federico": 40539,
- "fedex": 32603,
- "fedora": 45111,
- "feds": 30593,
- "fee": 28242,
- "fee": 9224,
- "feed": 6662,
- "feed": 5839,
- "feedback": 8683,
- "feeder": 24482,
- "feeders": 44523,
- "feeding": 9879,
- "feeds": 21788,
- "feel": 2408,
- "feel": 2051,
- "feelin": 19903,
- "feeling": 33087,
- "feeling": 3045,
- "feelings": 9452,
- "feels": 4808,
- "feelthe": 22322,
- "feelthebern": 27743,
- "fees": 11765,
- "feet": 4804,
- "fei": 23441,
- "fei": 34217,
- "fein": 46707,
- "feinstein": 41313,
- "fel": 2081,
- "fel": 20304,
- "feld": 45913,
- "feld": 14219,
- "feldman": 41942,
- "feli": 7498,
- "felic": 25845,
- "felici": 23379,
- "felicia": 41139,
- "felicidades": 41648,
- "felicity": 35123,
- "feline": 29471,
- "felipe": 27681,
- "felix": 33455,
- "felix": 16514,
- "feliz": 26104,
- "feliz": 20221,
- "fell": 33540,
- "fell": 6266,
- "fella": 17586,
- "fellas": 18787,
- "feller": 29226,
- "fellow": 12099,
- "fellow": 5242,
- "fellows": 15766,
- "fellowship": 13857,
- "felony": 31068,
- "felt": 5413,
- "fem": 24574,
- "fem": 36615,
- "fema": 41721,
- "female": 22062,
- "female": 3970,
- "females": 21028,
- "femi": 38607,
- "femin": 11423,
- "femini": 11894,
- "feminine": 24911,
- "feminism": 18784,
- "feminist": 14921,
- "feminists": 38809,
- "femme": 31331,
- "fen": 5509,
- "fen": 25024,
- "fence": 12679,
- "fences": 34312,
- "fencing": 23489,
- "fender": 17117,
- "fener": 41208,
- "fenerbah": 46652,
- "feng": 33291,
- "fennel": 28689,
- "fent": 26395,
- "fenton": 47265,
- "fenway": 29206,
- "fer": 1765,
- "fer": 2897,
- "fera": 37705,
- "feral": 29972,
- "ferdin": 25541,
- "ferdinand": 27591,
- "fere": 43144,
- "feren": 35652,
- "ference": 19984,
- "ferg": 44938,
- "fergie": 39119,
- "fergu": 10988,
- "fergus": 42041,
- "ferguson": 11904,
- "fermentation": 45817,
- "fermented": 36886,
- "fern": 10747,
- "fern": 21685,
- "fernandes": 44391,
- "fernandez": 23436,
- "fernando": 17140,
- "ferns": 38277,
- "feroci": 45652,
- "ferr": 7256,
- "ferra": 47911,
- "ferrari": 9606,
- "ferre": 29626,
- "ferred": 10432,
- "ferreira": 48686,
- "ferrell": 41112,
- "ferrer": 38904,
- "ferri": 42008,
- "ferries": 28489,
- "ferris": 27532,
- "ferry": 38936,
- "ferry": 10278,
- "fers": 12378,
- "fert": 14925,
- "fert": 43662,
- "fertil": 41987,
- "fertile": 44837,
- "fertili": 23912,
- "fertility": 23528,
- "fertilizer": 36786,
- "fery": 47448,
- "fes": 32300,
- "fest": 17383,
- "fest": 2590,
- "festa": 42124,
- "festi": 1943,
- "festiv": 19222,
- "festival": 20946,
- "festival": 2240,
- "festivals": 17834,
- "festive": 9533,
- "festivities": 21020,
- "fet": 21409,
- "feta": 31705,
- "fetal": 42031,
- "fetch": 30271,
- "fete": 34629,
- "fett": 37979,
- "fetus": 26768,
- "feu": 24912,
- "feu": 32990,
- "feud": 27365,
- "fever": 40896,
- "fever": 9989,
- "fevre": 43861,
- "few": 1939,
- "fewer": 19128,
- "fex": 41584,
- "fex": 26392,
- "fey": 39069,
- "fey": 23298,
- "fez": 43081,
- "ff": 1021,
- "ff": 1304,
- "ffa": 15355,
- "ffame": 42873,
- "ffc": 19832,
- "ffe": 1138,
- "ffe": 8631,
- "ffect": 29151,
- "ffed": 8448,
- "ffee": 26377,
- "ffel": 22656,
- "ffen": 46537,
- "ffer": 27369,
- "ffer": 11636,
- "ffers": 32163,
- "fferty": 44771,
- "ffes": 46441,
- "ffey": 30138,
- "fff": 28106,
- "ffi": 19961,
- "ffic": 4762,
- "ffice": 26044,
- "ffici": 3639,
- "fficial": 39818,
- "fficial": 6463,
- "fficiency": 27800,
- "fficient": 20424,
- "ffin": 12779,
- "ffin": 7367,
- "ffing": 16592,
- "ffins": 17898,
- "ffl": 39490,
- "ffle": 7749,
- "ffler": 39819,
- "ffles": 19344,
- "ffman": 15823,
- "ffo": 42264,
- "ffs": 4424,
- "ffxiv": 26569,
- "ffxv": 46786,
- "ffy": 26404,
- "ffy": 7795,
- "fg": 45977,
- "fg": 6823,
- "fgm": 32178,
- "fgo": 46113,
- "fh": 21649,
- "fh": 21010,
- "fhs": 45094,
- "fi": 701,
- "fi": 3589,
- "fia": 8827,
- "fiable": 34373,
- "fianc": 27752,
- "fiance": 44114,
- "fiancé": 34039,
- "fiasco": 40944,
- "fiat": 16740,
- "fiawec": 39485,
- "fib": 40594,
- "fiba": 34993,
- "fiber": 35074,
- "fiber": 12612,
- "fibers": 44587,
- "fibre": 21401,
- "fibro": 21294,
- "fibrosis": 36307,
- "fic": 1788,
- "fic": 2059,
- "fica": 26952,
- "fically": 14854,
- "fication": 4523,
- "fications": 12512,
- "ficial": 48192,
- "fics": 42505,
- "fiction": 6218,
- "fictional": 25570,
- "fid": 34197,
- "fid": 23966,
- "fidd": 25218,
- "fiddle": 35968,
- "fide": 45375,
- "fidel": 21740,
- "fidel": 36837,
- "fidelity": 30109,
- "fidget": 48664,
- "fie": 28487,
- "fie": 10348,
- "fied": 29642,
- "fied": 2853,
- "fiel": 1361,
- "field": 7571,
- "field": 1570,
- "fielder": 11046,
- "fieldhouse": 37969,
- "fielding": 30465,
- "fields": 6494,
- "fieldwork": 33155,
- "fiends": 37869,
- "fier": 11167,
- "fier": 10598,
- "fierc": 48609,
- "fierce": 13896,
- "fiercely": 49039,
- "fiers": 16113,
- "fiery": 24557,
- "fies": 9537,
- "fiesta": 14580,
- "fif": 5309,
- "fifa": 21976,
- "fifa": 8516,
- "fifaworldcup": 38819,
- "fifawwc": 41329,
- "fife": 24374,
- "fifteen": 29504,
- "fifth": 25515,
- "fifth": 8772,
- "fifthharmony": 31075,
- "fifty": 24456,
- "fifty": 15978,
- "fig": 4814,
- "fig": 20719,
- "figaro": 48044,
- "figh": 23274,
- "fight": 5262,
- "fight": 2757,
- "fighter": 35884,
- "fighter": 6438,
- "fighters": 7371,
- "fightfor": 48909,
- "fightfor": 35740,
- "fighting": 38625,
- "fighting": 4652,
- "fighton": 45578,
- "fights": 12132,
- "figs": 38882,
- "figu": 6390,
- "figur": 16948,
- "figurative": 44042,
- "figure": 48820,
- "figure": 5274,
- "figured": 15630,
- "figures": 8739,
- "figurine": 33306,
- "figuring": 31513,
- "fiji": 48270,
- "fiji": 18285,
- "fik": 46589,
- "fil": 1142,
- "fil": 14915,
- "fila": 30992,
- "filament": 49252,
- "file": 12545,
- "file": 4512,
- "filed": 13864,
- "files": 7850,
- "filet": 43155,
- "fili": 9590,
- "filing": 16576,
- "filip": 14368,
- "filipino": 19153,
- "fill": 15904,
- "fill": 6277,
- "filled": 5589,
- "filler": 32816,
- "fillers": 45005,
- "fillet": 39276,
- "filling": 9736,
- "fillion": 38048,
- "fillmore": 43922,
- "fills": 21750,
- "filly": 27690,
- "film": 5117,
- "film": 1860,
- "filmed": 15801,
- "filmfare": 42224,
- "filmfest": 24508,
- "filmfestival": 28066,
- "filming": 6866,
- "filmmaker": 17202,
- "filmmakers": 24896,
- "filmmaking": 18226,
- "films": 5370,
- "fils": 40271,
- "filter": 7541,
- "filtered": 29926,
- "filtering": 47770,
- "filters": 18385,
- "filth": 39713,
- "filthy": 26899,
- "filtr": 21408,
- "filtration": 42036,
- "fim": 47525,
- "fin": 735,
- "fin": 10663,
- "fina": 34497,
- "final": 11968,
- "final": 1755,
- "finale": 7844,
- "finalfantasy": 44543,
- "finalfour": 46999,
- "finalist": 12620,
- "finalists": 13422,
- "finalized": 48930,
- "finally": 1992,
- "finals": 4536,
- "finan": 4807,
- "finance": 6117,
- "finances": 28767,
- "financi": 12846,
- "financial": 19783,
- "financial": 4930,
- "financially": 28124,
- "financing": 18375,
- "finch": 18523,
- "find": 18638,
- "find": 1416,
- "finder": 15045,
- "finders": 43884,
- "findia": 47064,
- "finding": 37455,
- "finding": 6002,
- "findings": 16529,
- "findlay": 48227,
- "findom": 36463,
- "finds": 6680,
- "findyour": 25936,
- "findyourpark": 38924,
- "fine": 12042,
- "fine": 3797,
- "fineart": 7484,
- "fineart": 16005,
- "fineartamerica": 7724,
- "fined": 20094,
- "finely": 46120,
- "finer": 36681,
- "fines": 25053,
- "finesse": 46047,
- "finest": 7707,
- "fing": 6485,
- "fing": 17955,
- "finger": 13480,
- "finger": 8895,
- "fingerprint": 39579,
- "fingers": 9690,
- "fini": 2405,
- "finish": 42178,
- "finish": 3958,
- "finished": 3078,
- "finisher": 38636,
- "finishers": 48661,
- "finishes": 13078,
- "finishing": 7912,
- "finite": 48312,
- "finity": 41463,
- "finity": 21273,
- "fink": 40158,
- "finland": 10775,
- "finley": 41652,
- "finn": 28479,
- "finn": 16925,
- "finna": 35180,
- "finnish": 19616,
- "fino": 30083,
- "fins": 32810,
- "fintech": 48929,
- "fintech": 8899,
- "fion": 27476,
- "fiona": 20099,
- "fior": 37086,
- "fiore": 44997,
- "fioren": 33188,
- "fiorentina": 43713,
- "fios": 42521,
- "fir": 770,
- "fir": 16233,
- "fire": 2951,
- "fire": 1769,
- "firearm": 40311,
- "firearms": 23960,
- "fireball": 40543,
- "firec": 42806,
- "fired": 8846,
- "firefighter": 20498,
- "firefighters": 12600,
- "firefly": 33997,
- "firefox": 35372,
- "fireman": 46085,
- "firen": 34752,
- "firenze": 38445,
- "fireplace": 23050,
- "fires": 8749,
- "fireside": 36185,
- "firework": 40750,
- "fireworks": 10641,
- "firing": 15105,
- "firm": 16936,
- "firm": 7705,
- "firmly": 29156,
- "firms": 13655,
- "firmware": 42691,
- "first": 6853,
- "first": 874,
- "firstdayof": 44297,
- "firsth": 48512,
- "firsts": 47884,
- "firth": 26078,
- "fis": 7846,
- "fis": 47683,
- "fiscal": 20825,
- "fischer": 26532,
- "fish": 6431,
- "fish": 2759,
- "fisher": 11175,
- "fisher": 9176,
- "fisheries": 24612,
- "fisherman": 25055,
- "fishermen": 28547,
- "fishers": 42065,
- "fishery": 49057,
- "fishes": 35470,
- "fishing": 31703,
- "fishing": 4935,
- "fishy": 35665,
- "fist": 48340,
- "fist": 17085,
- "fit": 2366,
- "fit": 2478,
- "fitbit": 33768,
- "fitch": 44614,
- "fitfam": 20662,
- "fitnes": 47285,
- "fitness": 20044,
- "fitness": 4838,
- "fits": 6401,
- "fitt": 32994,
- "fitted": 14863,
- "fitter": 42096,
- "fitters": 32364,
- "fitting": 11769,
- "fittings": 45787,
- "fitz": 11120,
- "fitz": 25913,
- "fitzgerald": 20606,
- "fitzpatrick": 37141,
- "fiu": 38374,
- "five": 19508,
- "five": 3127,
- "fives": 44066,
- "fix": 4596,
- "fix": 6028,
- "fixed": 9393,
- "fixes": 25473,
- "fixing": 17423,
- "fixture": 17317,
- "fixtures": 19904,
- "fizz": 31242,
- "fj": 43183,
- "fj": 46447,
- "fjor": 31260,
- "fk": 12410,
- "fl": 1082,
- "fl": 2685,
- "fla": 1577,
- "fla": 20292,
- "flag": 11536,
- "flag": 4859,
- "flagged": 45012,
- "flags": 12221,
- "flagship": 19779,
- "flagstaff": 40406,
- "flair": 24938,
- "flake": 21221,
- "flakes": 20934,
- "flam": 10559,
- "flame": 40351,
- "flame": 13484,
- "flamen": 28826,
- "flamenco": 37362,
- "flames": 13441,
- "flamin": 42693,
- "flaming": 34782,
- "flamingo": 30323,
- "flan": 14572,
- "flanagan": 28641,
- "flanders": 34837,
- "flank": 44553,
- "flann": 39510,
- "flannel": 37807,
- "flap": 35253,
- "flappy": 40241,
- "flare": 21185,
- "flares": 46088,
- "flash": 6089,
- "flash": 5815,
- "flashback": 14616,
- "flashback": 11988,
- "flashbackfriday": 15014,
- "flashbacks": 47056,
- "flashes": 31259,
- "flashing": 31764,
- "flashlight": 37256,
- "flask": 36194,
- "flat": 8986,
- "flat": 6313,
- "flats": 17228,
- "flatt": 45498,
- "flattering": 43267,
- "flaun": 41421,
- "flav": 7191,
- "flavo": 28895,
- "flavor": 31835,
- "flavor": 11818,
- "flavored": 29350,
- "flavorful": 49135,
- "flavors": 16930,
- "flavour": 17026,
- "flavoured": 42397,
- "flavours": 21083,
- "flaw": 14268,
- "flaw": 34978,
- "flawed": 35136,
- "flawless": 15531,
- "flaws": 30492,
- "flax": 43443,
- "fle": 2428,
- "fle": 44964,
- "flea": 24883,
- "fleck": 28143,
- "fled": 26731,
- "flee": 19427,
- "flee": 30167,
- "fleece": 25038,
- "fleeing": 30543,
- "fleek": 43513,
- "fleet": 35922,
- "fleet": 9147,
- "fleetwood": 28883,
- "fleming": 25769,
- "fler": 48789,
- "flesh": 17495,
- "flet": 16102,
- "fletcher": 19810,
- "fleur": 28593,
- "flew": 13768,
- "flex": 16426,
- "flex": 12038,
- "flexi": 10032,
- "flexibility": 22547,
- "flexible": 14502,
- "flexing": 48483,
- "fli": 2472,
- "flick": 13746,
- "flick": 23414,
- "flickr": 17755,
- "flies": 8070,
- "flight": 24701,
- "flight": 3795,
- "flights": 10515,
- "flin": 24730,
- "flin": 43816,
- "flinders": 44647,
- "fling": 22768,
- "flint": 28306,
- "flint": 18324,
- "flip": 20385,
- "flip": 11035,
- "flipk": 30829,
- "flipkart": 33154,
- "flipped": 28144,
- "flipping": 25881,
- "flips": 35089,
- "flir": 24330,
- "flirt": 38352,
- "flirting": 35243,
- "flix": 40663,
- "flo": 1945,
- "flo": 20711,
- "float": 16123,
- "floating": 12619,
- "floats": 33272,
- "flock": 36297,
- "flock": 21822,
- "flondon": 47366,
- "floo": 4062,
- "flood": 23793,
- "flood": 7148,
- "flooded": 19706,
- "flooding": 10204,
- "floods": 16369,
- "floor": 23657,
- "floor": 4125,
- "flooring": 19227,
- "floors": 15671,
- "flop": 22994,
- "floppy": 38267,
- "flops": 29146,
- "flor": 15784,
- "flor": 41669,
- "flora": 18906,
- "floral": 10732,
- "florals": 48331,
- "floren": 37706,
- "florence": 11617,
- "flores": 21537,
- "flori": 3482,
- "florian": 41861,
- "florida": 34264,
- "florida": 3966,
- "florist": 38403,
- "floss": 36453,
- "flotus": 35181,
- "flour": 18592,
- "flouri": 23239,
- "flourish": 36038,
- "flow": 2180,
- "flow": 5608,
- "flower": 12772,
- "flower": 4055,
- "flowering": 19953,
- "flowers": 4023,
- "flowing": 14922,
- "flown": 25659,
- "flows": 16715,
- "floyd": 46369,
- "floyd": 13656,
- "flu": 3698,
- "flu": 13528,
- "fluctu": 40181,
- "fluence": 38169,
- "fluent": 30025,
- "fluff": 31174,
- "fluffy": 40346,
- "fluffy": 17054,
- "fluid": 43803,
- "fluid": 16717,
- "fluids": 41490,
- "fluor": 45127,
- "fluore": 26974,
- "fluorescent": 35036,
- "fluori": 45611,
- "flur": 31591,
- "flush": 25777,
- "flushing": 43754,
- "flute": 23746,
- "flux": 25249,
- "flwx": 30907,
- "fly": 5666,
- "fly": 3228,
- "flye": 30873,
- "flyeagles": 39927,
- "flyeaglesfly": 39931,
- "flyer": 11875,
- "flyers": 14181,
- "flyfishing": 31800,
- "flying": 20782,
- "flying": 4610,
- "flyn": 40676,
- "flynn": 15721,
- "flyo": 33506,
- "flyover": 38083,
- "fm": 13715,
- "fm": 3689,
- "fman": 25152,
- "fml": 26730,
- "fmr": 32875,
- "fn": 22773,
- "fn": 21763,
- "fnc": 46506,
- "fo": 898,
- "fo": 6157,
- "foal": 40386,
- "foam": 30039,
- "foam": 14587,
- "foamed": 26711,
- "fob": 40315,
- "focal": 30934,
- "focu": 5827,
- "focus": 4353,
- "focused": 9319,
- "focuses": 20093,
- "focusing": 15551,
- "fod": 31015,
- "fod": 43299,
- "fodils": 44411,
- "foe": 22952,
- "foes": 46279,
- "fog": 9417,
- "foggy": 19770,
- "foil": 17302,
- "fol": 1106,
- "fol": 48616,
- "fold": 35201,
- "fold": 11021,
- "foldable": 48307,
- "folded": 25233,
- "folder": 25717,
- "folding": 15464,
- "folds": 24266,
- "foley": 22850,
- "foli": 7713,
- "folia": 48964,
- "foliage": 26350,
- "folio": 10772,
- "folk": 10665,
- "folk": 6032,
- "folke": 47190,
- "folkl": 27273,
- "folklore": 22133,
- "folklore": 28620,
- "folklorethursday": 23270,
- "folks": 5422,
- "follo": 41417,
- "follow": 1964,
- "follow": 1979,
- "followart": 40957,
- "followback": 33863,
- "followed": 6499,
- "follower": 17039,
- "followers": 4856,
- "following": 3473,
- "followme": 29668,
- "followparty": 44757,
- "follows": 11287,
- "followthe": 30747,
- "folly": 41408,
- "folsom": 42108,
- "fom": 34540,
- "fon": 5017,
- "fon": 38318,
- "fond": 19964,
- "fonda": 44609,
- "fondue": 48321,
- "fone": 40672,
- "font": 37610,
- "font": 16248,
- "fontaine": 37864,
- "fontana": 43643,
- "fontein": 45062,
- "fonts": 32801,
- "foo": 1183,
- "foo": 23435,
- "food": 4586,
- "food": 1559,
- "foodand": 38317,
- "foodbank": 31926,
- "foodie": 30762,
- "foodie": 9847,
- "foodies": 22416,
- "foodnetwork": 46793,
- "foods": 7057,
- "foodsecurity": 49329,
- "foodtruck": 47682,
- "fool": 23959,
- "fool": 12212,
- "fooled": 28761,
- "fooling": 47964,
- "foolish": 33824,
- "fools": 15946,
- "foot": 6702,
- "foot": 4738,
- "footage": 11130,
- "footb": 33466,
- "football": 9376,
- "football": 1882,
- "footballer": 20646,
- "footballers": 30269,
- "footed": 38040,
- "footh": 25951,
- "foothills": 37020,
- "footpath": 48858,
- "footprint": 23206,
- "footprints": 39640,
- "footsteps": 27289,
- "footwear": 22772,
- "footy": 39866,
- "footy": 18922,
- "for": 645,
- "for": 556,
- "forage": 46871,
- "foraging": 39056,
- "forall": 17824,
- "forbe": 49098,
- "forbes": 13925,
- "forbi": 24754,
- "forbidden": 25164,
- "force": 12068,
- "force": 2869,
- "forced": 8201,
- "forces": 5381,
- "forchange": 35848,
- "forcing": 21573,
- "ford": 3751,
- "ford": 1623,
- "fordfc": 28581,
- "fordham": 48792,
- "fords": 29351,
- "fordshire": 14645,
- "fore": 1484,
- "fore": 1332,
- "forec": 34155,
- "forecast": 7361,
- "forecasting": 38133,
- "forecasts": 27696,
- "foreclo": 44916,
- "forefront": 37679,
- "foreground": 35186,
- "forehead": 25394,
- "foreig": 26497,
- "foreign": 42255,
- "foreign": 6046,
- "foreigners": 38549,
- "foreman": 36174,
- "foremost": 42128,
- "foren": 16526,
- "forensic": 23158,
- "forensics": 38763,
- "forest": 18760,
- "forest": 4167,
- "forestation": 33939,
- "forestry": 26281,
- "forests": 14095,
- "forever": 14748,
- "forever": 3225,
- "forevery": 40605,
- "forex": 40200,
- "forex": 17395,
- "forfe": 44871,
- "forge": 19232,
- "forged": 28105,
- "forget": 46153,
- "forget": 2678,
- "forgets": 35613,
- "forgetting": 25452,
- "forgi": 22080,
- "forgive": 15332,
- "forgiven": 44894,
- "forgiveness": 23585,
- "forgood": 39169,
- "forgot": 6483,
- "forgotten": 7994,
- "fork": 24501,
- "fork": 13700,
- "forkids": 48571,
- "forklift": 43202,
- "forks": 28769,
- "forlife": 17624,
- "form": 1157,
- "form": 1907,
- "forma": 38829,
- "formal": 12978,
- "formally": 24867,
- "format": 16252,
- "format": 11874,
- "formation": 2510,
- "formations": 37715,
- "formative": 48882,
- "formats": 32085,
- "forme": 42085,
- "formed": 6528,
- "former": 2276,
- "formerly": 20866,
- "formid": 38599,
- "formidable": 39834,
- "forming": 15443,
- "formity": 42290,
- "forms": 5161,
- "formu": 8689,
- "formul": 23923,
- "formula": 24485,
- "formula": 10776,
- "formulae": 34586,
- "formulated": 45066,
- "forre": 38876,
- "forrest": 25205,
- "forrester": 45338,
- "forsa": 48958,
- "forsale": 13303,
- "forster": 42923,
- "forsy": 29629,
- "forsyth": 40952,
- "fort": 12300,
- "fort": 2921,
- "forte": 44350,
- "forte": 27367,
- "forth": 17068,
- "forth": 11932,
- "forthcoming": 19989,
- "forthe": 12521,
- "forti": 26984,
- "fortified": 46486,
- "fortn": 14428,
- "fortnight": 39235,
- "fortnite": 38734,
- "fortnite": 17890,
- "fortress": 19988,
- "fortun": 6950,
- "fortunate": 19898,
- "fortunately": 34358,
- "fortune": 40931,
- "fortune": 11451,
- "fortunes": 41989,
- "forty": 24399,
- "forum": 37851,
- "forum": 4538,
- "forums": 31518,
- "forwar": 34364,
- "forward": 47031,
- "forward": 2342,
- "forwards": 38974,
- "foryou": 35150,
- "forz": 46056,
- "forza": 33293,
- "forza": 28089,
- "fos": 36925,
- "fos": 22081,
- "foss": 14240,
- "foss": 37911,
- "fossil": 20419,
- "fossil": 15202,
- "fossilfriday": 26079,
- "fossils": 30652,
- "foster": 26778,
- "foster": 8139,
- "fostering": 35996,
- "fosters": 37644,
- "foto": 15908,
- "foto": 12823,
- "fotogra": 23687,
- "fotografia": 40256,
- "fotos": 26124,
- "fou": 14516,
- "fought": 10844,
- "foul": 19784,
- "foun": 3154,
- "found": 3454,
- "found": 1546,
- "foundation": 4058,
- "foundations": 25219,
- "founded": 12240,
- "founder": 5145,
- "founders": 14602,
- "founding": 15317,
- "foundry": 31426,
- "fountain": 44863,
- "fountain": 13405,
- "fountains": 37411,
- "four": 5113,
- "four": 2721,
- "foursquare": 34484,
- "fourteen": 46255,
- "fourth": 7516,
- "fourthofjuly": 47805,
- "fow": 17084,
- "fowl": 31685,
- "fowler": 20980,
- "fox": 5007,
- "fox": 3240,
- "foxandfriends": 45841,
- "foxes": 24145,
- "foxnews": 18830,
- "foxsports": 39267,
- "foxtv": 49396,
- "foxx": 32993,
- "foxy": 27945,
- "foy": 30284,
- "foyer": 38011,
- "foyle": 47902,
- "fp": 28058,
- "fp": 8941,
- "fpl": 27970,
- "fpp": 36464,
- "fps": 25300,
- "fpv": 43175,
- "fr": 936,
- "fr": 5512,
- "fra": 3368,
- "fra": 15644,
- "frac": 15607,
- "fracking": 21894,
- "fractal": 46471,
- "fraction": 26788,
- "fractu": 25847,
- "fracture": 28995,
- "fractured": 37421,
- "fractures": 46213,
- "frag": 13093,
- "fragile": 23579,
- "fragment": 39209,
- "fragments": 41424,
- "fragr": 15403,
- "fragrance": 17874,
- "fragrances": 44567,
- "fragrant": 37030,
- "fram": 27987,
- "frame": 11029,
- "frame": 6481,
- "framed": 13135,
- "frames": 15479,
- "framework": 13195,
- "frameworks": 43136,
- "framing": 24539,
- "frampton": 41733,
- "fran": 2118,
- "fran": 18878,
- "franc": 3872,
- "franc": 42340,
- "franca": 48952,
- "france": 12045,
- "france": 3552,
- "frances": 20803,
- "francesca": 32327,
- "francesco": 25816,
- "franch": 11756,
- "franchi": 46438,
- "franchise": 13664,
- "franci": 46458,
- "francis": 22187,
- "francis": 7660,
- "francisco": 6887,
- "franco": 17934,
- "franco": 17052,
- "francois": 29317,
- "frank": 5390,
- "frank": 5229,
- "franken": 20487,
- "franken": 48252,
- "frankenstein": 26410,
- "frankfur": 17442,
- "frankfurt": 18598,
- "franki": 39227,
- "frankie": 38373,
- "frankie": 16215,
- "franklin": 40935,
- "franklin": 9999,
- "frankly": 38015,
- "franks": 42855,
- "frans": 47892,
- "franz": 25449,
- "franç": 38381,
- "fraser": 39082,
- "fraser": 16754,
- "frat": 15225,
- "frat": 39292,
- "fraternity": 24433,
- "frau": 23063,
- "fraud": 40647,
- "fraud": 9961,
- "fraudul": 42655,
- "fraudulent": 47408,
- "fray": 41154,
- "frazier": 32841,
- "frc": 41507,
- "fre": 821,
- "fre": 43165,
- "freak": 20352,
- "freak": 13701,
- "freaked": 43511,
- "freakin": 23900,
- "freaking": 11992,
- "freaks": 27009,
- "freaky": 31583,
- "freck": 33328,
- "freckles": 48036,
- "fred": 9486,
- "fred": 6678,
- "freddie": 41890,
- "freddie": 17014,
- "freddy": 24394,
- "freder": 10745,
- "frederic": 41165,
- "frederick": 37103,
- "frederick": 18570,
- "fredo": 48241,
- "free": 2065,
- "free": 1139,
- "freebie": 35865,
- "freebies": 28630,
- "freec": 46569,
- "freed": 12585,
- "freed": 23392,
- "freedom": 17992,
- "freedom": 4511,
- "freedoms": 32500,
- "freef": 48678,
- "freel": 14174,
- "freelance": 21942,
- "freely": 24436,
- "freeman": 16450,
- "freep": 32499,
- "freepalestine": 39242,
- "freer": 44676,
- "frees": 27455,
- "freestyle": 15594,
- "freeway": 24927,
- "freeze": 14187,
- "freezer": 25390,
- "freezing": 12499,
- "frei": 30183,
- "freight": 17023,
- "fremantle": 48012,
- "fremont": 34578,
- "fren": 2919,
- "french": 13118,
- "french": 3461,
- "frenzy": 30084,
- "frequ": 9211,
- "frequencies": 45319,
- "frequency": 18825,
- "frequent": 19836,
- "frequently": 22434,
- "fresco": 31609,
- "fresh": 4065,
- "fresh": 2975,
- "fresher": 49284,
- "freshers": 35810,
- "freshest": 46809,
- "freshly": 16081,
- "freshman": 9381,
- "freshmen": 21292,
- "freshness": 45872,
- "freshwater": 24803,
- "fresno": 40879,
- "fresno": 20995,
- "fret": 40510,
- "freud": 40787,
- "frey": 22136,
- "frey": 9082,
- "fri": 815,
- "fri": 6882,
- "friars": 30513,
- "fric": 18981,
- "frick": 46304,
- "friction": 38563,
- "frid": 46388,
- "frida": 36001,
- "friday": 6350,
- "friday": 1461,
- "fridayfeeling": 11952,
- "fridaymotivation": 38544,
- "fridaynight": 44858,
- "fridayreads": 37736,
- "fridays": 15589,
- "fridaythe": 47642,
- "fridge": 13491,
- "fridges": 40734,
- "frie": 36999,
- "fried": 13743,
- "fried": 7310,
- "friedman": 29402,
- "friedrich": 34171,
- "friend": 3017,
- "friend": 1625,
- "friendly": 44612,
- "friendly": 4681,
- "friends": 38875,
- "friends": 1574,
- "friendship": 42674,
- "friendship": 7679,
- "friendships": 28840,
- "fries": 11369,
- "frifotos": 40493,
- "friger": 20785,
- "friggin": 48300,
- "frigh": 34831,
- "fright": 24277,
- "fright": 40207,
- "frightened": 47136,
- "frightening": 39290,
- "fringe": 10640,
- "fris": 37252,
- "frisbee": 45768,
- "frisco": 35945,
- "frit": 34614,
- "fritz": 29860,
- "friyay": 38887,
- "frm": 12951,
- "fro": 626,
- "fro": 26603,
- "frock": 45306,
- "frog": 26494,
- "frog": 11438,
- "frogs": 20781,
- "from": 8330,
- "from": 633,
- "frome": 48691,
- "fromhome": 41477,
- "fromthe": 18756,
- "fron": 1847,
- "fron": 18036,
- "front": 10996,
- "front": 2184,
- "frontal": 35794,
- "frontier": 18253,
- "frontiers": 38396,
- "frontline": 29589,
- "frontman": 36775,
- "fronts": 26846,
- "froome": 48560,
- "frosh": 47069,
- "frost": 39420,
- "frost": 11619,
- "frosted": 35988,
- "frosting": 33872,
- "frosty": 22760,
- "froze": 47788,
- "frozen": 42464,
- "frozen": 8507,
- "frs": 26216,
- "fru": 3248,
- "fruit": 16771,
- "fruit": 5190,
- "fruitful": 31494,
- "fruits": 13282,
- "fruity": 22320,
- "frustr": 16046,
- "frustrated": 25111,
- "frustrating": 31342,
- "frustration": 30535,
- "fry": 33914,
- "fry": 13686,
- "fryer": 49217,
- "frying": 38516,
- "fs": 23699,
- "fs": 3854,
- "fsa": 33373,
- "fsu": 44185,
- "fsu": 19317,
- "ft": 3391,
- "ft": 981,
- "fta": 41975,
- "ftc": 33752,
- "fted": 5612,
- "fter": 25063,
- "fthe": 22886,
- "ftheday": 9823,
- "fting": 6174,
- "fton": 26605,
- "ftp": 42649,
- "fts": 3767,
- "ftse": 46717,
- "ftw": 19298,
- "fty": 17494,
- "fu": 665,
- "fu": 9098,
- "fuch": 42617,
- "fudge": 24270,
- "fue": 43723,
- "fuego": 41500,
- "fuel": 21113,
- "fuel": 5945,
- "fueled": 28792,
- "fueling": 38793,
- "fuelled": 48357,
- "fuels": 19365,
- "fuentes": 44393,
- "fuer": 29645,
- "fug": 29227,
- "fugitive": 39257,
- "fuji": 15573,
- "fuji": 21634,
- "fujifilm": 24765,
- "fuk": 31051,
- "fuku": 20728,
- "fukushima": 33929,
- "ful": 1814,
- "ful": 857,
- "fulbright": 41834,
- "fulfill": 43675,
- "fulfill": 27467,
- "fulfilled": 29919,
- "fulfilling": 30621,
- "fulfillment": 45573,
- "fulham": 25574,
- "full": 9407,
- "full": 1476,
- "fuller": 20225,
- "fullerton": 42822,
- "fullest": 35603,
- "fully": 39142,
- "fully": 2401,
- "fulness": 10526,
- "fuls": 41606,
- "fulton": 26725,
- "fum": 38393,
- "fumble": 49373,
- "fun": 1229,
- "fun": 1499,
- "func": 8679,
- "function": 8093,
- "functional": 12885,
- "functionality": 33316,
- "functioning": 25479,
- "functions": 18001,
- "fund": 19089,
- "fund": 4877,
- "fundam": 11670,
- "fundament": 18852,
- "fundamental": 17627,
- "fundamentally": 45378,
- "fundamentals": 27887,
- "funday": 15439,
- "funded": 10588,
- "funding": 5588,
- "fundra": 6201,
- "fundraiser": 10049,
- "fundraising": 10755,
- "funds": 7066,
- "funer": 40693,
- "funeral": 10606,
- "funfact": 31596,
- "funfactfriday": 40710,
- "fungal": 38838,
- "fungi": 27837,
- "fungus": 30677,
- "funk": 37353,
- "funk": 13372,
- "funko": 49402,
- "funko": 23697,
- "funky": 16492,
- "funnel": 27862,
- "funnier": 42232,
- "funniest": 15557,
- "funny": 19124,
- "funny": 3789,
- "funrun": 34185,
- "fur": 2395,
- "fur": 9686,
- "furi": 40816,
- "furious": 17522,
- "furman": 49238,
- "furn": 21348,
- "furnace": 31913,
- "furnished": 37388,
- "furnitu": 45696,
- "furniture": 7993,
- "furry": 33414,
- "furry": 15351,
- "fursuit": 25306,
- "fursuit": 43083,
- "fursuitfriday": 27917,
- "further": 5583,
- "fury": 14404,
- "fus": 18419,
- "fuse": 23386,
- "fused": 38994,
- "fusion": 44661,
- "fusion": 9364,
- "fuss": 26331,
- "fut": 21460,
- "fut": 34049,
- "futbol": 33014,
- "futsal": 20558,
- "futu": 33454,
- "futur": 38840,
- "future": 7959,
- "future": 1904,
- "futureof": 22599,
- "futureofwork": 33202,
- "futures": 13488,
- "futuri": 19068,
- "futurism": 48435,
- "futurist": 48086,
- "futuristic": 30987,
- "fuzz": 47128,
- "fuzz": 40443,
- "fuzzy": 25876,
- "fv": 29795,
- "fw": 23934,
- "fw": 5277,
- "fwd": 27052,
- "fx": 17807,
- "fx": 9025,
- "fy": 8440,
- "fy": 2702,
- "fyi": 16014,
- "fying": 5294,
- "fz": 46400,
- "fé": 34072,
- "g": 70,
- "g": 326,
- "ga": 1275,
- "ga": 1531,
- "gaa": 10715,
- "gaal": 40867,
- "gaard": 24645,
- "gab": 3927,
- "gab": 37382,
- "gabbana": 36272,
- "gabby": 48115,
- "gabby": 24567,
- "gabe": 18916,
- "gabi": 41931,
- "gable": 33387,
- "gables": 40928,
- "gabri": 8311,
- "gabriel": 31684,
- "gabriel": 13244,
- "gabrielle": 33572,
- "gaby": 46420,
- "gac": 32520,
- "gad": 7786,
- "gad": 44651,
- "gadget": 25525,
- "gadgets": 22840,
- "gado": 29489,
- "gae": 22003,
- "gael": 35663,
- "gaelic": 31173,
- "gaf": 21354,
- "gaf": 32670,
- "gag": 14121,
- "gag": 18844,
- "gaga": 9782,
- "gage": 21081,
- "gah": 27750,
- "gai": 24214,
- "gai": 25153,
- "gaia": 41269,
- "gail": 41160,
- "gail": 27676,
- "gain": 21536,
- "gain": 6202,
- "gaine": 35747,
- "gained": 14489,
- "gaines": 49225,
- "gainesville": 40427,
- "gaining": 15260,
- "gains": 42751,
- "gains": 12107,
- "gal": 2001,
- "gal": 4488,
- "gala": 7211,
- "galac": 18864,
- "galactic": 25514,
- "galap": 41115,
- "galapagos": 44057,
- "galat": 39853,
- "galatasar": 42413,
- "galatasaray": 47787,
- "galax": 5647,
- "galaxies": 32435,
- "galaxy": 32130,
- "galaxy": 6545,
- "gale": 37658,
- "gale": 21380,
- "galerie": 44539,
- "gales": 48633,
- "gali": 17546,
- "gali": 30552,
- "galicia": 47927,
- "galileo": 39671,
- "gall": 3011,
- "gall": 33374,
- "galla": 16847,
- "gallagher": 19168,
- "galleria": 40656,
- "galleries": 22304,
- "gallery": 36648,
- "gallery": 3830,
- "galley": 48917,
- "galli": 22568,
- "gallipoli": 47249,
- "gallo": 37350,
- "gallo": 33265,
- "gallon": 24615,
- "gallons": 29335,
- "galloway": 27796,
- "galore": 22286,
- "gals": 20125,
- "galvani": 46046,
- "galve": 34328,
- "galveston": 36003,
- "galway": 38045,
- "galway": 17112,
- "gam": 1162,
- "gam": 34195,
- "gama": 35873,
- "gambia": 32988,
- "gamble": 26121,
- "gambling": 20287,
- "game": 2882,
- "game": 1063,
- "gameart": 31490,
- "gameboy": 40951,
- "gamecube": 44079,
- "gameday": 9241,
- "gamedev": 7544,
- "gameinsight": 42626,
- "gameof": 10987,
- "gameofthrones": 11822,
- "gameon": 47691,
- "gameplay": 16794,
- "gamer": 12595,
- "gamer": 11598,
- "gamergate": 25961,
- "gamers": 16166,
- "gamersunite": 26423,
- "games": 18551,
- "games": 1955,
- "gamescom": 37003,
- "gamestop": 39436,
- "gametime": 45899,
- "gami": 42025,
- "gamification": 48908,
- "gaming": 28803,
- "gaming": 4017,
- "gamma": 22180,
- "gamo": 39325,
- "gan": 1822,
- "gan": 1670,
- "gand": 8399,
- "ganda": 27261,
- "gander": 44508,
- "gandhi": 12322,
- "ganesh": 30362,
- "ganesha": 45185,
- "gang": 8066,
- "gang": 5674,
- "ganga": 36275,
- "gangnam": 46777,
- "gangs": 29844,
- "gangsta": 37365,
- "gangster": 26514,
- "gani": 48324,
- "gann": 45665,
- "gannon": 45837,
- "gano": 25304,
- "gao": 26556,
- "gaon": 19279,
- "gap": 29906,
- "gap": 7609,
- "gaps": 25296,
- "gar": 1099,
- "gar": 5824,
- "gara": 28710,
- "garage": 8474,
- "garbage": 13760,
- "garci": 44658,
- "garcia": 10529,
- "gard": 7751,
- "gard": 21003,
- "garda": 31906,
- "garde": 22649,
- "garden": 4674,
- "garden": 2756,
- "gardenchat": 46292,
- "gardener": 28554,
- "gardeners": 38205,
- "gardening": 10483,
- "gardens": 6152,
- "gardiner": 43121,
- "gardner": 18710,
- "gare": 5633,
- "gare": 48402,
- "gareth": 37140,
- "gareth": 18175,
- "garfield": 26728,
- "garh": 16762,
- "gari": 40898,
- "gari": 43080,
- "garis": 37839,
- "garland": 23418,
- "garlic": 9685,
- "garment": 31418,
- "garments": 43341,
- "garmin": 39885,
- "garner": 20340,
- "garnet": 37669,
- "garo": 30388,
- "garrett": 15881,
- "garri": 21764,
- "garrison": 30108,
- "garros": 40425,
- "garry": 24398,
- "gars": 12055,
- "gart": 18380,
- "gart": 18751,
- "garten": 14684,
- "garter": 48420,
- "garth": 45398,
- "garth": 24469,
- "gartner": 43334,
- "gartner": 29678,
- "garty": 46383,
- "garu": 31140,
- "garvey": 39511,
- "garwal": 38623,
- "gary": 10535,
- "gary": 4516,
- "garza": 49393,
- "gas": 5047,
- "gas": 2474,
- "gases": 36971,
- "gasoline": 27691,
- "gasp": 43762,
- "gaston": 40669,
- "gastri": 49197,
- "gastro": 23740,
- "gastron": 30699,
- "gastronomy": 46987,
- "gat": 5314,
- "gat": 18941,
- "gata": 44575,
- "gate": 8071,
- "gate": 3302,
- "gated": 23997,
- "gates": 9472,
- "gateshead": 40051,
- "gateway": 45221,
- "gateway": 14943,
- "gather": 36345,
- "gather": 12602,
- "gathered": 14646,
- "gathering": 9197,
- "gatherings": 48096,
- "gathers": 39250,
- "gating": 27561,
- "gation": 11095,
- "gations": 33906,
- "gato": 44492,
- "gator": 20216,
- "gator": 16390,
- "gatorade": 36354,
- "gators": 17173,
- "gatory": 24796,
- "gatsby": 32586,
- "gatwick": 37122,
- "gau": 5919,
- "gau": 43068,
- "gauge": 18728,
- "gaunt": 31862,
- "gauntlet": 37163,
- "gautam": 45853,
- "gautam": 31356,
- "gauteng": 40333,
- "gav": 8966,
- "gave": 3485,
- "gavin": 32974,
- "gavin": 16389,
- "gaw": 15405,
- "gawd": 43239,
- "gawx": 43420,
- "gay": 7460,
- "gay": 5627,
- "gaya": 39477,
- "gaye": 41401,
- "gayle": 29998,
- "gayo": 36768,
- "gays": 28001,
- "gaz": 4837,
- "gaz": 36475,
- "gaza": 38391,
- "gaza": 10112,
- "gazaunderattack": 42458,
- "gaze": 23212,
- "gazette": 20443,
- "gazing": 28373,
- "gb": 8727,
- "gb": 4619,
- "gba": 18528,
- "gbbo": 34474,
- "gbc": 42993,
- "gbp": 27391,
- "gbr": 31984,
- "gby": 40509,
- "gc": 8577,
- "gc": 6043,
- "gcc": 26804,
- "gcse": 28763,
- "gcu": 34137,
- "gd": 13264,
- "gd": 14604,
- "gdc": 32793,
- "gden": 44928,
- "gdp": 17100,
- "gdpr": 22963,
- "ge": 619,
- "ge": 710,
- "gea": 26790,
- "gear": 15532,
- "gear": 4802,
- "gearbox": 42454,
- "geared": 33903,
- "gearing": 19027,
- "gears": 21147,
- "geaux": 36313,
- "gecko": 38616,
- "ged": 17252,
- "ged": 3480,
- "geddon": 31720,
- "gedly": 13991,
- "gee": 9806,
- "gee": 9071,
- "geek": 17920,
- "geek": 7135,
- "geeks": 20110,
- "geeky": 47332,
- "geel": 25906,
- "geelong": 34555,
- "gees": 38088,
- "geese": 26413,
- "geez": 42394,
- "geh": 30320,
- "geist": 38290,
- "gel": 7343,
- "gel": 5697,
- "gelato": 29577,
- "gels": 42552,
- "gely": 14637,
- "gem": 14261,
- "gem": 7613,
- "gement": 19495,
- "gemini": 23086,
- "gemma": 23952,
- "gems": 14355,
- "gemstone": 27747,
- "gemstones": 43972,
- "gen": 1024,
- "gen": 3278,
- "gence": 16088,
- "gency": 5245,
- "gend": 33247,
- "gender": 22976,
- "gender": 5906,
- "gendere": 35824,
- "genderequality": 43338,
- "gene": 5822,
- "gene": 7962,
- "genealo": 24142,
- "genealogy": 29381,
- "gener": 1832,
- "general": 20576,
- "general": 3658,
- "generally": 19256,
- "generals": 30296,
- "generate": 16896,
- "generated": 19450,
- "generates": 33938,
- "generating": 23882,
- "generation": 41211,
- "generation": 4883,
- "generational": 34506,
- "generations": 12247,
- "generative": 29472,
- "generator": 19399,
- "generators": 41917,
- "generic": 26978,
- "generosity": 23015,
- "generous": 12570,
- "generously": 35113,
- "genes": 19683,
- "genesis": 13518,
- "genetic": 47746,
- "genetic": 13578,
- "genetically": 36745,
- "genetics": 18276,
- "geneva": 14799,
- "genevie": 41633,
- "genevieve": 46584,
- "geni": 22334,
- "genic": 15750,
- "genie": 24221,
- "genital": 32960,
- "genius": 8235,
- "geniuses": 41406,
- "geno": 41544,
- "geno": 46776,
- "genoa": 43993,
- "genoci": 14687,
- "genocide": 15903,
- "genome": 23991,
- "genomic": 44371,
- "genomics": 26227,
- "genre": 14249,
- "genres": 30340,
- "gens": 17449,
- "gent": 3685,
- "gent": 7139,
- "gente": 34325,
- "gentle": 7262,
- "gentle": 13577,
- "gentleman": 13293,
- "gentlemen": 11692,
- "gently": 17187,
- "gento": 28320,
- "gentri": 41148,
- "gentry": 47225,
- "gents": 18862,
- "genu": 9182,
- "genuine": 12184,
- "genuinely": 20006,
- "genus": 38161,
- "geny": 35323,
- "geo": 5038,
- "geo": 11604,
- "geocaching": 47908,
- "geof": 20629,
- "geoff": 33697,
- "geoff": 20386,
- "geoffrey": 29520,
- "geograph": 45920,
- "geographic": 22635,
- "geographical": 39380,
- "geography": 17101,
- "geological": 38380,
- "geology": 21578,
- "geom": 46135,
- "geome": 12958,
- "geometric": 22419,
- "geometry": 21731,
- "geon": 20844,
- "geon": 7295,
- "geons": 15914,
- "geopol": 39758,
- "geor": 2549,
- "georg": 43126,
- "george": 8377,
- "george": 3296,
- "georges": 25042,
- "georgetown": 22970,
- "georgie": 42115,
- "georgina": 43892,
- "geospatial": 46238,
- "geothermal": 38413,
- "geous": 3068,
- "ger": 1291,
- "ger": 1502,
- "gera": 48867,
- "gerald": 29901,
- "gerald": 13269,
- "gerard": 35979,
- "gerard": 20826,
- "gerber": 45058,
- "gered": 40179,
- "geri": 41664,
- "geri": 46214,
- "gering": 24077,
- "germain": 38786,
- "german": 14972,
- "german": 4710,
- "germans": 28400,
- "germany": 4464,
- "germin": 44721,
- "germs": 47731,
- "geronimo": 45171,
- "gerrard": 26538,
- "gerry": 29825,
- "gerry": 23026,
- "gers": 3314,
- "gertrude": 46950,
- "gervais": 36527,
- "gery": 32845,
- "ges": 3316,
- "gest": 11843,
- "gest": 2033,
- "gesture": 21780,
- "gestures": 43524,
- "get": 5670,
- "get": 779,
- "geta": 13155,
- "getaway": 16131,
- "gether": 27224,
- "getic": 20661,
- "getin": 25822,
- "getit": 44891,
- "getit": 48315,
- "getoutside": 35644,
- "gets": 39448,
- "gets": 2127,
- "gett": 6647,
- "gett": 27965,
- "gettable": 15620,
- "gette": 29800,
- "gettin": 13428,
- "getting": 30885,
- "getting": 1500,
- "getty": 31185,
- "getty": 13965,
- "gettys": 35189,
- "gettysburg": 37062,
- "getyour": 42159,
- "gey": 29289,
- "gf": 28953,
- "gf": 10846,
- "gfriend": 35245,
- "gfs": 37553,
- "gg": 1129,
- "gg": 3286,
- "gga": 26003,
- "ggan": 25626,
- "gge": 21521,
- "gge": 31659,
- "gged": 6095,
- "gger": 12367,
- "gger": 3493,
- "ggers": 7480,
- "ggg": 20143,
- "gggg": 33513,
- "ggi": 21662,
- "ggin": 17160,
- "gging": 4966,
- "ggins": 12444,
- "ggle": 34981,
- "ggle": 11430,
- "ggled": 46328,
- "ggles": 14703,
- "ggling": 16523,
- "ggly": 39407,
- "ggs": 4797,
- "ggy": 24935,
- "ggy": 6476,
- "gh": 583,
- "gh": 790,
- "gha": 10010,
- "gha": 25183,
- "gham": 21456,
- "ghan": 18945,
- "ghan": 6624,
- "ghana": 30330,
- "ghana": 9731,
- "ghanaian": 34223,
- "ghani": 36699,
- "ghar": 37334,
- "ghar": 36973,
- "ghat": 43989,
- "ghaz": 37493,
- "ghc": 42139,
- "ghe": 10754,
- "ghe": 28561,
- "ghead": 40783,
- "ghee": 34794,
- "gher": 21542,
- "gher": 14796,
- "ghet": 18447,
- "ghetti": 17485,
- "ghetto": 22403,
- "ghi": 22436,
- "ghi": 22279,
- "ghibli": 40555,
- "ghj": 38439,
- "ghlin": 24131,
- "gho": 4307,
- "ghorn": 38094,
- "ghosh": 43279,
- "ghoshal": 49134,
- "ghost": 11417,
- "ghost": 7108,
- "ghostbusters": 25462,
- "ghostly": 44901,
- "ghosts": 16737,
- "ghou": 35843,
- "ghoul": 45302,
- "ghouse": 38238,
- "ghs": 14157,
- "ght": 1413,
- "ght": 630,
- "ghted": 4963,
- "ghter": 2427,
- "ghters": 12994,
- "ghtful": 8334,
- "ghting": 3019,
- "ghtly": 6993,
- "ghtning": 39740,
- "ghton": 16353,
- "ghts": 1259,
- "ghty": 20968,
- "ghty": 5866,
- "ghu": 25808,
- "ghue": 45675,
- "ghyun": 25010,
- "ghz": 24325,
- "gi": 707,
- "gi": 4478,
- "gia": 8864,
- "giac": 35444,
- "giam": 39623,
- "gian": 17274,
- "gian": 12866,
- "gianni": 46752,
- "giant": 23668,
- "giant": 4687,
- "giants": 7076,
- "giar": 34241,
- "gib": 9816,
- "gibb": 18964,
- "gibbons": 31974,
- "gibbs": 26488,
- "gibility": 33297,
- "gible": 13159,
- "gibr": 20206,
- "gibraltar": 23988,
- "gibson": 37420,
- "gibson": 12178,
- "gic": 27900,
- "gic": 2570,
- "gical": 32973,
- "gically": 26320,
- "gid": 36774,
- "gid": 21413,
- "giddy": 40894,
- "gideon": 43867,
- "gidi": 30603,
- "gie": 11459,
- "gie": 3991,
- "gier": 28974,
- "gies": 5505,
- "gif": 11363,
- "gif": 11677,
- "gifford": 47850,
- "gifs": 37643,
- "gift": 20569,
- "gift": 2733,
- "gifted": 15110,
- "giftide": 20152,
- "giftideas": 23487,
- "gifting": 39546,
- "gifts": 5836,
- "gig": 26981,
- "gig": 7471,
- "gigab": 34530,
- "gigan": 24104,
- "gigantic": 31507,
- "giggle": 36426,
- "giggles": 42731,
- "giggs": 44692,
- "gigi": 44106,
- "gigi": 26171,
- "gigs": 20316,
- "gil": 3997,
- "gil": 10088,
- "gila": 46952,
- "gilbert": 14154,
- "gilded": 44341,
- "giles": 24802,
- "gill": 14280,
- "gill": 12003,
- "gille": 29610,
- "gilles": 39590,
- "gillespie": 36242,
- "gillette": 38603,
- "gilli": 13695,
- "gillian": 28753,
- "gills": 48851,
- "gilmore": 27603,
- "gilt": 44378,
- "gim": 31284,
- "gimm": 40692,
- "gimme": 21525,
- "gin": 3374,
- "gin": 4941,
- "gina": 15604,
- "gine": 27482,
- "ging": 10829,
- "ging": 3905,
- "ginger": 16287,
- "ginger": 9718,
- "gingerbread": 23692,
- "gini": 35768,
- "gino": 36521,
- "gins": 18328,
- "gio": 16329,
- "gio": 8050,
- "gion": 41226,
- "gior": 14920,
- "giorgio": 33271,
- "giorno": 33310,
- "gios": 41927,
- "gious": 14419,
- "giov": 21404,
- "giovanni": 26574,
- "gipp": 41351,
- "gir": 1077,
- "gir": 25481,
- "gira": 16949,
- "giraffe": 22826,
- "giri": 31709,
- "girl": 3914,
- "girl": 1611,
- "girlfriend": 8217,
- "girlfriends": 30736,
- "girlpower": 37433,
- "girls": 15480,
- "girls": 1917,
- "girly": 29605,
- "giro": 39664,
- "giro": 26454,
- "girona": 47842,
- "giroud": 41177,
- "gis": 16266,
- "gis": 12773,
- "gist": 21241,
- "git": 16060,
- "git": 20918,
- "gita": 40838,
- "github": 31196,
- "giu": 17931,
- "giuli": 29762,
- "giuliani": 47739,
- "giuse": 29385,
- "giuseppe": 33563,
- "give": 4120,
- "give": 1781,
- "giveaway": 5310,
- "giveaways": 18974,
- "giveback": 41385,
- "given": 33323,
- "given": 4302,
- "givenchy": 38245,
- "giver": 43339,
- "gives": 3926,
- "giveup": 35485,
- "giving": 14673,
- "giving": 2339,
- "givingback": 49300,
- "givingtuesday": 23556,
- "giz": 29237,
- "gk": 38953,
- "gk": 18719,
- "gl": 1849,
- "gl": 14751,
- "gla": 1523,
- "gla": 36904,
- "glaci": 14924,
- "glacial": 40782,
- "glacier": 19282,
- "glaciers": 42528,
- "glad": 20841,
- "glad": 4761,
- "glades": 37432,
- "gladi": 21742,
- "gladiator": 38477,
- "gladiators": 41087,
- "gladly": 41598,
- "gladys": 43168,
- "glam": 8738,
- "glam": 16905,
- "glamorous": 22896,
- "glamour": 42876,
- "glamour": 17499,
- "glamping": 46167,
- "glan": 40482,
- "glan": 45844,
- "glance": 26557,
- "gland": 41441,
- "glar": 48535,
- "glar": 41702,
- "glare": 46035,
- "glas": 29935,
- "glas": 43654,
- "glasgo": 6757,
- "glasgow": 29990,
- "glasgow": 7363,
- "glass": 16305,
- "glass": 3313,
- "glasses": 6116,
- "glaston": 26848,
- "glastonbury": 28233,
- "glau": 39171,
- "glaze": 28112,
- "glazed": 24122,
- "gle": 7166,
- "gle": 2865,
- "glee": 32379,
- "glee": 21614,
- "glen": 6158,
- "glen": 11049,
- "glend": 38332,
- "glendale": 33043,
- "glenn": 32004,
- "glenn": 12861,
- "gler": 34649,
- "gley": 21998,
- "gli": 5896,
- "gli": 28791,
- "glia": 22217,
- "glide": 37321,
- "glider": 41636,
- "glimp": 12888,
- "glimpse": 13817,
- "glio": 29785,
- "glit": 21079,
- "glitch": 29563,
- "glitter": 16528,
- "glitz": 44542,
- "glo": 1721,
- "glo": 30474,
- "glob": 13363,
- "global": 6707,
- "global": 2779,
- "globalgoals": 33211,
- "globalhealth": 46751,
- "globalization": 47680,
- "globally": 17775,
- "globalwarming": 46017,
- "globe": 19436,
- "globe": 9368,
- "globes": 38085,
- "glock": 38818,
- "glomer": 43689,
- "gloom": 48594,
- "gloomy": 32199,
- "glori": 7270,
- "gloria": 19244,
- "glorious": 9171,
- "glory": 36107,
- "glory": 7285,
- "glos": 40633,
- "gloss": 38258,
- "gloss": 22014,
- "glossy": 29802,
- "glou": 15989,
- "gloucester": 28133,
- "gloucester": 23835,
- "gloucestershire": 33789,
- "glove": 16078,
- "glover": 21594,
- "gloves": 12363,
- "glow": 30472,
- "glow": 10111,
- "glowing": 18437,
- "glows": 48107,
- "glu": 5952,
- "glu": 32281,
- "glucose": 34642,
- "glue": 22103,
- "glued": 38135,
- "gluten": 15482,
- "gluten": 15524,
- "glutenfree": 16138,
- "gly": 13027,
- "glycer": 48914,
- "gm": 18743,
- "gm": 5918,
- "gma": 18155,
- "gmail": 11119,
- "gman": 41043,
- "gman": 36936,
- "gmb": 35934,
- "gmb": 31799,
- "gmbh": 46877,
- "gmc": 27257,
- "gmo": 23486,
- "gms": 36987,
- "gmt": 13803,
- "gn": 2455,
- "gn": 9831,
- "gna": 23009,
- "gnation": 45912,
- "gne": 25407,
- "gni": 5104,
- "gnment": 25110,
- "gno": 23376,
- "gno": 43686,
- "gnocchi": 48299,
- "gnome": 33643,
- "gnon": 20561,
- "go": 650,
- "go": 861,
- "goa": 14399,
- "goal": 9003,
- "goal": 3321,
- "goalie": 20723,
- "goalkeeper": 16601,
- "goals": 3295,
- "goalscorer": 43547,
- "goaltender": 44151,
- "goat": 34082,
- "goat": 9530,
- "goats": 18393,
- "gob": 29559,
- "gobeavs": 48285,
- "goblin": 26223,
- "goblue": 25232,
- "gobucks": 29175,
- "gocougs": 34202,
- "god": 4190,
- "god": 1731,
- "godawgs": 40436,
- "godbless": 46616,
- "godbless": 44007,
- "godd": 16589,
- "goddamn": 28495,
- "goddard": 37827,
- "goddess": 10808,
- "godfather": 26222,
- "godfrey": 40148,
- "godis": 38521,
- "godly": 42438,
- "gods": 33620,
- "gods": 10328,
- "goducks": 35889,
- "godzilla": 23369,
- "goe": 22084,
- "goers": 27784,
- "goes": 43581,
- "goes": 2635,
- "gof": 17537,
- "goff": 34399,
- "goftheday": 39360,
- "gofund": 34445,
- "gofundme": 34686,
- "gog": 42949,
- "goggles": 31027,
- "gogh": 19697,
- "gogo": 22688,
- "gogreen": 36279,
- "gohawks": 34884,
- "goi": 24917,
- "goin": 13939,
- "going": 25787,
- "going": 1245,
- "goku": 29550,
- "gol": 1537,
- "gol": 18257,
- "gola": 41090,
- "gold": 4999,
- "gold": 2209,
- "goldberg": 25161,
- "goldcoast": 34634,
- "golden": 10763,
- "golden": 3878,
- "goldeng": 20650,
- "goldenglobes": 26842,
- "goldfish": 40293,
- "goldie": 42805,
- "goldman": 27164,
- "golds": 30526,
- "golds": 40283,
- "goldsmith": 40214,
- "gole": 41297,
- "golf": 9096,
- "golf": 3096,
- "golfclub": 45742,
- "golfer": 24579,
- "golfers": 28441,
- "golfing": 31379,
- "goli": 29265,
- "goliath": 41602,
- "gom": 7051,
- "goma": 46198,
- "gomes": 39128,
- "gomez": 16433,
- "gon": 1854,
- "gon": 3379,
- "gona": 34835,
- "gone": 35135,
- "gone": 3601,
- "gong": 28486,
- "gonna": 2562,
- "gonz": 10587,
- "gonzaga": 36241,
- "gonzale": 17512,
- "gonzales": 31265,
- "gonzalez": 18198,
- "goo": 1381,
- "goo": 17882,
- "good": 2185,
- "good": 886,
- "goodbye": 6968,
- "goodday": 46284,
- "goode": 42076,
- "goodfood": 46844,
- "goodfriday": 40360,
- "goodie": 29213,
- "goodies": 13308,
- "goodluck": 19718,
- "goodman": 24146,
- "goodmorning": 14421,
- "goodness": 10531,
- "goodnight": 8540,
- "goodreads": 31629,
- "goods": 9340,
- "goodtimes": 22570,
- "goodvibes": 43146,
- "goodwill": 24902,
- "goodwin": 28080,
- "goodwood": 30008,
- "goody": 35937,
- "goodyear": 42858,
- "goofy": 26879,
- "goog": 18581,
- "google": 12195,
- "google": 3460,
- "googled": 40345,
- "googleplay": 37309,
- "goon": 15267,
- "goons": 30440,
- "goooo": 35876,
- "goooo": 48957,
- "goose": 21445,
- "goose": 13822,
- "goosebumps": 32254,
- "gop": 18942,
- "gop": 6250,
- "gopack": 46995,
- "gopackgo": 47719,
- "gopal": 47268,
- "gopdebate": 39806,
- "gopher": 47750,
- "gopher": 48905,
- "gophers": 31957,
- "gopro": 17511,
- "gor": 1747,
- "gor": 29827,
- "gordo": 47707,
- "gordon": 20485,
- "gordon": 8244,
- "gore": 30311,
- "gore": 17872,
- "gorg": 46815,
- "gorge": 35548,
- "gorge": 20038,
- "gorgeous": 3241,
- "gori": 12461,
- "goria": 43359,
- "gorilla": 37910,
- "gorilla": 21994,
- "gorman": 35741,
- "goro": 44977,
- "gory": 7160,
- "gos": 20517,
- "gos": 5693,
- "gosh": 15395,
- "gosling": 35320,
- "gosp": 9617,
- "gospel": 11313,
- "goss": 39734,
- "goss": 36924,
- "gossi": 15684,
- "gossip": 18963,
- "got": 10125,
- "got": 1005,
- "gota": 36693,
- "gotcha": 43275,
- "gote": 49345,
- "goth": 48465,
- "goth": 20437,
- "gotham": 46123,
- "gotham": 18299,
- "gothic": 15426,
- "goti": 9497,
- "goto": 39715,
- "gots": 35215,
- "gott": 5089,
- "gott": 36466,
- "gotta": 4633,
- "gotten": 5889,
- "gotti": 41881,
- "gotv": 36089,
- "gou": 10520,
- "gou": 36555,
- "gouache": 43314,
- "goul": 33187,
- "gould": 31087,
- "gour": 13580,
- "gourmet": 19111,
- "gov": 4022,
- "gov": 4564,
- "gove": 36997,
- "govegan": 38886,
- "gover": 10471,
- "gover": 16759,
- "govern": 2351,
- "govern": 32404,
- "governance": 13386,
- "governing": 30946,
- "government": 3149,
- "governmental": 42609,
- "governments": 19582,
- "governor": 17459,
- "governor": 6630,
- "governors": 26881,
- "govin": 42451,
- "govt": 5345,
- "govuk": 28830,
- "gow": 21885,
- "gow": 33788,
- "gowan": 31307,
- "gower": 43448,
- "gown": 13719,
- "gowns": 38029,
- "goyal": 35105,
- "gp": 19329,
- "gp": 5051,
- "gpa": 24098,
- "gps": 13639,
- "gpu": 38561,
- "gq": 40286,
- "gq": 31324,
- "gr": 709,
- "gr": 6062,
- "gra": 782,
- "gra": 15276,
- "grab": 4646,
- "grabbed": 22856,
- "grabbing": 26440,
- "grabs": 17076,
- "grac": 11323,
- "grace": 13225,
- "grace": 5142,
- "graced": 31894,
- "graceful": 25242,
- "graces": 38629,
- "graci": 11174,
- "gracias": 16463,
- "gracie": 23235,
- "gracing": 37263,
- "gracious": 29044,
- "grad": 19869,
- "grad": 7291,
- "gradable": 41529,
- "grade": 45435,
- "grade": 3394,
- "graded": 13823,
- "grader": 23930,
- "graders": 10930,
- "grades": 10838,
- "gradient": 36885,
- "grading": 19016,
- "grads": 17811,
- "gradu": 3230,
- "gradual": 45210,
- "gradually": 32192,
- "graduate": 6675,
- "graduated": 15128,
- "graduates": 12236,
- "graduating": 14819,
- "graduation": 8060,
- "grady": 33980,
- "graeme": 30192,
- "graf": 46478,
- "graf": 39765,
- "graff": 10656,
- "graffiti": 11676,
- "graft": 32698,
- "grafton": 47347,
- "graham": 19805,
- "graham": 7711,
- "grail": 37184,
- "grain": 44003,
- "grain": 12109,
- "grains": 25791,
- "gral": 25631,
- "gram": 2949,
- "gram": 2338,
- "grammar": 16077,
- "grammy": 15388,
- "grammys": 18121,
- "grams": 6294,
- "gran": 3892,
- "gran": 14493,
- "granada": 31172,
- "grand": 3058,
- "grand": 2991,
- "grandad": 29148,
- "grandchildren": 36856,
- "granddaughter": 29460,
- "grande": 37514,
- "grande": 10757,
- "grandes": 36382,
- "grandfather": 15346,
- "grandma": 10525,
- "grandmother": 17469,
- "grandpa": 14582,
- "grandparents": 21311,
- "grandprix": 39358,
- "grandson": 20766,
- "grandstand": 43172,
- "grange": 45027,
- "grange": 23850,
- "granger": 42968,
- "granite": 18813,
- "grann": 45585,
- "granny": 22710,
- "granola": 34271,
- "grant": 18682,
- "grant": 5442,
- "granted": 14156,
- "granth": 41283,
- "grants": 15123,
- "grape": 19131,
- "grape": 15959,
- "grapefruit": 28347,
- "grapes": 18580,
- "grapevine": 47619,
- "graph": 1349,
- "graph": 4407,
- "graphene": 38387,
- "grapher": 14987,
- "graphers": 32088,
- "graphic": 15653,
- "graphic": 4245,
- "graphical": 20878,
- "graphicdesign": 21907,
- "graphics": 9492,
- "graphies": 40164,
- "graphite": 29447,
- "graphs": 24670,
- "graphy": 4897,
- "grapp": 30843,
- "gras": 31517,
- "gras": 17584,
- "grasp": 34975,
- "grass": 11584,
- "grass": 5922,
- "grasses": 46807,
- "grasshopper": 48894,
- "grassi": 42294,
- "grasso": 34808,
- "grassroots": 21991,
- "grassy": 44140,
- "grat": 9221,
- "grate": 32463,
- "grateful": 45659,
- "grateful": 5730,
- "grati": 36402,
- "gratis": 33638,
- "gratitude": 12614,
- "grav": 20663,
- "grave": 16606,
- "grave": 9981,
- "gravel": 27054,
- "graves": 17665,
- "graveyard": 31176,
- "gravit": 26150,
- "gravitational": 45268,
- "gravity": 47426,
- "gravity": 15160,
- "gravy": 21225,
- "gray": 12703,
- "gray": 7048,
- "grays": 46848,
- "grayson": 45831,
- "grayson": 25471,
- "grazi": 42427,
- "grazie": 38698,
- "grazing": 29889,
- "grc": 44069,
- "gre": 689,
- "gre": 17878,
- "grease": 24132,
- "greasy": 44376,
- "great": 3265,
- "great": 830,
- "greate": 31930,
- "greater": 32725,
- "greater": 7033,
- "greatest": 39080,
- "greatest": 4153,
- "greatly": 13978,
- "greatness": 14189,
- "greats": 21855,
- "greaves": 42350,
- "greco": 39103,
- "gree": 9987,
- "gree": 30774,
- "greece": 6965,
- "greed": 26147,
- "greedy": 33301,
- "greek": 23844,
- "greek": 6842,
- "greeks": 35866,
- "green": 2762,
- "green": 1901,
- "greenberg": 46662,
- "greene": 16383,
- "greener": 31169,
- "greenery": 42493,
- "greenfield": 39924,
- "greeng": 42077,
- "greenhouse": 20819,
- "greening": 48673,
- "greenland": 27345,
- "greenpeace": 44755,
- "greens": 10235,
- "greensboro": 33436,
- "greenville": 25156,
- "greenway": 35205,
- "greenwich": 18658,
- "greenwood": 25782,
- "greer": 34345,
- "greet": 11042,
- "greet": 11997,
- "greeted": 24546,
- "greeting": 17754,
- "greetings": 11569,
- "greets": 25464,
- "greg": 6894,
- "greg": 7943,
- "gregation": 20131,
- "gregg": 39422,
- "gregg": 22929,
- "gregor": 33856,
- "gregor": 16177,
- "gregory": 16253,
- "gren": 13941,
- "gren": 20119,
- "grenade": 33679,
- "grenfell": 42107,
- "gres": 39670,
- "gress": 2752,
- "gret": 30041,
- "greta": 33443,
- "gretchen": 45516,
- "grette": 38774,
- "grew": 10451,
- "grey": 9190,
- "grey": 5046,
- "greyhound": 27363,
- "greyhounds": 45718,
- "greys": 44311,
- "greysanatomy": 36833,
- "gri": 2169,
- "gri": 18484,
- "grid": 29067,
- "grid": 9882,
- "gridi": 41063,
- "gridiron": 47786,
- "grids": 46500,
- "grief": 21058,
- "grier": 22016,
- "griev": 36400,
- "grieving": 42383,
- "griez": 47962,
- "griezmann": 48396,
- "griff": 17855,
- "griff": 35551,
- "griffi": 28676,
- "griffin": 46612,
- "griffin": 13161,
- "griffith": 24375,
- "griffiths": 34182,
- "gril": 49091,
- "grill": 44083,
- "grill": 9519,
- "grille": 34748,
- "grilled": 10691,
- "grilling": 28324,
- "grills": 39464,
- "grim": 20383,
- "grim": 23635,
- "grime": 37101,
- "grimes": 25057,
- "grimm": 27865,
- "grims": 34861,
- "grimsby": 41513,
- "grin": 11033,
- "grin": 28697,
- "grinch": 40527,
- "grind": 25730,
- "grind": 11810,
- "grinder": 31733,
- "grinding": 21541,
- "gring": 40135,
- "grip": 15521,
- "gripping": 34567,
- "grips": 27819,
- "gris": 29150,
- "grit": 22037,
- "grit": 22087,
- "grits": 44307,
- "gritty": 33704,
- "grizz": 14877,
- "grizz": 44088,
- "grizzlies": 25594,
- "grizzly": 29676,
- "grl": 48005,
- "gro": 1464,
- "gro": 12691,
- "grocer": 11633,
- "groceries": 32409,
- "grocery": 13826,
- "grom": 45284,
- "gron": 22345,
- "groningen": 45639,
- "groo": 9015,
- "groom": 39883,
- "groom": 22813,
- "grooming": 25575,
- "groot": 37708,
- "groove": 39484,
- "groove": 17680,
- "grooves": 43954,
- "groovy": 30143,
- "gros": 26834,
- "gros": 32639,
- "gross": 31080,
- "gross": 11541,
- "grosven": 46911,
- "grote": 47207,
- "grotto": 45260,
- "grou": 1582,
- "groun": 45110,
- "ground": 9558,
- "ground": 2461,
- "groundbreaking": 21006,
- "grounded": 27799,
- "grounds": 8454,
- "groundwater": 39457,
- "group": 19045,
- "group": 1771,
- "groupe": 47654,
- "groups": 6776,
- "grouse": 36327,
- "grove": 31756,
- "grove": 7463,
- "grover": 31345,
- "groves": 27306,
- "grow": 3179,
- "grow": 4559,
- "grower": 44925,
- "growers": 25689,
- "growing": 28429,
- "growing": 4425,
- "growingup": 43433,
- "growler": 47096,
- "grown": 41762,
- "grown": 7120,
- "grows": 13352,
- "growth": 17925,
- "growth": 4026,
- "growthhacking": 25963,
- "grp": 27321,
- "grt": 28557,
- "gru": 5957,
- "grub": 34019,
- "grue": 42047,
- "gruesome": 47111,
- "grum": 45454,
- "grump": 49015,
- "grumpy": 23610,
- "grun": 16203,
- "grunge": 33745,
- "gry": 16140,
- "gry": 5364,
- "gs": 25818,
- "gs": 1345,
- "gsa": 40433,
- "gsc": 47751,
- "gshore": 43392,
- "gsm": 32181,
- "gsp": 49173,
- "gst": 22239,
- "gt": 16151,
- "gt": 4725,
- "gta": 14826,
- "gta": 15338,
- "gtaonline": 27292,
- "gtav": 27283,
- "gti": 39954,
- "gto": 39071,
- "gtr": 33407,
- "gts": 37338,
- "gtx": 35230,
- "gu": 700,
- "gu": 12916,
- "gua": 23751,
- "guacam": 37477,
- "guacamole": 40115,
- "guad": 22966,
- "guadal": 46097,
- "guadalu": 36994,
- "guadalupe": 38360,
- "guam": 37325,
- "guan": 44191,
- "guan": 42406,
- "guang": 27019,
- "guangzhou": 37857,
- "guar": 4119,
- "guaran": 9242,
- "guarantee": 17421,
- "guaranteed": 14731,
- "guarantees": 40154,
- "guard": 30776,
- "guard": 4901,
- "guarded": 40602,
- "guardi": 12008,
- "guardia": 43628,
- "guardian": 23713,
- "guardian": 9498,
- "guardians": 21479,
- "guarding": 24966,
- "guardiola": 32100,
- "guards": 12810,
- "guatem": 19423,
- "guatemala": 21670,
- "guay": 48591,
- "guay": 24247,
- "gubernat": 41400,
- "gubernatorial": 41618,
- "gucci": 16779,
- "gud": 48061,
- "gud": 22378,
- "gue": 2030,
- "gue": 2917,
- "gued": 38893,
- "guel": 23146,
- "guelph": 27660,
- "guer": 10391,
- "guern": 29277,
- "guernsey": 33982,
- "guerra": 38215,
- "guerrero": 31967,
- "guerrilla": 36715,
- "gues": 39971,
- "gues": 12601,
- "guess": 35506,
- "guess": 3135,
- "guessed": 28005,
- "guesses": 30623,
- "guessing": 21891,
- "guest": 27349,
- "guest": 3781,
- "guests": 6212,
- "guet": 36797,
- "guetta": 45904,
- "guez": 12313,
- "gug": 31358,
- "guggen": 35086,
- "guggenheim": 37135,
- "gui": 2587,
- "gui": 25746,
- "guid": 11437,
- "guidance": 12508,
- "guide": 21845,
- "guide": 3555,
- "guided": 13194,
- "guidelines": 16591,
- "guides": 14375,
- "guiding": 22759,
- "guido": 41818,
- "guil": 5008,
- "guild": 19755,
- "guild": 16597,
- "guildford": 34450,
- "guildhall": 47224,
- "guillau": 41123,
- "guillaume": 45394,
- "guiller": 33660,
- "guillermo": 39524,
- "guilt": 26354,
- "guilty": 9761,
- "guin": 13284,
- "guin": 47863,
- "guine": 13759,
- "guinea": 18537,
- "guinness": 16648,
- "guire": 18209,
- "guise": 42024,
- "guit": 3759,
- "guitar": 21746,
- "guitar": 5084,
- "guitarist": 13035,
- "guitars": 15023,
- "guj": 34935,
- "gujar": 12698,
- "gujarat": 14714,
- "guk": 20280,
- "gul": 5530,
- "gul": 21350,
- "gula": 27426,
- "gular": 34969,
- "gulf": 22101,
- "gulf": 11279,
- "gull": 48764,
- "gull": 28778,
- "gulls": 37501,
- "gully": 46112,
- "gum": 22041,
- "gum": 11235,
- "gumb": 40147,
- "gumbo": 47126,
- "gummy": 34276,
- "gums": 46609,
- "gun": 2748,
- "gun": 3496,
- "guna": 43333,
- "gundam": 26087,
- "gundy": 21162,
- "gunman": 32743,
- "gunmen": 44738,
- "gunn": 27473,
- "gunna": 24002,
- "gunnar": 45301,
- "gunner": 35285,
- "gunners": 37788,
- "guns": 7591,
- "gunsense": 44781,
- "gunshot": 49250,
- "gunsn": 49028,
- "gup": 38632,
- "gup": 47335,
- "gupta": 15905,
- "gur": 3218,
- "gur": 30224,
- "gura": 46836,
- "gurgaon": 33240,
- "guri": 43888,
- "gurl": 25445,
- "gurmee": 35482,
- "gurmeetramrahim": 36549,
- "guru": 18629,
- "guru": 10800,
- "gurudev": 48647,
- "gus": 8018,
- "gust": 24629,
- "gusta": 23024,
- "gusta": 44196,
- "gustav": 32062,
- "gustav": 37921,
- "gustave": 43170,
- "gustavo": 45943,
- "gusto": 37937,
- "gusts": 20896,
- "gusty": 27589,
- "gut": 24780,
- "gut": 13486,
- "guter": 44963,
- "guterres": 48738,
- "guth": 31696,
- "guthrie": 33164,
- "gutier": 32773,
- "gutierrez": 33739,
- "guts": 25983,
- "gutted": 26524,
- "gutter": 40537,
- "guwa": 43063,
- "guwahati": 45045,
- "guy": 10008,
- "guy": 2149,
- "guyana": 45215,
- "guyen": 28031,
- "guys": 43588,
- "guys": 1791,
- "guyz": 48170,
- "guzman": 37960,
- "gv": 15462,
- "gv": 17336,
- "gw": 7172,
- "gw": 15717,
- "gwen": 32165,
- "gwen": 24182,
- "gwin": 43005,
- "gwy": 32226,
- "gwyne": 36923,
- "gx": 40227,
- "gy": 2168,
- "gy": 1164,
- "gya": 43214,
- "gyan": 43814,
- "gye": 21728,
- "gyllen": 49348,
- "gym": 9902,
- "gym": 5222,
- "gymna": 13517,
- "gymnasium": 42847,
- "gymnast": 42658,
- "gymnastics": 20116,
- "gyn": 39603,
- "gyne": 45836,
- "gyp": 40053,
- "gypsy": 22354,
- "gypt": 41921,
- "gz": 45937,
- "gz": 35841,
- "gö": 40778,
- "gü": 31907,
- "h": 71,
- "h": 327,
- "ha": 560,
- "ha": 1429,
- "haa": 26814,
- "haal": 35869,
- "haan": 36284,
- "haar": 45247,
- "haar": 35859,
- "haas": 27443,
- "haasan": 26601,
- "hab": 20573,
- "hab": 20002,
- "haban": 46225,
- "haber": 44737,
- "habit": 8491,
- "habit": 17215,
- "habitat": 11747,
- "habitats": 35344,
- "habits": 14540,
- "habs": 27489,
- "hac": 20343,
- "hace": 43623,
- "haci": 40674,
- "hack": 6610,
- "hack": 11182,
- "hackathon": 25182,
- "hacked": 19575,
- "hacker": 22376,
- "hackers": 21498,
- "hacking": 12939,
- "hackney": 48811,
- "hackney": 24928,
- "hacks": 19965,
- "had": 10660,
- "had": 1100,
- "hadi": 39058,
- "hadid": 26415,
- "hadith": 46907,
- "hadley": 44995,
- "hadn": 21480,
- "hadoop": 43868,
- "hae": 30723,
- "hae": 27193,
- "hafi": 39914,
- "hag": 26855,
- "hag": 43207,
- "hagan": 47489,
- "hagen": 14664,
- "hager": 48773,
- "hagg": 26324,
- "hague": 28988,
- "hah": 18108,
- "hah": 13680,
- "haha": 1913,
- "haha": 3060,
- "hahah": 27253,
- "hahah": 15441,
- "hahaha": 4722,
- "hahahah": 37513,
- "hahahah": 20096,
- "hahahaha": 8058,
- "hahahaha": 9501,
- "hahahahah": 33334,
- "hahahahaha": 16347,
- "hahahahahaha": 26487,
- "hahahahahahaha": 43653,
- "hahahahahahahaha": 36126,
- "hahahha": 49205,
- "hahn": 35596,
- "hai": 8734,
- "hai": 5234,
- "haider": 42200,
- "haiku": 19542,
- "hail": 15272,
- "hail": 8634,
- "hailed": 44604,
- "hailey": 27703,
- "hailing": 47288,
- "hails": 32571,
- "hailstate": 35063,
- "hain": 23861,
- "hair": 4658,
- "hair": 2225,
- "haircare": 43682,
- "haircut": 14711,
- "hairdresser": 47468,
- "haired": 27202,
- "hairs": 27951,
- "hairstyle": 22324,
- "hairstyles": 40627,
- "hairy": 26513,
- "haiti": 17368,
- "haitian": 37577,
- "haj": 27885,
- "haj": 43191,
- "haji": 41889,
- "hajj": 35576,
- "hak": 25142,
- "hak": 40671,
- "haka": 44011,
- "hake": 41663,
- "hal": 1296,
- "hal": 8708,
- "hala": 25918,
- "halal": 34216,
- "halam": 29061,
- "halamadrid": 31132,
- "halder": 32201,
- "hale": 37038,
- "hale": 14701,
- "halen": 39204,
- "halep": 49017,
- "haley": 37330,
- "haley": 16839,
- "half": 7453,
- "half": 2349,
- "halftime": 13742,
- "halfway": 16736,
- "hali": 9860,
- "hali": 43030,
- "halibut": 49030,
- "halifax": 13411,
- "hall": 6850,
- "hall": 2140,
- "halla": 29569,
- "halle": 27763,
- "halle": 32239,
- "hallelujah": 36993,
- "halli": 32665,
- "hallmark": 31040,
- "hallmark": 32053,
- "hallmarkchannel": 36840,
- "hallo": 3463,
- "halloffame": 48578,
- "halloween": 28537,
- "halloween": 3739,
- "halls": 18052,
- "hallucin": 35385,
- "hallway": 26845,
- "halo": 33331,
- "halo": 11918,
- "halsey": 34256,
- "halt": 25640,
- "halter": 47194,
- "halton": 45445,
- "ham": 1522,
- "ham": 1714,
- "hama": 17944,
- "hamas": 14818,
- "hamburg": 18409,
- "hamburger": 33928,
- "hamid": 32377,
- "hamil": 6725,
- "hamill": 45784,
- "hamill": 48729,
- "hamillhimself": 47324,
- "hamilton": 22448,
- "hamilton": 7684,
- "hamlet": 27722,
- "hamlin": 49326,
- "hamm": 46110,
- "hammer": 15331,
- "hammer": 9401,
- "hammered": 37251,
- "hammers": 35649,
- "hammersmith": 42127,
- "hammock": 33682,
- "hammond": 21761,
- "hamont": 18518,
- "hamp": 6665,
- "hamper": 27692,
- "hampshire": 16006,
- "hampstead": 37340,
- "hampton": 36582,
- "hampton": 12285,
- "hamptons": 42415,
- "hamr": 47979,
- "hamradio": 36712,
- "hams": 25619,
- "hamster": 33313,
- "hamstring": 39990,
- "hamza": 45762,
- "han": 1545,
- "han": 3565,
- "hana": 16801,
- "hand": 1722,
- "hand": 2463,
- "handbag": 22654,
- "handbags": 35667,
- "handball": 27988,
- "handbook": 25147,
- "handcrafted": 22185,
- "handed": 10881,
- "handedly": 48656,
- "handel": 40072,
- "handful": 23725,
- "handheld": 26812,
- "handic": 17812,
- "handicap": 27063,
- "handicapp": 42349,
- "handing": 19196,
- "handle": 43681,
- "handle": 7245,
- "handled": 26824,
- "handler": 29097,
- "handles": 22124,
- "handling": 14071,
- "handmade": 18054,
- "handmade": 6737,
- "handmadehour": 25724,
- "handover": 46922,
- "hands": 3500,
- "handshake": 38418,
- "handsome": 7438,
- "handwriting": 29986,
- "handwritten": 35192,
- "handy": 13479,
- "hane": 28411,
- "hang": 3351,
- "hang": 5592,
- "hangar": 33439,
- "hanged": 40807,
- "hanger": 28905,
- "hangin": 22670,
- "hanging": 4850,
- "hangout": 17572,
- "hangover": 20755,
- "hangs": 21785,
- "hani": 39944,
- "hani": 18374,
- "hank": 35993,
- "hank": 17655,
- "hanks": 29943,
- "hanley": 47284,
- "hann": 5584,
- "hanna": 10075,
- "hannah": 18622,
- "hannah": 9142,
- "hannel": 43477,
- "hanni": 19493,
- "hannibal": 25149,
- "hannity": 24569,
- "hannover": 39976,
- "hanoi": 36134,
- "hanover": 33246,
- "hans": 35172,
- "hans": 16628,
- "hansen": 19729,
- "hanson": 24602,
- "hant": 40641,
- "hanuk": 32774,
- "hanukkah": 34247,
- "hanuman": 46975,
- "hao": 27184,
- "hap": 44981,
- "hap": 47988,
- "happ": 784,
- "happen": 21486,
- "happen": 4506,
- "happened": 4402,
- "happening": 4284,
- "happeningnow": 43107,
- "happenings": 41998,
- "happens": 4988,
- "happier": 14118,
- "happiest": 13811,
- "happily": 17316,
- "happiness": 5096,
- "happy": 2952,
- "happy": 900,
- "happybirthday": 9651,
- "happybirthday": 12207,
- "happydays": 25106,
- "happye": 33922,
- "happyeaster": 38745,
- "happyfathersday": 43534,
- "happyfriday": 33340,
- "happyhalloween": 28750,
- "happyholidays": 32186,
- "happyhour": 32036,
- "happymonday": 47364,
- "happymothersday": 42425,
- "happynewyear": 18655,
- "happythanksgiving": 40593,
- "happyvalentinesday": 42403,
- "haps": 9114,
- "haq": 32445,
- "har": 915,
- "har": 5888,
- "hara": 10367,
- "haram": 35732,
- "haram": 22950,
- "haran": 27921,
- "harare": 43562,
- "haras": 26644,
- "harass": 16481,
- "harassed": 43067,
- "harassment": 16641,
- "harat": 28984,
- "harb": 5856,
- "harbaugh": 45220,
- "harbor": 40686,
- "harbor": 10202,
- "harbour": 35430,
- "harbour": 10011,
- "harcourt": 48093,
- "hard": 3312,
- "hard": 1626,
- "hardcover": 31123,
- "harden": 27350,
- "harder": 12274,
- "hardest": 15258,
- "hardin": 43802,
- "harding": 24382,
- "hardly": 17363,
- "hardro": 28126,
- "hardrock": 48365,
- "hardrock": 40739,
- "hards": 44048,
- "hardship": 45085,
- "hardt": 17922,
- "hardware": 11957,
- "hardwell": 45572,
- "hardwick": 46864,
- "hardwood": 28167,
- "hardwork": 42554,
- "hardwork": 27404,
- "hardworking": 28095,
- "hardworkpaysoff": 49193,
- "hardy": 48179,
- "hardy": 14113,
- "hare": 27903,
- "hare": 18464,
- "harga": 39738,
- "hari": 25472,
- "hari": 8981,
- "harlan": 49133,
- "harle": 29096,
- "harlem": 17771,
- "harley": 24702,
- "harley": 13632,
- "harleydavidson": 39183,
- "harlow": 34113,
- "harm": 16656,
- "harm": 14452,
- "harman": 42434,
- "harmed": 39637,
- "harmful": 21725,
- "harmless": 44369,
- "harmon": 10828,
- "harmon": 28729,
- "harmony": 10785,
- "harms": 46703,
- "harne": 43323,
- "harness": 23205,
- "harold": 16917,
- "harp": 27339,
- "harper": 31288,
- "harper": 12634,
- "harri": 6639,
- "harrier": 37372,
- "harriet": 27154,
- "harrington": 34340,
- "harris": 25356,
- "harris": 6925,
- "harrisburg": 40590,
- "harrison": 34389,
- "harrison": 10540,
- "harro": 18939,
- "harrogate": 30842,
- "harrow": 38807,
- "harry": 11094,
- "harry": 3600,
- "harrypotter": 23375,
- "harsh": 30596,
- "harsh": 16944,
- "hart": 9335,
- "hart": 7752,
- "hartford": 23434,
- "harth": 35619,
- "hartle": 47482,
- "hartley": 31268,
- "hartman": 43294,
- "haru": 35099,
- "harvard": 28118,
- "harvard": 12848,
- "harve": 6405,
- "harvest": 44495,
- "harvest": 8971,
- "harvested": 35899,
- "harvesting": 26674,
- "harvey": 33289,
- "harvey": 9586,
- "harvick": 46983,
- "haryana": 27661,
- "has": 13855,
- "has": 791,
- "hasan": 30049,
- "hasbro": 37405,
- "hash": 6338,
- "hash": 19199,
- "hashi": 41831,
- "hashmi": 35852,
- "hashtag": 34015,
- "hashtag": 9238,
- "hashtags": 23514,
- "haskell": 48550,
- "hasn": 9143,
- "hass": 9298,
- "hassan": 15829,
- "hassee": 37117,
- "hassel": 32204,
- "hassle": 35762,
- "hast": 18146,
- "hasta": 36623,
- "hastings": 22035,
- "hat": 3447,
- "hat": 3801,
- "hatch": 24202,
- "hatch": 17809,
- "hatchback": 42348,
- "hatched": 42158,
- "hate": 23546,
- "hate": 3753,
- "hated": 21298,
- "hateful": 36418,
- "hater": 36917,
- "haters": 14027,
- "hates": 14957,
- "hatfield": 38448,
- "hath": 27894,
- "hath": 34416,
- "hathaway": 31801,
- "hati": 26045,
- "hating": 25668,
- "hatred": 19046,
- "hats": 9812,
- "hatt": 8747,
- "hatton": 44861,
- "hau": 5152,
- "hauer": 48751,
- "haul": 23743,
- "haul": 12332,
- "hauled": 46620,
- "hauling": 43132,
- "haun": 9676,
- "haunt": 31039,
- "haunted": 14944,
- "haunting": 24034,
- "haunts": 48035,
- "haus": 41755,
- "haus": 16478,
- "hausen": 33338,
- "hauser": 46586,
- "haute": 28854,
- "hav": 13443,
- "hav": 20447,
- "havan": 36304,
- "havana": 23357,
- "havas": 46261,
- "have": 18053,
- "have": 720,
- "haven": 33074,
- "haven": 3871,
- "havent": 29130,
- "haver": 27876,
- "haves": 49088,
- "havin": 31937,
- "having": 1977,
- "havoc": 24447,
- "haw": 2788,
- "haw": 26954,
- "hawa": 6067,
- "hawa": 46278,
- "hawai": 15800,
- "hawaii": 32413,
- "hawaii": 8265,
- "hawaiian": 17734,
- "hawan": 27765,
- "hawk": 14704,
- "hawk": 8218,
- "hawke": 38178,
- "hawker": 39051,
- "hawkeye": 38666,
- "hawkeyes": 34266,
- "hawking": 33437,
- "hawkins": 19740,
- "hawks": 44806,
- "hawks": 5841,
- "hawthorn": 45372,
- "hawthorne": 36730,
- "hay": 4871,
- "hay": 11367,
- "haya": 41325,
- "hayat": 49360,
- "hayden": 19806,
- "haydn": 48207,
- "haye": 36583,
- "hayes": 13555,
- "hayley": 39986,
- "hayley": 22204,
- "haynes": 30496,
- "hays": 41524,
- "hayward": 29400,
- "haz": 5040,
- "haz": 39921,
- "hazard": 26174,
- "hazard": 15178,
- "hazardous": 27102,
- "hazards": 30639,
- "haze": 22785,
- "hazel": 19838,
- "hazel": 21882,
- "hazelnut": 35816,
- "hazi": 22740,
- "hazmat": 48887,
- "hazrat": 45775,
- "hazy": 32655,
- "hb": 6854,
- "hb": 12576,
- "hbcu": 40008,
- "hbd": 25277,
- "hbd": 13594,
- "hbo": 15252,
- "hc": 15831,
- "hc": 7821,
- "hcs": 46850,
- "hd": 11601,
- "hd": 4414,
- "hdd": 40508,
- "hdmi": 33302,
- "hdr": 28065,
- "he": 651,
- "he": 797,
- "hea": 27150,
- "hea": 32790,
- "head": 1603,
- "head": 1375,
- "headache": 23849,
- "headaches": 38025,
- "headband": 28556,
- "headed": 6153,
- "header": 11077,
- "heading": 4409,
- "headless": 45219,
- "headlights": 42422,
- "headline": 10891,
- "headliner": 38880,
- "headlines": 14706,
- "headlining": 26971,
- "headphone": 37524,
- "headphones": 14906,
- "headquarters": 13041,
- "heads": 5174,
- "headset": 23883,
- "headshot": 34890,
- "heal": 1231,
- "heal": 13833,
- "healed": 31456,
- "healer": 38328,
- "healey": 38985,
- "healing": 9295,
- "heals": 32384,
- "health": 2145,
- "health": 1728,
- "healthand": 43704,
- "healthcare": 42500,
- "healthcare": 6023,
- "healthier": 18242,
- "healthtech": 42694,
- "healthy": 10330,
- "healthy": 3782,
- "healthye": 31532,
- "healthyeating": 33761,
- "healthyfood": 39996,
- "healthylifestyle": 46254,
- "healthyliving": 27293,
- "healy": 34299,
- "heap": 34781,
- "heaps": 44446,
- "hear": 2749,
- "hear": 2584,
- "heard": 4063,
- "hearing": 46353,
- "hearing": 5541,
- "hearings": 33175,
- "hearn": 36613,
- "hears": 25395,
- "heart": 4975,
- "heart": 1936,
- "heartbeat": 29154,
- "heartbreak": 29281,
- "heartbreaking": 21322,
- "heartbroken": 35383,
- "hearted": 21679,
- "heartfelt": 22904,
- "hearth": 31563,
- "hearthstone": 34054,
- "hearti": 29345,
- "hearties": 44572,
- "heartland": 31923,
- "heartless": 47022,
- "heartnews": 40426,
- "hearts": 5516,
- "heartw": 30002,
- "heartwarming": 34080,
- "hearty": 26994,
- "heat": 12175,
- "heat": 4403,
- "heated": 17057,
- "heater": 23246,
- "heath": 12794,
- "heath": 11719,
- "heather": 20230,
- "heather": 12470,
- "heathrow": 24171,
- "heating": 12478,
- "heaton": 34557,
- "heats": 36106,
- "heatwave": 25726,
- "heav": 2409,
- "heaven": 15520,
- "heaven": 5545,
- "heavenly": 19117,
- "heavens": 26026,
- "heavier": 31253,
- "heaviest": 33268,
- "heavily": 14123,
- "heavy": 12048,
- "heavy": 4200,
- "heavymetal": 39804,
- "heavyweight": 17448,
- "heb": 24700,
- "heb": 34515,
- "hebdo": 41817,
- "hebrew": 27298,
- "hebrides": 45121,
- "hebron": 45725,
- "hec": 18932,
- "heck": 22985,
- "heck": 14427,
- "hectares": 44162,
- "hectic": 37245,
- "hector": 25852,
- "hed": 18271,
- "hedge": 16229,
- "hedge": 20294,
- "hedgehog": 21940,
- "hedges": 41345,
- "hee": 18364,
- "hee": 15773,
- "heechul": 42487,
- "heed": 15118,
- "heel": 33646,
- "heel": 16861,
- "heels": 10909,
- "heem": 30061,
- "heer": 40473,
- "hef": 29473,
- "heff": 48756,
- "hefty": 48584,
- "heg": 41995,
- "heh": 25834,
- "hehe": 48723,
- "hehe": 10658,
- "hehehe": 24138,
- "hei": 6101,
- "hei": 29051,
- "heidel": 42927,
- "heidelberg": 48445,
- "heidi": 44860,
- "heidi": 23867,
- "heifer": 48219,
- "heigh": 43883,
- "height": 10788,
- "heights": 8418,
- "heim": 10931,
- "heim": 9768,
- "heimer": 39517,
- "hein": 15487,
- "hein": 43206,
- "heine": 28742,
- "heineken": 36874,
- "heinrich": 47877,
- "heinz": 32359,
- "heir": 27083,
- "heir": 34007,
- "heirloom": 34232,
- "heirs": 43834,
- "heis": 21849,
- "heisman": 34537,
- "heist": 31035,
- "heit": 37255,
- "hel": 919,
- "hel": 11579,
- "hela": 48212,
- "held": 4042,
- "hele": 46129,
- "helen": 17576,
- "helen": 11291,
- "helena": 23109,
- "helene": 41591,
- "helens": 45940,
- "heli": 33874,
- "heli": 40183,
- "helicop": 10035,
- "helicopter": 11956,
- "helicopters": 26922,
- "helium": 46505,
- "helix": 35247,
- "hell": 8410,
- "hell": 4141,
- "hella": 19800,
- "hellboy": 48428,
- "helle": 48600,
- "helle": 46968,
- "hellenic": 42544,
- "heller": 44464,
- "hello": 12887,
- "hello": 3306,
- "hells": 47989,
- "helly": 48690,
- "helm": 47970,
- "helm": 19520,
- "helmet": 11122,
- "helmets": 21843,
- "help": 8641,
- "help": 1318,
- "helped": 4845,
- "helper": 29321,
- "helpers": 36316,
- "helpful": 12695,
- "helping": 3875,
- "helpless": 47638,
- "helpline": 43101,
- "helps": 5144,
- "helsin": 17842,
- "helsinki": 19626,
- "hem": 20270,
- "hem": 11148,
- "hemi": 14256,
- "hemi": 46856,
- "heming": 30819,
- "hemingway": 33470,
- "hemisphere": 32767,
- "hemmings": 34882,
- "hemo": 43788,
- "hemp": 28225,
- "hemp": 18467,
- "hems": 32451,
- "hemsworth": 39428,
- "hen": 2385,
- "hen": 8047,
- "hence": 23640,
- "hend": 11560,
- "hender": 49248,
- "henderson": 14348,
- "hendrick": 45296,
- "hendricks": 37588,
- "hendrix": 23605,
- "henge": 33104,
- "henley": 27853,
- "henna": 39455,
- "hennessy": 42667,
- "henri": 19431,
- "henri": 21610,
- "henrik": 35772,
- "henry": 16018,
- "henry": 5508,
- "hens": 31742,
- "henson": 32935,
- "hep": 17724,
- "hep": 48791,
- "hepat": 23767,
- "hepatitis": 32169,
- "hepburn": 26348,
- "her": 1223,
- "her": 899,
- "hera": 38724,
- "heral": 37809,
- "herald": 27625,
- "herald": 12851,
- "herb": 26116,
- "herb": 15302,
- "herbal": 21868,
- "herbali": 44087,
- "herbalife": 48364,
- "herbert": 19935,
- "herbs": 17320,
- "hercules": 26539,
- "herd": 36142,
- "herd": 18589,
- "here": 9134,
- "here": 763,
- "hered": 47976,
- "hereford": 35543,
- "heres": 13566,
- "hereto": 47673,
- "heri": 31392,
- "herit": 4720,
- "heritag": 38273,
- "heritage": 20962,
- "heritage": 5455,
- "herman": 31890,
- "herman": 21568,
- "hermann": 40942,
- "hermes": 34563,
- "hermi": 35265,
- "hermione": 45502,
- "hermit": 43953,
- "hermitage": 47706,
- "hermo": 40967,
- "hermosa": 42531,
- "hern": 30571,
- "hern": 43576,
- "hernandez": 17707,
- "hero": 7338,
- "hero": 3756,
- "heroes": 38010,
- "heroes": 5506,
- "heroic": 24255,
- "heroin": 23841,
- "heroine": 27420,
- "heron": 22593,
- "heros": 37642,
- "herr": 38537,
- "herrera": 27755,
- "herring": 30211,
- "hers": 25359,
- "herself": 9207,
- "hersh": 20379,
- "hershey": 29734,
- "hert": 26744,
- "hertfordshire": 41070,
- "herts": 35784,
- "herty": 23454,
- "hertz": 49383,
- "hes": 30553,
- "hes": 12784,
- "hesit": 23933,
- "hesitate": 34967,
- "hess": 41888,
- "hester": 31105,
- "het": 37527,
- "het": 19678,
- "hetero": 26405,
- "heu": 20105,
- "heughan": 32298,
- "hew": 48141,
- "hew": 43051,
- "hewitt": 28871,
- "hex": 16255,
- "hex": 31241,
- "hey": 10759,
- "hey": 2189,
- "hez": 34591,
- "hezbollah": 37636,
- "hf": 26606,
- "hf": 20603,
- "hfx": 47297,
- "hg": 23986,
- "hg": 26237,
- "hgtv": 47657,
- "hh": 3280,
- "hh": 5180,
- "hhh": 8281,
- "hhhh": 19391,
- "hhhh": 13121,
- "hhhhh": 24246,
- "hhhhhh": 37278,
- "hhs": 27006,
- "hi": 677,
- "hi": 1883,
- "hia": 20672,
- "hiatus": 27823,
- "hib": 15922,
- "hiber": 38799,
- "hibis": 36226,
- "hibiscus": 36460,
- "hibition": 24658,
- "hibs": 42814,
- "hic": 3549,
- "hic": 38079,
- "hick": 14813,
- "hickman": 49148,
- "hickory": 29905,
- "hicks": 23429,
- "hid": 15552,
- "hid": 14451,
- "hidalgo": 47464,
- "hidden": 28305,
- "hidden": 7029,
- "hiddleston": 31444,
- "hide": 17725,
- "hide": 9379,
- "hideous": 46588,
- "hides": 30800,
- "hiding": 11371,
- "hie": 15763,
- "hier": 23433,
- "hier": 29913,
- "hierarchy": 44442,
- "hifi": 38168,
- "hig": 38108,
- "higgins": 21783,
- "high": 1487,
- "high": 1400,
- "higher": 5321,
- "highered": 27072,
- "highest": 5317,
- "highland": 32244,
- "highland": 16062,
- "highlander": 46251,
- "highlanders": 40445,
- "highlands": 16883,
- "highlight": 8264,
- "highlighted": 22252,
- "highlighter": 45460,
- "highlighting": 17344,
- "highlights": 6173,
- "highly": 5302,
- "highness": 38694,
- "highs": 15144,
- "highschool": 23102,
- "highway": 45344,
- "highway": 7620,
- "highways": 28007,
- "higu": 39115,
- "hihi": 36240,
- "hii": 42315,
- "hijab": 31407,
- "hika": 41356,
- "hikari": 44624,
- "hike": 9404,
- "hiked": 36471,
- "hiker": 40947,
- "hikers": 46090,
- "hikes": 27076,
- "hiking": 9118,
- "hiko": 48708,
- "hil": 3508,
- "hil": 17927,
- "hila": 38837,
- "hilar": 37337,
- "hilari": 7784,
- "hilarious": 8358,
- "hilariously": 43476,
- "hilary": 45898,
- "hilary": 25415,
- "hilde": 45382,
- "hill": 3671,
- "hill": 2682,
- "hillary": 13257,
- "hillary": 7074,
- "hillaryclinton": 15357,
- "hilli": 32513,
- "hills": 24178,
- "hills": 5289,
- "hillsborough": 32157,
- "hillside": 37194,
- "hilltop": 45858,
- "hilly": 32483,
- "hilton": 33621,
- "hilton": 14012,
- "him": 4128,
- "him": 1269,
- "himach": 29132,
- "himachal": 35461,
- "himalay": 17552,
- "himalayan": 30318,
- "himalayas": 32872,
- "hime": 45892,
- "himself": 4530,
- "himss": 41730,
- "hin": 1676,
- "hin": 37930,
- "hina": 40571,
- "hinakhan": 45518,
- "hinch": 49320,
- "hind": 34460,
- "hind": 23293,
- "hindi": 14967,
- "hinds": 47859,
- "hindu": 17587,
- "hindu": 12053,
- "hinduism": 40592,
- "hindus": 25701,
- "hindustan": 46553,
- "hines": 37462,
- "hing": 37968,
- "hini": 33564,
- "hino": 45343,
- "hint": 11868,
- "hinton": 47165,
- "hints": 20594,
- "hio": 32897,
- "hip": 11725,
- "hip": 6584,
- "hipho": 8819,
- "hiphop": 26598,
- "hiphop": 10914,
- "hipp": 13607,
- "hippie": 28637,
- "hippo": 28398,
- "hippo": 36729,
- "hips": 30191,
- "hipstamatic": 31002,
- "hipster": 19987,
- "hipsters": 48265,
- "hir": 4959,
- "hir": 14728,
- "hira": 42577,
- "hire": 32356,
- "hire": 8243,
- "hired": 17602,
- "hires": 24133,
- "hiring": 7835,
- "hiro": 17396,
- "hiro": 20588,
- "hiroshima": 33867,
- "hirsch": 46967,
- "his": 15211,
- "his": 787,
- "hism": 23502,
- "hispan": 16843,
- "hispanic": 22676,
- "hist": 21710,
- "hist": 13779,
- "histo": 33479,
- "histor": 2993,
- "historia": 46010,
- "historian": 20697,
- "historians": 35200,
- "historic": 30195,
- "historic": 5726,
- "historical": 34154,
- "historical": 8039,
- "historically": 30445,
- "histories": 34736,
- "history": 11142,
- "history": 1695,
- "historymonth": 19356,
- "historyof": 35905,
- "hit": 5453,
- "hit": 2341,
- "hitch": 22937,
- "hitch": 36203,
- "hitler": 16518,
- "hitman": 33290,
- "hits": 4712,
- "hitter": 23538,
- "hitters": 39724,
- "hitting": 7957,
- "hiv": 44410,
- "hiv": 11018,
- "hive": 38162,
- "hive": 18521,
- "hiya": 42393,
- "hk": 22648,
- "hk": 12307,
- "hl": 8297,
- "hl": 5956,
- "hle": 32389,
- "hler": 35418,
- "hm": 17913,
- "hm": 7631,
- "hmm": 13725,
- "hmmm": 17032,
- "hmmmm": 34598,
- "hms": 14625,
- "hmu": 21630,
- "hmv": 49288,
- "hn": 22905,
- "hn": 7478,
- "hns": 48412,
- "ho": 606,
- "ho": 2971,
- "hoa": 37517,
- "hoar": 31628,
- "hoax": 33438,
- "hob": 18212,
- "hobart": 31646,
- "hobb": 16175,
- "hobbies": 36370,
- "hobbit": 23207,
- "hobbs": 34343,
- "hobby": 41120,
- "hobby": 17557,
- "hobo": 34613,
- "hobo": 41334,
- "hoboken": 41568,
- "hoc": 35880,
- "hoch": 43772,
- "hock": 34914,
- "hock": 46574,
- "hockey": 16499,
- "hockey": 4111,
- "hoco": 34771,
- "hod": 31062,
- "hodg": 23660,
- "hodge": 40585,
- "hodges": 35061,
- "hodgson": 37044,
- "hoe": 32502,
- "hoe": 11262,
- "hoek": 40073,
- "hoes": 21164,
- "hof": 20186,
- "hof": 12789,
- "hofer": 38654,
- "hoff": 32860,
- "hoff": 22751,
- "hofficial": 41949,
- "hoffman": 22026,
- "hog": 12075,
- "hog": 13255,
- "hogan": 19757,
- "hogg": 42005,
- "hogs": 23242,
- "hogwarts": 29168,
- "hoh": 43947,
- "hoi": 39295,
- "hok": 26942,
- "hok": 47167,
- "hokies": 35168,
- "hokkaido": 49145,
- "hol": 1187,
- "hol": 7349,
- "hola": 28724,
- "hold": 36496,
- "hold": 3254,
- "holden": 21869,
- "holder": 7862,
- "holders": 10074,
- "holding": 5050,
- "holdings": 24832,
- "holds": 7286,
- "hole": 47242,
- "hole": 5341,
- "holes": 11266,
- "holi": 2093,
- "holi": 21926,
- "holic": 16348,
- "holics": 29782,
- "holiday": 13168,
- "holiday": 2878,
- "holidays": 5372,
- "holiness": 37259,
- "holistic": 26300,
- "holl": 27699,
- "holla": 26500,
- "holland": 31608,
- "holland": 9978,
- "hollande": 47690,
- "holler": 49047,
- "holli": 24019,
- "holliday": 41624,
- "hollow": 41221,
- "hollow": 16691,
- "holloway": 29435,
- "holly": 12731,
- "holly": 11923,
- "hollyo": 41525,
- "hollyoaks": 43352,
- "hollywood": 24655,
- "hollywood": 5518,
- "holm": 34758,
- "holm": 12739,
- "holme": 46149,
- "holmes": 12756,
- "holo": 10317,
- "holocau": 14688,
- "holocaust": 16476,
- "hols": 33344,
- "holt": 18868,
- "holtz": 44743,
- "holy": 13910,
- "holy": 4874,
- "hom": 906,
- "hom": 47397,
- "homa": 9557,
- "homage": 17746,
- "home": 2143,
- "home": 1137,
- "homebrew": 35046,
- "homec": 33869,
- "homecoming": 9008,
- "homedecor": 15695,
- "homedepot": 38707,
- "homegrown": 32554,
- "homeitems": 42972,
- "homeland": 21633,
- "homeless": 18403,
- "homeless": 9661,
- "homelessness": 19851,
- "homemade": 7889,
- "homeof": 48856,
- "homeowner": 37267,
- "homeowners": 29882,
- "homepage": 29828,
- "homer": 29307,
- "homer": 16931,
- "homers": 38333,
- "homes": 19480,
- "homes": 5416,
- "homeschool": 40994,
- "homestead": 32609,
- "homeswee": 46298,
- "hometown": 12238,
- "homework": 12495,
- "homicide": 21520,
- "homie": 12540,
- "homies": 18893,
- "homme": 26193,
- "homo": 18129,
- "homo": 30504,
- "homophobia": 37875,
- "homophobic": 40975,
- "homosexual": 44288,
- "homosexuality": 46720,
- "homs": 45413,
- "hon": 1279,
- "hon": 10296,
- "honda": 8553,
- "honduras": 29715,
- "hone": 38640,
- "honest": 7814,
- "honest": 9602,
- "honestly": 9155,
- "honesty": 24939,
- "honey": 9843,
- "honey": 6406,
- "honeycomb": 48583,
- "honeymoon": 22527,
- "hong": 12144,
- "hong": 8598,
- "hongkong": 16659,
- "honi": 17918,
- "honolulu": 28096,
- "honor": 9206,
- "honor": 3402,
- "honorable": 19498,
- "honorary": 15675,
- "honore": 25868,
- "honored": 5494,
- "honoree": 38993,
- "honorees": 43012,
- "honoring": 10771,
- "honors": 10248,
- "honour": 8240,
- "honourable": 29855,
- "honoured": 11945,
- "honouring": 37754,
- "honours": 22558,
- "hoo": 2300,
- "hoo": 7920,
- "hood": 18681,
- "hood": 3222,
- "hooded": 33631,
- "hoodie": 13444,
- "hoodies": 25974,
- "hoods": 16664,
- "hoof": 44555,
- "hook": 30488,
- "hook": 10395,
- "hookah": 34214,
- "hooked": 18138,
- "hookem": 31465,
- "hooker": 37891,
- "hooking": 35240,
- "hooks": 25068,
- "hooligans": 48176,
- "hoon": 21368,
- "hooo": 44538,
- "hoop": 31516,
- "hoop": 19573,
- "hooper": 35221,
- "hoops": 9351,
- "hoor": 22155,
- "hooray": 24940,
- "hoos": 46462,
- "hoosier": 48886,
- "hoosiers": 42780,
- "hoot": 29164,
- "hoover": 25691,
- "hop": 10848,
- "hop": 5833,
- "hope": 5263,
- "hope": 1683,
- "hoped": 30628,
- "hopeful": 21453,
- "hopefully": 7602,
- "hopeless": 35586,
- "hopes": 10018,
- "hoping": 7207,
- "hopkins": 17821,
- "hopp": 48839,
- "hopped": 34220,
- "hopper": 21748,
- "hopping": 27606,
- "hoppy": 38359,
- "hops": 21137,
- "hor": 1407,
- "hor": 33847,
- "hora": 26013,
- "horace": 39282,
- "horan": 26857,
- "horde": 44947,
- "hore": 15380,
- "horiz": 8144,
- "horizon": 17924,
- "horizon": 11920,
- "horizons": 29685,
- "horizontal": 25775,
- "hormon": 27096,
- "hormone": 31283,
- "hormones": 35162,
- "horn": 15771,
- "horn": 9607,
- "horne": 38143,
- "horned": 34526,
- "hornet": 28739,
- "hornets": 20124,
- "horns": 22109,
- "horny": 32622,
- "horo": 21500,
- "horoscope": 38453,
- "horowitz": 44669,
- "horri": 8656,
- "horrible": 13726,
- "horribly": 45484,
- "horrific": 25314,
- "horrifying": 38901,
- "horror": 13787,
- "horror": 5032,
- "horrormovies": 46682,
- "horrors": 33321,
- "horse": 8562,
- "horse": 4558,
- "horseback": 43673,
- "horseman": 48885,
- "horsepower": 36882,
- "horser": 23096,
- "horseracing": 30693,
- "horses": 8809,
- "horseshoe": 29242,
- "horst": 37182,
- "hort": 19482,
- "horticul": 27141,
- "horticulture": 39998,
- "horton": 25945,
- "hortons": 38422,
- "horus": 29794,
- "hos": 44320,
- "hos": 25008,
- "hosa": 44618,
- "hose": 19662,
- "hoseok": 38817,
- "hosp": 2847,
- "hosp": 37853,
- "hospice": 20533,
- "hospit": 7180,
- "hospital": 29399,
- "hospital": 3851,
- "hospitality": 11657,
- "hospitalized": 36915,
- "hospitals": 13816,
- "host": 17403,
- "host": 3953,
- "hostage": 26119,
- "hoste": 31700,
- "hosted": 6017,
- "hostel": 27225,
- "hostess": 39692,
- "hostile": 28074,
- "hosting": 4857,
- "hosts": 8718,
- "hot": 2851,
- "hot": 2069,
- "hota": 43289,
- "hotdog": 43758,
- "hotel": 14591,
- "hotel": 2738,
- "hotels": 8654,
- "hotline": 30516,
- "hotmail": 46427,
- "hotness": 39803,
- "hotra": 27109,
- "hotro": 47823,
- "hotspot": 36606,
- "hotspur": 35176,
- "hotter": 23591,
- "hottest": 8279,
- "hottie": 22804,
- "hotties": 46027,
- "hou": 1011,
- "hou": 10122,
- "hough": 44529,
- "houghton": 36133,
- "houn": 39273,
- "houn": 33607,
- "hound": 33996,
- "hound": 13561,
- "hounds": 21178,
- "hounews": 48373,
- "hour": 14930,
- "hour": 2232,
- "hourly": 30918,
- "hours": 2382,
- "house": 4107,
- "house": 1212,
- "housed": 37518,
- "household": 12412,
- "households": 27167,
- "housel": 48685,
- "housemusic": 28468,
- "houseof": 19928,
- "houses": 7791,
- "housewives": 38523,
- "housing": 32924,
- "housing": 5734,
- "houston": 16564,
- "houston": 5663,
- "hov": 40291,
- "hove": 29674,
- "hoven": 35559,
- "hover": 36252,
- "hover": 49016,
- "hovering": 43437,
- "how": 7470,
- "how": 829,
- "howar": 37672,
- "howard": 25447,
- "howard": 7632,
- "howdy": 42216,
- "howe": 8179,
- "howe": 24614,
- "howell": 25297,
- "hower": 32920,
- "however": 8467,
- "howi": 47883,
- "howie": 42939,
- "howl": 40332,
- "howling": 41771,
- "howto": 38191,
- "howto": 44060,
- "hoy": 39625,
- "hoy": 13278,
- "hoya": 40978,
- "hp": 23753,
- "hp": 6371,
- "hpa": 30983,
- "hpc": 39936,
- "hpe": 33787,
- "hpv": 45765,
- "hq": 33571,
- "hq": 4693,
- "hr": 4810,
- "hr": 4086,
- "hra": 21320,
- "hra": 17212,
- "hrc": 18139,
- "hrh": 29103,
- "hri": 21068,
- "hrithik": 45371,
- "hrs": 7157,
- "hru": 24127,
- "hrw": 25064,
- "hs": 9343,
- "hs": 2466,
- "hsbc": 31508,
- "hsc": 43510,
- "hse": 34057,
- "hsfb": 29539,
- "hsv": 47311,
- "ht": 11123,
- "ht": 7801,
- "hta": 23452,
- "hta": 49384,
- "htafc": 42821,
- "htc": 48942,
- "htc": 17635,
- "html": 18231,
- "hts": 43710,
- "htt": 10620,
- "http": 15066,
- "https": 30901,
- "httr": 49372,
- "httweets": 43198,
- "hu": 845,
- "hu": 5949,
- "hua": 22138,
- "huan": 41405,
- "huang": 32013,
- "huar": 46916,
- "huawe": 17709,
- "huawei": 21128,
- "hub": 18775,
- "hub": 7028,
- "hubb": 23183,
- "hubbard": 33288,
- "hubble": 30421,
- "hubby": 16947,
- "hubert": 40699,
- "hubs": 29327,
- "huck": 22909,
- "huckabee": 43666,
- "hud": 7169,
- "hud": 28563,
- "hudder": 22629,
- "huddersfield": 24220,
- "huddle": 33435,
- "hudson": 25873,
- "hudson": 11260,
- "hue": 48380,
- "hue": 21465,
- "hues": 38003,
- "huey": 39663,
- "huff": 18746,
- "huff": 44999,
- "huffpost": 45887,
- "hug": 40790,
- "hug": 10359,
- "huge": 2699,
- "hugely": 24648,
- "hugged": 41333,
- "hugging": 27058,
- "hugh": 8723,
- "hugh": 15385,
- "hughes": 11418,
- "hugo": 43935,
- "hugo": 17132,
- "hugs": 14248,
- "huh": 13348,
- "huhu": 32134,
- "hui": 29978,
- "hul": 7911,
- "hula": 40145,
- "hulk": 17637,
- "hull": 25154,
- "hull": 10375,
- "hulu": 24666,
- "hum": 5823,
- "hum": 16283,
- "human": 3175,
- "human": 2751,
- "humane": 20220,
- "humanitarian": 14170,
- "humanities": 24949,
- "humanity": 9420,
- "humanright": 44385,
- "humanrights": 14148,
- "humans": 8324,
- "humb": 9988,
- "humber": 30602,
- "humber": 38063,
- "humble": 38703,
- "humble": 10889,
- "humbled": 19682,
- "humbling": 39757,
- "humbold": 24739,
- "humboldt": 31389,
- "hume": 38197,
- "humid": 14778,
- "humid": 27447,
- "humidi": 47666,
- "humidity": 15469,
- "humil": 27205,
- "humili": 25332,
- "humility": 28535,
- "humming": 26515,
- "hummingbird": 33072,
- "hummus": 31785,
- "humor": 29369,
- "humor": 11186,
- "humorous": 38173,
- "humour": 19161,
- "hump": 16673,
- "hump": 24529,
- "humpback": 47662,
- "humpday": 27693,
- "humph": 19767,
- "humphrey": 31549,
- "hun": 1616,
- "hun": 10795,
- "hundre": 8505,
- "hundred": 11898,
- "hundreds": 8879,
- "hung": 13825,
- "hungar": 19420,
- "hungarian": 23325,
- "hungary": 17232,
- "hunger": 25565,
- "hunger": 10184,
- "hungergames": 47507,
- "hungover": 41110,
- "hungry": 44845,
- "hungry": 8451,
- "hunk": 33912,
- "hunt": 16498,
- "hunt": 5774,
- "hunted": 37373,
- "hunter": 16531,
- "hunter": 6099,
- "hunters": 16115,
- "hunting": 27830,
- "hunting": 7507,
- "huntington": 23521,
- "hunts": 34041,
- "huntsville": 34544,
- "hur": 2305,
- "hur": 34523,
- "hurd": 44915,
- "hurdle": 27486,
- "hurdles": 25440,
- "huri": 42486,
- "hurley": 30166,
- "hurling": 24738,
- "huron": 36147,
- "hurrah": 40599,
- "hurric": 6543,
- "hurrican": 36105,
- "hurricane": 24051,
- "hurricane": 8782,
- "hurricanes": 22357,
- "hurry": 10921,
- "hurst": 44742,
- "hurst": 11760,
- "hurt": 7413,
- "hurting": 24017,
- "hurts": 13059,
- "hus": 5111,
- "hus": 35853,
- "husband": 6179,
- "husbands": 33612,
- "hush": 28728,
- "husk": 19246,
- "huskers": 26946,
- "huskies": 20988,
- "husky": 20421,
- "huss": 13733,
- "hussain": 17940,
- "hussein": 31336,
- "hust": 27279,
- "hustle": 15709,
- "huston": 46480,
- "hut": 20924,
- "hut": 16503,
- "hutch": 31018,
- "hutch": 33203,
- "hutchinson": 35721,
- "hutto": 27662,
- "hutton": 38321,
- "hv": 17209,
- "hv": 18593,
- "hvac": 27492,
- "hw": 27491,
- "hw": 18876,
- "hwa": 32352,
- "hwan": 44390,
- "hwang": 46775,
- "hwy": 13812,
- "hy": 1441,
- "hy": 17827,
- "hya": 31600,
- "hyacin": 47263,
- "hyatt": 44856,
- "hyatt": 25146,
- "hybri": 9084,
- "hybrid": 10156,
- "hyd": 42382,
- "hyde": 46484,
- "hyde": 16343,
- "hyder": 13960,
- "hyderabad": 14801,
- "hydr": 8031,
- "hydra": 44414,
- "hydra": 40420,
- "hydrange": 43298,
- "hydrate": 29628,
- "hydrated": 23300,
- "hydrating": 47653,
- "hydration": 24174,
- "hydrau": 26017,
- "hydraulic": 26189,
- "hydro": 8368,
- "hydro": 22595,
- "hydrogen": 20974,
- "hye": 32724,
- "hye": 25792,
- "hygi": 16277,
- "hygiene": 19591,
- "hymn": 41350,
- "hyo": 38960,
- "hyo": 35078,
- "hyp": 16964,
- "hype": 30353,
- "hype": 11111,
- "hyped": 22507,
- "hyper": 7997,
- "hyper": 22146,
- "hypertension": 40698,
- "hypno": 23355,
- "hypnosis": 48138,
- "hypnoti": 40440,
- "hypo": 10252,
- "hypocr": 30711,
- "hypocri": 25606,
- "hypocrisy": 26296,
- "hypocrite": 44125,
- "hypothe": 46966,
- "hypothesis": 44956,
- "hyster": 24235,
- "hysteria": 45965,
- "hysterical": 48627,
- "hyuk": 20452,
- "hyun": 11831,
- "hyun": 8589,
- "hyundai": 17094,
- "hyung": 46901,
- "hyung": 16551,
- "hz": 32533,
- "i": 72,
- "i": 328,
- "ia": 12486,
- "ia": 1073,
- "iac": 32838,
- "iac": 44063,
- "iaf": 40789,
- "iah": 35052,
- "iain": 30103,
- "ial": 11530,
- "ial": 1974,
- "ials": 20940,
- "iam": 3579,
- "iam": 11415,
- "iambic": 43668,
- "iambicpent": 43891,
- "iamsrk": 15103,
- "ian": 7723,
- "ian": 1800,
- "ians": 6451,
- "iansomerhalder": 47077,
- "iart": 18413,
- "iartg": 18669,
- "ias": 32303,
- "ias": 14620,
- "ib": 3962,
- "ib": 13554,
- "iba": 39763,
- "ibadan": 44691,
- "iban": 47145,
- "ibc": 49014,
- "ibd": 40732,
- "iber": 23814,
- "ibi": 12337,
- "ibis": 47048,
- "ibiza": 13853,
- "ible": 37792,
- "ibles": 44102,
- "ibm": 23415,
- "ibm": 13918,
- "ibn": 25729,
- "ibooks": 46887,
- "ibra": 15476,
- "ibrahi": 40350,
- "ibrahim": 20816,
- "ibrox": 46883,
- "ibs": 41993,
- "ibu": 43587,
- "ibu": 46117,
- "ic": 535,
- "ic": 1029,
- "ica": 2576,
- "icago": 37492,
- "ical": 6082,
- "ical": 1110,
- "ically": 3161,
- "icals": 13999,
- "ican": 17653,
- "ican": 5246,
- "icans": 20511,
- "icar": 37211,
- "ication": 21629,
- "icc": 12945,
- "ice": 2739,
- "ice": 733,
- "iceberg": 33662,
- "icec": 13636,
- "icecream": 21334,
- "iced": 8049,
- "icelan": 34114,
- "iceland": 46716,
- "iceland": 11935,
- "icelandic": 34705,
- "ices": 1931,
- "ich": 5333,
- "ich": 1232,
- "icha": 31453,
- "iche": 28972,
- "iche": 21143,
- "ichi": 21669,
- "ichi": 14647,
- "ichick": 45022,
- "ichiro": 43787,
- "ici": 948,
- "ici": 22189,
- "icia": 11774,
- "icial": 17543,
- "icial": 6397,
- "ician": 40522,
- "ician": 5374,
- "icians": 6264,
- "iciary": 21329,
- "icic": 46006,
- "icide": 6558,
- "icides": 28253,
- "icing": 7676,
- "icio": 24207,
- "icion": 45905,
- "icious": 3325,
- "icist": 21165,
- "icists": 42171,
- "icity": 7243,
- "ick": 1168,
- "ick": 1068,
- "icked": 39799,
- "icker": 40357,
- "ickers": 30701,
- "icki": 35468,
- "icking": 6619,
- "icks": 3727,
- "icky": 11587,
- "icn": 44516,
- "ico": 13697,
- "ico": 3040,
- "icom": 17693,
- "icom": 29796,
- "icon": 13843,
- "icon": 5646,
- "iconic": 6959,
- "icons": 15553,
- "icop": 9389,
- "icos": 32002,
- "ics": 1324,
- "ict": 6349,
- "icted": 36515,
- "iction": 40560,
- "icton": 36548,
- "icu": 45118,
- "icu": 30443,
- "icular": 40660,
- "icus": 31459,
- "icy": 28780,
- "icy": 3495,
- "icymi": 5315,
- "icz": 46387,
- "id": 1568,
- "id": 1014,
- "ida": 11032,
- "ida": 11600,
- "idad": 22462,
- "idaho": 48817,
- "idaho": 15165,
- "idal": 39684,
- "idan": 17929,
- "idc": 22386,
- "ide": 1909,
- "ide": 14104,
- "idea": 3612,
- "ideal": 8789,
- "ideally": 48247,
- "ideals": 45096,
- "ideas": 4452,
- "ident": 7113,
- "identi": 6009,
- "identical": 25587,
- "identification": 23337,
- "identified": 15217,
- "identifies": 35712,
- "identify": 10949,
- "identifying": 23589,
- "identities": 34292,
- "identity": 8892,
- "ideology": 25840,
- "iders": 8980,
- "ides": 31791,
- "idf": 28987,
- "idge": 35567,
- "idh": 44325,
- "idi": 9611,
- "idi": 14264,
- "idio": 15994,
- "idiot": 14087,
- "idiots": 20856,
- "idk": 8972,
- "idle": 34754,
- "idlib": 36199,
- "ido": 6763,
- "ido": 29641,
- "idol": 24866,
- "idol": 8884,
- "idols": 21398,
- "idr": 10106,
- "idri": 46435,
- "idris": 41312,
- "ids": 6111,
- "idu": 28655,
- "idy": 33058,
- "idyl": 44879,
- "idyllic": 46632,
- "ie": 6789,
- "ie": 1718,
- "iec": 44773,
- "ied": 10059,
- "ieee": 39860,
- "iel": 27875,
- "iel": 22729,
- "ience": 1542,
- "ient": 13115,
- "ier": 33173,
- "ier": 5912,
- "iers": 45060,
- "ies": 27912,
- "ies": 963,
- "iest": 10818,
- "if": 8063,
- "if": 878,
- "ifa": 37574,
- "ifc": 36524,
- "ife": 41172,
- "ife": 19590,
- "iff": 35753,
- "ification": 35755,
- "ified": 41403,
- "ift": 31143,
- "iftar": 35153,
- "ifu": 41523,
- "ify": 32807,
- "ig": 1089,
- "ig": 3072,
- "iga": 16493,
- "igan": 27468,
- "igans": 25419,
- "igbo": 44591,
- "ige": 10806,
- "igen": 33070,
- "iger": 30758,
- "iger": 20685,
- "igers": 40755,
- "igers": 48928,
- "iggy": 46219,
- "iggy": 27604,
- "igh": 2712,
- "igh": 5451,
- "ight": 14571,
- "ight": 897,
- "ighton": 35292,
- "igi": 21901,
- "igle": 29912,
- "iglesias": 39432,
- "ign": 7303,
- "ign": 2326,
- "ignati": 37573,
- "ignatius": 48318,
- "igne": 45843,
- "ignite": 25210,
- "ignition": 36115,
- "igno": 15375,
- "ignor": 7653,
- "ignorance": 22735,
- "ignorant": 26933,
- "ignore": 12304,
- "ignored": 20428,
- "ignores": 40129,
- "ignoring": 23969,
- "igor": 33024,
- "igs": 31344,
- "igu": 21279,
- "ih": 12162,
- "ih": 34135,
- "ihear": 13043,
- "iheart": 30332,
- "iheartawards": 18811,
- "iheartradio": 25934,
- "ihop": 45511,
- "ihri": 39108,
- "ihrithik": 39326,
- "ii": 5103,
- "ii": 2329,
- "iii": 46236,
- "iii": 6572,
- "iiii": 20133,
- "iiii": 45393,
- "iiot": 30704,
- "iit": 39330,
- "iit": 33238,
- "ij": 7337,
- "ija": 42802,
- "ik": 3903,
- "ik": 10177,
- "ika": 18188,
- "ike": 12329,
- "ike": 19696,
- "ikea": 20528,
- "iker": 38653,
- "ikh": 44655,
- "ikh": 12758,
- "iklan": 32028,
- "iklan": 29584,
- "iko": 35659,
- "iko": 39272,
- "ikon": 38543,
- "ikon": 19156,
- "iku": 17780,
- "il": 543,
- "il": 958,
- "ila": 4344,
- "ilah": 32211,
- "ilan": 13889,
- "ilan": 28076,
- "iland": 20957,
- "ilation": 16180,
- "ilay": 45093,
- "ild": 22278,
- "ild": 17164,
- "ile": 18398,
- "ile": 989,
- "iled": 3358,
- "iler": 22446,
- "iler": 3615,
- "ilers": 8975,
- "iles": 42274,
- "ili": 2076,
- "ili": 19601,
- "ilia": 14855,
- "ilian": 10272,
- "iliary": 32585,
- "ilife": 42835,
- "ilike": 44989,
- "ilinan": 48497,
- "iling": 3299,
- "ilio": 47256,
- "ilion": 12561,
- "ilis": 43442,
- "ilit": 11178,
- "ilities": 5446,
- "ility": 1787,
- "ilive": 26478,
- "ill": 828,
- "ill": 660,
- "illa": 8877,
- "illa": 3043,
- "illac": 17218,
- "illage": 48922,
- "illard": 21920,
- "illary": 33667,
- "illas": 23404,
- "ille": 18213,
- "ille": 5559,
- "illed": 2527,
- "illeg": 35808,
- "illegal": 7983,
- "illegally": 24466,
- "illegals": 40490,
- "iller": 23341,
- "iller": 2956,
- "illers": 30547,
- "illery": 14514,
- "illes": 20037,
- "illi": 1086,
- "illi": 25187,
- "illia": 48776,
- "illiams": 30301,
- "illian": 48775,
- "illian": 17355,
- "illic": 37152,
- "illicit": 40998,
- "illie": 26083,
- "illin": 35868,
- "illing": 2803,
- "illini": 28957,
- "illino": 8920,
- "illinois": 9414,
- "illion": 35542,
- "illion": 2035,
- "illness": 11145,
- "illnesses": 33861,
- "illo": 34153,
- "illo": 7588,
- "illon": 20516,
- "ills": 1900,
- "illu": 3025,
- "illumin": 11446,
- "illuminate": 43261,
- "illuminated": 28814,
- "illuminati": 34551,
- "illuminating": 46601,
- "illumination": 43680,
- "illus": 41386,
- "illusion": 20318,
- "illusions": 47429,
- "illustr": 6268,
- "illustrate": 37468,
- "illustrated": 13151,
- "illustrates": 38129,
- "illustrating": 43322,
- "illustration": 6052,
- "illustrations": 17852,
- "illustrator": 16649,
- "illustri": 43116,
- "illustrious": 44304,
- "illy": 11707,
- "illy": 9532,
- "ilm": 36326,
- "ilo": 4220,
- "ilo": 14835,
- "ilove": 7183,
- "ilove": 32914,
- "iloveart": 41114,
- "ilovemy": 28863,
- "iloveyou": 28829,
- "ils": 1543,
- "ilt": 25334,
- "ilton": 28494,
- "ilu": 27337,
- "ilwx": 43777,
- "ily": 4881,
- "ily": 1026,
- "ilya": 33377,
- "ilysm": 29228,
- "im": 732,
- "im": 1496,
- "ima": 2414,
- "ima": 6432,
- "imac": 40675,
- "imacele": 47281,
- "imag": 2316,
- "image": 24101,
- "image": 2867,
- "imagery": 22828,
- "images": 4952,
- "imagin": 18178,
- "imaginary": 30417,
- "imagination": 13783,
- "imaginative": 47233,
- "imagine": 35752,
- "imagine": 4826,
- "imagined": 18478,
- "imagines": 47379,
- "imaging": 14231,
- "imagining": 27384,
- "imam": 37552,
- "imam": 19024,
- "iman": 45684,
- "iman": 16247,
- "imation": 44566,
- "imax": 32066,
- "imc": 45616,
- "imdanielpadilla": 36357,
- "imdb": 30407,
- "ime": 44937,
- "ime": 31151,
- "imel": 31594,
- "iment": 37157,
- "imer": 21802,
- "imes": 47744,
- "imf": 28403,
- "img": 24157,
- "imi": 23559,
- "imin": 23942,
- "imit": 23462,
- "imitation": 41630,
- "imma": 19487,
- "immac": 25085,
- "immaculate": 29649,
- "immature": 45531,
- "immedi": 7366,
- "immediate": 14440,
- "immediately": 10108,
- "immen": 17278,
- "immense": 22722,
- "immensely": 35013,
- "immer": 13954,
- "immerse": 46240,
- "immersion": 31861,
- "immersive": 27521,
- "immigr": 5851,
- "immigrant": 16474,
- "immigrants": 14460,
- "immigration": 9588,
- "imminent": 27299,
- "immort": 39244,
- "immortal": 24717,
- "immun": 8961,
- "immune": 15606,
- "immuni": 44571,
- "immunity": 26254,
- "immuno": 24361,
- "immunology": 44483,
- "immunotherapy": 39185,
- "imo": 26349,
- "imo": 13738,
- "imp": 3335,
- "imp": 31037,
- "impac": 7573,
- "impact": 33036,
- "impact": 3844,
- "impacted": 21424,
- "impactful": 41631,
- "impacting": 29359,
- "impacts": 15069,
- "impair": 36451,
- "impaired": 28028,
- "impairment": 44501,
- "impala": 36641,
- "impe": 23612,
- "impeach": 16874,
- "impeach": 43497,
- "impeachment": 32979,
- "impeachtrump": 38006,
- "impecc": 34511,
- "impeccable": 40111,
- "impending": 34486,
- "imper": 7727,
- "imperative": 39833,
- "imperfect": 46034,
- "imperi": 30911,
- "imperial": 32425,
- "imperial": 12361,
- "imperialism": 48855,
- "imperson": 25551,
- "implant": 33106,
- "implants": 32202,
- "imple": 7423,
- "implement": 17966,
- "implementation": 15102,
- "implemented": 24315,
- "implementing": 22862,
- "implic": 15269,
- "implications": 19229,
- "implo": 40337,
- "impo": 45704,
- "import": 2336,
- "import": 16294,
- "importance": 6821,
- "important": 2829,
- "importantly": 21580,
- "imported": 28798,
- "imports": 25286,
- "impose": 35879,
- "imposed": 25871,
- "imposing": 42289,
- "impossible": 9815,
- "impre": 3763,
- "impress": 20015,
- "impressed": 9689,
- "impression": 14468,
- "impressionism": 36114,
- "impressionist": 44904,
- "impressions": 22276,
- "impressive": 6634,
- "imprint": 43863,
- "imprison": 22141,
- "imprisoned": 32999,
- "imprisonment": 39024,
- "impro": 2531,
- "impromp": 28100,
- "impromptu": 28611,
- "improv": 22868,
- "improve": 4971,
- "improved": 9446,
- "improvement": 10790,
- "improvements": 16320,
- "improves": 18035,
- "improving": 10381,
- "improvis": 32343,
- "improvised": 40886,
- "impulse": 29683,
- "impy": 42690,
- "imran": 19647,
- "imran": 19212,
- "imrankhan": 25956,
- "imrankhanpti": 26688,
- "ims": 17800,
- "imsa": 37262,
- "imv": 35731,
- "imvkohli": 37136,
- "imwith": 26822,
- "imwithher": 32651,
- "in": 512,
- "in": 530,
- "ina": 18026,
- "ina": 1366,
- "inability": 47517,
- "inaccurate": 49192,
- "inaction": 41916,
- "inactive": 49274,
- "inadequate": 43403,
- "inak": 46549,
- "inal": 19178,
- "inals": 26438,
- "inan": 26204,
- "inappropriate": 26722,
- "inari": 48620,
- "inary": 11337,
- "inas": 36731,
- "inas": 12362,
- "inated": 38530,
- "ination": 4706,
- "inau": 10832,
- "inaugu": 11309,
- "inaugur": 11448,
- "inaugural": 11340,
- "inaugurated": 29011,
- "inauguration": 16805,
- "inbound": 24420,
- "inbox": 18683,
- "inc": 14570,
- "inc": 4438,
- "incan": 45964,
- "incar": 18070,
- "incarcer": 26334,
- "incarcerated": 49178,
- "incarceration": 39887,
- "incase": 30463,
- "ince": 44303,
- "incen": 13259,
- "incense": 35059,
- "incentive": 29024,
- "incentives": 29813,
- "inception": 36653,
- "inch": 6523,
- "incheon": 30645,
- "inches": 10809,
- "inci": 5747,
- "incidence": 43371,
- "incident": 10103,
- "incidents": 22120,
- "incindia": 26161,
- "inciner": 46434,
- "incl": 27857,
- "incl": 13338,
- "inclined": 45470,
- "inclu": 1738,
- "include": 5942,
- "included": 7414,
- "includes": 6197,
- "including": 2814,
- "inclusion": 12079,
- "inclusive": 13393,
- "income": 8044,
- "incoming": 15416,
- "incomparable": 36027,
- "incompetent": 45069,
- "incomplete": 34040,
- "incon": 42372,
- "inconvenience": 40563,
- "incorpor": 19335,
- "incorporate": 34168,
- "incorporated": 29494,
- "incorporating": 40303,
- "incorrect": 31872,
- "incre": 1870,
- "increase": 5230,
- "increased": 9156,
- "increases": 13797,
- "increasing": 10270,
- "increasingly": 16106,
- "incredi": 2883,
- "incredible": 22128,
- "incredible": 3457,
- "incredibleindia": 24680,
- "incredibles": 48641,
- "incredibly": 9513,
- "incu": 38830,
- "incub": 24587,
- "incubator": 35736,
- "incumb": 32246,
- "incumbent": 38038,
- "incur": 42356,
- "ind": 5386,
- "ind": 4655,
- "inda": 15710,
- "inde": 2645,
- "indeed": 10031,
- "indefin": 29501,
- "indefinitely": 43750,
- "independ": 4147,
- "independence": 23117,
- "independence": 7955,
- "independenceday": 25971,
- "independent": 33844,
- "independent": 7088,
- "independently": 39831,
- "inder": 29225,
- "index": 35209,
- "index": 9458,
- "indhoven": 44229,
- "indi": 1098,
- "indi": 46536,
- "india": 27067,
- "india": 1762,
- "indian": 7685,
- "indian": 3606,
- "indiana": 8615,
- "indianapolis": 17196,
- "indianfootball": 45979,
- "indians": 10271,
- "indic": 7136,
- "indicate": 26679,
- "indicated": 39416,
- "indicates": 29412,
- "indication": 38539,
- "indicator": 24776,
- "indicators": 30054,
- "indicted": 34992,
- "indictment": 42278,
- "indie": 5260,
- "indie": 9383,
- "indiedev": 10863,
- "indiefilm": 22588,
- "indiegame": 17969,
- "indiegamedev": 40466,
- "indiegames": 35864,
- "indiegogo": 38057,
- "indies": 23618,
- "indiffe": 41372,
- "indigen": 8348,
- "indigenous": 9303,
- "indigo": 21002,
- "indira": 43887,
- "indirec": 26398,
- "indirect": 35416,
- "indivi": 5649,
- "individu": 9574,
- "individual": 8512,
- "individually": 33782,
- "individuals": 11990,
- "indo": 26303,
- "indo": 18297,
- "indom": 42926,
- "indone": 6180,
- "indonesia": 7229,
- "indonesian": 19593,
- "indoor": 44478,
- "indoor": 9546,
- "indoors": 22973,
- "indore": 46143,
- "indu": 2298,
- "induc": 7973,
- "induced": 24103,
- "inducted": 20596,
- "inductee": 39558,
- "inductees": 44796,
- "induction": 18338,
- "indul": 19402,
- "indulg": 28388,
- "indulge": 24851,
- "indulgence": 40856,
- "indulgent": 49147,
- "industri": 5082,
- "industrial": 30853,
- "industrial": 7520,
- "industries": 11700,
- "industry": 47407,
- "industry": 3318,
- "indv": 16942,
- "indy": 9821,
- "indy": 10098,
- "indycar": 20484,
- "indyref": 22569,
- "ine": 855,
- "ine": 715,
- "ineau": 38122,
- "inec": 45214,
- "ined": 2038,
- "inee": 43252,
- "inee": 7986,
- "inees": 13056,
- "ineffe": 47202,
- "inely": 18234,
- "inem": 48876,
- "inema": 29232,
- "inen": 44365,
- "inequalities": 45507,
- "inequality": 17372,
- "iner": 17438,
- "iner": 5155,
- "iners": 41863,
- "ines": 2137,
- "inese": 35966,
- "iness": 1463,
- "inet": 8121,
- "inette": 38911,
- "inev": 19527,
- "inevit": 45871,
- "inevitable": 25004,
- "inews": 24300,
- "inexpensive": 38614,
- "iney": 30254,
- "inez": 12700,
- "inf": 1529,
- "inf": 35241,
- "infamous": 18688,
- "infan": 17219,
- "infant": 19192,
- "infantry": 21655,
- "infants": 34726,
- "infe": 7164,
- "infec": 26088,
- "infected": 26136,
- "infection": 14774,
- "infections": 22227,
- "infectious": 29157,
- "infeld": 25035,
- "infer": 16258,
- "inferno": 31290,
- "infertility": 40701,
- "infield": 48933,
- "infiltr": 28683,
- "infin": 6246,
- "infinite": 12748,
- "infiniti": 34644,
- "infinity": 34863,
- "infinity": 12895,
- "infl": 7627,
- "inflam": 16080,
- "inflammation": 24893,
- "inflammatory": 26831,
- "inflatable": 30135,
- "inflation": 17497,
- "inflicted": 48188,
- "influ": 4835,
- "influen": 13229,
- "influence": 9199,
- "influenced": 21183,
- "influencer": 25013,
- "influencers": 29891,
- "influences": 24926,
- "influencing": 45126,
- "influential": 17553,
- "influenza": 39897,
- "info": 5680,
- "info": 2222,
- "infographic": 10076,
- "infographics": 33172,
- "infor": 31773,
- "inform": 10241,
- "inform": 19449,
- "informal": 25705,
- "informat": 29625,
- "informatics": 35685,
- "information": 3204,
- "informative": 19364,
- "informed": 13876,
- "informing": 45388,
- "informs": 48440,
- "infosec": 17863,
- "infr": 29718,
- "infra": 7312,
- "infra": 45877,
- "infrared": 22867,
- "infrastructure": 9034,
- "infringe": 44882,
- "infringement": 48712,
- "infront": 37668,
- "infu": 15048,
- "infuri": 48461,
- "infused": 21461,
- "infusion": 43464,
- "ing": 653,
- "ing": 519,
- "inga": 15233,
- "ingco": 40444,
- "ingday": 16561,
- "ingdon": 38731,
- "inge": 11790,
- "inge": 7071,
- "inged": 30046,
- "ingen": 19088,
- "ingeni": 36884,
- "inger": 33883,
- "inger": 3541,
- "ingfor": 33430,
- "ingh": 9170,
- "ingh": 30495,
- "ingham": 24497,
- "ingham": 4291,
- "inghamshire": 39289,
- "inghour": 42728,
- "inging": 4066,
- "ingl": 45662,
- "ingle": 22228,
- "ingle": 17005,
- "ingles": 24490,
- "ingley": 44428,
- "inglis": 46327,
- "ingly": 4796,
- "ingnow": 34766,
- "ingo": 30175,
- "ingo": 9012,
- "ingra": 45165,
- "ingrad": 44124,
- "ingram": 26998,
- "ingredi": 9272,
- "ingredient": 19799,
- "ingredients": 11788,
- "ingrid": 33496,
- "ings": 895,
- "ingthe": 20170,
- "ingtips": 39373,
- "ington": 11846,
- "ington": 2156,
- "ingu": 8714,
- "ingual": 22795,
- "ingue": 36838,
- "ingui": 12788,
- "inguish": 36146,
- "inha": 32612,
- "inhabit": 36189,
- "inhabitants": 44968,
- "inhal": 30786,
- "inhe": 32617,
- "inher": 24611,
- "inherent": 47327,
- "inherit": 34322,
- "inheritance": 39341,
- "inherited": 39111,
- "inhi": 25557,
- "inhibit": 32196,
- "inho": 12984,
- "ini": 6154,
- "ini": 3581,
- "inian": 36638,
- "inim": 38717,
- "inindia": 34021,
- "ining": 1389,
- "inist": 30976,
- "init": 42670,
- "initi": 4580,
- "initial": 13980,
- "initially": 28123,
- "initials": 48794,
- "initiated": 27756,
- "initiation": 41009,
- "initiative": 8152,
- "initiatives": 16549,
- "inity": 22126,
- "inj": 5112,
- "injec": 13688,
- "injection": 21438,
- "inju": 5006,
- "injured": 7505,
- "injuries": 9481,
- "injury": 6223,
- "injustice": 20541,
- "ink": 4547,
- "ink": 967,
- "inka": 40685,
- "inked": 29356,
- "inki": 46176,
- "inkigayo": 47882,
- "inking": 37586,
- "inks": 20966,
- "inktober": 9387,
- "inland": 21943,
- "inlet": 35161,
- "inline": 45004,
- "inlove": 28415,
- "inmate": 32341,
- "inmates": 28216,
- "inmy": 42657,
- "inn": 27260,
- "inn": 5569,
- "inna": 35088,
- "inner": 24512,
- "inner": 6955,
- "inning": 4415,
- "innings": 11580,
- "innis": 44059,
- "inno": 7961,
- "innocence": 26383,
- "innocent": 11241,
- "innov": 2890,
- "innovate": 24549,
- "innovation": 33063,
- "innovation": 4272,
- "innovations": 18817,
- "innovative": 8494,
- "innovator": 34735,
- "innovators": 27834,
- "ino": 4211,
- "ino": 2691,
- "inoa": 25649,
- "inos": 21828,
- "inous": 47801,
- "inox": 22698,
- "input": 16952,
- "inputs": 48763,
- "inqu": 10628,
- "inqui": 18527,
- "inquirer": 45172,
- "inquiries": 29469,
- "inquiry": 15865,
- "inquis": 31171,
- "inr": 36325,
- "ins": 12786,
- "ins": 1041,
- "insan": 7875,
- "insane": 10260,
- "insanely": 27846,
- "insanity": 26645,
- "inscribed": 49168,
- "inscription": 41127,
- "insec": 15744,
- "insect": 21297,
- "insects": 18714,
- "insecure": 35112,
- "insecurity": 36964,
- "inser": 13830,
- "insert": 18807,
- "insi": 3453,
- "inside": 19141,
- "inside": 2912,
- "insider": 13300,
- "insiders": 32171,
- "insig": 40503,
- "insight": 8795,
- "insightful": 20354,
- "insights": 8729,
- "insignia": 48864,
- "insist": 35504,
- "insisted": 40423,
- "insists": 27255,
- "inski": 32630,
- "insky": 24607,
- "insol": 42366,
- "insom": 21755,
- "insomni": 42040,
- "insomnia": 30598,
- "inson": 21007,
- "insp": 1597,
- "inspec": 7915,
- "inspect": 40815,
- "inspecting": 40565,
- "inspection": 15142,
- "inspections": 39513,
- "inspector": 20514,
- "inspir": 2573,
- "inspiration": 4195,
- "inspirational": 41936,
- "inspirational": 9855,
- "inspirations": 35093,
- "inspire": 27901,
- "inspire": 8583,
- "inspired": 39849,
- "inspired": 3516,
- "inspires": 17245,
- "inspiring": 41847,
- "inspiring": 5705,
- "inspo": 26897,
- "inst": 1264,
- "inst": 1581,
- "insta": 22411,
- "insta": 11694,
- "instability": 41377,
- "instac": 46678,
- "instaf": 33800,
- "instag": 14612,
- "instagood": 23718,
- "instagram": 27910,
- "instagram": 2659,
- "instal": 38805,
- "install": 6940,
- "install": 11168,
- "installation": 9358,
- "installations": 27909,
- "installed": 8807,
- "installing": 18301,
- "installment": 25315,
- "installs": 45568,
- "instalment": 47766,
- "instance": 34572,
- "instant": 38810,
- "instant": 10635,
- "instantly": 17703,
- "instap": 23758,
- "instapic": 34378,
- "instaweather": 43078,
- "instaweatherpro": 43150,
- "inste": 3571,
- "instead": 4191,
- "instein": 13421,
- "instem": 27030,
- "instin": 23382,
- "instinct": 30544,
- "institu": 4257,
- "institute": 5861,
- "institutes": 43674,
- "institution": 18823,
- "institutional": 27442,
- "institutions": 15207,
- "instore": 41679,
- "instru": 4544,
- "instruc": 19648,
- "instruction": 19407,
- "instructional": 31022,
- "instructions": 17040,
- "instructor": 16087,
- "instructors": 31998,
- "instrument": 42196,
- "instrument": 15806,
- "instrumental": 23041,
- "instruments": 14793,
- "instyle": 41321,
- "insu": 8805,
- "insul": 9615,
- "insulated": 42051,
- "insulation": 28194,
- "insulin": 29311,
- "insult": 26673,
- "insulting": 39646,
- "insults": 40451,
- "insur": 5024,
- "insurance": 5870,
- "insured": 31321,
- "insurers": 43142,
- "insurtech": 28716,
- "int": 1828,
- "int": 1207,
- "inta": 38314,
- "intact": 26870,
- "intake": 19539,
- "intan": 47695,
- "inte": 1598,
- "inte": 41900,
- "intech": 26504,
- "inted": 6147,
- "integr": 5151,
- "integral": 27018,
- "integrate": 25735,
- "integrated": 12797,
- "integrating": 31555,
- "integration": 12583,
- "integrity": 14791,
- "intel": 11778,
- "intel": 11426,
- "intellec": 13281,
- "intellect": 47828,
- "intellectu": 31966,
- "intellectual": 18069,
- "intelli": 5324,
- "intellig": 5632,
- "intelligence": 6846,
- "intelligent": 14063,
- "inten": 2967,
- "intend": 36674,
- "intended": 16812,
- "intense": 10258,
- "intensi": 22928,
- "intensity": 19956,
- "intensive": 21049,
- "intent": 18881,
- "intention": 26786,
- "intentional": 29536,
- "intentionally": 31215,
- "intentions": 26710,
- "inter": 1006,
- "inter": 10093,
- "interact": 21736,
- "interacting": 35045,
- "interaction": 17650,
- "interactions": 22162,
- "interactive": 9456,
- "intercep": 23676,
- "interception": 48762,
- "interceptions": 45313,
- "interchange": 34222,
- "intercontinental": 31983,
- "interdisciplinary": 38132,
- "intere": 2008,
- "interest": 5095,
- "interested": 4620,
- "interesting": 3628,
- "interests": 16425,
- "interface": 18753,
- "interfaith": 38399,
- "interference": 29099,
- "interim": 19509,
- "interior": 10700,
- "interior": 7305,
- "interiordesign": 12902,
- "interiors": 14836,
- "intermedi": 20246,
- "intermediate": 24304,
- "intermission": 44805,
- "intermitt": 44946,
- "intern": 9976,
- "intern": 14068,
- "internal": 11285,
- "internally": 41134,
- "internation": 42534,
- "international": 8566,
- "international": 2436,
- "internationaldayof": 41518,
- "internationally": 24059,
- "internationalwomensday": 17682,
- "interne": 32713,
- "internet": 30180,
- "internet": 4757,
- "internetof": 44449,
- "internetofthings": 45925,
- "interns": 19902,
- "internship": 16661,
- "internships": 39410,
- "interoper": 45754,
- "interpre": 11162,
- "interpret": 49154,
- "interpret": 40459,
- "interpretation": 20652,
- "interpreted": 42157,
- "interpreting": 46525,
- "interro": 29548,
- "interrup": 21609,
- "interrupt": 48449,
- "interrupted": 30288,
- "intersec": 45246,
- "intersection": 19210,
- "interstate": 21963,
- "interstellar": 41506,
- "interval": 36032,
- "intervals": 44884,
- "interven": 18245,
- "intervention": 16804,
- "interventions": 28848,
- "interview": 2885,
- "interviewed": 11688,
- "interviewing": 16399,
- "interviews": 9910,
- "intestin": 37938,
- "intestinal": 38896,
- "inthe": 7486,
- "inti": 14459,
- "intim": 38832,
- "intimacy": 46430,
- "intimate": 16382,
- "intimid": 24041,
- "intimidating": 44405,
- "intimidation": 49258,
- "inting": 15571,
- "intl": 38186,
- "intl": 14224,
- "intment": 9020,
- "intments": 21420,
- "into": 35235,
- "into": 1095,
- "intoler": 28534,
- "intolerance": 37808,
- "intothe": 38511,
- "intra": 20922,
- "intrac": 46195,
- "intram": 40956,
- "intre": 29397,
- "intrepid": 39127,
- "intri": 15421,
- "intric": 23763,
- "intricate": 29616,
- "intrigu": 18856,
- "intrigue": 45140,
- "intrigued": 40034,
- "intriguing": 24334,
- "intrin": 45181,
- "intro": 2999,
- "intro": 13224,
- "introduc": 3621,
- "introduce": 9813,
- "introduced": 10446,
- "introduces": 12933,
- "introducing": 6256,
- "introduction": 11812,
- "introductory": 38121,
- "intru": 22949,
- "ints": 2514,
- "intu": 17225,
- "intuition": 40897,
- "intuitive": 35224,
- "inu": 21131,
- "inuit": 41250,
- "inus": 45857,
- "inv": 2279,
- "inv": 43786,
- "inva": 10084,
- "invade": 34609,
- "invaded": 32596,
- "invaders": 35188,
- "invading": 40101,
- "invali": 31592,
- "invalid": 46998,
- "invaluable": 33976,
- "invasi": 38100,
- "invasion": 13378,
- "invasive": 19554,
- "inve": 2024,
- "inven": 26233,
- "invent": 11665,
- "invent": 23558,
- "invented": 14100,
- "invention": 23607,
- "inventions": 44914,
- "inventor": 22836,
- "inventory": 19444,
- "inver": 12061,
- "inverness": 33080,
- "inverte": 46397,
- "inverted": 40709,
- "invest": 4180,
- "invest": 9716,
- "invested": 22536,
- "investig": 4626,
- "investigate": 15703,
- "investigated": 29180,
- "investigates": 29621,
- "investigating": 13713,
- "investigation": 8194,
- "investigations": 24020,
- "investigative": 30233,
- "investigator": 30528,
- "investigators": 24121,
- "investin": 40195,
- "investing": 10554,
- "investment": 5605,
- "investments": 14675,
- "investor": 15490,
- "investors": 10486,
- "invests": 38378,
- "invic": 25253,
- "invigor": 48722,
- "invin": 30252,
- "invincible": 38052,
- "invisible": 16093,
- "invit": 12454,
- "invitation": 15032,
- "invitational": 14511,
- "invitations": 40120,
- "invite": 8109,
- "invited": 7731,
- "invites": 16034,
- "inviting": 14349,
- "invo": 29417,
- "invol": 4000,
- "involve": 26325,
- "involved": 5320,
- "involvement": 19502,
- "involves": 22652,
- "involving": 14786,
- "inwx": 35674,
- "iny": 23257,
- "inyour": 47954,
- "io": 3167,
- "io": 3752,
- "ioc": 43018,
- "iom": 33000,
- "iom": 31135,
- "ion": 14871,
- "ion": 3668,
- "ions": 26289,
- "ior": 7354,
- "ior": 2498,
- "iority": 46016,
- "iors": 6427,
- "ios": 6614,
- "iot": 32694,
- "iot": 6627,
- "iota": 37294,
- "ious": 6994,
- "iously": 38233,
- "iow": 7439,
- "iowa": 38847,
- "iowa": 8290,
- "ip": 1719,
- "ip": 8600,
- "ipa": 11199,
- "ipad": 39067,
- "ipad": 7491,
- "ipads": 35281,
- "ipc": 41981,
- "iphone": 26030,
- "iphone": 4314,
- "iphones": 37561,
- "ipl": 13440,
- "ipment": 37824,
- "ipo": 40218,
- "ipo": 24090,
- "ipod": 17889,
- "ipp": 31706,
- "ips": 26910,
- "ipsw": 22221,
- "ipswich": 24494,
- "iq": 15554,
- "iq": 19996,
- "iqbal": 33553,
- "ir": 582,
- "ir": 742,
- "ira": 4923,
- "ira": 5371,
- "irah": 35724,
- "iran": 19273,
- "iran": 5075,
- "irandeal": 46533,
- "irani": 37984,
- "iranian": 14158,
- "iraq": 8543,
- "iraqi": 18617,
- "irc": 41527,
- "ird": 2770,
- "ire": 3013,
- "ire": 1454,
- "ired": 32728,
- "ired": 2995,
- "ireland": 32806,
- "ireland": 4157,
- "irene": 21600,
- "ires": 12435,
- "irez": 21581,
- "irgc": 47942,
- "iri": 2155,
- "iri": 13880,
- "irical": 33366,
- "irie": 42979,
- "irina": 46664,
- "iring": 10169,
- "iris": 16437,
- "irish": 9386,
- "irish": 4889,
- "irl": 34494,
- "irl": 8570,
- "irling": 26493,
- "irls": 24344,
- "irma": 22406,
- "irn": 42603,
- "iro": 23209,
- "iro": 7280,
- "iron": 7699,
- "iron": 5391,
- "ironic": 24518,
- "ironically": 36779,
- "ironing": 46655,
- "ironman": 20330,
- "irons": 30032,
- "irony": 20681,
- "irport": 27769,
- "irr": 24641,
- "irrational": 47413,
- "irregular": 38692,
- "irrelevant": 34677,
- "irresi": 31200,
- "irresistible": 35252,
- "irresponsible": 44714,
- "irri": 21484,
- "irrigation": 23761,
- "irrit": 24218,
- "irs": 6086,
- "irst": 32701,
- "iru": 48206,
- "irvin": 47053,
- "irvine": 24201,
- "irving": 19738,
- "irwin": 23750,
- "iry": 7239,
- "is": 595,
- "is": 533,
- "isa": 11034,
- "isa": 6536,
- "isaac": 37544,
- "isaac": 13659,
- "isab": 13357,
- "isabel": 27466,
- "isabella": 26192,
- "isabelle": 31072,
- "isable": 46631,
- "isai": 15365,
- "isaiah": 17952,
- "isak": 40619,
- "isance": 46893,
- "isation": 7194,
- "isback": 43811,
- "isc": 39316,
- "isch": 47888,
- "isco": 5736,
- "iscoming": 26458,
- "isd": 46816,
- "isd": 12002,
- "ise": 7669,
- "ise": 1479,
- "ised": 2861,
- "iselle": 48491,
- "iser": 23080,
- "iser": 5626,
- "isers": 34879,
- "ises": 5153,
- "isf": 44036,
- "isgreat": 34595,
- "ish": 6844,
- "ish": 1061,
- "isha": 28050,
- "ishable": 37949,
- "ished": 35341,
- "ishere": 46053,
- "ishi": 26224,
- "ishq": 27996,
- "ishqba": 32503,
- "ishqbaaaz": 36591,
- "isi": 7233,
- "isi": 17880,
- "isil": 34636,
- "isin": 37676,
- "ising": 3426,
- "isis": 7531,
- "isk": 30171,
- "isl": 31368,
- "isla": 22807,
- "islam": 6003,
- "islam": 8770,
- "islamabad": 19959,
- "islamic": 31627,
- "islamic": 9552,
- "islamist": 38798,
- "islamophobia": 43459,
- "island": 13408,
- "island": 2619,
- "islander": 45651,
- "islanders": 27804,
- "islands": 7145,
- "islay": 49279,
- "isle": 19082,
- "isle": 11849,
- "isleof": 24718,
- "isles": 21816,
- "islife": 26433,
- "islington": 34945,
- "ism": 47730,
- "ism": 1935,
- "isma": 43937,
- "ismail": 36140,
- "isme": 43570,
- "ismo": 41926,
- "isms": 18700,
- "isn": 2923,
- "isner": 48246,
- "isnow": 43694,
- "isnt": 19416,
- "iso": 2462,
- "iso": 12263,
- "isol": 11414,
- "isolated": 19044,
- "isolation": 26400,
- "ison": 12949,
- "ison": 4553,
- "isons": 33318,
- "isoo": 35857,
- "isp": 31397,
- "isp": 39041,
- "isra": 3591,
- "israel": 20837,
- "israel": 4779,
- "israeli": 8994,
- "israelis": 45713,
- "isreal": 47147,
- "isro": 44841,
- "iss": 11738,
- "iss": 4950,
- "issa": 38579,
- "issa": 7560,
- "issan": 49358,
- "issance": 40828,
- "issant": 38828,
- "isse": 18986,
- "ission": 37946,
- "issu": 2049,
- "issue": 3202,
- "issued": 9246,
- "issues": 4082,
- "issuing": 37226,
- "ist": 9751,
- "ist": 2304,
- "istanbul": 12258,
- "istandwith": 33820,
- "iste": 32563,
- "ister": 14555,
- "isthe": 46748,
- "istic": 29556,
- "ists": 8426,
- "isu": 17030,
- "isu": 23328,
- "it": 529,
- "it": 585,
- "ita": 36920,
- "ita": 2864,
- "itable": 8915,
- "ital": 2306,
- "ital": 1660,
- "itali": 11644,
- "italia": 11025,
- "italian": 20264,
- "italian": 5175,
- "italians": 44744,
- "italk": 32894,
- "italy": 4052,
- "itan": 18383,
- "itans": 40711,
- "itar": 47161,
- "itarian": 11599,
- "itary": 17604,
- "itas": 31634,
- "itas": 13436,
- "itate": 42457,
- "itated": 36744,
- "itation": 5070,
- "itative": 22892,
- "itc": 36449,
- "itch": 2387,
- "itch": 8147,
- "itchen": 32664,
- "itchy": 41980,
- "ite": 2732,
- "ite": 802,
- "iteam": 37828,
- "itec": 3099,
- "itec": 43936,
- "itech": 44215,
- "itech": 23040,
- "ited": 8603,
- "ited": 1108,
- "itel": 44638,
- "itely": 4605,
- "item": 8532,
- "items": 6207,
- "iter": 7938,
- "iter": 19773,
- "iteracy": 39634,
- "iterate": 43106,
- "iteration": 38790,
- "ites": 2454,
- "itez": 42131,
- "itf": 35436,
- "itfc": 36519,
- "ith": 6133,
- "ith": 1757,
- "ithaca": 46257,
- "iti": 760,
- "iti": 6165,
- "itia": 22634,
- "itian": 23365,
- "itic": 11950,
- "itical": 48767,
- "itics": 33967,
- "ities": 41423,
- "ities": 1480,
- "itim": 15676,
- "itiner": 32803,
- "itinerary": 41564,
- "iting": 1257,
- "ition": 25263,
- "ition": 1104,
- "itions": 5540,
- "itious": 13329,
- "itis": 33539,
- "itis": 8388,
- "itive": 3067,
- "itly": 42240,
- "ito": 22167,
- "ito": 4661,
- "iton": 21119,
- "itor": 47267,
- "itor": 4584,
- "itors": 22005,
- "itos": 24560,
- "its": 7140,
- "its": 902,
- "itsa": 45032,
- "itself": 7290,
- "itsme": 41125,
- "itss": 47040,
- "itt": 1031,
- "itt": 11228,
- "itta": 21233,
- "itte": 31962,
- "itted": 24429,
- "itten": 30014,
- "itten": 4343,
- "itter": 11456,
- "itters": 13082,
- "itti": 28629,
- "ittin": 25646,
- "itting": 3147,
- "ittle": 24208,
- "ittle": 21366,
- "ittles": 38989,
- "itton": 25707,
- "itty": 35096,
- "itu": 1668,
- "itu": 32128,
- "itude": 43382,
- "itude": 5012,
- "itudes": 20459,
- "itunes": 7007,
- "itup": 35838,
- "iture": 25547,
- "itus": 24364,
- "itutes": 32883,
- "itv": 20159,
- "itv": 12805,
- "ity": 2480,
- "ity": 696,
- "itya": 32055,
- "itz": 14544,
- "itz": 7807,
- "iu": 14292,
- "iu": 15575,
- "ium": 10762,
- "ius": 6740,
- "iv": 6775,
- "iv": 9315,
- "iva": 42463,
- "ivan": 15544,
- "ivan": 15689,
- "ivanka": 37914,
- "ive": 26885,
- "ive": 8653,
- "ived": 15654,
- "iver": 36849,
- "iver": 44254,
- "ives": 27333,
- "ivf": 39159,
- "iving": 45136,
- "ivory": 16776,
- "ivote": 45835,
- "ivy": 36939,
- "ivy": 16045,
- "iw": 13058,
- "iw": 46604,
- "iwant": 42747,
- "iwd": 16815,
- "iwm": 44237,
- "ix": 13272,
- "ix": 8756,
- "iy": 13704,
- "iya": 18595,
- "iyaki": 48395,
- "iz": 2845,
- "iz": 8407,
- "iza": 37704,
- "ization": 10847,
- "ize": 10885,
- "ized": 7690,
- "izen": 34776,
- "izer": 23895,
- "izes": 45434,
- "izing": 17354,
- "izo": 46910,
- "izz": 31779,
- "izz": 46128,
- "izzy": 28861,
- "j": 73,
- "j": 329,
- "ja": 1586,
- "ja": 2641,
- "jaan": 25052,
- "jab": 8059,
- "jab": 9439,
- "jac": 2293,
- "jac": 30198,
- "jace": 43286,
- "jack": 2679,
- "jack": 3267,
- "jacked": 27923,
- "jacket": 6164,
- "jackets": 14745,
- "jacki": 47418,
- "jackie": 28023,
- "jackie": 11716,
- "jacking": 40929,
- "jackman": 35723,
- "jackpot": 23926,
- "jacks": 19649,
- "jackson": 12321,
- "jackson": 4363,
- "jacksonville": 19263,
- "jaco": 6840,
- "jacob": 14385,
- "jacob": 9222,
- "jacobs": 17482,
- "jacobson": 46826,
- "jacqu": 14495,
- "jacqueline": 22843,
- "jacques": 17799,
- "jad": 12976,
- "jad": 38691,
- "jada": 37416,
- "jade": 25123,
- "jade": 14513,
- "jaden": 37174,
- "jadine": 37445,
- "jae": 16869,
- "jae": 15765,
- "jaejoong": 43610,
- "jaf": 19362,
- "jag": 7984,
- "jag": 36236,
- "jagan": 48530,
- "jagger": 30835,
- "jags": 31086,
- "jagu": 10096,
- "jaguar": 44777,
- "jaguar": 14757,
- "jaguars": 21854,
- "jah": 20067,
- "jah": 11084,
- "jahan": 44404,
- "jahan": 47827,
- "jai": 10542,
- "jai": 13819,
- "jail": 18574,
- "jail": 9332,
- "jailbreak": 45990,
- "jailed": 19456,
- "jails": 47833,
- "jaime": 24716,
- "jain": 21999,
- "jaipur": 23593,
- "jais": 48607,
- "jait": 28910,
- "jaitley": 32776,
- "jak": 9225,
- "jak": 30589,
- "jakarta": 15471,
- "jake": 13140,
- "jake": 7419,
- "jakob": 47358,
- "jal": 8380,
- "jal": 26773,
- "jalan": 27270,
- "jalap": 49081,
- "jalape": 34263,
- "jalapeño": 43017,
- "jalen": 33548,
- "jam": 1434,
- "jam": 5201,
- "jama": 8977,
- "jama": 35366,
- "jamaica": 13019,
- "jamaican": 25144,
- "jamal": 26108,
- "jambo": 35599,
- "jamboree": 38506,
- "jame": 12341,
- "james": 6963,
- "james": 2392,
- "jamesbond": 44704,
- "jamesc": 47004,
- "jameson": 31731,
- "jami": 15092,
- "jamie": 16454,
- "jamie": 8078,
- "jamiedor": 34310,
- "jamiedornan": 34896,
- "jammed": 35590,
- "jammin": 35223,
- "jamming": 25862,
- "jammu": 25926,
- "jams": 20243,
- "jan": 1891,
- "jan": 3334,
- "jana": 18182,
- "jane": 12389,
- "jane": 6736,
- "janeiro": 31740,
- "janet": 29665,
- "janet": 15872,
- "jang": 41526,
- "jang": 22074,
- "jani": 22606,
- "janice": 36048,
- "janine": 46896,
- "janis": 44233,
- "jann": 35377,
- "jans": 22578,
- "jansen": 45354,
- "janu": 3623,
- "january": 3697,
- "jap": 2299,
- "jap": 49062,
- "japan": 4502,
- "japan": 3400,
- "japanese": 27211,
- "japanese": 4925,
- "japs": 42121,
- "jar": 5120,
- "jar": 10837,
- "jard": 25778,
- "jardin": 37371,
- "jare": 17654,
- "jared": 35597,
- "jared": 12571,
- "jaredle": 36739,
- "jaredleto": 37106,
- "jaro": 35505,
- "jarpad": 44497,
- "jarre": 23385,
- "jarrett": 30531,
- "jars": 27583,
- "jarvis": 29286,
- "jas": 4492,
- "jas": 17559,
- "jasmin": 42989,
- "jasmin": 47700,
- "jasmine": 17056,
- "jason": 10009,
- "jason": 5395,
- "jasper": 19827,
- "jat": 26106,
- "jau": 26932,
- "jauregui": 48175,
- "jav": 6234,
- "java": 12918,
- "javascri": 16289,
- "javascript": 16423,
- "jave": 46218,
- "javed": 42268,
- "javelin": 41701,
- "javi": 47627,
- "javier": 23307,
- "jaw": 14804,
- "jaw": 17307,
- "jawa": 44790,
- "jaws": 25491,
- "jax": 22348,
- "jax": 12390,
- "jay": 3427,
- "jay": 4155,
- "jaya": 21960,
- "jayanti": 37732,
- "jaye": 45703,
- "jayne": 35228,
- "jays": 12393,
- "jaz": 3465,
- "jaz": 32874,
- "jazeera": 38260,
- "jazz": 11488,
- "jazz": 4528,
- "jazzfest": 36683,
- "jazzy": 28191,
- "jb": 21915,
- "jb": 13637,
- "jc": 14991,
- "jc": 11517,
- "jd": 18289,
- "jd": 14125,
- "jdm": 42013,
- "je": 1013,
- "je": 8776,
- "jeal": 9964,
- "jealous": 11093,
- "jealousy": 37654,
- "jean": 13943,
- "jean": 6473,
- "jeanette": 48167,
- "jeanne": 29201,
- "jeans": 10157,
- "jeb": 35101,
- "jec": 1347,
- "ject": 6070,
- "jed": 12166,
- "jed": 38748,
- "jeddah": 40982,
- "jedi": 16681,
- "jee": 29250,
- "jee": 14870,
- "jeep": 16593,
- "jeep": 11286,
- "jeeplife": 43100,
- "jeet": 45542,
- "jeet": 30944,
- "jef": 10276,
- "jeff": 6245,
- "jeff": 5550,
- "jefferson": 44711,
- "jefferson": 13976,
- "jeffery": 41470,
- "jeffree": 45994,
- "jeffrey": 32886,
- "jeffrey": 16027,
- "jeho": 42437,
- "jeky": 43893,
- "jekyll": 49405,
- "jel": 9794,
- "jelena": 48218,
- "jelly": 19110,
- "jelly": 13762,
- "jellyfish": 30988,
- "jem": 46326,
- "jem": 37530,
- "jen": 2554,
- "jen": 12997,
- "jenkins": 16162,
- "jenn": 33921,
- "jenn": 29869,
- "jenna": 17125,
- "jenner": 14260,
- "jenni": 6774,
- "jennie": 28875,
- "jennifer": 19786,
- "jennifer": 8613,
- "jennings": 21564,
- "jenny": 20165,
- "jenny": 13414,
- "jens": 40806,
- "jensen": 35558,
- "jensen": 19004,
- "jensenackles": 41011,
- "jeon": 45200,
- "jeon": 43337,
- "jeong": 47146,
- "jeong": 39264,
- "jeopar": 22988,
- "jeopardy": 29613,
- "jer": 2310,
- "jer": 35307,
- "jere": 5614,
- "jeremi": 22362,
- "jeremiah": 27301,
- "jeremy": 14656,
- "jeremy": 8127,
- "jeremycorbyn": 37484,
- "jeric": 25084,
- "jericho": 28892,
- "jerk": 23917,
- "jerky": 40079,
- "jermaine": 40722,
- "jerome": 19876,
- "jerry": 18163,
- "jerry": 9164,
- "jersey": 21921,
- "jersey": 4471,
- "jerseys": 15518,
- "jerus": 12257,
- "jerusalem": 12557,
- "jes": 7686,
- "jes": 35826,
- "jess": 5313,
- "jess": 13758,
- "jesse": 23112,
- "jesse": 11770,
- "jessi": 24373,
- "jessic": 14881,
- "jessica": 45421,
- "jessica": 8178,
- "jessie": 19424,
- "jester": 44225,
- "jesu": 19777,
- "jesuit": 33234,
- "jesus": 4070,
- "jet": 11515,
- "jet": 6565,
- "jetblue": 45021,
- "jeter": 38450,
- "jets": 38584,
- "jets": 10025,
- "jett": 44541,
- "jetty": 46382,
- "jew": 27450,
- "jewel": 4880,
- "jewel": 17591,
- "jewell": 9777,
- "jewellers": 46265,
- "jewellery": 11192,
- "jewelry": 28018,
- "jewelry": 6039,
- "jewels": 20205,
- "jewish": 29594,
- "jewish": 9104,
- "jews": 14200,
- "jf": 31130,
- "jf": 33718,
- "jfc": 43652,
- "jfk": 18486,
- "jg": 41986,
- "jg": 35138,
- "jh": 24858,
- "jh": 21485,
- "jha": 47012,
- "jha": 38092,
- "jhal": 45695,
- "jhar": 31546,
- "jharkhand": 39001,
- "jhb": 34631,
- "ji": 3252,
- "ji": 2697,
- "jia": 32907,
- "jian": 33427,
- "jiang": 43309,
- "jiang": 25762,
- "jic": 48350,
- "jic": 40215,
- "jid": 24403,
- "jie": 40005,
- "jig": 15136,
- "jig": 47430,
- "jigsaw": 32987,
- "jiha": 23194,
- "jihad": 29637,
- "jihoon": 44765,
- "jil": 36225,
- "jill": 24136,
- "jill": 15254,
- "jillian": 37820,
- "jim": 3190,
- "jim": 4550,
- "jima": 20679,
- "jimcantore": 43950,
- "jimenez": 35947,
- "jimi": 30565,
- "jimin": 16286,
- "jimmie": 45679,
- "jimmy": 12215,
- "jimmy": 6817,
- "jimmyfallon": 45265,
- "jin": 7927,
- "jin": 8485,
- "jind": 40609,
- "jing": 34933,
- "jing": 28607,
- "jingle": 28699,
- "jinnah": 43141,
- "jinping": 39308,
- "jinx": 42977,
- "jinyoung": 38051,
- "jio": 40501,
- "jis": 25988,
- "jis": 23515,
- "jisoo": 43070,
- "jit": 11947,
- "jit": 20308,
- "jitsu": 24530,
- "jiu": 43351,
- "jiu": 44123,
- "jj": 12502,
- "jj": 12790,
- "jk": 20189,
- "jk": 9702,
- "jkt": 21494,
- "jl": 25027,
- "jl": 22911,
- "jlo": 31017,
- "jm": 24044,
- "jm": 18657,
- "jn": 24576,
- "jn": 21717,
- "jnr": 37145,
- "jnu": 47142,
- "jo": 683,
- "jo": 3804,
- "joachim": 48979,
- "joan": 28064,
- "joan": 12710,
- "joann": 35484,
- "joanna": 25357,
- "joanne": 43736,
- "joanne": 25092,
- "joao": 45666,
- "joaqu": 25140,
- "joaquin": 30745,
- "job": 13114,
- "job": 2075,
- "jobs": 3735,
- "jobsearch": 45459,
- "joburg": 39343,
- "jocel": 36879,
- "jocelyn": 47259,
- "jock": 34485,
- "jockey": 20126,
- "jodh": 48689,
- "jodi": 36812,
- "jodi": 26888,
- "jodie": 33100,
- "jody": 32959,
- "joe": 9309,
- "joe": 3305,
- "joel": 19819,
- "joel": 11429,
- "joes": 34756,
- "joey": 16281,
- "joey": 10455,
- "jog": 37967,
- "jog": 31691,
- "jogging": 37922,
- "joh": 1201,
- "johan": 17416,
- "johan": 27789,
- "johann": 31180,
- "johanna": 41494,
- "johannes": 37779,
- "johannesburg": 28377,
- "johansson": 41512,
- "johar": 34871,
- "john": 2004,
- "john": 1742,
- "johncena": 46820,
- "johnnie": 47947,
- "johnny": 14464,
- "johnny": 6904,
- "johns": 14515,
- "johnson": 26036,
- "johnson": 4010,
- "johnston": 19791,
- "johnstone": 40766,
- "johor": 34750,
- "join": 14737,
- "join": 1384,
- "joined": 4954,
- "joining": 5118,
- "joins": 5681,
- "joint": 6640,
- "jointhe": 30422,
- "jointly": 37471,
- "joints": 27204,
- "jojo": 41484,
- "jojo": 22075,
- "joke": 7198,
- "joker": 18200,
- "jokers": 44101,
- "jokes": 11336,
- "joking": 26112,
- "joko": 44975,
- "jol": 9174,
- "jol": 36470,
- "jolie": 31633,
- "jolla": 46109,
- "jolly": 21516,
- "jom": 32152,
- "jon": 3026,
- "jon": 6139,
- "jona": 6629,
- "jonah": 47934,
- "jonah": 27556,
- "jonas": 42373,
- "jonas": 13650,
- "jonathan": 19026,
- "jonathan": 7762,
- "jone": 33934,
- "jones": 19091,
- "jones": 3538,
- "jong": 20214,
- "jong": 14726,
- "jonghyun": 29023,
- "jongin": 36957,
- "joni": 43177,
- "jonny": 28454,
- "jonny": 21895,
- "joo": 25807,
- "joo": 27680,
- "joom": 47543,
- "joon": 18547,
- "joong": 26544,
- "jop": 30486,
- "joplin": 42688,
- "jor": 2482,
- "jor": 31595,
- "jordan": 14644,
- "jordan": 4388,
- "jordani": 46898,
- "jordi": 44795,
- "jorge": 48761,
- "jorge": 18225,
- "jos": 20560,
- "jos": 19661,
- "jose": 4647,
- "jose": 7075,
- "josef": 36584,
- "josel": 47800,
- "joseph": 14163,
- "joseph": 6478,
- "josephine": 34866,
- "josh": 9998,
- "josh": 5679,
- "joshi": 24786,
- "joshu": 9112,
- "joshua": 11852,
- "josi": 33583,
- "josie": 33167,
- "joss": 42834,
- "josé": 27922,
- "jou": 19921,
- "jou": 32029,
- "jour": 2078,
- "jour": 17142,
- "journ": 4563,
- "journal": 6626,
- "journalism": 10123,
- "journalist": 9914,
- "journalists": 12249,
- "journals": 24391,
- "journe": 48833,
- "journey": 32156,
- "journey": 3749,
- "journeys": 23329,
- "journo": 37034,
- "journos": 46437,
- "jovi": 33866,
- "joy": 6308,
- "joy": 4273,
- "joyce": 43753,
- "joyce": 15275,
- "joye": 34052,
- "joyeux": 41876,
- "joyful": 24139,
- "joyous": 32245,
- "joyride": 46949,
- "joys": 22996,
- "jp": 18249,
- "jp": 10557,
- "jpg": 36950,
- "jpn": 36212,
- "jr": 13973,
- "jr": 3605,
- "js": 46243,
- "js": 8006,
- "jst": 26523,
- "jt": 39480,
- "jt": 18119,
- "ju": 669,
- "ju": 9970,
- "jual": 38720,
- "juan": 17148,
- "juan": 9274,
- "juana": 9081,
- "jubi": 15485,
- "jubil": 47743,
- "jubilee": 16907,
- "juco": 31570,
- "jud": 8363,
- "juda": 32478,
- "judah": 41066,
- "judaism": 42217,
- "judas": 39532,
- "judd": 29770,
- "judg": 20012,
- "judge": 16824,
- "judge": 5656,
- "judged": 33453,
- "judgement": 25246,
- "judges": 12575,
- "judging": 16570,
- "judgment": 24191,
- "judi": 42546,
- "judice": 28032,
- "judicial": 19579,
- "judiciary": 24545,
- "judith": 24047,
- "judo": 27011,
- "judy": 34663,
- "judy": 16510,
- "jug": 27619,
- "jugg": 38628,
- "juic": 38761,
- "juice": 37954,
- "juice": 6916,
- "juices": 36757,
- "juicy": 17623,
- "juju": 43020,
- "juke": 32519,
- "jukebox": 36411,
- "jul": 34662,
- "jul": 15975,
- "jule": 40819,
- "jules": 21996,
- "juli": 3614,
- "juli": 49160,
- "julia": 10207,
- "julian": 25459,
- "julian": 12643,
- "juliana": 46059,
- "julie": 22534,
- "julie": 10505,
- "julien": 32595,
- "juliet": 20641,
- "juliette": 44804,
- "julio": 24888,
- "julius": 20870,
- "july": 2272,
- "jum": 20791,
- "jumbo": 24678,
- "jume": 45989,
- "jump": 5519,
- "jump": 6423,
- "jumped": 16901,
- "jumper": 16558,
- "jumpers": 36485,
- "jumping": 11476,
- "jumpman": 48803,
- "jumps": 18911,
- "jumpsuit": 31044,
- "jun": 1637,
- "jun": 7719,
- "junction": 11320,
- "june": 23188,
- "june": 2345,
- "jung": 13086,
- "jung": 13031,
- "jungkook": 20040,
- "jungle": 42421,
- "jungle": 10865,
- "juni": 4029,
- "junior": 21167,
- "junior": 5027,
- "juniors": 16811,
- "juniper": 33829,
- "junk": 16000,
- "junkie": 27613,
- "junkies": 41207,
- "juno": 28845,
- "junto": 34282,
- "jupit": 15270,
- "jupiter": 16212,
- "jur": 15896,
- "jura": 14715,
- "jurassic": 28844,
- "jurassic": 21255,
- "jurgen": 39263,
- "juris": 37010,
- "jurisdic": 37714,
- "jury": 12931,
- "jus": 14999,
- "just": 1770,
- "just": 761,
- "justi": 14700,
- "justic": 30399,
- "justice": 16904,
- "justice": 3604,
- "justicefor": 25812,
- "justiceleague": 41929,
- "justices": 44356,
- "justified": 34546,
- "justify": 28192,
- "justin": 7537,
- "justin": 4394,
- "justinbieber": 12501,
- "justine": 34418,
- "justintrudeau": 32184,
- "justsaying": 42922,
- "juve": 47717,
- "juve": 23092,
- "juven": 12944,
- "juvenile": 19333,
- "juvent": 13908,
- "juventus": 47378,
- "juventus": 16208,
- "jux": 33552,
- "juxta": 34964,
- "jv": 37932,
- "jv": 11805,
- "jw": 30221,
- "jw": 24215,
- "jy": 20979,
- "jyo": 27378,
- "jyoti": 48696,
- "jä": 45381,
- "k": 74,
- "k": 330,
- "ka": 1595,
- "ka": 1525,
- "kaa": 34496,
- "kab": 6554,
- "kab": 45134,
- "kabaddi": 41749,
- "kabir": 38619,
- "kabo": 47974,
- "kabul": 26160,
- "kac": 21693,
- "kach": 14341,
- "kad": 10901,
- "kade": 41130,
- "kaduna": 38053,
- "kae": 22542,
- "kaeper": 30070,
- "kaepernick": 30713,
- "kaf": 19870,
- "kag": 13666,
- "kag": 31003,
- "kah": 16068,
- "kah": 15463,
- "kahn": 35397,
- "kai": 12752,
- "kai": 9601,
- "kaido": 40255,
- "kail": 23623,
- "kaine": 39028,
- "kair": 33027,
- "kaiser": 43685,
- "kaiser": 29960,
- "kait": 19326,
- "kaitlyn": 34948,
- "kaj": 44788,
- "kaj": 40381,
- "kak": 10401,
- "kak": 40128,
- "kaka": 47689,
- "kaku": 30900,
- "kal": 4187,
- "kal": 18712,
- "kala": 45453,
- "kala": 33105,
- "kalam": 40142,
- "kalamaz": 42328,
- "kalamazoo": 46264,
- "kalb": 34483,
- "kale": 17162,
- "kale": 16625,
- "kaleido": 41144,
- "kali": 17844,
- "kali": 26964,
- "kalin": 42776,
- "kalyan": 23825,
- "kam": 4104,
- "kam": 26011,
- "kamal": 31371,
- "kamal": 28619,
- "kamala": 45003,
- "kame": 45235,
- "kamen": 40738,
- "kami": 28707,
- "kamloops": 36602,
- "kamp": 35179,
- "kamp": 29522,
- "kampala": 37134,
- "kan": 2532,
- "kan": 8101,
- "kana": 35178,
- "kand": 17478,
- "kane": 32218,
- "kane": 9765,
- "kang": 12226,
- "kang": 20789,
- "kangar": 20622,
- "kangaroo": 25513,
- "kani": 40907,
- "kani": 41948,
- "kann": 18533,
- "kannada": 30053,
- "kano": 28201,
- "kans": 34012,
- "kansas": 25507,
- "kansas": 6539,
- "kansascity": 46134,
- "kant": 39923,
- "kant": 47132,
- "kanth": 24427,
- "kanu": 44565,
- "kany": 13590,
- "kanye": 29680,
- "kanye": 14965,
- "kanyewest": 31943,
- "kap": 6804,
- "kap": 45279,
- "kapam": 48561,
- "kapil": 32337,
- "kapil": 42709,
- "kapilshar": 48978,
- "kaplan": 37401,
- "kapoor": 9117,
- "kapp": 36717,
- "kappa": 20239,
- "kapur": 42371,
- "kar": 1813,
- "kar": 5933,
- "kara": 12552,
- "karab": 40916,
- "karachi": 13671,
- "karak": 40372,
- "karan": 20077,
- "karan": 20931,
- "karanjohar": 47621,
- "karao": 16262,
- "karaoke": 16640,
- "karate": 21211,
- "kardashi": 13619,
- "kardashian": 14578,
- "kare": 14310,
- "kare": 38354,
- "kareem": 38885,
- "kareena": 41569,
- "karen": 17719,
- "karen": 10349,
- "kari": 15339,
- "kari": 15161,
- "karim": 33477,
- "karin": 43917,
- "karina": 40250,
- "karl": 20967,
- "karl": 13134,
- "karla": 42309,
- "karma": 17658,
- "karnat": 13994,
- "karnataka": 15515,
- "karo": 45305,
- "kart": 47841,
- "kart": 21310,
- "karthik": 41397,
- "karti": 23053,
- "kartikeyan": 32584,
- "karting": 41655,
- "kas": 6119,
- "kas": 14372,
- "kasa": 46111,
- "kash": 6954,
- "kash": 21371,
- "kashi": 47945,
- "kashmir": 20251,
- "kashmir": 10783,
- "kashmiri": 35331,
- "kasi": 45870,
- "kasi": 32819,
- "kasich": 39666,
- "kat": 2844,
- "kat": 9341,
- "kata": 14558,
- "kate": 11620,
- "kate": 6699,
- "katelyn": 45963,
- "kath": 7386,
- "kath": 19745,
- "katharine": 41473,
- "katherine": 17687,
- "kathle": 18721,
- "kathleen": 21709,
- "kathmandu": 34456,
- "kathniel": 36159,
- "kathr": 14905,
- "kathryn": 33142,
- "kathryn": 19999,
- "kathy": 34775,
- "kathy": 18795,
- "kati": 6515,
- "kati": 29928,
- "katic": 48058,
- "katie": 24117,
- "katie": 9076,
- "katniss": 47916,
- "kato": 27573,
- "katrin": 31282,
- "katrina": 21397,
- "katrinakaif": 45845,
- "kats": 44213,
- "katsu": 49296,
- "katsu": 43712,
- "katy": 17609,
- "katy": 14435,
- "katyperry": 28309,
- "katz": 30790,
- "kau": 9299,
- "kau": 36895,
- "kauai": 44050,
- "kaufman": 37188,
- "kaur": 30518,
- "kav": 10228,
- "kavan": 18576,
- "kavanaugh": 20252,
- "kaw": 10842,
- "kaw": 42719,
- "kawa": 33244,
- "kawaii": 26891,
- "kawasaki": 28227,
- "kawhi": 41220,
- "kay": 4673,
- "kay": 9862,
- "kaya": 22752,
- "kayak": 27043,
- "kayaking": 28977,
- "kaye": 33003,
- "kayla": 17139,
- "kaylee": 47215,
- "kayo": 37021,
- "kaz": 8812,
- "kaz": 39622,
- "kazakh": 25451,
- "kazakhstan": 26720,
- "kazan": 47641,
- "kb": 27381,
- "kb": 19960,
- "kbs": 27418,
- "kc": 10869,
- "kc": 8638,
- "kca": 14347,
- "kcon": 39970,
- "kcr": 46181,
- "kd": 21826,
- "kd": 15597,
- "kday": 31074,
- "kdrama": 48628,
- "ke": 643,
- "ke": 618,
- "kea": 47926,
- "kean": 43288,
- "keane": 28635,
- "keanu": 40608,
- "kear": 21562,
- "kearney": 36435,
- "keating": 40045,
- "keaton": 29975,
- "kebab": 36497,
- "ked": 11730,
- "ked": 1243,
- "kee": 9724,
- "kee": 6760,
- "keef": 42323,
- "keefe": 46965,
- "keegan": 31122,
- "keel": 48376,
- "keen": 17714,
- "keen": 13218,
- "keenan": 36276,
- "keep": 2924,
- "keep": 1726,
- "keeper": 7650,
- "keepers": 16130,
- "keepin": 41712,
- "keeping": 38371,
- "keeping": 4873,
- "keepit": 28044,
- "keeps": 6333,
- "keer": 27412,
- "keerth": 47500,
- "keerthyofficial": 48185,
- "kees": 10791,
- "keg": 32785,
- "keh": 41272,
- "keh": 36983,
- "kei": 18735,
- "kei": 24835,
- "keith": 18762,
- "keith": 8252,
- "kej": 15674,
- "kejri": 16617,
- "kejriwal": 17334,
- "keke": 39195,
- "kel": 2825,
- "kel": 7553,
- "kele": 41765,
- "kell": 16082,
- "kell": 40103,
- "keller": 21407,
- "kelley": 23776,
- "kelli": 45852,
- "kelli": 46190,
- "kellie": 49224,
- "kellogg": 44218,
- "kelly": 13417,
- "kelly": 5220,
- "kelown": 31708,
- "kelowna": 32963,
- "kelsey": 42295,
- "kelsey": 23018,
- "kelvin": 32859,
- "kem": 31013,
- "kem": 17349,
- "kemp": 18302,
- "kemp": 25325,
- "ken": 1838,
- "ken": 1702,
- "kend": 7497,
- "kendal": 44836,
- "kendall": 34607,
- "kendall": 16238,
- "kendra": 36074,
- "kendrick": 41787,
- "kendrick": 21953,
- "kendricklamar": 47020,
- "kenne": 6209,
- "kennedy": 38631,
- "kennedy": 9004,
- "kennel": 39595,
- "kenneth": 46900,
- "kenneth": 17839,
- "kenney": 41373,
- "kenny": 20185,
- "kenny": 9595,
- "kens": 29765,
- "kensing": 21505,
- "kensington": 24988,
- "kent": 13875,
- "kent": 8214,
- "kentu": 9045,
- "kentucky": 32230,
- "kentucky": 10014,
- "keny": 17374,
- "kenya": 6181,
- "kenyan": 22624,
- "kenyans": 36263,
- "kenyatta": 31012,
- "kenzie": 38087,
- "keo": 43062,
- "kept": 7737,
- "ker": 2352,
- "ker": 1485,
- "keral": 35122,
- "kerala": 11881,
- "kered": 26690,
- "kerel": 32232,
- "keri": 43447,
- "kermit": 40908,
- "kern": 40150,
- "kernel": 40684,
- "kerr": 20491,
- "kerri": 41849,
- "kerry": 24795,
- "kerry": 13097,
- "kers": 30347,
- "kers": 2880,
- "kershaw": 40785,
- "kerson": 42810,
- "kerswednesday": 48152,
- "kert": 47279,
- "kes": 38398,
- "kes": 1115,
- "kesh": 19751,
- "kesha": 36526,
- "kest": 15080,
- "ket": 2715,
- "ket": 1236,
- "ketball": 38240,
- "ketch": 22590,
- "ketch": 35371,
- "ketchup": 26724,
- "kete": 25404,
- "keted": 41396,
- "keting": 15951,
- "keto": 27485,
- "keto": 28754,
- "kets": 1632,
- "kett": 23124,
- "kett": 10312,
- "kettering": 43779,
- "kettle": 41992,
- "kettle": 24303,
- "kev": 22758,
- "kev": 29419,
- "kevin": 9419,
- "kevin": 4685,
- "kew": 38014,
- "kew": 31409,
- "kex": 30251,
- "key": 2891,
- "key": 1458,
- "keyan": 27617,
- "keyboard": 13017,
- "keyboards": 49237,
- "keychain": 31050,
- "keye": 40516,
- "keye": 20635,
- "keyes": 18336,
- "keynes": 32462,
- "keynote": 7556,
- "keys": 48912,
- "keys": 6355,
- "keystone": 30688,
- "keyword": 42284,
- "keywords": 48122,
- "kf": 33308,
- "kf": 42119,
- "kfc": 22032,
- "kg": 36772,
- "kg": 7817,
- "kgs": 46629,
- "kh": 2166,
- "kh": 7452,
- "kha": 7333,
- "kha": 18929,
- "khair": 43742,
- "khaki": 41646,
- "khal": 13070,
- "khaled": 29343,
- "khali": 11324,
- "khalid": 27166,
- "khalifa": 21389,
- "khalil": 36229,
- "kham": 24892,
- "khan": 13318,
- "khan": 3873,
- "khand": 43384,
- "khand": 31110,
- "khanna": 29931,
- "khar": 18340,
- "khar": 28578,
- "khart": 37458,
- "khat": 43290,
- "khe": 26360,
- "kher": 43843,
- "khi": 39062,
- "khi": 42925,
- "khil": 34101,
- "khloe": 45312,
- "kho": 14022,
- "kho": 28774,
- "khou": 30656,
- "khs": 21239,
- "khtar": 45593,
- "khu": 14041,
- "khur": 32083,
- "khy": 40917,
- "khz": 45604,
- "ki": 848,
- "ki": 2608,
- "kia": 8712,
- "kian": 43961,
- "kian": 25708,
- "kians": 44010,
- "kib": 43108,
- "kiba": 37207,
- "kic": 24003,
- "kic": 27633,
- "kicchasu": 44665,
- "kicchasudeep": 45560,
- "kick": 4102,
- "kick": 4289,
- "kickass": 39299,
- "kickboxing": 36041,
- "kicked": 12479,
- "kicker": 26338,
- "kickin": 34597,
- "kicking": 7802,
- "kickoff": 10245,
- "kicks": 6989,
- "kickstart": 40780,
- "kickstarter": 13228,
- "kid": 3948,
- "kid": 3551,
- "kidd": 24082,
- "kidding": 14535,
- "kiddo": 36360,
- "kiddos": 29205,
- "kidlit": 39064,
- "kidlit": 33515,
- "kidlitart": 41600,
- "kidman": 44931,
- "kidnap": 45100,
- "kidnapp": 16183,
- "kidnapped": 24737,
- "kidnapping": 32361,
- "kidney": 37835,
- "kidney": 14610,
- "kids": 15561,
- "kids": 1911,
- "kidz": 41938,
- "kie": 8544,
- "kie": 3094,
- "kiefer": 48026,
- "kiel": 40940,
- "kiel": 25509,
- "kien": 28782,
- "kier": 20403,
- "kier": 35575,
- "kieran": 29231,
- "kies": 36601,
- "kies": 4993,
- "kiest": 29755,
- "kiev": 24585,
- "kiewicz": 47574,
- "kigali": 40278,
- "kii": 39340,
- "kik": 36176,
- "kiki": 23962,
- "kiko": 40861,
- "kil": 4912,
- "kil": 39337,
- "kildare": 45541,
- "kili": 24386,
- "kilig": 49172,
- "kilimanjaro": 43470,
- "kilkenny": 33805,
- "kill": 6163,
- "kill": 4367,
- "killa": 41355,
- "killarney": 48813,
- "killed": 3733,
- "killer": 28230,
- "killer": 6613,
- "killers": 17614,
- "killin": 25903,
- "killing": 37977,
- "killing": 5923,
- "killings": 24918,
- "kills": 9795,
- "kiln": 44150,
- "kilo": 39281,
- "kilom": 26285,
- "kilometers": 39192,
- "kilometres": 43278,
- "kilt": 49319,
- "kim": 4639,
- "kim": 4606,
- "kimber": 16796,
- "kimberley": 39859,
- "kimberly": 27465,
- "kimchi": 41027,
- "kimi": 31536,
- "kimkardashian": 35400,
- "kimmel": 27820,
- "kimono": 40024,
- "kin": 1442,
- "kin": 2667,
- "kina": 28518,
- "kind": 7204,
- "kind": 3044,
- "kinda": 6612,
- "kinder": 12711,
- "kinder": 24159,
- "kindergarten": 16749,
- "kindle": 24704,
- "kindle": 10746,
- "kindleunlimited": 32164,
- "kindly": 13952,
- "kindness": 45112,
- "kindness": 10614,
- "kinds": 14879,
- "kine": 17607,
- "kineni": 49080,
- "kinetic": 37699,
- "king": 2365,
- "king": 674,
- "kingdom": 21870,
- "kingdom": 7364,
- "kingdomhearts": 48570,
- "kingdoms": 43890,
- "kingfisher": 34330,
- "kingjames": 33153,
- "kingly": 33642,
- "kingof": 27878,
- "kings": 18590,
- "kings": 4232,
- "kingsley": 41807,
- "kingston": 40736,
- "kingston": 15393,
- "kini": 41644,
- "kinky": 37006,
- "kinney": 37233,
- "kino": 39000,
- "kins": 31060,
- "kins": 4386,
- "kinson": 12095,
- "kio": 28210,
- "kio": 39401,
- "kiosk": 39146,
- "kip": 27636,
- "kip": 15986,
- "kipp": 43329,
- "kir": 3476,
- "kir": 32949,
- "kira": 33038,
- "kiran": 43234,
- "kiran": 36603,
- "kirby": 17065,
- "kiri": 34170,
- "kiri": 45826,
- "kirk": 10639,
- "kirk": 11508,
- "kirkland": 43061,
- "kiro": 39749,
- "kirstel": 46483,
- "kirsten": 31813,
- "kirsty": 37787,
- "kis": 3199,
- "kis": 22796,
- "kish": 25662,
- "kiss": 43757,
- "kiss": 5946,
- "kissed": 22561,
- "kisses": 47876,
- "kisses": 11220,
- "kissing": 18637,
- "kistan": 29580,
- "kit": 4566,
- "kit": 4274,
- "kita": 29961,
- "kitch": 3850,
- "kitchen": 18131,
- "kitchen": 4485,
- "kitchener": 34428,
- "kitchens": 28301,
- "kite": 47777,
- "kite": 19867,
- "kites": 45829,
- "kits": 13730,
- "kitt": 10840,
- "kitten": 13063,
- "kittens": 17216,
- "kitties": 36013,
- "kitty": 25067,
- "kitty": 8417,
- "kiwan": 38709,
- "kiwanis": 46513,
- "kiwi": 22440,
- "kiwis": 48108,
- "kiya": 41610,
- "kj": 27385,
- "kj": 28238,
- "kja": 41048,
- "kjv": 37387,
- "kk": 4390,
- "kk": 10849,
- "kka": 19002,
- "kke": 44239,
- "kker": 32399,
- "kki": 44672,
- "kkk": 20073,
- "kkkk": 15834,
- "kkkk": 47160,
- "kkkkkkkk": 31042,
- "kko": 43965,
- "kkr": 40855,
- "kl": 8498,
- "kl": 14134,
- "kla": 11249,
- "klan": 46935,
- "klar": 41374,
- "klaus": 31788,
- "kle": 7612,
- "kle": 7432,
- "klein": 33475,
- "klein": 17579,
- "kley": 18594,
- "kli": 31640,
- "klin": 44809,
- "klin": 41647,
- "kline": 47580,
- "kling": 40270,
- "klm": 38859,
- "klo": 15296,
- "klopp": 26446,
- "kltu": 25978,
- "klu": 21852,
- "kly": 45090,
- "km": 29954,
- "km": 4590,
- "kman": 33312,
- "kms": 24996,
- "kn": 4825,
- "kn": 23693,
- "knapp": 33945,
- "kne": 6358,
- "knee": 9897,
- "knees": 19115,
- "kner": 31578,
- "knew": 5009,
- "kni": 6312,
- "knick": 33286,
- "knicks": 17657,
- "knife": 44176,
- "knife": 8960,
- "knigh": 43099,
- "knight": 17949,
- "knight": 7355,
- "knights": 10385,
- "knit": 18745,
- "knit": 14313,
- "knitted": 28151,
- "knitting": 18863,
- "knives": 20910,
- "kno": 1482,
- "kno": 25362,
- "knob": 29736,
- "knobs": 47504,
- "knock": 14195,
- "knock": 11583,
- "knocked": 15325,
- "knocking": 20380,
- "knockout": 22602,
- "knocks": 24296,
- "knoll": 43882,
- "knot": 18412,
- "knots": 32428,
- "know": 4179,
- "know": 1038,
- "knowing": 9267,
- "knowledge": 27864,
- "knowledge": 5510,
- "knowledgeable": 43391,
- "knowles": 32631,
- "known": 3102,
- "knows": 4309,
- "knowyour": 30773,
- "knox": 18630,
- "knox": 21833,
- "knoxville": 23232,
- "knu": 14812,
- "knuck": 21333,
- "knuckle": 42023,
- "knuckles": 40127,
- "knw": 40803,
- "ko": 1313,
- "ko": 2448,
- "koala": 36654,
- "kobe": 42644,
- "kobe": 14470,
- "kobo": 42390,
- "koch": 25331,
- "kochi": 36710,
- "kodak": 30425,
- "kodi": 46611,
- "kof": 17528,
- "koff": 47303,
- "kofi": 40400,
- "koh": 13379,
- "koh": 31216,
- "kohl": 48479,
- "kohli": 17549,
- "koi": 28150,
- "kojima": 46419,
- "kok": 32045,
- "kok": 11225,
- "koko": 42426,
- "koko": 40003,
- "kol": 7142,
- "kol": 31023,
- "kolkata": 18011,
- "kom": 6686,
- "kom": 24181,
- "kombat": 29670,
- "kombucha": 48615,
- "komo": 31820,
- "kon": 5743,
- "kon": 29519,
- "kona": 30203,
- "kong": 31784,
- "kong": 6506,
- "konstant": 46583,
- "koo": 12225,
- "koo": 40472,
- "kook": 16003,
- "kool": 36755,
- "kool": 26444,
- "kop": 16623,
- "kop": 38999,
- "kor": 6428,
- "kor": 24175,
- "kore": 3919,
- "korea": 5915,
- "korean": 31949,
- "korean": 8034,
- "kori": 42842,
- "korn": 45412,
- "korn": 31492,
- "kors": 34535,
- "kos": 47438,
- "kos": 22951,
- "kosh": 45233,
- "kosher": 36502,
- "koso": 23892,
- "kosovo": 28343,
- "kot": 23323,
- "kot": 20701,
- "kota": 21735,
- "koto": 40945,
- "koto": 29977,
- "kou": 18502,
- "kou": 39614,
- "kour": 34134,
- "kov": 17733,
- "kov": 15156,
- "kova": 26185,
- "koval": 47903,
- "kovic": 16886,
- "kovich": 44794,
- "kovsky": 33384,
- "kow": 29764,
- "kow": 23919,
- "kowski": 17649,
- "koz": 29598,
- "kp": 16174,
- "kp": 16894,
- "kpa": 38759,
- "kph": 41138,
- "kpk": 42094,
- "kpmg": 38243,
- "kpop": 29534,
- "kpop": 15859,
- "kprc": 47832,
- "kprs": 46253,
- "kr": 7309,
- "kr": 14107,
- "kra": 5762,
- "kraft": 28057,
- "kraja": 29016,
- "kraken": 48408,
- "krakow": 40033,
- "kram": 19075,
- "kramer": 27495,
- "kran": 33243,
- "kranti": 47969,
- "krat": 30470,
- "kre": 8362,
- "kreme": 43140,
- "kremlin": 33979,
- "kri": 3679,
- "kris": 35251,
- "kris": 12261,
- "krish": 11487,
- "krishna": 15863,
- "krishnan": 46535,
- "krispy": 49292,
- "krist": 16490,
- "kristen": 28881,
- "kristen": 16644,
- "kristi": 26895,
- "kristin": 35408,
- "kristin": 26785,
- "kristina": 33180,
- "krit": 36265,
- "kro": 16193,
- "kroger": 36344,
- "kron": 25999,
- "kru": 10609,
- "kruger": 32948,
- "krun": 43084,
- "kry": 13995,
- "krystal": 36554,
- "ks": 10470,
- "ks": 662,
- "ksa": 25439,
- "ksh": 36594,
- "kst": 17420,
- "kstate": 48590,
- "ksu": 43496,
- "kswx": 36180,
- "kt": 17238,
- "kt": 7792,
- "ktm": 33989,
- "ktn": 42170,
- "kton": 37848,
- "kts": 48577,
- "ktv": 36444,
- "ku": 1836,
- "ku": 4827,
- "kuala": 30336,
- "kubball": 48995,
- "kuber": 41336,
- "kubernetes": 45144,
- "kubrick": 37032,
- "kuch": 39394,
- "kud": 40818,
- "kudos": 14481,
- "kul": 11325,
- "kul": 31514,
- "kum": 18086,
- "kum": 28148,
- "kuma": 43139,
- "kuma": 33920,
- "kumar": 22329,
- "kumar": 7674,
- "kumb": 31391,
- "kun": 6849,
- "kun": 21842,
- "kung": 39656,
- "kung": 22347,
- "kunst": 37881,
- "kup": 39023,
- "kups": 27240,
- "kur": 4862,
- "kurdi": 23504,
- "kurdish": 21644,
- "kurdistan": 24459,
- "kurds": 20888,
- "kuri": 46375,
- "kuro": 28239,
- "kuro": 47826,
- "kurt": 31903,
- "kurt": 14527,
- "kus": 27618,
- "kus": 27505,
- "kush": 22264,
- "kush": 24594,
- "kushner": 36716,
- "kut": 17283,
- "kut": 36965,
- "kuwait": 19679,
- "kuya": 34815,
- "kuz": 33253,
- "kv": 27594,
- "kv": 34249,
- "kw": 10072,
- "kw": 18339,
- "kwa": 32784,
- "kwa": 48576,
- "kwame": 46681,
- "kwan": 37100,
- "kwan": 39447,
- "kwang": 40260,
- "kwe": 26050,
- "kwi": 35327,
- "kwon": 36369,
- "kx": 28190,
- "kx": 46442,
- "ky": 2018,
- "ky": 2383,
- "kya": 29142,
- "kyc": 37758,
- "kyiv": 36422,
- "kyle": 15847,
- "kyle": 7539,
- "kylie": 28282,
- "kylie": 17983,
- "kyliejenner": 47232,
- "kylo": 47704,
- "kyo": 13150,
- "kyo": 6281,
- "kyoto": 23223,
- "kyr": 26329,
- "kyrgy": 40013,
- "kyrgyz": 48346,
- "kyrie": 21857,
- "kyu": 28296,
- "kyu": 25490,
- "kyuhyun": 37229,
- "kyung": 41058,
- "kyungsoo": 30280,
- "kywx": 39940,
- "kz": 48743,
- "kz": 36848,
- "kzn": 38264,
- "kö": 32437,
- "l": 75,
- "l": 331,
- "la": 572,
- "la": 1210,
- "laa": 44642,
- "lab": 3537,
- "lab": 4352,
- "labe": 25749,
- "label": 12235,
- "label": 9093,
- "labeled": 32720,
- "labeling": 36825,
- "labelled": 45188,
- "labels": 17413,
- "lable": 31879,
- "labor": 11201,
- "labor": 7878,
- "laboratories": 43421,
- "laboratory": 17664,
- "laborday": 39324,
- "labou": 32700,
- "labour": 19586,
- "labour": 6019,
- "labourdoorstep": 37008,
- "labout": 35961,
- "labra": 37067,
- "labrador": 25409,
- "labs": 12021,
- "laby": 29131,
- "labyrin": 31782,
- "labyrinth": 35594,
- "lac": 4477,
- "lac": 16189,
- "lace": 30012,
- "lace": 5421,
- "laced": 36800,
- "laces": 23281,
- "lacey": 31754,
- "lach": 30558,
- "lack": 24915,
- "lack": 8069,
- "lacking": 30080,
- "lacks": 34388,
- "laco": 45882,
- "lacrosse": 12915,
- "lacy": 38645,
- "lad": 15991,
- "lad": 10707,
- "ladak": 42312,
- "ladakh": 45295,
- "ladder": 16637,
- "ladders": 47125,
- "lade": 26447,
- "laden": 28634,
- "ladi": 12934,
- "ladies": 28932,
- "ladies": 3431,
- "lads": 9803,
- "lady": 7275,
- "lady": 2909,
- "ladybird": 43389,
- "ladybug": 40038,
- "ladygaga": 21232,
- "laf": 47555,
- "lafayette": 22683,
- "lag": 30932,
- "lag": 20394,
- "laga": 30161,
- "lage": 24369,
- "lager": 36811,
- "lager": 22989,
- "lagh": 37237,
- "laghate": 47565,
- "laghateparth": 48780,
- "lagi": 39786,
- "lago": 42698,
- "lago": 31476,
- "lagoon": 22753,
- "lagos": 12728,
- "lagun": 18500,
- "laguna": 23609,
- "lah": 27315,
- "lah": 4299,
- "lahat": 42164,
- "lahore": 16733,
- "lai": 23947,
- "laid": 42560,
- "laid": 11160,
- "lain": 46958,
- "lain": 17151,
- "laine": 35860,
- "lair": 31981,
- "lais": 34923,
- "lak": 12890,
- "lak": 26793,
- "lake": 6441,
- "lake": 2553,
- "lakedistrict": 26437,
- "lakel": 26133,
- "lakeland": 34306,
- "laker": 45717,
- "lakers": 13570,
- "lakes": 9265,
- "lakeshore": 42595,
- "lakeside": 30915,
- "lakewood": 36417,
- "lakh": 21487,
- "lakhs": 37985,
- "lakings": 34289,
- "lakota": 45510,
- "laksh": 24937,
- "lakshmi": 39682,
- "lal": 12301,
- "lal": 19430,
- "lala": 33661,
- "lali": 21726,
- "laliga": 32383,
- "lam": 2022,
- "lam": 5704,
- "lama": 26049,
- "lamar": 28678,
- "lamar": 17284,
- "lamb": 19863,
- "lamb": 10034,
- "lambda": 36687,
- "lambert": 14574,
- "lambeth": 43410,
- "lambo": 45464,
- "lamborgh": 18709,
- "lamborghini": 19462,
- "lambs": 30361,
- "lame": 23192,
- "lamin": 22337,
- "laminated": 49079,
- "lamo": 41461,
- "lamont": 46719,
- "lamp": 26700,
- "lamp": 10725,
- "lampard": 39989,
- "lamps": 23424,
- "lan": 1193,
- "lan": 4872,
- "lana": 15406,
- "lanapar": 47437,
- "lanaparrilla": 47819,
- "lanc": 11872,
- "lanca": 15694,
- "lancashire": 20939,
- "lancaster": 16446,
- "lance": 26025,
- "lance": 11609,
- "lancer": 38195,
- "lancers": 46392,
- "lancia": 48698,
- "lancs": 47540,
- "land": 1567,
- "land": 973,
- "lande": 36556,
- "landed": 9873,
- "lander": 37247,
- "lander": 9666,
- "landers": 20019,
- "landfall": 38465,
- "landfill": 34947,
- "landia": 41384,
- "landing": 8292,
- "landings": 46104,
- "landlord": 28938,
- "landlords": 35283,
- "landmark": 15208,
- "landmarks": 30393,
- "lando": 25463,
- "lando": 7065,
- "landon": 32748,
- "landrover": 38125,
- "landry": 36137,
- "lands": 40223,
- "lands": 2961,
- "landsc": 4384,
- "landscape": 21123,
- "landscape": 5727,
- "landscapephotography": 28125,
- "landscapes": 15344,
- "landscaping": 25642,
- "landslide": 31954,
- "lane": 25534,
- "lane": 3980,
- "lanes": 10345,
- "laney": 38552,
- "lang": 7969,
- "lang": 8578,
- "lange": 32021,
- "langford": 45615,
- "langley": 28595,
- "langu": 4095,
- "language": 46103,
- "language": 4781,
- "languages": 13527,
- "lani": 22964,
- "lanka": 16221,
- "lankan": 40531,
- "lannister": 49056,
- "lans": 43550,
- "lansing": 30805,
- "lant": 44504,
- "lanta": 44768,
- "lantern": 17185,
- "lanterns": 33676,
- "lantic": 32601,
- "lantic": 27678,
- "lants": 38425,
- "lanyard": 46808,
- "lao": 32475,
- "lao": 29521,
- "laos": 34353,
- "lap": 7213,
- "lap": 8639,
- "lapd": 32557,
- "lapel": 47961,
- "lapland": 43633,
- "laps": 18711,
- "lapse": 33365,
- "laptop": 10464,
- "laptops": 32189,
- "laq": 45026,
- "lar": 1592,
- "lar": 1652,
- "lara": 19435,
- "lard": 40347,
- "lare": 22415,
- "laredo": 48427,
- "large": 40234,
- "large": 3638,
- "largely": 21418,
- "larger": 12567,
- "largest": 4960,
- "largo": 44161,
- "lari": 34676,
- "lark": 43164,
- "lark": 23536,
- "larkin": 34769,
- "larry": 18642,
- "larry": 8242,
- "lars": 8669,
- "larsen": 39721,
- "larson": 27973,
- "larvae": 44840,
- "las": 8295,
- "las": 2552,
- "lasag": 31210,
- "lasagna": 40683,
- "lasalle": 43866,
- "laser": 25607,
- "laser": 9885,
- "lasers": 37060,
- "lash": 31995,
- "lash": 18480,
- "lashes": 21015,
- "lass": 24203,
- "lass": 18263,
- "lassic": 39430,
- "last": 10600,
- "last": 952,
- "lasted": 25711,
- "lasting": 13434,
- "lastnight": 30159,
- "lasts": 20141,
- "lasvegas": 17789,
- "lat": 1591,
- "lat": 28437,
- "lata": 47114,
- "latam": 40012,
- "late": 13267,
- "late": 2325,
- "latel": 49035,
- "lately": 11824,
- "latepost": 48328,
- "later": 24109,
- "later": 2941,
- "lateral": 26646,
- "latest": 46805,
- "latest": 2053,
- "latex": 27520,
- "lati": 16357,
- "latimes": 43356,
- "latin": 16695,
- "latin": 9888,
- "latina": 27936,
- "latino": 45734,
- "latino": 19470,
- "latinos": 40233,
- "lation": 6191,
- "latitude": 37392,
- "lative": 15719,
- "lator": 9291,
- "lators": 28278,
- "latt": 33561,
- "latte": 17697,
- "latter": 26198,
- "latvia": 30034,
- "lau": 1853,
- "lau": 23090,
- "lauderdale": 24352,
- "laugh": 4969,
- "laugh": 6332,
- "laughed": 16746,
- "laughing": 8301,
- "laughs": 14322,
- "laughter": 10722,
- "laun": 2944,
- "launch": 31168,
- "launch": 2904,
- "launched": 6125,
- "launcher": 35782,
- "launches": 7023,
- "launching": 8565,
- "laundering": 34079,
- "laundry": 14797,
- "laur": 15256,
- "laura": 17091,
- "laura": 7763,
- "laure": 16932,
- "laureate": 25675,
- "laurel": 43370,
- "laurel": 19942,
- "lauren": 10456,
- "lauren": 7634,
- "laurence": 29353,
- "laurent": 23226,
- "laurie": 20326,
- "laus": 38895,
- "laus": 28111,
- "lause": 22269,
- "laut": 47688,
- "lav": 13767,
- "lav": 26919,
- "lava": 16765,
- "laven": 15047,
- "lavender": 16033,
- "laver": 28188,
- "lavish": 35443,
- "law": 2874,
- "law": 2606,
- "lawful": 33845,
- "lawler": 47862,
- "lawless": 39468,
- "lawmaker": 37169,
- "lawmakers": 21190,
- "lawn": 31675,
- "lawn": 11024,
- "lawrence": 32221,
- "lawrence": 8820,
- "laws": 7306,
- "lawson": 22152,
- "lawsuit": 14346,
- "lawsuits": 44331,
- "lawyer": 10552,
- "lawyers": 14232,
- "lax": 17750,
- "lax": 10024,
- "lay": 7205,
- "lay": 6360,
- "laye": 25995,
- "layer": 12411,
- "layered": 28520,
- "layers": 15900,
- "laying": 12333,
- "layla": 45050,
- "layne": 48721,
- "layo": 21738,
- "layoffs": 29019,
- "layout": 17314,
- "lays": 19546,
- "layton": 38061,
- "laz": 18806,
- "lazar": 33075,
- "lazarus": 49126,
- "laze": 41559,
- "lazer": 43735,
- "lazio": 33010,
- "lazy": 32614,
- "lazy": 10753,
- "lb": 21958,
- "lb": 7422,
- "lbc": 37694,
- "lbj": 45683,
- "lbloggers": 48695,
- "lbs": 8912,
- "lc": 9584,
- "lc": 7225,
- "lcd": 21356,
- "lcfc": 25339,
- "lcs": 32279,
- "ld": 1431,
- "ld": 730,
- "lder": 6945,
- "lders": 43221,
- "ldn": 37050,
- "ldn": 2517,
- "ldnont": 25827,
- "ldnt": 21690,
- "ldr": 37279,
- "lds": 31235,
- "le": 534,
- "le": 579,
- "lea": 2246,
- "lea": 13324,
- "leach": 35527,
- "lead": 1328,
- "lead": 2784,
- "leader": 14806,
- "leader": 3236,
- "leaderboard": 34519,
- "leaders": 3546,
- "leadership": 36876,
- "leadership": 3652,
- "leading": 3833,
- "leads": 5335,
- "leaf": 9377,
- "leaf": 7232,
- "leaflet": 38289,
- "leaflets": 39014,
- "leafs": 16688,
- "leafy": 42616,
- "leagu": 13317,
- "league": 16635,
- "league": 2313,
- "leagueof": 26022,
- "leagueoflegends": 31737,
- "leagues": 19888,
- "leah": 24350,
- "leah": 19308,
- "leak": 42900,
- "leak": 15489,
- "leaked": 14353,
- "leaking": 34097,
- "leaks": 15657,
- "leam": 39606,
- "lean": 12447,
- "lean": 8208,
- "leaning": 24411,
- "leanne": 41448,
- "leans": 9357,
- "leap": 29129,
- "leap": 15392,
- "leaps": 48080,
- "lear": 1146,
- "lear": 27663,
- "learn": 16959,
- "learn": 1768,
- "learned": 6048,
- "learnenglish": 49040,
- "learner": 33547,
- "learners": 19572,
- "learning": 22632,
- "learning": 2378,
- "learns": 17569,
- "learnt": 18959,
- "leary": 36051,
- "lease": 49041,
- "lease": 14394,
- "leased": 48352,
- "leash": 36192,
- "leasing": 29160,
- "least": 3651,
- "leather": 21417,
- "leather": 5862,
- "leau": 26498,
- "leav": 3198,
- "leave": 37512,
- "leave": 3258,
- "leaves": 5579,
- "leaving": 5216,
- "leban": 9360,
- "lebanese": 23819,
- "lebanon": 11695,
- "leblanc": 46381,
- "lebo": 44184,
- "lebron": 11971,
- "lebu": 47030,
- "lec": 944,
- "lec": 35374,
- "leche": 46197,
- "lect": 45392,
- "lection": 18252,
- "lections": 30995,
- "lecture": 6617,
- "lecturer": 23795,
- "lectures": 21118,
- "led": 8767,
- "led": 912,
- "ledge": 23647,
- "ledge": 4815,
- "ledger": 26817,
- "leds": 36763,
- "lee": 6224,
- "lee": 2592,
- "leed": 16483,
- "leed": 40206,
- "leeds": 38900,
- "leeds": 7420,
- "leek": 34585,
- "leeminho": 37831,
- "leen": 35311,
- "leen": 15940,
- "leep": 48875,
- "leep": 10191,
- "lees": 29324,
- "lees": 34056,
- "lef": 9152,
- "left": 33949,
- "left": 1823,
- "leftist": 35143,
- "lefto": 17437,
- "leftover": 26414,
- "leftovers": 28481,
- "lefty": 33935,
- "leg": 1211,
- "leg": 4924,
- "lega": 38674,
- "legacy": 44108,
- "legacy": 6447,
- "legal": 17743,
- "legal": 3998,
- "legalization": 40584,
- "legalize": 42921,
- "legally": 14152,
- "legate": 46009,
- "lege": 8065,
- "legen": 6105,
- "legend": 5480,
- "legend": 3539,
- "legendary": 6053,
- "legendof": 47915,
- "legends": 6396,
- "leges": 15356,
- "legg": 18474,
- "legg": 32511,
- "legged": 25830,
- "leggings": 22895,
- "leggo": 43441,
- "legi": 11183,
- "legion": 35503,
- "legion": 14525,
- "legis": 7200,
- "legislat": 16486,
- "legislation": 14143,
- "legislative": 16755,
- "legislators": 31572,
- "legislature": 22309,
- "legit": 12563,
- "legitim": 17656,
- "legitimate": 24491,
- "lego": 28117,
- "lego": 7849,
- "legos": 45359,
- "legs": 7072,
- "leh": 19105,
- "leh": 29298,
- "lehead": 28090,
- "lehigh": 34527,
- "lehman": 46094,
- "lei": 15828,
- "lei": 21830,
- "leia": 32723,
- "leic": 35073,
- "leica": 30206,
- "leice": 10026,
- "leicester": 28795,
- "leicester": 11510,
- "leicestershire": 45358,
- "leigh": 14849,
- "leigh": 9292,
- "leighton": 30782,
- "leila": 41342,
- "lein": 20026,
- "lein": 28551,
- "leinster": 32242,
- "leip": 36401,
- "leipzig": 41860,
- "leis": 13133,
- "leisure": 15849,
- "leit": 35446,
- "leith": 34141,
- "lek": 26626,
- "lek": 36535,
- "lel": 46623,
- "lele": 26075,
- "lem": 10213,
- "lem": 8428,
- "leman": 24478,
- "lemans": 26694,
- "lement": 9693,
- "lements": 15833,
- "lemme": 23318,
- "lemon": 12272,
- "lemon": 7184,
- "lemonade": 18884,
- "lemons": 29576,
- "lemore": 41147,
- "len": 3687,
- "len": 2159,
- "lena": 22038,
- "lend": 45397,
- "lend": 24987,
- "lender": 44734,
- "lenders": 42443,
- "lending": 20209,
- "lene": 17628,
- "leness": 36551,
- "leng": 7861,
- "length": 10130,
- "lengths": 31858,
- "lengthy": 32624,
- "lenin": 41760,
- "lennon": 18360,
- "lennox": 45748,
- "lenny": 48448,
- "lenny": 30124,
- "leno": 45357,
- "lenovo": 25886,
- "lens": 8666,
- "lenses": 21264,
- "lent": 20943,
- "lent": 22605,
- "lentil": 41511,
- "lentils": 44269,
- "leo": 24008,
- "leo": 8312,
- "leon": 6581,
- "leon": 9763,
- "leonard": 43849,
- "leonard": 13142,
- "leonardo": 20282,
- "leone": 22864,
- "leop": 11234,
- "leopard": 15931,
- "leopards": 40996,
- "leopold": 45501,
- "lep": 48884,
- "leppard": 41656,
- "lepre": 45641,
- "ler": 5587,
- "ler": 1803,
- "lero": 15067,
- "lerosis": 35455,
- "leroy": 32441,
- "lers": 6247,
- "lery": 38184,
- "les": 4339,
- "les": 840,
- "lesbian": 17419,
- "lesbians": 43182,
- "lesh": 32282,
- "lesley": 25506,
- "lesli": 13649,
- "leslie": 16244,
- "lesn": 39568,
- "lesnar": 42223,
- "less": 3242,
- "less": 1285,
- "lesser": 20369,
- "lessly": 13103,
- "lessness": 24847,
- "lesson": 7714,
- "lessons": 7199,
- "lest": 24372,
- "lest": 6794,
- "lester": 23157,
- "lester": 24023,
- "lestwe": 29726,
- "lestweforget": 30273,
- "let": 1898,
- "let": 1094,
- "leta": 34319,
- "lete": 34078,
- "letes": 6815,
- "leth": 30022,
- "leth": 42462,
- "lethal": 21905,
- "lethbridge": 48390,
- "leti": 34176,
- "letics": 14504,
- "letit": 46423,
- "leto": 32203,
- "leton": 37674,
- "leton": 7462,
- "lets": 10448,
- "lets": 3243,
- "letsgo": 16967,
- "letsgo": 29789,
- "letstalk": 35591,
- "lett": 22428,
- "lett": 9778,
- "lette": 41798,
- "lette": 10301,
- "letter": 15567,
- "letter": 4861,
- "lettering": 26382,
- "letterman": 38447,
- "letters": 9181,
- "letting": 9510,
- "letto": 35449,
- "lettu": 17933,
- "lettuce": 18573,
- "leu": 15691,
- "leuke": 31031,
- "leukemia": 32097,
- "leum": 21571,
- "leur": 45806,
- "lev": 17022,
- "lev": 29950,
- "levan": 42543,
- "leve": 36271,
- "level": 21682,
- "level": 2931,
- "leveled": 48453,
- "levels": 6295,
- "leven": 44792,
- "leven": 34729,
- "lever": 20178,
- "lever": 23094,
- "leverage": 24030,
- "leveraging": 37948,
- "levi": 25630,
- "levi": 19113,
- "leviathan": 41736,
- "levin": 36949,
- "levine": 26594,
- "levit": 22715,
- "levy": 17147,
- "lew": 5063,
- "lew": 25329,
- "lewan": 48349,
- "lewd": 45241,
- "lewes": 40431,
- "lewi": 19589,
- "lewis": 22043,
- "lewis": 6020,
- "lewisham": 37385,
- "lewisham": 47633,
- "lewishamilton": 42960,
- "lewood": 37951,
- "lex": 6586,
- "lex": 9658,
- "lexa": 48259,
- "lexi": 44231,
- "lexi": 24679,
- "lexington": 22308,
- "lexus": 20694,
- "ley": 2565,
- "ley": 1066,
- "leye": 37061,
- "leys": 45609,
- "leys": 14834,
- "leyton": 46573,
- "lez": 26442,
- "lf": 33960,
- "lf": 22078,
- "lfc": 37826,
- "lfc": 8267,
- "lfw": 28514,
- "lg": 4546,
- "lg": 11368,
- "lga": 39348,
- "lgb": 25401,
- "lgbt": 11743,
- "lgbt": 9592,
- "lgbti": 42730,
- "lgbtq": 47625,
- "lgbtq": 14939,
- "lgm": 39389,
- "lh": 27794,
- "lh": 31159,
- "lhp": 45092,
- "lhs": 33170,
- "li": 554,
- "li": 4250,
- "lia": 26118,
- "lia": 6964,
- "liability": 29139,
- "liaison": 39294,
- "liam": 5258,
- "liam": 7167,
- "lian": 18058,
- "liance": 40864,
- "liar": 16334,
- "liars": 23863,
- "lias": 46021,
- "lib": 10249,
- "lib": 13345,
- "libby": 36832,
- "libdems": 40869,
- "liber": 3425,
- "liberal": 48032,
- "liberal": 9985,
- "liberalism": 40018,
- "liberals": 15981,
- "liberated": 38690,
- "liberation": 19507,
- "liberia": 32208,
- "libertarian": 35067,
- "liberties": 48623,
- "liberty": 23397,
- "liberty": 8480,
- "libr": 2856,
- "libra": 43038,
- "librarian": 25148,
- "librarians": 37806,
- "libraries": 14277,
- "library": 25713,
- "library": 3519,
- "libre": 49210,
- "libre": 31681,
- "libs": 26401,
- "liby": 36390,
- "libya": 16417,
- "libyan": 42319,
- "lic": 2508,
- "lic": 3376,
- "lice": 45691,
- "licen": 6706,
- "licence": 20550,
- "license": 10337,
- "licensed": 18752,
- "licenses": 36414,
- "licensing": 24219,
- "lich": 23979,
- "lich": 25875,
- "lick": 29197,
- "lick": 17541,
- "licking": 33013,
- "licks": 42117,
- "lics": 44552,
- "lid": 39369,
- "lid": 17678,
- "lidge": 45558,
- "lido": 35683,
- "lids": 41609,
- "lie": 6570,
- "lie": 2538,
- "lieb": 45387,
- "liebe": 37749,
- "lied": 6486,
- "lief": 38428,
- "lien": 45716,
- "lier": 3626,
- "liers": 19303,
- "lies": 37236,
- "lies": 3205,
- "liest": 14020,
- "liet": 41107,
- "lieu": 20401,
- "lieu": 35313,
- "lieutenant": 22538,
- "lif": 16456,
- "life": 2666,
- "life": 970,
- "lifeat": 27801,
- "lifeboat": 37404,
- "lifecycle": 49171,
- "lifein": 48447,
- "lifeis": 24824,
- "lifeisgood": 46433,
- "lifel": 15025,
- "lifeline": 38438,
- "lifelong": 21358,
- "lifeof": 36061,
- "lifesaving": 48016,
- "lifespan": 49257,
- "lifestyle": 46512,
- "lifestyle": 7037,
- "lifestyles": 48521,
- "lifetime": 48737,
- "lifetime": 9107,
- "liff": 34404,
- "liffe": 38942,
- "lift": 33146,
- "lift": 6779,
- "lifted": 16783,
- "lifter": 38555,
- "lifting": 10857,
- "lifts": 18291,
- "lig": 19915,
- "lig": 38493,
- "liga": 16802,
- "ligam": 31077,
- "ligament": 48705,
- "ligan": 27962,
- "ligans": 42133,
- "ligh": 7510,
- "light": 3885,
- "light": 1395,
- "lighted": 18404,
- "lighten": 32717,
- "lightening": 28170,
- "lighter": 14102,
- "lighthouse": 13717,
- "lighting": 5799,
- "lightly": 26878,
- "lightning": 7756,
- "lightroom": 41454,
- "lights": 3073,
- "lightweight": 16278,
- "ligu": 42920,
- "ligue": 29196,
- "lik": 4831,
- "lik": 18495,
- "like": 9175,
- "like": 789,
- "liked": 7112,
- "likefor": 48444,
- "likeli": 40666,
- "likelihood": 48158,
- "likely": 5256,
- "liken": 36084,
- "likes": 4724,
- "liking": 16810,
- "lil": 6012,
- "lil": 4461,
- "lilac": 33647,
- "lili": 26686,
- "lili": 48411,
- "lilies": 38110,
- "lillard": 47016,
- "lille": 38705,
- "lilli": 40920,
- "lillian": 41563,
- "lilly": 47825,
- "lilly": 21815,
- "lily": 23803,
- "lily": 10647,
- "lim": 2377,
- "lim": 17204,
- "lima": 17589,
- "limb": 27061,
- "limb": 32363,
- "limbo": 46179,
- "limbs": 34886,
- "lime": 17385,
- "lime": 11193,
- "limel": 48658,
- "limer": 16915,
- "limerick": 19501,
- "limestone": 27272,
- "limit": 18933,
- "limit": 9973,
- "limitations": 32730,
- "limited": 49229,
- "limited": 3472,
- "limiting": 35812,
- "limitless": 35833,
- "limits": 11966,
- "limo": 33166,
- "limous": 47287,
- "limpopo": 47175,
- "lin": 1254,
- "lin": 2424,
- "lina": 26110,
- "lincol": 6239,
- "lincoln": 16957,
- "lincoln": 7454,
- "lincolnshire": 29014,
- "lind": 6492,
- "linda": 45410,
- "linda": 10760,
- "linden": 44076,
- "linden": 34832,
- "lindo": 38467,
- "lindsay": 29846,
- "lindsay": 16858,
- "lindsey": 29475,
- "lindsey": 18128,
- "line": 3674,
- "line": 1148,
- "linear": 19816,
- "linebacker": 29848,
- "lined": 11842,
- "lineman": 31501,
- "linen": 20032,
- "liner": 11618,
- "liners": 24463,
- "lines": 3418,
- "liness": 28633,
- "lineup": 7316,
- "lineups": 33589,
- "ling": 4851,
- "ling": 1358,
- "linger": 29593,
- "lingerie": 18473,
- "lingering": 46494,
- "lings": 11390,
- "lington": 27673,
- "lington": 9002,
- "lingu": 34449,
- "lingui": 29942,
- "linguistic": 46847,
- "linguistics": 48651,
- "lining": 11589,
- "link": 18433,
- "link": 2468,
- "linke": 15088,
- "linked": 11059,
- "linkedin": 16302,
- "linkin": 40287,
- "linkin": 49291,
- "linking": 23296,
- "links": 8113,
- "linn": 37431,
- "lino": 41189,
- "lino": 34995,
- "lins": 6567,
- "linson": 15401,
- "linton": 36479,
- "linus": 49303,
- "linux": 14061,
- "lio": 19395,
- "lion": 8872,
- "lion": 5567,
- "lionel": 19441,
- "lions": 7093,
- "lip": 8630,
- "lip": 8546,
- "lipo": 38795,
- "lipp": 38074,
- "lips": 8847,
- "lipse": 10351,
- "lipstick": 15618,
- "liqu": 6310,
- "lique": 32680,
- "liqueur": 43612,
- "liqui": 33817,
- "liquid": 18366,
- "liquid": 10158,
- "liquidity": 42812,
- "liquor": 17828,
- "lis": 7297,
- "lis": 12749,
- "lisa": 25236,
- "lisa": 7424,
- "lisam": 43072,
- "lisboa": 40052,
- "lisbon": 17708,
- "lish": 12658,
- "lish": 2354,
- "lished": 22620,
- "lisle": 21529,
- "lism": 34390,
- "liss": 45489,
- "liss": 35433,
- "lisse": 49309,
- "list": 1734,
- "list": 1998,
- "lista": 37812,
- "listed": 6457,
- "listen": 17454,
- "listen": 2672,
- "listened": 15347,
- "listener": 34819,
- "listeners": 26901,
- "listening": 3656,
- "listens": 25912,
- "lister": 45109,
- "listing": 8145,
- "listings": 21987,
- "liston": 48041,
- "lists": 12281,
- "lit": 2213,
- "lit": 4350,
- "lita": 30100,
- "lite": 29273,
- "lite": 13694,
- "litecoin": 39063,
- "liter": 3085,
- "liter": 34904,
- "literacy": 12841,
- "literal": 24269,
- "literally": 4719,
- "literary": 13586,
- "literature": 11072,
- "litfest": 40369,
- "lith": 37005,
- "lithium": 22794,
- "litho": 31088,
- "lithograph": 49022,
- "lithu": 21045,
- "lithuania": 27068,
- "liti": 24292,
- "litigation": 31769,
- "lito": 47381,
- "litre": 25786,
- "litres": 39919,
- "litt": 1216,
- "litt": 47583,
- "litter": 45431,
- "litter": 17118,
- "litters": 45300,
- "little": 7024,
- "little": 1274,
- "littlemix": 29731,
- "littlest": 48969,
- "litur": 36830,
- "litz": 30357,
- "liu": 20466,
- "liv": 13895,
- "liv": 19901,
- "livan": 12785,
- "live": 3215,
- "live": 1064,
- "lived": 8867,
- "livel": 17973,
- "liveli": 26566,
- "livelihood": 46497,
- "livelihoods": 47716,
- "lively": 19663,
- "liveme": 35396,
- "livemusic": 15688,
- "liven": 41057,
- "liveon": 22815,
- "livepd": 38742,
- "livepd": 31899,
- "liver": 4755,
- "liver": 12639,
- "liverpool": 29778,
- "liverpool": 5366,
- "livery": 23248,
- "lives": 3247,
- "livesmatter": 20348,
- "livestock": 22079,
- "livestream": 16844,
- "livetweet": 38546,
- "livin": 28061,
- "living": 10965,
- "living": 2815,
- "livingston": 30551,
- "lix": 45068,
- "liz": 8632,
- "liz": 12242,
- "liza": 28787,
- "lizard": 17221,
- "lizards": 41991,
- "lizasober": 44487,
- "lizasoberano": 45076,
- "lizz": 34430,
- "lizzie": 29530,
- "lizzy": 32306,
- "lj": 34211,
- "lj": 32273,
- "lju": 44562,
- "lk": 39110,
- "lk": 26596,
- "lka": 21881,
- "ll": 1657,
- "ll": 865,
- "lla": 15419,
- "llama": 36679,
- "llan": 17281,
- "llan": 38728,
- "lland": 31150,
- "llc": 17161,
- "lle": 26550,
- "lle": 29732,
- "llen": 41197,
- "ller": 7722,
- "llers": 26426,
- "lli": 47015,
- "lli": 13368,
- "llis": 25518,
- "lll": 27177,
- "llll": 34874,
- "llll": 43485,
- "llo": 19293,
- "lloy": 10092,
- "lloyd": 33339,
- "lloyd": 12400,
- "llp": 28042,
- "lls": 40535,
- "lly": 26379,
- "lm": 6981,
- "lm": 15282,
- "lma": 4493,
- "lmao": 5121,
- "lmaoo": 32623,
- "lmaooo": 33362,
- "lmaoooo": 45232,
- "lmfa": 8928,
- "lmfao": 11068,
- "lmfaooo": 47658,
- "lmp": 43575,
- "lms": 30381,
- "ln": 31644,
- "ln": 18654,
- "lng": 22339,
- "lnp": 39679,
- "lo": 549,
- "lo": 2982,
- "loa": 39678,
- "load": 4515,
- "load": 2834,
- "loaded": 6756,
- "loader": 28492,
- "loading": 9975,
- "loads": 8691,
- "loaf": 26467,
- "loaf": 18273,
- "loan": 28431,
- "loan": 8176,
- "loans": 14206,
- "lob": 11197,
- "lob": 46606,
- "lobal": 34574,
- "lobb": 27698,
- "lobby": 12449,
- "lobbying": 36047,
- "lobe": 46325,
- "lobes": 24148,
- "lobo": 39323,
- "lobos": 36586,
- "lobster": 13793,
- "loc": 1378,
- "loc": 25826,
- "local": 9202,
- "local": 2029,
- "localized": 49399,
- "locally": 15603,
- "locals": 15041,
- "locate": 20490,
- "located": 5677,
- "location": 4372,
- "locations": 9580,
- "loch": 20188,
- "loch": 14101,
- "lock": 7201,
- "lock": 4381,
- "lockdown": 35636,
- "locke": 29698,
- "locked": 8371,
- "locker": 14053,
- "lockhart": 48642,
- "lockheed": 36637,
- "locking": 19978,
- "locks": 13212,
- "lockscreen": 42439,
- "loco": 25555,
- "locom": 22798,
- "locomo": 46147,
- "locomotive": 30439,
- "locu": 33635,
- "locust": 46237,
- "lod": 45650,
- "lodge": 10504,
- "loe": 30113,
- "loe": 25484,
- "loeb": 49334,
- "lof": 15011,
- "loff": 31008,
- "loft": 35707,
- "loft": 20049,
- "loftus": 46689,
- "log": 3239,
- "log": 7383,
- "logan": 20655,
- "logan": 10569,
- "logans": 40752,
- "logg": 43002,
- "logged": 31457,
- "logger": 39089,
- "logging": 24444,
- "logi": 3177,
- "logia": 48031,
- "logic": 10670,
- "logical": 4791,
- "logically": 24782,
- "logie": 33445,
- "logies": 7378,
- "login": 31121,
- "logist": 7407,
- "logistics": 14755,
- "logists": 12233,
- "logne": 19911,
- "logo": 31480,
- "logo": 5750,
- "logos": 24879,
- "logs": 22745,
- "logue": 27785,
- "logy": 22721,
- "logy": 1659,
- "loh": 49129,
- "loh": 37983,
- "loi": 35128,
- "loid": 31408,
- "loin": 21760,
- "loire": 46040,
- "lois": 27040,
- "lok": 19908,
- "lok": 23575,
- "loki": 24435,
- "lol": 10721,
- "lol": 1824,
- "lola": 19065,
- "lolita": 42615,
- "lolla": 45483,
- "lolli": 27906,
- "lollipop": 34605,
- "lolly": 48264,
- "lolo": 16895,
- "lolo": 37481,
- "lolol": 25280,
- "lololol": 34738,
- "lolz": 35260,
- "lom": 9279,
- "loma": 42889,
- "lombar": 25493,
- "lombard": 46461,
- "lombardi": 44346,
- "lomond": 48941,
- "lon": 1235,
- "lon": 6507,
- "london": 6835,
- "london": 1789,
- "londonmarathon": 35018,
- "lone": 22220,
- "lone": 13576,
- "lonel": 28872,
- "loneliness": 30310,
- "lonely": 34509,
- "lonely": 12368,
- "lonelyplanet": 44984,
- "long": 4792,
- "long": 1538,
- "longe": 25793,
- "longer": 5349,
- "longest": 10731,
- "longevity": 35354,
- "longh": 20286,
- "longhorn": 41047,
- "longhorns": 38295,
- "longing": 38482,
- "longlive": 47840,
- "longs": 43618,
- "longtime": 19685,
- "loo": 731,
- "loo": 11804,
- "look": 8874,
- "look": 1012,
- "lookalike": 38307,
- "lookbook": 39184,
- "looked": 4913,
- "lookin": 11254,
- "looking": 36898,
- "looking": 1312,
- "lookout": 18330,
- "looks": 1606,
- "lool": 33125,
- "loom": 37440,
- "loom": 17199,
- "looming": 35384,
- "looms": 30550,
- "loon": 28222,
- "loona": 48137,
- "looney": 45315,
- "looo": 20902,
- "loool": 36016,
- "looool": 47038,
- "looooo": 31484,
- "loop": 19606,
- "loop": 10408,
- "loops": 21625,
- "loos": 45723,
- "loose": 43815,
- "loose": 9786,
- "loot": 21518,
- "lop": 36734,
- "lop": 17066,
- "lopes": 49269,
- "lopez": 12982,
- "lor": 2179,
- "lor": 11335,
- "lord": 18896,
- "lord": 3486,
- "lorde": 35483,
- "lords": 14969,
- "lore": 12880,
- "lore": 27218,
- "loren": 13602,
- "loren": 33398,
- "lorenzo": 21342,
- "lores": 34510,
- "loretta": 40863,
- "lori": 20164,
- "lori": 23095,
- "lorna": 46316,
- "lorraine": 27602,
- "lorry": 31354,
- "los": 32217,
- "los": 3087,
- "losange": 14037,
- "losangeles": 14638,
- "lose": 43318,
- "lose": 5354,
- "loser": 18168,
- "losers": 23201,
- "loses": 14263,
- "losing": 7918,
- "loss": 34761,
- "loss": 4327,
- "losses": 16909,
- "lost": 14258,
- "lost": 2624,
- "lostdog": 48482,
- "lot": 5132,
- "lot": 1954,
- "loth": 43625,
- "lothian": 31360,
- "lothing": 42058,
- "lotion": 25260,
- "lotr": 34165,
- "lots": 2958,
- "lott": 42854,
- "lotta": 29125,
- "lotte": 16535,
- "lotte": 7274,
- "lottery": 16975,
- "lottie": 48517,
- "lotto": 28265,
- "lotus": 13824,
- "lou": 2207,
- "lou": 9745,
- "loubout": 38369,
- "loud": 22884,
- "loud": 7464,
- "louder": 25904,
- "loudest": 49214,
- "loudly": 39256,
- "lough": 21927,
- "lough": 28045,
- "loughborough": 49153,
- "loui": 42173,
- "louie": 25790,
- "louis": 8916,
- "louis": 4459,
- "louisa": 40011,
- "louise": 32275,
- "louise": 13076,
- "louisi": 12187,
- "louisiana": 12946,
- "louisville": 13860,
- "louisvuitton": 44911,
- "loun": 6466,
- "lounge": 7141,
- "lounging": 45430,
- "lour": 29383,
- "lourdes": 45071,
- "louvre": 36995,
- "lov": 8923,
- "lov": 21229,
- "lova": 37394,
- "lovable": 38565,
- "lovato": 18960,
- "love": 2618,
- "love": 793,
- "lovecraft": 42405,
- "loved": 3249,
- "lovefl": 38884,
- "loveher": 38306,
- "lovehim": 45733,
- "loveis": 30931,
- "loveisland": 30970,
- "loveislove": 43603,
- "loveit": 24764,
- "lovel": 8999,
- "lovelies": 31412,
- "lovelondon": 46493,
- "lovely": 33250,
- "lovely": 2165,
- "lovemy": 20041,
- "lovemyjob": 40130,
- "loven": 33754,
- "lover": 28508,
- "lover": 7168,
- "lovers": 48416,
- "lovers": 5973,
- "loves": 37773,
- "loves": 3925,
- "lovethe": 33040,
- "lovethem": 48298,
- "lovett": 47095,
- "lovewins": 47687,
- "loveyou": 39226,
- "loveyou": 25964,
- "loveyour": 26462,
- "lovin": 33442,
- "lovin": 16354,
- "loving": 29568,
- "loving": 3721,
- "lovingly": 44100,
- "low": 1049,
- "low": 1042,
- "loway": 16104,
- "lowe": 17910,
- "lowed": 22733,
- "lowell": 24458,
- "lower": 32578,
- "lower": 4909,
- "lowered": 34968,
- "lowering": 35261,
- "lowers": 36398,
- "lowes": 38515,
- "lowest": 12098,
- "lowing": 8283,
- "lowkey": 29481,
- "lowry": 27444,
- "lows": 4406,
- "lox": 41725,
- "loy": 4519,
- "loy": 23929,
- "loyal": 13032,
- "loyalty": 14686,
- "loyd": 44212,
- "loyed": 29279,
- "loyment": 18307,
- "loyola": 32569,
- "lp": 22282,
- "lp": 6392,
- "lpc": 44092,
- "lpg": 47905,
- "lpga": 34295,
- "lps": 32094,
- "lr": 20572,
- "lr": 7041,
- "lrt": 32996,
- "ls": 19051,
- "ls": 1268,
- "lsd": 43766,
- "lse": 46127,
- "lse": 43886,
- "lsu": 35428,
- "lsu": 15672,
- "lt": 13642,
- "lt": 3333,
- "ltc": 27664,
- "ltd": 6802,
- "lte": 25202,
- "lton": 14237,
- "lu": 664,
- "lu": 9657,
- "lub": 22469,
- "lub": 11836,
- "lubbock": 37660,
- "lubric": 40963,
- "luc": 7013,
- "luc": 28014,
- "luca": 21053,
- "lucas": 23425,
- "lucas": 10225,
- "lucci": 45849,
- "luce": 46217,
- "lucent": 41552,
- "lucer": 36042,
- "luch": 36646,
- "lucha": 38449,
- "luci": 8787,
- "lucia": 22290,
- "luciano": 46365,
- "lucid": 44540,
- "lucie": 39461,
- "lucifer": 46224,
- "lucifer": 27687,
- "lucille": 47454,
- "lucin": 27523,
- "luck": 9647,
- "luck": 2820,
- "luckiest": 42469,
- "luckily": 20100,
- "lucknow": 29407,
- "lucky": 20495,
- "lucky": 4133,
- "lucrative": 41485,
- "lucy": 17262,
- "lucy": 10120,
- "lud": 14288,
- "lude": 28755,
- "ludo": 40141,
- "ludwig": 30633,
- "lue": 45199,
- "luf": 25264,
- "lufc": 17818,
- "luffy": 39047,
- "lufthan": 37769,
- "lufthansa": 39145,
- "lug": 45521,
- "lugg": 19673,
- "luggage": 20138,
- "luhan": 20975,
- "luigi": 28444,
- "luis": 25231,
- "luis": 11339,
- "luiz": 39633,
- "lujah": 31639,
- "luk": 21652,
- "luka": 34878,
- "lukaku": 37177,
- "lukas": 37941,
- "luke": 11970,
- "luke": 5652,
- "lul": 20861,
- "lulla": 37019,
- "lullaby": 41676,
- "lulu": 32052,
- "lulu": 26935,
- "lum": 18112,
- "lum": 5997,
- "lumb": 36231,
- "lumber": 27421,
- "lumber": 34692,
- "lumi": 41437,
- "lumia": 31912,
- "lumin": 15867,
- "luminous": 37913,
- "lump": 38704,
- "lumpur": 34411,
- "lun": 3221,
- "lun": 49390,
- "luna": 14425,
- "lunar": 16043,
- "lunatic": 45874,
- "lunch": 10954,
- "lunch": 2772,
- "luncheon": 15104,
- "lunches": 29705,
- "lunchtime": 14330,
- "lund": 30975,
- "lund": 20181,
- "lunes": 35648,
- "lung": 38479,
- "lung": 16271,
- "lungs": 27366,
- "lup": 27413,
- "lupita": 49352,
- "lupus": 36017,
- "lur": 14439,
- "lure": 31376,
- "lures": 46747,
- "lurking": 29941,
- "lus": 7158,
- "lusci": 38004,
- "luscious": 39935,
- "lush": 40382,
- "lush": 16263,
- "lust": 42071,
- "lust": 12662,
- "lustre": 46673,
- "luther": 21848,
- "luther": 17208,
- "lutheran": 27341,
- "luton": 28288,
- "luv": 24726,
- "luv": 8502,
- "lux": 3439,
- "lux": 16704,
- "luxe": 26373,
- "luxemb": 21314,
- "luxembour": 22712,
- "luxembourg": 23949,
- "luxu": 16112,
- "luxurious": 17292,
- "luxury": 12083,
- "luxury": 5247,
- "luxurytravel": 29010,
- "luz": 41008,
- "lv": 10862,
- "lv": 11184,
- "lvl": 31256,
- "lw": 40515,
- "lw": 35115,
- "lx": 30789,
- "ly": 1251,
- "ly": 597,
- "lydia": 24316,
- "lyf": 43688,
- "lyfe": 30787,
- "lyft": 32944,
- "lying": 7175,
- "lyk": 46376,
- "lyle": 36828,
- "lym": 20087,
- "lyme": 31167,
- "lymph": 30073,
- "lymphoma": 37648,
- "lyn": 3957,
- "lyn": 5054,
- "lynch": 31586,
- "lynch": 13560,
- "lynd": 33416,
- "lynda": 42959,
- "lyndon": 48518,
- "lynn": 25303,
- "lynn": 10667,
- "lynne": 26900,
- "lynx": 28941,
- "lyon": 17176,
- "lyons": 29453,
- "lyric": 24366,
- "lyric": 21291,
- "lyrical": 33358,
- "lyricist": 49013,
- "lyrics": 9551,
- "lyrix": 46814,
- "lys": 45054,
- "lyte": 40059,
- "lywood": 4012,
- "lz": 30818,
- "lé": 39641,
- "m": 76,
- "m": 332,
- "ma": 577,
- "ma": 1226,
- "maa": 42774,
- "maa": 21555,
- "maan": 33668,
- "maar": 48927,
- "maas": 43332,
- "mab": 35639,
- "mabel": 47319,
- "mable": 23001,
- "mably": 40082,
- "mabu": 44682,
- "mac": 1961,
- "mac": 4945,
- "macar": 21558,
- "macaroni": 41824,
- "macarthur": 36785,
- "macau": 43984,
- "macau": 33370,
- "macbeth": 36321,
- "macbook": 20617,
- "macdonald": 20315,
- "mace": 44869,
- "maced": 21102,
- "macedonia": 27071,
- "macfar": 45374,
- "macfarlane": 48825,
- "mach": 2637,
- "mach": 35091,
- "machado": 42318,
- "mache": 43220,
- "macher": 29330,
- "machi": 41783,
- "machin": 17972,
- "machine": 11539,
- "machine": 4169,
- "machinelearning": 13621,
- "machinery": 21858,
- "machines": 11108,
- "machining": 45562,
- "macho": 43977,
- "macht": 45225,
- "macin": 36533,
- "mack": 8590,
- "mack": 12145,
- "mackay": 32497,
- "macken": 48057,
- "mackenzie": 22351,
- "mackerel": 35002,
- "mackin": 26010,
- "macklemore": 41758,
- "macle": 33843,
- "maclean": 47137,
- "macleod": 43684,
- "macmillan": 36364,
- "macmillan": 35191,
- "macon": 35818,
- "macos": 45469,
- "macqu": 38365,
- "macquarie": 40858,
- "macro": 20891,
- "macro": 16626,
- "macron": 24859,
- "macs": 46548,
- "macy": 17113,
- "macys": 47652,
- "mad": 2740,
- "mad": 3843,
- "mada": 37799,
- "madagas": 24758,
- "madagascar": 25744,
- "madam": 33634,
- "madam": 27538,
- "madame": 23507,
- "madd": 31717,
- "madden": 19093,
- "maddie": 39959,
- "maddie": 18875,
- "maddow": 32644,
- "maddy": 31734,
- "made": 5388,
- "made": 1105,
- "madein": 13670,
- "madeira": 33810,
- "madel": 34532,
- "madele": 29831,
- "madeleine": 33264,
- "madeline": 33905,
- "madewith": 28627,
- "madewithunity": 43190,
- "madhu": 23000,
- "madhuri": 38346,
- "madhuridixit": 43889,
- "madhya": 48302,
- "madi": 6527,
- "madi": 27282,
- "madison": 24798,
- "madison": 8791,
- "madmen": 45452,
- "madness": 8755,
- "madon": 44852,
- "madonna": 14137,
- "madra": 27416,
- "madras": 42046,
- "madre": 42130,
- "madri": 5529,
- "madrid": 5909,
- "mads": 41201,
- "madu": 34913,
- "madurai": 49159,
- "maduro": 32912,
- "mae": 16898,
- "mae": 17339,
- "maer": 47088,
- "maestro": 24140,
- "mafi": 47164,
- "mafia": 14890,
- "mag": 1191,
- "mag": 4508,
- "maga": 8694,
- "magaz": 2974,
- "magazine": 3113,
- "magazines": 22253,
- "magdal": 29673,
- "mage": 46568,
- "mage": 10923,
- "magee": 43872,
- "magenta": 38091,
- "magento": 42442,
- "mages": 31059,
- "maggi": 29611,
- "maggie": 41443,
- "maggie": 14524,
- "maggio": 49087,
- "magh": 45555,
- "magi": 19270,
- "magic": 13061,
- "magic": 3778,
- "magical": 36408,
- "magical": 7823,
- "magician": 26368,
- "magin": 42678,
- "maging": 41310,
- "magn": 10290,
- "magna": 34076,
- "magne": 9921,
- "magnesium": 36379,
- "magnet": 18240,
- "magnetic": 13838,
- "magnets": 33030,
- "magni": 24297,
- "magnific": 9725,
- "magnificent": 10724,
- "magnitude": 22955,
- "magno": 21184,
- "magnolia": 27123,
- "magnu": 45198,
- "magnum": 23496,
- "magnus": 26275,
- "magpie": 45973,
- "mags": 31021,
- "maguire": 26470,
- "mah": 7206,
- "mah": 10801,
- "maha": 12237,
- "maha": 33983,
- "mahal": 22301,
- "mahan": 45191,
- "mahar": 11635,
- "maharaj": 38488,
- "maharashtra": 19328,
- "mahat": 32434,
- "mahatma": 40530,
- "mahe": 15756,
- "maher": 29826,
- "mahesh": 33448,
- "mahesh": 22095,
- "mahi": 32529,
- "mahi": 38659,
- "mahin": 24113,
- "mahindra": 31285,
- "mahmoud": 41361,
- "mahog": 30804,
- "mahogany": 33084,
- "mahon": 45864,
- "mahon": 20371,
- "mahone": 26634,
- "mai": 7138,
- "mai": 14595,
- "maia": 46585,
- "maid": 23148,
- "maid": 10226,
- "maidan": 37346,
- "maiden": 37011,
- "maiden": 13809,
- "maids": 27305,
- "maidstone": 44395,
- "mail": 10478,
- "mail": 2614,
- "mailbox": 31482,
- "mailed": 42314,
- "mailing": 26680,
- "mailonline": 26021,
- "mails": 45213,
- "main": 3904,
- "main": 2623,
- "maine": 18639,
- "maine": 7836,
- "mained": 15609,
- "mainedcm": 15845,
- "mainland": 27629,
- "mainly": 15280,
- "mains": 33656,
- "mainst": 42102,
- "mainstream": 18034,
- "maintain": 12954,
- "maintained": 26665,
- "maintaining": 21964,
- "maintains": 38335,
- "mainten": 9399,
- "maintenance": 9610,
- "mais": 28153,
- "maisie": 47355,
- "maison": 37065,
- "maison": 27626,
- "mait": 26387,
- "maize": 35386,
- "maj": 2948,
- "maj": 28723,
- "maja": 47498,
- "maje": 9852,
- "majestic": 15335,
- "majesty": 21188,
- "major": 8008,
- "major": 3350,
- "majority": 10508,
- "majors": 23597,
- "mak": 11271,
- "mak": 19253,
- "makar": 42242,
- "makati": 39402,
- "make": 3232,
- "make": 1078,
- "makeaw": 45859,
- "makeinindia": 42739,
- "makeit": 26308,
- "maken": 47093,
- "makeover": 17926,
- "maker": 15196,
- "maker": 4836,
- "makers": 6577,
- "makerspace": 42400,
- "makes": 2088,
- "makeshift": 43274,
- "makeu": 41707,
- "makeup": 26402,
- "makeup": 5853,
- "makeyourown": 34090,
- "makeyourownlane": 34823,
- "maki": 34514,
- "makin": 43096,
- "makin": 22407,
- "making": 17976,
- "making": 1665,
- "makk": 39852,
- "maknae": 44118,
- "mako": 49061,
- "mal": 1662,
- "mal": 3796,
- "mala": 28290,
- "malade": 36928,
- "malaga": 35395,
- "malala": 41137,
- "malam": 48956,
- "malaria": 24929,
- "malawi": 23405,
- "malay": 5323,
- "malay": 42430,
- "malayalam": 34860,
- "malaysi": 39668,
- "malaysia": 8146,
- "malaysian": 21136,
- "malbec": 47741,
- "malcol": 12645,
- "malcolm": 14139,
- "maldives": 16795,
- "male": 11326,
- "male": 2801,
- "males": 14426,
- "malhotra": 28866,
- "mali": 6701,
- "mali": 22669,
- "malia": 46714,
- "malibu": 21723,
- "malicious": 42147,
- "malign": 41122,
- "malik": 11394,
- "mall": 10984,
- "mall": 6220,
- "mallorca": 28082,
- "mallory": 38968,
- "malls": 36447,
- "malm": 44071,
- "malnutrition": 41153,
- "malo": 43518,
- "malone": 19852,
- "maloney": 45897,
- "mals": 25370,
- "malt": 21688,
- "malta": 16989,
- "maltese": 39838,
- "malvern": 39356,
- "malware": 24153,
- "mam": 4404,
- "mam": 17778,
- "mama": 7133,
- "mamamoo": 36012,
- "mamas": 42395,
- "mamba": 44189,
- "mament": 45690,
- "mami": 43858,
- "mamma": 34893,
- "mammal": 33385,
- "mammals": 31987,
- "mammoth": 28022,
- "man": 723,
- "man": 786,
- "mana": 29467,
- "mana": 15837,
- "manafort": 40108,
- "manag": 1830,
- "manage": 9770,
- "managed": 7928,
- "management": 3319,
- "manager": 3898,
- "managerial": 44261,
- "managers": 12853,
- "manages": 29699,
- "managing": 10892,
- "manas": 44188,
- "manatee": 46558,
- "mance": 2324,
- "manchester": 24424,
- "manchester": 4651,
- "mancini": 47681,
- "mancity": 31538,
- "mancrush": 36945,
- "mancrushmonday": 39307,
- "mand": 4325,
- "mand": 27244,
- "mandala": 41106,
- "mandarin": 26455,
- "mandate": 26228,
- "mandatory": 19934,
- "mandel": 34960,
- "mandela": 16280,
- "mandi": 38961,
- "mandir": 35815,
- "mando": 34006,
- "mands": 12340,
- "mandu": 31440,
- "mandy": 41505,
- "mandy": 24302,
- "mane": 44471,
- "mane": 16044,
- "maneu": 33216,
- "mang": 25616,
- "mang": 31096,
- "manga": 11873,
- "mangal": 43027,
- "manger": 48251,
- "mango": 43831,
- "mango": 13962,
- "mangrove": 47180,
- "manhatt": 10152,
- "manhattan": 10961,
- "mani": 5654,
- "mani": 10718,
- "mania": 8435,
- "maniac": 31814,
- "maniacs": 41444,
- "manian": 40077,
- "manic": 23017,
- "manic": 37825,
- "manicure": 33637,
- "manife": 14379,
- "manifest": 34422,
- "manifestation": 48348,
- "manifesto": 20907,
- "manil": 38827,
- "manila": 10969,
- "manipu": 40261,
- "manipul": 19237,
- "manipulation": 30277,
- "manipur": 47757,
- "manish": 41759,
- "manish": 44720,
- "manit": 15693,
- "manitoba": 20342,
- "manjaro": 41489,
- "mankind": 24155,
- "manly": 25194,
- "mann": 19396,
- "mann": 4783,
- "manne": 30160,
- "manned": 26139,
- "mannequin": 43388,
- "manner": 20700,
- "manners": 31693,
- "manning": 15996,
- "manny": 37054,
- "manny": 20933,
- "mano": 15753,
- "mano": 24016,
- "manoj": 41146,
- "manor": 41830,
- "manor": 13614,
- "mans": 28422,
- "mans": 7746,
- "mansfield": 25543,
- "manship": 15460,
- "mansion": 13404,
- "manslaughter": 48632,
- "manson": 26715,
- "mant": 25122,
- "mant": 27037,
- "manta": 41431,
- "mantis": 39946,
- "mantle": 22159,
- "mantra": 25162,
- "manu": 3404,
- "manu": 25799,
- "manual": 12268,
- "manuel": 29171,
- "manuel": 9567,
- "manufac": 5105,
- "manufacture": 27741,
- "manufactured": 24010,
- "manufacturer": 15668,
- "manufacturers": 18763,
- "manufacturing": 8386,
- "manure": 47907,
- "manus": 28181,
- "manuscript": 24365,
- "manuscripts": 40765,
- "manutd": 20994,
- "many": 28484,
- "many": 1346,
- "manziel": 40637,
- "mao": 47447,
- "mao": 25605,
- "maori": 43400,
- "map": 25180,
- "map": 3923,
- "maple": 21980,
- "maple": 10570,
- "mapleleafs": 41257,
- "mapoli": 28768,
- "mapp": 36894,
- "mapped": 41596,
- "mapping": 15231,
- "maps": 8765,
- "mapu": 42082,
- "mar": 675,
- "mar": 3091,
- "mara": 15655,
- "marais": 47913,
- "maran": 44732,
- "marath": 16274,
- "marathi": 34102,
- "marathon": 40764,
- "marathon": 5910,
- "marau": 38475,
- "marbella": 36182,
- "marble": 45429,
- "marble": 13071,
- "marbles": 42931,
- "marc": 14054,
- "marc": 9075,
- "marca": 38242,
- "marcel": 17726,
- "marcel": 24652,
- "marcelo": 35939,
- "march": 10638,
- "march": 2227,
- "marche": 36173,
- "marched": 37976,
- "marches": 38249,
- "marchfor": 31721,
- "marching": 15082,
- "marchmadness": 28555,
- "marci": 36698,
- "marcia": 41075,
- "marck": 47733,
- "marco": 24719,
- "marco": 10924,
- "marcor": 39945,
- "marcorubio": 41143,
- "marcos": 21696,
- "marcu": 20760,
- "marcus": 48955,
- "marcus": 9895,
- "mardi": 39728,
- "mardi": 29229,
- "mardigras": 43343,
- "mare": 26512,
- "mare": 8870,
- "mares": 19724,
- "marg": 44014,
- "margar": 16838,
- "margare": 10232,
- "margaret": 12185,
- "margarita": 25958,
- "margaritas": 42679,
- "margate": 37428,
- "margin": 19464,
- "margin": 21357,
- "marginal": 38320,
- "margins": 33763,
- "margot": 37144,
- "mari": 2603,
- "mari": 19322,
- "maria": 41109,
- "maria": 6595,
- "mariachi": 44299,
- "mariah": 31214,
- "mariah": 24789,
- "mariahcarey": 36538,
- "marian": 41129,
- "marian": 24677,
- "mariana": 44224,
- "marianne": 32214,
- "mariano": 43988,
- "marie": 20657,
- "marie": 7864,
- "marietta": 46634,
- "marig": 41002,
- "marijuana": 9864,
- "maril": 14611,
- "marilyn": 38959,
- "marilyn": 18489,
- "marin": 8910,
- "marin": 23992,
- "marina": 12060,
- "marinated": 33406,
- "marine": 20674,
- "marine": 5746,
- "mariner": 39972,
- "mariners": 19086,
- "marines": 15018,
- "marino": 30878,
- "mario": 39176,
- "mario": 7600,
- "marion": 37765,
- "marion": 18397,
- "maris": 21512,
- "maris": 33093,
- "marisa": 42938,
- "mariska": 44703,
- "marissa": 31219,
- "marist": 48223,
- "mariti": 13124,
- "maritime": 14331,
- "marj": 38639,
- "mark": 3805,
- "mark": 2110,
- "marke": 2399,
- "marked": 12360,
- "marker": 18170,
- "markers": 23664,
- "market": 11614,
- "market": 2196,
- "marketer": 33482,
- "marketers": 23682,
- "marketing": 19535,
- "marketing": 2905,
- "marketplace": 18241,
- "markets": 7292,
- "markham": 39817,
- "marking": 14705,
- "markings": 41046,
- "markle": 32672,
- "marko": 38338,
- "marks": 5466,
- "markus": 33725,
- "marl": 24922,
- "marlborough": 43515,
- "marlene": 45117,
- "marley": 16504,
- "marlin": 34275,
- "marlins": 23309,
- "marlon": 32995,
- "marmalade": 39068,
- "marnock": 48305,
- "maro": 27029,
- "maroon": 20501,
- "marqu": 20704,
- "marque": 13012,
- "marquee": 27725,
- "marquette": 37624,
- "marquez": 27317,
- "marquis": 33530,
- "marr": 32871,
- "marrake": 37125,
- "marrakech": 39006,
- "marri": 3839,
- "marriage": 38047,
- "marriage": 7040,
- "marriages": 38190,
- "married": 6791,
- "marries": 46283,
- "marriott": 19211,
- "marrow": 31030,
- "marry": 13288,
- "marrying": 40507,
- "mars": 41469,
- "mars": 7496,
- "marsden": 43344,
- "marse": 26577,
- "marseille": 30365,
- "marsh": 9237,
- "marsh": 13505,
- "marsha": 21491,
- "marshal": 26608,
- "marshall": 30939,
- "marshall": 9811,
- "marshals": 44175,
- "marshes": 43450,
- "marshmal": 21069,
- "marshmallow": 28530,
- "marshmallows": 39471,
- "mart": 2348,
- "mart": 7772,
- "marta": 32858,
- "martens": 43211,
- "marth": 34493,
- "martha": 16427,
- "marti": 20577,
- "martial": 17088,
- "martialarts": 35895,
- "martian": 30214,
- "martin": 6929,
- "martin": 3690,
- "martina": 34393,
- "martinez": 13913,
- "marting": 47570,
- "martini": 22199,
- "martino": 41675,
- "martins": 30569,
- "marty": 9926,
- "marty": 17169,
- "martyn": 44075,
- "martyr": 36155,
- "martyr": 26067,
- "martyrdom": 43110,
- "martyred": 39114,
- "martyrs": 24707,
- "maru": 37413,
- "maru": 31838,
- "marvel": 13835,
- "marvel": 5996,
- "marvelcomics": 46897,
- "marvell": 26576,
- "marvellous": 28402,
- "marvelous": 25487,
- "marvin": 19675,
- "marx": 30559,
- "marx": 26001,
- "marxist": 45205,
- "mary": 5146,
- "mary": 2676,
- "maryam": 33636,
- "maryam": 36393,
- "maryland": 11379,
- "marys": 40905,
- "marys": 40228,
- "mas": 5226,
- "mas": 1412,
- "masa": 24995,
- "masa": 41868,
- "masala": 31483,
- "masc": 23564,
- "mascar": 46984,
- "mascara": 31635,
- "mascot": 13983,
- "mascots": 43266,
- "mascul": 25589,
- "masculine": 48269,
- "masculinity": 40465,
- "mase": 49128,
- "maser": 25798,
- "maserati": 30442,
- "mash": 12317,
- "mash": 15680,
- "mashable": 41026,
- "mashed": 27395,
- "mashup": 27079,
- "masi": 35965,
- "masjid": 31420,
- "mask": 19262,
- "mask": 8306,
- "masked": 25757,
- "masking": 47046,
- "masks": 19055,
- "maslow": 44359,
- "mason": 17424,
- "mason": 9699,
- "masonic": 36491,
- "masonry": 30764,
- "masons": 37195,
- "masqu": 26593,
- "masquer": 29604,
- "masquerade": 36944,
- "mass": 4636,
- "mass": 4854,
- "massach": 14484,
- "massachuse": 14577,
- "massachusetts": 14756,
- "massacre": 14696,
- "massage": 13055,
- "masse": 41735,
- "masses": 22978,
- "massey": 29868,
- "massi": 17239,
- "massimo": 45821,
- "massive": 4818,
- "massively": 34297,
- "mast": 45916,
- "mast": 27920,
- "master": 4534,
- "master": 3498,
- "mastercard": 40542,
- "masterchef": 34809,
- "masterclass": 17529,
- "mastered": 32616,
- "masterful": 46823,
- "mastering": 28326,
- "mastermind": 34029,
- "masterpiece": 12066,
- "masterpieces": 37596,
- "masters": 6913,
- "mastery": 34800,
- "mastiff": 42311,
- "maswar": 47887,
- "mat": 905,
- "mat": 9063,
- "mata": 17270,
- "match": 7733,
- "match": 2439,
- "matcha": 32433,
- "matchday": 15947,
- "matched": 17792,
- "matches": 8609,
- "matching": 11840,
- "matchup": 19355,
- "matchups": 49162,
- "mate": 6137,
- "mate": 2936,
- "mated": 33813,
- "mateo": 34991,
- "mater": 23724,
- "materi": 7084,
- "material": 7118,
- "materials": 8161,
- "maternal": 26131,
- "maternity": 23894,
- "mates": 5817,
- "math": 13277,
- "math": 6025,
- "mathe": 8725,
- "mathemat": 11901,
- "mathematical": 25609,
- "mathematician": 41036,
- "mathematics": 20113,
- "mathew": 36333,
- "mathews": 37120,
- "mathi": 23014,
- "mathieu": 40417,
- "maths": 14763,
- "mati": 12716,
- "mati": 32268,
- "matic": 36859,
- "matic": 7900,
- "matically": 38282,
- "matics": 23634,
- "matil": 26751,
- "matilda": 36308,
- "matin": 44849,
- "matinee": 38525,
- "mating": 34346,
- "mation": 11701,
- "matisse": 43446,
- "mato": 13127,
- "matologist": 48842,
- "matology": 27940,
- "matory": 25519,
- "matri": 27041,
- "matrix": 18078,
- "mats": 22259,
- "matsu": 30242,
- "matt": 7972,
- "matt": 3972,
- "mattb": 42791,
- "matte": 31237,
- "matte": 19771,
- "mattel": 35365,
- "matteo": 33120,
- "matter": 30471,
- "matter": 3828,
- "matters": 5708,
- "matth": 41846,
- "matthe": 5116,
- "matthew": 17588,
- "matthew": 7008,
- "matthews": 16739,
- "matthi": 29853,
- "matthias": 45104,
- "matti": 39840,
- "mattress": 23438,
- "matty": 31233,
- "matty": 29176,
- "matu": 40616,
- "matur": 22897,
- "mature": 14417,
- "maturity": 28047,
- "mau": 8134,
- "mau": 23033,
- "maui": 20463,
- "maul": 30725,
- "maur": 10574,
- "maure": 25191,
- "maureen": 31723,
- "maurice": 20200,
- "mauricio": 39066,
- "mauriti": 28406,
- "mauritius": 29305,
- "mauro": 41691,
- "mav": 25697,
- "maver": 16700,
- "maverick": 27425,
- "mavericks": 30092,
- "mavs": 30665,
- "maw": 39351,
- "maw": 42271,
- "mawards": 37682,
- "max": 4898,
- "max": 3902,
- "maxi": 8554,
- "maxi": 23266,
- "maxim": 19892,
- "maxim": 38574,
- "maximize": 28673,
- "maximum": 13162,
- "maximus": 44312,
- "maxine": 38468,
- "maxwell": 19611,
- "maxx": 37466,
- "may": 1686,
- "may": 1270,
- "maya": 45783,
- "maya": 12987,
- "mayan": 37952,
- "maybe": 3746,
- "mayday": 29957,
- "mayer": 21196,
- "mayfair": 35171,
- "mayfield": 33933,
- "mayhem": 21502,
- "maymay": 26600,
- "maymay": 33853,
- "maymayentrata": 30480,
- "maynard": 32487,
- "mayne": 35771,
- "mayo": 22449,
- "mayo": 11280,
- "mayor": 15429,
- "mayor": 4676,
- "mayoral": 28983,
- "mayorof": 43533,
- "mayors": 28501,
- "mays": 35445,
- "maythe": 42281,
- "mayward": 45751,
- "mayward": 23519,
- "mayweather": 22774,
- "maz": 9177,
- "maz": 36215,
- "mazda": 18506,
- "maze": 21988,
- "mazz": 29439,
- "mañ": 37059,
- "mañana": 39354,
- "mb": 758,
- "mb": 3996,
- "mba": 8329,
- "mban": 46685,
- "mbar": 44452,
- "mbb": 10736,
- "mbc": 20137,
- "mbe": 38395,
- "mbe": 27004,
- "mber": 5467,
- "mber": 1034,
- "mberg": 26372,
- "mbers": 5443,
- "mbi": 45347,
- "mble": 20310,
- "mble": 4756,
- "mbles": 28693,
- "mbling": 28604,
- "mbo": 25733,
- "mbo": 11319,
- "mbps": 44896,
- "mbs": 10370,
- "mbta": 38979,
- "mbu": 42228,
- "mbuhari": 36752,
- "mc": 1278,
- "mc": 4126,
- "mca": 40570,
- "mca": 14635,
- "mcal": 28663,
- "mcar": 43776,
- "mcbride": 35080,
- "mcc": 21192,
- "mccabe": 37628,
- "mccaf": 47385,
- "mccain": 20397,
- "mccall": 34844,
- "mccann": 27140,
- "mccar": 9570,
- "mccarthy": 16974,
- "mccartney": 19958,
- "mccl": 24709,
- "mccla": 43672,
- "mccle": 40139,
- "mcclure": 44945,
- "mcco": 46152,
- "mccon": 32638,
- "mccor": 23057,
- "mccormack": 45164,
- "mccormick": 39088,
- "mccoy": 20218,
- "mccr": 41996,
- "mccre": 25393,
- "mccul": 38833,
- "mccull": 41782,
- "mcd": 28930,
- "mcder": 27355,
- "mcdermott": 34504,
- "mcdon": 12171,
- "mcdonald": 10741,
- "mcdonalds": 17674,
- "mcdonnell": 34360,
- "mcdowell": 34119,
- "mce": 26864,
- "mcel": 28752,
- "mcen": 47423,
- "mcfad": 36976,
- "mcfadden": 42105,
- "mcfar": 29020,
- "mcfarlane": 47174,
- "mcfc": 16416,
- "mcfly": 38211,
- "mcg": 42507,
- "mcg": 27995,
- "mcgee": 29223,
- "mcgill": 46524,
- "mcgill": 35511,
- "mcgin": 29596,
- "mcgowan": 40462,
- "mcgr": 25169,
- "mcgra": 29367,
- "mcgrath": 28759,
- "mcgraw": 40950,
- "mcgregor": 19642,
- "mcgu": 34294,
- "mcguinness": 45299,
- "mcguire": 32635,
- "mci": 46212,
- "mci": 45491,
- "mcil": 30481,
- "mcin": 18770,
- "mcintosh": 45353,
- "mcintyre": 33369,
- "mck": 6781,
- "mckay": 33611,
- "mcke": 27424,
- "mckee": 43529,
- "mcken": 42619,
- "mckenna": 24924,
- "mckenzie": 25502,
- "mckin": 15437,
- "mckinley": 39891,
- "mckinney": 33554,
- "mckinnon": 48736,
- "mckinsey": 48143,
- "mcl": 49021,
- "mcla": 12565,
- "mclaren": 37381,
- "mclaren": 16789,
- "mclau": 32285,
- "mclaughlin": 35346,
- "mcle": 25299,
- "mclean": 28666,
- "mcleod": 40259,
- "mcm": 12251,
- "mcmahon": 24026,
- "mcmaster": 42703,
- "mcmillan": 45603,
- "mcn": 42919,
- "mcnam": 32682,
- "mcnamara": 37506,
- "mcne": 42545,
- "mco": 33723,
- "mcqueen": 22544,
- "mcr": 29884,
- "mcr": 16966,
- "mcs": 27020,
- "mcu": 30403,
- "md": 8637,
- "md": 4732,
- "mdc": 38773,
- "mdc": 41761,
- "mds": 48746,
- "mdt": 40822,
- "me": 613,
- "me": 614,
- "mea": 46045,
- "mea": 17711,
- "mead": 12134,
- "mead": 21567,
- "meade": 37218,
- "meado": 16402,
- "meadow": 25213,
- "meadow": 17195,
- "meadows": 17178,
- "meal": 29662,
- "meal": 5478,
- "meals": 11229,
- "mean": 4189,
- "mean": 3450,
- "meand": 48015,
- "meaning": 14586,
- "meaning": 8342,
- "meaningful": 17480,
- "meaningless": 48932,
- "meanings": 45814,
- "means": 3494,
- "meant": 8674,
- "meantime": 27499,
- "meanwhile": 9650,
- "meas": 5867,
- "measles": 38230,
- "measurable": 48010,
- "measure": 15261,
- "measure": 10579,
- "measured": 23154,
- "measurement": 20973,
- "measurements": 29894,
- "measures": 11936,
- "measuring": 18064,
- "meat": 10805,
- "meat": 6480,
- "meatball": 43642,
- "meatballs": 29233,
- "meath": 37920,
- "meatless": 48085,
- "meats": 29558,
- "mec": 27432,
- "mecca": 36095,
- "mech": 38305,
- "mechan": 6715,
- "mechanic": 24582,
- "mechanical": 14467,
- "mechanics": 20536,
- "mechanism": 22576,
- "mechanisms": 28610,
- "meck": 41908,
- "med": 1948,
- "med": 2177,
- "meda": 33614,
- "medal": 29714,
- "medal": 6974,
- "medalist": 21040,
- "medalists": 43397,
- "medalli": 31349,
- "medallion": 43469,
- "medallist": 41472,
- "medals": 14710,
- "mede": 48225,
- "meded": 27627,
- "medi": 1436,
- "media": 22064,
- "media": 1895,
- "mediac": 37490,
- "median": 30491,
- "mediation": 42829,
- "medic": 3602,
- "medic": 35441,
- "medicaid": 25421,
- "medical": 18432,
- "medical": 4116,
- "medicare": 23710,
- "medication": 23771,
- "medications": 37181,
- "medicinal": 28772,
- "medicine": 5616,
- "medicines": 26541,
- "medics": 46688,
- "medieval": 38956,
- "medieval": 10789,
- "medina": 27281,
- "mediocre": 41170,
- "medit": 19130,
- "meditate": 38039,
- "meditation": 10827,
- "mediter": 14194,
- "mediterran": 14358,
- "mediterranean": 15327,
- "medium": 8675,
- "medley": 24793,
- "meds": 25075,
- "medtech": 42044,
- "medusa": 44216,
- "medway": 42286,
- "mee": 1725,
- "mee": 14075,
- "meek": 28935,
- "meen": 37940,
- "meen": 46515,
- "meer": 26714,
- "meer": 27555,
- "meet": 5714,
- "meet": 1633,
- "meeting": 48566,
- "meeting": 2071,
- "meetings": 9980,
- "meets": 5972,
- "meetthe": 27575,
- "meetup": 15430,
- "meg": 11500,
- "meg": 16186,
- "mega": 15979,
- "mega": 9068,
- "megab": 38103,
- "megadeth": 46741,
- "megal": 37650,
- "megam": 26073,
- "megan": 19127,
- "megan": 11503,
- "megap": 33624,
- "megat": 35581,
- "megh": 31192,
- "meghan": 39939,
- "meghan": 18261,
- "meh": 10512,
- "meh": 22211,
- "mehta": 25031,
- "mei": 22564,
- "mei": 25198,
- "meier": 29812,
- "mein": 28857,
- "mein": 21466,
- "meister": 28407,
- "mek": 44645,
- "mel": 1902,
- "mel": 6834,
- "mela": 35032,
- "melan": 22261,
- "melanch": 44818,
- "melancholy": 47821,
- "melani": 34031,
- "melania": 32796,
- "melanie": 22153,
- "melanoma": 40862,
- "melb": 47007,
- "melb": 28980,
- "melbourne": 28387,
- "melbourne": 6995,
- "melee": 45108,
- "meli": 28885,
- "melinda": 46303,
- "melis": 18913,
- "melissa": 41866,
- "melissa": 13030,
- "mell": 22531,
- "mell": 41583,
- "mello": 47594,
- "mellon": 45162,
- "mellow": 32034,
- "melo": 10354,
- "melo": 22374,
- "melodic": 41877,
- "melodies": 38412,
- "melody": 19119,
- "melon": 12146,
- "melrose": 36296,
- "melt": 22209,
- "melt": 15957,
- "meltdown": 30613,
- "melted": 23037,
- "melting": 19247,
- "melton": 46062,
- "melts": 31446,
- "melville": 46030,
- "melvin": 31544,
- "mely": 6373,
- "mem": 4937,
- "mem": 34944,
- "memb": 2114,
- "member": 29566,
- "member": 1640,
- "members": 2567,
- "membership": 11562,
- "membrane": 34088,
- "meme": 35157,
- "meme": 9169,
- "memes": 12828,
- "memo": 15967,
- "memo": 19334,
- "memoir": 20532,
- "memoirs": 45311,
- "memor": 1858,
- "memorab": 26271,
- "memorabilia": 27488,
- "memorable": 13172,
- "memorial": 16285,
- "memorial": 4642,
- "memorialday": 21598,
- "memoriam": 48191,
- "memories": 4304,
- "memory": 44766,
- "memory": 5137,
- "memph": 10285,
- "memphis": 38432,
- "memphis": 11298,
- "men": 1552,
- "men": 1656,
- "mena": 23052,
- "menace": 29949,
- "mend": 8151,
- "mend": 46927,
- "mendel": 49268,
- "mendes": 18060,
- "mendez": 48275,
- "mendo": 19327,
- "mendoza": 23680,
- "meng": 37102,
- "meng": 37450,
- "mening": 46428,
- "menon": 38255,
- "menopau": 34974,
- "menopause": 46026,
- "mens": 16924,
- "mens": 10495,
- "mensfashion": 27578,
- "menstru": 28345,
- "menstrual": 40915,
- "menswear": 18803,
- "ment": 1585,
- "ment": 777,
- "mental": 8611,
- "mental": 3448,
- "mentalhealth": 20593,
- "mentalhealth": 13022,
- "mentality": 26647,
- "mentally": 14307,
- "mentary": 4468,
- "mentation": 9512,
- "mentday": 40397,
- "mente": 40302,
- "mente": 36396,
- "mented": 9249,
- "menting": 14471,
- "mention": 43881,
- "mention": 6762,
- "mentioned": 11948,
- "mentioning": 34290,
- "mentions": 12334,
- "mento": 30582,
- "mentor": 45342,
- "mentor": 11642,
- "mentoring": 19610,
- "mentors": 20945,
- "mentorship": 33878,
- "ments": 1827,
- "menu": 6225,
- "menus": 33534,
- "meo": 30792,
- "meow": 39965,
- "meow": 17246,
- "mep": 27095,
- "mer": 1316,
- "mer": 2452,
- "mera": 20028,
- "merc": 34357,
- "merc": 44399,
- "mercado": 45479,
- "merce": 8409,
- "mercede": 34959,
- "mercedes": 26403,
- "mercedes": 10685,
- "mercedesam": 40107,
- "mercedesbenz": 32347,
- "mercen": 40301,
- "mercer": 21632,
- "merch": 11504,
- "merchandi": 14954,
- "merchandise": 16808,
- "merchandising": 49196,
- "merchant": 19563,
- "merchants": 34427,
- "merci": 23364,
- "merci": 29378,
- "mercur": 11471,
- "mercury": 45203,
- "mercury": 12653,
- "mercy": 33249,
- "mercy": 10815,
- "mere": 29657,
- "mere": 10342,
- "mered": 24657,
- "mered": 32297,
- "meredith": 25103,
- "merely": 28718,
- "merge": 30406,
- "merged": 46492,
- "merger": 24744,
- "merging": 49256,
- "meri": 17993,
- "meri": 36109,
- "meria": 48433,
- "meric": 27097,
- "merica": 30561,
- "meridi": 37901,
- "meridian": 31195,
- "mering": 41060,
- "meringue": 41661,
- "merino": 42648,
- "merit": 20830,
- "merkel": 24715,
- "merle": 48586,
- "merlin": 26517,
- "merlot": 40424,
- "mermaid": 16064,
- "mermaids": 43617,
- "mero": 19097,
- "merr": 48288,
- "merri": 21462,
- "merrill": 47713,
- "merritt": 36462,
- "merry": 14167,
- "merry": 5779,
- "merrychristmas": 19672,
- "mers": 4199,
- "mersal": 36711,
- "mersey": 25248,
- "mersey": 46239,
- "merseyside": 35382,
- "mert": 48496,
- "merton": 35315,
- "mery": 40873,
- "meryl": 35787,
- "mes": 28432,
- "mes": 3029,
- "mesa": 18956,
- "mese": 42018,
- "mesh": 15030,
- "mesm": 18695,
- "mesmer": 38435,
- "mesmeri": 25985,
- "mesmerizing": 35637,
- "meso": 25537,
- "mesqu": 46819,
- "mess": 2490,
- "mess": 8188,
- "message": 3918,
- "messages": 9390,
- "messaging": 23234,
- "messe": 40391,
- "messed": 23580,
- "messenger": 17389,
- "messi": 19394,
- "messi": 11252,
- "messiah": 28737,
- "messing": 23144,
- "messy": 15987,
- "mest": 23780,
- "mester": 47349,
- "mesut": 49177,
- "met": 5249,
- "met": 2340,
- "meta": 14803,
- "meta": 22701,
- "metab": 16150,
- "metabol": 48389,
- "metaboli": 25573,
- "metabolic": 34311,
- "metabolism": 27824,
- "metal": 8935,
- "metal": 4044,
- "metall": 19084,
- "metallic": 17257,
- "metallica": 24079,
- "metals": 21375,
- "metam": 28862,
- "metamor": 39030,
- "metamorpho": 47601,
- "metaph": 24189,
- "metaphor": 34233,
- "metast": 41973,
- "mete": 11226,
- "meteor": 26429,
- "meteor": 26823,
- "meteoro": 25948,
- "meteorologist": 42849,
- "meter": 10104,
- "meters": 13247,
- "metgala": 30089,
- "meth": 21867,
- "meth": 26177,
- "methane": 37565,
- "metho": 5770,
- "method": 10284,
- "methodist": 25165,
- "methodo": 28488,
- "methodology": 37316,
- "methods": 12200,
- "methyl": 48999,
- "metmuseum": 28207,
- "meto": 25679,
- "metoo": 24722,
- "metr": 15086,
- "metre": 27889,
- "metres": 19798,
- "metric": 19950,
- "metrical": 40704,
- "metrics": 24396,
- "metro": 7257,
- "metro": 6784,
- "metroid": 39957,
- "metropolis": 40476,
- "metropolitan": 19013,
- "metry": 20039,
- "mets": 9633,
- "mett": 28081,
- "metz": 40506,
- "meu": 34520,
- "mew": 40368,
- "mex": 3213,
- "mex": 18387,
- "mexic": 31728,
- "mexican": 37442,
- "mexican": 8186,
- "mexicans": 47729,
- "mexico": 31834,
- "mexico": 4604,
- "mey": 28584,
- "mey": 27777,
- "meyer": 13963,
- "meyers": 32326,
- "mez": 30615,
- "mez": 46833,
- "mezz": 38771,
- "mf": 18199,
- "mf": 11067,
- "mfa": 24107,
- "mfc": 39474,
- "mfg": 21912,
- "mfw": 27309,
- "mg": 10003,
- "mg": 8014,
- "mga": 23954,
- "mgm": 27572,
- "mgmt": 22288,
- "mgr": 31500,
- "mgs": 48073,
- "mgt": 48663,
- "mh": 9962,
- "mh": 10834,
- "mha": 41944,
- "mhealth": 41225,
- "mhs": 28815,
- "mhz": 31550,
- "mi": 714,
- "mi": 2251,
- "mia": 5852,
- "miam": 31053,
- "miami": 15106,
- "miami": 4891,
- "mian": 24792,
- "miaw": 36046,
- "mib": 48178,
- "mic": 1213,
- "mic": 3816,
- "mica": 41551,
- "micah": 33870,
- "mice": 19030,
- "mich": 25628,
- "mich": 23029,
- "micha": 2083,
- "michael": 6051,
- "michael": 2511,
- "michaela": 41897,
- "michaeljackson": 33532,
- "michaels": 23868,
- "michal": 47144,
- "miche": 37966,
- "micheal": 43709,
- "michel": 5158,
- "michel": 17153,
- "michelangelo": 41245,
- "michele": 20642,
- "michelin": 26330,
- "michelle": 19028,
- "michelle": 8625,
- "michi": 5658,
- "michigan": 32344,
- "michigan": 6296,
- "mick": 15171,
- "mick": 12592,
- "mickey": 41813,
- "mickey": 13053,
- "micky": 43011,
- "micro": 3160,
- "micro": 11374,
- "microbes": 44671,
- "microbi": 19496,
- "microbial": 30335,
- "microbiology": 35348,
- "microbiome": 35148,
- "micron": 48742,
- "microphone": 24643,
- "micropoetry": 35997,
- "microscope": 29114,
- "microscopy": 38431,
- "microsof": 42424,
- "microsoft": 38650,
- "microsoft": 7254,
- "microwave": 24240,
- "mics": 16554,
- "mid": 2192,
- "mid": 4734,
- "midcentury": 48988,
- "midd": 2983,
- "midday": 23390,
- "middle": 9849,
- "middle": 3694,
- "middleeast": 32783,
- "middles": 29769,
- "middlesbrough": 32436,
- "middlesex": 39154,
- "middleton": 23627,
- "middleweight": 35829,
- "midfield": 28116,
- "midfielder": 13423,
- "midget": 30734,
- "midi": 39496,
- "midi": 27326,
- "midland": 24822,
- "midlands": 18062,
- "midnight": 35746,
- "midnight": 6302,
- "mids": 40821,
- "midst": 24752,
- "midsummer": 35234,
- "midterm": 34365,
- "midterms": 32015,
- "midtown": 26069,
- "midway": 26536,
- "midweek": 29120,
- "midwest": 16627,
- "midwi": 44802,
- "midwife": 37681,
- "midwives": 42355,
- "mie": 20865,
- "mie": 10555,
- "miento": 46482,
- "mier": 36490,
- "mies": 8840,
- "miff": 49398,
- "mig": 28743,
- "might": 2727,
- "mighty": 26632,
- "mighty": 7815,
- "mign": 41678,
- "migos": 44640,
- "migr": 3736,
- "migra": 28186,
- "migraine": 35360,
- "migrant": 18902,
- "migrants": 15814,
- "migrate": 41804,
- "migrating": 43604,
- "migration": 11891,
- "migu": 12279,
- "miguel": 33672,
- "miguel": 14436,
- "miho": 46870,
- "mii": 39896,
- "mik": 15096,
- "mik": 46203,
- "mika": 28609,
- "mika": 25185,
- "mike": 5884,
- "mike": 3178,
- "mikel": 48865,
- "mikequind": 33508,
- "mikequindazzi": 33551,
- "mikey": 34934,
- "mikey": 23368,
- "mikha": 30999,
- "mikhail": 38327,
- "miki": 48863,
- "miko": 35413,
- "miku": 37703,
- "mil": 1469,
- "mil": 12826,
- "mila": 26183,
- "milan": 30380,
- "milan": 8552,
- "milano": 18585,
- "milb": 42248,
- "mild": 16085,
- "mildly": 49059,
- "mile": 7833,
- "mile": 6243,
- "mileage": 30579,
- "miler": 44680,
- "miles": 3446,
- "milestone": 13485,
- "milestones": 34025,
- "miley": 25336,
- "miley": 14321,
- "mileycyrus": 28528,
- "milf": 45386,
- "milford": 35840,
- "mili": 16698,
- "miliband": 41440,
- "milit": 3715,
- "militant": 33629,
- "militants": 23974,
- "military": 24498,
- "military": 4323,
- "militi": 46625,
- "militia": 32114,
- "milk": 13409,
- "milk": 5205,
- "milkshake": 29066,
- "milky": 37320,
- "milky": 21120,
- "milkyway": 43246,
- "mill": 4221,
- "mill": 6637,
- "milla": 49381,
- "millan": 34930,
- "millan": 22188,
- "millar": 41851,
- "mille": 34066,
- "millen": 48501,
- "millenni": 10406,
- "millennial": 28357,
- "millennials": 18804,
- "millennium": 21116,
- "miller": 21699,
- "miller": 5733,
- "milli": 5340,
- "millie": 29283,
- "milling": 39133,
- "million": 13154,
- "million": 2506,
- "millionaire": 25179,
- "millionaires": 47159,
- "millions": 8492,
- "mills": 10331,
- "millwall": 35902,
- "milly": 45794,
- "milne": 44590,
- "milner": 45230,
- "milo": 24548,
- "milton": 39004,
- "milton": 17360,
- "milwau": 13452,
- "milwaukee": 14259,
- "mim": 39379,
- "mimi": 27086,
- "mimic": 47116,
- "mimic": 46519,
- "mimo": 45551,
- "min": 771,
- "min": 3331,
- "mina": 15281,
- "minaj": 25136,
- "minal": 40222,
- "minat": 33275,
- "mince": 32396,
- "mind": 5890,
- "mind": 2575,
- "mindanao": 44228,
- "minded": 21330,
- "mindful": 28457,
- "mindfulness": 15707,
- "minding": 45337,
- "minds": 9244,
- "mindset": 14217,
- "mindy": 46875,
- "mindy": 38551,
- "mine": 20149,
- "mine": 3347,
- "minecraft": 15678,
- "mined": 48034,
- "minent": 12533,
- "miner": 14109,
- "miner": 26572,
- "mineral": 17692,
- "minerals": 21169,
- "miners": 22119,
- "mines": 16211,
- "ming": 10868,
- "ming": 2107,
- "mingham": 7590,
- "mingle": 38437,
- "mingly": 36909,
- "mington": 49283,
- "mington": 23119,
- "minh": 48734,
- "minho": 21318,
- "mini": 1810,
- "mini": 3954,
- "miniature": 44298,
- "miniature": 16377,
- "miniatures": 38816,
- "minic": 31522,
- "minim": 10005,
- "minimal": 18458,
- "minimalism": 42594,
- "minimalist": 26641,
- "minimize": 38697,
- "minimum": 12244,
- "minindia": 28458,
- "mining": 8473,
- "minion": 28622,
- "minions": 27035,
- "minis": 33409,
- "minis": 35976,
- "minister": 25688,
- "minister": 3569,
- "ministerial": 33008,
- "ministers": 16406,
- "ministries": 27895,
- "ministry": 8742,
- "mink": 42017,
- "minn": 45991,
- "minn": 47318,
- "minne": 7083,
- "minneapolis": 16977,
- "minneso": 9380,
- "minnesota": 9968,
- "minnie": 24493,
- "mino": 22791,
- "minogue": 44202,
- "minor": 8522,
- "minorities": 28119,
- "minority": 16210,
- "minors": 36789,
- "mins": 6196,
- "minsk": 46151,
- "minster": 11189,
- "mint": 48084,
- "mint": 7506,
- "minted": 49377,
- "minton": 20050,
- "minu": 29064,
- "minus": 15358,
- "minute": 28931,
- "minute": 4497,
- "minutes": 3056,
- "mio": 26366,
- "mir": 2750,
- "mir": 6585,
- "mira": 21665,
- "mira": 22762,
- "mirac": 13685,
- "miracle": 49208,
- "miracle": 11543,
- "miracles": 23478,
- "miraculous": 38671,
- "mirage": 28679,
- "mirai": 49060,
- "mirand": 32367,
- "miranda": 17590,
- "mire": 38140,
- "mire": 30140,
- "miri": 22273,
- "miriam": 30950,
- "miro": 34851,
- "miro": 48317,
- "mirren": 47600,
- "mirro": 48500,
- "mirror": 29823,
- "mirror": 7220,
- "mirrors": 21823,
- "mirza": 36440,
- "mis": 866,
- "mis": 11239,
- "mischief": 33896,
- "misconceptions": 48681,
- "misconduct": 30601,
- "mise": 46567,
- "mise": 17267,
- "miser": 33394,
- "miserable": 26196,
- "misery": 28360,
- "mises": 24390,
- "misfits": 42708,
- "mish": 15494,
- "mish": 20981,
- "misha": 35434,
- "mishra": 33042,
- "misleading": 30862,
- "mism": 15948,
- "miso": 27657,
- "miso": 33441,
- "misogy": 31315,
- "misogyny": 48415,
- "miss": 6984,
- "miss": 1526,
- "missal": 38337,
- "missed": 3955,
- "misses": 15844,
- "missi": 3008,
- "missile": 14411,
- "missiles": 27868,
- "missin": 36209,
- "missing": 23509,
- "missing": 3423,
- "mission": 12738,
- "mission": 2406,
- "missionaries": 40580,
- "missionary": 27915,
- "missions": 6990,
- "mississ": 26483,
- "mississauga": 28393,
- "mississi": 11687,
- "mississippi": 12232,
- "missou": 30710,
- "missoula": 48549,
- "missouri": 11835,
- "missuni": 26347,
- "missuniverse": 28766,
- "missy": 48105,
- "missy": 31515,
- "missyou": 45799,
- "mist": 12610,
- "mist": 11946,
- "mistak": 20478,
- "mistake": 11303,
- "mistaken": 29182,
- "mistakenly": 48494,
- "mistakes": 12824,
- "mister": 26949,
- "mister": 18895,
- "mistle": 46800,
- "mistletoe": 48569,
- "mistre": 42039,
- "mistress": 24349,
- "mists": 28636,
- "misty": 18799,
- "misunderstood": 41574,
- "misuse": 40970,
- "mit": 3303,
- "mit": 4551,
- "mita": 47514,
- "mitage": 27964,
- "mitch": 6969,
- "mitch": 14150,
- "mitchell": 39339,
- "mitchell": 9007,
- "mite": 26929,
- "mith": 21752,
- "mith": 17948,
- "miti": 17857,
- "mitigate": 42273,
- "mitigation": 35514,
- "mito": 38254,
- "mitochondri": 42132,
- "mitra": 47703,
- "mits": 24086,
- "mitsu": 17905,
- "mitsubi": 21604,
- "mitsubishi": 23030,
- "mitt": 17321,
- "mitt": 21341,
- "mitted": 10307,
- "mitting": 27938,
- "mitz": 41827,
- "mium": 35891,
- "miwx": 43941,
- "mix": 3210,
- "mix": 3285,
- "mixed": 29376,
- "mixed": 6780,
- "mixer": 17200,
- "mixers": 39175,
- "mixes": 19061,
- "mixing": 15588,
- "mixtape": 11044,
- "mixture": 28286,
- "miy": 25695,
- "miya": 36257,
- "miz": 20881,
- "miz": 30795,
- "mize": 19076,
- "mized": 43418,
- "mizing": 38715,
- "mizz": 19985,
- "mizzou": 26165,
- "mj": 13117,
- "mj": 14733,
- "mk": 11581,
- "mk": 8937,
- "mke": 36642,
- "mkt": 24814,
- "ml": 3627,
- "ml": 5780,
- "mla": 16723,
- "mlas": 48464,
- "mlb": 21039,
- "mlb": 7482,
- "mley": 40329,
- "mlg": 45801,
- "mlin": 24556,
- "mlk": 17941,
- "mlkday": 39905,
- "mlm": 37611,
- "mln": 18971,
- "mlp": 23620,
- "mlpfi": 45475,
- "mlpfim": 45640,
- "mls": 13077,
- "mm": 1028,
- "mm": 2848,
- "mma": 34140,
- "mma": 6096,
- "mmc": 44253,
- "mme": 13105,
- "mmed": 19570,
- "mmer": 35717,
- "mmer": 7508,
- "mmers": 28128,
- "mmes": 42862,
- "mmi": 34147,
- "mming": 21038,
- "mming": 16507,
- "mmings": 31357,
- "mmit": 41050,
- "mmj": 43015,
- "mmm": 37908,
- "mmm": 7641,
- "mmmm": 36312,
- "mmmm": 13180,
- "mmmmm": 21808,
- "mmmmmm": 43740,
- "mmo": 30418,
- "mmon": 41131,
- "mmor": 36657,
- "mmorpg": 39476,
- "mms": 37803,
- "mmva": 42666,
- "mmy": 28837,
- "mmy": 8722,
- "mn": 5086,
- "mn": 4057,
- "mna": 34877,
- "mnd": 44776,
- "mnet": 34129,
- "mnf": 41105,
- "mnl": 32980,
- "mnleg": 42653,
- "mns": 39040,
- "mnt": 21477,
- "mntwins": 45448,
- "mnwild": 39044,
- "mnwx": 39592,
- "mo": 617,
- "mo": 2080,
- "moa": 33174,
- "moana": 43241,
- "mob": 2818,
- "mob": 12754,
- "mobi": 9451,
- "mobil": 26343,
- "mobil": 29815,
- "mobile": 12935,
- "mobile": 3451,
- "mobiles": 44302,
- "mobili": 20770,
- "mobility": 12546,
- "mobilization": 48916,
- "moby": 47219,
- "moc": 41439,
- "moc": 36992,
- "mocha": 28425,
- "mochi": 47973,
- "mock": 15641,
- "mock": 12759,
- "mocked": 47400,
- "mocking": 28692,
- "mocking": 37870,
- "mocks": 35142,
- "mod": 6362,
- "mod": 10893,
- "moda": 25814,
- "modal": 33157,
- "mode": 20402,
- "mode": 6493,
- "model": 4591,
- "model": 2863,
- "modeled": 39527,
- "modeling": 13706,
- "modelling": 19946,
- "models": 6176,
- "moder": 2894,
- "moderate": 16435,
- "moderated": 27928,
- "moderating": 34242,
- "moderator": 32659,
- "modern": 11706,
- "modern": 4077,
- "modernart": 34417,
- "moderni": 24328,
- "modernism": 39601,
- "modernist": 36773,
- "modernization": 47294,
- "modes": 30454,
- "modest": 25436,
- "modi": 9047,
- "modi": 7774,
- "modification": 37630,
- "modified": 17964,
- "modo": 36820,
- "mods": 23843,
- "modu": 9036,
- "modular": 22437,
- "module": 16757,
- "modules": 30575,
- "moe": 38655,
- "moe": 17938,
- "mof": 30798,
- "moff": 27160,
- "mog": 42362,
- "moga": 41732,
- "mogadishu": 45133,
- "mogul": 41320,
- "moh": 18979,
- "moh": 35388,
- "moha": 46892,
- "moham": 7923,
- "mohamed": 18472,
- "mohammad": 19926,
- "mohammed": 16168,
- "mohan": 26521,
- "mohan": 23586,
- "mohawk": 34942,
- "mohd": 49094,
- "mohsin": 48861,
- "moi": 20691,
- "moi": 21825,
- "moil": 30349,
- "moines": 32091,
- "moist": 19831,
- "moist": 33263,
- "moisture": 20412,
- "moisturi": 25942,
- "moj": 34505,
- "moja": 49055,
- "mojito": 46830,
- "mojo": 25204,
- "mok": 49146,
- "mol": 4246,
- "mol": 31582,
- "mold": 21846,
- "molding": 46274,
- "moldova": 47317,
- "mole": 9927,
- "mole": 23529,
- "molecular": 19370,
- "molecule": 39233,
- "molecules": 35643,
- "molina": 34201,
- "mollie": 48203,
- "molly": 24368,
- "molly": 12573,
- "molo": 41510,
- "mology": 32255,
- "molten": 46071,
- "moly": 47083,
- "mom": 1614,
- "mom": 2543,
- "moma": 33605,
- "mombasa": 40340,
- "moment": 12197,
- "moment": 2495,
- "momento": 30078,
- "moments": 5251,
- "momentum": 15722,
- "momlife": 43825,
- "momma": 14508,
- "mommy": 12456,
- "momo": 48490,
- "momo": 25980,
- "moms": 28446,
- "moms": 10042,
- "momsdemand": 33744,
- "mon": 749,
- "mon": 2173,
- "mona": 19143,
- "monaco": 14938,
- "monaghan": 39797,
- "monarch": 27235,
- "monarch": 22619,
- "monarchs": 36750,
- "monarchy": 47503,
- "monaster": 19422,
- "monastery": 21850,
- "monc": 34847,
- "moncton": 44962,
- "mond": 14522,
- "mond": 4475,
- "monday": 6205,
- "monday": 2098,
- "mondaymorning": 40089,
- "mondaymotiv": 45488,
- "mondaymotivation": 8198,
- "mondaymotivaton": 47034,
- "mondays": 13815,
- "monde": 29339,
- "mondo": 36207,
- "monds": 20317,
- "mone": 25990,
- "monet": 24499,
- "monetary": 26394,
- "moneti": 38056,
- "money": 12743,
- "money": 2327,
- "mong": 43566,
- "monger": 38928,
- "mongers": 27670,
- "mongo": 20680,
- "mongolia": 27144,
- "mongolian": 46335,
- "moni": 46851,
- "monia": 31161,
- "monic": 30893,
- "monica": 13540,
- "monit": 9014,
- "monitor": 10198,
- "monitored": 45828,
- "monitoring": 11030,
- "monitors": 30478,
- "monk": 30557,
- "monk": 16424,
- "monkey": 29597,
- "monkey": 9465,
- "monkeys": 15781,
- "monks": 29090,
- "monmouth": 36929,
- "mono": 8220,
- "mono": 22537,
- "monochrome": 25576,
- "monogram": 39665,
- "monologue": 47776,
- "monopoly": 25241,
- "monoxide": 49314,
- "monro": 45750,
- "monroe": 13625,
- "mons": 19885,
- "monsanto": 37592,
- "monsi": 46677,
- "monsieur": 48879,
- "monsoon": 18872,
- "monsta": 30718,
- "monstax": 45631,
- "monste": 47045,
- "monster": 14454,
- "monster": 6060,
- "monsters": 11546,
- "mont": 5186,
- "mont": 5382,
- "montag": 37202,
- "montage": 32325,
- "montal": 42126,
- "montan": 28405,
- "montana": 11436,
- "monte": 8711,
- "monte": 14667,
- "montene": 28538,
- "montenegro": 30378,
- "monter": 36673,
- "monterey": 23388,
- "monterrey": 45254,
- "montess": 43205,
- "montessori": 45443,
- "montgom": 13852,
- "montgomery": 14951,
- "month": 7680,
- "month": 1924,
- "monthly": 8764,
- "months": 3109,
- "monthsary": 42420,
- "monton": 41961,
- "montp": 39523,
- "montre": 8434,
- "montreal": 9262,
- "montrose": 42347,
- "monty": 43997,
- "monty": 24038,
- "monu": 9748,
- "monument": 12019,
- "monumental": 31297,
- "monuments": 26916,
- "mony": 4117,
- "monza": 40380,
- "moo": 4953,
- "moo": 24626,
- "mood": 42358,
- "mood": 5394,
- "moods": 43727,
- "moody": 17170,
- "moom": 36887,
- "moon": 6334,
- "moon": 3293,
- "mooney": 37942,
- "moonlight": 20001,
- "moons": 29887,
- "moonshine": 46706,
- "moor": 14817,
- "moor": 11877,
- "moore": 28613,
- "moore": 6708,
- "moors": 32577,
- "moose": 37562,
- "moose": 17338,
- "moot": 46895,
- "mop": 33900,
- "mopar": 41166,
- "mor": 657,
- "mor": 18614,
- "mora": 29262,
- "moral": 11246,
- "morale": 39404,
- "morales": 27117,
- "morality": 34133,
- "morally": 42519,
- "morals": 46223,
- "moran": 21557,
- "moray": 44569,
- "more": 5434,
- "more": 750,
- "morecam": 37305,
- "morecambe": 43414,
- "mored": 20195,
- "moreland": 44135,
- "moreno": 24826,
- "morethan": 30889,
- "morg": 34284,
- "morgan": 15432,
- "morgan": 6075,
- "morgen": 35106,
- "mori": 25710,
- "mori": 29514,
- "moris": 43131,
- "moritz": 45594,
- "morley": 40439,
- "mormon": 27715,
- "morn": 22393,
- "mornin": 28327,
- "morning": 10769,
- "morning": 1119,
- "mornings": 12106,
- "moro": 31613,
- "moroc": 11996,
- "moroccan": 27546,
- "morocco": 15228,
- "moron": 31875,
- "morons": 46477,
- "morow": 40779,
- "morph": 23915,
- "morph": 41700,
- "morphe": 38978,
- "morpho": 38622,
- "morrha": 43044,
- "morri": 9876,
- "morris": 22560,
- "morris": 9090,
- "morrison": 40961,
- "morrison": 14094,
- "morrisons": 40965,
- "morrissey": 30040,
- "morro": 48363,
- "morrow": 21611,
- "mors": 13064,
- "morse": 25282,
- "mort": 24257,
- "mort": 30583,
- "mortal": 31883,
- "mortal": 14680,
- "mortality": 20347,
- "mortar": 27258,
- "mortg": 12069,
- "mortgage": 13988,
- "mortgages": 45391,
- "mortimer": 47836,
- "morton": 20698,
- "morty": 37391,
- "mory": 22633,
- "mos": 28658,
- "mos": 9593,
- "mosa": 14164,
- "mosa": 23809,
- "mosaic": 17506,
- "mosch": 47003,
- "mosco": 9840,
- "moscow": 10371,
- "moseley": 47080,
- "moses": 18451,
- "mosley": 46228,
- "mosqu": 15215,
- "mosque": 12694,
- "mosques": 41214,
- "mosquit": 39699,
- "mosquito": 25083,
- "mosquitoes": 41870,
- "moss": 25107,
- "moss": 12815,
- "most": 7034,
- "most": 1096,
- "mostly": 8829,
- "mosul": 29165,
- "mot": 16352,
- "mot": 15452,
- "mota": 42499,
- "motd": 46232,
- "motel": 26191,
- "moth": 33208,
- "moth": 11736,
- "mother": 7455,
- "mother": 3050,
- "motherhood": 32274,
- "motherland": 46774,
- "mothers": 10546,
- "mothersday": 15583,
- "motherwell": 48104,
- "moths": 29086,
- "moti": 38210,
- "motif": 35373,
- "motion": 32139,
- "motion": 7860,
- "motiv": 3183,
- "motivate": 26771,
- "motivated": 16521,
- "motivates": 44684,
- "motivating": 37720,
- "motivation": 26117,
- "motivation": 4193,
- "motivational": 32832,
- "motivational": 20472,
- "motivationmonday": 28703,
- "motive": 36669,
- "motley": 42553,
- "motm": 41192,
- "moto": 10646,
- "moto": 11431,
- "motocross": 34562,
- "motogp": 16615,
- "motor": 3975,
- "motor": 7659,
- "motorbike": 33341,
- "motorcycle": 10297,
- "motorcycles": 24869,
- "motoring": 44491,
- "motorists": 32766,
- "motorola": 33738,
- "motors": 14989,
- "motorsport": 18371,
- "motorsports": 24264,
- "motorway": 31808,
- "motown": 32685,
- "mott": 44570,
- "mott": 21708,
- "motto": 23338,
- "mou": 2809,
- "mou": 25289,
- "moud": 37698,
- "moul": 25725,
- "mould": 36743,
- "moulin": 47656,
- "moun": 2023,
- "mound": 21414,
- "mount": 20553,
- "mount": 5532,
- "mountain": 14547,
- "mountain": 3965,
- "mountaine": 24841,
- "mountaineer": 49255,
- "mountains": 5873,
- "mounted": 17897,
- "mounting": 29910,
- "mounts": 36767,
- "mour": 9053,
- "mour": 42446,
- "moured": 29555,
- "mourinho": 18536,
- "mourn": 33592,
- "mourning": 24169,
- "mourns": 42811,
- "mous": 24837,
- "mous": 17425,
- "mouse": 33032,
- "mouse": 9301,
- "mousse": 31869,
- "moustache": 32795,
- "mouth": 15152,
- "mouth": 4932,
- "mouths": 38518,
- "mov": 23950,
- "move": 16624,
- "move": 2783,
- "moved": 6997,
- "movember": 23474,
- "movement": 5208,
- "movements": 19665,
- "mover": 37673,
- "movers": 33957,
- "moves": 6880,
- "movi": 1707,
- "movic": 43838,
- "movie": 11247,
- "movie": 2016,
- "movies": 4772,
- "moving": 32160,
- "moving": 3584,
- "mow": 31006,
- "mow": 36329,
- "mower": 30895,
- "mowing": 46424,
- "mowx": 44263,
- "moy": 27276,
- "moy": 34205,
- "moyes": 37119,
- "moz": 14761,
- "moz": 43738,
- "mozam": 26648,
- "mozambique": 28831,
- "mozart": 22132,
- "mozz": 26317,
- "mozzarella": 27845,
- "mp": 1037,
- "mp": 1246,
- "mpa": 30749,
- "mpc": 38560,
- "mpd": 33814,
- "mped": 28134,
- "mper": 22803,
- "mpg": 39830,
- "mpg": 37454,
- "mpgvip": 42149,
- "mph": 5306,
- "mpi": 43263,
- "mping": 27999,
- "mple": 21139,
- "mplo": 47071,
- "mpls": 34298,
- "mpo": 33674,
- "mpp": 39570,
- "mps": 5504,
- "mption": 9717,
- "mpton": 27448,
- "mpu": 47156,
- "mpus": 25864,
- "mpy": 17192,
- "mq": 19103,
- "mqm": 24687,
- "mr": 3139,
- "mr": 1982,
- "mra": 44568,
- "mrc": 25897,
- "mri": 24773,
- "mrs": 25003,
- "mrs": 4255,
- "mrt": 30256,
- "mru": 22370,
- "mrw": 15303,
- "ms": 3525,
- "ms": 988,
- "msa": 36306,
- "msc": 31826,
- "msc": 20529,
- "msd": 25804,
- "msd": 36407,
- "msdhoni": 32850,
- "msf": 36239,
- "msg": 44430,
- "msg": 10928,
- "msh": 41751,
- "msi": 43597,
- "msi": 45278,
- "msk": 38501,
- "msl": 42736,
- "msm": 22210,
- "msn": 18824,
- "msn": 41042,
- "msnbc": 20245,
- "mson": 27773,
- "mson": 12298,
- "msp": 41445,
- "msp": 22318,
- "mss": 42136,
- "mss": 48610,
- "mst": 26335,
- "msu": 26763,
- "msu": 17298,
- "mswx": 42957,
- "msy": 43919,
- "mt": 4252,
- "mt": 3284,
- "mta": 28691,
- "mtb": 48306,
- "mtb": 18747,
- "mtc": 42482,
- "mtg": 49142,
- "mtg": 13648,
- "mth": 48151,
- "mtl": 22135,
- "mtn": 26041,
- "mtn": 18953,
- "mtr": 46650,
- "mts": 38751,
- "mtv": 8099,
- "mtv": 12555,
- "mtvbr": 47258,
- "mtvhottest": 16751,
- "mtvstars": 19948,
- "mu": 670,
- "mu": 6411,
- "mua": 21395,
- "muay": 44910,
- "muaythai": 47763,
- "mubarak": 17957,
- "muc": 49115,
- "much": 14300,
- "much": 1238,
- "mucha": 42191,
- "muchas": 26278,
- "mucho": 19864,
- "muck": 44731,
- "muck": 45330,
- "mud": 17491,
- "mud": 11673,
- "mudder": 49104,
- "muddy": 21524,
- "mue": 44383,
- "mue": 40717,
- "mueller": 46863,
- "mueller": 14719,
- "muen": 48646,
- "muer": 33840,
- "muf": 33852,
- "mufc": 9013,
- "muffin": 22696,
- "muffins": 25922,
- "mufti": 44930,
- "mug": 16339,
- "mug": 9722,
- "mugabe": 36441,
- "mughal": 37508,
- "mugs": 22852,
- "mugshot": 40028,
- "muh": 36335,
- "muh": 46475,
- "muham": 10043,
- "muhammad": 12259,
- "muir": 44650,
- "muir": 24745,
- "muj": 44635,
- "muk": 17327,
- "muk": 32600,
- "mukher": 34575,
- "mukherjee": 37862,
- "mul": 1899,
- "mul": 43193,
- "mula": 40937,
- "mulator": 17463,
- "mulberry": 39221,
- "mule": 28695,
- "mull": 17313,
- "mull": 35310,
- "mulled": 44641,
- "mullen": 30797,
- "muller": 33956,
- "mullet": 35010,
- "mulligan": 44336,
- "mullins": 41265,
- "mult": 34219,
- "multi": 3947,
- "multi": 6400,
- "multic": 21683,
- "multicul": 28004,
- "multicultural": 34667,
- "multil": 27975,
- "multimedia": 27977,
- "multin": 38996,
- "multinational": 46540,
- "multip": 40314,
- "multiplayer": 27460,
- "multiple": 6470,
- "multipurpose": 47665,
- "multit": 27814,
- "multitasking": 48684,
- "mulus": 26180,
- "mum": 15565,
- "mum": 4030,
- "mumb": 5850,
- "mumbai": 24279,
- "mumbai": 6971,
- "mumford": 46184,
- "mummy": 16301,
- "mums": 17868,
- "mun": 2617,
- "mun": 21059,
- "muna": 48424,
- "munch": 23587,
- "munch": 33299,
- "munchies": 44324,
- "munchkin": 41305,
- "mund": 14244,
- "mundo": 20990,
- "muni": 27327,
- "muni": 39795,
- "munich": 13526,
- "munici": 12159,
- "municipal": 43667,
- "municipal": 16600,
- "municipality": 29987,
- "munition": 32668,
- "munro": 36501,
- "munster": 27201,
- "mup": 21966,
- "muppet": 40598,
- "muppets": 40187,
- "mups": 42195,
- "mur": 2144,
- "mur": 18293,
- "mura": 45176,
- "mural": 12315,
- "murals": 31499,
- "murder": 28136,
- "murder": 5787,
- "murdered": 13158,
- "murderer": 26956,
- "murderers": 48472,
- "murdering": 36055,
- "murders": 22409,
- "murdoch": 29037,
- "murphy": 48976,
- "murphy": 8914,
- "murray": 31978,
- "murray": 7513,
- "murs": 38783,
- "mus": 2198,
- "mus": 8103,
- "musa": 30540,
- "musc": 5696,
- "muscat": 33322,
- "muscle": 27323,
- "muscle": 9269,
- "muscles": 16786,
- "muscular": 30606,
- "muse": 2369,
- "muse": 15686,
- "museo": 36457,
- "muses": 48243,
- "museu": 27087,
- "museum": 15602,
- "museum": 2786,
- "museums": 15542,
- "museumweek": 37996,
- "mush": 7635,
- "mushroom": 13011,
- "mushrooms": 14730,
- "musi": 15628,
- "music": 4110,
- "music": 1179,
- "musica": 26668,
- "musical": 36002,
- "musical": 5173,
- "musically": 48893,
- "musicals": 36974,
- "musichistory": 37890,
- "musician": 11179,
- "musicians": 12498,
- "musicislife": 43311,
- "musicmonday": 35887,
- "musicvideo": 26764,
- "musik": 32986,
- "musings": 44961,
- "musique": 42250,
- "musk": 32143,
- "musk": 19063,
- "muskete": 32775,
- "musketeers": 37993,
- "musko": 34987,
- "muskoka": 40832,
- "musli": 4958,
- "muslim": 43795,
- "muslim": 7060,
- "muslims": 10513,
- "muss": 41493,
- "mussels": 33393,
- "must": 6783,
- "must": 2048,
- "mustache": 23451,
- "mustaf": 23596,
- "mustafa": 29000,
- "mustang": 42361,
- "mustang": 13309,
- "mustangs": 22500,
- "mustard": 15794,
- "muster": 47361,
- "mustread": 28978,
- "mut": 12598,
- "mut": 22839,
- "mutant": 28384,
- "mutation": 38626,
- "mutations": 39651,
- "mute": 31252,
- "muted": 48028,
- "muth": 34280,
- "mutil": 39950,
- "mutt": 45924,
- "mutu": 17574,
- "mutual": 15055,
- "mutuals": 31158,
- "muy": 44625,
- "mv": 10580,
- "mv": 8269,
- "mvc": 40549,
- "mvp": 8905,
- "mw": 16725,
- "mw": 11206,
- "mwc": 24289,
- "mwf": 48565,
- "mx": 21947,
- "mx": 9575,
- "my": 1152,
- "my": 607,
- "mya": 31401,
- "myal": 42735,
- "myan": 13761,
- "myanmar": 14764,
- "myart": 38826,
- "myco": 48362,
- "mydayin": 41896,
- "mydayinla": 42801,
- "mydubai": 43475,
- "mye": 27551,
- "myel": 40084,
- "myers": 15993,
- "myjaps": 47939,
- "myle": 43700,
- "myles": 25511,
- "mylife": 30537,
- "mylittle": 37757,
- "mylittlepony": 45107,
- "myo": 16206,
- "myr": 20272,
- "myra": 35694,
- "myri": 34972,
- "myrt": 47785,
- "myrtle": 27768,
- "mys": 11724,
- "myself": 3245,
- "mysore": 44924,
- "myspace": 41382,
- "myster": 4669,
- "mysteries": 20605,
- "mysterious": 12650,
- "mystery": 39828,
- "mystery": 6711,
- "mysti": 28711,
- "mystic": 36264,
- "mystic": 23722,
- "mystical": 34122,
- "myth": 20322,
- "myth": 13878,
- "mythical": 34377,
- "mytho": 43857,
- "mythology": 22496,
- "myths": 18675,
- "mz": 29509,
- "mz": 33400,
- "mzan": 36322,
- "mzansi": 43301,
- "má": 36842,
- "mé": 21890,
- "méxico": 46159,
- "mü": 28142,
- "mün": 41235,
- "n": 77,
- "n": 333,
- "na": 1097,
- "na": 1272,
- "naa": 37738,
- "naacp": 32176,
- "nab": 6951,
- "nab": 19440,
- "nabe": 35111,
- "naby": 24800,
- "nac": 14557,
- "nac": 18950,
- "nach": 12168,
- "nach": 43622,
- "nacho": 35647,
- "nachos": 32847,
- "nacht": 37261,
- "nacional": 38782,
- "nad": 6204,
- "nad": 43928,
- "nada": 31683,
- "nadal": 20814,
- "nade": 24908,
- "nadi": 30512,
- "nadia": 27487,
- "nadine": 23356,
- "nadu": 20936,
- "nae": 19374,
- "naf": 16161,
- "naf": 45956,
- "nafta": 43123,
- "nag": 6694,
- "nag": 23902,
- "naga": 45953,
- "naga": 38997,
- "nagar": 17490,
- "nage": 41219,
- "nago": 38349,
- "nagoya": 43303,
- "nagpur": 43328,
- "nah": 26421,
- "nah": 11129,
- "nahi": 35244,
- "nai": 6230,
- "nai": 10692,
- "naia": 31340,
- "naidu": 42429,
- "naija": 16326,
- "naik": 34424,
- "nail": 19459,
- "nail": 9059,
- "nailart": 43532,
- "nailed": 19035,
- "nails": 8469,
- "nair": 27107,
- "naira": 39450,
- "naire": 48892,
- "nairobi": 17756,
- "nais": 46396,
- "naissance": 44761,
- "naive": 43362,
- "naj": 30985,
- "naji": 32589,
- "nak": 9248,
- "nak": 25550,
- "naked": 46371,
- "naked": 11478,
- "naku": 39864,
- "nal": 14132,
- "nal": 3119,
- "nale": 27198,
- "nall": 32869,
- "nally": 26158,
- "nam": 1410,
- "nam": 12344,
- "nama": 39586,
- "naman": 27635,
- "namaste": 35549,
- "name": 18160,
- "name": 1981,
- "named": 3194,
- "nameis": 40831,
- "nament": 3916,
- "naments": 16540,
- "names": 6130,
- "namesake": 41298,
- "nami": 20393,
- "namibia": 23731,
- "naming": 19367,
- "namjoon": 31986,
- "namm": 35524,
- "namo": 46013,
- "namo": 24854,
- "nan": 4375,
- "nan": 7750,
- "nana": 18761,
- "nanaimo": 40518,
- "nancy": 21511,
- "nancy": 11425,
- "nand": 20435,
- "nandez": 12764,
- "nando": 46044,
- "nang": 48148,
- "nani": 27980,
- "nanny": 31104,
- "nano": 15835,
- "nano": 22006,
- "nanop": 34177,
- "nanotechnology": 42235,
- "nanow": 46734,
- "nant": 22526,
- "nantes": 47533,
- "nantucket": 41573,
- "nao": 39319,
- "naom": 34955,
- "naomi": 20173,
- "nap": 6568,
- "nap": 11012,
- "napa": 20545,
- "napier": 40875,
- "napkin": 38930,
- "naples": 23560,
- "napo": 18715,
- "napol": 20122,
- "napoleon": 24969,
- "napoli": 22445,
- "napp": 11359,
- "napping": 37657,
- "naps": 31317,
- "naq": 46453,
- "nar": 2977,
- "nar": 20145,
- "nara": 33823,
- "narcis": 25229,
- "narcissi": 35442,
- "narco": 38461,
- "nard": 18216,
- "nare": 34853,
- "naren": 8468,
- "narendr": 9807,
- "narendra": 25848,
- "narendramodi": 9853,
- "narnia": 48693,
- "narr": 11845,
- "narrated": 43609,
- "narrative": 15933,
- "narratives": 35117,
- "narrator": 46529,
- "narrow": 24006,
- "narrow": 16652,
- "narrowly": 29747,
- "naruto": 22732,
- "nas": 3090,
- "nas": 15250,
- "nasa": 6841,
- "nasal": 42853,
- "nascar": 25723,
- "nascar": 7868,
- "nasdaq": 26629,
- "nash": 6771,
- "nash": 13620,
- "nasheed": 49176,
- "nashgrier": 33372,
- "nashville": 45356,
- "nashville": 8585,
- "nasi": 47987,
- "nasir": 47509,
- "nassau": 34048,
- "nasser": 43559,
- "nasty": 32930,
- "nasty": 8709,
- "nat": 1276,
- "nat": 11310,
- "nata": 39392,
- "natal": 28516,
- "natali": 20296,
- "natalia": 32978,
- "natalie": 36634,
- "natalie": 13595,
- "natash": 48701,
- "natasha": 23093,
- "nate": 26643,
- "nate": 7587,
- "natgeo": 33009,
- "natgeo": 25046,
- "nath": 22203,
- "nath": 19843,
- "nathan": 13028,
- "nathan": 9711,
- "nathanfillion": 47422,
- "nathaniel": 32667,
- "nati": 1060,
- "nati": 13384,
- "natic": 44944,
- "natin": 44358,
- "nation": 2317,
- "nation": 2670,
- "national": 3126,
- "national": 1362,
- "nationalbestfriend": 42222,
- "nationaldogday": 32227,
- "nationalism": 29867,
- "nationalist": 25058,
- "nationality": 44451,
- "nationally": 15130,
- "nationalpark": 33060,
- "nationalparks": 41204,
- "nationals": 10784,
- "nationaltrust": 34051,
- "nations": 7654,
- "nationwide": 13795,
- "native": 20639,
- "native": 4562,
- "natives": 36060,
- "nativity": 33988,
- "natl": 39225,
- "natl": 34465,
- "nato": 13139,
- "nats": 21106,
- "natu": 2775,
- "natur": 6800,
- "natural": 13198,
- "natural": 3288,
- "naturally": 12995,
- "naturals": 44686,
- "nature": 9382,
- "nature": 2625,
- "naturelovers": 41514,
- "naturephotography": 22533,
- "natures": 15616,
- "natureuk": 46193,
- "nau": 5955,
- "nau": 32878,
- "naught": 41001,
- "naughty": 47255,
- "naughty": 15101,
- "nautical": 31660,
- "nav": 3413,
- "nav": 25308,
- "navajo": 35523,
- "naval": 44725,
- "naval": 13273,
- "navar": 24848,
- "navarro": 37104,
- "nave": 42704,
- "naveen": 43837,
- "naver": 32534,
- "navi": 16159,
- "navi": 44848,
- "navig": 12507,
- "navigate": 24400,
- "navigating": 33134,
- "navigation": 20148,
- "navigator": 38910,
- "navis": 36377,
- "navratri": 45428,
- "navy": 28414,
- "navy": 5598,
- "naw": 16259,
- "naw": 30500,
- "nawaz": 49161,
- "nawaz": 19523,
- "nax": 38299,
- "nay": 11704,
- "nay": 16182,
- "naya": 38917,
- "nayanth": 38157,
- "nayanthara": 45184,
- "naz": 6363,
- "naz": 35534,
- "nazi": 12972,
- "nazis": 21778,
- "nb": 6459,
- "nb": 6813,
- "nba": 22524,
- "nba": 5139,
- "nbad": 43458,
- "nbaf": 30127,
- "nbafinals": 33803,
- "nbap": 41956,
- "nbaplayoffs": 43860,
- "nbat": 46291,
- "nbc": 9352,
- "nbc": 8799,
- "nbd": 24526,
- "nbl": 42652,
- "nc": 5021,
- "nc": 4911,
- "nca": 6921,
- "ncaa": 9418,
- "ncbd": 47221,
- "ncc": 33195,
- "ncc": 36686,
- "ncds": 47573,
- "ncfc": 31274,
- "ncis": 33617,
- "ncpol": 40562,
- "ncr": 38474,
- "ncs": 42689,
- "nct": 27723,
- "nct": 20319,
- "ncwx": 36166,
- "nd": 5625,
- "nd": 1764,
- "nda": 32862,
- "ndc": 47564,
- "ndi": 48229,
- "ndp": 19257,
- "nds": 31347,
- "ndtv": 26261,
- "ne": 557,
- "ne": 1422,
- "nea": 24068,
- "neal": 33652,
- "neal": 16730,
- "near": 11296,
- "near": 2252,
- "nearby": 13314,
- "nearest": 18985,
- "nearing": 26571,
- "nearly": 4816,
- "nears": 37710,
- "neat": 43201,
- "neat": 15465,
- "neath": 18315,
- "neau": 31559,
- "neb": 40209,
- "nebra": 13371,
- "nebraska": 14565,
- "nebu": 49295,
- "nebula": 22532,
- "nec": 25109,
- "nec": 22992,
- "necess": 6961,
- "necessarily": 25853,
- "necessary": 8955,
- "necessities": 43483,
- "necessity": 33163,
- "neck": 6066,
- "neck": 6906,
- "necklace": 7385,
- "necklaces": 32276,
- "necks": 29701,
- "nectar": 33683,
- "ned": 16030,
- "ned": 1369,
- "nederland": 49058,
- "nee": 20494,
- "nee": 10601,
- "need": 3229,
- "need": 1262,
- "needed": 4049,
- "needing": 22894,
- "needle": 44490,
- "needle": 19886,
- "needles": 27250,
- "needless": 39984,
- "needs": 2536,
- "needy": 30150,
- "neel": 33092,
- "neel": 46043,
- "neer": 34245,
- "nees": 47248,
- "neet": 46362,
- "neg": 5513,
- "negan": 42623,
- "negative": 8869,
- "negatively": 40254,
- "negativity": 34658,
- "neglec": 18827,
- "neglect": 33680,
- "neglected": 31893,
- "negli": 32594,
- "negligence": 45658,
- "negoti": 10216,
- "negotiate": 32969,
- "negotiating": 35510,
- "negotiation": 36504,
- "negotiations": 20433,
- "negr": 42190,
- "negro": 26554,
- "neh": 40416,
- "neh": 41697,
- "neha": 44463,
- "nehru": 30316,
- "nei": 9366,
- "neigh": 4061,
- "neighb": 6534,
- "neighbor": 7759,
- "neighbor": 14485,
- "neighborhood": 9471,
- "neighborhoods": 26713,
- "neighboring": 44754,
- "neighbors": 13037,
- "neighbour": 15858,
- "neighbour": 23719,
- "neighbourhood": 20312,
- "neighbours": 17594,
- "neil": 13591,
- "neil": 8030,
- "neilhimself": 45682,
- "neill": 19324,
- "neither": 14398,
- "nek": 47727,
- "neko": 47066,
- "nel": 5476,
- "nel": 2693,
- "nell": 27081,
- "nell": 8117,
- "nelly": 21166,
- "nels": 19296,
- "nelson": 24774,
- "nelson": 8586,
- "nem": 45153,
- "neman": 48553,
- "neme": 30993,
- "nemesis": 37811,
- "nemo": 30441,
- "nen": 17817,
- "nen": 15451,
- "nene": 44167,
- "neo": 14562,
- "neo": 11017,
- "neon": 21043,
- "neon": 13919,
- "neonatal": 46464,
- "neop": 49069,
- "nep": 20739,
- "nep": 41960,
- "nepal": 25597,
- "nepal": 10066,
- "nepali": 47579,
- "neph": 27926,
- "nephe": 41810,
- "nephew": 11689,
- "nephews": 43747,
- "nephro": 43054,
- "neptune": 30566,
- "ner": 2064,
- "ner": 998,
- "nerd": 24452,
- "nerd": 12273,
- "nerds": 22609,
- "nerdy": 33124,
- "nered": 17583,
- "nerf": 42914,
- "nering": 20226,
- "nero": 29048,
- "ners": 2129,
- "nerve": 18571,
- "nerves": 27813,
- "nervous": 13928,
- "nery": 48597,
- "nes": 5457,
- "nes": 4980,
- "nesburg": 27159,
- "nese": 32220,
- "ness": 7187,
- "ness": 1294,
- "nesses": 20107,
- "nessy": 32939,
- "nest": 20302,
- "nest": 8719,
- "nesting": 28860,
- "nestle": 43967,
- "nestled": 38107,
- "nests": 41133,
- "net": 1851,
- "net": 2315,
- "netany": 23137,
- "netanyahu": 23583,
- "netball": 19761,
- "netes": 44335,
- "netfli": 6304,
- "netflix": 35325,
- "netflix": 6600,
- "nether": 9946,
- "netherlands": 11060,
- "neti": 43980,
- "netneutrality": 47794,
- "nets": 8582,
- "nett": 23403,
- "nett": 6975,
- "nette": 13271,
- "network": 23285,
- "network": 3304,
- "networking": 9818,
- "networks": 10004,
- "neu": 3855,
- "neu": 43342,
- "neue": 45764,
- "neur": 19001,
- "neur": 31976,
- "neural": 26388,
- "neuro": 7401,
- "neuro": 36000,
- "neurological": 41718,
- "neurology": 43197,
- "neurons": 40442,
- "neuroscience": 23381,
- "neutr": 17207,
- "neutral": 17011,
- "neutrality": 26511,
- "neutron": 44056,
- "nev": 10236,
- "nev": 43645,
- "neva": 43304,
- "nevada": 13499,
- "neve": 44099,
- "neve": 44023,
- "never": 6746,
- "never": 1426,
- "neveragain": 45053,
- "neverforget": 19242,
- "nevergiveup": 42497,
- "neverland": 41483,
- "nevertheless": 48355,
- "nevertrump": 47494,
- "neville": 19269,
- "nevis": 43670,
- "new": 1218,
- "new": 686,
- "newark": 20240,
- "newbie": 45427,
- "newborn": 18320,
- "newbury": 34169,
- "newcastle": 41955,
- "newcastle": 9302,
- "newcomer": 30648,
- "newcomers": 44037,
- "newe": 40068,
- "newell": 41436,
- "newer": 33099,
- "newest": 4990,
- "newfound": 25250,
- "newfoundland": 28079,
- "newh": 18546,
- "newin": 31911,
- "newjersey": 32621,
- "newly": 42186,
- "newly": 7056,
- "newman": 15815,
- "newmarket": 38617,
- "newmexico": 35238,
- "newmusic": 32510,
- "newmusic": 17201,
- "newor": 25969,
- "neworleans": 31205,
- "newport": 42580,
- "newport": 14846,
- "newprofile": 14633,
- "newprofilepic": 14754,
- "newrelease": 34793,
- "news": 6216,
- "news": 1120,
- "newsat": 43979,
- "newsc": 28656,
- "newscast": 45031,
- "newsle": 10727,
- "newsletter": 11069,
- "newsnow": 48650,
- "newsp": 7109,
- "newspaper": 8786,
- "newspapers": 22423,
- "newsroom": 23200,
- "newt": 37224,
- "newton": 33122,
- "newton": 12606,
- "newtown": 31747,
- "newyear": 22161,
- "newyear": 12999,
- "newyearseve": 37587,
- "newyork": 18140,
- "newyork": 10454,
- "newyorkcity": 30460,
- "newyorker": 39732,
- "newzealand": 21117,
- "nex": 6897,
- "nex": 39720,
- "next": 12434,
- "next": 1131,
- "nextgen": 41933,
- "nexus": 19053,
- "ney": 3857,
- "ney": 1438,
- "neymar": 21878,
- "neys": 12616,
- "nez": 27388,
- "nf": 15195,
- "nf": 25643,
- "nfamily": 20098,
- "nfc": 23695,
- "nffc": 27893,
- "nfl": 11219,
- "nfl": 4691,
- "nfldraft": 25002,
- "ng": 10352,
- "ng": 5215,
- "nga": 35477,
- "ngc": 29046,
- "ngo": 38740,
- "ngo": 24821,
- "ngos": 34627,
- "nguyen": 29947,
- "nh": 3760,
- "nh": 10803,
- "nhc": 44817,
- "nhl": 12290,
- "nhl": 8167,
- "nhlbruins": 39081,
- "nhljets": 49357,
- "nhm": 39483,
- "nhpolitics": 36125,
- "nhq": 42368,
- "nhra": 30052,
- "nhs": 23282,
- "nhs": 7695,
- "ni": 697,
- "ni": 3256,
- "nia": 3098,
- "niag": 18071,
- "niagar": 39298,
- "niagara": 18965,
- "niall": 41354,
- "niall": 8327,
- "niallo": 22855,
- "niallofficial": 23084,
- "niam": 39347,
- "nian": 46003,
- "nib": 31049,
- "nic": 2109,
- "nic": 6651,
- "nica": 29040,
- "nicar": 25119,
- "nicaragua": 28423,
- "nice": 28386,
- "nice": 1805,
- "nicely": 12303,
- "nicer": 29488,
- "nicest": 22967,
- "niche": 25279,
- "nichol": 7668,
- "nicholas": 39814,
- "nicholas": 13148,
- "nicholls": 38846,
- "nichols": 22730,
- "nicholson": 28745,
- "nick": 4209,
- "nick": 4253,
- "nickel": 22034,
- "nickelo": 28668,
- "nickelodeon": 33279,
- "nicki": 17738,
- "nickimin": 27390,
- "nickiminaj": 27593,
- "nickjonas": 43862,
- "nickname": 24731,
- "nicknamed": 45190,
- "nicks": 15049,
- "nicky": 28893,
- "nicky": 22091,
- "nico": 20850,
- "nico": 17779,
- "nicol": 9919,
- "nicol": 48274,
- "nicola": 21791,
- "nicolas": 43813,
- "nicolas": 18918,
- "nicole": 21246,
- "nicole": 10000,
- "nicot": 45099,
- "nicotine": 46697,
- "nie": 9524,
- "nie": 3501,
- "niece": 12795,
- "nieces": 44877,
- "niel": 19109,
- "niel": 26837,
- "niels": 37154,
- "nielsen": 28372,
- "nier": 13014,
- "nies": 10586,
- "niest": 15007,
- "nieu": 29781,
- "nific": 4748,
- "nifty": 25604,
- "nig": 27933,
- "nig": 28099,
- "nigan": 48516,
- "nigel": 33919,
- "nigel": 15153,
- "niger": 4524,
- "niger": 29920,
- "nigeri": 40913,
- "nigeria": 6106,
- "nigerian": 12167,
- "nigerians": 25358,
- "nigh": 13525,
- "nigh": 48157,
- "night": 3870,
- "night": 930,
- "nightclub": 20418,
- "nighter": 41349,
- "nighting": 36211,
- "nightingale": 40696,
- "nightlife": 28823,
- "nightly": 28868,
- "nightmare": 12867,
- "nightmares": 24032,
- "nightout": 44257,
- "nights": 4296,
- "nighttime": 38147,
- "nightw": 39956,
- "nih": 25783,
- "nik": 5126,
- "nik": 13705,
- "nike": 16300,
- "nike": 5783,
- "nikeplus": 43154,
- "niki": 36136,
- "nikita": 37118,
- "nikk": 38596,
- "nikki": 23156,
- "nikki": 16689,
- "niko": 43771,
- "nikol": 27430,
- "nikola": 42146,
- "nikon": 25488,
- "nikon": 13849,
- "nikov": 43960,
- "nil": 16852,
- "nil": 35030,
- "nile": 24252,
- "nim": 30402,
- "nim": 42093,
- "nima": 42586,
- "nin": 5794,
- "nin": 14145,
- "nina": 13891,
- "nine": 16213,
- "nine": 7330,
- "ninety": 48214,
- "ning": 6050,
- "ning": 762,
- "ningham": 23395,
- "ningly": 43537,
- "nings": 4588,
- "nington": 26214,
- "ninj": 23225,
- "ninja": 11969,
- "ninjas": 42796,
- "nino": 25633,
- "ninten": 6184,
- "nintendo": 13969,
- "nintendo": 7886,
- "nintendoswitch": 16404,
- "ninth": 22770,
- "nip": 33889,
- "nip": 22333,
- "nipp": 24634,
- "nipple": 45987,
- "nipples": 44774,
- "nippon": 47960,
- "nips": 49241,
- "nir": 15503,
- "nir": 40057,
- "nireland": 45763,
- "niro": 47373,
- "nirvana": 28300,
- "nis": 5609,
- "nis": 3786,
- "nish": 19834,
- "nish": 13256,
- "nished": 24141,
- "nishi": 32386,
- "nishings": 49247,
- "nison": 45700,
- "niss": 39043,
- "nissan": 37635,
- "nissan": 11082,
- "nist": 17782,
- "nister": 36640,
- "nit": 4087,
- "nit": 19011,
- "nite": 8427,
- "niti": 43964,
- "niti": 45355,
- "nitin": 37529,
- "nitro": 30726,
- "nitrogen": 30706,
- "niture": 7840,
- "nity": 12707,
- "niu": 48187,
- "niv": 47300,
- "niversary": 29643,
- "nix": 48552,
- "nix": 32278,
- "nixon": 20671,
- "nj": 8343,
- "nj": 6672,
- "njcaa": 48992,
- "njpw": 38992,
- "nk": 22708,
- "nk": 17456,
- "nko": 36353,
- "nl": 12057,
- "nl": 7655,
- "nli": 37502,
- "nlp": 35680,
- "nlwx": 49260,
- "nm": 15956,
- "nm": 11370,
- "nmd": 43331,
- "nme": 40454,
- "nmwx": 47967,
- "nn": 8947,
- "nn": 12925,
- "nnn": 26277,
- "nnnn": 41420,
- "no": 578,
- "no": 871,
- "noaa": 27557,
- "noah": 28806,
- "noah": 11519,
- "nobel": 33742,
- "nobel": 15605,
- "nobelprize": 46074,
- "noble": 29430,
- "noble": 12051,
- "nobody": 7009,
- "noc": 16988,
- "noc": 44420,
- "nocchi": 46359,
- "noch": 38672,
- "noche": 29689,
- "noches": 44166,
- "nock": 16993,
- "noctur": 26291,
- "nocturnal": 41738,
- "nod": 18648,
- "nodapl": 39079,
- "node": 31434,
- "node": 24871,
- "nodejs": 39262,
- "nodes": 40534,
- "noel": 38406,
- "noel": 17496,
- "nof": 29505,
- "noff": 46979,
- "nofilter": 16418,
- "nog": 31157,
- "noh": 40775,
- "noi": 43115,
- "noi": 39889,
- "noida": 33404,
- "noir": 39291,
- "noir": 12953,
- "nois": 22057,
- "noise": 41018,
- "noise": 9307,
- "noises": 31575,
- "noisse": 45686,
- "noisy": 33495,
- "nokia": 17731,
- "nol": 8055,
- "nola": 13289,
- "nolan": 17323,
- "nold": 40322,
- "nole": 34654,
- "noles": 40569,
- "nollywood": 43145,
- "nology": 42221,
- "nom": 2981,
- "nom": 12799,
- "nomad": 27849,
- "noman": 45592,
- "nomin": 5643,
- "nominate": 17122,
- "nominated": 8710,
- "nominating": 45747,
- "nomination": 14136,
- "nominations": 17124,
- "nominee": 14122,
- "nominees": 17873,
- "nomnom": 26962,
- "nomore": 35126,
- "noms": 35706,
- "non": 4282,
- "non": 3353,
- "none": 29644,
- "none": 8906,
- "nonetheless": 39675,
- "nonfiction": 31654,
- "nonprofit": 19315,
- "nonprofits": 37935,
- "nonsense": 19136,
- "nonstop": 30300,
- "nont": 25207,
- "noo": 6759,
- "noo": 46672,
- "noodle": 19521,
- "noodles": 15782,
- "nook": 30088,
- "noon": 37693,
- "noon": 2347,
- "noor": 46978,
- "noor": 31323,
- "nope": 15625,
- "nor": 1062,
- "nor": 6190,
- "nora": 25890,
- "norcal": 41970,
- "nord": 19261,
- "nord": 36067,
- "nordic": 36439,
- "nordic": 20734,
- "nordstrom": 38562,
- "norfolk": 30232,
- "norfolk": 12202,
- "norm": 10990,
- "norm": 22457,
- "norma": 35757,
- "normal": 28748,
- "normal": 5967,
- "normali": 45157,
- "normally": 15870,
- "norman": 22027,
- "norman": 11338,
- "normandy": 23840,
- "normani": 44596,
- "norms": 33011,
- "norris": 21814,
- "norse": 36559,
- "norte": 35638,
- "north": 3468,
- "north": 2188,
- "northampton": 49246,
- "northampton": 26175,
- "northan": 37081,
- "northbound": 24228,
- "northcarolina": 43386,
- "northe": 24675,
- "northeast": 42673,
- "northeast": 13009,
- "northeastern": 28297,
- "northeasthour": 42869,
- "norther": 26908,
- "northern": 17210,
- "northern": 5049,
- "northernlights": 48940,
- "northkorea": 38495,
- "northside": 45957,
- "northumber": 22295,
- "northumberland": 22922,
- "northwales": 49371,
- "northwest": 12894,
- "northwestern": 23685,
- "norton": 18032,
- "norway": 8780,
- "norwe": 14414,
- "norwegian": 15971,
- "norwich": 37629,
- "norwich": 15812,
- "norwood": 37889,
- "nos": 13420,
- "nose": 24192,
- "nose": 8231,
- "noses": 48163,
- "nostal": 12076,
- "nostalgia": 16622,
- "nostalgic": 24468,
- "not": 2534,
- "not": 783,
- "notable": 22023,
- "notch": 19476,
- "notdead": 42059,
- "note": 10910,
- "note": 3246,
- "notebook": 16365,
- "notebooks": 37623,
- "noted": 22501,
- "notes": 5795,
- "nothin": 24291,
- "nothing": 28412,
- "nothing": 2586,
- "noti": 10686,
- "notic": 6915,
- "notice": 6683,
- "noticeable": 40857,
- "noticed": 9324,
- "notices": 33459,
- "noticias": 47759,
- "noticing": 37571,
- "notification": 22512,
- "notifications": 23169,
- "notified": 39454,
- "noting": 38649,
- "notion": 37856,
- "notjust": 33212,
- "notjustlakes": 45803,
- "notmy": 39301,
- "noto": 29878,
- "noton": 48258,
- "notor": 21711,
- "notori": 44065,
- "notorious": 22489,
- "notre": 24397,
- "notre": 15306,
- "notredame": 34077,
- "notsorry": 34361,
- "nott": 9333,
- "nott": 34989,
- "notte": 47308,
- "nottingham": 12852,
- "notts": 25598,
- "nou": 8751,
- "nou": 30953,
- "noun": 33663,
- "nouri": 23796,
- "nourish": 46025,
- "nourished": 48354,
- "nous": 29485,
- "nouveau": 29948,
- "nouvel": 34215,
- "nov": 2264,
- "nov": 4293,
- "nova": 11236,
- "novak": 26465,
- "novasco": 33785,
- "novascotia": 34744,
- "novation": 39753,
- "nove": 30507,
- "novel": 15044,
- "novel": 6080,
- "novelist": 27314,
- "novella": 42770,
- "novels": 16040,
- "novelty": 37750,
- "november": 3680,
- "nover": 37465,
- "novi": 47957,
- "novice": 33743,
- "novo": 27504,
- "novo": 36581,
- "now": 2040,
- "now": 692,
- "nowadays": 26155,
- "nowhere": 14108,
- "nowplaying": 3708,
- "nowwatching": 30852,
- "nox": 27406,
- "noxi": 39304,
- "noxious": 42833,
- "noy": 32787,
- "np": 18205,
- "np": 6314,
- "npa": 42378,
- "npc": 33966,
- "npr": 39941,
- "npr": 24078,
- "nps": 22025,
- "npt": 47231,
- "nr": 6574,
- "nr": 9713,
- "nra": 17286,
- "nrc": 45786,
- "nrf": 47982,
- "nrg": 48662,
- "nrl": 27142,
- "nrl": 18127,
- "ns": 12405,
- "ns": 1373,
- "nsa": 23004,
- "nsc": 32792,
- "nsd": 36659,
- "nsf": 34180,
- "nsfw": 19847,
- "nsi": 47824,
- "nsw": 21301,
- "nsw": 11693,
- "nswpol": 44434,
- "nt": 10902,
- "nt": 3207,
- "ntr": 30845,
- "nts": 43775,
- "ntt": 22859,
- "ntv": 24807,
- "ntv": 45304,
- "nu": 1156,
- "nu": 9444,
- "nucle": 25693,
- "nuclear": 34136,
- "nuclear": 7279,
- "nude": 16630,
- "nudes": 32122,
- "nue": 22834,
- "nuestra": 45649,
- "nuestro": 38590,
- "nuev": 47861,
- "nueva": 48810,
- "nuevo": 30265,
- "nufc": 15720,
- "nuff": 37324,
- "nug": 13471,
- "nugent": 47457,
- "nugget": 25448,
- "nuggets": 18970,
- "nuh": 45950,
- "nuit": 38815,
- "nuk": 39228,
- "nuke": 39399,
- "nul": 29358,
- "null": 47376,
- "num": 17896,
- "num": 30534,
- "numb": 34639,
- "numb": 39427,
- "number": 44078,
- "number": 2842,
- "numbered": 25975,
- "numbers": 6121,
- "numer": 11442,
- "numerous": 17082,
- "numis": 39100,
- "nun": 12511,
- "nun": 28540,
- "nunavut": 48626,
- "nunes": 40697,
- "nuns": 44061,
- "nup": 46757,
- "nur": 3920,
- "nur": 33493,
- "nure": 42480,
- "nurse": 37547,
- "nurse": 10058,
- "nursery": 15540,
- "nurses": 12938,
- "nursing": 11126,
- "nurture": 38865,
- "nurturing": 45229,
- "nus": 25157,
- "nus": 18239,
- "nut": 10358,
- "nut": 6491,
- "nutcracker": 36733,
- "nutella": 27312,
- "nutr": 6198,
- "nutri": 15470,
- "nutrient": 32900,
- "nutrients": 24668,
- "nutriti": 17978,
- "nutrition": 41546,
- "nutrition": 7989,
- "nutritional": 26457,
- "nutritious": 30387,
- "nuts": 8644,
- "nutshell": 26659,
- "nutty": 39846,
- "nv": 17217,
- "nv": 16985,
- "nvi": 22847,
- "nvidia": 27325,
- "nw": 7826,
- "nw": 7030,
- "nwa": 34237,
- "nwo": 40976,
- "nws": 23333,
- "nws": 30998,
- "nwsl": 48394,
- "nwt": 25029,
- "nx": 18810,
- "nx": 16997,
- "nxt": 35037,
- "nxt": 17804,
- "ny": 1383,
- "ny": 1350,
- "nya": 24165,
- "nyc": 13304,
- "nyc": 2832,
- "nycc": 27187,
- "nycfc": 47497,
- "nye": 40723,
- "nye": 13416,
- "nyfw": 21089,
- "nyk": 46841,
- "nylon": 25915,
- "nyo": 41534,
- "nyo": 44586,
- "nypd": 42293,
- "nypd": 18279,
- "nyr": 32538,
- "nyrd": 47936,
- "nys": 36375,
- "nys": 23423,
- "nyse": 32650,
- "nyt": 46311,
- "nyt": 12816,
- "nytimes": 13772,
- "nyu": 43143,
- "nyu": 31355,
- "nz": 10142,
- "nz": 7082,
- "o": 78,
- "o": 334,
- "oa": 11994,
- "oahu": 37790,
- "oak": 6010,
- "oak": 7221,
- "oakland": 42663,
- "oakland": 12077,
- "oakley": 27810,
- "oaks": 16734,
- "oakville": 38500,
- "oasis": 18185,
- "oat": 20095,
- "oat": 34132,
- "oates": 47094,
- "oath": 20108,
- "oatmeal": 26374,
- "oats": 24150,
- "oax": 43090,
- "oaxaca": 47818,
- "ob": 1411,
- "ob": 14908,
- "oba": 42902,
- "oba": 15147,
- "obam": 13174,
- "obama": 4276,
- "obamacare": 18005,
- "obe": 11897,
- "obe": 29117,
- "obedience": 48921,
- "ober": 15284,
- "obese": 41757,
- "obesity": 19499,
- "obey": 26926,
- "obi": 21454,
- "obi": 18414,
- "obile": 20513,
- "obitu": 39218,
- "obituary": 43580,
- "objec": 7970,
- "object": 14115,
- "objective": 23663,
- "objectives": 30238,
- "objects": 13770,
- "obl": 31452,
- "oblast": 42672,
- "obli": 11416,
- "obligation": 34473,
- "obligations": 38232,
- "obligatory": 35020,
- "oblivion": 45323,
- "obo": 46001,
- "obo": 26618,
- "obrien": 31946,
- "obs": 39162,
- "obsc": 20392,
- "obscure": 33337,
- "obse": 8433,
- "observ": 9050,
- "observation": 20250,
- "observations": 27409,
- "observatory": 21236,
- "observe": 23217,
- "observed": 21267,
- "observer": 22077,
- "observers": 47544,
- "observing": 28359,
- "obsessed": 9744,
- "obsession": 15718,
- "obsi": 47323,
- "obsole": 35561,
- "obsolete": 40628,
- "obst": 29398,
- "obstac": 24075,
- "obstacle": 29751,
- "obstacles": 24480,
- "obste": 49103,
- "obstru": 44876,
- "obstruc": 38762,
- "obstruction": 40240,
- "obtain": 26555,
- "obtained": 29322,
- "obvious": 13959,
- "obviously": 10068,
- "oc": 1566,
- "oc": 6603,
- "oca": 31120,
- "ocal": 38148,
- "occ": 43940,
- "occa": 8530,
- "occasion": 12280,
- "occasional": 33059,
- "occasionally": 32479,
- "occasions": 26154,
- "occer": 20804,
- "occi": 42994,
- "occu": 7863,
- "occult": 42529,
- "occup": 11152,
- "occupation": 18624,
- "occupational": 30644,
- "occupied": 17271,
- "occupy": 22453,
- "occupy": 24210,
- "occur": 11264,
- "occur": 21813,
- "occurred": 19850,
- "occurrence": 40615,
- "occurring": 31335,
- "occurs": 26563,
- "ocd": 35904,
- "oce": 3509,
- "ocean": 12941,
- "ocean": 4918,
- "oceans": 16792,
- "och": 29334,
- "och": 32011,
- "oche": 33045,
- "oci": 9891,
- "ocity": 46039,
- "ock": 33579,
- "ock": 21313,
- "ocks": 22410,
- "oclock": 36274,
- "oco": 32553,
- "ocon": 33090,
- "ocr": 45813,
- "ocre": 40320,
- "ocs": 27297,
- "oct": 4565,
- "octa": 23444,
- "octag": 37768,
- "octagon": 49167,
- "octane": 43040,
- "octavia": 47416,
- "octo": 31032,
- "october": 3481,
- "octopus": 22327,
- "ocu": 22709,
- "oculus": 30082,
- "od": 4886,
- "od": 9719,
- "oda": 24777,
- "oday": 41954,
- "odd": 15525,
- "odd": 11387,
- "oddly": 34213,
- "odds": 11555,
- "ode": 19125,
- "ode": 19639,
- "odell": 41556,
- "odessa": 43574,
- "odi": 12223,
- "odi": 18853,
- "odin": 35175,
- "odisha": 15737,
- "odo": 49188,
- "odo": 40993,
- "odor": 39509,
- "odu": 35095,
- "odu": 39904,
- "odyssey": 19991,
- "oe": 24251,
- "oe": 11667,
- "oec": 24288,
- "oecd": 30816,
- "oem": 29650,
- "oes": 3643,
- "of": 684,
- "of": 539,
- "ofa": 29774,
- "ofc": 19877,
- "ofe": 30000,
- "ofer": 47322,
- "off": 892,
- "off": 1007,
- "offe": 8261,
- "offee": 34059,
- "offen": 7231,
- "offence": 34594,
- "offences": 33972,
- "offended": 30765,
- "offender": 48294,
- "offenders": 35878,
- "offense": 15253,
- "offensive": 11037,
- "offer": 20607,
- "offer": 3271,
- "offered": 9395,
- "offering": 6896,
- "offerings": 24535,
- "offers": 4679,
- "offic": 3276,
- "office": 18033,
- "office": 2171,
- "officeof": 38750,
- "officeofrg": 47100,
- "officer": 4683,
- "officers": 6335,
- "offices": 10933,
- "offici": 1401,
- "official": 5768,
- "official": 1868,
- "officially": 4226,
- "officials": 7658,
- "officiel": 26548,
- "offl": 16851,
- "offline": 22724,
- "offro": 32198,
- "offroad": 37173,
- "offs": 23987,
- "offseason": 25485,
- "offset": 28843,
- "offshore": 15496,
- "offside": 49347,
- "offspring": 38635,
- "offthe": 38189,
- "ofi": 36692,
- "ofi": 49090,
- "oficial": 18061,
- "oft": 16693,
- "oftball": 39768,
- "often": 4864,
- "ofthe": 7592,
- "oftheday": 6988,
- "oftheweek": 20654,
- "oftheyear": 33975,
- "og": 11542,
- "og": 8555,
- "oga": 47312,
- "ogden": 42011,
- "ogil": 39013,
- "ography": 22399,
- "ogue": 24761,
- "ogun": 48970,
- "oh": 5648,
- "oh": 1779,
- "ohana": 48330,
- "ohh": 23076,
- "ohhh": 27697,
- "ohhhh": 40201,
- "ohi": 5207,
- "ohio": 18951,
- "ohio": 6155,
- "ohiostate": 41324,
- "ohl": 45547,
- "ohl": 41095,
- "ohmy": 29758,
- "ohn": 48043,
- "ohs": 39542,
- "ohwx": 47993,
- "oi": 27357,
- "oi": 13934,
- "oic": 45554,
- "oid": 14758,
- "oids": 21847,
- "oil": 11973,
- "oil": 2870,
- "oiland": 32316,
- "oilandgas": 34130,
- "oilers": 21627,
- "oilpainting": 34279,
- "oils": 17886,
- "oily": 47550,
- "oir": 48079,
- "oir": 37113,
- "ois": 23262,
- "oit": 18453,
- "oitnb": 34865,
- "oj": 30986,
- "oj": 34553,
- "ok": 1944,
- "ok": 2481,
- "oka": 42258,
- "oka": 19092,
- "okan": 41263,
- "okanagan": 43233,
- "okay": 4917,
- "okc": 42418,
- "okc": 18357,
- "oke": 26636,
- "oke": 23598,
- "oki": 20390,
- "okin": 30687,
- "okinawa": 35877,
- "okla": 9431,
- "oklahoma": 10170,
- "oko": 26892,
- "oko": 26095,
- "okstate": 36356,
- "oktoberfest": 32026,
- "oku": 45010,
- "oku": 43829,
- "okwx": 27336,
- "ol": 562,
- "ol": 2985,
- "ola": 20499,
- "ola": 3373,
- "olaf": 39709,
- "olan": 48489,
- "olan": 24227,
- "oland": 26452,
- "olas": 40800,
- "old": 4931,
- "old": 896,
- "olde": 37731,
- "older": 7700,
- "oldest": 9285,
- "oldham": 29929,
- "oldie": 35280,
- "oldies": 36278,
- "oldman": 48614,
- "olds": 8580,
- "oldschool": 44384,
- "oldschool": 25133,
- "oldsmobile": 45396,
- "ole": 9089,
- "ole": 1947,
- "oled": 46768,
- "oler": 24069,
- "oles": 16962,
- "olf": 16346,
- "olga": 34779,
- "oli": 3811,
- "oli": 8810,
- "olic": 31341,
- "oligar": 46185,
- "olim": 47769,
- "olin": 37823,
- "olin": 18283,
- "olina": 34711,
- "oline": 17441,
- "oling": 38033,
- "olini": 36040,
- "olis": 49397,
- "olithic": 35574,
- "olive": 22486,
- "olive": 9898,
- "oliver": 22882,
- "oliver": 9261,
- "olives": 27149,
- "olivi": 20773,
- "olivia": 11697,
- "olivier": 23891,
- "oll": 32270,
- "oll": 15510,
- "olla": 31908,
- "ollie": 24434,
- "olls": 42697,
- "olly": 23998,
- "olo": 14628,
- "olo": 7606,
- "ological": 12345,
- "ologist": 23442,
- "ologists": 30912,
- "ology": 4627,
- "olor": 29245,
- "olph": 25077,
- "ols": 2236,
- "olsen": 26307,
- "olson": 28046,
- "olt": 46252,
- "olu": 16502,
- "olu": 46302,
- "olulu": 27645,
- "oly": 20323,
- "oly": 24823,
- "olym": 3594,
- "olympi": 13597,
- "olympia": 23965,
- "olympiad": 47694,
- "olympian": 25420,
- "olympians": 44583,
- "olympic": 26099,
- "olympic": 6388,
- "olympics": 7629,
- "olympus": 30960,
- "om": 547,
- "om": 3932,
- "oma": 44603,
- "oma": 5358,
- "omaha": 16509,
- "oman": 22088,
- "oman": 10871,
- "omar": 19488,
- "omar": 13367,
- "omars": 37099,
- "omas": 36023,
- "omat": 40788,
- "omb": 34447,
- "ombe": 35967,
- "omd": 49346,
- "ome": 3693,
- "ome": 5832,
- "omed": 16835,
- "omega": 13465,
- "omelette": 38789,
- "omen": 9969,
- "omen": 25469,
- "oment": 43683,
- "omeo": 39844,
- "omer": 24087,
- "omer": 17902,
- "omes": 25736,
- "ometer": 20060,
- "ometric": 38702,
- "omez": 12541,
- "omf": 47496,
- "omfg": 12523,
- "omg": 35233,
- "omg": 3186,
- "omi": 24097,
- "omi": 10341,
- "omic": 40536,
- "omic": 12793,
- "omics": 15138,
- "omile": 46915,
- "omin": 16457,
- "omination": 42571,
- "oming": 10796,
- "ominous": 40914,
- "omni": 18793,
- "omni": 39489,
- "omnibus": 44760,
- "omnic": 48383,
- "omo": 14478,
- "omo": 11066,
- "omon": 48758,
- "omor": 29431,
- "oms": 3770,
- "omusic": 38965,
- "omy": 40805,
- "omy": 6884,
- "on": 521,
- "on": 525,
- "ona": 2687,
- "onair": 29511,
- "onal": 918,
- "onboard": 21689,
- "once": 16331,
- "once": 2654,
- "onceupon": 28122,
- "onceuponatime": 33505,
- "onco": 46700,
- "oncology": 24593,
- "ond": 27918,
- "ond": 2636,
- "onda": 32643,
- "onday": 29864,
- "onde": 44532,
- "ondo": 29529,
- "ondon": 42043,
- "ondon": 11851,
- "one": 1980,
- "one": 637,
- "onec": 27746,
- "oned": 28012,
- "oned": 4698,
- "onedirection": 16245,
- "onee": 44433,
- "oneill": 44808,
- "onelove": 47417,
- "onent": 12147,
- "onents": 11709,
- "oneof": 48478,
- "onep": 20440,
- "onepiece": 43153,
- "oneplus": 25981,
- "oner": 30055,
- "oner": 6071,
- "oners": 12324,
- "ones": 20757,
- "ones": 1575,
- "oneself": 46874,
- "onesie": 33237,
- "oness": 25379,
- "onet": 36058,
- "oneteam": 41094,
- "onetsy": 33392,
- "onew": 43848,
- "onews": 18696,
- "onex": 49116,
- "oney": 44498,
- "oney": 9408,
- "onf": 41790,
- "onfox": 29874,
- "ong": 2787,
- "ong": 846,
- "onga": 30259,
- "ongchang": 35071,
- "ongi": 21754,
- "ongo": 31226,
- "ongoing": 10393,
- "ongs": 12143,
- "oni": 4385,
- "oni": 8048,
- "onia": 8001,
- "onial": 27599,
- "onian": 21090,
- "onic": 15838,
- "onic": 3711,
- "onica": 14631,
- "onics": 9779,
- "onie": 35249,
- "onies": 22601,
- "onimo": 41271,
- "oning": 5197,
- "onion": 10985,
- "onions": 15255,
- "onist": 10099,
- "onists": 19659,
- "onix": 27370,
- "onized": 43657,
- "onlin": 31103,
- "online": 12940,
- "online": 2027,
- "onlinemarketing": 41820,
- "onlineshopping": 38587,
- "only": 11646,
- "only": 1033,
- "onlyin": 32947,
- "onna": 25438,
- "onna": 35458,
- "onnaise": 48934,
- "onne": 23466,
- "onnell": 45613,
- "ono": 28165,
- "ono": 14388,
- "onom": 48014,
- "onomy": 36873,
- "onpoli": 20708,
- "ons": 26076,
- "ons": 708,
- "onsale": 36324,
- "onset": 30527,
- "onsite": 37336,
- "onstage": 21821,
- "onstorm": 49333,
- "ont": 34303,
- "ont": 11157,
- "ontari": 6739,
- "ontario": 42766,
- "ontario": 7436,
- "onte": 34723,
- "onthe": 12241,
- "onther": 46563,
- "ontheroad": 47516,
- "onthisday": 6862,
- "onto": 11745,
- "onto": 3141,
- "ontology": 37364,
- "ontour": 32155,
- "onu": 44142,
- "onward": 34827,
- "onwards": 20682,
- "ony": 9490,
- "ony": 2926,
- "onym": 11483,
- "onymous": 13038,
- "onyx": 31353,
- "oo": 574,
- "oo": 2822,
- "ood": 16429,
- "ood": 738,
- "oodle": 45289,
- "oods": 44660,
- "oof": 42270,
- "ooh": 16806,
- "ook": 22326,
- "ook": 8394,
- "ooks": 31082,
- "ool": 37702,
- "ool": 929,
- "oom": 22786,
- "oom": 15002,
- "oomf": 40607,
- "oon": 35651,
- "oon": 7100,
- "ooo": 9571,
- "oooh": 28927,
- "oooo": 4002,
- "oooo": 13643,
- "ooooo": 12532,
- "oooooo": 43590,
- "oooooo": 20372,
- "ooooooo": 30859,
- "oooooooo": 15473,
- "oooooooo": 43408,
- "oooooooooooooooo": 48645,
- "oop": 7326,
- "ooper": 39906,
- "oops": 9116,
- "oor": 35239,
- "oos": 9896,
- "oosa": 30834,
- "oose": 38941,
- "oot": 17667,
- "ootball": 28914,
- "ootd": 16547,
- "ooth": 12682,
- "oott": 34316,
- "ooza": 22809,
- "op": 676,
- "op": 3691,
- "opa": 28949,
- "opal": 28982,
- "opar": 18167,
- "opath": 33079,
- "opathic": 37521,
- "opathy": 28466,
- "opau": 27239,
- "opd": 38288,
- "ope": 31694,
- "ope": 11440,
- "opec": 33138,
- "opel": 36952,
- "open": 3647,
- "open": 1488,
- "openaccess": 26591,
- "opend": 28069,
- "opendata": 35709,
- "openday": 46991,
- "opened": 5303,
- "opener": 8998,
- "openhouse": 36091,
- "opening": 33728,
- "opening": 2516,
- "openingday": 36359,
- "openings": 27643,
- "openly": 23005,
- "opens": 4801,
- "opensource": 29930,
- "oper": 2796,
- "oper": 37533,
- "opera": 8056,
- "operate": 19306,
- "operated": 23031,
- "operates": 38675,
- "operating": 12218,
- "operation": 27173,
- "operation": 7639,
- "operational": 18237,
- "operations": 8106,
- "operative": 28380,
- "operator": 15972,
- "operators": 19267,
- "opers": 48728,
- "opes": 37258,
- "oph": 6796,
- "opha": 38634,
- "ophel": 45017,
- "ophelia": 49118,
- "ophi": 44547,
- "ophile": 35915,
- "opho": 12900,
- "ophobia": 21111,
- "ophobic": 29934,
- "ophon": 25120,
- "ophone": 26345,
- "ophthal": 33135,
- "ophy": 28539,
- "opi": 40056,
- "opi": 48994,
- "opin": 7636,
- "opini": 14825,
- "opinion": 7843,
- "opinions": 16192,
- "opio": 17371,
- "opioid": 22833,
- "opioids": 47578,
- "opla": 36270,
- "ople": 25663,
- "opol": 15173,
- "opoly": 23729,
- "opor": 39650,
- "opoulos": 42020,
- "opp": 2020,
- "opp": 21024,
- "oppa": 23637,
- "oppo": 7399,
- "oppo": 41770,
- "opponent": 17002,
- "opponents": 19664,
- "oppor": 2914,
- "opportun": 2939,
- "opportunities": 5978,
- "opportunity": 4004,
- "oppos": 10091,
- "oppose": 23617,
- "opposed": 22509,
- "opposes": 47471,
- "opposing": 24376,
- "opposite": 12872,
- "opposition": 11062,
- "oppre": 17341,
- "oppressed": 41492,
- "oppression": 30650,
- "opra": 28291,
- "oprah": 22562,
- "opry": 35340,
- "ops": 3054,
- "opt": 45103,
- "opt": 27188,
- "opted": 42035,
- "opti": 6580,
- "optic": 25190,
- "optic": 24755,
- "optical": 16822,
- "optics": 27165,
- "optim": 22331,
- "optimal": 25235,
- "optimi": 9737,
- "optimis": 39459,
- "optimism": 25226,
- "optimist": 44581,
- "optimistic": 23104,
- "optimization": 25125,
- "optimize": 30456,
- "optimized": 43939,
- "optimizing": 49157,
- "optimum": 35974,
- "optimus": 43453,
- "option": 8464,
- "optional": 25411,
- "options": 7063,
- "optome": 35533,
- "opul": 39858,
- "opus": 33295,
- "opy": 21835,
- "or": 523,
- "or": 541,
- "ora": 4301,
- "orac": 24673,
- "oracle": 37308,
- "oracle": 15966,
- "orah": 40820,
- "orail": 45120,
- "oral": 32490,
- "oral": 6007,
- "orama": 33619,
- "oran": 32209,
- "oran": 28395,
- "orang": 22116,
- "orange": 13957,
- "orange": 4287,
- "oranges": 32417,
- "orangu": 36112,
- "orb": 28894,
- "orb": 36958,
- "orbit": 19713,
- "orbital": 40312,
- "orc": 44305,
- "orca": 18631,
- "orcas": 47676,
- "orch": 11893,
- "orchar": 40226,
- "orchard": 19530,
- "orche": 8004,
- "orchestr": 42937,
- "orchestra": 9573,
- "orchestral": 40285,
- "orchi": 23696,
- "orchid": 18678,
- "orchids": 28376,
- "ord": 26903,
- "ord": 11502,
- "orda": 33462,
- "ordained": 38302,
- "order": 24613,
- "order": 2191,
- "ordered": 8335,
- "ordering": 19588,
- "orderly": 43457,
- "orders": 6187,
- "ordin": 4378,
- "ordinance": 38583,
- "ordinary": 8012,
- "ore": 3580,
- "ore": 1423,
- "orean": 36696,
- "ored": 5133,
- "oregon": 21759,
- "oregon": 8035,
- "oren": 21645,
- "oreo": 21873,
- "oreos": 41688,
- "ores": 17328,
- "org": 3401,
- "org": 5593,
- "organ": 3338,
- "organ": 13213,
- "organi": 3636,
- "organic": 24080,
- "organic": 5980,
- "organics": 44199,
- "organis": 13204,
- "organisation": 15868,
- "organisations": 20651,
- "organise": 36073,
- "organised": 13191,
- "organiser": 49141,
- "organisers": 35778,
- "organising": 22787,
- "organisms": 37041,
- "organiz": 11107,
- "organization": 8064,
- "organizational": 29510,
- "organizations": 13453,
- "organize": 19973,
- "organized": 10681,
- "organizer": 23905,
- "organizers": 27191,
- "organizing": 15779,
- "organs": 29872,
- "orgs": 29500,
- "ori": 1540,
- "ori": 8693,
- "oria": 11474,
- "orial": 8648,
- "orian": 21193,
- "oric": 43810,
- "orice": 41341,
- "orie": 18815,
- "orient": 13149,
- "orient": 30770,
- "oriental": 23056,
- "orientation": 16873,
- "oriente": 40390,
- "oriented": 24596,
- "orienteering": 42985,
- "ories": 5934,
- "orig": 2273,
- "orig": 38463,
- "origami": 31832,
- "origin": 2555,
- "origin": 12372,
- "original": 18496,
- "original": 3117,
- "originally": 12849,
- "originals": 16953,
- "originated": 41823,
- "origins": 16291,
- "orin": 39863,
- "oring": 3006,
- "orio": 24308,
- "orioles": 21430,
- "orion": 21765,
- "oris": 37064,
- "orities": 7903,
- "ority": 5556,
- "orium": 12015,
- "ork": 22202,
- "ork": 37235,
- "orkney": 34254,
- "orl": 39465,
- "orlando": 32247,
- "orlando": 7827,
- "orleans": 11127,
- "orm": 38464,
- "orn": 25412,
- "orn": 8130,
- "ornam": 36122,
- "ornament": 23409,
- "ornamental": 46270,
- "ornaments": 28968,
- "ornate": 46865,
- "orni": 27713,
- "ornithology": 38275,
- "orns": 19340,
- "oro": 9848,
- "oro": 14573,
- "orous": 19286,
- "orph": 17318,
- "orphan": 22718,
- "orphan": 28994,
- "orphanage": 45196,
- "orphaned": 46792,
- "orphans": 36588,
- "orphe": 39186,
- "orr": 32977,
- "ors": 1127,
- "orship": 20846,
- "ort": 1019,
- "ortega": 39727,
- "orth": 22584,
- "orth": 24461,
- "ortho": 11366,
- "orthodon": 37730,
- "orthodox": 19008,
- "orthop": 42123,
- "orthopedic": 49341,
- "ortiz": 23544,
- "orton": 37238,
- "oru": 44629,
- "oru": 31281,
- "orum": 42724,
- "orwell": 41218,
- "ory": 16983,
- "ory": 1985,
- "os": 2211,
- "os": 1299,
- "osa": 16340,
- "osa": 17237,
- "osaka": 21347,
- "osborne": 22402,
- "osbourne": 43376,
- "osc": 5092,
- "oscar": 21157,
- "oscar": 8191,
- "oscars": 11098,
- "osce": 37303,
- "oscill": 38272,
- "ose": 46942,
- "ose": 22541,
- "osh": 30717,
- "osh": 35011,
- "osha": 33907,
- "oshi": 34770,
- "osi": 25247,
- "osi": 17636,
- "osis": 13903,
- "osity": 12730,
- "oslo": 20547,
- "osm": 31626,
- "osman": 46539,
- "oso": 42793,
- "oso": 21285,
- "osp": 24387,
- "ospre": 49001,
- "osprey": 37893,
- "oss": 29362,
- "oss": 34640,
- "ost": 23701,
- "ost": 18749,
- "oste": 20632,
- "osteo": 43163,
- "oster": 31781,
- "ostr": 33673,
- "ostrich": 47640,
- "osu": 29480,
- "osu": 19818,
- "oswald": 38471,
- "ot": 1863,
- "ot": 2062,
- "ota": 17509,
- "ota": 8741,
- "otago": 45919,
- "otaku": 40743,
- "otas": 47616,
- "otc": 37934,
- "otd": 5683,
- "ote": 28511,
- "ote": 19744,
- "otes": 27280,
- "oth": 33262,
- "oth": 33519,
- "other": 9758,
- "other": 1010,
- "others": 3326,
- "otherwise": 12376,
- "oti": 19567,
- "oti": 45564,
- "otic": 9671,
- "otis": 28246,
- "otive": 10877,
- "oto": 23946,
- "oto": 23399,
- "otp": 29822,
- "otr": 38685,
- "ots": 5769,
- "ott": 10167,
- "ott": 7936,
- "otta": 7623,
- "otta": 20941,
- "ottawa": 49027,
- "ottawa": 9019,
- "otte": 35214,
- "otter": 34710,
- "otter": 22456,
- "otters": 38883,
- "otti": 36721,
- "ottnews": 33995,
- "otto": 17730,
- "ottoman": 27503,
- "otw": 35259,
- "otwol": 46868,
- "ou": 520,
- "ou": 6544,
- "ouat": 32954,
- "ouch": 13493,
- "oud": 1359,
- "oue": 48838,
- "ouf": 34618,
- "ough": 4204,
- "ough": 991,
- "ought": 2253,
- "oughton": 36860,
- "oui": 39421,
- "ouk": 21796,
- "oul": 20253,
- "oul": 8081,
- "ould": 859,
- "oulos": 32808,
- "oun": 636,
- "oun": 20960,
- "ounce": 15027,
- "ounces": 30299,
- "ound": 2013,
- "ound": 853,
- "oundation": 40132,
- "ounded": 9634,
- "ounding": 11944,
- "ounds": 2753,
- "oung": 35875,
- "oung": 25341,
- "ounge": 29427,
- "ount": 43801,
- "ount": 4172,
- "ounts": 10963,
- "oup": 32815,
- "our": 727,
- "our": 581,
- "oura": 29806,
- "oura": 36352,
- "ourable": 24126,
- "ourage": 34525,
- "oural": 45840,
- "oured": 6956,
- "ouri": 12696,
- "ouring": 12000,
- "ourism": 25496,
- "ourke": 26480,
- "ourlives": 37541,
- "ouro": 41224,
- "ours": 1491,
- "ourse": 15415,
- "ourselves": 10124,
- "ourt": 22960,
- "oury": 29484,
- "ous": 1987,
- "ous": 879,
- "ouse": 32048,
- "ouse": 7603,
- "ouses": 33666,
- "ously": 2501,
- "ousness": 10689,
- "ousy": 28302,
- "out": 1130,
- "out": 620,
- "outa": 35187,
- "outage": 27320,
- "outages": 40353,
- "outback": 28532,
- "outbound": 41256,
- "outbreak": 20103,
- "outcome": 16552,
- "outcomes": 14016,
- "outdated": 38313,
- "outdoor": 19184,
- "outdoor": 6368,
- "outdoors": 10469,
- "oute": 44180,
- "outed": 34435,
- "outer": 30499,
- "outer": 14188,
- "outes": 39600,
- "outfield": 41826,
- "outfit": 6525,
- "outfits": 16366,
- "outfitters": 37725,
- "outfy": 34920,
- "outgoing": 27302,
- "outh": 16933,
- "outh": 8111,
- "outine": 35452,
- "outing": 11251,
- "outlander": 45820,
- "outlander": 17095,
- "outlaw": 37498,
- "outlaw": 27340,
- "outlaws": 30935,
- "outlet": 16855,
- "outlets": 20822,
- "outline": 26894,
- "outlines": 29159,
- "outlining": 45960,
- "outlook": 12983,
- "outof": 43958,
- "outpatient": 46603,
- "outpost": 44622,
- "output": 17255,
- "outra": 14262,
- "outrage": 23577,
- "outraged": 43402,
- "outrageous": 29342,
- "outre": 14373,
- "outreach": 15297,
- "outright": 38200,
- "outs": 5790,
- "outsi": 22515,
- "outside": 47693,
- "outside": 2782,
- "outsider": 41196,
- "outsiders": 41742,
- "outskirts": 42088,
- "outsourcing": 34543,
- "outstanding": 6387,
- "outta": 15807,
- "outtuesday": 48692,
- "outw": 34650,
- "oux": 40960,
- "oux": 14228,
- "ov": 6420,
- "ov": 8479,
- "ova": 12762,
- "oval": 15039,
- "ovarian": 42913,
- "ovation": 24333,
- "ove": 8649,
- "ove": 15456,
- "oven": 44620,
- "oven": 12579,
- "over": 1658,
- "over": 962,
- "overall": 6914,
- "overboard": 42982,
- "overcame": 47235,
- "overcast": 36942,
- "overcome": 14365,
- "overcoming": 29348,
- "overdose": 27017,
- "overdrive": 40088,
- "overdue": 30240,
- "overflow": 32885,
- "overflowing": 45370,
- "overhaul": 31531,
- "overhead": 20321,
- "overland": 38808,
- "overlay": 44827,
- "overload": 24327,
- "overlook": 35767,
- "overlooked": 27632,
- "overlooking": 17319,
- "overly": 28820,
- "overnight": 9913,
- "overpass": 44310,
- "overrated": 38214,
- "overs": 45774,
- "overs": 17329,
- "overseas": 15100,
- "oversight": 32494,
- "oversized": 31557,
- "overtime": 19347,
- "overturned": 31048,
- "overview": 14789,
- "overwatch": 18124,
- "overweight": 43465,
- "overwhel": 12204,
- "overwhelmed": 23459,
- "overwhelming": 20306,
- "overwhelmingly": 43549,
- "ovi": 32508,
- "ovic": 22417,
- "ovich": 27623,
- "ovie": 47677,
- "ovo": 41920,
- "ovo": 18065,
- "ovski": 26167,
- "ow": 2032,
- "ow": 2250,
- "owa": 32770,
- "owe": 19073,
- "owed": 37641,
- "owen": 24838,
- "owen": 12056,
- "owens": 20664,
- "owes": 35069,
- "owing": 48582,
- "owl": 34332,
- "owl": 9899,
- "owls": 18247,
- "own": 3845,
- "own": 1758,
- "owned": 8536,
- "owner": 5019,
- "owners": 7712,
- "ownership": 16583,
- "owning": 24661,
- "owns": 17533,
- "owo": 46142,
- "ows": 27423,
- "owski": 22573,
- "ox": 3282,
- "ox": 12071,
- "oxfam": 45466,
- "oxford": 28588,
- "oxford": 8824,
- "oxfordshire": 37855,
- "oxi": 33731,
- "oxi": 48147,
- "oxid": 17701,
- "oxide": 28235,
- "oxo": 37088,
- "oxy": 12432,
- "oxygen": 16214,
- "oy": 6638,
- "oy": 12437,
- "oya": 38894,
- "oye": 48677,
- "oyster": 40545,
- "oyster": 17253,
- "oysters": 22672,
- "oz": 10584,
- "oz": 6044,
- "ozar": 31848,
- "ozil": 41365,
- "ozone": 37052,
- "ozzy": 39549,
- "p": 79,
- "p": 335,
- "pa": 765,
- "pa": 2217,
- "paa": 32812,
- "pab": 9354,
- "pablo": 42172,
- "pablo": 14473,
- "pac": 2332,
- "pac": 7608,
- "pace": 40600,
- "pace": 9450,
- "paced": 32611,
- "pacers": 23976,
- "paces": 43001,
- "paci": 5699,
- "pacific": 19723,
- "pacific": 6654,
- "pacing": 45202,
- "pack": 2711,
- "pack": 3420,
- "package": 7053,
- "packaged": 29656,
- "packages": 14305,
- "packaging": 11658,
- "packard": 46421,
- "packed": 5883,
- "packer": 28209,
- "packers": 14294,
- "packet": 25022,
- "packets": 40448,
- "packing": 9829,
- "packs": 11086,
- "paco": 41364,
- "pacqui": 28456,
- "pacquiao": 30485,
- "pact": 27182,
- "pad": 3798,
- "pad": 7601,
- "padded": 42253,
- "paddington": 33162,
- "paddle": 38276,
- "paddle": 20811,
- "paddling": 40645,
- "paddock": 29590,
- "paddy": 33103,
- "paddy": 19855,
- "padi": 47037,
- "padilla": 22380,
- "padma": 44595,
- "padma": 46457,
- "padre": 38343,
- "padres": 22829,
- "pads": 17353,
- "paedi": 41488,
- "paella": 46924,
- "paf": 47185,
- "pafc": 49259,
- "pag": 4151,
- "pag": 30525,
- "pagan": 27854,
- "page": 14996,
- "page": 2504,
- "pageant": 22139,
- "pages": 8082,
- "pagoda": 44309,
- "pah": 41054,
- "pah": 26884,
- "pai": 20624,
- "pai": 21198,
- "paid": 5057,
- "paige": 33659,
- "paige": 16022,
- "paign": 31796,
- "pain": 2141,
- "pain": 4495,
- "paine": 38069,
- "painful": 16361,
- "pains": 25639,
- "paint": 7948,
- "paint": 5185,
- "paintball": 39730,
- "painted": 6433,
- "painter": 10888,
- "painters": 35703,
- "painting": 49164,
- "painting": 3086,
- "paintings": 9956,
- "paints": 21672,
- "pair": 19848,
- "pair": 4038,
- "paired": 12433,
- "pairing": 16313,
- "pairings": 41152,
- "pairs": 9950,
- "pais": 16878,
- "paisley": 22954,
- "pajam": 24110,
- "pajama": 40244,
- "pajamas": 37231,
- "pak": 13186,
- "pak": 9094,
- "paki": 3438,
- "pakistan": 10713,
- "pakistan": 3994,
- "pakistani": 14050,
- "pakistanis": 45707,
- "pakv": 38196,
- "pal": 1850,
- "pal": 3611,
- "pala": 17895,
- "palace": 6381,
- "palaces": 45625,
- "palad": 28371,
- "palae": 43379,
- "palais": 35673,
- "palate": 34666,
- "palawan": 48202,
- "palazzo": 36006,
- "pale": 4768,
- "pale": 12518,
- "paleo": 36741,
- "paleo": 22198,
- "paler": 38028,
- "palermo": 40635,
- "palestin": 9449,
- "palestine": 11682,
- "palestinian": 11764,
- "palestinians": 21874,
- "palette": 13901,
- "pali": 48063,
- "palin": 40153,
- "palis": 44256,
- "pality": 27296,
- "pall": 35817,
- "palla": 21208,
- "palladium": 37888,
- "pallet": 39057,
- "palli": 28954,
- "palliative": 46014,
- "pally": 46073,
- "palm": 19651,
- "palm": 8612,
- "palma": 29888,
- "palmer": 40112,
- "palmer": 13633,
- "palms": 27059,
- "palo": 31562,
- "palom": 47698,
- "palooza": 25861,
- "pals": 11043,
- "palsy": 46651,
- "pam": 8228,
- "pam": 18513,
- "pamela": 26991,
- "pamp": 37653,
- "pamper": 44345,
- "pamph": 41332,
- "pan": 1072,
- "pan": 7437,
- "panam": 24606,
- "panama": 15522,
- "panas": 26207,
- "panasonic": 29750,
- "pancake": 18723,
- "pancakes": 15308,
- "panch": 27251,
- "pancra": 42472,
- "pancre": 27708,
- "pancreatic": 49337,
- "pancy": 41625,
- "pand": 5631,
- "panda": 12952,
- "pandas": 35119,
- "pande": 38419,
- "pandey": 34895,
- "pandit": 41191,
- "pandor": 30250,
- "pandora": 17727,
- "pandoramusic": 42344,
- "pane": 27470,
- "panel": 3724,
- "paneli": 19410,
- "panelist": 39719,
- "panelists": 24619,
- "panels": 12735,
- "panera": 48471,
- "pang": 16756,
- "pang": 23672,
- "panhandle": 40919,
- "pani": 36092,
- "panic": 46671,
- "panic": 14124,
- "panini": 30410,
- "pann": 42302,
- "panna": 49065,
- "pano": 36165,
- "panor": 12962,
- "panorama": 19763,
- "panoramic": 22563,
- "pans": 35204,
- "pant": 22550,
- "panther": 22825,
- "panther": 13262,
- "panthers": 10494,
- "panties": 32515,
- "panto": 28776,
- "pantry": 25608,
- "pants": 5003,
- "panty": 44217,
- "pany": 45567,
- "panzer": 41159,
- "pao": 33790,
- "paola": 44689,
- "paolo": 48488,
- "paolo": 21133,
- "pap": 1884,
- "pap": 30756,
- "papa": 12211,
- "papar": 32782,
- "paparazzi": 37842,
- "papaya": 44098,
- "paper": 8680,
- "paper": 2802,
- "paperback": 17928,
- "papers": 8204,
- "paperwork": 35785,
- "papi": 35177,
- "papp": 26361,
- "paprika": 44793,
- "papua": 32629,
- "par": 699,
- "par": 9163,
- "para": 18355,
- "para": 8976,
- "parach": 23147,
- "parachute": 30122,
- "parad": 37143,
- "parade": 5809,
- "parades": 46479,
- "paradi": 6658,
- "paradig": 27786,
- "paradigm": 33485,
- "paradise": 45869,
- "paradise": 7247,
- "paradox": 33109,
- "parag": 11866,
- "paragon": 48099,
- "paragra": 24903,
- "paragraph": 28499,
- "paragu": 38021,
- "paraguay": 43579,
- "paral": 15143,
- "paralle": 13184,
- "parallel": 18201,
- "paralleled": 42520,
- "parallels": 46101,
- "paraly": 30255,
- "paralym": 18727,
- "paralympic": 30806,
- "paralympics": 37162,
- "paralysis": 45702,
- "param": 12250,
- "parame": 27106,
- "paramedic": 34630,
- "paramedics": 35991,
- "parameters": 44890,
- "paramore": 34401,
- "paramount": 26642,
- "parano": 30283,
- "paranoid": 43029,
- "paranor": 16940,
- "paranormal": 19047,
- "parap": 41091,
- "paras": 15198,
- "parasite": 42460,
- "parasites": 46175,
- "parc": 30914,
- "parcel": 30367,
- "parcels": 45589,
- "pard": 18773,
- "pardon": 47606,
- "pardon": 26565,
- "pare": 18202,
- "pared": 5498,
- "paren": 3106,
- "parent": 47848,
- "parent": 10183,
- "parental": 28339,
- "parenthood": 23887,
- "parenting": 14529,
- "parents": 3731,
- "pares": 12420,
- "parfait": 46140,
- "pari": 17961,
- "pari": 27979,
- "paris": 13982,
- "paris": 3445,
- "parisagreement": 47405,
- "parish": 47328,
- "parish": 13020,
- "parisi": 45081,
- "parisian": 38512,
- "parity": 42734,
- "park": 4985,
- "park": 1452,
- "parked": 16487,
- "parker": 31119,
- "parker": 8365,
- "parkin": 34868,
- "parking": 5984,
- "parkinson": 28129,
- "parkland": 31287,
- "parkrun": 25747,
- "parks": 6873,
- "parkway": 19882,
- "parl": 30373,
- "parl": 29897,
- "parliam": 5941,
- "parliament": 41599,
- "parliament": 7151,
- "parliamentary": 17912,
- "parlor": 38253,
- "parlour": 37829,
- "parma": 36077,
- "parme": 26295,
- "parmesan": 27274,
- "paro": 17429,
- "parody": 24318,
- "parole": 32158,
- "parr": 44113,
- "parrish": 43043,
- "parrot": 23565,
- "parry": 40604,
- "parsley": 30077,
- "parsons": 22505,
- "part": 1872,
- "part": 1551,
- "parte": 48508,
- "parth": 34790,
- "parti": 10509,
- "partial": 18957,
- "partially": 21269,
- "partic": 2871,
- "partici": 9540,
- "particip": 4400,
- "participant": 27674,
- "participants": 10237,
- "participate": 9433,
- "participated": 14252,
- "participates": 46414,
- "participating": 11535,
- "participation": 13529,
- "particle": 27716,
- "particles": 27012,
- "particul": 11408,
- "particular": 14098,
- "particularly": 12170,
- "parties": 9032,
- "parting": 32844,
- "partisan": 20772,
- "partist": 44713,
- "partition": 42219,
- "partly": 21459,
- "partner": 5210,
- "partner": 4568,
- "partnered": 21402,
- "partnering": 21182,
- "partners": 5568,
- "partnership": 6123,
- "partnerships": 17418,
- "parton": 43245,
- "partridge": 34872,
- "parts": 5149,
- "party": 12877,
- "party": 1580,
- "partying": 25702,
- "pas": 1341,
- "pas": 9525,
- "pasadena": 25892,
- "pascal": 28626,
- "pasco": 49220,
- "pascu": 42692,
- "pash": 23936,
- "pasha": 46986,
- "paso": 18542,
- "pasqu": 44941,
- "pass": 5016,
- "pass": 3511,
- "passage": 16477,
- "passages": 48937,
- "passed": 4957,
- "passenger": 12311,
- "passengers": 12781,
- "passer": 48544,
- "passes": 7633,
- "passi": 32471,
- "passing": 6589,
- "passion": 8822,
- "passion": 5332,
- "passionate": 10947,
- "passionately": 44028,
- "passions": 38441,
- "passive": 23171,
- "passover": 38426,
- "passport": 14739,
- "passports": 46368,
- "password": 20258,
- "passwords": 43095,
- "past": 7315,
- "past": 2729,
- "pasta": 10441,
- "paste": 34765,
- "paste": 17038,
- "pastel": 19457,
- "pastels": 45699,
- "pastor": 19792,
- "pastor": 9664,
- "pastoral": 37191,
- "pastors": 30959,
- "pastr": 45478,
- "pastries": 39409,
- "pastry": 18582,
- "pasture": 34764,
- "pastures": 47793,
- "pat": 1300,
- "pat": 7036,
- "patag": 29862,
- "patagonia": 32786,
- "patch": 29284,
- "patch": 8721,
- "patches": 22104,
- "patchwork": 44675,
- "patchy": 47488,
- "pate": 42122,
- "pate": 42098,
- "patel": 14168,
- "patent": 14692,
- "patented": 37277,
- "patents": 33911,
- "paterson": 36560,
- "path": 7408,
- "path": 5035,
- "pathetic": 18222,
- "pathfinder": 35415,
- "pathi": 34976,
- "pathi": 27347,
- "pathic": 49025,
- "patho": 18534,
- "pathology": 23290,
- "paths": 16333,
- "pathway": 23488,
- "pathways": 24690,
- "pathy": 13330,
- "pati": 2799,
- "pati": 26708,
- "patience": 13575,
- "patient": 30139,
- "patient": 6262,
- "patiently": 22980,
- "patients": 5543,
- "patil": 49187,
- "patio": 14304,
- "pational": 30627,
- "patna": 45025,
- "patory": 41859,
- "patreon": 17165,
- "patri": 4771,
- "patriarch": 49054,
- "patriarchy": 48806,
- "patric": 12569,
- "patrice": 40731,
- "patricia": 18143,
- "patrick": 12078,
- "patrick": 5286,
- "patricks": 46783,
- "patriot": 28896,
- "patriot": 15692,
- "patrioti": 35520,
- "patriotic": 20217,
- "patriotism": 35807,
- "patriots": 8707,
- "patro": 31650,
- "patrol": 10073,
- "patrolling": 39344,
- "patrols": 35978,
- "patron": 26658,
- "patron": 17683,
- "patrons": 28308,
- "pats": 24874,
- "patsy": 46093,
- "patt": 12637,
- "patter": 4982,
- "pattern": 7447,
- "patterned": 47212,
- "patterns": 11637,
- "patterson": 21384,
- "patti": 44927,
- "patti": 26123,
- "pattinson": 32474,
- "patton": 29026,
- "patty": 48741,
- "patty": 18321,
- "pau": 1834,
- "pau": 35970,
- "paul": 6035,
- "paul": 2597,
- "paula": 37363,
- "paula": 16777,
- "pauline": 30438,
- "paulo": 48002,
- "paulo": 21628,
- "pauls": 41413,
- "pauls": 40010,
- "paulson": 48201,
- "pause": 19439,
- "paused": 46782,
- "pav": 6661,
- "pave": 37107,
- "paved": 27898,
- "pavel": 43152,
- "pavement": 27669,
- "pavilion": 13374,
- "paving": 28651,
- "paw": 14009,
- "paw": 16016,
- "pawan": 29754,
- "pawankalyan": 33702,
- "pawn": 43195,
- "paws": 16714,
- "pax": 20007,
- "pax": 19033,
- "paxton": 38347,
- "pay": 2642,
- "pay": 3345,
- "payback": 36413,
- "paycheck": 45078,
- "payday": 26957,
- "payee": 46985,
- "payer": 41503,
- "paying": 8341,
- "payment": 10596,
- "payments": 11832,
- "payne": 12775,
- "paypal": 21442,
- "payroll": 31610,
- "pays": 10845,
- "paysoff": 48174,
- "paytm": 45352,
- "payton": 27348,
- "paz": 22267,
- "pb": 20112,
- "pb": 10981,
- "pba": 28205,
- "pbb": 48567,
- "pbb": 40589,
- "pbc": 49191,
- "pbl": 35166,
- "pbr": 32998,
- "pbs": 17908,
- "pc": 6782,
- "pc": 3808,
- "pca": 35705,
- "pcb": 26235,
- "pcc": 36059,
- "pci": 38957,
- "pcm": 47436,
- "pcr": 35704,
- "pcs": 11917,
- "pcso": 31963,
- "pct": 22168,
- "pd": 4387,
- "pd": 4675,
- "pdates": 16842,
- "pdc": 40498,
- "pdf": 15181,
- "pdp": 24601,
- "pdt": 21743,
- "pdx": 25470,
- "pdx": 16153,
- "pe": 661,
- "pe": 956,
- "pea": 13915,
- "peabo": 34083,
- "peabody": 41244,
- "peac": 34615,
- "peace": 6249,
- "peace": 3021,
- "peaceful": 9461,
- "peacefully": 30530,
- "peacekeeping": 43630,
- "peach": 10522,
- "peach": 11538,
- "peaches": 27216,
- "peak": 18572,
- "peak": 6026,
- "peakdistrict": 41289,
- "peake": 24810,
- "peaked": 36391,
- "peaks": 14067,
- "pean": 11563,
- "peanu": 25843,
- "peanut": 12491,
- "peanuts": 26503,
- "pear": 4910,
- "pear": 18820,
- "pearce": 25996,
- "pearl": 21806,
- "pearl": 8560,
- "pearljam": 46739,
- "pearls": 19581,
- "pears": 39565,
- "pearson": 20461,
- "peas": 15937,
- "peasant": 40621,
- "peasants": 48788,
- "peat": 26914,
- "pebble": 28056,
- "pebbles": 40155,
- "pec": 32447,
- "pec": 17611,
- "pecan": 32177,
- "peck": 25186,
- "peck": 29234,
- "pecker": 30169,
- "peckham": 45863,
- "pecu": 34200,
- "peculiar": 42808,
- "ped": 13197,
- "ped": 2966,
- "pedago": 34590,
- "pedagogy": 48072,
- "pedal": 32943,
- "pedal": 19621,
- "pedals": 38535,
- "pede": 12862,
- "pede": 19560,
- "pedestri": 30027,
- "pedestrian": 18256,
- "pedestrians": 33895,
- "pedi": 12967,
- "pedia": 11733,
- "pediatric": 48431,
- "pediatric": 22071,
- "pedic": 35319,
- "pedic": 44528,
- "pedro": 29963,
- "pedro": 15114,
- "peds": 45377,
- "pee": 12988,
- "pee": 11196,
- "peed": 47369,
- "peek": 46323,
- "peek": 7569,
- "peeking": 48771,
- "peel": 34386,
- "peel": 17158,
- "peeled": 33533,
- "peeling": 48649,
- "peep": 25425,
- "peep": 16857,
- "peeps": 11681,
- "peer": 32416,
- "peer": 14432,
- "peers": 21626,
- "pees": 31830,
- "peg": 32182,
- "peg": 11207,
- "pegas": 30018,
- "pegasus": 37822,
- "peggy": 24271,
- "pei": 48166,
- "pei": 12917,
- "pel": 4286,
- "pel": 7006,
- "pele": 44105,
- "pelican": 34131,
- "pelicans": 29363,
- "pell": 46981,
- "pelle": 31267,
- "pelled": 32506,
- "pellegr": 38529,
- "pellets": 48240,
- "pelo": 40192,
- "pelo": 40238,
- "pelosi": 22169,
- "pelvic": 45646,
- "pemb": 19880,
- "pembro": 24084,
- "pembroke": 36702,
- "pembroke": 40044,
- "pembrokeshire": 40695,
- "pen": 1501,
- "pen": 5356,
- "pena": 35788,
- "penalties": 25417,
- "penalty": 11491,
- "penang": 29545,
- "penc": 20065,
- "pence": 18002,
- "pencil": 41303,
- "pencil": 11200,
- "pencils": 21909,
- "pend": 3052,
- "pendant": 12415,
- "pendants": 44117,
- "pending": 12770,
- "pendleton": 44272,
- "pendu": 45336,
- "penelope": 36703,
- "penetr": 26058,
- "peng": 42955,
- "peng": 39200,
- "pengu": 8854,
- "penguin": 28249,
- "penguin": 14952,
- "penguins": 16557,
- "peninsu": 13464,
- "peninsula": 14070,
- "penn": 7760,
- "penn": 11128,
- "pennant": 43971,
- "penned": 45077,
- "penney": 47856,
- "pennies": 43094,
- "pennsylvania": 13673,
- "penny": 20400,
- "penny": 11388,
- "pens": 13307,
- "pens": 13310,
- "pensac": 30925,
- "pensacola": 33573,
- "pension": 32840,
- "pension": 17764,
- "pensions": 29773,
- "penske": 47154,
- "pent": 10699,
- "pent": 22725,
- "pentagon": 23133,
- "pente": 33165,
- "penthouse": 32673,
- "penultimate": 36553,
- "peop": 1030,
- "people": 10573,
- "people": 1047,
- "peoples": 28241,
- "peoples": 14627,
- "peopleschoice": 32418,
- "peoplesvote": 45830,
- "peoria": 36985,
- "pep": 12761,
- "pep": 14898,
- "pepe": 24778,
- "pepp": 34425,
- "pepper": 14861,
- "pepper": 8253,
- "peppermint": 30321,
- "pepperoni": 47307,
- "peppers": 14650,
- "pepsi": 21307,
- "per": 703,
- "per": 1284,
- "pera": 26294,
- "perce": 24135,
- "perceived": 38436,
- "percent": 16328,
- "percent": 9017,
- "percentage": 19477,
- "percep": 28017,
- "perception": 20591,
- "perceptions": 38138,
- "perch": 34281,
- "perched": 40071,
- "percu": 41722,
- "percussion": 23980,
- "percy": 23940,
- "pere": 8665,
- "pere": 36300,
- "pered": 24509,
- "peregr": 37479,
- "peregrine": 44546,
- "pereira": 43927,
- "peren": 24564,
- "perenni": 26996,
- "perennial": 34038,
- "perez": 15107,
- "perf": 22816,
- "perfe": 1624,
- "perfec": 6599,
- "perfect": 17261,
- "perfect": 1878,
- "perfection": 9646,
- "perfectly": 8037,
- "perfecto": 42898,
- "perfor": 2311,
- "perform": 3866,
- "perform": 5940,
- "performan": 8973,
- "performance": 2714,
- "performances": 9553,
- "performed": 9997,
- "performer": 17061,
- "performers": 18476,
- "performing": 5170,
- "performs": 13839,
- "perfu": 14214,
- "perfume": 17525,
- "perhaps": 9297,
- "peri": 12618,
- "peri": 44068,
- "perience": 19302,
- "peril": 40119,
- "peril": 48301,
- "perimeter": 38499,
- "pering": 29746,
- "perio": 5101,
- "period": 6131,
- "periodic": 36476,
- "periods": 24401,
- "periph": 35308,
- "peripheral": 43901,
- "peris": 19461,
- "periscope": 21668,
- "perk": 33424,
- "perkins": 20057,
- "perks": 17660,
- "perl": 44018,
- "perm": 47847,
- "perman": 9018,
- "permanent": 11144,
- "permanently": 25584,
- "perme": 42456,
- "permission": 15822,
- "permit": 21950,
- "permits": 33267,
- "permitted": 44380,
- "pero": 23551,
- "perpe": 15749,
- "perpetr": 33376,
- "perpetu": 30132,
- "perpetual": 32018,
- "perrie": 32691,
- "perry": 28478,
- "perry": 7899,
- "pers": 3688,
- "pers": 10710,
- "perse": 27498,
- "persecu": 22878,
- "persecution": 32009,
- "perseverance": 29820,
- "persi": 11509,
- "persian": 19859,
- "persist": 19412,
- "persist": 40938,
- "persistence": 34588,
- "persistent": 29028,
- "person": 3510,
- "person": 2533,
- "persona": 18401,
- "personal": 10114,
- "personal": 4121,
- "personalised": 24186,
- "personalities": 27888,
- "personality": 10386,
- "personalized": 17845,
- "personally": 13885,
- "personnel": 14546,
- "persons": 14592,
- "perspec": 17997,
- "perspective": 8996,
- "perspectives": 18777,
- "persu": 20972,
- "pert": 36970,
- "pert": 16306,
- "perth": 19067,
- "perth": 11011,
- "peru": 20612,
- "peru": 12964,
- "peruvian": 30822,
- "pes": 38368,
- "pes": 2598,
- "pesa": 47409,
- "pesc": 44044,
- "pesh": 33184,
- "peshaw": 28524,
- "peshawar": 29230,
- "pesky": 42512,
- "pesos": 47872,
- "pessi": 43902,
- "pest": 20130,
- "pest": 9425,
- "pesticide": 48481,
- "pesticides": 37868,
- "pesto": 26186,
- "pests": 41919,
- "pet": 2167,
- "pet": 3703,
- "peta": 28785,
- "petal": 38430,
- "petal": 40469,
- "petals": 26064,
- "petday": 45314,
- "pete": 14479,
- "pete": 8571,
- "peter": 5093,
- "peter": 3696,
- "peterborough": 26012,
- "peters": 16336,
- "petersburg": 21052,
- "petersen": 39794,
- "peterson": 16877,
- "peth": 48920,
- "petit": 36437,
- "petit": 21276,
- "petite": 27213,
- "petition": 10975,
- "petitions": 43536,
- "petr": 29808,
- "petra": 31300,
- "petre": 47179,
- "petri": 31831,
- "petro": 8716,
- "petrol": 18149,
- "petroleum": 22063,
- "petron": 42875,
- "pets": 7663,
- "pett": 27051,
- "petti": 48001,
- "petting": 44334,
- "petty": 17324,
- "peu": 21411,
- "peuge": 22893,
- "peugeot": 24129,
- "pew": 21608,
- "pew": 30783,
- "pewdie": 41882,
- "pewdiepie": 42563,
- "pex": 43765,
- "pey": 14966,
- "pey": 30933,
- "peyton": 49254,
- "peyton": 20307,
- "pez": 45798,
- "pez": 10482,
- "pf": 16680,
- "pf": 12572,
- "pfa": 47839,
- "pfc": 35007,
- "pff": 44121,
- "pfi": 29810,
- "pfw": 31229,
- "pg": 12476,
- "pg": 5211,
- "pga": 13351,
- "pgat": 36514,
- "pgatour": 40094,
- "pgh": 44862,
- "pgh": 30031,
- "pgs": 49204,
- "ph": 745,
- "ph": 2042,
- "pha": 4443,
- "pha": 26255,
- "phal": 19962,
- "phan": 8731,
- "phan": 40126,
- "phant": 36998,
- "phantom": 37688,
- "phantom": 14490,
- "phar": 5570,
- "phara": 35792,
- "pharaoh": 40437,
- "pharm": 45761,
- "pharma": 17831,
- "pharmac": 8193,
- "pharmaceu": 19490,
- "pharmaceutical": 25217,
- "pharmaceuticals": 44623,
- "pharmacist": 41024,
- "pharmacists": 44337,
- "pharmacy": 15293,
- "pharo": 42308,
- "pharoah": 49287,
- "pharrell": 31316,
- "phase": 8304,
- "phases": 35337,
- "phat": 42492,
- "phc": 41102,
- "phd": 20875,
- "phd": 8472,
- "phdchat": 39564,
- "phdlife": 39638,
- "phe": 4787,
- "phe": 19853,
- "pheasant": 41983,
- "phee": 41292,
- "phel": 23711,
- "phelps": 27128,
- "phen": 7718,
- "pheno": 47336,
- "phenom": 31673,
- "phenom": 39618,
- "phenomen": 11304,
- "phenomena": 41538,
- "phenomenal": 15035,
- "phenomenon": 24464,
- "pher": 9194,
- "pher": 19828,
- "phers": 29531,
- "pherson": 36421,
- "phew": 10295,
- "phi": 2239,
- "phi": 12220,
- "phia": 9228,
- "phic": 3977,
- "phie": 30237,
- "phies": 17062,
- "phil": 2821,
- "phil": 6199,
- "phila": 47443,
- "philadel": 9428,
- "philadelphia": 9749,
- "philanthro": 16587,
- "philanthropist": 44153,
- "philanthropy": 25047,
- "philately": 33695,
- "phile": 36543,
- "philharmon": 25228,
- "philharmonic": 31699,
- "phili": 4277,
- "philia": 46654,
- "philip": 20748,
- "philip": 11074,
- "philipp": 5623,
- "philipp": 47591,
- "philippe": 20942,
- "philippine": 17629,
- "philippines": 8149,
- "philips": 25175,
- "phill": 42346,
- "phill": 48272,
- "philli": 6456,
- "phillies": 18748,
- "phillip": 48832,
- "phillip": 19323,
- "phillips": 11041,
- "philly": 19545,
- "philly": 7785,
- "philos": 8395,
- "philosop": 20349,
- "philosoph": 10187,
- "philosopher": 25220,
- "philosophical": 32628,
- "philosophy": 12213,
- "phils": 38573,
- "phin": 33816,
- "phine": 40985,
- "phins": 40210,
- "phish": 36897,
- "phishing": 36546,
- "phl": 25603,
- "pho": 816,
- "pho": 22707,
- "phobia": 28749,
- "phoe": 22673,
- "phoebe": 27582,
- "phoeni": 6778,
- "phoenix": 20615,
- "phoenix": 7793,
- "phol": 48140,
- "phon": 19602,
- "phon": 31115,
- "phone": 15486,
- "phone": 1951,
- "phones": 6351,
- "phony": 31925,
- "phora": 31363,
- "phosp": 22638,
- "photo": 1153,
- "photo": 1125,
- "photobomb": 37075,
- "photobook": 41894,
- "photog": 28115,
- "photogenic": 36108,
- "photogra": 36754,
- "photograph": 1688,
- "photograph": 8853,
- "photographed": 11573,
- "photographer": 5748,
- "photographers": 17141,
- "photographic": 22053,
- "photographing": 30074,
- "photographs": 15759,
- "photography": 33183,
- "photography": 2108,
- "photom": 32223,
- "photoo": 11106,
- "photooftheday": 11933,
- "photos": 2479,
- "photoshoot": 11121,
- "photoshop": 12419,
- "photoshopped": 35738,
- "phouse": 27848,
- "php": 17370,
- "phra": 12777,
- "phrase": 18809,
- "phrases": 35264,
- "phs": 16495,
- "phu": 21274,
- "phuket": 34028,
- "phx": 35466,
- "phx": 29507,
- "phy": 6484,
- "phy": 4292,
- "phyl": 35600,
- "phyllis": 37844,
- "phys": 3734,
- "phys": 37894,
- "physi": 13782,
- "physic": 46641,
- "physical": 44127,
- "physical": 6671,
- "physically": 18105,
- "physician": 21055,
- "physicians": 26702,
- "physicist": 29052,
- "physics": 9369,
- "physio": 29574,
- "physio": 29177,
- "physiology": 32349,
- "physique": 42884,
- "phyto": 42197,
- "pi": 741,
- "pi": 5357,
- "pia": 8918,
- "pian": 24637,
- "pianist": 21048,
- "piano": 49278,
- "piano": 7894,
- "pianos": 47904,
- "piazza": 28496,
- "pic": 901,
- "pic": 1282,
- "pical": 5482,
- "picard": 48507,
- "picasso": 21481,
- "piccad": 33876,
- "piccadilly": 37287,
- "piccollage": 43621,
- "pick": 6379,
- "pick": 3142,
- "picked": 6018,
- "picker": 43105,
- "pickering": 47605,
- "picket": 33559,
- "picking": 9545,
- "pickle": 24570,
- "pickled": 21705,
- "pickles": 25001,
- "picks": 8551,
- "pickup": 15382,
- "pickups": 33383,
- "picnic": 12007,
- "pico": 23363,
- "picoftheday": 18319,
- "pics": 2559,
- "pict": 18778,
- "pictorial": 40640,
- "picture": 11663,
- "picture": 1674,
- "pictured": 7647,
- "pictures": 3646,
- "picturesque": 24894,
- "pid": 5225,
- "piday": 48056,
- "pie": 12065,
- "pie": 5319,
- "piece": 39632,
- "piece": 2754,
- "pieces": 6194,
- "pied": 24686,
- "pied": 12713,
- "piedmont": 39691,
- "pier": 5641,
- "pier": 11348,
- "pierc": 49216,
- "pierce": 48462,
- "pierce": 16782,
- "pierced": 32799,
- "piercing": 22557,
- "piero": 43125,
- "pierre": 34670,
- "pierre": 11985,
- "piers": 29030,
- "pies": 6898,
- "pieter": 44801,
- "pietro": 42169,
- "piff": 40719,
- "pig": 12009,
- "pig": 9619,
- "pigeon": 18008,
- "pigeons": 32910,
- "piggy": 28245,
- "pigment": 40284,
- "pigs": 16228,
- "pik": 48539,
- "pika": 47372,
- "pikach": 27268,
- "pikachu": 28107,
- "pike": 33457,
- "pike": 14011,
- "pil": 2893,
- "pil": 20645,
- "pilates": 29518,
- "pile": 44403,
- "pile": 13930,
- "piled": 26873,
- "piles": 31968,
- "pilgri": 13966,
- "pilgrim": 32662,
- "pilgrimage": 24335,
- "pilgrims": 31370,
- "piling": 43050,
- "pilip": 27234,
- "pilipinas": 32392,
- "pill": 14830,
- "pill": 19226,
- "pillar": 17322,
- "pillars": 22054,
- "pillow": 42237,
- "pillow": 12182,
- "pillows": 26499,
- "pills": 23964,
- "pilo": 37526,
- "pilot": 31619,
- "pilot": 6687,
- "pilots": 15586,
- "pilsner": 47153,
- "pim": 15285,
- "pim": 35472,
- "pimp": 35789,
- "pin": 2629,
- "pin": 5164,
- "pinball": 31679,
- "pinch": 26114,
- "pine": 9398,
- "pine": 7374,
- "pineapple": 14831,
- "pines": 20338,
- "ping": 23720,
- "ping": 2089,
- "pinion": 40557,
- "pink": 11151,
- "pink": 3360,
- "pinkfloyd": 48520,
- "pinky": 29803,
- "pinn": 31448,
- "pinnacle": 32754,
- "pinned": 12165,
- "pinning": 44515,
- "pino": 36633,
- "pinot": 41399,
- "pinot": 21146,
- "pinoy": 43578,
- "pinoy": 35258,
- "pins": 14619,
- "pinst": 41173,
- "pint": 42537,
- "pint": 13584,
- "pinterest": 15379,
- "pinto": 35992,
- "pints": 27935,
- "pinup": 37349,
- "pio": 22108,
- "pion": 36728,
- "pion": 29190,
- "pione": 7975,
- "pioneer": 34892,
- "pioneer": 12459,
- "pioneering": 25933,
- "pioneers": 22383,
- "pious": 42441,
- "pip": 30854,
- "pipe": 29333,
- "pipe": 10459,
- "pipel": 12387,
- "pipeline": 14151,
- "pipelines": 39683,
- "piper": 47052,
- "piper": 16293,
- "pipes": 16991,
- "piping": 40744,
- "pippa": 47672,
- "pir": 4351,
- "pir": 38899,
- "piracy": 39452,
- "piran": 49034,
- "pirate": 38680,
- "pirate": 13592,
- "pirates": 10442,
- "pire": 16613,
- "pires": 14988,
- "pis": 9230,
- "pis": 44441,
- "pisa": 43632,
- "pisces": 45982,
- "piss": 20818,
- "pissed": 17989,
- "pist": 15556,
- "pist": 32826,
- "pistachi": 29760,
- "pistachio": 36320,
- "pistol": 20480,
- "piston": 48236,
- "pistons": 27242,
- "pistor": 48162,
- "pit": 2946,
- "pit": 7476,
- "pita": 27070,
- "pitbull": 25295,
- "pitch": 8992,
- "pitch": 5872,
- "pitched": 28447,
- "pitcher": 13445,
- "pitchers": 27835,
- "pitches": 21005,
- "pitching": 16455,
- "piti": 47568,
- "pits": 24144,
- "pitt": 7607,
- "pitt": 15599,
- "pitts": 9531,
- "pittsburgh": 10453,
- "pity": 24380,
- "pius": 39988,
- "pivo": 18009,
- "pivot": 31805,
- "pivotal": 31432,
- "pix": 6185,
- "pix": 13088,
- "pixar": 27493,
- "pixel": 14384,
- "pixel": 13241,
- "pixelart": 18516,
- "pixels": 34099,
- "pixie": 35573,
- "piyu": 30772,
- "piyush": 36191,
- "piyushgoyal": 45318,
- "pizz": 3897,
- "pizza": 4474,
- "pizzas": 30647,
- "pizzeria": 44174,
- "pj": 12524,
- "pj": 17179,
- "pjnet": 22011,
- "pjs": 36009,
- "pk": 10149,
- "pk": 10991,
- "pkg": 49011,
- "pkk": 47480,
- "pknot": 41779,
- "pkwy": 36827,
- "pl": 712,
- "pl": 5678,
- "pla": 841,
- "pla": 19945,
- "plac": 2331,
- "place": 14884,
- "place": 1445,
- "placed": 9729,
- "placement": 16724,
- "placements": 43885,
- "placer": 49170,
- "places": 4448,
- "placing": 18531,
- "plague": 25360,
- "plaid": 23291,
- "plain": 22776,
- "plain": 10709,
- "plains": 16345,
- "plan": 1740,
- "plan": 2970,
- "pland": 24801,
- "plane": 22728,
- "plane": 5363,
- "planes": 12581,
- "planet": 16833,
- "planet": 5172,
- "planetary": 28361,
- "planets": 22315,
- "plank": 30991,
- "plankton": 48249,
- "plann": 6409,
- "planned": 8169,
- "planner": 18083,
- "planners": 33664,
- "planning": 4446,
- "plano": 34063,
- "plans": 4181,
- "plant": 8521,
- "plant": 3912,
- "plantation": 20014,
- "plantbased": 33720,
- "planted": 14286,
- "planter": 34453,
- "planters": 43661,
- "planting": 13922,
- "plants": 5829,
- "plaque": 16097,
- "plaques": 45610,
- "plar": 26754,
- "plas": 45673,
- "plasma": 24999,
- "plaster": 31980,
- "plastic": 15645,
- "plastic": 6102,
- "plasticpollution": 47129,
- "plastics": 20999,
- "plasticsurgery": 48555,
- "plat": 3172,
- "plata": 46456,
- "plate": 28744,
- "plate": 5135,
- "plateau": 29301,
- "plated": 21161,
- "plates": 11485,
- "platform": 5549,
- "platforms": 13551,
- "platin": 10267,
- "plating": 44564,
- "platinum": 10979,
- "plato": 41101,
- "platoon": 41254,
- "platt": 44459,
- "platt": 40097,
- "platte": 46785,
- "platter": 29071,
- "platz": 40878,
- "plau": 39139,
- "play": 1222,
- "play": 1453,
- "playa": 23756,
- "playable": 33885,
- "playback": 39194,
- "playbook": 34856,
- "playboy": 24383,
- "played": 3432,
- "player": 24503,
- "player": 2477,
- "players": 3030,
- "playful": 23871,
- "playground": 15861,
- "playhouse": 23254,
- "playin": 24674,
- "playing": 47368,
- "playing": 1629,
- "playlist": 9180,
- "playlists": 47183,
- "playo": 5804,
- "playoff": 9655,
- "playoffs": 9548,
- "plays": 5134,
- "playstation": 11332,
- "playtime": 43037,
- "playwright": 32070,
- "plaza": 8943,
- "plc": 16827,
- "ple": 926,
- "ple": 1619,
- "plea": 21956,
- "plead": 47539,
- "pleads": 31425,
- "plear": 21362,
- "pleas": 8481,
- "pleas": 48740,
- "pleasant": 12271,
- "please": 41074,
- "please": 1474,
- "pleased": 6107,
- "pleasing": 32893,
- "pleasure": 5854,
- "pleasures": 29513,
- "pledge": 11507,
- "pledged": 36799,
- "pledges": 26746,
- "pledis": 41202,
- "plein": 43429,
- "plenary": 19891,
- "plenty": 7524,
- "pler": 17677,
- "ples": 6248,
- "pless": 39821,
- "pless": 17059,
- "plets": 43230,
- "plex": 23765,
- "plex": 15241,
- "pley": 19543,
- "pli": 30001,
- "pli": 45797,
- "plic": 5806,
- "plicity": 19823,
- "plight": 40317,
- "plin": 44531,
- "plin": 32335,
- "pline": 25376,
- "pling": 12899,
- "plings": 31184,
- "pll": 47629,
- "pll": 25266,
- "pln": 48755,
- "plo": 1778,
- "plo": 43523,
- "plor": 34695,
- "plot": 9918,
- "plots": 25672,
- "plotting": 30751,
- "plough": 33811,
- "plow": 38363,
- "pls": 5572,
- "plu": 2052,
- "plug": 12628,
- "plugged": 23261,
- "plugin": 31278,
- "plugins": 48797,
- "plugs": 28083,
- "plum": 26267,
- "plum": 16202,
- "plumb": 21769,
- "plumber": 43478,
- "plumbing": 24647,
- "plume": 39495,
- "plun": 15122,
- "plunge": 26506,
- "plur": 44664,
- "plus": 3097,
- "plush": 18926,
- "pluto": 26380,
- "ply": 17249,
- "ply": 28705,
- "plying": 36071,
- "plym": 11907,
- "plymouth": 13786,
- "plz": 10538,
- "pm": 13699,
- "pm": 990,
- "pmi": 41206,
- "pmln": 23208,
- "pmo": 18782,
- "pmoindia": 20374,
- "pms": 44223,
- "pn": 14431,
- "pn": 13774,
- "pnc": 37148,
- "pne": 30966,
- "pneu": 28714,
- "pneumonia": 42906,
- "png": 20992,
- "pnp": 25972,
- "pnpp": 42175,
- "pnw": 31521,
- "po": 628,
- "po": 3057,
- "poa": 43912,
- "poached": 27665,
- "poaching": 35140,
- "poc": 13232,
- "poc": 27780,
- "pocaly": 37987,
- "pocalypse": 42307,
- "poche": 38336,
- "poche": 39022,
- "pocket": 29147,
- "pocket": 8504,
- "pockets": 19566,
- "pocon": 41850,
- "pod": 3583,
- "pod": 7446,
- "podcast": 39654,
- "podcast": 4294,
- "podcasting": 40106,
- "podcasts": 19392,
- "pode": 33368,
- "poder": 24960,
- "podernfamily": 26620,
- "podi": 32853,
- "podium": 14093,
- "pods": 18776,
- "poe": 4746,
- "poe": 19254,
- "poem": 9436,
- "poems": 15577,
- "poet": 41019,
- "poet": 9872,
- "poetic": 26365,
- "poetry": 20192,
- "poetry": 6038,
- "poetryday": 39255,
- "poets": 19804,
- "pof": 40850,
- "poff": 28236,
- "pogba": 25998,
- "poign": 29682,
- "poignant": 32138,
- "poin": 9074,
- "point": 13280,
- "point": 2301,
- "pointe": 24631,
- "pointed": 20703,
- "pointer": 29883,
- "pointers": 36760,
- "pointing": 19233,
- "pointless": 33586,
- "points": 3396,
- "pois": 17008,
- "poise": 45087,
- "poised": 27354,
- "poison": 30722,
- "poison": 17074,
- "poisoned": 43624,
- "poisoning": 25750,
- "poisonous": 37131,
- "pok": 15387,
- "poke": 6892,
- "poke": 23186,
- "pokemon": 16239,
- "pokemon": 9528,
- "pokemongo": 23985,
- "poker": 30735,
- "poker": 11865,
- "pokes": 40221,
- "poking": 49169,
- "poké": 20656,
- "pokémon": 22066,
- "pol": 977,
- "pol": 7649,
- "pola": 43876,
- "poland": 9834,
- "polar": 21432,
- "polar": 12214,
- "polari": 27919,
- "polaris": 37965,
- "polarized": 48437,
- "polaro": 25237,
- "polaroid": 30427,
- "poldark": 41322,
- "pole": 26682,
- "pole": 8170,
- "poles": 22585,
- "poli": 9675,
- "poli": 5414,
- "polic": 16126,
- "police": 15535,
- "police": 2120,
- "policeman": 37713,
- "policemen": 47946,
- "polici": 10819,
- "policies": 10993,
- "policing": 20969,
- "policy": 30173,
- "policy": 4660,
- "polio": 30533,
- "polis": 16133,
- "polish": 46941,
- "polish": 9632,
- "polished": 21478,
- "polishing": 43629,
- "polit": 2247,
- "politan": 15337,
- "polite": 31497,
- "politi": 40597,
- "politic": 33333,
- "political": 37744,
- "political": 4197,
- "politically": 24323,
- "politician": 15960,
- "politicians": 12914,
- "politico": 39403,
- "politics": 4929,
- "polk": 33317,
- "polka": 29476,
- "poll": 7032,
- "pollen": 27651,
- "pollin": 19152,
- "pollinators": 36599,
- "polling": 18024,
- "pollo": 42755,
- "pollock": 37614,
- "polls": 11813,
- "pollu": 8370,
- "polluted": 43346,
- "pollution": 10384,
- "polly": 31204,
- "polo": 35928,
- "polo": 10229,
- "poly": 6833,
- "poly": 18367,
- "polye": 31730,
- "polyester": 38514,
- "polym": 23626,
- "polymer": 29993,
- "polyne": 38892,
- "polyvore": 24771,
- "pom": 7548,
- "pom": 24280,
- "pome": 27963,
- "pomegran": 29326,
- "pomegranate": 32415,
- "pomer": 35156,
- "pomona": 41690,
- "pompe": 18352,
- "pompeii": 47775,
- "pompeo": 34351,
- "pompey": 35079,
- "pon": 3809,
- "pon": 22391,
- "ponce": 43637,
- "pond": 10750,
- "ponder": 36863,
- "pondering": 47395,
- "ponds": 31033,
- "pone": 32183,
- "pong": 40546,
- "pong": 17710,
- "ponies": 34157,
- "pons": 41255,
- "pont": 47563,
- "pont": 22997,
- "ponte": 40892,
- "ponti": 15527,
- "pontiac": 25373,
- "pontifex": 33566,
- "ponty": 45152,
- "pony": 24438,
- "pony": 12678,
- "ponytail": 43265,
- "poo": 6601,
- "poo": 14389,
- "pooch": 37037,
- "poodle": 34961,
- "pooh": 27103,
- "pooja": 35676,
- "pool": 12484,
- "pool": 2831,
- "poole": 26290,
- "pools": 18736,
- "poolside": 35509,
- "poon": 33799,
- "poon": 36178,
- "poop": 23310,
- "poor": 14528,
- "poor": 3665,
- "poorest": 40771,
- "poorly": 21101,
- "pop": 6530,
- "pop": 2852,
- "popart": 47425,
- "popcorn": 15034,
- "pope": 16994,
- "pope": 9283,
- "popefrancis": 37254,
- "poplar": 38726,
- "popo": 38835,
- "popo": 35572,
- "popp": 13156,
- "popped": 14934,
- "poppies": 30385,
- "poppin": 28536,
- "popping": 18152,
- "poppins": 41216,
- "poppy": 32194,
- "poppy": 15447,
- "pops": 11705,
- "popsic": 38481,
- "popu": 3785,
- "popul": 6593,
- "popular": 15854,
- "popular": 4368,
- "popularity": 19235,
- "populated": 38420,
- "population": 8423,
- "populations": 23797,
- "populism": 48998,
- "populist": 49376,
- "popup": 33053,
- "por": 817,
- "por": 7697,
- "pora": 23537,
- "porcel": 19409,
- "porcelain": 20451,
- "porch": 17154,
- "pore": 28267,
- "pork": 40379,
- "pork": 7897,
- "poro": 48110,
- "porridge": 34924,
- "porsch": 48009,
- "porsche": 44049,
- "porsche": 8783,
- "port": 1641,
- "port": 1418,
- "porta": 45037,
- "portable": 11949,
- "portage": 32087,
- "portal": 14982,
- "porte": 28654,
- "ported": 16879,
- "porter": 28319,
- "porter": 10318,
- "porters": 15670,
- "portfoli": 45766,
- "portfolio": 11938,
- "porth": 37425,
- "porti": 45760,
- "porting": 26052,
- "portion": 13739,
- "portions": 22914,
- "portland": 38366,
- "portland": 8880,
- "portman": 34755,
- "porto": 24853,
- "porto": 18947,
- "portobello": 48025,
- "portra": 4175,
- "portrait": 39312,
- "portrait": 5352,
- "portraits": 14203,
- "portray": 46282,
- "portrayal": 39238,
- "portrayed": 36093,
- "ports": 7734,
- "portsm": 17063,
- "portsmouth": 19074,
- "portu": 7159,
- "portugal": 9503,
- "portugue": 17498,
- "portuguese": 18019,
- "pos": 1780,
- "pos": 11839,
- "pose": 25478,
- "pose": 4230,
- "posed": 5206,
- "posei": 47270,
- "poser": 46899,
- "poses": 9773,
- "posey": 34852,
- "posh": 26748,
- "posing": 10518,
- "posit": 28793,
- "positi": 7895,
- "position": 4657,
- "positioned": 34482,
- "positioning": 30657,
- "positions": 12188,
- "positive": 21811,
- "positive": 4844,
- "positively": 24688,
- "positivity": 19966,
- "poss": 39745,
- "posse": 17414,
- "posse": 28413,
- "possess": 36810,
- "possessed": 36220,
- "possession": 16154,
- "possessions": 40588,
- "possi": 2521,
- "possibilities": 17932,
- "possibility": 18517,
- "possible": 3134,
- "possibly": 8601,
- "possum": 38575,
- "post": 3489,
- "post": 1549,
- "postage": 27570,
- "postal": 21687,
- "postcard": 14785,
- "postcards": 23922,
- "postdoc": 41013,
- "posted": 4752,
- "poster": 22881,
- "poster": 3574,
- "posters": 9673,
- "postgame": 34873,
- "postgraduate": 31997,
- "posthum": 42410,
- "posting": 7559,
- "postman": 38285,
- "postpon": 23247,
- "postponed": 25097,
- "posts": 7824,
- "postseason": 24521,
- "posture": 29681,
- "posure": 35539,
- "pot": 3547,
- "pot": 5168,
- "potam": 45825,
- "potassi": 36889,
- "potassium": 37147,
- "potat": 5975,
- "potato": 8527,
- "potatoes": 11567,
- "potd": 28765,
- "pote": 41869,
- "poten": 4454,
- "potent": 26082,
- "potenti": 44104,
- "potential": 5100,
- "potentially": 16508,
- "potholes": 47506,
- "potion": 46055,
- "potom": 38848,
- "potomac": 43372,
- "pots": 19234,
- "pott": 28698,
- "potted": 48581,
- "potter": 24975,
- "potter": 9026,
- "pottery": 18396,
- "potts": 39839,
- "potty": 43569,
- "potus": 8740,
- "pou": 9423,
- "pouch": 26811,
- "poul": 22485,
- "poultry": 31005,
- "poun": 33719,
- "pound": 33809,
- "pound": 10674,
- "pounding": 46544,
- "pounds": 10752,
- "pour": 33112,
- "pour": 8180,
- "poured": 26621,
- "pouring": 16098,
- "pours": 26005,
- "pout": 39621,
- "poutine": 43768,
- "pov": 25731,
- "pover": 8432,
- "pover": 29464,
- "poverty": 9095,
- "pow": 1317,
- "pow": 17745,
- "powder": 32427,
- "powder": 9674,
- "powe": 36955,
- "powell": 13305,
- "power": 2789,
- "power": 1807,
- "powerball": 47803,
- "powered": 45442,
- "powered": 7332,
- "powerful": 4875,
- "powerhouse": 22858,
- "powering": 16231,
- "powerof": 31961,
- "powerpoint": 38940,
- "powerrangers": 40620,
- "powers": 9422,
- "pox": 43649,
- "poy": 34737,
- "poyn": 47655,
- "poz": 39953,
- "pp": 604,
- "pp": 4186,
- "ppa": 10416,
- "ppard": 23391,
- "ppc": 27778,
- "ppe": 24573,
- "ppe": 11867,
- "pped": 1873,
- "ppel": 46523,
- "ppen": 30663,
- "pper": 6719,
- "pper": 2440,
- "ppers": 5232,
- "ppery": 27833,
- "ppet": 20744,
- "ppets": 25849,
- "ppg": 27433,
- "ppi": 9594,
- "ppie": 33795,
- "ppin": 8076,
- "pping": 22214,
- "pping": 1682,
- "ppings": 35687,
- "ppl": 6758,
- "pple": 12302,
- "ppm": 42053,
- "ppo": 10215,
- "ppor": 37613,
- "ppp": 14017,
- "pps": 10683,
- "ppv": 38864,
- "ppy": 30360,
- "ppy": 3860,
- "pr": 766,
- "pr": 4150,
- "pra": 1865,
- "pra": 19285,
- "prab": 17901,
- "prabhas": 29959,
- "prabhu": 31529,
- "prac": 2243,
- "practi": 29995,
- "practic": 5495,
- "practical": 10792,
- "practically": 25588,
- "practice": 3349,
- "practiced": 36749,
- "practices": 9040,
- "practicing": 12750,
- "practise": 38938,
- "practising": 36478,
- "practiti": 19909,
- "practitioner": 32591,
- "practitioners": 29045,
- "prada": 29456,
- "pradesh": 15384,
- "prado": 44141,
- "prag": 31025,
- "prague": 14940,
- "prairi": 12629,
- "prairie": 14753,
- "praise": 10013,
- "praised": 27649,
- "praises": 23049,
- "praising": 36961,
- "prakash": 43708,
- "prakash": 25366,
- "pram": 47774,
- "pran": 20048,
- "prank": 23654,
- "pras": 41562,
- "prasad": 29562,
- "prat": 23069,
- "prati": 45773,
- "pratt": 37863,
- "pratt": 23396,
- "prawn": 33102,
- "prawns": 34903,
- "pray": 12671,
- "pray": 6041,
- "prayed": 34665,
- "prayer": 41452,
- "prayer": 6583,
- "prayers": 8393,
- "prayfor": 18443,
- "praying": 11550,
- "prays": 46602,
- "prc": 28781,
- "pre": 679,
- "pre": 2900,
- "preach": 22545,
- "preacher": 29357,
- "preaching": 23642,
- "precau": 36532,
- "precautions": 47845,
- "prece": 15361,
- "preci": 5470,
- "precin": 27908,
- "precinct": 32587,
- "precious": 8226,
- "precipit": 27463,
- "precipitation": 33399,
- "precise": 24457,
- "precisely": 34954,
- "precision": 44021,
- "precision": 15621,
- "pred": 40370,
- "predat": 13364,
- "predator": 20653,
- "predators": 25569,
- "prede": 38454,
- "predecess": 38963,
- "predic": 4876,
- "predict": 16900,
- "predictable": 25344,
- "predicted": 18702,
- "predicting": 30414,
- "prediction": 16296,
- "predictions": 15125,
- "predictive": 29798,
- "predicts": 25960,
- "preds": 40125,
- "pree": 47026,
- "preet": 30131,
- "prefe": 14542,
- "prefecture": 32890,
- "prefer": 33426,
- "prefer": 11450,
- "preference": 35057,
- "preferences": 38118,
- "preferred": 18772,
- "prefers": 38528,
- "pregame": 18575,
- "pregn": 7190,
- "pregnancy": 12769,
- "pregnant": 11195,
- "prehistoric": 32750,
- "prejudice": 28337,
- "preli": 15523,
- "prelimin": 19990,
- "preliminary": 20997,
- "prelims": 43223,
- "prelude": 42966,
- "prem": 32090,
- "prem": 21724,
- "premature": 39253,
- "premi": 2413,
- "premier": 16996,
- "premier": 5539,
- "premiere": 5367,
- "premiered": 27652,
- "premieres": 19907,
- "premiering": 32615,
- "premierleague": 22608,
- "premiers": 44883,
- "premiership": 23665,
- "premiosm": 38460,
- "premiosmtvmiaw": 38630,
- "premise": 45952,
- "premises": 27266,
- "premium": 8011,
- "pren": 20801,
- "preneur": 46288,
- "preorder": 16703,
- "preorders": 45985,
- "prep": 6430,
- "prep": 7277,
- "prepa": 26270,
- "prepaid": 42934,
- "prepar": 4968,
- "preparation": 11651,
- "preparations": 19135,
- "prepare": 7014,
- "prepared": 7677,
- "preparedness": 29492,
- "prepares": 16375,
- "preparing": 7365,
- "prepped": 34379,
- "prepping": 16459,
- "preps": 14765,
- "prequel": 40461,
- "pres": 1385,
- "pres": 8529,
- "presale": 27135,
- "presby": 30447,
- "presbyter": 33959,
- "presbyterian": 35370,
- "preschool": 24354,
- "prescott": 29392,
- "prescri": 14851,
- "prescribed": 36968,
- "prescription": 23061,
- "preseason": 13813,
- "presen": 16742,
- "presence": 8848,
- "present": 2344,
- "present": 2881,
- "presentation": 4594,
- "presentations": 16998,
- "presented": 4587,
- "presenter": 18587,
- "presenters": 32759,
- "presenting": 5339,
- "presents": 4215,
- "preserv": 17616,
- "preservation": 21074,
- "preserve": 15570,
- "preserved": 23161,
- "preserves": 44881,
- "preserving": 32315,
- "presi": 1697,
- "presiden": 43374,
- "presidency": 18077,
- "president": 19900,
- "president": 1940,
- "presidente": 47363,
- "presidenti": 48297,
- "presidential": 8503,
- "presidents": 16726,
- "presiding": 45298,
- "presley": 30013,
- "press": 4124,
- "press": 2124,
- "pressed": 20080,
- "presser": 27826,
- "presses": 33748,
- "pressing": 20893,
- "pressure": 6083,
- "pressures": 38487,
- "prest": 41840,
- "presti": 12245,
- "prestige": 29328,
- "prestigious": 15888,
- "presto": 42211,
- "preston": 37335,
- "preston": 15179,
- "presu": 21667,
- "presumably": 42562,
- "pret": 9652,
- "preten": 15871,
- "pretend": 18111,
- "pretending": 21306,
- "pretoria": 36080,
- "prett": 46667,
- "prettier": 31745,
- "prettiest": 22866,
- "pretty": 18286,
- "pretty": 2111,
- "pretz": 24890,
- "pretzel": 36707,
- "pretzels": 45468,
- "prev": 20274,
- "prevail": 31637,
- "prevalence": 41729,
- "prevalent": 46260,
- "preven": 29382,
- "prevent": 26436,
- "prevent": 7968,
- "preventable": 44250,
- "prevented": 35356,
- "preventing": 21756,
- "prevention": 9500,
- "preventive": 40949,
- "prevents": 31746,
- "preview": 4449,
- "previews": 20279,
- "previous": 9252,
- "previously": 13359,
- "prey": 17131,
- "prez": 17956,
- "pri": 955,
- "pri": 23400,
- "pric": 24275,
- "price": 13254,
- "price": 2827,
- "priced": 16934,
- "priceless": 15743,
- "prices": 5954,
- "pricing": 14800,
- "prick": 43921,
- "prick": 46516,
- "pride": 15323,
- "pride": 3436,
- "pridemonth": 41410,
- "prie": 22477,
- "priest": 38756,
- "priest": 14222,
- "priests": 30005,
- "prim": 22004,
- "prima": 35611,
- "prima": 33277,
- "primal": 36604,
- "primar": 21579,
- "primaries": 46126,
- "primarily": 29465,
- "primark": 48329,
- "primary": 35024,
- "primary": 5814,
- "primavera": 44899,
- "prime": 14162,
- "prime": 5183,
- "primed": 45694,
- "primer": 22388,
- "primetime": 29763,
- "primitive": 37467,
- "primo": 43215,
- "primrose": 45891,
- "prin": 1588,
- "prince": 9457,
- "prince": 4735,
- "princes": 45329,
- "princes": 30136,
- "princess": 24123,
- "princess": 5079,
- "princesses": 34161,
- "princeton": 22433,
- "princi": 5129,
- "principal": 33599,
- "principal": 8860,
- "principals": 27524,
- "principle": 19595,
- "principles": 13755,
- "print": 17851,
- "print": 3557,
- "printable": 29648,
- "printed": 7978,
- "printer": 14521,
- "printers": 27881,
- "printing": 7369,
- "printmaking": 38669,
- "prints": 7704,
- "prior": 20328,
- "prior": 10572,
- "priorit": 47773,
- "prioriti": 28822,
- "priorities": 15232,
- "prioritize": 46715,
- "priority": 12451,
- "priory": 38665,
- "prisc": 32468,
- "priscilla": 42396,
- "prise": 23343,
- "prism": 49311,
- "prism": 34356,
- "prison": 9281,
- "prison": 6622,
- "prisoner": 21427,
- "prisoners": 17460,
- "prisons": 26607,
- "pristine": 30618,
- "prit": 41668,
- "prit": 37523,
- "prith": 39173,
- "prius": 43561,
- "priv": 3270,
- "privacy": 10437,
- "private": 20362,
- "private": 4439,
- "privately": 32970,
- "privati": 27379,
- "privi": 8367,
- "privileg": 18015,
- "privilege": 11537,
- "privileged": 18166,
- "prix": 10875,
- "priya": 31275,
- "priyan": 16488,
- "priyanka": 31959,
- "priyankach": 30030,
- "priyankachopra": 30264,
- "prize": 48222,
- "prize": 4521,
- "prized": 38769,
- "prizes": 9268,
- "prk": 37094,
- "pro": 644,
- "pro": 2630,
- "proactive": 33364,
- "prob": 17706,
- "prob": 24007,
- "probab": 3907,
- "probability": 32637,
- "probable": 42444,
- "probably": 4047,
- "probation": 36531,
- "probe": 14359,
- "probes": 48564,
- "probiotics": 49395,
- "proble": 2719,
- "problem": 4324,
- "problematic": 33767,
- "problems": 4671,
- "probs": 16330,
- "probz": 34243,
- "proc": 38417,
- "proce": 4076,
- "procedu": 18204,
- "procedural": 48177,
- "procedure": 20163,
- "procedures": 21109,
- "proceed": 26664,
- "proceed": 33894,
- "proceedings": 26953,
- "proceeds": 11882,
- "process": 17291,
- "process": 4078,
- "processed": 23816,
- "processes": 15169,
- "processing": 11737,
- "procession": 26288,
- "processor": 22838,
- "processors": 43634,
- "proclaimed": 34489,
- "proclamation": 32065,
- "procra": 25361,
- "procrastin": 25586,
- "procrastination": 42825,
- "procreate": 39336,
- "proctor": 47204,
- "procu": 21001,
- "procurement": 23733,
- "prod": 44349,
- "prod": 11991,
- "prodi": 27759,
- "prodigy": 31973,
- "produ": 27852,
- "produc": 1471,
- "produce": 7529,
- "produced": 7479,
- "producer": 7064,
- "producers": 13883,
- "produces": 19940,
- "producing": 13579,
- "product": 32602,
- "product": 4306,
- "production": 4146,
- "productions": 14166,
- "productive": 9697,
- "productivity": 12800,
- "products": 3964,
- "prof": 15043,
- "prof": 5488,
- "profe": 2611,
- "profess": 5486,
- "professi": 3705,
- "profession": 8104,
- "profession": 19671,
- "professional": 46007,
- "professional": 4774,
- "professionalism": 41252,
- "professionally": 33892,
- "professionals": 10165,
- "professor": 47302,
- "professor": 6092,
- "professors": 27758,
- "profici": 34685,
- "profile": 14291,
- "profile": 6444,
- "profiles": 22070,
- "profiling": 37123,
- "profit": 16941,
- "profit": 7909,
- "profitable": 25465,
- "profits": 13410,
- "profound": 48245,
- "profound": 22998,
- "profs": 19260,
- "prog": 22219,
- "progno": 46070,
- "program": 4162,
- "program": 2737,
- "programme": 6322,
- "programmer": 37001,
- "programmes": 20468,
- "programming": 10831,
- "programs": 7345,
- "progre": 7069,
- "progress": 4421,
- "progressi": 23297,
- "progressing": 32346,
- "progression": 24772,
- "progressive": 12208,
- "progressives": 41709,
- "prohi": 41124,
- "prohib": 45040,
- "prohibition": 34440,
- "proj": 39156,
- "proje": 48345,
- "projec": 1610,
- "project": 15911,
- "project": 1965,
- "projected": 22873,
- "projection": 22384,
- "projections": 34638,
- "projector": 27816,
- "projects": 5090,
- "proli": 19710,
- "prolife": 32126,
- "prolifer": 39018,
- "prolific": 27839,
- "prolly": 45968,
- "prolon": 35379,
- "prolonged": 41972,
- "prom": 40363,
- "prom": 7944,
- "prome": 34355,
- "promen": 33578,
- "promenade": 35522,
- "promethe": 44183,
- "promin": 35217,
- "prominent": 19172,
- "promis": 3963,
- "promise": 6745,
- "promised": 11516,
- "promises": 12064,
- "promising": 14183,
- "promo": 3037,
- "promo": 6755,
- "promos": 35044,
- "promote": 47384,
- "promote": 8003,
- "promoted": 16395,
- "promoter": 33081,
- "promotes": 20169,
- "promoting": 9695,
- "promotion": 9259,
- "promotional": 17619,
- "promotions": 19142,
- "promp": 11671,
- "prompt": 20198,
- "prompted": 45746,
- "prompts": 33490,
- "proms": 37759,
- "pron": 13285,
- "prone": 30964,
- "pronoun": 23022,
- "pronounce": 40489,
- "pronounced": 34109,
- "pronto": 44296,
- "proof": 17020,
- "proof": 5248,
- "proofing": 35679,
- "proofs": 41023,
- "prop": 19123,
- "prop": 16254,
- "propag": 12151,
- "propaganda": 14718,
- "propane": 45546,
- "propel": 48439,
- "propeller": 47404,
- "proper": 3577,
- "proper": 8205,
- "properly": 12560,
- "properties": 10922,
- "property": 26486,
- "property": 5043,
- "prophe": 9662,
- "prophecy": 32501,
- "prophet": 15549,
- "prophetic": 47476,
- "prophets": 39441,
- "propor": 35016,
- "proportion": 35775,
- "proportions": 39391,
- "propos": 9455,
- "proposal": 12139,
- "proposals": 20568,
- "propose": 28471,
- "proposed": 10615,
- "proposes": 27133,
- "proposing": 42631,
- "proposition": 44780,
- "propri": 28243,
- "props": 15249,
- "propulsion": 49380,
- "pros": 33925,
- "pros": 14147,
- "prosciutto": 46565,
- "prose": 47063,
- "prose": 28675,
- "prosecco": 28839,
- "prosecu": 12136,
- "prosecution": 30902,
- "prosecutor": 23736,
- "prosecutors": 31656,
- "prosp": 24242,
- "prospec": 12693,
- "prospect": 11211,
- "prospective": 28034,
- "prospects": 15372,
- "prosper": 16121,
- "prosper": 33526,
- "prosperity": 17203,
- "prosperous": 28252,
- "prost": 47923,
- "prostate": 28808,
- "prostatec": 49064,
- "prosthetic": 44602,
- "prostitu": 37333,
- "protag": 28950,
- "protagonist": 38183,
- "prote": 1845,
- "protec": 5640,
- "protect": 25563,
- "protect": 4817,
- "protected": 12266,
- "protecting": 11710,
- "protection": 6238,
- "protections": 33772,
- "protective": 17028,
- "protector": 20441,
- "protectors": 45039,
- "protects": 21889,
- "protein": 8088,
- "proteins": 28661,
- "protest": 6279,
- "protestant": 46945,
- "protested": 48089,
- "protester": 42073,
- "protesters": 12660,
- "protesting": 18788,
- "protestors": 27822,
- "protests": 12450,
- "proto": 8672,
- "proto": 44958,
- "protocol": 19938,
- "protocols": 39631,
- "proton": 40009,
- "prototype": 16675,
- "prototyping": 42081,
- "prou": 5739,
- "proud": 11080,
- "proud": 1679,
- "prouder": 39585,
- "proudest": 46806,
- "proudly": 11203,
- "proudof": 48184,
- "proudtobe": 35043,
- "prov": 23772,
- "prov": 35021,
- "prove": 10107,
- "proved": 16473,
- "proven": 35405,
- "proven": 14569,
- "provence": 28067,
- "prover": 18312,
- "proverb": 34419,
- "proverbs": 27016,
- "proves": 16119,
- "provi": 2289,
- "provide": 4832,
- "provided": 9046,
- "providence": 19331,
- "provider": 14409,
- "providers": 17120,
- "provides": 7161,
- "providing": 7250,
- "provin": 12074,
- "province": 8978,
- "provinces": 35050,
- "provincial": 16002,
- "proving": 18055,
- "provision": 30148,
- "provisional": 36008,
- "provisions": 39269,
- "provo": 15367,
- "provoc": 31618,
- "provocative": 43809,
- "provoking": 25510,
- "provost": 36627,
- "prow": 38737,
- "prowrestling": 39825,
- "prox": 41616,
- "proxim": 31436,
- "proximity": 38298,
- "proxy": 31680,
- "prs": 23879,
- "pru": 12961,
- "pruitt": 39453,
- "prun": 29029,
- "pruning": 48133,
- "pry": 31965,
- "pryor": 43375,
- "ps": 3982,
- "ps": 814,
- "psa": 14031,
- "psal": 13859,
- "psalm": 17995,
- "psalms": 35003,
- "psb": 37017,
- "psc": 43118,
- "psd": 28810,
- "pse": 19737,
- "pse": 5423,
- "pseu": 24919,
- "pseudo": 46618,
- "psg": 17123,
- "psi": 45848,
- "psi": 24533,
- "psic": 29299,
- "psis": 33041,
- "psl": 21373,
- "psn": 36781,
- "pso": 27045,
- "pson": 7487,
- "psori": 44688,
- "psp": 32769,
- "pss": 35718,
- "pss": 42535,
- "psst": 47814,
- "pst": 12692,
- "psu": 41286,
- "psu": 28338,
- "psv": 44530,
- "psy": 3576,
- "psy": 11056,
- "psych": 31041,
- "psych": 20509,
- "psyched": 19932,
- "psyched": 35199,
- "psychedelic": 23292,
- "psychi": 18147,
- "psychiatric": 30578,
- "psychiatry": 39706,
- "psychic": 24916,
- "psycho": 6472,
- "psycho": 22154,
- "psychological": 18153,
- "psychologist": 32827,
- "psychology": 12352,
- "psychop": 30112,
- "psychotic": 48774,
- "pt": 11139,
- "pt": 1459,
- "pta": 11586,
- "ptbo": 40481,
- "ptc": 44646,
- "pte": 47804,
- "pter": 49323,
- "pti": 29375,
- "pti": 10491,
- "ptic": 20670,
- "ption": 3479,
- "ptions": 24963,
- "pto": 31372,
- "pto": 34092,
- "pton": 19780,
- "pts": 5886,
- "ptsd": 23973,
- "ptv": 42402,
- "pu": 755,
- "pu": 11780,
- "pub": 20720,
- "pub": 6301,
- "puberty": 44122,
- "pubg": 31496,
- "publ": 3434,
- "publi": 1617,
- "public": 3592,
- "public": 2122,
- "publica": 49007,
- "publication": 13538,
- "publications": 27334,
- "publichealth": 35872,
- "publicity": 20831,
- "publicly": 18554,
- "publish": 19032,
- "published": 4311,
- "publisher": 20455,
- "publishers": 25222,
- "publishes": 35633,
- "publishing": 10994,
- "publix": 47985,
- "pubs": 21099,
- "puc": 48779,
- "puck": 17550,
- "pud": 39234,
- "pudding": 14025,
- "puddle": 33545,
- "pue": 20161,
- "pueblo": 33076,
- "puer": 8968,
- "puerto": 12289,
- "puertor": 22757,
- "puertorico": 26356,
- "puff": 44477,
- "puff": 17184,
- "puffin": 47632,
- "puffs": 47453,
- "puffy": 49245,
- "pug": 20950,
- "pug": 17739,
- "pugchat": 42266,
- "pugh": 41302,
- "puglia": 38345,
- "pugs": 39425,
- "puj": 46163,
- "puja": 33753,
- "puk": 31811,
- "pul": 2469,
- "pul": 40512,
- "pula": 45856,
- "puli": 47293,
- "pulit": 27745,
- "pulitzer": 31419,
- "pull": 20155,
- "pull": 6857,
- "pulled": 8525,
- "pulling": 12897,
- "pullman": 40203,
- "pullover": 44020,
- "pulls": 16041,
- "pulmon": 32613,
- "pulmonary": 39132,
- "pulp": 25410,
- "pulse": 40091,
- "pulse": 12485,
- "pulses": 42177,
- "pulsion": 35398,
- "pum": 37497,
- "puma": 20858,
- "pump": 5179,
- "pump": 9173,
- "pumped": 12796,
- "pumping": 25150,
- "pumpkin": 36386,
- "pumpkin": 8842,
- "pumpkins": 23787,
- "pumps": 18540,
- "pun": 2707,
- "pun": 19929,
- "punc": 43907,
- "punch": 29332,
- "punch": 10730,
- "punched": 31689,
- "punches": 35279,
- "punching": 33468,
- "punctu": 31565,
- "punctuation": 47051,
- "pundit": 41466,
- "pune": 32593,
- "pune": 14488,
- "pung": 45420,
- "puni": 11479,
- "punish": 34569,
- "punished": 31598,
- "punisher": 38509,
- "punishment": 19099,
- "punjab": 19405,
- "punjab": 12883,
- "punjabi": 25430,
- "punk": 28933,
- "punk": 7246,
- "punks": 47171,
- "puns": 35231,
- "punt": 32699,
- "punta": 34112,
- "punter": 47092,
- "pup": 11926,
- "pup": 11302,
- "pupil": 27265,
- "pupils": 13628,
- "pupp": 7116,
- "puppet": 18439,
- "puppets": 28475,
- "puppies": 14820,
- "puppy": 25431,
- "puppy": 6829,
- "puppylove": 40849,
- "pups": 20778,
- "pur": 1727,
- "pur": 6265,
- "pura": 25596,
- "puram": 46174,
- "purcell": 46065,
- "purch": 8384,
- "purchase": 5481,
- "purchased": 13399,
- "purchases": 21887,
- "purchasing": 20718,
- "purdu": 40691,
- "purdue": 22280,
- "pure": 14202,
- "pure": 5979,
- "puree": 45474,
- "purely": 32459,
- "puremichigan": 39783,
- "purest": 45497,
- "purge": 33514,
- "puri": 16910,
- "puri": 21974,
- "purification": 47724,
- "purity": 29780,
- "purple": 17837,
- "purple": 5496,
- "purpose": 33492,
- "purpose": 7391,
- "purposes": 22020,
- "purr": 49262,
- "purr": 46343,
- "purse": 16480,
- "pursue": 19463,
- "pursuing": 26424,
- "pursuit": 16469,
- "purée": 40981,
- "pus": 13841,
- "pusa": 40825,
- "push": 16028,
- "push": 6831,
- "pushaw": 35407,
- "pushaward": 35448,
- "pushawards": 47184,
- "pushed": 16155,
- "pushes": 23828,
- "pushing": 11549,
- "put": 29535,
- "put": 1983,
- "putin": 10693,
- "putnam": 40235,
- "puts": 7898,
- "putt": 30279,
- "putter": 44723,
- "putting": 5154,
- "puzz": 19760,
- "puzzle": 12875,
- "puzzles": 27986,
- "pv": 14517,
- "pv": 13495,
- "pvc": 26959,
- "pvp": 44172,
- "pvt": 29898,
- "pw": 19419,
- "pw": 16067,
- "pwc": 22965,
- "px": 24790,
- "px": 10262,
- "pxrtg": 36262,
- "py": 4005,
- "py": 7504,
- "pye": 31099,
- "pyeongchang": 36066,
- "pyg": 41450,
- "pyram": 14405,
- "pyramid": 18725,
- "pyramids": 36877,
- "pyrene": 36740,
- "pyrenees": 39744,
- "pyro": 39762,
- "python": 13370,
- "pz": 48361,
- "pé": 43167,
- "q": 80,
- "q": 336,
- "qa": 24944,
- "qa": 16360,
- "qad": 27844,
- "qadri": 35672,
- "qaeda": 31246,
- "qanda": 48672,
- "qanon": 19182,
- "qant": 35404,
- "qantas": 43250,
- "qatar": 32804,
- "qatar": 10872,
- "qb": 8073,
- "qbs": 38188,
- "qc": 17406,
- "qe": 30974,
- "qf": 27215,
- "qi": 25054,
- "qi": 11256,
- "qing": 46522,
- "qing": 34339,
- "ql": 28366,
- "qld": 23039,
- "qld": 13765,
- "qldpol": 42296,
- "qm": 42148,
- "qotd": 24504,
- "qpr": 24788,
- "qq": 31960,
- "qr": 18193,
- "qs": 14364,
- "qt": 15013,
- "qtr": 44803,
- "qu": 666,
- "qu": 28646,
- "qua": 20363,
- "quack": 45575,
- "quad": 11656,
- "quad": 13419,
- "quadcopter": 39792,
- "quadru": 35831,
- "quaid": 34265,
- "quail": 34392,
- "quaint": 45976,
- "quake": 8421,
- "quaker": 43395,
- "quakes": 24572,
- "qual": 9979,
- "qual": 32405,
- "qualcomm": 38683,
- "quali": 4574,
- "qualification": 21508,
- "qualifications": 35225,
- "qualified": 11927,
- "qualifier": 18733,
- "qualifiers": 21388,
- "qualifies": 35820,
- "qualify": 17019,
- "qualifying": 11895,
- "qualitative": 45847,
- "qualities": 20488,
- "quality": 28545,
- "quality": 3027,
- "quan": 11669,
- "quan": 27490,
- "quand": 28198,
- "quant": 15050,
- "quanti": 31540,
- "quantitative": 40583,
- "quantities": 33917,
- "quantity": 26920,
- "quantum": 15320,
- "quar": 3856,
- "quare": 42549,
- "quarry": 27601,
- "quart": 7851,
- "quarter": 8816,
- "quarter": 6632,
- "quarterback": 16545,
- "quarterfinal": 37992,
- "quarterfinals": 28971,
- "quarterly": 23350,
- "quarters": 10146,
- "quartet": 18056,
- "quartz": 17752,
- "quat": 25715,
- "quattro": 40300,
- "quay": 40276,
- "quay": 17304,
- "que": 1147,
- "que": 2319,
- "quebec": 15373,
- "queen": 6407,
- "queen": 2997,
- "queenof": 44398,
- "queens": 22943,
- "queens": 9330,
- "queensland": 15168,
- "queer": 38874,
- "queer": 18161,
- "quel": 39774,
- "quel": 21879,
- "quen": 23876,
- "quen": 38324,
- "quent": 23808,
- "quentin": 27530,
- "quer": 17378,
- "quer": 26859,
- "quered": 23210,
- "queries": 32958,
- "querque": 30338,
- "query": 27464,
- "ques": 25328,
- "ques": 7715,
- "queso": 40110,
- "quest": 31653,
- "quest": 4846,
- "questi": 2391,
- "question": 18961,
- "question": 4382,
- "questionable": 30733,
- "questioned": 31847,
- "questioning": 24887,
- "questions": 3883,
- "quests": 44611,
- "quet": 8513,
- "quets": 39055,
- "quetta": 38326,
- "quette": 18993,
- "queu": 32705,
- "queue": 18549,
- "queues": 40649,
- "queuing": 44082,
- "quez": 18677,
- "quezon": 41117,
- "qui": 1912,
- "qui": 18046,
- "quic": 26474,
- "quiche": 47723,
- "quick": 5969,
- "quick": 3712,
- "quicker": 29211,
- "quickest": 37734,
- "quickly": 7787,
- "quid": 30732,
- "quie": 43875,
- "quien": 43482,
- "quiere": 42723,
- "quiero": 32567,
- "quiet": 17853,
- "quiet": 7557,
- "quietly": 22208,
- "quig": 44690,
- "quil": 12305,
- "quill": 48951,
- "quilt": 23977,
- "quilted": 46052,
- "quin": 8607,
- "quin": 17167,
- "quincy": 27640,
- "quind": 32339,
- "quinn": 12306,
- "quinoa": 26703,
- "quins": 39701,
- "quint": 26898,
- "quinta": 47446,
- "quinte": 22098,
- "quintess": 37538,
- "quintet": 35125,
- "quipment": 42813,
- "quir": 15943,
- "quirky": 25044,
- "quis": 15064,
- "quist": 25128,
- "quit": 19358,
- "quit": 11140,
- "quite": 4135,
- "quito": 35828,
- "quits": 32505,
- "quitting": 33871,
- "quity": 33133,
- "quiz": 31197,
- "quiz": 8344,
- "quizz": 35041,
- "quo": 3046,
- "quo": 28127,
- "quoi": 45549,
- "quot": 5452,
- "quot": 47587,
- "quota": 42097,
- "quotation": 49195,
- "quote": 15446,
- "quote": 4020,
- "quoted": 27706,
- "quoteoftheday": 19975,
- "quotes": 5808,
- "quoting": 31651,
- "qur": 37782,
- "quran": 19690,
- "qureshi": 46307,
- "qvist": 42322,
- "qx": 45038,
- "r": 81,
- "r": 337,
- "ra": 559,
- "ra": 1735,
- "raa": 44344,
- "rab": 14816,
- "rab": 33224,
- "rabb": 6875,
- "rabbi": 20959,
- "rabbit": 10274,
- "rabbits": 27028,
- "rabhu": 25806,
- "rable": 10182,
- "rac": 1773,
- "rac": 30462,
- "raccoon": 29516,
- "race": 10978,
- "race": 2471,
- "racec": 18814,
- "racecourse": 25036,
- "raced": 36021,
- "racer": 16798,
- "racers": 33603,
- "races": 8605,
- "raceway": 24650,
- "rach": 6876,
- "rach": 33429,
- "racha": 21952,
- "racha": 35022,
- "rachael": 29095,
- "rachel": 13511,
- "rachel": 8029,
- "raci": 33381,
- "racial": 13801,
- "racially": 43577,
- "racing": 23306,
- "racing": 3699,
- "racism": 11276,
- "racist": 9684,
- "racists": 41777,
- "rack": 24600,
- "rack": 12034,
- "racket": 37691,
- "racks": 21191,
- "rad": 4473,
- "rad": 8238,
- "rada": 30437,
- "radar": 9672,
- "radcliffe": 33096,
- "rade": 44494,
- "rade": 17911,
- "rader": 45002,
- "radford": 45800,
- "radha": 43122,
- "radi": 5772,
- "radial": 42028,
- "radiance": 45670,
- "radiant": 25614,
- "radiation": 18210,
- "radiator": 39372,
- "radic": 18082,
- "radical": 13712,
- "radicals": 45903,
- "radio": 7176,
- "radio": 2638,
- "radioactive": 34704,
- "radiodisney": 36483,
- "radiohead": 39472,
- "radiology": 29684,
- "radios": 43669,
- "radish": 37789,
- "radius": 37570,
- "rado": 29784,
- "rae": 21646,
- "rae": 15051,
- "rael": 45390,
- "raer": 44561,
- "raf": 11495,
- "raf": 11490,
- "rafa": 14352,
- "rafa": 24850,
- "rafael": 38221,
- "rafael": 19216,
- "rafaelnadal": 49219,
- "raff": 34900,
- "raffic": 32928,
- "raffle": 13752,
- "raffles": 43489,
- "rafi": 35304,
- "raft": 9233,
- "rafting": 36309,
- "rag": 13958,
- "rag": 20687,
- "rage": 8593,
- "rages": 34253,
- "ragh": 35642,
- "ragha": 40972,
- "raging": 25015,
- "ragn": 24125,
- "ragnar": 34385,
- "ragnarok": 41856,
- "ragon": 34768,
- "rags": 47838,
- "rah": 12277,
- "rah": 8766,
- "raheem": 43317,
- "rahim": 24152,
- "rahman": 19680,
- "rahu": 13129,
- "rahul": 37239,
- "rahul": 17440,
- "rahulg": 27510,
- "rahulgandhi": 28293,
- "rai": 9165,
- "rai": 9638,
- "raid": 6877,
- "raided": 43417,
- "raider": 27368,
- "raider": 21455,
- "raidernation": 47901,
- "raiders": 11817,
- "raids": 26655,
- "rail": 4573,
- "rail": 6879,
- "raila": 47273,
- "railminindia": 35557,
- "railroad": 17080,
- "rails": 23427,
- "railway": 27614,
- "railway": 7856,
- "railwayana": 46750,
- "railways": 20765,
- "raim": 45785,
- "rain": 3128,
- "rain": 2443,
- "raina": 30564,
- "rainbow": 24562,
- "rainbow": 6286,
- "rainbows": 30483,
- "raine": 49038,
- "raine": 6871,
- "rained": 32310,
- "rainf": 15024,
- "rainfall": 15350,
- "rainforest": 22823,
- "rainier": 37850,
- "raining": 13964,
- "rains": 14272,
- "rainy": 10222,
- "rais": 14729,
- "raise": 24249,
- "raise": 5078,
- "raised": 6027,
- "raiser": 33555,
- "raises": 13297,
- "raisethe": 47109,
- "raisin": 36864,
- "raising": 6883,
- "raj": 5958,
- "raj": 10813,
- "raja": 46069,
- "raja": 19150,
- "rajan": 46595,
- "rajas": 16185,
- "rajasthan": 18017,
- "raje": 21899,
- "rajesh": 43602,
- "raji": 27569,
- "rajini": 29600,
- "rajini": 40622,
- "rajinikanth": 32922,
- "rajiv": 40197,
- "rajkumar": 49304,
- "rajput": 47572,
- "raju": 47029,
- "rak": 13523,
- "rak": 26287,
- "rake": 26825,
- "rake": 32712,
- "rakesh": 41083,
- "ral": 8062,
- "ral": 1406,
- "rale": 14192,
- "raleigh": 18207,
- "rall": 23249,
- "rallies": 25230,
- "rally": 18882,
- "rally": 5041,
- "rallying": 36836,
- "ralph": 25290,
- "ralph": 12234,
- "ram": 1976,
- "ram": 2007,
- "rama": 22112,
- "ramad": 12736,
- "ramadan": 15547,
- "ramadhan": 47415,
- "raman": 39816,
- "ramapho": 43963,
- "ramaphosa": 44993,
- "ramatta": 49112,
- "rambo": 41855,
- "ramcharan": 45275,
- "rame": 47745,
- "ramen": 18892,
- "ramesh": 48640,
- "ramesh": 40186,
- "rami": 43016,
- "ramirez": 23877,
- "ramon": 27958,
- "ramone": 47201,
- "ramos": 21046,
- "ramp": 14271,
- "rampage": 32077,
- "rampant": 41985,
- "ramps": 35257,
- "rams": 10292,
- "ramsay": 26259,
- "ramsey": 19215,
- "ran": 1433,
- "ran": 4031,
- "rana": 22143,
- "ranbir": 40881,
- "rance": 29034,
- "ranch": 43955,
- "ranch": 10659,
- "rancho": 26258,
- "rand": 5628,
- "rand": 18718,
- "randall": 23639,
- "rande": 21469,
- "randolph": 29899,
- "random": 11396,
- "random": 6160,
- "randomly": 17272,
- "rands": 39153,
- "randy": 29479,
- "randy": 13279,
- "rane": 28852,
- "rang": 4043,
- "rang": 24377,
- "range": 13627,
- "range": 3818,
- "ranger": 31472,
- "ranger": 13593,
- "rangers": 7664,
- "ranges": 25685,
- "ranging": 25946,
- "rani": 29264,
- "rani": 22631,
- "rank": 11501,
- "ranked": 8307,
- "rankin": 37539,
- "ranking": 12347,
- "rankings": 12596,
- "ranks": 14469,
- "rano": 18608,
- "rans": 46259,
- "ransom": 28523,
- "ransom": 34646,
- "ransomware": 33815,
- "rant": 46467,
- "rant": 9819,
- "rants": 34014,
- "ranveer": 32402,
- "ranveer": 41482,
- "ranveerofficial": 42116,
- "rao": 16913,
- "rap": 7773,
- "rap": 7348,
- "rape": 46099,
- "rape": 10070,
- "raped": 23700,
- "rapha": 22754,
- "raphael": 30091,
- "rapi": 8610,
- "rapid": 47697,
- "rapid": 12205,
- "rapidly": 16710,
- "rapids": 18848,
- "raping": 44926,
- "rapist": 33360,
- "rapp": 19283,
- "rapper": 11860,
- "rappers": 30315,
- "rapping": 42864,
- "raps": 37887,
- "raptor": 26762,
- "raptors": 17035,
- "raq": 39787,
- "raq": 43312,
- "raqqa": 47074,
- "raquel": 44338,
- "rar": 26819,
- "rar": 24605,
- "rard": 21012,
- "rare": 18992,
- "rare": 3865,
- "rarely": 17315,
- "rarest": 43237,
- "rarity": 45862,
- "ras": 23492,
- "ras": 8224,
- "rasc": 30085,
- "rascal": 43481,
- "rash": 14917,
- "rash": 30608,
- "rashad": 46527,
- "rasheed": 41638,
- "rashi": 19426,
- "rashid": 26757,
- "rasp": 10487,
- "raspberries": 37742,
- "raspberry": 40162,
- "raspberry": 13615,
- "raspberrypi": 43934,
- "rass": 45654,
- "rasta": 47002,
- "rat": 3806,
- "rat": 8985,
- "rata": 28568,
- "ratchet": 25078,
- "rate": 5068,
- "rated": 8183,
- "rates": 6864,
- "rath": 18268,
- "rath": 39772,
- "rather": 5252,
- "rati": 11486,
- "rating": 10567,
- "ratings": 14176,
- "ratio": 15893,
- "ration": 27002,
- "ration": 35662,
- "rational": 33086,
- "ratna": 49078,
- "ratri": 32288,
- "rats": 19043,
- "ratt": 20737,
- "ratt": 34785,
- "rattle": 40824,
- "rattle": 41839,
- "rau": 27744,
- "raul": 30218,
- "raun": 41169,
- "rav": 14367,
- "rav": 23606,
- "rave": 38784,
- "rave": 17601,
- "ravel": 27927,
- "raven": 10269,
- "raven": 16803,
- "ravens": 17946,
- "ravi": 22947,
- "ravi": 19538,
- "ravin": 39099,
- "raving": 45807,
- "raviol": 41104,
- "ravioli": 43460,
- "raw": 10166,
- "raw": 6323,
- "rawlings": 40662,
- "rax": 38520,
- "ray": 5312,
- "ray": 3077,
- "raya": 29991,
- "raymond": 16683,
- "rayn": 47852,
- "rayon": 47900,
- "rays": 11064,
- "raz": 9700,
- "raz": 19087,
- "raza": 37724,
- "razer": 33832,
- "razor": 24934,
- "razor": 21300,
- "razz": 43769,
- "rb": 12740,
- "rb": 7477,
- "rbc": 37500,
- "rbi": 15687,
- "rbs": 29102,
- "rc": 7575,
- "rc": 7457,
- "rca": 33942,
- "rcb": 45240,
- "rcmp": 31489,
- "rcn": 49370,
- "rctid": 49223,
- "rd": 13501,
- "rd": 1973,
- "rda": 45755,
- "rdr": 44364,
- "rds": 32378,
- "re": 515,
- "re": 810,
- "rea": 11521,
- "reach": 4483,
- "reach": 4279,
- "reached": 6878,
- "reaches": 14462,
- "reaching": 11358,
- "react": 36566,
- "react": 15065,
- "reacted": 42515,
- "reacting": 40595,
- "reaction": 7189,
- "reactions": 18438,
- "reactive": 42072,
- "reactjs": 46173,
- "reactor": 32037,
- "reacts": 23115,
- "read": 933,
- "read": 1199,
- "reader": 9884,
- "readers": 10335,
- "readiness": 28131,
- "reading": 17556,
- "reading": 2337,
- "readingfc": 47428,
- "readings": 23361,
- "reads": 6597,
- "ready": 17351,
- "ready": 1112,
- "reagan": 17767,
- "real": 2017,
- "real": 1532,
- "realdonaldtrump": 7025,
- "reale": 5930,
- "realest": 45855,
- "realestate": 32937,
- "realestate": 6569,
- "reali": 4185,
- "realis": 38114,
- "realise": 14773,
- "realised": 17945,
- "realising": 39537,
- "realism": 20024,
- "realist": 30248,
- "realistic": 16157,
- "realities": 32443,
- "reality": 46802,
- "reality": 5004,
- "realization": 40402,
- "realize": 7538,
- "realized": 10489,
- "realizes": 42918,
- "realizing": 23284,
- "reall": 39686,
- "really": 43249,
- "really": 1414,
- "realm": 23083,
- "realmadrid": 27866,
- "realms": 43033,
- "realness": 46761,
- "realtime": 44002,
- "realtime": 38203,
- "realtor": 18038,
- "realtors": 31759,
- "realty": 20471,
- "ream": 37242,
- "ream": 15219,
- "rean": 48477,
- "reap": 31334,
- "reaper": 29922,
- "rear": 39652,
- "rear": 10223,
- "reas": 9121,
- "reason": 12882,
- "reason": 3893,
- "reasonable": 18558,
- "reasonably": 38589,
- "reasoning": 30341,
- "reasons": 5686,
- "reau": 32398,
- "reb": 12370,
- "reb": 18796,
- "reba": 48543,
- "rebate": 43817,
- "rebe": 25227,
- "rebec": 10774,
- "rebecca": 12892,
- "rebel": 8185,
- "rebel": 12248,
- "rebellion": 22170,
- "rebels": 13623,
- "rebirth": 33303,
- "reboot": 22385,
- "reborn": 30229,
- "reboun": 43381,
- "rebound": 31280,
- "rebounds": 19190,
- "rebs": 28164,
- "rebu": 43162,
- "rebuild": 20022,
- "rebuilding": 30880,
- "rebuilt": 33137,
- "rec": 1020,
- "rec": 11243,
- "recall": 15151,
- "recalled": 32142,
- "recalling": 47855,
- "recalls": 24740,
- "recap": 29816,
- "recap": 8337,
- "recaps": 47997,
- "recard": 35536,
- "rece": 1890,
- "recei": 2148,
- "receip": 38503,
- "receipt": 30479,
- "receipts": 41181,
- "receive": 4800,
- "received": 4178,
- "receiver": 17659,
- "receivers": 45294,
- "receives": 10027,
- "receiving": 7252,
- "recent": 3969,
- "recently": 4482,
- "recep": 17450,
- "reception": 8364,
- "receptions": 46881,
- "receptor": 41835,
- "recess": 38182,
- "recession": 27176,
- "recharge": 29396,
- "rechargeable": 37516,
- "reci": 2037,
- "recipe": 28923,
- "recipe": 4614,
- "recipeoftheday": 38727,
- "recipes": 9243,
- "recipi": 10136,
- "recipient": 13703,
- "recipients": 18940,
- "recipro": 41789,
- "recital": 23457,
- "recite": 48824,
- "reck": 11715,
- "reckless": 26284,
- "reckon": 23854,
- "recl": 42277,
- "reclaim": 35969,
- "reclaimed": 32648,
- "reco": 2535,
- "reco": 46038,
- "recogn": 6343,
- "recogni": 5329,
- "recognise": 19824,
- "recognised": 20986,
- "recognising": 48423,
- "recognition": 9415,
- "recognizable": 47240,
- "recognize": 10905,
- "recognized": 9929,
- "recognizes": 26909,
- "recognizing": 19666,
- "recomm": 4540,
- "recommend": 11628,
- "recommend": 8942,
- "recommendation": 20118,
- "recommendations": 16516,
- "recommended": 11100,
- "recommending": 44301,
- "recommends": 22940,
- "recon": 15371,
- "recon": 28996,
- "reconciliation": 26451,
- "reconstruction": 24955,
- "recor": 1723,
- "record": 21328,
- "record": 2717,
- "recorded": 9392,
- "recorder": 26747,
- "recording": 48237,
- "recording": 6942,
- "recordings": 19715,
- "records": 4529,
- "recover": 16785,
- "recovered": 16444,
- "recovering": 19005,
- "recovers": 47935,
- "recovery": 6591,
- "recre": 22148,
- "recreate": 29775,
- "recreated": 40888,
- "recreating": 48224,
- "recreation": 17331,
- "recreational": 24329,
- "recru": 4745,
- "recruit": 9011,
- "recruit": 15585,
- "recruited": 36518,
- "recruiter": 43120,
- "recruiters": 46542,
- "recruiting": 10533,
- "recruitment": 10541,
- "recruits": 22647,
- "recs": 33069,
- "rectan": 43041,
- "rectangular": 43321,
- "rector": 41585,
- "recu": 26798,
- "recur": 19983,
- "recurring": 35912,
- "recy": 6790,
- "recycla": 40659,
- "recyclable": 48907,
- "recycle": 19366,
- "recycled": 16829,
- "recycling": 12566,
- "red": 1893,
- "red": 736,
- "redbubble": 46137,
- "redbull": 29483,
- "redbull": 29219,
- "redcarpet": 32259,
- "redcross": 30659,
- "redd": 22149,
- "redd": 40618,
- "redding": 41061,
- "reddish": 43383,
- "reddit": 15226,
- "reddy": 23028,
- "rede": 10913,
- "redeem": 37449,
- "redefining": 46352,
- "redemption": 20233,
- "redesign": 24188,
- "redesigned": 33111,
- "redevelopment": 30322,
- "redhead": 36267,
- "redi": 7976,
- "redman": 44753,
- "redmond": 39627,
- "rednation": 28180,
- "rednationrising": 28262,
- "redneck": 39105,
- "redness": 22626,
- "redo": 42524,
- "redon": 48506,
- "redro": 37722,
- "reds": 11221,
- "redskins": 19023,
- "redsox": 19144,
- "reduc": 5015,
- "reduce": 6604,
- "reduced": 10821,
- "reduces": 20539,
- "reducing": 13836,
- "reduction": 12219,
- "reductions": 48263,
- "redux": 43014,
- "redvelvet": 41845,
- "redwings": 31058,
- "redwood": 31748,
- "ree": 9282,
- "ree": 5813,
- "reebok": 26734,
- "reece": 30457,
- "reed": 26209,
- "reed": 10435,
- "reedus": 32865,
- "reef": 46557,
- "reef": 15624,
- "reefs": 34459,
- "reel": 34467,
- "reel": 17166,
- "reels": 48127,
- "reem": 48891,
- "reen": 21638,
- "reen": 23679,
- "rees": 18314,
- "reese": 20929,
- "reeves": 23060,
- "ref": 4067,
- "ref": 9591,
- "refe": 5624,
- "refer": 18425,
- "refer": 22325,
- "referee": 20398,
- "referees": 45583,
- "referen": 13535,
- "reference": 10214,
- "references": 24009,
- "referendum": 16732,
- "referr": 47784,
- "referral": 30219,
- "referred": 22969,
- "referring": 29797,
- "refers": 30069,
- "refill": 37859,
- "refin": 13455,
- "refined": 26098,
- "refinery": 31393,
- "refining": 48406,
- "reflec": 4608,
- "reflect": 13373,
- "reflected": 28732,
- "reflecting": 19700,
- "reflection": 11884,
- "reflections": 16647,
- "reflective": 27008,
- "reflects": 15821,
- "reflex": 45756,
- "reflex": 36050,
- "reform": 45678,
- "reform": 8875,
- "reformation": 45119,
- "reformed": 40880,
- "reforms": 19274,
- "refr": 34850,
- "refre": 11995,
- "refresh": 17836,
- "refresh": 23288,
- "refreshed": 35925,
- "refresher": 41481,
- "refreshing": 14159,
- "refreshments": 31127,
- "refriger": 21076,
- "refrigerator": 36662,
- "refs": 35595,
- "refu": 3545,
- "refuge": 5638,
- "refuge": 17432,
- "refugee": 11556,
- "refugees": 42687,
- "refugees": 8316,
- "refund": 28899,
- "refur": 15519,
- "refurbi": 18259,
- "refurbished": 26190,
- "refurbishment": 35803,
- "refusal": 46547,
- "refuse": 16412,
- "refused": 17190,
- "refuses": 20085,
- "refusing": 26704,
- "reg": 5472,
- "reg": 12353,
- "regain": 37510,
- "regal": 31512,
- "regal": 25028,
- "regan": 34062,
- "regar": 5881,
- "regard": 21801,
- "regarded": 32017,
- "regarding": 8493,
- "regardless": 17220,
- "regards": 23079,
- "regatta": 26316,
- "regen": 46545,
- "regency": 29341,
- "regeneration": 29257,
- "regent": 30455,
- "regents": 46710,
- "regg": 12757,
- "reggae": 37821,
- "reggae": 15214,
- "reggie": 21872,
- "regi": 1608,
- "regime": 11378,
- "regiment": 18603,
- "regin": 23287,
- "regina": 16841,
- "region": 16542,
- "region": 4341,
- "regional": 5552,
- "regionals": 26043,
- "regions": 14530,
- "regis": 28094,
- "register": 3967,
- "registered": 10254,
- "registering": 33510,
- "registr": 29193,
- "registration": 7302,
- "registrations": 38423,
- "registry": 30020,
- "rego": 47351,
- "regram": 30329,
- "regrann": 48802,
- "regre": 8627,
- "regression": 43733,
- "regret": 14374,
- "regrets": 23231,
- "regu": 3411,
- "regui": 46722,
- "regul": 11847,
- "regular": 14882,
- "regular": 6307,
- "regularly": 17263,
- "regulat": 14575,
- "regulate": 33494,
- "regulated": 31384,
- "regulating": 48156,
- "regulation": 14267,
- "regulations": 16654,
- "regulator": 30364,
- "regulators": 35837,
- "regulatory": 17717,
- "reh": 21492,
- "reha": 10193,
- "rehab": 16973,
- "rehabil": 17930,
- "rehabilitation": 21042,
- "rehear": 7273,
- "rehearsal": 11482,
- "rehearsals": 17977,
- "rehearsing": 23125,
- "rehman": 39206,
- "rei": 15343,
- "rei": 26033,
- "reic": 41230,
- "reich": 48589,
- "reich": 28929,
- "reid": 45125,
- "reid": 11744,
- "reig": 13092,
- "reign": 41419,
- "reign": 14827,
- "reigning": 28409,
- "reigns": 21217,
- "reiki": 46960,
- "reilly": 28120,
- "reim": 35421,
- "reimagined": 46799,
- "reimbur": 39857,
- "rein": 9240,
- "rein": 45009,
- "reina": 43847,
- "reinde": 23810,
- "reindeer": 25072,
- "reinfor": 48161,
- "reinforced": 41909,
- "reinst": 33969,
- "reinvent": 38171,
- "reissue": 34042,
- "reiter": 35394,
- "rejec": 9958,
- "reject": 22435,
- "rejected": 17505,
- "rejection": 32264,
- "rejects": 23155,
- "rejo": 20150,
- "rejoice": 24712,
- "rejuven": 26332,
- "rek": 47542,
- "rek": 19201,
- "rel": 1825,
- "rel": 5233,
- "rela": 4362,
- "reland": 15220,
- "relat": 27192,
- "relatable": 31010,
- "relate": 17520,
- "related": 5880,
- "relates": 36064,
- "relating": 27373,
- "relation": 4561,
- "relation": 16207,
- "relations": 10100,
- "relationship": 47239,
- "relationship": 5837,
- "relationships": 10610,
- "relative": 17265,
- "relatively": 18351,
- "relatives": 21981,
- "relax": 6777,
- "relax": 9035,
- "relaxation": 22194,
- "relaxed": 18999,
- "relaxing": 10256,
- "relay": 12403,
- "relays": 28404,
- "rele": 1602,
- "release": 29100,
- "release": 2706,
- "released": 3410,
- "releases": 7393,
- "releasethe": 44008,
- "releasing": 10321,
- "releg": 23378,
- "relegated": 45884,
- "relegation": 35040,
- "relent": 22213,
- "relentless": 27207,
- "relessly": 33927,
- "relev": 9349,
- "relevance": 31400,
- "relevant": 10568,
- "reli": 2674,
- "reliability": 27220,
- "reliable": 13714,
- "reliance": 27727,
- "relic": 27802,
- "relics": 43208,
- "relief": 7518,
- "relies": 41579,
- "relieve": 28623,
- "relieved": 36597,
- "religi": 4940,
- "religion": 8803,
- "religions": 31189,
- "religious": 8289,
- "relish": 35550,
- "relive": 23939,
- "reliving": 47558,
- "rell": 28802,
- "rell": 7127,
- "rella": 9952,
- "relle": 31390,
- "reloaded": 38908,
- "relocated": 46791,
- "relocation": 39198,
- "rels": 23320,
- "relu": 32058,
- "reluct": 32549,
- "reluctant": 45552,
- "rely": 4158,
- "relying": 42168,
- "rem": 15098,
- "rem": 21637,
- "rema": 4569,
- "remain": 29144,
- "remain": 6415,
- "remainder": 41672,
- "remained": 23714,
- "remaining": 11392,
- "remains": 6807,
- "remake": 16234,
- "remark": 11136,
- "remarkable": 12404,
- "remarkably": 39087,
- "remarks": 15001,
- "remastered": 24932,
- "rematch": 26473,
- "rembrandt": 45972,
- "reme": 20071,
- "remedi": 18442,
- "remedies": 25581,
- "remedy": 25794,
- "remem": 7966,
- "rememb": 7062,
- "remember": 22045,
- "remember": 2195,
- "remembered": 11763,
- "remembering": 8135,
- "remembers": 12551,
- "remembrance": 40321,
- "remembrance": 15860,
- "remembranceday": 48333,
- "rement": 7173,
- "rements": 12667,
- "remi": 41693,
- "remin": 3216,
- "remind": 9868,
- "reminded": 12309,
- "reminder": 5565,
- "reminders": 34121,
- "reminding": 19976,
- "reminds": 8303,
- "remington": 43527,
- "reminis": 17723,
- "reminiscent": 41704,
- "reminiscing": 32552,
- "remix": 8519,
- "remixes": 31011,
- "remn": 29127,
- "remnants": 39032,
- "remo": 4064,
- "remo": 33259,
- "remodel": 34159,
- "remodel": 37495,
- "remodeling": 41432,
- "remote": 47163,
- "remote": 9687,
- "remotely": 32375,
- "removable": 44095,
- "removal": 13679,
- "remove": 9709,
- "removed": 10289,
- "remover": 44267,
- "removes": 29018,
- "removing": 18504,
- "remy": 30434,
- "ren": 737,
- "ren": 2596,
- "rena": 12591,
- "renais": 15409,
- "renaissance": 16007,
- "renal": 36096,
- "renamed": 31535,
- "renault": 17600,
- "rence": 19245,
- "rence": 1553,
- "rences": 8545,
- "rend": 33932,
- "rend": 22851,
- "render": 39752,
- "render": 13024,
- "rendered": 23652,
- "rendering": 21339,
- "renders": 39419,
- "rendez": 43293,
- "rendezvous": 45644,
- "rendition": 28891,
- "rendon": 46272,
- "rendous": 49403,
- "rends": 38842,
- "rene": 15438,
- "rene": 12597,
- "renee": 23480,
- "reneg": 29909,
- "renegade": 41229,
- "renergy": 37151,
- "renew": 6645,
- "renew": 22015,
- "renewable": 31269,
- "renewable": 15941,
- "renewableenergy": 33357,
- "renewables": 21619,
- "renewal": 21270,
- "renewed": 20524,
- "renfre": 45043,
- "reng": 36795,
- "reno": 11520,
- "reno": 12831,
- "renov": 9984,
- "renovated": 23839,
- "renovation": 17121,
- "renovations": 31311,
- "renowned": 14727,
- "rens": 18183,
- "renshaw": 44445,
- "rent": 17377,
- "rent": 1609,
- "rental": 12193,
- "rentals": 24105,
- "rented": 35932,
- "rential": 31692,
- "renting": 37662,
- "rently": 2615,
- "rents": 31109,
- "reo": 15963,
- "reo": 26854,
- "reon": 15761,
- "reopen": 26883,
- "reopened": 32868,
- "reopening": 36663,
- "reopens": 40644,
- "rep": 4229,
- "rep": 6487,
- "repair": 8419,
- "repaired": 32953,
- "repairing": 38534,
- "repairs": 16297,
- "repar": 34065,
- "repe": 5785,
- "repeal": 42622,
- "repeal": 23938,
- "repeat": 10192,
- "repeated": 27904,
- "repeatedly": 26630,
- "repeating": 33834,
- "repeats": 39158,
- "repell": 46235,
- "repent": 47261,
- "reper": 29085,
- "repet": 38533,
- "repl": 13047,
- "replac": 6069,
- "replace": 9466,
- "replaceable": 47762,
- "replaced": 13200,
- "replacement": 10835,
- "replaces": 27781,
- "replacing": 18647,
- "replay": 16875,
- "repleni": 44839,
- "replic": 21651,
- "replica": 18125,
- "replied": 24238,
- "replies": 18808,
- "reply": 8965,
- "replying": 47599,
- "repor": 2628,
- "report": 2417,
- "reported": 7598,
- "reportedly": 10953,
- "reporter": 11019,
- "reporters": 18454,
- "reporting": 9218,
- "reports": 4908,
- "reposit": 41276,
- "repository": 46977,
- "repost": 33147,
- "repost": 7217,
- "repostapp": 38388,
- "reposting": 20223,
- "reppin": 19163,
- "repping": 22574,
- "repre": 3397,
- "represent": 8293,
- "represent": 8406,
- "representation": 13520,
- "representative": 13175,
- "representatives": 15591,
- "represented": 12299,
- "representing": 7561,
- "represents": 14433,
- "repri": 31854,
- "reproduction": 35714,
- "reproductive": 25522,
- "reps": 14265,
- "reptile": 36938,
- "reptiles": 38679,
- "republic": 6376,
- "republic": 7185,
- "republican": 9842,
- "republicans": 12384,
- "repur": 41852,
- "req": 42411,
- "requ": 10664,
- "reque": 9539,
- "request": 7813,
- "requested": 16199,
- "requesting": 33245,
- "requests": 17087,
- "requi": 4863,
- "requiem": 40316,
- "require": 14437,
- "required": 8500,
- "requirement": 27146,
- "requirements": 12860,
- "requires": 13396,
- "requiring": 33425,
- "requis": 42602,
- "rer": 41295,
- "rer": 3407,
- "rera": 14301,
- "rero": 21860,
- "rers": 18869,
- "res": 4466,
- "res": 934,
- "resc": 3956,
- "rescheduled": 43553,
- "rescu": 8618,
- "rescue": 28567,
- "rescue": 5718,
- "rescued": 11919,
- "rescues": 32439,
- "rescuing": 43770,
- "rese": 13000,
- "resear": 6090,
- "research": 25694,
- "research": 2379,
- "researched": 42733,
- "researcher": 18334,
- "researchers": 9522,
- "researching": 24544,
- "reseller": 35391,
- "resemb": 16916,
- "resemblance": 26856,
- "resemble": 37230,
- "resembles": 35417,
- "reser": 16420,
- "reserv": 11906,
- "reservation": 20289,
- "reservations": 19307,
- "reserve": 6911,
- "reserved": 19796,
- "reserves": 19705,
- "reservoir": 20574,
- "reset": 26250,
- "resh": 47432,
- "reshi": 39435,
- "resi": 2152,
- "residen": 22311,
- "residence": 11672,
- "residences": 38855,
- "residency": 18545,
- "resident": 9016,
- "residente": 44637,
- "residentevil": 48393,
- "residential": 11002,
- "residents": 6008,
- "resign": 23584,
- "resignation": 24779,
- "resigned": 31014,
- "resigns": 29738,
- "resil": 10932,
- "resili": 39212,
- "resilience": 15271,
- "resilient": 24694,
- "resin": 24156,
- "resist": 37345,
- "resist": 9587,
- "resistance": 7392,
- "resistant": 17542,
- "resisting": 43679,
- "resolution": 9977,
- "resolutions": 26816,
- "resolve": 20787,
- "resolved": 28807,
- "reson": 18092,
- "resonance": 42310,
- "resort": 6594,
- "resorts": 18839,
- "resource": 43729,
- "resource": 9760,
- "resources": 6723,
- "respec": 7466,
- "respect": 31411,
- "respect": 4916,
- "respected": 19126,
- "respectful": 24379,
- "respecting": 36172,
- "respective": 25817,
- "respectively": 28794,
- "respects": 23553,
- "respir": 20771,
- "respiratory": 24483,
- "respon": 2421,
- "respond": 12355,
- "responded": 21121,
- "respondents": 49253,
- "responders": 25155,
- "responding": 18037,
- "responds": 17436,
- "response": 5399,
- "responses": 19006,
- "responsi": 5490,
- "responsibilities": 30375,
- "responsibility": 11272,
- "responsible": 8936,
- "responsibly": 33675,
- "responsive": 21544,
- "ress": 34651,
- "ress": 13629,
- "resso": 15133,
- "rest": 10974,
- "rest": 2539,
- "restart": 37378,
- "restaur": 3775,
- "restaurant": 41930,
- "restaurant": 4489,
- "restaurants": 11714,
- "rested": 46020,
- "resting": 18044,
- "restless": 36724,
- "restling": 30076,
- "resto": 11118,
- "resto": 41666,
- "restock": 34060,
- "restocked": 36966,
- "restor": 8984,
- "restoration": 11989,
- "restorative": 46509,
- "restore": 14008,
- "restored": 14238,
- "restoring": 24406,
- "restra": 25424,
- "restric": 11036,
- "restricted": 27197,
- "restriction": 44282,
- "restrictions": 19884,
- "restroom": 43423,
- "restructuring": 43260,
- "rests": 33775,
- "resu": 10095,
- "resul": 2655,
- "result": 5659,
- "resulted": 26449,
- "resulting": 24581,
- "results": 3790,
- "resume": 15077,
- "resumes": 30268,
- "resur": 14865,
- "resurg": 45962,
- "resurgence": 47692,
- "resurrec": 18487,
- "resurrection": 25811,
- "resusc": 47523,
- "ret": 20500,
- "ret": 10048,
- "reta": 20153,
- "retail": 14910,
- "retail": 6455,
- "retailer": 22549,
- "retailers": 19418,
- "retain": 24430,
- "retained": 42737,
- "retaining": 35571,
- "retains": 42583,
- "retali": 33101,
- "retar": 29964,
- "retarded": 44111,
- "retention": 26247,
- "rethink": 29078,
- "rethinking": 42951,
- "reti": 4721,
- "retin": 31270,
- "retina": 36919,
- "retire": 18846,
- "retired": 11477,
- "retirement": 9205,
- "retires": 29060,
- "retiring": 21200,
- "retrac": 32735,
- "retreat": 11210,
- "retri": 16918,
- "retriever": 28394,
- "retro": 6535,
- "retro": 7755,
- "retrogamer": 47220,
- "retrogaming": 11316,
- "retrospective": 27105,
- "rett": 41082,
- "rett": 8425,
- "rette": 33066,
- "return": 43042,
- "return": 3458,
- "returned": 10476,
- "returning": 9290,
- "returns": 5020,
- "retwee": 48190,
- "retweet": 3195,
- "retweeted": 12705,
- "retweeting": 32345,
- "retweets": 10160,
- "rety": 41550,
- "reu": 20255,
- "reu": 40371,
- "reuben": 40450,
- "reunion": 10247,
- "reunite": 26179,
- "reunited": 13516,
- "reusable": 30395,
- "reuse": 26535,
- "reut": 15210,
- "reuters": 15569,
- "rev": 8424,
- "rev": 11789,
- "revamp": 29819,
- "revamped": 36420,
- "revan": 45277,
- "reve": 3115,
- "reveal": 8052,
- "revealed": 7171,
- "revealing": 21321,
- "reveals": 6621,
- "revel": 14133,
- "revelation": 24053,
- "revelations": 36163,
- "reven": 10171,
- "revenge": 12717,
- "revenue": 10637,
- "revenues": 33348,
- "rever": 14829,
- "rever": 41913,
- "revere": 44187,
- "reverend": 34407,
- "revers": 20726,
- "reversal": 33367,
- "reverse": 12812,
- "reversed": 42485,
- "reversi": 31601,
- "reversible": 34212,
- "revi": 8317,
- "review": 2268,
- "reviewed": 16678,
- "reviewer": 36409,
- "reviewers": 48195,
- "reviewing": 20458,
- "reviews": 7227,
- "revise": 46801,
- "revised": 22806,
- "revising": 46882,
- "revision": 20335,
- "revisit": 26568,
- "revisited": 34302,
- "revisiting": 33144,
- "revit": 26367,
- "revitalization": 46923,
- "revival": 14142,
- "revive": 26450,
- "revived": 42912,
- "revo": 28660,
- "revol": 13447,
- "revolt": 31697,
- "revolu": 4900,
- "revolution": 17699,
- "revolution": 6644,
- "revolutionary": 14734,
- "revolver": 38747,
- "revolving": 47230,
- "revs": 49286,
- "revue": 43428,
- "rew": 37564,
- "rewar": 15857,
- "reward": 11223,
- "rewarded": 27163,
- "rewarding": 23351,
- "rewards": 15235,
- "rewatch": 35610,
- "rewatching": 41287,
- "rewind": 26867,
- "rewrite": 45218,
- "rex": 13002,
- "rex": 10904,
- "rexperience": 33924,
- "rey": 9681,
- "rey": 4517,
- "reyes": 18255,
- "reykja": 47571,
- "reyn": 11998,
- "reynolds": 14309,
- "reys": 48284,
- "rez": 27597,
- "rez": 15192,
- "reza": 35888,
- "rf": 35529,
- "rf": 16368,
- "rfc": 19003,
- "rfid": 40204,
- "rg": 33055,
- "rg": 14897,
- "rgb": 36128,
- "rgv": 33685,
- "rh": 8745,
- "rh": 22404,
- "rha": 19473,
- "rhapso": 32532,
- "rhapsody": 35774,
- "rhe": 9186,
- "rhea": 28612,
- "rhetor": 24359,
- "rhetoric": 29985,
- "rhett": 42984,
- "rheu": 42953,
- "rhi": 21212,
- "rhin": 12269,
- "rhine": 22863,
- "rhine": 44833,
- "rhinestone": 30450,
- "rhino": 41744,
- "rhino": 20056,
- "rhinos": 30671,
- "rho": 7637,
- "rhode": 39302,
- "rhode": 27907,
- "rhodes": 17785,
- "rhon": 25882,
- "rhonda": 46100,
- "rhp": 27199,
- "rhs": 24551,
- "rhu": 23897,
- "rhubarb": 30213,
- "rhy": 7740,
- "rhyme": 37356,
- "rhymes": 33143,
- "rhys": 28647,
- "rhyth": 27069,
- "rhythm": 16172,
- "rhythmic": 46386,
- "rhythms": 40872,
- "ri": 553,
- "ri": 2574,
- "ria": 3650,
- "rial": 15200,
- "rian": 7788,
- "rib": 44634,
- "rib": 18298,
- "riba": 44992,
- "ribb": 10081,
- "ribbon": 12114,
- "ribbons": 35271,
- "ribe": 46115,
- "ribs": 17519,
- "ric": 920,
- "ric": 4798,
- "rica": 14230,
- "rical": 18109,
- "rican": 30958,
- "ricardo": 23140,
- "ricci": 35783,
- "ricciardo": 49282,
- "rice": 36362,
- "rice": 4741,
- "rich": 5223,
- "rich": 4021,
- "richar": 9350,
- "richard": 9080,
- "richard": 4470,
- "richards": 11372,
- "richardson": 15984,
- "riche": 23286,
- "richer": 34138,
- "riches": 37093,
- "richest": 25572,
- "richi": 38934,
- "richie": 19797,
- "richland": 43079,
- "richmond": 34143,
- "richmond": 11292,
- "richter": 37591,
- "rick": 6237,
- "rick": 3064,
- "ricket": 46161,
- "ricket": 23671,
- "ricks": 23111,
- "ricky": 19188,
- "ricky": 12814,
- "rico": 37962,
- "rico": 11362,
- "ricotta": 38473,
- "rics": 7353,
- "ricul": 6980,
- "rid": 18103,
- "rid": 9874,
- "ridd": 21990,
- "ridden": 32025,
- "riddle": 31839,
- "ride": 15816,
- "ride": 2994,
- "rider": 31056,
- "rider": 9707,
- "riders": 10826,
- "rides": 11308,
- "ridg": 42646,
- "ridge": 16580,
- "ridge": 6352,
- "ridic": 9624,
- "ridiculous": 12659,
- "ridiculously": 25661,
- "ridin": 47869,
- "riding": 6765,
- "ridley": 27883,
- "rie": 14824,
- "rie": 5322,
- "ried": 7552,
- "riel": 26696,
- "rien": 35237,
- "rier": 40714,
- "rier": 13336,
- "ries": 28179,
- "ries": 3059,
- "riesling": 36372,
- "rif": 7044,
- "riff": 30359,
- "rifle": 15354,
- "rifles": 25678,
- "rift": 26681,
- "rig": 18462,
- "rig": 13871,
- "riga": 36626,
- "rigged": 35897,
- "rigging": 38160,
- "riggs": 40328,
- "righ": 15391,
- "right": 13341,
- "right": 1155,
- "righte": 20762,
- "righteous": 28169,
- "righteousness": 42481,
- "rightful": 42601,
- "rightly": 42669,
- "rights": 3336,
- "rigid": 43138,
- "rigor": 36788,
- "rigorous": 41654,
- "rigs": 42893,
- "rihanna": 13744,
- "rij": 41097,
- "rik": 31136,
- "rik": 27832,
- "rika": 28580,
- "ril": 12270,
- "ril": 2388,
- "riley": 35056,
- "riley": 12260,
- "rill": 23705,
- "rilla": 43956,
- "rilla": 18685,
- "rim": 28147,
- "rim": 12199,
- "rime": 27064,
- "rimin": 11527,
- "rimo": 47817,
- "rims": 34327,
- "rin": 5859,
- "rin": 11739,
- "rina": 12869,
- "rine": 24952,
- "ring": 8318,
- "ring": 2540,
- "ringed": 44712,
- "ringer": 35761,
- "ringing": 26035,
- "ringo": 38845,
- "rings": 5751,
- "rington": 12455,
- "rink": 21497,
- "rinka": 47316,
- "rino": 47188,
- "rinse": 48320,
- "rio": 15681,
- "rio": 5782,
- "rion": 31623,
- "rion": 34046,
- "rios": 32814,
- "riot": 32636,
- "riot": 14218,
- "riots": 24844,
- "rious": 6340,
- "rip": 10353,
- "rip": 4243,
- "ripe": 22832,
- "ripley": 41589,
- "ripp": 25276,
- "ripped": 17815,
- "ripper": 35347,
- "ripping": 29126,
- "ripple": 24825,
- "rips": 30182,
- "rir": 36792,
- "ris": 6108,
- "ris": 1999,
- "rise": 13641,
- "rise": 3151,
- "risen": 23653,
- "risers": 44983,
- "rises": 13362,
- "riseup": 35760,
- "rish": 18378,
- "rish": 18927,
- "rishi": 48434,
- "rising": 30452,
- "rising": 5448,
- "risis": 37998,
- "risk": 27967,
- "risk": 4213,
- "risking": 48155,
- "risks": 12474,
- "risky": 27630,
- "risotto": 31471,
- "rist": 40610,
- "rit": 5156,
- "rit": 17333,
- "rita": 16178,
- "ritchie": 30997,
- "rite": 39318,
- "rite": 18429,
- "rites": 36160,
- "rith": 48169,
- "rith": 48850,
- "riti": 32904,
- "rito": 19379,
- "ritos": 33507,
- "ritt": 26092,
- "ritter": 34854,
- "ritu": 13391,
- "ritual": 19712,
- "rituals": 31145,
- "ritz": 39151,
- "ritz": 25627,
- "rium": 33884,
- "riv": 25113,
- "rival": 13412,
- "rival": 15629,
- "rivalry": 19511,
- "rivals": 15135,
- "rive": 27588,
- "rive": 34917,
- "river": 5239,
- "river": 2473,
- "rivera": 18275,
- "riverdale": 28304,
- "riverfront": 44439,
- "rivers": 10723,
- "riverside": 15809,
- "riveting": 44024,
- "riviera": 25851,
- "rix": 43407,
- "rix": 9483,
- "riya": 36908,
- "riyad": 31564,
- "riyadh": 33577,
- "riz": 18426,
- "riz": 35411,
- "rizal": 41555,
- "rizio": 40191,
- "rizz": 34826,
- "rizzo": 49076,
- "rj": 26016,
- "rj": 20949,
- "rk": 38725,
- "rk": 21422,
- "rl": 18041,
- "rl": 14590,
- "rlly": 43222,
- "rly": 25954,
- "rm": 20202,
- "rm": 8431,
- "rmb": 49097,
- "rms": 40529,
- "rn": 13206,
- "rn": 7666,
- "rna": 24566,
- "rnb": 31556,
- "rnc": 35309,
- "rnli": 29748,
- "ro": 532,
- "ro": 2795,
- "roa": 8313,
- "roach": 31073,
- "road": 4370,
- "road": 1759,
- "roadhouse": 47891,
- "roadmap": 30111,
- "roads": 6189,
- "roadsafety": 39992,
- "roadshow": 21168,
- "roadside": 26928,
- "roadster": 28920,
- "roadto": 24681,
- "roadtrip": 15094,
- "roadway": 42744,
- "roam": 34045,
- "roaming": 29240,
- "roano": 34184,
- "roanoke": 36587,
- "roar": 34193,
- "roar": 18483,
- "roaring": 26428,
- "roast": 11404,
- "roasted": 10479,
- "roasting": 32228,
- "rob": 2668,
- "rob": 6442,
- "robb": 14059,
- "robb": 39673,
- "robbed": 24163,
- "robber": 35545,
- "robbers": 40852,
- "robbery": 16393,
- "robbi": 44898,
- "robbie": 37200,
- "robbie": 15970,
- "robbing": 47569,
- "robbins": 23461,
- "robby": 44128,
- "robe": 23116,
- "rober": 4532,
- "robert": 8811,
- "robert": 3929,
- "roberta": 43373,
- "roberto": 42645,
- "roberto": 16227,
- "roberts": 10366,
- "robertson": 17643,
- "robes": 29304,
- "robi": 16743,
- "robin": 6681,
- "robin": 7988,
- "robins": 35502,
- "robinson": 8523,
- "robles": 47646,
- "roblo": 27481,
- "roblox": 37798,
- "robo": 4672,
- "robo": 36057,
- "robot": 46089,
- "robot": 8797,
- "robotic": 23975,
- "robotics": 13546,
- "robots": 13473,
- "robson": 31113,
- "robust": 22780,
- "robyn": 34533,
- "roc": 3268,
- "roc": 13776,
- "rocco": 30009,
- "roch": 23788,
- "rochdale": 41880,
- "roche": 31776,
- "rochelle": 40161,
- "rochester": 18057,
- "rock": 2640,
- "rock": 2172,
- "rockab": 39353,
- "rockabilly": 45019,
- "rocke": 19914,
- "rocked": 16116,
- "rockefeller": 35476,
- "rocker": 29008,
- "rockers": 32338,
- "rocket": 25435,
- "rocket": 8383,
- "rockets": 13292,
- "rockford": 41039,
- "rockies": 20621,
- "rockin": 12073,
- "rocking": 7081,
- "rockn": 24442,
- "rocknroll": 27840,
- "rocks": 6135,
- "rockstar": 23603,
- "rockstar": 18000,
- "rockstargames": 27516,
- "rockstars": 46639,
- "rockthe": 49363,
- "rockwell": 34747,
- "rocky": 33481,
- "rocky": 9648,
- "rod": 9712,
- "rod": 8291,
- "roddy": 42332,
- "rode": 18449,
- "rodeo": 18250,
- "rodgers": 17612,
- "rodi": 49100,
- "rodney": 21753,
- "rodri": 11053,
- "rodrigo": 33944,
- "rodriguez": 14057,
- "rods": 28618,
- "roe": 27671,
- "roe": 9996,
- "rof": 33029,
- "rofl": 48228,
- "roft": 45212,
- "rog": 34269,
- "rog": 34017,
- "rogen": 23380,
- "roger": 13929,
- "roger": 7735,
- "rogerfederer": 40182,
- "rogers": 10661,
- "rogue": 32575,
- "rogue": 15162,
- "roh": 14933,
- "roh": 29840,
- "rohan": 39848,
- "rohing": 23600,
- "rohingya": 26146,
- "rohit": 44649,
- "rohit": 24299,
- "roi": 21877,
- "rok": 36807,
- "rol": 3393,
- "rol": 7818,
- "roland": 33713,
- "roland": 19569,
- "role": 18485,
- "role": 3414,
- "roles": 11871,
- "rolex": 21093,
- "rolf": 48606,
- "roll": 4711,
- "roll": 3341,
- "rolled": 11982,
- "roller": 21034,
- "roller": 12342,
- "rollercoaster": 38248,
- "rollers": 36941,
- "rollin": 27545,
- "rolling": 24250,
- "rolling": 6347,
- "rollingstones": 41309,
- "rollins": 27724,
- "rollout": 47710,
- "rollover": 39214,
- "rolls": 8614,
- "rolltide": 28101,
- "rom": 11377,
- "rom": 19205,
- "roma": 44134,
- "roma": 11631,
- "romain": 48897,
- "roman": 4416,
- "roman": 7370,
- "romance": 7215,
- "romania": 15884,
- "romanian": 30866,
- "romano": 38409,
- "romans": 23066,
- "romantic": 41457,
- "romantic": 8821,
- "rome": 9406,
- "rome": 5243,
- "romeo": 14429,
- "romero": 23694,
- "romney": 19287,
- "romo": 32248,
- "romper": 43699,
- "ron": 2393,
- "ron": 3372,
- "rona": 42385,
- "ronal": 46194,
- "ronald": 15683,
- "ronaldo": 13463,
- "ronan": 34971,
- "rond": 31935,
- "ronda": 37436,
- "rondo": 43756,
- "rone": 48082,
- "rone": 32763,
- "roni": 47234,
- "ronnie": 45257,
- "ronnie": 16421,
- "rons": 19536,
- "ront": 48881,
- "roo": 1249,
- "roo": 31227,
- "rood": 38007,
- "roof": 9120,
- "roof": 6449,
- "roofing": 24415,
- "roofs": 34635,
- "rooftop": 16319,
- "rook": 35918,
- "rookie": 9771,
- "rookies": 31917,
- "room": 8845,
- "room": 1530,
- "roomie": 36851,
- "roommate": 19825,
- "roommates": 37323,
- "rooms": 6328,
- "rooney": 17712,
- "roos": 32938,
- "roosevel": 17644,
- "roosevelt": 18488,
- "rooster": 46263,
- "rooster": 30926,
- "roosters": 43693,
- "root": 25930,
- "root": 9728,
- "rooted": 30428,
- "rooting": 25523,
- "roots": 8084,
- "rop": 43401,
- "rope": 9953,
- "ropes": 30506,
- "ror": 8668,
- "ror": 2843,
- "rors": 12072,
- "rory": 42804,
- "rory": 17813,
- "ros": 5288,
- "ros": 6930,
- "rosa": 14393,
- "rosal": 30397,
- "rosario": 33640,
- "rosary": 33098,
- "rosberg": 46037,
- "rose": 6146,
- "rose": 3568,
- "roseanne": 47528,
- "rosel": 33616,
- "rosemary": 19472,
- "rosen": 13214,
- "rosen": 36424,
- "rosenberg": 43558,
- "rosenthal": 46990,
- "roses": 9061,
- "rosetta": 43800,
- "rosewood": 38686,
- "rosie": 43049,
- "rosie": 16888,
- "ross": 8801,
- "ross": 2158,
- "rosse": 11602,
- "rossi": 24817,
- "rosso": 33023,
- "roster": 12487,
- "roswell": 45116,
- "rosy": 46705,
- "rosé": 28006,
- "rot": 10055,
- "rot": 9643,
- "rotar": 45959,
- "rotary": 14654,
- "rotating": 32265,
- "rotation": 18089,
- "rotc": 32252,
- "roth": 17741,
- "roth": 19139,
- "rother": 23174,
- "rotherham": 37687,
- "rothschild": 45089,
- "roti": 46940,
- "roto": 34698,
- "rotor": 42991,
- "rots": 16642,
- "rott": 34806,
- "rotten": 24324,
- "rotter": 22614,
- "rotterdam": 23422,
- "rotun": 42970,
- "rou": 2964,
- "rou": 34783,
- "roud": 28375,
- "rouge": 16209,
- "rough": 11699,
- "rough": 8511,
- "roughly": 21910,
- "roughs": 37598,
- "rouhani": 39912,
- "roulette": 39930,
- "roun": 5602,
- "round": 9403,
- "round": 2522,
- "roundabout": 29953,
- "rounded": 26973,
- "rounder": 37024,
- "rounding": 40208,
- "rounds": 11242,
- "roundtable": 19386,
- "roundup": 17503,
- "roup": 29220,
- "rourke": 38753,
- "rous": 33645,
- "rous": 34531,
- "rousey": 46267,
- "rout": 7502,
- "rout": 41778,
- "route": 5261,
- "router": 29962,
- "routes": 14923,
- "routine": 12319,
- "routines": 44074,
- "routing": 44086,
- "roux": 43416,
- "rov": 23971,
- "rove": 30130,
- "rover": 12776,
- "rovers": 16373,
- "row": 5275,
- "row": 1044,
- "rowan": 26240,
- "rowdy": 32141,
- "rowe": 28323,
- "rowed": 22615,
- "rower": 43345,
- "rowers": 41806,
- "rowing": 12807,
- "rowland": 33037,
- "rowley": 48793,
- "rowling": 29371,
- "rown": 22287,
- "rown": 25060,
- "rows": 9409,
- "rox": 14111,
- "rox": 41033,
- "roxy": 28093,
- "roy": 2128,
- "roy": 6354,
- "royal": 6691,
- "royal": 3853,
- "royale": 20630,
- "royalnavy": 41545,
- "royals": 13335,
- "royalties": 48660,
- "royalty": 18296,
- "royalwedding": 27461,
- "royce": 18444,
- "royd": 41476,
- "royo": 39357,
- "roz": 28989,
- "roz": 37250,
- "rp": 17305,
- "rp": 8174,
- "rpa": 41872,
- "rpg": 12445,
- "rpm": 23715,
- "rps": 49215,
- "rr": 5311,
- "rr": 9126,
- "rrp": 36967,
- "rrr": 18267,
- "rrrr": 25561,
- "rrrr": 34444,
- "rs": 6978,
- "rs": 1724,
- "rsa": 29437,
- "rsc": 48524,
- "rsd": 34426,
- "rsi": 39046,
- "rsl": 44752,
- "rsp": 16381,
- "rspb": 38508,
- "rspb": 36727,
- "rspca": 45643,
- "rss": 46466,
- "rss": 22350,
- "rstats": 38700,
- "rsvp": 9774,
- "rt": 8959,
- "rt": 8991,
- "rtc": 31648,
- "rte": 33822,
- "rte": 23322,
- "rtg": 22028,
- "rti": 47549,
- "rtr": 43999,
- "rts": 8496,
- "rtw": 34673,
- "ru": 681,
- "ru": 13735,
- "rub": 15862,
- "rub": 22586,
- "rubb": 19597,
- "rubbed": 45239,
- "rubber": 31131,
- "rubber": 11331,
- "rubbing": 41262,
- "rubbish": 21108,
- "rubble": 42230,
- "ruben": 44058,
- "ruben": 29722,
- "rubi": 27856,
- "rubin": 34128,
- "rubio": 24244,
- "rubs": 43422,
- "ruby": 24552,
- "ruby": 11493,
- "ruck": 27449,
- "rucker": 45402,
- "rud": 35256,
- "rudd": 31836,
- "rude": 16548,
- "rudi": 48360,
- "rudol": 40927,
- "rudolf": 46835,
- "rudolph": 30119,
- "rudy": 38226,
- "rudy": 22131,
- "rue": 38024,
- "rue": 19276,
- "rufc": 45084,
- "ruff": 28177,
- "ruff": 30304,
- "rufus": 39322,
- "rug": 4217,
- "rug": 19220,
- "rugby": 15091,
- "rugby": 4964,
- "rugbyleague": 44419,
- "ruger": 48655,
- "rugged": 25225,
- "rugs": 29946,
- "rui": 46974,
- "ruin": 16256,
- "ruined": 17231,
- "ruining": 29952,
- "ruins": 16094,
- "ruiz": 27873,
- "ruk": 46628,
- "rukh": 43075,
- "rukh": 27631,
- "rule": 31643,
- "rule": 6175,
- "ruled": 16324,
- "ruler": 26286,
- "rulers": 45328,
- "rules": 5272,
- "ruling": 14690,
- "rum": 9223,
- "rum": 11233,
- "rumb": 42432,
- "rumble": 18900,
- "rumi": 31428,
- "rumor": 22254,
- "rumored": 36694,
- "rumors": 16160,
- "rumour": 34296,
- "rumours": 20716,
- "rump": 29366,
- "run": 1639,
- "run": 1934,
- "runaway": 28851,
- "runchat": 25838,
- "rundown": 41100,
- "rune": 33882,
- "rune": 49244,
- "runner": 37370,
- "runner": 7913,
- "runners": 10571,
- "runnin": 43130,
- "running": 24451,
- "running": 2761,
- "runoff": 38564,
- "runs": 5586,
- "runway": 13927,
- "rup": 7996,
- "rup": 14980,
- "rupaul": 44211,
- "rupee": 43916,
- "rupees": 44110,
- "rupert": 25625,
- "rupt": 23055,
- "ruption": 35403,
- "rural": 28801,
- "rural": 8737,
- "rus": 35811,
- "rus": 5998,
- "rush": 12148,
- "rush": 6973,
- "rushed": 28104,
- "rusher": 48745,
- "rushes": 47217,
- "rushing": 20284,
- "russ": 6285,
- "russ": 20764,
- "russell": 26122,
- "russell": 8150,
- "russi": 2600,
- "russia": 4018,
- "russian": 30731,
- "russian": 4868,
- "russians": 25413,
- "russo": 30679,
- "rust": 28682,
- "rust": 14212,
- "rustic": 19822,
- "rusty": 43966,
- "rusty": 22646,
- "rut": 14973,
- "rut": 39102,
- "rutger": 49029,
- "rutgers": 28934,
- "ruth": 15798,
- "ruth": 12029,
- "ruther": 26676,
- "rutherford": 31070,
- "ruthless": 36063,
- "rutland": 46024,
- "ruto": 43702,
- "ruz": 23275,
- "rv": 17135,
- "rv": 17951,
- "rva": 24278,
- "rw": 9085,
- "rw": 22926,
- "rwa": 47452,
- "rwand": 31758,
- "rwanda": 15427,
- "rwby": 39698,
- "rwc": 32321,
- "rx": 41188,
- "rx": 15945,
- "ry": 1511,
- "ry": 913,
- "ryan": 8682,
- "ryan": 4053,
- "ryanair": 43526,
- "ryder": 43564,
- "ryder": 21805,
- "rye": 24015,
- "rye": 17409,
- "rying": 7838,
- "ryn": 37728,
- "ryo": 24460,
- "rys": 21654,
- "ryu": 46656,
- "ryu": 34604,
- "ré": 29106,
- "s": 82,
- "s": 338,
- "sa": 774,
- "sa": 1344,
- "saa": 13429,
- "saab": 27158,
- "saad": 36530,
- "saas": 25761,
- "saat": 33151,
- "sab": 3233,
- "sab": 23213,
- "saba": 38344,
- "sabah": 32854,
- "saban": 41620,
- "sabar": 47102,
- "sabbath": 26008,
- "sabc": 30010,
- "sabcnews": 41093,
- "saber": 46822,
- "saber": 25624,
- "sabha": 23431,
- "sabi": 47073,
- "sabine": 44062,
- "sable": 19224,
- "sabot": 30700,
- "sabotage": 40496,
- "sabre": 35110,
- "sabres": 29620,
- "sabrin": 37029,
- "sabrina": 24994,
- "sac": 3632,
- "sac": 12905,
- "sach": 30168,
- "sacha": 49010,
- "sachin": 47527,
- "sachin": 30297,
- "sachs": 31451,
- "sack": 28964,
- "sack": 14979,
- "sacked": 27519,
- "sacks": 26441,
- "sacram": 13334,
- "sacramento": 16065,
- "sacred": 40612,
- "sacred": 12477,
- "sacri": 15283,
- "sacrif": 12117,
- "sacrific": 16919,
- "sacrifice": 12556,
- "sacrificed": 31116,
- "sacrifices": 28858,
- "sacrificing": 48146,
- "sad": 2810,
- "sad": 3719,
- "saddened": 27720,
- "saddest": 34925,
- "saddle": 30469,
- "saddle": 20283,
- "sade": 27429,
- "sadh": 40955,
- "sadi": 22207,
- "sadie": 30333,
- "sadiq": 44107,
- "sadler": 45600,
- "sadly": 11603,
- "sadness": 20399,
- "sae": 38633,
- "sae": 34883,
- "saeed": 29745,
- "saf": 2125,
- "saf": 25760,
- "safar": 23443,
- "safari": 14091,
- "safarilive": 34816,
- "safc": 27998,
- "safe": 2901,
- "safe": 2996,
- "safeguard": 42249,
- "safeguarding": 47451,
- "safely": 11513,
- "safer": 40124,
- "safer": 15504,
- "safest": 38973,
- "safety": 19050,
- "safety": 3406,
- "safetyfirst": 43608,
- "saffron": 27529,
- "sag": 6609,
- "sag": 30048,
- "saga": 15758,
- "sagan": 37193,
- "sagar": 42518,
- "sage": 25800,
- "sage": 7509,
- "sages": 25979,
- "sagin": 47097,
- "sagitt": 44685,
- "sagu": 44708,
- "sah": 30943,
- "sah": 26342,
- "saha": 36062,
- "sahara": 24599,
- "saharan": 44255,
- "sahi": 24608,
- "sahib": 34150,
- "sai": 16048,
- "sai": 10886,
- "said": 40319,
- "said": 1946,
- "saif": 44164,
- "saig": 36328,
- "saigon": 41081,
- "sail": 7528,
- "sail": 12156,
- "sailed": 43047,
- "sailing": 11003,
- "sailor": 28002,
- "sailor": 16076,
- "sailormoon": 40673,
- "sailors": 25355,
- "sails": 27526,
- "sain": 21226,
- "sain": 40378,
- "sains": 24860,
- "sainsbury": 45879,
- "sainsburys": 36934,
- "saint": 11274,
- "saint": 5599,
- "saints": 8769,
- "saintsfc": 31102,
- "sair": 46600,
- "sair": 30971,
- "saire": 28087,
- "saison": 33256,
- "sait": 48008,
- "saj": 33580,
- "sak": 11511,
- "sak": 35900,
- "saka": 33609,
- "sake": 12874,
- "sakh": 43945,
- "saki": 40514,
- "saku": 37550,
- "sakura": 24162,
- "sal": 980,
- "sal": 6126,
- "sala": 17300,
- "salaam": 46773,
- "salad": 6188,
- "salads": 30948,
- "salah": 22516,
- "salam": 19007,
- "salam": 33963,
- "salamat": 44696,
- "salami": 46885,
- "salaries": 33132,
- "salary": 16312,
- "salazar": 45988,
- "sale": 17786,
- "sale": 1690,
- "saleh": 38353,
- "salem": 48194,
- "salem": 16884,
- "sales": 13347,
- "sales": 3765,
- "salesforce": 22680,
- "salesman": 37633,
- "salford": 25629,
- "sali": 15411,
- "salim": 42760,
- "salinas": 41990,
- "saline": 46918,
- "salis": 20667,
- "salis": 39378,
- "salisbury": 24763,
- "sall": 27122,
- "sall": 20883,
- "salle": 23738,
- "sally": 29542,
- "sally": 13349,
- "salman": 13754,
- "salman": 16219,
- "salmankhan": 15177,
- "salmon": 37040,
- "salmon": 9137,
- "salom": 38268,
- "salon": 33916,
- "salon": 11105,
- "saloon": 26038,
- "sals": 16307,
- "salsa": 16442,
- "salt": 12763,
- "salt": 6611,
- "salted": 26313,
- "saltlife": 47809,
- "salts": 40559,
- "saltwater": 43616,
- "salty": 20678,
- "salu": 31711,
- "salud": 46867,
- "salut": 44998,
- "salute": 44908,
- "salute": 9747,
- "salutes": 32762,
- "salv": 8299,
- "salvador": 20874,
- "salvage": 33131,
- "salvation": 19534,
- "salvatore": 38772,
- "salz": 33594,
- "salzburg": 43396,
- "sam": 1644,
- "sam": 3730,
- "sama": 19272,
- "samanth": 11465,
- "samantha": 15466,
- "samanthap": 38266,
- "samanthaprabhu": 38643,
- "samar": 21820,
- "samaritan": 45495,
- "samba": 37190,
- "same": 23062,
- "same": 2208,
- "samheughan": 36255,
- "sami": 48400,
- "sami": 24322,
- "sammy": 31091,
- "sammy": 16758,
- "samo": 30006,
- "samoa": 34932,
- "samp": 31225,
- "sample": 9542,
- "sampler": 40629,
- "samples": 13387,
- "sampling": 19522,
- "sampson": 39983,
- "sams": 44667,
- "samson": 34659,
- "samsun": 47875,
- "samsung": 35369,
- "samsung": 8115,
- "samu": 7646,
- "samuel": 30612,
- "samuel": 12787,
- "samurai": 21739,
- "san": 1489,
- "san": 2223,
- "sana": 19434,
- "sanantonio": 34714,
- "sanat": 29091,
- "sanatomy": 36052,
- "sanc": 7398,
- "sance": 15930,
- "sanchez": 13971,
- "sanctioned": 43032,
- "sanctions": 17790,
- "sanctu": 12712,
- "sanctuary": 14044,
- "sand": 2147,
- "sand": 5094,
- "sandal": 36445,
- "sandal": 42185,
- "sandals": 20731,
- "sandalwood": 47502,
- "sandeep": 46973,
- "sander": 34111,
- "sanders": 10429,
- "sanderson": 36198,
- "sandi": 44249,
- "sandiego": 45997,
- "sandiego": 15793,
- "sandman": 45730,
- "sando": 35921,
- "sandoval": 44157,
- "sandra": 33733,
- "sandra": 13415,
- "sandro": 42389,
- "sands": 5936,
- "sandstone": 36796,
- "sandwich": 17050,
- "sandwich": 8687,
- "sandwiches": 19667,
- "sandy": 29679,
- "sandy": 10355,
- "sane": 23419,
- "sanford": 32330,
- "sanfrancisco": 20254,
- "sang": 13235,
- "sang": 11684,
- "sange": 12466,
- "sangria": 42665,
- "sani": 39137,
- "sani": 34492,
- "sanitary": 33842,
- "sanitation": 25414,
- "saniti": 43987,
- "sanity": 30517,
- "sanjay": 31712,
- "sanjay": 25796,
- "sanje": 40405,
- "sanjose": 45971,
- "sank": 43692,
- "sano": 34053,
- "sans": 16982,
- "sansk": 39689,
- "sanskrit": 48083,
- "sant": 8356,
- "sant": 23120,
- "santa": 22175,
- "santa": 4555,
- "santac": 28876,
- "santam": 45627,
- "santana": 27033,
- "santander": 46476,
- "santi": 13856,
- "santiago": 16568,
- "santo": 29631,
- "santo": 18400,
- "santor": 28448,
- "santorini": 39573,
- "santos": 16582,
- "sany": 47679,
- "sao": 28026,
- "sap": 8089,
- "sap": 11591,
- "sapi": 40016,
- "sapp": 13427,
- "sapp": 40729,
- "sapphire": 22044,
- "sar": 1808,
- "sar": 9424,
- "sara": 37196,
- "sara": 10063,
- "sarab": 40716,
- "sarac": 35722,
- "sarah": 9086,
- "sarah": 5327,
- "saraj": 42592,
- "sarajevo": 48211,
- "saras": 20373,
- "sarasota": 31990,
- "sarato": 24845,
- "saratoga": 29496,
- "sarawak": 47331,
- "sarcasm": 37246,
- "sarcastic": 48639,
- "sardar": 41786,
- "sarde": 43925,
- "sardin": 27383,
- "sardinia": 41025,
- "sare": 13051,
- "saree": 30860,
- "sargent": 34864,
- "sari": 42327,
- "sari": 20261,
- "saries": 47586,
- "sarkar": 30673,
- "sarko": 33658,
- "sarkodie": 42848,
- "sarmy": 20954,
- "sart": 33006,
- "sary": 15398,
- "sas": 3960,
- "sas": 5235,
- "sash": 35656,
- "sasha": 46078,
- "sasha": 20894,
- "sasia": 44751,
- "sask": 47091,
- "sask": 30416,
- "saskat": 17102,
- "saskatchewan": 23899,
- "saskatoon": 31128,
- "sass": 31351,
- "sassy": 20827,
- "sat": 1382,
- "sat": 3279,
- "sata": 41520,
- "satan": 19446,
- "satanic": 38224,
- "satchel": 45908,
- "sate": 35749,
- "satell": 9031,
- "satellite": 10316,
- "satellites": 28483,
- "sath": 29675,
- "sathletics": 30154,
- "sati": 7038,
- "satin": 21803,
- "sation": 23674,
- "sations": 31232,
- "satire": 29875,
- "satis": 9906,
- "satisf": 22941,
- "satisfaction": 19925,
- "satisfied": 18101,
- "satisfy": 29444,
- "satisfying": 23755,
- "sato": 34376,
- "satu": 45283,
- "satur": 1634,
- "saturated": 32466,
- "saturday": 12537,
- "saturday": 1748,
- "saturdaymorning": 29053,
- "saturdaymotivation": 40843,
- "saturdays": 18930,
- "saturn": 17312,
- "saty": 39426,
- "sau": 2096,
- "sau": 19455,
- "sauce": 5520,
- "saucer": 42272,
- "sauces": 40367,
- "saucy": 46684,
- "saudi": 24511,
- "saudi": 8548,
- "saudiarabia": 28680,
- "sauer": 46333,
- "saul": 47623,
- "saul": 23252,
- "sault": 40361,
- "sauna": 35460,
- "saunders": 23794,
- "saur": 13227,
- "saura": 46532,
- "saurus": 22118,
- "saus": 36121,
- "sausage": 11855,
- "sausages": 31593,
- "sauté": 36290,
- "sautéed": 38517,
- "sauvi": 30116,
- "sauvignon": 32745,
- "sav": 2248,
- "sav": 26533,
- "sava": 40198,
- "savag": 43039,
- "savage": 11859,
- "savannah": 18662,
- "save": 5895,
- "save": 2673,
- "saved": 7137,
- "saveour": 33390,
- "saver": 20987,
- "savers": 31416,
- "saves": 12907,
- "savethe": 18031,
- "savi": 14721,
- "saving": 28498,
- "saving": 6979,
- "savings": 10651,
- "savior": 24762,
- "saviour": 35800,
- "savor": 48071,
- "savory": 32992,
- "savoury": 49071,
- "savoy": 39552,
- "savvy": 29278,
- "saw": 12429,
- "saw": 2425,
- "sawa": 39613,
- "sawards": 29012,
- "sawyer": 27726,
- "sax": 14169,
- "sax": 23766,
- "saxon": 31856,
- "saxophon": 43760,
- "saxophone": 32296,
- "say": 3047,
- "say": 1451,
- "saya": 35170,
- "sayang": 46322,
- "sayers": 44116,
- "sayin": 23662,
- "saying": 4455,
- "says": 1563,
- "saz": 35577,
- "sb": 5576,
- "sb": 4977,
- "sba": 44970,
- "sback": 43840,
- "sband": 27539,
- "sbaseball": 46491,
- "sbball": 39190,
- "sbc": 31404,
- "sberg": 20358,
- "sbi": 41369,
- "sbk": 39211,
- "sboro": 18909,
- "sbridge": 49228,
- "sbs": 18883,
- "sbu": 48075,
- "sbu": 46281,
- "sburg": 7390,
- "sburgh": 48205,
- "sbury": 14081,
- "sby": 26519,
- "sby": 10287,
- "sc": 663,
- "sc": 3219,
- "sca": 11001,
- "scab": 31716,
- "scaf": 28981,
- "scafe": 45574,
- "scaffolding": 41687,
- "scal": 10859,
- "scala": 37997,
- "scalable": 44084,
- "scale": 37817,
- "scale": 5879,
- "scaled": 41923,
- "scales": 22891,
- "scaling": 29116,
- "scallo": 19936,
- "scallop": 39544,
- "scallops": 31430,
- "scalp": 38898,
- "scam": 17620,
- "scam": 13215,
- "scamp": 28451,
- "scams": 34395,
- "scan": 10650,
- "scan": 11261,
- "scanada": 27121,
- "scand": 8110,
- "scandal": 35420,
- "scandal": 11622,
- "scandals": 45490,
- "scandin": 32014,
- "scandinavian": 35661,
- "scanned": 43719,
- "scanner": 24185,
- "scanning": 24092,
- "scans": 31251,
- "scap": 35883,
- "scape": 36005,
- "scape": 12314,
- "scapes": 31933,
- "scar": 4171,
- "scar": 18088,
- "scarborough": 24254,
- "scarce": 38572,
- "scarcity": 45812,
- "scare": 33536,
- "scare": 15920,
- "scarec": 38814,
- "scarecrow": 46504,
- "scared": 9870,
- "scares": 34096,
- "scarf": 13365,
- "scari": 27050,
- "scariest": 37213,
- "scarlet": 20389,
- "scarlett": 28325,
- "scars": 20747,
- "scarves": 29249,
- "scary": 9250,
- "scat": 13899,
- "scattered": 22090,
- "scavenger": 36778,
- "scc": 19458,
- "scd": 48422,
- "scen": 2204,
- "scenario": 20456,
- "scenarios": 31346,
- "scence": 33418,
- "scene": 3562,
- "scenery": 16025,
- "scenes": 5415,
- "scenic": 15394,
- "scent": 36277,
- "scent": 7683,
- "scented": 27190,
- "scenter": 23059,
- "scentre": 39371,
- "scents": 26336,
- "scep": 24439,
- "scfc": 38578,
- "sch": 844,
- "sch": 7542,
- "scha": 42809,
- "schaf": 45588,
- "schaft": 41010,
- "schal": 35568,
- "schalke": 41029,
- "schallenge": 43665,
- "schan": 31328,
- "schar": 15085,
- "schat": 31842,
- "schau": 35830,
- "sche": 3038,
- "sche": 7289,
- "schedu": 4207,
- "schedule": 5521,
- "scheduled": 10986,
- "schedules": 28986,
- "scheduling": 32216,
- "scheer": 26776,
- "schel": 39881,
- "schel": 38569,
- "schem": 17720,
- "scheme": 9024,
- "schemes": 22958,
- "schen": 22738,
- "scher": 21925,
- "scher": 21299,
- "schi": 13731,
- "schi": 24984,
- "schicago": 46230,
- "schiff": 39431,
- "schild": 32148,
- "schiz": 33230,
- "schizoph": 40004,
- "schizophre": 41163,
- "schle": 32022,
- "schmid": 17375,
- "schmidt": 18463,
- "schnau": 45745,
- "schnei": 19941,
- "schneider": 22972,
- "schnit": 40903,
- "scho": 2493,
- "schoice": 23860,
- "schol": 4498,
- "scholar": 7192,
- "scholar": 12830,
- "scholarly": 41065,
- "scholars": 13818,
- "scholarship": 9070,
- "scholarships": 17866,
- "scholastic": 35743,
- "schoo": 20721,
- "school": 6063,
- "school": 1228,
- "schooled": 44722,
- "schoolers": 31455,
- "schooling": 28608,
- "schools": 3513,
- "schre": 47685,
- "schri": 25453,
- "schro": 32381,
- "schu": 11318,
- "schubert": 46939,
- "schul": 14945,
- "schultz": 30308,
- "schulz": 39572,
- "schumacher": 39208,
- "schumer": 25313,
- "schur": 42475,
- "schwab": 47602,
- "schwar": 13985,
- "schwartz": 30617,
- "schwarz": 27074,
- "schwarzenegger": 33860,
- "schwe": 25324,
- "sci": 2267,
- "sci": 8309,
- "sciart": 31704,
- "scicom": 28606,
- "scicomm": 29573,
- "scien": 39261,
- "science": 10201,
- "science": 2497,
- "sciencefiction": 39170,
- "sciences": 11481,
- "scienti": 4338,
- "scientific": 9750,
- "scientist": 11083,
- "scientists": 8045,
- "sciento": 36193,
- "scientology": 44694,
- "scifi": 41862,
- "scifi": 12230,
- "scion": 47208,
- "sciss": 25667,
- "scissors": 30867,
- "sciutto": 44392,
- "sclerosis": 39446,
- "sclub": 20017,
- "sco": 1065,
- "sco": 4763,
- "scoe": 31164,
- "scol": 13599,
- "scoll": 44895,
- "scollege": 39536,
- "scom": 26407,
- "scon": 17163,
- "scon": 29272,
- "scones": 36443,
- "sconf": 39704,
- "scoo": 14199,
- "scooby": 34469,
- "scoop": 13829,
- "scoops": 41360,
- "scope": 7979,
- "scopes": 30328,
- "scopic": 23869,
- "scopy": 20018,
- "scor": 8442,
- "score": 12067,
- "score": 4431,
- "scoreboard": 30104,
- "scorecard": 38128,
- "scored": 6143,
- "scoreless": 33469,
- "scorer": 16572,
- "scorers": 26699,
- "scores": 7039,
- "scoring": 9198,
- "scorpi": 15445,
- "scorpio": 34331,
- "scorpion": 28461,
- "scorpions": 45401,
- "scorsese": 45975,
- "scot": 2496,
- "scot": 9271,
- "scotch": 16687,
- "scoti": 46446,
- "scotia": 27859,
- "scotland": 29174,
- "scotland": 4203,
- "scots": 17260,
- "scotsman": 39612,
- "scott": 7775,
- "scott": 3664,
- "scotti": 6227,
- "scottish": 18039,
- "scottish": 7442,
- "scottsdale": 27817,
- "scotty": 39697,
- "scotty": 26836,
- "scotus": 21720,
- "scou": 44909,
- "scoun": 16110,
- "scouncil": 48787,
- "scountry": 40432,
- "scour": 46172,
- "scout": 32213,
- "scout": 10786,
- "scouting": 19072,
- "scouts": 14837,
- "scow": 27929,
- "scowboys": 31386,
- "scp": 45030,
- "scr": 36131,
- "scra": 11187,
- "scrabble": 39488,
- "scram": 17289,
- "scramble": 32688,
- "scrambled": 39026,
- "scran": 41774,
- "scranton": 45274,
- "scrap": 27950,
- "scrap": 21695,
- "scrapbook": 48733,
- "scrapped": 43325,
- "scraps": 40809,
- "scrat": 9572,
- "scratch": 13258,
- "scratched": 48831,
- "scratches": 46556,
- "scratching": 44617,
- "scre": 1795,
- "scream": 31645,
- "scream": 13239,
- "screamed": 35427,
- "screaming": 12891,
- "screams": 23989,
- "screen": 5351,
- "screen": 3750,
- "screened": 31450,
- "screening": 6688,
- "screenings": 27655,
- "screenplay": 30058,
- "screens": 12689,
- "screenshot": 20637,
- "screenshot": 12646,
- "screenshots": 26783,
- "screenshotsaturday": 21406,
- "screenwriter": 37293,
- "screenwriting": 35465,
- "screw": 25529,
- "screw": 14225,
- "screwdriver": 48748,
- "screwed": 30592,
- "screws": 38292,
- "scri": 2139,
- "scrib": 34259,
- "scribe": 36228,
- "scribed": 38334,
- "scricket": 45947,
- "scrim": 21978,
- "scrimmage": 25216,
- "scrip": 11955,
- "script": 8374,
- "scripted": 40513,
- "scription": 26604,
- "scriptions": 39512,
- "scripts": 20109,
- "scripture": 27186,
- "scro": 30768,
- "scroll": 24160,
- "scrolling": 28889,
- "scrolls": 38113,
- "scroo": 42263,
- "scru": 7589,
- "scrub": 23432,
- "scrubs": 37919,
- "scrum": 29047,
- "scrump": 39791,
- "scrumptious": 40987,
- "scrutiny": 34305,
- "scs": 26853,
- "sct": 39284,
- "scu": 8181,
- "scu": 32135,
- "scuba": 39053,
- "scuba": 20559,
- "scubadiving": 49046,
- "scue": 25955,
- "scul": 4948,
- "scully": 36598,
- "sculp": 6093,
- "sculpt": 45044,
- "sculpted": 41296,
- "sculpting": 44389,
- "sculptor": 29409,
- "sculpture": 8757,
- "sculptures": 20378,
- "scum": 29655,
- "scumb": 44525,
- "scup": 21506,
- "scur": 32742,
- "scwx": 41966,
- "scy": 27471,
- "sd": 3080,
- "sd": 4159,
- "sda": 25548,
- "sdale": 12327,
- "sday": 5902,
- "sday": 1376,
- "sdays": 14491,
- "sdc": 40992,
- "sdcc": 13246,
- "sden": 17241,
- "sdf": 34681,
- "sdg": 20177,
- "sdgs": 16261,
- "sdk": 40015,
- "sdlive": 34561,
- "sdn": 41925,
- "sdsu": 41284,
- "se": 567,
- "se": 611,
- "sea": 5970,
- "sea": 2102,
- "seab": 15728,
- "seabir": 42558,
- "seac": 35626,
- "seaf": 9336,
- "seafood": 12472,
- "seag": 15730,
- "seagu": 38076,
- "seagull": 38858,
- "seagulls": 42215,
- "seahawks": 15341,
- "seal": 21381,
- "seal": 10159,
- "sealed": 13358,
- "sealing": 42992,
- "seals": 18179,
- "seam": 13710,
- "seam": 44201,
- "seaman": 47513,
- "seamless": 29373,
- "seamus": 40175,
- "sean": 11406,
- "sean": 6077,
- "seanhannity": 43316,
- "seap": 29983,
- "seaport": 46418,
- "sear": 1612,
- "search": 23129,
- "search": 1920,
- "searched": 28961,
- "searches": 26378,
- "searching": 10626,
- "seared": 29727,
- "sears": 26693,
- "seas": 7329,
- "seas": 9556,
- "seascape": 42593,
- "seaside": 18867,
- "season": 19288,
- "season": 1367,
- "seasonal": 14215,
- "seasoned": 28399,
- "seasoning": 43439,
- "seasons": 8635,
- "seat": 19670,
- "seat": 4922,
- "seated": 23953,
- "seater": 37543,
- "seating": 16240,
- "seats": 6944,
- "seattle": 24388,
- "seattle": 6274,
- "seau": 32263,
- "seaw": 32658,
- "seaweed": 30204,
- "seaworld": 27422,
- "seb": 35766,
- "seb": 25171,
- "sebasti": 10324,
- "sebastian": 43792,
- "sebastian": 13181,
- "sebring": 41086,
- "sec": 2875,
- "sec": 5338,
- "seca": 37847,
- "secco": 27394,
- "sece": 46297,
- "seclu": 42392,
- "secon": 1846,
- "second": 9329,
- "second": 2241,
- "secondary": 13107,
- "seconds": 6541,
- "secre": 2460,
- "secret": 20710,
- "secret": 4145,
- "secretari": 29515,
- "secretariat": 31767,
- "secretary": 6552,
- "secretly": 21400,
- "secrets": 9735,
- "secs": 28665,
- "sect": 15772,
- "section": 34986,
- "section": 4853,
- "sectional": 21876,
- "sections": 20061,
- "sector": 6579,
- "sectors": 22173,
- "secu": 4894,
- "secular": 47483,
- "secular": 27560,
- "secur": 2557,
- "secure": 44763,
- "secure": 7515,
- "secured": 16848,
- "secures": 31567,
- "securing": 24759,
- "securities": 25080,
- "security": 31245,
- "security": 2741,
- "sed": 14034,
- "sed": 1252,
- "sedan": 24237,
- "sedg": 46926,
- "sedge": 45288,
- "sedi": 29269,
- "sedly": 31771,
- "sedona": 46862,
- "seduc": 19933,
- "seductive": 43721,
- "see": 1751,
- "see": 862,
- "seed": 14064,
- "seed": 6488,
- "seeded": 33688,
- "seeding": 40050,
- "seedlings": 47933,
- "seeds": 9128,
- "seeing": 3214,
- "seek": 8839,
- "seeker": 28011,
- "seekers": 20732,
- "seeking": 8592,
- "seeks": 12594,
- "seem": 20043,
- "seem": 7523,
- "seemed": 17240,
- "seemingly": 25917,
- "seems": 4453,
- "seen": 36273,
- "seen": 2041,
- "seer": 32486,
- "sees": 7594,
- "seeyou": 41279,
- "sef": 27453,
- "seg": 10551,
- "sega": 16122,
- "segment": 15615,
- "segments": 43053,
- "segreg": 49117,
- "segregation": 39086,
- "segu": 33156,
- "segun": 43087,
- "seh": 27536,
- "seh": 41430,
- "sehun": 17705,
- "sei": 13130,
- "sei": 15907,
- "sein": 24669,
- "seine": 41378,
- "seinfeld": 33706,
- "seis": 25559,
- "seismic": 38459,
- "seiz": 22171,
- "seize": 26624,
- "seized": 15826,
- "seizure": 36804,
- "seizures": 47199,
- "sek": 45515,
- "sek": 25880,
- "sel": 1000,
- "sel": 4098,
- "sela": 47006,
- "selamat": 37692,
- "selangor": 44402,
- "selby": 43546,
- "selca": 38606,
- "selcaday": 35924,
- "seldom": 48322,
- "sele": 29137,
- "selec": 3014,
- "select": 8690,
- "selected": 6881,
- "selecting": 32696,
- "selection": 6724,
- "selections": 24099,
- "selective": 28686,
- "selects": 32902,
- "selen": 19970,
- "selena": 14677,
- "selenagomez": 27653,
- "seley": 30556,
- "self": 10139,
- "self": 1322,
- "selfcare": 39560,
- "selfi": 3007,
- "selfie": 26735,
- "selfie": 3666,
- "selfies": 46058,
- "selfies": 10050,
- "selfish": 26907,
- "selfless": 34236,
- "sell": 10279,
- "sell": 5119,
- "seller": 11779,
- "sellers": 16562,
- "selling": 4396,
- "sells": 14306,
- "selma": 36652,
- "sels": 42070,
- "selves": 4505,
- "sely": 8402,
- "sem": 8645,
- "sem": 17106,
- "sema": 31816,
- "seman": 29119,
- "seman": 28378,
- "semana": 41780,
- "semb": 36054,
- "seme": 10855,
- "sement": 10714,
- "sements": 31449,
- "semester": 11905,
- "semi": 11023,
- "semi": 6684,
- "semic": 26967,
- "semicon": 34315,
- "semiconduc": 35646,
- "semiconductor": 43551,
- "semifinal": 22935,
- "semifinals": 21863,
- "semin": 5595,
- "seminar": 7269,
- "seminars": 34870,
- "seminary": 31655,
- "seminole": 42956,
- "semis": 24013,
- "semit": 22628,
- "semite": 23721,
- "semitic": 34894,
- "semitism": 25911,
- "semper": 47391,
- "sen": 1057,
- "sen": 2249,
- "sena": 21584,
- "senate": 30703,
- "senate": 6843,
- "senator": 20871,
- "senator": 8495,
- "senators": 16889,
- "send": 27684,
- "send": 3625,
- "sending": 6985,
- "sends": 10817,
- "sene": 25269,
- "seneca": 33419,
- "senegal": 28255,
- "senew": 49313,
- "seng": 43022,
- "seng": 29971,
- "senior": 19865,
- "senior": 3415,
- "seniors": 8138,
- "senna": 36195,
- "senpai": 46562,
- "sens": 5218,
- "sens": 22837,
- "sensation": 19383,
- "sensational": 23051,
- "sense": 29162,
- "sense": 4747,
- "sensei": 36158,
- "senses": 21809,
- "sensi": 38802,
- "sensible": 30635,
- "sensing": 29236,
- "sensiti": 20531,
- "sensitive": 13734,
- "sensitivity": 27788,
- "sensor": 15330,
- "sensors": 20356,
- "sensory": 21831,
- "sensu": 28157,
- "sensual": 40860,
- "sent": 6200,
- "sent": 3676,
- "sentence": 12737,
- "sentenced": 17773,
- "sentences": 25858,
- "sentencing": 34394,
- "senti": 19042,
- "sentim": 25102,
- "sentiment": 25949,
- "sentimental": 40070,
- "sentiments": 47450,
- "sentin": 20042,
- "sentinel": 23123,
- "senting": 3924,
- "seo": 24743,
- "seo": 8622,
- "seok": 34697,
- "seok": 22482,
- "seokjin": 45584,
- "seoul": 13253,
- "sep": 3212,
- "sep": 10434,
- "separ": 6859,
- "separate": 13886,
- "separated": 22163,
- "separately": 41904,
- "separates": 45365,
- "separati": 39377,
- "separating": 43480,
- "separation": 22007,
- "sephora": 38414,
- "sepsis": 40205,
- "sept": 5380,
- "septe": 3672,
- "september": 3707,
- "septic": 34690,
- "sepul": 47360,
- "seq": 44379,
- "sequ": 5491,
- "seque": 44662,
- "sequel": 15701,
- "sequence": 18833,
- "sequences": 47306,
- "sequencing": 33484,
- "sequo": 32781,
- "sequoia": 42404,
- "ser": 803,
- "ser": 2771,
- "sera": 28250,
- "serbia": 19038,
- "serbian": 33687,
- "sere": 35770,
- "seren": 7880,
- "serena": 19519,
- "serenawilliams": 48316,
- "serendip": 45805,
- "serendipity": 49386,
- "serene": 28269,
- "serenity": 24187,
- "serge": 13477,
- "serge": 35700,
- "sergeant": 22049,
- "sergei": 39870,
- "sergey": 35390,
- "sergi": 47675,
- "sergio": 18359,
- "seri": 2763,
- "seri": 37509,
- "serial": 14216,
- "serie": 19752,
- "seriea": 32660,
- "series": 1857,
- "serious": 47421,
- "serious": 4770,
- "seriously": 4885,
- "sermon": 24884,
- "sero": 48883,
- "serpent": 37084,
- "serpent": 35364,
- "serra": 39851,
- "serrano": 44236,
- "sers": 13509,
- "serum": 25385,
- "serv": 1297,
- "serv": 24571,
- "servant": 20810,
- "servants": 29652,
- "serve": 39202,
- "serve": 2838,
- "served": 4740,
- "server": 36458,
- "server": 8398,
- "serverless": 49243,
- "servers": 22262,
- "serves": 9915,
- "servic": 27115,
- "service": 21496,
- "service": 2086,
- "serviced": 44687,
- "services": 3100,
- "servicing": 41300,
- "serving": 5722,
- "sery": 14279,
- "ses": 23708,
- "ses": 1386,
- "sesame": 21706,
- "sese": 37128,
- "sesh": 24274,
- "session": 2550,
- "sessions": 6327,
- "set": 7965,
- "set": 1167,
- "setback": 43605,
- "seth": 20005,
- "seth": 11870,
- "sethu": 38933,
- "setlist": 33141,
- "seton": 43799,
- "sets": 4650,
- "sett": 4984,
- "sett": 17567,
- "sette": 14613,
- "setter": 23153,
- "settes": 44145,
- "setti": 45170,
- "setting": 5264,
- "settings": 18628,
- "settle": 15075,
- "settled": 18310,
- "settlement": 16494,
- "settlements": 36605,
- "settlers": 35671,
- "settles": 41498,
- "settling": 22036,
- "setup": 11092,
- "seu": 31539,
- "seul": 48975,
- "seum": 18838,
- "seun": 24209,
- "seung": 32393,
- "seung": 33711,
- "seungri": 41627,
- "seuss": 34441,
- "sev": 26585,
- "sev": 37600,
- "seva": 42604,
- "seve": 21458,
- "seve": 22468,
- "sevel": 17439,
- "seven": 7874,
- "seven": 5757,
- "sevens": 29911,
- "sevent": 43048,
- "seventeen": 19337,
- "seventh": 17568,
- "seventy": 47170,
- "sever": 3250,
- "sever": 45557,
- "several": 5560,
- "severance": 26194,
- "severe": 6215,
- "severely": 24417,
- "severn": 34626,
- "severy": 34207,
- "sevilla": 24947,
- "seville": 34988,
- "sew": 28640,
- "sewage": 32777,
- "sewer": 28294,
- "sewing": 15974,
- "sewn": 42118,
- "sex": 3548,
- "sex": 5937,
- "sexi": 20562,
- "sexiest": 25426,
- "sexism": 32059,
- "sexist": 33047,
- "sexu": 14741,
- "sexual": 6749,
- "sexuality": 21244,
- "sexually": 23032,
- "sexy": 21019,
- "sexy": 38127,
- "sey": 6317,
- "sey": 2258,
- "seychel": 36809,
- "seychelles": 38519,
- "seye": 35604,
- "seym": 22657,
- "seymour": 25850,
- "seys": 15081,
- "sez": 42377,
- "señ": 43368,
- "sf": 4435,
- "sf": 4915,
- "sfa": 32675,
- "sfam": 37649,
- "sfb": 27930,
- "sfc": 14129,
- "sfest": 49024,
- "sff": 42056,
- "sfgiants": 20923,
- "sfield": 11801,
- "sfo": 39182,
- "sfootball": 45259,
- "sfor": 9115,
- "sford": 28917,
- "sforsale": 28888,
- "sfw": 18073,
- "sfx": 37995,
- "sg": 9599,
- "sg": 7611,
- "sga": 33049,
- "sgate": 27558,
- "sgh": 47590,
- "sgo": 5393,
- "sgo": 21044,
- "sgt": 13748,
- "sh": 552,
- "sh": 849,
- "sha": 1514,
- "sha": 3337,
- "shaa": 44221,
- "shab": 8323,
- "shabbat": 38042,
- "shabby": 28838,
- "shack": 23866,
- "shack": 18785,
- "shad": 3182,
- "shad": 23874,
- "shade": 34554,
- "shade": 10097,
- "shaded": 43506,
- "shades": 46608,
- "shades": 9270,
- "shadesof": 45180,
- "shading": 37348,
- "shado": 9325,
- "shadow": 15243,
- "shadow": 7068,
- "shadowhun": 19931,
- "shadowhunters": 24834,
- "shadowing": 46092,
- "shadows": 12971,
- "shady": 22158,
- "shaf": 12032,
- "shaft": 21545,
- "shag": 22439,
- "shaggy": 42662,
- "shah": 13203,
- "shah": 8439,
- "shahe": 23643,
- "shaheed": 30060,
- "shaheer": 43969,
- "shahi": 46972,
- "shahid": 25696,
- "shahid": 27138,
- "shahidkapoor": 29892,
- "shahzad": 45915,
- "shai": 47941,
- "shaikh": 45712,
- "shail": 37603,
- "shair": 43135,
- "shak": 8385,
- "shake": 8206,
- "shake": 8251,
- "shaken": 38237,
- "shaker": 26210,
- "shakers": 38411,
- "shakes": 19668,
- "shakespe": 9890,
- "shakespeare": 22499,
- "shakespeare": 12488,
- "shakespearesunday": 32320,
- "shaking": 19101,
- "shakira": 40795,
- "shakti": 48593,
- "shakti": 32458,
- "shakur": 48915,
- "shal": 15056,
- "shal": 28175,
- "shale": 32864,
- "shall": 4742,
- "shallow": 23730,
- "shalom": 31339,
- "sham": 6453,
- "sham": 9005,
- "shaman": 48727,
- "shambles": 40799,
- "shame": 14776,
- "shame": 7593,
- "shameful": 28283,
- "shameless": 25380,
- "shaming": 40553,
- "shampoo": 23944,
- "shamrock": 34199,
- "shan": 5171,
- "shan": 8834,
- "shana": 44835,
- "shand": 29101,
- "shane": 26863,
- "shane": 11572,
- "shang": 11141,
- "shanghai": 12742,
- "shani": 46665,
- "shank": 24685,
- "shankar": 24108,
- "shann": 9932,
- "shannon": 22842,
- "shannon": 13581,
- "shant": 36610,
- "shap": 5581,
- "shape": 26925,
- "shape": 6448,
- "shaped": 10127,
- "shapes": 15377,
- "shaping": 18632,
- "shapiro": 32110,
- "shaq": 46402,
- "shaq": 26843,
- "shar": 1669,
- "shar": 36542,
- "shara": 48849,
- "sharapo": 36489,
- "sharapova": 36671,
- "shard": 42207,
- "share": 7585,
- "share": 1978,
- "shared": 5368,
- "shareholder": 38241,
- "shareholders": 34778,
- "sharepoint": 39213,
- "shares": 4974,
- "sharethe": 49277,
- "shareyour": 45890,
- "shari": 27738,
- "shari": 47390,
- "sharia": 37244,
- "sharif": 15501,
- "sharing": 3567,
- "sharjah": 33420,
- "shark": 15836,
- "shark": 7980,
- "sharks": 10047,
- "sharkweek": 39571,
- "sharma": 10105,
- "sharon": 28722,
- "sharon": 14138,
- "sharp": 17126,
- "sharp": 8157,
- "sharpe": 34374,
- "sharpen": 41465,
- "sharpie": 46858,
- "sharply": 37185,
- "shasta": 46727,
- "shat": 12169,
- "shat": 44388,
- "shatter": 45008,
- "shattered": 26820,
- "shau": 13750,
- "shaun": 23446,
- "shaun": 16669,
- "shav": 11410,
- "shave": 17735,
- "shaved": 25571,
- "shaving": 24261,
- "shaw": 6122,
- "shaw": 6805,
- "shawa": 46413,
- "shawl": 35132,
- "shawn": 16677,
- "shawn": 10970,
- "shawnee": 48060,
- "shawnmendes": 27277,
- "shawty": 38026,
- "shay": 10778,
- "shay": 18361,
- "shaykh": 47223,
- "shaz": 18618,
- "shazam": 29063,
- "shc": 43419,
- "shd": 37729,
- "she": 1729,
- "she": 1043,
- "shea": 20407,
- "shead": 44287,
- "shead": 20434,
- "shealth": 41743,
- "shealth": 22197,
- "shear": 27974,
- "shear": 32108,
- "shearer": 40505,
- "sheath": 45637,
- "shed": 16586,
- "shed": 1492,
- "shedding": 33608,
- "sheds": 25921,
- "shee": 23450,
- "shee": 34321,
- "sheed": 26105,
- "sheehan": 41809,
- "sheen": 25025,
- "sheep": 23604,
- "sheep": 9629,
- "sheer": 17577,
- "sheeran": 18561,
- "sheet": 7298,
- "sheets": 12744,
- "shef": 8237,
- "sheff": 38844,
- "sheff": 43821,
- "sheffiel": 26940,
- "sheffield": 41763,
- "sheffield": 10420,
- "sheffieldissuper": 33628,
- "sheh": 31667,
- "sheikh": 15031,
- "sheil": 42765,
- "sheila": 25734,
- "shek": 33285,
- "shel": 3159,
- "shelby": 36906,
- "shelby": 16885,
- "sheldon": 25079,
- "shelf": 10955,
- "shell": 23374,
- "shell": 6648,
- "shelley": 22497,
- "shelling": 43166,
- "shells": 19265,
- "shelly": 37461,
- "shelter": 8599,
- "sheltered": 48070,
- "shelters": 24312,
- "shelton": 24471,
- "shelves": 16225,
- "shem": 40299,
- "shen": 10154,
- "shen": 31098,
- "shenan": 20965,
- "shenando": 44666,
- "shenanigans": 26590,
- "shenko": 39751,
- "shenmue": 48279,
- "shenzhen": 38970,
- "shep": 33757,
- "shep": 44857,
- "shepard": 26810,
- "shepher": 11008,
- "shepherd": 13242,
- "shepherds": 42792,
- "sheppard": 37304,
- "sher": 3570,
- "sher": 4510,
- "sheraton": 39400,
- "shere": 21507,
- "sheri": 9235,
- "sheridan": 27085,
- "sheriff": 10309,
- "sherlock": 17294,
- "sherman": 17822,
- "sherry": 44348,
- "sherry": 24689,
- "shers": 14141,
- "sherwood": 24527,
- "sheryl": 39773,
- "shes": 45514,
- "shes": 2502,
- "shet": 15850,
- "shetland": 29595,
- "shetty": 25533,
- "shev": 45182,
- "sheva": 45132,
- "shh": 35025,
- "shhh": 36932,
- "shi": 823,
- "shi": 3533,
- "shia": 23791,
- "shibu": 36177,
- "shibuya": 41623,
- "shie": 26638,
- "shiel": 33413,
- "shield": 8670,
- "shields": 19085,
- "shies": 35312,
- "shif": 35317,
- "shift": 43767,
- "shift": 6905,
- "shifted": 34429,
- "shifter": 48944,
- "shifting": 21992,
- "shifts": 23957,
- "shik": 36980,
- "shil": 14370,
- "shill": 32121,
- "shill": 30090,
- "shilpa": 47062,
- "shilpa": 40690,
- "shim": 11986,
- "shim": 32780,
- "shima": 14382,
- "shimano": 48904,
- "shimi": 40517,
- "shimmer": 38792,
- "shin": 5664,
- "shin": 11784,
- "shinde": 41516,
- "shine": 17582,
- "shine": 3780,
- "shinee": 19660,
- "shines": 16015,
- "shing": 38641,
- "shing": 1743,
- "shining": 10485,
- "shino": 43074,
- "shiny": 12190,
- "ship": 7645,
- "ship": 1158,
- "shipment": 28553,
- "shipp": 34709,
- "shipped": 15279,
- "shippers": 44789,
- "shipping": 5721,
- "ships": 3262,
- "shipwreck": 48878,
- "shipy": 26828,
- "shipyard": 31273,
- "shir": 1956,
- "shiraz": 35618,
- "shire": 11975,
- "shire": 2968,
- "shirehour": 32456,
- "shirley": 18189,
- "shiro": 26048,
- "shirt": 27576,
- "shirt": 2523,
- "shirtless": 28959,
- "shirts": 5803,
- "shistory": 34979,
- "shiv": 18042,
- "shiv": 37121,
- "shiva": 33881,
- "shiva": 21174,
- "shka": 38944,
- "shld": 49359,
- "shma": 48074,
- "shment": 8802,
- "shments": 18822,
- "sho": 719,
- "sho": 13756,
- "shock": 19617,
- "shock": 8736,
- "shocked": 15787,
- "shocker": 37971,
- "shockey": 22258,
- "shocking": 13394,
- "shocks": 31886,
- "shoe": 16308,
- "shoe": 7342,
- "shoes": 49391,
- "shoes": 4079,
- "shol": 21472,
- "sholm": 44139,
- "shome": 42701,
- "shon": 19526,
- "shon": 37621,
- "shone": 47173,
- "shoo": 1975,
- "shook": 20730,
- "shoops": 29956,
- "shoot": 12531,
- "shoot": 3704,
- "shooter": 13645,
- "shooters": 31902,
- "shooting": 3992,
- "shootings": 26753,
- "shootout": 20666,
- "shoots": 14144,
- "shop": 5738,
- "shop": 1557,
- "shopify": 47949,
- "shoplocal": 21775,
- "shopp": 38486,
- "shoppe": 38236,
- "shopped": 28088,
- "shopper": 24346,
- "shoppers": 22316,
- "shopping": 42101,
- "shopping": 4266,
- "shops": 6467,
- "shopsmall": 35942,
- "shor": 3209,
- "shore": 14717,
- "shore": 5928,
- "shored": 33140,
- "shoreditch": 35042,
- "shoreline": 34807,
- "shores": 18102,
- "short": 6803,
- "short": 3005,
- "shortage": 19910,
- "shortages": 38730,
- "shortcuts": 45793,
- "shorten": 41711,
- "shorter": 20350,
- "shortest": 33717,
- "shortfilm": 37204,
- "shorth": 37397,
- "shortlist": 28163,
- "shortlisted": 20631,
- "shortly": 11967,
- "shorts": 9680,
- "shorty": 33502,
- "shot": 9805,
- "shot": 2000,
- "shotel": 42365,
- "shotgun": 21643,
- "shots": 5342,
- "shou": 3890,
- "shoul": 29847,
- "should": 14947,
- "should": 1535,
- "shoulder": 8476,
- "shoulders": 18738,
- "shouldn": 9416,
- "shour": 20025,
- "shouse": 28671,
- "shout": 7335,
- "shout": 5214,
- "shouted": 44397,
- "shouting": 26464,
- "shoutout": 8274,
- "shouts": 26709,
- "shovel": 31778,
- "show": 2133,
- "show": 1080,
- "showbiz": 34156,
- "showcas": 14290,
- "showcase": 7265,
- "showcased": 35786,
- "showcases": 26266,
- "showcasing": 17036,
- "showdown": 15576,
- "showed": 7150,
- "shower": 7777,
- "showers": 9893,
- "showing": 3649,
- "shown": 8506,
- "showroom": 16821,
- "shows": 2665,
- "showtime": 40576,
- "showtime": 15442,
- "showyour": 46733,
- "shp": 38341,
- "shq": 21145,
- "shr": 10118,
- "shra": 21360,
- "shradd": 28172,
- "shraddha": 35208,
- "shraddhakapoor": 40385,
- "shre": 12101,
- "shred": 19756,
- "shred": 33017,
- "shredded": 31772,
- "shredding": 45534,
- "shree": 37410,
- "shrek": 35009,
- "shrews": 26411,
- "shrewsbury": 30921,
- "shri": 8838,
- "shri": 11424,
- "shrimp": 12727,
- "shrin": 24865,
- "shrine": 16156,
- "shrink": 34957,
- "shrinking": 41243,
- "shrm": 44163,
- "shro": 15259,
- "shroff": 32081,
- "shrop": 22630,
- "shropshire": 26344,
- "shru": 14911,
- "shrub": 41464,
- "shrubs": 47975,
- "shrun": 46767,
- "shs": 16184,
- "sht": 44210,
- "shti": 38927,
- "shu": 2872,
- "shu": 17651,
- "shua": 33771,
- "shub": 40552,
- "shud": 45782,
- "shuff": 42641,
- "shuffle": 21681,
- "shui": 45473,
- "shuk": 29927,
- "shukla": 46829,
- "shul": 30721,
- "shum": 37383,
- "shun": 24479,
- "shun": 39594,
- "shur": 41032,
- "shut": 8702,
- "shut": 8282,
- "shutdown": 16051,
- "shutout": 24385,
- "shuts": 28313,
- "shutt": 31866,
- "shutter": 36235,
- "shutter": 33902,
- "shutters": 46894,
- "shutting": 31383,
- "shuttle": 15842,
- "shwar": 41640,
- "shy": 22678,
- "shy": 9682,
- "si": 564,
- "si": 2990,
- "sia": 2357,
- "siam": 29686,
- "siam": 48248,
- "siamese": 43161,
- "sian": 28510,
- "sian": 6221,
- "sians": 26583,
- "sias": 28645,
- "siber": 22206,
- "siberia": 39969,
- "siberian": 34058,
- "sibl": 14338,
- "sible": 14507,
- "sibling": 43060,
- "sibling": 23779,
- "siblings": 17156,
- "sic": 8278,
- "sic": 1118,
- "sica": 34125,
- "sical": 33875,
- "sichuan": 48950,
- "sicilian": 45292,
- "sicily": 23179,
- "sick": 11143,
- "sick": 5359,
- "sickest": 47972,
- "sickle": 41459,
- "sickness": 28898,
- "sics": 26297,
- "sid": 10117,
- "sid": 15119,
- "sidd": 19842,
- "siddi": 35227,
- "side": 5869,
- "side": 1145,
- "sided": 21061,
- "sidekick": 44683,
- "sidel": 43557,
- "sideline": 32056,
- "sidelines": 31046,
- "sider": 30581,
- "siders": 41249,
- "sides": 7578,
- "sideshow": 46789,
- "sidewalk": 23278,
- "sidewalks": 43583,
- "sideways": 35593,
- "siding": 38758,
- "sidney": 22598,
- "sie": 8533,
- "sie": 5685,
- "sieg": 49203,
- "siege": 18460,
- "siegel": 48559,
- "siem": 18434,
- "siemens": 30147,
- "siempre": 44030,
- "siena": 33336,
- "sienna": 40373,
- "sier": 10028,
- "sier": 7444,
- "sierra": 13552,
- "siers": 35923,
- "sies": 16367,
- "siest": 18323,
- "sif": 29300,
- "sig": 872,
- "sig": 19145,
- "sigh": 36303,
- "sigh": 15505,
- "sighs": 44579,
- "sight": 16897,
- "sight": 6329,
- "sighted": 33034,
- "sighting": 17507,
- "sightings": 30004,
- "sights": 17364,
- "sightseeing": 34210,
- "sigma": 45075,
- "sigma": 15697,
- "sign": 5538,
- "sign": 2292,
- "signage": 21156,
- "signal": 10781,
- "signaling": 38492,
- "signalling": 48426,
- "signals": 17150,
- "signation": 24347,
- "signature": 9189,
- "signatures": 21865,
- "signed": 3163,
- "signee": 39778,
- "signi": 34023,
- "signific": 6374,
- "significance": 23769,
- "significant": 8735,
- "significantly": 16187,
- "signing": 4401,
- "signingday": 40282,
- "signings": 27731,
- "signs": 4659,
- "signup": 40791,
- "sigue": 49401,
- "sii": 36672,
- "sik": 19974,
- "sik": 22413,
- "sika": 31144,
- "sikh": 21829,
- "sikhs": 45426,
- "sil": 1556,
- "sil": 8315,
- "sila": 41754,
- "sile": 37620,
- "silen": 39048,
- "silence": 8462,
- "silenced": 45415,
- "silent": 30352,
- "silent": 8487,
- "silently": 42640,
- "silhou": 20589,
- "silhouette": 26149,
- "silic": 23830,
- "silicon": 32412,
- "silicon": 17888,
- "silicone": 28221,
- "silk": 25891,
- "silk": 9743,
- "silky": 29554,
- "sill": 42468,
- "sill": 48024,
- "silly": 11883,
- "silon": 31841,
- "sils": 39708,
- "silva": 16489,
- "silve": 37697,
- "silver": 7525,
- "silver": 3467,
- "silverado": 46160,
- "silverstone": 29666,
- "silvia": 37289,
- "sim": 5026,
- "sim": 10740,
- "sima": 35871,
- "simba": 39492,
- "simcoe": 47148,
- "sime": 28329,
- "simi": 38073,
- "simil": 7202,
- "similar": 8547,
- "similarities": 34716,
- "simm": 13001,
- "simmons": 14699,
- "simo": 37171,
- "simon": 8796,
- "simon": 6668,
- "simona": 46277,
- "simone": 19062,
- "simons": 33097,
- "simp": 2542,
- "simple": 19018,
- "simple": 4129,
- "simpler": 35489,
- "simplest": 39588,
- "simpli": 16868,
- "simplicity": 21262,
- "simplified": 36647,
- "simplify": 35479,
- "simply": 25637,
- "simply": 6151,
- "simpson": 41805,
- "simpson": 11750,
- "simpsons": 21092,
- "sims": 14021,
- "simul": 9845,
- "simulated": 46395,
- "simulation": 18610,
- "simulator": 20821,
- "simultaneous": 48816,
- "simultaneously": 28575,
- "sin": 1303,
- "sin": 3421,
- "sina": 19541,
- "sinai": 33226,
- "sinatra": 27262,
- "sinc": 30464,
- "since": 1855,
- "sincere": 24513,
- "sincere": 24886,
- "sincerely": 25673,
- "sinclair": 23100,
- "sind": 39598,
- "sind": 30877,
- "sindh": 20754,
- "sindia": 48038,
- "sine": 22741,
- "sine": 33793,
- "sinfo": 47178,
- "sing": 1387,
- "sing": 1197,
- "singapo": 27861,
- "singapore": 28879,
- "singapore": 6754,
- "singer": 33880,
- "singer": 5108,
- "singers": 15613,
- "singersongwriter": 44585,
- "singh": 19445,
- "singh": 5715,
- "singing": 5864,
- "single": 19524,
- "single": 2688,
- "singles": 12025,
- "singleton": 46247,
- "singly": 16619,
- "sings": 13635,
- "singul": 34003,
- "singular": 44009,
- "singularity": 48410,
- "sinha": 29416,
- "sini": 41781,
- "sini": 26319,
- "sinister": 31313,
- "sink": 37232,
- "sink": 14551,
- "sinking": 27949,
- "sinks": 32710,
- "sinn": 36315,
- "sinner": 45380,
- "sinners": 43436,
- "sino": 29759,
- "sins": 9345,
- "sinthe": 30737,
- "sinu": 37351,
- "sinus": 47535,
- "sio": 10807,
- "siob": 40954,
- "siology": 46315,
- "sion": 5676,
- "sion": 1015,
- "sional": 14533,
- "sionally": 30754,
- "sions": 4060,
- "sioux": 44695,
- "sioux": 24954,
- "sip": 16096,
- "sipping": 28527,
- "sir": 10708,
- "sir": 3846,
- "sire": 28450,
- "siren": 33026,
- "sirens": 35907,
- "siri": 13986,
- "siri": 18394,
- "sirius": 23574,
- "sirius": 34999,
- "siriusxm": 29833,
- "sirloin": 46828,
- "sis": 18132,
- "sis": 2580,
- "sisd": 27132,
- "sisi": 37892,
- "siss": 42929,
- "sissy": 27564,
- "sist": 20520,
- "sista": 37448,
- "sister": 17417,
- "sister": 3677,
- "sisterhood": 37313,
- "sisters": 6404,
- "sit": 7387,
- "sit": 4037,
- "sitcom": 30426,
- "site": 26792,
- "site": 1988,
- "sites": 7236,
- "sith": 41499,
- "sito": 42613,
- "sits": 12726,
- "sitt": 42988,
- "sitter": 40777,
- "sittin": 40887,
- "sitting": 4919,
- "situ": 5562,
- "situ": 42536,
- "situated": 22030,
- "situation": 7144,
- "situations": 19096,
- "sity": 38177,
- "sity": 5477,
- "siu": 40174,
- "sium": 8090,
- "sius": 27595,
- "siva": 20991,
- "sivan": 36931,
- "sive": 23572,
- "sive": 1875,
- "sively": 10343,
- "siveness": 39667,
- "sives": 23896,
- "sivity": 42738,
- "siwon": 29055,
- "six": 5968,
- "six": 4093,
- "sixers": 25941,
- "sixteen": 28677,
- "sixth": 12909,
- "sixties": 44948,
- "sixty": 32588,
- "siya": 44440,
- "size": 38377,
- "size": 3235,
- "sized": 9832,
- "sizes": 10253,
- "sizing": 28330,
- "sizz": 23778,
- "sizzle": 47890,
- "sizzling": 35799,
- "sj": 7536,
- "sj": 16010,
- "sjo": 42012,
- "sk": 909,
- "sk": 2058,
- "ska": 7495,
- "skag": 31948,
- "skan": 46772,
- "skar": 27587,
- "skar": 26835,
- "skate": 13740,
- "skate": 12745,
- "skateboard": 31777,
- "skateboarding": 31352,
- "skater": 30337,
- "skaters": 39824,
- "skates": 31479,
- "skc": 44551,
- "ske": 6261,
- "ske": 25516,
- "skel": 36564,
- "skelet": 27075,
- "skeletal": 37369,
- "skeleton": 20062,
- "skeletons": 48874,
- "skell": 40801,
- "skep": 27772,
- "skeptical": 44934,
- "sker": 37640,
- "sker": 33600,
- "sket": 3744,
- "sketch": 11767,
- "sketch": 5269,
- "sketchbook": 18899,
- "sketched": 38581,
- "sketches": 17622,
- "sketching": 23228,
- "sketchy": 41582,
- "skey": 37453,
- "ski": 3327,
- "ski": 3428,
- "skid": 36574,
- "skid": 32099,
- "skier": 42585,
- "skies": 7244,
- "skiing": 14400,
- "skil": 24543,
- "skill": 15598,
- "skill": 10604,
- "skilled": 17535,
- "skillet": 40568,
- "skills": 4113,
- "skim": 33191,
- "skin": 5821,
- "skin": 3575,
- "skincare": 12648,
- "skine": 37300,
- "sking": 46215,
- "skinned": 42199,
- "skinner": 30261,
- "skinny": 42729,
- "skinny": 15457,
- "skins": 11594,
- "skip": 39793,
- "skip": 14296,
- "skipped": 40639,
- "skipper": 22226,
- "skipping": 34867,
- "skir": 8919,
- "skirt": 12386,
- "skirts": 24840,
- "skis": 32843,
- "skit": 43573,
- "skitchen": 42820,
- "skittles": 43213,
- "sko": 15141,
- "sko": 23493,
- "skoda": 38668,
- "skool": 26743,
- "skril": 43149,
- "skrillex": 43651,
- "sks": 48136,
- "sku": 10836,
- "skul": 17561,
- "skull": 34068,
- "skull": 12092,
- "skulls": 31804,
- "skunk": 42194,
- "sky": 3075,
- "sky": 2390,
- "skybet": 45540,
- "skye": 21475,
- "skyl": 43554,
- "skylar": 45411,
- "skyline": 14606,
- "skymap": 41734,
- "skynews": 40977,
- "skype": 17069,
- "skyrim": 33693,
- "skysports": 39845,
- "skysports": 46725,
- "skywalker": 32936,
- "sl": 2621,
- "sl": 7489,
- "sla": 2725,
- "sla": 26707,
- "slab": 24241,
- "slabs": 42818,
- "slack": 37108,
- "slack": 30142,
- "slade": 33546,
- "slain": 35972,
- "slalom": 43540,
- "slam": 14891,
- "slam": 10131,
- "slammed": 29772,
- "slams": 18907,
- "slan": 44663,
- "slan": 47193,
- "sland": 11294,
- "slang": 33655,
- "slap": 48830,
- "slap": 21751,
- "slapped": 38861,
- "slaps": 46796,
- "slash": 19749,
- "slat": 38966,
- "slate": 17919,
- "slated": 36094,
- "slater": 25968,
- "slaugh": 26782,
- "slaughter": 19815,
- "slaughtered": 46615,
- "slav": 47292,
- "slava": 41797,
- "slave": 14029,
- "slavery": 15754,
- "slaves": 23833,
- "slaw": 28178,
- "slay": 48319,
- "slay": 19380,
- "slayed": 44870,
- "slayer": 21605,
- "slaying": 27812,
- "slays": 45648,
- "slc": 21972,
- "sle": 1709,
- "sleague": 23336,
- "sled": 28438,
- "sledge": 48750,
- "slee": 17642,
- "slee": 38977,
- "sleek": 23187,
- "sleep": 4656,
- "sleep": 3840,
- "sleeper": 28709,
- "sleeping": 6982,
- "sleepless": 39779,
- "sleepover": 39415,
- "sleeps": 16610,
- "sleepy": 32572,
- "sleepy": 14497,
- "sleet": 36948,
- "sleeve": 35270,
- "sleeve": 10536,
- "sleeveless": 38049,
- "sleeves": 19691,
- "sleg": 47650,
- "sleigh": 30865,
- "slender": 40331,
- "slept": 20388,
- "sler": 14066,
- "sley": 17198,
- "sley": 6496,
- "sli": 1811,
- "sli": 44824,
- "slic": 19692,
- "slice": 13431,
- "sliced": 28121,
- "slices": 28424,
- "slick": 18341,
- "slide": 27828,
- "slide": 8837,
- "slider": 37861,
- "sliders": 40700,
- "slides": 15939,
- "slideshow": 42817,
- "sliding": 21468,
- "slife": 15448,
- "sliga": 21080,
- "slight": 14297,
- "slightly": 8456,
- "sligo": 30424,
- "slike": 38744,
- "slim": 35226,
- "slim": 12364,
- "slime": 29107,
- "sling": 28021,
- "sling": 32607,
- "slinger": 47269,
- "slions": 43363,
- "slip": 39785,
- "slip": 12105,
- "slipknot": 41816,
- "slipped": 30344,
- "slipper": 39644,
- "slippers": 26509,
- "slippery": 30814,
- "slipping": 36301,
- "slips": 30632,
- "slist": 33749,
- "slit": 47011,
- "slive": 31652,
- "slo": 4303,
- "slo": 36083,
- "sloan": 29110,
- "sloane": 41553,
- "slogan": 23398,
- "slogans": 42795,
- "slope": 22769,
- "slopes": 24066,
- "sloppy": 36154,
- "slot": 14500,
- "sloth": 30007,
- "slots": 19238,
- "slou": 48493,
- "slovak": 23315,
- "slovakia": 25994,
- "sloven": 17018,
- "slovenia": 21037,
- "slow": 6674,
- "slow": 5444,
- "slowdown": 38421,
- "slowed": 43793,
- "slower": 29181,
- "slowing": 29839,
- "slowly": 9568,
- "slows": 46855,
- "slp": 45599,
- "slr": 21325,
- "sls": 33651,
- "slt": 39283,
- "sltd": 36388,
- "slu": 7224,
- "slu": 47456,
- "slug": 34190,
- "slugger": 48671,
- "slum": 46754,
- "slumber": 44295,
- "slump": 35588,
- "slur": 30476,
- "slush": 39815,
- "slv": 45526,
- "sly": 28145,
- "sly": 21062,
- "sm": 978,
- "sm": 2764,
- "sma": 4357,
- "sma": 11854,
- "smack": 21280,
- "smack": 30026,
- "smackdown": 26138,
- "smafia": 47686,
- "smag": 32212,
- "smal": 48379,
- "small": 5244,
- "small": 2442,
- "smallbiz": 41724,
- "smallbiz": 18987,
- "smallbusiness": 21316,
- "smalle": 18490,
- "smaller": 12431,
- "smallest": 18686,
- "smalls": 41696,
- "sman": 9612,
- "smar": 3201,
- "smart": 5383,
- "smart": 4115,
- "smartcities": 34822,
- "smartcity": 33973,
- "smarter": 18990,
- "smartest": 37092,
- "smarthome": 47726,
- "smartphone": 11290,
- "smartphones": 22212,
- "smartwatch": 35798,
- "smash": 17258,
- "smash": 10332,
- "smashbros": 44897,
- "smashed": 18410,
- "smashes": 45657,
- "smashing": 19632,
- "smatter": 16537,
- "smb": 30446,
- "smc": 31375,
- "smc": 28312,
- "smd": 34582,
- "sme": 11758,
- "sme": 15650,
- "smear": 37546,
- "smel": 28476,
- "smell": 9688,
- "smelling": 32493,
- "smells": 14668,
- "smelly": 46145,
- "smen": 15961,
- "smer": 48526,
- "smere": 39629,
- "smes": 26141,
- "smg": 46876,
- "smh": 9623,
- "smi": 5655,
- "smi": 40049,
- "smil": 33937,
- "smile": 27641,
- "smile": 3490,
- "smiled": 34362,
- "smiles": 8726,
- "smiley": 22925,
- "smiling": 9200,
- "smir": 24667,
- "smith": 10527,
- "smith": 2915,
- "smiths": 27872,
- "smithson": 25372,
- "smithsonian": 31209,
- "smm": 19510,
- "smma": 42370,
- "smo": 2513,
- "smo": 13437,
- "smobile": 38923,
- "smog": 44425,
- "smoke": 20381,
- "smoke": 6664,
- "smoked": 11161,
- "smoker": 32348,
- "smokers": 29571,
- "smokes": 40336,
- "smokey": 23670,
- "smokin": 32825,
- "smoking": 9038,
- "smoky": 25549,
- "smol": 29939,
- "smol": 40403,
- "smoo": 5430,
- "smooth": 10958,
- "smooth": 8990,
- "smoother": 44271,
- "smoothie": 16668,
- "smoothies": 34458,
- "smoothly": 32380,
- "smore": 48323,
- "smp": 32260,
- "smriti": 49227,
- "sms": 10409,
- "smt": 26672,
- "smtown": 26072,
- "smu": 10878,
- "smu": 30458,
- "smug": 41021,
- "smugg": 28130,
- "smuggling": 34146,
- "smur": 24708,
- "smusic": 19191,
- "smw": 44929,
- "smx": 46699,
- "smy": 14381,
- "smyth": 44822,
- "sn": 1672,
- "sn": 5844,
- "sna": 4032,
- "snack": 47548,
- "snack": 10039,
- "snacking": 46474,
- "snacks": 12349,
- "snag": 34789,
- "snag": 28043,
- "snagged": 48534,
- "snail": 23132,
- "snails": 34928,
- "snake": 30133,
- "snake": 8798,
- "snakes": 19605,
- "snap": 4578,
- "snap": 7404,
- "snapback": 31234,
- "snapchat": 7799,
- "snapmatic": 45907,
- "snapp": 10185,
- "snapped": 15543,
- "snapper": 31677,
- "snapping": 31581,
- "snaps": 16890,
- "snapshot": 18243,
- "snar": 30810,
- "snare": 40651,
- "snat": 18457,
- "snatch": 35302,
- "snatched": 44821,
- "snation": 14362,
- "snazzy": 48963,
- "snc": 39918,
- "sne": 3791,
- "sne": 46503,
- "sneak": 27871,
- "sneak": 6917,
- "sneaker": 31698,
- "sneaker": 24781,
- "sneakers": 17397,
- "sneaking": 34633,
- "sneakpeek": 47831,
- "sneaks": 40926,
- "sneaky": 21293,
- "snee": 42095,
- "snell": 46410,
- "sner": 31424,
- "snes": 26667,
- "snews": 18623,
- "snf": 47651,
- "sng": 41549,
- "snhl": 43093,
- "sni": 7186,
- "sni": 35570,
- "snickers": 49127,
- "sniff": 37841,
- "snip": 42954,
- "sniper": 22157,
- "snippet": 37531,
- "snippets": 44001,
- "snl": 16011,
- "sno": 8567,
- "sno": 17802,
- "snoo": 11352,
- "snooker": 25657,
- "snoop": 44503,
- "snoop": 27754,
- "snoopdogg": 48388,
- "snoopy": 41967,
- "snooze": 40718,
- "snor": 16590,
- "snoring": 44560,
- "snorkel": 44285,
- "snorkeling": 48103,
- "snow": 3880,
- "snow": 2583,
- "snowball": 39254,
- "snowboard": 33403,
- "snowboarding": 32397,
- "snowday": 37982,
- "snowden": 32154,
- "snowdon": 47107,
- "snowdonia": 36088,
- "snowed": 45073,
- "snowfall": 21714,
- "snowflake": 33447,
- "snowflakes": 38618,
- "snowing": 21443,
- "snowman": 22668,
- "snowstorm": 38777,
- "snowy": 14191,
- "snp": 15301,
- "sns": 36343,
- "snsd": 27961,
- "snt": 34834,
- "snu": 9694,
- "snuck": 36522,
- "snug": 45169,
- "snuggle": 31327,
- "snuggles": 48165,
- "sny": 17526,
- "snyder": 22106,
- "snz": 37678,
- "so": 759,
- "so": 706,
- "soa": 39584,
- "soak": 24839,
- "soaked": 26592,
- "soaking": 26750,
- "soap": 26086,
- "soap": 11088,
- "soaps": 40958,
- "soar": 48997,
- "soar": 22241,
- "soaring": 27968,
- "soars": 41348,
- "sob": 24900,
- "sob": 35507,
- "sobbing": 36691,
- "sober": 30969,
- "sober": 24487,
- "sobre": 42768,
- "sobri": 49308,
- "sobs": 43636,
- "soc": 3253,
- "soc": 7741,
- "soca": 49239,
- "socal": 46470,
- "socal": 20450,
- "soccer": 16268,
- "soccer": 4233,
- "socceroos": 41997,
- "socent": 30831,
- "sochi": 21014,
- "soci": 1720,
- "social": 4803,
- "social": 2346,
- "socialism": 23372,
- "socialist": 18450,
- "socialists": 43839,
- "socially": 24555,
- "socialmedi": 23813,
- "socialmedia": 9600,
- "socialmediamarketing": 31790,
- "societal": 40058,
- "societies": 25855,
- "society": 3757,
- "socio": 44319,
- "socio": 42790,
- "sociology": 32373,
- "sock": 29801,
- "sock": 18277,
- "socket": 28657,
- "socks": 8774,
- "socorro": 46409,
- "socute": 45086,
- "sod": 31435,
- "soda": 13533,
- "sodium": 29070,
- "soe": 44136,
- "soe": 25498,
- "soever": 34024,
- "sof": 1571,
- "sof": 41187,
- "sofa": 15723,
- "soff": 35290,
- "soff": 30684,
- "sofficial": 20563,
- "sofi": 41537,
- "sofia": 18914,
- "sofinstagram": 17301,
- "soft": 12778,
- "soft": 3773,
- "softball": 8369,
- "softer": 44462,
- "softhe": 23127,
- "softly": 34958,
- "software": 35941,
- "software": 5847,
- "softwitter": 11311,
- "sog": 44775,
- "soggy": 41168,
- "sohn": 49267,
- "soho": 47749,
- "soho": 17592,
- "soi": 40495,
- "soil": 33417,
- "soil": 9216,
- "soils": 34891,
- "soir": 43427,
- "sok": 43456,
- "sol": 1175,
- "sol": 9941,
- "sola": 40086,
- "solace": 42567,
- "solar": 16990,
- "solar": 5199,
- "solareclipse": 44727,
- "sold": 33116,
- "sold": 3939,
- "soldi": 5098,
- "soldier": 9355,
- "soldiers": 7547,
- "sole": 10519,
- "sole": 8576,
- "soleil": 33148,
- "solely": 27913,
- "solent": 47783,
- "soles": 22682,
- "soli": 3911,
- "solic": 19369,
- "solicitor": 45647,
- "solicitors": 46000,
- "solid": 30626,
- "solid": 6148,
- "solidar": 10415,
- "solidarity": 10983,
- "solidi": 46136,
- "solids": 49070,
- "solihull": 45293,
- "solit": 37039,
- "solitaire": 47257,
- "solitary": 33094,
- "solitude": 33199,
- "solo": 17626,
- "solo": 5797,
- "soloist": 46391,
- "solom": 15768,
- "solomon": 19785,
- "solos": 44868,
- "solst": 20298,
- "solstice": 21359,
- "solu": 2487,
- "solution": 4575,
- "solutions": 5140,
- "solve": 8917,
- "solved": 13451,
- "solves": 42740,
- "solving": 15581,
- "som": 734,
- "som": 10672,
- "soma": 36170,
- "somal": 40281,
- "somali": 26231,
- "somalia": 17051,
- "somaliland": 43315,
- "some": 1132,
- "some": 836,
- "somebody": 8305,
- "someday": 17127,
- "somehow": 11735,
- "someone": 2100,
- "somer": 9656,
- "somerhalder": 33990,
- "somerset": 14926,
- "somerville": 41409,
- "somes": 38124,
- "somethin": 33541,
- "something": 28316,
- "something": 2006,
- "sometime": 21464,
- "sometimes": 4237,
- "somewhat": 17864,
- "somewhere": 8119,
- "somm": 42726,
- "somme": 30625,
- "sommer": 44954,
- "somos": 24951,
- "son": 1176,
- "son": 825,
- "sona": 21249,
- "sonam": 40096,
- "sonar": 48235,
- "sonata": 37009,
- "sone": 29599,
- "song": 6868,
- "song": 2295,
- "songs": 4641,
- "songwriter": 13034,
- "songwriters": 39583,
- "songwriting": 33567,
- "songz": 49302,
- "soni": 34899,
- "soni": 35911,
- "sonia": 20409,
- "sonic": 23785,
- "sonic": 9132,
- "sonics": 48511,
- "sonja": 46102,
- "sonline": 23412,
- "sonny": 43000,
- "sonny": 20880,
- "sono": 44109,
- "sonom": 48596,
- "sonoma": 26269,
- "sons": 5502,
- "sonsof": 46676,
- "sont": 31063,
- "sonthe": 40923,
- "sony": 16042,
- "sony": 8748,
- "sonya": 39172,
- "soo": 5517,
- "soo": 8602,
- "soom": 39771,
- "soon": 27559,
- "soon": 1745,
- "sooner": 18968,
- "sooners": 30449,
- "sooo": 11526,
- "soooo": 13658,
- "sooooo": 21199,
- "soooooo": 34859,
- "soor": 46698,
- "soothe": 44424,
- "soothing": 27730,
- "sop": 3974,
- "sop": 19194,
- "soph": 34963,
- "sophi": 6192,
- "sophia": 16790,
- "sophie": 38648,
- "sophie": 12357,
- "sophistic": 17646,
- "sophisticated": 20833,
- "sophom": 13696,
- "sophomore": 15242,
- "sophomores": 47645,
- "soprano": 28880,
- "soproud": 44479,
- "sor": 1852,
- "sor": 16872,
- "sora": 38719,
- "sorbet": 39994,
- "sore": 43330,
- "sore": 15454,
- "sored": 6731,
- "soren": 38907,
- "sorg": 28152,
- "sori": 38588,
- "sorority": 30059,
- "soros": 33248,
- "sorren": 44012,
- "sorrow": 28020,
- "sorrows": 47924,
- "sorry": 25745,
- "sorry": 3675,
- "sorrynotsorry": 37105,
- "sort": 8450,
- "sorta": 34700,
- "sorted": 13221,
- "sorting": 19198,
- "sorts": 12577,
- "sory": 16257,
- "sos": 25145,
- "sos": 5792,
- "sosa": 45433,
- "sosfam": 47709,
- "sot": 41542,
- "sot": 34116,
- "sothe": 32145,
- "sotho": 45496,
- "soto": 27947,
- "sotto": 26047,
- "sotu": 32286,
- "sou": 1101,
- "sou": 24293,
- "sought": 18874,
- "soul": 8701,
- "soul": 3755,
- "soulful": 30196,
- "soulmate": 38130,
- "souls": 10951,
- "soun": 19474,
- "sound": 5236,
- "sound": 3608,
- "soundcheck": 31394,
- "soundcloud": 15190,
- "sounded": 28287,
- "sounders": 44933,
- "sounding": 21351,
- "sounds": 5694,
- "soundtrack": 11389,
- "soup": 7077,
- "soups": 45052,
- "sour": 2235,
- "sour": 12049,
- "source": 23698,
- "source": 3634,
- "sourced": 23340,
- "sources": 5124,
- "sourcing": 19574,
- "sourdough": 29921,
- "souri": 11674,
- "sous": 32093,
- "sousa": 46296,
- "sout": 38156,
- "sout": 32732,
- "south": 2938,
- "south": 2045,
- "southafrica": 15184,
- "southampton": 15767,
- "southbank": 44173,
- "southbound": 22932,
- "southeast": 13942,
- "southeastern": 26813,
- "southend": 25583,
- "souther": 33330,
- "southern": 17704,
- "southern": 5036,
- "southgate": 47262,
- "southkorea": 43552,
- "southport": 37446,
- "southside": 36436,
- "southsudan": 30419,
- "southwark": 39098,
- "southwe": 46443,
- "southwest": 13320,
- "southwestern": 30157,
- "souven": 20210,
- "souvenir": 24811,
- "souvenirs": 48460,
- "souza": 29424,
- "sov": 29737,
- "sover": 31876,
- "sovere": 17736,
- "sovereign": 29418,
- "sovereign": 26337,
- "sovereignty": 31701,
- "soviet": 14274,
- "sow": 33089,
- "sowe": 36130,
- "soweto": 47070,
- "sown": 49369,
- "sox": 39556,
- "sox": 8657,
- "soy": 16524,
- "soy": 15010,
- "soybean": 34606,
- "soybeans": 40840,
- "soyu": 39578,
- "soyuz": 43842,
- "sp": 588,
- "sp": 4393,
- "spa": 7852,
- "spa": 6692,
- "spac": 10336,
- "space": 7857,
- "space": 2138,
- "spacecraft": 25940,
- "spaces": 9006,
- "spaceship": 34317,
- "spacex": 22511,
- "spacey": 48770,
- "spacious": 24769,
- "spad": 45362,
- "spade": 32562,
- "spades": 48368,
- "spaghetti": 18440,
- "spain": 5083,
- "spal": 26018,
- "spam": 29712,
- "spam": 14624,
- "span": 4270,
- "span": 14537,
- "spandex": 41686,
- "spani": 16721,
- "spaniel": 35435,
- "spanish": 29966,
- "spanish": 6013,
- "spann": 25323,
- "spanning": 38638,
- "spans": 45407,
- "spaper": 34548,
- "spar": 3378,
- "spar": 34576,
- "spare": 12615,
- "spares": 39505,
- "spark": 9555,
- "spark": 11047,
- "sparked": 32647,
- "sparkle": 18287,
- "sparkles": 36410,
- "sparkling": 17893,
- "sparkly": 30542,
- "sparks": 15046,
- "sparky": 47198,
- "sparring": 42161,
- "sparrow": 22888,
- "spart": 10143,
- "sparta": 38401,
- "spartan": 26582,
- "spartan": 24225,
- "spartans": 20457,
- "sparty": 36477,
- "spas": 31714,
- "spati": 19200,
- "spatial": 22022,
- "spaw": 31605,
- "spawn": 29166,
- "spay": 40634,
- "spc": 20492,
- "spca": 37018,
- "spd": 37717,
- "spd": 28307,
- "spdwy": 45981,
- "spe": 876,
- "spe": 36676,
- "speak": 20599,
- "speak": 4208,
- "speake": 46077,
- "speaker": 25764,
- "speaker": 4914,
- "speakers": 7675,
- "speaking": 3714,
- "speaks": 5661,
- "spear": 23277,
- "spear": 30420,
- "speare": 43859,
- "spears": 20242,
- "spec": 1711,
- "spec": 18596,
- "speci": 1969,
- "special": 11422,
- "special": 1689,
- "specialist": 10630,
- "specialists": 21719,
- "speciality": 46904,
- "specialized": 23265,
- "specializes": 48533,
- "specially": 4513,
- "specials": 11983,
- "specialty": 18262,
- "species": 6330,
- "specific": 10528,
- "specifically": 17174,
- "specification": 46394,
- "specifications": 39705,
- "specified": 48114,
- "specimen": 30263,
- "specimens": 42715,
- "specs": 24093,
- "spect": 3416,
- "spectac": 7242,
- "spectacle": 34342,
- "spectacular": 8404,
- "spectator": 32372,
- "spectators": 39306,
- "spective": 6633,
- "spector": 48676,
- "spectral": 45441,
- "spectre": 35998,
- "spectro": 27646,
- "spectrum": 13532,
- "specul": 19209,
- "speculation": 30898,
- "sped": 38813,
- "spee": 4050,
- "speech": 19556,
- "speech": 4902,
- "speeches": 25208,
- "speechless": 23152,
- "speed": 6860,
- "speed": 4163,
- "speeding": 27264,
- "speeds": 22017,
- "speedway": 11480,
- "speedy": 21603,
- "spel": 41887,
- "spell": 22784,
- "spell": 11230,
- "spelled": 24339,
- "spelling": 15614,
- "spells": 25335,
- "spelt": 38316,
- "spen": 5087,
- "spence": 33324,
- "spencer": 27509,
- "spencer": 10678,
- "spend": 4664,
- "spending": 5961,
- "spends": 22508,
- "spent": 4429,
- "speople": 33035,
- "sper": 8213,
- "sper": 15313,
- "sperm": 35781,
- "sperson": 22687,
- "spf": 34973,
- "spg": 34623,
- "sph": 28909,
- "sph": 24684,
- "sphe": 33691,
- "spher": 18349,
- "sphere": 6987,
- "spheres": 37478,
- "spheric": 21744,
- "sphin": 39237,
- "sphinx": 46487,
- "spho": 20442,
- "sphoto": 38594,
- "sphy": 43808,
- "spi": 3174,
- "spi": 37080,
- "spic": 17264,
- "spice": 29761,
- "spice": 10141,
- "spiced": 24267,
- "spicer": 37627,
- "spices": 21194,
- "spicy": 10915,
- "spide": 36801,
- "spider": 11963,
- "spider": 7622,
- "spiderman": 39808,
- "spiderman": 18427,
- "spiders": 23141,
- "spidey": 41706,
- "spie": 28573,
- "spie": 28746,
- "spied": 43998,
- "spiegel": 45351,
- "spiel": 28435,
- "spiel": 37690,
- "spielberg": 37569,
- "spies": 25374,
- "spieth": 43254,
- "spike": 35306,
- "spike": 15310,
- "spiked": 47014,
- "spikes": 29582,
- "spil": 47765,
- "spill": 43933,
- "spill": 18006,
- "spilled": 33206,
- "spilling": 49006,
- "spills": 35796,
- "spin": 6288,
- "spin": 9226,
- "spinach": 14747,
- "spinal": 23925,
- "spine": 48221,
- "spine": 19646,
- "sping": 47113,
- "spinner": 29924,
- "spinning": 13987,
- "spino": 40848,
- "spinoff": 42513,
- "spinrilla": 46064,
- "spins": 27243,
- "spion": 39604,
- "spionage": 41838,
- "spir": 3745,
- "spiral": 19873,
- "spiration": 38126,
- "spire": 27439,
- "spired": 40650,
- "spires": 46938,
- "spiri": 4024,
- "spirit": 18224,
- "spirit": 4071,
- "spirited": 34701,
- "spirits": 13192,
- "spiritu": 7237,
- "spiritual": 46076,
- "spiritual": 9473,
- "spirituality": 22165,
- "spiro": 40085,
- "spit": 18115,
- "spit": 23177,
- "spite": 26060,
- "spitfire": 31126,
- "spitting": 40721,
- "spl": 2470,
- "spl": 33052,
- "spla": 4809,
- "splac": 16059,
- "splace": 38743,
- "splash": 43641,
- "splash": 11879,
- "splat": 15733,
- "splatoon": 22565,
- "splay": 3169,
- "splen": 18552,
- "splend": 29861,
- "splendid": 21016,
- "splendor": 46262,
- "splin": 38090,
- "split": 25443,
- "split": 9109,
- "splits": 34897,
- "splitting": 37210,
- "splus": 40866,
- "spn": 35467,
- "spn": 19414,
- "spnfamily": 38566,
- "spo": 1261,
- "spo": 21085,
- "spock": 43918,
- "spoil": 25600,
- "spoiled": 21399,
- "spoiler": 16512,
- "spoilers": 18326,
- "spoils": 42436,
- "spoilt": 35358,
- "spokane": 24528,
- "spoke": 13890,
- "spoke": 6518,
- "spoken": 12979,
- "spokesman": 31632,
- "spokesperson": 26234,
- "spol": 22476,
- "spol": 8132,
- "spoli": 34301,
- "spolice": 37406,
- "spon": 1715,
- "spon": 48216,
- "sponge": 22861,
- "sponge": 24345,
- "spongebob": 25089,
- "spons": 5597,
- "sponsor": 10424,
- "sponsor": 7574,
- "sponsored": 7197,
- "sponsoring": 16181,
- "sponsors": 11005,
- "sponsorship": 17632,
- "spontaneous": 32465,
- "spoo": 11248,
- "spooky": 15369,
- "spool": 49152,
- "spoon": 27001,
- "spoon": 14024,
- "spoons": 29661,
- "spor": 1475,
- "spor": 33746,
- "sport": 4379,
- "sport": 2364,
- "sporting": 32620,
- "sporting": 8944,
- "sports": 6436,
- "sports": 2054,
- "sportsc": 40114,
- "sportscar": 46931,
- "sportscenter": 39157,
- "sportsman": 39020,
- "sportsmanship": 34858,
- "sportsnet": 34144,
- "sportswear": 39747,
- "sporty": 33346,
- "spot": 3223,
- "spot": 3049,
- "spotify": 7193,
- "spotlight": 7901,
- "spots": 7670,
- "spotted": 4533,
- "spotter": 30742,
- "spotting": 15885,
- "spouse": 24724,
- "spout": 48993,
- "spp": 47567,
- "spr": 1536,
- "spr": 19417,
- "spra": 12966,
- "spraw": 46590,
- "spray": 37885,
- "spray": 10449,
- "sprayed": 40022,
- "spraying": 39224,
- "spre": 18740,
- "spread": 20620,
- "spread": 5284,
- "spreading": 11821,
- "spreads": 27579,
- "spree": 21851,
- "spri": 35498,
- "spride": 26685,
- "spring": 5166,
- "spring": 2420,
- "springbreak": 37753,
- "springer": 30117,
- "springfield": 16599,
- "springs": 7308,
- "springst": 32132,
- "springsteen": 28367,
- "springtime": 28285,
- "springtraining": 49364,
- "springwatch": 29239,
- "sprink": 15817,
- "sprinkle": 42897,
- "sprinkler": 48754,
- "sprinkles": 37326,
- "sprint": 29248,
- "sprint": 10751,
- "sprinter": 36947,
- "sprints": 36404,
- "sprite": 32544,
- "spro": 13902,
- "spro": 37403,
- "sproject": 37802,
- "sproud": 37686,
- "sprout": 35863,
- "sprouts": 25756,
- "spru": 17041,
- "spruce": 23812,
- "sprung": 32968,
- "sps": 13869,
- "spu": 23566,
- "spun": 47922,
- "spun": 32852,
- "spur": 15206,
- "spur": 20361,
- "spurs": 10916,
- "spursofficial": 45290,
- "sput": 47521,
- "spx": 20584,
- "spy": 13861,
- "spy": 6656,
- "spyder": 39952,
- "spying": 36227,
- "sq": 9370,
- "sq": 11590,
- "sqft": 41912,
- "sql": 42759,
- "sql": 18938,
- "sqm": 47978,
- "sqn": 41209,
- "squ": 1653,
- "squad": 13892,
- "squad": 4234,
- "squadron": 18579,
- "squads": 36590,
- "square": 19314,
- "square": 3999,
- "squared": 32967,
- "squares": 26972,
- "squash": 13312,
- "squat": 44628,
- "squat": 30680,
- "squats": 40213,
- "sque": 9721,
- "sque": 8097,
- "squee": 14420,
- "squeeze": 21684,
- "squeezed": 40413,
- "squid": 42057,
- "squid": 22553,
- "squir": 9683,
- "squire": 48090,
- "squirrel": 14004,
- "squirrels": 26623,
- "squish": 42607,
- "squishy": 47001,
- "sr": 3437,
- "sr": 5428,
- "srbachchan": 32353,
- "src": 23445,
- "sre": 17748,
- "sri": 11051,
- "sri": 9276,
- "sridevi": 46301,
- "srilan": 15559,
- "srilanka": 16922,
- "srin": 26818,
- "srinagar": 33671,
- "srini": 41899,
- "sriracha": 42743,
- "sris": 27851,
- "srisri": 32966,
- "srk": 44982,
- "srk": 11216,
- "srl": 33808,
- "srp": 43004,
- "srs": 41764,
- "srsly": 44179,
- "srt": 28139,
- "sru": 44152,
- "srugby": 40526,
- "ss": 690,
- "ss": 632,
- "ssa": 6088,
- "ssal": 31330,
- "ssal": 35936,
- "ssb": 37511,
- "ssc": 21692,
- "ssc": 20364,
- "ssd": 23107,
- "sse": 9030,
- "sse": 8938,
- "ssed": 38755,
- "ssed": 1804,
- "ssel": 17402,
- "ssel": 19373,
- "sseldorf": 47792,
- "ssell": 42388,
- "ssels": 8355,
- "ssen": 39408,
- "ssen": 22645,
- "sser": 20445,
- "sses": 1802,
- "ssett": 44103,
- "ssf": 33239,
- "ssg": 40707,
- "ssh": 48866,
- "ssi": 834,
- "ssi": 14953,
- "ssia": 22238,
- "ssian": 31218,
- "ssible": 47099,
- "ssic": 27774,
- "ssic": 17077,
- "ssie": 7572,
- "ssier": 26422,
- "ssil": 15026,
- "ssin": 42660,
- "ssing": 2112,
- "ssion": 16050,
- "ssion": 1627,
- "ssional": 13727,
- "ssionism": 24787,
- "ssionist": 27682,
- "ssions": 4137,
- "ssive": 2734,
- "ssively": 28060,
- "ssl": 32195,
- "ssler": 30287,
- "ssly": 24904,
- "ssn": 39116,
- "ssnhq": 47998,
- "sso": 25900,
- "sso": 7914,
- "ssoccer": 32546,
- "sson": 36124,
- "sson": 7271,
- "ssor": 35152,
- "ssp": 31101,
- "ssr": 39880,
- "sss": 11176,
- "ssss": 30676,
- "ssss": 15880,
- "sssss": 24298,
- "sst": 40396,
- "ssu": 35351,
- "ssummit": 49301,
- "ssus": 31286,
- "ssw": 36937,
- "ssy": 22519,
- "ssy": 8661,
- "st": 522,
- "st": 545,
- "sta": 1363,
- "sta": 2745,
- "stab": 7726,
- "stab": 29974,
- "stabbed": 24534,
- "stabbing": 25474,
- "stabil": 42576,
- "stabili": 23903,
- "stability": 16716,
- "stable": 44427,
- "stable": 10492,
- "stables": 34218,
- "stac": 10175,
- "stacey": 41653,
- "stacey": 24262,
- "stache": 23616,
- "stack": 24723,
- "stack": 11257,
- "stacked": 24990,
- "stacking": 39836,
- "stacks": 24734,
- "stacy": 26628,
- "stad": 15832,
- "stad": 16485,
- "stade": 38198,
- "stadi": 26587,
- "stadion": 48815,
- "stadium": 3390,
- "stadiums": 38852,
- "stadt": 22713,
- "staf": 2367,
- "staff": 31188,
- "staff": 2813,
- "staffer": 38494,
- "staffers": 44994,
- "staffing": 32932,
- "stafford": 25006,
- "staffordshire": 29198,
- "staffs": 36098,
- "stag": 12088,
- "stag": 20277,
- "stage": 23182,
- "stage": 2170,
- "staged": 19906,
- "stages": 12297,
- "staggering": 37315,
- "staging": 27026,
- "stagram": 19503,
- "stags": 45936,
- "stain": 3933,
- "stain": 14603,
- "stained": 13751,
- "staining": 32523,
- "stainless": 12320,
- "stains": 32008,
- "stair": 7240,
- "stair": 17662,
- "staircase": 22777,
- "stairs": 9577,
- "stairway": 45559,
- "stak": 39144,
- "stake": 15955,
- "stake": 7937,
- "stakeholder": 39122,
- "stakeholders": 22968,
- "stakes": 7519,
- "staking": 47082,
- "stal": 3861,
- "stal": 5535,
- "stale": 42471,
- "stalert": 25450,
- "stalin": 28346,
- "stalk": 40826,
- "stalk": 14878,
- "stalker": 26777,
- "stalking": 24721,
- "stalks": 45886,
- "stall": 24636,
- "stall": 12058,
- "stalled": 40362,
- "stallion": 28273,
- "stallions": 44787,
- "stallone": 40969,
- "stalls": 25427,
- "stam": 4663,
- "stamatic": 30904,
- "stamford": 27843,
- "stamina": 48753,
- "stamp": 28694,
- "stamp": 12771,
- "stampcollecting": 42852,
- "stamped": 38356,
- "stampede": 25384,
- "stamps": 13827,
- "stan": 2203,
- "stan": 2434,
- "stana": 33311,
- "stanbul": 11231,
- "stance": 48900,
- "stance": 3542,
- "stances": 15054,
- "stand": 1819,
- "stand": 2087,
- "standalone": 44887,
- "standard": 35780,
- "standard": 5807,
- "standardi": 30247,
- "standards": 9022,
- "standby": 36184,
- "standing": 39934,
- "standing": 2862,
- "standings": 19835,
- "standoff": 31821,
- "standout": 23131,
- "standre": 48309,
- "stands": 6446,
- "standup": 35108,
- "standup": 24964,
- "standwith": 19540,
- "stanford": 36219,
- "stanford": 15087,
- "stang": 12536,
- "stani": 38228,
- "stanis": 37711,
- "stanley": 19048,
- "stanley": 10079,
- "stanleycup": 28662,
- "stans": 26564,
- "stant": 41576,
- "stant": 4906,
- "stanton": 25400,
- "stap": 10438,
- "staple": 22695,
- "staples": 23646,
- "stapleton": 45228,
- "star": 993,
- "star": 1565,
- "starbuck": 48519,
- "starbucks": 9499,
- "starch": 47837,
- "starcraft": 48871,
- "stardom": 44616,
- "stardust": 34337,
- "stare": 18094,
- "stared": 47772,
- "stares": 37916,
- "starfish": 44283,
- "stargate": 41099,
- "stargazing": 49328,
- "staring": 13800,
- "stark": 40446,
- "stark": 15353,
- "starlight": 32197,
- "starling": 46205,
- "starmagic": 48023,
- "starplus": 37815,
- "starr": 19186,
- "starred": 24180,
- "starrer": 41311,
- "starring": 6660,
- "starry": 30963,
- "stars": 2895,
- "starship": 37166,
- "start": 17466,
- "start": 1572,
- "started": 2760,
- "starter": 7800,
- "starters": 22222,
- "starting": 2530,
- "startrek": 30642,
- "startrek": 15349,
- "starts": 3105,
- "startu": 6996,
- "startup": 18049,
- "startup": 5882,
- "startups": 9056,
- "starve": 46957,
- "starving": 30473,
- "starwar": 17287,
- "starwars": 26239,
- "starwars": 7887,
- "starz": 25928,
- "stas": 19866,
- "stash": 27711,
- "stasy": 45942,
- "stat": 3004,
- "stat": 15216,
- "state": 3492,
- "state": 1295,
- "statec": 33931,
- "stated": 19629,
- "statedept": 41458,
- "statefair": 40305,
- "statement": 5401,
- "statements": 19513,
- "staten": 38263,
- "stateof": 35195,
- "states": 22125,
- "states": 4218,
- "statesman": 35301,
- "stateu": 44248,
- "statewide": 29561,
- "stati": 9622,
- "static": 16363,
- "stating": 35147,
- "station": 13498,
- "station": 2631,
- "stationary": 29493,
- "stationed": 47618,
- "stationery": 33851,
- "stations": 10051,
- "statistical": 29349,
- "statistics": 14165,
- "stats": 7294,
- "statu": 32481,
- "statue": 8222,
- "statues": 24363,
- "status": 6414,
- "stau": 28550,
- "staur": 3709,
- "stav": 20285,
- "stax": 32235,
- "stay": 4714,
- "stay": 2277,
- "stayed": 13805,
- "staying": 8993,
- "stays": 13311,
- "staytuned": 39285,
- "stc": 29859,
- "std": 30477,
- "ste": 795,
- "ste": 2686,
- "stea": 46614,
- "stead": 16101,
- "stead": 11031,
- "steadily": 35049,
- "steady": 12937,
- "steak": 26955,
- "steak": 8913,
- "steakhouse": 35031,
- "steaks": 30655,
- "steal": 37070,
- "steal": 10181,
- "stealing": 14242,
- "steals": 20224,
- "stealth": 25327,
- "steam": 10962,
- "steam": 6972,
- "steamboat": 41121,
- "steamed": 29007,
- "steamer": 49075,
- "steaming": 43746,
- "steampunk": 24130,
- "steamy": 43104,
- "stec": 46713,
- "stech": 48949,
- "stech": 32455,
- "sted": 20426,
- "sted": 1356,
- "stee": 31793,
- "steed": 48293,
- "steel": 6938,
- "steel": 4726,
- "steele": 19460,
- "steelers": 14430,
- "steen": 42851,
- "steen": 18625,
- "steep": 28648,
- "steep": 20714,
- "steer": 27612,
- "steering": 19833,
- "stef": 29158,
- "stefan": 15004,
- "stefan": 18829,
- "stefani": 38319,
- "stefano": 30719,
- "steff": 30075,
- "stein": 13653,
- "stein": 5818,
- "steiner": 36314,
- "stel": 9102,
- "stel": 10798,
- "stell": 22355,
- "stella": 46178,
- "stella": 17869,
- "stellar": 13810,
- "stellen": 42754,
- "stem": 24342,
- "stem": 6761,
- "stemc": 40486,
- "stems": 31503,
- "sten": 7652,
- "sten": 7877,
- "stencil": 47854,
- "stennis": 45636,
- "step": 15572,
- "step": 3348,
- "steph": 3522,
- "steph": 16251,
- "stephan": 37312,
- "stephani": 48121,
- "stephanie": 14361,
- "stephen": 10421,
- "stephen": 6078,
- "stephenking": 46361,
- "stephens": 22256,
- "stephenson": 37280,
- "stepped": 18384,
- "stepping": 15906,
- "steps": 5408,
- "ster": 1022,
- "ster": 881,
- "stere": 9229,
- "stered": 6935,
- "stereo": 15992,
- "stereo": 17400,
- "stereotypes": 27890,
- "steria": 38804,
- "stering": 14175,
- "sterling": 45790,
- "sterling": 9378,
- "stern": 36254,
- "stern": 2945,
- "steroids": 37670,
- "sterone": 39418,
- "sters": 2132,
- "stery": 24232,
- "stest": 8556,
- "stev": 11640,
- "steve": 7412,
- "steve": 3803,
- "steven": 10973,
- "steven": 8016,
- "stevens": 13877,
- "stevenson": 25091,
- "stevie": 42104,
- "stevie": 18969,
- "stew": 17906,
- "stewar": 28453,
- "steward": 34980,
- "steward": 43355,
- "stewards": 49294,
- "stewardship": 36720,
- "stewart": 8120,
- "stfu": 47000,
- "stg": 48387,
- "stgeorge": 43698,
- "sth": 13456,
- "sth": 34004,
- "sthe": 16491,
- "sthel": 42863,
- "sti": 860,
- "sti": 12439,
- "stia": 26492,
- "stible": 25835,
- "stic": 5868,
- "stic": 1561,
- "stical": 16660,
- "stically": 19041,
- "stick": 5483,
- "stick": 4987,
- "sticker": 11270,
- "stickers": 11613,
- "sticking": 21021,
- "sticks": 10016,
- "sticky": 18887,
- "stics": 5449,
- "stie": 38164,
- "stie": 11000,
- "stier": 42069,
- "sties": 16428,
- "stiff": 43471,
- "stiff": 21441,
- "stig": 4088,
- "stig": 42551,
- "stigate": 15390,
- "stigma": 20619,
- "stik": 42247,
- "stil": 21790,
- "stil": 37519,
- "stiles": 33028,
- "still": 13209,
- "still": 1170,
- "stills": 20259,
- "stim": 18269,
- "stime": 24711,
- "stimul": 16434,
- "stimulate": 42380,
- "stimulating": 41237,
- "stimulation": 39530,
- "stimulus": 47283,
- "stin": 2588,
- "stin": 4025,
- "stina": 22359,
- "stine": 7098,
- "sting": 19868,
- "sting": 1271,
- "stingly": 49332,
- "stingray": 43229,
- "stink": 38213,
- "stinky": 44957,
- "stino": 40658,
- "stint": 33531,
- "stion": 10812,
- "stip": 39869,
- "stips": 44756,
- "stique": 43305,
- "stir": 12416,
- "stir": 19564,
- "stirling": 23128,
- "stirring": 39205,
- "stis": 45224,
- "stit": 14110,
- "stitch": 30003,
- "stitch": 14771,
- "stitched": 36540,
- "stitcher": 48204,
- "stitches": 32360,
- "stitching": 45208,
- "stitu": 14585,
- "stitutes": 40479,
- "stive": 22426,
- "stix": 48829,
- "stjohn": 36153,
- "stl": 14179,
- "stl": 12527,
- "stlblues": 44138,
- "stlcards": 28644,
- "stle": 7698,
- "stles": 48638,
- "stlouis": 40358,
- "stlouis": 39516,
- "stm": 28333,
- "stn": 27175,
- "sto": 928,
- "sto": 5723,
- "stock": 5899,
- "stock": 3206,
- "stocked": 23552,
- "stockholm": 16024,
- "stocki": 42944,
- "stocking": 17335,
- "stockings": 28040,
- "stockmarket": 40359,
- "stockport": 35569,
- "stocks": 9321,
- "stockton": 26130,
- "stoday": 22392,
- "stok": 43782,
- "stoke": 31338,
- "stoke": 13550,
- "stoked": 13160,
- "stokes": 27512,
- "stol": 11401,
- "stol": 6700,
- "stole": 10995,
- "stolen": 8704,
- "stolic": 45020,
- "stom": 2343,
- "stom": 38068,
- "stoma": 43545,
- "stomach": 14722,
- "stomp": 40165,
- "stomping": 46144,
- "ston": 4101,
- "ston": 1839,
- "stone": 7694,
- "stone": 2441,
- "stoned": 36248,
- "stonehenge": 42417,
- "stoner": 35131,
- "stoner": 29115,
- "stones": 42659,
- "stones": 6885,
- "stonewall": 39688,
- "stoney": 44198,
- "stony": 41717,
- "stony": 35691,
- "stoo": 24505,
- "stood": 9151,
- "stool": 34413,
- "stool": 22314,
- "stop": 6005,
- "stop": 1691,
- "stopbrexit": 48680,
- "stopp": 15738,
- "stopped": 6015,
- "stopper": 32147,
- "stoppers": 34457,
- "stopping": 10735,
- "stops": 9822,
- "stopthe": 26463,
- "stor": 809,
- "stor": 17740,
- "storage": 6824,
- "store": 17769,
- "store": 2183,
- "stored": 28257,
- "stores": 6370,
- "storey": 24025,
- "storians": 34628,
- "stories": 3784,
- "storing": 40087,
- "stork": 46452,
- "storm": 7434,
- "storm": 2819,
- "stormed": 45939,
- "stormhour": 12161,
- "storming": 24842,
- "storms": 6464,
- "stormtrooper": 49218,
- "stormy": 20075,
- "stors": 7178,
- "story": 6512,
- "story": 1134,
- "storyline": 37079,
- "storymonth": 23717,
- "storyteller": 35882,
- "storytelling": 14457,
- "storytime": 44197,
- "stos": 19281,
- "stou": 37168,
- "stour": 37361,
- "stour": 21928,
- "stout": 16550,
- "stove": 21423,
- "stow": 44284,
- "stow": 17046,
- "stowe": 34196,
- "stown": 28071,
- "stown": 7939,
- "stp": 30576,
- "stpatrick": 21343,
- "stpatricksday": 22747,
- "str": 807,
- "str": 15913,
- "stra": 1894,
- "stra": 6253,
- "strack": 46861,
- "strada": 31134,
- "strade": 48968,
- "straigh": 31016,
- "straight": 22114,
- "straight": 4241,
- "strain": 16887,
- "strains": 38067,
- "strait": 22946,
- "straits": 41984,
- "stral": 23289,
- "stralia": 42510,
- "stran": 18411,
- "strand": 18214,
- "strand": 17826,
- "stranded": 22975,
- "strang": 11138,
- "strange": 33380,
- "strange": 7288,
- "strangely": 37566,
- "stranger": 35541,
- "stranger": 14149,
- "strangers": 20684,
- "strangerthings": 43271,
- "strangest": 46740,
- "strap": 13946,
- "strapped": 40922,
- "straps": 31213,
- "stras": 36814,
- "stras": 42125,
- "strasbourg": 39576,
- "strat": 11345,
- "strat": 32925,
- "strata": 47278,
- "strate": 3532,
- "strate": 28758,
- "strategi": 49102,
- "strategic": 10246,
- "strategically": 45706,
- "strategies": 9942,
- "strategist": 37180,
- "strategy": 5637,
- "strates": 45724,
- "stratford": 23955,
- "strath": 21997,
- "stration": 3156,
- "strato": 28878,
- "strauss": 32033,
- "strava": 34625,
- "stravel": 43494,
- "straw": 7430,
- "straw": 16438,
- "strawberries": 17796,
- "strawberry": 10233,
- "straws": 33048,
- "stray": 30784,
- "stray": 15712,
- "stre": 1079,
- "stre": 19652,
- "stread": 27797,
- "streak": 11749,
- "streaks": 42092,
- "stream": 8659,
- "stream": 3322,
- "streamed": 26280,
- "streamer": 25178,
- "streamers": 19937,
- "streaming": 6278,
- "streamline": 44917,
- "streams": 13545,
- "stree": 35082,
- "stree": 32438,
- "streep": 38701,
- "street": 4839,
- "street": 2012,
- "streetart": 12948,
- "streetcar": 34268,
- "streetfood": 44486,
- "streetphotography": 20786,
- "streets": 6058,
- "streetstyle": 39118,
- "streetwear": 37298,
- "strel": 39685,
- "stren": 4349,
- "streng": 4472,
- "strength": 15475,
- "strength": 5959,
- "strengthen": 16318,
- "strengthened": 47131,
- "strengthening": 23475,
- "strengthens": 40280,
- "strengths": 29268,
- "stress": 17297,
- "stress": 5843,
- "stressed": 16497,
- "stresses": 32112,
- "stressful": 24268,
- "stressing": 35917,
- "stret": 12265,
- "stretch": 10064,
- "stretched": 29393,
- "stretches": 32231,
- "stretching": 24423,
- "stri": 1493,
- "stri": 27795,
- "stria": 39620,
- "strial": 30217,
- "strian": 12924,
- "stric": 2607,
- "strick": 25181,
- "strickland": 48939,
- "strict": 21585,
- "strictly": 16475,
- "stride": 36024,
- "strides": 37355,
- "stries": 18171,
- "strife": 46473,
- "strike": 20774,
- "strike": 5767,
- "striker": 12448,
- "strikers": 33465,
- "strikes": 9280,
- "striking": 13392,
- "string": 25512,
- "string": 9696,
- "strings": 15699,
- "strip": 9317,
- "stripe": 19368,
- "striped": 22192,
- "stripes": 14239,
- "stripped": 26602,
- "stripper": 45759,
- "stripping": 48588,
- "strips": 19000,
- "strive": 22140,
- "striving": 37671,
- "stro": 3121,
- "stro": 6186,
- "stroke": 44621,
- "stroke": 10403,
- "strokes": 26595,
- "strol": 30123,
- "stroll": 15924,
- "stroller": 47076,
- "strolling": 40911,
- "strom": 14707,
- "stron": 4165,
- "strong": 10436,
- "strong": 2389,
- "stronger": 27760,
- "stronger": 9245,
- "strongertogether": 38532,
- "strongest": 16171,
- "strongh": 38678,
- "strongly": 15507,
- "strophy": 47912,
- "strou": 48425,
- "stroud": 39895,
- "strous": 23752,
- "stru": 1666,
- "struc": 3311,
- "struck": 10861,
- "struction": 12497,
- "structural": 16899,
- "structure": 5285,
- "structured": 27147,
- "structures": 14171,
- "structuring": 37496,
- "strugg": 5176,
- "struggle": 8443,
- "struggled": 32921,
- "struggles": 17446,
- "struggling": 12135,
- "struly": 34118,
- "strum": 37632,
- "strung": 46033,
- "strust": 23920,
- "strut": 48375,
- "stry": 17325,
- "stry": 2245,
- "sts": 1088,
- "stu": 858,
- "stu": 23531,
- "stuart": 32054,
- "stuart": 11723,
- "stub": 27066,
- "stubborn": 38955,
- "stuck": 6596,
- "stud": 22368,
- "stud": 13319,
- "studded": 29153,
- "studen": 44156,
- "student": 14681,
- "student": 2556,
- "students": 1712,
- "studi": 5691,
- "studied": 21369,
- "studies": 6426,
- "studio": 17798,
- "studio": 3155,
- "studios": 6231,
- "studs": 27571,
- "study": 21051,
- "study": 3123,
- "studyabroad": 45425,
- "studying": 8826,
- "stuff": 46072,
- "stuff": 3487,
- "stuffed": 11781,
- "stuffing": 31612,
- "stuffs": 43455,
- "stuk": 32424,
- "stumb": 16784,
- "stumble": 39045,
- "stumbled": 21776,
- "stump": 32064,
- "stun": 3088,
- "stun": 37959,
- "stunned": 34034,
- "stunner": 29965,
- "stunning": 3769,
- "stunningly": 47515,
- "stuns": 43796,
- "stunt": 19905,
- "stunts": 40118,
- "stupi": 18975,
- "stupid": 42600,
- "stupid": 8085,
- "stupidity": 33766,
- "stur": 10676,
- "sturdy": 43780,
- "stures": 27223,
- "sturgeon": 31580,
- "sturi": 21747,
- "sturridge": 45331,
- "stutt": 30444,
- "stuttgart": 32219,
- "stv": 27060,
- "stv": 9708,
- "stweet": 46832,
- "stweets": 39174,
- "stx": 42548,
- "sty": 1421,
- "sty": 2920,
- "style": 12356,
- "style": 1844,
- "styled": 17974,
- "styles": 6948,
- "styli": 38577,
- "styling": 14597,
- "stylish": 10378,
- "stylist": 15928,
- "styn": 41394,
- "su": 605,
- "su": 2937,
- "sua": 42448,
- "suarez": 21437,
- "suave": 47305,
- "sub": 1783,
- "sub": 7765,
- "subaru": 21319,
- "subjec": 16090,
- "subject": 10300,
- "subjects": 22099,
- "subli": 16350,
- "sublime": 22367,
- "submarine": 19968,
- "submer": 27156,
- "submerged": 43171,
- "submission": 16571,
- "submissions": 21566,
- "submit": 10423,
- "submitted": 15189,
- "submitting": 38788,
- "subram": 49207,
- "subs": 16398,
- "subscri": 5838,
- "subscribe": 9839,
- "subscribed": 44867,
- "subscriber": 36292,
- "subscribers": 17337,
- "subscription": 17979,
- "subscriptions": 47162,
- "subsequ": 33598,
- "subsequent": 44323,
- "subsi": 14856,
- "subsidi": 45029,
- "subsidiary": 45506,
- "subsidies": 37685,
- "subsidy": 47462,
- "substan": 17487,
- "substance": 19309,
- "substances": 36834,
- "substantial": 27171,
- "substantially": 47577,
- "substitu": 18529,
- "substitute": 25340,
- "subtitles": 39479,
- "subtle": 16536,
- "subur": 12517,
- "suburb": 37664,
- "suburban": 23570,
- "suburbs": 25317,
- "subway": 12196,
- "suc": 1869,
- "succe": 7981,
- "succeed": 13556,
- "succeeded": 41077,
- "succes": 39019,
- "success": 3695,
- "success": 3034,
- "successes": 29436,
- "successful": 4670,
- "successfully": 9934,
- "succession": 38491,
- "successive": 41319,
- "successor": 34774,
- "succu": 45253,
- "succul": 25671,
- "succulent": 35236,
- "such": 2046,
- "suction": 42786,
- "sud": 8067,
- "sud": 33714,
- "sudan": 31149,
- "sudan": 13474,
- "sudanese": 42837,
- "sudbury": 32488,
- "sudden": 10833,
- "sudden": 15433,
- "suddenly": 11076,
- "sue": 14045,
- "sue": 6641,
- "sued": 22225,
- "suede": 21036,
- "sues": 17105,
- "suf": 21204,
- "suf": 22579,
- "sufc": 37091,
- "suff": 4866,
- "suffe": 13510,
- "suffer": 13557,
- "suffered": 14766,
- "suffering": 10140,
- "suffers": 22389,
- "sufficient": 28410,
- "suffol": 13775,
- "suffolk": 46408,
- "suffolk": 15685,
- "suffra": 34596,
- "suffrage": 39567,
- "sufi": 39756,
- "sug": 3189,
- "suga": 28757,
- "sugar": 12418,
- "sugar": 5574,
- "sugge": 6345,
- "suggest": 13356,
- "suggested": 18790,
- "suggesti": 15033,
- "suggesting": 29792,
- "suggestion": 23741,
- "suggestions": 16052,
- "suggests": 13333,
- "suho": 32744,
- "sui": 24972,
- "suici": 16372,
- "suicidal": 37165,
- "suicide": 31310,
- "suicide": 8247,
- "suing": 18309,
- "suisse": 35964,
- "suit": 11887,
- "suit": 3940,
- "suitable": 17476,
- "suitcase": 27792,
- "suite": 9346,
- "suited": 25919,
- "suites": 21523,
- "suits": 9949,
- "suk": 24820,
- "suk": 6886,
- "suka": 44017,
- "suke": 25590,
- "sukh": 46961,
- "suki": 32704,
- "sul": 1767,
- "sul": 19879,
- "sula": 34713,
- "sula": 26143,
- "sullivan": 14477,
- "sully": 37752,
- "sulph": 37234,
- "sulphur": 47659,
- "sultan": 35650,
- "sultan": 17049,
- "sum": 7054,
- "sum": 8257,
- "suma": 47938,
- "sumat": 32640,
- "sumatra": 47346,
- "sume": 45457,
- "sumi": 41248,
- "summ": 1309,
- "summar": 34657,
- "summari": 31993,
- "summary": 13435,
- "summed": 34912,
- "summer": 5500,
- "summer": 1673,
- "summers": 18254,
- "summerslam": 40264,
- "summertime": 19025,
- "summit": 30011,
- "summit": 3768,
- "summon": 27622,
- "summon": 39782,
- "sumner": 46813,
- "sumo": 33734,
- "sump": 34252,
- "sumptuous": 47354,
- "sums": 13325,
- "sun": 968,
- "sun": 2176,
- "sunbathing": 46994,
- "sunburn": 45767,
- "sund": 40735,
- "sundae": 38078,
- "sundance": 24128,
- "sundar": 44936,
- "sunday": 6649,
- "sunday": 1706,
- "sundayfunday": 21565,
- "sundaymorning": 24809,
- "sundaymotivation": 46227,
- "sundays": 15827,
- "sundaywith": 26469,
- "sundaywithmarsha": 26662,
- "sunder": 15097,
- "sunderland": 45727,
- "sunderland": 18851,
- "sundown": 44438,
- "sune": 41096,
- "sunflower": 21559,
- "sunflowers": 39809,
- "sung": 16903,
- "sung": 6047,
- "sunglasses": 12906,
- "suni": 17663,
- "suni": 47010,
- "sunil": 32861,
- "sunite": 21382,
- "sunited": 35276,
- "sunk": 37534,
- "sunken": 43473,
- "sunlight": 17996,
- "sunni": 44315,
- "sunny": 15632,
- "sunny": 5438,
- "sunrise": 5610,
- "suns": 18322,
- "sunscreen": 29355,
- "sunset": 37880,
- "sunset": 3424,
- "sunsets": 17721,
- "sunshine": 32761,
- "sunshine": 5385,
- "suny": 41308,
- "sup": 19078,
- "sup": 8249,
- "supdates": 24177,
- "super": 1642,
- "super": 1994,
- "superb": 8930,
- "superbike": 45709,
- "superbowl": 47461,
- "superbowl": 16467,
- "supercar": 27021,
- "supercars": 32185,
- "supercell": 43227,
- "supercharged": 47479,
- "supere": 46831,
- "superfood": 41715,
- "supergirl": 25771,
- "superhero": 14049,
- "superheroes": 23334,
- "superint": 17615,
- "superintendent": 19020,
- "superior": 13205,
- "superjunior": 40475,
- "superleague": 45539,
- "superman": 11237,
- "supermarket": 19897,
- "supermarkets": 45106,
- "supermodel": 41963,
- "supermoon": 36571,
- "supernatural": 15484,
- "supernova": 39843,
- "superrugby": 48717,
- "supersonic": 42019,
- "supersport": 46319,
- "superst": 38202,
- "superstar": 32551,
- "superstar": 10472,
- "superstars": 25797,
- "supervis": 12709,
- "supervised": 41316,
- "supervision": 36234,
- "supervisor": 20366,
- "supervisors": 37958,
- "superyacht": 42714,
- "supp": 1023,
- "supper": 15727,
- "supple": 31431,
- "supplement": 19924,
- "supplements": 21265,
- "supplied": 24106,
- "supplier": 18043,
- "suppliers": 24196,
- "supplies": 9384,
- "supply": 25074,
- "supply": 6389,
- "supplychain": 31224,
- "supplying": 32739,
- "suppo": 6941,
- "suppor": 2104,
- "support": 12062,
- "support": 1425,
- "supported": 8038,
- "supporter": 12992,
- "supporters": 7403,
- "supportindiefilm": 43976,
- "supporting": 3976,
- "supportive": 18313,
- "supportlocal": 43852,
- "supports": 8336,
- "supportsmall": 30941,
- "supportsmallstreamers": 36097,
- "suppose": 18924,
- "supposed": 9119,
- "supposedly": 32302,
- "suppre": 20542,
- "suppression": 36508,
- "supra": 48485,
- "supre": 5875,
- "supremac": 28643,
- "supremacist": 39005,
- "supremacy": 28913,
- "supreme": 35222,
- "supreme": 7468,
- "supt": 23625,
- "sur": 1090,
- "sur": 7123,
- "sura": 33412,
- "sura": 49125,
- "surabaya": 45227,
- "surance": 22184,
- "surat": 30201,
- "sure": 14320,
- "sure": 1650,
- "sured": 36869,
- "surely": 11409,
- "sures": 12725,
- "suresh": 32118,
- "suresh": 31464,
- "sureshpp": 41924,
- "sureshpprabhu": 42050,
- "surf": 10176,
- "surf": 10322,
- "surface": 7744,
- "surfaces": 20746,
- "surfer": 24925,
- "surfers": 34842,
- "surfing": 15762,
- "surg": 13045,
- "surge": 17457,
- "surgeon": 16039,
- "surgeons": 26000,
- "surger": 5122,
- "surgeries": 34940,
- "surgery": 5344,
- "surgical": 16386,
- "suri": 14130,
- "suri": 33952,
- "suring": 16817,
- "suriya": 17832,
- "surpass": 45494,
- "surpassed": 25648,
- "surplus": 29413,
- "surpri": 3244,
- "surprise": 5099,
- "surprised": 8949,
- "surprises": 16920,
- "surprising": 14964,
- "surprisingly": 17367,
- "surreal": 18408,
- "surrealism": 41773,
- "surrender": 20964,
- "surrendered": 44601,
- "surrey": 26489,
- "surrey": 14315,
- "surro": 47499,
- "surroun": 8250,
- "surround": 26543,
- "surround": 22999,
- "surrounded": 13589,
- "surrounding": 12544,
- "surroundings": 26915,
- "surrounds": 39012,
- "suru": 49240,
- "surve": 8952,
- "surveill": 15408,
- "surveillance": 15578,
- "survey": 45914,
- "survey": 6809,
- "surveying": 33085,
- "surveys": 25096,
- "survi": 3440,
- "surviv": 12922,
- "survival": 10172,
- "survive": 10431,
- "survived": 13483,
- "survives": 30927,
- "surviving": 18609,
- "survivor": 31934,
- "survivor": 10944,
- "survivors": 13711,
- "surya": 37767,
- "sus": 8091,
- "sus": 3036,
- "susa": 20546,
- "susan": 19922,
- "susan": 10168,
- "suscep": 44270,
- "sush": 22298,
- "sushi": 11729,
- "sushmaswar": 48200,
- "susie": 32284,
- "susp": 7971,
- "suspec": 10298,
- "suspect": 9065,
- "suspected": 15579,
- "suspects": 18265,
- "suspen": 10578,
- "suspend": 41007,
- "suspended": 13126,
- "suspends": 39535,
- "suspense": 21556,
- "suspension": 15417,
- "suspici": 25714,
- "suspicion": 34910,
- "suspicious": 19862,
- "sussex": 31244,
- "sussex": 13266,
- "sustain": 4644,
- "sustain": 28156,
- "sustainability": 9635,
- "sustainable": 23645,
- "sustainable": 7078,
- "sustained": 22699,
- "sustaining": 44418,
- "sut": 23984,
- "sut": 28956,
- "sutherland": 27592,
- "sutton": 39359,
- "sutton": 18564,
- "suv": 15985,
- "suz": 9957,
- "suzanne": 24617,
- "suzu": 36289,
- "suzuki": 16892,
- "suzy": 26552,
- "sv": 6508,
- "sv": 17083,
- "svc": 45065,
- "sve": 47637,
- "sven": 37786,
- "sven": 45183,
- "sver": 45923,
- "sville": 44580,
- "sville": 6741,
- "svp": 28465,
- "svt": 42014,
- "svu": 32123,
- "sw": 1220,
- "sw": 4457,
- "swa": 4707,
- "swa": 31916,
- "swach": 20862,
- "swachhb": 31898,
- "swachhbharat": 36927,
- "swag": 8852,
- "swag": 8177,
- "swagg": 47702,
- "swagger": 35797,
- "swain": 43226,
- "swal": 13433,
- "swallow": 28979,
- "swallowed": 46956,
- "swallows": 45124,
- "swam": 42539,
- "swami": 25021,
- "swamp": 41953,
- "swamp": 16595,
- "swamy": 28445,
- "swan": 8215,
- "swan": 12530,
- "swana": 24699,
- "swans": 19516,
- "swansea": 16567,
- "swanson": 34797,
- "swap": 15234,
- "swapped": 39077,
- "swapping": 44702,
- "swaps": 49242,
- "swar": 11680,
- "swarm": 31577,
- "swarovski": 28515,
- "swat": 32547,
- "swat": 26482,
- "swatch": 48053,
- "sway": 26443,
- "sway": 26617,
- "swc": 42231,
- "swe": 2350,
- "swe": 38070,
- "swear": 7406,
- "swearing": 32627,
- "sweat": 10282,
- "sweat": 12663,
- "sweater": 11455,
- "sweaters": 31303,
- "sweating": 33215,
- "sweats": 39321,
- "sweatshirt": 22442,
- "sweaty": 28419,
- "sweden": 8760,
- "swedish": 11585,
- "swee": 1812,
- "sweek": 30017,
- "sweeney": 27286,
- "sweep": 23220,
- "sweep": 13669,
- "sweeping": 25719,
- "sweeps": 26887,
- "sweepstakes": 25992,
- "sweet": 10957,
- "sweet": 2418,
- "sweetened": 45577,
- "sweeter": 32873,
- "sweetest": 15180,
- "sweethe": 16316,
- "sweetheart": 18079,
- "sweetie": 24450,
- "sweetness": 29713,
- "sweets": 18045,
- "swel": 48470,
- "swell": 35538,
- "swell": 21490,
- "swelling": 46578,
- "swept": 23311,
- "swer": 30514,
- "swfc": 30227,
- "swfl": 46607,
- "swi": 3881,
- "swi": 45223,
- "swick": 17159,
- "swif": 28548,
- "swift": 34843,
- "swift": 8229,
- "swild": 33909,
- "swild": 38696,
- "swildlife": 46818,
- "swim": 4928,
- "swim": 7681,
- "swimmer": 25475,
- "swimmers": 27776,
- "swimming": 7411,
- "swims": 46798,
- "swimsuit": 25504,
- "swimwear": 31889,
- "swin": 14554,
- "swin": 40798,
- "swindon": 29540,
- "swine": 31166,
- "swing": 25292,
- "swing": 7429,
- "swinging": 26760,
- "swings": 29141,
- "swipe": 31828,
- "swire": 42753,
- "swirl": 35795,
- "swis": 23611,
- "swish": 38571,
- "swiss": 37917,
- "swiss": 9287,
- "swit": 3726,
- "switch": 22480,
- "switch": 5893,
- "switched": 22869,
- "switches": 33569,
- "switching": 21155,
- "swith": 17299,
- "switzer": 9835,
- "switzerland": 9912,
- "swivel": 48256,
- "swo": 38673,
- "swol": 29575,
- "swollen": 36129,
- "swoo": 29744,
- "swood": 24158,
- "swoon": 37028,
- "swoop": 45661,
- "sword": 33294,
- "sword": 11356,
- "swords": 27181,
- "swork": 42722,
- "sworld": 33305,
- "sworn": 21130,
- "sworth": 13322,
- "swt": 38878,
- "swx": 20597,
- "sx": 9402,
- "sx": 17806,
- "sxsw": 13369,
- "sy": 974,
- "sy": 2126,
- "sya": 35017,
- "sycam": 34911,
- "sycamore": 43086,
- "syd": 4525,
- "syd": 22504,
- "sydney": 15878,
- "sydney": 5278,
- "syed": 27624,
- "syfy": 32047,
- "sykes": 27287,
- "syl": 6452,
- "sylla": 41708,
- "sylvania": 12011,
- "sylve": 28369,
- "sylvester": 37214,
- "sylvia": 25670,
- "sym": 3645,
- "sym": 40327,
- "symb": 22987,
- "symbol": 13085,
- "symboli": 22019,
- "symbolic": 33177,
- "symbolism": 44679,
- "symbols": 25476,
- "symmetry": 31427,
- "symp": 11468,
- "sympathi": 47493,
- "sympathy": 32477,
- "symph": 9544,
- "symphonic": 42639,
- "symphony": 11180,
- "sympo": 9730,
- "symposium": 9971,
- "symptom": 47799,
- "symptoms": 12956,
- "syn": 3758,
- "syn": 36090,
- "synago": 30945,
- "synagogue": 33518,
- "sync": 20081,
- "synchron": 23943,
- "syndic": 21098,
- "syndicate": 28779,
- "syndrome": 10927,
- "syner": 22283,
- "synergy": 32012,
- "syno": 31533,
- "synod": 47712,
- "synopsis": 47018,
- "synth": 33841,
- "synth": 24462,
- "synthe": 22604,
- "synthesi": 33565,
- "synthesis": 21602,
- "synthesizer": 44077,
- "synthetic": 19917,
- "syou": 26742,
- "syour": 21718,
- "syrac": 17279,
- "syracuse": 19640,
- "syrah": 45364,
- "syri": 18917,
- "syria": 5563,
- "syrian": 47562,
- "syrian": 10041,
- "syrians": 41392,
- "syrup": 16611,
- "sys": 26726,
- "syste": 1933,
- "system": 47813,
- "system": 2422,
- "systematic": 28586,
- "systemic": 33807,
- "systems": 4828,
- "sz": 13438,
- "sz": 15879,
- "sze": 44507,
- "szn": 48092,
- "são": 45911,
- "sé": 37879,
- "t": 83,
- "t": 339,
- "ta": 648,
- "ta": 1397,
- "taa": 43874,
- "tab": 2648,
- "tab": 14724,
- "tabby": 36145,
- "tabern": 48991,
- "tability": 15770,
- "table": 12108,
- "table": 2175,
- "tableau": 39723,
- "tables": 7822,
- "tablet": 12494,
- "tabletop": 46843,
- "tabletop": 25773,
- "tablets": 20436,
- "tably": 24440,
- "taboo": 38400,
- "tabs": 29163,
- "tac": 3145,
- "tac": 22653,
- "tache": 39239,
- "tack": 6339,
- "tack": 34446,
- "tackle": 10294,
- "tackled": 47218,
- "tackles": 18021,
- "tackling": 19628,
- "taco": 31924,
- "taco": 12436,
- "tacoma": 25397,
- "tacos": 14090,
- "tactic": 40377,
- "tactical": 17137,
- "tactics": 16410,
- "tacular": 48985,
- "tad": 15890,
- "tad": 19860,
- "tado": 40846,
- "tae": 15257,
- "tae": 15580,
- "taehyung": 24642,
- "taek": 30753,
- "taekwondo": 39963,
- "taemin": 30600,
- "taeyang": 45802,
- "taeyeon": 27389,
- "taf": 29660,
- "taft": 42141,
- "tag": 3456,
- "tag": 3640,
- "tage": 2669,
- "tages": 39902,
- "tagged": 12969,
- "tagging": 25138,
- "tagne": 47467,
- "tags": 11606,
- "tah": 14822,
- "tah": 7090,
- "tahit": 45385,
- "tahoe": 26140,
- "tai": 6511,
- "tai": 13040,
- "taiji": 30185,
- "tail": 7156,
- "tail": 4132,
- "tailed": 20626,
- "tailgate": 23168,
- "tailgating": 42625,
- "tailo": 27230,
- "tailor": 29870,
- "tailored": 28275,
- "tailoring": 46357,
- "tails": 16066,
- "tain": 2841,
- "tain": 1908,
- "taine": 21214,
- "taine": 32299,
- "tained": 10212,
- "taining": 7565,
- "tainment": 30063,
- "tains": 3952,
- "tainted": 47211,
- "taipei": 24356,
- "tair": 29143,
- "tairp": 43707,
- "tait": 45325,
- "taiwan": 36319,
- "taiwan": 12626,
- "taiwanese": 41416,
- "taj": 28937,
- "taj": 24805,
- "taji": 46358,
- "tak": 15070,
- "tak": 14458,
- "taka": 24070,
- "taka": 40968,
- "take": 5052,
- "take": 1172,
- "takeaway": 25737,
- "takeaways": 32080,
- "takeme": 41748,
- "taken": 2807,
- "takeoff": 32789,
- "takeover": 11863,
- "taker": 17939,
- "takers": 30775,
- "takes": 2633,
- "takin": 30890,
- "taking": 2019,
- "taku": 48168,
- "tal": 976,
- "tal": 2066,
- "tala": 29845,
- "talaga": 35349,
- "talbot": 30585,
- "tale": 33971,
- "tale": 7798,
- "talent": 30435,
- "talent": 5114,
- "talented": 5331,
- "talents": 16136,
- "tales": 9469,
- "tali": 12122,
- "tali": 45406,
- "taliban": 20788,
- "talis": 36480,
- "tality": 15631,
- "talk": 12462,
- "talk": 1841,
- "talked": 10153,
- "talkin": 26040,
- "talking": 31463,
- "talking": 2578,
- "talks": 3237,
- "tall": 11664,
- "tall": 7771,
- "talla": 21528,
- "tallade": 44220,
- "tallahassee": 37832,
- "taller": 23470,
- "tallest": 19774,
- "tallinn": 45079,
- "tally": 16323,
- "talon": 47897,
- "tam": 2661,
- "tam": 12246,
- "tama": 45424,
- "tamanna": 48055,
- "tamar": 22901,
- "tamara": 35697,
- "tame": 38557,
- "tame": 32778,
- "tamed": 40575,
- "tami": 39429,
- "tamil": 23046,
- "tamil": 14033,
- "tamilnadu": 32371,
- "tamine": 42566,
- "tammy": 28396,
- "tampa": 10906,
- "tampab": 37852,
- "tamu": 34105,
- "tan": 2123,
- "tan": 5039,
- "tana": 21396,
- "tand": 20244,
- "tandem": 33756,
- "tane": 13344,
- "tane": 24923,
- "taneous": 22275,
- "taneously": 24422,
- "tang": 10425,
- "tang": 20794,
- "tanger": 31844,
- "tangerine": 42045,
- "tangible": 44823,
- "tangle": 36568,
- "tangled": 33587,
- "tango": 24089,
- "tani": 31374,
- "tani": 32985,
- "tania": 45369,
- "tank": 29858,
- "tank": 6172,
- "tanker": 25020,
- "tanks": 14223,
- "tann": 19174,
- "tanner": 22001,
- "tanning": 27985,
- "tans": 27332,
- "tant": 41383,
- "tant": 41695,
- "tante": 48262,
- "tanto": 45685,
- "tany": 34410,
- "tanya": 26800,
- "tanz": 47399,
- "tanzania": 15711,
- "tao": 29084,
- "tao": 18923,
- "tap": 17923,
- "tap": 7888,
- "tapas": 27361,
- "tape": 18332,
- "tape": 5749,
- "taped": 33219,
- "tapes": 17903,
- "tapestry": 33525,
- "taping": 24355,
- "tapp": 27644,
- "tapp": 27764,
- "tapped": 26649,
- "tapping": 27882,
- "tapro": 34415,
- "taproom": 40266,
- "taps": 23267,
- "tar": 2002,
- "tar": 6977,
- "tara": 15264,
- "tarak": 37813,
- "taran": 32370,
- "tarantino": 41180,
- "tarde": 48670,
- "tardis": 35410,
- "tares": 34587,
- "targe": 9620,
- "target": 38556,
- "target": 5400,
- "targeted": 14968,
- "targeting": 15818,
- "targets": 12468,
- "tari": 4238,
- "tari": 38012,
- "tarian": 11762,
- "tarians": 42789,
- "taries": 47291,
- "tariff": 40220,
- "tariffs": 28335,
- "tariq": 42526,
- "tarmac": 44294,
- "taro": 26264,
- "tarot": 23702,
- "tart": 16707,
- "tart": 14120,
- "tartan": 35064,
- "tarts": 29799,
- "tary": 31729,
- "tary": 5065,
- "tarzan": 45463,
- "tas": 6538,
- "tas": 10163,
- "tash": 35272,
- "tasha": 44967,
- "task": 39189,
- "task": 10549,
- "tasks": 19453,
- "tasmania": 22429,
- "tasmanian": 45102,
- "tassel": 49276,
- "tast": 10839,
- "taste": 14314,
- "taste": 5219,
- "tasted": 22827,
- "tasteof": 38097,
- "taster": 29743,
- "tastes": 13736,
- "tastic": 21337,
- "tasting": 7656,
- "tastings": 49273,
- "tasty": 43390,
- "tasty": 8568,
- "tat": 2652,
- "tat": 21592,
- "tata": 19300,
- "tate": 44476,
- "tate": 13295,
- "tath": 27566,
- "tati": 31433,
- "tatiana": 48837,
- "tation": 5280,
- "tations": 32324,
- "tator": 18791,
- "tators": 37206,
- "tats": 44557,
- "tatt": 9232,
- "tatted": 41605,
- "tattoo": 15980,
- "tattoo": 6325,
- "tattooed": 28541,
- "tattoos": 14900,
- "tatum": 26103,
- "tau": 6620,
- "tau": 20510,
- "taught": 9306,
- "taun": 23910,
- "taunton": 40681,
- "taurus": 32881,
- "taver": 37776,
- "tavern": 18644,
- "taw": 33868,
- "taw": 40289,
- "tawa": 29035,
- "tawards": 14351,
- "tax": 4581,
- "tax": 3879,
- "taxation": 36847,
- "taxes": 11462,
- "taxi": 25160,
- "taxi": 11380,
- "taxider": 47420,
- "taxis": 34009,
- "taxpay": 17986,
- "taxpayer": 30978,
- "taxpayers": 25503,
- "tay": 6542,
- "tay": 15073,
- "taya": 38484,
- "tayl": 3913,
- "taylor": 9044,
- "taylor": 3961,
- "taylorswift": 18936,
- "tayo": 33941,
- "taz": 41475,
- "taz": 31870,
- "tb": 1990,
- "tb": 7490,
- "tba": 34363,
- "tball": 8390,
- "tball": 1467,
- "tbc": 31807,
- "tbd": 45548,
- "tbh": 13238,
- "tbi": 45868,
- "tbl": 42962,
- "tbli": 43664,
- "tblightning": 44178,
- "tbo": 34255,
- "tbr": 46643,
- "tbs": 37368,
- "tbt": 2950,
- "tc": 6820,
- "tc": 5454,
- "tca": 35116,
- "tch": 10744,
- "tch": 4048,
- "tches": 42001,
- "tcm": 21501,
- "tcm": 26588,
- "tcmparty": 24338,
- "tcot": 8995,
- "tcs": 39107,
- "tcu": 26791,
- "td": 20578,
- "td": 3192,
- "tdf": 21844,
- "tdi": 45621,
- "tdp": 47009,
- "tds": 20238,
- "tdsb": 29836,
- "te": 600,
- "te": 756,
- "tea": 41053,
- "tea": 3274,
- "teach": 2043,
- "teach": 6865,
- "teacher": 18051,
- "teacher": 4008,
- "teachers": 5069,
- "teaches": 17110,
- "teaching": 5141,
- "teachings": 32119,
- "teal": 22821,
- "team": 2085,
- "team": 1027,
- "teamcanada": 46636,
- "teamed": 20590,
- "teamgb": 40971,
- "teaming": 24392,
- "teammate": 17900,
- "teammates": 13921,
- "teams": 3891,
- "teamsisd": 34703,
- "teamusa": 28625,
- "teamwork": 14657,
- "teaparty": 33065,
- "teapo": 35745,
- "teapot": 40749,
- "tear": 15802,
- "tear": 11862,
- "tearful": 46873,
- "tearing": 24785,
- "tears": 7688,
- "teas": 23003,
- "teas": 29314,
- "tease": 25163,
- "teased": 49122,
- "teaser": 8982,
- "teasers": 48990,
- "teases": 28509,
- "teasing": 36507,
- "teat": 26376,
- "teatime": 48948,
- "teatro": 35756,
- "teau": 24931,
- "tebow": 37797,
- "tec": 17381,
- "tec": 11612,
- "tech": 1782,
- "tech": 2061,
- "techcrunch": 42110,
- "techn": 6252,
- "technews": 31787,
- "technic": 16639,
- "technic": 37666,
- "technical": 49231,
- "technical": 7582,
- "technically": 23180,
- "technician": 22540,
- "technicians": 35513,
- "techno": 2599,
- "techno": 17564,
- "technological": 23068,
- "technologies": 10040,
- "technology": 3089,
- "techs": 41353,
- "ted": 4841,
- "ted": 775,
- "tedcruz": 27517,
- "teddy": 25758,
- "teddy": 11798,
- "tedly": 8539,
- "tedu": 42517,
- "tedx": 17950,
- "tedx": 41504,
- "tee": 12676,
- "tee": 3385,
- "teed": 13692,
- "teen": 5398,
- "teen": 4697,
- "teenage": 14069,
- "teenager": 19338,
- "teenagers": 25989,
- "teenchoice": 28203,
- "teens": 12375,
- "teenth": 20249,
- "teenwolf": 40067,
- "teeny": 41622,
- "teer": 48648,
- "tees": 9641,
- "teessi": 43295,
- "teeth": 8225,
- "tega": 29508,
- "tegr": 39801,
- "teh": 18720,
- "teh": 29601,
- "tehran": 26399,
- "tein": 33223,
- "tej": 46724,
- "tek": 17489,
- "tek": 18294,
- "tekken": 29843,
- "tel": 4978,
- "tel": 2226,
- "telang": 23469,
- "telangana": 26386,
- "tele": 3103,
- "tele": 32851,
- "telecom": 21057,
- "telecommunications": 39900,
- "telegram": 26780,
- "telegraph": 14713,
- "telephone": 17243,
- "telescope": 19037,
- "telethon": 49266,
- "televised": 39470,
- "television": 8608,
- "telford": 38323,
- "tell": 16069,
- "tell": 2330,
- "teller": 20415,
- "tellers": 42707,
- "telling": 5507,
- "tells": 5217,
- "tellu": 42511,
- "telly": 31475,
- "tels": 43607,
- "telugu": 22927,
- "tely": 5630,
- "tem": 2404,
- "tem": 17536,
- "tema": 45881,
- "teme": 43378,
- "temp": 2684,
- "temp": 11097,
- "tempe": 36723,
- "temper": 5981,
- "temper": 35521,
- "temperature": 9543,
- "temperatures": 11575,
- "tempered": 40521,
- "tempest": 36053,
- "templ": 16679,
- "template": 18591,
- "templates": 30498,
- "temple": 21841,
- "temple": 5620,
- "temples": 24024,
- "tempo": 19625,
- "tempor": 4858,
- "temporal": 43656,
- "temporarily": 23189,
- "temporary": 6513,
- "temps": 11668,
- "tempt": 28460,
- "temptation": 30118,
- "tempted": 26226,
- "tempting": 34876,
- "ten": 1149,
- "ten": 2581,
- "tenant": 16954,
- "tenants": 26023,
- "tenay": 45384,
- "tenberg": 31329,
- "tend": 17630,
- "tend": 21252,
- "tendency": 47277,
- "tender": 23020,
- "tender": 9838,
- "tenderloin": 42750,
- "tenders": 44741,
- "tending": 35084,
- "tendon": 48459,
- "tends": 39962,
- "tene": 24868,
- "tened": 13682,
- "tener": 29054,
- "teneri": 28000,
- "tenerife": 29401,
- "teners": 41307,
- "teness": 18018,
- "teng": 34016,
- "teng": 28474,
- "tennant": 29310,
- "tennes": 9514,
- "tennessee": 10053,
- "tennis": 31504,
- "tennis": 5298,
- "tenor": 30521,
- "tens": 14062,
- "tense": 23518,
- "tension": 15221,
- "tensions": 24224,
- "tenstein": 49139,
- "tent": 18505,
- "tent": 10782,
- "tentative": 48238,
- "tenth": 27483,
- "tention": 12191,
- "tents": 30730,
- "tenure": 30739,
- "teo": 18665,
- "tep": 31806,
- "tequ": 17502,
- "tequila": 18510,
- "ter": 704,
- "ter": 652,
- "tera": 15155,
- "teras": 44830,
- "tere": 11329,
- "tered": 49272,
- "tered": 4389,
- "terence": 33806,
- "teresa": 19081,
- "teri": 30917,
- "teria": 22685,
- "terie": 42276,
- "tering": 7929,
- "term": 40991,
- "term": 4780,
- "termin": 4766,
- "terminal": 11816,
- "terminals": 44091,
- "terminator": 29609,
- "terminology": 48896,
- "terms": 8663,
- "tern": 41572,
- "tern": 12959,
- "terns": 25251,
- "tero": 20727,
- "tero": 24697,
- "terps": 41471,
- "terr": 3921,
- "terra": 22366,
- "terra": 18816,
- "terrac": 28549,
- "terrace": 13820,
- "terraces": 47508,
- "terracotta": 45123,
- "terrain": 20184,
- "terran": 43726,
- "terre": 33888,
- "terre": 27537,
- "terrell": 39494,
- "terrence": 38746,
- "terrestrial": 46299,
- "terri": 4504,
- "terri": 36722,
- "terrible": 9741,
- "terribly": 34558,
- "terrier": 14455,
- "terriers": 47047,
- "terrific": 13837,
- "terrified": 28204,
- "terrifying": 18526,
- "territ": 10720,
- "territorial": 39163,
- "territories": 32846,
- "territory": 13936,
- "terror": 9596,
- "terror": 9327,
- "terrori": 6836,
- "terrorism": 10583,
- "terrorist": 10575,
- "terrorists": 12835,
- "terry": 19378,
- "terry": 8561,
- "ters": 24102,
- "ters": 1737,
- "terti": 48386,
- "tery": 4184,
- "tes": 8019,
- "tes": 3609,
- "tesco": 15434,
- "tese": 33320,
- "tesla": 12254,
- "tess": 21807,
- "tess": 20840,
- "tessa": 32063,
- "test": 7738,
- "test": 1628,
- "testam": 23477,
- "testament": 24609,
- "tested": 10576,
- "tester": 32707,
- "testi": 18373,
- "testic": 42364,
- "testify": 33088,
- "testifying": 46347,
- "testim": 12553,
- "testimonial": 28834,
- "testimony": 18672,
- "testing": 4967,
- "testo": 42428,
- "testosterone": 45168,
- "tests": 8715,
- "tet": 40468,
- "tet": 13275,
- "tetra": 40902,
- "tetris": 45934,
- "teu": 47152,
- "teuk": 39979,
- "teur": 27120,
- "tex": 2056,
- "tex": 11728,
- "texan": 35287,
- "texan": 38386,
- "texans": 17580,
- "texanscheer": 43717,
- "texas": 15713,
- "texas": 3403,
- "texaste": 46469,
- "text": 18169,
- "text": 4160,
- "textbook": 25952,
- "textbooks": 44041,
- "texted": 29004,
- "textile": 19789,
- "textiles": 24326,
- "texting": 18600,
- "texts": 12767,
- "texture": 16505,
- "textured": 32168,
- "textures": 28063,
- "tey": 32395,
- "tez": 22664,
- "tf": 18828,
- "tf": 5001,
- "tfc": 30186,
- "tfl": 29918,
- "tford": 22493,
- "tful": 17108,
- "tfw": 16741,
- "tg": 7665,
- "tg": 11981,
- "tgif": 14483,
- "th": 513,
- "th": 640,
- "tha": 18470,
- "tha": 4715,
- "thab": 38219,
- "thad": 48339,
- "thai": 28054,
- "thai": 8825,
- "thail": 7258,
- "thailand": 7469,
- "thak": 22801,
- "thakur": 38427,
- "thal": 7967,
- "thal": 12323,
- "thala": 17784,
- "thalai": 25206,
- "thalaivar": 44918,
- "thalap": 39789,
- "thalapathy": 45405,
- "thalapathy": 23324,
- "thall": 36007,
- "tham": 11761,
- "tham": 8896,
- "thames": 43472,
- "thames": 15321,
- "than": 792,
- "than": 1126,
- "thand": 44465,
- "thane": 21463,
- "thang": 24870,
- "thani": 31322,
- "thank": 2790,
- "thank": 1144,
- "thanked": 32079,
- "thankful": 38839,
- "thankful": 6217,
- "thankfully": 22089,
- "thanking": 21989,
- "thanks": 5672,
- "thanks": 1085,
- "thanksgiving": 45732,
- "thanksgiving": 6167,
- "thanku": 45710,
- "thankyou": 18050,
- "thankyou": 9911,
- "thanniversary": 35564,
- "thanos": 36709,
- "thanx": 25095,
- "thar": 14396,
- "thar": 38843,
- "thard": 43474,
- "that": 6303,
- "that": 682,
- "thatcher": 32496,
- "thats": 44636,
- "thats": 9254,
- "thaw": 26081,
- "thaw": 47229,
- "thbewithyou": 41067,
- "thc": 20091,
- "thcentury": 49111,
- "thd": 28219,
- "thday": 37801,
- "the": 599,
- "the": 518,
- "thea": 15935,
- "thea": 25429,
- "thead": 25259,
- "theal": 45728,
- "thealth": 31398,
- "thear": 43283,
- "theart": 44678,
- "theast": 8378,
- "theastern": 17877,
- "theat": 2263,
- "theater": 39438,
- "theater": 6128,
- "theaters": 14689,
- "theatre": 19857,
- "theatre": 3292,
- "theatres": 21680,
- "theatrical": 26833,
- "theband": 27695,
- "thebeatles": 35645,
- "thebest": 40883,
- "thebest": 25856,
- "thebig": 24732,
- "theblack": 47718,
- "thec": 48659,
- "thed": 31405,
- "thedaily": 33550,
- "theday": 4408,
- "thedream": 39417,
- "thee": 44475,
- "thee": 15108,
- "theeconomist": 44518,
- "theellenshow": 35342,
- "thefilm": 31665,
- "theflash": 25434,
- "theforce": 40002,
- "theforceawakens": 48033,
- "theft": 13286,
- "thefuture": 34287,
- "thegame": 24428,
- "thegood": 28594,
- "thegreat": 28721,
- "thei": 44522,
- "their": 911,
- "theirs": 29297,
- "thel": 5403,
- "thelast": 23495,
- "thelastjedi": 47992,
- "theless": 27712,
- "theli": 15277,
- "thelittle": 46872,
- "thelo": 47036,
- "thelove": 40668,
- "thelove": 43200,
- "them": 5435,
- "them": 1180,
- "themasters": 48378,
- "theme": 38524,
- "theme": 5849,
- "themed": 10126,
- "themes": 17849,
- "themet": 48183,
- "themovie": 27062,
- "themselves": 6503,
- "then": 5929,
- "then": 1594,
- "thenburg": 45209,
- "thene": 17012,
- "thenew": 24212,
- "thenext": 47881,
- "thenight": 43336,
- "theno": 37172,
- "thenorth": 34338,
- "theo": 17043,
- "theo": 18084,
- "theod": 26653,
- "theodore": 30743,
- "theological": 41162,
- "theology": 24095,
- "theon": 34653,
- "theone": 46231,
- "theopen": 41438,
- "theore": 22690,
- "theoretical": 35585,
- "theori": 34804,
- "theories": 23937,
- "theory": 7143,
- "thepeople": 33597,
- "thepersonal": 29981,
- "thepersonalnetwork": 30016,
- "thephoto": 18303,
- "thephotohour": 18607,
- "ther": 1160,
- "ther": 743,
- "therap": 4499,
- "therapeu": 19332,
- "therapeutic": 23240,
- "therapeutics": 49101,
- "therapies": 30179,
- "therapist": 20608,
- "therapists": 34763,
- "therapper": 49340,
- "therapy": 5257,
- "there": 5283,
- "there": 997,
- "thereal": 8074,
- "thereal": 41140,
- "thereby": 43308,
- "thered": 10208,
- "therefore": 16865,
- "theres": 18494,
- "theresa": 14126,
- "therese": 47996,
- "theresistance": 22845,
- "theri": 28967,
- "theri": 45297,
- "therine": 26807,
- "therine": 9239,
- "thering": 7891,
- "therland": 25351,
- "thermal": 13689,
- "thermo": 22303,
- "thermom": 31138,
- "thermometer": 38172,
- "thermost": 42391,
- "thern": 10919,
- "thern": 3137,
- "thero": 13165,
- "theroad": 29807,
- "therock": 30036,
- "theroy": 38146,
- "thers": 1959,
- "thes": 40556,
- "thes": 6460,
- "thescript": 47061,
- "these": 40366,
- "these": 1071,
- "theses": 39388,
- "thesimpsons": 45513,
- "thesims": 34192,
- "thesis": 10673,
- "thessal": 41491,
- "thessaloni": 41753,
- "thest": 35343,
- "thesun": 45617,
- "theta": 27694,
- "thetic": 7954,
- "thetimes": 36039,
- "thevamp": 33701,
- "thevoice": 47206,
- "thevoice": 30258,
- "thewalkingdead": 18087,
- "thewanted": 43008,
- "theworld": 44988,
- "theworld": 17475,
- "thex": 35990,
- "they": 15174,
- "they": 889,
- "theyre": 28266,
- "thfc": 17729,
- "thi": 2362,
- "thi": 9111,
- "thia": 17943,
- "thiago": 44537,
- "thian": 23214,
- "thians": 28187,
- "thibau": 48351,
- "thic": 26107,
- "thic": 11794,
- "thick": 18417,
- "thick": 11006,
- "thicker": 43302,
- "thickness": 40754,
- "thief": 18508,
- "thier": 25595,
- "thierry": 32929,
- "thieves": 17899,
- "thigh": 47124,
- "thigh": 22877,
- "thighs": 30847,
- "thik": 20512,
- "thika": 44619,
- "thill": 31266,
- "thim": 42331,
- "thin": 2178,
- "thin": 7847,
- "thine": 47192,
- "thing": 7499,
- "thing": 946,
- "things": 30670,
- "things": 1739,
- "thingsto": 43924,
- "thingy": 36888,
- "think": 9820,
- "think": 1331,
- "thinkbig": 26015,
- "thinkbigsundaywithmarsha": 26666,
- "thinker": 34577,
- "thinkers": 32779,
- "thinkin": 34443,
- "thinking": 3291,
- "thinks": 6109,
- "thinner": 47247,
- "thir": 6030,
- "third": 32102,
- "third": 3981,
- "thirds": 42582,
- "thirst": 23563,
- "thirsty": 39731,
- "thirsty": 17521,
- "thirteen": 34209,
- "thirty": 20813,
- "thiru": 43292,
- "this": 4340,
- "this": 589,
- "thisday": 6532,
- "thisdayin": 33641,
- "thisdayinhistory": 46913,
- "thisi": 7299,
- "thisis": 14887,
- "thismorning": 36245,
- "thistle": 29039,
- "thistory": 28904,
- "thium": 21804,
- "thletics": 17765,
- "thm": 10407,
- "thman": 30079,
- "thms": 19874,
- "thn": 44155,
- "thn": 45587,
- "thnx": 25480,
- "tho": 1325,
- "tho": 5025,
- "thof": 18943,
- "thofjuly": 21613,
- "thol": 29319,
- "thole": 31029,
- "tholes": 42465,
- "thology": 9881,
- "thom": 2585,
- "thom": 24094,
- "thomas": 12574,
- "thomas": 3888,
- "thome": 21289,
- "thomp": 37274,
- "thompson": 42181,
- "thompson": 8535,
- "thomson": 24151,
- "thon": 38776,
- "thon": 8924,
- "thong": 37058,
- "thood": 15623,
- "thor": 4130,
- "thor": 13691,
- "thora": 46866,
- "thorn": 12957,
- "thorn": 18466,
- "thorne": 18025,
- "thorns": 33650,
- "thornton": 23592,
- "thorough": 15294,
- "thorough": 34788,
- "thoroughbred": 43248,
- "thoroughly": 19750,
- "thorpe": 18099,
- "thos": 41965,
- "those": 1753,
- "thot": 33736,
- "thou": 1513,
- "thou": 17781,
- "though": 2846,
- "thought": 23948,
- "thought": 2449,
- "thoughtful": 19592,
- "thoughts": 3618,
- "thour": 27125,
- "thousand": 9344,
- "thousands": 7089,
- "thouse": 40318,
- "thouse": 7819,
- "thoven": 23078,
- "thr": 1111,
- "thr": 19138,
- "thra": 17761,
- "thra": 32797,
- "thrash": 38262,
- "thre": 1607,
- "thread": 31108,
- "thread": 8815,
- "threads": 24957,
- "threat": 7527,
- "threat": 7212,
- "threaten": 26097,
- "threatened": 16391,
- "threatening": 16400,
- "threatens": 20555,
- "threats": 12766,
- "three": 21615,
- "three": 2097,
- "thren": 41776,
- "thresh": 29779,
- "threshold": 33791,
- "threw": 12746,
- "thri": 8713,
- "thrift": 27779,
- "thrill": 21023,
- "thrilled": 7879,
- "thriller": 9653,
- "thrilling": 20101,
- "thrills": 39829,
- "thrive": 17669,
- "thriving": 22677,
- "thro": 2101,
- "thro": 28624,
- "throat": 16371,
- "thrombo": 47585,
- "throne": 15999,
- "thrones": 8072,
- "throp": 34939,
- "throttle": 37139,
- "through": 6091,
- "through": 1417,
- "throughout": 6721,
- "throughs": 48278,
- "throw": 3315,
- "throw": 6293,
- "throwback": 6001,
- "throwback": 5058,
- "throwbackthursday": 6326,
- "thrower": 40199,
- "throwing": 9734,
- "thrown": 15079,
- "throws": 14723,
- "thru": 23856,
- "thru": 6162,
- "thrush": 46133,
- "thrust": 40202,
- "ths": 2079,
- "tht": 23554,
- "thu": 3837,
- "thu": 14153,
- "thub": 25660,
- "thug": 37212,
- "thug": 18137,
- "thugs": 27686,
- "thul": 28368,
- "thulhu": 37560,
- "thum": 14679,
- "thumb": 19514,
- "thumb": 18674,
- "thumbnail": 32365,
- "thumbs": 17599,
- "thun": 32267,
- "thunder": 6161,
- "thunder": 8951,
- "thunderbird": 45131,
- "thunderbirds": 44286,
- "thunderbolt": 43596,
- "thunderstorm": 12005,
- "thunderstorms": 19525,
- "thunt": 46763,
- "thur": 1837,
- "thur": 21704,
- "thurman": 41291,
- "thurs": 9908,
- "thursday": 11218,
- "thursday": 2221,
- "thursdaymotivation": 39375,
- "thursdays": 21444,
- "thursdaythoughts": 14866,
- "thurst": 33970,
- "thus": 12457,
- "thusi": 9488,
- "thwaite": 48469,
- "thweeksary": 30871,
- "thx": 5913,
- "thy": 7804,
- "thy": 3362,
- "thyme": 29805,
- "thyro": 25174,
- "thyroid": 32558,
- "ti": 555,
- "ti": 2605,
- "tia": 6709,
- "tial": 2826,
- "tially": 14503,
- "tian": 23011,
- "tian": 8125,
- "tians": 35182,
- "tiara": 38322,
- "tib": 47868,
- "tibet": 19927,
- "tibet": 22234,
- "tibetan": 24057,
- "tible": 11453,
- "tic": 890,
- "tic": 1550,
- "tica": 9669,
- "tical": 34191,
- "tical": 4342,
- "tically": 13375,
- "ticals": 30861,
- "tice": 3122,
- "tich": 48769,
- "tician": 43358,
- "ticism": 26491,
- "tick": 24640,
- "tick": 15617,
- "ticket": 25740,
- "ticket": 4500,
- "ticketing": 44432,
- "tickets": 2015,
- "ticking": 35842,
- "tickle": 42999,
- "ticks": 40269,
- "tico": 17670,
- "ticon": 45996,
- "tics": 2419,
- "ticul": 15538,
- "ticus": 44277,
- "tid": 26002,
- "tid": 23727,
- "tidal": 21949,
- "tide": 15698,
- "tide": 9105,
- "tides": 25524,
- "tidy": 23858,
- "tie": 14072,
- "tie": 3422,
- "tied": 9889,
- "tiem": 34762,
- "tien": 47538,
- "tiene": 43438,
- "tier": 14390,
- "tier": 6598,
- "tierney": 45693,
- "tiers": 24604,
- "ties": 25556,
- "ties": 2499,
- "tiest": 18300,
- "tiesto": 46367,
- "tif": 23216,
- "tiff": 11112,
- "tiff": 20699,
- "tiffany": 30467,
- "tiffany": 14446,
- "tification": 43923,
- "tified": 40854,
- "tiful": 29123,
- "tify": 6677,
- "tig": 31999,
- "tiger": 11954,
- "tiger": 6531,
- "tigers": 6934,
- "tigh": 31365,
- "tight": 25763,
- "tight": 9123,
- "tighten": 46653,
- "tighter": 48193,
- "tightly": 37568,
- "tights": 29581,
- "tijuana": 45273,
- "tik": 24986,
- "tik": 32403,
- "tiki": 30107,
- "til": 6124,
- "til": 1763,
- "tile": 26217,
- "tile": 8227,
- "tiles": 10607,
- "tility": 38180,
- "till": 17462,
- "till": 4267,
- "tilla": 26063,
- "tillerson": 47738,
- "tilly": 41199,
- "tilt": 23601,
- "tim": 1292,
- "tim": 3863,
- "timate": 4754,
- "timb": 26627,
- "timber": 14441,
- "timber": 16246,
- "timberlake": 28274,
- "timbers": 39911,
- "timberwolves": 41190,
- "time": 3764,
- "time": 788,
- "timed": 32727,
- "timehop": 19944,
- "timel": 23549,
- "timelapse": 48154,
- "timeless": 15558,
- "timeline": 11492,
- "timely": 19250,
- "timeout": 41536,
- "timer": 19725,
- "timers": 44574,
- "times": 26445,
- "times": 1661,
- "timesnow": 45487,
- "timesof": 32522,
- "timesofindia": 44182,
- "timetable": 31971,
- "timeto": 29187,
- "timing": 13624,
- "timm": 22444,
- "timmy": 33252,
- "timo": 13390,
- "timo": 33777,
- "timothy": 42087,
- "timothy": 18560,
- "timp": 42166,
- "tin": 1310,
- "tin": 5420,
- "tina": 9257,
- "tinder": 24287,
- "tine": 22341,
- "ting": 7451,
- "ting": 694,
- "tinged": 44829,
- "tings": 35332,
- "tini": 26839,
- "tink": 39278,
- "tinker": 45272,
- "tinker": 40910,
- "tino": 20538,
- "tins": 37359,
- "tint": 40497,
- "tinted": 42618,
- "tiny": 21716,
- "tiny": 5591,
- "tio": 27562,
- "tion": 2274,
- "tion": 740,
- "tional": 22460,
- "tional": 2986,
- "tionality": 24514,
- "tionally": 12409,
- "tionary": 8381,
- "tione": 44318,
- "tioned": 9083,
- "tioning": 15528,
- "tionist": 25732,
- "tions": 1371,
- "tious": 14255,
- "tip": 15383,
- "tip": 4623,
- "tipoff": 44521,
- "tipp": 32294,
- "tipped": 31878,
- "tipper": 38095,
- "tipperary": 45612,
- "tipping": 27827,
- "tips": 3173,
- "tipton": 48809,
- "tiptuesday": 42112,
- "tique": 37772,
- "tir": 25467,
- "tir": 38462,
- "tire": 29128,
- "tire": 9362,
- "tired": 6533,
- "tireless": 39835,
- "tirelessly": 41548,
- "tires": 15533,
- "tiring": 42630,
- "tiru": 36033,
- "tis": 7839,
- "tis": 7394,
- "tise": 13745,
- "tisgarh": 40538,
- "tish": 45148,
- "tish": 28784,
- "tism": 27113,
- "tiss": 28155,
- "tissue": 15368,
- "tissues": 32172,
- "tist": 7902,
- "tista": 25580,
- "tists": 25944,
- "tit": 1991,
- "tit": 13202,
- "tita": 40936,
- "titan": 13496,
- "titan": 15516,
- "titanic": 20729,
- "titanium": 24409,
- "titans": 13066,
- "titi": 17434,
- "titi": 48504,
- "title": 28033,
- "title": 3644,
- "titled": 9939,
- "titles": 9780,
- "tito": 26838,
- "titus": 36102,
- "tium": 21975,
- "tiv": 1835,
- "tiva": 41886,
- "tive": 14640,
- "tive": 1420,
- "tively": 9883,
- "tiveness": 20955,
- "tives": 7570,
- "tivity": 9859,
- "tivo": 32162,
- "tix": 5835,
- "tiz": 19376,
- "tj": 18890,
- "tj": 18988,
- "tk": 22344,
- "tk": 20676,
- "tko": 37347,
- "tks": 38739,
- "tl": 14325,
- "tl": 8190,
- "tland": 30697,
- "tlap": 41976,
- "tlc": 22047,
- "tle": 39141,
- "tle": 5825,
- "tles": 39363,
- "tless": 17427,
- "tlot": 41080,
- "tls": 47367,
- "tly": 37483,
- "tly": 1646,
- "tm": 9430,
- "tm": 7789,
- "tman": 20796,
- "tmc": 35263,
- "tment": 26485,
- "tml": 39445,
- "tmltalk": 42260,
- "tmnt": 32444,
- "tmobile": 34901,
- "tmr": 35906,
- "tmrw": 16496,
- "tms": 44496,
- "tmund": 23801,
- "tmw": 45827,
- "tmz": 37248,
- "tn": 3827,
- "tn": 7248,
- "tna": 21150,
- "tnam": 8079,
- "tner": 34922,
- "tness": 35212,
- "tney": 9523,
- "tng": 35898,
- "tnt": 20659,
- "tnx": 38220,
- "to": 580,
- "to": 531,
- "toa": 17916,
- "toad": 26096,
- "toast": 24654,
- "toast": 10920,
- "toasted": 23533,
- "toaster": 39061,
- "toasty": 44726,
- "tob": 24260,
- "tobac": 12611,
- "tobacco": 13905,
- "tobago": 39482,
- "tobe": 17534,
- "tobe": 28740,
- "tober": 18162,
- "tober": 2925,
- "toberfest": 26249,
- "tobi": 40335,
- "tobi": 48374,
- "tobias": 32464,
- "tobin": 42466,
- "toby": 29659,
- "toby": 18333,
- "toc": 41907,
- "toc": 30643,
- "tock": 25274,
- "tod": 38239,
- "tod": 33568,
- "toda": 47141,
- "todas": 36150,
- "today": 11800,
- "today": 721,
- "todayin": 32957,
- "todays": 13513,
- "todayshow": 29739,
- "todd": 10398,
- "todd": 9951,
- "toddler": 17772,
- "toddlers": 36719,
- "toddy": 38926,
- "todo": 48857,
- "todo": 23087,
- "todos": 33355,
- "toe": 47756,
- "toe": 11344,
- "toes": 16511,
- "tof": 6659,
- "toff": 27319,
- "toffee": 34880,
- "tofficial": 47953,
- "tofthe": 23678,
- "toftheday": 20566,
- "tofu": 24692,
- "tog": 45715,
- "toge": 1903,
- "together": 17858,
- "together": 1952,
- "togo": 26729,
- "tography": 33968,
- "toh": 26851,
- "toi": 7472,
- "toi": 26941,
- "toid": 49124,
- "toile": 43148,
- "toilet": 11071,
- "toilets": 24027,
- "toire": 39534,
- "tok": 16690,
- "tok": 27010,
- "token": 32634,
- "token": 17134,
- "tokens": 23562,
- "tokyo": 35038,
- "tokyo": 6667,
- "tol": 4678,
- "tol": 32962,
- "told": 3527,
- "tole": 15677,
- "toledo": 19812,
- "toler": 12150,
- "tolerance": 20377,
- "tolerant": 38536,
- "tolerate": 35556,
- "tolkien": 32989,
- "toll": 44090,
- "toll": 14155,
- "tollywood": 42016,
- "tology": 34799,
- "tom": 999,
- "tom": 2435,
- "toma": 42360,
- "toma": 44710,
- "tomas": 35944,
- "tomas": 27178,
- "tomat": 12041,
- "tomato": 9867,
- "tomatoes": 13004,
- "tomb": 37187,
- "tomb": 15582,
- "tombs": 48613,
- "tombstone": 45729,
- "tome": 24137,
- "tome": 24283,
- "tomi": 46290,
- "tomlin": 46649,
- "tomlinson": 17484,
- "tommorow": 42871,
- "tommy": 16573,
- "tommy": 8876,
- "tomo": 31223,
- "tomo": 34434,
- "tomor": 1277,
- "tomorrow": 19728,
- "tomorrow": 1293,
- "tomorrowland": 34951,
- "tomorrows": 32258,
- "tomorrowspaper": 35005,
- "tomorrowspaperstoday": 35190,
- "tomp": 43544,
- "tompkins": 49068,
- "toms": 10545,
- "tomy": 18730,
- "ton": 838,
- "ton": 917,
- "tona": 13459,
- "tone": 32366,
- "tone": 8408,
- "toned": 29426,
- "toner": 40614,
- "tones": 14744,
- "tong": 21510,
- "tonga": 37882,
- "tongue": 44820,
- "tongue": 13626,
- "tongues": 39837,
- "toni": 17766,
- "toni": 17171,
- "tonic": 17808,
- "tonics": 34647,
- "tonight": 1009,
- "tonights": 23312,
- "tonite": 13449,
- "tonka": 42781,
- "tonline": 45867,
- "tonne": 42450,
- "tonnes": 24813,
- "tons": 7555,
- "tony": 9150,
- "tony": 4767,
- "tonyawards": 46068,
- "too": 1843,
- "too": 1256,
- "took": 2280,
- "tool": 13718,
- "tool": 5999,
- "toolbox": 46599,
- "toolkit": 29849,
- "tools": 5771,
- "toom": 27550,
- "toon": 24664,
- "toon": 19701,
- "toonami": 48336,
- "toons": 35345,
- "toor": 42590,
- "tooth": 15316,
- "tooth": 12030,
- "toothbrush": 36841,
- "toothpaste": 37322,
- "tooting": 42969,
- "top": 5534,
- "top": 1253,
- "topaz": 46125,
- "tope": 32149,
- "tope": 42239,
- "topeka": 46884,
- "topia": 29618,
- "topic": 8720,
- "topical": 37464,
- "topics": 11916,
- "topless": 37415,
- "topo": 23008,
- "topoli": 30152,
- "topp": 19529,
- "topped": 12588,
- "topper": 31780,
- "toppers": 41651,
- "topping": 21071,
- "toppings": 47554,
- "topps": 20201,
- "tops": 8154,
- "topshop": 40953,
- "topus": 21495,
- "tor": 937,
- "tor": 1208,
- "tora": 45147,
- "torah": 37945,
- "toral": 45282,
- "torch": 31921,
- "torch": 15820,
- "tore": 38066,
- "tore": 19385,
- "tored": 38046,
- "torg": 33214,
- "tori": 17689,
- "tori": 17539,
- "toria": 23732,
- "torial": 28029,
- "torian": 48399,
- "tories": 14193,
- "torino": 29178,
- "torio": 34235,
- "torn": 8572,
- "torn": 18023,
- "tornad": 24676,
- "tornado": 9062,
- "tornadoes": 28254,
- "toro": 17892,
- "toron": 37407,
- "toronto": 16866,
- "toronto": 4514,
- "torpe": 34093,
- "torpedo": 46582,
- "torquay": 45738,
- "torque": 31940,
- "torre": 39563,
- "torre": 38009,
- "torrent": 42317,
- "torrential": 41158,
- "torres": 16049,
- "tors": 2546,
- "tortilla": 32683,
- "torto": 24170,
- "tortoise": 30178,
- "torture": 16013,
- "tortured": 29900,
- "tory": 29390,
- "tory": 4214,
- "tos": 6094,
- "tosc": 37719,
- "tose": 38154,
- "tosh": 17109,
- "toshi": 31744,
- "toss": 19656,
- "tossed": 31296,
- "tot": 4618,
- "tot": 23659,
- "total": 13507,
- "total": 4445,
- "totally": 5440,
- "totals": 25772,
- "tote": 48145,
- "tote": 19031,
- "totem": 45376,
- "totes": 37199,
- "tothe": 12222,
- "toto": 39823,
- "tots": 24978,
- "totten": 14360,
- "tottenham": 14889,
- "tou": 1879,
- "tou": 29261,
- "touch": 9480,
- "touch": 4526,
- "touchdown": 18664,
- "touchdowns": 37905,
- "touched": 13190,
- "touches": 14832,
- "touching": 14088,
- "touchscreen": 39095,
- "tough": 12063,
- "tough": 5499,
- "tougher": 33722,
- "toughest": 23773,
- "toughness": 45522,
- "toulou": 27145,
- "toulouse": 30267,
- "tour": 2710,
- "tour": 1760,
- "tourde": 39247,
- "toured": 27654,
- "touri": 4224,
- "touring": 11853,
- "tourism": 23661,
- "tourism": 6556,
- "tourist": 12123,
- "tourists": 15546,
- "tournament": 4097,
- "tournaments": 23058,
- "tourney": 12603,
- "tours": 8948,
- "tous": 37424,
- "tout": 22300,
- "touts": 41274,
- "tov": 28970,
- "tow": 11557,
- "tow": 18653,
- "toward": 8508,
- "towards": 4447,
- "towed": 45419,
- "towel": 15953,
- "towels": 26578,
- "tower": 26669,
- "tower": 4730,
- "towering": 39444,
- "towers": 12701,
- "towie": 44613,
- "towin": 45819,
- "towing": 36963,
- "town": 4068,
- "town": 1605,
- "townfc": 33981,
- "townhall": 33408,
- "townhouse": 40178,
- "towns": 14173,
- "townsend": 26826,
- "township": 14622,
- "townsville": 47330,
- "towork": 48233,
- "tox": 7742,
- "tox": 16145,
- "toxic": 27436,
- "toxic": 12348,
- "toxicity": 41234,
- "toxin": 48899,
- "toxins": 36618,
- "toy": 14387,
- "toy": 5988,
- "toya": 37602,
- "toyo": 7644,
- "toyota": 8908,
- "toys": 39508,
- "toys": 7162,
- "tp": 23760,
- "tp": 15188,
- "tpp": 29411,
- "tps": 35246,
- "tq": 43066,
- "tr": 635,
- "tr": 6337,
- "tra": 752,
- "tra": 2483,
- "trac": 2266,
- "trace": 48611,
- "trace": 14767,
- "traced": 47956,
- "traces": 30913,
- "tracey": 25558,
- "tracing": 27897,
- "track": 10887,
- "track": 2700,
- "tracked": 27049,
- "tracker": 18123,
- "tracking": 10428,
- "tracklist": 39777,
- "tracks": 7579,
- "tract": 4690,
- "traction": 10644,
- "tractor": 14607,
- "tractors": 37854,
- "tracy": 32984,
- "tracy": 15508,
- "trad": 48716,
- "trad": 38037,
- "trade": 10457,
- "trade": 3629,
- "traded": 18860,
- "trademark": 25011,
- "trader": 17700,
- "traders": 19112,
- "trades": 18519,
- "trading": 40083,
- "trading": 6520,
- "tradio": 20689,
- "tradition": 20838,
- "tradition": 8784,
- "traditional": 41113,
- "traditional": 5604,
- "traditionally": 35532,
- "traditions": 18016,
- "traf": 3227,
- "trafal": 32461,
- "trafalgar": 36969,
- "traff": 31571,
- "traffic": 12080,
- "traffic": 3399,
- "trafficking": 15983,
- "trafford": 22912,
- "trage": 12430,
- "tragedy": 14082,
- "tragic": 14828,
- "tragically": 39599,
- "trail": 11523,
- "trail": 4921,
- "trailblazer": 41015,
- "trailblazers": 35954,
- "trailer": 4700,
- "trailers": 24862,
- "trailing": 37427,
- "trails": 10633,
- "train": 9122,
- "train": 3231,
- "trained": 10874,
- "trainee": 25795,
- "trainees": 30382,
- "trainer": 9767,
- "trainers": 18871,
- "training": 34508,
- "training": 2199,
- "trains": 9541,
- "trait": 35160,
- "traitor": 31760,
- "traitors": 42633,
- "traits": 25748,
- "trajec": 42042,
- "trak": 24065,
- "tral": 14609,
- "tram": 9800,
- "tram": 17500,
- "tramp": 46289,
- "trampol": 32905,
- "trampoline": 42800,
- "tramrahim": 35220,
- "tran": 1357,
- "tran": 22031,
- "trance": 30584,
- "trance": 18671,
- "trancefamily": 39630,
- "trane": 35779,
- "tranqu": 18912,
- "tranquil": 35764,
- "tranquility": 36688,
- "trans": 1826,
- "trans": 8126,
- "transaction": 24881,
- "transactions": 21653,
- "transat": 37872,
- "transatlantic": 40703,
- "transc": 21073,
- "transcend": 47087,
- "transcript": 39008,
- "transcription": 48765,
- "transfer": 22659,
- "transfer": 7134,
- "transferred": 29700,
- "transferring": 40924,
- "transfers": 21621,
- "transform": 8142,
- "transform": 12288,
- "transformation": 34204,
- "transformation": 7832,
- "transformational": 47135,
- "transformationtuesday": 36511,
- "transformative": 38106,
- "transformed": 17453,
- "transformer": 38235,
- "transformers": 17843,
- "transforming": 44470,
- "transforming": 19251,
- "transforms": 30312,
- "transgender": 17732,
- "transi": 32236,
- "transit": 10174,
- "transiti": 22939,
- "transition": 11391,
- "transitional": 41519,
- "transitioning": 43586,
- "transitions": 39374,
- "transl": 12243,
- "translate": 22655,
- "translated": 20752,
- "translates": 36334,
- "translating": 42156,
- "translation": 12153,
- "translations": 41367,
- "translator": 36230,
- "translucent": 49052,
- "transm": 18861,
- "transmission": 16103,
- "transmitted": 48605,
- "transmitter": 40457,
- "transp": 11726,
- "transpa": 18524,
- "transparen": 16108,
- "transparency": 16828,
- "transparent": 19017,
- "transpl": 16038,
- "transplant": 41871,
- "transplant": 18771,
- "transplantation": 45207,
- "transpor": 19406,
- "transport": 10231,
- "transport": 7362,
- "transportation": 10911,
- "transported": 29089,
- "transporter": 43568,
- "transporting": 42259,
- "trap": 36224,
- "trap": 9677,
- "trape": 42435,
- "trapped": 15592,
- "traps": 28517,
- "tras": 30638,
- "trash": 39215,
- "trash": 9798,
- "traum": 22263,
- "trauma": 13846,
- "traumati": 46613,
- "traumatic": 29958,
- "trav": 7586,
- "trav": 46955,
- "trave": 35357,
- "travel": 2824,
- "travel": 1949,
- "travelblog": 35957,
- "travelblogger": 25494,
- "travelchat": 46455,
- "traveled": 20384,
- "traveler": 17794,
- "travelers": 20644,
- "travelgram": 40069,
- "traveling": 9365,
- "travelled": 23428,
- "traveller": 22546,
- "travellers": 29583,
- "travelling": 11190,
- "travelphotography": 22808,
- "travelpics": 32293,
- "travels": 11472,
- "traveltips": 36260,
- "traveltuesday": 16713,
- "traverse": 35058,
- "travi": 46971,
- "travis": 27441,
- "travis": 12287,
- "traw": 42288,
- "trax": 34421,
- "tray": 38470,
- "tray": 14621,
- "trays": 39798,
- "trc": 41803,
- "tre": 975,
- "tre": 6033,
- "treach": 46005,
- "tread": 26182,
- "tread": 35658,
- "treadmill": 37780,
- "treas": 8591,
- "treason": 28103,
- "treasure": 9922,
- "treasured": 48068,
- "treasurer": 26985,
- "treasures": 16500,
- "treasury": 20956,
- "treat": 3968,
- "treat": 3901,
- "treated": 9772,
- "treating": 13842,
- "treatment": 4869,
- "treatments": 15839,
- "treats": 8878,
- "treaty": 19967,
- "treble": 33194,
- "trecht": 33812,
- "tree": 13354,
- "tree": 2677,
- "treehouse": 42387,
- "trees": 4682,
- "trek": 13236,
- "trek": 8136,
- "trekking": 25293,
- "trell": 35159,
- "tremb": 44043,
- "tremend": 14659,
- "tremendous": 15988,
- "tren": 2579,
- "trench": 23846,
- "trenches": 38723,
- "trend": 19986,
- "trend": 6643,
- "trending": 6087,
- "trends": 7015,
- "trendsetter": 46666,
- "trendy": 23072,
- "trent": 45885,
- "trent": 15548,
- "trenton": 37470,
- "tres": 23569,
- "tress": 4733,
- "tresses": 24273,
- "trevor": 23437,
- "trevor": 13219,
- "trex": 42114,
- "trey": 36670,
- "trey": 16939,
- "tri": 924,
- "tri": 9618,
- "triad": 45602,
- "trial": 5991,
- "trials": 10992,
- "triangle": 14615,
- "triathlon": 18080,
- "trib": 45151,
- "tribal": 16629,
- "tribe": 19943,
- "tribe": 11365,
- "tribeca": 35184,
- "tribes": 26546,
- "tribu": 3028,
- "tribun": 14311,
- "tribunal": 32911,
- "tribune": 18556,
- "tribute": 5493,
- "tributes": 15537,
- "tric": 9511,
- "tric": 4081,
- "trich": 39519,
- "trick": 17177,
- "trick": 8172,
- "tricks": 13177,
- "tricky": 22319,
- "trics": 31437,
- "trident": 35491,
- "tridge": 18722,
- "tried": 4554,
- "tries": 4315,
- "trife": 48962,
- "trigge": 30509,
- "trigger": 16158,
- "triggered": 30924,
- "triggers": 37319,
- "tright": 29915,
- "tril": 40626,
- "trill": 39297,
- "trilli": 39350,
- "trillion": 20160,
- "trilo": 15183,
- "trilogy": 16862,
- "trim": 14182,
- "trimmed": 40657,
- "trin": 6628,
- "trinidad": 26244,
- "trinity": 30744,
- "trinity": 12267,
- "trio": 10263,
- "trip": 23421,
- "trip": 2529,
- "tripad": 37189,
- "tripadvisor": 38708,
- "triple": 16519,
- "triple": 7673,
- "triplets": 48601,
- "tripod": 36141,
- "tripoli": 40095,
- "trippin": 43073,
- "tripping": 35229,
- "trippy": 35137,
- "trips": 12292,
- "tris": 29690,
- "trish": 40511,
- "trish": 37179,
- "trisha": 39152,
- "tristan": 25497,
- "trit": 37087,
- "triton": 45437,
- "triu": 14782,
- "trium": 21065,
- "triumph": 26507,
- "triumph": 15307,
- "triumphant": 41918,
- "trivi": 21228,
- "trivia": 10642,
- "triviatuesday": 45499,
- "trix": 41017,
- "tro": 1046,
- "tro": 3332,
- "trock": 44368,
- "trojan": 30653,
- "trojans": 25310,
- "trol": 10306,
- "troll": 39737,
- "troll": 17103,
- "trolley": 25124,
- "trolling": 28552,
- "trolls": 20890,
- "tromb": 32390,
- "trombone": 44423,
- "tron": 19057,
- "tron": 10684,
- "tronic": 34258,
- "tronics": 34397,
- "troom": 23691,
- "troop": 12492,
- "troop": 24054,
- "trooper": 18327,
- "troopers": 23576,
- "troops": 10109,
- "trop": 31585,
- "trope": 41150,
- "trophies": 20998,
- "trophy": 42676,
- "trophy": 6502,
- "tropic": 21794,
- "tropic": 36736,
- "tropical": 41699,
- "tropical": 8686,
- "tropics": 36940,
- "tros": 40456,
- "trose": 36022,
- "trot": 30453,
- "trotter": 38287,
- "trou": 5181,
- "troubad": 49037,
- "trouble": 25669,
- "trouble": 7848,
- "troubled": 25568,
- "troubles": 27254,
- "trough": 39761,
- "troupe": 34803,
- "trous": 19727,
- "trousers": 23172,
- "trout": 14853,
- "trove": 45350,
- "trow": 46914,
- "troy": 26283,
- "troy": 12819,
- "trs": 24770,
- "tru": 931,
- "tru": 25326,
- "truck": 14781,
- "truck": 4629,
- "trucker": 45918,
- "truckers": 43404,
- "trucking": 26208,
- "trucks": 9569,
- "trude": 39017,
- "trudeau": 15752,
- "true": 13096,
- "true": 2328,
- "truec": 37583,
- "truelove": 45711,
- "truffle": 23064,
- "truffles": 37057,
- "truly": 4545,
- "trum": 11766,
- "trum": 11399,
- "truman": 29414,
- "trump": 9124,
- "trump": 1797,
- "trumpet": 23681,
- "trumpp": 45550,
- "trumprussia": 39135,
- "trumps": 29793,
- "trumptrain": 43595,
- "trun": 16163,
- "trun": 46661,
- "trunk": 18347,
- "trunks": 38531,
- "truro": 43507,
- "truss": 46080,
- "trust": 17691,
- "trust": 3876,
- "truste": 17356,
- "trusted": 16538,
- "trustee": 30803,
- "trustees": 28853,
- "trusting": 33221,
- "trusts": 27507,
- "trustworthy": 46840,
- "trusty": 37955,
- "truth": 21335,
- "truth": 4319,
- "truths": 27179,
- "trx": 31620,
- "try": 4487,
- "try": 1209,
- "tryin": 31085,
- "trying": 2551,
- "tryna": 15702,
- "tryout": 43832,
- "tryouts": 28053,
- "ts": 2290,
- "ts": 590,
- "tsa": 25977,
- "tsal": 20438,
- "tsb": 45015,
- "tsc": 37437,
- "tsch": 38778,
- "tsd": 20611,
- "tse": 49144,
- "tsfor": 42654,
- "tsford": 32823,
- "tsh": 42872,
- "tshirt": 14907,
- "tshirts": 29377,
- "tsi": 40048,
- "tsi": 37867,
- "tsk": 43600,
- "tsla": 35681,
- "tsm": 43452,
- "tsman": 20046,
- "tsn": 44921,
- "tsn": 26896,
- "tson": 42353,
- "tson": 47140,
- "tsp": 34230,
- "tsu": 13950,
- "tsu": 20175,
- "tsun": 19155,
- "tsunami": 24286,
- "tsville": 29080,
- "tt": 971,
- "tt": 1402,
- "tta": 2646,
- "ttc": 27668,
- "tte": 23105,
- "tte": 3070,
- "tted": 15163,
- "tten": 11351,
- "tten": 17479,
- "tter": 18691,
- "tter": 5165,
- "tters": 6318,
- "ttes": 9293,
- "tti": 5237,
- "ttin": 36589,
- "tting": 1188,
- "ttino": 47389,
- "ttip": 46993,
- "ttle": 9253,
- "ttm": 46838,
- "tto": 8759,
- "tto": 8105,
- "tton": 10562,
- "ttot": 12480,
- "ttp": 30828,
- "ttr": 47589,
- "tts": 11570,
- "ttt": 17256,
- "tttt": 33119,
- "ttu": 44006,
- "ttv": 24281,
- "tty": 11457,
- "tty": 1856,
- "tu": 764,
- "tu": 5760,
- "tua": 41344,
- "tual": 4799,
- "tuan": 37297,
- "tub": 34907,
- "tub": 15450,
- "tube": 38229,
- "tube": 3308,
- "tuber": 30371,
- "tuberculo": 42606,
- "tuberculosis": 43129,
- "tubes": 22870,
- "tubing": 40794,
- "tubs": 41705,
- "tubular": 48786,
- "tuc": 14456,
- "tuc": 43871,
- "tuck": 22398,
- "tucked": 26923,
- "tucker": 39703,
- "tucker": 15726,
- "tucket": 32677,
- "tucson": 17250,
- "tudor": 24547,
- "tue": 17515,
- "tues": 2283,
- "tues": 12113,
- "tuesday": 10209,
- "tuesday": 2519,
- "tuesdaymotivation": 25432,
- "tuesdays": 23195,
- "tuesdaythoughts": 17988,
- "tuf": 44510,
- "tuff": 38868,
- "tug": 47032,
- "tug": 27902,
- "tuition": 21129,
- "tuk": 39271,
- "tuk": 14993,
- "tul": 9069,
- "tul": 40837,
- "tula": 36332,
- "tulane": 44893,
- "tulip": 28389,
- "tulips": 30886,
- "tulsa": 18850,
- "tum": 12932,
- "tum": 8843,
- "tumb": 8831,
- "tumble": 38284,
- "tumbler": 48790,
- "tumbling": 46226,
- "tumblr": 11841,
- "tummy": 26053,
- "tumor": 22616,
- "tumors": 39894,
- "tumour": 45129,
- "tun": 1415,
- "tun": 21349,
- "tuna": 15037,
- "tundra": 39899,
- "tune": 11427,
- "tune": 3300,
- "tuned": 5898,
- "tunein": 16809,
- "tuner": 42905,
- "tunes": 31688,
- "tunes": 10810,
- "tunesapp": 32550,
- "tung": 47940,
- "tung": 31092,
- "tuni": 16270,
- "tunic": 43495,
- "tuning": 19585,
- "tunisia": 23346,
- "tunnel": 11096,
- "tunnels": 29814,
- "tuous": 28738,
- "tup": 37956,
- "tup": 4507,
- "tupac": 31506,
- "tups": 44855,
- "tur": 985,
- "tur": 17182,
- "tura": 16127,
- "tural": 45143,
- "tural": 4261,
- "turb": 18973,
- "turban": 48515,
- "turbine": 26880,
- "turbines": 38863,
- "turbo": 23578,
- "turbo": 13668,
- "turbul": 31100,
- "turbulent": 47871,
- "ture": 4321,
- "ture": 941,
- "tured": 3987,
- "turer": 11993,
- "turers": 16956,
- "tures": 2400,
- "turf": 36762,
- "turf": 12510,
- "turi": 11896,
- "turin": 36251,
- "turing": 5812,
- "turismo": 30202,
- "turk": 8254,
- "turk": 32507,
- "turkey": 35977,
- "turkey": 4790,
- "turkeys": 37991,
- "turkish": 48199,
- "turkish": 9278,
- "turks": 34344,
- "turmeric": 34044,
- "turmoil": 37751,
- "turn": 5522,
- "turn": 2105,
- "turnaround": 32719,
- "turnbull": 27863,
- "turned": 3771,
- "turner": 42867,
- "turner": 8777,
- "turning": 4976,
- "turno": 21377,
- "turnout": 11654,
- "turnover": 30794,
- "turnpike": 38301,
- "turns": 3185,
- "turnt": 28887,
- "turntable": 37953,
- "turnup": 30591,
- "turo": 29224,
- "turquo": 19390,
- "turquoise": 19899,
- "turt": 13716,
- "turtle": 35943,
- "turtle": 10912,
- "turtles": 17862,
- "tus": 24828,
- "tus": 7079,
- "tusc": 17909,
- "tuscal": 42638,
- "tuscaloosa": 44375,
- "tuscan": 42865,
- "tuscany": 20885,
- "tuss": 31741,
- "tut": 35121,
- "tutor": 10054,
- "tutor": 27858,
- "tutorial": 12857,
- "tutorials": 30973,
- "tutoring": 37532,
- "tutti": 46880,
- "tutu": 35845,
- "tux": 28720,
- "tux": 49186,
- "tuxedo": 40173,
- "tv": 3197,
- "tv": 1583,
- "tvc": 49190,
- "tvd": 25889,
- "tvmiaw": 38554,
- "tvn": 44232,
- "tvs": 27114,
- "tvtime": 19947,
- "tvxq": 43968,
- "tw": 966,
- "tw": 12842,
- "twa": 46954,
- "twain": 30689,
- "twal": 48126,
- "tware": 5707,
- "twc": 41217,
- "twd": 29440,
- "twd": 19343,
- "twdfamily": 38218,
- "twe": 18365,
- "tweak": 48870,
- "tweaks": 42661,
- "twee": 1330,
- "tweed": 26904,
- "tweeps": 14928,
- "tweet": 11826,
- "tweet": 1842,
- "tweeta": 32024,
- "tweetapicture": 40596,
- "tweeted": 7841,
- "tweeter": 32876,
- "tweeters": 31713,
- "tweeting": 8901,
- "tweets": 3560,
- "tweetyour": 45033,
- "twel": 14476,
- "twelf": 39443,
- "twelfth": 44072,
- "twell": 38722,
- "twell": 30162,
- "twelve": 19694,
- "twent": 27027,
- "twenti": 35167,
- "twenty": 13016,
- "twentyon": 39609,
- "twentyonepilots": 40007,
- "twer": 13923,
- "twerk": 28506,
- "twi": 5537,
- "twice": 6970,
- "twick": 34326,
- "twickenham": 39619,
- "twil": 12804,
- "twili": 35754,
- "twilight": 46366,
- "twilight": 14512,
- "twill": 43703,
- "twin": 9342,
- "twin": 6769,
- "twine": 42775,
- "twinkle": 36545,
- "twinning": 30156,
- "twinpeaks": 32042,
- "twins": 8040,
- "twist": 10589,
- "twisted": 18233,
- "twister": 45933,
- "twists": 34149,
- "twit": 1643,
- "twit": 18704,
- "twitart": 27709,
- "twitch": 13251,
- "twitch": 9153,
- "twitter": 7546,
- "twitter": 1989,
- "twitterkurds": 32722,
- "twitterstorians": 35389,
- "two": 17211,
- "two": 1237,
- "twol": 31964,
- "twood": 40404,
- "twood": 13245,
- "twp": 33283,
- "twright": 46778,
- "twt": 6825,
- "twx": 26830,
- "twy": 45861,
- "tx": 6636,
- "tx": 5200,
- "txhsfb": 34757,
- "txlege": 26995,
- "txst": 40761,
- "txt": 24595,
- "txwx": 22995,
- "ty": 1260,
- "ty": 744,
- "tya": 41273,
- "tycoon": 36803,
- "tye": 43097,
- "tyfree": 41215,
- "tyga": 41952,
- "tying": 22559,
- "tyl": 47537,
- "tyler": 14787,
- "tyler": 7058,
- "tym": 45772,
- "tyne": 27000,
- "tyne": 29729,
- "tyour": 16823,
- "type": 15673,
- "type": 3877,
- "typed": 40753,
- "typeface": 44969,
- "types": 7543,
- "typewriter": 42180,
- "typho": 17486,
- "typhoon": 21110,
- "typic": 21648,
- "typical": 9854,
- "typically": 23175,
- "typing": 20102,
- "typo": 18831,
- "typo": 29076,
- "typography": 24332,
- "tyr": 15590,
- "tyran": 46921,
- "tyranny": 35402,
- "tyre": 38330,
- "tyre": 16864,
- "tyres": 21376,
- "tyrone": 30226,
- "tyson": 16616,
- "tz": 7710,
- "tz": 4983,
- "tzer": 45267,
- "tzky": 47127,
- "tzman": 46032,
- "tzu": 34354,
- "té": 27208,
- "té": 39694,
- "u": 84,
- "u": 340,
- "ua": 34075,
- "ua": 8441,
- "uaap": 46753,
- "uaap": 43774,
- "uab": 35587,
- "uae": 9752,
- "ual": 1921,
- "ually": 10767,
- "uan": 33062,
- "uas": 38339,
- "uav": 30303,
- "ub": 18430,
- "ub": 13494,
- "uba": 29768,
- "ubc": 42479,
- "ubc": 29455,
- "ube": 30892,
- "uber": 25896,
- "uber": 10668,
- "ubi": 26758,
- "ubio": 32867,
- "ubiquit": 48129,
- "ubis": 28248,
- "ubisoft": 32051,
- "ubs": 43851,
- "ubun": 28184,
- "ubuntu": 30791,
- "uc": 4903,
- "uc": 12438,
- "uca": 30942,
- "ucc": 44844,
- "ucc": 29138,
- "ucci": 30746,
- "uccino": 30409,
- "ucd": 44746,
- "ucd": 43514,
- "ucf": 24414,
- "uch": 19465,
- "uch": 22394,
- "uchi": 37473,
- "uci": 46354,
- "uci": 28925,
- "uck": 34189,
- "ucl": 12013,
- "ucl": 13647,
- "ucla": 37667,
- "ucla": 17259,
- "ucn": 49036,
- "uconn": 30549,
- "ud": 6560,
- "ud": 5765,
- "uda": 22800,
- "udaipur": 49385,
- "uddin": 43035,
- "ude": 37016,
- "ude": 35194,
- "ue": 16696,
- "ue": 1190,
- "uefa": 19189,
- "uel": 24231,
- "uer": 45951,
- "ues": 2526,
- "uf": 17777,
- "uf": 19230,
- "ufc": 20396,
- "ufc": 6490,
- "uff": 45701,
- "ufo": 19443,
- "ufos": 48234,
- "ug": 3754,
- "ug": 16061,
- "uga": 16056,
- "ugand": 25965,
- "uganda": 11125,
- "ugandan": 44206,
- "ugby": 30658,
- "ugh": 39736,
- "ugh": 12755,
- "ugliest": 43543,
- "ugly": 36070,
- "ugly": 8159,
- "ugu": 18144,
- "uh": 17661,
- "uh": 9219,
- "uhc": 44974,
- "uhh": 35938,
- "uhhh": 45270,
- "uhm": 35614,
- "uhur": 29434,
- "uhuru": 35690,
- "ui": 17326,
- "ui": 11458,
- "uil": 29395,
- "uit": 30696,
- "uit": 47584,
- "uj": 33266,
- "uji": 39672,
- "uk": 2294,
- "uk": 1432,
- "uka": 23294,
- "uke": 48836,
- "uke": 28577,
- "uked": 48987,
- "uki": 37435,
- "uki": 9009,
- "ukin": 34996,
- "ukip": 20360,
- "uklabour": 36902,
- "ukmfg": 38764,
- "uko": 33562,
- "ukone": 24682,
- "ukrain": 15468,
- "ukraine": 7768,
- "ukrainian": 16927,
- "ukrunchat": 34481,
- "uku": 29541,
- "uku": 36082,
- "ukulele": 39094,
- "ul": 914,
- "ul": 6625,
- "ula": 34104,
- "ula": 9506,
- "ular": 4927,
- "ulary": 21701,
- "ulate": 20467,
- "ulation": 32896,
- "ule": 35616,
- "ules": 26274,
- "ulf": 49331,
- "uli": 41841,
- "uli": 22174,
- "ull": 33254,
- "ulla": 30577,
- "ullah": 45310,
- "ullivan": 45252,
- "ulls": 37418,
- "ulo": 46084,
- "ulo": 36738,
- "ulous": 42490,
- "ulous": 4281,
- "ulously": 20167,
- "ulster": 29709,
- "ulster": 24639,
- "ult": 4380,
- "ulti": 11925,
- "ulties": 21884,
- "ultimat": 16522,
- "ultimate": 34684,
- "ultimate": 5377,
- "ultimatefan": 48372,
- "ultimatefanlive": 48644,
- "ultimately": 23023,
- "ultr": 25636,
- "ultra": 11398,
- "ultra": 8118,
- "ultram": 44519,
- "ultrasound": 29717,
- "ulture": 22272,
- "ulty": 8036,
- "ulu": 41815,
- "ulu": 15659,
- "ulum": 17235,
- "uly": 33220,
- "ulysses": 46114,
- "um": 1622,
- "um": 1008,
- "uma": 29982,
- "uma": 9256,
- "uman": 27112,
- "umar": 25656,
- "umass": 39390,
- "umatic": 45006,
- "umb": 7493,
- "umber": 19195,
- "umbrel": 34773,
- "umbrella": 17143,
- "umbrellas": 42782,
- "umbria": 39287,
- "umc": 39491,
- "umd": 42067,
- "ume": 38480,
- "umen": 42832,
- "uments": 25924,
- "umer": 23539,
- "umes": 21403,
- "umi": 48772,
- "umi": 15458,
- "umich": 41294,
- "umin": 31542,
- "umm": 26129,
- "umm": 21215,
- "ummer": 47628,
- "ummm": 33665,
- "umni": 31739,
- "ump": 22224,
- "umpire": 36214,
- "ums": 8643,
- "umu": 39788,
- "un": 569,
- "un": 2271,
- "una": 6385,
- "unable": 17793,
- "unacceptable": 25234,
- "unanim": 20800,
- "unanimous": 33520,
- "unanimously": 31798,
- "unanswered": 43611,
- "unarmed": 41541,
- "unas": 41366,
- "unavailable": 48430,
- "unaware": 33347,
- "unbeat": 37056,
- "unbeatable": 40267,
- "unbeaten": 19228,
- "unbeliev": 11383,
- "unbelievable": 13306,
- "unbelievably": 33781,
- "unborn": 37257,
- "unboxing": 32866,
- "unbreakable": 32956,
- "unbroken": 49271,
- "unc": 24921,
- "unc": 15322,
- "uncanny": 32556,
- "uncertain": 30384,
- "uncertainty": 23956,
- "unch": 1527,
- "unchanged": 34272,
- "uncharted": 34560,
- "unci": 25521,
- "unciation": 34117,
- "uncle": 31537,
- "uncle": 8002,
- "unclear": 32955,
- "uncles": 45335,
- "uncomfortable": 22470,
- "uncommon": 34888,
- "uncondition": 46561,
- "unconditional": 31112,
- "unconscious": 34791,
- "unconstitutional": 43585,
- "unconventional": 39440,
- "uncover": 33031,
- "uncovered": 28234,
- "uncture": 38736,
- "uncut": 41056,
- "und": 9762,
- "und": 9732,
- "unda": 39932,
- "undant": 25377,
- "unday": 29338,
- "unde": 45226,
- "undead": 40105,
- "undecided": 49368,
- "undefeated": 15326,
- "undeni": 38424,
- "under": 1473,
- "under": 1798,
- "underage": 45669,
- "underattack": 35075,
- "undercover": 21595,
- "underdog": 44266,
- "undere": 21675,
- "underestim": 23348,
- "underestimate": 31794,
- "undergo": 31545,
- "undergoing": 26419,
- "undergrad": 38331,
- "undergraduate": 24320,
- "underground": 9396,
- "undering": 30826,
- "underlying": 31812,
- "undermine": 42839,
- "underneath": 20857,
- "underrated": 19494,
- "unders": 20376,
- "understand": 47582,
- "understand": 4600,
- "understanding": 7522,
- "understands": 21607,
- "understatement": 38296,
- "understood": 17303,
- "undertaker": 40144,
- "undertaking": 49067,
- "undertale": 48283,
- "underthe": 41161,
- "underwater": 14760,
- "underway": 6273,
- "underwear": 21154,
- "underwood": 21474,
- "underworld": 34760,
- "undi": 23845,
- "undisclosed": 39334,
- "undo": 35454,
- "undocumented": 35414,
- "undoub": 38836,
- "undoubtedly": 42204,
- "undp": 26691,
- "une": 4522,
- "une": 10966,
- "unearth": 32716,
- "unearthed": 36632,
- "unemp": 15139,
- "unemployed": 32721,
- "unemployment": 19350,
- "unes": 6394,
- "unesco": 16216,
- "uneven": 43204,
- "unex": 9484,
- "unexpe": 10802,
- "unexpec": 31829,
- "unexpected": 12293,
- "unexpectedly": 35622,
- "unf": 29285,
- "unfair": 22193,
- "unfinished": 26526,
- "unfit": 45367,
- "unfold": 38681,
- "unfollow": 38797,
- "unfor": 14010,
- "unforgettable": 16173,
- "unfortun": 10194,
- "unfortunate": 22361,
- "unfortunately": 12863,
- "unfpa": 45048,
- "ung": 10439,
- "ung": 4334,
- "unga": 19151,
- "ungsoo": 25582,
- "unh": 25365,
- "unhappy": 26528,
- "unhcr": 43451,
- "unhealthy": 30994,
- "uni": 1107,
- "uni": 5926,
- "unic": 7648,
- "unicef": 38286,
- "unicef": 19259,
- "unicorn": 15660,
- "unicorns": 35183,
- "unidenti": 33707,
- "unidentified": 35563,
- "unification": 45036,
- "unified": 20876,
- "uniform": 11075,
- "uniforms": 17838,
- "unil": 32388,
- "unilever": 48654,
- "uniof": 21218,
- "union": 14210,
- "union": 3503,
- "unions": 18353,
- "unis": 30482,
- "unis": 39266,
- "unisex": 27609,
- "unison": 46694,
- "unit": 28522,
- "unit": 5695,
- "unite": 15078,
- "unite": 11305,
- "uniteblue": 20935,
- "united": 10898,
- "united": 2690,
- "unitedstates": 39636,
- "unitedway": 47486,
- "unites": 32061,
- "uniting": 31318,
- "units": 10394,
- "unity": 38300,
- "unity": 8581,
- "univ": 36680,
- "univ": 14896,
- "univer": 15574,
- "univers": 5855,
- "universal": 19148,
- "universal": 8754,
- "universe": 6104,
- "universi": 41692,
- "universit": 26019,
- "universities": 16408,
- "university": 40728,
- "university": 2182,
- "universityof": 46158,
- "unk": 5542,
- "unknown": 8685,
- "unl": 43807,
- "unlawful": 42305,
- "unle": 19677,
- "unlea": 23893,
- "unleash": 26706,
- "unleashed": 27955,
- "unless": 10602,
- "unlike": 16694,
- "unlikely": 18904,
- "unlimited": 11015,
- "unlock": 18649,
- "unlocked": 16770,
- "unlocking": 40810,
- "unlucky": 35029,
- "unlv": 42283,
- "unmanned": 36751,
- "unmatched": 46054,
- "unn": 38364,
- "unnamed": 44985,
- "unnecessary": 24100,
- "unner": 31481,
- "unning": 43282,
- "unnoticed": 42807,
- "uno": 32446,
- "uno": 17078,
- "unofficial": 22506,
- "unpacking": 43589,
- "unpaid": 32811,
- "unparalleled": 44396,
- "unplugged": 31724,
- "unpopular": 40232,
- "unprece": 23054,
- "unprecedented": 23344,
- "unpredictable": 38684,
- "unra": 45150,
- "unreal": 46980,
- "unreal": 15636,
- "unrelated": 38644,
- "unreleased": 29654,
- "unrest": 36452,
- "uns": 25908,
- "unsafe": 32071,
- "unsc": 36395,
- "unseen": 19069,
- "unsigned": 39346,
- "unsolved": 40836,
- "unsplash": 46196,
- "unstable": 34730,
- "unstopp": 22105,
- "unstoppable": 23484,
- "unsuccessful": 47478,
- "unsung": 33015,
- "unsure": 26396,
- "unt": 19654,
- "unt": 6537,
- "until": 1942,
- "untitled": 21309,
- "unto": 19801,
- "untold": 32206,
- "untouch": 44509,
- "untouched": 42764,
- "unused": 29636,
- "unusual": 12613,
- "unusually": 36465,
- "unve": 6685,
- "unveil": 20483,
- "unveiled": 13572,
- "unveiling": 20327,
- "unveils": 15057,
- "unwanted": 25285,
- "unwind": 34064,
- "unya": 37142,
- "uo": 30874,
- "uo": 36162,
- "uof": 11155,
- "uoft": 37329,
- "uon": 48144,
- "uous": 40185,
- "up": 1083,
- "up": 705,
- "upa": 31727,
- "upbeat": 39201,
- "upcoming": 4196,
- "upcycled": 46552,
- "upd": 3226,
- "update": 2491,
- "updated": 5974,
- "updates": 4904,
- "updating": 22792,
- "uper": 38082,
- "uper": 33056,
- "upfront": 42064,
- "upgrade": 10365,
- "upgraded": 18577,
- "upgrades": 21253,
- "upgrading": 34368,
- "uph": 14128,
- "uphill": 42767,
- "uphol": 26195,
- "uphold": 43897,
- "upholstery": 44556,
- "upl": 41939,
- "uplift": 45389,
- "uplifting": 29546,
- "upload": 13968,
- "uploaded": 16793,
- "uploading": 30145,
- "upon": 23524,
- "upon": 5067,
- "upp": 19549,
- "upp": 45946,
- "upper": 22465,
- "upper": 7067,
- "upri": 15982,
- "upright": 29818,
- "uprising": 26006,
- "upro": 28922,
- "ups": 6926,
- "upscale": 47501,
- "upset": 11214,
- "upsets": 42637,
- "upside": 15362,
- "upstairs": 21387,
- "upstate": 33335,
- "upstream": 45517,
- "upthe": 31510,
- "upto": 26575,
- "upton": 31910,
- "uptown": 23807,
- "upward": 32526,
- "upwards": 34915,
- "uq": 39591,
- "ur": 565,
- "ur": 1775,
- "ura": 29337,
- "ura": 3544,
- "urable": 40194,
- "ural": 23547,
- "ural": 33948,
- "uran": 16197,
- "uranium": 29850,
- "urban": 7931,
- "urban": 5800,
- "urbanart": 40834,
- "urd": 47880,
- "urday": 19742,
- "urdu": 29976,
- "ure": 5514,
- "ure": 726,
- "ured": 4210,
- "urer": 20864,
- "ures": 2288,
- "urg": 35995,
- "urge": 14852,
- "urged": 23790,
- "urgency": 47612,
- "urgent": 13693,
- "urgently": 34534,
- "urges": 16692,
- "urging": 27748,
- "uri": 11052,
- "uri": 8699,
- "urie": 46429,
- "urin": 45245,
- "urine": 28864,
- "uring": 1351,
- "url": 23464,
- "urn": 38075,
- "uro": 17343,
- "uro": 5925,
- "urology": 48585,
- "urope": 14918,
- "urs": 4794,
- "urself": 31942,
- "urst": 19181,
- "urstruly": 34751,
- "urstrulymahesh": 35314,
- "ursula": 38390,
- "urt": 24309,
- "uru": 16322,
- "uru": 11768,
- "uruguay": 27931,
- "urus": 14246,
- "urve": 24583,
- "ury": 8642,
- "ury": 2106,
- "us": 904,
- "us": 718,
- "usa": 9491,
- "usa": 2547,
- "usability": 46736,
- "usable": 22890,
- "usaf": 25017,
- "usage": 19137,
- "usaid": 34507,
- "usair": 36742,
- "usairforce": 42179,
- "usarmy": 19132,
- "usatoday": 40263,
- "usav": 36056,
- "usb": 10281,
- "usc": 13346,
- "usc": 14995,
- "uscg": 43932,
- "usd": 7485,
- "usda": 25829,
- "use": 4419,
- "use": 1483,
- "used": 32289,
- "used": 2026,
- "useful": 9784,
- "useless": 20154,
- "usemb": 39700,
- "user": 21248,
- "user": 7031,
- "username": 28162,
- "users": 7433,
- "uses": 5282,
- "useum": 45189,
- "usf": 32385,
- "usf": 28942,
- "usgs": 35103,
- "ush": 12001,
- "ush": 18335,
- "usher": 27411,
- "ushi": 47734,
- "usi": 25540,
- "usic": 34909,
- "usic": 16753,
- "using": 1996,
- "usky": 45778,
- "usl": 42113,
- "usm": 40041,
- "usmc": 21678,
- "usmnt": 30662,
- "usn": 40579,
- "usnavy": 24500,
- "usnews": 43752,
- "uso": 21539,
- "usopen": 21782,
- "usp": 26651,
- "usps": 39980,
- "usrc": 33274,
- "uss": 11545,
- "uss": 9260,
- "ussia": 29553,
- "ussoccer": 42828,
- "ussr": 32697,
- "ust": 35501,
- "ust": 24725,
- "usu": 4254,
- "usu": 40434,
- "usual": 6129,
- "usually": 8296,
- "usur": 45582,
- "uswnt": 35255,
- "ut": 1419,
- "ut": 3641,
- "uta": 42706,
- "uta": 25925,
- "utah": 27474,
- "utah": 9312,
- "utc": 18196,
- "utd": 10493,
- "ute": 16856,
- "ute": 3130,
- "uten": 32089,
- "uter": 39197,
- "utes": 2850,
- "uth": 48819,
- "uth": 44750,
- "uti": 24568,
- "util": 28824,
- "utili": 17015,
- "utilities": 27210,
- "utility": 14941,
- "utilize": 36861,
- "utilized": 47604,
- "utilizing": 40212,
- "utm": 47853,
- "utmost": 42352,
- "uto": 18866,
- "uto": 13683,
- "utopia": 34433,
- "utpol": 42605,
- "utr": 48726,
- "utrecht": 37216,
- "uts": 11740,
- "utsa": 37528,
- "utt": 17096,
- "uttar": 40168,
- "uttarak": 33755,
- "uttarakhand": 35655,
- "utter": 18769,
- "utter": 24558,
- "utterly": 21353,
- "utto": 42183,
- "utv": 36351,
- "utz": 45320,
- "uu": 5702,
- "uu": 14553,
- "uuu": 44355,
- "uuu": 27656,
- "uuuu": 16720,
- "uuuu": 40797,
- "uv": 23777,
- "uv": 15977,
- "uva": 23908,
- "uw": 13933,
- "uw": 19166,
- "uwe": 48785,
- "uwu": 35544,
- "ux": 9251,
- "ux": 6213,
- "uy": 31929,
- "uy": 48113,
- "uz": 19398,
- "uz": 36991,
- "uzbe": 43007,
- "uzbekistan": 45024,
- "uzzi": 48210,
- "v": 85,
- "v": 341,
- "va": 4648,
- "va": 1892,
- "vaa": 37488,
- "vable": 23088,
- "vac": 3125,
- "vac": 34085,
- "vaca": 48215,
- "vacancies": 26333,
- "vacancy": 21247,
- "vacant": 25262,
- "vacation": 28336,
- "vacation": 6561,
- "vacations": 29002,
- "vacay": 44716,
- "vacc": 13342,
- "vaccin": 19164,
- "vaccinated": 48134,
- "vaccination": 32518,
- "vaccine": 47780,
- "vaccine": 17493,
- "vaccines": 25860,
- "vach": 46211,
- "vacu": 16058,
- "vacuum": 18420,
- "vad": 11880,
- "vada": 46759,
- "vader": 21908,
- "vae": 39384,
- "vag": 13015,
- "vague": 42154,
- "vah": 26921,
- "vai": 26893,
- "vai": 36802,
- "vail": 21189,
- "vain": 25538,
- "vais": 28719,
- "vaj": 34206,
- "vak": 16288,
- "vak": 41597,
- "val": 1214,
- "val": 1560,
- "vala": 48525,
- "valdez": 40617,
- "vale": 35554,
- "vale": 10820,
- "valedic": 43525,
- "valen": 12630,
- "valence": 30225,
- "valenci": 34183,
- "valencia": 16559,
- "valent": 3655,
- "valent": 15300,
- "valentin": 48631,
- "valentina": 43741,
- "valentine": 11208,
- "valentine": 5876,
- "valentines": 10259,
- "valentinesday": 12369,
- "valentino": 29624,
- "valeri": 31951,
- "valerie": 25592,
- "valet": 45749,
- "vali": 8230,
- "valiant": 33804,
- "valid": 15126,
- "validation": 32536,
- "valkyrie": 42326,
- "vall": 23523,
- "vall": 35295,
- "vallarta": 47874,
- "valle": 24857,
- "valle": 29105,
- "valley": 18354,
- "valley": 3136,
- "valleys": 28649,
- "valor": 30930,
- "vals": 7431,
- "valu": 6291,
- "valuable": 10056,
- "valuation": 25894,
- "value": 41358,
- "value": 4602,
- "valued": 17801,
- "values": 8857,
- "valve": 17001,
- "valves": 33517,
- "vam": 9983,
- "vamo": 46718,
- "vamos": 30346,
- "vamp": 10680,
- "vampi": 47017,
- "vampire": 47576,
- "vampire": 13220,
- "vampires": 30868,
- "vamps": 44810,
- "van": 2446,
- "van": 2451,
- "vana": 20543,
- "vanc": 6320,
- "vance": 31447,
- "vancou": 6750,
- "vancouver": 31904,
- "vancouver": 7208,
- "vand": 11691,
- "vandalism": 45664,
- "vander": 16264,
- "vanderbilt": 33524,
- "vandy": 39268,
- "vane": 43828,
- "vaness": 13328,
- "vanessa": 16836,
- "vangogh": 47849,
- "vanguard": 27916,
- "vani": 15396,
- "vani": 26459,
- "vania": 10998,
- "vanilla": 11974,
- "vanished": 43783,
- "vanishing": 48296,
- "vanity": 48353,
- "vanity": 22938,
- "vans": 11711,
- "vant": 26298,
- "vantage": 31749,
- "vanu": 42892,
- "vanuatu": 48766,
- "vap": 10462,
- "vape": 25423,
- "vape": 20219,
- "vaping": 29403,
- "vapor": 37167,
- "vapor": 30729,
- "vapori": 46183,
- "var": 3187,
- "var": 12998,
- "vara": 47492,
- "varan": 36585,
- "varanasi": 39364,
- "vard": 21866,
- "vard": 8773,
- "vardy": 47371,
- "vare": 38159,
- "vares": 42895,
- "vargas": 32752,
- "vari": 3354,
- "variable": 26416,
- "varian": 34334,
- "variant": 20293,
- "variants": 38312,
- "variation": 26420,
- "variations": 29025,
- "varied": 32334,
- "varies": 32543,
- "varieties": 23805,
- "variety": 8396,
- "various": 7395,
- "varsity": 43716,
- "varsity": 8574,
- "varun": 48120,
- "varun": 22069,
- "vary": 18855,
- "varying": 36456,
- "vas": 5669,
- "vas": 5995,
- "vasc": 40995,
- "vascular": 19218,
- "vase": 20431,
- "vasi": 49092,
- "vast": 24413,
- "vast": 16414,
- "vastly": 48257,
- "vat": 11588,
- "vat": 18363,
- "vatican": 21030,
- "vation": 37884,
- "vau": 6391,
- "vaugh": 25158,
- "vaughan": 21392,
- "vaughn": 29013,
- "vaul": 27469,
- "vault": 15240,
- "vaus": 40217,
- "vaux": 27403,
- "vauxhall": 29173,
- "vaw": 47952,
- "vay": 48000,
- "vaz": 38142,
- "vb": 29365,
- "vb": 8778,
- "vball": 38329,
- "vc": 28670,
- "vc": 7952,
- "vcs": 43528,
- "vcu": 40102,
- "vd": 9515,
- "vday": 42055,
- "ve": 673,
- "ve": 563,
- "vea": 43798,
- "veal": 36616,
- "veau": 24419,
- "vec": 19912,
- "vector": 40453,
- "vector": 21533,
- "ved": 19515,
- "ved": 1102,
- "veda": 44401,
- "vedere": 45660,
- "vedi": 47971,
- "vee": 35708,
- "vee": 17073,
- "veen": 22432,
- "veer": 21243,
- "veer": 22058,
- "veg": 9048,
- "veg": 16460,
- "vega": 22930,
- "vegan": 15705,
- "vegan": 5615,
- "vegans": 48514,
- "vegas": 20288,
- "vegas": 4413,
- "vege": 6219,
- "vegetable": 15725,
- "vegetables": 14119,
- "vegetarian": 14600,
- "vegetation": 33947,
- "veggie": 19401,
- "veggies": 16767,
- "vehic": 3973,
- "vehicle": 5299,
- "vehicles": 8361,
- "veil": 23516,
- "vein": 29169,
- "veins": 28867,
- "veit": 30620,
- "vel": 942,
- "vel": 1287,
- "vela": 34898,
- "veld": 34011,
- "veled": 15370,
- "veli": 49166,
- "veling": 37970,
- "vell": 21173,
- "vell": 32997,
- "velo": 14357,
- "velo": 33850,
- "velocity": 23811,
- "vels": 5109,
- "velve": 37849,
- "velvet": 11063,
- "vely": 1708,
- "vember": 3477,
- "vement": 3129,
- "vements": 11104,
- "ven": 1240,
- "ven": 1638,
- "vena": 47442,
- "vend": 10851,
- "vending": 29202,
- "vendor": 21261,
- "vendors": 20353,
- "vene": 5365,
- "veness": 10516,
- "venetian": 34336,
- "venezia": 34139,
- "venezu": 10939,
- "venezuela": 12839,
- "venezuelan": 34699,
- "veng": 31526,
- "venge": 27757,
- "vengeance": 32057,
- "veni": 31142,
- "venice": 11010,
- "vening": 47532,
- "venison": 40037,
- "venom": 42491,
- "venom": 21588,
- "vens": 20884,
- "vent": 4373,
- "vent": 5687,
- "ventil": 39522,
- "ventilation": 35066,
- "venting": 15731,
- "vention": 4122,
- "vents": 12833,
- "ventu": 48217,
- "ventura": 20921,
- "venture": 37046,
- "venture": 12543,
- "ventures": 20829,
- "venue": 5097,
- "venues": 18120,
- "venus": 14691,
- "ver": 624,
- "ver": 667,
- "vera": 13350,
- "verage": 3725,
- "verb": 34952,
- "verbal": 26522,
- "verbally": 39985,
- "verbs": 45687,
- "verde": 16935,
- "verdi": 42306,
- "verdict": 18030,
- "vere": 11135,
- "vere": 34707,
- "vered": 2868,
- "verge": 23913,
- "veri": 11638,
- "verification": 33521,
- "verified": 22555,
- "verify": 34722,
- "vering": 4630,
- "veriz": 19707,
- "verizon": 21532,
- "verma": 41261,
- "vermont": 19241,
- "vern": 2214,
- "vern": 12586,
- "verne": 45553,
- "vernon": 18348,
- "vero": 45217,
- "vero": 38208,
- "verona": 31819,
- "veronic": 39551,
- "veronica": 24039,
- "vers": 1219,
- "vers": 2094,
- "versa": 35765,
- "versace": 25422,
- "versail": 29857,
- "versailles": 32129,
- "versary": 2940,
- "versatile": 18110,
- "versatility": 41340,
- "verse": 39466,
- "verse": 3131,
- "verses": 30769,
- "versi": 8934,
- "version": 3273,
- "versions": 16190,
- "versity": 1906,
- "verst": 42484,
- "verstappen": 45064,
- "versus": 14548,
- "versy": 18522,
- "vert": 11742,
- "verte": 35158,
- "verted": 48173,
- "verti": 30459,
- "vertical": 14293,
- "vertigo": 42477,
- "verton": 40632,
- "verts": 37265,
- "very": 11698,
- "very": 1070,
- "veryday": 37944,
- "verything": 45174,
- "ves": 9616,
- "ves": 1003,
- "vesmatter": 47636,
- "vespa": 46029,
- "vessel": 16387,
- "vessels": 22822,
- "vest": 31657,
- "vest": 12473,
- "vesti": 40349,
- "vests": 41906,
- "vet": 12294,
- "vet": 5951,
- "veter": 4330,
- "veteran": 20797,
- "veteran": 8814,
- "veterans": 7092,
- "veteransday": 26409,
- "veterin": 43959,
- "veterinary": 25458,
- "veto": 36570,
- "vets": 13113,
- "vette": 17045,
- "vettel": 28700,
- "vevo": 35141,
- "vex": 36187,
- "vex": 43978,
- "vey": 34792,
- "vey": 3884,
- "vez": 35987,
- "vez": 17226,
- "vf": 25966,
- "vfl": 33726,
- "vfx": 30149,
- "vg": 40591,
- "vg": 22346,
- "vh": 46953,
- "vh": 23847,
- "vhs": 21932,
- "vi": 603,
- "vi": 4259,
- "via": 1048,
- "viable": 25752,
- "viadu": 37012,
- "viaduct": 39113,
- "vial": 39951,
- "vian": 40487,
- "vian": 16124,
- "vibe": 37974,
- "vibe": 12813,
- "vibes": 7764,
- "vibr": 9527,
- "vibrant": 14270,
- "vibration": 37456,
- "vibrations": 43660,
- "vic": 1555,
- "vic": 4412,
- "vica": 46168,
- "vicar": 43899,
- "vice": 43572,
- "vice": 6931,
- "vicente": 39411,
- "vices": 8332,
- "vich": 24143,
- "vici": 46670,
- "vicious": 25177,
- "vick": 15116,
- "vick": 29704,
- "vickers": 48452,
- "vicki": 34927,
- "vicky": 37176,
- "vicky": 25788,
- "victi": 6861,
- "victim": 9133,
- "victims": 7131,
- "victor": 2423,
- "victor": 10690,
- "victori": 17555,
- "victoria": 39286,
- "victoria": 6127,
- "victorian": 12350,
- "victorias": 47791,
- "victories": 24577,
- "victorious": 24033,
- "victory": 36668,
- "victory": 4127,
- "vid": 17233,
- "vid": 9284,
- "vida": 19015,
- "vidal": 36678,
- "vide": 1334,
- "vide": 45244,
- "video": 9478,
- "video": 1455,
- "videogame": 35097,
- "videogames": 21149,
- "videos": 6081,
- "vids": 23035,
- "vidy": 29639,
- "vidya": 45264,
- "vie": 922,
- "vie": 8538,
- "vien": 36493,
- "vienna": 12670,
- "vier": 15352,
- "vier": 11987,
- "viera": 21114,
- "viernes": 33826,
- "vies": 22458,
- "viest": 31979,
- "viet": 17558,
- "viet": 13128,
- "vietnam": 19558,
- "vietnam": 8623,
- "vietnamese": 22382,
- "view": 12004,
- "view": 1093,
- "viewed": 7226,
- "viewer": 15061,
- "viewers": 14275,
- "viewing": 7124,
- "viewpoint": 41604,
- "views": 2758,
- "vig": 8549,
- "vig": 45083,
- "vigil": 21538,
- "vigil": 19896,
- "vigilant": 43026,
- "vigne": 40447,
- "vigne": 34581,
- "vigo": 44097,
- "vigor": 26781,
- "vii": 17759,
- "viii": 20414,
- "vijay": 12014,
- "vijay": 10823,
- "vijaysethu": 47966,
- "vik": 10764,
- "vik": 17181,
- "vika": 39562,
- "vikas": 37116,
- "viking": 26663,
- "viking": 15897,
- "vikings": 11713,
- "vikram": 41136,
- "vikram": 24314,
- "viktor": 36101,
- "vil": 1338,
- "vil": 3000,
- "vila": 37505,
- "vile": 27247,
- "vill": 10481,
- "vill": 45698,
- "villa": 3203,
- "villa": 7754,
- "village": 34584,
- "village": 4331,
- "villagers": 34283,
- "villages": 17621,
- "villain": 15425,
- "villains": 25271,
- "villanova": 44025,
- "villar": 35164,
- "villas": 28907,
- "ville": 11110,
- "ville": 1930,
- "villen": 46177,
- "villi": 36907,
- "vimeo": 48720,
- "vin": 1379,
- "vin": 2558,
- "vina": 35682,
- "vinai": 37396,
- "vinaigrette": 39876,
- "vinay": 43952,
- "vince": 32429,
- "vince": 6236,
- "vincen": 33402,
- "vincent": 29069,
- "vincent": 10357,
- "vinci": 30199,
- "vind": 20275,
- "vindic": 39582,
- "vine": 8471,
- "vine": 7721,
- "vinegar": 23834,
- "vines": 21268,
- "vineyard": 16527,
- "vineyards": 23082,
- "ving": 5375,
- "ving": 903,
- "vingne": 42579,
- "vings": 22510,
- "vini": 48119,
- "vinnie": 40885,
- "vinny": 36794,
- "vino": 14509,
- "vinod": 43348,
- "vins": 34820,
- "vinson": 45945,
- "vintag": 10936,
- "vintage": 13654,
- "vintage": 3266,
- "viny": 40990,
- "vinyl": 22835,
- "vinyl": 5754,
- "vio": 11913,
- "vio": 20324,
- "viol": 3164,
- "viola": 27438,
- "violate": 44875,
- "violated": 38192,
- "violating": 37554,
- "violation": 22919,
- "violations": 21969,
- "violence": 5450,
- "violent": 11565,
- "violently": 47758,
- "violet": 16118,
- "violets": 42861,
- "violin": 17058,
- "violinist": 36299,
- "vion": 35496,
- "vious": 6418,
- "viously": 7149,
- "vip": 45714,
- "vip": 7111,
- "viper": 27401,
- "vips": 41149,
- "vir": 1790,
- "vir": 25319,
- "vira": 35910,
- "viral": 11653,
- "virat": 32473,
- "virgil": 39076,
- "virgin": 5651,
- "virgin": 12103,
- "virgini": 43426,
- "virginia": 6728,
- "virgo": 39978,
- "viro": 32301,
- "viron": 38309,
- "virtu": 7977,
- "virtual": 18059,
- "virtual": 7790,
- "virtually": 22475,
- "virtualreality": 32608,
- "virtue": 26860,
- "virtues": 42167,
- "virtuoso": 47027,
- "virus": 11808,
- "viruses": 34830,
- "vis": 1301,
- "vis": 5337,
- "visa": 12802,
- "visas": 41228,
- "vise": 24977,
- "vised": 14810,
- "vish": 12024,
- "vish": 29124,
- "vishal": 33648,
- "vishnu": 37816,
- "visi": 1409,
- "visibility": 15921,
- "visible": 36658,
- "visible": 8626,
- "vising": 37439,
- "vision": 11147,
- "vision": 2515,
- "visional": 24627,
- "visionary": 22959,
- "visions": 13804,
- "visit": 3388,
- "visit": 1600,
- "visitation": 44370,
- "visited": 5580,
- "visiting": 4680,
- "visitor": 13881,
- "visitors": 9160,
- "visits": 8489,
- "visitscotland": 28760,
- "visitspain": 48860,
- "vism": 15514,
- "viso": 46732,
- "visor": 24217,
- "vist": 21436,
- "vista": 13865,
- "visu": 7739,
- "visual": 17004,
- "visual": 7195,
- "visualization": 28500,
- "visualize": 45057,
- "visually": 25743,
- "visuals": 21315,
- "viswas": 36513,
- "viswasam": 47664,
- "vit": 4056,
- "vit": 35580,
- "vita": 15700,
- "vital": 32525,
- "vital": 10585,
- "vitality": 36385,
- "vitam": 9856,
- "vitamin": 13675,
- "vitamins": 22582,
- "vito": 36725,
- "vity": 4893,
- "vitz": 26188,
- "vius": 41571,
- "viv": 21827,
- "viv": 35363,
- "viva": 17399,
- "vival": 35920,
- "vive": 18980,
- "vive": 24004,
- "vivek": 36243,
- "vivi": 11625,
- "vivian": 30129,
- "vivid": 22984,
- "vivo": 28091,
- "vivo": 25888,
- "vix": 28976,
- "vix": 34811,
- "vixen": 38757,
- "vixx": 32106,
- "viz": 28251,
- "viz": 31786,
- "vj": 45439,
- "vj": 30827,
- "vk": 41893,
- "vl": 37580,
- "vl": 36442,
- "vla": 23686,
- "vlad": 41089,
- "vladi": 19320,
- "vladimir": 21702,
- "vlive": 46797,
- "vlog": 18894,
- "vm": 16204,
- "vm": 20269,
- "vma": 35666,
- "vmas": 30236,
- "vmware": 29615,
- "vn": 47098,
- "vn": 25076,
- "vo": 947,
- "vo": 3951,
- "voc": 4105,
- "voc": 20855,
- "vocab": 21346,
- "vocabulary": 23804,
- "vocal": 34037,
- "vocal": 13147,
- "vocali": 19134,
- "vocalist": 22102,
- "vocals": 17666,
- "vocation": 20521,
- "vocational": 33751,
- "vod": 11820,
- "vod": 35854,
- "vodaf": 28436,
- "vodafone": 38695,
- "vodka": 13646,
- "vogel": 44960,
- "vogue": 24418,
- "vogue": 13178,
- "voic": 29185,
- "voice": 13179,
- "voice": 3386,
- "voiced": 34352,
- "voiceof": 44966,
- "voiceover": 41979,
- "voices": 9144,
- "void": 21561,
- "voip": 42762,
- "voir": 16036,
- "vol": 1343,
- "vol": 7945,
- "volatile": 41022,
- "volatility": 32355,
- "volcan": 9916,
- "volcanic": 24072,
- "volcano": 14581,
- "volcanoes": 38055,
- "voli": 40138,
- "volk": 13432,
- "volkswag": 14407,
- "volkswagen": 15342,
- "volley": 7130,
- "volley": 34656,
- "volleyball": 7458,
- "volo": 44791,
- "vols": 20404,
- "volt": 26430,
- "volta": 29879,
- "volta": 33480,
- "voltage": 23118,
- "voltron": 39314,
- "volu": 3563,
- "volume": 8284,
- "volumes": 22651,
- "volun": 3356,
- "voluntar": 48823,
- "voluntary": 23815,
- "volunte": 3556,
- "volunteer": 32331,
- "volunteer": 7114,
- "volunteered": 34000,
- "volunteering": 14902,
- "volunteers": 5939,
- "volution": 24043,
- "volved": 42888,
- "volvo": 39991,
- "volvo": 16906,
- "vom": 24198,
- "vomit": 46485,
- "von": 11269,
- "von": 8497,
- "voo": 19497,
- "voodoo": 26869,
- "voor": 34291,
- "voor": 34464,
- "vor": 8338,
- "vor": 5308,
- "vore": 18215,
- "vortex": 30071,
- "vos": 16863,
- "vot": 48558,
- "vote": 6830,
- "vote": 2187,
- "voted": 6454,
- "votel": 41379,
- "voter": 44474,
- "voter": 14065,
- "voters": 8925,
- "votes": 6693,
- "voting": 5756,
- "vou": 11045,
- "voucher": 18190,
- "vouchers": 23384,
- "vous": 10636,
- "vow": 34787,
- "vows": 21677,
- "vox": 29215,
- "vox": 22692,
- "voy": 10622,
- "voy": 15021,
- "voyage": 16299,
- "voyager": 29669,
- "vp": 32758,
- "vp": 3896,
- "vpn": 38212,
- "vr": 16840,
- "vr": 5921,
- "vre": 44500,
- "vre": 17501,
- "vs": 11385,
- "vs": 1547,
- "vsco": 26752,
- "vsco": 32822,
- "vscocam": 34694,
- "vsky": 37791,
- "vss": 31919,
- "vt": 31732,
- "vt": 10291,
- "vu": 8664,
- "vu": 13230,
- "vue": 43915,
- "vue": 19313,
- "vuel": 31312,
- "vuelta": 43856,
- "vuitton": 26705,
- "vul": 6856,
- "vulcan": 34767,
- "vulner": 11213,
- "vulnerability": 28797,
- "vulnerable": 14332,
- "vulture": 34593,
- "vultures": 47197,
- "vv": 19264,
- "vv": 35686,
- "vw": 28650,
- "vw": 13250,
- "vx": 47644,
- "vy": 11566,
- "vy": 5157,
- "w": 86,
- "w": 342,
- "wa": 869,
- "wa": 2663,
- "waa": 35874,
- "wab": 19893,
- "wab": 36852,
- "wac": 27445,
- "wac": 37947,
- "wack": 22880,
- "wack": 38270,
- "wacky": 34318,
- "waco": 36035,
- "wad": 11133,
- "wad": 30451,
- "wada": 40006,
- "wade": 40237,
- "wade": 14180,
- "wadi": 37253,
- "waf": 17638,
- "wafc": 49086,
- "waff": 13940,
- "waffle": 20375,
- "waffles": 24205,
- "wag": 5764,
- "wag": 19177,
- "wage": 10716,
- "wager": 43430,
- "wages": 19114,
- "wagner": 18081,
- "wagon": 13260,
- "wagons": 47944,
- "wags": 48580,
- "wah": 24812,
- "wah": 18014,
- "wahl": 27500,
- "wahlberg": 35151,
- "wahoo": 47995,
- "wai": 11469,
- "wai": 21569,
- "waifu": 46551,
- "waikiki": 44907,
- "wain": 28358,
- "wain": 20120,
- "wainwright": 45878,
- "waist": 36946,
- "waist": 18459,
- "wait": 10021,
- "wait": 1885,
- "waite": 24272,
- "waited": 18492,
- "waiter": 32946,
- "waitin": 44482,
- "waiting": 2680,
- "waitress": 39760,
- "waitrose": 37164,
- "waits": 21361,
- "waiver": 42866,
- "waj": 49367,
- "wak": 11172,
- "wak": 36015,
- "waka": 42696,
- "wake": 10501,
- "wake": 5731,
- "wakefield": 26358,
- "wakes": 29108,
- "wakeup": 26328,
- "wakeup": 35380,
- "wakeupamerica": 37474,
- "waking": 13025,
- "wal": 1056,
- "wal": 6903,
- "wala": 16468,
- "walang": 49180,
- "walcott": 45744,
- "wald": 46930,
- "wald": 15724,
- "walden": 39311,
- "waldo": 32440,
- "waldorf": 38227,
- "wale": 41247,
- "wale": 20336,
- "wales": 25383,
- "wales": 5110,
- "walgreens": 38490,
- "wali": 37576,
- "wali": 14768,
- "walia": 44455,
- "walk": 8588,
- "walk": 2374,
- "walkaway": 48255,
- "walked": 8667,
- "walker": 24735,
- "walker": 6150,
- "walkers": 23366,
- "walkin": 45792,
- "walking": 12644,
- "walking": 3941,
- "walkingdead": 14948,
- "walkout": 47470,
- "walks": 8192,
- "walkway": 36614,
- "wall": 4316,
- "wall": 2569,
- "walla": 26007,
- "walla": 39982,
- "wallabies": 48926,
- "wallace": 12535,
- "wallart": 36223,
- "walled": 36567,
- "waller": 45340,
- "wallet": 12154,
- "wallets": 38550,
- "walleye": 49099,
- "wallis": 42206,
- "wallpaper": 10560,
- "wallpapers": 29841,
- "walls": 8258,
- "wallstreet": 45341,
- "wally": 26024,
- "walmart": 11972,
- "walnut": 16310,
- "walnuts": 38294,
- "walsall": 42935,
- "walsh": 12856,
- "walt": 23535,
- "walt": 14312,
- "waltdisneyworld": 36505,
- "walter": 31156,
- "walter": 10645,
- "walters": 25532,
- "waltham": 42742,
- "waltham": 45581,
- "walton": 19485,
- "waltz": 35982,
- "wam": 20503,
- "wamy": 46970,
- "wan": 2060,
- "wan": 4557,
- "wana": 30830,
- "wand": 14636,
- "wand": 28559,
- "wanda": 25070,
- "wander": 12985,
- "wander": 24473,
- "wandered": 46593,
- "wanderers": 27540,
- "wandering": 22597,
- "wanderlust": 16129,
- "wane": 27459,
- "wang": 19731,
- "wang": 11900,
- "wani": 21674,
- "wankers": 42189,
- "wann": 23622,
- "wanna": 35940,
- "wanna": 3836,
- "wannabe": 40730,
- "wannaone": 44832,
- "want": 18356,
- "want": 1280,
- "wanted": 3146,
- "wanting": 12801,
- "wants": 3107,
- "wap": 27393,
- "wap": 30368,
- "waq": 47512,
- "war": 984,
- "war": 2238,
- "wara": 21631,
- "warbler": 33891,
- "warcraft": 13660,
- "ward": 7728,
- "ward": 1460,
- "warden": 27798,
- "wardly": 30780,
- "wardro": 14247,
- "wardrobe": 15020,
- "wards": 2593,
- "ware": 7416,
- "ware": 4476,
- "wareagle": 35716,
- "warehouse": 13054,
- "wareness": 41601,
- "wareness": 35870,
- "wares": 30692,
- "warfare": 15739,
- "warhammer": 26832,
- "warhol": 27554,
- "wari": 20977,
- "wark": 46346,
- "wark": 15164,
- "warlock": 42455,
- "warm": 14725,
- "warm": 3616,
- "warmed": 36695,
- "warmer": 14328,
- "warmest": 30910,
- "warming": 8606,
- "warmly": 45322,
- "warmongers": 33205,
- "warms": 32917,
- "warmth": 19636,
- "warmup": 29904,
- "warmups": 44094,
- "warn": 19360,
- "warned": 16409,
- "warner": 28564,
- "warner": 13402,
- "warning": 4994,
- "warnings": 18098,
- "warns": 14086,
- "waron": 38947,
- "warp": 32411,
- "warped": 32125,
- "warran": 17392,
- "warrant": 22554,
- "warrants": 45677,
- "warranty": 23999,
- "warren": 23143,
- "warren": 9234,
- "warri": 4109,
- "warrington": 31203,
- "warrior": 18998,
- "warrior": 8148,
- "warriors": 6421,
- "wars": 3931,
- "warsaw": 21072,
- "warship": 47846,
- "wart": 43535,
- "wart": 7346,
- "wartime": 42998,
- "warts": 21781,
- "warwick": 23081,
- "warwick": 22215,
- "warwickshire": 36766,
- "wary": 36213,
- "was": 3398,
- "was": 739,
- "wasabi": 47334,
- "wash": 3363,
- "wash": 7810,
- "washed": 14092,
- "washer": 24085,
- "washes": 38950,
- "washing": 13029,
- "washington": 16774,
- "washington": 4365,
- "washingtondc": 40225,
- "washingtonpost": 28426,
- "wasn": 5044,
- "wasnt": 29607,
- "wasp": 24889,
- "wasps": 35300,
- "wassup": 45708,
- "wast": 28886,
- "waste": 18157,
- "waste": 6065,
- "wasted": 18278,
- "wasteland": 44035,
- "wastewater": 34463,
- "wasting": 25577,
- "wat": 800,
- "wat": 10621,
- "wata": 42509,
- "watch": 7046,
- "watch": 1239,
- "watchdog": 35303,
- "watched": 5775,
- "watcher": 35971,
- "watchers": 28443,
- "watches": 9521,
- "watchin": 32432,
- "watching": 2113,
- "water": 2505,
- "water": 1573,
- "watercolor": 14211,
- "watercolour": 18377,
- "waterfall": 16403,
- "waterfalls": 26692,
- "waterford": 24448,
- "waterfront": 16605,
- "waterhouse": 45072,
- "watering": 19871,
- "waterloo": 17465,
- "watermelon": 19889,
- "waterproof": 17613,
- "waters": 7753,
- "watershed": 33204,
- "waterstones": 45014,
- "waterways": 37395,
- "watford": 23162,
- "watfordfc": 37328,
- "wati": 27966,
- "watkins": 22539,
- "watson": 35490,
- "watson": 9294,
- "watt": 22899,
- "watt": 15805,
- "wattpad": 32351,
- "watts": 14750,
- "wau": 9479,
- "wav": 6054,
- "wave": 17530,
- "wave": 4535,
- "waved": 44657,
- "waver": 25997,
- "waves": 7882,
- "waving": 26545,
- "wavy": 31941,
- "waw": 22039,
- "wawrinka": 48414,
- "wawx": 47387,
- "wax": 18789,
- "wax": 11910,
- "waxing": 38781,
- "way": 3079,
- "way": 923,
- "wayback": 47822,
- "wayne": 23632,
- "wayne": 7003,
- "ways": 1248,
- "waz": 20889,
- "waz": 48835,
- "wb": 10726,
- "wb": 12377,
- "wba": 22675,
- "wbb": 14482,
- "wbc": 26745,
- "wbo": 49053,
- "wbz": 35471,
- "wc": 4842,
- "wc": 5755,
- "wcc": 47166,
- "wcc": 34926,
- "wcpo": 46624,
- "wcs": 39916,
- "wcvb": 32709,
- "wcw": 9041,
- "wd": 15998,
- "wd": 7494,
- "wdw": 40334,
- "we": 598,
- "we": 649,
- "wea": 37146,
- "wea": 47301,
- "weak": 12128,
- "weak": 10128,
- "weaker": 39735,
- "weakness": 21448,
- "weaknesses": 43487,
- "weal": 14759,
- "wealth": 33150,
- "wealth": 7904,
- "wealthy": 22617,
- "weap": 6156,
- "weapon": 42612,
- "weapon": 10537,
- "weapons": 10007,
- "wear": 12206,
- "wear": 2839,
- "wearab": 22983,
- "wearable": 44943,
- "wearable": 24973,
- "wearables": 30319,
- "weare": 4264,
- "weare": 27867,
- "weareall": 45980,
- "wearec": 43620,
- "wearen": 45635,
- "weareone": 16149,
- "weareoneexo": 16448,
- "wearethe": 40242,
- "wearing": 3309,
- "wears": 11869,
- "weary": 38766,
- "weasel": 44308,
- "weather": 8808,
- "weather": 2237,
- "weathercee": 44980,
- "weatherchannel": 42138,
- "weav": 22260,
- "weave": 22450,
- "weaver": 20297,
- "weaving": 27131,
- "web": 2055,
- "web": 4601,
- "webb": 15708,
- "webber": 34248,
- "webcam": 24211,
- "webcam": 22589,
- "webcamtoy": 27719,
- "webcast": 28256,
- "webcomic": 34286,
- "webcomics": 39811,
- "webdesign": 20470,
- "webdev": 37000,
- "webdevelopment": 47553,
- "weber": 20179,
- "webin": 8460,
- "webinar": 8921,
- "webinars": 47755,
- "webpage": 46964,
- "webs": 32829,
- "webseries": 44819,
- "website": 3364,
- "websites": 19278,
- "webster": 19471,
- "websummit": 48069,
- "wec": 33152,
- "wechat": 46124,
- "wed": 1687,
- "wed": 3478,
- "wedd": 7576,
- "wedding": 11204,
- "wedding": 3101,
- "weddings": 15964,
- "wedge": 21446,
- "wedges": 33179,
- "wedne": 2380,
- "wednesday": 9311,
- "wednesday": 2689,
- "wednesdaymotivation": 37860,
- "wednesdays": 24943,
- "wednesdaywisdom": 11445,
- "wedo": 43432,
- "weds": 19107,
- "wee": 716,
- "wee": 8288,
- "weed": 36935,
- "weed": 8015,
- "weeds": 26326,
- "week": 1286,
- "week": 994,
- "weekday": 29244,
- "weekdays": 44330,
- "weekend": 17205,
- "weekend": 1456,
- "weekender": 36547,
- "weekends": 14564,
- "weekly": 34652,
- "weekly": 5885,
- "weeknd": 29925,
- "weeks": 2898,
- "weeksary": 24628,
- "ween": 17517,
- "ween": 1599,
- "weep": 39270,
- "weeping": 36629,
- "weer": 32491,
- "weet": 17742,
- "weets": 13454,
- "wef": 23313,
- "weg": 47867,
- "weg": 47561,
- "wego": 44784,
- "wego": 28220,
- "weh": 48458,
- "weh": 40313,
- "weho": 47798,
- "wei": 6958,
- "wei": 20952,
- "weibo": 20613,
- "weigh": 10565,
- "weigh": 17346,
- "weighed": 33210,
- "weighing": 24455,
- "weighs": 20481,
- "weight": 12723,
- "weight": 3868,
- "weighted": 43179,
- "weightlifting": 36164,
- "weightloss": 20359,
- "weights": 21374,
- "weil": 43720,
- "weiler": 42203,
- "wein": 29134,
- "wein": 37684,
- "weiner": 38822,
- "weinstein": 34367,
- "weir": 11299,
- "weir": 25517,
- "weird": 27981,
- "weird": 5613,
- "weirdest": 29482,
- "weirdo": 32476,
- "weis": 26251,
- "weiser": 34833,
- "weiss": 24794,
- "wel": 1267,
- "wel": 8042,
- "welch": 25820,
- "welcom": 11578,
- "welcome": 18318,
- "welcome": 1881,
- "welcomed": 12590,
- "welcomes": 9304,
- "welcometo": 47511,
- "welcoming": 8775,
- "weld": 39776,
- "welding": 24956,
- "welfare": 12129,
- "well": 3277,
- "well": 1123,
- "wellbeing": 14273,
- "weller": 40921,
- "welling": 49165,
- "wellington": 15389,
- "wellness": 40574,
- "wellness": 9904,
- "wells": 42705,
- "wells": 9804,
- "welove": 13573,
- "welp": 28391,
- "wels": 20852,
- "welsh": 19173,
- "welsh": 10977,
- "welt": 38595,
- "welter": 37115,
- "welterweight": 39617,
- "wemb": 15213,
- "wembley": 16579,
- "wen": 6590,
- "wen": 11278,
- "wend": 15166,
- "wendell": 42091,
- "wendy": 31616,
- "wendy": 14074,
- "wenger": 21105,
- "went": 18633,
- "went": 2437,
- "wentworth": 36423,
- "wentz": 39179,
- "wer": 6316,
- "wer": 2980,
- "were": 15461,
- "were": 1365,
- "wered": 6605,
- "weren": 13611,
- "werewolf": 32001,
- "werk": 30176,
- "werner": 29917,
- "wers": 7110,
- "wes": 18620,
- "wes": 14738,
- "wesle": 29606,
- "wesley": 17332,
- "wesleyan": 32509,
- "wesome": 33292,
- "wess": 44431,
- "west": 2973,
- "west": 1593,
- "westbound": 29208,
- "westbrook": 26948,
- "westchester": 36675,
- "westcoast": 44610,
- "westend": 44815,
- "wester": 9846,
- "western": 17079,
- "western": 4463,
- "westfield": 32309,
- "westh": 36798,
- "westin": 43232,
- "westlake": 41535,
- "westminster": 15158,
- "weston": 22771,
- "westside": 33762,
- "westwood": 26371,
- "westworld": 42287,
- "wet": 12406,
- "wet": 6682,
- "weta": 40946,
- "wethenorth": 45281,
- "wethepeople": 48030,
- "wether": 33794,
- "wether": 48405,
- "wetland": 37357,
- "wetlands": 26547,
- "wett": 41971,
- "wetter": 43957,
- "wewant": 39280,
- "wewill": 37241,
- "wex": 17234,
- "wexford": 29876,
- "wexmondays": 49042,
- "wey": 30376,
- "wey": 19781,
- "weymouth": 41433,
- "wf": 14576,
- "wf": 22313,
- "wfa": 44606,
- "wfc": 36431,
- "wfp": 35193,
- "wftv": 47075,
- "wg": 21091,
- "wg": 25857,
- "wga": 32354,
- "wgn": 48828,
- "wh": 573,
- "wh": 13844,
- "wha": 18994,
- "wha": 25884,
- "whal": 38967,
- "whale": 37083,
- "whale": 11650,
- "whales": 17722,
- "wham": 42506,
- "whar": 15517,
- "wharf": 22452,
- "wharton": 43320,
- "what": 4268,
- "what": 768,
- "whatcha": 37160,
- "whate": 6695,
- "whatever": 6743,
- "whati": 23500,
- "whats": 9263,
- "whats": 13084,
- "whatsapp": 10119,
- "whatsoever": 39928,
- "whatson": 35632,
- "whatyou": 30508,
- "whe": 2009,
- "whead": 34583,
- "wheat": 20505,
- "wheat": 10303,
- "wheaton": 46933,
- "wheel": 7360,
- "wheel": 6744,
- "wheelchair": 17713,
- "wheeler": 18405,
- "wheeling": 34839,
- "wheels": 8025,
- "whel": 9792,
- "whelan": 40715,
- "when": 8753,
- "when": 827,
- "whenever": 10500,
- "where": 7052,
- "where": 1234,
- "whereabouts": 47808,
- "whereas": 42234,
- "wheres": 46345,
- "wherever": 14103,
- "whereyou": 46837,
- "whether": 5903,
- "whew": 39016,
- "whey": 34556,
- "whi": 4295,
- "whi": 33129,
- "which": 1448,
- "whiche": 48719,
- "whichever": 49138,
- "whil": 8499,
- "while": 1519,
- "whilst": 8596,
- "whim": 27766,
- "whimsical": 42282,
- "whip": 14412,
- "whipped": 22323,
- "whipping": 41567,
- "whir": 20873,
- "whirl": 30962,
- "whirlwind": 47771,
- "whis": 6024,
- "whiskey": 41381,
- "whiskey": 11610,
- "whisky": 37567,
- "whisky": 12599,
- "whisp": 21986,
- "whispe": 30356,
- "whisper": 27616,
- "whisperer": 41368,
- "whispering": 42599,
- "whispers": 29133,
- "whist": 13640,
- "whistle": 23972,
- "whistle": 19746,
- "whistleblower": 40410,
- "whistler": 29633,
- "whit": 4398,
- "whit": 31498,
- "whitaker": 35851,
- "whitby": 30858,
- "white": 4699,
- "white": 1579,
- "whiteboard": 40839,
- "whitec": 24575,
- "whitehall": 42827,
- "whitehead": 43560,
- "whitehouse": 20776,
- "whitening": 35540,
- "whitepaper": 42713,
- "whites": 35886,
- "whites": 18835,
- "whitesox": 28816,
- "whitewater": 49350,
- "whitfield": 48404,
- "whitley": 40564,
- "whitman": 32394,
- "whitney": 43021,
- "whitney": 18048,
- "whitt": 33784,
- "whittaker": 47595,
- "whl": 25801,
- "who": 2969,
- "who": 822,
- "whoa": 16943,
- "whoever": 11137,
- "whois": 41884,
- "whole": 10360,
- "whole": 2954,
- "wholefoods": 42840,
- "wholesale": 18306,
- "wholesome": 35959,
- "whom": 38158,
- "whom": 12873,
- "whoo": 20003,
- "whoo": 49290,
- "whoop": 22060,
- "whoops": 28433,
- "whopping": 34384,
- "whore": 31690,
- "whos": 41460,
- "whos": 27130,
- "whose": 6933,
- "whouse": 45927,
- "whs": 26292,
- "wht": 32470,
- "whufc": 31695,
- "whun": 18272,
- "why": 11040,
- "why": 1182,
- "whyte": 42386,
- "wi": 820,
- "wi": 5585,
- "wib": 45303,
- "wic": 7834,
- "wich": 9759,
- "wich": 5238,
- "wichita": 22566,
- "wick": 6798,
- "wick": 6479,
- "wicked": 32579,
- "wicked": 12825,
- "wicker": 38096,
- "wicket": 19180,
- "wickets": 22110,
- "wicklow": 39039,
- "wicz": 30121,
- "wid": 11886,
- "wid": 20886,
- "wide": 19341,
- "wide": 3184,
- "widely": 16195,
- "widening": 46598,
- "wider": 21263,
- "widesp": 20598,
- "widespread": 21258,
- "widget": 43906,
- "wido": 28068,
- "widow": 19949,
- "widows": 42129,
- "width": 23571,
- "wie": 21378,
- "wie": 9131,
- "wielding": 47272,
- "wien": 38131,
- "wiener": 40567,
- "wies": 42788,
- "wif": 37572,
- "wife": 3607,
- "wifey": 35282,
- "wifi": 11026,
- "wig": 23690,
- "wig": 12216,
- "wigan": 23130,
- "wiggins": 32329,
- "wiggle": 47812,
- "wight": 41278,
- "wight": 15545,
- "wigs": 31207,
- "wii": 8005,
- "wiiu": 40980,
- "wiki": 10373,
- "wiki": 24265,
- "wikileaks": 28731,
- "wikipedia": 15176,
- "wil": 1352,
- "wil": 20581,
- "wilbur": 43069,
- "wilcox": 43231,
- "wild": 2780,
- "wild": 3220,
- "wildatlantic": 35500,
- "wildatlanticway": 35776,
- "wildcard": 37360,
- "wildcat": 49077,
- "wildcat": 25870,
- "wildcats": 15909,
- "wilde": 23498,
- "wilder": 14343,
- "wilder": 23499,
- "wilderness": 16506,
- "wildest": 43028,
- "wildfire": 22788,
- "wildfires": 29184,
- "wildflower": 27628,
- "wildflower": 33181,
- "wildflowerhour": 31302,
- "wildflowers": 29136,
- "wildlife": 13298,
- "wildlife": 5250,
- "wildlifephotography": 32307,
- "wildlifewednesday": 48537,
- "wildly": 35981,
- "wildoz": 40113,
- "wiley": 32747,
- "wilhelm": 39696,
- "wilkes": 39548,
- "wilkins": 36986,
- "wilkinson": 26797,
- "will": 5062,
- "will": 751,
- "willam": 43276,
- "willard": 44920,
- "wille": 48739,
- "willem": 38044,
- "willi": 2256,
- "william": 8420,
- "william": 4705,
- "williams": 38452,
- "williams": 4075,
- "williamsburg": 30683,
- "williamson": 20793,
- "willie": 13907,
- "willing": 34160,
- "willing": 11718,
- "willingness": 40573,
- "willis": 18491,
- "willow": 33887,
- "willow": 15665,
- "wills": 26913,
- "willy": 34502,
- "willy": 19599,
- "wilmington": 28052,
- "wilms": 47879,
- "wilshere": 48359,
- "wilson": 23629,
- "wilson": 5622,
- "wilt": 23394,
- "wilt": 47357,
- "wilton": 46638,
- "wiltshire": 28025,
- "wim": 8662,
- "wim": 27580,
- "wimble": 11752,
- "wimbledon": 12229,
- "win": 831,
- "win": 1225,
- "winchester": 20647,
- "wind": 6812,
- "wind": 3630,
- "winder": 44454,
- "winder": 46245,
- "winding": 22390,
- "windmill": 34084,
- "windo": 3110,
- "window": 26675,
- "window": 4879,
- "windows": 5437,
- "winds": 12668,
- "winds": 7012,
- "windshield": 33002,
- "windsor": 44322,
- "windsor": 12884,
- "windy": 13446,
- "wine": 7375,
- "wine": 2604,
- "winelover": 26357,
- "winemaker": 41588,
- "wineoclock": 43846,
- "wineries": 49349,
- "winery": 15500,
- "wines": 8263,
- "winetasting": 41288,
- "winewednesday": 35447,
- "wing": 8141,
- "wing": 1340,
- "winged": 24993,
- "winger": 22727,
- "winget": 44578,
- "wings": 5178,
- "wink": 34455,
- "wink": 25859,
- "winkle": 36430,
- "winn": 38104,
- "winne": 46273,
- "winner": 32961,
- "winner": 2520,
- "winners": 4320,
- "winni": 13018,
- "winnie": 29022,
- "winning": 42099,
- "winning": 2577,
- "winnings": 46490,
- "winnipeg": 14369,
- "winona": 49202,
- "wins": 46839,
- "wins": 2718,
- "winslow": 39658,
- "winston": 14848,
- "winter": 7340,
- "winter": 2541,
- "winters": 21587,
- "wintry": 39504,
- "wip": 10447,
- "wipe": 26761,
- "wiped": 31822,
- "wipes": 33463,
- "wir": 16849,
- "wir": 44838,
- "wire": 7558,
- "wire": 7794,
- "wired": 18935,
- "wireless": 9103,
- "wires": 24311,
- "wiring": 36434,
- "wirral": 34675,
- "wis": 3392,
- "wis": 20405,
- "wiscon": 9857,
- "wisconsin": 10265,
- "wisdom": 42474,
- "wisdom": 5425,
- "wise": 19116,
- "wise": 5558,
- "wisely": 26173,
- "wiser": 44859,
- "wish": 11328,
- "wish": 2412,
- "wished": 25883,
- "wishes": 6045,
- "wishing": 5307,
- "wishlist": 31969,
- "wit": 584,
- "wit": 8531,
- "witch": 20139,
- "witch": 10083,
- "witchcraft": 35065,
- "witcher": 33684,
- "witches": 21673,
- "with": 1435,
- "with": 593,
- "withdra": 24696,
- "withdraw": 31670,
- "withdrawal": 25765,
- "withdrawn": 46687,
- "withdraws": 48637,
- "wither": 39655,
- "witherspoon": 45409,
- "within": 4154,
- "withme": 44670,
- "without": 32836,
- "without": 2193,
- "withstand": 42236,
- "withthe": 36872,
- "withus": 30572,
- "withyou": 30351,
- "witne": 12096,
- "witness": 8793,
- "witnessed": 20187,
- "witnesses": 22778,
- "witnessing": 33618,
- "wits": 30938,
- "witt": 38194,
- "witt": 17168,
- "witter": 31597,
- "witty": 29970,
- "witz": 44186,
- "witz": 13265,
- "wiv": 48925,
- "wives": 14378,
- "wiwx": 44461,
- "wiz": 7730,
- "wiz": 23178,
- "wizar": 49121,
- "wizard": 30490,
- "wizard": 14295,
- "wizards": 19140,
- "wizkid": 40146,
- "wj": 19739,
- "wj": 35453,
- "wk": 11512,
- "wk": 11528,
- "wkend": 42336,
- "wknd": 20851,
- "wks": 25508,
- "wku": 43377,
- "wl": 13299,
- "wl": 9613,
- "wm": 20268,
- "wm": 15790,
- "wn": 1186,
- "wn": 757,
- "wnba": 32358,
- "wned": 8628,
- "wns": 12950,
- "wnt": 22484,
- "wny": 24833,
- "wo": 1613,
- "wo": 11132,
- "woah": 17751,
- "wob": 35984,
- "woc": 39011,
- "wod": 41522,
- "woes": 27860,
- "wof": 45671,
- "woj": 48931,
- "wok": 28912,
- "woke": 9331,
- "woken": 43697,
- "woking": 43931,
- "wol": 2798,
- "wol": 48622,
- "wold": 42399,
- "wolf": 9453,
- "wolf": 5916,
- "wolfe": 24989,
- "wolff": 34369,
- "wolfgang": 34061,
- "wolfpack": 30887,
- "wolve": 45101,
- "wolver": 14334,
- "wolverhampton": 34518,
- "wolverine": 23353,
- "wolverines": 42003,
- "wolves": 9372,
- "wom": 1087,
- "womack": 48980,
- "woman": 15716,
- "woman": 2308,
- "womanc": 35630,
- "womancrush": 37721,
- "womancrushwednesday": 39714,
- "womanin": 30562,
- "womaninbiz": 36482,
- "womb": 37023,
- "women": 3648,
- "women": 1507,
- "womenin": 13062,
- "womeninscience": 41343,
- "womeninstem": 29380,
- "womenintech": 31470,
- "womenof": 48421,
- "womens": 12822,
- "womens": 14408,
- "womensart": 38548,
- "womensday": 13956,
- "womenshi": 22887,
- "womenshistorymonth": 24982,
- "womensmarch": 30102,
- "won": 1528,
- "won": 1749,
- "wonder": 2070,
- "wonder": 3936,
- "wondercon": 46944,
- "wondered": 15550,
- "wonderful": 2582,
- "wonderfully": 23245,
- "wondering": 8360,
- "wonderland": 13874,
- "wonders": 14048,
- "wonderwoman": 31000,
- "wondo": 38402,
- "wondr": 46771,
- "wong": 17876,
- "wonka": 43463,
- "wont": 43174,
- "wont": 15952,
- "woo": 1867,
- "woo": 9322,
- "wood": 3269,
- "wood": 1704,
- "woodbridge": 49074,
- "wooden": 48226,
- "wooden": 9057,
- "woodland": 44314,
- "woodland": 17447,
- "woodlands": 32430,
- "woodley": 40566,
- "woodpecker": 32684,
- "woods": 6267,
- "woodson": 48967,
- "woodstock": 29486,
- "woodward": 27419,
- "woodwork": 47386,
- "woodworking": 29267,
- "woody": 38627,
- "woody": 17144,
- "woof": 34234,
- "woof": 24028,
- "woohoo": 20172,
- "wook": 29192,
- "wool": 9967,
- "wool": 13283,
- "woolf": 43728,
- "woolly": 47722,
- "woon": 33126,
- "wooo": 43217,
- "woop": 31884,
- "woot": 22466,
- "wor": 641,
- "worcester": 22172,
- "worcester": 19580,
- "worcestershire": 38440,
- "worcestershirehour": 43644,
- "word": 8272,
- "word": 2653,
- "wordof": 33500,
- "wordoftheday": 43594,
- "wordpress": 15193,
- "words": 31007,
- "words": 2709,
- "wore": 8953,
- "work": 1636,
- "work": 951,
- "workday": 29735,
- "worked": 5410,
- "worker": 8098,
- "workers": 4795,
- "workflow": 28502,
- "workforce": 14672,
- "workin": 31825,
- "workin": 26323,
- "working": 20806,
- "working": 1699,
- "workinprogress": 46086,
- "workout": 6773,
- "workouts": 22779,
- "workplace": 11959,
- "workplaces": 47383,
- "works": 2322,
- "workshop": 3832,
- "workshops": 12262,
- "workspace": 34470,
- "worl": 5221,
- "world": 2334,
- "world": 1002,
- "worlda": 46627,
- "worldbank": 36759,
- "worldbookday": 31191,
- "worldcup": 42525,
- "worldcup": 8650,
- "worlden": 44668,
- "worldenviron": 47115,
- "worldenvironmentday": 47522,
- "worldly": 36268,
- "worldo": 41698,
- "worldof": 22636,
- "worldre": 33951,
- "worlds": 7691,
- "worldseries": 26695,
- "worldtour": 23202,
- "worldwater": 41176,
- "worldwaterday": 44520,
- "worldwide": 6214,
- "worm": 33709,
- "worm": 10945,
- "worms": 20231,
- "worn": 9037,
- "worried": 11911,
- "worries": 17684,
- "worry": 7534,
- "worrying": 24058,
- "worse": 8236,
- "worsen": 46344,
- "worshi": 31840,
- "worship": 46399,
- "worship": 9023,
- "worst": 5719,
- "wort": 30209,
- "worth": 10671,
- "worth": 2450,
- "worthing": 39929,
- "worthit": 40830,
- "worthless": 44736,
- "worths": 44633,
- "worthwhile": 36295,
- "worthy": 8881,
- "worx": 44973,
- "wot": 24863,
- "wou": 5279,
- "would": 39873,
- "would": 1311,
- "wouldn": 5878,
- "wouldnt": 41595,
- "wound": 19231,
- "wounded": 14859,
- "wounds": 21290,
- "woven": 19830,
- "wow": 22191,
- "wow": 2781,
- "woz": 44558,
- "wozni": 47782,
- "wp": 15378,
- "wp": 13302,
- "wpg": 35048,
- "wps": 33386,
- "wq": 45195,
- "wr": 1189,
- "wr": 8028,
- "wra": 3852,
- "wra": 46004,
- "wral": 49050,
- "wrangler": 30923,
- "wrap": 7094,
- "wrapped": 9875,
- "wrapping": 15223,
- "wraps": 18236,
- "wrath": 29783,
- "wray": 48943,
- "wrc": 16004,
- "wre": 3168,
- "wreath": 23091,
- "wrec": 20879,
- "wreck": 28775,
- "wreck": 15017,
- "wrecked": 32695,
- "wreckem": 45676,
- "wrecking": 36956,
- "wrecks": 45545,
- "wren": 20191,
- "wren": 31970,
- "wrench": 30980,
- "wrest": 4177,
- "wrestle": 17097,
- "wrestle": 28086,
- "wrestlemania": 18849,
- "wrestler": 19790,
- "wrestlers": 25902,
- "wrestling": 31292,
- "wrestling": 5904,
- "wrexham": 34479,
- "wri": 7667,
- "wri": 42007,
- "wright": 28616,
- "wright": 6991,
- "wrights": 43711,
- "wrigley": 33538,
- "wrink": 22201,
- "wrinkle": 46642,
- "wrinkles": 35525,
- "wrist": 19243,
- "wrist": 16139,
- "wristband": 36890,
- "wristbands": 44864,
- "writ": 2902,
- "write": 28874,
- "write": 4946,
- "writer": 27886,
- "writer": 4422,
- "writers": 18742,
- "writers": 7307,
- "writerslife": 25007,
- "writes": 8023,
- "writing": 16053,
- "writing": 2979,
- "writingcommunity": 39178,
- "writings": 36259,
- "written": 5231,
- "wro": 5447,
- "wrong": 18381,
- "wrong": 3669,
- "wrongly": 45642,
- "wrote": 5796,
- "wrought": 48125,
- "wrs": 45280,
- "ws": 6300,
- "ws": 799,
- "wsb": 30681,
- "wsbtv": 38394,
- "wsj": 19764,
- "wski": 12548,
- "wsl": 43706,
- "wsoc": 40253,
- "wson": 33954,
- "wsop": 41231,
- "wsu": 44674,
- "wsu": 32913,
- "wsw": 43285,
- "wt": 15873,
- "wt": 12255,
- "wta": 25984,
- "wtc": 39718,
- "wtf": 6891,
- "wth": 23021,
- "wthr": 45269,
- "wti": 47345,
- "wto": 36406,
- "wts": 32159,
- "wu": 9710,
- "wu": 9837,
- "wud": 43870,
- "wul": 35154,
- "wunder": 36661,
- "wur": 24040,
- "wurst": 44409,
- "wusa": 40021,
- "wut": 28590,
- "wv": 18920,
- "wv": 14743,
- "wvu": 44878,
- "wvu": 25879,
- "ww": 3181,
- "ww": 4491,
- "wwc": 26505,
- "wwdc": 47441,
- "wwe": 12112,
- "wwe": 5290,
- "wwen": 23308,
- "wwenetwork": 37228,
- "wwenxt": 39898,
- "wwer": 32038,
- "wwf": 23332,
- "wwfc": 42681,
- "wwg": 35322,
- "wwi": 20194,
- "wwii": 10261,
- "www": 26074,
- "www": 9667,
- "wwwbigbaldhead": 30761,
- "wwww": 34224,
- "wwww": 25200,
- "wwwww": 48268,
- "wwx": 47431,
- "wx": 18192,
- "wx": 3561,
- "wy": 4665,
- "wy": 7625,
- "wyatt": 21660,
- "wyd": 33113,
- "wye": 48436,
- "wye": 43751,
- "wylie": 49330,
- "wyn": 11802,
- "wyn": 17504,
- "wynn": 36117,
- "wynne": 35951,
- "wynonna": 41456,
- "wynonnaearp": 43755,
- "wyoming": 18693,
- "x": 87,
- "x": 343,
- "xa": 24831,
- "xan": 45530,
- "xander": 45601,
- "xavi": 36342,
- "xavier": 41044,
- "xavier": 18567,
- "xb": 33678,
- "xbox": 18063,
- "xbox": 7748,
- "xboxone": 27410,
- "xc": 12515,
- "xchange": 49132,
- "xd": 6380,
- "xe": 42886,
- "xe": 19183,
- "xen": 15568,
- "xer": 49005,
- "xf": 35274,
- "xfactor": 25211,
- "xfinity": 35107,
- "xford": 34732,
- "xh": 45771,
- "xham": 25284,
- "xi": 2467,
- "xi": 7376,
- "xia": 19854,
- "xia": 20724,
- "xian": 42570,
- "xiao": 49318,
- "xiaomi": 27477,
- "xico": 38469,
- "xide": 17398,
- "xie": 40122,
- "xie": 15976,
- "xii": 36525,
- "xiii": 28199,
- "xim": 11217,
- "xin": 27053,
- "xin": 41517,
- "xing": 14383,
- "xion": 24164,
- "xis": 35793,
- "xit": 5316,
- "xiumin": 36563,
- "xiv": 16125,
- "xj": 42453,
- "xl": 36529,
- "xl": 8833,
- "xley": 38223,
- "xm": 18626,
- "xma": 48805,
- "xmas": 48848,
- "xmas": 6425,
- "xmen": 28708,
- "xn": 25388,
- "xo": 26936,
- "xo": 9000,
- "xon": 29186,
- "xon": 8482,
- "xox": 11531,
- "xox": 34050,
- "xoxo": 13313,
- "xp": 15651,
- "xper": 32200,
- "xperia": 37615,
- "xpo": 44377,
- "xpress": 31809,
- "xq": 40606,
- "xr": 26276,
- "xrp": 26965,
- "xs": 16397,
- "xt": 1052,
- "xtina": 45520,
- "xton": 32666,
- "xton": 10597,
- "xtra": 26969,
- "xtre": 27025,
- "xtreme": 33483,
- "xu": 42063,
- "xu": 37198,
- "xv": 17768,
- "xvi": 44031,
- "xx": 5675,
- "xx": 3553,
- "xxl": 29777,
- "xxx": 33923,
- "xxx": 8352,
- "xxxx": 32035,
- "xxxx": 22819,
- "xxxxx": 44195,
- "xy": 20023,
- "xy": 11443,
- "y": 88,
- "y": 344,
- "ya": 5018,
- "ya": 1430,
- "yaa": 48847,
- "yaa": 34498,
- "yaan": 34680,
- "yab": 27737,
- "yach": 9039,
- "yacht": 43806,
- "yacht": 12859,
- "yachts": 29260,
- "yad": 13276,
- "yad": 40047,
- "yadav": 26650,
- "yaf": 38019,
- "yag": 35081,
- "yah": 16170,
- "yah": 12381,
- "yaho": 37929,
- "yahoo": 38152,
- "yahoo": 16846,
- "yak": 11014,
- "yak": 29074,
- "yaki": 44677,
- "yaku": 29572,
- "yakuza": 42628,
- "yal": 16198,
- "yal": 13418,
- "yale": 39926,
- "yale": 17157,
- "yall": 9210,
- "yam": 6666,
- "yam": 19318,
- "yama": 23512,
- "yamaha": 18854,
- "yan": 3949,
- "yan": 4788,
- "yana": 18698,
- "yand": 38609,
- "yang": 23818,
- "yang": 12605,
- "yani": 26439,
- "yankee": 21554,
- "yankees": 11889,
- "yann": 40246,
- "yann": 38657,
- "yao": 45231,
- "yap": 48700,
- "yap": 34468,
- "yar": 6786,
- "yar": 23071,
- "yard": 20234,
- "yard": 4313,
- "yards": 7550,
- "yarmouth": 45941,
- "yarn": 19702,
- "yarra": 46824,
- "yas": 8168,
- "yas": 20570,
- "yash": 30216,
- "yash": 37836,
- "yasi": 37700,
- "yasss": 23873,
- "yat": 29443,
- "yat": 34965,
- "yates": 27677,
- "yatra": 38932,
- "yav": 41275,
- "yaw": 31989,
- "yawn": 48643,
- "yay": 20614,
- "yay": 6712,
- "yaya": 37608,
- "yaz": 19348,
- "yaz": 42252,
- "yb": 41785,
- "yb": 27615,
- "yc": 11931,
- "ycle": 38089,
- "yd": 29896,
- "yd": 9534,
- "yday": 15899,
- "yds": 24819,
- "ye": 693,
- "ye": 4582,
- "yea": 13687,
- "yeah": 29405,
- "yeah": 3908,
- "year": 5163,
- "year": 935,
- "yearbook": 21636,
- "yearling": 48392,
- "yearly": 24541,
- "yearof": 31944,
- "yearofthe": 47899,
- "years": 30864,
- "years": 1151,
- "yearsof": 14932,
- "yearswith": 45249,
- "yeast": 25819,
- "yeats": 44903,
- "yed": 28137,
- "yed": 3301,
- "yee": 18114,
- "yee": 23108,
- "yeezy": 24901,
- "yeg": 16854,
- "yeg": 11976,
- "yegfood": 48711,
- "yeh": 21331,
- "yel": 3323,
- "yel": 48164,
- "yell": 30824,
- "yelled": 39199,
- "yelling": 26581,
- "yellow": 12059,
- "yellow": 4481,
- "yellowstone": 29241,
- "yelp": 31674,
- "yemen": 29276,
- "yemen": 12513,
- "yemeni": 44656,
- "yemi": 42267,
- "yen": 29602,
- "yen": 17960,
- "yeo": 32292,
- "yeo": 43830,
- "yeol": 15808,
- "yeon": 16602,
- "yep": 10964,
- "yer": 15491,
- "yer": 2371,
- "yers": 3722,
- "yes": 21620,
- "yes": 1958,
- "yess": 42778,
- "yess": 40189,
- "yesss": 36210,
- "yessss": 45620,
- "yester": 1905,
- "yesterday": 1926,
- "yesterdays": 36238,
- "yesung": 38527,
- "yet": 2296,
- "yeti": 34228,
- "yev": 39855,
- "yew": 34660,
- "yey": 45447,
- "yg": 16396,
- "ygk": 44758,
- "ygo": 46166,
- "yh": 41978,
- "yi": 5826,
- "yi": 14762,
- "yield": 16825,
- "yields": 24856,
- "yikes": 25094,
- "yin": 26476,
- "yin": 23543,
- "ying": 42933,
- "ying": 910,
- "yixing": 32120,
- "yk": 30965,
- "yl": 2656,
- "yl": 4045,
- "ylan": 41875,
- "ylde": 42850,
- "yle": 32305,
- "yle": 10770,
- "ylene": 34239,
- "yler": 48081,
- "yles": 42860,
- "ylon": 22375,
- "ylor": 48468,
- "ym": 1786,
- "ym": 19587,
- "yman": 29077,
- "ymc": 47101,
- "ymca": 22369,
- "yment": 8199,
- "ymes": 39968,
- "ymi": 5271,
- "ymm": 37133,
- "ymoun": 41426,
- "ymouth": 36429,
- "yn": 2823,
- "yn": 4100,
- "yne": 18238,
- "ynes": 18020,
- "ynn": 10499,
- "ynna": 48292,
- "ynwa": 27372,
- "yo": 586,
- "yo": 3497,
- "yoda": 31922,
- "yof": 5966,
- "yofficial": 21818,
- "yofthe": 43983,
- "yog": 34985,
- "yog": 36539,
- "yoga": 25872,
- "yoga": 5523,
- "yogh": 32626,
- "yoghurt": 33491,
- "yogi": 22766,
- "yogur": 16137,
- "yogurt": 16819,
- "yoh": 48880,
- "yoke": 41969,
- "yoko": 25929,
- "yoko": 32256,
- "yokohama": 42409,
- "yol": 19387,
- "yol": 35218,
- "yolanda": 43845,
- "yolo": 20905,
- "yom": 34718,
- "yom": 44527,
- "yon": 10147,
- "yon": 7604,
- "yong": 27960,
- "yong": 20887,
- "yonge": 48592,
- "yoo": 25842,
- "yoo": 20775,
- "yoon": 30863,
- "yoon": 22113,
- "yoona": 32736,
- "yoongi": 24037,
- "yor": 2028,
- "yor": 21132,
- "york": 5318,
- "york": 2705,
- "yorker": 23865,
- "yorkers": 41041,
- "yorks": 39093,
- "yorkshi": 43367,
- "yorkshire": 27007,
- "yorkshire": 8633,
- "yoruba": 46083,
- "yos": 35607,
- "yosemite": 25893,
- "yoshi": 22920,
- "yoshi": 25354,
- "yot": 22875,
- "yotes": 46157,
- "yotpo": 26113,
- "you": 1562,
- "you": 592,
- "youare": 33879,
- "youcan": 32498,
- "youknow": 47919,
- "youknow": 41088,
- "youn": 1596,
- "young": 6939,
- "young": 1888,
- "younger": 10414,
- "youngest": 12316,
- "youngjae": 46426,
- "youngster": 35881,
- "youngsters": 28098,
- "younow": 33831,
- "your": 2130,
- "your": 695,
- "youre": 28344,
- "youre": 19695,
- "yourown": 28583,
- "yours": 3834,
- "yourself": 3053,
- "yourselves": 19747,
- "youth": 10743,
- "youth": 3281,
- "youthful": 37480,
- "youths": 23614,
- "youts": 22737,
- "youtu": 13868,
- "youtube": 31258,
- "youtube": 3895,
- "youtuber": 24720,
- "youtubers": 36822,
- "youu": 35055,
- "youuu": 35324,
- "youuuu": 47123,
- "yoy": 41865,
- "yp": 38370,
- "yp": 34734,
- "ypg": 37386,
- "yql": 46122,
- "yqr": 36881,
- "yr": 18395,
- "yr": 4333,
- "yrs": 4822,
- "ys": 1971,
- "ys": 961,
- "yser": 33121,
- "ysis": 4843,
- "ysl": 45681,
- "ysm": 23842,
- "yst": 40528,
- "yt": 36777,
- "yt": 14779,
- "ytd": 47524,
- "yte": 48172,
- "yu": 3371,
- "yu": 8887,
- "yuan": 26236,
- "yuck": 48282,
- "yugo": 48231,
- "yuh": 42547,
- "yui": 47932,
- "yuk": 17037,
- "yuk": 24063,
- "yuki": 34010,
- "yukon": 27094,
- "yul": 39832,
- "yum": 6869,
- "yum": 7259,
- "yuma": 47566,
- "yummy": 7687,
- "yun": 14976,
- "yun": 18288,
- "yung": 44545,
- "yung": 17676,
- "yunho": 39748,
- "yup": 13231,
- "yur": 42533,
- "yuri": 23823,
- "yusuf": 33222,
- "yuv": 36784,
- "yves": 33698,
- "yvon": 23327,
- "yvonne": 32583,
- "yvr": 29058,
- "yw": 33741,
- "yx": 35624,
- "yxe": 34240,
- "yy": 3433,
- "yy": 8321,
- "yya": 37444,
- "yyc": 27542,
- "yyc": 11741,
- "yyj": 26203,
- "yyy": 11514,
- "yyyy": 38749,
- "yyyy": 16955,
- "yyyyy": 26089,
- "yyyyyy": 47055,
- "yz": 37579,
- "yz": 46451,
- "yü": 48232,
- "z": 89,
- "z": 345,
- "za": 3710,
- "za": 2186,
- "zab": 22982,
- "zable": 37002,
- "zac": 25501,
- "zac": 19159,
- "zach": 13401,
- "zach": 11815,
- "zachary": 32401,
- "zack": 30567,
- "zack": 19120,
- "zad": 47314,
- "zad": 27838,
- "zada": 34889,
- "zaf": 21837,
- "zafar": 46668,
- "zag": 26091,
- "zag": 29346,
- "zagre": 34107,
- "zagreb": 35355,
- "zah": 23258,
- "zah": 43297,
- "zaha": 44408,
- "zai": 44329,
- "zai": 27065,
- "zain": 34400,
- "zain": 45366,
- "zak": 13050,
- "zak": 20738,
- "zaki": 48091,
- "zal": 20552,
- "zal": 33298,
- "zam": 7218,
- "zam": 41578,
- "zambia": 21671,
- "zan": 7284,
- "zan": 17835,
- "zana": 39643,
- "zand": 37712,
- "zane": 34786,
- "zani": 45373,
- "zania": 15059,
- "zano": 27637,
- "zanzi": 47835,
- "zap": 24134,
- "zapp": 33504,
- "zappa": 46592,
- "zar": 5458,
- "zar": 16392,
- "zara": 24454,
- "zardari": 20174,
- "zas": 48261,
- "zation": 3683,
- "zawa": 49281,
- "zay": 7102,
- "zayed": 36726,
- "zayn": 22292,
- "zayn": 10308,
- "zaynmalik": 25278,
- "zazzle": 47857,
- "ze": 2254,
- "ze": 1298,
- "zeal": 44951,
- "zealand": 7618,
- "zeb": 46518,
- "zebra": 47394,
- "zebra": 22548,
- "zed": 21047,
- "zed": 1993,
- "zedd": 45608,
- "zee": 25468,
- "zee": 14080,
- "zeiss": 47460,
- "zeit": 37898,
- "zeit": 37906,
- "zek": 40829,
- "zeke": 47065,
- "zel": 10389,
- "zel": 12027,
- "zelda": 17138,
- "zell": 39526,
- "zen": 8518,
- "zen": 3928,
- "zend": 33478,
- "zendaya": 35956,
- "zenith": 44740,
- "zens": 15298,
- "zeph": 40726,
- "zepp": 22977,
- "zeppelin": 25408,
- "zer": 6118,
- "zer": 3716,
- "zero": 14867,
- "zero": 5848,
- "zers": 9547,
- "zes": 4073,
- "zest": 37709,
- "zet": 34098,
- "zeta": 30954,
- "zetta": 45993,
- "zeus": 32800,
- "zey": 46647,
- "zh": 33389,
- "zh": 41621,
- "zhang": 21127,
- "zhen": 37374,
- "zhen": 33236,
- "zhou": 17384,
- "zhu": 42049,
- "zi": 2651,
- "zi": 5819,
- "zia": 13764,
- "zid": 30235,
- "zidane": 34643,
- "zie": 29316,
- "zie": 8956,
- "zieg": 40157,
- "ziegler": 46812,
- "ziel": 32151,
- "zier": 15399,
- "zies": 38001,
- "ziest": 28159,
- "zig": 15950,
- "zig": 21345,
- "ziggy": 39274,
- "zik": 30125,
- "zika": 28783,
- "zil": 25039,
- "zil": 33190,
- "zilla": 17879,
- "zim": 8112,
- "zim": 22577,
- "zimbab": 12373,
- "zimbabwe": 45668,
- "zimbabwe": 13583,
- "zimmer": 27452,
- "zimmer": 35211,
- "zimmerman": 38231,
- "zin": 14085,
- "zin": 21278,
- "zinc": 27458,
- "zind": 26206,
- "zindabad": 42208,
- "zine": 16100,
- "zing": 25062,
- "zing": 3152,
- "zinger": 42027,
- "zio": 13906,
- "zion": 31763,
- "zion": 20963,
- "zione": 36161,
- "zionist": 33078,
- "zip": 26479,
- "zip": 16083,
- "zipper": 33670,
- "zir": 31892,
- "zl": 39168,
- "zlat": 32489,
- "zlatan": 37877,
- "zm": 43691,
- "zman": 24248,
- "zn": 18004,
- "zo": 4397,
- "zo": 5056,
- "zodi": 22660,
- "zodiac": 27753,
- "zoe": 43114,
- "zoe": 16662,
- "zoey": 39871,
- "zog": 40680,
- "zol": 25939,
- "zola": 46105,
- "zom": 6623,
- "zombi": 29452,
- "zombie": 11819,
- "zombies": 46702,
- "zombies": 16517,
- "zon": 15109,
- "zon": 14618,
- "zona": 42134,
- "zone": 37197,
- "zone": 4442,
- "zones": 17247,
- "zoning": 36790,
- "zoo": 8182,
- "zoo": 7147,
- "zoom": 32671,
- "zoom": 13909,
- "zor": 17605,
- "zou": 38072,
- "zr": 39275,
- "zs": 35248,
- "zshq": 41442,
- "zt": 42629,
- "zu": 4091,
- "zu": 14184,
- "zucchini": 29873,
- "zucker": 26890,
- "zuckerberg": 30066,
- "zul": 31146,
- "zulu": 32821,
- "zum": 35094,
- "zuma": 23326,
- "zumba": 32976,
- "zun": 42440,
- "zur": 17128,
- "zurich": 21288,
- "zw": 42188,
- "zx": 31604,
- "zy": 6615,
- "zy": 2303,
- "zyk": 39112,
- "zyme": 36472,
- "zyn": 45287,
- "zz": 1544,
- "zz": 4943,
- "zza": 14642,
- "zzi": 13974,
- "zzie": 18635,
- "zzle": 7873,
- "zzled": 39075,
- "zzo": 14036,
- "zzy": 21275,
- "zzy": 8353,
- "zzz": 20055,
- "zzzz": 35742,
- "zzzz": 43103,
- "{": 90,
- "{": 346,
- "{}": 39025,
- "|": 91,
- "|#": 31183,
- "|": 347,
- "|@": 41677,
- "||": 7566,
- "}": 92,
- "}": 348,
- "~": 93,
- "~!": 31181,
- "~\"": 48442,
- "~": 349,
- "~>": 43291,
- "~@": 44247,
- "~~": 11461,
- "~~": 16671,
- "~~~": 32472,
- "~~~~": 28295,
- "¡": 94,
- "¡": 350,
- "¡ï¸ı": 15113,
- "¡ï¸ı": 4174,
- "¡ľ": 43991,
- "¢": 95,
- "¢": 351,
- "£": 96,
- "£": 352,
- "£ï¸ı": 18446,
- "¤": 97,
- "¤": 353,
- "¥": 98,
- "¥": 354,
- "¦": 99,
- "¦": 355,
- "¦Ī": 47615,
- "§": 100,
- "§": 356,
- "¨": 101,
- "¨": 357,
- "©": 102,
- "©": 358,
- "ª": 103,
- "ª": 359,
- "«": 104,
- "«": 360,
- "¬": 105,
- "¬": 361,
- "‘": 31736,
- "®": 106,
- "®": 362,
- "¯": 107,
- "¯": 363,
- "°": 108,
- "°:": 21787,
- "°": 364,
- "°ï¸ı": 34777,
- "±": 109,
- "±": 365,
- "±ï¸ı": 41020,
- "²": 110,
- "²": 366,
- "³": 111,
- "³": 367,
- "³ï¸ı": 22195,
- "³ï¸ı": 24706,
- "´": 112,
- "´": 368,
- "µ": 113,
- "µ": 369,
- "µï¸ı": 27605,
- "¶": 114,
- "¶": 370,
- "·": 115,
- "·": 371,
- "¸": 116,
- "¸": 372,
- "¸ë": 19693,
- "¹": 117,
- "¹": 373,
- "º": 118,
- "º": 374,
- "»": 119,
- "»": 375,
- "¼": 120,
- "¼": 376,
- "½": 121,
- "½": 377,
- "½ï¸ı": 31333,
- "¾": 122,
- "¾": 378,
- "¿": 123,
- "¿": 379,
- "À": 124,
- "À": 380,
- "Á": 125,
- "Á": 381,
- "Â": 126,
- "Â": 382,
- "¡": 26868,
- "¡": 10830,
- "¡¡": 45505,
- "¢": 41359,
- "£": 31117,
- "£": 1950,
- "Â¥": 20199,
- "¨": 19957,
- "¨¨": 23089,
- "¨¨¨¨": 41223,
- "©": 31148,
- "©": 5811,
- "«": 14434,
- "®": 30857,
- "®": 8436,
- "¯": 38682,
- "¯": 43593,
- "¯\\": 44096,
- "¯\\_(": 45115,
- "°": 21305,
- "°": 6858,
- "²": 41175,
- "´": 30560,
- "´": 12559,
- "·": 14844,
- "º": 28059,
- "»": 31642,
- "»": 7599,
- "½": 33613,
- "¿": 44559,
- "¿": 17133,
- "ÂŃ": 22618,
- "Ã": 127,
- "Ã": 383,
- "á": 7261,
- "á": 22229,
- "án": 38340,
- "án": 21385,
- "â": 26170,
- "ã": 19339,
- "ão": 21141,
- "ä": 10896,
- "ä": 47276,
- "än": 42787,
- "Ã¥": 23176,
- "æ": 42495,
- "ç": 10067,
- "ça": 22711,
- "è": 12138,
- "è": 37761,
- "ère": 30272,
- "ès": 41210,
- "é": 3459,
- "é": 4166,
- "éal": 45251,
- "ée": 13489,
- "és": 20507,
- "ê": 27515,
- "ë": 29526,
- "ë": 40520,
- "î": 48704,
- "ï": 35689,
- "ñ": 6445,
- "ña": 17753,
- "ño": 16574,
- "ños": 40104,
- "ó": 8891,
- "ó": 27733,
- "ón": 13926,
- "ô": 26815,
- "ö": 7255,
- "ö": 37423,
- "ör": 31762,
- "ø": 17483,
- "ø": 45598,
- "ú": 17963,
- "ú": 36019,
- "ü": 6522,
- "ü": 47177,
- "ür": 26132,
- "ÃĹ": 16165,
- "Ãł": 36149,
- "Ãł": 21259,
- "ÃŃ": 8366,
- "ÃŃ": 23928,
- "ÃŃa": 16609,
- "ÃŃn": 33623,
- "Ä": 128,
- "Ä": 384,
- "ı": 18562,
- "ı": 41901,
- "Äģ": 23134,
- "Äĩ": 31719,
- "Äį": 45414,
- "ÄŁ": 26540,
- "Å": 129,
- "Å": 385,
- "Å¡": 35621,
- "ÅĤ": 40419,
- "Åį": 41267,
- "ÅŁ": 21254,
- "ÅŁ": 40706,
- "Æ": 130,
- "Æ": 386,
- "Ç": 131,
- "Ç": 387,
- "È": 132,
- "È": 388,
- "É": 133,
- "É": 389,
- "Ê": 134,
- "Ê": 390,
- "Ë": 135,
- "Ë": 391,
- "Ì": 136,
- "Ì": 392,
- "Ìĩ": 16384,
- "Í": 137,
- "Í": 393,
- "Î": 138,
- "Î": 394,
- "Ï": 139,
- "Ï": 395,
- "Ïī": 38065,
- "Ð": 140,
- "Ð": 396,
- "а": 16912,
- "а": 27080,
- "аÐ": 31090,
- "в": 39813,
- "е": 22176,
- "и": 16701,
- "иÐ": 29503,
- "к": 27152,
- "л": 47611,
- "м": 38018,
- "н": 22705,
- "о": 13506,
- "о": 29386,
- "оÐ": 20978,
- "од": 38416,
- "оÑĤ": 28599,
- "п": 26302,
- "пÑĢи": 46321,
- "пÑĢиÑĢода": 48150,
- "Ñ": 141,
- "Ñ": 397,
- "ÑĢ": 16370,
- "ÑĢи": 41092,
- "ÑĢод": 47039,
- "ÑĢода": 47929,
- "Ñģ": 23669,
- "ÑĤ": 17875,
- "Ñĥ": 39729,
- "ÑĦ": 27993,
- "ÑĦоÑĤ": 35155,
- "ÑĦоÑĤо": 38981,
- "Ñĭ": 45001,
- "Ò": 142,
- "Ò": 398,
- "Ó": 143,
- "Ó": 399,
- "Ô": 144,
- "Ô": 400,
- "Õ": 145,
- "Õ": 401,
- "Ö": 146,
- "Ö": 402,
- "×": 147,
- "×": 403,
- "Ø": 148,
- "Ø": 404,
- "ا": 6042,
- "ا": 22625,
- "اØ": 13189,
- "ار": 40137,
- "اÙ": 8453,
- "اÙĦ": 12973,
- "اÙħ": 47626,
- "اÙĨ": 42773,
- "اÙĨ": 33200,
- "ب": 16378,
- "ب": 35330,
- "Ø©": 20915,
- "ت": 18197,
- "ت": 44333,
- "ج": 26375,
- "Ø®": 41495,
- "د": 19872,
- "د": 35566,
- "ر": 10948,
- "ر": 24933,
- "رÙĬ": 43273,
- "ز": 36169,
- "س": 17856,
- "Ø´": 28770,
- "ص": 27271,
- "Ø·": 32050,
- "ع": 18843,
- "غ": 48510,
- "ØŃ": 25722,
- "Ù": 149,
- "Ù": 405,
- "Ùģ": 24112,
- "ÙĤ": 27585,
- "Ùĥ": 33499,
- "ÙĦ": 14251,
- "ÙĦ": 37899,
- "Ùħ": 12986,
- "Ùħ": 29945,
- "ÙĨ": 16655,
- "ÙĨ": 25386,
- "Ùĩ": 34274,
- "Ùĩ": 31343,
- "ÙĪ": 12203,
- "ÙĪ": 38310,
- "ÙĪر": 48242,
- "ÙĬ": 12046,
- "ÙĬ": 23853,
- "Ú": 150,
- "Ú": 406,
- "Ú©": 26475,
- "Û": 151,
- "Û": 407,
- "Ûģ": 40480,
- "ÛĮ": 21452,
- "ÛĮ": 32703,
- "Ü": 152,
- "Ü": 408,
- "Ý": 153,
- "Ý": 409,
- "Þ": 154,
- "Þ": 410,
- "ß": 155,
- "ß": 411,
- "à": 156,
- "à": 412,
- "à¤": 3124,
- "त": 27263,
- "द": 29552,
- "न": 26090,
- "प": 44149,
- "ब": 43599,
- "म": 48254,
- "म": 26774,
- "य": 37299,
- "र": 39136,
- "र": 19052,
- "ल": 30881,
- "व": 39545,
- "श": 43181,
- "स": 28505,
- "ह": 29446,
- "ा": 37973,
- "ा": 13343,
- "ि": 26721,
- "à¤Ĥ": 30833,
- "à¤ķ": 22067,
- "à¤Ĺ": 42598,
- "à¤ľ": 39561,
- "à¥": 7410,
- "à¥Ģ": 45791,
- "à¥Ģ": 25751,
- "à¥ģ": 39653,
- "à¥ĩ": 48612,
- "à¥ĩ": 25130,
- "à¥ĭ": 34452,
- "à¥į": 19389,
- "à¦": 11322,
- "া": 41532,
- "à§": 26339,
- "à¨": 15741,
- "à©": 32086,
- "àª": 22990,
- "à«": 48347,
- "à¬": 32791,
- "à®": 6022,
- "த": 34691,
- "ன": 43394,
- "ப": 47388,
- "à®®": 35463,
- "à®°": 43270,
- "ல": 47705,
- "ா": 32831,
- "ி": 27126,
- "à®ķ": 36168,
- "à®Ł": 45263,
- "à¯": 11259,
- "à¯ģ": 33115,
- "à¯į": 16631,
- "à°": 12100,
- "à±": 23550,
- "à±į": 46098,
- "à²": 9992,
- "ಿ": 47797,
- "à³": 20745,
- "à³į": 36148,
- "à´": 15418,
- "àµ": 27392,
- "àµį": 45266,
- "à¶": 29881,
- "à·": 30766,
- "à¸": 1777,
- "ม": 26137,
- "ม": 29570,
- "ย": 27241,
- "ย": 33091,
- "ร": 32225,
- "ร": 27331,
- "ล": 34696,
- "ล": 32746,
- "ว": 26990,
- "ว": 30245,
- "ส": 37883,
- "ส": 35737,
- "ห": 33064,
- "ะ": 43920,
- "ะ": 49234,
- "ั": 14978,
- "า": 11529,
- "า": 38476,
- "าà¸": 12330,
- "ิ": 17092,
- "ี": 22421,
- "ี": 20278,
- "ีà¹Ī": 31511,
- "ื": 47991,
- "ุ": 30524,
- "ู": 35273,
- "à¸ģ": 30767,
- "à¸ģà¸": 31474,
- "à¸Ħ": 31757,
- "à¸Ħà¸": 39628,
- "à¸ĩ": 24603,
- "à¸ĩ": 33382,
- "à¸Ī": 47608,
- "à¸Ĭ": 46324,
- "à¸Ķ": 31107,
- "à¸Ķ": 38825,
- "à¸ķ": 40273,
- "à¸ķ": 41108,
- "à¸Ĺ": 36171,
- "à¸Ļ": 17474,
- "à¸Ļ": 17639,
- "à¸Ļà¸": 23121,
- "à¸ļ": 33859,
- "à¸ļ": 39616,
- "à¸ŀ": 48171,
- "à¸Ń": 13398,
- "à¸Ń": 32818,
- "à¸Ńà¸": 14649,
- "à¸Ńà¸ĩ": 46622,
- "à¹": 4484,
- "à¹Ģ": 13729,
- "à¹Ģà¸": 14076,
- "à¹ģà¸": 23916,
- "à¹Ĥ": 33118,
- "à¹ĥ": 40962,
- "à¹Ħà¸": 31718,
- "à¹ĩ": 38699,
- "à¹Ī": 11722,
- "à¹ī": 13123,
- "à¹Į": 28353,
- "à¼": 46186,
- "à½": 39219,
- "á": 157,
- "á": 413,
- "á´": 19036,
- "áµ": 17330,
- "áĢ": 45932,
- "áĥ": 24829,
- "áĥ¦": 32193,
- "â": 158,
- "â": 414,
- "â¤": 25087,
- "⤵ï¸ı": 36026,
- "â¬": 7930,
- "â¬ħï¸ı": 42111,
- "â¬Ĩ": 27718,
- "â¬Ĩï¸ı": 32798,
- "â¬ĩ": 10917,
- "â¬ĩ": 39370,
- "â¬ĩï¸ı": 25621,
- "â¬ĩï¸ı": 13984,
- "â¬ĩï¸ıâ¬ĩï¸ı": 40159,
- "âĢ": 728,
- "âĢ¢": 9485,
- "âĢ¢": 2701,
- "âĢ¢âĢ¢": 15006,
- "âĢ¢âĢ¢": 47575,
- "âĢ¢âĢ¢âĢ¢âĢ¢": 27502,
- "âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢": 48630,
- "âĢ¦": 7095,
- "âĢ¦\"": 20215,
- "âĢ¦..": 47779,
- "âĢ¦.": 18615,
- "âĢ¦/": 29842,
- "âĢ¦": 959,
- "âĢ¦âĢ¦": 40066,
- "âĢ²": 32633,
- "âĢ³": 25061,
- "âĢ¼": 6578,
- "âĢ¼ï¸ı": 15622,
- "âĢ¼ï¸ı": 8310,
- "âĢ¼ï¸ıâĢ¼ï¸ı": 33218,
- "âĢĭ": 17086,
- "âĢĭ": 9844,
- "âĢį": 4244,
- "âĢįâĻ": 5177,
- "âĢįâĻĢï¸ı": 18897,
- "âĢįâĻĢï¸ı": 9605,
- "âĢįâĻĤ": 8832,
- "âĢįâĻĤï¸ı": 21779,
- "âĢįâĻĤï¸ı": 10613,
- "âĢİ": 31001,
- "âĢIJ": 34512,
- "âĢĵ": 21070,
- "âĢĵ": 1224,
- "âĢĶ": 6718,
- "âĢĶ": 2005,
- "âĢĶ>": 26341,
- "âĢĶ@": 28470,
- "âĢĶâĢĶ": 10037,
- "âĢĶâĢĶ": 44800,
- "âĢĶâĢĶâĢĶâĢĶ": 17797,
- "âĢĶâĢĶâĢĶâĢĶâĢĶâĢĶâĢĶâĢĶ": 34432,
- "âĢķ": 14236,
- "âģ": 1667,
- "âģ£": 31089,
- "âģ£": 16845,
- "âģ¦": 2773,
- "âģ¦": 34855,
- "âģ¦@": 2859,
- "âģ¦âģ¦@": 27783,
- "âģ©": 20097,
- "âģ©,": 48749,
- "âģ©.": 35777,
- "âģ©": 2918,
- "âģīï¸ı": 46534,
- "âģł": 23881,
- "âģł": 13503,
- "âģłâģł": 33488,
- "âĤ": 5227,
- "âĤ¬": 34919,
- "âĤ¬": 6309,
- "âĤ¹": 21777,
- "âĥ": 2805,
- "âĥ£": 11250,
- "âĥ£": 3076,
- "âĥ£@": 48291,
- "âĦ": 8604,
- "âĦ¢": 29438,
- "âĦ¢": 11675,
- "âĦ¹": 45462,
- "âĨ": 6059,
- "âĨĴ": 7481,
- "âĨĵ": 41603,
- "âĩ": 27228,
- "âĪ": 17788,
- "âī": 22684,
- "âīĪ": 45451,
- "âĮ": 17848,
- "âĮļ": 31301,
- "âĮļï¸ı": 35931,
- "âı": 7960,
- "âı©": 40847,
- "âı°": 12714,
- "âı±": 33149,
- "âı³": 47617,
- "âĵ": 27400,
- "âĶ": 13389,
- "âĶĢ": 45139,
- "âĶģ": 42022,
- "âķ": 17027,
- "âķIJ": 48039,
- "âĸ": 4168,
- "âĸª": 21203,
- "âĸª": 36628,
- "âĸªï¸ı": 24974,
- "âĸ«": 39478,
- "âĸ¬": 33798,
- "âĸ¬âĸ¬": 36975,
- "âĸ¶": 12509,
- "âĸ¶": 21126,
- "âĸ¶ï¸ı": 14442,
- "âĸº": 46061,
- "âĸº": 12086,
- "âĸ½": 45634,
- "âĸł": 36791,
- "âĹ": 9323,
- "âĹĨ": 48961,
- "âĹı": 26999,
- "âĺ": 1741,
- "âĺ®": 45851,
- "âĺ¹": 28811,
- "âĺ¹ï¸ı": 39605,
- "âĺº": 5010,
- "âĺº": 8703,
- "âĺºâĺº": 46051,
- "âĺºï¸ı": 11506,
- "âĺºï¸ı": 7779,
- "âĺºï¸ıâĺºï¸ı": 41315,
- "âĺ¼": 38877,
- "âĺĢ": 32146,
- "âĺĢ": 22242,
- "âĺĢï¸ı": 12817,
- "âĺĢï¸ı": 8219,
- "âĺĢï¸ıâĺĢï¸ı": 44550,
- "âĺģ": 25195,
- "âĺģï¸ı": 35197,
- "âĺĥ": 38972,
- "âĺħ": 9339,
- "âĺħ": 10643,
- "âĺħâĺħ": 12681,
- "âĺħâĺħ": 36644,
- "âĺħâĺħâĺħâĺħ": 34431,
- "âĺħâĺħâĺħâĺħ": 44034,
- "âĺħâĺħâĺħâĺħâĺħ": 45984,
- "âĺĨ": 23941,
- "âĺĨ": 13439,
- "âĺİ": 24045,
- "âĺİ": 45493,
- "âĺİï¸ı": 27219,
- "âĺij": 20983,
- "âĺij": 42300,
- "âĺijï¸ı": 22291,
- "âĺĶï¸ı": 31238,
- "âĺķ": 11454,
- "âĺķ": 26561,
- "âĺķï¸ı": 25839,
- "âĺķï¸ı": 15499,
- "âĺĺ": 23483,
- "âĺĺï¸ı": 31454,
- "âĺĿ": 21982,
- "âĺĿï¸ı": 38891,
- "âĺŀ": 31255,
- "âĺłï¸ı": 34672,
- "âĻ": 1548,
- "âĻ¡": 11091,
- "âĻ¡": 6251,
- "âĻ¡âĻ¡": 22360,
- "âĻ¡âĻ¡": 34267,
- "âĻ¡âĻ¡âĻ¡": 36611,
- "âĻ¤": 47435,
- "âĻ¥": 4622,
- "âĻ¥": 3405,
- "âĻ¥âĻ¥": 12975,
- "âĻ¥âĻ¥": 19604,
- "âĻ¥âĻ¥âĻ¥": 23255,
- "âĻ¥âĻ¥âĻ¥âĻ¥": 49020,
- "âĻ¥ï¸ı": 17774,
- "âĻ¥ï¸ı": 10561,
- "âĻ¥ï¸ıâĻ¥ï¸ı": 40309,
- "âĻ¦": 32376,
- "âĻ¦": 47547,
- "âĻ©": 30339,
- "âĻ©âĻ«": 31636,
- "âĻª": 27364,
- "âĻª": 12382,
- "âĻ«": 39217,
- "âĻ«": 10814,
- "âĻ¬": 24753,
- "âĻ»": 39611,
- "âĻ»ï¸ı": 46075,
- "âļ": 2234,
- "âļ¡": 40098,
- "âļ¡": 20712,
- "âļ¡ï¸ı": 19500,
- "âļ¡ï¸ı": 11605,
- "âļ¡ï¸ıâļ¡ï¸ı": 45922,
- "âļª": 11922,
- "âļª": 36373,
- "âļªï¸ı": 22251,
- "âļªï¸ı": 17885,
- "âļ«": 15374,
- "âļ«ï¸ı": 26529,
- "âļ«ï¸ı": 24649,
- "âļ½": 4867,
- "âļ½": 13173,
- "âļ½âļ½": 43259,
- "âļ½ï¸ı": 11342,
- "âļ½ï¸ı": 6768,
- "âļ½ï¸ıâļ½ï¸ı": 30358,
- "âļ½ï¸ıâļ½ï¸ı": 44148,
- "âļ¾": 11314,
- "âļ¾": 34717,
- "âļ¾ï¸ı": 24727,
- "âļ¾ï¸ı": 14858,
- "âļĵ": 23522,
- "âļĵï¸ı": 35299,
- "âļĶï¸ı": 29361,
- "âļľ": 47491,
- "âļł": 39203,
- "âļłï¸ı": 40966,
- "âļłï¸ı": 15596,
- "âĽ": 7956,
- "âĽ³ï¸ı": 29204,
- "âĽĦ": 30668,
- "âĽĦï¸ı": 45465,
- "âľ": 1508,
- "⾨": 7181,
- "⾨": 3531,
- "⾨⾨": 35174,
- "⾨⾨": 21985,
- "⾨⾨⾨": 39424,
- "âľĤ": 38602,
- "âľħ": 29544,
- "âľħ": 5564,
- "âľĪ": 10682,
- "âľĪ": 30712,
- "âľĪï¸ı": 26176,
- "âľĪï¸ı": 13413,
- "âľĬ": 12392,
- "âľĬ": 17819,
- "âľĬðŁı½": 48547,
- "âľĬðŁı¾": 41185,
- "âľĭ": 39383,
- "âľĭ": 30239,
- "âľĮ": 6419,
- "âľĮ": 12656,
- "âľĮï¸ı": 21906,
- "âľĮï¸ı": 12239,
- "âľĮðŁı»": 30538,
- "âľĮðŁı¼": 30588,
- "âľį": 20872,
- "âľįï¸ı": 30888,
- "âľı": 32574,
- "âľıï¸ı": 40724,
- "âľĵ": 36700,
- "âľĶ": 47200,
- "âľĶ": 13749,
- "âľĶï¸ı": 40544,
- "âľĶï¸ı": 9191,
- "âľĸï¸ı": 44133,
- "âľĿ": 42220,
- "âĿ": 1045,
- "âĿ£": 37007,
- "âĿ£": 25623,
- "âĿ£ï¸ı": 25240,
- "âĿ¤": 1266,
- "âĿ¤": 2720,
- "âĿ¤âĿ¤": 9033,
- "âĿ¤âĿ¤": 14058,
- "âĿ¤âĿ¤âĿ¤": 16708,
- "âĿ¤âĿ¤âĿ¤âĿ¤": 37918,
- "âĿ¤âĿ¤âĿ¤âĿ¤": 43970,
- "âĿ¤ï¸ı": 2626,
- "âĿ¤ï¸ı#": 30281,
- "âĿ¤ï¸ı.": 45326,
- "âĿ¤ï¸ı": 1752,
- "âĿ¤ï¸ı@": 31187,
- "âĿ¤ï¸ıâĿ¤ï¸ı": 6713,
- "âĿ¤ï¸ıâĿ¤ï¸ı": 10363,
- "âĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ı": 12282,
- "âĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ı": 39167,
- "âĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ı": 29880,
- "âĿ¤ï¸ıðŁĴĻ": 37380,
- "âĿ¤ï¸ıðŁĺį": 37272,
- "âĿ¤ï¸ıðŁĺĺ": 41800,
- "âĿ¤ðŁĺį": 49120,
- "âĿ¥": 36914,
- "âĿĦ": 8501,
- "âĿĦ": 30494,
- "âĿĦï¸ı": 16834,
- "âĿĦï¸ı": 12402,
- "âĿĦï¸ıâĿĦï¸ı": 41626,
- "âĿĮ": 44485,
- "âĿĮ": 17975,
- "âĿĵ": 29791,
- "âĿĹ": 12868,
- "âĿĹ": 29079,
- "âĿĹï¸ı": 28642,
- "âĿĹï¸ı": 17391,
- "âĿĿ": 46951,
- "âŀ": 3257,
- "âŀ¡": 12854,
- "âŀ¡ï¸ı": 31860,
- "âŀ¡ï¸ı": 4956,
- "âŀ¤": 18651,
- "âŀķ": 46526,
- "âŀĸ": 21327,
- "âŀĸ": 34902,
- "âŀĸâŀĸ": 23316,
- "âŀĸâŀĸâŀĸâŀĸ": 40401,
- "âŀľ": 23775,
- "âł": 5689,
- "âłĢ": 9691,
- "âłĢ": 8621,
- "âłĢâłĢ": 11466,
- "âłĢâłĢ": 39092,
- "âłĢâłĢâłĢâłĢ": 20976,
- "âłĢâłĢâłĢâłĢâłĢâłĢâłĢâłĢ": 46063,
- "âŃ": 5527,
- "âŃIJ": 6410,
- "âŃIJ": 19012,
- "âŃIJâŃIJ": 32663,
- "âŃIJï¸ı": 12427,
- "âŃIJï¸ı": 10251,
- "âŃIJï¸ıâŃIJï¸ı": 18640,
- "âŃIJï¸ıâŃIJï¸ıâŃIJï¸ı": 40746,
- "ã": 159,
- "ã": 415,
- "ãĢ": 4092,
- "ãĢģ": 45262,
- "ãĢĤ": 38060,
- "ãĢĤ": 38000,
- "ãĢĬ": 39920,
- "ãĢĭ": 32898,
- "ãĢĮ": 18116,
- "ãĢį": 19149,
- "ãĢİ": 26947,
- "ãĢı": 30293,
- "ãĢIJ": 12534,
- "ãĢij": 12990,
- "ãĢľ": 39581,
- "ãģ": 4813,
- "ãģ¦": 48029,
- "ãģ¨": 34671,
- "ãģ¨ç¹ĭãģ": 47310,
- "ãģ¨ç¹ĭãģĮãĤĬãģŁãģĦ": 48290,
- "ãģª": 29104,
- "ãģ®": 21575,
- "ãģ·": 44130,
- "ãģĦ": 33523,
- "ãģĦ": 38850,
- "ãģĨ": 44235,
- "ãģį": 42184,
- "ãĤ": 3909,
- "ãĤ¢": 26560,
- "ãĤ¤": 19319,
- "ãĤ¤ãĥ": 36294,
- "ãĤ«": 37367,
- "ãĤ¯": 31574,
- "ãĤ·": 37665,
- "ãĤ¸": 32234,
- "ãĤ¸ãĥ": 43491,
- "ãĤ¹": 22694,
- "ãĤ¹": 39220,
- "ãĤ¹ãĥ": 32421,
- "ãĤ¿": 34941,
- "ãĤĬãģ": 40500,
- "ãĤĮ": 45211,
- "ãĤŃ": 47121,
- "ãĥ": 2429,
- "ãĥ©": 23007,
- "ãĥª": 32115,
- "ãĥ«": 33257,
- "ãĥ¬": 32965,
- "ãĥ³": 17671,
- "ãĥ³": 26875,
- "ãĥ³ãĤ": 45105,
- "ãĥ³ãĥ": 25914,
- "ãĥ»": 8415,
- "ãĥ»": 11158,
- "ãĥ»ãĥ»": 13949,
- "ãĥ»ãĥ»ãĥ»": 14234,
- "ãĥ¼": 13457,
- "ãĥ¼": 30391,
- "ãĥ¼ãĥ": 18584,
- "ãĥĥ": 28902,
- "ãĥĦ": 32173,
- "ãĥĪ": 42384,
- "ãĥİ": 39967,
- "ãĥķãĤ": 33371,
- "ãĥŀ": 48924,
- "ãĥŃ": 35827,
- "ãħ": 5947,
- "ãħ¤": 21096,
- "ãħ¤ãħ¤": 22583,
- "ãħ¤ãħ¤ãħ¤ãħ¤": 39329,
- "ãħĭ": 13052,
- "ãħĭ": 25108,
- "ãħĭãħĭ": 16604,
- "ãħĭãħĭ": 42581,
- "ãħĭãħĭãħĭ": 46407,
- "ãħĭãħĭãħĭãħĭ": 39362,
- "ãħł": 16089,
- "ãħł": 25781,
- "ãħłãħł": 22021,
- "ãħłãħł": 34398,
- "ãħłãħłãħłãħł": 47028,
- "ä": 160,
- "ä": 416,
- "ä¸": 19759,
- "ä¹": 41854,
- "äº": 21078,
- "人": 36839,
- "ä»": 37743,
- "ä½": 47466,
- "å": 161,
- "å": 417,
- "å¤": 23170,
- "å¥": 29290,
- "å®": 27047,
- "å°": 34720,
- "å±": 46096,
- "å¸": 42021,
- "å¹": 38780,
- "åħ": 34314,
- "åĨ": 27972,
- "åĨĻ": 44653,
- "åĪ": 42748,
- "åĭ": 47505,
- "åı": 34517,
- "åIJ": 41673,
- "åĽ": 39027,
- "åľ": 37746,
- "åŃ": 35751,
- "æ": 162,
- "æ": 418,
- "æĸ": 29032,
- "æĹ": 22265,
- "æĹ¥": 39121,
- "æĹ¥": 37156,
- "æĺ": 42891,
- "æĻ": 48132,
- "æľ": 19277,
- "æľ¬": 44353,
- "æĿ": 27667,
- "æĿ±": 48338,
- "ç": 163,
- "ç": 419,
- "ç¥": 26369,
- "ç¥Ń": 42557,
- "çµ": 37810,
- "ç¹": 43431,
- "ç¹ĭãģ": 45930,
- "çĶ": 20211,
- "çĶŁ": 33375,
- "çľ": 33440,
- "羣": 41570,
- "è": 164,
- "è": 420,
- "èª": 34002,
- "èªķ": 41293,
- "é": 165,
- "é": 421,
- "éģ": 44854,
- "éĩ": 38283,
- "ê": 166,
- "ê": 422,
- "ê°": 21122,
- "ê°ĵ": 41076,
- "ê°ĵìĦ¸ë¸IJ": 41689,
- "ê°ķ": 45758,
- "ê²": 35555,
- "ê³": 36216,
- "êµ": 31871,
- "ê·": 42680,
- "ê¸": 32495,
- "ê¹": 24531,
- "ê¹Ģ": 25203,
- "ë": 167,
- "ë": 423,
- "ë¦": 24621,
- "리": 47649,
- "ë§": 28024,
- "ë§Ī": 40027,
- "ëª": 36311,
- "ë¯": 19528,
- "민": 34442,
- "민": 44632,
- "ë°": 15810,
- "ë°©": 23273,
- "ë°©íĥ": 25081,
- "ë°©íĥĦ": 25641,
- "ë°©íĥĦìĨĮëħĦëĭ": 26068,
- "ë°©íĥĦìĨĮëħĦëĭ¨": 27129,
- "ë°ķ": 40988,
- "ë²": 48267,
- "ë³": 44693,
- "ë¹": 24193,
- "ëĤ": 27252,
- "ëĤĺ": 48484,
- "ëĭ": 13094,
- "ëĭ¤": 46680,
- "ëĭĪ": 33708,
- "ëį": 45543,
- "ëı": 31972,
- "ëĵ": 30850,
- "ëĿ": 44317,
- "ì": 168,
- "ì": 424,
- "ì£": 39856,
- "주": 45161,
- "ì¤": 31153,
- "ì§": 16279,
- "ì§Ģ": 28836,
- "ì§Ħ": 38890,
- "ì°": 40742,
- "ì¶": 42476,
- "ì¶ķ": 46403,
- "ì¶ķíķĺ": 47866,
- "ì¹": 45088,
- "ìĤ": 31061,
- "ìĥ": 30587,
- "ìĥĿ": 47858,
- "ìĦ": 15074,
- "ìĦ¸ë": 29254,
- "ìĦ¸ë¸": 29658,
- "ìĦ¸ë¸IJ": 41415,
- "ìĨ": 15115,
- "ìĨĮë": 20515,
- "ìĨĮëħ": 21391,
- "ìĨĮëħĦëĭ": 25887,
- "ìĪ": 32757,
- "ìĬ": 12125,
- "ìĬ¤": 20305,
- "ìĬ¤": 23829,
- "ìĭ": 23924,
- "ìķ": 16071,
- "ìķĦ": 23233,
- "ìĸ": 31625,
- "ìĹ": 13252,
- "ìĹIJ": 37622,
- "ìĹij": 31036,
- "ìĹijìĨ": 42763,
- "ìĹijìĨĮ": 45606,
- "ìĺ": 21144,
- "ìĻ": 39405,
- "ìļ": 18541,
- "ìļ°": 38415,
- "ìļ°": 49344,
- "ìĽ": 22543,
- "ìĽIJ": 36495,
- "ìľ": 20909,
- "ìľł": 42890,
- "ìĿ": 8276,
- "ìĿ´": 12286,
- "ìĿ´": 34746,
- "ìĿ´ì": 37590,
- "ìĿ¼": 43406,
- "ìŀ": 20849,
- "ìł": 20580,
- "ìłķ": 34725,
- "í": 169,
- "í": 425,
- "íģ": 35641,
- "íģ¬": 45832,
- "íĤ": 43565,
- "íĥ": 15012,
- "íĥĢ": 41126,
- "íĥľ": 37663,
- "íĬ": 23215,
- "íĬ¸": 48974,
- "íĬ¸": 39820,
- "íĭ": 34350,
- "íĶ": 29450,
- "íķ": 15197,
- "íķ´": 35286,
- "íķĺ": 33992,
- "íĺ": 15962,
- "íĺ¸": 39657,
- "íĺĦ": 34645,
- "íĻ": 31882,
- "î": 170,
- "î": 426,
- "îĢ": 36288,
- "îĦ": 35368,
- "îĮ": 41006,
- "îIJ": 16929,
- "îIJĴ": 40100,
- "ï": 171,
- "ï": 427,
- "ï¸": 842,
- "ï¸İ": 24029,
- "ï¸ı": 1392,
- "ï¸ı#": 46997,
- "ï¸ı:": 32604,
- "ï¸ı": 1001,
- "ï¸ı@": 34600,
- "ï¸ıâĥ£": 17394,
- "ï¸ıâĥ£-": 40376,
- "ï¸ıâĥ£": 4603,
- "ï¿": 27850,
- "�": 47356,
- "�": 39802,
- "ð": 172,
- "ð": 428,
- "ðĿ": 6874,
- "ðĿIJ": 15889,
- "ðĿij": 43794,
- "ðĿĴ": 43387,
- "ðĿĵ": 47110,
- "ðĿĹ": 18865,
- "ðĿĺ": 26109,
- "ðĿĻ": 29415,
- "ðŁ": 558,
- "ðŁ¤": 1793,
- "ðŁ¤£": 9665,
- "ðŁ¤£": 9909,
- "ðŁ¤£ðŁ¤£": 16430,
- "ðŁ¤£ðŁ¤£": 31009,
- "ðŁ¤£ðŁ¤£ðŁ¤£": 32262,
- "ðŁ¤¤": 39550,
- "ðŁ¤¤": 26759,
- "ðŁ¤¦": 17186,
- "ðŁ¤§": 40983,
- "ðŁ¤©": 27351,
- "ðŁ¤©": 16074,
- "ðŁ¤ª": 44230,
- "ðŁ¤ª": 24920,
- "ðŁ¤«": 47671,
- "ðŁ¤¯": 37595,
- "ðŁ¤·": 13185,
- "ðŁ¤·ðŁı»âĢįâĻĢï¸ı": 46770,
- "ðŁ¤ij": 34801,
- "ðŁ¤ĵ": 36580,
- "ðŁ¤ĵ": 18928,
- "ðŁ¤Ķ": 12706,
- "ðŁ¤Ķ": 6497,
- "ðŁ¤ĶðŁ¤Ķ": 28490,
- "ðŁ¤ĶðŁ¤ĶðŁ¤Ķ": 43361,
- "ðŁ¤ĸ": 46146,
- "ðŁ¤Ĺ": 16646,
- "ðŁ¤Ĺ": 10465,
- "ðŁ¤ĹðŁ¤Ĺ": 44321,
- "ðŁ¤ĺ": 10623,
- "ðŁ¤ĺ": 17288,
- "ðŁ¤ĺðŁı»": 46449,
- "ðŁ¤ĺðŁı»": 30891,
- "ðŁ¤ĺðŁı¼": 31458,
- "ðŁ¤ĺðŁı½": 49362,
- "ðŁ¤Ļ": 23800,
- "ðŁ¤Ļ": 39101,
- "ðŁ¤Ŀ": 35242,
- "ðŁ¤ŀ": 29463,
- "ðŁ¤ŀ": 38597,
- "ðŁ¤Ł": 48509,
- "ðŁ¤ł": 36737,
- "ðŁ¤Ń": 47289,
- "ðŁ¥": 4156,
- "ðŁ¥°": 29246,
- "ðŁ¥°": 17597,
- "ðŁ¥³": 45823,
- "ðŁ¥³": 28055,
- "ðŁ¥º": 43380,
- "ðŁ¥º": 36858,
- "ðŁ¥Ĥ": 43805,
- "ðŁ¥Ĥ": 25212,
- "ðŁ¥ĥ": 47790,
- "ðŁ¥ĩ": 34372,
- "ðŁ¥ĩ": 20069,
- "ðŁ¥Ī": 35858,
- "ðŁ¥ī": 36782,
- "ðŁ¥Ĭ": 29275,
- "ðŁ¦": 6040,
- "ðŁ¦ģ": 36367,
- "ðŁ¦ģ": 26056,
- "ðŁ¦ĥ": 40184,
- "ðŁ¦Ħ": 37659,
- "ðŁ¦ħ": 28800,
- "ðŁ¦Ī": 48984,
- "ðŁ¦ĭ": 49325,
- "ðŁ¦ĭ": 28985,
- "ðŁ§": 8792,
- "ðŁ§¡": 30996,
- "ðŁ§¡": 24578,
- "ðŁ§IJ": 33549,
- "ðŁħ": 22010,
- "ðŁĨ": 9536,
- "ðŁĨķ": 34956,
- "ðŁĨĺ": 39868,
- "ðŁĨļ": 16325,
- "ðŁĩ": 1173,
- "ðŁĩ¦": 12469,
- "ðŁĩ¦": 28565,
- "ðŁĩ¦ðŁĩ": 33196,
- "ðŁĩ¦ðŁĩ·": 41629,
- "ðŁĩ¦ðŁĩº": 25192,
- "ðŁĩ§": 14660,
- "ðŁĩ§ðŁĩ": 37342,
- "ðŁĩ§ðŁĩª": 38794,
- "ðŁĩ§ðŁĩ·": 28182,
- "ðŁĩ¨": 8889,
- "ðŁĩ¨ðŁĩ": 8989,
- "ðŁĩ¨ðŁĩ¦": 34324,
- "ðŁĩ¨ðŁĩ¦": 16364,
- "ðŁĩ¨ðŁĩ³": 36819,
- "ðŁĩ¨ðŁĩŃ": 41119,
- "ðŁĩ©": 15222,
- "ðŁĩ©ðŁĩ": 36350,
- "ðŁĩ©ðŁĩª": 21531,
- "ðŁĩª": 11428,
- "ðŁĩª": 12331,
- "ðŁĩªðŁĩ": 13917,
- "ðŁĩªðŁĩ¸": 22177,
- "ðŁĩªðŁĩº": 34655,
- "ðŁĩ«": 12977,
- "ðŁĩ«ðŁĩ·": 39109,
- "ðŁĩ«ðŁĩ·": 16223,
- "ðŁĩ¬": 8129,
- "ðŁĩ¬ðŁĩ": 8354,
- "ðŁĩ¬ðŁĩ§": 23762,
- "ðŁĩ¬ðŁĩ§": 11559,
- "ðŁĩ®": 8268,
- "ðŁĩ®ðŁĩ": 8347,
- "ðŁĩ®ðŁĩª": 34148,
- "ðŁĩ®ðŁĩ³": 47299,
- "ðŁĩ®ðŁĩ³": 23602,
- "ðŁĩ®ðŁĩ¹": 42034,
- "ðŁĩ®ðŁĩ¹": 17070,
- "ðŁĩ¯": 20090,
- "ðŁĩ¯ðŁĩ": 22924,
- "ðŁĩ¯ðŁĩµ": 26527,
- "ðŁĩ°": 28232,
- "ðŁĩ±": 29533,
- "ðŁĩ±ðŁĩ": 40941,
- "ðŁĩ²": 16411,
- "ðŁĩ²ðŁĩ": 17562,
- "ðŁĩ²ðŁĩ½": 32073,
- "ðŁĩ³": 16645,
- "ðŁĩ³ðŁĩ": 17747,
- "ðŁĩ³ðŁĩ±": 36747,
- "ðŁĩµ": 12127,
- "ðŁĩµðŁĩ": 13608,
- "ðŁĩµðŁĩ°": 37764,
- "ðŁĩµðŁĩ¹": 42621,
- "ðŁĩµðŁĩŃ": 42777,
- "ðŁĩ·": 16026,
- "ðŁĩ·": 9869,
- "ðŁĩ·ðŁĩº": 37902,
- "ðŁĩ¸": 19447,
- "ðŁĩ¸ðŁĩ": 33325,
- "ðŁĩ¸ðŁĩª": 39260,
- "ðŁĩ¹": 21810,
- "ðŁĩ¹ðŁĩ": 36250,
- "ðŁĩº": 4054,
- "ðŁĩº": 17467,
- "ðŁĩºðŁĩ": 4131,
- "ðŁĩºðŁĩ¸": 8907,
- "ðŁĩºðŁĩ¸": 5688,
- "ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸": 18739,
- "ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸": 41411,
- "ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸": 43357,
- "ðŁĩ¿": 25520,
- "ðŁĩ¿ðŁĩ¦": 36982,
- "ðŁĩŃ": 30370,
- "ðŁĮ": 1576,
- "ðŁĮ±": 35318,
- "ðŁĮ±": 20665,
- "ðŁĮ²": 34071,
- "ðŁĮ²": 28154,
- "ðŁĮ³": 44265,
- "ðŁĮ³": 28543,
- "ðŁĮ´": 20643,
- "ðŁĮ´": 15968,
- "ðŁĮµ": 40871,
- "ðŁĮ·": 32328,
- "ðŁĮ·": 24259,
- "ðŁĮ¸": 16314,
- "ðŁĮ¸": 10980,
- "ðŁĮ¸ðŁĮ¸": 46210,
- "ðŁĮ¹": 14990,
- "ðŁĮ¹": 10662,
- "ðŁĮ¹ðŁĮ¹": 37933,
- "ðŁĮº": 27608,
- "ðŁĮº": 19829,
- "ðŁĮ»": 27196,
- "ðŁĮ»": 19772,
- "ðŁĮ¼": 36484,
- "ðŁĮ¼": 26312,
- "ðŁĮ¾": 39796,
- "ðŁĮ¿": 27736,
- "ðŁĮ¿": 18588,
- "ðŁĮĢ": 34348,
- "ðŁĮħ": 27547,
- "ðŁĮĪ": 23038,
- "ðŁĮĪ": 13042,
- "ðŁĮĬ": 20465,
- "ðŁĮĬ": 14302,
- "ðŁĮĮ": 43393,
- "ðŁĮį": 34931,
- "ðŁĮį": 18641,
- "ðŁĮİ": 31125,
- "ðŁĮİ": 16969,
- "ðŁĮı": 31527,
- "ðŁĮIJ": 33071,
- "ðŁĮĻ": 42330,
- "ðŁĮĻ": 23283,
- "ðŁĮļ": 49004,
- "ðŁĮļ": 27877,
- "ðŁĮŀ": 21152,
- "ðŁĮŀ": 12980,
- "ðŁĮŁ": 13196,
- "ðŁĮŁ": 8542,
- "ðŁĮŁðŁĮŁ": 26014,
- "ðŁį": 2011,
- "ðŁį¦": 47375,
- "ðŁį¦": 32032,
- "ðŁį©": 38379,
- "ðŁįª": 38958,
- "ðŁį«": 47994,
- "ðŁį«": 33401,
- "ðŁį°": 43732,
- "ðŁį°": 30051,
- "ðŁį³": 37441,
- "ðŁį´": 41531,
- "ðŁį´": 25338,
- "ðŁį·": 24445,
- "ðŁį·": 18072,
- "ðŁį¸": 43058,
- "ðŁį¸": 31217,
- "ðŁį¹": 35598,
- "ðŁįº": 31081,
- "ðŁįº": 21590,
- "ðŁį»": 22793,
- "ðŁį»": 13167,
- "ðŁį¾": 27294,
- "ðŁį¾": 21656,
- "ðŁįĢ": 22865,
- "ðŁįĢ": 15764,
- "ðŁįģ": 29837,
- "ðŁįģ": 23075,
- "ðŁįĤ": 35015,
- "ðŁįĤ": 25721,
- "ðŁįĥ": 27157,
- "ðŁįĥ": 20147,
- "ðŁįĩ": 48697,
- "ðŁįĬ": 35001,
- "ðŁįĬ": 28036,
- "ðŁįĭ": 39543,
- "ðŁįĮ": 44987,
- "ðŁįį": 48946,
- "ðŁįİ": 32069,
- "ðŁįij": 32889,
- "ðŁįĴ": 33160,
- "ðŁįĵ": 44739,
- "ðŁįĵ": 33456,
- "ðŁįĶ": 46415,
- "ðŁįĶ": 36031,
- "ðŁįķ": 31469,
- "ðŁįķ": 23904,
- "ðŁįŃ": 42100,
- "ðŁİ": 1165,
- "ðŁİ£": 43158,
- "ðŁİ¤": 23490,
- "ðŁİ¤": 15690,
- "ðŁİ¥": 22186,
- "ðŁİ¥:": 43640,
- "ðŁİ¥": 13233,
- "ðŁİ§": 31254,
- "ðŁİ§": 14266,
- "ðŁİ¨": 31953,
- "ðŁİ¨": 13461,
- "ðŁİ©": 37701,
- "ðŁİ«": 30331,
- "ðŁİ¬": 36020,
- "ðŁİ¬": 18150,
- "ðŁİ®": 29312,
- "ðŁİ¯": 23114,
- "ðŁİµ": 27435,
- "ðŁİµ": 14946,
- "ðŁİ¶": 11755,
- "ðŁİ¶": 6011,
- "ðŁİ¶ðŁİ¶": 36283,
- "ðŁİ¸": 29135,
- "ðŁİ¸": 22122,
- "ðŁİ¹": 43493,
- "ðŁİ¼": 34949,
- "ðŁİ¼": 23757,
- "ðŁİ¾": 41982,
- "ðŁİ¾": 24222,
- "ðŁİĢ": 34347,
- "ðŁİĢ": 20151,
- "ðŁİģ": 18368,
- "ðŁİģ": 13462,
- "ðŁİĤ": 13026,
- "ðŁİĤ": 10392,
- "ðŁİĤðŁİĤ": 39338,
- "ðŁİĥ": 22622,
- "ðŁİĥ": 16780,
- "ðŁİĦ": 12942,
- "ðŁİĦ": 11267,
- "ðŁİħ": 17685,
- "ðŁİħ": 24276,
- "ðŁİĨ": 39222,
- "ðŁİĪ": 16142,
- "ðŁİĪ": 14448,
- "ðŁİĪðŁİī": 48049,
- "ðŁİī": 4310,
- "ðŁİī:": 17310,
- "ðŁİī": 3986,
- "ðŁİīðŁİ": 11473,
- "ðŁİīðŁİĪ": 40499,
- "ðŁİīðŁİĪ": 34008,
- "ðŁİīðŁİī": 25159,
- "ðŁİīðŁİī": 13450,
- "ðŁİīðŁİīðŁİī": 20828,
- "ðŁİīðŁİĬ": 31662,
- "ðŁİīðŁİĬ": 30781,
- "ðŁİĬ": 22763,
- "ðŁİĬ": 22425,
- "ðŁİĬðŁİī": 48801,
- "ðŁİĵ": 28916,
- "ðŁİĵ": 18744,
- "ðŁİĻ": 29001,
- "ðŁİĻ": 29753,
- "ðŁİĻï¸ı": 44205,
- "ðŁİŁ": 19248,
- "ðŁİŁ": 21107,
- "ðŁİŁï¸ı": 30243,
- "ðŁİŃ": 28856,
- "ðŁı": 1109,
- "ðŁı¡": 27318,
- "ðŁı³ï¸ı": 26844,
- "ðŁı³ï¸ıâĢį": 27093,
- "ðŁı³ï¸ıâĢįðŁĮĪ": 32610,
- "ðŁı´": 39690,
- "ðŁı´": 19704,
- "ðŁı»": 5042,
- "ðŁı»": 3702,
- "ðŁı»âĢį": 46250,
- "ðŁı»âĢįâĻĢï¸ı": 48391,
- "ðŁı»âĢįâĻĢï¸ı": 23595,
- "ðŁı»âĢįâĻĤï¸ı": 30984,
- "ðŁı¼": 6193,
- "ðŁı¼": 4027,
- "ðŁı¼âĢįâĻĢï¸ı": 28955,
- "ðŁı½": 8514,
- "ðŁı½": 6114,
- "ðŁı½âĢįâĻĢï¸ı": 37036,
- "ðŁı½âĢįâĻĤï¸ı": 43157,
- "ðŁı¾": 10230,
- "ðŁı¾": 7778,
- "ðŁı¾âĢįâĻĤï¸ı": 47189,
- "ðŁı¿": 29854,
- "ðŁı¿": 21094,
- "ðŁıĢ": 13708,
- "ðŁıĢ": 8813,
- "ðŁıĢðŁıĢ": 43169,
- "ðŁıģ": 29423,
- "ðŁıģ": 17473,
- "ðŁıĥ": 16820,
- "ðŁıĥ": 32751,
- "ðŁıħ": 25500,
- "ðŁıĨ": 9585,
- "ðŁıĨ": 5596,
- "ðŁıĨðŁıĨ": 18946,
- "ðŁıĨðŁıĨ": 38269,
- "ðŁıĨðŁıĨðŁıĨ": 44484,
- "ðŁıĩ": 45789,
- "ðŁıĩ": 40288,
- "ðŁıĪ": 16144,
- "ðŁıĪ": 10477,
- "ðŁıī": 26020,
- "ðŁıĬ": 33061,
- "ðŁıĬ": 47830,
- "ðŁıĮ": 41116,
- "ðŁıı": 32460,
- "ðŁıIJ": 46334,
- "ðŁıIJ": 29433,
- "ðŁıĴ": 37756,
- "ðŁıŁ": 35914,
- "ðŁıŁ": 26472,
- "ðŁıŁï¸ı": 42627,
- "ðŁıł": 33727,
- "ðŁIJ": 2074,
- "ðŁIJ¢": 37049,
- "ðŁIJ£": 39597,
- "ðŁIJ¥": 42981,
- "ðŁIJ¦": 37260,
- "ðŁIJ¬": 44238,
- "ðŁIJ¯": 34825,
- "ðŁIJ¯": 26111,
- "ðŁIJ°": 35378,
- "ðŁIJ°": 25050,
- "ðŁIJ±": 35710,
- "ðŁIJ±": 22979,
- "ðŁIJ´": 33509,
- "ðŁIJ¶": 14466,
- "ðŁIJ¶": 10631,
- "ðŁIJ·": 38408,
- "ðŁIJ¸": 45597,
- "ðŁIJ¸": 40298,
- "ðŁIJº": 44281,
- "ðŁIJº": 31445,
- "ðŁIJ»": 30750,
- "ðŁIJ»": 25322,
- "ðŁIJ¼": 46234,
- "ðŁIJ¾": 16057,
- "ðŁIJ¾": 11317,
- "ðŁIJ¾ðŁIJ¾": 42202,
- "ðŁIJī": 46908,
- "ðŁIJĬ": 43974,
- "ðŁIJį": 48903,
- "ðŁIJį": 30177,
- "ðŁIJİ": 48281,
- "ðŁIJİ": 32726,
- "ðŁIJIJ": 47735,
- "ðŁIJIJ": 27954,
- "ðŁIJij": 49389,
- "ðŁIJķ": 41069,
- "ðŁIJĺ": 38733,
- "ðŁIJĿ": 30619,
- "ðŁIJĿ": 20111,
- "ðŁIJŁ": 42084,
- "ðŁIJŁ": 29989,
- "ðŁIJł": 42725,
- "ðŁij": 964,
- "ðŁij£": 39755,
- "ðŁij§": 48938,
- "ðŁij¨": 18966,
- "ðŁij¨âĢį": 25023,
- "ðŁij©": 18800,
- "ðŁij©âĢį": 26304,
- "ðŁij«": 47106,
- "ðŁij«": 35457,
- "ðŁij®": 42686,
- "ðŁij¯": 25910,
- "ðŁij¯": 20582,
- "ðŁij¶": 26187,
- "ðŁij¶": 33189,
- "ðŁij¸": 26268,
- "ðŁij¸": 36645,
- "ðŁij¹": 46766,
- "ðŁij»": 24625,
- "ðŁij»": 16243,
- "ðŁij¼": 25270,
- "ðŁij¼": 31083,
- "ðŁij½": 42677,
- "ðŁij½": 26257,
- "ðŁijĢ": 11524,
- "ðŁijĢ": 5908,
- "ðŁijĢðŁijĢ": 31561,
- "ðŁijģ": 47796,
- "ðŁijģ": 45705,
- "ðŁijĦ": 47445,
- "ðŁijħ": 31833,
- "ðŁijħ": 24672,
- "ðŁijĨ": 42975,
- "ðŁijĨ": 45194,
- "ðŁijĩ": 7662,
- "ðŁijĩ": 7475,
- "ðŁijĩðŁı»": 45811,
- "ðŁijĩðŁı»": 32813,
- "ðŁijĩðŁı¼": 37504,
- "ðŁijĩðŁijĩ": 17915,
- "ðŁijĩðŁijĩ": 31891,
- "ðŁijĩðŁijĩðŁijĩ": 35627,
- "ðŁijĪ": 32794,
- "ðŁijĪ": 20832,
- "ðŁijī": 9477,
- "ðŁijī": 3988,
- "ðŁijīðŁı»": 23481,
- "ðŁijīðŁı¼": 27534,
- "ðŁijīðŁı½": 38059,
- "ðŁijīðŁijī": 41480,
- "ðŁijĬ": 8897,
- "ðŁijĬ": 9704,
- "ðŁijĬðŁı»": 47393,
- "ðŁijĬðŁı»": 29152,
- "ðŁijĬðŁı¼": 49000,
- "ðŁijĬðŁı¼": 30115,
- "ðŁijĬðŁijĬ": 46521,
- "ðŁijĭ": 19351,
- "ðŁijĭ": 17686,
- "ðŁijĮ": 4890,
- "ðŁijĮ": 4494,
- "ðŁijĮðŁı»": 31818,
- "ðŁijĮðŁı»": 18606,
- "ðŁijĮðŁı¼": 37655,
- "ðŁijĮðŁı¼": 20031,
- "ðŁijĮðŁı½": 35834,
- "ðŁijĮðŁijĮ": 36139,
- "ðŁijĮðŁijĮ": 21435,
- "ðŁijĮðŁijĮðŁijĮ": 40876,
- "ðŁijį": 4686,
- "ðŁijį": 4201,
- "ðŁijįðŁı»": 25803,
- "ðŁijįðŁı»": 15129,
- "ðŁijįðŁı¼": 37285,
- "ðŁijįðŁı¼": 19689,
- "ðŁijįðŁı½": 43722,
- "ðŁijįðŁijį": 33012,
- "ðŁijįðŁijį": 18997,
- "ðŁijįðŁijįðŁijį": 37284,
- "ðŁijİ": 39702,
- "ðŁijİ": 32568,
- "ðŁijı": 3802,
- "ðŁijı": 4829,
- "ðŁijıðŁı»": 19236,
- "ðŁijıðŁı»": 17029,
- "ðŁijıðŁı»ðŁijıðŁı»": 35254,
- "ðŁijıðŁı¼": 24496,
- "ðŁijıðŁı¼": 19979,
- "ðŁijıðŁı¼ðŁijıðŁı¼": 46712,
- "ðŁijıðŁı½": 40796,
- "ðŁijıðŁı½": 33978,
- "ðŁijıðŁı¾": 45450,
- "ðŁijıðŁijı": 10356,
- "ðŁijıðŁijı": 16706,
- "ðŁijıðŁijıðŁijı": 17254,
- "ðŁijIJ": 40877,
- "ðŁijij": 14955,
- "ðŁijij": 8717,
- "ðŁijijðŁijij": 48532,
- "ðŁijķ": 47865,
- "ðŁijŁ": 41183,
- "ðŁijł": 41264,
- "ðŁijŃ": 34175,
- "ðŁijŃ": 27943,
- "ðŁĴ": 837,
- "ðŁĴ¡": 24081,
- "ðŁĴ£": 36862,
- "ðŁĴ£": 29006,
- "ðŁĴ¤": 34706,
- "ðŁĴ¤": 25632,
- "ðŁĴ¥": 12209,
- "ðŁĴ¥": 7347,
- "ðŁĴ¥ðŁĴ¥": 27396,
- "ðŁĴ¥ðŁĴ¥": 39246,
- "ðŁĴ¥ðŁĴ¥ðŁĴ¥": 48890,
- "ðŁĴ¦": 21180,
- "ðŁĴ¦": 14060,
- "ðŁĴ¦ðŁĴ¦": 44469,
- "ðŁĴ§": 34095,
- "ðŁĴ¨": 27408,
- "ðŁĴ¨": 17891,
- "ðŁĴ©": 48621,
- "ðŁĴ©": 28847,
- "ðŁĴª": 5475,
- "ðŁĴª": 6440,
- "ðŁĴªðŁı»": 31669,
- "ðŁĴªðŁı»": 21903,
- "ðŁĴªðŁı¼": 32041,
- "ðŁĴªðŁı¼": 20759,
- "ðŁĴªðŁı½": 46380,
- "ðŁĴªðŁı½": 31111,
- "ðŁĴªðŁı¾": 39398,
- "ðŁĴªðŁĴª": 24747,
- "ðŁĴªðŁĴªðŁĴª": 39913,
- "ðŁĴ«": 25770,
- "ðŁĴ«": 12526,
- "ðŁĴ¬": 30947,
- "ðŁĴ¯": 10611,
- "ðŁĴ¯": 7018,
- "ðŁĴ¯ðŁĴ¯": 30234,
- "ðŁĴ¯ðŁĴ¯": 44070,
- "ðŁĴ°": 20454,
- "ðŁĴ°": 14078,
- "ðŁĴ°ðŁĴ°": 41747,
- "ðŁĴµ": 47412,
- "ðŁĴµ": 38041,
- "ðŁĴ¸": 37696,
- "ðŁĴ¸": 25957,
- "ðŁĴ»": 33433,
- "ðŁĴ»": 18135,
- "ðŁĴ¿": 39541,
- "ðŁĴĢ": 14888,
- "ðŁĴĢ": 12158,
- "ðŁĴĢðŁĴĢ": 30884,
- "ðŁĴģ": 13997,
- "ðŁĴģ": 14392,
- "ðŁĴĥ": 9947,
- "ðŁĴĥ": 14333,
- "ðŁĴĥðŁı»": 38624,
- "ðŁĴĥðŁĴĥ": 28041,
- "ðŁĴĦ": 46116,
- "ðŁĴĦ": 34571,
- "ðŁĴħ": 27457,
- "ðŁĴħ": 32414,
- "ðŁĴī": 44316,
- "ðŁĴī": 30503,
- "ðŁĴĭ": 12217,
- "ðŁĴĭ": 7417,
- "ðŁĴĭðŁĴĭ": 29214,
- "ðŁĴĮ": 40817,
- "ðŁĴį": 35850,
- "ðŁĴį": 24898,
- "ðŁĴİ": 25938,
- "ðŁĴİ": 15874,
- "ðŁĴIJ": 27375,
- "ðŁĴIJ": 20554,
- "ðŁĴij": 49404,
- "ðŁĴĵ": 20628,
- "ðŁĴĵ": 12568,
- "ðŁĴĵðŁĴĵ": 43505,
- "ðŁĴĶ": 18880,
- "ðŁĴĶ": 10704,
- "ðŁĴĶðŁĴĶ": 44673,
- "ðŁĴķ": 5412,
- "ðŁĴķ": 3082,
- "ðŁĴķðŁĴķ": 23106,
- "ðŁĴķðŁĴķ": 14117,
- "ðŁĴķðŁĴķðŁĴķ": 26772,
- "ðŁĴĸ": 8466,
- "ðŁĴĸ": 5582,
- "ðŁĴĸðŁĴĸ": 19562,
- "ðŁĴĸðŁĴĸ": 30595,
- "ðŁĴĸðŁĴĸðŁĴĸ": 33915,
- "ðŁĴĹ": 10148,
- "ðŁĴĹ": 6690,
- "ðŁĴĹðŁĴĹ": 47158,
- "ðŁĴĹðŁĴĹ": 24064,
- "ðŁĴĹðŁĴĹðŁĴĹ": 36990,
- "ðŁĴĺ": 18223,
- "ðŁĴĺ": 10816,
- "ðŁĴĺðŁĴĺ": 40464,
- "ðŁĴĻ": 5305,
- "ðŁĴĻ": 4074,
- "ðŁĴĻðŁĴĻ": 17833,
- "ðŁĴĻðŁĴĻ": 27101,
- "ðŁĴĻðŁĴĻðŁĴĻ": 30698,
- "ðŁĴĻðŁĴĽ": 46804,
- "ðŁĴĻðŁĴĽ": 26230,
- "ðŁĴĻðŁĴľ": 47931,
- "ðŁĴĻðŁĴľ": 42541,
- "ðŁĴļ": 8102,
- "ðŁĴļ": 6521,
- "ðŁĴļðŁĴļ": 27497,
- "ðŁĴļðŁĴļ": 46209,
- "ðŁĴļðŁĴļðŁĴļ": 46182,
- "ðŁĴļðŁĴĽ": 41232,
- "ðŁĴĽ": 8221,
- "ðŁĴĽ": 6233,
- "ðŁĴĽðŁĴĻ": 36337,
- "ðŁĴĽðŁĴļ": 37994,
- "ðŁĴĽðŁĴĽ": 32420,
- "ðŁĴľ": 6832,
- "ðŁĴľ": 4882,
- "ðŁĴľðŁĴľ": 17280,
- "ðŁĴľðŁĴľ": 28211,
- "ðŁĴľðŁĴľðŁĴľ": 31004,
- "ðŁĴĿ": 36761,
- "ðŁĴĿ": 22002,
- "ðŁĴŀ": 14862,
- "ðŁĴŀ": 8988,
- "ðŁĴŀðŁĴŀ": 36448,
- "ðŁĴŁ": 49394,
- "ðŁĴŁ": 28828,
- "ðŁĴŃ": 33848,
- "ðŁĵ": 1497,
- "ðŁĵ¢": 46560,
- "ðŁĵ¢": 20901,
- "ðŁĵ£": 48841,
- "ðŁĵ£": 21282,
- "ðŁĵ°:": 28952,
- "ðŁĵ°": 14985,
- "ðŁĵ±": 36104,
- "ðŁĵ±": 20824,
- "ðŁĵ²": 19363,
- "ðŁĵ·": 6966,
- "ðŁĵ·:": 8294,
- "ðŁĵ·": 5551,
- "ðŁĵ·@": 40032,
- "ðŁĵ¸": 8401,
- "ðŁĵ¸:": 10379,
- "ðŁĵ¸": 6074,
- "ðŁĵ¸@": 39660,
- "ðŁĵ¹": 49251,
- "ðŁĵº": 21792,
- "ðŁĵº:": 29728,
- "ðŁĵº": 10450,
- "ðŁĵ»": 32711,
- "ðŁĵ»": 15882,
- "ðŁĵ½": 45361,
- "ðŁĵħ": 21277,
- "ðŁĵĨ": 23471,
- "ðŁĵĪ": 23359,
- "ðŁĵĬ": 22244,
- "ðŁĵĭ": 46351,
- "ðŁĵĮ": 22289,
- "ðŁĵį": 25043,
- "ðŁĵį:": 36845,
- "ðŁĵį": 8903,
- "ðŁĵĸ": 49003,
- "ðŁĵĸ": 23043,
- "ðŁĵļ": 25433,
- "ðŁĵļ": 15566,
- "ðŁĵĿ": 31888,
- "ðŁĵĿ:": 48398,
- "ðŁĵĿ": 15853,
- "ðŁĵŀ": 24022,
- "ðŁĶ": 1428,
- "ðŁĶ¥": 3191,
- "ðŁĶ¥#": 44354,
- "ðŁĶ¥": 3016,
- "ðŁĶ¥ðŁĶ¥": 5692,
- "ðŁĶ¥ðŁĶ¥": 11771,
- "ðŁĶ¥ðŁĶ¥ðŁĶ¥": 11004,
- "ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥": 23408,
- "ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥": 30989,
- "ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥": 48401,
- "ðŁĶ¥ðŁĶĹ": 35130,
- "ðŁĶª": 47078,
- "ðŁĶª": 34545,
- "ðŁĶ«": 38116,
- "ðŁĶ«": 20583,
- "ðŁĶ¬": 44227,
- "ðŁĶ®": 38077,
- "ðŁĶ´": 12408,
- "ðŁĶ´": 10854,
- "ðŁĶ´âļªï¸ı": 46879,
- "ðŁĶ´âļªï¸ı": 40055,
- "ðŁĶµ": 17531,
- "ðŁĶµ": 17193,
- "ðŁĶµâļªï¸ı": 42412,
- "ðŁĶ¶": 42880,
- "ðŁĶ¶": 36222,
- "ðŁĶ·": 37740,
- "ðŁĶ¸": 24200,
- "ðŁĶ¹": 19995,
- "ðŁĶº": 45561,
- "ðŁĶģ": 41299,
- "ðŁĶĬ": 32580,
- "ðŁĶĬ": 20502,
- "ðŁĶİ": 44935,
- "ðŁĶij": 35127,
- "ðŁĶĴ": 44972,
- "ðŁĶĶ": 45753,
- "ðŁĶĹ": 47475,
- "ðŁĶĹ": 14561,
- "ðŁĶĺ": 38995,
- "ðŁĶľ": 36011,
- "ðŁĶĿ": 44387,
- "ðŁĶĿ": 29506,
- "ðŁķ": 7692,
- "ðŁķº": 33958,
- "ðŁķĬ": 42624,
- "ðŁķĬ": 37760,
- "ðŁĸ": 6269,
- "ðŁĸ¤": 17603,
- "ðŁĸ¤": 10860,
- "ðŁĸ¥": 47990,
- "ðŁĹ": 7045,
- "ðŁĹ£": 33232,
- "ðŁĹ£": 18583,
- "ðŁĹ£ï¸ı": 37476,
- "ðŁĹĵ": 34335,
- "ðŁĹĵ": 28773,
- "ðŁĹĵï¸ı": 39847,
- "ðŁĺ": 668,
- "ðŁĺ¡": 21968,
- "ðŁĺ¡": 17452,
- "ðŁĺ¡ðŁĺ¡": 37223,
- "ðŁĺ¢": 14308,
- "ðŁĺ¢": 9925,
- "ðŁĺ¢ðŁĺ¢": 32923,
- "ðŁĺ¢ðŁĺ¢": 47921,
- "ðŁĺ£": 32718,
- "ðŁĺ¤": 26872,
- "ðŁĺ¤": 20740,
- "ðŁĺ¥": 38383,
- "ðŁĺ¥": 23951,
- "ðŁĺ¨": 38080,
- "ðŁĺ©": 9051,
- "ðŁĺ©": 9494,
- "ðŁĺ©ðŁĺ©": 22820,
- "ðŁĺ©ðŁĺ©": 38031,
- "ðŁĺ©ðŁĺ©ðŁĺ©": 49063,
- "ðŁĺª": 38181,
- "ðŁĺª": 22243,
- "ðŁĺ«": 25141,
- "ðŁĺ«": 22340,
- "ðŁĺ¬": 23704,
- "ðŁĺ¬": 14549,
- "ðŁĺ®": 40163,
- "ðŁĺ®": 21616,
- "ðŁĺ¯": 37858,
- "ðŁĺ°": 34728,
- "ðŁĺ±": 10938,
- "ðŁĺ±": 9055,
- "ðŁĺ±ðŁĺ±": 22061,
- "ðŁĺ±ðŁĺ±": 40767,
- "ðŁĺ±ðŁĺ±ðŁĺ±": 40909,
- "ðŁĺ²": 40460,
- "ðŁĺ²": 24620,
- "ðŁĺ³": 12047,
- "ðŁĺ³": 8223,
- "ðŁĺ³ðŁĺ³": 32592,
- "ðŁĺ´": 23527,
- "ðŁĺ´": 16415,
- "ðŁĺ´ðŁĺ´": 49307,
- "ðŁĺµ": 39368,
- "ðŁĺ¶": 35207,
- "ðŁĺ·": 37943,
- "ðŁĺ·": 25759,
- "ðŁĺ¸": 36912,
- "ðŁĺ¹": 26477,
- "ðŁĺ¹": 26573,
- "ðŁĺ¹ðŁĺ¹": 46287,
- "ðŁĺº": 40613,
- "ðŁĺ»": 15453,
- "ðŁĺ»": 12911,
- "ðŁĺ»ðŁĺ»": 34414,
- "ðŁĺ¼": 44245,
- "ðŁĺ½": 45156,
- "ðŁĺĢ": 12832,
- "ðŁĺĢ": 7334,
- "ðŁĺĢðŁĺĢ": 34503,
- "ðŁĺģ": 6967,
- "ðŁĺģ": 4821,
- "ðŁĺģðŁĺģ": 37900,
- "ðŁĺģðŁĺģ": 19213,
- "ðŁĺģðŁĺģðŁĺģ": 29083,
- "ðŁĺĤ": 1424,
- "ðŁĺĤ)": 42643,
- "ðŁĺĤ.": 42550,
- "ðŁĺĤ": 1558,
- "ðŁĺĤâĿ¤ï¸ı": 36412,
- "ðŁĺĤðŁijĮ": 42000,
- "ðŁĺĤðŁĺĤ": 2286,
- "ðŁĺĤðŁĺĤ": 4112,
- "ðŁĺĤðŁĺĤðŁĺĤ": 22233,
- "ðŁĺĤðŁĺĤðŁĺĤ": 4887,
- "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 9936,
- "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 11522,
- "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 19295,
- "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 33415,
- "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 48973,
- "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 28504,
- "ðŁĺĤðŁĺį": 43128,
- "ðŁĺĤðŁĺŃ": 28965,
- "ðŁĺĤðŁĺŃ": 25802,
- "ðŁĺĥ": 14079,
- "ðŁĺĥ": 8520,
- "ðŁĺĥðŁĺĥ": 38358,
- "ðŁĺĦ": 12141,
- "ðŁĺĦ": 7624,
- "ðŁĺĦðŁĺĦ": 32312,
- "ðŁĺħ": 15245,
- "ðŁĺħ": 9188,
- "ðŁĺħðŁĺħ": 39078,
- "ðŁĺĨ": 16541,
- "ðŁĺĨ": 10943,
- "ðŁĺĨðŁĺĨ": 39503,
- "ðŁĺĩ": 21694,
- "ðŁĺĩ": 13091,
- "ðŁĺĪ": 14377,
- "ðŁĺĪ": 9756,
- "ðŁĺĪðŁĺĪ": 44473,
- "ðŁĺī": 9740,
- "ðŁĺī": 4955,
- "ðŁĺīðŁĺī": 40430,
- "ðŁĺĬ": 4692,
- "ðŁĺĬ": 3020,
- "ðŁĺĬâĿ¤ï¸ı": 43606,
- "ðŁĺĬðŁĺĬ": 12838,
- "ðŁĺĬðŁĺĬ": 20842,
- "ðŁĺĬðŁĺĬðŁĺĬ": 28685,
- "ðŁĺĬðŁĺĬðŁĺĬðŁĺĬ": 35519,
- "ðŁĺĭ": 12391,
- "ðŁĺĭ": 7203,
- "ðŁĺĭðŁĺĭ": 33304,
- "ðŁĺĮ": 19221,
- "ðŁĺĮ": 12163,
- "ðŁĺį": 1796,
- "ðŁĺį#": 42357,
- "ðŁĺį.": 48579,
- "ðŁĺį": 1754,
- "ðŁĺįâĿ¤": 29122,
- "ðŁĺįâĿ¤ï¸ı": 21945,
- "ðŁĺįðŁijĮ": 41005,
- "ðŁĺįðŁĴķ": 35946,
- "ðŁĺįðŁĶ¥": 46648,
- "ðŁĺįðŁĺĤ": 48715,
- "ðŁĺįðŁĺį": 3663,
- "ðŁĺįðŁĺį": 6471,
- "ðŁĺįðŁĺįðŁĺį": 30614,
- "ðŁĺįðŁĺįðŁĺį": 7703,
- "ðŁĺįðŁĺįðŁĺįðŁĺį": 16603,
- "ðŁĺįðŁĺįðŁĺįðŁĺį": 18925,
- "ðŁĺįðŁĺįðŁĺįðŁĺįðŁĺį": 32078,
- "ðŁĺįðŁĺįðŁĺįðŁĺįðŁĺįðŁĺįðŁĺįðŁĺį": 48683,
- "ðŁĺįðŁĺĺ": 29646,
- "ðŁĺįðŁĺĺ": 19849,
- "ðŁĺįðŁĺŃ": 39555,
- "ðŁĺİ": 7426,
- "ðŁĺİ": 4345,
- "ðŁĺİðŁĺİ": 24048,
- "ðŁĺİðŁĺİðŁĺİ": 39742,
- "ðŁĺı": 11624,
- "ðŁĺı": 6909,
- "ðŁĺıðŁĺı": 38151,
- "ðŁĺIJ": 38586,
- "ðŁĺIJ": 19618,
- "ðŁĺij": 32469,
- "ðŁĺij": 18937,
- "ðŁĺĴ": 20792,
- "ðŁĺĴ": 11702,
- "ðŁĺĵ": 28733,
- "ðŁĺĶ": 19532,
- "ðŁĺĶ": 11432,
- "ðŁĺķ": 45741,
- "ðŁĺķ": 20602,
- "ðŁĺĸ": 35006,
- "ðŁĺĺ": 4240,
- "ðŁĺĺ": 3352,
- "ðŁĺĺâĿ¤": 48409,
- "ðŁĺĺâĿ¤ï¸ı": 39150,
- "ðŁĺĺðŁĺį": 38176,
- "ðŁĺĺðŁĺĺ": 15663,
- "ðŁĺĺðŁĺĺ": 10507,
- "ðŁĺĺðŁĺĺðŁĺĺ": 20208,
- "ðŁĺĺðŁĺĺðŁĺĺðŁĺĺ": 44892,
- "ðŁĺĻ": 36201,
- "ðŁĺĻ": 29209,
- "ðŁĺļ": 24897,
- "ðŁĺļ": 19102,
- "ðŁĺĽ": 24550,
- "ðŁĺĽ": 15745,
- "ðŁĺľ": 13226,
- "ðŁĺľ": 7830,
- "ðŁĺľðŁĺľ": 43065,
- "ðŁĺĿ": 20064,
- "ðŁĺĿ": 12970,
- "ðŁĺŀ": 40458,
- "ðŁĺŀ": 21103,
- "ðŁĺŁ": 46947,
- "ðŁĺł": 34094,
- "ðŁĺŃ": 2962,
- "ðŁĺŃ": 3915,
- "ðŁĺŃâĿ¤ï¸ı": 29567,
- "ðŁĺŃðŁĴķ": 46306,
- "ðŁĺŃðŁĺĤ": 38505,
- "ðŁĺŃðŁĺį": 36893,
- "ðŁĺŃðŁĺŃ": 5300,
- "ðŁĺŃðŁĺŃ": 11834,
- "ðŁĺŃðŁĺŃðŁĺŃ": 44089,
- "ðŁĺŃðŁĺŃðŁĺŃ": 13116,
- "ðŁĺŃðŁĺŃðŁĺŃðŁĺŃ": 19793,
- "ðŁĺŃðŁĺŃðŁĺŃðŁĺŃ": 27322,
- "ðŁĺŃðŁĺŃðŁĺŃðŁĺŃðŁĺŃ": 43366,
- "ðŁĻ": 1478,
- "ðŁĻĢ": 43092,
- "ðŁĻĤ": 32006,
- "ðŁĻĤ": 14860,
- "ðŁĻĥ": 27222,
- "ðŁĻĥ": 15652,
- "ðŁĻĦ": 20648,
- "ðŁĻĦ": 13049,
- "ðŁĻħ": 42702,
- "ðŁĻĨ": 30050,
- "ðŁĻĨ": 35730,
- "ðŁĻĪ": 12661,
- "ðŁĻĪ": 9516,
- "ðŁĻĪðŁĻĪ": 41796,
- "ðŁĻĬ": 23684,
- "ðŁĻĬ": 16636,
- "ðŁĻĭ": 19193,
- "ðŁĻĭ": 30274,
- "ðŁĻĮ": 4366,
- "ðŁĻĮ": 4855,
- "ðŁĻĮðŁı»": 26756,
- "ðŁĻĮðŁı»": 15799,
- "ðŁĻĮðŁı¼": 26584,
- "ðŁĻĮðŁı¼": 15364,
- "ðŁĻĮðŁı½": 36660,
- "ðŁĻĮðŁı½": 22962,
- "ðŁĻĮðŁı¾": 38023,
- "ðŁĻĮðŁı¾": 26466,
- "ðŁĻĮðŁĻĮ": 21202,
- "ðŁĻĮðŁĻĮ": 30430,
- "ðŁĻĮðŁĻĮðŁĻĮ": 37127,
- "ðŁĻı": 4260,
- "ðŁĻı": 5503,
- "ðŁĻıðŁı»": 25100,
- "ðŁĻıðŁı»": 16650,
- "ðŁĻıðŁı¼": 31163,
- "ðŁĻıðŁı¼": 18952,
- "ðŁĻıðŁı½": 34103,
- "ðŁĻıðŁı½": 21540,
- "ðŁĻıðŁı¾": 34277,
- "ðŁĻıðŁı¾": 21979,
- "ðŁĻıðŁĻı": 18227,
- "ðŁĻıðŁĻı": 26510,
- "ðŁĻıðŁĻıðŁĻı": 31702,
- "ðŁļ": 2730,
- "ðŁļ¨": 12198,
- "ðŁļ¨": 6056,
- "ðŁļ¨ðŁļ¨": 36487,
- "ðŁļ¨ðŁļ¨": 21440,
- "ðŁļ¨ðŁļ¨ðŁļ¨": 41515,
- "ðŁļ©": 44514,
- "ðŁļ«": 35291,
- "ðŁļ²": 37085,
- "ðŁļ´": 30825,
- "ðŁļ¶": 46060,
- "ðŁļĢ": 22400,
- "ðŁļĢ": 13542,
- "ðŁļĢðŁļĢ": 49033,
- "ðŁļĤ": 38949,
- "ðŁļĮ": 46891,
- "ðŁļĹ": 33054,
- "ðŁļĹ": 22783,
- "ðŁļĺ": 35825,
- "ðŁļĻ": 48487,
- "ðŁĽ": 11306,
- "ñ": 173,
- "ñ": 429,
- "ò": 174,
- "ò": 430,
- "ó": 175,
- "ó": 431,
- "ô": 176,
- "ô": 432,
- "õ": 177,
- "õ": 433,
- "ö": 178,
- "ö": 434,
- "÷": 179,
- "÷": 435,
- "ø": 180,
- "ø": 436,
- "ù": 181,
- "ù": 437,
- "ú": 182,
- "ú": 438,
- "û": 183,
- "û": 439,
- "ü": 184,
- "ü": 440,
- "ý": 185,
- "ý": 441,
- "þ": 186,
- "þ": 442,
- "ÿ": 187,
- "ÿ": 443,
- "Ā": 188,
- "Ā": 444,
- "ā": 189,
- "ā": 445,
- "Ă": 190,
- "Ă": 446,
- "ă": 191,
- "ă": 447,
- "Ą": 192,
- "Ą": 448,
- "ą": 193,
- "ą": 449,
- "Ć": 194,
- "Ć": 450,
- "ć": 195,
- "ć": 451,
- "Ĉ": 196,
- "Ĉ": 452,
- "ĉ": 197,
- "ĉ": 453,
- "Ċ": 198,
- "Ċ": 454,
- "ċ": 199,
- "ċ": 455,
- "Č": 200,
- "Č": 456,
- "č": 201,
- "č": 457,
- "Ď": 202,
- "Ď": 458,
- "ď": 203,
- "ď": 459,
- "Đ": 204,
- "Đ": 460,
- "đ": 205,
- "đ": 461,
- "Ē": 206,
- "Ē": 462,
- "ē": 207,
- "ē": 463,
- "Ĕ": 208,
- "Ĕ": 464,
- "ĕ": 209,
- "ĕ": 465,
- "Ė": 210,
- "Ė": 466,
- "ė": 211,
- "ė": 467,
- "Ę": 212,
- "Ę": 468,
- "ę": 213,
- "ę": 469,
- "Ě": 214,
- "Ě": 470,
- "ě": 215,
- "ě": 471,
- "Ĝ": 216,
- "Ĝ": 472,
- "ĝ": 217,
- "ĝ": 473,
- "Ğ": 218,
- "Ğ": 474,
- "ğ": 219,
- "ğ": 475,
- "Ġ": 220,
- "Ġ": 476,
- "ġ": 221,
- "ġ": 477,
- "Ģ": 222,
- "Ģ": 478,
- "Ģï¸ı": 9668,
- "Ģï¸ı": 5511,
- "ģ": 223,
- "ģ": 479,
- "ģà¸": 15016,
- "Ĥ": 224,
- "Ĥ": 480,
- "Ĥâĸ": 29036,
- "ĤâĸĤâĸ": 30832,
- "ĥ": 225,
- "ĥ": 481,
- "Ħ": 226,
- "Ħ": 482,
- "Ħà¸": 20537,
- "Ħë": 34462,
- "Ħëĭ": 25170,
- "ħ": 227,
- "ħ": 483,
- "ħï¸ı": 33950,
- "Ĩ": 228,
- "Ĩ": 484,
- "ĩ": 229,
- "ĩ": 485,
- "Ī": 230,
- "Ī": 486,
- "ī": 231,
- "ī": 487,
- "īï¸ı": 37463,
- "Ĭ": 232,
- "Ĭ": 488,
- "Ĭãģ": 30294,
- "ĭ": 233,
- "ĭ": 489,
- "ĭãģ": 36218,
- "ĭãĤ": 45737,
- "Į": 234,
- "Į": 490,
- "ĮãĤĬãģ": 45969,
- "ĮãĤĬãģŁãģĦ": 47021,
- "Įë": 17003,
- "į": 235,
- "į": 491,
- "İ": 236,
- "İ": 492,
- "ı": 237,
- "ı": 493,
- "IJ": 238,
- "IJ": 494,
- "ij": 239,
- "ij": 495,
- "Ĵ": 240,
- "Ĵ": 496,
- "ĵ": 241,
- "ĵ": 497,
- "Ķ": 242,
- "Ķ": 498,
- "Ķë": 37978,
- "Ķï¸ı": 24395,
- "Ķï¸ı": 7443,
- "ķ": 243,
- "ķ": 499,
- "ķãĤ": 26609,
- "ķï¸ı": 44853,
- "ĸ": 244,
- "ĸ": 500,
- "ĸï¸ı": 28877,
- "Ĺ": 245,
- "Ĺ": 501,
- "ĺ": 246,
- "ĺ": 502,
- "Ļ": 247,
- "Ļ": 503,
- "ļ": 248,
- "ļ": 504,
- "Ľ": 249,
- "Ľ": 505,
- "ľ": 250,
- "ľ": 506,
- "ľë": 39810,
- "Ŀ": 251,
- "Ŀ": 507,
- "ŀ": 252,
- "ŀ": 508,
- "Ł": 253,
- "Ł": 509,
- "ŁãģĦ": 46023,
- "ł": 254,
- "ł": 510,
- "łï¸ı": 27899,
- "łï¸ı": 12715,
- "łĪ": 43364,
- "Ń": 255,
- "Ń": 511
-}
diff --git a/MagicQuill/comfy/sd2_clip.py b/MagicQuill/comfy/sd2_clip.py
deleted file mode 100644
index d14b445441b393874020df14919a064fad8067b0..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/sd2_clip.py
+++ /dev/null
@@ -1,23 +0,0 @@
-from comfy import sd1_clip
-import os
-
-class SD2ClipHModel(sd1_clip.SDClipModel):
- def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None):
- if layer == "penultimate":
- layer="hidden"
- layer_idx=-2
-
- textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd2_clip_config.json")
- super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0})
-
-class SD2ClipHTokenizer(sd1_clip.SDTokenizer):
- def __init__(self, tokenizer_path=None, embedding_directory=None):
- super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024)
-
-class SD2Tokenizer(sd1_clip.SD1Tokenizer):
- def __init__(self, embedding_directory=None):
- super().__init__(embedding_directory=embedding_directory, clip_name="h", tokenizer=SD2ClipHTokenizer)
-
-class SD2ClipModel(sd1_clip.SD1ClipModel):
- def __init__(self, device="cpu", dtype=None, **kwargs):
- super().__init__(device=device, dtype=dtype, clip_name="h", clip_model=SD2ClipHModel, **kwargs)
diff --git a/MagicQuill/comfy/sd2_clip_config.json b/MagicQuill/comfy/sd2_clip_config.json
deleted file mode 100644
index 85cec832be9a1d0957245a8d125af398829f247e..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/sd2_clip_config.json
+++ /dev/null
@@ -1,23 +0,0 @@
-{
- "architectures": [
- "CLIPTextModel"
- ],
- "attention_dropout": 0.0,
- "bos_token_id": 0,
- "dropout": 0.0,
- "eos_token_id": 2,
- "hidden_act": "gelu",
- "hidden_size": 1024,
- "initializer_factor": 1.0,
- "initializer_range": 0.02,
- "intermediate_size": 4096,
- "layer_norm_eps": 1e-05,
- "max_position_embeddings": 77,
- "model_type": "clip_text_model",
- "num_attention_heads": 16,
- "num_hidden_layers": 24,
- "pad_token_id": 1,
- "projection_dim": 1024,
- "torch_dtype": "float32",
- "vocab_size": 49408
-}
diff --git a/MagicQuill/comfy/sd3_clip.py b/MagicQuill/comfy/sd3_clip.py
deleted file mode 100644
index 0713eb28529469b28ae57445b740e13b5bf8eafa..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/sd3_clip.py
+++ /dev/null
@@ -1,150 +0,0 @@
-from comfy import sd1_clip
-from comfy import sdxl_clip
-from transformers import T5TokenizerFast
-import comfy.t5
-import torch
-import os
-import comfy.model_management
-import logging
-
-class T5XXLModel(sd1_clip.SDClipModel):
- def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None):
- textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
- super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.t5.T5)
-
-class T5XXLTokenizer(sd1_clip.SDTokenizer):
- def __init__(self, embedding_directory=None):
- tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
- super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
-
-class SDT5XXLTokenizer(sd1_clip.SD1Tokenizer):
- def __init__(self, embedding_directory=None):
- super().__init__(embedding_directory=embedding_directory, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
-
-class SDT5XXLModel(sd1_clip.SD1ClipModel):
- def __init__(self, device="cpu", dtype=None, **kwargs):
- super().__init__(device=device, dtype=dtype, clip_name="t5xxl", clip_model=T5XXLModel, **kwargs)
-
-
-
-class SD3Tokenizer:
- def __init__(self, embedding_directory=None):
- self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory)
- self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory)
- self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
-
- def tokenize_with_weights(self, text:str, return_word_ids=False):
- out = {}
- out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
- out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
- out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
- return out
-
- def untokenize(self, token_weight_pair):
- return self.clip_g.untokenize(token_weight_pair)
-
-class SD3ClipModel(torch.nn.Module):
- def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, device="cpu", dtype=None):
- super().__init__()
- self.dtypes = set()
- if clip_l:
- self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False)
- self.dtypes.add(dtype)
- else:
- self.clip_l = None
-
- if clip_g:
- self.clip_g = sdxl_clip.SDXLClipG(device=device, dtype=dtype)
- self.dtypes.add(dtype)
- else:
- self.clip_g = None
-
- if t5:
- if dtype_t5 is None:
- dtype_t5 = dtype
- elif comfy.model_management.dtype_size(dtype_t5) > comfy.model_management.dtype_size(dtype):
- dtype_t5 = dtype
-
- if not comfy.model_management.supports_cast(device, dtype_t5):
- dtype_t5 = dtype
-
- self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5)
- self.dtypes.add(dtype_t5)
- else:
- self.t5xxl = None
-
- logging.debug("Created SD3 text encoder with: clip_l {}, clip_g {}, t5xxl {}:{}".format(clip_l, clip_g, t5, dtype_t5))
-
- def set_clip_options(self, options):
- if self.clip_l is not None:
- self.clip_l.set_clip_options(options)
- if self.clip_g is not None:
- self.clip_g.set_clip_options(options)
- if self.t5xxl is not None:
- self.t5xxl.set_clip_options(options)
-
- def reset_clip_options(self):
- if self.clip_l is not None:
- self.clip_l.reset_clip_options()
- if self.clip_g is not None:
- self.clip_g.reset_clip_options()
- if self.t5xxl is not None:
- self.t5xxl.reset_clip_options()
-
- def encode_token_weights(self, token_weight_pairs):
- token_weight_pairs_l = token_weight_pairs["l"]
- token_weight_pairs_g = token_weight_pairs["g"]
- token_weight_pars_t5 = token_weight_pairs["t5xxl"]
- lg_out = None
- pooled = None
- out = None
-
- if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0:
- if self.clip_l is not None:
- lg_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
- else:
- l_pooled = torch.zeros((1, 768), device=comfy.model_management.intermediate_device())
-
- if self.clip_g is not None:
- g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
- if lg_out is not None:
- lg_out = torch.cat([lg_out, g_out], dim=-1)
- else:
- lg_out = torch.nn.functional.pad(g_out, (768, 0))
- else:
- g_out = None
- g_pooled = torch.zeros((1, 1280), device=comfy.model_management.intermediate_device())
-
- if lg_out is not None:
- lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
- out = lg_out
- pooled = torch.cat((l_pooled, g_pooled), dim=-1)
-
- if self.t5xxl is not None:
- t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pars_t5)
- if lg_out is not None:
- out = torch.cat([lg_out, t5_out], dim=-2)
- else:
- out = t5_out
-
- if out is None:
- out = torch.zeros((1, 77, 4096), device=comfy.model_management.intermediate_device())
-
- if pooled is None:
- pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device())
-
- return out, pooled
-
- def load_sd(self, sd):
- if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
- return self.clip_g.load_sd(sd)
- elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
- return self.clip_l.load_sd(sd)
- else:
- return self.t5xxl.load_sd(sd)
-
-def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None):
- class SD3ClipModel_(SD3ClipModel):
- def __init__(self, device="cpu", dtype=None):
- super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, device=device, dtype=dtype)
- return SD3ClipModel_
diff --git a/MagicQuill/comfy/sdxl_clip.py b/MagicQuill/comfy/sdxl_clip.py
deleted file mode 100644
index 1257cba1e4296280db50c04e556ad23f02264267..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/sdxl_clip.py
+++ /dev/null
@@ -1,89 +0,0 @@
-from comfy import sd1_clip
-import torch
-import os
-
-class SDXLClipG(sd1_clip.SDClipModel):
- def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None):
- if layer == "penultimate":
- layer="hidden"
- layer_idx=-2
-
- textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
- super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
- special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False)
-
- def load_sd(self, sd):
- return super().load_sd(sd)
-
-class SDXLClipGTokenizer(sd1_clip.SDTokenizer):
- def __init__(self, tokenizer_path=None, embedding_directory=None):
- super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
-
-
-class SDXLTokenizer:
- def __init__(self, embedding_directory=None):
- self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory)
- self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
-
- def tokenize_with_weights(self, text:str, return_word_ids=False):
- out = {}
- out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
- out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
- return out
-
- def untokenize(self, token_weight_pair):
- return self.clip_g.untokenize(token_weight_pair)
-
-class SDXLClipModel(torch.nn.Module):
- def __init__(self, device="cpu", dtype=None):
- super().__init__()
- self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False)
- self.clip_g = SDXLClipG(device=device, dtype=dtype)
- self.dtypes = set([dtype])
-
- def set_clip_options(self, options):
- self.clip_l.set_clip_options(options)
- self.clip_g.set_clip_options(options)
-
- def reset_clip_options(self):
- self.clip_g.reset_clip_options()
- self.clip_l.reset_clip_options()
-
- def encode_token_weights(self, token_weight_pairs):
- token_weight_pairs_g = token_weight_pairs["g"]
- token_weight_pairs_l = token_weight_pairs["l"]
- g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
- l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
- return torch.cat([l_out, g_out], dim=-1), g_pooled
-
- def load_sd(self, sd):
- if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
- return self.clip_g.load_sd(sd)
- else:
- return self.clip_l.load_sd(sd)
-
-class SDXLRefinerClipModel(sd1_clip.SD1ClipModel):
- def __init__(self, device="cpu", dtype=None):
- super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=SDXLClipG)
-
-
-class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer):
- def __init__(self, tokenizer_path=None, embedding_directory=None):
- super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
-
-class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
- def __init__(self, embedding_directory=None):
- super().__init__(embedding_directory=embedding_directory, clip_name="g", tokenizer=StableCascadeClipGTokenizer)
-
-class StableCascadeClipG(sd1_clip.SDClipModel):
- def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None):
- textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
- super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
- special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True)
-
- def load_sd(self, sd):
- return super().load_sd(sd)
-
-class StableCascadeClipModel(sd1_clip.SD1ClipModel):
- def __init__(self, device="cpu", dtype=None):
- super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=StableCascadeClipG)
diff --git a/MagicQuill/comfy/supported_models.py b/MagicQuill/comfy/supported_models.py
deleted file mode 100644
index 761498dbc9e54a2365dbef910363eb2ce3c7756e..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/supported_models.py
+++ /dev/null
@@ -1,559 +0,0 @@
-import torch
-from . import model_base
-from . import utils
-
-from . import sd1_clip
-from . import sd2_clip
-from . import sdxl_clip
-from . import sd3_clip
-from . import sa_t5
-
-from . import supported_models_base
-from . import latent_formats
-
-from . import diffusers_convert
-
-class SD15(supported_models_base.BASE):
- unet_config = {
- "context_dim": 768,
- "model_channels": 320,
- "use_linear_in_transformer": False,
- "adm_in_channels": None,
- "use_temporal_attention": False,
- }
-
- unet_extra_config = {
- "num_heads": 8,
- "num_head_channels": -1,
- }
-
- latent_format = latent_formats.SD15
-
- def process_clip_state_dict(self, state_dict):
- k = list(state_dict.keys())
- for x in k:
- if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
- y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
- state_dict[y] = state_dict.pop(x)
-
- if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict:
- ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids']
- if ids.dtype == torch.float32:
- state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
-
- replace_prefix = {}
- replace_prefix["cond_stage_model."] = "clip_l."
- state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
- return state_dict
-
- def process_clip_state_dict_for_saving(self, state_dict):
- pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"]
- for p in pop_keys:
- if p in state_dict:
- state_dict.pop(p)
-
- replace_prefix = {"clip_l.": "cond_stage_model."}
- return utils.state_dict_prefix_replace(state_dict, replace_prefix)
-
- def clip_target(self, state_dict={}):
- return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel)
-
-class SD20(supported_models_base.BASE):
- unet_config = {
- "context_dim": 1024,
- "model_channels": 320,
- "use_linear_in_transformer": True,
- "adm_in_channels": None,
- "use_temporal_attention": False,
- }
-
- unet_extra_config = {
- "num_heads": -1,
- "num_head_channels": 64,
- "attn_precision": torch.float32,
- }
-
- latent_format = latent_formats.SD15
-
- def model_type(self, state_dict, prefix=""):
- if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
- k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix)
- out = state_dict.get(k, None)
- if out is not None and torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
- return model_base.ModelType.V_PREDICTION
- return model_base.ModelType.EPS
-
- def process_clip_state_dict(self, state_dict):
- replace_prefix = {}
- replace_prefix["conditioner.embedders.0.model."] = "clip_h." #SD2 in sgm format
- replace_prefix["cond_stage_model.model."] = "clip_h."
- state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
- state_dict = utils.clip_text_transformers_convert(state_dict, "clip_h.", "clip_h.transformer.")
- return state_dict
-
- def process_clip_state_dict_for_saving(self, state_dict):
- replace_prefix = {}
- replace_prefix["clip_h"] = "cond_stage_model.model"
- state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
- state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict)
- return state_dict
-
- def clip_target(self, state_dict={}):
- return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel)
-
-class SD21UnclipL(SD20):
- unet_config = {
- "context_dim": 1024,
- "model_channels": 320,
- "use_linear_in_transformer": True,
- "adm_in_channels": 1536,
- "use_temporal_attention": False,
- }
-
- clip_vision_prefix = "embedder.model.visual."
- noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768}
-
-
-class SD21UnclipH(SD20):
- unet_config = {
- "context_dim": 1024,
- "model_channels": 320,
- "use_linear_in_transformer": True,
- "adm_in_channels": 2048,
- "use_temporal_attention": False,
- }
-
- clip_vision_prefix = "embedder.model.visual."
- noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024}
-
-class SDXLRefiner(supported_models_base.BASE):
- unet_config = {
- "model_channels": 384,
- "use_linear_in_transformer": True,
- "context_dim": 1280,
- "adm_in_channels": 2560,
- "transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0],
- "use_temporal_attention": False,
- }
-
- latent_format = latent_formats.SDXL
-
- def get_model(self, state_dict, prefix="", device=None):
- return model_base.SDXLRefiner(self, device=device)
-
- def process_clip_state_dict(self, state_dict):
- keys_to_replace = {}
- replace_prefix = {}
- replace_prefix["conditioner.embedders.0.model."] = "clip_g."
- state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
-
- state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
- state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
- return state_dict
-
- def process_clip_state_dict_for_saving(self, state_dict):
- replace_prefix = {}
- state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
- if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g:
- state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids")
- replace_prefix["clip_g"] = "conditioner.embedders.0.model"
- state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
- return state_dict_g
-
- def clip_target(self, state_dict={}):
- return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel)
-
-class SDXL(supported_models_base.BASE):
- unet_config = {
- "model_channels": 320,
- "use_linear_in_transformer": True,
- "transformer_depth": [0, 0, 2, 2, 10, 10],
- "context_dim": 2048,
- "adm_in_channels": 2816,
- "use_temporal_attention": False,
- }
-
- latent_format = latent_formats.SDXL
-
- def model_type(self, state_dict, prefix=""):
- if 'edm_mean' in state_dict and 'edm_std' in state_dict: #Playground V2.5
- self.latent_format = latent_formats.SDXL_Playground_2_5()
- self.sampling_settings["sigma_data"] = 0.5
- self.sampling_settings["sigma_max"] = 80.0
- self.sampling_settings["sigma_min"] = 0.002
- return model_base.ModelType.EDM
- elif "edm_vpred.sigma_max" in state_dict:
- self.sampling_settings["sigma_max"] = float(state_dict["edm_vpred.sigma_max"].item())
- if "edm_vpred.sigma_min" in state_dict:
- self.sampling_settings["sigma_min"] = float(state_dict["edm_vpred.sigma_min"].item())
- return model_base.ModelType.V_PREDICTION_EDM
- elif "v_pred" in state_dict:
- return model_base.ModelType.V_PREDICTION
- else:
- return model_base.ModelType.EPS
-
- def get_model(self, state_dict, prefix="", device=None):
- out = model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device)
- if self.inpaint_model():
- out.set_inpaint()
- return out
-
- def process_clip_state_dict(self, state_dict):
- keys_to_replace = {}
- replace_prefix = {}
-
- replace_prefix["conditioner.embedders.0.transformer.text_model"] = "clip_l.transformer.text_model"
- replace_prefix["conditioner.embedders.1.model."] = "clip_g."
- state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
-
- state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
- state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
- return state_dict
-
- def process_clip_state_dict_for_saving(self, state_dict):
- replace_prefix = {}
- keys_to_replace = {}
- state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
- for k in state_dict:
- if k.startswith("clip_l"):
- state_dict_g[k] = state_dict[k]
-
- state_dict_g["clip_l.transformer.text_model.embeddings.position_ids"] = torch.arange(77).expand((1, -1))
- pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"]
- for p in pop_keys:
- if p in state_dict_g:
- state_dict_g.pop(p)
-
- replace_prefix["clip_g"] = "conditioner.embedders.1.model"
- replace_prefix["clip_l"] = "conditioner.embedders.0"
- state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
- return state_dict_g
-
- def clip_target(self, state_dict={}):
- return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)
-
-class SSD1B(SDXL):
- unet_config = {
- "model_channels": 320,
- "use_linear_in_transformer": True,
- "transformer_depth": [0, 0, 2, 2, 4, 4],
- "context_dim": 2048,
- "adm_in_channels": 2816,
- "use_temporal_attention": False,
- }
-
-class Segmind_Vega(SDXL):
- unet_config = {
- "model_channels": 320,
- "use_linear_in_transformer": True,
- "transformer_depth": [0, 0, 1, 1, 2, 2],
- "context_dim": 2048,
- "adm_in_channels": 2816,
- "use_temporal_attention": False,
- }
-
-class KOALA_700M(SDXL):
- unet_config = {
- "model_channels": 320,
- "use_linear_in_transformer": True,
- "transformer_depth": [0, 2, 5],
- "context_dim": 2048,
- "adm_in_channels": 2816,
- "use_temporal_attention": False,
- }
-
-class KOALA_1B(SDXL):
- unet_config = {
- "model_channels": 320,
- "use_linear_in_transformer": True,
- "transformer_depth": [0, 2, 6],
- "context_dim": 2048,
- "adm_in_channels": 2816,
- "use_temporal_attention": False,
- }
-
-class SVD_img2vid(supported_models_base.BASE):
- unet_config = {
- "model_channels": 320,
- "in_channels": 8,
- "use_linear_in_transformer": True,
- "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
- "context_dim": 1024,
- "adm_in_channels": 768,
- "use_temporal_attention": True,
- "use_temporal_resblock": True
- }
-
- unet_extra_config = {
- "num_heads": -1,
- "num_head_channels": 64,
- "attn_precision": torch.float32,
- }
-
- clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual."
-
- latent_format = latent_formats.SD15
-
- sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002}
-
- def get_model(self, state_dict, prefix="", device=None):
- out = model_base.SVD_img2vid(self, device=device)
- return out
-
- def clip_target(self, state_dict={}):
- return None
-
-class SV3D_u(SVD_img2vid):
- unet_config = {
- "model_channels": 320,
- "in_channels": 8,
- "use_linear_in_transformer": True,
- "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
- "context_dim": 1024,
- "adm_in_channels": 256,
- "use_temporal_attention": True,
- "use_temporal_resblock": True
- }
-
- vae_key_prefix = ["conditioner.embedders.1.encoder."]
-
- def get_model(self, state_dict, prefix="", device=None):
- out = model_base.SV3D_u(self, device=device)
- return out
-
-class SV3D_p(SV3D_u):
- unet_config = {
- "model_channels": 320,
- "in_channels": 8,
- "use_linear_in_transformer": True,
- "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
- "context_dim": 1024,
- "adm_in_channels": 1280,
- "use_temporal_attention": True,
- "use_temporal_resblock": True
- }
-
-
- def get_model(self, state_dict, prefix="", device=None):
- out = model_base.SV3D_p(self, device=device)
- return out
-
-class Stable_Zero123(supported_models_base.BASE):
- unet_config = {
- "context_dim": 768,
- "model_channels": 320,
- "use_linear_in_transformer": False,
- "adm_in_channels": None,
- "use_temporal_attention": False,
- "in_channels": 8,
- }
-
- unet_extra_config = {
- "num_heads": 8,
- "num_head_channels": -1,
- }
-
- required_keys = {
- "cc_projection.weight": None,
- "cc_projection.bias": None,
- }
-
- clip_vision_prefix = "cond_stage_model.model.visual."
-
- latent_format = latent_formats.SD15
-
- def get_model(self, state_dict, prefix="", device=None):
- out = model_base.Stable_Zero123(self, device=device, cc_projection_weight=state_dict["cc_projection.weight"], cc_projection_bias=state_dict["cc_projection.bias"])
- return out
-
- def clip_target(self, state_dict={}):
- return None
-
-class SD_X4Upscaler(SD20):
- unet_config = {
- "context_dim": 1024,
- "model_channels": 256,
- 'in_channels': 7,
- "use_linear_in_transformer": True,
- "adm_in_channels": None,
- "use_temporal_attention": False,
- }
-
- unet_extra_config = {
- "disable_self_attentions": [True, True, True, False],
- "num_classes": 1000,
- "num_heads": 8,
- "num_head_channels": -1,
- }
-
- latent_format = latent_formats.SD_X4
-
- sampling_settings = {
- "linear_start": 0.0001,
- "linear_end": 0.02,
- }
-
- def get_model(self, state_dict, prefix="", device=None):
- out = model_base.SD_X4Upscaler(self, device=device)
- return out
-
-class Stable_Cascade_C(supported_models_base.BASE):
- unet_config = {
- "stable_cascade_stage": 'c',
- }
-
- unet_extra_config = {}
-
- latent_format = latent_formats.SC_Prior
- supported_inference_dtypes = [torch.bfloat16, torch.float32]
-
- sampling_settings = {
- "shift": 2.0,
- }
-
- vae_key_prefix = ["vae."]
- text_encoder_key_prefix = ["text_encoder."]
- clip_vision_prefix = "clip_l_vision."
-
- def process_unet_state_dict(self, state_dict):
- key_list = list(state_dict.keys())
- for y in ["weight", "bias"]:
- suffix = "in_proj_{}".format(y)
- keys = filter(lambda a: a.endswith(suffix), key_list)
- for k_from in keys:
- weights = state_dict.pop(k_from)
- prefix = k_from[:-(len(suffix) + 1)]
- shape_from = weights.shape[0] // 3
- for x in range(3):
- p = ["to_q", "to_k", "to_v"]
- k_to = "{}.{}.{}".format(prefix, p[x], y)
- state_dict[k_to] = weights[shape_from*x:shape_from*(x + 1)]
- return state_dict
-
- def process_clip_state_dict(self, state_dict):
- state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True)
- if "clip_g.text_projection" in state_dict:
- state_dict["clip_g.transformer.text_projection.weight"] = state_dict.pop("clip_g.text_projection").transpose(0, 1)
- return state_dict
-
- def get_model(self, state_dict, prefix="", device=None):
- out = model_base.StableCascade_C(self, device=device)
- return out
-
- def clip_target(self, state_dict={}):
- return supported_models_base.ClipTarget(sdxl_clip.StableCascadeTokenizer, sdxl_clip.StableCascadeClipModel)
-
-class Stable_Cascade_B(Stable_Cascade_C):
- unet_config = {
- "stable_cascade_stage": 'b',
- }
-
- unet_extra_config = {}
-
- latent_format = latent_formats.SC_B
- supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
-
- sampling_settings = {
- "shift": 1.0,
- }
-
- clip_vision_prefix = None
-
- def get_model(self, state_dict, prefix="", device=None):
- out = model_base.StableCascade_B(self, device=device)
- return out
-
-class SD15_instructpix2pix(SD15):
- unet_config = {
- "context_dim": 768,
- "model_channels": 320,
- "use_linear_in_transformer": False,
- "adm_in_channels": None,
- "use_temporal_attention": False,
- "in_channels": 8,
- }
-
- def get_model(self, state_dict, prefix="", device=None):
- return model_base.SD15_instructpix2pix(self, device=device)
-
-class SDXL_instructpix2pix(SDXL):
- unet_config = {
- "model_channels": 320,
- "use_linear_in_transformer": True,
- "transformer_depth": [0, 0, 2, 2, 10, 10],
- "context_dim": 2048,
- "adm_in_channels": 2816,
- "use_temporal_attention": False,
- "in_channels": 8,
- }
-
- def get_model(self, state_dict, prefix="", device=None):
- return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device)
-
-class SD3(supported_models_base.BASE):
- unet_config = {
- "in_channels": 16,
- "pos_embed_scaling_factor": None,
- }
-
- sampling_settings = {
- "shift": 3.0,
- }
-
- unet_extra_config = {}
- latent_format = latent_formats.SD3
- text_encoder_key_prefix = ["text_encoders."]
-
- def get_model(self, state_dict, prefix="", device=None):
- out = model_base.SD3(self, device=device)
- return out
-
- def clip_target(self, state_dict={}):
- clip_l = False
- clip_g = False
- t5 = False
- dtype_t5 = None
- pref = self.text_encoder_key_prefix[0]
- if "{}clip_l.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
- clip_l = True
- if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
- clip_g = True
- t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref)
- if t5_key in state_dict:
- t5 = True
- dtype_t5 = state_dict[t5_key].dtype
-
- return supported_models_base.ClipTarget(sd3_clip.SD3Tokenizer, sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5))
-
-class StableAudio(supported_models_base.BASE):
- unet_config = {
- "audio_model": "dit1.0",
- }
-
- sampling_settings = {"sigma_max": 500.0, "sigma_min": 0.03}
-
- unet_extra_config = {}
- latent_format = latent_formats.StableAudio1
-
- text_encoder_key_prefix = ["text_encoders."]
- vae_key_prefix = ["pretransform.model."]
-
- def get_model(self, state_dict, prefix="", device=None):
- seconds_start_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_start.": ""}, filter_keys=True)
- seconds_total_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_total.": ""}, filter_keys=True)
- return model_base.StableAudio1(self, seconds_start_embedder_weights=seconds_start_sd, seconds_total_embedder_weights=seconds_total_sd, device=device)
-
-
- def process_unet_state_dict(self, state_dict):
- for k in list(state_dict.keys()):
- if k.endswith(".cross_attend_norm.beta") or k.endswith(".ff_norm.beta") or k.endswith(".pre_norm.beta"): #These weights are all zero
- state_dict.pop(k)
- return state_dict
-
- def clip_target(self, state_dict={}):
- return supported_models_base.ClipTarget(sa_t5.SAT5Tokenizer, sa_t5.SAT5Model)
-
-
-models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio]
-
-models += [SVD_img2vid]
diff --git a/MagicQuill/comfy/supported_models_base.py b/MagicQuill/comfy/supported_models_base.py
deleted file mode 100644
index cf7cdff34bff803e6dfa750e84f03d66e06634af..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/supported_models_base.py
+++ /dev/null
@@ -1,95 +0,0 @@
-import torch
-from . import model_base
-from . import utils
-from . import latent_formats
-
-class ClipTarget:
- def __init__(self, tokenizer, clip):
- self.clip = clip
- self.tokenizer = tokenizer
- self.params = {}
-
-class BASE:
- unet_config = {}
- unet_extra_config = {
- "num_heads": -1,
- "num_head_channels": 64,
- }
-
- required_keys = {}
-
- clip_prefix = []
- clip_vision_prefix = None
- noise_aug_config = None
- sampling_settings = {}
- latent_format = latent_formats.LatentFormat
- vae_key_prefix = ["first_stage_model."]
- text_encoder_key_prefix = ["cond_stage_model."]
- supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
-
- manual_cast_dtype = None
-
- @classmethod
- def matches(s, unet_config, state_dict=None):
- for k in s.unet_config:
- if k not in unet_config or s.unet_config[k] != unet_config[k]:
- return False
- if state_dict is not None:
- for k in s.required_keys:
- if k not in state_dict:
- return False
- return True
-
- def model_type(self, state_dict, prefix=""):
- return model_base.ModelType.EPS
-
- def inpaint_model(self):
- return self.unet_config["in_channels"] > 4
-
- def __init__(self, unet_config):
- self.unet_config = unet_config.copy()
- self.sampling_settings = self.sampling_settings.copy()
- self.latent_format = self.latent_format()
- for x in self.unet_extra_config:
- self.unet_config[x] = self.unet_extra_config[x]
-
- def get_model(self, state_dict, prefix="", device=None):
- if self.noise_aug_config is not None:
- out = model_base.SD21UNCLIP(self, self.noise_aug_config, model_type=self.model_type(state_dict, prefix), device=device)
- else:
- out = model_base.BaseModel(self, model_type=self.model_type(state_dict, prefix), device=device)
- if self.inpaint_model():
- out.set_inpaint()
- return out
-
- def process_clip_state_dict(self, state_dict):
- state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True)
- return state_dict
-
- def process_unet_state_dict(self, state_dict):
- return state_dict
-
- def process_vae_state_dict(self, state_dict):
- return state_dict
-
- def process_clip_state_dict_for_saving(self, state_dict):
- replace_prefix = {"": self.text_encoder_key_prefix[0]}
- return utils.state_dict_prefix_replace(state_dict, replace_prefix)
-
- def process_clip_vision_state_dict_for_saving(self, state_dict):
- replace_prefix = {}
- if self.clip_vision_prefix is not None:
- replace_prefix[""] = self.clip_vision_prefix
- return utils.state_dict_prefix_replace(state_dict, replace_prefix)
-
- def process_unet_state_dict_for_saving(self, state_dict):
- replace_prefix = {"": "model.diffusion_model."}
- return utils.state_dict_prefix_replace(state_dict, replace_prefix)
-
- def process_vae_state_dict_for_saving(self, state_dict):
- replace_prefix = {"": self.vae_key_prefix[0]}
- return utils.state_dict_prefix_replace(state_dict, replace_prefix)
-
- def set_inference_dtype(self, dtype, manual_cast_dtype):
- self.unet_config['dtype'] = dtype
- self.manual_cast_dtype = manual_cast_dtype
diff --git a/MagicQuill/comfy/t2i_adapter/__pycache__/adapter.cpython-310.pyc b/MagicQuill/comfy/t2i_adapter/__pycache__/adapter.cpython-310.pyc
deleted file mode 100644
index e15c40eb9fceafadcaa877447c5b4a8a9580533c..0000000000000000000000000000000000000000
Binary files a/MagicQuill/comfy/t2i_adapter/__pycache__/adapter.cpython-310.pyc and /dev/null differ
diff --git a/MagicQuill/comfy/t2i_adapter/adapter.py b/MagicQuill/comfy/t2i_adapter/adapter.py
deleted file mode 100644
index e9a606b1cd67fd9a955a0ea0a86d1bd5498d85e5..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/t2i_adapter/adapter.py
+++ /dev/null
@@ -1,293 +0,0 @@
-#taken from https://github.com/TencentARC/T2I-Adapter
-import torch
-import torch.nn as nn
-from collections import OrderedDict
-
-
-def conv_nd(dims, *args, **kwargs):
- """
- Create a 1D, 2D, or 3D convolution module.
- """
- if dims == 1:
- return nn.Conv1d(*args, **kwargs)
- elif dims == 2:
- return nn.Conv2d(*args, **kwargs)
- elif dims == 3:
- return nn.Conv3d(*args, **kwargs)
- raise ValueError(f"unsupported dimensions: {dims}")
-
-
-def avg_pool_nd(dims, *args, **kwargs):
- """
- Create a 1D, 2D, or 3D average pooling module.
- """
- if dims == 1:
- return nn.AvgPool1d(*args, **kwargs)
- elif dims == 2:
- return nn.AvgPool2d(*args, **kwargs)
- elif dims == 3:
- return nn.AvgPool3d(*args, **kwargs)
- raise ValueError(f"unsupported dimensions: {dims}")
-
-
-class Downsample(nn.Module):
- """
- A downsampling layer with an optional convolution.
- :param channels: channels in the inputs and outputs.
- :param use_conv: a bool determining if a convolution is applied.
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
- downsampling occurs in the inner-two dimensions.
- """
-
- def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
- super().__init__()
- self.channels = channels
- self.out_channels = out_channels or channels
- self.use_conv = use_conv
- self.dims = dims
- stride = 2 if dims != 3 else (1, 2, 2)
- if use_conv:
- self.op = conv_nd(
- dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
- )
- else:
- assert self.channels == self.out_channels
- self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
-
- def forward(self, x):
- assert x.shape[1] == self.channels
- if not self.use_conv:
- padding = [x.shape[2] % 2, x.shape[3] % 2]
- self.op.padding = padding
-
- x = self.op(x)
- return x
-
-
-class ResnetBlock(nn.Module):
- def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
- super().__init__()
- ps = ksize // 2
- if in_c != out_c or sk == False:
- self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
- else:
- # print('n_in')
- self.in_conv = None
- self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
- self.act = nn.ReLU()
- self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
- if sk == False:
- self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
- else:
- self.skep = None
-
- self.down = down
- if self.down == True:
- self.down_opt = Downsample(in_c, use_conv=use_conv)
-
- def forward(self, x):
- if self.down == True:
- x = self.down_opt(x)
- if self.in_conv is not None: # edit
- x = self.in_conv(x)
-
- h = self.block1(x)
- h = self.act(h)
- h = self.block2(h)
- if self.skep is not None:
- return h + self.skep(x)
- else:
- return h + x
-
-
-class Adapter(nn.Module):
- def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True, xl=True):
- super(Adapter, self).__init__()
- self.unshuffle_amount = 8
- resblock_no_downsample = []
- resblock_downsample = [3, 2, 1]
- self.xl = xl
- if self.xl:
- self.unshuffle_amount = 16
- resblock_no_downsample = [1]
- resblock_downsample = [2]
-
- self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount)
- self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount)
- self.channels = channels
- self.nums_rb = nums_rb
- self.body = []
- for i in range(len(channels)):
- for j in range(nums_rb):
- if (i in resblock_downsample) and (j == 0):
- self.body.append(
- ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
- elif (i in resblock_no_downsample) and (j == 0):
- self.body.append(
- ResnetBlock(channels[i - 1], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
- else:
- self.body.append(
- ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
- self.body = nn.ModuleList(self.body)
- self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)
-
- def forward(self, x):
- # unshuffle
- x = self.unshuffle(x)
- # extract features
- features = []
- x = self.conv_in(x)
- for i in range(len(self.channels)):
- for j in range(self.nums_rb):
- idx = i * self.nums_rb + j
- x = self.body[idx](x)
- if self.xl:
- features.append(None)
- if i == 0:
- features.append(None)
- features.append(None)
- if i == 2:
- features.append(None)
- else:
- features.append(None)
- features.append(None)
- features.append(x)
-
- return features
-
-
-class LayerNorm(nn.LayerNorm):
- """Subclass torch's LayerNorm to handle fp16."""
-
- def forward(self, x: torch.Tensor):
- orig_type = x.dtype
- ret = super().forward(x.type(torch.float32))
- return ret.type(orig_type)
-
-
-class QuickGELU(nn.Module):
-
- def forward(self, x: torch.Tensor):
- return x * torch.sigmoid(1.702 * x)
-
-
-class ResidualAttentionBlock(nn.Module):
-
- def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
- super().__init__()
-
- self.attn = nn.MultiheadAttention(d_model, n_head)
- self.ln_1 = LayerNorm(d_model)
- self.mlp = nn.Sequential(
- OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()),
- ("c_proj", nn.Linear(d_model * 4, d_model))]))
- self.ln_2 = LayerNorm(d_model)
- self.attn_mask = attn_mask
-
- def attention(self, x: torch.Tensor):
- self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
- return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
-
- def forward(self, x: torch.Tensor):
- x = x + self.attention(self.ln_1(x))
- x = x + self.mlp(self.ln_2(x))
- return x
-
-
-class StyleAdapter(nn.Module):
-
- def __init__(self, width=1024, context_dim=768, num_head=8, n_layes=3, num_token=4):
- super().__init__()
-
- scale = width ** -0.5
- self.transformer_layes = nn.Sequential(*[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)])
- self.num_token = num_token
- self.style_embedding = nn.Parameter(torch.randn(1, num_token, width) * scale)
- self.ln_post = LayerNorm(width)
- self.ln_pre = LayerNorm(width)
- self.proj = nn.Parameter(scale * torch.randn(width, context_dim))
-
- def forward(self, x):
- # x shape [N, HW+1, C]
- style_embedding = self.style_embedding + torch.zeros(
- (x.shape[0], self.num_token, self.style_embedding.shape[-1]), device=x.device)
- x = torch.cat([x, style_embedding], dim=1)
- x = self.ln_pre(x)
- x = x.permute(1, 0, 2) # NLD -> LND
- x = self.transformer_layes(x)
- x = x.permute(1, 0, 2) # LND -> NLD
-
- x = self.ln_post(x[:, -self.num_token:, :])
- x = x @ self.proj
-
- return x
-
-
-class ResnetBlock_light(nn.Module):
- def __init__(self, in_c):
- super().__init__()
- self.block1 = nn.Conv2d(in_c, in_c, 3, 1, 1)
- self.act = nn.ReLU()
- self.block2 = nn.Conv2d(in_c, in_c, 3, 1, 1)
-
- def forward(self, x):
- h = self.block1(x)
- h = self.act(h)
- h = self.block2(h)
-
- return h + x
-
-
-class extractor(nn.Module):
- def __init__(self, in_c, inter_c, out_c, nums_rb, down=False):
- super().__init__()
- self.in_conv = nn.Conv2d(in_c, inter_c, 1, 1, 0)
- self.body = []
- for _ in range(nums_rb):
- self.body.append(ResnetBlock_light(inter_c))
- self.body = nn.Sequential(*self.body)
- self.out_conv = nn.Conv2d(inter_c, out_c, 1, 1, 0)
- self.down = down
- if self.down == True:
- self.down_opt = Downsample(in_c, use_conv=False)
-
- def forward(self, x):
- if self.down == True:
- x = self.down_opt(x)
- x = self.in_conv(x)
- x = self.body(x)
- x = self.out_conv(x)
-
- return x
-
-
-class Adapter_light(nn.Module):
- def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64):
- super(Adapter_light, self).__init__()
- self.unshuffle_amount = 8
- self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount)
- self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount)
- self.channels = channels
- self.nums_rb = nums_rb
- self.body = []
- self.xl = False
-
- for i in range(len(channels)):
- if i == 0:
- self.body.append(extractor(in_c=cin, inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=False))
- else:
- self.body.append(extractor(in_c=channels[i-1], inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=True))
- self.body = nn.ModuleList(self.body)
-
- def forward(self, x):
- # unshuffle
- x = self.unshuffle(x)
- # extract features
- features = []
- for i in range(len(self.channels)):
- x = self.body[i](x)
- features.append(None)
- features.append(None)
- features.append(x)
-
- return features
diff --git a/MagicQuill/comfy/t5.py b/MagicQuill/comfy/t5.py
deleted file mode 100644
index 06dfe47668e6326dfbc761bbc4600fd2db0a66de..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/t5.py
+++ /dev/null
@@ -1,231 +0,0 @@
-import torch
-import math
-from comfy.ldm.modules.attention import optimized_attention_for_device
-
-class T5LayerNorm(torch.nn.Module):
- def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None, operations=None):
- super().__init__()
- self.weight = torch.nn.Parameter(torch.empty(hidden_size, dtype=dtype, device=device))
- self.variance_epsilon = eps
-
- def forward(self, x):
- variance = x.pow(2).mean(-1, keepdim=True)
- x = x * torch.rsqrt(variance + self.variance_epsilon)
- return self.weight.to(device=x.device, dtype=x.dtype) * x
-
-class T5DenseActDense(torch.nn.Module):
- def __init__(self, model_dim, ff_dim, dtype, device, operations):
- super().__init__()
- self.wi = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
- self.wo = operations.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
- # self.dropout = nn.Dropout(config.dropout_rate)
-
- def forward(self, x):
- x = torch.nn.functional.relu(self.wi(x))
- # x = self.dropout(x)
- x = self.wo(x)
- return x
-
-class T5DenseGatedActDense(torch.nn.Module):
- def __init__(self, model_dim, ff_dim, dtype, device, operations):
- super().__init__()
- self.wi_0 = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
- self.wi_1 = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
- self.wo = operations.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
- # self.dropout = nn.Dropout(config.dropout_rate)
-
- def forward(self, x):
- hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh")
- hidden_linear = self.wi_1(x)
- x = hidden_gelu * hidden_linear
- # x = self.dropout(x)
- x = self.wo(x)
- return x
-
-class T5LayerFF(torch.nn.Module):
- def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations):
- super().__init__()
- if ff_activation == "gelu_pytorch_tanh":
- self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device, operations)
- elif ff_activation == "relu":
- self.DenseReluDense = T5DenseActDense(model_dim, ff_dim, dtype, device, operations)
-
- self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
- # self.dropout = nn.Dropout(config.dropout_rate)
-
- def forward(self, x):
- forwarded_states = self.layer_norm(x)
- forwarded_states = self.DenseReluDense(forwarded_states)
- # x = x + self.dropout(forwarded_states)
- x += forwarded_states
- return x
-
-class T5Attention(torch.nn.Module):
- def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations):
- super().__init__()
-
- # Mesh TensorFlow initialization to avoid scaling before softmax
- self.q = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
- self.k = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
- self.v = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
- self.o = operations.Linear(inner_dim, model_dim, bias=False, dtype=dtype, device=device)
- self.num_heads = num_heads
-
- self.relative_attention_bias = None
- if relative_attention_bias:
- self.relative_attention_num_buckets = 32
- self.relative_attention_max_distance = 128
- self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device)
-
- @staticmethod
- def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
- """
- Adapted from Mesh Tensorflow:
- https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
-
- Translate relative position to a bucket number for relative attention. The relative position is defined as
- memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
- position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
- small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
- positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
- This should allow for more graceful generalization to longer sequences than the model has been trained on
-
- Args:
- relative_position: an int32 Tensor
- bidirectional: a boolean - whether the attention is bidirectional
- num_buckets: an integer
- max_distance: an integer
-
- Returns:
- a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
- """
- relative_buckets = 0
- if bidirectional:
- num_buckets //= 2
- relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
- relative_position = torch.abs(relative_position)
- else:
- relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
- # now relative_position is in the range [0, inf)
-
- # half of the buckets are for exact increments in positions
- max_exact = num_buckets // 2
- is_small = relative_position < max_exact
-
- # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
- relative_position_if_large = max_exact + (
- torch.log(relative_position.float() / max_exact)
- / math.log(max_distance / max_exact)
- * (num_buckets - max_exact)
- ).to(torch.long)
- relative_position_if_large = torch.min(
- relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
- )
-
- relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
- return relative_buckets
-
- def compute_bias(self, query_length, key_length, device):
- """Compute binned relative position bias"""
- context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
- memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
- relative_position = memory_position - context_position # shape (query_length, key_length)
- relative_position_bucket = self._relative_position_bucket(
- relative_position, # shape (query_length, key_length)
- bidirectional=True,
- num_buckets=self.relative_attention_num_buckets,
- max_distance=self.relative_attention_max_distance,
- )
- values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
- values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
- return values
-
- def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
- q = self.q(x)
- k = self.k(x)
- v = self.v(x)
- if self.relative_attention_bias is not None:
- past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device)
-
- if past_bias is not None:
- if mask is not None:
- mask = mask + past_bias
- else:
- mask = past_bias
-
- out = optimized_attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask)
- return self.o(out), past_bias
-
-class T5LayerSelfAttention(torch.nn.Module):
- def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations):
- super().__init__()
- self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations)
- self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
- # self.dropout = nn.Dropout(config.dropout_rate)
-
- def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
- normed_hidden_states = self.layer_norm(x)
- output, past_bias = self.SelfAttention(self.layer_norm(x), mask=mask, past_bias=past_bias, optimized_attention=optimized_attention)
- # x = x + self.dropout(attention_output)
- x += output
- return x, past_bias
-
-class T5Block(torch.nn.Module):
- def __init__(self, model_dim, inner_dim, ff_dim, ff_activation, num_heads, relative_attention_bias, dtype, device, operations):
- super().__init__()
- self.layer = torch.nn.ModuleList()
- self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations))
- self.layer.append(T5LayerFF(model_dim, ff_dim, ff_activation, dtype, device, operations))
-
- def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
- x, past_bias = self.layer[0](x, mask, past_bias, optimized_attention)
- x = self.layer[-1](x)
- return x, past_bias
-
-class T5Stack(torch.nn.Module):
- def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, num_heads, dtype, device, operations):
- super().__init__()
-
- self.block = torch.nn.ModuleList(
- [T5Block(model_dim, inner_dim, ff_dim, ff_activation, num_heads, relative_attention_bias=(i == 0), dtype=dtype, device=device, operations=operations) for i in range(num_layers)]
- )
- self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
- # self.dropout = nn.Dropout(config.dropout_rate)
-
- def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
- mask = None
- if attention_mask is not None:
- mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
- mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
-
- intermediate = None
- optimized_attention = optimized_attention_for_device(x.device, mask=attention_mask is not None, small_input=True)
- past_bias = None
- for i, l in enumerate(self.block):
- x, past_bias = l(x, mask, past_bias, optimized_attention)
- if i == intermediate_output:
- intermediate = x.clone()
- x = self.final_layer_norm(x)
- if intermediate is not None and final_layer_norm_intermediate:
- intermediate = self.final_layer_norm(intermediate)
- return x, intermediate
-
-class T5(torch.nn.Module):
- def __init__(self, config_dict, dtype, device, operations):
- super().__init__()
- self.num_layers = config_dict["num_layers"]
- model_dim = config_dict["d_model"]
-
- self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["num_heads"], dtype, device, operations)
- self.dtype = dtype
- self.shared = torch.nn.Embedding(config_dict["vocab_size"], model_dim, device=device)
-
- def get_input_embeddings(self):
- return self.shared
-
- def set_input_embeddings(self, embeddings):
- self.shared = embeddings
-
- def forward(self, input_ids, *args, **kwargs):
- x = self.shared(input_ids)
- return self.encoder(x, *args, **kwargs)
diff --git a/MagicQuill/comfy/t5_config_base.json b/MagicQuill/comfy/t5_config_base.json
deleted file mode 100644
index facd85ef3a9c695d564e40b8c1a7db994e392cd3..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/t5_config_base.json
+++ /dev/null
@@ -1,21 +0,0 @@
-{
- "d_ff": 3072,
- "d_kv": 64,
- "d_model": 768,
- "decoder_start_token_id": 0,
- "dropout_rate": 0.1,
- "eos_token_id": 1,
- "dense_act_fn": "relu",
- "initializer_factor": 1.0,
- "is_encoder_decoder": true,
- "layer_norm_epsilon": 1e-06,
- "model_type": "t5",
- "num_decoder_layers": 12,
- "num_heads": 12,
- "num_layers": 12,
- "output_past": true,
- "pad_token_id": 0,
- "relative_attention_num_buckets": 32,
- "tie_word_embeddings": false,
- "vocab_size": 32128
-}
diff --git a/MagicQuill/comfy/t5_config_xxl.json b/MagicQuill/comfy/t5_config_xxl.json
deleted file mode 100644
index bf4feadcf501776e65deeda04789738f08e450f9..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/t5_config_xxl.json
+++ /dev/null
@@ -1,21 +0,0 @@
-{
- "d_ff": 10240,
- "d_kv": 64,
- "d_model": 4096,
- "decoder_start_token_id": 0,
- "dropout_rate": 0.1,
- "eos_token_id": 1,
- "dense_act_fn": "gelu_pytorch_tanh",
- "initializer_factor": 1.0,
- "is_encoder_decoder": true,
- "layer_norm_epsilon": 1e-06,
- "model_type": "t5",
- "num_decoder_layers": 24,
- "num_heads": 64,
- "num_layers": 24,
- "output_past": true,
- "pad_token_id": 0,
- "relative_attention_num_buckets": 32,
- "tie_word_embeddings": false,
- "vocab_size": 32128
-}
diff --git a/MagicQuill/comfy/t5_tokenizer/special_tokens_map.json b/MagicQuill/comfy/t5_tokenizer/special_tokens_map.json
deleted file mode 100644
index 17ade346a1042cbe0c1436f5bedcbd85c099d582..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/t5_tokenizer/special_tokens_map.json
+++ /dev/null
@@ -1,125 +0,0 @@
-{
- "additional_special_tokens": [
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- "",
- ""
- ],
- "eos_token": {
- "content": "",
- "lstrip": false,
- "normalized": false,
- "rstrip": false,
- "single_word": false
- },
- "pad_token": {
- "content": "",
- "lstrip": false,
- "normalized": false,
- "rstrip": false,
- "single_word": false
- },
- "unk_token": {
- "content": "",
- "lstrip": false,
- "normalized": false,
- "rstrip": false,
- "single_word": false
- }
-}
diff --git a/MagicQuill/comfy/t5_tokenizer/tokenizer.json b/MagicQuill/comfy/t5_tokenizer/tokenizer.json
deleted file mode 100644
index b11c92d7184d265f0dc857ec5d676aa81aa16262..0000000000000000000000000000000000000000
--- a/MagicQuill/comfy/t5_tokenizer/tokenizer.json
+++ /dev/null
@@ -1,129428 +0,0 @@
-{
- "version": "1.0",
- "truncation": null,
- "padding": null,
- "added_tokens": [
- {
- "id": 0,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 1,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 2,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32000,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32001,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32002,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32003,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32004,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32005,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32006,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32007,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32008,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32009,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32010,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32011,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32012,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32013,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32014,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32015,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32016,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32017,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32018,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32019,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32020,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32021,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32022,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32023,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32024,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32025,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32026,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32027,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32028,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32029,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32030,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32031,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32032,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32033,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32034,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32035,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32036,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32037,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32038,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32039,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32040,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32041,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32042,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32043,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32044,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32045,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32046,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32047,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32048,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32049,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32050,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32051,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32052,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32053,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32054,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32055,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32056,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32057,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32058,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32059,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32060,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32061,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32062,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32063,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32064,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32065,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32066,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32067,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32068,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32069,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32070,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32071,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32072,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32073,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32074,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32075,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32076,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32077,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32078,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32079,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32080,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32081,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32082,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32083,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32084,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32085,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32086,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32087,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32088,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32089,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32090,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32091,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32092,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32093,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32094,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32095,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32096,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32097,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32098,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- },
- {
- "id": 32099,
- "content": "",
- "single_word": false,
- "lstrip": false,
- "rstrip": false,
- "normalized": false,
- "special": true
- }
- ],
- "normalizer": {
- "type": "Sequence",
- "normalizers": [
- {
- "type": "Precompiled",
- "precompiled_charsmap": "ALQCAACEAAAAAACAAQAAgMz8AgC4BQAAhyIAgMzkAgC4PQAAeyIAgMzsAgC4BQAAiyIAgMw8AADNvAAAmwkAgJ4JAIChCQCAgx0AAIAZAACBGQAAPR0AgDUdAIBNHQCARR0AgIAxAACBMQAApAkAgIkxAAA9WAMAPEgDAEAKAIA+aAMAAYUAAIQBAQADjQAAAokAAAWVAAAEkQAAB50AAAaZAAAJqQAACKEAAAutAAAKpQAADbkAAAy9AAAPvQAADrkAABHFAAAQwQAAE80AABLJAAAV1QAAFNEAABfdAAAW2QAAGeUAABjhAAAb7QAAGukAAB31AAAc8QAAH/0AAB75AABhOAkAZR0AgGNADgBi8AgAZSgPAGSADgBn2A8AZvAPAGlwDABoMAwAa/AMAGrYDABtSA0AbBwNAG8QEgBubA0ARgoAgHAMEwBzqBMAcuwTAHUoEAB0TBAAd9ARAHYUEAB50BYAePQQAF0dAIB69BYAdR0AgG0dAIB/fQEAhgwAgEGAAgDeCwCAQxgAAELAAABFSAAARGAAAEeQBgBGhAEASSgGAEhsAQBLOAcASvAHAE1wBwBMRAcAT/AEAE7MBACnCQCAUCwFAFOgCgBSEAUAVQAKAFRQCgBX0AgAVhALAFlICABYuAgAhBEAAFo8CACA9QAAgZ0AANgLAIAtHQCAg2kCAIJFAgCBNQIAgDUCAIdtAwCGVQMAgTkAAIRlAgAXDACAigEEAInVAwCI7QMAjwkAAKgLAIApDACAjAkAAC8MAICJMQMAkQkAAMzYAABVHQCAfR0AgL0aAIBMCgCAgGUDAIENAwCGPQAAgx0DAMwQAgDNhAEAgikAAMx0AwCjgQYAxRoAgICxAgCBsQIAzRoAgIEpAAClwQAA1RoAgMzoAwDNYAIAUgoAgKjxAABYCgCAXgoAgGQKAIDdGgCAgWkAAMzcBACCEQEA5RoAgGoKAIDtGgCA/RoAgAUbAID1GgCAswkAgMygBADN3AQAzAgBALYJAIClHQCAhhEBAOEAKwDgfCcA44hIAuIMOAKdHQCAh5EBALUdAICtHQCAgNkBAIE1AADMxAIA6kRkApUdAIANGwCA72hkAoERBwCC8QEA8NCLAolVAACB5QEAFRsAgIfhAQCAbQAAgQ0AAIN5AAB2CgCAgXkAAICVAQDMOAEAzRQBAIzBAQB8CgCAvAkAgKMVAQDDlBcAwpwUAMWEFwDEUBcAx+wXAMaAEgCNHQCAiAoAgMvQFgDK4BYAzRQWADUMAIDPvCAAzpwZANHMJADQ2CUA0+gkALFRAQA7DACAp90HAL0dAIDWvCQA2cgnANjUIgDb+CcALRsAgIftBwCCCgCAzPgEAB0bAIAlHQCAh8kGALAJAICR3QcAuQkAgCUbAIBwCgCANRsAgIUdAICMDACAjPkGAAsMAICA1QYAgcEGAMzEAgDNBAUAglEAAIN1BwCArQYAgbkGAIY1BwCHKQcAhEEAAI4KAICn7QAAPRsAgIjpBwCJzQcAlAoAgI/BBwCM3QcAmgoAgOoLAICnXQYAsJ0AAKAKAICmCgCAo0EGAEUbAIBVGwCAfQwAgE0bAIBdGwCArXEGAGUbAIC/CQCAzPgDAM0sAwDCCQCAo+UAAMUJAICMTQAAsgoAgKfxAAC4CgCAsT0GAIedAACGlQAAqB0HAISJAAC+CgCAgqkAAIHVAACtAQcAygoAgJE9AACCmQEAyAkAgM0MBQDMCAUAgT0AAIeFAQCIvQEAdRsAgMUdAICuCwCAjJEBAEEMAIBHDACAzR0AgID1AQCBhQEAgoEBAIOdAQCEiQEAxAoAgIapAQCHXQAAiG0AAIlNAABtGwCAzBACAIxdAACCDQAA0AoAgI9JAACw6QAAfRsAgPALAICjKQEAgCUBAIFVAQCFGwCApzUBAMykAQDNEAIA1goAgI0bAICBNQAA3AoAgK4JAQDoCgCAzOgBAM0oAgCVGwCAo/EAAIQFAACdGwCA4goAgK0bAICotQAApRsAgIFdAAC1GwCAzPwBAM3AAQC9GwCAxRsAgIGFAwARDACAgeUDAO4KAICH6QMAywkAgIylAwDNGwCA+goAgKoJAIDVGwCAgZkDAIHdAwCMvQMAzSQBAMwgAQDMEAIAzTACAIH5AACHUQAAgFUAAIFZAAD0CgCAg0kAAIxBAADlGwCA3RsAgM4JAICBfQAAgHEAAMwgAwDNsAMAo30DANEJAICjEQMA7R0AgIEtAQCx/QAApzEDAK1BAwDlHQCAo20DAP0dAID1HQCA7RsAgKdtAwCANQAAgR0AALFtAwCILQAAmAwAgKeVAACBcQAAgFkAAINxAACj9QAAgVEAAK2BAAD1GwCAsQkDAIldAACEPQAAzDgBAISdAQCBGQAAgAkAAIRlAAD9GwCAzNAHAMzwBwAFHACAkYkAAMxMBgDNBAYAzHAGAM10BgDMQAcAmy0PAMyoBwDNrAcAhg0AAIdVDwCEQQ8ACQsAgIIBDACDVQ8AgDUBAIHZAQCkDACAj+kAAIztAACSDACA3R0AgIv1AACIbQ8AiQ0AAA8LAIC0CwCAgiUAAE0MAICBQQAAUwwAgBUeAIANHgCAJR4AgB0eAIAtHgCABR4AgIApAACBKQAA/AsAgA0cAICEeQAAFRwAgIFNAQCAoQEAGAsAgKP9DwDMOAIAzUgDAB0cAICBWQAAzXwCAMykDQAkCwCAWQwAgKjJDwCHOQAA1wkAgImhDwADCwCAkREAAJ4MAIDaCQCAmQsAgF8MAICAuQ8AgbkPANUdAICDjQ8A9gsAgCUcAICEBQAALRwAgB4LAIA1HACAKgsAgIGdDwCHIQAAh7UPAMyoAgDN6AIAzLQMAM3cDACmzQAAp8UAAE0cAICPgQ8AjIkPAKPlAAAwCwCAPRwAgDwLAICxyQAAhwUAAFUcAIBFHACAhz0AAF0cAIBxDACANgsAgKMFDwCB+QAAzKgDAGUcAIBICwCAjEkAAKPxAABtHACAdwwAgEILAICnlQAAfRwAgHUcAIDMrAMAzcgAAN0JAICHaQAA4AkAgIG9AACCeQAA4wkAgIe5AQBOCwCAkaUAAIEdAACdHACAVAsAgIgFAAClHACAm5EAAFoLAIDmCQCAjJEBANILAIDGCwCAwAsAgMwLAICDRQAAgrkBAIG5AQCApQEAPR4AgIZxAABgCwCAhEkAAIsVAACKPQAAiTkAAIhFAACP+QAAZgsAgLoLAICMBQAAp1EBAKZJAQBlDACAsHkAAKNZAQCMqQAAgKkAAIGpAACBlQAAgJUAAK1xAQBrDACAogsAgISNAABNHgCARR4AgKMhAABdHgCAVR4AgGUeAICBbQAAgG0AALEFAQCkOQAANR4AgIUcAIBsCwCAqAUAAJUcAICNHACArQkAAMywAQCBvQMAgL0DAIPNAwCtHACAtRwAgL0cAIDMvAEAzYQBAInpAwDMHAEAgdkCAIDFAgDNOAEAzDwBAMxoAgDNRAIAg00AAMUcAICH2QAAhy0AAIBFAACBEQAAggUAAHILAIDVHACAzRwAgN0cAIDMOAIAiBUAAIjhAACAbQAAgTkAAMyEAgDNUAEAo0UDAIQ5AQDlHACA7RwAgMzcAwDNSAIAbR4AgOkJAIB4CwCAhR4AgKoMAICBbQAA9RwAgH4LAICj0QAAfR4AgHUeAIDMiAQAgXUAAIB1AACBCwCAo7UAAMwABADNVAIA/RwAgIcLAICETQEAjQsAgAUdAIANHQCAzNAOAMwsAQDMAAUAzVwFAOwJAIDvCQCAzJgOAIHBAADMzA8AzDwOAMwIAQDNnA4AzNQPAM14DwDMPA4AzTgOAIHlAQCA5QEAg+UBAILlAQDUCQCAhOUBAIfhAQBBHQCAiaUBAIjZAQCByQcAOR0AgFEdAIBJHQCAzDQBAPUJAICA3QAAgekAAEMKAICD/QAAgM0AAIH5AACBEQcAaR0AgGEdAICJ0QAAzCgBAHkdAIBxHQCA4QsAgMw0AQDbCwCAgF0AAIFlAACjAQEAg2EAAIFxAACASQAAMR0AgBoMAICrCwCAiVUAACwMAIAyDACAWR0AgIEdAIDBGgCATwoAgIIdAACDeQcAgBkHAIEZBwCGIQAAhykAAISRBwDyCQCAimkAALHZBgCIaQAAifUHAEkKAICP3QcAjNkHAIkMAID4CQCAKR0AgPsJAICRoQcAgEEHAIFBBwCHBQAAyRoAgIKRBwDRGgCA2RoAgKOVBgCGhQcAp+0AAMyQAgDN4AUAsekAAKPBAABVCgCAWwoAgGEKAIBnCgCA/gkAgKVlBwDhGgCAzLgDAKhVBwDpGgCAbQoAgPEaAIABGwCACRsAgPkaAIABCgCAo60AAAQKAICMJQYABwoAgIxNAACpHQCAgm0AAIE9BgCCAQYAgWUAAKEdAICHZQAAuR0AgIcRBgCHrQEAsR0AgMxQAgDNxAIAgeEBAIDJAQCD4QEAkYkAAID9AQCB1QEAmR0AgIydAQCJNQAAcwoAgIB1AACBXQAAhi0AAIc1AACEfQAAERsAgIKFAQCDfQAAgJ0BAIGRAQAZGwCAj+kAAIzhAAB5CgCAfwoAgAoKAICIDQAAifkAAKc5AQCRHQCAiwoAgDgMAICjJQEAPgwAgLBZAACJHQCAggUAAMEdAICtFQEAjwwAgDEbAICGBQAAhQoAgCEbAIApGwCAp2kAAIANAQCBAQEAhzEAAKNJAACxGQEAzBACADkbAIAODACAkQoAgK1RAADM1AEAzfgBAKhBAABBGwCAzTgBAMw8AQCB7QMAlwoAgJ0KAICMDQAA7QsAgKMKAICBxQMAzGgCAKkKAICCxQMASRsAgITJAwCHKQAAhjEAAFkbAICCbQAAgAwAgFEbAICHYQAAYRsAgGkbAIAVHQCAzKgDAM2sAgCB+QAAiC0AAA0KAIAQCgCAEwoAgIw1AAC1CgCAuwoAgLHVAADBCgCAeRsAgMkdAICxCwCAzDABAEQMAIBKDACA0R0AgMwEAQDHCgCAcRsAgKelAADTCgCAo40AAMwUAgCAuQAAgbkAAKeFAAAIDACAgmUAAIEbAICMNQAA8wsAgMzsHADN/AMAiRsAgK6tAADZCgCAkRsAgMzABgDN0AYAsL0BAMyQBwDfCgCAgckBAMwYHQDNIAIAhBEAAOsKAIDNuAYAzKwGAKEbAIDlCgCAgSkAALEbAICpGwCAo+0BAMxAHQDNEAIAuRsAgMEbAICBCQAAyRsAgMxAHQDN0AIAqNkBABQMAIDMkAcAzBwBAMxgBgDNZAYA8QoAgBwKAIDRGwCAkSkBAP0KAICBzR8A2RsAgPcKAIDpGwCA4RsAgMzEBgDNwAYAgTEAAIDZAAAfCgCAIgoAgIK5AQCDRQEAgLkBAIG5AQCGXQEA8R0AgIRdAQDpHQCAzcAAAMzwAACIARwAiXkBAAEeAICPVQEAjGEBAPkdAICB3R4AgRUfAJkbAICBXR8AjIEfAIdBHwDMGAMAzWgDAIBNHwCBpR8AJQoAgIOpHwCMFR8AjNEeACgKAICHtR8AgJUfAIGZHwCBEQAAg70fAICFHwCBiR8A8RsAgIQ9AACbDACAiZkfAPkbAICIBQAABgsAgAEcAICADQAAgf0AAAkcAICj2R8Ao3keAKOFAAAMCwCArTUfAKdhHgCnqR8AoQwAgIQNAACnDACAozUfACsKAICtiR8AhHEAAKchHwCxPR4AsYUfAJUMAIDhHQCAEgsAgLcLAIDMtBwAzbAcAFAMAICxQR8AVgwAgJwLAIAZHgCAER4AgCkeAIAhHgCAgLkeAIG5HgCCIQEAgzUBAIRhAQAxHgCAhokBAIe9AQCIkQEAiekBANkdAICL/QEAjOUBAIINAAAJHgCAj90BAIO5AQCRrQEAgb0BAIC9AQCAoQEAgaEBAPkLAID/CwCAhD0AABEcAICJlQEAm4EBAIHNHgCAzR4AzPwCAM3wAgCB5QAAGRwAgIHtAACjpQAAzJABAM1cAgCHHQAAGwsAgKj5AAAhHACAJwsAgFwMAIBiDACAKRwAgIQFAAAxHACAo9UAACELAIA5HACAgVEAAMz0AQDN0AEALQsAgIc9AABRHACAMwsAgEEcAIA/CwCAhwUAAFkcAIBJHACAh/EDAIHZAwCBmQMAgZEAAGEcAIB0DACAjPkDAMwkAQCHuQMAgfkDADkLAIDMZAIAgskDAIyZAwBpHACAh9EDAI+RAwCB3QYAkfUDAMwABADN7AMAh2UAABkdAIBLCwCAcRwAgHoMAIBFCwCAzBgBAIg5AACBHACAeRwAgMxcAwCMJQAALgoAgMwsAQCx/QAAozkDADEKAIA0CgCAoRwAgKdZAwDMdAMAiAkAAKNRAwCpHACAXQsAgINtDQCnnQAApq0AAKOdAACxDQMAzCgBANULAICntQAAprUAAMkLAIDMMAEAgdUHAMMLAIDMKAEAzwsAgEEeAIBjCwCArYkAAGkLAICAzQEAgd0BAMxEAQDNnB4AhPUBAL0LAIDMWAEAzUwBAIDtAQCB/QEAg7UAAGgMAICM3QEAbgwAgMwIHgCM8QYAzDgBAM08AQBRHgCAiREAAIEFBgBJHgCAYR4AgFkeAIBpHgCAgz0AAIAhAACBOQAAgDkAAIEhAAA5HgCAiRwAgMwoAQCB2QYAbwsAgIH9BgDMJAEAmRwAgJEcAICxHACAgCEBAIE1AQCjBQAAuRwAgMEcAIDJHACAzIwFAM1AAgC3HAMAdQsAgIfNBwDZHACA0RwAgB0dAIDNiAAAzJAAAIzdBQCjhQAAFgoAgMzgAgDhHACAiNUHAIFNAACATQAAUQsAgOkcAIBXCwCAkTkHADcKAICIxQcApQsAgIrJBwDxHACAmz0AAIflBwBxHgCAgYUHAICFBwA6CgCAgvkHAILVBgCDRQAAgMkGAIHdBgCG4QYAewsAgIRRAACJHgCAipUGAIuZBgCIeQAAiZ0GAK0MAICPWQcAjG0HAPkcAIDMgAMAzSQCALARBwA9CgCAgR4AgCEdAIB5HgCAhAsAgICNAACBnQAAzOwDAM3oBAABHQCAigsAgKNJBwCQCwCACR0AgKO9BwARHQCAGwAAgOcHAIALAACApKUHAOsEAICKBQCAAwAAgKhhBwDZDQCAZQAAgMgDAIAbCQCArWkHAIAtAQCBPQEAgl0BAINRAQCEYQEAuAQAgKwEAICHYQEAiK0BAIm1AQCKvQEAjykVALwFAIAdDACAzHgCAM3YBQCB3QEAgXEAAOQLAICC/QEAhBkAACMMAICH7QEAIAwAgMw0BADNMAQA5wsAgJ9pFQAmDACAjMkBAM34BADM8AIAsUkBACEHAICB1QAAoxUBAKCZFQBzCACARgcAgIT1AADMKAQAzSwEAMMIAICveQEAqH0BADENAICqaQEAUgkAgLQlAQC1KQEAowkBAAIMAIDqBgCA7gYAgLIFAQCzPQEAvPUAAL39AAC+2QAAOAgAgLgBAQC5AQEAugEBADwHAIBDBwCAhgwAALOdAwCyiQMAswgAgIC9AwBpBwCAbAcAgBIJAIDkBgCA5wYAgDUIAICJhQMAzOQHAL+hAwAFDACA1wwAgIxlAADN5AwAzCQMAIlBAACIVQAAi0UAAIpFAACFtQMAhLUDAIeVAwCGgQMAAQ0AgAQNAIAHDQCAmCwAABMAAICmyAAAzYwGAMyoBgCFaQAAFwAAgDEAAIBpAACAzPADAAcAAIA1AACA0QwAgLGVAAAlDQCAs5UAALKVAAA1DQCAOA0AgEANAIA7DQCALg0AgHUAAICmBgCAJQAAgJgJAIAdIQCAv1UDAEMNAIAZIQCAFSEAgGEgAIC4bAAAlGUNAJIAAgCcrQEAnaUBAJqJAQCbiQEAmJkBAJmJAQDMIAYAzQQGAMxABgDNXAYAzDwHAM04BwDMvAcAhXUAAIABDwCBDQ8AaSAAgLqZAQCFBQAAcSAAgFkgAIC+hQEAgSkPAIAlDwBlIACAgiEPAIUpAAC0pQEAhREAAG0gAICziQ8AsoUPALHJAQCwAQwAt4EPALbtAQC17QEAtO0BAIFlAQCAZQEAg2EBALi1DwDMPAsAhHkBAIDhDwCB3Q8AdSAAgF0gAIDMyAQAzbgEAIWtAACFFQAAISEAgDkhAIDM6BkAzbQZAKRdAQBGDQCAok0CAKPxDwCgVQEAod0PAH8IAIBuCQCAOwkAgO0eAIBsCQCA9R4AgHcJAIDxHgCAsQgAgJMNAACtHgCA+R4AgITVDACF6Q4AlGkAAIfdDgC1HgCAmbQCAL0eAIDFHgCAsR4AgD0hAIC5HgCAn3QBAMEeAICRGA0AgI0OAIGBDgCGhQ4AlYwDAISJDgCXRAIAghEAAKm4AACA0QAAge0AAMkeAIBJDQCA5R4AgIVZDwCDiQAAoTQNAIFFDgCASQ4A6R4AgKU0AQCFYQ8AzPAUAB0fAIC5xAUAzMgDAM3cAwCA3QAAgcEAACUfAIC/kAUAhREAALHsBwCA9QAAgcEAAKEgAIC1jAYALR8AgLdABgCA3Q4AgekOAMwoAgDNtAIAgM0OAIH5DgCFKQAAg4UBAIB1AQCBsQEAgPEBAIHVAQCpIACANR8AgIUFAACxIACAgJkBAIG9AQCCfQAAk9UBAJThAQCFDQAAmSAAgCEfAICACQAAgRkAACkfAICTrQEAlC0AAKUgAICFDQAAMR8AgIUFAACtIACAOR8AgIUpAACCGQAAhTUAAIDxAACB4QAAtSAAgJ0gAIBBIQCAhQUAAGEhAICDdQEAgO0BAIEpAQDM8AEAzbABAEwNAIBdIQCAWSEAgKMNAIBdHwCAZR8AgIA9AACBDQAAbR8AgHUfAICALQAAgR0AAIIVAABhHwCAzSwBAGkfAIBxHwCAeR8AgIjFAwClIQCAzJACAM28AgCE7QMATw0AgIb5AwCdHwCAgIEDAIH9AwCAPQAAgTUAAIFJAACAQQAAzdwBAIJBAAClHwCAoR8AgKkfAIDNMAEAlJ0DAI0hAIDN8AEAzAwBAIG5AwCAxQMAg6EDAJOlAwCArQAAgdUAAICdAACBqQAAiSEAgFINAICBwQAAgMkAAIC1AACBgQAAhSEAgINpBADMcAMAzbQDAIEhAIDNPAEApg0AgJMBBADNjAIAzPQCAIANAACBNQAAlNkGANEfAIDVHwCA2R8AgMwIAQDNHAEAgREAAIApAACpIQCAghkAAICRAQCBkQEAzWgFAMyUAgDMEAkAzSgWAMxYDgDNeA4AzBQNAM3YCgDMKAwAzYwNAMzgFwDM4AoAzDgLAM30CACFEQAAVQ0AgIBRBwCBUQcA4SAAgM2QDgCFBQAA6SAAgMzYDgDN7AEA8SAAgM0ADgCFGQAAzfAPAM08DgDNVA4AzGgBAM1sAQDZIACAYQgAgJSZBwDMwDsAgGEBAIHZAACFKQAAzWQOAMx4AQDNfAEAga0HAICtBwCFZQAAgp0HAIBRAQCBUQEAlOEHAM3AAACEeQEAk8UHAIZhAQDlIACAiCEBAIUNAADtIACAzRgBAMzYAADNtAAAgN0HAIHNBwCZHwCAhQkAAM0fAID1IACA/R8AgN0gAIAFIACADSAAgBUgAIAJIACAASAAgK0hAIARIACAGSAAgMy4AgDNHAMAgGUAAIF1AACCfQAAHSAAgIUJAACFQQAAASEAgKkNAICAmQYAgSEHAIUZAACDfQAACSEAgIVZAAD9IACA+SAAgIDNAACB2QAAjR4AgIURAACE6QAAlR4AgIblAABBIACAgDUAAIENAACdHgCAhR0AAEkgAIClHgCAhQUAAFEgAICAVQAAgW0AAIJ9AACTRQAAlA0AAIUNAAA5IACAkR4AgIAJAACBEQAAmR4AgIUdAABFIACAoR4AgIUFAABNIACAgOkBAIHxAQCCBQAAqR4AgIUJAACFCQAAVSAAgD0gAICAbQEAgXkBAIIZAACDpQEADSEAgIV1AACFBQAAESEAgAUhAIAhIACAzMgCAM3cAgCsDQCAzR4AgIA5AACBOQAA1R4AgN0eAIDRHgCA2R4AgIAdAACBDQAA4R4AgCUgAICAxQAAgdUAAM3AAADMJAIAgNUAAIHFAACFOQAAg8kAACUhAICvDQCAgNUAAIEJAACFBQAALSEAgP0eAICBIACAgAkAAIERAAAFHwCAk5kAAJS5AAANHwCAhWUAAIU9AACJIACAk10AABUfAICFEQAAzXAFAMx0BQCUATwAkSAAgHkgAIDNKAEAhSAAgI0gAICFGQAAlSAAgH0gAIA1IQCAKSEAgCkgAICFJQAAhTkAAMz4AgDNxAMAzTwBALINAICBlQMAgI0DAM3EAQCCpQMAhVEAAIVJAADMKAEAzSwBAM04AQDMPAEAgGk+AIFpPgBJIQCARSEAgM04PADMVDwAgdE8AJOdPgDMSAEAzcgCAM00AQBNIQCAlLk+AFgNAICAoT4AgaE+AIKhPgCIjTwAVSEAgIWtAACALQAAgSEAAIXVPwCVHwCAgO0AAIHxAACGpQAARR8AgISpAADNJAEAzSgBAE0fAICI+T4AhfE/AFUfAIBJHwCAhcU/AM0wAQDNEAEAzfQGAIDdAQCB6QEAzbwGAM1wBgDM4AYAzVwBAMxoBgDNkAYAzWQGAM14BgDMrAcAzagHAMzoBwDNyAcAgk0/AIP9AgCANQIAgekCAFEfAIBZHwCAgAU9AIV9AQBRIQCALSAAgM0UAQApDgCAge0BAIDhAQDNPAEAgs0BAM0sAQCCdQEAgW0BAIBZAQCAZQEAgcUAAIUfAIDNJAEAzTgBAILxAACB+QAAgFkBAIApAACBcQAAzBgBAM18AQDNLAEAjR8AgIEdAACAHQAAiR8AgJEfAIBxIQCAzSQBAMzkPQDNXA8AzegAAMwMAQCA1QEAgckBAIKZAACD5T8ACR8AgBEfAIAZHwCAMSEAgCMOAIB1IQCAPR8AgDEgAIBBHwCALA4AgIBNPwCBQT8AfR8AgGkhAICBHwCAZSEAgIAlPwCBKT8Ak5E/AIN9AAAmDgCAlEEAAMzYAgDNrAIAbSEAgJNVAACACQAAgR0AALUNAIB9IQCAlEEAAK0fAICAnQAAgaEAAIAdAACBEQAAhKUAALUfAICGpQAAvR8AgIjxAACC0QAAgdkAAIDNAACAJQAAgSkAAIIFAADFHwCAsR8AgLkfAIDBHwCAk7EAAJQRAADJHwCAgB0AAIEVAACAJQAAgS0AAII9AAB5IQCAgO0AAIHRAACCFQAAg4EAAIHQPQA1IACAzCACAM3cAQCFeAIAkSEAgC8OAICZIQCAiRgDAN0fAICALQAAgTUAAIAJAACBbQAA5R8AgMEgAICRsQAAkKkAAJPdOwCSAQQAlaUAAJSVOwDtHwCAlqEAAIUJAACTQQAAySAAgPUfAICFBQAA0SAAgJT1AAC5IACAgLkAAIHdAACC5QAA4R8AgOkfAICF6QAAgAkAAIE1AACFBQAAxSAAgPEfAICFHQAAzSAAgPkfAICFBQAA1SAAgLHBBQCwxQMAvSAAgLLFAwC12QUAtM0DAJ0hAICFOQAAuf0DAKEhAICVIQCAuw0AgM0NAIAXDgCAAR8AgAUOAIDTDQCAzIgCAAsOAIDN4D4AzZABAMwkAQBwDQCAjg0AgEEOAIB9DgCAgLEAAM3UPgDN5D4Agw4AgMy8PgDNuD4AgNEDAIHtAwCC/QMAhmkAAD4OAICFnQMAzTwBADgOAIDM6AIAzTw/AIjlAADNGAEAiQ4AgIhBAAA7DgCAdw4AgM0sAQCVDgCAgNUAAJsOAICG4QAAhukAAEcOAIDNJAEAoQ4AgM0QAQCI0QAAiCkAAMz4AgBNDgCAzfgCAMwkAQCnDgCAhS0DAMygPgDNbD4AgNUDAIHNAwCCAQMAg/kDAMxkAwDNzAIARA4AgM0kAQDMDAIAzQgCAIERAADMnAMAzLA+AM20PgDMxD4AzcA+AMyAPgDNuD4ArQ4AgMyEAgDMmD8AzVA+AMwgPgDNoD4AzQw/AM0wPwDNeD8AzQQ/AIhZAAC/DgCAzfgBAMzEAQBKDgCAxQ4AgMsOAIDMFAIAzAgBAM3IAQCIBQAA0Q4AgNcOAIDMKAIAuQ4AgIgNAACG0QAAgB0BAITNAACI9QAAzDwCAIQ1AQDMRAIAhikBAIAOAICIZQEAhg4AgKdEBQBiDgCAi+0AAIjtAACBDQAAiCUAAIZlAADMcAIAzXQCAMwwAgDN2AUAXA4AgIwOAICAOQAAXw4AgMzgBQB6DgCAzCgBAM0UAQCGJQAAiFUAAAgOAICGhDAAxA0AgIDVBwCG/QcAmA4AgMwkAgCIPQAAng4AgGsOAICIPQAApA4AgMxIAgDNeAIAUA4AgKoOAICXwAUAlnAFAJUYBQCAaQAAk1gFAIE5AACIZQAAkPg8AIZZAACeqAUAhEUAAGgOAIDM1AIAmrQFAIBdAACYrAUAp+wEAIgRAADM2AIAzdwCAKO8BACwDgCAzGACAMIOAIBuDgCAyA4AgK0IBADODgCAq/QEAMwsAgCIBQAA1A4AgLfoAwC2HAQAtSgEAMwAAgCzKAQAi3kAAIh9AACwdAQAhkEAAL6kAwCEdQAAiB0AANoOAIC6TAMAzNwDALj8AwCDqAIAiA0AALwOAICIFQAAh5QCAMw4AgBlDgCAzAQCAIvcAgCPDQAAcQ4AgI8ZAADMIAIAdA4AgI3wAgCIdQAAmCADAJksAwCPDgCAlA0AgMxMAgCWcAMAzCQCAIg9AACSDgCAzCwCAIgFAACzDgCAzCQCAIgNAAC2DgCAh/UAAKjUAwCpxAMA3Q4AgNlgAgDSDwCA1Q8AgNsPAICUNQAAkzEAANloAgDYDwCA2UwCAJQFAADeDwCAlSEAAJQpAABQEACAdBYAgEMXAIDSFgCA2WACADcXAIC12AMAtPADAJQ1AADZWAIAWhcAgJQFAADZVAIAlA0AADEXAIDgdAEAisgAALwVAACIyAAA4IACAIcXAICBoAAApOwCAKTIAgCoXAAAvA0AAJkXAIDghAIAvAUAAJ0XAICk+AIA4PQCALDMAwCV0AAAXRcAgLPgAwCmyAIAp2ACAJLYAABkFwCAvsEAAGsXAICXwQAAchcAgHkXAICAFwCAzXg/AMy8PwC+gA0AixcAgLx4DAC9gA0AuvQMALtUDAC49AwAkhcAgLYXAIC3uAwAuhcAgLWMDACyoAMAs6AMAKEXAICxQAMArnACAK9kAwC4BQMArUgDAKgXAICvFwCAqEQDAKnYAwDaFwCAp9gDAKRoAgCliAMAtjUDALc9AwCSyAIAtT0DAJldAQCYTQEAm2UBAJppAQCdZQEAnGUBAJ+FAQCemQEAh5wCAL6tAACWpQAAl70AAMw0BQDNjDcAzLg4AM2sOACflQEAth0AAJ2ZAQCc9QEAs7EBAK54AgDhFwCAvhcAgJk9AADFFwCAmxkAAJoJAADMFwCA0xcAgOBIAgCeCQAArFwCAK30AgD6FwCA9hcAgP4XAIDoFwCAh2ADAO8XAICvVAIAvhEAAJcFAAACGACA4KwCAAYYAICG+AMAh+wDAOC0AgAOGACAr0gCAK6QAgDgPAIAvg0AAAoYAICXGQAA4NgCAIaEAwCWEQAAvwAMAJ1tAACcYQAAEhgAgLFMAgCzUAIAlQ0AABYYAICGnAMA4MgCALMEAgCCBQAAIhgAgLNQAgCVDQAAJhgAgBoYAIAeGACA4LQCAIaMAwCH3AMAvg0AAJVpAACWeQAAKhgAgLToAgC1UAIAlwUAADIYAIDg1AIAtPQCAL4ZAADgoAIALhgAgODUAgCZjAMAt9QCAIoFAAA2GACAOhgAgIoVAAC3NAIAjx0AAD4YAIBCGACAswUAAEYYAICzBQAAWxgAgJwJAACdCQAATRgAgFQYAICMBQAAYhgAgG0YAIB0GACAexgAgJ9JAACCGACAiRgAgGYYAICQGACAlxgAgNkYAIDPGACA6hgAgOAYAICeGACAg8kBAIH5AQCsGACAsxgAgLoYAIDBGACAyBgAgKUYAICAtAIApYgDAOEIAgCuHQAA8RgAgLwJAACN9QEA9RgAgOEAAgCSlQEA45QQAJNFAACXiQEAhRQAAId4AQCGAAQARjoAgEo6AIBOOgCAUjoAgFY6AICdeQAA74xoAJyhAQBaOgCAXjoAgKKZAABiOgCAZjoAgGo6AIBuOgCAp4kAAHI6AIB2OgCAqUkBAHo6AICsqQAAfjoAgII6AICGOgCAsyUBAIo6AICOOgCAkjoAgLchAQC2OQEAtTEBAJY6AICaOgCAufkAALkRAQC4GQEAnjoAgKI6AICmOgCAqjoAgICwAQCEiAIArjoAgIPIAQCEVAMAhFwEALI6AICEXAUAgN0DAIEtAACCMQAAvjwCALo6AIC+OgCAh4gDAIacBACzLQMAwjoAgMY6AIC+AAQAvhwFALbRAwC12QMAyjoAgLv5AwC68QMAmljTAYTgBwC/xQMAvtkDAL3dAwC83QMAvgAYAKUFAwCmDQMAzjoAgIQcGADSOgCA1joAgKPxAwCsAQMArQEDAK4FAwCvGQMArKQbAq3cGgKqLQMAqyUDAL5MGQC+SBoA2joAgL6AGwC04BoCtdQdArYwHgLvCAIA3joAgOGgAQC6OBoC4/gCALoAAAC9ZBwCvvQcAr8AEAKRBNMBkOT2AeBEAQCSCD4C4joAgOY6AIDqOgCA7joAgL6sHADyOgCA9joAgPo6AID+OgCAAjsAgAY7AIAKOwCAgbBtAICAAQCDHFIAgth3AIUgmgCEkL4AhwjPAIaM5gCJbDcBiOAsAYsYfgGK2BMBjeClAYzwWgGP/OsBjliPAbDVFwCxAWgAso1rALOdawC0SWsAtZVvAA47AIDgcAEAEjsAgBY7AIAaOwCAHjsAgIAZAACBGQAAggUAACI7AIAqOwCAoaUCAKJJBwCjQQcApEEGAKXVGwCm3RsAp8EaAKgBHACp4R8AqkkfAKsBEACs9RMAra0TAK4BFACv+RcAqDEGAKkxBgCqTQYAq0UGAKxNBgCtmQYAro0GAK+FBgCGgAMAhxgDAC47AIAyOwCANjsAgDo7AIA+OwCAQjsAgLhtBwC5dQcAun0HALt1BwC8bQcAvc0HAL75BwC/+QcAsKkGALGFBgCyeQcAs3kHALRpBwC1aQcAtl0HALdVBwC2OgCAs8EGAEY7AIAmOwCAth0GAEo7AIBOOwCAtcEGALppBgC7RQYAUjsAgFY7AIC+qQcAv6kHALypBwC9qQcAo4UGAFo7AIBeOwCAYjsAgGY7AICmWQYApYUGAGo7AICrAQYAqi0GAG47AIByOwCAr+0HAK7tBwCt7QcArO0HAKjBBgCpLQEAqiUBAKs9AQCsJQEArS0BAK4lAQCvlQEAdjsAgHo7AIB+OwCAgjsAgIY7AICCvQAAgb0AAIC9AAC4nQEAua0BALqlAQC7bQAAvHUAAL19AAC+dQAAv20AALD1AQCx/QEAssEBALPBAQC0tQEAtb0BALa1AQC3rQEAijsAgI47AICSOwCAs6EBAJY7AIC1oQEAtqEBAJo7AICGgAEAh8QBALo9AQC7NQEAvBkBAL0ZAQC+fQEAv3UBAKPtAQCeOwCAojsAgKY7AICqOwCApu0BAKXtAQCuOwCAq3kBAKpxAQCyOwCAtjsAgK85AQCuMQEArVUBAKxVAQC6OwCAvjsAgMI7AIDGOwCAyjsAgOGsAQDOOwCA42AGANI7AIDWOwCA2jsAgO9UBgDeOwCA4jsAgL60GgDmOwCA6jsAgO47AICGaBwAh4wDAPI7AID2OwCA+jsAgP47AICAOQAAgTkAAIIFAAACPACACjwAgA48AIASPACAFjwAgKgdAwCpQQMAqkEDAKtBAwCsQQMArUkDAK5xAwCvcQMAhCAdABo8AIAePACAIjwAgCY8AIAqPACALjwAgDI8AIC46QAAufUAALr9AAC78QAAvJEAAL2RAAC+iQAAv4kAALDhAACx4QAAsuEAALPhAAC04QAAte0AALbZAAC32QAA4wwHAOEgBwDhMAEA4wgHADY8AIA6PACAPjwAgEI8AIBGPACASjwAgE48AIBSPACA75gHAFY8AIBaPACA74gHALOJAgBePACAYjwAgL6AGgBmPACAtokCALWJAgBqPACAu2UBALplAQBuPACAcjwAgL9pAQC+ZQEAvXUBALx1AQC3PQYAtj0GALU9BgC0IQYAszUGALI1BgCxAQYAsAkGAL9ZBgC+UQYAvVkGALxNBgC7bQYAunkGALlxBgC4eQYAgJ0AAIGtAACCpQAAejwAgH48AICCPACAhjwAgIo8AICvcQYArmkGAK1tBgCsbQYAq4EGAKqZBgCpkQYAqJkGAAY8AIB2PACAjjwAgKPFHQCSPACApcUdAKbFHQCWPACAhgADAIdkAwCqKR4AqykeAKw5HgCtOR4ArikeAK8lHgCzOR4AmjwAgJ48AICiPACApjwAgLb9HgC1/R4AqjwAgLvZHgC60R4ArjwAgLI8AIC/aR8AvmEfAL1pHwC8wR4AqPEeAKnxHgCq8R4Aq/EeAKw1HgCtPR4ArjUeAK8tHgC2PACAujwAgL48AIDCPACAxjwAgMo8AIDOPACA0jwAgLjlHwC57R8AuuUfALv5HwC86R8AvZEfAL6RHwC/jR8AsFUeALFdHgCyVR4As/0fALTlHwC17R8AtuUfALfdHwCjeR8A1jwAgNo8AIDePACA4jwAgKa9HwClvR8A5jwAgKuZHwCqkR8AhogAAIdMAQCvKR4AriEeAK0pHgCsgR8AgEkAAIFJAACCWQAAs5keAOo8AIC1iR4AtlEBAO48AIDyPACA9jwAgLotAQC7JQEAvD0BAL0lAQC+JQEAvxUBAKhNHgCpVR4Aql0eAKtVHgCsTR4ArZ0BAK6JAQCvgQEAhKwBAPo8AID+PACAAj0AgAY9AIAKPQCADj0AgBI9AIC4ZQEAuW0BALplAQC7fQEAvGUBAL1tAQC+ZQEAv9kAALClAQCxrQEAsqUBALO9AQC0rQEAtZ0BALaVAQC3XQEAo9UdABY9AIAaPQCAHj0AgCI9AICmHQIApcUdACY9AICraQIAqmECACo9AIAuPQCAr1kCAK5pAgCtaQIArHECADI9AIA2PQCAOj0AgD49AIBCPQCARj0AgEo9AIBOPQCAgDkAAIE5AACCBQAAUj0AgFo9AIBePQCAh0ADAIZcBACETAQAYj0AgGY9AICEBAUA4yABAGo9AIDhqAEAbj0AgO+UGgByPQCAdj0AgHo9AIB+PQCAgj0AgIY9AICKPQCAs6EDAI49AICSPQCAlj0AgJo9AIC2fQMAtX0DAJ49AIC7WQMAulEDAKI9AICmPQCAv/0AAL79AAC9/QAAvEEDAKhRAgCpWQIAqmkCAKtpAgCstQIArb0CAK61AgCvrQIAhKgHAKo9AICuPQCAsj0AgIKpAAC2PQCAgKkAAIGpAAC4aQEAuWkBALoJAQC7CQEAvBkBAL0ZAQC+CQEAvwkBALDVAgCx3QIAstUCALNpAQC0eQEAtXkBALZpAQC3YQEA4bgBAOHUHwDjOB8A4wwbALo9AIC+PQCAwj0AgMo9AIDOPQCA0j0AgNY9AIDaPQCAvjwJAN49AIDvhBsA74QbAKOhAgDiPQCAhugEAIe8BQDmPQCApn0CAKV9AgDqPQCAq1kCAKpRAgDuPQCA8j0AgK/9AQCu/QEArf0BAKxBAgCzhQYAxj0AgPY9AID6PQCA/j0AgLaJBgC1jQYAAj4AgLuRBgC6iQYABj4AgAo+AIC/9QYAvokGAL2BBgC8iQYADj4AgBI+AIAWPgCAGj4AgB4+AIAiPgCAJj4AgO+EHQAqPgCA4QAEAC4+AIDj/AQAgBEAAIEdAACCBQAAMj4AgKjxBgCp8QYAqg0GAKsFBgCsBQYArQkGAK49BgCvNQYANj4AgDo+AICGiAAAhxADAD4+AIBCPgCARj4AgEo+AIC4EQYAuRkGALohBgC7IQYAvPUHAL39BwC+9QcAv+kHALBNBgCxVQYAsl0GALNVBgC0TQYAtTEGALYxBgC3MQYAo4UHAE4+AIBSPgCAVj4AgFo+AICmiQcApY0HAF4+AICrkQcAqokHAGI+AIBmPgCAr/UHAK6JBwCtgQcArIkHAGo+AICz4QYAbj4AgHI+AIC25QYAdj4AgHo+AIC18QYAur0GALuNBgB+PgCAgj4AgL59AQC/ZQEAvJUGAL11AQCoHQYAqSUGAKotBgCrJQYArD0GAK0hBgCuXQYAr00GAIY+AICKPgCAjj4AgJI+AICWPgCAgrkDAIGxAwCAuQMAuO0BALmFAQC6jQEAu4UBALydAQC9hQEAvo0BAL+FAQCwPQYAsQ0GALIFBgCz5QEAtP0BALXlAQC25QEAt9UBAKOlBQCaPgCAnj4AgKI+AICqPgCApqEFAKW1BQCuPgCAq8kFAKr5BQCGCAwAhxwDAK8hAgCuOQIArTECAKzRBQCyPgCAs/ECALY+AIC6PgCAtlUDAL4+AIDCPgCAteECALpxAwC7eQMAxj4AgMo+AIC+MQMAvz0DALxRAwC9UQMAqCUCAKk1AgCqPQIAqzUCAKwtAgCtkQMArpEDAK+RAwDOPgCA0j4AgNY+AIDaPgCArAAAAN4+AIDiPgCA5j4AgLiZAwC5rQMAuqUDALttAwC8dQMAvX0DAL51AwC/bQMAsPEDALH5AwCywQMAs8EDALSxAwC1vQMAtrUDALepAwDqPgCA7j4AgPI+AID2PgCA+j4AgP4+AIACPwCA76gaAL5oDADhlAEABj8AgOMcBgCADQAAgXEAAIJxAAAKPwCAo/UDAA4/AIASPwCAhEwCABo/AICmUQIApeUDAB4/AICrfQIAqnUCAIbIDACHLA0ArzkCAK41AgCtVQIArFUCAOFQBgAiPwCA4xQHAITADAAmPwCAKj8AgC4/AIAyPwCANj8AgDo/AIA+PwCAQj8AgEY/AIBKPwCA73gbAL74DwBOPwCAUj8AgFY/AICzjQEAWj8AgLWZAQC2jQEAXj8AgFY9AIBiPwCAuoUBALtNAQC8VQEAvV0BAL5VAQC/SQEAo0EOABY/AIBmPwCAaj8AgG4/AICmQQ4ApVUOAHI/AICrgQ4AqkkOAHY/AIB6PwCAr4UOAK6ZDgCtkQ4ArJkOAIBtAACBCQAAgh0AAH4/AIDvGAkAgj8AgIY/AICKPwCA4zwNAI4/AIDhWAwAkj8AgIbQAACHvAMAlj8AgJo/AICokQ4AqZkOAKrJDgCrxQ4ArN0OAK3BDgCuwQ4Ar/UOAIToAACePwCAoj8AgKY/AICqPwCArj8AgLI/AIC2PwCAuMEPALnBDwC6wQ8Au8EPALzBDwC9wQ8AvsEPAL/1DwCwjQ4AsUUOALJNDgCzRQ4AtF0OALVBDgC2QQ4At0EOAKhRDgCpWQ4Aqo0OAKudDgCshQ4ArY0OAK6FDgCvvQ4Auj8AgL4/AIDCPwCAxj8AgMo/AIDOPwCA0j8AgNY/AIC4kQ4AuZkOALqtDgC7RQEAvF0BAL1FAQC+RQEAv3UBALDFDgCxzQ4AssUOALPdDgC0xQ4AtbUOALa9DgC3tQ4AswUOANo/AIDePwCA4j8AgOY/AIC2DQ4AtQ0OAOo/AIC7CQ4AugEOAO4/AIDyPwCAv3EOAL4BDgC9CQ4AvBEOAIJtAACjQQ4AgFUAAIFlAACmSQ4A+j8AgP4/AIClSQ4AqkUOAKtNDgCGSAAAh3gAAK5FDgCvNQ4ArFUOAK1NDgCoXQIAqWECAKplAgCrdQIArG0CAK2xAgCusQIAr7ECAITsBAACQACABkAAgApAAIAOQACAEkAAgBZAAIAaQACAuHEDALlxAwC6cQMAu3EDALzVAwC93QMAvtUDAL/NAwCw0QIAsdECALLRAgCz0QIAtFEDALVRAwC2UQMAt1EDAB5AAICz6QIAIkAAgL6ABAC2NQIAJkAAgCpAAIC14QIAuhECALsRAgAuQACAMkAAgL6RAwC/kQMAvAECAL0BAgA2QACAOkAAgKOlAgA+QACApa0CAEJAAIBGQACApnkCAEpAAIBOQACAq10CAKpdAgCtTQIArE0CAK/dAwCu3QMAqNUCAKndAgCqLQEAqyUBAKw9AQCtJQEAri0BAK8lAQBSQACAVkAAgFpAAIBeQACAYkAAgGpAAIBuQACAckAAgLiFAQC5iQEAup0BALuVAQC8sQEAvbEBAL55AAC/eQAAsF0BALHlAQCy4QEAs/kBALTpAQC13QEAttUBALe9AQDh8A4AdkAAgOMUDgB6QACAgb0AAIC9AAB+QACAgq0AAIYABACH7AUAgkAAgIZAAICKQACAjkAAgO9gDgCSQACAlkAAgJpAAICFXH0AnkAAgKJAAIDjZAEApkAAgOG0AQCqQACA76AOAK5AAICmPgCAhPgFALJAAIC2QACAukAAgLMlBgBmQACAvkAAgMJAAIDGQACAtiUGALU1BgDKQACAu6EGALoZBgDOQACA0kAAgL+ZBgC+rQYAva0GALy1BgCCbQAA7zAEAIBVAACBZQAAvlwDANZAAICG+AAAh2wDANpAAIDeQACA4kAAgOZAAIDqQACA40QEAO5AAIDhjAcAo6UGAPJAAID2QACA+kAAgP5AAICmpQYApbUGAAJBAICrIQYAqpkGAAZBAIAKQQCArxkGAK4tBgCtLQYArDUGAA5BAICz+QcAEkEAgBZBAIC2SQcAGkEAgB5BAIC1UQcAulEHALtRBwAiQQCAJkEAgL41BwC/OQcAvEUHAL09BwCoNQYAqT0GAKo1BgCriQYArJ0GAK2NBgCusQYAr7EGACpBAIAuQQCAMkEAgDZBAICADQAAgbEAAIKxAAA6QQCAuKEGALmtBgC6vQYAu7UGALytBgC9XQEAvlUBAL9NAQCw0QYAsdEGALLVBgCzrQYAtLUGALW5BgC2qQYAt6UGAKO9BgA+QQCAQkEAgISEAgC+kAEApg0GAKUVBgBKQQCAqxUGAKoVBgCGCAAAh3wBAK99BgCucQYArXkGAKwBBgBOQQCAs60BAFJBAIBWQQCAtqkBAFpBAIBeQQCAta0BALptAQC7dQEAYkEAgGZBAIC+XQEAvzUBALxlAQC9VQEAqGECAKlhAgCqYQIAq2ECAKxhAgCtbQIArp0CAK+VAgBqQQCAbkEAgHJBAIB2QQCAekEAgH5BAICCQQCAhkEAgLiVAgC5nQIAuqECALuhAgC8cQMAvXEDAL5xAwC/cQMAsO0CALH1AgCy9QIAs8UCALTdAgC1tQIAtrECALexAgCKQQCAjkEAgJJBAICj5QIAlkEAgKXlAgCm4QIAmkEAgJ5BAICiQQCAqiUCAKs9AgCsLQIArR0CAK4VAgCvfQIApkEAgKpBAICuQQCAhEB8AIAVAACBHQAAggUAALJBAIC+7HwAukEAgIZIfQCHCAMAvkEAgMJBAIDGQQCAykEAgKidAgCpxQIAqsECAKvBAgCsxQIArc0CAK7xAgCv8QIAzkEAgNJBAIDWQQCA2kEAgMkAAADeQQCA4kEAgOZBAIC4wQEAucEBALrBAQC73QEAvM0BAL31AQC+/QEAv50BALBBAQCxQQEAskEBALNBAQC0QQEAtUEBALZBAQC3QQEA4TgGAOpBAIDjaAYA7kEAgPJBAID2QQCA+kEAgISUfQC+rHwA/kEAgAJCAIAGQgCAvrh/AApCAIDvEAEADkIAgBJCAIAWQgCAGkIAgB5CAIDhkAEAIkIAgONEAAAqQgCAgS0AAIAtAADvgAAAgjkAAC5CAIAyQgCA9j8AgDZCAIDhsH8AtkEAgOPUfAA6QgCAJkIAgD5CAICGuAAAh9QCAEJCAIBGQgCASkIAgE5CAIBSQgCAVkIAgO8gfABaQgCAs4l9AF5CAIBiQgCAZkIAgGpCAIC2jX0AtY19AG5CAIC7RX4AukV+AHJCAIB2QgCAv0V+AL5FfgC9VX4AvFV+AKNJfQB6QgCAfkIAgIJCAICGQgCApk19AKVNfQCKQgCAq4V+AKqFfgCOQgCAkkIAgK+FfgCuhX4ArZV+AKyVfgCCbQAAszF+AIBVAACBZQAAtvF/AITcAwCWQgCAtSF+ALrNfwC70X8AhgAEAIfUAAC+dX8Av3l/ALzBfwC9wX8AqOV/AKn1fwCq/X8Aq/V/AKztfwCtNX4Arj1+AK81fgCaQgCAnkIAgKJCAICmQgCAqkIAgK5CAICyQgCAtkIAgLjZfgC54X4AuuF+ALvhfgC85X4Avel+AL6ZfgC/mX4AsE1+ALFRfgCyUX4As1F+ALT1fgC1+X4Atul+ALfpfgCjdX8AukIAgL5CAIDCQgCAxkIAgKa1fgClZX8AykIAgKuVfgCqiX4AzkIAgNJCAICvPX4ArjF+AK2FfgCshX4A1kIAgLMxfgDaQgCA3kIAgLbFAQDiQgCA5kIAgLXRAQC6yQEAu8kBAOpCAIDuQgCAvs0BAL+xAQC8yQEAvckBAKjdfQCp9X0Aqv19AKvxfQCsHQIArQECAK45AgCvOQIA8kIAgPZCAID6QgCA/kIAgIIFAAACQwCAgBEAAIERAAC4EQIAuRkCALohAgC7IQIAvNUCAL3dAgC+1QIAv80CALBJAgCxSQIAslkCALNZAgC0TQIAtTECALYxAgC3MQIAvgADAKNxfQCEiAIAvoAEAKaFAgAKQwCADkMAgKWRAgCqiQIAq4kCAIYoBACHDAMAro0CAK/xAgCsiQIArYkCABJDAICEyAMAhcwFALPlAwAWQwCAteUDALbtAwAaQwCAHkMAgCJDAIC6bQMAu2UDALx9AwC9ZQMAvmUDAL9VAwAmQwCAKkMAgL8ABACjJQIALkMAgKUlAgCmLQIAMkMAgDZDAIA6QwCAqq0CAKulAgCsvQIAraUCAK6lAgCvlQIAPkMAgEJDAIBGQwCASkMAgE5DAIDjzAMAUkMAgOGsAQBWQwCA7xwDAFpDAIBeQwCAYkMAgGZDAIBqQwCAbkMAgOFwfwBGQQCA4wR+AHJDAIB6QwCA4ZQBAH5DAIDjWAEAgNkAAIHZAACCJQAA7+R+AIJDAICGQwCA7+B+AIpDAICzAQEAjkMAgIboBwCHLAQAkkMAgLY1AQC1BQEAlkMAgLvxAAC64QAAmkMAgJ5DAIC/sQAAvtEAAL3ZAAC84QAABkMAgHZDAICiQwCApkMAgKEBBACgEQQAoxkAAKLFBACotQYAqb0GAKrpBgCr/QYArO0GAK3VBgCu3QYArz0HALBFBwCxVQcAslUHALNtBwC0dQcAtRUHALYdBwC3FQcAuC0HALk1BwC6MQcAuw0HALwZBwC9GQcAvgkHAL8JBwCjQQYAqkMAgK5DAICyQwCAtkMAgKZ1BgClRQYAukMAgKuxBwCqoQcAj8ltAL5DAICv8QcArpEHAK2ZBwCsoQcAld11AJTBdACXzXAAli1zAJFdaACQVWgAk9l0AJJNaQCd5XgAnB17AJ9tBwCeuXgAmR1/AJhVcACboXwAmvl8AIJhbACDhWkAwkMAgMZDAICGEXUAhxF1AISVaQCFjWgAij10AIvFcgDKQwCAzkMAgI7dfgCPMX0AjD1xAI2dcQCSGX0Ak716ANJDAIDvkAkAltUGAJdRBQCUXXkAlQl5AJpxBQCbvQUA1kMAgNpDAIDeQwCA4agFAJx5AQDjuAgAoYUBAOJDAICjqQ0AogEMAKUBCACkOQ0Ap6kJAKa9CQCppRUAqAEUAKsBFACq/RUArbkRAKyxEQCvARwArqEQALH9HACw5R0As+kZALIBGAC1ASQAtH0ZAIQUAAC+FAAAgI0AAIGVAACCbQAA6kMAgIZQDwCHZAAA7kMAgPJDAIC61QcAu90HALjBBwC5wQcAvjEEAL8xBAC88QcAvfEHALKtBwCztQcAsK0HALGlBwC2nQcAt/UHALSlBwC1lQcAqmkHAKtpBwCoaQcAqWkHAK5pBwCvaQcArGkHAK1pBwD2QwCA+kMAgP5DAIACRACABkQAgApEAIAORACAEkQAgKgRBQCpHQUAqjkFAKs5BQCsLQUArVEFAK5JBQCvQQUAFkQAgBpEAIAeRACAIkQAgCZEAIAqRACALkQAgDJEAIC4XQIAuWkCALrBAwC7wQMAvPkDAL35AwC+kQMAv7UDALAJBQCxCQUAsuECALPhAgC0dQIAtX0CALZ1AgC3bQIAs7EEAIQAAgC+BA0ANkQAgDpEAIC20QQAtaUEAD5EAIC7zQQAus0EAEJEAIBGRACAv7kDAL6xAwC9NQMAvDUDAEpEAICj9QQATkQAgFJEAICmlQQAWkQAgF5EAICl4QQAqokEAKuJBACHqA0AhswMAK71AwCv/QMArHEDAK1xAwDhUAYA4TQHAONAAADjWAcAgNEAAIHdAACC1QAAYkQAgGZEAIBqRACAbkQAgHJEAIB2RACAekQAgO+cAADvyAcAfkQAgIJEAICzNQIAhkQAgLW1AQCKRACAjkQAgLa1AQC+7AwAkkQAgLuRAQC6mQEAvVEBALyJAQC/UQEAvlkBAKjtDQCp/Q0AqvUNAKttDgCsdQ4ArX0OAK51DgCvbQ4AVkQAgJZEAICaRACAnkQAgKJEAICmRACAqkQAgK5EAIC49Q4Auf0OALr1DgC7QQ8AvEEPAL1JDwC+cQ8Av3EPALAVDgCxHQ4AshUOALPNDgC01Q4Atd0OALbVDgC3zQ4Ao30NALJEAIC2RACAukQAgL5EAICm/Q4Apf0OAMJEAICr2Q4AqtEOAISoAgDGRACArxkOAK4RDgCtGQ4ArMEOAIBNAACBVQAAglUAALNRDwDKRACAtXEPALZxDwDORACAhuAAAIcEAwC6XQ8Auy0PALw1DwC9OQ8Avi0PAL8lDwCoVQ4AqV0OAKqVDgCrrQ4ArLUOAK29DgCutQ4Ar60OANJEAIDWRACA2kQAgN5EAIDiRACA5kQAgOpEAIDuRACAuGkBALlpAQC6eQEAu3kBALxpAQC9aQEAvt0BAL/VAQCw1Q4AsaUOALKtDgCzoQ4AtKUOALWtDgC2nQ4At1kBAKMdDgDyRACA9kQAgOZDAID6RACApj0OAKU9DgD+RACAq2EOAKoRDgACRQCABkUAgK9pDgCuYQ4ArXUOAKx5DgAKRQCADkUAgBJFAIAWRQCAGkUAgB5FAIAiRQCAJkUAgIANAACBFQAAgh0AACpFAIAuRQCAMkUAgIR4AQC+FAAA4xQPADpFAIDh4A0AhAADAIawBACHFAMAPkUAgEJFAIBGRQCASkUAgE5FAIBSRQCA78APAFZFAIBaRQCAXkUAgGJFAIBmRQCAakUAgLNtAwBuRQCAtX0DALZ1AwByRQCAdkUAgHpFAIC6UQMAu1EDALz1AwC9/QMAvukDAL/hAwB+RQCAgkUAgIZFAICKRQCAjkUAgJJFAICWRQCAmkUAgKhxAgCpeQIAqokDAKuJAwCsmQMArZkDAK6JAwCviQMAsPkDALH5AwCyTQMAs0UDALRBAwC1SQMAtnEDALdxAwC4IQMAuSEDALohAwC7IQMAvCEDAL0hAwC+IQMAvyEDAICdAQCBEQAAghEAAIQEBQDvFAAAnkUAgKJFAIC+EAUA48gAAKpFAIDh0AEArkUAgLJFAIC2RQCAukUAgL5FAICqeQIAq3kCAIboBACHYAUArsECAK/JAgCs3QIArdUCAMJFAICjRQIAxkUAgMpFAICmXQIAzkUAgNJFAIClVQIA1kUAgNpFAIDeRQCA4kUAgOZFAIDqRQCA7kUAgO+EDgC+rAQA4dAOAPJFAIDjFAEA9kUAgPpFAID+RQCAAkYAgLPdAQAGRgCACkYAgA5GAIASRgCAtv0BALX9AQAaRgCAu90BALrdAQCE4AQAHkYAgL+hAQC+vQEAvb0BALy9AQCoBQYAqR0GAKoVBgCrLQYArDUGAK09BgCuNQYArykGAKZFAICC9QcAgeUHAIDlBwAWRgCAIkYAgIYcAACHsAMAuCUGALnFBgC6zQYAu8UGALzdBgC9xQYAvs0GAL/FBgCwWQYAsVkGALIpBgCzKQYAtDkGALUlBgC2JQYAtx0GAKOdBgAmRgCAKkYAgC5GAIAyRgCApr0GAKW9BgA2RgCAq50GAKqdBgA6RgCAPkYAgK/hBgCu/QYArf0GAKz9BgBCRgCAs/UHAEZGAIBKRgCAtu0HAE5GAIBSRgCAteUHALqNBwC7kQcAVkYAgFpGAIC+dQcAv30HALyBBwC9fQcAqCUGAKkpBgCqOQYAqzkGAKwpBgCtKQYArnkGAK91BgBeRgCAYkYAgGZGAIBqRgCAbkYAgHJGAIB2RgCAekYAgLjVBgC53QYAuuEGALv9BgC85QYAve0GAL7lBgC/mQYAsA0GALERBgCyEQYAs+0GALT1BgC1/QYAtvUGALftBgCjsQYAgi0AAIEVAACAsQAANkUAgKapBgCloQYAfkYAgKvVBgCqyQYAgkYAgL5oAQCvOQYArjEGAK05BgCsxQYAikYAgLPxAQCGaAAAh3wBALZdAQCORgCAkkYAgLVVAQC6SQEAu0kBAJZGAICaRgCAvj0BAL8hAQC8OQEAvTUBAJ5GAICiRgCAhAQDAL6AHACmRgCA4RwGAKpGAIDjAAYAvwguAK5GAICyRgCA78gHALZGAIC6RgCAvkYAgMJGAIDGRgCAykYAgKN9AgDORgCApdkCANJGAIDWRgCAptECANpGAIDeRgCAq8UCAKrFAgCtuQIArLUCAK+tAgCusQIAqW0FAKhZBQCrDQIAqrkCAK0dAgCsHQIArwUCAK4NAgC+aB0A4kYAgOZGAIDqRgCAgB0AAIEJAACCmQEA7kYAgLnhAwC4KQIAu+EDALrpAwC94QMAvPkDAL/hAwC+6QMAsU0CALBNAgCzIQIAsi0CALUlAgC0OQIAtxECALYlAgCowQIAqdECAKrRAgCr5QIArP0CAK0VAQCuHQEArw0BAPJGAID6RgCA/kYAgAJHAIAGRwCACkcAgA5HAIASRwCAuAUBALkJAQC6HQEAuxUBALwxAQC9MQEAvv0BAL/1AQCweQEAsUEBALJBAQCzXQEAtEUBALVNAQC2RQEAtz0BAIagHQCHxB0AFkcAgO/YAAAaRwCAHkcAgCJHAIDvxAYAhGwcAOH0BgAmRwCA47AGACpHAIDhlAEALkcAgONEBgCzGQIAMkcAgDZHAIA6RwCAhewsALbVAQC1NQIAPkcAgLvFAQC6/QEAQkcAgEZHAIC/yQEAvsEBAL3JAQC81QEAo9kdAPZGAIBKRwCATkcAgFJHAICmFR4ApfUdAFZHAICrBR4Aqj0eAFpHAIBeRwCArwkeAK4BHgCtCR4ArBUeAIBpAACBaQAAggUAAGJHAIBmRwCAakcAgIcQAwCGfAMAbkcAgHJHAIB2RwCAekcAgH5HAICCRwCAhkcAgIpHAICopR8Aqa0fAKqlHwCrvR8ArKUfAK2tHwCupR8ArxUfAI5HAICSRwCAlkcAgJpHAICeRwCAokcAgKZHAICqRwCAuA0fALkZHwC6IR8AuyEfALzZAAC92QAAvskAAL/BAACwcR8AsXEfALJxHwCzRR8AtEEfALVNHwC2PR8AtzUfALMtHgCuRwCAskcAgLZHAIC6RwCAti0eALUtHgC+RwCAu7UeALq1HgDCRwCAxkcAgL+JHgC+hR4AvZEeALylHgCCKQAAo2keAIAdAACBFQAApmkeAMpHAIDORwCApWkeAKrxHgCr8R4A0kcAgITgAQCuwR4Ar80eAKzhHgCt1R4AqNUBAKnlAQCq7QEAq+UBAKz9AQCt5QEAru0BAK/lAQC+oAEAhkYAgNZHAIDaRwCAhhAAAId0AQDeRwCA4kcAgLh9AQC5wQAAusEAALvBAAC8wQAAvckAAL7xAAC/8QAAsJ0BALFFAQCyTQEAs0UBALRdAQC1RQEAtk0BALdFAQDmRwCA6kcAgO5HAIDyRwCA9kcAgO80AgDv7B4A+kcAgOHwHQDj4AIA4zAeAOGEAQD+RwCAAkgAgAZIAIAKSACAsyUCAJQAAAAOSACAEkgAgBZIAIC2JQIAtTUCABpIAIC7wQIAuhkCAB5IAIAiSACAv8ECAL7ZAgC90QIAvNkCACZIAIAqSACALkgAgKPpAgAySACApfkCAKbpAgA2SACAOkgAgD5IAICq1QIAqw0CAKwVAgCtHQIArhUCAK8NAgCAYQAAgWEAAIIFAABCSACASkgAgIQABAC+FAQATkgAgIbABACHUAMAUkgAgFZIAIBaSACAXkgAgGJIAIBmSACAqK0CAKm9AgCqtQIAqw0BAKwVAQCtHQEArhUBAK8NAQCE7AQAakgAgG5IAIBySACAdkgAgHpIAIB+SACAgkgAgLgdAQC5LQEAuiUBALvNAQC81QEAvd0BAL7JAQC/wQEAsH0BALFVAQCyXQEAs1UBALRNAQC1PQEAtjUBALctAQDhGB4AhkgAgOM4HgCKSACAjkgAgJJIAICWSACAmkgAgJ5IAICiSACAvmAEAKZIAICBdQAAgHUAAO/gHwCCbQAAqkgAgK5IAICG6AQAh3wFALJIAIDhkAEAukgAgOOgAAC+SACAwkgAgMZIAIDvtAAAykgAgM5IAIDSSACA1kgAgLUFBgBGSACAtkgAgLYFBgDaSACA3kgAgLOlBQDiSACAvRkGALwRBgC/YQYAvhEGAOZIAIDqSACAuwkGALohBgCj/QUA7kgAgPJIAID2SACA+kgAgKZdBgClXQYA/kgAgKtRBgCqeQYAAkkAgAZJAICvOQYArkkGAK1BBgCsSQYAqFEGAKlZBgCqYQYAq2EGAKxhBgCtYQYArmEGAK9hBgAKSQCADkkAgBJJAIAWSQCAgA0AAIGxAQCCsQEAGkkAgLhNBwC5VQcAul0HALtVBwC8TQcAvXUHAL59BwC/cQcAsMUHALHNBwCyxQcAs90HALTFBwC1zQcAtsUHALd5BwCz6QcAHkkAgCJJAICEwAEAvtgBALbhBwC16QcAJkkAgLsJBgC6AQYAhogAAIesAQC/CQYAvgEGAL0JBgC8EQYAKkkAgKOtBwAuSQCAMkkAgKalBwA2SQCAOkkAgKWtBwCqRQYAq00GAD5JAIBCSQCArkUGAK9NBgCsVQYArU0GAKhZBgCpZQYAqm0GAKtlBgCsYQYArWEGAK5hBgCvYQYAhKwBAEZJAIBKSQCATkkAgFJJAIBWSQCAWkkAgF5JAIC4kQEAuZkBALqhAQC7oQEAvHEBAL1xAQC+cQEAv3EBALDxAQCx8QEAsvUBALPdAQC0xQEAtbEBALaxAQC3sQEAs+UFAGJJAIBmSQCAakkAgG5JAIC24QUAtekFAHJJAIC7NQIAujUCAHZJAIB6SQCAv3UCAL4BAgC9CQIAvCECAH5JAICjoQUAgkkAgIZJAICmpQUAikkAgI5JAIClrQUAqnECAKtxAgCSSQCAvigDAK5FAgCvMQIArGUCAK1NAgCA1QAAgd0AAILhAACaSQCA4yABAJ5JAIDhqAEAokkAgO80AgCmSQCAhggMAIdoAwCsAAAAqkkAgK5JAICySQCAs40DALZJAIC6SQCAhIAMAL5JAIC2vQMAtYEDAMJJAIC7TQMAuk0DAMZJAIDKSQCAv00DAL5NAwC9TQMAvE0DAKhBAgCpTQIAqkUCAKtZAgCsSQIArX0CAK51AgCvuQIAvmgNAM5JAIDSSQCA1kkAgIRsDADaSQCA3kkAgOJJAIC4TQEAuVUBALpVAQC7ZQEAvH0BAL0VAQC+EQEAvxEBALDJAgCxyQIAstkCALPZAgC0yQIAtckCALZ9AQC3dQEA4XgHAOOYAADjuAYA4VwGAOZJAIDqSQCA7kkAgPJJAID2SQCA+kkAgP5JAIACSgCA7AAAAO9cAADv6AYACkoAgIFpAACAYQAAo4UCAIJhAACliQIADkoAgBJKAICmtQIAhkAMAIfEDACrRQIAqkUCAK1FAgCsRQIAr0UCAK5FAgCojQ4AqZEOAKqVDgCrqQ4ArKUOAK2tDgCupQ4Ar9kOAAZKAIAWSgCAGkoAgB5KAIAiSgCAJkoAgCpKAIAuSgCAuHUPALl9DwC6dQ8Au90PALzFDwC9zQ8AvsUPAL/9DwCwqQ4AsbUOALK1DgCzhQ4AtJ0OALVRDwC2UQ8At1EPALMdDgAySgCANkoAgDpKAIA+SgCAti0OALUtDgBCSgCAu3EOALptDgBGSgCASkoAgL+VDwC+WQ4AvVEOALxhDgBOSgCAo1kOAFJKAIBWSgCApmkOAFpKAIBeSgCApWkOAKopDgCrNQ4AYkoAgGZKAICuHQ4Ar9EPAKwlDgCtFQ4AqL0OAKnRDgCq0Q4AqykBAKw5AQCtOQEArikBAK8pAQCADQAAgRUAAIIdAABqSgCAbkoAgHJKAIC+dAIAdkoAgLjtAQC5hQEAuoEBALuBAQC8hQEAvY0BAL6xAQC/sQEAsFkBALFZAQCy7QEAs+UBALT9AQC15QEAtuUBALfVAQB6SgCAtqkBALWhAQB+SgCAs0kOAIJKAICGOAAAh9wBAL8xAQC+KQEAvSEBALwpAQC7jQEAuo0BAJZJAICGSgCAoxkOAIpKAICOSgCAkkoAgJZKAICm+QEApfEBAJpKAICr3QEAqt0BAJ5KAICiSgCAr2EBAK55AQCtcQEArHkBAKZKAIDv3A8AqkoAgK5KAICySgCAtkoAgLpKAIC+SgCAwkoAgMZKAIDKSgCAzkoAgNJKAIDj6A4A1koAgOGMDgCAEQAAgREAAIIRAACEQAIA2koAgN5KAIDiSgCAvhADAIbABACHRAMA6koAgO5KAIDySgCA9koAgPpKAID+SgCA7yQCAAJLAIAGSwCACksAgA5LAIASSwCAFksAgBpLAICE7AQAHksAgCJLAIAmSwCA4+wCACpLAIDhOAEALksAgLNVAwAySwCANksAgDpLAIA+SwCAth0DALUdAwBCSwCAuwkDALo5AwBGSwCASksAgL/9AAC+/QAAvfkAALwRAwCogQIAqYkCAKqdAgCrsQIArNUCAK3dAgCu1QIAr80CAIDNAQCBCQAAghkAAE5LAIBSSwCAWksAgL5wBQBeSwCAuFkBALlZAQC6aQEAu2kBALx5AQC9eQEAvmkBAL9lAQCwvQIAsY0CALKFAgCzbQEAtHkBALV5AQC2aQEAt2kBAIYgBACHCAUAYksAgGZLAIBqSwCAbksAgHJLAIDvXAAAhOwEAOFcDgB2SwCA44wOAHpLAIB+SwCAgksAgIZLAICjVQIAiksAgI5LAICSSwCAlksAgKYdAgClHQIAmksAgKsJAgCqOQIAnksAgKJLAICv/QEArv0BAK35AQCsEQIAqGkGAKlpBgCqeQYAq3kGAKxpBgCtaQYArp0GAK+VBgBWSwCApksAgKpLAICuSwCAsksAgLZLAIC6SwCAvksAgLj1BgC5+QYAuo0GALuFBgC8nQYAvYUGAL6FBgC/tQYAsO0GALH1BgCy/QYAs/UGALTtBgC10QYAttEGALfRBgCz8QYAghUAAIG1AACAtQAAwksAgLbpBgC14QYAvtQDALsxBgC6KQYAxksAgMpLAIC/FQYAvikGAL0hBgC8KQYAzksAgKO1BgCGyAAAh8gAAKatBgDSSwCA1ksAgKWlBgCqbQYAq3UGANpLAIDeSwCArm0GAK9RBgCsbQYArWUGAKg1BgCpOQYAqoEGAKuBBgCsgQYArYEGAK6BBgCvtQYA4ksAgOZLAIDqSwCA7ksAgPJLAID2SwCA+ksAgP5LAIC4nQYAua0GALqlBgC7aQEAvHkBAL15AQC+aQEAv2kBALDRBgCx0QYAstEGALPRBgC0tQYAtb0GALa1BgC3rQYAswkGAAJMAIAGTACACkwAgA5MAIC2AQYAtQkGABJMAIC7FQYAuhUGABZMAIAaTACAv3kGAL5xBgC9BQYAvAUGAB5MAICjTQYAIkwAgOZKAICmRQYAJkwAgCpMAIClTQYAqlEGAKtRBgAuTACAMkwAgK41BgCvPQYArEEGAK1BBgCB6QMAgN0DAISIAwCC4QMAhrA8AIeIAgC+VAMAOkwAgD5MAIBCTACARkwAgEpMAIBOTACAUkwAgFZMAIBaTACA4/AGAF5MAIDhMAYAhAA8AGJMAIBmTACAakwAgG5MAIByTACAhTQ9AHZMAIB6TACA77AHAH5MAICCTACAhkwAgIpMAICOTACAkkwAgL7EPACWTACAgp0BAIGdAQCAnQEAqA0CAKllAgCqfQIAq3UCAKxZAgCtWQIArpkDAK+ZAwCw6QMAsekDALL5AwCz+QMAtOkDALXpAwC2XQMAt1UDALhtAwC5dQMAunUDALtFAwC8XQMAvTUDAL4xAwC/KQMAmkwAgJ5MAICiTACAqkwAgOFgAwDv9AMA40QCAK5MAICyTACA4zwDAO/0NwDh/AEAtkwAgLpMAIC+TACAwkwAgIZkPwCHaD0AhTQhALOZAwDGTACAtb0DALa1AwDKTACAzkwAgNJMAIC6QQIAu0ECALxBAgC9QQIAvkECAL9BAgDWTACA2kwAgN5MAIDiTACA5kwAgOpMAIDuTACA7/gBAIRoPADhPAYA8kwAgOMcBgD2TACA+kwAgP5MAIACTQCAoxUDAAZNAIAKTQCADk0AgBJNAICmOQMApTEDABpNAICrzQIAqs0CAL5kPgAeTQCAr80CAK7NAgCtzQIArM0CAKgdPgCpJT4Aqi0+AKslPgCsPT4ArSU+AK4tPgCvJT4ApkwAgIL1PwCB5T8AgOU/ABZNAIAiTQCAhgAEAIecAwC4LT4AuTE+ALoxPgC7MT4AvNE+AL3RPgC+0T4Av80+ALBdPgCxIT4Asjk+ALM5PgC0KT4AtSk+ALYZPgC3FT4As6U+ACZNAIAqTQCALk0AgDJNAIC2pT4AtbU+ADZNAIC75T4Aupk+ADpNAIA+TQCAv+0+AL7tPgC97T4AvO0+AEJNAICj4T4ARk0AgEpNAICm4T4ATk0AgFJNAICl8T4Aqt0+AKuhPgBWTQCAWk0AgK6pPgCvqT4ArKk+AK2pPgCPBSUAsyU+AF5NAIBiTQCAtik+AGZNAIBqTQCAtSk+ALp9PgC7RT4Abk0AgHJNAIC+tT4Av70+ALxdPgC9vT4An304AJ5lOQCd8TgAnFE0AJtZNQCaUTUAmfEwAJgNMQCXZTEAlsEwAJVZLQCUTS0Ak+EsAJLZKQCRWSkAkPEoALSlGQC13RgAdk0AgIQIAACwkRUAsQEVALIBGACzvRkAgA0AAIGtAwCCpQMAek0AgKNhAACiHT0AoZk9AKBxPACkxQUApUEEAKYBCACn4QkANkwAgKH1AQCi6QEAo90FAKwBEACtxREArtkRAK85EACoZQgAqQEMAKrZDQCrCQ0AijEuAIuhMwB+TQCAgk0AgI65MwCPETYAjB0yAI1NMgCCJSYAg6krAL5kAwCEYAQAhqEvAIcVLgCEGSoAhZEqAJphPgCb7T4AhsgEAIfcAwCKTQCA4Vw+AJyJAwDjAD4Akmk2AJN5NwCOTQCA7xg+AJZNOwCXuT8AlME7AJVdOgCpnT0AqIk9AKu5PQCqrT0Arak9AKyhPQCvyT0ArqE9AL7oBACSTQCAlk0AgJpNAICeTQCAok0AgKZNAICqTQCAuVk9ALhRPQC7eT0AumU9AL1pPQC8YT0Avx09AL5hPQCxgT0AsLk9ALNpPQCyiT0AtXk9ALRxPQC3aT0AtnE9AKMhPACuTQCAsk0AgLZNAIC6TQCApi08AKUtPAC+TQCAq0E8AKp5PADCTQCAxk0AgK+5PACusTwArbk8AKxZPADKTQCAzk0AgLN9AwDSTQCAtdkDANZNAIDaTQCAttEDAN5NAIDiTQCAu8UDALrFAwC9uQMAvLUDAL+tAwC+sQMA5k0AgOpNAIDuTQCA71wDAIAVAACBHQAAgjEAAO+MPgCE7AQA4fw+APJNAIDjHD4A+k0AgOGUAQD+TQCA4yAAAKP1AwACTgCAh+gEAIZsBAAGTgCAplkDAKVRAwAKTgCAq00DAKpNAwAOTgCAEk4AgK8lAwCuOQMArTEDAKw9AwCGTQCA9k0AgBZOAIAaTgCAHk4AgCJOAIAmTgCAKk4AgKhxBgCpTQYAqo0GAKuFBgCsnQYArYUGAK6NBgCvhQYAsP0GALFBBwCyQQcAs0EHALRBBwC1SQcAtnEHALdxBwC4IQcAuSEHALolBwC7OQcAvCkHAL0VBwC+HQcAv/0HALMlBgAuTgCAMk4AgDZOAIA6TgCAtiUGALU1BgA+TgCAu6UHALoZBgBCTgCARk4AgL+tBwC+pQcAvbUHALy1BwBKTgCAo2EGAE5OAIBSTgCApmEGAFZOAIBaTgCApXEGAKpdBgCr4QcAXk4AgGJOAICu4QcAr+kHAKzxBwCt8QcAqLEGAKm9BgCqzQYAq90GAKzNBgCt/QYArvUGAK8VAQCA+QEAgc0BAILFAQC+ZAIAhpAAAIcAAQBqTgCAbk4AgLjRAQC52QEAuuEBALvhAQC8kQEAvZ0BAL6VAQC/iQEAsG0BALF1AQCyfQEAs3UBALRtAQC18QEAtvEBALfxAQCzRQYAZk4AgHJOAIB2TgCAek4AgLZ9BgC1RQYAfk4AgLuxAQC6qQEAgk4AgIZOAIC/NQEAvqkBAL2hAQC8qQEAik4AgKMBBgCOTgCAkk4AgKY5BgCWTgCAmk4AgKUBBgCq7QEAq/UBAJ5OAICiTgCAru0BAK9xAQCs7QEAreUBAOEoAQCmTgCA41ACAKpOAICuTgCAsk4AgLZOAIC6TgCAvk4AgMJOAIDGTgCAyk4AgIFxAACAGQAA75wCAIJ5AADOTgCA0k4AgITIAgCzxQMA2k4AgLXFAwC2xQMAvhADAIbADACHRAwAuqkDALulAwC8vQMAvaEDAL6hAwC/lQMArhEGAK8ZBgCsAQYArQEGAKqlBgCrEQYAqEU5AKlxOQDeTgCA4k4AgOZOAIDqTgCA7k4AgPJOAID2TgCA+k4AgL7tBwC/TQcAvNEHAL3lBwC63QcAu8EHALg1BgC51QcAtjkGALcNBgC0JQYAtTkGALIxBgCzPQYAsFEGALFRBgCoOQIAqTkCAKqBAgCrgQIArIECAK2JAgCusQIAr7ECAIRsDQD+TgCAvmANAAJPAIAGTwCACk8AgA5PAIASTwCAuE0BALlVAQC6XQEAu1UBALxNAQC9dQEAvn0BAL91AQCwoQIAsa0CALKlAgCzuQIAtKkCALWdAgC2lQIAt3kBAOFUBgDh1AcA4zgGAOOwBwAWTwCAGk8AgB5PAIAiTwCAhOQMACZPAIAqTwCALk8AgDJPAIA2TwCA72wAAO/kBwCjSQIAOk8AgD5PAIBCTwCASk8AgKZJAgClSQIATk8AgKspAgCqJQIAhkgMAIfcDACvGQIAri0CAK0tAgCsMQIAqFEOAKmlDgCqrQ4Aq6UOAKy9DgCtpQ4Arq0OAK+lDgCA5Q8Age0PAILlDwBGTwCAUk8AgFZPAIBaTwCAXk8AgLjVDwC53Q8AutUPALvpDwC8+Q8AvfkPAL7pDwC/6Q8AsN0OALFBDwCyRQ8As10PALRFDwC1TQ8AtkUPALftDwCzJQ4AYk8AgGZPAIBqTwCAbk8AgLYlDgC1NQ4Ack8AgLuFDwC6GQ4Adk8AgHpPAIC/iQ8AvoEPAL2JDwC8kQ8Afk8AgKNhDgCCTwCAhk8AgKZhDgCKTwCAjk8AgKVxDgCqXQ4Aq8EPAJJPAICWTwCArsUPAK/NDwCs1Q8Arc0PAKjRDgCp2Q4AqjkBAKs5AQCsKQEArSkBAK6dAQCvlQEAmk8AgJ5PAICiTwCApk8AgIANAACBtQAAgr0AAKpPAIC4lQEAuZ0BALqhAQC7oQEAvHEAAL1xAAC+cQAAv3EAALDtAQCx9QEAsvUBALPFAQC03QEAtbUBALaxAQC3sQEArk8AgLJPAICzuQEAvsACALWpAQC2TwCAuk8AgLahAQCGgAEAh8QBALs5AQC6IQEAvRkBALwpAQC/eQEAvhEBAKPxAQC+TwCA1k4AgMJPAIDGTwCApukBAKXhAQDKTwCAq3EBAKppAQDOTwCA0k8AgK8xAQCuWQEArVEBAKxhAQDWTwCA2k8AgN5PAIDiTwCA4agBAOZPAIDjQAIA6k8AgL8oFQDuTwCA73QCAPJPAID2TwCA+k8AgP5PAIACUACABlAAgON0DwCEiAMA4TQOAApQAIAOUACAElAAgBZQAICADQAAgRUAAIIRAAAaUACAHlAAgO+kDwAiUACAKlAAgKgZAwCpQQMAqkUDAKtdAwCsTQMArX0DAK51AwCvnQAAhaQVAL58AwCGCAQAhxwDAC5QAIAyUACANlAAgDpQAIC49QAAuf0AALr1AAC7jQAAvIEAAL2BAAC+gQAAv4EAALDlAACx7QAAsuUAALP5AAC07QAAtdEAALbVAAC3zQAAPlAAgEJQAIBGUACAs8ECAEpQAIC1yQIAtvECAE5QAIBSUACAVlAAgLotAQC7JQEAvD0BAL0hAQC+JQEAvxkBAKapAgCESAIAWlAAgKWRAgBeUACAo5kCAGJQAIBmUACArn0BAK9BAQCsZQEArXkBAKp1AQCrfQEAalAAgG5QAIByUACAdlAAgHpQAIB+UACA7+QAAIJQAICGUACAilAAgOMQDgCOUACA4VgOAJJQAICALQAAgREAAIIVAAC+sAUAs3UBAJpQAICHFAUAhmwEAJ5QAIC21QAAtWUBAKJQAIC7/QAAuvUAAKZQAICqUACAv6EAAL69AAC93QAAvN0AAKh9BgCptQYAqr0GAKu1BgCsrQYArRUHAK4dBwCvFQcAllAAgK5QAICyUACAtlAAgLpQAIC+UACAwlAAgMZQAIC4OQcAuTkHALrJBwC7yQcAvNkHAL3ZBwC+zQcAv8UHALBxBwCxeQcAskkHALNJBwC0OQcAtSUHALYhBwC3IQcAozUGAMpQAIDOUACA0lAAgNZQAICmlQcApSUGANpQAICrvQcAqrUHAN5QAIDiUACAr+EHAK79BwCtnQcArJ0HAOZQAIDqUACA7lAAgPJQAID2UACAgj0AAIE9AACAPQAA+lAAgP5QAIACUQCAhKADAL6kAwAGUQCAhvgAAIfgAACoxQYAqdUGAKrVBgCr5QYArP0GAK0xAQCuMQEArzEBAApRAIAOUQCAElEAgBZRAIAaUQCAHlEAgCJRAIAmUQCAuN0BALntAQC65QEAu40BALyVAQC9nQEAvpUBAL+NAQCwUQEAsVEBALJRAQCzUQEAtPUBALX9AQC29QEAt+0BALNdBgAqUQCALlEAgDJRAIA2UQCAtrEBALV1BgA6UQCAu5UBALqVAQA+UQCAQlEAgL85AQC+MQEAvYUBALyFAQClLQYARlEAgEpRAICm6QEATlEAgFJRAICjBQYAVlEAgK3dAQCs3QEAr2EBAK5pAQBaUQCAJlAAgKvNAQCqzQEAXlEAgGJRAICExAMAvwD0AGZRAICCPQAAgT0AAIA9AABqUQCAblEAgHJRAIC+YAMAelEAgH5RAICCUQCAhlEAgIbgHACHAAMA7wwHAIpRAICOUQCAklEAgJZRAICaUQCAnlEAgKJRAICmUQCAqlEAgOHABgCuUQCA4ywHALJRAIC2UQCAulEAgL5RAIDCUQCAxlEAgMpRAIDOUQCA0lEAgKiBAwCpgQMAqoEDAKuBAwCsgQMArYEDAK6BAwCvgQMAsEUDALFNAwCyRQMAs10DALRNAwC1fQMAtnUDALcZAwC4KQMAuTUDALo9AwC7MQMAvAEDAL31AAC+/QAAv+0AALMpAgDWUQCA2lEAgN5RAIDiUQCAtiECALUpAgCEUB0Au6kCALqhAgDqUQCA7lEAgL+ZAgC+qQIAvakCALyxAgCBTQAAgE0AAO+cAwCCXQAAhvAcAId4HQC+EB0A8lEAgPZRAID6UQCA/lEAgAJSAIDhkAEABlIAgONgAwAKUgCADlIAgBJSAIAWUgCAGlIAgB5SAIAiUgCAJlIAgO+UAQCE7BwA4XAGACpSAIDjUAEALlIAgDJSAIA2UgCAOlIAgKPpAgA+UgCAQlIAgEZSAIBKUgCApuECAKXpAgBOUgCAq2kCAKphAgBSUgCAvqgcAK9ZAgCuaQIArWkCAKxxAgCoMR4AqTEeAKoxHgCrMR4ArF0eAK1FHgCuTR4Ar0UeAOZRAICCzR8AgfUfAID9HwBWUgCAWlIAgIYcAACH+AMAuMUeALnNHgC6xR4Au90eALzFHgC9zR4AvsUeAL9ZHwCwPR4AsQUeALINHgCzBR4AtB0eALUBHgC2BR4At/0eALO5HgBeUgCAYlIAgGZSAIBqUgCAtsUeALXVHgBuUgCAu8EeALr5HgByUgCAdlIAgL/FHgC+2R4AvdEeALzZHgB6UgCAo/0eAH5SAICCUgCApoEeAIZSAICKUgCApZEeAKq9HgCrhR4AjlIAgJJSAICunR4Ar4EeAKydHgCtlR4AqCkeAKkpHgCqVR4Aq20eAKx1HgCtfR4ArnUeAK9pHgCWUgCAmlIAgJ5SAICiUgCAplIAgKpSAICuUgCAslIAgLjpHgC59R4Auv0eALv1HgC87R4AvZEeAL6RHgC/kR4AsB0eALHlHgCy7R4As+UeALT9HgC15R4Atu0eALflHgCz3R4AtlIAgLpSAIC+UgCAwlIAgLb9HgC1/R4AhFgBALshHgC62R4AvigAAMpSAIC/IR4AvjkeAL0xHgC8OR4AgU0AAIBNAACjlR4Agl0AAKW1HgDGUgCAzlIAgKa1HgB2UQCA0lIAgKtpHgCqkR4ArXkeAKxxHgCvaR4ArnEeAIYABACHRAMAs4ECANZSAIC1gQIA2lIAgN5SAIC2gQIAiAAAAOJSAIC74QIAuu0CAL3lAgC8+QIAv9ECAL7lAgDmUgCA6lIAgIREAwC+jAMA4UgCAO5SAIDjAAIA7/wfAPJSAIDhPB4A79wCAONgHwD2UgCA+lIAgP5SAIACUwCAqQUCAKixAgCrBQIAqgUCAK0NAgCsBQIArzUCAK41AgCEbAUABlMAgApTAIAOUwCAElMAgBZTAIAaUwCAHlMAgLnpAwC44QMAu/kDALrhAwC96QMAvOEDAL9dAwC+4QMAsSkCALAlAgCzPQIAsiECALUZAgC0LQIAt9kDALYRAgAiUwCAJlMAgCpTAICjhQMALlMAgKWFAwCmhQMAMlMAgDpTAIA+UwCAqukDAKvlAwCs/QMAreEDAK7hAwCv1QMAgEkAAIFVAACCVQAAo6kCAL6YBAClQQEApkEBAEJTAICG4AUAh+AFAKotAQCrOQEArBEBAK0FAQCuDQEArwUBAEZTAIBKUwCATlMAgO/cAABSUwCAVlMAgFpTAIDviB4AhCwHAOHsHgBeUwCA4xweAGJTAIDhlAEAZlMAgOMwAACzJQIAhWDmAGpTAIBuUwCAclMAgLbNAQC1zQEAdlMAgLu1AQC6oQEAelMAgH5TAIC/iQEAvoEBAL2JAQC8nQEANlMAgIJTAICGUwCAilMAgI5TAICSUwCAllMAgJpTAICoAQcAqQEHAKp1BwCrrQcArLUHAK29BwCuqQcAr6kHALDZBwCx7QcAsvkHALP1BwC0mQcAtZkHALaJBwC3gQcAuIkHALmJBwC6bQAAu2UAALx9AAC9ZQAAvm0AAL9lAACBCQAAgJkAAJ5TAICCHQAAolMAgKZTAICqUwCArlMAgKgNBQCpfQUAqk0FAKuhBgCspQYAra0GAK6dBgCv/QYAsIUGALGRBgCyqQYAs70GALSlBgC1rQYAtqUGALd5BgC4SQYAuUkGALpZBgC7WQYAvEkGAL1JBgC++QcAv/kHALNdBgCyUwCAhigCAIcsAQC2UwCAtp0GALWdBgC6UwCAu4kGALq9BgC+UwCAwlMAgL/9BgC+/QYAvYEGALyNBgDGUwCAoxkGAMpTAIDOUwCAptkGANJTAIDWUwCApdkGAKr5BgCrzQYA2lMAgN5TAICuuQYAr7kGAKzJBgCtxQYAqBkBAKkZAQCqjQAAq50AAKyNAACtvQAArrUAAK/dAADiUwCA5lMAgOpTAIDuUwCA8lMAgPZTAID6UwCA/lMAgLhpAAC5aQAAunkAALt5AAC8aQAAvWkAAL7dAwC/1QMAsKkAALGpAACyvQAAs7UAALSZAAC1mQAAtlkAALdZAAC+LAIAAlQAgAZUAIAKVACADlQAgBJUAIAaVACAHlQAgIAtAACBNQAAgj0AACJUAICGkAwAh+gCACZUAIAqVACAs0UDAC5UAIAyVACANlQAgDpUAIC2fQMAtUUDAD5UAIC7LQMAui0DAEJUAIBGVACAvx0DAL4dAwC9IQMAvCkDAKvNAwCqzQMASlQAgE5UAICv/QMArv0DAK3BAwCsyQMAo6UDAFJUAIBWVACAWlQAgF5UAICmnQMApaUDAGJUAIBmVACAalQAgG5UAIByVACAdlQAgII9AACBPQAAgD0AAHpUAIB+VACAglQAgIRgAwCG0AwAhzADAIpUAICOVACAvkQCAJJUAICWVACAmlQAgOEAAACeVACA46gGAKJUAICE7AwAplQAgO/QAwCqVACArlQAgLJUAIC2VACAulQAgLNtAQC+VACAwlQAgMZUAIDKVACAthEBALVlAQDOVACAuz0BALo1AQDSVACA1lQAgL/9AQC+/QEAvRUBALwVAQDaVACA4fwGAN5UAIDjPAcA4lQAgOZUAIDqVACA7lQAgPJUAIC+bAwA+lQAgP5UAIACVQCABlUAgApVAIDvFAYAgV0AAIBdAACj5QEAgm0AAKXtAQAOVQCAElUAgKaZAQCHqAwAhuQMAKu1AQCqvQEArZ0BAKydAQCvdQEArnUBAKgZDgCpGQ4AqiUOAKs1DgCsLQ4ArVEOAK5RDgCvUQ4AhlQAgPZUAIAWVQCAGlUAgB5VAIAiVQCAJlUAgCpVAIC47Q4AufUOALr1DgC7jQ4AvJUOAL2dDgC+lQ4Av40OALAxDgCxOQ4AsgEOALMBDgC0+Q4AtfkOALbdDgC31Q4AqHkOAKl5DgCqjQ8Aq4UPAKydDwCtgQ8AroUPAK+5DwAuVQCAMlUAgDZVAIA6VQCAPlUAgEJVAIBGVQCASlUAgLiRDwC5mQ8AuqEPALuhDwC8UQ8AvV0PAL5JDwC/SQ8AsM0PALHVDwCy3Q8As9UPALTNDwC1sQ8AtrEPALexDwCzBQ4ATlUAgFJVAIBWVQCAWlUAgLYBDgC1FQ4AXlUAgLsRDgC6CQ4AYlUAgISgAQC/dQ4AvgkOAL0BDgC8CQ4AgmkAAKNBDgCAWQAAgVEAAKZFDgC+WAEAZlUAgKVRDgCqTQ4Aq1UOAIbIAACHrAEArk0OAK8xDgCsTQ4ArUUOAGpVAIBuVQCAclUAgHZVAIB6VQCAflUAgBZUAICCVQCAqAkOAKkJDgCqGQ4AqxkOAKwJDgCtYQ4ArmEOAK+VAQCw7QEAsfUBALL9AQCz9QEAtO0BALV1AQC2fQEAt3UBALhNAQC5VQEAul0BALtVAQC8TQEAvfEAAL7xAAC/8QAAhlUAgIpVAICOVQCAklUAgJZVAIDj6A4AmlUAgOE0DgC+AAQA79wPAJ5VAICiVQCAplUAgKpVAICuVQCAslUAgLPxDQC2VQCAulUAgL5VAIDCVQCAtoENALXhDQDGVQCAu1ECALpJAgDKVQCAzlUAgL/RAgC+SQIAvUECALxJAgCjMQ0A0lUAgISIAwDaVQCA3lUAgKZBDQClIQ0A4lUAgKuRAgCqiQIA5lUAgOpVAICvEQIArokCAK2BAgCsiQIAgKkAAIGpAACCTQAA7lUAgOFkEgDjTAIA4wgLAOGsAQDyVQCA7zwCAO8YFgD2VQCAhlAGAIdIAwD6VQCA/lUAgKiBAgCpgQIAqoECAKuBAgCsgQIArYECAK6FAgCvHQEAAlYAgAZWAIAKVgCADlYAgBJWAIAWVgCAGlYAgIS4BQC4dQEAuX0BALp1AQC7CQEAvBkBAL0ZAQC+CQEAvwEBALBlAQCxbQEAsmUBALN9AQC0aQEAtV0BALZVAQC3TQEAHlYAgCJWAIAmVgCAKlYAgC5WAIAyVgCA7zQAAO/ADgDhXA4A4UwPAOOUAADjnA4ANlYAgIJlAACBfQAAgH0AADpWAIA+VgCAvsQHALNFAgBCVgCAtUUCALZNAgBKVgCAhkAGAIeQBAC67QEAu+UBALz9AQC95QEAvuEBAL/VAQCflQgAngUIAJ3dDQCcPQwAmzEMAJr1DQCZ7RAAmD0QAJfVEQCWsRUAlQUUAJTlFQCTtRkAkjEYAJE5GACQDRwAj2EcANZVAICz1QYATlYAgLX9BgBGVgCAUlYAgLaRBgBWVgCAWlYAgLuVBgC6lQYAvVUHALxVBwC/VQcAvlUHAF5WAIBiVgCAqo0GAKuFBgCsnQYArYUGAK6BBgCvtQYAhKgAAGZWAIBqVgCAoyUFAG5WAIClJQUApi0FAHJWAIB2VgCAelYAgH5WAICCVgCAhlYAgIpWAICOVgCAklYAgJZWAICaVgCAnlYAgKJWAICjqQUAotEEAKHZBACgZQUAgiEdAIM1HQCmVgCAqlYAgIaVGACH3RQAhBkZAIUZGQCKDRUAi7EUAK5WAICyVgCAjsURAI/VDACMzRAAjR0RAJJhDQCTdQ0AvkwAALpWAICWxQkAl80EAJSNDACVXQkAmkEFAJtBBQCGyP8Ah0wAAIFZAACAeQAAnCEEAIJRAAChxQEAvlYAgKMB/ACi2QEApRX9AKS1/QCnufkApgH4AKkJ+AColfkAqwX1AKqt9QCtsfEArAHwAK8d8ACurfEAseHtALAB7ACzAegAsv3sALVd6QC09ekAwlYAgMZWAIDKVgCAzlYAgNJWAIDWVgCA2lYAgN5WAIDiVgCA5lYAgKiNBACplQQAqpUEAKulBACsvQQArdkEAK75BACv8QQAhGz8AOpWAIDuVgCA8lYAgPZWAID6VgCA/lYAgAJXAIC4eQUAucUFALrNBQC7xQUAvN0FAL3FBQC+zQUAv+0FALCZBACxmQQAskkFALNJBQC0WQUAtVkFALZJBQC3SQUAox0EAL7M/AAGVwCAClcAgA5XAICmWQQApTUEABJXAICrXQQAql0EABZXAIAaVwCAr50FAK6dBQCtnQUArJ0FAB5XAICznQIAIlcAgCpXAIC2UQIALlcAgDJXAIC1uQIAukkCALtVAgCGSP0Ah8D8AL41AgC/PQIAvEUCAL09AgCo3QQAqUkDAKpRAwCrbQMArHUDAK2VAwCunQMAr7kDAICNAQCB5QEAguEBADZXAIA6VwCAPlcAgEJXAIBGVwCAuJUDALmdAwC6lQMAu60DALy1AwC9vQMAvrUDAL9VAgCwyQMAsdUDALLVAwCzrQMAtLUDALW9AwC2tQMAt60DAEpXAIBOVwCAo9EDAFJXAICl9QMAVlcAgFpXAICmHQMAXlcAgGJXAICrGQMAqgUDAK1xAwCsCQMAr3EDAK55AwDhKAcAZlcAgOPkBgBqVwCA4SgGAG5XAIDjaAEAclcAgHZXAIB6VwCA71gAAH5XAICCVwCAhlcAgO/IBgCKVwCAqE39AKmB/QCq0f0Aq9H9AKzx/QCt8f0ArvH9AK/x/QAmVwCAghEAAIEZAACA0f8AjlcAgJJXAICEdAMAvnQDALh1/gC5ff4AunX+ALvF/gC83f4AvcX+AL7F/gC/9f4AsJH9ALGR/QCykf0As5H9ALRV/gC1Xf4AtlX+ALdN/gCzWf0AllcAgIasAACHRAMAmlcAgLZx/QC1ef0AnlcAgLtV/QC6Vf0AolcAgKZXAIC/mf4AvpH+AL1F/QC8Rf0AqlcAgKMd/QCuVwCAslcAgKY1/QC2VwCAulcAgKU9/QCqEf0AqxH9AL5XAIDCVwCArtX+AK/d/gCsAf0ArQH9AKjN/wCp0f8AqtH/AKsh/gCsIf4ArSH+AK4h/gCvIf4AxlcAgMpXAIDOVwCA0lcAgNZXAIDaVwCA3lcAgOJXAIC4jf4AuZH+ALqV/gC7rf4AvLX+AL25/gC+qf4Av6n+ALDh/gCx4f4AsuX+ALP5/gC06f4AtdX+ALbd/gC3uf4As1n/AOZXAIC2VgCA6lcAgO5XAIC2of4Atan+APJXAIC7Jf4AuiX+APZXAID6VwCAvxH+AL4t/gC9Lf4AvDH+AIIZAACjHf8AgGUAAIEZAACm5f4A/lcAgAJYAICl7f4AqmH+AKth/gCEZAEAviAAAK5p/gCvVf4ArHX+AK1p/gAKWACA4zT+AA5YAIDhfP0AhrAEAIcIAwASWACAFlgAgBpYAIAeWACAhCQDAIQkBAAiWACA70j+ACZYAIAqWACAs+kCAC5YAIC+RAQAvkAFADJYAIC2nQIAtZkCADZYAIC7iQIAur0CADpYAIA+WACAv1kDAL5RAwC9WQMAvJECAKkdAgCoFQIAqyUCAKolAgCtWQIArFUCAK9NAgCuUQIAvmQGAEJYAIBGWACASlgAgE5YAIBSWACAVlgAgFpYAIC5+QMAuPEDALtNAwC68QMAvUEDALxZAwC/cQMAvkEDALEJAgCwPQIAs8kDALIBAgC12QMAtNEDALfJAwC20QMA4ZABAF5YAIDj8AAAYlgAgGZYAICCPQAAgT0AAIA9AABqWACAblgAgHJYAIB6WACAflgAgIJYAIDvLAAAhlgAgKPpAwCKWACAhugEAIdgBQCOWACApp0DAKWZAwCSWACAq4kDAKq9AwCWWACAmlgAgK9ZAgCuUQIArVkCAKyRAwCeWACAolgAgKZYAICqWACArlgAgLJYAIC2WACA71gBAISgBADhVP8AulgAgOOEAQC+WACAwlgAgMZYAIDKWACAs9kBAM5YAICFzBkA0lgAgNZYAIC28QEAtfkBANpYAIC7pQEAutkBAN5YAIDiWACAv50BAL6dAQC9pQEAvK0BAKgBBgCpDQYAqhEGAKsRBgCsMQYArTEGAK4pBgCvJQYAdlgAgILJBwCBwQcAgPEHAOZYAIDqWACAhhwAAIf8AwC47QYAufUGALr9BgC79QYAvO0GAL1RBwC+VQcAv00HALBdBgCxIQYAsjkGALMxBgC0GQYAtRkGALbdBgC31QYAo5kGAO5YAIDyWACA9lgAgPpYAICmsQYApbkGAP5YAICr5QYAqpkGAAJZAIAGWQCAr90GAK7dBgCt5QYArO0GAApZAICz8QcADlkAgBJZAIC2gQcAFlkAgBpZAIC1mQcAuo0HALtlBwAeWQCAIlkAgL59BwC/ZQcAvH0HAL11BwCoLQYAqTUGAKo9BgCrMQYArFUGAK1FBgCuRQYAr3UGACZZAIAqWQCALlkAgDJZAIA2WQCAOlkAgD5ZAIBCWQCAuOkGALn1BgC6/QYAu/UGALztBgC9kQYAvpUGAL+NBgCwDQYAseUGALLtBgCz5QYAtP0GALXlBgC27QYAt+UGAKO1BgBGWQCASlkAgE5ZAIBSWQCApsUGAKXdBgAGWACAqyEGAKrJBgBWWQCAWlkAgK8hBgCuOQYArTEGAKw5BgCASQAAgUkAAIJZAACzRQEAXlkAgLVFAQC2RQEAYlkAgIZAAACHZAAAuikBALslAQC8PQEAvSEBAL4hAQC/FQEAZlkAgGpZAICEBAMAvgAMAOMoBgDv4AIA4RAGAG5ZAIDvkAYA4zwCAHJZAIDh1AEAdlkAgHpZAIB+WQCAglkAgIZZAICKWQCAo8ECAI5ZAIClwQIAklkAgJZZAICmwQIAmlkAgJ5ZAICroQIAqq0CAK2lAgCsuQIAr5ECAK6lAgCpBQIAqLECAKsFAgCqBQIArQ0CAKwFAgCvNQIArjUCAISoDACiWQCAplkAgKpZAICuWQCAslkAgLZZAIC6WQCAuekDALjhAwC7+QMAuuEDAL3pAwC84QMAv10DAL7hAwCxKQIAsCUCALM9AgCyIQIAtRkCALQtAgC32QMAthECAKitAgCp1QIAqtUCAKsNAQCsFQEArQkBAK4xAQCvLQEAvlkAgMJZAIDKWQCAzlkAgNJZAIDWWQCA2lkAgN5ZAIC4IQEAuSEBALrtAQC75QEAvP0BAL3lAQC+7QEAv+UBALBVAQCxXQEAslUBALMtAQC0NQEAtTkBALYtAQC3JQEAgD0BAIGlAACCrQAA79QHAOJZAIDmWQCA6lkAgO8oBwC+LAwA4fQGAO5ZAIDjkAcA8lkAgOGUAQD2WQCA4wwGALMdAgD6WQCAh0QNAIZMDQD+WQCAtskBALXdAQACWgCAu9kBALrRAQAGWgCACloAgL+9AQC+sQEAvbkBALzBAQDGWQCADloAgBJaAIAWWgCAGloAgB5aAIAiWgCAJloAgKgJDwCpCQ8AqhkPAKsZDwCsCQ8ArQkPAK6pDwCvqQ8AsNkPALHtDwCy+Q8As/UPALSVDwC1hQ8AtoUPALe1DwC4jQ8AuWEAALphAAC7YQAAvGEAAL1hAAC+YQAAv2EAAKNdDQCCLQAAgRUAAIAdAAAqWgCApokOAKWdDgAuWgCAq5kOAKqRDgAyWgCANloAgK/9DgCu8Q4ArfkOAKyBDgA6WgCAs/UPAIboAwCHvAMAtu0PAD5aAIBCWgCAteUPALp5DwC7TQ8ARloAgEpaAIC+NQ8AvyUPALxJDwC9RQ8AozEOAE5aAIBSWgCAVloAgFpaAICmKQ4ApSEOAF5aAICriQ4Aqr0OAGJaAIBmWgCAr+EOAK7xDgCtgQ4ArI0OAGpaAIBuWgCAcloAgHZaAIB6WgCAfloAgIJaAICGWgCAiloAgI5aAICSWgCAlloAgIANAACB1QAAgt0AAJpaAICoQQEAqVEBAKpRAQCrZQEArH0BAK2RAACukQAAr5EAAJ5aAICiWgCAhGQBAL5kAQCGkAEAh4QAAKpaAICuWgCAuJEAALmRAAC6kQAAu5EAALyxAAC9sQAAvrEAAL+xAACw8QAAsfkAALLBAACzwQAAtLEAALWxAAC2sQAAt7EAALPZAgCyWgCAvnADAL5EBAC2WgCAthEDALX1AgC6WgCAuz0DALo1AwC+WgCAwloAgL91AwC+dQMAvRUDALwVAwDGWgCAo50CAMpaAIDOWgCAplUDANJaAIDWWgCApbECAKpxAwCreQMA2loAgN5aAICuMQMArzEDAKxRAwCtUQMAqDkDAKk5AwCqjQAAq50AAKyNAACtvQAArrUAAK/dAADiWgCA5loAgOpaAIDuWgCA8loAgPZaAID6WgCA/loAgLhpAAC5aQAAunkAALt5AAC8aQAAvWkAAL7ZAQC/2QEAsKkAALGpAACyvQAAs7UAALSZAAC1mQAAtlkAALdZAAACWwCABlsAgApbAIAOWwCA70QAABJbAICGmAUAh+QCAOOYAACEqAIA4fgBABpbAICAOQAAgTkAAIItAAAeWwCAs0UBACJbAIAmWwCAKlsAgC5bAIC2fQEAtUUBADJbAIC7LQEAui0BADZbAIA6WwCAvx0BAL4dAQC9IQEAvCkBAD5bAIDhUA4AQlsAgOM8DwBGWwCASlsAgE5bAIBSWwCAVlsAgFpbAIDjAAAAXlsAgGJbAIBmWwCAhPQFAO/kDgCuqQEAr6kBAKydAQCtlQEAqpkBAKuZAQBqWwCAblsAgKbJAQByWwCAdlsAgKXxAQCC/QcAo/EBAID9BwCB9QcAFlsAgHpbAIB+WwCAglsAgIZbAICKWwCAhrgDAIeQAwCoDQcAqRkHAKptBwCrZQcArH0HAK1lBwCuZQcAr1UHALAtBwCxxQcAssEHALPdBwC0xQcAtc0HALbFBwC3/QcAuMUHALnJBwC62QcAu9kHALypBwC9qQcAvp0HAL+VBwCzxQcAjlsAgJJbAICWWwCAmlsAgLbFBwC11QcAnlsAgLshBwC6yQcAolsAgKZbAIC/KQcAviEHAL0pBwC8NQcAqlsAgKOBBwCuWwCAslsAgKaBBwC2WwCAulsAgKWRBwCqjQcAq2UHAL5bAIDCWwCArmUHAK9tBwCscQcArW0HAKgVAQCpgQEAqoEBAKuBAQCsgQEArYkBAK6xAQCvsQEAxlsAgMpbAIDOWwCA0lsAgNZbAIDaWwCA3lsAgOJbAIC4ZQAAuW0AALplAAC7fQAAvGUAAL1tAAC+ZQAAv90AALChAQCxrQEAsqUBALO5AQC0qQEAtZ0BALaVAQC3XQAA5lsAgIIdAACBHQAAgB0AAOpbAIDuWwCA8lsAgL5YAQCErAIA9lsAgIcIAQCGjAEA+lsAgKZaAID+WwCAAlwAgLNJAQAGXACAClwAgA5cAIASXACAtkkBALVJAQAWXACAuykBALolAQAaXACAHlwAgL8ZAQC+LQEAvS0BALwxAQC+2AMAIlwAgO/4BgAmXACAKlwAgC5cAIDv4AIAMlwAgOGUAQA2XACA43QCADpcAIDhmAUAPlwAgOMMBwBCXACARlwAgEpcAICjwQIAhIwDAKXBAgBOXACAUlwAgKbBAgBWXACAWlwAgKuhAgCqrQIAraUCAKy5AgCvkQIArqUCAKgxAwCpPQMAqjUDAKtJAwCsWQMArVkDAK5JAwCvQQMAgMUAAIEJAACCGQAAXlwAgGJcAIBqXACAh2wDAIYcHAC47QAAufEAALr1AAC7jQAAvJUAAL2BAAC+gQAAv70AALAJAwCxCQMAsu0AALPhAAC04QAAteEAALblAAC32QAAblwAgHJcAIB2XACAs7ECAHpcAIC13QIAttUCAH5cAICCXACAhlwAgLrBAgC7wQIAvDUBAL05AQC+KQEAvykBAKaNAgCKXACAjlwAgKWFAgCSXACAo+kCAJZcAICaXACArnEBAK9xAQCsbQEArWEBAKqZAgCrmQIAnlwAgKJcAICmXACA4YQGAKpcAIDjJAYArlwAgOGUAQCyXACA4ywAAL7oHQC2XACAulwAgO/IAACE/B0AvvAcAL5cAIDvSAcAwlwAgMZcAIDKXACAzlwAgIEdAACAHQAA0lwAgIIFAACGQBwAh8QcANpcAIDeXACA4lwAgOZcAIDqXACA7lwAgKi1HgCpBR8Aqg0fAKsFHwCsAR8ArQkfAK45HwCvOR8A1lwAgPJcAID2XACA+lwAgP5cAIACXQCABl0AgApdAIC4yR8AudUfALrRHwC76R8AvPkfAL3tHwC+mR8Av5kfALAlHwCxLR8AsjkfALM1HwC0LR8AtQ0fALYFHwC3/R8As4UfAA5dAIASXQCAFl0AgBpdAIC2iR8AtYkfAB5dAIC76R8AuuEfACJdAIAmXQCAv8kfAL7pHwC94R8AvO0fACpdAICjwR8ALl0AgDJdAICmzR8ANl0AgDpdAIClzR8AqqUfAKutHwA+XQCAQl0AgK6tHwCvjR8ArKkfAK2lHwCo6R4AqekeAKr5HgCr+R4ArOkeAK3pHgCuPQEArzUBAID5AQCBzQEAgsUBAIRgAgBGXQCASl0AgIdoAQCGnAAAuNEBALnZAQC64QEAu+EBALyRAQC9nQEAvpUBAL+JAQCwTQEAsVUBALJdAQCzVQEAtE0BALXxAQC28QEAt/EBALNxHgBOXQCAUl0AgFZdAIBaXQCAtmkeALVhHgBeXQCAu5EBALqJAQBiXQCAZl0AgL81AQC+iQEAvYEBALyJAQBqXQCAZlwAgKM5HgBuXQCApSkeAHJdAIB2XQCApiEeAHpdAIB+XQCAq9kBAKrBAQCtyQEArMEBAK99AQCuwQEAgl0AgIZdAICKXQCAjl0AgJJdAICWXQCAml0AgJ5dAICiXQCApl0AgKpdAICuXQCAsl0AgLpdAIC+XQCAvnADAOHkHgCESAIA4+gfAIQABACAeQAAgXkAAIJpAADCXQCAhsAEAIdEAwDGXQCAyl0AgM5dAIDSXQCA7yAfANZdAIDaXQCA3l0AgOJdAIDvSAIA5l0AgOpdAIDuXQCA8l0AgL7oBAD2XQCA+l0AgP5dAIACXgCA4ZABAAZeAIDj6AIAs0kDAApeAIAOXgCAEl4AgBZeAIC2SQMAtUkDABpeAIC7LQMAuiUDAB5eAIAiXgCAvxUDAL4VAwC9IQMAvCkDAKg1AgCpgQIAqoECAKuBAgCsgQIArYkCAK6xAgCvsQIAgP0BAIHNAQCCxQEAKl4AgIaQBACHBAUALl4AgIRwBAC4SQEAuUkBALpZAQC7WQEAvEkBAL1JAQC+eQEAv3kBALChAgCxqQIAsr0CALO1AgC0kQIAtZECALZ5AQC3eQEAMl4AgDZeAIA6XgCAPl4AgEJeAIBGXgCASl4AgO/QHgC+6AQA4VweAE5eAIDjkAAAUl4AgFZeAIBaXgCAXl4AgKNJAgBiXgCAZl4AgGpeAIBuXgCApkkCAKVJAgByXgCAqy0CAKolAgB2XgCAel4AgK8VAgCuFQIArSECAKwpAgCoNQYAqT0GAKpVBgCrZQYArH0GAK1lBgCubQYAr2EGACZeAIB+XgCAgl4AgIZeAICADQAAgbEAAIKxAACKXgCAuOkGALnpBgC6+QYAu/UGALyVBgC9nQYAvpUGAL+NBgCw4QYAseEGALLhBgCz/QYAtOUGALXtBgC25QYAt9kGALPdBgCOXgCAkl4AgJZeAICaXgCAtuUGALX1BgCeXgCAuyUGALolBgCGmAAAh6wAAL8pBgC+IQYAvSkGALw1BgCiXgCAo5kGAKZeAICqXgCApqEGAK5eAICyXgCApbEGAKphBgCrYQYAtl4AgLpeAICuZQYAr20GAKxxBgCtbQYAqC0GAKk9BgCqiQYAq4kGAKyZBgCtmQYArokGAK+JBgC+XgCAwl4AgMZeAIDKXgCAzl4AgNJeAIDWXgCA2l4AgLiNBgC5lQYAupUGALulBgC8vQYAvXEBAL5xAQC/cQEAsPkGALHNBgCy2QYAs9kGALTJBgC1yQYAtr0GALe1BgCzAQYA3l4AgOJeAIDmXgCA6l4AgLYZBgC1EQYA7l4AgLsJBgC6PQYA8l4AgPZeAIC/DQYAvg0GAL0NBgC8DQYA+l4AgKNFBgC2XQCA/l4AgKZdBgACXwCAhFgAAKVVBgCqeQYAq00GAL5oAQAGXwCArkkGAK9JBgCsSQYArUkGAIDBAwCByQMAgt0DAKPNAgAKXwCApdkCAKbNAgAOXwCAhoANAIeUAwCqxQIAqw0DAKwVAwCtHQMArhUDAK8NAwDhnBcA4xgGAOMUAwDhNAYA7xgCABJfAIAWXwCAGl8AgOPQAgAeXwCA4VACACJfAIAmXwCA7ywGAO/kJQAqXwCArE0CAK1RAgCuUQIAr2UCAKgBAgCpCQIAqlkCAKtVAgCE7A0ALl8AgDJfAIA2XwCAvvgNADpfAIA+XwCAQl8AgLxRAwC9WQMAvmEDAL9hAwC47QMAuVEDALpRAwC7UQMAtM0DALXVAwC23QMAt9UDALAdAgCx1QMAst0DALPVAwDjyAAARl8AgOG4AQBKXwCAhFQPAE5fAIBSXwCAVl8AgKHpAgCgFQYAo6UDAKINAwDvIAAAWl8AgF5fAIBiXwCAZl8AgGpfAICFNCYAs40DAG5fAIC1mQMAto0DAHJfAICGwA8Ah5QNALqFAwC7TQIAvFUCAL1dAgC+VQIAv00CAHpfAIB+XwCAgl8AgIZfAICKXwCAjl8AgI/d6wDvxAYAvuAPAOGMBgCSXwCA44AGAID1AACB5QAAguUAAJZfAICZbR8AmMUfAJvJGwCaeRoAnXUaAJzFGwCf+QcAnhkGAJFpFgCQsesAk20XAJLNFwCV0RMAlGkSAJdREgCWzRMAg1XkAIJB5AB2XwCAml8AgIeNHQCGkRgAhTkYAISVGQCLERwAigUcAJ5fAICiXwCAj4UVAI6ZEACNORAAjJUdAJNRFACSRRQApl8AgKpfAICXYQkAlnUIAJWdCQCU+RUAm0EMAJqtDQCuXwCAsl8AgLZfAIC6XwCAvl8AgJzxDAChbQ0Awl8AgKMBBACihQAApZkEAKSRBACnGTgApsUFAKkJOACoKTgAq4k8AKoBPACtATAArB08AK8pMACunTAAseE0ALABNACzASgAsv00ALXZKAC00SgAxl8AgMpfAIDOXwCA0l8AgNZfAIDaXwCAgB0AAIEJAACC2QEA3l8AgKgRDwCpGQ8Aql0PAKtVDwCsTQ8ArXEPAK51DwCvbQ8A4l8AgOpfAICGiAAAhxABAO5fAIDyXwCA9l8AgPpfAIC4TQ4AuVEOALpRDgC7UQ4AvGUOAL1tDgC+ZQ4Avx0OALAdDwCxwQ8AssEPALPBDwC0xQ8Atc0PALbFDwC3eQ4As9UPAP5fAIACYACABmAAgApgAIC28Q8AtcUPAA5gAIC7BQ8AutkPABJgAIAWYACAvwkPAL4BDwC9FQ8AvBUPABpgAICjkQ8AHmAAgCJgAICmtQ8AJmAAgCpgAIClgQ8Aqp0PAKtBDwAuYACAMmAAgK5FDwCvTQ8ArFEPAK1RDwCogQ0AqYENAKqBDQCrgQ0ArIENAK2BDQCusQ0Ar6ENADZgAIA6YACAPmAAgEJgAIBGYACAgrkAAIG9AACAvQAAuDUCALk9AgC6zQIAu5UCALyNAgC9tQIAvr0CAL+1AgCwbQIAsU0CALJFAgCzJQIAtD0CALUdAgC2FQIAtw0CAEpgAIBOYACAswENAFJgAIC1AQ0AWmAAgISUAwC2CQ0AviwEAF5gAIC7gQIAuqECAL35AgC8mQIAv9ECAL7xAgBiYACAZmAAgGpgAICjRQ0AbmAAgKVFDQCmTQ0AcmAAgIbgBACHpAQAquUCAKvFAgCs3QIArb0CAK61AgCvlQIAqCUCAKk1AgCqPQIAqzUCAKwtAgCtkQIArpECAK+RAgB2YACAemAAgH5gAICCYACAzAAAAIZgAICKYACAjmAAgLiZAgC5rQIAuqUCALttAQC8dQEAvX0BAL51AQC/bQEAsPECALH5AgCywQIAs8ECALSxAgC1vQIAtrUCALepAgCSYACA44QOAJZgAIDh9A4AmmAAgJ5gAICiYACApmAAgIQgBQCqYACArmAAgLJgAIC2YACA7+wOALpgAIC+YACAs/UCAMJgAICG6AQAh4wEAL5cBAC2UQIAteUCAMpgAIC7fQIAunUCAM5gAIDSYACAvzkCAL41AgC9VQIAvFUCAKM1BQBWYACAxmAAgNZgAIDaYACAppEFAKUlBQDeYACAq70FAKq1BQDiYACA5mAAgK/5BQCu9QUArZUFAKyVBQCA+QcAgfkHAIKNBwCzjQYA6mAAgLWdBgC2iQYA7mAAgPJgAID2YACAuk0HALtFBwC8XQcAvUEHAL5BBwC/QQcA+mAAgP5gAIDmXwCAAmEAgAZhAIAKYQCADmEAgBJhAICoNQYAqQEGAKppBgCraQYArHkGAK1lBgCuZQYAr50HALDlBwCx7QcAsuUHALP5BwC06QcAtekHALZZBwC3VQcAuHEHALlxBwC6cQcAu3EHALxVBwC9XQcAvlUHAL9NBwCjwQcAFmEAgBphAIAeYQCAImEAgKbFBwCl0QcAJmEAgKsJBgCqAQYAKmEAgC5hAICvDQYArg0GAK0NBgCsEQYAgGkAAIFpAACCBQAAMmEAgL6YAQCEmAEANmEAgDphAICGADwAh8QBAD5hAIBCYQCARmEAgEphAIBOYQCAUmEAgKhdBgCpbQYAqmUGAKuBAQCsgQEArYkBAK6xAQCvsQEAVmEAgFphAIBeYQCAYmEAgGZhAIBqYQCAbmEAgHJhAIC4VQEAuV0BALpVAQC7yQAAvNkAAL3ZAAC+yQAAv8EAALCxAQCxuQEAsokBALOJAQC0cQEAtXEBALZ1AQC3bQEAs+0FAHZhAIB6YQCAfmEAgIJhAIC2CQIAtQkCAIZhAIC7fQIAunUCAIphAICOYQCAv7UCAL61AgC9XQIAvF0CAL5gAgCjqQUAkmEAgJZhAICmTQIAmmEAgJ5hAIClTQIAqjECAKs5AgCiYQCAhOADAK7xAgCv8QIArBkCAK0ZAgC+iDwAqmEAgKotAwCrJQMArD0DAK0lAwCuLQMAryUDAID1AACB/QAAgsEAAKPBAwCuYQCApcEDAKbBAwCyYQCAhmA8AIdUAwC2YQCAumEAgL5hAIDjqAIAwmEAgOGkAQDGYQCA71wCAMphAIDOYQCA0mEAgNZhAIDaYQCA3mEAgOJhAIDjjAcA5mEAgOE8BADqYQCA7mEAgPJhAID2YQCAhCACAPphAID+YQCAAmIAgAZiAIDvbAcACmIAgA5iAICzLQIAhEQ9ABJiAIAaYgCAHmIAgLYtAgC1LQIAImIAgLvJAgC6wQIAJmIAgCpiAIC/yQIAvsECAL3JAgC80QIA4XgHAOPAAADjOAYA4VwGAICpAACBqQAAgtEAAC5iAIAyYgCANmIAgL6kPAA6YgCAPmIAgO8cAADvkAYAQmIAgIZgPACHBD0ARmIAgLNxAQBKYgCAtRkBALYJAQBOYgCAUmIAgFZiAIC6AQEAuwEBALwBAQC9AQEAvgEBAL8BAQCohT4AqbU+AKq1PgCrxT4ArN0+AK3FPgCuwT4Ar/0+AFpiAIBeYgCAYmIAgGZiAIBqYgCAbmIAgHJiAIB2YgCAuFE/ALlRPwC6UT8Au1E/ALx1PwC9fT8AvnU/AL9tPwCwiT4AsYk+ALKZPgCzmT4AtIk+ALWJPgC2eT8At3U/AKZhAICjOT4AemIAgBZiAICmQT4AfmIAgIJiAIClUT4Aqkk+AKtJPgCGYgCAimIAgK5JPgCvST4ArEk+AK1JPgCASQAAgVEAAIJRAACzkT8AjmIAgLW5PwC2RT8AkmIAgIZAAACHBAMAukU/ALtdPwC8TT8AvT0/AL4pPwC/IT8AqE0+AKlVPgCqVT4Aq2U+AKx9PgCtiT4Arrk+AK+5PgCWYgCAmmIAgJ5iAICiYgCApmIAgKpiAICuYgCAsmIAgLhhAQC5YQEAumEBALthAQC8YQEAvWEBAL5hAQC/YQEAsM0+ALHVPgCy1T4As6U+ALShPgC1qT4Atpk+ALeZPgCj3T4AtmIAgLpiAIC+YgCAwmIAgKYJPgCl9T4AxmIAgKsRPgCqCT4AymIAgM5iAICvbT4ArmU+AK1xPgCsAT4A0mIAgNZiAIDaYgCA3mIAgOJiAIDmYgCA6mIAgO5iAICAOQAAgTkAAIIFAADyYgCAvrgBAIS4AQD6YgCA/mIAgKitAgCp1QIAqtUCAKstAwCsNQMArT0DAK41AwCvLQMAAmMAgAZjAIAKYwCADmMAgBJjAIAWYwCAGmMAgB5jAIC46QMAuekDALqJAwC7iQMAvJkDAL2ZAwC+iQMAv4kDALBVAwCxXQMAslUDALPpAwC0+QMAtfkDALbpAwC34QMAs10CACJjAICGKAQAh8wDACZjAIC2vQMAtb0DACpjAIC7mQMAupEDAC5jAIAyYwCAvz0DAL49AwC9PQMAvIEDAIUAFACjGQIANmMAgDpjAICm+QMAPmMAgEJjAICl+QMAqtUDAKvdAwBGYwCASmMAgK55AwCveQMArMUDAK15AwDjVD4A4dw/AOHQPgDjPD4ATmMAgO8cAABSYwCAVmMAgFpjAIDjwAAAXmMAgOHUAQDvYD4AYmMAgGpjAIDvRD8AgGEAAIFtAACCfQAAhAAFAIbwBACHnAUAvhAFAG5jAIByYwCAdmMAgHpjAIB+YwCAgmMAgIZjAICKYwCAjmMAgLiJPQC5iT0Aupk9ALuRPQC8uT0Avbk9AL7RPQC/0T0AsAU+ALENPgCyBT4Asx0+ALQFPgC1DT4AtgU+ALe5PQConT4Aqa0+AKqlPgCrvT4ArKU+AK2tPgCupT4Ar30+AISsBAC+rAQAkmMAgJZjAICaYwCAnmMAgKJjAICmYwCAqPkFAKn5BQCqKQYAqykGAKw5BgCtOQYArikGAK8pBgBmYwCAqmMAgK5jAICyYwCAtmMAgLpjAIC+YwCAwmMAgLiNBgC5kQYAupEGALulBgC8vQYAvUUHAL5BBwC/QQcAsFkGALFZBgCy7QYAs/0GALTtBgC13QYAttUGALe1BgCzoQYAxmMAgMpjAIDOYwCA0mMAgLa5BgC1sQYA2mMAgLudBgC6nQYA1mMAgPZiAIC/GQYAvikGAL0pBgC8OQYAglEAAKPlBgCAQQAAgUEAAKb9BgDeYwCA4mMAgKX1BgCq2QYAq9kGAIZIAACHbAAArm0GAK9dBgCsfQYArW0GAKg5BgCpWQYAqmkGAKtpBgCseQYArXkGAK5pBgCvaQYA5mMAgOpjAIDuYwCA8mMAgPZjAID6YwCA/mMAgAJkAIC4ZQEAuW0BALplAQC7fQEAvGUBAL1tAQC+ZQEAv9kBALAZBgCxGQYAsoEGALOBBgC0gQYAtYEGALaBBgC3gQYAs+EGAAZkAIAKZACADmQAgBJkAIC2+QYAtfEGABZkAIC73QYAut0GABpkAIAeZACAv0UGAL5FBgC9VQYAvFUGACJkAICjpQYAJmQAgCpkAICmvQYALmQAgDJkAICltQYAqpkGAKuZBgA2ZACAOmQAgK4BBgCvAQYArBEGAK0RBgConQIAqdECAKrRAgCrLQMArDUDAK09AwCuNQMAry0DAD5kAIBCZACAvmQCAEpkAIBOZACAUmQAgFZkAIBaZACAuOkDALnpAwC6iQMAu4UDALydAwC9gQMAvoEDAL+1AwCwVQMAsV0DALJVAwCz6QMAtPkDALX5AwC26QMAt+EDAIBtAwCBpQAAgq0AALNVAgBeZACAtbEDALaxAwBiZACAhOACAGZkAIC6nQMAu5UDALyNAwC9MQMAvjEDAL8xAwCjGQIAamQAgIVwaQBuZACAcmQAgKb9AwCl/QMAdmQAgKvZAwCq0QMAhkgMAIe8AwCvfQMArn0DAK19AwCswQMAemQAgH5kAICCZACAhmQAgO+wBgDvxAMAimQAgI5kAIDjfAYA45QDAOG4BwDh3AEAkmQAgJZkAICaZACAnmQAgKJkAICmZACAhEQCAL5YDQCADQAAgTUAAII9AACqZACArmQAgLJkAICGyAwAh1wNALpkAIC+ZACAwmQAgMZkAIDKZACAzmQAgNJkAIDWZACA2mQAgN5kAIDiZACA74AGAISsDQDh7AYA5mQAgONcBgDqZACA7mQAgPJkAID2ZACAs/UBAPpkAID+ZACAAmUAgAZlAIC2RQEAteUBAAplAIC7LQEAuiEBAA5lAIASZQCAv/UAAL71AAC9JQEAvC0BAKgtDgCpNQ4Aqj0OAKs1DgCsLQ4ArYUOAK6FDgCvuQ4AtmQAgBZlAIAaZQCAHmUAgIAZAACBGQAAggUAACJlAIC4WQ8AuVkPALp5DwC7eQ8AvGkPAL1pDwC+GQ8AvxkPALClDgCxqQ4AsrkOALOxDgC0cQ8AtXEPALZxDwC3cQ8Apb0OAL6IAwAqZQCAph0OACZlAIAuZQCAo60OADJlAICtfQ4ArHUOAK+tDwCurQ8ARmQAgDZlAICrdQ4AqnkOALO5DwA6ZQCAhmgAAIcMAwA+ZQCAtlEPALVZDwBCZQCAu3UPALp1DwBGZQCASmUAgL9FDwC+RQ8AvVEPALxlDwCocQ4AqXEOAKpxDgCrcQ4ArJEOAK2RDgCukQ4Ar5EOAE5lAIBSZQCAVmUAgFplAIBeZQCAYmUAgGZlAIBqZQCAuIUOALmNDgC6hQ4Au50OALyNDgC9vQ4AvrUOAL95AQCw8Q4AsfEOALLxDgCzxQ4AtMEOALXBDgC2wQ4At8EOAKP5DgBuZQCAcmUAgHZlAIB6ZQCAphEOAKUZDgB+ZQCAqzUOAKo1DgCCZQCAhmUAgK8FDgCuBQ4ArREOAKwlDgCADQAAgRUAAIIdAACKZQCAjmUAgJJlAICElAEAvpQBAIZABwCH5AAAmmUAgJ5lAICiZQCApmUAgKplAICuZQCAqIkCAKmRAgCqlQIAq7kCAKzVAgCtxQIArsUCAK/1AgCyZQCAtmUAgLplAIC+ZQCAvnwDAMJlAIDGZQCAymUAgLh9AwC5wQMAusEDALvBAwC8wQMAvckDAL7xAwC/8QMAsI0CALFFAwCyTQMAs0UDALRdAwC1RQMAtk0DALdFAwCzHQIAzmUAgNJlAIDWZQCA2mUAgLZFAgC1XQIA3mUAgLuBAwC6SQIA4mUAgOZlAIC/gQMAvpkDAL2RAwC8mQMA6mUAgKNZAgDuZQCA8mUAgKYBAgD2ZQCA+mUAgKUZAgCqDQIAq8UDAP5lAIACZgCArt0DAK/FAwCs3QMArdUDAIDZAQCB7QEAguUBAO+4DgAKZgCA4cQBAISYAgDj1AAADmYAgL7sBAASZgCA7wgAABZmAIDhxA8AGmYAgONkDgCGAAUAh2gFAB5mAICzvQIAImYAgLWtAgC2pQIAJmYAgCpmAIAuZgCAukEBALtBAQC8RQEAvU0BAL5FAQC/+QEAMmYAgDZmAIA6ZgCAPmYAgEJmAIBGZgCASmYAgO/gAQCEbAQA4dQOAE5mAIDjHA4AUmYAgFZmAIBaZgCAXmYAgKMxAgBiZgCAhCQHAGZmAIBqZgCApikCAKUhAgBuZgCAq80BAKrNAQByZgCAemYAgK91AQCuyQEArcEBAKzJAQCo6QUAqekFAKr5BQCr+QUArOkFAK3pBQCuOQYArzkGAAZmAICCzQcAgfUHAID9BwB2ZgCAfmYAgIYYAwCHkAMAuNEGALnZBgC64QYAu+EGALyRBgC9nQYAvpUGAL+JBgCwSQYAsUkGALJdBgCzVQYAtE0GALXxBgC28QYAt/EGALDhBwCx4QcAsgkHALMJBwC0GQcAtRkHALYJBwC3CQcAuDkHALkNBwC6GQcAuxkHALwJBwC9CQcAvn0HAL9xBwCCZgCAlmUAgIZmAICKZgCAjmYAgJJmAICWZgCAmmYAgKjxBwCpxQcAqsEHAKvdBwCsyQcArb0HAK6pBwCvoQcAsykGAJ5mAICiZgCApmYAgKpmAIC2XQYAtSEGAK5mAIC7RQYAukUGALJmAIC2ZgCAv70GAL69BgC9vQYAvL0GALpmAICjbQYAvmYAgMJmAICmGQYAxmYAgMpmAIClZQYAqgEGAKsBBgDOZgCA0mYAgK75BgCv+QYArPkGAK35BgCobQYAqbEBAKpJAQCrRQEArF0BAK1FAQCuTQEAr0UBANZmAICCHQAAgR0AAIAdAADaZgCA3mYAgOJmAIC+VAEAuIEAALmNAAC6hQAAu5kAALyJAAC9vQAAvrUAAL99AACwPQEAseEAALLhAACz4QAAtOEAALXpAAC20QAAt9EAALsFAwC62QIAhiwCAIcsAwC/DQMAvgUDAL0VAwC8FQMAs+ECAOpmAIDuZgCAhCwDAPJmAIC25QIAtfUCAPZmAICqnQIAq0EDAPpmAID+ZgCArkEDAK9JAwCsUQMArVEDAAJnAICjpQIABmcAgApnAICmoQIADmcAgBJnAIClsQIAqakAAKihAACrtQAAqr0AAK3dAACs3QAAr/EAAK79AAC+LBwAFmcAgBpnAIAeZwCAImcAgCZnAIAqZwCALmcAgLl9AAC4fQAAu80BALrNAQC93QEAvN0BAL/NAQC+zQEAsZUAALCJAACzTQAAspUAALVdAAC0XQAAt00AALZNAAAyZwCANmcAgDpnAIA+ZwCAQmcAgEZnAIBKZwCATmcAgIA5AACBOQAAggUAAFJnAIBaZwCAXmcAgIf4AgCGfB0A4bgEAL7IHADjQAYAYmcAgGZnAIBqZwCAbmcAgHJnAIB2ZwCAemcAgH5nAICCZwCAhmcAgIpnAIDvsAcAjmcAgJJnAICWZwCAmmcAgO/IAACeZwCAomcAgKZnAIDvQAYAqmcAgOH8BgCuZwCA4xwGALJnAIDhlAEAtmcAgONkBgCAEQAAgRkAAIIpAACz/QEAumcAgLWdAQC2lQEAvmcAgMJnAICEbB0AuoUBALuZAQC8iQEAvVEBAL5RAQC/UQEAozEeAFZnAIDGZwCAymcAgM5nAICmWR4ApVEeANJnAICrVR4AqkkeAIYIAwCHbAMAr50eAK6dHgCtnR4ArEUeANZnAICzCR8A2mcAgN5nAIC2CR8A4mcAgOZnAIC1CR8AugUfALsNHwDqZwCA7mcAgL4FHwC/CR8AvBUfAL0NHwCw5R8Ase0fALLlHwCz/R8AtOUfALXpHwC2GR8AtxkfALgpHwC5NR8Auj0fALs1HwC8ER8AvR0fAL4JHwC/BR8A8mcAgPZnAIDmZgCA+mcAgP5nAIACaACABmgAgApoAICo0R8AqdEfAKqlHwCrvR8ArKUfAK2tHwCupR8Ar50fAKNNHgAOaACAEmgAgBZoAIAaaACApk0eAKVNHgAeaACAq0keAKpBHgAiaACAJmgAgK9NHgCuQR4ArUkeAKxRHgCADQAAgRUAAIIdAAAqaACALmgAgDJoAICEtAEAvrQBAL/oAQA6aACAhkgHAIc0AACEvAYAPmgAgEJoAIC+tAYAqI0BAKmVAQCqlQEAq80BAKzZAQCt2QEArs0BAK/FAQBGaACASmgAgE5oAIBSaACAVmgAgFpoAIBeaACAYmgAgLgdAQC5wQAAusEAALvBAAC8wQAAvckAAL7xAAC/8QAAsIkBALGJAQCyKQEAsykBALQ9AQC1JQEAti0BALclAQC7bQIAum0CAGZoAIBqaACAv8ECAL7ZAgC93QIAvN0CALM9AgBuaACAcmgAgHZoAICE/AYAtnkCALVxAgB6aACAqikCAKspAgB+aACAgmgAgK6dAgCvhQIArJkCAK2ZAgCGaACAo3kCAIpoAICOaACApj0CAJJoAICWaACApTUCAIJtJwCDjSoAhqgFAIdsAwCGmS4Ah80vAIQRLgCFmS4AiiESAIspEgCaaACAnmgAgI6RFgCPHRYAjBESAI0RFgCScRoAk+UaAKJoAIDvlHYAlvEeAJflHgCUSRoAlRkeAJopAgCb4QIAqmgAgK5oAICyaACA4SASAJzxAgDjIBYAnyEfAJ7BHwCdmRsAnC0bAJuhGwCavRcAmTkXAJixFwCXiRMAlqkTAJWpEwCUdS4AkzkvAJIxLwCRsS8AkDUrAI+tJgDjeB8A0gAAAOFcHwCCmQEAtmgAgIDxAQCB8QEAvqgHALpoAIC+aACAwmgAgIS8BgDvLB8AxmgAgMpoAIDhpB4A48wAAON8HgDhvAEAzmgAgNJoAIDWaACAhJwGANpoAIC+bAYA3mgAgOJoAIDmaACA7xAAAO8EHgDqaACA7mgAgPJoAID2aACA+mgAgP5oAIACaQCABmkAgAppAICAPQAAgQkAAILJBwAOaQCAo/kDAKLxAwChMQMAoM0fALBJcQCxAXwAsgl8ALMhfQC0AXgAtRV4ADZoAICmaACAEmkAgL4oDgCGDAAAh4wDABZpAIAaaQCAHmkAgCJpAIAmaQCAoV0AAKJVAACjfQAApAEMAKUVDACm9QwApwEIAKghCACpxQgAqgF0AKsJdACsAXQArR11AK55cACveXAAqOUFAKnxBQCq8QUAqy0FAKw1BQCtPQUArjUFAK8tBQAqaQCALmkAgDJpAIA2aQCAOmkAgD5pAIBCaQCARmkAgLj9BgC5jQYAuoUGALutBgC8uQYAvbkGAL6tBgC/pQYAsFUFALFdBQCyVQUAs+UGALT9BgC10QYAttEGALfRBgCzeQQASmkAgE5pAIBSaQCAVmkAgLa9BAC1vQQAWmkAgLuZBAC6kQQAXmkAgGJpAIC/FQcAvjkHAL0xBwC8gQQAZmkAgKM9BABqaQCAbmkAgKb5BAByaQCAdmkAgKX5BACq1QQAq90EAHppAIB+aQCArn0HAK9RBwCsxQQArXUHAKhpBwCpaQcAqnkHAKvZBgCs9QYArf0GAK71BgCv5QYAgMkAAIHJAACCBQAAgmkAgIZwDwCHNAAAimkAgI5pAIC4fQYAuQUGALoNBgC7BQYAvB0GAL0FBgC+DQYAvwUGALCdBgCxdQYAsn0GALN1BgC0UQYAtV0GALZVBgC3TQYAs/EEAJJpAICWaQCAmmkAgJ5pAIC2fQUAtX0FAKJpAIC7sQUAulkFAKZpAICqaQCAv5kFAL6VBQC9oQUAvKkFAK5pAICjtQQAsmkAgLZpAICmOQUAumkAgL5pAIClOQUAqh0FAKv1BQDCaQCAxmkAgK7RBQCv3QUArO0FAK3lBQCpuQIAqLECAKvJAgCqsQIArTUCAKw1AgCvNQIArjUCAMppAIDOaQCA0mkAgNZpAIDaaQCA3mkAgOJpAIDmaQCAuekDALjZAwC7iQMAuuEDAL2dAwC8nQMAv4EDAL6JAwCxVQIAsFUCALNVAgCyVQIAtfkDALTxAwC36QMAtvEDALM9AwDqaQCA7mkAgPJpAID6aQCAtrEDALW5AwD+aQCAu5UDALqVAwCGiAwAh6ANAL85AgC+MQIAvYUDALyFAwACagCAo3kDAAZqAIAKagCApvUDAA5qAIASagCApf0DAKrRAwCr0QMAFmoAgBpqAICudQIAr30CAKzBAwCtwQMAgIUAAIGNAACChQAA79AGAOOwBwDj9AQA4QgHAOHsBADvOAYA7yAEAL6kDAAeagCAImoAgOGEAQAmagCA49wGACpqAIAuagCAhMANALPJAQAyagCAtdkBALbJAQA2agCAOmoAgD5qAIC6xQEAu60BALy5AQC9uQEAvq0BAL+lAQCwLQ4AsUUOALJBDgCzQQ4AtEUOALVNDgC2cQ4At3EOALiBDgC5gQ4AuoEOALuBDgC8gQ4AvYEOAL6BDgC/gQ4A9mkAgEJqAIBGagCASmoAgIZpAIBOagCAUmoAgFZqAICo2Q0AqdkNAKptDgCrZQ4ArH0OAK1lDgCuZQ4Ar1UOAKOFDgCCLQAAgRUAAIAdAABaagCApoUOAKWVDgBeagCAq+EOAKqJDgBiagCAZmoAgK/pDgCu4Q4ArfUOAKz1DgBqagCAs4UPAIZoAACHHAMAtoUPAG5qAIByagCAtZEPALqNDwC7SQ8AdmoAgHpqAIC+MQ8AvzEPALxJDwC9RQ8AqBEOAKkZDgCqSQ4Aq0UOAKxdDgCtQQ4ArkEOAK91DgB+agCAgmoAgIZqAICKagCAjmoAgJJqAICWagCAmmoAgLihDgC5oQ4Aug0BALsFAQC8HQEAvQEBAL4BAQC/AQEAsA0OALHJDgCy2Q4As9UOALSxDgC1sQ4AtqkOALehDgCjwQ4AnmoAgKJqAICmagCAqmoAgKbBDgCl1Q4ArmoAgKsNDgCqyQ4AsmoAgLZqAICvdQ4ArnUOAK0BDgCsDQ4AumoAgL5qAIDCagCAxmoAgIANAACBNQAAgj0AAMpqAIDOagCA0moAgISEAQC+hAEAhjAHAIf4AADaagCA3moAgKjBAgCp0QIAqtECAKvlAgCs/QIArTUDAK49AwCvNQMA4moAgOZqAIDqagCA7moAgPJqAID2agCA+moAgP5qAIC40QMAudkDALrhAwC74QMAvJEDAL2RAwC+kQMAv5EDALBNAwCxVQMAsl0DALNVAwC0TQMAtfEDALbxAwC38QMAu7EDALqpAwACawCAvoQDAL8VAwC+qQMAvaEDALypAwCzeQIABmsAgAprAIAOawCAEmsAgLaVAwC1VQIAFmsAgKrtAwCr9QMAGmsAgB5rAICu7QMAr1EDAKztAwCt5QMAImsAgKM9AgAmawCAKmsAgKbRAwAuawCAMmsAgKURAgA2awCAgiEAAIEVAACAFQAA7wQAAISUAgA6awCAPmsAgOPYAABCawCA4fgBAEprAIBOawCAUmsAgFZrAIBaawCAhmAFAIcIBQBeawCAs20BAGJrAIC1fQEAtnUBAGZrAIBqawCAbmsAgLpRAQC7UQEAvPkBAL3RAQC+0QEAv9EBAHJrAICjpQEAdmsAgHprAICmvQEAfmsAgIJrAICltQEAqpkBAKuZAQCGawCAimsAgK4ZAQCvGQEArDEBAK0ZAQCOawCA4fQOAJJrAIDjFA4A9AAAAOF8DACWawCA41AKAJprAICeawCAviAEAO8wDQCiawCApmsAgIQ0BADvrA4AsDkGALE5BgCygQYAs6kGALS5BgC1uQYAtqkGALehBgC46QYAuekGALrJBgC7xQYAvN0GAL3BBgC+wQYAvz0HAEZrAICCHQAAgR0AAIAdAACqawCArmsAgLJrAIDWagCAqJkFAKmZBQCqSQYAq0kGAKxZBgCtWQYArkkGAK9JBgCorQcAqbUHAKq9BwCrtQcArK0HAK3dBwCuyQcAr8EHALZrAIC6awCAhogDAIcQAwC+awCAwmsAgMZrAIDKawCAuG0HALkFBwC6AQcAuxUHALwxBwC9MQcAvikHAL8pBwCwgQcAsYEHALJpBwCzZQcAtH0HALVhBwC2YQcAt1UHALM1BgDOawCA0msAgNZrAIDaawCAtl0GALUlBgDeawCAu0UGALpFBgDiawCA5msAgL+lBgC+uQYAvbEGALy9BgDqawCAo3EGAO5rAIDyawCAphkGAPZrAID6awCApWEGAKoBBgCrAQYA/msAgAJsAICu/QYAr+EGAKz5BgCt9QYAqCUBAKk1AQCqPQEAqzUBAKwtAQCtkQAArpEAAK+RAAAGbACACmwAgA5sAIASbACAFmwAgIK9AwCBvQMAgL0DALiZAAC5rQAAuqUAALttAAC8dQAAvX0AAL51AAC/bQAAsPEAALH5AACywQAAs8EAALSxAAC1vQAAtrUAALepAAAabACAHmwAgCJsAICEgAIAvhwCACpsAICG+HwAh8wCAISsAwAubACAMmwAgDZsAIA6bACAPmwAgEJsAIBGbACAs/UCAEpsAIBObACAkgAAAFJsAIC2UQMAteUCAFZsAIC7fQMAunUDAFpsAIBebACAvzkDAL41AwC9VQMAvFUDAKM1AgBibACAZmwAgGpsAIBubACAppEDAKUlAgBybACAq70DAKq1AwB2bACAemwAgK/5AwCu9QMArZUDAKyVAwC+wAMAfmwAgIJsAICGbACAgA0AAIE1AACCPQAAimwAgI5sAICSbACAhsh8AIcAAwCabACAnmwAgKJsAICmbACAqmwAgK5sAICybACAtmwAgLpsAIC+bACAwmwAgO/0AwCE7HwA4ZQBAMZsAIDjMAMAymwAgM5sAIDSbACA1mwAgLNpAQDabACA3mwAgOJsAIDmbACAtmEBALVpAQDqbACAuykBALohAQDubACA8mwAgL8dAQC+HQEAvSUBALwtAQD2bACA+mwAgP5sAICjpQEAAm0AgKWlAQCmrQEAvlR8AIaAfACH7HwAqu0BAKvlAQCs4QEArekBAK7RAQCv0QEACm0AgOGcBgCEBH8A4yQGAOPUBgAObQCA4TAEABJtAIDvlAcAgnUAAIFhAACAaQAAFm0AgBptAIAebQCA7+wGALiNfgC5lX4AupV+ALulfgC8vX4AvdF+AL7RfgC/0X4AsGV+ALFtfgCyeX4As3F+ALRZfgC1WX4Atr1+ALe1fgCoVX4AqWF+AKphfgCrYX4ArGF+AK1hfgCuYX4Ar2F+ACJtAICWbACAJmwAgCZtAIAGbQCAKm0AgC5tAIAybQCAqHF+AKlxfgCqcX4Aq3F+AKyRfwCtkX8ArpF/AK+RfwA2bQCAOm0AgD5tAIBCbQCARm0AgEptAIBObQCAUm0AgLiFfwC5jX8AuoV/ALudfwC8jX8Avb1/AL61fwC/XX8AsPF/ALHxfwCy8X8As8V/ALTBfwC1wX8AtsF/ALfBfwCz+X8AVm0AgFptAIBebQCAYm0AgLYRfgC1GX4AZm0AgLs1fgC6NX4Aam0AgG5tAIC/BX4AvgV+AL0RfgC8JX4AghUAAKO9fwCAYQAAgWEAAKZVfgBybQCAvpABAKVdfgCqcX4Aq3F+AHZtAIB6bQCArkF+AK9BfgCsYX4ArVV+AKhBfgCpUX4AqlV+AKt9fgCsZX4ArW1+AK75AQCv8QEAhgAAAIc0AQB+bQCAgm0AgIZtAICKbQCAjm0AgJJtAIC4dQEAuX0BALp1AQC7yQAAvNkAAL3ZAAC+yQAAv8EAALCVAQCxnQEAspUBALNNAQC0VQEAtV0BALZVAQC3TQEAs919AJZtAICabQCAnm0AgKJtAIC27X0Ate19AKZtAIC7WQIAulECAKptAICubQCAv5kCAL6RAgC9mQIAvEECALJtAICjmX0Atm0AgLptAICmqX0Avm0AgMJtAIClqX0AqhUCAKsdAgDGbQCAym0AgK7VAgCv3QIArAUCAK3dAgDObQCA0m0AgNZtAIDabQCAgB0AAIEJAACCOQAA3m0AgOJtAIC+AAQA6m0AgO5tAIDybQCA9m0AgPptAID+bQCAhIwDAAJuAICHCAMAhuwEAAZuAIDviAIACm4AgA5uAICEbAQA4zQCABJuAIDhVAEAFm4AgBpuAIAebgCAIm4AgKhtAgCprQIAqqUCAKu9AgCspQIAra0CAK6lAgCvGQEAvqwEACZuAIAqbgCALm4AgDJuAIA2bgCAOm4AgD5uAIC4DQEAuREBALoRAQC7JQEAvD0BAL3VAQC+3QEAv9UBALBpAQCxaQEAsnkBALNxAQC0WQEAtVkBALY5AQC3NQEAsy0CAEJuAIBGbgCASm4AgE5uAIC2LQIAtS0CAFJuAIC7rQEAuq0BAFpuAIBebgCAv50BAL6dAQC9pQEAvK0BAIBNAACBVQAAglUAAO9sAABibgCA7+x/AO+8fgBmbgCA4RB/AOPUfwDj2H4A4ex/AGpuAIDhTH4Abm4AgOMkfgDmbQCAVm4AgKsFBgCqBQYArQ0GAKwFBgCvNQYArjUGAIYAAwCHKAMAo4UFAHJuAIClhQUAdm4AgHpuAICmhQUAs/EGAH5uAICCbgCAhm4AgIpuAIC26QYAteEGAI5uAIC7vQYAur0GAJJuAICWbgCAv4kGAL6BBgC9iQYAvJUGAKgpBgCpKQYAqjkGAKs5BgCsKQYArSkGAK5dBgCvTQYAmm4AgJ5uAICibgCApm4AgKpuAICubgCAsm4AgLZuAIC46QcAuekHALr5BwC7+QcAvOkHAL3pBwC+XQcAv1UHALA5BgCxOQYAsgEGALMdBgC0BQYAtQ0GALYFBgC32QcAo7EHAIItAACBFQAAgB0AALpuAICmqQcApaEHAL5uAICr/QcAqv0HAMJuAICEpAIAr8kHAK7BBwCtyQcArNUHAL7MAQCzlQYAxm4AgMpuAIC2qQYAzm4AgNJuAIC1rQYAulkBALshAQCGyAAAhwwBAL4hAQC/KQEAvDEBAL0xAQCoKQYAqSkGAKpZBgCrUQYArGEGAK1tBgCutQEAr6kBAITgAQDWbgCA2m4AgN5uAIDibgCA5m4AgOpuAIDubgCAuGEBALlhAQC6YQEAu2EBALxhAQC9YQEAvmEBAL9hAQCw2QEAsaEBALKhAQCzoQEAtKEBALWpAQC2kQEAt5EBAKPRBQDybgCA9m4AgPpuAID+bgCApu0FAKXpBQACbwCAq2UCAKodAgAGbwCACm8AgK9tAgCuZQIArXUCAKx1AgAObwCAEm8AgBZvAIAabwCAHm8AgCJvAIAmbwCAKm8AgIA9AACBCQAAghkAAC5vAIAybwCAOm8AgL48AwA+bwCAhgAMAIcUAwBCbwCAs9UDAEZvAIC1PQMAtjUDAEpvAIBObwCAv4wKALoRAwC7EQMAvLUAAL29AAC+tQAAv60AAFJvAIDjdAEAVm8AgOG8AQBabwCAXm8AgGJvAIBmbwCAam8AgG5vAIBybwCAdm8AgHpvAIDvdAIAfm8AgIJvAICoTQIAqVECAKpRAgCrqQIArLkCAK25AgCuqQIAr6kCAIRsDQCGbwCAim8AgI5vAICSbwCAlm8AgJpvAIC+dA0AuG0BALkFAQC6DQEAuwUBALwdAQC9BQEAvg0BAL8FAQCw2QIAsdkCALJtAQCzZQEAtH0BALVlAQC2ZQEAt1UBAOG4AQDhUAcA47QAAON8BwCAqQAAgQkAAII5AACebwCAom8AgKpvAICubwCAsm8AgO4AAAC2bwCA7wAAAO9kBgCGYAwAh+QMAKORAgC6bwCApXkCAL5vAIDCbwCApnECAMZvAIDKbwCAq1UCAKpVAgCt+QEArPEBAK/pAQCu8QEApm8AgDZvAIDObwCA0m8AgNZvAIDabwCA3m8AgOJvAICoVQ4AqVkOAKqhDgCrvQ4ArK0OAK2VDgCu+Q4Ar/UOALCRDgCxkQ4AspEOALORDgC0sQ4AtbEOALaxDgC3sQ4AuJEOALmdDgC6lQ4Au0kPALxZDwC9WQ8AvkkPAL9JDwCzCQ4A5m8AgOpvAIDubwCA8m8AgLY1DgC1BQ4A9m8AgLt1DgC6dQ4A+m8AgP5vAIC/VQ4AvlUOAL1lDgC8ZQ4AAnAAgKNNDgAGcACACnAAgKZxDgAOcACAEnAAgKVBDgCqMQ4AqzEOAISkAwC+pAMArhEOAK8RDgCsIQ4ArSEOAKilDgCprQ4AqqUOAKu5DgCs3Q4ArcEOAK7BDgCv/Q4AgO0BAIHxAQCC8QEAFnAAgIaQAQCHtAEAGnAAgB5wAIC4yQEAuckBALrZAQC70QEAvPkBAL35AQC+mQEAv5UBALCFDgCxbQEAsmUBALN9AQC0ZQEAtW0BALZlAQC3+QEAsy0OACJwAIAmcACAKnAAgC5wAIC2QQ4AtVUOADJwAIC7qQEAukEOADZwAIA6cACAv6kBAL6hAQC9qQEAvLEBAD5wAICjaQ4AQnAAgEZwAICmBQ4ASnAAgE5wAIClEQ4AqgUOAKvtAQBScACAVnAAgK7lAQCv7QEArPUBAK3tAQCoOQMAqTkDAKqNAwCrhQMArJ0DAK2FAwCuhQMAr7UDAFpwAIBecACAYnAAgGZwAIBqcACAbnAAgHJwAIB2cACAuGEAALlhAAC6YQAAu2EAALxhAAC9YQAAvmEAAL9hAACwzQMAsaUDALKhAwCzoQMAtKUDALWtAwC2kQMAt5EDAIANAACBEQAAghEAAHpwAIDv9AIAfnAAgIJwAIC+HAMA4xQCAISIAgDhgAEAinAAgI5wAICScACAh8gDAIY8BAC7AQMAumkDAJZwAICacACAvwkDAL4BAwC9FQMAvBUDALNlAwCecACAonAAgKZwAICqcACAtmUDALV1AwCucACAsnAAgLZwAIC6cACAo4kCAL5wAIClmQIApokCAMJwAICELAIAxnAAgKqFAgCr7QIArPkCAK35AgCu7QIAr+UCAMpwAIDOcACAvkQFAIRMBQDScACA1nAAgNpwAIDecACA4nAAgOZwAIDqcACA7nAAgIAZAACBGQAAggUAAPJwAIDhGA8A4VwOAOO4DgDjdAEA+nAAgP5wAIACcQCABnEAgIYABACHZAUACnEAgA5xAIAScQCAFnEAgO98DgDvqAEAs3UBABpxAIAecQCAInEAgCZxAIC2MQEAtRUBACpxAIC7HQEAuhUBAC5xAIAycQCAv+EAAL79AAC9/QAAvP0AAPZwAIA2cQCAOnEAgD5xAICGcACAQnEAgEZxAIBKcQCAqI0GAKmVBgCqnQYAq+UGAKz9BgCt0QYArtEGAK/RBgCwsQYAsbkGALJJBwCzSQcAtFkHALVFBwC2RQcAt3kHALghBwC5IQcAujkHALs5BwC8KQcAvSkHAL4ZBwC/GQcAozUGAE5xAIBScQCAVnEAgFpxAICmcQYApVUGAF5xAICrXQYAqlUGAGJxAIC+oAMAr6EHAK69BwCtvQcArL0HAIBRAACBWQAAgmEAALNVBwCF9AAAtX0HALZ1BwBmcQCAhgAcAIfkAQC6LQcAuyUHALw9BwC9JQcAviUHAL8VBwCokQYAqZEGAKqRBgCrkQYArLkGAK25BgCuqQYAr6kGAGpxAIBucQCAcnEAgHZxAICiIQEAozUBAKA5BQChEQQAuEkBALlJAQC6XQEAu1UBALxNAQC90QEAvtEBAL/RAQCwpQYAsa0GALKlBgCzvQYAtK0GALWdBgC2lQYAt3kBAKMZBgCPnXkAenEAgH5xAICCcQCApjkGAKUxBgCGcQCAq2kGAKphBgCKcQCAjnEAgK9ZBgCuaQYArWkGAKxxBgCeiQgAn8EFAJzJCQCdyQkAmqENAJu9DACYsQ0AmbkNAJahcQCXRXEAlEV1AJWxcQCSoXUAk7V1AJDleQCRzXkAil1yAItFcgCScQCAvoAcAI51DgCPZQ4AjLlyAI11DgCCOXoAgzl6AJZxAICacQCAhnF2AIeZdgCECXoAhW12AJptBwCbVQIAnnEAgKJxAICmcQCA4ZAAAJxZAgDjCBoAkgkPAJNlCgCqcQCA7zgWAJZ1BgCXdQYAlH0KAJU1CwCpjRYAqIUWAKsBEACqMRYArXESAKy1EgCvuS4ArgEsAKF9AgCucQCAo6EeAKKpHgClsRoApPUfAKflGwCmsRoAhMwDAIRMHACycQCAtnEAgLpxAIC+cQCAwnEAgMZxAICxASgAsNkuALONKgCy6SoAtfUmALQBJACEcB0AynEAgID9AQCBFQAAgh0AAL6AHADOcQCA0nEAgIe4AgCGPB0A2nEAgN5xAIDicQCA5nEAgOpxAIDucQCA8nEAgPZxAID6cQCA/nEAgAJyAIAGcgCA44ADAApyAIDhoAEADnIAgO+UAwAScgCAFnIAgBpyAIAecgCAInIAgCZyAIAqcgCALnIAgOE8BgAycgCA49AGADZyAIDhMAcAOnIAgOOsBgCAOQAAgRUAAIIdAADvHAYAPnIAgEJyAIC+uB8A7+gBALPpAgBKcgCAh8QcAIbsHABOcgCAtlkCALVRAgBScgCAu00CALpNAgBWcgCAWnIAgL+5AQC+2QEAvdEBALz1AQCjKR0A1nEAgEZyAIBecgCAYnIAgKaZHQClkR0AZnIAgKuNHQCqjR0AanIAgG5yAICveR4ArhkeAK0RHgCsNR4AcnIAgLNtHwB2cgCAenIAgLZlHwB+cgCAgnIAgLVtHwC6IR8AuyEfAIZyAICKcgCAviUfAL8pHwC8MR8AvTEfAKihHwCpoR8AqqEfAKuhHwCsoR8AraEfAK6hHwCvoR8AjnIAgJJyAICWcgCAmnIAgJ5yAICicgCApnIAgKpyAIC4rR8AubUfALq9HwC7tR8AvK0fAL1VHwC+UR8Av00fALChHwCxoR8AsqEfALOhHwC0pR8AtakfALadHwC3lR8AoykeAIIZAACBGQAAgLEBAK5yAICmIR4ApSkeALJyAICrZR4AqmUeAIaIAACH/AEAr20eAK5hHgCtdR4ArHUeALZyAICzmR4AunIAgL5yAIC2XQEAwnIAgMZyAIC1sR4AukkBALtJAQDKcgCAznIAgL49AQC/IQEAvDkBAL01AQCoRR4AqVUeAKpVHgCrZR4ArH0eAK2ZAQCuiQEAr4EBAISsAADScgCA1nIAgNpyAIDecgCA4nIAgOZyAIDqcgCAuK0BALllAQC6bQEAu2UBALx9AQC9ZQEAvm0BAL9lAQCwyQEAsckBALKpAQCzpQEAtL0BALWhAQC2oQEAt5UBALhpHAC5oRwAusEcALvBHAC8wRwAvcEcAL7BHAC/wRwAsIkfALGJHwCyIRwAswUcALQdHAC1fRwAtnUcALdtHACoYR8AqWEfAKphHwCrYR8ArNkfAK3ZHwCuyR8Ar8EfAO5yAIDycgCA9nIAgPpyAID+cgCAAnMAgAZzAIAKcwCADnMAgBJzAIC+AAQAo1EdABZzAICleR0AppUCABpzAIAecwCAInMAgKqBAgCrgQIArPECAK39AgCu9QIAr+kCACpzAIDh9AEALnMAgON8AQCATQAAgXUAAIJ9AAAycwCAhsAEAIekBAA2cwCAOnMAgD5zAIBCcwCARnMAgO+MAgCoSQIAqUkCAKpdAgCrVQIArHkCAK15AgCuvQIAr7UCAISgBQBKcwCATnMAgFJzAIC+vAQAVnMAgFpzAIBecwCAuC0BALk1AQC6PQEAuzUBALwtAQC91QEAvt0BAL/NAQCwzQIAsdUCALLdAgCz1QIAtM0CALUVAQC2HQEAtxUBAOGEHgDjbB8A41wfAOFYHgBicwCAZnMAgGpzAIBucwCAcnMAgHZzAIB6cwCAfnMAgOkAAADv9B4A70weAIJzAICzlQIAhnMAgIpzAICOcwCAknMAgLa5AgC1sQIAmnMAgLtRAgC6SQIAhsgEAIesBAC/kQEAvkkCAL1BAgC8SQIAJnMAgKNRBQCecwCAlnMAgKZ9BQCicwCApnMAgKV1BQCqjQUAq5UFAKpzAICucwCAro0FAK9VBgCsjQUArYUFAICJBwCBiQcAgpkHALORBgCycwCAtbkGALapBgC2cwCAunMAgL5zAIC6TQcAu0UHALxdBwC9QQcAvkEHAL9BBwCoQQYAqU0GAKpVBgCrZQYArH0GAK1lBgCubQYAr2UGAMJzAIDGcwCAynMAgM5zAIDScwCA1nMAgNpzAIDecwCAuFkHALlZBwC6aQcAu2kHALx5BwC9eQcAvmUHAL8ZBwCwxQcAsc0HALLFBwCz2QcAtMkHALXJBwC2aQcAt2kHAKPdBwDicwCA5nMAgOpzAIDucwCApuUHAKX1BwDycwCAqwkGAKoBBgD2cwCA+nMAgK8NBgCuDQYArQ0GAKwRBgCAbQAAgQkAAIIZAAD+cwCAAnQAgISYAQC+kAEABnQAgIbAAACH5AEACnQAgA50AIASdACAFnQAgBp0AIAedACAqF0GAKmNAQCqnQEAq5UBAKy5AQCtuQEArskBAK/BAQCEoAAAInQAgCZ0AIAqdACALnQAgDJ0AIA2dACAOnQAgLh5AQC5eQEAus0AALvFAAC83QAAvcUAAL7FAAC/9QAAsIEBALGBAQCySQEAs0kBALRZAQC1WQEAtkkBALdJAQCzFQIAPnQAgEJ0AIBGdACASnQAgLY5AgC1MQIATnQAgLtFAgC6RQIAUnQAgFZ0AIC/nQIAvp0CAL2dAgC8nQIAhXw+AKNRAgBadACAXnQAgKZ9AgBidACAZnQAgKV1AgCqAQIAqwECAGp0AIBudACArtkCAK/ZAgCs2QIArdkCAIDpAACB6QAAggUAAHJ0AIC+AAwAenQAgIeoAwCGvAwAfnQAgIJ0AICGdACAinQAgI50AICSdACAlnQAgJp0AICedACAonQAgKZ0AICqdACA42ABAK50AIDhoAEAsnQAgO+IAgC2dACAunQAgL50AIDCdACAxnQAgMp0AIDOdACAqGkCAKlpAgCqeQIAq3kCAKxpAgCtaQIArr0CAK+1AgC+rAwA0nQAgNZ0AIDadACAgB0AAIEJAACCqQAA3nQAgLhRAQC5WQEAumEBALthAQC8GQEAvRkBAL4NAQC/BQEAsM0CALHVAgCy3QIAs9UCALTNAgC1cQEAtnEBALdxAQDjxAAA4XwHAOF4BgDjvAYA4nQAgIQYDQCGuAwAhzwNAL4sDwDqdACA7nQAgPJ0AIDvEAAA9nQAgPp0AIDvdAYA/nQAgAJ1AIAGdQCAs70CAAp1AIC1rQIAtqUCAA51AIASdQCAFnUAgLpFAgC7XQIAvEUCAL1NAgC+RQIAv/kBAHZ0AIClfQ0ApnUNAOZ0AIAadQCAHnUAgCJ1AICjbQ0ArJUNAK2dDQCulQ0ArykOACZ1AIAqdQCAqpUNAKuNDQCz5Q4ALnUAgDJ1AIA2dQCAOnUAgLblDgC19Q4APnUAgLuhDgC62Q4AQnUAgEZ1AIC/pQ4AvrkOAL2xDgC8uQ4AqBUOAKklDgCqLQ4AqyUOAKw9DgCtJQ4Ari0OAK8lDgCADQAAgRUAAIIdAABKdQCATnUAgFJ1AICEMAMAVnUAgLgpDgC5KQ4AujkOALs5DgC8KQ4AvSkOAL79DwC/9Q8AsF0OALElDgCyLQ4AsyUOALQ9DgC1IQ4AtiUOALcZDgCjpQ8AWnUAgIYoAQCHTAEAXnUAgKalDwCltQ8AYnUAgKvhDwCqmQ8AZnUAgGp1AICv5Q8ArvkPAK3xDwCs+Q8AbnUAgLPpDgBydQCAdnUAgLaRDgB6dQCAfnUAgLXlDgC6sQ4Au7kOAIJ1AICGdQCAvmEBAL9hAQC8mQ4AvZkOAKglDgCpLQ4AqiUOAKs5DgCsKQ4ArVUOAK5dDgCvVQ4AinUAgI51AICSdQCAlnUAgJp1AICedQCAonUAgKZ1AIC49QEAuYEBALqBAQC7gQEAvIEBAL2JAQC+sQEAv7EBALAxDgCxOQ4AsgkOALMJDgC04QEAteEBALbhAQC3zQEAo60NAKp1AICudQCAsnUAgLZ1AICm1Q0ApaENALp1AICr/Q0AqvUNAL51AIDCdQCAryUCAK4lAgCt3Q0ArN0NAIBdAACBbQAAgmUAALNRAwC+nAMAtXkDALYZAwDKdQCAhOACAM51AIC6PQMAuzUDALwZAwC9GQMAvtkDAL/ZAwCohQMAqZUDAKqVAwCrpQMArL0DAK3VAwCu0QMAr9EDAIYABACHNAMAv6AzANJ1AIDWdQCA2nUAgN51AIDidQCAuHEDALlxAwC6cQMAu3EDALzVAAC93QAAvtUAAL/NAACwtQMAsb0DALKBAwCzgQMAtFEDALVRAwC2UQMAt1EDAO+oAwDmdQCA6nUAgO51AICEHAIA8nUAgPZ1AID6dQCAviwFAP51AIACdgCABnYAgONAAwAKdgCA4SgAAA52AICjXQIAEnYAgBZ2AIAadgCAHnYAgKYVAgCldQIAInYAgKs5AgCqMQIAJnYAgCp2AICv1QIArtUCAK0VAgCsFQIA4ygBAOEADwDhCA4A4wgOAID9AACBCQAAgjkAAC52AIAydgCAOnYAgD52AIBCdgCA7+gOAEZ2AIBKdgCA72QOALNtAQBOdgCAhugEAIcMBQBSdgCAtm0BALVtAQBWdgCAu+0AALrtAABadgCAXnYAgL/VAAC+6QAAveEAALzpAACoXQYAqWEGAKqlBgCrvQYArKUGAK2tBgCupQYArxkHADZ2AIBidgCAZnYAgGp2AIBudgCAcnYAgHZ2AIB6dgCAuHUHALl5BwC6DQcAuwUHALwdBwC9BQcAvgUHAL81BwCwaQcAsWkHALJ9BwCzdQcAtG0HALVRBwC2UQcAt1EHAKMtBgB+dgCAgnYAgIZ2AICKdgCApi0GAKUtBgCOdgCAq60HAKqtBwCSdgCAlnYAgK+VBwCuqQcAraEHAKypBwCADQAAgRUAAIIdAACadgCAnnYAgKJ2AICEVAMAvlwAAKZ2AICqdgCAhugAAIdMAwCudgCAsnYAgLZ2AIC6dgCAvnYAgOMEBADCdgCA4bQFAMZ2AIDKdgCAznYAgNJ2AIDWdgCA2nYAgN52AIDidgCA5nYAgO/sBADqdgCA7nYAgLPtBgDydgCA9nYAgPp2AID+dgCAtpEGALXhBgACdwCAu40GALqNBgAGdwCACncAgL9BAQC+WQEAvVEBALxZAQCoJQYAqS0GAKolBgCrOQYArCkGAK1RBgCuSQYAr0EGAIDNAACBCQAAghkAAA53AIASdwCAhCwBAL40AAAadwCAuP0BALlBAQC6QQEAu0EBALxBAQC9SQEAvnEBAL9xAQCwCQYAsQkGALLNAQCzxQEAtN0BALXFAQC2zQEAt8UBAIagPACHRAMAHncAgKOhBQAidwCApa0FAKbdBQAmdwCAKncAgL4oPACqwQUAq8EFAKwVAgCtHQIArhUCAK8NAgC2QQMALncAgDJ3AIC1sQIANncAgLOhAgA6dwCAPncAgL5FAwC/TQMAvHUDAL1NAwC6ZQMAu20DAEJ3AIBGdwCASncAgE53AIDGdQCAUncAgFZ3AIBadwCAXncAgGJ3AICoRQIAqVUCAKpdAgCrVQIArE0CAK21AwCusQMAr60DALDVAwCx3QMAstUDALPtAwC09QMAtf0DALb1AwC37QMAuNkDALnZAwC6rQMAu6UDALy9AwC9pQMAvqUDAL+VAwCj9QMAZncAgGp3AIBudwCAcncAgKYVAgCl5QMAdncAgKs5AgCqMQIAencAgH53AICvGQIArhECAK0ZAgCsIQIAgGkAAIFpAACCBQAAgncAgIp3AICOdwCAkncAgO8cAACEbAIA4ZQBAJZ3AIDjyAAAmncAgJ53AICGWDwAh1A9AKJ3AICmdwCAqncAgISEPQCudwCAsncAgLZ3AIDvuAEAvmw8AOF0BgC6dwCA42QBAL53AIDCdwCAxncAgMp3AICz0QEAzncAgNJ3AIDWdwCA2ncAgLaRAQC1+QEA3ncAgLu9AQC6vQEA4ncAgOZ3AIC/dQEAvnUBAL2FAQC8hQEAqL09AKkNPgCqGT4AqxE+AKwxPgCtUT4ArlE+AK9NPgCGdwCAgh0AAIEdAACAHQAA6ncAgO53AIDydwCA9ncAgLjVPgC53T4AutU+ALtJPwC8WT8AvVk/AL5JPwC/QT8AsDk+ALE5PgCyET4AsxE+ALTxPgC18T4AtvU+ALftPgCjkT4A+ncAgIYoAACHwAMA/ncAgKbRPgCluT4AAngAgKv9PgCq/T4ABngAgAp4AICvNT4ArjU+AK3FPgCsxT4ADngAgLOdPwASeACAFngAgLalPwAaeACAHngAgLWtPwC6aT8Au3U/ACJ4AIAmeACAvlk/AL9FPwC8bT8AvWU/ACp4AIAueACAMngAgDZ4AIDjYDwAOngAgOEAPQA+eACA7/w9AEJ4AIBGeACASngAgE54AIBSeACAVngAgFp4AICjGT4AghkAAIEZAACAcQAAXngAgKYhPgClKT4AYngAgKvxPgCq7T4AhCQBAL4kAQCvwT4Art0+AK3hPgCs6T4AqNE+AKnRPgCq0T4Aq+U+AKzhPgCt4T4Arhk+AK8ZPgCGAAAAh4QAAGp4AIBueACAcngAgHZ4AIB6eACAfngAgLh9PgC5AT4AugE+ALsBPgC8AT4AvQk+AL4xPgC/MT4AsGk+ALF1PgCyfT4As3U+ALRZPgC1RT4Atk0+ALdFPgCohQIAqZUCAKqVAgCrpQIArL0CAK3VAgCu0QIAr9ECAIJ4AICGeACAingAgL8k5gGOeACAkngAgJZ4AICaeACAuFUDALlZAwC6bQMAu2UDALx9AwC9ZQMAvm0DAL9lAwCwtQIAsb0CALKBAgCzgQIAtHEDALVxAwC2cQMAt3EDALMdAgCeeACAongAgKZ4AICEiAMAtlUCALU1AgAWdwCAu3kCALpxAgCqeACArngAgL+1AwC+tQMAvVUCALxVAgCyeACAo1kCALZ4AIC6eACAphECAL54AIDCeACApXECAKo1AgCrPQIAxngAgMp4AICu8QMAr/EDAKwRAgCtEQIAqKkCAKmpAgCquQIAq7kCAKypAgCtqQIArjkBAK85AQCAzQEAgQkAAIIZAADOeACA0ngAgL64BQDaeACA3ngAgLjpAQC56QEAuokBALuFAQC8nQEAvYEBAL6BAQC/tQEAsEkBALFVAQCyXQEAs1UBALRNAQC18QEAtvEBALfxAQDvFAAA4ngAgIaoBQCH3AUA5ngAgIRYBADqeACA78Q+AO54AIDhxD4A8ngAgOMwPgDjyAAA9ngAgOEoAQD6eACAtn0CAP54AIACeQCAtXUCAAZ5AICzZQIACnkAgA55AIC+3QEAv2EBALzdAQC91QEAutkBALvFAQASeQCAFnkAgKOxBQDWeACAGnkAgB55AIAieQCApqkFAKWhBQAmeQCAqxEGAKoNBgAqeQCALnkAgK+1BgCuCQYArQEGAKwJBgAyeQCANnkAgDp5AIA+eQCAgBkAAIEZAACCBQAAQnkAgL5sAwBGeQCAhsgAAIccAwBKeQCATnkAgFJ5AIBWeQCAqLkHAKm5BwCqDQcAqx0HAKwJBwCtNQcArjEHAK8pBwCEqAMAWnkAgF55AIBieQCAZnkAgGp5AIBueQCAcnkAgLjJAAC5yQAAutkAALvRAAC8+QAAvfkAAL6ZAAC/mQAAsF0HALEhBwCyIQcAsz0HALQpBwC1KQcAtgEHALcBBwCzhQYAdnkAgHp5AIB+eQCAgnkAgLa1BgC1gQYAhnkAgLvlBgC6mQYAinkAgI55AIC/7QYAvu0GAL3pBgC89QYAknkAgJZ5AICaeQCAnnkAgKJ5AICmeQCAqnkAgO+QBACueQCA4dwGALJ5AIDj7AUAgCkAAIEVAACCEQAAvnwBAKMFBgC6eQCAhigAAIdMAQC+eQCApjUGAKUBBgDCeQCAq2UGAKoZBgDGeQCAynkAgK9tBgCubQYArWkGAKx1BgDOeQCAs70BANJ5AIDWeQCAtnkBANp5AIDeeQCAtXkBALpVAQC7XQEA4nkAgOZ5AIC++QAAv/kAALxFAQC9+QAAqHECAKlxAgCqcQIAq3ECAKy1AgCtvQIArrUCAK+tAgCE7AwA6nkAgO55AIDyeQCA9nkAgPp5AID+eQCAAnoAgLhpAwC5aQMAugkDALsJAwC8GQMAvRkDAL4JAwC/CQMAsNUCALHdAgCy1QIAs2kDALR5AwC1eQMAtmkDALdhAwAGegCACnoAgA56AICj9QIAEnoAgKUxAgCmMQIAFnoAgBp6AIAeegCAqh0CAKsVAgCsDQIArbEDAK6xAwCvsQMAgGEAAIFhAACCBQAAInoAgIbwDACHYAMAvhAMACp6AIBmeACALnoAgDJ6AIA2egCAOnoAgD56AIBCegCARnoAgKiFAgCplQIAqpUCAKulAgCsvQIArdUCAK7RAgCv0QIASnoAgE56AIBSegCAVnoAgFp6AIBeegCAYnoAgGZ6AIC4dQEAuX0BALp1AQC7zQEAvNUBAL3dAQC+yQEAv8EBALC1AgCxvQIAsoECALOBAgC0VQEAtV0BALZVAQC3TQEA4RAGAIRIDADjDAYAanoAgISYDABuegCAcnoAgHZ6AIB6egCAfnoAgIJ6AICGegCAgXUAAIB1AADvIAEAgnUAAIp6AICOegCAknoAgL7ADACFtA4A4RACAO9cAADjABYA4ZABAJp6AIDjWAEA7zwHAJ56AICiegCAhgAIAIe4DACznQ0AJnoAgKZ6AICqegCArnoAgLbVDQC1tQ0AsnoAgLv5DQC68Q0AtnoAgLp6AIC/GQ4AvhEOAL3VDQC81Q0AvnoAgKPZDQDCegCAxnoAgKaRDQDKegCAznoAgKXxDQCqtQ0Aq70NANJ6AIDWegCArlUOAK9dDgCskQ0ArZENAKhdDgCpYQ4AqmEOAKthDgCsYQ4ArWEOAK5hDgCvYQ4A2noAgN56AIDiegCA5noAgOp6AIDuegCA8noAgPZ6AIC4TQ8AuVEPALpRDwC7UQ8AvHEPAL1xDwC+cQ8Av3EPALDBDwCxwQ8AssEPALPBDwC0wQ8AtcEPALbBDwC3wQ8As+kPAPp6AIC+gAEA/noAgJZ6AIC24Q8AtekPAAJ7AIC7BQ4AugUOAAp7AIAGewCAvwUOAL4FDgC9FQ4AvBUOAIFNAACAQQAA72gNAIJRAACG8AcAh9QBAA57AIASewCAFnsAgIRwAQAaewCAHnsAgOHgDgAiewCA40gNACZ7AICjaQ8AKnsAgC57AIAyewCANnsAgKZhDwClaQ8AOnsAgKuFDgCqhQ4APnsAgEJ7AICvhQ4AroUOAK2VDgCslQ4ARnsAgLMxDgBKewCATnsAgLbBAQBSewCAVnsAgLXRAQC6zQEAu6UBAFp7AIBeewCAvqUBAL+tAQC8sQEAvbEBAI/dJgCj8Q0AYnsAgGZ7AICmAQIAansAgG57AIClEQIAqg0CAKtlAgByewCAviAEAK5lAgCvbQIArHECAK1xAgCfoQwAnnkKAJ1pCgCc0QgAm7E2AJp1NgCZ0TQAmOEyAJdtMgCWZTIAlTU/AJRhPgCTcT4AkjU7AJFxOgCQeToAgJUAAIGdAACCoQAAensAgO9EAgDhdA8AfnsAgOMcDwDj1AEAgnsAgOHgAQDvXAEAo7UCAKJBAACh3Q4AoLkOALWpAwCGewCAhMAEALahAwCG8AUAh+QEALOFAwCKewCAvXEDALxpAwC/QQMAvnEDAI57AIC2eQCAu3EDALp5AwCC3ScAgwE7AL6EBwC+wAYAhhE/AIcZPwCEETsAhV06AIp9PgCLJTMAknsAgJZ7AICOuTUAjxU3AIw1MwCNgTMAkqE3AJPZCQC+xBkAmnsAgJaxDQCXUQ8AlHkLAJVhCwCaBQ8Am5EBAJ57AICiewCApnsAgN0AAACcfQMAqnsAgOFIDwCuewCA4xwOALJ7AIC2ewCAunsAgL57AIDCewCAsUEXALChFwCzqesBsgHoAbUB7AG0EesB74wOAMZ7AICpxR8AqAEcAKsBEACqkR8ArdkTAKzREwCv2RcArgUTAKHxAgDKewCAo8kHAKLBAgClARgApGUHAKehGwCm+RsAqCkFAKldBQCqVQUAq20FAKx5BQCteQUArm0FAK9hBQB2ewCAznsAgNJ7AIDWewCAgA0AAIGxAACCsQAA2nsAgLiJBQC5iQUAup0FALuVBQC8uQUAvbkFAL5RBgC/UQYAsOUFALHtBQCy5QUAs/0FALTtBQC13QUAttUFALe9BQCj3QUA3nsAgOJ7AICEDAAA5nsAgKb5BQCl8QUA6nsAgKspBQCqIQUAhpgAAIegAACvGQUArikFAK0pBQCsMQUA7nsAgLNhBgDyewCA9nsAgLYhBgD6ewCA/nsAgLUBBgC6rQcAu40HAAJ8AIAGfACAvo0HAL9xBwC8lQcAvY0HAL65BQC/uQUAvLkFAL25BQC6uQUAu7kFALi5BQC5uQUAtkkFALdJBQC0fQUAtXUFALJ5BQCzeQUAsBUFALF9BQCuXQUAr20FAKxFBQCtXQUAqqUKAKtdBQCovQoAqa0KAAp8AIAOfACAEnwAgBZ8AIAafACAHnwAgCJ8AIAmfACAqA0HAKkdBwCqLQcAq0kHAKxNBwCtZQcArrEGAK+xBgAqfACALnwAgDJ8AIA2fACAOnwAgD58AIBCfACARnwAgLhVBgC5XQYAulUGALtxBgC8NQYAvfEBAL7xAQC/8QEAsK0GALGNBgCyhQYAs50GALSNBgC1cQYAtnUGALdtBgCjpQQAgi0AAIEVAACAHQAASnwAgKblBAClxQQATnwAgKtJBQCqaQUAUnwAgFp8AICvtQUArkkFAK1JBQCsUQUAhmAcAIcIAwBefACAs4UCAGJ8AIC1gQIAtoECAGZ8AIBqfACAbnwAgLoJAwC7CQMAvBkDAL0ZAwC+CQMAvwkDAKxVAgCtXQIArmECAK9hAgCoDQIAqVUCAKpRAgCrUQIAhKwDAHJ8AIB2fACAenwAgIT8HQB+fACAgnwAgIZ8AIC8cQMAvXEDAL5xAwC/cQMAuHEDALlxAwC6cQMAu3EDALSRAwC1kQMAtpEDALeRAwCwkQMAsZEDALKRAwCzkQMAinwAgI58AICSfACAlnwAgJp8AIDhpAEAnnwAgOOAAQC+aBwAonwAgKZ8AIDv2AYAqnwAgK58AICyfACAtnwAgKOJAwCCLQAAgRUAAIAdAAC6fACApo0DAKWNAwC+fACAqwUCAKoFAgDCfACAynwAgK8FAgCuBQIArRUCAKwVAgCGIBwAh8QdAM58AIDSfACA1nwAgNp8AIDefACA72wGAOJ8AIDhbAcA5nwAgON0BwDqfACA7nwAgPJ8AID2fACAs5EBAPp8AID+fACAAn0AgAZ9AIC2sQEAtbkBAAp9AIC7VQEAukkBAA59AIASfQCAv/UAAL71AAC9RQEAvEUBAKNRHgDGfACAFn0AgBp9AIAefQCApnEeAKV5HgAifQCAq5UeAKqJHgAmfQCAKn0AgK81HwCuNR8ArYUeAKyFHgCAbQAAgRUAAIIdAADv/BkALn0AgDJ9AIA2fQCAOn0AgIbAAACHrAMAPn0AgEJ9AIBGfQCA4SwcAEp9AIDjzBwAqK0eAKnNHgCq2R4Aq9EeAKzxHgCt8R4Arj0eAK81HgCE7AAATn0AgFJ9AIBWfQCAWn0AgF59AIBifQCAZn0AgLjRHwC53R8Auu0fALvlHwC84R8AveEfAL7hHwC/4R8AsE0eALFRHgCyUR4As1EeALTxHwC18R8AtvEfALfxHwCobR4AqY0eAKqFHgCrnR4ArIUeAK2NHgCuuR4Ar7UeAGp9AIBufQCAcn0AgHZ9AIB6fQCAfn0AgIJ9AICGfQCAuJ0eALmtHgC6pR4Au0UBALxdAQC9RQEAvkUBAL91AQCw0R4AsdEeALLRHgCz0R4AtLUeALW9HgC2tR4At60eALMNHgCKfQCAjn0AgJJ9AICWfQCAtg0eALUNHgCafQCAuxUeALoVHgCefQCAon0AgL95HgC+cR4AvQUeALwFHgCCbQAAo0keAIBVAACBZQAApkkeAL6cAQCqfQCApUkeAKpRHgCrUR4Ah3wAAIZMAACuNR4Arz0eAKxBHgCtQR4AqF0CAKltAgCqZQIAq30CAKxpAgCtsQIArrECAK+xAgCE7AQArn0AgLJ9AIC2fQCAun0AgL59AIDCfQCAxn0AgLhxAwC5cQMAunEDALtxAwC81QMAvd0DAL7VAwC/zQMAsNECALHRAgCy0QIAs9ECALRRAwC1UQMAtlEDALdRAwCz7QIAyn0AgM59AIC+gAQA0n0AgLYxAgC14QIA1n0AgLsVAgC6FQIA2n0AgN59AIC/lQMAvpUDAL0FAgC8BQIA4n0AgKOpAgDmfQCA6n0AgKZ1AgDufQCA8n0AgKWlAgCqUQIAq1ECAPZ9AID6fQCArtEDAK/RAwCsQQIArUECAKjZAgCpIQEAqiEBAKshAQCsIQEArSEBAK4hAQCvIQEA/n0AgAJ+AIAGfgCAviAEAAp+AIAOfgCAEn4AgBp+AIC4jQEAuZEBALqRAQC7pQEAvL0BAL11AAC+fQAAv3UAALDlAQCx7QEAsvkBALPxAQC02QEAtdkBALa5AQC3tQEA4RgeAB5+AIDjKB8AIn4AgIGlAACApQAAJn4AgIKlAACGAAQAh/QFACp+AIAufgCAMn4AgDZ+AIDvYB4AOn4AgD5+AIBCfgCAhfD0AUZ+AIBKfgCA42QBAE5+AIDhpAEAUn4AgO/IAABWfgCAWn4AgFZ8AICE/AUAXn4AgGJ+AICzKQYAFn4AgGZ+AIBqfgCAbn4AgLYhBgC1KQYAcn4AgLupBgC6oQYAdn4AgHp+AIC/nQYAvp0GAL2lBgC8rQYA4bQHAH5+AIDjeAQAgn4AgIB9AACBEQAAghUAAIZ+AICGwAAAh1gDAIp+AICOfgCAkn4AgJZ+AIDvDAQAmn4AgKOpBgCefgCAon4AgKZ+AICqfgCApqEGAKWpBgCufgCAqykGAKohBgCyfgCAtn4AgK8dBgCuHQYArSUGAKwtBgC6fgCAs0kHAL5+AIDCfgCAtn0HAMZ+AIDKfgCAtXUHALpdBwC7JQcAzn4AgNJ+AIC+IQcAvy0HALw9BwC9MQcAqD0GAKmBBgCqhQYAq5UGAKy5BgCtuQYArqkGAK+pBgDWfgCA2n4AgN5+AIDifgCA5n4AgIK5AACBsQAAgLkAALitBgC5vQYAurUGALtFAQC8XQEAvUUBAL5FAQC/dQEAsN0GALGlBgCyrQYAs6EGALShBgC1rQYAtpkGALeVBgCjDQYA6n4AgO5+AIDyfgCAhJgCAKY5BgClMQYAvpwBAKthBgCqGQYAhggAAId8AQCvaQYArmUGAK11BgCseQYA+n4AgLO1AQD+fgCAAn8AgLZVAQAGfwCACn8AgLWhAQC6cQEAu3kBAA5/AIASfwCAvjEBAL89AQC8UQEAvVEBAKhpAgCpaQIAqnkCAKt5AgCsbQIArZECAK6RAgCvkQIAFn8AgBp/AIAefwCAIn8AgCZ/AIAqfwCALn8AgDJ/AIC4mQIAua0CALqlAgC7bQMAvHUDAL19AwC+dQMAv20DALDxAgCx+QIAssECALPBAgC0sQIAtb0CALa1AgC3qQIANn8AgDp/AIA+fwCAo/0CAEJ/AICl6QIAph0CAEZ/AIBKfwCATn8AgKo5AgCrMQIArBkCAK0ZAgCueQIAr3UCAFJ/AIBWfwCAWn8AgIQADACAGQAAgQkAAII5AABefwCAYn8AgGp/AIBufwCAvuAMAHJ/AIB2fwCAhlgNAIcMAwCowQIAqc0CAKrFAgCr2QIArMkCAK39AgCu9QIArz0BAHp/AIB+fwCAgn8AgIZ/AICKfwCAjn8AgJJ/AIC+MAwAuMUBALnNAQC62QEAu9EBALzxAQC98QEAvpkBAL+ZAQCwRQEAsU0BALJFAQCzXQEAtEUBALVNAQC2RQEAt/0BAOE4BgCWfwCA42wGAJp/AICefwCAon8AgKZ/AICqfwCAhKgNAK5/AICyfwCAtn8AgL6wDwC6fwCA72wGAL5/AIDCfwCApn0AgMZ/AIDKfwCA41AAAM5/AIDhoAEA0n8AgO+EAADafwCAhyANAIZMDwCAPQAAgSEAAIIlAADefwCAs80NAGZ/AIDWfwCA4n8AgOZ/AIC2/Q0AtcENAOp/AIC7CQ4AugEOAO5/AIDyfwCAvwkOAL4BDgC9CQ4AvBEOAPZ/AIDjmAwA+n8AgOH8DwD+fwCAAoAAgAaAAIAKgACADoAAgBKAAIAWgACAGoAAgB6AAIDvYAwAIoAAgCaAAICjTQ0AKoAAgC6AAIAygACANoAAgKZ9DQClQQ0AOoAAgKuJDgCqgQ4APoAAgEKAAICviQ4AroEOAK2JDgCskQ4Agm0AALM1DgCAVQAAgWUAALb1DwCE3AMARoAAgLX9DwC60Q8Au9EPAIYABACH3AAAvn0PAL9lDwC8wQ8AvXkPAKjlDwCp7Q8AqvkPAKv5DwCsMQ4ArTEOAK4xDgCvMQ4ASoAAgE6AAIBSgACAVoAAgFqAAIBegACAYoAAgGaAAIC43Q4AueEOALrhDgC74Q4AvOUOAL3pDgC+mQ4Av5UOALBRDgCxUQ4AslEOALPpDgC0/Q4AteUOALbtDgC35Q4Ao3EPAGqAAIBugACAcoAAgHaAAICmsQ4ApbkOAHqAAICrlQ4AqpUOAH6AAICCgACAryEOAK45DgCtPQ4ArIUOAIaAAICzyQEAioAAgI6AAIC2+QEAkoAAgJaAAIC1wQEAuqkBALu1AQCagACAnoAAgL6tAQC/lQEAvK0BAL2lAQCo5Q0AqfkNAKoFAgCrHQIArA0CAK09AgCuNQIAr10CAKKAAICmgACAqoAAgK6AAICAGQAAgRkAAIIFAACygACAuC0CALk1AgC6MQIAuzECALzVAgC93QIAvtUCAL/NAgCwKQIAsTUCALI9AgCzNQIAtC0CALUVAgC2HQIAtxUCALqAAICEnAIAvoAAgKOBAgDCgACApYkCAKaxAgDGgACAhiAEAIfUAwCq4QIAq/0CAKzlAgCt7QIAruUCAK/dAgC29QMAvkQDAIWM/QG1/QMAyoAAgLP9AwDOgACA0oAAgL59AwC/TQMAvGUDAL19AwC6dQMAu30DANaAAIDagACA3oAAgOKAAICEBAIAoyUCAOaAAIClJQIApi0CAOqAAIDugACA8oAAgKqtAgCrpQIArL0CAK2lAgCupQIAr5UCAPaAAID6gACA/oAAgAKBAIAGgQCA48ADAAqBAIDhrAEADoEAgO9YAwASgQCAFoEAgIANAACB5QAAgu0AABqBAIDhYA8A40ABAOM4DgDheA4AHoEAgCKBAIC+lAUAKoEAgIYABACHZAUALoEAgDKBAIA2gQCA7/wOAO98DgA6gQCAs1EBAD6BAID2fgCAQoEAgEaBAIC2DQEAtQkBAEqBAIC74QAAuhkBAE6BAIBSgQCAv9EAAL7pAAC96QAAvPkAALaAAIAmgQCAVoEAgFqBAIBegQCAYoEAgGaBAIBqgQCAqKEGAKmtBgCquQYAq7EGAKzhBgCt7QYAruUGAK/FBgCwvQYAsUUHALJNBwCzXQcAtE0HALV1BwC2fQcAtx0HALglBwC5LQcAuiUHALs9BwC8KQcAvRUHAL4RBwC/EQcAoxEGAG6BAIBygQCAdoEAgHqBAICmTQYApUkGAH6BAICroQcAqlkGAIKBAICGgQCAr5EHAK6pBwCtqQcArLkHAIANAACBFQAAgh0AAIqBAICOgQCAkoEAgISUAwC+lAMAloEAgJqBAICGyAAAh4wAAJ6BAICigQCApoEAgKqBAIConQYAqa0GAKqlBgCrvQYArK0GAK3RBgCu1QYAr80GAK6BAICygQCAtoEAgLqBAIC+gQCAwoEAgMaBAIDKgQCAuF0BALnBAQC6wQEAu8EBALzBAQC9yQEAvvEBAL/xAQCwvQYAsY0GALKFBgCzZQEAtH0BALVlAQC2bQEAt2UBALMtBgDOgQCA0oEAgNaBAIDagQCAtlEGALUlBgDegQCAu0kGALp5BgDigQCA5oEAgL+hAQC+uQEAvbEBALxRBgDqgQCAo2kGAO6BAIDygQCAphUGAPaBAID6gQCApWEGAKo9BgCrDQYA/oEAgAKCAICu/QEAr+UBAKwVBgCt9QEAutUHALvdBwC4wQcAucEHAL4xBAC/MQQAvPEHAL3xBwCyrQcAs7UHALCtBwCxpQcAtp0HALf1BwC0pQcAtZUHAKppBwCraQcAqGkHAKlpBwCuaQcAr2kHAKxpBwCtaQcAgLkDAIGNAwCChQMAhKgDAIZQ/AGHCAMAvjQDAAqCAICoZQIAqXUCAKp9AgCrdQIArG0CAK21AwCuvQMAr7UDAA6CAIASggCAFoIAgBqCAIAeggCAIoIAgCaCAIAqggCAuFEDALlZAwC6YQMAu2EDALwRAwC9HQMAvhUDAL8JAwCwzQMAsdUDALLdAwCz1QMAtM0DALVxAwC2cQMAt3EDAC6CAIAyggCAs/0DADaCAIC17QMAOoIAgD6CAIC2PQIAQoIAgEaCAIC7GQIAugECAL0JAgC8AQIAv70CAL4BAgBKggCAToIAgITE/QG+wPwBUoIAgFaCAIBaggCA79wDAF6CAIDhlAEAYoIAgOMQAwBmggCAgu0AAIHtAACA7QAA4TgGAOE8BwDjQAEA45QGAGqCAIBuggCAcoIAgHqCAICGgPwBh+j9AX6CAICCggCAhoIAgIqCAIDvnAEA79wGAKM1AwCOggCAkoIAgJaCAICaggCApvUCAKUlAwCeggCAq9ECAKrJAgCiggCApoIAgK91AgCuyQIArcECAKzJAgB2ggCAqoIAgK6CAICyggCA76T9AbaCAIC6ggCAvoIAgON4/QHCggCA4UD8AcaCAIDKggCAzoIAgNKCAIDWggCAs+X+AYItAACBFQAAgB0AANqCAIC25f4BtfX+Ad6CAIC7Yf8Butn+AeKCAICE5AMAv2n/Ab5h/wG9df8BvHn/Aaj9/gGpJf4Bqi3+Aasl/gGsPf4BrSX+Aa4t/gGvJf4BviwAAOaCAICGiAAAh+wAAOqCAIDuggCA8oIAgPaCAIC4gf8BuYH/AbqZ/wG7mf8BvIn/Ab21/wG+sf8Bv63/AbBd/gGx5f8Bsu3/AbPh/wG05f8Bte3/AbbZ/wG32f8Bo6X/AfqCAID+ggCAAoMAgAaDAICmpf8BpbX/AQqDAICrIf4Bqpn/AQ6DAIASgwCAryn+Aa4h/gGtNf4BrDn+ARaDAICz6f4BGoMAgB6DAIC2lf4BIoMAgCaDAIC16f4BurH+Abu5/gEqgwCALoMAgL51AQC/fQEAvJH+Ab2R/gGoHf4BqS3+Aaol/gGrPf4BrCX+Aa1R/gGuUf4Br1H+ATKDAIA2gwCAOoMAgD6DAIBCgwCARoMAgEqDAIBOgwCAuNkBALnZAQC67QEAu+EBALzhAQC94QEAvuEBAL/hAQCwMf4BsTn+AbIB/gGzAf4BtPUBALX9AQC29QEAt+kBAKOt/QFSgwCAvkwDAFqDAIBegwCAptH9AaWt/QFigwCAq/39Aar1/QFmgwCAaoMAgK85AgCuMQIArdX9AazV/QGA+QMAgfkDAIJNAACFdCAAboMAgITYAwCE1AQAcoMAgIZABACHVAMAdoMAgHqDAIB+gwCAgoMAgIaDAIC+8AUAqDECAKkxAgCqMQIAqzECAKyVAwCtnQMArpUDAK+NAwCKgwCAjoMAgJKDAICWgwCAhHwHAJqDAICegwCAooMAgLipAwC5qQMAumkDALtpAwC8eQMAvXkDAL5pAwC/aQMAsP0DALHNAwCyxQMAs60DALS5AwC1uQMAtq0DALelAwCmgwCAqoMAgK6DAICygwCAtoMAgLqDAIDv6AMAvoMAgOGQAQDCgwCA42wDAMqDAICAJQAAgSkAAIIdAADOgwCAs/kDANKDAICGaAcAh1wFANaDAIC2XQIAtV0CANqDAIC7SQIAunkCAN6DAIDigwCAvz0CAL49AgC9OQIAvFECAOaDAIDhPP4BvkAGAOPwAQDqgwCA7oMAgPKDAID2gwCA+oMAgP6DAIAChACABoIAgAaEAIAKhACADoQAgO/kAQAShACAFoQAgKNxAwAahACApdUCAB6EAIAihACAptUCACaEAIAqhACAq8ECAKrxAgCtsQIArNkCAK+1AgCutQIA4dz8AcaDAIDjUAQA74gEAID1BwCBCQAAgj0AAC6EAICEJAEAMoQAgDaEAIA6hACAPoQAgOFMBADv5BwA43QEALNdBgBChACAhgAMAIfgAwBGhACAtgUGALV1BgBKhACAuxEGALoJBgBOhACAUoQAgL/VBgC+1QYAvQEGALwJBgCojQYAqZUGAKqVBgCrpQYArL0GAK3FBgCuxQYAr/UGAFaEAIBahACAXoQAgGKEAIBmhACAaoQAgG6EAIByhACAuHUGALl9BgC6dQYAu80HALzVBwC93QcAvtUHAL/NBwCwjQYAsZUGALKdBgCzlQYAtFEGALVRBgC2UQYAt1EGAKMdBwCPFewBdoQAgHqEAIB+hACApkUHAKU1BwCChACAq1EHAKpJBwCGhACAioQAgK+VBwCulQcArUEHAKxJBwCeRfkBn6X5AZyR/QGdTfkBmlX9AZtd/QGYBfEBmZX+AZal8gGXYfEBlG31AZU19QGS4ekBk4X2AZBV7AGRXekBsbEdALClHQCziRkAskEcALUBJAC09RkAjoQAgJKEAICWhACAgqkDAIGhAwCAaQAAohUFAKMFAgCgFQYAob0FAKHFAQCahACAo80NAKLlAQClAQgApN0NAKfRCQCm2QkAqQEUAKilCACrxRQAqs0VAK3REQCsARAArwEcAK51EQCCEe8BgynvAZ6EAICihACAhuH1AYcR9gGEOeoBhY3qAYp59gGL4fEBvqQMAKqEAICO+f0BjzH+AYw98gGNYfIBkkn+AZOd/gGHCAwAhmwMAJax+gGX+QUAlFn6AZVZ+gGaYQYAm8EGAK6EAICyhACAtoQAgLqEAICcyQEAvoQAgKitBQCpuQUAqs0FAKvdBQCszQUArf0FAK71BQCvHQUAwoQAgMaEAIDKhACAzoQAgNKEAIDWhACA2oQAgN6EAIC4dQUAuX0FALoJBQC7CQUAvB0FAL0BBQC+AQUAvz0FALBxBQCxcQUAsnEFALNxBQC0UQUAtVEFALZRBQC3TQUAs0UEAOKEAIDmhACA6oQAgO6EAIC2fQQAtUUEAPKEAIC7tQQAurUEAPaEAID6hACAv5UEAL6VBAC9pQQAvKUEAP6EAICjAQQAAoUAgAaFAICmOQQACoUAgA6FAIClAQQAqvEEAKvxBAAShQCAhOwNAK7RBACv0QQArOEEAK3hBADh0AYAhAwMAOMoBwC+AAwAGoUAgO9EAwCGuAwAhywNAB6FAIDjlAEAIoUAgOH8AQBWgwCAJoUAgO/IBgAqhQCALoUAgDKFAICzjQMANoUAgLWNAwA6hQCAPoUAgLa1AwBChQCARoUAgLtBAwC6SQMAvUEDALxZAwC/QQMAvkkDAKNFDACmhACAFoUAgEqFAIBOhQCApn0MAKVFDABShQCAq4kMAKqBDABWhQCAWoUAgK+JDACugQwArYkMAKyRDACAFQ8AgR0PAIIhDwCzIQ4AXoUAgLUhDgC2JQ4AYoUAgGaFAIBqhQCAusEOALvBDgC8wQ4AvcEOAL7BDgC/wQ4AqK0OAKntDgCq5Q4Aq/0OAKzlDgCt6Q4ArjkOAK85DgBuhQCAcoUAgHaFAIB6hQCAgB0AAIEJAACCvQEAfoUAgLjNDwC51Q8AutUPALvlDwC8/Q8AvZUPAL6RDwC/kQ8AsEkOALFJDgCyWQ4As1kOALRJDgC1SQ4Atv0PALf1DwCjbQ8AgoUAgL6EAQCKhQCAjoUAgKZpDwClbQ8AkoUAgKuNDwCqjQ8AhogAAIdsAQCvjQ8Aro0PAK2NDwCsjQ8AloUAgLPtDgCahQCAnoUAgLaRDgCihQCApoUAgLXhDgC6tQ4Au70OAKqFAICuhQCAvn0BAL9lAQC8mQ4AvZkOAKgRDgCpJQ4AqiEOAKs5DgCsLQ4ArVUOAK5dDgCvUQ4AhKgAALKFAIC2hQCAuoUAgL6FAIDChQCAxoUAgMqFAIC47QEAuZUBALqVAQC7rQEAvLUBAL11AQC+fQEAv3UBALA1DgCxPQ4AsgkOALMJDgC0/QEAteUBALblAQC31QEAo6kNAM6FAIDShQCA1oUAgNqFAICm1Q0ApaUNAN6FAICr+Q0AqvENAOKFAIDmhQCAryECAK45AgCt3Q0ArN0NAIANAACBFQAAgh0AAOqFAIDuhQCA8oUAgIeQAwCGfAQAvuwEAPqFAID+hQCAAoYAgAaGAIAKhgCADoYAgBKGAICyLQ4AszUOALAtDgCxJQ4Ati0OALedDwC0LQ4AtSUOALq9DwC7jQ8AuKUPALm9DwC+LQ8AvxUPALyVDwC9JQ8AFoYAgBqGAIAehgCAIoYAgCaGAIAqhgCALoYAgDKGAICqpQ4Aq7UOAKjFDgCp3Q4Arp0OAK9VDgCspQ4ArZUOAKgNAgCpFQIAqhUCAKtNAgCsWQIArVkCAK5NAgCvRQIAhKgFADaGAIA6hgCAPoYAgIS4BABChgCARoYAgEqGAIC4/QIAuUEBALpBAQC7QQEAvEEBAL1JAQC+cQEAv3EBALAJAgCxCQIAss0CALPFAgC03QIAtcUCALbNAgC3xQIA4dQPAOMQDgDj9A4A4QwOAE6GAIBShgCAVoYAgFqGAIBehgCAYoYAgL4kBABqhgCA7AAAAO9EAADvzA4AboYAgIJlAACz2QIAgFUAAIFtAAC2nQIAcoYAgHaGAIC1lQIAuokCALuJAgCGqAQAh+AEAL5dAgC/RQIAvF0CAL1VAgCjHQUA9oUAgGaGAIB6hgCAfoYAgKZZBQClUQUAgoYAgKtNBQCqTQUAhoYAgIqGAICvgQUArpkFAK2RBQCsmQUAjoYAgLMpBgCShgCAloYAgLYpBgCahgCAnoYAgLUpBgC6pQYAu60GAKKGAICmhgCAvqUGAL+tBgC8tQYAva0GAKjlBgCp7QYAquUGAKv9BgCs5QYAre0GAK7lBgCvXQYAqoYAgK6GAICyhgCAtoYAgLqGAIC+hgCAwoYAgMaGAIC46QcAuekHALr9BwC79QcAvO0HAL1FBwC+TQcAv0UHALAlBgCxLQYAsiUGALM9BgC0JQYAtS0GALYlBgC32QcAo20HAIItAACBFQAAgB0AAMqGAICmbQcApW0HAM6GAICr6QcAquEHANKGAIC+oAEAr+kHAK7hBwCt6QcArPEHANaGAICzkQYAhugAAIcsAQC2QQEA2oYAgN6GAIC1UQEAuk0BALslAQDihgCA5oYAgL4lAQC/LQEAvDEBAL0xAQCwrQEAscUBALLBAQCzwQEAtMUBALXNAQC28QEAt/EBALgBAQC5AQEAugEBALsBAQC8AQEAvQEBAL4BAQC/AQEA6oYAgO6GAIDyhgCA9oYAgIaFAID6hgCA/oYAgAKHAICoTQYAqVkGAKo9BgCrNQYArP0BAK3lAQCu5QEAr9UBAKPVBQAGhwCACocAgA6HAIAShwCApgUCAKUVAgAWhwCAq2ECAKoJAgAahwCAHocAgK9pAgCuYQIArXUCAKx1AgAihwCAJocAgCqHAIAuhwCAMocAgOFkBQA2hwCA4+wFAIARAACBEQAAghEAAO/0BgA6hwCAPocAgEKHAIC+MAMAhMQCAEqHAICz4QMAhMAcALVRAwBOhwCAUocAgLZZAwBWhwCAWocAgLtxAwC6eQMAvbUAALxpAwC/tQAAvrUAAF6HAIDhlAEAYocAgONcAgCGcBwAh0QDAGaHAIBqhwCAbocAgHKHAIB2hwCAeocAgH6HAICChwCAhocAgO94AgCoVQIAqV0CAKphAgCrYQIArNECAK3RAgCu0QIAr9ECAIqHAICOhwCAkocAgJaHAICahwCAnocAgKKHAICmhwCAuGkBALlpAQC6CQEAuwkBALwZAQC9GQEAvgkBAL8FAQCwtQIAsb0CALK1AgCzaQEAtHkBALV5AQC2aQEAt2EBAOHEBwDjpAYA47gGAOF8BgCADQAAgTUAAII9AACqhwCArocAgLKHAIC+4B0AuocAgL6HAIDvYAAA7+gGAMKHAICjqQIAxocAgMqHAIDOhwCA0ocAgKYRAgClGQIA1ocAgKs5AgCqMQIAhkgcAIfMHACv/QEArv0BAK39AQCsIQIAqIUeAKmRHgCqkR4Aq60eAKy1HgCt1R4ArtEeAK/FHgC2hwCA2ocAgN6HAIDihwCA5ocAgOqHAIDuhwCA8ocAgLhhHwC5YR8AumEfALthHwC8YR8AvWEfAL5hHwC/YR8AsL0eALGFHgCyjR4As4UeALSdHgC1hR4Ato0eALeFHgCzGR4A9ocAgPqHAID+hwCAAogAgLZVHgC1PR4ABogAgLtBHgC6eR4ACogAgA6IAIC/QR4AvlkeAL1RHgC8WR4AEogAgKNdHgAWiACAGogAgKYRHgAeiACAIogAgKV5HgCqPR4AqwUeAISkAwC+qAMArh0eAK8FHgCsHR4ArRUeAKitHgCptR4AqrUeAKvJHgCs2R4ArdkeAK7JHgCvwR4AgO0BAIHxAQCC8QEAJogAgIaQAACHdAEAKogAgC6IAIC4yQEAuckBALrZAQC70QEAvPkBAL35AQC+mQEAv5UBALBFAQCxTQEAskUBALNdAQC0RQEAtU0BALZFAQC3+QEAsz0eADKIAIA2iACAOogAgD6IAIC2WR4AtVEeAEKIAIC7iQEAuoEBAEaIAIBKiACAv4kBAL6BAQC9iQEAvJEBAE6IAIBSiACAo3UeAFaIAIClGR4AWogAgF6IAICmER4ARocAgGKIAICrwQEAqskBAK3BAQCs2QEAr8EBAK7JAQBmiACAaogAgG6IAIByiACAdogAgIQYAgB6iACAfogAgIKIAICGiACAiogAgI6IAICSiACAmogAgJ6IAIC+cAMAgGkAAIFpAACCeQAAhAAEAIbwBACHdAMAoogAgO8MHwCmiACA4aweAKqIAIDj8B4ArogAgLKIAIC2iACAuogAgL6IAIDCiACAxogAgMqIAIDvVAIAzogAgNKIAIDWiACA46QCANqIAIDhgAEA3ogAgOKIAIDmiACA6ogAgO6IAICzRQMA8ogAgPaIAID6iACA/ogAgLZFAwC1VQMAAokAgLshAwC6SQMAvqAEAAqJAIC/KQMAviEDAL01AwC8OQMAqDkCAKk5AgCqjQIAq4UCAKydAgCthQIAroUCAK+1AgCA7QEAgfUBAIL1AQAOiQCAhpAEAIcEBQASiQCAFokAgLhFAQC5TQEAukUBALtdAQC8SQEAvUkBAL55AQC/eQEAsM0CALGlAgCyrQIAs6ECALSlAgC1rQIAtp0CALd9AQAaiQCAHokAgCKJAIAmiQCAKokAgC6JAIAyiQCA74gBAITsBADhVB4ANokAgONUAQA6iQCAPokAgEKJAIBGiQCAo0UCAEqJAIBOiQCAUokAgFaJAICmRQIApVUCAFqJAICrIQIAqkkCAF6JAIBiiQCArykCAK4hAgCtNQIArDkCAKg1BgCpPQYAqlEGAKttBgCseQYArWUGAK5tBgCvZQYABokAgGaJAIBqiQCAbokAgIAZAACBGQAAggUAAHKJAIC45QYAuekGALr5BgC7+QYAvOkGAL3pBgC+nQYAv5UGALAdBgCx5QYAsu0GALPlBgC0/QYAteEGALbhBgC34QYAs9kGAL7QAwB2iQCAeokAgH6JAIC25QYAtfEGAIKJAIC7IQYAutkGAIaYAACHeAMAvyUGAL45BgC9MQYAvDkGAIaJAICjnQYAiokAgI6JAICmoQYAkokAgJaJAICltQYAqp0GAKtlBgCaiQCAnokAgK59BgCvYQYArH0GAK11BgCo7QcAqSkGAKoxBgCrMQYArJEGAK2RBgCukQYAr5EGAKKJAICmiQCAqokAgK6JAICyiQCAtokAgLqJAIC+iQCAuIUGALmNBgC6hQYAu50GALyNBgC9vQYAvrUGAL95AQCw8QYAsfEGALLxBgCzxQYAtMEGALXBBgC2wQYAt8EGALO5BgDCiQCAxokAgMqJAIDOiQCAthEGALUZBgDSiQCAuzUGALo1BgDWiQCA2okAgL8FBgC+BQYAvREGALwlBgClQQYA3okAgOKJAICmSQYAgRUAAIB5AACj4QYAghUAAK1JBgCsfQYAr10GAK5dBgCENAEAlogAgKttBgCqbQYAvswDAOqJAICzlQIA7okAgLXZAgDyiQCA9okAgLbRAgCGgAwAhzgDALvFAgC6xQIAvRUDALwVAwC/FQMAvhUDAPqJAID+iQCA71gGAIRAAwACigCABooAgAqKAIAOigCAEooAgBaKAIAaigCAHooAgOE4BgAiigCA4yQGAL5wDACsSQIArUkCAK5dAgCvVQIAqB0CAKkFAgCqBQIAq10CAISoDAAmigCAKooAgC6KAIC+vA0AMooAgDaKAIA6igCAvE0DAL1VAwC+VQMAv2UDALjpAwC56QMAul0DALtVAwC0yQMAtckDALbZAwC32QMAsBkCALEZAgCy2QMAs9kDAD6KAIDj5AAAQooAgOG8AQBGigCAgj0AAIE9AACAPQAASooAgE6KAIBSigCAWooAgF6KAIDvzAMAYooAgGaKAICj3QMAaooAgIboDACHYA0AbooAgKaZAwClkQMAcooAgKuNAwCqjQMAdooAgHqKAICvXQIArl0CAK1dAgCsXQIAfooAgIKKAICGigCAiooAgI6KAICSigCAlooAgO/gAQCEvAwA4YwGAJqKAIDjHAYAnooAgKKKAICmigCAqooAgLPVAQCuigCAsooAgLaKAIC6igCAtpEBALWZAQC+igCAu70BALq9AQDCigCAyooAgL+dAQC+nQEAvZ0BALydAQCoBQ4AqQkOAKodDgCrFQ4ArFEOAK1RDgCuSQ4Ar0kOAFaKAICCzQ8AgfUPAID9DwDGigCAzooAgIYcAACHsAMAuOkOALnpDgC6/Q4Au/UOALztDgC9VQ8AvlEPAL9NDwCwOQ4AsTkOALIJDgCzCQ4AtBkOALUZDgC2DQ4At9kOAKOVDgDSigCA1ooAgNqKAIDeigCAptEOAKXZDgDiigCAq/0OAKr9DgDmigCA6ooAgK/dDgCu3Q4Ard0OAKzdDgDuigCAs/0PAPKKAID2igCAtoEPAPqKAID+igCAtZkPALqNDwC7ZQ8AAosAgAaLAIC+fQ8Av2UPALx9DwC9dQ8AqC0OAKk1DgCqMQ4AqzEOAKxVDgCtRQ4ArkUOAK91DgAKiwCADosAgBKLAIAWiwCAGosAgB6LAIAiiwCAJosAgLjpDgC59Q4Auv0OALv1DgC87Q4AvZEOAL6RDgC/kQ4AsA0OALHlDgCy7Q4As+UOALT9DgC15Q4Atu0OALflDgCjuQ4Agi0AAIEVAACAHQAAKosAgKbFDgCl3Q4ALosAgKshDgCqyQ4AMosAgL4sAQCvIQ4ArjkOAK0xDgCsOQ4AOosAgLZVAQC1RQEANosAgLNVAQA+iwCAhngAAIdcAAC/OQEAvjEBAL0lAQC8JQEAuzEBALpZAQDmiQCAQosAgEaLAIBKiwCAhAQDAKOJAgBOiwCApZkCAKaJAgBSiwCAvyg5AFaLAICqhQIAq+0CAKz5AgCt+QIAru0CAK/lAgDjWAIA78AOAOGIAQBaiwCAXosAgGKLAIBmiwCAaosAgG6LAIByiwCAdosAgHqLAIDvKAIA4ygOAH6LAIDhRA4AqbUCAKhpDQCrAQIAqgkCAK0BAgCsGQIArzECAK4BAgC+AAQAgosAgIaLAICKiwCAjosAgJKLAICWiwCAmosAgLnlAwC45QMAu+UDALrlAwC95QMAvOUDAL/lAwC+5QMAsSECALBJAgCzJQIAsiUCALUpAgC0IQIAtxUCALYVAgCowQIAqdECAKr1AgCrDQEArBUBAK0FAQCuBQEArzkBAJ6LAICiiwCAqosAgK6LAICyiwCAtosAgLqLAIC+iwCAuC0BALk9AQC67QEAu+UBALz9AQC95QEAvu0BAL/lAQCwLQEAsTUBALI9AQCzNQEAtC0BALUVAQC2HQEAtxUBAIA9AQCBpQAAgq0AAO/YAACGsAUAh9gFAMKLAIDv1A8AhGwEAOH0DgDGiwCA4xwPAMqLAIDhlAEAzosAgOMMDgCzPQIA0osAgNaLAIDaiwCA3osAgLbFAQC13QEA4osAgLuxAQC6qQEA5osAgOqLAIC/kQEAvqkBAL2hAQC8qQEAposAgO6LAICqRQYAq10GAKxFBgCtTQYArkUGAK99BgDyiwCA9osAgPqLAICj0QUA/osAgKUxBgCmKQYAAowAgAaMAICCHQAAgR0AAIAdAAAKjACADowAgBKMAIC+lAMAFowAgBqMAICGSAMAh8wDAB6MAIAijACAJowAgCqMAICoqQcAqakHAKq5BwCruQcArKkHAK2pBwCuAQcArzUHAC6MAIAyjACANowAgDqMAIA+jACAQowAgEaMAIBKjACAuC0HALnBAAC66QAAu+kAALz5AAC95QAAvuUAAL+dAACwUQcAsV0HALItBwCzJQcAtD0HALUlBwC2JQcAtxUHALMxBgBOjACAUowAgFaMAIBajACAtikGALUhBgBejACAu5kGALqVBgBijACAZowAgL/hBgC++QYAvfEGALz5BgBqjACAo3UGAG6MAIByjACApm0GAHaMAIB6jACApWUGAKrRBgCr3QYAfowAgIKMAICuvQYAr6UGAKy9BgCttQYAqOUBAKn1AQCq/QEAq/UBAKztAQCtNQEArj0BAK81AQCA+QAAgc0AAILFAACEYAEAvngBAIqMAICHrAAAhpABALjRAAC52QAAuuEAALvhAAC8kQAAvZ0AAL6VAAC/iQAAsE0BALFVAQCyXQEAs1UBALRNAQC18QAAtvEAALfxAACzdQIAjowAgJKMAICWjACAmowAgLa1AgC1ZQIAnowAgLuRAgC6iQIAoowAgKaMAIC/NQMAvokCAL2BAgC8iQIAqowAgKMxAgCujACAhMADAKbxAgCyjACAtowAgKUhAgCqzQIAq9UCALqMAIC+jACArs0CAK9xAwCszQIArcUCAKuNAACqjQAAqY0AAKg5AwCvvQAArr0AAK2FAACsjQAAqgAAAKsAAADCjACAxowAgMqMAIDOjACA0owAgNaMAIC7fQAAun0AALl9AAC4fQAAv90BAL7dAQC93QEAvN0BALO5AACysQAAsaEAALCtAAC3XQAAtl0AALWVAAC0lQAA2owAgN6MAIDijACA5owAgIE1AACADQAA6owAgII1AAC+rD0A7owAgPKMAICFaD0A+owAgP6MAICGODwAh8ACALNJAQACjQCA0AAAAAaNAIAKjQCAtkkBALVJAQAOjQCAuykBALolAQASjQCAFo0AgL8dAQC+HQEAvSEBALwpAQDjNDYA4QwGAOGwAgDjPAYAGo0AgB6NAIAijQCAJo0AgIQsPwC+oD8AKo0AgC6NAIDvfDcAMo0AgDaNAIDvGAEAOo0AgD6NAICGaD4Ah8w/AEKNAIBGjQCASo0AgO+UAABOjQCA4ZQBAFKNAIDjUAAAVo0AgILpPwCB6T8AgPE/AKMJPgCPASQA9owAgFqNAIBejQCApgk+AKUJPgBijQCAq2k+AKplPgBmjQCAao0AgK9dPgCuXT4ArWE+AKxpPgCeYTgAn3U4AJzBNACdtTkAmqU1AJt1NACYeTAAmXExAJYhLQCXhTEAlG0sAJVlLACSeSgAk6UtAJBRJACReSgAsQ0UALAFFACzARgAslUUALV5GAC0tRgAbo0AgHKNAIB2jQCAeo0AgH6NAICCjQCAotE8AKMlAQCgdTkAob08AKHJAACGjQCAowEEAKLlAAClHQQApPUEAKf5CACmAQgAqQEMAKhtCACrzQwAqs0MAK3REACsARAAr9URAK7ZEACCBSUAgy0lAIqNAICOjQCAhsEsAIcRLQCEHSkAhRUpAIopLQCLZSwAko0AgJaNAICOHTAAj8E0AIzZMACNHTEAkmE1AJPNNQCajQCAno0AgJZhOQCXmTgAlKE4AJV9OQCaYT0AmwU9AKKNAICmjQCAqo0AgK6NAICc6QAAso0AgLaNAIC6jQCAvo0AgMKNAICGjACAxo0AgMqNAIDOjQCAqJE+AKmRPgCq7T4Aq+E+AKzhPgCt6T4ArtE+AK/RPgCwUT4AsVE+ALJRPgCzUT4AtHk+ALV5PgC2bT4At2U+ALghPgC5IT4Aujk+ALs5PgC8KT4AvRU+AL4RPgC/DT4AgJkDAIGZAwCCBQAA0o0AgL5UAwDhsD0A2o0AgONAPgCEOAIA3o0AgOKNAIDv9D8A5o0AgOqNAICGmAQAhxwDALMFPQCECAQA7o0AgPKNAID2jQCAtgk9ALUJPQD6jQCAu/U9ALr1PQD+jQCAAo4AgL/dPQC+3T0AveU9ALzlPQAGjgCACo4AgKPNPQC+xAQApcE9AA6OAIASjgCApsE9ABaOAIAajgCAqz09AKo9PQCtLT0ArC09AK8VPQCuFT0AtmkCAB6OAIAijgCAtWkCACaOAICzSQIAKo4AgC6OAIC+qQMAv6kDALzBAwC9wQMAuvkDALv5AwAyjgCANo4AgKgtAwCpnQMAqpUDAKutAwCstQMArb0DAK61AwCv2QMAgA0AAIEVAACCHQAAOo4AgD6OAIBCjgCAh7QFAIacBAC4MQIAuTECALo1AgC7zQIAvNUCAL3dAgC+1QIAv8kCALBpAgCxaQIAskECALNBAgC0OQIAtTkCALYRAgC3EQIASo4AgOM0PgBOjgCA4aw+AFKOAIDvfAMAVo4AgFqOAIBejgCA45QDAGKOAIDhfD4AZo4AgO/oPgBqjgCAbo4AgHKOAIB2jgCAo1UDAHqOAICldQMAfo4AgIKOAICmdQMAho4AgIqOAICr5QIAquUCAK3dAgCs3QIAr7UCAK61AgCoGQYAqSEGAKohBgCrPQYArCUGAK1dBgCuVQYAr00GAEaOAICOjgCAko4AgJaOAICajgCAno4AgKKOAICmjgCAuOUGALmBBgC6gQYAu50GALyJBgC9iQYAvqEGAL+hBgCwPQYAsQ0GALIFBgCz7QYAtPUGALXhBgC24QYAt90GALOpBgCCLQAAgRUAAIAdAACqjgCAtt0GALWtBgCujgCAu8kGALr5BgCyjgCAhOADAL8lBgC+MQYAvTkGALzRBgC+iAMAo+0GANaNAIC2jgCAppkGALqOAIC+jgCApekGAKq9BgCrjQYAhkgAAIdsAACudQYAr2EGAKyVBgCtfQYAqIEGAKmNBgCqmQYAq5UGAKyNBgCttQYArrEGAK+tBgDCjgCAxo4AgMqOAIDOjgCA0o4AgNaOAIDajgCA3o4AgLilBgC5YQEAumEBALthAQC8YQEAvWEBAL5hAQC/YQEAsNkGALHZBgCyqQYAs6kGALS9BgC1oQYAtqEGALedBgCzEQYA4o4AgOaOAIDqjgCA7o4AgLY1BgC1BQYA8o4AgLsdBgC6HQYA9o4AgPqOAIC/ZQYAvnkGAL19BgC8fQYA/o4AgKNVBgACjwCABo8AgKZxBgAKjwCADo8AgKVBBgCqWQYAq1kGABKPAIAWjwCArj0GAK8hBgCsOQYArTkGAKjVAgCp3QIAqikDAKspAwCsOQMArTkDAK4pAwCvKQMAGo8AgB6PAIAijwCAKo8AgC6PAIAyjwCAvrgDADaPAIC47QMAuYUDALqBAwC7gQMAvIUDAL2NAwC+sQMAv7EDALBZAwCxWQMAsu0DALPlAwC0/QMAteUDALblAwC31QMAgKEAAIGhAACCoQAAvoAMADqPAICEmAIAPo8AgEKPAICGAAwAh/QDAEaPAIBKjwCATo8AgFKPAIBWjwCAhLADALPhAwBajwCAXo8AgGKPAIBmjwCAtvkDALXxAwBqjwCAu90DALrdAwBujwCAco8AgL9hAwC+eQMAvXEDALx5AwB2jwCAeo8AgH6PAICjLQIAgo8AgKU9AgCmNQIAho8AgIqPAICOjwCAqhECAKsRAgCstQIArb0CAK61AgCvrQIA48QDAOMQBwDhuAEA4WwHAIBxAACBcQAAggUAAJKPAICGwAwAh1QNAJqPAICejwCA77ADAO8ABwCijwCApo8AgKqPAICujwCAso8AgLaPAIC6jwCAvo8AgMKPAIDvpAEAhKANAOGABgDGjwCA4xABAMqPAIDOjwCA0o8AgNaPAICz9QEA2o8AgN6PAIDijwCA5o8AgLZNAQC1SQEA6o8AgLtRAQC6SQEA7o8AgPKPAIC/OQEAvjEBAL1BAQC8SQEAqC0OAKk1DgCqPQ4AqzEOAKyBDgCtjQ4AroUOAK+1DgCWjwCA9o8AgPqPAID+jwCAgBkAAIEZAACCBQAAApAAgLidDgC5rQ4AuqUOALtNDwC8VQ8AvV0PAL5JDwC/QQ8AsM0OALHVDgCy3Q4As9UOALS1DgC1vQ4AtrUOALetDgCjtQ4AvogDAAaQAIAKkACADpAAgKYNDgClCQ4AEpAAgKsRDgCqCQ4AhggAAIdsAwCveQ4ArnEOAK0BDgCsCQ4AFpAAgBqQAIAekACAs7UPACKQAIC1VQ8Atl0PACaPAIAmkACAKpAAgLp5DwC7eQ8AvGkPAL1dDwC+SQ8Av0kPAKhpDgCpaQ4AqnEOAKtxDgCskQ4ArZEOAK6RDgCvkQ4ALpAAgDKQAIA2kACAOpAAgD6QAIBCkACARpAAgEqQAIC4hQ4AuY0OALqFDgC7nQ4AvI0OAL29DgC+tQ4Av3kBALDxDgCx8Q4AsvEOALPFDgC0wQ4AtcEOALbBDgC3wQ4Ao/kOAE6QAIBSkACAVpAAgFqQAICmEQ4ApRkOAF6QAICrNQ4AqjUOAGKQAIBmkACArwUOAK4FDgCtEQ4ArCUOAIANAACBFQAAgh0AAGqQAIBukACAcpAAgISUAQC+lAEAhkAHAIf0AAB6kACAfpAAgIKQAICGkACAipAAgI6QAICojQIAqZUCAKqVAgCrzQIArNUCAK3dAgCuyQIAr/0CAJKQAICWkACAmpAAgJ6QAIC/ABQAopAAgKaQAICqkACAuH0DALnBAwC6wQMAu8EDALzBAwC9yQMAvvEDAL/xAwCwhQIAsUUDALJNAwCzRQMAtF0DALVFAwC2TQMAt0UDALMdAgCukACAspAAgLaQAIC6kACAtl0CALVdAgC+kACAu4EDALpBAgDCkACAxpAAgL+BAwC+mQMAvZEDALyZAwDKkACAo1kCAM6QAIDSkACAphkCANaQAIDakACApRkCAKoFAgCrxQMA3pAAgOKQAICu3QMAr8UDAKzdAwCt1QMA6pAAgOPMAACEBAIA4bwBAIDJAQCB/QEAgvUBAL4QBQDukACAvigEAPKQAID2kACA+pAAgO8QAAD+kACAApEAgIbgBACH9AIABpEAgAqRAIDj/A8ADpEAgOHgDwASkQCA7xQPABaRAIAakQCAHpEAgCKRAIAmkQCAKpEAgC6RAIAykQCANpEAgDqRAIA+kQCAQpEAgEaRAIBKkQCA7+ABAIUEEgDh3A4ATpEAgOMcDgCAKQAAgR0AAIIFAABSkQCAszECAFqRAICEzAUAXpEAgGKRAIC2KQIAtSECAGaRAIC7zQEAus0BAGqRAIBukQCAv3UBAL7JAQC9wQEAvMkBAKjpBQCp6QUAqvkFAKv5BQCs6QUArekFAK45BgCvOQYA5pAAgFaRAICGiAAAhwADAHKRAIB2kQCAepEAgH6RAIC40QYAudkGALrhBgC74QYAvJEGAL2dBgC+lQYAv4kGALBJBgCxSQYAsl0GALNVBgC0TQYAtfEGALbxBgC38QYAo3EFAIKRAICGkQCAipEAgI6RAICmaQUApWEFAJKRAICrjQYAqo0GAJaRAICakQCArzUGAK6JBgCtgQYArIkGAJ6RAICikQCAs+EHAKaRAIC14QcAqpEAgK6RAIC25QcAdpAAgLKRAIC7vQcAuqEHAL2VBwC8qQcAv5UHAL6VBwCoAQYAqSUGAKohBgCrIQYArCEGAK0tBgCuJQYAr1UGALaRAICCHQAAgR0AAIAdAAC6kQCAvpEAgMKRAIC+MAEAuDkGALk5BgC6yQYAu8kGALzZBgC92QYAvskGAL/JBgCwLQYAsTEGALI1BgCzCQYAtBkGALUZBgC2CQYAtwkGAKOpBgCEjAIAhigfAIdEAQDKkQCApq0GAKWpBgDOkQCAq/UGAKrpBgDSkQCA1pEAgK/dBgCu3QYArd0GAKzhBgDakQCAsxUGAN6RAIDikQCAtj0GAOaRAIDqkQCAtTUGALrZAQC72QEA7pEAgPKRAIC+fQEAv2UBALx9AQC9dQEAqMUFAKnJBQCq2QUAq9EFAKz5BQCt+QUArikCAK8pAgD2kQCA+pEAgP6RAIACkgCAjAAAAAaSAIAKkgCADpIAgLjtAgC5hQIAuo0CALuBAgC8hQIAvY0CAL69AgC/fQMAsFkCALFZAgCy7QIAs+UCALT9AgC15QIAtuUCALfVAgCjUQUAEpIAgBaSAIAakgCAHpIAgKZ5BQClcQUAIpIAgKudAgCqnQIAJpIAgCqSAICvIQIArjkCAK0xAgCsOQIAghEAAC6SAICAZQAAgQkAADKSAIC+mAMAOpIAgD6SAICEJAMAQpIAgIdoAwCGjBwARpIAgEqSAIBOkgCAUpIAgFaSAIBakgCAs6ECAITAHAC10QIAXpIAgGKSAIC21QIAZpIAgGqSAIC7wQIAuvUCAL0RAQC82QIAvxEBAL4ZAQBukgCAcpIAgHaSAIB6kgCAfpIAgIKSAICGkgCA77gGAIqSAIDhnAQAjpIAgON0BgCSkgCAlpIAgJqSAICekgCAgPkAAIH5AACCBQAAopIAgL5YHACEWB8A71wAAO9ABgDhkAEA4fwGAOM8AADjdAYAqpIAgK6SAICGmBwAh/QcAKNpAgC+DB8AspIAgLaSAIC6kgCAph0CAKUZAgC+kgCAqwkCAKo9AgDCkgCAxpIAgK/ZAQCu0QEArdkBAKwRAgCokR0AqZkdAKqhHQCroR0ArNEdAK3dHQCu1R0Ar8kdADaSAICmkgCAypIAgM6SAIDSkgCA1pIAgNqSAIDekgCAuHkeALl5HgC6zR4Au8UeALzdHgC9xR4AvsUeAL/1HgCwuR0AsY0dALKFHQCzTR4AtFUeALVdHgC2VR4At0keALjNHwC51R8Aut0fALvVHwC88R8Avf0fAL7pHwC/6R8AsKUfALGxHwCysR8As40fALSVHwC19R8Atv0fALf1HwCoGR4AqRkeAKotHgCrPR4ArCUeAK0tHgCuJR4Ar90fAOKSAIDmkgCA6pIAgO6SAIDykgCAxpEAgPaSAID6kgCAs+UfAP6SAIACkwCABpMAgAqTAIC27R8Ate0fAA6TAIC7NR4AuiEeABKTAIAWkwCAv3EeAL4RHgC9GR4AvCUeAIJpAACjoR8AgFkAAIFRAACmqR8AGpMAgB6TAIClqR8AqmUeAKtxHgCGAAQAh+wBAK5VHgCvNR4ArGEeAK1dHgCoMR4AqTEeAKpBHgCrQR4ArEEeAK1JHgCucR4Ar3EeACKTAIAmkwCAKpMAgC6TAIAykwCANpMAgDqTAIA+kwCAuCkBALkpAQC6OQEAuzUBALwtAQC90QAAvtEAAL/RAACwyQEAsckBALLZAQCz2QEAtMkBALXJAQC2GQEAtxkBALPJHQBCkwCARpMAgEqTAIBOkwCAtskdALXJHQBSkwCAuw0CALoNAgBWkwCAWpMAgL8NAgC+DQIAvQ0CALwNAgBekwCAo40dAGKTAIBmkwCApo0dAGqTAIBukwCApY0dAKpJAgCrSQIAcpMAgHaTAICuSQIAr0kCAKxJAgCtSQIAgA0AAIERAACCEQAAepMAgO/MAgB+kwCAgpMAgISQAgDjLAIAvigDAOHYAQCKkwCAhhAEAIfUAwCOkwCAkpMAgLNhAwCWkwCAmpMAgJ6TAICikwCAtnkDALVxAwCmkwCAu10DALpdAwCqkwCArpMAgL/hAAC++QAAvfEAALz5AACjoQIAspMAgLaTAIC6kwCAvpMAgKa5AgClsQIAwpMAgKudAgCqnQIAxpMAgMqTAICvIQEArjkBAK0xAQCsOQEAzpMAgNKTAIDvZB8A1pMAgNqTAIDekwCA4pMAgOaTAICADQAAgREAAIIVAADqkwCA4eAcAO6TAIDjiB8A8pMAgISAAgC+jAUAh0gFAIYsBAD6kwCA/pMAgO+kHgDv9B4A4QAeAOFQHwDjLB4A47AeAAKUAIAGlACACpQAgA6UAIASlACAFpQAgISEBACzcQEAGpQAgLUdAQC2FQEAHpQAgCKUAIAmlACAugEBALsBAQC89QAAvf0AAL71AAC/7QAAqK0GAKm9BgCqtQYAq8kGAKzZBgCt2QYArskGAK/BBgAqlACALpQAgDKUAIA2lACAOpQAgD6UAIBClACARpQAgLhtBwC5BQcAug0HALsBBwC8AQcAvQEHAL4BBwC/AQcAsIkGALGJBgCybQcAs2UHALR9BwC1ZQcAtmUHALdVBwCGkwCAozkGAEqUAID2kwCApl0GAE6UAIBSlACApVUGAKpJBgCrSQYAVpQAgFqUAICuvQcAr6UHAKy9BwCttQcAgG0AAIEJAACCGQAAXpQAgGKUAIC+nAMAZpQAgGqUAICGQAAAh2AAAG6UAIBylACAdpQAgHqUAIB+lACAgpQAgKiRBgCpkQYAqrkGAKu5BgCsqQYArakGAK7ZBgCv2QYAhpQAgIqUAICOlACAkpQAgJaUAICalACAnpQAgKKUAIC4cQEAuXEBALpxAQC7cQEAvNkBAL3BAQC+wQEAv/UBALCxBgCxuQYAsokGALOJBgC0UQEAtVEBALZRAQC3UQEAszEGAKaUAICqlACArpQAgLKUAIC2KQYAtSEGALaUAIC7fQYAunUGALqUAIC+lACAv5UBAL6VAQC9XQYAvF0GAMKUAICjdQYAxpQAgMqUAICmbQYAzpQAgNKUAIClZQYAqjEGAKs5BgCErAEAvqABAK7RAQCv0QEArBkGAK0ZBgCo3QIAqe0CAKrlAgCr/QIArOUCAK3tAgCu5QIArz0DANqUAIDelACA4pQAgL5kDADmlACA6pQAgO6UAIDylACAuMkDALnJAwC62QMAu9EDALz5AwC9+QMAvpkDAL+VAwCwRQMAsU0DALJFAwCzXQMAtEUDALVNAwC2RQMAt/kDAIFVAwCASQMAs2UCAIJVAwC1ZQIA9pQAgPqUAIC2ZQIAhgAMAIfkAwC7gQMAuokDAL2BAwC8mQMAv4EDAL6JAwCjLQIA/pQAgAKVAIAGlQCACpUAgKYtAgClLQIADpUAgKvJAwCqwQMAEpUAgBaVAICvyQMArsEDAK3JAwCs0QMA49gGAOGsBwDhnAYA45wGABqVAICEWA0AHpUAgCKVAIAmlQCAKpUAgC6VAIAylQCA7xwBADaVAIA6lQCA70AGAIB5AACBFQAAghEAAIQADAA+lQCA46wAAEKVAIDhpAEASpUAgO9wAACGyAwAh6QNAE6VAIBSlQCAVpUAgFqVAIC6yQUAu8kFALilBQC5zQUAvvkFAL/5BQC8zQUAvcUFALKlBQCzrQUAsBEGALERBgC2rQUAt50FALS1BQC1rQUAqmEGAKthBgConQYAqZUGAK5hBgCvYQYArHEGAK1xBgBelQCAYpUAgGaVAIBqlQCAbpUAgHKVAIC+sAwAdpUAgKghDgCpIQ4AqiEOAKs9DgCsJQ4ArS0OAK4lDgCviQ4ARpUAgHqVAIB+lQCAgpUAgIaVAICKlQCAjpUAgJKVAIC4UQ8AuV0PALpVDwC7bQ8AvHUPAL19DwC+dQ8Av2kPALD5DgCxoQ4AsqEOALOhDgC0oQ4AtakOALaRDgC3kQ4As6kOAJaVAIDWlACAmpUAgJ6VAIC2rQ4Ata0OAKKVAIC7ZQ4Auj0OAKaVAICqlQCAv20OAL5lDgC9dQ4AvHUOAIIZAACj7Q4AgGUAAIEZAACm6Q4ArpUAgLKVAICl6Q4AqnkOAKshDgC2lQCAupUAgK4hDgCvKQ4ArDEOAK0xDgCoYQ4AqXUOAKp9DgCrdQ4ArG0OAK31DgCu/Q4Ar/UOAIaAAQCHpAEAvpUAgMKVAIDGlQCAypUAgM6VAIDSlQCAuHUBALl9AQC6dQEAu8kBALzdAQC9xQEAvsUBAL/1AQCwjQ4AsZUOALKdDgCzkQ4AtFUBALVdAQC2VQEAt00BALP1DgDWlQCA2pUAgN6VAIDilQCAtnUOALXlDgDmlQCAu1EOALpJDgDqlQCA7pUAgL+ZAQC+kQEAvUUOALxJDgDylQCAo7EOAPaVAID6lQCApjEOAP6VAIAClgCApaEOAKoNDgCrFQ4ABpYAgAqWAICu1QEAr90BAKwNDgCtAQ4AqO0CAKktAwCqJQMAqz0DAKwlAwCtLQMAriUDAK+ZAwAOlgCAEpYAgBaWAIAalgCAHpYAgCKWAIC+dAIAKpYAgLiNAwC5kQMAupEDALulAwC8vQMAvXUAAL59AAC/dQAAsOkDALHpAwCy+QMAs/EDALTZAwC12QMAtrkDALe1AwCArQAAgbUAAIK9AACzoQMALpYAgLWhAwC2oQMAMpYAgITgAgA2lgCAuiEDALshAwC8IQMAvSkDAL4RAwC/EQMAo+0DAIXABACFtG8AOpYAgD6WAICm7QMApe0DAEKWAICrbQMAqm0DAIZIBQCHbAMAr10DAK5dAwCtZQMArG0DAEaWAIDjAA4A71hsAOG0DwBKlgCATpYAgFKWAIBWlgCAoakDAKD9DwCjwQMAog0DAOHgAwDv4A8A4+QDAFqWAIBelgCAYpYAgIQEBAC+BAQAZpYAgO+UAwBqlgCAbpYAgHKWAIDj1AMAdpYAgOFUAAB6lgCAfpYAgIKWAICGlgCAgA0AAIEVAACCHQAAipYAgI6WAICSlgCAj5EbAO+cDgCE4AcA4dQOAJqWAIDj8A4AnpYAgKKWAICGGAcAh5AEAJnlFwCY5RcAm+kLAJo5CwCd/QoAnPELAJ9VDwCeXQ8AkSkfAJDNGwCTJR8Aks0fAJXREwCUKRMAlxkXAJZ1EwCM4RAAjSUQAI4tEACP+QwAJpYAgJaWAICKORQAi5UUAITpGACFBRgAhuUYAIfxFACmlgCAqpYAgIIxHACDFRwAnKkEAK6WAICylgCAtpYAgLqWAIC+lgCAmtEEAJt9BACUTQ0AleUIAJblCACXtQgAwpYAgMaWAICSWQwAk1kMAKGRAADKlgCAowF8AKKZAACluXwApJF8AKeZeACm4X0AqYF5AKiheACriXQAqgF0AK0BcACsWXQAr4VwAK6dcACx4WwAsAFsALMBaACyHWwAtfVoALT1aADOlgCA0pYAgNaWAIDalgCA3pYAgOKWAIDmlgCA6pYAgO6WAIDylgCAqD0HAKmVBwCqlQcAq6kHAKzdBwCtxQcArsUHAK8dBgD2lgCAgh0AAIEdAACAHQAA+pYAgP6WAIAClwCAvmABALgZBgC5GQYAuikGALslBgC8IQYAvSEGAL4hBgC/IQYAsHEGALFxBgCycQYAs3EGALRNBgC1NQYAtj0GALctBgCzHQcACpcAgIYoAACHqAAADpcAgLZFBwC1VQcAEpcAgLu1BgC6tQYAFpcAgBqXAIC/8QYAvokGAL2lBgC8pQYAHpcAgKNZBwAilwCAJpcAgKYBBwAqlwCALpcAgKURBwCq8QYAq/EGADKXAIA2lwCArs0GAK+1BgCs4QYAreEGAKipBQCptQUAqr0FAKs9AgCsJQIArVECAK5RAgCvUQIAOpcAgD6XAIBClwCARpcAgIQ8AwBKlwCATpcAgFKXAIC4pQIAua0CALqlAgC7vQIAvKUCAL2tAgC+pQIAv30DALAxAgCxMQIAshkCALMZAgC09QIAta0CALalAgC3nQIAVpcAgFqXAIBelwCAszkFAGKXAIC1oQIAtt0CAGaXAIBqlwCAbpcAgLr5AgC7+QIAvMECAL3BAgC+PQIAv2UCAHKXAICmgQIApf0CAHqXAICjZQUAvlh8AIbYfACHnHwArzkCAK5hAgCtnQIArJ0CAKulAgCqpQIAfpcAgIKXAICohQIAqZUCAKqVAgCrpQIArL0CAK3VAgCu0QIAr9ECAIGFAQCAhQEAhpcAgILtAQCKlwCAjpcAgJKXAICWlwCAuHUBALl9AQC6dQEAu80BALzVAQC93QEAvskBAL/BAQCwtQIAsb0CALKBAgCzgQIAtFEBALVRAQC2UQEAt1EBAJqXAICelwCAopcAgKaXAIDhMAYA4WQHAOMoBgDjxAYAhCB9AKqXAIDvbAAA7xgGAK6XAICylwCAtpcAgLqXAICzXQIAvkh8AL6XAIDClwCAxpcAgLYVAgC1dQIAypcAgLs5AgC6MQIAzpcAgNKXAIC/1QEAvtUBAL0VAgC8FQIAo519AHaXAIDWlwCA2pcAgN6XAICm1X0ApbV9AOKXAICr+X0AqvF9AOaXAIDqlwCArxV+AK4VfgCt1X0ArNV9AIBNAACBVQAAglUAALOxfgDulwCAtWV/ALZtfwDylwCAhkADAIcEAwC66X8Au+l/ALz5fwC9+X8Avt1/AL/NfwD2lwCA+pcAgAaXAID+lwCAApgAgAaYAIAKmACADpgAgKhtfgCpXX4AqlV+AKuFfwCsgX8ArYF/AK6BfwCvgX8AsEF/ALFBfwCyQX8As0F/ALR1fwC1ZX8Atm1/ALdlfwC4XX8AuS1/ALolfwC7PX8AvC1/AL0dfwC+FX8Av/UAAKP9fwASmACAFpgAgBqYAIAemACApiF+AKUpfgAimACAq6V+AKqlfgAmmACAKpgAgK+BfgCukX4ArbV+AKy1fgAumACAMpgAgDaYAIA6mACAPpgAgEKYAIBGmACASpgAgIA9AACBCQAAghkAAE6YAIBSmACAhLgBAL6wAQBWmACAqK0BAKnVAQCq1QEAqw0BAKwVAQCtGQEArgkBAK8JAQCGAAQAhwQBAFqYAIBemACAYpgAgGaYAIBqmACAbpgAgLjtAAC5hQAAuo0AALuFAAC8nQAAvYUAAL6NAAC/hQAAsHkBALF5AQCy7QAAs+UAALT9AAC15QAAtuUAALfVAACzXQIAcpgAgHaYAIB6mACAfpgAgLaZAgC1nQIAgpgAgLu9AgC6vQIAhpgAgIqYAIC/IQMAvjkDAL0xAwC8OQMAvigDAKMZAgCOmACAkpgAgKbdAgCWmACAmpgAgKXZAgCq+QIAq/kCAJ6YAICimACArn0DAK9lAwCsfQMArXUDAL7IBACmmACAqpgAgL7EBQCumACAspgAgLaYAIC6mACAgD0AAIEJAACCGQAAvpgAgMKYAICEOAMAypgAgM6YAIDveAIA0pgAgIZIBACHVAMA1pgAgNqYAIDemACA4pgAgOaYAIDqmACA7pgAgPKYAIDjVAIA9pgAgOFAAQD6mACA/pgAgOMkfwACmQCA4Zx8AAaZAIAKmQCADpkAgBKZAICEbAUAFpkAgBqZAIAemQCAIpkAgO8YfwAmmQCAKpkAgLPxAgAumQCAMpkAgDqZAIA+mQCAtukCALXhAgBCmQCAu3EBALppAQCHoAUAhswEAL85AQC+WQEAvVEBALxhAQDhQH8ARpkAgOM4fgCEwAQAgtkAAO8UAACApQAAgdkAAEqZAIDjwAAATpkAgOHUAQBSmQCAVpkAgO+EfgBamQCAqs0BAKvVAQBemQCAYpkAgK79AQCvnQEArMUBAK31AQBmmQCAo1UCAGqZAIBumQCApk0CAHKZAIB2mQCApUUCAMaYAIA2mQCAepkAgH6ZAICCmQCAhpkAgIqZAICOmQCAqJkGAKmZBgCq7QYAq/0GAKzlBgCt7QYAruUGAK/dBgCwpQYAsa0GALKlBgCzuQYAtK0GALVVBwC2UQcAt00HALh1BwC5fQcAunUHALtJBwC8WQcAvVkHAL5JBwC/RQcAs0UGAJKZAICWmQCAmpkAgJ6ZAIC2TQYAtU0GAKKZAIC7SQYAukEGAIYIAACHjAAAv7EHAL5JBgC9TQYAvFEGAIJdAACjAQYAgEUAAIFdAACmCQYAqpkAgK6ZAIClCQYAqgUGAKsNBgCymQCAtpkAgK4NBgCv9QcArBUGAK0JBgCoTQYAqVUGAKpVBgCriQYArLEGAK29BgCuqQYAr6kGAKaZAIC6mQCAvpkAgMKZAIDGmQCAypkAgM6ZAIDSmQCAuEkBALlJAQC6WQEAu1kBALxJAQC9SQEAvt0BAL/VAQCw3QYAsa0GALKlBgCzjQYAtJkGALWZBgC2jQYAt4UGALPdBgDWmQCA2pkAgN6ZAIDimQCAtj0GALU5BgDmmQCAu2kGALoZBgDqmQCA7pkAgL9dBgC+XQYAvVkGALxxBgDymQCAo5kGAPaZAID6mQCApnkGAP6ZAIACmgCApX0GAKpdBgCrLQYABpoAgAqaAICuGQYArxkGAKw1BgCtHQYAqNUCAKndAgCq4QIAq+ECAKw1AwCtPQMArjUDAK8tAwCAzQMAgQkAAIIZAAAOmgCAEpoAgIQYAgC+dAMAGpoAgLjpAwC56QMAuokDALuFAwC8nQMAvYEDAL6BAwC/tQMAsFUDALFdAwCyVQMAs+kDALT5AwC1+QMAtukDALfhAwCGIAwAhxADAB6aAIAimgCAJpoAgCqaAIAumgCA71wCADKaAIDhFAAANpoAgOOIAgC++AwAOpoAgD6aAIBCmgCAu/kDALrxAwC+gA0ARpoAgL9dAwC+XQMAvV0DALzhAwCzCQIASpoAgE6aAIBSmgCAVpoAgLbdAwC13QMAWpoAgKipBgCpqQYAqrkGAKu5BgCsqQYArakGAK4dBQCvFQUAXpoAgGKaAIBmmgCAapoAgG6aAIBymgCAdpoAgHqaAIC4GQUAuS0FALolBQC7yQUAvNkFAL3FBQC+zQUAv8UFALBtBQCxdQUAsnUFALNFBQC0XQUAtT0FALY1BQC3KQUA4fQGAOFUBwDjFAYA47wGAIEJAACAqQAAfpoAgII5AACE7A0AgpoAgIeIDACGDAwAipoAgI6aAIDvzAcA78QHAKMpAwCSmgCAlpoAgJqaAICemgCApv0CAKX9AgCimgCAq9kCAKrRAgCmmgCAqpoAgK99AgCufQIArX0CAKzBAgCoPQ4AqY0OAKqFDgCrnQ4ArIUOAK2NDgCuuQ4Ar7UOAIaaAICumgCAspoAgLaaAIC6mgCAvpoAgMKaAIDGmgCAuL0OALllDwC6bQ8Au2UPALx9DwC9ZQ8Avm0PAL9lDwCw1Q4Asd0OALLVDgCzoQ4AtJUOALWdDgC2lQ4At40OALMNDgDKmgCAzpoAgNKaAIDWmgCAtg0OALUNDgDamgCAuxkOALoRDgDemgCAFpoAgL9ZDgC+UQ4AvXUOALwBDgDimgCAo0kOAOaaAIDqmgCApkkOAO6aAIDymgCApUkOAKpVDgCrXQ4AhKQDAPaaAICuFQ4Arx0OAKxFDgCtMQ4AqLEOAKmxDgCqzQ4Aq8UOAKzdDgCtxQ4ArsUOAK/1DgCA7QEAgfEBAILxAQD6mgCAhpABAIe0AQD+mgCAApsAgLjFAQC5zQEAusUBALvdAQC8zQEAvf0BAL6ZAQC/lQEAsI0OALFBAQCyQQEAs0EBALRBAQC1QQEAtkEBALdBAQCzRQ4ABpsAgAqbAIAOmwCAEpsAgLZFDgC1VQ4AFpsAgLuFAQC6SQ4AGpsAgB6bAIC/hQEAvoUBAL2VAQC8lQEAIpsAgKMBDgAmmwCAKpsAgKYBDgAumwCAMpsAgKURDgCqDQ4Aq8EBADabAIA6mwCArsEBAK/BAQCs0QEArdEBAKgtAwCpPQMAqjUDAKuJAwCsmQMArZkDAK6JAwCvgQMAPpsAgEKbAIBGmwCASpsAgE6bAIBSmwCAVpsAgFqbAIC4rQMAuWUAALptAAC7ZQAAvH0AAL1lAAC+bQAAv2UAALDJAwCxyQMAsqkDALOlAwC0vQMAtaEDALahAwC3lQMAgL0AAIEJAACCGQAAXpsAgGKbAIC+2AMAapsAgG6bAICErAIAcpsAgIfoAwCGDAQAdpsAgHqbAIB+mwCAgpsAgLP9AwCGmwCAipsAgI6bAICSmwCAtlkDALVRAwCWmwCAu00DALpNAwCamwCAnpsAgL8lAwC+OQMAvTEDALw9AwCimwCAppsAgKqbAICumwCA71gPALKbAIC2mwCAupsAgOOQDgC+mwCA4bAPAMKbAIDGmwCAypsAgM6bAIDSmwCAgHUAAIF9AACCdQAAhBgFAO88AwDamwCAvhQFAN6bAIDj0AMA4psAgOFAAADmmwCAhtAEAIdYBQDqmwCA7psAgPKbAID2mwCA+psAgP6bAIACnACABpwAgAqcAIDvrA8AhOwEAOEQDgAOnACA41QBABKcAIAWnACAGpwAgB6cAICj/QIAIpwAgCacAIAqnACALpwAgKZZAgClUQIAMpwAgKtNAgCqTQIANpwAgDqcAICvJQIArjkCAK0xAgCsPQIAqJkGAKmZBgCqrQYAq70GAKylBgCtrQYArqUGAK/ZBgDWmwCAghEAAIEZAACAwQcAPpwAgEKcAIC+cAMARpwAgLhJBwC5SQcAul0HALtVBwC8TQcAvXEHAL51BwC/bQcAsKkGALGpBgCyuQYAs7EGALSZBgC1mQYAtnkHALd5BwC1NQYASpwAgE6cAIC2NQYAhjAAAIdcAwCzPQYAUpwAgL19BgC8dQYAv0UGAL5FBgBmmwCAVpwAgLt1BgC6dQYAo2UGAFqcAIBenACAYpwAgGacAICmbQYApW0GAGqcAICrLQYAqi0GAG6cAIBynACArx0GAK4dBgCtJQYArC0GAKhVBgCpWQYAqm0GAKthBgCsaQYArWkGAK6ZBgCvmQYAdpwAgHqcAIB+nACAgpwAgIacAICKnACAjpwAgJKcAIC4+QYAufkGALqNBgC7hQYAvJ0GAL2FBgC+hQYAv7UGALDpBgCx6QYAsvkGALP5BgC06QYAtd0GALbJBgC3yQYAs+UGAJacAICanACAnpwAgKKcAIC26QYAteEGAKacAIC7LQYAui0GAKqcAICunACAvxkGAL4tBgC9LQYAvC0GAIIVAACjoQYAgGEAAIFhAACmrQYAspwAgL6QAQClpQYAqmkGAKtpBgCEpAEAupwAgK5pBgCvXQYArGkGAK1pBgCohQIAqY0CAKqVAgCruQIArNUCAK3dAgCu1QIAr80CAIaAHACHZAMAvpwAgL5gAwDCnACAxpwAgMqcAIDOnACAuHUDALl9AwC6dQMAu8kDALzZAwC92QMAvskDAL/BAwCwvQIAsY0CALKFAgCzTQMAtFUDALVdAwC2VQMAt00DALMdAgDSnACAhAgDANacAIDanACAtl0CALVdAgDenACAu0kCALp5AgDinACA5pwAgL+ZAwC+kQMAvZkDALxRAgCwAAAAo1kCAOqcAIDunACAphkCAPKcAID2nACApRkCAKo9AgCrDQIA+pwAgP6cAICu1QMAr90DAKwVAgCt3QMAAp0AgAadAIAKnQCA76wGAA6dAIASnQCAFp0AgBqdAIC+6BwAHp0AgCKdAIAqnQCALp0AgOGABwAynQCA42AGAIBdAACBYQAAgmEAALN9AQA2nQCAtW0BALZlAQA6nQCAhiAdAIdYHQC6+QEAu/EBALzZAQC92QEAvrEBAL+xAQDvoAAAPp0AgEKdAIBGnQCASp0AgE6dAIBSnQCA71wBAIRsHADhzAYAVp0AgOMcBgDjSAAAWp0AgOEwAQBenQCAo/EBAGKdAICFABQAZp0AgGqdAICm6QEApeEBAG6dAICrfQEAqnUBAHKdAIB2nQCArz0BAK49AQCtVQEArFUBAKjtHQCpLR4AqjkeAKs5HgCsKR4ArSkeAK6dHgCvkR4AJp0AgHqdAIB+nQCAgp0AgIadAICC+QAAgfEAAID9AAC4qR4AuakeALpJHwC7SR8AvFkfAL1FHwC+TR8Av0UfALDxHgCx+R4AssEeALPBHgC0uR4AtbkeALatHgC3pR4AsBEfALERHwCyER8AsyUfALQlHwC1KR8Atl0fALdRHwC4cR8AuXkfALpBHwC7QR8AvJUAAL2dAAC+lQAAv40AAIqdAIC2nACAjp0AgJKdAICWnQCAmp0AgIb4AwCH0AAAqM0fAKnVHwCq0R8Aq70fAKytHwCtcR8ArnEfAK9xHwCzOR4Anp0AgKKdAICmnQCAqp0AgLaRHgC1RR4Arp0AgLu1HgC6tR4Asp0AgLadAIC/jR4AvoEeAL2RHgC8pR4Aup0AgKN9HgC+nQCAwp0AgKbVHgDGnQCAyp0AgKUBHgCq8R4Aq/EeAM6dAIDSnQCArsUeAK/JHgCs4R4ArdUeAKhVAQCpgQAAqoEAAKuBAACsgQAArYkAAK6xAACvsQAA1p0AgNqdAIDenQCA4p0AgOadAIDqnQCA7p0AgPKdAIC4ZQAAuW0AALplAAC7fQAAvGUAAL1tAAC+ZQAAv90DALChAACxrQAAsqUAALO5AAC0qQAAtZ0AALaVAAC3XQAA9p0AgIIdAACBHQAAgB0AAPqdAID+nQCAAp4AgL4UAgAKngCAhKgCAA6eAIASngCAFp4AgBqeAIAengCAjwAAALNJAwAingCAhugEAIesAgAmngCAtkkDALVJAwAqngCAuykDALolAwAungCAMp4AgL8ZAwC+LQMAvS0DALwxAwA2ngCAo40DADqeAIA+ngCApo0DAEKeAIBGngCApY0DAKrhAwCr7QMASp4AgE6eAICu6QMAr90DAKz1AwCt6QMAvoQDAFKeAIBWngCAWp4AgF6eAIBingCAZp4AgGqeAICAPQAAgQkAAIIZAABungCAcp4AgHqeAICENAMAfp4AgLMtAQCCngCAh8wCAIZMBQCGngCAti0BALUtAQCKngCAu0kBALp5AQCOngCAkp4AgL+9AQC+vQEAvbkBALxRAQDheB8Alp4AgOPQHwCangCAnp4AgOGUAQCingCA42gDAKaeAICqngCArp4AgO+IAwCyngCAtp4AgO+sHwC6ngCAvp4AgMKeAIDGngCAyp4AgM6eAIDSngCA1p4AgO9EHgDangCA4dweAN6eAIDjHB4A4p4AgOqeAIDungCA8p4AgIFpAACAZQAAo+UBAIJ9AACl5QEA9p4AgIQUBACm5QEAvigEAPqeAICrgQEAqrEBAK1xAQCsmQEAr3UBAK51AQCoIQYAqS0GAKolBgCrPQYArCUGAK0tBgCuXQYAr00GAHaeAIDmngCAhggDAIeMAwD+ngCAAp8AgAafAIAKnwCAuOkGALnpBgC6jQYAu4UGALydBgC9hQYAvo0GAL+FBgCwPQYAsQ0GALIFBgCz7QYAtPkGALX5BgC27QYAt+UGALDNBwCx1QcAstEHALPtBwC09QcAtf0HALbpBwC36QcAuN0HALklBwC6LQcAuyUHALw9BwC9JQcAvi0HAL8lBwAOnwCAEp8AgAaeAIAWnwCAGp8AgB6fAIAinwCAJp8AgKgVBgCpGQYAqu0HAKv9BwCs7QcArd0HAK7VBwCvuQcAswUGACqfAIAunwCAMp8AgDafAIC2PQYAtQUGADqfAIC7cQYAumkGAD6fAIBCnwCAv1kGAL5RBgC9WQYAvGUGAEafAICjQQYASp8AgE6fAICmeQYAUp8AgIS0AQClQQYAqi0GAKs1BgC+gAEAWp8AgK4VBgCvHQYArCEGAK0dBgCoNQYAqT0GAKo1BgCrWQYArHUGAK2lAQCurQEAr6UBAIDpAACB6QAAgv0AAL8kAQCGMA8Ah+QAAF6fAIBinwCAuMUAALnNAAC6xQAAu90AALzNAAC9/QAAvvUAAL+dAACw3QEAsSUBALItAQCzIQEAtCEBALUhAQC2IQEAtyEBALvBAgC6OQIAZp8AgGqfAIC/xQIAvsUCAL3VAgC82QIAs50FAG6fAIBynwCAdp8AgIwAAAC2BQIAtd0FAHqfAICqfQIAq4UCAH6fAICCnwCAroECAK+BAgCsnQIArZECAIafAICj2QUAip8AgI6fAICmQQIAkp8AgJafAIClmQUAgpFqAIORagCanwCAnp8AgIa5FgCH6RcAhBEWAIWZFgCKoRIAi6ESAKKfAICmnwCAjpEeAI9ZHgCMmRMAjREeAJJxGgCT5RoAqp8AgO/oJACW8QYAlwUGAJTlGgCVGQYAmikCAJvFAgCunwCAsp8AgLafAIDhKBsAnN0CAOMgDwCfIQcAnsEHAJ01GwCcLRsAm6EbAJr5HwCZOR8AmLEfAJcBEgCWIRMAlSkTAJRRFgCTGRcAkjEXAJGxFwCQKWsAj1FrAOOsBwCEBA0A4RwHAIANAACBNQAAgj0AALqfAIC+nwCAwp8AgL4gDQDKnwCAzp8AgO9MBwCGWAwAh2ANANKfAIDWnwCA2p8AgN6fAICEXA8A4p8AgO8IAADvhAYA4ZABAOGwBgDj4AAA42QGAOafAIDqnwCA7p8AgPKfAID2nwCA+p8AgL4ADwCEQA4A/p8AgAKgAIAGoACACqAAgA6gAIASoACAFqAAgBqgAICj1QMAotUDAKExAwCgLQcAVp8AgMafAIAeoACAIqAAgCagAICCmQAAgZEAAICZAACoTQ0AqZ0NAKqVDQCrJQ4ArD0OAK0RDgCuEQ4ArxEOALB9DgCxDQ4AsgUOALMtDgC0OQ4AtTkOALYtDgC3JQ4AuOkOALnpDgC6wQ4Au8EOALy5DgC9nQ4AvpUOAL+NDgCzPQ0AKqAAgC6gAIAyoACANqAAgLaxDgC1lQ4AOqAAgLvpDgC6mQ4AhogAAIfkAAC/3Q4Avt0OAL3ZDgC88Q4APqAAgKN5DQC+hAEAhIAGAKb1DgBCoACARqAAgKXRDgCq3Q4Aq60OAEqgAIBOoACArpkOAK+ZDgCstQ4ArZ0OALIFNQCzGTQAsG0wALENNQBSoACAVqAAgLQBKAC1PSkAWqAAgF6gAIBioACAZqAAgGqgAIBuoACAcqAAgHagAICiRQEAo9UBAHqgAIChTQEAps0FAKcBOACkAQQApX0FAKoBPACrRT0AqEk5AKnlOQCudTEAr30xAKxdPQCtATAAqO0OAKn1DgCqCQ4AqwkOAKwZDgCtGQ4Arg0OAK8tDgB+oACAgqAAgIagAICKoACAjqAAgJKgAICWoACAmqAAgLgdDgC5JQ4Aui0OALslDgC8PQ4Avd0BAL7VAQC/zQEAsFUOALFdDgCyVQ4Asy0OALQ1DgC1JQ4Ati0OALclDgCzgQ0AnqAAgKKgAICqoACArqAAgLaZDQC1kQ0AvlQEALuZDQC6kQ0AhogEAIe8AwC/4Q0AvvENAL35DQC8gQ0AgkkAAKPFDQCA9QMAgUkAAKbdDQCyoACAtqAAgKXVDQCq1Q0Aq90NALqgAIC+oACArrUNAK+lDQCsxQ0Arb0NAKgdAgCpRQIAql0CAKtVAgCseQIArXkCAK6JAwCviQMAwqAAgMagAIDKoACAzqAAgIT8BQDSoACA1qAAgNqgAIC4iQMAuWUDALptAwC7ZQMAvH0DAL1lAwC+bQMAv2UDALDBAwCxwQMAssEDALPBAwC0wQMAtcEDALbBAwC3wQMA3qAAgOKgAIDmoACA6qAAgO6gAIDhpAEA8qAAgOPADgC+aAQA9qAAgPqgAIDvHAEA/qAAgAKhAIAGoQCACqEAgLOVAwAOoQCAEqEAgBqhAIAeoQCAtrkDALWxAwAioQCAu0UCALpFAgCGqAQAh6QFAL9FAgC+RQIAvVUCALxVAgDh4A4A4SwMAOMIDgDj1A4AgK0AAIHRAACC0QAAJqEAgCqhAIAuoQCAMqEAgDahAIA6oQCAPqEAgO+IDgDvLA4AoxUDAEKhAICFxCsARqEAgEqhAICmOQMApTEDAE6hAICrxQIAqsUCAFKhAIBWoQCAr8UCAK7FAgCt1QIArNUCAKgNBgCpFQYAql0GAKtVBgCseQYArXkGAK65BgCvuQYAFqEAgFqhAIBeoQCAYqEAgGahAIBqoQCAbqEAgHKhAIC4TQcAuVUHALpRBwC7aQcAvHkHAL1lBwC+bQcAv2UHALDJBgCxyQYAst0GALPVBgC0zQYAtXUHALZ9BwC3dQcAs9UGAHahAIB6oQCAfqEAgIKhAIC2+QYAtfEGAIahAIC7DQYAug0GAIYIAACHLAAAv7EHAL4JBgC9AQYAvAkGAIJRAACjkQYAgEEAAIFBAACmvQYAiqEAgI6hAICltQYAqkkGAKtJBgCSoQCAlqEAgK5NBgCv9QcArE0GAK1FBgCwsQYAsbEGALLNBgCzwQYAtMEGALXJBgC28QYAt/EGALgFAQC5DQEAugUBALsdAQC8BQEAvQ0BAL4FAQC/uQEAmqEAgJ6hAICioQCApqEAgKqhAICuoQCApqAAgLKhAICoLQYAqTUGAKo1BgCr8QYArNEGAK3RBgCu0QYAr9EGALPdBgC2oQCAuqEAgL6hAIDCoQCAtjEGALU5BgDGoQCAuxUGALoVBgDKoQCAzqEAgL9tBgC+ZQYAvXUGALx5BgDSoQCAo5kGANahAIDaoQCApnUGAN6hAIDioQCApX0GAKpRBgCrUQYA5qEAgOqhAICuIQYArykGAKw9BgCtMQYAqNUCAKndAgCq4QIAq+ECAKxRAwCtUQMArlEDAK9RAwDuoQCA8qEAgL7sAwD6oQCA/qEAgAKiAIAGogCACqIAgLjpAwC56QMAuokDALuFAwC8nQMAvYEDAL6BAwC/tQMAsDEDALExAwCyNQMAs+kDALT5AwC1+QMAtukDALfhAwCAbQMAgaUAAIKtAACzZQIADqIAgLXVAwC23QMAEqIAgITgAgAWogCAuvkDALv5AwC87QMAvTEDAL4xAwC/MQMAh+wDAIZkPACyAAAAGqIAgB6iAIDjCAQAIqIAgOHsBgAmogCA7wAGACqiAIAuogCAMqIAgDaiAIA6ogCAPqIAgEKiAIBGogCASqIAgE6iAIDjoAMAUqIAgOGoAQBWogCA7/ADAIIdAACBHQAAgB0AAFqiAIBeogCAYqIAgGqiAIC+TD0AbqIAgKOhAwC+QDwApRECAHKiAIB2ogCAphkCAIRsAgB6ogCAqz0CAKo9AgCt9QIArCkCAK/1AgCu9QIAhkA8AIe0PQB+ogCAgqIAgIaiAICKogCAjqIAgO9EBgCSogCA4dQGAJaiAIDjDAcAmqIAgJ6iAICiogCApqIAgLP1AQCqogCArqIAgLKiAIC2ogCAtkUBALXlAQC6ogCAuzEBALopAQC+ogCAwqIAgL8dAQC+HQEAvRkBALwlAQCoLT4AqTU+AKo9PgCrNT4ArC0+AK2FPgCuhT4Ar7k+AGaiAIDGogCAyqIAgM6iAICAGQAAgRkAAIIFAADSogCAuLk+ALm5PgC6ST8Au0k/ALxZPwC9WT8Avk0/AL9BPwCwrT4AsbU+ALKxPgCzjT4AtJk+ALWZPgC2iT4At4k+AKO1PgCEjAIA1qIAgNqiAIDeogCApgU+AKWlPgDiogCAq3E+AKppPgCGCAAAh2gDAK9dPgCuXT4ArVk+AKxlPgDmogCAs5E/AOqiAIDuogCAtlk/APKiAID2ogCAtbk/ALp1PwC7fT8A+qIAgP6iAIC+QT8Av0E/ALxZPwC9VT8AsJU+ALGdPgCyqT4As6U+ALShPgC1oT4AtqE+ALehPgC45T4Aue0+ALrlPgC7/T4AvO0+AL3dPgC+1T4AvxkBAAKjAIAGowCACqMAgA6jAIASowCA9qEAgBajAIAaowCAqF0+AKkhPgCqPT4AqzU+AKwVPgCt/T4ArvU+AK/tPgCj1T4AHqMAgCKjAIAmowCAKqMAgKYdPgCl/T4ALqMAgKs5PgCqMT4AMqMAgDajAICvBT4ArgU+AK0RPgCsHT4AgREAAIANAAA6owCAghkAAD6jAIBCowCAhJQBAL4QAACGQAcAhwABAEqjAIBOowCAUqMAgFajAIBaowCAXqMAgKiNAgCplQIAqpUCAKvNAgCs2QIArdkCAK7NAgCvxQIAYqMAgGajAIBqowCAbqMAgIwAAAByowCAdqMAgHqjAIC4HQMAucEDALrBAwC7wQMAvMEDAL3JAwC+8QMAv/EDALCJAgCxiQIAsikDALMpAwC0OQMAtTkDALYpAwC3JQMAsx0CAH6jAICCowCAhqMAgIqjAIC2WQIAtVECAI6jAIC7TQIAuk0CAJKjAICWowCAv/0DAL79AwC9/QMAvP0DAJqjAICeowCAoqMAgKajAIDhDD4AqqMAgOOoPwCuowCAgT0AAIAxAADvUD8Agh0AALKjAIC++AQAhhgFAIdMAwCEDAIA48wAALqjAIDhvAEAvqMAgMKjAIDGowCAyqMAgM6jAICELAUA0qMAgNajAIDaowCA7xAAAN6jAIDiowCAo90DAOajAIDqowCA7qMAgPKjAICmmQMApZEDAPajAICrjQMAqo0DAPqjAID+owCArz0CAK49AgCtPQIArD0CAAKkAIAGpACACqQAgA6kAIASpACAFqQAgBqkAIDvKD4AHqQAgOE8PgAipACA4zgBAIApAACBFQAAghEAACqkAICzMQIAvsgEAITABAAupACAMqQAgLYpAgC1IQIANqQAgLvNAQC6zQEAOqQAgD6kAIC/dQEAvskBAL3BAQC8yQEAqOkFAKnpBQCq+QUAq/kFAKzpBQCt6QUArjkGAK85BgC2owCAJqQAgIaIAACHQAMAQqQAgEakAIBKpACATqQAgLjRBgC52QYAuuEGALvhBgC8kQYAvZEGAL6RBgC/kQYAsEkGALFJBgCyXQYAs1UGALRNBgC18QYAtvEGALfxBgCjcQUAUqQAgFakAIBapACAXqQAgKZpBQClYQUAYqQAgKuNBgCqjQYAZqQAgGqkAICvNQYArokGAK2BBgCsiQYAbqQAgLPRBwBypACAdqQAgLbxBwB6pACAfqQAgLXBBwC60QcAu90HAIKkAICGpACAvrkHAL+5BwC8xQcAvbkHALhpBgC5aQYAuokGALuJBgC8mQYAvZkGAL6JBgC/iQYAsBEGALEdBgCyFQYAs2kGALR5BgC1eQYAtmkGALdhBgCoSQYAqVUGAKpdBgCrVQYArE0GAK11BgCucQYAr3EGAEajAICCHQAAgR0AAIAdAACKpACAjqQAgJKkAIC+cAEAo5UGAJqkAICGKAAAh0gBAJ6kAICmtQYApYUGAKKkAICrmQYAqpUGAKakAICqpACAr/0GAK79BgCt/QYArIEGAK6kAICzFQYAsqQAgLakAIC2PQYAuqQAgL6kAIC1NQYAutkBALvZAQDCpACAxqQAgL59AQC/ZQEAvH0BAL11AQCovQUAqckFAKrZBQCr0QUArPkFAK35BQCuKQIArykCAMqkAIDOpACA0qQAgNakAICMAAAA2qQAgN6kAIDipACAuO0CALmFAgC6gQIAu4ECALyFAgC9jQIAvrECAL+xAgCwWQIAsVkCALLtAgCz5QIAtP0CALXlAgC25QIAt9UCAKNRBQDmpACA6qQAgO6kAIDypACApnkFAKVxBQD2pACAq50CAKqdAgD6pACA/qQAgK8hAgCuOQIArTECAKw5AgCBbQAAgG0AAAKlAICCBQAAvlwMAAqlAIAOpQCA79AGAITsAwDhHAUAEqUAgOP8BwAWpQCAGqUAgIbYDACHvAwAqIUCAKmVAgCqlQIAq6UCAKy9AgCt1QIArtECAK/RAgAepQCAIqUAgCalAIAqpQCALqUAgDKlAIA2pQCAOqUAgLh1AQC5fQEAunUBALvJAQC82QEAvdkBAL7JAQC/wQEAsLUCALG9AgCygQIAs4ECALRRAQC1UQEAtlEBALdRAQA+pQCAhAQNAEKlAIBGpQCAvhwMAEqlAIDvHAAA76AGAOGQAQDhRAcA43AGAOOYBgBOpQCAUqUAgFalAIBapQCAs10CAF6lAIBipQCAZqUAgGqlAIC2FQIAtXUCAG6lAIC7OQIAujECAHKlAIB6pQCAv9UBAL7VAQC9FQIAvBUCAKOdDQAGpQCAdqUAgH6lAICCpQCAptUNAKW1DQCGpQCAq/kNAKrxDQCGCAMAh2ADAK8VDgCuFQ4ArdUNAKzVDQCAkQ8AgZkPAIKhDwCzpQ4AiqUAgLWhDgC2eQ8AjqUAgJKlAICWpQCAukUPALtdDwC8RQ8AvU0PAL5FDwC//Q8AqFUOAKldDgCqYQ4Aq30OAKxlDgCttQ8Arr0PAK+1DwCapQCAnqUAgKKlAICmpQCAqqUAgK6lAICypQCAtqUAgLhVDwC5dQ8Aun0PALt1DwC8bQ8AvREPAL4RDwC/EQ8AsM0PALHVDwCy3Q8As9UPALTNDwC1dQ8AtnEPALdxDwCj6Q8AuqUAgL6lAIDCpQCAxqUAgKY1DgCl7Q8AyqUAgKsRDgCqCQ4AzqUAgNKlAICvsQ4ArgkOAK0BDgCsCQ4A1qUAgIIdAACBHQAAgB0AANqlAIDepQCA4qUAgL6UAQCErAEA5qUAgIfgAQCGzAAA6qUAgO6lAIDypQCAlqQAgKhtDgCpiQEAqpkBAKuRAQCswQEArckBAK75AQCv+QEAhKAAAPalAID6pQCA/qUAgAKmAIAGpgCACqYAgA6mAIC4xQAAuc0AALrFAAC73QAAvM0AAL39AAC+9QAAv50AALBBAQCxQQEAskEBALNBAQC0QQEAtUEBALZBAQC3QQEAsxECABKmAIAWpgCAGqYAgB6mAIC2SQIAtUkCACKmAIC7hQIAuoUCACamAIAqpgCAv4UCAL6FAgC9lQIAvJUCAIU8GgCjVQIALqYAgDKmAICmDQIANqYAgDqmAIClDQIAqsECAKvBAgA+pgCAQqYAgK7BAgCvwQIArNECAK3RAgCCGQAARqYAgIAZAACBGQAASqYAgE6mAIBSpgCAWqYAgL4ABABepgCAYqYAgGamAIBqpgCAbqYAgHKmAIB2pgCA7+gOAHqmAICG6AQAh1ADAH6mAICCpgCA74ACAIamAIDhlAEAiqYAgONYAQCOpgCA4wAOAJKmAIDhaA0AlqYAgKhxAgCpcQIAqnECAKupAgCsuQIArbkCAK6pAgCvqQIAhKwFAJqmAICepgCAoqYAgKamAICqpgCArqYAgLKmAIC4bQEAuQ0BALoFAQC7GQEAvAkBAL09AQC+NQEAv9kBALDZAgCx2QIAsm0BALNlAQC0fQEAtWUBALZlAQC3VQEA4WAPAOP0AADjHA4A4bwBALamAICCOQAAgTEAAIA9AAC6pgCAvigEAL6mAIDCpgCAvjwHAO8QAADv0A4AyqYAgIbgBACHyAQAzqYAgLO1AgDSpgCAtX0CALZ1AgDWpgCA2qYAgN6mAIC6UQIAu1ECALz1AQC9/QEAvvUBAL/tAQBWpgCAxqYAgKqxBQCrsQUArBUGAK0dBgCuFQYArw0GAOKmAIDmpgCA6qYAgKNVBQDupgCApZ0FAKaVBQDypgCAs+kGAPamAID6pgCA/qYAgAKnAIC24QYAtekGAAanAIC7sQYAuqEGAAqnAIAOpwCAv50GAL6RBgC9pQYAvKkGAKgdBgCpIQYAqiEGAKshBgCsIQYArSEGAK4hBgCvIQYAEqcAgBanAIAapwCAHqcAgCKnAIAmpwCAKqcAgC6nAIC45QcAue0HALrlBwC7/QcAvOUHAL3tBwC+5QcAv00HALAlBgCxNQYAsj0GALMxBgC0FQYAtRkGALYNBgC3AQYAo6kHAIIVAACBtQEAgLUBADKnAICmoQcApakHADanAICr8QcAquEHAISgAgA6pwCAr90HAK7RBwCt5QcArOkHAD6nAICzlQYAhugAAIcYAQC2tQYAQqcAgEanAIC1vQYAukkBALtVAQBKpwCATqcAgL45AQC/OQEAvEUBAL05AQCoPQYAqU0GAKpZBgCrUQYArHEGAK1xBgCuuQEAr7kBAISsAQBSpwCAVqcAgFqnAIBepwCAYqcAgGanAIBqpwCAuKkBALmpAQC6aQEAu2kBALx5AQC9eQEAvmkBAL9pAQCwyQEAsdUBALLVAQCzqQEAtLkBALW5AQC2qQEAt6EBAKPRBQBupwCAcqcAgHanAIB6pwCApvEFAKX5BQB+pwCAqxECAKoNAgCCpwCAhqcAgK99AgCufQIArX0CAKwBAgCKpwCAjqcAgJKnAICWpwCAgTEAAIANAACapwCAgjkAAJ6nAICipwCAviQDAKqnAICupwCAsqcAgIbYHACHTAMAtqcAgLqnAIC+pwCAhMAcAOMgAQDCpwCA4cgBAManAIDvMAIAyqcAgM6nAIDSpwCA1qcAgNqnAIDepwCA4qcAgLOVAwDmpwCA6qcAgO6nAIDypwCAtrkDALWxAwD2pwCAu1EDALpJAwD6pwCA/qcAgL/1AAC+SQMAvUEDALxJAwCoLQIAqUUCAKpdAgCrVQIArHkCAK15AgCuvQIAr7UCAL5oHQACqACABqgAgAqoAICAHQAAgQkAAIKpAAAOqACAuFEBALlZAQC6YQEAu2EBALwRAQC9EQEAvhEBAL8RAQCwzQIAsdUCALLdAgCz1QIAtM0CALVxAQC2cQEAt3EBAOFYBgDhVAcA47AAAOO8BgASqACAGqgAgIYYHACHVB0AHqgAgCKoAIAmqACAKqgAgL74HAAuqACA7/AGAO/gBgCjlQIAMqgAgDaoAIA6qACAPqgAgKa5AgClsQIAQqgAgKtRAgCqSQIARqgAgEqoAICv9QEArkkCAK1BAgCsSQIAqG0eAKl1HgCqfR4Aq40eAKyVHgCtnR4Aro0eAK+BHgAWqACATqgAgFKoAIBWqACAWqgAgF6oAIBiqACAZqgAgLiJHgC5iR4AupkeALuRHgC8uR4AvbkeAL59HwC/dR8AsMUeALHNHgCyxR4As90eALTFHgC1zR4AtsUeALe5HgCz9R4AaqgAgG6oAIByqACAdqgAgLYdHgC1HR4AeqgAgLsJHgC6AR4AfqgAgIKoAIC/CR4AvgEeAL0JHgC8ER4Agm0AAKOxHgCAVQAAgWUAAKZZHgCEmAMAv9ABAKVZHgCqRR4Aq00eAIYABACHmAEArkUeAK9NHgCsVR4ArU0eAIqoAICOqACAhCQAAJKoAICWqACAmqgAgKanAICGqACAqLUeAKmFHgCqjR4Aq4UeAKydHgCtgR4Arv0eAK/1HgCwjR4AsZUeALKVHgCzpR4AtL0eALVxAQC2cQEAt3EBALhRAQC5UQEAulEBALtRAQC89QEAvf0BAL71AQC/7QEAsyUeAL4IBwCeqACAoqgAgKaoAIC2IR4AtTUeAKqoAIC7cR4AumkeAK6oAICyqACAv5UBAL5ZHgC9UR4AvGEeALaoAICjYR4AuqgAgL6oAICmZR4AwqgAgMaoAIClcR4Aqi0eAKs1HgDKqACAzqgAgK4dHgCv0QEArCUeAK0VHgDhVBoA0qgAgONcCgDWqACA2qgAgN6oAIDiqACA5qgAgOqoAIC+qAUA7qgAgPKoAICPMSoA+qgAgO/E+wD+qACAk2EuAJIdLwCR2SoAkEkqAJfZEgCWdRIAlQ0TAJTBLgCbHRsAmkEWAJlJFgCYDRcAn3EeAJ4RGwCdcRoAnHkaAKOhAgCinQMAoZUfAKCJHgDjiAEA4wgeAOFoAADh/B4A79wBAO98HwC1if4AtAH8ALMB+gCylfoAsQH4ALAR9gCv4fYArgH0AK0l8gCs7fIAqwHwAKrpDwCp1Q4AqN0OAKcBDACmyQoApe0KAKQBCACj4QYAovEGAKHlAwACqQCAggErAIMBKwAGqQCACqkAgIYxLwCHiS8AhIkrAIVFLgCKdRIAiwUTAIYIBQCHbAUAjhEXAI8RFwCMsRMAjV0WAJI9GgCTQRsAhMgFAIQABwCWUR8Al1EfAJRRGwCVORoAmn0eAJt9AgAOqQCAEqkAgIFZAQCAVQEAnFkDAIJRAQC+yAcAFqkAgBqpAIAeqQCAIqkAgCapAIAqqQCA79QeAC6pAIDhJB4AMqkAgONoAQA2qQCAOqkAgD6pAIBCqQCAu2kCALpZAgBGqQCASqkAgL8dAgC+HQIAvRkCALxxAgCz7QIATqkAgFKpAIBWqQCAWqkAgLZ9AgC17QIAXqkAgKMNBQD2qACAYqkAgGqpAIBmqQCApp0FAKUNBQBuqQCAq4kFAKq5BQCGCAMAh3wDAK/9BQCu/QUArfkFAKyRBQCAsQcAgbkHAIJBAACzsQYAcqkAgLVZBwC2MQcAdqkAgHqpAIB+qQCAuuEHALvhBwC84QcAveEHAL7hBwC/3QcAqLUGAKm5BgCqdQYAq4UHAKydBwCt/QcArvUHAK8ZBwCCqQCAhqkAgIqpAICOqQCAkqkAgJapAICaqQCAnqkAgLh1BwC5fQcAunUHALsFBwC8HQcAvTEHAL4xBwC/MQcAsGkHALFpBwCyeQcAs3kHALRpBwC1VQcAtlEHALdNBwCj/QcAoqkAgKapAICqqQCArqkAgKZ9BgClFQYAsqkAgKutBgCqrQYAtqkAgLqpAICvkQYArq0GAK2tBgCsrQYAvqkAgMKpAIDGqQCAyqkAgIAdAACBCQAAgjkAAM6pAIDSqQCA2qkAgIbIAACHpAEA3qkAgOKpAIDmqQCA6qkAgKiNAQCpmQEAqtkBAKvRAQCs8QEArfEBAK45AQCvOQEAhKAAAO6pAIDyqQCA9qkAgPqpAID+qQCAAqoAgAaqAIC4zQAAudUAALrVAAC75QAAvP0AAL2VAAC+nQAAv5UAALBJAQCxSQEAslkBALNZAQC0SQEAtUkBALb9AAC39QAAugUEALsJBAC44QcAueEHAL4JBAC/CQQAvAkEAL0JBACyjQcAs+UHALC1BwCxhQcAtuUHALftBwC08QcAtfEHAKpNBwCrVQcAqEkHAKlJBwCu3QcAr8UHAKxNBwCt1QcACqoAgA6qAIASqgCAFqoAgBqqAIAeqgCAIqoAgCaqAICz0QIAKqoAgC6qAIC+AAwAMqoAgLbxAgC1+QIANqoAgLsNAgC6DQIAOqoAgD6qAIC/DQIAvg0CAL0NAgC8DQIAghUAAKOVAgCAYQAAgWEAAKa1AgBCqgCASqoAgKW9AgCqSQIAq0kCAIbIDACHrAwArkkCAK9JAgCsSQIArUkCAKhlAgCpdQIAqn0CAKt1AgCsbQIArbECAK6xAgCvsQIAhKANAE6qAIBSqgCAVqoAgFqqAIBeqgCAYqoAgGaqAIC4MQEAuTEBALoxAQC7MQEAvNUBAL3dAQC+yQEAv8EBALDRAgCx0QIAstECALPRAgC0EQEAtREBALYRAQC3EQEA4bAGAGqqAIDj0AYAhEAPAG6qAIDhpAEAcqoAgOPABgB2qgCAeqoAgH6qAIDv1AYA7AAAAIKqAIDvZAcAhqoAgIqqAICOqgCAkqoAgLO5AgCWqgCAtakCALZ9AgCaqgCAnqoAgKKqAIC6WQIAu1kCALxJAgC9SQIAvpkBAL+ZAQCjdQ0ARqoAgKaqAICqqgCArqoAgKaxDQClZQ0AsqoAgKuVDQCqlQ0AvqQDALaqAICvVQ4ArlUOAK2FDQCshQ0AgE0AAIFVAACCVQAAs2UPALqqAIC1ZQ8Atm0PAL6qAICGQAMAhxQDALrtDwC7/Q8AvOkPAL3VDwC+3Q8Av9UPAKhZDgCpoQ8AqqEPAKuhDwCsoQ8AraEPAK6hDwCvoQ8AwqoAgMaqAIDKqgCAzqoAgNKqAIDWqgCA2qoAgN6qAIC4AQ8AuQEPALoBDwC7HQ8AvA0PAL01DwC+PQ8Av9UAALBlDwCxdQ8AsnEPALNNDwC0VQ8AtV0PALZNDwC3QQ8AoykOAOKqAIDmqgCA6qoAgO6qAICmIQ4ApSkOAPKqAICrsQ4AqqEOAPaqAID6qgCAr5kOAK6RDgCtmQ4ArKUOAP6qAIACqwCABqsAgAqrAIDvJA0ADqsAgBKrAIAWqwCA49AOABqrAIDhGA4AHqsAgIAVAACBGQAAggUAACKrAICo0QEAqdkBAKopAQCrKQEArDkBAK05AQCuKQEArykBAL5oAQAqqwCAhsgBAIesAAAuqwCAMqsAgDarAIA6qwCAuO0AALmFAAC6jQAAu4UAALydAAC9gQAAvoEAAL+BAACwWQEAsVkBALLtAACz5QAAtP0AALXlAAC25QAAt9UAALOhAgA+qwCAQqsAgEarAIBKqwCAtrkCALWxAgBOqwCAu50CALqdAgBSqwCAVqsAgL8hAwC+OQMAvTEDALw5AwCF+PUAo+UCAFqrAIBeqwCApv0CAGKrAIBmqwCApfUCAKrZAgCr2QIAaqsAgG6rAICufQMAr2UDAKx9AwCtdQMAuOkAALnpAAC6aQAAu2kAALx5AAC9ZQAAvm0AAL9lAACwsQAAsbkAALKBAACzgQAAtPkAALX5AAC27QAAt+UAAKhlAwCpdQMAqn0DAKt1AwCsbQMArdEAAK7RAACv0QAAcqsAgHarAIB6qwCA1qkAgH6rAICCqwCAhqsAgIqrAICA/QEAgQkAAIIZAACOqwCAkqsAgL5EAgCaqwCAnqsAgISsAgCiqwCAh/gCAIasBQCmqwCAqqsAgK6rAICyqwCAs/UCALarAIC6qwCAvqsAgMKrAIC2UQEAteUCAMarAIC7fQEAunUBAMqrAIDOqwCAvz0BAL49AQC9VQEAvFUBAOFwDwDSqwCA47gOAITABQDvyAAA1qsAgNqrAIDeqwCA4zwOAOKrAIDh0AEA5qsAgIR0BwDqqwCA72gBAO6rAIDyqwCApXkCAKbNAQD2qwCAgCEAAIEhAACC3QcAo2kCAKzJAQCtyQEArqEBAK+hAQD6qwCA/qsAgKrpAQCr4QEAlqsAgAKsAIC+QAIABqwAgIYwAwCHMAMACqwAgA6sAICoOQcAqTkHAKoNBwCrHQcArAUHAK0NBwCuBQcAr3kHALAJBwCxCQcAshkHALMRBwC0OQcAtTkHALbdBwC3yQcAuPkHALn5BwC6zQcAu8EHALzFBwC9yQcAvrkHAL+xBwCzpQcAEqwAgBasAIAarACAHqwAgLatBwC1rQcAIqwAgLvtBwC67QcAJqwAgCqsAIC/3QcAvt0HAL3lBwC87QcALqwAgKPhBwAyrACANqwAgKbpBwA6rACAPqwAgKXpBwCqqQcAq6kHAEKsAIBGrACArpkHAK+ZBwCsqQcAraEHAEqsAIBOrACAUqwAgFasAIBarACAXqwAgGKsAIBmrACAgREAAIANAABqrACAghkAAG6sAIByrACAvuQBAHasAICG4AAAhxgBAHqsAIB+rACAgqwAgIasAICKrACA77AEAI6sAIDh1AYAkqwAgONcBACWrACAmqwAgJ6sAICirACAqJkBAKmZAQCqDQEAqwUBAKwdAQCtBQEArgUBAK81AQCEiAEApqwAgKqsAICurACAsqwAgLasAIC6rACAvqwAgLjBAAC5wQAAusEAALvBAAC8wQAAvcEAAL7BAAC/wQAAsE0BALElAQCyIQEAsyEBALQlAQC1LQEAthEBALcRAQDCrACAxqwAgLONAgDKrACAtZ0CAM6sAIDSrACAto0CANasAIDarACAu+kCALqBAgC9/QIAvP0CAL/hAgC+6QIA3qwAgKbVAgClxQIAvggDAKPVAgCCLQAAgRkAAIB5AACvuQIArrECAK2lAgCspQIAq7ECAKrZAgDirACA6qwAgO80AgDurACAhxgDAIYs/ADyrACA9qwAgPqsAID+rACAAq0AgAatAIAKrQCADq0AgOMAAQASrQCA4eABABatAIC6tQMAu70DABqtAIAerQCAvnkDAL95AwC8pQMAvXkDACarAICztQMAIq0AgCatAIC2kQMAKq0AgC6tAIC1pQMAqEkCAKlJAgCqWQIAq1kCAKxJAgCtdQIArnECAK9tAgC+aP0AvqT/ADKtAIA2rQCAOq0AgD6tAIBCrQCARq0AgLj5AgC5+QIAukkBALtJAQC8XQEAvUEBAL5BAQC/fQEAsBUCALEdAgCyFQIAs8kCALTZAgC12QIAtskCALfJAgDjIAYA4bAGAOGAAQDjEAYAgA0AAIE1AACCPQAASq0AgE6tAIBSrQCAWq0AgF6tAIDvcAAAYq0AgGatAIDvTAEAhIz9AGqtAICjmQIAbq0AgKWJAgByrQCAdq0AgKa9AgCGwPwAh+T8AKuRAgCqmQIArVUCAKyJAgCvVQIArlUCAKh9/gCpgf4Aqpn+AKuZ/gCsif4ArYn+AK65/gCvuf4AVq0AgHqtAIB+rQCAgq0AgIatAICKrQCAjq0AgJKtAIC4tf4Aub3+ALph/wC7Yf8AvGH/AL1h/wC+Yf8Av2H/ALDJ/gCxyf4Ast3+ALPR/gC0uf4Atbn+ALaR/gC3kf4AsxH+AJatAICarQCAnq0AgKKtAIC2Cf4AtQH+AKatAIC7Df4Aug3+AKqtAICurQCAv33+AL59/gC9Bf4AvAn+ALKtAICjVf4Atq0AgLqtAICmTf4Avq0AgMKtAIClRf4Aqkn+AKtJ/gCEKAMAxq0AgK45/gCvOf4ArE3+AK1B/gCAzQEAgdEBAILRAQCzuf4Ayq0AgLXR/gC21f4Azq0AgIZgAQCHYAEAug0BALsFAQC8HQEAvQUBAL4NAQC/BQEA0q0AgNatAIDarQCA3q0AgOKtAIDhwP0A5q0AgOOM/ADqrQCA7q0AgPKtAIDvtPwA9q0AgPqtAID+rQCAAq4AgKgp/gCpKf4Aqj3+AKs1/gCsVf4ArVn+AK5N/gCvRf4ABq4AgAquAIAOrgCAEq4AgBauAIAargCAHq4AgCKuAIC4SQEAuUkBALpZAQC7UQEAvHkBAL15AQC+GQEAvxUBALDFAQCxzQEAssUBALPdAQC0xQEAtc0BALbFAQC3eQEAJq4AgCquAIAurgCAo7n9ADKuAICl0f0AptX9AITQAwBBrgCAvuACAKoNAgCrBQIArB0CAK0FAgCuDQIArwUCAIFJAACAQQAAowkDAIJdAAClGQMARa4AgEmuAICmEQMAhsAEAIfkAwCrDQMAqg0DAK0BAwCsHQMArwEDAK4JAwCw4QMAseEDALLhAwCz/QMAtOUDALXtAwC25QMAtz0DALgFAwC5DQMAugUDALsdAwC8BQMAvQ0DAL4FAwC/vQAATa4AgFGuAIBVrgCAWa4AgOasAIBdrgCAYa4AgGWuAICo8QMAqfkDAKqpAwCrqQMArLkDAK25AwCuqQMAr6UDALNBAgBprgCAba4AgHGuAIB1rgCAtlkCALVRAgB5rgCAu0UCALpFAgB9rgCAga4AgL9JAgC+QQIAvUkCALxVAgCFrgCAia4AgI2uAICRrgCA74wDAJWuAICZrgCAna4AgONsAwChrgCA4VAAAKWuAICprgCAvngFALGuAICEcAIAgOUAAIHpAACC+QAAta4AgIawBACHVAUAua4AgO9A/gC9rgCA4Vz+AMGuAIDjVAEAxa4AgMmuAIDNrgCA0a4AgLOZAQDVrgCA2a4AgN2uAIDhrgCAth0BALUdAQDlrgCAuz0BALo9AQDprgCA7a4AgL/hAAC++QAAvfEAALz5AACoIQYAqVEGAKpRBgCrzQYArNUGAK3dBgCu1QYAr8kGAK2uAIDxrgCA9a4AgPmuAID9rgCAAa8AgAWvAIAJrwCAuG0HALkFBwC6DQcAuwUHALwdBwC9AQcAvgEHAL8BBwCwuQYAsbkGALJtBwCzZQcAtH0HALVlBwC2ZQcAt1UHAKPZBgANrwCAEa8AgBWvAIAZrwCApl0GAKVdBgCEnAIAq30GAKp9BgC+JAMAHa8AgK+hBwCuuQcArbEHAKy5BwCASQAAgUkAAIJZAACzVQcAIa8AgLV9BwC2aQcAJa8AgIZAAACHVAMAulUHALspBwC8OQcAvTkHAL4pBwC/IQcAo5kGACmvAIAtrwCAMa8AgDWvAICmpQYApbEGADmvAICr5QYAqpkGAD2vAIBBrwCAr+0GAK7lBgCt9QYArPUGAOE4BQBFrwCA4yQEAEmvAIBNrwCAUa8AgFWvAIBZrwCAXa8AgGGvAIBlrwCAaa8AgG2vAIBxrwCA7/QEAHWvAICo+QYAqQkGAKoRBgCrLQYArDkGAK0lBgCuLQYAryUGAHmvAIB9rwCAga8AgIWvAICAGQAAgRkAAIIFAACJrwCAuOUBALntAQC65QEAu/0BALzlAQC97QEAvuUBAL9ZAQCwXQYAsSEGALIhBgCzIQYAtCEGALUpBgC2EQYAtxEGAKjRAgCp2QIAqg0DAKsFAwCsHQMArQUDAK4FAwCvNQMAvmQCAJGvAICVrwCAma8AgJ2vAIChrwCApa8AgKmvAIC4JQMAuS0DALolAwC7PQMAvCUDAL0pAwC++QMAv/kDALBNAwCxIQMAsiUDALM9AwC0JQMAtS0DALYlAwC3HQMAs4UDAITIAgCtrwCAhAgDALGvAIC2hQMAtZUDALWvAIC75QMAuokDAIYIDACHnAMAv+kDAL7hAwC96QMAvPEDAIXsCgA2rgCAo80DALmvAICl3QMAva8AgMGvAICmzQMAxa8AgMmvAICrrQMAqsEDAK2hAwCsuQMAr6EDAK6pAwDNrwCA0a8AgNWvAIDZrwCA78gDAN2vAIDhrwCA5a8AgOO0AwDprwCA4dABAO2vAICADQAAgXUAAIJ9AADxrwCA9a8AgPmvAICzZQEAvgQCALVlAQABsACABbAAgLZlAQCGQA0Ah1gNALv1AQC6/QEAvaUBALy5AQC/mQEAvqUBAAmwAIANsACAEbAAgIQADAAVsACAGbAAgB2wAIDvzAEAIbAAgOEsBgAlsACA4yABAOwAAAApsACALbAAgDGwAIA1sACAo+kBADmwAIA9sACApukBAEGwAIBFsACApekBAKpxAQCreQEASbAAgE2wAICuKQEArxUBAKw1AQCtKQEAqCUOAKktDgCqJQ4Aqz0OAKwlDgCtLQ4AriUOAK+VDgD9rwCAUbAAgFWwAIBZsACAXbAAgIKdAACBnQAAgJ0AALhFDwC5TQ8AukUPALtZDwC8SQ8AvUkPAL59DwC/cQ8AsPEOALH5DgCypQ4As7kOALSpDgC1lQ4Atp0OALd9DwCo1Q8Aqd0PAKoJDwCrCQ8ArBkPAK0FDwCuDQ8ArwUPAGGwAIBlsACAabAAgL6gAwBtsACAcbAAgId4AwCGEAAAuBUPALkdDwC6IQ8AuyEPALz1AAC9/QAAvvUAAL/tAACwQQ8AsU0PALJdDwCzVQ8AtE0PALU1DwC2MQ8AtzEPAHWwAIDvsAwAebAAgH2wAICBsACAhbAAgImwAICNsACAkbAAgJWwAICZsACAnbAAgKGwAIDjqA0ApbAAgOGMDQCzwQ4AqbAAgK2wAICxsACAtbAAgLbFDgC10Q4AubAAgLvJDgC6xQ4AvbAAgMGwAIC/sQ4AvskOAL3BDgC8yQ4AowEOAMWwAIDJsACAzbAAgNGwAICmBQ4ApREOANWwAICrCQ4AqgUOANmwAICErAIAr3EOAK4JDgCtAQ4ArAkOAIBRAACBWQAAgmEAALPFAAC+zAEAtcUAALbNAADhsACAhkAHAIcUAQC6yQAAu8kAALzZAAC92QAAvskAAL/FAACrDQMAqg0DAKkJAwCouQIArw0DAK4NAwCtDQMArA0DAL5gAwDlsACA6bAAgO2wAIDxsACA9bAAgPmwAIC+MAUAuykDALoZAwC5GQMAuAEDAL/dAwC+3QMAvd0DALwxAwCzTQMAsk0DALFNAwCwTQMAtzkDALYxAwC1QQMAtE0DAP2wAICmkQMApZkDAAGxAICjmQMABbEAgAmxAIANsQCAr5kDAK6VAwCthQMArIUDAKuVAwCqlQMAja8AgBGxAIAVsQCAGbEAgB2xAIAhsQCAJbEAgCmxAIAtsQCAMbEAgDWxAIA5sQCAPbEAgEGxAICAHQAAgQkAAIL9AQBFsQCAvwgHAEmxAIBRsQCA7yQAAFWxAICElAIAWbEAgF2xAICH4AIAhgQFAL4AGABhsQCAZbEAgOGQAQBpsQCA44AAAG2xAIBxsQCAdbEAgLNlAQB5sQCAtWUBALZtAQB9sQCAgbEAgIWxAIC65QEAu/kBALzpAQC96QEAvsUBAL+9AQCJsQCAjbEAgJGxAIC+xBkAlbEAgJmxAICdsQCA78gBAKGxAIDh3A4ApbEAgOMwDgCpsQCArbEAgLGxAICEMAQAgHkAAIEVAACCFQAAo+UBALWxAICl5QEApu0BALmxAICGQAYAh5AHAKplAQCreQEArGkBAK1pAQCuRQEArz0BAKjdBQCpIQYAqiEGAKshBgCsIQYArSEGAK4hBgCvnQYATbEAgL2xAIDBsQCAhDABAMWxAIDJsQCAzbEAgNGxAIC4jQYAuZUGALqdBgC7lQYAvI0GAL21BgC+vQYAv7UGALDtBgCx8QYAsvEGALPxBgC0zQYAtbUGALa9BgC3tQYAqIkHAKmVBwCqkQcAq5EHAKy9BwCtpQcArqEHAK/dBwDVsQCA2bEAgN2xAIDhsQCA5bEAgOmxAIDtsQCA8bEAgLhJBwC5VQcAul0HALtVBwC8cQcAvX0HAL5pBwC/aQcAsKUHALGtBwCyuQcAs7EHALSRBwC1kQcAtnkHALd5BwD1sQCA+bEAgP2xAIABsgCA78gFAOHACQAFsgCA48AZAOMkBAAJsgCA4dAGAO/cKACinQMAoxUBAKAZBQChjQUAs1kGAA2yAIARsgCAFbIAgBmyAIC2ZQYAtXUGAB2yAIC7KQYAuiEGACGyAIAlsgCAvxUGAL4VBgC9JQYAvC0GAKOZBgCPmfwAKbIAgDGyAIA1sgCApqUGAKW1BgA5sgCAq+kGAKrhBgCGKB8Ah5wAAK/VBgCu1QYAreUGAKztBgCebQkAn30HAJwNCwCd7QkAmvENAJs5DQCY5fAAmQ0PAJbh8QCX6fEAlMX1AJUN8wCSHfcAk/H1AJD9+QCR7fkAgh3/AIMB+gA9sgCAQbIAgIYV9gCHOfYAhAn6AIXx9ACKwfAAiyXyAEWyAIBJsgCAjuEMAI8VDgCMNfIAjQHzAJKtDgCTgQgATbIAgFGyAICW6QQAl3UGAJR5CgCV8QoAmtEGAJvJAABVsgCAWbIAgIEdAwCAHQMAnFkCAIL1AwCrARAAqpUWAKmNFgCojRYAr5UuAK4BLACt/RIArJkSAKOlHgCipR4AoY0CAN2wAICnGRoAppUaAKUBGACknR8AXbIAgGGyAIBlsgCAabIAgG2yAIBxsgCAdbIAgHmyAICz5SoAsuUqALGtLwCw5S4AfbIAgIGyAIC1ASQAtBEqAKgpAwCpNQMAqj0DAKs1AwCsLQMArbUDAK69AwCvtQMAhbIAgImyAICNsgCAkbIAgIAdAACBCQAAgrkAAJWyAIC4TQIAuV0CALptAgC7CQIAvBkCAL0ZAgC+CQIAvwECALDNAwCx1QMAst0DALPVAwC0zQMAtXUCALZ9AgC3dQIAmbIAgITIHQChsgCAvgwfAKWyAICpsgCA70gGAO9YBwDhWAYA4ZgGAOOUAQDjAAYAhhAcAId8HQC+9B4ArbIAgLGyAIC2ZQMAtfUDALWyAICz5QMAubIAgL2yAIDBsgCAv+ECAL5ZAwC9UQMAvFkDALtBAwC6WQMAxbIAgMmyAIAtsgCAnbIAgM2yAIDRsgCA1bIAgNmyAIDdsgCA4bIAgKitHQCptR0AqrUdAKslHgCsPR4ArR0eAK4VHgCvdR4AsA0eALEtHgCyJR4As40eALSVHgC1nR4AtpUeALeNHgC4tR4Aub0eALq1HgC7nR4AvIUeAL1VHwC+XR8Av1UfALMdHQDlsgCA6bIAgO2yAIDxsgCAtr0eALWVHgD1sgCAu8keALrpHgD5sgCA/bIAgL95HgC+cR4AvXkeALzRHgCCKQAAo1kdAIAdAACBFQAApvkeAAGzAIAFswCApdEeAKqtHgCrjR4ACbMAgITgAwCuNR4Arz0eAKyVHgCtPR4AqIkeAKmVHgCqnR4Aq7EeAKzRHgCt2R4Ars0eAK/FHgANswCAEbMAgIaIAACHbAEAFbMAgBmzAIAdswCAIbMAgLhdAQC5wQEAusEBALvBAQC8wQEAvckBAL7xAQC/8QEAsL0eALGdHgCylR4As2UBALR9AQC1ZQEAtm0BALdlAQCqLR0AqzUdACWzAIApswCAri0dAK+VHACsLR0ArSUdAISMAQCjkR0ALbMAgDGzAICmER0ANbMAgDmzAIClgR0As1UeAD2zAIBBswCARbMAgEmzAIC2GR4AtRkeAE2zAIC7GR4AujkeAFGzAIBVswCAv+EBAL75AQC98QEAvAEeAFmzAIBdswCAYbMAgKOZHQBlswCApdUdAKbVHQBpswCAbbMAgHGzAICq9R0Aq9UdAKzNHQCtPQIArjUCAK8tAgCAZQAAgRUAAIIdAACEAAQAdbMAgHmzAICHcAMAhvwEAIGzAICFswCAibMAgI2zAICRswCAlbMAgJmzAICdswCAvsgEAKGzAIClswCAqbMAgK2zAICxswCAtbMAgO/cHwC5swCA4ZQBAL2zAIDjHAEAwbMAgMWzAIDJswCAzbMAgLt1AwC6aQMAvkgGANGzAIC/HQMAvh0DAL0dAwC8ZQMAs9UDANWzAIDZswCA3bMAgOGzAIC2fQMAtcUDAIRwBQCoJQIAqTUCAKo9AgCrNQIArC0CAK2dAgCulQIAr7UCAIIVAADlswCAgNkBAIEJAADEAAAA6bMAgPGzAID1swCAuKkCALmpAgC6SQEAu0kBALxZAQC9RQEAvkUBAL99AQCwzQIAsdECALLRAgCzqQIAtLkCALW5AgC2qQIAt6ECAOEoHgDhNBwA43QBAOMYHgD5swCA/bMAgIa4BACHVAUAhDgHAAG0AIAFtACACbQAgL6sBwANtACA78weAO/IGgCj9QIAEbQAgBW0AIAZtACAHbQAgKZdAgCl5QIAIbQAgKtVAgCqSQIAJbQAgCm0AICvPQIArj0CAK09AgCsRQIAqGEGAKlhBgCqYQYAq2EGAKxhBgCtYQYArmEGAK9hBgDtswCALbQAgDG0AIA1tACAObQAgD20AIBBtACARbQAgLjxBgC58QYAuvEGALvxBgC8nQYAvbEGAL6xBgC/sQYAsOUGALHtBgCy5QYAs/0GALTlBgC17QYAttkGALfVBgCz6QYASbQAgE20AIBRtACAVbQAgLbhBgC16QYAWbQAgLspBgC6IQYAXbQAgGG0AIC/KQYAviEGAL0pBgC8MQYAgl0AAKOtBgCARQAAgV0AAKalBgBltACAabQAgKWtBgCqZQYAq20GAIYADACHQAMArmUGAK9tBgCsdQYArW0GAG20AIDvfAUAcbQAgHW0AIB5tACAfbQAgIG0AICFtACAibQAgI20AICRtACAlbQAgJm0AIDjaAUAnbQAgOF4BQCz0QYAobQAgKW0AICptACArbQAgLb9BgC1/QYAsbQAgLupBgC6oQYAtbQAgLm0AIC/mQYAvqkGAL2pBgC8sQYAqLkGAKm5BgCqGQYAqxkGAKw1BgCtPQYArjUGAK8pBgC9tACAgh0AAIEdAACAHQAAwbQAgMW0AIDJtACA0bQAgLjpAQC56QEAuvkBALv5AQC86QEAvekBAL5dAQC/VQEAsCUGALEtBgCyJQYAsz0GALQtBgC1HQYAthUGALfZAQCGgAwAh+QCANW0AICjnQUA2bQAgKWxBQCmsQUA3bQAgOG0AIDltACAqu0FAKvlBQCs/QUAreUFAK7lBQCv1QUAtk0DAOm0AICExAMAtUUDAO20AICzjQIA8bQAgPW0AIC+SQMAv0kDALxJAwC9SQMAumkDALtpAwD5tACA/bQAgAG1AICmiQMApYEDAAW1AICjSQIACbUAgA21AIARtQCAr40DAK6NAwCtjQMArI0DAKutAwCqrQMAfbMAgBW1AIAZtQCAHbUAgIW0PQAhtQCAJbUAgCm1AIAttQCAMbUAgIA9AACBCQAAgh0AADW1AIC+sAMAObUAgIc4AwCG3AwAQbUAgEW1AIBJtQCATbUAgFG1AIDvXAYAVbUAgFm1AIC+6AwA45QGAF21AIDh3AEAYbUAgGW1AIBptQCAbbUAgLNRAQBxtQCAdbUAgHm1AIB9tQCAtnEBALV5AQCBtQCAuz0BALo9AQCFtQCAibUAgL/9AQC+9QEAvQUBALwFAQCNtQCAkbUAgJW1AICEQAwAmbUAgJ21AIChtQCA76wHAKW1AIDhJAYAqbUAgONABwCGkAwAh/wMALG1AIC1tQCAgFkAAIFlAACCYQAAo90BALm1AICl9QEApv0BAL21AIDBtQCAxbUAgKqxAQCrsQEArIkBAK2JAQCueQEAr3EBAM20AIA9tQCAybUAgM21AICttQCA0bUAgNW1AIDZtQCAqJ0NAKktDgCqOQ4AqzEOAKwRDgCtEQ4Arn0OAK9tDgCwGQ4AsRkOALIxDgCzMQ4AtNEOALXZDgC2zQ4At8UOALj9DgC52Q4AuqkOALupDgC8vQ4AvaUOAL6tDgC/pQ4AqIEPAKmBDwCqgQ8Aq4EPAKyBDwCtjQ8AroUPAK+1DwDdtQCA4bUAgOW1AIDptQCA7bUAgPG1AID1tQCA+bUAgLidDwC5rQ8AuqUPALtNDwC8VQ8AvV0PAL5JDwC/SQ8AsNEPALHRDwCy0Q8As9EPALS1DwC1vQ8AtrUPALetDwCzCQ4A/bUAgAG2AIAFtgCACbYAgLYNDgC1CQ4ADbYAgLsVDgC6FQ4AEbYAgBW2AIC/eQ4AvnEOAL0FDgC8BQ4AghUAAKNNDgCAYQAAgWEAAKZJDgAZtgCAvhABAKVNDgCqUQ4Aq1EOAIQkAQAhtgCArjUOAK89DgCsQQ4ArUEOAKg5DgCpOQ4AqlkOAKtRDgCscQ4ArXEOAK6RAQCvkQEAhgAAAIeEAAAltgCAKbYAgC22AIAxtgCANbYAgDm2AIC4dQEAuX0BALp1AQC7yQAAvNkAAL3ZAAC+yQAAv8EAALD1AQCx/QEAsvUBALNNAQC0VQEAtV0BALZVAQC3TQEAuk0PALtVDwC4TQ8AuUUPAL59DwC/tQ8AvEUPAL11DwCyAQ8AswEPALAxDwCxMQ8AtgEPALcNDwC0EQ8AtREPAKqZDgCrRQ8AqOUOAKmZDgCuQQ8Ar0EPAKxRDwCtUQ8APbYAgEG2AIBFtgCASbYAgE22AIBRtgCAVbYAgFm2AICzUQ0AXbYAgGG2AIBltgCAabYAgLZxDQC1eQ0AbbYAgLu5AgC6sQIAcbYAgHW2AIC/GQIAvhECAL0ZAgC8oQIAebYAgKMVDQB9tgCAgbYAgKY1DQCFtgCAibYAgKU9DQCq9QIAq/0CAIToAwCRtgCArlUCAK9dAgCs5QIArV0CAKhtAgCprQIAqqUCAKu9AgCspQIAra0CAK6lAgCvfQEAgO0BAIHxAQCC8QEAvqAFAJW2AICZtgCAh2gFAIYcBQC4yQEAuckBALrZAQC70QEAvPkBAL35AQC+mQEAv5UBALAFAQCxDQEAsgUBALMdAQC0BQEAtQ0BALYFAQC3+QEA4WQPAOGcDwDjFA4A49QPAJ22AIDhPA4AobYAgOPkAAC+rAQApbYAgKm2AIDvDAAArbYAgLG2AIDvYA4A77QPALW2AIC5tgCAhEQEALNhAgC9tgCAtWECALZhAgDBtgCAxbYAgMm2AIC6jQEAu4UBALydAQC9hQEAvo0BAL+FAQCjrQUAjbYAgM22AIDRtgCA1bYAgKatBQClrQUA2bYAgKtJBgCqQQYA3bYAgOG2AICvSQYArkEGAK1JBgCsUQYA5bYAgOm2AIDttgCA8bYAgIAdAACBCQAAgjkAAPW2AID5tgCA/bYAgIbIAACHIAMAAbcAgAW3AIAJtwCADbcAgKhtBgCptQcAqr0HAKsdBwCsCQcArTEHAK4xBwCvLQcAhKgDABG3AIAVtwCAGbcAgB23AIAhtwCAJbcAgCm3AIC4zQAAudUAALrVAAC75QAAvP0AAL2VAAC+nQAAv5UAALBVBwCxJQcAsi0HALM9BwC0LQcAtRUHALYdBwC39QAALbcAgOG8BgAxtwCA4/QFADW3AIA5twCAPbcAgEG3AIBFtwCASbcAgE23AIBRtwCAVbcAgFm3AIBdtwCA7+gEALN1BgCCLQAAgRUAAIAdAABhtwCAtvEGALXBBgBltwCAu6EGALrRBgBptwCAvmwBAL+RBgC+qQYAvakGALy5BgCjtQYAcbcAgIYoAACHTAEAdbcAgKYxBgClAQYAebcAgKthBgCqEQYAfbcAgIG3AICvUQYArmkGAK1pBgCseQYAhbcAgLO9AQCJtwCAjbcAgLZ5AQCRtwCAlbcAgLV5AQC6VQEAu10BAJm3AICdtwCAvvkAAL/lAAC8RQEAvf0AAKhxAgCpcQIAqnECAKtxAgCstQIArb0CAK61AgCvrQIAhOw8AKG3AICltwCAqbcAgK23AICxtwCAtbcAgLm3AIC4XQMAuWUDALptAwC7ZQMAvH0DAL1lAwC+bQMAv2UDALDVAgCx3QIAstUCALNtAwC0eQMAtWUDALZtAwC3ZQMAHbYAgL23AIDBtwCAo/UCAMW3AIClMQIApjECAMm3AIDNtwCA0bcAgKodAgCrFQIArA0CAK21AwCusQMAr60DAIBlAACBCQAAghkAANW3AIDZtwCA4bcAgL4QPADltwCAhsA8AIcgAwDptwCA7bcAgPG3AID1twCA+bcAgP23AICohQIAqZUCAKqVAgCrpQIArL0CAK3VAgCu0QIAr9ECAAG4AIAFuACACbgAgA24AIARuACAFbgAgBm4AIAduACAuHUBALl9AQC6dQEAu8kBALzZAQC9xQEAvsUBAL/9AQCwtQIAsb0CALKBAgCzgQIAtFUBALVdAQC2VQEAt00BAOGkBgAhuACA41AGAL6APACEHDwAvoA/ACW4AIApuACALbgAgDG4AIA1uACAObgAgD24AIBBuACA7+AGAEW4AICBfQAAgHEAAEm4AICCBQAAUbgAgFW4AIDvTAAAWbgAgOGQAQBduACA41gBAGG4AIBluACAabgAgIZYPwCH/DwAs509AN23AIBNuACAbbgAgHG4AIC21T0AtbU9AHW4AIC7+T0AuvE9AHm4AIB9uACAvxk+AL4RPgC91T0AvNU9AIG4AICj2T0AhbgAgIm4AICmkT0AjbgAgJG4AICl8T0AqrU9AKu9PQCVuACAmbgAgK5VPgCvXT4ArJE9AK2RPQCoVT4AqVk+AKphPgCrYT4ArGE+AK1hPgCuYT4Ar2E+AISoAwCduACAobgAgKW4AICpuACArbgAgLG4AIC1uACAuEU/ALldPwC6VT8Au20/ALx1PwC9fT8AvnU/AL9tPwCwwT8AscE/ALLBPwCzwT8AtME/ALXBPwC2wT8At8E/AIC5AQCBuQEAggUAALm4AIDhgD4AwbgAgOMoPQDFuACAhoAAAIcEAQDvCD0AybgAgM24AIDRuACA1bgAgNm4AICzqT8AvbgAgN24AIDhuACA5bgAgLahPwC1qT8A6bgAgLtFPgC6RT4A7bgAgPG4AIC/RT4AvkU+AL1VPgC8VT4Ao2k/APW4AID5uACA/bgAgAG5AICmYT8ApWk/AAW5AICrhT4AqoU+AAm5AIANuQCAr4U+AK6FPgCtlT4ArJU+ABG5AICzGT4AFbkAgBm5AIC2IT4AHbkAgCG5AIC1MT4AuvEBALv5AQAluQCAKbkAgL6xAQC/vQEAvNEBAL3RAQCo0T0AqdE9AKrVPQCr6T0ArP09AK3lPQCu7T0ArxECAID5AwCBzQMAgsUDAIQkAwC+AAQAMbkAgIesAwCGvAQAuBkCALktAgC6JQIAu+kCALz5AgC9+QIAvukCAL/pAgCwcQIAsXkCALJBAgCzQQIAtDECALU9AgC2NQIAtykCAKVtPQA1uQCAObkAgKZ9PQA9uQCAbbcAgKNFPQBBuQCArY0CAKyNAgCv4QIAru0CAKwAAABFuQCAq6UCAKqtAgDh+AEASbkAgOP0AgCEwAQATbkAgFG5AIBVuQCAWbkAgF25AIBhuQCAZbkAgGm5AIBtuQCAcbkAgO8wAgB1uQCAqBUCAKkZAgCqJQIAqz0CAKwlAgCtLQIAriUCAK9VAgB5uQCAfbkAgIG5AICFuQCAibkAgI25AICEsAQAkbkAgLjRAgC52QIAuuECALvhAgC8kQIAvZ0CAL6VAgC/iQIAsC0CALE1AgCyNQIAswUCALQdAgC18QIAtvECALfxAgDheD8A4zQBAOMIPgDhbD4AgQkAAICpAACVuQCAgj0AAJm5AIChuQCApbkAgL4gBACpuQCA79g+AO/MPgCtuQCAsbkAgLPpAgCG6AQAh8AEALbpAgC1uQCAubkAgLXpAgC6rQIAu7UCAL25AIDBuQCAvp0CAL9xAgC8pQIAvZUCAC25AICduQCAxbkAgMm5AIDNuQCA0bkAgNW5AIDZuQCAqBUGAKmhBgCqoQYAq70GAKytBgCtgQYArv0GAK/tBgCwlQYAsZ0GALKVBgCzrQYAtLUGALW9BgC2tQYAt60GALiVBgC5mQYAukkHALtJBwC8WQcAvVkHAL5JBwC/SQcArN0FAK3tBQCu5QUArwkFAN25AIDhuQCAqtUFAKvNBQDluQCApZEFAKaRBQDpuQCA7bkAgPG5AID1uQCAo5EFALNJBgD5uQCA/bkAgAG6AIAFugCAtmEGALVFBgAJugCAuzkGALoxBgC+ZAAADboAgL8ZBgC+EQYAvRkGALwhBgCjiQcAgtkBAIHZAQCAwQEAEboAgKahBwClhQcAFboAgKv5BwCq8QcAhggBAId8AQCv2QcArtEHAK3ZBwCs4QcAGboAgLP1BgAdugCAIboAgLaFBgAlugCAKboAgLWdBgC6jQYAu20BAC26AIAxugCAvmUBAL9tAQC8dQEAvW0BAKglBgCpLQYAqjkGAKsxBgCsUQYArUEGAK5BBgCvdQYANboAgDm6AIA9ugCAQboAgEW6AIBJugCATboAgFG6AIC4VQEAuWUBALplAQC7fQEAvGUBAL1tAQC+HQEAvxUBALANBgCx7QEAsuUBALP9AQC05QEAte0BALblAQC3bQEAo7EFAFW6AIBZugCAvkgDAL5YDACmwQUApdkFAF26AICrKQIAqskFAGG6AIBlugCArykCAK4hAgCtKQIArDECAGm6AIBtugCAcboAgHW6AICAGQAAgRkAAIIFAAB5ugCAhKwDAIG6AICHGAMAhswMAIW6AICJugCAjboAgJG6AICokQMAqZkDAKrJAwCrxQMArN0DAK3BAwCuwQMAr/UDAJW6AICZugCAnboAgKG6AIClugCAqboAgK26AICxugCAuH0DALnBAAC6wQAAu9EAALz5AAC9+QAAvpkAAL+ZAACwjQMAsUUDALJNAwCzRQMAtF0DALVFAwC2TQMAt0UDALNBAgC1ugCAuboAgL8EDwC9ugCAtkECALVVAgDBugCAu4ECALpJAgDFugCAyboAgL+BAgC+mQIAvZECALyZAgDNugCA0boAgNW6AIDZugCA76QDAN26AIDhugCA5boAgOMQAwDpugCA4VgAAIQgDQCAKQAAgSkAAIIdAADxugCA4VAGAOGgBwDjoAYA41AHAIWUDAD1ugCA70gbAPm6AIDhJAIA/boAgONwGgABuwCABbsAgAm7AIDvqAEA7+gGAIagDwCHDA0Ao4kCAA27AIClnQIAEbsAgBW7AICmiQIAGbsAgB27AICrSQIAqoECAK1ZAgCsUQIAr0kCAK5RAgCoZQ4AqXUOAKp9DgCrdQ4ArG0OAK21DgCuvQ4Ar7UOAO26AIAhuwCAJbsAgCm7AIAtuwCAOLsAgDy7AIBAuwCAuF0PALltDwC6ZQ8Auw0PALwVDwC9HQ8AvhUPAL8JDwCwzQ4AsdUOALLdDgCz1Q4AtM0OALVxDwC2cQ8At20PALP1DgBEuwCASLsAgEy7AIBQuwCAtjUOALXlDgBUuwCAuxEOALoJDgBYuwCAXLsAgL+1DwC+CQ4AvQEOALwJDgCCFQAAo7EOAIBhAACBYQAApnEOAGC7AIC+EAEApaEOAKpNDgCrVQ4AaLsAgIQgAQCuTQ4Ar/EPAKxNDgCtRQ4An0UIAJ4NCQCdDQkAnJkLAJt1NQCaETUAmZk3AJgNMQCXJTEAliUxAJWBPQCUDT0Ak4k/AJIVOACRPTkAkD05AI9lJQDvrA0AhgAEAIegAQBsuwCAcLsAgHS7AIDv6AEAeLsAgOE0AgB8uwCA4zQBAIC7AIDjCAwAhLsAgOEIDQChoQEAiLsAgKMJBQCibQMApc0EAKQRBQCnHRkAph0ZAKmhHQCoORkAq+kcAKqpHQCtkREArAEQAK8BFACuUREAsfkVALDlFQCz6WkAsgFoALUBbAC0eWkAjLsAgJC7AICUuwCAmLsAgJy7AICguwCAowkDAKIZDQCh/Q0AoP0NAIIlJgCDBToApLsAgKi7AICGqTwAhzU+AIQdOgCFPTsAiok+AIslMgCsuwCAsLsAgI6xNACPMTYAjD0yAI0tMgCSJTYAk9EIAIREAwC+wAQAlhULAJdVDgCUXQoAlVUKAJplDgCbiQ4AtLsAgLi7AIC8uwCAwLsAgJyBAADEuwCAuLUCALm9AgC6tQIAuwkCALwZAgC9GQIAvgkCAL8BAgCwdQ0AsX0NALJJDQCzSQ0AtJUCALWdAgC2lQIAt40CAKi9DQCpUQ0AqlUNAKtpDQCsfQ0ArWUNAK5tDQCvEQ0AZLsAgILtAQCBHQAAgB0AAMi7AIDMuwCAfboAgL5wBQCznQwAhIwFANC7AIDYuwCA3LsAgLalDAC1tQwA4LsAgLv5DAC68QwAhigFAIcgBQC/GQMAvhEDAL3dDAC83QwA5LsAgKPZDADouwCA7LsAgKbhDADwuwCA9LsAgKXxDACqtQwAq70MAPi7AID8uwCArlUDAK9dAwCsmQwArZkMAAC8AIAEvACACLwAgAy8AIAQvACAFLwAgBi8AIDvvAEAHLwAgOF8DgAgvACA41ABACS8AIAovACALLwAgDC8AICzlQIANLwAgDi8AIA8vACAQLwAgLa9AgC1uQIASLwAgLs5AgC6YQIAhsgEAIesBAC/GQIAvhECAL0ZAgC8IQIAo1UFAILVBwCBxQcAgMUHAEy8AICmfQUApXkFAFC8AICr+QUAqqEFAFS8AIBYvACAr9kFAK7RBQCt2QUArOEFAFy8AICzWQcAYLwAgGS8AIC2HQcAaLwAgGy8AIC1FQcAugkHALsJBwBwvACAdLwAgL75BwC/+QcAvPkHAL35BwDUuwCARLwAgHi8AIB8vACAgLwAgIS8AICIvACAjLwAgKitBwCptQcAqrUHAKvtBwCs+QcArfkHAK7tBwCv5QcAsKkHALGpBwCySQcAs0kHALRZBwC1WQcAtkkHALdJBwC4eQcAuUUHALpBBwC7XQcAvEUHAL1NBwC+RQcAvzkHAKMdBgCQvACAlLwAgJi8AICcvACAplkGAKVRBgCgvACAq00GAKpNBgCkvACAqLwAgK+9BgCuvQYArb0GAKy9BgCAbQAAgQkAAIIZAACsvACAsLwAgISYAQC+kAEAtLwAgIYAHACHxAEAuLwAgLy8AIDAvACAxLwAgMi8AIDMvACAqF0GAKmVAQCqlQEAq6UBAKy9AQCt1QEArtEBAK/RAQDQvACA1LwAgNi8AIDcvACA4LwAgOS8AIDovACA7LwAgLhZAQC5WQEAus0AALvFAAC83QAAvcUAAL7FAAC/9QAAsLUBALG9AQCygQEAs4EBALR5AQC1eQEAtmkBALdpAQCzHQIA8LwAgPS8AIC+gBwA+LwAgLZVAgC1NQIA/LwAgLt5AgC6cQIAAL0AgAS9AIC/vQIAvr0CAL1VAgC8VQIACL0AgKNZAgAMvQCAEL0AgKYRAgAUvQCAGL0AgKVxAgCqNQIAqz0CABy9AIAgvQCArvkCAK/5AgCsEQIArRECACi9AIAsvQCAvgQdAL4AHgAwvQCANL0AgDi9AIA8vQCAgPkAAIHNAACCxQAAhCADAIawHACHlAMAQL0AgES9AIBIvQCATL0AgFC9AIBUvQCA42wCAFi9AIDhoAEAXL0AgO8UAgBgvQCAZL0AgGi9AIBsvQCAcL0AgHS9AIB4vQCA4fAGAOE0BgDjTAAA4xgGAHy9AICAvQCAhL0AgIi9AICAPQAAgQkAAIIZAACMvQCAkL0AgIS8HQDvmAAA7zgHALMxAgDRAAAAh9gdAIZsHACYvQCAtikCALUhAgCcvQCAu80CALrNAgCgvQCApL0AgL/NAgC+zQIAvc0CALzNAgCyXQYAs2UGALANBgCxVQYAtn0GALedBQC0fQYAtXUGALqNBQC7zQUAuKUFALmFBQC+xQUAv8kFALzVBQC9zQUAqL0AgKy9AICwvQCAtL0AgLi9AIC8vQCAwL0AgMS9AICqtQYAq70GAKgBBwCpvQYAroEGAK+NBgCsmQYArZUGAKNxHQDIvQCAzL0AgNC9AIDUvQCApmkdAKVhHQDYvQCAq40dAKqNHQDcvQCA4L0AgK+NHQCujR0ArY0dAKyNHQDkvQCAs9UeAOi9AIDsvQCAts0eAPC9AID0vQCAtcUeALqhHgC7oR4A+L0AgPy9AIC+pR4Av6keALyxHgC9sR4AJL0AgJS9AIAAvgCAhAQDAID5AACB+QAAghEAAAS+AICoIR4AqSEeAKo5HgCrOR4ArCkeAK0pHgCuAR4ArwEeALABHgCxAR4AsgEeALMBHgC0BR4AtQkeALY9HgC3NR4AuA0eALkVHgC6HR4AuxUeALwNHgC95R8Avu0fAL/lHwCjkR8ACL4AgIYoAQCHSAEADL4AgKaJHwClgR8AEL4AgKvlHwCq5R8AFL4AgBi+AICv7R8AruEfAK31HwCs9R8AHL4AgLMtHgAgvgCAJL4AgLaVHgAovgCALL4AgLWdHgC6sR4Au7EeADC+AIA0vgCAvnUBAL99AQC8oR4AvaEeAKjRHgCp2R4AquEeAKvhHgCsUR4ArVEeAK5RHgCvUR4AOL4AgDy+AIBAvgCARL4AgEi+AIBMvgCAUL4AgFS+AIC43QEAue0BALrlAQC7jQEAvJkBAL2ZAQC+jQEAv4UBALAxHgCxMR4AsjEeALMxHgC09QEAtf0BALb1AQC37QEAo2kdAFi+AIBcvgCAYL4AgGS+AICm0R0ApdkdAGi+AICr9R0AqvUdAGy+AIBwvgCArzkCAK4xAgCt5R0ArOUdAIFpAACAWQAAvgAEAIJhAAB4vgCAfL4AgIC+AICEvgCAhOwDAIi+AICHiAMAhuwEAIy+AICQvgCAlL4AgJi+AICohQMAqZUDAKqVAwCrpQMArL0DAK3VAwCu0QMAr9EDAJy+AICgvgCApL4AgKi+AICsvgCAsL4AgLS+AIC4vgCAuHEDALlxAwC6cQMAu3EDALzVAAC93QAAvtUAAL/NAACwtQMAsb0DALKBAwCzgQMAtFEDALVRAwC2UQMAt1EDAOFUHgDhrB8A45QBAOMoHgDjYAMAvL4AgOEIAADAvgCA75ADAMS+AIDIvgCAzL4AgNC+AIDUvgCA70wfAO9MHwCzXQIA2L4AgNy+AIDgvgCA6L4AgLYVAgC1dQIA7L4AgLs5AgC6MQIAhCQFAL7gBAC/1QIAvtUCAL0VAgC8FQIAuJEdALmZHQC6oR0Au6EdALzRHQC93R0AvtUdAL/JHQCwCR4AsQkeALIZHgCzGR4AtAkeALUJHgC2vR0At7UdAKipHgCpqR4AqrkeAKu5HgCsqR4ArakeAK55HgCveR4AgKUAAIGtAACCpQAA8L4AgIbQBACH+AQA9L4AgPi+AIB0vgCA5L4AgPy+AIAAvwCABL8AgAi/AIAMvwCAEL8AgKhxBgCpcQYAqnEGAKtxBgCsVQYArUUGAK5NBgCvRQYAsD0GALHlBgCy7QYAs+UGALT9BgC15QYAtu0GALflBgC43QYAuXEHALp1BwC7SQcAvFkHAL1ZBwC+SQcAv0kHALPZBgAUvwCAGL8AgBy/AIAgvwCAtuUGALX9BgAkvwCAuwEGALrZBgAovwCALL8AgL8BBgC+GQYAvREGALwZBgAwvwCAo9kFADS/AIA4vwCAppEFADy/AIBAvwCApfEFAKq1BQCrvQUARL8AgEi/AICuUQUAr1EFAKyRBQCtkQUAo1kHAIIZAACBGQAAgOEBAEy/AICmZQcApX0HAFC/AICrgQcAqlkHAISgAgC+rAEAr4EHAK6ZBwCtkQcArJkHAFS/AICzqQYAhugAAIcsAQC2WQEAWL8AgFy/AIC1oQYAunUBALt9AQBgvwCAZL8AgL75AQC/+QEAvGUBAL35AQCo0QYAqdkGAKplBgCrdQYArG0GAK2dAQCulQEAr40BAITsAQBovwCAbL8AgHC/AIB0vwCAeL8AgHy/AICAvwCAuGkBALlpAQC6CQEAuwUBALwdAQC9AQEAvgEBAL81AQCw9QEAsf0BALL1AQCzaQEAtHkBALV5AQC2aQEAt2EBAIS/AICIvwCAjL8AgKPhBQCQvwCApekFAKYRAgCUvwCAmL8AgJy/AICqPQIAqzUCAKwtAgCtsQIArrECAK+xAgCgvwCApL8AgL4EAwCEAAwAqL8AgKy/AICwvwCAtL8AgIANAACBFQAAgh0AALi/AIC8vwCAwL8AgIdEAwCG3AwAs+kDAMi/AIDMvwCA0L8AgNS/AIC2PQMAtT0DANi/AIC7GQMAuhEDANy/AIDgvwCAv7kAAL6xAAC9uQAAvAEDAOS/AIDhlAEA6L8AgON8AQDsvwCA8L8AgPS/AID4vwCA/L8AgADAAIAEwACACMAAgAzAAIAQwACAFMAAgO9MAgCoVQIAqV0CAKphAgCrYQIArLUCAK29AgCutQIAr60CAL5oDQAYwACAHMAAgCDAAIAkwACAgq0AAIGtAACArQAAuGEBALlhAQC6CQEAuwkBALwBAQC9AQEAvgEBAL8BAQCw1QIAsd0CALLVAgCzbQEAtHUBALV9AQC2aQEAt2EBAOFoBgDh8AcA47AAAOP0BgAowACALMAAgDDAAIA4wACAPMAAgEDAAIBEwACASMAAgL78DABMwACA72wAAO8oBgCjqQIAUMAAgIZoDACHBA0AVMAAgKZ9AgClfQIAWMAAgKtZAgCqUQIAXMAAgGDAAICv+QEArvEBAK35AQCsQQIAqIUOAKmNDgCqhQ4Aq50OAKyNDgCtvQ4ArrUOAK/dDgA0wACAZMAAgGjAAIBswACAcMAAgHTAAIB4wACAfMAAgLitDgC5tQ4Aur0OALu1DgC8dQ8AvX0PAL51DwC/bQ8AsKkOALG1DgCyvQ4As7UOALStDgC1lQ4Atp0OALeVDgCzDQ4AgMAAgITAAICIwACAjMAAgLY9DgC1BQ4AkMAAgLtxDgC6bQ4AlMAAgJjAAIC/UQ4AvmkOAL1hDgC8aQ4AghkAAKNJDgCAZQAAgRkAAKZ5DgCcwACAoMAAgKVBDgCqKQ4AqzUOAIS8AwCkwACAri0OAK8VDgCsLQ4ArSUOAKidDgCppQ4Aqq0OAKulDgCsvQ4AraEOAK7dDgCvzQ4AhiABAIdkAQCowACArMAAgLDAAIC0wACAuMAAgLzAAIC4eQEAuXkBALrNAQC7xQEAvN0BAL3FAQC+xQEAv/UBALC9DgCxjQ4AsoUOALNJAQC0WQEAtVkBALZJAQC3SQEAtS0OAMDAAIDEwACAtjkOAMjAAIDMwACAsz0OANDAAIC9hQEAvEkOAL+FAQC+hQEA1MAAgMS/AIC7UQ4AumEOAKNlDgDYwACA3MAAgODAAIDkwACApmEOAKV1DgDowACAqwkOAKo5DgDswACA8MAAgK/dAQCu3QEArd0BAKwRDgD0wACA+MAAgO/QDwD8wACAAMEAgATBAIAIwQCADMEAgBDBAIC+aAMAGMEAgBzBAIDhVA4AIMEAgONkDgAkwQCAgFkAAIFZAACCaQAAhIwDAIbwBACHFAMAKMEAgCzBAIAwwQCANMEAgDjBAIA8wQCAQMEAgETBAIBIwQCATMEAgFDBAIBUwQCAWMEAgFzBAIBgwQCAZMEAgGjBAIBswQCAqIkDAKmJAwCqmQMAq5kDAKyJAwCtiQMArj0DAK81AwCwUQMAsVEDALJVAwCzfQMAtBUDALUdAwC2FQMAtw0DALg9AwC5DQMAugUDALvtAAC89QAAvfkAAL7pAAC/6QAAcMEAgHTBAIB4wQCAsz0CAHzBAIC1LQIAtiUCAIDBAIC+aAUAiMEAgLq5AgC7uQIAvK0CAL2FAgC+/QIAv/UCAIBJAACBVQAAglUAAIQABQDvjAMAvhgEAId0BQCG/AQA4zwDAIzBAIDhUAAAkMEAgJTBAICYwQCAnMEAgKDBAICkwQCAqMEAgKzBAICwwQCAtMEAgLjBAIC8wQCA79QOAL4oBgDhdA4AwMEAgONUAQDEwQCAyMEAgMzBAIDQwQCAo/ECANTBAIDYwQCA3MEAgODBAICm6QIApeECAOTBAICrdQIAqnUCAOjBAIDswQCArzkCAK4xAgCtSQIArGECAKgpBgCpKQYAqj0GAKsxBgCsSQYArUkGAK55BgCveQYAhMEAgIIVAACBxQcAgMUHAPDBAICEaAMA9MEAgPjBAIC4yQYAuckGALrZBgC72QYAvMkGAL3JBgC+WQcAv1kHALAJBgCxCQYAshkGALMZBgC0CQYAtQkGALb5BgC3+QYAs7UGAPzBAICGrAAAh0ADAADCAIC2yQYAtcEGAATCAIC7zQYAus0GAAjCAIAMwgCAv80GAL7NBgC9zQYAvM0GABDCAICj8QYAFMIAgBjCAICmjQYAHMIAgCDCAIClhQYAqokGAKuJBgAkwgCAKMIAgK6JBgCviQYArIkGAK2JBgCoJQYAqWEGAKplBgCrfQYArGUGAK1tBgCuZQYAr50GACzCAIAwwgCANMIAgDjCAIA8wgCAQMIAgETCAIBIwgCAuPUGALn9BgC69QYAu4kGALyZBgC9mQYAvokGAL+BBgCw5QYAse0GALLlBgCz/QYAtOUGALXtBgC20QYAt80GAEzCAIC2/QYAtf0GAFDCAICz/QYAVMIAgFjCAIBcwgCAvzkGAL4xBgC9OQYAvCEGALs5BgC6MQYAFMEAgGDCAICjrQYAgnkAAIFVAACAVQAAhFwBAKatBgClrQYAaMIAgKtpBgCqYQYAhkh/AIfkAACvaQYArmEGAK1pBgCscQYAbMIAgO/cBwBwwgCAdMIAgHjCAIB8wgCAgMIAgITCAICIwgCAhKADAIzCAIC/JHkAkMIAgONoBwCUwgCA4XQGALPRAgCYwgCAvgQDAISAfQCcwgCAtvkCALXxAgCgwgCAu7UCALqpAgCkwgCAqMIAgL9RAwC+mQIAvZECALylAgCpBQIAqLkCAKsVAgCqHQIArT0CAKw9AgCvUQIArl0CAL5ofQCswgCAsMIAgLTCAIC4wgCAvMIAgMDCAIDEwgCAufEDALjpAwC78QMAuvkDAL1RAwC86QMAv00DAL5RAwCxNQIAsCkCALMBAgCyNQIAtdEDALQZAgC30QMAttkDAIIpAACjlQMAgB0AAIEVAACmvQMAyMIAgMzCAICltQMAqu0DAKvxAwDQwgCA2MIAgK7dAwCvFQIArOEDAK3VAwCGYH0Ah3h9ALNBAQCEAH8AtUEBANzCAIDgwgCAtkkBAOTCAIDowgCAu0EBALpNAQC9SQEAvEUBAL8pAQC+OQEA7MIAgO/cBgDwwgCA9MIAgPjCAID8wgCAAMMAgO8wBgCELH4A4eAGAATDAIDjiAEACMMAgON0AAAMwwCA4SwBAKPJAQAQwwCAFMMAgIVweQAYwwCApsEBAKXJAQAcwwCAq8kBAKrFAQAgwwCAJMMAgK+hAQCusQEArcEBAKzNAQCo3X0AqQV+AKoBfgCrAX4ArAF+AK0BfgCuAX4ArwF+ANTCAIAowwCALMMAgDDDAIA0wwCAgp0AAIGdAACAnQAAuC1+ALnhfgC64X4Au+F+ALzhfgC94X4AvuF+AL/hfgCwQX4AsU1+ALJZfgCzVX4AtDV+ALUlfgC2JX4AtxV+AKitfwCp0X8AqtF/AKvtfwCs9X8ArRV/AK4RfwCvEX8AOMMAgDzDAIBAwwCARMMAgIbwAwCHuAAASMMAgEzDAIC4EX8AuRl/ALohfwC7IX8AvPUAAL39AAC+9QAAv+0AALBxfwCxcX8AsnF/ALNFfwC0QX8AtU1/ALY9fwC3NX8As1l+AFDDAIBUwwCAWMMAgFzDAIC2lX4AtX1+AGDDAIC7tX4AurV+AGTDAIBowwCAv4l+AL6FfgC9kX4AvKV+AGzDAICjHX4AcMMAgHTDAICm0X4AeMMAgHzDAIClOX4AqvF+AKvxfgCAwwCAhMMAgK7BfgCvzX4ArOF+AK3VfgCwrQAAscUAALLBAACzwQAAtMUAALXNAAC28QAAt/EAALhhAAC5YQAAumEAALt9AAC8ZQAAvW0AAL5lAAC/vQMAiMMAgIzDAICQwwCAZMIAgJTDAICYwwCAnMMAgKDDAICoWQEAqVkBAKrtAACr5QAArP0AAK3lAACu5QAAr9UAAKTDAICCHQAAgR0AAIAdAACowwCArMMAgLDDAIC+VAIAhoAEAIfsAgC4wwCAvMMAgMDDAIDEwwCAyMMAgL54AwDjdH4AzMMAgOG4fQDQwwCA1MMAgNjDAIDcwwCA4MMAgOTDAIDowwCA7MMAgPDDAIDvwH4A9MMAgPjDAID8wwCAs4UDAADEAIAExACACMQAgAzEAIC2hQMAtZUDABDEAIC74QMAuokDAL4kBgAUxACAv+kDAL7hAwC99QMAvPUDAIIpAACjwQMAgB0AAIEVAACmwQMAGMQAgBzEAICl0QMAqs0DAKulAwAgxACAheAFAK6lAwCvrQMArLEDAK2xAwDh+AMAKMQAgONcHwAsxACA7/QDADDEAICGPAcAh6wCAON8fgA0xACA4YABADjEAIA8xACAQMQAgO/kEwBExACAs3EBAEjEAIBMxACAUMQAgFTEAIC2EQEAtWEBAFjEAIC7OQEAujEBAFzEAIBgxACAvxkBAL4RAQC9GQEAvCEBAGTEAIBoxACAbMQAgHDEAIB0xACAeMQAgHzEAIDvxH8AgMQAgOH8fgCExACA4/B/AIANAACBdQAAgn0AAIjEAICMxACAkMQAgKP5AQC+AAgApekBAJjEAICcxACAppkBAISoBQCgxACAq7EBAKq5AQCtkQEArKkBAK+RAQCumQEAqCkGAKkpBgCqOQYAqzkGAKwpBgCtUQYArlUGAK9NBgAkxACAhCABAKTEAICUxACAo+EBAKKZBAChGQQAoPEFALg5BgC5OQYAus0GALvFBgC83QYAvcUGAL7FBgC/8QYAsDUGALE9BgCyNQYAsw0GALQVBgC1HQYAthUGALcJBgCPoWwAs5EHAIYoAQCHfAMAtqEHAKjEAICsxACAtbEHALrlBwC77QcAsMQAgLTEAIC+7QcAv90HALz1BwC97QcAn/l4AJ7leACdcXkAnCF8AJvxfACaYX0AmZlxAJjZcACX4XAAlnl0AJVtdACUbXQAk61pAJJxaACReWgAkB1uAIIhbQCD5W8AuMQAgLzEAICGTWgAh5V1AISZaQCFmWkAiqV1AIu5dQDAxACAxMQAgI5xcACPgXwAjDlxAI05cQCSYX0Ak6l9AMjEAIDMxACAlml5AJeZBACU4XgAlX15AJpBBQCbyQUA0MQAgNTEAIDYxACA3MQAgJypAADgxACAo4ENAKKpAQChqQEA5MQAgKexCQCmAQgApU0NAKSZDQCrkRUAqoUVAKkBFACocQkArx0QAK7pEQCtvREArAEQALMBGACy8RwAscEdALDJHQC0wwCA6MQAgLXhGAC0/RkA7MQAgPDEAID0xACA+MQAgIAdAACBCQAAgv0DAPzEAICjFQUAAMUAgIaIDACHPAMACMUAgKYlBQClNQUADMUAgKtpBQCqYQUAEMUAgBTFAICvWQUArmkFAK1pBQCscQUAGMUAgBzFAICEBAwAIMUAgCTFAIDhbAYAKMUAgOPsewAsxQCAMMUAgDTFAIDvqAYAOMUAgDzFAIBAxQCARMUAgKmNBQCogQUAq60FAKqZBQCtoQUArLkFAK+lBQCuqQUAhGgNAEjFAIBMxQCAUMUAgFTFAIBYxQCAXMUAgL70DAC5SQUAuEEFALtZBQC6QQUAvUkFALxBBQC/cQUAvn0FALGpBQCwoQUAs7kFALKhBQC1mQUAtKkFALd5BQC2kQUAqNUEAKndBACq7QQAqyUDAKyFAwCtjQMArrEDAK+xAwBgxQCAZMUAgGjFAIBsxQCAgBkAAIEZAACCBQAAcMUAgLgxAgC5MQIAujUCALvBAgC8hQIAvbUCAL69AgC/tQIAsGkCALFpAgCyQQIAs0ECALQ5AgC1OQIAthECALcRAgCGoAwAh0wNAHjFAIB8xQCA76QGAIDFAICExQCA78wHAOOUAQDhpAYA4TgBAONcBgCIxQCAjMUAgJDFAICUxQCAmMUAgJzFAICzLQQAoMUAgLVFAwCkxQCAqMUAgLZFAwCsxQCAsMUAgLvlAgC65QIAvd0CALzdAgC/tQIAvrUCAATFAIB0xQCAtMUAgLjFAIC8xQCAwMUAgMTFAIDIxQCAqDEOAKk5DgCqAQ4AqwEOAKxxDgCtcQ4ArnUOAK9tDgCwGQ4AsSUOALItDgCzJQ4AtCEOALUhDgC2IQ4AtyEOALjFDgC5zQ4AusUOALvdDgC8xQ4Avc0OAL5ZDwC/WQ8As6kOAMzFAIDQxQCA1MUAgNjFAIC20Q4AtdkOANzFAIC7wQ4Auv0OAODFAIC+LAAAv8UOAL7FDgC90Q4AvNkOAIJpAACj7Q4AgFkAAIFRAACmlQ4A5MUAgOjFAIClnQ4AqrkOAKuFDgCGyAAAh6wAAK6BDgCvgQ4ArJ0OAK2VDgDsxQCAs5EOAPDFAID0xQCAtqUOAPjFAID8xQCAta0OALrhDgC74Q4AAMYAgATGAIC+6Q4Av9UOALz1DgC96Q4Ao6UKAAjGAIAMxgCAEMYAgBTGAICmzQ0Apc0NABjGAICrbQwAqm0MABzGAIAgxgCArz0MAK49DACtVQwArFUMAKgJDgCpCQ4Aqh0OAKsVDgCsIQ4ArSEOAK4hDgCvIQ4AJMYAgCjGAIAsxgCAMMYAgDTGAIA4xgCAPMYAgEDGAIC4zQEAudUBALrdAQC71QEAvM0BAL1RAQC+UQEAv1EBALAhDgCxIQ4AsiUOALM5DgC0KQ4AtRUOALYdDgC39QEARMYAgEjGAIBMxgCAo5kNAFDGAIClpQ0Apq0NAL7cAgCE7AMAWMYAgKrpDQCr6Q0ArP0NAK3hDQCu4Q0Ar90NAIBFAACBTQAAglkAAKNFAwBcxgCApUEDAKZBAwBgxgCAhsAEAIcAAwCqLQMAqyUDAKw9AwCtJQMAriUDAK8VAwCoWQIAqYUDAKqBAwCrgQMArIUDAK2NAwCusQMAr7EDAGTGAIBoxgCAbMYAgHDGAIB0xgCAeMYAgHzGAICAxgCAuGUDALltAwC6ZQMAu30DALxlAwC9bQMAvmUDAL/dAACwpQMAsa0DALKlAwCzvQMAtK0DALWdAwC2lQMAt10DALMJAgCExgCAiMYAgIzGAICQxgCAtg0CALUNAgCUxgCAu2kCALphAgCYxgCAnMYAgL9ZAgC+aQIAvWkCALxxAgCgxgCApMYAgKjGAICsxgCA4aABALDGAIDjaAMAtMYAgIEVAACAFQAA74wDAIIVAAC4xgCAvMYAgMDGAIC+cAUA4RgOAOGUDwDjOA8A49QPAISUAgDIxgCAzMYAgNDGAIDUxgCA2MYAgNzGAIDgxgCA5MYAgOjGAIDv7AEA7/gPAIZgBACHBAUAs5UBAITMBQC1dQEA7MYAgPDGAIC2dQEA9MYAgPjGAIC7UQEAulkBAL31AAC8SQEAv/UAAL71AACoJQYAqVUGAKpVBgCrrQYArLUGAK29BgCutQYAr60GAMTGAID8xgCAAMcAgATHAIAIxwCADMcAgBDHAIAUxwCAuGkHALlpBwC6CQcAuwkHALwZBwC9GQcAvg0HAL8BBwCw1QYAsd0GALLVBgCzaQcAtHkHALV5BwC2aQcAt2EHAKPdBgAYxwCAHMcAgCDHAIAkxwCApj0GAKU9BgAoxwCAqxkGAKoRBgAsxwCAMMcAgK+9BwCuvQcArb0HAKwBBgCAXQAAgW0AAIJlAACzUQcAvtgDALVxBwC2cQcANMcAgIbgAACHFAMAul0HALs5BwC8KQcAvRUHAL4dBwC/2QAAqJUGAKmdBgCqlQYAq60GAKy1BgCtvQYArrUGAK+tBgA4xwCAPMcAgEDHAIBExwCASMcAgEzHAIBQxwCAVMcAgLhxAQC5cQEAunEBALtxAQC81QEAvd0BAL7VAQC/zQEAsNUGALGxBgCysQYAs40GALSVBgC1UQEAtlEBALdRAQBYxwCAoxkGAFzHAIBgxwCApjkGAFTGAIBkxwCApTkGAKoVBgCrcQYAaMcAgGzHAICuVQYAr5EBAKxhBgCtXQYAcMcAgHTHAIB4xwCAfMcAgIDHAICExwCAiMcAgIzHAICQxwCAlMcAgJjHAICcxwCAgBkAAIEZAACCBQAAoMcAgISAAgC+gAMAhwwDAIasHADhaAYAqMcAgOOYBwCsxwCAsMcAgLTHAIDvrAcAuMcAgLzHAIDAxwCAxMcAgMjHAIDMxwCA0McAgNTHAICzZQMA2McAgLVlAwC2bQMA3McAgODHAIDkxwCAuukDALvlAwC8/QMAve0DAL7RAwC/0QMA6McAgOzHAIDwxwCA9McAgPjHAID8xwCAAMgAgATIAICogQMAqYEDAKqBAwCrgQMArIEDAK2BAwCugQMAr4EDALBBAwCxTQMAskUDALNVAwC0eQMAtXkDALYZAwC3GQMAuCkDALkpAwC6OQMAuzkDALwpAwC9KQMAvhkDAL8ZAwCBGQAAgBEAAKMhAgCCLQAApSECAAjIAIAMyACApikCABDIAIAYyACAq6ECAKqtAgCtqQIArLkCAK+VAgCulQIAhEwCAL5IHQCHZB0AhuwcAONAAwAcyACA4aABACDIAIDvnAMAJMgAgCjIAIAsyACAMMgAgDTIAIA4yACAPMgAgEDIAIBEyACASMgAgEzIAIBQyACAVMgAgFjIAIDvtAEAhKgdAOF8BgBcyACA43AGAGDIAIBkyACAaMgAgGzIAICz4QEAcMgAgHTIAIB4yACAfMgAgLblAQC19QEAgMgAgLuhAQC62QEAvuQcAIjIAIC/rQEAvqUBAL2xAQC8uQEAqBUeAKkZHgCqKR4AqykeAKw9HgCtJR4Ari0eAK8lHgAUyACAgvkfAIH5HwCA4R8AhMgAgIzIAICGHAAAh7ADALjBHgC5wR4AusEeALvBHgC8wR4AvcEeAL7BHgC/wR4AsF0eALElHgCyLR4AsyUeALQhHgC1KR4AthkeALcZHgCjoR4AkMgAgJTIAICYyACAnMgAgKalHgCltR4AoMgAgKvhHgCqmR4ApMgAgKjIAICv7R4AruUeAK3xHgCs+R4ArMgAgLOZHwCwyACAtMgAgLa9HwC4yACAvMgAgLW1HwC6mR8Au5kfAMDIAIDEyACAvnkfAL95HwC8eR8AvXkfAKglHgCpUR4AqlUeAKtpHgCseR4ArXkeAK5pHgCvaR4AyMgAgMzIAIDQyACA1MgAgNjIAIDcyACA4MgAgOTIAIC42R4Aue0eALr5HgC7+R4AvOkeAL3pHgC+nR4Av5UeALAZHgCxGR4AsukeALPpHgC0+R4AtfkeALbpHgC36R4Ao90eAIIpAACBFQAAgB0AAOjIAICm+R4ApfEeAOzIAICr3R4Aqt0eAKTHAIDwyACArz0eAK49HgCtPR4ArD0eAITIAgCzQQEAvgwBAPjIAIC2QQEA/MgAgADJAIC1UQEAuk0BALslAQCGSAAAh1ABAL4lAQC/LQEAvDEBAL0xAQAEyQCACMkAgIQEAwC+gAQADMkAgO+oHwAQyQCAFMkAgL8oMQDjdB8AGMkAgOE4HgAcyQCAIMkAgCTJAIAoyQCALMkAgDDJAICjzQIANMkAgKXdAgA4yQCAPMkAgKbNAgBAyQCARMkAgKupAgCqwQIArb0CAKy9AgCvoQIArqkCAKm1AgCoaR0AqwECAKoJAgCtAQIArBkCAK8xAgCuAQIAhGwFAEjJAIBMyQCAUMkAgFTJAICCnQEAgZ0BAICdAQC55QMAuOUDALvlAwC65QMAveUDALzlAwC/5QMAvuUDALEhAgCwSQIAsyUCALIlAgC1KQIAtCECALcVAgC2FQIAqM0CAKnRAgCq0QIAqw0BAKwVAQCtBQEArgEBAK8BAQBYyQCAXMkAgGDJAIBoyQCAvvgEAGzJAIBwyQCAdMkAgLgVAQC5HQEAuikBALspAQC89QEAvf0BAL71AQC/7QEAsEkBALFVAQCyXQEAs1UBALRNAQC1NQEAtj0BALcxAQCGoAUAh8gFAHjJAIDvvAAAfMkAgIDJAICEyQCA74weAIQsBwDh8B4AiMkAgOMcHgCMyQCA4ZQBAJDJAIDjbAAAsxkCAJTJAICYyQCAnMkAgIQACAC2xQEAtd0BAKDJAIC70QEAus0BAKTJAICoyQCAv7EBAL7JAQC9wQEAvMkBAKPZBQBkyQCArMkAgLDJAIC0yQCApgUGAKUdBgC4yQCAqxEGAKoNBgC8yQCAwMkAgK9xBgCuCQYArQEGAKwJBgDEyQCAgh0AAIEdAACAHQAAyMkAgMzJAIDQyQCA1MkAgIZAAwCHxAMA2MkAgNzJAIDgyQCA5MkAgOjJAIDsyQCAqK0HAKmxBwCqsQcAq7EHAKwZBwCtBQcArg0HAK8FBwDwyQCA9MkAgPjJAID8yQCAAMoAgATKAIAIygCADMoAgLgtBwC5zQAAusUAALvdAAC8zQAAvf0AAL71AAC/nQAAsEkHALFVBwCyUQcAsykHALQ5BwC1OQcAtiUHALcVBwCzOQYAEMoAgBTKAIAYygCAHMoAgLaFBgC1kQYAIMoAgLuRBgC6jQYAJMoAgCjKAIC//QYAvv0GAL39BgC8hQYALMoAgKN9BgAwygCANMoAgKbBBgA4ygCAPMoAgKXVBgCqyQYAq9UGAEDKAIC+bAEArrkGAK+5BgCswQYArbkGAKjpAQCp6QEAqvkBAKv5AQCs6QEArekBAK45AQCvOQEAgPUAAIH9AACCwQAARMoAgIYQAACHdAEASMoAgPTIAIC4zQAAudUAALrVAAC75QAAvP0AAL2VAAC+kQAAv5EAALBJAQCxSQEAslkBALNZAQC0SQEAtUkBALb9AAC39QAA7/QGAEzKAIBQygCAVMoAgO8wAgBYygCAXMoAgGDKAIDj4AcAZMoAgOGAAQBoygCA4ygGAGzKAIDhyAUAcMoAgLMxAgB0ygCAeMoAgJYAAAB8ygCAtikCALUhAgCAygCAu80CALrNAgCEygCAiMoAgL/NAgC+zQIAvc0CALzNAgCMygCAkMoAgJTKAICj/QIAmMoAgKXtAgCm5QIAnMoAgKDKAICkygCAqgECAKsBAgCsAQIArQECAK4BAgCvAQIAgA0AAIEVAACCHQAAqMoAgKzKAICwygCAvlQMALjKAICGwAwAhyQDALzKAIDAygCAxMoAgMjKAIDMygCA0MoAgKi5AgCpAQEAqgEBAKsBAQCsBQEArQ0BAK4FAQCvOQEAhKgNANTKAIDYygCA3MoAgODKAIDkygCA6MoAgOzKAIC4LQEAucUBALrNAQC7xQEAvMEBAL3JAQC++QEAv/kBALBNAQCxUQEAslUBALMpAQC0OQEAtSUBALYlAQC3FQEA4RgGAPDKAIDjOAcA9MoAgPjKAIC+WAwA/MoAgADLAICEbA8ABMsAgL5gDwAIywCADMsAgBDLAIDvcAYAFMsAgIAVAACBGQAAgi0AAITMDwDjYAYAGMsAgOGgAQAcywCA73QAACDLAICGyAwAh/wMACjLAIAsywCAMMsAgDTLAICjCQ4AtMoAgCTLAIA4ywCAPMsAgKYNDgClDQ4AQMsAgKsVDgCqCQ4ARMsAgEjLAICvYQ4Arn0OAK19DgCsAQ4ATMsAgLOpDgBQywCAVMsAgLapDgBYywCAXMsAgLWpDgC6SQ8Au0kPAGDLAIBkywCAvkkPAL9JDwC8SQ8AvUkPAKhdDgCpbQ4AqmUOAKt9DgCsZQ4ArW0OAK5lDgCvuQ8AaMsAgGzLAIBwywCAdMsAgHjLAIB8ywCAgMsAgITLAIC4UQ8AuV0PALpVDwC7aQ8AvH0PAL1lDwC+bQ8Av2EPALDJDwCxyQ8AstkPALPZDwC0yQ8AtckPALZ9DwC3cQ8AiMsAgLURDwC2EQ8AjMsAgIARAACBGQAAgikAALMVDwC8HQ8AvWEPAL5hDwC/fQ8AkMsAgJTLAIC6FQ8AuwkPAKOtDwCYywCAhugAAIfIAQCcywCApq0PAKWtDwCgywCAq00OAKpNDgCkywCAqMsAgK9NDgCuTQ4ArU0OAKxNDgCocQ4AqXEOAKpxDgCrcQ4ArJ0BAK2FAQCuhQEAr7UBAL7sAACsywCAsMsAgLTLAIC4ywCAvMsAgMDLAIDEywCAuGEBALlhAQC6YQEAu2EBALxhAQC9YQEAvmEBAL9hAQCwzQEAsaUBALKhAQCzoQEAtKUBALWtAQC2kQEAt5EBALP5DQDIywCAzMsAgNDLAIDUywCAtgUCALUVAgDYywCAu2ECALoJAgDcywCA4MsAgL9pAgC+YQIAvXUCALx1AgDkywCAo70NAOjLAIDsywCApkECAPDLAID0ywCApVECAKpNAgCrJQIA+MsAgPzLAICuJQIAry0CAKwxAgCtMQIAge0AAIDtAADv0AEAgh0AAADMAIAIzACAhjgEAIdQAwAMzACAEMwAgBTMAIAYzACA4eABABzMAIDjZA8AIMwAgCTMAIAozACALMwAgLORAwAwzACAtbkDALZ9AwA0zACAOMwAgDzMAIC6WQMAu1kDALxJAwC9SQMAvv0AAL/1AACoRQIAqVUCAKpVAgCrZQIArH0CAK2xAgCusQIAr7ECAL5oBQBAzACARMwAgEjMAIBMzACAUMwAgFTMAIBYzACAuF0BALltAQC6ZQEAuw0BALwZAQC9GQEAvg0BAL8FAQCw0QIAsdECALLRAgCz0QIAtHUBALV9AQC2dQEAt20BAOF4DwDjNA4A47gOAOF8DgBczACAYMwAgGTMAIBozACAbMwAgHDMAIB4zACAfMwAgIDMAIDv5A4A79QOAITMAICjnQIAgmEAAIFpAACAUQAAhJwFAKZxAgCltQIAiMwAgKtVAgCqVQIAhkgEAIfMBACv+QEArvEBAK1FAgCsRQIAqJUGAKmlBgCqrQYAq6UGAKy9BgCtoQYArqUGAK/dBgB0zACAjMwAgJDMAICUzACAmMwAgJzMAICgzACApMwAgLhtBwC5dQcAun0HALt1BwC8bQcAvcUHAL7NBwC/xQcAsKUGALGtBgCyuQYAs7EGALSRBgC1kQYAtl0HALdVBwCzJQYAqMwAgKzMAICwzACAtMwAgLYhBgC1NQYAuMwAgLtpBgC6YQYAvMwAgMDMAIC/VQYAvlUGAL1lBgC8bQYAxMwAgKNhBgDIzACAzMwAgKZlBgDQzACA1MwAgKVxBgCqJQYAqy0GANjMAIDczACArhEGAK8RBgCsKQYArSEGAKipBgCpqQYAqrkGAKuxBgCszQYArTEBAK4xAQCvMQEAgMkBAIHJAQCCBQAA4MwAgL54AgCEeAIA5MwAgOjMAIC43QEAue0BALrlAQC7jQEAvJkBAL2ZAQC+jQEAv4UBALBRAQCxUQEAslEBALNRAQC09QEAtf0BALb1AQC37QEAszEGAOzMAICGKAAAh9wBAPDMAIC2sQEAtUUGAPTMAIC7lQEAupUBAPjMAID8zACAvzkBAL4xAQC9hQEAvIUBAATMAICjdQYAAM0AgATNAICm9QEACM0AgAzNAIClAQYAqtEBAKvRAQAQzQCAFM0AgK51AQCvfQEArMEBAK3BAQAYzQCAHM0AgCDNAIAkzQCAKM0AgCzNAIAwzQCANM0AgDjNAIA8zQCAQM0AgETNAIBIzQCATM0AgFDNAIC+cAMAhQA8AOHEBgCERAIA44wHAIBhAACBYQAAgmEAAO9oAwCFRDwA4RACAFjNAIDj2CsAhlA9AIf0AwBczQCA76QHAGDNAIDvQAIAZM0AgGjNAIBszQCAcM0AgHTNAIB4zQCAhDw8AHzNAICAzQCAhM0AgIjNAIDj7AIAjM0AgOEsAQCzUQMAkM0AgJTNAICYzQCAnM0AgLZ5AwC1cQMAoM0AgLs5AwC6MQMApM0AgKjNAIC/9QAAvvUAAL0VAwC8FQMAqD0CAKmBAgCqmQIAq5ECAKy5AgCtuQIArtECAK/RAgCEqD8Avqg/AKzNAICwzQCAtM0AgLjNAIC8zQCAwM0AgLhRAQC5UQEAulEBALtRAQC8cQEAvXEBAL5xAQC/cQEAsLUCALG9AgCygQIAs4ECALRxAQC1cQEAtnEBALdxAQCAtQAAgb0AAIK1AADIzQCAhrA/AIfgPADMzQCA71QAAL4sPgDhVAYA0M0AgOOIAADUzQCA2M0AgNzNAIDgzQCAo1ECAOTNAIC/2CYA6M0AgOzNAICmeQIApXECAPDNAICrOQIAqjECAPTNAID4zQCAr/UBAK71AQCtFQIArBUCAJAtJACRBSgAkg0oAJPZKACUhS0AlTUsAJbFLACXtTEAmAEwAJkVMACalTUAmyk0AJxtNACdmTUAnj04AJ81OABUzQCAttU+ALXFPgDEzQCAs9E+APzNAIAAzgCABM4AgL/ZPgC+1T4AvcU+ALzFPgC71T4Auuk+AAjOAICPXSQAqeUJAKgVCACrBQwAqg0MAK0BEACsAQwAr0EQAK69EACh4QAADM4AgKMBBACi4QAApZ0EAKSVBACnuQgApgEIAKD1OQChBT0Aouk8AKP1PQAQzgCAFM4AgBjOAIAczgCAscEUALABFACzARgAsn0UALXVGAC01RgAIM4AgCTOAICCISUAgyklACjOAIAszgCAhsUpAIeBLACEGSkAhRkpAIoBLQCL+S0AMM4AgDjOAICOATEAj4k0AIyRMACNHTEAkkU1AJMZNQCG6AcAh+wBAJZZOQCXYTgAlPU0AJVZOQCaoTwAm0U9ADzOAIBAzgCAgX0AAIB9AACcQTwAglUAAKjpPwCp/T8Aqgk/AKsFPwCsHT8ArQU/AK4NPwCvBT8ARM4AgEjOAIBMzgCAUM4AgFTOAIBYzgCAXM4AgGDOAIC4DT8AuRU/ALoVPwC7JT8AvD0/AL39PgC+9T4Av+0+ALB9PwCxQT8AskE/ALNBPwC0QT8AtU0/ALY9PwC3NT8Ao4E8AGTOAIBozgCAbM4AgHDOAICmhTwApZU8AHTOAICrhTwAqrk8AHjOAIB8zgCAr4k8AK6FPACtlTwArJU8AITIAwCz7T0AgM4AgITOAIC26T0AiM4AgIzOAIC16T0Auq09ALu1PQCQzgCAlM4AgL6dPQC/IQIAvKU9AL2VPQCoDT0AqR09AKohPQCrPT0ArCU9AK0tPQCuJT0Ar1k9AIANAACBFQAAgh0AAJjOAICczgCAoM4AgKjOAIC+uAMAuLkCALlhAgC6GQIAuxkCALwJAgC9CQIAviECAL8hAgCwLT0AsTU9ALI1PQCzBT0AtB09ALWhAgC2oQIAt6ECAKOpPACszgCAhigFAIfsAgCwzgCApq08AKWtPAC0zgCAq/E8AKrpPAC4zgCAvM4AgK9lAwCu2TwArdE8AKzhPADAzgCAsykCAMTOAIDIzgCAtvkCAMzOAIDQzgCAtfkCALrVAgC73QIA1M4AgNjOAIC+eQEAv3kBALzFAgC9eQEA3M4AgODOAICj5QIA5M4AgKU1AgDozgCA7M4AgKY1AgDwzgCA9M4AgKsRAgCqGQIArbUBAKwJAgCvtQEArrUBAOPwPgDhrD8A4UA+AON8PwD4zgCA/M4AgADPAIAEzwCAgA0AAIERAACCEQAACM8AgO+oPgAMzwCAEM8AgO8gPgCoLQUAqW0FAKplBQCrrQUArLUFAK29BQCutQUAr60FAKTOAICE6AMAvuADABTPAICGEAMAh5gDABjPAIAczwCAuGkGALlpBgC6AQYAuwEGALwFBgC9DQYAvjEGAL8xBgCw1QUAsd0FALLVBQCzaQYAtHkGALV5BgC2aQYAt2EGAKg5BgCpgQcAqpkHAKuRBwCsuQcArbkHAK7ZBwCv1QcAIM8AgCTPAIA0zgCAKM8AgCzPAIAwzwCANM8AgDjPAIC4VQcAuV0HALppBwC7aQcAvAEHAL0BBwC+AQcAvwEHALCtBwCxsQcAsrEHALOFBwC0nQcAtXUHALZ9BwC3cQcAsxEGADzPAIBAzwCARM8AgEjPAIC2OQYAtTEGAEzPAIC7dQYAumkGAFDPAIBUzwCAv7EGAL5ZBgC9UQYAvGUGAFjPAICjVQYAXM8AgGDPAICmfQYAZM8AgGjPAICldQYAqi0GAKsxBgBszwCAcM8AgK4dBgCv9QYArCEGAK0VBgCouQEAqbkBAKopAQCrKQEArD0BAK0lAQCuLQEAryUBAHTPAICCHQAAgR0AAIAdAAB4zwCAfM8AgIDPAIC+cAEAuIEAALmNAAC6hQAAu5kAALyJAAC9vQAAvrUAAL99AACwXQEAseEAALLhAACz4QAAtOEAALXpAAC20QAAt9EAAITIAgCzpQIAhzgDAIYoAgC2oQIAiM8AgIzPAIC1sQIAup0CALshAwC+bAMAkM8AgL4hAwC/KQMAvDEDAL0xAwCj4QIAlM8AgJjPAICczwCAoM8AgKblAgCl9QIApM8AgKtlAwCq2QIAqM8AgKzPAICvbQMArmUDAK11AwCsdQMAqZkAAKiRAACrzQAAqqEAAK3dAACs3QAAr8UAAK7NAAC+LA0AsM8AgLTPAIC4zwCAvM8AgMDPAIDEzwCAyM8AgLnBAQC4eQAAu8EBALrJAQC9wQEAvNkBAL/FAQC+xQEAsY0AALCNAACzQQAAskkAALVBAAC0WQAAt0EAALZJAADMzwCA0M8AgNTPAIDYzwCA3M8AgO9QBwDgzwCA5M8AgL74DwDjdAcA6M8AgOF8BACAGQAAgQkAAIJ5AADszwCA8M8AgLNpAQD4zwCAhMQCALYdAQD8zwCAANAAgLUVAQC6CQEAuwkBAIboDQCH6A0Avt0BAL/FAQC83QEAvdUBAATQAIAI0ACADNAAgBDQAIDv1AAAFNAAgBjQAIDvTAEA47ADAOG0BgDhgAEA45gBABzQAIAg0ACAJNAAgCjQAIAs0ACAMNAAgKPlAQCEwA0ApZkBADTQAIA40ACAppEBADzQAIBA0ACAq4UBAKqFAQCtWQEArFEBAK9JAQCuUQEA9M8AgETQAIBI0ACATNAAgFDQAIBU0ACAWNAAgFzQAICoaQ8AqXEPAKpxDwCrrQ8ArLUPAK29DwCutQ8Ar6kPALDZDwCx9Q8Asv0PALP1DwC07Q8AtZUPALadDwC3iQ8AuLkPALmFDwC6jQ8Au2kAALx5AAC9eQAAvmkAAL9pAACBnQAAgJ0AAGDQAICCBQAAZNAAgGjQAIBs0ACAcNAAgIaAAwCH9AMAdNAAgHjQAIB80ACAgNAAgITQAICEzwCAs5kPAIjQAICM0ACAkNAAgJTQAIC2XQ8AtV0PAJjQAIC7UQ8Aun0PAJzQAICg0ACAvzEPAL5JDwC9QQ8AvEkPAKNZDgCk0ACAqNAAgKzQAICw0ACApp0OAKWdDgC00ACAq5EOAKq9DgC40ACAvNAAgK/xDgCuiQ4ArYEOAKyJDgDA0ACAxNAAgMjQAIDM0ACAgBkAAIEZAACCBQAA0NAAgISgAQDU0ACAh+gBAIYABADY0ACA3NAAgODQAIDk0ACAqBUBAKkdAQCqFQEAqyUBAKw9AQCtJQEAri0BAK8lAQDo0ACA7NAAgPDQAID00ACA+NAAgPzQAIAA0QCABNEAgLjJAAC5yQAAutkAALvRAAC8+QAAvfkAAL6ZAAC/mQAAsCUBALEtAQCyJQEAsz0BALQtAQC1HQEAthUBALf5AAAI0QCADNEAgBDRAICzkQIAFNEAgLW5AgC2qQIAGNEAgBzRAIAg0QCAuu0CALvlAgC8/QIAveUCAL7lAgC/1QIApvECACTRAIAo0QCApeECACzRAICjyQIAMNEAgDTRAICuvQIAr40CAKylAgCtvQIAqrUCAKu9AgA40QCAPNEAgID5AACB+QAAggUAAEDRAIC+yAMAhBgDAEjRAIBM0QCAUNEAgFTRAIBY0QCAXNEAgGDRAIBk0QCAhhgEAIecAwBo0QCAbNEAgHDRAIB00QCAeNEAgHzRAIDvsAIAgNEAgOGUAQCE0QCA42wCAIjRAICM0QCAkNEAgJTRAICY0QCA79APAJzRAICg0QCApNEAgKjRAIDhrAEArNEAgONsAACAMQAAgT0AAIIdAADv9A4A42wOALDRAIDhLA8AvnAFALM5AgCEDAUAhugEAIdgBQDcAAAAtvECALX5AgC40QCAu9UCALrVAgC80QCAwNEAgL91AQC+dQEAvcUCALzFAgDE0QCA4fQOAMjRAIDjUA4AzNEAgNDRAIDU0QCA2NEAgNzRAIDg0QCA5NEAgOjRAIDs0QCA8NEAgPTRAIDv5A8ApmUCAPjRAID80QCApW0CAADSAICjrQIABNIAgAjSAICu4QEAr+EBAKxRAgCtUQIAqkECAKtBAgAM0gCAENIAgKiZBgCpmQYAqqkGAKupBgCsuQYArbkGAK6pBgCvqQYAFNIAgIIdAACBHQAAgB0AABjSAIAc0gCAINIAgL50AwC4rQYAubUGALq9BgC7tQYAvK0GAL1RBwC+UQcAv1EHALChBgCxoQYAsqEGALOhBgC0oQYAtaEGALalBgC3mQYARNEAgLMlBgCExAMAtNEAgLY9BgAk0gCAKNIAgLU1BgC6YQYAu2EGAIYIAACHiAAAvmEGAL9hBgC8cQYAvXEGAKNhBgAs0gCAMNIAgDTSAIA40gCApnkGAKVxBgA80gCAqyUGAKolBgBA0gCARNIAgK8lBgCuJQYArTUGAKw1BgCoXQYAqW0GAKplBgCrjQYArJkGAK2FBgCujQYAr4UGAEjSAIBM0gCAUNIAgFTSAIBY0gCAXNIAgGDSAIBk0gCAuIUGALmNBgC6mQYAu5UGALyNBgC9rQYAvqUGAL99AQCw/QYAscUGALLNBgCzxQYAtN0GALXFBgC2zQYAt8UGALPtBgBo0gCAbNIAgHDSAIB00gCAtgUGALURBgB40gCAuwEGALo5BgB80gCAgNIAgL8BBgC+GQYAvREGALwZBgCE0gCAo6kGAIjSAICM0gCApkEGAJDSAICElAEApVUGAKp9BgCrRQYAvqABAJjSAICuXQYAr0UGAKxdBgCtVQYAqJkCAKnBAgCqwQIAq8ECAKzBAgCtyQIArvECAK/xAgCB7QMAgO0DAJzSAICC+QMAhpAcAId0AwCg0gCApNIAgLjFAwC5zQMAusUDALvdAwC8zQMAvf0DAL71AwC/nQMAsEEDALFBAwCyQQMAs0EDALRBAwC1QQMAtkEDALdBAwCzSQIAqNIAgKzSAICw0gCAtNIAgLZJAgC1SQIAuNIAgLuFAwC6hQMAvNIAgMDSAIC/hQMAvoUDAL2VAwC8lQMAxNIAgKMNAgDI0gCAzNIAgKYNAgDQ0gCA1NIAgKUNAgCqwQMAq8EDANjSAIDc0gCArsEDAK/BAwCs0QMArdEDAOOYAQDhpAcA4VgGAONYBgDhoAEA4NIAgOPQAADk0gCA6NIAgOzSAIDvOAAA8NIAgO/0AQD00gCA+NIAgO/4BgCAeQAAgRUAAIIdAACEAB0A/NIAgADTAIC+EB0ACNMAgIbAHACHrB0ADNMAgBDTAIAU0wCAGNMAgBzTAIAg0wCAu8UFALqhBQC5qQUAuJEFAL/NBQC+zQUAvckFALzVBQCzHQYAsh0GALEdBgCwHQYAt6EFALa9BQC1vQUAtL0FAKu9BgCqvQYAqb0GAKi9BgCvfQYArn0GAK19BgCsfQYAJNMAgCjTAIAs0wCAMNMAgDTTAIA40wCAPNMAgEDTAICo7R0AqS0eAKoxHgCrMR4ArJUeAK2dHgCulR4Ar40eAATTAIBE0wCASNMAgEzTAIBQ0wCAVNMAgFjTAIBc0wCAuKkeALmpHgC6XR8Au1EfALxxHwC9cR8AvnUfAL9pHwCw/R4Asc0eALLFHgCzrR4AtLkeALW5HgC2rR4At6UeALO5HgBg0wCAZNMAgGjTAICU0gCAth0eALUdHgBs0wCAuwkeALo5HgBw0wCAhOADAL99HgC+fR4AvXkeALwRHgCCaQAAo/0eAIBFAACBUQAAplkeAL6cAwB00wCApVkeAKp9HgCrTR4AhkgAAIdsAACuOR4ArzkeAKxVHgCtPR4AqF0eAKltHgCqZR4Aq30eAKxlHgCtbR4ArmUeAK/9HgB40wCAfNMAgIDTAICE0wCAiNMAgIzTAICQ0wCAlNMAgLhpAQC5aQEAunkBALt5AQC8aQEAvWkBAL7dAQC/1QEAsIUeALGNHgCyhR4As50eALSFHgC1jR4AtoUeALdZAQCz7R4AmNMAgJzTAICg0wCApNMAgLbtHgC17R4AqNMAgLtJHgC6QR4ArNMAgLDTAIC/SR4AvkEeAL1JHgC8UR4AtNMAgKOpHgC40wCAvNMAgKapHgDA0wCAxNMAgKWpHgCqBR4Aqw0eAMjTAIDM0wCArgUeAK8NHgCsFR4ArQ0eAKghAwCpIQMAqiEDAKshAwCsIQMArSEDAK4hAwCvIQMA0NMAgNTTAIDY0wCAvmACANzTAIDg0wCA6NMAgOzTAIC4iQMAuYkDALqdAwC7lQMAvLkDAL25AwC+eQAAv3kAALDlAwCx7QMAsuUDALP9AwC07QMAtd0DALbVAwC3vQMAgKkAAIG1AACCvQAAs6UDAPDTAIC1pQMAtq0DAPTTAICE4AIA+NMAgLotAwC7JQMAvD0DAL0lAwC+JQMAvxUDAKPpAwD80wCAhmgEAIeAAwAA1ACApuEDAKXpAwAE1ACAq2kDAKphAwAI1ACADNQAgK9ZAwCuaQMArWkDAKxxAwAQ1ACAFNQAgBjUAIAc1ACAINQAgOE8HwAk1ACA40AeACjUAIAs1ACAMNQAgO+MHgA01ACAONQAgDzUAIBA1ACARNQAgIIlAACBEQAAgB0AAEjUAIDj5AMATNQAgOGsAQBQ1ACA77ADAIRkAgC+YAUAhtAEAIdEBQBY1ACAXNQAgGDUAIBk1ACAaNQAgGzUAIBw1ACAdNQAgHjUAIDvsAEAhKQFAOHcHgB81ACA4xABAIDUAICE1ACAiNQAgIzUAICzUQEAkNQAgJTUAICY1ACAnNQAgLYRAQC1fQEAoNQAgLsNAQC6DQEApNQAgKjUAIC//QAAvv0AAL39AAC8/QAAqDkGAKk5BgCqmQYAq5EGAKy1BgCt0QYArskGAK/BBgBU1ACArNQAgLDUAIC01ACAgA0AAIGxAACCsQAAuNQAgLhhBwC5YQcAumEHALt9BwC8ZQcAvW0HAL5lBwC/HQcAsIkGALGJBgCyaQcAs2kHALR5BwC1eQcAtmkHALdlBwCjEQYAvNQAgMDUAIC+gAMAxNQAgKZRBgClPQYAyNQAgKtNBgCqTQYAhggAAId8AwCvvQcArr0HAK29BwCsvQcAzNQAgNDUAICzSQcA1NQAgLVZBwDY1ACA3NQAgLZRBwDg1ACA5NMAgLtBBwC6dQcAvUUHALxFBwC/RQcAvkUHAKh5BgCpeQYAqokGAKuJBgCsmQYArZkGAK6JBgCviQYA5NQAgOjUAIDs1ACA8NQAgPTUAID41ACA/NQAgADVAIC4jQYAuZUGALqVBgC7pQYAvL0GAL1xAQC+cQEAv3EBALD5BgCxzQYAstkGALPZBgC0yQYAtckGALa9BgC3tQYAowEGAATVAIAI1QCADNUAgBDVAICmGQYApREGABTVAICrCQYAqj0GABjVAIAc1QCArw0GAK4NBgCtDQYArA0GACDVAIAk1QCAKNUAgCzVAICAGQAAgRkAAIIFAAAw1QCAhKwBAL6sAQCH6AAAhkwPADjVAIA81QCAQNUAgETVAIConQIAqcUCAKrNAgCrwQIArMUCAK3NAgCu+QIArz0DAEjVAIBM1QCAUNUAgFTVAIC+PAwAWNUAgFzVAIBg1QCAuMkDALnJAwC62QMAu9EDALz5AwC9+QMAvpkDAL+ZAwCwRQMAsU0DALJFAwCzXQMAtEUDALVNAwC2RQMAt/kDALNFAgBk1QCAaNUAgGzVAIBw1QCAtk0CALVNAgB01QCAu4kDALqBAwB41QCAfNUAgL+JAwC+gQMAvYkDALyRAwCA1QCAowECAITVAICI1QCApgkCAIzVAICQ1QCApQkCAKrFAwCrzQMAlNUAgJjVAICuxQMAr80DAKzVAwCtzQMAgO0BAIEVAACCEQAAhAACAJzVAIDhpAEAoNUAgOPsAACo1QCArNUAgLDVAIDvMAAAtNUAgLjVAIC81QCAwNUAgIbgDACH9AIAxNUAgMjVAIDM1QCA0NUAgO/MBgDU1QCA4bAHANjVAIDjEAYA3NUAgODVAIDk1QCA6NUAgOzVAIDw1QCA9NUAgPjVAID81QCAANYAgATWAIAI1gCA7+gBAIUYDwDhzAYADNYAgOMcBgCAKQAAgR0AAIIFAAAQ1gCAszkCAITMDQCGaA8Ah/wMAOHQ0gO28QEAtfkBABjWAIC72QEAutEBAL7kDAAc1gCAv30BAL59AQC9fQEAvMEBAKjxDQCp8Q0AqvENAKvxDQCsMQ4ArTEOAK4xDgCvMQ4ApNUAgBTWAIAg1gCAJNYAgCjWAIAs1gCAMNYAgDTWAIC46Q4AuekOALqJDgC7hQ4AvJ0OAL2BDgC+gQ4Av7UOALBVDgCxXQ4AslUOALPpDgC0+Q4AtfkOALbpDgC34Q4Ao3kNADjWAIA81gCAQNYAgETWAICmsQ4ApbkOAEjWAICrmQ4AqpEOAEzWAIBQ1gCArz0OAK49DgCtPQ4ArIEOAFTWAICz7Q8AWNYAgFzWAIC26Q8AYNYAgGTWAIC16Q8Auq0PALu1DwA01QCAaNYAgL6VDwC/mQ8AvK0PAL2hDwCoIQ4AqSEOAKohDgCrPQ4ArCUOAK0tDgCuJQ4Ar1UOAGzWAIBw1gCAdNYAgHjWAICAHQAAgQkAAIK9AAB81gCAuDkOALk5DgC6yQ4Au8kOALzZDgC92Q4AvskOAL/JDgCwLQ4AsTUOALI9DgCzMQ4AtBUOALUZDgC2CQ4AtwkOAKOpDgCA1gCAhIACAL6AAQCFAAQApq0OAKWtDgCI1gCAq/EOAKrpDgCGKAcAhxgAAK/dDgCu0Q4AreUOAKzpDgCM1gCAs+0BAJDWAICU1gCAtuUBAJjWAICc1gCAte0BALplAQC7bQEAoNYAgKTWAIC+bQEAv10BALx1AQC9bQEAqN0NAKnpDQCqIQIAqyECAKwhAgCtIQIAriECAK8hAgCo1gCArNYAgLDWAIC01gCAohECAKMRAgCgqQ4AodUCALiJAgC5iQIAup0CALuVAgC8vQIAvXUDAL59AwC/dQMAsOUCALHtAgCy5QIAs/0CALTtAgC13QIAttUCALe9AgCjqQIAj8UaALjWAIC81gCAwNYAgKahAgClqQIAxNYAgKspAgCqIQIAyNYAgMzWAICvGQIArikCAK0pAgCsMQIAniUOAJ/lDgCc6QoAnRUKAJpFFgCbRQoAmFkWAJlRFgCWcRIAl4ETAJRVEgCV7RIAktEeAJPZHgCQtRoAkVUeAISpHwCFJR8AhiUfAIexEwDQ1gCA1NYAgIJZGwCDURsAjEUSAI2lFwCOpRcAj7kXAIA5+wHY1gCAijkTAIutEwCUmQsAlaEPAJZpDwCX3Q8A3NYAgO+cDwCSyQsAk30LAJxFAwDjeA4A4NYAgOGYDADk1gCAhHgCAJqRAwCbXQMA4QQAAL6IBQDj3OoD6NYAgOzWAIDw1gCA7+wAAO+MDgDhcA4A4fwOAOMwAADjeA4AgSEAAIA5AADvtO0DgikAALMJAgD41gCAhmgEAIcsBQD81gCAtg0CALUNAgAA1wCAu8UBALrFAQAE1wCACNcAgL99AQC+fQEAvdUBALzVAQCE1gCA9NYAgAzXAIAQ1wCAFNcAgBjXAIAc1wCAINcAgKi9BQCp5QUAquEFAKvhBQCs5QUAre0FAK7RBQCv0QUAsGEGALFhBgCyYQYAs2EGALTZBgC12QYAtskGALfBBgC4yQYAuckGALp5BwC7eQcAvEUHAL0lBwC+EQcAvw0HAKNJBQAk1wCAKNcAgCzXAIAw1wCApk0FAKVNBQA01wCAq4UGAKqFBgA41wCAPNcAgK89BgCuPQYArZUGAKyVBgBA1wCARNcAgEjXAIBM1wCAUNcAgFTXAIBY1wCAXNcAgIA5AACBOQAAggUAAGDXAIC+uAMAhLgDAGjXAIBs1wCAqMUGAKnVBgCq1QYAq+UGAKz9BgCtHQEArhUBAK8NAQBk1wCAcNcAgIaIAQCHHAEAdNcAgHjXAIB81wCAgNcAgLjpAQC56QEAuokBALuJAQC8mQEAvZkBAL6JAQC/iQEAsHUBALF9AQCydQEAs+kBALT5AQC1+QEAtukBALfhAQCzXQYAhNcAgIjXAICM1wCAhLwBALadAQC1dQYAkNcAgLu5AQC6sQEAlNcAgJjXAIC/PQEAvj0BAL09AQC8oQEAnNcAgKMZBgCg1wCApNcAgKbZAQCo1wCArNcAgKUxBgCq9QEAq/0BALDXAIC01wCArnkBAK95AQCs5QEArXkBAKj5AgCp+QIAqi0DAKs9AwCsJQMArS0DAK4lAwCvmQMAuNcAgLzXAIDA1wCAxNcAgIANAACBsQAAgrEAAMjXAIC4lQMAuZ0DALqhAwC7oQMAvHEAAL1xAAC+cQAAv3EAALDpAwCx6QMAsvUDALPFAwC03QMAtbUDALaxAwC3sQMAvswDAMzXAIDQ1wCA2NcAgNzXAIDg1wCA5NcAgO/kAgDo1wCA4ZQBAOzXAIDjLAEA8NcAgPTXAICHGAMAhhz8A7tNAwC6TQMA+NcAgPzXAIC/EQMAvnkDAL1xAwC8QQMAs8UDAITo/AMA2ACABNgAgAjYAIC2zQMAtc0DAAzYAICkAfwDpSX/A6bZ/wOnAfgDENgAgKEVAwCiHQMAoz0CAKwR9wOtAfADri3zA68B8wOoEfsDqZn7A6oB9AOrHfcDtAHoA7Vl6wO+xPwDhMT8A7AB7AOxVe8Dsk3vA7Nx7gMU2ACAGNgAgBzYAIAg2ACAJNgAgCjYAIAs2ACAMNgAgOFQBgDhNAQA42wBAOPoBgA02ACAONgAgDzYAIBA2ACAgDUAAIE9AACCNQAASNgAgEzYAIBQ2ACA77ABAO/ABgCj5QIAVNgAgIbo/AOHfP0DWNgAgKbtAgCl7QIAXNgAgKttAgCqbQIAYNgAgGTYAICvMQIArlkCAK1RAgCsYQIAqI3+A6mV/gOqnf4Dq5X+A6yx/gOtvf4Drqn+A6+p/gNE2ACAaNgAgGzYAIBw2ACAdNgAgHjYAIB82ACAgNgAgLgl/wO5Lf8DuiX/A7s9/wO8Jf8DvS3/A74l/wO/zf8DsKn+A7Gp/gOygf4Ds4H+A7SB/gO1if4Dtmn/A7cd/wOE2ACA4SD8A4jYAIDjePwDjNgAgJDYAICU2ACAmNgAgJzYAICg2ACApNgAgKjYAICAHQAAgXEAAIJxAADvDP0Ds1X+A6zYAICw2ACAvkAAALTYAIC2ff4DtXn+A7jYAIC7Lf4Dui3+A4boAACHrAAAvw3+A74F/gO9Ff4DvBX+A6OV/wO82ACAwNgAgMTYAIDI2ACApr3/A6W5/wPM2ACAq+3/A6rt/wPQ2ACA1NgAgK/N/wOuxf8DrdX/A6zV/wPY2ACAs/H+A9zYAIDg2ACAto3+A+TYAIDo2ACAtY3+A7pFAQC7TQEA7NgAgPDYAIC+RQEAv00BALxVAQC9TQEAqC3+A6k1/gOqPf4Dq0n+A6xB/gOtSf4DrnH+A69x/gP02ACA+NgAgPzYAIAA2QCABNkAgAjZAIAM2QCAENkAgLhJAQC5VQEAul0BALtVAQC8TQEAvXUBAL59AQC/dQEAsMUBALHNAQCyxQEAs90BALTFAQC1zQEAtsUBALd9AQCjtf0DFNkAgBjZAICExAMAHNkAgKbJ/QOlyf0DINkAgKsJAgCqAQIAKNkAgL7sAgCvCQIArgECAK0JAgCsEQIAgEkAAIFVAACCVQAAo0UDACzZAIClRQMApkUDADDZAICGwAQAhxQDAKopAwCrJQMArD0DAK0hAwCuIQMArxUDADTZAIA42QCAPNkAgEDZAIBE2QCASNkAgEzZAIBQ2QCAqH0CAKmhAwCqoQMAq6EDAKyhAwCtqQMArpEDAK+RAwCwgQMAsY0DALKFAwCzmQMAtIkDALW9AwC2tQMAt30DALhFAwC5TQMAukUDALtdAwC8RQMAvU0DAL5FAwC/+QAA1NcAgLMNAgBU2QCAWNkAgLYNAgBc2QCAYNkAgLUNAgC6YQIAu20CAGTZAIBo2QCAvmkCAL9dAgC8dQIAvWkCAGzZAIBw2QCAdNkAgHjZAIB82QCA4aQBAIDZAIDjQAMAhNkAgIjZAICM2QCA77gDAIAVAACBHQAAggUAAJDZAICEgAIAvsgFAIcYBQCGLAQAmNkAgJzZAICg2QCA76gBAKTZAIDhdP4DqNkAgOPw/gOs2QCAsNkAgLTZAIC42QCAvNkAgMDZAIDE2QCAs5EBAMjZAIC1UQEAtlEBAMzZAIDQ2QCA1NkAgLp9AQC7dQEAvG0BAL39AAC+9QAAv+kAAKgpBgCpVQYAqlUGAKuNBgCslQYArZ0GAK6VBgCvjQYAlNkAgNjZAIDc2QCA4NkAgOTZAIDo2QCA7NkAgPDZAIC4bQcAuQUHALoNBwC7BQcAvB0HAL0FBwC+AQcAvz0HALD1BgCx/QYAsvUGALNlBwC0fQcAtWEHALZhBwC3VQcA4xAFAPTZAIDh8AQA+NkAgIAdAACBCQAAgjkAAPzZAIAA2gCAhOgDAL7gAwAE2gCA78wFAAjaAICHOAAAhhgAAKOdBgAM2gCAENoAgBTaAIAY2gCApl0GAKVdBgAc2gCAq3kGAKpxBgAg2gCAJNoAgK/lBwCu+QcArfEHAKxhBgCokQYAqZEGAKqRBgCrrQYArLkGAK2lBgCurQYAr6UGACjaAIAs2gCAMNoAgDTaAIA42gCAPNoAgEDaAIBE2gCAuGUBALltAQC6ZQEAu30BALxlAQC9bQEAvmUBAL/ZAQCw3QYAsaUGALKtBgCzpQYAtKEGALWpBgC2mQYAt5kGALMZBgBI2gCATNoAgFDaAIBU2gCAtiUGALUxBgBY2gCAu2EGALoZBgBc2gCAYNoAgL9tBgC+ZQYAvXEGALx5BgBk2gCAo10GAGjaAIBs2gCApmEGAHDaAICEmAEApXUGAKpdBgCrJQYAvqQBAHjaAICuIQYArykGAKw9BgCtNQYAqcUCAKixAgCrxQIAqsUCAK3NAgCsxQIAr/UCAK71AgB82gCAgNoAgITaAICI2gCAjNoAgJDaAICU2gCAmNoAgLnJAwC4wQMAu9kDALrBAwC9+QMAvMkDAL+ZAwC+8QMAsUUDALBFAwCzRQMAskUDALVFAwC0RQMAt0UDALZFAwCASQMAgUkDAIJdAwCzRQIAvtwMALVFAgC2RQIAnNoAgIYADACH5AMAuokDALuJAwC8mQMAvZkDAL6JAwC/iQMAowkCAKDaAICk2gCAqNoAgKzaAICmCQIApQkCALDaAICrxQMAqsUDALTaAIC42gCAr8UDAK7FAwCt1QMArNUDALzaAIDA2gCAxNoAgCTZAIDvAAAAyNoAgMzaAIDQ2gCA4+gAANTaAIDhjAEA2NoAgNzaAIDg2gCA6NoAgOzaAICAbQAAgXUAAIJ9AACEQAIAhvAMAId4DQDw2gCA9NoAgPjaAID82gCAANsAgATbAIAI2wCADNsAgBDbAIAU2wCAGNsAgBzbAIAg2wCAJNsAgCjbAIAs2wCAMNsAgO/MAQCE7AwA4TAGADTbAIDjGAEAONsAgDzbAIBA2wCARNsAgLPlAQBI2wCAhIQPAEzbAIBQ2wCAtuUBALX1AQBY2wCAu30BALrZAQC+oAwAXNsAgL8hAQC+OQEAvTEBALw5AQCo7Q0AqSUOAKotDgCrJQ4ArD0OAK0lDgCuLQ4AryUOAOTaAICC9Q8AgeUPAIDpDwBU2wCAYNsAgIaYAACHDAMAuK0OALlFDwC6TQ8Au0UPALxFDwC9TQ8AvkUPAL95DwCwXQ4AsfkOALKtDgCzpQ4AtL0OALWlDgC2pQ4At5UOAGTbAIDv7AwAaNsAgGzbAIBw2wCAdNsAgHjbAIB82wCAvugAAIDbAICE2wCAiNsAgIzbAIDj6A0AkNsAgOEEDACj5Q4AlNsAgJjbAICc2wCAoNsAgKblDgCl9Q4ApNsAgKt9DgCq2Q4AqNsAgKzbAICvIQ4ArjkOAK0xDgCsOQ4AqDkOAKk5DgCqUQ4Aq1EOAKxxDgCtcQ4ArnEOAK9xDgCw2wCAtNsAgLjbAIC82wCAgBkAAIEZAACCBQAAwNsAgLjRDgC50Q4AutEOALvlDgC84Q4AveEOAL7hDgC/4Q4AsBEOALERDgCyEQ4AsxEOALTxDgC18Q4AtvEOALfxDgCz2Q4AyNsAgIYoAACHuAAAzNsAgLbxDgC1+Q4A0NsAgLvVDgC61Q4A1NsAgNjbAIC/NQ4AvjUOAL3FDgC8xQ4A3NsAgKOdDgDg2wCA5NsAgKa1DgDo2wCA7NsAgKW9DgCqkQ4Aq5EOAPDbAID02wCArnEOAK9xDgCsgQ4ArYEOAKjdDQCp6Q0Aqj0CAKuNAgCsmQIArZkCAK6JAgCviQIAvqwEAPjbAID82wCAhCADAADcAIAE3ACACNwAgAzcAIC4iQIAuYkCALqZAgC7kQIAvLkCAL25AgC+eQMAv3kDALD5AgCx+QIAss0CALPFAgC03QIAtcUCALbBAgC3uQIAs7UCABDcAIAU3ACAGNwAgBzcAIC2GQIAtRECACDcAIC7PQIAuj0CACTcAIAo3ACAvwECAL4ZAgC9EQIAvBkCACzcAICj8QIAMNwAgDjcAICmXQIAPNwAgEDcAIClVQIAqnkCAKt5AgCGSAUAh6wEAK5dAgCvRQIArF0CAK1VAgCohQIAqZUCAKqVAgCrpQIArL0CAK3VAgCu0QIAr9ECAETcAIBI3ACATNwAgFDcAICB8QEAgJkBAHTaAICC9QEAuHkBALl5AQC6zQEAu8UBALzdAQC9xQEAvsUBAL/1AQCwtQIAsb0CALKBAgCzgQIAtFUBALVdAQC2SQEAt0kBAFTcAIBY3ACAXNwAgO/UAQCEEAUAYNwAgGTcAIDvjA4AvuwFAOHsDgBo3ACA4xwOAGzcAIDhlAEAcNwAgONkDgCzXQIAdNwAgHjcAIB83ACAgNwAgLYVAgC1dQIAhNwAgLs5AgC6MQIAiNwAgIzcAIC/2QEAvtEBAL0VAgC8FQIAo50FADTcAICQ3ACAlNwAgJjcAICm1QUApbUFAJzcAICr+QUAqvEFAKDcAICk3ACArxkGAK4RBgCt1QUArNUFAIBRAACBWQAAgmEAALOVBgCo3ACAtXEHALZxBwCs3ACAhkADAIdUAwC67QcAu+UHALzlBwC97QcAvtEHAL/NBwCw3ACAtNwAgLjcAIC83ACAwNwAgMTcAIDvQAQAyNwAgOEwBwDM3ACA45QEANDcAIDU3ACA2NwAgNzcAIDg3ACAoxkGAOTcAIDo3ACA7NwAgPDcAICm/QcApf0HAPTcAICraQcAqmEHAPjcAID83ACAr0EHAK5dBwCtYQcArGkHAKjNBwCp0QcAqtEHAKstBgCsNQYArT0GAK41BgCvnQYAAN0AgATdAIAI3QCADN0AgIAZAACBGQAAggUAABDdAIC4iQYAuYkGALqZBgC7kQYAvLkGAL25BgC+UQEAv1EBALDlBgCx7QYAsv0GALP1BgC02QYAtcUGALbBBgC3uQYAqNEBAKnZAQCqCQEAqwkBAKwZAQCtGQEArgkBAK8JAQCEYAEAvnwBAIeoAACGjAEAGN0AgBzdAIAg3QCAJN0AgLgJAQC5CQEAuhkBALsRAQC8OQEAvTkBAL75AAC/+QAAsH0BALFBAQCyRQEAs10BALRFAQC1TQEAtkUBALc5AQAo3QCALN0AgDDdAICzjQIANN0AgLWdAgC2lQIAON0AgDzdAIBA3QCAurUCALuJAgC8nQIAvYUCAL6NAgC/hQIAps0CAETdAIBI3QCApcUCAEzdAICj1QIAUN0AgFTdAICu1QIAr90CAKzFAgCt3QIAqu0CAKvRAgCE9AMAWN0AgKgxAwCpMQMAqjEDAKsxAwCskQAArZEAAK6RAACvjQAAXN0AgGDdAIBk3QCAaN0AgGzdAIBw3QCAdN0AgHjdAIC4vQAAuWUAALptAAC7ZQAAvH0AAL1lAAC+bQAAv2UAALD9AACxxQAAss0AALOpAAC0uQAAtaUAALahAAC3oQAAgL0BAIEJAACCGQAAfN0AgIDdAIC+WAIAhxQdAIacHQCEbB0AxNsAgIjdAICM3QCAvrwcAJDdAICU3QCAmN0AgLP5AgCc3QCAoN0AgKTdAICo3QCAtlEBALVZAQC+3B8Au0EBALp5AQCs3QCAsN0AgL8hAQC+PQEAvT0BALxZAQDhcAcAtN0AgOMIBgC43QCA78wAALzdAIDA3QCAxN0AgOMQAADI3QCA4dABAMzdAICGkBwAh/QcAO/gBgDQ3QCAo3kCANTdAIDY3QCA3N0AgODdAICm0QEApdkBAOTdAICrwQEAqvkBAOjdAIDs3QCAr6EBAK69AQCtvQEArNkBAITdAICCFQAAgeUfAIDlHwDw3QCA9N0AgPjdAID83QCAqAkfAKkJHwCqHR8AqxUfAKwNHwCtcR8ArnEfAK9xHwCwER8AsS0fALIlHwCzyR8AtN0fALXBHwC2wR8At8EfALjFHwC5yR8AutUfALupHwC8uR8AvbkfAL6pHwC/oR8As7UfAADeAIAE3gCACN4AgAzeAIC20R8AtaUfABDeAIC7yR8AuvUfABTeAIAY3gCAvyUfAL45HwC9PR8AvNEfABzeAIAg3gCAJN4AgCjeAIAs3gCA4WAfADDeAIDjtBwANN4AgDjeAIA83gCA7wAdAEDeAIBE3gCASN4AgEzeAICjNR4AUN4AgFTeAIBY3gCAXN4AgKZRHgClJR4AYN4AgKtJHgCqdR4AhKgCAGTeAICvpR4ArrkeAK29HgCsUR4AgE0AAIFVAACCVQAAs8kBAGjeAIC12QEAtskBAGzeAICGoAAAhwQBALrFAQC7rQEAvLUBAL29AQC+tQEAv60BAKiZAQCpmQEAqg0BAKsFAQCsHQEArQUBAK4FAQCvNQEAcN4AgHTeAIB43gCAfN4AgIDeAICE3gCAiN4AgIzeAIC4JQEAuS0BALo5AQC7OQEAvCkBAL0pAQC+3QAAv9UAALBNAQCxJQEAsi0BALMlAQC0PQEAtSUBALYhAQC3HQEAkN4AgJTeAICY3gCAo4kCAJzeAIClmQIApokCAKDeAICk3gCAqN4AgKqFAgCr7QIArPUCAK39AgCu9QIAr+0CAKzeAICw3gCAtN4AgIRAAgC43gCAvN4AgMDeAIDE3gCAgA0AAIEVAACCHQAAyN4AgMzeAIDQ3gCAh7QDAIbcBAC+zAMA2N4AgNzeAIDg3gCA7+gCAOTeAIDo3gCA7N4AgOP8AgDw3gCA4dABAPTeAID43gCA/N4AgADfAIAE3wCAs2EDAAjfAIAM3wCAEN8AgBTfAIC2eQMAtXEDABjfAIC7XQMAul0DABzfAIAg3wCAv+EAAL79AAC9/QAAvP0AALC5AgCxuQIAsgkBALMJAQC0GQEAtQUBALYFAQC3PQEAuAUBALllAQC6bQEAu2UBALxhAQC9YQEAvmEBAL9hAQCFXAcAJN8AgCjfAIAs3wCAFN0AgDDfAIA03wCAON8AgKgxAgCpOQIAqskCAKvJAgCs2QIArdkCAK7JAgCvyQIAhMwFAOGAHgA83wCA47weAOE4HgBA3wCA46AAAL4QBABI3wCATN8AgO8MHgBQ3wCAVN8AgFjfAIBc3wCA73QeAKNhAgCCUQAAgUEAAICRAABg3wCApnkCAKVxAgBk3wCAq10CAKpdAgCGyAQAhzwFAK/hAQCu/QEArf0BAKz9AQCohQYAqY0GAKqFBgCrmQYArIkGAK2JBgCuvQYAr7EGAETfAIBo3wCAbN8AgHDfAIB03wCAeN8AgHzfAICA3wCAuJ0GALmtBgC6pQYAuwkHALwZBwC9GQcAvg0HAL8FBwCw0QYAsdEGALLRBgCz0QYAtLUGALW9BgC2tQYAt60GALMNBgCE3wCAiN8AgIzfAICQ3wCAtgkGALUBBgCU3wCAuxUGALoVBgCY3wCAnN8AgL95BgC+cQYAvQUGALwFBgCg3wCA4aAEAKTfAIDjXAUAgA0AAIE1AACCPQAAqN8AgKzfAICw3wCAhGADAL5sAAC/8AEAhZAAALTfAIDvmAUAo40HAIQIAACGAAwAh4wAALjfAICmiQcApYEHALzfAICrlQcAqpUHAMDfAIDE3wCAr/kHAK7xBwCthQcArIUHAMjfAICz6QYAzN8AgNDfAIC26QYA1N8AgNjfAIC16QYAukUBALtNAQDc3wCA4N8AgL5FAQC/TQEAvFUBAL1NAQCoIQYAqSEGAKolBgCrPQYArCUGAK0tBgCuSQYAr0EGAOTfAIDo3wCA7N8AgPDfAID03wCA+N8AgPzfAIAA4ACAuEkBALlJAQC6WQEAu1EBALx5AQC9eQEAvhkBAL8VAQCwxQEAsc0BALLFAQCz3QEAtMUBALXNAQC2xQEAt3kBAATgAIAI4ACADOAAgKOhBQAQ4ACApaEFAKahBQAU4ACAjyHqAxjgAICqDQIAqwUCAKwdAgCtBQIArg0CAK8FAgCX7RIAlmUSAJVFEQCUnRYAk3EWAJJVFQCReesDkFnqA59hBgCeNQUAnUUaAJxpGgCbVRkAmkUeAJlZHgCYRR0A4WAAABzgAIDjTD4AIOAAgKOxAgCi1QEAobUHAKCJBgCxATgAsAk+ALOVOgCyjToAtbUmALQBJADvaDoAvjAMAKnJNgCowTYAqwEwAKrhNwCtzTMArPUyAK/5PgCuATwAoRkCACjgAICjbQ4Aom0OAKX1CgCkAQgAp4ULAKaZCgCGAA0Ah0QNAIIJ6wODCesDhDHqA4UVFACGORcAh80XAISgDQAs4ACAiiUQAIsNEwCMnRMAjQ0cAI4ZHwCPDR8A1N4AgO8AAwCSbRgAk0kbAJR9GwCVBQQAllkHAJdJBwAw4ACANOAAgJpFBgCbLQAAnFEDAONgAAA44ACA4WwAAIClAQCBAQEAggUBAL4ADAA84ACAQOAAgETgAIDviAEASOAAgOFUBgBM4ACA41QBAFDgAIBU4ACAWOAAgFzgAICz6QIAYOAAgGTgAIBo4ACAbOAAgLadAgC1mQIAcOAAgLuJAgC6vQIAdOAAgHjgAIC/WQIAvlECAL1ZAgC8kQIAoykNAHzgAICA4ACAhOAAgIjgAICmXQ0ApVkNAIzgAICrSQ0Aqn0NAJDgAICY4ACAr5kNAK6RDQCtmQ0ArFENAIBRAACBWQAAgmEAALMtDwCc4ACAtS0PALbJDwCg4ACAhkADAIcIAwC6yQ8Au8UPALzBDwC9wQ8AvsEPAL/BDwAk4ACAlOAAgKTgAICo4ACArOAAgLDgAIC04ACAuOAAgKhFDgCpgQ8AqskPAKvJDwCsyQ8ArSUPAK4tDwCvJQ8AsGEPALFtDwCyeQ8As3kPALRpDwC1aQ8Ath0PALcVDwC4LQ8AuTUPALo1DwC7BQ8AvB0PAL3xAAC+8QAAv/EAAKNhDgC84ACAhMQBAMDgAIDE4ACApoUOAKVhDgDI4ACAq4kOAKqFDgDM4ACA0OAAgK+NDgCujQ4ArY0OAKyNDgDU4ACA2OAAgNzgAIDg4ACA5OAAgOjgAIDs4ACA8OAAgPTgAICCHQAAgR0AAIAdAAD44ACA/OAAgADhAIC+tAEAqK0BAKnVAQCq1QEAqwUBAKwdAQCtBQEArg0BAK8FAQCGgAEAhxgBAAjhAIAM4QCAEOEAgBThAIAY4QCAHOEAgLiFAAC5jQAAuoUAALudAAC8hQAAvY0AAL6FAAC/vQAAsH0BALHhAACy5QAAs/0AALTtAAC13QAAttUAALe9AACzXQIAIOEAgCThAIAo4QCALOEAgLaFAgC1lQIAMOEAgLslAwC6uQIANOEAgDjhAIC/GQMAvikDAL0pAwC8MQMAvswEAKMZAgA84QCAQOEAgKbBAgBE4QCASOEAgKXRAgCq/QIAq2EDAEzhAIBQ4QCArm0DAK9dAwCsdQMArW0DAKgpAwCpKQMAqjkDAKs5AwCsKQMArSkDAK6dAACvlQAAVOEAgFjhAIBc4QCAYOEAgGThAICCqQEAga0BAICtAQC4mQAAua0AALqlAAC7bQAAvHUAAL19AAC+dQAAv20AALDtAACx9QAAsvUAALPFAAC03QAAtb0AALa1AAC3qQAA4XgBAOEcDgDjEAAA4zwOAGjhAIBs4QCAvhQEAHDhAICErAIAeOEAgId4BQCGDAUAfOEAgIDhAIDvvAAA70gOALPxAgCE4QCAiOEAgIzhAICQ4QCAtukCALXhAgCU4QCAu3EBALppAQCY4QCAhKAEAL85AQC+WQEAvVEBALxhAQCc4QCAhIwEAKDhAICEADgApOEAgKjhAICs4QCAsOEAgKqJDgCriQ4AqLkOAKmxDgCu/Q4Ar+EOAKz5DgCt9Q4Asq0OALNlDgCwkQ4AsaUOALZ9DgC3ZQ4AtH0OALV1DgC6XQ4Au+UNALhdDgC5VQ4AvuENAL/pDQC8/Q0AvfUNAKOxBQB04QCAtOEAgLjhAIC84QCApqkFAKWhBQDA4QCAqzEGAKopBgDE4QCAyOEAgK95BgCuGQYArREGAKwhBgDM4QCA0OEAgNThAIDY4QCAgB0AAIEJAACCOQAA3OEAgODhAIDk4QCAhsgAAIcMAwDo4QCA7OEAgPDhAID04QCAqKUHAKm1BwCqvQcAq8kHAKzZBwCt2QcArskHAK/BBwC+oAAA+OEAgPzhAIAA4gCABOIAgAjiAIAM4gCAEOIAgLjNAAC51QAAutUAALvlAAC8/QAAvZUAAL6dAAC/lQAAsIkHALFlBwCyYQcAs30HALRlBwC1bQcAtmUHALf1AACzNQYAFOIAgBjiAIAc4gCAIOIAgLZZBgC1UQYAJOIAgLuhBgC6TQYAKOIAgCziAIC/qQYAvqEGAL2pBgC8tQYAMOIAgDTiAIDv8AUAOOIAgDziAIBA4gCAROIAgEjiAICAPQAAgQkAAIIdAABM4gCA4cgGAFDiAIDjSAQAVOIAgKO1BgBY4gCAhigAAIdAAQBc4gCAptkGAKXRBgBg4gCAqyEGAKrNBgBk4gCAaOIAgK8pBgCuIQYArSkGAKw1BgBs4gCAs70BAHDiAIB04gCAtnkBAHjiAIB84gCAtXkBALpVAQC7XQEAgOIAgITiAIC++QAAv/kAALxFAQC9+QAAqHECAKlxAgCqcQIAq3ECAKy1AgCtvQIArrUCAK+tAgC+rDwAiOIAgIziAICQ4gCAlOIAgJjiAICc4gCAoOIAgLhpAwC5aQMAugkDALsJAwC8HQMAvQUDAL4NAwC/BQMAsNUCALHdAgCy1QIAs2kDALR5AwC1eQMAtmkDALdhAwCk4gCAqOIAgKziAICj9QIAsOIAgKUxAgCmMQIAtOIAgLjiAIC84gCAqh0CAKsVAgCsDQIArbEDAK6xAwCvsQMA7xgCAIIVAACBbQAAgG0AAMDiAIDI4gCAhvg8AIcYAwDM4gCA0OIAgNTiAIDY4gCA42wHAAThAIDhaAEA3OIAgKiFAgCplQIAqpUCAKulAgCsvQIArdUCAK7RAgCv0QIA4OIAgOTiAIDo4gCA7OIAgPDiAID04gCA+OIAgPziAIC4dQEAuX0BALp1AQC7zQEAvNUBAL3dAQC+yQEAv8EBALC1AgCxvQIAsoECALOBAgC0VQEAtV0BALZVAQC3TQEA4bQGAADjAIDj9AYABOMAgIQYPQAI4wCADOMAgBDjAIAU4wCAGOMAgBzjAIAg4wCAJOMAgCjjAIDvWAYALOMAgIF9AACAcQAAMOMAgIIFAAA44wCAPOMAgO+AAQC+VDwA4ZABAEDjAIDjfAYAROMAgEjjAIBM4wCAhtg8AIf0PACjnT0AxOIAgDTjAIBQ4wCAVOMAgKbVPQCltT0AWOMAgKv5PQCq8T0AXOMAgGDjAICvGT4ArhE+AK3VPQCs1T0AZOMAgLOhPgBo4wCAbOMAgLatPgBw4wCAdOMAgLWxPgC6ST8Au0k/AHjjAIB84wCAvkk/AL9JPwC8ST8AvUk/AKhVPgCpZT4Aqm0+AKtlPgCsfT4ArWk+AK65PwCvuT8AgOMAgITjAICI4wCAjOMAgJDjAICU4wCAmOMAgJzjAIC4VT8AuV0/ALpVPwC7bT8AvHU/AL19PwC+dT8Av20/ALDJPwCxyT8Astk/ALPZPwC0yT8Atck/ALZ9PwC3cT8AghUAAKPhPwCAsQEAgbEBAKbtPwCg4wCAvtABAKXxPwCqCT4Aqwk+AITkAQCk4wCArgk+AK8JPgCsCT4ArQk+ALPdPACo4wCAhugAAIfMAQCs4wCAtpU8ALX1PACw4wCAu7k8ALqxPAC04wCAuOMAgL9ZPwC+UT8AvZU8ALyVPACoUT4AqVE+AKptPgCrYT4ArGE+AK1hPgCulQEAr40BAISgAQC84wCAwOMAgMTjAIDI4wCAzOMAgNDjAIDU4wCAuKkBALmpAQC6aQEAu2kBALx5AQC9eQEAvmkBAL9pAQCw/QEAsc0BALLFAQCzrQEAtLkBALW5AQC2rQEAt6UBALPlPQDY4wCA3OMAgODjAIDk4wCAtuE9ALXpPQDo4wCAuwkCALo5AgDs4wCA8OMAgL99AgC+fQIAvXkCALwRAgD04wCAo6E9APjjAID84wCApqU9AADkAIAE5ACApa09AKp9AgCrTQIACOQAgAzkAICuOQIArzkCAKxVAgCtPQIAgOkAAIHpAACCHQAAvsADAO/kAgAQ5ACAh1QDAIY8BADjEAEAGOQAgOH4AQAc5ACAIOQAgCTkAIAo5ACALOQAgDDkAIA05ACAOOQAgLORAwA85ACAtbkDALZ9AwBA5ACAROQAgEjkAIC6WQMAu1kDALxJAwC9SQMAvv0AAL/1AACoRQIAqVUCAKpVAgCrZQIArH0CAK2xAgCusQIAr7ECAIRsBQBM5ACAUOQAgFTkAIBY5ACAXOQAgL5wBQBg5ACAuF0BALltAQC6ZQEAuw0BALwZAQC9GQEAvg0BAL8FAQCw0QIAsdECALLRAgCz0QIAtHUBALV9AQC2dQEAt20BAOFAPwDjvAAA4wg+AOFsPgBk5ACAaOQAgGzkAIBw5ACAdOQAgHjkAIB85ACAgOQAgL5sBwDvVAAA75w+AIjkAICjnQIAgmkAAIFhAACAaQAAjOQAgKZxAgCltQIAkOQAgKtVAgCqVQIAhsgEAIfsBACv+QEArvEBAK1FAgCsRQIAqKUGAKmpBgCquQYAq7kGAKypBgCtqQYArtkGAK/ZBgCE5ACAlOQAgJjkAICc5ACAoOQAgKTkAICo5ACArOQAgLhxBwC5cQcAunUHALvdBwC8xQcAvc0HAL7FBwC//QcAsKkGALG1BgCytQYAs40GALSVBgC1UQcAtlEHALdRBwCzMQYAsOQAgLTkAIC45ACAvOQAgLYpBgC1IQYAwOQAgLtxBgC6bQYAxOQAgMjkAIC/lQcAvlEGAL1ZBgC8YQYAzOQAgKN1BgDQ5ACA1OQAgKZtBgDY5ACA3OQAgKVlBgCqKQYAqzUGAODkAIDk5ACArhUGAK/RBwCsJQYArR0GAIANAACBFQAAgh0AAOjkAIDs5ACA8OQAgITcAQD05ACAhoAAAIcgAQD45ACA/OQAgADlAIAE5QCACOUAgAzlAIAQ5QCA43QEABTlAIDhyAUAGOUAgBzlAIAg5QCAJOUAgCjlAIAs5QCAMOUAgDTlAIA45QCA77QEADzlAIBA5QCAqD0GAKlVBgCqVQYAq6kBAKy5AQCtuQEArqkBAK+pAQCErAEAROUAgEjlAIBM5QCAUOUAgFTlAIBY5QCAXOUAgLhtAQC5BQEAugEBALsBAQC8BQEAvQ0BAL4xAQC/MQEAsNkBALHZAQCybQEAs2UBALR9AQC1ZQEAtmUBALdVAQCBvQMAgL0DALPVBQCCGQAAtTkCAGDlAIC+VAMAtjECAGjlAIBs5QCAuxUCALoVAgC9uQIAvLECAL+pAgC+sQIAcOUAgKZpAgClYQIAhAAMAKONBQB05QCAhvgMAId8AwCv8QIArukCAK3hAgCs6QIAq00CAKpNAgB45QCAfOUAgIDlAICE5QCAiOUAgIzlAIDjIAEAkOUAgOGgAQCU5QCA70ACAJjlAICc5QCAoOUAgKTlAICo5QCArOUAgLDlAICz8QMAtOUAgBTkAIC45QCAvOUAgLbpAwC14QMAwOUAgLu1AwC6tQMAxOUAgMjlAIC/lQMAvpUDAL2lAwC8pQMAqCkCAKkpAgCqOQIAqzkCAKwpAgCtKQIArlkCAK9VAgCAzQEAgQkAAIIZAADM5QCA0OUAgL58DQCHtA0AhhwMALgxAgC5PQIAujUCALvpAgC8+QIAvfkCAL7pAgC/6QIAsDECALExAgCyMQIAszECALQRAgC1EQIAthECALcRAgDY5QCA3OUAgODlAIDk5QCA6OUAgOzlAIDw5QCA79QGAPTlAIDhVAYA+OUAgOOkAACsDBUA/OUAgADmAIAE5gCAo/ECAAjmAIAM5gCAEOYAgBTmAICm6QIApeECABjmAICrtQIAqrUCABzmAIAg5gCAr5UCAK6VAgCtpQIArKUCAKghDgCpIQ4AqkkOAKtZDgCsaQ4ArWkOAK6ZDgCvmQ4A1OUAgCTmAIAo5gCALOYAgDDmAIA05gCAOOYAgDzmAIC49Q4Auf0OALr1DgC7iQ4AvJ0OAL2FDgC+hQ4Av7UOALDpDgCx6Q4Asv0OALPxDgC01Q4Atd0OALbVDgC3zQ4As8EOAIIVAACBtQAAgLUAAEDmAIC26Q4AteEOAL4QAAC7LQ4Aui0OAIRkAwBE5gCAvxkOAL4RDgC9JQ4AvCkOAEjmAICjhQ4AhogAAIdsAwCmrQ4ATOYAgFDmAIClpQ4AqmkOAKtpDgBU5gCAWOYAgK5VDgCvXQ4ArG0OAK1hDgCziQ4AXOYAgGDmAIBk5gCAaOYAgLaBDgC1iQ4AbOYAgLuVDgC6jQ4AcOYAgHTmAIC/+Q4AvvEOAL2FDgC8hQ4AeOYAgHzmAICA5gCAhOYAgOMMDQCI5gCA4RgNAIzmAIDvrAwAkOYAgJTmAICY5gCAnOYAgKDmAICk5gCAqOYAgKgBDgCpAQ4AqgEOAKsBDgCsAQ4ArQEOAK4BDgCvPQ4AgN0AAIEJAACCGQAArOYAgLDmAICEPAEAvnQAALjmAIC4HQ4AuS0OALolDgC76QEAvPkBAL35AQC+6QEAv+kBALBJDgCxUQ4AslEOALNRDgC0NQ4AtT0OALY1DgC3LQ4Ao4kNALzmAICGrAQAhzwDAMDmAICmgQ0ApYkNAMTmAICrlQ0Aqo0NAMjmAIDM5gCAr/kNAK7xDQCthQ0ArIUNANDmAICznQIAhEgDAL5ABAC2VQMA1OYAgNjmAIC1sQIAunEDALt5AwDc5gCA4OYAgL4xAwC/MQMAvFEDAL1RAwCwkQMAsZkDALKhAwCzoQMAtNEDALXRAwC20QMAt9EDALj1AwC5+QMAus0DALvFAwC83QMAvcUDAL7NAwC/xQMA5OYAgOjmAIDs5gCA8OYAgIV8GQD05gCA+OYAgGTlAICoIQIAqTECAKoxAgCrBQIArB0CAK3xAwCu8QMAr/EDAPzmAIAA5wCABOcAgAjnAIDvUAAADOcAgBDnAIAU5wCA44QAABjnAIDh+AEAHOcAgIAVAACBGQAAggUAACDnAICjmQMAKOcAgIZoBACHYAUALOcAgKZRAgCltQMAMOcAgKt9AgCqdQIANOcAgDjnAICvNQIArjUCAK1VAgCsVQIAPOcAgEDnAIBE5wCASOcAgEznAIBQ5wCAVOcAgO/4AQC+bAQA4YAOAFjnAIDjFAEAXOcAgGDnAIBk5wCAaOcAgGznAIBw5wCAdOcAgLPdAQB45wCAtf0BALb1AQB85wCAgOcAgITnAIC6sQEAu4UBALydAQC9NQEAvj0BAL81AQCpBQYAqLkFAKsVBgCqHQYArT0GAKw9BgCvTQYArl0GACTnAICCHQAAgR0AAIAdAACI5wCAjOcAgJDnAICU5wCAuUEHALidBgC7QQcAukkHAL1FBwC8WQcAv0UHAL5FBwCxCQYAsD0GALOpBgCyAQYAtbkGALSxBgC3rQYAtrEGAKORBgCEjAIAhigAAIfAAwCY5wCAprkGAKWxBgCc5wCAq8kGAKr9BgCg5wCApOcAgK95BgCucQYArXkGAKzRBgCo5wCAs5kHAKznAICw5wCAtlEHALTnAIC45wCAtbEHALptBwC7dQcAvOcAgMDnAIC+WQcAv0UHALxtBwC9ZQcAxOcAgMjnAIDM5wCA0OcAgNTnAIDY5wCA3OcAgO+oBQDg5wCA4TQFAOTnAIDjdAUA6OcAgOznAIDw5wCA9OcAgKMdBgCCLQAAgRUAAIAdAAD45wCAptUGAKU1BgD85wCAq/EGAKrpBgAA6ACAhCgBAK/BBgCu3QYAreEGAKzpBgCoxQYAqdUGAKrVBgCr5QYArP0GAK0VBgCuHQYArxUGAL7sAQAI6ACAhggAAIcgAAAM6ACAEOgAgBToAIAY6ACAuH0GALkFBgC6DQYAuwUGALwBBgC9CQYAvjkGAL85BgCwbQYAsXUGALJ9BgCzdQYAtFkGALVFBgC2TQYAt0UGAKiRAgCpmQIAqqECAKuhAgCs0QIArd0CAK7VAgCvyQIAHOgAgCDoAIAk6ACAvyweACjoAIAs6ACAMOgAgDToAIC4VQMAuV0DALppAwC7ZQMAvGEDAL1hAwC+YQMAv2EDALC5AgCxjQIAsoUCALNtAwC0dQMAtX0DALZ1AwC3bQMAOOgAgDzoAICzIQIAQOgAgLVRAgCEiAMAROgAgLZVAgC05gCAvigcALtBAgC6dQIAvbEDALxZAgC/sQMAvrkDAKNpAgBI6ACATOgAgFDoAIBU6ACAph0CAKUZAgBY6ACAqwkCAKo9AgBc6ACAYOgAgK/5AwCu8QMArfkDAKwRAgCopQIAqbUCAKq9AgCrtQIArK0CAK01AQCuPQEArzUBAL4sHABk6ACAaOgAgGzoAIBw6ACAeOgAgIdoHQCGHB0AuIUBALmNAQC6hQEAu50BALyNAQC9vQEAvrUBAL95AACwUQEAsVEBALJRAQCzUQEAtPEBALXxAQC29QEAt+UBAO/YAACCtQAAgaUAAIClAAB86ACAgOgAgIToAIDvxAYAiOgAgOH0BgCM6ACA4zgBAOPMAACQ6ACA4SgBAJToAICY6ACAtuUBALV1AgCEQBwAs2UCAJzoAICg6ACApOgAgL9lAQC+ZQEAvdUBALzVAQC7xQEAusUBAKjoAICs6ACAo7UdAHToAICw6ACAtOgAgLjoAICmNR4ApaUdALzoAICrFR4AqhUeAMDoAIDE6ACAr7UeAK61HgCtBR4ArAUeAMjoAIDM6ACA0OgAgNToAICADQAAgTUAAII9AADY6ACA3OgAgODoAIC1BQAAcRoAgOG0AgCs2AIAtQUAAHUaAICotR8AqRUfAKodHwCrFR8ArDEfAK09HwCuLR8AryEfAOG0AgCs2AIAtQUAAHkaAIDhtAIArNgCALUFAAB9GgCAuNEAALnZAAC64QAAu+EAALyRAAC9kQAAvpEAAL+RAACwIR8AsTEfALIxHwCzMR8AtAkfALUJHwC28QAAt/EAAOG0AgCs3AIA71QdALUdAACBGgCA4bwCAKzQAgC1KQAAoyUBAKKRAwChFR0AoA0dAOGAHgCFGgCA47wdAOHEAgCz1R4AtQkAAKzYAgCJGgCA4bwCALb9HgC1+R4ArOACALu1HgC6pR4AtQUAAI0aAIC/jR4Avo0eAL2lHgC8pR4AoxUeAOG8AgCs0AIAtREAAI9pJQCmPR4ApTkeAJEaAICrdR4AqmUeAOG0AgCseAEAr00eAK5NHgCtZR4ArGUeAJvdFACa5RUAmQEXAJjhEACfcR8AnnkZAJ35GQCcARsAk+UtAJIRLwCRbSkAkG0pAJf5EQCW8REAlYUsAJSZLQC1JQAA4ZQCAILxJgCDjSoAhJUqAIXhLACGHS4Ah3kuAKy0AgCVGgCAilUvAIspEgCMORIAjRkTAI7xFACPHRYAtQUAAJkaAICSVRcAk5EYAJRxGgCV+RoAlvkcAJd9HgCC4AMAkwsAgJpVHgCb2QAAnHUCAIMMAICzDACAuIkKAKwBBACthQYAroEGAMwQAgDMfAMAtgwAgJ0aAIDCDACAxQwAgMgMAIAACwCAgaUyArwMAIAE6ACAmpUGAJtVIwK8kQYAvbEAAL6RBgC/rQYAuOkGALmVBgC6kQYAoRoAgLTBBgC1zQYAts0GALfdBgCw/QYAseUGALKdAACz5QYAhVTHA6UaAICH/AAAuAEKAK0aAIDpDACAsRoAgIyRcwCNpAEAzPACAL4NAIDBDQCAiRQAALgZCgCLDAAAGg4AgFMOAIC5DACAvwwAgBkKAICRwAEAywwAgLhtCgDODACA1AwAgNoMAIDdDACA4AwAgLUaAIAoDQCA5gwAgLkaAIDhpB4AKw0AgONUHgCvIXMAzCgCAO8MAIDsDACA8gwAgPUMAID4DACAzIACAJS4AwD7DACAkhQCAO9gHgCQAAIA/gwAgAoNAIC48QoADQ0AgJ8LAIAQDQCAiSkLABMNAICpGgCAvDABAL/EAQC+7AEAFg0AgMzsAgC4xQoAukQBAK0JAIAZDQCAygYAgN8GAIDyBgCAHA0AgPoGAIAfDQCACgcAgC0HAIAYBwCA9gcAgC8HAICpDQCAOgcAgK8NAIBKBwCAtXkAAGcHAIC3cSoCcgcAgLFhAAB0BwCAsw0pAo0HAIC96QAAoAcAgPoHAICtBwCAuRkrAsMHAIC7WRQCHwgAgFoJAIA8CACALw4AgFsIAIA5AACAgQgAgHEAAIDHCACAKwAAgCAJAIA9AACAXAkAgEMAAIBeCQCARQgAgGoIAIBJAACAAAgAgFMAAIB5CQCAWQAAgCINAIBfAACAuw0iAtANAIDMFDYCHwAAgL9lAAC+EQAAvW0AAOUHAICAaQEAgXUBAIJxAQCD3SEChGkHAIWBBwCGgQcAh3EBAIihAQCJrQEAirUHAIuNBwCMlQcAjaUBAE8AAICPpQEAkOEBAJHtBwCSsSECk/0HAJSNBwCVUQYAlvEBAJfZAQCY0QEAmXUGAJp9BgCb1QEAnGkGAJ2ZFAKeUQYAn1EGAKB1FAKhuQYAokkBAKOFLQKkIQEApS0BAKZ1FAKntQYAqKERAqlRFAKqlQYAsSEAgMy8NQLNPDUCbQAAgKoDAICsAwCArwMAgL0hAIDEIQCA2yEAgOIhAIDJAACADwAAgLihBgC6BgCAtwYAgMwAAIDOIQCAtQMAgN0FAIAYBgCAugUCALvVAgC46QUAuf0FAL7JAgC/5RcCvA0CAL0BAgCy4QUAs+EFALCNBQCxnQUAtuUFALfpBQC09QUAte0FAKo9BQCrwQUAqD0FAKk1BQCuzQUAr/UFAKzNBQCtxQUAoj0FAKMFBQCg1QIAoTkFAKYdBQCnBQUApB0FAKUVBQC/BgCAm8EFAD4GAIBVBgCAnt0FAJ8xBACcUQIAndUFAHIGAICJBgCApAMAgDAiAIDbAACAoAMAgI8HAIDuBwCA8gcAgJAJAIACCACABggAgJYLAICUCQCArwoAgG8HAICLBwCAlwcAgKIHAICqBwCAqgkAgPsOAIASDwCAHw8AgMwEMwLNsDACzCAzAs3gMALMEDACzGgwAsxYMALNjDACzGgxAs0UMQLM1DECzRQ2AsxwIALN0CcCzDA2AswkMQLMDDwCzWg/AswYPwLNND8CzBg9As3AMgLMRDwCzBg5Asw4MgLNqDICzIgyAs34MwLMfDMCzUAzAswoMwLNCDMCzMghAs0kJgLMrCYCzEA4AsyYJQLNyDoCzBwkAs0QJALMhDsCzag7AsysJQLNvDoCzKw4Asz4JwLM4DgCzXQ4AicPAID2BgCAYQ0AgIgNAIDNICoCzBwrAqoGAIAsIgCAzKQgAs2gJwLMOCYCygQAgMw4OgLNPDsCzBA5As1gPgLMoAMAvj0NAL3tLALWBACAu1UjAgQJAIC5PSICzwYAgNkHAIClBACAoA0AgLIEAIBvBQCA9AYAgL4EAIB1BQCAr70MAK6ZLgKtpQwAwgUAgKvFIgIDBgCAxAQAgCMGAIDQBACAyAUAgCkGAIBdBgCAowEYAqAEAIAaBwCAHQcAgJ9dDACeUQwAnUUMACcHAICbWSECrwcAgLEHAIC0BwCAuAcAgCoHAIDOBwCA0AcAgJMtJgLTBwCAbAgAgG8IAICPBQwAjnEMAI1lDAB5CACAi0UgAmAJAICJNS8CYwkAgGcJAIB8CACAcAkAgHMJAIC9AwCAACIAgIFdDACAYQwAgAABAIEYAACCAAQABCIAgIQQBwCFFAYAhuQIAIc8AgCILAUAiaQFAIoAeAAIIgCAjCQAAAwiAIAUIgCAECIAgLgRAACRxHsAkkh6AJNMeQAcIgCAzOgCAJbwCQC4OQAAkMAJACQiAICS8AkAzPgCAJS0CQC4DQAAKCIAgMwcAgC4BQAANCIAgMzkAgC4HQAAOCIAgDwiAIBDIgCAWiIAgKiMCACp5HsAYSIAgKvUBgDM5AIAuA0AAGsiAIDMlAIAbyIAgLGAewC4CQAAuBUAAMz8AgC15AgAcyIAgMzYAgB3IgCAuAUAALqcBQC7XAUAvAB8AL30fwC++H0Av/xyAIAJOgKBDToCggE6AoMFOgKEGToChR06AoYROgKHFToCiCk6AoktOgKKIToCiyU6Aow5OgKNPToCjjE6Ao81OgLM8AIAkekPAIMiAIDMzAIAuBkAAH8iAIDM3AIAl+UPALg1AAC4DQAAjyIAgMz8AgC4BQAAkyIAgMwwAgCXIgCAzNACAJsiAICfIgCAzIgCAKQtDwClVQ8Apl0PAMyUAgCoqToCqa06ArjVAACjIgCAuDUAAKciAIDMUAMAr7U6AswsAwCrIgCAzBgDALMFDwC0HQ8AzyIAgLYJDwC3CQ8Avmh9ALhtAAC4RQAAzDgDALwpDwDTIgCAviUPAMxYAwCH5Q4AzOg6Ari9AQC4yQEAzPA1As2kMwLMgCICzXwlAs2UNgLMBCkCzew7AsxkOgK45QEAuMEBAInVDgCI1Q4Al7EOALgNAACvIgCAsyIAgLciAIC4GQAAuyIAgNciAICfaTsC2yIAgL8iAIC4PQAAzMQCAMz4AgDDIgCAxyIAgLjZAADLIgCA3yIAgLjRAADjIgCAuPEAAMzMMwLnIgCAuMkAAMzoMwLrIgCAuNUAAKllAAC4yQAAzNgCAKq5BgC3TQ0Atk0NALU1DgC0NQ4AuFUAABUjAICxGQ8AsCkOAL/1AwC+UQ0AvVkNALw1DAC7XQ0Aul0NALldDQC4XQ0AgL0KAIHFCgCCFQQAg8kKAMx8BQCF3QoAhtUKAIfNCgDMVAUAifEKAIq5CACLDQgAjBEIAI0VCACOtScCj+UKAJBpCACRbQgAknEIAJNtJALMEAUAlR0IAJaFCgDMEAUAzDQFAJk9CACaiQoAmw0IAJwRCACdFQgAzEgFAMwQAgCgZQoAoW0KAKJlCgC4BQcApLEEAMzoAgCmsQQAuA0HAKiBBADM/AIAqpkIAKtdCgCsuQgArakEALglBwCvNQgAsNEIALHxBADMwAIAs40IALQpKAK1IQoAtiEKALchCgC4IQsAuSUIALhBBwC7KQsAvA0dAr3dDwC+MQsAvzELAIDdCgAZIwCAnKF9ANADAIDpAwCAhRkJAIaZCQCHlQkAiOEJAIklJQICBACAGwQAgC4EAIBBBACAVAQAgGcEAICQrQoAkUkFAJJtBQCTYQUAlGEFAJVtBQCWZQUAlxEFAJg1BQCZPQUAmjUFAJsNBQCcFQUAnR0FAJ4VBQCfCQUAoKkJAKH9BQCi9QUAowEFAKQFBQClDQUApgUFAKc9BQCoBQUAqQ0FAKoFBQCrGQUArIkJAK2pBQCutQkAr/0JALABCQCxfQUAsnUFALMBBQC0aQkAtQEFALYFBQC3PQUAuAUFALnhJQK6AQUAuwEFALzRJQK9PQkAvnkJAL9dCQCDMAUAoXgHAJ+xfgB6BACApHgHAKVIBwCNBACA8wQAgIt8BADdAACAEwEAgIhIBAAcAQCAIAEAgCQBAIAoAQCALAEAgDABAICyAAcAs/wHADQBAIDhAACAtuQHALfwBwDmAACA6wAAgLrgBwC7nAcAvIgHAL2oBwDwAACAs8F+AKPMBAD1AACA+gAAgIMABAD/AACAhXQEAKUgBAAEAQCAiEwEAAkBAIAOAQCAFwEAgK8tBwCNxAcArSEHAKwpBwDNAwCA8AQAgI8FAICwZQcA4gUAgB0GAIBDBgCAWgYAgHcGAICOBgCA0wMAgOwDAIAFBACAHgQAgDEEAIC8fAQAgt0rAoPlKwKA/QoAgfkrAoaZCQCHmQkAhOEKAIXhCgCKiQkAi4kJAIiJCQCJiQkAjoUJAEQEAICM4QgAjY0JAJK5KwKTQScCkJkrApHFCwCWyQsAl3UnApTFDQCV0SQCmskLAJvZKgKYyQsAmXkHAFcEAIBqBACAnP0LAH0EAICQBACA9gQAgKABAICkAQCAqAEAgONkAgCsAQCAsAEAgLQBAIDvvAcAqBEJALgBAIC8AQCAwAEAgMQBAIDIAQCAzAEAgNABAIDUAQCA2AEAgNwBAIDgAQCA5AEAgOgBAIDsAQCA8AEAgPQBAID4AQCA/AEAgAACAICCnH4ABAIAgKD1VAKh2VQCoulUAqP1dQCk7XUApZ12AKaVdgCnvXYAqIV2AKkpfQCqOX0AqwV9AKwdfQCtBX0Arg19AK8FfQCwfX0AsUl+ALJRfgCzUX4AtHV+ALV9fgC2aX4At2l+ALhZfgC5WX4Auil+ALspfgC8IX4AvSF+AL4ZfgC/GX4AkgcAgDkJAIDXBwCATSIAgLQNAAC1NQAAtj0AAKIGAICsBgCArwYAgAMjAIAJIwCAvSV4ALy1WALGMQCALjoAgJkqAIC9KgCAySoAgNkqAIDhKgCA7SoAgPUqAID9KgCACSsAgF0rAIB1KwCAhSsAgJUrAIClKwCAtSsAgNUrAICAeX8AgYF/AIKBfwCDnX8AhI1/AIWxfwCGsX8Ah7F/AIjhfwCJ4X8AiuF/AIv9fwCM5X8Aje1/AI7lfwCP3X8AkKV/AJGtfwCSpX8Ak71/AJSlfwCVrX8Alm1+AJctfgCYFX4AmRl+AJrpfgCb6X4AnPl+AJ35fgCe6X4An+V+AKAdfgChJX4AoiV+AKM9fgCkJX4ApS1+AKYlfgCnXX4AqGV+AKltfgCqZX4Aq31+AKxlfgCtbX4ArmV+AK9dfgCwJX4AsS1+ALIlfgCzPX4AtCV+ALUpfgC2WXcAt9V1ALj9eQC56XUAuvl1ALvZeQC86XUAvdV1AL7RdQC/2XUAgDF2AIE9dgCCSXYAg0V2AIRBdgCFTXYAhvl0AId9dgCIoQIAiU12AIpZdgCLuXoAjEl2AI2degCOsQIAjx16AJCRVgKRKXYAkoF2AJPNdgCU2XYAlel2AJbJdgCX0VkCmKF2AJllWgKa8XYAm01aApzRdgCdYXoAnoFWAp/VdgCgBQIAoY1aAqI1VwKjCXYApCF2AKUtdgCmiVoCp5laAqi5WgKpdXYAql13ANkrAIDdKwCAESwAgDksAIBJLACAUSwAgFUsAIBhLACAfSwAgIEsAICZLACAnSwAgKUsAIC1LACAUS0AgGUtAIClLQCAuS0AgMEtAIDFLQCA1S0AgJl1CgD4LQCAJC4AgDAuAIBQLgCAXC4AgGAuAIBkLgCAgux6AINkewB8LgCAgC4AgIZ0ewCHvHsArC4AgLguAIDALgCAyC4AgNguAIDnLgCA7y4AgBsvAIAfLwCAJy8AgJJwfAArLwCAMy8AgJFMfAA7LwCASy8AgGcvAIDfLwCA8y8AgKvMfACo5HwAqdx8APcvAIB3MACAezAAgI8wAICiwHwAkzAAgJswAICjMACAzEBJAs0ASQLM/EoCzWhLAqswAIC3MACA7TAAgP0wAIARMQCAjjEAgJoxAICqMQCAsqx8ALNAfAC2MQCAwjEAgMoxAIDOMQCAtGx8ALUEfACAlQcAgZ0HAIKVBwCDqQcAhLkHAIW5BwCG2QcAh9kHAIjpBwCJ6QcAivkHAIv5BwCM6QcAjekHAI7RBwCP0QcAkLEHAJGxBwCSSQEAk0kBAJRZAQCVWQEAlkkBAJdJAQCYeQEAmXkBAJpJAQCbSQEAnFkBAJ1ZAQCeSQEAn0kBAKC5AQChuQEAoskBAKPJAQCk2QEApdkBAKbJAQCnyQEAqPkBAKn5AQCqyQEAq8kBAKzZAQCt2QEArskBAK/JAQCwuQEAsbkBALJJAQCzSQEAtFkBALVZAQC2SQEAt0kBALh5AQC5eQEAukkBALtJAQC8WQEAvVkBAL5JAQC/SQEA0jEAgNYxAIDaMQCAkjIAgNoyAIDmMgCA6jIAgO4yAIDyMgCA+jIAgP4yAIASMwCALjMAgDYzAIB2MwCAejMAgIIzAICGMwCAjjMAgJIzAIC2MwCAujMAgNYzAIDaMwCA3jMAgOIzAID2MwCAGjQAgB40AIAiNACARjQAgIY0AICKNACAqjQAgLo0AIDCNACA4jQAgAY1AIBKNQCAUjUAgGY1AIByNQCAejUAgII1AICGNQCAijUAgKI1AICmNQCAwjUAgMo1AIDSNQCA1jUAgOI1AIDqNQCA7jUAgPI1AID6NQCA/jUAgJ42AICyNgCAnoUMAOY2AIDqNgCA8jYAgIC5AwCBuQMAgskDAIPJAwCE2QMAhdkDAIbJAwCHyQMAiPkDAIn5AwCKyQMAi8kDAIzZAwCN2QMAjs0DAI/FAwCQvQMAkQEMAJJJDgCTSQ4AlFkOAJVZDgCWSQ4Al0kOAJh5DgCZeQ4AmkkOAJtJDgCcWQ4AnVkOAJ5JDgCfSQ4AoLkOAKG5DgCiyQ4Ao8kOAKTZDgCl2Q4ApskOAKfJDgCo+Q4AqfkOAKrJDgCryQ4ArNkOAK3ZDgCuyQ4Ar8kOALC5DgCxuQ4AskkOALNJDgC0WQ4AtVkOALZJDgC3SQ4AuHkOALl5DgC6SQ4Au0kOALxZDgC9WQ4AvkkOAL9JDgC8eQQAvXkEAL6JBAC/nQQAuHUEALl9BAC6aQQAu2kEALRxBAC1cQQAtnEEALdxBACwcQQAsXEEALJxBACzcQQArGkEAK1pBACucQQAr3EEAKhBBACpQQQAqkEEAKtBBACknQUApWEEAKZhBACnYQQAoJ0FAKGFBQCijQUAo4UFAJxdBQCdZQUAnm0FAJ9lBQCYXQUAmUUFAJpNBQCbRQUAlB0FAJVlBQCWbQUAl2UFAJAdBQCRBQUAkg0FAJMFBQCMMQcAjTEHAI4xBwCPMQcAiDEHAIkxBwCKMQcAizEHAIQxBwCFMQcAhjEHAIcxBwCAMQcAgTEHAIIxBwCDMQcAJjcAgC43AIA2NwCAcjcAgHY3AIB+NwCAgjcAgIY3AICyNwCAtjcAgL43AIDSNwCA1jcAgPI3AID6NwCA/jcAgCI4AIBCOACAUjgAgFY4AIBeOACAijgAgI44AICeOACAwjgAgM44AIDeOACA9jgAgP44AIACOQCABjkAgAo5AIAWOQCAGjkAgCI5AIA+OQCAQjkAgEY5AIBeOQCAYjkAgGo5AIB+OQCAgjkAgIY5AICOOQCAkjkAgJY5AICaOQCAnjkAgK45AIDGOQCAyjkAgNY5AIDaOQCA3jkAgOI5AIDqOQCA7jkAgPI5AID+OQCABjoAgA46AIASOgCAGjoAgIC5AQCBuQEAgskBAIPJAQCE2QEAhdkBAIbJAQCHyQEAiPkBAIn5AQCKyQEAi8kBAIzZAQCN2QEAjskBAI/JAQCQuQEAkbkBAJIRAACTEQAAlDEAAJUxAAAeOgCAIjoAgCo6AIAyOgCAPSMAgGUsAIBpLACAJSQAgIJgAgCZ4QAAgIAAAIGYAACC5AYAg4gEAITUGwCFlBoAhhgfALMjAICIxB4AiQAQAIqoEwCLrBEAjAAoAI20KwCOuCoAj7wpAOOwAgC+dAIAnlUAAOMUAgCCbAIAtyMAgJkNAAC+RAIAnjUAAIJoAgCZBQAAuyMAgO/MAgC+oAAAgoQAAO/YAgDj7AEA4/QBAL8jAIDjCAMAwyMAgOM4AwDHIwCA44gDAMsjAIDv4AMAzyMAgO+IAwDvPAEA78QDANMjAIDv1AMA4+wDAB43AIDXIwCA4+wDAOPsAwDj5AMA2yMAgOO4AwDvXAMA70wDAN8jAIDvSAMA7/QDAOMjAIDnIwCA7zQDAON8AwDjlAQA6yMAgO8jAIDzIwCA47QEAPcjAID7IwCA/yMAgO9sBAADJACAByQAgO9YBADvUAQACyQAgBYkAIAaJACAvQAAgOP4BADCAACAMSQAgB4kAIBtKQCA45wEAAglAIBrJQCAriUAgO9QBADaJQCABCYAgO88BAApJgCAgAlLAoYcdwC+RAIAgnQCAL5QAgA+JgCAmREBAJkNAQCPrAIAggQCAI1oAQCewQIAi3wBAJ49AQCeKQEAvggCAJfQAgCZXQEAldACAJ5VAQCT0AIAmXUBAJHQAgC+SAIAn7gCAEYmAICdtAIAnk0BAJuwAgCZXQEAmbQCAL6EAgCeqQEApowCAGImAICkgAIAmakBAGomAIChSAIAgqwCAK/kAgCCtAIAglwCAJnlAQC+CAIAgnwCAIIABACopAIAnvkBAL5wAgC1HAQAnoUBAL6oBQCyhAIAtrECAL6sBQC4KQkAuYkCALqZAgCCjAUAu+gEAIKcBQByJgCAuPAEAJ5ZBgCZbQYAnmEGAJl5BgC+fAIAnmEGAIJcAgC+QAIAmVkGAJ5dBgCCYAIAmaUGAL58AgCevQYAghwCAL4UAgCZzQYAvkwCAIJMAgCa3QYAnt0GAJ/FBgDjDAIAgrwCAJn5BgC+ZAIA7/QCAJrxBgCe6QYAn+kGAJ7ZBgCf1QYA4wQCAJklBgCaIQYAgngCAJk9BgDjBAIAgkQCAJolBgC+cAIA75wCAJ4FBgCfFQYA7+gCAJp1BgCZBQYAggQCAL5wAgDjcAIAnnUGAJ8NBgCeAQYAvnwCAOM0AgCZDQYAvmACAIJsAgDv8AIAmTUGAIKQAwDv2AIAniEGAIQmAICbxQcAmeUHAL58AgCe7QcAn8UHAOPsAwCdUAIAnNEHAIJsAgDv1AIAmc0HAIJ8AgC+cAIAmd0HAJ7dBwC+AAIA42gCAJ6tBwCZuQcA42gCAIJ8AgDjDAIAvkgCAJmpBwCCWAIA78QCAJ6ZBwC+bAIA77gCAIKUAgCejQcA77gCALsAAACZeQcAuQwAAJ5xBwC/AAAAglQCAL0EAAC+aAIAs9QDAJmxBgCxcAMAggQCALc4AACeoQYAtTQAAL5wAgCrWAMAnqEGAO9cAgCZqQYArxADAIJQAgCtFAMAmYUHAJlpBgC+WAIAnmEGAL58AgCCaAIApqACAOOQAgCZaQYA43wBAOOYAQDjrAEA49ABAOPoAQC+dAIAno0FAOMwAgDvzAIAgmgCAJnRBQDvlAIA71QBAO9wAQDvJAEA7ygBAL58AgCevQUA4wwCAIJ4AgCZrQIAvnQCAJ6lAgDjNAIAgmACAJkZAAC+YAIA7/wCAJ4NAACClAIA79QCAJAmAIDj/AIAmQkAAL5gAgCYJgCAnh0AAOMAAgCwJSoAglgCAJkNAADv9AIAvmQCAK4mAIDvwAIAnhkAAIIYAgCCOAIA43ACAJkRAACaNQAAmSkBAL50AgDsJgCAnyUAAJ4JAACZ6QEAvrQDAL7gAwCazQEA79gCAJ4RAQCC2AMA/SYAgIHEAgDjsAMAHycAgOP8AwC+/AIAhMQCAIIoAgCGEAIAKicAgIg8AgCeIQAAnw0AAHonAIDvKAMAj3QCAO8sAwCCiAIAmXUAAJoVAACSxAMAldADAJktAACa0QAAjicAgL7IAgCYaAMAm3wDAILEAwCeQQAAnykAALAnAICChAIA45ACAL4IAwC+JwCABigAgJ8ZAACe7QAA49ACAJlxAACaFQAAvhQCAO8wAgCZIQAA71gCABQoAICv7AMAggQCALFMHACwABwAniUAALJMHACeXQAAn2EAAOO8AgCZIQAA+QAAAHEpAIDvlAIAdSkAgL08HACCgB0Av8EfAHkpAIDjtB0AvnQCAJ71HwDj8B0AmQUAAH0pAIC+fAIAngkAAIJgAgCZDQAAiSkAgL5gAgDvzAIAnh0AAOklAIDv3AIA42gCAPkYAIDjPB0AIRoAgP0YAIABGQCAJRoAgCkaAIAtGgCAMRoAgDUaAIA5GgCA76QCAD0aAIDvJB0AQRoAgLHFAAAFGQCAs8UAALLdAAC1yQAAtMEAALcdAAC2wQAAuWUAALhlAAC7zQAAus0AAL3dAAC83QAAv8UAAL7JAAAJGQCADRkAgE0ZAIBhGQCAERkAgBUZAIDvFHgD7wBIA+HYTQPhOKgC41x5A+O0UAOtGQCAsRkAgLUZAIC5GQCAgMkBAIHVAQCC3QEAg20CAITdAQCFcQIAhgEEAIcdBQCIJQUAiTUFAIo9BQCLbQUAjHUFAI1lBQCObQUAj80BAJC1AQCRvQEAkrUBAJNNAwCUVQMAlV0DAJZVAwCXTQMAmHUDAJl9AwCadQMAm00DAJxVAwCdWQMAnkkDAJ9JAwCguQMAobkDAKLBAwCj3QMApMUDAKXNAwCmxQMAp/0DAKjJAwCpyQMAqtEDAKvRAwCsMQMArTEDAK4xAwCvMQMAsFEDALFRAwCyUQMAs1EDALRxAwC1cQMAtnEDALdxAwC4UQMAuVEDALpRAwC7UQMAvDEDAL0xAwC+MQMAvzEDAL0ZAIDBGQCAxRkAgMkZAIDNGQCA0RkAgNUZAIDZGQCA3RkAgOEZAIDwIAIA5RkAgOkZAIDtGQCA8RkAgPUZAICc9TYAnf02APkZAICRkAIA/RkAgKkZAIBFGQCASRkAgEUaAIC6adgASRoAgE0aAIC4sTYAubE2AFEaAIBVGgCAWRoAgF0aAIBRGQCAYRoAgGUaAIBVGQCAWRkAgF0ZAIBlGQCAaRkAgG0ZAIBxGQCAdRkAgHkZAIB9GQCAgRkAgIUZAICJGQCAjRkAgJEZAICVGQCAglgCAJkZAIBpGgCA8FgCAG0aAICdGQCAoRkAgKUZAIABGgCABRoAgJF0AwDhtDsCCRoAgOPYIgINGgCAERoAgBUaAIAZGgCAHRoAgKUqAIBVLQCAqSoAgMEqAICtKgCAljMAgO/IPwK1KgCA4ZTzAuGY0gLjlPcC4xDGAuGUtgLhkJ0C44SiAuMIhwIZGQCAHRkAgO+4swLvOIsCnSoAgOAtAIDvIJcC7+DgAoLkAgBpLQCACAIAgLrF2QAOAgCAFAIAgBoCAIAgAgCAJgIAgCwCAIAyAgCAOAIAgD4CAIBEAgCASgIAgFACAIDhgHgC8OQGAOMUagKCgAgA4aAPAuEIEwLjhA4C4xgeAlYCAIA0AwCA7zQ7Au8wHwI6AwCAQAMAgO8MEgJGAwCAJRkAgCkZAIBMAwCAUgMAgC0ZAIAxGQCAWAMAgF4DAIB2AwCAggMAgIgDAICOAwCAlAMAgJoDAIB8AwCAZAMAgDUZAIA5GQCAbQMAgFwCAIA9GQCAQRkAgHQCAIBoAgCAvAIAgHoCAICYAgCAYgIAgJICAIBuAgCApAIAgNQCAICAUQYAgV0GAIJVBgCDaQYAhHkGAIV5BgCGaQYAh2kGAIhZBgCJoQcAiqUHAIu9BwCMpQcAja0HAI6lBwDyAgCA7AIAgOACAICSCRQAkxUUAJTxBwCV8QcAlvEHAJfxBwCY0QcAmdEHAJo5FACb0QcAnIEHAJ2BBwCefQcAnx0UAJktAQCYLQEAmz0BAJo9AQCdLQEAnC0BACEZAICeVQEAkd0GAJDRBgCTJQEAkiUBAJUtAQCULQEAlx0BAJYdAQCJ8QYAiOkGAIvxBgCK+QYAjbEGAIzpBgCPqQYAjrkGAIHxBgCA7QYAg/EGAIL5BgCF0QYAhOkGAIfRBgCG2QYAua0DALitAwC7vQMAur0DAL2tAwC8rQMAv90DAL7dAwCxrQMAsK0DALO9AwCyvQMAta0DALStAwC3nQMAtp0DAKm5AQCosQEAq3UBAKqxAQCtFQEArBUBAK/dAwCu3QMAobkBAKCpAQCjiQEAorEBAKWZAQCkkQEAp4kBAKaRAQAuAwCAwgIAgM4CAIDmAgCA2gIAgAQDAICwAgCA+AIAgCIDAIAKAwCAngIAgIACAIC2AgCAyAIAgP4CAICGAgCAKAMAgKoCAIAQAwCAjAIAgBYDAIAcAwCACS0AgOsuAIDKNACAhAcAgAYFAIAVBQCAJAUAgDMFAIBCBQCASwUAgPAsOABUBQCAXQUAgGYFAICSBQCA40huA5sFAIDhTG4DpAUAgO/0AQOnBQCAqgUAgK0FAIBGOgCApkwAgNZVAIA2aACAZnEAgJZ6AID2jACAVp8AgIaoAIDtugCAJMQAgFTNAICE1gCAtN8AgDG7AIA6rgCABqUAgPkqAICJKwCAoSoAgOUqAIBBMQCAATEAgE40AIDVLACABjMAgIo3AIBiNACAHSwAgJI0AICeMwCAEjgAgFkrAICFLACA+jEAgCY5AIAdKwCArSsAgJ4xAIC8LgCAySwAgFksAIA4LgCALC4AgJGgBgDuMwCAGSsAgJ43AIB1LACAzS0AgLAFAIDh1D8D4VgaA+PcLwPjUA4D4RTyA+FA0wPjQOoD40DDA7MFAIC2BQCA73jrA+9c8gO5BQCA5QUAgO9E3gPvmCUD4bSLA+E8lwPjfKID45iLA+EwQQDhUKwD4xx/AOOIRgDoBQCA6wUAgO84ewDv4EEA7gUAgPEFAIDvzIoD7yCHA4DBGACB3RgAgikLAIMpCwCE6Q4AhekOAIYZDwCH8RgAiCUPAIntGgCK5RsAiyEdAIw5HQCN5RsAjmkQAI/VGgCQhRsAkU0PAJJFDwCTXQ8AlEUPAJVNDwCWRQ8Al30PAJhFDwCZTQ8AmkUPAJtpGwCcQQ8AnUEPAJ5BDwCfQQ8AoMEPAKHBDwCiwQ8Ao8EPAKS5CwCluQsApqkLAKfNDwCo9Q8Aqf0PAKr1DwCrzQ8ArNkPAK3ZDwCuyQ8Ar8kPALC5DwCxuQ8AsmkPALNpDwC0YQ8AtWEPALY5DwC3OQ8AuBEPALkRDwC66QEAu+kBALz5AQC9+QEAvukBAL/pAQD0BQCA9wUAgPoFAID9BQCAAAYAgCAGAIDhBACAgAUAgNMFAIAOBgCANAYAgEsGAIBoBgCAfwYAgJYGAIDdAwCA9gMAgA8EAIASBwCAQQgAgD4IAIA/BwCAOSQAgHIkAICjJACAyCQAgLkmAIDEJgCAyCYAgMwmAIDQJgCALygAgG4oAICWKACAmigAgL8oAIDHKACA4ygAgPUoAID5KACA/SgAgLrp0wAVKQCAMCkAgEspAIA9JACASiQAgFckAIBkJACAdiQAgIMkAICVJACApyQAgLckAIDMJACA1iQAgOQkAIDuJACA+yQAgAwlAIAWJQCAbyUAgHYlAIAkJQCAgBkDAIEZAwCCKQMAgykDAIQ5AwCFOQMAhikDAIcpAwCIGQMAiRkDAIppAwCLaQMAjHkDAI15AwCOaQMAj2kDAJAZAwCRGQMAkgEEAJMtAwCUNQMAlVUGAJZdBgCXVQYAmG0GAJl1BgCafQYAm3UGAJxtBgCdNQYAnj0GAJ81BgCgzQYAodUGAKLdBgCj1QYApPkDAKX5AwCm6QMAp+kDAKjZAwCp+QYAqikGAKspBgCsOQYArTkGAK7FAwCvPQMAsEUDALFNAwCyRQMAs10DALRFAwC1TQMAtkUDALd9AwC4SQMAuUkDALpZAwC7fQYAvGUGAL1tBgC+ZQYAgCUAgKkVDwCoAQ8Aq00PAKpNDwCtRQ8ArEUPAK+hDQCuqQ0AoXULAKBhCwCj7QsAoqkLAKXlCwCk5QsApzkPAKZZCAC5oQ0AuJkNALuhDQC6qQ0AvaENALy5DQAxJQCAvqkNALGhDQCw2Q0As6ENALKpDQC1oQ0AtLkNALehDQC2qQ0AOCUAgEglAIBbJQCAsiUAgLwlAICRJQCAoSUAgNAlAICB7Q0AgO0NAIP9DQCC/Q0Ahe0NAITtDQCH2Q0AhiEYAJlNDQCYTQ0Am1ENAJpdDQCdeQ0AnHUNAJ9pDQCecQ0AkYkNAJCBDQCTmQ0AkoENAJWJDQCUgQ0Al30NAJaBDQDgJACAICUAgI0lAIDMJQCA3iUAgAgmAIAtJgCAQiYAgPAlAID6JQCADCYAgBkmAIAxJgCATiYAgFgmAIB2JgCASiYAgGYmAIBuJgCAgCYAgIwmAICUJgCAoyYAgN4mAICcJgCAsiYAgKcmAIC9JgCA1CYAgOImAIABJwCAEScAgBsnAIBPJwCAkicAgOcnAIBPKQCAXSkAgGEpAIBlKQCA8CYAgC4nAIA+JwCASCcAgCMnAIBTJwCAYycAgH4nAIBwJwCAlicAgMInAIDJJwCApicAgNMnAIDdJwCAtCcAgBgoAIAKKACA6ycAgCUoAIDyJwCA/CcAgDMoAIBAKACASigAgFQoAIBeKACAcigAgH8oAICGKACAnigAgKUoAICyKACAyygAgNUoAIDnKACAASkAgA4pAIAZKQCAIykAgDQpAIA7KQCAUykAgMMDAIDmBACAhQUAgNgFAIATBgCAOQYAgFAGAIBtBgCAhAYAgJsGAIDjAwCA/AMAgBUEAIAoBACAOwQAgE4EAIBhBACAdAQAgIcEAICaBACAAAUAgA8FAIAeBQCALQUAgDwFAIBjCACAJAgAgMEGAID8BwCAHQkAgOMoEwAzCQCAKggAgC0IAIAxCACAJAcAgNwuAIDKMACA2S0AgLswAIBFMQCAJwkAgO/sEwAGCQCA3A0AgM8IAICDCACAMQcAgEwHAID8BgCACggAgJQIAIAqCQCACQkAgOANAIDsDQCA2wgAgJkIAIAVBwCAhggAgFUHAID/BgCApgcAgJEkAIDwDQCA4ggAgCcIAICcCACAWAgAgBUJAID0DQCA5QgAgBQIAICfCACA6AgAgBcIAIDJCACAoggAgOwIAIAbCACAzAgAgKYIAID3CACA/QgAgIgHAICKCACAWQcAgAMHAIA9CQCAQQkAgEkJAIA2CQCAGAkAgPgNAID0CACALQkAgAwJAIDkDQCA0ggAgI4IAIBdBwCAMAkAgA8JAIDoDQCA1QgAgJEIAIBgBwCArQgAgGMHAIDjSBIA4xQSAOP4EwDjuBMA4+wSAOOgEgDjbBIA43gSAO/ADQDv2A0A73QSAO9QEgDvqBIA79wSAO8oEwDvIBMA6QcAgMwGAIAOCACAEQgAgNgGAIDUBgCAIQgAgAcHAIBnCACADAcAgHYIAIA0BwCANwcAgKoIAIC2CACAuQgAgOPYEADjoBAA46AQAON0EQDjNBAA4wgQAOPkEADj9BAA77wQAO/gEADvzBAA7zgQAO8QEADvcBAA73AQAO9MEADjhBMA4+gTAOMwEADjEBAA42ATAONAEwDjpBMA47QTAO/IEwDvtBMA75gTAO98EwDvXBMA70wTAO8UEwDv6BAAgO08AIH1PACC/TwAg/U8AITtPACFFT0Ahh09AIcVPQCILT0AiTU9AIo9PQCLNT0AjC09AI0VPQCOHT0AjxU9AJBtPQCRdT0Akn09AJN1PQCUbT0AlRU9AJYdPQCXFT0AmC09AJk1PQCaPT0AmzU9AJwtPQCdFT0Anh09AJ8VPQCg7T0AofU9AKL9PQCj9T0ApO09AKUVPQCmHT0ApxU9AKgtPQCpNT0Aqj09AKs1PQCsLT0ArRU9AK4dPQCvFT0AsG09ALF1PQCyfT0As3U9ALRtPQC1FT0AthE9ALcRPQC4MT0AuTE9ALoxPQC7MT0AvBE9AL0RPQC+ET0AvxE9AIDxPACB/TwAgvU8AIMNPwCEFT8AhR0/AIYVPwCHDT8AiDU/AIk9PwCKNT8Aiw0/AIwVPwCNHT8AjhU/AI8NPwCQdT8AkX0/AJJ1PwCTDT8AlBU/AJUZPwCWCT8Alwk/AJg5PwCZOT8Amgk/AJsJPwCcGT8AnRk/AJ4JPwCfCT8AoPk/AKH5PwCiCT8Aowk/AKQZPwClGT8Apgk/AKcJPwCoOT8AqTk/AKoJPwCrCT8ArBk/AK0ZPwCuCT8Arwk/ALB5PwCxeT8Asgk/ALMJPwC0GT8AtRk/ALYJPwC3CT8AuDk/ALk5PwC6CT8Auwk/ALwZPwC9GT8Avgk/AL8JPwCA+TwAgfk8AIJJPQCDST0AhFk9AIVZPQCGST0Ah0k9AIh5PQCJeT0Aikk9AItJPQCMWT0AjVk9AI5JPQCPST0AkDk9AJE5PQCSAQQAk00GAJRVBgCVXQYAllUGAJdNBgCYdQYAmX0GAJp1BgCbTQYAnFUGAJ1dBgCeVQYAn00GAKC1BgChvQYAorUGAKPNBgCk1QYApd0GAKbVBgCnzQYAqPUGAKn9BgCq9QYAq80GAKzVBgCt3QYArtUGAK/NBgCwtQYAsb0GALK1BgCzTQYAtFUGALVdBgC2VQYAt00GALh1BgC5fQYAunUGALtNBgC8VQYAvV0GAL5VBgC/TQYArH0/AK2lPwCurT8Ar6U/AKh9PwCpZT8Aqm0/AKtlPwCkHT8ApUU/AKZNPwCnRT8AoB0/AKEFPwCiDT8AowU/ALydPwC9pT8Avq0/AL+lPwC4nT8AuYU/ALqNPwC7hT8AtN0/ALWlPwC2rT8At6U/ALDdPwCxxT8Ass0/ALPFPwCMZToAjW06AI5lOgCPfToAiEU6AIlNOgCKRToAi306AIRlOgCFbToAhmU6AId9OgCABToAgQ06AIIFOgCDfToAnF04AJ3lPwCe7T8An+U/AJhdOACZRTgAmk04AJtFOACUuTgAlWU4AJZtOACXZTgAkAU6AJENOgCSBToAkwE5AMAIAIDYCACA3ggAgPAIAIB2BwCAIgkAgHkHAICBBwCAVAkAgJ0HAIDLBwCAvQcAgMQGAIDcBACAewUAgM4FAIAJBgCALwYAgEYGAIBjBgCAegYAgJEGAIDXAwCA8AMAgAkEAIAiBACANQQAgEgEAIBbBACAbgQAgIEEAICUBACA+gQAgAkFAIAYBQCAJwUAgDYFAIBFBQCATgUAgFcFAIBgBQCAaQUAgJUFAICeBQCAXQgAgFYOAIBZDgCAOjoAgKwKAIAVCwCANjoAgD46AICcGQAAnRkAAJ45AACfOQAA4wwAgEI6AIB6NwCA8TAAgKI3AIBaMgCAxSoAgLksAICaMDUA7C0AgB0tAIDoLQCA1y8AgJ+ENQDSMwCAnUQpAGI1AICaNgCA1jYAgAo3AIAeOACAdjEAgAIyAICuMgCARjMAgGI2AIBGOACAcjkAgOkqAICNLACAijEAgNIyAICWNgCAwjkAgJQuAIB6MgCAhjYAgBo3AIALMACAvjUAgLSAGgC1hBkAtojmALeM5ACwABwAsZQeALIAGACznBsAvADsAL2k7wC+qO4Av6TtALgA4AC5tOMAurjiALu84QCkwAAApQAMAKbIDgCnAAgA4jYAgAcvAIAFMQCArXwDAKwAEACt5BMArugSAK9gEQCo8AoAqRwJAKr4FgCr/BQAGjIAgB4zAIAqOACAKSsAgMErAIAtLACAczAAgIIxAIDOMgCA8jMAgI42AICmNgCAyjcAgO44AICiOQCAvjkAgC40AIBuNACAvAgAgCY1AIBGNgCAejgAgE43AIChLQCAIy8AgN40AICeNQCAAjMAgDY0AICaNwCA5jgAgJ0tAIBwLgCAejEAgC4yAIBiMgCAFjUAgD41AICmOACAKSwAgJwAAACqNQCAzSsAgMkrAICaNACAKjUAgF42AICuOACAajcAgA8wAIBaNwCA0SoAgEQuAIB7LwCAMjMAgLIzAIBNLACAPjQAgDkrAIBfLwCAsSoAgO4xAICLMACAEjUAgIDpAwCB6QMAgjkvAIP9AwCE5QMAhe0DAIblAwCHfS4AiEEuAIkhAgCKeS8AiyUCAIw9AgCNJQIAjiECAI8dAgCQZQIAkW0CAJJlAgCTfQIAlGUCAJVtAgCWZQIAlx0CAJglAgCZLQIAmiUCAJs9AgCcJQIAnS0CAJ4lAgCfHQIAoOUCAKHtAgCi5QIAo/0CAKTlAgCl7QIApuUCAKdNAgCodQIAqX0CAKqpAQCrqQEArLkBAK25AQCuqQEAr6kBALDZAQCx2QEAsukBALPpAQC0eSIAtf0BALb1AQC37QEAuNUBALndAQC61QEAu60BALy1AQC9uQEAvqkBAL+pAQChLACAjS0AgP4zAIBmNgCAPjcAgLoxAIDmMQCAHzAAgB42AIA/MACArjMAgAUrAICBKwCAxSsAgFYxAID+NACA9jUAgEo3AIBaOACANSwAgOksAIAXLwCApzAAgH4yAIBCNACAljgAgHo5AIDOOQCA5jkAgOkwAICmMQCA7jcAgOMuAIC/LwCA2y8AgGswAIBuMgCAujIAgGozAICONACAMjUAgJY1AIDeNwCAbjYAgAY4AIB+OACA6SsAgBUsAID9LACAqjIAgPY2AIADLwCAcy8AgDcwAICyMQCA2jQAgCYzAIAVKwCAWS0AgKguAIB/LwCAQjMAgF4zAIBuNQCAgFEBAIEBKgCCXQEAg1UBAIRNAQCFdQEAhn0BAId1AQCITQEAiVUBAIqdKwCLWQEAjEkBAI1JAQCOuQEAj7kBAJDJAQCRyQEAktkBAJPZAQCUyQEAlckBAJb5AQCX+QEAmMkBAJnJAQCa2QEAm9kBAJzJAQCdyQEAnrkBAJ+5AQCgSQEAoZUBAKJFAQCjXQEApEUBAKVNAQCmRQEAp30BAKhFAQCpTQEAqnkPAKtBAQCsQQEArUEBAK5BAQCvQQEAsMEDALHBAwCywQMAs8EDALTBAwC1wQMAtsEDALfBAwC4wQMAucEDALrBAwC7wQMAvMEDAL3BAwC+wQMAv8kMAI41AIBiOACA4jgAgPI4AIAuOQCALSsAgII0AIBOOACAyjgAgJcvAIDxKgCAUSsAgEguAIBoLgCAlzAAgMYyAIDOMwCAejYAgBo4AIDZMACAojgAgA0sAIAlMQCAMTEAgBIyAIBKMgCATjMAgKozAIAqNACADjUAgDo5AIDrLwCAsjgAgEErAICMLgCAMjIAgOI3AIBPLwCAny8AgDkxAIC6OACA8SsAgNksAIB4LgCAwjAAgBUxAIBiMQCA9jEAgEozAIC+MwCAWjUAgPo2AIAGNwCA1jgAgF0sAIBOMgCA3SwAgMoyAIBuMwCAijYAgL44AICqOQCA0jkAgC0xAICxOSMAsBEDALMVAwCyFQMAtTUDALQ1AwC3NQMAtjUDALkVAwC4FQMAuxUDALoVAwC9dQMAvHUDAL91AwC+dQMAoZkNAKCRDQCjqQ0AopENAKW5DQCksQ0Ap6kNAKaxDQCpmQ0AqJENAKtpAwCqkQ0ArXkDAKxxAwCvaQMArnEDAJEZDQCQEQ0Aky0NAJIRDQCVPQ0AlD0NAJctDQCWLQ0AmR0NAJgdDQCbbQ0Amm0NAJ15DQCcgQ4An2kNAJ5xDQCBmQ0AgAkjAIOpDQCCkQ0AhbkNAISxDQCHqQ0AhrENAImZDQCIkQ0Ai2kNAIqRDQCNeQ0AjHENAI9pDQCOcQ0AKjIAgMY1AIDGNACA6jQAgBozAICiMgCAZjcAgA0rAIAuNgCA9SsAgOUrAIDzLgCAEzAAgPY0AIA0LgCABjIAgOUwAIDqNwCAqjgAgA8vAIBhKwCANS0AgIktAIDVMACA0SsAgCIzAIDmMwCASjQAgGY0AIBqNACAfjQAgPo4AIDuNACAkjYAgFY3AIAKOACANjgAgE45AIBSOQCAVjkAgLo5AIAuOACAxjgAgDErAIBVKwCAaSsAgCUsAIAxLACAcSwAgCUtAIBBLQCASS0AgIUtAICRLQCAdC4AgIsvAICzLwCAuy8AgJH4EADTLwCAfzAAgK8wAIDdMACAWjEAgIApAQCBKQEAgjkBAIM5AQCEKQEAhSkBAIZZAQCHWQEAiNkoAIltAQCKKSUAi2EBAIxhAQCNYQEAHjIAgDoyAICQGQEAajIAgJIVAQC+MgCA3jIAgJU1AQCWPQEAlzUBAJgNAQCZFQEAmh0BAJsVAQCcDQEAnfUBAJ7dKABSMwCAoAUBADI0AICiAQEAVjQAgFI0AIClGQEApgkBAFo0AIBeNACAdjQAgKo9AQCrNQEArC0BAK0VAQCuHQEArxUBALBtAQCxdQEAsn0BALN1AQC0bQEAtRUBALYdAQC3FQEAuC0BALk1AQC6PQEAuzUBALzZLgC9KQEAvhkBAL8ZAQC6eR4Au3keALjNAgC5eR4AvpUeAL+dHgC8QQIAvZ0eALJ9HgCzRR4AsH0eALF1HgC2XR4At0UeALRdHgC1VR4AqgUeAKsNHgCodR4AqQ0eAHo0AICeNACArBUeAK0NHgCiSR4Ao0keAKBJHgChSR4ApkkeAKf5AgCkSR4ApUkeAJqNHgCblR4AmI0eAJmFHgCeiR4An4keAJyNHgCdhR4AkgUDAJP1AACQCQMAkY05AJaxHgCXFQYAlO0AAJUBHACKvQMAi0EDAIiFAwCJnQMAjkEDAI9JAwCMyTkAjVEDAIIVAgCDHQIAgAUCAIEdAgCGzQMAh7EDAIQFAgCFxQMAs/kFALLxBQCx+QUAsOEFALeZKgC2EQMAtRkDALThBQC7NQMAujUDALklAwC4JQMAvxUDAL4VAwC9JQMAvCUDAKP9BQCi/QUAof0FAKD9BQCnnQUApp0FAKWdBQCknQUAq7kFAKqxBQCpJScAqL0FAK+ZBQCukQUArZkFAKyhBQCTAQUAkvkFAJF1OQCQ9QUAlwEFAJYZBQCVEQUAlBkFAJt5CQCaOQUAmTEFAJg5BQCfHQUAnh0FAJ0dBQCcHQUAg4kFAIKBBQCBiQUAgPEFAIeFBQCGhQUAhZUFAISBJgCLhQUAioUFAIm1BQCItQUAj4UFAI6FBQCNlQUAjJUFAM40AIA6NQCAQjUAgFY1AIB+NQCAzjUAgAI2AIBqNgCAEjcAgCo3AIBeNwCAYjcAgKY3AICqNwCAAjgAgNo4AIAeOQCANjkAgIMvAICQ6gCA5jUAgLkqAIC9KwCAfSsAgCUrAIBlKwCAkSsAgCEsAIA9LACAES0AgCEtAIA9LQCAmS0AgOQtAIDwLQCADC4AgBwuAIALLwCAEy8AgEMvAIBjLwCAky8AgKsvAICbLwCAry8AgO8vAIBHMACAUzAAgFswAICDMACACTEAgB0xAIBeMgCAVjIAgIYyAIAWNACA4jIAgBYzAIBiMwCAfjMAgKIzAIDGMwCAyjMAgOozAICAjQEAgZUBAIKdAQCDlQEAhI0BAIW1AQCGvQEAh7UBAIiNAQCJwR0AipkBAIvBHQCMhQEAjY0BAI6FAQCP/QEAkIUBAJEZHQCSkRQAk4UBAJSdAQCViTIAlk0ZAJc9GwCYsQEAmbEBAJotHACbtQEAnD0cAJ2pAQCemQEAn5kBAKDlHQChbQEAomUBAKN9AQCkZQEApW0BAKbxHQCnYQEAqKEDAKmhAwCqoQMAq6EDAKyhAwCttQEArq0DAK+lAwCwYRkAsdkDALLZAQCz7QMAtPUDALX9AwC29QMAt+0DALjFAQC50QMAumEdALvVAwC82QEAvT0XAL7FAwC/0QEA+jMAgA40AIAKNACAOjQAgLY0AIDmNACAHjUAgE41AIAyNgCAWjYAgM42AIAWNwCAIjcAgEI3AIBGNwCAUjcAgG43AIDmNwCAFjgAgEo4AIBqOACAtjgAgA45AIAqOQCAijkAgCfqAIAi6gCAVOoAgOEpAIAJKgCADSoAgNbqAIAD6wCAe+sAgBY6AIAmOgCARwgAgFIIAIBVCACASggAgE4IAIBXCQCA8Q4AgOIOAIDnDgCA9g4AgOwOAICyNACASw8AgMoPAICBDwCALw8AgFoPAIBnDwCAbw8AgJ0PAIDCDwCAuA8AgL0PAICqDwCAsQ8AgP4OAIADDwCACA8AgIBBAQCBMQMAgk0BAINFAQCEXQEAhUUBAIZNAQCHIQMAiF0fAIl9AQCKaQMAi3EBAIx1AwCNVQEAjlk6AI9ZAQCQKQEAkSkBAJI5AQCTOQEAlCkBAJUpAQCW2QEAl9kBAJjpAQCZ6QEAFQ8AgCIPAIAqDwCAMg8AgDwPAIBBDwCARg8AgFAPAIBVDwCAXQ8AgGoPAIByDwCAdw8AgHwPAICEDwCAiQ8AgJMPAICYDwCAoA8AgKUPAIDFDwCANw8AgBoPAIBiDwCAjg8AgA0PAIDdFgCA5hYAgOkWAIDvFgCA4xYAgOwWAIDgFgCAExcAgBYXAID1FgCA8hYAgPgWAICAmQcAgZkHAPsWAICDrQcAhLUHAAQXAICGsQcAh7EHAIiRBwCJkQcAipEHAIuRBwCM8QcAjfEHAI7xBwCP8QcAkJEHAJGVBwCSnQcAk5kHAJSFBwCVgQcAloEHAJeFBwCYuQcAmb0HAJq1BwCbsQcAnK0HAJ2pBwCemQcAn50HAKBhBwChZQcAom0HAKNpBwCkdQcApXEHAKZxBwCndQcAqEkHAKlNBwCqRQcAq0EHAKxdBwCtWQcArkkHAK9NBwCwMQcAsTUHALI9BwCzOQcAtCUHALUhBwC2IQcAtyUHALgZBwC5HQcAuhUHALsRBwC8DQcAvQkHAL7xAAC/9QAAgAkBAIENAQCCHQEAgxkBAITZAACF3QAAhtUAAIfRAACI8QAAifUAAIr9AACL+QAAjOkAAI3tAACO5QAAj+EAAJCdAACRmQAAkq0AAJOpAACUtQAAlbEAAJaxAACXtQAAmIkAAJmNAACahQAAm4EAAJydAACdmQAAnokAAJ+NAACgdQAAoXEAAKJ9AACjeQAApGlQAqVtUAKmYQAAp2UAAKhZAACpXQAAqlUAAKtRAACsTQAArUkAAK49AwCvOQMAsClQArEtUAIBFwCABxcAgP4WAIANFwCAChcAgBkXAIDZXFICHxcAgCUXAIAiFwCAKBcAgCsXAIA0FwCALhcAgKOhAACipQAAoZEAAKCVAACntQAAprEAAKW9AACkuQAAq40AAKqJAACpgQAAqIUAAK+FAACugQAArYkAAKyNAACz/QAAsvkAALHxAACw9QAAt5kAALadAAC1nQAAtJkAALutAAC6qQAAuaUAALilAAC/ZQEAvmEBAL1tAQC8aQEAHBcAgFcXAIBAFwCAPRcAgEgXAIBOFwCAOhcAgNksUQJLFwCAVBcAgHkWAIDhDwCAMRAAgA4QAIAiEACAHRAAgJNBAAAnEACALBAAgBMQAICXWQAAllUAAJVZAACUXQAAm3EAAJppAACZZQAAmGUAAJ9lAACeYQAAnTFTApxtAAC4gQQAuYEEALqBBAC7gQQAvIEEAFEXAIC+jQQA5g8AgLDdBQCxTQQAskUEALNdBAC0RQQAtU0EALZFBADrDwCAqKEFAKntQQCqrQUAq6UFAKy9BQCtpQUArq0FAK+lBQCgqQUAoZFBAKKpQACjoQUApKEFAKWhBQCmoQUAp6EFAP8PAIAYEACAWBAAgF0QAIBpEACAnVUFAH8QAICfWQUAjhAAgJMQAICeEACAkwUFAJQdBQCVBQUAlg0FAJcFBQC4EACAyxAAgO8QAIAhEQCAJhEAgC4RAIA9EQCATBEAgIBxBQCBcQUAgnEFAINxBQCEUQUAhVEFAIZdBQBREQCAWREAgHwRAICjEQCArxEAgM8RAIDUEQCA2REAgBMSAIAmEgCAMhIAgEoSAIDEEgCAGhMAgDMTAIA4EwCASxMAgFwTAIBuEwCAcxMAgJoTAICiEwCAtxMAgN4TAIDjEwCAPRQAgEIUAIBHFACAUxQAgF8UAIBkFACAbBQAgHgUAICSFACAlxQAgJ8UAICkFACAqRQAgK4UAICzFACAuBQAgMsUAIDQFACA7BQAgAYVAIAgFQCALBUAgEQVAIBJFQCAVhUAgHcVAICaFQCAtBUAgMAVAIDFFQCAzRUAgO4VAIAIFgCAFxYAgDQWAIA5FgCAQRYAgEYWAIBZFgCAXhYAgICtAQCBtQEAgr0BAIO1AQCErQEAhdUBAIbdAQCH1QEAiO0BAIn1AQCK/QEAi/UBAIztAQCN1QEAjt0BAI/VAQCQrQEAkbUBAJK9AQCTtQEAlK0BAJVVAwCWXQMAl1UDAJhtAwCZdQMAmn0DAJt1AwCcbQMAnVUDAJ5dAwCfVQMAoK0DAKG1AwCivQMAo7UDAKStAwCl1QMAphkOAKfZAwCobQ8AqSEOAKrhAwCr4QMArCkOAK3lAwCuGQ4ArxkOALCVAwCxnQMAsgEOALORAwC0HQ4AtQUOALa5AwC3uQMAuDkOALmNAwC6NQ4AuxEOALyBAQC9gQEAvnkBAL95AQCEFgCAkBYAgJwWAICrFgCAyBYAgM0WAIDuEQCA/xEAgHwWAICBAACAiwAAgJUAAICfAACAqQAAgLMAAID1DwCA+g8AgAQQAIB1EACAehAAgIQQAIDlEACA6hAAgBcRAIAzEQCAOBEAgEIRAIBRFQCADRYAgBIWAIAqFgCAoRYAgKYWAIC+FgCA8A8AgAkQAICJEACAHBEAgNcSAIA/FQCALxYAgGMWAIDDFgCARxEAgGQSAICfEgCAshIAgBEUAIAdFACAKRQAgI0TAICSEwCA0RMAgNYTAID9EwCAAhQAgGkSAIBuEgCAtxIAgLwSAIDCEQCAxxEAgJYRAICbEQCApD0DAKVFAwCmTQMAp0UDAKA9AwChJQMAoi0DAKMlAwCsfQMArUUDAK5NAwCvRQMAqH0DAKllAwCqbQMAq2UDALQ9AwC1xQMAts0DALfFAwCwPQMAsSUDALItAwCzJQMAvP0DAL3FAwC+zQMAv8UDALj9AwC55QMAuu0DALvlAwCEBQwAhQ0MAIYFDACHHQwAgI0MAIGpDACCGQwAg1ENAIxhDACNYQwAjmEMAI9hDACIKQwAiRUMAIodDACLFQwAlD0MAJXFAwCWzQMAl8UDAJABDACRAQwAkgEMAJMBDACc/QMAncUDAJ7NAwCfxQMAmP0DAJnlAwCa7QMAm+UDAIBpBACBaQQAgnEEAINxBACEnQQAhYUEAIaNBACHhQQAiL0EAImNBACKhQQAi50EAIyFBACNqQYAjvkEAI/5BACQiQQAkYkEAJKRBACTkQQAlLEEAJWxBACW+QYAl60EAJiVBACZwQYAmmkGAJtpBgCceQYAnXkGAJ7RBgCf/QsAoA0GAKEdCwCiGQYAo0ULAKQFBgClTQsApjUGAKe1BACoEQYAqREGAKoRBgCrNQQArC0EAK0BBACuXQQArx0GALDNBgCxbQYAsnUGALMNBgC0FQYAtR0GALYVBgC3DQYAuDUGALk9BgC6NQYAuw0GALwVBgC9HQYAvhUGAL8NBgCA9QcAgf0HAIL1BwCD9QAAhO0AAIURAwCGEQMAhxEDAIgxAwCJMQMAijEDAIsxAwCMhQcAjRUDAI4dAwCPFQMAkG0DAJGNBwCShQcAk50HAJSFBwCVjQcAloUHAJe9BwCYhQcAmY0HAJqFBwCbnQcAnIUHAJ2NBwCehQcAn4UAAKB9AAChgQMAooEDAKOBAwCkgQMApYEDAKaBAwCngQMAqBUHAKmFAwCqjQMAq4UDAKydAwCtoQMArqEDAK+hAwCwdQcAsXUHALJxBwCzhQUAtM0FALX1BQC2/QUAt8kDALj5AwC5+QMAuqEFALuhBQC8wQMAvcUDAN4RAIDjEQCAhJz7ACYTAIArEwCAYRMAgGYTAIB2EgCAghIAgJUSAICaEgCARRIAgNwSAIBXEwCASxAAgKMQAIC9EACAxBAAgJB1AACRfQAAknEAAJNxAACUAfwAlVX+AJZd/gCXVf4AmG3+AJlp/gCaef4Am3n+AJxp/gCdaf4Anln+AJ9Z/gCgpf4Aoa3+AKKl/gCjof4ApKH+AKWl/gCmrf4Ap6X+AKiZ/gCpmf4Aqun+AKvt/gCs9f4ArfH+AK7x/gCv8f4AsI3+ALGV/gCymf4As5n+ALSJ/gC1if4Atrn+ALe9/gC4hf4AuY3+ALqF/gC7nf4AvIX+AL2B/gC+gf4Av4H+AKbZCACnBQcApMEIAKWZBQCi0QgAo9EIAKCJBQChtQgArgEHAK8BBwCsMQcArTEHAKo9BwCrJQcAqD0HAKk1BwC2fQcAtwUHALR9BwC1dQcAsskFALNlBwCwcQcAsXEHAL4BBwC/AQcAvDEHAL0xBwC6IQcAuyEHALg9BwC5MQcAhjkHAIc5BwCELQcAhTkHAIINBwCDNQcAgBEHAIEFBwCOSQcAj0kHAIxNBwCN1QUAisEFAIvBBQCI1QUAiXEHAJbVBQCX2QgAlE0FAJXdBQCSUQUAk9kFAJD5BQCRoQUAnnEIAJ99CACcYQgAnWEIAJpxCACbeQUAmMUIAJl1BQD0EACA+xAAgAIRAICBEQCAuxEAgLQRAIArEgCAGBIAgB8SAIBWEgCATxIAgF0SAIDJEgCAHxMAgIcSAIB7EgCApBIAgKsSAIA9EwCAUBMAgHgTAIB/EwCAhhMAgKcTAIC8EwCAwxMAgOgTAID2EwCA7xMAgEwUAIB9FACAhBQAgAsVAIAZFQCAEhUAgPEUAIAlFQCAMRUAgHwVAICDFQCAkxUAgFsVAIBpFQCAnxUAgKYVAIBiFQCASxYAgFIWAIDzFQCA+hUAgNkVAIDgFQCAIxYAgBwWAICwFgCAbhAAgLEQAICqEACA3hAAgNcQAIAQEQCACREAgI8RAIBeEQCAgIEBAIGBAQCCgQEAg4EBAISdAQCFhQEAhokBAIeJAQCItQEAib0BAIq1AQCLjQEAjJUBAI2dAQCOlQEAj40BAIgRAIA3EgCAkv0BAJP1AQCU7QEAlZUBAJadAQCXlQEAmKkBAJmpAQCauQEAm7kBAJypAQCdrQEAnqUBAJ+dAQCgZQEAoW0BAKJlAQCjfQEApGUBAKVtAQCmZQEAp90AAKjlAACppQMAqq0DAKulAwCsvQMAraUDAK6tAwCvpQMAsN0DALHlAwCy7QMAs+UDALSpAQC1VQEAtvUDALftAwC41QMAud0DALrVAwC7rQMAvM0DAL3BAwC+vQMAv7UDANASAICOEgCARBMAgP8UAIA4FQCAlRYAgIkWAIC3FgCAuRUAgIsUAIABFgCAyhMAgMQUAIDSFQCArRUAgPgUAIC9FACAZREAgKgRAIBwFQCA0BAAgFgUAIBiEACAPhIAgOcVAIATEwCAcRQAgEIQAIA5EACAihUAgOESAID2EQCArhMAgGsWAIDqEgCA8RIAgGwRAIAEEgCApgMAgA0jAIARIwCAoAYAgMcAAIC1BgCAqyMAgK8jAIC5IQCAtSEAgOMHAIB7CQCAfwkAgEEjAICnIwCANSMAgDkjAIAdIwCAISMAgCUjAIApIwCALSMAgDEjAIDbBwCA3wcAgNEAAICATQEAgVEBAIJRAQCDTQEAhE0DAIUhAwCGRQEAh30BANcAAICiAwCAqAMAgN0HAIDTAACA1QAAgL0GAIB5AACABxQAgH0AAICHAACAkQAAgAwUAICbAACAGBQAgKUAAIAkFACArwAAgDAUAIC5AACANRQAgM8PAIBVEACAmBAAgJsQAIArEQCAVhEAgKARAIDMEQCA6BEAgOsRAIDzEQCADRIAgBASAIBzEgCAwRIAgDATAIBrEwCAlxMAgJ8TAICwpQEAsa0BALKlAQCzvQEAtKUBALWtAQC2pQEAt10BALhlAQC5bQEAumUBALt9AQC8ZQEA2xMAgDoUAIBpFACAgAW5AIHhBgCC4QYAg+EGAIThBgCoBgCAswYAgIfpBgCI2QYAifmxAIr1sQCL8bEAjO2xAI31BgCO+QYAj/0GAJDZBgCR2QYAkvWxAJwUAICUiZIClfEGAJb1BgCX9QYAmNkGAJnVsgCa3bIAm6kGAJy5BgCduQYAnqkGAJ+BBgCgoQcAoaEHAKIhsgCjpQcApIUAAKWNAACmQbMA1RQAgKiNBwCplQcAqp0HAKuVBwBOFQCAyhUAgDYQAIA+FgCAsP0HALGFBwCyjQcAaBYAgLSZBwCBFgCAtpUHALeNBwC4tQcAub0HALq1BwC7jQcAvJUHAL2dBwC+lQcAv40HAIB1BgCBlaACgpmgAoOZoAKEhaAChb2gAoaxoAKHhaACiLmgAomRoAKKnaACi5mgAoyFoAKNjQEAjoEBAI9FBgCQOQYAkT0GAJIxBgCTMQYAlC0GAJXVBgCW2QYAl90GAJjhBgCZ4QYAmu0GAJvpBgCc9QYAnf0GAJ7xBgCf9QYAoAkGAKEJBgCiBQYAowEGAKQdBgClBQYApgkGAKcNBgCoMQYAqTEGAKo9BgCrNQYArCkGAK0pBgCuJQYArx0GALBhBgCxYQYAsm0GALNpBgC0dQYAtX0GALZxBgC3dQYAuEkGALlJBgC6RQYAu0EGALxdBgC9RQYAvkkGAL9NBgCAsQUAgbEFAIK9BQCDuQUAhKUFAIWtBQCGoQUAh6UFAIiZBQCJmQUAipUFAIuRBQCMjQUAjcEFAI7NBQCPyQUAkLUFAJG9BQCSsQUAk7UFAJSpBQCVqQUAlqUFAJehBQCYnQUAmSkCAJolAgCbIQIAnD0CAJ3pAgCe5QIAn+ECAKAdAgChNQIAojkCAKM9AgCkIQIApSECAKYtAgCnKQIAqBUCAKkZAgCqFQIAqxECAKwNAgCteQIArnUCAK8V8ACwafAAsRECALIdAgCzGQIAtAUCALUhAAC2LQAAtyUAALgZAAC54QEAuu0BALvlAQC8+QEA2BQAgN0UAIC/9YYCp2kNAOIUAIDnFACAzwAAgNkAAICzAwCA4QcAgH0JAID7IgCAzNSFAszghQL/IgCAgSkAgDUkAIBuJACAjSQAgLyZBQC9mQUAvqkFAL+ZvAC4mQUAuZkFALqJBQC7iQUAtKEFALXVsQC23bEAt6kFALCxsgCxzQUAssUFALO9BQCfJACAxCQAgMMoAIDfKACA8SgAgIgmAICFKQCAaSkAgCkkAIAtJACA2WSgAoEJAIDZUKAChAkAgI0JAICKCQCAhwkAgOwhAIDvIgCA9CEAgJhlBQCZEbIA/CEAgNkwoAKUOZEClU0FAJZFBQCXXQUAkGkFAJFpBQCSWQUAk1kFAID9vACB1ZwCgmW8AIPFvACEkbwAhZ28AIalvACHjbwAiK2TAonlvACKKZACi7W8AIwRkAKNlbwAji2wAI/FnAKQ6bwAkcHIAJJBkAKT8Z0ClNW8AJXlvACW4bwAl02QAphlkAKZfZACmrm8AJupCgCcbQ8Anb0KAPMiAICfXQ8AoK0PAKElCgCibQoAo2UKAKQNCgClpQ8ApgXUAKepDwComQ8AqZkPAKopDwCrKQ8ArDkPAK05DwCuKQ8ArykPALBZDwCxndEAspXRALOF1gC0sdEAtbHRALbZ1AC32dQAuOnUALnp1AC6+dQAu/nUALzp1AC96dQAvrnUAL+51ACASdUAgUnVAIJZ1QCDWdUAhEnVAIV90ACGddAAh23QAIhV0ACJXdAAinXVAIut1QCMtdUAjb3VAI611QCPQdAAkMHQAJHB0ACSwdAAk8HQAJTB0ACVwdAAlsHQAJfB0ACYwdAAmc3QAJrF0ACb3dAAnOHVAJ3pDgCe2Q4An9kOAKDV2wChwdkAotnZAKPB2QCkxdkApc3ZAKbF2QCnGdkAqGHZAKlh2QCqydkAq8nZAKzZ2QCt2dkArs3ZAK/B2QCwCdkAsRXZALId2QCzrdoAtB3ZALWx2gC2wdwAt93dALjl3QC59d0Auv3dALut3QC8td0AvaXdAL6t3QDwIQCAgvHaAIPx2gD3IgCA5OgAgIYR2ACHEdgAhOHaAIXh2gCKKdgAiynYAK9AEwClKNoAjinYAI8p2ACMKdgAjSnYAJJh2ACTYdgA6egAgO7oAICWZdgAl23YAJR12ACVbdgAml3YAJst2ADz6ACA8FwCALEw3wCR8AIAnCnYALLQAwCiOQ0Ao1GeAqAlDQChOQ0AplUNAIS8AgCkJQ0ApV0NAKptDQCrAQQAqGENAKlRAwCuuQAAp3UAAKxhDQCtxQIA+OgAgIfMAwDwVAIAzFC6AJHYBACb9NsAkRgCAJk02wCddAQAvh0AAJ9gBQCejAUAjOwCAI2sBAD96ACAvfWKAqghvwCpLb8Aqi2/AKs9vwCsKb8ArVW/AK5RvwCvTb8AoBkIAKGlvQCiIb8AozGzAKQ9vwClJb8Apg2zAKclvwC46bMAuc3LALppswC7uQkAvH0IAL2tCQC+QQwAv50JALA5vwCxhb0Asgm/ALPtywC0Gb8AtQW/ALbtswC3Bb8AiDG9AIkxvQCKrQgAiyW9AIwJCQCNvQgAjiW+AI+JDAAC6QCAgQ0JAIKlDACDUQkAhIEIAIWBCACGmQgAh60MAJhhvQCZYb0Amm0JAJsVnQKcxQ8AnQ28AJ7BDwCfcQkAkBW+AJERnwKSNZ8Ckw2fApQJvgCVCb4AlnG9AJdxvQCCuAQAl6UHALnEAwDwWAIAkUwCAJLIAgCErAQAsD0AAAzpAIAH6QCAvQUAABHpAIDwTAIAuhEAAJEkAgCN5AQAkqwCAJasAgC4uAMAudADAJb4AgCvDQAAFukAgPB4AgCRXAIAlrACAK8FAAAb6QCAIOkAgCnpAIAy6QCAP+kAgIX4AwBM6QCAh4ADAIbAAgBZ6QCAZukAgHPpAICW6QCAuzkAAHzpAICf6QCAiekAgL8dAAC+HQAAvR0AALwhAACVwB0AlMQfAJfIGgCWABgAkSAAAJDUAQCT2B4AkgAcAJ3gEgCcABAAn+gRAJ7sEwCZ8BkAmPQbAJv4FwCaABQAnnEBAJ9xAQCABQAArOkAgM0KAICwDACAXg0AgGQNAIBqDQCAdg0AgHkNAIB8DQCAfw0AgIINAICRDQCAlw0AgJoNAICdDQCAICIAgMcNAIDWDQCA/A0AgP8NAIAODgCAEQ4AgB0OAIAYIgCAMg4AgDUOAIDXFgCAEBcAgNoWAIC4ACwAuYwvALqILgC6AwCAhpwXAMx4vACEmC0AhVwXALcDAIDKAwCAiAAoAIksFADtBACAjAUAgN8FAIAaBgCAQAYAgFcGAIB0BgCAiwYAgDgBAIA8AQCAQAEAgEQBAIBIAQCATAEAgKR9AQBQAQCAonUBAKNlAQCggQEAoYEBALxxugC9kbYAvnG6AL+ltgC48bgAuXW6ALqZzgC7dboAtGG6ALVtugC2eboAt3W6ALAZugCxEboAsgm6ALMFugCsUboArXG2AK5RugCvbboAqNG4AKldugCqRbYAq1G6AKRxlgKlYZYCpnGWAqe9ugCgzZsCofG6AKLJugCjxboAnHmaAp0tugCeDc4An4WWApgJugCZtZYCmjm6AJuJtgCUMboA+CEAgJZpugCXrZYCkHm6AJE1ugCSMboAkwG6AIxJzgCN5bYAjhmaAo+hugCIoboAiUG2AIqhugCLdbYAhAG4AIWFugCGac4Ah4W6AICxugCBvboAgqm6AIOlugCAgbkAgQ27AIIVtwCDAbsAhAG7AIUhtwCGAbsAhz27AIgJuwCJAbsAihm7AIsVuwCMcbsAjX27AI5puwCPZbsAkKG5AJEluwCSyc8AkyW7AJQhuwCVwbcAliG7AJf1twCY6c8AmUW3AJq5mwKbAbsAnLm7AJ31uwCe8bsAn8G7AKARuwChCZQCokm7AKONlwKkCbsApbWXAqY5uwCnibcAqFmbAqkNuwCqLc8Aq6WXAqwNmgKtMbsArgm7AK8FuwCw0ZcCscGXArLRlwKzHbsAtFG5ALXduwC2xbcAt9G7ALjxuwC50bcAuvG7ALvNuwC82bsAvdG7AL7JuwC/xbsAgJmkAIEliAKCqaQAgxmoAFsNAICFvaQAhp3QAIcViAKInYUCiaGkAIqZpACLlaQAjCGIAo0xiAKOIYgCj+2kAJDBpgCRTaQAklWoAJNBpACUQaQAlWGoAJZBpACXfaQAmEmkAJlBpACaWaQAm1WkAJwxpACdPaQAnimkAJ8lpACgYaYAoeWkAKIJ0ACj5aQApOGkAKUBqACm4aQApzWoAKgp0ACphagAqnmEAqvBpACseaQArTWkAK4xpACvAaQAsFGkALFJiwKyCaQAs82IArRJpAC19YgCtnmkALfJqAC4GYQCuU2kALpt0AC75YgCvE2FAr1xpAC+SaQAv0WkAIARiQKBAYkCghGJAoPdpQCEkacAhR2lAFQBAICHEaUAiDGlAIkRqQCKMaUAWAEAgFwBAICNEaUAjgmlAI8FpQCQAaUAkQ2lAJIZpQCTFaUAlLGnAGABAICW2dEAlzWlAJgRpQCZ8akAmhGlAJvFqQCc+dEAZAEAgJ6phQKfEaUAoEmlAKEFpQCiAaUAozGlAKQBpQClGYoCplmlAKediQKoOaUAqYWJAqoJpQCruakArEmFAq0dpQCuPdEAr7WJArB9hAKxQaUAsnmlALN1pQC0wYkCtdGJArbBiQK3DaUAuGGnALntpQBoAQCAu+GlALzhpQC9wakAvuGlAGwBAIC3baYAttWGArUpqgC0hdIAs7mqALJtpgCxjaoAsG2mAL8higK+5aYAvaWJAnABAIC7jaYAdAEAgLm5pgC49aYAeAEAgKZ1pgClbaYAfAEAgIABAICiTaYAhAEAgIgBAICvCaYAruXSAIwBAICsjaQAqymmAKolpgCpMaYAkAEAgJc5pgCWNaYAlQ2mAJQxhwKTmYoCkhHSAJExpgCQZYYCn62mAJ65qgCUAQCAnC2kAJthpgCarYoCmb2KApitigKHfaYAhk2mAIVJpgCEBaYAg72mAIIFhgKB+aoAgFXSAI/1qgCORaYAjcmKAox1pgCL8YoCijWmAIl1iQKIbaYAgCmnAIEhpwCCOacAgzWnAIRRpwCYAQCAhkmnAJwBAIDMSIkCzYiJAoqp0wCLRacAjEGnAI2hqwCOQacAj5WrAJDJ0wBFIwCAkpmHApMhpwCUmacAldWnAJbRpwCX4acAmPGnAJnpiAKaqacAm22LApzppwCdVYsCntmnAJ9pqwCgeYcCoS2nAKIN0wCjhYsCpC2GAqURpwCmKacApyWnAKixiwKpoYsCqrGLAqt9pwCsMaUArb2nAK6lqwCvsacAsNGnALHxqwCy0acAs+2nALT5pwC18acAtumnALflpwC4oacAua2nALq5pwC7tacAvBGlAL2VpwC+edMAv5WnAICRoACBiY8CgsmgAIMNjAKEiaAAhTWMAoa5oACHCawAiNmAAomNoACKrdQAiyWMAoyNgQKNsaAAjomgAI+FoACQUYwCkUGMApJRjAKTnaAAlNGiAJVdoACWRawAl1GgAJhxoACZUawAmnGgAJtNoACcWaAAnVGgAJ5JoACfRaAAoMGgAKHNoACi2aAAo9WgAKRxogCl9aAAphnUAKf1oACo0aAAqTGsAKrRoACrBawArDnUAK2VrACuaYACr9GgALAJoACxRaAAskGgALNxoAC0QaAAtVmPArYZoAC33YwCuHmgALnFjAK6SaAAu/msALwJgAK9XaAAvn3UAL/1jAKAvYACgYGhAIK5oQCDtaEAhAGNAoURjQKGAY0Ch82hAIihowCJLaEAijWtAIshoQCMIaEAjQGtAI4hoQCPHaEAkGmhAJFhoQCSeaEAk3WhAJQRoQCVHaEAlgmhAJcFoQCYgaMAmQWhAJrp1QCbBaEAnAGhAJ3hrQCeAaEAn9WtAKAJ1QChpa0AolmBAqPhoQCkWaEApRWhAKYRoQCnIaEAqDGhAKkpjgKqaaEAq62NAqwpoQCtlY0CrhmhAK+prQCwOYECsW2hALJN1QCzxY0CtG2AArVRoQC2aaEAt2WhALjxjQK54Y0CuvGNArs9oQC8caMAvf2hAL7lrQC/8aEAs2miALKF1gCxaaIAsO2gALe5rgC2baIAtY2uALRtogC7TaIAuvWCArkJrgC4pdYAv42iAL69ogC9uaIAvPWiAKNNogCiWa4AoUGiAKDNoACncaIApk2iAKVtrgCkTaIAq1miAKpVogCpTaIAqEWiAK8pogCuJaIArTGiAKw9ogCTla4AkiWiAJGpjgKQFaIAl5mOApYR1gCVMaIAlGWCApsZogCaFaIAmS2iAJgRgwKfYaIAnq2OAp29jgKcrY4Cg2muAIK9ogCBXa4AgL2iAIe9ogCGBYIChfmuAIRV1gCLXaIAim2iAIlpogCIJaIAj/GOAo41ogCNdY0CjG2iAIARowCBMa8AghGjAIMtowCEOaMAhTGjAIYpowCHJaMAiGGjAIltowCKeaMAi3WjAIzRoQCNVaMAjrnXAI9VowCQMaMAkdGvAJIxowCT5a8AlNnXAJV1rwCWiYMClzGjAJipowCZ5aMAmuGjAJvRowCc4aMAnfmMAp65owCffY8CoBmjAKGljwKiKaMAo5mvAKRpgwKlPaMAph3XAKeVjwKoHYICqSGjAKoZowCrFaMArKGPAq2xjwKuoY8Cr22jALBBoQCxzaMAstWvALPBowC0waMAteGvALbBowC3/aMAuMmjALnBowC62aMAu9WjALyxowC9vaMAvqmjAL+lowBnDQCA0QYAgG0NAIDIBwCAcw0AgA8HAICFDQCAlAcAgIsNAICaBwCAuA0AgH0HAIDKDQCAxQcAgAIOAIBPBwCAFA4AgFIHAIAgDgCAkB0AAOEGAIAPJACA4iUAgCguAICtLACAyS0AgKpVAACrKQAAMjcAgAErAIDGMACAsjIAgAEsAIBTLwCAmSsAgJ8wAIDtKwCAGjUAgI43AICtLQCA5SwAgGYyAIADMACALzAAgA44AIAjMACA+y8AgHI0AICAIa4AgaWsAIJJ2ACDpawAhKGsAIVBoACGoawAh3WgAIhp2ACJxaAAiv0AAIsxxgCM7QAAjdEAAI7VAACPyQAAgCmhAIFNFACCIQEAg+G4AoQ5qgCFOaoAhhG9AodRFACIEQEAidW4AorNrQCLLbsCjGEUAI3ZjQKObRQAj2UUAJB5AQCRubgCkkm9ApNFuwKUDRQAlTUUAJYZAQCXqbgCmF2qAJkBFACaIQEAmwUUAJx5vQKdhbgCnnm7Ap+JuAKggb0CoXm4AqKZCQCjlRQApFmuAKWJFACmmQEAp70UAKipAQCpvbsCqrkBAKuJFACsmRQArZkUAK6JFACviRQAsNkBALEJrgCy6QEAs9W7ArTNuwK17RQAtpW8ArfhFAC4oRQAuaEUALrBoQC7pRQAvNkBAL0ZuAK+0aoAv9GqAL9FFwC+RRcAvTUXALxBvwK7KRcAugm4ArkBuAK4PQIAt+2tALY9AgC1HRcAtB0XALMdFwCyHRcAsR0XALAtAgCvWbgCrk0CAK1pFwCsTQIAq00XAKqdrQCpQRcAqE0KAK40AIDRLACApX0XAKR9FwCjoa4Aom2CAqF9ggKgbYICnzmuAJ41rgCdDa4AnDGPApuZggKaEdoAmTGuAJhljgKXtaIAlgWuAJWJggKUNa4Ak7GCApJ1rgCRNYECkC2uAI99rgCOTa4AjUmuAIwFrgCLva4AigWOAon5ogCIVdoAh0miAIadrgCFfaIAhJ2uAIOZrgCCddoAgZmuAIAdrADMqIQCzUyGAswguQLNTLkCzECOAkYyAIDMmIUCzTyEAswQgwLNUIMCzKCDAs2MgwLMMIACzSSAAswYgALNhIACmjMAgAUsAIAxLQCAiSMAgE0jAIBXIwCAayMAgJMjAIB1IwCAnSMAgGEjAIB/IwCAzPC5As2EuQLMULgCzay7AoDNAACB1QAAgt0AAIPVAACEzQAAhfUAAIb9AACH9QAAiM0AAFcvAIDBLACA1SoAgM0qAIDdKgCAuekAgCErAICQZQAAkW0AAKiIKgA1KwCAPSsAgEUrAIBJKwCATSsAgKIAMACjzDMAoOg9AKHsPACm8DYAp/QoAKQANACl/DUAgFERAIHpiAKCXREAg1URAIQpBACF6b0Chhm4AocVvgKIfREAiUURAIppBACL2b0CjA2vAI1REQCOcQQAj1URAJBJuAKRtb0Ckkm+ApO5vQKUUbgClam9ApZJDACXRREAmKmrAJl5EQCaaQQAm00RAJx5BACdbb4CnmkEAJ9ZEQCgqREAoakRAKK5EQCjuREApIkEAKVZqwCmuQQAp4W+Aqi9vgKpnREAquW5AquREQCs8REArfERAK6RpACv9REAsOkEALEpvQKy4a8As+GvALTZuAK1mREAtukEALctvQK4BagAueW+Arq5EQC7AYgCvKURAL2tEQC+wQQAvwG9AoABuQKBDb8CglUQAINtEACEUQUAheG8AoYlrgCHeRAAiGkFAIlNEACKIbkCi928AowxvwKNwbwCjjm5Ao/BvAKQUQ0AkV0QAJKBqgCTURAAlFEFAJV1EACWUQUAl0W/AphxBQCZQRAAmkEQAJtBEACcQRAAnUEQAJ5hBQCfsaoAoKEFAKGdvwKilb8Co7UQAKTduAKlqRAAptkQAKfZEACoiaUAqe0QAKqBBQCrQbwCrJmuAK2ZrgCusbkCr/EQALDxBQCxNbwCsi2pALPNvwK0gRAAtTmJAraNEAC3hRAAuNkFALkZvAK66bkCu+W/ArytEAC9lRAAvrkFAL8JvAK5La0AuC2tALtFEwC6BboCveG/ArwlBgC/GbwCvvmqALEdEwCwabsCs20TALJtEwC1eRMAtB2mALfVvwK2FQYAqXUTAKh1EwCrhakAqlUGAK1JvAKsdQYAr2ETAK5BvAKhQRMAoGUGAKNxvAKiZQYApVUTAKRlBgCnVRMAplUTAJl1vwKYhbwCm3W/ApqNugKdiRMAnIUOAJ+FEwCeVakAkVW/ApDlBgCTzRMAkpGtAJXZEwCU/QYAl0m/Apa1ugKJmRMAiJETAIs1vwKK9QYAjdm8AozVugKPuRMAjoETAIGtEwCA7boCgxm/AoLdBgCF8bwChBGqAIcVigKGrRMAgD2sAIFhEgCCQQcAg2USAIQZuwKF5b4Chhm9AofpvgKIIbsCidm+AopFEgCLXRIAjSkAgM3pAICOzaoAj8mLApCdiwKRpYsCkrGqAJOxqgCU2akAldmpAJb5qQCX+akAmJWqAJmRiwKatYsCm42LApyJqgCdiaoAnvGpAJ/xqQCgIakAoSGpAKJ9qgCjeYsCpE2LAqV1iwKmYaoAp2GqAKgpqQCpKakAqgmpAKsJqQCsRaoArUGLAq5liwKvXYsCsDmqALE5qgCyQakAs0GpALRxqQC1cakAti2qALcpiwK4PYsCuQWLAroRqgC7EaoAvHmpAL15qQC+WakAv1mpAIKJIwBtKwCAcSsAgI0rAIC+6QCAh5kjAJEpAIB5KwCAyOkAgIu5JACpKwCAifkkAI6VIwCPiSMAsSsAgI2JJACSvSMAESsAgLkrAICR4SMAo+sAgJfFIwCU8SMA4SsAgJkpAICbkSMA+SsAgJndIwD9KwCAnwktAAksAICdjdUAogkjAJ0pAIBBLACAofUjAEUsAICnGSMApCUkAG0sAICq7SQAeSwAgKgdIwCpeSQArhUjAK8JIwCsCSQArQkkALI9IwCJLACAsDEjALFhIwC2VSMAt0UjALRxIwC1XSMAulkjALsRIwCRLACAuV0jAL6JLQCVLACAvI0tANzpAICAuSUAgX0iAIKBIgCDmSIAhK0lAIXZJQCGuSIAh5EiAIiVIgCJ8SUAljIAgIuxJQCMgSUAjYElAI6dIgCPgSIAkLkiAJHpIgCStSIAk9EiAJT5IgCV1SIAlt0iAJfNIgCY+SIAmdUiAJrRIgCbmSIAqSwAgLEsAIDh6QCAvSwAgGUAAACh/SIAogEiAKMZIgDFLACApVklAKY5IgCnESIAqBUiAKlxJQDNLACAqzElAKwBJQCtASUArh0iAK8BIgCwOSIAsWkiALI1IgCzUSIAtHkiALVVIgC2XSIAt00iALh5IgC5VSIAulEiALsZIgD1LACA4SwAgO0sAIDxLACAgI0vAIGlLwCCrS8Ag70vAISlLwCFrS8AhqUvAIfdLwCI5S8Aie0vAIrlLwD5LACAAS0AgAUtAIANLQCAFS0AgJCRLwCRkS8AkpEvAJORLwCUsS8AlbEvAJa1LwCXRTMAmE0zAJlVMwCaPTMAmxkzAJyZMwCdiTMAnlUwAJ9JMACgwTAAockwAKLZMACj1TAApM0wAKX9MACm5TAApzUwAKi1MQCpuTEAqu0xAKuxmgCs0ZYArbE6AK61OgAZLQCAsEGUALHNlgCy1ZoAs8GWALTBlgC14ZoAtsGWALf9lgC4yZYAucGWALrZlgC71ZYAvLGWAL29lgC+qZYAv6WWAMUAAAChfSAAooEgACktAICkrScALS0AgDktAICnkSAAXS0AgKnxJwCqZScAq7EnAKyBJwCtgScArp0gAK+BIACwuSAAsekgALK1IABhLQCAtPkgALXVIAC23SAAt80gAEUtAIC51SAATS0AgLuZIACpLQCAcS0AgHUtAIB5LQCAgDknAIH9IACCASAAgxkgAG0tAICFWScAhjkgAIcRIACIFSAAiXEnAIrlJwCLMScAjAEnAI0BJwCOHSAAjwEgAJA5IACRaSAAkjUgAJNRIACUeSAAlVUgAJZdIACXTSAAmHkgAJlVIACaUSAAmxkgAJyFLgCdBdYAnoEuAJ+BLgCArT8AgbU/AIK9PwCDtT8AhK0/AIW5yACG1T8Ah80/AIj1PwCJ/T8AipnIAIvxPwCMATsAjQE7AI6NyACPOQQAkEkEAJFJBACSWQQAk1UEAJRNBACV3TwAlnkEAJd1BACYWQQAmSEEAJohBACbNdQAnCEEAJ3Z5gCeJQQAnx0EAKDpBACh9QQAos0/AKP1BACkFQQApfnUAKYhyACnIcgAqNHUAKktBACqOQQAq03CAKwtBACtdcgArh0EAK95BACwKQQAsTEEALI9BACzOQQAtC0EALX9BQC2qQUAt6kFALiZBQC5mQUAunkFALtFBQC8AQUAvQEFAL4BBQC/AQUAgC0HAIE1BwCCPQcAgzUHAIQtBwCFqQcAhqUHAIdl1QCILQYAiTEGAIoxBgCLDQYAjPnJAI15BgCOWQYAj1UGAJBpyQCRNQYAkj0GAJM1BgCULQYAlcUGAJZdAwCXVQMAmG0DAJl1AwCafQMAm3UDAJxtAwCdET0AnlkDAJ9ZAwCgqQMAoakDAKK5AwCjuQMApKkDAKWpAwCm2QMAp9kDAKjpAwCp6QMAqvkDAKv9AwCs5QMAre0DAK7lAwCvbcMAsKEDALGhAwCyoQMAs6EDALShAwC1zeYAtq0DALelAwC4yeYAuZkDALppAwC7aQMAvHkDAL15AwC+aQMAv2kDAIAAAACBLQCAfS0AgJUtAIDm6QCAsS0AgLUtAIC9LQCA0S0AgPQtAIDr6QCA8OkAgAAuAIAELgCACC4AgPwtAIAQLgCAoSkAgKUpAIAYLgCAIC4AgPXpAIA8LgCAQC4AgEwuAID66QCAVC4AgFguAIA3LwCAqSkAgGwuAICILgCAhC4AgATqAICQLgCACeoAgJwuAICYLgCAoC4AgLAuAIC0LgCArSkAgMQuAIDMLgCA0C4AgNQuAICxKQCADuoAgLUpAID3LgCA+y4AgP8uAIDV6wCAGOoAgNo1AIAvLwCAuSkAgDvqAIAN6wCAPy8AgEcvAIC9KQCAWy8AgGsvAICqIfQAq7U/AKilPwCpzecArkXwAK+hPwCsSfAArTH0AKJl4gCjvT8AoLk/AKG5PwCmlT8Ap50/AKSlPwClnT8Augk8AG8vAIC4CTwAuQk8AHcvAICHLwCAxSkAgMEpAICy3T8AswU9ALBN7wCx1T8Atn3wALe55AC0HT0AtWk8AB3qAICPLwCAoy8AgKcvAIC3LwCAyy8AgMMvAIDHLwCAgrX7AM8vAICA/T8AgfU/AOMvAIDnLwCA/y8AgAcwAICavT8Am/3NAJi9PwCZtT8Anlk/AJ9ZPwCcWT8AnVk/AJKBPwCTaekAkHnkAJGxPwCWgT8Al4H0AJQh5wCVmT8AFzAAgCswAIAs6gCAJzAAgBswAIAzMACAOzAAgE8wAIAx6gCAVzAAgEoAAABLMACAQzAAgMkpAIBfMACAZzAAgG8wAIBjMACAzSkAgIcwAIA26gCAszAAgPUwAIDRMACA2SkAgNUpAIDRKQCAnSsAgKErAID5MACA4TAAgK41AIA9KgCADTEAgCExAIAZMQCAT+oAgN0pAIA1MQCAKTEAgFIxAIBZ6gCAXjEAgD0xAIBmMQCAajEAgG4xAIByMQCAfjEAgF7qAICGMQCA5SkAgJIxAIBj6gCAljEAgOkpAICiMQCArjEAgL4xAIBo6gCA/+kAgG3qAIDeMQCAcuoAgLgJAQC5CQEAuhkBALsZAQC8CQEAvQkBAL45AQC/OQEAsM3FALE1zACymQ4As5kOALSJDgC1iQ4AtjkBALc5AQCo6dkAqckOAKrZDgCrqcUArMUOAK3NDgCuxQ4Ar/kOAKA1DgChPQ4AojUOAKOxxQCk8Q4ApfEOAKbxDgCn8Q4AmGkPAJlpDwCaeQ8Am3kPAJxpDwCdaQ8Ant0OAJ/NDgCQ+eoAkXEPAJJ9DwCTdQ8AlG0PAJVpDwCWWQ8Al1kPAIh5DwCJeQ8AigkPAIsJDwCMGQ8AjRkPAI4NzACPDQ8AgHkPAIF5DwCCSQ8Ag0kPAIRZDwCFWQ8AhkkPAIdJDwCKUQIAi1ECAIj5xgCJQQIAjnECAI/txgCMQQIAjUECAIIVAgCDHQIAgAUCAIEdAgCGdQIAh30CAIQFAgCFfQIAmsUCAJvNAgCYkc8AmYXaAJ7FAgCfzQIAnNUCAJ3NAgCSDQIAkxUCAJANAgCRBQIAlg0CAJf1AgCUDQIAlQUCAKo9AgCrRQIAqD0CAKk1AgCuXQIAr0UCAKxdAgCtVQIAol3GAKMBAgCgNQIAoQ0CAKYBAgCnxdgApBECAKURAgC6OQIAuzkCALg5AgC5OQIAvtkBAL/ZAQC82QEAvdkBALI9AgCzBQIAsD0CALE1AgC2GQIAtxkCALQdAgC16cIA6jEAgPIxAIDiMQCA/jEAgA4yAIAWMgCAIjIAgCYyAIB36gCACjIAgD4yAIBCMgCA7SkAgFIyAIB86gCANjIAgHIyAICB6gCAhuoAgHYyAICKMgCAgjIAgPEpAICOMgCAnjIAgJoyAICmMgCAw+kAgLYyAICL6gCAwjIAgJXqAIDWMgCA9jIAgJrqAIAKMwCADjMAgJ/qAICk6gCAKjMAgDozAID1KQCAPjMAgPkpAIBWMwCAWjMAgGYzAIByMwCA/SkAgIozAICp6gCApjMAgK7qAIAT6gCAwjMAgLPqAIC4AAAAuOoAgL3qAIABKgCABSoAgMfqAIDC6gCAzOoAgIAB3gCB8QcAgvEHAIPxBwCEFQIAhR0CAIYVAgCHEQIAiCXeAIld3gCKOQIAizkCAIwpAgCNKQIAjhkCAI99ygCQTd4AkWECAJJhAgCT7cEAlH0CAJVlAgCWIcAAl2kCAJhZAgCZMcIAmlUCAJstAgCcNQIAnT0CAJ4xAgCfMQIAoNECAKHRAgCi0QIAo9ECAKTxAgCl8QIApvECAKfxAgCo0QIAqdECAKrRAgCr0QIArDECAK0xAgCuMQIArzECALBRAgCxUQIAslECALNRAgC0cQIAtXECALZxAgC3cQIAuFECALlRAgC6+dwAu1UCALxNAgC9NQIAvj0CAL81AgC+7QYAv/UGALztBgC95QYAuskGALvJBgC4xcsAuckGALbtBgC39QYAtO0GALXlBgCyjQYAs/UGALDR3QCxhQYArvEGAK/xBgCs5QYAreEGAKr1BgCr/QYAqMUGAKn9BgCm9QYAp/0GAKTlBgCl/QYAovUGAKP9BgCg+QYAoZ3dAJ75BgCf+QYAnPkGAJ35BgCa+QYAm/kGAJj5BgCZ+QYAlvkGAJf5BgCUcd0AlfkGAJL9BgCT5QYAkP0GAJH1BgCO/QYAj4UGAIz9BgCN9QYAiuEGAIsB3QCI8QYAifEGAIbBBgCHwQYAhPEGAIXxBgCCkccAg+EGAIDpBgCBxcAAgAAAANHqAIACNACABjQAgBI0AIARKgCAFSoAgNvqAIAmNACAGSoAgODqAIDl6gCA6uoAgJY0AIAdKgCAojQAgKY0AIDv6gCA9OoAgL40AIAhKgCA+eoAgNI0AIDWNACAJSoAgP7qAIDyNACAKSoAgAI1AID6NACACjUAgAjrAIAiNQCALSoAgC41AIA2NQCARjUAgDEqAIAS6wCAF+sAgDUqAIAc6wCAXjUAgCHrAIBqNQCAdjUAgCbrAIAr6wCAkjUAgDDrAICaNQCAQOoAgDkqAICyNQCAtjUAgEEqAIC6NQCAFC4AgDXrAIA66wCAReoAgErqAIDeNQCA9jcAgIDNAQCB1QEAgt0BAIPVAQCEzQEAhfUBAIb9AQCH9QEAiM0BAInVAQCK3QEAi/UJAIzJAQCNyQEAjgEcAI89HwCQRR8AkU0fAJJFHwCTXR8AlEUfAJVNHwCWRR8Al30fAJhBxwCZQR8AmkEfAJtBHwCcQR8AnUEfAJ5BHwCfYd8AoL0fAKHFHwCizR8Ao8UfAKTdHwClxR8Aps0fAKfFHwCo/R8AqcUfAKrNHwCrxR8ArN0fAK3FHwCuzR8Ar8UfALC9HwCxRR8Ask0fALNFHwC0/ckAtVkfALZJHwC3SR8AuHkfALl5HwC6SR8Au8XdALxVHwC9XR8AvlUfAL9NHwAKNgCABjYAgA42AIAZLACAEjYAgBY2AIAaNgCAIjYAgD/rAIAmNgCAOjYAgD42AIAqNgCAQjYAgFY2AIA2NgCASjYAgE42AIBSNgCAROsAgE7rAIBJ6wCASSoAgHI2AIB2NgCAfjYAgGLrAICCNgCAU+sAgE0qAIBRKgCAWOsAgF3rAIBVKgCAojYAgKo2AICuNgCAujYAgLY2AIDCNgCAvjYAgMY2AIDKNgCA0jYAgFkqAIDaNgCA3jYAgF0qAIDuNgCAZ+sAgP42AIACNwCAYSoAgA43AICVKQCAbOsAgHHrAIBlKgCAaSoAgDo3AIB26wCAkjcAgJY3AICuNwCAgLUBAIG9AQCCtQEAg80BAITt9ACF0QEAhtEBAIfRAQCI8QEAifEBAIrxAQCL8QEAjNEBAI3RAQCO0QEAj9EBAJB9wwCRBcMAkl35AJO9AQCUpQEAla0BAJalAQCXXQMAmGUDAJltAwCaZQMAm30DAJxlAwCdbQMAnmUDAJ85wwCgoQMAoaEDAKKhAwCjoQMApKEDAKWhAwCmoQMAp6EDAKjhAwCp4QMAquEDAKvhAwCs4QMAreEDAK7hAwCv4QMAsKEDALGhAwCyoQMAs6EDALShAwC1oQMAtqEDALehAwC4YQMAuWEDALphAwC7YQMAvGEDAL1hAwC+pcMAv6HDALo3AICA6wCA0ukAgMY3AIDCNwCAzjcAgNfpAIDaNwCAhesAgIrrAIAmOACAMjgAgDo4AICP6wCAPjgAgGY4AIByOACAdjgAgG44AICCOACAhjgAgJTrAICSOACAbSoAgJo4AICZ6wCAcSoAgNI4AICkLgCA6jgAgJ7rAICo6wCAdSoAgHkqAIASOQCAresAgH0qAICy6wCAMjkAgLfrAIBKOQCAgSoAgFo5AIBmOQCAbjkAgHY5AICFKgCAvOsAgKY5AICyOQCAiSoAgI0qAIC2OQCAwesAgJEqAIDG6wCAy+sAgNDrAICVKgCA9jkAgPo5AIACOgCACjoAgNrrAICQ1QEAkd0BAJLVAQCT7QEAlPUBAJXB+wCW8QEAl/n7AJjNAQCZ1QEAmt0BAJvVAQCcyfsAnckBAEUqAICPAAAAgNkBAIHZAQCC6QEAg+kBAIT5AQCF+QEAhukBAIfpAQCI2QEAidkBAIoJwQCLrQEAjLUBAI29AQCOtQEAj60BAKAAAAChAAAAogAAAKMAAACkAAAApQAAAKYAAACnAAAAqAAAAKkAAACqAAAAqwAAAKwAAACtAAAArgAAAK8AAACwAAAAsQAAALIAAACzAAAAtAAAALUAAAC2AAAAtwAAALgAAAC5AAAAugAAALsAAAC8AAAAvQAAAL4AAAC/AAAAACAAIMyBACDMgwAgzIQAIMyFACDMhgAgzIcAIMyIACDMiMyAACDMiMyBACDMiM2CACDMigAgzIsAIMyTACDMk8yAACDMk8yBACDMk82CACDMlAAgzJTMgAAgzJTMgQAgzJTNggAgzKcAIMyoACDMswAgzYIAIM2FACDZiwAg2YwAINmM2ZEAINmNACDZjdmRACDZjgAg2Y7ZkQAg2Y8AINmP2ZEAINmQACDZkNmRACDZkQAg2ZHZsAAg2ZIAIOOCmQAg44KaACEAISEAIT8AIgAjACQAJQAmACcAKAAoMSkAKDEwKQAoMTEpACgxMikAKDEzKQAoMTQpACgxNSkAKDE2KQAoMTcpACgxOCkAKDE5KQAoMikAKDIwKQAoMykAKDQpACg1KQAoNikAKDcpACg4KQAoOSkAKEEpAChCKQAoQykAKEQpAChFKQAoRikAKEcpAChIKQAoSSkAKEopAChLKQAoTCkAKE0pAChOKQAoTykAKFApAChRKQAoUikAKFMpAChUKQAoVSkAKFYpAChXKQAoWCkAKFkpAChaKQAoYSkAKGIpAChjKQAoZCkAKGUpAChmKQAoZykAKGgpAChpKQAoaikAKGspAChsKQAobSkAKG4pAChvKQAocCkAKHEpAChyKQAocykAKHQpACh1KQAodikAKHcpACh4KQAoeSkAKHopACjhhIApACjhhIIpACjhhIMpACjhhIUpACjhhIYpACjhhIcpACjhhIkpACjhhIspACjhhIwpACjhhI4pACjhhI8pACjhhJApACjhhJEpACjhhJIpACjkuIApACjkuIMpACjkuIkpACjkuZ0pACjkuowpACjkupQpACjku6MpACjkvIEpACjkvJEpACjlhaspACjlha0pACjlirQpACjljYEpACjljZQpACjlkI0pACjlkbwpACjlm5spACjlnJ8pACjlraYpACjml6UpACjmnIgpACjmnIkpACjmnKgpACjmoKopACjmsLQpACjngaspACjnibkpACjnm6MpACjnpL4pACjnpZ0pACjnpa0pACjoh6opACjoh7MpACjosqEpACjos4cpACjph5EpACjqsIApACjrgpgpACjri6QpACjrnbwpACjrp4gpACjrsJQpACjsgqwpACjslYQpACjsmKTsoIQpACjsmKTtm4QpACjsnpApACjso7wpACjssKgpACjsubQpACjtg4ApACjtjIwpACjtlZgpACkAKgArACwALQAuAC4uAC4uLgAvADAAMCwAMC4AMOKBhDMAMOeCuQAxADEsADEuADEwADEwLgAxMOaXpQAxMOaciAAxMOeCuQAxMQAxMS4AMTHml6UAMTHmnIgAMTHngrkAMTIAMTIuADEy5pelADEy5pyIADEy54K5ADEzADEzLgAxM+aXpQAxM+eCuQAxNAAxNC4AMTTml6UAMTTngrkAMTUAMTUuADE15pelADE154K5ADE2ADE2LgAxNuaXpQAxNueCuQAxNwAxNy4AMTfml6UAMTfngrkAMTgAMTguADE45pelADE454K5ADE5ADE5LgAxOeaXpQAxOeeCuQAx4oGEADHigYQxMAAx4oGEMgAx4oGEMwAx4oGENAAx4oGENQAx4oGENgAx4oGENwAx4oGEOAAx4oGEOQAx5pelADHmnIgAMeeCuQAyADIsADIuADIwADIwLgAyMOaXpQAyMOeCuQAyMQAyMeaXpQAyMeeCuQAyMgAyMuaXpQAyMueCuQAyMwAyM+aXpQAyM+eCuQAyNAAyNOaXpQAyNOeCuQAyNQAyNeaXpQAyNgAyNuaXpQAyNwAyN+aXpQAyOAAyOOaXpQAyOQAyOeaXpQAy4oGEMwAy4oGENQAy5pelADLmnIgAMueCuQAzADMsADMuADMwADMw5pelADMxADMx5pelADMyADMzADM0ADM1ADM2ADM3ADM4ADM5ADPigYQ0ADPigYQ1ADPigYQ4ADPml6UAM+aciAAz54K5ADQANCwANC4ANDAANDEANDIANDMANDQANDUANDYANDcANDgANDkANOKBhDUANOaXpQA05pyIADTngrkANQA1LAA1LgA1MAA14oGENgA14oGEOAA15pelADXmnIgANeeCuQA2ADYsADYuADbml6UANuaciAA254K5ADcANywANy4AN+KBhDgAN+aXpQA35pyIADfngrkAOAA4LAA4LgA45pelADjmnIgAOOeCuQA5ADksADkuADnml6UAOeaciAA554K5ADoAOjo9ADsAPAA9AD09AD09PQA+AD8APyEAPz8AQABBAEFVAEHiiJVtAEIAQnEAQwBDRABDby4AQ+KIlWtnAEQAREoARFoARHoARMW9AETFvgBFAEYARkFYAEcAR0IAR0h6AEdQYQBHeQBIAEhQAEhWAEhnAEh6AEkASUkASUlJAElKAElVAElWAElYAEoASwBLQgBLSwBLTQBMAExKAExURABMagBMwrcATQBNQgBNQwBNRABNSHoATVBhAE1WAE1XAE3OqQBOAE5KAE5qAE5vAE8AUABQSABQUE0AUFBWAFBSAFBURQBQYQBRAFIAUnMAUwBTRABTTQBTUwBTdgBUAFRFTABUSHoAVE0AVQBWAFZJAFZJSQBWSUlJAFbiiJVtAFcAV0MAV1oAV2IAWABYSQBYSUkAWQBaAFsAXABdAF4AXwBgAGEAYS5tLgBhL2MAYS9zAGHKvgBiAGJhcgBjAGMvbwBjL3UAY2FsAGNjAGNkAGNtAGNtMgBjbTMAZABkQgBkYQBkbABkbQBkbTIAZG0zAGR6AGTFvgBlAGVWAGVyZwBmAGZmAGZmaQBmZmwAZmkAZmwAZm0AZwBnYWwAaABoUGEAaGEAaQBpaQBpaWkAaWoAaW4AaXYAaXgAagBrAGtBAGtIegBrUGEAa1YAa1cAa2NhbABrZwBrbABrbQBrbTIAa20zAGt0AGvOqQBsAGxqAGxtAGxuAGxvZwBseABswrcAbQBtMgBtMwBtQQBtVgBtVwBtYgBtZwBtaWwAbWwAbW0AbW0yAG1tMwBtb2wAbXMAbeKIlXMAbeKIlXMyAG4AbkEAbkYAblYAblcAbmoAbm0AbnMAbwBvVgBwAHAubS4AcEEAcEYAcFYAcFcAcGMAcHMAcQByAHJhZAByYWTiiJVzAHJhZOKIlXMyAHMAc3IAc3QAdAB1AHYAdmkAdmlpAHZpaWkAdwB4AHhpAHhpaQB5AHoAewB8AH0AwqIAwqMAwqUAwqYAwqwAwrBDAMKwRgDCtwDDgADDgQDDggDDgwDDhADDhQDDhgDDhwDDiADDiQDDigDDiwDDjADDjQDDjgDDjwDDkQDDkgDDkwDDlADDlQDDlgDDmQDDmgDDmwDDnADDnQDDoADDoQDDogDDowDDpADDpQDDpwDDqADDqQDDqgDDqwDDrADDrQDDrgDDrwDDsADDsQDDsgDDswDDtADDtQDDtgDDuQDDugDDuwDDvADDvQDDvwDEgADEgQDEggDEgwDEhADEhQDEhgDEhwDEiADEiQDEigDEiwDEjADEjQDEjgDEjwDEkgDEkwDElADElQDElgDElwDEmADEmQDEmgDEmwDEnADEnQDEngDEnwDEoADEoQDEogDEowDEpADEpQDEpgDEpwDEqADEqQDEqgDEqwDErADErQDErgDErwDEsADEsQDEtADEtQDEtgDEtwDEuQDEugDEuwDEvADEvQDEvgDFgwDFhADFhQDFhgDFhwDFiADFiwDFjADFjQDFjgDFjwDFkADFkQDFkwDFlADFlQDFlgDFlwDFmADFmQDFmgDFmwDFnADFnQDFngDFnwDFoADFoQDFogDFowDFpADFpQDFqADFqQDFqgDFqwDFrADFrQDFrgDFrwDFsADFsQDFsgDFswDFtADFtQDFtgDFtwDFuADFuQDFugDFuwDFvADFvQDFvgDGjgDGkADGoADGoQDGqwDGrwDGsADHjQDHjgDHjwDHkADHkQDHkgDHkwDHlADHlQDHlgDHlwDHmADHmQDHmgDHmwDHnADHngDHnwDHoADHoQDHogDHowDHpgDHpwDHqADHqQDHqgDHqwDHrADHrQDHrgDHrwDHsADHtADHtQDHuADHuQDHugDHuwDHvADHvQDHvgDHvwDIgADIgQDIggDIgwDIhADIhQDIhgDIhwDIiADIiQDIigDIiwDIjADIjQDIjgDIjwDIkADIkQDIkgDIkwDIlADIlQDIlgDIlwDImADImQDImgDImwDIngDInwDIogDIpgDIpwDIqADIqQDIqgDIqwDIrADIrQDIrgDIrwDIsADIsQDIsgDIswDItwDJkADJkQDJkgDJlADJlQDJmQDJmwDJnADJnwDJoQDJowDJpQDJpgDJqADJqQDJqgDJqwDJrQDJrwDJsADJsQDJsgDJswDJtADJtQDJuADJuQDJuwDKgQDKggDKgwDKiQDKigDKiwDKjADKkADKkQDKkgDKlQDKnQDKnwDKuQDKvG4AzIAAzIEAzIjMgQDMkwDOhgDOiADOiQDOigDOjADOjgDOjwDOkADOkQDOkgDOkwDOlADOlQDOlgDOlwDOmADOmQDOmgDOmwDOnADOnQDOngDOnwDOoADOoQDOowDOpADOpQDOpgDOpwDOqADOqQDOqgDOqwDOrADOrQDOrgDOrwDOsADOsQDOsgDOswDOtADOtQDOtgDOtwDOuADOuQDOugDOuwDOvADOvEEAzrxGAM68VgDOvFcAzrxnAM68bADOvG0AzrxzAM69AM6+AM6/AM+AAM+BAM+CAM+DAM+EAM+FAM+GAM+HAM+IAM+JAM+KAM+LAM+MAM+NAM+OAM+cAM+dANCAANCBANCDANCHANCMANCNANCOANCZANC5ANC9ANGKANGMANGQANGRANGTANGXANGcANGdANGeANG2ANG3ANOBANOCANOQANORANOSANOTANOWANOXANOaANObANOcANOdANOeANOfANOiANOjANOkANOlANOmANOnANOqANOrANOsANOtANOuANOvANOwANOxANOyANOzANO0ANO1ANO4ANO5ANWl1oIA1bTVpQDVtNWrANW01a0A1bTVtgDVvtW2ANeQANeQ1rcA15DWuADXkNa8ANeQ15wA15EA15HWvADXkda/ANeSANeS1rwA15MA15PWvADXlADXlNa8ANeV1rkA15XWvADXlta8ANeY1rwA15nWtADXmda8ANea1rwA15sA15vWvADXm9a/ANecANec1rwA150A157WvADXoNa8ANeh1rwA16IA16PWvADXpNa8ANek1r8A16bWvADXp9a8ANeoANeo1rwA16nWvADXqda814EA16nWvNeCANep14EA16nXggDXqgDXqta8ANey1rcA2KEA2KIA2KMA2KQA2KUA2KYA2KbYpwDYptisANim2K0A2KbYrgDYptixANim2LIA2KbZhQDYptmGANim2YcA2KbZiADYptmJANim2YoA2KbbhgDYptuHANim24gA2KbbkADYptuVANinANin2YPYqNixANin2YTZhNmHANin2YsA2KfZtADYqADYqNisANio2K0A2KjYrdmKANio2K4A2KjYrtmKANio2LEA2KjYsgDYqNmFANio2YYA2KjZhwDYqNmJANio2YoA2KkA2KoA2KrYrADYqtis2YUA2KrYrNmJANiq2KzZigDYqtitANiq2K3YrADYqtit2YUA2KrYrgDYqtiu2YUA2KrYrtmJANiq2K7ZigDYqtixANiq2LIA2KrZhQDYqtmF2KwA2KrZhditANiq2YXYrgDYqtmF2YkA2KrZhdmKANiq2YYA2KrZhwDYqtmJANiq2YoA2KsA2KvYrADYq9ixANir2LIA2KvZhQDYq9mGANir2YcA2KvZiQDYq9mKANisANis2K0A2KzYrdmJANis2K3ZigDYrNmEINis2YTYp9mE2YcA2KzZhQDYrNmF2K0A2KzZhdmJANis2YXZigDYrNmJANis2YoA2K0A2K3YrADYrdis2YoA2K3ZhQDYrdmF2YkA2K3ZhdmKANit2YkA2K3ZigDYrgDYrtisANiu2K0A2K7ZhQDYrtmJANiu2YoA2K8A2LAA2LDZsADYsQDYsdiz2YjZhADYsdmwANix24zYp9mEANiyANizANiz2KwA2LPYrNitANiz2KzZiQDYs9itANiz2K3YrADYs9iuANiz2K7ZiQDYs9iu2YoA2LPYsQDYs9mFANiz2YXYrADYs9mF2K0A2LPZhdmFANiz2YcA2LPZiQDYs9mKANi0ANi02KwA2LTYrNmKANi02K0A2LTYrdmFANi02K3ZigDYtNiuANi02LEA2LTZhQDYtNmF2K4A2LTZhdmFANi02YcA2LTZiQDYtNmKANi1ANi12K0A2LXYrditANi12K3ZigDYtdiuANi12LEA2LXZhNi52YUA2LXZhNmJANi12YTZiSDYp9mE2YTZhyDYudmE2YrZhyDZiNiz2YTZhQDYtdmE25IA2LXZhQDYtdmF2YUA2LXZiQDYtdmKANi2ANi22KwA2LbYrQDYttit2YkA2LbYrdmKANi22K4A2LbYrtmFANi22LEA2LbZhQDYttmJANi22YoA2LcA2LfYrQDYt9mFANi32YXYrQDYt9mF2YUA2LfZhdmKANi32YkA2LfZigDYuADYuNmFANi5ANi52KwA2LnYrNmFANi52YTZitmHANi52YUA2LnZhdmFANi52YXZiQDYudmF2YoA2LnZiQDYudmKANi6ANi62KwA2LrZhQDYutmF2YUA2LrZhdmJANi62YXZigDYutmJANi62YoA2YDZiwDZgNmOANmA2Y7ZkQDZgNmPANmA2Y/ZkQDZgNmQANmA2ZDZkQDZgNmRANmA2ZIA2YEA2YHYrADZgditANmB2K4A2YHYrtmFANmB2YUA2YHZhdmKANmB2YkA2YHZigDZggDZgtitANmC2YTbkgDZgtmFANmC2YXYrQDZgtmF2YUA2YLZhdmKANmC2YkA2YLZigDZgwDZg9inANmD2KwA2YPYrQDZg9iuANmD2YQA2YPZhQDZg9mF2YUA2YPZhdmKANmD2YkA2YPZigDZhADZhNiiANmE2KMA2YTYpQDZhNinANmE2KwA2YTYrNisANmE2KzZhQDZhNis2YoA2YTYrQDZhNit2YUA2YTYrdmJANmE2K3ZigDZhNiuANmE2K7ZhQDZhNmFANmE2YXYrQDZhNmF2YoA2YTZhwDZhNmJANmE2YoA2YUA2YXYpwDZhdisANmF2KzYrQDZhdis2K4A2YXYrNmFANmF2KzZigDZhditANmF2K3YrADZhdit2YUA2YXYrdmF2K8A2YXYrdmKANmF2K4A2YXYrtisANmF2K7ZhQDZhdiu2YoA2YXZhQDZhdmF2YoA2YXZiQDZhdmKANmGANmG2KwA2YbYrNitANmG2KzZhQDZhtis2YkA2YbYrNmKANmG2K0A2YbYrdmFANmG2K3ZiQDZhtit2YoA2YbYrgDZhtixANmG2LIA2YbZhQDZhtmF2YkA2YbZhdmKANmG2YYA2YbZhwDZhtmJANmG2YoA2YcA2YfYrADZh9mFANmH2YXYrADZh9mF2YUA2YfZiQDZh9mKANmH2bAA2YgA2YjYs9mE2YUA2YjZtADZiQDZidmwANmKANmK2KwA2YrYrNmKANmK2K0A2YrYrdmKANmK2K4A2YrYsQDZitiyANmK2YUA2YrZhdmFANmK2YXZigDZitmGANmK2YcA2YrZiQDZitmKANmK2bQA2a4A2a8A2bEA2bkA2boA2bsA2b4A2b8A2oAA2oMA2oQA2oYA2ocA2ogA2owA2o0A2o4A2pEA2pgA2qEA2qQA2qYA2qkA2q0A2q8A2rEA2rMA2roA2rsA2r4A24AA24EA24IA24UA24YA24cA24fZtADbiADbiQDbiwDbjADbkADbkgDbkwDgpJXgpLwA4KSW4KS8AOCkl+CkvADgpJzgpLwA4KSh4KS8AOCkouCkvADgpKkA4KSr4KS8AOCkr+CkvADgpLEA4KS0AOCmoeCmvADgpqLgprwA4Kav4Ka8AOCniwDgp4wA4KiW4Ki8AOCol+CovADgqJzgqLwA4Kir4Ki8AOCosuCovADgqLjgqLwA4Kyh4Ky8AOCsouCsvADgrYgA4K2LAOCtjADgrpQA4K+KAOCviwDgr4wA4LGIAOCzgADgs4cA4LOIAOCzigDgs4sA4LWKAOC1iwDgtYwA4LeaAOC3nADgt50A4LeeAOC5jeC4sgDguqvgupkA4Lqr4LqhAOC7jeC6sgDgvIsA4L2A4L61AOC9guC+twDgvYzgvrcA4L2R4L63AOC9luC+twDgvZvgvrcA4L2x4L2yAOC9seC9tADgvbHgvoAA4L6Q4L61AOC+kuC+twDgvpzgvrcA4L6h4L63AOC+puC+twDgvqvgvrcA4L6y4L2x4L6AAOC+suC+gADgvrPgvbHgvoAA4L6z4L6AAOGApgDhg5wA4YSAAOGEgQDhhIIA4YSDAOGEhADhhIUA4YSGAOGEhwDhhIgA4YSJAOGEigDhhIsA4YSMAOGEjQDhhI4A4YSPAOGEkADhhJEA4YSSAOGElADhhJUA4YSaAOGEnADhhJ0A4YSeAOGEoADhhKEA4YSiAOGEowDhhKcA4YSpAOGEqwDhhKwA4YStAOGErgDhhK8A4YSyAOGEtgDhhYAA4YWHAOGFjADhhZcA4YWYAOGFmQDhhaAA4YWhAOGFogDhhaMA4YWkAOGFpQDhhaYA4YWnAOGFqADhhakA4YWqAOGFqwDhhawA4YWtAOGFrgDhha8A4YWwAOGFsQDhhbIA4YWzAOGFtADhhbUA4YaEAOGGhQDhhogA4YaRAOGGkgDhhpQA4YaeAOGGoQDhhqoA4YasAOGGrQDhhrAA4YaxAOGGsgDhhrMA4Ya0AOGGtQDhh4cA4YeIAOGHjADhh44A4YeTAOGHlwDhh5kA4YedAOGHnwDhh7EA4YeyAOGshgDhrIgA4ayKAOGsjADhrI4A4aySAOGsuwDhrL0A4a2AAOGtgQDhrYMA4bSCAOG0lgDhtJcA4bScAOG0nQDhtKUA4bW7AOG2hQDhuIAA4biBAOG4ggDhuIMA4biEAOG4hQDhuIYA4biHAOG4iADhuIkA4biKAOG4iwDhuIwA4biNAOG4jgDhuI8A4biQAOG4kQDhuJIA4biTAOG4lADhuJUA4biWAOG4lwDhuJgA4biZAOG4mgDhuJsA4bicAOG4nQDhuJ4A4bifAOG4oADhuKEA4biiAOG4owDhuKQA4bilAOG4pgDhuKcA4bioAOG4qQDhuKoA4birAOG4rADhuK0A4biuAOG4rwDhuLAA4bixAOG4sgDhuLMA4bi0AOG4tQDhuLYA4bi3AOG4uADhuLkA4bi6AOG4uwDhuLwA4bi9AOG4vgDhuL8A4bmAAOG5gQDhuYIA4bmDAOG5hADhuYUA4bmGAOG5hwDhuYgA4bmJAOG5igDhuYsA4bmMAOG5jQDhuY4A4bmPAOG5kADhuZEA4bmSAOG5kwDhuZQA4bmVAOG5lgDhuZcA4bmYAOG5mQDhuZoA4bmbAOG5nADhuZ0A4bmeAOG5nwDhuaAA4bmhAOG5ogDhuaMA4bmkAOG5pQDhuaYA4bmnAOG5qADhuakA4bmqAOG5qwDhuawA4bmtAOG5rgDhua8A4bmwAOG5sQDhubIA4bmzAOG5tADhubUA4bm2AOG5twDhubgA4bm5AOG5ugDhubsA4bm8AOG5vQDhub4A4bm/AOG6gADhuoEA4bqCAOG6gwDhuoQA4bqFAOG6hgDhuocA4bqIAOG6iQDhuooA4bqLAOG6jADhuo0A4bqOAOG6jwDhupAA4bqRAOG6kgDhupMA4bqUAOG6lQDhupYA4bqXAOG6mADhupkA4bqgAOG6oQDhuqIA4bqjAOG6pADhuqUA4bqmAOG6pwDhuqgA4bqpAOG6qgDhuqsA4bqsAOG6rQDhuq4A4bqvAOG6sADhurEA4bqyAOG6swDhurQA4bq1AOG6tgDhurcA4bq4AOG6uQDhuroA4bq7AOG6vADhur0A4bq+AOG6vwDhu4AA4buBAOG7ggDhu4MA4buEAOG7hQDhu4YA4buHAOG7iADhu4kA4buKAOG7iwDhu4wA4buNAOG7jgDhu48A4buQAOG7kQDhu5IA4buTAOG7lADhu5UA4buWAOG7lwDhu5gA4buZAOG7mgDhu5sA4bucAOG7nQDhu54A4bufAOG7oADhu6EA4buiAOG7owDhu6QA4bulAOG7pgDhu6cA4buoAOG7qQDhu6oA4burAOG7rADhu60A4buuAOG7rwDhu7AA4buxAOG7sgDhu7MA4bu0AOG7tQDhu7YA4bu3AOG7uADhu7kA4byAAOG8gQDhvIIA4byDAOG8hADhvIUA4byGAOG8hwDhvIgA4byJAOG8igDhvIsA4byMAOG8jQDhvI4A4byPAOG8kADhvJEA4bySAOG8kwDhvJQA4byVAOG8mADhvJkA4byaAOG8mwDhvJwA4bydAOG8oADhvKEA4byiAOG8owDhvKQA4bylAOG8pgDhvKcA4byoAOG8qQDhvKoA4byrAOG8rADhvK0A4byuAOG8rwDhvLAA4byxAOG8sgDhvLMA4by0AOG8tQDhvLYA4by3AOG8uADhvLkA4by6AOG8uwDhvLwA4by9AOG8vgDhvL8A4b2AAOG9gQDhvYIA4b2DAOG9hADhvYUA4b2IAOG9iQDhvYoA4b2LAOG9jADhvY0A4b2QAOG9kQDhvZIA4b2TAOG9lADhvZUA4b2WAOG9lwDhvZkA4b2bAOG9nQDhvZ8A4b2gAOG9oQDhvaIA4b2jAOG9pADhvaUA4b2mAOG9pwDhvagA4b2pAOG9qgDhvasA4b2sAOG9rQDhva4A4b2vAOG9sADhvbIA4b20AOG9tgDhvbgA4b26AOG9vADhvoAA4b6BAOG+ggDhvoMA4b6EAOG+hQDhvoYA4b6HAOG+iADhvokA4b6KAOG+iwDhvowA4b6NAOG+jgDhvo8A4b6QAOG+kQDhvpIA4b6TAOG+lADhvpUA4b6WAOG+lwDhvpgA4b6ZAOG+mgDhvpsA4b6cAOG+nQDhvp4A4b6fAOG+oADhvqEA4b6iAOG+owDhvqQA4b6lAOG+pgDhvqcA4b6oAOG+qQDhvqoA4b6rAOG+rADhvq0A4b6uAOG+rwDhvrAA4b6xAOG+sgDhvrMA4b60AOG+tgDhvrcA4b64AOG+uQDhvroA4b68AOG/ggDhv4MA4b+EAOG/hgDhv4cA4b+IAOG/igDhv4wA4b+QAOG/kQDhv5IA4b+WAOG/lwDhv5gA4b+ZAOG/mgDhv6AA4b+hAOG/ogDhv6QA4b+lAOG/pgDhv6cA4b+oAOG/qQDhv6oA4b+sAOG/sgDhv7MA4b+0AOG/tgDhv7cA4b+4AOG/ugDhv7wA4oCQAOKAkwDigJQA4oCy4oCyAOKAsuKAsuKAsgDigLLigLLigLLigLIA4oC14oC1AOKAteKAteKAtQDigqkA4oaQAOKGkQDihpIA4oaTAOKGmgDihpsA4oauAOKHjQDih44A4oePAOKIggDiiIQA4oiHAOKIiQDiiIwA4oiRAOKIkgDiiKQA4oimAOKIq+KIqwDiiKviiKviiKsA4oir4oir4oir4oirAOKIruKIrgDiiK7iiK7iiK4A4omBAOKJhADiiYcA4omJAOKJoADiiaIA4omtAOKJrgDiia8A4omwAOKJsQDiibQA4om1AOKJuADiibkA4oqAAOKKgQDiioQA4oqFAOKKiADiiokA4oqsAOKKrQDiiq4A4oqvAOKLoADii6EA4ouiAOKLowDii6oA4ourAOKLrADii60A4pSCAOKWoADil4sA4qaFAOKmhgDiq53MuADitaEA44CBAOOAggDjgIgA44CJAOOAigDjgIsA44CMAOOAjQDjgI4A44CPAOOAkADjgJEA44CSAOOAlADjgJRT44CVAOOAlOS4ieOAlQDjgJTkuozjgJUA44CU5Yud44CVAOOAlOWuieOAlQDjgJTmiZPjgJUA44CU5pWX44CVAOOAlOacrOOAlQDjgJTngrnjgJUA44CU55uX44CVAOOAlQDjgJYA44CXAOOBjADjgY4A44GQAOOBkgDjgZQA44GWAOOBmADjgZoA44GcAOOBngDjgaAA44GiAOOBpQDjgacA44GpAOOBsADjgbEA44GzAOOBtADjgbYA44G3AOOBuQDjgboA44G744GLAOOBvADjgb0A44KI44KKAOOClADjgpkA44KaAOOCngDjgqEA44KiAOOCouODkeODvOODiADjgqLjg6vjg5XjgqEA44Ki44Oz44Oa44KiAOOCouODvOODqwDjgqMA44KkAOOCpOODi+ODs+OCsADjgqTjg7Pjg4EA44KlAOOCpgDjgqbjgqnjg7MA44KnAOOCqADjgqjjgrnjgq/jg7zjg4kA44Ko44O844Kr44O8AOOCqQDjgqoA44Kq44Oz44K5AOOCquODvOODoADjgqsA44Kr44Kk44OqAOOCq+ODqeODg+ODiADjgqvjg63jg6rjg7wA44KsAOOCrOODreODswDjgqzjg7Pjg54A44KtAOOCreODpeODquODvADjgq3jg60A44Kt44Ot44Kw44Op44OgAOOCreODreODoeODvOODiOODqwDjgq3jg63jg6/jg4Pjg4gA44KuAOOCruOCrADjgq7jg4vjg7wA44Ku44Or44OA44O8AOOCrwDjgq/jg6vjgrzjgqTjg60A44Kv44Ot44O844ONAOOCsADjgrDjg6njg6AA44Kw44Op44Og44OI44OzAOOCsQDjgrHjg7zjgrkA44KyAOOCswDjgrPjgrMA44Kz44OIAOOCs+ODq+ODigDjgrPjg7zjg50A44K0AOOCtQDjgrXjgqTjgq/jg6sA44K144Oz44OB44O844OgAOOCtgDjgrcA44K344Oq44Oz44KwAOOCuADjgrkA44K6AOOCuwDjgrvjg7Pjg4EA44K744Oz44OIAOOCvADjgr0A44K+AOOCvwDjg4AA44OA44O844K5AOODgQDjg4IA44ODAOODhADjg4UA44OGAOODhwDjg4fjgrcA44OIAOODiOODswDjg4kA44OJ44OrAOODigDjg4rjg44A44OLAOODjADjg40A44OOAOODjuODg+ODiADjg48A44OP44Kk44OEAOODkADjg5Djg7zjg6zjg6sA44ORAOODkeODvOOCu+ODs+ODiADjg5Hjg7zjg4QA44OSAOODkwDjg5Pjg6sA44OUAOODlOOCouOCueODiOODqwDjg5Tjgq/jg6sA44OU44KzAOODlQDjg5XjgqHjg6njg4Pjg4kA44OV44Kj44O844OIAOODleODqeODswDjg5YA44OW44OD44K344Kn44OrAOODlwDjg5gA44OY44Kv44K/44O844OrAOODmOODq+ODhADjg5kA44OZ44O844K/AOODmgDjg5rjgr0A44Oa44OL44OSAOODmuODs+OCuQDjg5rjg7zjgrgA44ObAOODm+ODswDjg5vjg7zjg6sA44Ob44O844OzAOODnADjg5zjg6vjg4gA44OdAOODneOCpOODs+ODiADjg53jg7Pjg4kA44OeAOODnuOCpOOCr+ODrQDjg57jgqTjg6sA44Oe44OD44OPAOODnuODq+OCrwDjg57jg7Pjgrfjg6fjg7MA44OfAOODn+OCr+ODreODswDjg5/jg6oA44Of44Oq44OQ44O844OrAOODoADjg6EA44Oh44KsAOODoeOCrOODiOODswDjg6Hjg7zjg4jjg6sA44OiAOODowDjg6QA44Ok44O844OJAOODpOODvOODqwDjg6UA44OmAOODpuOCouODswDjg6cA44OoAOODqQDjg6oA44Oq44OD44OI44OrAOODquODqQDjg6sA44Or44OU44O8AOODq+ODvOODluODqwDjg6wA44Os44OgAOODrOODs+ODiOOCsuODswDjg60A44OvAOODr+ODg+ODiADjg7AA44OxAOODsgDjg7MA44O0AOODtwDjg7gA44O5AOODugDjg7sA44O8AOODvgDjkp4A45K5AOOSuwDjk58A45SVAOObrgDjm7wA456BAOOgrwDjoaIA46G8AOOjhwDjo6MA46ScAOOkugDjqK4A46msAOOrpADjrIgA46yZAOOtiQDjrp0A47CYAOOxjgDjtLMA47aWAOO6rADjurgA47ybAOO/vADkgIgA5ICYAOSAuQDkgYYA5IKWAOSDowDkhK8A5IiCAOSIpwDkiqAA5IyBAOSMtADkjZkA5I+VAOSPmQDkkIsA5JGrAOSUqwDklZ0A5JWhAOSVqwDkl5cA5Je5AOSYtQDkmr4A5JuHAOSmlQDkp6YA5KmuAOSptgDkqrIA5KyzAOSvjgDks44A5LOtAOSzuADktZYA5LiAAOS4gQDkuIMA5LiJAOS4igDkuIsA5LiNAOS4mQDkuKYA5LioAOS4rQDkuLIA5Li2AOS4uADkuLkA5Li9AOS4vwDkuYEA5LmZAOS5nQDkuoIA5LqFAOS6hgDkuowA5LqUAOS6oADkuqQA5LquAOS6ugDku4AA5LuMAOS7pADkvIEA5LyRAOS9oADkvoAA5L6GAOS+iwDkvq4A5L67AOS+vwDlgIIA5YCrAOWBugDlgpkA5YOPAOWDmgDlg6cA5YSqAOWEvwDlhYAA5YWFAOWFjQDlhZQA5YWkAOWFpQDlhacA5YWoAOWFqQDlhasA5YWtAOWFtwDlhoAA5YaCAOWGjQDlhpIA5YaVAOWGlgDlhpcA5YaZAOWGpADlhqsA5YasAOWGtQDlhrcA5YeJAOWHjADlh5wA5YeeAOWHoADlh7UA5YiAAOWIgwDliIcA5YiXAOWInQDliKkA5Yi6AOWIuwDliYYA5YmNAOWJsgDlibcA5YqJAOWKmwDliqMA5YqzAOWKtADli4cA5YuJAOWLkgDli54A5YukAOWLtQDli7kA5Yu6AOWMhQDljIYA5YyVAOWMlwDljJoA5Yy4AOWMuwDljL8A5Y2BAOWNhADljYUA5Y2JAOWNkQDljZQA5Y2aAOWNnADljakA5Y2wAOWNswDljbUA5Y29AOWNvwDljoIA5Y62AOWPgwDlj4gA5Y+KAOWPjADlj58A5Y+jAOWPpQDlj6sA5Y+vAOWPsQDlj7MA5ZCGAOWQiADlkI0A5ZCPAOWQnQDlkLgA5ZC5AOWRggDlkYgA5ZGoAOWSngDlkqIA5ZK9AOWTtgDllJAA5ZWPAOWVkwDllZUA5ZWjAOWWhADllocA5ZaZAOWWnQDllqsA5ZazAOWWtgDll4AA5ZeCAOWXogDlmIYA5ZmRAOWZqADlmbQA5ZuXAOWbmwDlm7kA5ZyWAOWclwDlnJ8A5ZywAOWeiwDln44A5Z+0AOWgjQDloLEA5aCyAOWhgADloZoA5aGeAOWiqADloqwA5aKzAOWjmADlo58A5aOrAOWjrgDlo7AA5aOyAOWjtwDlpIIA5aSGAOWkigDlpJUA5aSaAOWknADlpKIA5aSnAOWkp+atowDlpKkA5aWEAOWliADlpZEA5aWUAOWlogDlpbMA5aeYAOWnrADlqJsA5ainAOWpogDlqaYA5aq1AOWsiADlrKgA5ay+AOWtkADlrZcA5a2mAOWugADlroUA5a6XAOWvgwDlr5gA5a+nAOWvrgDlr7MA5a+4AOWvvwDlsIYA5bCPAOWwogDlsLgA5bC/AOWxoADlsaIA5bGkAOWxpQDlsa4A5bGxAOWyjQDls4AA5bSZAOW1gwDltZAA5bWrAOW1rgDltbwA5bayAOW2ugDlt5sA5behAOW3ogDlt6UA5bemAOW3sQDlt70A5be+AOW4qADluL0A5bmpAOW5sgDlubPmiJAA5bm0AOW5ugDlubwA5bm/AOW6pgDlurAA5bqzAOW6tgDlu4kA5buKAOW7kgDlu5MA5buZAOW7rADlu7QA5bu+AOW8hADlvIsA5byTAOW8ogDlvZAA5b2TAOW9oQDlvaIA5b2pAOW9qwDlvbMA5b6LAOW+jADlvpcA5b6aAOW+qQDlvq0A5b+DAOW/jQDlv5cA5b+1AOW/uQDmgJIA5oCcAOaBtQDmgoEA5oKUAOaDhwDmg5gA5oOhAOaEiADmhYQA5oWIAOaFjADmhY4A5oWgAOaFqADmhboA5oaOAOaGkADmhqQA5oavAOaGsgDmh54A5oeyAOaHtgDmiIAA5oiIAOaIkADmiJsA5oiuAOaItADmiLYA5omLAOaJkwDmiZ0A5oqVAOaKsQDmi4kA5ouPAOaLkwDmi5QA5ou8AOaLvgDmjIcA5oy9AOaNkADmjZUA5o2oAOaNuwDmjoMA5o6gAOaOqQDmj4QA5o+FAOaPpADmkJwA5pCiAOaRkgDmkakA5pG3AOaRvgDmkpoA5pKdAOaThADmlK8A5pS0AOaVjwDmlZYA5pWsAOaVuADmlocA5paXAOaWmQDmlqQA5pawAOaWuQDml4UA5pegAOaXogDml6MA5pelAOaYjuayuwDmmJMA5pigAOaYreWSjADmmYkA5pm0AOaaiADmmpEA5pqcAOaatADmm4YA5puwAOabtADmm7gA5pyAAOaciADmnIkA5pyXAOacmwDmnKEA5pyoAOadjgDmnZMA5p2WAOadngDmnbsA5p6FAOaelwDmn7MA5p+6AOaglwDmoJ8A5qCqAOagquW8j+S8muekvgDmoZIA5qKBAOaihQDmoo4A5qKoAOaklADmpYIA5qajAOanqgDmqIIA5qiTAOaqqADmq5MA5qubAOashADmrKAA5qyhAOatlADmraIA5q2jAOatsgDmrbcA5q25AOaunwDmrq4A5q6zAOauugDmrrsA5q+LAOavjQDmr5QA5q+bAOawjwDmsJQA5rC0AOaxjgDmsacA5rKIAOayvwDms4wA5rONAOazpQDms6gA5rSWAOa0mwDmtJ4A5rS0AOa0vgDmtYEA5rWpAOa1qgDmtbcA5rW4AOa2hQDmt4sA5reaAOa3qgDmt7kA5riaAOa4rwDmua4A5rqAAOa6nADmuroA5ruHAOa7iwDmu5EA5rubAOa8jwDmvJQA5ryiAOa8owDmva4A5r+GAOa/qwDmv74A54CbAOeAngDngLkA54GKAOeBqwDngbAA54G3AOeBvQDngpkA54KtAOeDiADng5kA54ShAOeFhQDnhYkA54WuAOeGnADnh44A54eQAOeIkADniJsA54ioAOeIqgDniKsA54i1AOeItgDniLsA54i/AOeJhwDniZAA54mZAOeJmwDniaIA54m5AOeKgADnipUA54qsAOeKrwDni4AA54u8AOeMqgDnjbUA5426AOeOhADnjocA546JAOeOiwDnjqUA546yAOePngDnkIYA55CJAOeQogDnkYcA55GcAOeRqQDnkbEA55KFAOeSiQDnkpgA55OKAOeTnADnk6YA55SGAOeUmADnlJ8A55SkAOeUqADnlLAA55SyAOeUswDnlLcA55S7AOeUvgDnlZkA55WlAOeVsADnlosA55aSAOeXogDnmJAA55idAOeYnwDnmYIA55mpAOeZtgDnmb0A55quAOeavwDnm4oA55ubAOebowDnm6cA55uuAOebtADnnIEA55yeAOecnwDnnYAA552KAOeeiwDnnqcA55+bAOefogDnn7MA56GOAOehqwDnoowA56KRAOejigDno4wA56O7AOekqgDnpLoA56S8AOekvgDnpYgA56WJAOelkADnpZYA56WdAOelngDnpaUA56W/AOemgQDnpo0A56aOAOemjwDnpq4A56a4AOemvgDnp4oA56eYAOenqwDnqJwA56mAAOepigDnqY8A56m0AOepugDnqoEA56qxAOeriwDnq64A56u5AOesoADnro8A56+AAOevhgDnr4kA57C+AOexoADnsbMA57G7AOeykgDnsr4A57OSAOezlgDns6MA57OnAOezqADns7gA57SAAOe0kADntKIA57SvAOe1ggDntZsA57WjAOe2oADntr4A57eHAOe3tADnuIIA57iJAOe4twDnuYEA57mFAOe8tgDnvL4A572RAOe9sgDnvbkA5726AOe+hQDnvooA576VAOe+mgDnvr0A57+6AOiAgQDogIUA6ICMAOiAkgDogLMA6IGGAOiBoADoga8A6IGwAOiBvgDogb8A6IKJAOiCiwDogq0A6IKyAOiEgwDohL4A6IeYAOiHowDoh6gA6IeqAOiHrQDoh7MA6Ie8AOiIgQDoiIQA6IiMAOiImADoiJsA6IifAOiJrgDoia8A6ImyAOiJuADoibkA6IqLAOiKkQDoip0A6IqxAOiKswDoir0A6IulAOiLpgDojJ0A6IyjAOiMtgDojZIA6I2TAOiNowDojq0A6I69AOiPiQDoj4oA6I+MAOiPnADoj6cA6I+vAOiPsQDokL0A6JGJAOiRlwDok64A6JOxAOiTswDok7wA6JSWAOiVpADol40A6Je6AOiYhgDomJIA6JitAOiYvwDomY0A6JmQAOiZnADomacA6JmpAOiZqwDomogA6JqpAOibogDonI4A6JyoAOidqwDonbkA6J6GAOieugDon6EA6KCBAOignwDooYAA6KGMAOihoADooaMA6KOCAOijjwDoo5cA6KOeAOijoQDoo7gA6KO6AOikkADopYEA6KWkAOilvgDopoYA6KaLAOimlgDop5IA6KejAOiogADoqqAA6KqqAOiqvwDoq4sA6KuSAOirlgDoq60A6Ku4AOirvgDorIEA6Ky5AOitmADoroAA6K6KAOiwtwDosYYA6LGIAOixlQDosbgA6LKdAOiyoQDosqkA6LKrAOizgQDos4IA6LOHAOiziADos5MA6LSIAOi0mwDotaQA6LWwAOi1twDotrMA6La8AOi3iwDot68A6LewAOi6qwDou4oA6LuUAOi8pgDovKoA6Ly4AOi8uwDovaIA6L6bAOi+ngDovrAA6L61AOi+tgDpgKMA6YC4AOmBigDpgakA6YGyAOmBvADpgo8A6YKRAOmClADpg44A6YOeAOmDsQDpg70A6YSRAOmEmwDphYkA6YWqAOmGmQDphrQA6YeGAOmHjADph48A6YeRAOmItADpiLgA6Ym2AOmJvADpi5cA6YuYAOmMhADpjYoA6Y+5AOmQlQDplbcA6ZaAAOmWiwDplq0A6Za3AOmYnADpmK4A6ZmLAOmZjQDpmbUA6Zm4AOmZvADpmoYA6ZqjAOmatgDpmrcA6Zq4AOmauQDpm4MA6ZuiAOmbowDpm6gA6Zu2AOmbtwDpnKMA6ZyyAOmdiADpnZEA6Z2WAOmdngDpnaIA6Z2pAOmfiwDpn5sA6Z+gAOmfrQDpn7MA6Z+/AOmggQDpoIUA6aCLAOmgmADpoKkA6aC7AOmhngDpoqgA6aObAOmjnwDpo6IA6aOvAOmjvADppKgA6aSpAOmmlgDpppkA6aanAOmmrADpp4IA6aexAOmnvgDpqaoA6aqoAOmrmADpq58A6aySAOmspQDprK8A6ayyAOmsvADprZoA6a2vAOmxgADpsZcA6bOlAOmzvQDptacA6ba0AOm3ugDpuJ4A6bm1AOm5vwDpupcA6bqfAOm6pQDpursA6buDAOm7jQDpu44A6buRAOm7uQDpu70A6bu+AOm8hQDpvI4A6byPAOm8kwDpvJYA6bygAOm8uwDpvYMA6b2KAOm9kgDpvo0A6b6OAOm+nADpvp8A6b6gAOqcpwDqna8A6qy3AOqtkgDqsIAA6rCBAOqwggDqsIMA6rCEAOqwhQDqsIYA6rCHAOqwiADqsIkA6rCKAOqwiwDqsIwA6rCNAOqwjgDqsI8A6rCQAOqwkQDqsJIA6rCTAOqwlADqsJUA6rCWAOqwlwDqsJgA6rCZAOqwmgDqsJsA6rCcAOqwnQDqsJ4A6rCfAOqwoADqsKEA6rCiAOqwowDqsKQA6rClAOqwpgDqsKcA6rCoAOqwqQDqsKoA6rCrAOqwrADqsK0A6rCuAOqwrwDqsLAA6rCxAOqwsgDqsLMA6rC0AOqwtQDqsLYA6rC3AOqwuADqsLkA6rC6AOqwuwDqsLwA6rC9AOqwvgDqsL8A6rGAAOqxgQDqsYIA6rGDAOqxhADqsYUA6rGGAOqxhwDqsYgA6rGJAOqxigDqsYsA6rGMAOqxjQDqsY4A6rGPAOqxkADqsZEA6rGSAOqxkwDqsZQA6rGVAOqxlgDqsZcA6rGYAOqxmQDqsZoA6rGbAOqxnADqsZ0A6rGeAOqxnwDqsaAA6rGhAOqxogDqsaMA6rGkAOqxpQDqsaYA6rGnAOqxqADqsakA6rGqAOqxqwDqsawA6rGtAOqxrgDqsa8A6rGwAOqxsQDqsbIA6rGzAOqxtADqsbUA6rG2AOqxtwDqsbgA6rG5AOqxugDqsbsA6rG8AOqxvQDqsb4A6rG/AOqygADqsoEA6rKCAOqygwDqsoQA6rKFAOqyhgDqsocA6rKIAOqyiQDqsooA6rKLAOqyjADqso0A6rKOAOqyjwDqspAA6rKRAOqykgDqspMA6rKUAOqylQDqspYA6rKXAOqymADqspkA6rKaAOqymwDqspwA6rKdAOqyngDqsp8A6rKgAOqyoQDqsqIA6rKjAOqypADqsqUA6rKmAOqypwDqsqgA6rKpAOqyqgDqsqsA6rKsAOqyrQDqsq4A6rKvAOqysADqsrEA6rKyAOqyswDqsrQA6rK1AOqytgDqsrcA6rK4AOqyuQDqsroA6rK7AOqyvADqsr0A6rK+AOqyvwDqs4AA6rOBAOqzggDqs4MA6rOEAOqzhQDqs4YA6rOHAOqziADqs4kA6rOKAOqziwDqs4wA6rONAOqzjgDqs48A6rOQAOqzkQDqs5IA6rOTAOqzlADqs5UA6rOWAOqzlwDqs5gA6rOZAOqzmgDqs5sA6rOcAOqznQDqs54A6rOfAOqzoADqs6EA6rOiAOqzowDqs6QA6rOlAOqzpgDqs6cA6rOoAOqzqQDqs6oA6rOrAOqzrADqs60A6rOuAOqzrwDqs7AA6rOxAOqzsgDqs7MA6rO0AOqztQDqs7YA6rO3AOqzuADqs7kA6rO6AOqzuwDqs7wA6rO9AOqzvgDqs78A6rSAAOq0gQDqtIIA6rSDAOq0hADqtIUA6rSGAOq0hwDqtIgA6rSJAOq0igDqtIsA6rSMAOq0jQDqtI4A6rSPAOq0kADqtJEA6rSSAOq0kwDqtJQA6rSVAOq0lgDqtJcA6rSYAOq0mQDqtJoA6rSbAOq0nADqtJ0A6rSeAOq0nwDqtKAA6rShAOq0ogDqtKMA6rSkAOq0pQDqtKYA6rSnAOq0qADqtKkA6rSqAOq0qwDqtKwA6rStAOq0rgDqtK8A6rSwAOq0sQDqtLIA6rSzAOq0tADqtLUA6rS2AOq0twDqtLgA6rS5AOq0ugDqtLsA6rS8AOq0vQDqtL4A6rS/AOq1gADqtYEA6rWCAOq1gwDqtYQA6rWFAOq1hgDqtYcA6rWIAOq1iQDqtYoA6rWLAOq1jADqtY0A6rWOAOq1jwDqtZAA6rWRAOq1kgDqtZMA6rWUAOq1lQDqtZYA6rWXAOq1mADqtZkA6rWaAOq1mwDqtZwA6rWdAOq1ngDqtZ8A6rWgAOq1oQDqtaIA6rWjAOq1pADqtaUA6rWmAOq1pwDqtagA6rWpAOq1qgDqtasA6rWsAOq1rQDqta4A6rWvAOq1sADqtbEA6rWyAOq1swDqtbQA6rW1AOq1tgDqtbcA6rW4AOq1uQDqtboA6rW7AOq1vADqtb0A6rW+AOq1vwDqtoAA6raBAOq2ggDqtoMA6raEAOq2hQDqtoYA6raHAOq2iADqtokA6raKAOq2iwDqtowA6raNAOq2jgDqto8A6raQAOq2kQDqtpIA6raTAOq2lADqtpUA6raWAOq2lwDqtpgA6raZAOq2mgDqtpsA6racAOq2nQDqtp4A6rafAOq2oADqtqEA6raiAOq2owDqtqQA6ralAOq2pgDqtqcA6raoAOq2qQDqtqoA6rarAOq2rADqtq0A6rauAOq2rwDqtrAA6raxAOq2sgDqtrMA6ra0AOq2tQDqtrYA6ra3AOq2uADqtrkA6ra6AOq2uwDqtrwA6ra9AOq2vgDqtr8A6reAAOq3gQDqt4IA6reDAOq3hADqt4UA6reGAOq3hwDqt4gA6reJAOq3igDqt4sA6reMAOq3jQDqt44A6rePAOq3kADqt5EA6reSAOq3kwDqt5QA6reVAOq3lgDqt5cA6reYAOq3mQDqt5oA6rebAOq3nADqt50A6reeAOq3nwDqt6AA6rehAOq3ogDqt6MA6rekAOq3pQDqt6YA6renAOq3qADqt6kA6reqAOq3qwDqt6wA6retAOq3rgDqt68A6rewAOq3sQDqt7IA6rezAOq3tADqt7UA6re2AOq3twDqt7gA6re5AOq3ugDqt7sA6re8AOq3vQDqt74A6re/AOq4gADquIEA6riCAOq4gwDquIQA6riFAOq4hgDquIcA6riIAOq4iQDquIoA6riLAOq4jADquI0A6riOAOq4jwDquJAA6riRAOq4kgDquJMA6riUAOq4lQDquJYA6riXAOq4mADquJkA6riaAOq4mwDquJwA6ridAOq4ngDquJ8A6rigAOq4oQDquKIA6rijAOq4pADquKUA6rimAOq4pwDquKgA6ripAOq4qgDquKsA6risAOq4rQDquK4A6rivAOq4sADquLEA6riyAOq4swDquLQA6ri1AOq4tgDquLcA6ri4AOq4uQDquLoA6ri7AOq4vADquL0A6ri+AOq4vwDquYAA6rmBAOq5ggDquYMA6rmEAOq5hQDquYYA6rmHAOq5iADquYkA6rmKAOq5iwDquYwA6rmNAOq5jgDquY8A6rmQAOq5kQDquZIA6rmTAOq5lADquZUA6rmWAOq5lwDquZgA6rmZAOq5mgDquZsA6rmcAOq5nQDquZ4A6rmfAOq5oADquaEA6rmiAOq5owDquaQA6rmlAOq5pgDquacA6rmoAOq5qQDquaoA6rmrAOq5rADqua0A6rmuAOq5rwDqubAA6rmxAOq5sgDqubMA6rm0AOq5tQDqubYA6rm3AOq5uADqubkA6rm6AOq5uwDqubwA6rm9AOq5vgDqub8A6rqAAOq6gQDquoIA6rqDAOq6hADquoUA6rqGAOq6hwDquogA6rqJAOq6igDquosA6rqMAOq6jQDquo4A6rqPAOq6kADqupEA6rqSAOq6kwDqupQA6rqVAOq6lgDqupcA6rqYAOq6mQDqupoA6rqbAOq6nADqup0A6rqeAOq6nwDquqAA6rqhAOq6ogDquqMA6rqkAOq6pQDquqYA6rqnAOq6qADquqkA6rqqAOq6qwDquqwA6rqtAOq6rgDquq8A6rqwAOq6sQDqurIA6rqzAOq6tADqurUA6rq2AOq6twDqurgA6rq5AOq6ugDqursA6rq8AOq6vQDqur4A6rq/AOq7gADqu4EA6ruCAOq7gwDqu4QA6ruFAOq7hgDqu4cA6ruIAOq7iQDqu4oA6ruLAOq7jADqu40A6ruOAOq7jwDqu5AA6ruRAOq7kgDqu5MA6ruUAOq7lQDqu5YA6ruXAOq7mADqu5kA6ruaAOq7mwDqu5wA6rudAOq7ngDqu58A6rugAOq7oQDqu6IA6rujAOq7pADqu6UA6rumAOq7pwDqu6gA6rupAOq7qgDqu6sA6rusAOq7rQDqu64A6ruvAOq7sADqu7EA6ruyAOq7swDqu7QA6ru1AOq7tgDqu7cA6ru4AOq7uQDqu7oA6ru7AOq7vADqu70A6ru+AOq7vwDqvIAA6ryBAOq8ggDqvIMA6ryEAOq8hQDqvIYA6ryHAOq8iADqvIkA6ryKAOq8iwDqvIwA6ryNAOq8jgDqvI8A6ryQAOq8kQDqvJIA6ryTAOq8lADqvJUA6ryWAOq8lwDqvJgA6ryZAOq8mgDqvJsA6rycAOq8nQDqvJ4A6ryfAOq8oADqvKEA6ryiAOq8owDqvKQA6rylAOq8pgDqvKcA6ryoAOq8qQDqvKoA6ryrAOq8rADqvK0A6ryuAOq8rwDqvLAA6ryxAOq8sgDqvLMA6ry0AOq8tQDqvLYA6ry3AOq8uADqvLkA6ry6AOq8uwDqvLwA6ry9AOq8vgDqvL8A6r2AAOq9gQDqvYIA6r2DAOq9hADqvYUA6r2GAOq9hwDqvYgA6r2JAOq9igDqvYsA6r2MAOq9jQDqvY4A6r2PAOq9kADqvZEA6r2SAOq9kwDqvZQA6r2VAOq9lgDqvZcA6r2YAOq9mQDqvZoA6r2bAOq9nADqvZ0A6r2eAOq9nwDqvaAA6r2hAOq9ogDqvaMA6r2kAOq9pQDqvaYA6r2nAOq9qADqvakA6r2qAOq9qwDqvawA6r2tAOq9rgDqva8A6r2wAOq9sQDqvbIA6r2zAOq9tADqvbUA6r22AOq9twDqvbgA6r25AOq9ugDqvbsA6r28AOq9vQDqvb4A6r2/AOq+gADqvoEA6r6CAOq+gwDqvoQA6r6FAOq+hgDqvocA6r6IAOq+iQDqvooA6r6LAOq+jADqvo0A6r6OAOq+jwDqvpAA6r6RAOq+kgDqvpMA6r6UAOq+lQDqvpYA6r6XAOq+mADqvpkA6r6aAOq+mwDqvpwA6r6dAOq+ngDqvp8A6r6gAOq+oQDqvqIA6r6jAOq+pADqvqUA6r6mAOq+pwDqvqgA6r6pAOq+qgDqvqsA6r6sAOq+rQDqvq4A6r6vAOq+sADqvrEA6r6yAOq+swDqvrQA6r61AOq+tgDqvrcA6r64AOq+uQDqvroA6r67AOq+vADqvr0A6r6+AOq+vwDqv4AA6r+BAOq/ggDqv4MA6r+EAOq/hQDqv4YA6r+HAOq/iADqv4kA6r+KAOq/iwDqv4wA6r+NAOq/jgDqv48A6r+QAOq/kQDqv5IA6r+TAOq/lADqv5UA6r+WAOq/lwDqv5gA6r+ZAOq/mgDqv5sA6r+cAOq/nQDqv54A6r+fAOq/oADqv6EA6r+iAOq/owDqv6QA6r+lAOq/pgDqv6cA6r+oAOq/qQDqv6oA6r+rAOq/rADqv60A6r+uAOq/rwDqv7AA6r+xAOq/sgDqv7MA6r+0AOq/tQDqv7YA6r+3AOq/uADqv7kA6r+6AOq/uwDqv7wA6r+9AOq/vgDqv78A64CAAOuAgQDrgIIA64CDAOuAhADrgIUA64CGAOuAhwDrgIgA64CJAOuAigDrgIsA64CMAOuAjQDrgI4A64CPAOuAkADrgJEA64CSAOuAkwDrgJQA64CVAOuAlgDrgJcA64CYAOuAmQDrgJoA64CbAOuAnADrgJ0A64CeAOuAnwDrgKAA64ChAOuAogDrgKMA64CkAOuApQDrgKYA64CnAOuAqADrgKkA64CqAOuAqwDrgKwA64CtAOuArgDrgK8A64CwAOuAsQDrgLIA64CzAOuAtADrgLUA64C2AOuAtwDrgLgA64C5AOuAugDrgLsA64C8AOuAvQDrgL4A64C/AOuBgADrgYEA64GCAOuBgwDrgYQA64GFAOuBhgDrgYcA64GIAOuBiQDrgYoA64GLAOuBjADrgY0A64GOAOuBjwDrgZAA64GRAOuBkgDrgZMA64GUAOuBlQDrgZYA64GXAOuBmADrgZkA64GaAOuBmwDrgZwA64GdAOuBngDrgZ8A64GgAOuBoQDrgaIA64GjAOuBpADrgaUA64GmAOuBpwDrgagA64GpAOuBqgDrgasA64GsAOuBrQDrga4A64GvAOuBsADrgbEA64GyAOuBswDrgbQA64G1AOuBtgDrgbcA64G4AOuBuQDrgboA64G7AOuBvADrgb0A64G+AOuBvwDrgoAA64KBAOuCggDrgoMA64KEAOuChQDrgoYA64KHAOuCiADrgokA64KKAOuCiwDrgowA64KNAOuCjgDrgo8A64KQAOuCkQDrgpIA64KTAOuClADrgpUA64KWAOuClwDrgpgA64KZAOuCmgDrgpsA64KcAOuCnQDrgp4A64KfAOuCoADrgqEA64KiAOuCowDrgqQA64KlAOuCpgDrgqcA64KoAOuCqQDrgqoA64KrAOuCrADrgq0A64KuAOuCrwDrgrAA64KxAOuCsgDrgrMA64K0AOuCtQDrgrYA64K3AOuCuADrgrkA64K6AOuCuwDrgrwA64K9AOuCvgDrgr8A64OAAOuDgQDrg4IA64ODAOuDhADrg4UA64OGAOuDhwDrg4gA64OJAOuDigDrg4sA64OMAOuDjQDrg44A64OPAOuDkADrg5EA64OSAOuDkwDrg5QA64OVAOuDlgDrg5cA64OYAOuDmQDrg5oA64ObAOuDnADrg50A64OeAOuDnwDrg6AA64OhAOuDogDrg6MA64OkAOuDpQDrg6YA64OnAOuDqADrg6kA64OqAOuDqwDrg6wA64OtAOuDrgDrg68A64OwAOuDsQDrg7IA64OzAOuDtADrg7UA64O2AOuDtwDrg7gA64O5AOuDugDrg7sA64O8AOuDvQDrg74A64O/AOuEgADrhIEA64SCAOuEgwDrhIQA64SFAOuEhgDrhIcA64SIAOuEiQDrhIoA64SLAOuEjADrhI0A64SOAOuEjwDrhJAA64SRAOuEkgDrhJMA64SUAOuElQDrhJYA64SXAOuEmADrhJkA64SaAOuEmwDrhJwA64SdAOuEngDrhJ8A64SgAOuEoQDrhKIA64SjAOuEpADrhKUA64SmAOuEpwDrhKgA64SpAOuEqgDrhKsA64SsAOuErQDrhK4A64SvAOuEsADrhLEA64SyAOuEswDrhLQA64S1AOuEtgDrhLcA64S4AOuEuQDrhLoA64S7AOuEvADrhL0A64S+AOuEvwDrhYAA64WBAOuFggDrhYMA64WEAOuFhQDrhYYA64WHAOuFiADrhYkA64WKAOuFiwDrhYwA64WNAOuFjgDrhY8A64WQAOuFkQDrhZIA64WTAOuFlADrhZUA64WWAOuFlwDrhZgA64WZAOuFmgDrhZsA64WcAOuFnQDrhZ4A64WfAOuFoADrhaEA64WiAOuFowDrhaQA64WlAOuFpgDrhacA64WoAOuFqQDrhaoA64WrAOuFrADrha0A64WuAOuFrwDrhbAA64WxAOuFsgDrhbMA64W0AOuFtQDrhbYA64W3AOuFuADrhbkA64W6AOuFuwDrhbwA64W9AOuFvgDrhb8A64aAAOuGgQDrhoIA64aDAOuGhADrhoUA64aGAOuGhwDrhogA64aJAOuGigDrhosA64aMAOuGjQDrho4A64aPAOuGkADrhpEA64aSAOuGkwDrhpQA64aVAOuGlgDrhpcA64aYAOuGmQDrhpoA64abAOuGnADrhp0A64aeAOuGnwDrhqAA64ahAOuGogDrhqMA64akAOuGpQDrhqYA64anAOuGqADrhqkA64aqAOuGqwDrhqwA64atAOuGrgDrhq8A64awAOuGsQDrhrIA64azAOuGtADrhrUA64a2AOuGtwDrhrgA64a5AOuGugDrhrsA64a8AOuGvQDrhr4A64a/AOuHgADrh4EA64eCAOuHgwDrh4QA64eFAOuHhgDrh4cA64eIAOuHiQDrh4oA64eLAOuHjADrh40A64eOAOuHjwDrh5AA64eRAOuHkgDrh5MA64eUAOuHlQDrh5YA64eXAOuHmADrh5kA64eaAOuHmwDrh5wA64edAOuHngDrh58A64egAOuHoQDrh6IA64ejAOuHpADrh6UA64emAOuHpwDrh6gA64epAOuHqgDrh6sA64esAOuHrQDrh64A64evAOuHsADrh7EA64eyAOuHswDrh7QA64e1AOuHtgDrh7cA64e4AOuHuQDrh7oA64e7AOuHvADrh70A64e+AOuHvwDriIAA64iBAOuIggDriIMA64iEAOuIhQDriIYA64iHAOuIiADriIkA64iKAOuIiwDriIwA64iNAOuIjgDriI8A64iQAOuIkQDriJIA64iTAOuIlADriJUA64iWAOuIlwDriJgA64iZAOuImgDriJsA64icAOuInQDriJ4A64ifAOuIoADriKEA64iiAOuIowDriKQA64ilAOuIpgDriKcA64ioAOuIqQDriKoA64irAOuIrADriK0A64iuAOuIrwDriLAA64ixAOuIsgDriLMA64i0AOuItQDriLYA64i3AOuIuADriLkA64i6AOuIuwDriLwA64i9AOuIvgDriL8A64mAAOuJgQDriYIA64mDAOuJhADriYUA64mGAOuJhwDriYgA64mJAOuJigDriYsA64mMAOuJjQDriY4A64mPAOuJkADriZEA64mSAOuJkwDriZQA64mVAOuJlgDriZcA64mYAOuJmQDriZoA64mbAOuJnADriZ0A64meAOuJnwDriaAA64mhAOuJogDriaMA64mkAOuJpQDriaYA64mnAOuJqADriakA64mqAOuJqwDriawA64mtAOuJrgDria8A64mwAOuJsQDribIA64mzAOuJtADribUA64m2AOuJtwDribgA64m5AOuJugDribsA64m8AOuJvQDrib4A64m/AOuKgADrioEA64qCAOuKgwDrioQA64qFAOuKhgDriocA64qIAOuKiQDriooA64qLAOuKjADrio0A64qOAOuKjwDripAA64qRAOuKkgDripMA64qUAOuKlQDripYA64qXAOuKmADripkA64qaAOuKmwDripwA64qdAOuKngDrip8A64qgAOuKoQDriqIA64qjAOuKpADriqUA64qmAOuKpwDriqgA64qpAOuKqgDriqsA64qsAOuKrQDriq4A64qvAOuKsADrirEA64qyAOuKswDrirQA64q1AOuKtgDrircA64q4AOuKuQDriroA64q7AOuKvADrir0A64q+AOuKvwDri4AA64uBAOuLggDri4MA64uEAOuLhQDri4YA64uHAOuLiADri4kA64uKAOuLiwDri4wA64uNAOuLjgDri48A64uQAOuLkQDri5IA64uTAOuLlADri5UA64uWAOuLlwDri5gA64uZAOuLmgDri5sA64ucAOuLnQDri54A64ufAOuLoADri6EA64uiAOuLowDri6QA64ulAOuLpgDri6cA64uoAOuLqQDri6oA64urAOuLrADri60A64uuAOuLrwDri7AA64uxAOuLsgDri7MA64u0AOuLtQDri7YA64u3AOuLuADri7kA64u6AOuLuwDri7wA64u9AOuLvgDri78A64yAAOuMgQDrjIIA64yDAOuMhADrjIUA64yGAOuMhwDrjIgA64yJAOuMigDrjIsA64yMAOuMjQDrjI4A64yPAOuMkADrjJEA64ySAOuMkwDrjJQA64yVAOuMlgDrjJcA64yYAOuMmQDrjJoA64ybAOuMnADrjJ0A64yeAOuMnwDrjKAA64yhAOuMogDrjKMA64ykAOuMpQDrjKYA64ynAOuMqADrjKkA64yqAOuMqwDrjKwA64ytAOuMrgDrjK8A64ywAOuMsQDrjLIA64yzAOuMtADrjLUA64y2AOuMtwDrjLgA64y5AOuMugDrjLsA64y8AOuMvQDrjL4A64y/AOuNgADrjYEA642CAOuNgwDrjYQA642FAOuNhgDrjYcA642IAOuNiQDrjYoA642LAOuNjADrjY0A642OAOuNjwDrjZAA642RAOuNkgDrjZMA642UAOuNlQDrjZYA642XAOuNmADrjZkA642aAOuNmwDrjZwA642dAOuNngDrjZ8A642gAOuNoQDrjaIA642jAOuNpADrjaUA642mAOuNpwDrjagA642pAOuNqgDrjasA642sAOuNrQDrja4A642vAOuNsADrjbEA642yAOuNswDrjbQA6421AOuNtgDrjbcA6424AOuNuQDrjboA6427AOuNvADrjb0A642+AOuNvwDrjoAA646BAOuOggDrjoMA646EAOuOhQDrjoYA646HAOuOiADrjokA646KAOuOiwDrjowA646NAOuOjgDrjo8A646QAOuOkQDrjpIA646TAOuOlADrjpUA646WAOuOlwDrjpgA646ZAOuOmgDrjpsA646cAOuOnQDrjp4A646fAOuOoADrjqEA646iAOuOowDrjqQA646lAOuOpgDrjqcA646oAOuOqQDrjqoA646rAOuOrADrjq0A646uAOuOrwDrjrAA646xAOuOsgDrjrMA6460AOuOtQDrjrYA6463AOuOuADrjrkA6466AOuOuwDrjrwA6469AOuOvgDrjr8A64+AAOuPgQDrj4IA64+DAOuPhADrj4UA64+GAOuPhwDrj4gA64+JAOuPigDrj4sA64+MAOuPjQDrj44A64+PAOuPkADrj5EA64+SAOuPkwDrj5QA64+VAOuPlgDrj5cA64+YAOuPmQDrj5oA64+bAOuPnADrj50A64+eAOuPnwDrj6AA64+hAOuPogDrj6MA64+kAOuPpQDrj6YA64+nAOuPqADrj6kA64+qAOuPqwDrj6wA64+tAOuPrgDrj68A64+wAOuPsQDrj7IA64+zAOuPtADrj7UA64+2AOuPtwDrj7gA64+5AOuPugDrj7sA64+8AOuPvQDrj74A64+/AOuQgADrkIEA65CCAOuQgwDrkIQA65CFAOuQhgDrkIcA65CIAOuQiQDrkIoA65CLAOuQjADrkI0A65COAOuQjwDrkJAA65CRAOuQkgDrkJMA65CUAOuQlQDrkJYA65CXAOuQmADrkJkA65CaAOuQmwDrkJwA65CdAOuQngDrkJ8A65CgAOuQoQDrkKIA65CjAOuQpADrkKUA65CmAOuQpwDrkKgA65CpAOuQqgDrkKsA65CsAOuQrQDrkK4A65CvAOuQsADrkLEA65CyAOuQswDrkLQA65C1AOuQtgDrkLcA65C4AOuQuQDrkLoA65C7AOuQvADrkL0A65C+AOuQvwDrkYAA65GBAOuRggDrkYMA65GEAOuRhQDrkYYA65GHAOuRiADrkYkA65GKAOuRiwDrkYwA65GNAOuRjgDrkY8A65GQAOuRkQDrkZIA65GTAOuRlADrkZUA65GWAOuRlwDrkZgA65GZAOuRmgDrkZsA65GcAOuRnQDrkZ4A65GfAOuRoADrkaEA65GiAOuRowDrkaQA65GlAOuRpgDrkacA65GoAOuRqQDrkaoA65GrAOuRrADrka0A65GuAOuRrwDrkbAA65GxAOuRsgDrkbMA65G0AOuRtQDrkbYA65G3AOuRuADrkbkA65G6AOuRuwDrkbwA65G9AOuRvgDrkb8A65KAAOuSgQDrkoIA65KDAOuShADrkoUA65KGAOuShwDrkogA65KJAOuSigDrkosA65KMAOuSjQDrko4A65KPAOuSkADrkpEA65KSAOuSkwDrkpQA65KVAOuSlgDrkpcA65KYAOuSmQDrkpoA65KbAOuSnADrkp0A65KeAOuSnwDrkqAA65KhAOuSogDrkqMA65KkAOuSpQDrkqYA65KnAOuSqADrkqkA65KqAOuSqwDrkqwA65KtAOuSrgDrkq8A65KwAOuSsQDrkrIA65KzAOuStADrkrUA65K2AOuStwDrkrgA65K5AOuSugDrkrsA65K8AOuSvQDrkr4A65K/AOuTgADrk4EA65OCAOuTgwDrk4QA65OFAOuThgDrk4cA65OIAOuTiQDrk4oA65OLAOuTjADrk40A65OOAOuTjwDrk5AA65ORAOuTkgDrk5MA65OUAOuTlQDrk5YA65OXAOuTmADrk5kA65OaAOuTmwDrk5wA65OdAOuTngDrk58A65OgAOuToQDrk6IA65OjAOuTpADrk6UA65OmAOuTpwDrk6gA65OpAOuTqgDrk6sA65OsAOuTrQDrk64A65OvAOuTsADrk7EA65OyAOuTswDrk7QA65O1AOuTtgDrk7cA65O4AOuTuQDrk7oA65O7AOuTvADrk70A65O+AOuTvwDrlIAA65SBAOuUggDrlIMA65SEAOuUhQDrlIYA65SHAOuUiADrlIkA65SKAOuUiwDrlIwA65SNAOuUjgDrlI8A65SQAOuUkQDrlJIA65STAOuUlADrlJUA65SWAOuUlwDrlJgA65SZAOuUmgDrlJsA65ScAOuUnQDrlJ4A65SfAOuUoADrlKEA65SiAOuUowDrlKQA65SlAOuUpgDrlKcA65SoAOuUqQDrlKoA65SrAOuUrADrlK0A65SuAOuUrwDrlLAA65SxAOuUsgDrlLMA65S0AOuUtQDrlLYA65S3AOuUuADrlLkA65S6AOuUuwDrlLwA65S9AOuUvgDrlL8A65WAAOuVgQDrlYIA65WDAOuVhADrlYUA65WGAOuVhwDrlYgA65WJAOuVigDrlYsA65WMAOuVjQDrlY4A65WPAOuVkADrlZEA65WSAOuVkwDrlZQA65WVAOuVlgDrlZcA65WYAOuVmQDrlZoA65WbAOuVnADrlZ0A65WeAOuVnwDrlaAA65WhAOuVogDrlaMA65WkAOuVpQDrlaYA65WnAOuVqADrlakA65WqAOuVqwDrlawA65WtAOuVrgDrla8A65WwAOuVsQDrlbIA65WzAOuVtADrlbUA65W2AOuVtwDrlbgA65W5AOuVugDrlbsA65W8AOuVvQDrlb4A65W/AOuWgADrloEA65aCAOuWgwDrloQA65aFAOuWhgDrlocA65aIAOuWiQDrlooA65aLAOuWjADrlo0A65aOAOuWjwDrlpAA65aRAOuWkgDrlpMA65aUAOuWlQDrlpYA65aXAOuWmADrlpkA65aaAOuWmwDrlpwA65adAOuWngDrlp8A65agAOuWoQDrlqIA65ajAOuWpADrlqUA65amAOuWpwDrlqgA65apAOuWqgDrlqsA65asAOuWrQDrlq4A65avAOuWsADrlrEA65ayAOuWswDrlrQA65a1AOuWtgDrlrcA65a4AOuWuQDrlroA65a7AOuWvADrlr0A65a+AOuWvwDrl4AA65eBAOuXggDrl4MA65eEAOuXhQDrl4YA65eHAOuXiADrl4kA65eKAOuXiwDrl4wA65eNAOuXjgDrl48A65eQAOuXkQDrl5IA65eTAOuXlADrl5UA65eWAOuXlwDrl5gA65eZAOuXmgDrl5sA65ecAOuXnQDrl54A65efAOuXoADrl6EA65eiAOuXowDrl6QA65elAOuXpgDrl6cA65eoAOuXqQDrl6oA65erAOuXrADrl60A65euAOuXrwDrl7AA65exAOuXsgDrl7MA65e0AOuXtQDrl7YA65e3AOuXuADrl7kA65e6AOuXuwDrl7wA65e9AOuXvgDrl78A65iAAOuYgQDrmIIA65iDAOuYhADrmIUA65iGAOuYhwDrmIgA65iJAOuYigDrmIsA65iMAOuYjQDrmI4A65iPAOuYkADrmJEA65iSAOuYkwDrmJQA65iVAOuYlgDrmJcA65iYAOuYmQDrmJoA65ibAOuYnADrmJ0A65ieAOuYnwDrmKAA65ihAOuYogDrmKMA65ikAOuYpQDrmKYA65inAOuYqADrmKkA65iqAOuYqwDrmKwA65itAOuYrgDrmK8A65iwAOuYsQDrmLIA65izAOuYtADrmLUA65i2AOuYtwDrmLgA65i5AOuYugDrmLsA65i8AOuYvQDrmL4A65i/AOuZgADrmYEA65mCAOuZgwDrmYQA65mFAOuZhgDrmYcA65mIAOuZiQDrmYoA65mLAOuZjADrmY0A65mOAOuZjwDrmZAA65mRAOuZkgDrmZMA65mUAOuZlQDrmZYA65mXAOuZmADrmZkA65maAOuZmwDrmZwA65mdAOuZngDrmZ8A65mgAOuZoQDrmaIA65mjAOuZpADrmaUA65mmAOuZpwDrmagA65mpAOuZqgDrmasA65msAOuZrQDrma4A65mvAOuZsADrmbEA65myAOuZswDrmbQA65m1AOuZtgDrmbcA65m4AOuZuQDrmboA65m7AOuZvADrmb0A65m+AOuZvwDrmoAA65qBAOuaggDrmoMA65qEAOuahQDrmoYA65qHAOuaiADrmokA65qKAOuaiwDrmowA65qNAOuajgDrmo8A65qQAOuakQDrmpIA65qTAOualADrmpUA65qWAOualwDrmpgA65qZAOuamgDrmpsA65qcAOuanQDrmp4A65qfAOuaoADrmqEA65qiAOuaowDrmqQA65qlAOuapgDrmqcA65qoAOuaqQDrmqoA65qrAOuarADrmq0A65quAOuarwDrmrAA65qxAOuasgDrmrMA65q0AOuatQDrmrYA65q3AOuauADrmrkA65q6AOuauwDrmrwA65q9AOuavgDrmr8A65uAAOubgQDrm4IA65uDAOubhADrm4UA65uGAOubhwDrm4gA65uJAOubigDrm4sA65uMAOubjQDrm44A65uPAOubkADrm5EA65uSAOubkwDrm5QA65uVAOublgDrm5cA65uYAOubmQDrm5oA65ubAOubnADrm50A65ueAOubnwDrm6AA65uhAOubogDrm6MA65ukAOubpQDrm6YA65unAOubqADrm6kA65uqAOubqwDrm6wA65utAOubrgDrm68A65uwAOubsQDrm7IA65uzAOubtADrm7UA65u2AOubtwDrm7gA65u5AOubugDrm7sA65u8AOubvQDrm74A65u/AOucgADrnIEA65yCAOucgwDrnIQA65yFAOuchgDrnIcA65yIAOuciQDrnIoA65yLAOucjADrnI0A65yOAOucjwDrnJAA65yRAOuckgDrnJMA65yUAOuclQDrnJYA65yXAOucmADrnJkA65yaAOucmwDrnJwA65ydAOucngDrnJ8A65ygAOucoQDrnKIA65yjAOucpADrnKUA65ymAOucpwDrnKgA65ypAOucqgDrnKsA65ysAOucrQDrnK4A65yvAOucsADrnLEA65yyAOucswDrnLQA65y1AOuctgDrnLcA65y4AOucuQDrnLoA65y7AOucvADrnL0A65y+AOucvwDrnYAA652BAOudggDrnYMA652EAOudhQDrnYYA652HAOudiADrnYkA652KAOudiwDrnYwA652NAOudjgDrnY8A652QAOudkQDrnZIA652TAOudlADrnZUA652WAOudlwDrnZgA652ZAOudmgDrnZsA652cAOudnQDrnZ4A652fAOudoADrnaEA652iAOudowDrnaQA652lAOudpgDrnacA652oAOudqQDrnaoA652rAOudrADrna0A652uAOudrwDrnbAA652xAOudsgDrnbMA6520AOudtQDrnbYA6523AOuduADrnbkA6526AOuduwDrnbwA6529AOudvgDrnb8A656AAOuegQDrnoIA656DAOuehADrnoUA656GAOuehwDrnogA656JAOueigDrnosA656MAOuejQDrno4A656PAOuekADrnpEA656SAOuekwDrnpQA656VAOuelgDrnpcA656YAOuemQDrnpoA656bAOuenADrnp0A656eAOuenwDrnqAA656hAOueogDrnqMA656kAOuepQDrnqYA656nAOueqADrnqkA656qAOueqwDrnqwA656tAOuergDrnq8A656wAOuesQDrnrIA656zAOuetADrnrUA6562AOuetwDrnrgA6565AOueugDrnrsA6568AOuevQDrnr4A656/AOufgADrn4EA65+CAOufgwDrn4QA65+FAOufhgDrn4cA65+IAOufiQDrn4oA65+LAOufjADrn40A65+OAOufjwDrn5AA65+RAOufkgDrn5MA65+UAOuflQDrn5YA65+XAOufmADrn5kA65+aAOufmwDrn5wA65+dAOufngDrn58A65+gAOufoQDrn6IA65+jAOufpADrn6UA65+mAOufpwDrn6gA65+pAOufqgDrn6sA65+sAOufrQDrn64A65+vAOufsADrn7EA65+yAOufswDrn7QA65+1AOuftgDrn7cA65+4AOufuQDrn7oA65+7AOufvADrn70A65++AOufvwDroIAA66CBAOugggDroIMA66CEAOughQDroIYA66CHAOugiADroIkA66CKAOugiwDroIwA66CNAOugjgDroI8A66CQAOugkQDroJIA66CTAOuglADroJUA66CWAOuglwDroJgA66CZAOugmgDroJsA66CcAOugnQDroJ4A66CfAOugoADroKEA66CiAOugowDroKQA66ClAOugpgDroKcA66CoAOugqQDroKoA66CrAOugrADroK0A66CuAOugrwDroLAA66CxAOugsgDroLMA66C0AOugtQDroLYA66C3AOuguADroLkA66C6AOuguwDroLwA66C9AOugvgDroL8A66GAAOuhgQDroYIA66GDAOuhhADroYUA66GGAOuhhwDroYgA66GJAOuhigDroYsA66GMAOuhjQDroY4A66GPAOuhkADroZEA66GSAOuhkwDroZQA66GVAOuhlgDroZcA66GYAOuhmQDroZoA66GbAOuhnADroZ0A66GeAOuhnwDroaAA66GhAOuhogDroaMA66GkAOuhpQDroaYA66GnAOuhqADroakA66GqAOuhqwDroawA66GtAOuhrgDroa8A66GwAOuhsQDrobIA66GzAOuhtADrobUA66G2AOuhtwDrobgA66G5AOuhugDrobsA66G8AOuhvQDrob4A66G/AOuigADrooEA66KCAOuigwDrooQA66KFAOuihgDroocA66KIAOuiiQDroooA66KLAOuijADroo0A66KOAOuijwDropAA66KRAOuikgDropMA66KUAOuilQDropYA66KXAOuimADropkA66KaAOuimwDropwA66KdAOuingDrop8A66KgAOuioQDroqIA66KjAOuipADroqUA66KmAOuipwDroqgA66KpAOuiqgDroqsA66KsAOuirQDroq4A66KvAOuisADrorEA66KyAOuiswDrorQA66K1AOuitgDrorcA66K4AOuiuQDroroA66K7AOuivADror0A66K+AOuivwDro4AA66OBAOujggDro4MA66OEAOujhQDro4YA66OHAOujiADro4kA66OKAOujiwDro4wA66ONAOujjgDro48A66OQAOujkQDro5IA66OTAOujlADro5UA66OWAOujlwDro5gA66OZAOujmgDro5sA66OcAOujnQDro54A66OfAOujoADro6EA66OiAOujowDro6QA66OlAOujpgDro6cA66OoAOujqQDro6oA66OrAOujrADro60A66OuAOujrwDro7AA66OxAOujsgDro7MA66O0AOujtQDro7YA66O3AOujuADro7kA66O6AOujuwDro7wA66O9AOujvgDro78A66SAAOukgQDrpIIA66SDAOukhADrpIUA66SGAOukhwDrpIgA66SJAOukigDrpIsA66SMAOukjQDrpI4A66SPAOukkADrpJEA66SSAOukkwDrpJQA66SVAOuklgDrpJcA66SYAOukmQDrpJoA66SbAOuknADrpJ0A66SeAOuknwDrpKAA66ShAOukogDrpKMA66SkAOukpQDrpKYA66SnAOukqADrpKkA66SqAOukqwDrpKwA66StAOukrgDrpK8A66SwAOuksQDrpLIA66SzAOuktADrpLUA66S2AOuktwDrpLgA66S5AOukugDrpLsA66S8AOukvQDrpL4A66S/AOulgADrpYEA66WCAOulgwDrpYQA66WFAOulhgDrpYcA66WIAOuliQDrpYoA66WLAOuljADrpY0A66WOAOuljwDrpZAA66WRAOulkgDrpZMA66WUAOullQDrpZYA66WXAOulmADrpZkA66WaAOulmwDrpZwA66WdAOulngDrpZ8A66WgAOuloQDrpaIA66WjAOulpADrpaUA66WmAOulpwDrpagA66WpAOulqgDrpasA66WsAOulrQDrpa4A66WvAOulsADrpbEA66WyAOulswDrpbQA66W1AOultgDrpbcA66W4AOuluQDrpboA66W7AOulvADrpb0A66W+AOulvwDrpoAA66aBAOumggDrpoMA66aEAOumhQDrpoYA66aHAOumiADrpokA66aKAOumiwDrpowA66aNAOumjgDrpo8A66aQAOumkQDrppIA66aTAOumlADrppUA66aWAOumlwDrppgA66aZAOummgDrppsA66acAOumnQDrpp4A66afAOumoADrpqEA66aiAOumowDrpqQA66alAOumpgDrpqcA66aoAOumqQDrpqoA66arAOumrADrpq0A66auAOumrwDrprAA66axAOumsgDrprMA66a0AOumtQDrprYA66a3AOumuADrprkA66a6AOumuwDrprwA66a9AOumvgDrpr8A66eAAOungQDrp4IA66eDAOunhADrp4UA66eGAOunhwDrp4gA66eJAOunigDrp4sA66eMAOunjQDrp44A66ePAOunkADrp5EA66eSAOunkwDrp5QA66eVAOunlgDrp5cA66eYAOunmQDrp5oA66ebAOunnADrp50A66eeAOunnwDrp6AA66ehAOunogDrp6MA66ekAOunpQDrp6YA66enAOunqADrp6kA66eqAOunqwDrp6wA66etAOunrgDrp68A66ewAOunsQDrp7IA66ezAOuntADrp7UA66e2AOuntwDrp7gA66e5AOunugDrp7sA66e8AOunvQDrp74A66e/AOuogADrqIEA66iCAOuogwDrqIQA66iFAOuohgDrqIcA66iIAOuoiQDrqIoA66iLAOuojADrqI0A66iOAOuojwDrqJAA66iRAOuokgDrqJMA66iUAOuolQDrqJYA66iXAOuomADrqJkA66iaAOuomwDrqJwA66idAOuongDrqJ8A66igAOuooQDrqKIA66ijAOuopADrqKUA66imAOuopwDrqKgA66ipAOuoqgDrqKsA66isAOuorQDrqK4A66ivAOuosADrqLEA66iyAOuoswDrqLQA66i1AOuotgDrqLcA66i4AOuouQDrqLoA66i7AOuovADrqL0A66i+AOuovwDrqYAA66mBAOupggDrqYMA66mEAOuphQDrqYYA66mHAOupiADrqYkA66mKAOupiwDrqYwA66mNAOupjgDrqY8A66mQAOupkQDrqZIA66mTAOuplADrqZUA66mWAOuplwDrqZgA66mZAOupmgDrqZsA66mcAOupnQDrqZ4A66mfAOupoADrqaEA66miAOupowDrqaQA66mlAOuppgDrqacA66moAOupqQDrqaoA66mrAOuprADrqa0A66muAOuprwDrqbAA66mxAOupsgDrqbMA66m0AOuptQDrqbYA66m3AOupuADrqbkA66m6AOupuwDrqbwA66m9AOupvgDrqb8A66qAAOuqgQDrqoIA66qDAOuqhADrqoUA66qGAOuqhwDrqogA66qJAOuqigDrqosA66qMAOuqjQDrqo4A66qPAOuqkADrqpEA66qSAOuqkwDrqpQA66qVAOuqlgDrqpcA66qYAOuqmQDrqpoA66qbAOuqnADrqp0A66qeAOuqnwDrqqAA66qhAOuqogDrqqMA66qkAOuqpQDrqqYA66qnAOuqqADrqqkA66qqAOuqqwDrqqwA66qtAOuqrgDrqq8A66qwAOuqsQDrqrIA66qzAOuqtADrqrUA66q2AOuqtwDrqrgA66q5AOuqugDrqrsA66q8AOuqvQDrqr4A66q/AOurgADrq4EA66uCAOurgwDrq4QA66uFAOurhgDrq4cA66uIAOuriQDrq4oA66uLAOurjADrq40A66uOAOurjwDrq5AA66uRAOurkgDrq5MA66uUAOurlQDrq5YA66uXAOurmADrq5kA66uaAOurmwDrq5wA66udAOurngDrq58A66ugAOuroQDrq6IA66ujAOurpADrq6UA66umAOurpwDrq6gA66upAOurqgDrq6sA66usAOurrQDrq64A66uvAOursADrq7EA66uyAOurswDrq7QA66u1AOurtgDrq7cA66u4AOuruQDrq7oA66u7AOurvADrq70A66u+AOurvwDrrIAA66yBAOusggDrrIMA66yEAOushQDrrIYA66yHAOusiADrrIkA66yKAOusiwDrrIwA66yNAOusjgDrrI8A66yQAOuskQDrrJIA66yTAOuslADrrJUA66yWAOuslwDrrJgA66yZAOusmgDrrJsA66ycAOusnQDrrJ4A66yfAOusoADrrKEA66yiAOusowDrrKQA66ylAOuspgDrrKcA66yoAOusqQDrrKoA66yrAOusrADrrK0A66yuAOusrwDrrLAA66yxAOussgDrrLMA66y0AOustQDrrLYA66y3AOusuADrrLkA66y6AOusuwDrrLwA66y9AOusvgDrrL8A662AAOutgQDrrYIA662DAOuthADrrYUA662GAOuthwDrrYgA662JAOutigDrrYsA662MAOutjQDrrY4A662PAOutkADrrZEA662SAOutkwDrrZQA662VAOutlgDrrZcA662YAOutmQDrrZoA662bAOutnADrrZ0A662eAOutnwDrraAA662hAOutogDrraMA662kAOutpQDrraYA662nAOutqADrrakA662qAOutqwDrrawA662tAOutrgDrra8A662wAOutsQDrrbIA662zAOuttADrrbUA6622AOuttwDrrbgA6625AOutugDrrbsA6628AOutvQDrrb4A662/AOuugADrroEA666CAOuugwDrroQA666FAOuuhgDrrocA666IAOuuiQDrrooA666LAOuujADrro0A666OAOuujwDrrpAA666RAOuukgDrrpMA666UAOuulQDrrpYA666XAOuumADrrpkA666aAOuumwDrrpwA666dAOuungDrrp8A666gAOuuoQDrrqIA666jAOuupADrrqUA666mAOuupwDrrqgA666pAOuuqgDrrqsA666sAOuurQDrrq4A666vAOuusADrrrEA666yAOuuswDrrrQA6661AOuutgDrrrcA6664AOuuuQDrrroA6667AOuuvADrrr0A666+AOuuvwDrr4AA66+BAOuvggDrr4MA66+EAOuvhQDrr4YA66+HAOuviADrr4kA66+KAOuviwDrr4wA66+NAOuvjgDrr48A66+QAOuvkQDrr5IA66+TAOuvlADrr5UA66+WAOuvlwDrr5gA66+ZAOuvmgDrr5sA66+cAOuvnQDrr54A66+fAOuvoADrr6EA66+iAOuvowDrr6QA66+lAOuvpgDrr6cA66+oAOuvqQDrr6oA66+rAOuvrADrr60A66+uAOuvrwDrr7AA66+xAOuvsgDrr7MA66+0AOuvtQDrr7YA66+3AOuvuADrr7kA66+6AOuvuwDrr7wA66+9AOuvvgDrr78A67CAAOuwgQDrsIIA67CDAOuwhADrsIUA67CGAOuwhwDrsIgA67CJAOuwigDrsIsA67CMAOuwjQDrsI4A67CPAOuwkADrsJEA67CSAOuwkwDrsJQA67CVAOuwlgDrsJcA67CYAOuwmQDrsJoA67CbAOuwnADrsJ0A67CeAOuwnwDrsKAA67ChAOuwogDrsKMA67CkAOuwpQDrsKYA67CnAOuwqADrsKkA67CqAOuwqwDrsKwA67CtAOuwrgDrsK8A67CwAOuwsQDrsLIA67CzAOuwtADrsLUA67C2AOuwtwDrsLgA67C5AOuwugDrsLsA67C8AOuwvQDrsL4A67C/AOuxgADrsYEA67GCAOuxgwDrsYQA67GFAOuxhgDrsYcA67GIAOuxiQDrsYoA67GLAOuxjADrsY0A67GOAOuxjwDrsZAA67GRAOuxkgDrsZMA67GUAOuxlQDrsZYA67GXAOuxmADrsZkA67GaAOuxmwDrsZwA67GdAOuxngDrsZ8A67GgAOuxoQDrsaIA67GjAOuxpADrsaUA67GmAOuxpwDrsagA67GpAOuxqgDrsasA67GsAOuxrQDrsa4A67GvAOuxsADrsbEA67GyAOuxswDrsbQA67G1AOuxtgDrsbcA67G4AOuxuQDrsboA67G7AOuxvADrsb0A67G+AOuxvwDrsoAA67KBAOuyggDrsoMA67KEAOuyhQDrsoYA67KHAOuyiADrsokA67KKAOuyiwDrsowA67KNAOuyjgDrso8A67KQAOuykQDrspIA67KTAOuylADrspUA67KWAOuylwDrspgA67KZAOuymgDrspsA67KcAOuynQDrsp4A67KfAOuyoADrsqEA67KiAOuyowDrsqQA67KlAOuypgDrsqcA67KoAOuyqQDrsqoA67KrAOuyrADrsq0A67KuAOuyrwDrsrAA67KxAOuysgDrsrMA67K0AOuytQDrsrYA67K3AOuyuADrsrkA67K6AOuyuwDrsrwA67K9AOuyvgDrsr8A67OAAOuzgQDrs4IA67ODAOuzhADrs4UA67OGAOuzhwDrs4gA67OJAOuzigDrs4sA67OMAOuzjQDrs44A67OPAOuzkADrs5EA67OSAOuzkwDrs5QA67OVAOuzlgDrs5cA67OYAOuzmQDrs5oA67ObAOuznADrs50A67OeAOuznwDrs6AA67OhAOuzogDrs6MA67OkAOuzpQDrs6YA67OnAOuzqADrs6kA67OqAOuzqwDrs6wA67OtAOuzrgDrs68A67OwAOuzsQDrs7IA67OzAOuztADrs7UA67O2AOuztwDrs7gA67O5AOuzugDrs7sA67O8AOuzvQDrs74A67O/AOu0gADrtIEA67SCAOu0gwDrtIQA67SFAOu0hgDrtIcA67SIAOu0iQDrtIoA67SLAOu0jADrtI0A67SOAOu0jwDrtJAA67SRAOu0kgDrtJMA67SUAOu0lQDrtJYA67SXAOu0mADrtJkA67SaAOu0mwDrtJwA67SdAOu0ngDrtJ8A67SgAOu0oQDrtKIA67SjAOu0pADrtKUA67SmAOu0pwDrtKgA67SpAOu0qgDrtKsA67SsAOu0rQDrtK4A67SvAOu0sADrtLEA67SyAOu0swDrtLQA67S1AOu0tgDrtLcA67S4AOu0uQDrtLoA67S7AOu0vADrtL0A67S+AOu0vwDrtYAA67WBAOu1ggDrtYMA67WEAOu1hQDrtYYA67WHAOu1iADrtYkA67WKAOu1iwDrtYwA67WNAOu1jgDrtY8A67WQAOu1kQDrtZIA67WTAOu1lADrtZUA67WWAOu1lwDrtZgA67WZAOu1mgDrtZsA67WcAOu1nQDrtZ4A67WfAOu1oADrtaEA67WiAOu1owDrtaQA67WlAOu1pgDrtacA67WoAOu1qQDrtaoA67WrAOu1rADrta0A67WuAOu1rwDrtbAA67WxAOu1sgDrtbMA67W0AOu1tQDrtbYA67W3AOu1uADrtbkA67W6AOu1uwDrtbwA67W9AOu1vgDrtb8A67aAAOu2gQDrtoIA67aDAOu2hADrtoUA67aGAOu2hwDrtogA67aJAOu2igDrtosA67aMAOu2jQDrto4A67aPAOu2kADrtpEA67aSAOu2kwDrtpQA67aVAOu2lgDrtpcA67aYAOu2mQDrtpoA67abAOu2nADrtp0A67aeAOu2nwDrtqAA67ahAOu2ogDrtqMA67akAOu2pQDrtqYA67anAOu2qADrtqkA67aqAOu2qwDrtqwA67atAOu2rgDrtq8A67awAOu2sQDrtrIA67azAOu2tADrtrUA67a2AOu2twDrtrgA67a5AOu2ugDrtrsA67a8AOu2vQDrtr4A67a/AOu3gADrt4EA67eCAOu3gwDrt4QA67eFAOu3hgDrt4cA67eIAOu3iQDrt4oA67eLAOu3jADrt40A67eOAOu3jwDrt5AA67eRAOu3kgDrt5MA67eUAOu3lQDrt5YA67eXAOu3mADrt5kA67eaAOu3mwDrt5wA67edAOu3ngDrt58A67egAOu3oQDrt6IA67ejAOu3pADrt6UA67emAOu3pwDrt6gA67epAOu3qgDrt6sA67esAOu3rQDrt64A67evAOu3sADrt7EA67eyAOu3swDrt7QA67e1AOu3tgDrt7cA67e4AOu3uQDrt7oA67e7AOu3vADrt70A67e+AOu3vwDruIAA67iBAOu4ggDruIMA67iEAOu4hQDruIYA67iHAOu4iADruIkA67iKAOu4iwDruIwA67iNAOu4jgDruI8A67iQAOu4kQDruJIA67iTAOu4lADruJUA67iWAOu4lwDruJgA67iZAOu4mgDruJsA67icAOu4nQDruJ4A67ifAOu4oADruKEA67iiAOu4owDruKQA67ilAOu4pgDruKcA67ioAOu4qQDruKoA67irAOu4rADruK0A67iuAOu4rwDruLAA67ixAOu4sgDruLMA67i0AOu4tQDruLYA67i3AOu4uADruLkA67i6AOu4uwDruLwA67i9AOu4vgDruL8A67mAAOu5gQDruYIA67mDAOu5hADruYUA67mGAOu5hwDruYgA67mJAOu5igDruYsA67mMAOu5jQDruY4A67mPAOu5kADruZEA67mSAOu5kwDruZQA67mVAOu5lgDruZcA67mYAOu5mQDruZoA67mbAOu5nADruZ0A67meAOu5nwDruaAA67mhAOu5ogDruaMA67mkAOu5pQDruaYA67mnAOu5qADruakA67mqAOu5qwDruawA67mtAOu5rgDrua8A67mwAOu5sQDrubIA67mzAOu5tADrubUA67m2AOu5twDrubgA67m5AOu5ugDrubsA67m8AOu5vQDrub4A67m/AOu6gADruoEA67qCAOu6gwDruoQA67qFAOu6hgDruocA67qIAOu6iQDruooA67qLAOu6jADruo0A67qOAOu6jwDrupAA67qRAOu6kgDrupMA67qUAOu6lQDrupYA67qXAOu6mADrupkA67qaAOu6mwDrupwA67qdAOu6ngDrup8A67qgAOu6oQDruqIA67qjAOu6pADruqUA67qmAOu6pwDruqgA67qpAOu6qgDruqsA67qsAOu6rQDruq4A67qvAOu6sADrurEA67qyAOu6swDrurQA67q1AOu6tgDrurcA67q4AOu6uQDruroA67q7AOu6vADrur0A67q+AOu6vwDru4AA67uBAOu7ggDru4MA67uEAOu7hQDru4YA67uHAOu7iADru4kA67uKAOu7iwDru4wA67uNAOu7jgDru48A67uQAOu7kQDru5IA67uTAOu7lADru5UA67uWAOu7lwDru5gA67uZAOu7mgDru5sA67ucAOu7nQDru54A67ufAOu7oADru6EA67uiAOu7owDru6QA67ulAOu7pgDru6cA67uoAOu7qQDru6oA67urAOu7rADru60A67uuAOu7rwDru7AA67uxAOu7sgDru7MA67u0AOu7tQDru7YA67u3AOu7uADru7kA67u6AOu7uwDru7wA67u9AOu7vgDru78A67yAAOu8gQDrvIIA67yDAOu8hADrvIUA67yGAOu8hwDrvIgA67yJAOu8igDrvIsA67yMAOu8jQDrvI4A67yPAOu8kADrvJEA67ySAOu8kwDrvJQA67yVAOu8lgDrvJcA67yYAOu8mQDrvJoA67ybAOu8nADrvJ0A67yeAOu8nwDrvKAA67yhAOu8ogDrvKMA67ykAOu8pQDrvKYA67ynAOu8qADrvKkA67yqAOu8qwDrvKwA67ytAOu8rgDrvK8A67ywAOu8sQDrvLIA67yzAOu8tADrvLUA67y2AOu8twDrvLgA67y5AOu8ugDrvLsA67y8AOu8vQDrvL4A67y/AOu9gADrvYEA672CAOu9gwDrvYQA672FAOu9hgDrvYcA672IAOu9iQDrvYoA672LAOu9jADrvY0A672OAOu9jwDrvZAA672RAOu9kgDrvZMA672UAOu9lQDrvZYA672XAOu9mADrvZkA672aAOu9mwDrvZwA672dAOu9ngDrvZ8A672gAOu9oQDrvaIA672jAOu9pADrvaUA672mAOu9pwDrvagA672pAOu9qgDrvasA672sAOu9rQDrva4A672vAOu9sADrvbEA672yAOu9swDrvbQA6721AOu9tgDrvbcA6724AOu9uQDrvboA6727AOu9vADrvb0A672+AOu9vwDrvoAA676BAOu+ggDrvoMA676EAOu+hQDrvoYA676HAOu+iADrvokA676KAOu+iwDrvowA676NAOu+jgDrvo8A676QAOu+kQDrvpIA676TAOu+lADrvpUA676WAOu+lwDrvpgA676ZAOu+mgDrvpsA676cAOu+nQDrvp4A676fAOu+oADrvqEA676iAOu+owDrvqQA676lAOu+pgDrvqcA676oAOu+qQDrvqoA676rAOu+rADrvq0A676uAOu+rwDrvrAA676xAOu+sgDrvrMA6760AOu+tQDrvrYA6763AOu+uADrvrkA6766AOu+uwDrvrwA6769AOu+vgDrvr8A67+AAOu/gQDrv4IA67+DAOu/hADrv4UA67+GAOu/hwDrv4gA67+JAOu/igDrv4sA67+MAOu/jQDrv44A67+PAOu/kADrv5EA67+SAOu/kwDrv5QA67+VAOu/lgDrv5cA67+YAOu/mQDrv5oA67+bAOu/nADrv50A67+eAOu/nwDrv6AA67+hAOu/ogDrv6MA67+kAOu/pQDrv6YA67+nAOu/qADrv6kA67+qAOu/qwDrv6wA67+tAOu/rgDrv68A67+wAOu/sQDrv7IA67+zAOu/tADrv7UA67+2AOu/twDrv7gA67+5AOu/ugDrv7sA67+8AOu/vQDrv74A67+/AOyAgADsgIEA7ICCAOyAgwDsgIQA7ICFAOyAhgDsgIcA7ICIAOyAiQDsgIoA7ICLAOyAjADsgI0A7ICOAOyAjwDsgJAA7ICRAOyAkgDsgJMA7ICUAOyAlQDsgJYA7ICXAOyAmADsgJkA7ICaAOyAmwDsgJwA7ICdAOyAngDsgJ8A7ICgAOyAoQDsgKIA7ICjAOyApADsgKUA7ICmAOyApwDsgKgA7ICpAOyAqgDsgKsA7ICsAOyArQDsgK4A7ICvAOyAsADsgLEA7ICyAOyAswDsgLQA7IC1AOyAtgDsgLcA7IC4AOyAuQDsgLoA7IC7AOyAvADsgL0A7IC+AOyAvwDsgYAA7IGBAOyBggDsgYMA7IGEAOyBhQDsgYYA7IGHAOyBiADsgYkA7IGKAOyBiwDsgYwA7IGNAOyBjgDsgY8A7IGQAOyBkQDsgZIA7IGTAOyBlADsgZUA7IGWAOyBlwDsgZgA7IGZAOyBmgDsgZsA7IGcAOyBnQDsgZ4A7IGfAOyBoADsgaEA7IGiAOyBowDsgaQA7IGlAOyBpgDsgacA7IGoAOyBqQDsgaoA7IGrAOyBrADsga0A7IGuAOyBrwDsgbAA7IGxAOyBsgDsgbMA7IG0AOyBtQDsgbYA7IG3AOyBuADsgbkA7IG6AOyBuwDsgbwA7IG9AOyBvgDsgb8A7IKAAOyCgQDsgoIA7IKDAOyChADsgoUA7IKGAOyChwDsgogA7IKJAOyCigDsgosA7IKMAOyCjQDsgo4A7IKPAOyCkADsgpEA7IKSAOyCkwDsgpQA7IKVAOyClgDsgpcA7IKYAOyCmQDsgpoA7IKbAOyCnADsgp0A7IKeAOyCnwDsgqAA7IKhAOyCogDsgqMA7IKkAOyCpQDsgqYA7IKnAOyCqADsgqkA7IKqAOyCqwDsgqwA7IKtAOyCrgDsgq8A7IKwAOyCsQDsgrIA7IKzAOyCtADsgrUA7IK2AOyCtwDsgrgA7IK5AOyCugDsgrsA7IK8AOyCvQDsgr4A7IK/AOyDgADsg4EA7IOCAOyDgwDsg4QA7IOFAOyDhgDsg4cA7IOIAOyDiQDsg4oA7IOLAOyDjADsg40A7IOOAOyDjwDsg5AA7IORAOyDkgDsg5MA7IOUAOyDlQDsg5YA7IOXAOyDmADsg5kA7IOaAOyDmwDsg5wA7IOdAOyDngDsg58A7IOgAOyDoQDsg6IA7IOjAOyDpADsg6UA7IOmAOyDpwDsg6gA7IOpAOyDqgDsg6sA7IOsAOyDrQDsg64A7IOvAOyDsADsg7EA7IOyAOyDswDsg7QA7IO1AOyDtgDsg7cA7IO4AOyDuQDsg7oA7IO7AOyDvADsg70A7IO+AOyDvwDshIAA7ISBAOyEggDshIMA7ISEAOyEhQDshIYA7ISHAOyEiADshIkA7ISKAOyEiwDshIwA7ISNAOyEjgDshI8A7ISQAOyEkQDshJIA7ISTAOyElADshJUA7ISWAOyElwDshJgA7ISZAOyEmgDshJsA7IScAOyEnQDshJ4A7ISfAOyEoADshKEA7ISiAOyEowDshKQA7ISlAOyEpgDshKcA7ISoAOyEqQDshKoA7ISrAOyErADshK0A7ISuAOyErwDshLAA7ISxAOyEsgDshLMA7IS0AOyEtQDshLYA7IS3AOyEuADshLkA7IS6AOyEuwDshLwA7IS9AOyEvgDshL8A7IWAAOyFgQDshYIA7IWDAOyFhADshYUA7IWGAOyFhwDshYgA7IWJAOyFigDshYsA7IWMAOyFjQDshY4A7IWPAOyFkADshZEA7IWSAOyFkwDshZQA7IWVAOyFlgDshZcA7IWYAOyFmQDshZoA7IWbAOyFnADshZ0A7IWeAOyFnwDshaAA7IWhAOyFogDshaMA7IWkAOyFpQDshaYA7IWnAOyFqADshakA7IWqAOyFqwDshawA7IWtAOyFrgDsha8A7IWwAOyFsQDshbIA7IWzAOyFtADshbUA7IW2AOyFtwDshbgA7IW5AOyFugDshbsA7IW8AOyFvQDshb4A7IW/AOyGgADshoEA7IaCAOyGgwDshoQA7IaFAOyGhgDshocA7IaIAOyGiQDshooA7IaLAOyGjADsho0A7IaOAOyGjwDshpAA7IaRAOyGkgDshpMA7IaUAOyGlQDshpYA7IaXAOyGmADshpkA7IaaAOyGmwDshpwA7IadAOyGngDshp8A7IagAOyGoQDshqIA7IajAOyGpADshqUA7IamAOyGpwDshqgA7IapAOyGqgDshqsA7IasAOyGrQDshq4A7IavAOyGsADshrEA7IayAOyGswDshrQA7Ia1AOyGtgDshrcA7Ia4AOyGuQDshroA7Ia7AOyGvADshr0A7Ia+AOyGvwDsh4AA7IeBAOyHggDsh4MA7IeEAOyHhQDsh4YA7IeHAOyHiADsh4kA7IeKAOyHiwDsh4wA7IeNAOyHjgDsh48A7IeQAOyHkQDsh5IA7IeTAOyHlADsh5UA7IeWAOyHlwDsh5gA7IeZAOyHmgDsh5sA7IecAOyHnQDsh54A7IefAOyHoADsh6EA7IeiAOyHowDsh6QA7IelAOyHpgDsh6cA7IeoAOyHqQDsh6oA7IerAOyHrADsh60A7IeuAOyHrwDsh7AA7IexAOyHsgDsh7MA7Ie0AOyHtQDsh7YA7Ie3AOyHuADsh7kA7Ie6AOyHuwDsh7wA7Ie9AOyHvgDsh78A7IiAAOyIgQDsiIIA7IiDAOyIhADsiIUA7IiGAOyIhwDsiIgA7IiJAOyIigDsiIsA7IiMAOyIjQDsiI4A7IiPAOyIkADsiJEA7IiSAOyIkwDsiJQA7IiVAOyIlgDsiJcA7IiYAOyImQDsiJoA7IibAOyInADsiJ0A7IieAOyInwDsiKAA7IihAOyIogDsiKMA7IikAOyIpQDsiKYA7IinAOyIqADsiKkA7IiqAOyIqwDsiKwA7IitAOyIrgDsiK8A7IiwAOyIsQDsiLIA7IizAOyItADsiLUA7Ii2AOyItwDsiLgA7Ii5AOyIugDsiLsA7Ii8AOyIvQDsiL4A7Ii/AOyJgADsiYEA7ImCAOyJgwDsiYQA7ImFAOyJhgDsiYcA7ImIAOyJiQDsiYoA7ImLAOyJjADsiY0A7ImOAOyJjwDsiZAA7ImRAOyJkgDsiZMA7ImUAOyJlQDsiZYA7ImXAOyJmADsiZkA7ImaAOyJmwDsiZwA7ImdAOyJngDsiZ8A7ImgAOyJoQDsiaIA7ImjAOyJpADsiaUA7ImmAOyJpwDsiagA7ImpAOyJqgDsiasA7ImsAOyJrQDsia4A7ImvAOyJsADsibEA7ImyAOyJswDsibQA7Im1AOyJtgDsibcA7Im4AOyJuQDsiboA7Im7AOyJvADsib0A7Im+AOyJvwDsioAA7IqBAOyKggDsioMA7IqEAOyKhQDsioYA7IqHAOyKiADsiokA7IqKAOyKiwDsiowA7IqNAOyKjgDsio8A7IqQAOyKkQDsipIA7IqTAOyKlADsipUA7IqWAOyKlwDsipgA7IqZAOyKmgDsipsA7IqcAOyKnQDsip4A7IqfAOyKoADsiqEA7IqiAOyKowDsiqQA7IqlAOyKpgDsiqcA7IqoAOyKqQDsiqoA7IqrAOyKrADsiq0A7IquAOyKrwDsirAA7IqxAOyKsgDsirMA7Iq0AOyKtQDsirYA7Iq3AOyKuADsirkA7Iq6AOyKuwDsirwA7Iq9AOyKvgDsir8A7IuAAOyLgQDsi4IA7IuDAOyLhADsi4UA7IuGAOyLhwDsi4gA7IuJAOyLigDsi4sA7IuMAOyLjQDsi44A7IuPAOyLkADsi5EA7IuSAOyLkwDsi5QA7IuVAOyLlgDsi5cA7IuYAOyLmQDsi5oA7IubAOyLnADsi50A7IueAOyLnwDsi6AA7IuhAOyLogDsi6MA7IukAOyLpQDsi6YA7IunAOyLqADsi6kA7IuqAOyLqwDsi6wA7IutAOyLrgDsi68A7IuwAOyLsQDsi7IA7IuzAOyLtADsi7UA7Iu2AOyLtwDsi7gA7Iu5AOyLugDsi7sA7Iu8AOyLvQDsi74A7Iu/AOyMgADsjIEA7IyCAOyMgwDsjIQA7IyFAOyMhgDsjIcA7IyIAOyMiQDsjIoA7IyLAOyMjADsjI0A7IyOAOyMjwDsjJAA7IyRAOyMkgDsjJMA7IyUAOyMlQDsjJYA7IyXAOyMmADsjJkA7IyaAOyMmwDsjJwA7IydAOyMngDsjJ8A7IygAOyMoQDsjKIA7IyjAOyMpADsjKUA7IymAOyMpwDsjKgA7IypAOyMqgDsjKsA7IysAOyMrQDsjK4A7IyvAOyMsADsjLEA7IyyAOyMswDsjLQA7Iy1AOyMtgDsjLcA7Iy4AOyMuQDsjLoA7Iy7AOyMvADsjL0A7Iy+AOyMvwDsjYAA7I2BAOyNggDsjYMA7I2EAOyNhQDsjYYA7I2HAOyNiADsjYkA7I2KAOyNiwDsjYwA7I2NAOyNjgDsjY8A7I2QAOyNkQDsjZIA7I2TAOyNlADsjZUA7I2WAOyNlwDsjZgA7I2ZAOyNmgDsjZsA7I2cAOyNnQDsjZ4A7I2fAOyNoADsjaEA7I2iAOyNowDsjaQA7I2lAOyNpgDsjacA7I2oAOyNqQDsjaoA7I2rAOyNrADsja0A7I2uAOyNrwDsjbAA7I2xAOyNsgDsjbMA7I20AOyNtQDsjbYA7I23AOyNuADsjbkA7I26AOyNuwDsjbwA7I29AOyNvgDsjb8A7I6AAOyOgQDsjoIA7I6DAOyOhADsjoUA7I6GAOyOhwDsjogA7I6JAOyOigDsjosA7I6MAOyOjQDsjo4A7I6PAOyOkADsjpEA7I6SAOyOkwDsjpQA7I6VAOyOlgDsjpcA7I6YAOyOmQDsjpoA7I6bAOyOnADsjp0A7I6eAOyOnwDsjqAA7I6hAOyOogDsjqMA7I6kAOyOpQDsjqYA7I6nAOyOqADsjqkA7I6qAOyOqwDsjqwA7I6tAOyOrgDsjq8A7I6wAOyOsQDsjrIA7I6zAOyOtADsjrUA7I62AOyOtwDsjrgA7I65AOyOugDsjrsA7I68AOyOvQDsjr4A7I6/AOyPgADsj4EA7I+CAOyPgwDsj4QA7I+FAOyPhgDsj4cA7I+IAOyPiQDsj4oA7I+LAOyPjADsj40A7I+OAOyPjwDsj5AA7I+RAOyPkgDsj5MA7I+UAOyPlQDsj5YA7I+XAOyPmADsj5kA7I+aAOyPmwDsj5wA7I+dAOyPngDsj58A7I+gAOyPoQDsj6IA7I+jAOyPpADsj6UA7I+mAOyPpwDsj6gA7I+pAOyPqgDsj6sA7I+sAOyPrQDsj64A7I+vAOyPsADsj7EA7I+yAOyPswDsj7QA7I+1AOyPtgDsj7cA7I+4AOyPuQDsj7oA7I+7AOyPvADsj70A7I++AOyPvwDskIAA7JCBAOyQggDskIMA7JCEAOyQhQDskIYA7JCHAOyQiADskIkA7JCKAOyQiwDskIwA7JCNAOyQjgDskI8A7JCQAOyQkQDskJIA7JCTAOyQlADskJUA7JCWAOyQlwDskJgA7JCZAOyQmgDskJsA7JCcAOyQnQDskJ4A7JCfAOyQoADskKEA7JCiAOyQowDskKQA7JClAOyQpgDskKcA7JCoAOyQqQDskKoA7JCrAOyQrADskK0A7JCuAOyQrwDskLAA7JCxAOyQsgDskLMA7JC0AOyQtQDskLYA7JC3AOyQuADskLkA7JC6AOyQuwDskLwA7JC9AOyQvgDskL8A7JGAAOyRgQDskYIA7JGDAOyRhADskYUA7JGGAOyRhwDskYgA7JGJAOyRigDskYsA7JGMAOyRjQDskY4A7JGPAOyRkADskZEA7JGSAOyRkwDskZQA7JGVAOyRlgDskZcA7JGYAOyRmQDskZoA7JGbAOyRnADskZ0A7JGeAOyRnwDskaAA7JGhAOyRogDskaMA7JGkAOyRpQDskaYA7JGnAOyRqADskakA7JGqAOyRqwDskawA7JGtAOyRrgDska8A7JGwAOyRsQDskbIA7JGzAOyRtADskbUA7JG2AOyRtwDskbgA7JG5AOyRugDskbsA7JG8AOyRvQDskb4A7JG/AOySgADskoEA7JKCAOySgwDskoQA7JKFAOyShgDskocA7JKIAOySiQDskooA7JKLAOySjADsko0A7JKOAOySjwDskpAA7JKRAOySkgDskpMA7JKUAOySlQDskpYA7JKXAOySmADskpkA7JKaAOySmwDskpwA7JKdAOySngDskp8A7JKgAOySoQDskqIA7JKjAOySpADskqUA7JKmAOySpwDskqgA7JKpAOySqgDskqsA7JKsAOySrQDskq4A7JKvAOySsADskrEA7JKyAOySswDskrQA7JK1AOyStgDskrcA7JK4AOySuQDskroA7JK7AOySvADskr0A7JK+AOySvwDsk4AA7JOBAOyTggDsk4MA7JOEAOyThQDsk4YA7JOHAOyTiADsk4kA7JOKAOyTiwDsk4wA7JONAOyTjgDsk48A7JOQAOyTkQDsk5IA7JOTAOyTlADsk5UA7JOWAOyTlwDsk5gA7JOZAOyTmgDsk5sA7JOcAOyTnQDsk54A7JOfAOyToADsk6EA7JOiAOyTowDsk6QA7JOlAOyTpgDsk6cA7JOoAOyTqQDsk6oA7JOrAOyTrADsk60A7JOuAOyTrwDsk7AA7JOxAOyTsgDsk7MA7JO0AOyTtQDsk7YA7JO3AOyTuADsk7kA7JO6AOyTuwDsk7wA7JO9AOyTvgDsk78A7JSAAOyUgQDslIIA7JSDAOyUhADslIUA7JSGAOyUhwDslIgA7JSJAOyUigDslIsA7JSMAOyUjQDslI4A7JSPAOyUkADslJEA7JSSAOyUkwDslJQA7JSVAOyUlgDslJcA7JSYAOyUmQDslJoA7JSbAOyUnADslJ0A7JSeAOyUnwDslKAA7JShAOyUogDslKMA7JSkAOyUpQDslKYA7JSnAOyUqADslKkA7JSqAOyUqwDslKwA7JStAOyUrgDslK8A7JSwAOyUsQDslLIA7JSzAOyUtADslLUA7JS2AOyUtwDslLgA7JS5AOyUugDslLsA7JS8AOyUvQDslL4A7JS/AOyVgADslYEA7JWCAOyVgwDslYQA7JWFAOyVhgDslYcA7JWIAOyViQDslYoA7JWLAOyVjADslY0A7JWOAOyVjwDslZAA7JWRAOyVkgDslZMA7JWUAOyVlQDslZYA7JWXAOyVmADslZkA7JWaAOyVmwDslZwA7JWdAOyVngDslZ8A7JWgAOyVoQDslaIA7JWjAOyVpADslaUA7JWmAOyVpwDslagA7JWpAOyVqgDslasA7JWsAOyVrQDsla4A7JWvAOyVsADslbEA7JWyAOyVswDslbQA7JW1AOyVtgDslbcA7JW4AOyVuQDslboA7JW7AOyVvADslb0A7JW+AOyVvwDsloAA7JaBAOyWggDsloMA7JaEAOyWhQDsloYA7JaHAOyWiADslokA7JaKAOyWiwDslowA7JaNAOyWjgDslo8A7JaQAOyWkQDslpIA7JaTAOyWlADslpUA7JaWAOyWlwDslpgA7JaZAOyWmgDslpsA7JacAOyWnQDslp4A7JafAOyWoADslqEA7JaiAOyWowDslqQA7JalAOyWpgDslqcA7JaoAOyWqQDslqoA7JarAOyWrADslq0A7JauAOyWrwDslrAA7JaxAOyWsgDslrMA7Ja0AOyWtQDslrYA7Ja3AOyWuADslrkA7Ja6AOyWuwDslrwA7Ja9AOyWvgDslr8A7JeAAOyXgQDsl4IA7JeDAOyXhADsl4UA7JeGAOyXhwDsl4gA7JeJAOyXigDsl4sA7JeMAOyXjQDsl44A7JePAOyXkADsl5EA7JeSAOyXkwDsl5QA7JeVAOyXlgDsl5cA7JeYAOyXmQDsl5oA7JebAOyXnADsl50A7JeeAOyXnwDsl6AA7JehAOyXogDsl6MA7JekAOyXpQDsl6YA7JenAOyXqADsl6kA7JeqAOyXqwDsl6wA7JetAOyXrgDsl68A7JewAOyXsQDsl7IA7JezAOyXtADsl7UA7Je2AOyXtwDsl7gA7Je5AOyXugDsl7sA7Je8AOyXvQDsl74A7Je/AOyYgADsmIEA7JiCAOyYgwDsmIQA7JiFAOyYhgDsmIcA7JiIAOyYiQDsmIoA7JiLAOyYjADsmI0A7JiOAOyYjwDsmJAA7JiRAOyYkgDsmJMA7JiUAOyYlQDsmJYA7JiXAOyYmADsmJkA7JiaAOyYmwDsmJwA7JidAOyYngDsmJ8A7JigAOyYoQDsmKIA7JijAOyYpADsmKUA7JimAOyYpwDsmKgA7JipAOyYqgDsmKsA7JisAOyYrQDsmK4A7JivAOyYsADsmLEA7JiyAOyYswDsmLQA7Ji1AOyYtgDsmLcA7Ji4AOyYuQDsmLoA7Ji7AOyYvADsmL0A7Ji+AOyYvwDsmYAA7JmBAOyZggDsmYMA7JmEAOyZhQDsmYYA7JmHAOyZiADsmYkA7JmKAOyZiwDsmYwA7JmNAOyZjgDsmY8A7JmQAOyZkQDsmZIA7JmTAOyZlADsmZUA7JmWAOyZlwDsmZgA7JmZAOyZmgDsmZsA7JmcAOyZnQDsmZ4A7JmfAOyZoADsmaEA7JmiAOyZowDsmaQA7JmlAOyZpgDsmacA7JmoAOyZqQDsmaoA7JmrAOyZrADsma0A7JmuAOyZrwDsmbAA7JmxAOyZsgDsmbMA7Jm0AOyZtQDsmbYA7Jm3AOyZuADsmbkA7Jm6AOyZuwDsmbwA7Jm9AOyZvgDsmb8A7JqAAOyagQDsmoIA7JqDAOyahADsmoUA7JqGAOyahwDsmogA7JqJAOyaigDsmosA7JqMAOyajQDsmo4A7JqPAOyakADsmpEA7JqSAOyakwDsmpQA7JqVAOyalgDsmpcA7JqYAOyamQDsmpoA7JqbAOyanADsmp0A7JqeAOyanwDsmqAA7JqhAOyaogDsmqMA7JqkAOyapQDsmqYA7JqnAOyaqADsmqkA7JqqAOyaqwDsmqwA7JqtAOyargDsmq8A7JqwAOyasQDsmrIA7JqzAOyatADsmrUA7Jq2AOyatwDsmrgA7Jq5AOyaugDsmrsA7Jq8AOyavQDsmr4A7Jq/AOybgADsm4EA7JuCAOybgwDsm4QA7JuFAOybhgDsm4cA7JuIAOybiQDsm4oA7JuLAOybjADsm40A7JuOAOybjwDsm5AA7JuRAOybkgDsm5MA7JuUAOyblQDsm5YA7JuXAOybmADsm5kA7JuaAOybmwDsm5wA7JudAOybngDsm58A7JugAOyboQDsm6IA7JujAOybpADsm6UA7JumAOybpwDsm6gA7JupAOybqgDsm6sA7JusAOybrQDsm64A7JuvAOybsADsm7EA7JuyAOybswDsm7QA7Ju1AOybtgDsm7cA7Ju4AOybuQDsm7oA7Ju7AOybvADsm70A7Ju+AOybvwDsnIAA7JyBAOycggDsnIMA7JyEAOychQDsnIYA7JyHAOyciADsnIkA7JyKAOyciwDsnIwA7JyNAOycjgDsnI8A7JyQAOyckQDsnJIA7JyTAOyclADsnJUA7JyWAOyclwDsnJgA7JyZAOycmgDsnJsA7JycAOycnQDsnJ4A7JyfAOycoADsnKEA7JyiAOycowDsnKQA7JylAOycpgDsnKcA7JyoAOycqQDsnKoA7JyrAOycrADsnK0A7JyuAOycrwDsnLAA7JyxAOycsgDsnLMA7Jy0AOyctQDsnLYA7Jy3AOycuADsnLkA7Jy6AOycuwDsnLwA7Jy9AOycvgDsnL8A7J2AAOydgQDsnYIA7J2DAOydhADsnYUA7J2GAOydhwDsnYgA7J2JAOydigDsnYsA7J2MAOydjQDsnY4A7J2PAOydkADsnZEA7J2SAOydkwDsnZQA7J2VAOydlgDsnZcA7J2YAOydmQDsnZoA7J2bAOydnADsnZ0A7J2eAOydnwDsnaAA7J2hAOydogDsnaMA7J2kAOydpQDsnaYA7J2nAOydqADsnakA7J2qAOydqwDsnawA7J2tAOydrgDsna8A7J2wAOydsQDsnbIA7J2zAOydtADsnbUA7J22AOydtwDsnbgA7J25AOydugDsnbsA7J28AOydvQDsnb4A7J2/AOyegADsnoEA7J6CAOyegwDsnoQA7J6FAOyehgDsnocA7J6IAOyeiQDsnooA7J6LAOyejADsno0A7J6OAOyejwDsnpAA7J6RAOyekgDsnpMA7J6UAOyelQDsnpYA7J6XAOyemADsnpkA7J6aAOyemwDsnpwA7J6dAOyengDsnp8A7J6gAOyeoQDsnqIA7J6jAOyepADsnqUA7J6mAOyepwDsnqgA7J6pAOyeqgDsnqsA7J6sAOyerQDsnq4A7J6vAOyesADsnrEA7J6yAOyeswDsnrQA7J61AOyetgDsnrcA7J64AOyeuQDsnroA7J67AOyevADsnr0A7J6+AOyevwDsn4AA7J+BAOyfggDsn4MA7J+EAOyfhQDsn4YA7J+HAOyfiADsn4kA7J+KAOyfiwDsn4wA7J+NAOyfjgDsn48A7J+QAOyfkQDsn5IA7J+TAOyflADsn5UA7J+WAOyflwDsn5gA7J+ZAOyfmgDsn5sA7J+cAOyfnQDsn54A7J+fAOyfoADsn6EA7J+iAOyfowDsn6QA7J+lAOyfpgDsn6cA7J+oAOyfqQDsn6oA7J+rAOyfrADsn60A7J+uAOyfrwDsn7AA7J+xAOyfsgDsn7MA7J+0AOyftQDsn7YA7J+3AOyfuADsn7kA7J+6AOyfuwDsn7wA7J+9AOyfvgDsn78A7KCAAOyggQDsoIIA7KCDAOyghADsoIUA7KCGAOyghwDsoIgA7KCJAOygigDsoIsA7KCMAOygjQDsoI4A7KCPAOygkADsoJEA7KCSAOygkwDsoJQA7KCVAOyglgDsoJcA7KCYAOygmQDsoJoA7KCbAOygnADsoJ0A7KCeAOygnwDsoKAA7KChAOygogDsoKMA7KCkAOygpQDsoKYA7KCnAOygqADsoKkA7KCqAOygqwDsoKwA7KCtAOygrgDsoK8A7KCwAOygsQDsoLIA7KCzAOygtADsoLUA7KC2AOygtwDsoLgA7KC5AOygugDsoLsA7KC8AOygvQDsoL4A7KC/AOyhgADsoYEA7KGCAOyhgwDsoYQA7KGFAOyhhgDsoYcA7KGIAOyhiQDsoYoA7KGLAOyhjADsoY0A7KGOAOyhjwDsoZAA7KGRAOyhkgDsoZMA7KGUAOyhlQDsoZYA7KGXAOyhmADsoZkA7KGaAOyhmwDsoZwA7KGdAOyhngDsoZ8A7KGgAOyhoQDsoaIA7KGjAOyhpADsoaUA7KGmAOyhpwDsoagA7KGpAOyhqgDsoasA7KGsAOyhrQDsoa4A7KGvAOyhsADsobEA7KGyAOyhswDsobQA7KG1AOyhtgDsobcA7KG4AOyhuQDsoboA7KG7AOyhvADsob0A7KG+AOyhvwDsooAA7KKBAOyiggDsooMA7KKEAOyihQDsooYA7KKHAOyiiADsookA7KKKAOyiiwDsoowA7KKNAOyijgDsoo8A7KKQAOyikQDsopIA7KKTAOyilADsopUA7KKWAOyilwDsopgA7KKZAOyimgDsopsA7KKcAOyinQDsop4A7KKfAOyioADsoqEA7KKiAOyiowDsoqQA7KKlAOyipgDsoqcA7KKoAOyiqQDsoqoA7KKrAOyirADsoq0A7KKuAOyirwDsorAA7KKxAOyisgDsorMA7KK0AOyitQDsorYA7KK3AOyiuADsorkA7KK6AOyiuwDsorwA7KK9AOyivgDsor8A7KOAAOyjgQDso4IA7KODAOyjhADso4UA7KOGAOyjhwDso4gA7KOJAOyjigDso4sA7KOMAOyjjQDso44A7KOPAOyjkADso5EA7KOSAOyjkwDso5QA7KOVAOyjlgDso5cA7KOYAOyjmQDso5oA7KObAOyjnADso50A7KOeAOyjnwDso6AA7KOhAOyjogDso6MA7KOkAOyjpQDso6YA7KOnAOyjqADso6kA7KOqAOyjqwDso6wA7KOtAOyjrgDso68A7KOwAOyjsQDso7IA7KOzAOyjtADso7UA7KO2AOyjtwDso7gA7KO5AOyjugDso7sA7KO8AOyjvOydmADso70A7KO+AOyjvwDspIAA7KSBAOykggDspIMA7KSEAOykhQDspIYA7KSHAOykiADspIkA7KSKAOykiwDspIwA7KSNAOykjgDspI8A7KSQAOykkQDspJIA7KSTAOyklADspJUA7KSWAOyklwDspJgA7KSZAOykmgDspJsA7KScAOyknQDspJ4A7KSfAOykoADspKEA7KSiAOykowDspKQA7KSlAOykpgDspKcA7KSoAOykqQDspKoA7KSrAOykrADspK0A7KSuAOykrwDspLAA7KSxAOyksgDspLMA7KS0AOyktQDspLYA7KS3AOykuADspLkA7KS6AOykuwDspLwA7KS9AOykvgDspL8A7KWAAOylgQDspYIA7KWDAOylhADspYUA7KWGAOylhwDspYgA7KWJAOyligDspYsA7KWMAOyljQDspY4A7KWPAOylkADspZEA7KWSAOylkwDspZQA7KWVAOyllgDspZcA7KWYAOylmQDspZoA7KWbAOylnADspZ0A7KWeAOylnwDspaAA7KWhAOylogDspaMA7KWkAOylpQDspaYA7KWnAOylqADspakA7KWqAOylqwDspawA7KWtAOylrgDspa8A7KWwAOylsQDspbIA7KWzAOyltADspbUA7KW2AOyltwDspbgA7KW5AOylugDspbsA7KW8AOylvQDspb4A7KW/AOymgADspoEA7KaCAOymgwDspoQA7KaFAOymhgDspocA7KaIAOymiQDspooA7KaLAOymjADspo0A7KaOAOymjwDsppAA7KaRAOymkgDsppMA7KaUAOymlQDsppYA7KaXAOymmADsppkA7KaaAOymmwDsppwA7KadAOymngDspp8A7KagAOymoQDspqIA7KajAOympADspqUA7KamAOympwDspqgA7KapAOymqgDspqsA7KasAOymrQDspq4A7KavAOymsADsprEA7KayAOymswDsprQA7Ka1AOymtgDsprcA7Ka4AOymuQDsproA7Ka7AOymvADspr0A7Ka+AOymvwDsp4AA7KeBAOynggDsp4MA7KeEAOynhQDsp4YA7KeHAOyniADsp4kA7KeKAOyniwDsp4wA7KeNAOynjgDsp48A7KeQAOynkQDsp5IA7KeTAOynlADsp5UA7KeWAOynlwDsp5gA7KeZAOynmgDsp5sA7KecAOynnQDsp54A7KefAOynoADsp6EA7KeiAOynowDsp6QA7KelAOynpgDsp6cA7KeoAOynqQDsp6oA7KerAOynrADsp60A7KeuAOynrwDsp7AA7KexAOynsgDsp7MA7Ke0AOyntQDsp7YA7Ke3AOynuADsp7kA7Ke6AOynuwDsp7wA7Ke9AOynvgDsp78A7KiAAOyogQDsqIIA7KiDAOyohADsqIUA7KiGAOyohwDsqIgA7KiJAOyoigDsqIsA7KiMAOyojQDsqI4A7KiPAOyokADsqJEA7KiSAOyokwDsqJQA7KiVAOyolgDsqJcA7KiYAOyomQDsqJoA7KibAOyonADsqJ0A7KieAOyonwDsqKAA7KihAOyoogDsqKMA7KikAOyopQDsqKYA7KinAOyoqADsqKkA7KiqAOyoqwDsqKwA7KitAOyorgDsqK8A7KiwAOyosQDsqLIA7KizAOyotADsqLUA7Ki2AOyotwDsqLgA7Ki5AOyougDsqLsA7Ki8AOyovQDsqL4A7Ki/AOypgADsqYEA7KmCAOypgwDsqYQA7KmFAOyphgDsqYcA7KmIAOypiQDsqYoA7KmLAOypjADsqY0A7KmOAOypjwDsqZAA7KmRAOypkgDsqZMA7KmUAOyplQDsqZYA7KmXAOypmADsqZkA7KmaAOypmwDsqZwA7KmdAOypngDsqZ8A7KmgAOypoQDsqaIA7KmjAOyppADsqaUA7KmmAOyppwDsqagA7KmpAOypqgDsqasA7KmsAOyprQDsqa4A7KmvAOypsADsqbEA7KmyAOypswDsqbQA7Km1AOyptgDsqbcA7Km4AOypuQDsqboA7Km7AOypvADsqb0A7Km+AOypvwDsqoAA7KqBAOyqggDsqoMA7KqEAOyqhQDsqoYA7KqHAOyqiADsqokA7KqKAOyqiwDsqowA7KqNAOyqjgDsqo8A7KqQAOyqkQDsqpIA7KqTAOyqlADsqpUA7KqWAOyqlwDsqpgA7KqZAOyqmgDsqpsA7KqcAOyqnQDsqp4A7KqfAOyqoADsqqEA7KqiAOyqowDsqqQA7KqlAOyqpgDsqqcA7KqoAOyqqQDsqqoA7KqrAOyqrADsqq0A7KquAOyqrwDsqrAA7KqxAOyqsgDsqrMA7Kq0AOyqtQDsqrYA7Kq3AOyquADsqrkA7Kq6AOyquwDsqrwA7Kq9AOyqvgDsqr8A7KuAAOyrgQDsq4IA7KuDAOyrhADsq4UA7KuGAOyrhwDsq4gA7KuJAOyrigDsq4sA7KuMAOyrjQDsq44A7KuPAOyrkADsq5EA7KuSAOyrkwDsq5QA7KuVAOyrlgDsq5cA7KuYAOyrmQDsq5oA7KubAOyrnADsq50A7KueAOyrnwDsq6AA7KuhAOyrogDsq6MA7KukAOyrpQDsq6YA7KunAOyrqADsq6kA7KuqAOyrqwDsq6wA7KutAOyrrgDsq68A7KuwAOyrsQDsq7IA7KuzAOyrtADsq7UA7Ku2AOyrtwDsq7gA7Ku5AOyrugDsq7sA7Ku8AOyrvQDsq74A7Ku/AOysgADsrIEA7KyCAOysgwDsrIQA7KyFAOyshgDsrIcA7KyIAOysiQDsrIoA7KyLAOysjADsrI0A7KyOAOysjwDsrJAA7KyRAOyskgDsrJMA7KyUAOyslQDsrJYA7KyXAOysmADsrJkA7KyaAOysmwDsrJwA7KydAOysngDsrJ8A7KygAOysoQDsrKIA7KyjAOyspADsrKUA7KymAOyspwDsrKgA7KypAOysqgDsrKsA7KysAOysrQDsrK4A7KyvAOyssADsrLEA7KyyAOysswDsrLQA7Ky1AOystgDsrLcA7Ky4AOysuQDsrLoA7Ky7AOysvADsrL0A7Ky+AOysvwDsrYAA7K2BAOytggDsrYMA7K2EAOythQDsrYYA7K2HAOytiADsrYkA7K2KAOytiwDsrYwA7K2NAOytjgDsrY8A7K2QAOytkQDsrZIA7K2TAOytlADsrZUA7K2WAOytlwDsrZgA7K2ZAOytmgDsrZsA7K2cAOytnQDsrZ4A7K2fAOytoADsraEA7K2iAOytowDsraQA7K2lAOytpgDsracA7K2oAOytqQDsraoA7K2rAOytrADsra0A7K2uAOytrwDsrbAA7K2xAOytsgDsrbMA7K20AOyttQDsrbYA7K23AOytuADsrbkA7K26AOytuwDsrbwA7K29AOytvgDsrb8A7K6AAOyugQDsroIA7K6DAOyuhADsroUA7K6GAOyuhwDsrogA7K6JAOyuigDsrosA7K6MAOyujQDsro4A7K6PAOyukADsrpEA7K6SAOyukwDsrpQA7K6VAOyulgDsrpcA7K6YAOyumQDsrpoA7K6bAOyunADsrp0A7K6eAOyunwDsrqAA7K6hAOyuogDsrqMA7K6kAOyupQDsrqYA7K6nAOyuqADsrqkA7K6qAOyuqwDsrqwA7K6tAOyurgDsrq8A7K6wAOyusQDsrrIA7K6zAOyutADsrrUA7K62AOyutwDsrrgA7K65AOyuugDsrrsA7K68AOyuvQDsrr4A7K6/AOyvgADsr4EA7K+CAOyvgwDsr4QA7K+FAOyvhgDsr4cA7K+IAOyviQDsr4oA7K+LAOyvjADsr40A7K+OAOyvjwDsr5AA7K+RAOyvkgDsr5MA7K+UAOyvlQDsr5YA7K+XAOyvmADsr5kA7K+aAOyvmwDsr5wA7K+dAOyvngDsr58A7K+gAOyvoQDsr6IA7K+jAOyvpADsr6UA7K+mAOyvpwDsr6gA7K+pAOyvqgDsr6sA7K+sAOyvrQDsr64A7K+vAOyvsADsr7EA7K+yAOyvswDsr7QA7K+1AOyvtgDsr7cA7K+4AOyvuQDsr7oA7K+7AOyvvADsr70A7K++AOyvvwDssIAA7LCBAOywggDssIMA7LCEAOywhQDssIYA7LCHAOywiADssIkA7LCKAOywiwDssIwA7LCNAOywjgDssI8A7LCQAOywkQDssJIA7LCTAOywlADssJUA7LCWAOywlwDssJgA7LCZAOywmgDssJsA7LCcAOywnQDssJ4A7LCfAOywoADssKEA7LCiAOywowDssKQA7LClAOywpgDssKcA7LCoAOywqQDssKoA7LCrAOywrADssK0A7LCuAOywrwDssLAA7LCxAOywsgDssLMA7LC0AOywtQDssLYA7LC3AOywuADssLjqs6AA7LC5AOywugDssLsA7LC8AOywvQDssL4A7LC/AOyxgADssYEA7LGCAOyxgwDssYQA7LGFAOyxhgDssYcA7LGIAOyxiQDssYoA7LGLAOyxjADssY0A7LGOAOyxjwDssZAA7LGRAOyxkgDssZMA7LGUAOyxlQDssZYA7LGXAOyxmADssZkA7LGaAOyxmwDssZwA7LGdAOyxngDssZ8A7LGgAOyxoQDssaIA7LGjAOyxpADssaUA7LGmAOyxpwDssagA7LGpAOyxqgDssasA7LGsAOyxrQDssa4A7LGvAOyxsADssbEA7LGyAOyxswDssbQA7LG1AOyxtgDssbcA7LG4AOyxuQDssboA7LG7AOyxvADssb0A7LG+AOyxvwDssoAA7LKBAOyyggDssoMA7LKEAOyyhQDssoYA7LKHAOyyiADssokA7LKKAOyyiwDssowA7LKNAOyyjgDsso8A7LKQAOyykQDsspIA7LKTAOyylADsspUA7LKWAOyylwDsspgA7LKZAOyymgDsspsA7LKcAOyynQDssp4A7LKfAOyyoADssqEA7LKiAOyyowDssqQA7LKlAOyypgDssqcA7LKoAOyyqQDssqoA7LKrAOyyrADssq0A7LKuAOyyrwDssrAA7LKxAOyysgDssrMA7LK0AOyytQDssrYA7LK3AOyyuADssrkA7LK6AOyyuwDssrwA7LK9AOyyvgDssr8A7LOAAOyzgQDss4IA7LODAOyzhADss4UA7LOGAOyzhwDss4gA7LOJAOyzigDss4sA7LOMAOyzjQDss44A7LOPAOyzkADss5EA7LOSAOyzkwDss5QA7LOVAOyzlgDss5cA7LOYAOyzmQDss5oA7LObAOyznADss50A7LOeAOyznwDss6AA7LOhAOyzogDss6MA7LOkAOyzpQDss6YA7LOnAOyzqADss6kA7LOqAOyzqwDss6wA7LOtAOyzrgDss68A7LOwAOyzsQDss7IA7LOzAOyztADss7UA7LO2AOyztwDss7gA7LO5AOyzugDss7sA7LO8AOyzvQDss74A7LO/AOy0gADstIEA7LSCAOy0gwDstIQA7LSFAOy0hgDstIcA7LSIAOy0iQDstIoA7LSLAOy0jADstI0A7LSOAOy0jwDstJAA7LSRAOy0kgDstJMA7LSUAOy0lQDstJYA7LSXAOy0mADstJkA7LSaAOy0mwDstJwA7LSdAOy0ngDstJ8A7LSgAOy0oQDstKIA7LSjAOy0pADstKUA7LSmAOy0pwDstKgA7LSpAOy0qgDstKsA7LSsAOy0rQDstK4A7LSvAOy0sADstLEA7LSyAOy0swDstLQA7LS1AOy0tgDstLcA7LS4AOy0uQDstLoA7LS7AOy0vADstL0A7LS+AOy0vwDstYAA7LWBAOy1ggDstYMA7LWEAOy1hQDstYYA7LWHAOy1iADstYkA7LWKAOy1iwDstYwA7LWNAOy1jgDstY8A7LWQAOy1kQDstZIA7LWTAOy1lADstZUA7LWWAOy1lwDstZgA7LWZAOy1mgDstZsA7LWcAOy1nQDstZ4A7LWfAOy1oADstaEA7LWiAOy1owDstaQA7LWlAOy1pgDstacA7LWoAOy1qQDstaoA7LWrAOy1rADsta0A7LWuAOy1rwDstbAA7LWxAOy1sgDstbMA7LW0AOy1tQDstbYA7LW3AOy1uADstbkA7LW6AOy1uwDstbwA7LW9AOy1vgDstb8A7LaAAOy2gQDstoIA7LaDAOy2hADstoUA7LaGAOy2hwDstogA7LaJAOy2igDstosA7LaMAOy2jQDsto4A7LaPAOy2kADstpEA7LaSAOy2kwDstpQA7LaVAOy2lgDstpcA7LaYAOy2mQDstpoA7LabAOy2nADstp0A7LaeAOy2nwDstqAA7LahAOy2ogDstqMA7LakAOy2pQDstqYA7LanAOy2qADstqkA7LaqAOy2qwDstqwA7LatAOy2rgDstq8A7LawAOy2sQDstrIA7LazAOy2tADstrUA7La2AOy2twDstrgA7La5AOy2ugDstrsA7La8AOy2vQDstr4A7La/AOy3gADst4EA7LeCAOy3gwDst4QA7LeFAOy3hgDst4cA7LeIAOy3iQDst4oA7LeLAOy3jADst40A7LeOAOy3jwDst5AA7LeRAOy3kgDst5MA7LeUAOy3lQDst5YA7LeXAOy3mADst5kA7LeaAOy3mwDst5wA7LedAOy3ngDst58A7LegAOy3oQDst6IA7LejAOy3pADst6UA7LemAOy3pwDst6gA7LepAOy3qgDst6sA7LesAOy3rQDst64A7LevAOy3sADst7EA7LeyAOy3swDst7QA7Le1AOy3tgDst7cA7Le4AOy3uQDst7oA7Le7AOy3vADst70A7Le+AOy3vwDsuIAA7LiBAOy4ggDsuIMA7LiEAOy4hQDsuIYA7LiHAOy4iADsuIkA7LiKAOy4iwDsuIwA7LiNAOy4jgDsuI8A7LiQAOy4kQDsuJIA7LiTAOy4lADsuJUA7LiWAOy4lwDsuJgA7LiZAOy4mgDsuJsA7LicAOy4nQDsuJ4A7LifAOy4oADsuKEA7LiiAOy4owDsuKQA7LilAOy4pgDsuKcA7LioAOy4qQDsuKoA7LirAOy4rADsuK0A7LiuAOy4rwDsuLAA7LixAOy4sgDsuLMA7Li0AOy4tQDsuLYA7Li3AOy4uADsuLkA7Li6AOy4uwDsuLwA7Li9AOy4vgDsuL8A7LmAAOy5gQDsuYIA7LmDAOy5hADsuYUA7LmGAOy5hwDsuYgA7LmJAOy5igDsuYsA7LmMAOy5jQDsuY4A7LmPAOy5kADsuZEA7LmSAOy5kwDsuZQA7LmVAOy5lgDsuZcA7LmYAOy5mQDsuZoA7LmbAOy5nADsuZ0A7LmeAOy5nwDsuaAA7LmhAOy5ogDsuaMA7LmkAOy5pQDsuaYA7LmnAOy5qADsuakA7LmqAOy5qwDsuawA7LmtAOy5rgDsua8A7LmwAOy5sQDsubIA7LmzAOy5tADsubUA7Lm2AOy5twDsubgA7Lm5AOy5ugDsubsA7Lm8AOy5vQDsub4A7Lm/AOy6gADsuoEA7LqCAOy6gwDsuoQA7LqFAOy6hgDsuocA7LqIAOy6iQDsuooA7LqLAOy6jADsuo0A7LqOAOy6jwDsupAA7LqRAOy6kgDsupMA7LqUAOy6lQDsupYA7LqXAOy6mADsupkA7LqaAOy6mwDsupwA7LqdAOy6ngDsup8A7LqgAOy6oQDsuqIA7LqjAOy6pADsuqUA7LqmAOy6pwDsuqgA7LqpAOy6qgDsuqsA7LqsAOy6rQDsuq4A7LqvAOy6sADsurEA7LqyAOy6swDsurQA7Lq1AOy6tgDsurcA7Lq4AOy6uQDsuroA7Lq7AOy6vADsur0A7Lq+AOy6vwDsu4AA7LuBAOy7ggDsu4MA7LuEAOy7hQDsu4YA7LuHAOy7iADsu4kA7LuKAOy7iwDsu4wA7LuNAOy7jgDsu48A7LuQAOy7kQDsu5IA7LuTAOy7lADsu5UA7LuWAOy7lwDsu5gA7LuZAOy7mgDsu5sA7LucAOy7nQDsu54A7LufAOy7oADsu6EA7LuiAOy7owDsu6QA7LulAOy7pgDsu6cA7LuoAOy7qQDsu6oA7LurAOy7rADsu60A7LuuAOy7rwDsu7AA7LuxAOy7sgDsu7MA7Lu0AOy7tQDsu7YA7Lu3AOy7uADsu7kA7Lu6AOy7uwDsu7wA7Lu9AOy7vgDsu78A7LyAAOy8gQDsvIIA7LyDAOy8hADsvIUA7LyGAOy8hwDsvIgA7LyJAOy8igDsvIsA7LyMAOy8jQDsvI4A7LyPAOy8kADsvJEA7LySAOy8kwDsvJQA7LyVAOy8lgDsvJcA7LyYAOy8mQDsvJoA7LybAOy8nADsvJ0A7LyeAOy8nwDsvKAA7LyhAOy8ogDsvKMA7LykAOy8pQDsvKYA7LynAOy8qADsvKkA7LyqAOy8qwDsvKwA7LytAOy8rgDsvK8A7LywAOy8sQDsvLIA7LyzAOy8tADsvLUA7Ly2AOy8twDsvLgA7Ly5AOy8ugDsvLsA7Ly8AOy8vQDsvL4A7Ly/AOy9gADsvYEA7L2CAOy9gwDsvYQA7L2FAOy9hgDsvYcA7L2IAOy9iQDsvYoA7L2LAOy9jADsvY0A7L2OAOy9jwDsvZAA7L2RAOy9kgDsvZMA7L2UAOy9lQDsvZYA7L2XAOy9mADsvZkA7L2aAOy9mwDsvZwA7L2dAOy9ngDsvZ8A7L2gAOy9oQDsvaIA7L2jAOy9pADsvaUA7L2mAOy9pwDsvagA7L2pAOy9qgDsvasA7L2sAOy9rQDsva4A7L2vAOy9sADsvbEA7L2yAOy9swDsvbQA7L21AOy9tgDsvbcA7L24AOy9uQDsvboA7L27AOy9vADsvb0A7L2+AOy9vwDsvoAA7L6BAOy+ggDsvoMA7L6EAOy+hQDsvoYA7L6HAOy+iADsvokA7L6KAOy+iwDsvowA7L6NAOy+jgDsvo8A7L6QAOy+kQDsvpIA7L6TAOy+lADsvpUA7L6WAOy+lwDsvpgA7L6ZAOy+mgDsvpsA7L6cAOy+nQDsvp4A7L6fAOy+oADsvqEA7L6iAOy+owDsvqQA7L6lAOy+pgDsvqcA7L6oAOy+qQDsvqoA7L6rAOy+rADsvq0A7L6uAOy+rwDsvrAA7L6xAOy+sgDsvrMA7L60AOy+tQDsvrYA7L63AOy+uADsvrkA7L66AOy+uwDsvrwA7L69AOy+vgDsvr8A7L+AAOy/gQDsv4IA7L+DAOy/hADsv4UA7L+GAOy/hwDsv4gA7L+JAOy/igDsv4sA7L+MAOy/jQDsv44A7L+PAOy/kADsv5EA7L+SAOy/kwDsv5QA7L+VAOy/lgDsv5cA7L+YAOy/mQDsv5oA7L+bAOy/nADsv50A7L+eAOy/nwDsv6AA7L+hAOy/ogDsv6MA7L+kAOy/pQDsv6YA7L+nAOy/qADsv6kA7L+qAOy/qwDsv6wA7L+tAOy/rgDsv68A7L+wAOy/sQDsv7IA7L+zAOy/tADsv7UA7L+2AOy/twDsv7gA7L+5AOy/ugDsv7sA7L+8AOy/vQDsv74A7L+/AO2AgADtgIEA7YCCAO2AgwDtgIQA7YCFAO2AhgDtgIcA7YCIAO2AiQDtgIoA7YCLAO2AjADtgI0A7YCOAO2AjwDtgJAA7YCRAO2AkgDtgJMA7YCUAO2AlQDtgJYA7YCXAO2AmADtgJkA7YCaAO2AmwDtgJwA7YCdAO2AngDtgJ8A7YCgAO2AoQDtgKIA7YCjAO2ApADtgKUA7YCmAO2ApwDtgKgA7YCpAO2AqgDtgKsA7YCsAO2ArQDtgK4A7YCvAO2AsADtgLEA7YCyAO2AswDtgLQA7YC1AO2AtgDtgLcA7YC4AO2AuQDtgLoA7YC7AO2AvADtgL0A7YC+AO2AvwDtgYAA7YGBAO2BggDtgYMA7YGEAO2BhQDtgYYA7YGHAO2BiADtgYkA7YGKAO2BiwDtgYwA7YGNAO2BjgDtgY8A7YGQAO2BkQDtgZIA7YGTAO2BlADtgZUA7YGWAO2BlwDtgZgA7YGZAO2BmgDtgZsA7YGcAO2BnQDtgZ4A7YGfAO2BoADtgaEA7YGiAO2BowDtgaQA7YGlAO2BpgDtgacA7YGoAO2BqQDtgaoA7YGrAO2BrADtga0A7YGuAO2BrwDtgbAA7YGxAO2BsgDtgbMA7YG0AO2BtQDtgbYA7YG3AO2BuADtgbkA7YG6AO2BuwDtgbwA7YG9AO2BvgDtgb8A7YKAAO2CgQDtgoIA7YKDAO2ChADtgoUA7YKGAO2ChwDtgogA7YKJAO2CigDtgosA7YKMAO2CjQDtgo4A7YKPAO2CkADtgpEA7YKSAO2CkwDtgpQA7YKVAO2ClgDtgpcA7YKYAO2CmQDtgpoA7YKbAO2CnADtgp0A7YKeAO2CnwDtgqAA7YKhAO2CogDtgqMA7YKkAO2CpQDtgqYA7YKnAO2CqADtgqkA7YKqAO2CqwDtgqwA7YKtAO2CrgDtgq8A7YKwAO2CsQDtgrIA7YKzAO2CtADtgrUA7YK2AO2CtwDtgrgA7YK5AO2CugDtgrsA7YK8AO2CvQDtgr4A7YK/AO2DgADtg4EA7YOCAO2DgwDtg4QA7YOFAO2DhgDtg4cA7YOIAO2DiQDtg4oA7YOLAO2DjADtg40A7YOOAO2DjwDtg5AA7YORAO2DkgDtg5MA7YOUAO2DlQDtg5YA7YOXAO2DmADtg5kA7YOaAO2DmwDtg5wA7YOdAO2DngDtg58A7YOgAO2DoQDtg6IA7YOjAO2DpADtg6UA7YOmAO2DpwDtg6gA7YOpAO2DqgDtg6sA7YOsAO2DrQDtg64A7YOvAO2DsADtg7EA7YOyAO2DswDtg7QA7YO1AO2DtgDtg7cA7YO4AO2DuQDtg7oA7YO7AO2DvADtg70A7YO+AO2DvwDthIAA7YSBAO2EggDthIMA7YSEAO2EhQDthIYA7YSHAO2EiADthIkA7YSKAO2EiwDthIwA7YSNAO2EjgDthI8A7YSQAO2EkQDthJIA7YSTAO2ElADthJUA7YSWAO2ElwDthJgA7YSZAO2EmgDthJsA7YScAO2EnQDthJ4A7YSfAO2EoADthKEA7YSiAO2EowDthKQA7YSlAO2EpgDthKcA7YSoAO2EqQDthKoA7YSrAO2ErADthK0A7YSuAO2ErwDthLAA7YSxAO2EsgDthLMA7YS0AO2EtQDthLYA7YS3AO2EuADthLkA7YS6AO2EuwDthLwA7YS9AO2EvgDthL8A7YWAAO2FgQDthYIA7YWDAO2FhADthYUA7YWGAO2FhwDthYgA7YWJAO2FigDthYsA7YWMAO2FjQDthY4A7YWPAO2FkADthZEA7YWSAO2FkwDthZQA7YWVAO2FlgDthZcA7YWYAO2FmQDthZoA7YWbAO2FnADthZ0A7YWeAO2FnwDthaAA7YWhAO2FogDthaMA7YWkAO2FpQDthaYA7YWnAO2FqADthakA7YWqAO2FqwDthawA7YWtAO2FrgDtha8A7YWwAO2FsQDthbIA7YWzAO2FtADthbUA7YW2AO2FtwDthbgA7YW5AO2FugDthbsA7YW8AO2FvQDthb4A7YW/AO2GgADthoEA7YaCAO2GgwDthoQA7YaFAO2GhgDthocA7YaIAO2GiQDthooA7YaLAO2GjADtho0A7YaOAO2GjwDthpAA7YaRAO2GkgDthpMA7YaUAO2GlQDthpYA7YaXAO2GmADthpkA7YaaAO2GmwDthpwA7YadAO2GngDthp8A7YagAO2GoQDthqIA7YajAO2GpADthqUA7YamAO2GpwDthqgA7YapAO2GqgDthqsA7YasAO2GrQDthq4A7YavAO2GsADthrEA7YayAO2GswDthrQA7Ya1AO2GtgDthrcA7Ya4AO2GuQDthroA7Ya7AO2GvADthr0A7Ya+AO2GvwDth4AA7YeBAO2HggDth4MA7YeEAO2HhQDth4YA7YeHAO2HiADth4kA7YeKAO2HiwDth4wA7YeNAO2HjgDth48A7YeQAO2HkQDth5IA7YeTAO2HlADth5UA7YeWAO2HlwDth5gA7YeZAO2HmgDth5sA7YecAO2HnQDth54A7YefAO2HoADth6EA7YeiAO2HowDth6QA7YelAO2HpgDth6cA7YeoAO2HqQDth6oA7YerAO2HrADth60A7YeuAO2HrwDth7AA7YexAO2HsgDth7MA7Ye0AO2HtQDth7YA7Ye3AO2HuADth7kA7Ye6AO2HuwDth7wA7Ye9AO2HvgDth78A7YiAAO2IgQDtiIIA7YiDAO2IhADtiIUA7YiGAO2IhwDtiIgA7YiJAO2IigDtiIsA7YiMAO2IjQDtiI4A7YiPAO2IkADtiJEA7YiSAO2IkwDtiJQA7YiVAO2IlgDtiJcA7YiYAO2ImQDtiJoA7YibAO2InADtiJ0A7YieAO2InwDtiKAA7YihAO2IogDtiKMA7YikAO2IpQDtiKYA7YinAO2IqADtiKkA7YiqAO2IqwDtiKwA7YitAO2IrgDtiK8A7YiwAO2IsQDtiLIA7YizAO2ItADtiLUA7Yi2AO2ItwDtiLgA7Yi5AO2IugDtiLsA7Yi8AO2IvQDtiL4A7Yi/AO2JgADtiYEA7YmCAO2JgwDtiYQA7YmFAO2JhgDtiYcA7YmIAO2JiQDtiYoA7YmLAO2JjADtiY0A7YmOAO2JjwDtiZAA7YmRAO2JkgDtiZMA7YmUAO2JlQDtiZYA7YmXAO2JmADtiZkA7YmaAO2JmwDtiZwA7YmdAO2JngDtiZ8A7YmgAO2JoQDtiaIA7YmjAO2JpADtiaUA7YmmAO2JpwDtiagA7YmpAO2JqgDtiasA7YmsAO2JrQDtia4A7YmvAO2JsADtibEA7YmyAO2JswDtibQA7Ym1AO2JtgDtibcA7Ym4AO2JuQDtiboA7Ym7AO2JvADtib0A7Ym+AO2JvwDtioAA7YqBAO2KggDtioMA7YqEAO2KhQDtioYA7YqHAO2KiADtiokA7YqKAO2KiwDtiowA7YqNAO2KjgDtio8A7YqQAO2KkQDtipIA7YqTAO2KlADtipUA7YqWAO2KlwDtipgA7YqZAO2KmgDtipsA7YqcAO2KnQDtip4A7YqfAO2KoADtiqEA7YqiAO2KowDtiqQA7YqlAO2KpgDtiqcA7YqoAO2KqQDtiqoA7YqrAO2KrADtiq0A7YquAO2KrwDtirAA7YqxAO2KsgDtirMA7Yq0AO2KtQDtirYA7Yq3AO2KuADtirkA7Yq6AO2KuwDtirwA7Yq9AO2KvgDtir8A7YuAAO2LgQDti4IA7YuDAO2LhADti4UA7YuGAO2LhwDti4gA7YuJAO2LigDti4sA7YuMAO2LjQDti44A7YuPAO2LkADti5EA7YuSAO2LkwDti5QA7YuVAO2LlgDti5cA7YuYAO2LmQDti5oA7YubAO2LnADti50A7YueAO2LnwDti6AA7YuhAO2LogDti6MA7YukAO2LpQDti6YA7YunAO2LqADti6kA7YuqAO2LqwDti6wA7YutAO2LrgDti68A7YuwAO2LsQDti7IA7YuzAO2LtADti7UA7Yu2AO2LtwDti7gA7Yu5AO2LugDti7sA7Yu8AO2LvQDti74A7Yu/AO2MgADtjIEA7YyCAO2MgwDtjIQA7YyFAO2MhgDtjIcA7YyIAO2MiQDtjIoA7YyLAO2MjADtjI0A7YyOAO2MjwDtjJAA7YyRAO2MkgDtjJMA7YyUAO2MlQDtjJYA7YyXAO2MmADtjJkA7YyaAO2MmwDtjJwA7YydAO2MngDtjJ8A7YygAO2MoQDtjKIA7YyjAO2MpADtjKUA7YymAO2MpwDtjKgA7YypAO2MqgDtjKsA7YysAO2MrQDtjK4A7YyvAO2MsADtjLEA7YyyAO2MswDtjLQA7Yy1AO2MtgDtjLcA7Yy4AO2MuQDtjLoA7Yy7AO2MvADtjL0A7Yy+AO2MvwDtjYAA7Y2BAO2NggDtjYMA7Y2EAO2NhQDtjYYA7Y2HAO2NiADtjYkA7Y2KAO2NiwDtjYwA7Y2NAO2NjgDtjY8A7Y2QAO2NkQDtjZIA7Y2TAO2NlADtjZUA7Y2WAO2NlwDtjZgA7Y2ZAO2NmgDtjZsA7Y2cAO2NnQDtjZ4A7Y2fAO2NoADtjaEA7Y2iAO2NowDtjaQA7Y2lAO2NpgDtjacA7Y2oAO2NqQDtjaoA7Y2rAO2NrADtja0A7Y2uAO2NrwDtjbAA7Y2xAO2NsgDtjbMA7Y20AO2NtQDtjbYA7Y23AO2NuADtjbkA7Y26AO2NuwDtjbwA7Y29AO2NvgDtjb8A7Y6AAO2OgQDtjoIA7Y6DAO2OhADtjoUA7Y6GAO2OhwDtjogA7Y6JAO2OigDtjosA7Y6MAO2OjQDtjo4A7Y6PAO2OkADtjpEA7Y6SAO2OkwDtjpQA7Y6VAO2OlgDtjpcA7Y6YAO2OmQDtjpoA7Y6bAO2OnADtjp0A7Y6eAO2OnwDtjqAA7Y6hAO2OogDtjqMA7Y6kAO2OpQDtjqYA7Y6nAO2OqADtjqkA7Y6qAO2OqwDtjqwA7Y6tAO2OrgDtjq8A7Y6wAO2OsQDtjrIA7Y6zAO2OtADtjrUA7Y62AO2OtwDtjrgA7Y65AO2OugDtjrsA7Y68AO2OvQDtjr4A7Y6/AO2PgADtj4EA7Y+CAO2PgwDtj4QA7Y+FAO2PhgDtj4cA7Y+IAO2PiQDtj4oA7Y+LAO2PjADtj40A7Y+OAO2PjwDtj5AA7Y+RAO2PkgDtj5MA7Y+UAO2PlQDtj5YA7Y+XAO2PmADtj5kA7Y+aAO2PmwDtj5wA7Y+dAO2PngDtj58A7Y+gAO2PoQDtj6IA7Y+jAO2PpADtj6UA7Y+mAO2PpwDtj6gA7Y+pAO2PqgDtj6sA7Y+sAO2PrQDtj64A7Y+vAO2PsADtj7EA7Y+yAO2PswDtj7QA7Y+1AO2PtgDtj7cA7Y+4AO2PuQDtj7oA7Y+7AO2PvADtj70A7Y++AO2PvwDtkIAA7ZCBAO2QggDtkIMA7ZCEAO2QhQDtkIYA7ZCHAO2QiADtkIkA7ZCKAO2QiwDtkIwA7ZCNAO2QjgDtkI8A7ZCQAO2QkQDtkJIA7ZCTAO2QlADtkJUA7ZCWAO2QlwDtkJgA7ZCZAO2QmgDtkJsA7ZCcAO2QnQDtkJ4A7ZCfAO2QoADtkKEA7ZCiAO2QowDtkKQA7ZClAO2QpgDtkKcA7ZCoAO2QqQDtkKoA7ZCrAO2QrADtkK0A7ZCuAO2QrwDtkLAA7ZCxAO2QsgDtkLMA7ZC0AO2QtQDtkLYA7ZC3AO2QuADtkLkA7ZC6AO2QuwDtkLwA7ZC9AO2QvgDtkL8A7ZGAAO2RgQDtkYIA7ZGDAO2RhADtkYUA7ZGGAO2RhwDtkYgA7ZGJAO2RigDtkYsA7ZGMAO2RjQDtkY4A7ZGPAO2RkADtkZEA7ZGSAO2RkwDtkZQA7ZGVAO2RlgDtkZcA7ZGYAO2RmQDtkZoA7ZGbAO2RnADtkZ0A7ZGeAO2RnwDtkaAA7ZGhAO2RogDtkaMA7ZGkAO2RpQDtkaYA7ZGnAO2RqADtkakA7ZGqAO2RqwDtkawA7ZGtAO2RrgDtka8A7ZGwAO2RsQDtkbIA7ZGzAO2RtADtkbUA7ZG2AO2RtwDtkbgA7ZG5AO2RugDtkbsA7ZG8AO2RvQDtkb4A7ZG/AO2SgADtkoEA7ZKCAO2SgwDtkoQA7ZKFAO2ShgDtkocA7ZKIAO2SiQDtkooA7ZKLAO2SjADtko0A7ZKOAO2SjwDtkpAA7ZKRAO2SkgDtkpMA7ZKUAO2SlQDtkpYA7ZKXAO2SmADtkpkA7ZKaAO2SmwDtkpwA7ZKdAO2SngDtkp8A7ZKgAO2SoQDtkqIA7ZKjAO2SpADtkqUA7ZKmAO2SpwDtkqgA7ZKpAO2SqgDtkqsA7ZKsAO2SrQDtkq4A7ZKvAO2SsADtkrEA7ZKyAO2SswDtkrQA7ZK1AO2StgDtkrcA7ZK4AO2SuQDtkroA7ZK7AO2SvADtkr0A7ZK+AO2SvwDtk4AA7ZOBAO2TggDtk4MA7ZOEAO2ThQDtk4YA7ZOHAO2TiADtk4kA7ZOKAO2TiwDtk4wA7ZONAO2TjgDtk48A7ZOQAO2TkQDtk5IA7ZOTAO2TlADtk5UA7ZOWAO2TlwDtk5gA7ZOZAO2TmgDtk5sA7ZOcAO2TnQDtk54A7ZOfAO2ToADtk6EA7ZOiAO2TowDtk6QA7ZOlAO2TpgDtk6cA7ZOoAO2TqQDtk6oA7ZOrAO2TrADtk60A7ZOuAO2TrwDtk7AA7ZOxAO2TsgDtk7MA7ZO0AO2TtQDtk7YA7ZO3AO2TuADtk7kA7ZO6AO2TuwDtk7wA7ZO9AO2TvgDtk78A7ZSAAO2UgQDtlIIA7ZSDAO2UhADtlIUA7ZSGAO2UhwDtlIgA7ZSJAO2UigDtlIsA7ZSMAO2UjQDtlI4A7ZSPAO2UkADtlJEA7ZSSAO2UkwDtlJQA7ZSVAO2UlgDtlJcA7ZSYAO2UmQDtlJoA7ZSbAO2UnADtlJ0A7ZSeAO2UnwDtlKAA7ZShAO2UogDtlKMA7ZSkAO2UpQDtlKYA7ZSnAO2UqADtlKkA7ZSqAO2UqwDtlKwA7ZStAO2UrgDtlK8A7ZSwAO2UsQDtlLIA7ZSzAO2UtADtlLUA7ZS2AO2UtwDtlLgA7ZS5AO2UugDtlLsA7ZS8AO2UvQDtlL4A7ZS/AO2VgADtlYEA7ZWCAO2VgwDtlYQA7ZWFAO2VhgDtlYcA7ZWIAO2ViQDtlYoA7ZWLAO2VjADtlY0A7ZWOAO2VjwDtlZAA7ZWRAO2VkgDtlZMA7ZWUAO2VlQDtlZYA7ZWXAO2VmADtlZkA7ZWaAO2VmwDtlZwA7ZWdAO2VngDtlZ8A7ZWgAO2VoQDtlaIA7ZWjAO2VpADtlaUA7ZWmAO2VpwDtlagA7ZWpAO2VqgDtlasA7ZWsAO2VrQDtla4A7ZWvAO2VsADtlbEA7ZWyAO2VswDtlbQA7ZW1AO2VtgDtlbcA7ZW4AO2VuQDtlboA7ZW7AO2VvADtlb0A7ZW+AO2VvwDtloAA7ZaBAO2WggDtloMA7ZaEAO2WhQDtloYA7ZaHAO2WiADtlokA7ZaKAO2WiwDtlowA7ZaNAO2WjgDtlo8A7ZaQAO2WkQDtlpIA7ZaTAO2WlADtlpUA7ZaWAO2WlwDtlpgA7ZaZAO2WmgDtlpsA7ZacAO2WnQDtlp4A7ZafAO2WoADtlqEA7ZaiAO2WowDtlqQA7ZalAO2WpgDtlqcA7ZaoAO2WqQDtlqoA7ZarAO2WrADtlq0A7ZauAO2WrwDtlrAA7ZaxAO2WsgDtlrMA7Za0AO2WtQDtlrYA7Za3AO2WuADtlrkA7Za6AO2WuwDtlrwA7Za9AO2WvgDtlr8A7ZeAAO2XgQDtl4IA7ZeDAO2XhADtl4UA7ZeGAO2XhwDtl4gA7ZeJAO2XigDtl4sA7ZeMAO2XjQDtl44A7ZePAO2XkADtl5EA7ZeSAO2XkwDtl5QA7ZeVAO2XlgDtl5cA7ZeYAO2XmQDtl5oA7ZebAO2XnADtl50A7ZeeAO2XnwDtl6AA7ZehAO2XogDtl6MA7ZekAO2XpQDtl6YA7ZenAO2XqADtl6kA7ZeqAO2XqwDtl6wA7ZetAO2XrgDtl68A7ZewAO2XsQDtl7IA7ZezAO2XtADtl7UA7Ze2AO2XtwDtl7gA7Ze5AO2XugDtl7sA7Ze8AO2XvQDtl74A7Ze/AO2YgADtmIEA7ZiCAO2YgwDtmIQA7ZiFAO2YhgDtmIcA7ZiIAO2YiQDtmIoA7ZiLAO2YjADtmI0A7ZiOAO2YjwDtmJAA7ZiRAO2YkgDtmJMA7ZiUAO2YlQDtmJYA7ZiXAO2YmADtmJkA7ZiaAO2YmwDtmJwA7ZidAO2YngDtmJ8A7ZigAO2YoQDtmKIA7ZijAO2YpADtmKUA7ZimAO2YpwDtmKgA7ZipAO2YqgDtmKsA7ZisAO2YrQDtmK4A7ZivAO2YsADtmLEA7ZiyAO2YswDtmLQA7Zi1AO2YtgDtmLcA7Zi4AO2YuQDtmLoA7Zi7AO2YvADtmL0A7Zi+AO2YvwDtmYAA7ZmBAO2ZggDtmYMA7ZmEAO2ZhQDtmYYA7ZmHAO2ZiADtmYkA7ZmKAO2ZiwDtmYwA7ZmNAO2ZjgDtmY8A7ZmQAO2ZkQDtmZIA7ZmTAO2ZlADtmZUA7ZmWAO2ZlwDtmZgA7ZmZAO2ZmgDtmZsA7ZmcAO2ZnQDtmZ4A7ZmfAO2ZoADtmaEA7ZmiAO2ZowDtmaQA7ZmlAO2ZpgDtmacA7ZmoAO2ZqQDtmaoA7ZmrAO2ZrADtma0A7ZmuAO2ZrwDtmbAA7ZmxAO2ZsgDtmbMA7Zm0AO2ZtQDtmbYA7Zm3AO2ZuADtmbkA7Zm6AO2ZuwDtmbwA7Zm9AO2ZvgDtmb8A7ZqAAO2agQDtmoIA7ZqDAO2ahADtmoUA7ZqGAO2ahwDtmogA7ZqJAO2aigDtmosA7ZqMAO2ajQDtmo4A7ZqPAO2akADtmpEA7ZqSAO2akwDtmpQA7ZqVAO2algDtmpcA7ZqYAO2amQDtmpoA7ZqbAO2anADtmp0A7ZqeAO2anwDtmqAA7ZqhAO2aogDtmqMA7ZqkAO2apQDtmqYA7ZqnAO2aqADtmqkA7ZqqAO2aqwDtmqwA7ZqtAO2argDtmq8A7ZqwAO2asQDtmrIA7ZqzAO2atADtmrUA7Zq2AO2atwDtmrgA7Zq5AO2augDtmrsA7Zq8AO2avQDtmr4A7Zq/AO2bgADtm4EA7ZuCAO2bgwDtm4QA7ZuFAO2bhgDtm4cA7ZuIAO2biQDtm4oA7ZuLAO2bjADtm40A7ZuOAO2bjwDtm5AA7ZuRAO2bkgDtm5MA7ZuUAO2blQDtm5YA7ZuXAO2bmADtm5kA7ZuaAO2bmwDtm5wA7ZudAO2bngDtm58A7ZugAO2boQDtm6IA7ZujAO2bpADtm6UA7ZumAO2bpwDtm6gA7ZupAO2bqgDtm6sA7ZusAO2brQDtm64A7ZuvAO2bsADtm7EA7ZuyAO2bswDtm7QA7Zu1AO2btgDtm7cA7Zu4AO2buQDtm7oA7Zu7AO2bvADtm70A7Zu+AO2bvwDtnIAA7ZyBAO2cggDtnIMA7ZyEAO2chQDtnIYA7ZyHAO2ciADtnIkA7ZyKAO2ciwDtnIwA7ZyNAO2cjgDtnI8A7ZyQAO2ckQDtnJIA7ZyTAO2clADtnJUA7ZyWAO2clwDtnJgA7ZyZAO2cmgDtnJsA7ZycAO2cnQDtnJ4A7ZyfAO2coADtnKEA7ZyiAO2cowDtnKQA7ZylAO2cpgDtnKcA7ZyoAO2cqQDtnKoA7ZyrAO2crADtnK0A7ZyuAO2crwDtnLAA7ZyxAO2csgDtnLMA7Zy0AO2ctQDtnLYA7Zy3AO2cuADtnLkA7Zy6AO2cuwDtnLwA7Zy9AO2cvgDtnL8A7Z2AAO2dgQDtnYIA7Z2DAO2dhADtnYUA7Z2GAO2dhwDtnYgA7Z2JAO2digDtnYsA7Z2MAO2djQDtnY4A7Z2PAO2dkADtnZEA7Z2SAO2dkwDtnZQA7Z2VAO2dlgDtnZcA7Z2YAO2dmQDtnZoA7Z2bAO2dnADtnZ0A7Z2eAO2dnwDtnaAA7Z2hAO2dogDtnaMA7Z2kAO2dpQDtnaYA7Z2nAO2dqADtnakA7Z2qAO2dqwDtnawA7Z2tAO2drgDtna8A7Z2wAO2dsQDtnbIA7Z2zAO2dtADtnbUA7Z22AO2dtwDtnbgA7Z25AO2dugDtnbsA7Z28AO2dvQDtnb4A7Z2/AO2egADtnoEA7Z6CAO2egwDtnoQA7Z6FAO2ehgDtnocA7Z6IAO2eiQDtnooA7Z6LAO2ejADtno0A7Z6OAO2ejwDtnpAA7Z6RAO2ekgDtnpMA7Z6UAO2elQDtnpYA7Z6XAO2emADtnpkA7Z6aAO2emwDtnpwA7Z6dAO2engDtnp8A7Z6gAO2eoQDtnqIA7Z6jAPCRgpoA8JGCnADwkYKrAPCRhK4A8JGErwDwkY2LAPCRjYwA8JGSuwDwkZK8APCRkr4A8JGWugDwkZa7APCdhZfwnYWlAPCdhZjwnYWlAPCdhZjwnYWl8J2FrgDwnYWY8J2FpfCdha8A8J2FmPCdhaXwnYWwAPCdhZjwnYWl8J2FsQDwnYWY8J2FpfCdhbIA8J2GufCdhaUA8J2GufCdhaXwnYWuAPCdhrnwnYWl8J2FrwDwnYa68J2FpQDwnYa68J2FpfCdha4A8J2GuvCdhaXwnYWvAPCghKIA8KCUnADwoJSlAPCglYsA8KCYugDwoKCEAPCgo54A8KCorADwoK2jAPChk6QA8KGaqADwoZuqAPChp4gA8KGsmADwobSLAPCht6QA8KG3pgDwooaDAPCihp8A8KKMsQDwopuUAPCioYQA8KKhigDwoqyMAPCir7EA8KOAigDwo4q4APCjjZ8A8KOOkwDwo46cAPCjj4MA8KOPlQDwo5GtAPCjmqMA8KOipwDwo6qNAPCjq7oA8KOyvADwo7SeAPCju5EA8KO9ngDwo76OAPCkiaMA8KSLrgDwpI6rAPCkmIgA8KSctQDwpKCUAPCksLYA8KSykgDwpL6hAPCkvrgA8KWBhADwpYOyAPClg7MA8KWEmQDwpYSzAPCliYkA8KWQnQDwpZimAPClmpoA8KWbhQDwpaW8APClqqcA8KWuqwDwpbKAAPCls5AA8KW+hgDwpoeaAPCmiKgA8KaJhwDwpouZAPCmjL4A8KaTmgDwppSjAPCmlqgA8KaepwDwpp61APCmrLwA8KawtgDwprOVAPCmtasA8Ka8rADwpr6xAPCng5IA8KePigDwp5mnAPCnoq4A8KelpgDwp7KoAPCnu5MA8Ke8rwDwqJeSAPCol60A8KicrgDwqK+6APCotbcA8KmFhQDwqYefAPCpiJoA8KmQigDwqZKWAPCplrYA8KmssADwqoOOAPCqhIUA8KqIjgDwqoqRAPCqjpIA8KqYgAA="
- },
- {
- "type": "Strip",
- "strip_left": false,
- "strip_right": true
- },
- {
- "type": "Replace",
- "pattern": {
- "Regex": " {2,}"
- },
- "content": "▁"
- }
- ]
- },
- "pre_tokenizer": {
- "type": "Metaspace",
- "replacement": "▁",
- "add_prefix_space": true,
- "prepend_scheme": "first"
- },
- "post_processor": {
- "type": "TemplateProcessing",
- "single": [
- {
- "Sequence": {
- "id": "A",
- "type_id": 0
- }
- },
- {
- "SpecialToken": {
- "id": "",
- "type_id": 0
- }
- }
- ],
- "pair": [
- {
- "Sequence": {
- "id": "A",
- "type_id": 0
- }
- },
- {
- "SpecialToken": {
- "id": "",
- "type_id": 0
- }
- },
- {
- "Sequence": {
- "id": "B",
- "type_id": 0
- }
- },
- {
- "SpecialToken": {
- "id": "",
- "type_id": 0
- }
- }
- ],
- "special_tokens": {
- "": {
- "id": "",
- "ids": [
- 1
- ],
- "tokens": [
- ""
- ]
- }
- }
- },
- "decoder": {
- "type": "Metaspace",
- "replacement": "▁",
- "add_prefix_space": true,
- "prepend_scheme": "always"
- },
- "model": {
- "type": "Unigram",
- "unk_id": 2,
- "vocab": [
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "▁",
- -2.0122928619384766
- ],
- [
- "X",
- -2.486478805541992
- ],
- [
- ".",
- -3.5449328422546387
- ],
- [
- ",",
- -3.649247407913208
- ],
- [
- "s",
- -3.9033992290496826
- ],
- [
- "▁the",
- -3.9598512649536133
- ],
- [
- "a",
- -4.097104549407959
- ],
- [
- ":",
- -4.414328098297119
- ],
- [
- "▁and",
- -4.420670986175537
- ],
- [
- "▁to",
- -4.4523234367370605
- ],
- [
- "▁of",
- -4.572070121765137
- ],
- [
- "▁fill",
- -4.575019836425781
- ],
- [
- "e",
- -4.674920082092285
- ],
- [
- "▁in",
- -4.812063694000244
- ],
- [
- "t",
- -5.063905715942383
- ],
- [
- "-",
- -5.129043102264404
- ],
- [
- "▁is",
- -5.283425331115723
- ],
- [
- "▁de",
- -5.344141960144043
- ],
- [
- "▁for",
- -5.3930158615112305
- ],
- [
- "’",
- -5.4228339195251465
- ],
- [
- "i",
- -5.469857692718506
- ],
- [
- "▁that",
- -5.576240539550781
- ],
- [
- "▁you",
- -5.596375465393066
- ],
- [
- "d",
- -5.6047282218933105
- ],
- [
- "▁I",
- -5.6640448570251465
- ],
- [
- "▁with",
- -5.703730583190918
- ],
- [
- "n",
- -5.737886905670166
- ],
- [
- "▁on",
- -5.784142971038818
- ],
- [
- "'",
- -5.828996181488037
- ],
- [
- "o",
- -5.925558090209961
- ],
- [
- "▁are",
- -5.931313991546631
- ],
- [
- "▁it",
- -5.939518928527832
- ],
- [
- "en",
- -5.9465556144714355
- ],
- [
- "▁be",
- -5.9556708335876465
- ],
- [
- "▁The",
- -5.990020751953125
- ],
- [
- "▁as",
- -6.057407379150391
- ],
- [
- "▁your",
- -6.132311820983887
- ],
- [
- "l",
- -6.139498710632324
- ],
- [
- "▁(",
- -6.184796333312988
- ],
- [
- "▁or",
- -6.241950035095215
- ],
- [
- "▁have",
- -6.27459192276001
- ],
- [
- "▁at",
- -6.327472686767578
- ],
- [
- "▁from",
- -6.349645137786865
- ],
- [
- "▁an",
- -6.350090980529785
- ],
- [
- "▁was",
- -6.350385665893555
- ],
- [
- "▁this",
- -6.352563381195068
- ],
- [
- "er",
- -6.3604278564453125
- ],
- [
- "▁la",
- -6.3624043464660645
- ],
- [
- "m",
- -6.375206470489502
- ],
- [
- "r",
- -6.376530170440674
- ],
- [
- "ing",
- -6.3778581619262695
- ],
- [
- "▁can",
- -6.387146472930908
- ],
- [
- "!",
- -6.421379566192627
- ],
- [
- "▁will",
- -6.423982620239258
- ],
- [
- "▁by",
- -6.44155216217041
- ],
- [
- "?",
- -6.585887432098389
- ],
- [
- "▁not",
- -6.5959086418151855
- ],
- [
- "re",
- -6.620072364807129
- ],
- [
- ")",
- -6.63656759262085
- ],
- [
- "▁we",
- -6.643022060394287
- ],
- [
- "y",
- -6.654535293579102
- ],
- [
- "▁und",
- -6.741473197937012
- ],
- [
- "▁has",
- -6.7602033615112305
- ],
- [
- "▁all",
- -6.768176555633545
- ],
- [
- "▁die",
- -6.8641204833984375
- ],
- [
- "▁but",
- -6.906830310821533
- ],
- [
- "▁our",
- -6.909878730773926
- ],
- [
- "▁their",
- -6.91325044631958
- ],
- [
- "▁A",
- -6.915814399719238
- ],
- [
- "▁more",
- -6.918668746948242
- ],
- [
- "▁un",
- -6.924930572509766
- ],
- [
- "▁der",
- -6.925402641296387
- ],
- [
- "c",
- -6.925714015960693
- ],
- [
- "u",
- -6.932939052581787
- ],
- [
- "in",
- -6.934063911437988
- ],
- [
- "▁so",
- -6.947050094604492
- ],
- [
- "▁they",
- -6.989297866821289
- ],
- [
- "▁one",
- -7.012735843658447
- ],
- [
- "▁about",
- -7.071486473083496
- ],
- [
- "▁my",
- -7.072140693664551
- ],
- [
- "ul",
- -7.076492786407471
- ],
- [
- "▁which",
- -7.097039222717285
- ],
- [
- "à",
- -7.099997520446777
- ],
- [
- "▁In",
- -7.100254535675049
- ],
- [
- "/",
- -7.100865840911865
- ],
- [
- "he",
- -7.104752540588379
- ],
- [
- "f",
- -7.110044002532959
- ],
- [
- "▁le",
- -7.112937927246094
- ],
- [
- "▁out",
- -7.128556728363037
- ],
- [
- "▁also",
- -7.133583068847656
- ],
- [
- "▁des",
- -7.156766414642334
- ],
- [
- "▁It",
- -7.162121295928955
- ],
- [
- "▁up",
- -7.1723432540893555
- ],
- [
- "▁\"",
- -7.172809600830078
- ],
- [
- "▁time",
- -7.178046703338623
- ],
- [
- "ă",
- -7.183253765106201
- ],
- [
- "if",
- -7.185171127319336
- ],
- [
- "▁This",
- -7.191652297973633
- ],
- [
- "▁We",
- -7.223267078399658
- ],
- [
- "p",
- -7.224130153656006
- ],
- [
- "▁do",
- -7.228212356567383
- ],
- [
- "–",
- -7.235409736633301
- ],
- [
- "▁“",
- -7.238142013549805
- ],
- [
- "on",
- -7.240827560424805
- ],
- [
- "h",
- -7.2543206214904785
- ],
- [
- "▁si",
- -7.276725769042969
- ],
- [
- "le",
- -7.2994256019592285
- ],
- [
- "▁les",
- -7.312957286834717
- ],
- [
- "▁în",
- -7.314571857452393
- ],
- [
- "▁his",
- -7.324767112731934
- ],
- [
- "▁who",
- -7.35105562210083
- ],
- [
- "▁like",
- -7.371364116668701
- ],
- [
- "b",
- -7.375369071960449
- ],
- [
- "▁when",
- -7.380199432373047
- ],
- [
- ";",
- -7.380846977233887
- ],
- [
- "▁been",
- -7.38668966293335
- ],
- [
- "▁other",
- -7.388518333435059
- ],
- [
- "ly",
- -7.394660949707031
- ],
- [
- "\"",
- -7.407205104827881
- ],
- [
- "g",
- -7.407997131347656
- ],
- [
- "▁cu",
- -7.415276527404785
- ],
- [
- "▁care",
- -7.432408332824707
- ],
- [
- "▁what",
- -7.433043003082275
- ],
- [
- "▁new",
- -7.4370903968811035
- ],
- [
- "or",
- -7.445409774780273
- ],
- [
- "▁some",
- -7.461953639984131
- ],
- [
- "▁get",
- -7.479001998901367
- ],
- [
- "▁were",
- -7.491549491882324
- ],
- [
- "▁just",
- -7.492495536804199
- ],
- [
- "▁there",
- -7.493194103240967
- ],
- [
- "▁would",
- -7.494382381439209
- ],
- [
- "S",
- -7.4974141120910645
- ],
- [
- "▁them",
- -7.513596057891846
- ],
- [
- "▁any",
- -7.520544052124023
- ],
- [
- ").",
- -7.521052360534668
- ],
- [
- "al",
- -7.523056983947754
- ],
- [
- "▁into",
- -7.527902603149414
- ],
- [
- "▁me",
- -7.528337001800537
- ],
- [
- "▁had",
- -7.532425403594971
- ],
- [
- "▁se",
- -7.5451483726501465
- ],
- [
- "▁make",
- -7.5827131271362305
- ],
- [
- "at",
- -7.589433670043945
- ],
- [
- "▁than",
- -7.592360019683838
- ],
- [
- "▁du",
- -7.595852375030518
- ],
- [
- "▁over",
- -7.6078782081604
- ],
- [
- "▁You",
- -7.626111030578613
- ],
- [
- "▁how",
- -7.635554313659668
- ],
- [
- "▁no",
- -7.63729190826416
- ],
- [
- "▁people",
- -7.639947414398193
- ],
- [
- "an",
- -7.64084005355835
- ],
- [
- "”",
- -7.644528865814209
- ],
- [
- "é",
- -7.646921157836914
- ],
- [
- "it",
- -7.648641109466553
- ],
- [
- "▁If",
- -7.648687839508057
- ],
- [
- "k",
- -7.6605634689331055
- ],
- [
- "▁pe",
- -7.662139415740967
- ],
- [
- "is",
- -7.66726016998291
- ],
- [
- "▁her",
- -7.6733808517456055
- ],
- [
- "▁work",
- -7.680386543273926
- ],
- [
- "ve",
- -7.687412738800049
- ],
- [
- "▁only",
- -7.69785737991333
- ],
- [
- "▁may",
- -7.702393531799316
- ],
- [
- "▁its",
- -7.702449798583984
- ],
- [
- "▁first",
- -7.704373836517334
- ],
- [
- "▁most",
- -7.708309173583984
- ],
- [
- "▁well",
- -7.708758354187012
- ],
- [
- "▁use",
- -7.715085983276367
- ],
- [
- "▁zu",
- -7.718777656555176
- ],
- [
- "▁pour",
- -7.736708164215088
- ],
- [
- "z",
- -7.745654106140137
- ],
- [
- "il",
- -7.745913982391357
- ],
- [
- "▁need",
- -7.74778938293457
- ],
- [
- "▁these",
- -7.763317584991455
- ],
- [
- "▁din",
- -7.769891262054443
- ],
- [
- "▁den",
- -7.775663375854492
- ],
- [
- "▁us",
- -7.778133869171143
- ],
- [
- "able",
- -7.779712200164795
- ],
- [
- "▁S",
- -7.781893730163574
- ],
- [
- "▁mit",
- -7.792516231536865
- ],
- [
- "▁very",
- -7.79970645904541
- ],
- [
- "▁am",
- -7.814100742340088
- ],
- [
- "&",
- -7.829529285430908
- ],
- [
- "▁au",
- -7.83012056350708
- ],
- [
- "▁many",
- -7.83834171295166
- ],
- [
- "▁mai",
- -7.84363317489624
- ],
- [
- "A",
- -7.849830150604248
- ],
- [
- "th",
- -7.855541229248047
- ],
- [
- "▁through",
- -7.859585285186768
- ],
- [
- "▁pentru",
- -7.86391544342041
- ],
- [
- "▁two",
- -7.873607158660889
- ],
- [
- "▁von",
- -7.874959945678711
- ],
- [
- "▁way",
- -7.887117385864258
- ],
- [
- "ll",
- -7.887749195098877
- ],
- [
- "I",
- -7.891303539276123
- ],
- [
- "▁ce",
- -7.9015631675720215
- ],
- [
- "▁și",
- -7.904444694519043
- ],
- [
- "▁help",
- -7.907405853271484
- ],
- [
- "▁best",
- -7.907911777496338
- ],
- [
- "),",
- -7.908212184906006
- ],
- [
- "un",
- -7.925017833709717
- ],
- [
- "▁years",
- -7.925964832305908
- ],
- [
- "▁2",
- -7.9282684326171875
- ],
- [
- "▁C",
- -7.936962604522705
- ],
- [
- "▁nu",
- -7.939520835876465
- ],
- [
- "▁good",
- -7.943995952606201
- ],
- [
- "v",
- -7.94746732711792
- ],
- [
- "▁1",
- -7.94765567779541
- ],
- [
- "w",
- -7.947978496551514
- ],
- [
- "▁das",
- -7.960538864135742
- ],
- [
- "▁ca",
- -7.962430477142334
- ],
- [
- "▁where",
- -7.964908123016357
- ],
- [
- "▁know",
- -7.96622896194458
- ],
- [
- "▁year",
- -7.971063613891602
- ],
- [
- "▁He",
- -7.974609375
- ],
- [
- "▁see",
- -7.980011463165283
- ],
- [
- "▁für",
- -7.984004497528076
- ],
- [
- "▁auf",
- -7.984249114990234
- ],
- [
- "▁3",
- -7.984433650970459
- ],
- [
- "de",
- -7.985401153564453
- ],
- [
- "est",
- -8.002091407775879
- ],
- [
- "▁back",
- -8.007022857666016
- ],
- [
- "▁such",
- -8.008523941040039
- ],
- [
- "▁should",
- -8.011754989624023
- ],
- [
- "x",
- -8.015050888061523
- ],
- [
- "▁after",
- -8.01761245727539
- ],
- [
- "▁could",
- -8.019674301147461
- ],
- [
- "▁ist",
- -8.020784378051758
- ],
- [
- "▁now",
- -8.022845268249512
- ],
- [
- "▁much",
- -8.023111343383789
- ],
- [
- "and",
- -8.02390193939209
- ],
- [
- "...",
- -8.030110359191895
- ],
- [
- "▁home",
- -8.036273956298828
- ],
- [
- "to",
- -8.03821086883545
- ],
- [
- "▁ein",
- -8.04833984375
- ],
- [
- "▁even",
- -8.048656463623047
- ],
- [
- "▁que",
- -8.049829483032227
- ],
- [
- "▁day",
- -8.051553726196289
- ],
- [
- "▁take",
- -8.054189682006836
- ],
- [
- "▁want",
- -8.054435729980469
- ],
- [
- "▁For",
- -8.06217098236084
- ],
- [
- "▁said",
- -8.063249588012695
- ],
- [
- "▁sur",
- -8.073471069335938
- ],
- [
- "▁une",
- -8.077030181884766
- ],
- [
- "▁să",
- -8.082921028137207
- ],
- [
- "▁dans",
- -8.084549903869629
- ],
- [
- "▁great",
- -8.088057518005371
- ],
- [
- "▁este",
- -8.08947467803955
- ],
- [
- "▁because",
- -8.094311714172363
- ],
- [
- "▁information",
- -8.104085922241211
- ],
- [
- "ului",
- -8.105451583862305
- ],
- [
- "▁find",
- -8.112174987792969
- ],
- [
- "C",
- -8.119946479797363
- ],
- [
- "▁she",
- -8.125317573547363
- ],
- [
- "▁im",
- -8.126056671142578
- ],
- [
- "ation",
- -8.130115509033203
- ],
- [
- "▁then",
- -8.13021469116211
- ],
- [
- "▁est",
- -8.13099479675293
- ],
- [
- "▁par",
- -8.138585090637207
- ],
- [
- "▁used",
- -8.141871452331543
- ],
- [
- "▁E",
- -8.146790504455566
- ],
- [
- "▁made",
- -8.149978637695312
- ],
- [
- "▁So",
- -8.15785026550293
- ],
- [
- "am",
- -8.16288948059082
- ],
- [
- "▁eine",
- -8.165464401245117
- ],
- [
- "▁şi",
- -8.168368339538574
- ],
- [
- "▁business",
- -8.17335033416748
- ],
- [
- "▁right",
- -8.173593521118164
- ],
- [
- "▁here",
- -8.176125526428223
- ],
- [
- "▁being",
- -8.184967041015625
- ],
- [
- "▁B",
- -8.185355186462402
- ],
- [
- "▁those",
- -8.185736656188965
- ],
- [
- "▁before",
- -8.194721221923828
- ],
- [
- "▁And",
- -8.199501037597656
- ],
- [
- "▁P",
- -8.200712203979492
- ],
- [
- "ers",
- -8.200922012329102
- ],
- [
- "▁don",
- -8.204029083251953
- ],
- [
- "B",
- -8.20487117767334
- ],
- [
- "▁life",
- -8.206265449523926
- ],
- [
- "▁go",
- -8.209736824035645
- ],
- [
- "▁As",
- -8.210551261901855
- ],
- [
- "▁M",
- -8.221170425415039
- ],
- [
- "▁each",
- -8.22955322265625
- ],
- [
- "▁qui",
- -8.23323917388916
- ],
- [
- "▁place",
- -8.236248970031738
- ],
- [
- "com",
- -8.237479209899902
- ],
- [
- "ant",
- -8.252915382385254
- ],
- [
- "▁sich",
- -8.255932807922363
- ],
- [
- "▁There",
- -8.261948585510254
- ],
- [
- "ar",
- -8.264991760253906
- ],
- [
- "▁Sie",
- -8.273868560791016
- ],
- [
- "▁own",
- -8.277531623840332
- ],
- [
- "▁part",
- -8.279440879821777
- ],
- [
- "ent",
- -8.281047821044922
- ],
- [
- "▁world",
- -8.28173542022705
- ],
- [
- "ment",
- -8.282004356384277
- ],
- [
- "▁while",
- -8.294474601745605
- ],
- [
- "▁But",
- -8.295366287231445
- ],
- [
- "▁around",
- -8.300799369812012
- ],
- [
- "▁L",
- -8.301082611083984
- ],
- [
- "us",
- -8.304039001464844
- ],
- [
- "▁plus",
- -8.313054084777832
- ],
- [
- "▁To",
- -8.313691139221191
- ],
- [
- "▁5",
- -8.31412410736084
- ],
- [
- "▁high",
- -8.31862735748291
- ],
- [
- "▁long",
- -8.319378852844238
- ],
- [
- "D",
- -8.320075035095215
- ],
- [
- "▁D",
- -8.320279121398926
- ],
- [
- "▁really",
- -8.322924613952637
- ],
- [
- "▁nicht",
- -8.332040786743164
- ],
- [
- "▁Le",
- -8.335328102111816
- ],
- [
- "▁service",
- -8.3412504196167
- ],
- [
- "▁4",
- -8.342093467712402
- ],
- [
- "▁different",
- -8.342538833618164
- ],
- [
- "▁Die",
- -8.348092079162598
- ],
- [
- "▁think",
- -8.353771209716797
- ],
- [
- "—",
- -8.355998039245605
- ],
- [
- "▁auch",
- -8.357160568237305
- ],
- [
- "▁look",
- -8.362202644348145
- ],
- [
- "▁both",
- -8.366817474365234
- ],
- [
- "lor",
- -8.36687183380127
- ],
- [
- "▁down",
- -8.367999076843262
- ],
- [
- "ten",
- -8.368885040283203
- ],
- [
- "▁La",
- -8.378066062927246
- ],
- [
- "▁off",
- -8.380044937133789
- ],
- [
- "▁vous",
- -8.380541801452637
- ],
- [
- "▁They",
- -8.381462097167969
- ],
- [
- "M",
- -8.383248329162598
- ],
- [
- "▁pas",
- -8.384513854980469
- ],
- [
- "▁data",
- -8.385709762573242
- ],
- [
- "▁T",
- -8.386754989624023
- ],
- [
- "▁love",
- -8.388101577758789
- ],
- [
- "▁every",
- -8.390009880065918
- ],
- [
- "▁10",
- -8.391179084777832
- ],
- [
- "▁last",
- -8.392083168029785
- ],
- [
- "▁same",
- -8.393481254577637
- ],
- [
- "▁using",
- -8.395487785339355
- ],
- [
- "▁free",
- -8.408831596374512
- ],
- [
- "▁dem",
- -8.40894889831543
- ],
- [
- "▁still",
- -8.409984588623047
- ],
- [
- "ate",
- -8.410931587219238
- ],
- [
- "ist",
- -8.415611267089844
- ],
- [
- "▁between",
- -8.420283317565918
- ],
- [
- "P",
- -8.420982360839844
- ],
- [
- "be",
- -8.428167343139648
- ],
- [
- "▁available",
- -8.429443359375
- ],
- [
- "man",
- -8.432978630065918
- ],
- [
- "▁company",
- -8.439678192138672
- ],
- [
- "▁G",
- -8.441640853881836
- ],
- [
- "▁experience",
- -8.444950103759766
- ],
- [
- "▁going",
- -8.449073791503906
- ],
- [
- "▁site",
- -8.453832626342773
- ],
- [
- "j",
- -8.455142974853516
- ],
- [
- "are",
- -8.456900596618652
- ],
- [
- "▁set",
- -8.470661163330078
- ],
- [
- "2",
- -8.473684310913086
- ],
- [
- "▁system",
- -8.474678039550781
- ],
- [
- "▁important",
- -8.476791381835938
- ],
- [
- "▁few",
- -8.482437133789062
- ],
- [
- "▁fi",
- -8.482551574707031
- ],
- [
- "ich",
- -8.483301162719727
- ],
- [
- "▁What",
- -8.488649368286133
- ],
- [
- "▁services",
- -8.502433776855469
- ],
- [
- "▁under",
- -8.502569198608398
- ],
- [
- "▁When",
- -8.50308895111084
- ],
- [
- "▁online",
- -8.50699520111084
- ],
- [
- "▁New",
- -8.51494312286377
- ],
- [
- "▁come",
- -8.524871826171875
- ],
- [
- "▁provide",
- -8.525650024414062
- ],
- [
- "F",
- -8.526449203491211
- ],
- [
- "▁team",
- -8.52782154083252
- ],
- [
- "▁always",
- -8.529409408569336
- ],
- [
- "▁De",
- -8.530412673950195
- ],
- [
- "▁că",
- -8.532517433166504
- ],
- [
- "▁him",
- -8.53586196899414
- ],
- [
- "▁F",
- -8.538305282592773
- ],
- [
- "▁things",
- -8.550079345703125
- ],
- [
- "▁including",
- -8.550943374633789
- ],
- [
- "▁support",
- -8.552608489990234
- ],
- [
- "▁number",
- -8.554113388061523
- ],
- [
- "T",
- -8.557183265686035
- ],
- [
- "▁during",
- -8.55886459350586
- ],
- [
- "▁family",
- -8.560463905334473
- ],
- [
- "▁little",
- -8.561317443847656
- ],
- [
- "▁three",
- -8.567726135253906
- ],
- [
- "▁water",
- -8.56810188293457
- ],
- [
- "▁man",
- -8.569759368896484
- ],
- [
- "▁An",
- -8.57192611694336
- ],
- [
- "based",
- -8.572155952453613
- ],
- [
- "▁R",
- -8.57442855834961
- ],
- [
- "▁sau",
- -8.574433326721191
- ],
- [
- "▁avec",
- -8.576035499572754
- ],
- [
- "▁better",
- -8.576830863952637
- ],
- [
- "▁„",
- -8.582253456115723
- ],
- [
- "▁too",
- -8.58635425567627
- ],
- [
- "ge",
- -8.586719512939453
- ],
- [
- "▁must",
- -8.589736938476562
- ],
- [
- "▁per",
- -8.589916229248047
- ],
- [
- "ele",
- -8.590399742126465
- ],
- [
- "▁oder",
- -8.59264850616455
- ],
- [
- "au",
- -8.59555435180664
- ],
- [
- "▁aus",
- -8.595727920532227
- ],
- [
- "▁werden",
- -8.598653793334961
- ],
- [
- "▁does",
- -8.599140167236328
- ],
- [
- "▁without",
- -8.599270820617676
- ],
- [
- "▁ou",
- -8.599929809570312
- ],
- [
- "▁design",
- -8.60101318359375
- ],
- [
- "▁va",
- -8.605440139770508
- ],
- [
- "▁did",
- -8.615679740905762
- ],
- [
- "▁O",
- -8.619062423706055
- ],
- [
- "▁U",
- -8.623565673828125
- ],
- [
- "up",
- -8.62901496887207
- ],
- [
- "▁end",
- -8.63367748260498
- ],
- [
- "▁local",
- -8.636231422424316
- ],
- [
- "▁next",
- -8.638967514038086
- ],
- [
- "▁sure",
- -8.64098072052002
- ],
- [
- "▁lot",
- -8.64644718170166
- ],
- [
- "▁Re",
- -8.647016525268555
- ],
- [
- "▁top",
- -8.647642135620117
- ],
- [
- "▁Our",
- -8.656886100769043
- ],
- [
- "▁small",
- -8.656978607177734
- ],
- [
- "▁full",
- -8.659418106079102
- ],
- [
- "▁something",
- -8.662886619567871
- ],
- [
- "ung",
- -8.666722297668457
- ],
- [
- "▁vor",
- -8.673250198364258
- ],
- [
- "E",
- -8.673337936401367
- ],
- [
- "▁give",
- -8.67603588104248
- ],
- [
- "▁might",
- -8.67660903930664
- ],
- [
- "▁another",
- -8.679330825805664
- ],
- [
- "▁6",
- -8.680779457092285
- ],
- [
- "▁All",
- -8.681318283081055
- ],
- [
- "▁process",
- -8.681672096252441
- ],
- [
- "L",
- -8.682575225830078
- ],
- [
- "▁found",
- -8.68941593170166
- ],
- [
- "▁sind",
- -8.690044403076172
- ],
- [
- "▁since",
- -8.69528865814209
- ],
- [
- "▁With",
- -8.695560455322266
- ],
- [
- "K",
- -8.696988105773926
- ],
- [
- "um",
- -8.701016426086426
- ],
- [
- "▁within",
- -8.701669692993164
- ],
- [
- "▁post",
- -8.706608772277832
- ],
- [
- "▁car",
- -8.709365844726562
- ],
- [
- "une",
- -8.714099884033203
- ],
- [
- "▁N",
- -8.715041160583496
- ],
- [
- "▁J",
- -8.715597152709961
- ],
- [
- "ic",
- -8.71823787689209
- ],
- [
- "R",
- -8.722309112548828
- ],
- [
- "ter",
- -8.727437019348145
- ],
- [
- "ur",
- -8.728265762329102
- ],
- [
- "▁She",
- -8.73131275177002
- ],
- [
- "▁public",
- -8.732009887695312
- ],
- [
- "▁keep",
- -8.735784530639648
- ],
- [
- "▁H",
- -8.736178398132324
- ],
- [
- "▁order",
- -8.740762710571289
- ],
- [
- "▁start",
- -8.742195129394531
- ],
- [
- "ez",
- -8.74746322631836
- ],
- [
- "▁‘",
- -8.749832153320312
- ],
- [
- "uri",
- -8.751104354858398
- ],
- [
- "▁20",
- -8.752482414245605
- ],
- [
- "▁On",
- -8.753515243530273
- ],
- [
- "▁offer",
- -8.763005256652832
- ],
- [
- "▁quality",
- -8.764988899230957
- ],
- [
- "▁working",
- -8.769987106323242
- ],
- [
- "▁No",
- -8.770307540893555
- ],
- [
- "▁That",
- -8.775156021118164
- ],
- [
- "▁game",
- -8.7863187789917
- ],
- [
- "▁bei",
- -8.786642074584961
- ],
- [
- "▁today",
- -8.788661003112793
- ],
- [
- "▁never",
- -8.794586181640625
- ],
- [
- "▁week",
- -8.79587173461914
- ],
- [
- "▁St",
- -8.797786712646484
- ],
- [
- "▁feel",
- -8.799317359924316
- ],
- [
- "▁put",
- -8.801899909973145
- ],
- [
- "▁website",
- -8.80322265625
- ],
- [
- "Y",
- -8.804483413696289
- ],
- [
- "▁days",
- -8.804709434509277
- ],
- [
- "▁program",
- -8.805448532104492
- ],
- [
- "▁looking",
- -8.810463905334473
- ],
- [
- "▁K",
- -8.810808181762695
- ],
- [
- "▁students",
- -8.811436653137207
- ],
- [
- "▁create",
- -8.811800956726074
- ],
- [
- "▁change",
- -8.812616348266602
- ],
- [
- "▁book",
- -8.812932014465332
- ],
- [
- "ity",
- -8.813761711120605
- ],
- [
- "▁At",
- -8.815207481384277
- ],
- [
- "▁possible",
- -8.815670013427734
- ],
- [
- "▁sunt",
- -8.81651496887207
- ],
- [
- "▁7",
- -8.818120002746582
- ],
- [
- "▁real",
- -8.823369026184082
- ],
- [
- "▁al",
- -8.824172019958496
- ],
- [
- "▁making",
- -8.825371742248535
- ],
- [
- "▁Be",
- -8.825761795043945
- ],
- [
- "▁products",
- -8.82592487335205
- ],
- [
- "▁case",
- -8.82653522491455
- ],
- [
- "▁school",
- -8.8272066116333
- ],
- [
- "▁say",
- -8.830352783203125
- ],
- [
- "area",
- -8.832084655761719
- ],
- [
- "▁My",
- -8.833836555480957
- ],
- [
- "▁point",
- -8.834731101989746
- ],
- [
- "▁als",
- -8.83560848236084
- ],
- [
- "▁children",
- -8.836194038391113
- ],
- [
- "▁course",
- -8.844061851501465
- ],
- [
- "▁show",
- -8.847993850708008
- ],
- [
- "▁8",
- -8.849273681640625
- ],
- [
- "▁These",
- -8.849345207214355
- ],
- [
- "▁18",
- -8.851140975952148
- ],
- [
- "▁large",
- -8.851323127746582
- ],
- [
- "co",
- -8.854362487792969
- ],
- [
- "▁über",
- -8.854788780212402
- ],
- [
- "▁second",
- -8.856559753417969
- ],
- [
- "▁market",
- -8.859807014465332
- ],
- [
- "▁fost",
- -8.86048698425293
- ],
- [
- "▁easy",
- -8.863983154296875
- ],
- [
- "▁plan",
- -8.864302635192871
- ],
- [
- "▁project",
- -8.864927291870117
- ],
- [
- "G",
- -8.865178108215332
- ],
- [
- "W",
- -8.869574546813965
- ],
- [
- "3",
- -8.871939659118652
- ],
- [
- "▁son",
- -8.873332023620605
- ],
- [
- "la",
- -8.879053115844727
- ],
- [
- "▁face",
- -8.88137435913086
- ],
- [
- "▁needs",
- -8.88148021697998
- ],
- [
- "ch",
- -8.883138656616211
- ],
- [
- "▁personal",
- -8.88343620300293
- ],
- [
- "me",
- -8.886031150817871
- ],
- [
- "▁sont",
- -8.887377738952637
- ],
- [
- "▁je",
- -8.894930839538574
- ],
- [
- "▁non",
- -8.895471572875977
- ],
- [
- "▁got",
- -8.896591186523438
- ],
- [
- "▁Do",
- -8.897382736206055
- ],
- [
- "the",
- -8.89765453338623
- ],
- [
- "▁health",
- -8.89908504486084
- ],
- [
- "▁special",
- -8.90555477142334
- ],
- [
- ".\"",
- -8.907710075378418
- ],
- [
- "1",
- -8.907852172851562
- ],
- [
- "den",
- -8.908616065979004
- ],
- [
- "▁state",
- -8.909355163574219
- ],
- [
- "▁open",
- -8.91019058227539
- ],
- [
- "▁money",
- -8.91053581237793
- ],
- [
- "▁again",
- -8.913084983825684
- ],
- [
- "▁food",
- -8.913167953491211
- ],
- [
- "▁page",
- -8.914595603942871
- ],
- [
- "▁together",
- -8.91628360748291
- ],
- [
- "age",
- -8.919108390808105
- ],
- [
- "▁qu",
- -8.921928405761719
- ],
- [
- "hat",
- -8.922386169433594
- ],
- [
- "▁ver",
- -8.926993370056152
- ],
- [
- "▁W",
- -8.927785873413086
- ],
- [
- "▁away",
- -8.928759574890137
- ],
- [
- "▁wird",
- -8.931641578674316
- ],
- [
- "▁until",
- -8.934249877929688
- ],
- [
- "V",
- -8.934935569763184
- ],
- [
- "▁pre",
- -8.935851097106934
- ],
- [
- "▁One",
- -8.936429977416992
- ],
- [
- "▁product",
- -8.936561584472656
- ],
- [
- "▁often",
- -8.939326286315918
- ],
- [
- "▁wir",
- -8.944111824035645
- ],
- [
- "▁nach",
- -8.945127487182617
- ],
- [
- "▁include",
- -8.946555137634277
- ],
- [
- "▁um",
- -8.948204040527344
- ],
- [
- "▁room",
- -8.953709602355957
- ],
- [
- "▁group",
- -8.953767776489258
- ],
- [
- "▁name",
- -8.954949378967285
- ],
- [
- "ce",
- -8.955448150634766
- ],
- [
- "H",
- -8.956180572509766
- ],
- [
- "N",
- -8.958139419555664
- ],
- [
- "▁person",
- -8.958183288574219
- ],
- [
- "▁social",
- -8.958606719970703
- ],
- [
- "▁list",
- -8.963666915893555
- ],
- [
- "▁How",
- -8.964127540588379
- ],
- [
- "▁why",
- -8.96571159362793
- ],
- [
- "▁community",
- -8.965995788574219
- ],
- [
- "▁contact",
- -8.973031044006348
- ],
- [
- "",
- -8.9755859375
- ],
- [
- "▁co",
- -8.979683876037598
- ],
- [
- "▁play",
- -8.983960151672363
- ],
- [
- "▁having",
- -8.984169960021973
- ],
- [
- "▁power",
- -8.986917495727539
- ],
- [
- "▁call",
- -8.991690635681152
- ],
- [
- "▁against",
- -8.991816520690918
- ],
- [
- "▁become",
- -8.997780799865723
- ],
- [
- "▁cost",
- -9.003793716430664
- ],
- [
- "▁V",
- -9.004593849182129
- ],
- [
- "▁research",
- -9.006913185119629
- ],
- [
- "▁12",
- -9.007307052612305
- ],
- [
- "▁wie",
- -9.008277893066406
- ],
- [
- "der",
- -9.008386611938477
- ],
- [
- "▁thing",
- -9.014028549194336
- ],
- [
- "▁along",
- -9.017301559448242
- ],
- [
- "4",
- -9.017330169677734
- ],
- [
- "▁access",
- -9.020391464233398
- ],
- [
- "▁level",
- -9.020505905151367
- ],
- [
- "▁price",
- -9.022817611694336
- ],
- [
- "▁einen",
- -9.023714065551758
- ],
- [
- "▁side",
- -9.026359558105469
- ],
- [
- "▁Un",
- -9.026851654052734
- ],
- [
- "▁means",
- -9.030416488647461
- ],
- [
- "(",
- -9.032341957092285
- ],
- [
- "▁big",
- -9.034374237060547
- ],
- [
- "▁God",
- -9.036499977111816
- ],
- [
- "▁dass",
- -9.037314414978027
- ],
- [
- "im",
- -9.037374496459961
- ],
- [
- "▁30",
- -9.037432670593262
- ],
- [
- "▁event",
- -9.041665077209473
- ],
- [
- "▁development",
- -9.042060852050781
- ],
- [
- "▁form",
- -9.04226303100586
- ],
- [
- "▁read",
- -9.042579650878906
- ],
- [
- "▁hand",
- -9.043194770812988
- ],
- [
- "▁control",
- -9.04446792602539
- ],
- [
- "▁However",
- -9.046320915222168
- ],
- [
- "▁done",
- -9.048060417175293
- ],
- [
- "▁job",
- -9.051692008972168
- ],
- [
- "▁hard",
- -9.056619644165039
- ],
- [
- "▁war",
- -9.057538032531738
- ],
- [
- "▁area",
- -9.0584135055542
- ],
- [
- "▁add",
- -9.0586576461792
- ],
- [
- "▁votre",
- -9.0593900680542
- ],
- [
- "▁live",
- -9.059494018554688
- ],
- [
- "▁range",
- -9.060099601745605
- ],
- [
- "▁After",
- -9.060164451599121
- ],
- [
- "▁Les",
- -9.060513496398926
- ],
- [
- "▁far",
- -9.064413070678711
- ],
- [
- "ver",
- -9.064727783203125
- ],
- [
- "▁old",
- -9.069576263427734
- ],
- [
- "▁perfect",
- -9.06976318359375
- ],
- [
- "▁15",
- -9.070429801940918
- ],
- [
- "▁space",
- -9.073654174804688
- ],
- [
- "▁house",
- -9.074068069458008
- ],
- [
- "ine",
- -9.07408618927002
- ],
- [
- "▁enough",
- -9.074334144592285
- ],
- [
- "0",
- -9.075824737548828
- ],
- [
- "▁several",
- -9.077119827270508
- ],
- [
- "The",
- -9.081155776977539
- ],
- [
- "mm",
- -9.085619926452637
- ],
- [
- "▁University",
- -9.08637523651123
- ],
- [
- "▁diese",
- -9.087566375732422
- ],
- [
- "▁Co",
- -9.088335990905762
- ],
- [
- "▁comes",
- -9.088497161865234
- ],
- [
- "▁across",
- -9.088857650756836
- ],
- [
- "▁already",
- -9.090097427368164
- ],
- [
- ",”",
- -9.090341567993164
- ],
- [
- "▁body",
- -9.09276294708252
- ],
- [
- "▁Das",
- -9.094594955444336
- ],
- [
- "▁einer",
- -9.095956802368164
- ],
- [
- "▁left",
- -9.09921646118164
- ],
- [
- "▁future",
- -9.105711936950684
- ],
- [
- "▁times",
- -9.106670379638672
- ],
- [
- "▁dar",
- -9.109651565551758
- ],
- [
- "▁simple",
- -9.110408782958984
- ],
- [
- "ry",
- -9.112407684326172
- ],
- [
- "▁getting",
- -9.113155364990234
- ],
- [
- "▁try",
- -9.115362167358398
- ],
- [
- "ți",
- -9.116897583007812
- ],
- [
- "ness",
- -9.120043754577637
- ],
- [
- "▁makes",
- -9.120377540588379
- ],
- [
- "▁past",
- -9.120619773864746
- ],
- [
- "ca",
- -9.12130069732666
- ],
- [
- "▁light",
- -9.122207641601562
- ],
- [
- "▁Der",
- -9.122997283935547
- ],
- [
- "▁run",
- -9.125843048095703
- ],
- [
- "▁four",
- -9.126943588256836
- ],
- [
- "ance",
- -9.130500793457031
- ],
- [
- "▁ever",
- -9.131503105163574
- ],
- [
- "▁einem",
- -9.131816864013672
- ],
- [
- "▁below",
- -9.133723258972168
- ],
- [
- "O",
- -9.134073257446289
- ],
- [
- "▁9",
- -9.137282371520996
- ],
- [
- "▁learn",
- -9.14004135131836
- ],
- [
- "out",
- -9.140358924865723
- ],
- [
- "▁video",
- -9.143178939819336
- ],
- [
- "▁etc",
- -9.146929740905762
- ],
- [
- "▁«",
- -9.148795127868652
- ],
- [
- "▁zum",
- -9.149712562561035
- ],
- [
- "▁kann",
- -9.1504487991333
- ],
- [
- "▁minutes",
- -9.151180267333984
- ],
- [
- "▁example",
- -9.154194831848145
- ],
- [
- "▁nous",
- -9.154619216918945
- ],
- [
- "▁Se",
- -9.157441139221191
- ],
- [
- "▁sie",
- -9.159955024719238
- ],
- [
- "▁industry",
- -9.161614418029785
- ],
- [
- "▁problem",
- -9.162016868591309
- ],
- [
- "J",
- -9.162480354309082
- ],
- [
- "▁country",
- -9.163366317749023
- ],
- [
- "▁fact",
- -9.164189338684082
- ],
- [
- "▁type",
- -9.164190292358398
- ],
- [
- "ner",
- -9.164238929748535
- ],
- [
- "▁companies",
- -9.165864944458008
- ],
- [
- "▁line",
- -9.169849395751953
- ],
- [
- "▁city",
- -9.172713279724121
- ],
- [
- "▁check",
- -9.173710823059082
- ],
- [
- "▁doing",
- -9.174406051635742
- ],
- [
- "elle",
- -9.175037384033203
- ],
- [
- "▁fun",
- -9.176549911499023
- ],
- [
- "▁En",
- -9.177546501159668
- ],
- [
- "▁Your",
- -9.178601264953613
- ],
- [
- "ling",
- -9.181450843811035
- ],
- [
- "▁share",
- -9.18185806274414
- ],
- [
- "ile",
- -9.182005882263184
- ],
- [
- "▁actually",
- -9.187544822692871
- ],
- [
- "▁value",
- -9.187751770019531
- ],
- [
- "zi",
- -9.188661575317383
- ],
- [
- "▁ab",
- -9.1898832321167
- ],
- [
- "▁offers",
- -9.1905517578125
- ],
- [
- "▁less",
- -9.190573692321777
- ],
- [
- "▁night",
- -9.193560600280762
- ],
- [
- "▁Dr",
- -9.19518756866455
- ],
- [
- "▁started",
- -9.195454597473145
- ],
- [
- "▁least",
- -9.198020935058594
- ],
- [
- "▁short",
- -9.198562622070312
- ],
- [
- "▁main",
- -9.201143264770508
- ],
- [
- "▁single",
- -9.202939987182617
- ],
- [
- "▁though",
- -9.203780174255371
- ],
- [
- "▁prin",
- -9.203930854797363
- ],
- [
- "time",
- -9.20531177520752
- ],
- [
- "▁hours",
- -9.206608772277832
- ],
- [
- "▁others",
- -9.206849098205566
- ],
- [
- "▁called",
- -9.20730209350586
- ],
- [
- "▁visit",
- -9.208869934082031
- ],
- [
- "▁bit",
- -9.209009170532227
- ],
- [
- "ée",
- -9.210821151733398
- ],
- [
- "▁customers",
- -9.211383819580078
- ],
- [
- "▁music",
- -9.212000846862793
- ],
- [
- "▁members",
- -9.217191696166992
- ],
- [
- "ies",
- -9.21743392944336
- ],
- [
- "▁pay",
- -9.219176292419434
- ],
- [
- "nd",
- -9.219744682312012
- ],
- [
- "▁once",
- -9.221125602722168
- ],
- [
- "gen",
- -9.2217378616333
- ],
- [
- "▁können",
- -9.222976684570312
- ],
- [
- "▁low",
- -9.223771095275879
- ],
- [
- "▁durch",
- -9.227394104003906
- ],
- [
- "▁story",
- -9.228075981140137
- ],
- [
- "▁understand",
- -9.22953987121582
- ],
- [
- "“",
- -9.229856491088867
- ],
- [
- "▁Am",
- -9.231831550598145
- ],
- [
- "▁didn",
- -9.234603881835938
- ],
- [
- "▁content",
- -9.237217903137207
- ],
- [
- "son",
- -9.24180793762207
- ],
- [
- "▁building",
- -9.242242813110352
- ],
- [
- "▁result",
- -9.242605209350586
- ],
- [
- "▁aux",
- -9.243107795715332
- ],
- [
- "▁complete",
- -9.244999885559082
- ],
- [
- "▁doesn",
- -9.24510669708252
- ],
- [
- "▁haben",
- -9.246070861816406
- ],
- [
- "▁questions",
- -9.24661636352539
- ],
- [
- "line",
- -9.247077941894531
- ],
- [
- "▁technology",
- -9.247429847717285
- ],
- [
- "▁Pro",
- -9.247976303100586
- ],
- [
- "▁current",
- -9.248504638671875
- ],
- [
- "▁won",
- -9.248883247375488
- ],
- [
- "▁let",
- -9.250710487365723
- ],
- [
- "▁features",
- -9.251978874206543
- ],
- [
- "▁please",
- -9.258262634277344
- ],
- [
- "5",
- -9.258519172668457
- ],
- [
- "▁above",
- -9.259394645690918
- ],
- [
- "ive",
- -9.262128829956055
- ],
- [
- "▁management",
- -9.262394905090332
- ],
- [
- "▁lui",
- -9.262539863586426
- ],
- [
- "her",
- -9.263057708740234
- ],
- [
- "▁training",
- -9.265711784362793
- ],
- [
- "▁everything",
- -9.2665433883667
- ],
- [
- "▁noch",
- -9.266846656799316
- ],
- [
- "▁came",
- -9.267708778381348
- ],
- [
- "▁web",
- -9.272823333740234
- ],
- [
- "▁ensure",
- -9.272987365722656
- ],
- [
- "▁months",
- -9.273130416870117
- ],
- [
- "▁art",
- -9.27313232421875
- ],
- [
- "▁sub",
- -9.274359703063965
- ],
- [
- "▁million",
- -9.274559020996094
- ],
- [
- "▁professional",
- -9.275035858154297
- ],
- [
- "▁results",
- -9.278368949890137
- ],
- [
- "▁kind",
- -9.278395652770996
- ],
- [
- "▁season",
- -9.279285430908203
- ],
- [
- "▁unique",
- -9.281067848205566
- ],
- [
- "ze",
- -9.284360885620117
- ],
- [
- "▁enjoy",
- -9.28487777709961
- ],
- [
- "▁early",
- -9.287765502929688
- ],
- [
- "▁major",
- -9.288202285766602
- ],
- [
- "▁yet",
- -9.29152774810791
- ],
- [
- "▁Ver",
- -9.293331146240234
- ],
- [
- "one",
- -9.296777725219727
- ],
- [
- "▁media",
- -9.29719352722168
- ],
- [
- "▁[",
- -9.30095100402832
- ],
- [
- "▁property",
- -9.302969932556152
- ],
- [
- "▁beautiful",
- -9.304466247558594
- ],
- [
- "▁given",
- -9.305286407470703
- ],
- [
- "▁due",
- -9.306716918945312
- ],
- [
- "▁government",
- -9.307181358337402
- ],
- [
- "▁nur",
- -9.30881404876709
- ],
- [
- "▁email",
- -9.309103012084961
- ],
- [
- "▁total",
- -9.311080932617188
- ],
- [
- "▁natural",
- -9.311264038085938
- ],
- [
- "▁test",
- -9.311450004577637
- ],
- [
- "▁provides",
- -9.311640739440918
- ],
- [
- "▁various",
- -9.312631607055664
- ],
- [
- "▁American",
- -9.315605163574219
- ],
- [
- "▁moment",
- -9.318109512329102
- ],
- [
- "▁air",
- -9.318952560424805
- ],
- [
- "▁idea",
- -9.319236755371094
- ],
- [
- "▁known",
- -9.319981575012207
- ],
- [
- "▁Il",
- -9.320504188537598
- ],
- [
- "▁friends",
- -9.320576667785645
- ],
- [
- "▁final",
- -9.320919036865234
- ],
- [
- "▁buy",
- -9.32139778137207
- ],
- [
- "▁specific",
- -9.322234153747559
- ],
- [
- "▁issues",
- -9.32454776763916
- ],
- [
- "▁took",
- -9.325233459472656
- ],
- [
- "▁mind",
- -9.326258659362793
- ],
- [
- "▁study",
- -9.32675838470459
- ],
- [
- "▁addition",
- -9.328418731689453
- ],
- [
- "▁size",
- -9.332446098327637
- ],
- [
- "▁pro",
- -9.334047317504883
- ],
- [
- "▁film",
- -9.33545970916748
- ],
- [
- "▁pot",
- -9.335636138916016
- ],
- [
- "▁thought",
- -9.338120460510254
- ],
- [
- "▁tell",
- -9.33890438079834
- ],
- [
- "▁While",
- -9.339675903320312
- ],
- [
- "▁head",
- -9.339983940124512
- ],
- [
- "▁clients",
- -9.340429306030273
- ],
- [
- "▁performance",
- -9.346199989318848
- ],
- [
- "▁question",
- -9.346835136413574
- ],
- [
- "▁whether",
- -9.347925186157227
- ],
- [
- "▁certain",
- -9.34826946258545
- ],
- [
- "▁model",
- -9.348764419555664
- ],
- [
- "▁following",
- -9.350926399230957
- ],
- [
- "▁energy",
- -9.354207992553711
- ],
- [
- "▁office",
- -9.354207992553711
- ],
- [
- "▁whole",
- -9.356687545776367
- ],
- [
- "▁bring",
- -9.356956481933594
- ],
- [
- "▁required",
- -9.35726261138916
- ],
- [
- "ţi",
- -9.358223915100098
- ],
- [
- "▁date",
- -9.358695030212402
- ],
- [
- "_",
- -9.358983039855957
- ],
- [
- "que",
- -9.359789848327637
- ],
- [
- "▁da",
- -9.360264778137207
- ],
- [
- "▁US",
- -9.36120319366455
- ],
- [
- "▁taking",
- -9.36143684387207
- ],
- [
- "go",
- -9.362788200378418
- ],
- [
- "▁living",
- -9.36341667175293
- ],
- [
- "▁someone",
- -9.363489151000977
- ],
- [
- "▁heart",
- -9.365120887756348
- ],
- [
- "▁key",
- -9.365775108337402
- ],
- [
- "▁areas",
- -9.366238594055176
- ],
- [
- "▁says",
- -9.367013931274414
- ],
- [
- "▁2018",
- -9.369132041931152
- ],
- [
- "▁month",
- -9.37012767791748
- ],
- [
- "▁Er",
- -9.371354103088379
- ],
- [
- "ste",
- -9.375077247619629
- ],
- [
- "▁11",
- -9.375179290771484
- ],
- [
- "▁front",
- -9.37528133392334
- ],
- [
- "▁Now",
- -9.37669563293457
- ],
- [
- "▁class",
- -9.376946449279785
- ],
- [
- "▁choose",
- -9.377082824707031
- ],
- [
- "pe",
- -9.37808609008789
- ],
- [
- "▁further",
- -9.379021644592285
- ],
- [
- "▁believe",
- -9.37936019897461
- ],
- [
- "of",
- -9.379590034484863
- ],
- [
- "▁among",
- -9.380990982055664
- ],
- [
- "sch",
- -9.381686210632324
- ],
- [
- "▁child",
- -9.382609367370605
- ],
- [
- "▁aber",
- -9.38376235961914
- ],
- [
- "▁Please",
- -9.386269569396973
- ],
- [
- "rea",
- -9.387248992919922
- ],
- [
- "▁later",
- -9.387272834777832
- ],
- [
- "▁amount",
- -9.388760566711426
- ],
- [
- "ice",
- -9.390128135681152
- ],
- [
- "▁National",
- -9.390177726745605
- ],
- [
- "▁style",
- -9.390748977661133
- ],
- [
- "▁tout",
- -9.391490936279297
- ],
- [
- "▁staff",
- -9.392939567565918
- ],
- [
- "▁white",
- -9.397933959960938
- ],
- [
- "▁ge",
- -9.399179458618164
- ],
- [
- "▁five",
- -9.400984764099121
- ],
- [
- "▁blog",
- -9.40109920501709
- ],
- [
- "▁designed",
- -9.40125846862793
- ],
- [
- "▁went",
- -9.402216911315918
- ],
- [
- "▁Da",
- -9.40268611907959
- ],
- [
- "▁general",
- -9.403801918029785
- ],
- [
- "▁rest",
- -9.403874397277832
- ],
- [
- "▁zur",
- -9.40579891204834
- ],
- [
- "▁quite",
- -9.405948638916016
- ],
- [
- "per",
- -9.40687084197998
- ],
- [
- "▁customer",
- -9.408379554748535
- ],
- [
- "▁close",
- -9.408747673034668
- ],
- [
- "▁Some",
- -9.41054630279541
- ],
- [
- "▁women",
- -9.41075611114502
- ],
- [
- "▁move",
- -9.410761833190918
- ],
- [
- "▁software",
- -9.411357879638672
- ],
- [
- "▁Ein",
- -9.413651466369629
- ],
- [
- "▁Ab",
- -9.413823127746582
- ],
- [
- "▁history",
- -9.413864135742188
- ],
- [
- "▁either",
- -9.41564655303955
- ],
- [
- "▁seen",
- -9.417396545410156
- ],
- [
- "▁card",
- -9.419726371765137
- ],
- [
- "▁City",
- -9.421541213989258
- ],
- [
- "▁hope",
- -9.421769142150879
- ],
- [
- "▁16",
- -9.422072410583496
- ],
- [
- "és",
- -9.422825813293457
- ],
- [
- "va",
- -9.423294067382812
- ],
- [
- "▁Al",
- -9.423827171325684
- ],
- [
- "▁especially",
- -9.424827575683594
- ],
- [
- "▁view",
- -9.426136016845703
- ],
- [
- "men",
- -9.427363395690918
- ],
- [
- "▁account",
- -9.427489280700684
- ],
- [
- "▁needed",
- -9.429777145385742
- ],
- [
- "▁United",
- -9.429789543151855
- ],
- [
- "]",
- -9.432387351989746
- ],
- [
- "▁yourself",
- -9.432788848876953
- ],
- [
- "▁100",
- -9.433059692382812
- ],
- [
- "▁receive",
- -9.433417320251465
- ],
- [
- "▁ideas",
- -9.43369197845459
- ],
- [
- "▁writing",
- -9.434585571289062
- ],
- [
- "▁simply",
- -9.434741973876953
- ],
- [
- "▁present",
- -9.435087203979492
- ],
- [
- "▁continue",
- -9.436107635498047
- ],
- [
- "▁application",
- -9.44115161895752
- ],
- [
- "▁build",
- -9.44187068939209
- ],
- [
- "▁turn",
- -9.44249439239502
- ],
- [
- "ated",
- -9.442923545837402
- ],
- [
- "▁everyone",
- -9.443060874938965
- ],
- [
- "cette",
- -9.443114280700684
- ],
- [
- "▁bien",
- -9.444964408874512
- ],
- [
- "less",
- -9.445222854614258
- ],
- [
- "▁Si",
- -9.445359230041504
- ],
- [
- "▁original",
- -9.446867942810059
- ],
- [
- "8",
- -9.44794750213623
- ],
- [
- "▁individual",
- -9.448895454406738
- ],
- [
- "tre",
- -9.449433326721191
- ],
- [
- "▁works",
- -9.45171070098877
- ],
- [
- "▁options",
- -9.451821327209473
- ],
- [
- "▁May",
- -9.454456329345703
- ],
- [
- "▁Not",
- -9.454940795898438
- ],
- [
- "▁report",
- -9.455467224121094
- ],
- [
- "mer",
- -9.457239151000977
- ],
- [
- "▁human",
- -9.459118843078613
- ],
- [
- "▁provided",
- -9.459603309631348
- ],
- [
- "▁By",
- -9.460925102233887
- ],
- [
- "▁series",
- -9.462006568908691
- ],
- [
- "7",
- -9.46226692199707
- ],
- [
- "▁modern",
- -9.463875770568848
- ],
- [
- "▁meet",
- -9.463921546936035
- ],
- [
- "▁50",
- -9.464119911193848
- ],
- [
- "▁25",
- -9.46969985961914
- ],
- [
- "▁color",
- -9.470091819763184
- ],
- [
- "▁download",
- -9.470109939575195
- ],
- [
- "▁Here",
- -9.471144676208496
- ],
- [
- "6",
- -9.471323013305664
- ],
- [
- "▁poate",
- -9.471449851989746
- ],
- [
- "▁În",
- -9.472321510314941
- ],
- [
- "▁phone",
- -9.473695755004883
- ],
- [
- "▁likely",
- -9.474374771118164
- ],
- [
- "▁table",
- -9.476469993591309
- ],
- [
- "▁ma",
- -9.476551055908203
- ],
- [
- "▁Or",
- -9.479181289672852
- ],
- [
- "Z",
- -9.48026180267334
- ],
- [
- "▁19",
- -9.482215881347656
- ],
- [
- "▁insurance",
- -9.482544898986816
- ],
- [
- "▁anything",
- -9.483808517456055
- ],
- [
- "▁search",
- -9.485033988952637
- ],
- [
- "▁Ge",
- -9.48520565032959
- ],
- [
- "▁issue",
- -9.485564231872559
- ],
- [
- "▁includes",
- -9.485688209533691
- ],
- [
- "▁clear",
- -9.487342834472656
- ],
- [
- "les",
- -9.488021850585938
- ],
- [
- "▁almost",
- -9.488259315490723
- ],
- [
- "ilor",
- -9.48935317993164
- ],
- [
- "▁14",
- -9.490717887878418
- ],
- [
- "by",
- -9.494056701660156
- ],
- [
- "▁Du",
- -9.49624252319336
- ],
- [
- "▁mais",
- -9.497303009033203
- ],
- [
- "ier",
- -9.499163627624512
- ],
- [
- "▁law",
- -9.49924087524414
- ],
- [
- "▁added",
- -9.500134468078613
- ],
- [
- "▁con",
- -9.500962257385254
- ],
- [
- ",\"",
- -9.501530647277832
- ],
- [
- "▁ago",
- -9.502127647399902
- ],
- [
- "▁His",
- -9.504697799682617
- ],
- [
- "▁points",
- -9.504981994628906
- ],
- [
- "▁mult",
- -9.505581855773926
- ],
- [
- "▁financial",
- -9.506216049194336
- ],
- [
- "▁problems",
- -9.506428718566895
- ],
- [
- "▁however",
- -9.50648307800293
- ],
- [
- "▁events",
- -9.50675106048584
- ],
- [
- "▁half",
- -9.507889747619629
- ],
- [
- "ard",
- -9.511183738708496
- ],
- [
- "▁ask",
- -9.51156997680664
- ],
- [
- "▁version",
- -9.511631965637207
- ],
- [
- "end",
- -9.512478828430176
- ],
- [
- "▁created",
- -9.512639999389648
- ],
- [
- "▁lead",
- -9.512917518615723
- ],
- [
- "▁focus",
- -9.513853073120117
- ],
- [
- "▁increase",
- -9.515096664428711
- ],
- [
- "ex",
- -9.515118598937988
- ],
- [
- "▁allow",
- -9.515798568725586
- ],
- [
- "▁extra",
- -9.516464233398438
- ],
- [
- "▁24",
- -9.516692161560059
- ],
- [
- "▁credit",
- -9.516772270202637
- ],
- [
- "▁production",
- -9.516801834106445
- ],
- [
- "zu",
- -9.517256736755371
- ],
- [
- "▁black",
- -9.51754093170166
- ],
- [
- "▁systems",
- -9.518040657043457
- ],
- [
- "▁17",
- -9.518178939819336
- ],
- [
- "▁opportunity",
- -9.518531799316406
- ],
- [
- "▁bis",
- -9.519219398498535
- ],
- [
- "▁fast",
- -9.519807815551758
- ],
- [
- "ring",
- -9.521166801452637
- ],
- [
- "▁Don",
- -9.522114753723145
- ],
- [
- "▁via",
- -9.52242660522461
- ],
- [
- "fer",
- -9.5225248336792
- ],
- [
- "▁comme",
- -9.522799491882324
- ],
- [
- "▁popular",
- -9.523722648620605
- ],
- [
- "▁South",
- -9.524491310119629
- ],
- [
- "ating",
- -9.525003433227539
- ],
- [
- "▁State",
- -9.525198936462402
- ],
- [
- "ator",
- -9.525679588317871
- ],
- [
- "▁common",
- -9.525968551635742
- ],
- [
- "con",
- -9.526727676391602
- ],
- [
- "▁throughout",
- -9.527557373046875
- ],
- [
- "▁risk",
- -9.52774715423584
- ],
- [
- "▁young",
- -9.528532028198242
- ],
- [
- "▁Je",
- -9.528688430786133
- ],
- [
- "▁image",
- -9.52928352355957
- ],
- [
- "ha",
- -9.529376983642578
- ],
- [
- "▁third",
- -9.529587745666504
- ],
- [
- "▁taken",
- -9.530049324035645
- ],
- [
- "▁Z",
- -9.5314302444458
- ],
- [
- "▁dis",
- -9.5316162109375
- ],
- [
- "▁From",
- -9.533575057983398
- ],
- [
- "▁details",
- -9.534862518310547
- ],
- [
- "▁games",
- -9.53516674041748
- ],
- [
- "▁practice",
- -9.536040306091309
- ],
- [
- "che",
- -9.536151885986328
- ],
- [
- "▁security",
- -9.537364959716797
- ],
- [
- "▁medical",
- -9.537653923034668
- ],
- [
- "▁learning",
- -9.537806510925293
- ],
- [
- "▁material",
- -9.538509368896484
- ],
- [
- "▁international",
- -9.540703773498535
- ],
- [
- "▁forward",
- -9.541245460510254
- ],
- [
- "▁paper",
- -9.541247367858887
- ],
- [
- "▁action",
- -9.541348457336426
- ],
- [
- "▁file",
- -9.542378425598145
- ],
- [
- "▁oil",
- -9.543096542358398
- ],
- [
- "▁self",
- -9.54377555847168
- ],
- [
- "▁private",
- -9.545247077941895
- ],
- [
- "▁interest",
- -9.545559883117676
- ],
- [
- "bar",
- -9.546065330505371
- ],
- [
- "▁sale",
- -9.547115325927734
- ],
- [
- "▁stay",
- -9.547348976135254
- ],
- [
- "ke",
- -9.548089981079102
- ],
- [
- "▁San",
- -9.549053192138672
- ],
- [
- "▁matter",
- -9.549870491027832
- ],
- [
- "▁reason",
- -9.550254821777344
- ],
- [
- "ted",
- -9.55147647857666
- ],
- [
- "▁potential",
- -9.551742553710938
- ],
- [
- "▁brand",
- -9.552441596984863
- ],
- [
- "▁field",
- -9.55315113067627
- ],
- [
- "▁treatment",
- -9.553420066833496
- ],
- [
- "▁period",
- -9.553516387939453
- ],
- [
- "▁York",
- -9.553890228271484
- ],
- [
- "▁Park",
- -9.554738998413086
- ],
- [
- "▁acest",
- -9.556009292602539
- ],
- [
- "ou",
- -9.556926727294922
- ],
- [
- "▁Ce",
- -9.557014465332031
- ],
- [
- "▁ready",
- -9.558111190795898
- ],
- [
- "▁rather",
- -9.55860424041748
- ],
- [
- "▁outside",
- -9.560086250305176
- ],
- [
- "▁standard",
- -9.560121536254883
- ],
- [
- "▁located",
- -9.560770034790039
- ],
- [
- "▁marketing",
- -9.562313079833984
- ],
- [
- "cu",
- -9.564041137695312
- ],
- [
- "▁Can",
- -9.564562797546387
- ],
- [
- "▁education",
- -9.566105842590332
- ],
- [
- "use",
- -9.566640853881836
- ],
- [
- "▁role",
- -9.566828727722168
- ],
- [
- "▁men",
- -9.571505546569824
- ],
- [
- "▁probably",
- -9.571550369262695
- ],
- [
- "▁store",
- -9.57221508026123
- ],
- [
- "▁John",
- -9.572355270385742
- ],
- [
- "▁rate",
- -9.573956489562988
- ],
- [
- "▁code",
- -9.573994636535645
- ],
- [
- "▁kids",
- -9.574408531188965
- ],
- [
- "▁currently",
- -9.57552719116211
- ],
- [
- "▁near",
- -9.576475143432617
- ],
- [
- "▁sales",
- -9.576716423034668
- ],
- [
- "▁usually",
- -9.577012062072754
- ],
- [
- "▁activities",
- -9.577242851257324
- ],
- [
- "▁party",
- -9.577371597290039
- ],
- [
- "▁leur",
- -9.577434539794922
- ],
- [
- "▁particular",
- -9.577627182006836
- ],
- [
- "▁mehr",
- -9.577707290649414
- ],
- [
- "ill",
- -9.578757286071777
- ],
- [
- "▁percent",
- -9.579113006591797
- ],
- [
- "▁fait",
- -9.579537391662598
- ],
- [
- "▁happy",
- -9.579904556274414
- ],
- [
- "▁inside",
- -9.58005428314209
- ],
- [
- "▁save",
- -9.580510139465332
- ],
- [
- "▁skills",
- -9.580765724182129
- ],
- [
- "▁consider",
- -9.581025123596191
- ],
- [
- "▁recent",
- -9.58161735534668
- ],
- [
- "▁strong",
- -9.581781387329102
- ],
- [
- "▁position",
- -9.582076072692871
- ],
- [
- "▁knowledge",
- -9.582303047180176
- ],
- [
- "▁tax",
- -9.583868980407715
- ],
- [
- "▁users",
- -9.584261894226074
- ],
- [
- "und",
- -9.585564613342285
- ],
- [
- "▁coming",
- -9.585904121398926
- ],
- [
- "▁article",
- -9.585923194885254
- ],
- [
- "min",
- -9.586345672607422
- ],
- [
- "▁sein",
- -9.586555480957031
- ],
- [
- "▁travel",
- -9.586871147155762
- ],
- [
- "▁changes",
- -9.58765983581543
- ],
- [
- "▁impact",
- -9.588181495666504
- ],
- [
- "▁wanted",
- -9.588460922241211
- ],
- [
- "▁address",
- -9.5885591506958
- ],
- [
- "▁soon",
- -9.58873462677002
- ],
- [
- "▁North",
- -9.588915824890137
- ],
- [
- "ată",
- -9.589237213134766
- ],
- [
- "▁trying",
- -9.58985424041748
- ],
- [
- "▁app",
- -9.590612411499023
- ],
- [
- "▁School",
- -9.592510223388672
- ],
- [
- "▁Es",
- -9.592548370361328
- ],
- [
- "we",
- -9.59261703491211
- ],
- [
- "▁conditions",
- -9.59292984008789
- ],
- [
- "▁digital",
- -9.593293190002441
- ],
- [
- "▁similar",
- -9.594805717468262
- ],
- [
- "▁solution",
- -9.59514331817627
- ],
- [
- "▁location",
- -9.595183372497559
- ],
- [
- "▁Of",
- -9.595418930053711
- ],
- [
- "▁follow",
- -9.595842361450195
- ],
- [
- "▁red",
- -9.597526550292969
- ],
- [
- "▁review",
- -9.599202156066895
- ],
- [
- "▁skin",
- -9.599575996398926
- ],
- [
- "▁pretty",
- -9.600369453430176
- ],
- [
- "day",
- -9.600558280944824
- ],
- [
- "▁dé",
- -9.602072715759277
- ],
- [
- "▁cause",
- -9.602169036865234
- ],
- [
- "▁Sa",
- -9.602463722229004
- ],
- [
- "▁user",
- -9.602520942687988
- ],
- [
- "▁Man",
- -9.603377342224121
- ],
- [
- "”.",
- -9.604146003723145
- ],
- [
- "▁Just",
- -9.604366302490234
- ],
- [
- "▁faire",
- -9.604475021362305
- ],
- [
- "▁member",
- -9.605619430541992
- ],
- [
- "▁iar",
- -9.606892585754395
- ],
- [
- "▁higher",
- -9.607715606689453
- ],
- [
- "▁step",
- -9.607887268066406
- ],
- [
- "▁wide",
- -9.608185768127441
- ],
- [
- "▁uns",
- -9.608920097351074
- ],
- [
- "▁World",
- -9.609135627746582
- ],
- [
- "▁additional",
- -9.61176586151123
- ],
- [
- "ber",
- -9.613197326660156
- ],
- [
- "▁easily",
- -9.613990783691406
- ],
- [
- "▁deal",
- -9.615070343017578
- ],
- [
- "▁ways",
- -9.615514755249023
- ],
- [
- "▁mobile",
- -9.616837501525879
- ],
- [
- "▁national",
- -9.616913795471191
- ],
- [
- "▁couple",
- -9.617389678955078
- ],
- [
- "▁ihre",
- -9.61939811706543
- ],
- [
- "▁choice",
- -9.619612693786621
- ],
- [
- "for",
- -9.619686126708984
- ],
- [
- "ous",
- -9.62070083618164
- ],
- [
- "▁Google",
- -9.620855331420898
- ],
- [
- "▁environment",
- -9.622426986694336
- ],
- [
- "urile",
- -9.623322486877441
- ],
- [
- "▁Center",
- -9.626680374145508
- ],
- [
- "mp",
- -9.628592491149902
- ],
- [
- "▁»",
- -9.629727363586426
- ],
- [
- "qui",
- -9.630680084228516
- ],
- [
- "▁growth",
- -9.631048202514648
- ],
- [
- "ler",
- -9.633174896240234
- ],
- [
- "▁improve",
- -9.63360595703125
- ],
- [
- "▁items",
- -9.6336669921875
- ],
- [
- "▁Nu",
- -9.63393783569336
- ],
- [
- "▁leave",
- -9.634074211120605
- ],
- [
- "▁true",
- -9.634805679321289
- ],
- [
- "▁wurde",
- -9.63487434387207
- ],
- [
- "▁cannot",
- -9.635004043579102
- ],
- [
- "▁13",
- -9.635096549987793
- ],
- [
- "▁running",
- -9.636015892028809
- ],
- [
- "▁anti",
- -9.636177062988281
- ],
- [
- "▁option",
- -9.636306762695312
- ],
- [
- "▁reading",
- -9.63657283782959
- ],
- [
- "▁Car",
- -9.636698722839355
- ],
- [
- "▁Wir",
- -9.638110160827637
- ],
- [
- "▁April",
- -9.63975715637207
- ],
- [
- "▁behind",
- -9.640642166137695
- ],
- [
- "▁client",
- -9.640750885009766
- ],
- [
- "▁cover",
- -9.641012191772461
- ],
- [
- "▁stop",
- -9.641090393066406
- ],
- [
- "ja",
- -9.641277313232422
- ],
- [
- "▁built",
- -9.641307830810547
- ],
- [
- "▁Con",
- -9.641313552856445
- ],
- [
- "ement",
- -9.641366004943848
- ],
- [
- "▁projects",
- -9.641828536987305
- ],
- [
- "▁variety",
- -9.641840934753418
- ],
- [
- "▁Ihre",
- -9.642666816711426
- ],
- [
- "ș",
- -9.64302921295166
- ],
- [
- "▁unter",
- -9.64385986328125
- ],
- [
- "▁longer",
- -9.646577835083008
- ],
- [
- "year",
- -9.647161483764648
- ],
- [
- "▁photo",
- -9.648370742797852
- ],
- [
- "▁Also",
- -9.64933967590332
- ],
- [
- "▁received",
- -9.651098251342773
- ],
- [
- "▁return",
- -9.652676582336426
- ],
- [
- "00",
- -9.653081893920898
- ],
- [
- "▁bar",
- -9.653343200683594
- ],
- [
- "ary",
- -9.654427528381348
- ],
- [
- "elor",
- -9.655137062072754
- ],
- [
- "▁Home",
- -9.656189918518066
- ],
- [
- "our",
- -9.656298637390137
- ],
- [
- "▁Me",
- -9.65771198272705
- ],
- [
- "▁held",
- -9.659111022949219
- ],
- [
- "▁click",
- -9.66014289855957
- ],
- [
- "▁ex",
- -9.660178184509277
- ],
- [
- "▁cum",
- -9.661561965942383
- ],
- [
- "▁takes",
- -9.66395378112793
- ],
- [
- "▁computer",
- -9.665796279907227
- ],
- [
- "▁told",
- -9.668192863464355
- ],
- [
- "+",
- -9.670648574829102
- ],
- [
- "▁patients",
- -9.670809745788574
- ],
- [
- "ting",
- -9.672165870666504
- ],
- [
- "▁direct",
- -9.672248840332031
- ],
- [
- "▁quickly",
- -9.672410011291504
- ],
- [
- "tic",
- -9.672877311706543
- ],
- [
- "▁vom",
- -9.673723220825195
- ],
- [
- "▁di",
- -9.67381477355957
- ],
- [
- "▁kitchen",
- -9.674022674560547
- ],
- [
- "▁network",
- -9.675640106201172
- ],
- [
- "▁2015",
- -9.676688194274902
- ],
- [
- "▁effective",
- -9.677227020263672
- ],
- [
- "▁collection",
- -9.677703857421875
- ],
- [
- "▁2017",
- -9.677751541137695
- ],
- [
- "▁words",
- -9.678145408630371
- ],
- [
- "▁cele",
- -9.678857803344727
- ],
- [
- "▁student",
- -9.678862571716309
- ],
- [
- "▁amazing",
- -9.678932189941406
- ],
- [
- "eur",
- -9.680419921875
- ],
- [
- ".”",
- -9.68227481842041
- ],
- [
- "▁ale",
- -9.682716369628906
- ],
- [
- "”,",
- -9.68414306640625
- ],
- [
- "▁purchase",
- -9.684350967407227
- ],
- [
- "▁mean",
- -9.68477725982666
- ],
- [
- "▁West",
- -9.686846733093262
- ],
- [
- "▁nice",
- -9.6889066696167
- ],
- [
- "▁age",
- -9.689131736755371
- ],
- [
- "▁base",
- -9.68923568725586
- ],
- [
- "▁summer",
- -9.68928337097168
- ],
- [
- "▁multi",
- -9.689496994018555
- ],
- [
- "▁allows",
- -9.689573287963867
- ],
- [
- "▁latest",
- -9.689604759216309
- ],
- [
- "▁global",
- -9.68992805480957
- ],
- [
- "▁chance",
- -9.690792083740234
- ],
- [
- "▁sense",
- -9.690872192382812
- ],
- [
- "ieren",
- -9.692789077758789
- ],
- [
- "▁difficult",
- -9.693133354187012
- ],
- [
- "ité",
- -9.694750785827637
- ],
- [
- "ka",
- -9.694792747497559
- ],
- [
- "du",
- -9.69483757019043
- ],
- [
- "▁providing",
- -9.695744514465332
- ],
- [
- "▁Art",
- -9.696940422058105
- ],
- [
- "▁drive",
- -9.698554992675781
- ],
- [
- "▁Go",
- -9.698877334594727
- ],
- [
- "▁très",
- -9.699414253234863
- ],
- [
- "U",
- -9.699579238891602
- ],
- [
- "▁Pre",
- -9.699846267700195
- ],
- [
- "▁shows",
- -9.700040817260742
- ],
- [
- "▁hair",
- -9.701324462890625
- ],
- [
- "▁success",
- -9.701513290405273
- ],
- [
- "▁UK",
- -9.703169822692871
- ],
- [
- "red",
- -9.703241348266602
- ],
- [
- "ü",
- -9.703370094299316
- ],
- [
- "ish",
- -9.703631401062012
- ],
- [
- "▁weeks",
- -9.704839706420898
- ],
- [
- "▁solutions",
- -9.7055025100708
- ],
- [
- "▁Pe",
- -9.7057523727417
- ],
- [
- "▁equipment",
- -9.706141471862793
- ],
- [
- "și",
- -9.706482887268066
- ],
- [
- "▁worked",
- -9.707073211669922
- ],
- [
- "\".",
- -9.708627700805664
- ],
- [
- "▁legal",
- -9.708720207214355
- ],
- [
- "▁bad",
- -9.70892333984375
- ],
- [
- "▁40",
- -9.709561347961426
- ],
- [
- "▁Internet",
- -9.709798812866211
- ],
- [
- "▁included",
- -9.709976196289062
- ],
- [
- "▁upon",
- -9.710977554321289
- ],
- [
- "▁excellent",
- -9.71106243133545
- ],
- [
- "▁goal",
- -9.71130084991455
- ],
- [
- "▁El",
- -9.711408615112305
- ],
- [
- "▁Mo",
- -9.711703300476074
- ],
- [
- "▁policy",
- -9.71319580078125
- ],
- [
- "▁aussi",
- -9.713537216186523
- ],
- [
- "▁weight",
- -9.713687896728516
- ],
- [
- "ici",
- -9.715133666992188
- ],
- [
- "▁approach",
- -9.715584754943848
- ],
- [
- "▁six",
- -9.71579647064209
- ],
- [
- "▁entire",
- -9.715911865234375
- ],
- [
- "9",
- -9.71633529663086
- ],
- [
- "▁send",
- -9.716832160949707
- ],
- [
- "▁1.",
- -9.718971252441406
- ],
- [
- "▁wenn",
- -9.719056129455566
- ],
- [
- "▁photos",
- -9.71993637084961
- ],
- [
- "://",
- -9.721014022827148
- ],
- [
- "ger",
- -9.72281551361084
- ],
- [
- "▁favorite",
- -9.723104476928711
- ],
- [
- "ley",
- -9.723477363586426
- ],
- [
- "▁else",
- -9.72463321685791
- ],
- [
- "▁types",
- -9.72468376159668
- ],
- [
- "▁link",
- -9.725333213806152
- ],
- [
- "▁recently",
- -9.72584056854248
- ],
- [
- "▁Mit",
- -9.72631549835205
- ],
- [
- "▁hot",
- -9.726548194885254
- ],
- [
- "tra",
- -9.726597785949707
- ],
- [
- "ş",
- -9.727307319641113
- ],
- [
- "▁according",
- -9.728511810302734
- ],
- [
- "▁necessary",
- -9.728511810302734
- ],
- [
- "▁multiple",
- -9.729269027709961
- ],
- [
- "▁Im",
- -9.729510307312012
- ],
- [
- "▁sehr",
- -9.729660034179688
- ],
- [
- "▁sign",
- -9.732263565063477
- ],
- [
- "▁anyone",
- -9.73283576965332
- ],
- [
- "▁land",
- -9.733613014221191
- ],
- [
- "▁States",
- -9.734037399291992
- ],
- [
- "▁unsere",
- -9.734119415283203
- ],
- [
- "ées",
- -9.734639167785645
- ],
- [
- "We",
- -9.735671043395996
- ],
- [
- "▁nothing",
- -9.735845565795898
- ],
- [
- "▁commercial",
- -9.736858367919922
- ],
- [
- "ful",
- -9.737265586853027
- ],
- [
- "▁seems",
- -9.739325523376465
- ],
- [
- "▁International",
- -9.740097045898438
- ],
- [
- "▁March",
- -9.74163818359375
- ],
- [
- "▁Thanks",
- -9.743307113647461
- ],
- [
- "▁County",
- -9.74365234375
- ],
- [
- "▁books",
- -9.744638442993164
- ],
- [
- "▁Ca",
- -9.7451753616333
- ],
- [
- "▁mi",
- -9.746304512023926
- ],
- [
- "▁meeting",
- -9.746662139892578
- ],
- [
- "▁tools",
- -9.747593879699707
- ],
- [
- "▁cut",
- -9.747650146484375
- ],
- [
- "▁related",
- -9.74765682220459
- ],
- [
- "▁lives",
- -9.748003005981445
- ],
- [
- "way",
- -9.748501777648926
- ],
- [
- "▁develop",
- -9.748651504516602
- ],
- [
- "▁sound",
- -9.748723983764648
- ],
- [
- "▁safe",
- -9.748950958251953
- ],
- [
- "▁Her",
- -9.74937629699707
- ],
- [
- "▁average",
- -9.751277923583984
- ],
- [
- "▁clean",
- -9.75174331665039
- ],
- [
- "▁talk",
- -9.752362251281738
- ],
- [
- "▁peut",
- -9.75241756439209
- ],
- [
- "▁dann",
- -9.752546310424805
- ],
- [
- "▁terms",
- -9.753265380859375
- ],
- [
- "▁foarte",
- -9.753512382507324
- ],
- [
- "▁super",
- -9.754284858703613
- ],
- [
- "▁programs",
- -9.754853248596191
- ],
- [
- "▁decision",
- -9.75540828704834
- ],
- [
- "▁costs",
- -9.756058692932129
- ],
- [
- "▁être",
- -9.756291389465332
- ],
- [
- "▁2019",
- -9.757674217224121
- ],
- [
- "led",
- -9.759482383728027
- ],
- [
- "▁parents",
- -9.759617805480957
- ],
- [
- "▁Mr",
- -9.761702537536621
- ],
- [
- "▁lower",
- -9.762362480163574
- ],
- [
- "▁door",
- -9.762978553771973
- ],
- [
- "▁été",
- -9.763933181762695
- ],
- [
- "▁box",
- -9.764954566955566
- ],
- [
- "▁record",
- -9.765517234802246
- ],
- [
- "▁win",
- -9.765650749206543
- ],
- [
- "ster",
- -9.766402244567871
- ],
- [
- "▁America",
- -9.766748428344727
- ],
- [
- "▁immer",
- -9.768763542175293
- ],
- [
- "▁road",
- -9.76996898651123
- ],
- [
- "▁leading",
- -9.772759437561035
- ],
- [
- "▁section",
- -9.772838592529297
- ],
- [
- "▁Facebook",
- -9.772990226745605
- ],
- [
- "▁Most",
- -9.7738676071167
- ],
- [
- "iert",
- -9.77435302734375
- ],
- [
- "▁morning",
- -9.774497032165527
- ],
- [
- "▁asked",
- -9.775190353393555
- ],
- [
- "▁involved",
- -9.77551555633545
- ],
- [
- "▁hier",
- -9.777607917785645
- ],
- [
- "▁images",
- -9.77821159362793
- ],
- [
- "▁House",
- -9.778263092041016
- ],
- [
- "▁highly",
- -9.780763626098633
- ],
- [
- "▁Bar",
- -9.781620979309082
- ],
- [
- "▁Service",
- -9.782510757446289
- ],
- [
- "▁attention",
- -9.784318923950195
- ],
- [
- "▁normal",
- -9.784571647644043
- ],
- [
- "▁plans",
- -9.785883903503418
- ],
- [
- "▁source",
- -9.785930633544922
- ],
- [
- "▁Aus",
- -9.788092613220215
- ],
- [
- "▁benefits",
- -9.788655281066895
- ],
- [
- "▁ses",
- -9.789348602294922
- ],
- [
- "des",
- -9.789867401123047
- ],
- [
- "▁internet",
- -9.789949417114258
- ],
- [
- "▁materials",
- -9.790080070495605
- ],
- [
- "▁même",
- -9.791318893432617
- ],
- [
- "▁fine",
- -9.791522026062012
- ],
- [
- "▁fit",
- -9.792226791381836
- ],
- [
- "▁21",
- -9.792612075805664
- ],
- [
- "▁itself",
- -9.793739318847656
- ],
- [
- "▁wieder",
- -9.793972969055176
- ],
- [
- "▁Many",
- -9.795313835144043
- ],
- [
- "▁nature",
- -9.795402526855469
- ],
- [
- "▁pain",
- -9.795467376708984
- ],
- [
- "▁device",
- -9.796183586120605
- ],
- [
- "art",
- -9.796989440917969
- ],
- [
- "pro",
- -9.7971830368042
- ],
- [
- "▁France",
- -9.797271728515625
- ],
- [
- "lich",
- -9.797314643859863
- ],
- [
- "▁2014",
- -9.799542427062988
- ],
- [
- "▁inter",
- -9.799964904785156
- ],
- [
- "▁Li",
- -9.800453186035156
- ],
- [
- "▁career",
- -9.801136016845703
- ],
- [
- "▁looks",
- -9.80145263671875
- ],
- [
- "▁ré",
- -9.802245140075684
- ],
- [
- "▁ability",
- -9.802556991577148
- ],
- [
- "▁situation",
- -9.803154945373535
- ],
- [
- "ville",
- -9.803157806396484
- ],
- [
- "▁2016",
- -9.80319595336914
- ],
- [
- "tes",
- -9.803462982177734
- ],
- [
- "▁remember",
- -9.803879737854004
- ],
- [
- "▁TV",
- -9.803998947143555
- ],
- [
- "▁levels",
- -9.805853843688965
- ],
- [
- "▁subject",
- -9.807723999023438
- ],
- [
- "ally",
- -9.80844497680664
- ],
- [
- "▁reduce",
- -9.810232162475586
- ],
- [
- "▁*",
- -9.8108491897583
- ],
- [
- "▁Day",
- -9.810867309570312
- ],
- [
- "▁write",
- -9.812152862548828
- ],
- [
- "▁pick",
- -9.814252853393555
- ],
- [
- "ence",
- -9.815399169921875
- ],
- [
- "▁fresh",
- -9.816520690917969
- ],
- [
- "▁traditional",
- -9.816662788391113
- ],
- [
- "chi",
- -9.817692756652832
- ],
- [
- "▁machine",
- -9.818047523498535
- ],
- [
- "▁resources",
- -9.819125175476074
- ],
- [
- "â",
- -9.819502830505371
- ],
- [
- "▁countries",
- -9.820009231567383
- ],
- [
- "▁Even",
- -9.820342063903809
- ],
- [
- "▁green",
- -9.821283340454102
- ],
- [
- "▁Free",
- -9.821910858154297
- ],
- [
- "▁daily",
- -9.822112083435059
- ],
- [
- "▁respect",
- -9.823013305664062
- ],
- [
- "▁instead",
- -9.823714256286621
- ],
- [
- "▁Once",
- -9.82418155670166
- ],
- [
- "▁word",
- -9.824407577514648
- ],
- [
- "▁construction",
- -9.82489013671875
- ],
- [
- "▁huge",
- -9.825064659118652
- ],
- [
- "▁feature",
- -9.825220108032227
- ],
- [
- "▁themselves",
- -9.826369285583496
- ],
- [
- "▁loss",
- -9.82919692993164
- ],
- [
- "%",
- -9.830063819885254
- ],
- [
- "▁safety",
- -9.830256462097168
- ],
- [
- "▁economic",
- -9.831406593322754
- ],
- [
- "▁require",
- -9.831945419311523
- ],
- [
- "30",
- -9.83255386352539
- ],
- [
- "▁planning",
- -9.833393096923828
- ],
- [
- "▁mal",
- -9.834482192993164
- ],
- [
- "▁directly",
- -9.835214614868164
- ],
- [
- "ure",
- -9.835719108581543
- ],
- [
- "▁track",
- -9.835734367370605
- ],
- [
- "▁tool",
- -9.836135864257812
- ],
- [
- "▁positive",
- -9.836392402648926
- ],
- [
- "▁piece",
- -9.837076187133789
- ],
- [
- "▁parts",
- -9.837140083312988
- ],
- [
- "ang",
- -9.83740520477295
- ],
- [
- "▁trip",
- -9.837453842163086
- ],
- [
- "▁organization",
- -9.837935447692871
- ],
- [
- "▁sites",
- -9.838274002075195
- ],
- [
- "▁fire",
- -9.83831787109375
- ],
- [
- "▁China",
- -9.838876724243164
- ],
- [
- "▁Pour",
- -9.839289665222168
- ],
- [
- "▁plant",
- -9.84011459350586
- ],
- [
- "▁board",
- -9.840341567993164
- ],
- [
- "▁interesting",
- -9.841227531433105
- ],
- [
- "gar",
- -9.841713905334473
- ],
- [
- "▁fie",
- -9.841752052307129
- ],
- [
- "▁late",
- -9.842166900634766
- ],
- [
- "▁wall",
- -9.842294692993164
- ],
- [
- "▁walk",
- -9.842741966247559
- ],
- [
- "ham",
- -9.843868255615234
- ],
- [
- "▁Ne",
- -9.845427513122559
- ],
- [
- "▁First",
- -9.845462799072266
- ],
- [
- "▁double",
- -9.845701217651367
- ],
- [
- "▁budget",
- -9.847657203674316
- ],
- [
- "▁cases",
- -9.847670555114746
- ],
- [
- "cal",
- -9.849738121032715
- ],
- [
- "old",
- -9.849796295166016
- ],
- [
- "▁Bo",
- -9.849822998046875
- ],
- [
- "▁spend",
- -9.850439071655273
- ],
- [
- "port",
- -9.850828170776367
- ],
- [
- "▁worth",
- -9.850934028625488
- ],
- [
- "ique",
- -9.851308822631836
- ],
- [
- "nes",
- -9.85190486907959
- ],
- [
- "cul",
- -9.852272033691406
- ],
- [
- "era",
- -9.85296630859375
- ],
- [
- "▁text",
- -9.853032112121582
- ],
- [
- "▁decided",
- -9.854948997497559
- ],
- [
- "▁floor",
- -9.855036735534668
- ],
- [
- "▁requirements",
- -9.85529899597168
- ],
- [
- "▁cel",
- -9.855361938476562
- ],
- [
- "▁effect",
- -9.855412483215332
- ],
- [
- "▁gibt",
- -9.856159210205078
- ],
- [
- "▁news",
- -9.859238624572754
- ],
- [
- "▁vos",
- -9.859931945800781
- ],
- [
- "▁players",
- -9.86057186126709
- ],
- [
- "▁saw",
- -9.862728118896484
- ],
- [
- "▁auto",
- -9.863056182861328
- ],
- [
- "▁town",
- -9.863207817077637
- ],
- [
- "▁myself",
- -9.864106178283691
- ],
- [
- "▁lost",
- -9.864988327026367
- ],
- [
- "▁$",
- -9.865124702453613
- ],
- [
- "▁June",
- -9.86609172821045
- ],
- [
- "▁significant",
- -9.866196632385254
- ],
- [
- "▁giving",
- -9.866230010986328
- ],
- [
- "▁stand",
- -9.866744041442871
- ],
- [
- "▁stock",
- -9.867657661437988
- ],
- [
- "▁hold",
- -9.867766380310059
- ],
- [
- "▁Are",
- -9.869078636169434
- ],
- [
- "▁shall",
- -9.86923599243164
- ],
- [
- "▁ideal",
- -9.869279861450195
- ],
- [
- "▁London",
- -9.87080192565918
- ],
- [
- "▁answer",
- -9.870853424072266
- ],
- [
- "▁Vor",
- -9.87157917022705
- ],
- [
- "▁gives",
- -9.873115539550781
- ],
- [
- "ative",
- -9.87316608428955
- ],
- [
- "▁timp",
- -9.873167991638184
- ],
- [
- "▁center",
- -9.87362289428711
- ],
- [
- "▁Group",
- -9.874580383300781
- ],
- [
- "▁sans",
- -9.875143051147461
- ],
- [
- "▁Ar",
- -9.875466346740723
- ],
- [
- "▁Ma",
- -9.875568389892578
- ],
- [
- "▁reach",
- -9.876279830932617
- ],
- [
- "ren",
- -9.876652717590332
- ],
- [
- "▁More",
- -9.877446174621582
- ],
- [
- "mit",
- -9.878068923950195
- ],
- [
- "▁guide",
- -9.87833309173584
- ],
- [
- "▁fully",
- -9.878828048706055
- ],
- [
- "▁Since",
- -9.878952980041504
- ],
- [
- "▁Inc",
- -9.87923812866211
- ],
- [
- "▁culture",
- -9.879780769348145
- ],
- [
- "eat",
- -9.880531311035156
- ],
- [
- "▁written",
- -9.880722999572754
- ],
- [
- "▁Ho",
- -9.881338119506836
- ],
- [
- "▁India",
- -9.881625175476074
- ],
- [
- "▁Well",
- -9.881708145141602
- ],
- [
- "back",
- -9.881752967834473
- ],
- [
- "▁goes",
- -9.882170677185059
- ],
- [
- "▁completely",
- -9.88217544555664
- ],
- [
- "▁tour",
- -9.883081436157227
- ],
- [
- "▁began",
- -9.883196830749512
- ],
- [
- "▁picture",
- -9.883255958557129
- ],
- [
- "▁mare",
- -9.88353157043457
- ],
- [
- "▁playing",
- -9.884223937988281
- ],
- [
- "▁trebuie",
- -9.884926795959473
- ],
- [
- "ils",
- -9.884940147399902
- ],
- [
- "chen",
- -9.885220527648926
- ],
- [
- "▁hit",
- -9.885416984558105
- ],
- [
- "▁complex",
- -9.88591480255127
- ],
- [
- "▁Thank",
- -9.886140823364258
- ],
- [
- "▁Let",
- -9.886350631713867
- ],
- [
- "▁applications",
- -9.887116432189941
- ],
- [
- "▁friend",
- -9.888312339782715
- ],
- [
- "▁English",
- -9.889549255371094
- ],
- [
- "▁charge",
- -9.890040397644043
- ],
- [
- "▁recommend",
- -9.893453598022461
- ],
- [
- "▁message",
- -9.893672943115234
- ],
- [
- "In",
- -9.893722534179688
- ],
- [
- "▁Mar",
- -9.894762992858887
- ],
- [
- "pp",
- -9.895845413208008
- ],
- [
- "▁method",
- -9.89692497253418
- ],
- [
- "▁successful",
- -9.897004127502441
- ],
- [
- "tion",
- -9.898880958557129
- ],
- [
- "▁release",
- -9.899920463562012
- ],
- [
- "▁creating",
- -9.900403022766113
- ],
- [
- "▁despre",
- -9.90141773223877
- ],
- [
- "esc",
- -9.902434349060059
- ],
- [
- "▁eye",
- -9.902752876281738
- ],
- [
- "▁apply",
- -9.905945777893066
- ],
- [
- "net",
- -9.906000137329102
- ],
- [
- "side",
- -9.906539916992188
- ],
- [
- "▁ar",
- -9.906949996948242
- ],
- [
- "▁platform",
- -9.90713882446289
- ],
- [
- "▁touch",
- -9.907329559326172
- ],
- [
- "▁towards",
- -9.90785026550293
- ],
- [
- "▁match",
- -9.908224105834961
- ],
- [
- "▁Black",
- -9.909344673156738
- ],
- [
- "▁fall",
- -9.90961742401123
- ],
- [
- "▁ground",
- -9.910234451293945
- ],
- [
- "▁High",
- -9.910740852355957
- ],
- [
- "▁Q",
- -9.911155700683594
- ],
- [
- "▁schon",
- -9.911709785461426
- ],
- [
- "▁hotel",
- -9.911751747131348
- ],
- [
- "▁prices",
- -9.912031173706055
- ],
- [
- "▁developed",
- -9.913411140441895
- ],
- [
- "uk",
- -9.913476943969727
- ],
- [
- "ide",
- -9.91367244720459
- ],
- [
- "▁September",
- -9.91370964050293
- ],
- [
- "ized",
- -9.914202690124512
- ],
- [
- "▁War",
- -9.914704322814941
- ],
- [
- "!!",
- -9.916285514831543
- ],
- [
- "▁grow",
- -9.916997909545898
- ],
- [
- "▁watch",
- -9.917067527770996
- ],
- [
- "▁storage",
- -9.917412757873535
- ],
- [
- "eau",
- -9.917513847351074
- ],
- [
- "can",
- -9.918373107910156
- ],
- [
- "▁Get",
- -9.919524192810059
- ],
- [
- "▁See",
- -9.91953182220459
- ],
- [
- "▁European",
- -9.919703483581543
- ],
- [
- "▁language",
- -9.91982650756836
- ],
- [
- "ează",
- -9.920175552368164
- ],
- [
- "▁court",
- -9.920334815979004
- ],
- [
- "▁Why",
- -9.921106338500977
- ],
- [
- "▁hear",
- -9.921342849731445
- ],
- [
- "▁doar",
- -9.921804428100586
- ],
- [
- "lan",
- -9.92330265045166
- ],
- [
- "▁Christmas",
- -9.923810958862305
- ],
- [
- "▁Web",
- -9.923871994018555
- ],
- [
- "vo",
- -9.92405891418457
- ],
- [
- "▁sent",
- -9.924983024597168
- ],
- [
- "▁businesses",
- -9.925868034362793
- ],
- [
- "▁Red",
- -9.926278114318848
- ],
- [
- "tel",
- -9.926375389099121
- ],
- [
- "▁Ha",
- -9.926508903503418
- ],
- [
- "▁wonderful",
- -9.926653861999512
- ],
- [
- "ations",
- -9.926738739013672
- ],
- [
- "za",
- -9.92748737335205
- ],
- [
- "▁22",
- -9.928659439086914
- ],
- [
- "▁thinking",
- -9.92941665649414
- ],
- [
- "▁became",
- -9.929733276367188
- ],
- [
- "▁cool",
- -9.929835319519043
- ],
- [
- "▁speed",
- -9.930370330810547
- ],
- [
- "mar",
- -9.930426597595215
- ],
- [
- "▁--",
- -9.931743621826172
- ],
- [
- "▁groups",
- -9.931920051574707
- ],
- [
- "▁interested",
- -9.93198299407959
- ],
- [
- "ak",
- -9.93218994140625
- ],
- [
- "▁60",
- -9.932672500610352
- ],
- [
- "▁screen",
- -9.93370246887207
- ],
- [
- "▁Design",
- -9.933789253234863
- ],
- [
- "▁limited",
- -9.935648918151855
- ],
- [
- "▁expected",
- -9.935959815979004
- ],
- [
- "▁opportunities",
- -9.936376571655273
- ],
- [
- "▁regular",
- -9.936870574951172
- ],
- [
- "off",
- -9.93702220916748
- ],
- [
- "▁Best",
- -9.937298774719238
- ],
- [
- "Re",
- -9.938436508178711
- ],
- [
- "▁ihr",
- -9.938719749450684
- ],
- [
- "▁Great",
- -9.938907623291016
- ],
- [
- "▁employees",
- -9.93924617767334
- ],
- [
- "▁custom",
- -9.939679145812988
- ],
- [
- "▁multe",
- -9.940123558044434
- ],
- [
- "let",
- -9.940876007080078
- ],
- [
- "▁benefit",
- -9.942487716674805
- ],
- [
- "▁term",
- -9.942623138427734
- ],
- [
- "▁bine",
- -9.942869186401367
- ],
- [
- "▁deep",
- -9.944526672363281
- ],
- [
- "▁August",
- -9.94526481628418
- ],
- [
- "▁President",
- -9.945381164550781
- ],
- [
- "▁Auf",
- -9.945854187011719
- ],
- [
- "▁wish",
- -9.946924209594727
- ],
- [
- "▁sometimes",
- -9.947274208068848
- ],
- [
- "ari",
- -9.947793960571289
- ],
- [
- "▁pressure",
- -9.948184967041016
- ],
- [
- "▁ani",
- -9.94859504699707
- ],
- [
- "▁trade",
- -9.949930191040039
- ],
- [
- "▁firm",
- -9.950027465820312
- ],
- [
- "▁comment",
- -9.95003604888916
- ],
- [
- "▁November",
- -9.950242042541504
- ],
- [
- "▁expect",
- -9.951102256774902
- ],
- [
- "▁2012",
- -9.952491760253906
- ],
- [
- "▁Ich",
- -9.95328140258789
- ],
- [
- "▁relationship",
- -9.95363998413086
- ],
- [
- "▁active",
- -9.954682350158691
- ],
- [
- "org",
- -9.954710960388184
- ],
- [
- "▁heat",
- -9.956732749938965
- ],
- [
- "▁wood",
- -9.95678997039795
- ],
- [
- "▁notre",
- -9.957921028137207
- ],
- [
- "▁function",
- -9.958330154418945
- ],
- [
- "▁2.",
- -9.95909309387207
- ],
- [
- "▁wedding",
- -9.960049629211426
- ],
- [
- "▁starting",
- -9.961235046386719
- ],
- [
- "▁Health",
- -9.961249351501465
- ],
- [
- "\",",
- -9.961713790893555
- ],
- [
- "▁death",
- -9.962173461914062
- ],
- [
- "▁pages",
- -9.962764739990234
- ],
- [
- "▁vehicle",
- -9.96293830871582
- ],
- [
- "▁request",
- -9.963874816894531
- ],
- [
- "▁helps",
- -9.963916778564453
- ],
- [
- "▁blue",
- -9.964017868041992
- ],
- [
- "▁analysis",
- -9.964414596557617
- ],
- [
- "▁posted",
- -9.964544296264648
- ],
- [
- "▁healthy",
- -9.964814186096191
- ],
- [
- "▁contract",
- -9.964988708496094
- ],
- [
- "▁•",
- -9.965263366699219
- ],
- [
- "▁Each",
- -9.965293884277344
- ],
- [
- "▁Fa",
- -9.966179847717285
- ],
- [
- "▁dintre",
- -9.966221809387207
- ],
- [
- "▁Friday",
- -9.967202186584473
- ],
- [
- "▁considered",
- -9.967992782592773
- ],
- [
- "cher",
- -9.96826457977295
- ],
- [
- "▁quick",
- -9.968731880187988
- ],
- [
- "▁understanding",
- -9.96916389465332
- ],
- [
- "▁condition",
- -9.969378471374512
- ],
- [
- "ization",
- -9.971049308776855
- ],
- [
- "▁document",
- -9.971664428710938
- ],
- [
- "▁prevent",
- -9.971890449523926
- ],
- [
- "▁growing",
- -9.9725341796875
- ],
- [
- "▁protection",
- -9.972620964050293
- ],
- [
- "▁cat",
- -9.974002838134766
- ],
- [
- "▁#",
- -9.975058555603027
- ],
- [
- "10",
- -9.975275039672852
- ],
- [
- "▁join",
- -9.9759521484375
- ],
- [
- "▁serve",
- -9.976580619812012
- ],
- [
- "▁blood",
- -9.977095603942871
- ],
- [
- "▁July",
- -9.977341651916504
- ],
- [
- "▁region",
- -9.977787971496582
- ],
- [
- "car",
- -9.97933578491211
- ],
- [
- "▁entre",
- -9.979788780212402
- ],
- [
- "▁physical",
- -9.981287002563477
- ],
- [
- "▁cash",
- -9.9813232421875
- ],
- [
- "aux",
- -9.981823921203613
- ],
- [
- "ng",
- -9.982654571533203
- ],
- [
- "▁stage",
- -9.98281478881836
- ],
- [
- "▁seem",
- -9.983034133911133
- ],
- [
- "▁definitely",
- -9.983795166015625
- ],
- [
- "▁investment",
- -9.983827590942383
- ],
- [
- "▁purpose",
- -9.985441207885742
- ],
- [
- "▁begin",
- -9.985486030578613
- ],
- [
- "®",
- -9.985495567321777
- ],
- [
- "▁break",
- -9.985701560974121
- ],
- [
- "itate",
- -9.987293243408203
- ],
- [
- "▁moving",
- -9.989288330078125
- ],
- [
- "▁met",
- -9.990678787231445
- ],
- [
- "ize",
- -9.990833282470703
- ],
- [
- "▁select",
- -9.991165161132812
- ],
- [
- "▁tous",
- -9.991310119628906
- ],
- [
- "▁Europe",
- -9.991639137268066
- ],
- [
- "@",
- -9.992724418640137
- ],
- [
- "▁individuals",
- -9.993392944335938
- ],
- [
- "▁Zeit",
- -9.993524551391602
- ],
- [
- "gu",
- -9.995670318603516
- ],
- [
- "▁unit",
- -9.995753288269043
- ],
- [
- "▁noi",
- -9.996089935302734
- ],
- [
- "▁places",
- -9.996171951293945
- ],
- [
- "all",
- -9.99632453918457
- ],
- [
- "▁wait",
- -9.996755599975586
- ],
- [
- "▁difference",
- -9.997234344482422
- ],
- [
- "▁round",
- -9.998015403747559
- ],
- [
- "50",
- -9.99953842163086
- ],
- [
- "rie",
- -9.999545097351074
- ],
- [
- "▁Et",
- -9.999933242797852
- ],
- [
- "20",
- -10.000725746154785
- ],
- [
- "▁activity",
- -10.000792503356934
- ],
- [
- "е",
- -10.000866889953613
- ],
- [
- "▁Windows",
- -10.001087188720703
- ],
- [
- "▁produce",
- -10.001385688781738
- ],
- [
- "▁keine",
- -10.00212574005127
- ],
- [
- "▁Air",
- -10.002567291259766
- ],
- [
- "▁January",
- -10.004890441894531
- ],
- [
- "▁deux",
- -10.005081176757812
- ],
- [
- "▁entry",
- -10.005208015441895
- ],
- [
- "king",
- -10.006500244140625
- ],
- [
- "▁goals",
- -10.006736755371094
- ],
- [
- "▁previous",
- -10.0077543258667
- ],
- [
- "▁+",
- -10.008035659790039
- ],
- [
- "▁Business",
- -10.008259773254395
- ],
- [
- "ont",
- -10.008552551269531
- ],
- [
- "▁Sunday",
- -10.008694648742676
- ],
- [
- "▁offering",
- -10.010359764099121
- ],
- [
- "▁response",
- -10.011018753051758
- ],
- [
- "▁surface",
- -10.011393547058105
- ],
- [
- "▁Department",
- -10.01212215423584
- ],
- [
- "▁exactly",
- -10.012190818786621
- ],
- [
- "▁Online",
- -10.012577056884766
- ],
- [
- "dem",
- -10.013803482055664
- ],
- [
- "ischen",
- -10.014006614685059
- ],
- [
- "▁hands",
- -10.015100479125977
- ],
- [
- "▁hour",
- -10.016197204589844
- ],
- [
- "▁dog",
- -10.016946792602539
- ],
- [
- "▁damage",
- -10.017006874084473
- ],
- [
- "▁capital",
- -10.018792152404785
- ],
- [
- "▁toate",
- -10.020488739013672
- ],
- [
- "▁wrong",
- -10.020674705505371
- ],
- [
- "unui",
- -10.022201538085938
- ],
- [
- "tri",
- -10.023979187011719
- ],
- [
- "▁sell",
- -10.023999214172363
- ],
- [
- "▁published",
- -10.024175643920898
- ],
- [
- "▁families",
- -10.024675369262695
- ],
- [
- "▁avoid",
- -10.025490760803223
- ],
- [
- "▁Ko",
- -10.025506019592285
- ],
- [
- "▁mod",
- -10.026697158813477
- ],
- [
- "rat",
- -10.027653694152832
- ],
- [
- "▁Make",
- -10.0299654006958
- ],
- [
- "▁October",
- -10.030153274536133
- ],
- [
- "▁former",
- -10.031285285949707
- ],
- [
- "▁Services",
- -10.03281021118164
- ],
- [
- "▁felt",
- -10.033045768737793
- ],
- [
- "▁selection",
- -10.033309936523438
- ],
- [
- "eaza",
- -10.034177780151367
- ],
- [
- "gel",
- -10.034422874450684
- ],
- [
- "▁Good",
- -10.035792350769043
- ],
- [
- "▁actual",
- -10.0364351272583
- ],
- [
- "▁gut",
- -10.036853790283203
- ],
- [
- "▁gas",
- -10.03708553314209
- ],
- [
- "15",
- -10.038182258605957
- ],
- [
- "▁structure",
- -10.038285255432129
- ],
- [
- "▁act",
- -10.0386381149292
- ],
- [
- "▁Zu",
- -10.038654327392578
- ],
- [
- "▁creative",
- -10.039134979248047
- ],
- [
- "▁Vi",
- -10.039159774780273
- ],
- [
- "▁shop",
- -10.04066276550293
- ],
- [
- "▁Lo",
- -10.040735244750977
- ],
- [
- "şi",
- -10.042192459106445
- ],
- [
- "▁mis",
- -10.042224884033203
- ],
- [
- "ungen",
- -10.042301177978516
- ],
- [
- "▁fan",
- -10.04240608215332
- ],
- [
- "▁|",
- -10.043391227722168
- ],
- [
- "▁Bei",
- -10.044037818908691
- ],
- [
- "▁protect",
- -10.04454517364502
- ],
- [
- "▁Na",
- -10.0447998046875
- ],
- [
- "q",
- -10.045693397521973
- ],
- [
- "ok",
- -10.04710578918457
- ],
- [
- "▁California",
- -10.047263145446777
- ],
- [
- "▁political",
- -10.047301292419434
- ],
- [
- "25",
- -10.047530174255371
- ],
- [
- "▁feeling",
- -10.047913551330566
- ],
- [
- "▁ces",
- -10.048321723937988
- ],
- [
- "▁display",
- -10.048857688903809
- ],
- [
- "▁essential",
- -10.04964542388916
- ],
- [
- "ând",
- -10.049971580505371
- ],
- [
- "▁seine",
- -10.050551414489746
- ],
- [
- "▁soft",
- -10.050915718078613
- ],
- [
- "ach",
- -10.05102252960205
- ],
- [
- "▁happen",
- -10.051118850708008
- ],
- [
- "▁Paul",
- -10.053346633911133
- ],
- [
- "▁Cu",
- -10.054024696350098
- ],
- [
- "house",
- -10.055376052856445
- ],
- [
- "ante",
- -10.05582046508789
- ],
- [
- "▁easier",
- -10.056551933288574
- ],
- [
- "▁sort",
- -10.0567045211792
- ],
- [
- "▁Post",
- -10.057138442993164
- ],
- [
- "▁accept",
- -10.05730152130127
- ],
- [
- "field",
- -10.057648658752441
- ],
- [
- "zen",
- -10.057741165161133
- ],
- [
- "▁character",
- -10.057848930358887
- ],
- [
- "▁beginning",
- -10.058433532714844
- ],
- [
- "▁Jesus",
- -10.058760643005371
- ],
- [
- "▁weekend",
- -10.059663772583008
- ],
- [
- "▁certainly",
- -10.06114387512207
- ],
- [
- "▁THE",
- -10.061254501342773
- ],
- [
- "▁alle",
- -10.06189250946045
- ],
- [
- "▁transport",
- -10.062220573425293
- ],
- [
- "▁Saturday",
- -10.063043594360352
- ],
- [
- "▁basic",
- -10.064136505126953
- ],
- [
- "▁loved",
- -10.06431770324707
- ],
- [
- "ros",
- -10.065333366394043
- ],
- [
- "▁offered",
- -10.065996170043945
- ],
- [
- "▁camera",
- -10.067024230957031
- ],
- [
- "▁Green",
- -10.06789779663086
- ],
- [
- "ology",
- -10.069480895996094
- ],
- [
- "ä",
- -10.069646835327148
- ],
- [
- "▁manage",
- -10.070416450500488
- ],
- [
- "▁paid",
- -10.070881843566895
- ],
- [
- "▁advice",
- -10.071617126464844
- ],
- [
- "▁patient",
- -10.072234153747559
- ],
- [
- "▁spent",
- -10.072272300720215
- ],
- [
- "▁mir",
- -10.072366714477539
- ],
- [
- "▁baby",
- -10.072400093078613
- ],
- [
- "ö",
- -10.073193550109863
- ],
- [
- "▁basis",
- -10.073338508605957
- ],
- [
- "▁cancer",
- -10.073765754699707
- ],
- [
- "▁Although",
- -10.07400894165039
- ],
- [
- "▁gift",
- -10.074336051940918
- ],
- [
- "▁3.",
- -10.074871063232422
- ],
- [
- "dieser",
- -10.075157165527344
- ],
- [
- "▁overall",
- -10.07520580291748
- ],
- [
- "▁Sch",
- -10.075265884399414
- ],
- [
- "▁Ex",
- -10.076258659362793
- ],
- [
- "▁December",
- -10.07689094543457
- ],
- [
- "▁released",
- -10.078214645385742
- ],
- [
- "▁prior",
- -10.07900333404541
- ],
- [
- "▁sowie",
- -10.081072807312012
- ],
- [
- "▁club",
- -10.081326484680176
- ],
- [
- "▁Street",
- -10.081535339355469
- ],
- [
- "▁College",
- -10.08254623413086
- ],
- [
- "▁î",
- -10.083059310913086
- ],
- [
- "over",
- -10.083159446716309
- ],
- [
- "▁gave",
- -10.08454704284668
- ],
- [
- "▁truly",
- -10.084784507751465
- ],
- [
- "par",
- -10.084806442260742
- ],
- [
- "▁Canada",
- -10.084888458251953
- ],
- [
- "▁existing",
- -10.085420608520508
- ],
- [
- "lie",
- -10.086335182189941
- ],
- [
- "▁ganz",
- -10.086658477783203
- ],
- [
- "▁setting",
- -10.087109565734863
- ],
- [
- "▁supply",
- -10.08739185333252
- ],
- [
- "▁college",
- -10.087540626525879
- ],
- [
- "▁communication",
- -10.088407516479492
- ],
- [
- "▁23",
- -10.088834762573242
- ],
- [
- "▁pass",
- -10.091546058654785
- ],
- [
- "▁devices",
- -10.091872215270996
- ],
- [
- "▁glass",
- -10.092083930969238
- ],
- [
- "▁experienced",
- -10.092395782470703
- ],
- [
- "▁grand",
- -10.093363761901855
- ],
- [
- "▁Po",
- -10.093396186828613
- ],
- [
- "▁beyond",
- -10.094029426574707
- ],
- [
- "▁format",
- -10.094165802001953
- ],
- [
- "▁mon",
- -10.09461498260498
- ],
- [
- "▁perform",
- -10.094635009765625
- ],
- [
- "sten",
- -10.095130920410156
- ],
- [
- "▁1,",
- -10.096270561218262
- ],
- [
- "▁Per",
- -10.096640586853027
- ],
- [
- "▁sold",
- -10.097247123718262
- ],
- [
- "▁rates",
- -10.0972900390625
- ],
- [
- "▁regarding",
- -10.097782135009766
- ],
- [
- "▁Paris",
- -10.098291397094727
- ],
- [
- "▁Dar",
- -10.099579811096191
- ],
- [
- "▁challenge",
- -10.099649429321289
- ],
- [
- "▁feet",
- -10.100564002990723
- ],
- [
- "▁Su",
- -10.102017402648926
- ],
- [
- "je",
- -10.102593421936035
- ],
- [
- "▁Bank",
- -10.102627754211426
- ],
- [
- "ven",
- -10.103126525878906
- ],
- [
- "jo",
- -10.103290557861328
- ],
- [
- "▁band",
- -10.10348892211914
- ],
- [
- "▁delivery",
- -10.104915618896484
- ],
- [
- "Vous",
- -10.104924201965332
- ],
- [
- "tele",
- -10.10495376586914
- ],
- [
- "▁East",
- -10.105379104614258
- ],
- [
- "▁pictures",
- -10.106067657470703
- ],
- [
- "▁useful",
- -10.106481552124023
- ],
- [
- "*",
- -10.107648849487305
- ],
- [
- "▁increased",
- -10.107746124267578
- ],
- [
- "▁stories",
- -10.108119010925293
- ],
- [
- "sion",
- -10.108280181884766
- ],
- [
- "bra",
- -10.108345985412598
- ],
- [
- "▁brought",
- -10.108466148376465
- ],
- [
- "▁effort",
- -10.109898567199707
- ],
- [
- "▁payment",
- -10.11058235168457
- ],
- [
- "▁heard",
- -10.110925674438477
- ],
- [
- "▁played",
- -10.111245155334473
- ],
- [
- "▁White",
- -10.111417770385742
- ],
- [
- "▁metal",
- -10.111721992492676
- ],
- [
- "tal",
- -10.111754417419434
- ],
- [
- "▁engine",
- -10.112006187438965
- ],
- [
- "▁Club",
- -10.11218547821045
- ],
- [
- "ical",
- -10.114581108093262
- ],
- [
- "▁effects",
- -10.115421295166016
- ],
- [
- "▁degree",
- -10.115763664245605
- ],
- [
- "▁bed",
- -10.1159086227417
- ],
- [
- "ette",
- -10.115991592407227
- ],
- [
- "▁David",
- -10.116386413574219
- ],
- [
- "°",
- -10.117666244506836
- ],
- [
- "▁Au",
- -10.117938041687012
- ],
- [
- "▁Company",
- -10.11845874786377
- ],
- [
- "▁player",
- -10.11938190460205
- ],
- [
- "▁Today",
- -10.120569229125977
- ],
- [
- "▁maintain",
- -10.12093448638916
- ],
- [
- "▁minute",
- -10.121193885803223
- ],
- [
- "mail",
- -10.122172355651855
- ],
- [
- "▁race",
- -10.122366905212402
- ],
- [
- "▁comfortable",
- -10.123887062072754
- ],
- [
- "▁responsible",
- -10.124085426330566
- ],
- [
- "vor",
- -10.124622344970703
- ],
- [
- "▁associated",
- -10.124695777893066
- ],
- [
- "▁weather",
- -10.124701499938965
- ],
- [
- "▁$1",
- -10.125639915466309
- ],
- [
- "▁tried",
- -10.126176834106445
- ],
- [
- "▁Check",
- -10.127649307250977
- ],
- [
- "▁solid",
- -10.127864837646484
- ],
- [
- "▁movie",
- -10.128364562988281
- ],
- [
- "▁coffee",
- -10.12874698638916
- ],
- [
- "board",
- -10.129073143005371
- ],
- [
- "▁po",
- -10.12946605682373
- ],
- [
- "▁warm",
- -10.129583358764648
- ],
- [
- "▁connect",
- -10.131733894348145
- ],
- [
- "▁Ad",
- -10.133807182312012
- ],
- [
- "work",
- -10.133859634399414
- ],
- [
- "mal",
- -10.13397216796875
- ],
- [
- "▁Act",
- -10.134634971618652
- ],
- [
- "▁achieve",
- -10.134769439697266
- ],
- [
- "▁Nach",
- -10.136604309082031
- ],
- [
- "www",
- -10.136669158935547
- ],
- [
- "term",
- -10.13672161102295
- ],
- [
- "▁claim",
- -10.137251853942871
- ],
- [
- "▁particularly",
- -10.138245582580566
- ],
- [
- "▁cas",
- -10.138396263122559
- ],
- [
- "▁furniture",
- -10.138461112976074
- ],
- [
- "▁finish",
- -10.13896369934082
- ],
- [
- "▁temps",
- -10.139026641845703
- ],
- [
- "▁disease",
- -10.139115333557129
- ],
- [
- "▁lots",
- -10.139196395874023
- ],
- [
- "▁ball",
- -10.139307975769043
- ],
- [
- "▁sun",
- -10.14010238647461
- ],
- [
- "▁strategy",
- -10.140498161315918
- ],
- [
- "bre",
- -10.140518188476562
- ],
- [
- "▁mine",
- -10.141541481018066
- ],
- [
- "▁Click",
- -10.141743659973145
- ],
- [
- "ran",
- -10.141983032226562
- ],
- [
- "▁Will",
- -10.142234802246094
- ],
- [
- "▁garden",
- -10.142974853515625
- ],
- [
- "▁stuff",
- -10.14359188079834
- ],
- [
- "▁limit",
- -10.144641876220703
- ],
- [
- "▁bottom",
- -10.14494800567627
- ],
- [
- "▁shown",
- -10.144962310791016
- ],
- [
- "ship",
- -10.145271301269531
- ],
- [
- "▁habe",
- -10.145858764648438
- ],
- [
- "▁Super",
- -10.146219253540039
- ],
- [
- "▁completed",
- -10.146971702575684
- ],
- [
- "▁wine",
- -10.146979331970215
- ],
- [
- "ische",
- -10.147262573242188
- ],
- [
- "▁largest",
- -10.147466659545898
- ],
- [
- "▁appropriate",
- -10.148261070251465
- ],
- [
- "▁immediately",
- -10.150248527526855
- ],
- [
- "▁Hi",
- -10.152358055114746
- ],
- [
- "▁trust",
- -10.152767181396484
- ],
- [
- "ability",
- -10.154254913330078
- ],
- [
- "▁powerful",
- -10.155101776123047
- ],
- [
- "▁helping",
- -10.155620574951172
- ],
- [
- "▁schedule",
- -10.155688285827637
- ],
- [
- "▁correct",
- -10.155707359313965
- ],
- [
- "▁transfer",
- -10.156496047973633
- ],
- [
- "pre",
- -10.15665340423584
- ],
- [
- "▁journey",
- -10.15688419342041
- ],
- [
- "pm",
- -10.157002449035645
- ],
- [
- "don",
- -10.158435821533203
- ],
- [
- "▁highest",
- -10.159249305725098
- ],
- [
- "▁finally",
- -10.15999698638916
- ],
- [
- "form",
- -10.160258293151855
- ],
- [
- "▁extremely",
- -10.160404205322266
- ],
- [
- "▁window",
- -10.160501480102539
- ],
- [
- "▁Over",
- -10.162222862243652
- ],
- [
- "▁remove",
- -10.162469863891602
- ],
- [
- "wood",
- -10.162479400634766
- ],
- [
- "▁2013",
- -10.163631439208984
- ],
- [
- "▁mother",
- -10.164072036743164
- ],
- [
- "▁Auto",
- -10.16436767578125
- ],
- [
- "▁annual",
- -10.164615631103516
- ],
- [
- "▁Star",
- -10.164834976196289
- ],
- [
- "▁Di",
- -10.166138648986816
- ],
- [
- "о",
- -10.16711139678955
- ],
- [
- "▁gold",
- -10.167129516601562
- ],
- [
- "tar",
- -10.167352676391602
- ],
- [
- "ju",
- -10.167750358581543
- ],
- [
- "▁Use",
- -10.169474601745605
- ],
- [
- "▁thanks",
- -10.16960334777832
- ],
- [
- "▁centre",
- -10.170127868652344
- ],
- [
- "▁Australia",
- -10.170358657836914
- ],
- [
- "▁estate",
- -10.170504570007324
- ],
- [
- "▁eyes",
- -10.1714448928833
- ],
- [
- "▁force",
- -10.171592712402344
- ],
- [
- "▁income",
- -10.17395305633545
- ],
- [
- "▁science",
- -10.174036026000977
- ],
- [
- "ori",
- -10.174230575561523
- ],
- [
- "▁enter",
- -10.174851417541504
- ],
- [
- "▁28",
- -10.175408363342285
- ],
- [
- "ire",
- -10.17568302154541
- ],
- [
- "▁schools",
- -10.175797462463379
- ],
- [
- "▁restaurant",
- -10.176088333129883
- ],
- [
- "▁Council",
- -10.177032470703125
- ],
- [
- "aus",
- -10.177885055541992
- ],
- [
- "▁agree",
- -10.17905330657959
- ],
- [
- "▁campaign",
- -10.179192543029785
- ],
- [
- "▁Ta",
- -10.179428100585938
- ],
- [
- "▁letter",
- -10.179814338684082
- ],
- [
- "▁central",
- -10.179931640625
- ],
- [
- "▁Because",
- -10.180054664611816
- ],
- [
- "▁path",
- -10.180349349975586
- ],
- [
- "▁loc",
- -10.180882453918457
- ],
- [
- "▁files",
- -10.182587623596191
- ],
- [
- "▁population",
- -10.182705879211426
- ],
- [
- "▁explore",
- -10.182723999023438
- ],
- [
- "▁mid",
- -10.182734489440918
- ],
- [
- "▁concept",
- -10.182748794555664
- ],
- [
- "▁church",
- -10.183015823364258
- ],
- [
- "80",
- -10.183026313781738
- ],
- [
- "▁einfach",
- -10.185834884643555
- ],
- [
- "▁reasons",
- -10.186690330505371
- ],
- [
- "▁determine",
- -10.186755180358887
- ],
- [
- "▁February",
- -10.187095642089844
- ],
- [
- "▁evidence",
- -10.18797779083252
- ],
- [
- "▁sleep",
- -10.188036918640137
- ],
- [
- "▁Board",
- -10.188652992248535
- ],
- [
- "▁maybe",
- -10.189635276794434
- ],
- [
- "▁wasn",
- -10.189701080322266
- ],
- [
- "▁Monday",
- -10.190101623535156
- ],
- [
- "▁director",
- -10.190481185913086
- ],
- [
- "well",
- -10.190974235534668
- ],
- [
- "During",
- -10.191001892089844
- ],
- [
- "▁sweet",
- -10.191061973571777
- ],
- [
- "▁assist",
- -10.19124984741211
- ],
- [
- "▁police",
- -10.191511154174805
- ],
- [
- "▁repair",
- -10.191729545593262
- ],
- [
- "▁techniques",
- -10.191733360290527
- ],
- [
- "▁served",
- -10.191808700561523
- ],
- [
- "vi",
- -10.192037582397461
- ],
- [
- "▁sports",
- -10.192331314086914
- ],
- [
- "▁opening",
- -10.192401885986328
- ],
- [
- "▁ones",
- -10.192731857299805
- ],
- [
- "▁notice",
- -10.193460464477539
- ],
- [
- "▁PC",
- -10.193547248840332
- ],
- [
- "▁alte",
- -10.194242477416992
- ],
- [
- "▁Bi",
- -10.194340705871582
- ],
- [
- "▁cold",
- -10.195606231689453
- ],
- [
- "▁billion",
- -10.195794105529785
- ],
- [
- "▁balance",
- -10.196361541748047
- ],
- [
- "cer",
- -10.196417808532715
- ],
- [
- "▁nearly",
- -10.196725845336914
- ],
- [
- "▁wear",
- -10.197259902954102
- ],
- [
- "free",
- -10.19760799407959
- ],
- [
- "▁Have",
- -10.197748184204102
- ],
- [
- "▁comfort",
- -10.199211120605469
- ],
- [
- "▁studies",
- -10.199225425720215
- ],
- [
- "▁traffic",
- -10.199540138244629
- ],
- [
- "▁item",
- -10.200214385986328
- ],
- [
- "▁teaching",
- -10.200467109680176
- ],
- [
- "▁turned",
- -10.201326370239258
- ],
- [
- "isation",
- -10.201354026794434
- ],
- [
- "12",
- -10.202038764953613
- ],
- [
- "▁greater",
- -10.202167510986328
- ],
- [
- "▁knew",
- -10.20233154296875
- ],
- [
- "▁Association",
- -10.203333854675293
- ],
- [
- "▁Office",
- -10.203802108764648
- ],
- [
- "▁established",
- -10.204085350036621
- ],
- [
- "45",
- -10.204170227050781
- ],
- [
- "▁Love",
- -10.204318046569824
- ],
- [
- "▁changed",
- -10.204882621765137
- ],
- [
- "▁pan",
- -10.205184936523438
- ],
- [
- "van",
- -10.20565414428711
- ],
- [
- "▁Mi",
- -10.205663681030273
- ],
- [
- "▁tend",
- -10.20637321472168
- ],
- [
- "▁connection",
- -10.206522941589355
- ],
- [
- "▁lack",
- -10.206954002380371
- ],
- [
- "▁bank",
- -10.208464622497559
- ],
- [
- "cat",
- -10.208720207214355
- ],
- [
- "▁helped",
- -10.209071159362793
- ],
- [
- "▁spot",
- -10.209417343139648
- ],
- [
- "▁spring",
- -10.20974063873291
- ],
- [
- "▁Wi",
- -10.210912704467773
- ],
- [
- "▁Mac",
- -10.211682319641113
- ],
- [
- "▁Christ",
- -10.212015151977539
- ],
- [
- "▁saying",
- -10.212835311889648
- ],
- [
- "▁General",
- -10.213062286376953
- ],
- [
- "▁port",
- -10.213099479675293
- ],
- [
- "▁Mal",
- -10.213156700134277
- ],
- [
- "▁System",
- -10.213486671447754
- ],
- [
- "▁According",
- -10.2152738571167
- ],
- [
- "▁chiar",
- -10.21568489074707
- ],
- [
- "log",
- -10.21576976776123
- ],
- [
- "▁mix",
- -10.215974807739258
- ],
- [
- "▁Lake",
- -10.216042518615723
- ],
- [
- "▁intr",
- -10.216590881347656
- ],
- [
- "▁deliver",
- -10.216793060302734
- ],
- [
- "mon",
- -10.216931343078613
- ],
- [
- "▁Ro",
- -10.217060089111328
- ],
- [
- "▁Management",
- -10.217504501342773
- ],
- [
- "bri",
- -10.218718528747559
- ],
- [
- "▁pieces",
- -10.218774795532227
- ],
- [
- "▁announced",
- -10.218926429748535
- ],
- [
- "▁Yes",
- -10.219268798828125
- ],
- [
- "▁dark",
- -10.220884323120117
- ],
- [
- "val",
- -10.221765518188477
- ],
- [
- "▁rights",
- -10.22309684753418
- ],
- [
- "▁Diese",
- -10.223100662231445
- ],
- [
- "ki",
- -10.223350524902344
- ],
- [
- "vent",
- -10.22375774383545
- ],
- [
- "▁born",
- -10.22380542755127
- ],
- [
- "▁muss",
- -10.224031448364258
- ],
- [
- "compared",
- -10.224660873413086
- ],
- [
- "▁demand",
- -10.224669456481934
- ],
- [
- "▁handle",
- -10.225493431091309
- ],
- [
- "▁mode",
- -10.226058006286621
- ],
- [
- "lic",
- -10.226137161254883
- ],
- [
- "▁ahead",
- -10.226436614990234
- ],
- [
- "▁sharing",
- -10.227599143981934
- ],
- [
- "▁micro",
- -10.227779388427734
- ],
- [
- "▁Par",
- -10.228626251220703
- ],
- [
- "▁Every",
- -10.22950553894043
- ],
- [
- "▁bag",
- -10.229736328125
- ],
- [
- "▁daca",
- -10.22974967956543
- ],
- [
- "▁Apple",
- -10.23022174835205
- ],
- [
- "▁Mark",
- -10.230239868164062
- ],
- [
- "▁larger",
- -10.231284141540527
- ],
- [
- "eze",
- -10.231978416442871
- ],
- [
- "▁progress",
- -10.232234001159668
- ],
- [
- "▁stress",
- -10.232929229736328
- ],
- [
- "▁cards",
- -10.233663558959961
- ],
- [
- "▁driving",
- -10.233738899230957
- ],
- [
- "▁dry",
- -10.233970642089844
- ],
- [
- "▁relevant",
- -10.234556198120117
- ],
- [
- "▁Jo",
- -10.234825134277344
- ],
- [
- "▁tree",
- -10.235036849975586
- ],
- [
- "▁reported",
- -10.235770225524902
- ],
- [
- "ities",
- -10.23577880859375
- ],
- [
- "▁tea",
- -10.235806465148926
- ],
- [
- "▁although",
- -10.236145973205566
- ],
- [
- "▁Research",
- -10.236261367797852
- ],
- [
- "▁pool",
- -10.23691463470459
- ],
- [
- "▁fin",
- -10.237163543701172
- ],
- [
- "▁Und",
- -10.238130569458008
- ],
- [
- "▁decide",
- -10.239217758178711
- ],
- [
- "▁expert",
- -10.239344596862793
- ],
- [
- "rate",
- -10.239428520202637
- ],
- [
- "zeit",
- -10.239971160888672
- ],
- [
- "▁26",
- -10.24040412902832
- ],
- [
- "▁Ka",
- -10.24056339263916
- ],
- [
- "▁fix",
- -10.240666389465332
- ],
- [
- "igen",
- -10.240713119506836
- ],
- [
- "▁direction",
- -10.241188049316406
- ],
- [
- "▁star",
- -10.241661071777344
- ],
- [
- "▁middle",
- -10.241889953613281
- ],
- [
- "▁Ja",
- -10.241962432861328
- ],
- [
- "▁Land",
- -10.24207878112793
- ],
- [
- "ken",
- -10.242605209350586
- ],
- [
- "▁button",
- -10.242630004882812
- ],
- [
- "▁rules",
- -10.242656707763672
- ],
- [
- "▁également",
- -10.242706298828125
- ],
- [
- "▁viel",
- -10.243158340454102
- ],
- [
- "▁welcome",
- -10.243682861328125
- ],
- [
- "că",
- -10.243932723999023
- ],
- [
- "▁Top",
- -10.245308876037598
- ],
- [
- "▁allowed",
- -10.245487213134766
- ],
- [
- "▁tip",
- -10.245584487915039
- ],
- [
- "▁cei",
- -10.245768547058105
- ],
- [
- "▁Nous",
- -10.246004104614258
- ],
- [
- "té",
- -10.246850967407227
- ],
- [
- "▁unei",
- -10.246903419494629
- ],
- [
- "▁efforts",
- -10.247260093688965
- ],
- [
- "▁note",
- -10.247719764709473
- ],
- [
- "▁title",
- -10.247977256774902
- ],
- [
- "ric",
- -10.248047828674316
- ],
- [
- "berg",
- -10.248252868652344
- ],
- [
- "▁ainsi",
- -10.248576164245605
- ],
- [
- "▁led",
- -10.248713493347168
- ],
- [
- "▁alone",
- -10.248786926269531
- ],
- [
- "ward",
- -10.249215126037598
- ],
- [
- "▁vie",
- -10.249323844909668
- ],
- [
- "▁brain",
- -10.249427795410156
- ],
- [
- "light",
- -10.250100135803223
- ],
- [
- "▁Court",
- -10.250598907470703
- ],
- [
- "set",
- -10.250869750976562
- ],
- [
- "▁steps",
- -10.251251220703125
- ],
- [
- "pri",
- -10.251391410827637
- ],
- [
- "Q",
- -10.251654624938965
- ],
- [
- "sti",
- -10.251938819885254
- ],
- [
- "▁voice",
- -10.252121925354004
- ],
- [
- "▁models",
- -10.252705574035645
- ],
- [
- "▁parties",
- -10.25442886352539
- ],
- [
- "▁radio",
- -10.255270957946777
- ],
- [
- "▁mission",
- -10.25545883178711
- ],
- [
- "▁methods",
- -10.255658149719238
- ],
- [
- "▁Te",
- -10.256019592285156
- ],
- [
- "air",
- -10.256489753723145
- ],
- [
- "▁essay",
- -10.256719589233398
- ],
- [
- "my",
- -10.256826400756836
- ],
- [
- "▁competition",
- -10.257049560546875
- ],
- [
- "ses",
- -10.257447242736816
- ],
- [
- "▁serious",
- -10.258724212646484
- ],
- [
- "▁Ti",
- -10.258733749389648
- ],
- [
- "▁Hand",
- -10.259561538696289
- ],
- [
- "not",
- -10.25958251953125
- ],
- [
- "▁winter",
- -10.261277198791504
- ],
- [
- "24",
- -10.261724472045898
- ],
- [
- "▁vision",
- -10.26174545288086
- ],
- [
- "▁technical",
- -10.262110710144043
- ],
- [
- "▁cross",
- -10.262799263000488
- ],
- [
- "▁update",
- -10.262947082519531
- ],
- [
- "▁Team",
- -10.263564109802246
- ],
- [
- "▁evening",
- -10.264286041259766
- ],
- [
- "▁experts",
- -10.26435661315918
- ],
- [
- "part",
- -10.264640808105469
- ],
- [
- "▁wo",
- -10.265190124511719
- ],
- [
- "▁App",
- -10.265729904174805
- ],
- [
- "▁peu",
- -10.266267776489258
- ],
- [
- "▁mich",
- -10.26630687713623
- ],
- [
- "▁reports",
- -10.267001152038574
- ],
- [
- "▁km",
- -10.267594337463379
- ],
- [
- "▁print",
- -10.2678804397583
- ],
- [
- "▁Hotel",
- -10.268101692199707
- ],
- [
- "▁earlier",
- -10.268235206604004
- ],
- [
- "▁uses",
- -10.26826286315918
- ],
- [
- "▁menu",
- -10.268416404724121
- ],
- [
- "▁miles",
- -10.26845645904541
- ],
- [
- "▁classes",
- -10.268463134765625
- ],
- [
- "▁mo",
- -10.268525123596191
- ],
- [
- "▁loan",
- -10.2691011428833
- ],
- [
- "▁host",
- -10.269192695617676
- ],
- [
- "▁author",
- -10.269274711608887
- ],
- [
- "-1",
- -10.269434928894043
- ],
- [
- "▁bun",
- -10.269940376281738
- ],
- [
- "19",
- -10.270011901855469
- ],
- [
- "uch",
- -10.270670890808105
- ],
- [
- "ble",
- -10.270813941955566
- ],
- [
- "▁holiday",
- -10.270859718322754
- ],
- [
- "los",
- -10.271894454956055
- ],
- [
- "▁looked",
- -10.272663116455078
- ],
- [
- "▁Test",
- -10.272759437561035
- ],
- [
- "▁moved",
- -10.273000717163086
- ],
- [
- "▁numbers",
- -10.273306846618652
- ],
- [
- "▁covered",
- -10.273405075073242
- ],
- [
- "ker",
- -10.273696899414062
- ],
- [
- "TM",
- -10.273768424987793
- ],
- [
- "▁album",
- -10.274727821350098
- ],
- [
- "▁27",
- -10.27476692199707
- ],
- [
- "▁când",
- -10.27523422241211
- ],
- [
- "▁shopping",
- -10.275248527526855
- ],
- [
- "▁Ihr",
- -10.27531623840332
- ],
- [
- "▁requires",
- -10.275786399841309
- ],
- [
- "▁USA",
- -10.275909423828125
- ],
- [
- "000",
- -10.275951385498047
- ],
- [
- "▁official",
- -10.276010513305664
- ],
- [
- "▁states",
- -10.276346206665039
- ],
- [
- "▁tips",
- -10.276570320129395
- ],
- [
- "ible",
- -10.277321815490723
- ],
- [
- "▁Lu",
- -10.27756404876709
- ],
- [
- "ces",
- -10.278343200683594
- ],
- [
- "▁figure",
- -10.27839469909668
- ],
- [
- "▁Take",
- -10.278576850891113
- ],
- [
- "▁după",
- -10.278687477111816
- ],
- [
- "▁teams",
- -10.278980255126953
- ],
- [
- "▁song",
- -10.279138565063477
- ],
- [
- "▁master",
- -10.279386520385742
- ],
- [
- "ED",
- -10.279841423034668
- ],
- [
- "▁cleaning",
- -10.280523300170898
- ],
- [
- "▁drop",
- -10.280651092529297
- ],
- [
- "▁primary",
- -10.2808837890625
- ],
- [
- "▁Life",
- -10.28108024597168
- ],
- [
- "▁carry",
- -10.281129837036133
- ],
- [
- "▁initial",
- -10.281270980834961
- ],
- [
- "▁encore",
- -10.281617164611816
- ],
- [
- "▁Add",
- -10.281670570373535
- ],
- [
- "▁woman",
- -10.282076835632324
- ],
- [
- "▁Water",
- -10.282219886779785
- ],
- [
- "▁advantage",
- -10.28277587890625
- ],
- [
- "see",
- -10.283234596252441
- ],
- [
- "ré",
- -10.283341407775879
- ],
- [
- "▁motor",
- -10.283479690551758
- ],
- [
- "mel",
- -10.2838716506958
- ],
- [
- "▁finding",
- -10.284419059753418
- ],
- [
- "▁plastic",
- -10.286365509033203
- ],
- [
- "▁IT",
- -10.286602973937988
- ],
- [
- "▁Church",
- -10.286916732788086
- ],
- [
- "▁shape",
- -10.287345886230469
- ],
- [
- "▁gets",
- -10.287763595581055
- ],
- [
- "▁followed",
- -10.288186073303223
- ],
- [
- "▁100%",
- -10.288315773010254
- ],
- [
- "▁Program",
- -10.28912353515625
- ],
- [
- "▁Another",
- -10.28934383392334
- ],
- [
- "▁zwei",
- -10.289522171020508
- ],
- [
- "▁father",
- -10.289839744567871
- ],
- [
- "▁rich",
- -10.290282249450684
- ],
- [
- "où",
- -10.290810585021973
- ],
- [
- "▁lines",
- -10.290934562683105
- ],
- [
- "▁distance",
- -10.291757583618164
- ],
- [
- "▁cell",
- -10.291876792907715
- ],
- [
- "▁parte",
- -10.292072296142578
- ],
- [
- "bit",
- -10.292445182800293
- ],
- [
- "▁perhaps",
- -10.292749404907227
- ],
- [
- "rii",
- -10.293590545654297
- ],
- [
- "▁session",
- -10.294137954711914
- ],
- [
- "▁Pentru",
- -10.294528007507324
- ],
- [
- "ING",
- -10.295049667358398
- ],
- [
- "ants",
- -10.295478820800781
- ],
- [
- "▁remain",
- -10.295543670654297
- ],
- [
- "13",
- -10.295588493347168
- ],
- [
- "▁finished",
- -10.295763969421387
- ],
- [
- "bel",
- -10.298725128173828
- ],
- [
- "▁organizations",
- -10.299455642700195
- ],
- [
- "▁Any",
- -10.299896240234375
- ],
- [
- "▁taste",
- -10.300277709960938
- ],
- [
- "Whether",
- -10.300600051879883
- ],
- [
- "ram",
- -10.300874710083008
- ],
- [
- "like",
- -10.301307678222656
- ],
- [
- "▁artist",
- -10.301319122314453
- ],
- [
- "aire",
- -10.303369522094727
- ],
- [
- "▁French",
- -10.303386688232422
- ],
- [
- "▁donc",
- -10.303634643554688
- ],
- [
- "ow",
- -10.30386734008789
- ],
- [
- "▁200",
- -10.303993225097656
- ],
- [
- "▁paint",
- -10.304465293884277
- ],
- [
- "▁Open",
- -10.304535865783691
- ],
- [
- "▁appear",
- -10.304722785949707
- ],
- [
- "▁Washington",
- -10.304765701293945
- ],
- [
- "▁target",
- -10.30491828918457
- ],
- [
- "pir",
- -10.305578231811523
- ],
- [
- "▁generally",
- -10.305987358093262
- ],
- [
- "▁British",
- -10.306790351867676
- ],
- [
- "▁seven",
- -10.306937217712402
- ],
- [
- "▁bio",
- -10.307162284851074
- ],
- [
- "▁sector",
- -10.307358741760254
- ],
- [
- "90",
- -10.30777359008789
- ],
- [
- "▁fapt",
- -10.307881355285645
- ],
- [
- "▁prefer",
- -10.308316230773926
- ],
- [
- "▁partner",
- -10.308427810668945
- ],
- [
- "ăm",
- -10.308547973632812
- ],
- [
- "▁diverse",
- -10.308610916137695
- ],
- [
- "▁onto",
- -10.309283256530762
- ],
- [
- "▁refer",
- -10.309828758239746
- ],
- [
- "▁Law",
- -10.310302734375
- ],
- [
- "▁Ri",
- -10.310596466064453
- ],
- [
- "▁critical",
- -10.310735702514648
- ],
- [
- "▁copy",
- -10.310897827148438
- ],
- [
- "ck",
- -10.311517715454102
- ],
- [
- "ix",
- -10.311732292175293
- ],
- [
- "tag",
- -10.311793327331543
- ],
- [
- "▁Road",
- -10.311936378479004
- ],
- [
- "▁concern",
- -10.312053680419922
- ],
- [
- "▁maximum",
- -10.312095642089844
- ],
- [
- "▁train",
- -10.312148094177246
- ],
- [
- "▁într",
- -10.312189102172852
- ],
- [
- "ura",
- -10.313023567199707
- ],
- [
- "▁Qu",
- -10.313481330871582
- ],
- [
- "▁links",
- -10.313538551330566
- ],
- [
- "▁audience",
- -10.313969612121582
- ],
- [
- "▁foot",
- -10.314554214477539
- ],
- [
- "▁Blue",
- -10.314605712890625
- ],
- [
- "ification",
- -10.315386772155762
- ],
- [
- "▁developing",
- -10.315847396850586
- ],
- [
- "▁interior",
- -10.315876007080078
- ],
- [
- "=",
- -10.316556930541992
- ],
- [
- "▁aceasta",
- -10.31698989868164
- ],
- [
- "▁dedicated",
- -10.317373275756836
- ],
- [
- "▁movement",
- -10.317383766174316
- ],
- [
- "sta",
- -10.318868637084961
- ],
- [
- "▁challenges",
- -10.319018363952637
- ],
- [
- "inte",
- -10.319074630737305
- ],
- [
- "▁Euro",
- -10.319075584411621
- ],
- [
- "▁classic",
- -10.320341110229492
- ],
- [
- "▁Um",
- -10.320767402648926
- ],
- [
- "▁alternative",
- -10.321407318115234
- ],
- [
- "mann",
- -10.321614265441895
- ],
- [
- "▁Une",
- -10.322278022766113
- ],
- [
- "qu",
- -10.322415351867676
- ],
- [
- "▁heavy",
- -10.322434425354004
- ],
- [
- "▁install",
- -10.322484970092773
- ],
- [
- "▁fiind",
- -10.322504043579102
- ],
- [
- "▁leaders",
- -10.323003768920898
- ],
- [
- "▁views",
- -10.323019981384277
- ],
- [
- "▁www",
- -10.323084831237793
- ],
- [
- "▁standards",
- -10.323270797729492
- ],
- [
- "ong",
- -10.323580741882324
- ],
- [
- "40",
- -10.323833465576172
- ],
- [
- "▁cm",
- -10.323848724365234
- ],
- [
- "▁park",
- -10.324324607849121
- ],
- [
- "▁himself",
- -10.324419021606445
- ],
- [
- "▁People",
- -10.324649810791016
- ],
- [
- "▁separate",
- -10.324843406677246
- ],
- [
- "▁secure",
- -10.325018882751465
- ],
- [
- "sie",
- -10.325084686279297
- ],
- [
- "▁maintenance",
- -10.325199127197266
- ],
- [
- "▁encourage",
- -10.32766056060791
- ],
- [
- "ein",
- -10.328139305114746
- ],
- [
- "▁reviews",
- -10.328202247619629
- ],
- [
- "▁Michael",
- -10.328210830688477
- ],
- [
- "▁background",
- -10.328283309936523
- ],
- [
- "▁therefore",
- -10.328433990478516
- ],
- [
- "▁server",
- -10.328487396240234
- ],
- [
- "▁dream",
- -10.328742027282715
- ],
- [
- "ping",
- -10.329025268554688
- ],
- [
- "▁block",
- -10.329855918884277
- ],
- [
- "▁2009",
- -10.330734252929688
- ],
- [
- "▁facilities",
- -10.330931663513184
- ],
- [
- "▁II",
- -10.331367492675781
- ],
- [
- "▁attend",
- -10.33156967163086
- ],
- [
- "▁cap",
- -10.33224105834961
- ],
- [
- "35",
- -10.332416534423828
- ],
- [
- "▁steel",
- -10.332796096801758
- ],
- [
- "▁shared",
- -10.333391189575195
- ],
- [
- "▁doctor",
- -10.333939552307129
- ],
- [
- "▁River",
- -10.33411693572998
- ],
- [
- "▁Bay",
- -10.334456443786621
- ],
- [
- "▁length",
- -10.335005760192871
- ],
- [
- "▁jobs",
- -10.335466384887695
- ],
- [
- "▁Plus",
- -10.335992813110352
- ],
- [
- "▁station",
- -10.336140632629395
- ],
- [
- "▁elements",
- -10.336268424987793
- ],
- [
- "▁rock",
- -10.336668014526367
- ],
- [
- "▁professionals",
- -10.336670875549316
- ],
- [
- "cle",
- -10.336777687072754
- ],
- [
- "▁dont",
- -10.336873054504395
- ],
- [
- "urilor",
- -10.337142944335938
- ],
- [
- "▁gain",
- -10.337271690368652
- ],
- [
- "▁programme",
- -10.337540626525879
- ],
- [
- "▁Cor",
- -10.338377952575684
- ],
- [
- "▁leader",
- -10.338542938232422
- ],
- [
- "ării",
- -10.33876895904541
- ],
- [
- "▁>",
- -10.339137077331543
- ],
- [
- "▁task",
- -10.339471817016602
- ],
- [
- "▁seeing",
- -10.339943885803223
- ],
- [
- "▁statement",
- -10.34045696258545
- ],
- [
- "vin",
- -10.341094017028809
- ],
- [
- "▁fish",
- -10.341700553894043
- ],
- [
- "▁advanced",
- -10.342403411865234
- ],
- [
- "▁discuss",
- -10.342494010925293
- ],
- [
- "die",
- -10.342904090881348
- ],
- [
- "isch",
- -10.342944145202637
- ],
- [
- "▁plenty",
- -10.342947959899902
- ],
- [
- "▁Hall",
- -10.343120574951172
- ],
- [
- "▁Other",
- -10.343339920043945
- ],
- [
- "▁homes",
- -10.344944953918457
- ],
- [
- "▁Ni",
- -10.345016479492188
- ],
- [
- "▁testing",
- -10.345102310180664
- ],
- [
- "▁Last",
- -10.345392227172852
- ],
- [
- "▁Note",
- -10.345595359802246
- ],
- [
- "▁talking",
- -10.345934867858887
- ],
- [
- "▁exchange",
- -10.347042083740234
- ],
- [
- "▁exercise",
- -10.347189903259277
- ],
- [
- "▁cea",
- -10.347546577453613
- ],
- [
- "▁wife",
- -10.34820556640625
- ],
- [
- "▁Für",
- -10.348480224609375
- ],
- [
- "▁Texas",
- -10.34981918334961
- ],
- [
- "▁fr",
- -10.35065746307373
- ],
- [
- "▁speak",
- -10.350894927978516
- ],
- [
- "17",
- -10.351007461547852
- ],
- [
- "70",
- -10.351462364196777
- ],
- [
- "▁promote",
- -10.351851463317871
- ],
- [
- "tul",
- -10.351990699768066
- ],
- [
- "apos",
- -10.35208511352539
- ],
- [
- "▁Jahr",
- -10.35214900970459
- ],
- [
- "▁Trump",
- -10.352204322814941
- ],
- [
- "▁ohne",
- -10.352357864379883
- ],
- [
- "▁learned",
- -10.353700637817383
- ],
- [
- "▁Sp",
- -10.353803634643555
- ],
- [
- "▁owner",
- -10.354275703430176
- ],
- [
- "mor",
- -10.354422569274902
- ],
- [
- "▁fois",
- -10.354452133178711
- ],
- [
- "▁meaning",
- -10.35518741607666
- ],
- [
- "▁dacă",
- -10.355249404907227
- ],
- [
- "nic",
- -10.355484008789062
- ],
- [
- "а",
- -10.355525970458984
- ],
- [
- "14",
- -10.355767250061035
- ],
- [
- "▁driver",
- -10.356258392333984
- ],
- [
- "▁Amazon",
- -10.3567533493042
- ],
- [
- "▁flow",
- -10.358469009399414
- ],
- [
- "▁shot",
- -10.358726501464844
- ],
- [
- "▁sous",
- -10.35914421081543
- ],
- [
- "▁Gold",
- -10.359339714050293
- ],
- [
- "▁straight",
- -10.359562873840332
- ],
- [
- "▁conference",
- -10.359610557556152
- ],
- [
- "▁peste",
- -10.359662055969238
- ],
- [
- "whose",
- -10.36030101776123
- ],
- [
- "▁installation",
- -10.36050796508789
- ],
- [
- "▁produced",
- -10.360607147216797
- ],
- [
- "▁independent",
- -10.36192512512207
- ],
- [
- "▁Institute",
- -10.362021446228027
- ],
- [
- "▁James",
- -10.362373352050781
- ],
- [
- "▁mental",
- -10.362601280212402
- ],
- [
- "ara",
- -10.362798690795898
- ],
- [
- "ium",
- -10.363021850585938
- ],
- [
- "▁husband",
- -10.36306095123291
- ],
- [
- "▁guests",
- -10.363907814025879
- ],
- [
- "27",
- -10.364319801330566
- ],
- [
- "▁Che",
- -10.364651679992676
- ],
- [
- "▁Indian",
- -10.364694595336914
- ],
- [
- "zer",
- -10.36478042602539
- ],
- [
- "▁minimum",
- -10.364962577819824
- ],
- [
- "500",
- -10.365096092224121
- ],
- [
- "▁sit",
- -10.36561393737793
- ],
- [
- "put",
- -10.36656379699707
- ],
- [
- "▁avea",
- -10.36665153503418
- ],
- [
- "▁ride",
- -10.367088317871094
- ],
- [
- "gan",
- -10.367152214050293
- ],
- [
- "▁Ke",
- -10.36747932434082
- ],
- [
- "book",
- -10.367515563964844
- ],
- [
- "ages",
- -10.368019104003906
- ],
- [
- "▁presented",
- -10.368157386779785
- ],
- [
- "▁Com",
- -10.368927955627441
- ],
- [
- "▁Call",
- -10.369053840637207
- ],
- [
- "▁fee",
- -10.369847297668457
- ],
- [
- "ări",
- -10.369905471801758
- ],
- [
- "▁putea",
- -10.37072467803955
- ],
- [
- "▁Public",
- -10.371030807495117
- ],
- [
- "▁pa",
- -10.371152877807617
- ],
- [
- "28",
- -10.371233940124512
- ],
- [
- "▁Director",
- -10.37126350402832
- ],
- [
- "▁contains",
- -10.3717622756958
- ],
- [
- "▁factors",
- -10.372554779052734
- ],
- [
- "▁famous",
- -10.372614860534668
- ],
- [
- "▁bathroom",
- -10.373040199279785
- ],
- [
- "▁core",
- -10.37353229522705
- ],
- [
- "▁viele",
- -10.373610496520996
- ],
- [
- "▁acum",
- -10.374361991882324
- ],
- [
- "▁animal",
- -10.374407768249512
- ],
- [
- "▁Ihnen",
- -10.374425888061523
- ],
- [
- "▁Find",
- -10.374545097351074
- ],
- [
- "▁Fall",
- -10.374861717224121
- ],
- [
- "ford",
- -10.376051902770996
- ],
- [
- "▁coverage",
- -10.3765287399292
- ],
- [
- "▁smart",
- -10.376830101013184
- ],
- [
- "ries",
- -10.376893997192383
- ],
- [
- "▁memory",
- -10.3772554397583
- ],
- [
- "▁dance",
- -10.377443313598633
- ],
- [
- "11",
- -10.37746810913086
- ],
- [
- "▁communities",
- -10.377655982971191
- ],
- [
- "eurs",
- -10.378050804138184
- ],
- [
- "▁Florida",
- -10.378463745117188
- ],
- [
- "▁sport",
- -10.379366874694824
- ],
- [
- "▁bus",
- -10.37992000579834
- ],
- [
- "▁colors",
- -10.379969596862793
- ],
- [
- "▁affect",
- -10.380044937133789
- ],
- [
- "▁score",
- -10.380183219909668
- ],
- [
- "▁properties",
- -10.38050365447998
- ],
- [
- "18",
- -10.380593299865723
- ],
- [
- "▁astfel",
- -10.381312370300293
- ],
- [
- "▁beach",
- -10.382407188415527
- ],
- [
- "▁friendly",
- -10.382795333862305
- ],
- [
- "izing",
- -10.38288688659668
- ],
- [
- "▁buying",
- -10.383146286010742
- ],
- [
- "▁forget",
- -10.383195877075195
- ],
- [
- "este",
- -10.383198738098145
- ],
- [
- "▁capacity",
- -10.38360595703125
- ],
- [
- "▁lose",
- -10.383692741394043
- ],
- [
- "▁listed",
- -10.38407039642334
- ],
- [
- "ica",
- -10.384084701538086
- ],
- [
- "han",
- -10.384085655212402
- ],
- [
- "▁selbst",
- -10.384390830993652
- ],
- [
- "▁values",
- -10.384391784667969
- ],
- [
- "▁Power",
- -10.384559631347656
- ],
- [
- "▁comments",
- -10.384831428527832
- ],
- [
- "eux",
- -10.385346412658691
- ],
- [
- "ați",
- -10.385419845581055
- ],
- [
- "▁context",
- -10.385710716247559
- ],
- [
- "liche",
- -10.385944366455078
- ],
- [
- "▁keeping",
- -10.38620662689209
- ],
- [
- "▁2008",
- -10.38647174835205
- ],
- [
- "▁su",
- -10.386670112609863
- ],
- [
- "▁biggest",
- -10.386838912963867
- ],
- [
- "▁fiecare",
- -10.387356758117676
- ],
- [
- "ight",
- -10.38845157623291
- ],
- [
- "▁toute",
- -10.389808654785156
- ],
- [
- "▁dinner",
- -10.389827728271484
- ],
- [
- "bau",
- -10.390706062316895
- ],
- [
- "▁Mai",
- -10.390762329101562
- ],
- [
- "▁status",
- -10.390776634216309
- ],
- [
- "rez",
- -10.391340255737305
- ],
- [
- "▁selected",
- -10.391549110412598
- ],
- [
- "▁cells",
- -10.392601013183594
- ],
- [
- "▁eight",
- -10.393319129943848
- ],
- [
- "▁package",
- -10.393320083618164
- ],
- [
- "▁scale",
- -10.39333724975586
- ],
- [
- "din",
- -10.39336109161377
- ],
- [
- "▁Who",
- -10.393381118774414
- ],
- [
- "▁century",
- -10.393399238586426
- ],
- [
- "▁bi",
- -10.393516540527344
- ],
- [
- "▁Africa",
- -10.39384937286377
- ],
- [
- "▁http",
- -10.394133567810059
- ],
- [
- "▁named",
- -10.394230842590332
- ],
- [
- "▁adding",
- -10.394901275634766
- ],
- [
- "▁mention",
- -10.395039558410645
- ],
- [
- "▁casino",
- -10.395421981811523
- ],
- [
- "▁couldn",
- -10.395624160766602
- ],
- [
- "▁outdoor",
- -10.395912170410156
- ],
- [
- "▁sugar",
- -10.3960542678833
- ],
- [
- "▁prepared",
- -10.396124839782715
- ],
- [
- "21",
- -10.396528244018555
- ],
- [
- "▁Ba",
- -10.396632194519043
- ],
- [
- "vers",
- -10.396697998046875
- ],
- [
- "ration",
- -10.396773338317871
- ],
- [
- "▁ja",
- -10.397035598754883
- ],
- [
- "▁aspect",
- -10.397224426269531
- ],
- [
- "▁31",
- -10.397462844848633
- ],
- [
- "▁treat",
- -10.397475242614746
- ],
- [
- "tru",
- -10.397841453552246
- ],
- [
- "▁flat",
- -10.397890090942383
- ],
- [
- "32",
- -10.397989273071289
- ],
- [
- "▁reality",
- -10.398238182067871
- ],
- [
- "▁waste",
- -10.39876937866211
- ],
- [
- "▁King",
- -10.399649620056152
- ],
- [
- "▁drug",
- -10.399870872497559
- ],
- [
- "▁operations",
- -10.400120735168457
- ],
- [
- "▁aim",
- -10.40042495727539
- ],
- [
- "▁fans",
- -10.400444984436035
- ],
- [
- "▁vers",
- -10.400891304016113
- ],
- [
- "▁plants",
- -10.400971412658691
- ],
- [
- "▁Dis",
- -10.401477813720703
- ],
- [
- "▁Daten",
- -10.401510238647461
- ],
- [
- "être",
- -10.40267276763916
- ],
- [
- "▁placed",
- -10.40326976776123
- ],
- [
- "▁bon",
- -10.403977394104004
- ],
- [
- "beim",
- -10.4041109085083
- ],
- [
- "▁slow",
- -10.40501880645752
- ],
- [
- "cri",
- -10.405512809753418
- ],
- [
- "▁Care",
- -10.405691146850586
- ],
- [
- "mes",
- -10.406211853027344
- ],
- [
- "26",
- -10.406257629394531
- ],
- [
- "box",
- -10.406330108642578
- ],
- [
- "▁helpful",
- -10.406362533569336
- ],
- [
- "▁documents",
- -10.406543731689453
- ],
- [
- "▁visitors",
- -10.406773567199707
- ],
- [
- "ture",
- -10.406862258911133
- ],
- [
- "▁Menschen",
- -10.406891822814941
- ],
- [
- "▁Chi",
- -10.406975746154785
- ],
- [
- "▁recipe",
- -10.40764045715332
- ],
- [
- "▁kept",
- -10.407693862915039
- ],
- [
- "▁Grand",
- -10.407915115356445
- ],
- [
- "▁operating",
- -10.408178329467773
- ],
- [
- "point",
- -10.408329010009766
- ],
- [
- "▁bin",
- -10.40837287902832
- ],
- [
- "▁Tri",
- -10.40845775604248
- ],
- [
- "Be",
- -10.408512115478516
- ],
- [
- "▁experiences",
- -10.40856647491455
- ],
- [
- "▁academic",
- -10.408608436584473
- ],
- [
- "▁finden",
- -10.40870475769043
- ],
- [
- "▁sera",
- -10.409092903137207
- ],
- [
- "act",
- -10.410541534423828
- ],
- [
- "▁Pa",
- -10.410907745361328
- ],
- [
- "▁society",
- -10.411056518554688
- ],
- [
- "▁combination",
- -10.411237716674805
- ],
- [
- "5%",
- -10.41182804107666
- ],
- [
- "▁owners",
- -10.41188907623291
- ],
- [
- "▁poor",
- -10.412039756774902
- ],
- [
- "▁Robert",
- -10.412378311157227
- ],
- [
- "▁military",
- -10.412964820861816
- ],
- [
- "▁economy",
- -10.413033485412598
- ],
- [
- "▁aware",
- -10.413055419921875
- ],
- [
- "rot",
- -10.413443565368652
- ],
- [
- "mie",
- -10.413544654846191
- ],
- [
- "▁Thursday",
- -10.414399147033691
- ],
- [
- "▁2011",
- -10.41490650177002
- ],
- [
- "▁fantastic",
- -10.41554069519043
- ],
- [
- "▁numerous",
- -10.415921211242676
- ],
- [
- "▁fair",
- -10.4165620803833
- ],
- [
- "med",
- -10.416753768920898
- ],
- [
- "▁welche",
- -10.416893005371094
- ],
- [
- "▁fruit",
- -10.41712760925293
- ],
- [
- "ku",
- -10.417325019836426
- ],
- [
- "▁Social",
- -10.417583465576172
- ],
- [
- "▁funds",
- -10.418157577514648
- ],
- [
- "▁atunci",
- -10.418214797973633
- ],
- [
- "▁Part",
- -10.418238639831543
- ],
- [
- "▁Big",
- -10.418301582336426
- ],
- [
- "▁2010",
- -10.419414520263672
- ],
- [
- "▁detail",
- -10.419889450073242
- ],
- [
- "▁Peter",
- -10.419942855834961
- ],
- [
- "ani",
- -10.420196533203125
- ],
- [
- "▁Wie",
- -10.420795440673828
- ],
- [
- "▁Tu",
- -10.421649932861328
- ],
- [
- "ear",
- -10.421706199645996
- ],
- [
- "▁Wenn",
- -10.421941757202148
- ],
- [
- "▁manager",
- -10.42199993133545
- ],
- [
- "▁Dan",
- -10.422409057617188
- ],
- [
- "▁Pi",
- -10.42257308959961
- ],
- [
- "▁wants",
- -10.422652244567871
- ],
- [
- "▁Data",
- -10.42322826385498
- ],
- [
- "pos",
- -10.42387580871582
- ],
- [
- "▁older",
- -10.423946380615234
- ],
- [
- "▁Download",
- -10.424071311950684
- ],
- [
- "▁Was",
- -10.424107551574707
- ],
- [
- "▁corner",
- -10.424195289611816
- ],
- [
- "▁president",
- -10.424199104309082
- ],
- [
- "mas",
- -10.424248695373535
- ],
- [
- "▁smaller",
- -10.424361228942871
- ],
- [
- "▁bright",
- -10.424459457397461
- ],
- [
- "▁proper",
- -10.424582481384277
- ],
- [
- "▁Kinder",
- -10.424637794494629
- ],
- [
- "▁Two",
- -10.424668312072754
- ],
- [
- "▁award",
- -10.42471694946289
- ],
- [
- "▁premier",
- -10.425211906433105
- ],
- [
- "▁seek",
- -10.425646781921387
- ],
- [
- "▁thank",
- -10.425662994384766
- ],
- [
- "▁proud",
- -10.426509857177734
- ],
- [
- "▁workers",
- -10.426774024963379
- ],
- [
- "▁2000",
- -10.426970481872559
- ],
- [
- "▁gone",
- -10.427482604980469
- ],
- [
- "▁medium",
- -10.427693367004395
- ],
- [
- "▁grade",
- -10.42777156829834
- ],
- [
- "▁Ru",
- -10.427800178527832
- ],
- [
- "cro",
- -10.427851676940918
- ],
- [
- "▁interview",
- -10.428311347961426
- ],
- [
- "23",
- -10.428787231445312
- ],
- [
- "▁mari",
- -10.429442405700684
- ],
- [
- "▁80",
- -10.429756164550781
- ],
- [
- "▁Ga",
- -10.430047035217285
- ],
- [
- "▁90",
- -10.431839942932129
- ],
- [
- "▁anderen",
- -10.432605743408203
- ],
- [
- "▁cultural",
- -10.433018684387207
- ],
- [
- "but",
- -10.433144569396973
- ],
- [
- "rum",
- -10.433300018310547
- ],
- [
- "get",
- -10.43338680267334
- ],
- [
- "▁pop",
- -10.433582305908203
- ],
- [
- "▁Information",
- -10.433594703674316
- ],
- [
- "▁press",
- -10.434972763061523
- ],
- [
- "▁Project",
- -10.435359001159668
- ],
- [
- "▁excited",
- -10.435755729675293
- ],
- [
- "▁Saint",
- -10.436088562011719
- ],
- [
- "▁England",
- -10.436192512512207
- ],
- [
- "▁beauty",
- -10.43643856048584
- ],
- [
- "▁agreement",
- -10.436464309692383
- ],
- [
- "▁Like",
- -10.437565803527832
- ],
- [
- "▁strength",
- -10.437664985656738
- ],
- [
- "▁waiting",
- -10.438165664672852
- ],
- [
- "и",
- -10.438270568847656
- ],
- [
- "Le",
- -10.438329696655273
- ],
- [
- "▁residents",
- -10.43835735321045
- ],
- [
- "▁Ben",
- -10.438603401184082
- ],
- [
- "▁mentioned",
- -10.439260482788086
- ],
- [
- "▁etwas",
- -10.43930721282959
- ],
- [
- "▁rooms",
- -10.439347267150879
- ],
- [
- "▁neue",
- -10.439501762390137
- ],
- [
- "▁Microsoft",
- -10.439726829528809
- ],
- [
- "▁passed",
- -10.440205574035645
- ],
- [
- "▁sea",
- -10.440893173217773
- ],
- [
- "▁electric",
- -10.441244125366211
- ],
- [
- "▁forms",
- -10.441384315490723
- ],
- [
- "▁Central",
- -10.441597938537598
- ],
- [
- "▁Lord",
- -10.442625999450684
- ],
- [
- "ute",
- -10.442763328552246
- ],
- [
- "▁pré",
- -10.442790031433105
- ],
- [
- "▁square",
- -10.44308090209961
- ],
- [
- "itatea",
- -10.443451881408691
- ],
- [
- "▁debt",
- -10.443757057189941
- ],
- [
- "▁street",
- -10.443975448608398
- ],
- [
- "▁pi",
- -10.444917678833008
- ],
- [
- "▁happened",
- -10.445326805114746
- ],
- [
- "▁Tuesday",
- -10.445592880249023
- ],
- [
- "recht",
- -10.446094512939453
- ],
- [
- "▁Eine",
- -10.44627857208252
- ],
- [
- "▁Set",
- -10.446768760681152
- ],
- [
- "▁federal",
- -10.4468412399292
- ],
- [
- "CC",
- -10.446905136108398
- ],
- [
- "....",
- -10.446938514709473
- ],
- [
- "lig",
- -10.447463035583496
- ],
- [
- "▁Christian",
- -10.44870662689209
- ],
- [
- "▁truth",
- -10.449213981628418
- ],
- [
- "▁map",
- -10.449728012084961
- ],
- [
- "▁secret",
- -10.449979782104492
- ],
- [
- "▁Chinese",
- -10.450844764709473
- ],
- [
- "hol",
- -10.450895309448242
- ],
- [
- "▁wrote",
- -10.451505661010742
- ],
- [
- "▁hospital",
- -10.451783180236816
- ],
- [
- "▁Island",
- -10.451870918273926
- ],
- [
- "▁frame",
- -10.451946258544922
- ],
- [
- "▁sources",
- -10.452117919921875
- ],
- [
- "pan",
- -10.453242301940918
- ],
- [
- "▁29",
- -10.453530311584473
- ],
- [
- "▁changing",
- -10.454547882080078
- ],
- [
- "▁Where",
- -10.454627990722656
- ],
- [
- "▁negative",
- -10.45471477508545
- ],
- [
- "▁processes",
- -10.45491886138916
- ],
- [
- "▁leadership",
- -10.455029487609863
- ],
- [
- "▁nos",
- -10.455195426940918
- ],
- [
- "▁info",
- -10.455780029296875
- ],
- [
- "▁Gu",
- -10.45595645904541
- ],
- [
- "▁CO",
- -10.45605182647705
- ],
- [
- "▁reference",
- -10.456884384155273
- ],
- [
- "▁corporate",
- -10.457097053527832
- ],
- [
- "▁characters",
- -10.457563400268555
- ],
- [
- "▁dining",
- -10.4577054977417
- ],
- [
- "▁becoming",
- -10.459708213806152
- ],
- [
- "▁4.",
- -10.460311889648438
- ],
- [
- "▁Science",
- -10.460626602172852
- ],
- [
- "▁Education",
- -10.461943626403809
- ],
- [
- "▁camp",
- -10.46207046508789
- ],
- [
- "fall",
- -10.462146759033203
- ],
- [
- "▁Auch",
- -10.462471961975098
- ],
- [
- "▁topic",
- -10.462519645690918
- ],
- [
- "▁influence",
- -10.463460922241211
- ],
- [
- "▁70",
- -10.463892936706543
- ],
- [
- "▁identify",
- -10.464459419250488
- ],
- [
- "▁(19",
- -10.464646339416504
- ],
- [
- "care",
- -10.465216636657715
- ],
- [
- "ions",
- -10.466215133666992
- ],
- [
- "ray",
- -10.4663724899292
- ],
- [
- "▁Both",
- -10.466577529907227
- ],
- [
- "▁collect",
- -10.466997146606445
- ],
- [
- "▁practices",
- -10.467667579650879
- ],
- [
- "▁fight",
- -10.468058586120605
- ],
- [
- "▁injury",
- -10.46873664855957
- ],
- [
- "▁nici",
- -10.46905517578125
- ],
- [
- "▁depuis",
- -10.469563484191895
- ],
- [
- "▁actions",
- -10.469609260559082
- ],
- [
- "▁Wednesday",
- -10.47089958190918
- ],
- [
- "▁bill",
- -10.471086502075195
- ],
- [
- "▁cheap",
- -10.471318244934082
- ],
- [
- "lui",
- -10.471719741821289
- ],
- [
- "▁awesome",
- -10.471731185913086
- ],
- [
- "tig",
- -10.472554206848145
- ],
- [
- "▁expensive",
- -10.472636222839355
- ],
- [
- "ceea",
- -10.472834587097168
- ],
- [
- "▁exact",
- -10.472907066345215
- ],
- [
- "22",
- -10.473462104797363
- ],
- [
- "▁avant",
- -10.47352123260498
- ],
- [
- "▁fat",
- -10.47353744506836
- ],
- [
- "▁spending",
- -10.474353790283203
- ],
- [
- "▁designs",
- -10.47608470916748
- ],
- [
- "▁damit",
- -10.4761323928833
- ],
- [
- "▁comp",
- -10.47619342803955
- ],
- [
- "▁whatever",
- -10.476434707641602
- ],
- [
- "▁Light",
- -10.476442337036133
- ],
- [
- "▁quarter",
- -10.47680377960205
- ],
- [
- "hand",
- -10.477301597595215
- ],
- [
- "▁connected",
- -10.477584838867188
- ],
- [
- "▁technologies",
- -10.47772216796875
- ],
- [
- "ges",
- -10.477808952331543
- ],
- [
- "▁shower",
- -10.478998184204102
- ],
- [
- "▁500",
- -10.47923469543457
- ],
- [
- "▁Time",
- -10.479436874389648
- ],
- [
- "▁zone",
- -10.480525970458984
- ],
- [
- "▁vote",
- -10.480624198913574
- ],
- [
- "▁andere",
- -10.480871200561523
- ],
- [
- "▁otherwise",
- -10.480988502502441
- ],
- [
- "tur",
- -10.481294631958008
- ],
- [
- "▁happens",
- -10.481504440307617
- ],
- [
- "hin",
- -10.481597900390625
- ],
- [
- "▁volume",
- -10.482161521911621
- ],
- [
- "▁thousands",
- -10.482391357421875
- ],
- [
- "war",
- -10.482551574707031
- ],
- [
- "▁Play",
- -10.482900619506836
- ],
- [
- "▁temperature",
- -10.48371410369873
- ],
- [
- "▁industrial",
- -10.483830451965332
- ],
- [
- "▁fuel",
- -10.483915328979492
- ],
- [
- "100",
- -10.48409366607666
- ],
- [
- "top",
- -10.484210014343262
- ],
- [
- "kin",
- -10.484312057495117
- ],
- [
- "▁efficient",
- -10.484414100646973
- ],
- [
- "teil",
- -10.484525680541992
- ],
- [
- "alt",
- -10.484578132629395
- ],
- [
- "▁monde",
- -10.48483657836914
- ],
- [
- "▁Ra",
- -10.484899520874023
- ],
- [
- "▁bedroom",
- -10.485103607177734
- ],
- [
- "▁showing",
- -10.485316276550293
- ],
- [
- "▁continued",
- -10.485490798950195
- ],
- [
- "▁Plan",
- -10.48552131652832
- ],
- [
- "▁assistance",
- -10.486014366149902
- ],
- [
- "▁discover",
- -10.48622989654541
- ],
- [
- "▁Year",
- -10.486238479614258
- ],
- [
- "▁applied",
- -10.486433029174805
- ],
- [
- "▁audio",
- -10.48755931854248
- ],
- [
- "▁thus",
- -10.487645149230957
- ],
- [
- "▁permet",
- -10.48806095123291
- ],
- [
- "▁fashion",
- -10.488532066345215
- ],
- [
- "cra",
- -10.488645553588867
- ],
- [
- "ious",
- -10.488700866699219
- ],
- [
- "▁focused",
- -10.489258766174316
- ],
- [
- "16",
- -10.48930549621582
- ],
- [
- "▁arm",
- -10.489364624023438
- ],
- [
- "▁Their",
- -10.489789962768555
- ],
- [
- "▁Foundation",
- -10.49022388458252
- ],
- [
- "▁majority",
- -10.49022388458252
- ],
- [
- "▁wind",
- -10.490785598754883
- ],
- [
- "▁bought",
- -10.491056442260742
- ],
- [
- "▁factor",
- -10.491918563842773
- ],
- [
- "▁opened",
- -10.49213695526123
- ],
- [
- "tern",
- -10.492374420166016
- ],
- [
- "▁cars",
- -10.492597579956055
- ],
- [
- "▁exciting",
- -10.492691040039062
- ],
- [
- "▁affordable",
- -10.493510246276855
- ],
- [
- "ches",
- -10.493563652038574
- ],
- [
- "▁panel",
- -10.493720054626465
- ],
- [
- "▁caused",
- -10.493793487548828
- ],
- [
- "▁travail",
- -10.493998527526855
- ],
- [
- "▁roof",
- -10.494073867797852
- ],
- [
- "▁enable",
- -10.494202613830566
- ],
- [
- "▁toward",
- -10.494491577148438
- ],
- [
- "▁Development",
- -10.494688987731934
- ],
- [
- "▁foreign",
- -10.495308876037598
- ],
- [
- "avi",
- -10.495320320129395
- ],
- [
- "long",
- -10.495328903198242
- ],
- [
- "De",
- -10.49578857421875
- ],
- [
- "▁Mon",
- -10.49588394165039
- ],
- [
- "▁Va",
- -10.495942115783691
- ],
- [
- "AP",
- -10.496097564697266
- ],
- [
- "▁asta",
- -10.49720573425293
- ],
- [
- "▁prepare",
- -10.497220993041992
- ],
- [
- "▁German",
- -10.497261047363281
- ],
- [
- "▁Centre",
- -10.497325897216797
- ],
- [
- "ère",
- -10.497367858886719
- ],
- [
- "▁fear",
- -10.497537612915039
- ],
- [
- "▁Este",
- -10.497878074645996
- ],
- [
- "▁Des",
- -10.49793529510498
- ],
- [
- "▁Kon",
- -10.499308586120605
- ],
- [
- "á",
- -10.499866485595703
- ],
- [
- "stand",
- -10.500805854797363
- ],
- [
- "▁Real",
- -10.500842094421387
- ],
- [
- "lichen",
- -10.50098705291748
- ],
- [
- "▁Beach",
- -10.501455307006836
- ],
- [
- "▁expertise",
- -10.50185775756836
- ],
- [
- "▁route",
- -10.502445220947266
- ],
- [
- "▁nation",
- -10.502551078796387
- ],
- [
- "▁snow",
- -10.503022193908691
- ],
- [
- "▁articles",
- -10.503127098083496
- ],
- [
- "▁Wood",
- -10.504426956176758
- ],
- [
- "▁operation",
- -10.50494384765625
- ],
- [
- "▁passion",
- -10.505215644836426
- ],
- [
- "▁cand",
- -10.505690574645996
- ],
- [
- "haus",
- -10.505701065063477
- ],
- [
- "OR",
- -10.505711555480957
- ],
- [
- "▁senior",
- -10.506511688232422
- ],
- [
- "▁becomes",
- -10.506546020507812
- ],
- [
- "▁sounds",
- -10.506878852844238
- ],
- [
- "▁enjoyed",
- -10.50704574584961
- ],
- [
- "▁gegen",
- -10.507533073425293
- ],
- [
- "▁courses",
- -10.507919311523438
- ],
- [
- "▁absolutely",
- -10.508257865905762
- ],
- [
- "tim",
- -10.508264541625977
- ],
- [
- "uff",
- -10.508516311645508
- ],
- [
- "▁moins",
- -10.50860595703125
- ],
- [
- "▁TO",
- -10.509060859680176
- ],
- [
- "▁fabric",
- -10.509267807006836
- ],
- [
- "poli",
- -10.509326934814453
- ],
- [
- "▁Bre",
- -10.509761810302734
- ],
- [
- "▁bo",
- -10.509916305541992
- ],
- [
- "▁Elle",
- -10.510469436645508
- ],
- [
- "bu",
- -10.512336730957031
- ],
- [
- "▁participants",
- -10.512401580810547
- ],
- [
- "stone",
- -10.512794494628906
- ],
- [
- "ties",
- -10.51366138458252
- ],
- [
- "▁listen",
- -10.513700485229492
- ],
- [
- "▁Spiel",
- -10.513752937316895
- ],
- [
- "pot",
- -10.513872146606445
- ],
- [
- "▁selling",
- -10.514358520507812
- ],
- [
- "▁geht",
- -10.514680862426758
- ],
- [
- "▁mini",
- -10.515146255493164
- ],
- [
- "▁trans",
- -10.515408515930176
- ],
- [
- "▁ingredients",
- -10.515642166137695
- ],
- [
- "auf",
- -10.515671730041504
- ],
- [
- "▁orice",
- -10.51595401763916
- ],
- [
- "▁Next",
- -10.516300201416016
- ],
- [
- "▁cream",
- -10.516756057739258
- ],
- [
- "▁edge",
- -10.516973495483398
- ],
- [
- "▁recommended",
- -10.517022132873535
- ],
- [
- "▁Form",
- -10.517277717590332
- ],
- [
- "▁processing",
- -10.51746940612793
- ],
- [
- "vert",
- -10.517709732055664
- ],
- [
- "▁described",
- -10.518362998962402
- ],
- [
- "▁installed",
- -10.51884937286377
- ],
- [
- "▁managed",
- -10.518952369689941
- ],
- [
- "▁electronic",
- -10.518966674804688
- ],
- [
- "▁performed",
- -10.519064903259277
- ],
- [
- "▁raise",
- -10.519098281860352
- ],
- [
- "▁imagine",
- -10.519281387329102
- ],
- [
- "down",
- -10.51952838897705
- ],
- [
- "▁fond",
- -10.519978523254395
- ],
- [
- "▁Inter",
- -10.520434379577637
- ],
- [
- "▁Mc",
- -10.520550727844238
- ],
- [
- "▁Dans",
- -10.520679473876953
- ],
- [
- "istic",
- -10.520966529846191
- ],
- [
- "▁miss",
- -10.521052360534668
- ],
- [
- "sur",
- -10.521062850952148
- ],
- [
- "▁Col",
- -10.521879196166992
- ],
- [
- "cut",
- -10.522021293640137
- ],
- [
- "▁dupa",
- -10.522160530090332
- ],
- [
- "▁Twitter",
- -10.522604942321777
- ],
- [
- "▁bowl",
- -10.523721694946289
- ],
- [
- "▁remains",
- -10.5237455368042
- ],
- [
- "▁Jan",
- -10.524046897888184
- ],
- [
- "▁smooth",
- -10.524162292480469
- ],
- [
- "▁fees",
- -10.524415969848633
- ],
- [
- "▁aid",
- -10.524494171142578
- ],
- [
- "▁presence",
- -10.524827003479004
- ],
- [
- "▁Android",
- -10.52499771118164
- ],
- [
- "▁decisions",
- -10.52539348602295
- ],
- [
- "▁names",
- -10.5254487991333
- ],
- [
- "▁Music",
- -10.525546073913574
- ],
- [
- "▁innovative",
- -10.525578498840332
- ],
- [
- "▁Tom",
- -10.525997161865234
- ],
- [
- "▁spread",
- -10.526165962219238
- ],
- [
- "▁lovely",
- -10.526222229003906
- ],
- [
- "▁daughter",
- -10.526397705078125
- ],
- [
- "US",
- -10.527050971984863
- ],
- [
- "▁facility",
- -10.52710247039795
- ],
- [
- "▁peace",
- -10.527105331420898
- ],
- [
- "▁department",
- -10.527277946472168
- ],
- [
- "▁weiter",
- -10.527591705322266
- ],
- [
- "▁Sun",
- -10.527756690979004
- ],
- [
- "▁fund",
- -10.527772903442383
- ],
- [
- "▁2018.",
- -10.52792739868164
- ],
- [
- "▁discussion",
- -10.528186798095703
- ],
- [
- "75",
- -10.528799057006836
- ],
- [
- "EC",
- -10.529126167297363
- ],
- [
- "▁lunch",
- -10.529144287109375
- ],
- [
- "▁videos",
- -10.52927017211914
- ],
- [
- "05",
- -10.531253814697266
- ],
- [
- "ige",
- -10.531266212463379
- ],
- [
- "▁parking",
- -10.531564712524414
- ],
- [
- "▁relationships",
- -10.531732559204102
- ],
- [
- "▁George",
- -10.532986640930176
- ],
- [
- "▁teachers",
- -10.53299617767334
- ],
- [
- "room",
- -10.533458709716797
- ],
- [
- "▁Tra",
- -10.533605575561523
- ],
- [
- "▁Sam",
- -10.533651351928711
- ],
- [
- "▁properly",
- -10.535590171813965
- ],
- [
- "▁Book",
- -10.535629272460938
- ],
- [
- "▁CA",
- -10.536957740783691
- ],
- [
- "▁calls",
- -10.53756046295166
- ],
- [
- "▁stat",
- -10.538175582885742
- ],
- [
- "ux",
- -10.538220405578613
- ],
- [
- "▁soit",
- -10.538439750671387
- ],
- [
- "▁Community",
- -10.538684844970703
- ],
- [
- "▁Jahren",
- -10.538714408874512
- ],
- [
- "▁increasing",
- -10.539575576782227
- ],
- [
- "▁civil",
- -10.540184020996094
- ],
- [
- "app",
- -10.540573120117188
- ],
- [
- "▁35",
- -10.540589332580566
- ],
- [
- "▁rise",
- -10.540600776672363
- ],
- [
- "▁dabei",
- -10.540989875793457
- ],
- [
- "▁studio",
- -10.541803359985352
- ],
- [
- "▁policies",
- -10.542054176330566
- ],
- [
- "▁agent",
- -10.542055130004883
- ],
- [
- "▁Before",
- -10.542601585388184
- ],
- [
- "▁Cal",
- -10.543017387390137
- ],
- [
- "▁2005",
- -10.543404579162598
- ],
- [
- "▁sample",
- -10.543777465820312
- ],
- [
- "▁manner",
- -10.545186996459961
- ],
- [
- "wing",
- -10.54521369934082
- ],
- [
- "stra",
- -10.545552253723145
- ],
- [
- "▁fel",
- -10.545793533325195
- ],
- [
- "▁Show",
- -10.545952796936035
- ],
- [
- "▁scene",
- -10.54656982421875
- ],
- [
- "mic",
- -10.546764373779297
- ],
- [
- "nom",
- -10.546995162963867
- ],
- [
- "▁typically",
- -10.547088623046875
- ],
- [
- "▁pair",
- -10.547104835510254
- ],
- [
- "▁detailed",
- -10.547394752502441
- ],
- [
- "▁Work",
- -10.547422409057617
- ],
- [
- "▁cities",
- -10.547451972961426
- ],
- [
- "▁Rock",
- -10.54749584197998
- ],
- [
- "▁Gar",
- -10.547906875610352
- ],
- [
- "▁serving",
- -10.548352241516113
- ],
- [
- "▁machen",
- -10.548521995544434
- ],
- [
- "▁trees",
- -10.54888916015625
- ],
- [
- "▁accident",
- -10.549199104309082
- ],
- [
- "▁cloud",
- -10.54920482635498
- ],
- [
- "▁animals",
- -10.549297332763672
- ],
- [
- "▁Den",
- -10.549897193908691
- ],
- [
- "▁Wa",
- -10.54990291595459
- ],
- [
- "▁suggest",
- -10.550220489501953
- ],
- [
- "putting",
- -10.550407409667969
- ],
- [
- "▁suite",
- -10.550434112548828
- ],
- [
- "▁clearly",
- -10.550849914550781
- ],
- [
- "▁net",
- -10.551287651062012
- ],
- [
- "▁funding",
- -10.551506996154785
- ],
- [
- "▁salt",
- -10.551935195922852
- ],
- [
- "▁Men",
- -10.552119255065918
- ],
- [
- "ped",
- -10.552419662475586
- ],
- [
- "▁Food",
- -10.553142547607422
- ],
- [
- "▁leaving",
- -10.553544998168945
- ],
- [
- "▁Government",
- -10.554243087768555
- ],
- [
- "ick",
- -10.554381370544434
- ],
- [
- "▁seat",
- -10.555121421813965
- ],
- [
- "▁Los",
- -10.555183410644531
- ],
- [
- "▁teacher",
- -10.555587768554688
- ],
- [
- "▁iPhone",
- -10.555693626403809
- ],
- [
- "▁300",
- -10.556120872497559
- ],
- [
- "▁commitment",
- -10.556180000305176
- ],
- [
- "▁aspects",
- -10.556498527526855
- ],
- [
- "▁previously",
- -10.55711555480957
- ],
- [
- "▁cent",
- -10.5572509765625
- ],
- [
- "▁Vo",
- -10.557341575622559
- ],
- [
- "▁artists",
- -10.557963371276855
- ],
- [
- "▁runs",
- -10.558130264282227
- ],
- [
- ">",
- -10.558155059814453
- ],
- [
- "▁Gi",
- -10.558273315429688
- ],
- [
- "▁mar",
- -10.5585355758667
- ],
- [
- "!!!",
- -10.558544158935547
- ],
- [
- "▁Media",
- -10.558943748474121
- ],
- [
- "▁feedback",
- -10.559109687805176
- ],
- [
- "▁resolution",
- -10.559117317199707
- ],
- [
- "IN",
- -10.55915641784668
- ],
- [
- "▁wurden",
- -10.55952262878418
- ],
- [
- "▁busy",
- -10.559832572937012
- ],
- [
- "▁adult",
- -10.5600004196167
- ],
- [
- "29",
- -10.560487747192383
- ],
- [
- "elles",
- -10.561375617980957
- ],
- [
- "▁closed",
- -10.561762809753418
- ],
- [
- "▁trouble",
- -10.561767578125
- ],
- [
- "▁rent",
- -10.561984062194824
- ],
- [
- "lot",
- -10.56224536895752
- ],
- [
- "▁importance",
- -10.562314987182617
- ],
- [
- "▁units",
- -10.56257438659668
- ],
- [
- "Pro",
- -10.562713623046875
- ],
- [
- "▁provider",
- -10.563005447387695
- ],
- [
- "▁visual",
- -10.563288688659668
- ],
- [
- "IT",
- -10.563385009765625
- ],
- [
- "▁diet",
- -10.563733100891113
- ],
- [
- "▁appearance",
- -10.563932418823242
- ],
- [
- "pin",
- -10.564576148986816
- ],
- [
- "▁Din",
- -10.564760208129883
- ],
- [
- "▁eating",
- -10.565516471862793
- ],
- [
- "Fi",
- -10.565762519836426
- ],
- [
- "ball",
- -10.565765380859375
- ],
- [
- "är",
- -10.565861701965332
- ],
- [
- "ney",
- -10.565878868103027
- ],
- [
- "▁records",
- -10.566070556640625
- ],
- [
- "▁Fi",
- -10.566180229187012
- ],
- [
- "▁faut",
- -10.566329002380371
- ],
- [
- "▁CD",
- -10.566803932189941
- ],
- [
- "ign",
- -10.566930770874023
- ],
- [
- "▁vă",
- -10.566996574401855
- ],
- [
- "▁agency",
- -10.567153930664062
- ],
- [
- "ierung",
- -10.567323684692383
- ],
- [
- "▁Back",
- -10.567361831665039
- ],
- [
- "▁windows",
- -10.567545890808105
- ],
- [
- "▁pull",
- -10.567888259887695
- ],
- [
- "ash",
- -10.567959785461426
- ],
- [
- "▁profit",
- -10.568593978881836
- ],
- [
- "▁brings",
- -10.568605422973633
- ],
- [
- "▁Committee",
- -10.569122314453125
- ],
- [
- "▁girl",
- -10.569174766540527
- ],
- [
- "▁vehicles",
- -10.569372177124023
- ],
- [
- "▁Hier",
- -10.569567680358887
- ],
- [
- "ES",
- -10.569639205932617
- ],
- [
- "până",
- -10.569880485534668
- ],
- [
- "▁Kunden",
- -10.570380210876465
- ],
- [
- "pen",
- -10.570462226867676
- ],
- [
- "▁explain",
- -10.570505142211914
- ],
- [
- "▁cadru",
- -10.570760726928711
- ],
- [
- "▁attack",
- -10.571100234985352
- ],
- [
- "▁markets",
- -10.571115493774414
- ],
- [
- "▁claims",
- -10.571340560913086
- ],
- [
- "▁walking",
- -10.571385383605957
- ],
- [
- "▁pouv",
- -10.571528434753418
- ],
- [
- "low",
- -10.571642875671387
- ],
- [
- "▁showed",
- -10.572114944458008
- ],
- [
- "▁principal",
- -10.57211971282959
- ],
- [
- "▁lucru",
- -10.572144508361816
- ],
- [
- "▁precum",
- -10.572712898254395
- ],
- [
- "TA",
- -10.573094367980957
- ],
- [
- "▁partners",
- -10.573104858398438
- ],
- [
- "▁exist",
- -10.573136329650879
- ],
- [
- "▁internal",
- -10.57334041595459
- ],
- [
- "hen",
- -10.573945045471191
- ],
- [
- "▁Master",
- -10.573966979980469
- ],
- [
- "unless",
- -10.574013710021973
- ],
- [
- "▁doubt",
- -10.574721336364746
- ],
- [
- "$",
- -10.574785232543945
- ],
- [
- "▁Long",
- -10.574888229370117
- ],
- [
- "▁leaves",
- -10.574907302856445
- ],
- [
- "allowing",
- -10.575063705444336
- ],
- [
- "pol",
- -10.575272560119629
- ],
- [
- "▁Up",
- -10.575491905212402
- ],
- [
- "▁Contact",
- -10.576093673706055
- ],
- [
- "▁practical",
- -10.57708740234375
- ],
- [
- "▁suit",
- -10.57758903503418
- ],
- [
- "▁Site",
- -10.577656745910645
- ],
- [
- "▁formation",
- -10.57768726348877
- ],
- [
- "▁signal",
- -10.578215599060059
- ],
- [
- "▁approximately",
- -10.578414916992188
- ],
- [
- "▁ourselves",
- -10.578497886657715
- ],
- [
- "▁colour",
- -10.578519821166992
- ],
- [
- "▁species",
- -10.578530311584473
- ],
- [
- "▁advance",
- -10.578753471374512
- ],
- [
- "▁PM",
- -10.57891845703125
- ],
- [
- "ans",
- -10.579121589660645
- ],
- [
- "▁locations",
- -10.579397201538086
- ],
- [
- "vous",
- -10.579601287841797
- ],
- [
- "▁updated",
- -10.579636573791504
- ],
- [
- "▁faith",
- -10.579673767089844
- ],
- [
- "mus",
- -10.579740524291992
- ],
- [
- "▁stores",
- -10.579863548278809
- ],
- [
- "heim",
- -10.580127716064453
- ],
- [
- "▁suitable",
- -10.580558776855469
- ],
- [
- "▁continues",
- -10.580703735351562
- ],
- [
- "▁fac",
- -10.581133842468262
- ],
- [
- "ever",
- -10.581156730651855
- ],
- [
- "▁Bill",
- -10.581195831298828
- ],
- [
- "▁chose",
- -10.58121109008789
- ],
- [
- "▁inform",
- -10.581228256225586
- ],
- [
- "▁environmental",
- -10.581427574157715
- ],
- [
- "▁responsibility",
- -10.58188533782959
- ],
- [
- "99",
- -10.582542419433594
- ],
- [
- "▁competitive",
- -10.583723068237305
- ],
- [
- "▁strategies",
- -10.583903312683105
- ],
- [
- "▁toujours",
- -10.584270477294922
- ],
- [
- "tive",
- -10.58430290222168
- ],
- [
- "▁automatically",
- -10.585600852966309
- ],
- [
- "▁dress",
- -10.585609436035156
- ],
- [
- "▁Minister",
- -10.585624694824219
- ],
- [
- "har",
- -10.586076736450195
- ],
- [
- "▁Start",
- -10.586249351501465
- ],
- [
- "▁=",
- -10.586563110351562
- ],
- [
- "▁pattern",
- -10.58659553527832
- ],
- [
- "tier",
- -10.58676528930664
- ],
- [
- "▁pays",
- -10.587034225463867
- ],
- [
- "▁profile",
- -10.58725357055664
- ],
- [
- "▁raised",
- -10.587263107299805
- ],
- [
- "ange",
- -10.587288856506348
- ],
- [
- "▁drink",
- -10.587762832641602
- ],
- [
- "▁element",
- -10.588042259216309
- ],
- [
- "▁landscape",
- -10.58875560760498
- ],
- [
- "▁Tag",
- -10.589073181152344
- ],
- [
- "▁cheese",
- -10.589590072631836
- ],
- [
- "ific",
- -10.590009689331055
- ],
- [
- "▁Stadt",
- -10.590181350708008
- ],
- [
- "39",
- -10.591398239135742
- ],
- [
- "▁launch",
- -10.592113494873047
- ],
- [
- "▁wouldn",
- -10.592150688171387
- ],
- [
- "AS",
- -10.592202186584473
- ],
- [
- "▁push",
- -10.593059539794922
- ],
- [
- "▁mill",
- -10.593452453613281
- ],
- [
- "▁mass",
- -10.593647003173828
- ],
- [
- "▁category",
- -10.593790054321289
- ],
- [
- "sondern",
- -10.594050407409668
- ],
- [
- "col",
- -10.594111442565918
- ],
- [
- "▁climate",
- -10.594313621520996
- ],
- [
- "lier",
- -10.594437599182129
- ],
- [
- "▁slightly",
- -10.595514297485352
- ],
- [
- "95",
- -10.596519470214844
- ],
- [
- "ace",
- -10.596612930297852
- ],
- [
- "▁domain",
- -10.597633361816406
- ],
- [
- "kan",
- -10.598306655883789
- ],
- [
- "▁feed",
- -10.598485946655273
- ],
- [
- "▁Live",
- -10.598837852478027
- ],
- [
- "▁Mais",
- -10.599113464355469
- ],
- [
- "▁après",
- -10.599365234375
- ],
- [
- "▁village",
- -10.59941577911377
- ],
- [
- "▁hatte",
- -10.59968090057373
- ],
- [
- "▁joined",
- -10.599881172180176
- ],
- [
- "▁Museum",
- -10.600311279296875
- ],
- [
- "head",
- -10.600855827331543
- ],
- [
- "▁draw",
- -10.6009521484375
- ],
- [
- "▁concerns",
- -10.600966453552246
- ],
- [
- "ER",
- -10.601505279541016
- ],
- [
- "▁technique",
- -10.601648330688477
- ],
- [
- "▁Bio",
- -10.601861000061035
- ],
- [
- "▁Sea",
- -10.601881980895996
- ],
- [
- "▁@",
- -10.601927757263184
- ],
- [
- "wer",
- -10.6021146774292
- ],
- [
- "▁battery",
- -10.602462768554688
- ],
- [
- "▁mostly",
- -10.60267448425293
- ],
- [
- "▁familiar",
- -10.602680206298828
- ],
- [
- "▁Sub",
- -10.602689743041992
- ],
- [
- "▁delicious",
- -10.603222846984863
- ],
- [
- "doch",
- -10.60326099395752
- ],
- [
- "60",
- -10.603395462036133
- ],
- [
- "▁carte",
- -10.603611946105957
- ],
- [
- "▁avut",
- -10.604146957397461
- ],
- [
- "▁premium",
- -10.60460376739502
- ],
- [
- "▁attempt",
- -10.604704856872559
- ],
- [
- "▁Über",
- -10.60473346710205
- ],
- [
- "▁combined",
- -10.604935646057129
- ],
- [
- "lement",
- -10.604947090148926
- ],
- [
- "▁voi",
- -10.605031967163086
- ],
- [
- "▁wonder",
- -10.605376243591309
- ],
- [
- "▁failure",
- -10.606106758117676
- ],
- [
- "which",
- -10.606147766113281
- ],
- [
- "esti",
- -10.606316566467285
- ],
- [
- "31",
- -10.606547355651855
- ],
- [
- "▁sta",
- -10.606734275817871
- ],
- [
- "▁transform",
- -10.60673999786377
- ],
- [
- "▁license",
- -10.606743812561035
- ],
- [
- "▁depending",
- -10.606758117675781
- ],
- [
- "▁specifically",
- -10.606782913208008
- ],
- [
- "▁OF",
- -10.60693645477295
- ],
- [
- "band",
- -10.606959342956543
- ],
- [
- "▁Sport",
- -10.60731315612793
- ],
- [
- "list",
- -10.607434272766113
- ],
- [
- "▁Tour",
- -10.60753059387207
- ],
- [
- "▁Israel",
- -10.607564926147461
- ],
- [
- "▁filled",
- -10.607722282409668
- ],
- [
- "▁manual",
- -10.60776138305664
- ],
- [
- "▁watching",
- -10.608621597290039
- ],
- [
- "▁rule",
- -10.608877182006836
- ],
- [
- "mat",
- -10.60901927947998
- ],
- [
- "▁notes",
- -10.609585762023926
- ],
- [
- "▁Oh",
- -10.60960578918457
- ],
- [
- "▁bereits",
- -10.609634399414062
- ],
- [
- "▁foundation",
- -10.609916687011719
- ],
- [
- "▁vital",
- -10.610146522521973
- ],
- [
- "▁lassen",
- -10.610747337341309
- ],
- [
- "▁cât",
- -10.611162185668945
- ],
- [
- "▁shipping",
- -10.611433029174805
- ],
- [
- "▁registered",
- -10.611513137817383
- ],
- [
- "▁jour",
- -10.612669944763184
- ],
- [
- "▁island",
- -10.61276626586914
- ],
- [
- "▁sets",
- -10.613068580627441
- ],
- [
- "▁football",
- -10.613683700561523
- ],
- [
- "▁EU",
- -10.613860130310059
- ],
- [
- "▁stone",
- -10.614019393920898
- ],
- [
- "▁Press",
- -10.614699363708496
- ],
- [
- "▁adapt",
- -10.615066528320312
- ],
- [
- "ised",
- -10.615425109863281
- ],
- [
- "▁thoughts",
- -10.615434646606445
- ],
- [
- "▁doors",
- -10.615851402282715
- ],
- [
- "€",
- -10.615954399108887
- ],
- [
- "▁components",
- -10.616040229797363
- ],
- [
- "rig",
- -10.616332054138184
- ],
- [
- "▁generation",
- -10.616585731506348
- ],
- [
- "▁guess",
- -10.616700172424316
- ],
- [
- "cker",
- -10.61694049835205
- ],
- [
- "▁realize",
- -10.617207527160645
- ],
- [
- "▁Roman",
- -10.617310523986816
- ],
- [
- "▁contre",
- -10.617693901062012
- ],
- [
- "▁Out",
- -10.617938995361328
- ],
- [
- "▁IN",
- -10.619051933288574
- ],
- [
- "cip",
- -10.619085311889648
- ],
- [
- "59",
- -10.619330406188965
- ],
- [
- "▁enhance",
- -10.619768142700195
- ],
- [
- "▁battle",
- -10.61982250213623
- ],
- [
- "▁monitor",
- -10.619863510131836
- ],
- [
- "▁Martin",
- -10.62045955657959
- ],
- [
- "▁websites",
- -10.620461463928223
- ],
- [
- "▁DE",
- -10.620599746704102
- ],
- [
- "▁Festival",
- -10.620951652526855
- ],
- [
- "ân",
- -10.62131118774414
- ],
- [
- "▁Place",
- -10.621419906616211
- ],
- [
- "▁rare",
- -10.621554374694824
- ],
- [
- "această",
- -10.621726989746094
- ],
- [
- "▁sollte",
- -10.621731758117676
- ],
- [
- "▁Read",
- -10.621816635131836
- ],
- [
- "ware",
- -10.622169494628906
- ],
- [
- "Those",
- -10.622671127319336
- ],
- [
- "ende",
- -10.623543739318848
- ],
- [
- "▁prix",
- -10.623835563659668
- ],
- [
- "▁roman",
- -10.624101638793945
- ],
- [
- "▁creation",
- -10.624224662780762
- ],
- [
- "▁confidence",
- -10.624552726745605
- ],
- [
- "▁Japan",
- -10.624638557434082
- ],
- [
- "▁rain",
- -10.624942779541016
- ],
- [
- "▁guys",
- -10.62518310546875
- ],
- [
- "▁south",
- -10.625236511230469
- ],
- [
- "▁trading",
- -10.625646591186523
- ],
- [
- "▁€",
- -10.626100540161133
- ],
- [
- "▁Film",
- -10.626341819763184
- ],
- [
- "▁pana",
- -10.627065658569336
- ],
- [
- "▁asemenea",
- -10.627066612243652
- ],
- [
- "36",
- -10.627190589904785
- ],
- [
- "▁instance",
- -10.627884864807129
- ],
- [
- "cou",
- -10.629385948181152
- ],
- [
- "▁nun",
- -10.630074501037598
- ],
- [
- "▁Pass",
- -10.630390167236328
- ],
- [
- "Cette",
- -10.630579948425293
- ],
- [
- "▁Network",
- -10.630876541137695
- ],
- [
- "▁prime",
- -10.631010055541992
- ],
- [
- "▁spiritual",
- -10.632098197937012
- ],
- [
- "▁tough",
- -10.633030891418457
- ],
- [
- "▁AND",
- -10.633086204528809
- ],
- [
- "▁Cat",
- -10.633601188659668
- ],
- [
- "▁boat",
- -10.633611679077148
- ],
- [
- "▁leads",
- -10.634864807128906
- ],
- [
- "▁Germany",
- -10.63509750366211
- ],
- [
- "▁valuable",
- -10.635635375976562
- ],
- [
- "57",
- -10.635892868041992
- ],
- [
- "lect",
- -10.636148452758789
- ],
- [
- "▁distribution",
- -10.636445045471191
- ],
- [
- "dar",
- -10.636518478393555
- ],
- [
- "▁Manager",
- -10.637701988220215
- ],
- [
- "cha",
- -10.637725830078125
- ],
- [
- "▁obtain",
- -10.637741088867188
- ],
- [
- "GB",
- -10.637908935546875
- ],
- [
- "▁unor",
- -10.638079643249512
- ],
- [
- "schaft",
- -10.638603210449219
- ],
- [
- "▁zwischen",
- -10.638723373413086
- ],
- [
- "▁winning",
- -10.639172554016113
- ],
- [
- "▁suis",
- -10.639811515808105
- ],
- [
- "58",
- -10.640130996704102
- ],
- [
- "▁Party",
- -10.640372276306152
- ],
- [
- "▁ceva",
- -10.640416145324707
- ],
- [
- "▁comprehensive",
- -10.640684127807617
- ],
- [
- "▁aceste",
- -10.640726089477539
- ],
- [
- "▁committed",
- -10.640726089477539
- ],
- [
- "▁Hu",
- -10.641382217407227
- ],
- [
- "ţ",
- -10.64149284362793
- ],
- [
- "▁north",
- -10.642021179199219
- ],
- [
- "werk",
- -10.642542839050293
- ],
- [
- "▁interface",
- -10.642794609069824
- ],
- [
- "▁Valley",
- -10.64281177520752
- ],
- [
- "▁anywhere",
- -10.64281177520752
- ],
- [
- "▁Only",
- -10.642851829528809
- ],
- [
- "TE",
- -10.643295288085938
- ],
- [
- "hui",
- -10.6436767578125
- ],
- [
- "bus",
- -10.643951416015625
- ],
- [
- "vis",
- -10.6439790725708
- ],
- [
- "▁Society",
- -10.645116806030273
- ],
- [
- "▁reliable",
- -10.64556884765625
- ],
- [
- "▁quelques",
- -10.64563274383545
- ],
- [
- "tech",
- -10.646187782287598
- ],
- [
- "ual",
- -10.646377563476562
- ],
- [
- "▁educational",
- -10.646418571472168
- ],
- [
- "serv",
- -10.646490097045898
- ],
- [
- "▁opinion",
- -10.646628379821777
- ],
- [
- "▁appears",
- -10.646702766418457
- ],
- [
- "▁count",
- -10.646795272827148
- ],
- [
- "irea",
- -10.646981239318848
- ],
- [
- "ban",
- -10.647504806518555
- ],
- [
- "▁45",
- -10.647530555725098
- ],
- [
- "▁contain",
- -10.647661209106445
- ],
- [
- "ost",
- -10.647663116455078
- ],
- [
- "▁anul",
- -10.647706031799316
- ],
- [
- "rien",
- -10.648159980773926
- ],
- [
- "gra",
- -10.648360252380371
- ],
- [
- "▁counter",
- -10.648946762084961
- ],
- [
- "-3",
- -10.650411605834961
- ],
- [
- "▁resource",
- -10.650463104248047
- ],
- [
- "▁Wo",
- -10.6505126953125
- ],
- [
- "▁posts",
- -10.650618553161621
- ],
- [
- "▁employee",
- -10.651320457458496
- ],
- [
- "rol",
- -10.651863098144531
- ],
- [
- "▁ended",
- -10.651969909667969
- ],
- [
- "met",
- -10.653080940246582
- ],
- [
- "▁meine",
- -10.653165817260742
- ],
- [
- "▁reached",
- -10.653368949890137
- ],
- [
- "gri",
- -10.653716087341309
- ],
- [
- "▁Bra",
- -10.65374755859375
- ],
- [
- "▁conduct",
- -10.654294967651367
- ],
- [
- "▁housing",
- -10.654422760009766
- ],
- [
- "▁tickets",
- -10.654792785644531
- ],
- [
- "▁database",
- -10.655674934387207
- ],
- [
- "IL",
- -10.656150817871094
- ],
- [
- "▁perspective",
- -10.656359672546387
- ],
- [
- "▁Har",
- -10.656404495239258
- ],
- [
- "▁error",
- -10.656549453735352
- ],
- [
- "▁meal",
- -10.656569480895996
- ],
- [
- "▁hearing",
- -10.657238006591797
- ],
- [
- "▁transition",
- -10.657302856445312
- ],
- [
- "▁browser",
- -10.657609939575195
- ],
- [
- "▁supported",
- -10.657609939575195
- ],
- [
- "▁starts",
- -10.658814430236816
- ],
- [
- "țe",
- -10.658902168273926
- ],
- [
- "▁adults",
- -10.658905029296875
- ],
- [
- "▁România",
- -10.65917682647705
- ],
- [
- "dra",
- -10.659884452819824
- ],
- [
- "▁worry",
- -10.660222053527832
- ],
- [
- "▁avoir",
- -10.660497665405273
- ],
- [
- "▁regional",
- -10.660507202148438
- ],
- [
- "▁min",
- -10.660722732543945
- ],
- [
- "▁Does",
- -10.660806655883789
- ],
- [
- "▁Keep",
- -10.661200523376465
- ],
- [
- "rom",
- -10.661237716674805
- ],
- [
- "sco",
- -10.661320686340332
- ],
- [
- "tem",
- -10.661898612976074
- ],
- [
- "▁Old",
- -10.661954879760742
- ],
- [
- "▁Under",
- -10.662552833557129
- ],
- [
- "▁Commission",
- -10.662557601928711
- ],
- [
- "▁Bau",
- -10.6632661819458
- ],
- [
- "▁News",
- -10.663358688354492
- ],
- [
- "▁mois",
- -10.663444519042969
- ],
- [
- "▁respond",
- -10.66356372833252
- ],
- [
- "▁alles",
- -10.663878440856934
- ],
- [
- "▁chair",
- -10.664475440979004
- ],
- [
- "▁ho",
- -10.664854049682617
- ],
- [
- "right",
- -10.664908409118652
- ],
- [
- "▁totally",
- -10.665532112121582
- ],
- [
- "gle",
- -10.665534973144531
- ],
- [
- "▁32",
- -10.665604591369629
- ],
- [
- "66",
- -10.665664672851562
- ],
- [
- "town",
- -10.665902137756348
- ],
- [
- "Ch",
- -10.666261672973633
- ],
- [
- "▁gr",
- -10.66629695892334
- ],
- [
- "▁garage",
- -10.666328430175781
- ],
- [
- "ții",
- -10.666495323181152
- ],
- [
- "▁Union",
- -10.667136192321777
- ],
- [
- "ică",
- -10.667343139648438
- ],
- [
- "▁2,",
- -10.668437004089355
- ],
- [
- "▁reflect",
- -10.669163703918457
- ],
- [
- "▁retail",
- -10.669388771057129
- ],
- [
- "▁unde",
- -10.669605255126953
- ],
- [
- "▁accessible",
- -10.670262336730957
- ],
- [
- "water",
- -10.67059326171875
- ],
- [
- "▁regard",
- -10.670710563659668
- ],
- [
- "▁logo",
- -10.671489715576172
- ],
- [
- "▁inspired",
- -10.671518325805664
- ],
- [
- "▁Wall",
- -10.671859741210938
- ],
- [
- "▁Ste",
- -10.672093391418457
- ],
- [
- "▁asking",
- -10.672179222106934
- ],
- [
- "▁Journal",
- -10.673028945922852
- ],
- [
- "▁Teil",
- -10.674042701721191
- ],
- [
- "▁collaboration",
- -10.674185752868652
- ],
- [
- "▁acid",
- -10.674266815185547
- ],
- [
- "▁Fund",
- -10.674382209777832
- ],
- [
- "▁spirit",
- -10.6744384765625
- ],
- [
- "despite",
- -10.674457550048828
- ],
- [
- "▁delivered",
- -10.674821853637695
- ],
- [
- "▁girls",
- -10.675374984741211
- ],
- [
- "▁Look",
- -10.675896644592285
- ],
- [
- "rant",
- -10.675949096679688
- ],
- [
- "▁District",
- -10.676460266113281
- ],
- [
- "▁rental",
- -10.676709175109863
- ],
- [
- "▁spune",
- -10.676733016967773
- ],
- [
- "els",
- -10.677544593811035
- ],
- [
- "▁permanent",
- -10.677659034729004
- ],
- [
- "▁iron",
- -10.677709579467773
- ],
- [
- "▁Thomas",
- -10.677745819091797
- ],
- [
- "EL",
- -10.678071022033691
- ],
- [
- "▁except",
- -10.678074836730957
- ],
- [
- "▁catch",
- -10.678366661071777
- ],
- [
- "▁providers",
- -10.678375244140625
- ],
- [
- "▁2006",
- -10.678435325622559
- ],
- [
- "▁chat",
- -10.679931640625
- ],
- [
- "▁emergency",
- -10.680281639099121
- ],
- [
- "gre",
- -10.68030834197998
- ],
- [
- "site",
- -10.680888175964355
- ],
- [
- "▁missing",
- -10.68089485168457
- ],
- [
- "abil",
- -10.680914878845215
- ],
- [
- "▁Hill",
- -10.68099594116211
- ],
- [
- "urs",
- -10.681312561035156
- ],
- [
- "▁plusieurs",
- -10.681716918945312
- ],
- [
- "▁birthday",
- -10.681726455688477
- ],
- [
- "DS",
- -10.682019233703613
- ],
- [
- "ersten",
- -10.682381629943848
- ],
- [
- "▁5.",
- -10.68252944946289
- ],
- [
- "▁library",
- -10.68333911895752
- ],
- [
- "▁earth",
- -10.683515548706055
- ],
- [
- "CI",
- -10.683645248413086
- ],
- [
- "▁lighting",
- -10.684442520141602
- ],
- [
- "▁fixed",
- -10.684879302978516
- ],
- [
- "tori",
- -10.684891700744629
- ],
- [
- "▁replace",
- -10.684995651245117
- ],
- [
- "▁administration",
- -10.685074806213379
- ],
- [
- "leurs",
- -10.685229301452637
- ],
- [
- "▁meat",
- -10.686142921447754
- ],
- [
- "▁songs",
- -10.686662673950195
- ],
- [
- "▁confirm",
- -10.686866760253906
- ],
- [
- "▁rapid",
- -10.68698787689209
- ],
- [
- "▁Special",
- -10.686995506286621
- ],
- [
- "▁holding",
- -10.687115669250488
- ],
- [
- "▁honor",
- -10.687271118164062
- ],
- [
- "▁Market",
- -10.687409400939941
- ],
- [
- "La",
- -10.687535285949707
- ],
- [
- "▁measure",
- -10.687760353088379
- ],
- [
- "▁guarantee",
- -10.68785572052002
- ],
- [
- "▁switch",
- -10.68813419342041
- ],
- [
- "▁extensive",
- -10.688294410705566
- ],
- [
- "▁Neu",
- -10.688674926757812
- ],
- [
- "avez",
- -10.688901901245117
- ],
- [
- "▁protein",
- -10.688984870910645
- ],
- [
- "▁infrastructure",
- -10.689454078674316
- ],
- [
- "▁functions",
- -10.689494132995605
- ],
- [
- "▁cont",
- -10.689496040344238
- ],
- [
- "row",
- -10.689760208129883
- ],
- [
- "star",
- -10.689773559570312
- ],
- [
- "▁Port",
- -10.690192222595215
- ],
- [
- "Using",
- -10.690336227416992
- ],
- [
- "▁faster",
- -10.690557479858398
- ],
- [
- "44",
- -10.691168785095215
- ],
- [
- "▁measures",
- -10.691615104675293
- ],
- [
- "▁celor",
- -10.69186019897461
- ],
- [
- "▁exam",
- -10.69189739227295
- ],
- [
- "200",
- -10.69202995300293
- ],
- [
- "î",
- -10.692545890808105
- ],
- [
- "▁conversation",
- -10.692832946777344
- ],
- [
- "▁brands",
- -10.692959785461426
- ],
- [
- "▁Code",
- -10.69359016418457
- ],
- [
- "▁Website",
- -10.693748474121094
- ],
- [
- "OS",
- -10.693782806396484
- ],
- [
- "▁alors",
- -10.693822860717773
- ],
- [
- "▁organ",
- -10.694032669067383
- ],
- [
- "▁removed",
- -10.694823265075684
- ],
- [
- "▁Head",
- -10.694905281066895
- ],
- [
- "▁Cha",
- -10.694908142089844
- ],
- [
- "▁visiting",
- -10.694928169250488
- ],
- [
- "▁wild",
- -10.694928169250488
- ],
- [
- "▁seit",
- -10.694962501525879
- ],
- [
- "49",
- -10.695109367370605
- ],
- [
- "▁organic",
- -10.69539737701416
- ],
- [
- "aţi",
- -10.695775032043457
- ],
- [
- "▁kit",
- -10.695947647094727
- ],
- [
- "68",
- -10.695959091186523
- ],
- [
- "▁flowers",
- -10.696124076843262
- ],
- [
- "▁appreciate",
- -10.697006225585938
- ],
- [
- "▁dead",
- -10.697439193725586
- ],
- [
- "▁Fire",
- -10.697539329528809
- ],
- [
- "▁cela",
- -10.697591781616211
- ],
- [
- "▁Ph",
- -10.697633743286133
- ],
- [
- "▁arrive",
- -10.697921752929688
- ],
- [
- "▁purposes",
- -10.698213577270508
- ],
- [
- "▁qualité",
- -10.698226928710938
- ],
- [
- "▁restaurants",
- -10.698478698730469
- ],
- [
- "▁advertising",
- -10.698541641235352
- ],
- [
- "cur",
- -10.69855785369873
- ],
- [
- "▁ça",
- -10.698973655700684
- ],
- [
- "▁introduced",
- -10.699088096618652
- ],
- [
- "▁returned",
- -10.699111938476562
- ],
- [
- "▁desire",
- -10.699511528015137
- ],
- [
- "▁soul",
- -10.699983596801758
- ],
- [
- "▁Technology",
- -10.699994087219238
- ],
- [
- ");",
- -10.700163841247559
- ],
- [
- "▁Royal",
- -10.700282096862793
- ],
- [
- "tant",
- -10.70068645477295
- ],
- [
- "▁possibly",
- -10.700702667236328
- ],
- [
- "▁consumers",
- -10.700812339782715
- ],
- [
- "▁doua",
- -10.70097541809082
- ],
- [
- "ified",
- -10.70097827911377
- ],
- [
- "▁Award",
- -10.70114803314209
- ],
- [
- "toutes",
- -10.70130443572998
- ],
- [
- "▁meant",
- -10.701325416564941
- ],
- [
- "ezi",
- -10.701616287231445
- ],
- [
- "▁plu",
- -10.701766014099121
- ],
- [
- "ţii",
- -10.7021484375
- ],
- [
- "▁talent",
- -10.702789306640625
- ],
- [
- "▁Security",
- -10.703309059143066
- ],
- [
- "arii",
- -10.703352928161621
- ],
- [
- "▁zi",
- -10.703455924987793
- ],
- [
- "▁Shop",
- -10.703667640686035
- ],
- [
- "▁breakfast",
- -10.704107284545898
- ],
- [
- "▁trial",
- -10.704485893249512
- ],
- [
- "ami",
- -10.704936981201172
- ],
- [
- "▁register",
- -10.705301284790039
- ],
- [
- "unserer",
- -10.705646514892578
- ],
- [
- "▁solar",
- -10.705697059631348
- ],
- [
- "▁deals",
- -10.70591926574707
- ],
- [
- "▁Ku",
- -10.7059326171875
- ],
- [
- "To",
- -10.706186294555664
- ],
- [
- "bat",
- -10.70680046081543
- ],
- [
- "MC",
- -10.707010269165039
- ],
- [
- "▁Global",
- -10.707018852233887
- ],
- [
- "у",
- -10.707405090332031
- ],
- [
- "▁nor",
- -10.707818984985352
- ],
- [
- "▁milk",
- -10.707868576049805
- ],
- [
- "▁choices",
- -10.708206176757812
- ],
- [
- "»",
- -10.7086763381958
- ],
- [
- "▁Sur",
- -10.708695411682129
- ],
- [
- "more",
- -10.708739280700684
- ],
- [
- "48",
- -10.709024429321289
- ],
- [
- "67",
- -10.709375381469727
- ],
- [
- "▁replacement",
- -10.709942817687988
- ],
- [
- "34",
- -10.710440635681152
- ],
- [
- "▁chocolate",
- -10.710485458374023
- ],
- [
- "▁Family",
- -10.71059513092041
- ],
- [
- "This",
- -10.71122932434082
- ],
- [
- "▁novel",
- -10.711435317993164
- ],
- [
- "▁Chicago",
- -10.711563110351562
- ],
- [
- "▁participate",
- -10.71166706085205
- ],
- [
- "▁trei",
- -10.712727546691895
- ],
- [
- "▁monthly",
- -10.713729858398438
- ],
- [
- "▁survey",
- -10.713977813720703
- ],
- [
- "▁End",
- -10.714285850524902
- ],
- [
- "▁Medical",
- -10.71442699432373
- ],
- [
- "autres",
- -10.714678764343262
- ],
- [
- "rich",
- -10.714698791503906
- ],
- [
- "▁bike",
- -10.714703559875488
- ],
- [
- "▁eventually",
- -10.714717864990234
- ],
- [
- "▁HD",
- -10.714722633361816
- ],
- [
- "bil",
- -10.714744567871094
- ],
- [
- "cent",
- -10.714902877807617
- ],
- [
- "▁afin",
- -10.715676307678223
- ],
- [
- "▁surgery",
- -10.716160774230957
- ],
- [
- "▁sin",
- -10.716455459594727
- ],
- [
- "▁manufacturing",
- -10.716955184936523
- ],
- [
- "▁consumer",
- -10.717245101928711
- ],
- [
- "system",
- -10.717306137084961
- ],
- [
- "▁object",
- -10.717400550842285
- ],
- [
- "▁Ju",
- -10.717422485351562
- ],
- [
- "ered",
- -10.7178373336792
- ],
- [
- "rac",
- -10.718070030212402
- ],
- [
- "▁clinical",
- -10.718664169311523
- ],
- [
- "▁dollars",
- -10.719761848449707
- ],
- [
- "▁chain",
- -10.71994686126709
- ],
- [
- "▁afternoon",
- -10.720196723937988
- ],
- [
- "▁ligne",
- -10.720422744750977
- ],
- [
- "▁accounts",
- -10.721806526184082
- ],
- [
- "ving",
- -10.722037315368652
- ],
- [
- "▁Australian",
- -10.72240924835205
- ],
- [
- "38",
- -10.722542762756348
- ],
- [
- "▁persoane",
- -10.72258472442627
- ],
- [
- "▁grande",
- -10.722668647766113
- ],
- [
- "▁Report",
- -10.723472595214844
- ],
- [
- "▁revenue",
- -10.723649024963379
- ],
- [
- "▁spre",
- -10.723760604858398
- ],
- [
- "▁cutting",
- -10.7239990234375
- ],
- [
- "▁approved",
- -10.724133491516113
- ],
- [
- "▁glad",
- -10.724188804626465
- ],
- [
- "chaque",
- -10.724395751953125
- ],
- [
- "win",
- -10.724435806274414
- ],
- [
- "▁waren",
- -10.724733352661133
- ],
- [
- "▁launched",
- -10.725071907043457
- ],
- [
- "▁layer",
- -10.725645065307617
- ],
- [
- "▁airport",
- -10.725716590881348
- ],
- [
- "▁effectively",
- -10.72572135925293
- ],
- [
- "▁coach",
- -10.725946426391602
- ],
- [
- "dé",
- -10.726130485534668
- ],
- [
- "LE",
- -10.72627067565918
- ],
- [
- "▁müssen",
- -10.726386070251465
- ],
- [
- "plan",
- -10.726641654968262
- ],
- [
- "dan",
- -10.726705551147461
- ],
- [
- "55",
- -10.726786613464355
- ],
- [
- "bringing",
- -10.726895332336426
- ],
- [
- "▁$2",
- -10.726995468139648
- ],
- [
- "nce",
- -10.727181434631348
- ],
- [
- "▁inspiration",
- -10.728177070617676
- ],
- [
- "You",
- -10.728657722473145
- ],
- [
- "▁soll",
- -10.729095458984375
- ],
- [
- "▁seemed",
- -10.729595184326172
- ],
- [
- "▁flight",
- -10.729687690734863
- ],
- [
- "▁prima",
- -10.729883193969727
- ],
- [
- "▁Welt",
- -10.730123519897461
- ],
- [
- "▁jetzt",
- -10.730315208435059
- ],
- [
- "ky",
- -10.730428695678711
- ],
- [
- "▁Western",
- -10.73054027557373
- ],
- [
- "▁label",
- -10.730600357055664
- ],
- [
- "▁möglich",
- -10.73081111907959
- ],
- [
- "▁input",
- -10.730862617492676
- ],
- [
- "▁laws",
- -10.730995178222656
- ],
- [
- "▁personnes",
- -10.731708526611328
- ],
- [
- "▁paying",
- -10.731731414794922
- ],
- [
- "▁Uhr",
- -10.73173713684082
- ],
- [
- "▁Mary",
- -10.731745719909668
- ],
- [
- "pur",
- -10.73190689086914
- ],
- [
- "▁covers",
- -10.732133865356445
- ],
- [
- "▁throw",
- -10.732522964477539
- ],
- [
- "▁Tor",
- -10.733281135559082
- ],
- [
- "▁bat",
- -10.73355484008789
- ],
- [
- "▁Gr",
- -10.73373031616211
- ],
- [
- "▁farm",
- -10.73376178741455
- ],
- [
- "▁improved",
- -10.733843803405762
- ],
- [
- "▁fără",
- -10.734286308288574
- ],
- [
- "▁theme",
- -10.73437213897705
- ],
- [
- "pens",
- -10.734865188598633
- ],
- [
- "▁Cup",
- -10.734975814819336
- ],
- [
- "▁settings",
- -10.735114097595215
- ],
- [
- "▁hire",
- -10.735234260559082
- ],
- [
- "▁massive",
- -10.735248565673828
- ],
- [
- "▁generate",
- -10.735405921936035
- ],
- [
- "▁earn",
- -10.735837936401367
- ],
- [
- "▁tab",
- -10.736431121826172
- ],
- [
- "For",
- -10.736616134643555
- ],
- [
- "gang",
- -10.736891746520996
- ],
- [
- "▁hin",
- -10.73709487915039
- ],
- [
- "▁roll",
- -10.737113952636719
- ],
- [
- "▁engagement",
- -10.737157821655273
- ],
- [
- "▁signed",
- -10.737177848815918
- ],
- [
- "▁League",
- -10.737323760986328
- ],
- [
- "▁registration",
- -10.737931251525879
- ],
- [
- "▁première",
- -10.738763809204102
- ],
- [
- "isse",
- -10.73896598815918
- ],
- [
- "▁university",
- -10.739027976989746
- ],
- [
- "ell",
- -10.739157676696777
- ],
- [
- "▁nou",
- -10.739169120788574
- ],
- [
- "rog",
- -10.739191055297852
- ],
- [
- "▁sitting",
- -10.739206314086914
- ],
- [
- "▁cazul",
- -10.739571571350098
- ],
- [
- "▁surrounding",
- -10.73983383178711
- ],
- [
- "▁Asia",
- -10.740357398986816
- ],
- [
- "▁bath",
- -10.740825653076172
- ],
- [
- "hal",
- -10.740923881530762
- ],
- [
- "▁plate",
- -10.741026878356934
- ],
- [
- "▁tests",
- -10.741151809692383
- ],
- [
- "▁presentation",
- -10.741156578063965
- ],
- [
- "▁chicken",
- -10.741501808166504
- ],
- [
- "▁Val",
- -10.741586685180664
- ],
- [
- "ably",
- -10.74166488647461
- ],
- [
- "▁magazine",
- -10.741697311401367
- ],
- [
- "▁Maybe",
- -10.74187183380127
- ],
- [
- "▁sauce",
- -10.742673873901367
- ],
- [
- "TC",
- -10.742887496948242
- ],
- [
- "▁exclusive",
- -10.74296760559082
- ],
- [
- "86",
- -10.74306869506836
- ],
- [
- "▁teeth",
- -10.743474960327148
- ],
- [
- "▁regularly",
- -10.743524551391602
- ],
- [
- "sed",
- -10.743824005126953
- ],
- [
- "gro",
- -10.744174003601074
- ],
- [
- "He",
- -10.744211196899414
- ],
- [
- "▁2017.",
- -10.744302749633789
- ],
- [
- "▁template",
- -10.74489688873291
- ],
- [
- "▁gleich",
- -10.744938850402832
- ],
- [
- "bal",
- -10.745061874389648
- ],
- [
- "▁African",
- -10.74511432647705
- ],
- [
- "în",
- -10.745231628417969
- ],
- [
- "▁rep",
- -10.74543571472168
- ],
- [
- "▁beat",
- -10.74588394165039
- ],
- [
- "▁deck",
- -10.746064186096191
- ],
- [
- "▁intended",
- -10.746221542358398
- ],
- [
- "▁para",
- -10.746513366699219
- ],
- [
- "▁IP",
- -10.746712684631348
- ],
- [
- "▁bra",
- -10.746881484985352
- ],
- [
- "▁forces",
- -10.746966361999512
- ],
- [
- "▁routine",
- -10.747184753417969
- ],
- [
- "▁Jahre",
- -10.747758865356445
- ],
- [
- "▁Bad",
- -10.74797534942627
- ],
- [
- "▁drivers",
- -10.748074531555176
- ],
- [
- "▁updates",
- -10.748095512390137
- ],
- [
- "▁elegant",
- -10.748279571533203
- ],
- [
- "▁external",
- -10.748444557189941
- ],
- [
- "▁engineering",
- -10.748819351196289
- ],
- [
- "ender",
- -10.749544143676758
- ],
- [
- "table",
- -10.749755859375
- ],
- [
- "inter",
- -10.749878883361816
- ],
- [
- "▁Romania",
- -10.749948501586914
- ],
- [
- "▁zile",
- -10.750468254089355
- ],
- [
- "▁luxury",
- -10.750570297241211
- ],
- [
- "▁calling",
- -10.750750541687012
- ],
- [
- "▁cooking",
- -10.75101375579834
- ],
- [
- "▁component",
- -10.75114631652832
- ],
- [
- "wan",
- -10.75121021270752
- ],
- [
- "schen",
- -10.751212120056152
- ],
- [
- "▁birth",
- -10.751242637634277
- ],
- [
- "asupra",
- -10.751349449157715
- ],
- [
- "Co",
- -10.751471519470215
- ],
- [
- "▁opt",
- -10.75153923034668
- ],
- [
- "▁discovered",
- -10.751860618591309
- ],
- [
- "▁teach",
- -10.752084732055664
- ],
- [
- "▁Son",
- -10.75234317779541
- ],
- [
- "▁guest",
- -10.752384185791016
- ],
- [
- "▁dogs",
- -10.752695083618164
- ],
- [
- "▁2003",
- -10.752745628356934
- ],
- [
- "▁behavior",
- -10.752750396728516
- ],
- [
- "pé",
- -10.7529935836792
- ],
- [
- "63",
- -10.75316333770752
- ],
- [
- "▁Human",
- -10.753702163696289
- ],
- [
- "▁expression",
- -10.754800796508789
- ],
- [
- "▁nevoie",
- -10.754936218261719
- ],
- [
- "▁recherche",
- -10.75528621673584
- ],
- [
- "ging",
- -10.755767822265625
- ],
- [
- "related",
- -10.755948066711426
- ],
- [
- "▁discount",
- -10.756040573120117
- ],
- [
- "▁Brown",
- -10.756054878234863
- ],
- [
- "▁Such",
- -10.756107330322266
- ],
- [
- "▁Ve",
- -10.757149696350098
- ],
- [
- "▁height",
- -10.757265090942383
- ],
- [
- "clo",
- -10.757414817810059
- ],
- [
- "▁incredible",
- -10.757912635803223
- ],
- [
- "▁bas",
- -10.757916450500488
- ],
- [
- "▁mă",
- -10.75798225402832
- ],
- [
- "▁purchased",
- -10.758240699768066
- ],
- [
- "▁compte",
- -10.75831127166748
- ],
- [
- "▁instructions",
- -10.758537292480469
- ],
- [
- "▁Instead",
- -10.75866985321045
- ],
- [
- "▁output",
- -10.758706092834473
- ],
- [
- "▁mom",
- -10.758886337280273
- ],
- [
- "DR",
- -10.759828567504883
- ],
- [
- "89",
- -10.760168075561523
- ],
- [
- "▁reduced",
- -10.760621070861816
- ],
- [
- "98",
- -10.7606840133667
- ],
- [
- "▁constant",
- -10.760879516601562
- ],
- [
- "▁therapy",
- -10.762417793273926
- ],
- [
- "▁capable",
- -10.762757301330566
- ],
- [
- "mark",
- -10.763265609741211
- ],
- [
- "▁Sometimes",
- -10.76332950592041
- ],
- [
- "▁joy",
- -10.763419151306152
- ],
- [
- "▁perfectly",
- -10.763589859008789
- ],
- [
- "▁painting",
- -10.763704299926758
- ],
- [
- "avait",
- -10.763765335083008
- ],
- [
- "▁Sha",
- -10.764384269714355
- ],
- [
- "▁dat",
- -10.764463424682617
- ],
- [
- "▁produits",
- -10.764479637145996
- ],
- [
- "tric",
- -10.76456356048584
- ],
- [
- "ierte",
- -10.765153884887695
- ],
- [
- "▁Smith",
- -10.765836715698242
- ],
- [
- "▁trebui",
- -10.766264915466309
- ],
- [
- "▁beaucoup",
- -10.766630172729492
- ],
- [
- "▁chosen",
- -10.767189025878906
- ],
- [
- "▁cre",
- -10.76732063293457
- ],
- [
- "▁complet",
- -10.767341613769531
- ],
- [
- "▁Ltd",
- -10.767599105834961
- ],
- [
- "▁recovery",
- -10.76781940460205
- ],
- [
- "▁district",
- -10.768423080444336
- ],
- [
- "78",
- -10.768640518188477
- ],
- [
- "▁Unter",
- -10.76872730255127
- ],
- [
- "▁schnell",
- -10.768729209899902
- ],
- [
- "▁apart",
- -10.768943786621094
- ],
- [
- "▁phase",
- -10.76894760131836
- ],
- [
- "▁seeking",
- -10.769091606140137
- ],
- [
- "▁mark",
- -10.769148826599121
- ],
- [
- "▁pet",
- -10.769233703613281
- ],
- [
- "▁PDF",
- -10.769296646118164
- ],
- [
- "▁efficiency",
- -10.769577980041504
- ],
- [
- "▁buildings",
- -10.769611358642578
- ],
- [
- "69",
- -10.769723892211914
- ],
- [
- "▁sens",
- -10.769858360290527
- ],
- [
- "▁Video",
- -10.770115852355957
- ],
- [
- "▁destination",
- -10.770181655883789
- ],
- [
- "▁female",
- -10.770319938659668
- ],
- [
- "▁supporting",
- -10.770674705505371
- ],
- [
- "▁signs",
- -10.77077865600586
- ],
- [
- "▁appeal",
- -10.770784378051758
- ],
- [
- "76",
- -10.77110481262207
- ],
- [
- "▁favourite",
- -10.771612167358398
- ],
- [
- "ock",
- -10.771702766418457
- ],
- [
- "▁readers",
- -10.771757125854492
- ],
- [
- "▁Did",
- -10.771868705749512
- ],
- [
- "rou",
- -10.772045135498047
- ],
- [
- "PA",
- -10.77222728729248
- ],
- [
- "▁Jean",
- -10.772480964660645
- ],
- [
- "▁Em",
- -10.772586822509766
- ],
- [
- "pass",
- -10.77280330657959
- ],
- [
- "▁Zi",
- -10.773090362548828
- ],
- [
- "▁între",
- -10.773261070251465
- ],
- [
- "▁fly",
- -10.773427963256836
- ],
- [
- "mos",
- -10.773666381835938
- ],
- [
- "▁emotional",
- -10.773860931396484
- ],
- [
- "asse",
- -10.774768829345703
- ],
- [
- "▁sessions",
- -10.775086402893066
- ],
- [
- "▁symptoms",
- -10.77564811706543
- ],
- [
- "▁died",
- -10.776217460632324
- ],
- [
- "▁seconds",
- -10.776628494262695
- ],
- [
- "▁procedure",
- -10.777206420898438
- ],
- [
- "▁express",
- -10.777420997619629
- ],
- [
- "▁două",
- -10.777885437011719
- ],
- [
- "▁valid",
- -10.778393745422363
- ],
- [
- "▁euro",
- -10.7788667678833
- ],
- [
- "▁interests",
- -10.779032707214355
- ],
- [
- "Having",
- -10.779237747192383
- ],
- [
- "▁hundreds",
- -10.779669761657715
- ],
- [
- "grad",
- -10.780023574829102
- ],
- [
- "▁neuen",
- -10.780084609985352
- ],
- [
- "▁cook",
- -10.780552864074707
- ],
- [
- "▁pur",
- -10.780834197998047
- ],
- [
- "▁charges",
- -10.781024932861328
- ],
- [
- "sche",
- -10.78118896484375
- ],
- [
- "▁smile",
- -10.781468391418457
- ],
- [
- "▁festival",
- -10.781611442565918
- ],
- [
- "cho",
- -10.781672477722168
- ],
- [
- "▁£",
- -10.781937599182129
- ],
- [
- "cht",
- -10.78201675415039
- ],
- [
- "▁macht",
- -10.782021522521973
- ],
- [
- "▁Wasser",
- -10.782028198242188
- ],
- [
- "▁Cap",
- -10.78226375579834
- ],
- [
- "▁Learn",
- -10.78274154663086
- ],
- [
- "▁load",
- -10.783162117004395
- ],
- [
- "▁aici",
- -10.783225059509277
- ],
- [
- "▁Ch",
- -10.784143447875977
- ],
- [
- "▁cycle",
- -10.784223556518555
- ],
- [
- "▁carried",
- -10.784337997436523
- ],
- [
- "▁jusqu",
- -10.784517288208008
- ],
- [
- "stein",
- -10.78505802154541
- ],
- [
- "ski",
- -10.78513240814209
- ],
- [
- "cap",
- -10.78579330444336
- ],
- [
- "▁Bal",
- -10.785852432250977
- ],
- [
- "▁minor",
- -10.786053657531738
- ],
- [
- "77",
- -10.786175727844238
- ],
- [
- "▁considering",
- -10.78632640838623
- ],
- [
- "innen",
- -10.78644847869873
- ],
- [
- "▁greatest",
- -10.787055015563965
- ],
- [
- "▁Training",
- -10.787137031555176
- ],
- [
- "08",
- -10.787307739257812
- ],
- [
- "▁significantly",
- -10.787607192993164
- ],
- [
- "gé",
- -10.787728309631348
- ],
- [
- "▁dumpster",
- -10.788351058959961
- ],
- [
- "▁allem",
- -10.788930892944336
- ],
- [
- "▁bonus",
- -10.7889404296875
- ],
- [
- "▁guy",
- -10.789036750793457
- ],
- [
- "fel",
- -10.78904914855957
- ],
- [
- "▁lifestyle",
- -10.789241790771484
- ],
- [
- "▁Bro",
- -10.78961181640625
- ],
- [
- "▁implement",
- -10.789687156677246
- ],
- [
- "lock",
- -10.790046691894531
- ],
- [
- "▁Earth",
- -10.790142059326172
- ],
- [
- "kar",
- -10.790733337402344
- ],
- [
- "▁invest",
- -10.790833473205566
- ],
- [
- "▁river",
- -10.790933609008789
- ],
- [
- "▁accurate",
- -10.791494369506836
- ],
- [
- "▁mu",
- -10.791579246520996
- ],
- [
- "▁celebrate",
- -10.792119979858398
- ],
- [
- "▁ran",
- -10.79256820678711
- ],
- [
- "▁bigger",
- -10.792988777160645
- ],
- [
- "▁Mer",
- -10.793476104736328
- ],
- [
- "▁millions",
- -10.793486595153809
- ],
- [
- "▁partie",
- -10.793563842773438
- ],
- [
- "▁dazu",
- -10.793951988220215
- ],
- [
- "▁Full",
- -10.794130325317383
- ],
- [
- "gie",
- -10.794207572937012
- ],
- [
- "bot",
- -10.794373512268066
- ],
- [
- "roll",
- -10.79472827911377
- ],
- [
- "▁Women",
- -10.795303344726562
- ],
- [
- "▁compare",
- -10.796135902404785
- ],
- [
- "▁van",
- -10.796503067016602
- ],
- [
- "▁apps",
- -10.796521186828613
- ],
- [
- "PC",
- -10.797050476074219
- ],
- [
- "▁drei",
- -10.79736042022705
- ],
- [
- "▁maison",
- -10.797588348388672
- ],
- [
- "▁knows",
- -10.797712326049805
- ],
- [
- "rid",
- -10.797972679138184
- ],
- [
- "62",
- -10.798396110534668
- ],
- [
- "class",
- -10.798508644104004
- ],
- [
- "▁chez",
- -10.798669815063477
- ],
- [
- "char",
- -10.798828125
- ],
- [
- "88",
- -10.798989295959473
- ],
- [
- "▁cast",
- -10.79948902130127
- ],
- [
- "▁examples",
- -10.79973030090332
- ],
- [
- "▁Therefore",
- -10.799823760986328
- ],
- [
- "▁topics",
- -10.799941062927246
- ],
- [
- "with",
- -10.80013656616211
- ],
- [
- "▁Anti",
- -10.800555229187012
- ],
- [
- "how",
- -10.800620079040527
- ],
- [
- "▁whom",
- -10.80094051361084
- ],
- [
- "▁Deutschland",
- -10.801124572753906
- ],
- [
- "tine",
- -10.80113697052002
- ],
- [
- "▁CEO",
- -10.801224708557129
- ],
- [
- "▁truck",
- -10.801350593566895
- ],
- [
- "▁Which",
- -10.8015718460083
- ],
- [
- "erie",
- -10.802017211914062
- ],
- [
- "fect",
- -10.802069664001465
- ],
- [
- "bou",
- -10.8026762008667
- ],
- [
- "▁(1",
- -10.802818298339844
- ],
- [
- "sum",
- -10.802980422973633
- ],
- [
- "▁bonne",
- -10.803068161010742
- ],
- [
- "▁remaining",
- -10.80321216583252
- ],
- [
- "▁equal",
- -10.803543090820312
- ],
- [
- "▁engage",
- -10.803561210632324
- ],
- [
- "▁RE",
- -10.803849220275879
- ],
- [
- "style",
- -10.804182052612305
- ],
- [
- "▁urma",
- -10.804337501525879
- ],
- [
- "▁Grund",
- -10.80496883392334
- ],
- [
- "ür",
- -10.8051176071167
- ],
- [
- "▁font",
- -10.805353164672852
- ],
- [
- "▁assets",
- -10.805916786193848
- ],
- [
- "AL",
- -10.806102752685547
- ],
- [
- "▁rear",
- -10.80635929107666
- ],
- [
- "▁contemporary",
- -10.80646800994873
- ],
- [
- "▁occur",
- -10.8067045211792
- ],
- [
- "rated",
- -10.806941986083984
- ],
- [
- "▁tight",
- -10.807088851928711
- ],
- [
- "▁machines",
- -10.807921409606934
- ],
- [
- "▁0.",
- -10.808456420898438
- ],
- [
- "▁Aber",
- -10.808470726013184
- ],
- [
- "sol",
- -10.808517456054688
- ],
- [
- "rü",
- -10.80858039855957
- ],
- [
- "▁2007",
- -10.809479713439941
- ],
- [
- "gg",
- -10.809488296508789
- ],
- [
- "▁unul",
- -10.809691429138184
- ],
- [
- "▁était",
- -10.809908866882324
- ],
- [
- "▁capture",
- -10.809980392456055
- ],
- [
- "▁command",
- -10.810037612915039
- ],
- [
- "▁wire",
- -10.810425758361816
- ],
- [
- "▁shift",
- -10.810762405395508
- ],
- [
- "▁bread",
- -10.81084156036377
- ],
- [
- "▁causes",
- -10.810937881469727
- ],
- [
- "PI",
- -10.810938835144043
- ],
- [
- "SC",
- -10.811086654663086
- ],
- [
- "▁lights",
- -10.811190605163574
- ],
- [
- "▁lived",
- -10.811293601989746
- ],
- [
- "mul",
- -10.811446189880371
- ],
- [
- "▁Cur",
- -10.811917304992676
- ],
- [
- "▁Richard",
- -10.811973571777344
- ],
- [
- "37",
- -10.812638282775879
- ],
- [
- "▁cup",
- -10.812737464904785
- ],
- [
- "▁fields",
- -10.812983512878418
- ],
- [
- "▁crusher",
- -10.813389778137207
- ],
- [
- "65",
- -10.813774108886719
- ],
- [
- "avons",
- -10.813822746276855
- ],
- [
- "▁gear",
- -10.813835144042969
- ],
- [
- "▁standing",
- -10.813844680786133
- ],
- [
- "▁thick",
- -10.81445026397705
- ],
- [
- "aff",
- -10.815132141113281
- ],
- [
- "ments",
- -10.815434455871582
- ],
- [
- "▁conflict",
- -10.815728187561035
- ],
- [
- "ität",
- -10.815825462341309
- ],
- [
- "▁worse",
- -10.816295623779297
- ],
- [
- "SE",
- -10.816332817077637
- ],
- [
- "imi",
- -10.816459655761719
- ],
- [
- "▁dating",
- -10.817033767700195
- ],
- [
- "Do",
- -10.817073822021484
- ],
- [
- "▁flexible",
- -10.817093849182129
- ],
- [
- "ologie",
- -10.817131996154785
- ],
- [
- "SU",
- -10.817200660705566
- ],
- [
- "▁contribute",
- -10.817306518554688
- ],
- [
- "▁denn",
- -10.817428588867188
- ],
- [
- "▁appointment",
- -10.81746768951416
- ],
- [
- "▁ticket",
- -10.817523002624512
- ],
- [
- "bed",
- -10.817892074584961
- ],
- [
- "▁2019.",
- -10.817936897277832
- ],
- [
- "▁tasks",
- -10.81871223449707
- ],
- [
- "▁carbon",
- -10.818734169006348
- ],
- [
- "▁situations",
- -10.819400787353516
- ],
- [
- "MA",
- -10.819402694702148
- ],
- [
- "▁portion",
- -10.819498062133789
- ],
- [
- "▁urban",
- -10.819585800170898
- ],
- [
- "▁Canadian",
- -10.819805145263672
- ],
- [
- "▁Bur",
- -10.819937705993652
- ],
- [
- "▁pack",
- -10.81995964050293
- ],
- [
- "▁effet",
- -10.819992065429688
- ],
- [
- "▁Ball",
- -10.82008171081543
- ],
- [
- "▁timpul",
- -10.82014274597168
- ],
- [
- "▁owned",
- -10.820211410522461
- ],
- [
- "▁surprise",
- -10.820413589477539
- ],
- [
- "▁Mu",
- -10.820582389831543
- ],
- [
- "▁decades",
- -10.821001052856445
- ],
- [
- "▁affected",
- -10.821728706359863
- ],
- [
- "▁proven",
- -10.821732521057129
- ],
- [
- "▁Fe",
- -10.821990966796875
- ],
- [
- "zy",
- -10.822042465209961
- ],
- [
- "42",
- -10.822175979614258
- ],
- [
- "▁trend",
- -10.8223876953125
- ],
- [
- "▁autres",
- -10.82262897491455
- ],
- [
- "No",
- -10.823028564453125
- ],
- [
- "▁nine",
- -10.823565483093262
- ],
- [
- "ON",
- -10.82376480102539
- ],
- [
- "NE",
- -10.823953628540039
- ],
- [
- "oli",
- -10.824359893798828
- ],
- [
- "▁Daniel",
- -10.824434280395508
- ],
- [
- "▁spa",
- -10.824939727783203
- ],
- [
- "▁messages",
- -10.825084686279297
- ],
- [
- "PS",
- -10.825183868408203
- ],
- [
- "47",
- -10.825703620910645
- ],
- [
- "▁doch",
- -10.826032638549805
- ],
- [
- "▁improvement",
- -10.826187133789062
- ],
- [
- "▁mountain",
- -10.826350212097168
- ],
- [
- "▁Room",
- -10.826451301574707
- ],
- [
- "▁edition",
- -10.826546669006348
- ],
- [
- "▁musical",
- -10.826712608337402
- ],
- [
- "CP",
- -10.827024459838867
- ],
- [
- "▁Mill",
- -10.827027320861816
- ],
- [
- "▁steht",
- -10.827740669250488
- ],
- [
- "▁determined",
- -10.828083038330078
- ],
- [
- "you",
- -10.828392028808594
- ],
- [
- "weg",
- -10.828554153442383
- ],
- [
- "▁Digital",
- -10.828624725341797
- ],
- [
- "▁filter",
- -10.828903198242188
- ],
- [
- "▁youth",
- -10.829047203063965
- ],
- [
- "▁assessment",
- -10.829301834106445
- ],
- [
- "▁butter",
- -10.829370498657227
- ],
- [
- "▁Watch",
- -10.829427719116211
- ],
- [
- "▁zusammen",
- -10.829471588134766
- ],
- [
- "▁View",
- -10.829606056213379
- ],
- [
- "09",
- -10.829649925231934
- ],
- [
- "▁sole",
- -10.829816818237305
- ],
- [
- ".00",
- -10.830018997192383
- ],
- [
- "33",
- -10.83015251159668
- ],
- [
- "▁export",
- -10.830229759216309
- ],
- [
- "ery",
- -10.830373764038086
- ],
- [
- "▁zurück",
- -10.830426216125488
- ],
- [
- "▁walls",
- -10.83048152923584
- ],
- [
- "▁recognize",
- -10.8306884765625
- ],
- [
- "law",
- -10.830801963806152
- ],
- [
- "▁parent",
- -10.830863952636719
- ],
- [
- "ST",
- -10.831357955932617
- ],
- [
- "▁description",
- -10.831669807434082
- ],
- [
- "MS",
- -10.831887245178223
- ],
- [
- "SM",
- -10.83189582824707
- ],
- [
- "▁Finally",
- -10.831940650939941
- ],
- [
- "▁hardware",
- -10.831965446472168
- ],
- [
- "ident",
- -10.832464218139648
- ],
- [
- "▁brown",
- -10.832566261291504
- ],
- [
- "▁kinds",
- -10.832950592041016
- ],
- [
- "▁Arts",
- -10.83297061920166
- ],
- [
- "▁concert",
- -10.83341121673584
- ],
- [
- "▁sec",
- -10.83342456817627
- ],
- [
- "▁represent",
- -10.833512306213379
- ],
- [
- "▁institutions",
- -10.833597183227539
- ],
- [
- "▁fur",
- -10.833998680114746
- ],
- [
- "▁Support",
- -10.83403205871582
- ],
- [
- "87",
- -10.834076881408691
- ],
- [
- "▁ease",
- -10.834178924560547
- ],
- [
- "▁feels",
- -10.834218978881836
- ],
- [
- "▁sheet",
- -10.834342002868652
- ],
- [
- "▁Though",
- -10.83437442779541
- ],
- [
- "▁propose",
- -10.834381103515625
- ],
- [
- "▁personnel",
- -10.834409713745117
- ],
- [
- "bie",
- -10.834794044494629
- ],
- [
- "▁contest",
- -10.834836959838867
- ],
- [
- "▁successfully",
- -10.835152626037598
- ],
- [
- "▁direkt",
- -10.835397720336914
- ],
- [
- "bietet",
- -10.835597038269043
- ],
- [
- "▁submit",
- -10.835888862609863
- ],
- [
- "▁sicher",
- -10.835919380187988
- ],
- [
- "▁Personal",
- -10.83607006072998
- ],
- [
- "94",
- -10.836341857910156
- ],
- [
- "61",
- -10.836400985717773
- ],
- [
- "▁Very",
- -10.836540222167969
- ],
- [
- "bol",
- -10.836603164672852
- ],
- [
- "▁ha",
- -10.837089538574219
- ],
- [
- "▁channel",
- -10.8372220993042
- ],
- [
- "mut",
- -10.837289810180664
- ],
- [
- "▁mouth",
- -10.837342262268066
- ],
- [
- "▁vast",
- -10.837395668029785
- ],
- [
- "▁Ob",
- -10.837569236755371
- ],
- [
- "lit",
- -10.83763313293457
- ],
- [
- "▁poly",
- -10.837878227233887
- ],
- [
- "▁trained",
- -10.838102340698242
- ],
- [
- "▁specialist",
- -10.838122367858887
- ],
- [
- "UL",
- -10.83822250366211
- ],
- [
- "▁seiner",
- -10.838336944580078
- ],
- [
- "SS",
- -10.838627815246582
- ],
- [
- "▁vacation",
- -10.838672637939453
- ],
- [
- "▁resume",
- -10.839157104492188
- ],
- [
- "▁constantly",
- -10.839717864990234
- ],
- [
- "▁treated",
- -10.83986759185791
- ],
- [
- "▁150",
- -10.840936660766602
- ],
- [
- "▁native",
- -10.841246604919434
- ],
- [
- "▁Russian",
- -10.841329574584961
- ],
- [
- "▁patterns",
- -10.841371536254883
- ],
- [
- "▁knowing",
- -10.841670989990234
- ],
- [
- "▁Pan",
- -10.841682434082031
- ],
- [
- "peri",
- -10.841848373413086
- ],
- [
- "aci",
- -10.841864585876465
- ],
- [
- "▁answers",
- -10.842114448547363
- ],
- [
- "▁heute",
- -10.842985153198242
- ],
- [
- "93",
- -10.843056678771973
- ],
- [
- "▁Winter",
- -10.844083786010742
- ],
- [
- "▁yes",
- -10.844173431396484
- ],
- [
- "SP",
- -10.844185829162598
- ],
- [
- "].",
- -10.844388008117676
- ],
- [
- "▁kein",
- -10.844862937927246
- ],
- [
- "▁introduce",
- -10.8450927734375
- ],
- [
- "-4",
- -10.84555435180664
- ],
- [
- "▁shoot",
- -10.845762252807617
- ],
- [
- "AR",
- -10.84576416015625
- ],
- [
- "▁receiving",
- -10.845864295959473
- ],
- [
- "▁intre",
- -10.84702205657959
- ],
- [
- "▁appeared",
- -10.84708023071289
- ],
- [
- "▁brother",
- -10.847321510314941
- ],
- [
- "▁extend",
- -10.847765922546387
- ],
- [
- "▁fara",
- -10.848737716674805
- ],
- [
- "▁kommt",
- -10.848876953125
- ],
- [
- "ali",
- -10.848913192749023
- ],
- [
- "▁numai",
- -10.849047660827637
- ],
- [
- "▁scientific",
- -10.84913158416748
- ],
- [
- "▁virtual",
- -10.849145889282227
- ],
- [
- "▁Ac",
- -10.849513053894043
- ],
- [
- "▁procedures",
- -10.849631309509277
- ],
- [
- "▁silver",
- -10.849821090698242
- ],
- [
- "▁leather",
- -10.849979400634766
- ],
- [
- "DA",
- -10.85014820098877
- ],
- [
- "▁executive",
- -10.850263595581055
- ],
- [
- "▁officials",
- -10.850496292114258
- ],
- [
- "▁agencies",
- -10.850503921508789
- ],
- [
- "▁Software",
- -10.850540161132812
- ],
- [
- "▁cor",
- -10.850690841674805
- ],
- [
- "Con",
- -10.850741386413574
- ],
- [
- "▁log",
- -10.851066589355469
- ],
- [
- "ț",
- -10.851147651672363
- ],
- [
- "02",
- -10.851195335388184
- ],
- [
- "▁7.",
- -10.85245132446289
- ],
- [
- "▁accepted",
- -10.852483749389648
- ],
- [
- "▁Berlin",
- -10.852538108825684
- ],
- [
- "ID",
- -10.852582931518555
- ],
- [
- "cot",
- -10.852788925170898
- ],
- [
- "▁employment",
- -10.852799415588379
- ],
- [
- "run",
- -10.853020668029785
- ],
- [
- "▁identified",
- -10.853178977966309
- ],
- [
- "96",
- -10.853887557983398
- ],
- [
- "▁déjà",
- -10.853944778442383
- ],
- [
- "▁cuisine",
- -10.853952407836914
- ],
- [
- "turi",
- -10.854070663452148
- ],
- [
- "▁Japanese",
- -10.854316711425781
- ],
- [
- "▁golf",
- -10.854514122009277
- ],
- [
- "▁Ki",
- -10.854787826538086
- ],
- [
- "▁carefully",
- -10.854863166809082
- ],
- [
- "▁remote",
- -10.854973793029785
- ],
- [
- "▁2018,",
- -10.855148315429688
- ],
- [
- "▁sus",
- -10.855154991149902
- ],
- [
- "tique",
- -10.855293273925781
- ],
- [
- "▁residential",
- -10.855695724487305
- ],
- [
- "97",
- -10.855809211730957
- ],
- [
- "▁Spring",
- -10.855908393859863
- ],
- [
- "▁Marketing",
- -10.856186866760254
- ],
- [
- "▁Control",
- -10.85630989074707
- ],
- [
- "var",
- -10.856344223022461
- ],
- [
- "▁historical",
- -10.8563814163208
- ],
- [
- "▁freedom",
- -10.856423377990723
- ],
- [
- "sure",
- -10.856426239013672
- ],
- [
- "▁broken",
- -10.856796264648438
- ],
- [
- "▁criminal",
- -10.856949806213379
- ],
- [
- "▁innovation",
- -10.857075691223145
- ],
- [
- "▁Italian",
- -10.857192039489746
- ],
- [
- "sper",
- -10.857282638549805
- ],
- [
- "▁cake",
- -10.857653617858887
- ],
- [
- "▁candidates",
- -10.857894897460938
- ],
- [
- "▁sizes",
- -10.858267784118652
- ],
- [
- "pel",
- -10.858366966247559
- ],
- [
- "▁frequently",
- -10.85889720916748
- ],
- [
- "▁planet",
- -10.859138488769531
- ],
- [
- "▁writer",
- -10.859519958496094
- ],
- [
- "1,",
- -10.859569549560547
- ],
- [
- "uvent",
- -10.85959529876709
- ],
- [
- "▁awareness",
- -10.859807968139648
- ],
- [
- "name",
- -10.859954833984375
- ],
- [
- "▁Children",
- -10.859980583190918
- ],
- [
- "▁relatively",
- -10.860311508178711
- ],
- [
- "▁pu",
- -10.860321998596191
- ],
- [
- "▁quiet",
- -10.86038875579834
- ],
- [
- "▁planned",
- -10.860716819763184
- ],
- [
- "▁election",
- -10.861419677734375
- ],
- [
- "▁6.",
- -10.861761093139648
- ],
- [
- "▁broad",
- -10.861772537231445
- ],
- [
- "▁skill",
- -10.861835479736328
- ],
- [
- "▁reasonable",
- -10.862037658691406
- ],
- [
- "▁Fort",
- -10.862283706665039
- ],
- [
- "▁aceea",
- -10.862407684326172
- ],
- [
- "▁arrived",
- -10.86263370513916
- ],
- [
- "▁payments",
- -10.862680435180664
- ],
- [
- "ack",
- -10.862700462341309
- ],
- [
- "▁Ort",
- -10.863354682922363
- ],
- [
- "▁investors",
- -10.863364219665527
- ],
- [
- "▁operate",
- -10.86351203918457
- ],
- [
- "ME",
- -10.863556861877441
- ],
- [
- "dic",
- -10.863683700561523
- ],
- [
- "▁foods",
- -10.863731384277344
- ],
- [
- "▁stick",
- -10.863831520080566
- ],
- [
- "▁agents",
- -10.86412525177002
- ],
- [
- "▁crowd",
- -10.864175796508789
- ],
- [
- "▁Students",
- -10.864480972290039
- ],
- [
- "▁concerned",
- -10.864609718322754
- ],
- [
- "test",
- -10.864740371704102
- ],
- [
- "▁designer",
- -10.865334510803223
- ],
- [
- "▁Conference",
- -10.865593910217285
- ],
- [
- "▁saving",
- -10.866105079650879
- ],
- [
- "▁recorded",
- -10.866422653198242
- ],
- [
- "▁proposed",
- -10.866564750671387
- ],
- [
- "▁ship",
- -10.86657428741455
- ],
- [
- "▁cred",
- -10.867274284362793
- ],
- [
- "▁Ci",
- -10.867440223693848
- ],
- [
- "RE",
- -10.867619514465332
- ],
- [
- "▁tradition",
- -10.867753982543945
- ],
- [
- "▁worldwide",
- -10.867779731750488
- ],
- [
- "64",
- -10.867944717407227
- ],
- [
- "▁television",
- -10.867989540100098
- ],
- [
- "▁projet",
- -10.868102073669434
- ],
- [
- "ency",
- -10.868487358093262
- ],
- [
- "▁struggle",
- -10.868514060974121
- ],
- [
- "▁twice",
- -10.868955612182617
- ],
- [
- "▁Off",
- -10.869234085083008
- ],
- [
- "▁begins",
- -10.869577407836914
- ],
- [
- "key",
- -10.869794845581055
- ],
- [
- "▁Table",
- -10.869963645935059
- ],
- [
- "▁demande",
- -10.870177268981934
- ],
- [
- "▁liquid",
- -10.870441436767578
- ],
- [
- "meter",
- -10.870684623718262
- ],
- [
- "▁2001",
- -10.871190071105957
- ],
- [
- "▁willing",
- -10.871660232543945
- ],
- [
- "▁medicine",
- -10.871707916259766
- ],
- [
- "▁expand",
- -10.871747970581055
- ],
- [
- "▁2004",
- -10.871804237365723
- ],
- [
- "▁2002",
- -10.872016906738281
- ],
- [
- "▁accord",
- -10.872292518615723
- ],
- [
- "▁Chris",
- -10.872446060180664
- ],
- [
- "▁prove",
- -10.872543334960938
- ],
- [
- "ston",
- -10.872740745544434
- ],
- [
- "mettre",
- -10.872800827026367
- ],
- [
- "▁moments",
- -10.873537063598633
- ],
- [
- "tik",
- -10.87368392944336
- ],
- [
- "such",
- -10.874055862426758
- ],
- [
- "2.",
- -10.874431610107422
- ],
- [
- "▁UN",
- -10.874561309814453
- ],
- [
- "▁jump",
- -10.874737739562988
- ],
- [
- "▁dish",
- -10.87539291381836
- ],
- [
- "▁Key",
- -10.875663757324219
- ],
- [
- "▁challenging",
- -10.875975608825684
- ],
- [
- "▁domestic",
- -10.876410484313965
- ],
- [
- "▁impressive",
- -10.876752853393555
- ],
- [
- "iger",
- -10.877022743225098
- ],
- [
- "▁Ram",
- -10.877157211303711
- ],
- [
- "▁doit",
- -10.877263069152832
- ],
- [
- "▁concrete",
- -10.87734317779541
- ],
- [
- "▁Unternehmen",
- -10.877397537231445
- ],
- [
- "▁LED",
- -10.877429008483887
- ],
- [
- "▁trouver",
- -10.877533912658691
- ],
- [
- "▁fundamental",
- -10.877875328063965
- ],
- [
- "▁implementation",
- -10.878121376037598
- ],
- [
- "85",
- -10.878247261047363
- ],
- [
- "▁hosting",
- -10.87856388092041
- ],
- [
- "▁Game",
- -10.878691673278809
- ],
- [
- "▁taught",
- -10.878981590270996
- ],
- [
- "tung",
- -10.879016876220703
- ],
- [
- "ront",
- -10.87940502166748
- ],
- [
- "▁shoes",
- -10.879639625549316
- ],
- [
- "79",
- -10.8797607421875
- ],
- [
- "▁stunning",
- -10.879778861999512
- ],
- [
- "▁Congress",
- -10.880142211914062
- ],
- [
- "▁Ent",
- -10.880278587341309
- ],
- [
- "▁Wer",
- -10.880607604980469
- ],
- [
- "▁alt",
- -10.880608558654785
- ],
- [
- "ör",
- -10.880699157714844
- ],
- [
- "▁calm",
- -10.8808012008667
- ],
- [
- "46",
- -10.881132125854492
- ],
- [
- "▁Daca",
- -10.881404876708984
- ],
- [
- "71",
- -10.881938934326172
- ],
- [
- "▁Dec",
- -10.882392883300781
- ],
- [
- "▁Fo",
- -10.882437705993652
- ],
- [
- "▁defense",
- -10.88313102722168
- ],
- [
- "▁expectations",
- -10.883166313171387
- ],
- [
- "▁Alle",
- -10.88318920135498
- ],
- [
- "▁brief",
- -10.883691787719727
- ],
- [
- "▁Hospital",
- -10.883975982666016
- ],
- [
- "▁sides",
- -10.884121894836426
- ],
- [
- "▁yellow",
- -10.884140014648438
- ],
- [
- "lei",
- -10.88451862335205
- ],
- [
- "▁speaking",
- -10.884589195251465
- ],
- [
- "▁crucial",
- -10.885198593139648
- ],
- [
- "▁Town",
- -10.8854341506958
- ],
- [
- "▁married",
- -10.885574340820312
- ],
- [
- "▁acesta",
- -10.885583877563477
- ],
- [
- "▁noted",
- -10.885611534118652
- ],
- [
- "▁Word",
- -10.885659217834473
- ],
- [
- "▁conducted",
- -10.885963439941406
- ],
- [
- "▁decor",
- -10.886249542236328
- ],
- [
- "kon",
- -10.886565208435059
- ],
- [
- "▁supplies",
- -10.8866605758667
- ],
- [
- "▁adventure",
- -10.886691093444824
- ],
- [
- "▁exhibition",
- -10.887163162231445
- ],
- [
- "heit",
- -10.887300491333008
- ],
- [
- "▁36",
- -10.88744831085205
- ],
- [
- "eria",
- -10.887505531311035
- ],
- [
- "ines",
- -10.887551307678223
- ],
- [
- "ological",
- -10.887582778930664
- ],
- [
- "quel",
- -10.88806438446045
- ],
- [
- "▁Van",
- -10.88825511932373
- ],
- [
- "-19",
- -10.88853645324707
- ],
- [
- "2,",
- -10.888566970825195
- ],
- [
- "▁Band",
- -10.888989448547363
- ],
- [
- "▁soil",
- -10.889184951782227
- ],
- [
- "▁Tim",
- -10.889599800109863
- ],
- [
- "▁NOT",
- -10.88968563079834
- ],
- [
- "▁pilot",
- -10.889753341674805
- ],
- [
- "▁Sh",
- -10.889774322509766
- ],
- [
- "Ho",
- -10.890361785888672
- ],
- [
- "CA",
- -10.890509605407715
- ],
- [
- "▁Eu",
- -10.890745162963867
- ],
- [
- "▁committee",
- -10.890829086303711
- ],
- [
- "▁Store",
- -10.891075134277344
- ],
- [
- "▁joint",
- -10.89111614227295
- ],
- [
- "▁Op",
- -10.891315460205078
- ],
- [
- "▁Jack",
- -10.891985893249512
- ],
- [
- "quality",
- -10.89216423034668
- ],
- [
- "▁Has",
- -10.892489433288574
- ],
- [
- "▁wenig",
- -10.892507553100586
- ],
- [
- "hood",
- -10.892545700073242
- ],
- [
- "▁Class",
- -10.892582893371582
- ],
- [
- "rus",
- -10.892773628234863
- ],
- [
- "▁grown",
- -10.89294719696045
- ],
- [
- "▁About",
- -10.893518447875977
- ],
- [
- "▁sum",
- -10.893942832946777
- ],
- [
- "▁Fair",
- -10.893946647644043
- ],
- [
- "SA",
- -10.894149780273438
- ],
- [
- "92",
- -10.894185066223145
- ],
- [
- "▁fourth",
- -10.894354820251465
- ],
- [
- "▁featured",
- -10.894384384155273
- ],
- [
- "▁Pen",
- -10.89444637298584
- ],
- [
- "▁natürlich",
- -10.894885063171387
- ],
- [
- "ched",
- -10.894901275634766
- ],
- [
- "▁ban",
- -10.895112991333008
- ],
- [
- "anne",
- -10.89522647857666
- ],
- [
- "▁theory",
- -10.895413398742676
- ],
- [
- "bin",
- -10.895438194274902
- ],
- [
- "iers",
- -10.895819664001465
- ],
- [
- "▁strategic",
- -10.895903587341309
- ],
- [
- "▁jours",
- -10.895956039428711
- ],
- [
- "▁communicate",
- -10.896124839782715
- ],
- [
- "▁pin",
- -10.896320343017578
- ],
- [
- "▁Bon",
- -10.89721393585205
- ],
- [
- "kom",
- -10.897290229797363
- ],
- [
- "-5",
- -10.898177146911621
- ],
- [
- "▁degrees",
- -10.898643493652344
- ],
- [
- "▁entertainment",
- -10.899014472961426
- ],
- [
- "ară",
- -10.899248123168945
- ],
- [
- "ales",
- -10.899425506591797
- ],
- [
- "▁pendant",
- -10.89954662322998
- ],
- [
- "▁Series",
- -10.899575233459473
- ],
- [
- "▁holds",
- -10.899592399597168
- ],
- [
- "▁Mini",
- -10.899828910827637
- ],
- [
- "▁Obama",
- -10.899898529052734
- ],
- [
- "▁conform",
- -10.900163650512695
- ],
- [
- "-10",
- -10.900216102600098
- ],
- [
- "▁preparation",
- -10.9009370803833
- ],
- [
- "▁autre",
- -10.90105152130127
- ],
- [
- "▁mortgage",
- -10.901155471801758
- ],
- [
- "▁Kan",
- -10.901508331298828
- ],
- [
- "▁typical",
- -10.901538848876953
- ],
- [
- "01",
- -10.901711463928223
- ],
- [
- "▁Review",
- -10.901862144470215
- ],
- [
- "▁laptop",
- -10.902127265930176
- ],
- [
- "CR",
- -10.902610778808594
- ],
- [
- "▁thread",
- -10.90265941619873
- ],
- [
- "BS",
- -10.902661323547363
- ],
- [
- "▁upper",
- -10.902700424194336
- ],
- [
- "▁searching",
- -10.902932167053223
- ],
- [
- "▁pen",
- -10.903214454650879
- ],
- [
- "▁Middle",
- -10.90333080291748
- ],
- [
- "73",
- -10.903359413146973
- ],
- [
- "▁leg",
- -10.903650283813477
- ],
- [
- "onic",
- -10.904272079467773
- ],
- [
- "IS",
- -10.904356956481934
- ],
- [
- "▁Kar",
- -10.904623985290527
- ],
- [
- "anz",
- -10.9046630859375
- ],
- [
- "▁circuit",
- -10.904901504516602
- ],
- [
- "▁Casino",
- -10.905384063720703
- ],
- [
- "07",
- -10.90584659576416
- ],
- [
- "▁petit",
- -10.905906677246094
- ],
- [
- "TV",
- -10.905978202819824
- ],
- [
- "level",
- -10.906311988830566
- ],
- [
- "▁Point",
- -10.906312942504883
- ],
- [
- "rau",
- -10.906474113464355
- ],
- [
- "▁cabinet",
- -10.906991958618164
- ],
- [
- "▁failed",
- -10.907042503356934
- ],
- [
- "▁stated",
- -10.907126426696777
- ],
- [
- "LA",
- -10.907461166381836
- ],
- [
- "▁privacy",
- -10.907596588134766
- ],
- [
- "vol",
- -10.907901763916016
- ],
- [
- "ativ",
- -10.908151626586914
- ],
- [
- "▁matters",
- -10.908210754394531
- ],
- [
- "▁Mor",
- -10.908555030822754
- ],
- [
- "▁Ur",
- -10.90860652923584
- ],
- [
- "view",
- -10.908968925476074
- ],
- [
- "▁consultation",
- -10.90921688079834
- ],
- [
- "TS",
- -10.909296989440918
- ],
- [
- "▁apartment",
- -10.909412384033203
- ],
- [
- "▁integrated",
- -10.909425735473633
- ],
- [
- "74",
- -10.909669876098633
- ],
- [
- "▁Through",
- -10.909710884094238
- ],
- [
- "▁kick",
- -10.909798622131348
- ],
- [
- "▁perioada",
- -10.90993881225586
- ],
- [
- "▁entirely",
- -10.909953117370605
- ],
- [
- "▁impossible",
- -10.91015911102295
- ],
- [
- "▁consideration",
- -10.910268783569336
- ],
- [
- "▁Alt",
- -10.91054916381836
- ],
- [
- "▁Come",
- -10.911089897155762
- ],
- [
- "▁outstanding",
- -10.911276817321777
- ],
- [
- "83",
- -10.911727905273438
- ],
- [
- "▁prezent",
- -10.911859512329102
- ],
- [
- "▁Local",
- -10.911993980407715
- ],
- [
- "▁Camp",
- -10.912056922912598
- ],
- [
- "▁bear",
- -10.912067413330078
- ],
- [
- "enden",
- -10.912262916564941
- ],
- [
- "life",
- -10.91236686706543
- ],
- [
- "▁Haus",
- -10.912516593933105
- ],
- [
- "▁William",
- -10.912644386291504
- ],
- [
- "“,",
- -10.912665367126465
- ],
- [
- "▁Instagram",
- -10.91285514831543
- ],
- [
- "▁solve",
- -10.913195610046387
- ],
- [
- "▁Ze",
- -10.913431167602539
- ],
- [
- "▁everyday",
- -10.91357135772705
- ],
- [
- "bla",
- -10.913615226745605
- ],
- [
- "eng",
- -10.913662910461426
- ],
- [
- "ough",
- -10.914246559143066
- ],
- [
- "84",
- -10.914483070373535
- ],
- [
- "?\"",
- -10.914599418640137
- ],
- [
- "rely",
- -10.91476821899414
- ],
- [
- "TH",
- -10.914841651916504
- ],
- [
- "lang",
- -10.91511058807373
- ],
- [
- "82",
- -10.915817260742188
- ],
- [
- "▁removal",
- -10.91589641571045
- ],
- [
- "ală",
- -10.915956497192383
- ],
- [
- "▁circumstances",
- -10.916097640991211
- ],
- [
- "ente",
- -10.91622257232666
- ],
- [
- "▁lieu",
- -10.91645336151123
- ],
- [
- "▁2016.",
- -10.91710376739502
- ],
- [
- "▁ales",
- -10.917342185974121
- ],
- [
- "▁pure",
- -10.917482376098633
- ],
- [
- "▁choosing",
- -10.917590141296387
- ],
- [
- "▁Russia",
- -10.917698860168457
- ],
- [
- "amp",
- -10.917703628540039
- ],
- [
- "▁Santa",
- -10.91788387298584
- ],
- [
- "▁happening",
- -10.918203353881836
- ],
- [
- "▁crew",
- -10.91822338104248
- ],
- [
- "▁lei",
- -10.91855239868164
- ],
- [
- "IP",
- -10.91858196258545
- ],
- [
- "RO",
- -10.919425964355469
- ],
- [
- "▁resort",
- -10.919514656066895
- ],
- [
- "ened",
- -10.919689178466797
- ],
- [
- "MB",
- -10.920031547546387
- ],
- [
- "▁styles",
- -10.920052528381348
- ],
- [
- "▁dernier",
- -10.920533180236816
- ],
- [
- "uck",
- -10.920699119567871
- ],
- [
- "▁Guide",
- -10.920710563659668
- ],
- [
- "fic",
- -10.92096996307373
- ],
- [
- "▁fitness",
- -10.921977996826172
- ],
- [
- "▁healthcare",
- -10.92223072052002
- ],
- [
- "mol",
- -10.92237663269043
- ],
- [
- "▁vis",
- -10.922721862792969
- ],
- [
- "▁atmosphere",
- -10.922972679138184
- ],
- [
- "▁motion",
- -10.922989845275879
- ],
- [
- "▁closer",
- -10.923114776611328
- ],
- [
- "▁SA",
- -10.92335319519043
- ],
- [
- "▁default",
- -10.923371315002441
- ],
- [
- "▁architecture",
- -10.923471450805664
- ],
- [
- "iile",
- -10.923528671264648
- ],
- [
- "zel",
- -10.923675537109375
- ],
- [
- "cla",
- -10.92387866973877
- ],
- [
- "OP",
- -10.924382209777832
- ],
- [
- "▁west",
- -10.924965858459473
- ],
- [
- "▁Energy",
- -10.925613403320312
- ],
- [
- "▁positions",
- -10.925777435302734
- ],
- [
- "▁contrast",
- -10.925885200500488
- ],
- [
- "▁serves",
- -10.92605972290039
- ],
- [
- "cup",
- -10.926340103149414
- ],
- [
- "▁rose",
- -10.926485061645508
- ],
- [
- "pers",
- -10.92664623260498
- ],
- [
- "▁noise",
- -10.926846504211426
- ],
- [
- "mont",
- -10.92690658569336
- ],
- [
- "#",
- -10.927061080932617
- ],
- [
- "lies",
- -10.927326202392578
- ],
- [
- "pat",
- -10.927718162536621
- ],
- [
- "IC",
- -10.927956581115723
- ],
- [
- "arc",
- -10.927989959716797
- ],
- [
- "▁winner",
- -10.928524017333984
- ],
- [
- "tent",
- -10.928732872009277
- ],
- [
- "▁Preis",
- -10.929106712341309
- ],
- [
- "▁vin",
- -10.929254531860352
- ],
- [
- "blo",
- -10.92929458618164
- ],
- [
- "ție",
- -10.929520606994629
- ],
- [
- "▁OR",
- -10.930315017700195
- ],
- [
- "▁Buch",
- -10.930798530578613
- ],
- [
- "▁nearby",
- -10.931190490722656
- ],
- [
- "▁meetings",
- -10.931290626525879
- ],
- [
- "▁48",
- -10.931465148925781
- ],
- [
- "▁quand",
- -10.93152904510498
- ],
- [
- "▁usual",
- -10.931936264038086
- ],
- [
- "▁weitere",
- -10.932539939880371
- ],
- [
- "▁caught",
- -10.932571411132812
- ],
- [
- "▁issued",
- -10.932626724243164
- ],
- [
- "ști",
- -10.932896614074707
- ],
- [
- "upcoming",
- -10.933232307434082
- ],
- [
- "▁agreed",
- -10.933233261108398
- ],
- [
- "place",
- -10.933353424072266
- ],
- [
- "▁Brand",
- -10.93344497680664
- ],
- [
- "▁relation",
- -10.933969497680664
- ],
- [
- "▁atât",
- -10.934090614318848
- ],
- [
- "▁Tre",
- -10.934176445007324
- ],
- [
- "▁lors",
- -10.934438705444336
- ],
- [
- "▁adopt",
- -10.934452056884766
- ],
- [
- "▁celui",
- -10.93458366394043
- ],
- [
- "cken",
- -10.93505859375
- ],
- [
- "▁partnership",
- -10.935284614562988
- ],
- [
- "?”",
- -10.935376167297363
- ],
- [
- "▁ba",
- -10.935746192932129
- ],
- [
- "▁ID",
- -10.935832023620605
- ],
- [
- "▁consistent",
- -10.935835838317871
- ],
- [
- "▁Ya",
- -10.935941696166992
- ],
- [
- "▁Academy",
- -10.936182022094727
- ],
- [
- "cial",
- -10.936230659484863
- ],
- [
- "1%",
- -10.936366081237793
- ],
- [
- "▁mise",
- -10.936684608459473
- ],
- [
- "▁gute",
- -10.936728477478027
- ],
- [
- "gli",
- -10.936939239501953
- ],
- [
- "▁Bu",
- -10.937679290771484
- ],
- [
- "▁reduction",
- -10.937917709350586
- ],
- [
- "acy",
- -10.938126564025879
- ],
- [
- "aga",
- -10.938161849975586
- ],
- [
- "▁Sc",
- -10.938273429870605
- ],
- [
- "▁Informationen",
- -10.938308715820312
- ],
- [
- "▁kommen",
- -10.938352584838867
- ],
- [
- "press",
- -10.93837833404541
- ],
- [
- "▁bridge",
- -10.938379287719727
- ],
- [
- "▁qualified",
- -10.938671112060547
- ],
- [
- "position",
- -10.938821792602539
- ],
- [
- "▁combat",
- -10.938933372497559
- ],
- [
- "!\"",
- -10.938993453979492
- ],
- [
- "eva",
- -10.939217567443848
- ],
- [
- "oase",
- -10.939380645751953
- ],
- [
- "▁inner",
- -10.939410209655762
- ],
- [
- "▁loans",
- -10.939720153808594
- ],
- [
- "made",
- -10.939786911010742
- ],
- [
- "▁Mexico",
- -10.93993091583252
- ],
- [
- "▁formal",
- -10.940092086791992
- ],
- [
- "▁fell",
- -10.94021987915039
- ],
- [
- "91",
- -10.940524101257324
- ],
- [
- "▁campus",
- -10.9407320022583
- ],
- [
- "ienne",
- -10.940869331359863
- ],
- [
- "▁framework",
- -10.94105339050293
- ],
- [
- "ncing",
- -10.941157341003418
- ],
- [
- "▁Para",
- -10.941222190856934
- ],
- [
- "▁password",
- -10.941298484802246
- ],
- [
- "▁sei",
- -10.941422462463379
- ],
- [
- "▁Cross",
- -10.941532135009766
- ],
- [
- "▁Ten",
- -10.941873550415039
- ],
- [
- "bank",
- -10.941887855529785
- ],
- [
- "▁gun",
- -10.942000389099121
- ],
- [
- "ient",
- -10.942021369934082
- ],
- [
- "▁usage",
- -10.942176818847656
- ],
- [
- "▁(2",
- -10.942278861999512
- ],
- [
- "Gra",
- -10.942320823669434
- ],
- [
- "▁prea",
- -10.94253158569336
- ],
- [
- "▁Als",
- -10.942619323730469
- ],
- [
- "▁finance",
- -10.942638397216797
- ],
- [
- "tate",
- -10.942665100097656
- ],
- [
- "ition",
- -10.942703247070312
- ],
- [
- "▁regulations",
- -10.942741394042969
- ],
- [
- "▁Professional",
- -10.943001747131348
- ],
- [
- "▁pl",
- -10.94336986541748
- ],
- [
- "▁SEO",
- -10.943472862243652
- ],
- [
- "▁trecut",
- -10.943487167358398
- ],
- [
- "▁aller",
- -10.943509101867676
- ],
- [
- "▁violence",
- -10.943986892700195
- ],
- [
- "▁membership",
- -10.944117546081543
- ],
- [
- "▁picked",
- -10.944162368774414
- ],
- [
- "▁collected",
- -10.9443359375
- ],
- [
- "▁extended",
- -10.944449424743652
- ],
- [
- "▁religious",
- -10.944661140441895
- ],
- [
- "▁salle",
- -10.944767951965332
- ],
- [
- "RA",
- -10.944781303405762
- ],
- [
- "▁blend",
- -10.945232391357422
- ],
- [
- "▁Min",
- -10.94532299041748
- ],
- [
- "kal",
- -10.945887565612793
- ],
- [
- "▁featuring",
- -10.945902824401855
- ],
- [
- "▁researchers",
- -10.946263313293457
- ],
- [
- "▁Search",
- -10.946558952331543
- ],
- [
- "CE",
- -10.946675300598145
- ],
- [
- "▁recognized",
- -10.94682502746582
- ],
- [
- "▁semi",
- -10.94692611694336
- ],
- [
- "▁exposure",
- -10.94718074798584
- ],
- [
- "grew",
- -10.947466850280762
- ],
- [
- "▁candidate",
- -10.948250770568848
- ],
- [
- "▁shares",
- -10.948908805847168
- ],
- [
- "▁edit",
- -10.949745178222656
- ],
- [
- "CS",
- -10.949905395507812
- ],
- [
- "▁Cl",
- -10.950240135192871
- ],
- [
- "▁Enjoy",
- -10.951438903808594
- ],
- [
- "▁hurt",
- -10.951482772827148
- ],
- [
- "▁bottle",
- -10.951593399047852
- ],
- [
- "▁Buy",
- -10.95159912109375
- ],
- [
- "▁superior",
- -10.952286720275879
- ],
- [
- "▁missed",
- -10.952424049377441
- ],
- [
- "▁workshop",
- -10.952433586120605
- ],
- [
- "action",
- -10.952437400817871
- ],
- [
- "ple",
- -10.952699661254883
- ],
- [
- "▁Schul",
- -10.952814102172852
- ],
- [
- "▁houses",
- -10.953080177307129
- ],
- [
- "▁2017,",
- -10.953569412231445
- ],
- [
- "▁killed",
- -10.953750610351562
- ],
- [
- "▁calendar",
- -10.954306602478027
- ],
- [
- "▁Mike",
- -10.954597473144531
- ],
- [
- "FA",
- -10.954627990722656
- ],
- [
- "nut",
- -10.95487117767334
- ],
- [
- "▁establish",
- -10.955140113830566
- ],
- [
- "▁alcohol",
- -10.95514965057373
- ],
- [
- "▁closely",
- -10.955170631408691
- ],
- [
- "▁MA",
- -10.955381393432617
- ],
- [
- "pul",
- -10.955389022827148
- ],
- [
- "▁defined",
- -10.955666542053223
- ],
- [
- "aires",
- -10.955692291259766
- ],
- [
- "▁Shi",
- -10.955703735351562
- ],
- [
- "▁plays",
- -10.956303596496582
- ],
- [
- "▁sister",
- -10.95690631866455
- ],
- [
- "▁cable",
- -10.957179069519043
- ],
- [
- "▁desk",
- -10.957215309143066
- ],
- [
- "▁apoi",
- -10.957738876342773
- ],
- [
- "▁identity",
- -10.95785140991211
- ],
- [
- "▁stars",
- -10.957931518554688
- ],
- [
- "▁fata",
- -10.958008766174316
- ],
- [
- "▁obvious",
- -10.958330154418945
- ],
- [
- "▁dental",
- -10.95843505859375
- ],
- [
- "AM",
- -10.958802223205566
- ],
- [
- "▁sharp",
- -10.95881175994873
- ],
- [
- "duc",
- -10.959053993225098
- ],
- [
- "▁manufacturer",
- -10.95914077758789
- ],
- [
- "!)",
- -10.959270477294922
- ],
- [
- "▁objects",
- -10.959720611572266
- ],
- [
- "▁Ag",
- -10.959989547729492
- ],
- [
- "referred",
- -10.960195541381836
- ],
- [
- "▁Ak",
- -10.960308074951172
- ],
- [
- "burg",
- -10.960360527038574
- ],
- [
- "▁nouveau",
- -10.960854530334473
- ],
- [
- "▁Pal",
- -10.960994720458984
- ],
- [
- "▁Arbeits",
- -10.961280822753906
- ],
- [
- "▁personally",
- -10.961288452148438
- ],
- [
- "▁Dé",
- -10.961292266845703
- ],
- [
- "▁import",
- -10.961688041687012
- ],
- [
- "▁justice",
- -10.961913108825684
- ],
- [
- "▁photography",
- -10.962705612182617
- ],
- [
- "▁portfolio",
- -10.962841987609863
- ],
- [
- "56",
- -10.96314525604248
- ],
- [
- "▁nouvelle",
- -10.963293075561523
- ],
- [
- "▁oven",
- -10.964197158813477
- ],
- [
- "▁400",
- -10.964272499084473
- ],
- [
- "▁mixed",
- -10.964395523071289
- ],
- [
- "▁relax",
- -10.964427947998047
- ],
- [
- "▁imp",
- -10.964703559875488
- ],
- [
- "▁».",
- -10.964734077453613
- ],
- [
- "▁mail",
- -10.964777946472168
- ],
- [
- "rage",
- -10.964861869812012
- ],
- [
- "nos",
- -10.964974403381348
- ],
- [
- "▁drugs",
- -10.965195655822754
- ],
- [
- "▁jede",
- -10.965211868286133
- ],
- [
- "▁einige",
- -10.965232849121094
- ],
- [
- "▁8.",
- -10.965325355529785
- ],
- [
- "ters",
- -10.965412139892578
- ],
- [
- "▁electrical",
- -10.965432167053223
- ],
- [
- "▁puis",
- -10.965836524963379
- ],
- [
- "▁films",
- -10.965903282165527
- ],
- [
- "41",
- -10.966036796569824
- ],
- [
- "▁moral",
- -10.966398239135742
- ],
- [
- "lage",
- -10.966402053833008
- ],
- [
- "▁spaces",
- -10.966415405273438
- ],
- [
- "▁Ed",
- -10.966462135314941
- ],
- [
- "▁classroom",
- -10.966588020324707
- ],
- [
- "▁große",
- -10.966588973999023
- ],
- [
- "▁baza",
- -10.966887474060059
- ],
- [
- "face",
- -10.967308044433594
- ],
- [
- "▁informed",
- -10.967333793640137
- ],
- [
- "▁improving",
- -10.967477798461914
- ],
- [
- "▁guidance",
- -10.967880249023438
- ],
- [
- "▁gallery",
- -10.96800708770752
- ],
- [
- "cular",
- -10.968046188354492
- ],
- [
- "53",
- -10.968094825744629
- ],
- [
- "Despite",
- -10.968238830566406
- ],
- [
- "▁forme",
- -10.968304634094238
- ],
- [
- "▁système",
- -10.968415260314941
- ],
- [
- "▁Win",
- -10.968494415283203
- ],
- [
- "▁Small",
- -10.968537330627441
- ],
- [
- "▁Mobile",
- -10.968564987182617
- ],
- [
- "▁tape",
- -10.968606948852539
- ],
- [
- "▁erhalten",
- -10.968914985656738
- ],
- [
- "▁movies",
- -10.968928337097168
- ],
- [
- "▁Unfortunately",
- -10.968963623046875
- ],
- [
- "▁Looking",
- -10.96945858001709
- ],
- [
- "▁guard",
- -10.969584465026855
- ],
- [
- "▁pr",
- -10.969820976257324
- ],
- [
- "▁confident",
- -10.96988582611084
- ],
- [
- "BA",
- -10.970229148864746
- ],
- [
- "bas",
- -10.970272064208984
- ],
- [
- "hum",
- -10.97050666809082
- ],
- [
- "ular",
- -10.9705171585083
- ],
- [
- "▁Still",
- -10.970593452453613
- ],
- [
- "▁flavor",
- -10.970656394958496
- ],
- [
- "▁boost",
- -10.970773696899414
- ],
- [
- "▁division",
- -10.970842361450195
- ],
- [
- "ising",
- -10.971006393432617
- ],
- [
- "▁monitoring",
- -10.971044540405273
- ],
- [
- "▁Sen",
- -10.97105884552002
- ],
- [
- "▁https",
- -10.971527099609375
- ],
- [
- "mainly",
- -10.971735000610352
- ],
- [
- "play",
- -10.972251892089844
- ],
- [
- "▁dynamic",
- -10.972357749938965
- ],
- [
- "▁coup",
- -10.972370147705078
- ],
- [
- "▁carpet",
- -10.972561836242676
- ],
- [
- "iner",
- -10.972846984863281
- ],
- [
- "ral",
- -10.97325611114502
- ],
- [
- "iser",
- -10.973320007324219
- ],
- [
- "RC",
- -10.9739990234375
- ],
- [
- "▁definition",
- -10.97475814819336
- ],
- [
- "▁Za",
- -10.974767684936523
- ],
- [
- "friendly",
- -10.974883079528809
- ],
- [
- "43",
- -10.975123405456543
- ],
- [
- "link",
- -10.975180625915527
- ],
- [
- "▁Multi",
- -10.97519302368164
- ],
- [
- "▁einmal",
- -10.975272178649902
- ],
- [
- "▁stopped",
- -10.975394248962402
- ],
- [
- "vel",
- -10.975456237792969
- ],
- [
- "▁ongoing",
- -10.975565910339355
- ],
- [
- "▁ancient",
- -10.976259231567383
- ],
- [
- "take",
- -10.976301193237305
- ],
- [
- "cia",
- -10.976432800292969
- ],
- [
- "▁USB",
- -10.976545333862305
- ],
- [
- "▁attorney",
- -10.976866722106934
- ],
- [
- "▁slot",
- -10.976866722106934
- ],
- [
- "▁Line",
- -10.97693157196045
- ],
- [
- "rice",
- -10.977087020874023
- ],
- [
- "ify",
- -10.977520942687988
- ],
- [
- "ó",
- -10.978260040283203
- ],
- [
- "▁flash",
- -10.978483200073242
- ],
- [
- "▁extension",
- -10.978555679321289
- ],
- [
- "▁Ende",
- -10.979022979736328
- ],
- [
- "▁powder",
- -10.979114532470703
- ],
- [
- "ească",
- -10.979143142700195
- ],
- [
- "03",
- -10.979327201843262
- ],
- [
- "▁normally",
- -10.979416847229004
- ],
- [
- "▁pun",
- -10.980108261108398
- ],
- [
- "viewed",
- -10.980138778686523
- ],
- [
- "ssen",
- -10.980896949768066
- ],
- [
- "ache",
- -10.981121063232422
- ],
- [
- "ește",
- -10.98122787475586
- ],
- [
- "▁PA",
- -10.981266021728516
- ],
- [
- "FI",
- -10.981945991516113
- ],
- [
- "▁Frank",
- -10.98198127746582
- ],
- [
- "▁apa",
- -10.98242473602295
- ],
- [
- "▁coast",
- -10.982614517211914
- ],
- [
- "▁boy",
- -10.982665061950684
- ],
- [
- "lim",
- -10.982902526855469
- ],
- [
- "▁putin",
- -10.983194351196289
- ],
- [
- "▁script",
- -10.983332633972168
- ],
- [
- "▁noticed",
- -10.9837007522583
- ],
- [
- "▁dealing",
- -10.983922004699707
- ],
- [
- "▁Trans",
- -10.984100341796875
- ],
- [
- "▁border",
- -10.984447479248047
- ],
- [
- "▁reputation",
- -10.984657287597656
- ],
- [
- "-2",
- -10.984662055969238
- ],
- [
- "HS",
- -10.984707832336426
- ],
- [
- "▁supports",
- -10.984724998474121
- ],
- [
- "▁horse",
- -10.985146522521973
- ],
- [
- "nik",
- -10.98520565032959
- ],
- [
- "▁clothes",
- -10.985234260559082
- ],
- [
- "▁Card",
- -10.985612869262695
- ],
- [
- "▁relief",
- -10.98595905303955
- ],
- [
- "▁Visit",
- -10.986259460449219
- ],
- [
- "▁luni",
- -10.986593246459961
- ],
- [
- "81",
- -10.986693382263184
- ],
- [
- "qua",
- -10.986945152282715
- ],
- [
- "▁Comp",
- -10.98697280883789
- ],
- [
- "▁investigation",
- -10.987137794494629
- ],
- [
- "▁depth",
- -10.987598419189453
- ],
- [
- "▁earned",
- -10.987709045410156
- ],
- [
- "▁Ren",
- -10.988090515136719
- ],
- [
- "▁Dumnezeu",
- -10.988107681274414
- ],
- [
- "▁Joe",
- -10.988210678100586
- ],
- [
- "▁goods",
- -10.988288879394531
- ],
- [
- "▁Vol",
- -10.988686561584473
- ],
- [
- "▁certified",
- -10.989118576049805
- ],
- [
- "▁favor",
- -10.989326477050781
- ],
- [
- "▁Scott",
- -10.989599227905273
- ],
- [
- "▁protest",
- -10.989802360534668
- ],
- [
- "▁pace",
- -10.989803314208984
- ],
- [
- "▁Angeles",
- -10.990368843078613
- ],
- [
- "inch",
- -10.99050521850586
- ],
- [
- "▁charged",
- -10.99052619934082
- ],
- [
- "code",
- -10.990968704223633
- ],
- [
- "▁convenient",
- -10.99138355255127
- ],
- [
- "▁Nord",
- -10.991556167602539
- ],
- [
- "▁yesterday",
- -10.991691589355469
- ],
- [
- "Dacă",
- -10.99169635772705
- ],
- [
- "▁Travel",
- -10.991786003112793
- ],
- [
- "▁kid",
- -10.991941452026367
- ],
- [
- "ction",
- -10.991986274719238
- ],
- [
- "▁groupe",
- -10.992770195007324
- ],
- [
- "pu",
- -10.993056297302246
- ],
- [
- "bzw",
- -10.993196487426758
- ],
- [
- "▁mixture",
- -10.993513107299805
- ],
- [
- "▁Farm",
- -10.993715286254883
- ],
- [
- "▁acces",
- -10.993939399719238
- ],
- [
- "matic",
- -10.993950843811035
- ],
- [
- "▁comparison",
- -10.994006156921387
- ],
- [
- "reich",
- -10.994095802307129
- ],
- [
- "pet",
- -10.994502067565918
- ],
- [
- "▁lit",
- -10.994685173034668
- ],
- [
- "▁organized",
- -10.99476432800293
- ],
- [
- "just",
- -10.995564460754395
- ],
- [
- "▁fellow",
- -10.996004104614258
- ],
- [
- "Ver",
- -10.996209144592285
- ],
- [
- "▁trends",
- -10.99622631072998
- ],
- [
- "▁evaluation",
- -10.99626636505127
- ],
- [
- "feld",
- -10.99639892578125
- ],
- [
- "▁Pu",
- -10.99671459197998
- ],
- [
- "▁equipped",
- -10.99727725982666
- ],
- [
- "▁catre",
- -10.997278213500977
- ],
- [
- "eck",
- -10.997369766235352
- ],
- [
- "▁facing",
- -10.997998237609863
- ],
- [
- "▁instrument",
- -10.998361587524414
- ],
- [
- "▁pleased",
- -10.998507499694824
- ],
- [
- "▁tap",
- -10.998818397521973
- ],
- [
- "dom",
- -10.998826026916504
- ],
- [
- "▁pump",
- -10.999384880065918
- ],
- [
- "▁functional",
- -10.999429702758789
- ],
- [
- "▁authority",
- -10.999455451965332
- ],
- [
- "▁experiment",
- -10.999478340148926
- ],
- [
- "LO",
- -10.999529838562012
- ],
- [
- "▁scheduled",
- -10.999552726745605
- ],
- [
- "halt",
- -10.999604225158691
- ],
- [
- "▁ceiling",
- -10.999761581420898
- ],
- [
- "▁Step",
- -11.000310897827148
- ],
- [
- "▁orders",
- -11.00032901763916
- ],
- [
- "▁speech",
- -11.001046180725098
- ],
- [
- "▁stands",
- -11.001119613647461
- ],
- [
- "▁disc",
- -11.001920700073242
- ],
- [
- "▁rec",
- -11.001935958862305
- ],
- [
- "▁Text",
- -11.00243854522705
- ],
- [
- "▁banks",
- -11.00294017791748
- ],
- [
- "▁oameni",
- -11.003045082092285
- ],
- [
- "▁communications",
- -11.003194808959961
- ],
- [
- "trag",
- -11.003307342529297
- ],
- [
- "▁trail",
- -11.003803253173828
- ],
- [
- "AN",
- -11.00426197052002
- ],
- [
- "▁Federal",
- -11.004467964172363
- ],
- [
- "▁quote",
- -11.00455093383789
- ],
- [
- "▁spus",
- -11.004620552062988
- ],
- [
- "▁managing",
- -11.004990577697754
- ],
- [
- "▁booking",
- -11.00505256652832
- ],
- [
- "▁Blog",
- -11.005669593811035
- ],
- [
- "▁tank",
- -11.005681991577148
- ],
- [
- "pon",
- -11.005804061889648
- ],
- [
- "GE",
- -11.00582218170166
- ],
- [
- "▁fiscal",
- -11.005871772766113
- ],
- [
- "▁satisfaction",
- -11.006044387817383
- ],
- [
- "cre",
- -11.00614070892334
- ],
- [
- "▁protected",
- -11.006494522094727
- ],
- [
- "▁enfants",
- -11.006782531738281
- ],
- [
- "▁dort",
- -11.007554054260254
- ],
- [
- "▁Mel",
- -11.008041381835938
- ],
- [
- "▁turns",
- -11.00804615020752
- ],
- [
- "▁savings",
- -11.008106231689453
- ],
- [
- "▁voir",
- -11.008358001708984
- ],
- [
- "▁Boston",
- -11.008394241333008
- ],
- [
- "▁debate",
- -11.008469581604004
- ],
- [
- "▁SO",
- -11.008857727050781
- ],
- [
- "▁tables",
- -11.009193420410156
- ],
- [
- "▁honest",
- -11.009210586547852
- ],
- [
- "mate",
- -11.009283065795898
- ],
- [
- "▁chart",
- -11.0094633102417
- ],
- [
- "decât",
- -11.009682655334473
- ],
- [
- "▁Radio",
- -11.009685516357422
- ],
- [
- "54",
- -11.00986385345459
- ],
- [
- "▁vol",
- -11.010008811950684
- ],
- [
- "last",
- -11.010148048400879
- ],
- [
- "▁tall",
- -11.010408401489258
- ],
- [
- "▁Should",
- -11.010489463806152
- ],
- [
- "▁sink",
- -11.010525703430176
- ],
- [
- "▁Right",
- -11.010527610778809
- ],
- [
- "▁male",
- -11.010720252990723
- ],
- [
- "▁Modern",
- -11.010753631591797
- ],
- [
- "▁indeed",
- -11.010886192321777
- ],
- [
- "▁Garden",
- -11.011139869689941
- ],
- [
- "▁Mod",
- -11.011307716369629
- ],
- [
- "▁turning",
- -11.0115327835083
- ],
- [
- "▁inches",
- -11.011557579040527
- ],
- [
- "▁Police",
- -11.01183795928955
- ],
- [
- "▁Pay",
- -11.012016296386719
- ],
- [
- "UE",
- -11.0126371383667
- ],
- [
- "mé",
- -11.012652397155762
- ],
- [
- "EE",
- -11.013046264648438
- ],
- [
- "▁cookies",
- -11.013116836547852
- ],
- [
- "rip",
- -11.013351440429688
- ],
- [
- "▁Motor",
- -11.01352310180664
- ],
- [
- "▁lung",
- -11.01379680633545
- ],
- [
- "▁Ap",
- -11.013995170593262
- ],
- [
- "▁sustainable",
- -11.014066696166992
- ],
- [
- "▁instant",
- -11.014240264892578
- ],
- [
- "▁Rose",
- -11.014464378356934
- ],
- [
- "▁Carolina",
- -11.014906883239746
- ],
- [
- "▁Help",
- -11.014969825744629
- ],
- [
- "IE",
- -11.01535701751709
- ],
- [
- "▁Jersey",
- -11.015522956848145
- ],
- [
- "▁Spanish",
- -11.015586853027344
- ],
- [
- "▁wheel",
- -11.015660285949707
- ],
- [
- "▁fishing",
- -11.0158109664917
- ],
- [
- "gram",
- -11.015937805175781
- ],
- [
- "▁ST",
- -11.016227722167969
- ],
- [
- "▁Nov",
- -11.01632022857666
- ],
- [
- "▁reporting",
- -11.016362190246582
- ],
- [
- "ked",
- -11.016467094421387
- ],
- [
- "▁Leben",
- -11.016557693481445
- ],
- [
- "▁organisation",
- -11.016843795776367
- ],
- [
- "▁tiny",
- -11.017144203186035
- ],
- [
- "▁Alex",
- -11.017236709594727
- ],
- [
- "▁obtained",
- -11.017255783081055
- ],
- [
- "▁Acest",
- -11.017367362976074
- ],
- [
- "▁dangerous",
- -11.01749038696289
- ],
- [
- "utter",
- -11.017624855041504
- ],
- [
- "▁rev",
- -11.01801586151123
- ],
- [
- "Un",
- -11.018242835998535
- ],
- [
- "▁revealed",
- -11.018356323242188
- ],
- [
- "▁decade",
- -11.018709182739258
- ],
- [
- "▁possibility",
- -11.01945686340332
- ],
- [
- "service",
- -11.019577980041504
- ],
- [
- "è",
- -11.01966667175293
- ],
- [
- "▁Chief",
- -11.019674301147461
- ],
- [
- "▁Durch",
- -11.019795417785645
- ],
- [
- "▁cadre",
- -11.019843101501465
- ],
- [
- "▁wearing",
- -11.019845008850098
- ],
- [
- "sized",
- -11.01988410949707
- ],
- [
- "LY",
- -11.01989459991455
- ],
- [
- "▁unser",
- -11.019963264465332
- ],
- [
- "▁2016,",
- -11.019988059997559
- ],
- [
- "▁fail",
- -11.020028114318848
- ],
- [
- "iques",
- -11.020115852355957
- ],
- [
- "▁Angel",
- -11.020315170288086
- ],
- [
- "▁transportation",
- -11.020364761352539
- ],
- [
- "▁dates",
- -11.020395278930664
- ],
- [
- "▁danger",
- -11.020731925964355
- ],
- [
- "▁forum",
- -11.020828247070312
- ],
- [
- "zug",
- -11.020885467529297
- ],
- [
- "▁filed",
- -11.021199226379395
- ],
- [
- "loc",
- -11.021201133728027
- ],
- [
- "éri",
- -11.021234512329102
- ],
- [
- "tribu",
- -11.021393775939941
- ],
- [
- "▁entered",
- -11.021639823913574
- ],
- [
- "▁porte",
- -11.021928787231445
- ],
- [
- "▁arts",
- -11.021979331970215
- ],
- [
- "▁reform",
- -11.022001266479492
- ],
- [
- "▁Main",
- -11.022101402282715
- ],
- [
- "▁dir",
- -11.022111892700195
- ],
- [
- "▁approval",
- -11.022465705871582
- ],
- [
- "▁juice",
- -11.022750854492188
- ],
- [
- "vier",
- -11.022771835327148
- ],
- [
- "▁nivel",
- -11.02318000793457
- ],
- [
- "▁returns",
- -11.023423194885254
- ],
- [
- "▁formed",
- -11.023723602294922
- ],
- [
- "▁combine",
- -11.02436351776123
- ],
- [
- "▁cours",
- -11.024392127990723
- ],
- [
- "▁Standard",
- -11.024463653564453
- ],
- [
- "▁certification",
- -11.024677276611328
- ],
- [
- "escu",
- -11.024996757507324
- ],
- [
- "▁achieved",
- -11.025278091430664
- ],
- [
- "▁Model",
- -11.025280952453613
- ],
- [
- "rul",
- -11.025404930114746
- ],
- [
- "▁Tage",
- -11.025530815124512
- ],
- [
- "▁injuries",
- -11.02560806274414
- ],
- [
- "▁Sal",
- -11.025671005249023
- ],
- [
- "▁expenses",
- -11.025887489318848
- ],
- [
- "▁cet",
- -11.026009559631348
- ],
- [
- "▁taxes",
- -11.026028633117676
- ],
- [
- "diesen",
- -11.02626895904541
- ],
- [
- "▁fairly",
- -11.026638984680176
- ],
- [
- "▁Access",
- -11.026866912841797
- ],
- [
- "wind",
- -11.027122497558594
- ],
- [
- "IM",
- -11.027252197265625
- ],
- [
- "ense",
- -11.027548789978027
- ],
- [
- "▁hang",
- -11.027957916259766
- ],
- [
- "▁citizens",
- -11.028020858764648
- ],
- [
- "3%",
- -11.028101921081543
- ],
- [
- "lum",
- -11.028268814086914
- ],
- [
- "▁discussed",
- -11.028326034545898
- ],
- [
- "AC",
- -11.02841854095459
- ],
- [
- "‘",
- -11.0286865234375
- ],
- [
- "▁Sol",
- -11.028698921203613
- ],
- [
- "06",
- -11.028816223144531
- ],
- [
- "stellen",
- -11.029170989990234
- ],
- [
- "▁participation",
- -11.02917194366455
- ],
- [
- "▁Box",
- -11.029200553894043
- ],
- [
- "▁bieten",
- -11.029687881469727
- ],
- [
- "▁Louis",
- -11.029730796813965
- ],
- [
- "▁lessons",
- -11.029789924621582
- ],
- [
- "▁visible",
- -11.029966354370117
- ],
- [
- "▁Cam",
- -11.030128479003906
- ],
- [
- "▁Ban",
- -11.03053092956543
- ],
- [
- "▁Far",
- -11.03060245513916
- ],
- [
- "▁travers",
- -11.030759811401367
- ],
- [
- "▁telling",
- -11.030808448791504
- ],
- [
- "▁magic",
- -11.030855178833008
- ],
- [
- "▁Night",
- -11.031316757202148
- ],
- [
- "▁judge",
- -11.031400680541992
- ],
- [
- "▁Pat",
- -11.031482696533203
- ],
- [
- "▁Southern",
- -11.031901359558105
- ],
- [
- "OL",
- -11.031929969787598
- ],
- [
- "fully",
- -11.032191276550293
- ],
- [
- "▁acestea",
- -11.03223705291748
- ],
- [
- "▁Order",
- -11.032383918762207
- ],
- [
- "▁facut",
- -11.032523155212402
- ],
- [
- "▁Matt",
- -11.032600402832031
- ],
- [
- "registr",
- -11.03278923034668
- ],
- [
- "▁Yet",
- -11.032811164855957
- ],
- [
- "ß",
- -11.033596992492676
- ],
- [
- "▁făcut",
- -11.033618927001953
- ],
- [
- "▁versions",
- -11.033780097961426
- ],
- [
- "▁Force",
- -11.03396224975586
- ],
- [
- "rick",
- -11.034153938293457
- ],
- [
- "▁rund",
- -11.034563064575195
- ],
- [
- "ike",
- -11.034658432006836
- ],
- [
- "▁Young",
- -11.034675598144531
- ],
- [
- "▁ski",
- -11.034927368164062
- ],
- [
- "CU",
- -11.035385131835938
- ],
- [
- "▁Second",
- -11.035510063171387
- ],
- [
- "▁graduate",
- -11.03554916381836
- ],
- [
- "▁Bible",
- -11.036049842834473
- ],
- [
- "▁vary",
- -11.036060333251953
- ],
- [
- "▁celebration",
- -11.036151885986328
- ],
- [
- "▁risks",
- -11.036210060119629
- ],
- [
- "erii",
- -11.036327362060547
- ],
- [
- "rance",
- -11.036577224731445
- ],
- [
- "▁MP",
- -11.036787986755371
- ],
- [
- "▁tale",
- -11.036788940429688
- ],
- [
- "▁Ford",
- -11.037044525146484
- ],
- [
- "▁attached",
- -11.037278175354004
- ],
- [
- "▁Sy",
- -11.037312507629395
- ],
- [
- "▁Ly",
- -11.03765869140625
- ],
- [
- "stellung",
- -11.037687301635742
- ],
- [
- "▁trop",
- -11.0377197265625
- ],
- [
- "▁années",
- -11.037736892700195
- ],
- [
- "▁linked",
- -11.03792667388916
- ],
- [
- "pit",
- -11.038352012634277
- ],
- [
- "So",
- -11.03835391998291
- ],
- [
- "ţe",
- -11.038473129272461
- ],
- [
- "▁origin",
- -11.038509368896484
- ],
- [
- "▁boys",
- -11.039263725280762
- ],
- [
- "holder",
- -11.039352416992188
- ],
- [
- "read",
- -11.039461135864258
- ],
- [
- "▁relative",
- -11.03950023651123
- ],
- [
- "▁industries",
- -11.03958511352539
- ],
- [
- "making",
- -11.039688110351562
- ],
- [
- "▁tun",
- -11.039917945861816
- ],
- [
- "▁forced",
- -11.041061401367188
- ],
- [
- "▁Welcome",
- -11.041086196899414
- ],
- [
- "▁explained",
- -11.041138648986816
- ],
- [
- "MP",
- -11.041389465332031
- ],
- [
- "▁Three",
- -11.041613578796387
- ],
- [
- "aza",
- -11.041768074035645
- ],
- [
- "▁1999",
- -11.041924476623535
- ],
- [
- "▁erst",
- -11.042237281799316
- ],
- [
- "RS",
- -11.042623519897461
- ],
- [
- "▁attractive",
- -11.04279899597168
- ],
- [
- "▁visited",
- -11.042805671691895
- ],
- [
- "▁nom",
- -11.042874336242676
- ],
- [
- "▁drum",
- -11.042933464050293
- ],
- [
- "cast",
- -11.043068885803223
- ],
- [
- "ogen",
- -11.043105125427246
- ],
- [
- "▁tech",
- -11.04360294342041
- ],
- [
- "▁Comment",
- -11.043664932250977
- ],
- [
- "▁Little",
- -11.04405689239502
- ],
- [
- "▁suggested",
- -11.044086456298828
- ],
- [
- "▁gar",
- -11.044205665588379
- ],
- [
- "▁crack",
- -11.04458999633789
- ],
- [
- "▁shooting",
- -11.044676780700684
- ],
- [
- "▁Try",
- -11.044759750366211
- ],
- [
- "▁Remember",
- -11.045008659362793
- ],
- [
- "▁folks",
- -11.045217514038086
- ],
- [
- "▁MS",
- -11.045512199401855
- ],
- [
- "▁Dia",
- -11.04584789276123
- ],
- [
- "3)",
- -11.046561241149902
- ],
- [
- "arbeit",
- -11.04697036743164
- ],
- [
- "▁pepper",
- -11.047065734863281
- ],
- [
- "zz",
- -11.047107696533203
- ],
- [
- "▁extreme",
- -11.047235488891602
- ],
- [
- "▁extrem",
- -11.047367095947266
- ],
- [
- "▁severe",
- -11.047768592834473
- ],
- [
- "▁networks",
- -11.047882080078125
- ],
- [
- "păr",
- -11.047910690307617
- ],
- [
- "sent",
- -11.047933578491211
- ],
- [
- "▁structures",
- -11.048048973083496
- ],
- [
- "▁Join",
- -11.048078536987305
- ],
- [
- "▁privind",
- -11.048255920410156
- ],
- [
- "▁marriage",
- -11.04865837097168
- ],
- [
- "▁liegt",
- -11.048918724060059
- ],
- [
- "eben",
- -11.048995971679688
- ],
- [
- "▁produse",
- -11.049076080322266
- ],
- [
- "▁tested",
- -11.049090385437012
- ],
- [
- "▁Queen",
- -11.049134254455566
- ],
- [
- "▁Tax",
- -11.049687385559082
- ],
- [
- "rian",
- -11.049710273742676
- ],
- [
- "▁Problem",
- -11.050151824951172
- ],
- [
- "izat",
- -11.05023193359375
- ],
- [
- "udi",
- -11.050324440002441
- ],
- [
- "▁LA",
- -11.050718307495117
- ],
- [
- "▁afford",
- -11.051108360290527
- ],
- [
- "▁percentage",
- -11.05121898651123
- ],
- [
- "▁cute",
- -11.051547050476074
- ],
- [
- "▁gorgeous",
- -11.051891326904297
- ],
- [
- "▁indoor",
- -11.05190372467041
- ],
- [
- "▁configuration",
- -11.052103042602539
- ],
- [
- "▁immediate",
- -11.052303314208984
- ],
- [
- "▁exemple",
- -11.052450180053711
- ],
- [
- "▁Being",
- -11.052550315856934
- ],
- [
- "▁introduction",
- -11.052591323852539
- ],
- [
- "ella",
- -11.053206443786621
- ],
- [
- "bare",
- -11.053521156311035
- ],
- [
- "▁besser",
- -11.053539276123047
- ],
- [
- "▁Put",
- -11.053740501403809
- ],
- [
- "gon",
- -11.054248809814453
- ],
- [
- "▁Italy",
- -11.054259300231934
- ],
- [
- "▁Thus",
- -11.05435562133789
- ],
- [
- "tari",
- -11.054437637329102
- ],
- [
- "0.000",
- -11.054460525512695
- ],
- [
- "▁Price",
- -11.054651260375977
- ],
- [
- "▁Trust",
- -11.054824829101562
- ],
- [
- "▁contra",
- -11.054863929748535
- ],
- [
- "▁layout",
- -11.05504035949707
- ],
- [
- "▁Ireland",
- -11.055187225341797
- ],
- [
- "ctor",
- -11.055344581604004
- ],
- [
- "atoare",
- -11.055540084838867
- ],
- [
- "pra",
- -11.055729866027832
- ],
- [
- "rent",
- -11.055892944335938
- ],
- [
- "▁Seite",
- -11.05605411529541
- ],
- [
- "▁ori",
- -11.056280136108398
- ],
- [
- "spiel",
- -11.056541442871094
- ],
- [
- "▁Times",
- -11.056883811950684
- ],
- [
- "primarily",
- -11.056974411010742
- ],
- [
- "nov",
- -11.05703067779541
- ],
- [
- "▁desired",
- -11.057061195373535
- ],
- [
- "▁Would",
- -11.057072639465332
- ],
- [
- "PL",
- -11.057225227355957
- ],
- [
- "▁originally",
- -11.057367324829102
- ],
- [
- "▁Ana",
- -11.057463645935059
- ],
- [
- "EN",
- -11.05754566192627
- ],
- [
- "▁occasion",
- -11.05755615234375
- ],
- [
- "▁grant",
- -11.057572364807129
- ],
- [
- "igkeit",
- -11.057975769042969
- ],
- [
- "▁scheme",
- -11.058146476745605
- ],
- [
- "▁2015.",
- -11.058621406555176
- ],
- [
- "izare",
- -11.058778762817383
- ],
- [
- "gate",
- -11.058792114257812
- ],
- [
- "▁poker",
- -11.058899879455566
- ],
- [
- "pping",
- -11.058998107910156
- ],
- [
- "▁Wild",
- -11.059511184692383
- ],
- [
- "▁YouTube",
- -11.059995651245117
- ],
- [
- "▁assume",
- -11.060284614562988
- ],
- [
- "с",
- -11.060614585876465
- ],
- [
- "▁rapport",
- -11.060623168945312
- ],
- [
- "▁labor",
- -11.060996055603027
- ],
- [
- "teur",
- -11.061041831970215
- ],
- [
- "▁genre",
- -11.06116008758545
- ],
- [
- "▁plat",
- -11.061745643615723
- ],
- [
- "▁listening",
- -11.061750411987305
- ],
- [
- "sky",
- -11.061777114868164
- ],
- [
- "▁neighborhood",
- -11.061782836914062
- ],
- [
- "▁3-",
- -11.062150001525879
- ],
- [
- "▁Library",
- -11.062162399291992
- ],
- [
- "agit",
- -11.062249183654785
- ],
- [
- "▁platforms",
- -11.062849998474121
- ],
- [
- "bei",
- -11.062882423400879
- ],
- [
- "AB",
- -11.062897682189941
- ],
- [
- "▁manufacturers",
- -11.06295394897461
- ],
- [
- "▁printing",
- -11.063141822814941
- ],
- [
- "▁crisis",
- -11.063326835632324
- ],
- [
- "▁Smart",
- -11.06335163116455
- ],
- [
- "▁drawing",
- -11.063406944274902
- ],
- [
- "MO",
- -11.06348991394043
- ],
- [
- "▁durable",
- -11.063569068908691
- ],
- [
- "chant",
- -11.0636625289917
- ],
- [
- "▁chemical",
- -11.063764572143555
- ],
- [
- "▁savoir",
- -11.063776016235352
- ],
- [
- "▁Max",
- -11.063802719116211
- ],
- [
- "gestellt",
- -11.06380844116211
- ],
- [
- "▁rural",
- -11.063854217529297
- ],
- [
- "52",
- -11.064105033874512
- ],
- [
- "▁invited",
- -11.064169883728027
- ],
- [
- "▁fil",
- -11.0642728805542
- ],
- [
- "▁Rob",
- -11.064284324645996
- ],
- [
- "▁Bell",
- -11.064387321472168
- ],
- [
- "▁neck",
- -11.064831733703613
- ],
- [
- "pac",
- -11.064879417419434
- ],
- [
- "wal",
- -11.06491470336914
- ],
- [
- "▁là",
- -11.064922332763672
- ],
- [
- "▁Virginia",
- -11.065081596374512
- ],
- [
- "▁applicable",
- -11.06509017944336
- ],
- [
- "▁abuse",
- -11.065153121948242
- ],
- [
- "aide",
- -11.065321922302246
- ],
- [
- "▁increases",
- -11.065396308898926
- ],
- [
- "▁moi",
- -11.065568923950195
- ],
- [
- "▁Non",
- -11.065577507019043
- ],
- [
- "▁Produkt",
- -11.065627098083496
- ],
- [
- "FC",
- -11.065644264221191
- ],
- [
- "▁shops",
- -11.065677642822266
- ],
- [
- "▁prendre",
- -11.065923690795898
- ],
- [
- "atul",
- -11.065990447998047
- ],
- [
- "▁sal",
- -11.066137313842773
- ],
- [
- "▁société",
- -11.06627082824707
- ],
- [
- "▁Hot",
- -11.066329002380371
- ],
- [
- "rim",
- -11.066587448120117
- ],
- [
- "gue",
- -11.06661605834961
- ],
- [
- "▁enterprise",
- -11.066624641418457
- ],
- [
- "▁33",
- -11.067329406738281
- ],
- [
- "mittel",
- -11.067395210266113
- ],
- [
- "ged",
- -11.067439079284668
- ],
- [
- "▁formula",
- -11.06777286529541
- ],
- [
- "▁spin",
- -11.067784309387207
- ],
- [
- "als",
- -11.067826271057129
- ],
- [
- "2%",
- -11.06785774230957
- ],
- [
- "bon",
- -11.068192481994629
- ],
- [
- "▁Executive",
- -11.068323135375977
- ],
- [
- "▁wirklich",
- -11.068427085876465
- ],
- [
- "îl",
- -11.068608283996582
- ],
- [
- "1.",
- -11.068917274475098
- ],
- [
- "▁Arm",
- -11.069157600402832
- ],
- [
- "▁rid",
- -11.069358825683594
- ],
- [
- "aries",
- -11.069727897644043
- ],
- [
- "▁incident",
- -11.06982421875
- ],
- [
- "▁copii",
- -11.070008277893066
- ],
- [
- "▁Charles",
- -11.070141792297363
- ],
- [
- "▁meals",
- -11.070147514343262
- ],
- [
- "▁wireless",
- -11.070237159729004
- ],
- [
- "Ex",
- -11.070364952087402
- ],
- [
- "▁Financial",
- -11.070540428161621
- ],
- [
- "▁AM",
- -11.070615768432617
- ],
- [
- "▁fest",
- -11.070645332336426
- ],
- [
- "▁Ol",
- -11.071410179138184
- ],
- [
- "oir",
- -11.071447372436523
- ],
- [
- "300",
- -11.071893692016602
- ],
- [
- "▁punct",
- -11.072138786315918
- ],
- [
- "▁Mad",
- -11.07283878326416
- ],
- [
- "▁Ali",
- -11.072907447814941
- ],
- [
- "lag",
- -11.073214530944824
- ],
- [
- "▁ocean",
- -11.073314666748047
- ],
- [
- "▁mirror",
- -11.073326110839844
- ],
- [
- "▁Additionally",
- -11.073869705200195
- ],
- [
- "alia",
- -11.073884963989258
- ],
- [
- "▁county",
- -11.073899269104004
- ],
- [
- "▁hip",
- -11.074305534362793
- ],
- [
- "dale",
- -11.074395179748535
- ],
- [
- "▁Stra",
- -11.074429512023926
- ],
- [
- "▁drag",
- -11.074575424194336
- ],
- [
- "▁Sand",
- -11.074851036071777
- ],
- [
- "▁historic",
- -11.074980735778809
- ],
- [
- "ière",
- -11.075427055358887
- ],
- [
- "▁examine",
- -11.075624465942383
- ],
- [
- "soci",
- -11.075634002685547
- ],
- [
- "ime",
- -11.076088905334473
- ],
- [
- "▁Insurance",
- -11.07621955871582
- ],
- [
- "▁crime",
- -11.076736450195312
- ],
- [
- "▁pare",
- -11.076945304870605
- ],
- [
- "▁craft",
- -11.077105522155762
- ],
- [
- "▁Building",
- -11.077279090881348
- ],
- [
- "mission",
- -11.077534675598145
- ],
- [
- "▁Americans",
- -11.077573776245117
- ],
- [
- "▁mg",
- -11.077799797058105
- ],
- [
- "▁passage",
- -11.077938079833984
- ],
- [
- "▁deposit",
- -11.078346252441406
- ],
- [
- "▁widely",
- -11.078444480895996
- ],
- [
- "nch",
- -11.078453063964844
- ],
- [
- "▁Coast",
- -11.078756332397461
- ],
- [
- "▁recipes",
- -11.078784942626953
- ],
- [
- "▁Ziel",
- -11.07951545715332
- ],
- [
- "▁duty",
- -11.079646110534668
- ],
- [
- "▁gerne",
- -11.079704284667969
- ],
- [
- "most",
- -11.080034255981445
- ],
- [
- "▁argument",
- -11.080158233642578
- ],
- [
- "▁root",
- -11.08021354675293
- ],
- [
- "▁consult",
- -11.08024787902832
- ],
- [
- "▁muscle",
- -11.080255508422852
- ],
- [
- "▁spoke",
- -11.08038330078125
- ],
- [
- "▁Cum",
- -11.080950736999512
- ],
- [
- "▁orange",
- -11.081033706665039
- ],
- [
- "▁reader",
- -11.081123352050781
- ],
- [
- "schw",
- -11.081151008605957
- ],
- [
- "▁commission",
- -11.081332206726074
- ],
- [
- "histoire",
- -11.081811904907227
- ],
- [
- "▁represents",
- -11.082064628601074
- ],
- [
- "▁meilleur",
- -11.082343101501465
- ],
- [
- "▁10.",
- -11.082358360290527
- ],
- [
- "HA",
- -11.082427024841309
- ],
- [
- "▁Systems",
- -11.082573890686035
- ],
- [
- "▁blind",
- -11.082603454589844
- ],
- [
- "▁HP",
- -11.083221435546875
- ],
- [
- "▁doi",
- -11.083307266235352
- ],
- [
- "▁signature",
- -11.083404541015625
- ],
- [
- "▁invite",
- -11.083505630493164
- ],
- [
- "▁Samsung",
- -11.083802223205566
- ],
- [
- "▁liber",
- -11.083942413330078
- ],
- [
- "▁letters",
- -11.0840482711792
- ],
- [
- "▁primul",
- -11.084186553955078
- ],
- [
- "▁losing",
- -11.084328651428223
- ],
- [
- "resulting",
- -11.084467887878418
- ],
- [
- "▁Computer",
- -11.08474063873291
- ],
- [
- "▁poll",
- -11.0847749710083
- ],
- [
- "rile",
- -11.085102081298828
- ],
- [
- "TI",
- -11.085142135620117
- ],
- [
- "▁cur",
- -11.08566951751709
- ],
- [
- "▁fonction",
- -11.085833549499512
- ],
- [
- "gat",
- -11.086359977722168
- ],
- [
- "AA",
- -11.086480140686035
- ],
- [
- "tiv",
- -11.086692810058594
- ],
- [
- "▁Str",
- -11.087076187133789
- ],
- [
- "ești",
- -11.087677955627441
- ],
- [
- "▁officer",
- -11.0877046585083
- ],
- [
- "reducing",
- -11.08772087097168
- ],
- [
- "▁gifts",
- -11.08780288696289
- ],
- [
- "▁performing",
- -11.08788776397705
- ],
- [
- "▁»,",
- -11.088349342346191
- ],
- [
- "▁guitar",
- -11.08838939666748
- ],
- [
- "▁segment",
- -11.088580131530762
- ],
- [
- "▁Tar",
- -11.08861255645752
- ],
- [
- "▁ultimately",
- -11.088805198669434
- ],
- [
- "▁cam",
- -11.088960647583008
- ],
- [
- "▁Arbeit",
- -11.089076042175293
- ],
- [
- "▁accessories",
- -11.089418411254883
- ],
- [
- "bad",
- -11.089820861816406
- ],
- [
- "home",
- -11.0899019241333
- ],
- [
- "▁clip",
- -11.08995532989502
- ],
- [
- "range",
- -11.090432167053223
- ],
- [
- "CM",
- -11.090867042541504
- ],
- [
- "▁printed",
- -11.090883255004883
- ],
- [
- "▁Pet",
- -11.091177940368652
- ],
- [
- "▁attract",
- -11.091333389282227
- ],
- [
- "date",
- -11.091501235961914
- ],
- [
- "▁Senior",
- -11.091503143310547
- ],
- [
- "▁genau",
- -11.092177391052246
- ],
- [
- "num",
- -11.092435836791992
- ],
- [
- "▁attended",
- -11.092674255371094
- ],
- [
- "▁Turn",
- -11.092824935913086
- ],
- [
- "▁History",
- -11.092830657958984
- ],
- [
- "some",
- -11.092852592468262
- ],
- [
- "▁describe",
- -11.09308910369873
- ],
- [
- "▁Lee",
- -11.093143463134766
- ],
- [
- "▁Fre",
- -11.093314170837402
- ],
- [
- "▁league",
- -11.093345642089844
- ],
- [
- "new",
- -11.093505859375
- ],
- [
- "tors",
- -11.093535423278809
- ],
- [
- "▁storm",
- -11.094005584716797
- ],
- [
- "▁Beispiel",
- -11.094197273254395
- ],
- [
- "▁index",
- -11.094344139099121
- ],
- [
- "▁awarded",
- -11.094613075256348
- ],
- [
- "state",
- -11.094625473022461
- ],
- [
- "▁1990",
- -11.094874382019043
- ],
- [
- "▁ends",
- -11.094902992248535
- ],
- [
- "kor",
- -11.095070838928223
- ],
- [
- "far",
- -11.095418930053711
- ],
- [
- "▁Page",
- -11.095541000366211
- ],
- [
- "▁promotion",
- -11.095610618591309
- ],
- [
- "▁weekly",
- -11.095726013183594
- ],
- [
- "400",
- -11.095966339111328
- ],
- [
- "iuni",
- -11.096365928649902
- ],
- [
- "▁Summer",
- -11.096376419067383
- ],
- [
- "▁thin",
- -11.096627235412598
- ],
- [
- "▁dafür",
- -11.09669303894043
- ],
- [
- "51",
- -11.096769332885742
- ],
- [
- "PR",
- -11.096978187561035
- ],
- [
- "▁Hy",
- -11.097001075744629
- ],
- [
- "gas",
- -11.097013473510742
- ],
- [
- "▁atat",
- -11.097166061401367
- ],
- [
- "▁mining",
- -11.097347259521484
- ],
- [
- "▁principles",
- -11.09741497039795
- ],
- [
- "gent",
- -11.097545623779297
- ],
- [
- "ika",
- -11.097685813903809
- ],
- [
- "▁religion",
- -11.097787857055664
- ],
- [
- "▁ordered",
- -11.098284721374512
- ],
- [
- "▁developers",
- -11.098298072814941
- ],
- [
- "▁pleasure",
- -11.098456382751465
- ],
- [
- "vit",
- -11.098505020141602
- ],
- [
- "mers",
- -11.0988130569458
- ],
- [
- "▁Section",
- -11.098873138427734
- ],
- [
- "▁por",
- -11.098960876464844
- ],
- [
- "▁Name",
- -11.099200248718262
- ],
- [
- "▁pink",
- -11.099260330200195
- ],
- [
- "dig",
- -11.09934139251709
- ],
- [
- "▁eligible",
- -11.099397659301758
- ],
- [
- "▁Happy",
- -11.09941577911377
- ],
- [
- "▁fo",
- -11.099480628967285
- ],
- [
- "▁availability",
- -11.099541664123535
- ],
- [
- "GO",
- -11.099583625793457
- ],
- [
- "▁Europa",
- -11.099637985229492
- ],
- [
- "▁Unit",
- -11.099656105041504
- ],
- [
- "▁1000",
- -11.099837303161621
- ],
- [
- "▁Berg",
- -11.099846839904785
- ],
- [
- "fini",
- -11.099853515625
- ],
- [
- "▁$3",
- -11.100565910339355
- ],
- [
- "iza",
- -11.100749969482422
- ],
- [
- "▁promo",
- -11.100830078125
- ],
- [
- "▁Low",
- -11.101234436035156
- ],
- [
- "abord",
- -11.101326942443848
- ],
- [
- "äh",
- -11.101485252380371
- ],
- [
- "▁Professor",
- -11.101570129394531
- ],
- [
- "▁array",
- -11.101579666137695
- ],
- [
- "▁hate",
- -11.101594924926758
- ],
- [
- "▁recording",
- -11.101601600646973
- ],
- [
- "RI",
- -11.101649284362793
- ],
- [
- "▁proof",
- -11.101710319519043
- ],
- [
- "lay",
- -11.10185718536377
- ],
- [
- "DE",
- -11.102007865905762
- ],
- [
- "▁surprised",
- -11.102066040039062
- ],
- [
- "▁boxes",
- -11.102193832397461
- ],
- [
- "▁noastre",
- -11.102386474609375
- ],
- [
- "zie",
- -11.102387428283691
- ],
- [
- "▁însă",
- -11.10254192352295
- ],
- [
- "▁ajuta",
- -11.102783203125
- ],
- [
- "▁weil",
- -11.1028413772583
- ],
- [
- "▁whenever",
- -11.103026390075684
- ],
- [
- "shi",
- -11.103194236755371
- ],
- [
- "satz",
- -11.103605270385742
- ],
- [
- "▁remind",
- -11.10401725769043
- ],
- [
- "▁consist",
- -11.10412311553955
- ],
- [
- "▁motiv",
- -11.104240417480469
- ],
- [
- "▁PS",
- -11.1043062210083
- ],
- [
- "▁trois",
- -11.104543685913086
- ],
- [
- "pad",
- -11.10477352142334
- ],
- [
- "▁besten",
- -11.104904174804688
- ],
- [
- "▁Stone",
- -11.105140686035156
- ],
- [
- "itz",
- -11.105157852172852
- ],
- [
- "fit",
- -11.105164527893066
- ],
- [
- "▁Mountain",
- -11.105178833007812
- ],
- [
- "OC",
- -11.10519027709961
- ],
- [
- "▁depends",
- -11.105228424072266
- ],
- [
- "▁Cover",
- -11.105387687683105
- ],
- [
- "▁bags",
- -11.106058120727539
- ],
- [
- "▁Bel",
- -11.106199264526367
- ],
- [
- "▁Engineering",
- -11.106304168701172
- ],
- [
- "▁flower",
- -11.106647491455078
- ],
- [
- "▁gratuit",
- -11.106670379638672
- ],
- [
- "▁smartphone",
- -11.106780052185059
- ],
- [
- "stan",
- -11.107197761535645
- ],
- [
- "spect",
- -11.10726261138916
- ],
- [
- "SL",
- -11.107282638549805
- ],
- [
- "sho",
- -11.10738754272461
- ],
- [
- "▁Ser",
- -11.10791301727295
- ],
- [
- "▁Perhaps",
- -11.108247756958008
- ],
- [
- "▁codes",
- -11.108342170715332
- ],
- [
- "▁Wind",
- -11.10849666595459
- ],
- [
- "aient",
- -11.108757019042969
- ],
- [
- "▁Prin",
- -11.108802795410156
- ],
- [
- "▁(1)",
- -11.109090805053711
- ],
- [
- "▁figures",
- -11.109450340270996
- ],
- [
- "▁ausge",
- -11.10972785949707
- ],
- [
- "▁episode",
- -11.110050201416016
- ],
- [
- "▁Spa",
- -11.110370635986328
- ],
- [
- "▁Silver",
- -11.110386848449707
- ],
- [
- "▁Sky",
- -11.110396385192871
- ],
- [
- "▁capabilities",
- -11.1107177734375
- ],
- [
- "▁Uni",
- -11.11073112487793
- ],
- [
- "▁încă",
- -11.110876083374023
- ],
- [
- "TO",
- -11.111289978027344
- ],
- [
- "▁Hal",
- -11.111358642578125
- ],
- [
- "ghi",
- -11.111414909362793
- ],
- [
- "▁sofa",
- -11.111438751220703
- ],
- [
- "hard",
- -11.11150074005127
- ],
- [
- "▁FOR",
- -11.111587524414062
- ],
- [
- "▁Ber",
- -11.111820220947266
- ],
- [
- "▁firms",
- -11.11187744140625
- ],
- [
- "▁memories",
- -11.111883163452148
- ],
- [
- "▁lift",
- -11.11214542388916
- ],
- [
- "▁sending",
- -11.11214542388916
- ],
- [
- "▁narrow",
- -11.112646102905273
- ],
- [
- "▁Steve",
- -11.112784385681152
- ],
- [
- "▁integration",
- -11.112905502319336
- ],
- [
- "known",
- -11.113122940063477
- ],
- [
- "▁nostru",
- -11.113237380981445
- ],
- [
- "iţi",
- -11.113422393798828
- ],
- [
- "▁Georgia",
- -11.113759994506836
- ],
- [
- "▁slowly",
- -11.114026069641113
- ],
- [
- "iere",
- -11.114028930664062
- ],
- [
- "aka",
- -11.114255905151367
- ],
- [
- "PE",
- -11.114320755004883
- ],
- [
- "▁venue",
- -11.11468505859375
- ],
- [
- "jar",
- -11.11474609375
- ],
- [
- "buch",
- -11.114755630493164
- ],
- [
- "rad",
- -11.114858627319336
- ],
- [
- "▁resistance",
- -11.114899635314941
- ],
- [
- "▁stehen",
- -11.114914894104004
- ],
- [
- "chin",
- -11.11504077911377
- ],
- [
- "▁weak",
- -11.11535358428955
- ],
- [
- "▁DVD",
- -11.115598678588867
- ],
- [
- "▁bodies",
- -11.115856170654297
- ],
- [
- "▁split",
- -11.115884780883789
- ],
- [
- "What",
- -11.116231918334961
- ],
- [
- "setzen",
- -11.116467475891113
- ],
- [
- "▁loves",
- -11.116561889648438
- ],
- [
- "▁kleine",
- -11.117077827453613
- ],
- [
- "▁increasingly",
- -11.11746883392334
- ],
- [
- "▁alert",
- -11.117583274841309
- ],
- [
- "▁AC",
- -11.117647171020508
- ],
- [
- "▁partir",
- -11.117974281311035
- ],
- [
- "▁ratio",
- -11.11807918548584
- ],
- [
- "▁keeps",
- -11.118539810180664
- ],
- [
- "▁Area",
- -11.118544578552246
- ],
- [
- "▁données",
- -11.119071960449219
- ],
- [
- "▁flag",
- -11.119254112243652
- ],
- [
- "▁NO",
- -11.119277000427246
- ],
- [
- "▁hotels",
- -11.119336128234863
- ],
- [
- "▁debut",
- -11.119365692138672
- ],
- [
- "▁suffer",
- -11.119368553161621
- ],
- [
- "▁hidden",
- -11.119810104370117
- ],
- [
- "▁clothing",
- -11.120074272155762
- ],
- [
- "▁household",
- -11.120235443115234
- ],
- [
- "medi",
- -11.120268821716309
- ],
- [
- "▁reste",
- -11.120274543762207
- ],
- [
- "bro",
- -11.120381355285645
- ],
- [
- "▁Bus",
- -11.120405197143555
- ],
- [
- "▁Ken",
- -11.120572090148926
- ],
- [
- "IR",
- -11.120758056640625
- ],
- [
- "▁suffering",
- -11.121212005615234
- ],
- [
- "▁publication",
- -11.121246337890625
- ],
- [
- "▁Mat",
- -11.121360778808594
- ],
- [
- "▁impression",
- -11.121509552001953
- ],
- [
- "▁founded",
- -11.121562957763672
- ],
- [
- "▁stable",
- -11.121566772460938
- ],
- [
- "▁promise",
- -11.121719360351562
- ],
- [
- "▁Cloud",
- -11.121770858764648
- ],
- [
- "▁prison",
- -11.122099876403809
- ],
- [
- "cor",
- -11.122355461120605
- ],
- [
- "▁Sports",
- -11.122716903686523
- ],
- [
- "▁erste",
- -11.122745513916016
- ],
- [
- "shire",
- -11.122757911682129
- ],
- [
- "▁recommendations",
- -11.122916221618652
- ],
- [
- "▁permit",
- -11.123100280761719
- ],
- [
- "▁tomorrow",
- -11.123126983642578
- ],
- [
- "▁lucky",
- -11.123422622680664
- ],
- [
- "▁realized",
- -11.123449325561523
- ],
- [
- "▁famille",
- -11.123473167419434
- ],
- [
- "▁Zealand",
- -11.123542785644531
- ],
- [
- "▁wooden",
- -11.123601913452148
- ],
- [
- "▁east",
- -11.124269485473633
- ],
- [
- "▁Bereich",
- -11.12458324432373
- ],
- [
- "während",
- -11.124653816223145
- ],
- [
- "rite",
- -11.124836921691895
- ],
- [
- "▁fla",
- -11.124902725219727
- ],
- [
- "platz",
- -11.124991416931152
- ],
- [
- "▁zero",
- -11.125292778015137
- ],
- [
- "▁priority",
- -11.12535572052002
- ],
- [
- "▁Airport",
- -11.125506401062012
- ],
- [
- "▁Kauf",
- -11.125590324401855
- ],
- [
- "▁ultimate",
- -11.12601375579834
- ],
- [
- "▁chest",
- -11.126175880432129
- ],
- [
- "▁tone",
- -11.126376152038574
- ],
- [
- "▁Kal",
- -11.126431465148926
- ],
- [
- "▁supposed",
- -11.12669849395752
- ],
- [
- "▁vedere",
- -11.126846313476562
- ],
- [
- "▁50%",
- -11.126872062683105
- ],
- [
- "▁Ger",
- -11.127785682678223
- ],
- [
- "pack",
- -11.127849578857422
- ],
- [
- "▁priv",
- -11.128241539001465
- ],
- [
- "▁Kit",
- -11.128263473510742
- ],
- [
- "▁tent",
- -11.128457069396973
- ],
- [
- "▁guidelines",
- -11.128461837768555
- ],
- [
- "▁Republic",
- -11.128824234008789
- ],
- [
- "including",
- -11.129239082336426
- ],
- [
- "▁chief",
- -11.129615783691406
- ],
- [
- "▁Living",
- -11.129766464233398
- ],
- [
- "keit",
- -11.1298189163208
- ],
- [
- "▁convert",
- -11.129831314086914
- ],
- [
- "tail",
- -11.129928588867188
- ],
- [
- "orient",
- -11.129960060119629
- ],
- [
- "eigenen",
- -11.130245208740234
- ],
- [
- "▁soup",
- -11.130587577819824
- ],
- [
- "▁zona",
- -11.130661010742188
- ],
- [
- "▁composition",
- -11.130690574645996
- ],
- [
- "▁Bob",
- -11.130831718444824
- ],
- [
- "▁exception",
- -11.131170272827148
- ],
- [
- "▁cr",
- -11.131287574768066
- ],
- [
- "▁str",
- -11.131482124328613
- ],
- [
- "▁Fl",
- -11.13178825378418
- ],
- [
- "AT",
- -11.131909370422363
- ],
- [
- "kel",
- -11.132002830505371
- ],
- [
- "▁pricing",
- -11.132189750671387
- ],
- [
- "▁Mass",
- -11.132258415222168
- ],
- [
- "vir",
- -11.132333755493164
- ],
- [
- "leg",
- -11.132448196411133
- ],
- [
- "▁rating",
- -11.132455825805664
- ],
- [
- "▁Sale",
- -11.132628440856934
- ],
- [
- "▁somewhere",
- -11.132866859436035
- ],
- [
- "▁submitted",
- -11.133084297180176
- ],
- [
- "▁Pop",
- -11.133296012878418
- ],
- [
- "▁papers",
- -11.13330364227295
- ],
- [
- "▁authorities",
- -11.133326530456543
- ],
- [
- "▁Person",
- -11.133381843566895
- ],
- [
- "▁kill",
- -11.133512496948242
- ],
- [
- "▁suggestions",
- -11.133548736572266
- ],
- [
- "-6",
- -11.133644104003906
- ],
- [
- "▁dust",
- -11.133750915527344
- ],
- [
- "taire",
- -11.133805274963379
- ],
- [
- "▁recognition",
- -11.133870124816895
- ],
- [
- "3.",
- -11.134047508239746
- ],
- [
- "▁Mont",
- -11.134230613708496
- ],
- [
- "▁produit",
- -11.13430118560791
- ],
- [
- "▁transmission",
- -11.134340286254883
- ],
- [
- "▁Th",
- -11.13475513458252
- ],
- [
- "▁passing",
- -11.134928703308105
- ],
- [
- "▁Partner",
- -11.135161399841309
- ],
- [
- "▁dire",
- -11.135205268859863
- ],
- [
- "▁DC",
- -11.135432243347168
- ],
- [
- "▁sky",
- -11.135659217834473
- ],
- [
- "▁Kitchen",
- -11.135890007019043
- ],
- [
- "▁fluid",
- -11.135929107666016
- ],
- [
- "▁scored",
- -11.136005401611328
- ],
- [
- "▁chapter",
- -11.136100769042969
- ],
- [
- "If",
- -11.136231422424316
- ],
- [
- "letzten",
- -11.136275291442871
- ],
- [
- "▁officers",
- -11.13641357421875
- ],
- [
- "▁avem",
- -11.136631965637207
- ],
- [
- "ister",
- -11.136666297912598
- ],
- [
- "▁involves",
- -11.136688232421875
- ],
- [
- "ico",
- -11.136898040771484
- ],
- [
- "bur",
- -11.137056350708008
- ],
- [
- "▁mieux",
- -11.137064933776855
- ],
- [
- "▁Photo",
- -11.1371431350708
- ],
- [
- "▁Cro",
- -11.137228012084961
- ],
- [
- "▁professor",
- -11.137245178222656
- ],
- [
- "▁besonders",
- -11.137313842773438
- ],
- [
- "д",
- -11.137367248535156
- ],
- [
- "▁alongside",
- -11.137382507324219
- ],
- [
- "▁stored",
- -11.13770580291748
- ],
- [
- "▁activ",
- -11.137849807739258
- ],
- [
- "▁setup",
- -11.138169288635254
- ],
- [
- "▁extract",
- -11.138627052307129
- ],
- [
- "▁accent",
- -11.138633728027344
- ],
- [
- "▁replaced",
- -11.138638496398926
- ],
- [
- "tec",
- -11.138800621032715
- ],
- [
- "▁Natur",
- -11.138848304748535
- ],
- [
- "▁Pacific",
- -11.138887405395508
- ],
- [
- "▁NY",
- -11.139485359191895
- ],
- [
- "▁Capital",
- -11.139583587646484
- ],
- [
- "▁forest",
- -11.13969898223877
- ],
- [
- "incredibly",
- -11.14006233215332
- ],
- [
- "▁choix",
- -11.14021110534668
- ],
- [
- "▁seriously",
- -11.140281677246094
- ],
- [
- "▁konnte",
- -11.14030933380127
- ],
- [
- "▁2014.",
- -11.140443801879883
- ],
- [
- "ensuring",
- -11.140534400939941
- ],
- [
- "▁handling",
- -11.140661239624023
- ],
- [
- "▁9.",
- -11.140715599060059
- ],
- [
- "▁relations",
- -11.140876770019531
- ],
- [
- "▁Kom",
- -11.141045570373535
- ],
- [
- "▁Hol",
- -11.141282081604004
- ],
- [
- "▁none",
- -11.141515731811523
- ],
- [
- "rob",
- -11.141718864440918
- ],
- [
- "▁Forum",
- -11.141759872436523
- ],
- [
- "hour",
- -11.141776084899902
- ],
- [
- "ème",
- -11.141809463500977
- ],
- [
- "▁Space",
- -11.141986846923828
- ],
- [
- "▁Ham",
- -11.142992973327637
- ],
- [
- "rap",
- -11.143169403076172
- ],
- [
- "▁Michigan",
- -11.14317512512207
- ],
- [
- "km",
- -11.143202781677246
- ],
- [
- "▁utilize",
- -11.143548965454102
- ],
- [
- "lov",
- -11.143775939941406
- ],
- [
- "▁luck",
- -11.144388198852539
- ],
- [
- "lä",
- -11.144824981689453
- ],
- [
- "▁healing",
- -11.145010948181152
- ],
- [
- "▁neu",
- -11.145182609558105
- ],
- [
- "aging",
- -11.145251274108887
- ],
- [
- "▁compliance",
- -11.145583152770996
- ],
- [
- "▁vertical",
- -11.145675659179688
- ],
- [
- "▁FREE",
- -11.145729064941406
- ],
- [
- "▁differences",
- -11.146014213562012
- ],
- [
- "▁Server",
- -11.146252632141113
- ],
- [
- "▁estimated",
- -11.146378517150879
- ],
- [
- "schutz",
- -11.146692276000977
- ],
- [
- "▁notamment",
- -11.146736145019531
- ],
- [
- "▁120",
- -11.146919250488281
- ],
- [
- "72",
- -11.147282600402832
- ],
- [
- "▁heating",
- -11.147347450256348
- ],
- [
- "late",
- -11.14756965637207
- ],
- [
- "▁younger",
- -11.14783000946045
- ],
- [
- "▁Intel",
- -11.148171424865723
- ],
- [
- "▁salad",
- -11.148362159729004
- ],
- [
- "▁commonly",
- -11.148563385009766
- ],
- [
- "▁treatments",
- -11.148682594299316
- ],
- [
- "▁speaker",
- -11.148770332336426
- ],
- [
- "▁producing",
- -11.149120330810547
- ],
- [
- "▁eggs",
- -11.149367332458496
- ],
- [
- "▁Spirit",
- -11.149892807006836
- ],
- [
- "▁beide",
- -11.149918556213379
- ],
- [
- "▁transaction",
- -11.150283813476562
- ],
- [
- "▁Machine",
- -11.150464057922363
- ],
- [
- "▁Games",
- -11.150527000427246
- ],
- [
- "▁niveau",
- -11.150687217712402
- ],
- [
- "▁Need",
- -11.15082836151123
- ],
- [
- "radi",
- -11.150959968566895
- ],
- [
- "mir",
- -11.15096664428711
- ],
- [
- "causing",
- -11.151000022888184
- ],
- [
- "▁début",
- -11.151042938232422
- ],
- [
- "▁rencontre",
- -11.151063919067383
- ],
- [
- "▁threat",
- -11.151153564453125
- ],
- [
- "▁enjoying",
- -11.151320457458496
- ],
- [
- "Com",
- -11.151386260986328
- ],
- [
- "▁Johnson",
- -11.151555061340332
- ],
- [
- "▁tournament",
- -11.15156364440918
- ],
- [
- "▁Micro",
- -11.151582717895508
- ],
- [
- "▁Drive",
- -11.151667594909668
- ],
- [
- "▁Cre",
- -11.151866912841797
- ],
- [
- "▁Lebens",
- -11.151930809020996
- ],
- [
- "▁categories",
- -11.152358055114746
- ],
- [
- "5,000",
- -11.15261173248291
- ],
- [
- "▁confirmed",
- -11.152617454528809
- ],
- [
- "pli",
- -11.152763366699219
- ],
- [
- "▁Francisco",
- -11.153139114379883
- ],
- [
- "▁raw",
- -11.153157234191895
- ],
- [
- "▁managers",
- -11.153223991394043
- ],
- [
- "ţie",
- -11.153365135192871
- ],
- [
- "UR",
- -11.153368949890137
- ],
- [
- "▁aproape",
- -11.154065132141113
- ],
- [
- "via",
- -11.154606819152832
- ],
- [
- "▁engaged",
- -11.154646873474121
- ],
- [
- "▁parti",
- -11.154741287231445
- ],
- [
- "▁posting",
- -11.15517807006836
- ],
- [
- "CO",
- -11.155484199523926
- ],
- [
- "▁bois",
- -11.155815124511719
- ],
- [
- "▁inch",
- -11.15590763092041
- ],
- [
- "vie",
- -11.156068801879883
- ],
- [
- "▁aside",
- -11.156314849853516
- ],
- [
- "▁exceptional",
- -11.15658950805664
- ],
- [
- "▁vintage",
- -11.156668663024902
- ],
- [
- "▁Him",
- -11.156795501708984
- ],
- [
- "▁expansion",
- -11.156806945800781
- ],
- [
- "▁Weg",
- -11.157122611999512
- ],
- [
- "▁authors",
- -11.157535552978516
- ],
- [
- "▁deine",
- -11.15764045715332
- ],
- [
- "▁Prime",
- -11.158016204833984
- ],
- [
- "▁scan",
- -11.158055305480957
- ],
- [
- "▁reg",
- -11.158112525939941
- ],
- [
- "ția",
- -11.158141136169434
- ],
- [
- "riv",
- -11.158258438110352
- ],
- [
- "selon",
- -11.158440589904785
- ],
- [
- "▁Studio",
- -11.158571243286133
- ],
- [
- "▁dich",
- -11.158658027648926
- ],
- [
- "▁vi",
- -11.158745765686035
- ],
- [
- "▁sequence",
- -11.159016609191895
- ],
- [
- "▁Four",
- -11.159046173095703
- ],
- [
- "RT",
- -11.159050941467285
- ],
- [
- "▁ihn",
- -11.159072875976562
- ],
- [
- "▁employ",
- -11.159223556518555
- ],
- [
- "umb",
- -11.159659385681152
- ],
- [
- "ită",
- -11.159818649291992
- ],
- [
- "▁Station",
- -11.159950256347656
- ],
- [
- "▁upload",
- -11.159972190856934
- ],
- [
- "▁upgrade",
- -11.160445213317871
- ],
- [
- "▁exterior",
- -11.160528182983398
- ],
- [
- "▁writers",
- -11.160531997680664
- ],
- [
- "▁plot",
- -11.160543441772461
- ],
- [
- "▁Gen",
- -11.16068172454834
- ],
- [
- "TER",
- -11.160821914672852
- ],
- [
- "-12",
- -11.160930633544922
- ],
- [
- "http",
- -11.162168502807617
- ],
- [
- "▁smell",
- -11.1621732711792
- ],
- [
- "post",
- -11.162522315979004
- ],
- [
- "von",
- -11.162790298461914
- ],
- [
- "mili",
- -11.16280746459961
- ],
- [
- "8%",
- -11.162972450256348
- ],
- [
- "▁Andrew",
- -11.163065910339355
- ],
- [
- "▁spun",
- -11.16321086883545
- ],
- [
- "▁grass",
- -11.163444519042969
- ],
- [
- "unter",
- -11.163474082946777
- ],
- [
- "▁burn",
- -11.16356086730957
- ],
- [
- "▁Gegen",
- -11.163601875305176
- ],
- [
- "fest",
- -11.163721084594727
- ],
- [
- "▁Northern",
- -11.163738250732422
- ],
- [
- "▁consumption",
- -11.163775444030762
- ],
- [
- "▁bird",
- -11.164069175720215
- ],
- [
- "▁Miss",
- -11.164369583129883
- ],
- [
- "anti",
- -11.16447925567627
- ],
- [
- "▁viata",
- -11.164583206176758
- ],
- [
- "bereich",
- -11.164602279663086
- ],
- [
- "▁Change",
- -11.164871215820312
- ],
- [
- "▁pouvoir",
- -11.165255546569824
- ],
- [
- "▁demonstrate",
- -11.165435791015625
- ],
- [
- "▁requirement",
- -11.165483474731445
- ],
- [
- "BI",
- -11.16577434539795
- ],
- [
- "ied",
- -11.166099548339844
- ],
- [
- "▁spray",
- -11.166358947753906
- ],
- [
- "▁calitate",
- -11.166379928588867
- ],
- [
- "▁souvent",
- -11.1665620803833
- ],
- [
- "▁samples",
- -11.166682243347168
- ],
- [
- "▁compete",
- -11.166930198669434
- ],
- [
- "ank",
- -11.166946411132812
- ],
- [
- "année",
- -11.167037963867188
- ],
- [
- "wick",
- -11.167183876037598
- ],
- [
- "iff",
- -11.167254447937012
- ],
- [
- "noi",
- -11.167255401611328
- ],
- [
- "ography",
- -11.167450904846191
- ],
- [
- "▁SE",
- -11.167508125305176
- ],
- [
- "▁250",
- -11.16779899597168
- ],
- [
- "▁wealth",
- -11.167884826660156
- ],
- [
- "4%",
- -11.168235778808594
- ],
- [
- "▁swimming",
- -11.168269157409668
- ],
- [
- "enne",
- -11.168338775634766
- ],
- [
- "Qu",
- -11.168400764465332
- ],
- [
- "▁connections",
- -11.168476104736328
- ],
- [
- "onne",
- -11.16852855682373
- ],
- [
- "▁Way",
- -11.168676376342773
- ],
- [
- "voll",
- -11.168793678283691
- ],
- [
- "▁extent",
- -11.169041633605957
- ],
- [
- "▁objective",
- -11.169572830200195
- ],
- [
- "▁clinic",
- -11.169581413269043
- ],
- [
- "NA",
- -11.169848442077637
- ],
- [
- "▁Hope",
- -11.170098304748535
- ],
- [
- "▁coat",
- -11.170331954956055
- ],
- [
- "▁depend",
- -11.170393943786621
- ],
- [
- "▁tine",
- -11.170463562011719
- ],
- [
- "acc",
- -11.170486450195312
- ],
- [
- "▁editor",
- -11.170598983764648
- ],
- [
- "▁Jim",
- -11.170690536499023
- ],
- [
- "600",
- -11.171262741088867
- ],
- [
- "▁module",
- -11.171302795410156
- ],
- [
- "▁deja",
- -11.171821594238281
- ],
- [
- "atur",
- -11.171841621398926
- ],
- [
- "▁maintaining",
- -11.171918869018555
- ],
- [
- "▁hoch",
- -11.172059059143066
- ],
- [
- "▁covering",
- -11.17239761352539
- ],
- [
- "vielen",
- -11.172450065612793
- ],
- [
- "hem",
- -11.172531127929688
- ],
- [
- "▁illegal",
- -11.172656059265137
- ],
- [
- "▁certificate",
- -11.17329216003418
- ],
- [
- "▁collective",
- -11.173357963562012
- ],
- [
- "▁blow",
- -11.17343807220459
- ],
- [
- "▁programming",
- -11.17343807220459
- ],
- [
- "HE",
- -11.173727989196777
- ],
- [
- "▁Division",
- -11.173842430114746
- ],
- [
- "▁ceux",
- -11.174081802368164
- ],
- [
- "▁saved",
- -11.174202919006348
- ],
- [
- "▁worst",
- -11.17426586151123
- ],
- [
- "▁arms",
- -11.17430305480957
- ],
- [
- "▁Officer",
- -11.17463493347168
- ],
- [
- "▁association",
- -11.174838066101074
- ],
- [
- "ington",
- -11.1749906539917
- ],
- [
- "▁belle",
- -11.175024032592773
- ],
- [
- "tting",
- -11.17537784576416
- ],
- [
- "▁attacks",
- -11.175446510314941
- ],
- [
- "▁vei",
- -11.17546558380127
- ],
- [
- "▁gerade",
- -11.175470352172852
- ],
- [
- "▁strain",
- -11.175748825073242
- ],
- [
- "▁offices",
- -11.1759672164917
- ],
- [
- "EM",
- -11.17627239227295
- ],
- [
- "EST",
- -11.176509857177734
- ],
- [
- "-8",
- -11.176758766174316
- ],
- [
- "▁faculty",
- -11.176998138427734
- ],
- [
- "▁Plant",
- -11.177046775817871
- ],
- [
- "pla",
- -11.177295684814453
- ],
- [
- "card",
- -11.177618980407715
- ],
- [
- "▁loose",
- -11.177982330322266
- ],
- [
- "▁PR",
- -11.178044319152832
- ],
- [
- "profit",
- -11.178071022033691
- ],
- [
- "▁channels",
- -11.178119659423828
- ],
- [
- "ATE",
- -11.178257942199707
- ],
- [
- "atic",
- -11.178304672241211
- ],
- [
- "wegen",
- -11.178404808044434
- ],
- [
- "word",
- -11.178621292114258
- ],
- [
- "▁sehen",
- -11.178659439086914
- ],
- [
- "▁nombre",
- -11.178744316101074
- ],
- [
- "▁DO",
- -11.178763389587402
- ],
- [
- "▁hoping",
- -11.178949356079102
- ],
- [
- "▁wollen",
- -11.179091453552246
- ],
- [
- "▁decat",
- -11.179244995117188
- ],
- [
- "IF",
- -11.179386138916016
- ],
- [
- "▁permission",
- -11.179396629333496
- ],
- [
- "▁Williams",
- -11.179936408996582
- ],
- [
- "▁beer",
- -11.179962158203125
- ],
- [
- "▁dernière",
- -11.180052757263184
- ],
- [
- "▁purchasing",
- -11.18025016784668
- ],
- [
- "▁pride",
- -11.180416107177734
- ],
- [
- "solv",
- -11.180598258972168
- ],
- [
- "ego",
- -11.180691719055176
- ],
- [
- "▁Oil",
- -11.18079662322998
- ],
- [
- "▁dishes",
- -11.18102741241455
- ],
- [
- "▁Baby",
- -11.181109428405762
- ],
- [
- "▁Roll",
- -11.181137084960938
- ],
- [
- "vez",
- -11.18134593963623
- ],
- [
- "▁drept",
- -11.181367874145508
- ],
- [
- "lly",
- -11.18148136138916
- ],
- [
- "▁potrivit",
- -11.181495666503906
- ],
- [
- "person",
- -11.181961059570312
- ],
- [
- "▁interactive",
- -11.182269096374512
- ],
- [
- "▁brilliant",
- -11.182304382324219
- ],
- [
- "▁000",
- -11.182357788085938
- ],
- [
- "▁giant",
- -11.182657241821289
- ],
- [
- "▁plain",
- -11.182945251464844
- ],
- [
- "▁lock",
- -11.183197975158691
- ],
- [
- "▁inspection",
- -11.183762550354004
- ],
- [
- "▁symbol",
- -11.18392276763916
- ],
- [
- "▁Gal",
- -11.183953285217285
- ],
- [
- "▁concepts",
- -11.1840181350708
- ],
- [
- "▁venture",
- -11.18411922454834
- ],
- [
- "▁Tr",
- -11.184402465820312
- ],
- [
- "▁Color",
- -11.184469223022461
- ],
- [
- "▁behalf",
- -11.184635162353516
- ],
- [
- "ink",
- -11.184715270996094
- ],
- [
- "atii",
- -11.1848726272583
- ],
- [
- "wie",
- -11.184907913208008
- ],
- [
- "▁stream",
- -11.18514347076416
- ],
- [
- "▁buyers",
- -11.185192108154297
- ],
- [
- "legen",
- -11.185526847839355
- ],
- [
- "iness",
- -11.18578815460205
- ],
- [
- "▁absolute",
- -11.185945510864258
- ],
- [
- "▁council",
- -11.186067581176758
- ],
- [
- "▁displayed",
- -11.186172485351562
- ],
- [
- "▁Bun",
- -11.186405181884766
- ],
- [
- "▁darauf",
- -11.186585426330566
- ],
- [
- "▁rod",
- -11.186829566955566
- ],
- [
- "▁repeat",
- -11.186898231506348
- ],
- [
- "quelle",
- -11.187023162841797
- ],
- [
- "lation",
- -11.187433242797852
- ],
- [
- "gul",
- -11.18774700164795
- ],
- [
- "▁compensation",
- -11.188064575195312
- ],
- [
- "▁string",
- -11.1881685256958
- ],
- [
- "▁joining",
- -11.188251495361328
- ],
- [
- "▁Pra",
- -11.188429832458496
- ],
- [
- "hab",
- -11.188936233520508
- ],
- [
- "▁plane",
- -11.189024925231934
- ],
- [
- "▁conversion",
- -11.189078330993652
- ],
- [
- "▁lesson",
- -11.189361572265625
- ],
- [
- "bound",
- -11.1893949508667
- ],
- [
- "▁seats",
- -11.18946361541748
- ],
- [
- "voc",
- -11.189902305603027
- ],
- [
- "▁Disney",
- -11.190120697021484
- ],
- [
- "esse",
- -11.190277099609375
- ],
- [
- "▁awards",
- -11.190279006958008
- ],
- [
- "▁initiative",
- -11.190483093261719
- ],
- [
- "UM",
- -11.19050407409668
- ],
- [
- "▁intelligence",
- -11.190763473510742
- ],
- [
- "▁laser",
- -11.191128730773926
- ],
- [
- "än",
- -11.191228866577148
- ],
- [
- "▁generated",
- -11.191231727600098
- ],
- [
- "▁allen",
- -11.19186782836914
- ],
- [
- "▁Aug",
- -11.19261360168457
- ],
- [
- "lini",
- -11.192968368530273
- ],
- [
- "▁Update",
- -11.193015098571777
- ],
- [
- "▁grab",
- -11.193095207214355
- ],
- [
- "▁Bridge",
- -11.193219184875488
- ],
- [
- "rock",
- -11.193289756774902
- ],
- [
- "hold",
- -11.193461418151855
- ],
- [
- "seinen",
- -11.193643569946289
- ],
- [
- "▁false",
- -11.193758010864258
- ],
- [
- "type",
- -11.193792343139648
- ],
- [
- "▁outcome",
- -11.193906784057617
- ],
- [
- "▁crazy",
- -11.194161415100098
- ],
- [
- "▁Platz",
- -11.194281578063965
- ],
- [
- "▁believed",
- -11.194426536560059
- ],
- [
- "▁adjust",
- -11.194503784179688
- ],
- [
- "▁entrance",
- -11.194644927978516
- ],
- [
- "▁Colorado",
- -11.194751739501953
- ],
- [
- "▁concentration",
- -11.194865226745605
- ],
- [
- "aid",
- -11.194958686828613
- ],
- [
- "▁regardless",
- -11.195035934448242
- ],
- [
- "▁mici",
- -11.195063591003418
- ],
- [
- "▁potentially",
- -11.195109367370605
- ],
- [
- "▁Custom",
- -11.195867538452148
- ],
- [
- "rag",
- -11.196009635925293
- ],
- [
- "▁employer",
- -11.19604206085205
- ],
- [
- "tagged",
- -11.196158409118652
- ],
- [
- "▁34",
- -11.196271896362305
- ],
- [
- "fro",
- -11.196895599365234
- ],
- [
- "▁Pas",
- -11.197010040283203
- ],
- [
- "▁AS",
- -11.197013854980469
- ],
- [
- "PP",
- -11.197031021118164
- ],
- [
- "stru",
- -11.19741439819336
- ],
- [
- "grâce",
- -11.198037147521973
- ],
- [
- "▁anyway",
- -11.198240280151367
- ],
- [
- "▁streets",
- -11.1986083984375
- ],
- [
- "▁Region",
- -11.199190139770508
- ],
- [
- "▁newly",
- -11.199280738830566
- ],
- [
- "▁assistant",
- -11.199461936950684
- ],
- [
- "▁requests",
- -11.199618339538574
- ],
- [
- "▁Ohio",
- -11.199705123901367
- ],
- [
- "▁continuing",
- -11.200072288513184
- ],
- [
- "▁îm",
- -11.200136184692383
- ],
- [
- "7%",
- -11.20031452178955
- ],
- [
- "▁basically",
- -11.200325965881348
- ],
- [
- "gabe",
- -11.200334548950195
- ],
- [
- "▁ultra",
- -11.200355529785156
- ],
- [
- "pic",
- -11.200571060180664
- ],
- [
- "▁jeder",
- -11.200939178466797
- ],
- [
- "▁Cook",
- -11.201225280761719
- ],
- [
- "▁tie",
- -11.201227188110352
- ],
- [
- "▁yard",
- -11.20151424407959
- ],
- [
- "▁wash",
- -11.20152759552002
- ],
- [
- "▁3,",
- -11.20194149017334
- ],
- [
- "▁exista",
- -11.202128410339355
- ],
- [
- "▁egg",
- -11.202342987060547
- ],
- [
- "▁marché",
- -11.202616691589355
- ],
- [
- "kommen",
- -11.202630996704102
- ],
- [
- "▁Select",
- -11.202999114990234
- ],
- [
- "geben",
- -11.203126907348633
- ],
- [
- "▁Joseph",
- -11.203531265258789
- ],
- [
- "▁Ces",
- -11.203642845153809
- ],
- [
- "▁hundred",
- -11.203676223754883
- ],
- [
- "even",
- -11.203792572021484
- ],
- [
- "gal",
- -11.204232215881348
- ],
- [
- "800",
- -11.20443058013916
- ],
- [
- "▁Jones",
- -11.204599380493164
- ],
- [
- "ova",
- -11.204681396484375
- ],
- [
- "▁careful",
- -11.204727172851562
- ],
- [
- "▁alarm",
- -11.205070495605469
- ],
- [
- "NI",
- -11.205113410949707
- ],
- [
- "▁residence",
- -11.205327987670898
- ],
- [
- "▁wäre",
- -11.20590877532959
- ],
- [
- "▁Dor",
- -11.205986976623535
- ],
- [
- "▁amounts",
- -11.206369400024414
- ],
- [
- "▁mistake",
- -11.206687927246094
- ],
- [
- "ates",
- -11.206796646118164
- ],
- [
- "▁bune",
- -11.206951141357422
- ],
- [
- "▁vegetables",
- -11.207124710083008
- ],
- [
- "▁Ann",
- -11.207204818725586
- ],
- [
- "logical",
- -11.20776081085205
- ],
- [
- "stadt",
- -11.207806587219238
- ],
- [
- "▁chances",
- -11.207921981811523
- ],
- [
- "%)",
- -11.208030700683594
- ],
- [
- "▁minimal",
- -11.20810604095459
- ],
- [
- "▁naturally",
- -11.20817756652832
- ],
- [
- "▁Geld",
- -11.20822525024414
- ],
- [
- "▁Yu",
- -11.208361625671387
- ],
- [
- "▁wrap",
- -11.20840072631836
- ],
- [
- "rest",
- -11.208674430847168
- ],
- [
- "▁legs",
- -11.208758354187012
- ],
- [
- "PM",
- -11.208806991577148
- ],
- [
- "▁Heart",
- -11.208888053894043
- ],
- [
- "▁suspect",
- -11.209020614624023
- ],
- [
- "Go",
- -11.209098815917969
- ],
- [
- "▁Fil",
- -11.209175109863281
- ],
- [
- "▁YOU",
- -11.209175109863281
- ],
- [
- "▁victory",
- -11.209245681762695
- ],
- [
- "pun",
- -11.20960807800293
- ],
- [
- "▁Zo",
- -11.209632873535156
- ],
- [
- "CT",
- -11.209640502929688
- ],
- [
- "▁trim",
- -11.20969009399414
- ],
- [
- "▁stuck",
- -11.209836959838867
- ],
- [
- "ators",
- -11.209877014160156
- ],
- [
- "▁Ideas",
- -11.210016250610352
- ],
- [
- "▁voyage",
- -11.210166931152344
- ],
- [
- "▁Restaurant",
- -11.210205078125
- ],
- [
- "▁pat",
- -11.210234642028809
- ],
- [
- "▁bond",
- -11.210521697998047
- ],
- [
- "▁Del",
- -11.210552215576172
- ],
- [
- "▁fighting",
- -11.210705757141113
- ],
- [
- "▁concerning",
- -11.210867881774902
- ],
- [
- "▁etwa",
- -11.211141586303711
- ],
- [
- "▁Thema",
- -11.211237907409668
- ],
- [
- "▁preferred",
- -11.211423873901367
- ],
- [
- "▁pitch",
- -11.211465835571289
- ],
- [
- "▁Singapore",
- -11.211971282958984
- ],
- [
- "▁tub",
- -11.212018013000488
- ],
- [
- "FT",
- -11.212053298950195
- ],
- [
- "▁Product",
- -11.21212100982666
- ],
- [
- "▁applying",
- -11.212285995483398
- ],
- [
- "▁Fr",
- -11.212340354919434
- ],
- [
- "ţa",
- -11.212599754333496
- ],
- [
- "▁iPad",
- -11.212861061096191
- ],
- [
- "PD",
- -11.2129545211792
- ],
- [
- "▁comun",
- -11.212995529174805
- ],
- [
- "▁pie",
- -11.213286399841309
- ],
- [
- "rank",
- -11.21364688873291
- ],
- [
- "tron",
- -11.213677406311035
- ],
- [
- "▁pest",
- -11.213906288146973
- ],
- [
- "▁herself",
- -11.213936805725098
- ],
- [
- "▁intense",
- -11.213964462280273
- ],
- [
- "foot",
- -11.21413803100586
- ],
- [
- "▁1998",
- -11.2141695022583
- ],
- [
- "▁anxiety",
- -11.214616775512695
- ],
- [
- "▁portable",
- -11.214674949645996
- ],
- [
- "▁harm",
- -11.214735984802246
- ],
- [
- "▁admit",
- -11.214885711669922
- ],
- [
- "sted",
- -11.214900016784668
- ],
- [
- "▁regions",
- -11.215450286865234
- ],
- [
- "cie",
- -11.215556144714355
- ],
- [
- "▁robust",
- -11.21577262878418
- ],
- [
- "▁stem",
- -11.215982437133789
- ],
- [
- "▁roles",
- -11.216024398803711
- ],
- [
- "▁Latin",
- -11.216224670410156
- ],
- [
- "▁Ré",
- -11.216378211975098
- ],
- [
- "▁ref",
- -11.216381072998047
- ],
- [
- "isme",
- -11.216426849365234
- ],
- [
- "▁contribution",
- -11.216776847839355
- ],
- [
- "▁forever",
- -11.217447280883789
- ],
- [
- "▁frei",
- -11.21754264831543
- ],
- [
- "▁mont",
- -11.217818260192871
- ],
- [
- "that",
- -11.217999458312988
- ],
- [
- "▁sensitive",
- -11.218116760253906
- ],
- [
- "▁wider",
- -11.218175888061523
- ],
- [
- "AF",
- -11.218234062194824
- ],
- [
- "▁liability",
- -11.218748092651367
- ],
- [
- "ţiei",
- -11.219043731689453
- ],
- [
- "▁Cho",
- -11.219260215759277
- ],
- [
- "aria",
- -11.21960735321045
- ],
- [
- "rang",
- -11.21977710723877
- ],
- [
- "▁Account",
- -11.21986198425293
- ],
- [
- "▁III",
- -11.219941139221191
- ],
- [
- "▁tooth",
- -11.220222473144531
- ],
- [
- "▁factory",
- -11.220240592956543
- ],
- [
- "▁dropped",
- -11.220495223999023
- ],
- [
- "horn",
- -11.220780372619629
- ],
- [
- "RP",
- -11.221110343933105
- ],
- [
- "▁container",
- -11.22118091583252
- ],
- [
- "fran",
- -11.221474647521973
- ],
- [
- "▁lawyer",
- -11.221842765808105
- ],
- [
- "▁Image",
- -11.221907615661621
- ],
- [
- "HO",
- -11.22195816040039
- ],
- [
- "▁incorporate",
- -11.221992492675781
- ],
- [
- "▁lume",
- -11.22226333618164
- ],
- [
- "GA",
- -11.222331047058105
- ],
- [
- "itati",
- -11.222370147705078
- ],
- [
- "autre",
- -11.222665786743164
- ],
- [
- "ierten",
- -11.222688674926758
- ],
- [
- "[",
- -11.222746849060059
- ],
- [
- "▁packages",
- -11.222758293151855
- ],
- [
- "▁Simon",
- -11.22290325164795
- ],
- [
- "▁somewhat",
- -11.223734855651855
- ],
- [
- "mbo",
- -11.223737716674805
- ],
- [
- "lite",
- -11.223844528198242
- ],
- [
- "▁eliminate",
- -11.22395133972168
- ],
- [
- "▁decrease",
- -11.224117279052734
- ],
- [
- "▁geben",
- -11.224214553833008
- ],
- [
- "▁approaches",
- -11.224482536315918
- ],
- [
- "▁tissue",
- -11.224940299987793
- ],
- [
- "▁personne",
- -11.225192070007324
- ],
- [
- "ional",
- -11.225587844848633
- ],
- [
- "unable",
- -11.2256498336792
- ],
- [
- "▁Case",
- -11.225736618041992
- ],
- [
- "hill",
- -11.225744247436523
- ],
- [
- "och",
- -11.225862503051758
- ],
- [
- "▁minister",
- -11.225920677185059
- ],
- [
- "▁Rad",
- -11.226285934448242
- ],
- [
- "▁yoga",
- -11.226390838623047
- ],
- [
- "▁encounter",
- -11.22661018371582
- ],
- [
- "text",
- -11.22670841217041
- ],
- [
- "▁OS",
- -11.226719856262207
- ],
- [
- "▁opera",
- -11.22673225402832
- ],
- [
- "▁loving",
- -11.226977348327637
- ],
- [
- "▁birds",
- -11.227363586425781
- ],
- [
- "▁prim",
- -11.227389335632324
- ],
- [
- "easca",
- -11.227432250976562
- ],
- [
- "park",
- -11.227453231811523
- ],
- [
- "fü",
- -11.227797508239746
- ],
- [
- "▁champion",
- -11.227824211120605
- ],
- [
- "▁warning",
- -11.228245735168457
- ],
- [
- "DC",
- -11.228271484375
- ],
- [
- "▁yield",
- -11.228310585021973
- ],
- [
- "raum",
- -11.228334426879883
- ],
- [
- "▁Student",
- -11.228434562683105
- ],
- [
- "▁Rev",
- -11.22848892211914
- ],
- [
- "▁Fu",
- -11.228501319885254
- ],
- [
- "▁intra",
- -11.22854232788086
- ],
- [
- "▁proces",
- -11.228585243225098
- ],
- [
- "▁margin",
- -11.228621482849121
- ],
- [
- "lands",
- -11.228816986083984
- ],
- [
- "04",
- -11.228952407836914
- ],
- [
- "▁Steel",
- -11.229897499084473
- ],
- [
- "▁besoin",
- -11.230081558227539
- ],
- [
- "şti",
- -11.230561256408691
- ],
- [
- "▁39",
- -11.230635643005371
- ],
- [
- "▁outcomes",
- -11.230677604675293
- ],
- [
- "wert",
- -11.230719566345215
- ],
- [
- "3,",
- -11.23080062866211
- ],
- [
- "▁hole",
- -11.230888366699219
- ],
- [
- "▁Create",
- -11.23096752166748
- ],
- [
- "▁hall",
- -11.231266975402832
- ],
- [
- "nach",
- -11.231595039367676
- ],
- [
- "▁indicate",
- -11.232311248779297
- ],
- [
- "cum",
- -11.232604026794434
- ],
- [
- "▁Mann",
- -11.232690811157227
- ],
- [
- "▁reaction",
- -11.232828140258789
- ],
- [
- "▁empty",
- -11.23289680480957
- ],
- [
- "▁Sign",
- -11.232941627502441
- ],
- [
- "▁pm",
- -11.23300838470459
- ],
- [
- "erung",
- -11.23322582244873
- ],
- [
- "▁würde",
- -11.233592987060547
- ],
- [
- "▁declarat",
- -11.233602523803711
- ],
- [
- "6%",
- -11.23371410369873
- ],
- [
- "▁Client",
- -11.23377513885498
- ],
- [
- "vil",
- -11.234295845031738
- ],
- [
- "▁electricity",
- -11.234469413757324
- ],
- [
- "▁75",
- -11.234505653381348
- ],
- [
- "▁buna",
- -11.234505653381348
- ],
- [
- "eşte",
- -11.23473834991455
- ],
- [
- "▁prop",
- -11.234792709350586
- ],
- [
- "▁journal",
- -11.234883308410645
- ],
- [
- "▁meu",
- -11.23495101928711
- ],
- [
- "▁chef",
- -11.235034942626953
- ],
- [
- "▁Ever",
- -11.235102653503418
- ],
- [
- "▁feelings",
- -11.235466003417969
- ],
- [
- "PT",
- -11.23551082611084
- ],
- [
- "▁proposal",
- -11.235651969909668
- ],
- [
- "▁Its",
- -11.235709190368652
- ],
- [
- "▁2013.",
- -11.235795974731445
- ],
- [
- "▁Bundes",
- -11.23595142364502
- ],
- [
- "▁droit",
- -11.236333847045898
- ],
- [
- "▁10%",
- -11.236671447753906
- ],
- [
- "gard",
- -11.236772537231445
- ],
- [
- "information",
- -11.236814498901367
- ],
- [
- "FE",
- -11.237309455871582
- ],
- [
- "▁Dun",
- -11.237340927124023
- ],
- [
- "▁Stock",
- -11.237472534179688
- ],
- [
- "ație",
- -11.2374849319458
- ],
- [
- "▁mag",
- -11.237603187561035
- ],
- [
- "▁br",
- -11.237665176391602
- ],
- [
- "▁sight",
- -11.237772941589355
- ],
- [
- "phone",
- -11.237796783447266
- ],
- [
- "▁Cy",
- -11.237811088562012
- ],
- [
- "▁opposite",
- -11.238035202026367
- ],
- [
- "ically",
- -11.238235473632812
- ],
- [
- "großen",
- -11.238388061523438
- ],
- [
- "▁Without",
- -11.23845100402832
- ],
- [
- "espace",
- -11.238515853881836
- ],
- [
- "▁chairs",
- -11.238595008850098
- ],
- [
- "▁matches",
- -11.238685607910156
- ],
- [
- "ateur",
- -11.238697052001953
- ],
- [
- "▁Cost",
- -11.238699913024902
- ],
- [
- "▁WordPress",
- -11.238880157470703
- ],
- [
- "▁Opera",
- -11.239195823669434
- ],
- [
- "walked",
- -11.239234924316406
- ],
- [
- "▁transactions",
- -11.239521026611328
- ],
- [
- "▁nuclear",
- -11.239579200744629
- ],
- [
- "ways",
- -11.239594459533691
- ],
- [
- "▁Oct",
- -11.239738464355469
- ],
- [
- "▁bomb",
- -11.239835739135742
- ],
- [
- "▁tracking",
- -11.239879608154297
- ],
- [
- "▁photograph",
- -11.240066528320312
- ],
- [
- "bio",
- -11.240309715270996
- ],
- [
- "▁branch",
- -11.240363121032715
- ],
- [
- "▁$5",
- -11.240684509277344
- ],
- [
- "▁diagram",
- -11.240986824035645
- ],
- [
- "▁Hard",
- -11.241218566894531
- ],
- [
- "bach",
- -11.241232872009277
- ],
- [
- "▁42",
- -11.241249084472656
- ],
- [
- "logy",
- -11.241472244262695
- ],
- [
- "▁tile",
- -11.241593360900879
- ],
- [
- "▁API",
- -11.241833686828613
- ],
- [
- "seront",
- -11.24204158782959
- ],
- [
- "ENT",
- -11.242156982421875
- ],
- [
- "▁accommodation",
- -11.242409706115723
- ],
- [
- "▁fiber",
- -11.242438316345215
- ],
- [
- "▁Give",
- -11.242792129516602
- ],
- [
- "▁Gas",
- -11.242916107177734
- ],
- [
- "▁Spain",
- -11.243086814880371
- ],
- [
- "▁listing",
- -11.24312686920166
- ],
- [
- "▁blocks",
- -11.24349308013916
- ],
- [
- "▁constitu",
- -11.243762969970703
- ],
- [
- "▁convenience",
- -11.243797302246094
- ],
- [
- "▁prize",
- -11.243823051452637
- ],
- [
- "▁aircraft",
- -11.24404239654541
- ],
- [
- "containing",
- -11.244124412536621
- ],
- [
- "▁vice",
- -11.244247436523438
- ],
- [
- "▁organisations",
- -11.244304656982422
- ],
- [
- "▁complicated",
- -11.244588851928711
- ],
- [
- "rons",
- -11.244647979736328
- ],
- [
- "▁bars",
- -11.244670867919922
- ],
- [
- "était",
- -11.244705200195312
- ],
- [
- "▁checking",
- -11.245287895202637
- ],
- [
- "vant",
- -11.245542526245117
- ],
- [
- "▁couch",
- -11.245657920837402
- ],
- [
- "▁brush",
- -11.245870590209961
- ],
- [
- "▁printer",
- -11.245922088623047
- ],
- [
- "▁Rat",
- -11.246051788330078
- ],
- [
- "▁announce",
- -11.246057510375977
- ],
- [
- "▁salari",
- -11.246200561523438
- ],
- [
- "▁Sk",
- -11.246356964111328
- ],
- [
- "pal",
- -11.246383666992188
- ],
- [
- "▁yards",
- -11.24658203125
- ],
- [
- "▁flexibility",
- -11.246652603149414
- ],
- [
- "▁jamais",
- -11.24670696258545
- ],
- [
- "UC",
- -11.246740341186523
- ],
- [
- "▁4,",
- -11.246793746948242
- ],
- [
- "▁Made",
- -11.247078895568848
- ],
- [
- "▁solche",
- -11.247113227844238
- ],
- [
- "▁tri",
- -11.247237205505371
- ],
- [
- "▁outfit",
- -11.247243881225586
- ],
- [
- "м",
- -11.247267723083496
- ],
- [
- "▁encouraged",
- -11.247477531433105
- ],
- [
- "trac",
- -11.247552871704102
- ],
- [
- "▁genetic",
- -11.24755859375
- ],
- [
- "▁beneficial",
- -11.247747421264648
- ],
- [
- "mă",
- -11.247849464416504
- ],
- [
- "involving",
- -11.247879028320312
- ],
- [
- "▁knee",
- -11.247879028320312
- ],
- [
- "▁respective",
- -11.248316764831543
- ],
- [
- "▁controlled",
- -11.248350143432617
- ],
- [
- "▁Rück",
- -11.24837589263916
- ],
- [
- "LC",
- -11.248592376708984
- ],
- [
- "▁highlight",
- -11.248634338378906
- ],
- [
- "chem",
- -11.248797416687012
- ],
- [
- "▁Bis",
- -11.24956226348877
- ],
- [
- "▁graphics",
- -11.249592781066895
- ],
- [
- "▁posibil",
- -11.249672889709473
- ],
- [
- "orul",
- -11.249682426452637
- ],
- [
- "imagin",
- -11.249836921691895
- ],
- [
- "▁draft",
- -11.250006675720215
- ],
- [
- "shaped",
- -11.250219345092773
- ],
- [
- "▁suggests",
- -11.250221252441406
- ],
- [
- "uvre",
- -11.250509262084961
- ],
- [
- "page",
- -11.250545501708984
- ],
- [
- "▁sentiment",
- -11.250685691833496
- ],
- [
- "▁loop",
- -11.251015663146973
- ],
- [
- "▁Quality",
- -11.251839637756348
- ],
- [
- "▁volunteers",
- -11.251869201660156
- ],
- [
- "▁representation",
- -11.251923561096191
- ],
- [
- "▁examination",
- -11.252134323120117
- ],
- [
- "▁(2)",
- -11.252225875854492
- ],
- [
- "assi",
- -11.252435684204102
- ],
- [
- "▁till",
- -11.252486228942871
- ],
- [
- "▁Catholic",
- -11.252618789672852
- ],
- [
- "▁2020",
- -11.252726554870605
- ],
- [
- "▁random",
- -11.252764701843262
- ],
- [
- "tage",
- -11.253146171569824
- ],
- [
- "▁baking",
- -11.253690719604492
- ],
- [
- "▁Musik",
- -11.253852844238281
- ],
- [
- "▁SC",
- -11.253867149353027
- ],
- [
- "▁möchte",
- -11.254390716552734
- ],
- [
- "▁gene",
- -11.254411697387695
- ],
- [
- "▁kam",
- -11.254928588867188
- ],
- [
- "▁inspire",
- -11.254974365234375
- ],
- [
- "unk",
- -11.255097389221191
- ],
- [
- "▁Final",
- -11.255477905273438
- ],
- [
- "▁jeden",
- -11.255497932434082
- ],
- [
- "▁LLC",
- -11.255962371826172
- ],
- [
- "▁sistem",
- -11.25613784790039
- ],
- [
- "▁stages",
- -11.256441116333008
- ],
- [
- "▁texture",
- -11.256613731384277
- ],
- [
- "rib",
- -11.256739616394043
- ],
- [
- "lung",
- -11.256782531738281
- ],
- [
- "▁breath",
- -11.256814002990723
- ],
- [
- "▁hosted",
- -11.256844520568848
- ],
- [
- "▁Kingdom",
- -11.257079124450684
- ],
- [
- "▁politics",
- -11.257121086120605
- ],
- [
- "▁mood",
- -11.257122993469238
- ],
- [
- "cam",
- -11.257285118103027
- ],
- [
- "▁liked",
- -11.257287979125977
- ],
- [
- "▁Credit",
- -11.257304191589355
- ],
- [
- "tisch",
- -11.257527351379395
- ],
- [
- "▁everywhere",
- -11.257692337036133
- ],
- [
- "▁poti",
- -11.257915496826172
- ],
- [
- "▁fruits",
- -11.258264541625977
- ],
- [
- "oire",
- -11.258322715759277
- ],
- [
- "▁mesure",
- -11.258586883544922
- ],
- [
- "▁Studies",
- -11.258838653564453
- ],
- [
- "▁provision",
- -11.25888729095459
- ],
- [
- "▁Maria",
- -11.258927345275879
- ],
- [
- "▁necessarily",
- -11.259103775024414
- ],
- [
- "▁Net",
- -11.259212493896484
- ],
- [
- "▁scar",
- -11.259307861328125
- ],
- [
- "▁tracks",
- -11.259424209594727
- ],
- [
- "▁ads",
- -11.259856224060059
- ],
- [
- "termin",
- -11.259861946105957
- ],
- [
- "▁Yo",
- -11.26022720336914
- ],
- [
- "atory",
- -11.260252952575684
- ],
- [
- "itoare",
- -11.26025676727295
- ],
- [
- "▁colours",
- -11.260563850402832
- ],
- [
- "▁correctly",
- -11.260817527770996
- ],
- [
- "▁Trade",
- -11.26090145111084
- ],
- [
- "▁Week",
- -11.261052131652832
- ],
- [
- "▁Premier",
- -11.261499404907227
- ],
- [
- "▁designers",
- -11.261600494384766
- ],
- [
- "▁BE",
- -11.261879920959473
- ],
- [
- "▁desktop",
- -11.261929512023926
- ],
- [
- "▁lifetime",
- -11.262046813964844
- ],
- [
- "▁Kind",
- -11.26213264465332
- ],
- [
- "▁divers",
- -11.262246131896973
- ],
- [
- "rain",
- -11.262260437011719
- ],
- [
- "▁Von",
- -11.262263298034668
- ],
- [
- "▁bal",
- -11.262568473815918
- ],
- [
- "▁shots",
- -11.262624740600586
- ],
- [
- "▁accommodate",
- -11.262767791748047
- ],
- [
- "▁Paper",
- -11.263001441955566
- ],
- [
- "▁interaction",
- -11.263191223144531
- ],
- [
- "▁acquisition",
- -11.263233184814453
- ],
- [
- "▁neuro",
- -11.26378345489502
- ],
- [
- "▁institution",
- -11.26391887664795
- ],
- [
- "▁automatic",
- -11.26403522491455
- ],
- [
- "▁assess",
- -11.264177322387695
- ],
- [
- "▁manifest",
- -11.264199256896973
- ],
- [
- "▁audit",
- -11.264202117919922
- ],
- [
- "▁câte",
- -11.264406204223633
- ],
- [
- "▁insight",
- -11.264533996582031
- ],
- [
- "▁lange",
- -11.264781951904297
- ],
- [
- "▁retirement",
- -11.264795303344727
- ],
- [
- "sons",
- -11.264864921569824
- ],
- [
- "▁Asian",
- -11.26492691040039
- ],
- [
- "▁rail",
- -11.264978408813477
- ],
- [
- "▁Awards",
- -11.264982223510742
- ],
- [
- "Avec",
- -11.265035629272461
- ],
- [
- "SO",
- -11.26511287689209
- ],
- [
- "para",
- -11.265304565429688
- ],
- [
- "▁tant",
- -11.265562057495117
- ],
- [
- "▁strike",
- -11.265693664550781
- ],
- [
- "▁transformation",
- -11.265742301940918
- ],
- [
- "▁leicht",
- -11.26586627960205
- ],
- [
- "л",
- -11.265996932983398
- ],
- [
- "fat",
- -11.26629638671875
- ],
- [
- "▁Qui",
- -11.266626358032227
- ],
- [
- "▁chip",
- -11.26663589477539
- ],
- [
- "titude",
- -11.266640663146973
- ],
- [
- "▁Projekt",
- -11.266998291015625
- ],
- [
- "▁statt",
- -11.267010688781738
- ],
- [
- "▁findet",
- -11.267184257507324
- ],
- [
- "▁telephone",
- -11.267251968383789
- ],
- [
- "▁staying",
- -11.267267227172852
- ],
- [
- "▁Mess",
- -11.267353057861328
- ],
- [
- "▁patio",
- -11.267382621765137
- ],
- [
- "▁afla",
- -11.267890930175781
- ],
- [
- "▁administrative",
- -11.267910957336426
- ],
- [
- "▁gemeinsam",
- -11.268129348754883
- ],
- [
- "▁suppliers",
- -11.268136024475098
- ],
- [
- "ark",
- -11.268181800842285
- ],
- [
- "▁rice",
- -11.268397331237793
- ],
- [
- "▁stretch",
- -11.268439292907715
- ],
- [
- "▁compact",
- -11.268651008605957
- ],
- [
- "fire",
- -11.268756866455078
- ],
- [
- "в",
- -11.268963813781738
- ],
- [
- "vision",
- -11.269035339355469
- ],
- [
- "▁Mag",
- -11.269368171691895
- ],
- [
- "▁dreams",
- -11.269472122192383
- ],
- [
- "▁funny",
- -11.26968765258789
- ],
- [
- "▁lässt",
- -11.270216941833496
- ],
- [
- "cade",
- -11.270448684692383
- ],
- [
- "▁drama",
- -11.270484924316406
- ],
- [
- "▁schimb",
- -11.270767211914062
- ],
- [
- "PO",
- -11.270785331726074
- ],
- [
- "▁Sim",
- -11.270806312561035
- ],
- [
- "▁motivation",
- -11.271045684814453
- ],
- [
- "▁presents",
- -11.27138614654541
- ],
- [
- "▁1997",
- -11.271828651428223
- ],
- [
- "agi",
- -11.271883010864258
- ],
- [
- "▁optimal",
- -11.27198314666748
- ],
- [
- "▁folder",
- -11.271995544433594
- ],
- [
- "stro",
- -11.272034645080566
- ],
- [
- "▁Han",
- -11.272072792053223
- ],
- [
- "▁Ei",
- -11.27220344543457
- ],
- [
- "▁pus",
- -11.272356986999512
- ],
- [
- "▁Learning",
- -11.272531509399414
- ],
- [
- "oop",
- -11.272603034973145
- ],
- [
- "▁Type",
- -11.272658348083496
- ],
- [
- "space",
- -11.272665023803711
- ],
- [
- "▁define",
- -11.273098945617676
- ],
- [
- "▁plug",
- -11.273098945617676
- ],
- [
- "yard",
- -11.273188591003418
- ],
- [
- "▁utility",
- -11.273297309875488
- ],
- [
- "über",
- -11.273561477661133
- ],
- [
- "▁commun",
- -11.273627281188965
- ],
- [
- "▁directed",
- -11.273842811584473
- ],
- [
- "▁consent",
- -11.273893356323242
- ],
- [
- "▁DNA",
- -11.274068832397461
- ],
- [
- "▁statements",
- -11.274130821228027
- ],
- [
- "real",
- -11.274298667907715
- ],
- [
- "active",
- -11.274430274963379
- ],
- [
- "school",
- -11.274965286254883
- ],
- [
- "▁mic",
- -11.275360107421875
- ],
- [
- "▁acestui",
- -11.275467872619629
- ],
- [
- "scale",
- -11.27550220489502
- ],
- [
- "▁Mid",
- -11.275628089904785
- ],
- [
- "▁Chair",
- -11.275874137878418
- ],
- [
- "к",
- -11.275936126708984
- ],
- [
- "▁Bas",
- -11.27630615234375
- ],
- [
- "▁38",
- -11.276379585266113
- ],
- [
- "erin",
- -11.276461601257324
- ],
- [
- "▁Everyone",
- -11.27686882019043
- ],
- [
- "COM",
- -11.276907920837402
- ],
- [
- "▁chronic",
- -11.277079582214355
- ],
- [
- "▁doctors",
- -11.277222633361816
- ],
- [
- "▁sh",
- -11.277276039123535
- ],
- [
- "sport",
- -11.27740478515625
- ],
- [
- "▁volunteer",
- -11.277512550354004
- ],
- [
- "▁drinking",
- -11.277839660644531
- ],
- [
- "▁Mas",
- -11.277868270874023
- ],
- [
- "▁pursue",
- -11.2780122756958
- ],
- [
- "▁exposed",
- -11.278536796569824
- ],
- [
- "exe",
- -11.278660774230957
- ],
- [
- "hung",
- -11.278841972351074
- ],
- [
- "▁Tier",
- -11.278921127319336
- ],
- [
- "▁plac",
- -11.279121398925781
- ],
- [
- "▁proiect",
- -11.279136657714844
- ],
- [
- "▁literally",
- -11.279288291931152
- ],
- [
- "▁acolo",
- -11.279412269592285
- ],
- [
- "▁User",
- -11.279485702514648
- ],
- [
- "UT",
- -11.279598236083984
- ],
- [
- "▁hyper",
- -11.279623985290527
- ],
- [
- "▁seed",
- -11.279794692993164
- ],
- [
- "▁literature",
- -11.2802734375
- ],
- [
- "▁Holy",
- -11.280373573303223
- ],
- [
- "▁jeu",
- -11.280396461486816
- ],
- [
- "▁licensed",
- -11.280896186828613
- ],
- [
- "station",
- -11.280900955200195
- ],
- [
- "▁criteria",
- -11.281292915344238
- ],
- [
- "▁sufficient",
- -11.281292915344238
- ],
- [
- "▁gestion",
- -11.281512260437012
- ],
- [
- "▁pic",
- -11.281549453735352
- ],
- [
- "▁64",
- -11.28170108795166
- ],
- [
- "▁facts",
- -11.281905174255371
- ],
- [
- "▁Bild",
- -11.282098770141602
- ],
- [
- "obi",
- -11.28212833404541
- ],
- [
- "▁nie",
- -11.282362937927246
- ],
- [
- "▁Jewish",
- -11.282756805419922
- ],
- [
- "bor",
- -11.28281307220459
- ],
- [
- "▁1980",
- -11.28286361694336
- ],
- [
- "▁Fach",
- -11.282917976379395
- ],
- [
- "craft",
- -11.283047676086426
- ],
- [
- "▁Pakistan",
- -11.283408164978027
- ],
- [
- "▁Mos",
- -11.283621788024902
- ],
- [
- "▁toilet",
- -11.283844947814941
- ],
- [
- "partea",
- -11.28391170501709
- ],
- [
- "case",
- -11.284221649169922
- ],
- [
- "▁clock",
- -11.28430461883545
- ],
- [
- "▁parc",
- -11.284602165222168
- ],
- [
- "▁legislation",
- -11.284692764282227
- ],
- [
- "▁icon",
- -11.284933090209961
- ],
- [
- "etz",
- -11.285178184509277
- ],
- [
- "ept",
- -11.285270690917969
- ],
- [
- "▁Corporation",
- -11.28585433959961
- ],
- [
- "▁requested",
- -11.285983085632324
- ],
- [
- "▁column",
- -11.286088943481445
- ],
- [
- "rier",
- -11.286120414733887
- ],
- [
- "uß",
- -11.2861967086792
- ],
- [
- "▁wohl",
- -11.286418914794922
- ],
- [
- "tell",
- -11.286569595336914
- ],
- [
- "gno",
- -11.286608695983887
- ],
- [
- "▁diseases",
- -11.286726951599121
- ],
- [
- "Sch",
- -11.286762237548828
- ],
- [
- "▁colon",
- -11.287075996398926
- ],
- [
- "▁Based",
- -11.28709602355957
- ],
- [
- "▁flu",
- -11.28725528717041
- ],
- [
- "▁vocal",
- -11.287408828735352
- ],
- [
- "▁virus",
- -11.287693977355957
- ],
- [
- "▁traveling",
- -11.287750244140625
- ],
- [
- "bul",
- -11.287837982177734
- ],
- [
- "т",
- -11.28794002532959
- ],
- [
- "city",
- -11.287961959838867
- ],
- [
- "AU",
- -11.287991523742676
- ],
- [
- "wide",
- -11.288037300109863
- ],
- [
- "▁solo",
- -11.288061141967773
- ],
- [
- "▁functionality",
- -11.288214683532715
- ],
- [
- "▁reveal",
- -11.28831672668457
- ],
- [
- "sign",
- -11.288952827453613
- ],
- [
- "▁closing",
- -11.288971900939941
- ],
- [
- "▁peak",
- -11.289087295532227
- ],
- [
- "▁practic",
- -11.289398193359375
- ],
- [
- "than",
- -11.289473533630371
- ],
- [
- "▁driven",
- -11.289484977722168
- ],
- [
- "êtes",
- -11.289548873901367
- ],
- [
- "high",
- -11.290016174316406
- ],
- [
- "power",
- -11.290226936340332
- ],
- [
- "▁Lin",
- -11.29028606414795
- ],
- [
- "▁dose",
- -11.29034423828125
- ],
- [
- "▁pocket",
- -11.290650367736816
- ],
- [
- "▁Classic",
- -11.29067611694336
- ],
- [
- "▁packaging",
- -11.290792465209961
- ],
- [
- "▁distinct",
- -11.290800094604492
- ],
- [
- "▁côté",
- -11.291094779968262
- ],
- [
- "▁breast",
- -11.29127025604248
- ],
- [
- "▁folosit",
- -11.29133129119873
- ],
- [
- "▁drinks",
- -11.291353225708008
- ],
- [
- "▁Dog",
- -11.291529655456543
- ],
- [
- "ailleurs",
- -11.291658401489258
- ],
- [
- "▁caz",
- -11.291804313659668
- ],
- [
- "▁escape",
- -11.29188346862793
- ],
- [
- "▁warranty",
- -11.291902542114258
- ],
- [
- "▁pulled",
- -11.291996955871582
- ],
- [
- "data",
- -11.292088508605957
- ],
- [
- "▁facilitate",
- -11.292213439941406
- ],
- [
- "É",
- -11.292335510253906
- ],
- [
- "▁SP",
- -11.292403221130371
- ],
- [
- "lant",
- -11.292557716369629
- ],
- [
- "AD",
- -11.29256534576416
- ],
- [
- "▁Print",
- -11.292802810668945
- ],
- [
- "mond",
- -11.292863845825195
- ],
- [
- "▁strange",
- -11.292875289916992
- ],
- [
- "▁Hor",
- -11.293227195739746
- ],
- [
- "▁Collection",
- -11.293328285217285
- ],
- [
- "arm",
- -11.29346752166748
- ],
- [
- "cas",
- -11.293691635131836
- ],
- [
- "arrow",
- -11.29379940032959
- ],
- [
- "▁carrying",
- -11.293927192687988
- ],
- [
- "▁wave",
- -11.294661521911621
- ],
- [
- "setzt",
- -11.294907569885254
- ],
- [
- "▁construct",
- -11.29514217376709
- ],
- [
- "▁acts",
- -11.295269966125488
- ],
- [
- "▁Action",
- -11.295342445373535
- ],
- [
- "▁Kim",
- -11.295354843139648
- ],
- [
- "oxid",
- -11.295459747314453
- ],
- [
- "fish",
- -11.295519828796387
- ],
- [
- "▁damaged",
- -11.295660018920898
- ],
- [
- "▁Greek",
- -11.295747756958008
- ],
- [
- "▁belt",
- -11.295772552490234
- ],
- [
- "▁Prior",
- -11.295778274536133
- ],
- [
- "▁marks",
- -11.295936584472656
- ],
- [
- "▁lumea",
- -11.296183586120605
- ],
- [
- "▁twenty",
- -11.296196937561035
- ],
- [
- "▁locul",
- -11.296360969543457
- ],
- [
- "▁Army",
- -11.296524047851562
- ],
- [
- "apt",
- -11.296602249145508
- ],
- [
- "▁limits",
- -11.296733856201172
- ],
- [
- "▁cruise",
- -11.296966552734375
- ],
- [
- "▁List",
- -11.296998023986816
- ],
- [
- "utilisation",
- -11.29753589630127
- ],
- [
- "▁personality",
- -11.297622680664062
- ],
- [
- "▁sections",
- -11.297759056091309
- ],
- [
- "▁drawn",
- -11.29797649383545
- ],
- [
- "▁mold",
- -11.298277854919434
- ],
- [
- "▁Think",
- -11.298333168029785
- ],
- [
- "▁holidays",
- -11.298355102539062
- ],
- [
- "▁critic",
- -11.298545837402344
- ],
- [
- "grade",
- -11.298660278320312
- ],
- [
- "▁sick",
- -11.299074172973633
- ],
- [
- "▁characteristics",
- -11.299237251281738
- ],
- [
- "▁echipa",
- -11.299272537231445
- ],
- [
- "▁Fast",
- -11.29929256439209
- ],
- [
- "▁Br",
- -11.299600601196289
- ],
- [
- "▁Reise",
- -11.299734115600586
- ],
- [
- "teen",
- -11.299749374389648
- ],
- [
- "uci",
- -11.299949645996094
- ],
- [
- "!”",
- -11.300180435180664
- ],
- [
- "ppe",
- -11.300532341003418
- ],
- [
- "▁talked",
- -11.301164627075195
- ],
- [
- "▁gap",
- -11.301473617553711
- ],
- [
- "homme",
- -11.301778793334961
- ],
- [
- "▁interact",
- -11.301934242248535
- ],
- [
- "▁dollar",
- -11.302276611328125
- ],
- [
- "▁bone",
- -11.302309036254883
- ],
- [
- "▁Einsatz",
- -11.302343368530273
- ],
- [
- "▁sad",
- -11.302434921264648
- ],
- [
- "any",
- -11.302445411682129
- ],
- [
- "tation",
- -11.302666664123535
- ],
- [
- "▁Haupt",
- -11.302748680114746
- ],
- [
- "iva",
- -11.302781105041504
- ],
- [
- "▁Schu",
- -11.302916526794434
- ],
- [
- "▁evaluate",
- -11.3036470413208
- ],
- [
- "▁variant",
- -11.303807258605957
- ],
- [
- "▁IS",
- -11.303879737854004
- ],
- [
- "▁PRO",
- -11.303947448730469
- ],
- [
- "▁vine",
- -11.303959846496582
- ],
- [
- "rut",
- -11.304062843322754
- ],
- [
- "▁existence",
- -11.30443286895752
- ],
- [
- "-7",
- -11.304525375366211
- ],
- [
- "ancy",
- -11.304702758789062
- ],
- [
- "▁Want",
- -11.305023193359375
- ],
- [
- "alism",
- -11.305127143859863
- ],
- [
- "ranging",
- -11.30550765991211
- ],
- [
- "preis",
- -11.305551528930664
- ],
- [
- "All",
- -11.305620193481445
- ],
- [
- "▁reception",
- -11.30565071105957
- ],
- [
- "mai",
- -11.305730819702148
- ],
- [
- "▁lease",
- -11.30577278137207
- ],
- [
- "▁finest",
- -11.30578899383545
- ],
- [
- "▁evident",
- -11.305874824523926
- ],
- [
- "▁Easy",
- -11.306075096130371
- ],
- [
- "▁gilt",
- -11.306085586547852
- ],
- [
- "▁trips",
- -11.306344985961914
- ],
- [
- "▁skilled",
- -11.306368827819824
- ],
- [
- "consists",
- -11.306456565856934
- ],
- [
- "front",
- -11.306635856628418
- ],
- [
- "rati",
- -11.306652069091797
- ],
- [
- "▁Following",
- -11.30678653717041
- ],
- [
- "▁Medicine",
- -11.307161331176758
- ],
- [
- "▁pune",
- -11.30729866027832
- ],
- [
- "▁errors",
- -11.307354927062988
- ],
- [
- "arian",
- -11.307613372802734
- ],
- [
- "lib",
- -11.30811882019043
- ],
- [
- "SR",
- -11.308351516723633
- ],
- [
- "ML",
- -11.308568000793457
- ],
- [
- "▁Safety",
- -11.308823585510254
- ],
- [
- "▁clar",
- -11.309355735778809
- ],
- [
- "New",
- -11.309764862060547
- ],
- [
- "▁37",
- -11.309773445129395
- ],
- [
- "▁Administration",
- -11.309823036193848
- ],
- [
- "▁2.0",
- -11.310120582580566
- ],
- [
- "▁obviously",
- -11.310196876525879
- ],
- [
- "▁Mitarbeiter",
- -11.310254096984863
- ],
- [
- "▁improvements",
- -11.31043529510498
- ],
- [
- "▁Cut",
- -11.310630798339844
- ],
- [
- "▁Natural",
- -11.310672760009766
- ],
- [
- "▁arrival",
- -11.311182975769043
- ],
- [
- "▁pizza",
- -11.311339378356934
- ],
- [
- "eşti",
- -11.311570167541504
- ],
- [
- "cept",
- -11.311654090881348
- ],
- [
- "▁livre",
- -11.311686515808105
- ],
- [
- "▁nombreux",
- -11.312195777893066
- ],
- [
- "▁authentic",
- -11.312231063842773
- ],
- [
- "▁gemacht",
- -11.312472343444824
- ],
- [
- "▁broadcast",
- -11.312478065490723
- ],
- [
- "▁stronger",
- -11.312545776367188
- ],
- [
- "UP",
- -11.31257152557373
- ],
- [
- "▁centers",
- -11.312614440917969
- ],
- [
- "▁petite",
- -11.312617301940918
- ],
- [
- "▁spots",
- -11.312626838684082
- ],
- [
- "▁crystal",
- -11.312756538391113
- ],
- [
- "▁salon",
- -11.313044548034668
- ],
- [
- "▁gained",
- -11.313098907470703
- ],
- [
- "▁Mus",
- -11.313215255737305
- ],
- [
- "▁lens",
- -11.313223838806152
- ],
- [
- "▁ihm",
- -11.313231468200684
- ],
- [
- "minute",
- -11.313573837280273
- ],
- [
- "▁greatly",
- -11.313587188720703
- ],
- [
- "LP",
- -11.31361198425293
- ],
- [
- "rait",
- -11.314027786254883
- ],
- [
- "▁bid",
- -11.314154624938965
- ],
- [
- "▁cit",
- -11.314203262329102
- ],
- [
- "entreprise",
- -11.31435775756836
- ],
- [
- "▁55",
- -11.314533233642578
- ],
- [
- "▁respectively",
- -11.314536094665527
- ],
- [
- "▁lo",
- -11.314638137817383
- ],
- [
- "▁cons",
- -11.314743995666504
- ],
- [
- "▁Energie",
- -11.315169334411621
- ],
- [
- "▁OK",
- -11.31521224975586
- ],
- [
- "▁grill",
- -11.315338134765625
- ],
- [
- "▁heading",
- -11.31549072265625
- ],
- [
- "▁sollten",
- -11.315491676330566
- ],
- [
- "▁Fragen",
- -11.315528869628906
- ],
- [
- "▁Poli",
- -11.315556526184082
- ],
- [
- "▁studying",
- -11.315723419189453
- ],
- [
- "▁développement",
- -11.315882682800293
- ],
- [
- "▁foam",
- -11.316035270690918
- ],
- [
- "▁1996",
- -11.316511154174805
- ],
- [
- "▁disaster",
- -11.31662654876709
- ],
- [
- "▁cafe",
- -11.317262649536133
- ],
- [
- "▁moves",
- -11.317267417907715
- ],
- [
- "focuses",
- -11.317712783813477
- ],
- [
- "▁Avenue",
- -11.317834854125977
- ],
- [
- "▁humans",
- -11.31784439086914
- ],
- [
- "▁(3",
- -11.318021774291992
- ],
- [
- "▁région",
- -11.318347930908203
- ],
- [
- "▁DJ",
- -11.318608283996582
- ],
- [
- "shop",
- -11.318819046020508
- ],
- [
- "▁acting",
- -11.318843841552734
- ],
- [
- "▁Justice",
- -11.318967819213867
- ],
- [
- "▁trouve",
- -11.319010734558105
- ],
- [
- "▁Estate",
- -11.319040298461914
- ],
- [
- "▁strict",
- -11.319231986999512
- ],
- [
- "▁talks",
- -11.319283485412598
- ],
- [
- "▁mat",
- -11.319290161132812
- ],
- [
- "▁completion",
- -11.319327354431152
- ],
- [
- "delivering",
- -11.31943416595459
- ],
- [
- "CD",
- -11.31973934173584
- ],
- [
- "0%",
- -11.319960594177246
- ],
- [
- "▁creativity",
- -11.320253372192383
- ],
- [
- "BR",
- -11.320272445678711
- ],
- [
- "▁occurred",
- -11.320357322692871
- ],
- [
- "Car",
- -11.320590019226074
- ],
- [
- "▁rising",
- -11.320761680603027
- ],
- [
- "gger",
- -11.32086181640625
- ],
- [
- "▁Gene",
- -11.320901870727539
- ],
- [
- "▁workplace",
- -11.320914268493652
- ],
- [
- "phy",
- -11.321065902709961
- ],
- [
- "▁Bla",
- -11.32107162475586
- ],
- [
- "▁trailer",
- -11.32120418548584
- ],
- [
- "▁Forest",
- -11.321205139160156
- ],
- [
- "▁profession",
- -11.321246147155762
- ],
- [
- "▁Father",
- -11.32137680053711
- ],
- [
- "flu",
- -11.321487426757812
- ],
- [
- "tone",
- -11.321489334106445
- ],
- [
- "▁sexual",
- -11.321736335754395
- ],
- [
- "▁Map",
- -11.321805953979492
- ],
- [
- "OT",
- -11.3218412399292
- ],
- [
- "▁Us",
- -11.321878433227539
- ],
- [
- "tôt",
- -11.321892738342285
- ],
- [
- "▁Wert",
- -11.321901321411133
- ],
- [
- "preparing",
- -11.322121620178223
- ],
- [
- "isé",
- -11.322243690490723
- ],
- [
- "▁lake",
- -11.322461128234863
- ],
- [
- "eed",
- -11.32270336151123
- ],
- [
- "jun",
- -11.322888374328613
- ],
- [
- "▁implemented",
- -11.323014259338379
- ],
- [
- "vid",
- -11.323116302490234
- ],
- [
- "igne",
- -11.323201179504395
- ],
- [
- "▁follows",
- -11.323214530944824
- ],
- [
- "▁Eric",
- -11.323430061340332
- ],
- [
- "body",
- -11.323530197143555
- ],
- [
- "▁contained",
- -11.323585510253906
- ],
- [
- "▁massage",
- -11.323715209960938
- ],
- [
- "AV",
- -11.323725700378418
- ],
- [
- "▁insa",
- -11.323850631713867
- ],
- [
- "▁observed",
- -11.323892593383789
- ],
- [
- "▁marque",
- -11.324137687683105
- ],
- [
- "lines",
- -11.324451446533203
- ],
- [
- "▁Frage",
- -11.324482917785645
- ],
- [
- "largely",
- -11.324647903442383
- ],
- [
- "gegeben",
- -11.32473087310791
- ],
- [
- "▁colleagues",
- -11.324762344360352
- ],
- [
- "pha",
- -11.32494068145752
- ],
- [
- "▁representative",
- -11.325217247009277
- ],
- [
- "▁shut",
- -11.325650215148926
- ],
- [
- "▁secondary",
- -11.325779914855957
- ],
- [
- "▁exhibit",
- -11.325927734375
- ],
- [
- "1)",
- -11.325932502746582
- ],
- [
- "mid",
- -11.326109886169434
- ],
- [
- "▁Due",
- -11.326229095458984
- ],
- [
- "▁initiatives",
- -11.326457023620605
- ],
- [
- "▁occurs",
- -11.326458930969238
- ],
- [
- "lent",
- -11.326478958129883
- ],
- [
- "▁façon",
- -11.326778411865234
- ],
- [
- "▁iOS",
- -11.326803207397461
- ],
- [
- "▁exploring",
- -11.327000617980957
- ],
- [
- "▁stations",
- -11.327103614807129
- ],
- [
- "nton",
- -11.327234268188477
- ],
- [
- "▁Country",
- -11.32729721069336
- ],
- [
- "▁shouldn",
- -11.327406883239746
- ],
- [
- "▁casual",
- -11.327611923217773
- ],
- [
- "-18",
- -11.32769775390625
- ],
- [
- "▁maintained",
- -11.32772445678711
- ],
- [
- "▁cart",
- -11.327790260314941
- ],
- [
- "▁propre",
- -11.327836036682129
- ],
- [
- "▁asset",
- -11.327948570251465
- ],
- [
- "firm",
- -11.32803726196289
- ],
- [
- "gla",
- -11.328231811523438
- ],
- [
- "viv",
- -11.3282470703125
- ],
- [
- "▁scientists",
- -11.328873634338379
- ],
- [
- "▁Nor",
- -11.328936576843262
- ],
- [
- "ites",
- -11.329320907592773
- ],
- [
- "▁engaging",
- -11.329933166503906
- ],
- [
- "My",
- -11.330178260803223
- ],
- [
- "▁workshops",
- -11.330282211303711
- ],
- [
- "ffer",
- -11.3303804397583
- ],
- [
- "activité",
- -11.33047103881836
- ],
- [
- "▁tension",
- -11.330567359924316
- ],
- [
- "▁dual",
- -11.330668449401855
- ],
- [
- "uer",
- -11.33084774017334
- ],
- [
- "900",
- -11.330941200256348
- ],
- [
- "SF",
- -11.33108139038086
- ],
- [
- "▁kannst",
- -11.331146240234375
- ],
- [
- "▁bur",
- -11.33115291595459
- ],
- [
- "▁visitor",
- -11.331156730651855
- ],
- [
- "▁granted",
- -11.331178665161133
- ],
- [
- "▁union",
- -11.331355094909668
- ],
- [
- "▁tablet",
- -11.331461906433105
- ],
- [
- "▁Choose",
- -11.33146858215332
- ],
- [
- "ibil",
- -11.331551551818848
- ],
- [
- "▁settlement",
- -11.331830978393555
- ],
- [
- "genommen",
- -11.331892967224121
- ],
- [
- "▁marked",
- -11.332956314086914
- ],
- [
- "▁diagnostic",
- -11.333370208740234
- ],
- [
- "▁prayer",
- -11.333529472351074
- ],
- [
- "▁Toronto",
- -11.334035873413086
- ],
- [
- "trans",
- -11.334146499633789
- ],
- [
- "▁respectiv",
- -11.334160804748535
- ],
- [
- "▁2012.",
- -11.334207534790039
- ],
- [
- "icul",
- -11.334394454956055
- ],
- [
- "▁satisfied",
- -11.334527969360352
- ],
- [
- "▁Fla",
- -11.334596633911133
- ],
- [
- "▁estimate",
- -11.334638595581055
- ],
- [
- "▁Agency",
- -11.33466911315918
- ],
- [
- "OD",
- -11.334708213806152
- ],
- [
- "▁McC",
- -11.334746360778809
- ],
- [
- "bert",
- -11.334748268127441
- ],
- [
- "▁seal",
- -11.334771156311035
- ],
- [
- "aine",
- -11.334839820861816
- ],
- [
- "▁cauza",
- -11.334848403930664
- ],
- [
- "▁wallpaper",
- -11.335081100463867
- ],
- [
- "▁alb",
- -11.33536434173584
- ],
- [
- "▁Sound",
- -11.335681915283203
- ],
- [
- "worth",
- -11.33572769165039
- ],
- [
- "chten",
- -11.335858345031738
- ],
- [
- "programm",
- -11.335896492004395
- ],
- [
- "▁pounds",
- -11.336215019226074
- ],
- [
- "▁coaching",
- -11.336278915405273
- ],
- [
- "▁Furthermore",
- -11.336454391479492
- ],
- [
- "▁Korea",
- -11.336471557617188
- ],
- [
- "▁flour",
- -11.336530685424805
- ],
- [
- "▁sommes",
- -11.33657169342041
- ],
- [
- "▁Repair",
- -11.33661937713623
- ],
- [
- "”)",
- -11.336642265319824
- ],
- [
- "itch",
- -11.336675643920898
- ],
- [
- "blu",
- -11.336786270141602
- ],
- [
- "zar",
- -11.336882591247559
- ],
- [
- "▁diferite",
- -11.33745002746582
- ],
- [
- "▁Golf",
- -11.337685585021973
- ],
- [
- "arch",
- -11.33772087097168
- ],
- [
- "▁panels",
- -11.337799072265625
- ],
- [
- "jan",
- -11.337956428527832
- ],
- [
- "“.",
- -11.338240623474121
- ],
- [
- "izarea",
- -11.338324546813965
- ],
- [
- "▁golden",
- -11.33854866027832
- ],
- [
- "▁flying",
- -11.338550567626953
- ],
- [
- "▁museum",
- -11.338700294494629
- ],
- [
- "▁equivalent",
- -11.338759422302246
- ],
- [
- "▁Lang",
- -11.339032173156738
- ],
- [
- "schi",
- -11.339539527893066
- ],
- [
- "MI",
- -11.339595794677734
- ],
- [
- "▁faci",
- -11.339838027954102
- ],
- [
- "▁Rahmen",
- -11.339988708496094
- ],
- [
- "▁attending",
- -11.340130805969238
- ],
- [
- "′′",
- -11.340483665466309
- ],
- [
- "▁Tro",
- -11.341070175170898
- ],
- [
- "▁gaming",
- -11.341447830200195
- ],
- [
- "▁aujourd",
- -11.341479301452637
- ],
- [
- "▁Wochen",
- -11.341526985168457
- ],
- [
- "▁entering",
- -11.341535568237305
- ],
- [
- "its",
- -11.34155559539795
- ],
- [
- "▁Private",
- -11.341866493225098
- ],
- [
- "▁Ocean",
- -11.34188175201416
- ],
- [
- "▁01",
- -11.342098236083984
- ],
- [
- "▁coloring",
- -11.342188835144043
- ],
- [
- "ător",
- -11.34253215789795
- ],
- [
- "▁flooring",
- -11.342548370361328
- ],
- [
- "▁downtown",
- -11.34276294708252
- ],
- [
- "rab",
- -11.342998504638672
- ],
- [
- "HI",
- -11.343221664428711
- ],
- [
- "▁illness",
- -11.343234062194824
- ],
- [
- "▁whil",
- -11.343307495117188
- ],
- [
- "▁diamond",
- -11.34333324432373
- ],
- [
- "Mail",
- -11.343419075012207
- ],
- [
- "▁Dream",
- -11.34344482421875
- ],
- [
- "▁Golden",
- -11.344099044799805
- ],
- [
- "▁rein",
- -11.344220161437988
- ],
- [
- "▁hi",
- -11.344283103942871
- ],
- [
- "▁expressed",
- -11.344489097595215
- ],
- [
- "▁luat",
- -11.344511985778809
- ],
- [
- "▁Share",
- -11.34453010559082
- ],
- [
- "▁Programm",
- -11.344706535339355
- ],
- [
- "▁Sales",
- -11.344707489013672
- ],
- [
- "▁prof",
- -11.344890594482422
- ],
- [
- "▁MO",
- -11.34505844116211
- ],
- [
- "▁Short",
- -11.345088958740234
- ],
- [
- "▁charm",
- -11.345290184020996
- ],
- [
- "▁Cer",
- -11.345373153686523
- ],
- [
- "▁Run",
- -11.34553337097168
- ],
- [
- "▁tutorial",
- -11.345589637756348
- ],
- [
- "oul",
- -11.34561824798584
- ],
- [
- "▁Fest",
- -11.345794677734375
- ],
- [
- "▁uniform",
- -11.345929145812988
- ],
- [
- "aß",
- -11.346014976501465
- ],
- [
- "▁pipe",
- -11.346076965332031
- ],
- [
- "▁Square",
- -11.346283912658691
- ],
- [
- "▁Kosten",
- -11.346365928649902
- ],
- [
- "▁checked",
- -11.346590042114258
- ],
- [
- "▁65",
- -11.346626281738281
- ],
- [
- "▁Adam",
- -11.346686363220215
- ],
- [
- "cel",
- -11.346700668334961
- ],
- [
- "ello",
- -11.346965789794922
- ],
- [
- "▁Res",
- -11.347023963928223
- ],
- [
- "▁drain",
- -11.34708309173584
- ],
- [
- "ză",
- -11.347129821777344
- ],
- [
- "▁Tech",
- -11.34739875793457
- ],
- [
- "▁strive",
- -11.34749698638916
- ],
- [
- "cycl",
- -11.347506523132324
- ],
- [
- "▁stark",
- -11.347541809082031
- ],
- [
- "load",
- -11.34754753112793
- ],
- [
- "▁Stat",
- -11.347589492797852
- ],
- [
- "▁Rec",
- -11.347622871398926
- ],
- [
- "ians",
- -11.347716331481934
- ],
- [
- "▁Tin",
- -11.347738265991211
- ],
- [
- "▁Agreement",
- -11.347840309143066
- ],
- [
- "▁pret",
- -11.348027229309082
- ],
- [
- "-9",
- -11.348326683044434
- ],
- [
- "▁sentence",
- -11.348380088806152
- ],
- [
- "▁Direct",
- -11.348426818847656
- ],
- [
- "▁Rep",
- -11.348465919494629
- ],
- [
- "▁Prozent",
- -11.348799705505371
- ],
- [
- "▁invitation",
- -11.34882640838623
- ],
- [
- "▁refund",
- -11.349113464355469
- ],
- [
- "▁Kids",
- -11.349287986755371
- ],
- [
- "stock",
- -11.349383354187012
- ],
- [
- "TP",
- -11.349400520324707
- ],
- [
- "▁tau",
- -11.34941291809082
- ],
- [
- "from",
- -11.349421501159668
- ],
- [
- "▁Ash",
- -11.349451065063477
- ],
- [
- "store",
- -11.349535942077637
- ],
- [
- "▁Common",
- -11.34958553314209
- ],
- [
- "▁Qualität",
- -11.34968376159668
- ],
- [
- "▁strongly",
- -11.349727630615234
- ],
- [
- "▁importante",
- -11.34979248046875
- ],
- [
- "ome",
- -11.349912643432617
- ],
- [
- "▁surtout",
- -11.349946022033691
- ],
- [
- "enables",
- -11.35020637512207
- ],
- [
- "▁decent",
- -11.350221633911133
- ],
- [
- "▁neutral",
- -11.350237846374512
- ],
- [
- "▁produs",
- -11.350356101989746
- ],
- [
- "bury",
- -11.350451469421387
- ],
- [
- "▁Level",
- -11.350618362426758
- ],
- [
- "▁interes",
- -11.350699424743652
- ],
- [
- "mov",
- -11.350797653198242
- ],
- [
- "▁backup",
- -11.350939750671387
- ],
- [
- "même",
- -11.351094245910645
- ],
- [
- "doc",
- -11.351119041442871
- ],
- [
- "▁#1",
- -11.35130786895752
- ],
- [
- "▁specified",
- -11.351495742797852
- ],
- [
- "▁founder",
- -11.351655960083008
- ],
- [
- "And",
- -11.352090835571289
- ],
- [
- "isten",
- -11.352149963378906
- ],
- [
- "▁lecture",
- -11.352729797363281
- ],
- [
- "▁wake",
- -11.352895736694336
- ],
- [
- "▁vraiment",
- -11.352980613708496
- ],
- [
- "▁swing",
- -11.353188514709473
- ],
- [
- "▁addresses",
- -11.353275299072266
- ],
- [
- "▁Verfügung",
- -11.353504180908203
- ],
- [
- "▁deadline",
- -11.353761672973633
- ],
- [
- "н",
- -11.353791236877441
- ],
- [
- "▁Content",
- -11.353970527648926
- ],
- [
- "▁Gre",
- -11.354111671447754
- ],
- [
- "▁Experience",
- -11.354378700256348
- ],
- [
- "tura",
- -11.354458808898926
- ],
- [
- "▁exit",
- -11.354642868041992
- ],
- [
- "▁Britain",
- -11.354652404785156
- ],
- [
- "▁Sunt",
- -11.354684829711914
- ],
- [
- "▁documentation",
- -11.354690551757812
- ],
- [
- "▁showcase",
- -11.3547945022583
- ],
- [
- "▁photographs",
- -11.354822158813477
- ],
- [
- "qué",
- -11.35483169555664
- ],
- [
- "zin",
- -11.354909896850586
- ],
- [
- "pres",
- -11.354933738708496
- ],
- [
- "▁decline",
- -11.354955673217773
- ],
- [
- "▁Large",
- -11.355030059814453
- ],
- [
- "▁bills",
- -11.355141639709473
- ],
- [
- "▁entitled",
- -11.355222702026367
- ],
- [
- "▁passionate",
- -11.355393409729004
- ],
- [
- "▁workout",
- -11.355413436889648
- ],
- [
- "▁Again",
- -11.35560417175293
- ],
- [
- "▁Haut",
- -11.35582160949707
- ],
- [
- "▁guaranteed",
- -11.35599136352539
- ],
- [
- "▁vue",
- -11.35600471496582
- ],
- [
- "▁farmers",
- -11.356224060058594
- ],
- [
- "▁admission",
- -11.356500625610352
- ],
- [
- "▁manière",
- -11.357080459594727
- ],
- [
- "▁reverse",
- -11.357121467590332
- ],
- [
- "▁FL",
- -11.357142448425293
- ],
- [
- "▁terminal",
- -11.357206344604492
- ],
- [
- "GI",
- -11.35731029510498
- ],
- [
- "▁speakers",
- -11.35739803314209
- ],
- [
- "▁responses",
- -11.357398986816406
- ],
- [
- "▁Doch",
- -11.357457160949707
- ],
- [
- "▁2013,",
- -11.357717514038086
- ],
- [
- "▁phones",
- -11.357789993286133
- ],
- [
- "ential",
- -11.357851028442383
- ],
- [
- "▁operator",
- -11.357916831970215
- ],
- [
- "▁steam",
- -11.358036994934082
- ],
- [
- "burn",
- -11.358091354370117
- ],
- [
- "▁seul",
- -11.35815715789795
- ],
- [
- "▁unusual",
- -11.358322143554688
- ],
- [
- "▁educate",
- -11.358403205871582
- ],
- [
- "▁Que",
- -11.358680725097656
- ],
- [
- "▁believes",
- -11.359137535095215
- ],
- [
- "▁succeed",
- -11.359344482421875
- ],
- [
- "▁delay",
- -11.359533309936523
- ],
- [
- "▁deeper",
- -11.359633445739746
- ],
- [
- "▁reaching",
- -11.359890937805176
- ],
- [
- "▁objectives",
- -11.360086441040039
- ],
- [
- "▁temporary",
- -11.36028003692627
- ],
- [
- "▁artistic",
- -11.360421180725098
- ],
- [
- "▁sou",
- -11.360471725463867
- ],
- [
- "▁transparent",
- -11.36062240600586
- ],
- [
- "There",
- -11.360798835754395
- ],
- [
- "ception",
- -11.360836029052734
- ],
- [
- "▁excess",
- -11.360939979553223
- ],
- [
- "▁gathering",
- -11.361008644104004
- ],
- [
- "▁Save",
- -11.361095428466797
- ],
- [
- "ază",
- -11.361166000366211
- ],
- [
- "▁français",
- -11.361197471618652
- ],
- [
- "▁laid",
- -11.361210823059082
- ],
- [
- "▁modul",
- -11.361394882202148
- ],
- [
- "avoir",
- -11.361465454101562
- ],
- [
- "under",
- -11.362113952636719
- ],
- [
- "dding",
- -11.362226486206055
- ],
- [
- "▁falls",
- -11.362232208251953
- ],
- [
- "▁Möglichkeit",
- -11.362369537353516
- ],
- [
- "▁ceremony",
- -11.362370491027832
- ],
- [
- "rai",
- -11.36237621307373
- ],
- [
- "▁Bor",
- -11.362709045410156
- ],
- [
- "▁Below",
- -11.362750053405762
- ],
- [
- "4)",
- -11.362759590148926
- ],
- [
- "▁Field",
- -11.362833023071289
- ],
- [
- "wear",
- -11.362935066223145
- ],
- [
- "motion",
- -11.362948417663574
- ],
- [
- "print",
- -11.363311767578125
- ],
- [
- "game",
- -11.363360404968262
- ],
- [
- "▁Irish",
- -11.363458633422852
- ],
- [
- "▁Las",
- -11.363458633422852
- ],
- [
- "Among",
- -11.363570213317871
- ],
- [
- "atori",
- -11.363580703735352
- ],
- [
- "▁ajuns",
- -11.363837242126465
- ],
- [
- "▁alive",
- -11.363860130310059
- ],
- [
- "▁retour",
- -11.363900184631348
- ],
- [
- "▁smoke",
- -11.3640775680542
- ],
- [
- "▁math",
- -11.364285469055176
- ],
- [
- "▁Ye",
- -11.364337921142578
- ],
- [
- "▁Denn",
- -11.36436653137207
- ],
- [
- "▁1995",
- -11.364412307739258
- ],
- [
- "▁bani",
- -11.364644050598145
- ],
- [
- "raz",
- -11.364998817443848
- ],
- [
- "world",
- -11.365026473999023
- ],
- [
- "▁engines",
- -11.365140914916992
- ],
- [
- "nehmen",
- -11.365192413330078
- ],
- [
- "stor",
- -11.365328788757324
- ],
- [
- "▁interpret",
- -11.365403175354004
- ],
- [
- "▁Ven",
- -11.365489959716797
- ],
- [
- "▁cotton",
- -11.365622520446777
- ],
- [
- "▁represented",
- -11.366004943847656
- ],
- [
- "▁fabulous",
- -11.366166114807129
- ],
- [
- "▁gender",
- -11.366301536560059
- ],
- [
- "Mar",
- -11.366668701171875
- ],
- [
- "vic",
- -11.366991996765137
- ],
- [
- "▁newsletter",
- -11.367432594299316
- ],
- [
- "sburg",
- -11.367574691772461
- ],
- [
- "pond",
- -11.36838436126709
- ],
- [
- "▁Carl",
- -11.368454933166504
- ],
- [
- "▁bunch",
- -11.368714332580566
- ],
- [
- "▁tower",
- -11.368847846984863
- ],
- [
- "▁trigger",
- -11.368976593017578
- ],
- [
- "▁explanation",
- -11.369091033935547
- ],
- [
- "Man",
- -11.369114875793457
- ],
- [
- "iunea",
- -11.369168281555176
- ],
- [
- "▁announcement",
- -11.369492530822754
- ],
- [
- "▁seeds",
- -11.36952018737793
- ],
- [
- "▁shell",
- -11.369865417480469
- ],
- [
- "▁Working",
- -11.36989688873291
- ],
- [
- "viz",
- -11.370267868041992
- ],
- [
- "▁Simply",
- -11.370329856872559
- ],
- [
- "sub",
- -11.37037181854248
- ],
- [
- "▁Village",
- -11.37060832977295
- ],
- [
- "▁falling",
- -11.370742797851562
- ],
- [
- "▁fits",
- -11.37084674835205
- ],
- [
- "▁wichtig",
- -11.37088394165039
- ],
- [
- "▁Down",
- -11.37108039855957
- ],
- [
- "bble",
- -11.371573448181152
- ],
- [
- "▁Orange",
- -11.37165641784668
- ],
- [
- "promoting",
- -11.371932029724121
- ],
- [
- "▁rapidly",
- -11.37217903137207
- ],
- [
- "▁translation",
- -11.372330665588379
- ],
- [
- "nig",
- -11.3723726272583
- ],
- [
- "fusion",
- -11.37240982055664
- ],
- [
- "kosten",
- -11.372611045837402
- ],
- [
- "2)",
- -11.372783660888672
- ],
- [
- "▁Express",
- -11.372958183288574
- ],
- [
- "▁Sw",
- -11.373003959655762
- ],
- [
- "▁frequency",
- -11.373086929321289
- ],
- [
- "▁diversity",
- -11.373348236083984
- ],
- [
- "MT",
- -11.373452186584473
- ],
- [
- "▁bekannt",
- -11.373530387878418
- ],
- [
- "lion",
- -11.373871803283691
- ],
- [
- "▁cop",
- -11.37393856048584
- ],
- [
- "▁Customer",
- -11.374072074890137
- ],
- [
- "▁demands",
- -11.374427795410156
- ],
- [
- "▁corn",
- -11.374516487121582
- ],
- [
- "▁Hamburg",
- -11.374551773071289
- ],
- [
- "SD",
- -11.374628067016602
- ],
- [
- "▁Rome",
- -11.374677658081055
- ],
- [
- "▁Pur",
- -11.374750137329102
- ],
- [
- "▁stamp",
- -11.374885559082031
- ],
- [
- "▁grateful",
- -11.374967575073242
- ],
- [
- "RM",
- -11.37511157989502
- ],
- [
- "▁Pl",
- -11.37511920928955
- ],
- [
- "▁Tele",
- -11.375154495239258
- ],
- [
- "▁plugin",
- -11.375492095947266
- ],
- [
- "▁maxim",
- -11.375675201416016
- ],
- [
- "▁Hoch",
- -11.37574577331543
- ],
- [
- "igung",
- -11.375823020935059
- ],
- [
- "▁Entwicklung",
- -11.375858306884766
- ],
- [
- "▁File",
- -11.375931739807129
- ],
- [
- "▁Eastern",
- -11.376070022583008
- ],
- [
- "▁scrap",
- -11.376331329345703
- ],
- [
- "▁acquired",
- -11.376338958740234
- ],
- [
- "sau",
- -11.376364707946777
- ],
- [
- "▁Klein",
- -11.376452445983887
- ],
- [
- "▁milioane",
- -11.376492500305176
- ],
- [
- "▁Stand",
- -11.376693725585938
- ],
- [
- "▁childhood",
- -11.37671184539795
- ],
- [
- "▁artificial",
- -11.376752853393555
- ],
- [
- "▁substantial",
- -11.376851081848145
- ],
- [
- "druck",
- -11.377315521240234
- ],
- [
- "▁Kra",
- -11.377562522888184
- ],
- [
- "▁performances",
- -11.377645492553711
- ],
- [
- "▁row",
- -11.377824783325195
- ],
- [
- "NT",
- -11.377899169921875
- ],
- [
- "mod",
- -11.377904891967773
- ],
- [
- "remained",
- -11.378399848937988
- ],
- [
- "▁nimic",
- -11.378462791442871
- ],
- [
- "▁Limited",
- -11.378555297851562
- ],
- [
- "▁cookie",
- -11.378718376159668
- ],
- [
- "▁retain",
- -11.378816604614258
- ],
- [
- "▁600",
- -11.379144668579102
- ],
- [
- "▁eigene",
- -11.379158020019531
- ],
- [
- "▁tune",
- -11.379209518432617
- ],
- [
- "NS",
- -11.379256248474121
- ],
- [
- "▁dad",
- -11.379284858703613
- ],
- [
- "Moreover",
- -11.379415512084961
- ],
- [
- "ès",
- -11.379434585571289
- ],
- [
- "▁worship",
- -11.379439353942871
- ],
- [
- "▁Material",
- -11.3794584274292
- ],
- [
- "▁verb",
- -11.379528045654297
- ],
- [
- "ziehen",
- -11.37957763671875
- ],
- [
- "lton",
- -11.379645347595215
- ],
- [
- "▁boot",
- -11.379982948303223
- ],
- [
- "plo",
- -11.380118370056152
- ],
- [
- "CF",
- -11.380212783813477
- ],
- [
- "GM",
- -11.380215644836426
- ],
- [
- "▁Mix",
- -11.38046932220459
- ],
- [
- "▁Front",
- -11.380474090576172
- ],
- [
- "▁repairs",
- -11.380655288696289
- ],
- [
- "▁proportion",
- -11.381068229675293
- ],
- [
- "▁habit",
- -11.381132125854492
- ],
- [
- "▁hide",
- -11.38156509399414
- ],
- [
- "focusing",
- -11.381707191467285
- ],
- [
- "▁Annual",
- -11.381717681884766
- ],
- [
- "▁twin",
- -11.3817777633667
- ],
- [
- "▁acord",
- -11.381780624389648
- ],
- [
- "ehr",
- -11.381814956665039
- ],
- [
- "month",
- -11.382303237915039
- ],
- [
- "venir",
- -11.382535934448242
- ],
- [
- "Or",
- -11.38254165649414
- ],
- [
- "awa",
- -11.382600784301758
- ],
- [
- "lass",
- -11.382735252380371
- ],
- [
- "ffe",
- -11.383048057556152
- ],
- [
- "iți",
- -11.383074760437012
- ],
- [
- "NO",
- -11.3831148147583
- ],
- [
- "▁scope",
- -11.383295059204102
- ],
- [
- "▁lowest",
- -11.383527755737305
- ],
- [
- "▁afraid",
- -11.383572578430176
- ],
- [
- "▁subjects",
- -11.383578300476074
- ],
- [
- "▁templates",
- -11.383586883544922
- ],
- [
- "▁jos",
- -11.383604049682617
- ],
- [
- "DM",
- -11.383687973022461
- ],
- [
- "ensemble",
- -11.383792877197266
- ],
- [
- "▁Ski",
- -11.383941650390625
- ],
- [
- "DP",
- -11.384099960327148
- ],
- [
- "▁grip",
- -11.384171485900879
- ],
- [
- "2-",
- -11.38436222076416
- ],
- [
- "▁sécurité",
- -11.384743690490723
- ],
- [
- "▁mono",
- -11.384749412536621
- ],
- [
- "▁controls",
- -11.384854316711426
- ],
- [
- "SV",
- -11.384879112243652
- ],
- [
- "install",
- -11.384970664978027
- ],
- [
- "berry",
- -11.385042190551758
- ],
- [
- "nial",
- -11.385120391845703
- ],
- [
- "shed",
- -11.385462760925293
- ],
- [
- "▁celle",
- -11.385830879211426
- ],
- [
- "FR",
- -11.385936737060547
- ],
- [
- "äng",
- -11.385950088500977
- ],
- [
- "▁gaz",
- -11.385984420776367
- ],
- [
- "êt",
- -11.386184692382812
- ],
- [
- "▁viewing",
- -11.386412620544434
- ],
- [
- "▁asigura",
- -11.386524200439453
- ],
- [
- "bling",
- -11.3865327835083
- ],
- [
- "master",
- -11.386919975280762
- ],
- [
- "▁Fin",
- -11.387160301208496
- ],
- [
- "VC",
- -11.387365341186523
- ],
- [
- "▁patent",
- -11.387715339660645
- ],
- [
- "▁Clean",
- -11.38773250579834
- ],
- [
- "▁1970",
- -11.387789726257324
- ],
- [
- "▁Char",
- -11.387971878051758
- ],
- [
- "thi",
- -11.388010025024414
- ],
- [
- "bli",
- -11.388141632080078
- ],
- [
- "▁haut",
- -11.388307571411133
- ],
- [
- "tica",
- -11.38836669921875
- ],
- [
- "▁venit",
- -11.388578414916992
- ],
- [
- "▁compatible",
- -11.388678550720215
- ],
- [
- "▁hanging",
- -11.388690948486328
- ],
- [
- "UN",
- -11.388842582702637
- ],
- [
- "▁forth",
- -11.388911247253418
- ],
- [
- "▁painted",
- -11.388912200927734
- ],
- [
- "lip",
- -11.389031410217285
- ],
- [
- "▁deeply",
- -11.389089584350586
- ],
- [
- "▁participating",
- -11.389242172241211
- ],
- [
- "▁Iran",
- -11.38968276977539
- ],
- [
- "▁conventional",
- -11.389769554138184
- ],
- [
- "ARE",
- -11.38985824584961
- ],
- [
- "▁accuracy",
- -11.389896392822266
- ],
- [
- "▁Familie",
- -11.389955520629883
- ],
- [
- "▁Dir",
- -11.39001178741455
- ],
- [
- "▁gehen",
- -11.390127182006836
- ],
- [
- "▁moderne",
- -11.39022159576416
- ],
- [
- "▁Iraq",
- -11.39050579071045
- ],
- [
- "▁vente",
- -11.390582084655762
- ],
- [
- "▁Donald",
- -11.390998840332031
- ],
- [
- "▁passer",
- -11.391051292419434
- ],
- [
- "▁mehrere",
- -11.391267776489258
- ],
- [
- "▁Everything",
- -11.391291618347168
- ],
- [
- "▁studied",
- -11.391307830810547
- ],
- [
- "▁acquire",
- -11.391312599182129
- ],
- [
- "für",
- -11.391477584838867
- ],
- [
- "▁gal",
- -11.391502380371094
- ],
- [
- "▁headed",
- -11.391809463500977
- ],
- [
- "▁screening",
- -11.391865730285645
- ],
- [
- "▁findings",
- -11.392303466796875
- ],
- [
- "▁nutrition",
- -11.392305374145508
- ],
- [
- "▁Secretary",
- -11.392308235168457
- ],
- [
- "duct",
- -11.392431259155273
- ],
- [
- "born",
- -11.392436027526855
- ],
- [
- "«",
- -11.39261531829834
- ],
- [
- "▁statistics",
- -11.392616271972656
- ],
- [
- "▁Sydney",
- -11.392800331115723
- ],
- [
- "▁Prof",
- -11.392829895019531
- ],
- [
- "▁dialogue",
- -11.39327621459961
- ],
- [
- "▁gather",
- -11.393425941467285
- ],
- [
- "valu",
- -11.393746376037598
- ],
- [
- "▁currency",
- -11.394073486328125
- ],
- [
- "▁Kat",
- -11.394092559814453
- ],
- [
- "gotten",
- -11.394189834594727
- ],
- [
- "main",
- -11.39432144165039
- ],
- [
- "▁coin",
- -11.394340515136719
- ],
- [
- "▁Nick",
- -11.394380569458008
- ],
- [
- "vă",
- -11.394658088684082
- ],
- [
- "▁Victoria",
- -11.394832611083984
- ],
- [
- "▁conclusion",
- -11.3949613571167
- ],
- [
- "▁lemon",
- -11.394998550415039
- ],
- [
- "▁Article",
- -11.39516830444336
- ],
- [
- "▁necesar",
- -11.39516830444336
- ],
- [
- "mag",
- -11.395180702209473
- ],
- [
- "▁riding",
- -11.39537239074707
- ],
- [
- "▁Eli",
- -11.395599365234375
- ],
- [
- "▁cord",
- -11.395635604858398
- ],
- [
- "wä",
- -11.39572811126709
- ],
- [
- "ußerdem",
- -11.395737648010254
- ],
- [
- "▁Bed",
- -11.395759582519531
- ],
- [
- "▁layers",
- -11.395833015441895
- ],
- [
- "▁harder",
- -11.395975112915039
- ],
- [
- "▁processor",
- -11.396040916442871
- ],
- [
- "▁Ils",
- -11.39613151550293
- ],
- [
- "▁Edition",
- -11.39615535736084
- ],
- [
- "▁Link",
- -11.396393775939941
- ],
- [
- "éré",
- -11.396461486816406
- ],
- [
- "▁nume",
- -11.396576881408691
- ],
- [
- "▁Boy",
- -11.39659595489502
- ],
- [
- "▁equally",
- -11.396646499633789
- ],
- [
- "▁Regel",
- -11.397119522094727
- ],
- [
- "▁hopes",
- -11.397185325622559
- ],
- [
- "odor",
- -11.397311210632324
- ],
- [
- "▁initially",
- -11.397430419921875
- ],
- [
- "▁$4",
- -11.3974609375
- ],
- [
- "▁exemplu",
- -11.397537231445312
- ],
- [
- "▁vari",
- -11.397565841674805
- ],
- [
- "schl",
- -11.397698402404785
- ],
- [
- "▁southern",
- -11.39809799194336
- ],
- [
- "▁mein",
- -11.39818000793457
- ],
- [
- "▁1994",
- -11.398300170898438
- ],
- [
- "▁importantly",
- -11.398401260375977
- ],
- [
- "▁succes",
- -11.398526191711426
- ],
- [
- "▁developer",
- -11.398598670959473
- ],
- [
- "▁lips",
- -11.39889144897461
- ],
- [
- "▁attitude",
- -11.39900016784668
- ],
- [
- "▁Age",
- -11.399541854858398
- ],
- [
- "▁corps",
- -11.399713516235352
- ],
- [
- "▁clicking",
- -11.39976978302002
- ],
- [
- "▁putem",
- -11.399832725524902
- ],
- [
- "▁journée",
- -11.40003776550293
- ],
- [
- "boy",
- -11.4002103805542
- ],
- [
- "▁injured",
- -11.40028190612793
- ],
- [
- "▁watched",
- -11.400433540344238
- ],
- [
- "▁flights",
- -11.40079116821289
- ],
- [
- "turn",
- -11.400980949401855
- ],
- [
- "▁stainless",
- -11.401562690734863
- ],
- [
- "▁besondere",
- -11.40156364440918
- ],
- [
- "▁Tur",
- -11.401596069335938
- ],
- [
- "▁hiring",
- -11.401650428771973
- ],
- [
- "▁roads",
- -11.401727676391602
- ],
- [
- "ificat",
- -11.401785850524902
- ],
- [
- "▁Flor",
- -11.402045249938965
- ],
- [
- "▁puternic",
- -11.402215003967285
- ],
- [
- "▁unexpected",
- -11.40223503112793
- ],
- [
- "▁Est",
- -11.40238094329834
- ],
- [
- "▁adopted",
- -11.40253734588623
- ],
- [
- "▁Fox",
- -11.402647972106934
- ],
- [
- "▁contributions",
- -11.402870178222656
- ],
- [
- "sec",
- -11.402968406677246
- ],
- [
- "IO",
- -11.403059959411621
- ],
- [
- "▁santé",
- -11.403432846069336
- ],
- [
- "▁Tree",
- -11.403763771057129
- ],
- [
- "▁scurt",
- -11.40381908416748
- ],
- [
- "▁Products",
- -11.403848648071289
- ],
- [
- "▁forecast",
- -11.403998374938965
- ],
- [
- "▁actor",
- -11.404143333435059
- ],
- [
- "▁Gallery",
- -11.404149055480957
- ],
- [
- "▁continuous",
- -11.404163360595703
- ],
- [
- "▁Hat",
- -11.404291152954102
- ],
- [
- "▁slip",
- -11.404501914978027
- ],
- [
- "9%",
- -11.404960632324219
- ],
- [
- "▁depression",
- -11.405043601989746
- ],
- [
- "UI",
- -11.405229568481445
- ],
- [
- "abile",
- -11.405648231506348
- ],
- [
- "▁merit",
- -11.405671119689941
- ],
- [
- "▁Fer",
- -11.405805587768555
- ],
- [
- "▁robot",
- -11.405888557434082
- ],
- [
- "▁gel",
- -11.40589427947998
- ],
- [
- "▁gentle",
- -11.406017303466797
- ],
- [
- "▁wanting",
- -11.406071662902832
- ],
- [
- "▁understood",
- -11.406157493591309
- ],
- [
- "▁terrain",
- -11.406161308288574
- ],
- [
- "▁associate",
- -11.406176567077637
- ],
- [
- "▁discussions",
- -11.40632152557373
- ],
- [
- "▁Job",
- -11.406365394592285
- ],
- [
- "spec",
- -11.406440734863281
- ],
- [
- "Dabei",
- -11.406475067138672
- ],
- [
- "etic",
- -11.406517028808594
- ],
- [
- "gol",
- -11.40654468536377
- ],
- [
- "▁20%",
- -11.406584739685059
- ],
- [
- "▁grup",
- -11.406606674194336
- ],
- [
- "▁Doctor",
- -11.406813621520996
- ],
- [
- "verse",
- -11.407246589660645
- ],
- [
- "▁victim",
- -11.407258033752441
- ],
- [
- "ță",
- -11.407302856445312
- ],
- [
- "▁scores",
- -11.407544136047363
- ],
- [
- "▁Policy",
- -11.407634735107422
- ],
- [
- "▁Anna",
- -11.407736778259277
- ],
- [
- "IV",
- -11.407804489135742
- ],
- [
- "▁mineral",
- -11.408202171325684
- ],
- [
- "live",
- -11.40821647644043
- ],
- [
- "▁grey",
- -11.408368110656738
- ],
- [
- "struct",
- -11.40852165222168
- ],
- [
- "▁emails",
- -11.408738136291504
- ],
- [
- "▁anymore",
- -11.409114837646484
- ],
- [
- "▁productivity",
- -11.409387588500977
- ],
- [
- "▁Dark",
- -11.409463882446289
- ],
- [
- "▁neither",
- -11.409481048583984
- ],
- [
- "▁quotes",
- -11.409611701965332
- ],
- [
- "LS",
- -11.410368919372559
- ],
- [
- "▁Arizona",
- -11.41040325164795
- ],
- [
- "night",
- -11.410497665405273
- ],
- [
- "élé",
- -11.411019325256348
- ],
- [
- "▁assigned",
- -11.411153793334961
- ],
- [
- "▁satellite",
- -11.411328315734863
- ],
- [
- "▁stability",
- -11.411665916442871
- ],
- [
- "▁networking",
- -11.41172981262207
- ],
- [
- "▁Transport",
- -11.411847114562988
- ],
- [
- "▁persons",
- -11.411856651306152
- ],
- [
- "fund",
- -11.412043571472168
- ],
- [
- "▁pratique",
- -11.41213321685791
- ],
- [
- "▁inca",
- -11.412134170532227
- ],
- [
- "iller",
- -11.412349700927734
- ],
- [
- "▁packed",
- -11.41239070892334
- ],
- [
- "▁Vegas",
- -11.412484169006348
- ],
- [
- "▁offre",
- -11.412493705749512
- ],
- [
- "▁Bin",
- -11.412518501281738
- ],
- [
- "stop",
- -11.412609100341797
- ],
- [
- "mini",
- -11.412860870361328
- ],
- [
- "▁jam",
- -11.412877082824707
- ],
- [
- "cord",
- -11.41289234161377
- ],
- [
- "▁Beautiful",
- -11.412996292114258
- ],
- [
- "▁trash",
- -11.413012504577637
- ],
- [
- "▁wise",
- -11.413092613220215
- ],
- [
- "▁accounting",
- -11.413178443908691
- ],
- [
- "▁différents",
- -11.413182258605957
- ],
- [
- "▁stil",
- -11.413214683532715
- ],
- [
- "suit",
- -11.413951873779297
- ],
- [
- "▁vier",
- -11.414209365844727
- ],
- [
- "▁permis",
- -11.414224624633789
- ],
- [
- "flow",
- -11.414238929748535
- ],
- [
- "▁col",
- -11.414749145507812
- ],
- [
- "ected",
- -11.414960861206055
- ],
- [
- "▁singer",
- -11.414999008178711
- ],
- [
- "▁GmbH",
- -11.415038108825684
- ],
- [
- "tics",
- -11.415094375610352
- ],
- [
- "▁ser",
- -11.415159225463867
- ],
- [
- "On",
- -11.415315628051758
- ],
- [
- "▁insights",
- -11.415605545043945
- ],
- [
- "BB",
- -11.415946960449219
- ],
- [
- "▁differ",
- -11.415959358215332
- ],
- [
- "▁Glass",
- -11.416131973266602
- ],
- [
- "▁Six",
- -11.416482925415039
- ],
- [
- "▁subscription",
- -11.416584968566895
- ],
- [
- "BC",
- -11.416606903076172
- ],
- [
- "▁returning",
- -11.416664123535156
- ],
- [
- "kleinen",
- -11.416693687438965
- ],
- [
- "▁advantages",
- -11.416747093200684
- ],
- [
- "omme",
- -11.416852951049805
- ],
- [
- "lus",
- -11.417071342468262
- ],
- [
- "now",
- -11.417141914367676
- ],
- [
- "▁Pack",
- -11.417253494262695
- ],
- [
- "▁leak",
- -11.417333602905273
- ],
- [
- "▁muscles",
- -11.41748332977295
- ],
- [
- "▁davon",
- -11.417492866516113
- ],
- [
- "mph",
- -11.417858123779297
- ],
- [
- "▁temple",
- -11.417868614196777
- ],
- [
- "▁Après",
- -11.417901039123535
- ],
- [
- "▁Illinois",
- -11.41801643371582
- ],
- [
- "▁variable",
- -11.418065071105957
- ],
- [
- "▁judgment",
- -11.418389320373535
- ],
- [
- "gran",
- -11.41861629486084
- ],
- [
- "▁pose",
- -11.418621063232422
- ],
- [
- "das",
- -11.418647766113281
- ],
- [
- "ures",
- -11.418673515319824
- ],
- [
- "▁Championship",
- -11.418689727783203
- ],
- [
- "ebenfalls",
- -11.41872501373291
- ],
- [
- "▁hydro",
- -11.418753623962402
- ],
- [
- "▁angle",
- -11.419268608093262
- ],
- [
- "▁5-",
- -11.41940975189209
- ],
- [
- "▁gest",
- -11.419547080993652
- ],
- [
- "▁Frau",
- -11.420233726501465
- ],
- [
- "▁knock",
- -11.420275688171387
- ],
- [
- "FS",
- -11.420442581176758
- ],
- [
- "spi",
- -11.420577049255371
- ],
- [
- "▁Regional",
- -11.420717239379883
- ],
- [
- "lets",
- -11.421098709106445
- ],
- [
- "▁Date",
- -11.42115592956543
- ],
- [
- "▁Finance",
- -11.421211242675781
- ],
- [
- "▁Dann",
- -11.421320915222168
- ],
- [
- "Star",
- -11.421380043029785
- ],
- [
- "▁Creek",
- -11.421393394470215
- ],
- [
- "▁fu",
- -11.421648979187012
- ],
- [
- "wohn",
- -11.422141075134277
- ],
- [
- "▁anniversary",
- -11.422219276428223
- ],
- [
- "▁investments",
- -11.422292709350586
- ],
- [
- "▁universal",
- -11.422601699829102
- ],
- [
- "▁pit",
- -11.422745704650879
- ],
- [
- "ște",
- -11.422784805297852
- ],
- [
- "▁lab",
- -11.422822952270508
- ],
- [
- "dienst",
- -11.422884941101074
- ],
- [
- "▁pal",
- -11.422889709472656
- ],
- [
- "▁graphic",
- -11.42289924621582
- ],
- [
- "▁bearing",
- -11.422900199890137
- ],
- [
- "▁stylish",
- -11.423087120056152
- ],
- [
- "▁mé",
- -11.42319393157959
- ],
- [
- "▁există",
- -11.42326545715332
- ],
- [
- "▁découvrir",
- -11.423477172851562
- ],
- [
- "comp",
- -11.423606872558594
- ],
- [
- "ridge",
- -11.423667907714844
- ],
- [
- "▁heads",
- -11.423765182495117
- ],
- [
- "▁consequences",
- -11.423835754394531
- ],
- [
- "self",
- -11.423842430114746
- ],
- [
- "fried",
- -11.423870086669922
- ],
- [
- "▁inventory",
- -11.424199104309082
- ],
- [
- "▁strip",
- -11.42422866821289
- ],
- [
- "▁Civil",
- -11.42424488067627
- ],
- [
- "bell",
- -11.424307823181152
- ],
- [
- "▁neben",
- -11.424444198608398
- ],
- [
- "▁Perfect",
- -11.424470901489258
- ],
- [
- "▁Notre",
- -11.424478530883789
- ],
- [
- "▁fraud",
- -11.424630165100098
- ],
- [
- "▁employers",
- -11.424656867980957
- ],
- [
- "▁Jackson",
- -11.42470645904541
- ],
- [
- "▁probleme",
- -11.424915313720703
- ],
- [
- "▁richtig",
- -11.424957275390625
- ],
- [
- "▁Method",
- -11.425009727478027
- ],
- [
- "▁tired",
- -11.425010681152344
- ],
- [
- "dies",
- -11.425031661987305
- ],
- [
- "▁Number",
- -11.425315856933594
- ],
- [
- "rland",
- -11.425652503967285
- ],
- [
- "▁latter",
- -11.426031112670898
- ],
- [
- "rendre",
- -11.426064491271973
- ],
- [
- "▁cameras",
- -11.426095962524414
- ],
- [
- "▁euch",
- -11.426630020141602
- ],
- [
- "▁Description",
- -11.427038192749023
- ],
- [
- "Spec",
- -11.427061080932617
- ],
- [
- "▁mile",
- -11.427437782287598
- ],
- [
- "▁Challenge",
- -11.427474021911621
- ],
- [
- "▁Solutions",
- -11.427504539489746
- ],
- [
- "▁trusted",
- -11.427509307861328
- ],
- [
- "▁einge",
- -11.427515029907227
- ],
- [
- "rück",
- -11.427528381347656
- ],
- [
- "▁Ober",
- -11.427635192871094
- ],
- [
- "kes",
- -11.42764949798584
- ],
- [
- "▁Log",
- -11.427684783935547
- ],
- [
- "▁dessert",
- -11.427776336669922
- ],
- [
- "▁murder",
- -11.428033828735352
- ],
- [
- "▁1/2",
- -11.428311347961426
- ],
- [
- "▁Provide",
- -11.42872142791748
- ],
- [
- "nivelul",
- -11.428800582885742
- ],
- [
- "nici",
- -11.428818702697754
- ],
- [
- "▁observe",
- -11.42889404296875
- ],
- [
- "▁prescription",
- -11.429162979125977
- ],
- [
- "▁Sau",
- -11.429170608520508
- ],
- [
- "▁genuine",
- -11.42919635772705
- ],
- [
- "▁operated",
- -11.429231643676758
- ],
- [
- "▁generous",
- -11.429267883300781
- ],
- [
- "▁weapons",
- -11.429458618164062
- ],
- [
- "▁belief",
- -11.4295015335083
- ],
- [
- "▁consum",
- -11.429584503173828
- ],
- [
- "▁unknown",
- -11.430116653442383
- ],
- [
- "deoarece",
- -11.430135726928711
- ],
- [
- "Art",
- -11.430147171020508
- ],
- [
- "▁kurz",
- -11.430183410644531
- ],
- [
- "▁Gut",
- -11.430258750915527
- ],
- [
- "▁medication",
- -11.430522918701172
- ],
- [
- "▁Mau",
- -11.43058967590332
- ],
- [
- "▁divorce",
- -11.430678367614746
- ],
- [
- "▁claimed",
- -11.430811882019043
- ],
- [
- "halten",
- -11.430848121643066
- ],
- [
- "▁Cons",
- -11.43089485168457
- ],
- [
- "▁operational",
- -11.430975914001465
- ],
- [
- "▁Hong",
- -11.431081771850586
- ],
- [
- "VI",
- -11.431143760681152
- ],
- [
- "▁Blick",
- -11.431485176086426
- ],
- [
- "▁lamp",
- -11.431706428527832
- ],
- [
- "pati",
- -11.431853294372559
- ],
- [
- "▁4-",
- -11.43192195892334
- ],
- [
- "▁interven",
- -11.431964874267578
- ],
- [
- "ques",
- -11.43201732635498
- ],
- [
- "▁Talk",
- -11.432096481323242
- ],
- [
- "▁zeigt",
- -11.432318687438965
- ],
- [
- "▁targeted",
- -11.432390213012695
- ],
- [
- "round",
- -11.432640075683594
- ],
- [
- "enfant",
- -11.432748794555664
- ],
- [
- "▁Reg",
- -11.432836532592773
- ],
- [
- "▁instruments",
- -11.432872772216797
- ],
- [
- "▁calcul",
- -11.433363914489746
- ],
- [
- "▁Henry",
- -11.4335298538208
- ],
- [
- "▁Cla",
- -11.433616638183594
- ],
- [
- "▁rack",
- -11.433661460876465
- ],
- [
- "sehen",
- -11.43375301361084
- ],
- [
- "▁ending",
- -11.433754920959473
- ],
- [
- "▁resolve",
- -11.434130668640137
- ],
- [
- "▁advise",
- -11.434178352355957
- ],
- [
- "▁sociale",
- -11.434386253356934
- ],
- [
- "▁cabin",
- -11.434536933898926
- ],
- [
- "▁involve",
- -11.43480396270752
- ],
- [
- "gă",
- -11.434889793395996
- ],
- [
- "▁automat",
- -11.435132026672363
- ],
- [
- "▁consultant",
- -11.435258865356445
- ],
- [
- "Bu",
- -11.435370445251465
- ],
- [
- "▁safely",
- -11.435466766357422
- ],
- [
- "état",
- -11.435478210449219
- ],
- [
- "▁pros",
- -11.435657501220703
- ],
- [
- "▁lies",
- -11.435659408569336
- ],
- [
- "▁Brian",
- -11.435914993286133
- ],
- [
- "▁talented",
- -11.435954093933105
- ],
- [
- "pus",
- -11.43599796295166
- ],
- [
- "▁hub",
- -11.436060905456543
- ],
- [
- "▁Ji",
- -11.436066627502441
- ],
- [
- "▁sought",
- -11.436102867126465
- ],
- [
- "▁energie",
- -11.436210632324219
- ],
- [
- "▁möchten",
- -11.43634033203125
- ],
- [
- "▁11.",
- -11.436558723449707
- ],
- [
- "▁Kong",
- -11.436662673950195
- ],
- [
- "▁grave",
- -11.43666934967041
- ],
- [
- "▁lists",
- -11.436800956726074
- ],
- [
- "tati",
- -11.436809539794922
- ],
- [
- "verschiedenen",
- -11.43692398071289
- ],
- [
- "dam",
- -11.437061309814453
- ],
- [
- "▁charity",
- -11.437249183654785
- ],
- [
- "▁breaking",
- -11.43735122680664
- ],
- [
- "kins",
- -11.43747329711914
- ],
- [
- "▁könnte",
- -11.437517166137695
- ],
- [
- "▁appointed",
- -11.437532424926758
- ],
- [
- "roc",
- -11.4376859664917
- ],
- [
- "▁Senate",
- -11.437979698181152
- ],
- [
- "wit",
- -11.438002586364746
- ],
- [
- "▁emerging",
- -11.438162803649902
- ],
- [
- "▁année",
- -11.438288688659668
- ],
- [
- "▁Cool",
- -11.438365936279297
- ],
- [
- "▁sensor",
- -11.43842887878418
- ],
- [
- "How",
- -11.438488960266113
- ],
- [
- "▁Ryan",
- -11.438626289367676
- ],
- [
- "▁computers",
- -11.43871784210205
- ],
- [
- "▁fault",
- -11.4388427734375
- ],
- [
- "▁présent",
- -11.438843727111816
- ],
- [
- "ulation",
- -11.439149856567383
- ],
- [
- "▁stir",
- -11.439348220825195
- ],
- [
- "lauf",
- -11.439703941345215
- ],
- [
- "▁AI",
- -11.440389633178711
- ],
- [
- "▁Bri",
- -11.440438270568848
- ],
- [
- "▁bain",
- -11.441011428833008
- ],
- [
- "▁5,",
- -11.441287994384766
- ],
- [
- "schein",
- -11.44157886505127
- ],
- [
- "▁weiß",
- -11.441596031188965
- ],
- [
- "▁possibilities",
- -11.44235610961914
- ],
- [
- "gur",
- -11.442413330078125
- ],
- [
- "▁hinter",
- -11.442647933959961
- ],
- [
- "Innen",
- -11.442755699157715
- ],
- [
- "▁vorba",
- -11.442992210388184
- ],
- [
- "fahren",
- -11.443008422851562
- ],
- [
- "▁Cell",
- -11.443072319030762
- ],
- [
- "univers",
- -11.443137168884277
- ],
- [
- "▁Follow",
- -11.443424224853516
- ],
- [
- "▁emotions",
- -11.44360637664795
- ],
- [
- "▁Ministry",
- -11.443694114685059
- ],
- [
- "▁curriculum",
- -11.443694114685059
- ],
- [
- "Je",
- -11.443764686584473
- ],
- [
- "▁gab",
- -11.444080352783203
- ],
- [
- "▁sigur",
- -11.444270133972168
- ],
- [
- "rise",
- -11.444416999816895
- ],
- [
- "Pri",
- -11.44466495513916
- ],
- [
- "▁stabil",
- -11.444781303405762
- ],
- [
- "▁superb",
- -11.445100784301758
- ],
- [
- "▁Oak",
- -11.44510269165039
- ],
- [
- "▁rubber",
- -11.445286750793457
- ],
- [
- "▁tag",
- -11.445306777954102
- ],
- [
- "PG",
- -11.445361137390137
- ],
- [
- "▁Heat",
- -11.445477485656738
- ],
- [
- "▁thousand",
- -11.445504188537598
- ],
- [
- "▁meets",
- -11.445521354675293
- ],
- [
- "▁faced",
- -11.445578575134277
- ],
- [
- "▁reserve",
- -11.445640563964844
- ],
- [
- "cateva",
- -11.445767402648926
- ],
- [
- "▁gym",
- -11.445771217346191
- ],
- [
- "▁vitamin",
- -11.445960998535156
- ],
- [
- "▁Rest",
- -11.446457862854004
- ],
- [
- "▁Single",
- -11.446535110473633
- ],
- [
- "▁Stephen",
- -11.446623802185059
- ],
- [
- "▁trick",
- -11.446824073791504
- ],
- [
- "DU",
- -11.44694709777832
- ],
- [
- "▁telefon",
- -11.44711685180664
- ],
- [
- "▁gând",
- -11.447120666503906
- ],
- [
- "▁primit",
- -11.447345733642578
- ],
- [
- "▁Connect",
- -11.447351455688477
- ],
- [
- "▁führt",
- -11.447440147399902
- ],
- [
- "▁Info",
- -11.447500228881836
- ],
- [
- "▁recall",
- -11.447848320007324
- ],
- [
- "▁restore",
- -11.447885513305664
- ],
- [
- "lege",
- -11.44792652130127
- ],
- [
- "▁franchise",
- -11.448189735412598
- ],
- [
- "▁seulement",
- -11.44856071472168
- ],
- [
- "reci",
- -11.448598861694336
- ],
- [
- "▁2019,",
- -11.44864273071289
- ],
- [
- "▁Ring",
- -11.448663711547852
- ],
- [
- "▁assembly",
- -11.448678970336914
- ],
- [
- "intérieur",
- -11.448775291442871
- ],
- [
- "▁shade",
- -11.44887924194336
- ],
- [
- "▁meaningful",
- -11.448881149291992
- ],
- [
- "bag",
- -11.448989868164062
- ],
- [
- "ONE",
- -11.449249267578125
- ],
- [
- "▁globe",
- -11.449287414550781
- ],
- [
- "▁WA",
- -11.449406623840332
- ],
- [
- "▁intervention",
- -11.449495315551758
- ],
- [
- "öl",
- -11.449531555175781
- ],
- [
- "▁Marine",
- -11.45029067993164
- ],
- [
- "▁Angebot",
- -11.450512886047363
- ],
- [
- "▁align",
- -11.450618743896484
- ],
- [
- "▁temperatures",
- -11.450634956359863
- ],
- [
- "ifier",
- -11.45091724395752
- ],
- [
- "▁Nigeria",
- -11.451189041137695
- ],
- [
- "▁survive",
- -11.451216697692871
- ],
- [
- "ounce",
- -11.451275825500488
- ],
- [
- "▁placement",
- -11.451416969299316
- ],
- [
- "▁deci",
- -11.451528549194336
- ],
- [
- "▁Taylor",
- -11.451759338378906
- ],
- [
- "step",
- -11.45190715789795
- ],
- [
- "▁Geschichte",
- -11.452054023742676
- ],
- [
- "▁Bet",
- -11.452169418334961
- ],
- [
- "▁Nature",
- -11.45224380493164
- ],
- [
- "▁FC",
- -11.452256202697754
- ],
- [
- "▁ownership",
- -11.452286720275879
- ],
- [
- "▁behaviour",
- -11.452474594116211
- ],
- [
- "▁deutlich",
- -11.452532768249512
- ],
- [
- "▁wondering",
- -11.452798843383789
- ],
- [
- "▁cleaner",
- -11.453295707702637
- ],
- [
- "uring",
- -11.4534912109375
- ],
- [
- "rä",
- -11.453496932983398
- ],
- [
- "▁ga",
- -11.454296112060547
- ],
- [
- "ador",
- -11.454482078552246
- ],
- [
- "▁artwork",
- -11.454564094543457
- ],
- [
- "ologic",
- -11.45457649230957
- ],
- [
- "▁eigentlich",
- -11.454848289489746
- ],
- [
- "▁hell",
- -11.45522403717041
- ],
- [
- "source",
- -11.455251693725586
- ],
- [
- "▁gem",
- -11.455265045166016
- ],
- [
- "▁boss",
- -11.455307006835938
- ],
- [
- "▁arise",
- -11.455460548400879
- ],
- [
- "about",
- -11.455711364746094
- ],
- [
- "▁SI",
- -11.455951690673828
- ],
- [
- "▁ME",
- -11.45610237121582
- ],
- [
- "akt",
- -11.456191062927246
- ],
- [
- "▁Style",
- -11.456259727478027
- ],
- [
- "▁Körper",
- -11.456493377685547
- ],
- [
- "gui",
- -11.456799507141113
- ],
- [
- "▁navigate",
- -11.456819534301758
- ],
- [
- "▁Meanwhile",
- -11.456977844238281
- ],
- [
- "▁așa",
- -11.457111358642578
- ],
- [
- "▁bulk",
- -11.457298278808594
- ],
- [
- "▁directions",
- -11.457310676574707
- ],
- [
- "▁brick",
- -11.457747459411621
- ],
- [
- "▁Poly",
- -11.457752227783203
- ],
- [
- "▁politique",
- -11.457772254943848
- ],
- [
- "▁patch",
- -11.457777976989746
- ],
- [
- "ра",
- -11.457816123962402
- ],
- [
- "commerce",
- -11.457844734191895
- ],
- [
- "▁înainte",
- -11.457884788513184
- ],
- [
- "▁intelligent",
- -11.45823860168457
- ],
- [
- "▁infection",
- -11.458426475524902
- ],
- [
- "▁Tru",
- -11.458494186401367
- ],
- [
- "▁raising",
- -11.458504676818848
- ],
- [
- "tragen",
- -11.458539009094238
- ],
- [
- "▁portrait",
- -11.45858383178711
- ],
- [
- "▁meisten",
- -11.458783149719238
- ],
- [
- "▁organize",
- -11.45893669128418
- ],
- [
- "metric",
- -11.458962440490723
- ],
- [
- "▁Season",
- -11.459036827087402
- ],
- [
- "▁enforcement",
- -11.459259033203125
- ],
- [
- "origine",
- -11.459836959838867
- ],
- [
- "▁Ros",
- -11.460065841674805
- ],
- [
- "▁Mount",
- -11.460083961486816
- ],
- [
- "have",
- -11.460237503051758
- ],
- [
- "▁romantic",
- -11.460258483886719
- ],
- [
- "▁comic",
- -11.460810661315918
- ],
- [
- "▁greu",
- -11.461116790771484
- ],
- [
- "ET",
- -11.46133041381836
- ],
- [
- "▁hook",
- -11.461407661437988
- ],
- [
- "▁mort",
- -11.461411476135254
- ],
- [
- "▁indicated",
- -11.461583137512207
- ],
- [
- "▁7,",
- -11.461982727050781
- ],
- [
- "▁Neben",
- -11.46204662322998
- ],
- [
- "yer",
- -11.46214485168457
- ],
- [
- "▁momentul",
- -11.46214771270752
- ],
- [
- "note",
- -11.462313652038574
- ],
- [
- "▁baz",
- -11.46231460571289
- ],
- [
- "▁abroad",
- -11.462320327758789
- ],
- [
- "nite",
- -11.462464332580566
- ],
- [
- "▁bass",
- -11.462701797485352
- ],
- [
- "▁norm",
- -11.462714195251465
- ],
- [
- "▁É",
- -11.462788581848145
- ],
- [
- "4.",
- -11.462881088256836
- ],
- [
- "▁province",
- -11.463004112243652
- ],
- [
- "▁merge",
- -11.463419914245605
- ],
- [
- "arbeiten",
- -11.463438987731934
- ],
- [
- "-20",
- -11.463574409484863
- ],
- [
- "▁Nicht",
- -11.463674545288086
- ],
- [
- "spo",
- -11.463783264160156
- ],
- [
- "size",
- -11.463815689086914
- ],
- [
- "▁assure",
- -11.463849067687988
- ],
- [
- "charge",
- -11.463987350463867
- ],
- [
- "▁olive",
- -11.464017868041992
- ],
- [
- "▁Pot",
- -11.46408462524414
- ],
- [
- "▁Figure",
- -11.4642333984375
- ],
- [
- "clair",
- -11.464336395263672
- ],
- [
- "▁discipline",
- -11.464600563049316
- ],
- [
- "elli",
- -11.464639663696289
- ],
- [
- "▁tackle",
- -11.465169906616211
- ],
- [
- "▁buyer",
- -11.465237617492676
- ],
- [
- "▁loud",
- -11.465479850769043
- ],
- [
- "▁180",
- -11.465534210205078
- ],
- [
- "▁căt",
- -11.465587615966797
- ],
- [
- "▁Palm",
- -11.465738296508789
- ],
- [
- "away",
- -11.46593189239502
- ],
- [
- "▁Mother",
- -11.46607494354248
- ],
- [
- "onia",
- -11.466240882873535
- ],
- [
- "▁Protection",
- -11.466416358947754
- ],
- [
- "auto",
- -11.466547966003418
- ],
- [
- "▁Version",
- -11.466583251953125
- ],
- [
- "▁Nice",
- -11.466714859008789
- ],
- [
- "▁12.",
- -11.46682071685791
- ],
- [
- "▁0,",
- -11.466835021972656
- ],
- [
- "ATION",
- -11.466911315917969
- ],
- [
- "▁Produkte",
- -11.466955184936523
- ],
- [
- "▁tube",
- -11.467084884643555
- ],
- [
- "▁Houston",
- -11.467106819152832
- ],
- [
- "chu",
- -11.467500686645508
- ],
- [
- "pas",
- -11.467717170715332
- ],
- [
- "▁Ele",
- -11.467801094055176
- ],
- [
- "▁mountains",
- -11.467835426330566
- ],
- [
- "PH",
- -11.467937469482422
- ],
- [
- "▁languages",
- -11.468672752380371
- ],
- [
- "▁servicii",
- -11.468722343444824
- ],
- [
- "▁Stay",
- -11.468999862670898
- ],
- [
- "fil",
- -11.469138145446777
- ],
- [
- "▁propos",
- -11.469801902770996
- ],
- [
- "▁coll",
- -11.469825744628906
- ],
- [
- "▁mor",
- -11.470197677612305
- ],
- [
- "▁arrange",
- -11.470410346984863
- ],
- [
- "▁sorry",
- -11.470475196838379
- ],
- [
- "▁instruction",
- -11.470723152160645
- ],
- [
- "▁holes",
- -11.47077465057373
- ],
- [
- "letting",
- -11.471046447753906
- ],
- [
- "▁wa",
- -11.471074104309082
- ],
- [
- "▁Feb",
- -11.471227645874023
- ],
- [
- "omb",
- -11.471232414245605
- ],
- [
- "▁prise",
- -11.471290588378906
- ],
- [
- "VO",
- -11.471305847167969
- ],
- [
- "week",
- -11.471349716186523
- ],
- [
- "▁Event",
- -11.471427917480469
- ],
- [
- "▁AT",
- -11.471485137939453
- ],
- [
- "ket",
- -11.471492767333984
- ],
- [
- "haft",
- -11.471579551696777
- ],
- [
- "▁hits",
- -11.47159194946289
- ],
- [
- "foli",
- -11.471681594848633
- ],
- [
- "this",
- -11.471948623657227
- ],
- [
- "GP",
- -11.471970558166504
- ],
- [
- "▁Pin",
- -11.472332954406738
- ],
- [
- "▁Stein",
- -11.472503662109375
- ],
- [
- "thing",
- -11.472512245178223
- ],
- [
- "▁emphasis",
- -11.472556114196777
- ],
- [
- "▁Mur",
- -11.472631454467773
- ],
- [
- "▁Bag",
- -11.472647666931152
- ],
- [
- "cons",
- -11.47273063659668
- ],
- [
- "tons",
- -11.472835540771484
- ],
- [
- "lash",
- -11.472987174987793
- ],
- [
- "▁Grant",
- -11.473104476928711
- ],
- [
- "▁pris",
- -11.473175048828125
- ],
- [
- "▁bună",
- -11.47323989868164
- ],
- [
- "▁buc",
- -11.473699569702148
- ],
- [
- "▁passe",
- -11.473746299743652
- ],
- [
- "▁jewelry",
- -11.474213600158691
- ],
- [
- "iens",
- -11.474342346191406
- ],
- [
- "▁forma",
- -11.47453784942627
- ],
- [
- "▁Med",
- -11.474651336669922
- ],
- [
- "laufen",
- -11.474778175354004
- ],
- [
- "▁hunt",
- -11.474977493286133
- ],
- [
- "stayed",
- -11.475086212158203
- ],
- [
- "party",
- -11.475152015686035
- ],
- [
- "▁fra",
- -11.47529411315918
- ],
- [
- "▁scenes",
- -11.475305557250977
- ],
- [
- "▁absorb",
- -11.47535228729248
- ],
- [
- "▁abilities",
- -11.475377082824707
- ],
- [
- "lug",
- -11.475507736206055
- ],
- [
- "▁Sarah",
- -11.475693702697754
- ],
- [
- "mpf",
- -11.47570514678955
- ],
- [
- "▁fle",
- -11.4757080078125
- ],
- [
- "accès",
- -11.475872993469238
- ],
- [
- "▁solicit",
- -11.475926399230957
- ],
- [
- "pie",
- -11.476278305053711
- ],
- [
- "▁Zum",
- -11.476296424865723
- ],
- [
- "▁universe",
- -11.476390838623047
- ],
- [
- "▁exists",
- -11.476449012756348
- ],
- [
- "oane",
- -11.476597785949707
- ],
- [
- "IVE",
- -11.47668743133545
- ],
- [
- "▁2011.",
- -11.476906776428223
- ],
- [
- "▁specialists",
- -11.477072715759277
- ],
- [
- "▁mess",
- -11.477309226989746
- ],
- [
- "fach",
- -11.477402687072754
- ],
- [
- "▁Recht",
- -11.477404594421387
- ],
- [
- "▁hack",
- -11.47755241394043
- ],
- [
- "▁jacket",
- -11.477564811706543
- ],
- [
- "HC",
- -11.47769832611084
- ],
- [
- "▁substance",
- -11.477728843688965
- ],
- [
- "▁signing",
- -11.477775573730469
- ],
- [
- "▁allerdings",
- -11.478032112121582
- ],
- [
- "▁publish",
- -11.478139877319336
- ],
- [
- "▁Lab",
- -11.478157043457031
- ],
- [
- "▁agenda",
- -11.478249549865723
- ],
- [
- "lane",
- -11.478299140930176
- ],
- [
- "stream",
- -11.478620529174805
- ],
- [
- "schau",
- -11.47879409790039
- ],
- [
- "▁realizat",
- -11.478971481323242
- ],
- [
- "▁supplier",
- -11.479019165039062
- ],
- [
- "▁moderate",
- -11.47902774810791
- ],
- [
- "▁tours",
- -11.479212760925293
- ],
- [
- "▁narrative",
- -11.479220390319824
- ],
- [
- "ația",
- -11.479279518127441
- ],
- [
- "▁maps",
- -11.479423522949219
- ],
- [
- "treten",
- -11.479447364807129
- ],
- [
- "▁mars",
- -11.479706764221191
- ],
- [
- "▁moon",
- -11.479745864868164
- ],
- [
- "rose",
- -11.479751586914062
- ],
- [
- "▁exp",
- -11.479766845703125
- ],
- [
- "zahl",
- -11.480154037475586
- ],
- [
- "psych",
- -11.480195999145508
- ],
- [
- "▁gehört",
- -11.48024845123291
- ],
- [
- "▁bound",
- -11.4803466796875
- ],
- [
- "▁submission",
- -11.480451583862305
- ],
- [
- "▁clubs",
- -11.480722427368164
- ],
- [
- "Am",
- -11.480755805969238
- ],
- [
- "tenir",
- -11.480782508850098
- ],
- [
- "▁boast",
- -11.480851173400879
- ],
- [
- "▁boards",
- -11.4810791015625
- ],
- [
- "▁Geschäfts",
- -11.481216430664062
- ],
- [
- "zing",
- -11.48126220703125
- ],
- [
- "wort",
- -11.48137092590332
- ],
- [
- "lid",
- -11.481417655944824
- ],
- [
- "▁contractor",
- -11.481528282165527
- ],
- [
- "▁donner",
- -11.481672286987305
- ],
- [
- "▁coupon",
- -11.481974601745605
- ],
- [
- "adresse",
- -11.482004165649414
- ],
- [
- "colo",
- -11.48210334777832
- ],
- [
- "▁perception",
- -11.482124328613281
- ],
- [
- "NC",
- -11.48222541809082
- ],
- [
- "▁abge",
- -11.482245445251465
- ],
- [
- "▁cheaper",
- -11.482268333435059
- ],
- [
- "▁grace",
- -11.482312202453613
- ],
- [
- "▁resident",
- -11.482718467712402
- ],
- [
- "kla",
- -11.4828462600708
- ],
- [
- "▁bug",
- -11.4828462600708
- ],
- [
- "▁Available",
- -11.482893943786621
- ],
- [
- "▁BA",
- -11.483323097229004
- ],
- [
- "▁Met",
- -11.483601570129395
- ],
- [
- "▁climb",
- -11.48365592956543
- ],
- [
- "▁expanded",
- -11.484349250793457
- ],
- [
- "ying",
- -11.484426498413086
- ],
- [
- "▁matching",
- -11.484469413757324
- ],
- [
- "▁suffered",
- -11.484733581542969
- ],
- [
- "▁employed",
- -11.484755516052246
- ],
- [
- "pper",
- -11.484843254089355
- ],
- [
- "▁experiencing",
- -11.484884262084961
- ],
- [
- "ddy",
- -11.484953880310059
- ],
- [
- "▁philosophy",
- -11.484955787658691
- ],
- [
- "▁utilisé",
- -11.485008239746094
- ],
- [
- "▁Jane",
- -11.485079765319824
- ],
- [
- "LI",
- -11.485087394714355
- ],
- [
- "▁elected",
- -11.485185623168945
- ],
- [
- "▁MI",
- -11.485264778137207
- ],
- [
- "▁ISO",
- -11.485340118408203
- ],
- [
- "winning",
- -11.48537540435791
- ],
- [
- "▁vot",
- -11.485424041748047
- ],
- [
- "▁generic",
- -11.485519409179688
- ],
- [
- "▁Bol",
- -11.485650062561035
- ],
- [
- "▁copies",
- -11.48568058013916
- ],
- [
- "▁mechanical",
- -11.48568058013916
- ],
- [
- "günstig",
- -11.485682487487793
- ],
- [
- "roy",
- -11.485770225524902
- ],
- [
- "Astfel",
- -11.485808372497559
- ],
- [
- "media",
- -11.485868453979492
- ],
- [
- "▁shoulder",
- -11.4859037399292
- ],
- [
- "▁directory",
- -11.486000061035156
- ],
- [
- "▁banking",
- -11.486016273498535
- ],
- [
- "▁mistakes",
- -11.486040115356445
- ],
- [
- "▁Fran",
- -11.486425399780273
- ],
- [
- "▁Jon",
- -11.486544609069824
- ],
- [
- "▁spare",
- -11.486579895019531
- ],
- [
- "metri",
- -11.486668586730957
- ],
- [
- "▁mask",
- -11.486879348754883
- ],
- [
- "▁consistently",
- -11.48695182800293
- ],
- [
- "▁Columbia",
- -11.487278938293457
- ],
- [
- "roid",
- -11.48774242401123
- ],
- [
- "essen",
- -11.487935066223145
- ],
- [
- "▁(“",
- -11.48798656463623
- ],
- [
- "▁série",
- -11.488212585449219
- ],
- [
- "▁Phil",
- -11.488249778747559
- ],
- [
- "▁usor",
- -11.488249778747559
- ],
- [
- "▁stood",
- -11.488279342651367
- ],
- [
- "▁racing",
- -11.488335609436035
- ],
- [
- "▁Comme",
- -11.488555908203125
- ],
- [
- "▁exceed",
- -11.488565444946289
- ],
- [
- "на",
- -11.488618850708008
- ],
- [
- "▁activate",
- -11.48873233795166
- ],
- [
- "▁circle",
- -11.488836288452148
- ],
- [
- "▁bold",
- -11.488956451416016
- ],
- [
- "▁handy",
- -11.48909854888916
- ],
- [
- "merely",
- -11.489114761352539
- ],
- [
- "▁Edward",
- -11.489147186279297
- ],
- [
- "▁contracts",
- -11.489530563354492
- ],
- [
- "ê",
- -11.489595413208008
- ],
- [
- "▁campaigns",
- -11.489673614501953
- ],
- [
- "▁ought",
- -11.489733695983887
- ],
- [
- "▁nursing",
- -11.489781379699707
- ],
- [
- "▁Jr",
- -11.489917755126953
- ],
- [
- "▁rarely",
- -11.490032196044922
- ],
- [
- "▁Mir",
- -11.490050315856934
- ],
- [
- "▁diagnosis",
- -11.490379333496094
- ],
- [
- "▁Theatre",
- -11.490394592285156
- ],
- [
- "▁producer",
- -11.490407943725586
- ],
- [
- "Currently",
- -11.490492820739746
- ],
- [
- "▁fitting",
- -11.490580558776855
- ],
- [
- "▁ajunge",
- -11.490618705749512
- ],
- [
- "minte",
- -11.490754127502441
- ],
- [
- "▁termen",
- -11.490838050842285
- ],
- [
- "▁Linux",
- -11.491013526916504
- ],
- [
- "▁1-",
- -11.491068840026855
- ],
- [
- "▁hätte",
- -11.491202354431152
- ],
- [
- "▁Resort",
- -11.49129867553711
- ],
- [
- "image",
- -11.491527557373047
- ],
- [
- "▁Rod",
- -11.49189281463623
- ],
- [
- "▁Fly",
- -11.491924285888672
- ],
- [
- "try",
- -11.492317199707031
- ],
- [
- "▁expense",
- -11.49245834350586
- ],
- [
- "▁Interior",
- -11.492799758911133
- ],
- [
- "▁fence",
- -11.492920875549316
- ],
- [
- "▁Kontakt",
- -11.493063926696777
- ],
- [
- "▁ALL",
- -11.493142127990723
- ],
- [
- "VA",
- -11.493229866027832
- ],
- [
- "▁Exchange",
- -11.493316650390625
- ],
- [
- "ranked",
- -11.493558883666992
- ],
- [
- "▁Performance",
- -11.493621826171875
- ],
- [
- "prim",
- -11.493635177612305
- ],
- [
- "▁basket",
- -11.493694305419922
- ],
- [
- "▁Vice",
- -11.493703842163086
- ],
- [
- "phan",
- -11.4937105178833
- ],
- [
- "▁broke",
- -11.494003295898438
- ],
- [
- "voir",
- -11.49431324005127
- ],
- [
- "arg",
- -11.494512557983398
- ],
- [
- "ART",
- -11.494529724121094
- ],
- [
- "▁floors",
- -11.494856834411621
- ],
- [
- "pression",
- -11.495025634765625
- ],
- [
- "▁possession",
- -11.49507999420166
- ],
- [
- "▁domaine",
- -11.49510669708252
- ],
- [
- "▁valeur",
- -11.495132446289062
- ],
- [
- "▁suddenly",
- -11.495282173156738
- ],
- [
- "▁mild",
- -11.495304107666016
- ],
- [
- "▁aflat",
- -11.495431900024414
- ],
- [
- "▁Tea",
- -11.495731353759766
- ],
- [
- "tritt",
- -11.495767593383789
- ],
- [
- "▁Mittel",
- -11.495773315429688
- ],
- [
- "▁regulatory",
- -11.49580192565918
- ],
- [
- "▁spectacular",
- -11.495905876159668
- ],
- [
- "fahrt",
- -11.495949745178223
- ],
- [
- "GS",
- -11.496026039123535
- ],
- [
- "MM",
- -11.4961576461792
- ],
- [
- "▁environments",
- -11.496203422546387
- ],
- [
- "▁Raum",
- -11.496381759643555
- ],
- [
- "▁lay",
- -11.496664047241211
- ],
- [
- "▁cré",
- -11.496713638305664
- ],
- [
- "▁Selbst",
- -11.496726989746094
- ],
- [
- "▁opposition",
- -11.496821403503418
- ],
- [
- "two",
- -11.49729061126709
- ],
- [
- "▁Clark",
- -11.497822761535645
- ],
- [
- "▁Netz",
- -11.497845649719238
- ],
- [
- "bald",
- -11.497983932495117
- ],
- [
- "▁Innovation",
- -11.4982271194458
- ],
- [
- "▁overcome",
- -11.49825382232666
- ],
- [
- "quot",
- -11.499013900756836
- ],
- [
- "▁Sin",
- -11.499106407165527
- ],
- [
- "▁Sto",
- -11.499320983886719
- ],
- [
- "▁grain",
- -11.499560356140137
- ],
- [
- "▁collections",
- -11.499724388122559
- ],
- [
- "▁applies",
- -11.49986743927002
- ],
- [
- "mach",
- -11.499934196472168
- ],
- [
- "▁wheels",
- -11.499958992004395
- ],
- [
- "▁universities",
- -11.500049591064453
- ],
- [
- "▁Ray",
- -11.500182151794434
- ],
- [
- "lina",
- -11.500238418579102
- ],
- [
- "▁arrangements",
- -11.500393867492676
- ],
- [
- "▁western",
- -11.500728607177734
- ],
- [
- "rous",
- -11.500768661499023
- ],
- [
- "aise",
- -11.500784873962402
- ],
- [
- "▁highlights",
- -11.50112533569336
- ],
- [
- "▁intend",
- -11.501265525817871
- ],
- [
- "aimed",
- -11.501358032226562
- ],
- [
- "▁Scotland",
- -11.501360893249512
- ],
- [
- "▁acestei",
- -11.501466751098633
- ],
- [
- "graf",
- -11.50150203704834
- ],
- [
- "duction",
- -11.501517295837402
- ],
- [
- "path",
- -11.50156021118164
- ],
- [
- "▁evil",
- -11.501633644104004
- ],
- [
- "▁scris",
- -11.501791000366211
- ],
- [
- "▁disposition",
- -11.501927375793457
- ],
- [
- "▁designing",
- -11.5020751953125
- ],
- [
- "zwar",
- -11.502172470092773
- ],
- [
- "▁Retrieve",
- -11.50217342376709
- ],
- [
- "▁aggressive",
- -11.502374649047852
- ],
- [
- "▁Glen",
- -11.502411842346191
- ],
- [
- "▁daher",
- -11.502473831176758
- ],
- [
- "▁Quick",
- -11.502494812011719
- ],
- [
- "▁recover",
- -11.502632141113281
- ],
- [
- "▁prominent",
- -11.50288200378418
- ],
- [
- "▁visits",
- -11.503198623657227
- ],
- [
- "▁Mis",
- -11.503376960754395
- ],
- [
- "▁edited",
- -11.503456115722656
- ],
- [
- "▁distributed",
- -11.503564834594727
- ],
- [
- "▁dés",
- -11.503580093383789
- ],
- [
- "▁alter",
- -11.5035982131958
- ],
- [
- "▁cooked",
- -11.503697395324707
- ],
- [
- "embl",
- -11.503706932067871
- ],
- [
- "Univers",
- -11.503715515136719
- ],
- [
- "▁Minuten",
- -11.504156112670898
- ],
- [
- "▁compris",
- -11.504179954528809
- ],
- [
- "rais",
- -11.504182815551758
- ],
- [
- "essentially",
- -11.504199028015137
- ],
- [
- "▁rel",
- -11.504340171813965
- ],
- [
- "▁appel",
- -11.504570007324219
- ],
- [
- "▁trace",
- -11.504788398742676
- ],
- [
- "relating",
- -11.504830360412598
- ],
- [
- "dès",
- -11.504937171936035
- ],
- [
- "aste",
- -11.504961013793945
- ],
- [
- "▁raison",
- -11.504963874816895
- ],
- [
- "▁frequent",
- -11.505281448364258
- ],
- [
- "▁beds",
- -11.505316734313965
- ],
- [
- "▁Miami",
- -11.505511283874512
- ],
- [
- "▁vibrant",
- -11.50564193725586
- ],
- [
- "▁Kam",
- -11.505721092224121
- ],
- [
- "▁klar",
- -11.505861282348633
- ],
- [
- "▁Tan",
- -11.50598430633545
- ],
- [
- "▁vidéo",
- -11.506032943725586
- ],
- [
- "▁Kur",
- -11.506115913391113
- ],
- [
- "▁themes",
- -11.506134033203125
- ],
- [
- "▁struggling",
- -11.506440162658691
- ],
- [
- "▁Magazine",
- -11.506444931030273
- ],
- [
- "maker",
- -11.506476402282715
- ],
- [
- "veni",
- -11.506564140319824
- ],
- [
- "▁Groß",
- -11.506732940673828
- ],
- [
- "▁streaming",
- -11.506772994995117
- ],
- [
- "▁analyze",
- -11.506876945495605
- ],
- [
- "▁titles",
- -11.506982803344727
- ],
- [
- "pier",
- -11.507316589355469
- ],
- [
- "▁participant",
- -11.507347106933594
- ],
- [
- "aims",
- -11.507607460021973
- ],
- [
- "▁convention",
- -11.507638931274414
- ],
- [
- "▁flood",
- -11.507780075073242
- ],
- [
- "▁nights",
- -11.507842063903809
- ],
- [
- "▁titre",
- -11.50792407989502
- ],
- [
- "▁voul",
- -11.508010864257812
- ],
- [
- "weit",
- -11.50816822052002
- ],
- [
- "where",
- -11.508213996887207
- ],
- [
- "▁Seiten",
- -11.508286476135254
- ],
- [
- "▁relaxing",
- -11.508628845214844
- ],
- [
- "▁piano",
- -11.50883674621582
- ],
- [
- "▁Pick",
- -11.508842468261719
- ],
- [
- "▁Sony",
- -11.508955001831055
- ],
- [
- "▁enhanced",
- -11.509017944335938
- ],
- [
- "▁visa",
- -11.50915241241455
- ],
- [
- "CH",
- -11.50930118560791
- ],
- [
- "▁instantly",
- -11.50930404663086
- ],
- [
- "▁Fan",
- -11.509721755981445
- ],
- [
- "▁diabetes",
- -11.509988784790039
- ],
- [
- "▁popul",
- -11.50999641418457
- ],
- [
- "Ang",
- -11.510232925415039
- ],
- [
- "▁Ask",
- -11.510295867919922
- ],
- [
- "cate",
- -11.510650634765625
- ],
- [
- "▁simplu",
- -11.510666847229004
- ],
- [
- "nahme",
- -11.510685920715332
- ],
- [
- "▁dentist",
- -11.510842323303223
- ],
- [
- "ubi",
- -11.510920524597168
- ],
- [
- "article",
- -11.511030197143555
- ],
- [
- "▁graph",
- -11.511094093322754
- ],
- [
- "▁rival",
- -11.51121711730957
- ],
- [
- "jahr",
- -11.5113525390625
- ],
- [
- "▁bloc",
- -11.511370658874512
- ],
- [
- "fern",
- -11.511427879333496
- ],
- [
- "▁dispar",
- -11.511516571044922
- ],
- [
- "▁servers",
- -11.511582374572754
- ],
- [
- "▁patru",
- -11.511610984802246
- ],
- [
- "▁Within",
- -11.511634826660156
- ],
- [
- "▁situated",
- -11.511896133422852
- ],
- [
- "▁HR",
- -11.511981964111328
- ],
- [
- "▁leaf",
- -11.511981964111328
- ],
- [
- "▁curs",
- -11.512049674987793
- ],
- [
- "antes",
- -11.512325286865234
- ],
- [
- "lux",
- -11.512406349182129
- ],
- [
- "▁1993",
- -11.512463569641113
- ],
- [
- "stance",
- -11.512650489807129
- ],
- [
- "▁northern",
- -11.512683868408203
- ],
- [
- "lves",
- -11.512718200683594
- ],
- [
- "▁contractors",
- -11.512882232666016
- ],
- [
- "▁dimensions",
- -11.512920379638672
- ],
- [
- "▁rolling",
- -11.513068199157715
- ],
- [
- "▁automobile",
- -11.513211250305176
- ],
- [
- "▁cru",
- -11.51342487335205
- ],
- [
- "▁displays",
- -11.513570785522461
- ],
- [
- "web",
- -11.513812065124512
- ],
- [
- "had",
- -11.513850212097168
- ],
- [
- "▁Never",
- -11.513893127441406
- ],
- [
- "▁2-",
- -11.513932228088379
- ],
- [
- "vine",
- -11.51393985748291
- ],
- [
- "▁Wahl",
- -11.513975143432617
- ],
- [
- "▁Markt",
- -11.514166831970215
- ],
- [
- "▁Double",
- -11.514227867126465
- ],
- [
- "▁acknowledge",
- -11.514229774475098
- ],
- [
- "stal",
- -11.514288902282715
- ],
- [
- "▁equity",
- -11.514620780944824
- ],
- [
- "▁ministry",
- -11.514823913574219
- ],
- [
- "▁Lor",
- -11.514875411987305
- ],
- [
- "▁sud",
- -11.514968872070312
- ],
- [
- "idée",
- -11.515044212341309
- ],
- [
- "▁measured",
- -11.515448570251465
- ],
- [
- "▁editing",
- -11.515609741210938
- ],
- [
- "▁singur",
- -11.515620231628418
- ],
- [
- "▁coal",
- -11.515623092651367
- ],
- [
- "▁dramatic",
- -11.516212463378906
- ],
- [
- "AG",
- -11.516251564025879
- ],
- [
- "asca",
- -11.516280174255371
- ],
- [
- "▁crash",
- -11.516321182250977
- ],
- [
- "ischer",
- -11.516597747802734
- ],
- [
- "▁Pla",
- -11.516871452331543
- ],
- [
- "▁psycho",
- -11.517054557800293
- ],
- [
- "piece",
- -11.517118453979492
- ],
- [
- "▁finger",
- -11.517121315002441
- ],
- [
- "▁Hollywood",
- -11.517123222351074
- ],
- [
- "▁Cr",
- -11.517345428466797
- ],
- [
- "▁locally",
- -11.517622947692871
- ],
- [
- "▁mouse",
- -11.517792701721191
- ],
- [
- "▁Base",
- -11.517867088317871
- ],
- [
- "uite",
- -11.518095016479492
- ],
- [
- "▁detect",
- -11.518099784851074
- ],
- [
- "cea",
- -11.518150329589844
- ],
- [
- "▁bull",
- -11.518194198608398
- ],
- [
- "▁curve",
- -11.518208503723145
- ],
- [
- "été",
- -11.518218994140625
- ],
- [
- "ddle",
- -11.51839542388916
- ],
- [
- "▁span",
- -11.518523216247559
- ],
- [
- "WS",
- -11.518878936767578
- ],
- [
- "CL",
- -11.519017219543457
- ],
- [
- "▁officially",
- -11.519042015075684
- ],
- [
- "▁corect",
- -11.519168853759766
- ],
- [
- "▁Artikel",
- -11.5193510055542
- ],
- [
- "▁customized",
- -11.520099639892578
- ],
- [
- "▁intellectual",
- -11.52018928527832
- ],
- [
- "▁heures",
- -11.520334243774414
- ],
- [
- "schule",
- -11.520444869995117
- ],
- [
- "▁investing",
- -11.520585060119629
- ],
- [
- "▁parallel",
- -11.521227836608887
- ],
- [
- "▁loi",
- -11.521263122558594
- ],
- [
- "ările",
- -11.521566390991211
- ],
- [
- "р",
- -11.521679878234863
- ],
- [
- "▁bench",
- -11.521724700927734
- ],
- [
- "▁principle",
- -11.521756172180176
- ],
- [
- "▁Galaxy",
- -11.521829605102539
- ],
- [
- "ța",
- -11.522237777709961
- ],
- [
- "▁(4",
- -11.522418975830078
- ],
- [
- "▁bedrooms",
- -11.522578239440918
- ],
- [
- "née",
- -11.52273941040039
- ],
- [
- "▁surely",
- -11.52275276184082
- ],
- [
- "very",
- -11.522927284240723
- ],
- [
- "stelle",
- -11.523200988769531
- ],
- [
- "activ",
- -11.523216247558594
- ],
- [
- "cite",
- -11.523551940917969
- ],
- [
- "▁Original",
- -11.523553848266602
- ],
- [
- "▁palm",
- -11.523665428161621
- ],
- [
- "▁losses",
- -11.523934364318848
- ],
- [
- "▁newspaper",
- -11.524153709411621
- ],
- [
- "ciu",
- -11.52436351776123
- ],
- [
- "▁Hold",
- -11.524392127990723
- ],
- [
- "BO",
- -11.524422645568848
- ],
- [
- "▁CON",
- -11.524598121643066
- ],
- [
- "▁modified",
- -11.524624824523926
- ],
- [
- "▁stake",
- -11.524735450744629
- ],
- [
- "▁Ton",
- -11.524798393249512
- ],
- [
- "▁luna",
- -11.524968147277832
- ],
- [
- "▁Mind",
- -11.525094985961914
- ],
- [
- "lap",
- -11.525150299072266
- ],
- [
- "▁opinions",
- -11.525247573852539
- ],
- [
- "▁Jordan",
- -11.525351524353027
- ],
- [
- "div",
- -11.52537727355957
- ],
- [
- "indi",
- -11.525418281555176
- ],
- [
- "▁Story",
- -11.525476455688477
- ],
- [
- "▁affiliate",
- -11.52585506439209
- ],
- [
- "▁matière",
- -11.525918960571289
- ],
- [
- "▁fifth",
- -11.526399612426758
- ],
- [
- "▁sheets",
- -11.52645492553711
- ],
- [
- "▁puțin",
- -11.526909828186035
- ],
- [
- "ush",
- -11.526947021484375
- ],
- [
- "geführt",
- -11.526993751525879
- ],
- [
- "▁Falls",
- -11.527168273925781
- ],
- [
- "legi",
- -11.527295112609863
- ],
- [
- "▁auction",
- -11.527326583862305
- ],
- [
- "▁cooperation",
- -11.52735424041748
- ],
- [
- "▁Fee",
- -11.527474403381348
- ],
- [
- "▁Daily",
- -11.52774715423584
- ],
- [
- "pies",
- -11.527853965759277
- ],
- [
- "▁basketball",
- -11.527976036071777
- ],
- [
- "removing",
- -11.528056144714355
- ],
- [
- "Besides",
- -11.528294563293457
- ],
- [
- "▁Body",
- -11.528355598449707
- ],
- [
- "▁AD",
- -11.528369903564453
- ],
- [
- "RU",
- -11.528435707092285
- ],
- [
- "ţia",
- -11.52894401550293
- ],
- [
- "▁Extra",
- -11.528986930847168
- ],
- [
- "▁Practice",
- -11.52900218963623
- ],
- [
- "▁Jeff",
- -11.529017448425293
- ],
- [
- "▁început",
- -11.529253005981445
- ],
- [
- "ching",
- -11.529269218444824
- ],
- [
- "▁Gift",
- -11.529281616210938
- ],
- [
- "kk",
- -11.529295921325684
- ],
- [
- "\")",
- -11.529349327087402
- ],
- [
- "▁Austin",
- -11.529651641845703
- ],
- [
- "thro",
- -11.529766082763672
- ],
- [
- "▁camping",
- -11.529810905456543
- ],
- [
- "▁theatre",
- -11.529850959777832
- ],
- [
- "école",
- -11.529916763305664
- ],
- [
- "vient",
- -11.530159950256348
- ],
- [
- "▁faces",
- -11.530226707458496
- ],
- [
- "▁constructed",
- -11.530437469482422
- ],
- [
- "▁overnight",
- -11.530472755432129
- ],
- [
- "▁locale",
- -11.530574798583984
- ],
- [
- "▁roots",
- -11.530611038208008
- ],
- [
- "▁bu",
- -11.530662536621094
- ],
- [
- "4,",
- -11.530683517456055
- ],
- [
- "▁Enterprise",
- -11.530865669250488
- ],
- [
- "screen",
- -11.530935287475586
- ],
- [
- "▁Chef",
- -11.53096866607666
- ],
- [
- "▁Along",
- -11.531298637390137
- ],
- [
- "▁MD",
- -11.531431198120117
- ],
- [
- "▁Supreme",
- -11.531597137451172
- ],
- [
- "En",
- -11.531655311584473
- ],
- [
- "▁verwendet",
- -11.532015800476074
- ],
- [
- "▁processed",
- -11.532425880432129
- ],
- [
- "▁vendors",
- -11.532549858093262
- ],
- [
- "▁FA",
- -11.532651901245117
- ],
- [
- "▁44",
- -11.532716751098633
- ],
- [
- "▁beautifully",
- -11.532933235168457
- ],
- [
- "▁eficient",
- -11.533092498779297
- ],
- [
- "▁Wil",
- -11.533117294311523
- ],
- [
- "▁Member",
- -11.533121109008789
- ],
- [
- "▁damages",
- -11.5332670211792
- ],
- [
- "▁mutual",
- -11.533288955688477
- ],
- [
- "SN",
- -11.533506393432617
- ],
- [
- "▁Dave",
- -11.533665657043457
- ],
- [
- "??",
- -11.533998489379883
- ],
- [
- "stat",
- -11.534090995788574
- ],
- [
- "▁tourist",
- -11.534374237060547
- ],
- [
- "fie",
- -11.534425735473633
- ],
- [
- "şte",
- -11.534754753112793
- ],
- [
- "▁donne",
- -11.534764289855957
- ],
- [
- "▁shadow",
- -11.53493881225586
- ],
- [
- "▁dough",
- -11.534993171691895
- ],
- [
- "▁Gro",
- -11.535002708435059
- ],
- [
- "▁Mah",
- -11.535066604614258
- ],
- [
- "RF",
- -11.535126686096191
- ],
- [
- "▁mechanism",
- -11.535163879394531
- ],
- [
- "▁2011,",
- -11.535179138183594
- ],
- [
- "▁Alter",
- -11.53530502319336
- ],
- [
- "▁opposed",
- -11.53538990020752
- ],
- [
- "▁Fri",
- -11.535501480102539
- ],
- [
- "▁remarkable",
- -11.535572052001953
- ],
- [
- "oral",
- -11.535635948181152
- ],
- [
- "▁verschiedene",
- -11.535653114318848
- ],
- [
- "▁difficulty",
- -11.535691261291504
- ],
- [
- "▁Application",
- -11.535840034484863
- ],
- [
- "▁Hay",
- -11.535888671875
- ],
- [
- "▁continua",
- -11.535935401916504
- ],
- [
- "EP",
- -11.53609848022461
- ],
- [
- "▁Pr",
- -11.53617000579834
- ],
- [
- "▁Lady",
- -11.53631591796875
- ],
- [
- "▁interval",
- -11.536457061767578
- ],
- [
- "▁Mil",
- -11.536504745483398
- ],
- [
- "▁2010.",
- -11.537042617797852
- ],
- [
- "VE",
- -11.537074089050293
- ],
- [
- "integr",
- -11.537360191345215
- ],
- [
- "▁création",
- -11.537415504455566
- ],
- [
- "weed",
- -11.537456512451172
- ],
- [
- "EG",
- -11.53760051727295
- ],
- [
- "▁6,",
- -11.537784576416016
- ],
- [
- "▁god",
- -11.537866592407227
- ],
- [
- "▁accomplish",
- -11.537947654724121
- ],
- [
- "▁thoroughly",
- -11.538019180297852
- ],
- [
- "2019",
- -11.538228988647461
- ],
- [
- "izer",
- -11.538246154785156
- ],
- [
- "▁Wal",
- -11.538300514221191
- ],
- [
- "ifying",
- -11.538701057434082
- ],
- [
- "▁Wohn",
- -11.539227485656738
- ],
- [
- "▁Holz",
- -11.539474487304688
- ],
- [
- "▁Advanced",
- -11.539528846740723
- ],
- [
- "▁honey",
- -11.539626121520996
- ],
- [
- "proof",
- -11.539634704589844
- ],
- [
- "▁saison",
- -11.540029525756836
- ],
- [
- "ându",
- -11.540035247802734
- ],
- [
- "▁Kevin",
- -11.540116310119629
- ],
- [
- "▁shelter",
- -11.540199279785156
- ],
- [
- "▁discut",
- -11.540257453918457
- ],
- [
- "▁hike",
- -11.540257453918457
- ],
- [
- "ités",
- -11.540461540222168
- ],
- [
- "▁boutique",
- -11.540672302246094
- ],
- [
- "▁Email",
- -11.54067611694336
- ],
- [
- "▁cosmetic",
- -11.540830612182617
- ],
- [
- "dian",
- -11.540916442871094
- ],
- [
- "▁hohe",
- -11.540940284729004
- ],
- [
- "▁absence",
- -11.541071891784668
- ],
- [
- "axi",
- -11.541136741638184
- ],
- [
- "nah",
- -11.541178703308105
- ],
- [
- "▁Frauen",
- -11.541236877441406
- ],
- [
- "▁actively",
- -11.541278839111328
- ],
- [
- "bind",
- -11.541468620300293
- ],
- [
- "▁everybody",
- -11.541740417480469
- ],
- [
- "▁controller",
- -11.541802406311035
- ],
- [
- "▁1.5",
- -11.5418062210083
- ],
- [
- "erau",
- -11.541842460632324
- ],
- [
- "gehen",
- -11.541988372802734
- ],
- [
- "▁scenario",
- -11.542038917541504
- ],
- [
- "▁odd",
- -11.542083740234375
- ],
- [
- "▁Ultra",
- -11.542089462280273
- ],
- [
- "▁finishing",
- -11.542366981506348
- ],
- [
- "▁cuts",
- -11.542383193969727
- ],
- [
- "▁financing",
- -11.542515754699707
- ],
- [
- "▁Chance",
- -11.542579650878906
- ],
- [
- "surrounded",
- -11.542818069458008
- ],
- [
- "▁joc",
- -11.542903900146484
- ],
- [
- "▁shelf",
- -11.543004035949707
- ],
- [
- "tief",
- -11.54308032989502
- ],
- [
- "▁Sir",
- -11.543146133422852
- ],
- [
- "▁Agent",
- -11.543197631835938
- ],
- [
- "▁scratch",
- -11.543560981750488
- ],
- [
- "2,000",
- -11.54360294342041
- ],
- [
- "nutri",
- -11.54365348815918
- ],
- [
- "nier",
- -11.544063568115234
- ],
- [
- "▁Dur",
- -11.544175148010254
- ],
- [
- "▁grid",
- -11.544268608093262
- ],
- [
- "road",
- -11.544413566589355
- ],
- [
- "▁pets",
- -11.544429779052734
- ],
- [
- "stud",
- -11.54448127746582
- ],
- [
- "OM",
- -11.544569969177246
- ],
- [
- "Die",
- -11.544877052307129
- ],
- [
- "▁800",
- -11.54496955871582
- ],
- [
- "▁arrangement",
- -11.545088768005371
- ],
- [
- "▁Sri",
- -11.545185089111328
- ],
- [
- "▁Patrick",
- -11.545187950134277
- ],
- [
- "ava",
- -11.545212745666504
- ],
- [
- "▁pension",
- -11.54523754119873
- ],
- [
- "dung",
- -11.545353889465332
- ],
- [
- "▁Chapter",
- -11.545475006103516
- ],
- [
- "▁Property",
- -11.545475006103516
- ],
- [
- "▁structural",
- -11.545571327209473
- ],
- [
- "▁overview",
- -11.545731544494629
- ],
- [
- "2015",
- -11.545917510986328
- ],
- [
- "▁lawn",
- -11.545924186706543
- ],
- [
- "▁Vin",
- -11.546219825744629
- ],
- [
- "lik",
- -11.546402931213379
- ],
- [
- "dus",
- -11.546418190002441
- ],
- [
- "Several",
- -11.54654598236084
- ],
- [
- "▁Bou",
- -11.546670913696289
- ],
- [
- "▁copper",
- -11.546703338623047
- ],
- [
- "▁duration",
- -11.546867370605469
- ],
- [
- "inate",
- -11.546982765197754
- ],
- [
- "▁podcast",
- -11.547204971313477
- ],
- [
- "▁Self",
- -11.547208786010742
- ],
- [
- "▁Construction",
- -11.547491073608398
- ],
- [
- "achat",
- -11.54768180847168
- ],
- [
- "???",
- -11.547683715820312
- ],
- [
- "▁Electric",
- -11.547974586486816
- ],
- [
- "▁Mrs",
- -11.54799747467041
- ],
- [
- "▁CT",
- -11.548019409179688
- ],
- [
- "▁proceed",
- -11.548324584960938
- ],
- [
- "▁Course",
- -11.548333168029785
- ],
- [
- "▁Frei",
- -11.548699378967285
- ],
- [
- "▁heavily",
- -11.548868179321289
- ],
- [
- "rique",
- -11.548872947692871
- ],
- [
- "version",
- -11.549016952514648
- ],
- [
- "▁representatives",
- -11.549118041992188
- ],
- [
- "▁tourism",
- -11.549182891845703
- ],
- [
- "▁shirt",
- -11.5494966506958
- ],
- [
- "▁rough",
- -11.549507141113281
- ],
- [
- "▁weniger",
- -11.549735069274902
- ],
- [
- "▁keyboard",
- -11.550058364868164
- ],
- [
- "▁heritage",
- -11.550149917602539
- ],
- [
- "kat",
- -11.550535202026367
- ],
- [
- "assez",
- -11.550567626953125
- ],
- [
- "▁cabinets",
- -11.550591468811035
- ],
- [
- "▁Komm",
- -11.550762176513672
- ],
- [
- "▁impressed",
- -11.55078411102295
- ],
- [
- "▁Oregon",
- -11.550788879394531
- ],
- [
- "▁Davis",
- -11.55081558227539
- ],
- [
- "specialized",
- -11.55097770690918
- ],
- [
- "▁gross",
- -11.550999641418457
- ],
- [
- "Located",
- -11.551044464111328
- ],
- [
- "ttle",
- -11.551044464111328
- ],
- [
- "▁2010,",
- -11.551224708557129
- ],
- [
- "chan",
- -11.551253318786621
- ],
- [
- "mine",
- -11.551305770874023
- ],
- [
- "▁aduce",
- -11.551637649536133
- ],
- [
- "▁subsequent",
- -11.551729202270508
- ],
- [
- "▁demo",
- -11.551851272583008
- ],
- [
- "aba",
- -11.552209854125977
- ],
- [
- "▁shock",
- -11.552389144897461
- ],
- [
- "▁theater",
- -11.552854537963867
- ],
- [
- "▁engineers",
- -11.55294418334961
- ],
- [
- "▁feu",
- -11.553037643432617
- ],
- [
- "▁Rot",
- -11.553058624267578
- ],
- [
- "▁addressed",
- -11.553155899047852
- ],
- [
- "▁Letter",
- -11.553431510925293
- ],
- [
- "gré",
- -11.553448677062988
- ],
- [
- "▁quantity",
- -11.553449630737305
- ],
- [
- "▁Seit",
- -11.553640365600586
- ],
- [
- "▁bacteria",
- -11.553681373596191
- ],
- [
- "kg",
- -11.55408000946045
- ],
- [
- "▁conservation",
- -11.554191589355469
- ],
- [
- "▁entreprises",
- -11.55420207977295
- ],
- [
- "▁pleasant",
- -11.554207801818848
- ],
- [
- "armed",
- -11.554228782653809
- ],
- [
- "dorf",
- -11.554286003112793
- ],
- [
- "fact",
- -11.554320335388184
- ],
- [
- "▁Much",
- -11.554388046264648
- ],
- [
- "▁laugh",
- -11.55482006072998
- ],
- [
- "▁blade",
- -11.554835319519043
- ],
- [
- "amine",
- -11.554838180541992
- ],
- [
- "▁insert",
- -11.55493450164795
- ],
- [
- "▁toys",
- -11.555326461791992
- ],
- [
- "▁в",
- -11.555726051330566
- ],
- [
- "cell",
- -11.555747985839844
- ],
- [
- "▁strengthen",
- -11.555864334106445
- ],
- [
- "GR",
- -11.555882453918457
- ],
- [
- "▁autor",
- -11.556114196777344
- ],
- [
- "▁LI",
- -11.556147575378418
- ],
- [
- "▁oamenii",
- -11.556184768676758
- ],
- [
- "▁Modell",
- -11.556222915649414
- ],
- [
- "▁sophisticated",
- -11.556225776672363
- ],
- [
- "▁Write",
- -11.556283950805664
- ],
- [
- "eți",
- -11.556295394897461
- ],
- [
- "say",
- -11.556641578674316
- ],
- [
- "▁nutzen",
- -11.556783676147461
- ],
- [
- "▁amenities",
- -11.556979179382324
- ],
- [
- "chel",
- -11.557068824768066
- ],
- [
- "Unlike",
- -11.55720043182373
- ],
- [
- "▁Bilder",
- -11.557208061218262
- ],
- [
- "fertig",
- -11.55722713470459
- ],
- [
- "PER",
- -11.557244300842285
- ],
- [
- "▁apparently",
- -11.557282447814941
- ],
- [
- "▁pointed",
- -11.557332992553711
- ],
- [
- "lop",
- -11.557435989379883
- ],
- [
- "▁commande",
- -11.557848930358887
- ],
- [
- "▁NEW",
- -11.557923316955566
- ],
- [
- "▁primi",
- -11.55798625946045
- ],
- [
- "▁aluminum",
- -11.558046340942383
- ],
- [
- "ificare",
- -11.558063507080078
- ],
- [
- "open",
- -11.55815315246582
- ],
- [
- "▁establishment",
- -11.558305740356445
- ],
- [
- "▁blanc",
- -11.558349609375
- ],
- [
- "▁1960",
- -11.558454513549805
- ],
- [
- "▁parameters",
- -11.55856990814209
- ],
- [
- "schluss",
- -11.558685302734375
- ],
- [
- "▁jet",
- -11.55879020690918
- ],
- [
- "gam",
- -11.55902099609375
- ],
- [
- "▁oral",
- -11.559290885925293
- ],
- [
- "▁tons",
- -11.559348106384277
- ],
- [
- "▁AL",
- -11.55935001373291
- ],
- [
- "▁intention",
- -11.55947494506836
- ],
- [
- "ives",
- -11.55974292755127
- ],
- [
- "▁BMW",
- -11.559837341308594
- ],
- [
- "gun",
- -11.559967041015625
- ],
- [
- "leben",
- -11.560046195983887
- ],
- [
- "▁Fresh",
- -11.56010913848877
- ],
- [
- "▁tuturor",
- -11.560193061828613
- ],
- [
- "▁marine",
- -11.560208320617676
- ],
- [
- "mile",
- -11.560260772705078
- ],
- [
- "▁alta",
- -11.560271263122559
- ],
- [
- "nnen",
- -11.56050968170166
- ],
- [
- "▁courts",
- -11.560530662536621
- ],
- [
- "▁Hello",
- -11.560791015625
- ],
- [
- "BL",
- -11.560895919799805
- ],
- [
- "▁reply",
- -11.560962677001953
- ],
- [
- "environnement",
- -11.560975074768066
- ],
- [
- "American",
- -11.560995101928711
- ],
- [
- "▁Tell",
- -11.561040878295898
- ],
- [
- "▁chic",
- -11.56148624420166
- ],
- [
- "bir",
- -11.561542510986328
- ],
- [
- "▁singing",
- -11.561788558959961
- ],
- [
- "▁earnings",
- -11.561819076538086
- ],
- [
- "▁ensemble",
- -11.562082290649414
- ],
- [
- "▁($",
- -11.562169075012207
- ],
- [
- "▁Tout",
- -11.562192916870117
- ],
- [
- "▁Abs",
- -11.562264442443848
- ],
- [
- "▁describes",
- -11.562322616577148
- ],
- [
- "▁navigation",
- -11.5625
- ],
- [
- "▁destul",
- -11.562532424926758
- ],
- [
- "legate",
- -11.562586784362793
- ],
- [
- "tral",
- -11.562599182128906
- ],
- [
- "aţie",
- -11.562753677368164
- ],
- [
- "▁supplied",
- -11.562775611877441
- ],
- [
- "▁paar",
- -11.562911987304688
- ],
- [
- "ionat",
- -11.563241958618164
- ],
- [
- "9.",
- -11.563263893127441
- ],
- [
- "▁41",
- -11.563348770141602
- ],
- [
- "▁Track",
- -11.563451766967773
- ],
- [
- "▁happiness",
- -11.563636779785156
- ],
- [
- "▁Personen",
- -11.563680648803711
- ],
- [
- "▁sac",
- -11.56373119354248
- ],
- [
- "▁shapes",
- -11.563774108886719
- ],
- [
- "eld",
- -11.56393051147461
- ],
- [
- "bett",
- -11.563963890075684
- ],
- [
- "tile",
- -11.56400203704834
- ],
- [
- "▁divided",
- -11.564035415649414
- ],
- [
- "▁13.",
- -11.56403923034668
- ],
- [
- "market",
- -11.564109802246094
- ],
- [
- "crafted",
- -11.564115524291992
- ],
- [
- "▁periods",
- -11.564120292663574
- ],
- [
- "uş",
- -11.564568519592285
- ],
- [
- "▁trainer",
- -11.56460952758789
- ],
- [
- "▁Licht",
- -11.564871788024902
- ],
- [
- "▁advisor",
- -11.564948081970215
- ],
- [
- "▁Herr",
- -11.564980506896973
- ],
- [
- "▁Halloween",
- -11.565147399902344
- ],
- [
- "alter",
- -11.565154075622559
- ],
- [
- "▁radical",
- -11.565155029296875
- ],
- [
- "▁nose",
- -11.56527042388916
- ],
- [
- "▁Sat",
- -11.565323829650879
- ],
- [
- "▁Mom",
- -11.565372467041016
- ],
- [
- "moni",
- -11.565377235412598
- ],
- [
- "▁semn",
- -11.565397262573242
- ],
- [
- "vé",
- -11.565672874450684
- ],
- [
- "identifie",
- -11.56570053100586
- ],
- [
- "▁hatten",
- -11.565957069396973
- ],
- [
- "completing",
- -11.565959930419922
- ],
- [
- "▁gust",
- -11.565963745117188
- ],
- [
- "▁creat",
- -11.56601333618164
- ],
- [
- "ché",
- -11.566075325012207
- ],
- [
- "pay",
- -11.566216468811035
- ],
- [
- "▁Money",
- -11.566229820251465
- ],
- [
- "IG",
- -11.566243171691895
- ],
- [
- "▁Cash",
- -11.566327095031738
- ],
- [
- "altă",
- -11.566420555114746
- ],
- [
- "▁bekommen",
- -11.566620826721191
- ],
- [
- "▁43",
- -11.56662654876709
- ],
- [
- "▁supplement",
- -11.566637992858887
- ],
- [
- "▁Early",
- -11.566754341125488
- ],
- [
- "▁mattress",
- -11.56692123413086
- ],
- [
- "▁worn",
- -11.567182540893555
- ],
- [
- "rov",
- -11.567197799682617
- ],
- [
- "▁pray",
- -11.56733226776123
- ],
- [
- "▁beans",
- -11.567673683166504
- ],
- [
- "▁passé",
- -11.567782402038574
- ],
- [
- "▁facilit",
- -11.56782054901123
- ],
- [
- "▁meters",
- -11.56784439086914
- ],
- [
- "cke",
- -11.568163871765137
- ],
- [
- "▁Villa",
- -11.568199157714844
- ],
- [
- "▁Diego",
- -11.568217277526855
- ],
- [
- "▁chips",
- -11.568244934082031
- ],
- [
- "▁mes",
- -11.568349838256836
- ],
- [
- "▁Seattle",
- -11.568421363830566
- ],
- [
- "BU",
- -11.568621635437012
- ],
- [
- "▁nevoi",
- -11.568714141845703
- ],
- [
- "▁lets",
- -11.568737030029297
- ],
- [
- "▁hopefully",
- -11.56894302368164
- ],
- [
- "▁AG",
- -11.568954467773438
- ],
- [
- "liable",
- -11.568999290466309
- ],
- [
- "pound",
- -11.569067001342773
- ],
- [
- "près",
- -11.569085121154785
- ],
- [
- "arul",
- -11.56920337677002
- ],
- [
- "isiert",
- -11.569281578063965
- ],
- [
- "▁Expert",
- -11.569297790527344
- ],
- [
- "▁particulier",
- -11.569367408752441
- ],
- [
- "stoff",
- -11.569952964782715
- ],
- [
- "▁interpretation",
- -11.56999397277832
- ],
- [
- "După",
- -11.57007884979248
- ],
- [
- "sait",
- -11.57011604309082
- ],
- [
- "▁nouvelles",
- -11.570173263549805
- ],
- [
- "▁Ok",
- -11.570175170898438
- ],
- [
- "tap",
- -11.570301055908203
- ],
- [
- "▁targets",
- -11.570327758789062
- ],
- [
- "rung",
- -11.57052230834961
- ],
- [
- "▁stare",
- -11.570576667785645
- ],
- [
- "▁efficiently",
- -11.570908546447754
- ],
- [
- "EV",
- -11.571003913879395
- ],
- [
- "évit",
- -11.571310997009277
- ],
- [
- "▁Moldova",
- -11.571542739868164
- ],
- [
- "▁Face",
- -11.571663856506348
- ],
- [
- "▁flo",
- -11.57168960571289
- ],
- [
- "▁acestora",
- -11.5717134475708
- ],
- [
- "▁Victor",
- -11.57183837890625
- ],
- [
- "▁breed",
- -11.57198429107666
- ],
- [
- "morph",
- -11.572230339050293
- ],
- [
- "sley",
- -11.572274208068848
- ],
- [
- "mot",
- -11.57234001159668
- ],
- [
- "▁URL",
- -11.572395324707031
- ],
- [
- "ellen",
- -11.572502136230469
- ],
- [
- "▁resist",
- -11.572781562805176
- ],
- [
- "zon",
- -11.57282829284668
- ],
- [
- "ndel",
- -11.572967529296875
- ],
- [
- "will",
- -11.572989463806152
- ],
- [
- "▁alege",
- -11.573076248168945
- ],
- [
- "▁Easter",
- -11.573114395141602
- ],
- [
- "▁Bat",
- -11.573190689086914
- ],
- [
- "▁Höhe",
- -11.573223114013672
- ],
- [
- "▁fascinating",
- -11.573387145996094
- ],
- [
- "▁Know",
- -11.5735445022583
- ],
- [
- "illon",
- -11.573602676391602
- ],
- [
- "flex",
- -11.57363224029541
- ],
- [
- "who",
- -11.573701858520508
- ],
- [
- "▁Always",
- -11.573729515075684
- ],
- [
- "▁Bush",
- -11.573777198791504
- ],
- [
- "ICE",
- -11.574009895324707
- ],
- [
- "verein",
- -11.57448673248291
- ],
- [
- "▁später",
- -11.57448959350586
- ],
- [
- "▁cherch",
- -11.574575424194336
- ],
- [
- "makers",
- -11.574753761291504
- ],
- [
- "versus",
- -11.574790954589844
- ],
- [
- "▁Clear",
- -11.574846267700195
- ],
- [
- "▁Pennsylvania",
- -11.574912071228027
- ],
- [
- "Dieser",
- -11.575041770935059
- ],
- [
- "▁picking",
- -11.575072288513184
- ],
- [
- "▁restoration",
- -11.57513427734375
- ],
- [
- "▁interviews",
- -11.575201988220215
- ],
- [
- "pressed",
- -11.575210571289062
- ],
- [
- "nnerhalb",
- -11.575674057006836
- ],
- [
- "▁connecting",
- -11.575834274291992
- ],
- [
- "jou",
- -11.575943946838379
- ],
- [
- "▁react",
- -11.576189041137695
- ],
- [
- "▁Merci",
- -11.576223373413086
- ],
- [
- "▁Phone",
- -11.576356887817383
- ],
- [
- "▁1)",
- -11.57652473449707
- ],
- [
- "▁victims",
- -11.576618194580078
- ],
- [
- "▁Spo",
- -11.576685905456543
- ],
- [
- "atului",
- -11.576735496520996
- ],
- [
- "▁Harry",
- -11.576837539672852
- ],
- [
- "▁Sala",
- -11.576875686645508
- ],
- [
- "Pol",
- -11.577075958251953
- ],
- [
- "▁Clo",
- -11.577167510986328
- ],
- [
- "▁Erfolg",
- -11.577211380004883
- ],
- [
- "autour",
- -11.577308654785156
- ],
- [
- "▁Template",
- -11.577314376831055
- ],
- [
- "▁invention",
- -11.57754898071289
- ],
- [
- "▁schwer",
- -11.57761287689209
- ],
- [
- "vac",
- -11.577625274658203
- ],
- [
- "▁Trail",
- -11.577627182006836
- ],
- [
- "▁Vietnam",
- -11.577638626098633
- ],
- [
- "▁Size",
- -11.577689170837402
- ],
- [
- "▁Bern",
- -11.577783584594727
- ],
- [
- "▁emp",
- -11.577845573425293
- ],
- [
- "▁shake",
- -11.57787799835205
- ],
- [
- "▁Ave",
- -11.57794189453125
- ],
- [
- "▁productive",
- -11.578009605407715
- ],
- [
- "▁apple",
- -11.578015327453613
- ],
- [
- "▁portal",
- -11.578052520751953
- ],
- [
- "▁ceramic",
- -11.578082084655762
- ],
- [
- "▁pad",
- -11.578110694885254
- ],
- [
- "▁Syn",
- -11.578316688537598
- ],
- [
- "Ab",
- -11.57845401763916
- ],
- [
- "▁syn",
- -11.578761100769043
- ],
- [
- "find",
- -11.578888893127441
- ],
- [
- "▁settle",
- -11.578909873962402
- ],
- [
- "▁général",
- -11.578965187072754
- ],
- [
- "▁okay",
- -11.579032897949219
- ],
- [
- "▁receipt",
- -11.57906436920166
- ],
- [
- "orii",
- -11.579117774963379
- ],
- [
- "▁Mission",
- -11.579122543334961
- ],
- [
- "entrée",
- -11.579304695129395
- ],
- [
- "▁besteht",
- -11.579394340515137
- ],
- [
- "▁wisdom",
- -11.57950210571289
- ],
- [
- "▁heraus",
- -11.579645156860352
- ],
- [
- "▁balanced",
- -11.579753875732422
- ],
- [
- "▁habits",
- -11.579773902893066
- ],
- [
- "tang",
- -11.579888343811035
- ],
- [
- "ură",
- -11.580151557922363
- ],
- [
- "▁winners",
- -11.580182075500488
- ],
- [
- "ç",
- -11.580215454101562
- ],
- [
- "▁folosi",
- -11.580242156982422
- ],
- [
- "aliment",
- -11.5802583694458
- ],
- [
- "▁fiction",
- -11.580373764038086
- ],
- [
- "▁Spe",
- -11.580534934997559
- ],
- [
- "▁elsewhere",
- -11.580663681030273
- ],
- [
- "▁dependent",
- -11.580808639526367
- ],
- [
- "▁Anne",
- -11.581167221069336
- ],
- [
- "▁excellence",
- -11.581695556640625
- ],
- [
- "▁Feel",
- -11.581753730773926
- ],
- [
- "lieb",
- -11.581811904907227
- ],
- [
- "▁sectors",
- -11.581865310668945
- ],
- [
- "▁expir",
- -11.581886291503906
- ],
- [
- "▁surfaces",
- -11.58191204071045
- ],
- [
- "▁minim",
- -11.581937789916992
- ],
- [
- "▁tumor",
- -11.58204460144043
- ],
- [
- "▁paragraph",
- -11.582289695739746
- ],
- [
- "▁disk",
- -11.58232307434082
- ],
- [
- "▁tonight",
- -11.582379341125488
- ],
- [
- "▁precious",
- -11.582794189453125
- ],
- [
- "▁console",
- -11.58288288116455
- ],
- [
- "Th",
- -11.582939147949219
- ],
- [
- "neu",
- -11.583020210266113
- ],
- [
- "effective",
- -11.5839262008667
- ],
- [
- "▁Republican",
- -11.583944320678711
- ],
- [
- "format",
- -11.584297180175781
- ],
- [
- "▁preserve",
- -11.58436107635498
- ],
- [
- "▁wiring",
- -11.584599494934082
- ],
- [
- "▁exercises",
- -11.584757804870605
- ],
- [
- "▁pregnancy",
- -11.584774017333984
- ],
- [
- "tries",
- -11.58481502532959
- ],
- [
- "▁jeunes",
- -11.584883689880371
- ],
- [
- "▁publishing",
- -11.584932327270508
- ],
- [
- "▁nehmen",
- -11.584935188293457
- ],
- [
- "▁capability",
- -11.5849609375
- ],
- [
- "▁prompt",
- -11.584965705871582
- ],
- [
- "▁Further",
- -11.58497428894043
- ],
- [
- "▁semaine",
- -11.585173606872559
- ],
- [
- "abo",
- -11.585216522216797
- ],
- [
- "▁evolution",
- -11.585319519042969
- ],
- [
- "▁Sud",
- -11.585403442382812
- ],
- [
- "▁frais",
- -11.585525512695312
- ],
- [
- "LT",
- -11.585619926452637
- ],
- [
- "▁stack",
- -11.58581829071045
- ],
- [
- "▁Inside",
- -11.585854530334473
- ],
- [
- "▁programmes",
- -11.585997581481934
- ],
- [
- "▁passes",
- -11.586196899414062
- ],
- [
- "mü",
- -11.586474418640137
- ],
- [
- "▁progressive",
- -11.586518287658691
- ],
- [
- "▁calculator",
- -11.58658218383789
- ],
- [
- "▁Core",
- -11.586655616760254
- ],
- [
- "BT",
- -11.586956977844238
- ],
- [
- "core",
- -11.586996078491211
- ],
- [
- "▁Moon",
- -11.587004661560059
- ],
- [
- "▁tender",
- -11.587040901184082
- ],
- [
- "durch",
- -11.58721923828125
- ],
- [
- "▁commune",
- -11.587453842163086
- ],
- [
- "▁Prince",
- -11.587594032287598
- ],
- [
- "▁demonstrated",
- -11.587693214416504
- ],
- [
- "▁conversations",
- -11.587890625
- ],
- [
- "▁fri",
- -11.587984085083008
- ],
- [
- "igh",
- -11.587992668151855
- ],
- [
- "being",
- -11.588334083557129
- ],
- [
- "pause",
- -11.58853530883789
- ],
- [
- "▁Bear",
- -11.58871841430664
- ],
- [
- "ayant",
- -11.588875770568848
- ],
- [
- "▁Industry",
- -11.588967323303223
- ],
- [
- "▁sponsor",
- -11.589012145996094
- ],
- [
- "▁numele",
- -11.589098930358887
- ],
- [
- "▁VA",
- -11.589167594909668
- ],
- [
- "▁Sommer",
- -11.589366912841797
- ],
- [
- "TB",
- -11.589380264282227
- ],
- [
- "▁optional",
- -11.589505195617676
- ],
- [
- "▁Landes",
- -11.589812278747559
- ],
- [
- "coli",
- -11.589963912963867
- ],
- [
- "empt",
- -11.59018325805664
- ],
- [
- "▁Iron",
- -11.590620040893555
- ],
- [
- "▁1992",
- -11.59090518951416
- ],
- [
- "▁attempts",
- -11.59090518951416
- ],
- [
- "halb",
- -11.590960502624512
- ],
- [
- "▁photographer",
- -11.59097671508789
- ],
- [
- "▁witness",
- -11.59097957611084
- ],
- [
- "bru",
- -11.591073989868164
- ],
- [
- "▁Ras",
- -11.59107780456543
- ],
- [
- "▁burden",
- -11.591142654418945
- ],
- [
- "▁kaufen",
- -11.591256141662598
- ],
- [
- "▁vu",
- -11.591362953186035
- ],
- [
- "▁Wedding",
- -11.591601371765137
- ],
- [
- "▁Kla",
- -11.591604232788086
- ],
- [
- "occasion",
- -11.591915130615234
- ],
- [
- "▁keys",
- -11.592131614685059
- ],
- [
- "▁oferi",
- -11.592279434204102
- ],
- [
- "▁puzzle",
- -11.592302322387695
- ],
- [
- "eaux",
- -11.59254264831543
- ],
- [
- "▁Eco",
- -11.592805862426758
- ],
- [
- "▁52",
- -11.592817306518555
- ],
- [
- "▁Elizabeth",
- -11.59284496307373
- ],
- [
- "▁dispose",
- -11.593144416809082
- ],
- [
- "▁cluster",
- -11.59326171875
- ],
- [
- "iki",
- -11.593283653259277
- ],
- [
- "▁Guys",
- -11.593595504760742
- ],
- [
- "▁Economic",
- -11.593632698059082
- ],
- [
- "▁apar",
- -11.593677520751953
- ],
- [
- "▁ziua",
- -11.593688011169434
- ],
- [
- "▁integral",
- -11.593740463256836
- ],
- [
- "▁tac",
- -11.59376335144043
- ],
- [
- "▁restrictions",
- -11.593778610229492
- ],
- [
- "▁nerve",
- -11.593794822692871
- ],
- [
- "▁Stop",
- -11.59386157989502
- ],
- [
- "burger",
- -11.593897819519043
- ],
- [
- "explo",
- -11.593944549560547
- ],
- [
- "lö",
- -11.593958854675293
- ],
- [
- "NP",
- -11.594077110290527
- ],
- [
- "▁Brook",
- -11.59418773651123
- ],
- [
- "▁Close",
- -11.594278335571289
- ],
- [
- "▁representing",
- -11.59446907043457
- ],
- [
- "▁certaine",
- -11.594767570495605
- ],
- [
- "▁discovery",
- -11.594836235046387
- ],
- [
- "▁rece",
- -11.594964981079102
- ],
- [
- "FF",
- -11.594970703125
- ],
- [
- "▁salary",
- -11.595069885253906
- ],
- [
- "▁Wolf",
- -11.595137596130371
- ],
- [
- "▁deserve",
- -11.595166206359863
- ],
- [
- "ţele",
- -11.595417976379395
- ],
- [
- "gathered",
- -11.595934867858887
- ],
- [
- "▁comply",
- -11.59599494934082
- ],
- [
- "lagen",
- -11.596034049987793
- ],
- [
- "ătoare",
- -11.596192359924316
- ],
- [
- "▁relate",
- -11.596410751342773
- ],
- [
- "▁Roger",
- -11.59656810760498
- ],
- [
- "▁blame",
- -11.596575736999512
- ],
- [
- "▁Jen",
- -11.596914291381836
- ],
- [
- "▁army",
- -11.596936225891113
- ],
- [
- "▁$10",
- -11.597129821777344
- ],
- [
- "▁Cabinet",
- -11.597185134887695
- ],
- [
- "Gu",
- -11.597367286682129
- ],
- [
- "▁wildlife",
- -11.597452163696289
- ],
- [
- "▁Memorial",
- -11.597643852233887
- ],
- [
- "▁Holiday",
- -11.597742080688477
- ],
- [
- "▁curat",
- -11.598291397094727
- ],
- [
- "iilor",
- -11.598299026489258
- ],
- [
- "▁fleet",
- -11.598408699035645
- ],
- [
- "▁reviewed",
- -11.59843635559082
- ],
- [
- "cet",
- -11.598450660705566
- ],
- [
- "▁virtually",
- -11.598487854003906
- ],
- [
- "▁Crusher",
- -11.59852409362793
- ],
- [
- "▁slide",
- -11.59858226776123
- ],
- [
- "▁générale",
- -11.598604202270508
- ],
- [
- "▁sensation",
- -11.598630905151367
- ],
- [
- "▁garlic",
- -11.598638534545898
- ],
- [
- "5)",
- -11.598657608032227
- ],
- [
- "▁batteries",
- -11.598756790161133
- ],
- [
- "SH",
- -11.59876823425293
- ],
- [
- "▁seller",
- -11.59882926940918
- ],
- [
- "design",
- -11.598871231079102
- ],
- [
- "5.",
- -11.598944664001465
- ],
- [
- "▁Overall",
- -11.598969459533691
- ],
- [
- "▁investigate",
- -11.599058151245117
- ],
- [
- "max",
- -11.599064826965332
- ],
- [
- "▁attach",
- -11.599166870117188
- ],
- [
- "▁Future",
- -11.599209785461426
- ],
- [
- "OUR",
- -11.599284172058105
- ],
- [
- "▁LE",
- -11.59968090057373
- ],
- [
- "▁bite",
- -11.599811553955078
- ],
- [
- "tige",
- -11.599874496459961
- ],
- [
- "▁twist",
- -11.59987735748291
- ],
- [
- "hole",
- -11.600180625915527
- ],
- [
- "▁Tony",
- -11.600510597229004
- ],
- [
- "LU",
- -11.600598335266113
- ],
- [
- "▁Organization",
- -11.600617408752441
- ],
- [
- "▁invit",
- -11.600632667541504
- ],
- [
- "▁Ant",
- -11.600739479064941
- ],
- [
- "NR",
- -11.600788116455078
- ],
- [
- "sorgt",
- -11.600854873657227
- ],
- [
- "▁Lan",
- -11.600860595703125
- ],
- [
- "▁Manchester",
- -11.60091495513916
- ],
- [
- "schrift",
- -11.601066589355469
- ],
- [
- "▁kg",
- -11.601150512695312
- ],
- [
- "▁aroma",
- -11.60132884979248
- ],
- [
- "▁Source",
- -11.601388931274414
- ],
- [
- "▁permite",
- -11.601445198059082
- ],
- [
- "▁Consider",
- -11.601457595825195
- ],
- [
- "▁Artist",
- -11.601627349853516
- ],
- [
- "▁transmit",
- -11.601783752441406
- ],
- [
- "oasa",
- -11.601834297180176
- ],
- [
- "▁Zen",
- -11.60198974609375
- ],
- [
- "ANT",
- -11.602235794067383
- ],
- [
- "▁consulting",
- -11.602404594421387
- ],
- [
- "▁commence",
- -11.6025390625
- ],
- [
- "▁quilt",
- -11.60261058807373
- ],
- [
- "owned",
- -11.602642059326172
- ],
- [
- "▁bro",
- -11.602689743041992
- ],
- [
- "▁integrate",
- -11.602715492248535
- ],
- [
- "▁Ontario",
- -11.602775573730469
- ],
- [
- "TF",
- -11.602832794189453
- ],
- [
- "▁Study",
- -11.602887153625488
- ],
- [
- "▁ensuite",
- -11.603155136108398
- ],
- [
- "itatii",
- -11.603180885314941
- ],
- [
- "Mon",
- -11.603235244750977
- ],
- [
- "-11",
- -11.603299140930176
- ],
- [
- "what",
- -11.603384017944336
- ],
- [
- "▁Things",
- -11.60361385345459
- ],
- [
- "▁Eye",
- -11.603819847106934
- ],
- [
- "▁présente",
- -11.603828430175781
- ],
- [
- "tention",
- -11.603915214538574
- ],
- [
- "|",
- -11.603957176208496
- ],
- [
- "stall",
- -11.603963851928711
- ],
- [
- "▁beef",
- -11.603992462158203
- ],
- [
- "figur",
- -11.604005813598633
- ],
- [
- "▁cancel",
- -11.604146003723145
- ],
- [
- "▁domeniul",
- -11.604252815246582
- ],
- [
- "▁360",
- -11.604290008544922
- ],
- [
- "▁sleeping",
- -11.6045560836792
- ],
- [
- "▁traitement",
- -11.604580879211426
- ],
- [
- "ühl",
- -11.604769706726074
- ],
- [
- "▁Environmental",
- -11.604835510253906
- ],
- [
- "cier",
- -11.604894638061523
- ],
- [
- "▁NC",
- -11.604907035827637
- ],
- [
- "pub",
- -11.604925155639648
- ],
- [
- "▁addiction",
- -11.605071067810059
- ],
- [
- "▁nest",
- -11.605128288269043
- ],
- [
- "▁ON",
- -11.605395317077637
- ],
- [
- "▁discrimin",
- -11.605396270751953
- ],
- [
- "▁proved",
- -11.605517387390137
- ],
- [
- "▁occasions",
- -11.605864524841309
- ],
- [
- "OH",
- -11.606184959411621
- ],
- [
- "▁lawyers",
- -11.606203079223633
- ],
- [
- "own",
- -11.606290817260742
- ],
- [
- "▁Meeting",
- -11.606596946716309
- ],
- [
- "▁Industrial",
- -11.606704711914062
- ],
- [
- "owed",
- -11.606736183166504
- ],
- [
- "▁Cel",
- -11.606793403625488
- ],
- [
- "legt",
- -11.60706615447998
- ],
- [
- "ily",
- -11.607085227966309
- ],
- [
- "▁wins",
- -11.607155799865723
- ],
- [
- "▁strap",
- -11.607367515563965
- ],
- [
- "digit",
- -11.607441902160645
- ],
- [
- "▁hinaus",
- -11.607504844665527
- ],
- [
- "mple",
- -11.607712745666504
- ],
- [
- "▁(5",
- -11.607797622680664
- ],
- [
- "▁pdf",
- -11.607894897460938
- ],
- [
- "▁eco",
- -11.607915878295898
- ],
- [
- "▁junior",
- -11.608172416687012
- ],
- [
- "DB",
- -11.608556747436523
- ],
- [
- "gelegt",
- -11.608636856079102
- ],
- [
- "ION",
- -11.608678817749023
- ],
- [
- "▁competitors",
- -11.60880184173584
- ],
- [
- "▁Arab",
- -11.60898208618164
- ],
- [
- "▁Secret",
- -11.609148979187012
- ],
- [
- "▁Kunst",
- -11.609283447265625
- ],
- [
- "▁worried",
- -11.609297752380371
- ],
- [
- "meiner",
- -11.609378814697266
- ],
- [
- "▁Magic",
- -11.609450340270996
- ],
- [
- "▁groß",
- -11.609537124633789
- ],
- [
- "▁travaux",
- -11.609748840332031
- ],
- [
- "▁sollen",
- -11.609772682189941
- ],
- [
- "▁Sciences",
- -11.609850883483887
- ],
- [
- "▁athletes",
- -11.610055923461914
- ],
- [
- "▁discounts",
- -11.610079765319824
- ],
- [
- "kit",
- -11.610211372375488
- ],
- [
- "lind",
- -11.610305786132812
- ],
- [
- "▁enjoyable",
- -11.610421180725098
- ],
- [
- "ground",
- -11.610489845275879
- ],
- [
- "▁Tat",
- -11.610529899597168
- ],
- [
- "▁passengers",
- -11.610576629638672
- ],
- [
- "▁Dami",
- -11.610677719116211
- ],
- [
- "▁Major",
- -11.61070728302002
- ],
- [
- "watch",
- -11.610796928405762
- ],
- [
- "working",
- -11.610908508300781
- ],
- [
- "arrêt",
- -11.610923767089844
- ],
- [
- "▁subtle",
- -11.611069679260254
- ],
- [
- "▁epi",
- -11.611197471618652
- ],
- [
- "▁Jahres",
- -11.61128044128418
- ],
- [
- "▁cooling",
- -11.61141586303711
- ],
- [
- "▁makeup",
- -11.611427307128906
- ],
- [
- "jet",
- -11.611495018005371
- ],
- [
- "▁Given",
- -11.611519813537598
- ],
- [
- "plex",
- -11.61158275604248
- ],
- [
- "▁exploit",
- -11.611590385437012
- ],
- [
- "rine",
- -11.611604690551758
- ],
- [
- "▁delivers",
- -11.612122535705566
- ],
- [
- "▁summary",
- -11.612236022949219
- ],
- [
- "▁beaches",
- -11.612459182739258
- ],
- [
- "lift",
- -11.612550735473633
- ],
- [
- "▁Suite",
- -11.612554550170898
- ],
- [
- "▁Assistant",
- -11.612688064575195
- ],
- [
- "▁taxi",
- -11.61273193359375
- ],
- [
- "▁peaceful",
- -11.612805366516113
- ],
- [
- "▁Mode",
- -11.612980842590332
- ],
- [
- "▁Fun",
- -11.613059043884277
- ],
- [
- "▁diameter",
- -11.613142967224121
- ],
- [
- "▁phrase",
- -11.613150596618652
- ],
- [
- "ACT",
- -11.613265037536621
- ],
- [
- "▁différentes",
- -11.613322257995605
- ],
- [
- "▁14.",
- -11.613417625427246
- ],
- [
- "▁CE",
- -11.61352825164795
- ],
- [
- "▁2)",
- -11.613739013671875
- ],
- [
- "▁Nat",
- -11.613785743713379
- ],
- [
- "▁delete",
- -11.61388111114502
- ],
- [
- "other",
- -11.613930702209473
- ],
- [
- "hang",
- -11.613985061645508
- ],
- [
- "▁sujet",
- -11.614117622375488
- ],
- [
- "▁precise",
- -11.614212989807129
- ],
- [
- "▁Total",
- -11.614290237426758
- ],
- [
- "▁chambre",
- -11.614483833312988
- ],
- [
- "sati",
- -11.614666938781738
- ],
- [
- "▁Metal",
- -11.614995956420898
- ],
- [
- "rust",
- -11.615038871765137
- ],
- [
- "▁Brazil",
- -11.615508079528809
- ],
- [
- "▁hybrid",
- -11.615636825561523
- ],
- [
- "ops",
- -11.615691184997559
- ],
- [
- "▁electro",
- -11.615789413452148
- ],
- [
- "utz",
- -11.61608600616455
- ],
- [
- "▁quoi",
- -11.616246223449707
- ],
- [
- "▁adoption",
- -11.616331100463867
- ],
- [
- "3.5",
- -11.616518020629883
- ],
- [
- "50,000",
- -11.616599082946777
- ],
- [
- "veti",
- -11.616630554199219
- ],
- [
- "hir",
- -11.616957664489746
- ],
- [
- "▁adequate",
- -11.617067337036133
- ],
- [
- "ologist",
- -11.617109298706055
- ],
- [
- "torii",
- -11.617295265197754
- ],
- [
- "wasser",
- -11.617355346679688
- ],
- [
- "▁Authority",
- -11.617362976074219
- ],
- [
- "▁donation",
- -11.617364883422852
- ],
- [
- "700",
- -11.617375373840332
- ],
- [
- "▁somehow",
- -11.617375373840332
- ],
- [
- "▁kostenlos",
- -11.617425918579102
- ],
- [
- "▁generations",
- -11.617537498474121
- ],
- [
- "▁Turkey",
- -11.617711067199707
- ],
- [
- "rata",
- -11.617819786071777
- ],
- [
- "▁animation",
- -11.618206024169922
- ],
- [
- "▁CH",
- -11.618281364440918
- ],
- [
- "ending",
- -11.618317604064941
- ],
- [
- "welt",
- -11.618376731872559
- ],
- [
- "bac",
- -11.618380546569824
- ],
- [
- "MG",
- -11.618460655212402
- ],
- [
- "▁parks",
- -11.618468284606934
- ],
- [
- "▁placing",
- -11.618870735168457
- ],
- [
- "sort",
- -11.61915111541748
- ],
- [
- "▁Bitcoin",
- -11.619163513183594
- ],
- [
- "▁disorder",
- -11.619282722473145
- ],
- [
- "MAN",
- -11.619302749633789
- ],
- [
- "aught",
- -11.619412422180176
- ],
- [
- "▁guides",
- -11.61956787109375
- ],
- [
- "▁circul",
- -11.619651794433594
- ],
- [
- "▁Steven",
- -11.619954109191895
- ],
- [
- "rrière",
- -11.619976997375488
- ],
- [
- "▁Arch",
- -11.61999225616455
- ],
- [
- "▁plates",
- -11.620091438293457
- ],
- [
- "MR",
- -11.620118141174316
- ],
- [
- "▁cow",
- -11.620142936706543
- ],
- [
- "▁integrity",
- -11.620210647583008
- ],
- [
- "▁(18",
- -11.620217323303223
- ],
- [
- "▁totul",
- -11.62024211883545
- ],
- [
- "jack",
- -11.620373725891113
- ],
- [
- "▁privire",
- -11.620588302612305
- ],
- [
- "▁terme",
- -11.620752334594727
- ],
- [
- "▁execution",
- -11.620781898498535
- ],
- [
- "▁organism",
- -11.620838165283203
- ],
- [
- "▁führen",
- -11.620853424072266
- ],
- [
- "▁patron",
- -11.620940208435059
- ],
- [
- "▁appreciated",
- -11.62096881866455
- ],
- [
- "liant",
- -11.62100601196289
- ],
- [
- "▁Solar",
- -11.621055603027344
- ],
- [
- "▁vinyl",
- -11.621134757995605
- ],
- [
- "▁treasure",
- -11.621137619018555
- ],
- [
- "▁retro",
- -11.621167182922363
- ],
- [
- "▁bout",
- -11.621174812316895
- ],
- [
- "lab",
- -11.621183395385742
- ],
- [
- "▁dimension",
- -11.621394157409668
- ],
- [
- "called",
- -11.62146282196045
- ],
- [
- "▁intern",
- -11.621479034423828
- ],
- [
- "issement",
- -11.62173843383789
- ],
- [
- "▁Erst",
- -11.621837615966797
- ],
- [
- "▁stellen",
- -11.621920585632324
- ],
- [
- "▁familia",
- -11.622069358825684
- ],
- [
- "▁notion",
- -11.622176170349121
- ],
- [
- "▁Could",
- -11.622322082519531
- ],
- [
- "Getting",
- -11.622323036193848
- ],
- [
- "▁drives",
- -11.622397422790527
- ],
- [
- "▁Israeli",
- -11.622520446777344
- ],
- [
- "▁nations",
- -11.622546195983887
- ],
- [
- "▁duties",
- -11.622700691223145
- ],
- [
- "▁personalized",
- -11.622788429260254
- ],
- [
- "▁weren",
- -11.62282657623291
- ],
- [
- "▁chemicals",
- -11.622847557067871
- ],
- [
- "▁killing",
- -11.622913360595703
- ],
- [
- "▁masa",
- -11.622994422912598
- ],
- [
- "▁parce",
- -11.623026847839355
- ],
- [
- "▁lady",
- -11.623178482055664
- ],
- [
- "ides",
- -11.623221397399902
- ],
- [
- "▁execut",
- -11.62340259552002
- ],
- [
- "▁floral",
- -11.62341594696045
- ],
- [
- "▁Child",
- -11.623428344726562
- ],
- [
- "▁medal",
- -11.623503684997559
- ],
- [
- "▁casa",
- -11.623603820800781
- ],
- [
- "▁enabled",
- -11.623650550842285
- ],
- [
- "12.",
- -11.624239921569824
- ],
- [
- "nger",
- -11.624266624450684
- ],
- [
- "▁vent",
- -11.624297142028809
- ],
- [
- "▁urmă",
- -11.624727249145508
- ],
- [
- "▁Herz",
- -11.624835968017578
- ],
- [
- "▁Jay",
- -11.624916076660156
- ],
- [
- ".....",
- -11.624942779541016
- ],
- [
- "▁Kris",
- -11.62499713897705
- ],
- [
- "kenn",
- -11.625001907348633
- ],
- [
- "ress",
- -11.625027656555176
- ],
- [
- "weight",
- -11.62519359588623
- ],
- [
- "▁indicates",
- -11.625198364257812
- ],
- [
- "▁mentor",
- -11.625328063964844
- ],
- [
- "using",
- -11.625386238098145
- ],
- [
- "▁femmes",
- -11.625460624694824
- ],
- [
- "▁Jung",
- -11.625528335571289
- ],
- [
- "▁Send",
- -11.625574111938477
- ],
- [
- "▁seasons",
- -11.625906944274902
- ],
- [
- "▁aesthetic",
- -11.625964164733887
- ],
- [
- "▁Block",
- -11.626086235046387
- ],
- [
- "▁babies",
- -11.626150131225586
- ],
- [
- "zig",
- -11.626242637634277
- ],
- [
- "edge",
- -11.626428604125977
- ],
- [
- "▁alike",
- -11.626458168029785
- ],
- [
- "▁immune",
- -11.626609802246094
- ],
- [
- "▁magical",
- -11.626710891723633
- ],
- [
- "▁Snow",
- -11.626748085021973
- ],
- [
- "▁spacious",
- -11.627058982849121
- ],
- [
- "▁Melbourne",
- -11.62706184387207
- ],
- [
- "order",
- -11.627081871032715
- ],
- [
- "▁timing",
- -11.627176284790039
- ],
- [
- "▁inainte",
- -11.627220153808594
- ],
- [
- "▁width",
- -11.627327919006348
- ],
- [
- "bild",
- -11.627386093139648
- ],
- [
- "Tra",
- -11.627429008483887
- ],
- [
- "▁appliances",
- -11.627449989318848
- ],
- [
- "▁dirt",
- -11.627498626708984
- ],
- [
- "▁Rent",
- -11.627689361572266
- ],
- [
- "responsibilities",
- -11.627747535705566
- ],
- [
- "▁blogs",
- -11.62778377532959
- ],
- [
- "nächsten",
- -11.627799034118652
- ],
- [
- "▁argue",
- -11.627928733825684
- ],
- [
- "▁Resume",
- -11.627985954284668
- ],
- [
- "▁Michel",
- -11.628044128417969
- ],
- [
- "▁terrible",
- -11.628092765808105
- ],
- [
- "graph",
- -11.628151893615723
- ],
- [
- "bird",
- -11.628202438354492
- ],
- [
- "▁Simple",
- -11.628457069396973
- ],
- [
- "nning",
- -11.628658294677734
- ],
- [
- "▁coconut",
- -11.628683090209961
- ],
- [
- "▁comprise",
- -11.628787994384766
- ],
- [
- "heure",
- -11.628918647766113
- ],
- [
- "▁nichts",
- -11.628921508789062
- ],
- [
- "▁manufacture",
- -11.628966331481934
- ],
- [
- "▁Sar",
- -11.629011154174805
- ],
- [
- "green",
- -11.629014015197754
- ],
- [
- "lining",
- -11.62910270690918
- ],
- [
- "▁tremendous",
- -11.629128456115723
- ],
- [
- "▁Wine",
- -11.629164695739746
- ],
- [
- "gir",
- -11.629290580749512
- ],
- [
- "▁Nothing",
- -11.629562377929688
- ],
- [
- "▁Miller",
- -11.62957763671875
- ],
- [
- "▁Schwe",
- -11.629712104797363
- ],
- [
- "zone",
- -11.629942893981934
- ],
- [
- "▁cunoscut",
- -11.629964828491211
- ],
- [
- "rupt",
- -11.630166053771973
- ],
- [
- "kle",
- -11.630187034606934
- ],
- [
- "▁Bucuresti",
- -11.630510330200195
- ],
- [
- "▁Abend",
- -11.630574226379395
- ],
- [
- "▁aura",
- -11.630583763122559
- ],
- [
- "▁Dance",
- -11.63073444366455
- ],
- [
- "▁Wilson",
- -11.63086986541748
- ],
- [
- "icide",
- -11.630901336669922
- ],
- [
- "bai",
- -11.630910873413086
- ],
- [
- "oriented",
- -11.63103199005127
- ],
- [
- "▁celebrated",
- -11.631421089172363
- ],
- [
- "schlag",
- -11.631531715393066
- ],
- [
- "▁10-",
- -11.631600379943848
- ],
- [
- "Unsere",
- -11.63167667388916
- ],
- [
- "énergie",
- -11.632009506225586
- ],
- [
- "▁qualify",
- -11.63205623626709
- ],
- [
- "▁contenu",
- -11.632177352905273
- ],
- [
- "▁Lauf",
- -11.63220500946045
- ],
- [
- "▁einzelne",
- -11.632360458374023
- ],
- [
- "▁Youth",
- -11.632415771484375
- ],
- [
- "explains",
- -11.632601737976074
- ],
- [
- "grat",
- -11.632782936096191
- ],
- [
- "▁72",
- -11.632804870605469
- ],
- [
- "labor",
- -11.632885932922363
- ],
- [
- "2018",
- -11.632940292358398
- ],
- [
- "▁Dank",
- -11.633149147033691
- ],
- [
- "▁Hey",
- -11.633523941040039
- ],
- [
- "▁refuse",
- -11.633536338806152
- ],
- [
- "▁graduated",
- -11.633599281311035
- ],
- [
- "▁României",
- -11.633627891540527
- ],
- [
- "punkt",
- -11.633807182312012
- ],
- [
- "▁regulation",
- -11.633834838867188
- ],
- [
- "Bru",
- -11.633842468261719
- ],
- [
- "▁Side",
- -11.633891105651855
- ],
- [
- "▁sol",
- -11.633970260620117
- ],
- [
- "▁extraordinary",
- -11.634182929992676
- ],
- [
- "▁ging",
- -11.634247779846191
- ],
- [
- "▁Creative",
- -11.634299278259277
- ],
- [
- "▁expanding",
- -11.634349822998047
- ],
- [
- "▁problème",
- -11.63444995880127
- ],
- [
- "▁Reserve",
- -11.63459300994873
- ],
- [
- "auteur",
- -11.634642601013184
- ],
- [
- "sphere",
- -11.634657859802246
- ],
- [
- "season",
- -11.634716987609863
- ],
- [
- "frei",
- -11.634756088256836
- ],
- [
- "▁8,",
- -11.634765625
- ],
- [
- "▁filing",
- -11.634810447692871
- ],
- [
- "▁Complete",
- -11.635017395019531
- ],
- [
- "▁revolution",
- -11.635035514831543
- ],
- [
- "▁unele",
- -11.63520622253418
- ],
- [
- "/8",
- -11.635272979736328
- ],
- [
- "istes",
- -11.635310173034668
- ],
- [
- "backed",
- -11.635400772094727
- ],
- [
- "shirt",
- -11.635554313659668
- ],
- [
- "▁Details",
- -11.635673522949219
- ],
- [
- "rod",
- -11.635695457458496
- ],
- [
- "▁pod",
- -11.63582992553711
- ],
- [
- "▁operators",
- -11.635921478271484
- ],
- [
- "was",
- -11.635930061340332
- ],
- [
- "hou",
- -11.63594913482666
- ],
- [
- "▁Coach",
- -11.636075019836426
- ],
- [
- "irii",
- -11.636138916015625
- ],
- [
- "▁ordinary",
- -11.636186599731445
- ],
- [
- "Institut",
- -11.63620662689209
- ],
- [
- "▁Flash",
- -11.63633918762207
- ],
- [
- "0-",
- -11.636537551879883
- ],
- [
- "▁flavour",
- -11.6367769241333
- ],
- [
- "specific",
- -11.636906623840332
- ],
- [
- "▁landing",
- -11.636930465698242
- ],
- [
- "▁geo",
- -11.636935234069824
- ],
- [
- "▁legend",
- -11.636983871459961
- ],
- [
- "vari",
- -11.63703441619873
- ],
- [
- "rop",
- -11.637084007263184
- ],
- [
- "▁Excel",
- -11.6370849609375
- ],
- [
- "▁Flu",
- -11.637203216552734
- ],
- [
- "▁intent",
- -11.637582778930664
- ],
- [
- "▁Deep",
- -11.637594223022461
- ],
- [
- "▁Kor",
- -11.63763427734375
- ],
- [
- "▁Philadelphia",
- -11.637914657592773
- ],
- [
- "▁rând",
- -11.63800048828125
- ],
- [
- "▁USD",
- -11.638033866882324
- ],
- [
- "laden",
- -11.63803482055664
- ],
- [
- "▁Hin",
- -11.638047218322754
- ],
- [
- "hap",
- -11.638197898864746
- ],
- [
- "▁thorough",
- -11.638227462768555
- ],
- [
- "▁oferit",
- -11.63826847076416
- ],
- [
- "kind",
- -11.63831615447998
- ],
- [
- "▁Cancer",
- -11.638428688049316
- ],
- [
- "apo",
- -11.638596534729004
- ],
- [
- "▁valve",
- -11.638650894165039
- ],
- [
- "▁encouraging",
- -11.63884449005127
- ],
- [
- "▁sûr",
- -11.638904571533203
- ],
- [
- "shing",
- -11.638981819152832
- ],
- [
- "▁49",
- -11.639132499694824
- ],
- [
- "gov",
- -11.639142990112305
- ],
- [
- "▁Five",
- -11.63933277130127
- ],
- [
- "▁stroke",
- -11.639344215393066
- ],
- [
- "▁apă",
- -11.639398574829102
- ],
- [
- "▁gambling",
- -11.639543533325195
- ],
- [
- "▁nord",
- -11.63963508605957
- ],
- [
- "onal",
- -11.639691352844238
- ],
- [
- "▁captured",
- -11.63979721069336
- ],
- [
- "▁lucruri",
- -11.640068054199219
- ],
- [
- "serait",
- -11.640192985534668
- ],
- [
- "▁Members",
- -11.640265464782715
- ],
- [
- "ital",
- -11.640275955200195
- ],
- [
- "▁mounted",
- -11.640475273132324
- ],
- [
- "▁opens",
- -11.640792846679688
- ],
- [
- "▁Marie",
- -11.640861511230469
- ],
- [
- "Tech",
- -11.640902519226074
- ],
- [
- "▁wishes",
- -11.641016006469727
- ],
- [
- "▁regards",
- -11.641073226928711
- ],
- [
- "going",
- -11.641156196594238
- ],
- [
- "Opti",
- -11.641250610351562
- ],
- [
- "▁femei",
- -11.641331672668457
- ],
- [
- "▁Fish",
- -11.64142894744873
- ],
- [
- "▁mount",
- -11.641800880432129
- ],
- [
- "▁Hunt",
- -11.641887664794922
- ],
- [
- "▁probabil",
- -11.64205265045166
- ],
- [
- "▁assured",
- -11.642191886901855
- ],
- [
- "pho",
- -11.642230033874512
- ],
- [
- "▁manufactured",
- -11.642313003540039
- ],
- [
- "▁realistic",
- -11.642437934875488
- ],
- [
- "ații",
- -11.642580032348633
- ],
- [
- "▁Planning",
- -11.642598152160645
- ],
- [
- "▁român",
- -11.642645835876465
- ],
- [
- "ggy",
- -11.642669677734375
- ],
- [
- "▁produces",
- -11.642696380615234
- ],
- [
- "▁reminder",
- -11.64284896850586
- ],
- [
- "TION",
- -11.642868041992188
- ],
- [
- "▁brake",
- -11.642909049987793
- ],
- [
- "▁pla",
- -11.643172264099121
- ],
- [
- "▁Premium",
- -11.643270492553711
- ],
- [
- "▁carb",
- -11.643310546875
- ],
- [
- "▁shine",
- -11.643390655517578
- ],
- [
- "▁carrier",
- -11.643492698669434
- ],
- [
- "▁poverty",
- -11.64350414276123
- ],
- [
- "▁effectiveness",
- -11.6436128616333
- ],
- [
- "administr",
- -11.643655776977539
- ],
- [
- "▁Chamber",
- -11.643658638000488
- ],
- [
- "▁suntem",
- -11.64376163482666
- ],
- [
- "▁noastră",
- -11.643855094909668
- ],
- [
- "▁sofort",
- -11.643877983093262
- ],
- [
- "▁moisture",
- -11.644058227539062
- ],
- [
- "limb",
- -11.6441011428833
- ],
- [
- "entre",
- -11.644328117370605
- ],
- [
- "▁SD",
- -11.644330978393555
- ],
- [
- "▁BC",
- -11.644539833068848
- ],
- [
- "▁selecting",
- -11.6445951461792
- ],
- [
- "achieving",
- -11.644673347473145
- ],
- [
- "info",
- -11.644735336303711
- ],
- [
- "▁membres",
- -11.644983291625977
- ],
- [
- "▁shoe",
- -11.645014762878418
- ],
- [
- "▁locate",
- -11.645065307617188
- ],
- [
- "▁assignment",
- -11.645085334777832
- ],
- [
- "lern",
- -11.645283699035645
- ],
- [
- "▁defeat",
- -11.645406723022461
- ],
- [
- "▁endless",
- -11.645458221435547
- ],
- [
- "▁Stunden",
- -11.645523071289062
- ],
- [
- "то",
- -11.645561218261719
- ],
- [
- "▁mur",
- -11.645586013793945
- ],
- [
- "▁wissen",
- -11.645844459533691
- ],
- [
- "aime",
- -11.645915031433105
- ],
- [
- "1-2",
- -11.646056175231934
- ],
- [
- "▁femme",
- -11.646212577819824
- ],
- [
- "robe",
- -11.646468162536621
- ],
- [
- "▁embrace",
- -11.64647102355957
- ],
- [
- "▁baseball",
- -11.646614074707031
- ],
- [
- "▁hunting",
- -11.64663314819336
- ],
- [
- "betrieb",
- -11.646790504455566
- ],
- [
- "▁gardens",
- -11.647045135498047
- ],
- [
- "▁risc",
- -11.647096633911133
- ],
- [
- "▁Cri",
- -11.647263526916504
- ],
- [
- "best",
- -11.647506713867188
- ],
- [
- "▁Audio",
- -11.647621154785156
- ],
- [
- "▁intens",
- -11.647659301757812
- ],
- [
- "▁Round",
- -11.647744178771973
- ],
- [
- "▁fireplace",
- -11.6478271484375
- ],
- [
- "▁dozen",
- -11.647912979125977
- ],
- [
- "▁hospitals",
- -11.64802360534668
- ],
- [
- "▁profits",
- -11.648076057434082
- ],
- [
- "▁Mail",
- -11.64811897277832
- ],
- [
- "obtenir",
- -11.648191452026367
- ],
- [
- "▁Ross",
- -11.648241996765137
- ],
- [
- "bun",
- -11.648573875427246
- ],
- [
- "polar",
- -11.648688316345215
- ],
- [
- "▁reflection",
- -11.648873329162598
- ],
- [
- "▁fut",
- -11.648992538452148
- ],
- [
- "phon",
- -11.649017333984375
- ],
- [
- "deck",
- -11.649094581604004
- ],
- [
- "renowned",
- -11.649188041687012
- ],
- [
- "▁cate",
- -11.649308204650879
- ],
- [
- "▁decorative",
- -11.6494722366333
- ],
- [
- "ieri",
- -11.64957332611084
- ],
- [
- "▁Tap",
- -11.64958381652832
- ],
- [
- "▁Dallas",
- -11.649600982666016
- ],
- [
- "rik",
- -11.649665832519531
- ],
- [
- "▁pied",
- -11.649727821350098
- ],
- [
- "rés",
- -11.649821281433105
- ],
- [
- "ppy",
- -11.650137901306152
- ],
- [
- "▁bitte",
- -11.650188446044922
- ],
- [
- "▁cave",
- -11.650257110595703
- ],
- [
- "▁rescue",
- -11.650559425354004
- ],
- [
- "▁Hilfe",
- -11.650714874267578
- ],
- [
- "▁Jason",
- -11.650786399841309
- ],
- [
- "▁Nations",
- -11.650838851928711
- ],
- [
- "▁profil",
- -11.650938987731934
- ],
- [
- "▁Atlantic",
- -11.651105880737305
- ],
- [
- "▁rub",
- -11.651126861572266
- ],
- [
- "▁collaborative",
- -11.65113353729248
- ],
- [
- "étude",
- -11.651150703430176
- ],
- [
- "▁Workshop",
- -11.651389122009277
- ],
- [
- "nez",
- -11.651628494262695
- ],
- [
- "▁chacun",
- -11.651714324951172
- ],
- [
- "▁Too",
- -11.65211296081543
- ],
- [
- "App",
- -11.652313232421875
- ],
- [
- "▁conseil",
- -11.652399063110352
- ],
- [
- "▁signals",
- -11.652474403381348
- ],
- [
- "▁Dead",
- -11.652497291564941
- ],
- [
- "▁Austria",
- -11.652522087097168
- ],
- [
- "▁slots",
- -11.652579307556152
- ],
- [
- "▁Dies",
- -11.652623176574707
- ],
- [
- "raj",
- -11.652629852294922
- ],
- [
- "stick",
- -11.652833938598633
- ],
- [
- "▁jaw",
- -11.653030395507812
- ],
- [
- "▁lounge",
- -11.653059005737305
- ],
- [
- "curi",
- -11.653359413146973
- ],
- [
- "nem",
- -11.653456687927246
- ],
- [
- "▁Cluj",
- -11.653512954711914
- ],
- [
- "▁rapide",
- -11.653584480285645
- ],
- [
- "▁companion",
- -11.653716087341309
- ],
- [
- "▁WE",
- -11.653879165649414
- ],
- [
- "▁bord",
- -11.65389347076416
- ],
- [
- "ody",
- -11.654045104980469
- ],
- [
- "gru",
- -11.654057502746582
- ],
- [
- "▁46",
- -11.654410362243652
- ],
- [
- "kra",
- -11.654717445373535
- ],
- [
- "eller",
- -11.65477180480957
- ],
- [
- "naire",
- -11.65511703491211
- ],
- [
- "hose",
- -11.655253410339355
- ],
- [
- "▁Atlanta",
- -11.655254364013672
- ],
- [
- "▁violent",
- -11.65530776977539
- ],
- [
- "▁imagination",
- -11.655352592468262
- ],
- [
- "▁reward",
- -11.655389785766602
- ],
- [
- "▁Korean",
- -11.655441284179688
- ],
- [
- "▁branches",
- -11.655501365661621
- ],
- [
- "▁GPS",
- -11.655625343322754
- ],
- [
- "glo",
- -11.655633926391602
- ],
- [
- "▁condo",
- -11.655705451965332
- ],
- [
- "▁Investment",
- -11.655765533447266
- ],
- [
- "▁involvement",
- -11.655813217163086
- ],
- [
- "▁trap",
- -11.655829429626465
- ],
- [
- "▁schön",
- -11.655872344970703
- ],
- [
- "▁ofera",
- -11.655933380126953
- ],
- [
- "▁unterschiedlich",
- -11.65596866607666
- ],
- [
- "Net",
- -11.655987739562988
- ],
- [
- "▁predict",
- -11.656113624572754
- ],
- [
- "identifying",
- -11.656309127807617
- ],
- [
- "▁noir",
- -11.6566162109375
- ],
- [
- "kos",
- -11.656816482543945
- ],
- [
- "poz",
- -11.656816482543945
- ],
- [
- "▁11,",
- -11.65698528289795
- ],
- [
- "▁fitted",
- -11.657384872436523
- ],
- [
- "MU",
- -11.657469749450684
- ],
- [
- "TT",
- -11.657645225524902
- ],
- [
- "▁vrea",
- -11.657846450805664
- ],
- [
- "▁wound",
- -11.657864570617676
- ],
- [
- "lac",
- -11.657971382141113
- ],
- [
- "▁purchases",
- -11.658409118652344
- ],
- [
- "▁Cape",
- -11.65843677520752
- ],
- [
- "▁Foto",
- -11.658537864685059
- ],
- [
- "▁acres",
- -11.65865707397461
- ],
- [
- "▁nec",
- -11.658677101135254
- ],
- [
- "▁burning",
- -11.659050941467285
- ],
- [
- "conf",
- -11.659457206726074
- ],
- [
- "▁browse",
- -11.659486770629883
- ],
- [
- "ural",
- -11.659762382507324
- ],
- [
- "▁Ah",
- -11.659841537475586
- ],
- [
- "▁stellt",
- -11.65992259979248
- ],
- [
- "▁ratings",
- -11.660012245178223
- ],
- [
- "▁Bowl",
- -11.660027503967285
- ],
- [
- "▁grav",
- -11.660289764404297
- ],
- [
- "titi",
- -11.66048526763916
- ],
- [
- "▁prêt",
- -11.66075325012207
- ],
- [
- "▁fallen",
- -11.660818099975586
- ],
- [
- "▁nombreuses",
- -11.660940170288086
- ],
- [
- "train",
- -11.660953521728516
- ],
- [
- "ène",
- -11.661009788513184
- ],
- [
- "Aceasta",
- -11.661091804504395
- ],
- [
- "▁drill",
- -11.661421775817871
- ],
- [
- "▁Exam",
- -11.661477088928223
- ],
- [
- "▁Furniture",
- -11.661651611328125
- ],
- [
- "eanu",
- -11.661919593811035
- ],
- [
- "étant",
- -11.66230297088623
- ],
- [
- "sville",
- -11.662391662597656
- ],
- [
- "▁swim",
- -11.662796020507812
- ],
- [
- "▁routes",
- -11.662826538085938
- ],
- [
- "INE",
- -11.662860870361328
- ],
- [
- "▁Por",
- -11.662976264953613
- ],
- [
- "ither",
- -11.663168907165527
- ],
- [
- "▁optim",
- -11.663180351257324
- ],
- [
- "▁lua",
- -11.66331958770752
- ],
- [
- "▁myth",
- -11.663491249084473
- ],
- [
- "▁Bett",
- -11.6635103225708
- ],
- [
- "chim",
- -11.66355037689209
- ],
- [
- "▁cyber",
- -11.663553237915039
- ],
- [
- "▁engineer",
- -11.663825035095215
- ],
- [
- "▁exploration",
- -11.663918495178223
- ],
- [
- "arranged",
- -11.663973808288574
- ],
- [
- "▁aged",
- -11.663993835449219
- ],
- [
- "▁beau",
- -11.664024353027344
- ],
- [
- "OUT",
- -11.66402530670166
- ],
- [
- "▁Minnesota",
- -11.664031982421875
- ],
- [
- "tress",
- -11.664407730102539
- ],
- [
- "▁Commercial",
- -11.664509773254395
- ],
- [
- "▁inspiring",
- -11.66462516784668
- ],
- [
- "▁Mare",
- -11.664725303649902
- ],
- [
- "apa",
- -11.665140151977539
- ],
- [
- "▁ignore",
- -11.6651611328125
- ],
- [
- "▁gros",
- -11.665186882019043
- ],
- [
- "▁measurement",
- -11.66531753540039
- ],
- [
- "ager",
- -11.665395736694336
- ],
- [
- "intele",
- -11.665966987609863
- ],
- [
- "▁suspension",
- -11.666180610656738
- ],
- [
- "▁cultures",
- -11.666211128234863
- ],
- [
- "▁Wow",
- -11.666231155395508
- ],
- [
- "▁pushing",
- -11.666363716125488
- ],
- [
- "▁bands",
- -11.666438102722168
- ],
- [
- "nage",
- -11.666450500488281
- ],
- [
- "▁Math",
- -11.666515350341797
- ],
- [
- "comb",
- -11.66658878326416
- ],
- [
- "▁créer",
- -11.66658878326416
- ],
- [
- "▁Lewis",
- -11.666685104370117
- ],
- [
- "▁VI",
- -11.66678524017334
- ],
- [
- "emploi",
- -11.666791915893555
- ],
- [
- "▁elections",
- -11.666890144348145
- ],
- [
- "▁logic",
- -11.666982650756836
- ],
- [
- "▁unlike",
- -11.667122840881348
- ],
- [
- "▁Matthew",
- -11.66743278503418
- ],
- [
- "▁pă",
- -11.667486190795898
- ],
- [
- "oxy",
- -11.667620658874512
- ],
- [
- "équipe",
- -11.667717933654785
- ],
- [
- "▁worden",
- -11.668088912963867
- ],
- [
- "dev",
- -11.668258666992188
- ],
- [
- "▁Massachusetts",
- -11.668691635131836
- ],
- [
- "▁Return",
- -11.668695449829102
- ],
- [
- "▁Friends",
- -11.66891098022461
- ],
- [
- "▁movements",
- -11.66894245147705
- ],
- [
- "chie",
- -11.668964385986328
- ],
- [
- "rak",
- -11.669017791748047
- ],
- [
- "▁Fit",
- -11.66904354095459
- ],
- [
- "▁copil",
- -11.669113159179688
- ],
- [
- "iunii",
- -11.669188499450684
- ],
- [
- "▁intensive",
- -11.669234275817871
- ],
- [
- "▁rug",
- -11.669452667236328
- ],
- [
- "lichkeit",
- -11.669686317443848
- ],
- [
- "kov",
- -11.669724464416504
- ],
- [
- "▁pense",
- -11.66978645324707
- ],
- [
- "pop",
- -11.66978931427002
- ],
- [
- "▁closet",
- -11.669865608215332
- ],
- [
- "▁prevention",
- -11.669920921325684
- ],
- [
- "▁Deb",
- -11.670256614685059
- ],
- [
- "▁devant",
- -11.670430183410645
- ],
- [
- "▁construit",
- -11.670440673828125
- ],
- [
- "▁breaks",
- -11.67082405090332
- ],
- [
- "otic",
- -11.670886993408203
- ],
- [
- "▁dig",
- -11.67088794708252
- ],
- [
- "▁près",
- -11.670930862426758
- ],
- [
- "chte",
- -11.671029090881348
- ],
- [
- "▁Chat",
- -11.671029090881348
- ],
- [
- "wel",
- -11.671219825744629
- ],
- [
- "▁edges",
- -11.671272277832031
- ],
- [
- "▁keen",
- -11.671419143676758
- ],
- [
- "▁infant",
- -11.671716690063477
- ],
- [
- "▁Hills",
- -11.6719388961792
- ],
- [
- "▁grounds",
- -11.671969413757324
- ],
- [
- "▁hab",
- -11.672039031982422
- ],
- [
- "▁Mun",
- -11.67215347290039
- ],
- [
- "▁references",
- -11.672215461730957
- ],
- [
- "▁hearts",
- -11.672446250915527
- ],
- [
- "exprim",
- -11.672487258911133
- ],
- [
- "▁tratament",
- -11.672553062438965
- ],
- [
- "LD",
- -11.67258358001709
- ],
- [
- "ssel",
- -11.67275333404541
- ],
- [
- "cover",
- -11.672782897949219
- ],
- [
- "bridge",
- -11.672837257385254
- ],
- [
- "▁Wein",
- -11.672924995422363
- ],
- [
- "▁voiture",
- -11.673035621643066
- ],
- [
- "▁Gemeinde",
- -11.67313289642334
- ],
- [
- "AI",
- -11.673169136047363
- ],
- [
- "▁renovation",
- -11.673264503479004
- ],
- [
- "bid",
- -11.673285484313965
- ],
- [
- "▁Reading",
- -11.673481941223145
- ],
- [
- "▁Gor",
- -11.673490524291992
- ],
- [
- "fur",
- -11.673527717590332
- ],
- [
- "▁Yoga",
- -11.673544883728027
- ],
- [
- "▁exclusively",
- -11.673630714416504
- ],
- [
- "▁emissions",
- -11.67385482788086
- ],
- [
- "ète",
- -11.673905372619629
- ],
- [
- "▁glasses",
- -11.674055099487305
- ],
- [
- "▁organizat",
- -11.674135208129883
- ],
- [
- "▁washing",
- -11.67415714263916
- ],
- [
- "▁Audi",
- -11.674173355102539
- ],
- [
- "▁Labor",
- -11.674331665039062
- ],
- [
- "▁legacy",
- -11.674381256103516
- ],
- [
- "▁abstract",
- -11.674519538879395
- ],
- [
- "▁knowledgeable",
- -11.674601554870605
- ],
- [
- "▁Glo",
- -11.674795150756836
- ],
- [
- "▁pregnant",
- -11.67481803894043
- ],
- [
- "liter",
- -11.674851417541504
- ],
- [
- "▁paintings",
- -11.67522144317627
- ],
- [
- "▁tête",
- -11.675244331359863
- ],
- [
- "voy",
- -11.675626754760742
- ],
- [
- "▁Jacob",
- -11.675667762756348
- ],
- [
- "▁dressing",
- -11.675679206848145
- ],
- [
- "▁provisions",
- -11.675768852233887
- ],
- [
- "bahn",
- -11.675870895385742
- ],
- [
- "▁depict",
- -11.675875663757324
- ],
- [
- "AW",
- -11.676068305969238
- ],
- [
- "▁bleibt",
- -11.676163673400879
- ],
- [
- "AND",
- -11.676292419433594
- ],
- [
- "▁fünf",
- -11.676386833190918
- ],
- [
- "▁hosts",
- -11.676426887512207
- ],
- [
- "vas",
- -11.676708221435547
- ],
- [
- "DO",
- -11.67674732208252
- ],
- [
- "▁max",
- -11.676753997802734
- ],
- [
- "▁contributed",
- -11.676774978637695
- ],
- [
- "roz",
- -11.676796913146973
- ],
- [
- "▁deschis",
- -11.676800727844238
- ],
- [
- "itaire",
- -11.676809310913086
- ],
- [
- "tube",
- -11.676959991455078
- ],
- [
- "▁Beck",
- -11.676959991455078
- ],
- [
- "▁curious",
- -11.677130699157715
- ],
- [
- "▁waves",
- -11.677178382873535
- ],
- [
- "▁regret",
- -11.677248001098633
- ],
- [
- "FO",
- -11.677326202392578
- ],
- [
- "droit",
- -11.67734146118164
- ],
- [
- "rö",
- -11.677565574645996
- ],
- [
- "▁Panel",
- -11.677624702453613
- ],
- [
- "▁pile",
- -11.677660942077637
- ],
- [
- "▁installing",
- -11.677674293518066
- ],
- [
- "▁Intr",
- -11.677797317504883
- ],
- [
- "nung",
- -11.677823066711426
- ],
- [
- "▁Outdoor",
- -11.677855491638184
- ],
- [
- "▁generator",
- -11.67786693572998
- ],
- [
- "▁zahlreiche",
- -11.677868843078613
- ],
- [
- "▁Third",
- -11.67813491821289
- ],
- [
- "frac",
- -11.678180694580078
- ],
- [
- "ovi",
- -11.678236961364746
- ],
- [
- "▁Casa",
- -11.678374290466309
- ],
- [
- "▁stomach",
- -11.678393363952637
- ],
- [
- "▁Lincoln",
- -11.67844009399414
- ],
- [
- "▁Electronic",
- -11.678584098815918
- ],
- [
- "coding",
- -11.67895221710205
- ],
- [
- "2017",
- -11.67900276184082
- ],
- [
- "▁friendship",
- -11.679238319396973
- ],
- [
- "ried",
- -11.679250717163086
- ],
- [
- "но",
- -11.679265022277832
- ],
- [
- "▁tail",
- -11.679267883300781
- ],
- [
- "▁petits",
- -11.679308891296387
- ],
- [
- "▁réseau",
- -11.679696083068848
- ],
- [
- "▁churches",
- -11.679999351501465
- ],
- [
- "▁marketplace",
- -11.680062294006348
- ],
- [
- "▁Pool",
- -11.680318832397461
- ],
- [
- "▁popularity",
- -11.680455207824707
- ],
- [
- "▁sprijin",
- -11.680496215820312
- ],
- [
- "▁Od",
- -11.680527687072754
- ],
- [
- "▁Transfer",
- -11.680562973022461
- ],
- [
- "▁fake",
- -11.680791854858398
- ],
- [
- "▁9,",
- -11.681007385253906
- ],
- [
- "▁weit",
- -11.681264877319336
- ],
- [
- "▁relaxed",
- -11.681415557861328
- ],
- [
- "pig",
- -11.68161678314209
- ],
- [
- "▁Lauren",
- -11.68166732788086
- ],
- [
- "gesetzt",
- -11.681669235229492
- ],
- [
- "▁Clar",
- -11.681694984436035
- ],
- [
- "▁unlikely",
- -11.681731224060059
- ],
- [
- "color",
- -11.681832313537598
- ],
- [
- "▁spouse",
- -11.681843757629395
- ],
- [
- "▁facile",
- -11.681859970092773
- ],
- [
- "▁Speed",
- -11.681872367858887
- ],
- [
- "KE",
- -11.682230949401855
- ],
- [
- "▁PO",
- -11.68231201171875
- ],
- [
- "▁Channel",
- -11.682321548461914
- ],
- [
- "argent",
- -11.682356834411621
- ],
- [
- "▁Making",
- -11.682430267333984
- ],
- [
- "▁Coll",
- -11.682585716247559
- ],
- [
- "cci",
- -11.682721138000488
- ],
- [
- "corresponding",
- -11.68300724029541
- ],
- [
- "▁heaven",
- -11.683160781860352
- ],
- [
- "ţă",
- -11.68319320678711
- ],
- [
- "▁darüber",
- -11.683236122131348
- ],
- [
- "acted",
- -11.683420181274414
- ],
- [
- "only",
- -11.683460235595703
- ],
- [
- "▁slight",
- -11.683465003967285
- ],
- [
- "lian",
- -11.68348503112793
- ],
- [
- "flă",
- -11.683510780334473
- ],
- [
- "▁vulnerable",
- -11.683530807495117
- ],
- [
- "▁creator",
- -11.68356704711914
- ],
- [
- "▁protecting",
- -11.68360424041748
- ],
- [
- "writing",
- -11.68360710144043
- ],
- [
- "▁Ter",
- -11.68387222290039
- ],
- [
- "▁barb",
- -11.683987617492676
- ],
- [
- "▁dată",
- -11.683995246887207
- ],
- [
- "▁Screen",
- -11.684052467346191
- ],
- [
- "▁BBC",
- -11.684082984924316
- ],
- [
- "Col",
- -11.684206008911133
- ],
- [
- "fung",
- -11.684453964233398
- ],
- [
- "▁dreptul",
- -11.684494972229004
- ],
- [
- "derived",
- -11.684538841247559
- ],
- [
- "▁designated",
- -11.684553146362305
- ],
- [
- "▁interactions",
- -11.684617042541504
- ],
- [
- "SG",
- -11.684621810913086
- ],
- [
- "▁häufig",
- -11.684625625610352
- ],
- [
- "▁Mega",
- -11.684638023376465
- ],
- [
- "▁jazz",
- -11.684660911560059
- ],
- [
- "lbs",
- -11.684797286987305
- ],
- [
- "▁Manual",
- -11.68484115600586
- ],
- [
- "pushed",
- -11.685017585754395
- ],
- [
- "▁analytics",
- -11.685234069824219
- ],
- [
- "▁lawsuit",
- -11.68533706665039
- ],
- [
- "▁gray",
- -11.685364723205566
- ],
- [
- "shirts",
- -11.685401916503906
- ],
- [
- "▁hill",
- -11.685508728027344
- ],
- [
- "▁1991",
- -11.68550968170166
- ],
- [
- "▁obligations",
- -11.685568809509277
- ],
- [
- "▁Dubai",
- -11.68580436706543
- ],
- [
- "()",
- -11.685808181762695
- ],
- [
- "▁acceptable",
- -11.685810089111328
- ],
- [
- "therapist",
- -11.685877799987793
- ],
- [
- "inger",
- -11.6860990524292
- ],
- [
- "▁territory",
- -11.686208724975586
- ],
- [
- "▁sang",
- -11.6862211227417
- ],
- [
- "ät",
- -11.686224937438965
- ],
- [
- "▁Zukunft",
- -11.686238288879395
- ],
- [
- "TU",
- -11.68657398223877
- ],
- [
- "▁horizontal",
- -11.68665599822998
- ],
- [
- "▁entrepreneurs",
- -11.686710357666016
- ],
- [
- "▁Eltern",
- -11.687017440795898
- ],
- [
- "▁presentations",
- -11.687129974365234
- ],
- [
- "▁confirmation",
- -11.687173843383789
- ],
- [
- "▁technological",
- -11.687432289123535
- ],
- [
- "▁1989",
- -11.687530517578125
- ],
- [
- "EF",
- -11.687640190124512
- ],
- [
- "ponent",
- -11.687663078308105
- ],
- [
- "NET",
- -11.687699317932129
- ],
- [
- "750",
- -11.687772750854492
- ],
- [
- "▁desert",
- -11.687891960144043
- ],
- [
- "▁contribu",
- -11.687932968139648
- ],
- [
- "▁Gun",
- -11.687944412231445
- ],
- [
- "▁Juli",
- -11.688091278076172
- ],
- [
- "ERS",
- -11.688261985778809
- ],
- [
- "▁inceput",
- -11.688261985778809
- ],
- [
- "▁answered",
- -11.688369750976562
- ],
- [
- "▁basement",
- -11.688410758972168
- ],
- [
- "film",
- -11.688434600830078
- ],
- [
- "▁taille",
- -11.688593864440918
- ],
- [
- "▁survival",
- -11.688655853271484
- ],
- [
- "ihnen",
- -11.68869400024414
- ],
- [
- "▁Bird",
- -11.688840866088867
- ],
- [
- "speed",
- -11.689336776733398
- ],
- [
- "▁journalist",
- -11.68941879272461
- ],
- [
- "▁Indonesia",
- -11.689626693725586
- ],
- [
- "▁15.",
- -11.689973831176758
- ],
- [
- "▁19.",
- -11.690025329589844
- ],
- [
- "étaient",
- -11.690114974975586
- ],
- [
- "▁tennis",
- -11.69024658203125
- ],
- [
- "▁aproximativ",
- -11.69039249420166
- ],
- [
- "▁Hans",
- -11.690650939941406
- ],
- [
- "▁Remove",
- -11.69067096710205
- ],
- [
- "▁cats",
- -11.691022872924805
- ],
- [
- "▁calories",
- -11.691052436828613
- ],
- [
- "▁limitations",
- -11.69119644165039
- ],
- [
- "▁subscribe",
- -11.691198348999023
- ],
- [
- "▁Dem",
- -11.691339492797852
- ],
- [
- "lust",
- -11.691370010375977
- ],
- [
- "▁adresa",
- -11.691394805908203
- ],
- [
- "▁sais",
- -11.69140911102295
- ],
- [
- "...\"",
- -11.691473960876465
- ],
- [
- "▁Luft",
- -11.691485404968262
- ],
- [
- "DL",
- -11.691597938537598
- ],
- [
- "▁estimates",
- -11.691600799560547
- ],
- [
- "▁protocol",
- -11.691603660583496
- ],
- [
- "▁Namen",
- -11.691776275634766
- ],
- [
- "▁grands",
- -11.691901206970215
- ],
- [
- "▁voter",
- -11.691970825195312
- ],
- [
- "▁vacuum",
- -11.692075729370117
- ],
- [
- "▁versch",
- -11.692103385925293
- ],
- [
- "▁Democratic",
- -11.692107200622559
- ],
- [
- "▁Books",
- -11.692170143127441
- ],
- [
- "▁frames",
- -11.692727088928223
- ],
- [
- "▁Bee",
- -11.692864418029785
- ],
- [
- "▁helfen",
- -11.692934036254883
- ],
- [
- "▁dive",
- -11.692963600158691
- ],
- [
- "▁physician",
- -11.693037033081055
- ],
- [
- "▁powered",
- -11.693131446838379
- ],
- [
- "▁zones",
- -11.693337440490723
- ],
- [
- "▁regime",
- -11.69345474243164
- ],
- [
- "check",
- -11.693578720092773
- ],
- [
- "11.",
- -11.693793296813965
- ],
- [
- "▁plaisir",
- -11.693793296813965
- ],
- [
- "▁physically",
- -11.693811416625977
- ],
- [
- "▁Pul",
- -11.694245338439941
- ],
- [
- "▁jardin",
- -11.694294929504395
- ],
- [
- "▁Nur",
- -11.694417953491211
- ],
- [
- "WC",
- -11.694425582885742
- ],
- [
- "▁Lock",
- -11.694506645202637
- ],
- [
- "▁économique",
- -11.694530487060547
- ],
- [
- "user",
- -11.694536209106445
- ],
- [
- "▁commit",
- -11.694731712341309
- ],
- [
- "▁oldest",
- -11.694764137268066
- ],
- [
- "▁fulfill",
- -11.694780349731445
- ],
- [
- "▁nervous",
- -11.69482135772705
- ],
- [
- "▁SH",
- -11.695014953613281
- ],
- [
- "SK",
- -11.695150375366211
- ],
- [
- "▁plein",
- -11.695291519165039
- ],
- [
- "show",
- -11.695354461669922
- ],
- [
- "▁disability",
- -11.695356369018555
- ],
- [
- "papier",
- -11.69544506072998
- ],
- [
- "▁Corp",
- -11.695611000061035
- ],
- [
- "ători",
- -11.695676803588867
- ],
- [
- "nţă",
- -11.695813179016113
- ],
- [
- "▁overseas",
- -11.696009635925293
- ],
- [
- "▁struck",
- -11.69603157043457
- ],
- [
- "astic",
- -11.69607162475586
- ],
- [
- "▁advised",
- -11.696088790893555
- ],
- [
- "BE",
- -11.696161270141602
- ],
- [
- "▁UV",
- -11.696218490600586
- ],
- [
- "patient",
- -11.69626235961914
- ],
- [
- "▁texte",
- -11.696344375610352
- ],
- [
- "▁timely",
- -11.696444511413574
- ],
- [
- "used",
- -11.696471214294434
- ],
- [
- "▁occasionally",
- -11.696524620056152
- ],
- [
- "▁entries",
- -11.696550369262695
- ],
- [
- "underlying",
- -11.6967191696167
- ],
- [
- "01.",
- -11.696748733520508
- ],
- [
- "▁automated",
- -11.696791648864746
- ],
- [
- "yes",
- -11.696828842163086
- ],
- [
- "▁Staff",
- -11.697057723999023
- ],
- [
- "▁Einzel",
- -11.697546005249023
- ],
- [
- "quit",
- -11.697687149047852
- ],
- [
- "▁Cela",
- -11.697951316833496
- ],
- [
- "▁snap",
- -11.698298454284668
- ],
- [
- "▁followers",
- -11.698330879211426
- ],
- [
- "CN",
- -11.698709487915039
- ],
- [
- "▁Cooper",
- -11.698892593383789
- ],
- [
- "ô",
- -11.698921203613281
- ],
- [
- "▁memorable",
- -11.698965072631836
- ],
- [
- "▁jur",
- -11.698996543884277
- ],
- [
- "▁ajutorul",
- -11.69905948638916
- ],
- [
- "▁Enter",
- -11.6991548538208
- ],
- [
- "Often",
- -11.699294090270996
- ],
- [
- "▁dintr",
- -11.699341773986816
- ],
- [
- "-30",
- -11.699419975280762
- ],
- [
- "ESS",
- -11.699454307556152
- ],
- [
- "▁weird",
- -11.699462890625
- ],
- [
- "▁Animal",
- -11.699706077575684
- ],
- [
- "▁complement",
- -11.699719429016113
- ],
- [
- "▁Bot",
- -11.699756622314453
- ],
- [
- "▁darf",
- -11.699764251708984
- ],
- [
- "yed",
- -11.699808120727539
- ],
- [
- "▁Mul",
- -11.699872016906738
- ],
- [
- "lick",
- -11.700080871582031
- ],
- [
- "▁Cambridge",
- -11.700216293334961
- ],
- [
- "adore",
- -11.700407981872559
- ],
- [
- "▁Dutch",
- -11.700420379638672
- ],
- [
- "▁Castle",
- -11.700431823730469
- ],
- [
- "igi",
- -11.700563430786133
- ],
- [
- "▁enemy",
- -11.70071029663086
- ],
- [
- "accompanied",
- -11.700725555419922
- ],
- [
- "▁teren",
- -11.701102256774902
- ],
- [
- "▁ET",
- -11.701498985290527
- ],
- [
- "ffle",
- -11.701557159423828
- ],
- [
- "-15",
- -11.701651573181152
- ],
- [
- "▁Geo",
- -11.701680183410645
- ],
- [
- "▁attractions",
- -11.701730728149414
- ],
- [
- "iker",
- -11.70185661315918
- ],
- [
- "▁bă",
- -11.701990127563477
- ],
- [
- "▁heal",
- -11.701995849609375
- ],
- [
- "weisen",
- -11.702144622802734
- ],
- [
- "▁spectrum",
- -11.702186584472656
- ],
- [
- "meld",
- -11.702394485473633
- ],
- [
- "▁eveniment",
- -11.70247745513916
- ],
- [
- "arra",
- -11.702478408813477
- ],
- [
- "rete",
- -11.70250129699707
- ],
- [
- "▁Had",
- -11.70250415802002
- ],
- [
- "looking",
- -11.702692031860352
- ],
- [
- "isierung",
- -11.702805519104004
- ],
- [
- "▁moyen",
- -11.703129768371582
- ],
- [
- "▁gesamte",
- -11.703202247619629
- ],
- [
- "▁destroy",
- -11.703407287597656
- ],
- [
- "125",
- -11.703518867492676
- ],
- [
- "▁suivant",
- -11.703913688659668
- ],
- [
- "▁declared",
- -11.703925132751465
- ],
- [
- "▁Urban",
- -11.704131126403809
- ],
- [
- "▁16.",
- -11.704168319702148
- ],
- [
- "▁Beg",
- -11.704168319702148
- ],
- [
- "▁canal",
- -11.704225540161133
- ],
- [
- "▁Pres",
- -11.70431137084961
- ],
- [
- "▁geeignet",
- -11.704339981079102
- ],
- [
- "▁strat",
- -11.704365730285645
- ],
- [
- "UB",
- -11.704395294189453
- ],
- [
- "▁Alexander",
- -11.704424858093262
- ],
- [
- "cycle",
- -11.704666137695312
- ],
- [
- "▁Var",
- -11.704802513122559
- ],
- [
- "▁domin",
- -11.704805374145508
- ],
- [
- "▁lasting",
- -11.704939842224121
- ],
- [
- "terio",
- -11.705262184143066
- ],
- [
- "▁Battle",
- -11.705339431762695
- ],
- [
- "▁publications",
- -11.705647468566895
- ],
- [
- "▁implica",
- -11.705886840820312
- ],
- [
- "▁NA",
- -11.705963134765625
- ],
- [
- "▁stocks",
- -11.706036567687988
- ],
- [
- "Plat",
- -11.70611572265625
- ],
- [
- "▁excitement",
- -11.706149101257324
- ],
- [
- "▁Muslim",
- -11.706524848937988
- ],
- [
- "▁Mari",
- -11.706530570983887
- ],
- [
- "▁Ul",
- -11.706647872924805
- ],
- [
- "nächst",
- -11.706757545471191
- ],
- [
- "▁trait",
- -11.706833839416504
- ],
- [
- "▁(3)",
- -11.706852912902832
- ],
- [
- "▁Attorney",
- -11.706894874572754
- ],
- [
- "▁Malaysia",
- -11.70689582824707
- ],
- [
- "▁slab",
- -11.706960678100586
- ],
- [
- "▁dam",
- -11.707113265991211
- ],
- [
- "▁Bir",
- -11.707226753234863
- ],
- [
- "▁sing",
- -11.70738410949707
- ],
- [
- "▁Culture",
- -11.7073974609375
- ],
- [
- "UD",
- -11.707417488098145
- ],
- [
- "▁Mes",
- -11.707443237304688
- ],
- [
- "ități",
- -11.707615852355957
- ],
- [
- "▁possess",
- -11.708173751831055
- ],
- [
- "enabling",
- -11.70820426940918
- ],
- [
- "▁settled",
- -11.708335876464844
- ],
- [
- "▁sagen",
- -11.708492279052734
- ],
- [
- "▁erfolgt",
- -11.708564758300781
- ],
- [
- "dog",
- -11.708600997924805
- ],
- [
- "ndu",
- -11.708732604980469
- ],
- [
- "ității",
- -11.708745002746582
- ],
- [
- "▁Islam",
- -11.708930015563965
- ],
- [
- "▁catalog",
- -11.708931922912598
- ],
- [
- "▁simt",
- -11.709102630615234
- ],
- [
- "tische",
- -11.709150314331055
- ],
- [
- "▁Mach",
- -11.709334373474121
- ],
- [
- "▁EP",
- -11.709359169006348
- ],
- [
- "▁Certified",
- -11.709386825561523
- ],
- [
- "▁Resources",
- -11.70945930480957
- ],
- [
- "▁Past",
- -11.709607124328613
- ],
- [
- "▁Termin",
- -11.709755897521973
- ],
- [
- "▁lightweight",
- -11.709755897521973
- ],
- [
- "▁championship",
- -11.70994758605957
- ],
- [
- "gebiet",
- -11.710122108459473
- ],
- [
- "▁jurisdiction",
- -11.710135459899902
- ],
- [
- "▁euros",
- -11.710169792175293
- ],
- [
- "▁Familien",
- -11.710554122924805
- ],
- [
- "▁GT",
- -11.710677146911621
- ],
- [
- "▁dvs",
- -11.71081256866455
- ],
- [
- "▁nouveaux",
- -11.710838317871094
- ],
- [
- "▁chill",
- -11.710916519165039
- ],
- [
- "▁ridicat",
- -11.710920333862305
- ],
- [
- "his",
- -11.711079597473145
- ],
- [
- "▁Indi",
- -11.711159706115723
- ],
- [
- "▁arrested",
- -11.71116828918457
- ],
- [
- "ităţii",
- -11.711170196533203
- ],
- [
- "onul",
- -11.711274147033691
- ],
- [
- "appar",
- -11.711296081542969
- ],
- [
- "▁Bachelor",
- -11.711297988891602
- ],
- [
- "▁erfolgreich",
- -11.711426734924316
- ],
- [
- "▁versatile",
- -11.71163558959961
- ],
- [
- "▁nécessaire",
- -11.711761474609375
- ],
- [
- "▁facial",
- -11.712160110473633
- ],
- [
- "▁Bull",
- -11.712226867675781
- ],
- [
- "Comm",
- -11.712237358093262
- ],
- [
- "atte",
- -11.712307929992676
- ],
- [
- "hom",
- -11.7123384475708
- ],
- [
- "start",
- -11.712576866149902
- ],
- [
- "▁roughly",
- -11.712936401367188
- ],
- [
- "▁bay",
- -11.712984085083008
- ],
- [
- "▁american",
- -11.712986946105957
- ],
- [
- "▁Wisconsin",
- -11.713135719299316
- ],
- [
- "▁Clinton",
- -11.713142395019531
- ],
- [
- "appareil",
- -11.713153839111328
- ],
- [
- "▁liberal",
- -11.713455200195312
- ],
- [
- "▁dau",
- -11.713519096374512
- ],
- [
- "ech",
- -11.713521957397461
- ],
- [
- "2014",
- -11.713624000549316
- ],
- [
- "▁lip",
- -11.713645935058594
- ],
- [
- "▁maintenant",
- -11.713762283325195
- ],
- [
- "▁Sil",
- -11.713805198669434
- ],
- [
- "rben",
- -11.713891983032227
- ],
- [
- "▁contents",
- -11.713980674743652
- ],
- [
- "▁magnetic",
- -11.714111328125
- ],
- [
- "▁terre",
- -11.714151382446289
- ],
- [
- "▁Rights",
- -11.714475631713867
- ],
- [
- "lose",
- -11.714570045471191
- ],
- [
- "▁crown",
- -11.71468448638916
- ],
- [
- "▁oils",
- -11.7147216796875
- ],
- [
- "▁entertaining",
- -11.714841842651367
- ],
- [
- "▁Option",
- -11.714848518371582
- ],
- [
- "▁Previous",
- -11.714916229248047
- ],
- [
- "▁vrai",
- -11.714930534362793
- ],
- [
- "▁Auswahl",
- -11.715056419372559
- ],
- [
- "▁horses",
- -11.715106010437012
- ],
- [
- "▁Author",
- -11.71533489227295
- ],
- [
- "▁Writing",
- -11.715461730957031
- ],
- [
- "▁travelling",
- -11.715522766113281
- ],
- [
- "▁350",
- -11.715567588806152
- ],
- [
- "daten",
- -11.71560287475586
- ],
- [
- "zan",
- -11.715765953063965
- ],
- [
- "▁sweat",
- -11.715924263000488
- ],
- [
- "▁Junior",
- -11.715970993041992
- ],
- [
- "markt",
- -11.71609878540039
- ],
- [
- "after",
- -11.716105461120605
- ],
- [
- "▁admitted",
- -11.716262817382812
- ],
- [
- "▁1950",
- -11.716347694396973
- ],
- [
- "▁Sche",
- -11.71648120880127
- ],
- [
- "▁dorit",
- -11.716818809509277
- ],
- [
- "▁transferred",
- -11.716958045959473
- ],
- [
- "utilise",
- -11.717194557189941
- ],
- [
- "sitz",
- -11.717301368713379
- ],
- [
- "gio",
- -11.717320442199707
- ],
- [
- "▁bisher",
- -11.717473983764648
- ],
- [
- "RD",
- -11.717491149902344
- ],
- [
- "▁Wales",
- -11.717747688293457
- ],
- [
- "▁smoking",
- -11.717904090881348
- ],
- [
- "dire",
- -11.717939376831055
- ],
- [
- "▁seating",
- -11.717979431152344
- ],
- [
- "▁constat",
- -11.718056678771973
- ],
- [
- "▁Hub",
- -11.718324661254883
- ],
- [
- "▁sieht",
- -11.718345642089844
- ],
- [
- "▁prospect",
- -11.718378067016602
- ],
- [
- "▁RO",
- -11.718413352966309
- ],
- [
- "▁Wars",
- -11.718423843383789
- ],
- [
- "eek",
- -11.718496322631836
- ],
- [
- "▁Bring",
- -11.718646049499512
- ],
- [
- "▁bleiben",
- -11.718696594238281
- ],
- [
- "arri",
- -11.718826293945312
- ],
- [
- "inal",
- -11.718904495239258
- ],
- [
- "▁Maryland",
- -11.718932151794434
- ],
- [
- "▁Process",
- -11.719145774841309
- ],
- [
- "They",
- -11.719154357910156
- ],
- [
- "▁Oxford",
- -11.719176292419434
- ],
- [
- "▁neat",
- -11.719330787658691
- ],
- [
- "▁cinema",
- -11.719597816467285
- ],
- [
- "▁Ist",
- -11.719620704650879
- ],
- [
- "▁vegan",
- -11.719682693481445
- ],
- [
- "wall",
- -11.719708442687988
- ],
- [
- "▁motive",
- -11.72010612487793
- ],
- [
- "▁mature",
- -11.720544815063477
- ],
- [
- "▁Dragon",
- -11.720653533935547
- ],
- [
- "▁google",
- -11.720677375793457
- ],
- [
- "blick",
- -11.72110652923584
- ],
- [
- "▁Cod",
- -11.721220970153809
- ],
- [
- "▁suffi",
- -11.721319198608398
- ],
- [
- "▁terrorist",
- -11.721478462219238
- ],
- [
- "Posted",
- -11.721484184265137
- ],
- [
- "▁Schi",
- -11.72157096862793
- ],
- [
- "▁Marc",
- -11.721597671508789
- ],
- [
- "▁operates",
- -11.721661567687988
- ],
- [
- "gress",
- -11.721805572509766
- ],
- [
- "has",
- -11.721899032592773
- ],
- [
- "sole",
- -11.722108840942383
- ],
- [
- "▁Buck",
- -11.722122192382812
- ],
- [
- "impl",
- -11.722160339355469
- ],
- [
- "▁Ron",
- -11.722172737121582
- ],
- [
- "▁handled",
- -11.722346305847168
- ],
- [
- "▁Apr",
- -11.722347259521484
- ],
- [
- "▁Storage",
- -11.722467422485352
- ],
- [
- "▁temp",
- -11.722512245178223
- ],
- [
- "▁differently",
- -11.722614288330078
- ],
- [
- "▁wherever",
- -11.722670555114746
- ],
- [
- "matched",
- -11.722695350646973
- ],
- [
- "rios",
- -11.72276496887207
- ],
- [
- "▁surprising",
- -11.722846031188965
- ],
- [
- "teilen",
- -11.722867965698242
- ],
- [
- "▁difficulties",
- -11.72294807434082
- ],
- [
- "tab",
- -11.723064422607422
- ],
- [
- "▁Leader",
- -11.723128318786621
- ],
- [
- "implementing",
- -11.723372459411621
- ],
- [
- "▁workforce",
- -11.723384857177734
- ],
- [
- "▁bereit",
- -11.723503112792969
- ],
- [
- "vig",
- -11.72352123260498
- ],
- [
- "▁LOVE",
- -11.723580360412598
- ],
- [
- "▁instances",
- -11.723954200744629
- ],
- [
- "▁frumos",
- -11.723960876464844
- ],
- [
- "▁Java",
- -11.723974227905273
- ],
- [
- "▁arrest",
- -11.723977088928223
- ],
- [
- "▁apparent",
- -11.724152565002441
- ],
- [
- "▁hence",
- -11.724200248718262
- ],
- [
- "▁entwickelt",
- -11.72437572479248
- ],
- [
- "▁Fra",
- -11.724471092224121
- ],
- [
- "▁prend",
- -11.724486351013184
- ],
- [
- "ließ",
- -11.724522590637207
- ],
- [
- "▁drawer",
- -11.724671363830566
- ],
- [
- "ARD",
- -11.724926948547363
- ],
- [
- "▁caring",
- -11.72499942779541
- ],
- [
- "▁wollte",
- -11.725024223327637
- ],
- [
- "▁vielleicht",
- -11.72511100769043
- ],
- [
- "▁iconic",
- -11.725324630737305
- ],
- [
- "äch",
- -11.72552490234375
- ],
- [
- "abel",
- -11.725639343261719
- ],
- [
- "▁génér",
- -11.72570514678955
- ],
- [
- "ault",
- -11.725727081298828
- ],
- [
- "▁alternatives",
- -11.725909233093262
- ],
- [
- "think",
- -11.726025581359863
- ],
- [
- "ро",
- -11.726055145263672
- ],
- [
- "whereas",
- -11.726058006286621
- ],
- [
- "erei",
- -11.726366996765137
- ],
- [
- "▁Eagle",
- -11.726766586303711
- ],
- [
- "situé",
- -11.72704792022705
- ],
- [
- "▁laboratory",
- -11.727157592773438
- ],
- [
- "▁Nutzung",
- -11.727256774902344
- ],
- [
- "▁Bathroom",
- -11.72728157043457
- ],
- [
- "▁loaded",
- -11.727293968200684
- ],
- [
- "niste",
- -11.727408409118652
- ],
- [
- "som",
- -11.727429389953613
- ],
- [
- "▁aucun",
- -11.727666854858398
- ],
- [
- "gebracht",
- -11.727676391601562
- ],
- [
- "▁tomb",
- -11.727771759033203
- ],
- [
- "▁Ty",
- -11.727785110473633
- ],
- [
- "▁afaceri",
- -11.727971076965332
- ],
- [
- "tex",
- -11.72803783416748
- ],
- [
- "ality",
- -11.728147506713867
- ],
- [
- "▁identification",
- -11.728150367736816
- ],
- [
- "▁cultiv",
- -11.728255271911621
- ],
- [
- "Not",
- -11.728326797485352
- ],
- [
- "▁acestor",
- -11.72846508026123
- ],
- [
- "▁PhD",
- -11.728466033935547
- ],
- [
- "nell",
- -11.728470802307129
- ],
- [
- "▁dial",
- -11.728594779968262
- ],
- [
- "chro",
- -11.728673934936523
- ],
- [
- "▁specifications",
- -11.728682518005371
- ],
- [
- "anii",
- -11.72877025604248
- ],
- [
- "▁cloth",
- -11.728836059570312
- ],
- [
- "▁highway",
- -11.728914260864258
- ],
- [
- "▁Vitamin",
- -11.729118347167969
- ],
- [
- "▁indication",
- -11.729349136352539
- ],
- [
- "80%",
- -11.72959041595459
- ],
- [
- "▁Lion",
- -11.729681015014648
- ],
- [
- "▁10,",
- -11.729693412780762
- ],
- [
- "▁Werk",
- -11.72974967956543
- ],
- [
- "▁combin",
- -11.729803085327148
- ],
- [
- "▁releases",
- -11.7298583984375
- ],
- [
- "LL",
- -11.730006217956543
- ],
- [
- "ktor",
- -11.730186462402344
- ],
- [
- "ufgrund",
- -11.73018741607666
- ],
- [
- "calc",
- -11.73034381866455
- ],
- [
- "▁accomplished",
- -11.730606079101562
- ],
- [
- "▁los",
- -11.730619430541992
- ],
- [
- "▁distant",
- -11.730688095092773
- ],
- [
- "▁secteur",
- -11.73068904876709
- ],
- [
- "logue",
- -11.730781555175781
- ],
- [
- "▁betting",
- -11.730792999267578
- ],
- [
- "elf",
- -11.731180191040039
- ],
- [
- "puteti",
- -11.73123550415039
- ],
- [
- "▁Moment",
- -11.731236457824707
- ],
- [
- "▁scoring",
- -11.731548309326172
- ],
- [
- "▁freuen",
- -11.731572151184082
- ],
- [
- "▁fastest",
- -11.731873512268066
- ],
- [
- "▁directors",
- -11.732080459594727
- ],
- [
- "▁fame",
- -11.732234954833984
- ],
- [
- "▁complaint",
- -11.732239723205566
- ],
- [
- "▁Ep",
- -11.732314109802246
- ],
- [
- "▁delicate",
- -11.732329368591309
- ],
- [
- "annonce",
- -11.73240852355957
- ],
- [
- "ext",
- -11.732454299926758
- ],
- [
- "▁quit",
- -11.732473373413086
- ],
- [
- "▁Cop",
- -11.73253345489502
- ],
- [
- "prop",
- -11.732565879821777
- ],
- [
- "365",
- -11.732742309570312
- ],
- [
- "▁Say",
- -11.732879638671875
- ],
- [
- "▁internationale",
- -11.733064651489258
- ],
- [
- "cott",
- -11.733213424682617
- ],
- [
- "▁Whatever",
- -11.733261108398438
- ],
- [
- "▁admir",
- -11.733261108398438
- ],
- [
- "▁bucur",
- -11.733549118041992
- ],
- [
- "▁entity",
- -11.733779907226562
- ],
- [
- "▁dancing",
- -11.733837127685547
- ],
- [
- "▁printre",
- -11.733892440795898
- ],
- [
- "▁meditation",
- -11.734396934509277
- ],
- [
- "▁avis",
- -11.734416961669922
- ],
- [
- "▁1988",
- -11.73447036743164
- ],
- [
- "10.",
- -11.734506607055664
- ],
- [
- "▁worker",
- -11.734638214111328
- ],
- [
- "▁$100",
- -11.734784126281738
- ],
- [
- "▁contrôle",
- -11.7349853515625
- ],
- [
- "▁insist",
- -11.734997749328613
- ],
- [
- "ements",
- -11.73505973815918
- ],
- [
- "izate",
- -11.735163688659668
- ],
- [
- "▁tied",
- -11.735332489013672
- ],
- [
- "▁correspond",
- -11.735396385192871
- ],
- [
- "▁apartments",
- -11.735547065734863
- ],
- [
- "▁2009.",
- -11.735599517822266
- ],
- [
- "▁tiles",
- -11.735624313354492
- ],
- [
- "▁boots",
- -11.735639572143555
- ],
- [
- "▁laundry",
- -11.735673904418945
- ],
- [
- "▁Coffee",
- -11.735674858093262
- ],
- [
- "▁CV",
- -11.735727310180664
- ],
- [
- "▁composed",
- -11.736035346984863
- ],
- [
- "atom",
- -11.73622989654541
- ],
- [
- "▁shore",
- -11.736270904541016
- ],
- [
- "▁marijuana",
- -11.736312866210938
- ],
- [
- "plic",
- -11.73648452758789
- ],
- [
- "▁Zahl",
- -11.736649513244629
- ],
- [
- "depth",
- -11.73682689666748
- ],
- [
- "▁Egypt",
- -11.736854553222656
- ],
- [
- "▁NFL",
- -11.736906051635742
- ],
- [
- "▁12,",
- -11.736922264099121
- ],
- [
- "▁pollution",
- -11.736964225769043
- ],
- [
- "▁Vergleich",
- -11.73704719543457
- ],
- [
- "û",
- -11.737109184265137
- ],
- [
- "▁nurse",
- -11.737153053283691
- ],
- [
- "▁Susan",
- -11.737173080444336
- ],
- [
- "▁verify",
- -11.737393379211426
- ],
- [
- "▁kon",
- -11.737504959106445
- ],
- [
- "▁ulei",
- -11.7376127243042
- ],
- [
- "▁Sept",
- -11.737699508666992
- ],
- [
- "▁Location",
- -11.737908363342285
- ],
- [
- "▁frozen",
- -11.737991333007812
- ],
- [
- "good",
- -11.73802661895752
- ],
- [
- "▁cine",
- -11.738066673278809
- ],
- [
- "forming",
- -11.738181114196777
- ],
- [
- "▁Near",
- -11.738391876220703
- ],
- [
- "▁Tab",
- -11.738545417785645
- ],
- [
- "▁Alexandr",
- -11.738600730895996
- ],
- [
- "ст",
- -11.73863697052002
- ],
- [
- "CK",
- -11.738656044006348
- ],
- [
- "▁loads",
- -11.738948822021484
- ],
- [
- "▁disorders",
- -11.738957405090332
- ],
- [
- "hip",
- -11.739596366882324
- ],
- [
- "▁blessing",
- -11.73987102508545
- ],
- [
- "▁vechi",
- -11.73997688293457
- ],
- [
- "▁Bookmark",
- -11.740296363830566
- ],
- [
- "SON",
- -11.74036979675293
- ],
- [
- "books",
- -11.740428924560547
- ],
- [
- "▁tropical",
- -11.740438461303711
- ],
- [
- "▁Garten",
- -11.740447044372559
- ],
- [
- "ôt",
- -11.740760803222656
- ],
- [
- "tures",
- -11.740827560424805
- ],
- [
- "▁obligation",
- -11.741010665893555
- ],
- [
- "▁admin",
- -11.741011619567871
- ],
- [
- "▁sélection",
- -11.741106986999512
- ],
- [
- "disp",
- -11.741172790527344
- ],
- [
- "▁Anyone",
- -11.741225242614746
- ],
- [
- "keeper",
- -11.74138355255127
- ],
- [
- "▁konnten",
- -11.741521835327148
- ],
- [
- "▁existe",
- -11.741615295410156
- ],
- [
- "▁Rund",
- -11.741798400878906
- ],
- [
- "▁retailers",
- -11.74184799194336
- ],
- [
- "folg",
- -11.741948127746582
- ],
- [
- "▁urmare",
- -11.742019653320312
- ],
- [
- "▁Liebe",
- -11.742321014404297
- ],
- [
- "▁actors",
- -11.742422103881836
- ],
- [
- "▁Druck",
- -11.742618560791016
- ],
- [
- "lien",
- -11.742752075195312
- ],
- [
- "sian",
- -11.742847442626953
- ],
- [
- "▁partid",
- -11.74304485321045
- ],
- [
- "▁loin",
- -11.743114471435547
- ],
- [
- "AZ",
- -11.743119239807129
- ],
- [
- "oasă",
- -11.743501663208008
- ],
- [
- "▁inclusiv",
- -11.743656158447266
- ],
- [
- "TD",
- -11.743680953979492
- ],
- [
- "▁anului",
- -11.743766784667969
- ],
- [
- "poc",
- -11.743844985961914
- ],
- [
- "▁musique",
- -11.743972778320312
- ],
- [
- "▁Hart",
- -11.743997573852539
- ],
- [
- "Sh",
- -11.744283676147461
- ],
- [
- "html",
- -11.744290351867676
- ],
- [
- "▁serial",
- -11.744318008422852
- ],
- [
- "țele",
- -11.744369506835938
- ],
- [
- "inning",
- -11.744544982910156
- ],
- [
- "▁Bureau",
- -11.744555473327637
- ],
- [
- "▁rush",
- -11.744626998901367
- ],
- [
- "▁deosebit",
- -11.744637489318848
- ],
- [
- "▁Wort",
- -11.744648933410645
- ],
- [
- "▁Thailand",
- -11.744688987731934
- ],
- [
- "▁Language",
- -11.745193481445312
- ],
- [
- "▁Governor",
- -11.745213508605957
- ],
- [
- "▁Later",
- -11.74525260925293
- ],
- [
- "rilor",
- -11.745282173156738
- ],
- [
- "▁activités",
- -11.745372772216797
- ],
- [
- "schaffen",
- -11.745598793029785
- ],
- [
- "▁harvest",
- -11.74567985534668
- ],
- [
- "▁municipal",
- -11.745783805847168
- ],
- [
- "einander",
- -11.74600601196289
- ],
- [
- "▁fingers",
- -11.746383666992188
- ],
- [
- "▁sculpture",
- -11.74638843536377
- ],
- [
- "▁Bien",
- -11.746390342712402
- ],
- [
- "▁departments",
- -11.746562957763672
- ],
- [
- "▁période",
- -11.746746063232422
- ],
- [
- "▁jeune",
- -11.746960639953613
- ],
- [
- "▁governments",
- -11.74710750579834
- ],
- [
- "uter",
- -11.747179985046387
- ],
- [
- "Aceste",
- -11.747220039367676
- ],
- [
- "▁Deal",
- -11.747243881225586
- ],
- [
- "▁Equipment",
- -11.74726390838623
- ],
- [
- "nous",
- -11.747300148010254
- ],
- [
- "▁gate",
- -11.747315406799316
- ],
- [
- "▁meta",
- -11.747447967529297
- ],
- [
- "▁stiu",
- -11.747474670410156
- ],
- [
- "fold",
- -11.747486114501953
- ],
- [
- "▁seule",
- -11.747523307800293
- ],
- [
- "▁varied",
- -11.747541427612305
- ],
- [
- "hit",
- -11.747635841369629
- ],
- [
- "▁DIY",
- -11.74768352508545
- ],
- [
- "▁lemn",
- -11.747685432434082
- ],
- [
- "OB",
- -11.747865676879883
- ],
- [
- "▁colorful",
- -11.748095512390137
- ],
- [
- "▁câ",
- -11.74826431274414
- ],
- [
- "▁semester",
- -11.74830150604248
- ],
- [
- "▁dealer",
- -11.748575210571289
- ],
- [
- "nett",
- -11.748788833618164
- ],
- [
- "▁shortly",
- -11.748932838439941
- ],
- [
- "▁Driver",
- -11.748983383178711
- ],
- [
- "culture",
- -11.749052047729492
- ],
- [
- "▁permitted",
- -11.749072074890137
- ],
- [
- "▁sorts",
- -11.749432563781738
- ],
- [
- "▁crop",
- -11.74999713897705
- ],
- [
- "▁valoare",
- -11.75046157836914
- ],
- [
- "▁analog",
- -11.750576972961426
- ],
- [
- "▁excuse",
- -11.750588417053223
- ],
- [
- "▁modèle",
- -11.750657081604004
- ],
- [
- "When",
- -11.75068473815918
- ],
- [
- "▁march",
- -11.750744819641113
- ],
- [
- "haz",
- -11.750978469848633
- ],
- [
- "▁minimize",
- -11.750992774963379
- ],
- [
- "traction",
- -11.751028060913086
- ],
- [
- "▁caracter",
- -11.752382278442383
- ],
- [
- "▁modules",
- -11.7523832321167
- ],
- [
- "clu",
- -11.75244426727295
- ],
- [
- "ţional",
- -11.752482414245605
- ],
- [
- "▁breach",
- -11.752562522888184
- ],
- [
- "▁priced",
- -11.752614974975586
- ],
- [
- "▁attorneys",
- -11.752644538879395
- ],
- [
- "▁implant",
- -11.752645492553711
- ],
- [
- "▁ANY",
- -11.752655029296875
- ],
- [
- "dition",
- -11.752707481384277
- ],
- [
- "▁trials",
- -11.752838134765625
- ],
- [
- "▁Nas",
- -11.75293254852295
- ],
- [
- "Pre",
- -11.752970695495605
- ],
- [
- "lorsque",
- -11.752979278564453
- ],
- [
- "plin",
- -11.753050804138184
- ],
- [
- "Er",
- -11.753056526184082
- ],
- [
- "▁Dom",
- -11.753067970275879
- ],
- [
- "▁tire",
- -11.753190040588379
- ],
- [
- "sili",
- -11.753233909606934
- ],
- [
- "▁coins",
- -11.753350257873535
- ],
- [
- "▁rend",
- -11.753470420837402
- ],
- [
- "▁reliability",
- -11.753503799438477
- ],
- [
- "▁Analysis",
- -11.753508567810059
- ],
- [
- "▁trails",
- -11.753692626953125
- ],
- [
- "trägt",
- -11.753762245178223
- ],
- [
- "▁Kansas",
- -11.753908157348633
- ],
- [
- "▁responsive",
- -11.75390911102295
- ],
- [
- "▁disappear",
- -11.753988265991211
- ],
- [
- "▁stakeholders",
- -11.754022598266602
- ],
- [
- "▁aplica",
- -11.754164695739746
- ],
- [
- "▁imi",
- -11.754180908203125
- ],
- [
- "▁Laura",
- -11.754369735717773
- ],
- [
- "▁Terms",
- -11.75440788269043
- ],
- [
- "450",
- -11.754460334777832
- ],
- [
- "▁voltage",
- -11.754483222961426
- ],
- [
- "▁Gel",
- -11.754544258117676
- ],
- [
- "▁qualities",
- -11.754549026489258
- ],
- [
- "▁qualifi",
- -11.754603385925293
- ],
- [
- "▁Mé",
- -11.754735946655273
- ],
- [
- "bereit",
- -11.754829406738281
- ],
- [
- "gleich",
- -11.754875183105469
- ],
- [
- "▁voting",
- -11.754961013793945
- ],
- [
- "▁trademark",
- -11.755128860473633
- ],
- [
- "▁2.5",
- -11.75515079498291
- ],
- [
- "ND",
- -11.755438804626465
- ],
- [
- "▁Kelly",
- -11.755470275878906
- ],
- [
- "▁weiteren",
- -11.755559921264648
- ],
- [
- "▁filters",
- -11.75562572479248
- ],
- [
- "▁coût",
- -11.75562858581543
- ],
- [
- "jur",
- -11.755765914916992
- ],
- [
- "acre",
- -11.755804061889648
- ],
- [
- "▁retired",
- -11.756022453308105
- ],
- [
- "▁Engine",
- -11.756205558776855
- ],
- [
- "▁président",
- -11.756264686584473
- ],
- [
- "ajul",
- -11.756307601928711
- ],
- [
- "▁GA",
- -11.756425857543945
- ],
- [
- "rät",
- -11.75666332244873
- ],
- [
- "▁instructor",
- -11.756669998168945
- ],
- [
- "▁Allen",
- -11.75668716430664
- ],
- [
- "▁Delhi",
- -11.756771087646484
- ],
- [
- "▁cure",
- -11.756844520568848
- ],
- [
- "seite",
- -11.756898880004883
- ],
- [
- "coming",
- -11.756914138793945
- ],
- [
- "▁mixing",
- -11.756963729858398
- ],
- [
- "▁Kno",
- -11.757041931152344
- ],
- [
- "▁Sure",
- -11.757079124450684
- ],
- [
- "▁hired",
- -11.757102012634277
- ],
- [
- "▁participated",
- -11.757196426391602
- ],
- [
- "Count",
- -11.757320404052734
- ],
- [
- "treffen",
- -11.757355690002441
- ],
- [
- "▁54",
- -11.75735855102539
- ],
- [
- "▁rings",
- -11.75735855102539
- ],
- [
- "▁Thor",
- -11.757359504699707
- ],
- [
- "éro",
- -11.75744915008545
- ],
- [
- "▁buttons",
- -11.757488250732422
- ],
- [
- "▁47",
- -11.757539749145508
- ],
- [
- "▁Tel",
- -11.757694244384766
- ],
- [
- "▁suport",
- -11.757776260375977
- ],
- [
- "▁rhythm",
- -11.75782585144043
- ],
- [
- "▁Theater",
- -11.758113861083984
- ],
- [
- "▁informatii",
- -11.758121490478516
- ],
- [
- "hält",
- -11.758201599121094
- ],
- [
- "▁ouvert",
- -11.758238792419434
- ],
- [
- "fewer",
- -11.75828742980957
- ],
- [
- "▁alumni",
- -11.758466720581055
- ],
- [
- "▁valley",
- -11.758508682250977
- ],
- [
- "tial",
- -11.75860595703125
- ],
- [
- "***",
- -11.758782386779785
- ],
- [
- "kri",
- -11.75905704498291
- ],
- [
- "▁accidents",
- -11.759113311767578
- ],
- [
- "▁barrel",
- -11.759170532226562
- ],
- [
- "mobil",
- -11.759310722351074
- ],
- [
- "etti",
- -11.759437561035156
- ],
- [
- "▁immigration",
- -11.759515762329102
- ],
- [
- "▁poveste",
- -11.759528160095215
- ],
- [
- "hren",
- -11.759669303894043
- ],
- [
- "hydr",
- -11.759719848632812
- ],
- [
- "▁tweet",
- -11.759744644165039
- ],
- [
- "▁zip",
- -11.759872436523438
- ],
- [
- "▁Bonus",
- -11.760189056396484
- ],
- [
- "ordnung",
- -11.760287284851074
- ],
- [
- "liber",
- -11.76046085357666
- ],
- [
- "▁Navy",
- -11.760591506958008
- ],
- [
- "▁agreements",
- -11.760612487792969
- ],
- [
- "▁detection",
- -11.7607421875
- ],
- [
- "DF",
- -11.760762214660645
- ],
- [
- "hur",
- -11.760774612426758
- ],
- [
- "0.00",
- -11.760798454284668
- ],
- [
- "▁07",
- -11.760866165161133
- ],
- [
- "etta",
- -11.760884284973145
- ],
- [
- "▁13,",
- -11.760887145996094
- ],
- [
- "rolled",
- -11.760970115661621
- ],
- [
- "▁injection",
- -11.761002540588379
- ],
- [
- "mig",
- -11.761017799377441
- ],
- [
- "wach",
- -11.761107444763184
- ],
- [
- "▁choisir",
- -11.761515617370605
- ],
- [
- "▁professionnels",
- -11.76159954071045
- ],
- [
- "▁Tower",
- -11.76169490814209
- ],
- [
- "▁neighbor",
- -11.76170539855957
- ],
- [
- "deutschen",
- -11.76187801361084
- ],
- [
- "▁luxurious",
- -11.76201057434082
- ],
- [
- "▁walks",
- -11.762033462524414
- ],
- [
- "reti",
- -11.762046813964844
- ],
- [
- "▁Pad",
- -11.762085914611816
- ],
- [
- "wise",
- -11.762297630310059
- ],
- [
- "▁exhaust",
- -11.762307167053223
- ],
- [
- "▁demonstration",
- -11.762582778930664
- ],
- [
- "▁agricultural",
- -11.762667655944824
- ],
- [
- "Upon",
- -11.762885093688965
- ],
- [
- "▁Blu",
- -11.76292610168457
- ],
- [
- "atorul",
- -11.762967109680176
- ],
- [
- "amour",
- -11.762984275817871
- ],
- [
- "issant",
- -11.763004302978516
- ],
- [
- "▁delighted",
- -11.763031959533691
- ],
- [
- "rita",
- -11.763113021850586
- ],
- [
- "requiring",
- -11.763195037841797
- ],
- [
- "ivity",
- -11.763216972351074
- ],
- [
- "▁Unser",
- -11.763306617736816
- ],
- [
- "FP",
- -11.763379096984863
- ],
- [
- "fait",
- -11.763533592224121
- ],
- [
- "dite",
- -11.763562202453613
- ],
- [
- "kul",
- -11.763716697692871
- ],
- [
- "arth",
- -11.76376724243164
- ],
- [
- "▁Ker",
- -11.763815879821777
- ],
- [
- "torilor",
- -11.763816833496094
- ],
- [
- "stage",
- -11.763866424560547
- ],
- [
- "▁HTML",
- -11.76398754119873
- ],
- [
- "▁Wheel",
- -11.764005661010742
- ],
- [
- "▁quelque",
- -11.76414680480957
- ],
- [
- "▁Ou",
- -11.764196395874023
- ],
- [
- "▁considerable",
- -11.764277458190918
- ],
- [
- "▁Sco",
- -11.76458740234375
- ],
- [
- "▁donations",
- -11.76481819152832
- ],
- [
- "dessen",
- -11.765002250671387
- ],
- [
- "▁pourquoi",
- -11.765039443969727
- ],
- [
- "▁Bow",
- -11.765189170837402
- ],
- [
- "▁Dupa",
- -11.76522445678711
- ],
- [
- "ska",
- -11.765707015991211
- ],
- [
- "hot",
- -11.765732765197754
- ],
- [
- "▁drove",
- -11.765849113464355
- ],
- [
- "▁oppos",
- -11.766018867492676
- ],
- [
- "▁hiking",
- -11.766035079956055
- ],
- [
- "▁Boot",
- -11.766081809997559
- ],
- [
- "One",
- -11.766087532043457
- ],
- [
- "▁guvern",
- -11.766094207763672
- ],
- [
- "▁15,",
- -11.766400337219238
- ],
- [
- "scheid",
- -11.766437530517578
- ],
- [
- "▁Miet",
- -11.766458511352539
- ],
- [
- "▁Technical",
- -11.766767501831055
- ],
- [
- "▁Dal",
- -11.7669038772583
- ],
- [
- "▁Metro",
- -11.766966819763184
- ],
- [
- "▁Baker",
- -11.767215728759766
- ],
- [
- "▁trece",
- -11.767252922058105
- ],
- [
- "tained",
- -11.767302513122559
- ],
- [
- "block",
- -11.76738452911377
- ],
- [
- "▁wander",
- -11.767401695251465
- ],
- [
- "▁penalty",
- -11.76742172241211
- ],
- [
- "▁shipped",
- -11.767509460449219
- ],
- [
- "▁30%",
- -11.767518043518066
- ],
- [
- "group",
- -11.767541885375977
- ],
- [
- "▁brothers",
- -11.767701148986816
- ],
- [
- "▁comanda",
- -11.767777442932129
- ],
- [
- "▁retreat",
- -11.767789840698242
- ],
- [
- "▁Movie",
- -11.767802238464355
- ],
- [
- "PU",
- -11.76787281036377
- ],
- [
- "▁Jun",
- -11.767885208129883
- ],
- [
- "▁$6",
- -11.767969131469727
- ],
- [
- "▁Fal",
- -11.768054962158203
- ],
- [
- "▁Palestinian",
- -11.768075942993164
- ],
- [
- "▁soccer",
- -11.768217086791992
- ],
- [
- "▁Autor",
- -11.768254280090332
- ],
- [
- "▁chamber",
- -11.768266677856445
- ],
- [
- "nement",
- -11.768463134765625
- ],
- [
- "▁offense",
- -11.768610954284668
- ],
- [
- "▁gig",
- -11.768631935119629
- ],
- [
- "▁abandon",
- -11.768691062927246
- ],
- [
- "▁Kraft",
- -11.768783569335938
- ],
- [
- "▁Medicare",
- -11.768784523010254
- ],
- [
- "▁soap",
- -11.768835067749023
- ],
- [
- "▁Fur",
- -11.768990516662598
- ],
- [
- "▁conditioning",
- -11.769103050231934
- ],
- [
- "rained",
- -11.769132614135742
- ],
- [
- "▁puts",
- -11.769134521484375
- ],
- [
- "▁cod",
- -11.76930046081543
- ],
- [
- "lassen",
- -11.76941967010498
- ],
- [
- "FL",
- -11.769600868225098
- ],
- [
- "▁komplett",
- -11.769664764404297
- ],
- [
- "▁entscheiden",
- -11.769665718078613
- ],
- [
- "▁Hour",
- -11.769691467285156
- ],
- [
- "?!",
- -11.770040512084961
- ],
- [
- "Stream",
- -11.770145416259766
- ],
- [
- "▁Grad",
- -11.770209312438965
- ],
- [
- "▁gently",
- -11.770231246948242
- ],
- [
- "▁poetry",
- -11.770429611206055
- ],
- [
- "▁secured",
- -11.770438194274902
- ],
- [
- "oph",
- -11.770466804504395
- ],
- [
- "hop",
- -11.770561218261719
- ],
- [
- "handel",
- -11.770634651184082
- ],
- [
- "▁besoins",
- -11.770658493041992
- ],
- [
- "got",
- -11.770824432373047
- ],
- [
- "▁Chrome",
- -11.77088737487793
- ],
- [
- "ILL",
- -11.770930290222168
- ],
- [
- "▁Schritt",
- -11.771014213562012
- ],
- [
- "▁spell",
- -11.771063804626465
- ],
- [
- "▁grinding",
- -11.771334648132324
- ],
- [
- "▁ramp",
- -11.77144718170166
- ],
- [
- "▁mama",
- -11.7716064453125
- ],
- [
- "▁bottles",
- -11.77180290222168
- ],
- [
- "▁canvas",
- -11.771906852722168
- ],
- [
- "▁ecosystem",
- -11.77194595336914
- ],
- [
- "aţii",
- -11.771967887878418
- ],
- [
- "cellular",
- -11.772085189819336
- ],
- [
- "▁Spin",
- -11.772164344787598
- ],
- [
- "▁Discover",
- -11.772217750549316
- ],
- [
- "-17",
- -11.772322654724121
- ],
- [
- "▁feeding",
- -11.77246379852295
- ],
- [
- "▁stops",
- -11.7725191116333
- ],
- [
- "▁haute",
- -11.772552490234375
- ],
- [
- "▁Entscheidung",
- -11.7725830078125
- ],
- [
- "▁semble",
- -11.772590637207031
- ],
- [
- "▁acele",
- -11.772857666015625
- ],
- [
- "▁Walk",
- -11.773154258728027
- ],
- [
- "▁joke",
- -11.773180961608887
- ],
- [
- "▁Fed",
- -11.773294448852539
- ],
- [
- "climat",
- -11.773306846618652
- ],
- [
- "▁Lot",
- -11.773460388183594
- ],
- [
- "runner",
- -11.773551940917969
- ],
- [
- "▁flip",
- -11.773786544799805
- ],
- [
- "▁werde",
- -11.773818016052246
- ],
- [
- "▁Deck",
- -11.77417278289795
- ],
- [
- "bala",
- -11.774296760559082
- ],
- [
- "▁sacrifice",
- -11.774375915527344
- ],
- [
- "cid",
- -11.774388313293457
- ],
- [
- "him",
- -11.774569511413574
- ],
- [
- "zahlen",
- -11.774587631225586
- ],
- [
- "▁heater",
- -11.774596214294434
- ],
- [
- "formed",
- -11.774619102478027
- ],
- [
- "plus",
- -11.774711608886719
- ],
- [
- "▁util",
- -11.774742126464844
- ],
- [
- "rama",
- -11.775019645690918
- ],
- [
- "(4)",
- -11.7750244140625
- ],
- [
- "▁knife",
- -11.775111198425293
- ],
- [
- "▁traditions",
- -11.77520751953125
- ],
- [
- "▁dip",
- -11.775357246398926
- ],
- [
- "kill",
- -11.775405883789062
- ],
- [
- "▁Rich",
- -11.775418281555176
- ],
- [
- "▁DI",
- -11.775555610656738
- ],
- [
- "▁containers",
- -11.775677680969238
- ],
- [
- "▁locuri",
- -11.775728225708008
- ],
- [
- "▁continent",
- -11.775797843933105
- ],
- [
- "teilung",
- -11.776005744934082
- ],
- [
- "▁vreme",
- -11.776028633117676
- ],
- [
- "organisation",
- -11.776126861572266
- ],
- [
- "serie",
- -11.776135444641113
- ],
- [
- "▁Diamond",
- -11.776204109191895
- ],
- [
- "magazin",
- -11.77627944946289
- ],
- [
- "▁poster",
- -11.776455879211426
- ],
- [
- "▁passenger",
- -11.7765474319458
- ],
- [
- "▁soldiers",
- -11.776552200317383
- ],
- [
- "▁urgent",
- -11.776616096496582
- ],
- [
- "▁Lip",
- -11.77680778503418
- ],
- [
- "▁aşa",
- -11.776972770690918
- ],
- [
- "▁BO",
- -11.777024269104004
- ],
- [
- "▁somebody",
- -11.777076721191406
- ],
- [
- "▁silence",
- -11.777132034301758
- ],
- [
- "cop",
- -11.777359962463379
- ],
- [
- "▁Burn",
- -11.77749252319336
- ],
- [
- "▁stopping",
- -11.777544021606445
- ],
- [
- "▁essence",
- -11.777568817138672
- ],
- [
- "▁hitting",
- -11.777762413024902
- ],
- [
- "▁producers",
- -11.777801513671875
- ],
- [
- "▁fibre",
- -11.777894020080566
- ],
- [
- "▁seasonal",
- -11.777960777282715
- ],
- [
- "▁tara",
- -11.778096199035645
- ],
- [
- "▁Jose",
- -11.778099060058594
- ],
- [
- "▁Better",
- -11.77825927734375
- ],
- [
- "▁steep",
- -11.778295516967773
- ],
- [
- "Alors",
- -11.778353691101074
- ],
- [
- "▁collecting",
- -11.778507232666016
- ],
- [
- "vre",
- -11.778635025024414
- ],
- [
- "▁disabled",
- -11.77863883972168
- ],
- [
- "▁voters",
- -11.778679847717285
- ],
- [
- "consuming",
- -11.779092788696289
- ],
- [
- "deemed",
- -11.779115676879883
- ],
- [
- "éra",
- -11.779227256774902
- ],
- [
- "opération",
- -11.779273986816406
- ],
- [
- "▁roller",
- -11.779305458068848
- ],
- [
- "Rather",
- -11.779321670532227
- ],
- [
- "▁leider",
- -11.779370307922363
- ],
- [
- "▁IV",
- -11.779434204101562
- ],
- [
- "▁erreichen",
- -11.779473304748535
- ],
- [
- "▁charging",
- -11.779657363891602
- ],
- [
- "tions",
- -11.77973747253418
- ],
- [
- "tiques",
- -11.779861450195312
- ],
- [
- "▁formats",
- -11.779876708984375
- ],
- [
- "▁painful",
- -11.78000545501709
- ],
- [
- "▁eager",
- -11.780061721801758
- ],
- [
- "generation",
- -11.780137062072754
- ],
- [
- "anna",
- -11.780235290527344
- ],
- [
- "▁races",
- -11.780323028564453
- ],
- [
- "force",
- -11.780357360839844
- ],
- [
- "▁ferm",
- -11.780522346496582
- ],
- [
- "▁breathing",
- -11.780618667602539
- ],
- [
- "▁offen",
- -11.780648231506348
- ],
- [
- "▁minds",
- -11.780805587768555
- ],
- [
- "▁musste",
- -11.780832290649414
- ],
- [
- "▁Vision",
- -11.780888557434082
- ],
- [
- "▁Installation",
- -11.780988693237305
- ],
- [
- "▁hesitate",
- -11.781002044677734
- ],
- [
- "▁somit",
- -11.781023979187012
- ],
- [
- "hôtel",
- -11.781044006347656
- ],
- [
- "cab",
- -11.781235694885254
- ],
- [
- "-16",
- -11.781312942504883
- ],
- [
- "▁Visual",
- -11.781418800354004
- ],
- [
- "intérêt",
- -11.781524658203125
- ],
- [
- "▁apel",
- -11.781831741333008
- ],
- [
- "therapy",
- -11.782089233398438
- ],
- [
- "volt",
- -11.78225040435791
- ],
- [
- "▁Rou",
- -11.782439231872559
- ],
- [
- "▁efficace",
- -11.782464027404785
- ],
- [
- "▁architectural",
- -11.782605171203613
- ],
- [
- "▁privilege",
- -11.782670974731445
- ],
- [
- "▁treating",
- -11.782711029052734
- ],
- [
- "▁Tam",
- -11.782722473144531
- ],
- [
- "tsch",
- -11.782744407653809
- ],
- [
- "building",
- -11.782750129699707
- ],
- [
- "▁associations",
- -11.782929420471191
- ],
- [
- "▁Consumer",
- -11.783424377441406
- ],
- [
- "▁Lim",
- -11.783496856689453
- ],
- [
- "newest",
- -11.7835054397583
- ],
- [
- "▁față",
- -11.783675193786621
- ],
- [
- "▁ships",
- -11.783732414245605
- ],
- [
- "lev",
- -11.78373908996582
- ],
- [
- "raft",
- -11.783817291259766
- ],
- [
- "▁variations",
- -11.783845901489258
- ],
- [
- "▁noua",
- -11.78386402130127
- ],
- [
- "▁Cab",
- -11.784063339233398
- ],
- [
- "1.2",
- -11.78409481048584
- ],
- [
- "▁ocazi",
- -11.784347534179688
- ],
- [
- "▁recommendation",
- -11.784449577331543
- ],
- [
- "titled",
- -11.78445053100586
- ],
- [
- "▁invoice",
- -11.78459644317627
- ],
- [
- "▁noastra",
- -11.784647941589355
- ],
- [
- "kur",
- -11.784700393676758
- ],
- [
- "issent",
- -11.784758567810059
- ],
- [
- "base",
- -11.784778594970703
- ],
- [
- "hä",
- -11.7848482131958
- ],
- [
- "888",
- -11.784914016723633
- ],
- [
- "▁declar",
- -11.784941673278809
- ],
- [
- "▁Football",
- -11.7850341796875
- ],
- [
- "▁Indeed",
- -11.785293579101562
- ],
- [
- "▁weapon",
- -11.785333633422852
- ],
- [
- "▁destroyed",
- -11.785457611083984
- ],
- [
- "▁enormous",
- -11.785594940185547
- ],
- [
- "▁blanket",
- -11.7857084274292
- ],
- [
- "▁aktiv",
- -11.785759925842285
- ],
- [
- "raw",
- -11.785791397094727
- ],
- [
- "▁computing",
- -11.785823822021484
- ],
- [
- "6)",
- -11.785955429077148
- ],
- [
- "▁Dam",
- -11.786152839660645
- ],
- [
- "▁confort",
- -11.786174774169922
- ],
- [
- "▁Gla",
- -11.786198616027832
- ],
- [
- "hardly",
- -11.786242485046387
- ],
- [
- "▁annually",
- -11.786269187927246
- ],
- [
- "▁destinations",
- -11.786401748657227
- ],
- [
- "▁guilty",
- -11.786404609680176
- ],
- [
- "▁scholarship",
- -11.786439895629883
- ],
- [
- "▁harmful",
- -11.786453247070312
- ],
- [
- "▁2-3",
- -11.786616325378418
- ],
- [
- "▁Race",
- -11.786638259887695
- ],
- [
- "▁hypo",
- -11.78671646118164
- ],
- [
- "▁shorter",
- -11.786733627319336
- ],
- [
- "quest",
- -11.78675651550293
- ],
- [
- "uze",
- -11.786812782287598
- ],
- [
- "izi",
- -11.787005424499512
- ],
- [
- "OO",
- -11.787095069885254
- ],
- [
- "▁Schutz",
- -11.787097930908203
- ],
- [
- "▁Teilnehmer",
- -11.787185668945312
- ],
- [
- "▁profiles",
- -11.787199020385742
- ],
- [
- "▁sustainability",
- -11.78747272491455
- ],
- [
- "▁emb",
- -11.787489891052246
- ],
- [
- "▁Augen",
- -11.787516593933105
- ],
- [
- "▁outdoors",
- -11.787542343139648
- ],
- [
- "▁Individual",
- -11.787548065185547
- ],
- [
- "▁pou",
- -11.78757095336914
- ],
- [
- "▁Together",
- -11.787575721740723
- ],
- [
- "HT",
- -11.787674903869629
- ],
- [
- "suited",
- -11.787755012512207
- ],
- [
- "▁tro",
- -11.787782669067383
- ],
- [
- "▁Strom",
- -11.787805557250977
- ],
- [
- "▁achievement",
- -11.78799819946289
- ],
- [
- "▁Range",
- -11.78815746307373
- ],
- [
- "tory",
- -11.78817081451416
- ],
- [
- "▁distribute",
- -11.788250923156738
- ],
- [
- "▁letzte",
- -11.788276672363281
- ],
- [
- "incorporated",
- -11.788287162780762
- ],
- [
- "▁Kir",
- -11.788325309753418
- ],
- [
- "ruf",
- -11.78839111328125
- ],
- [
- "▁disappointed",
- -11.788543701171875
- ],
- [
- "▁referral",
- -11.788602828979492
- ],
- [
- "flam",
- -11.788687705993652
- ],
- [
- "▁excessive",
- -11.7886962890625
- ],
- [
- "▁rapidement",
- -11.788743019104004
- ],
- [
- "▁Rio",
- -11.78875732421875
- ],
- [
- "aţia",
- -11.788951873779297
- ],
- [
- "▁meuble",
- -11.78912353515625
- ],
- [
- "▁2008.",
- -11.789135932922363
- ],
- [
- "▁Gall",
- -11.78915023803711
- ],
- [
- "▁française",
- -11.789369583129883
- ],
- [
- "▁ladies",
- -11.789695739746094
- ],
- [
- "ailed",
- -11.789746284484863
- ],
- [
- "El",
- -11.789834976196289
- ],
- [
- "▁wines",
- -11.789868354797363
- ],
- [
- "▁beispielsweise",
- -11.789876937866211
- ],
- [
- "▁gamme",
- -11.790193557739258
- ],
- [
- "▁guided",
- -11.79028034210205
- ],
- [
- "▁plin",
- -11.790339469909668
- ],
- [
- "Î",
- -11.790390968322754
- ],
- [
- "▁True",
- -11.790498733520508
- ],
- [
- "▁Temple",
- -11.790507316589355
- ],
- [
- "▁Pic",
- -11.790520668029785
- ],
- [
- "permalink",
- -11.790547370910645
- ],
- [
- "▁vedea",
- -11.790656089782715
- ],
- [
- "▁rank",
- -11.790922164916992
- ],
- [
- "▁Grill",
- -11.791025161743164
- ],
- [
- "clin",
- -11.791070938110352
- ],
- [
- "▁Hab",
- -11.791089057922363
- ],
- [
- "▁odds",
- -11.791125297546387
- ],
- [
- "▁anytime",
- -11.791146278381348
- ],
- [
- "▁Thanksgiving",
- -11.791265487670898
- ],
- [
- "guard",
- -11.791300773620605
- ],
- [
- "▁essays",
- -11.791389465332031
- ],
- [
- "▁PE",
- -11.79139518737793
- ],
- [
- "▁Rechts",
- -11.791494369506836
- ],
- [
- "mals",
- -11.791751861572266
- ],
- [
- "achi",
- -11.791762351989746
- ],
- [
- "▁Anthony",
- -11.791765213012695
- ],
- [
- "▁réponse",
- -11.792036056518555
- ],
- [
- "standing",
- -11.79227352142334
- ],
- [
- "▁Mol",
- -11.792427062988281
- ],
- [
- "▁Canon",
- -11.792474746704102
- ],
- [
- "▁silk",
- -11.792515754699707
- ],
- [
- "▁pourrait",
- -11.79278564453125
- ],
- [
- "▁raport",
- -11.79280948638916
- ],
- [
- "▁Woche",
- -11.792889595031738
- ],
- [
- "fallen",
- -11.79293155670166
- ],
- [
- "sting",
- -11.79310131072998
- ],
- [
- "▁circulation",
- -11.793102264404297
- ],
- [
- "▁skirt",
- -11.7931547164917
- ],
- [
- "▁Title",
- -11.793187141418457
- ],
- [
- "▁17.",
- -11.79331111907959
- ],
- [
- "▁Touch",
- -11.793486595153809
- ],
- [
- "▁utilizat",
- -11.79352855682373
- ],
- [
- "▁Organisation",
- -11.793569564819336
- ],
- [
- "▁mereu",
- -11.793848991394043
- ],
- [
- "▁oxygen",
- -11.793953895568848
- ],
- [
- "lique",
- -11.793985366821289
- ],
- [
- "▁consume",
- -11.794100761413574
- ],
- [
- "▁Barb",
- -11.794102668762207
- ],
- [
- "1.1",
- -11.794105529785156
- ],
- [
- "▁nicely",
- -11.79419231414795
- ],
- [
- "▁psychological",
- -11.794227600097656
- ],
- [
- "▁refrigerator",
- -11.794478416442871
- ],
- [
- "▁fantasy",
- -11.79481029510498
- ],
- [
- "▁dispute",
- -11.79494571685791
- ],
- [
- "▁IBM",
- -11.794954299926758
- ],
- [
- "▁Nation",
- -11.794971466064453
- ],
- [
- "▁mobil",
- -11.795063972473145
- ],
- [
- "▁density",
- -11.795201301574707
- ],
- [
- "ske",
- -11.795230865478516
- ],
- [
- "▁intimate",
- -11.795313835144043
- ],
- [
- "▁tailored",
- -11.795319557189941
- ],
- [
- "▁outline",
- -11.795472145080566
- ],
- [
- "TN",
- -11.79554557800293
- ],
- [
- "mur",
- -11.795634269714355
- ],
- [
- "GC",
- -11.795662879943848
- ],
- [
- "they",
- -11.795992851257324
- ],
- [
- "pag",
- -11.796161651611328
- ],
- [
- "▁Kultur",
- -11.796246528625488
- ],
- [
- "grün",
- -11.796281814575195
- ],
- [
- "voted",
- -11.796529769897461
- ],
- [
- "▁donné",
- -11.796546936035156
- ],
- [
- "▁Să",
- -11.796629905700684
- ],
- [
- "enberg",
- -11.796648979187012
- ],
- [
- "▁wi",
- -11.79686450958252
- ],
- [
- "▁Francis",
- -11.797057151794434
- ],
- [
- "▁Rick",
- -11.797157287597656
- ],
- [
- "accord",
- -11.797403335571289
- ],
- [
- "▁Zusammen",
- -11.797415733337402
- ],
- [
- "▁nonprofit",
- -11.797456741333008
- ],
- [
- "▁listings",
- -11.797615051269531
- ],
- [
- "6,",
- -11.797908782958984
- ],
- [
- "▁maximize",
- -11.798253059387207
- ],
- [
- "bud",
- -11.798345565795898
- ],
- [
- "▁promotional",
- -11.798486709594727
- ],
- [
- "cina",
- -11.798646926879883
- ],
- [
- "▁potatoes",
- -11.79869556427002
- ],
- [
- "▁mot",
- -11.798871040344238
- ],
- [
- "carries",
- -11.799384117126465
- ],
- [
- "▁stabilit",
- -11.799458503723145
- ],
- [
- "▁Door",
- -11.799574851989746
- ],
- [
- "▁downloaded",
- -11.799574851989746
- ],
- [
- "▁experimental",
- -11.799724578857422
- ],
- [
- "HD",
- -11.7997407913208
- ],
- [
- "▁parfois",
- -11.79980182647705
- ],
- [
- "▁zeigen",
- -11.800092697143555
- ],
- [
- "▁proposé",
- -11.80030632019043
- ],
- [
- "▁Verein",
- -11.800636291503906
- ],
- [
- "▁amestec",
- -11.800676345825195
- ],
- [
- "▁entreprise",
- -11.800718307495117
- ],
- [
- "▁PSD",
- -11.800841331481934
- ],
- [
- "▁bake",
- -11.800897598266602
- ],
- [
- "▁Rh",
- -11.800904273986816
- ],
- [
- "▁Mehr",
- -11.800922393798828
- ],
- [
- "▁purple",
- -11.801074028015137
- ],
- [
- "▁recipient",
- -11.80109691619873
- ],
- [
- "rare",
- -11.801166534423828
- ],
- [
- "egi",
- -11.80117130279541
- ],
- [
- "ancien",
- -11.801176071166992
- ],
- [
- "▁risque",
- -11.80118465423584
- ],
- [
- "▁mystery",
- -11.80157470703125
- ],
- [
- "mac",
- -11.801697731018066
- ],
- [
- "ibility",
- -11.80182933807373
- ],
- [
- "▁Moore",
- -11.801881790161133
- ],
- [
- "▁flavors",
- -11.801911354064941
- ],
- [
- "▁trauma",
- -11.801966667175293
- ],
- [
- "▁automotive",
- -11.802112579345703
- ],
- [
- "▁Anyway",
- -11.802197456359863
- ],
- [
- "▁simulation",
- -11.802253723144531
- ],
- [
- "▁crafts",
- -11.802525520324707
- ],
- [
- "▁measurements",
- -11.80257511138916
- ],
- [
- "▁cour",
- -11.80257797241211
- ],
- [
- "▁tard",
- -11.802600860595703
- ],
- [
- "nnie",
- -11.802881240844727
- ],
- [
- "▁Production",
- -11.803388595581055
- ],
- [
- "▁Cleaning",
- -11.803567886352539
- ],
- [
- "5,",
- -11.803644180297852
- ],
- [
- "▁Islamic",
- -11.803766250610352
- ],
- [
- "▁Gate",
- -11.80378532409668
- ],
- [
- "bay",
- -11.803814888000488
- ],
- [
- "HR",
- -11.803990364074707
- ],
- [
- "▁Offer",
- -11.80399227142334
- ],
- [
- "▁acceptance",
- -11.804107666015625
- ],
- [
- "▁Erfahrung",
- -11.80412769317627
- ],
- [
- "▁environ",
- -11.804193496704102
- ],
- [
- "▁fancy",
- -11.804218292236328
- ],
- [
- "▁bullet",
- -11.80437183380127
- ],
- [
- "organ",
- -11.804466247558594
- ],
- [
- "▁Peace",
- -11.804520606994629
- ],
- [
- "▁detalii",
- -11.80461597442627
- ],
- [
- "▁promised",
- -11.804715156555176
- ],
- [
- "▁wellness",
- -11.804746627807617
- ],
- [
- "▁satisfy",
- -11.80481243133545
- ],
- [
- "▁grants",
- -11.805212020874023
- ],
- [
- "accueil",
- -11.80522346496582
- ],
- [
- "▁oben",
- -11.805412292480469
- ],
- [
- "▁prospects",
- -11.80543327331543
- ],
- [
- "▁Events",
- -11.805513381958008
- ],
- [
- "2013",
- -11.805569648742676
- ],
- [
- "gesehen",
- -11.805685997009277
- ],
- [
- "▁£1",
- -11.805727005004883
- ],
- [
- "▁handelt",
- -11.805798530578613
- ],
- [
- "▁Spieler",
- -11.805876731872559
- ],
- [
- "▁Virtual",
- -11.806145668029785
- ],
- [
- "▁bubble",
- -11.806239128112793
- ],
- [
- "▁Trend",
- -11.806254386901855
- ],
- [
- "▁sistemul",
- -11.806315422058105
- ],
- [
- "▁Morgan",
- -11.806320190429688
- ],
- [
- "▁pole",
- -11.806503295898438
- ],
- [
- "▁spielen",
- -11.806533813476562
- ],
- [
- "tür",
- -11.806571006774902
- ],
- [
- "SCO",
- -11.806572914123535
- ],
- [
- "▁informative",
- -11.806678771972656
- ],
- [
- "▁affirm",
- -11.806755065917969
- ],
- [
- "▁Aqua",
- -11.806818008422852
- ],
- [
- "▁AR",
- -11.806888580322266
- ],
- [
- "richten",
- -11.807071685791016
- ],
- [
- "▁rewards",
- -11.807122230529785
- ],
- [
- "lub",
- -11.807235717773438
- ],
- [
- "shot",
- -11.807236671447754
- ],
- [
- "LM",
- -11.807540893554688
- ],
- [
- "Up",
- -11.807586669921875
- ],
- [
- "▁absolut",
- -11.807737350463867
- ],
- [
- "▁Mart",
- -11.807806968688965
- ],
- [
- "erweise",
- -11.807812690734863
- ],
- [
- "BP",
- -11.807977676391602
- ],
- [
- "▁difficile",
- -11.808152198791504
- ],
- [
- "▁Document",
- -11.808159828186035
- ],
- [
- "▁Sweet",
- -11.8082914352417
- ],
- [
- "▁indicator",
- -11.808338165283203
- ],
- [
- "▁Boden",
- -11.808389663696289
- ],
- [
- "mates",
- -11.808477401733398
- ],
- [
- "▁supporters",
- -11.808504104614258
- ],
- [
- "▁begun",
- -11.808600425720215
- ],
- [
- "▁blogging",
- -11.808611869812012
- ],
- [
- "▁CL",
- -11.808663368225098
- ],
- [
- "gres",
- -11.808692932128906
- ],
- [
- "▁preferences",
- -11.808738708496094
- ],
- [
- "▁screw",
- -11.808756828308105
- ],
- [
- "▁tutor",
- -11.808858871459961
- ],
- [
- "▁Additional",
- -11.80891227722168
- ],
- [
- "▁Bitte",
- -11.808976173400879
- ],
- [
- "utilizing",
- -11.808998107910156
- ],
- [
- "▁expérience",
- -11.809073448181152
- ],
- [
- "▁dur",
- -11.809146881103516
- ],
- [
- "▁precisely",
- -11.809178352355957
- ],
- [
- "▁janvier",
- -11.809394836425781
- ],
- [
- "AGE",
- -11.80987548828125
- ],
- [
- "moto",
- -11.810007095336914
- ],
- [
- "▁counsel",
- -11.810195922851562
- ],
- [
- "▁110",
- -11.810226440429688
- ],
- [
- "nick",
- -11.810245513916016
- ],
- [
- "licit",
- -11.810540199279785
- ],
- [
- "technik",
- -11.810659408569336
- ],
- [
- "▁collaborate",
- -11.810736656188965
- ],
- [
- "▁neighbors",
- -11.810794830322266
- ],
- [
- "tered",
- -11.810922622680664
- ],
- [
- "▁excel",
- -11.811025619506836
- ],
- [
- "▁Route",
- -11.811059951782227
- ],
- [
- "steuer",
- -11.81109619140625
- ],
- [
- "▁pioneer",
- -11.811607360839844
- ],
- [
- "nuit",
- -11.81169319152832
- ],
- [
- "▁skip",
- -11.811963081359863
- ],
- [
- "▁destruction",
- -11.811997413635254
- ],
- [
- "▁thesis",
- -11.812249183654785
- ],
- [
- "▁libre",
- -11.812317848205566
- ],
- [
- "▁petition",
- -11.81234073638916
- ],
- [
- "▁steady",
- -11.812456130981445
- ],
- [
- "▁medications",
- -11.812458992004395
- ],
- [
- "▁audiences",
- -11.812623023986816
- ],
- [
- "▁coaches",
- -11.812689781188965
- ],
- [
- "aller",
- -11.812704086303711
- ],
- [
- "3,000",
- -11.812705993652344
- ],
- [
- "▁anger",
- -11.812785148620605
- ],
- [
- "▁striking",
- -11.812844276428223
- ],
- [
- "▁shades",
- -11.81291675567627
- ],
- [
- "▁Sitz",
- -11.812994956970215
- ],
- [
- "▁gluten",
- -11.813162803649902
- ],
- [
- "▁egal",
- -11.813222885131836
- ],
- [
- "ania",
- -11.813223838806152
- ],
- [
- "▁defend",
- -11.813241004943848
- ],
- [
- "gut",
- -11.81382942199707
- ],
- [
- "▁reserves",
- -11.813895225524902
- ],
- [
- "▁advocate",
- -11.814053535461426
- ],
- [
- "▁Cit",
- -11.814082145690918
- ],
- [
- "▁technicians",
- -11.814105033874512
- ],
- [
- "▁cater",
- -11.814138412475586
- ],
- [
- "leitung",
- -11.814190864562988
- ],
- [
- "▁towns",
- -11.814335823059082
- ],
- [
- "▁Costa",
- -11.814364433288574
- ],
- [
- "▁confront",
- -11.814567565917969
- ],
- [
- "mount",
- -11.814652442932129
- ],
- [
- "▁nationale",
- -11.814706802368164
- ],
- [
- "▁adverse",
- -11.814932823181152
- ],
- [
- "▁couleur",
- -11.815112113952637
- ],
- [
- "▁delight",
- -11.815169334411621
- ],
- [
- "▁promises",
- -11.815224647521973
- ],
- [
- "▁silent",
- -11.81550121307373
- ],
- [
- "richtet",
- -11.815556526184082
- ],
- [
- "▁Companies",
- -11.815614700317383
- ],
- [
- "▁Charlotte",
- -11.815620422363281
- ],
- [
- "▁labels",
- -11.815652847290039
- ],
- [
- "▁Süd",
- -11.815656661987305
- ],
- [
- "▁Honor",
- -11.81567096710205
- ],
- [
- "▁complaints",
- -11.815710067749023
- ],
- [
- "▁siècle",
- -11.815752029418945
- ],
- [
- "▁suits",
- -11.815792083740234
- ],
- [
- "▁Bath",
- -11.815827369689941
- ],
- [
- "mise",
- -11.815926551818848
- ],
- [
- "▁acela",
- -11.8159818649292
- ],
- [
- "▁candidat",
- -11.816011428833008
- ],
- [
- "Flo",
- -11.816207885742188
- ],
- [
- "▁conservative",
- -11.816215515136719
- ],
- [
- "DD",
- -11.816314697265625
- ],
- [
- "▁changement",
- -11.816414833068848
- ],
- [
- "▁login",
- -11.816492080688477
- ],
- [
- "▁Fashion",
- -11.816585540771484
- ],
- [
- "reichen",
- -11.816672325134277
- ],
- [
- "through",
- -11.816751480102539
- ],
- [
- "aki",
- -11.817240715026855
- ],
- [
- "gna",
- -11.817547798156738
- ],
- [
- "▁verse",
- -11.817551612854004
- ],
- [
- "▁threats",
- -11.817622184753418
- ],
- [
- "▁Song",
- -11.817770004272461
- ],
- [
- "▁funded",
- -11.81792163848877
- ],
- [
- "langen",
- -11.818023681640625
- ],
- [
- "▁distribu",
- -11.818195343017578
- ],
- [
- "édition",
- -11.818316459655762
- ],
- [
- "▁royal",
- -11.818562507629395
- ],
- [
- "▁bevor",
- -11.818829536437988
- ],
- [
- "▁02",
- -11.818854331970215
- ],
- [
- "straße",
- -11.818938255310059
- ],
- [
- "edit",
- -11.81904125213623
- ],
- [
- "▁energetic",
- -11.81922721862793
- ],
- [
- "▁Carr",
- -11.819757461547852
- ],
- [
- "viol",
- -11.819937705993652
- ],
- [
- "▁niche",
- -11.820054054260254
- ],
- [
- "avais",
- -11.820099830627441
- ],
- [
- "▁backyard",
- -11.82010269165039
- ],
- [
- "▁Saudi",
- -11.820158958435059
- ],
- [
- "▁Zwei",
- -11.820207595825195
- ],
- [
- "▁Legal",
- -11.82027530670166
- ],
- [
- "accessed",
- -11.820277214050293
- ],
- [
- "▁choisi",
- -11.820340156555176
- ],
- [
- "▁GDP",
- -11.820343971252441
- ],
- [
- "oferă",
- -11.820352554321289
- ],
- [
- "hlen",
- -11.820490837097168
- ],
- [
- "▁Wor",
- -11.820520401000977
- ],
- [
- "▁cheer",
- -11.820586204528809
- ],
- [
- "▁barely",
- -11.820625305175781
- ],
- [
- "cost",
- -11.820646286010742
- ],
- [
- "▁Really",
- -11.820661544799805
- ],
- [
- "kol",
- -11.820721626281738
- ],
- [
- "▁binding",
- -11.821045875549316
- ],
- [
- "euer",
- -11.821136474609375
- ],
- [
- "▁optimization",
- -11.821158409118652
- ],
- [
- "▁Designer",
- -11.8211669921875
- ],
- [
- "▁measuring",
- -11.82117748260498
- ],
- [
- "ncy",
- -11.821516036987305
- ],
- [
- "weise",
- -11.821520805358887
- ],
- [
- "DER",
- -11.821850776672363
- ],
- [
- "▁$7",
- -11.821949005126953
- ],
- [
- "▁Anfang",
- -11.821954727172852
- ],
- [
- "material",
- -11.821967124938965
- ],
- [
- "▁antique",
- -11.822281837463379
- ],
- [
- "▁Certificate",
- -11.822294235229492
- ],
- [
- "▁modest",
- -11.822370529174805
- ],
- [
- "ției",
- -11.822427749633789
- ],
- [
- "▁praise",
- -11.82245922088623
- ],
- [
- "▁Springs",
- -11.822660446166992
- ],
- [
- "▁organiza",
- -11.823041915893555
- ],
- [
- "jurul",
- -11.823047637939453
- ],
- [
- "▁plumbing",
- -11.82341194152832
- ],
- [
- "▁foster",
- -11.823490142822266
- ],
- [
- "▁Wy",
- -11.823491096496582
- ],
- [
- "▁Sab",
- -11.823503494262695
- ],
- [
- "▁overwhelming",
- -11.823677062988281
- ],
- [
- "▁matin",
- -11.823812484741211
- ],
- [
- "▁responded",
- -11.82408332824707
- ],
- [
- "▁confused",
- -11.824150085449219
- ],
- [
- "▁blessed",
- -11.824280738830566
- ],
- [
- "▁160",
- -11.824295997619629
- ],
- [
- "▁ingredient",
- -11.824360847473145
- ],
- [
- "▁confer",
- -11.82448673248291
- ],
- [
- "▁Gesundheit",
- -11.824530601501465
- ],
- [
- "▁bucket",
- -11.824555397033691
- ],
- [
- "kraft",
- -11.824565887451172
- ],
- [
- "lange",
- -11.824630737304688
- ],
- [
- "▁Kopf",
- -11.824678421020508
- ],
- [
- "▁Prize",
- -11.824678421020508
- ],
- [
- "▁authorized",
- -11.824779510498047
- ],
- [
- "▁tick",
- -11.824803352355957
- ],
- [
- "▁steal",
- -11.824910163879395
- ],
- [
- "Depending",
- -11.824918746948242
- ],
- [
- "Depuis",
- -11.824952125549316
- ],
- [
- "▁functie",
- -11.82499885559082
- ],
- [
- "▁developments",
- -11.825053215026855
- ],
- [
- "▁Christians",
- -11.825311660766602
- ],
- [
- "▁calculated",
- -11.8256254196167
- ],
- [
- "▁Leave",
- -11.825672149658203
- ],
- [
- "▁Jam",
- -11.82573413848877
- ],
- [
- "▁habitat",
- -11.825760841369629
- ],
- [
- "▁Sorry",
- -11.825801849365234
- ],
- [
- "▁oficial",
- -11.825944900512695
- ],
- [
- "▁allein",
- -11.826079368591309
- ],
- [
- "▁concentrate",
- -11.82608413696289
- ],
- [
- "dica",
- -11.826302528381348
- ],
- [
- "▁Convention",
- -11.826476097106934
- ],
- [
- "illes",
- -11.826550483703613
- ],
- [
- "▁fum",
- -11.82664680480957
- ],
- [
- "▁Tal",
- -11.826651573181152
- ],
- [
- "Europe",
- -11.826899528503418
- ],
- [
- "▁attachment",
- -11.826949119567871
- ],
- [
- "▁sensibil",
- -11.826995849609375
- ],
- [
- "▁clue",
- -11.82715892791748
- ],
- [
- "▁specialty",
- -11.827203750610352
- ],
- [
- "▁Cou",
- -11.827229499816895
- ],
- [
- "▁liste",
- -11.827278137207031
- ],
- [
- "▁Penn",
- -11.827465057373047
- ],
- [
- "TRA",
- -11.827559471130371
- ],
- [
- "▁Themen",
- -11.827561378479004
- ],
- [
- "▁motivated",
- -11.827906608581543
- ],
- [
- "▁camere",
- -11.828017234802246
- ],
- [
- "▁14,",
- -11.828393936157227
- ],
- [
- "▁attendance",
- -11.828557968139648
- ],
- [
- "atorii",
- -11.828581809997559
- ],
- [
- "chemistry",
- -11.82873821258545
- ],
- [
- "▁roofing",
- -11.828959465026855
- ],
- [
- "▁Links",
- -11.829048156738281
- ],
- [
- "▁trou",
- -11.829103469848633
- ],
- [
- "▁trucks",
- -11.829136848449707
- ],
- [
- "hilfe",
- -11.829557418823242
- ],
- [
- "▁(6",
- -11.829599380493164
- ],
- [
- "vapor",
- -11.82964038848877
- ],
- [
- "mad",
- -11.829668045043945
- ],
- [
- "▁Albert",
- -11.829877853393555
- ],
- [
- "▁FIG",
- -11.830073356628418
- ],
- [
- "▁Rand",
- -11.830187797546387
- ],
- [
- "▁Constitution",
- -11.830219268798828
- ],
- [
- "ambi",
- -11.830294609069824
- ],
- [
- "▁Syria",
- -11.830307006835938
- ],
- [
- "▁Fond",
- -11.830477714538574
- ],
- [
- "▁gouvernement",
- -11.830594062805176
- ],
- [
- "▁Active",
- -11.830705642700195
- ],
- [
- "▁prints",
- -11.830801963806152
- ],
- [
- "▁weigh",
- -11.8308687210083
- ],
- [
- "▁Craft",
- -11.831069946289062
- ],
- [
- "▁projets",
- -11.831247329711914
- ],
- [
- "▁paste",
- -11.831377029418945
- ],
- [
- "anci",
- -11.83139705657959
- ],
- [
- "kie",
- -11.831411361694336
- ],
- [
- "▁gains",
- -11.83165168762207
- ],
- [
- "▁Record",
- -11.831942558288574
- ],
- [
- "▁beliefs",
- -11.831954956054688
- ],
- [
- "countless",
- -11.831957817077637
- ],
- [
- "▁tomatoes",
- -11.831997871398926
- ],
- [
- "arie",
- -11.832082748413086
- ],
- [
- "▁140",
- -11.83211612701416
- ],
- [
- "▁ethical",
- -11.832229614257812
- ],
- [
- "objectif",
- -11.832279205322266
- ],
- [
- "▁acestuia",
- -11.832283973693848
- ],
- [
- "▁Bluetooth",
- -11.832398414611816
- ],
- [
- "▁agriculture",
- -11.832746505737305
- ],
- [
- "uré",
- -11.833027839660645
- ],
- [
- "▁cale",
- -11.833072662353516
- ],
- [
- "▁articol",
- -11.833073616027832
- ],
- [
- "▁gum",
- -11.833319664001465
- ],
- [
- "▁vendor",
- -11.833490371704102
- ],
- [
- "ifié",
- -11.833527565002441
- ],
- [
- "▁peer",
- -11.833662033081055
- ],
- [
- "pod",
- -11.834036827087402
- ],
- [
- "▁utilized",
- -11.834113121032715
- ],
- [
- "▁Mü",
- -11.834207534790039
- ],
- [
- "owohl",
- -11.834208488464355
- ],
- [
- "hilst",
- -11.834233283996582
- ],
- [
- "frame",
- -11.834260940551758
- ],
- [
- "▁fridge",
- -11.834822654724121
- ],
- [
- "▁query",
- -11.835108757019043
- ],
- [
- "▁Survey",
- -11.835227012634277
- ],
- [
- "▁Hell",
- -11.835247993469238
- ],
- [
- "▁notification",
- -11.83530044555664
- ],
- [
- "TR",
- -11.83538818359375
- ],
- [
- "▁ultima",
- -11.835505485534668
- ],
- [
- "▁radiation",
- -11.835631370544434
- ],
- [
- "▁musicians",
- -11.835821151733398
- ],
- [
- "CAN",
- -11.83595085144043
- ],
- [
- "▁grocery",
- -11.83607292175293
- ],
- [
- "▁Sicherheit",
- -11.83611011505127
- ],
- [
- "▁Highway",
- -11.836276054382324
- ],
- [
- "▁Break",
- -11.836285591125488
- ],
- [
- "TED",
- -11.836345672607422
- ],
- [
- "ön",
- -11.836352348327637
- ],
- [
- "▁biological",
- -11.836352348327637
- ],
- [
- "qual",
- -11.836397171020508
- ],
- [
- "250",
- -11.83641242980957
- ],
- [
- "▁modify",
- -11.836651802062988
- ],
- [
- "▁Hit",
- -11.836698532104492
- ],
- [
- "▁Iar",
- -11.836838722229004
- ],
- [
- "aged",
- -11.836884498596191
- ],
- [
- "...)",
- -11.83688735961914
- ],
- [
- "▁contrat",
- -11.836928367614746
- ],
- [
- "▁centres",
- -11.836956977844238
- ],
- [
- "griff",
- -11.836987495422363
- ],
- [
- "Our",
- -11.837233543395996
- ],
- [
- "▁determination",
- -11.837300300598145
- ],
- [
- "▁variables",
- -11.83742904663086
- ],
- [
- "▁nuts",
- -11.837472915649414
- ],
- [
- "échange",
- -11.837577819824219
- ],
- [
- "extérieur",
- -11.837631225585938
- ],
- [
- "▁suflet",
- -11.83764362335205
- ],
- [
- "▁Scha",
- -11.837752342224121
- ],
- [
- "stück",
- -11.837774276733398
- ],
- [
- "▁Tau",
- -11.837821960449219
- ],
- [
- "▁participa",
- -11.838008880615234
- ],
- [
- "▁mad",
- -11.838034629821777
- ],
- [
- "▁relie",
- -11.838051795959473
- ],
- [
- "▁Fine",
- -11.83808422088623
- ],
- [
- "▁grape",
- -11.838118553161621
- ],
- [
- "▁wage",
- -11.838141441345215
- ],
- [
- "▁startup",
- -11.838193893432617
- ],
- [
- "▁blank",
- -11.838194847106934
- ],
- [
- "▁physique",
- -11.838199615478516
- ],
- [
- "▁punch",
- -11.838233947753906
- ],
- [
- "▁contacts",
- -11.838321685791016
- ],
- [
- "▁dezvolt",
- -11.83835220336914
- ],
- [
- "cross",
- -11.838639259338379
- ],
- [
- "▁TR",
- -11.838652610778809
- ],
- [
- "▁gener",
- -11.838754653930664
- ],
- [
- "▁indem",
- -11.838823318481445
- ],
- [
- "▁Stan",
- -11.838839530944824
- ],
- [
- "▁azi",
- -11.838930130004883
- ],
- [
- "▁Sel",
- -11.838958740234375
- ],
- [
- "▁Tot",
- -11.83924674987793
- ],
- [
- "vra",
- -11.839341163635254
- ],
- [
- "▁recruit",
- -11.839482307434082
- ],
- [
- "▁Yeah",
- -11.839494705200195
- ],
- [
- "/10",
- -11.839507102966309
- ],
- [
- "▁nail",
- -11.83956241607666
- ],
- [
- "▁Ky",
- -11.839611053466797
- ],
- [
- "▁beloved",
- -11.839760780334473
- ],
- [
- "operative",
- -11.839823722839355
- ],
- [
- "▁Tickets",
- -11.83983325958252
- ],
- [
- "▁tear",
- -11.840229988098145
- ],
- [
- "▁amp",
- -11.840352058410645
- ],
- [
- "▁04",
- -11.840361595153809
- ],
- [
- "▁illustrate",
- -11.840361595153809
- ],
- [
- "▁mac",
- -11.840400695800781
- ],
- [
- "▁receiver",
- -11.840482711791992
- ],
- [
- "atrice",
- -11.840508460998535
- ],
- [
- "▁souhait",
- -11.840572357177734
- ],
- [
- "▁Gewinn",
- -11.840619087219238
- ],
- [
- "▁Vit",
- -11.840808868408203
- ],
- [
- "roch",
- -11.841202735900879
- ],
- [
- "▁arata",
- -11.841262817382812
- ],
- [
- "▁Indiana",
- -11.841364860534668
- ],
- [
- "child",
- -11.841516494750977
- ],
- [
- "▁invested",
- -11.84157657623291
- ],
- [
- "▁Excellent",
- -11.841625213623047
- ],
- [
- "gori",
- -11.841769218444824
- ],
- [
- "▁thermal",
- -11.841813087463379
- ],
- [
- "Str",
- -11.841973304748535
- ],
- [
- "▁liver",
- -11.84201717376709
- ],
- [
- "miss",
- -11.842035293579102
- ],
- [
- "▁utiliser",
- -11.842120170593262
- ],
- [
- "▁prest",
- -11.842445373535156
- ],
- [
- "2016",
- -11.842506408691406
- ],
- [
- "isée",
- -11.842508316040039
- ],
- [
- "▁Index",
- -11.842559814453125
- ],
- [
- "▁arch",
- -11.842639923095703
- ],
- [
- "▁Toyota",
- -11.842748641967773
- ],
- [
- "▁YOUR",
- -11.842782020568848
- ],
- [
- "▁Mexican",
- -11.842891693115234
- ],
- [
- "▁gegenüber",
- -11.842940330505371
- ],
- [
- "▁cannabis",
- -11.843033790588379
- ],
- [
- "bis",
- -11.843077659606934
- ],
- [
- "vage",
- -11.843083381652832
- ],
- [
- "hall",
- -11.843091011047363
- ],
- [
- "fax",
- -11.843137741088867
- ],
- [
- "▁spoken",
- -11.843232154846191
- ],
- [
- "▁Zimmer",
- -11.843544960021973
- ],
- [
- "kauf",
- -11.8436279296875
- ],
- [
- "▁couleurs",
- -11.843705177307129
- ],
- [
- "▁NJ",
- -11.844026565551758
- ],
- [
- "▁Heritage",
- -11.844318389892578
- ],
- [
- "▁Pflege",
- -11.844321250915527
- ],
- [
- "luc",
- -11.844361305236816
- ],
- [
- "▁56",
- -11.844489097595215
- ],
- [
- "VP",
- -11.844542503356934
- ],
- [
- "▁cuvinte",
- -11.844594955444336
- ],
- [
- "▁Alliance",
- -11.844614028930664
- ],
- [
- "▁coco",
- -11.844615936279297
- ],
- [
- "▁leverage",
- -11.844762802124023
- ],
- [
- "auch",
- -11.844844818115234
- ],
- [
- "▁Cart",
- -11.84506607055664
- ],
- [
- "taux",
- -11.84532642364502
- ],
- [
- "east",
- -11.84560775756836
- ],
- [
- "▁decorating",
- -11.84565258026123
- ],
- [
- "tip",
- -11.84565544128418
- ],
- [
- "▁Communications",
- -11.845780372619629
- ],
- [
- "ACE",
- -11.84580135345459
- ],
- [
- "▁Consul",
- -11.845993041992188
- ],
- [
- "▁Swiss",
- -11.846197128295898
- ],
- [
- "inci",
- -11.846230506896973
- ],
- [
- "▁Fact",
- -11.846312522888184
- ],
- [
- "▁ajung",
- -11.846321105957031
- ],
- [
- "▁airline",
- -11.846325874328613
- ],
- [
- "▁kidney",
- -11.846379280090332
- ],
- [
- "▁Records",
- -11.84642505645752
- ],
- [
- "▁Olympic",
- -11.846747398376465
- ],
- [
- "▁dried",
- -11.84719467163086
- ],
- [
- "oivent",
- -11.847333908081055
- ],
- [
- "▁Adobe",
- -11.847467422485352
- ],
- [
- "▁powers",
- -11.847748756408691
- ],
- [
- "lande",
- -11.847834587097168
- ],
- [
- "▁relieve",
- -11.847858428955078
- ],
- [
- "ţine",
- -11.847898483276367
- ],
- [
- "▁gradually",
- -11.847945213317871
- ],
- [
- "mud",
- -11.84811019897461
- ],
- [
- "▁30,",
- -11.848116874694824
- ],
- [
- "▁plante",
- -11.848133087158203
- ],
- [
- "▁Hug",
- -11.848225593566895
- ],
- [
- "▁Focus",
- -11.84853458404541
- ],
- [
- "▁distinctive",
- -11.848594665527344
- ],
- [
- "▁Bab",
- -11.848662376403809
- ],
- [
- "tata",
- -11.848679542541504
- ],
- [
- "▁Nun",
- -11.848797798156738
- ],
- [
- "▁Eve",
- -11.848811149597168
- ],
- [
- "▁déc",
- -11.848881721496582
- ],
- [
- "▁Beitrag",
- -11.84900951385498
- ],
- [
- "▁devenit",
- -11.849042892456055
- ],
- [
- "driven",
- -11.849250793457031
- ],
- [
- "▁offerings",
- -11.84933853149414
- ],
- [
- "▁exc",
- -11.84941577911377
- ],
- [
- "encies",
- -11.849576950073242
- ],
- [
- "▁Neuro",
- -11.849588394165039
- ],
- [
- "scher",
- -11.849604606628418
- ],
- [
- "map",
- -11.849703788757324
- ],
- [
- "pending",
- -11.849783897399902
- ],
- [
- "▁courage",
- -11.849799156188965
- ],
- [
- "axe",
- -11.849894523620605
- ],
- [
- "▁Gesellschaft",
- -11.849900245666504
- ],
- [
- "▁ears",
- -11.85000991821289
- ],
- [
- "▁aider",
- -11.850403785705566
- ],
- [
- "▁Cast",
- -11.85042667388916
- ],
- [
- "fast",
- -11.850442886352539
- ],
- [
- "▁departe",
- -11.850502014160156
- ],
- [
- "▁oak",
- -11.850507736206055
- ],
- [
- "▁batch",
- -11.850730895996094
- ],
- [
- "▁Corporate",
- -11.850762367248535
- ],
- [
- "▁Ost",
- -11.850895881652832
- ],
- [
- "-14",
- -11.850897789001465
- ],
- [
- "▁Pie",
- -11.85115909576416
- ],
- [
- "▁ranking",
- -11.851273536682129
- ],
- [
- "clusion",
- -11.851316452026367
- ],
- [
- "▁costume",
- -11.851347923278809
- ],
- [
- "▁Knight",
- -11.851449966430664
- ],
- [
- "▁privat",
- -11.851577758789062
- ],
- [
- "▁Engineer",
- -11.851593971252441
- ],
- [
- "▁gens",
- -11.8517427444458
- ],
- [
- "physics",
- -11.85176944732666
- ],
- [
- "generating",
- -11.851773262023926
- ],
- [
- "directement",
- -11.851786613464355
- ],
- [
- "▁confidential",
- -11.851810455322266
- ],
- [
- "▁poet",
- -11.851937294006348
- ],
- [
- "▁monster",
- -11.851944923400879
- ],
- [
- "▁suppose",
- -11.851984977722168
- ],
- [
- "său",
- -11.851996421813965
- ],
- [
- "▁balls",
- -11.852103233337402
- ],
- [
- "▁substitute",
- -11.852137565612793
- ],
- [
- "▁simultaneously",
- -11.852238655090332
- ],
- [
- "▁specify",
- -11.852272033691406
- ],
- [
- "wald",
- -11.852287292480469
- ],
- [
- "▁collapse",
- -11.852352142333984
- ],
- [
- "dessus",
- -11.852458953857422
- ],
- [
- "▁vitr",
- -11.852516174316406
- ],
- [
- "▁recruitment",
- -11.852607727050781
- ],
- [
- "denken",
- -11.852632522583008
- ],
- [
- "▁candy",
- -11.852691650390625
- ],
- [
- "▁tourists",
- -11.852721214294434
- ],
- [
- "dimensional",
- -11.852782249450684
- ],
- [
- "conce",
- -11.852814674377441
- ],
- [
- "wechsel",
- -11.852822303771973
- ],
- [
- "▁passende",
- -11.852971076965332
- ],
- [
- "industrie",
- -11.85299301147461
- ],
- [
- "agne",
- -11.853127479553223
- ],
- [
- "▁warehouse",
- -11.853233337402344
- ],
- [
- "▁Jugend",
- -11.853277206420898
- ],
- [
- "▁Weise",
- -11.853357315063477
- ],
- [
- "▁Zone",
- -11.853528022766113
- ],
- [
- "▁licence",
- -11.853550910949707
- ],
- [
- "▁broker",
- -11.853630065917969
- ],
- [
- "▁Rolle",
- -11.85365104675293
- ],
- [
- "pton",
- -11.853789329528809
- ],
- [
- "▁preference",
- -11.853846549987793
- ],
- [
- "▁homeowners",
- -11.853861808776855
- ],
- [
- "▁Lum",
- -11.85387134552002
- ],
- [
- "▁Chairman",
- -11.853879928588867
- ],
- [
- "▁Pages",
- -11.853998184204102
- ],
- [
- "▁beam",
- -11.854005813598633
- ],
- [
- "▁coordinate",
- -11.854158401489258
- ],
- [
- "▁Tool",
- -11.854212760925293
- ],
- [
- "▁complexity",
- -11.854272842407227
- ],
- [
- "▁checks",
- -11.854339599609375
- ],
- [
- "▁Bedroom",
- -11.854405403137207
- ],
- [
- "minded",
- -11.854538917541504
- ],
- [
- "▁copiii",
- -11.854694366455078
- ],
- [
- "▁celebrating",
- -11.85470199584961
- ],
- [
- "zimmer",
- -11.854759216308594
- ],
- [
- "▁Imagine",
- -11.854759216308594
- ],
- [
- "▁decoration",
- -11.854830741882324
- ],
- [
- "team",
- -11.855354309082031
- ],
- [
- "▁împreună",
- -11.855369567871094
- ],
- [
- "▁publicly",
- -11.855391502380371
- ],
- [
- "▁centuries",
- -11.855514526367188
- ],
- [
- "▁Islands",
- -11.855644226074219
- ],
- [
- "▁ethnic",
- -11.855663299560547
- ],
- [
- "still",
- -11.85576057434082
- ],
- [
- "stieg",
- -11.855823516845703
- ],
- [
- "emia",
- -11.855904579162598
- ],
- [
- "tags",
- -11.856026649475098
- ],
- [
- "▁marche",
- -11.856062889099121
- ],
- [
- "▁migration",
- -11.856096267700195
- ],
- [
- "▁banner",
- -11.85616683959961
- ],
- [
- "▁macro",
- -11.856378555297852
- ],
- [
- "▁Edit",
- -11.856379508972168
- ],
- [
- "tran",
- -11.85656452178955
- ],
- [
- "ça",
- -11.856597900390625
- ],
- [
- "▁recycling",
- -11.856670379638672
- ],
- [
- "▁1,000",
- -11.856673240661621
- ],
- [
- "▁Quelle",
- -11.856891632080078
- ],
- [
- "▁Vel",
- -11.85700511932373
- ],
- [
- "▁Rit",
- -11.857025146484375
- ],
- [
- "▁Spaß",
- -11.857046127319336
- ],
- [
- "▁Corn",
- -11.857074737548828
- ],
- [
- "tracted",
- -11.857177734375
- ],
- [
- "cited",
- -11.857185363769531
- ],
- [
- "▁tablets",
- -11.857202529907227
- ],
- [
- "▁Display",
- -11.857337951660156
- ],
- [
- "▁persoana",
- -11.857392311096191
- ],
- [
- "Term",
- -11.857410430908203
- ],
- [
- "▁Vancouver",
- -11.857537269592285
- ],
- [
- "▁Gäste",
- -11.857550621032715
- ],
- [
- "determining",
- -11.857608795166016
- ],
- [
- "▁populations",
- -11.85778522491455
- ],
- [
- "aison",
- -11.857873916625977
- ],
- [
- "▁surgical",
- -11.858072280883789
- ],
- [
- "tale",
- -11.858160018920898
- ],
- [
- "ivi",
- -11.858283042907715
- ],
- [
- "▁Zur",
- -11.858388900756836
- ],
- [
- "esprit",
- -11.858574867248535
- ],
- [
- "▁Edge",
- -11.858665466308594
- ],
- [
- "dach",
- -11.858760833740234
- ],
- [
- "phi",
- -11.858773231506348
- ],
- [
- "▁suc",
- -11.858841896057129
- ],
- [
- "▁scrie",
- -11.858848571777344
- ],
- [
- "▁Ausbildung",
- -11.858885765075684
- ],
- [
- "▁51",
- -11.85892391204834
- ],
- [
- "ologi",
- -11.858938217163086
- ],
- [
- "▁correction",
- -11.859049797058105
- ],
- [
- "▁Wald",
- -11.859078407287598
- ],
- [
- "▁additionally",
- -11.859131813049316
- ],
- [
- "▁proche",
- -11.859353065490723
- ],
- [
- "▁classical",
- -11.859477996826172
- ],
- [
- "▁bringen",
- -11.859490394592285
- ],
- [
- "▁(10",
- -11.859611511230469
- ],
- [
- "▁Mile",
- -11.859809875488281
- ],
- [
- "lace",
- -11.859885215759277
- ],
- [
- "▁premi",
- -11.85988712310791
- ],
- [
- "▁constitute",
- -11.860029220581055
- ],
- [
- "▁bitter",
- -11.860078811645508
- ],
- [
- "▁Inform",
- -11.860295295715332
- ],
- [
- "▁corporations",
- -11.860334396362305
- ],
- [
- "▁Lisa",
- -11.860494613647461
- ],
- [
- "▁obligat",
- -11.860685348510742
- ],
- [
- "Throughout",
- -11.860738754272461
- ],
- [
- "▁Rs",
- -11.860769271850586
- ],
- [
- "▁Hair",
- -11.860916137695312
- ],
- [
- "▁supplements",
- -11.86099624633789
- ],
- [
- "▁motorcycle",
- -11.861054420471191
- ],
- [
- "escent",
- -11.861132621765137
- ],
- [
- "▁investi",
- -11.861222267150879
- ],
- [
- "▁continuously",
- -11.861265182495117
- ],
- [
- "▁Essen",
- -11.861334800720215
- ],
- [
- "▁precision",
- -11.8613862991333
- ],
- [
- "▁deficit",
- -11.861461639404297
- ],
- [
- "▁wallet",
- -11.861481666564941
- ],
- [
- "▁Bürger",
- -11.861531257629395
- ],
- [
- "chir",
- -11.861574172973633
- ],
- [
- "9)",
- -11.86161994934082
- ],
- [
- "▁Programme",
- -11.861716270446777
- ],
- [
- "▁simplement",
- -11.86193561553955
- ],
- [
- "MD",
- -11.862093925476074
- ],
- [
- "▁rouge",
- -11.862096786499023
- ],
- [
- "usion",
- -11.862133979797363
- ],
- [
- "▁stove",
- -11.862208366394043
- ],
- [
- "▁prospective",
- -11.862224578857422
- ],
- [
- "▁corp",
- -11.86234188079834
- ],
- [
- "▁impacts",
- -11.862401008605957
- ],
- [
- "▁bride",
- -11.86266803741455
- ],
- [
- "0.0",
- -11.862788200378418
- ],
- [
- "hid",
- -11.862833976745605
- ],
- [
- "▁warrant",
- -11.862930297851562
- ],
- [
- "▁Ice",
- -11.8631010055542
- ],
- [
- "▁sensible",
- -11.863151550292969
- ],
- [
- "▁vreo",
- -11.863166809082031
- ],
- [
- "spekt",
- -11.863249778747559
- ],
- [
- "▁appreciation",
- -11.8633394241333
- ],
- [
- "▁automation",
- -11.863377571105957
- ],
- [
- "Luc",
- -11.86341381072998
- ],
- [
- "teaches",
- -11.863471031188965
- ],
- [
- "▁fold",
- -11.863506317138672
- ],
- [
- "deutsche",
- -11.863523483276367
- ],
- [
- "▁assisted",
- -11.86380386352539
- ],
- [
- "▁straightforward",
- -11.863932609558105
- ],
- [
- "▁mechanic",
- -11.864068031311035
- ],
- [
- "observ",
- -11.864169120788574
- ],
- [
- "▁Schau",
- -11.864195823669434
- ],
- [
- "▁Recently",
- -11.864301681518555
- ],
- [
- "kers",
- -11.86435604095459
- ],
- [
- "▁Soft",
- -11.864455223083496
- ],
- [
- "muni",
- -11.864537239074707
- ],
- [
- "▁lie",
- -11.864617347717285
- ],
- [
- "▁Fat",
- -11.864728927612305
- ],
- [
- "cream",
- -11.86476993560791
- ],
- [
- "▁snack",
- -11.864909172058105
- ],
- [
- "▁juin",
- -11.865068435668945
- ],
- [
- "▁competent",
- -11.865134239196777
- ],
- [
- "▁Drug",
- -11.865141868591309
- ],
- [
- "▁Row",
- -11.865302085876465
- ],
- [
- "▁needle",
- -11.865852355957031
- ],
- [
- "▁convey",
- -11.865900039672852
- ],
- [
- "▁voie",
- -11.86600399017334
- ],
- [
- "▁Hon",
- -11.866190910339355
- ],
- [
- "▁ebook",
- -11.866194725036621
- ],
- [
- "▁veteran",
- -11.866209030151367
- ],
- [
- "▁statistical",
- -11.866217613220215
- ],
- [
- "190",
- -11.866312980651855
- ],
- [
- "▁munca",
- -11.866402626037598
- ],
- [
- "▁venues",
- -11.866438865661621
- ],
- [
- "▁Viel",
- -11.866604804992676
- ],
- [
- "▁décor",
- -11.866799354553223
- ],
- [
- "▁répond",
- -11.8670015335083
- ],
- [
- "▁produsele",
- -11.86700439453125
- ],
- [
- "ruc",
- -11.867009162902832
- ],
- [
- "▁drops",
- -11.867011070251465
- ],
- [
- "▁autant",
- -11.867311477661133
- ],
- [
- "▁Fahrzeug",
- -11.867313385009766
- ],
- [
- "▁hills",
- -11.86735725402832
- ],
- [
- "ference",
- -11.867414474487305
- ],
- [
- "▁Glück",
- -11.86742115020752
- ],
- [
- "▁Pac",
- -11.867480278015137
- ],
- [
- "▁permettr",
- -11.867568969726562
- ],
- [
- "▁mouvement",
- -11.867713928222656
- ],
- [
- "établissement",
- -11.867859840393066
- ],
- [
- "▁Parc",
- -11.867874145507812
- ],
- [
- "▁solving",
- -11.867900848388672
- ],
- [
- "▁jail",
- -11.867972373962402
- ],
- [
- "▁junk",
- -11.867980003356934
- ],
- [
- "▁jeux",
- -11.868091583251953
- ],
- [
- "▁rôle",
- -11.868107795715332
- ],
- [
- "▁cache",
- -11.868124961853027
- ],
- [
- "▁Answer",
- -11.86832046508789
- ],
- [
- "wir",
- -11.868706703186035
- ],
- [
- "option",
- -11.868732452392578
- ],
- [
- "▁Tiger",
- -11.868739128112793
- ],
- [
- "▁Ble",
- -11.868793487548828
- ],
- [
- "Mitglied",
- -11.868797302246094
- ],
- [
- "▁partial",
- -11.868819236755371
- ],
- [
- "▁Mercedes",
- -11.86888313293457
- ],
- [
- "tire",
- -11.869001388549805
- ],
- [
- "MENT",
- -11.869091987609863
- ],
- [
- "▁transit",
- -11.869230270385742
- ],
- [
- "▁cineva",
- -11.869285583496094
- ],
- [
- "▁Andrea",
- -11.869294166564941
- ],
- [
- "▁boundaries",
- -11.869497299194336
- ],
- [
- "script",
- -11.870061874389648
- ],
- [
- "▁Medi",
- -11.870123863220215
- ],
- [
- "schreiben",
- -11.870203018188477
- ],
- [
- "▁lobby",
- -11.87035846710205
- ],
- [
- "▁defendant",
- -11.870406150817871
- ],
- [
- "▁sq",
- -11.870467185974121
- ],
- [
- "▁forgotten",
- -11.870569229125977
- ],
- [
- "stimmung",
- -11.870651245117188
- ],
- [
- "hus",
- -11.870665550231934
- ],
- [
- "RY",
- -11.870728492736816
- ],
- [
- "▁Anderson",
- -11.870748519897461
- ],
- [
- "▁Dental",
- -11.870828628540039
- ],
- [
- "ject",
- -11.87110710144043
- ],
- [
- "▁Nutzer",
- -11.871377944946289
- ],
- [
- "▁Portland",
- -11.871540069580078
- ],
- [
- "scription",
- -11.871636390686035
- ],
- [
- "▁angel",
- -11.871695518493652
- ],
- [
- "▁monument",
- -11.871748924255371
- ],
- [
- "▁număr",
- -11.871784210205078
- ],
- [
- "▁Lane",
- -11.871800422668457
- ],
- [
- "▁Bai",
- -11.871894836425781
- ],
- [
- "But",
- -11.871909141540527
- ],
- [
- "▁calculate",
- -11.872315406799316
- ],
- [
- "▁provoca",
- -11.87247371673584
- ],
- [
- "▁votes",
- -11.872493743896484
- ],
- [
- "RNA",
- -11.872503280639648
- ],
- [
- "though",
- -11.87259292602539
- ],
- [
- "spor",
- -11.872631072998047
- ],
- [
- "▁connaissance",
- -11.872695922851562
- ],
- [
- "▁Anwendung",
- -11.872932434082031
- ],
- [
- "▁Kate",
- -11.873123168945312
- ],
- [
- "lob",
- -11.87315845489502
- ],
- [
- "▁Conf",
- -11.873180389404297
- ],
- [
- "bung",
- -11.873212814331055
- ],
- [
- "ander",
- -11.873282432556152
- ],
- [
- "▁functioning",
- -11.873297691345215
- ],
- [
- "▁sponsored",
- -11.873324394226074
- ],
- [
- "rav",
- -11.873734474182129
- ],
- [
- "▁resistant",
- -11.873797416687012
- ],
- [
- "tră",
- -11.873916625976562
- ],
- [
- "▁costly",
- -11.873923301696777
- ],
- [
- "▁Mars",
- -11.873991012573242
- ],
- [
- "▁tir",
- -11.874075889587402
- ],
- [
- "▁writes",
- -11.874134063720703
- ],
- [
- "▁Greg",
- -11.874267578125
- ],
- [
- "▁Question",
- -11.874714851379395
- ],
- [
- "▁corporation",
- -11.87485408782959
- ],
- [
- "▁lire",
- -11.874991416931152
- ],
- [
- "locked",
- -11.875048637390137
- ],
- [
- "8,",
- -11.875092506408691
- ],
- [
- "▁sagt",
- -11.875301361083984
- ],
- [
- "gaining",
- -11.87536907196045
- ],
- [
- "▁Pierre",
- -11.875688552856445
- ],
- [
- "verb",
- -11.875725746154785
- ],
- [
- "▁Barcelona",
- -11.87578296661377
- ],
- [
- "werte",
- -11.876474380493164
- ],
- [
- "▁disponible",
- -11.87651538848877
- ],
- [
- "▁urge",
- -11.876521110534668
- ],
- [
- "▁expecting",
- -11.876572608947754
- ],
- [
- "▁Girl",
- -11.87662124633789
- ],
- [
- "▁unlimited",
- -11.876761436462402
- ],
- [
- "watt",
- -11.876788139343262
- ],
- [
- "▁Möglichkeiten",
- -11.876813888549805
- ],
- [
- "▁schöne",
- -11.876847267150879
- ],
- [
- "rium",
- -11.877076148986816
- ],
- [
- "That",
- -11.877272605895996
- ],
- [
- "▁socio",
- -11.877296447753906
- ],
- [
- "▁Democrats",
- -11.877351760864258
- ],
- [
- "guten",
- -11.877422332763672
- ],
- [
- "▁Lou",
- -11.877425193786621
- ],
- [
- "ităţi",
- -11.877559661865234
- ],
- [
- "▁possibilité",
- -11.877717018127441
- ],
- [
- "▁adjustable",
- -11.877938270568848
- ],
- [
- "▁Salt",
- -11.877967834472656
- ],
- [
- "Thr",
- -11.878021240234375
- ],
- [
- "▁biseric",
- -11.878056526184082
- ],
- [
- "ieux",
- -11.87808895111084
- ],
- [
- "▁procur",
- -11.8782377243042
- ],
- [
- "▁credits",
- -11.878250122070312
- ],
- [
- "▁Netflix",
- -11.878585815429688
- ],
- [
- "doi",
- -11.878605842590332
- ],
- [
- "▁Jews",
- -11.878663063049316
- ],
- [
- "▁Ukraine",
- -11.87873363494873
- ],
- [
- "▁adevărat",
- -11.878785133361816
- ],
- [
- "▁Apply",
- -11.878813743591309
- ],
- [
- "▁coupons",
- -11.878859519958496
- ],
- [
- "▁Detroit",
- -11.878881454467773
- ],
- [
- "▁rue",
- -11.878889083862305
- ],
- [
- "anumite",
- -11.878926277160645
- ],
- [
- "ished",
- -11.878973960876465
- ],
- [
- "▁withdrawal",
- -11.87915325164795
- ],
- [
- "▁replacing",
- -11.87917709350586
- ],
- [
- "catching",
- -11.879385948181152
- ],
- [
- "▁climbing",
- -11.879612922668457
- ],
- [
- "▁Basic",
- -11.879770278930664
- ],
- [
- "▁inclus",
- -11.879783630371094
- ],
- [
- "scope",
- -11.879887580871582
- ],
- [
- "▁facem",
- -11.879892349243164
- ],
- [
- "▁plec",
- -11.879904747009277
- ],
- [
- "mäßig",
- -11.879980087280273
- ],
- [
- "▁tasty",
- -11.880064010620117
- ],
- [
- "▁tunnel",
- -11.880074501037598
- ],
- [
- "figured",
- -11.88032341003418
- ],
- [
- "gged",
- -11.880390167236328
- ],
- [
- "▁conditii",
- -11.880599975585938
- ],
- [
- "▁homework",
- -11.880631446838379
- ],
- [
- "volle",
- -11.88063907623291
- ],
- [
- "▁Gott",
- -11.880807876586914
- ],
- [
- "▁95",
- -11.880969047546387
- ],
- [
- "▁elect",
- -11.881020545959473
- ],
- [
- "▁blast",
- -11.881043434143066
- ],
- [
- "▁easiest",
- -11.881248474121094
- ],
- [
- "USE",
- -11.881462097167969
- ],
- [
- "concentr",
- -11.881475448608398
- ],
- [
- "orial",
- -11.881596565246582
- ],
- [
- "▁scroll",
- -11.881638526916504
- ],
- [
- "stead",
- -11.881691932678223
- ],
- [
- "▁hormone",
- -11.881710052490234
- ],
- [
- "▁starter",
- -11.88179874420166
- ],
- [
- "▁cald",
- -11.881878852844238
- ],
- [
- "▁wax",
- -11.881895065307617
- ],
- [
- "▁ridic",
- -11.881900787353516
- ],
- [
- "ously",
- -11.881982803344727
- ],
- [
- "maschine",
- -11.882101058959961
- ],
- [
- "licher",
- -11.882399559020996
- ],
- [
- "▁16,",
- -11.882452964782715
- ],
- [
- "▁hassle",
- -11.882469177246094
- ],
- [
- "semnat",
- -11.882535934448242
- ],
- [
- "▁pub",
- -11.88260555267334
- ],
- [
- "240",
- -11.882800102233887
- ],
- [
- "▁kits",
- -11.882871627807617
- ],
- [
- "▁Generation",
- -11.88293743133545
- ],
- [
- "▁merchant",
- -11.883052825927734
- ],
- [
- "▁Erd",
- -11.883068084716797
- ],
- [
- "▁café",
- -11.883077621459961
- ],
- [
- "hoff",
- -11.88314151763916
- ],
- [
- "▁WITH",
- -11.883376121520996
- ],
- [
- "▁gesch",
- -11.883515357971191
- ],
- [
- "▁Editor",
- -11.883557319641113
- ],
- [
- "▁treats",
- -11.883609771728516
- ],
- [
- "▁harsh",
- -11.883711814880371
- ],
- [
- "rome",
- -11.883729934692383
- ],
- [
- "▁Foreign",
- -11.883928298950195
- ],
- [
- "▁denied",
- -11.883968353271484
- ],
- [
- "▁Valentine",
- -11.884014129638672
- ],
- [
- "▁healthier",
- -11.88408088684082
- ],
- [
- "▁readily",
- -11.884138107299805
- ],
- [
- "nac",
- -11.884190559387207
- ],
- [
- "▁intake",
- -11.884191513061523
- ],
- [
- "▁puncte",
- -11.884230613708496
- ],
- [
- "erne",
- -11.884431838989258
- ],
- [
- "file",
- -11.884668350219727
- ],
- [
- "▁continually",
- -11.884688377380371
- ],
- [
- "door",
- -11.884699821472168
- ],
- [
- "▁imediat",
- -11.884822845458984
- ],
- [
- "▁accused",
- -11.884833335876465
- ],
- [
- "chy",
- -11.884854316711426
- ],
- [
- "▁wrapped",
- -11.884861946105957
- ],
- [
- "IES",
- -11.884878158569336
- ],
- [
- "▁terrace",
- -11.884883880615234
- ],
- [
- "mouth",
- -11.884897232055664
- ],
- [
- "▁defensive",
- -11.884991645812988
- ],
- [
- "▁Luci",
- -11.88508129119873
- ],
- [
- "▁significance",
- -11.885107040405273
- ],
- [
- "▁2007,",
- -11.885213851928711
- ],
- [
- "▁inclusion",
- -11.885221481323242
- ],
- [
- "▁rotation",
- -11.885248184204102
- ],
- [
- "hos",
- -11.885283470153809
- ],
- [
- "▁crea",
- -11.885357856750488
- ],
- [
- "üß",
- -11.885903358459473
- ],
- [
- "▁Install",
- -11.885988235473633
- ],
- [
- "▁dump",
- -11.885998725891113
- ],
- [
- "▁informations",
- -11.886114120483398
- ],
- [
- "▁Thi",
- -11.886117935180664
- ],
- [
- "▁85",
- -11.886252403259277
- ],
- [
- "dox",
- -11.886283874511719
- ],
- [
- "track",
- -11.886436462402344
- ],
- [
- "▁couples",
- -11.886571884155273
- ],
- [
- "▁Assembly",
- -11.886594772338867
- ],
- [
- "wagen",
- -11.88672161102295
- ],
- [
- "▁Hil",
- -11.886723518371582
- ],
- [
- "ières",
- -11.886833190917969
- ],
- [
- "▁Gabriel",
- -11.886903762817383
- ],
- [
- "▁patience",
- -11.887053489685059
- ],
- [
- "▁colored",
- -11.887147903442383
- ],
- [
- "▁separately",
- -11.88715934753418
- ],
- [
- "▁deployment",
- -11.887166023254395
- ],
- [
- "scape",
- -11.887306213378906
- ],
- [
- "▁Acum",
- -11.8875150680542
- ],
- [
- "▁länger",
- -11.887518882751465
- ],
- [
- "▁screens",
- -11.887598991394043
- ],
- [
- "▁prezenta",
- -11.887630462646484
- ],
- [
- "▁obicei",
- -11.887638092041016
- ],
- [
- "▁crisp",
- -11.887758255004883
- ],
- [
- "▁mechanisms",
- -11.887771606445312
- ],
- [
- "▁thirty",
- -11.887786865234375
- ],
- [
- "▁individually",
- -11.887989044189453
- ],
- [
- "▁internationally",
- -11.887991905212402
- ],
- [
- "lling",
- -11.888050079345703
- ],
- [
- "▁bureau",
- -11.88843059539795
- ],
- [
- "▁erfahren",
- -11.88844108581543
- ],
- [
- "TY",
- -11.888553619384766
- ],
- [
- "PF",
- -11.888607025146484
- ],
- [
- "wid",
- -11.888752937316895
- ],
- [
- "sell",
- -11.888835906982422
- ],
- [
- "▁Luke",
- -11.888879776000977
- ],
- [
- "▁Must",
- -11.888916969299316
- ],
- [
- "▁identical",
- -11.888927459716797
- ],
- [
- "▁Netherlands",
- -11.888980865478516
- ],
- [
- "▁investor",
- -11.88905143737793
- ],
- [
- "▁squad",
- -11.889073371887207
- ],
- [
- "▁21,",
- -11.889143943786621
- ],
- [
- "iko",
- -11.889230728149414
- ],
- [
- "▁departure",
- -11.88937759399414
- ],
- [
- "ega",
- -11.889384269714355
- ],
- [
- "uzi",
- -11.889408111572266
- ],
- [
- "▁lasa",
- -11.889458656311035
- ],
- [
- "bian",
- -11.889525413513184
- ],
- [
- "▁Madrid",
- -11.889623641967773
- ],
- [
- "▁Iowa",
- -11.889806747436523
- ],
- [
- "▁Yellow",
- -11.890026092529297
- ],
- [
- "conom",
- -11.89004898071289
- ],
- [
- "▁hint",
- -11.890098571777344
- ],
- [
- "NOW",
- -11.890111923217773
- ],
- [
- "dress",
- -11.890204429626465
- ],
- [
- "▁Stück",
- -11.890267372131348
- ],
- [
- "echt",
- -11.890424728393555
- ],
- [
- "rial",
- -11.89045238494873
- ],
- [
- "▁Initiative",
- -11.890474319458008
- ],
- [
- "▁magnificent",
- -11.890474319458008
- ],
- [
- "▁pipeline",
- -11.890543937683105
- ],
- [
- "▁08",
- -11.890806198120117
- ],
- [
- "▁écrit",
- -11.890889167785645
- ],
- [
- "KA",
- -11.891085624694824
- ],
- [
- "arile",
- -11.891151428222656
- ],
- [
- "▁unfortunately",
- -11.891352653503418
- ],
- [
- "dose",
- -11.891355514526367
- ],
- [
- "▁counts",
- -11.891427993774414
- ],
- [
- "deciding",
- -11.891549110412598
- ],
- [
- "WA",
- -11.89167308807373
- ],
- [
- "▁doresc",
- -11.891685485839844
- ],
- [
- "NY",
- -11.892008781433105
- ],
- [
- "olin",
- -11.892112731933594
- ],
- [
- "▁Urlaub",
- -11.892133712768555
- ],
- [
- "▁alătur",
- -11.892317771911621
- ],
- [
- "▁Vic",
- -11.892515182495117
- ],
- [
- "▁fier",
- -11.89269733428955
- ],
- [
- "EU",
- -11.892772674560547
- ],
- [
- "▁triple",
- -11.892871856689453
- ],
- [
- "▁compliment",
- -11.89310359954834
- ],
- [
- "▁vegetable",
- -11.89334487915039
- ],
- [
- "member",
- -11.893743515014648
- ],
- [
- "atiei",
- -11.893793106079102
- ],
- [
- "▁toxic",
- -11.893835067749023
- ],
- [
- "▁converted",
- -11.893888473510742
- ],
- [
- "▁Pink",
- -11.893999099731445
- ],
- [
- "▁fragment",
- -11.894020080566406
- ],
- [
- "presenting",
- -11.894027709960938
- ],
- [
- "▁garantie",
- -11.894031524658203
- ],
- [
- "▁31,",
- -11.894052505493164
- ],
- [
- "▁puisqu",
- -11.894105911254883
- ],
- [
- "aching",
- -11.894107818603516
- ],
- [
- "▁Shan",
- -11.894119262695312
- ],
- [
- "▁Affairs",
- -11.894368171691895
- ],
- [
- "üsse",
- -11.894405364990234
- ],
- [
- "▁CBD",
- -11.894428253173828
- ],
- [
- "▁quatre",
- -11.894588470458984
- ],
- [
- "▁horror",
- -11.894651412963867
- ],
- [
- "▁culoare",
- -11.894661903381348
- ],
- [
- "▁welcoming",
- -11.894673347473145
- ],
- [
- "▁headache",
- -11.894808769226074
- ],
- [
- "▁septembre",
- -11.894820213317871
- ],
- [
- "▁Tür",
- -11.894862174987793
- ],
- [
- "lateral",
- -11.89507007598877
- ],
- [
- "▁termin",
- -11.895228385925293
- ],
- [
- "▁Aid",
- -11.895291328430176
- ],
- [
- "second",
- -11.895308494567871
- ],
- [
- "▁Philip",
- -11.895310401916504
- ],
- [
- "berries",
- -11.895347595214844
- ],
- [
- "▁Slot",
- -11.895431518554688
- ],
- [
- "ка",
- -11.895442962646484
- ],
- [
- "▁consecutive",
- -11.895590782165527
- ],
- [
- "value",
- -11.895705223083496
- ],
- [
- "▁islands",
- -11.8958101272583
- ],
- [
- "▁posibilitatea",
- -11.895928382873535
- ],
- [
- "0.5",
- -11.896341323852539
- ],
- [
- "▁Dumpster",
- -11.896471977233887
- ],
- [
- "▁Gran",
- -11.89647388458252
- ],
- [
- "▁restricted",
- -11.8967924118042
- ],
- [
- "▁discussing",
- -11.896921157836914
- ],
- [
- "cock",
- -11.896966934204102
- ],
- [
- "Serie",
- -11.896989822387695
- ],
- [
- "▁crushing",
- -11.896998405456543
- ],
- [
- "RB",
- -11.897034645080566
- ],
- [
- "▁Gy",
- -11.897068977355957
- ],
- [
- "normal",
- -11.897098541259766
- ],
- [
- "DT",
- -11.897180557250977
- ],
- [
- "▁concurs",
- -11.897181510925293
- ],
- [
- "▁Beratung",
- -11.897231101989746
- ],
- [
- "▁handful",
- -11.897235870361328
- ],
- [
- "▁loading",
- -11.897237777709961
- ],
- [
- "▁WI",
- -11.897269248962402
- ],
- [
- "▁Fitness",
- -11.897283554077148
- ],
- [
- "▁RAM",
- -11.897302627563477
- ],
- [
- "▁Twi",
- -11.89730453491211
- ],
- [
- "adurch",
- -11.897345542907715
- ],
- [
- "▁obiectiv",
- -11.897366523742676
- ],
- [
- "BM",
- -11.897635459899902
- ],
- [
- "▁amendment",
- -11.8976469039917
- ],
- [
- "whi",
- -11.897652626037598
- ],
- [
- "▁Besonder",
- -11.897871017456055
- ],
- [
- "ALL",
- -11.898003578186035
- ],
- [
- "▁earning",
- -11.898090362548828
- ],
- [
- "▁nutrients",
- -11.898580551147461
- ],
- [
- "pru",
- -11.898633003234863
- ],
- [
- "▁offensive",
- -11.898696899414062
- ],
- [
- "▁shelves",
- -11.898711204528809
- ],
- [
- "▁încâ",
- -11.898726463317871
- ],
- [
- "▁execute",
- -11.898923873901367
- ],
- [
- "▁cauz",
- -11.898966789245605
- ],
- [
- "exist",
- -11.899179458618164
- ],
- [
- "▁Meter",
- -11.899191856384277
- ],
- [
- "there",
- -11.899201393127441
- ],
- [
- "▁réaliser",
- -11.899249076843262
- ],
- [
- "blog",
- -11.899362564086914
- ],
- [
- "▁résultats",
- -11.89937973022461
- ],
- [
- "baren",
- -11.899391174316406
- ],
- [
- "▁lang",
- -11.899425506591797
- ],
- [
- "▁mere",
- -11.899870872497559
- ],
- [
- "▁toti",
- -11.900079727172852
- ],
- [
- "DN",
- -11.90017032623291
- ],
- [
- "Hi",
- -11.900310516357422
- ],
- [
- "▁merg",
- -11.900359153747559
- ],
- [
- "▁Camera",
- -11.90054988861084
- ],
- [
- "▁parfum",
- -11.900697708129883
- ],
- [
- "CG",
- -11.900701522827148
- ],
- [
- "posed",
- -11.900713920593262
- ],
- [
- "▁proposals",
- -11.900732040405273
- ],
- [
- "▁incorrect",
- -11.900811195373535
- ],
- [
- "▁Denver",
- -11.901168823242188
- ],
- [
- "▁noapte",
- -11.901397705078125
- ],
- [
- "▁VPN",
- -11.901436805725098
- ],
- [
- "▁Oklahoma",
- -11.90159797668457
- ],
- [
- "horizon",
- -11.901647567749023
- ],
- [
- "▁villa",
- -11.901668548583984
- ],
- [
- "duce",
- -11.901812553405762
- ],
- [
- "Dienst",
- -11.902042388916016
- ],
- [
- "▁oversee",
- -11.902511596679688
- ],
- [
- "astr",
- -11.902548789978027
- ],
- [
- "brand",
- -11.902713775634766
- ],
- [
- "▁Safe",
- -11.902746200561523
- ],
- [
- "▁competing",
- -11.902812004089355
- ],
- [
- "▁subiect",
- -11.902812004089355
- ],
- [
- "▁équipe",
- -11.903091430664062
- ],
- [
- "▁Dress",
- -11.903095245361328
- ],
- [
- "▁Juni",
- -11.903139114379883
- ],
- [
- "▁repeated",
- -11.90317153930664
- ],
- [
- "2012",
- -11.903226852416992
- ],
- [
- "▁départ",
- -11.903234481811523
- ],
- [
- "immer",
- -11.903335571289062
- ],
- [
- "▁mondial",
- -11.903374671936035
- ],
- [
- "▁datelor",
- -11.903703689575195
- ],
- [
- "▁surgeon",
- -11.903782844543457
- ],
- [
- "▁demanding",
- -11.903812408447266
- ],
- [
- "▁concluded",
- -11.903878211975098
- ],
- [
- "țiile",
- -11.903950691223145
- ],
- [
- "marin",
- -11.903999328613281
- ],
- [
- "▁estim",
- -11.904206275939941
- ],
- [
- "▁Loan",
- -11.904361724853516
- ],
- [
- "sculpt",
- -11.904373168945312
- ],
- [
- "▁99",
- -11.904391288757324
- ],
- [
- "void",
- -11.904400825500488
- ],
- [
- "▁Empire",
- -11.904499053955078
- ],
- [
- "▁Brit",
- -11.90450382232666
- ],
- [
- "▁véhicule",
- -11.904777526855469
- ],
- [
- "▁dividend",
- -11.905069351196289
- ],
- [
- "▁refused",
- -11.905077934265137
- ],
- [
- "▁speaks",
- -11.905156135559082
- ],
- [
- "▁Morris",
- -11.905282020568848
- ],
- [
- "dict",
- -11.905349731445312
- ],
- [
- "▁funeral",
- -11.905556678771973
- ],
- [
- "▁Behandlung",
- -11.905763626098633
- ],
- [
- "▁Revolution",
- -11.905905723571777
- ],
- [
- "▁Sum",
- -11.905935287475586
- ],
- [
- "einigen",
- -11.906030654907227
- ],
- [
- "RES",
- -11.906070709228516
- ],
- [
- "▁vite",
- -11.906071662902832
- ],
- [
- "▁Captain",
- -11.906190872192383
- ],
- [
- "▁assurance",
- -11.9061918258667
- ],
- [
- "uga",
- -11.906500816345215
- ],
- [
- "▁conserv",
- -11.906583786010742
- ],
- [
- "▁therapeutic",
- -11.906641006469727
- ],
- [
- "▁Sweden",
- -11.906753540039062
- ],
- [
- "▁Lead",
- -11.906888961791992
- ],
- [
- "ément",
- -11.907071113586426
- ],
- [
- "▁53",
- -11.90709114074707
- ],
- [
- "▁fraction",
- -11.9071683883667
- ],
- [
- "▁magnet",
- -11.907170295715332
- ],
- [
- "assurer",
- -11.907184600830078
- ],
- [
- "▁Steuer",
- -11.90733814239502
- ],
- [
- "▁flori",
- -11.90735149383545
- ],
- [
- "▁charming",
- -11.907588958740234
- ],
- [
- "▁athletic",
- -11.907621383666992
- ],
- [
- "▁membri",
- -11.907706260681152
- ],
- [
- "▁Sep",
- -11.907726287841797
- ],
- [
- "ogue",
- -11.907800674438477
- ],
- [
- "▁familie",
- -11.907800674438477
- ],
- [
- "▁SW",
- -11.90796947479248
- ],
- [
- "▁diagnosed",
- -11.908023834228516
- ],
- [
- "RR",
- -11.908143997192383
- ],
- [
- "▁Fern",
- -11.908233642578125
- ],
- [
- "▁rational",
- -11.908281326293945
- ],
- [
- "▁talents",
- -11.90828800201416
- ],
- [
- "ziert",
- -11.908317565917969
- ],
- [
- "▁chemin",
- -11.908459663391113
- ],
- [
- "sheet",
- -11.908562660217285
- ],
- [
- "▁outer",
- -11.908565521240234
- ],
- [
- "▁Kap",
- -11.908591270446777
- ],
- [
- "▁HERE",
- -11.908656120300293
- ],
- [
- "▁uman",
- -11.908824920654297
- ],
- [
- "▁accompany",
- -11.908880233764648
- ],
- [
- "▁varieties",
- -11.908881187438965
- ],
- [
- "▁sensors",
- -11.908957481384277
- ],
- [
- "▁25%",
- -11.90919017791748
- ],
- [
- "▁tray",
- -11.909354209899902
- ],
- [
- "▁critique",
- -11.909459114074707
- ],
- [
- "▁puţin",
- -11.909515380859375
- ],
- [
- "▁Schüler",
- -11.90953540802002
- ],
- [
- "▁repar",
- -11.909744262695312
- ],
- [
- "▁overlook",
- -11.909931182861328
- ],
- [
- "▁surf",
- -11.910048484802246
- ],
- [
- "▁tasting",
- -11.910118103027344
- ],
- [
- "bog",
- -11.91027545928955
- ],
- [
- "▁Payment",
- -11.910289764404297
- ],
- [
- "▁Helen",
- -11.91049575805664
- ],
- [
- "▁Refer",
- -11.910694122314453
- ],
- [
- "application",
- -11.910698890686035
- ],
- [
- "lection",
- -11.910856246948242
- ],
- [
- "▁avril",
- -11.911042213439941
- ],
- [
- "▁Grace",
- -11.911109924316406
- ],
- [
- "▁kau",
- -11.911274909973145
- ],
- [
- "▁libraries",
- -11.911319732666016
- ],
- [
- "▁closest",
- -11.911347389221191
- ],
- [
- "▁coating",
- -11.911351203918457
- ],
- [
- "▁suicide",
- -11.911364555358887
- ],
- [
- "▁undergraduate",
- -11.911449432373047
- ],
- [
- "▁stitch",
- -11.91149616241455
- ],
- [
- "▁reset",
- -11.911593437194824
- ],
- [
- "▁Greece",
- -11.911626815795898
- ],
- [
- "▁Fred",
- -11.91197681427002
- ],
- [
- "▁18.",
- -11.912047386169434
- ],
- [
- "▁nuit",
- -11.912087440490723
- ],
- [
- "▁lying",
- -11.912199974060059
- ],
- [
- "▁cottage",
- -11.91232681274414
- ],
- [
- "bone",
- -11.912477493286133
- ],
- [
- "▁milieu",
- -11.912480354309082
- ],
- [
- "management",
- -11.912623405456543
- ],
- [
- "▁Freund",
- -11.912724494934082
- ],
- [
- "▁specially",
- -11.912841796875
- ],
- [
- "veut",
- -11.912961959838867
- ],
- [
- "▁necesare",
- -11.912999153137207
- ],
- [
- "▁cert",
- -11.913081169128418
- ],
- [
- "articul",
- -11.913151741027832
- ],
- [
- "150",
- -11.913174629211426
- ],
- [
- "rounded",
- -11.913180351257324
- ],
- [
- "▁longue",
- -11.913193702697754
- ],
- [
- "▁Quel",
- -11.913240432739258
- ],
- [
- "Until",
- -11.913322448730469
- ],
- [
- "▁700",
- -11.913398742675781
- ],
- [
- "▁installations",
- -11.913423538208008
- ],
- [
- "▁boats",
- -11.913467407226562
- ],
- [
- "Fig",
- -11.913609504699707
- ],
- [
- "▁cocktail",
- -11.913613319396973
- ],
- [
- "▁rocks",
- -11.91366958618164
- ],
- [
- "meinen",
- -11.91374683380127
- ],
- [
- "entrepreneur",
- -11.913780212402344
- ],
- [
- "schwarz",
- -11.913924217224121
- ],
- [
- "▁diesel",
- -11.91392993927002
- ],
- [
- "▁villages",
- -11.913969039916992
- ],
- [
- "▁cups",
- -11.914076805114746
- ],
- [
- "▁stairs",
- -11.914241790771484
- ],
- [
- "▁Match",
- -11.914350509643555
- ],
- [
- "Taking",
- -11.914437294006348
- ],
- [
- "prin",
- -11.914469718933105
- ],
- [
- "▁penal",
- -11.91472053527832
- ],
- [
- "partner",
- -11.914867401123047
- ],
- [
- "wave",
- -11.91497802734375
- ],
- [
- "▁baie",
- -11.91515064239502
- ],
- [
- "LAN",
- -11.915151596069336
- ],
- [
- "fix",
- -11.915202140808105
- ],
- [
- "▁surveillance",
- -11.915295600891113
- ],
- [
- "▁Register",
- -11.915343284606934
- ],
- [
- "oara",
- -11.915536880493164
- ],
- [
- "▁Phoenix",
- -11.915602684020996
- ],
- [
- "aktuellen",
- -11.915613174438477
- ],
- [
- "▁livres",
- -11.915618896484375
- ],
- [
- "▁entities",
- -11.916102409362793
- ],
- [
- "▁Regard",
- -11.916112899780273
- ],
- [
- "▁Jazz",
- -11.91614055633545
- ],
- [
- "▁flame",
- -11.91616153717041
- ],
- [
- "▁independence",
- -11.916215896606445
- ],
- [
- "▁Adventure",
- -11.916341781616211
- ],
- [
- "▁assign",
- -11.916399955749512
- ],
- [
- "▁Adult",
- -11.916579246520996
- ],
- [
- "kehr",
- -11.916666984558105
- ],
- [
- "▁ordering",
- -11.916850090026855
- ],
- [
- "▁charts",
- -11.91687297821045
- ],
- [
- "▁Român",
- -11.916936874389648
- ],
- [
- "bauen",
- -11.916982650756836
- ],
- [
- "▁Floor",
- -11.917065620422363
- ],
- [
- "▁Meet",
- -11.917101860046387
- ],
- [
- "▁compromise",
- -11.917158126831055
- ],
- [
- "regarded",
- -11.917171478271484
- ],
- [
- "02.",
- -11.917215347290039
- ],
- [
- "▁granite",
- -11.917299270629883
- ],
- [
- "▁Judge",
- -11.917314529418945
- ],
- [
- "opti",
- -11.917373657226562
- ],
- [
- "liste",
- -11.917379379272461
- ],
- [
- "▁capacité",
- -11.917427062988281
- ],
- [
- "▁criticism",
- -11.917450904846191
- ],
- [
- "LES",
- -11.918198585510254
- ],
- [
- "▁Century",
- -11.918211936950684
- ],
- [
- "▁mobility",
- -11.918252944946289
- ],
- [
- "▁variation",
- -11.918622016906738
- ],
- [
- "▁Utah",
- -11.91867446899414
- ],
- [
- "▁seminar",
- -11.918678283691406
- ],
- [
- "▁experiments",
- -11.918803215026855
- ],
- [
- "midst",
- -11.918943405151367
- ],
- [
- "▁Psycho",
- -11.919002532958984
- ],
- [
- "▁choses",
- -11.919121742248535
- ],
- [
- "▁Karl",
- -11.919175148010254
- ],
- [
- "▁ruling",
- -11.919286727905273
- ],
- [
- "▁Voice",
- -11.919404983520508
- ],
- [
- "▁împotriv",
- -11.919442176818848
- ],
- [
- "▁mesaj",
- -11.919500350952148
- ],
- [
- "▁vrei",
- -11.919594764709473
- ],
- [
- "fan",
- -11.919601440429688
- ],
- [
- "parent",
- -11.919648170471191
- ],
- [
- "▁oraș",
- -11.919770240783691
- ],
- [
- "▁printable",
- -11.919777870178223
- ],
- [
- "▁diver",
- -11.919859886169434
- ],
- [
- "▁ochi",
- -11.919949531555176
- ],
- [
- "▁teenager",
- -11.920125961303711
- ],
- [
- "▁Death",
- -11.920150756835938
- ],
- [
- "▁manque",
- -11.920289993286133
- ],
- [
- "ască",
- -11.920345306396484
- ],
- [
- "▁prob",
- -11.9203519821167
- ],
- [
- "▁télé",
- -11.920354843139648
- ],
- [
- "cursul",
- -11.920378684997559
- ],
- [
- "pion",
- -11.92052173614502
- ],
- [
- "▁dedication",
- -11.920644760131836
- ],
- [
- "▁opr",
- -11.920687675476074
- ],
- [
- "führung",
- -11.920761108398438
- ],
- [
- "▁cognitive",
- -11.920827865600586
- ],
- [
- "soft",
- -11.920868873596191
- ],
- [
- "▁19,",
- -11.9209623336792
- ],
- [
- "▁24-",
- -11.921197891235352
- ],
- [
- "▁legitimate",
- -11.921220779418945
- ],
- [
- "▁comedy",
- -11.921277046203613
- ],
- [
- "▁violation",
- -11.921327590942383
- ],
- [
- "▁disposal",
- -11.921472549438477
- ],
- [
- "▁liegen",
- -11.921605110168457
- ],
- [
- "ко",
- -11.921878814697266
- ],
- [
- "▁martie",
- -11.921931266784668
- ],
- [
- "▁Vas",
- -11.92212200164795
- ],
- [
- "rash",
- -11.922134399414062
- ],
- [
- "▁hadn",
- -11.922174453735352
- ],
- [
- "▁connu",
- -11.922204971313477
- ],
- [
- "▁regelmäßig",
- -11.922216415405273
- ],
- [
- "▁Webseite",
- -11.922224998474121
- ],
- [
- "▁failing",
- -11.922273635864258
- ],
- [
- "explique",
- -11.922449111938477
- ],
- [
- "▁Player",
- -11.922513961791992
- ],
- [
- "vul",
- -11.922560691833496
- ],
- [
- "camp",
- -11.922992706298828
- ],
- [
- "▁erreicht",
- -11.922996520996094
- ],
- [
- "▁tags",
- -11.922998428344727
- ],
- [
- "▁headline",
- -11.923210144042969
- ],
- [
- "▁banc",
- -11.923253059387207
- ],
- [
- "▁Mayor",
- -11.923309326171875
- ],
- [
- "trop",
- -11.923395156860352
- ],
- [
- "AK",
- -11.9235258102417
- ],
- [
- "▁lighter",
- -11.923602104187012
- ],
- [
- "▁syndrome",
- -11.923604965209961
- ],
- [
- "▁Adrian",
- -11.92365550994873
- ],
- [
- "▁EUR",
- -11.923759460449219
- ],
- [
- "▁Missouri",
- -11.923916816711426
- ],
- [
- "▁Chan",
- -11.924108505249023
- ],
- [
- "topped",
- -11.924233436584473
- ],
- [
- "▁nationwide",
- -11.924276351928711
- ],
- [
- "▁6-",
- -11.924302101135254
- ],
- [
- "final",
- -11.924408912658691
- ],
- [
- "ttes",
- -11.924485206604004
- ],
- [
- "▁FO",
- -11.924537658691406
- ],
- [
- "▁legi",
- -11.924556732177734
- ],
- [
- "▁Hum",
- -11.924575805664062
- ],
- [
- "vita",
- -11.924662590026855
- ],
- [
- "▁Regen",
- -11.924695014953613
- ],
- [
- "▁confusion",
- -11.92498779296875
- ],
- [
- "▁valori",
- -11.925142288208008
- ],
- [
- "mill",
- -11.92516803741455
- ],
- [
- "did",
- -11.925237655639648
- ],
- [
- "pid",
- -11.925253868103027
- ],
- [
- "▁implications",
- -11.925284385681152
- ],
- [
- "▁Value",
- -11.92552375793457
- ],
- [
- "lângă",
- -11.925666809082031
- ],
- [
- "▁véritable",
- -11.92577075958252
- ],
- [
- "▁Stick",
- -11.925814628601074
- ],
- [
- "zol",
- -11.925835609436035
- ],
- [
- "▁ebenso",
- -11.925863265991211
- ],
- [
- "west",
- -11.925895690917969
- ],
- [
- "▁auszu",
- -11.92600154876709
- ],
- [
- "▁adorable",
- -11.926016807556152
- ],
- [
- "▁clarity",
- -11.92605209350586
- ],
- [
- "▁Wash",
- -11.926335334777832
- ],
- [
- "▁alien",
- -11.926423072814941
- ],
- [
- "usement",
- -11.926626205444336
- ],
- [
- "▁bones",
- -11.9266357421875
- ],
- [
- "▁Beau",
- -11.926726341247559
- ],
- [
- "▁Jet",
- -11.926727294921875
- ],
- [
- "▁visibility",
- -11.927034378051758
- ],
- [
- "impose",
- -11.927063941955566
- ],
- [
- "food",
- -11.927133560180664
- ],
- [
- "▁duce",
- -11.927361488342285
- ],
- [
- "▁Format",
- -11.927386283874512
- ],
- [
- "▁durability",
- -11.927424430847168
- ],
- [
- "▁Prim",
- -11.927614212036133
- ],
- [
- "▁mele",
- -11.927629470825195
- ],
- [
- "▁dürfen",
- -11.927631378173828
- ],
- [
- "▁Angebote",
- -11.92765998840332
- ],
- [
- "▁discharge",
- -11.927745819091797
- ],
- [
- "▁Justin",
- -11.928055763244629
- ],
- [
- "▁shame",
- -11.928228378295898
- ],
- [
- "▁heated",
- -11.928282737731934
- ],
- [
- "ères",
- -11.92856216430664
- ],
- [
- "human",
- -11.928810119628906
- ],
- [
- "4.5",
- -11.928831100463867
- ],
- [
- "▁lien",
- -11.928955078125
- ],
- [
- "▁Alan",
- -11.92896556854248
- ],
- [
- "▁transmis",
- -11.929130554199219
- ],
- [
- "▁Bul",
- -11.929137229919434
- ],
- [
- "plu",
- -11.929169654846191
- ],
- [
- "acul",
- -11.929337501525879
- ],
- [
- "merk",
- -11.929434776306152
- ],
- [
- "▁altfel",
- -11.929566383361816
- ],
- [
- "deli",
- -11.929689407348633
- ],
- [
- "▁Cru",
- -11.930001258850098
- ],
- [
- "▁hommes",
- -11.930127143859863
- ],
- [
- "aurait",
- -11.930137634277344
- ],
- [
- "cca",
- -11.930187225341797
- ],
- [
- "▁Path",
- -11.930208206176758
- ],
- [
- "astronom",
- -11.930241584777832
- ],
- [
- "▁détail",
- -11.930276870727539
- ],
- [
- "▁blocked",
- -11.930394172668457
- ],
- [
- "iding",
- -11.93044376373291
- ],
- [
- "schä",
- -11.930500030517578
- ],
- [
- "▁30-",
- -11.930624008178711
- ],
- [
- "diction",
- -11.930813789367676
- ],
- [
- "▁pulling",
- -11.930868148803711
- ],
- [
- "▁Sample",
- -11.930924415588379
- ],
- [
- "▁renewable",
- -11.930997848510742
- ],
- [
- "▁Pinterest",
- -11.93106746673584
- ],
- [
- "▁Tages",
- -11.93106746673584
- ],
- [
- "▁shed",
- -11.931171417236328
- ],
- [
- "▁hart",
- -11.931188583374023
- ],
- [
- "▁serie",
- -11.931200981140137
- ],
- [
- "▁documentary",
- -11.931208610534668
- ],
- [
- "gebaut",
- -11.931220054626465
- ],
- [
- "▁Hause",
- -11.931272506713867
- ],
- [
- "share",
- -11.931303977966309
- ],
- [
- "▁inflation",
- -11.93138599395752
- ],
- [
- "▁gall",
- -11.931504249572754
- ],
- [
- "▁adjacent",
- -11.931673049926758
- ],
- [
- "jer",
- -11.93173885345459
- ],
- [
- "▁Universal",
- -11.931946754455566
- ],
- [
- "▁disabilities",
- -11.931984901428223
- ],
- [
- "▁proposition",
- -11.93204116821289
- ],
- [
- "Work",
- -11.932293891906738
- ],
- [
- "▁closure",
- -11.932306289672852
- ],
- [
- "▁separated",
- -11.932496070861816
- ],
- [
- "▁soda",
- -11.932549476623535
- ],
- [
- "▁elite",
- -11.93263053894043
- ],
- [
- "appro",
- -11.93265438079834
- ],
- [
- "▁acute",
- -11.93266487121582
- ],
- [
- "utton",
- -11.932938575744629
- ],
- [
- "▁facă",
- -11.933053016662598
- ],
- [
- "▁collector",
- -11.933121681213379
- ],
- [
- "▁unlock",
- -11.933249473571777
- ],
- [
- "▁Alpha",
- -11.933267593383789
- ],
- [
- "▁Used",
- -11.933267593383789
- ],
- [
- "▁applicants",
- -11.933302879333496
- ],
- [
- "▁înseamn",
- -11.933387756347656
- ],
- [
- "▁inclu",
- -11.933414459228516
- ],
- [
- "▁disclosure",
- -11.933544158935547
- ],
- [
- "▁Fahr",
- -11.933995246887207
- ],
- [
- "AST",
- -11.934061050415039
- ],
- [
- "▁vivre",
- -11.934069633483887
- ],
- [
- "»,",
- -11.934167861938477
- ],
- [
- "laud",
- -11.93430233001709
- ],
- [
- "▁soir",
- -11.934365272521973
- ],
- [
- "▁barrier",
- -11.934405326843262
- ],
- [
- "înd",
- -11.934470176696777
- ],
- [
- "▁ambition",
- -11.93451976776123
- ],
- [
- "asta",
- -11.934550285339355
- ],
- [
- "occupied",
- -11.934747695922852
- ],
- [
- "▁Gau",
- -11.934774398803711
- ],
- [
- "four",
- -11.93481159210205
- ],
- [
- "▁nap",
- -11.934887886047363
- ],
- [
- "iez",
- -11.934922218322754
- ],
- [
- "endra",
- -11.935242652893066
- ],
- [
- "gaben",
- -11.935464859008789
- ],
- [
- "▁Carol",
- -11.935481071472168
- ],
- [
- "▁Switzerland",
- -11.935575485229492
- ],
- [
- "▁Bond",
- -11.935617446899414
- ],
- [
- "▁crossing",
- -11.935630798339844
- ],
- [
- "▁Palace",
- -11.9359769821167
- ],
- [
- "NG",
- -11.935986518859863
- ],
- [
- "▁Budget",
- -11.93622875213623
- ],
- [
- "▁lid",
- -11.936372756958008
- ],
- [
- "bab",
- -11.936393737792969
- ],
- [
- "▁polish",
- -11.936416625976562
- ],
- [
- "▁herbs",
- -11.93673038482666
- ],
- [
- "▁dear",
- -11.936747550964355
- ],
- [
- "▁devrai",
- -11.936846733093262
- ],
- [
- "walk",
- -11.936864852905273
- ],
- [
- "▁humanity",
- -11.936897277832031
- ],
- [
- "▁tires",
- -11.936978340148926
- ],
- [
- "égal",
- -11.936994552612305
- ],
- [
- "▁bow",
- -11.937032699584961
- ],
- [
- "▁debris",
- -11.937201499938965
- ],
- [
- "▁keywords",
- -11.937273025512695
- ],
- [
- "irk",
- -11.937345504760742
- ],
- [
- "▁suspend",
- -11.937360763549805
- ],
- [
- "▁pourra",
- -11.93738079071045
- ],
- [
- "migran",
- -11.937454223632812
- ],
- [
- "thereby",
- -11.937570571899414
- ],
- [
- "▁Harris",
- -11.937943458557129
- ],
- [
- "ateurs",
- -11.937956809997559
- ],
- [
- "▁fal",
- -11.938271522521973
- ],
- [
- "alleged",
- -11.938355445861816
- ],
- [
- "noch",
- -11.938494682312012
- ],
- [
- "▁observation",
- -11.938506126403809
- ],
- [
- "▁București",
- -11.93855094909668
- ],
- [
- "▁SQL",
- -11.938624382019043
- ],
- [
- "▁Phase",
- -11.938760757446289
- ],
- [
- "▁adventures",
- -11.93881607055664
- ],
- [
- "▁Kol",
- -11.938885688781738
- ],
- [
- "▁professionnel",
- -11.938916206359863
- ],
- [
- "crit",
- -11.939026832580566
- ],
- [
- "LR",
- -11.939313888549805
- ],
- [
- "▁preview",
- -11.939464569091797
- ],
- [
- "▁highlighted",
- -11.939942359924316
- ],
- [
- "▁Stud",
- -11.939949035644531
- ],
- [
- "▁labour",
- -11.939956665039062
- ],
- [
- "MV",
- -11.9399995803833
- ],
- [
- "click",
- -11.940049171447754
- ],
- [
- "approche",
- -11.94016170501709
- ],
- [
- "tian",
- -11.940183639526367
- ],
- [
- "cité",
- -11.940192222595215
- ],
- [
- "▁Rain",
- -11.94028377532959
- ],
- [
- "typ",
- -11.94032096862793
- ],
- [
- "Usually",
- -11.940435409545898
- ],
- [
- "▁outlet",
- -11.940513610839844
- ],
- [
- "logging",
- -11.940814018249512
- ],
- [
- "▁Temperatur",
- -11.940906524658203
- ],
- [
- "▁Scottish",
- -11.94090747833252
- ],
- [
- "iga",
- -11.940942764282227
- ],
- [
- "▁glory",
- -11.941086769104004
- ],
- [
- "▁Rom",
- -11.941242218017578
- ],
- [
- "zeug",
- -11.941337585449219
- ],
- [
- "establishing",
- -11.941339492797852
- ],
- [
- "▁imaging",
- -11.941926002502441
- ],
- [
- "▁Beauty",
- -11.942015647888184
- ],
- [
- "igan",
- -11.942042350769043
- ],
- [
- "après",
- -11.94224739074707
- ],
- [
- "Adresse",
- -11.942267417907715
- ],
- [
- "cliff",
- -11.942349433898926
- ],
- [
- "▁unnecessary",
- -11.943267822265625
- ],
- [
- "▁slim",
- -11.943324089050293
- ],
- [
- "dir",
- -11.943490982055664
- ],
- [
- "▁leisure",
- -11.943660736083984
- ],
- [
- "▁principale",
- -11.94368839263916
- ],
- [
- "▁Viele",
- -11.943770408630371
- ],
- [
- "▁2007.",
- -11.943802833557129
- ],
- [
- "Hopefully",
- -11.943829536437988
- ],
- [
- "cola",
- -11.943851470947266
- ],
- [
- "▁Planet",
- -11.943927764892578
- ],
- [
- "▁orientation",
- -11.943933486938477
- ],
- [
- "▁angry",
- -11.94419002532959
- ],
- [
- "MIT",
- -11.944234848022461
- ],
- [
- "▁Kenya",
- -11.944265365600586
- ],
- [
- "▁bless",
- -11.94435977935791
- ],
- [
- "▁Fill",
- -11.944524765014648
- ],
- [
- "▁compar",
- -11.944664001464844
- ],
- [
- "▁curtain",
- -11.94473934173584
- ],
- [
- "ţei",
- -11.944754600524902
- ],
- [
- "▁Az",
- -11.94482421875
- ],
- [
- "▁Rang",
- -11.944908142089844
- ],
- [
- "▁dominant",
- -11.944974899291992
- ],
- [
- "race",
- -11.944985389709473
- ],
- [
- "▁Target",
- -11.944987297058105
- ],
- [
- "▁manually",
- -11.944987297058105
- ],
- [
- "objet",
- -11.945024490356445
- ],
- [
- "thrown",
- -11.945131301879883
- ],
- [
- "NF",
- -11.945149421691895
- ],
- [
- "durant",
- -11.945185661315918
- ],
- [
- "rect",
- -11.945302963256836
- ],
- [
- "▁Größe",
- -11.945320129394531
- ],
- [
- "VM",
- -11.9453763961792
- ],
- [
- "▁aprilie",
- -11.945476531982422
- ],
- [
- "▁Welche",
- -11.945639610290527
- ],
- [
- "▁verde",
- -11.946157455444336
- ],
- [
- "▁Portugal",
- -11.946266174316406
- ],
- [
- "▁algorithm",
- -11.94627571105957
- ],
- [
- "ăț",
- -11.946328163146973
- ],
- [
- "▁Grey",
- -11.946371078491211
- ],
- [
- "▁cleaned",
- -11.94644832611084
- ],
- [
- "▁modes",
- -11.946463584899902
- ],
- [
- "▁relaxation",
- -11.946599006652832
- ],
- [
- "mbr",
- -11.946786880493164
- ],
- [
- "étique",
- -11.946821212768555
- ],
- [
- "Her",
- -11.946904182434082
- ],
- [
- "▁beta",
- -11.946952819824219
- ],
- [
- "▁nobody",
- -11.94699764251709
- ],
- [
- "▁aplic",
- -11.947060585021973
- ],
- [
- "present",
- -11.947080612182617
- ],
- [
- "emis",
- -11.947197914123535
- ],
- [
- "éléments",
- -11.947257995605469
- ],
- [
- "▁lately",
- -11.947303771972656
- ],
- [
- "fab",
- -11.94732666015625
- ],
- [
- "▁aluminiu",
- -11.947373390197754
- ],
- [
- "▁vest",
- -11.947524070739746
- ],
- [
- "▁statue",
- -11.947558403015137
- ],
- [
- "▁publice",
- -11.947586059570312
- ],
- [
- "▁merchandise",
- -11.9476900100708
- ],
- [
- "▁relat",
- -11.947810173034668
- ],
- [
- "git",
- -11.94796371459961
- ],
- [
- "▁interne",
- -11.948281288146973
- ],
- [
- "▁Tokyo",
- -11.948325157165527
- ],
- [
- "chal",
- -11.948348045349121
- ],
- [
- "contacted",
- -11.948430061340332
- ],
- [
- "▁tras",
- -11.948455810546875
- ],
- [
- "▁Clinic",
- -11.948626518249512
- ],
- [
- "▁unbe",
- -11.948633193969727
- ],
- [
- "▁dumneavoastra",
- -11.948798179626465
- ],
- [
- "float",
- -11.949078559875488
- ],
- [
- "isson",
- -11.94909381866455
- ],
- [
- "▁vessel",
- -11.949126243591309
- ],
- [
- "attempting",
- -11.949161529541016
- ],
- [
- "▁doute",
- -11.94918441772461
- ],
- [
- "▁Leadership",
- -11.949322700500488
- ],
- [
- "▁sustain",
- -11.94947338104248
- ],
- [
- "▁textile",
- -11.949666023254395
- ],
- [
- "auer",
- -11.949702262878418
- ],
- [
- "▁90%",
- -11.949899673461914
- ],
- [
- "garten",
- -11.949911117553711
- ],
- [
- "▁adauga",
- -11.949991226196289
- ],
- [
- "▁Kil",
- -11.950061798095703
- ],
- [
- "▁troops",
- -11.950420379638672
- ],
- [
- "▁pale",
- -11.950568199157715
- ],
- [
- "host",
- -11.950743675231934
- ],
- [
- "▁cry",
- -11.950757026672363
- ],
- [
- "▁Alb",
- -11.950793266296387
- ],
- [
- "▁Brad",
- -11.95089340209961
- ],
- [
- "▁bicycle",
- -11.951054573059082
- ],
- [
- "▁24/7",
- -11.951217651367188
- ],
- [
- "▁с",
- -11.951228141784668
- ],
- [
- "▁stimul",
- -11.951401710510254
- ],
- [
- "gler",
- -11.951445579528809
- ],
- [
- "▁notwendig",
- -11.951496124267578
- ],
- [
- "▁cousin",
- -11.95158863067627
- ],
- [
- "cheie",
- -11.951600074768066
- ],
- [
- "hay",
- -11.951751708984375
- ],
- [
- "▁rezolv",
- -11.952134132385254
- ],
- [
- "▁THIS",
- -11.952143669128418
- ],
- [
- "ordre",
- -11.952157974243164
- ],
- [
- "iști",
- -11.952173233032227
- ],
- [
- "▁conclude",
- -11.952310562133789
- ],
- [
- "▁Lage",
- -11.952327728271484
- ],
- [
- "▁Entertainment",
- -11.952454566955566
- ],
- [
- "▁valued",
- -11.952478408813477
- ],
- [
- "ktion",
- -11.95253849029541
- ],
- [
- "▁priorities",
- -11.95268440246582
- ],
- [
- "▁1986",
- -11.952770233154297
- ],
- [
- "▁fatal",
- -11.952934265136719
- ],
- [
- "▁accurately",
- -11.952988624572754
- ],
- [
- "▁1987",
- -11.953022956848145
- ],
- [
- "▁folk",
- -11.953073501586914
- ],
- [
- "7)",
- -11.953163146972656
- ],
- [
- "führer",
- -11.95360279083252
- ],
- [
- "▁knot",
- -11.953612327575684
- ],
- [
- "haltung",
- -11.953720092773438
- ],
- [
- "▁Charlie",
- -11.953733444213867
- ],
- [
- "âge",
- -11.95376205444336
- ],
- [
- "▁threshold",
- -11.954041481018066
- ],
- [
- "▁assault",
- -11.954130172729492
- ],
- [
- "▁meist",
- -11.954141616821289
- ],
- [
- "bine",
- -11.954155921936035
- ],
- [
- "surprisingly",
- -11.954171180725098
- ],
- [
- "▁Protect",
- -11.954180717468262
- ],
- [
- "▁Hack",
- -11.954258918762207
- ],
- [
- "▁Quant",
- -11.954537391662598
- ],
- [
- "▁Cet",
- -11.954782485961914
- ],
- [
- "▁convinced",
- -11.95481014251709
- ],
- [
- "▁muncă",
- -11.955033302307129
- ],
- [
- "dging",
- -11.955066680908203
- ],
- [
- "▁Millionen",
- -11.955129623413086
- ],
- [
- "zahlung",
- -11.955148696899414
- ],
- [
- "▁anticipated",
- -11.955192565917969
- ],
- [
- "▁brass",
- -11.9552001953125
- ],
- [
- "KO",
- -11.955244064331055
- ],
- [
- "▁culori",
- -11.955286979675293
- ],
- [
- "▁Aero",
- -11.955326080322266
- ],
- [
- "▁intermediu",
- -11.955373764038086
- ],
- [
- "▁Philippines",
- -11.955381393432617
- ],
- [
- "▁jury",
- -11.955387115478516
- ],
- [
- "▁Funktion",
- -11.95569896697998
- ],
- [
- "▁probe",
- -11.955704689025879
- ],
- [
- "TL",
- -11.955748558044434
- ],
- [
- "1.0",
- -11.955804824829102
- ],
- [
- "ELL",
- -11.95581340789795
- ],
- [
- "She",
- -11.956001281738281
- ],
- [
- "▁Blood",
- -11.956073760986328
- ],
- [
- "▁Dean",
- -11.956111907958984
- ],
- [
- "▁scène",
- -11.9561185836792
- ],
- [
- "volu",
- -11.95621395111084
- ],
- [
- "▁Epi",
- -11.95621395111084
- ],
- [
- "▁séjour",
- -11.95627498626709
- ],
- [
- "▁Smartphone",
- -11.956306457519531
- ],
- [
- "▁fired",
- -11.956357955932617
- ],
- [
- "beat",
- -11.95650577545166
- ],
- [
- "▁pockets",
- -11.956506729125977
- ],
- [
- "▁serviciu",
- -11.956624031066895
- ],
- [
- "▁affairs",
- -11.95678424835205
- ],
- [
- "▁Ry",
- -11.956842422485352
- ],
- [
- "▁Stadium",
- -11.956954956054688
- ],
- [
- "▁snacks",
- -11.957182884216309
- ],
- [
- "▁efectu",
- -11.957221031188965
- ],
- [
- "▁Richtung",
- -11.957273483276367
- ],
- [
- "▁dresses",
- -11.957352638244629
- ],
- [
- "▁Medien",
- -11.95744800567627
- ],
- [
- "writer",
- -11.95759105682373
- ],
- [
- "changing",
- -11.957655906677246
- ],
- [
- "▁supportive",
- -11.957849502563477
- ],
- [
- "▁beneath",
- -11.957873344421387
- ],
- [
- "paid",
- -11.958078384399414
- ],
- [
- "▁customize",
- -11.958155632019043
- ],
- [
- "▁Ferr",
- -11.958187103271484
- ],
- [
- "reaches",
- -11.958338737487793
- ],
- [
- "arma",
- -11.958401679992676
- ],
- [
- "ción",
- -11.958598136901855
- ],
- [
- "▁elderly",
- -11.959243774414062
- ],
- [
- "▁modification",
- -11.95934009552002
- ],
- [
- "▁perfection",
- -11.959381103515625
- ],
- [
- "▁Allow",
- -11.959492683410645
- ],
- [
- "▁belonging",
- -11.959542274475098
- ],
- [
- "▁compound",
- -11.959589004516602
- ],
- [
- "▁Results",
- -11.959681510925293
- ],
- [
- "▁astăzi",
- -11.959793090820312
- ],
- [
- "▁Liber",
- -11.959818840026855
- ],
- [
- "jor",
- -11.959850311279297
- ],
- [
- "▁Nin",
- -11.959980964660645
- ],
- [
- "▁lumina",
- -11.959992408752441
- ],
- [
- "▁130",
- -11.960073471069336
- ],
- [
- "▁Platform",
- -11.960121154785156
- ],
- [
- "▁SMS",
- -11.960221290588379
- ],
- [
- "▁medic",
- -11.96024227142334
- ],
- [
- "hör",
- -11.960315704345703
- ],
- [
- "▁Kas",
- -11.96038818359375
- ],
- [
- "▁tomato",
- -11.960403442382812
- ],
- [
- "▁logiciel",
- -11.960505485534668
- ],
- [
- "php",
- -11.960654258728027
- ],
- [
- "▁premises",
- -11.96071720123291
- ],
- [
- "▁Communication",
- -11.96072769165039
- ],
- [
- "▁reprezintă",
- -11.960762023925781
- ],
- [
- "▁Partners",
- -11.960866928100586
- ],
- [
- "▁RV",
- -11.961090087890625
- ],
- [
- "▁pants",
- -11.961197853088379
- ],
- [
- "▁envie",
- -11.961256980895996
- ],
- [
- "▁commerce",
- -11.961263656616211
- ],
- [
- "▁tears",
- -11.961298942565918
- ],
- [
- "▁cooler",
- -11.961494445800781
- ],
- [
- "strand",
- -11.961556434631348
- ],
- [
- "▁Gil",
- -11.961588859558105
- ],
- [
- "▁référence",
- -11.961641311645508
- ],
- [
- "▁electronics",
- -11.961681365966797
- ],
- [
- "exposition",
- -11.961700439453125
- ],
- [
- "▁Caribbean",
- -11.96171760559082
- ],
- [
- "▁compelling",
- -11.96171760559082
- ],
- [
- "luci",
- -11.961723327636719
- ],
- [
- "▁Brooklyn",
- -11.961892127990723
- ],
- [
- "▁Thai",
- -11.961950302124023
- ],
- [
- "dler",
- -11.96198844909668
- ],
- [
- "▁supra",
- -11.962016105651855
- ],
- [
- "centered",
- -11.962026596069336
- ],
- [
- "▁metro",
- -11.962081909179688
- ],
- [
- "▁03",
- -11.962299346923828
- ],
- [
- "▁enrich",
- -11.962437629699707
- ],
- [
- "▁adevarat",
- -11.962594985961914
- ],
- [
- "5000",
- -11.962961196899414
- ],
- [
- "▁bell",
- -11.96297550201416
- ],
- [
- "▁sine",
- -11.962996482849121
- ],
- [
- "▁appealing",
- -11.963088989257812
- ],
- [
- "clam",
- -11.963116645812988
- ],
- [
- "▁vorhanden",
- -11.963165283203125
- ],
- [
- "▁pickup",
- -11.963268280029297
- ],
- [
- "▁Alaska",
- -11.963269233703613
- ],
- [
- "▁Nacht",
- -11.963300704956055
- ],
- [
- "borough",
- -11.9633207321167
- ],
- [
- "▁Blanc",
- -11.96340274810791
- ],
- [
- "▁apare",
- -11.963616371154785
- ],
- [
- "▁Works",
- -11.963798522949219
- ],
- [
- "mettent",
- -11.963801383972168
- ],
- [
- "atter",
- -11.96389389038086
- ],
- [
- "terra",
- -11.963946342468262
- ],
- [
- "▁Bit",
- -11.964105606079102
- ],
- [
- "RL",
- -11.964131355285645
- ],
- [
- "▁Wander",
- -11.964262962341309
- ],
- [
- "▁Hawk",
- -11.964595794677734
- ],
- [
- "▁Probleme",
- -11.964665412902832
- ],
- [
- "regel",
- -11.964729309082031
- ],
- [
- "hne",
- -11.964739799499512
- ],
- [
- "fass",
- -11.96486759185791
- ],
- [
- "▁Andy",
- -11.965014457702637
- ],
- [
- "▁befinde",
- -11.965179443359375
- ],
- [
- "boo",
- -11.965265274047852
- ],
- [
- "▁connectivity",
- -11.965304374694824
- ],
- [
- "▁spielt",
- -11.965418815612793
- ],
- [
- "zweiten",
- -11.96547794342041
- ],
- [
- "ţilor",
- -11.965526580810547
- ],
- [
- "▁confi",
- -11.96561336517334
- ],
- [
- "▁schlecht",
- -11.965773582458496
- ],
- [
- "▁Beginn",
- -11.96581745147705
- ],
- [
- "▁floating",
- -11.965903282165527
- ],
- [
- "nimmt",
- -11.966071128845215
- ],
- [
- "▁arbeiten",
- -11.96611213684082
- ],
- [
- "pillar",
- -11.966131210327148
- ],
- [
- "sterreich",
- -11.966347694396973
- ],
- [
- "▁Schule",
- -11.966446876525879
- ],
- [
- "▁durée",
- -11.966521263122559
- ],
- [
- "▁honestly",
- -11.96653938293457
- ],
- [
- "▁acel",
- -11.9666166305542
- ],
- [
- "▁Prozess",
- -11.96662425994873
- ],
- [
- "Min",
- -11.966629028320312
- ],
- [
- "enii",
- -11.966632843017578
- ],
- [
- "DAY",
- -11.966758728027344
- ],
- [
- "▁Blo",
- -11.966806411743164
- ],
- [
- "▁bolt",
- -11.966946601867676
- ],
- [
- "sicher",
- -11.967070579528809
- ],
- [
- "▁17,",
- -11.967122077941895
- ],
- [
- "▁anchor",
- -11.967215538024902
- ],
- [
- "▁consistency",
- -11.967241287231445
- ],
- [
- "▁relatives",
- -11.967263221740723
- ],
- [
- "▁lac",
- -11.967385292053223
- ],
- [
- "105",
- -11.967432975769043
- ],
- [
- "▁Craig",
- -11.967534065246582
- ],
- [
- "▁mandate",
- -11.967598915100098
- ],
- [
- "▁bedeutet",
- -11.967674255371094
- ],
- [
- "▁Soviet",
- -11.967680931091309
- ],
- [
- "▁arguments",
- -11.967938423156738
- ],
- [
- "▁Gebäude",
- -11.967997550964355
- ],
- [
- "▁Parliament",
- -11.968005180358887
- ],
- [
- "▁Kha",
- -11.968087196350098
- ],
- [
- "nica",
- -11.968130111694336
- ],
- [
- "▁Amazing",
- -11.968162536621094
- ],
- [
- "gründe",
- -11.968179702758789
- ],
- [
- "▁Ott",
- -11.968269348144531
- ],
- [
- "Exp",
- -11.968314170837402
- ],
- [
- "▁ianuarie",
- -11.96848201751709
- ],
- [
- "riot",
- -11.968571662902832
- ],
- [
- "▁futur",
- -11.968626976013184
- ],
- [
- "▁Honda",
- -11.968647956848145
- ],
- [
- "!!!!",
- -11.96865177154541
- ],
- [
- "▁citit",
- -11.968689918518066
- ],
- [
- "▁22,",
- -11.968708992004395
- ],
- [
- "țional",
- -11.968711853027344
- ],
- [
- "▁lovers",
- -11.968732833862305
- ],
- [
- "▁Current",
- -11.968835830688477
- ],
- [
- "▁drone",
- -11.96927261352539
- ],
- [
- "▁promising",
- -11.969335556030273
- ],
- [
- "devoted",
- -11.969443321228027
- ],
- [
- "▁Born",
- -11.969520568847656
- ],
- [
- "▁viitor",
- -11.969589233398438
- ],
- [
- "▁ritual",
- -11.969614028930664
- ],
- [
- "▁Guard",
- -11.969681739807129
- ],
- [
- "09.",
- -11.969828605651855
- ],
- [
- "▁Py",
- -11.970260620117188
- ],
- [
- "▁finds",
- -11.970380783081055
- ],
- [
- "▁boli",
- -11.970394134521484
- ],
- [
- "▁Mitglieder",
- -11.970697402954102
- ],
- [
- "ogni",
- -11.97107982635498
- ],
- [
- "▁stones",
- -11.97118854522705
- ],
- [
- "rox",
- -11.971210479736328
- ],
- [
- "▁dock",
- -11.971390724182129
- ],
- [
- "▁onion",
- -11.97144889831543
- ],
- [
- "▁classified",
- -11.971538543701172
- ],
- [
- "big",
- -11.971833229064941
- ],
- [
- "RG",
- -11.971857070922852
- ],
- [
- "influenced",
- -11.971955299377441
- ],
- [
- "▁sudden",
- -11.971988677978516
- ],
- [
- "▁ample",
- -11.97204303741455
- ],
- [
- "án",
- -11.972095489501953
- ],
- [
- "▁ornament",
- -11.972122192382812
- ],
- [
- "datele",
- -11.972227096557617
- ],
- [
- "▁Dad",
- -11.97225284576416
- ],
- [
- "BER",
- -11.972278594970703
- ],
- [
- "gerecht",
- -11.972380638122559
- ],
- [
- "kett",
- -11.972536087036133
- ],
- [
- "▁Antonio",
- -11.972572326660156
- ],
- [
- "Nu",
- -11.972834587097168
- ],
- [
- "dium",
- -11.97284984588623
- ],
- [
- "CAD",
- -11.972850799560547
- ],
- [
- "▁bundle",
- -11.972916603088379
- ],
- [
- "▁Vari",
- -11.97301197052002
- ],
- [
- "▁thrive",
- -11.973020553588867
- ],
- [
- "▁Seminar",
- -11.973071098327637
- ],
- [
- "wire",
- -11.973084449768066
- ],
- [
- "▁contributing",
- -11.973114967346191
- ],
- [
- "▁Bour",
- -11.97320556640625
- ],
- [
- "▁dori",
- -11.973206520080566
- ],
- [
- "▁packing",
- -11.97343921661377
- ],
- [
- "▁colleges",
- -11.973459243774414
- ],
- [
- "▁garbage",
- -11.97366714477539
- ],
- [
- "▁vector",
- -11.973837852478027
- ],
- [
- "▁suggestion",
- -11.973897933959961
- ],
- [
- "borne",
- -11.973904609680176
- ],
- [
- "▁Listen",
- -11.973938941955566
- ],
- [
- "▁Prix",
- -11.973957061767578
- ],
- [
- "viennent",
- -11.974162101745605
- ],
- [
- "insbesondere",
- -11.97426700592041
- ],
- [
- "▁fonctionne",
- -11.974435806274414
- ],
- [
- "▁mainstream",
- -11.974485397338867
- ],
- [
- "▁merci",
- -11.974574089050293
- ],
- [
- "oko",
- -11.97460651397705
- ],
- [
- "▁Commerce",
- -11.97493839263916
- ],
- [
- "▁droits",
- -11.975115776062012
- ],
- [
- "▁muzica",
- -11.975141525268555
- ],
- [
- "▁profesor",
- -11.9751558303833
- ],
- [
- "▁epic",
- -11.97518253326416
- ],
- [
- "▁intuitive",
- -11.975186347961426
- ],
- [
- "▁aggregate",
- -11.975223541259766
- ],
- [
- "▁vaccine",
- -11.97529411315918
- ],
- [
- "▁dank",
- -11.975459098815918
- ],
- [
- "▁situ",
- -11.975578308105469
- ],
- [
- "▁Cand",
- -11.975593566894531
- ],
- [
- "▁Ganz",
- -11.97562313079834
- ],
- [
- "▁Crystal",
- -11.97578239440918
- ],
- [
- "▁discretion",
- -11.975825309753418
- ],
- [
- "mug",
- -11.975997924804688
- ],
- [
- "▁anzu",
- -11.976144790649414
- ],
- [
- "▁cement",
- -11.97616958618164
- ],
- [
- "▁priest",
- -11.97625732421875
- ],
- [
- "▁rejected",
- -11.976298332214355
- ],
- [
- "▁Summit",
- -11.976325988769531
- ],
- [
- "▁Sara",
- -11.976424217224121
- ],
- [
- "▁palette",
- -11.976527214050293
- ],
- [
- "▁continuare",
- -11.976569175720215
- ],
- [
- "uge",
- -11.976676940917969
- ],
- [
- "ryl",
- -11.976844787597656
- ],
- [
- "▁Solid",
- -11.977142333984375
- ],
- [
- "▁meilleure",
- -11.977177619934082
- ],
- [
- "▁Tennessee",
- -11.977248191833496
- ],
- [
- "rail",
- -11.977326393127441
- ],
- [
- "▁attributes",
- -11.9773530960083
- ],
- [
- "▁vessels",
- -11.977840423583984
- ],
- [
- "cylinder",
- -11.977900505065918
- ],
- [
- "▁parfait",
- -11.977916717529297
- ],
- [
- "abb",
- -11.97801399230957
- ],
- [
- "▁Julie",
- -11.97806167602539
- ],
- [
- "▁pièces",
- -11.978120803833008
- ],
- [
- "▁proiecte",
- -11.978142738342285
- ],
- [
- "médi",
- -11.978273391723633
- ],
- [
- "▁décembre",
- -11.9783935546875
- ],
- [
- "Per",
- -11.97841739654541
- ],
- [
- "1/",
- -11.978520393371582
- ],
- [
- "regulated",
- -11.978601455688477
- ],
- [
- "▁Dy",
- -11.978633880615234
- ],
- [
- "▁23,",
- -11.978694915771484
- ],
- [
- "beck",
- -11.978763580322266
- ],
- [
- "tură",
- -11.97885513305664
- ],
- [
- "▁Chiar",
- -11.978931427001953
- ],
- [
- "▁isolated",
- -11.979012489318848
- ],
- [
- "▁kennen",
- -11.979259490966797
- ],
- [
- "Du",
- -11.979260444641113
- ],
- [
- "reflected",
- -11.979482650756836
- ],
- [
- "▁belong",
- -11.979571342468262
- ],
- [
- "▁welcomed",
- -11.97969913482666
- ],
- [
- "▁Rate",
- -11.979776382446289
- ],
- [
- "prestigious",
- -11.979859352111816
- ],
- [
- "▁1/4",
- -11.979930877685547
- ],
- [
- "▁distinction",
- -11.979966163635254
- ],
- [
- "▁boring",
- -11.980001449584961
- ],
- [
- "▁booked",
- -11.980369567871094
- ],
- [
- "▁citizen",
- -11.980441093444824
- ],
- [
- "▁comprises",
- -11.980498313903809
- ],
- [
- "▁aufge",
- -11.98051929473877
- ],
- [
- "GL",
- -11.980566024780273
- ],
- [
- "▁nearest",
- -11.980616569519043
- ],
- [
- "▁printr",
- -11.980692863464355
- ],
- [
- "▁département",
- -11.981318473815918
- ],
- [
- "▁planner",
- -11.981510162353516
- ],
- [
- "▁Rai",
- -11.981817245483398
- ],
- [
- "▁Broad",
- -11.981934547424316
- ],
- [
- "▁pastor",
- -11.981947898864746
- ],
- [
- "▁reservation",
- -11.982243537902832
- ],
- [
- "▁decembrie",
- -11.982315063476562
- ],
- [
- "▁suficient",
- -11.982501983642578
- ],
- [
- "geld",
- -11.982560157775879
- ],
- [
- "training",
- -11.982620239257812
- ],
- [
- "deshalb",
- -11.982634544372559
- ],
- [
- "▁chaud",
- -11.982651710510254
- ],
- [
- "Cor",
- -11.982662200927734
- ],
- [
- "▁Grade",
- -11.982769966125488
- ],
- [
- "▁faţă",
- -11.982809066772461
- ],
- [
- "story",
- -11.982839584350586
- ],
- [
- "gericht",
- -11.98286247253418
- ],
- [
- "▁Got",
- -11.982954025268555
- ],
- [
- "particulièrement",
- -11.982976913452148
- ],
- [
- "▁bump",
- -11.983051300048828
- ],
- [
- "▁fatigue",
- -11.983160018920898
- ],
- [
- "Activ",
- -11.983250617980957
- ],
- [
- "▁numéro",
- -11.983302116394043
- ],
- [
- "▁stranger",
- -11.983312606811523
- ],
- [
- "▁Skin",
- -11.983327865600586
- ],
- [
- "add",
- -11.98344898223877
- ],
- [
- "Ainsi",
- -11.98357105255127
- ],
- [
- "▁assists",
- -11.983684539794922
- ],
- [
- "▁zusätzlich",
- -11.983943939208984
- ],
- [
- "▁vede",
- -11.983979225158691
- ],
- [
- "RON",
- -11.984108924865723
- ],
- [
- "▁seemingly",
- -11.984126091003418
- ],
- [
- "▁NU",
- -11.98417854309082
- ],
- [
- "geb",
- -11.984273910522461
- ],
- [
- "▁Release",
- -11.984353065490723
- ],
- [
- "▁throwing",
- -11.984427452087402
- ],
- [
- "▁Alabama",
- -11.984447479248047
- ],
- [
- "▁Something",
- -11.984590530395508
- ],
- [
- "▁Cuba",
- -11.98464584350586
- ],
- [
- "▁Verbindung",
- -11.984649658203125
- ],
- [
- "▁Cir",
- -11.984654426574707
- ],
- [
- "your",
- -11.984713554382324
- ],
- [
- "-13",
- -11.984748840332031
- ],
- [
- "▁Delta",
- -11.984801292419434
- ],
- [
- "▁Twin",
- -11.98504638671875
- ],
- [
- "▁governance",
- -11.985156059265137
- ],
- [
- "▁groom",
- -11.985310554504395
- ],
- [
- "▁conception",
- -11.98533821105957
- ],
- [
- "▁governor",
- -11.985383033752441
- ],
- [
- "▁Spar",
- -11.985416412353516
- ],
- [
- "▁coastal",
- -11.985652923583984
- ],
- [
- "▁Seven",
- -11.985856056213379
- ],
- [
- "▁inclusive",
- -11.986002922058105
- ],
- [
- "cili",
- -11.986035346984863
- ],
- [
- "▁Ridge",
- -11.986100196838379
- ],
- [
- "teller",
- -11.986224174499512
- ],
- [
- "▁Kin",
- -11.986247062683105
- ],
- [
- "leiter",
- -11.986279487609863
- ],
- [
- "stern",
- -11.986364364624023
- ],
- [
- "change",
- -11.986404418945312
- ],
- [
- "▁presidential",
- -11.986433982849121
- ],
- [
- "▁composer",
- -11.986544609069824
- ],
- [
- "Stu",
- -11.986560821533203
- ],
- [
- "▁Frankfurt",
- -11.986584663391113
- ],
- [
- "prä",
- -11.986639976501465
- ],
- [
- "▁Ideal",
- -11.986644744873047
- ],
- [
- "▁linear",
- -11.986857414245605
- ],
- [
- "▁bloom",
- -11.986879348754883
- ],
- [
- "▁grades",
- -11.986881256103516
- ],
- [
- "mettant",
- -11.98692512512207
- ],
- [
- "▁finishes",
- -11.986952781677246
- ],
- [
- "holz",
- -11.987086296081543
- ],
- [
- "▁dirty",
- -11.987317085266113
- ],
- [
- "▁Roh",
- -11.987386703491211
- ],
- [
- "▁Praxis",
- -11.987408638000488
- ],
- [
- "tempo",
- -11.987433433532715
- ],
- [
- "▁attempted",
- -11.987433433532715
- ],
- [
- "▁primar",
- -11.987434387207031
- ],
- [
- "▁pomp",
- -11.987528800964355
- ],
- [
- "▁tolle",
- -11.987614631652832
- ],
- [
- "▁adres",
- -11.988011360168457
- ],
- [
- "▁Between",
- -11.988066673278809
- ],
- [
- "▁ruin",
- -11.988432884216309
- ],
- [
- "▁matériel",
- -11.988561630249023
- ],
- [
- "MER",
- -11.988913536071777
- ],
- [
- "Nevertheless",
- -11.989055633544922
- ],
- [
- "▁corruption",
- -11.989119529724121
- ],
- [
- "spire",
- -11.989180564880371
- ],
- [
- "▁mou",
- -11.989208221435547
- ],
- [
- "ROM",
- -11.989278793334961
- ],
- [
- "▁underground",
- -11.98935604095459
- ],
- [
- "▁relativ",
- -11.989389419555664
- ],
- [
- "waited",
- -11.989462852478027
- ],
- [
- "▁speeds",
- -11.989468574523926
- ],
- [
- "▁adjusted",
- -11.989486694335938
- ],
- [
- "▁Flat",
- -11.989514350891113
- ],
- [
- "UND",
- -11.98965835571289
- ],
- [
- "▁individuelle",
- -11.989744186401367
- ],
- [
- "▁anybody",
- -11.98978042602539
- ],
- [
- "EO",
- -11.989790916442871
- ],
- [
- "->",
- -11.989791870117188
- ],
- [
- "▁Spend",
- -11.989876747131348
- ],
- [
- "aktion",
- -11.990011215209961
- ],
- [
- "édit",
- -11.99006462097168
- ],
- [
- "▁quest",
- -11.990078926086426
- ],
- [
- "rind",
- -11.990541458129883
- ],
- [
- "▁mediu",
- -11.99057388305664
- ],
- [
- "▁barriers",
- -11.99062442779541
- ],
- [
- "▁répondre",
- -11.990633010864258
- ],
- [
- "▁novembre",
- -11.990708351135254
- ],
- [
- "▁champ",
- -11.990736961364746
- ],
- [
- "saw",
- -11.990757942199707
- ],
- [
- "▁fed",
- -11.990804672241211
- ],
- [
- "▁favorites",
- -11.990939140319824
- ],
- [
- "▁shield",
- -11.991055488586426
- ],
- [
- "▁Wide",
- -11.991146087646484
- ],
- [
- "▁problema",
- -11.991445541381836
- ],
- [
- "▁Asta",
- -11.991525650024414
- ],
- [
- "▁refreshing",
- -11.99168872833252
- ],
- [
- "hey",
- -11.991692543029785
- ],
- [
- "obtaining",
- -11.991788864135742
- ],
- [
- "▁parler",
- -11.992072105407715
- ],
- [
- "▁Cele",
- -11.992134094238281
- ],
- [
- "frage",
- -11.992136001586914
- ],
- [
- "écran",
- -11.992324829101562
- ],
- [
- "▁cleared",
- -11.992448806762695
- ],
- [
- "zehn",
- -11.992594718933105
- ],
- [
- "parmi",
- -11.992647171020508
- ],
- [
- "änder",
- -11.992691993713379
- ],
- [
- "▁Defense",
- -11.992693901062012
- ],
- [
- "tatea",
- -11.992696762084961
- ],
- [
- "▁reasonably",
- -11.992939949035645
- ],
- [
- "▁Idee",
- -11.992985725402832
- ],
- [
- "nehm",
- -11.993000030517578
- ],
- [
- "technologie",
- -11.993020057678223
- ],
- [
- "atura",
- -11.993048667907715
- ],
- [
- "▁slope",
- -11.993332862854004
- ],
- [
- "Hence",
- -11.993351936340332
- ],
- [
- "▁40%",
- -11.993391990661621
- ],
- [
- "▁jewe",
- -11.993448257446289
- ],
- [
- "▁queries",
- -11.993470191955566
- ],
- [
- "▁$8",
- -11.994096755981445
- ],
- [
- "▁Parker",
- -11.994107246398926
- ],
- [
- "▁publique",
- -11.994488716125488
- ],
- [
- "quant",
- -11.994529724121094
- ],
- [
- "issue",
- -11.994690895080566
- ],
- [
- "▁Cleveland",
- -11.994847297668457
- ],
- [
- "4,000",
- -11.995071411132812
- ],
- [
- "IDE",
- -11.995145797729492
- ],
- [
- "▁Barbara",
- -11.995233535766602
- ],
- [
- "udge",
- -11.995477676391602
- ],
- [
- "corn",
- -11.99554443359375
- ],
- [
- "veți",
- -11.995588302612305
- ],
- [
- "▁proteins",
- -11.995707511901855
- ],
- [
- "▁trăi",
- -11.995793342590332
- ],
- [
- "▁mijloc",
- -11.995842933654785
- ],
- [
- "logie",
- -11.995884895324707
- ],
- [
- "▁Walter",
- -11.995884895324707
- ],
- [
- "heißt",
- -11.99593448638916
- ],
- [
- "search",
- -11.995946884155273
- ],
- [
- "▁hochwertige",
- -11.996010780334473
- ],
- [
- "▁încerc",
- -11.996014595031738
- ],
- [
- "▁administrator",
- -11.99608039855957
- ],
- [
- "tension",
- -11.996133804321289
- ],
- [
- "▁homemade",
- -11.996438026428223
- ],
- [
- "▁$20",
- -11.99651050567627
- ],
- [
- "▁leben",
- -11.996662139892578
- ],
- [
- "netz",
- -11.996665954589844
- ],
- [
- "▁intensity",
- -11.996882438659668
- ],
- [
- "▁clever",
- -11.996891975402832
- ],
- [
- "▁installer",
- -11.996999740600586
- ],
- [
- "▁Wand",
- -11.997087478637695
- ],
- [
- "meister",
- -11.997130393981934
- ],
- [
- "ziel",
- -11.99744701385498
- ],
- [
- "▁architect",
- -11.99748706817627
- ],
- [
- "▁crede",
- -11.997512817382812
- ],
- [
- "▁Sleep",
- -11.997675895690918
- ],
- [
- "▁demonstr",
- -11.997745513916016
- ],
- [
- "cake",
- -11.997781753540039
- ],
- [
- "▁Cheap",
- -11.997783660888672
- ],
- [
- "pool",
- -11.9979829788208
- ],
- [
- "▁gadget",
- -11.998004913330078
- ],
- [
- "▁Anbieter",
- -11.998005867004395
- ],
- [
- "▁Jonathan",
- -11.998170852661133
- ],
- [
- "ül",
- -11.998492240905762
- ],
- [
- "▁Harvard",
- -11.998503684997559
- ],
- [
- "▁1985",
- -11.998773574829102
- ],
- [
- "HP",
- -11.998839378356934
- ],
- [
- "▁afara",
- -11.99893569946289
- ],
- [
- "▁halten",
- -11.999008178710938
- ],
- [
- "▁Technik",
- -11.999042510986328
- ],
- [
- "▁dressed",
- -11.999149322509766
- ],
- [
- "weis",
- -11.999165534973145
- ],
- [
- "▁donated",
- -11.9993314743042
- ],
- [
- "also",
- -11.99938678741455
- ],
- [
- "▁EN",
- -11.999405860900879
- ],
- [
- "▁imprim",
- -11.99942398071289
- ],
- [
- "▁onions",
- -11.999458312988281
- ],
- [
- "Par",
- -11.99950122833252
- ],
- [
- "▁donate",
- -11.99958324432373
- ],
- [
- "▁mice",
- -11.999610900878906
- ],
- [
- "referring",
- -11.999897956848145
- ],
- [
- "▁restored",
- -12.00003433227539
- ],
- [
- "▁amateur",
- -12.0000581741333
- ],
- [
- "▁Switch",
- -12.000075340270996
- ],
- [
- "appel",
- -12.00013542175293
- ],
- [
- "▁idéal",
- -12.0001859664917
- ],
- [
- "▁wheat",
- -12.000199317932129
- ],
- [
- "▁lime",
- -12.000240325927734
- ],
- [
- "REA",
- -12.00027084350586
- ],
- [
- "riti",
- -12.000357627868652
- ],
- [
- "ţiile",
- -12.00058364868164
- ],
- [
- "▁machinery",
- -12.00064754486084
- ],
- [
- "UNE",
- -12.00089168548584
- ],
- [
- "▁Cont",
- -12.000971794128418
- ],
- [
- "▁attendees",
- -12.001014709472656
- ],
- [
- "▁aparat",
- -12.001080513000488
- ],
- [
- "freundlich",
- -12.00117301940918
- ],
- [
- "▁zilnic",
- -12.001175880432129
- ],
- [
- "▁spark",
- -12.001421928405762
- ],
- [
- "▁Gast",
- -12.001459121704102
- ],
- [
- "▁Issue",
- -12.00147533416748
- ],
- [
- "▁scam",
- -12.001566886901855
- ],
- [
- "▁bonds",
- -12.001618385314941
- ],
- [
- "owner",
- -12.001641273498535
- ],
- [
- "▁empfehlen",
- -12.001673698425293
- ],
- [
- "elia",
- -12.001749992370605
- ],
- [
- "cic",
- -12.001757621765137
- ],
- [
- "▁honored",
- -12.001800537109375
- ],
- [
- "▁castle",
- -12.001846313476562
- ],
- [
- "avand",
- -12.002058982849121
- ],
- [
- "rough",
- -12.002108573913574
- ],
- [
- "▁Address",
- -12.002116203308105
- ],
- [
- "angle",
- -12.00217342376709
- ],
- [
- "leton",
- -12.002259254455566
- ],
- [
- "▁locked",
- -12.002392768859863
- ],
- [
- "▁consolid",
- -12.00248908996582
- ],
- [
- "▁voucher",
- -12.003011703491211
- ],
- [
- "ației",
- -12.003201484680176
- ],
- [
- "wachsen",
- -12.003211975097656
- ],
- [
- "▁magazines",
- -12.003287315368652
- ],
- [
- "▁Schools",
- -12.003318786621094
- ],
- [
- "▁voices",
- -12.003362655639648
- ],
- [
- "▁Dry",
- -12.003479957580566
- ],
- [
- "▁tricks",
- -12.00349235534668
- ],
- [
- "schließlich",
- -12.003546714782715
- ],
- [
- "▁loyalty",
- -12.003687858581543
- ],
- [
- "risk",
- -12.003764152526855
- ],
- [
- "▁Vers",
- -12.003786087036133
- ],
- [
- "chester",
- -12.003802299499512
- ],
- [
- "▁decorated",
- -12.003830909729004
- ],
- [
- "▁copiilor",
- -12.003969192504883
- ],
- [
- "riz",
- -12.003994941711426
- ],
- [
- "03.",
- -12.004013061523438
- ],
- [
- "▁Hur",
- -12.004016876220703
- ],
- [
- "▁archive",
- -12.004021644592285
- ],
- [
- "▁Continue",
- -12.004042625427246
- ],
- [
- "▁Nähe",
- -12.004043579101562
- ],
- [
- "jit",
- -12.004090309143066
- ],
- [
- "gekommen",
- -12.004301071166992
- ],
- [
- "▁conjunction",
- -12.004349708557129
- ],
- [
- "combining",
- -12.004404067993164
- ],
- [
- "▁Unterstützung",
- -12.004517555236816
- ],
- [
- "oza",
- -12.004593849182129
- ],
- [
- "▁sketch",
- -12.004720687866211
- ],
- [
- "▁arată",
- -12.004731178283691
- ],
- [
- "▁Mining",
- -12.004765510559082
- ],
- [
- "uous",
- -12.004791259765625
- ],
- [
- "▁devis",
- -12.004834175109863
- ],
- [
- "Almost",
- -12.004862785339355
- ],
- [
- "Hu",
- -12.005037307739258
- ],
- [
- "▁Om",
- -12.005366325378418
- ],
- [
- "MF",
- -12.00544548034668
- ],
- [
- "liz",
- -12.005451202392578
- ],
- [
- "▁fails",
- -12.005456924438477
- ],
- [
- "▁comparable",
- -12.005459785461426
- ],
- [
- "▁vein",
- -12.005547523498535
- ],
- [
- "▁Vis",
- -12.00561809539795
- ],
- [
- "▁viagra",
- -12.005654335021973
- ],
- [
- "▁farming",
- -12.005678176879883
- ],
- [
- "▁Late",
- -12.005765914916992
- ],
- [
- "geschrieben",
- -12.006033897399902
- ],
- [
- "hrew",
- -12.006103515625
- ],
- [
- "▁melt",
- -12.006120681762695
- ],
- [
- "lager",
- -12.006168365478516
- ],
- [
- "halte",
- -12.006240844726562
- ],
- [
- "▁Hotels",
- -12.006266593933105
- ],
- [
- "▁facebook",
- -12.0064058303833
- ],
- [
- "▁défi",
- -12.006550788879395
- ],
- [
- "shore",
- -12.006802558898926
- ],
- [
- "▁membrane",
- -12.006866455078125
- ],
- [
- "▁sixth",
- -12.006903648376465
- ],
- [
- "api",
- -12.007003784179688
- ],
- [
- "▁Owner",
- -12.007222175598145
- ],
- [
- "▁(\"",
- -12.007234573364258
- ],
- [
- "▁$50",
- -12.007280349731445
- ],
- [
- "▁protective",
- -12.007420539855957
- ],
- [
- "/2",
- -12.007548332214355
- ],
- [
- "▁Girls",
- -12.007562637329102
- ],
- [
- "Gri",
- -12.00769329071045
- ],
- [
- "▁nouă",
- -12.007708549499512
- ],
- [
- "▁infections",
- -12.007813453674316
- ],
- [
- "rân",
- -12.007868766784668
- ],
- [
- "▁Geb",
- -12.0078763961792
- ],
- [
- "▁Conseil",
- -12.007905006408691
- ],
- [
- "▁imagini",
- -12.007909774780273
- ],
- [
- "▁promotions",
- -12.00794792175293
- ],
- [
- "▁enforce",
- -12.00795841217041
- ],
- [
- "▁applicant",
- -12.007965087890625
- ],
- [
- "▁Apart",
- -12.008087158203125
- ],
- [
- "▁progression",
- -12.008151054382324
- ],
- [
- "▁careers",
- -12.008511543273926
- ],
- [
- "▁litigation",
- -12.008533477783203
- ],
- [
- "▁Menge",
- -12.00866413116455
- ],
- [
- "▁Contract",
- -12.00871753692627
- ],
- [
- "▁Kel",
- -12.0087308883667
- ],
- [
- "▁réserve",
- -12.008769035339355
- ],
- [
- "▁Cold",
- -12.008870124816895
- ],
- [
- "▁larg",
- -12.009040832519531
- ],
- [
- "▁microwave",
- -12.009090423583984
- ],
- [
- "▁Whit",
- -12.009212493896484
- ],
- [
- "▁Technologies",
- -12.009381294250488
- ],
- [
- "OU",
- -12.00949478149414
- ],
- [
- "itudine",
- -12.00959587097168
- ],
- [
- "▁handles",
- -12.009895324707031
- ],
- [
- "▁proceedings",
- -12.009982109069824
- ],
- [
- "▁prizes",
- -12.010043144226074
- ],
- [
- "▁unterstützen",
- -12.010062217712402
- ],
- [
- "▁piele",
- -12.010090827941895
- ],
- [
- "▁profound",
- -12.010153770446777
- ],
- [
- "schließen",
- -12.0101957321167
- ],
- [
- "▁trafic",
- -12.01025104522705
- ],
- [
- "▁Nar",
- -12.010441780090332
- ],
- [
- "▁Gesamt",
- -12.0106201171875
- ],
- [
- "▁bugs",
- -12.010720252990723
- ],
- [
- "▁Amy",
- -12.010764122009277
- ],
- [
- "▁eastern",
- -12.010775566101074
- ],
- [
- "nice",
- -12.010784149169922
- ],
- [
- "▁Besuch",
- -12.010835647583008
- ],
- [
- "▁synth",
- -12.010892868041992
- ],
- [
- "▁clasa",
- -12.011194229125977
- ],
- [
- "Book",
- -12.01134204864502
- ],
- [
- "▁ribbon",
- -12.011415481567383
- ],
- [
- "▁neues",
- -12.011431694030762
- ],
- [
- "ZE",
- -12.011504173278809
- ],
- [
- "▁peers",
- -12.011613845825195
- ],
- [
- "leistung",
- -12.011730194091797
- ],
- [
- "▁internship",
- -12.011808395385742
- ],
- [
- "count",
- -12.011850357055664
- ],
- [
- "nam",
- -12.01193618774414
- ],
- [
- "▁12-",
- -12.012072563171387
- ],
- [
- "acked",
- -12.012146949768066
- ],
- [
- "gonna",
- -12.012146949768066
- ],
- [
- "▁Dinge",
- -12.01215648651123
- ],
- [
- "Time",
- -12.012299537658691
- ],
- [
- "▁twelve",
- -12.01242446899414
- ],
- [
- "eye",
- -12.012432098388672
- ],
- [
- "▁avantaj",
- -12.01253604888916
- ],
- [
- "▁Glas",
- -12.012731552124023
- ],
- [
- "aucune",
- -12.0127534866333
- ],
- [
- "▁boil",
- -12.012763977050781
- ],
- [
- "▁Gray",
- -12.012773513793945
- ],
- [
- "adapt",
- -12.01288890838623
- ],
- [
- "occ",
- -12.012895584106445
- ],
- [
- "▁prieten",
- -12.012897491455078
- ],
- [
- "▁trai",
- -12.01296615600586
- ],
- [
- "▁Scal",
- -12.013009071350098
- ],
- [
- "▁conscious",
- -12.013057708740234
- ],
- [
- "▁charter",
- -12.013093948364258
- ],
- [
- "KS",
- -12.013242721557617
- ],
- [
- "▁Barr",
- -12.013404846191406
- ],
- [
- "▁summit",
- -12.013411521911621
- ],
- [
- "▁inflammation",
- -12.013439178466797
- ],
- [
- "tungs",
- -12.013440132141113
- ],
- [
- "ovic",
- -12.013449668884277
- ],
- [
- "▁conduit",
- -12.013465881347656
- ],
- [
- "▁Alice",
- -12.013702392578125
- ],
- [
- "▁veterans",
- -12.013850212097168
- ],
- [
- "Während",
- -12.013944625854492
- ],
- [
- "▁maximal",
- -12.014013290405273
- ],
- [
- "▁Hawaii",
- -12.014037132263184
- ],
- [
- "▁Pine",
- -12.01432991027832
- ],
- [
- "acelasi",
- -12.014391899108887
- ],
- [
- "hyp",
- -12.014424324035645
- ],
- [
- "sensitivity",
- -12.01445198059082
- ],
- [
- "pour",
- -12.014481544494629
- ],
- [
- "ре",
- -12.014493942260742
- ],
- [
- "▁Kentucky",
- -12.015129089355469
- ],
- [
- "▁badge",
- -12.015276908874512
- ],
- [
- "affecting",
- -12.015310287475586
- ],
- [
- "▁chairman",
- -12.015311241149902
- ],
- [
- "▁München",
- -12.015467643737793
- ],
- [
- "▁Hersteller",
- -12.015469551086426
- ],
- [
- "▁urmat",
- -12.015615463256836
- ],
- [
- "tels",
- -12.015654563903809
- ],
- [
- "▁FM",
- -12.015701293945312
- ],
- [
- "▁Basis",
- -12.015732765197754
- ],
- [
- "▁erklärt",
- -12.015809059143066
- ],
- [
- "▁changer",
- -12.015859603881836
- ],
- [
- "tischen",
- -12.0159330368042
- ],
- [
- "▁brave",
- -12.015960693359375
- ],
- [
- "▁siguranta",
- -12.015986442565918
- ],
- [
- "▁partnerships",
- -12.015989303588867
- ],
- [
- "ților",
- -12.015999794006348
- ],
- [
- "▁breathe",
- -12.016141891479492
- ],
- [
- "rink",
- -12.016551971435547
- ],
- [
- "▁footage",
- -12.016654014587402
- ],
- [
- "▁transformed",
- -12.016658782958984
- ],
- [
- "▁prep",
- -12.016866683959961
- ],
- [
- "▁upset",
- -12.016901969909668
- ],
- [
- "▁Native",
- -12.017059326171875
- ],
- [
- "▁Prima",
- -12.017154693603516
- ],
- [
- "▁jersey",
- -12.017163276672363
- ],
- [
- "230",
- -12.017182350158691
- ],
- [
- "▁lucrurile",
- -12.017393112182617
- ],
- [
- "▁divine",
- -12.017502784729004
- ],
- [
- "▁Pit",
- -12.017593383789062
- ],
- [
- "RIS",
- -12.01765251159668
- ],
- [
- "▁Cultural",
- -12.017672538757324
- ],
- [
- "▁exotic",
- -12.017786979675293
- ],
- [
- "▁tastes",
- -12.017881393432617
- ],
- [
- "▁bargain",
- -12.017913818359375
- ],
- [
- "▁optimize",
- -12.017985343933105
- ],
- [
- "▁électrique",
- -12.018012046813965
- ],
- [
- "deuxième",
- -12.018030166625977
- ],
- [
- "▁Gary",
- -12.018085479736328
- ],
- [
- "▁projection",
- -12.018122673034668
- ],
- [
- "▁sliding",
- -12.018195152282715
- ],
- [
- "club",
- -12.018216133117676
- ],
- [
- "association",
- -12.01823902130127
- ],
- [
- "▁LG",
- -12.018259048461914
- ],
- [
- "▁capsule",
- -12.018291473388672
- ],
- [
- "▁politicians",
- -12.018397331237793
- ],
- [
- "▁thumb",
- -12.018423080444336
- ],
- [
- "▁globally",
- -12.018743515014648
- ],
- [
- "positioned",
- -12.018796920776367
- ],
- [
- "▁Hamilton",
- -12.018861770629883
- ],
- [
- "arme",
- -12.018881797790527
- ],
- [
- "▁efectuat",
- -12.018881797790527
- ],
- [
- "zip",
- -12.019111633300781
- ],
- [
- "▁welfare",
- -12.019201278686523
- ],
- [
- "Leistung",
- -12.019230842590332
- ],
- [
- "▁Bac",
- -12.019316673278809
- ],
- [
- "▁fizic",
- -12.019338607788086
- ],
- [
- "OK",
- -12.019454002380371
- ],
- [
- "▁limba",
- -12.019545555114746
- ],
- [
- "▁wardrobe",
- -12.019549369812012
- ],
- [
- "▁offline",
- -12.019627571105957
- ],
- [
- "▁fortune",
- -12.019665718078613
- ],
- [
- "▁dialog",
- -12.019681930541992
- ],
- [
- "▁dramatically",
- -12.01997184753418
- ],
- [
- "▁NYC",
- -12.020045280456543
- ],
- [
- "▁Rem",
- -12.02017593383789
- ],
- [
- "▁bronze",
- -12.020455360412598
- ],
- [
- "▁pulse",
- -12.02053451538086
- ],
- [
- "Fortunately",
- -12.020562171936035
- ],
- [
- "▁glue",
- -12.020596504211426
- ],
- [
- "▁Expo",
- -12.020720481872559
- ],
- [
- "▁profitable",
- -12.020776748657227
- ],
- [
- "▁distributor",
- -12.020845413208008
- ],
- [
- "abilité",
- -12.020869255065918
- ],
- [
- "▁lyrics",
- -12.020913124084473
- ],
- [
- "▁mesh",
- -12.02114486694336
- ],
- [
- "▁organizational",
- -12.021157264709473
- ],
- [
- "▁vanilla",
- -12.021249771118164
- ],
- [
- "▁foc",
- -12.021355628967285
- ],
- [
- "▁1984",
- -12.02147388458252
- ],
- [
- "▁créé",
- -12.02172565460205
- ],
- [
- "▁servi",
- -12.022027969360352
- ],
- [
- "▁underneath",
- -12.022095680236816
- ],
- [
- "▁surveys",
- -12.022143363952637
- ],
- [
- "▁genes",
- -12.022238731384277
- ],
- [
- "▁limite",
- -12.02224349975586
- ],
- [
- "oder",
- -12.022247314453125
- ],
- [
- "▁mandatory",
- -12.022269248962402
- ],
- [
- "▁hospitality",
- -12.022303581237793
- ],
- [
- "▁bikes",
- -12.022309303283691
- ],
- [
- "▁Quote",
- -12.022358894348145
- ],
- [
- "glu",
- -12.02241039276123
- ],
- [
- "▁activitatea",
- -12.022513389587402
- ],
- [
- "preventing",
- -12.022584915161133
- ],
- [
- "▁Kh",
- -12.02259635925293
- ],
- [
- "économie",
- -12.022616386413574
- ],
- [
- "▁visite",
- -12.022757530212402
- ],
- [
- "▁spectacle",
- -12.022778511047363
- ],
- [
- "▁tract",
- -12.022860527038574
- ],
- [
- "▁quant",
- -12.022862434387207
- ],
- [
- "▁evolu",
- -12.022866249084473
- ],
- [
- "▁invata",
- -12.023070335388184
- ],
- [
- "▁homo",
- -12.02311897277832
- ],
- [
- "▁Users",
- -12.02344799041748
- ],
- [
- "introducing",
- -12.023632049560547
- ],
- [
- "hibi",
- -12.023661613464355
- ],
- [
- "▁Instrument",
- -12.023805618286133
- ],
- [
- "▁ép",
- -12.023839950561523
- ],
- [
- "▁Raj",
- -12.023869514465332
- ],
- [
- "▁executives",
- -12.023881912231445
- ],
- [
- "atoire",
- -12.023885726928711
- ],
- [
- "▁erforderlich",
- -12.02397346496582
- ],
- [
- "male",
- -12.024211883544922
- ],
- [
- "umble",
- -12.024271011352539
- ],
- [
- "erson",
- -12.024277687072754
- ],
- [
- "▁Treatment",
- -12.024286270141602
- ],
- [
- "▁Representative",
- -12.024314880371094
- ],
- [
- "▁corners",
- -12.024409294128418
- ],
- [
- "▁Petit",
- -12.024599075317383
- ],
- [
- "8)",
- -12.02464771270752
- ],
- [
- "▁Walker",
- -12.024714469909668
- ],
- [
- "▁Stir",
- -12.02476692199707
- ],
- [
- "/19",
- -12.024767875671387
- ],
- [
- "▁Stelle",
- -12.024979591369629
- ],
- [
- "ără",
- -12.025009155273438
- ],
- [
- "osse",
- -12.025166511535645
- ],
- [
- "2000",
- -12.025189399719238
- ],
- [
- "▁McG",
- -12.025580406188965
- ],
- [
- "DV",
- -12.025773048400879
- ],
- [
- "▁Firm",
- -12.025862693786621
- ],
- [
- "▁packet",
- -12.025904655456543
- ],
- [
- "Toate",
- -12.02640438079834
- ],
- [
- "▁institutional",
- -12.026479721069336
- ],
- [
- "rug",
- -12.026663780212402
- ],
- [
- "DG",
- -12.026837348937988
- ],
- [
- "fine",
- -12.026837348937988
- ],
- [
- "bringen",
- -12.026856422424316
- ],
- [
- "▁Horse",
- -12.026921272277832
- ],
- [
- "▁premiere",
- -12.026937484741211
- ],
- [
- "▁Că",
- -12.027026176452637
- ],
- [
- "acheter",
- -12.02703857421875
- ],
- [
- "▁Afghanistan",
- -12.027053833007812
- ],
- [
- "▁Prop",
- -12.027085304260254
- ],
- [
- "ühr",
- -12.02715015411377
- ],
- [
- "▁braucht",
- -12.027398109436035
- ],
- [
- "▁sunny",
- -12.027424812316895
- ],
- [
- "▁Sach",
- -12.027461051940918
- ],
- [
- "▁volumes",
- -12.02753734588623
- ],
- [
- "tinut",
- -12.02759838104248
- ],
- [
- "▁Sho",
- -12.027722358703613
- ],
- [
- "▁winds",
- -12.027735710144043
- ],
- [
- "▁Mall",
- -12.027873992919922
- ],
- [
- "ledge",
- -12.027937889099121
- ],
- [
- "▁sciences",
- -12.027997016906738
- ],
- [
- "plication",
- -12.028024673461914
- ],
- [
- "VR",
- -12.028068542480469
- ],
- [
- "destin",
- -12.028234481811523
- ],
- [
- "▁früh",
- -12.02833366394043
- ],
- [
- "▁tongue",
- -12.028359413146973
- ],
- [
- "▁Jennifer",
- -12.028425216674805
- ],
- [
- "▁bracket",
- -12.028427124023438
- ],
- [
- "▁episodes",
- -12.02845287322998
- ],
- [
- "breite",
- -12.028461456298828
- ],
- [
- "▁stoc",
- -12.028635025024414
- ],
- [
- "ilia",
- -12.028728485107422
- ],
- [
- "▁Gulf",
- -12.02874755859375
- ],
- [
- "▁transparency",
- -12.028768539428711
- ],
- [
- "Industrie",
- -12.028853416442871
- ],
- [
- "▁viewers",
- -12.028916358947754
- ],
- [
- "AIN",
- -12.029129981994629
- ],
- [
- "▁Registration",
- -12.029149055480957
- ],
- [
- "/4",
- -12.029309272766113
- ],
- [
- "▁fera",
- -12.029337882995605
- ],
- [
- "▁06",
- -12.029351234436035
- ],
- [
- "▁einzu",
- -12.029391288757324
- ],
- [
- "enburg",
- -12.02944278717041
- ],
- [
- "▁eff",
- -12.029449462890625
- ],
- [
- "▁Stage",
- -12.029558181762695
- ],
- [
- "▁Cour",
- -12.029685020446777
- ],
- [
- "indu",
- -12.029836654663086
- ],
- [
- "▁Tools",
- -12.029909133911133
- ],
- [
- "IST",
- -12.029921531677246
- ],
- [
- "grund",
- -12.030105590820312
- ],
- [
- "seitig",
- -12.030153274536133
- ],
- [
- "pai",
- -12.030250549316406
- ],
- [
- "▁waist",
- -12.030350685119629
- ],
- [
- "▁Therapy",
- -12.03049373626709
- ],
- [
- "▁nomination",
- -12.030599594116211
- ],
- [
- "▁seama",
- -12.030790328979492
- ],
- [
- "▁analyse",
- -12.030975341796875
- ],
- [
- "▁emerge",
- -12.031044006347656
- ],
- [
- "▁adjustment",
- -12.031106948852539
- ],
- [
- "▁stroll",
- -12.031106948852539
- ],
- [
- "▁Beyond",
- -12.031174659729004
- ],
- [
- "▁legally",
- -12.03122615814209
- ],
- [
- "▁gauge",
- -12.03123664855957
- ],
- [
- "▁26,",
- -12.031360626220703
- ],
- [
- "Tex",
- -12.031390190124512
- ],
- [
- "economic",
- -12.031488418579102
- ],
- [
- "stoffe",
- -12.031532287597656
- ],
- [
- "Wir",
- -12.031559944152832
- ],
- [
- "ffen",
- -12.031601905822754
- ],
- [
- "▁acoperi",
- -12.031609535217285
- ],
- [
- "▁finale",
- -12.031792640686035
- ],
- [
- "▁theoretical",
- -12.031864166259766
- ],
- [
- "1.3",
- -12.031875610351562
- ],
- [
- "anim",
- -12.031888008117676
- ],
- [
- "▁separation",
- -12.031928062438965
- ],
- [
- "agence",
- -12.031937599182129
- ],
- [
- "▁réalisé",
- -12.032069206237793
- ],
- [
- "sprech",
- -12.03215503692627
- ],
- [
- "▁embedded",
- -12.032208442687988
- ],
- [
- "▁defence",
- -12.032242774963379
- ],
- [
- "éni",
- -12.032569885253906
- ],
- [
- "▁Norman",
- -12.032613754272461
- ],
- [
- "▁insgesamt",
- -12.032621383666992
- ],
- [
- "▁reminde",
- -12.032631874084473
- ],
- [
- "▁timeline",
- -12.032703399658203
- ],
- [
- "▁symbols",
- -12.032770156860352
- ],
- [
- "▁booth",
- -12.032783508300781
- ],
- [
- "▁Window",
- -12.032788276672363
- ],
- [
- "▁Titan",
- -12.032910346984863
- ],
- [
- "înt",
- -12.033021926879883
- ],
- [
- "▁langa",
- -12.033021926879883
- ],
- [
- "isant",
- -12.03303337097168
- ],
- [
- "hart",
- -12.033113479614258
- ],
- [
- "broader",
- -12.033266067504883
- ],
- [
- "▁stays",
- -12.033288955688477
- ],
- [
- "dur",
- -12.033488273620605
- ],
- [
- "▁Actually",
- -12.033514022827148
- ],
- [
- "works",
- -12.03351879119873
- ],
- [
- "▁réussi",
- -12.03357219696045
- ],
- [
- "▁performant",
- -12.033658981323242
- ],
- [
- "▁banana",
- -12.033788681030273
- ],
- [
- "▁baked",
- -12.033870697021484
- ],
- [
- "▁Parlament",
- -12.033931732177734
- ],
- [
- "▁Legend",
- -12.033967018127441
- ],
- [
- "toata",
- -12.034172058105469
- ],
- [
- "platte",
- -12.03419017791748
- ],
- [
- "▁Mou",
- -12.034192085266113
- ],
- [
- "HL",
- -12.034235000610352
- ],
- [
- "▁(8",
- -12.034290313720703
- ],
- [
- "▁accepting",
- -12.034313201904297
- ],
- [
- "▁Senator",
- -12.034340858459473
- ],
- [
- "▁consciousness",
- -12.034396171569824
- ],
- [
- "▁conducting",
- -12.0344820022583
- ],
- [
- "▁panic",
- -12.034833908081055
- ],
- [
- "▁FDA",
- -12.035112380981445
- ],
- [
- "▁(7",
- -12.035163879394531
- ],
- [
- "tool",
- -12.035300254821777
- ],
- [
- "▁Shipping",
- -12.03538703918457
- ],
- [
- "▁hop",
- -12.035545349121094
- ],
- [
- "▁conferences",
- -12.03564167022705
- ],
- [
- "▁pork",
- -12.035661697387695
- ],
- [
- "▁spam",
- -12.035730361938477
- ],
- [
- "▁interesant",
- -12.035815238952637
- ],
- [
- "▁Tagen",
- -12.03581714630127
- ],
- [
- "sig",
- -12.035886764526367
- ],
- [
- "étro",
- -12.036044120788574
- ],
- [
- "▁legendary",
- -12.036449432373047
- ],
- [
- "▁Alternative",
- -12.036643981933594
- ],
- [
- "iana",
- -12.036704063415527
- ],
- [
- "▁responsable",
- -12.036888122558594
- ],
- [
- "▁Mihai",
- -12.037237167358398
- ],
- [
- "▁decreased",
- -12.037345886230469
- ],
- [
- "▁organised",
- -12.037485122680664
- ],
- [
- "▁Lamp",
- -12.037589073181152
- ],
- [
- "litz",
- -12.037622451782227
- ],
- [
- "ohn",
- -12.037622451782227
- ],
- [
- "▁moteur",
- -12.0376615524292
- ],
- [
- "III",
- -12.03768539428711
- ],
- [
- "▁Montag",
- -12.037755012512207
- ],
- [
- "▁naturel",
- -12.037814140319824
- ],
- [
- "▁Hus",
- -12.037842750549316
- ],
- [
- "▁Schl",
- -12.037884712219238
- ],
- [
- "ains",
- -12.037968635559082
- ],
- [
- "▁dying",
- -12.0380859375
- ],
- [
- "▁HIV",
- -12.038115501403809
- ],
- [
- "],",
- -12.038164138793945
- ],
- [
- "alität",
- -12.03818416595459
- ],
- [
- "▁institute",
- -12.038249015808105
- ],
- [
- "mix",
- -12.038433074951172
- ],
- [
- "▁Regulation",
- -12.038453102111816
- ],
- [
- "▁pagina",
- -12.03857707977295
- ],
- [
- "▁Awesome",
- -12.03860092163086
- ],
- [
- "▁Official",
- -12.03860092163086
- ],
- [
- "▁Minute",
- -12.038601875305176
- ],
- [
- "▁dairy",
- -12.038787841796875
- ],
- [
- "▁carti",
- -12.038881301879883
- ],
- [
- "isk",
- -12.039091110229492
- ],
- [
- "▁thrilled",
- -12.039138793945312
- ],
- [
- "▁german",
- -12.039172172546387
- ],
- [
- "▁frustration",
- -12.039228439331055
- ],
- [
- "▁forums",
- -12.03927230834961
- ],
- [
- "command",
- -12.039361000061035
- ],
- [
- "▁router",
- -12.039399147033691
- ],
- [
- "▁Lösung",
- -12.039423942565918
- ],
- [
- "white",
- -12.039470672607422
- ],
- [
- "▁synthetic",
- -12.039487838745117
- ],
- [
- "▁retrouver",
- -12.039554595947266
- ],
- [
- "alle",
- -12.039621353149414
- ],
- [
- "daran",
- -12.039653778076172
- ],
- [
- "▁wahr",
- -12.039697647094727
- ],
- [
- "▁paths",
- -12.039875984191895
- ],
- [
- "▁unver",
- -12.039962768554688
- ],
- [
- "▁Environment",
- -12.0400972366333
- ],
- [
- "▁médecin",
- -12.040510177612305
- ],
- [
- "crypt",
- -12.040572166442871
- ],
- [
- "▁pursuit",
- -12.040595054626465
- ],
- [
- "flat",
- -12.040611267089844
- ],
- [
- "bron",
- -12.040698051452637
- ],
- [
- "▁Specialist",
- -12.040852546691895
- ],
- [
- "▁Vent",
- -12.041157722473145
- ],
- [
- "Gen",
- -12.04132080078125
- ],
- [
- "▁attraction",
- -12.04132080078125
- ],
- [
- "▁piese",
- -12.041372299194336
- ],
- [
- "CHE",
- -12.041665077209473
- ],
- [
- "fähig",
- -12.04172420501709
- ],
- [
- "▁28,",
- -12.041773796081543
- ],
- [
- "defender",
- -12.041810989379883
- ],
- [
- "▁stupid",
- -12.04181957244873
- ],
- [
- "enfin",
- -12.04185962677002
- ],
- [
- "▁composite",
- -12.04207706451416
- ],
- [
- "fragen",
- -12.042202949523926
- ],
- [
- "Part",
- -12.042232513427734
- ],
- [
- "may",
- -12.042238235473633
- ],
- [
- "▁Bucureşti",
- -12.042248725891113
- ],
- [
- "▁février",
- -12.042248725891113
- ],
- [
- "RED",
- -12.042417526245117
- ],
- [
- "▁makers",
- -12.042462348937988
- ],
- [
- "▁guns",
- -12.042594909667969
- ],
- [
- "▁pasta",
- -12.042706489562988
- ],
- [
- "STR",
- -12.04271125793457
- ],
- [
- "▁worthy",
- -12.042760848999023
- ],
- [
- "Poate",
- -12.042783737182617
- ],
- [
- "▁101",
- -12.04286003112793
- ],
- [
- "▁souhaitez",
- -12.04299545288086
- ],
- [
- "GN",
- -12.043449401855469
- ],
- [
- "drive",
- -12.043499946594238
- ],
- [
- "▁aveti",
- -12.043582916259766
- ],
- [
- "▁eventual",
- -12.043591499328613
- ],
- [
- "▁américain",
- -12.043642044067383
- ],
- [
- "▁Mine",
- -12.043678283691406
- ],
- [
- "▁sunset",
- -12.043729782104492
- ],
- [
- "▁Choice",
- -12.043844223022461
- ],
- [
- "▁offset",
- -12.043944358825684
- ],
- [
- "APP",
- -12.04410457611084
- ],
- [
- "▁suchen",
- -12.044130325317383
- ],
- [
- "▁aduc",
- -12.044228553771973
- ],
- [
- "▁Unternehmens",
- -12.044342041015625
- ],
- [
- "▁//",
- -12.044651985168457
- ],
- [
- "▁astept",
- -12.044678688049316
- ],
- [
- "▁Birthday",
- -12.045061111450195
- ],
- [
- "▁barn",
- -12.045083999633789
- ],
- [
- "apport",
- -12.045105934143066
- ],
- [
- "▁collar",
- -12.045212745666504
- ],
- [
- "▁gefunden",
- -12.045294761657715
- ],
- [
- "▁Hai",
- -12.045429229736328
- ],
- [
- "▁Soul",
- -12.045441627502441
- ],
- [
- "ismus",
- -12.045654296875
- ],
- [
- "letzt",
- -12.045754432678223
- ],
- [
- "▁maker",
- -12.045841217041016
- ],
- [
- "▁executed",
- -12.045857429504395
- ],
- [
- "▁Forschung",
- -12.045915603637695
- ],
- [
- "▁täglich",
- -12.045958518981934
- ],
- [
- "▁tailor",
- -12.045960426330566
- ],
- [
- "▁headquarters",
- -12.0460844039917
- ],
- [
- "▁physicians",
- -12.046112060546875
- ],
- [
- "▁Scout",
- -12.046126365661621
- ],
- [
- "folgen",
- -12.046175003051758
- ],
- [
- "▁cycling",
- -12.046184539794922
- ],
- [
- "mindestens",
- -12.04620361328125
- ],
- [
- "▁joli",
- -12.046216011047363
- ],
- [
- "▁classification",
- -12.046225547790527
- ],
- [
- "▁Führung",
- -12.046258926391602
- ],
- [
- "▁peau",
- -12.04629135131836
- ],
- [
- "INT",
- -12.046502113342285
- ],
- [
- "▁Garage",
- -12.046664237976074
- ],
- [
- "teile",
- -12.046714782714844
- ],
- [
- "util",
- -12.046716690063477
- ],
- [
- "▁petrec",
- -12.046751022338867
- ],
- [
- "▁Nevada",
- -12.046826362609863
- ],
- [
- "▁laisser",
- -12.04706859588623
- ],
- [
- "▁territoire",
- -12.047131538391113
- ],
- [
- "▁fichier",
- -12.047154426574707
- ],
- [
- "▁Formula",
- -12.047343254089355
- ],
- [
- "scopul",
- -12.047379493713379
- ],
- [
- "▁Tee",
- -12.047486305236816
- ],
- [
- "▁Monte",
- -12.047529220581055
- ],
- [
- "▁pumpkin",
- -12.04757022857666
- ],
- [
- "▁picnic",
- -12.047589302062988
- ],
- [
- "▁occupation",
- -12.047652244567871
- ],
- [
- "▁numérique",
- -12.047831535339355
- ],
- [
- "linie",
- -12.04786491394043
- ],
- [
- "▁masina",
- -12.048117637634277
- ],
- [
- "▁Prä",
- -12.048173904418945
- ],
- [
- "▁dezvoltare",
- -12.048177719116211
- ],
- [
- "▁vient",
- -12.048291206359863
- ],
- [
- "▁ranks",
- -12.048295021057129
- ],
- [
- "▁Bruce",
- -12.048420906066895
- ],
- [
- "▁seara",
- -12.048433303833008
- ],
- [
- "▁hungry",
- -12.048563003540039
- ],
- [
- "▁resolved",
- -12.048650741577148
- ],
- [
- "paired",
- -12.048735618591309
- ],
- [
- "▁Congratulations",
- -12.048881530761719
- ],
- [
- "▁religi",
- -12.048918724060059
- ],
- [
- "sätze",
- -12.04897689819336
- ],
- [
- "▁Eat",
- -12.049172401428223
- ],
- [
- "▁dense",
- -12.049442291259766
- ],
- [
- "▁slice",
- -12.049447059631348
- ],
- [
- "▁mulți",
- -12.049463272094727
- ],
- [
- "▁vorbe",
- -12.049517631530762
- ],
- [
- "▁terminate",
- -12.049779891967773
- ],
- [
- "worm",
- -12.049880981445312
- ],
- [
- "ignon",
- -12.0499267578125
- ],
- [
- "▁Howard",
- -12.049992561340332
- ],
- [
- "▁toddler",
- -12.050017356872559
- ],
- [
- "▁waters",
- -12.050033569335938
- ],
- [
- "▁graduates",
- -12.0501708984375
- ],
- [
- "▁fundraising",
- -12.050298690795898
- ],
- [
- "06.",
- -12.05031967163086
- ],
- [
- "▁scent",
- -12.050346374511719
- ],
- [
- "▁CPU",
- -12.050406455993652
- ],
- [
- "▁Kid",
- -12.05045223236084
- ],
- [
- "▁Years",
- -12.050460815429688
- ],
- [
- "▁Oktober",
- -12.05063533782959
- ],
- [
- "filled",
- -12.050726890563965
- ],
- [
- "▁Laser",
- -12.05079460144043
- ],
- [
- "▁tut",
- -12.051032066345215
- ],
- [
- "ively",
- -12.051101684570312
- ],
- [
- "▁WiFi",
- -12.051161766052246
- ],
- [
- "standen",
- -12.051176071166992
- ],
- [
- "▁publié",
- -12.051243782043457
- ],
- [
- "▁explaining",
- -12.051279067993164
- ],
- [
- "trieb",
- -12.051288604736328
- ],
- [
- "▁Rapid",
- -12.0513334274292
- ],
- [
- "▁unterstützt",
- -12.051352500915527
- ],
- [
- "▁Sonnen",
- -12.051401138305664
- ],
- [
- "▁lenses",
- -12.05141544342041
- ],
- [
- "▁pressing",
- -12.051477432250977
- ],
- [
- "▁respected",
- -12.051657676696777
- ],
- [
- "adapted",
- -12.051706314086914
- ],
- [
- "Don",
- -12.051726341247559
- ],
- [
- "▁mun",
- -12.051733016967773
- ],
- [
- "MAR",
- -12.05180835723877
- ],
- [
- "▁seam",
- -12.051852226257324
- ],
- [
- "chev",
- -12.052140235900879
- ],
- [
- "▁Sozial",
- -12.052424430847168
- ],
- [
- "▁Arabia",
- -12.052485466003418
- ],
- [
- "▁equation",
- -12.05257511138916
- ],
- [
- "▁elevi",
- -12.052780151367188
- ],
- [
- "▁piata",
- -12.052868843078613
- ],
- [
- "JA",
- -12.052873611450195
- ],
- [
- "▁wholesale",
- -12.052887916564941
- ],
- [
- "▁faithful",
- -12.05296516418457
- ],
- [
- "legal",
- -12.053092002868652
- ],
- [
- "▁Brexit",
- -12.053095817565918
- ],
- [
- "vention",
- -12.053120613098145
- ],
- [
- "▁adhere",
- -12.053221702575684
- ],
- [
- "▁Associate",
- -12.053257942199707
- ],
- [
- "▁decorations",
- -12.053272247314453
- ],
- [
- "▁crois",
- -12.053359985351562
- ],
- [
- "buck",
- -12.053370475769043
- ],
- [
- "▁smartphones",
- -12.053421020507812
- ],
- [
- "Regardless",
- -12.053427696228027
- ],
- [
- "center",
- -12.053434371948242
- ],
- [
- "eiß",
- -12.053481101989746
- ],
- [
- "▁emotion",
- -12.053584098815918
- ],
- [
- "▁Gespräch",
- -12.053797721862793
- ],
- [
- "▁Avi",
- -12.053963661193848
- ],
- [
- "▁loft",
- -12.054059982299805
- ],
- [
- "▁Wissen",
- -12.054391860961914
- ],
- [
- "▁orchestra",
- -12.05439567565918
- ],
- [
- "▁gehören",
- -12.054421424865723
- ],
- [
- "▁Reich",
- -12.054532051086426
- ],
- [
- "▁abandoned",
- -12.054548263549805
- ],
- [
- "▁Lanka",
- -12.054586410522461
- ],
- [
- "pala",
- -12.054832458496094
- ],
- [
- "▁Stell",
- -12.054838180541992
- ],
- [
- "logged",
- -12.054924964904785
- ],
- [
- "terie",
- -12.054935455322266
- ],
- [
- "▁educa",
- -12.054954528808594
- ],
- [
- "1).",
- -12.055097579956055
- ],
- [
- "▁disponibil",
- -12.055119514465332
- ],
- [
- "IND",
- -12.055197715759277
- ],
- [
- "▁Pont",
- -12.055288314819336
- ],
- [
- "▁téléphone",
- -12.055398941040039
- ],
- [
- "▁rope",
- -12.055595397949219
- ],
- [
- "ève",
- -12.055622100830078
- ],
- [
- "▁Trainer",
- -12.056062698364258
- ],
- [
- "▁présence",
- -12.0560941696167
- ],
- [
- "▁Oscar",
- -12.056121826171875
- ],
- [
- "▁VR",
- -12.056342124938965
- ],
- [
- "▁Besucher",
- -12.056357383728027
- ],
- [
- "▁disponibles",
- -12.056447982788086
- ],
- [
- "▁gelten",
- -12.056604385375977
- ],
- [
- "▁ports",
- -12.056645393371582
- ],
- [
- "Invest",
- -12.056693077087402
- ],
- [
- "ésormais",
- -12.056795120239258
- ],
- [
- "schauen",
- -12.056880950927734
- ],
- [
- "▁Command",
- -12.056958198547363
- ],
- [
- "▁alternate",
- -12.05709171295166
- ],
- [
- "citation",
- -12.05713939666748
- ],
- [
- "évolution",
- -12.05714225769043
- ],
- [
- "▁Maine",
- -12.057145118713379
- ],
- [
- "pflege",
- -12.057174682617188
- ],
- [
- "2011",
- -12.057343482971191
- ],
- [
- "▁Ground",
- -12.057364463806152
- ],
- [
- "▁ghost",
- -12.057418823242188
- ],
- [
- "lebt",
- -12.057530403137207
- ],
- [
- "▁scenarios",
- -12.057595252990723
- ],
- [
- "▁mall",
- -12.057634353637695
- ],
- [
- "▁Kings",
- -12.057653427124023
- ],
- [
- "▁15%",
- -12.057848930358887
- ],
- [
- "▁Paint",
- -12.057848930358887
- ],
- [
- "FD",
- -12.057849884033203
- ],
- [
- "ugg",
- -12.058011054992676
- ],
- [
- "▁Leon",
- -12.058023452758789
- ],
- [
- "▁grows",
- -12.058135032653809
- ],
- [
- "▁pharmacy",
- -12.058384895324707
- ],
- [
- "▁situat",
- -12.0584135055542
- ],
- [
- "20,000",
- -12.05855941772461
- ],
- [
- "▁10,000",
- -12.058760643005371
- ],
- [
- "▁membre",
- -12.058771133422852
- ],
- [
- "▁facilement",
- -12.058806419372559
- ],
- [
- "▁Analytics",
- -12.058915138244629
- ],
- [
- "▁Marvel",
- -12.058930397033691
- ],
- [
- "▁survived",
- -12.059097290039062
- ],
- [
- "▁conviction",
- -12.059124946594238
- ],
- [
- "▁Produktion",
- -12.059260368347168
- ],
- [
- "▁professionally",
- -12.059293746948242
- ],
- [
- "▁contributor",
- -12.059486389160156
- ],
- [
- "▁Kurs",
- -12.059503555297852
- ],
- [
- "▁humor",
- -12.059549331665039
- ],
- [
- "▁cinci",
- -12.059609413146973
- ],
- [
- "▁Different",
- -12.059670448303223
- ],
- [
- "▁Verarbeitung",
- -12.059800148010254
- ],
- [
- "▁inexpensive",
- -12.059800148010254
- ],
- [
- "▁sortie",
- -12.05980110168457
- ],
- [
- "▁thankful",
- -12.059951782226562
- ],
- [
- "▁vacances",
- -12.059978485107422
- ],
- [
- "▁vergangen",
- -12.059979438781738
- ],
- [
- "▁wings",
- -12.05998420715332
- ],
- [
- "▁nano",
- -12.06003475189209
- ],
- [
- "▁touches",
- -12.060088157653809
- ],
- [
- "▁Notice",
- -12.060348510742188
- ],
- [
- "▁reprezinta",
- -12.060466766357422
- ],
- [
- "▁rewarding",
- -12.060555458068848
- ],
- [
- "▁Kurz",
- -12.060580253601074
- ],
- [
- "▁mega",
- -12.060611724853516
- ],
- [
- "▁secrets",
- -12.060646057128906
- ],
- [
- "▁vorher",
- -12.060667037963867
- ],
- [
- "▁crescut",
- -12.06074333190918
- ],
- [
- "▁coordination",
- -12.060754776000977
- ],
- [
- "▁dissertation",
- -12.060863494873047
- ],
- [
- "▁header",
- -12.060873985290527
- ],
- [
- "existent",
- -12.061070442199707
- ],
- [
- "thal",
- -12.061185836791992
- ],
- [
- "▁translate",
- -12.061214447021484
- ],
- [
- "vertrag",
- -12.06124210357666
- ],
- [
- "GU",
- -12.06126594543457
- ],
- [
- "▁Arthur",
- -12.061315536499023
- ],
- [
- "wahl",
- -12.061534881591797
- ],
- [
- "▁octobre",
- -12.061573028564453
- ],
- [
- "▁bother",
- -12.06157398223877
- ],
- [
- "▁pencil",
- -12.061580657958984
- ],
- [
- "▁Dyna",
- -12.061604499816895
- ],
- [
- "▁complimentary",
- -12.061651229858398
- ],
- [
- "écoute",
- -12.061676979064941
- ],
- [
- "PB",
- -12.061722755432129
- ],
- [
- "▁independently",
- -12.061759948730469
- ],
- [
- "▁targeting",
- -12.061840057373047
- ],
- [
- "fought",
- -12.061944961547852
- ],
- [
- "mental",
- -12.062112808227539
- ],
- [
- "▁Veranstaltung",
- -12.062300682067871
- ],
- [
- "▁tatsächlich",
- -12.062314987182617
- ],
- [
- "▁Features",
- -12.0625
- ],
- [
- "▁1920",
- -12.062554359436035
- ],
- [
- "▁Domain",
- -12.062885284423828
- ],
- [
- "▁rally",
- -12.062901496887207
- ],
- [
- "▁iunie",
- -12.063036918640137
- ],
- [
- "▁fabrics",
- -12.063070297241211
- ],
- [
- "▁mint",
- -12.063331604003906
- ],
- [
- "▁antioxidant",
- -12.063347816467285
- ],
- [
- "hut",
- -12.063432693481445
- ],
- [
- "EPA",
- -12.063496589660645
- ],
- [
- "▁rigid",
- -12.063498497009277
- ],
- [
- "▁evit",
- -12.063549995422363
- ],
- [
- "▁personnage",
- -12.063977241516113
- ],
- [
- "▁garanti",
- -12.0640287399292
- ],
- [
- "▁Hä",
- -12.064042091369629
- ],
- [
- "▁Days",
- -12.064048767089844
- ],
- [
- "boarding",
- -12.064050674438477
- ],
- [
- "jemand",
- -12.064166069030762
- ],
- [
- "▁Pos",
- -12.064262390136719
- ],
- [
- "▁wool",
- -12.064288139343262
- ],
- [
- "▁boom",
- -12.064349174499512
- ],
- [
- "▁wichtige",
- -12.06447982788086
- ],
- [
- "▁emerged",
- -12.064517974853516
- ],
- [
- "▁smoothly",
- -12.064802169799805
- ],
- [
- "▁Interview",
- -12.064942359924316
- ],
- [
- "gemäß",
- -12.06505012512207
- ],
- [
- "▁suivi",
- -12.065064430236816
- ],
- [
- "▁missions",
- -12.065129280090332
- ],
- [
- "▁Kreis",
- -12.065328598022461
- ],
- [
- "century",
- -12.065348625183105
- ],
- [
- "▁tuned",
- -12.065370559692383
- ],
- [
- "isieren",
- -12.065407752990723
- ],
- [
- "▁Branch",
- -12.065427780151367
- ],
- [
- "▁Russell",
- -12.065483093261719
- ],
- [
- "▁**",
- -12.065519332885742
- ],
- [
- "▁Lehr",
- -12.065617561340332
- ],
- [
- "▁perspectives",
- -12.065690040588379
- ],
- [
- "▁handed",
- -12.06570816040039
- ],
- [
- "▁apporte",
- -12.065743446350098
- ],
- [
- "unta",
- -12.065959930419922
- ],
- [
- "▁contemplat",
- -12.066255569458008
- ],
- [
- "riel",
- -12.06633472442627
- ],
- [
- "▁freely",
- -12.066341400146484
- ],
- [
- "▁loyal",
- -12.066451072692871
- ],
- [
- "▁evolved",
- -12.066518783569336
- ],
- [
- "▁Cafe",
- -12.066548347473145
- ],
- [
- "▁assignments",
- -12.066598892211914
- ],
- [
- "▁Cream",
- -12.066718101501465
- ],
- [
- "▁Build",
- -12.066731452941895
- ],
- [
- "▁exams",
- -12.066746711730957
- ],
- [
- "▁graduation",
- -12.066765785217285
- ],
- [
- "▁Dining",
- -12.066773414611816
- ],
- [
- "inne",
- -12.06684398651123
- ],
- [
- "▁propriu",
- -12.067055702209473
- ],
- [
- "▁accordingly",
- -12.067241668701172
- ],
- [
- "▁seniors",
- -12.067484855651855
- ],
- [
- "▁sisters",
- -12.067505836486816
- ],
- [
- "formerly",
- -12.067658424377441
- ],
- [
- "▁fleur",
- -12.067702293395996
- ],
- [
- "▁alten",
- -12.067802429199219
- ],
- [
- "▁Gefühl",
- -12.06797981262207
- ],
- [
- "▁freeze",
- -12.068222045898438
- ],
- [
- "▁structured",
- -12.068312644958496
- ],
- [
- "▁reserved",
- -12.068367004394531
- ],
- [
- "stellt",
- -12.068638801574707
- ],
- [
- "▁foto",
- -12.068668365478516
- ],
- [
- "linger",
- -12.06871223449707
- ],
- [
- "▁profiter",
- -12.068737030029297
- ],
- [
- "▁trup",
- -12.068862915039062
- ],
- [
- "▁Hunter",
- -12.068974494934082
- ],
- [
- "▁widespread",
- -12.069050788879395
- ],
- [
- "entretien",
- -12.069242477416992
- ],
- [
- "▁Truck",
- -12.06958293914795
- ],
- [
- "Can",
- -12.069656372070312
- ],
- [
- "péri",
- -12.06976318359375
- ],
- [
- "▁>>",
- -12.069926261901855
- ],
- [
- "▁trains",
- -12.070141792297363
- ],
- [
- "▁faca",
- -12.070149421691895
- ],
- [
- "▁Patienten",
- -12.070170402526855
- ],
- [
- "▁scor",
- -12.070361137390137
- ],
- [
- "▁perceived",
- -12.070384979248047
- ],
- [
- "setzung",
- -12.070393562316895
- ],
- [
- "▁Robin",
- -12.070558547973633
- ],
- [
- "▁geboren",
- -12.07060718536377
- ],
- [
- "lons",
- -12.070687294006348
- ],
- [
- "inţa",
- -12.070836067199707
- ],
- [
- "glob",
- -12.070887565612793
- ],
- [
- "subsequently",
- -12.07111930847168
- ],
- [
- "▁vet",
- -12.071170806884766
- ],
- [
- "▁Holland",
- -12.071328163146973
- ],
- [
- "▁Clinical",
- -12.071370124816895
- ],
- [
- "▁uncertainty",
- -12.071381568908691
- ],
- [
- "hohen",
- -12.071386337280273
- ],
- [
- "uza",
- -12.071431159973145
- ],
- [
- "▁kleiner",
- -12.071518898010254
- ],
- [
- "▁substances",
- -12.07155704498291
- ],
- [
- "ados",
- -12.071627616882324
- ],
- [
- "wheel",
- -12.07178020477295
- ],
- [
- "▁cone",
- -12.071990966796875
- ],
- [
- "▁castig",
- -12.072218894958496
- ],
- [
- "▁Conditions",
- -12.072242736816406
- ],
- [
- "minus",
- -12.072643280029297
- ],
- [
- "▁permits",
- -12.07265853881836
- ],
- [
- "fond",
- -12.072784423828125
- ],
- [
- "▁reactions",
- -12.07278823852539
- ],
- [
- "▁Mario",
- -12.072819709777832
- ],
- [
- "▁materiale",
- -12.07291030883789
- ],
- [
- "AH",
- -12.072924613952637
- ],
- [
- "▁juillet",
- -12.073172569274902
- ],
- [
- "▁juridic",
- -12.073182106018066
- ],
- [
- "▁dropping",
- -12.073200225830078
- ],
- [
- "expérience",
- -12.073225021362305
- ],
- [
- "▁depot",
- -12.073345184326172
- ],
- [
- "▁plea",
- -12.073490142822266
- ],
- [
- "dezvoltarea",
- -12.073512077331543
- ],
- [
- "▁Independent",
- -12.07363224029541
- ],
- [
- "▁Homes",
- -12.073674201965332
- ],
- [
- "▁crust",
- -12.073808670043945
- ],
- [
- "▁pillow",
- -12.073899269104004
- ],
- [
- "kreis",
- -12.073920249938965
- ],
- [
- "▁boiler",
- -12.073928833007812
- ],
- [
- "latin",
- -12.073978424072266
- ],
- [
- "▁stet",
- -12.074131965637207
- ],
- [
- "GH",
- -12.074143409729004
- ],
- [
- "▁absent",
- -12.074334144592285
- ],
- [
- "▁Directors",
- -12.074501037597656
- ],
- [
- "zwischen",
- -12.07462215423584
- ],
- [
- "▁comprendre",
- -12.07465648651123
- ],
- [
- "▁25,",
- -12.074832916259766
- ],
- [
- "▁pharmaceutical",
- -12.075145721435547
- ],
- [
- "▁placeholder",
- -12.075174331665039
- ],
- [
- "KI",
- -12.075176239013672
- ],
- [
- "▁români",
- -12.07540225982666
- ],
- [
- "▁Dollar",
- -12.075509071350098
- ],
- [
- "▁Operations",
- -12.075525283813477
- ],
- [
- "▁Dublin",
- -12.075550079345703
- ],
- [
- "▁drawings",
- -12.0756196975708
- ],
- [
- "▁respir",
- -12.075769424438477
- ],
- [
- "▁haul",
- -12.0758056640625
- ],
- [
- "Obviously",
- -12.075864791870117
- ],
- [
- "▁Beat",
- -12.075864791870117
- ],
- [
- "▁jeans",
- -12.07590103149414
- ],
- [
- "▁Masters",
- -12.075927734375
- ],
- [
- "▁bits",
- -12.076213836669922
- ],
- [
- "poți",
- -12.076226234436035
- ],
- [
- "▁asigur",
- -12.076228141784668
- ],
- [
- "▁intampla",
- -12.076228141784668
- ],
- [
- "▁marc",
- -12.076282501220703
- ],
- [
- "......",
- -12.076404571533203
- ],
- [
- "▁districts",
- -12.076437950134277
- ],
- [
- "cru",
- -12.076457023620605
- ],
- [
- "nav",
- -12.076608657836914
- ],
- [
- "huile",
- -12.076644897460938
- ],
- [
- "▁limitation",
- -12.076647758483887
- ],
- [
- "boat",
- -12.076712608337402
- ],
- [
- "IRE",
- -12.076720237731934
- ],
- [
- "Unis",
- -12.07675838470459
- ],
- [
- "dated",
- -12.0769624710083
- ],
- [
- "▁consultants",
- -12.07699203491211
- ],
- [
- "▁Josh",
- -12.077007293701172
- ],
- [
- "tanz",
- -12.077184677124023
- ],
- [
- "launching",
- -12.0772066116333
- ],
- [
- "▁browsing",
- -12.077310562133789
- ],
- [
- "▁incerc",
- -12.077314376831055
- ],
- [
- "▁27,",
- -12.077375411987305
- ],
- [
- "не",
- -12.077398300170898
- ],
- [
- "wig",
- -12.077415466308594
- ],
- [
- "▁spar",
- -12.077458381652832
- ],
- [
- "▁token",
- -12.077547073364258
- ],
- [
- "▁09",
- -12.077548027038574
- ],
- [
- "spa",
- -12.07766056060791
- ],
- [
- "ometer",
- -12.07772159576416
- ],
- [
- "▁riders",
- -12.077869415283203
- ],
- [
- "▁Drop",
- -12.077898979187012
- ],
- [
- "RN",
- -12.078103065490723
- ],
- [
- "▁pairs",
- -12.07815933227539
- ],
- [
- "▁psychology",
- -12.078420639038086
- ],
- [
- "▁Douglas",
- -12.078437805175781
- ],
- [
- "▁verwenden",
- -12.078516960144043
- ],
- [
- "▁(9",
- -12.07857894897461
- ],
- [
- "▁Rental",
- -12.078728675842285
- ],
- [
- "▁délai",
- -12.078847885131836
- ],
- [
- "▁sooner",
- -12.078882217407227
- ],
- [
- "▁bankruptcy",
- -12.079109191894531
- ],
- [
- "04.",
- -12.079110145568848
- ],
- [
- "abend",
- -12.079194068908691
- ],
- [
- "çon",
- -12.079237937927246
- ],
- [
- "▁Ple",
- -12.079243659973145
- ],
- [
- "fug",
- -12.079337120056152
- ],
- [
- "▁Wohnung",
- -12.079410552978516
- ],
- [
- "▁Preise",
- -12.079424858093262
- ],
- [
- "▁Kay",
- -12.079427719116211
- ],
- [
- "▁notify",
- -12.079474449157715
- ],
- [
- "▁Brain",
- -12.079534530639648
- ],
- [
- "▁optical",
- -12.079580307006836
- ],
- [
- "▁modifications",
- -12.079727172851562
- ],
- [
- "▁repos",
- -12.07999324798584
- ],
- [
- "▁worksheet",
- -12.0800142288208
- ],
- [
- "continu",
- -12.08005428314209
- ],
- [
- "▁assumed",
- -12.08059024810791
- ],
- [
- "varying",
- -12.080626487731934
- ],
- [
- "feier",
- -12.080643653869629
- ],
- [
- "▁Freedom",
- -12.080717086791992
- ],
- [
- "▁Inhalte",
- -12.080740928649902
- ],
- [
- "▁observations",
- -12.080755233764648
- ],
- [
- "▁Gruppe",
- -12.080791473388672
- ],
- [
- "▁Cyber",
- -12.080883979797363
- ],
- [
- "hort",
- -12.080889701843262
- ],
- [
- "▁langue",
- -12.080915451049805
- ],
- [
- "führen",
- -12.08110523223877
- ],
- [
- "ganze",
- -12.081254005432129
- ],
- [
- "▁forte",
- -12.081327438354492
- ],
- [
- "▁Stefan",
- -12.081376075744629
- ],
- [
- "▁Jetzt",
- -12.081463813781738
- ],
- [
- "mehr",
- -12.081489562988281
- ],
- [
- "trip",
- -12.081549644470215
- ],
- [
- "▁poem",
- -12.081583976745605
- ],
- [
- "▁practitioners",
- -12.081720352172852
- ],
- [
- "▁connector",
- -12.08177661895752
- ],
- [
- "ECT",
- -12.081794738769531
- ],
- [
- "▁inseamna",
- -12.081820487976074
- ],
- [
- "addressing",
- -12.081867218017578
- ],
- [
- "▁beliebt",
- -12.081908226013184
- ],
- [
- "▁Mama",
- -12.082002639770508
- ],
- [
- "▁fade",
- -12.08204460144043
- ],
- [
- "messen",
- -12.08205509185791
- ],
- [
- "▁Visa",
- -12.082080841064453
- ],
- [
- "▁Meta",
- -12.082154273986816
- ],
- [
- "lene",
- -12.082188606262207
- ],
- [
- "▁remembered",
- -12.082334518432617
- ],
- [
- "/3",
- -12.082337379455566
- ],
- [
- "apte",
- -12.082347869873047
- ],
- [
- "▁uncomfortable",
- -12.082364082336426
- ],
- [
- "▁romance",
- -12.08253002166748
- ],
- [
- "▁réalis",
- -12.082601547241211
- ],
- [
- "▁Vincent",
- -12.082706451416016
- ],
- [
- "▁ABC",
- -12.08275318145752
- ],
- [
- "▁handicap",
- -12.082756042480469
- ],
- [
- "▁Shin",
- -12.082801818847656
- ],
- [
- "▁Hunde",
- -12.082847595214844
- ],
- [
- "▁Ach",
- -12.083131790161133
- ],
- [
- "▁Questions",
- -12.083136558532715
- ],
- [
- "▁particles",
- -12.083226203918457
- ],
- [
- "usch",
- -12.083230018615723
- ],
- [
- "▁SUV",
- -12.083279609680176
- ],
- [
- "▁Tous",
- -12.083301544189453
- ],
- [
- "▁empower",
- -12.08336067199707
- ],
- [
- "▁Yi",
- -12.083446502685547
- ],
- [
- "▁LinkedIn",
- -12.083453178405762
- ],
- [
- "▁Profile",
- -12.083507537841797
- ],
- [
- "▁surround",
- -12.083553314208984
- ],
- [
- "▁wh",
- -12.083560943603516
- ],
- [
- "▁Weiter",
- -12.083577156066895
- ],
- [
- "▁Weight",
- -12.083672523498535
- ],
- [
- "▁creatures",
- -12.083807945251465
- ],
- [
- "Especially",
- -12.08381462097168
- ],
- [
- "▁repede",
- -12.08383560180664
- ],
- [
- "▁albums",
- -12.083885192871094
- ],
- [
- "▁compatibil",
- -12.0839204788208
- ],
- [
- "▁Interesse",
- -12.083929061889648
- ],
- [
- "abili",
- -12.084062576293945
- ],
- [
- "▁roast",
- -12.084310531616211
- ],
- [
- "▁unii",
- -12.084310531616211
- ],
- [
- "▁Glad",
- -12.084421157836914
- ],
- [
- "▁enthusiasm",
- -12.084539413452148
- ],
- [
- "▁whisk",
- -12.084547996520996
- ],
- [
- "▁freezer",
- -12.084712982177734
- ],
- [
- "▁stolen",
- -12.084715843200684
- ],
- [
- "▁neighbour",
- -12.084883689880371
- ],
- [
- "▁sake",
- -12.084967613220215
- ],
- [
- "▁Effect",
- -12.0850191116333
- ],
- [
- "▁fighter",
- -12.085044860839844
- ],
- [
- "▁tranquil",
- -12.085084915161133
- ],
- [
- "▁organizer",
- -12.085199356079102
- ],
- [
- "pixel",
- -12.085306167602539
- ],
- [
- "▁Guest",
- -12.085338592529297
- ],
- [
- "▁Philipp",
- -12.085369110107422
- ],
- [
- "kunft",
- -12.085382461547852
- ],
- [
- "▁Meer",
- -12.085409164428711
- ],
- [
- "▁inviting",
- -12.085432052612305
- ],
- [
- "gänge",
- -12.085450172424316
- ],
- [
- "▁Position",
- -12.085627555847168
- ],
- [
- "giving",
- -12.085693359375
- ],
- [
- "▁marble",
- -12.085807800292969
- ],
- [
- "▁neg",
- -12.085813522338867
- ],
- [
- "▁Haar",
- -12.085914611816406
- ],
- [
- "Ein",
- -12.086039543151855
- ],
- [
- "▁buses",
- -12.086187362670898
- ],
- [
- "▁Lodge",
- -12.086188316345215
- ],
- [
- "soare",
- -12.086319923400879
- ],
- [
- "▁Barn",
- -12.086409568786621
- ],
- [
- "▁captain",
- -12.086527824401855
- ],
- [
- "▁Fix",
- -12.08657169342041
- ],
- [
- "ulate",
- -12.086629867553711
- ],
- [
- "ență",
- -12.086709022521973
- ],
- [
- "▁finances",
- -12.086770057678223
- ],
- [
- "▁VIP",
- -12.086800575256348
- ],
- [
- "▁Adams",
- -12.086801528930664
- ],
- [
- "▁spécialisé",
- -12.086960792541504
- ],
- [
- "▁fortunate",
- -12.087236404418945
- ],
- [
- "ility",
- -12.087345123291016
- ],
- [
- "▁democracy",
- -12.08749771118164
- ],
- [
- "shu",
- -12.087580680847168
- ],
- [
- "▁consiste",
- -12.087624549865723
- ],
- [
- "▁tort",
- -12.087692260742188
- ],
- [
- "▁branding",
- -12.087793350219727
- ],
- [
- "▁porch",
- -12.08780288696289
- ],
- [
- "UNI",
- -12.087867736816406
- ],
- [
- "▁placut",
- -12.087915420532227
- ],
- [
- "▁coupled",
- -12.088058471679688
- ],
- [
- "▁ministre",
- -12.088187217712402
- ],
- [
- "▁minerals",
- -12.088335037231445
- ],
- [
- "▁safer",
- -12.088335990905762
- ],
- [
- "▁outlets",
- -12.088438034057617
- ],
- [
- "▁caution",
- -12.08864688873291
- ],
- [
- "▁lightly",
- -12.0886869430542
- ],
- [
- "▁utilizator",
- -12.088700294494629
- ],
- [
- "▁Pala",
- -12.088959693908691
- ],
- [
- "▁doll",
- -12.088961601257324
- ],
- [
- "(1)",
- -12.089065551757812
- ],
- [
- "chol",
- -12.089120864868164
- ],
- [
- "▁Left",
- -12.08919620513916
- ],
- [
- "▁roulant",
- -12.089277267456055
- ],
- [
- "▁propune",
- -12.089301109313965
- ],
- [
- "▁Cred",
- -12.089339256286621
- ],
- [
- "▁negotiations",
- -12.089362144470215
- ],
- [
- "amba",
- -12.089393615722656
- ],
- [
- "▁grasp",
- -12.089420318603516
- ],
- [
- "▁Amsterdam",
- -12.089451789855957
- ],
- [
- "▁Zweck",
- -12.08945369720459
- ],
- [
- "▁conven",
- -12.089563369750977
- ],
- [
- "▁organizing",
- -12.089574813842773
- ],
- [
- "section",
- -12.089618682861328
- ],
- [
- "▁endeavor",
- -12.089634895324707
- ],
- [
- "▁basics",
- -12.089722633361816
- ],
- [
- "jud",
- -12.089874267578125
- ],
- [
- "▁yarn",
- -12.090049743652344
- ],
- [
- "▁shout",
- -12.09009075164795
- ],
- [
- "fällt",
- -12.090285301208496
- ],
- [
- "▁dragoste",
- -12.09054946899414
- ],
- [
- "▁Rein",
- -12.090594291687012
- ],
- [
- "Cal",
- -12.090688705444336
- ],
- [
- "▁deaths",
- -12.090729713439941
- ],
- [
- "▁24,",
- -12.0907564163208
- ],
- [
- "▁măr",
- -12.090773582458496
- ],
- [
- "server",
- -12.090825080871582
- ],
- [
- "▁explic",
- -12.09085464477539
- ],
- [
- "▁sufer",
- -12.090903282165527
- ],
- [
- "▁lucrări",
- -12.091097831726074
- ],
- [
- "▁Disease",
- -12.091126441955566
- ],
- [
- "▁prescribed",
- -12.091194152832031
- ],
- [
- "prozess",
- -12.091285705566406
- ],
- [
- "▁dessin",
- -12.091343879699707
- ],
- [
- "▁refuge",
- -12.091473579406738
- ],
- [
- "▁cope",
- -12.091631889343262
- ],
- [
- "pole",
- -12.09196949005127
- ],
- [
- "▁vacant",
- -12.091984748840332
- ],
- [
- "▁sezon",
- -12.092035293579102
- ],
- [
- "▁Carbon",
- -12.092227935791016
- ],
- [
- "▁goût",
- -12.092233657836914
- ],
- [
- "Ste",
- -12.092320442199707
- ],
- [
- "▁surroundings",
- -12.092754364013672
- ],
- [
- "definite",
- -12.09284496307373
- ],
- [
- "▁adaptation",
- -12.093358993530273
- ],
- [
- "cteur",
- -12.0933837890625
- ],
- [
- "System",
- -12.093442916870117
- ],
- [
- "▁Burg",
- -12.093550682067871
- ],
- [
- "▁retention",
- -12.093579292297363
- ],
- [
- "examen",
- -12.093618392944336
- ],
- [
- "▁adjustments",
- -12.093668937683105
- ],
- [
- "nies",
- -12.094213485717773
- ],
- [
- "▁RSS",
- -12.094215393066406
- ],
- [
- "▁Umwelt",
- -12.094259262084961
- ],
- [
- "▁strengths",
- -12.094326972961426
- ],
- [
- "loom",
- -12.094401359558105
- ],
- [
- "▁pics",
- -12.094404220581055
- ],
- [
- "phase",
- -12.09443187713623
- ],
- [
- "▁Poland",
- -12.094472885131836
- ],
- [
- "▁practicing",
- -12.094558715820312
- ],
- [
- "monetary",
- -12.094756126403809
- ],
- [
- "▁embodiment",
- -12.094756126403809
- ],
- [
- "▁jocuri",
- -12.094846725463867
- ],
- [
- "▁impreuna",
- -12.094939231872559
- ],
- [
- "▁Lyon",
- -12.094985961914062
- ],
- [
- "keeping",
- -12.095157623291016
- ],
- [
- "▁Starting",
- -12.095202445983887
- ],
- [
- "▁începe",
- -12.095357894897461
- ],
- [
- "▁clay",
- -12.095440864562988
- ],
- [
- "bildung",
- -12.095444679260254
- ],
- [
- "Technologie",
- -12.095513343811035
- ],
- [
- "toxic",
- -12.095624923706055
- ],
- [
- "▁gasit",
- -12.095819473266602
- ],
- [
- "rott",
- -12.095870018005371
- ],
- [
- "brook",
- -12.095935821533203
- ],
- [
- "▁wann",
- -12.096029281616211
- ],
- [
- "▁lined",
- -12.09610366821289
- ],
- [
- "▁Chelsea",
- -12.096223831176758
- ],
- [
- "▁Orlando",
- -12.096224784851074
- ],
- [
- "▁Otherwise",
- -12.096267700195312
- ],
- [
- "▁debit",
- -12.096273422241211
- ],
- [
- "▁entsprechend",
- -12.09648323059082
- ],
- [
- "nism",
- -12.09654426574707
- ],
- [
- "issen",
- -12.09664535522461
- ],
- [
- "▁rendez",
- -12.096646308898926
- ],
- [
- "▁processus",
- -12.096745491027832
- ],
- [
- "mbi",
- -12.096890449523926
- ],
- [
- "▁Graduate",
- -12.096960067749023
- ],
- [
- "▁cozy",
- -12.097119331359863
- ],
- [
- "▁Freunde",
- -12.097320556640625
- ],
- [
- "▁teme",
- -12.097389221191406
- ],
- [
- "▁bias",
- -12.097548484802246
- ],
- [
- "102",
- -12.09756851196289
- ],
- [
- "terrorism",
- -12.09770679473877
- ],
- [
- "threatening",
- -12.097756385803223
- ],
- [
- "ни",
- -12.097776412963867
- ],
- [
- "▁Sonntag",
- -12.098062515258789
- ],
- [
- "▁efect",
- -12.098116874694824
- ],
- [
- "▁prayers",
- -12.098134994506836
- ],
- [
- "▁backpack",
- -12.09841537475586
- ],
- [
- "?)",
- -12.098489761352539
- ],
- [
- "▁searches",
- -12.098788261413574
- ],
- [
- "ouverture",
- -12.09880256652832
- ],
- [
- "▁sustained",
- -12.098865509033203
- ],
- [
- "hawk",
- -12.098869323730469
- ],
- [
- "messe",
- -12.098958969116211
- ],
- [
- "▁prototype",
- -12.098989486694336
- ],
- [
- "▁stră",
- -12.09903335571289
- ],
- [
- "▁Neo",
- -12.099040985107422
- ],
- [
- "▁29,",
- -12.099109649658203
- ],
- [
- "izo",
- -12.099306106567383
- ],
- [
- "▁Anton",
- -12.099333763122559
- ],
- [
- "SIS",
- -12.099564552307129
- ],
- [
- "pendant",
- -12.099617958068848
- ],
- [
- "▁passive",
- -12.099813461303711
- ],
- [
- "▁Aaron",
- -12.099824905395508
- ],
- [
- "▁Karen",
- -12.099831581115723
- ],
- [
- "▁Bildung",
- -12.09994888305664
- ],
- [
- "ario",
- -12.099949836730957
- ],
- [
- "▁regulator",
- -12.100006103515625
- ],
- [
- "gruppe",
- -12.100032806396484
- ],
- [
- "stepped",
- -12.100053787231445
- ],
- [
- "▁interventions",
- -12.10014533996582
- ],
- [
- "▁rounds",
- -12.100149154663086
- ],
- [
- "▁Khan",
- -12.10020637512207
- ],
- [
- "▁railway",
- -12.10028076171875
- ],
- [
- "▁souvenir",
- -12.100296974182129
- ],
- [
- "▁Plans",
- -12.100336074829102
- ],
- [
- "aille",
- -12.100372314453125
- ],
- [
- "▁billing",
- -12.100473403930664
- ],
- [
- "▁Spiele",
- -12.100541114807129
- ],
- [
- "▁supermarket",
- -12.100556373596191
- ],
- [
- "▁flows",
- -12.100625991821289
- ],
- [
- "▁PayPal",
- -12.100641250610352
- ],
- [
- "▁tribe",
- -12.10067081451416
- ],
- [
- "anni",
- -12.100780487060547
- ],
- [
- "▁rides",
- -12.100934982299805
- ],
- [
- "▁Orleans",
- -12.101009368896484
- ],
- [
- "▁evaluated",
- -12.101021766662598
- ],
- [
- "founder",
- -12.10106372833252
- ],
- [
- "▁Feld",
- -12.101212501525879
- ],
- [
- "▁altele",
- -12.10122299194336
- ],
- [
- "▁thermo",
- -12.101290702819824
- ],
- [
- "ugh",
- -12.101330757141113
- ],
- [
- "▁adus",
- -12.101375579833984
- ],
- [
- "▁Taiwan",
- -12.101396560668945
- ],
- [
- "▁clause",
- -12.101409912109375
- ],
- [
- "oxi",
- -12.101465225219727
- ],
- [
- "alcool",
- -12.101495742797852
- ],
- [
- "▁Noi",
- -12.101531982421875
- ],
- [
- "rub",
- -12.101540565490723
- ],
- [
- "▁dosar",
- -12.101582527160645
- ],
- [
- "▁Nelson",
- -12.101751327514648
- ],
- [
- "fassung",
- -12.102316856384277
- ],
- [
- "▁Kill",
- -12.102489471435547
- ],
- [
- "▁Standards",
- -12.102490425109863
- ],
- [
- "▁upward",
- -12.102653503417969
- ],
- [
- "▁Coloring",
- -12.102664947509766
- ],
- [
- "Designed",
- -12.102754592895508
- ],
- [
- "▁Nou",
- -12.10281753540039
- ],
- [
- "▁borrow",
- -12.102940559387207
- ],
- [
- "▁Poll",
- -12.10321044921875
- ],
- [
- "▁antibiotic",
- -12.103277206420898
- ],
- [
- "▁fabrication",
- -12.103388786315918
- ],
- [
- "quo",
- -12.103432655334473
- ],
- [
- "▁crimes",
- -12.103464126586914
- ],
- [
- "▁nahe",
- -12.103484153747559
- ],
- [
- "▁aplicat",
- -12.103565216064453
- ],
- [
- "OST",
- -12.1035737991333
- ],
- [
- "▁Beijing",
- -12.103599548339844
- ],
- [
- "fight",
- -12.103612899780273
- ],
- [
- "▁lodge",
- -12.103612899780273
- ],
- [
- "dreh",
- -12.103922843933105
- ],
- [
- "▁harness",
- -12.104036331176758
- ],
- [
- "▁noiembrie",
- -12.104151725769043
- ],
- [
- "ounded",
- -12.104161262512207
- ],
- [
- "▁Imp",
- -12.1041841506958
- ],
- [
- "▁nächste",
- -12.104275703430176
- ],
- [
- "funktion",
- -12.104476928710938
- ],
- [
- "exploitation",
- -12.104569435119629
- ],
- [
- "▁Ready",
- -12.10457706451416
- ],
- [
- "▁Plate",
- -12.104598999023438
- ],
- [
- "▁octombrie",
- -12.104706764221191
- ],
- [
- "▁considerat",
- -12.104982376098633
- ],
- [
- "▁Xbox",
- -12.105067253112793
- ],
- [
- "mind",
- -12.105107307434082
- ],
- [
- "▁Lind",
- -12.105111122131348
- ],
- [
- "runde",
- -12.105352401733398
- ],
- [
- "mination",
- -12.105374336242676
- ],
- [
- "▁memori",
- -12.105377197265625
- ],
- [
- "▁cere",
- -12.105389595031738
- ],
- [
- "barkeit",
- -12.105517387390137
- ],
- [
- "▁găsi",
- -12.105761528015137
- ],
- [
- "2.1",
- -12.105863571166992
- ],
- [
- "▁Finding",
- -12.105891227722168
- ],
- [
- "▁static",
- -12.106405258178711
- ],
- [
- "court",
- -12.106439590454102
- ],
- [
- "▁Gem",
- -12.106489181518555
- ],
- [
- "▁pièce",
- -12.106494903564453
- ],
- [
- "▁reel",
- -12.10651969909668
- ],
- [
- "▁manuscript",
- -12.106560707092285
- ],
- [
- "▁complications",
- -12.106578826904297
- ],
- [
- "▁controlling",
- -12.106585502624512
- ],
- [
- "▁favour",
- -12.106738090515137
- ],
- [
- "▁advancement",
- -12.106739044189453
- ],
- [
- "▁Radi",
- -12.106870651245117
- ],
- [
- "▁faites",
- -12.107076644897461
- ],
- [
- "▁ordin",
- -12.107131958007812
- ],
- [
- "sorted",
- -12.107152938842773
- ],
- [
- "▁1982",
- -12.10715389251709
- ],
- [
- "▁brutal",
- -12.107154846191406
- ],
- [
- "▁Guy",
- -12.107226371765137
- ],
- [
- "▁accomplishment",
- -12.107248306274414
- ],
- [
- "▁wer",
- -12.107329368591309
- ],
- [
- "▁withdraw",
- -12.107460975646973
- ],
- [
- "abilitate",
- -12.1075439453125
- ],
- [
- "▁NBA",
- -12.107625961303711
- ],
- [
- "▁Benefit",
- -12.107675552368164
- ],
- [
- "▁divide",
- -12.107824325561523
- ],
- [
- "induced",
- -12.107913970947266
- ],
- [
- "▁văzut",
- -12.108049392700195
- ],
- [
- "▁peel",
- -12.10807991027832
- ],
- [
- "▁joints",
- -12.108160972595215
- ],
- [
- "▁enthalten",
- -12.108301162719727
- ],
- [
- "▁spy",
- -12.108397483825684
- ],
- [
- "▁occasional",
- -12.108437538146973
- ],
- [
- "warm",
- -12.108514785766602
- ],
- [
- "ême",
- -12.108542442321777
- ],
- [
- "▁Betriebs",
- -12.108551979064941
- ],
- [
- "▁Ioan",
- -12.1087064743042
- ],
- [
- "▁balloon",
- -12.108809471130371
- ],
- [
- "▁leap",
- -12.108869552612305
- ],
- [
- "pelled",
- -12.109000205993652
- ],
- [
- "▁realise",
- -12.109073638916016
- ],
- [
- "▁Retail",
- -12.109118461608887
- ],
- [
- "▁Farben",
- -12.109151840209961
- ],
- [
- "▁Kennedy",
- -12.10916519165039
- ],
- [
- "▁Firma",
- -12.109196662902832
- ],
- [
- "▁tineri",
- -12.10934066772461
- ],
- [
- "tub",
- -12.109354019165039
- ],
- [
- "PORT",
- -12.109381675720215
- ],
- [
- "▁stiff",
- -12.109416007995605
- ],
- [
- "▁notable",
- -12.109476089477539
- ],
- [
- "tler",
- -12.109498023986816
- ],
- [
- "▁utile",
- -12.10958480834961
- ],
- [
- "▁jouer",
- -12.109674453735352
- ],
- [
- "▁Primary",
- -12.109735488891602
- ],
- [
- "▁retailer",
- -12.109764099121094
- ],
- [
- "▁jederzeit",
- -12.109808921813965
- ],
- [
- "▁amend",
- -12.109817504882812
- ],
- [
- "▁sagte",
- -12.109845161437988
- ],
- [
- "atch",
- -12.10995864868164
- ],
- [
- "ution",
- -12.110008239746094
- ],
- [
- "once",
- -12.110018730163574
- ],
- [
- "ended",
- -12.1100435256958
- ],
- [
- "▁literary",
- -12.11013126373291
- ],
- [
- "▁wrist",
- -12.110281944274902
- ],
- [
- "vii",
- -12.11036205291748
- ],
- [
- "scriere",
- -12.110367774963379
- ],
- [
- "▁compassion",
- -12.110443115234375
- ],
- [
- "▁Milan",
- -12.110474586486816
- ],
- [
- "▁Dach",
- -12.110490798950195
- ],
- [
- "▁problèmes",
- -12.110630989074707
- ],
- [
- "▁Pré",
- -12.110687255859375
- ],
- [
- "▁Feder",
- -12.110759735107422
- ],
- [
- "Dr",
- -12.110814094543457
- ],
- [
- "Spr",
- -12.110908508300781
- ],
- [
- "▁né",
- -12.110969543457031
- ],
- [
- "François",
- -12.111023902893066
- ],
- [
- "▁Shu",
- -12.111115455627441
- ],
- [
- "▁poison",
- -12.111154556274414
- ],
- [
- "zier",
- -12.111176490783691
- ],
- [
- "▁attain",
- -12.11124038696289
- ],
- [
- "▁switching",
- -12.111310958862305
- ],
- [
- "▁vibration",
- -12.111348152160645
- ],
- [
- "▁Tablet",
- -12.11136531829834
- ],
- [
- "▁Lern",
- -12.11148452758789
- ],
- [
- "offrir",
- -12.111660957336426
- ],
- [
- "123",
- -12.11168098449707
- ],
- [
- "cheapest",
- -12.11173152923584
- ],
- [
- "▁numărul",
- -12.111764907836914
- ],
- [
- "break",
- -12.11180305480957
- ],
- [
- "cyto",
- -12.111836433410645
- ],
- [
- "▁Mississippi",
- -12.111955642700195
- ],
- [
- "▁dragon",
- -12.11207389831543
- ],
- [
- "fir",
- -12.112176895141602
- ],
- [
- "▁fête",
- -12.112180709838867
- ],
- [
- "▁Wait",
- -12.112350463867188
- ],
- [
- "buy",
- -12.112359046936035
- ],
- [
- "având",
- -12.112391471862793
- ],
- [
- "▁Scar",
- -12.112517356872559
- ],
- [
- "▁Hund",
- -12.112586975097656
- ],
- [
- "bug",
- -12.112807273864746
- ],
- [
- "▁classique",
- -12.112811088562012
- ],
- [
- "▁tenant",
- -12.112860679626465
- ],
- [
- "▁Walt",
- -12.11296272277832
- ],
- [
- "▁timber",
- -12.11296272277832
- ],
- [
- "inscription",
- -12.11300277709961
- ],
- [
- "BD",
- -12.113016128540039
- ],
- [
- "▁Commissioner",
- -12.113018989562988
- ],
- [
- "▁casinos",
- -12.11306095123291
- ],
- [
- "▁prochain",
- -12.113168716430664
- ],
- [
- "▁rustic",
- -12.11349868774414
- ],
- [
- "▁Kent",
- -12.113607406616211
- ],
- [
- "▁Deci",
- -12.113761901855469
- ],
- [
- "ли",
- -12.113855361938477
- ],
- [
- "▁crossed",
- -12.113861083984375
- ],
- [
- "▁delightful",
- -12.113869667053223
- ],
- [
- "▁metres",
- -12.113872528076172
- ],
- [
- "▁scandal",
- -12.113906860351562
- ],
- [
- "▁activitate",
- -12.113986015319824
- ],
- [
- "▁nimeni",
- -12.114009857177734
- ],
- [
- "ease",
- -12.11402416229248
- ],
- [
- "▁revenues",
- -12.1140775680542
- ],
- [
- "▁partially",
- -12.114187240600586
- ],
- [
- "AE",
- -12.114263534545898
- ],
- [
- "nique",
- -12.114410400390625
- ],
- [
- "▁fixtures",
- -12.114426612854004
- ],
- [
- "▁pupils",
- -12.114694595336914
- ],
- [
- "Lib",
- -12.11471176147461
- ],
- [
- "analyse",
- -12.114739418029785
- ],
- [
- "▁Oracle",
- -12.114767074584961
- ],
- [
- "troph",
- -12.114859580993652
- ],
- [
- "▁detected",
- -12.114879608154297
- ],
- [
- "▁servant",
- -12.11507797241211
- ],
- [
- "▁badly",
- -12.115121841430664
- ],
- [
- "comparing",
- -12.115150451660156
- ],
- [
- "abs",
- -12.115238189697266
- ],
- [
- "▁fotografi",
- -12.115443229675293
- ],
- [
- "▁Million",
- -12.115541458129883
- ],
- [
- "▁Gordon",
- -12.11557388305664
- ],
- [
- "▁Smok",
- -12.115592002868652
- ],
- [
- "▁Essay",
- -12.11565113067627
- ],
- [
- "eptic",
- -12.115665435791016
- ],
- [
- "▁Transportation",
- -12.115728378295898
- ],
- [
- "/2019",
- -12.115767478942871
- ],
- [
- "▁alignment",
- -12.115778923034668
- ],
- [
- "▁laut",
- -12.11578369140625
- ],
- [
- "stände",
- -12.115791320800781
- ],
- [
- "▁concerts",
- -12.115811347961426
- ],
- [
- "▁weekends",
- -12.11589241027832
- ],
- [
- "▁obstacles",
- -12.115941047668457
- ],
- [
- "wür",
- -12.115964889526367
- ],
- [
- "▁Fisher",
- -12.116219520568848
- ],
- [
- "▁supervisor",
- -12.116242408752441
- ],
- [
- "▁traders",
- -12.116262435913086
- ],
- [
- "▁scary",
- -12.116484642028809
- ],
- [
- "▁Grove",
- -12.116538047790527
- ],
- [
- "▁expose",
- -12.116583824157715
- ],
- [
- "▁enemies",
- -12.116630554199219
- ],
- [
- "▁Lux",
- -12.11667537689209
- ],
- [
- "▁Berufs",
- -12.11672306060791
- ],
- [
- "▁Sheet",
- -12.116780281066895
- ],
- [
- "▁Natürlich",
- -12.116819381713867
- ],
- [
- "▁examined",
- -12.116886138916016
- ],
- [
- "pursuing",
- -12.116920471191406
- ],
- [
- "▁pools",
- -12.116923332214355
- ],
- [
- "▁Thompson",
- -12.117005348205566
- ],
- [
- "▁SAP",
- -12.117010116577148
- ],
- [
- "claiming",
- -12.117053985595703
- ],
- [
- "buried",
- -12.117055892944336
- ],
- [
- "assurance",
- -12.117138862609863
- ],
- [
- "▁sandwich",
- -12.117195129394531
- ],
- [
- "uber",
- -12.117310523986816
- ],
- [
- "▁laisse",
- -12.117321968078613
- ],
- [
- "peak",
- -12.117348670959473
- ],
- [
- "spring",
- -12.1173677444458
- ],
- [
- "▁august",
- -12.117369651794434
- ],
- [
- "▁benötigt",
- -12.11738109588623
- ],
- [
- "▁achievements",
- -12.117470741271973
- ],
- [
- "coala",
- -12.117478370666504
- ],
- [
- "▁scr",
- -12.117842674255371
- ],
- [
- "gesagt",
- -12.118122100830078
- ],
- [
- "▁envelope",
- -12.118141174316406
- ],
- [
- "▁mapping",
- -12.118169784545898
- ],
- [
- "▁Suche",
- -12.118298530578613
- ],
- [
- "first",
- -12.118329048156738
- ],
- [
- "▁Quin",
- -12.118447303771973
- ],
- [
- "räu",
- -12.118561744689941
- ],
- [
- "▁răs",
- -12.118583679199219
- ],
- [
- "chemical",
- -12.118597984313965
- ],
- [
- "dad",
- -12.118927955627441
- ],
- [
- "formation",
- -12.118983268737793
- ],
- [
- "▁cushion",
- -12.119026184082031
- ],
- [
- "▁Maß",
- -12.119046211242676
- ],
- [
- "07.",
- -12.119184494018555
- ],
- [
- "▁perioadă",
- -12.119257926940918
- ],
- [
- "▁Wunsch",
- -12.11925983428955
- ],
- [
- "▁joi",
- -12.119423866271973
- ],
- [
- "▁$25",
- -12.119482040405273
- ],
- [
- "▁uploaded",
- -12.11952018737793
- ],
- [
- "▁hobby",
- -12.119633674621582
- ],
- [
- "▁septembrie",
- -12.119633674621582
- ],
- [
- "▁Dimension",
- -12.119634628295898
- ],
- [
- "▁domeniu",
- -12.119661331176758
- ],
- [
- "▁Tourism",
- -12.119747161865234
- ],
- [
- "▁fais",
- -12.119800567626953
- ],
- [
- "aches",
- -12.119919776916504
- ],
- [
- "neck",
- -12.119969367980957
- ],
- [
- "▁Chip",
- -12.119982719421387
- ],
- [
- "▁Tisch",
- -12.1199951171875
- ],
- [
- "▁Pai",
- -12.120006561279297
- ],
- [
- "▁Butter",
- -12.120083808898926
- ],
- [
- "▁altor",
- -12.120133399963379
- ],
- [
- "cultural",
- -12.120182991027832
- ],
- [
- "▁bases",
- -12.12028980255127
- ],
- [
- "▁Christopher",
- -12.120396614074707
- ],
- [
- "Kindle",
- -12.120401382446289
- ],
- [
- "▁bathrooms",
- -12.12049388885498
- ],
- [
- "▁civilian",
- -12.12052059173584
- ],
- [
- "▁Architecture",
- -12.12058162689209
- ],
- [
- "heiten",
- -12.120641708374023
- ],
- [
- "otte",
- -12.120763778686523
- ],
- [
- "ри",
- -12.120784759521484
- ],
- [
- "wash",
- -12.120792388916016
- ],
- [
- "▁evenimente",
- -12.12086296081543
- ],
- [
- "lade",
- -12.121132850646973
- ],
- [
- "▁ermöglicht",
- -12.121140480041504
- ],
- [
- "Port",
- -12.121149063110352
- ],
- [
- "▁Horn",
- -12.12119197845459
- ],
- [
- "▁Housing",
- -12.121232032775879
- ],
- [
- "▁Profit",
- -12.121304512023926
- ],
- [
- "▁stressed",
- -12.12136459350586
- ],
- [
- "▁70%",
- -12.121431350708008
- ],
- [
- "laying",
- -12.121458053588867
- ],
- [
- "▁specialize",
- -12.121490478515625
- ],
- [
- "▁Published",
- -12.121519088745117
- ],
- [
- "corp",
- -12.121554374694824
- ],
- [
- "▁revision",
- -12.121611595153809
- ],
- [
- "▁sail",
- -12.121804237365723
- ],
- [
- "courtesy",
- -12.121909141540527
- ],
- [
- "tax",
- -12.1219482421875
- ],
- [
- "▁perfekt",
- -12.122018814086914
- ],
- [
- "▁Risk",
- -12.122088432312012
- ],
- [
- "▁chaleur",
- -12.122129440307617
- ],
- [
- "ych",
- -12.122132301330566
- ],
- [
- "▁spine",
- -12.12218189239502
- ],
- [
- "▁holders",
- -12.122264862060547
- ],
- [
- "▁Speaking",
- -12.122271537780762
- ],
- [
- "▁Bernard",
- -12.122400283813477
- ],
- [
- "incarc",
- -12.122532844543457
- ],
- [
- "shalb",
- -12.122639656066895
- ],
- [
- "Potrivit",
- -12.12264633178711
- ],
- [
- "arising",
- -12.122654914855957
- ],
- [
- "▁kingdom",
- -12.122665405273438
- ],
- [
- "▁potato",
- -12.122766494750977
- ],
- [
- "▁promoted",
- -12.122814178466797
- ],
- [
- "▁judges",
- -12.1228609085083
- ],
- [
- "▁naturelle",
- -12.122992515563965
- ],
- [
- "▁Kindern",
- -12.123022079467773
- ],
- [
- "schicht",
- -12.123047828674316
- ],
- [
- "▁Drag",
- -12.123066902160645
- ],
- [
- "atta",
- -12.123132705688477
- ],
- [
- "soient",
- -12.123249053955078
- ],
- [
- "INS",
- -12.12336540222168
- ],
- [
- "▁legislative",
- -12.123642921447754
- ],
- [
- "▁teens",
- -12.123785018920898
- ],
- [
- "▁Fotos",
- -12.123842239379883
- ],
- [
- "▁illustrations",
- -12.12392520904541
- ],
- [
- "möglichkeiten",
- -12.12415599822998
- ],
- [
- "Votre",
- -12.124194145202637
- ],
- [
- "▁tarif",
- -12.124195098876953
- ],
- [
- "cli",
- -12.124488830566406
- ],
- [
- "▁landlord",
- -12.12473201751709
- ],
- [
- "cine",
- -12.124743461608887
- ],
- [
- "▁bot",
- -12.124798774719238
- ],
- [
- "enhancing",
- -12.12491226196289
- ],
- [
- "▁März",
- -12.12491226196289
- ],
- [
- "▁succès",
- -12.125106811523438
- ],
- [
- "▁disclose",
- -12.125120162963867
- ],
- [
- "▁Geräte",
- -12.125321388244629
- ],
- [
- "▁Magn",
- -12.125422477722168
- ],
- [
- "dessous",
- -12.12580680847168
- ],
- [
- "▁miracle",
- -12.125862121582031
- ],
- [
- "▁travailler",
- -12.125933647155762
- ],
- [
- "▁herb",
- -12.125945091247559
- ],
- [
- "-01",
- -12.126049041748047
- ],
- [
- "litre",
- -12.126104354858398
- ],
- [
- "▁tău",
- -12.126120567321777
- ],
- [
- "ACC",
- -12.126190185546875
- ],
- [
- "▁diminu",
- -12.126275062561035
- ],
- [
- "itzer",
- -12.126317024230957
- ],
- [
- "▁personenbezogen",
- -12.126395225524902
- ],
- [
- "▁Pure",
- -12.126436233520508
- ],
- [
- "▁influences",
- -12.12668228149414
- ],
- [
- "ană",
- -12.126765251159668
- ],
- [
- "▁proposer",
- -12.126856803894043
- ],
- [
- "▁longest",
- -12.12692642211914
- ],
- [
- "euses",
- -12.127080917358398
- ],
- [
- "/1",
- -12.127487182617188
- ],
- [
- "hafte",
- -12.127716064453125
- ],
- [
- "▁Dich",
- -12.127761840820312
- ],
- [
- "▁candle",
- -12.128026962280273
- ],
- [
- "ouche",
- -12.128191947937012
- ],
- [
- "installation",
- -12.128241539001465
- ],
- [
- "▁Includes",
- -12.128280639648438
- ],
- [
- "▁entfernt",
- -12.12831974029541
- ],
- [
- "traf",
- -12.128499031066895
- ],
- [
- "▁None",
- -12.128508567810059
- ],
- [
- "▁produc",
- -12.128510475158691
- ],
- [
- "held",
- -12.128519058227539
- ],
- [
- "graphic",
- -12.128531455993652
- ],
- [
- "▁demographic",
- -12.128584861755371
- ],
- [
- "ingham",
- -12.1287841796875
- ],
- [
- "schul",
- -12.128812789916992
- ],
- [
- "▁sneak",
- -12.128843307495117
- ],
- [
- "laub",
- -12.128889083862305
- ],
- [
- "▁thickness",
- -12.12911605834961
- ],
- [
- "▁killer",
- -12.129297256469727
- ],
- [
- "▁entsprechende",
- -12.129344940185547
- ],
- [
- "▁theft",
- -12.129396438598633
- ],
- [
- "▁Jerusalem",
- -12.129457473754883
- ],
- [
- "Adapt",
- -12.129495620727539
- ],
- [
- "▁updating",
- -12.129497528076172
- ],
- [
- "tete",
- -12.12954330444336
- ],
- [
- "▁warming",
- -12.129701614379883
- ],
- [
- "anlage",
- -12.129739761352539
- ],
- [
- "▁lenders",
- -12.129814147949219
- ],
- [
- "mobile",
- -12.130008697509766
- ],
- [
- "▁Package",
- -12.130080223083496
- ],
- [
- "▁Volume",
- -12.130152702331543
- ],
- [
- "---",
- -12.130167007446289
- ],
- [
- "▁Others",
- -12.130173683166504
- ],
- [
- "content",
- -12.130188941955566
- ],
- [
- "tement",
- -12.130253791809082
- ],
- [
- "bildet",
- -12.13027572631836
- ],
- [
- "▁washer",
- -12.13053035736084
- ],
- [
- "▁freelance",
- -12.130623817443848
- ],
- [
- "▁fein",
- -12.130753517150879
- ],
- [
- "▁catering",
- -12.130851745605469
- ],
- [
- "▁warmth",
- -12.130911827087402
- ],
- [
- "▁Month",
- -12.131103515625
- ],
- [
- "▁Federation",
- -12.131134033203125
- ],
- [
- "▁editorial",
- -12.13121223449707
- ],
- [
- "▁Shopping",
- -12.131241798400879
- ],
- [
- "▁efort",
- -12.131296157836914
- ],
- [
- "▁damp",
- -12.131314277648926
- ],
- [
- "▁declined",
- -12.131332397460938
- ],
- [
- "▁1978",
- -12.13135051727295
- ],
- [
- "6,000",
- -12.131355285644531
- ],
- [
- "location",
- -12.131551742553711
- ],
- [
- "▁blogger",
- -12.131572723388672
- ],
- [
- "▁goodness",
- -12.131826400756836
- ],
- [
- "▁Purchase",
- -12.132119178771973
- ],
- [
- "▁suspended",
- -12.132159233093262
- ],
- [
- "▁assessed",
- -12.132201194763184
- ],
- [
- "rada",
- -12.132286071777344
- ],
- [
- "▁Lac",
- -12.132291793823242
- ],
- [
- "▁angeboten",
- -12.13235092163086
- ],
- [
- "▁Wetter",
- -12.132370948791504
- ],
- [
- "ores",
- -12.13243579864502
- ],
- [
- "▁fourni",
- -12.132476806640625
- ],
- [
- "▁retire",
- -12.13269329071045
- ],
- [
- "▁Baptist",
- -12.132741928100586
- ],
- [
- "▁Saison",
- -12.13277530670166
- ],
- [
- "Bar",
- -12.132794380187988
- ],
- [
- "▁dossier",
- -12.132979393005371
- ],
- [
- "brow",
- -12.133044242858887
- ],
- [
- "▁Kaffee",
- -12.133071899414062
- ],
- [
- "-25",
- -12.133463859558105
- ],
- [
- "▁festivals",
- -12.133599281311035
- ],
- [
- "▁sellers",
- -12.133716583251953
- ],
- [
- "Ü",
- -12.13393783569336
- ],
- [
- "▁publisher",
- -12.133960723876953
- ],
- [
- "▁Designs",
- -12.133970260620117
- ],
- [
- "▁putut",
- -12.13400936126709
- ],
- [
- "▁Built",
- -12.134417533874512
- ],
- [
- "▁recreational",
- -12.134476661682129
- ],
- [
- "▁european",
- -12.134514808654785
- ],
- [
- "▁binary",
- -12.134631156921387
- ],
- [
- "▁Nieder",
- -12.134764671325684
- ],
- [
- "taking",
- -12.1348237991333
- ],
- [
- "▁Lots",
- -12.13494873046875
- ],
- [
- "▁recognised",
- -12.135031700134277
- ],
- [
- "ssant",
- -12.135063171386719
- ],
- [
- "ITE",
- -12.135271072387695
- ],
- [
- "oom",
- -12.135298728942871
- ],
- [
- "▁Kre",
- -12.135310173034668
- ],
- [
- "▁pipes",
- -12.135631561279297
- ],
- [
- "▁hinge",
- -12.135653495788574
- ],
- [
- "▁enterprises",
- -12.135664939880371
- ],
- [
- "▁texts",
- -12.13583755493164
- ],
- [
- "Organiz",
- -12.136080741882324
- ],
- [
- "▁suivre",
- -12.136124610900879
- ],
- [
- "noc",
- -12.136157989501953
- ],
- [
- "fair",
- -12.136194229125977
- ],
- [
- "▁darkness",
- -12.136305809020996
- ],
- [
- "▁Whi",
- -12.13631534576416
- ],
- [
- "natural",
- -12.136321067810059
- ],
- [
- "Bas",
- -12.136422157287598
- ],
- [
- "▁tribute",
- -12.136443138122559
- ],
- [
- "▁Naţional",
- -12.136573791503906
- ],
- [
- "hara",
- -12.136622428894043
- ],
- [
- "▁catégorie",
- -12.136697769165039
- ],
- [
- "▁Schedule",
- -12.136698722839355
- ],
- [
- "▁lernen",
- -12.13671875
- ],
- [
- "▁Plastic",
- -12.136725425720215
- ],
- [
- "▁giveaway",
- -12.13675594329834
- ],
- [
- "▁Ideen",
- -12.136906623840332
- ],
- [
- "▁circa",
- -12.13718032836914
- ],
- [
- "▁lice",
- -12.137242317199707
- ],
- [
- "▁Meinung",
- -12.137264251708984
- ],
- [
- "▁beside",
- -12.137566566467285
- ],
- [
- "▁vazut",
- -12.137673377990723
- ],
- [
- "strom",
- -12.137749671936035
- ],
- [
- "boro",
- -12.137775421142578
- ],
- [
- "▁Soon",
- -12.137796401977539
- ],
- [
- "dozens",
- -12.137896537780762
- ],
- [
- "▁Arena",
- -12.137943267822266
- ],
- [
- "▁viața",
- -12.137989044189453
- ],
- [
- "▁Impact",
- -12.138082504272461
- ],
- [
- "current",
- -12.138106346130371
- ],
- [
- "FM",
- -12.138117790222168
- ],
- [
- "▁coil",
- -12.138657569885254
- ],
- [
- "gold",
- -12.138679504394531
- ],
- [
- "▁spate",
- -12.138679504394531
- ],
- [
- "1.4",
- -12.13875675201416
- ],
- [
- "solution",
- -12.138769149780273
- ],
- [
- "▁Wayne",
- -12.138835906982422
- ],
- [
- "▁queen",
- -12.138898849487305
- ],
- [
- "illion",
- -12.139022827148438
- ],
- [
- "greifen",
- -12.139127731323242
- ],
- [
- "▁Bil",
- -12.139174461364746
- ],
- [
- "rote",
- -12.139185905456543
- ],
- [
- "END",
- -12.13918685913086
- ],
- [
- "äl",
- -12.139206886291504
- ],
- [
- "▁reçu",
- -12.139378547668457
- ],
- [
- "flower",
- -12.139495849609375
- ],
- [
- "▁draws",
- -12.139519691467285
- ],
- [
- "plant",
- -12.139605522155762
- ],
- [
- "2010",
- -12.139702796936035
- ],
- [
- "▁oper",
- -12.139762878417969
- ],
- [
- "▁conserve",
- -12.139777183532715
- ],
- [
- "▁sprinkle",
- -12.13984203338623
- ],
- [
- "mode",
- -12.139924049377441
- ],
- [
- "▁lifting",
- -12.139941215515137
- ],
- [
- "▁Institution",
- -12.139951705932617
- ],
- [
- "Când",
- -12.14001750946045
- ],
- [
- "Aus",
- -12.140048027038574
- ],
- [
- "▁fears",
- -12.140054702758789
- ],
- [
- "▁appointments",
- -12.140079498291016
- ],
- [
- "oarele",
- -12.140162467956543
- ],
- [
- "▁duck",
- -12.140193939208984
- ],
- [
- "▁stadium",
- -12.140213012695312
- ],
- [
- "▁vezi",
- -12.140227317810059
- ],
- [
- "▁lap",
- -12.140315055847168
- ],
- [
- "▁proceeds",
- -12.140382766723633
- ],
- [
- "geschlossen",
- -12.140412330627441
- ],
- [
- "▁tren",
- -12.140478134155273
- ],
- [
- "VS",
- -12.140536308288574
- ],
- [
- "▁vais",
- -12.140800476074219
- ],
- [
- "ținut",
- -12.140859603881836
- ],
- [
- "▁Concert",
- -12.140928268432617
- ],
- [
- "▁planting",
- -12.141008377075195
- ],
- [
- "▁honour",
- -12.141069412231445
- ],
- [
- "▁gras",
- -12.141071319580078
- ],
- [
- "woo",
- -12.141092300415039
- ],
- [
- "▁Hero",
- -12.141282081604004
- ],
- [
- "▁stimulate",
- -12.14134407043457
- ],
- [
- "▁überhaupt",
- -12.141426086425781
- ],
- [
- "▁bounce",
- -12.14148235321045
- ],
- [
- "oodle",
- -12.14151382446289
- ],
- [
- "▁packs",
- -12.141576766967773
- ],
- [
- "▁Poker",
- -12.14158821105957
- ],
- [
- "▁acea",
- -12.141684532165527
- ],
- [
- "▁parish",
- -12.141754150390625
- ],
- [
- "-24",
- -12.141766548156738
- ],
- [
- "▁iTunes",
- -12.141874313354492
- ],
- [
- "▁lumière",
- -12.141948699951172
- ],
- [
- "third",
- -12.142024993896484
- ],
- [
- "▁dynamics",
- -12.142038345336914
- ],
- [
- "Unless",
- -12.142162322998047
- ],
- [
- "▁immense",
- -12.142416000366211
- ],
- [
- "▁Sec",
- -12.142781257629395
- ],
- [
- "lois",
- -12.143009185791016
- ],
- [
- "époque",
- -12.14302921295166
- ],
- [
- "NB",
- -12.143139839172363
- ],
- [
- "written",
- -12.143210411071777
- ],
- [
- "▁logement",
- -12.143226623535156
- ],
- [
- "submitting",
- -12.143295288085938
- ],
- [
- "▁Quand",
- -12.14331340789795
- ],
- [
- "▁foi",
- -12.143322944641113
- ],
- [
- "▁catalogue",
- -12.143351554870605
- ],
- [
- "nova",
- -12.14343547821045
- ],
- [
- "▁prezentat",
- -12.143527030944824
- ],
- [
- "▁tart",
- -12.143877983093262
- ],
- [
- "те",
- -12.143912315368652
- ],
- [
- "hack",
- -12.143916130065918
- ],
- [
- "▁Politic",
- -12.144003868103027
- ],
- [
- "▁18,",
- -12.144048690795898
- ],
- [
- "▁ignored",
- -12.144145965576172
- ],
- [
- "▁spoon",
- -12.144245147705078
- ],
- [
- "▁Joy",
- -12.144280433654785
- ],
- [
- "▁reside",
- -12.144482612609863
- ],
- [
- ".99",
- -12.144488334655762
- ],
- [
- "lytic",
- -12.144625663757324
- ],
- [
- "▁bogat",
- -12.144643783569336
- ],
- [
- "▁nurses",
- -12.144845008850098
- ],
- [
- "▁funcţi",
- -12.145029067993164
- ],
- [
- "▁produselor",
- -12.145038604736328
- ],
- [
- "▁Associates",
- -12.145069122314453
- ],
- [
- "Est",
- -12.14511489868164
- ],
- [
- "▁peanut",
- -12.145187377929688
- ],
- [
- "▁résultat",
- -12.145257949829102
- ],
- [
- "08.",
- -12.145424842834473
- ],
- [
- "▁Astro",
- -12.145439147949219
- ],
- [
- "▁personnelle",
- -12.145527839660645
- ],
- [
- "320",
- -12.145668983459473
- ],
- [
- "▁Grab",
- -12.145748138427734
- ],
- [
- "éco",
- -12.145801544189453
- ],
- [
- "▁clasic",
- -12.145857810974121
- ],
- [
- "offre",
- -12.14588451385498
- ],
- [
- "▁idee",
- -12.14589786529541
- ],
- [
- "▁cheat",
- -12.146259307861328
- ],
- [
- "▁Flug",
- -12.146286964416504
- ],
- [
- "▁1500",
- -12.146413803100586
- ],
- [
- "▁kurze",
- -12.14643383026123
- ],
- [
- "With",
- -12.146512985229492
- ],
- [
- "▁Half",
- -12.146575927734375
- ],
- [
- "▁disciplines",
- -12.146642684936523
- ],
- [
- "sorption",
- -12.14669132232666
- ],
- [
- "▁greutate",
- -12.146927833557129
- ],
- [
- "mä",
- -12.146940231323242
- ],
- [
- "▁Literatur",
- -12.146956443786621
- ],
- [
- "3/",
- -12.147016525268555
- ],
- [
- "4.0",
- -12.147095680236816
- ],
- [
- "▁déco",
- -12.147119522094727
- ],
- [
- "▁Fuß",
- -12.147233963012695
- ],
- [
- "▁Deutsche",
- -12.147289276123047
- ],
- [
- "▁abundance",
- -12.14746379852295
- ],
- [
- "▁Luther",
- -12.14750862121582
- ],
- [
- "▁nutritional",
- -12.147562980651855
- ],
- [
- "▁Jude",
- -12.147687911987305
- ],
- [
- "AY",
- -12.14786148071289
- ],
- [
- "▁chore",
- -12.147916793823242
- ],
- [
- "▁Kro",
- -12.148006439208984
- ],
- [
- "▁alin",
- -12.14801025390625
- ],
- [
- "lösung",
- -12.148030281066895
- ],
- [
- "▁geworden",
- -12.148238182067871
- ],
- [
- "▁sociaux",
- -12.148255348205566
- ],
- [
- "▁Spark",
- -12.1486177444458
- ],
- [
- "▁phenomenon",
- -12.148624420166016
- ],
- [
- "ICA",
- -12.148805618286133
- ],
- [
- "▁Ran",
- -12.148836135864258
- ],
- [
- "▁Schwarz",
- -12.148959159851074
- ],
- [
- "▁1983",
- -12.148985862731934
- ],
- [
- "ет",
- -12.148990631103516
- ],
- [
- "möglich",
- -12.149084091186523
- ],
- [
- "vocation",
- -12.149087905883789
- ],
- [
- "▁Organic",
- -12.14926815032959
- ],
- [
- "Oh",
- -12.149408340454102
- ],
- [
- "▁blockchain",
- -12.149422645568848
- ],
- [
- "▁Bă",
- -12.149515151977539
- ],
- [
- "▁Bass",
- -12.14953899383545
- ],
- [
- "enie",
- -12.149687767028809
- ],
- [
- "▁rêve",
- -12.149807929992676
- ],
- [
- "▁Rap",
- -12.149986267089844
- ],
- [
- "▁democratic",
- -12.150044441223145
- ],
- [
- "▁Chart",
- -12.150167465209961
- ],
- [
- "▁Voi",
- -12.150189399719238
- ],
- [
- "process",
- -12.150263786315918
- ],
- [
- "▁preach",
- -12.150389671325684
- ],
- [
- "tient",
- -12.150456428527832
- ],
- [
- "▁Train",
- -12.150468826293945
- ],
- [
- "▁Reihe",
- -12.150472640991211
- ],
- [
- "help",
- -12.150514602661133
- ],
- [
- "1.6",
- -12.150547981262207
- ],
- [
- "▁cazuri",
- -12.150547981262207
- ],
- [
- "▁chap",
- -12.150559425354004
- ],
- [
- "aktiv",
- -12.150632858276367
- ],
- [
- "▁2006.",
- -12.15079116821289
- ],
- [
- "iene",
- -12.150849342346191
- ],
- [
- "▁BBQ",
- -12.150969505310059
- ],
- [
- "dauer",
- -12.151028633117676
- ],
- [
- "2).",
- -12.151226997375488
- ],
- [
- "▁Monat",
- -12.151277542114258
- ],
- [
- "Generally",
- -12.151285171508789
- ],
- [
- "▁bracelet",
- -12.151336669921875
- ],
- [
- "▁cartoon",
- -12.151349067687988
- ],
- [
- "▁pui",
- -12.151488304138184
- ],
- [
- "temp",
- -12.151506423950195
- ],
- [
- "▁Particip",
- -12.151555061340332
- ],
- [
- "▁dumneavoastră",
- -12.151725769042969
- ],
- [
- "▁Gin",
- -12.151824951171875
- ],
- [
- "iunile",
- -12.151829719543457
- ],
- [
- "reise",
- -12.151849746704102
- ],
- [
- "▁einzige",
- -12.15189266204834
- ],
- [
- "ANCE",
- -12.15192985534668
- ],
- [
- "▁humble",
- -12.151951789855957
- ],
- [
- "claim",
- -12.152093887329102
- ],
- [
- "LV",
- -12.152143478393555
- ],
- [
- "▁confiance",
- -12.152270317077637
- ],
- [
- "▁Trading",
- -12.152535438537598
- ],
- [
- "▁Fabric",
- -12.152770042419434
- ],
- [
- "▁Duke",
- -12.152851104736328
- ],
- [
- "spieler",
- -12.152937889099121
- ],
- [
- "▁reject",
- -12.152987480163574
- ],
- [
- "▁crise",
- -12.153170585632324
- ],
- [
- "▁borders",
- -12.153196334838867
- ],
- [
- "▁Vehicle",
- -12.153279304504395
- ],
- [
- "zeiten",
- -12.153481483459473
- ],
- [
- "enrolled",
- -12.153514862060547
- ],
- [
- "venue",
- -12.153555870056152
- ],
- [
- "▁forests",
- -12.153564453125
- ],
- [
- "vascular",
- -12.15358829498291
- ],
- [
- "▁phrases",
- -12.153661727905273
- ],
- [
- "▁receptor",
- -12.15368366241455
- ],
- [
- "schied",
- -12.153687477111816
- ],
- [
- "▁soirée",
- -12.153785705566406
- ],
- [
- "▁partener",
- -12.153987884521484
- ],
- [
- "▁Jobs",
- -12.15417194366455
- ],
- [
- "▁segments",
- -12.154216766357422
- ],
- [
- "▁violate",
- -12.154438972473145
- ],
- [
- "▁viable",
- -12.154500007629395
- ],
- [
- "▁encountered",
- -12.154533386230469
- ],
- [
- "▁travelers",
- -12.154552459716797
- ],
- [
- "▁împ",
- -12.154679298400879
- ],
- [
- "▁convince",
- -12.154693603515625
- ],
- [
- "▁mailing",
- -12.154693603515625
- ],
- [
- "▁Zahn",
- -12.154698371887207
- ],
- [
- "attend",
- -12.15477466583252
- ],
- [
- "▁eBay",
- -12.154836654663086
- ],
- [
- "▁Emergency",
- -12.154844284057617
- ],
- [
- "wirtschaft",
- -12.154882431030273
- ],
- [
- "▁scholars",
- -12.154947280883789
- ],
- [
- "▁considerably",
- -12.155118942260742
- ],
- [
- "▁combo",
- -12.1551513671875
- ],
- [
- "hiver",
- -12.155198097229004
- ],
- [
- "▁mysterious",
- -12.15522575378418
- ],
- [
- "▁Degree",
- -12.155234336853027
- ],
- [
- "▁fate",
- -12.155242919921875
- ],
- [
- "▁transplant",
- -12.155281066894531
- ],
- [
- "▁samedi",
- -12.155400276184082
- ],
- [
- "unit",
- -12.155519485473633
- ],
- [
- "▁moyenne",
- -12.155611991882324
- ],
- [
- "▁Liverpool",
- -12.155614852905273
- ],
- [
- "▁Champions",
- -12.155728340148926
- ],
- [
- "zzle",
- -12.155824661254883
- ],
- [
- "▁arena",
- -12.156228065490723
- ],
- [
- "▁Pipe",
- -12.15633487701416
- ],
- [
- "▁waterproof",
- -12.156356811523438
- ],
- [
- "▁eternal",
- -12.156463623046875
- ],
- [
- "Whenever",
- -12.156503677368164
- ],
- [
- "▁Hop",
- -12.156535148620605
- ],
- [
- "▁Betrieb",
- -12.156816482543945
- ],
- [
- "gne",
- -12.15692138671875
- ],
- [
- "▁spe",
- -12.156975746154785
- ],
- [
- "▁Corner",
- -12.157078742980957
- ],
- [
- "▁devenir",
- -12.157118797302246
- ],
- [
- "ambiance",
- -12.157144546508789
- ],
- [
- "▁Graham",
- -12.157200813293457
- ],
- [
- "▁desires",
- -12.157289505004883
- ],
- [
- "▁Applications",
- -12.157291412353516
- ],
- [
- "▁genutzt",
- -12.157477378845215
- ],
- [
- "tek",
- -12.157612800598145
- ],
- [
- "▁Career",
- -12.157641410827637
- ],
- [
- "▁staple",
- -12.157695770263672
- ],
- [
- "▁Dodge",
- -12.157817840576172
- ],
- [
- "▁strictly",
- -12.157889366149902
- ],
- [
- "▁Gruppen",
- -12.157952308654785
- ],
- [
- "▁Finanz",
- -12.157981872558594
- ],
- [
- "▁sporting",
- -12.15809440612793
- ],
- [
- "▁Wieder",
- -12.158127784729004
- ],
- [
- "anny",
- -12.158208847045898
- ],
- [
- "▁bucura",
- -12.158233642578125
- ],
- [
- "▁Pest",
- -12.15824031829834
- ],
- [
- "▁circles",
- -12.158246994018555
- ],
- [
- "▁richtige",
- -12.158309936523438
- ],
- [
- "▁cycles",
- -12.158379554748535
- ],
- [
- "static",
- -12.15845012664795
- ],
- [
- "lasting",
- -12.15847396850586
- ],
- [
- "▁calcium",
- -12.158549308776855
- ],
- [
- "▁digest",
- -12.158697128295898
- ],
- [
- "Enfin",
- -12.158865928649902
- ],
- [
- "▁stressful",
- -12.158951759338379
- ],
- [
- "▁schemes",
- -12.158981323242188
- ],
- [
- "▁décision",
- -12.158987045288086
- ],
- [
- "▁comercial",
- -12.15907096862793
- ],
- [
- "işti",
- -12.159098625183105
- ],
- [
- "▁Comic",
- -12.15910816192627
- ],
- [
- "▁extensions",
- -12.159140586853027
- ],
- [
- "▁Sieg",
- -12.159168243408203
- ],
- [
- "▁pine",
- -12.15919017791748
- ],
- [
- "ieß",
- -12.159272193908691
- ],
- [
- "▁Images",
- -12.159427642822266
- ],
- [
- "▁Mensch",
- -12.159668922424316
- ],
- [
- "Pap",
- -12.159773826599121
- ],
- [
- "▁crops",
- -12.15994930267334
- ],
- [
- "▁sheep",
- -12.159996032714844
- ],
- [
- "▁istoric",
- -12.160001754760742
- ],
- [
- "▁Assessment",
- -12.160035133361816
- ],
- [
- "▁mounting",
- -12.16035270690918
- ],
- [
- "wirken",
- -12.160469055175781
- ],
- [
- "▁augment",
- -12.160469055175781
- ],
- [
- "▁picioare",
- -12.160542488098145
- ],
- [
- "organisme",
- -12.160590171813965
- ],
- [
- "▁Monitor",
- -12.16060733795166
- ],
- [
- "▁celles",
- -12.160642623901367
- ],
- [
- "▁Maison",
- -12.160709381103516
- ],
- [
- "notified",
- -12.160783767700195
- ],
- [
- "▁chew",
- -12.160831451416016
- ],
- [
- "▁bleu",
- -12.16083812713623
- ],
- [
- "dow",
- -12.160844802856445
- ],
- [
- "▁Grav",
- -12.16097354888916
- ],
- [
- "▁curtains",
- -12.160975456237793
- ],
- [
- "▁Campus",
- -12.161076545715332
- ],
- [
- "▁controversial",
- -12.161087036132812
- ],
- [
- "▁soutien",
- -12.161189079284668
- ],
- [
- "▁Dell",
- -12.1613187789917
- ],
- [
- "▁instrumental",
- -12.161431312561035
- ],
- [
- "▁Nan",
- -12.161514282226562
- ],
- [
- "▁prom",
- -12.161520957946777
- ],
- [
- "▁spatial",
- -12.161523818969727
- ],
- [
- "Similarly",
- -12.161558151245117
- ],
- [
- "▁Gala",
- -12.161601066589355
- ],
- [
- "ultimul",
- -12.16162109375
- ],
- [
- "▁Vom",
- -12.161761283874512
- ],
- [
- "▁Foot",
- -12.161784172058105
- ],
- [
- "bike",
- -12.1618013381958
- ],
- [
- "▁acids",
- -12.161979675292969
- ],
- [
- "entend",
- -12.162002563476562
- ],
- [
- "ivă",
- -12.162040710449219
- ],
- [
- "▁Weitere",
- -12.162124633789062
- ],
- [
- "▁vitamins",
- -12.162131309509277
- ],
- [
- "▁enhancement",
- -12.16234016418457
- ],
- [
- "▁Cruise",
- -12.162367820739746
- ],
- [
- "assemble",
- -12.162385940551758
- ],
- [
- "▁spécifique",
- -12.162459373474121
- ],
- [
- "affaires",
- -12.16261100769043
- ],
- [
- "▁indispensable",
- -12.1626558303833
- ],
- [
- "▁logistics",
- -12.16283130645752
- ],
- [
- "▁manche",
- -12.162919044494629
- ],
- [
- "▁dealt",
- -12.16297435760498
- ],
- [
- "▁favorable",
- -12.163036346435547
- ],
- [
- "▁unwanted",
- -12.163047790527344
- ],
- [
- "▁handmade",
- -12.163065910339355
- ],
- [
- "▁Regi",
- -12.163102149963379
- ],
- [
- "safe",
- -12.163134574890137
- ],
- [
- "persoanele",
- -12.163202285766602
- ],
- [
- "▁destinat",
- -12.163252830505371
- ],
- [
- "▁Maxi",
- -12.163299560546875
- ],
- [
- "▁salmon",
- -12.163454055786133
- ],
- [
- "wag",
- -12.163578033447266
- ],
- [
- "210",
- -12.163769721984863
- ],
- [
- "▁warned",
- -12.163865089416504
- ],
- [
- "läuft",
- -12.16386604309082
- ],
- [
- "agging",
- -12.163931846618652
- ],
- [
- "▁responsabil",
- -12.16398811340332
- ],
- [
- "▁presse",
- -12.164271354675293
- ],
- [
- "▁amis",
- -12.164305686950684
- ],
- [
- "▁rolls",
- -12.164377212524414
- ],
- [
- "control",
- -12.164405822753906
- ],
- [
- "▁Manufacturer",
- -12.164422988891602
- ],
- [
- "hnen",
- -12.164449691772461
- ],
- [
- "▁buget",
- -12.164546012878418
- ],
- [
- "OW",
- -12.16467571258545
- ],
- [
- "etro",
- -12.164745330810547
- ],
- [
- "▁communauté",
- -12.164837837219238
- ],
- [
- "unci",
- -12.164944648742676
- ],
- [
- "▁Chine",
- -12.164952278137207
- ],
- [
- "combines",
- -12.16501235961914
- ],
- [
- "▁learners",
- -12.165046691894531
- ],
- [
- "STE",
- -12.165055274963379
- ],
- [
- "ckel",
- -12.16511344909668
- ],
- [
- "Service",
- -12.165169715881348
- ],
- [
- "▁veröffentlicht",
- -12.165209770202637
- ],
- [
- "besides",
- -12.165266036987305
- ],
- [
- "getragen",
- -12.165349960327148
- ],
- [
- "▁opponent",
- -12.165521621704102
- ],
- [
- "▁volum",
- -12.165533065795898
- ],
- [
- "▁confusing",
- -12.165802001953125
- ],
- [
- "invasive",
- -12.165813446044922
- ],
- [
- "▁conseils",
- -12.165881156921387
- ],
- [
- "▁vibe",
- -12.165928840637207
- ],
- [
- "View",
- -12.166062355041504
- ],
- [
- "oară",
- -12.166086196899414
- ],
- [
- "Link",
- -12.166261672973633
- ],
- [
- "▁holy",
- -12.166261672973633
- ],
- [
- "▁crema",
- -12.16629409790039
- ],
- [
- "▁Michelle",
- -12.166303634643555
- ],
- [
- "▁Wien",
- -12.166383743286133
- ],
- [
- "▁undertake",
- -12.166404724121094
- ],
- [
- "▁Photograph",
- -12.166421890258789
- ],
- [
- "humain",
- -12.16645336151123
- ],
- [
- "▁Hang",
- -12.166545867919922
- ],
- [
- "designed",
- -12.16657829284668
- ],
- [
- "▁analyses",
- -12.166614532470703
- ],
- [
- "▁compose",
- -12.166653633117676
- ],
- [
- "▁substantially",
- -12.166765213012695
- ],
- [
- "▁marking",
- -12.166772842407227
- ],
- [
- "▁campagne",
- -12.166826248168945
- ],
- [
- "▁$15",
- -12.166828155517578
- ],
- [
- "pharma",
- -12.166972160339355
- ],
- [
- "▁playoff",
- -12.1669921875
- ],
- [
- "▁momentum",
- -12.167091369628906
- ],
- [
- "Temp",
- -12.16714096069336
- ],
- [
- "▁vinegar",
- -12.167143821716309
- ],
- [
- "▁descriptions",
- -12.167581558227539
- ],
- [
- "christ",
- -12.167656898498535
- ],
- [
- "wore",
- -12.16773509979248
- ],
- [
- "ITY",
- -12.167768478393555
- ],
- [
- "stehen",
- -12.167771339416504
- ],
- [
- "▁insulation",
- -12.1677827835083
- ],
- [
- "grav",
- -12.167842864990234
- ],
- [
- "2.2",
- -12.167887687683105
- ],
- [
- "▁Explore",
- -12.168028831481934
- ],
- [
- "▁dye",
- -12.168127059936523
- ],
- [
- "stair",
- -12.168155670166016
- ],
- [
- "artisan",
- -12.168207168579102
- ],
- [
- "▁zoom",
- -12.168285369873047
- ],
- [
- "▁turkey",
- -12.168573379516602
- ],
- [
- "▁locksmith",
- -12.168577194213867
- ],
- [
- "▁sewing",
- -12.168610572814941
- ],
- [
- "▁modeling",
- -12.168627738952637
- ],
- [
- "lied",
- -12.16870403289795
- ],
- [
- "adel",
- -12.168773651123047
- ],
- [
- "▁Going",
- -12.168785095214844
- ],
- [
- "WH",
- -12.168798446655273
- ],
- [
- "▁deserves",
- -12.168919563293457
- ],
- [
- "▁arriving",
- -12.168960571289062
- ],
- [
- "OFF",
- -12.169039726257324
- ],
- [
- "torului",
- -12.169109344482422
- ],
- [
- "ucked",
- -12.16921615600586
- ],
- [
- "▁approached",
- -12.169351577758789
- ],
- [
- "▁élevé",
- -12.169354438781738
- ],
- [
- "▁quotidien",
- -12.169416427612305
- ],
- [
- "▁derzeit",
- -12.16942024230957
- ],
- [
- "nutzt",
- -12.169656753540039
- ],
- [
- "science",
- -12.169729232788086
- ],
- [
- "▁Emma",
- -12.169841766357422
- ],
- [
- "▁builds",
- -12.169879913330078
- ],
- [
- "▁Logo",
- -12.169949531555176
- ],
- [
- "▁clouds",
- -12.170061111450195
- ],
- [
- "inflammatory",
- -12.170141220092773
- ],
- [
- "țiuni",
- -12.170199394226074
- ],
- [
- "▁Cisco",
- -12.17025089263916
- ],
- [
- "▁würden",
- -12.170254707336426
- ],
- [
- "▁Shaw",
- -12.170256614685059
- ],
- [
- "▁Ell",
- -12.170266151428223
- ],
- [
- "avance",
- -12.1703519821167
- ],
- [
- "anglais",
- -12.170365333557129
- ],
- [
- "weil",
- -12.170368194580078
- ],
- [
- "▁singura",
- -12.170464515686035
- ],
- [
- "ACK",
- -12.170489311218262
- ],
- [
- "likewise",
- -12.170522689819336
- ],
- [
- "ographie",
- -12.170646667480469
- ],
- [
- "liegen",
- -12.17088508605957
- ],
- [
- "▁Crow",
- -12.170964241027832
- ],
- [
- "▁unic",
- -12.171187400817871
- ],
- [
- "▁Ale",
- -12.171241760253906
- ],
- [
- "▁păstr",
- -12.17125129699707
- ],
- [
- "▁informal",
- -12.171337127685547
- ],
- [
- "650",
- -12.17136287689209
- ],
- [
- "Benz",
- -12.171489715576172
- ],
- [
- "▁antenna",
- -12.171540260314941
- ],
- [
- "▁pagini",
- -12.171552658081055
- ],
- [
- "▁lansat",
- -12.171561241149902
- ],
- [
- "▁Fans",
- -12.171576499938965
- ],
- [
- "taine",
- -12.171822547912598
- ],
- [
- "JO",
- -12.171853065490723
- ],
- [
- "▁Tips",
- -12.172091484069824
- ],
- [
- "cir",
- -12.172130584716797
- ],
- [
- "nou",
- -12.172384262084961
- ],
- [
- "▁planted",
- -12.17241382598877
- ],
- [
- "▁steering",
- -12.172423362731934
- ],
- [
- "▁Waren",
- -12.172475814819336
- ],
- [
- "▁clearance",
- -12.172515869140625
- ],
- [
- "▁Moscow",
- -12.172516822814941
- ],
- [
- "▁Faith",
- -12.172534942626953
- ],
- [
- "▁Pizza",
- -12.172572135925293
- ],
- [
- "▁Tank",
- -12.17273998260498
- ],
- [
- "QUE",
- -12.172783851623535
- ],
- [
- "▁studii",
- -12.172804832458496
- ],
- [
- "éné",
- -12.172829627990723
- ],
- [
- "▁guerre",
- -12.1728515625
- ],
- [
- "▁celebr",
- -12.173083305358887
- ],
- [
- "▁Factory",
- -12.173111915588379
- ],
- [
- "▁Browse",
- -12.173198699951172
- ],
- [
- "▁Request",
- -12.17323112487793
- ],
- [
- "▁taxpayer",
- -12.173311233520508
- ],
- [
- "▁assert",
- -12.173562049865723
- ],
- [
- "unternehmen",
- -12.173588752746582
- ],
- [
- "▁Ergebnis",
- -12.173687934875488
- ],
- [
- "▁Antwort",
- -12.173727035522461
- ],
- [
- "▁Photography",
- -12.173808097839355
- ],
- [
- "▁plă",
- -12.173866271972656
- ],
- [
- "IME",
- -12.173982620239258
- ],
- [
- "▁prochaine",
- -12.174074172973633
- ],
- [
- "ajouter",
- -12.174103736877441
- ],
- [
- "▁buffet",
- -12.174227714538574
- ],
- [
- "▁pixels",
- -12.174239158630371
- ],
- [
- "▁pledge",
- -12.174250602722168
- ],
- [
- "▁Inhalt",
- -12.17435359954834
- ],
- [
- "▁chase",
- -12.174384117126465
- ],
- [
- "Flow",
- -12.174493789672852
- ],
- [
- "▁melodi",
- -12.174872398376465
- ],
- [
- "▁Abu",
- -12.174991607666016
- ],
- [
- "▁1979",
- -12.175042152404785
- ],
- [
- "▁Photos",
- -12.175042152404785
- ],
- [
- "▁qualifications",
- -12.175148963928223
- ],
- [
- "▁zis",
- -12.175213813781738
- ],
- [
- "IAL",
- -12.175354957580566
- ],
- [
- "▁lender",
- -12.175390243530273
- ],
- [
- "▁indiferent",
- -12.175494194030762
- ],
- [
- "▁behaviors",
- -12.175506591796875
- ],
- [
- "▁flowing",
- -12.175531387329102
- ],
- [
- "▁zweite",
- -12.1756010055542
- ],
- [
- "abl",
- -12.175765037536621
- ],
- [
- "Schw",
- -12.176004409790039
- ],
- [
- "opi",
- -12.176030158996582
- ],
- [
- "ggi",
- -12.176164627075195
- ],
- [
- "▁depart",
- -12.176314353942871
- ],
- [
- "▁garde",
- -12.17640209197998
- ],
- [
- "▁tuition",
- -12.176490783691406
- ],
- [
- "fälle",
- -12.17650032043457
- ],
- [
- "▁determina",
- -12.17652702331543
- ],
- [
- "▁spice",
- -12.176627159118652
- ],
- [
- "▁petites",
- -12.176777839660645
- ],
- [
- "kot",
- -12.176973342895508
- ],
- [
- "▁intersection",
- -12.177242279052734
- ],
- [
- "hak",
- -12.177248001098633
- ],
- [
- "▁autumn",
- -12.177284240722656
- ],
- [
- "▁verbunden",
- -12.177284240722656
- ],
- [
- "▁ferme",
- -12.177287101745605
- ],
- [
- "PN",
- -12.17733097076416
- ],
- [
- "▁insurer",
- -12.177390098571777
- ],
- [
- "arten",
- -12.177401542663574
- ],
- [
- "▁Turkish",
- -12.177715301513672
- ],
- [
- "▁shoulders",
- -12.177732467651367
- ],
- [
- "=>",
- -12.177742004394531
- ],
- [
- "▁Nike",
- -12.177760124206543
- ],
- [
- "uire",
- -12.177763938903809
- ],
- [
- "▁Chile",
- -12.177811622619629
- ],
- [
- "jon",
- -12.177842140197754
- ],
- [
- "▁fragrance",
- -12.177884101867676
- ],
- [
- "▁bean",
- -12.177908897399902
- ],
- [
- "ips",
- -12.178108215332031
- ],
- [
- "assuming",
- -12.178191184997559
- ],
- [
- "liens",
- -12.178215026855469
- ],
- [
- "tocmai",
- -12.178267478942871
- ],
- [
- "▁60%",
- -12.178301811218262
- ],
- [
- "ipped",
- -12.178384780883789
- ],
- [
- "DIS",
- -12.178473472595215
- ],
- [
- "▁predicted",
- -12.178537368774414
- ],
- [
- "▁Picture",
- -12.178555488586426
- ],
- [
- "Bahn",
- -12.178796768188477
- ],
- [
- "104",
- -12.178854942321777
- ],
- [
- "tended",
- -12.178958892822266
- ],
- [
- "▁approve",
- -12.179031372070312
- ],
- [
- "▁magasin",
- -12.17908000946045
- ],
- [
- "▁mindset",
- -12.179208755493164
- ],
- [
- "rase",
- -12.179363250732422
- ],
- [
- "grand",
- -12.179469108581543
- ],
- [
- "▁Principal",
- -12.17947769165039
- ],
- [
- "▁informații",
- -12.17959976196289
- ],
- [
- "▁legătur",
- -12.179628372192383
- ],
- [
- "▁Farb",
- -12.179692268371582
- ],
- [
- "▁Dieu",
- -12.179710388183594
- ],
- [
- "▁alliance",
- -12.180378913879395
- ],
- [
- "weiligen",
- -12.180397987365723
- ],
- [
- "▁Câ",
- -12.18048095703125
- ],
- [
- "▁counseling",
- -12.180521011352539
- ],
- [
- "▁traveled",
- -12.180533409118652
- ],
- [
- "▁translated",
- -12.180558204650879
- ],
- [
- "▁carne",
- -12.180679321289062
- ],
- [
- "aked",
- -12.180707931518555
- ],
- [
- "▁LCD",
- -12.180868148803711
- ],
- [
- "▁Folge",
- -12.180909156799316
- ],
- [
- "▁Erfahrungen",
- -12.18093204498291
- ],
- [
- "▁1981",
- -12.18106460571289
- ],
- [
- "▁răspuns",
- -12.181075096130371
- ],
- [
- "itori",
- -12.18117618560791
- ],
- [
- "▁elementary",
- -12.181200981140137
- ],
- [
- "▁vorbei",
- -12.18127727508545
- ],
- [
- "▁cargo",
- -12.181361198425293
- ],
- [
- "disciplinary",
- -12.18140983581543
- ],
- [
- "WR",
- -12.181492805480957
- ],
- [
- "▁counterpart",
- -12.18162727355957
- ],
- [
- "family",
- -12.181641578674316
- ],
- [
- "▁viață",
- -12.181644439697266
- ],
- [
- "▁Definition",
- -12.18167495727539
- ],
- [
- "▁Cow",
- -12.18171501159668
- ],
- [
- "fällig",
- -12.182003021240234
- ],
- [
- "▁Sicht",
- -12.182025909423828
- ],
- [
- "▁mum",
- -12.182145118713379
- ],
- [
- "▁Mediterranean",
- -12.182275772094727
- ],
- [
- "nev",
- -12.182278633117676
- ],
- [
- "bü",
- -12.182293891906738
- ],
- [
- "▁slave",
- -12.182293891906738
- ],
- [
- "schnitt",
- -12.18233871459961
- ],
- [
- "▁firme",
- -12.182430267333984
- ],
- [
- "▁spill",
- -12.182454109191895
- ],
- [
- "▁wages",
- -12.182592391967773
- ],
- [
- "▁refine",
- -12.182615280151367
- ],
- [
- "▁upgraded",
- -12.182632446289062
- ],
- [
- "▁gospel",
- -12.182698249816895
- ],
- [
- "▁quartier",
- -12.182744979858398
- ],
- [
- "▁#2",
- -12.182772636413574
- ],
- [
- "▁Situation",
- -12.18298625946045
- ],
- [
- "▁suggesting",
- -12.183075904846191
- ],
- [
- "▁acne",
- -12.183113098144531
- ],
- [
- "▁Murray",
- -12.183337211608887
- ],
- [
- "▁Ian",
- -12.183469772338867
- ],
- [
- "hören",
- -12.183489799499512
- ],
- [
- "bia",
- -12.183603286743164
- ],
- [
- "▁Bewegung",
- -12.183684349060059
- ],
- [
- "▁abzu",
- -12.18379020690918
- ],
- [
- "reveals",
- -12.183795928955078
- ],
- [
- "friend",
- -12.184025764465332
- ],
- [
- "▁Connecticut",
- -12.18407917022705
- ],
- [
- "▁Testament",
- -12.184151649475098
- ],
- [
- "▁Lit",
- -12.184199333190918
- ],
- [
- "▁Ship",
- -12.184209823608398
- ],
- [
- "▁minunat",
- -12.184344291687012
- ],
- [
- "▁Moving",
- -12.184346199035645
- ],
- [
- "▁Device",
- -12.184486389160156
- ],
- [
- "▁Bake",
- -12.18453598022461
- ],
- [
- "▁qualification",
- -12.184633255004883
- ],
- [
- "▁challenged",
- -12.184640884399414
- ],
- [
- "▁Hinweis",
- -12.184721946716309
- ],
- [
- "▁sechs",
- -12.184769630432129
- ],
- [
- "та",
- -12.184903144836426
- ],
- [
- "120",
- -12.184904098510742
- ],
- [
- "licht",
- -12.184940338134766
- ],
- [
- "▁supervision",
- -12.185022354125977
- ],
- [
- "▁milestone",
- -12.18503189086914
- ],
- [
- "zeig",
- -12.185050964355469
- ],
- [
- "▁emphasize",
- -12.185224533081055
- ],
- [
- "▁complain",
- -12.185232162475586
- ],
- [
- "sack",
- -12.185341835021973
- ],
- [
- "▁rebuild",
- -12.185445785522461
- ],
- [
- "projekt",
- -12.18548583984375
- ],
- [
- "▁saint",
- -12.185644149780273
- ],
- [
- "lette",
- -12.185752868652344
- ],
- [
- "rade",
- -12.18580150604248
- ],
- [
- "▁pacient",
- -12.185893058776855
- ],
- [
- "signed",
- -12.186169624328613
- ],
- [
- "▁mil",
- -12.186261177062988
- ],
- [
- "cali",
- -12.186266899108887
- ],
- [
- "▁brochure",
- -12.186487197875977
- ],
- [
- "▁Bulgaria",
- -12.186488151550293
- ],
- [
- "Har",
- -12.186623573303223
- ],
- [
- "DH",
- -12.186697006225586
- ],
- [
- "▁jumping",
- -12.186712265014648
- ],
- [
- "ären",
- -12.186732292175293
- ],
- [
- "▁tactics",
- -12.186911582946777
- ],
- [
- "▁soleil",
- -12.187030792236328
- ],
- [
- "lessness",
- -12.18705940246582
- ],
- [
- "steigen",
- -12.187085151672363
- ],
- [
- "▁Brief",
- -12.187117576599121
- ],
- [
- "▁Oz",
- -12.18718433380127
- ],
- [
- "credit",
- -12.187239646911621
- ],
- [
- "glass",
- -12.187241554260254
- ],
- [
- "▁Baltimore",
- -12.187292098999023
- ],
- [
- "varies",
- -12.187445640563965
- ],
- [
- "sourced",
- -12.187575340270996
- ],
- [
- "▁documented",
- -12.187604904174805
- ],
- [
- "▁devine",
- -12.187664985656738
- ],
- [
- "möglichst",
- -12.187732696533203
- ],
- [
- "▁früher",
- -12.187756538391113
- ],
- [
- "outefois",
- -12.18790054321289
- ],
- [
- "▁Engagement",
- -12.187934875488281
- ],
- [
- "▁anumit",
- -12.18806266784668
- ],
- [
- "▁1930",
- -12.188186645507812
- ],
- [
- "▁Aufgaben",
- -12.188214302062988
- ],
- [
- "▁lineup",
- -12.188227653503418
- ],
- [
- "▁Cad",
- -12.188349723815918
- ],
- [
- "améliorer",
- -12.188437461853027
- ],
- [
- "▁februarie",
- -12.188499450683594
- ],
- [
- "▁cancellation",
- -12.188529968261719
- ],
- [
- "▁locks",
- -12.188577651977539
- ],
- [
- "▁modèles",
- -12.188711166381836
- ],
- [
- "▁breakdown",
- -12.188748359680176
- ],
- [
- "Ticket",
- -12.188810348510742
- ],
- [
- "▁Chen",
- -12.188855171203613
- ],
- [
- "▁Competition",
- -12.188910484313965
- ],
- [
- "▁median",
- -12.18896770477295
- ],
- [
- "rische",
- -12.189159393310547
- ],
- [
- "▁multipli",
- -12.189269065856934
- ],
- [
- "▁Belgium",
- -12.189305305480957
- ],
- [
- "▁Physical",
- -12.189308166503906
- ],
- [
- "▁parameter",
- -12.189432144165039
- ],
- [
- "▁carrot",
- -12.189435005187988
- ],
- [
- "▁mandat",
- -12.189617156982422
- ],
- [
- "▁towel",
- -12.189697265625
- ],
- [
- "▁insured",
- -12.189825057983398
- ],
- [
- "PRI",
- -12.189868927001953
- ],
- [
- "etter",
- -12.189915657043457
- ],
- [
- "▁Oder",
- -12.190083503723145
- ],
- [
- "argued",
- -12.190171241760254
- ],
- [
- "FB",
- -12.190196990966797
- ],
- [
- "versicherung",
- -12.190197944641113
- ],
- [
- "abila",
- -12.190251350402832
- ],
- [
- "▁Coin",
- -12.190324783325195
- ],
- [
- "around",
- -12.19050121307373
- ],
- [
- "▁Lorsqu",
- -12.190773963928223
- ],
- [
- "valent",
- -12.190918922424316
- ],
- [
- "▁weltweit",
- -12.19092082977295
- ],
- [
- "Mod",
- -12.191039085388184
- ],
- [
- "▁defect",
- -12.191044807434082
- ],
- [
- "ibly",
- -12.191136360168457
- ],
- [
- "▁Juan",
- -12.191153526306152
- ],
- [
- "▁Jur",
- -12.191171646118164
- ],
- [
- "large",
- -12.191307067871094
- ],
- [
- "▁indicators",
- -12.191461563110352
- ],
- [
- "invest",
- -12.19168472290039
- ],
- [
- "▁rehabilitation",
- -12.191705703735352
- ],
- [
- "nag",
- -12.191823959350586
- ],
- [
- "▁Grundlage",
- -12.191829681396484
- ],
- [
- "▁Strategy",
- -12.192131042480469
- ],
- [
- "▁supérieur",
- -12.192173957824707
- ],
- [
- "▁orbit",
- -12.192281723022461
- ],
- [
- "▁Auftrag",
- -12.192360877990723
- ],
- [
- "▁Verb",
- -12.192441940307617
- ],
- [
- "ANA",
- -12.19256591796875
- ],
- [
- "▁trimis",
- -12.192611694335938
- ],
- [
- "▁Rub",
- -12.192704200744629
- ],
- [
- "institu",
- -12.192732810974121
- ],
- [
- "▁inspect",
- -12.1927490234375
- ],
- [
- "▁Princess",
- -12.192757606506348
- ],
- [
- "especially",
- -12.192777633666992
- ],
- [
- "▁combinations",
- -12.192793846130371
- ],
- [
- "▁gaze",
- -12.192842483520508
- ],
- [
- "elemente",
- -12.192970275878906
- ],
- [
- "deal",
- -12.192980766296387
- ],
- [
- "polis",
- -12.193157196044922
- ],
- [
- "shaw",
- -12.193168640136719
- ],
- [
- "▁Republicans",
- -12.193203926086426
- ],
- [
- "aded",
- -12.193244934082031
- ],
- [
- "▁Louisiana",
- -12.193364143371582
- ],
- [
- "▁Ville",
- -12.193368911743164
- ],
- [
- "▁afterwards",
- -12.193389892578125
- ],
- [
- "ONG",
- -12.193608283996582
- ],
- [
- "▁dryer",
- -12.193636894226074
- ],
- [
- "▁Manhattan",
- -12.19374942779541
- ],
- [
- "▁recomanda",
- -12.19412612915039
- ],
- [
- "▁juca",
- -12.194253921508789
- ],
- [
- "▁Crown",
- -12.194260597229004
- ],
- [
- "▁flesh",
- -12.194347381591797
- ],
- [
- "sichtig",
- -12.194358825683594
- ],
- [
- "▁rempli",
- -12.19437026977539
- ],
- [
- "▁deposits",
- -12.19438362121582
- ],
- [
- "▁Voll",
- -12.194599151611328
- ],
- [
- "▁analysts",
- -12.194672584533691
- ],
- [
- "▁Krieg",
- -12.19484806060791
- ],
- [
- "▁Rosa",
- -12.19495964050293
- ],
- [
- "▁Supply",
- -12.194964408874512
- ],
- [
- "GF",
- -12.19497013092041
- ],
- [
- "idad",
- -12.195098876953125
- ],
- [
- "▁flush",
- -12.195103645324707
- ],
- [
- "▁circular",
- -12.195355415344238
- ],
- [
- "▁național",
- -12.195379257202148
- ],
- [
- "▁lorsqu",
- -12.195441246032715
- ],
- [
- "▁analyst",
- -12.195459365844727
- ],
- [
- "▁Jahrhundert",
- -12.195586204528809
- ],
- [
- "▁biology",
- -12.195713996887207
- ],
- [
- "copy",
- -12.195733070373535
- ],
- [
- "▁bringt",
- -12.195765495300293
- ],
- [
- "▁Gospel",
- -12.195780754089355
- ],
- [
- "▁sorgen",
- -12.195842742919922
- ],
- [
- "zeichnung",
- -12.196181297302246
- ],
- [
- "chair",
- -12.196197509765625
- ],
- [
- "EB",
- -12.19636344909668
- ],
- [
- "▁Beth",
- -12.1964111328125
- ],
- [
- "115",
- -12.196416854858398
- ],
- [
- "▁Neue",
- -12.196479797363281
- ],
- [
- "▁faible",
- -12.196599960327148
- ],
- [
- "▁methodology",
- -12.196603775024414
- ],
- [
- "spiele",
- -12.196647644042969
- ],
- [
- "▁cherry",
- -12.196727752685547
- ],
- [
- "▁Mak",
- -12.196802139282227
- ],
- [
- "▁volet",
- -12.196982383728027
- ],
- [
- "funk",
- -12.197196006774902
- ],
- [
- "▁aktuelle",
- -12.197372436523438
- ],
- [
- "▁Yahoo",
- -12.197408676147461
- ],
- [
- "▁Zusammenarbeit",
- -12.197669982910156
- ],
- [
- "▁Serve",
- -12.197754859924316
- ],
- [
- "▁simpler",
- -12.197978019714355
- ],
- [
- "intégr",
- -12.197990417480469
- ],
- [
- "ndlich",
- -12.198083877563477
- ],
- [
- "▁actress",
- -12.198320388793945
- ],
- [
- "▁reuse",
- -12.198332786560059
- ],
- [
- "▁reviewing",
- -12.198405265808105
- ],
- [
- "statt",
- -12.198457717895508
- ],
- [
- "▁diving",
- -12.198469161987305
- ],
- [
- "▁Național",
- -12.198677062988281
- ],
- [
- "voi",
- -12.19873332977295
- ],
- [
- "Disc",
- -12.198812484741211
- ],
- [
- "▁Mineral",
- -12.19886302947998
- ],
- [
- "▁emit",
- -12.199007034301758
- ],
- [
- "witz",
- -12.199078559875488
- ],
- [
- "▁forgot",
- -12.19909954071045
- ],
- [
- "▁dim",
- -12.199115753173828
- ],
- [
- "upper",
- -12.19947624206543
- ],
- [
- "sichtlich",
- -12.19949722290039
- ],
- [
- "▁parcours",
- -12.199670791625977
- ],
- [
- "8:00",
- -12.199697494506836
- ],
- [
- "▁keyword",
- -12.199701309204102
- ],
- [
- "▁upgrades",
- -12.199763298034668
- ],
- [
- "kunden",
- -12.200177192687988
- ],
- [
- "▁Seg",
- -12.200257301330566
- ],
- [
- "▁Circle",
- -12.200289726257324
- ],
- [
- "▁ginger",
- -12.200336456298828
- ],
- [
- "mment",
- -12.200516700744629
- ],
- [
- "▁expenditure",
- -12.200655937194824
- ],
- [
- "▁parle",
- -12.200693130493164
- ],
- [
- "▁Counsel",
- -12.200722694396973
- ],
- [
- "▁Gui",
- -12.200722694396973
- ],
- [
- "resident",
- -12.20103645324707
- ],
- [
- "▁benchmark",
- -12.20103931427002
- ],
- [
- "▁Elektro",
- -12.201064109802246
- ],
- [
- "▁réalité",
- -12.201064109802246
- ],
- [
- "▁ridiculous",
- -12.201067924499512
- ],
- [
- "▁necklace",
- -12.20108699798584
- ],
- [
- "nian",
- -12.201117515563965
- ],
- [
- "▁Move",
- -12.20113468170166
- ],
- [
- "▁elevated",
- -12.201204299926758
- ],
- [
- "WE",
- -12.201281547546387
- ],
- [
- "▁Drum",
- -12.20132064819336
- ],
- [
- "▁Delivery",
- -12.201350212097168
- ],
- [
- "indicating",
- -12.201452255249023
- ],
- [
- "▁Benjamin",
- -12.201472282409668
- ],
- [
- "▁Samuel",
- -12.2014741897583
- ],
- [
- "bene",
- -12.201666831970215
- ],
- [
- "▁experienta",
- -12.201676368713379
- ],
- [
- "▁rocket",
- -12.201839447021484
- ],
- [
- "▁fossil",
- -12.201883316040039
- ],
- [
- "▁festive",
- -12.20193099975586
- ],
- [
- "▁conscience",
- -12.201964378356934
- ],
- [
- "▁bacon",
- -12.202136993408203
- ],
- [
- "▁aero",
- -12.202159881591797
- ],
- [
- "public",
- -12.202187538146973
- ],
- [
- "▁zic",
- -12.202218055725098
- ],
- [
- "ombre",
- -12.202356338500977
- ],
- [
- "▁Drain",
- -12.202550888061523
- ],
- [
- "7.5",
- -12.202672004699707
- ],
- [
- "▁Deutschen",
- -12.202703475952148
- ],
- [
- "reportedly",
- -12.202754974365234
- ],
- [
- "▁Français",
- -12.203105926513672
- ],
- [
- "▁enzyme",
- -12.203106880187988
- ],
- [
- "▁inquiry",
- -12.203117370605469
- ],
- [
- "▁presque",
- -12.203193664550781
- ],
- [
- "▁Airlines",
- -12.203228950500488
- ],
- [
- "▁Salon",
- -12.203237533569336
- ],
- [
- "▁Volunteer",
- -12.203310012817383
- ],
- [
- "▁modular",
- -12.203349113464355
- ],
- [
- "ón",
- -12.203364372253418
- ],
- [
- "NH",
- -12.203449249267578
- ],
- [
- "▁souhaite",
- -12.203516960144043
- ],
- [
- "social",
- -12.203659057617188
- ],
- [
- "▁Include",
- -12.203729629516602
- ],
- [
- "▁Decor",
- -12.2037992477417
- ],
- [
- "dded",
- -12.203965187072754
- ],
- [
- "▁Außen",
- -12.203969955444336
- ],
- [
- "rendu",
- -12.20412540435791
- ],
- [
- "▁MBA",
- -12.204150199890137
- ],
- [
- "▁columns",
- -12.204155921936035
- ],
- [
- "▁Wing",
- -12.204436302185059
- ],
- [
- "▁landmark",
- -12.204442977905273
- ],
- [
- "schritt",
- -12.204594612121582
- ],
- [
- "▁désir",
- -12.204630851745605
- ],
- [
- "(5)",
- -12.204680442810059
- ],
- [
- "▁réseaux",
- -12.204693794250488
- ],
- [
- "income",
- -12.204710960388184
- ],
- [
- "▁revised",
- -12.204819679260254
- ],
- [
- "HY",
- -12.204863548278809
- ],
- [
- "▁Explorer",
- -12.204873085021973
- ],
- [
- "▁Lam",
- -12.204877853393555
- ],
- [
- "▁almond",
- -12.204910278320312
- ],
- [
- "▁faux",
- -12.204910278320312
- ],
- [
- "opt",
- -12.204923629760742
- ],
- [
- "Out",
- -12.204939842224121
- ],
- [
- "▁virtue",
- -12.205025672912598
- ],
- [
- "▁Chocolate",
- -12.205151557922363
- ],
- [
- "▁spannend",
- -12.205305099487305
- ],
- [
- "▁spices",
- -12.205327033996582
- ],
- [
- "▁Climate",
- -12.205560684204102
- ],
- [
- "▁Residential",
- -12.205560684204102
- ],
- [
- "gung",
- -12.205700874328613
- ],
- [
- "▁filtr",
- -12.20606803894043
- ],
- [
- "circ",
- -12.206123352050781
- ],
- [
- "sisted",
- -12.206172943115234
- ],
- [
- "▁dedicat",
- -12.206243515014648
- ],
- [
- "▁foil",
- -12.206387519836426
- ],
- [
- "▁uita",
- -12.206392288208008
- ],
- [
- "▁lié",
- -12.206402778625488
- ],
- [
- "▁Demo",
- -12.206409454345703
- ],
- [
- "▁spoil",
- -12.2064208984375
- ],
- [
- "Cu",
- -12.206448554992676
- ],
- [
- "naut",
- -12.206525802612305
- ],
- [
- "▁configured",
- -12.206535339355469
- ],
- [
- "UK",
- -12.206543922424316
- ],
- [
- "▁disagree",
- -12.20656967163086
- ],
- [
- "Medic",
- -12.206767082214355
- ],
- [
- "cosm",
- -12.207074165344238
- ],
- [
- "Toute",
- -12.207109451293945
- ],
- [
- "▁beneficia",
- -12.207170486450195
- ],
- [
- "fassen",
- -12.207327842712402
- ],
- [
- "▁bail",
- -12.207337379455566
- ],
- [
- "igue",
- -12.207439422607422
- ],
- [
- "▁Mă",
- -12.20744800567627
- ],
- [
- "▁strips",
- -12.20748519897461
- ],
- [
- "▁Dritte",
- -12.207537651062012
- ],
- [
- "▁putere",
- -12.207597732543945
- ],
- [
- "Play",
- -12.20763111114502
- ],
- [
- "▁Samstag",
- -12.207632064819336
- ],
- [
- "▁households",
- -12.207791328430176
- ],
- [
- "▁persistent",
- -12.207914352416992
- ],
- [
- "uben",
- -12.207942962646484
- ],
- [
- "Web",
- -12.20809555053711
- ],
- [
- "▁scenery",
- -12.20820140838623
- ],
- [
- "▁défini",
- -12.208257675170898
- ],
- [
- "news",
- -12.208337783813477
- ],
- [
- "eira",
- -12.208428382873535
- ],
- [
- "▁Mumbai",
- -12.208438873291016
- ],
- [
- "▁Ward",
- -12.208558082580566
- ],
- [
- "▁ladder",
- -12.2086181640625
- ],
- [
- "▁plaque",
- -12.208623886108398
- ],
- [
- "nés",
- -12.208639144897461
- ],
- [
- "▁condamn",
- -12.20864486694336
- ],
- [
- "▁attribute",
- -12.208687782287598
- ],
- [
- "atti",
- -12.20873737335205
- ],
- [
- "▁Emily",
- -12.208953857421875
- ],
- [
- "▁pleine",
- -12.20896053314209
- ],
- [
- "▁automatisch",
- -12.209004402160645
- ],
- [
- "ifies",
- -12.209052085876465
- ],
- [
- "onna",
- -12.209104537963867
- ],
- [
- "▁inject",
- -12.209157943725586
- ],
- [
- "▁evolve",
- -12.209297180175781
- ],
- [
- "▁breeze",
- -12.209299087524414
- ],
- [
- "▁montre",
- -12.209415435791016
- ],
- [
- "▁memorial",
- -12.209425926208496
- ],
- [
- "ämlich",
- -12.209465026855469
- ],
- [
- "NBC",
- -12.209589958190918
- ],
- [
- "▁1940",
- -12.209836959838867
- ],
- [
- "▁trouvé",
- -12.209892272949219
- ],
- [
- "when",
- -12.209914207458496
- ],
- [
- "▁Büro",
- -12.209959983825684
- ],
- [
- "▁probability",
- -12.209978103637695
- ],
- [
- "cute",
- -12.21006965637207
- ],
- [
- "▁sturdy",
- -12.210078239440918
- ],
- [
- "AMP",
- -12.210165023803711
- ],
- [
- "▁Constantin",
- -12.210283279418945
- ],
- [
- "▁batter",
- -12.21037483215332
- ],
- [
- "▁bist",
- -12.210470199584961
- ],
- [
- "▁streams",
- -12.210528373718262
- ],
- [
- "rushing",
- -12.21057415008545
- ],
- [
- "▁shaft",
- -12.21065902709961
- ],
- [
- "▁proprii",
- -12.210722923278809
- ],
- [
- "émi",
- -12.21074390411377
- ],
- [
- "online",
- -12.210817337036133
- ],
- [
- "▁vanity",
- -12.210870742797852
- ],
- [
- "▁mural",
- -12.210878372192383
- ],
- [
- "▁distinguish",
- -12.210905075073242
- ],
- [
- "▁niciun",
- -12.211191177368164
- ],
- [
- "▁européenne",
- -12.211252212524414
- ],
- [
- "▁secretary",
- -12.211289405822754
- ],
- [
- "▁gaps",
- -12.211492538452148
- ],
- [
- "▁realm",
- -12.211499214172363
- ],
- [
- "▁elastic",
- -12.211504936218262
- ],
- [
- "▁Avoid",
- -12.211519241333008
- ],
- [
- "▁mauvais",
- -12.211931228637695
- ],
- [
- "▁innovations",
- -12.212663650512695
- ],
- [
- "▁suprem",
- -12.212776184082031
- ],
- [
- "▁vederea",
- -12.212817192077637
- ],
- [
- "wenden",
- -12.212892532348633
- ],
- [
- "-40",
- -12.213075637817383
- ],
- [
- "prenant",
- -12.213155746459961
- ],
- [
- "utilisateur",
- -12.213210105895996
- ],
- [
- "▁Oliver",
- -12.213228225708008
- ],
- [
- "111",
- -12.21326732635498
- ],
- [
- "▁manifestation",
- -12.213382720947266
- ],
- [
- "▁Rachel",
- -12.213458061218262
- ],
- [
- "agog",
- -12.21348762512207
- ],
- [
- "▁seamless",
- -12.213534355163574
- ],
- [
- "▁Employee",
- -12.213576316833496
- ],
- [
- "▁dimanche",
- -12.213582038879395
- ],
- [
- "▁banii",
- -12.213631629943848
- ],
- [
- "▁Ruth",
- -12.213781356811523
- ],
- [
- "▁Roy",
- -12.21385383605957
- ],
- [
- "▁homeless",
- -12.2139253616333
- ],
- [
- "▁Lower",
- -12.213932037353516
- ],
- [
- "health",
- -12.21393871307373
- ],
- [
- "▁atenti",
- -12.2140474319458
- ],
- [
- "▁touched",
- -12.214183807373047
- ],
- [
- "May",
- -12.214195251464844
- ],
- [
- "▁Buc",
- -12.214225769042969
- ],
- [
- "▁explored",
- -12.214393615722656
- ],
- [
- "▁declare",
- -12.214461326599121
- ],
- [
- "▁garment",
- -12.214469909667969
- ],
- [
- "▁buzz",
- -12.214483261108398
- ],
- [
- "▁rappel",
- -12.214662551879883
- ],
- [
- "▁uscat",
- -12.214903831481934
- ],
- [
- "▁Hyper",
- -12.214914321899414
- ],
- [
- "Etat",
- -12.215007781982422
- ],
- [
- "▁Titel",
- -12.215035438537598
- ],
- [
- "product",
- -12.215191841125488
- ],
- [
- "woman",
- -12.215280532836914
- ],
- [
- "▁Gab",
- -12.215450286865234
- ],
- [
- "▁advances",
- -12.215615272521973
- ],
- [
- "2/",
- -12.215753555297852
- ],
- [
- "prone",
- -12.215770721435547
- ],
- [
- "kö",
- -12.215986251831055
- ],
- [
- "▁counting",
- -12.21599292755127
- ],
- [
- "Sollte",
- -12.216043472290039
- ],
- [
- "▁Konzept",
- -12.216063499450684
- ],
- [
- "▁backgrounds",
- -12.216153144836426
- ],
- [
- "jährige",
- -12.216154098510742
- ],
- [
- "▁Alltag",
- -12.216187477111816
- ],
- [
- "▁metrics",
- -12.21619701385498
- ],
- [
- "▁illustrated",
- -12.216222763061523
- ],
- [
- "▁Charge",
- -12.21631908416748
- ],
- [
- "▁thoughtful",
- -12.216423034667969
- ],
- [
- "gesetz",
- -12.216527938842773
- ],
- [
- "pfen",
- -12.216611862182617
- ],
- [
- "▁déroul",
- -12.216713905334473
- ],
- [
- "▁checkout",
- -12.216876029968262
- ],
- [
- "quette",
- -12.216936111450195
- ],
- [
- "▁pierdut",
- -12.2170991897583
- ],
- [
- "▁Seat",
- -12.217140197753906
- ],
- [
- "▁linen",
- -12.217193603515625
- ],
- [
- "archiv",
- -12.217245101928711
- ],
- [
- "arna",
- -12.217254638671875
- ],
- [
- "importe",
- -12.21742057800293
- ],
- [
- "▁PHP",
- -12.217496871948242
- ],
- [
- "▁Parents",
- -12.217503547668457
- ],
- [
- "▁Birmingham",
- -12.217513084411621
- ],
- [
- "▁Integr",
- -12.217588424682617
- ],
- [
- "▁Mason",
- -12.217607498168945
- ],
- [
- "zieht",
- -12.217781066894531
- ],
- [
- "▁camps",
- -12.217803001403809
- ],
- [
- "OG",
- -12.21786117553711
- ],
- [
- "▁syrup",
- -12.217927932739258
- ],
- [
- "▁Cookies",
- -12.217928886413574
- ],
- [
- "▁Comfort",
- -12.217955589294434
- ],
- [
- "ută",
- -12.217976570129395
- ],
- [
- "abia",
- -12.217979431152344
- ],
- [
- "zeci",
- -12.218003273010254
- ],
- [
- "▁Gardens",
- -12.218009948730469
- ],
- [
- "▁incidents",
- -12.218149185180664
- ],
- [
- "▁participat",
- -12.218235969543457
- ],
- [
- "▁glimpse",
- -12.218342781066895
- ],
- [
- "5.5",
- -12.218437194824219
- ],
- [
- "▁dealers",
- -12.218469619750977
- ],
- [
- "▁Grande",
- -12.218565940856934
- ],
- [
- "▁raid",
- -12.218944549560547
- ],
- [
- "owing",
- -12.21903133392334
- ],
- [
- "▁contrary",
- -12.219109535217285
- ],
- [
- "Earlier",
- -12.219138145446777
- ],
- [
- "tien",
- -12.21916389465332
- ],
- [
- "drop",
- -12.219169616699219
- ],
- [
- "▁angajat",
- -12.219359397888184
- ],
- [
- "▁procesul",
- -12.219515800476074
- ],
- [
- "▁focal",
- -12.219564437866211
- ],
- [
- "▁impart",
- -12.219703674316406
- ],
- [
- "▁Abschluss",
- -12.219749450683594
- ],
- [
- "carui",
- -12.219830513000488
- ],
- [
- "insul",
- -12.220277786254883
- ],
- [
- "▁creamy",
- -12.220283508300781
- ],
- [
- "eille",
- -12.22032356262207
- ],
- [
- "suppl",
- -12.220335960388184
- ],
- [
- "▁Heaven",
- -12.220471382141113
- ],
- [
- "éna",
- -12.220667839050293
- ],
- [
- "▁swap",
- -12.220739364624023
- ],
- [
- "▁vreau",
- -12.220762252807617
- ],
- [
- "▁Bryan",
- -12.220809936523438
- ],
- [
- "▁Zug",
- -12.220815658569336
- ],
- [
- "▁glance",
- -12.220848083496094
- ],
- [
- "▁elimin",
- -12.220900535583496
- ],
- [
- "▁yeux",
- -12.221084594726562
- ],
- [
- "wehr",
- -12.221238136291504
- ],
- [
- "2.5",
- -12.221287727355957
- ],
- [
- "▁poses",
- -12.221364974975586
- ],
- [
- "▁parcel",
- -12.221585273742676
- ],
- [
- "▁Apartment",
- -12.221749305725098
- ],
- [
- "▁NASA",
- -12.221768379211426
- ],
- [
- "▁bénéfici",
- -12.22187614440918
- ],
- [
- "▁Umgebung",
- -12.221890449523926
- ],
- [
- "asia",
- -12.221946716308594
- ],
- [
- "abi",
- -12.221967697143555
- ],
- [
- "coup",
- -12.222002983093262
- ],
- [
- "synchron",
- -12.222017288208008
- ],
- [
- "▁Sicherheits",
- -12.222029685974121
- ],
- [
- "bic",
- -12.222076416015625
- ],
- [
- "▁distract",
- -12.222148895263672
- ],
- [
- "▁rentals",
- -12.222163200378418
- ],
- [
- "constru",
- -12.222290992736816
- ],
- [
- "curs",
- -12.222345352172852
- ],
- [
- "genannten",
- -12.222386360168457
- ],
- [
- "▁Shanghai",
- -12.222501754760742
- ],
- [
- "▁vague",
- -12.222504615783691
- ],
- [
- "▁Leather",
- -12.22250747680664
- ],
- [
- "▁Vintage",
- -12.222532272338867
- ],
- [
- "pointing",
- -12.22259521484375
- ],
- [
- "avant",
- -12.22268295288086
- ],
- [
- "gues",
- -12.222949028015137
- ],
- [
- "sweise",
- -12.22302532196045
- ],
- [
- "▁Greater",
- -12.223065376281738
- ],
- [
- "fig",
- -12.22310733795166
- ],
- [
- "▁Blut",
- -12.223217964172363
- ],
- [
- "▁Stellen",
- -12.22326946258545
- ],
- [
- "▁isolation",
- -12.22337818145752
- ],
- [
- "▁overhead",
- -12.22338581085205
- ],
- [
- "▁wondered",
- -12.223508834838867
- ],
- [
- "essai",
- -12.223609924316406
- ],
- [
- "aves",
- -12.2236328125
- ],
- [
- "▁Shore",
- -12.223637580871582
- ],
- [
- "▁INC",
- -12.223709106445312
- ],
- [
- "rufen",
- -12.223980903625488
- ],
- [
- "▁magnifique",
- -12.224069595336914
- ],
- [
- "▁intéressant",
- -12.224072456359863
- ],
- [
- "▁tanks",
- -12.224075317382812
- ],
- [
- "▁Tun",
- -12.224367141723633
- ],
- [
- "▁approaching",
- -12.224390029907227
- ],
- [
- "▁relay",
- -12.224479675292969
- ],
- [
- "▁Küche",
- -12.224529266357422
- ],
- [
- "describing",
- -12.224587440490723
- ],
- [
- "▁Certification",
- -12.224588394165039
- ],
- [
- "▁Breakfast",
- -12.224597930908203
- ],
- [
- "▁Frame",
- -12.224891662597656
- ],
- [
- "▁Stoff",
- -12.224909782409668
- ],
- [
- "▁victime",
- -12.224924087524414
- ],
- [
- "Observ",
- -12.224943161010742
- ],
- [
- "▁gutter",
- -12.224989891052246
- ],
- [
- "standard",
- -12.225220680236816
- ],
- [
- "▁Sci",
- -12.225244522094727
- ],
- [
- "▁sept",
- -12.225377082824707
- ],
- [
- "▁Potter",
- -12.225423812866211
- ],
- [
- "letter",
- -12.22577953338623
- ],
- [
- "▁tobacco",
- -12.225852012634277
- ],
- [
- "▁threatened",
- -12.22591781616211
- ],
- [
- "MW",
- -12.225936889648438
- ],
- [
- "▁Cher",
- -12.225944519042969
- ],
- [
- "0.1",
- -12.225957870483398
- ],
- [
- "mitted",
- -12.22596263885498
- ],
- [
- "zustellen",
- -12.225967407226562
- ],
- [
- "dominated",
- -12.226165771484375
- ],
- [
- "/16",
- -12.22623348236084
- ],
- [
- "POS",
- -12.226317405700684
- ],
- [
- "▁Zin",
- -12.226373672485352
- ],
- [
- "▁Okay",
- -12.226381301879883
- ],
- [
- "▁projected",
- -12.226405143737793
- ],
- [
- "▁selber",
- -12.226548194885254
- ],
- [
- "▁proiectului",
- -12.2266206741333
- ],
- [
- "▁Shell",
- -12.226683616638184
- ],
- [
- "▁cartridge",
- -12.226706504821777
- ],
- [
- "Message",
- -12.2267484664917
- ],
- [
- "haben",
- -12.226799964904785
- ],
- [
- "▁slides",
- -12.226829528808594
- ],
- [
- "▁gleichzeitig",
- -12.226886749267578
- ],
- [
- "▁Racing",
- -12.227051734924316
- ],
- [
- "▁20,",
- -12.227070808410645
- ],
- [
- "▁separat",
- -12.227094650268555
- ],
- [
- "▁repeatedly",
- -12.227110862731934
- ],
- [
- "▁casting",
- -12.22728157043457
- ],
- [
- "▁sacred",
- -12.227283477783203
- ],
- [
- "verfahren",
- -12.227387428283691
- ],
- [
- "▁echilibr",
- -12.227514266967773
- ],
- [
- "▁rebel",
- -12.2277250289917
- ],
- [
- "säu",
- -12.227794647216797
- ],
- [
- "ummy",
- -12.227815628051758
- ],
- [
- "▁backing",
- -12.227889060974121
- ],
- [
- "▁sponsors",
- -12.227912902832031
- ],
- [
- "▁Stress",
- -12.22802448272705
- ],
- [
- "▁Rules",
- -12.228083610534668
- ],
- [
- "▁render",
- -12.228241920471191
- ],
- [
- "▁funktioniert",
- -12.228384971618652
- ],
- [
- "▁Pearl",
- -12.228472709655762
- ],
- [
- "▁Scho",
- -12.228527069091797
- ],
- [
- "schwer",
- -12.228595733642578
- ],
- [
- "▁descoperit",
- -12.228702545166016
- ],
- [
- "holen",
- -12.228720664978027
- ],
- [
- "imposed",
- -12.228960990905762
- ],
- [
- "▁appearing",
- -12.228968620300293
- ],
- [
- "▁höher",
- -12.229082107543945
- ],
- [
- "▁Victorian",
- -12.229111671447754
- ],
- [
- "▁founding",
- -12.229155540466309
- ],
- [
- "▁Polish",
- -12.229239463806152
- ],
- [
- "▁anume",
- -12.229248046875
- ],
- [
- "Box",
- -12.229488372802734
- ],
- [
- "▁intrat",
- -12.229598999023438
- ],
- [
- "▁Inspiration",
- -12.229610443115234
- ],
- [
- "▁Canyon",
- -12.229625701904297
- ],
- [
- "▁Franklin",
- -12.22974681854248
- ],
- [
- "▁susceptible",
- -12.22982120513916
- ],
- [
- "trap",
- -12.229839324951172
- ],
- [
- "▁Roma",
- -12.23000717163086
- ],
- [
- "▁ethics",
- -12.230009078979492
- ],
- [
- "▁Privat",
- -12.230027198791504
- ],
- [
- "▁journalists",
- -12.230090141296387
- ],
- [
- "▁Universität",
- -12.230246543884277
- ],
- [
- "▁conditioner",
- -12.230308532714844
- ],
- [
- "folge",
- -12.230327606201172
- ],
- [
- "kirche",
- -12.230416297912598
- ],
- [
- "gehalten",
- -12.230530738830566
- ],
- [
- "midi",
- -12.230570793151855
- ],
- [
- "▁radar",
- -12.230619430541992
- ],
- [
- "▁Yard",
- -12.230775833129883
- ],
- [
- "▁professionnelle",
- -12.230863571166992
- ],
- [
- "▁Orchestra",
- -12.230870246887207
- ],
- [
- "▁immigrants",
- -12.230870246887207
- ],
- [
- "▁refined",
- -12.230929374694824
- ],
- [
- "▁Bishop",
- -12.231036186218262
- ],
- [
- "string",
- -12.231095314025879
- ],
- [
- "▁majoritatea",
- -12.231231689453125
- ],
- [
- "▁workflow",
- -12.23123836517334
- ],
- [
- "▁întreg",
- -12.231306076049805
- ],
- [
- "went",
- -12.231563568115234
- ],
- [
- "▁trat",
- -12.231689453125
- ],
- [
- "felul",
- -12.23176383972168
- ],
- [
- "▁hardwood",
- -12.231821060180664
- ],
- [
- "▁Task",
- -12.231867790222168
- ],
- [
- "branded",
- -12.231921195983887
- ],
- [
- "▁cinq",
- -12.231966018676758
- ],
- [
- "▁curb",
- -12.232041358947754
- ],
- [
- "▁Discount",
- -12.232043266296387
- ],
- [
- "▁Episode",
- -12.232131958007812
- ],
- [
- "▁Knowledge",
- -12.232144355773926
- ],
- [
- "▁tricky",
- -12.232173919677734
- ],
- [
- "▁characteristic",
- -12.232233047485352
- ],
- [
- "▁plata",
- -12.23226261138916
- ],
- [
- "▁Labour",
- -12.23232650756836
- ],
- [
- "▁Tha",
- -12.232372283935547
- ],
- [
- "▁Liefer",
- -12.232430458068848
- ],
- [
- "▁Reader",
- -12.232471466064453
- ],
- [
- "▁Linda",
- -12.232521057128906
- ],
- [
- "ittlerweile",
- -12.232552528381348
- ],
- [
- "defining",
- -12.232564926147461
- ],
- [
- "▁delayed",
- -12.232635498046875
- ],
- [
- "▁Bewertung",
- -12.232674598693848
- ],
- [
- "▁Unique",
- -12.232791900634766
- ],
- [
- "▁Champion",
- -12.232866287231445
- ],
- [
- "2008",
- -12.232897758483887
- ],
- [
- "▁conclu",
- -12.232934951782227
- ],
- [
- "▁câștig",
- -12.2329740524292
- ],
- [
- "▁scheduling",
- -12.2329740524292
- ],
- [
- "▁sailing",
- -12.233116149902344
- ],
- [
- "▁Storm",
- -12.23318862915039
- ],
- [
- "▁Stil",
- -12.23320198059082
- ],
- [
- "▁Album",
- -12.233211517333984
- ],
- [
- "▁ultime",
- -12.233343124389648
- ],
- [
- "url",
- -12.233369827270508
- ],
- [
- "▁terrific",
- -12.23339557647705
- ],
- [
- "▁remedy",
- -12.233396530151367
- ],
- [
- "▁Around",
- -12.233592987060547
- ],
- [
- "▁Kni",
- -12.233756065368652
- ],
- [
- "etty",
- -12.23376750946045
- ],
- [
- "Managing",
- -12.233809471130371
- ],
- [
- "▁Bedeutung",
- -12.233816146850586
- ],
- [
- "▁earthquake",
- -12.233817100524902
- ],
- [
- "▁Telefon",
- -12.233818054199219
- ],
- [
- "▁Upper",
- -12.233869552612305
- ],
- [
- "▁validation",
- -12.233892440795898
- ],
- [
- "-22",
- -12.233997344970703
- ],
- [
- "▁queue",
- -12.23401165008545
- ],
- [
- "tinde",
- -12.234025001525879
- ],
- [
- "built",
- -12.234047889709473
- ],
- [
- "▁voix",
- -12.234125137329102
- ],
- [
- "▁Resource",
- -12.234126091003418
- ],
- [
- "ţiuni",
- -12.234143257141113
- ],
- [
- "▁satisfying",
- -12.234299659729004
- ],
- [
- "▁Kohl",
- -12.234441757202148
- ],
- [
- "▁Materials",
- -12.234618186950684
- ],
- [
- "▁esp",
- -12.234732627868652
- ],
- [
- "enseignement",
- -12.234773635864258
- ],
- [
- "danach",
- -12.234883308410645
- ],
- [
- "peux",
- -12.234932899475098
- ],
- [
- "▁deployed",
- -12.235113143920898
- ],
- [
- "▁1976",
- -12.235126495361328
- ],
- [
- "ușor",
- -12.235334396362305
- ],
- [
- "élection",
- -12.235380172729492
- ],
- [
- "ettes",
- -12.235437393188477
- ],
- [
- "▁Madison",
- -12.235506057739258
- ],
- [
- "108",
- -12.235685348510742
- ],
- [
- "berger",
- -12.235696792602539
- ],
- [
- "▁pedal",
- -12.235702514648438
- ],
- [
- "▁quasi",
- -12.235820770263672
- ],
- [
- "▁lend",
- -12.235843658447266
- ],
- [
- "VER",
- -12.235940933227539
- ],
- [
- "▁chapters",
- -12.236002922058105
- ],
- [
- "▁idei",
- -12.23600959777832
- ],
- [
- "Deine",
- -12.236034393310547
- ],
- [
- "▁endure",
- -12.236092567443848
- ],
- [
- "▁Studios",
- -12.236259460449219
- ],
- [
- "structure",
- -12.236274719238281
- ],
- [
- "▁puiss",
- -12.236370086669922
- ],
- [
- "▁Morning",
- -12.236443519592285
- ],
- [
- "guide",
- -12.236462593078613
- ],
- [
- "▁Wave",
- -12.236617088317871
- ],
- [
- "▁banque",
- -12.236879348754883
- ],
- [
- "änd",
- -12.236912727355957
- ],
- [
- "oubli",
- -12.237070083618164
- ],
- [
- "▁mixer",
- -12.237125396728516
- ],
- [
- "▁remedi",
- -12.237210273742676
- ],
- [
- "▁scop",
- -12.237421989440918
- ],
- [
- "▁Rosen",
- -12.237561225891113
- ],
- [
- "▁spital",
- -12.23773193359375
- ],
- [
- "blau",
- -12.237811088562012
- ],
- [
- "▁financiar",
- -12.237865447998047
- ],
- [
- "avour",
- -12.237871170043945
- ],
- [
- "Def",
- -12.238025665283203
- ],
- [
- "▁socket",
- -12.238076210021973
- ],
- [
- "▁occurring",
- -12.238360404968262
- ],
- [
- "▁munci",
- -12.238368034362793
- ],
- [
- "▁realiza",
- -12.238426208496094
- ],
- [
- "▁beating",
- -12.2384614944458
- ],
- [
- "▁Phillip",
- -12.238490104675293
- ],
- [
- "▁courant",
- -12.238509178161621
- ],
- [
- "Auto",
- -12.238608360290527
- ],
- [
- "▁Lager",
- -12.238685607910156
- ],
- [
- "▁folos",
- -12.238696098327637
- ],
- [
- "▁moyens",
- -12.238770484924316
- ],
- [
- "▁Ec",
- -12.238780975341797
- ],
- [
- "▁Strip",
- -12.238788604736328
- ],
- [
- "sparen",
- -12.238848686218262
- ],
- [
- "▁Nintendo",
- -12.238886833190918
- ],
- [
- "▁Murphy",
- -12.238912582397461
- ],
- [
- "▁flux",
- -12.239034652709961
- ],
- [
- "▁mots",
- -12.239034652709961
- ],
- [
- "▁rechts",
- -12.239045143127441
- ],
- [
- "▁cardio",
- -12.239142417907715
- ],
- [
- "avoiding",
- -12.239343643188477
- ],
- [
- "érer",
- -12.239453315734863
- ],
- [
- "hiel",
- -12.239461898803711
- ],
- [
- "▁rezistent",
- -12.239521980285645
- ],
- [
- "close",
- -12.23954963684082
- ],
- [
- "hésitez",
- -12.239596366882324
- ],
- [
- "Hz",
- -12.239631652832031
- ],
- [
- "▁elaborate",
- -12.239689826965332
- ],
- [
- "▁permanently",
- -12.239709854125977
- ],
- [
- "▁Pittsburgh",
- -12.239734649658203
- ],
- [
- "▁counties",
- -12.239819526672363
- ],
- [
- "▁bookmark",
- -12.239919662475586
- ],
- [
- "▁Label",
- -12.239965438842773
- ],
- [
- "▁Freude",
- -12.239974021911621
- ],
- [
- "▁preferat",
- -12.239986419677734
- ],
- [
- "▁Mein",
- -12.239995002746582
- ],
- [
- "▁Crew",
- -12.240218162536621
- ],
- [
- "▁clips",
- -12.240253448486328
- ],
- [
- "8,000",
- -12.240263938903809
- ],
- [
- "▁recognise",
- -12.240311622619629
- ],
- [
- "ință",
- -12.240365028381348
- ],
- [
- "▁prieteni",
- -12.240447044372559
- ],
- [
- "Heute",
- -12.240522384643555
- ],
- [
- "ancienne",
- -12.240534782409668
- ],
- [
- "▁annoying",
- -12.240583419799805
- ],
- [
- "▁awful",
- -12.240704536437988
- ],
- [
- "▁Comments",
- -12.240774154663086
- ],
- [
- "▁musician",
- -12.240830421447754
- ],
- [
- "▁Elite",
- -12.241023063659668
- ],
- [
- "▁patri",
- -12.241024017333984
- ],
- [
- "▁Coupon",
- -12.241037368774414
- ],
- [
- "▁Farbe",
- -12.241097450256348
- ],
- [
- "▁contribui",
- -12.241110801696777
- ],
- [
- "hari",
- -12.241294860839844
- ],
- [
- "▁activitati",
- -12.24161148071289
- ],
- [
- "▁Traum",
- -12.2416410446167
- ],
- [
- "1.8",
- -12.24170207977295
- ],
- [
- "▁Healthcare",
- -12.24172306060791
- ],
- [
- "▁refresh",
- -12.241943359375
- ],
- [
- "▁Maha",
- -12.242060661315918
- ],
- [
- "▁dép",
- -12.242082595825195
- ],
- [
- "▁Studien",
- -12.242314338684082
- ],
- [
- "▁spectacol",
- -12.242378234863281
- ],
- [
- "impro",
- -12.24254035949707
- ],
- [
- "▁commentaire",
- -12.242544174194336
- ],
- [
- "ported",
- -12.242570877075195
- ],
- [
- "▁reclam",
- -12.242612838745117
- ],
- [
- "▁Verkauf",
- -12.242634773254395
- ],
- [
- "▁newspapers",
- -12.242661476135254
- ],
- [
- "▁iubit",
- -12.242838859558105
- ],
- [
- "▁Kenne",
- -12.242844581604004
- ],
- [
- "▁Consultant",
- -12.242958068847656
- ],
- [
- "▁stau",
- -12.242986679077148
- ],
- [
- "TON",
- -12.243057250976562
- ],
- [
- "▁Fehler",
- -12.243070602416992
- ],
- [
- "▁lettre",
- -12.243167877197266
- ],
- [
- "▁investigator",
- -12.243172645568848
- ],
- [
- "▁quantities",
- -12.243184089660645
- ],
- [
- "ogram",
- -12.243208885192871
- ],
- [
- "avaient",
- -12.24323844909668
- ],
- [
- "▁reducere",
- -12.243265151977539
- ],
- [
- "Lite",
- -12.243402481079102
- ],
- [
- "kurs",
- -12.243443489074707
- ],
- [
- "pré",
- -12.24383544921875
- ],
- [
- "pap",
- -12.243898391723633
- ],
- [
- "▁Männer",
- -12.243983268737793
- ],
- [
- "▁gauche",
- -12.244022369384766
- ],
- [
- "▁ähnlich",
- -12.244027137756348
- ],
- [
- "▁sunlight",
- -12.244063377380371
- ],
- [
- "▁rester",
- -12.24422550201416
- ],
- [
- "jumped",
- -12.244586944580078
- ],
- [
- "▁exclusiv",
- -12.24463176727295
- ],
- [
- "▁electoral",
- -12.244640350341797
- ],
- [
- "▁Portal",
- -12.244650840759277
- ],
- [
- "ulent",
- -12.244688987731934
- ],
- [
- "▁sonst",
- -12.24474048614502
- ],
- [
- "entraîne",
- -12.24483585357666
- ],
- [
- "▁repas",
- -12.244837760925293
- ],
- [
- "▁redus",
- -12.244858741760254
- ],
- [
- "aku",
- -12.244866371154785
- ],
- [
- "▁Graphic",
- -12.245251655578613
- ],
- [
- "▁geringe",
- -12.24539566040039
- ],
- [
- "plätze",
- -12.245474815368652
- ],
- [
- "Trebuie",
- -12.245479583740234
- ],
- [
- "▁rezultate",
- -12.245479583740234
- ],
- [
- "▁configure",
- -12.245683670043945
- ],
- [
- "▁PV",
- -12.245834350585938
- ],
- [
- "▁insect",
- -12.246109962463379
- ],
- [
- "▁Reviews",
- -12.246129035949707
- ],
- [
- "releasing",
- -12.246186256408691
- ],
- [
- "▁appliance",
- -12.246246337890625
- ],
- [
- "▁oferte",
- -12.246482849121094
- ],
- [
- "▁WILL",
- -12.246484756469727
- ],
- [
- "rion",
- -12.246499061584473
- ],
- [
- "▁Cole",
- -12.246582984924316
- ],
- [
- "▁1975",
- -12.246650695800781
- ],
- [
- "Admin",
- -12.24677848815918
- ],
- [
- "▁parade",
- -12.246800422668457
- ],
- [
- "▁mélange",
- -12.24692153930664
- ],
- [
- "▁shortage",
- -12.247007369995117
- ],
- [
- "▁Measure",
- -12.247400283813477
- ],
- [
- "anchmal",
- -12.24742603302002
- ],
- [
- "▁transfers",
- -12.247432708740234
- ],
- [
- "▁sistemului",
- -12.247573852539062
- ],
- [
- "▁deschide",
- -12.247819900512695
- ],
- [
- "▁Künstler",
- -12.247821807861328
- ],
- [
- "▁Plain",
- -12.247848510742188
- ],
- [
- "▁messaging",
- -12.247855186462402
- ],
- [
- "▁metabolism",
- -12.247879981994629
- ],
- [
- "fill",
- -12.248031616210938
- ],
- [
- "▁Bomb",
- -12.24814224243164
- ],
- [
- "usine",
- -12.248208045959473
- ],
- [
- "▁restart",
- -12.248233795166016
- ],
- [
- "▁Discussion",
- -12.248336791992188
- ],
- [
- "smith",
- -12.248472213745117
- ],
- [
- "▁Bh",
- -12.248607635498047
- ],
- [
- "▁sap",
- -12.248689651489258
- ],
- [
- "Moo",
- -12.248714447021484
- ],
- [
- "▁indirect",
- -12.248785972595215
- ],
- [
- "▁eingesetzt",
- -12.248863220214844
- ],
- [
- "▁Hip",
- -12.248870849609375
- ],
- [
- "▁iulie",
- -12.249113082885742
- ],
- [
- "▁atac",
- -12.249201774597168
- ],
- [
- "▁passport",
- -12.2492036819458
- ],
- [
- "▁Egyptian",
- -12.249290466308594
- ],
- [
- "▁soluți",
- -12.249349594116211
- ],
- [
- "▁cakes",
- -12.249356269836426
- ],
- [
- "▁Fellow",
- -12.24949836730957
- ],
- [
- "▁collision",
- -12.249533653259277
- ],
- [
- "▁abundant",
- -12.249961853027344
- ],
- [
- "▁Wonder",
- -12.24997329711914
- ],
- [
- "▁theories",
- -12.249991416931152
- ],
- [
- "landed",
- -12.250046730041504
- ],
- [
- "▁meantime",
- -12.2500638961792
- ],
- [
- "schlüsse",
- -12.25022029876709
- ],
- [
- "▁helicopter",
- -12.25039005279541
- ],
- [
- "Voici",
- -12.250479698181152
- ],
- [
- "▁Honey",
- -12.25049877166748
- ],
- [
- "▁deleted",
- -12.250511169433594
- ],
- [
- "▁Projekte",
- -12.250523567199707
- ],
- [
- "▁gasi",
- -12.2506742477417
- ],
- [
- "applique",
- -12.25068473815918
- ],
- [
- "TAL",
- -12.250699043273926
- ],
- [
- "notch",
- -12.250699996948242
- ],
- [
- "▁Response",
- -12.250818252563477
- ],
- [
- "▁deveni",
- -12.250818252563477
- ],
- [
- "▁regulate",
- -12.250829696655273
- ],
- [
- "▁vegetarian",
- -12.25083065032959
- ],
- [
- "▁Pastor",
- -12.250880241394043
- ],
- [
- "▁Strong",
- -12.250940322875977
- ],
- [
- "▁élèves",
- -12.251055717468262
- ],
- [
- "▁alimente",
- -12.25113582611084
- ],
- [
- "graphy",
- -12.251181602478027
- ],
- [
- "▁spirits",
- -12.251266479492188
- ],
- [
- "▁Cau",
- -12.251282691955566
- ],
- [
- "determin",
- -12.251304626464844
- ],
- [
- "arilor",
- -12.251382827758789
- ],
- [
- "▁masura",
- -12.251470565795898
- ],
- [
- "RAN",
- -12.251500129699707
- ],
- [
- "marked",
- -12.251564979553223
- ],
- [
- "cuba",
- -12.251602172851562
- ],
- [
- "omni",
- -12.251609802246094
- ],
- [
- "▁detox",
- -12.251662254333496
- ],
- [
- "▁quartz",
- -12.251741409301758
- ],
- [
- "▁Bug",
- -12.25177001953125
- ],
- [
- "▁Sugar",
- -12.25185775756836
- ],
- [
- "▁opponents",
- -12.25197982788086
- ],
- [
- "▁solved",
- -12.25207805633545
- ],
- [
- "semn",
- -12.252257347106934
- ],
- [
- "▁Prepare",
- -12.252558708190918
- ],
- [
- "ffel",
- -12.252586364746094
- ],
- [
- "▁Highlight",
- -12.252608299255371
- ],
- [
- "▁curent",
- -12.252618789672852
- ],
- [
- "▁praktisch",
- -12.252626419067383
- ],
- [
- "▁lending",
- -12.252676963806152
- ],
- [
- "▁minority",
- -12.252752304077148
- ],
- [
- "Free",
- -12.252970695495605
- ],
- [
- "business",
- -12.252997398376465
- ],
- [
- "▁outlook",
- -12.253097534179688
- ],
- [
- "▁assessments",
- -12.253168106079102
- ],
- [
- "▁Brother",
- -12.253266334533691
- ],
- [
- "▁partager",
- -12.25326919555664
- ],
- [
- "▁Brun",
- -12.25329303741455
- ],
- [
- "▁pedestrian",
- -12.25339412689209
- ],
- [
- "anța",
- -12.253413200378418
- ],
- [
- "▁recycled",
- -12.253457069396973
- ],
- [
- "▁quicker",
- -12.253626823425293
- ],
- [
- "▁lamps",
- -12.253683090209961
- ],
- [
- "▁nationally",
- -12.253813743591309
- ],
- [
- "▁Supplier",
- -12.253823280334473
- ],
- [
- "ograph",
- -12.253936767578125
- ],
- [
- "engage",
- -12.253981590270996
- ],
- [
- "▁Marg",
- -12.254131317138672
- ],
- [
- "▁aplicare",
- -12.254181861877441
- ],
- [
- "▁scared",
- -12.254194259643555
- ],
- [
- "▁accredited",
- -12.254255294799805
- ],
- [
- "▁outils",
- -12.25436019897461
- ],
- [
- "▁bâtiment",
- -12.254446029663086
- ],
- [
- "▁existed",
- -12.254586219787598
- ],
- [
- "gegangen",
- -12.254619598388672
- ],
- [
- "▁elevation",
- -12.25463581085205
- ],
- [
- "▁Tradition",
- -12.254670143127441
- ],
- [
- "▁Gericht",
- -12.254677772521973
- ],
- [
- "hub",
- -12.254680633544922
- ],
- [
- "strahl",
- -12.25473690032959
- ],
- [
- "build",
- -12.254796981811523
- ],
- [
- "▁Customers",
- -12.25487232208252
- ],
- [
- "klasse",
- -12.254890441894531
- ],
- [
- "▁pierre",
- -12.254895210266113
- ],
- [
- "(2)",
- -12.255006790161133
- ],
- [
- "Life",
- -12.255125999450684
- ],
- [
- "▁bachelor",
- -12.25513744354248
- ],
- [
- "▁quad",
- -12.255195617675781
- ],
- [
- "▁dispozitiv",
- -12.25523567199707
- ],
- [
- "106",
- -12.255266189575195
- ],
- [
- "▁suburb",
- -12.255495071411133
- ],
- [
- "▁1977",
- -12.255586624145508
- ],
- [
- "▁Alzheimer",
- -12.255973815917969
- ],
- [
- "▁spicy",
- -12.255988121032715
- ],
- [
- "▁spreading",
- -12.256002426147461
- ],
- [
- "nötigen",
- -12.256078720092773
- ],
- [
- "▁novels",
- -12.256104469299316
- ],
- [
- "▁responsabilité",
- -12.256141662597656
- ],
- [
- "▁Bud",
- -12.256332397460938
- ],
- [
- "▁desirable",
- -12.256407737731934
- ],
- [
- "TOR",
- -12.256444931030273
- ],
- [
- "five",
- -12.256547927856445
- ],
- [
- "▁Firmen",
- -12.256860733032227
- ],
- [
- "oeuvre",
- -12.257075309753418
- ],
- [
- "grass",
- -12.257233619689941
- ],
- [
- "▁practically",
- -12.257277488708496
- ],
- [
- "▁runners",
- -12.257281303405762
- ],
- [
- "▁mothers",
- -12.257341384887695
- ],
- [
- "Shop",
- -12.257345199584961
- ],
- [
- "▁Chicken",
- -12.257408142089844
- ],
- [
- "▁License",
- -12.257593154907227
- ],
- [
- "▁Bach",
- -12.25765323638916
- ],
- [
- "earliest",
- -12.257729530334473
- ],
- [
- "▁replica",
- -12.25774097442627
- ],
- [
- "▁haunt",
- -12.257833480834961
- ],
- [
- "▁materi",
- -12.257854461669922
- ],
- [
- "▁Finland",
- -12.257893562316895
- ],
- [
- "▁europene",
- -12.257919311523438
- ],
- [
- "abilă",
- -12.257944107055664
- ],
- [
- "cati",
- -12.258007049560547
- ],
- [
- "▁cholesterol",
- -12.258132934570312
- ],
- [
- "...).",
- -12.258151054382324
- ],
- [
- "cardi",
- -12.25838565826416
- ],
- [
- "▁(12",
- -12.258387565612793
- ],
- [
- "analyzed",
- -12.258506774902344
- ],
- [
- "▁respondents",
- -12.258591651916504
- ],
- [
- "▁höchste",
- -12.258646011352539
- ],
- [
- "▁Kern",
- -12.258647918701172
- ],
- [
- "▁knapp",
- -12.258781433105469
- ],
- [
- "▁Someone",
- -12.258955001831055
- ],
- [
- "▁équipé",
- -12.258997917175293
- ],
- [
- "credited",
- -12.259106636047363
- ],
- [
- "▁numar",
- -12.259163856506348
- ],
- [
- "▁Ace",
- -12.259185791015625
- ],
- [
- "zentrum",
- -12.2592191696167
- ],
- [
- "nehmer",
- -12.259270668029785
- ],
- [
- "arrivée",
- -12.259282112121582
- ],
- [
- "ELE",
- -12.259291648864746
- ],
- [
- "clean",
- -12.259418487548828
- ],
- [
- "Boost",
- -12.259538650512695
- ],
- [
- "call",
- -12.259575843811035
- ],
- [
- "▁Polizei",
- -12.259659767150879
- ],
- [
- "▁Januar",
- -12.259663581848145
- ],
- [
- "▁Tile",
- -12.259681701660156
- ],
- [
- "▁traduc",
- -12.259744644165039
- ],
- [
- "▁promptly",
- -12.259773254394531
- ],
- [
- "limit",
- -12.259809494018555
- ],
- [
- "▁recharge",
- -12.2598237991333
- ],
- [
- "▁wipe",
- -12.259862899780273
- ],
- [
- "▁Norway",
- -12.26001262664795
- ],
- [
- "▁Municipal",
- -12.260077476501465
- ],
- [
- "▁medieval",
- -12.260117530822754
- ],
- [
- "▁Treat",
- -12.26021671295166
- ],
- [
- "Orient",
- -12.260283470153809
- ],
- [
- "▁Stewart",
- -12.260294914245605
- ],
- [
- "▁lol",
- -12.26039981842041
- ],
- [
- "appartement",
- -12.260522842407227
- ],
- [
- "▁payer",
- -12.260655403137207
- ],
- [
- "▁splash",
- -12.260723114013672
- ],
- [
- "doubtedly",
- -12.260726928710938
- ],
- [
- "dry",
- -12.260846138000488
- ],
- [
- "▁Forex",
- -12.260939598083496
- ],
- [
- "▁Edinburgh",
- -12.260943412780762
- ],
- [
- "▁Traditional",
- -12.261032104492188
- ],
- [
- "▁1968",
- -12.261134147644043
- ],
- [
- "▁glow",
- -12.261248588562012
- ],
- [
- "Alternatively",
- -12.261265754699707
- ],
- [
- "▁partly",
- -12.261354446411133
- ],
- [
- "égi",
- -12.261401176452637
- ],
- [
- "▁Prices",
- -12.261640548706055
- ],
- [
- "haupt",
- -12.261651992797852
- ],
- [
- "▁sentences",
- -12.261711120605469
- ],
- [
- "ouvre",
- -12.261735916137695
- ],
- [
- "▁Liter",
- -12.261746406555176
- ],
- [
- "▁Important",
- -12.2620267868042
- ],
- [
- "▁Collins",
- -12.262077331542969
- ],
- [
- "▁reproduce",
- -12.262106895446777
- ],
- [
- "▁selten",
- -12.262124061584473
- ],
- [
- "▁Mitte",
- -12.262170791625977
- ],
- [
- "OA",
- -12.262174606323242
- ],
- [
- "▁Sister",
- -12.262358665466309
- ],
- [
- "▁responding",
- -12.262385368347168
- ],
- [
- "▁ballot",
- -12.262455940246582
- ],
- [
- "▁Nutrition",
- -12.262460708618164
- ],
- [
- "occurrence",
- -12.26246452331543
- ],
- [
- "Atunci",
- -12.262604713439941
- ],
- [
- "▁hockey",
- -12.262680053710938
- ],
- [
- "▁undertaking",
- -12.262697219848633
- ],
- [
- "▁educators",
- -12.262885093688965
- ],
- [
- "▁Swedish",
- -12.262893676757812
- ],
- [
- "▁Recovery",
- -12.262894630432129
- ],
- [
- "▁circum",
- -12.262910842895508
- ],
- [
- "▁chains",
- -12.263084411621094
- ],
- [
- "▁genug",
- -12.263113021850586
- ],
- [
- "▁Pil",
- -12.263227462768555
- ],
- [
- "▁farms",
- -12.263265609741211
- ],
- [
- "▁simplicity",
- -12.263336181640625
- ],
- [
- "-21",
- -12.263399124145508
- ],
- [
- "▁partition",
- -12.263493537902832
- ],
- [
- "▁Relations",
- -12.26360034942627
- ],
- [
- "zentrale",
- -12.263794898986816
- ],
- [
- "lapse",
- -12.263855934143066
- ],
- [
- "▁toast",
- -12.263862609863281
- ],
- [
- "▁citi",
- -12.263946533203125
- ],
- [
- "▁longtemps",
- -12.263984680175781
- ],
- [
- "maj",
- -12.264448165893555
- ],
- [
- "▁Cin",
- -12.264483451843262
- ],
- [
- "zeichen",
- -12.264504432678223
- ],
- [
- "▁Zoo",
- -12.264567375183105
- ],
- [
- "▁frisch",
- -12.264570236206055
- ],
- [
- "▁permettra",
- -12.264595031738281
- ],
- [
- "▁Liberty",
- -12.264642715454102
- ],
- [
- "▁playground",
- -12.264873504638672
- ],
- [
- "▁Mate",
- -12.265031814575195
- ],
- [
- "▁evolving",
- -12.265066146850586
- ],
- [
- "national",
- -12.265207290649414
- ],
- [
- "▁signifie",
- -12.265279769897461
- ],
- [
- "▁Related",
- -12.265292167663574
- ],
- [
- "NES",
- -12.265337944030762
- ],
- [
- "euil",
- -12.265473365783691
- ],
- [
- "▁struggles",
- -12.265542030334473
- ],
- [
- "▁instinct",
- -12.265628814697266
- ],
- [
- "arbre",
- -12.26608943939209
- ],
- [
- "▁commands",
- -12.266222953796387
- ],
- [
- "▁frumoase",
- -12.26637077331543
- ],
- [
- "▁watches",
- -12.266779899597168
- ],
- [
- "NM",
- -12.266804695129395
- ],
- [
- "▁influential",
- -12.266807556152344
- ],
- [
- "▁gewesen",
- -12.266901969909668
- ],
- [
- "▁Pictures",
- -12.267224311828613
- ],
- [
- "▁HVAC",
- -12.267242431640625
- ],
- [
- "▁skate",
- -12.26732063293457
- ],
- [
- "▁Robot",
- -12.267327308654785
- ],
- [
- "▁Boys",
- -12.267404556274414
- ],
- [
- "▁Mutter",
- -12.267425537109375
- ],
- [
- "▁marques",
- -12.267539024353027
- ],
- [
- "utiliser",
- -12.267793655395508
- ],
- [
- "▁amazed",
- -12.267799377441406
- ],
- [
- "ächtig",
- -12.26783275604248
- ],
- [
- "▁Success",
- -12.267870903015137
- ],
- [
- "gramm",
- -12.267956733703613
- ],
- [
- "▁1972",
- -12.267956733703613
- ],
- [
- "▁marina",
- -12.268269538879395
- ],
- [
- "▁lou",
- -12.268321990966797
- ],
- [
- "▁précis",
- -12.268380165100098
- ],
- [
- "ographic",
- -12.268482208251953
- ],
- [
- "people",
- -12.26848316192627
- ],
- [
- "fahr",
- -12.268547058105469
- ],
- [
- "▁Contemporary",
- -12.268550872802734
- ],
- [
- "▁frustrating",
- -12.26858139038086
- ],
- [
- "chide",
- -12.268704414367676
- ],
- [
- "1.5",
- -12.268807411193848
- ],
- [
- "▁ankle",
- -12.268850326538086
- ],
- [
- "▁proximity",
- -12.268986701965332
- ],
- [
- "▁Leute",
- -12.269006729125977
- ],
- [
- "UA",
- -12.269031524658203
- ],
- [
- "union",
- -12.269131660461426
- ],
- [
- "▁recovered",
- -12.269133567810059
- ],
- [
- "▁sword",
- -12.269216537475586
- ],
- [
- "▁Mut",
- -12.26923942565918
- ],
- [
- "▁Rin",
- -12.269360542297363
- ],
- [
- "▁lectures",
- -12.26942253112793
- ],
- [
- "▁licensing",
- -12.269423484802246
- ],
- [
- "MAC",
- -12.269498825073242
- ],
- [
- "▁commute",
- -12.269776344299316
- ],
- [
- "Acesta",
- -12.269858360290527
- ],
- [
- "▁Koch",
- -12.270088195800781
- ],
- [
- "▁depozit",
- -12.270119667053223
- ],
- [
- "▁erstmal",
- -12.270163536071777
- ],
- [
- "arhi",
- -12.270271301269531
- ],
- [
- "▁Normal",
- -12.270462036132812
- ],
- [
- "EZ",
- -12.270464897155762
- ],
- [
- "ărilor",
- -12.270986557006836
- ],
- [
- "▁favoris",
- -12.271041870117188
- ],
- [
- "▁$9",
- -12.271050453186035
- ],
- [
- "▁Lawrence",
- -12.271172523498535
- ],
- [
- "▁fixing",
- -12.271200180053711
- ],
- [
- "▁researching",
- -12.271288871765137
- ],
- [
- "▁Pant",
- -12.271467208862305
- ],
- [
- "▁candid",
- -12.271490097045898
- ],
- [
- "▁Arkansas",
- -12.27160930633545
- ],
- [
- "▁bitcoin",
- -12.271612167358398
- ],
- [
- "ва",
- -12.271645545959473
- ],
- [
- "▁Finger",
- -12.271692276000977
- ],
- [
- "▁SRL",
- -12.271718978881836
- ],
- [
- "Arg",
- -12.271797180175781
- ],
- [
- "trade",
- -12.271903991699219
- ],
- [
- "▁extraction",
- -12.271941184997559
- ],
- [
- "▁footprint",
- -12.2720308303833
- ],
- [
- "▁folosite",
- -12.272085189819336
- ],
- [
- "▁Flex",
- -12.272184371948242
- ],
- [
- "▁dys",
- -12.272294998168945
- ],
- [
- "▁Wright",
- -12.272343635559082
- ],
- [
- "▁multitude",
- -12.272378921508789
- ],
- [
- "▁Chu",
- -12.272494316101074
- ],
- [
- "▁Jerry",
- -12.27249526977539
- ],
- [
- "▁notebook",
- -12.272722244262695
- ],
- [
- "▁SIM",
- -12.272932052612305
- ],
- [
- "dietary",
- -12.272963523864746
- ],
- [
- "▁polished",
- -12.272984504699707
- ],
- [
- "▁carriers",
- -12.272993087768555
- ],
- [
- "▁cardiac",
- -12.27299976348877
- ],
- [
- "▁burned",
- -12.273038864135742
- ],
- [
- "▁sealed",
- -12.273062705993652
- ],
- [
- "▁pumps",
- -12.273224830627441
- ],
- [
- "▁consumed",
- -12.273233413696289
- ],
- [
- "▁Teaching",
- -12.273446083068848
- ],
- [
- "▁daughters",
- -12.27348518371582
- ],
- [
- "serviciile",
- -12.273600578308105
- ],
- [
- "▁Teams",
- -12.273690223693848
- ],
- [
- "▁avoided",
- -12.273903846740723
- ],
- [
- "▁compagnie",
- -12.274019241333008
- ],
- [
- "▁mașin",
- -12.274024963378906
- ],
- [
- "▁Sean",
- -12.27418041229248
- ],
- [
- "▁arunc",
- -12.274208068847656
- ],
- [
- "kräfte",
- -12.274238586425781
- ],
- [
- "vani",
- -12.274255752563477
- ],
- [
- "Metall",
- -12.27437973022461
- ],
- [
- "2009",
- -12.274449348449707
- ],
- [
- "moi",
- -12.274688720703125
- ],
- [
- "▁THAT",
- -12.274700164794922
- ],
- [
- "▁Ny",
- -12.274809837341309
- ],
- [
- "▁countertops",
- -12.274860382080078
- ],
- [
- "Pod",
- -12.274938583374023
- ],
- [
- "amente",
- -12.274943351745605
- ],
- [
- "▁offshore",
- -12.275001525878906
- ],
- [
- "luti",
- -12.275087356567383
- ],
- [
- "parked",
- -12.275160789489746
- ],
- [
- "ajout",
- -12.275247573852539
- ],
- [
- "Shirt",
- -12.275328636169434
- ],
- [
- "▁3/4",
- -12.275389671325684
- ],
- [
- "▁gratuite",
- -12.27543830871582
- ],
- [
- "mètres",
- -12.27557373046875
- ],
- [
- "▁Wish",
- -12.2755765914917
- ],
- [
- "▁holistic",
- -12.27558422088623
- ],
- [
- "gren",
- -12.275607109069824
- ],
- [
- "compiled",
- -12.275660514831543
- ],
- [
- "▁innocent",
- -12.275779724121094
- ],
- [
- "▁sorte",
- -12.275787353515625
- ],
- [
- "▁insulin",
- -12.275792121887207
- ],
- [
- "▁Academic",
- -12.275996208190918
- ],
- [
- "▁acrylic",
- -12.27600383758545
- ],
- [
- "▁hinzu",
- -12.27616024017334
- ],
- [
- "▁compression",
- -12.27619457244873
- ],
- [
- "▁viral",
- -12.276220321655273
- ],
- [
- "▁stereo",
- -12.2764892578125
- ],
- [
- "▁Concept",
- -12.276542663574219
- ],
- [
- "▁Margaret",
- -12.276659965515137
- ],
- [
- "▁consolidation",
- -12.276875495910645
- ],
- [
- "Figure",
- -12.277058601379395
- ],
- [
- "zzo",
- -12.277061462402344
- ],
- [
- "▁Egg",
- -12.277098655700684
- ],
- [
- "weiterhin",
- -12.277213096618652
- ],
- [
- "▁Vista",
- -12.277252197265625
- ],
- [
- "▁necessity",
- -12.277316093444824
- ],
- [
- "▁kayak",
- -12.277490615844727
- ],
- [
- "▁consensus",
- -12.277535438537598
- ],
- [
- "▁Katz",
- -12.277602195739746
- ],
- [
- "▁Warren",
- -12.277640342712402
- ],
- [
- "▁custody",
- -12.277755737304688
- ],
- [
- "++",
- -12.277759552001953
- ],
- [
- "▁paiement",
- -12.277782440185547
- ],
- [
- "▁foul",
- -12.277878761291504
- ],
- [
- "Chaque",
- -12.277934074401855
- ],
- [
- "▁Syrian",
- -12.277998924255371
- ],
- [
- "▁photographers",
- -12.278056144714355
- ],
- [
- "▁dismiss",
- -12.278270721435547
- ],
- [
- "▁Gaz",
- -12.278526306152344
- ],
- [
- "▁développer",
- -12.278529167175293
- ],
- [
- "▁Dakota",
- -12.27863883972168
- ],
- [
- "▁cardiovascular",
- -12.278642654418945
- ],
- [
- "▁tattoo",
- -12.278858184814453
- ],
- [
- "▁Lighting",
- -12.278918266296387
- ],
- [
- "▁nowhere",
- -12.278940200805664
- ],
- [
- "vada",
- -12.27895450592041
- ],
- [
- "▁Favor",
- -12.279084205627441
- ],
- [
- "ruled",
- -12.2791748046875
- ],
- [
- "▁Dating",
- -12.2793550491333
- ],
- [
- "gain",
- -12.279963493347168
- ],
- [
- "rism",
- -12.28016471862793
- ],
- [
- "coloured",
- -12.280169486999512
- ],
- [
- "▁refugees",
- -12.280184745788574
- ],
- [
- "▁Schm",
- -12.2803955078125
- ],
- [
- "▁happily",
- -12.280402183532715
- ],
- [
- "▁specification",
- -12.280607223510742
- ],
- [
- "WM",
- -12.280736923217773
- ],
- [
- "▁intro",
- -12.280823707580566
- ],
- [
- "rack",
- -12.28097915649414
- ],
- [
- "characterized",
- -12.28107738494873
- ],
- [
- "▁externe",
- -12.281136512756348
- ],
- [
- "▁arrives",
- -12.28114128112793
- ],
- [
- "WO",
- -12.281181335449219
- ],
- [
- "bericht",
- -12.281233787536621
- ],
- [
- "▁delays",
- -12.281242370605469
- ],
- [
- "▁Flight",
- -12.281256675720215
- ],
- [
- "1-3",
- -12.281524658203125
- ],
- [
- "▁Singh",
- -12.281548500061035
- ],
- [
- "▁shifting",
- -12.281651496887207
- ],
- [
- "▁dashboard",
- -12.281729698181152
- ],
- [
- "▁lieux",
- -12.281781196594238
- ],
- [
- "▁validate",
- -12.281901359558105
- ],
- [
- "▁uniquement",
- -12.281963348388672
- ],
- [
- "clip",
- -12.28199291229248
- ],
- [
- "cov",
- -12.282132148742676
- ],
- [
- "▁tendance",
- -12.282215118408203
- ],
- [
- "èle",
- -12.282258033752441
- ],
- [
- "▁incepe",
- -12.282261848449707
- ],
- [
- "▁chunk",
- -12.282585144042969
- ],
- [
- "▁Nr",
- -12.28266716003418
- ],
- [
- "▁Montana",
- -12.282674789428711
- ],
- [
- "▁sticks",
- -12.28277587890625
- ],
- [
- "▁caps",
- -12.28309154510498
- ],
- [
- "▁Jimmy",
- -12.283167839050293
- ],
- [
- "▁Levi",
- -12.283285140991211
- ],
- [
- "▁cables",
- -12.28345012664795
- ],
- [
- "▁SB",
- -12.283550262451172
- ],
- [
- "▁thème",
- -12.2836275100708
- ],
- [
- "ADA",
- -12.283672332763672
- ],
- [
- "▁garant",
- -12.283686637878418
- ],
- [
- "▁Joint",
- -12.283820152282715
- ],
- [
- "▁partage",
- -12.28398323059082
- ],
- [
- "schreib",
- -12.284119606018066
- ],
- [
- "ether",
- -12.28420352935791
- ],
- [
- "▁Klima",
- -12.284303665161133
- ],
- [
- "▁medicines",
- -12.284317016601562
- ],
- [
- "▁pH",
- -12.284320831298828
- ],
- [
- "Architect",
- -12.284378051757812
- ],
- [
- "știi",
- -12.284396171569824
- ],
- [
- "▁retrouve",
- -12.284700393676758
- ],
- [
- "▁posture",
- -12.284753799438477
- ],
- [
- "Feature",
- -12.284773826599121
- ],
- [
- "▁drying",
- -12.284884452819824
- ],
- [
- "trifft",
- -12.28488826751709
- ],
- [
- "ibi",
- -12.285079002380371
- ],
- [
- "▁rezerv",
- -12.285116195678711
- ],
- [
- "▁Vă",
- -12.28518009185791
- ],
- [
- "▁Speaker",
- -12.285282135009766
- ],
- [
- "▁illustration",
- -12.285319328308105
- ],
- [
- "oooo",
- -12.285419464111328
- ],
- [
- "▁initiated",
- -12.285518646240234
- ],
- [
- "PK",
- -12.285545349121094
- ],
- [
- "▁algorithms",
- -12.285630226135254
- ],
- [
- "▁zice",
- -12.285757064819336
- ],
- [
- "WI",
- -12.28581428527832
- ],
- [
- "urgence",
- -12.285823822021484
- ],
- [
- "▁bloggers",
- -12.285887718200684
- ],
- [
- "▁realitate",
- -12.285894393920898
- ],
- [
- "eks",
- -12.28598690032959
- ],
- [
- "▁cushions",
- -12.286149024963379
- ],
- [
- "▁Kri",
- -12.286224365234375
- ],
- [
- "▁réalisation",
- -12.286396026611328
- ],
- [
- "▁Photoshop",
- -12.286407470703125
- ],
- [
- "cret",
- -12.286462783813477
- ],
- [
- "faire",
- -12.286613464355469
- ],
- [
- "▁Cei",
- -12.286782264709473
- ],
- [
- "ICO",
- -12.286789894104004
- ],
- [
- "Contin",
- -12.28681755065918
- ],
- [
- "▁Builder",
- -12.286916732788086
- ],
- [
- "look",
- -12.28698444366455
- ],
- [
- "▁tenants",
- -12.287023544311523
- ],
- [
- "▁gloves",
- -12.287113189697266
- ],
- [
- "Day",
- -12.287169456481934
- ],
- [
- "firmly",
- -12.28725814819336
- ],
- [
- "CIA",
- -12.287352561950684
- ],
- [
- "▁TVA",
- -12.28741455078125
- ],
- [
- "▁notifications",
- -12.287446975708008
- ],
- [
- "▁Higher",
- -12.287459373474121
- ],
- [
- "▁Weihnachts",
- -12.287491798400879
- ],
- [
- "▁blur",
- -12.287755012512207
- ],
- [
- "ов",
- -12.288087844848633
- ],
- [
- "feder",
- -12.288159370422363
- ],
- [
- "▁explosion",
- -12.288171768188477
- ],
- [
- "▁Fenster",
- -12.288189888000488
- ],
- [
- "▁junge",
- -12.288225173950195
- ],
- [
- "▁Highland",
- -12.288230895996094
- ],
- [
- "▁Lü",
- -12.288290023803711
- ],
- [
- "▁Alba",
- -12.28832721710205
- ],
- [
- "▁Dort",
- -12.288338661193848
- ],
- [
- "▁recruiting",
- -12.28835391998291
- ],
- [
- "▁Multiple",
- -12.288549423217773
- ],
- [
- "▁animated",
- -12.288604736328125
- ],
- [
- "▁Virgin",
- -12.288637161254883
- ],
- [
- "1000",
- -12.288676261901855
- ],
- [
- "▁resin",
- -12.288700103759766
- ],
- [
- "▁matrix",
- -12.288826942443848
- ],
- [
- "irri",
- -12.289011001586914
- ],
- [
- "▁chiffre",
- -12.28904914855957
- ],
- [
- "▁Corps",
- -12.289252281188965
- ],
- [
- "▁advocacy",
- -12.28927230834961
- ],
- [
- "▁pozitiv",
- -12.289274215698242
- ],
- [
- "▁pouss",
- -12.289451599121094
- ],
- [
- "événement",
- -12.28950309753418
- ],
- [
- "▁pielii",
- -12.289717674255371
- ],
- [
- "onnais",
- -12.289750099182129
- ],
- [
- "▁Statement",
- -12.289754867553711
- ],
- [
- "crimin",
- -12.289868354797363
- ],
- [
- "hidrat",
- -12.289942741394043
- ],
- [
- "▁Jugendliche",
- -12.290057182312012
- ],
- [
- "TRI",
- -12.290223121643066
- ],
- [
- "erra",
- -12.290240287780762
- ],
- [
- "chat",
- -12.290321350097656
- ],
- [
- "▁traits",
- -12.290359497070312
- ],
- [
- "▁incentives",
- -12.29038143157959
- ],
- [
- "▁accelerate",
- -12.290568351745605
- ],
- [
- "woven",
- -12.290633201599121
- ],
- [
- "UST",
- -12.290688514709473
- ],
- [
- "▁premiers",
- -12.290717124938965
- ],
- [
- "▁Ferien",
- -12.290755271911621
- ],
- [
- "▁mariage",
- -12.290796279907227
- ],
- [
- "▁financially",
- -12.290801048278809
- ],
- [
- "gesellschaft",
- -12.290863037109375
- ],
- [
- "▁situaţi",
- -12.290865898132324
- ],
- [
- "▁quoted",
- -12.291373252868652
- ],
- [
- "▁periodic",
- -12.291421890258789
- ],
- [
- "▁chaos",
- -12.291543960571289
- ],
- [
- "▁remodel",
- -12.29159927368164
- ],
- [
- "▁Contractor",
- -12.291641235351562
- ],
- [
- "▁recuper",
- -12.291729927062988
- ],
- [
- "▁driveway",
- -12.291755676269531
- ],
- [
- "▁entertain",
- -12.291765213012695
- ],
- [
- "▁condus",
- -12.291769027709961
- ],
- [
- "▁chefs",
- -12.29184341430664
- ],
- [
- "pak",
- -12.291866302490234
- ],
- [
- "▁possède",
- -12.291948318481445
- ],
- [
- "▁outreach",
- -12.291984558105469
- ],
- [
- "▁navig",
- -12.292036056518555
- ],
- [
- "▁renewal",
- -12.292071342468262
- ],
- [
- "▁Rice",
- -12.292309761047363
- ],
- [
- "▁Czech",
- -12.292398452758789
- ],
- [
- "▁entstehen",
- -12.292445182800293
- ],
- [
- "▁droite",
- -12.292448997497559
- ],
- [
- "▁Investor",
- -12.292497634887695
- ],
- [
- "▁Soci",
- -12.29250431060791
- ],
- [
- "▁scalp",
- -12.292622566223145
- ],
- [
- "▁politiques",
- -12.292815208435059
- ],
- [
- "▁plaintiff",
- -12.292841911315918
- ],
- [
- "extending",
- -12.29287052154541
- ],
- [
- "▁paperwork",
- -12.29300594329834
- ],
- [
- "vizi",
- -12.293142318725586
- ],
- [
- "assisting",
- -12.29317569732666
- ],
- [
- "local",
- -12.293272972106934
- ],
- [
- "▁Wear",
- -12.293323516845703
- ],
- [
- "▁descend",
- -12.293340682983398
- ],
- [
- "▁Wikipedia",
- -12.293513298034668
- ],
- [
- "▁Consiliului",
- -12.293516159057617
- ],
- [
- "▁Nokia",
- -12.293540000915527
- ],
- [
- "▁facult",
- -12.293560028076172
- ],
- [
- "▁altogether",
- -12.293851852416992
- ],
- [
- "▁rankings",
- -12.29391860961914
- ],
- [
- "▁downloading",
- -12.293953895568848
- ],
- [
- "QU",
- -12.294007301330566
- ],
- [
- "▁Olive",
- -12.294041633605957
- ],
- [
- "▁backdrop",
- -12.294110298156738
- ],
- [
- "▁recomandat",
- -12.294116020202637
- ],
- [
- "▁Faculty",
- -12.294184684753418
- ],
- [
- "ANS",
- -12.294220924377441
- ],
- [
- "▁fracture",
- -12.294225692749023
- ],
- [
- "job",
- -12.29448127746582
- ],
- [
- "▁anticipate",
- -12.294525146484375
- ],
- [
- "▁drift",
- -12.294543266296387
- ],
- [
- "▁Marco",
- -12.294632911682129
- ],
- [
- "▁witnessed",
- -12.294700622558594
- ],
- [
- "▁comprend",
- -12.294974327087402
- ],
- [
- "▁bulb",
- -12.29504680633545
- ],
- [
- "▁shallow",
- -12.295059204101562
- ],
- [
- "stärke",
- -12.295063972473145
- ],
- [
- "▁Jessica",
- -12.295080184936523
- ],
- [
- "▁démarche",
- -12.29508113861084
- ],
- [
- "▁traditionally",
- -12.29508113861084
- ],
- [
- "Deputy",
- -12.295093536376953
- ],
- [
- "▁rivers",
- -12.295260429382324
- ],
- [
- "▁livraison",
- -12.29531192779541
- ],
- [
- "▁lacking",
- -12.295421600341797
- ],
- [
- "▁remodeling",
- -12.295426368713379
- ],
- [
- "▁acesteia",
- -12.295514106750488
- ],
- [
- "▁grosse",
- -12.295669555664062
- ],
- [
- "▁propus",
- -12.295833587646484
- ],
- [
- "lessly",
- -12.29587459564209
- ],
- [
- "▁Kredit",
- -12.295931816101074
- ],
- [
- "reputable",
- -12.295981407165527
- ],
- [
- "▁Sell",
- -12.2960205078125
- ],
- [
- "▁Crime",
- -12.296111106872559
- ],
- [
- "Ent",
- -12.296310424804688
- ],
- [
- "finity",
- -12.296422004699707
- ],
- [
- "▁Complex",
- -12.296500205993652
- ],
- [
- "easing",
- -12.296638488769531
- ],
- [
- "dynamic",
- -12.296670913696289
- ],
- [
- "▁eaten",
- -12.296727180480957
- ],
- [
- "gezogen",
- -12.296734809875488
- ],
- [
- "▁2004,",
- -12.296774864196777
- ],
- [
- "▁Muslims",
- -12.296822547912598
- ],
- [
- "▁Sprache",
- -12.296883583068848
- ],
- [
- "▁Truth",
- -12.296927452087402
- ],
- [
- "▁guarantees",
- -12.296928405761719
- ],
- [
- "/5",
- -12.29712963104248
- ],
- [
- "”).",
- -12.297135353088379
- ],
- [
- "▁Medium",
- -12.2972993850708
- ],
- [
- "▁décidé",
- -12.297445297241211
- ],
- [
- "▁balcony",
- -12.29747200012207
- ],
- [
- "leuchte",
- -12.297502517700195
- ],
- [
- "hik",
- -12.297849655151367
- ],
- [
- "▁Agriculture",
- -12.298221588134766
- ],
- [
- "▁securities",
- -12.298221588134766
- ],
- [
- "Probably",
- -12.298224449157715
- ],
- [
- "▁macar",
- -12.29824161529541
- ],
- [
- "▁Signal",
- -12.298399925231934
- ],
- [
- "lake",
- -12.298677444458008
- ],
- [
- "▁compétences",
- -12.298726081848145
- ],
- [
- "▁proprietary",
- -12.298812866210938
- ],
- [
- "allons",
- -12.298850059509277
- ],
- [
- "▁belongs",
- -12.298916816711426
- ],
- [
- "▁missile",
- -12.298958778381348
- ],
- [
- "țiune",
- -12.298999786376953
- ],
- [
- "▁Integration",
- -12.299116134643555
- ],
- [
- "▁testimony",
- -12.299120903015137
- ],
- [
- "▁wesentlich",
- -12.299142837524414
- ],
- [
- "▁donors",
- -12.299152374267578
- ],
- [
- "▁pivot",
- -12.299202919006348
- ],
- [
- "▁Uber",
- -12.299219131469727
- ],
- [
- "▁databases",
- -12.299281120300293
- ],
- [
- "▁studi",
- -12.299317359924316
- ],
- [
- "totdeauna",
- -12.299351692199707
- ],
- [
- "▁briefly",
- -12.299449920654297
- ],
- [
- "▁livr",
- -12.29952335357666
- ],
- [
- "▁CRM",
- -12.299581527709961
- ],
- [
- "gone",
- -12.299697875976562
- ],
- [
- "10)",
- -12.299761772155762
- ],
- [
- "▁zilele",
- -12.299920082092285
- ],
- [
- "Basically",
- -12.300008773803711
- ],
- [
- "▁medie",
- -12.300041198730469
- ],
- [
- "spotted",
- -12.30006217956543
- ],
- [
- "▁troubles",
- -12.30009937286377
- ],
- [
- "▁acknowledged",
- -12.300176620483398
- ],
- [
- "350",
- -12.300185203552246
- ],
- [
- "LB",
- -12.300273895263672
- ],
- [
- "Phy",
- -12.30038833618164
- ],
- [
- "natal",
- -12.300397872924805
- ],
- [
- "illé",
- -12.300445556640625
- ],
- [
- "bilder",
- -12.300625801086426
- ],
- [
- "▁apples",
- -12.300636291503906
- ],
- [
- "graphical",
- -12.300889015197754
- ],
- [
- "organiser",
- -12.301024436950684
- ],
- [
- "▁ochii",
- -12.301040649414062
- ],
- [
- "glas",
- -12.301178932189941
- ],
- [
- "CAP",
- -12.301180839538574
- ],
- [
- "▁Doors",
- -12.301331520080566
- ],
- [
- "▁Eis",
- -12.30156135559082
- ],
- [
- "tipuri",
- -12.301590919494629
- ],
- [
- "▁Worth",
- -12.301684379577637
- ],
- [
- "izează",
- -12.301719665527344
- ],
- [
- "nunț",
- -12.30180549621582
- ],
- [
- "▁Trip",
- -12.30186653137207
- ],
- [
- "ISS",
- -12.301976203918457
- ],
- [
- "efficient",
- -12.30201530456543
- ],
- [
- "Luckily",
- -12.302099227905273
- ],
- [
- "▁vase",
- -12.302133560180664
- ],
- [
- "▁gay",
- -12.302343368530273
- ],
- [
- "▁certificates",
- -12.302434921264648
- ],
- [
- "riad",
- -12.302549362182617
- ],
- [
- "stab",
- -12.302570343017578
- ],
- [
- "affiche",
- -12.302604675292969
- ],
- [
- "▁iPod",
- -12.302645683288574
- ],
- [
- "▁aștept",
- -12.302726745605469
- ],
- [
- "▁$500",
- -12.302751541137695
- ],
- [
- "▁Catherine",
- -12.302952766418457
- ],
- [
- "▁Circuit",
- -12.302957534790039
- ],
- [
- "▁ranch",
- -12.303045272827148
- ],
- [
- "▁consequence",
- -12.303118705749512
- ],
- [
- "listened",
- -12.303131103515625
- ],
- [
- "▁Options",
- -12.303187370300293
- ],
- [
- "feed",
- -12.30318832397461
- ],
- [
- "▁adviser",
- -12.303248405456543
- ],
- [
- "▁présenter",
- -12.30333423614502
- ],
- [
- "substant",
- -12.30337905883789
- ],
- [
- "▁Flag",
- -12.303604125976562
- ],
- [
- "▁Keith",
- -12.30366325378418
- ],
- [
- "▁inima",
- -12.303709983825684
- ],
- [
- "▁substrate",
- -12.30373764038086
- ],
- [
- "▁charger",
- -12.303803443908691
- ],
- [
- "▁reporter",
- -12.303844451904297
- ],
- [
- "ütz",
- -12.304068565368652
- ],
- [
- "▁unten",
- -12.30417537689209
- ],
- [
- "▁sympa",
- -12.304542541503906
- ],
- [
- "▁defeated",
- -12.304600715637207
- ],
- [
- "ändig",
- -12.304644584655762
- ],
- [
- "individu",
- -12.304747581481934
- ],
- [
- "▁Straßen",
- -12.304774284362793
- ],
- [
- "▁Nepal",
- -12.304791450500488
- ],
- [
- "million",
- -12.304803848266602
- ],
- [
- "▁Cake",
- -12.30499267578125
- ],
- [
- "▁investigations",
- -12.30526065826416
- ],
- [
- "▁inspector",
- -12.3054780960083
- ],
- [
- "▁Campbell",
- -12.305486679077148
- ],
- [
- "▁consommation",
- -12.305489540100098
- ],
- [
- "▁Ministerul",
- -12.305628776550293
- ],
- [
- "Advisory",
- -12.305749893188477
- ],
- [
- "▁Leistungs",
- -12.305939674377441
- ],
- [
- "▁Pull",
- -12.306157112121582
- ],
- [
- "▁lover",
- -12.306194305419922
- ],
- [
- "▁trunk",
- -12.306380271911621
- ],
- [
- "▁folosesc",
- -12.30639934539795
- ],
- [
- "pom",
- -12.306558609008789
- ],
- [
- "wunder",
- -12.306794166564941
- ],
- [
- "▁happier",
- -12.306801795959473
- ],
- [
- "▁embark",
- -12.30689525604248
- ],
- [
- "▁mediul",
- -12.3069486618042
- ],
- [
- "riff",
- -12.306973457336426
- ],
- [
- "▁copilul",
- -12.307039260864258
- ],
- [
- "ommage",
- -12.307126998901367
- ],
- [
- "rechnung",
- -12.307218551635742
- ],
- [
- "NU",
- -12.307220458984375
- ],
- [
- "▁fellowship",
- -12.307395935058594
- ],
- [
- "▁Mental",
- -12.307403564453125
- ],
- [
- "▁fever",
- -12.3074312210083
- ],
- [
- "▁silly",
- -12.307547569274902
- ],
- [
- "Object",
- -12.30756664276123
- ],
- [
- "NV",
- -12.307591438293457
- ],
- [
- "от",
- -12.30774974822998
- ],
- [
- "▁Strand",
- -12.307762145996094
- ],
- [
- "▁Exist",
- -12.30777359008789
- ],
- [
- "warum",
- -12.307832717895508
- ],
- [
- "CY",
- -12.307848930358887
- ],
- [
- "kä",
- -12.307856559753418
- ],
- [
- "!!!!!",
- -12.307869911193848
- ],
- [
- "▁moarte",
- -12.30793571472168
- ],
- [
- "▁waterfall",
- -12.308024406433105
- ],
- [
- "left",
- -12.30815601348877
- ],
- [
- "▁Nursing",
- -12.308225631713867
- ],
- [
- "▁invalid",
- -12.30826187133789
- ],
- [
- "struktur",
- -12.308385848999023
- ],
- [
- "Allerdings",
- -12.30838680267334
- ],
- [
- "étranger",
- -12.30838680267334
- ],
- [
- "▁prost",
- -12.308517456054688
- ],
- [
- "▁Parent",
- -12.308562278747559
- ],
- [
- "▁întreag",
- -12.308611869812012
- ],
- [
- "▁compensate",
- -12.308871269226074
- ],
- [
- "▁sometime",
- -12.308955192565918
- ],
- [
- "graduate",
- -12.308968544006348
- ],
- [
- "▁Carter",
- -12.30898380279541
- ],
- [
- "▁crap",
- -12.308998107910156
- ],
- [
- "▁mathematics",
- -12.309067726135254
- ],
- [
- "resemble",
- -12.309069633483887
- ],
- [
- "Dame",
- -12.309152603149414
- ],
- [
- "▁Swa",
- -12.309198379516602
- ],
- [
- "▁celebrity",
- -12.309239387512207
- ],
- [
- "▁verified",
- -12.309338569641113
- ],
- [
- "▁Behind",
- -12.309349060058594
- ],
- [
- "carbon",
- -12.309432983398438
- ],
- [
- "▁gateway",
- -12.309490203857422
- ],
- [
- "▁ambitious",
- -12.30952262878418
- ],
- [
- "▁Wellness",
- -12.30966567993164
- ],
- [
- "30,000",
- -12.30968189239502
- ],
- [
- "defined",
- -12.309929847717285
- ],
- [
- "specializes",
- -12.310121536254883
- ],
- [
- "▁Chase",
- -12.310199737548828
- ],
- [
- "HF",
- -12.310233116149902
- ],
- [
- "ABLE",
- -12.310348510742188
- ],
- [
- "▁Ehr",
- -12.310467720031738
- ],
- [
- "▁régime",
- -12.310480117797852
- ],
- [
- "▁awake",
- -12.310487747192383
- ],
- [
- "▁seafood",
- -12.310487747192383
- ],
- [
- "leading",
- -12.310554504394531
- ],
- [
- "▁Rule",
- -12.310602188110352
- ],
- [
- "verkehr",
- -12.310726165771484
- ],
- [
- "erem",
- -12.310737609863281
- ],
- [
- "▁1973",
- -12.310795783996582
- ],
- [
- "personal",
- -12.311171531677246
- ],
- [
- "ența",
- -12.311330795288086
- ],
- [
- "apprend",
- -12.311396598815918
- ],
- [
- "faisant",
- -12.311420440673828
- ],
- [
- "▁Sounds",
- -12.31151008605957
- ],
- [
- "▁Launch",
- -12.31151294708252
- ],
- [
- "half",
- -12.311636924743652
- ],
- [
- "▁verre",
- -12.311859130859375
- ],
- [
- "▁Regular",
- -12.31207275390625
- ],
- [
- "▁Nancy",
- -12.312142372131348
- ],
- [
- "quelles",
- -12.312161445617676
- ],
- [
- "▁erhält",
- -12.312169075012207
- ],
- [
- "▁socks",
- -12.3121919631958
- ],
- [
- "lamp",
- -12.312387466430664
- ],
- [
- "▁durchgeführt",
- -12.312472343444824
- ],
- [
- "▁advertise",
- -12.31260871887207
- ],
- [
- "powered",
- -12.312653541564941
- ],
- [
- "▁concur",
- -12.312699317932129
- ],
- [
- "▁ressources",
- -12.31293773651123
- ],
- [
- "▁allocation",
- -12.312986373901367
- ],
- [
- "chon",
- -12.313041687011719
- ],
- [
- "▁Larry",
- -12.313177108764648
- ],
- [
- "lässig",
- -12.313254356384277
- ],
- [
- "OLD",
- -12.313493728637695
- ],
- [
- "itty",
- -12.313599586486816
- ],
- [
- "▁immuno",
- -12.313645362854004
- ],
- [
- "▁(+",
- -12.313651084899902
- ],
- [
- "▁Essential",
- -12.313674926757812
- ],
- [
- "▁semaines",
- -12.313719749450684
- ],
- [
- "Ru",
- -12.31375503540039
- ],
- [
- "▁Gear",
- -12.313764572143555
- ],
- [
- "völlig",
- -12.313850402832031
- ],
- [
- "liga",
- -12.31391716003418
- ],
- [
- "▁Neg",
- -12.314082145690918
- ],
- [
- "▁gratitude",
- -12.31408977508545
- ],
- [
- "aventure",
- -12.314108848571777
- ],
- [
- "▁frustrated",
- -12.314115524291992
- ],
- [
- "▁retrait",
- -12.31422233581543
- ],
- [
- "▁statut",
- -12.314231872558594
- ],
- [
- "550",
- -12.31434440612793
- ],
- [
- "ла",
- -12.314428329467773
- ],
- [
- "risto",
- -12.314448356628418
- ],
- [
- "WAY",
- -12.314607620239258
- ],
- [
- "▁pigment",
- -12.314652442932129
- ],
- [
- "Selon",
- -12.314715385437012
- ],
- [
- "stil",
- -12.3148775100708
- ],
- [
- "▁Marin",
- -12.315055847167969
- ],
- [
- "ashi",
- -12.315085411071777
- ],
- [
- "▁contine",
- -12.31519889831543
- ],
- [
- "▁Economics",
- -12.315200805664062
- ],
- [
- "both",
- -12.3152437210083
- ],
- [
- "▁Dou",
- -12.31527328491211
- ],
- [
- "Fel",
- -12.315373420715332
- ],
- [
- "UNT",
- -12.315434455871582
- ],
- [
- "▁grandmother",
- -12.31548023223877
- ],
- [
- "▁domicile",
- -12.315678596496582
- ],
- [
- "▁buffer",
- -12.31574535369873
- ],
- [
- "▁fuse",
- -12.315815925598145
- ],
- [
- "▁dosage",
- -12.315821647644043
- ],
- [
- "▁Nici",
- -12.315839767456055
- ],
- [
- "▁worries",
- -12.315908432006836
- ],
- [
- "▁Rail",
- -12.3159818649292
- ],
- [
- "uneori",
- -12.315990447998047
- ],
- [
- "▁Sierra",
- -12.316030502319336
- ],
- [
- "▁porni",
- -12.316032409667969
- ],
- [
- "▁NOTE",
- -12.316056251525879
- ],
- [
- "▁tendency",
- -12.316065788269043
- ],
- [
- "Set",
- -12.316256523132324
- ],
- [
- "▁Hof",
- -12.31629753112793
- ],
- [
- "▁Ruhe",
- -12.316300392150879
- ],
- [
- "harm",
- -12.316360473632812
- ],
- [
- "▁Developer",
- -12.316367149353027
- ],
- [
- "suing",
- -12.316400527954102
- ],
- [
- "persönlichen",
- -12.31658935546875
- ],
- [
- "▁agréable",
- -12.316596031188965
- ],
- [
- "commissioned",
- -12.316696166992188
- ],
- [
- "▁1974",
- -12.31672191619873
- ],
- [
- "▁1969",
- -12.316758155822754
- ],
- [
- "▁regl",
- -12.316996574401855
- ],
- [
- "▁terror",
- -12.317042350769043
- ],
- [
- "▁température",
- -12.317051887512207
- ],
- [
- "▁Archiv",
- -12.31706714630127
- ],
- [
- "▁Military",
- -12.317140579223633
- ],
- [
- "▁König",
- -12.317290306091309
- ],
- [
- "▁forex",
- -12.31737232208252
- ],
- [
- "wiki",
- -12.31745719909668
- ],
- [
- "thetic",
- -12.317506790161133
- ],
- [
- "alaturi",
- -12.317974090576172
- ],
- [
- "▁montant",
- -12.3179931640625
- ],
- [
- "▁maladie",
- -12.318044662475586
- ],
- [
- "gust",
- -12.318151473999023
- ],
- [
- "▁demander",
- -12.318164825439453
- ],
- [
- "avocat",
- -12.318191528320312
- ],
- [
- "▁sci",
- -12.318192481994629
- ],
- [
- "▁Wireless",
- -12.318214416503906
- ],
- [
- "▁Dein",
- -12.318220138549805
- ],
- [
- "▁trio",
- -12.3183012008667
- ],
- [
- "▁Same",
- -12.318395614624023
- ],
- [
- "Datei",
- -12.318464279174805
- ],
- [
- "▁alerg",
- -12.318578720092773
- ],
- [
- "crowded",
- -12.318657875061035
- ],
- [
- "▁Punkt",
- -12.318853378295898
- ],
- [
- "▁sanctions",
- -12.318864822387695
- ],
- [
- "stating",
- -12.318922996520996
- ],
- [
- "▁discusse",
- -12.318949699401855
- ],
- [
- "▁Eigen",
- -12.319068908691406
- ],
- [
- "▁sănătate",
- -12.31911563873291
- ],
- [
- "▁correspondence",
- -12.319211959838867
- ],
- [
- "cred",
- -12.319331169128418
- ],
- [
- "VG",
- -12.319347381591797
- ],
- [
- "▁différence",
- -12.319347381591797
- ],
- [
- "▁Montreal",
- -12.319391250610352
- ],
- [
- "▁masini",
- -12.319398880004883
- ],
- [
- "iata",
- -12.319487571716309
- ],
- [
- "▁sampling",
- -12.319574356079102
- ],
- [
- "▁Gib",
- -12.319831848144531
- ],
- [
- "▁sheer",
- -12.319944381713867
- ],
- [
- "330",
- -12.319947242736816
- ],
- [
- "CHI",
- -12.319990158081055
- ],
- [
- "▁damn",
- -12.320030212402344
- ],
- [
- "▁Advisor",
- -12.320201873779297
- ],
- [
- "Typically",
- -12.320302963256836
- ],
- [
- "ssé",
- -12.320352554321289
- ],
- [
- "quart",
- -12.320361137390137
- ],
- [
- "chete",
- -12.320385932922363
- ],
- [
- "▁Puerto",
- -12.32049560546875
- ],
- [
- "2-1",
- -12.32050609588623
- ],
- [
- "NN",
- -12.320674896240234
- ],
- [
- "▁styling",
- -12.320707321166992
- ],
- [
- "rud",
- -12.320777893066406
- ],
- [
- "од",
- -12.320856094360352
- ],
- [
- "▁Hydro",
- -12.320941925048828
- ],
- [
- "▁Cable",
- -12.320961952209473
- ],
- [
- "video",
- -12.320974349975586
- ],
- [
- "▁Wirkung",
- -12.321194648742676
- ],
- [
- "▁noble",
- -12.321270942687988
- ],
- [
- "▁Sonder",
- -12.32129192352295
- ],
- [
- "mati",
- -12.321317672729492
- ],
- [
- "850",
- -12.321395874023438
- ],
- [
- "▁Richmond",
- -12.32143497467041
- ],
- [
- "▁niciodată",
- -12.321442604064941
- ],
- [
- "AO",
- -12.321527481079102
- ],
- [
- "▁altered",
- -12.321648597717285
- ],
- [
- "▁(15",
- -12.32168960571289
- ],
- [
- "▁Motiv",
- -12.322052001953125
- ],
- [
- "AKE",
- -12.322089195251465
- ],
- [
- "▁bestimmte",
- -12.322172164916992
- ],
- [
- "6.5",
- -12.322176933288574
- ],
- [
- "hectare",
- -12.322333335876465
- ],
- [
- "atorită",
- -12.322335243225098
- ],
- [
- "▁phases",
- -12.322447776794434
- ],
- [
- "▁Nova",
- -12.322566032409668
- ],
- [
- "ordinateur",
- -12.322579383850098
- ],
- [
- "▁corrupt",
- -12.322813034057617
- ],
- [
- "error",
- -12.322895050048828
- ],
- [
- "▁attacked",
- -12.323005676269531
- ],
- [
- "▁Kirche",
- -12.323019981384277
- ],
- [
- "heir",
- -12.323040962219238
- ],
- [
- "Das",
- -12.323254585266113
- ],
- [
- "▁anxious",
- -12.323258399963379
- ],
- [
- "▁Doc",
- -12.323386192321777
- ],
- [
- "▁Roth",
- -12.323415756225586
- ],
- [
- "▁Cine",
- -12.32388687133789
- ],
- [
- "▁auditor",
- -12.324418067932129
- ],
- [
- "▁beverage",
- -12.324586868286133
- ],
- [
- "▁précédent",
- -12.324637413024902
- ],
- [
- "▁deploy",
- -12.324837684631348
- ],
- [
- "▁accessibility",
- -12.324843406677246
- ],
- [
- "▁cage",
- -12.324885368347168
- ],
- [
- "▁Contra",
- -12.324934005737305
- ],
- [
- "Best",
- -12.324952125549316
- ],
- [
- "iji",
- -12.324972152709961
- ],
- [
- "▁père",
- -12.325060844421387
- ],
- [
- "▁scenic",
- -12.32511043548584
- ],
- [
- "synthesis",
- -12.325165748596191
- ],
- [
- "ßen",
- -12.32534408569336
- ],
- [
- "▁Videos",
- -12.325482368469238
- ],
- [
- "▁refus",
- -12.325484275817871
- ],
- [
- "stimmen",
- -12.3255615234375
- ],
- [
- "▁sleek",
- -12.325577735900879
- ],
- [
- "artige",
- -12.32563591003418
- ],
- [
- "mari",
- -12.32568359375
- ],
- [
- "▁excelent",
- -12.325740814208984
- ],
- [
- "▁negativ",
- -12.325806617736816
- ],
- [
- "▁blocking",
- -12.32590103149414
- ],
- [
- "spricht",
- -12.326001167297363
- ],
- [
- "▁discomfort",
- -12.32602310180664
- ],
- [
- "▁stratégie",
- -12.32602310180664
- ],
- [
- "▁Datenschutz",
- -12.326078414916992
- ],
- [
- "curg",
- -12.326128005981445
- ],
- [
- "▁lapte",
- -12.326432228088379
- ],
- [
- "▁acasă",
- -12.326491355895996
- ],
- [
- "▁ausschließlich",
- -12.32653522491455
- ],
- [
- "▁unbedingt",
- -12.326802253723145
- ],
- [
- "▁Linie",
- -12.32689380645752
- ],
- [
- "▁subscribers",
- -12.327019691467285
- ],
- [
- "109",
- -12.32702350616455
- ],
- [
- "▁Waste",
- -12.32712173461914
- ],
- [
- "▁Planung",
- -12.327231407165527
- ],
- [
- "▁visually",
- -12.32734489440918
- ],
- [
- "utilizarea",
- -12.327370643615723
- ],
- [
- "uba",
- -12.327381134033203
- ],
- [
- "▁fifteen",
- -12.327411651611328
- ],
- [
- "▁légère",
- -12.327411651611328
- ],
- [
- "ința",
- -12.327446937561035
- ],
- [
- "▁tolerance",
- -12.327460289001465
- ],
- [
- "▁piscine",
- -12.327536582946777
- ],
- [
- "▁nails",
- -12.327569007873535
- ],
- [
- "▁accus",
- -12.327693939208984
- ],
- [
- "▁coeur",
- -12.327773094177246
- ],
- [
- "freie",
- -12.327849388122559
- ],
- [
- "enţă",
- -12.32812213897705
- ],
- [
- "▁glucose",
- -12.328336715698242
- ],
- [
- "▁Jar",
- -12.32838249206543
- ],
- [
- "▁commencer",
- -12.328387260437012
- ],
- [
- "▁eliminating",
- -12.328414916992188
- ],
- [
- "▁mutation",
- -12.32844352722168
- ],
- [
- "▁afirma",
- -12.328444480895996
- ],
- [
- "▁Consulting",
- -12.328454971313477
- ],
- [
- "adia",
- -12.328543663024902
- ],
- [
- "zog",
- -12.328604698181152
- ],
- [
- "▁pielea",
- -12.328658103942871
- ],
- [
- "rton",
- -12.328706741333008
- ],
- [
- "exercice",
- -12.3287935256958
- ],
- [
- "namely",
- -12.328847885131836
- ],
- [
- "▁ajutor",
- -12.3289155960083
- ],
- [
- "▁markers",
- -12.328917503356934
- ],
- [
- "▁gardening",
- -12.328932762145996
- ],
- [
- "Karte",
- -12.329038619995117
- ],
- [
- "▁Pump",
- -12.329142570495605
- ],
- [
- "▁Dual",
- -12.329169273376465
- ],
- [
- "▁pratiques",
- -12.329349517822266
- ],
- [
- "▁behavioral",
- -12.329358100891113
- ],
- [
- "▁construire",
- -12.329511642456055
- ],
- [
- "▁Leonard",
- -12.329596519470215
- ],
- [
- "ediglich",
- -12.329630851745605
- ],
- [
- "ubbed",
- -12.3297758102417
- ],
- [
- "NK",
- -12.329792022705078
- ],
- [
- "shell",
- -12.329912185668945
- ],
- [
- "▁persönliche",
- -12.329996109008789
- ],
- [
- "ecuring",
- -12.329998970031738
- ],
- [
- "beaten",
- -12.33000373840332
- ],
- [
- "ALE",
- -12.330053329467773
- ],
- [
- "▁puppy",
- -12.33023452758789
- ],
- [
- "▁capac",
- -12.33027458190918
- ],
- [
- "▁seventh",
- -12.330394744873047
- ],
- [
- "▁nursery",
- -12.330400466918945
- ],
- [
- "▁Rum",
- -12.330419540405273
- ],
- [
- "▁exquisite",
- -12.330423355102539
- ],
- [
- "▁Legi",
- -12.330483436584473
- ],
- [
- "▁persist",
- -12.330497741699219
- ],
- [
- "bacterial",
- -12.330548286437988
- ],
- [
- "▁cereal",
- -12.330572128295898
- ],
- [
- "▁principe",
- -12.330693244934082
- ],
- [
- "chip",
- -12.330766677856445
- ],
- [
- "rush",
- -12.330832481384277
- ],
- [
- "▁funnel",
- -12.330904006958008
- ],
- [
- "▁calitatea",
- -12.331024169921875
- ],
- [
- "ibă",
- -12.33104419708252
- ],
- [
- "▁reign",
- -12.331086158752441
- ],
- [
- "▁congregation",
- -12.331120491027832
- ],
- [
- "▁obtine",
- -12.331270217895508
- ],
- [
- "▁découverte",
- -12.331286430358887
- ],
- [
- "▁gama",
- -12.331315040588379
- ],
- [
- "▁judec",
- -12.33132553100586
- ],
- [
- "Plan",
- -12.331351280212402
- ],
- [
- "▁gesture",
- -12.331539154052734
- ],
- [
- "öffentlichen",
- -12.331644058227539
- ],
- [
- "▁imported",
- -12.331693649291992
- ],
- [
- "▁rotate",
- -12.331747055053711
- ],
- [
- "blown",
- -12.331756591796875
- ],
- [
- "▁Protein",
- -12.331827163696289
- ],
- [
- "parfaitement",
- -12.331832885742188
- ],
- [
- "ondo",
- -12.331868171691895
- ],
- [
- "ologists",
- -12.331890106201172
- ],
- [
- "▁neighborhoods",
- -12.331989288330078
- ],
- [
- "▁Pope",
- -12.33202075958252
- ],
- [
- "▁museums",
- -12.332194328308105
- ],
- [
- "▁porter",
- -12.332330703735352
- ],
- [
- "▁kiss",
- -12.332335472106934
- ],
- [
- "pdf",
- -12.332354545593262
- ],
- [
- "sided",
- -12.332359313964844
- ],
- [
- "▁gern",
- -12.332395553588867
- ],
- [
- "bedingungen",
- -12.332496643066406
- ],
- [
- "▁Ride",
- -12.332582473754883
- ],
- [
- "Apoi",
- -12.332584381103516
- ],
- [
- "▁bestehen",
- -12.332603454589844
- ],
- [
- "5\"",
- -12.33285903930664
- ],
- [
- "bob",
- -12.332862854003906
- ],
- [
- "ficient",
- -12.33303165435791
- ],
- [
- "premise",
- -12.333086967468262
- ],
- [
- "▁Clip",
- -12.333112716674805
- ],
- [
- "▁concours",
- -12.333213806152344
- ],
- [
- "olar",
- -12.333281517028809
- ],
- [
- "▁Centr",
- -12.333356857299805
- ],
- [
- "outlined",
- -12.333429336547852
- ],
- [
- "▁observa",
- -12.333511352539062
- ],
- [
- "▁negotiate",
- -12.333537101745605
- ],
- [
- "▁Partnership",
- -12.33358383178711
- ],
- [
- "clock",
- -12.333662033081055
- ],
- [
- "roasted",
- -12.333755493164062
- ],
- [
- "Pourquoi",
- -12.33391284942627
- ],
- [
- "▁Marshall",
- -12.334005355834961
- ],
- [
- "▁Gerade",
- -12.334052085876465
- ],
- [
- "▁pachet",
- -12.334160804748535
- ],
- [
- "▁preliminary",
- -12.334162712097168
- ],
- [
- "▁tragic",
- -12.334200859069824
- ],
- [
- "author",
- -12.334268569946289
- ],
- [
- "▁Gov",
- -12.334309577941895
- ],
- [
- "▁comunic",
- -12.334403991699219
- ],
- [
- "▁coordinator",
- -12.334410667419434
- ],
- [
- "YA",
- -12.33445930480957
- ],
- [
- "▁Steam",
- -12.33476734161377
- ],
- [
- "▁Nag",
- -12.334796905517578
- ],
- [
- "▁Kara",
- -12.334851264953613
- ],
- [
- "▁Gang",
- -12.334858894348145
- ],
- [
- "aurez",
- -12.334868431091309
- ],
- [
- "▁horrible",
- -12.334869384765625
- ],
- [
- "▁Luxury",
- -12.335076332092285
- ],
- [
- "▁encouragement",
- -12.335169792175293
- ],
- [
- "▁conceptual",
- -12.335250854492188
- ],
- [
- "▁constituent",
- -12.335431098937988
- ],
- [
- "nvelop",
- -12.335494041442871
- ],
- [
- "ucc",
- -12.335500717163086
- ],
- [
- "▁conçu",
- -12.335542678833008
- ],
- [
- "pfel",
- -12.33559513092041
- ],
- [
- "special",
- -12.335700988769531
- ],
- [
- "▁Growth",
- -12.335834503173828
- ],
- [
- "cada",
- -12.335916519165039
- ],
- [
- "▁oamenilor",
- -12.335976600646973
- ],
- [
- "▁vendredi",
- -12.336021423339844
- ],
- [
- "▁coupe",
- -12.336055755615234
- ],
- [
- "▁Danke",
- -12.336134910583496
- ],
- [
- "reflects",
- -12.336181640625
- ],
- [
- "▁girlfriend",
- -12.336273193359375
- ],
- [
- "▁diffuse",
- -12.336325645446777
- ],
- [
- "HER",
- -12.336328506469727
- ],
- [
- "storing",
- -12.336464881896973
- ],
- [
- "ailing",
- -12.336591720581055
- ],
- [
- "▁Desi",
- -12.336601257324219
- ],
- [
- "stitution",
- -12.336832046508789
- ],
- [
- "▁adun",
- -12.336844444274902
- ],
- [
- "▁Partie",
- -12.336869239807129
- ],
- [
- "▁tissues",
- -12.336958885192871
- ],
- [
- "▁discovering",
- -12.337154388427734
- ],
- [
- "Jacques",
- -12.337178230285645
- ],
- [
- "lungs",
- -12.33724594116211
- ],
- [
- "▁Handy",
- -12.337261199951172
- ],
- [
- "centric",
- -12.337285995483398
- ],
- [
- "slav",
- -12.337442398071289
- ],
- [
- "▁sights",
- -12.337560653686523
- ],
- [
- "▁Category",
- -12.337644577026367
- ],
- [
- "▁Einrichtung",
- -12.337957382202148
- ],
- [
- "▁Robinson",
- -12.33804702758789
- ],
- [
- "▁Terra",
- -12.338150978088379
- ],
- [
- "▁creep",
- -12.338167190551758
- ],
- [
- "▁Lob",
- -12.338184356689453
- ],
- [
- "001",
- -12.33820629119873
- ],
- [
- "kop",
- -12.338208198547363
- ],
- [
- "Emb",
- -12.338292121887207
- ],
- [
- "▁forgive",
- -12.338391304016113
- ],
- [
- "▁icons",
- -12.33847427368164
- ],
- [
- "electric",
- -12.3385009765625
- ],
- [
- "▁faucet",
- -12.338516235351562
- ],
- [
- "▁invisible",
- -12.3386812210083
- ],
- [
- "sprach",
- -12.338801383972168
- ],
- [
- "▁beachten",
- -12.33881664276123
- ],
- [
- "rahm",
- -12.338833808898926
- ],
- [
- "▁Teacher",
- -12.338919639587402
- ],
- [
- "Fab",
- -12.339070320129395
- ],
- [
- "▁joue",
- -12.339101791381836
- ],
- [
- "▁Popular",
- -12.339120864868164
- ],
- [
- "▁Februar",
- -12.339171409606934
- ],
- [
- "sound",
- -12.339251518249512
- ],
- [
- "▁(0",
- -12.339317321777344
- ],
- [
- "▁Compare",
- -12.33938980102539
- ],
- [
- "▁pads",
- -12.339455604553223
- ],
- [
- "270",
- -12.339498519897461
- ],
- [
- "ousse",
- -12.339548110961914
- ],
- [
- "▁UAE",
- -12.339786529541016
- ],
- [
- "izări",
- -12.339787483215332
- ],
- [
- "▁bonuses",
- -12.33993911743164
- ],
- [
- "▁switches",
- -12.3400239944458
- ],
- [
- "▁Brothers",
- -12.340166091918945
- ],
- [
- "▁environmentally",
- -12.340171813964844
- ],
- [
- "vista",
- -12.340264320373535
- ],
- [
- "▁intentions",
- -12.3402738571167
- ],
- [
- "▁Terri",
- -12.340301513671875
- ],
- [
- "▁diabet",
- -12.34030532836914
- ],
- [
- "▁prese",
- -12.340333938598633
- ],
- [
- "▁parcurs",
- -12.340389251708984
- ],
- [
- "Warum",
- -12.340449333190918
- ],
- [
- "▁credentials",
- -12.340455055236816
- ],
- [
- "▁PLA",
- -12.34046459197998
- ],
- [
- "▁instruct",
- -12.340470314025879
- ],
- [
- "▁benefic",
- -12.340633392333984
- ],
- [
- "write",
- -12.340675354003906
- ],
- [
- "▁poids",
- -12.340773582458496
- ],
- [
- "▁Anspruch",
- -12.340923309326172
- ],
- [
- "▁avocado",
- -12.340923309326172
- ],
- [
- "▁inevitable",
- -12.340923309326172
- ],
- [
- "▁poorly",
- -12.340950965881348
- ],
- [
- "karte",
- -12.340994834899902
- ],
- [
- "▁Publishing",
- -12.340999603271484
- ],
- [
- "odată",
- -12.341140747070312
- ],
- [
- "▁scientifique",
- -12.341157913208008
- ],
- [
- "▁lăsa",
- -12.341262817382812
- ],
- [
- "▁secol",
- -12.34131908416748
- ],
- [
- "▁nevertheless",
- -12.341392517089844
- ],
- [
- "SAT",
- -12.341597557067871
- ],
- [
- "280",
- -12.341651916503906
- ],
- [
- "▁prevederi",
- -12.341670989990234
- ],
- [
- "▁chrome",
- -12.342002868652344
- ],
- [
- "institut",
- -12.342267036437988
- ],
- [
- "richtigen",
- -12.34228515625
- ],
- [
- "▁grief",
- -12.342338562011719
- ],
- [
- "▁penalties",
- -12.342373847961426
- ],
- [
- "▁Bayern",
- -12.34238052368164
- ],
- [
- "▁caramel",
- -12.342473983764648
- ],
- [
- "Now",
- -12.342495918273926
- ],
- [
- "Stiftung",
- -12.342576026916504
- ],
- [
- "country",
- -12.342737197875977
- ],
- [
- "dication",
- -12.34278678894043
- ],
- [
- "▁Chor",
- -12.342801094055176
- ],
- [
- "▁rămâne",
- -12.342936515808105
- ],
- [
- "▁TOP",
- -12.34300708770752
- ],
- [
- "▁complète",
- -12.34301471710205
- ],
- [
- "▁Marian",
- -12.34302806854248
- ],
- [
- "▁Avant",
- -12.343121528625488
- ],
- [
- "▁Shower",
- -12.343156814575195
- ],
- [
- "treu",
- -12.34316349029541
- ],
- [
- "▁chop",
- -12.34321403503418
- ],
- [
- "▁comfortably",
- -12.343220710754395
- ],
- [
- "▁autism",
- -12.34323787689209
- ],
- [
- "▁Sind",
- -12.34328556060791
- ],
- [
- "▁(20",
- -12.343340873718262
- ],
- [
- "▁Cinema",
- -12.343414306640625
- ],
- [
- "compania",
- -12.343606948852539
- ],
- [
- "▁Lex",
- -12.343622207641602
- ],
- [
- "▁Sofa",
- -12.343716621398926
- ],
- [
- "dru",
- -12.343753814697266
- ],
- [
- "▁verification",
- -12.343770027160645
- ],
- [
- "▁Immer",
- -12.343825340270996
- ],
- [
- "lomb",
- -12.343829154968262
- ],
- [
- "meric",
- -12.34385871887207
- ],
- [
- "▁slower",
- -12.34398365020752
- ],
- [
- "▁propag",
- -12.344090461730957
- ],
- [
- "Inter",
- -12.344097137451172
- ],
- [
- "selling",
- -12.34418773651123
- ],
- [
- "▁Bright",
- -12.344269752502441
- ],
- [
- "condition",
- -12.344280242919922
- ],
- [
- "PDF",
- -12.344291687011719
- ],
- [
- "oyez",
- -12.344391822814941
- ],
- [
- "▁Fried",
- -12.344420433044434
- ],
- [
- "▁Nazi",
- -12.34443187713623
- ],
- [
- "▁Buffalo",
- -12.344447135925293
- ],
- [
- "▁Sue",
- -12.344449043273926
- ],
- [
- "▁Rhein",
- -12.34468936920166
- ],
- [
- "▁Klaus",
- -12.344889640808105
- ],
- [
- "▁indiqu",
- -12.344963073730469
- ],
- [
- "echte",
- -12.344996452331543
- ],
- [
- "▁frecvent",
- -12.345165252685547
- ],
- [
- "▁conveniently",
- -12.345187187194824
- ],
- [
- "▁Moi",
- -12.345197677612305
- ],
- [
- "▁greenhouse",
- -12.345220565795898
- ],
- [
- "▁rédui",
- -12.34524154663086
- ],
- [
- "▁lengthy",
- -12.34542179107666
- ],
- [
- "verband",
- -12.345534324645996
- ],
- [
- "inţă",
- -12.345622062683105
- ],
- [
- "▁rigorous",
- -12.345625877380371
- ],
- [
- "▁Finish",
- -12.34580135345459
- ],
- [
- "▁FBI",
- -12.346052169799805
- ],
- [
- "cultura",
- -12.346083641052246
- ],
- [
- "▁compartment",
- -12.346110343933105
- ],
- [
- "▁pretend",
- -12.346117973327637
- ],
- [
- "▁assembled",
- -12.346212387084961
- ],
- [
- "▁Nie",
- -12.34639835357666
- ],
- [
- "fession",
- -12.34640884399414
- ],
- [
- "▁£2",
- -12.34642219543457
- ],
- [
- "algré",
- -12.3468017578125
- ],
- [
- "▁anterior",
- -12.346817970275879
- ],
- [
- "▁Wissenschaft",
- -12.34683609008789
- ],
- [
- "▁Harbor",
- -12.346923828125
- ],
- [
- "lix",
- -12.346985816955566
- ],
- [
- "=\"",
- -12.347049713134766
- ],
- [
- "▁breathtaking",
- -12.34705638885498
- ],
- [
- "▁Stern",
- -12.34708309173584
- ],
- [
- "▁Internetseite",
- -12.347132682800293
- ],
- [
- "▁locker",
- -12.347216606140137
- ],
- [
- "▁feather",
- -12.34726619720459
- ],
- [
- "Serv",
- -12.347297668457031
- ],
- [
- "▁snake",
- -12.347332000732422
- ],
- [
- "▁Border",
- -12.347396850585938
- ],
- [
- "▁undergo",
- -12.347518920898438
- ],
- [
- "▁petrol",
- -12.347558975219727
- ],
- [
- "▁dealership",
- -12.3475923538208
- ],
- [
- "▁commander",
- -12.347596168518066
- ],
- [
- "▁Monate",
- -12.347599983215332
- ],
- [
- "▁Guardian",
- -12.347665786743164
- ],
- [
- "▁Todd",
- -12.347774505615234
- ],
- [
- "Ann",
- -12.347825050354004
- ],
- [
- "ibilité",
- -12.347918510437012
- ],
- [
- "▁Quarter",
- -12.347987174987793
- ],
- [
- "▁portray",
- -12.348097801208496
- ],
- [
- "▁Tai",
- -12.34813404083252
- ],
- [
- "▁strikes",
- -12.348224639892578
- ],
- [
- "illage",
- -12.348381042480469
- ],
- [
- "▁IRS",
- -12.348417282104492
- ],
- [
- "▁lupta",
- -12.348455429077148
- ],
- [
- "▁Sper",
- -12.348493576049805
- ],
- [
- "PRO",
- -12.348530769348145
- ],
- [
- "▁Export",
- -12.348549842834473
- ],
- [
- "▁crypto",
- -12.348587989807129
- ],
- [
- "▁barbecue",
- -12.348692893981934
- ],
- [
- "▁portions",
- -12.348787307739258
- ],
- [
- "▁explicit",
- -12.348793983459473
- ],
- [
- "▁angenehm",
- -12.348834037780762
- ],
- [
- "▁marathon",
- -12.348946571350098
- ],
- [
- "▁apartament",
- -12.348982810974121
- ],
- [
- "▁Eva",
- -12.349079132080078
- ],
- [
- "plate",
- -12.349181175231934
- ],
- [
- "viel",
- -12.34925365447998
- ],
- [
- "FIN",
- -12.34926986694336
- ],
- [
- "dependent",
- -12.34935188293457
- ],
- [
- "▁cercet",
- -12.34942626953125
- ],
- [
- "▁midnight",
- -12.349499702453613
- ],
- [
- "copie",
- -12.349563598632812
- ],
- [
- "▁companii",
- -12.349621772766113
- ],
- [
- "▁tenu",
- -12.349660873413086
- ],
- [
- "1/2",
- -12.349662780761719
- ],
- [
- "2.4",
- -12.349693298339844
- ],
- [
- "abri",
- -12.349699974060059
- ],
- [
- "▁warn",
- -12.34980297088623
- ],
- [
- "▁luggage",
- -12.349875450134277
- ],
- [
- "numarul",
- -12.349968910217285
- ],
- [
- "▁contour",
- -12.350014686584473
- ],
- [
- "▁Ghost",
- -12.350016593933105
- ],
- [
- "Angaben",
- -12.35012435913086
- ],
- [
- "▁unemployment",
- -12.350296020507812
- ],
- [
- "▁rău",
- -12.350380897521973
- ],
- [
- "▁dispatch",
- -12.350445747375488
- ],
- [
- "investissement",
- -12.350547790527344
- ],
- [
- "▁passt",
- -12.35057258605957
- ],
- [
- "▁Germania",
- -12.350578308105469
- ],
- [
- "▁webpage",
- -12.350651741027832
- ],
- [
- "▁reservations",
- -12.350688934326172
- ],
- [
- "▁Kai",
- -12.350743293762207
- ],
- [
- "▁Cav",
- -12.350890159606934
- ],
- [
- "▁Patient",
- -12.351109504699707
- ],
- [
- "ер",
- -12.351213455200195
- ],
- [
- "▁Belle",
- -12.351236343383789
- ],
- [
- "▁Nashville",
- -12.351296424865723
- ],
- [
- "▁Talent",
- -12.351332664489746
- ],
- [
- "ouvrage",
- -12.351364135742188
- ],
- [
- "▁bekommt",
- -12.351365089416504
- ],
- [
- "USA",
- -12.351430892944336
- ],
- [
- "CES",
- -12.351432800292969
- ],
- [
- "▁Peru",
- -12.351499557495117
- ],
- [
- "▁erkennen",
- -12.35153579711914
- ],
- [
- "prinde",
- -12.351569175720215
- ],
- [
- "▁constitution",
- -12.351922035217285
- ],
- [
- "itatile",
- -12.351998329162598
- ],
- [
- "bah",
- -12.352147102355957
- ],
- [
- "▁avail",
- -12.352148056030273
- ],
- [
- "▁disponibile",
- -12.352149963378906
- ],
- [
- "hér",
- -12.352258682250977
- ],
- [
- "ол",
- -12.352411270141602
- ],
- [
- "▁startups",
- -12.352435111999512
- ],
- [
- "▁carton",
- -12.352485656738281
- ],
- [
- "▁Newsletter",
- -12.35251235961914
- ],
- [
- "éti",
- -12.352560997009277
- ],
- [
- "▁investigating",
- -12.352779388427734
- ],
- [
- "itul",
- -12.352925300598145
- ],
- [
- "touch",
- -12.352962493896484
- ],
- [
- "Sport",
- -12.353137016296387
- ],
- [
- "AME",
- -12.353203773498535
- ],
- [
- "MIN",
- -12.353222846984863
- ],
- [
- "metry",
- -12.353371620178223
- ],
- [
- "icy",
- -12.353492736816406
- ],
- [
- "▁Luna",
- -12.35351848602295
- ],
- [
- "▁asthma",
- -12.353614807128906
- ],
- [
- "▁conduc",
- -12.35365104675293
- ],
- [
- "▁Ari",
- -12.35369873046875
- ],
- [
- "trust",
- -12.353832244873047
- ],
- [
- "▁defines",
- -12.353894233703613
- ],
- [
- "▁Blend",
- -12.353927612304688
- ],
- [
- "azo",
- -12.353989601135254
- ],
- [
- "▁sweep",
- -12.354169845581055
- ],
- [
- "lope",
- -12.354331016540527
- ],
- [
- "ţinut",
- -12.35439682006836
- ],
- [
- "WD",
- -12.354503631591797
- ],
- [
- "▁appetite",
- -12.354619979858398
- ],
- [
- "▁Seed",
- -12.354753494262695
- ],
- [
- "Friend",
- -12.354854583740234
- ],
- [
- "▁repet",
- -12.354876518249512
- ],
- [
- "▁throat",
- -12.354936599731445
- ],
- [
- "philosoph",
- -12.355141639709473
- ],
- [
- "▁connaître",
- -12.355156898498535
- ],
- [
- "▁Counter",
- -12.355299949645996
- ],
- [
- "▁Anforderungen",
- -12.35533332824707
- ],
- [
- "▁Polit",
- -12.355363845825195
- ],
- [
- "▁Weather",
- -12.3554048538208
- ],
- [
- "bow",
- -12.355423927307129
- ],
- [
- "▁recreation",
- -12.355484008789062
- ],
- [
- "▁culinary",
- -12.355571746826172
- ],
- [
- "▁plage",
- -12.355609893798828
- ],
- [
- "▁Cruz",
- -12.355659484863281
- ],
- [
- "▁equip",
- -12.355668067932129
- ],
- [
- "▁Recent",
- -12.355697631835938
- ],
- [
- "LED",
- -12.355767250061035
- ],
- [
- "▁steak",
- -12.355772972106934
- ],
- [
- "▁belly",
- -12.355880737304688
- ],
- [
- "photo",
- -12.356130599975586
- ],
- [
- "▁lakes",
- -12.35623836517334
- ],
- [
- "▁intact",
- -12.356287956237793
- ],
- [
- "▁spiral",
- -12.356386184692383
- ],
- [
- "▁Billy",
- -12.356468200683594
- ],
- [
- "▁Understanding",
- -12.356534957885742
- ],
- [
- "▁Lay",
- -12.356558799743652
- ],
- [
- "▁roster",
- -12.356632232666016
- ],
- [
- "▁admire",
- -12.356647491455078
- ],
- [
- "▁android",
- -12.356732368469238
- ],
- [
- "▁technician",
- -12.356734275817871
- ],
- [
- "gène",
- -12.356818199157715
- ],
- [
- "motiv",
- -12.356954574584961
- ],
- [
- "▁Boat",
- -12.356988906860352
- ],
- [
- "▁genießen",
- -12.357000350952148
- ],
- [
- "▁Geschmack",
- -12.357001304626465
- ],
- [
- "▁heroes",
- -12.3570556640625
- ],
- [
- "▁1800",
- -12.357137680053711
- ],
- [
- "numeroase",
- -12.35776138305664
- ],
- [
- "▁anschließend",
- -12.357802391052246
- ],
- [
- "▁Spur",
- -12.357813835144043
- ],
- [
- "▁clarify",
- -12.35784912109375
- ],
- [
- "▁warmer",
- -12.357889175415039
- ],
- [
- "▁Ranch",
- -12.357955932617188
- ],
- [
- "▁simti",
- -12.358024597167969
- ],
- [
- "Thank",
- -12.35838508605957
- ],
- [
- "▁freight",
- -12.358434677124023
- ],
- [
- "▁administrators",
- -12.358453750610352
- ],
- [
- "Reg",
- -12.358588218688965
- ],
- [
- "Această",
- -12.358670234680176
- ],
- [
- "▁legume",
- -12.358741760253906
- ],
- [
- "▁utilizare",
- -12.358786582946777
- ],
- [
- "CON",
- -12.358904838562012
- ],
- [
- "urgi",
- -12.358917236328125
- ],
- [
- "▁Gesicht",
- -12.358920097351074
- ],
- [
- "▁counselor",
- -12.358954429626465
- ],
- [
- "▁mondiale",
- -12.359009742736816
- ],
- [
- "helm",
- -12.359137535095215
- ],
- [
- "▁Promo",
- -12.359156608581543
- ],
- [
- "▁Schweiz",
- -12.35917854309082
- ],
- [
- "Ich",
- -12.35929012298584
- ],
- [
- "▁intalni",
- -12.359295845031738
- ],
- [
- "▁Bloom",
- -12.359318733215332
- ],
- [
- "▁Score",
- -12.359362602233887
- ],
- [
- "▁Fruit",
- -12.35944652557373
- ],
- [
- "▁constraints",
- -12.359447479248047
- ],
- [
- "▁farmer",
- -12.359745979309082
- ],
- [
- "▁précise",
- -12.359807014465332
- ],
- [
- "evaluating",
- -12.359868049621582
- ],
- [
- "▁Period",
- -12.359891891479492
- ],
- [
- "byte",
- -12.359893798828125
- ],
- [
- "wah",
- -12.360025405883789
- ],
- [
- "Mac",
- -12.360123634338379
- ],
- [
- "iron",
- -12.360197067260742
- ],
- [
- "′",
- -12.360337257385254
- ],
- [
- "▁tehnic",
- -12.360539436340332
- ],
- [
- "▁legat",
- -12.36054515838623
- ],
- [
- "▁Pilot",
- -12.360574722290039
- ],
- [
- "▁Carpet",
- -12.36064624786377
- ],
- [
- "TEN",
- -12.360812187194824
- ],
- [
- "▁shareholders",
- -12.36082649230957
- ],
- [
- "vină",
- -12.360880851745605
- ],
- [
- "▁parole",
- -12.360939979553223
- ],
- [
- "ătă",
- -12.360984802246094
- ],
- [
- "bbing",
- -12.361000061035156
- ],
- [
- "▁switched",
- -12.361002922058105
- ],
- [
- "▁Petro",
- -12.361010551452637
- ],
- [
- "▁Vertrags",
- -12.36111831665039
- ],
- [
- "cham",
- -12.361178398132324
- ],
- [
- "wang",
- -12.361284255981445
- ],
- [
- "▁Bean",
- -12.36139965057373
- ],
- [
- "minister",
- -12.361442565917969
- ],
- [
- "▁Wu",
- -12.361522674560547
- ],
- [
- "▁Olympics",
- -12.361539840698242
- ],
- [
- "tipul",
- -12.361542701721191
- ],
- [
- "▁Citi",
- -12.36166763305664
- ],
- [
- "▁Fold",
- -12.361873626708984
- ],
- [
- "▁Partei",
- -12.361940383911133
- ],
- [
- "▁centrale",
- -12.361984252929688
- ],
- [
- "île",
- -12.362032890319824
- ],
- [
- "pflicht",
- -12.362175941467285
- ],
- [
- "heli",
- -12.362398147583008
- ],
- [
- "▁erwartet",
- -12.362414360046387
- ],
- [
- "▁oferta",
- -12.362458229064941
- ],
- [
- "▁NHS",
- -12.36246395111084
- ],
- [
- "annon",
- -12.362570762634277
- ],
- [
- "▁Rud",
- -12.362701416015625
- ],
- [
- "▁Stuttgart",
- -12.362737655639648
- ],
- [
- "▁rămas",
- -12.362746238708496
- ],
- [
- "▁eliminated",
- -12.36275577545166
- ],
- [
- "▁hiding",
- -12.362797737121582
- ],
- [
- "▁cadeau",
- -12.362832069396973
- ],
- [
- "▁mock",
- -12.363115310668945
- ],
- [
- "▁elder",
- -12.363333702087402
- ],
- [
- "▁Liz",
- -12.363364219665527
- ],
- [
- "aji",
- -12.363544464111328
- ],
- [
- "▁endlich",
- -12.363653182983398
- ],
- [
- "sufficient",
- -12.363668441772461
- ],
- [
- "▁zusätzliche",
- -12.363712310791016
- ],
- [
- "scient",
- -12.363757133483887
- ],
- [
- "▁Adjust",
- -12.363883972167969
- ],
- [
- "▁incentive",
- -12.363945007324219
- ],
- [
- "▁Papa",
- -12.364012718200684
- ],
- [
- "▁Pharma",
- -12.364041328430176
- ],
- [
- "▁conflicts",
- -12.364107131958008
- ],
- [
- "zählen",
- -12.364113807678223
- ],
- [
- "▁chien",
- -12.364118576049805
- ],
- [
- "KB",
- -12.36413288116455
- ],
- [
- "ultimi",
- -12.364188194274902
- ],
- [
- "▁Jul",
- -12.36421012878418
- ],
- [
- "▁Male",
- -12.36422061920166
- ],
- [
- "▁viewer",
- -12.36427116394043
- ],
- [
- "▁Sector",
- -12.364328384399414
- ],
- [
- "▁REAL",
- -12.364344596862793
- ],
- [
- "▁arbitr",
- -12.36436939239502
- ],
- [
- "resistant",
- -12.364399909973145
- ],
- [
- "▁Bristol",
- -12.364423751831055
- ],
- [
- "▁shy",
- -12.364540100097656
- ],
- [
- "SW",
- -12.364593505859375
- ],
- [
- "▁Kirk",
- -12.36460018157959
- ],
- [
- "centrul",
- -12.364653587341309
- ],
- [
- "▁Venezuela",
- -12.364657402038574
- ],
- [
- "▁communicating",
- -12.364657402038574
- ],
- [
- "▁Chemical",
- -12.364663124084473
- ],
- [
- "▁surprises",
- -12.364843368530273
- ],
- [
- "▁Jamie",
- -12.364933967590332
- ],
- [
- "▁Heavy",
- -12.364965438842773
- ],
- [
- "▁turnover",
- -12.36498737335205
- ],
- [
- "▁étudiants",
- -12.365114212036133
- ],
- [
- "welcher",
- -12.365124702453613
- ],
- [
- "▁preturi",
- -12.365200996398926
- ],
- [
- "▁Mono",
- -12.365283966064453
- ],
- [
- "▁paddle",
- -12.365309715270996
- ],
- [
- "▁accountability",
- -12.365364074707031
- ],
- [
- "OUS",
- -12.365592956542969
- ],
- [
- "▁marketers",
- -12.365762710571289
- ],
- [
- "fection",
- -12.365900993347168
- ],
- [
- "▁Outside",
- -12.365921020507812
- ],
- [
- "▁Jefferson",
- -12.366114616394043
- ],
- [
- "oaie",
- -12.36617660522461
- ],
- [
- "tenue",
- -12.366275787353516
- ],
- [
- "HU",
- -12.366329193115234
- ],
- [
- "Très",
- -12.36639404296875
- ],
- [
- "valoarea",
- -12.36642837524414
- ],
- [
- "103",
- -12.366482734680176
- ],
- [
- "▁Privacy",
- -12.366580963134766
- ],
- [
- "▁Leistungen",
- -12.366598129272461
- ],
- [
- "(3)",
- -12.36662483215332
- ],
- [
- "▁études",
- -12.366734504699707
- ],
- [
- "sko",
- -12.366750717163086
- ],
- [
- "drum",
- -12.366822242736816
- ],
- [
- "▁lamb",
- -12.366842269897461
- ],
- [
- "▁nicio",
- -12.367094993591309
- ],
- [
- "▁NATO",
- -12.367104530334473
- ],
- [
- "▁Freitag",
- -12.367178916931152
- ],
- [
- "▁precedent",
- -12.367178916931152
- ],
- [
- "▁partenaires",
- -12.367202758789062
- ],
- [
- "▁companiei",
- -12.367234230041504
- ],
- [
- "▁Plaza",
- -12.367249488830566
- ],
- [
- "▁disruption",
- -12.367274284362793
- ],
- [
- "▁violations",
- -12.367338180541992
- ],
- [
- "▁Reference",
- -12.367446899414062
- ],
- [
- "▁habitants",
- -12.36770248413086
- ],
- [
- "▁compost",
- -12.36776351928711
- ],
- [
- "▁citoyen",
- -12.367785453796387
- ],
- [
- "▁Historical",
- -12.367857933044434
- ],
- [
- "vollen",
- -12.36793327331543
- ],
- [
- "▁Eck",
- -12.36815357208252
- ],
- [
- "▁lumii",
- -12.368180274963379
- ],
- [
- "▁reusit",
- -12.368278503417969
- ],
- [
- "genic",
- -12.368307113647461
- ],
- [
- "Why",
- -12.368436813354492
- ],
- [
- "ASE",
- -12.368474006652832
- ],
- [
- "▁athlete",
- -12.36854076385498
- ],
- [
- "▁Spitze",
- -12.368559837341309
- ],
- [
- "▁schimbat",
- -12.368566513061523
- ],
- [
- "▁anonymous",
- -12.368850708007812
- ],
- [
- "jedes",
- -12.368856430053711
- ],
- [
- "exclu",
- -12.368874549865723
- ],
- [
- "factor",
- -12.369199752807617
- ],
- [
- "▁Dezember",
- -12.369231224060059
- ],
- [
- "▁scientist",
- -12.369373321533203
- ],
- [
- "▁likelihood",
- -12.36947250366211
- ],
- [
- "▁Rhode",
- -12.369488716125488
- ],
- [
- "▁Balance",
- -12.369521141052246
- ],
- [
- "istoria",
- -12.36959457397461
- ],
- [
- "▁Neil",
- -12.369780540466309
- ],
- [
- "▁bush",
- -12.369919776916504
- ],
- [
- "▁Ergebnisse",
- -12.369935989379883
- ],
- [
- "▁Sinn",
- -12.369956016540527
- ],
- [
- "▁spezielle",
- -12.370128631591797
- ],
- [
- "▁jucat",
- -12.37015438079834
- ],
- [
- "▁spite",
- -12.370179176330566
- ],
- [
- "▁Ultimate",
- -12.370365142822266
- ],
- [
- "▁fructe",
- -12.370401382446289
- ],
- [
- "▁asleep",
- -12.370441436767578
- ],
- [
- "▁Goal",
- -12.370539665222168
- ],
- [
- "▁PAR",
- -12.370631217956543
- ],
- [
- "▁rows",
- -12.370705604553223
- ],
- [
- "▁Fol",
- -12.3709135055542
- ],
- [
- "▁durata",
- -12.370945930480957
- ],
- [
- "▁traditionnel",
- -12.37100887298584
- ],
- [
- "▁tema",
- -12.37122917175293
- ],
- [
- "▁crédit",
- -12.371232986450195
- ],
- [
- "smallest",
- -12.371358871459961
- ],
- [
- "▁amino",
- -12.371358871459961
- ],
- [
- "▁elephant",
- -12.371405601501465
- ],
- [
- "▁tubes",
- -12.371685028076172
- ],
- [
- "▁Verwendung",
- -12.371719360351562
- ],
- [
- "▁Excellence",
- -12.371889114379883
- ],
- [
- "▁utilities",
- -12.371962547302246
- ],
- [
- "frau",
- -12.372111320495605
- ],
- [
- "▁poze",
- -12.3721342086792
- ],
- [
- "août",
- -12.372307777404785
- ],
- [
- "ango",
- -12.372514724731445
- ],
- [
- "give",
- -12.372532844543457
- ],
- [
- "▁appelé",
- -12.372576713562012
- ],
- [
- "▁yeast",
- -12.372671127319336
- ],
- [
- "▁enrollment",
- -12.372676849365234
- ],
- [
- "organiz",
- -12.3727445602417
- ],
- [
- "▁asociat",
- -12.372753143310547
- ],
- [
- "▁cattle",
- -12.372772216796875
- ],
- [
- "▁Solution",
- -12.372798919677734
- ],
- [
- "evoke",
- -12.372807502746582
- ],
- [
- "▁Hampshire",
- -12.372857093811035
- ],
- [
- "▁yeah",
- -12.372878074645996
- ],
- [
- "▁Argentina",
- -12.372928619384766
- ],
- [
- "▁abnormal",
- -12.373022079467773
- ],
- [
- "▁Heights",
- -12.373082160949707
- ],
- [
- "▁Mitchell",
- -12.373099327087402
- ],
- [
- "▁Quad",
- -12.373350143432617
- ],
- [
- "▁textures",
- -12.373382568359375
- ],
- [
- "▁coalition",
- -12.373384475708008
- ],
- [
- "▁dataset",
- -12.37338924407959
- ],
- [
- "World",
- -12.373438835144043
- ],
- [
- "ständ",
- -12.373456001281738
- ],
- [
- "▁groove",
- -12.373476028442383
- ],
- [
- "▁emotionally",
- -12.373562812805176
- ],
- [
- "▁preciz",
- -12.373636245727539
- ],
- [
- "kte",
- -12.373741149902344
- ],
- [
- "berechtigt",
- -12.373828887939453
- ],
- [
- "▁1971",
- -12.373888969421387
- ],
- [
- "grandes",
- -12.373907089233398
- ],
- [
- "▁Broadway",
- -12.37391185760498
- ],
- [
- "▁comunicat",
- -12.373994827270508
- ],
- [
- "nui",
- -12.37402629852295
- ],
- [
- "GER",
- -12.374079704284668
- ],
- [
- "pick",
- -12.374125480651855
- ],
- [
- "inscrit",
- -12.37414264678955
- ],
- [
- "▁Gross",
- -12.374258995056152
- ],
- [
- "▁McDonald",
- -12.374310493469238
- ],
- [
- "▁Zero",
- -12.374330520629883
- ],
- [
- "▁Halb",
- -12.374341011047363
- ],
- [
- "▁caractère",
- -12.374553680419922
- ],
- [
- "▁doctrine",
- -12.374553680419922
- ],
- [
- "▁Sinne",
- -12.37458610534668
- ],
- [
- "MLS",
- -12.374594688415527
- ],
- [
- "▁réel",
- -12.374759674072266
- ],
- [
- "▁Ful",
- -12.37476921081543
- ],
- [
- "limiting",
- -12.37483024597168
- ],
- [
- "▁Gan",
- -12.374870300292969
- ],
- [
- "▁exclude",
- -12.37490463256836
- ],
- [
- "imba",
- -12.374974250793457
- ],
- [
- "rolul",
- -12.374991416931152
- ],
- [
- "▁veggies",
- -12.375059127807617
- ],
- [
- "▁fasci",
- -12.375092506408691
- ],
- [
- "▁oval",
- -12.375173568725586
- ],
- [
- "▁contacter",
- -12.375221252441406
- ],
- [
- "▁linking",
- -12.375279426574707
- ],
- [
- "▁knit",
- -12.375308990478516
- ],
- [
- "▁enroll",
- -12.375504493713379
- ],
- [
- "▁dédié",
- -12.375533103942871
- ],
- [
- "▁renting",
- -12.375541687011719
- ],
- [
- "▁genera",
- -12.37567138671875
- ],
- [
- "citing",
- -12.375691413879395
- ],
- [
- "▁bend",
- -12.375700950622559
- ],
- [
- "guin",
- -12.375752449035645
- ],
- [
- "▁caregiver",
- -12.375768661499023
- ],
- [
- "▁könnt",
- -12.375791549682617
- ],
- [
- "▁Scripture",
- -12.375795364379883
- ],
- [
- "▁Mic",
- -12.375899314880371
- ],
- [
- "▁Denmark",
- -12.37590217590332
- ],
- [
- "▁qualifying",
- -12.375917434692383
- ],
- [
- "▁costumes",
- -12.375958442687988
- ],
- [
- "▁dwelling",
- -12.37601375579834
- ],
- [
- "▁recrut",
- -12.376099586486816
- ],
- [
- "▁bedding",
- -12.37618637084961
- ],
- [
- "gesprochen",
- -12.376253128051758
- ],
- [
- "▁editors",
- -12.376386642456055
- ],
- [
- "/12",
- -12.37657642364502
- ],
- [
- "▁cumparat",
- -12.376583099365234
- ],
- [
- "fiction",
- -12.376730918884277
- ],
- [
- "▁spinal",
- -12.376740455627441
- ],
- [
- "▁pathway",
- -12.376799583435059
- ],
- [
- "▁vârst",
- -12.37683391571045
- ],
- [
- "mba",
- -12.376874923706055
- ],
- [
- "▁enthusiastic",
- -12.37692642211914
- ],
- [
- "▁Watt",
- -12.37697982788086
- ],
- [
- "symptom",
- -12.376992225646973
- ],
- [
- "▁pup",
- -12.37712287902832
- ],
- [
- "▁glorious",
- -12.377225875854492
- ],
- [
- "▁fața",
- -12.377228736877441
- ],
- [
- "▁prohibited",
- -12.377256393432617
- ],
- [
- "vergleich",
- -12.377286911010742
- ],
- [
- "▁suspected",
- -12.377334594726562
- ],
- [
- "▁Railway",
- -12.377381324768066
- ],
- [
- "▁Aujourd",
- -12.377469062805176
- ],
- [
- "▁Patients",
- -12.377476692199707
- ],
- [
- "▁séance",
- -12.377501487731934
- ],
- [
- "▁contraire",
- -12.377503395080566
- ],
- [
- "▁cuvânt",
- -12.37771224975586
- ],
- [
- "▁trotzdem",
- -12.37773609161377
- ],
- [
- "émission",
- -12.377795219421387
- ],
- [
- "▁bore",
- -12.37782096862793
- ],
- [
- "▁safeguard",
- -12.377851486206055
- ],
- [
- "▁galleries",
- -12.37820053100586
- ],
- [
- "cron",
- -12.378268241882324
- ],
- [
- "▁Rica",
- -12.378335952758789
- ],
- [
- "fläche",
- -12.37839126586914
- ],
- [
- "▁Slow",
- -12.37842082977295
- ],
- [
- "▁vara",
- -12.378549575805664
- ],
- [
- "▁Swan",
- -12.378564834594727
- ],
- [
- "▁compounds",
- -12.378564834594727
- ],
- [
- "▁Slo",
- -12.378621101379395
- ],
- [
- "▁accommodations",
- -12.378621101379395
- ],
- [
- "▁Putin",
- -12.378708839416504
- ],
- [
- "▁undertaken",
- -12.378767967224121
- ],
- [
- "▁prépar",
- -12.37879467010498
- ],
- [
- "▁gandi",
- -12.37881088256836
- ],
- [
- "sediul",
- -12.378924369812012
- ],
- [
- "▁Nathan",
- -12.379143714904785
- ],
- [
- "▁fountain",
- -12.379173278808594
- ],
- [
- "▁mère",
- -12.379194259643555
- ],
- [
- "fatty",
- -12.379201889038086
- ],
- [
- "▁concentrated",
- -12.379241943359375
- ],
- [
- "richtung",
- -12.379300117492676
- ],
- [
- "▁appropriately",
- -12.37955379486084
- ],
- [
- "107",
- -12.379631996154785
- ],
- [
- "▁shark",
- -12.379735946655273
- ],
- [
- "▁Topic",
- -12.379867553710938
- ],
- [
- "▁Ausstellung",
- -12.379880905151367
- ],
- [
- "▁SUA",
- -12.380267143249512
- ],
- [
- "SER",
- -12.380359649658203
- ],
- [
- "▁Nicole",
- -12.38039779663086
- ],
- [
- "▁utilisateurs",
- -12.380620956420898
- ],
- [
- "▁Brazilian",
- -12.380753517150879
- ],
- [
- "▁continut",
- -12.380865097045898
- ],
- [
- "▁sanatate",
- -12.380881309509277
- ],
- [
- "faudra",
- -12.380882263183594
- ],
- [
- "nahm",
- -12.380938529968262
- ],
- [
- "▁Specific",
- -12.381153106689453
- ],
- [
- "aiba",
- -12.381199836730957
- ],
- [
- "cepând",
- -12.381296157836914
- ],
- [
- "▁Beer",
- -12.381366729736328
- ],
- [
- "roni",
- -12.381616592407227
- ],
- [
- "kay",
- -12.381636619567871
- ],
- [
- "▁gravity",
- -12.381844520568848
- ],
- [
- "▁verfügt",
- -12.381856918334961
- ],
- [
- "7:30",
- -12.381878852844238
- ],
- [
- "▁Players",
- -12.381945610046387
- ],
- [
- "▁Industries",
- -12.38198184967041
- ],
- [
- "punkte",
- -12.382119178771973
- ],
- [
- "▁yacht",
- -12.382135391235352
- ],
- [
- "-04",
- -12.382149696350098
- ],
- [
- "onné",
- -12.382192611694336
- ],
- [
- "▁Cards",
- -12.382221221923828
- ],
- [
- "▁fete",
- -12.382420539855957
- ],
- [
- "breaking",
- -12.38257884979248
- ],
- [
- "baum",
- -12.382621765136719
- ],
- [
- "nada",
- -12.382651329040527
- ],
- [
- "▁geplant",
- -12.382750511169434
- ],
- [
- "genuinely",
- -12.382766723632812
- ],
- [
- "talk",
- -12.382871627807617
- ],
- [
- "▁disadvantage",
- -12.382920265197754
- ],
- [
- "▁shutter",
- -12.383003234863281
- ],
- [
- "virus",
- -12.38302230834961
- ],
- [
- "▁cricket",
- -12.38308048248291
- ],
- [
- "▁comenzi",
- -12.383102416992188
- ],
- [
- "hier",
- -12.383170127868652
- ],
- [
- "▁aufzu",
- -12.383198738098145
- ],
- [
- "▁Rez",
- -12.38321304321289
- ],
- [
- "▁conclusions",
- -12.383329391479492
- ],
- [
- "▁Wang",
- -12.383509635925293
- ],
- [
- "Darüber",
- -12.383524894714355
- ],
- [
- "▁CSS",
- -12.383573532104492
- ],
- [
- "CW",
- -12.383780479431152
- ],
- [
- "▁Chr",
- -12.383790969848633
- ],
- [
- "▁traded",
- -12.383843421936035
- ],
- [
- "▁Schon",
- -12.384265899658203
- ],
- [
- "mped",
- -12.38429069519043
- ],
- [
- "▁alloy",
- -12.384385108947754
- ],
- [
- "AVE",
- -12.38451099395752
- ],
- [
- "▁imagery",
- -12.384542465209961
- ],
- [
- "▁resurse",
- -12.38479995727539
- ],
- [
- "▁Thunder",
- -12.384834289550781
- ],
- [
- "▁schimbare",
- -12.384860038757324
- ],
- [
- "▁Youtube",
- -12.38499927520752
- ],
- [
- "▁Monster",
- -12.385189056396484
- ],
- [
- "phil",
- -12.385234832763672
- ],
- [
- "▁bébé",
- -12.385284423828125
- ],
- [
- "Creating",
- -12.385428428649902
- ],
- [
- "ănă",
- -12.385466575622559
- ],
- [
- "▁Staat",
- -12.385504722595215
- ],
- [
- "adică",
- -12.385531425476074
- ],
- [
- "▁boyfriend",
- -12.385552406311035
- ],
- [
- "▁Winner",
- -12.385594367980957
- ],
- [
- "▁disputes",
- -12.385653495788574
- ],
- [
- "▁lush",
- -12.3856840133667
- ],
- [
- "▁CMS",
- -12.385719299316406
- ],
- [
- "▁locaux",
- -12.385725021362305
- ],
- [
- "▁Verfahren",
- -12.38576889038086
- ],
- [
- "▁Café",
- -12.385786056518555
- ],
- [
- "▁Vorstand",
- -12.385870933532715
- ],
- [
- "▁lucrat",
- -12.385960578918457
- ],
- [
- "▁Root",
- -12.38602352142334
- ],
- [
- "▁decis",
- -12.386059761047363
- ],
- [
- "▁Shadow",
- -12.386062622070312
- ],
- [
- "▁countryside",
- -12.386067390441895
- ],
- [
- "▁analiza",
- -12.386114120483398
- ],
- [
- "obos",
- -12.38616943359375
- ],
- [
- "opera",
- -12.386175155639648
- ],
- [
- "actu",
- -12.386207580566406
- ],
- [
- "▁Songs",
- -12.3864164352417
- ],
- [
- "reifen",
- -12.38648509979248
- ],
- [
- "▁hilft",
- -12.386650085449219
- ],
- [
- "region",
- -12.386727333068848
- ],
- [
- "▁categoria",
- -12.387001991271973
- ],
- [
- "capturing",
- -12.38701343536377
- ],
- [
- "▁1967",
- -12.387025833129883
- ],
- [
- "▁optimized",
- -12.387032508850098
- ],
- [
- "▁Dim",
- -12.387353897094727
- ],
- [
- "▁adapté",
- -12.387447357177734
- ],
- [
- "zeichnet",
- -12.387524604797363
- ],
- [
- "▁strada",
- -12.387625694274902
- ],
- [
- "fulness",
- -12.38774585723877
- ],
- [
- "▁technically",
- -12.38774585723877
- ],
- [
- "▁marker",
- -12.387757301330566
- ],
- [
- "▁vizita",
- -12.387808799743652
- ],
- [
- "▁imperative",
- -12.387986183166504
- ],
- [
- "▁pensé",
- -12.38802719116211
- ],
- [
- "▁drilling",
- -12.388030052185059
- ],
- [
- "ISA",
- -12.38818073272705
- ],
- [
- "▁Massage",
- -12.388201713562012
- ],
- [
- "▁Terry",
- -12.388238906860352
- ],
- [
- "▁pourtant",
- -12.38835334777832
- ],
- [
- "▁declaration",
- -12.388440132141113
- ],
- [
- "▁instructors",
- -12.388453483581543
- ],
- [
- "Eventually",
- -12.38847827911377
- ],
- [
- "▁banned",
- -12.38847827911377
- ],
- [
- "MAT",
- -12.388520240783691
- ],
- [
- "▁medici",
- -12.38856315612793
- ],
- [
- "▁Warm",
- -12.388615608215332
- ],
- [
- "▁trec",
- -12.388731002807617
- ],
- [
- "▁ecran",
- -12.388763427734375
- ],
- [
- "▁goat",
- -12.388838768005371
- ],
- [
- "▁manipulation",
- -12.388850212097168
- ],
- [
- "▁mayor",
- -12.388898849487305
- ],
- [
- "▁unterwegs",
- -12.388975143432617
- ],
- [
- "▁journals",
- -12.3890380859375
- ],
- [
- "▁hedge",
- -12.389239311218262
- ],
- [
- "Merc",
- -12.389300346374512
- ],
- [
- "▁joueurs",
- -12.389411926269531
- ],
- [
- "▁Religion",
- -12.3894624710083
- ],
- [
- "▁Mountains",
- -12.389477729797363
- ],
- [
- "▁renewed",
- -12.389497756958008
- ],
- [
- "▁Limit",
- -12.389543533325195
- ],
- [
- "ikea",
- -12.389771461486816
- ],
- [
- "▁utiliza",
- -12.38977336883545
- ],
- [
- "sogenannte",
- -12.389808654785156
- ],
- [
- "0.2",
- -12.389836311340332
- ],
- [
- "▁Organ",
- -12.38987922668457
- ],
- [
- "▁Shakespeare",
- -12.389952659606934
- ],
- [
- "▁Maintenance",
- -12.38995361328125
- ],
- [
- "▁Wärme",
- -12.389954566955566
- ],
- [
- "▁Northwest",
- -12.390060424804688
- ],
- [
- "▁numit",
- -12.390106201171875
- ],
- [
- "▁mica",
- -12.390165328979492
- ],
- [
- "turm",
- -12.390168190002441
- ],
- [
- "▁motivate",
- -12.390250205993652
- ],
- [
- "▁Staats",
- -12.390355110168457
- ],
- [
- "optimum",
- -12.390487670898438
- ],
- [
- "▁sortir",
- -12.390546798706055
- ],
- [
- "▁Asset",
- -12.390555381774902
- ],
- [
- "▁hervorragend",
- -12.390692710876465
- ],
- [
- "▁commentary",
- -12.39071273803711
- ],
- [
- "▁actuellement",
- -12.390732765197754
- ],
- [
- "NER",
- -12.390765190124512
- ],
- [
- "NL",
- -12.390789985656738
- ],
- [
- "ritt",
- -12.390803337097168
- ],
- [
- "▁Wirtschafts",
- -12.390813827514648
- ],
- [
- "träger",
- -12.390840530395508
- ],
- [
- "▁Versand",
- -12.390870094299316
- ],
- [
- "▁nostri",
- -12.390953063964844
- ],
- [
- "▁enorm",
- -12.391227722167969
- ],
- [
- "▁whale",
- -12.391260147094727
- ],
- [
- "▁Aufgabe",
- -12.391277313232422
- ],
- [
- "▁unfair",
- -12.391291618347168
- ],
- [
- "▁Cord",
- -12.391315460205078
- ],
- [
- "incorporating",
- -12.39134693145752
- ],
- [
- "luck",
- -12.39157772064209
- ],
- [
- "Afrique",
- -12.39168643951416
- ],
- [
- "▁coated",
- -12.391857147216797
- ],
- [
- "▁india",
- -12.391908645629883
- ],
- [
- "▁temporarily",
- -12.39193058013916
- ],
- [
- "▁ciuda",
- -12.392097473144531
- ],
- [
- "▁coral",
- -12.392184257507324
- ],
- [
- "▁wirkt",
- -12.392203330993652
- ],
- [
- "▁folding",
- -12.392309188842773
- ],
- [
- "wichtigsten",
- -12.392398834228516
- ],
- [
- "impacted",
- -12.392422676086426
- ],
- [
- "▁wählen",
- -12.392423629760742
- ],
- [
- "▁differentiate",
- -12.392492294311523
- ],
- [
- "▁froid",
- -12.392544746398926
- ],
- [
- "▁hug",
- -12.39255142211914
- ],
- [
- "▁construi",
- -12.39255428314209
- ],
- [
- "▁membru",
- -12.392603874206543
- ],
- [
- "▁masculin",
- -12.392667770385742
- ],
- [
- "partisan",
- -12.392711639404297
- ],
- [
- "▁schimba",
- -12.392725944519043
- ],
- [
- "▁economies",
- -12.392827987670898
- ],
- [
- "▁Abraham",
- -12.392914772033691
- ],
- [
- "wesen",
- -12.393013954162598
- ],
- [
- "enia",
- -12.393026351928711
- ],
- [
- "▁answering",
- -12.393080711364746
- ],
- [
- "▁activități",
- -12.39309024810791
- ],
- [
- "▁mémoire",
- -12.393160820007324
- ],
- [
- "▁versucht",
- -12.393305778503418
- ],
- [
- "ember",
- -12.39333438873291
- ],
- [
- "▁instala",
- -12.39334774017334
- ],
- [
- "▁eligibility",
- -12.393407821655273
- ],
- [
- "▁enjoyment",
- -12.393409729003906
- ],
- [
- "▁Arme",
- -12.39350414276123
- ],
- [
- "although",
- -12.393534660339355
- ],
- [
- "▁encompass",
- -12.393596649169922
- ],
- [
- "▁zufrieden",
- -12.393658638000488
- ],
- [
- "Script",
- -12.393691062927246
- ],
- [
- "KG",
- -12.39385986328125
- ],
- [
- "▁adhesive",
- -12.393902778625488
- ],
- [
- "▁Verkehrs",
- -12.393908500671387
- ],
- [
- "▁monitored",
- -12.394103050231934
- ],
- [
- "▁Conservation",
- -12.394148826599121
- ],
- [
- "hav",
- -12.394156455993652
- ],
- [
- "▁Above",
- -12.394174575805664
- ],
- [
- "▁Former",
- -12.394241333007812
- ],
- [
- "▁Certain",
- -12.394250869750977
- ],
- [
- "saving",
- -12.394311904907227
- ],
- [
- "▁Pun",
- -12.394390106201172
- ],
- [
- "▁awkward",
- -12.394397735595703
- ],
- [
- "▁Pretty",
- -12.394410133361816
- ],
- [
- "▁scanning",
- -12.394417762756348
- ],
- [
- "layer",
- -12.394527435302734
- ],
- [
- "motor",
- -12.39453125
- ],
- [
- "▁beginnt",
- -12.39455795288086
- ],
- [
- "▁affiliated",
- -12.394681930541992
- ],
- [
- "▁archives",
- -12.394686698913574
- ],
- [
- "▁sunshine",
- -12.394892692565918
- ],
- [
- "kha",
- -12.394988059997559
- ],
- [
- "▁investigated",
- -12.395149230957031
- ],
- [
- "▁fantas",
- -12.395277976989746
- ],
- [
- "▁united",
- -12.395355224609375
- ],
- [
- "allegedly",
- -12.395373344421387
- ],
- [
- "▁Eugen",
- -12.3955078125
- ],
- [
- "▁proprie",
- -12.395843505859375
- ],
- [
- "uca",
- -12.396183013916016
- ],
- [
- "DES",
- -12.396187782287598
- ],
- [
- "ştii",
- -12.396190643310547
- ],
- [
- "▁Running",
- -12.39620590209961
- ],
- [
- "lbstverständlich",
- -12.396248817443848
- ],
- [
- "index",
- -12.396300315856934
- ],
- [
- "▁studiu",
- -12.396512031555176
- ],
- [
- "URE",
- -12.396553039550781
- ],
- [
- "gültig",
- -12.396627426147461
- ],
- [
- "▁lundi",
- -12.396649360656738
- ],
- [
- "▁Zucker",
- -12.396650314331055
- ],
- [
- "▁positively",
- -12.396721839904785
- ],
- [
- "folgenden",
- -12.396758079528809
- ],
- [
- "anță",
- -12.396800994873047
- ],
- [
- "▁clan",
- -12.396866798400879
- ],
- [
- "▁literacy",
- -12.396879196166992
- ],
- [
- "▁ober",
- -12.39699935913086
- ],
- [
- "John",
- -12.397003173828125
- ],
- [
- "greg",
- -12.39700984954834
- ],
- [
- "▁titlu",
- -12.397049903869629
- ],
- [
- "▁ţări",
- -12.39707088470459
- ],
- [
- "Bra",
- -12.397100448608398
- ],
- [
- "▁Evans",
- -12.397164344787598
- ],
- [
- "modern",
- -12.397172927856445
- ],
- [
- "▁hauteur",
- -12.397353172302246
- ],
- [
- "refers",
- -12.397416114807129
- ],
- [
- "▁plasma",
- -12.397575378417969
- ],
- [
- "▁optic",
- -12.397595405578613
- ],
- [
- "▁shampoo",
- -12.397619247436523
- ],
- [
- "▁cheek",
- -12.397727966308594
- ],
- [
- "opted",
- -12.397741317749023
- ],
- [
- "▁persönlich",
- -12.397832870483398
- ],
- [
- "▁1945",
- -12.398118019104004
- ],
- [
- "ICI",
- -12.398193359375
- ],
- [
- "biotic",
- -12.398222923278809
- ],
- [
- "▁Beruf",
- -12.398372650146484
- ],
- [
- "▁trez",
- -12.398383140563965
- ],
- [
- "▁diploma",
- -12.398388862609863
- ],
- [
- "nahmen",
- -12.398421287536621
- ],
- [
- "▁curl",
- -12.398625373840332
- ],
- [
- "▁agricole",
- -12.398824691772461
- ],
- [
- "▁recomand",
- -12.398844718933105
- ],
- [
- "▁pediatric",
- -12.398862838745117
- ],
- [
- "Fiecare",
- -12.39887523651123
- ],
- [
- "Anlage",
- -12.398906707763672
- ],
- [
- "weiß",
- -12.398974418640137
- ],
- [
- "elecommunication",
- -12.39898681640625
- ],
- [
- "hog",
- -12.399184226989746
- ],
- [
- "▁Stamp",
- -12.399364471435547
- ],
- [
- "▁Tipp",
- -12.399369239807129
- ],
- [
- "▁kindness",
- -12.399415969848633
- ],
- [
- "▁Marina",
- -12.399577140808105
- ],
- [
- "▁Gleich",
- -12.39963436126709
- ],
- [
- "▁grij",
- -12.39970588684082
- ],
- [
- "▁desperate",
- -12.39974594116211
- ],
- [
- "▁recordings",
- -12.399842262268066
- ],
- [
- "▁neglect",
- -12.399861335754395
- ],
- [
- "▁inherent",
- -12.400035858154297
- ],
- [
- "▁Rezept",
- -12.400138854980469
- ],
- [
- "▁soins",
- -12.400164604187012
- ],
- [
- "▁brut",
- -12.400250434875488
- ],
- [
- "▁revolutionary",
- -12.400495529174805
- ],
- [
- "▁liberté",
- -12.400530815124512
- ],
- [
- "cours",
- -12.400945663452148
- ],
- [
- "▁Similar",
- -12.401247024536133
- ],
- [
- "▁cheveux",
- -12.40136432647705
- ],
- [
- "▁ieftin",
- -12.401599884033203
- ],
- [
- "▁promovare",
- -12.40160846710205
- ],
- [
- "▁grains",
- -12.401729583740234
- ],
- [
- "ти",
- -12.401749610900879
- ],
- [
- "▁fonctionnement",
- -12.401789665222168
- ],
- [
- "▁Coming",
- -12.401832580566406
- ],
- [
- "▁analytical",
- -12.401847839355469
- ],
- [
- "▁simplify",
- -12.401856422424316
- ],
- [
- "▁chambres",
- -12.401893615722656
- ],
- [
- "▁fifty",
- -12.401930809020996
- ],
- [
- "jour",
- -12.402070999145508
- ],
- [
- "▁(17",
- -12.402194023132324
- ],
- [
- "cărui",
- -12.402292251586914
- ],
- [
- "▁harmony",
- -12.402352333068848
- ],
- [
- "grin",
- -12.402355194091797
- ],
- [
- "▁drunk",
- -12.402359962463379
- ],
- [
- "260",
- -12.402374267578125
- ],
- [
- "3-5",
- -12.40243148803711
- ],
- [
- "▁articole",
- -12.402442932128906
- ],
- [
- "▁flooding",
- -12.402482986450195
- ],
- [
- "halle",
- -12.402580261230469
- ],
- [
- "▁defects",
- -12.40276050567627
- ],
- [
- "▁rifle",
- -12.402839660644531
- ],
- [
- "▁Boc",
- -12.402843475341797
- ],
- [
- "▁Athletic",
- -12.40284538269043
- ],
- [
- "▁acordat",
- -12.40292739868164
- ],
- [
- "AIR",
- -12.402969360351562
- ],
- [
- "▁entwickeln",
- -12.403104782104492
- ],
- [
- "▁Advance",
- -12.403188705444336
- ],
- [
- "▁Heil",
- -12.403216361999512
- ],
- [
- "Stainless",
- -12.403345108032227
- ],
- [
- "▁Psychology",
- -12.40337085723877
- ],
- [
- "▁omul",
- -12.403435707092285
- ],
- [
- "▁Arbeiten",
- -12.403494834899902
- ],
- [
- "▁rabbit",
- -12.403495788574219
- ],
- [
- "▁méta",
- -12.40351390838623
- ],
- [
- "ismul",
- -12.403534889221191
- ],
- [
- "▁Herausforderung",
- -12.403594970703125
- ],
- [
- "▁Euch",
- -12.403654098510742
- ],
- [
- "geschichte",
- -12.40390682220459
- ],
- [
- "▁Milk",
- -12.404057502746582
- ],
- [
- "▁pregăt",
- -12.404065132141113
- ],
- [
- "▁Standort",
- -12.404141426086426
- ],
- [
- "Val",
- -12.404180526733398
- ],
- [
- "▁Ronald",
- -12.404350280761719
- ],
- [
- "▁Werbe",
- -12.404558181762695
- ],
- [
- "▁restrict",
- -12.404658317565918
- ],
- [
- "▁tablespoon",
- -12.404844284057617
- ],
- [
- "▁Amendment",
- -12.404845237731934
- ],
- [
- "▁Johnny",
- -12.404914855957031
- ],
- [
- "▁lively",
- -12.404938697814941
- ],
- [
- "ORD",
- -12.405147552490234
- ],
- [
- "▁mulţi",
- -12.40523624420166
- ],
- [
- "èrent",
- -12.405241012573242
- ],
- [
- "Every",
- -12.405277252197266
- ],
- [
- "eignet",
- -12.405296325683594
- ],
- [
- "GD",
- -12.40546989440918
- ],
- [
- "▁Ghana",
- -12.405628204345703
- ],
- [
- "▁wealthy",
- -12.40576171875
- ],
- [
- "▁advocates",
- -12.405818939208984
- ],
- [
- "▁Campaign",
- -12.40584659576416
- ],
- [
- "▁posters",
- -12.405964851379395
- ],
- [
- "flug",
- -12.406011581420898
- ],
- [
- "▁métier",
- -12.406139373779297
- ],
- [
- "kir",
- -12.406148910522461
- ],
- [
- "bond",
- -12.406176567077637
- ],
- [
- "datorita",
- -12.406188011169434
- ],
- [
- "▁Hochzeit",
- -12.406230926513672
- ],
- [
- "▁effectué",
- -12.406271934509277
- ],
- [
- "▁angles",
- -12.40654182434082
- ],
- [
- "▁Electrical",
- -12.406705856323242
- ],
- [
- "▁Administrator",
- -12.40674114227295
- ],
- [
- "▁spur",
- -12.407389640808105
- ],
- [
- "▁größere",
- -12.407444953918457
- ],
- [
- "woke",
- -12.407515525817871
- ],
- [
- "▁gewinnen",
- -12.407689094543457
- ],
- [
- "▁ajută",
- -12.407712936401367
- ],
- [
- "▁ventilation",
- -12.407853126525879
- ],
- [
- "▁viaţa",
- -12.407853126525879
- ],
- [
- "▁Dinner",
- -12.408079147338867
- ],
- [
- "respond",
- -12.408095359802246
- ],
- [
- "▁OEM",
- -12.408120155334473
- ],
- [
- "▁affair",
- -12.4081392288208
- ],
- [
- "▁öffentlich",
- -12.408143043518066
- ],
- [
- "ENS",
- -12.408209800720215
- ],
- [
- "▁Cent",
- -12.408224105834961
- ],
- [
- "▁făc",
- -12.408267974853516
- ],
- [
- "▁Doppel",
- -12.408285140991211
- ],
- [
- "▁fericit",
- -12.408363342285156
- ],
- [
- "▁coordon",
- -12.40845775604248
- ],
- [
- "geht",
- -12.408547401428223
- ],
- [
- "▁perfekte",
- -12.408610343933105
- ],
- [
- "▁sportive",
- -12.408700942993164
- ],
- [
- "▁proiectul",
- -12.40870189666748
- ],
- [
- "▁deadly",
- -12.408804893493652
- ],
- [
- "Geschäft",
- -12.408822059631348
- ],
- [
- "▁inspirational",
- -12.408854484558105
- ],
- [
- "+1",
- -12.409013748168945
- ],
- [
- "▁pearl",
- -12.409022331237793
- ],
- [
- "▁scrub",
- -12.409036636352539
- ],
- [
- "▁scheint",
- -12.409079551696777
- ],
- [
- "poo",
- -12.409147262573242
- ],
- [
- "▁Pier",
- -12.409220695495605
- ],
- [
- "▁commented",
- -12.409285545349121
- ],
- [
- "lute",
- -12.409302711486816
- ],
- [
- "▁cancelled",
- -12.409488677978516
- ],
- [
- "Win",
- -12.409605979919434
- ],
- [
- "▁payroll",
- -12.409781455993652
- ],
- [
- "▁varsta",
- -12.409881591796875
- ],
- [
- "stuffed",
- -12.410097122192383
- ],
- [
- "▁beads",
- -12.410138130187988
- ],
- [
- "▁poems",
- -12.410356521606445
- ],
- [
- "pokesman",
- -12.410399436950684
- ],
- [
- "▁checklist",
- -12.410523414611816
- ],
- [
- "▁Mich",
- -12.410636901855469
- ],
- [
- "GEN",
- -12.410676002502441
- ],
- [
- "▁Lau",
- -12.410783767700195
- ],
- [
- "▁stie",
- -12.410965919494629
- ],
- [
- "▁Lovely",
- -12.4110107421875
- ],
- [
- "▁Anschluss",
- -12.411062240600586
- ],
- [
- "▁personaj",
- -12.41108226776123
- ],
- [
- "▁ausgestattet",
- -12.411121368408203
- ],
- [
- "▁beginners",
- -12.411163330078125
- ],
- [
- "▁noon",
- -12.411189079284668
- ],
- [
- "▁celule",
- -12.41128921508789
- ],
- [
- "Trans",
- -12.411324501037598
- ],
- [
- "boot",
- -12.411331176757812
- ],
- [
- "▁drumul",
- -12.41136646270752
- ],
- [
- "gruppen",
- -12.41140079498291
- ],
- [
- "étend",
- -12.41140365600586
- ],
- [
- "▁risques",
- -12.411405563354492
- ],
- [
- "acclaimed",
- -12.411447525024414
- ],
- [
- "▁celelalte",
- -12.411617279052734
- ],
- [
- "▁condiţii",
- -12.411620140075684
- ],
- [
- "▁skiing",
- -12.411685943603516
- ],
- [
- "▁optimale",
- -12.411689758300781
- ],
- [
- "technology",
- -12.411773681640625
- ],
- [
- "▁renew",
- -12.411784172058105
- ],
- [
- "Cloud",
- -12.41179084777832
- ],
- [
- "▁damaging",
- -12.411905288696289
- ],
- [
- "GT",
- -12.412219047546387
- ],
- [
- "▁Reform",
- -12.41230583190918
- ],
- [
- "vedem",
- -12.412349700927734
- ],
- [
- "▁indicat",
- -12.412461280822754
- ],
- [
- "▁Maker",
- -12.412467002868652
- ],
- [
- "▁lichid",
- -12.412582397460938
- ],
- [
- "3.1",
- -12.412614822387695
- ],
- [
- "păt",
- -12.412620544433594
- ],
- [
- "lumina",
- -12.41264820098877
- ],
- [
- "▁Situ",
- -12.412806510925293
- ],
- [
- "▁Archives",
- -12.412857055664062
- ],
- [
- "▁allergies",
- -12.41287899017334
- ],
- [
- "▁Cameron",
- -12.412883758544922
- ],
- [
- "▁Immun",
- -12.412899017333984
- ],
- [
- "wissenschaftlich",
- -12.41301441192627
- ],
- [
- "▁supplémentaire",
- -12.413128852844238
- ],
- [
- "▁puterea",
- -12.413261413574219
- ],
- [
- "Lab",
- -12.413331985473633
- ],
- [
- "inspired",
- -12.413384437561035
- ],
- [
- "▁shrink",
- -12.413403511047363
- ],
- [
- "▁voit",
- -12.413426399230957
- ],
- [
- "▁chopped",
- -12.413467407226562
- ],
- [
- "▁Franz",
- -12.413537979125977
- ],
- [
- "oku",
- -12.413652420043945
- ],
- [
- "▁suppress",
- -12.413673400878906
- ],
- [
- "▁impress",
- -12.413751602172852
- ],
- [
- "▁Liga",
- -12.413755416870117
- ],
- [
- "▁Eight",
- -12.41378402709961
- ],
- [
- "720",
- -12.413795471191406
- ],
- [
- "▁securely",
- -12.413870811462402
- ],
- [
- "KU",
- -12.413934707641602
- ],
- [
- "modell",
- -12.413992881774902
- ],
- [
- "Ensure",
- -12.414154052734375
- ],
- [
- "größte",
- -12.414204597473145
- ],
- [
- "▁réuni",
- -12.414215087890625
- ],
- [
- "▁Internal",
- -12.41423225402832
- ],
- [
- "▁Punkte",
- -12.414320945739746
- ],
- [
- "▁replicate",
- -12.414412498474121
- ],
- [
- "▁spreadsheet",
- -12.414434432983398
- ],
- [
- "▁Hindu",
- -12.414549827575684
- ],
- [
- "▁Cham",
- -12.414578437805176
- ],
- [
- "nati",
- -12.414670944213867
- ],
- [
- "imply",
- -12.414679527282715
- ],
- [
- "funded",
- -12.414894104003906
- ],
- [
- "▁charitable",
- -12.414896011352539
- ],
- [
- "▁imagined",
- -12.415014266967773
- ],
- [
- "hausen",
- -12.41517448425293
- ],
- [
- "Keeping",
- -12.415239334106445
- ],
- [
- "▁attitudes",
- -12.415287971496582
- ],
- [
- "esque",
- -12.415365219116211
- ],
- [
- "▁Tennis",
- -12.415409088134766
- ],
- [
- "Jeremy",
- -12.415410041809082
- ],
- [
- "▁majeur",
- -12.415475845336914
- ],
- [
- "▁stii",
- -12.4155912399292
- ],
- [
- "▁herbal",
- -12.415790557861328
- ],
- [
- "▁cauta",
- -12.41580867767334
- ],
- [
- "▁voluntary",
- -12.415828704833984
- ],
- [
- "wohl",
- -12.415877342224121
- ],
- [
- "▁ideea",
- -12.41588306427002
- ],
- [
- "▁WW",
- -12.415899276733398
- ],
- [
- "▁erneut",
- -12.416010856628418
- ],
- [
- "größten",
- -12.416094779968262
- ],
- [
- "Grâce",
- -12.416159629821777
- ],
- [
- "▁Köln",
- -12.416193008422852
- ],
- [
- "▁mobilier",
- -12.416199684143066
- ],
- [
- "▁fool",
- -12.416254043579102
- ],
- [
- "▁Calcul",
- -12.416295051574707
- ],
- [
- "attaque",
- -12.41637897491455
- ],
- [
- "▁digestive",
- -12.41656494140625
- ],
- [
- "performance",
- -12.416647911071777
- ],
- [
- "▁homeowner",
- -12.41675853729248
- ],
- [
- "▁hunger",
- -12.4169282913208
- ],
- [
- "2.3",
- -12.41696834564209
- ],
- [
- "▁Sort",
- -12.417085647583008
- ],
- [
- "▁Dennis",
- -12.41723918914795
- ],
- [
- "▁certificat",
- -12.417250633239746
- ],
- [
- "▁Canal",
- -12.417337417602539
- ],
- [
- "▁Yesterday",
- -12.417424201965332
- ],
- [
- "▁sausage",
- -12.417499542236328
- ],
- [
- "▁perdu",
- -12.417736053466797
- ],
- [
- "ösen",
- -12.417741775512695
- ],
- [
- "▁preserved",
- -12.417750358581543
- ],
- [
- "▁trendy",
- -12.4177885055542
- ],
- [
- "▁iubire",
- -12.417935371398926
- ],
- [
- "▁grandfather",
- -12.417961120605469
- ],
- [
- "▁shoppers",
- -12.41820240020752
- ],
- [
- "▁verschieden",
- -12.418252944946289
- ],
- [
- "▁gagner",
- -12.41826343536377
- ],
- [
- "▁lucra",
- -12.418437004089355
- ],
- [
- "metru",
- -12.418464660644531
- ],
- [
- "buz",
- -12.418469429016113
- ],
- [
- "▁flourish",
- -12.418484687805176
- ],
- [
- "affin",
- -12.418523788452148
- ],
- [
- "▁Pflanzen",
- -12.41858196258545
- ],
- [
- "agh",
- -12.418588638305664
- ],
- [
- "▁Gill",
- -12.418660163879395
- ],
- [
- "▁Kä",
- -12.418671607971191
- ],
- [
- "▁Wege",
- -12.41876220703125
- ],
- [
- "▁Liberal",
- -12.418929100036621
- ],
- [
- "▁Glasgow",
- -12.418944358825684
- ],
- [
- "Objekt",
- -12.4189453125
- ],
- [
- "▁Huawei",
- -12.4189453125
- ],
- [
- "appropri",
- -12.418986320495605
- ],
- [
- "▁genius",
- -12.419037818908691
- ],
- [
- "▁brokers",
- -12.419068336486816
- ],
- [
- "▁themed",
- -12.41918659210205
- ],
- [
- "▁barre",
- -12.419210433959961
- ],
- [
- "1.7",
- -12.419219017028809
- ],
- [
- "▁Electro",
- -12.419303894042969
- ],
- [
- "▁umbrella",
- -12.419333457946777
- ],
- [
- "▁advisory",
- -12.419417381286621
- ],
- [
- "▁comport",
- -12.419421195983887
- ],
- [
- "▁neuer",
- -12.419452667236328
- ],
- [
- "▁Wick",
- -12.419568061828613
- ],
- [
- "wak",
- -12.419618606567383
- ],
- [
- "▁Woman",
- -12.419695854187012
- ],
- [
- "▁lesser",
- -12.419843673706055
- ],
- [
- "▁replied",
- -12.419987678527832
- ],
- [
- "▁représente",
- -12.420050621032715
- ],
- [
- "▁thé",
- -12.420135498046875
- ],
- [
- "Deutsch",
- -12.420428276062012
- ],
- [
- "Cat",
- -12.420483589172363
- ],
- [
- "▁équipes",
- -12.420534133911133
- ],
- [
- "▁spider",
- -12.420578956604004
- ],
- [
- "▁Gaming",
- -12.420589447021484
- ],
- [
- "▁Liste",
- -12.420592308044434
- ],
- [
- "▁affection",
- -12.420639038085938
- ],
- [
- "lipsa",
- -12.420982360839844
- ],
- [
- "▁Spider",
- -12.420987129211426
- ],
- [
- "▁Julia",
- -12.421034812927246
- ],
- [
- "anlagen",
- -12.421159744262695
- ],
- [
- "Kon",
- -12.421363830566406
- ],
- [
- "nței",
- -12.421368598937988
- ],
- [
- "▁Verwaltung",
- -12.421483993530273
- ],
- [
- "▁raspuns",
- -12.421489715576172
- ],
- [
- "samt",
- -12.421491622924805
- ],
- [
- "▁creștere",
- -12.421512603759766
- ],
- [
- "▁decorate",
- -12.421701431274414
- ],
- [
- "▁Chain",
- -12.422021865844727
- ],
- [
- "ów",
- -12.422050476074219
- ],
- [
- "0-0",
- -12.422104835510254
- ],
- [
- "▁Cran",
- -12.422407150268555
- ],
- [
- "▁streak",
- -12.42242431640625
- ],
- [
- "ор",
- -12.422517776489258
- ],
- [
- "▁căuta",
- -12.422754287719727
- ],
- [
- "wende",
- -12.422801971435547
- ],
- [
- "▁haine",
- -12.42280387878418
- ],
- [
- "▁landscaping",
- -12.423009872436523
- ],
- [
- "▁historian",
- -12.423016548156738
- ],
- [
- "▁grandchildren",
- -12.423033714294434
- ],
- [
- "▁crawl",
- -12.423056602478027
- ],
- [
- "▁Cub",
- -12.423239707946777
- ],
- [
- "▁nécessaires",
- -12.423515319824219
- ],
- [
- "▁swift",
- -12.42352294921875
- ],
- [
- "▁calculation",
- -12.423656463623047
- ],
- [
- "▁acteurs",
- -12.423715591430664
- ],
- [
- "VT",
- -12.423752784729004
- ],
- [
- "▁Hristos",
- -12.423778533935547
- ],
- [
- "▁slices",
- -12.423850059509277
- ],
- [
- "See",
- -12.424203872680664
- ],
- [
- "▁Bran",
- -12.424233436584473
- ],
- [
- "Symbol",
- -12.424449920654297
- ],
- [
- "▁allowance",
- -12.424492835998535
- ],
- [
- "▁Effective",
- -12.424537658691406
- ],
- [
- "▁Wünsche",
- -12.424539566040039
- ],
- [
- "▁shiny",
- -12.424569129943848
- ],
- [
- "▁professionalism",
- -12.424715995788574
- ],
- [
- "/6",
- -12.424970626831055
- ],
- [
- "▁terrasse",
- -12.425087928771973
- ],
- [
- "▁researcher",
- -12.425156593322754
- ],
- [
- "▁fragile",
- -12.425203323364258
- ],
- [
- "▁greeting",
- -12.425274848937988
- ],
- [
- "freien",
- -12.4253511428833
- ],
- [
- "▁valuation",
- -12.425372123718262
- ],
- [
- "▁incur",
- -12.425386428833008
- ],
- [
- "▁Zwischen",
- -12.425559997558594
- ],
- [
- "▁comfy",
- -12.425569534301758
- ],
- [
- "▁méthode",
- -12.42569351196289
- ],
- [
- "▁Pirate",
- -12.425816535949707
- ],
- [
- "▁Moto",
- -12.425822257995605
- ],
- [
- "(6)",
- -12.425823211669922
- ],
- [
- "▁devin",
- -12.42582893371582
- ],
- [
- "▁civic",
- -12.425837516784668
- ],
- [
- "usage",
- -12.425889015197754
- ],
- [
- "▁istorie",
- -12.425945281982422
- ],
- [
- "▁piste",
- -12.425955772399902
- ],
- [
- "▁Rug",
- -12.426091194152832
- ],
- [
- "pä",
- -12.426129341125488
- ],
- [
- "▁matur",
- -12.426148414611816
- ],
- [
- "CAS",
- -12.426155090332031
- ],
- [
- "TIC",
- -12.42618465423584
- ],
- [
- "▁Reduce",
- -12.426234245300293
- ],
- [
- "▁commemorat",
- -12.426321983337402
- ],
- [
- "▁cease",
- -12.42653751373291
- ],
- [
- "unterschiedliche",
- -12.42656421661377
- ],
- [
- "▁cinnamon",
- -12.426581382751465
- ],
- [
- "▁Font",
- -12.426583290100098
- ],
- [
- "▁justify",
- -12.426751136779785
- ],
- [
- "deteriorat",
- -12.426797866821289
- ],
- [
- "▁Schön",
- -12.42684555053711
- ],
- [
- "plain",
- -12.426993370056152
- ],
- [
- "frist",
- -12.427002906799316
- ],
- [
- "▁helmet",
- -12.42712116241455
- ],
- [
- "▁statute",
- -12.42721939086914
- ],
- [
- "accept",
- -12.427236557006836
- ],
- [
- "▁1,5",
- -12.42724323272705
- ],
- [
- "▁recon",
- -12.42724323272705
- ],
- [
- "▁Möbel",
- -12.427348136901855
- ],
- [
- "▁idées",
- -12.427367210388184
- ],
- [
- "automat",
- -12.427552223205566
- ],
- [
- "Team",
- -12.42758846282959
- ],
- [
- "▁performers",
- -12.427688598632812
- ],
- [
- "▁microphone",
- -12.427722930908203
- ],
- [
- "impotriva",
- -12.427775382995605
- ],
- [
- "▁pillows",
- -12.42780876159668
- ],
- [
- "▁accountable",
- -12.427812576293945
- ],
- [
- "▁strings",
- -12.42782974243164
- ],
- [
- "hydrate",
- -12.427835464477539
- ],
- [
- "▁Yan",
- -12.427865028381348
- ],
- [
- "starea",
- -12.427918434143066
- ],
- [
- "▁présenté",
- -12.42793083190918
- ],
- [
- "▁extensively",
- -12.428048133850098
- ],
- [
- "äst",
- -12.428114891052246
- ],
- [
- "▁correlation",
- -12.428115844726562
- ],
- [
- "bespoke",
- -12.428119659423828
- ],
- [
- "▁creste",
- -12.428196907043457
- ],
- [
- "▁Armenia",
- -12.428248405456543
- ],
- [
- "nose",
- -12.428426742553711
- ],
- [
- "▁strengthening",
- -12.428604125976562
- ],
- [
- "▁Horizon",
- -12.428627014160156
- ],
- [
- "▁obesity",
- -12.428627967834473
- ],
- [
- "seasoned",
- -12.428686141967773
- ],
- [
- "▁screenshot",
- -12.428736686706543
- ],
- [
- "girl",
- -12.42875862121582
- ],
- [
- "▁hardest",
- -12.428826332092285
- ],
- [
- "▁weakness",
- -12.428855895996094
- ],
- [
- "effectuer",
- -12.429012298583984
- ],
- [
- "▁Florence",
- -12.429034233093262
- ],
- [
- "▁Europene",
- -12.429062843322754
- ],
- [
- "triggered",
- -12.429333686828613
- ],
- [
- "Apparently",
- -12.42939567565918
- ],
- [
- "▁diagnose",
- -12.42943286895752
- ],
- [
- "rushed",
- -12.429494857788086
- ],
- [
- "▁trotz",
- -12.429516792297363
- ],
- [
- "▁spécial",
- -12.429680824279785
- ],
- [
- "▁lumi",
- -12.429783821105957
- ],
- [
- "7:00",
- -12.429877281188965
- ],
- [
- "▁publicat",
- -12.429903984069824
- ],
- [
- "ос",
- -12.430086135864258
- ],
- [
- "▁hue",
- -12.430136680603027
- ],
- [
- "▁termination",
- -12.430139541625977
- ],
- [
- "▁Nam",
- -12.430240631103516
- ],
- [
- "Well",
- -12.430376052856445
- ],
- [
- "▁Extract",
- -12.430441856384277
- ],
- [
- "atiile",
- -12.43062686920166
- ],
- [
- "▁vivid",
- -12.43076229095459
- ],
- [
- "hrs",
- -12.430858612060547
- ],
- [
- "▁povesti",
- -12.430984497070312
- ],
- [
- "stehenden",
- -12.430988311767578
- ],
- [
- "▁informieren",
- -12.431070327758789
- ],
- [
- "employed",
- -12.431133270263672
- ],
- [
- "▁armor",
- -12.431180953979492
- ],
- [
- "▁Columbus",
- -12.431191444396973
- ],
- [
- "Registr",
- -12.431200981140137
- ],
- [
- "▁Kamera",
- -12.431203842163086
- ],
- [
- "▁ugly",
- -12.431203842163086
- ],
- [
- "outil",
- -12.431234359741211
- ],
- [
- "▁evenly",
- -12.43134593963623
- ],
- [
- "lungul",
- -12.431349754333496
- ],
- [
- "koch",
- -12.431439399719238
- ],
- [
- "▁Dig",
- -12.431450843811035
- ],
- [
- "purely",
- -12.431489944458008
- ],
- [
- "▁Surf",
- -12.431560516357422
- ],
- [
- "rilla",
- -12.431628227233887
- ],
- [
- "▁Watson",
- -12.43171215057373
- ],
- [
- "trug",
- -12.431719779968262
- ],
- [
- "figuring",
- -12.431784629821777
- ],
- [
- "▁competitor",
- -12.431807518005371
- ],
- [
- "▁humid",
- -12.431889533996582
- ],
- [
- "▁Lawyer",
- -12.43189811706543
- ],
- [
- "Added",
- -12.43205451965332
- ],
- [
- "▁salva",
- -12.432056427001953
- ],
- [
- "▁drainage",
- -12.4321870803833
- ],
- [
- "Featuring",
- -12.432220458984375
- ],
- [
- "▁Pel",
- -12.43234634399414
- ],
- [
- "▁acasa",
- -12.432611465454102
- ],
- [
- "▁expectation",
- -12.43265438079834
- ],
- [
- "gibt",
- -12.432663917541504
- ],
- [
- "▁marginal",
- -12.432831764221191
- ],
- [
- "ceni",
- -12.433028221130371
- ],
- [
- "▁européen",
- -12.433065414428711
- ],
- [
- "clav",
- -12.433090209960938
- ],
- [
- "▁Shot",
- -12.433167457580566
- ],
- [
- "commun",
- -12.43322467803955
- ],
- [
- "▁Calendar",
- -12.433247566223145
- ],
- [
- "▁trek",
- -12.433348655700684
- ],
- [
- "rechtliche",
- -12.433406829833984
- ],
- [
- "▁Perry",
- -12.43342399597168
- ],
- [
- "▁surge",
- -12.433484077453613
- ],
- [
- "geschäft",
- -12.433504104614258
- ],
- [
- "paced",
- -12.433793067932129
- ],
- [
- "depend",
- -12.433871269226074
- ],
- [
- "▁Sache",
- -12.433947563171387
- ],
- [
- "▁Example",
- -12.433998107910156
- ],
- [
- "▁lider",
- -12.434118270874023
- ],
- [
- "▁nochmal",
- -12.434240341186523
- ],
- [
- "▁Present",
- -12.434243202209473
- ],
- [
- "KW",
- -12.434335708618164
- ],
- [
- "prompted",
- -12.434350967407227
- ],
- [
- "logique",
- -12.434444427490234
- ],
- [
- "Université",
- -12.434466361999512
- ],
- [
- "lith",
- -12.434489250183105
- ],
- [
- "▁Gefahr",
- -12.434579849243164
- ],
- [
- "▁Acid",
- -12.434625625610352
- ],
- [
- "objets",
- -12.434791564941406
- ],
- [
- "▁societies",
- -12.434791564941406
- ],
- [
- "▁distraction",
- -12.434816360473633
- ],
- [
- "▁puissance",
- -12.434934616088867
- ],
- [
- "▁alleviat",
- -12.435026168823242
- ],
- [
- "▁Capitol",
- -12.435050010681152
- ],
- [
- "▁Heim",
- -12.435129165649414
- ],
- [
- "judicial",
- -12.435230255126953
- ],
- [
- "▁nowadays",
- -12.435309410095215
- ],
- [
- "▁Hammer",
- -12.435317039489746
- ],
- [
- "▁metallic",
- -12.435327529907227
- ],
- [
- "▁distr",
- -12.435388565063477
- ],
- [
- "▁dispos",
- -12.435397148132324
- ],
- [
- "profile",
- -12.435408592224121
- ],
- [
- "▁Nicolas",
- -12.435602188110352
- ],
- [
- "▁presa",
- -12.435760498046875
- ],
- [
- "augh",
- -12.43578052520752
- ],
- [
- "schuss",
- -12.435787200927734
- ],
- [
- "▁Diana",
- -12.436062812805176
- ],
- [
- "4-5",
- -12.436097145080566
- ],
- [
- "▁Chapel",
- -12.43612003326416
- ],
- [
- "▁zahar",
- -12.436150550842285
- ],
- [
- "âmb",
- -12.4362154006958
- ],
- [
- "▁Tarif",
- -12.436264991760254
- ],
- [
- "▁devastating",
- -12.436339378356934
- ],
- [
- "6:00",
- -12.4364013671875
- ],
- [
- "▁100,000",
- -12.43645191192627
- ],
- [
- "NIC",
- -12.436580657958984
- ],
- [
- "▁Lucas",
- -12.436612129211426
- ],
- [
- "▁bequem",
- -12.436662673950195
- ],
- [
- "▁Motion",
- -12.436698913574219
- ],
- [
- "7,000",
- -12.436701774597168
- ],
- [
- "▁malware",
- -12.436708450317383
- ],
- [
- "▁avenue",
- -12.436723709106445
- ],
- [
- "▁manger",
- -12.436747550964355
- ],
- [
- "▁Queensland",
- -12.436857223510742
- ],
- [
- "▁Papier",
- -12.436861991882324
- ],
- [
- "▁Increase",
- -12.436880111694336
- ],
- [
- "▁implies",
- -12.436954498291016
- ],
- [
- "▁äußer",
- -12.43697452545166
- ],
- [
- "▁Meine",
- -12.436980247497559
- ],
- [
- "Reuters",
- -12.437155723571777
- ],
- [
- "▁Belt",
- -12.437232971191406
- ],
- [
- "Educat",
- -12.437251091003418
- ],
- [
- "▁Aktion",
- -12.437355041503906
- ],
- [
- "schläge",
- -12.437372207641602
- ],
- [
- "▁înregistrat",
- -12.437426567077637
- ],
- [
- "▁Ortho",
- -12.43756103515625
- ],
- [
- "▁bulbs",
- -12.437761306762695
- ],
- [
- "kap",
- -12.437793731689453
- ],
- [
- "▁peinture",
- -12.437901496887207
- ],
- [
- "▁Lounge",
- -12.437907218933105
- ],
- [
- "▁Tampa",
- -12.438008308410645
- ],
- [
- "ifiziert",
- -12.438100814819336
- ],
- [
- "kinder",
- -12.438172340393066
- ],
- [
- "▁comparativ",
- -12.438281059265137
- ],
- [
- "häuser",
- -12.438323974609375
- ],
- [
- "incarn",
- -12.438363075256348
- ],
- [
- "▁amazon",
- -12.438464164733887
- ],
- [
- "▁Southeast",
- -12.438505172729492
- ],
- [
- "▁economical",
- -12.438667297363281
- ],
- [
- "▁broth",
- -12.438697814941406
- ],
- [
- "▁Secure",
- -12.438750267028809
- ],
- [
- "damals",
- -12.438875198364258
- ],
- [
- "▁Elementary",
- -12.438921928405762
- ],
- [
- "▁Wildlife",
- -12.438995361328125
- ],
- [
- "▁Jewel",
- -12.439001083374023
- ],
- [
- "▁protocols",
- -12.439297676086426
- ],
- [
- "▁zbor",
- -12.4393892288208
- ],
- [
- "▁enthusiasts",
- -12.439398765563965
- ],
- [
- "▁Mirror",
- -12.439444541931152
- ],
- [
- "▁soak",
- -12.439537048339844
- ],
- [
- "▁Sad",
- -12.439574241638184
- ],
- [
- "▁dishwasher",
- -12.439957618713379
- ],
- [
- "▁vollständig",
- -12.440186500549316
- ],
- [
- "▁Vermont",
- -12.440407752990723
- ],
- [
- "▁caut",
- -12.440449714660645
- ],
- [
- "▁fournisseur",
- -12.440475463867188
- ],
- [
- "▁Concrete",
- -12.44047737121582
- ],
- [
- "▁Instant",
- -12.440595626831055
- ],
- [
- "▁reveni",
- -12.440597534179688
- ],
- [
- "▁Surface",
- -12.44059944152832
- ],
- [
- "zumindest",
- -12.440713882446289
- ],
- [
- "▁feast",
- -12.440725326538086
- ],
- [
- "▁stretching",
- -12.440803527832031
- ],
- [
- "ERA",
- -12.440997123718262
- ],
- [
- "▁Scholarship",
- -12.441020965576172
- ],
- [
- "▁vineyard",
- -12.4410400390625
- ],
- [
- "▁régulièrement",
- -12.441083908081055
- ],
- [
- "▁patches",
- -12.441093444824219
- ],
- [
- "▁Gamb",
- -12.44113540649414
- ],
- [
- "▁Vereins",
- -12.441152572631836
- ],
- [
- "ège",
- -12.441372871398926
- ],
- [
- "▁constitutional",
- -12.441411018371582
- ],
- [
- "erreur",
- -12.441413879394531
- ],
- [
- "▁Colombia",
- -12.441514015197754
- ],
- [
- "UF",
- -12.441618919372559
- ],
- [
- "aider",
- -12.441665649414062
- ],
- [
- "cision",
- -12.44180965423584
- ],
- [
- "▁publishers",
- -12.441913604736328
- ],
- [
- "▁prelua",
- -12.441967964172363
- ],
- [
- "▁keiner",
- -12.441990852355957
- ],
- [
- "▁amid",
- -12.442020416259766
- ],
- [
- "▁quantitative",
- -12.442031860351562
- ],
- [
- "▁decay",
- -12.442058563232422
- ],
- [
- "▁distinguished",
- -12.4420747756958
- ],
- [
- "▁Gründe",
- -12.442209243774414
- ],
- [
- "▁statului",
- -12.442362785339355
- ],
- [
- "CAT",
- -12.442436218261719
- ],
- [
- "allow",
- -12.442481994628906
- ],
- [
- "▁mathematical",
- -12.442550659179688
- ],
- [
- "▁tragedy",
- -12.44255542755127
- ],
- [
- "▁heels",
- -12.442609786987305
- ],
- [
- "opia",
- -12.44265365600586
- ],
- [
- "▁merger",
- -12.4428071975708
- ],
- [
- "dispositif",
- -12.442813873291016
- ],
- [
- "▁pneu",
- -12.44283390045166
- ],
- [
- "elte",
- -12.443058013916016
- ],
- [
- "▁Introduction",
- -12.443070411682129
- ],
- [
- "▁biscuit",
- -12.443134307861328
- ],
- [
- "▁leftover",
- -12.443275451660156
- ],
- [
- "▁tester",
- -12.443314552307129
- ],
- [
- "▁Terre",
- -12.443380355834961
- ],
- [
- "▁Oui",
- -12.44338321685791
- ],
- [
- "▁rar",
- -12.443520545959473
- ],
- [
- "▁beverages",
- -12.443666458129883
- ],
- [
- "▁parenting",
- -12.443892478942871
- ],
- [
- "1-0",
- -12.444053649902344
- ],
- [
- "▁Barry",
- -12.44417667388916
- ],
- [
- "▁Lynn",
- -12.444209098815918
- ],
- [
- "▁Tyler",
- -12.444262504577637
- ],
- [
- "▁fotbal",
- -12.44437026977539
- ],
- [
- "dron",
- -12.444475173950195
- ],
- [
- "▁donor",
- -12.44455623626709
- ],
- [
- "▁drape",
- -12.444558143615723
- ],
- [
- "▁positioning",
- -12.444963455200195
- ],
- [
- "▁Tang",
- -12.445006370544434
- ],
- [
- "▁overwhelmed",
- -12.445161819458008
- ],
- [
- "▁perte",
- -12.445192337036133
- ],
- [
- "▁blender",
- -12.445302963256836
- ],
- [
- "TG",
- -12.445467948913574
- ],
- [
- "GHz",
- -12.445490837097168
- ],
- [
- "▁administrat",
- -12.445719718933105
- ],
- [
- "▁glaube",
- -12.445771217346191
- ],
- [
- "Char",
- -12.445947647094727
- ],
- [
- "impression",
- -12.44627571105957
- ],
- [
- "proving",
- -12.446297645568848
- ],
- [
- "▁Inner",
- -12.446434020996094
- ],
- [
- "root",
- -12.446501731872559
- ],
- [
- "▁Gedanken",
- -12.446508407592773
- ],
- [
- "▁underway",
- -12.446596145629883
- ],
- [
- "coat",
- -12.44660758972168
- ],
- [
- "▁thereof",
- -12.446663856506348
- ],
- [
- "rius",
- -12.446700096130371
- ],
- [
- "▁intermediate",
- -12.446751594543457
- ],
- [
- "gmail",
- -12.446869850158691
- ],
- [
- "114",
- -12.446893692016602
- ],
- [
- "▁interfere",
- -12.446908950805664
- ],
- [
- "▁Found",
- -12.446930885314941
- ],
- [
- "LF",
- -12.447071075439453
- ],
- [
- "▁equality",
- -12.447099685668945
- ],
- [
- "▁concurrent",
- -12.44710636138916
- ],
- [
- "akh",
- -12.447107315063477
- ],
- [
- "▁touching",
- -12.44715690612793
- ],
- [
- "▁curiosity",
- -12.447235107421875
- ],
- [
- "▁rendering",
- -12.447263717651367
- ],
- [
- "▁1964",
- -12.447442054748535
- ],
- [
- "sorge",
- -12.447468757629395
- ],
- [
- "ARC",
- -12.447505950927734
- ],
- [
- "▁Desktop",
- -12.44752311706543
- ],
- [
- "▁Tak",
- -12.44760799407959
- ],
- [
- "filtration",
- -12.447651863098145
- ],
- [
- "▁gates",
- -12.4478759765625
- ],
- [
- "Sehr",
- -12.44791316986084
- ],
- [
- "▁spatiu",
- -12.44798755645752
- ],
- [
- "▁Leg",
- -12.448103904724121
- ],
- [
- "▁aviation",
- -12.448277473449707
- ],
- [
- "wandel",
- -12.44827938079834
- ],
- [
- "▁Shar",
- -12.448323249816895
- ],
- [
- "▁Volks",
- -12.448409080505371
- ],
- [
- "maz",
- -12.448698997497559
- ],
- [
- "governmental",
- -12.44874095916748
- ],
- [
- "euros",
- -12.448819160461426
- ],
- [
- "avantage",
- -12.448823928833008
- ],
- [
- "sitzt",
- -12.448856353759766
- ],
- [
- "IER",
- -12.448920249938965
- ],
- [
- "▁Theory",
- -12.44894027709961
- ],
- [
- "Cependant",
- -12.44907283782959
- ],
- [
- "▁Teachers",
- -12.449080467224121
- ],
- [
- "anspruch",
- -12.449095726013184
- ],
- [
- "▁afecta",
- -12.449139595031738
- ],
- [
- "enko",
- -12.449193000793457
- ],
- [
- "▁breeding",
- -12.449198722839355
- ],
- [
- "▁Peak",
- -12.449457168579102
- ],
- [
- "▁găsit",
- -12.449516296386719
- ],
- [
- "▁măsuri",
- -12.4495267868042
- ],
- [
- "edia",
- -12.449625968933105
- ],
- [
- "biz",
- -12.449640274047852
- ],
- [
- "zum",
- -12.449776649475098
- ],
- [
- "▁schwierig",
- -12.449847221374512
- ],
- [
- "Sense",
- -12.450050354003906
- ],
- [
- "▁Jump",
- -12.450081825256348
- ],
- [
- "▁cocktails",
- -12.450108528137207
- ],
- [
- "abhängig",
- -12.45012378692627
- ],
- [
- "realised",
- -12.450140953063965
- ],
- [
- "▁programul",
- -12.450214385986328
- ],
- [
- "▁prévu",
- -12.450238227844238
- ],
- [
- "▁twitter",
- -12.450372695922852
- ],
- [
- "Union",
- -12.450400352478027
- ],
- [
- "▁Marathon",
- -12.45040225982666
- ],
- [
- "▁Christianity",
- -12.450432777404785
- ],
- [
- "▁Alberta",
- -12.450811386108398
- ],
- [
- "einheit",
- -12.45097827911377
- ],
- [
- "▁wellbeing",
- -12.450982093811035
- ],
- [
- "phen",
- -12.451166152954102
- ],
- [
- "▁Charleston",
- -12.451180458068848
- ],
- [
- "▁uncover",
- -12.451323509216309
- ],
- [
- "▁humaine",
- -12.451464653015137
- ],
- [
- "▁bleeding",
- -12.451531410217285
- ],
- [
- "▁manipul",
- -12.451532363891602
- ],
- [
- "▁humidity",
- -12.451570510864258
- ],
- [
- "▁Puis",
- -12.451748847961426
- ],
- [
- "▁aktuell",
- -12.451922416687012
- ],
- [
- "▁Nissan",
- -12.451943397521973
- ],
- [
- "▁Eisen",
- -12.45202922821045
- ],
- [
- "treiben",
- -12.452059745788574
- ],
- [
- "cios",
- -12.452073097229004
- ],
- [
- "ikh",
- -12.452381134033203
- ],
- [
- "acquiring",
- -12.452466011047363
- ],
- [
- "▁Wallpaper",
- -12.452488899230957
- ],
- [
- "▁rond",
- -12.452558517456055
- ],
- [
- "▁Doug",
- -12.45267391204834
- ],
- [
- "sourcing",
- -12.452696800231934
- ],
- [
- "▁1900",
- -12.452825546264648
- ],
- [
- "▁buni",
- -12.452913284301758
- ],
- [
- "vest",
- -12.452916145324707
- ],
- [
- "▁Bangladesh",
- -12.452990531921387
- ],
- [
- "Home",
- -12.453160285949707
- ],
- [
- "▁wrinkle",
- -12.453252792358398
- ],
- [
- "rado",
- -12.453290939331055
- ],
- [
- "▁Pain",
- -12.45334243774414
- ],
- [
- "▁herzlich",
- -12.453354835510254
- ],
- [
- "MRI",
- -12.453426361083984
- ],
- [
- "UG",
- -12.453631401062012
- ],
- [
- "▁Desk",
- -12.453679084777832
- ],
- [
- "▁remarc",
- -12.453718185424805
- ],
- [
- "▁sodium",
- -12.453857421875
- ],
- [
- "▁Jede",
- -12.453892707824707
- ],
- [
- "▁réelle",
- -12.453959465026855
- ],
- [
- "▁Polar",
- -12.454068183898926
- ],
- [
- "▁activists",
- -12.454273223876953
- ],
- [
- "lasted",
- -12.454300880432129
- ],
- [
- "Some",
- -12.45432186126709
- ],
- [
- "ISE",
- -12.454338073730469
- ],
- [
- "▁peine",
- -12.454671859741211
- ],
- [
- "▁crude",
- -12.454852104187012
- ],
- [
- "Maur",
- -12.454916954040527
- ],
- [
- "▁forcing",
- -12.454933166503906
- ],
- [
- "▁politici",
- -12.454970359802246
- ],
- [
- "▁condiții",
- -12.454988479614258
- ],
- [
- "▁Saving",
- -12.454999923706055
- ],
- [
- "▁descoperi",
- -12.455020904541016
- ],
- [
- "avenir",
- -12.455055236816406
- ],
- [
- "Akt",
- -12.455069541931152
- ],
- [
- "▁vocabulary",
- -12.45509147644043
- ],
- [
- "▁pont",
- -12.455168724060059
- ],
- [
- "West",
- -12.45518970489502
- ],
- [
- "lenk",
- -12.455278396606445
- ],
- [
- "▁Verbraucher",
- -12.455367088317871
- ],
- [
- "affects",
- -12.455448150634766
- ],
- [
- "▁Flower",
- -12.455543518066406
- ],
- [
- "▁Nebraska",
- -12.455617904663086
- ],
- [
- "▁assortment",
- -12.455618858337402
- ],
- [
- "hock",
- -12.455619812011719
- ],
- [
- "▁discounted",
- -12.455803871154785
- ],
- [
- "▁Sensor",
- -12.455840110778809
- ],
- [
- "Lie",
- -12.45588207244873
- ],
- [
- "▁Volkswagen",
- -12.455887794494629
- ],
- [
- "isseur",
- -12.455888748168945
- ],
- [
- "indice",
- -12.455936431884766
- ],
- [
- "▁scanner",
- -12.455986022949219
- ],
- [
- "fashioned",
- -12.456040382385254
- ],
- [
- "▁postal",
- -12.456141471862793
- ],
- [
- "ouvrir",
- -12.45615291595459
- ],
- [
- "▁seminars",
- -12.45622444152832
- ],
- [
- "ioase",
- -12.456232070922852
- ],
- [
- "▁Stanley",
- -12.456260681152344
- ],
- [
- "Various",
- -12.456335067749023
- ],
- [
- "essentiel",
- -12.45650577545166
- ],
- [
- "▁administered",
- -12.456693649291992
- ],
- [
- "▁concession",
- -12.456748008728027
- ],
- [
- "▁mould",
- -12.456789016723633
- ],
- [
- "▁strongest",
- -12.456826210021973
- ],
- [
- "Erlebnis",
- -12.456933975219727
- ],
- [
- "▁ehemalige",
- -12.456933975219727
- ],
- [
- "▁Tale",
- -12.457234382629395
- ],
- [
- "▁Buyer",
- -12.457353591918945
- ],
- [
- "ück",
- -12.457578659057617
- ],
- [
- "▁Kommentar",
- -12.457720756530762
- ],
- [
- "▁Schrift",
- -12.457756996154785
- ],
- [
- "Design",
- -12.457792282104492
- ],
- [
- "▁stirring",
- -12.457937240600586
- ],
- [
- "▁towels",
- -12.457987785339355
- ],
- [
- "▁$30",
- -12.458101272583008
- ],
- [
- "sprache",
- -12.458279609680176
- ],
- [
- "▁Regierung",
- -12.458346366882324
- ],
- [
- "▁nachhaltig",
- -12.458406448364258
- ],
- [
- "▁électronique",
- -12.458515167236328
- ],
- [
- "▁Andrei",
- -12.458587646484375
- ],
- [
- "because",
- -12.458647727966309
- ],
- [
- "informatique",
- -12.458650588989258
- ],
- [
- "IGHT",
- -12.4586820602417
- ],
- [
- "stepping",
- -12.4586820602417
- ],
- [
- "▁gris",
- -12.458748817443848
- ],
- [
- "vious",
- -12.458773612976074
- ],
- [
- "▁upside",
- -12.4591064453125
- ],
- [
- "▁Examples",
- -12.459108352661133
- ],
- [
- "IU",
- -12.459110260009766
- ],
- [
- "▁princess",
- -12.459111213684082
- ],
- [
- "spielen",
- -12.45921516418457
- ],
- [
- "legung",
- -12.45950984954834
- ],
- [
- "▁reflecting",
- -12.4597806930542
- ],
- [
- "▁Processing",
- -12.459939002990723
- ],
- [
- "▁jungle",
- -12.460033416748047
- ],
- [
- "▁insects",
- -12.46006965637207
- ],
- [
- "▁Sibiu",
- -12.460220336914062
- ],
- [
- "160",
- -12.460259437561035
- ],
- [
- "▁interessante",
- -12.460267066955566
- ],
- [
- "▁multimedia",
- -12.460455894470215
- ],
- [
- "essel",
- -12.46049690246582
- ],
- [
- "/18",
- -12.460647583007812
- ],
- [
- "nière",
- -12.460683822631836
- ],
- [
- "ministru",
- -12.46072006225586
- ],
- [
- "▁implants",
- -12.460826873779297
- ],
- [
- "▁Settings",
- -12.461360931396484
- ],
- [
- "▁invaluable",
- -12.461432456970215
- ],
- [
- "stains",
- -12.461448669433594
- ],
- [
- "onym",
- -12.461518287658691
- ],
- [
- "▁searched",
- -12.461570739746094
- ],
- [
- "▁disappointment",
- -12.461628913879395
- ],
- [
- "▁Iranian",
- -12.461630821228027
- ],
- [
- "▁questionnaire",
- -12.461630821228027
- ],
- [
- "Founder",
- -12.46178913116455
- ],
- [
- "▁Bericht",
- -12.461792945861816
- ],
- [
- "▁youngest",
- -12.461896896362305
- ],
- [
- "▁Automatic",
- -12.461956024169922
- ],
- [
- "▁plecat",
- -12.46203327178955
- ],
- [
- "geber",
- -12.462119102478027
- ],
- [
- "soweit",
- -12.462124824523926
- ],
- [
- "▁unfold",
- -12.462236404418945
- ],
- [
- "▁befinden",
- -12.462274551391602
- ],
- [
- "▁susţin",
- -12.462637901306152
- ],
- [
- "▁Mack",
- -12.462675094604492
- ],
- [
- "▁dificil",
- -12.462757110595703
- ],
- [
- "enseigne",
- -12.463038444519043
- ],
- [
- "▁vitamine",
- -12.463047981262207
- ],
- [
- "▁Memory",
- -12.463092803955078
- ],
- [
- "ripping",
- -12.463129043579102
- ],
- [
- "drin",
- -12.463146209716797
- ],
- [
- "3.2",
- -12.463278770446777
- ],
- [
- "▁verstehen",
- -12.463287353515625
- ],
- [
- "▁scaun",
- -12.46341323852539
- ],
- [
- "▁procédure",
- -12.46380615234375
- ],
- [
- "▁molecules",
- -12.463911056518555
- ],
- [
- "▁Anzahl",
- -12.46391487121582
- ],
- [
- "▁yogurt",
- -12.464071273803711
- ],
- [
- "▁Dominic",
- -12.464113235473633
- ],
- [
- "▁shocked",
- -12.464156150817871
- ],
- [
- "▁zilei",
- -12.464269638061523
- ],
- [
- "▁Heiz",
- -12.464412689208984
- ],
- [
- "▁Educational",
- -12.464571952819824
- ],
- [
- "BN",
- -12.464577674865723
- ],
- [
- "analyzing",
- -12.464601516723633
- ],
- [
- "hair",
- -12.464676856994629
- ],
- [
- "spiegel",
- -12.464871406555176
- ],
- [
- "▁illusion",
- -12.464889526367188
- ],
- [
- "BG",
- -12.46505355834961
- ],
- [
- "deductible",
- -12.46513557434082
- ],
- [
- "▁adj",
- -12.4651460647583
- ],
- [
- "▁accessory",
- -12.465166091918945
- ],
- [
- "▁Draw",
- -12.465167999267578
- ],
- [
- "▁airlines",
- -12.46518611907959
- ],
- [
- "▁satisfai",
- -12.46536636352539
- ],
- [
- "▁architects",
- -12.465447425842285
- ],
- [
- "istische",
- -12.465508460998535
- ],
- [
- "▁Healthy",
- -12.465539932250977
- ],
- [
- "großer",
- -12.465669631958008
- ],
- [
- "▁comunicare",
- -12.465764999389648
- ],
- [
- "▁Meyer",
- -12.46577262878418
- ],
- [
- "▁reproduction",
- -12.465882301330566
- ],
- [
- "▁Manufacturing",
- -12.465929985046387
- ],
- [
- "immobilier",
- -12.465930938720703
- ],
- [
- "▁Unterschied",
- -12.465958595275879
- ],
- [
- "▁cumpara",
- -12.466029167175293
- ],
- [
- "▁duplicate",
- -12.466094017028809
- ],
- [
- "▁(16",
- -12.466096878051758
- ],
- [
- "▁detector",
- -12.466279983520508
- ],
- [
- "▁observat",
- -12.466387748718262
- ],
- [
- "▁1965",
- -12.466682434082031
- ],
- [
- "▁Fantasy",
- -12.466728210449219
- ],
- [
- "▁brauchen",
- -12.466728210449219
- ],
- [
- "▁Participants",
- -12.466780662536621
- ],
- [
- "▁décide",
- -12.466817855834961
- ],
- [
- "▁kicke",
- -12.466819763183594
- ],
- [
- "▁SSL",
- -12.466885566711426
- ],
- [
- "360",
- -12.466989517211914
- ],
- [
- "Anim",
- -12.467019081115723
- ],
- [
- "▁cupcake",
- -12.467031478881836
- ],
- [
- "▁Lamb",
- -12.467107772827148
- ],
- [
- "▁Sä",
- -12.467155456542969
- ],
- [
- "ntă",
- -12.46738052368164
- ],
- [
- "▁Pig",
- -12.467421531677246
- ],
- [
- "1,000",
- -12.467677116394043
- ],
- [
- "nhof",
- -12.467782020568848
- ],
- [
- "▁discret",
- -12.467947959899902
- ],
- [
- "▁deloc",
- -12.467991828918457
- ],
- [
- "▁Bücher",
- -12.467999458312988
- ],
- [
- "chor",
- -12.468042373657227
- ],
- [
- "course",
- -12.468070030212402
- ],
- [
- "▁cough",
- -12.468076705932617
- ],
- [
- "▁erstellt",
- -12.468087196350098
- ],
- [
- "▁Than",
- -12.468097686767578
- ],
- [
- "stätte",
- -12.46812915802002
- ],
- [
- "▁exceptionally",
- -12.468162536621094
- ],
- [
- "▁semnal",
- -12.468186378479004
- ],
- [
- "▁Interessen",
- -12.468329429626465
- ],
- [
- "ле",
- -12.468356132507324
- ],
- [
- "xx",
- -12.468402862548828
- ],
- [
- "▁Veterans",
- -12.468422889709473
- ],
- [
- "▁Kreuz",
- -12.468683242797852
- ],
- [
- "▁Nachricht",
- -12.468701362609863
- ],
- [
- "treated",
- -12.468894004821777
- ],
- [
- "▁tide",
- -12.469230651855469
- ],
- [
- "▁nonetheless",
- -12.469390869140625
- ],
- [
- "▁Subject",
- -12.469439506530762
- ],
- [
- "▁Stau",
- -12.469440460205078
- ],
- [
- "▁stickers",
- -12.469463348388672
- ],
- [
- "Alp",
- -12.46950912475586
- ],
- [
- "▁flagship",
- -12.469541549682617
- ],
- [
- "▁trimite",
- -12.469619750976562
- ],
- [
- "▁polyester",
- -12.469664573669434
- ],
- [
- "▁locui",
- -12.469671249389648
- ],
- [
- "▁chili",
- -12.46968936920166
- ],
- [
- "▁Browser",
- -12.469808578491211
- ],
- [
- "sieg",
- -12.469809532165527
- ],
- [
- "▁Arabic",
- -12.469876289367676
- ],
- [
- "blich",
- -12.47001838684082
- ],
- [
- "▁wunderbar",
- -12.470090866088867
- ],
- [
- "▁furnishings",
- -12.470210075378418
- ],
- [
- "rtie",
- -12.470243453979492
- ],
- [
- "8.5",
- -12.470742225646973
- ],
- [
- "▁Sponsor",
- -12.471016883850098
- ],
- [
- "▁glitter",
- -12.471280097961426
- ],
- [
- "▁piaț",
- -12.471402168273926
- ],
- [
- "▁interviewed",
- -12.471519470214844
- ],
- [
- "▁Statistics",
- -12.471529006958008
- ],
- [
- "▁cerc",
- -12.47154712677002
- ],
- [
- "augmentation",
- -12.47155475616455
- ],
- [
- "▁Navi",
- -12.471558570861816
- ],
- [
- "▁Begriff",
- -12.47156047821045
- ],
- [
- "▁știu",
- -12.471596717834473
- ],
- [
- "▁unabhängig",
- -12.471778869628906
- ],
- [
- "▁könnten",
- -12.471978187561035
- ],
- [
- "▁travaille",
- -12.472000122070312
- ],
- [
- "▁companie",
- -12.472027778625488
- ],
- [
- "▁Scientific",
- -12.472061157226562
- ],
- [
- "▁Outlook",
- -12.472091674804688
- ],
- [
- "▁fairy",
- -12.472158432006836
- ],
- [
- "zam",
- -12.472282409667969
- ],
- [
- "bak",
- -12.472448348999023
- ],
- [
- "▁Traffic",
- -12.472596168518066
- ],
- [
- "gerät",
- -12.472671508789062
- ],
- [
- "▁freezing",
- -12.472701072692871
- ],
- [
- "▁broadband",
- -12.4727201461792
- ],
- [
- "110",
- -12.47279167175293
- ],
- [
- "▁revenu",
- -12.472887992858887
- ],
- [
- "listed",
- -12.472900390625
- ],
- [
- "▁Rico",
- -12.472941398620605
- ],
- [
- "Laure",
- -12.472990036010742
- ],
- [
- "ATA",
- -12.473112106323242
- ],
- [
- "▁participer",
- -12.47313117980957
- ],
- [
- "▁sponsorship",
- -12.473235130310059
- ],
- [
- "▁distress",
- -12.473286628723145
- ],
- [
- "▁Brisbane",
- -12.47339916229248
- ],
- [
- "schönen",
- -12.473437309265137
- ],
- [
- "▁fizice",
- -12.473465919494629
- ],
- [
- "▁Political",
- -12.47362232208252
- ],
- [
- "uhr",
- -12.473657608032227
- ],
- [
- "▁procedura",
- -12.473713874816895
- ],
- [
- "▁hervor",
- -12.473770141601562
- ],
- [
- "melted",
- -12.473776817321777
- ],
- [
- "▁Emp",
- -12.47384262084961
- ],
- [
- "▁Ernährung",
- -12.4739351272583
- ],
- [
- "▁Pendant",
- -12.473944664001465
- ],
- [
- "▁recipients",
- -12.474047660827637
- ],
- [
- "Claude",
- -12.474133491516113
- ],
- [
- "▁regimen",
- -12.47415828704834
- ],
- [
- "expo",
- -12.474346160888672
- ],
- [
- "adevăr",
- -12.47437858581543
- ],
- [
- "▁critically",
- -12.474440574645996
- ],
- [
- "▁grabbe",
- -12.474468231201172
- ],
- [
- "▁Kann",
- -12.474474906921387
- ],
- [
- "▁directeur",
- -12.474613189697266
- ],
- [
- "gator",
- -12.474908828735352
- ],
- [
- "problem",
- -12.474910736083984
- ],
- [
- "scribe",
- -12.474913597106934
- ],
- [
- "▁exig",
- -12.474920272827148
- ],
- [
- "Tri",
- -12.474969863891602
- ],
- [
- "▁aqua",
- -12.475631713867188
- ],
- [
- "appréci",
- -12.47569465637207
- ],
- [
- "▁viaţă",
- -12.47571849822998
- ],
- [
- "▁dominate",
- -12.475865364074707
- ],
- [
- "disc",
- -12.475889205932617
- ],
- [
- "▁conseiller",
- -12.47603988647461
- ],
- [
- "▁shuttle",
- -12.476180076599121
- ],
- [
- "▁Status",
- -12.47623062133789
- ],
- [
- "▁ausreichend",
- -12.476371765136719
- ],
- [
- "▁spät",
- -12.476411819458008
- ],
- [
- "▁remainder",
- -12.476417541503906
- ],
- [
- "wett",
- -12.476430892944336
- ],
- [
- "schlossen",
- -12.476491928100586
- ],
- [
- "PAC",
- -12.476505279541016
- ],
- [
- "▁suprafata",
- -12.476617813110352
- ],
- [
- "5.000",
- -12.476673126220703
- ],
- [
- "supplying",
- -12.47673225402832
- ],
- [
- "▁uniquely",
- -12.476905822753906
- ],
- [
- "▁retard",
- -12.476929664611816
- ],
- [
- "▁Bang",
- -12.477006912231445
- ],
- [
- "ieuse",
- -12.477087020874023
- ],
- [
- "▁Ted",
- -12.477248191833496
- ],
- [
- "▁ermöglichen",
- -12.47732925415039
- ],
- [
- "▁builders",
- -12.477380752563477
- ],
- [
- "▁proximité",
- -12.477423667907715
- ],
- [
- "▁unforgettable",
- -12.477423667907715
- ],
- [
- "256",
- -12.477446556091309
- ],
- [
- "fähigkeit",
- -12.477550506591797
- ],
- [
- "▁procurement",
- -12.477561950683594
- ],
- [
- "▁Gewicht",
- -12.477693557739258
- ],
- [
- "▁potentiel",
- -12.47778606414795
- ],
- [
- "▁topping",
- -12.478300094604492
- ],
- [
- "▁canada",
- -12.478304862976074
- ],
- [
- "▁Destin",
- -12.478355407714844
- ],
- [
- "▁Knowing",
- -12.478411674499512
- ],
- [
- "▁retained",
- -12.478426933288574
- ],
- [
- "▁zinc",
- -12.478470802307129
- ],
- [
- "▁worrying",
- -12.478655815124512
- ],
- [
- "faţa",
- -12.478676795959473
- ],
- [
- "▁initi",
- -12.478837966918945
- ],
- [
- "ORI",
- -12.4788818359375
- ],
- [
- "▁refuz",
- -12.478921890258789
- ],
- [
- "bruch",
- -12.479202270507812
- ],
- [
- "▁impun",
- -12.479233741760254
- ],
- [
- "▁persoană",
- -12.479308128356934
- ],
- [
- "EAR",
- -12.479347229003906
- ],
- [
- "bedarf",
- -12.479368209838867
- ],
- [
- "▁Gebiet",
- -12.47940731048584
- ],
- [
- "▁Roof",
- -12.479436874389648
- ],
- [
- "▁negligence",
- -12.47957706451416
- ],
- [
- "security",
- -12.479618072509766
- ],
- [
- "▁accesorii",
- -12.479641914367676
- ],
- [
- "▁unclear",
- -12.479667663574219
- ],
- [
- "▁securitate",
- -12.479848861694336
- ],
- [
- "▁spotlight",
- -12.479896545410156
- ],
- [
- "▁speziell",
- -12.479923248291016
- ],
- [
- "▁mentally",
- -12.479942321777344
- ],
- [
- "▁preservation",
- -12.48011589050293
- ],
- [
- "▁Promotion",
- -12.480156898498535
- ],
- [
- "partnered",
- -12.480274200439453
- ],
- [
- "▁Hinter",
- -12.48031997680664
- ],
- [
- "▁punishment",
- -12.480359077453613
- ],
- [
- "▁grease",
- -12.480713844299316
- ],
- [
- "▁NW",
- -12.480714797973633
- ],
- [
- "▁curse",
- -12.480897903442383
- ],
- [
- "ckle",
- -12.48101806640625
- ],
- [
- "▁Hire",
- -12.481043815612793
- ],
- [
- "▁Whole",
- -12.481088638305664
- ],
- [
- "▁basse",
- -12.481289863586426
- ],
- [
- "▁DNS",
- -12.481427192687988
- ],
- [
- "flamm",
- -12.481560707092285
- ],
- [
- "▁scoop",
- -12.481574058532715
- ],
- [
- "Norm",
- -12.481663703918457
- ],
- [
- "▁Surgery",
- -12.481735229492188
- ],
- [
- "▁widget",
- -12.481741905212402
- ],
- [
- "connected",
- -12.481863021850586
- ],
- [
- "autorité",
- -12.481961250305176
- ],
- [
- "▁utilis",
- -12.482096672058105
- ],
- [
- "▁formă",
- -12.482185363769531
- ],
- [
- "▁clearing",
- -12.482307434082031
- ],
- [
- "▁jumătate",
- -12.482815742492676
- ],
- [
- "größe",
- -12.482831954956055
- ],
- [
- "▁Tief",
- -12.482852935791016
- ],
- [
- "épi",
- -12.482939720153809
- ],
- [
- "zunehmen",
- -12.483174324035645
- ],
- [
- "▁touchdown",
- -12.48318099975586
- ],
- [
- "▁scholarships",
- -12.483236312866211
- ],
- [
- "▁dementia",
- -12.483319282531738
- ],
- [
- "▁Jeder",
- -12.48333740234375
- ],
- [
- "▁nightmare",
- -12.483379364013672
- ],
- [
- "▁Raw",
- -12.48342514038086
- ],
- [
- "absorbed",
- -12.483468055725098
- ],
- [
- "lohnt",
- -12.483484268188477
- ],
- [
- "quent",
- -12.483580589294434
- ],
- [
- "interest",
- -12.483626365661621
- ],
- [
- "OSS",
- -12.483649253845215
- ],
- [
- "▁Leaf",
- -12.483667373657227
- ],
- [
- "▁timeless",
- -12.48381519317627
- ],
- [
- "DY",
- -12.483865737915039
- ],
- [
- "▁Remote",
- -12.483907699584961
- ],
- [
- "chner",
- -12.483938217163086
- ],
- [
- "▁Pam",
- -12.484014511108398
- ],
- [
- "urban",
- -12.484060287475586
- ],
- [
- "во",
- -12.484146118164062
- ],
- [
- "▁Kunde",
- -12.484166145324707
- ],
- [
- "▁Laptop",
- -12.484169006347656
- ],
- [
- "finder",
- -12.484336853027344
- ],
- [
- "▁Pole",
- -12.484567642211914
- ],
- [
- "2.8",
- -12.484588623046875
- ],
- [
- "finished",
- -12.484670639038086
- ],
- [
- "▁prophet",
- -12.484697341918945
- ],
- [
- "mailed",
- -12.484758377075195
- ],
- [
- "2-0",
- -12.4849214553833
- ],
- [
- "▁disciples",
- -12.484949111938477
- ],
- [
- "▁intriguing",
- -12.484980583190918
- ],
- [
- "IRA",
- -12.485033988952637
- ],
- [
- "petit",
- -12.485077857971191
- ],
- [
- "▁Membership",
- -12.485097885131836
- ],
- [
- "▁provincial",
- -12.485177040100098
- ],
- [
- "▁Prüfung",
- -12.485292434692383
- ],
- [
- "-50",
- -12.485450744628906
- ],
- [
- "▁cryptocurrency",
- -12.485522270202637
- ],
- [
- "▁journalism",
- -12.485536575317383
- ],
- [
- "▁Downtown",
- -12.485593795776367
- ],
- [
- "inserted",
- -12.485655784606934
- ],
- [
- "▁Direction",
- -12.485718727111816
- ],
- [
- "lipid",
- -12.485732078552246
- ],
- [
- "▁Sebastian",
- -12.485793113708496
- ],
- [
- "fordert",
- -12.48591136932373
- ],
- [
- "Originally",
- -12.485989570617676
- ],
- [
- "tipp",
- -12.486048698425293
- ],
- [
- "verantwortlich",
- -12.486064910888672
- ],
- [
- "▁wheelchair",
- -12.486085891723633
- ],
- [
- "▁structura",
- -12.48609733581543
- ],
- [
- "▁Danny",
- -12.486138343811035
- ],
- [
- "999",
- -12.486284255981445
- ],
- [
- "▁Schiff",
- -12.486380577087402
- ],
- [
- "formally",
- -12.486408233642578
- ],
- [
- "focused",
- -12.486428260803223
- ],
- [
- "▁Vater",
- -12.486478805541992
- ],
- [
- "▁Dear",
- -12.486599922180176
- ],
- [
- "▁reinforce",
- -12.486794471740723
- ],
- [
- "proprietar",
- -12.48690414428711
- ],
- [
- "▁Kyle",
- -12.487004280090332
- ],
- [
- "În",
- -12.487015724182129
- ],
- [
- "▁servir",
- -12.487268447875977
- ],
- [
- "length",
- -12.48730754852295
- ],
- [
- "▁showroom",
- -12.48735237121582
- ],
- [
- "reli",
- -12.487473487854004
- ],
- [
- "▁Brü",
- -12.487529754638672
- ],
- [
- "▁Schle",
- -12.487634658813477
- ],
- [
- "▁profond",
- -12.487773895263672
- ],
- [
- "▁Superior",
- -12.487826347351074
- ],
- [
- "▁lifted",
- -12.487844467163086
- ],
- [
- "highlighting",
- -12.487850189208984
- ],
- [
- "▁Connection",
- -12.48793888092041
- ],
- [
- "▁similarly",
- -12.487998962402344
- ],
- [
- "▁diferit",
- -12.488005638122559
- ],
- [
- "▁sweater",
- -12.488014221191406
- ],
- [
- "État",
- -12.48803997039795
- ],
- [
- "rooted",
- -12.488069534301758
- ],
- [
- "▁sleeves",
- -12.488236427307129
- ],
- [
- "де",
- -12.488264083862305
- ],
- [
- "▁Laboratory",
- -12.488265991210938
- ],
- [
- "ündig",
- -12.488719940185547
- ],
- [
- "▁Viking",
- -12.488741874694824
- ],
- [
- "▁Origin",
- -12.48878002166748
- ],
- [
- "▁vibr",
- -12.488812446594238
- ],
- [
- "199",
- -12.488974571228027
- ],
- [
- "▁yummy",
- -12.489001274108887
- ],
- [
- "STAR",
- -12.489140510559082
- ],
- [
- "▁repro",
- -12.489152908325195
- ],
- [
- "▁Kirchen",
- -12.489229202270508
- ],
- [
- "hopper",
- -12.48925495147705
- ],
- [
- "zza",
- -12.489335060119629
- ],
- [
- "▁vitesse",
- -12.48934555053711
- ],
- [
- "▁minimalist",
- -12.489412307739258
- ],
- [
- "▁Election",
- -12.489420890808105
- ],
- [
- "draw",
- -12.489501953125
- ],
- [
- "▁candles",
- -12.48959732055664
- ],
- [
- "▁Mund",
- -12.489615440368652
- ],
- [
- "urged",
- -12.489901542663574
- ],
- [
- "▁cânt",
- -12.489917755126953
- ],
- [
- "Ultimately",
- -12.49002742767334
- ],
- [
- "▁Lift",
- -12.490124702453613
- ],
- [
- "loaded",
- -12.490334510803223
- ],
- [
- "demand",
- -12.490508079528809
- ],
- [
- "▁aleg",
- -12.490621566772461
- ],
- [
- "▁Discovery",
- -12.490755081176758
- ],
- [
- "▁Vienna",
- -12.490960121154785
- ],
- [
- "▁Kategorie",
- -12.490961074829102
- ],
- [
- "▁Cotton",
- -12.490962028503418
- ],
- [
- "▁$200",
- -12.491043090820312
- ],
- [
- "▁Drei",
- -12.491052627563477
- ],
- [
- "▁reicht",
- -12.491168975830078
- ],
- [
- "speicher",
- -12.491231918334961
- ],
- [
- "▁Immobilien",
- -12.491483688354492
- ],
- [
- "gefühl",
- -12.491509437561035
- ],
- [
- "make",
- -12.491525650024414
- ],
- [
- "pell",
- -12.49155044555664
- ],
- [
- "▁dull",
- -12.491598129272461
- ],
- [
- "▁arbeitet",
- -12.491681098937988
- ],
- [
- "retaining",
- -12.491700172424316
- ],
- [
- "losen",
- -12.491707801818848
- ],
- [
- "match",
- -12.491876602172852
- ],
- [
- "-60",
- -12.491880416870117
- ],
- [
- "▁ecological",
- -12.492000579833984
- ],
- [
- "▁vend",
- -12.492051124572754
- ],
- [
- "▁grammar",
- -12.492061614990234
- ],
- [
- "▁1:1",
- -12.492225646972656
- ],
- [
- "grilled",
- -12.492279052734375
- ],
- [
- "geordnet",
- -12.492321014404297
- ],
- [
- "▁Pav",
- -12.49236011505127
- ],
- [
- "▁Depot",
- -12.492368698120117
- ],
- [
- "▁Walking",
- -12.492372512817383
- ],
- [
- "teamed",
- -12.492402076721191
- ],
- [
- "▁torque",
- -12.492537498474121
- ],
- [
- "▁Venture",
- -12.492659568786621
- ],
- [
- "▁beginner",
- -12.49269962310791
- ],
- [
- "▁Monaten",
- -12.492712020874023
- ],
- [
- "▁Pune",
- -12.493054389953613
- ],
- [
- "connect",
- -12.493075370788574
- ],
- [
- "▁textbook",
- -12.493132591247559
- ],
- [
- "▁unprecedented",
- -12.49314022064209
- ],
- [
- "▁implied",
- -12.493168830871582
- ],
- [
- "▁cubic",
- -12.493668556213379
- ],
- [
- "enthält",
- -12.493696212768555
- ],
- [
- "▁Brenn",
- -12.49388313293457
- ],
- [
- "▁Expect",
- -12.49394416809082
- ],
- [
- "▁lever",
- -12.4939603805542
- ],
- [
- "veux",
- -12.49399185180664
- ],
- [
- "▁Claire",
- -12.494112968444824
- ],
- [
- "Acc",
- -12.49432373046875
- ],
- [
- "▁Typ",
- -12.494478225708008
- ],
- [
- "▁smoothie",
- -12.494501113891602
- ],
- [
- "▁Idaho",
- -12.494780540466309
- ],
- [
- "▁spati",
- -12.494802474975586
- ],
- [
- "▁bénéficier",
- -12.49488353729248
- ],
- [
- "▁Kle",
- -12.495161056518555
- ],
- [
- "▁serviciilor",
- -12.495169639587402
- ],
- [
- "▁prohibit",
- -12.495267868041992
- ],
- [
- "EAD",
- -12.495417594909668
- ],
- [
- "▁Turner",
- -12.495418548583984
- ],
- [
- "▁elibera",
- -12.49543571472168
- ],
- [
- "▁payday",
- -12.495464324951172
- ],
- [
- "▁prolong",
- -12.495466232299805
- ],
- [
- "▁sued",
- -12.495481491088867
- ],
- [
- "▁Devil",
- -12.495536804199219
- ],
- [
- "▁Skills",
- -12.495552062988281
- ],
- [
- "▁Marcel",
- -12.495553970336914
- ],
- [
- "▁silhouette",
- -12.495601654052734
- ],
- [
- "▁preț",
- -12.495742797851562
- ],
- [
- "▁Gö",
- -12.495747566223145
- ],
- [
- "▁Creator",
- -12.495774269104004
- ],
- [
- "fed",
- -12.4959077835083
- ],
- [
- "Cap",
- -12.495997428894043
- ],
- [
- "▁dedicate",
- -12.496042251586914
- ],
- [
- "0000",
- -12.496124267578125
- ],
- [
- "▁VAT",
- -12.496259689331055
- ],
- [
- "▁Firefox",
- -12.496443748474121
- ],
- [
- "▁therapies",
- -12.496477127075195
- ],
- [
- "▁screws",
- -12.496662139892578
- ],
- [
- "▁Province",
- -12.496697425842285
- ],
- [
- "▁problematic",
- -12.496871948242188
- ],
- [
- "▁Vid",
- -12.496915817260742
- ],
- [
- "▁Lost",
- -12.496950149536133
- ],
- [
- "▁elegance",
- -12.497520446777344
- ],
- [
- "▁Elegant",
- -12.497525215148926
- ],
- [
- "ignant",
- -12.497573852539062
- ],
- [
- "▁darin",
- -12.497649192810059
- ],
- [
- "▁anonym",
- -12.497669219970703
- ],
- [
- "▁vegeta",
- -12.49767780303955
- ],
- [
- "incoming",
- -12.497762680053711
- ],
- [
- "▁pills",
- -12.497846603393555
- ],
- [
- "governing",
- -12.497893333435059
- ],
- [
- "▁Haven",
- -12.497920989990234
- ],
- [
- "paper",
- -12.497947692871094
- ],
- [
- "räume",
- -12.497979164123535
- ],
- [
- "paw",
- -12.498099327087402
- ],
- [
- "▁spelling",
- -12.498283386230469
- ],
- [
- "ambele",
- -12.498318672180176
- ],
- [
- "▁reprezentat",
- -12.498371124267578
- ],
- [
- "▁mâ",
- -12.49853515625
- ],
- [
- "wirtschaftliche",
- -12.498558044433594
- ],
- [
- "▁valabil",
- -12.498579025268555
- ],
- [
- "▁konkret",
- -12.498618125915527
- ],
- [
- "▁financier",
- -12.498619079589844
- ],
- [
- "▁irre",
- -12.499135971069336
- ],
- [
- "▁Silicon",
- -12.499171257019043
- ],
- [
- "Viv",
- -12.499181747436523
- ],
- [
- "▁viruses",
- -12.49927043914795
- ],
- [
- "▁CNN",
- -12.499324798583984
- ],
- [
- "▁erleben",
- -12.499482154846191
- ],
- [
- "gina",
- -12.499492645263672
- ],
- [
- "punctul",
- -12.49951457977295
- ],
- [
- "▁Sfânt",
- -12.499753952026367
- ],
- [
- "▁Manage",
- -12.499811172485352
- ],
- [
- "▁payable",
- -12.499984741210938
- ],
- [
- "▁practitioner",
- -12.500143051147461
- ],
- [
- "▁conférence",
- -12.50026798248291
- ],
- [
- "▁drought",
- -12.50027084350586
- ],
- [
- "▁devote",
- -12.500361442565918
- ],
- [
- "wertung",
- -12.500420570373535
- ],
- [
- "stabil",
- -12.5004301071167
- ],
- [
- "▁balcon",
- -12.500553131103516
- ],
- [
- "▁Lebensmittel",
- -12.500603675842285
- ],
- [
- "COL",
- -12.500950813293457
- ],
- [
- "▁Domnul",
- -12.501093864440918
- ],
- [
- "carved",
- -12.501359939575195
- ],
- [
- "▁preparat",
- -12.5014009475708
- ],
- [
- "101",
- -12.501537322998047
- ],
- [
- "▁specimen",
- -12.501580238342285
- ],
- [
- "urgeon",
- -12.501596450805664
- ],
- [
- "LIC",
- -12.50163459777832
- ],
- [
- "Plattform",
- -12.501643180847168
- ],
- [
- "▁ramas",
- -12.501739501953125
- ],
- [
- "▁copilului",
- -12.501791954040527
- ],
- [
- "bacter",
- -12.501812934875488
- ],
- [
- "körper",
- -12.501940727233887
- ],
- [
- "▁Kru",
- -12.501981735229492
- ],
- [
- "▁Employ",
- -12.502055168151855
- ],
- [
- "office",
- -12.502080917358398
- ],
- [
- "▁simmer",
- -12.502120018005371
- ],
- [
- "qualität",
- -12.502137184143066
- ],
- [
- "▁freshly",
- -12.502215385437012
- ],
- [
- "▁Nine",
- -12.50223159790039
- ],
- [
- "▁tonnes",
- -12.50223445892334
- ],
- [
- "boden",
- -12.502236366271973
- ],
- [
- "enquête",
- -12.50240707397461
- ],
- [
- "▁Colour",
- -12.502481460571289
- ],
- [
- "▁Diagram",
- -12.502495765686035
- ],
- [
- "▁gewählt",
- -12.502516746520996
- ],
- [
- "▁viitoare",
- -12.502538681030273
- ],
- [
- "▁reporters",
- -12.502913475036621
- ],
- [
- "guer",
- -12.502991676330566
- ],
- [
- "▁Kombination",
- -12.503021240234375
- ],
- [
- "▁qualitative",
- -12.50302505493164
- ],
- [
- "Centrul",
- -12.503131866455078
- ],
- [
- "avy",
- -12.503170013427734
- ],
- [
- "▁Eng",
- -12.503175735473633
- ],
- [
- "▁sufletul",
- -12.50327205657959
- ],
- [
- "▁germ",
- -12.503412246704102
- ],
- [
- "▁prevented",
- -12.503448486328125
- ],
- [
- "appelle",
- -12.503533363342285
- ],
- [
- "gins",
- -12.503556251525879
- ],
- [
- "▁Skype",
- -12.503585815429688
- ],
- [
- "conditioned",
- -12.503617286682129
- ],
- [
- "▁clutch",
- -12.503641128540039
- ],
- [
- "environ",
- -12.503694534301758
- ],
- [
- "3.3",
- -12.503774642944336
- ],
- [
- "▁webinar",
- -12.503866195678711
- ],
- [
- "▁forty",
- -12.504104614257812
- ],
- [
- "▁Medicaid",
- -12.504127502441406
- ],
- [
- "▁dismissed",
- -12.504167556762695
- ],
- [
- "▁siblings",
- -12.504168510437012
- ],
- [
- "▁Jaw",
- -12.504196166992188
- ],
- [
- "guiding",
- -12.504220962524414
- ],
- [
- "cigarette",
- -12.504374504089355
- ],
- [
- "▁Shah",
- -12.504681587219238
- ],
- [
- "▁Lehrer",
- -12.504684448242188
- ],
- [
- "▁muscular",
- -12.504694938659668
- ],
- [
- "spatele",
- -12.504796981811523
- ],
- [
- "▁réduction",
- -12.504836082458496
- ],
- [
- "▁fixes",
- -12.504851341247559
- ],
- [
- "Span",
- -12.50511646270752
- ],
- [
- "▁Hudson",
- -12.505231857299805
- ],
- [
- "development",
- -12.505250930786133
- ],
- [
- "▁excluded",
- -12.50525951385498
- ],
- [
- "Democrat",
- -12.505260467529297
- ],
- [
- "▁nominal",
- -12.505317687988281
- ],
- [
- "purpose",
- -12.50540828704834
- ],
- [
- "▁bored",
- -12.505500793457031
- ],
- [
- "espèce",
- -12.50550651550293
- ],
- [
- "▁(30",
- -12.5055570602417
- ],
- [
- "Neither",
- -12.505608558654785
- ],
- [
- "hänge",
- -12.505610466003418
- ],
- [
- "square",
- -12.505728721618652
- ],
- [
- "voller",
- -12.505736351013184
- ],
- [
- "▁pertinent",
- -12.505783081054688
- ],
- [
- "▁Wool",
- -12.50595474243164
- ],
- [
- "settling",
- -12.50607681274414
- ],
- [
- "fangen",
- -12.506148338317871
- ],
- [
- "▁Testing",
- -12.506152153015137
- ],
- [
- "distin",
- -12.506196022033691
- ],
- [
- "▁Marken",
- -12.506227493286133
- ],
- [
- "▁Beta",
- -12.506300926208496
- ],
- [
- "▁fulfilling",
- -12.506339073181152
- ],
- [
- "Leider",
- -12.506357192993164
- ],
- [
- "black",
- -12.506389617919922
- ],
- [
- "occupe",
- -12.50658893585205
- ],
- [
- "itățile",
- -12.506688117980957
- ],
- [
- "Pay",
- -12.506887435913086
- ],
- [
- "▁bandwidth",
- -12.506890296936035
- ],
- [
- "▁neighbourhood",
- -12.506918907165527
- ],
- [
- "▁Gutschein",
- -12.506922721862793
- ],
- [
- "degree",
- -12.507055282592773
- ],
- [
- "ivité",
- -12.507116317749023
- ],
- [
- "4.1",
- -12.507169723510742
- ],
- [
- "▁tätig",
- -12.507170677185059
- ],
- [
- "topic",
- -12.507242202758789
- ],
- [
- "ätz",
- -12.507243156433105
- ],
- [
- "these",
- -12.50733470916748
- ],
- [
- "▁propriété",
- -12.507438659667969
- ],
- [
- "▁innings",
- -12.507458686828613
- ],
- [
- "▁Prevention",
- -12.50754165649414
- ],
- [
- "▁Saw",
- -12.507585525512695
- ],
- [
- "▁opener",
- -12.507752418518066
- ],
- [
- "entwicklung",
- -12.507824897766113
- ],
- [
- "▁Johann",
- -12.507865905761719
- ],
- [
- "▁statistic",
- -12.507881164550781
- ],
- [
- "oids",
- -12.507966995239258
- ],
- [
- "▁Delaware",
- -12.508000373840332
- ],
- [
- "▁Isle",
- -12.508001327514648
- ],
- [
- "▁accompagn",
- -12.508028984069824
- ],
- [
- "▁Risiko",
- -12.508079528808594
- ],
- [
- "▁Conform",
- -12.508268356323242
- ],
- [
- "zeichnen",
- -12.508395195007324
- ],
- [
- "▁acuz",
- -12.508479118347168
- ],
- [
- "▁Mort",
- -12.508524894714355
- ],
- [
- "Fällen",
- -12.50853157043457
- ],
- [
- "▁blended",
- -12.50871467590332
- ],
- [
- "found",
- -12.50872802734375
- ],
- [
- "▁gestalten",
- -12.50874137878418
- ],
- [
- "▁Découvrez",
- -12.508830070495605
- ],
- [
- "▁Wett",
- -12.508956909179688
- ],
- [
- "▁débat",
- -12.508990287780762
- ],
- [
- "▁Tire",
- -12.509007453918457
- ],
- [
- "benz",
- -12.509037017822266
- ],
- [
- "Yes",
- -12.509074211120605
- ],
- [
- "▁pierde",
- -12.509110450744629
- ],
- [
- "▁niciodata",
- -12.509121894836426
- ],
- [
- "▁precipit",
- -12.509145736694336
- ],
- [
- "▁lazy",
- -12.509334564208984
- ],
- [
- "▁creature",
- -12.509370803833008
- ],
- [
- "Wettbewerb",
- -12.509385108947754
- ],
- [
- "▁Explo",
- -12.509496688842773
- ],
- [
- "wolf",
- -12.509657859802246
- ],
- [
- "▁conséquence",
- -12.509662628173828
- ],
- [
- "▁jewellery",
- -12.509662628173828
- ],
- [
- "▁Extension",
- -12.509735107421875
- ],
- [
- "▁transmitted",
- -12.509872436523438
- ],
- [
- "▁darker",
- -12.509973526000977
- ],
- [
- "▁simbol",
- -12.510065078735352
- ],
- [
- "kim",
- -12.510069847106934
- ],
- [
- "▁proteja",
- -12.510098457336426
- ],
- [
- "▁Copper",
- -12.510189056396484
- ],
- [
- "mitglied",
- -12.510218620300293
- ],
- [
- "▁explosive",
- -12.510222434997559
- ],
- [
- "▁Nicolae",
- -12.510223388671875
- ],
- [
- "▁intricate",
- -12.510231971740723
- ],
- [
- "lati",
- -12.510313034057617
- ],
- [
- "Mark",
- -12.510334014892578
- ],
- [
- "▁Porsche",
- -12.510339736938477
- ],
- [
- "▁Revenue",
- -12.510479927062988
- ],
- [
- "4.2",
- -12.510613441467285
- ],
- [
- "certain",
- -12.510836601257324
- ],
- [
- "▁Coaching",
- -12.510879516601562
- ],
- [
- "▁allocated",
- -12.510879516601562
- ],
- [
- "▁optimiz",
- -12.511017799377441
- ],
- [
- "▁heel",
- -12.511205673217773
- ],
- [
- "▁indigenous",
- -12.511330604553223
- ],
- [
- "▁vineri",
- -12.511396408081055
- ],
- [
- "▁Inspector",
- -12.51145076751709
- ],
- [
- "▁colleague",
- -12.5115327835083
- ],
- [
- "ANG",
- -12.511649131774902
- ],
- [
- "éducation",
- -12.511887550354004
- ],
- [
- "▁Geschenk",
- -12.51188850402832
- ],
- [
- "channel",
- -12.511899948120117
- ],
- [
- "▁trapped",
- -12.511954307556152
- ],
- [
- "BF",
- -12.511974334716797
- ],
- [
- "▁firing",
- -12.512086868286133
- ],
- [
- "▁chlor",
- -12.512103080749512
- ],
- [
- "▁Carlos",
- -12.512115478515625
- ],
- [
- "▁proxy",
- -12.512128829956055
- ],
- [
- "▁pinch",
- -12.512167930603027
- ],
- [
- "▁Pete",
- -12.512201309204102
- ],
- [
- "phospho",
- -12.512458801269531
- ],
- [
- "▁waiver",
- -12.51246452331543
- ],
- [
- "▁Croatia",
- -12.512480735778809
- ],
- [
- "▁behave",
- -12.51258373260498
- ],
- [
- "▁frig",
- -12.512676239013672
- ],
- [
- "▁Vorteil",
- -12.51279067993164
- ],
- [
- "▁wichtiger",
- -12.512837409973145
- ],
- [
- "........",
- -12.512929916381836
- ],
- [
- "▁flick",
- -12.513007164001465
- ],
- [
- "▁Stanford",
- -12.51306438446045
- ],
- [
- "öse",
- -12.513096809387207
- ],
- [
- "▁Fernseh",
- -12.513099670410156
- ],
- [
- "▁vélo",
- -12.51322078704834
- ],
- [
- "reisen",
- -12.513304710388184
- ],
- [
- "residing",
- -12.513504981994629
- ],
- [
- "▁Taste",
- -12.513580322265625
- ],
- [
- "▁disappeared",
- -12.513630867004395
- ],
- [
- "▁Hood",
- -12.513776779174805
- ],
- [
- "▁fabriqu",
- -12.514046669006348
- ],
- [
- "▁Jake",
- -12.514470100402832
- ],
- [
- "Lastly",
- -12.51462173461914
- ],
- [
- "▁furnace",
- -12.514673233032227
- ],
- [
- "▁Ottawa",
- -12.51473331451416
- ],
- [
- "▁dictate",
- -12.514742851257324
- ],
- [
- "zece",
- -12.514817237854004
- ],
- [
- "protect",
- -12.514932632446289
- ],
- [
- "FU",
- -12.51495361328125
- ],
- [
- "Stack",
- -12.514954566955566
- ],
- [
- "▁teilweise",
- -12.515018463134766
- ],
- [
- "▁Publisher",
- -12.51506233215332
- ],
- [
- "▁lutte",
- -12.515159606933594
- ],
- [
- "202",
- -12.515178680419922
- ],
- [
- "psy",
- -12.515190124511719
- ],
- [
- "▁wünschen",
- -12.515238761901855
- ],
- [
- "▁pathways",
- -12.515356063842773
- ],
- [
- "ivitate",
- -12.515559196472168
- ],
- [
- "▁continuă",
- -12.515658378601074
- ],
- [
- "ziemlich",
- -12.515791893005371
- ],
- [
- "verted",
- -12.515812873840332
- ],
- [
- "▁sequel",
- -12.515839576721191
- ],
- [
- "tinct",
- -12.51599407196045
- ],
- [
- "vette",
- -12.516020774841309
- ],
- [
- "▁exceeding",
- -12.516032218933105
- ],
- [
- "▁Yorkshire",
- -12.51607608795166
- ],
- [
- "▁cleanse",
- -12.51613998413086
- ],
- [
- "Sadly",
- -12.516159057617188
- ],
- [
- "▁präsentiert",
- -12.516164779663086
- ],
- [
- "angled",
- -12.516311645507812
- ],
- [
- "tude",
- -12.516339302062988
- ],
- [
- "chain",
- -12.516371726989746
- ],
- [
- "▁Oakland",
- -12.51639175415039
- ],
- [
- "xia",
- -12.516514778137207
- ],
- [
- "▁foremost",
- -12.51653003692627
- ],
- [
- "▁incomplete",
- -12.516786575317383
- ],
- [
- "▁restriction",
- -12.516905784606934
- ],
- [
- "▁whatsoever",
- -12.516908645629883
- ],
- [
- "▁shipment",
- -12.517017364501953
- ],
- [
- "**",
- -12.517059326171875
- ],
- [
- "Aici",
- -12.517110824584961
- ],
- [
- "PART",
- -12.517247200012207
- ],
- [
- "▁grams",
- -12.517251014709473
- ],
- [
- "▁Folk",
- -12.517457008361816
- ],
- [
- "▁encryption",
- -12.517467498779297
- ],
- [
- "▁Alfred",
- -12.517748832702637
- ],
- [
- "▁Veränderung",
- -12.517749786376953
- ],
- [
- "▁privately",
- -12.517817497253418
- ],
- [
- "£",
- -12.517909049987793
- ],
- [
- "▁Sonne",
- -12.51799201965332
- ],
- [
- "kow",
- -12.518117904663086
- ],
- [
- "▁CBS",
- -12.518172264099121
- ],
- [
- "▁Feuer",
- -12.518198013305664
- ],
- [
- "▁crushed",
- -12.518230438232422
- ],
- [
- "▁cazare",
- -12.518270492553711
- ],
- [
- "▁beraten",
- -12.518401145935059
- ],
- [
- "envoi",
- -12.518423080444336
- ],
- [
- "▁genannt",
- -12.51843547821045
- ],
- [
- "▁Lok",
- -12.518472671508789
- ],
- [
- "nox",
- -12.518569946289062
- ],
- [
- "wishing",
- -12.518759727478027
- ],
- [
- "▁freak",
- -12.518759727478027
- ],
- [
- "rasi",
- -12.51879596710205
- ],
- [
- "▁calculations",
- -12.518888473510742
- ],
- [
- "▁sprechen",
- -12.51890754699707
- ],
- [
- "5:00",
- -12.519062042236328
- ],
- [
- "▁Gam",
- -12.519074440002441
- ],
- [
- "▁invasion",
- -12.519159317016602
- ],
- [
- "ZA",
- -12.519230842590332
- ],
- [
- "aiming",
- -12.519327163696289
- ],
- [
- "▁näher",
- -12.519404411315918
- ],
- [
- "▁Maßnahmen",
- -12.519433975219727
- ],
- [
- "▁măsură",
- -12.519490242004395
- ],
- [
- "▁Bestellung",
- -12.519610404968262
- ],
- [
- "▁gown",
- -12.519665718078613
- ],
- [
- "▁oblige",
- -12.519747734069824
- ],
- [
- "länder",
- -12.51977825164795
- ],
- [
- "posi",
- -12.519853591918945
- ],
- [
- "▁Earn",
- -12.51988410949707
- ],
- [
- "▁dubl",
- -12.51999282836914
- ],
- [
- "▁sticky",
- -12.520100593566895
- ],
- [
- "▁litter",
- -12.520181655883789
- ],
- [
- "▁Salz",
- -12.520257949829102
- ],
- [
- "▁Matter",
- -12.520272254943848
- ],
- [
- "▁Driving",
- -12.520275115966797
- ],
- [
- "▁pursu",
- -12.520285606384277
- ],
- [
- "ographer",
- -12.520390510559082
- ],
- [
- "▁touring",
- -12.520400047302246
- ],
- [
- "opter",
- -12.520444869995117
- ],
- [
- "▁fierce",
- -12.520475387573242
- ],
- [
- "▁Audit",
- -12.520480155944824
- ],
- [
- "▁imperi",
- -12.520755767822266
- ],
- [
- "▁positiv",
- -12.520780563354492
- ],
- [
- "règles",
- -12.520849227905273
- ],
- [
- "▁bouton",
- -12.520990371704102
- ],
- [
- "▁victorie",
- -12.520990371704102
- ],
- [
- "▁manuel",
- -12.521015167236328
- ],
- [
- "▁await",
- -12.52103042602539
- ],
- [
- "▁transformer",
- -12.521041870117188
- ],
- [
- "▁cupboard",
- -12.52108383178711
- ],
- [
- "▁Hag",
- -12.521117210388184
- ],
- [
- "naj",
- -12.521214485168457
- ],
- [
- "▁annoncé",
- -12.52139663696289
- ],
- [
- "▁scolaire",
- -12.521401405334473
- ],
- [
- "▁étape",
- -12.521482467651367
- ],
- [
- "▁pirate",
- -12.521761894226074
- ],
- [
- "▁Rated",
- -12.521794319152832
- ],
- [
- "LOT",
- -12.521846771240234
- ],
- [
- "▁natura",
- -12.521944046020508
- ],
- [
- "oga",
- -12.522336959838867
- ],
- [
- "Read",
- -12.522388458251953
- ],
- [
- "idio",
- -12.522444725036621
- ],
- [
- "▁recession",
- -12.522698402404785
- ],
- [
- "veţi",
- -12.522761344909668
- ],
- [
- "▁blossom",
- -12.523082733154297
- ],
- [
- "▁lunar",
- -12.523141860961914
- ],
- [
- "▁inhibit",
- -12.52316951751709
- ],
- [
- "gemein",
- -12.523219108581543
- ],
- [
- "▁Historic",
- -12.523262023925781
- ],
- [
- "▁HTTP",
- -12.523370742797852
- ],
- [
- "misiune",
- -12.5234956741333
- ],
- [
- "▁Manda",
- -12.523601531982422
- ],
- [
- "▁Hurricane",
- -12.523643493652344
- ],
- [
- "Strat",
- -12.523646354675293
- ],
- [
- "▁populaire",
- -12.523756980895996
- ],
- [
- "▁useless",
- -12.523762702941895
- ],
- [
- "▁Leipzig",
- -12.523924827575684
- ],
- [
- "▁Krankheit",
- -12.52392578125
- ],
- [
- "▁Bonne",
- -12.52397346496582
- ],
- [
- "▁tissu",
- -12.52399730682373
- ],
- [
- "▁Baum",
- -12.523998260498047
- ],
- [
- "▁BUT",
- -12.524152755737305
- ],
- [
- "▁Mondial",
- -12.52423095703125
- ],
- [
- "▁triangle",
- -12.524242401123047
- ],
- [
- "▁Tesla",
- -12.524250984191895
- ],
- [
- "▁pământ",
- -12.52430534362793
- ],
- [
- "▁aminte",
- -12.524726867675781
- ],
- [
- "▁vehicul",
- -12.524770736694336
- ],
- [
- "▁cerut",
- -12.52482795715332
- ],
- [
- "▁respiratory",
- -12.524836540222168
- ],
- [
- "▁rayon",
- -12.524993896484375
- ],
- [
- "▁gestaltet",
- -12.525067329406738
- ],
- [
- "310",
- -12.525139808654785
- ],
- [
- "pfl",
- -12.525239944458008
- ],
- [
- "▁shrimp",
- -12.525337219238281
- ],
- [
- "▁reconnu",
- -12.525409698486328
- ],
- [
- "ologique",
- -12.525476455688477
- ],
- [
- "▁unity",
- -12.525674819946289
- ],
- [
- "Speicher",
- -12.52569580078125
- ],
- [
- "▁Movement",
- -12.525794982910156
- ],
- [
- "ddling",
- -12.52581787109375
- ],
- [
- "OE",
- -12.525818824768066
- ],
- [
- "▁Resolution",
- -12.525863647460938
- ],
- [
- "esteem",
- -12.525898933410645
- ],
- [
- "▁Teen",
- -12.526288986206055
- ],
- [
- "▁believing",
- -12.526463508605957
- ],
- [
- "▁Tipps",
- -12.526481628417969
- ],
- [
- "jpg",
- -12.526494026184082
- ],
- [
- "▁obs",
- -12.526519775390625
- ],
- [
- "SHA",
- -12.526702880859375
- ],
- [
- "▁quietly",
- -12.526907920837402
- ],
- [
- "setting",
- -12.52712345123291
- ],
- [
- "▁elevator",
- -12.527185440063477
- ],
- [
- "phor",
- -12.527194023132324
- ],
- [
- "Just",
- -12.52725887298584
- ],
- [
- "▁legatura",
- -12.52739143371582
- ],
- [
- "elected",
- -12.527414321899414
- ],
- [
- "▁disclosed",
- -12.527419090270996
- ],
- [
- "quarter",
- -12.52743148803711
- ],
- [
- "zzy",
- -12.527461051940918
- ],
- [
- "▁gata",
- -12.527491569519043
- ],
- [
- "SAN",
- -12.527532577514648
- ],
- [
- "▁Cathedral",
- -12.527592658996582
- ],
- [
- "192",
- -12.527656555175781
- ],
- [
- "▁RBI",
- -12.527726173400879
- ],
- [
- "▁Seller",
- -12.527798652648926
- ],
- [
- "▁urine",
- -12.527807235717773
- ],
- [
- "▁Hardware",
- -12.527966499328613
- ],
- [
- "▁steadi",
- -12.527993202209473
- ],
- [
- "percussion",
- -12.528158187866211
- ],
- [
- "▁francez",
- -12.528172492980957
- ],
- [
- "▁rude",
- -12.528202056884766
- ],
- [
- "bod",
- -12.528223037719727
- ],
- [
- "cession",
- -12.528249740600586
- ],
- [
- "▁HTC",
- -12.528372764587402
- ],
- [
- "HB",
- -12.528576850891113
- ],
- [
- "▁descent",
- -12.528644561767578
- ],
- [
- "▁Painting",
- -12.528681755065918
- ],
- [
- "119",
- -12.528684616088867
- ],
- [
- "sagen",
- -12.52877426147461
- ],
- [
- "▁salvation",
- -12.52880573272705
- ],
- [
- "arro",
- -12.528814315795898
- ],
- [
- "0.3",
- -12.52886962890625
- ],
- [
- "▁Duck",
- -12.52890396118164
- ],
- [
- "Mit",
- -12.529052734375
- ],
- [
- "да",
- -12.52927017211914
- ],
- [
- "▁Diesel",
- -12.529322624206543
- ],
- [
- "▁Medal",
- -12.529413223266602
- ],
- [
- "▁interim",
- -12.529439926147461
- ],
- [
- "▁montagne",
- -12.529439926147461
- ],
- [
- "▁Pixel",
- -12.529631614685059
- ],
- [
- "LINE",
- -12.529806137084961
- ],
- [
- "▁dureri",
- -12.529938697814941
- ],
- [
- "▁Bengal",
- -12.529990196228027
- ],
- [
- "Legea",
- -12.530080795288086
- ],
- [
- "▁Strecke",
- -12.530094146728516
- ],
- [
- "▁schneller",
- -12.53012752532959
- ],
- [
- "▁Karten",
- -12.5301513671875
- ],
- [
- "cion",
- -12.530241966247559
- ],
- [
- "▁Coco",
- -12.53037166595459
- ],
- [
- "troisième",
- -12.53052806854248
- ],
- [
- "401",
- -12.530616760253906
- ],
- [
- "▁sandwiches",
- -12.530704498291016
- ],
- [
- "▁folosind",
- -12.530920028686523
- ],
- [
- "▁Folgen",
- -12.530953407287598
- ],
- [
- "▁triumph",
- -12.530991554260254
- ],
- [
- "▁Hintergrund",
- -12.530996322631836
- ],
- [
- "▁revelation",
- -12.531084060668945
- ],
- [
- "ôme",
- -12.531222343444824
- ],
- [
- "▁Nex",
- -12.531245231628418
- ],
- [
- "jährigen",
- -12.531295776367188
- ],
- [
- "▁militant",
- -12.531296730041504
- ],
- [
- "▁fabricant",
- -12.531671524047852
- ],
- [
- "iano",
- -12.531713485717773
- ],
- [
- "▁formulation",
- -12.53188705444336
- ],
- [
- "integrating",
- -12.532050132751465
- ],
- [
- "▁Items",
- -12.532142639160156
- ],
- [
- "▁contractual",
- -12.532320976257324
- ],
- [
- "AIDS",
- -12.532424926757812
- ],
- [
- "▁pitcher",
- -12.532610893249512
- ],
- [
- "▁Snap",
- -12.532623291015625
- ],
- [
- "▁systematic",
- -12.532663345336914
- ],
- [
- "▁referendum",
- -12.532694816589355
- ],
- [
- "gau",
- -12.53281021118164
- ],
- [
- "administration",
- -12.532917022705078
- ],
- [
- "▁speci",
- -12.532981872558594
- ],
- [
- "ieni",
- -12.532998085021973
- ],
- [
- "prox",
- -12.533186912536621
- ],
- [
- "▁bouquet",
- -12.533241271972656
- ],
- [
- "▁sinnvoll",
- -12.533270835876465
- ],
- [
- "▁Fleisch",
- -12.533309936523438
- ],
- [
- "ktuell",
- -12.533381462097168
- ],
- [
- "▁mushrooms",
- -12.533408164978027
- ],
- [
- "▁Straf",
- -12.533470153808594
- ],
- [
- "▁cresc",
- -12.533491134643555
- ],
- [
- "TEM",
- -12.533502578735352
- ],
- [
- "▁vindec",
- -12.53352165222168
- ],
- [
- "▁Drama",
- -12.533540725708008
- ],
- [
- "chief",
- -12.533550262451172
- ],
- [
- "▁müsst",
- -12.533614158630371
- ],
- [
- "▁Warner",
- -12.533662796020508
- ],
- [
- "118",
- -12.533761024475098
- ],
- [
- "▁saptamana",
- -12.533831596374512
- ],
- [
- "▁animaux",
- -12.53412914276123
- ],
- [
- "▁Directory",
- -12.534146308898926
- ],
- [
- "▁entgegen",
- -12.53415584564209
- ],
- [
- "▁deduction",
- -12.534156799316406
- ],
- [
- "▁Strategic",
- -12.53426456451416
- ],
- [
- "▁rats",
- -12.534419059753418
- ],
- [
- "▁Moses",
- -12.534448623657227
- ],
- [
- "eko",
- -12.534564971923828
- ],
- [
- "strict",
- -12.534590721130371
- ],
- [
- "▁Ashley",
- -12.534603118896484
- ],
- [
- "mik",
- -12.534622192382812
- ],
- [
- "▁relocate",
- -12.534668922424316
- ],
- [
- "▁whip",
- -12.534738540649414
- ],
- [
- "central",
- -12.534750938415527
- ],
- [
- "mack",
- -12.534892082214355
- ],
- [
- "stufe",
- -12.534961700439453
- ],
- [
- "▁Metropolitan",
- -12.5349702835083
- ],
- [
- "▁croissance",
- -12.534974098205566
- ],
- [
- "▁celebrities",
- -12.535021781921387
- ],
- [
- "▁Geh",
- -12.53507137298584
- ],
- [
- "▁verifica",
- -12.535196304321289
- ],
- [
- "▁satisfac",
- -12.535211563110352
- ],
- [
- "▁Julian",
- -12.535271644592285
- ],
- [
- "▁remotely",
- -12.535432815551758
- ],
- [
- "▁Safari",
- -12.535542488098145
- ],
- [
- "▁Chic",
- -12.53557014465332
- ],
- [
- "▁clamp",
- -12.535818099975586
- ],
- [
- "▁Schnee",
- -12.535918235778809
- ],
- [
- "grown",
- -12.536069869995117
- ],
- [
- "▁Character",
- -12.536110877990723
- ],
- [
- "▁charities",
- -12.536137580871582
- ],
- [
- "Thankfully",
- -12.536625862121582
- ],
- [
- "▁țară",
- -12.53681468963623
- ],
- [
- "IZ",
- -12.536816596984863
- ],
- [
- "Vielleicht",
- -12.536999702453613
- ],
- [
- "▁Pon",
- -12.537108421325684
- ],
- [
- "gegen",
- -12.53711986541748
- ],
- [
- "chez",
- -12.537185668945312
- ],
- [
- "Black",
- -12.537544250488281
- ],
- [
- "▁alimentare",
- -12.537555694580078
- ],
- [
- "▁verloren",
- -12.537562370300293
- ],
- [
- "▁predictions",
- -12.537657737731934
- ],
- [
- "Founded",
- -12.53795337677002
- ],
- [
- "▁femeie",
- -12.538022994995117
- ],
- [
- "wahrscheinlich",
- -12.538107872009277
- ],
- [
- "▁squeeze",
- -12.53819465637207
- ],
- [
- "▁verfügbar",
- -12.538259506225586
- ],
- [
- "▁hygiene",
- -12.538393020629883
- ],
- [
- "voire",
- -12.538667678833008
- ],
- [
- "▁birou",
- -12.538901329040527
- ],
- [
- "▁initiate",
- -12.538921356201172
- ],
- [
- "▁Patriot",
- -12.539009094238281
- ],
- [
- "▁Income",
- -12.539159774780273
- ],
- [
- "▁marry",
- -12.539310455322266
- ],
- [
- "lokal",
- -12.539336204528809
- ],
- [
- "logic",
- -12.53940486907959
- ],
- [
- "▁Abstract",
- -12.53966236114502
- ],
- [
- "▁grundsätzlich",
- -12.539822578430176
- ],
- [
- "▁tariff",
- -12.539886474609375
- ],
- [
- "▁definitiv",
- -12.539892196655273
- ],
- [
- "paz",
- -12.53989315032959
- ],
- [
- "Result",
- -12.539921760559082
- ],
- [
- "1:30",
- -12.54005241394043
- ],
- [
- "▁Latest",
- -12.540075302124023
- ],
- [
- "▁Dauer",
- -12.540155410766602
- ],
- [
- "Med",
- -12.540275573730469
- ],
- [
- "gewicht",
- -12.540348052978516
- ],
- [
- "▁Gaza",
- -12.540430068969727
- ],
- [
- "▁Newton",
- -12.540769577026367
- ],
- [
- "Dokument",
- -12.540897369384766
- ],
- [
- "formular",
- -12.540945053100586
- ],
- [
- "ILE",
- -12.540964126586914
- ],
- [
- "▁surse",
- -12.541040420532227
- ],
- [
- "MH",
- -12.54116153717041
- ],
- [
- "▁Arctic",
- -12.541255950927734
- ],
- [
- "▁ISBN",
- -12.541274070739746
- ],
- [
- "▁quarterback",
- -12.541315078735352
- ],
- [
- "▁absurd",
- -12.541555404663086
- ],
- [
- "▁Zusammenhang",
- -12.541561126708984
- ],
- [
- "▁Module",
- -12.54156494140625
- ],
- [
- "mented",
- -12.541667938232422
- ],
- [
- "worthy",
- -12.541797637939453
- ],
- [
- "▁célèbre",
- -12.541828155517578
- ],
- [
- "▁maritime",
- -12.541836738586426
- ],
- [
- "▁Reed",
- -12.541938781738281
- ],
- [
- "▁threaten",
- -12.542037010192871
- ],
- [
- "▁Satz",
- -12.542095184326172
- ],
- [
- "▁sticking",
- -12.542203903198242
- ],
- [
- "▁transcript",
- -12.542372703552246
- ],
- [
- "▁Morgen",
- -12.542425155639648
- ],
- [
- "▁Förder",
- -12.542435646057129
- ],
- [
- "▁Gottes",
- -12.542572021484375
- ],
- [
- "▁Coordinator",
- -12.542648315429688
- ],
- [
- "LOG",
- -12.54265022277832
- ],
- [
- "EAN",
- -12.542677879333496
- ],
- [
- "▁préparation",
- -12.54273509979248
- ],
- [
- "▁Brass",
- -12.542799949645996
- ],
- [
- "Așa",
- -12.542853355407715
- ],
- [
- "▁Utiliz",
- -12.54294490814209
- ],
- [
- "framed",
- -12.542973518371582
- ],
- [
- "▁asphalt",
- -12.543050765991211
- ],
- [
- "116",
- -12.543061256408691
- ],
- [
- "▁historically",
- -12.54310417175293
- ],
- [
- "▁doamn",
- -12.543176651000977
- ],
- [
- "Air",
- -12.543293952941895
- ],
- [
- "▁economist",
- -12.543838500976562
- ],
- [
- "fresh",
- -12.54384994506836
- ],
- [
- "engine",
- -12.543906211853027
- ],
- [
- "▁Rücken",
- -12.543919563293457
- ],
- [
- "▁worthwhile",
- -12.544124603271484
- ],
- [
- "▁Therapie",
- -12.544140815734863
- ],
- [
- "▁Joshua",
- -12.544151306152344
- ],
- [
- "sicherheit",
- -12.544175148010254
- ],
- [
- "▁scena",
- -12.544254302978516
- ],
- [
- "ifiant",
- -12.54433822631836
- ],
- [
- "/20",
- -12.54442024230957
- ],
- [
- "fehl",
- -12.544469833374023
- ],
- [
- "karten",
- -12.544515609741211
- ],
- [
- "501",
- -12.544656753540039
- ],
- [
- "▁vide",
- -12.544673919677734
- ],
- [
- "▁miliarde",
- -12.544699668884277
- ],
- [
- "▁trillion",
- -12.54470157623291
- ],
- [
- "oudre",
- -12.544761657714844
- ],
- [
- "nderung",
- -12.544803619384766
- ],
- [
- "▁inquiries",
- -12.544992446899414
- ],
- [
- "▁echipe",
- -12.545034408569336
- ],
- [
- "▁investiga",
- -12.545040130615234
- ],
- [
- "▁detailing",
- -12.545042991638184
- ],
- [
- "VIS",
- -12.545086860656738
- ],
- [
- "▁geographical",
- -12.545157432556152
- ],
- [
- "▁authentication",
- -12.54519271850586
- ],
- [
- "▁Schwa",
- -12.545201301574707
- ],
- [
- "▁Scri",
- -12.545230865478516
- ],
- [
- "▁discourage",
- -12.54527473449707
- ],
- [
- "Pass",
- -12.54529094696045
- ],
- [
- "▁scattered",
- -12.54529857635498
- ],
- [
- "▁langsam",
- -12.545300483703613
- ],
- [
- "telles",
- -12.545380592346191
- ],
- [
- "▁ramane",
- -12.5454740524292
- ],
- [
- "▁inhibitor",
- -12.545486450195312
- ],
- [
- "▁Habit",
- -12.54556941986084
- ],
- [
- "▁10:00",
- -12.545577049255371
- ],
- [
- "▁rezultat",
- -12.545595169067383
- ],
- [
- "äck",
- -12.545943260192871
- ],
- [
- ",000.",
- -12.545979499816895
- ],
- [
- "▁remedies",
- -12.546103477478027
- ],
- [
- "▁comportament",
- -12.546195983886719
- ],
- [
- "namen",
- -12.546229362487793
- ],
- [
- "▁#3",
- -12.546327590942383
- ],
- [
- "enstein",
- -12.546493530273438
- ],
- [
- "▁relevance",
- -12.546516418457031
- ],
- [
- "▁présentation",
- -12.54655933380127
- ],
- [
- "MHz",
- -12.546648979187012
- ],
- [
- "EMA",
- -12.546661376953125
- ],
- [
- "▁palace",
- -12.546709060668945
- ],
- [
- "▁vizibil",
- -12.546723365783691
- ],
- [
- "▁griev",
- -12.546820640563965
- ],
- [
- "▁severely",
- -12.54688549041748
- ],
- [
- "expert",
- -12.546942710876465
- ],
- [
- "▁ravi",
- -12.54696273803711
- ],
- [
- "▁feasible",
- -12.547002792358398
- ],
- [
- "▁Wholesale",
- -12.547009468078613
- ],
- [
- "▁graduat",
- -12.547077178955078
- ],
- [
- "Kü",
- -12.547094345092773
- ],
- [
- "▁quotation",
- -12.547157287597656
- ],
- [
- "/11",
- -12.54716968536377
- ],
- [
- "lutter",
- -12.547415733337402
- ],
- [
- "▁dice",
- -12.547467231750488
- ],
- [
- "modal",
- -12.547749519348145
- ],
- [
- "ggling",
- -12.547819137573242
- ],
- [
- "▁considér",
- -12.547986030578613
- ],
- [
- "▁Insel",
- -12.548097610473633
- ],
- [
- "▁Database",
- -12.5483980178833
- ],
- [
- "icism",
- -12.548508644104004
- ],
- [
- "▁quarterly",
- -12.54851245880127
- ],
- [
- "▁formule",
- -12.548558235168457
- ],
- [
- "▁renouvel",
- -12.54873275756836
- ],
- [
- "▁Treasure",
- -12.548737525939941
- ],
- [
- "▁1962",
- -12.548844337463379
- ],
- [
- "▁republic",
- -12.549111366271973
- ],
- [
- "▁États",
- -12.549254417419434
- ],
- [
- "▁salut",
- -12.549356460571289
- ],
- [
- "HK",
- -12.54941463470459
- ],
- [
- "▁Bali",
- -12.549427032470703
- ],
- [
- "▁Rechnung",
- -12.549447059631348
- ],
- [
- "fruit",
- -12.54945182800293
- ],
- [
- "lays",
- -12.549467086791992
- ],
- [
- "LAS",
- -12.54951000213623
- ],
- [
- "inclin",
- -12.549708366394043
- ],
- [
- "▁Cré",
- -12.549813270568848
- ],
- [
- "▁compt",
- -12.54985237121582
- ],
- [
- "țiilor",
- -12.550056457519531
- ],
- [
- "heft",
- -12.550111770629883
- ],
- [
- "▁Comisi",
- -12.55024242401123
- ],
- [
- "▁Nurse",
- -12.550516128540039
- ],
- [
- "loid",
- -12.550540924072266
- ],
- [
- "grove",
- -12.550761222839355
- ],
- [
- "▁Copy",
- -12.550867080688477
- ],
- [
- "▁Kampf",
- -12.550873756408691
- ],
- [
- "izată",
- -12.550945281982422
- ],
- [
- "würdig",
- -12.551244735717773
- ],
- [
- "-2018",
- -12.551305770874023
- ],
- [
- "ozo",
- -12.551350593566895
- ],
- [
- "▁integriert",
- -12.551397323608398
- ],
- [
- "▁réunion",
- -12.551448822021484
- ],
- [
- "▁mică",
- -12.551520347595215
- ],
- [
- "▁Chau",
- -12.551595687866211
- ],
- [
- "▁allegations",
- -12.551626205444336
- ],
- [
- "▁shaping",
- -12.551640510559082
- ],
- [
- "▁transcription",
- -12.551671981811523
- ],
- [
- "▁Monica",
- -12.551711082458496
- ],
- [
- "▁torture",
- -12.551795959472656
- ],
- [
- "▁cooperative",
- -12.551962852478027
- ],
- [
- "▁invité",
- -12.551987648010254
- ],
- [
- "▁bamboo",
- -12.552204132080078
- ],
- [
- "▁Thinking",
- -12.55232048034668
- ],
- [
- "▁gratis",
- -12.552392959594727
- ],
- [
- "117",
- -12.55267333984375
- ],
- [
- "renz",
- -12.55279541015625
- ],
- [
- "▁Fußball",
- -12.552823066711426
- ],
- [
- "▁Gram",
- -12.552873611450195
- ],
- [
- "sprung",
- -12.55290412902832
- ],
- [
- "▁Schluss",
- -12.55308723449707
- ],
- [
- "▁Diploma",
- -12.553345680236816
- ],
- [
- "▁apparatus",
- -12.553363800048828
- ],
- [
- "notably",
- -12.553483963012695
- ],
- [
- "▁exercit",
- -12.553532600402832
- ],
- [
- "ământ",
- -12.553536415100098
- ],
- [
- "▁masses",
- -12.553610801696777
- ],
- [
- "▁preuve",
- -12.553642272949219
- ],
- [
- "great",
- -12.553754806518555
- ],
- [
- "▁Drink",
- -12.553792953491211
- ],
- [
- "islam",
- -12.553828239440918
- ],
- [
- "ARM",
- -12.553914070129395
- ],
- [
- "indre",
- -12.554404258728027
- ],
- [
- "DW",
- -12.554410934448242
- ],
- [
- "▁Flowers",
- -12.554500579833984
- ],
- [
- "▁pill",
- -12.554574966430664
- ],
- [
- "▁objectifs",
- -12.554594039916992
- ],
- [
- "▁Bezug",
- -12.554659843444824
- ],
- [
- "▁assumptions",
- -12.55466365814209
- ],
- [
- "▁vesti",
- -12.554742813110352
- ],
- [
- "route",
- -12.554783821105957
- ],
- [
- "▁Bangkok",
- -12.554815292358398
- ],
- [
- "▁seamlessly",
- -12.55482006072998
- ],
- [
- "config",
- -12.554882049560547
- ],
- [
- "▁username",
- -12.554890632629395
- ],
- [
- "unsure",
- -12.555024147033691
- ],
- [
- "▁poser",
- -12.555129051208496
- ],
- [
- "▁impozit",
- -12.555246353149414
- ],
- [
- "▁metode",
- -12.555333137512207
- ],
- [
- "defending",
- -12.555347442626953
- ],
- [
- "▁Nic",
- -12.555431365966797
- ],
- [
- "▁Vertrag",
- -12.555508613586426
- ],
- [
- "▁plăcut",
- -12.55552864074707
- ],
- [
- "▁Pou",
- -12.555675506591797
- ],
- [
- "UCH",
- -12.555785179138184
- ],
- [
- "▁Fein",
- -12.555903434753418
- ],
- [
- "reading",
- -12.555994987487793
- ],
- [
- "snip",
- -12.55604076385498
- ],
- [
- "▁Livre",
- -12.556401252746582
- ],
- [
- "lander",
- -12.556509971618652
- ],
- [
- "▁hydraulic",
- -12.556559562683105
- ],
- [
- "veiled",
- -12.556563377380371
- ],
- [
- "intr",
- -12.556609153747559
- ],
- [
- "▁Domnului",
- -12.556641578674316
- ],
- [
- "▁$0.",
- -12.556713104248047
- ],
- [
- "▁kilometers",
- -12.556753158569336
- ],
- [
- "spann",
- -12.556870460510254
- ],
- [
- "▁credibility",
- -12.556892395019531
- ],
- [
- "▁eBook",
- -12.556953430175781
- ],
- [
- "VERY",
- -12.556994438171387
- ],
- [
- "▁Charm",
- -12.557122230529785
- ],
- [
- "Evangeli",
- -12.557193756103516
- ],
- [
- "▁anderer",
- -12.557193756103516
- ],
- [
- "▁Entry",
- -12.557195663452148
- ],
- [
- "ffy",
- -12.5573148727417
- ],
- [
- "▁Exc",
- -12.55737018585205
- ],
- [
- "▁Omega",
- -12.557446479797363
- ],
- [
- "▁Funktionen",
- -12.557455062866211
- ],
- [
- "▁Gay",
- -12.55752182006836
- ],
- [
- "▁acht",
- -12.557608604431152
- ],
- [
- "colored",
- -12.557615280151367
- ],
- [
- "itude",
- -12.557634353637695
- ],
- [
- "▁accompagné",
- -12.557645797729492
- ],
- [
- "▁unfortunate",
- -12.557981491088867
- ],
- [
- "▁DIN",
- -12.558091163635254
- ],
- [
- "▁installment",
- -12.558252334594727
- ],
- [
- "▁indépendant",
- -12.558307647705078
- ],
- [
- "These",
- -12.558364868164062
- ],
- [
- "mitten",
- -12.558394432067871
- ],
- [
- "thank",
- -12.558470726013184
- ],
- [
- "▁Trek",
- -12.558721542358398
- ],
- [
- "üchte",
- -12.55874252319336
- ],
- [
- "▁cuir",
- -12.55875015258789
- ],
- [
- "▁turbo",
- -12.558802604675293
- ],
- [
- "Table",
- -12.558847427368164
- ],
- [
- "▁Extrem",
- -12.558866500854492
- ],
- [
- "▁advertisements",
- -12.55915355682373
- ],
- [
- "▁chaîne",
- -12.559206008911133
- ],
- [
- "▁corridor",
- -12.559473991394043
- ],
- [
- "▁râ",
- -12.559651374816895
- ],
- [
- "▁Opening",
- -12.559718132019043
- ],
- [
- "Get",
- -12.559747695922852
- ],
- [
- "▁storytelling",
- -12.55976676940918
- ],
- [
- "▁severity",
- -12.559771537780762
- ],
- [
- "4\"",
- -12.559956550598145
- ],
- [
- "▁parasit",
- -12.559967994689941
- ],
- [
- "angebot",
- -12.56002426147461
- ],
- [
- "Data",
- -12.56005573272705
- ],
- [
- "listen",
- -12.560086250305176
- ],
- [
- "▁vârstă",
- -12.560094833374023
- ],
- [
- "▁swallow",
- -12.56025505065918
- ],
- [
- "TRE",
- -12.560321807861328
- ],
- [
- "▁daunting",
- -12.56035041809082
- ],
- [
- "▁Oli",
- -12.560481071472168
- ],
- [
- "▁definitive",
- -12.56066608428955
- ],
- [
- "▁rezerva",
- -12.560667037963867
- ],
- [
- "/15",
- -12.560807228088379
- ],
- [
- "▁Landschaft",
- -12.560887336730957
- ],
- [
- "▁Automotive",
- -12.560934066772461
- ],
- [
- "▁convers",
- -12.56113052368164
- ],
- [
- "▁thru",
- -12.561139106750488
- ],
- [
- "▁Township",
- -12.561140060424805
- ],
- [
- "▁tilt",
- -12.56119441986084
- ],
- [
- "▁Criminal",
- -12.561227798461914
- ],
- [
- "riez",
- -12.561407089233398
- ],
- [
- "▁Parking",
- -12.561440467834473
- ],
- [
- "▁humanitarian",
- -12.561518669128418
- ],
- [
- "▁Kilometer",
- -12.561529159545898
- ],
- [
- "controlled",
- -12.56189250946045
- ],
- [
- "▁Klick",
- -12.561910629272461
- ],
- [
- "support",
- -12.56199836730957
- ],
- [
- "handed",
- -12.562005996704102
- ],
- [
- "ämtliche",
- -12.562104225158691
- ],
- [
- "access",
- -12.562232971191406
- ],
- [
- "▁eleven",
- -12.562232971191406
- ],
- [
- "▁ferry",
- -12.56229305267334
- ],
- [
- "zieren",
- -12.562620162963867
- ],
- [
- "▁Gebrauch",
- -12.562688827514648
- ],
- [
- "▁vigoare",
- -12.562689781188965
- ],
- [
- "MON",
- -12.562756538391113
- ],
- [
- "fox",
- -12.562886238098145
- ],
- [
- "bestimmten",
- -12.562894821166992
- ],
- [
- "▁Gur",
- -12.563069343566895
- ],
- [
- "▁Mannschaft",
- -12.563146591186523
- ],
- [
- "▁patrol",
- -12.563173294067383
- ],
- [
- "▁casă",
- -12.563376426696777
- ],
- [
- "▁Stories",
- -12.563380241394043
- ],
- [
- "▁robotic",
- -12.563425064086914
- ],
- [
- "tiri",
- -12.563576698303223
- ],
- [
- "gewiesen",
- -12.5636568069458
- ],
- [
- "CV",
- -12.563722610473633
- ],
- [
- "▁parinti",
- -12.563899040222168
- ],
- [
- "▁Owen",
- -12.563931465148926
- ],
- [
- "▁Katie",
- -12.564116477966309
- ],
- [
- "▁Combine",
- -12.56422233581543
- ],
- [
- "enfalls",
- -12.56442928314209
- ],
- [
- "▁financière",
- -12.564447402954102
- ],
- [
- "▁parliament",
- -12.564549446105957
- ],
- [
- "▁Weekend",
- -12.564616203308105
- ],
- [
- "▁Sonic",
- -12.564757347106934
- ],
- [
- "▁fixture",
- -12.56479263305664
- ],
- [
- "majorité",
- -12.56497573852539
- ],
- [
- "▁gravel",
- -12.565028190612793
- ],
- [
- "realizate",
- -12.565109252929688
- ],
- [
- "examining",
- -12.565113067626953
- ],
- [
- "▁grim",
- -12.5653657913208
- ],
- [
- "▁stabili",
- -12.565458297729492
- ],
- [
- "▁Wochenende",
- -12.56551456451416
- ],
- [
- "▁Hebrew",
- -12.565597534179688
- ],
- [
- "▁Harrison",
- -12.565799713134766
- ],
- [
- "▁boundary",
- -12.565858840942383
- ],
- [
- "40,000",
- -12.565902709960938
- ],
- [
- "▁Ambassador",
- -12.566208839416504
- ],
- [
- "▁scoate",
- -12.566229820251465
- ],
- [
- "ffin",
- -12.56623363494873
- ],
- [
- "▁crème",
- -12.566269874572754
- ],
- [
- "▁obiecte",
- -12.566378593444824
- ],
- [
- "enţa",
- -12.566763877868652
- ],
- [
- "▁subsidiary",
- -12.566797256469727
- ],
- [
- "▁Franco",
- -12.56688404083252
- ],
- [
- "▁visuel",
- -12.567042350769043
- ],
- [
- "▁uitat",
- -12.56708812713623
- ],
- [
- "▁revisit",
- -12.567122459411621
- ],
- [
- "▁Camping",
- -12.567150115966797
- ],
- [
- "▁Divine",
- -12.567304611206055
- ],
- [
- "4-6",
- -12.567323684692383
- ],
- [
- "▁Brandon",
- -12.567378997802734
- ],
- [
- "ма",
- -12.567450523376465
- ],
- [
- "sofern",
- -12.56745433807373
- ],
- [
- "ntweder",
- -12.56748104095459
- ],
- [
- "▁Shoot",
- -12.567618370056152
- ],
- [
- "étais",
- -12.56771183013916
- ],
- [
- "SPEC",
- -12.567930221557617
- ],
- [
- "▁dreapta",
- -12.567973136901855
- ],
- [
- "▁repaired",
- -12.568055152893066
- ],
- [
- "pyr",
- -12.568136215209961
- ],
- [
- "▁warranties",
- -12.568175315856934
- ],
- [
- "▁représent",
- -12.568263053894043
- ],
- [
- "ADE",
- -12.568293571472168
- ],
- [
- "▁selective",
- -12.56836223602295
- ],
- [
- "▁Banking",
- -12.568441390991211
- ],
- [
- "▁ergonomic",
- -12.568562507629395
- ],
- [
- "...”",
- -12.568602561950684
- ],
- [
- "▁willingness",
- -12.56867790222168
- ],
- [
- "isser",
- -12.568784713745117
- ],
- [
- "▁confection",
- -12.568961143493652
- ],
- [
- "admi",
- -12.569009780883789
- ],
- [
- "▁Freizeit",
- -12.569023132324219
- ],
- [
- "▁illuminate",
- -12.569151878356934
- ],
- [
- "▁Repeat",
- -12.569170951843262
- ],
- [
- "▁Zeitpunkt",
- -12.56933879852295
- ],
- [
- "claimed",
- -12.569439888000488
- ],
- [
- "▁erhältlich",
- -12.569480895996094
- ],
- [
- "▁paysage",
- -12.569537162780762
- ],
- [
- "▁Atom",
- -12.569890022277832
- ],
- [
- "▁Graf",
- -12.570086479187012
- ],
- [
- "▁firmware",
- -12.570093154907227
- ],
- [
- "▁Swift",
- -12.570180892944336
- ],
- [
- "▁cercetare",
- -12.57018756866455
- ],
- [
- "▁internațional",
- -12.570330619812012
- ],
- [
- "▁zombie",
- -12.570330619812012
- ],
- [
- "▁Spread",
- -12.57050609588623
- ],
- [
- "ECO",
- -12.57056999206543
- ],
- [
- "▁Gestaltung",
- -12.570758819580078
- ],
- [
- "rast",
- -12.570858001708984
- ],
- [
- "▁perfume",
- -12.5709228515625
- ],
- [
- "▁roulette",
- -12.570924758911133
- ],
- [
- "▁distill",
- -12.57096004486084
- ],
- [
- "▁Produkten",
- -12.570992469787598
- ],
- [
- "225",
- -12.571310043334961
- ],
- [
- "facing",
- -12.571371078491211
- ],
- [
- "▁paradigm",
- -12.571514129638672
- ],
- [
- "▁Rah",
- -12.571532249450684
- ],
- [
- "▁Renault",
- -12.571846961975098
- ],
- [
- "willig",
- -12.571864128112793
- ],
- [
- "▁Vet",
- -12.571890830993652
- ],
- [
- "▁reprezenta",
- -12.572126388549805
- ],
- [
- "stoß",
- -12.572185516357422
- ],
- [
- "▁Weiß",
- -12.5722074508667
- ],
- [
- "▁Solo",
- -12.572210311889648
- ],
- [
- "▁Jin",
- -12.572646141052246
- ],
- [
- "▁Brussels",
- -12.572693824768066
- ],
- [
- "▁Tournament",
- -12.572693824768066
- ],
- [
- "▁proced",
- -12.572710037231445
- ],
- [
- "▁Rabbi",
- -12.572835922241211
- ],
- [
- "▁gameplay",
- -12.572851181030273
- ],
- [
- "▁ATM",
- -12.572901725769043
- ],
- [
- "▁firearm",
- -12.572906494140625
- ],
- [
- "revealing",
- -12.573003768920898
- ],
- [
- "schütz",
- -12.57310676574707
- ],
- [
- "▁Absolutely",
- -12.573288917541504
- ],
- [
- "▁interference",
- -12.573433876037598
- ],
- [
- "▁Employment",
- -12.573558807373047
- ],
- [
- "▁chord",
- -12.57356071472168
- ],
- [
- "▁oportun",
- -12.573585510253906
- ],
- [
- "▁frontier",
- -12.573770523071289
- ],
- [
- "▁Lunch",
- -12.573891639709473
- ],
- [
- "bread",
- -12.57397174835205
- ],
- [
- "▁rendered",
- -12.573976516723633
- ],
- [
- "5.1",
- -12.573984146118164
- ],
- [
- "▁motif",
- -12.574066162109375
- ],
- [
- "▁Schlag",
- -12.574227333068848
- ],
- [
- "113",
- -12.574264526367188
- ],
- [
- "▁Deux",
- -12.574288368225098
- ],
- [
- "▁surplus",
- -12.574309349060059
- ],
- [
- "ALS",
- -12.574417114257812
- ],
- [
- "▁abortion",
- -12.574472427368164
- ],
- [
- "▁airplane",
- -12.574475288391113
- ],
- [
- "▁migrants",
- -12.574501991271973
- ],
- [
- "kli",
- -12.574539184570312
- ],
- [
- "▁crochet",
- -12.57454776763916
- ],
- [
- "fahrer",
- -12.574671745300293
- ],
- [
- "▁reconstruction",
- -12.57471752166748
- ],
- [
- "▁difer",
- -12.574752807617188
- ],
- [
- "▁Conserv",
- -12.57478141784668
- ],
- [
- "▁NSW",
- -12.57479476928711
- ],
- [
- "▁regim",
- -12.574844360351562
- ],
- [
- "▁Except",
- -12.574904441833496
- ],
- [
- "▁trage",
- -12.574978828430176
- ],
- [
- "▁Consiliul",
- -12.575058937072754
- ],
- [
- "▁Bedarf",
- -12.575064659118652
- ],
- [
- "▁additive",
- -12.5750732421875
- ],
- [
- "know",
- -12.5751371383667
- ],
- [
- "▁sauna",
- -12.57517147064209
- ],
- [
- "▁mortality",
- -12.575201034545898
- ],
- [
- "kräftig",
- -12.575358390808105
- ],
- [
- "▁Own",
- -12.575445175170898
- ],
- [
- "nzo",
- -12.575519561767578
- ],
- [
- "▁villes",
- -12.575543403625488
- ],
- [
- "▁recette",
- -12.575749397277832
- ],
- [
- "▁attacking",
- -12.575799942016602
- ],
- [
- "beruf",
- -12.57608699798584
- ],
- [
- "▁integrat",
- -12.57612419128418
- ],
- [
- "realizarea",
- -12.576201438903809
- ],
- [
- "▁exemption",
- -12.57628345489502
- ],
- [
- "GW",
- -12.576285362243652
- ],
- [
- "▁Nano",
- -12.576395034790039
- ],
- [
- "SCH",
- -12.576440811157227
- ],
- [
- "▁honesty",
- -12.576457023620605
- ],
- [
- "▁Arriv",
- -12.576515197753906
- ],
- [
- "▁gland",
- -12.576542854309082
- ],
- [
- "▁proactive",
- -12.576746940612793
- ],
- [
- "▁agile",
- -12.576837539672852
- ],
- [
- "▁kernel",
- -12.576844215393066
- ],
- [
- "▁nurture",
- -12.576860427856445
- ],
- [
- "▁Patent",
- -12.576963424682617
- ],
- [
- "▁excursi",
- -12.577189445495605
- ],
- [
- "pulsion",
- -12.577326774597168
- ],
- [
- "stellte",
- -12.577351570129395
- ],
- [
- "ständige",
- -12.577421188354492
- ],
- [
- "▁Rebecca",
- -12.577436447143555
- ],
- [
- "▁Securities",
- -12.577436447143555
- ],
- [
- "mètre",
- -12.577446937561035
- ],
- [
- "LOW",
- -12.577469825744629
- ],
- [
- "▁consilier",
- -12.577537536621094
- ],
- [
- "▁Architekt",
- -12.577733993530273
- ],
- [
- "▁china",
- -12.57777214050293
- ],
- [
- "älfte",
- -12.577778816223145
- ],
- [
- "▁Combin",
- -12.577795028686523
- ],
- [
- "480",
- -12.577999114990234
- ],
- [
- "liv",
- -12.578021049499512
- ],
- [
- "▁peur",
- -12.578067779541016
- ],
- [
- "keep",
- -12.57822322845459
- ],
- [
- "▁Verhalten",
- -12.578324317932129
- ],
- [
- "▁peek",
- -12.578446388244629
- ],
- [
- "▁dient",
- -12.578550338745117
- ],
- [
- "▁prevazut",
- -12.578625679016113
- ],
- [
- "Emmanuel",
- -12.57862663269043
- ],
- [
- "▁incidence",
- -12.57862663269043
- ],
- [
- "▁Framework",
- -12.578715324401855
- ],
- [
- "dass",
- -12.578816413879395
- ],
- [
- "artiste",
- -12.578874588012695
- ],
- [
- "▁Accept",
- -12.578971862792969
- ],
- [
- "▁plunge",
- -12.579073905944824
- ],
- [
- "chauff",
- -12.579118728637695
- ],
- [
- "▁guilt",
- -12.579156875610352
- ],
- [
- "▁senator",
- -12.57945442199707
- ],
- [
- "▁disable",
- -12.579776763916016
- ],
- [
- "▁partout",
- -12.579901695251465
- ],
- [
- "JC",
- -12.580045700073242
- ],
- [
- "▁Highly",
- -12.580150604248047
- ],
- [
- "▁beneficii",
- -12.58021068572998
- ],
- [
- "fibro",
- -12.580347061157227
- ],
- [
- "interpreted",
- -12.580550193786621
- ],
- [
- "▁genauso",
- -12.58056354522705
- ],
- [
- "▁basil",
- -12.580601692199707
- ],
- [
- "▁Angst",
- -12.580697059631348
- ],
- [
- "rzte",
- -12.580933570861816
- ],
- [
- "Master",
- -12.58112907409668
- ],
- [
- "▁french",
- -12.581324577331543
- ],
- [
- "▁Duration",
- -12.581343650817871
- ],
- [
- "HM",
- -12.581402778625488
- ],
- [
- "▁Bert",
- -12.581518173217773
- ],
- [
- "▁1963",
- -12.581534385681152
- ],
- [
- "▁warrior",
- -12.581604957580566
- ],
- [
- "2007",
- -12.581696510314941
- ],
- [
- "▁recycle",
- -12.581722259521484
- ],
- [
- "▁fertiliz",
- -12.581808090209961
- ],
- [
- "▁hatch",
- -12.581809997558594
- ],
- [
- "ISH",
- -12.581811904907227
- ],
- [
- "luft",
- -12.582321166992188
- ],
- [
- "▁crying",
- -12.582452774047852
- ],
- [
- "▁activist",
- -12.5824613571167
- ],
- [
- "schränkt",
- -12.582500457763672
- ],
- [
- "▁diff",
- -12.582500457763672
- ],
- [
- "▁Demand",
- -12.58262825012207
- ],
- [
- "▁transported",
- -12.582669258117676
- ],
- [
- "▁Remodel",
- -12.582686424255371
- ],
- [
- "▁Etats",
- -12.582704544067383
- ],
- [
- "ANI",
- -12.582777976989746
- ],
- [
- "▁spéciale",
- -12.582804679870605
- ],
- [
- "▁Konzert",
- -12.582805633544922
- ],
- [
- "▁Bedürfnisse",
- -12.58281135559082
- ],
- [
- "▁overlooked",
- -12.582864761352539
- ],
- [
- "▁cutter",
- -12.582974433898926
- ],
- [
- "klär",
- -12.58311939239502
- ],
- [
- "▁Materialien",
- -12.583135604858398
- ],
- [
- "▁gewisse",
- -12.583388328552246
- ],
- [
- "bull",
- -12.583499908447266
- ],
- [
- "Good",
- -12.583513259887695
- ],
- [
- "Gig",
- -12.583616256713867
- ],
- [
- "Logic",
- -12.583736419677734
- ],
- [
- "▁Schlaf",
- -12.583970069885254
- ],
- [
- "▁Yankee",
- -12.583996772766113
- ],
- [
- "▁Batman",
- -12.584020614624023
- ],
- [
- "▁funcție",
- -12.584166526794434
- ],
- [
- "▁partenariat",
- -12.584294319152832
- ],
- [
- "▁Antrag",
- -12.584348678588867
- ],
- [
- "▁Pill",
- -12.584519386291504
- ],
- [
- "▁tram",
- -12.584637641906738
- ],
- [
- "▁Minor",
- -12.58465576171875
- ],
- [
- "pertaining",
- -12.584678649902344
- ],
- [
- "▁apropiere",
- -12.584843635559082
- ],
- [
- "▁Barack",
- -12.584965705871582
- ],
- [
- "schön",
- -12.585174560546875
- ],
- [
- "▁Sandy",
- -12.585182189941406
- ],
- [
- "kilometre",
- -12.585192680358887
- ],
- [
- "▁diy",
- -12.585234642028809
- ],
- [
- "▁1966",
- -12.585453987121582
- ],
- [
- "gelassen",
- -12.585485458374023
- ],
- [
- "▁Trial",
- -12.585592269897461
- ],
- [
- "▁Bauer",
- -12.585603713989258
- ],
- [
- "▁assumption",
- -12.585648536682129
- ],
- [
- "birth",
- -12.585668563842773
- ],
- [
- "rechnen",
- -12.585861206054688
- ],
- [
- "▁meci",
- -12.585867881774902
- ],
- [
- "▁gloss",
- -12.585906982421875
- ],
- [
- "▁sewer",
- -12.58593463897705
- ],
- [
- "▁Stimme",
- -12.585955619812012
- ],
- [
- "▁Fortune",
- -12.585967063903809
- ],
- [
- "▁Lösungen",
- -12.586007118225098
- ],
- [
- "▁impresi",
- -12.586074829101562
- ],
- [
- "schlaf",
- -12.586089134216309
- ],
- [
- "prüfung",
- -12.586097717285156
- ],
- [
- "▁instalat",
- -12.586198806762695
- ],
- [
- "▁picturesque",
- -12.586233139038086
- ],
- [
- "vait",
- -12.586240768432617
- ],
- [
- "8.1",
- -12.58629035949707
- ],
- [
- "▁călători",
- -12.586392402648926
- ],
- [
- "▁dix",
- -12.586400032043457
- ],
- [
- "▁furnished",
- -12.586411476135254
- ],
- [
- "▁dolari",
- -12.586445808410645
- ],
- [
- "▁regener",
- -12.586562156677246
- ],
- [
- "▁astazi",
- -12.586621284484863
- ],
- [
- "▁Sprach",
- -12.586750030517578
- ],
- [
- "delà",
- -12.586846351623535
- ],
- [
- "avec",
- -12.58694076538086
- ],
- [
- "▁Buddhist",
- -12.586990356445312
- ],
- [
- "▁alphabet",
- -12.586990356445312
- ],
- [
- "▁berichtet",
- -12.587201118469238
- ],
- [
- "ideally",
- -12.587209701538086
- ],
- [
- "▁annuel",
- -12.587421417236328
- ],
- [
- "▁laughing",
- -12.587532997131348
- ],
- [
- "▁Zustand",
- -12.587639808654785
- ],
- [
- "cini",
- -12.587692260742188
- ],
- [
- "solid",
- -12.587724685668945
- ],
- [
- "▁Broker",
- -12.587868690490723
- ],
- [
- "▁developmental",
- -12.5879545211792
- ],
- [
- "▁Summary",
- -12.588191032409668
- ],
- [
- "▁Trinity",
- -12.58819580078125
- ],
- [
- "▁sucre",
- -12.58821964263916
- ],
- [
- "▁sandal",
- -12.588231086730957
- ],
- [
- "PEN",
- -12.588274955749512
- ],
- [
- "gewinn",
- -12.588486671447754
- ],
- [
- "olé",
- -12.588555335998535
- ],
- [
- "matric",
- -12.58865737915039
- ],
- [
- "xton",
- -12.588695526123047
- ],
- [
- "werten",
- -12.588740348815918
- ],
- [
- "▁Dust",
- -12.588765144348145
- ],
- [
- "▁Journey",
- -12.588791847229004
- ],
- [
- "▁Rush",
- -12.588793754577637
- ],
- [
- "▁NCAA",
- -12.588839530944824
- ],
- [
- "▁allgemeine",
- -12.588926315307617
- ],
- [
- "▁Universe",
- -12.589007377624512
- ],
- [
- "▁connais",
- -12.589099884033203
- ],
- [
- "▁quantité",
- -12.58912467956543
- ],
- [
- "▁Kab",
- -12.589150428771973
- ],
- [
- "▁purse",
- -12.589150428771973
- ],
- [
- "Health",
- -12.589210510253906
- ],
- [
- "▁apărut",
- -12.589288711547852
- ],
- [
- "▁bypass",
- -12.589313507080078
- ],
- [
- "pronounced",
- -12.58936595916748
- ],
- [
- "▁magnitude",
- -12.589393615722656
- ],
- [
- "▁Walmart",
- -12.589394569396973
- ],
- [
- "ède",
- -12.589409828186035
- ],
- [
- "▁serum",
- -12.589590072631836
- ],
- [
- "▁baseline",
- -12.589765548706055
- ],
- [
- "STER",
- -12.589932441711426
- ],
- [
- "▁ONLY",
- -12.590052604675293
- ],
- [
- "▁individuell",
- -12.590086936950684
- ],
- [
- "▁Ghi",
- -12.590139389038086
- ],
- [
- "▁Ruby",
- -12.59020709991455
- ],
- [
- "▁Chal",
- -12.590241432189941
- ],
- [
- "▁Vier",
- -12.590261459350586
- ],
- [
- "5.0",
- -12.5903902053833
- ],
- [
- "▁fog",
- -12.590519905090332
- ],
- [
- "esel",
- -12.590557098388672
- ],
- [
- "▁Python",
- -12.590598106384277
- ],
- [
- "▁urmează",
- -12.590608596801758
- ],
- [
- "▁trustworthy",
- -12.590639114379883
- ],
- [
- "hört",
- -12.590729713439941
- ],
- [
- "▁tâche",
- -12.59078311920166
- ],
- [
- "Patri",
- -12.590799331665039
- ],
- [
- "▁grind",
- -12.590928077697754
- ],
- [
- "▁Raven",
- -12.590934753417969
- ],
- [
- "▁poursuiv",
- -12.590951919555664
- ],
- [
- "▁simpli",
- -12.591140747070312
- ],
- [
- "▁echo",
- -12.591165542602539
- ],
- [
- "▁Attention",
- -12.591313362121582
- ],
- [
- "Against",
- -12.591402053833008
- ],
- [
- "GET",
- -12.59148120880127
- ],
- [
- "▁turistic",
- -12.591535568237305
- ],
- [
- "▁tenure",
- -12.59158992767334
- ],
- [
- "▁alimentaire",
- -12.591651916503906
- ],
- [
- "Who",
- -12.59172248840332
- ],
- [
- "▁ändern",
- -12.591729164123535
- ],
- [
- "▁rebound",
- -12.591778755187988
- ],
- [
- "grenze",
- -12.591849327087402
- ],
- [
- "▁Fame",
- -12.592093467712402
- ],
- [
- "▁Kick",
- -12.592215538024902
- ],
- [
- "▁Detail",
- -12.59228801727295
- ],
- [
- "▁Push",
- -12.592308044433594
- ],
- [
- "production",
- -12.592430114746094
- ],
- [
- "▁Candidates",
- -12.59244441986084
- ],
- [
- "▁reușit",
- -12.592484474182129
- ],
- [
- "istischen",
- -12.592525482177734
- ],
- [
- "lassung",
- -12.592649459838867
- ],
- [
- "▁Hann",
- -12.592713356018066
- ],
- [
- "espère",
- -12.592965126037598
- ],
- [
- "▁vergessen",
- -12.593008041381836
- ],
- [
- "▁smiling",
- -12.593010902404785
- ],
- [
- "▁devotion",
- -12.593016624450684
- ],
- [
- "▁pastry",
- -12.593071937561035
- ],
- [
- "Add",
- -12.593390464782715
- ],
- [
- "▁authorization",
- -12.593494415283203
- ],
- [
- "▁Suisse",
- -12.593568801879883
- ],
- [
- "▁Berkeley",
- -12.593611717224121
- ],
- [
- "▁Guild",
- -12.593660354614258
- ],
- [
- "▁choir",
- -12.593748092651367
- ],
- [
- "learning",
- -12.593802452087402
- ],
- [
- "▁Tanz",
- -12.593894004821777
- ],
- [
- "mardi",
- -12.594076156616211
- ],
- [
- "▁rezultatele",
- -12.594191551208496
- ],
- [
- "▁earrings",
- -12.594218254089355
- ],
- [
- "▁turbine",
- -12.594223976135254
- ],
- [
- "▁jeudi",
- -12.594284057617188
- ],
- [
- "terapie",
- -12.594576835632324
- ],
- [
- "regain",
- -12.59461498260498
- ],
- [
- "SET",
- -12.594643592834473
- ],
- [
- "▁Hände",
- -12.594681739807129
- ],
- [
- "▁Globe",
- -12.594683647155762
- ],
- [
- "frag",
- -12.594775199890137
- ],
- [
- "▁Treasury",
- -12.594820976257324
- ],
- [
- "▁hazardous",
- -12.594820976257324
- ],
- [
- "▁Fahrt",
- -12.594928741455078
- ],
- [
- "▁fulfilled",
- -12.594966888427734
- ],
- [
- "▁manga",
- -12.594987869262695
- ],
- [
- "▁composé",
- -12.595067977905273
- ],
- [
- "▁ABS",
- -12.595132827758789
- ],
- [
- "▁preced",
- -12.595197677612305
- ],
- [
- "▁beauté",
- -12.595233917236328
- ],
- [
- "▁interessant",
- -12.59526252746582
- ],
- [
- "▁lieber",
- -12.595324516296387
- ],
- [
- "▁Kö",
- -12.595378875732422
- ],
- [
- "EMS",
- -12.595410346984863
- ],
- [
- "FER",
- -12.595413208007812
- ],
- [
- "▁eure",
- -12.595427513122559
- ],
- [
- "▁plumber",
- -12.595427513122559
- ],
- [
- "Love",
- -12.595463752746582
- ],
- [
- "▁Marcus",
- -12.595635414123535
- ],
- [
- "▁registry",
- -12.595637321472168
- ],
- [
- "▁uncle",
- -12.595696449279785
- ],
- [
- "▁neuf",
- -12.595728874206543
- ],
- [
- "▁Fläche",
- -12.59575080871582
- ],
- [
- "▁restaur",
- -12.595815658569336
- ],
- [
- "▁noticeable",
- -12.595833778381348
- ],
- [
- "▁riches",
- -12.595871925354004
- ],
- [
- "occupy",
- -12.596031188964844
- ],
- [
- "▁hurricane",
- -12.596031188964844
- ],
- [
- "▁gespeichert",
- -12.596033096313477
- ],
- [
- "▁Bordeaux",
- -12.596039772033691
- ],
- [
- "▁Maj",
- -12.59637451171875
- ],
- [
- "Applied",
- -12.596439361572266
- ],
- [
- "▁compter",
- -12.596575736999512
- ],
- [
- "impact",
- -12.59663200378418
- ],
- [
- "▁Improve",
- -12.596758842468262
- ],
- [
- "▁Calif",
- -12.596832275390625
- ],
- [
- "▁desfășur",
- -12.596939086914062
- ],
- [
- "▁packaged",
- -12.597001075744629
- ],
- [
- "180",
- -12.59703540802002
- ],
- [
- "devenu",
- -12.597042083740234
- ],
- [
- "▁Battery",
- -12.597243309020996
- ],
- [
- "▁objection",
- -12.597254753112793
- ],
- [
- "▁anual",
- -12.597305297851562
- ],
- [
- "▁Landscape",
- -12.59731674194336
- ],
- [
- "IQ",
- -12.597403526306152
- ],
- [
- "grès",
- -12.597586631774902
- ],
- [
- "▁witnesses",
- -12.597750663757324
- ],
- [
- "enţial",
- -12.597764015197754
- ],
- [
- "▁plateau",
- -12.597779273986816
- ],
- [
- "▁bilete",
- -12.59783935546875
- ],
- [
- "▁Bronze",
- -12.59786605834961
- ],
- [
- "▁Kiss",
- -12.597946166992188
- ],
- [
- "▁Serge",
- -12.598093032836914
- ],
- [
- "atomic",
- -12.598145484924316
- ],
- [
- "▁renovated",
- -12.59817886352539
- ],
- [
- "player",
- -12.598212242126465
- ],
- [
- "▁dirig",
- -12.598291397094727
- ],
- [
- "▁Îm",
- -12.598296165466309
- ],
- [
- "▁plimb",
- -12.59843635559082
- ],
- [
- "▁ambassador",
- -12.598455429077148
- ],
- [
- "▁apropiat",
- -12.598455429077148
- ],
- [
- "▁adaug",
- -12.598602294921875
- ],
- [
- "ogenic",
- -12.59872055053711
- ],
- [
- "kämpfe",
- -12.598779678344727
- ],
- [
- "▁Hillary",
- -12.598907470703125
- ],
- [
- "yak",
- -12.598942756652832
- ],
- [
- "General",
- -12.59925365447998
- ],
- [
- "▁Zugang",
- -12.599400520324707
- ],
- [
- "▁fertil",
- -12.599457740783691
- ],
- [
- "incat",
- -12.599536895751953
- ],
- [
- "assessing",
- -12.599587440490723
- ],
- [
- "▁Cincinnati",
- -12.59967041015625
- ],
- [
- "▁convincing",
- -12.599685668945312
- ],
- [
- "sadly",
- -12.59974479675293
- ],
- [
- "kunde",
- -12.599801063537598
- ],
- [
- "ambul",
- -12.599913597106934
- ],
- [
- "▁familii",
- -12.599974632263184
- ],
- [
- "juri",
- -12.60007095336914
- ],
- [
- "ionen",
- -12.600102424621582
- ],
- [
- "▁Wirtschaft",
- -12.600130081176758
- ],
- [
- "contract",
- -12.600135803222656
- ],
- [
- "punem",
- -12.600151062011719
- ],
- [
- "handlung",
- -12.600394248962402
- ],
- [
- "▁fournir",
- -12.600455284118652
- ],
- [
- "▁Ambi",
- -12.600663185119629
- ],
- [
- "▁Isaac",
- -12.600663185119629
- ],
- [
- "▁praying",
- -12.6007719039917
- ],
- [
- "▁Italien",
- -12.600848197937012
- ],
- [
- "233",
- -12.600850105285645
- ],
- [
- "spawn",
- -12.600913047790527
- ],
- [
- "▁legii",
- -12.60092544555664
- ],
- [
- "▁zuvor",
- -12.601018905639648
- ],
- [
- "▁comune",
- -12.601030349731445
- ],
- [
- "official",
- -12.601165771484375
- ],
- [
- "144",
- -12.601290702819824
- ],
- [
- "izeaza",
- -12.601329803466797
- ],
- [
- "▁Keller",
- -12.601372718811035
- ],
- [
- "ORE",
- -12.601378440856934
- ],
- [
- "122",
- -12.601485252380371
- ],
- [
- "incurred",
- -12.60150146484375
- ],
- [
- "CHA",
- -12.601579666137695
- ],
- [
- "▁Herzen",
- -12.601590156555176
- ],
- [
- "▁reasoning",
- -12.6016263961792
- ],
- [
- "affaire",
- -12.601849555969238
- ],
- [
- "ooth",
- -12.601890563964844
- ],
- [
- "155",
- -12.601998329162598
- ],
- [
- "▁invented",
- -12.602113723754883
- ],
- [
- "▁Comun",
- -12.602140426635742
- ],
- [
- "zähl",
- -12.602179527282715
- ],
- [
- "geliefert",
- -12.602212905883789
- ],
- [
- "explorer",
- -12.602213859558105
- ],
- [
- "nect",
- -12.602326393127441
- ],
- [
- "▁mercredi",
- -12.602408409118652
- ],
- [
- "▁volonté",
- -12.602408409118652
- ],
- [
- "easy",
- -12.602453231811523
- ],
- [
- "▁feat",
- -12.602490425109863
- ],
- [
- "rented",
- -12.602580070495605
- ],
- [
- "▁converter",
- -12.602592468261719
- ],
- [
- "Verhältnis",
- -12.602713584899902
- ],
- [
- "▁Iceland",
- -12.602792739868164
- ],
- [
- "▁pretul",
- -12.602933883666992
- ],
- [
- "▁Vorstellung",
- -12.602960586547852
- ],
- [
- "▁hydrogen",
- -12.603096008300781
- ],
- [
- "▁pouvai",
- -12.603097915649414
- ],
- [
- "▁dawn",
- -12.603153228759766
- ],
- [
- "▁Georg",
- -12.603269577026367
- ],
- [
- "▁cautious",
- -12.603367805480957
- ],
- [
- "▁Pattern",
- -12.603464126586914
- ],
- [
- "▁Ox",
- -12.603602409362793
- ],
- [
- "▁decizie",
- -12.603676795959473
- ],
- [
- "REC",
- -12.603889465332031
- ],
- [
- "▁Mortgage",
- -12.60393238067627
- ],
- [
- "attributed",
- -12.603973388671875
- ],
- [
- "floor",
- -12.603992462158203
- ],
- [
- "▁Wichtig",
- -12.604207992553711
- ],
- [
- "enseignant",
- -12.604265213012695
- ],
- [
- "▁civilization",
- -12.604302406311035
- ],
- [
- "▁dispozitie",
- -12.60450553894043
- ],
- [
- "▁geographic",
- -12.604543685913086
- ],
- [
- "▁Kun",
- -12.604607582092285
- ],
- [
- "LIN",
- -12.604679107666016
- ],
- [
- "▁auzit",
- -12.604707717895508
- ],
- [
- "except",
- -12.604761123657227
- ],
- [
- "▁superbe",
- -12.604904174804688
- ],
- [
- "▁installé",
- -12.605000495910645
- ],
- [
- "▁Peninsula",
- -12.605154037475586
- ],
- [
- "▁norme",
- -12.605164527893066
- ],
- [
- "elul",
- -12.60517406463623
- ],
- [
- "▁Experten",
- -12.605256080627441
- ],
- [
- "expression",
- -12.605295181274414
- ],
- [
- "Christ",
- -12.605320930480957
- ],
- [
- "▁Fuel",
- -12.605369567871094
- ],
- [
- "▁muffin",
- -12.605485916137695
- ],
- [
- "▁lecteur",
- -12.605521202087402
- ],
- [
- "▁gifted",
- -12.605589866638184
- ],
- [
- "▁Japon",
- -12.605602264404297
- ],
- [
- "▁SSD",
- -12.605644226074219
- ],
- [
- "▁Calgary",
- -12.605765342712402
- ],
- [
- "▁hooked",
- -12.605876922607422
- ],
- [
- "▁Joan",
- -12.605896949768066
- ],
- [
- "▁tangible",
- -12.606083869934082
- ],
- [
- "FW",
- -12.606225967407227
- ],
- [
- "olli",
- -12.6062593460083
- ],
- [
- "▁Platinum",
- -12.606376647949219
- ],
- [
- "▁miniature",
- -12.606392860412598
- ],
- [
- "▁lump",
- -12.606608390808105
- ],
- [
- "ologische",
- -12.60689926147461
- ],
- [
- "▁Istanbul",
- -12.606987953186035
- ],
- [
- "▁Compar",
- -12.607060432434082
- ],
- [
- "tropic",
- -12.607256889343262
- ],
- [
- "KING",
- -12.607279777526855
- ],
- [
- "Präsident",
- -12.607297897338867
- ],
- [
- "▁fotografii",
- -12.607303619384766
- ],
- [
- "hoped",
- -12.607451438903809
- ],
- [
- "▁pâte",
- -12.607601165771484
- ],
- [
- "▁mercy",
- -12.60760498046875
- ],
- [
- "▁quiz",
- -12.607619285583496
- ],
- [
- "demonstrating",
- -12.607678413391113
- ],
- [
- "▁douce",
- -12.607832908630371
- ],
- [
- "▁Vest",
- -12.607841491699219
- ],
- [
- "▁Harvey",
- -12.6082181930542
- ],
- [
- "▁breit",
- -12.608227729797363
- ],
- [
- "▁Bereits",
- -12.608291625976562
- ],
- [
- "▁breakthrough",
- -12.608316421508789
- ],
- [
- "▁masterpiece",
- -12.608320236206055
- ],
- [
- "▁Chester",
- -12.60838794708252
- ],
- [
- "▁indiqué",
- -12.608451843261719
- ],
- [
- "hook",
- -12.60857105255127
- ],
- [
- "statutory",
- -12.608596801757812
- ],
- [
- "▁Direkt",
- -12.608617782592773
- ],
- [
- "▁specs",
- -12.608708381652832
- ],
- [
- "Drive",
- -12.608725547790527
- ],
- [
- "▁survivors",
- -12.608826637268066
- ],
- [
- "▁jackpot",
- -12.608840942382812
- ],
- [
- "▁garder",
- -12.608872413635254
- ],
- [
- "▁Geburtstag",
- -12.60887336730957
- ],
- [
- "145",
- -12.608963966369629
- ],
- [
- "▁Clay",
- -12.609028816223145
- ],
- [
- "▁WHO",
- -12.60906982421875
- ],
- [
- "▁Ellen",
- -12.609393119812012
- ],
- [
- "▁bonheur",
- -12.609440803527832
- ],
- [
- "▁hazards",
- -12.609440803527832
- ],
- [
- "▁Kaiser",
- -12.609488487243652
- ],
- [
- "▁tightly",
- -12.609506607055664
- ],
- [
- "Universitatea",
- -12.609529495239258
- ],
- [
- "▁rinse",
- -12.609533309936523
- ],
- [
- "▁passant",
- -12.609640121459961
- ],
- [
- "▁sânge",
- -12.609832763671875
- ],
- [
- "▁peuple",
- -12.60983657836914
- ],
- [
- "jungen",
- -12.609975814819336
- ],
- [
- "▁inappropriate",
- -12.610054969787598
- ],
- [
- "▁mitigate",
- -12.610066413879395
- ],
- [
- "MID",
- -12.610221862792969
- ],
- [
- "▁telecom",
- -12.610297203063965
- ],
- [
- "▁plaj",
- -12.610316276550293
- ],
- [
- "▁presupune",
- -12.610361099243164
- ],
- [
- "acco",
- -12.61038875579834
- ],
- [
- "expressing",
- -12.610654830932617
- ],
- [
- "▁Symphony",
- -12.61066722869873
- ],
- [
- "temperatur",
- -12.610710144042969
- ],
- [
- "▁activităţi",
- -12.610800743103027
- ],
- [
- "▁amended",
- -12.610847473144531
- ],
- [
- "▁rehab",
- -12.610909461975098
- ],
- [
- "▁sportiv",
- -12.611004829406738
- ],
- [
- "hotel",
- -12.611031532287598
- ],
- [
- "branche",
- -12.61103630065918
- ],
- [
- "▁Noch",
- -12.611079216003418
- ],
- [
- "▁1961",
- -12.611238479614258
- ],
- [
- "release",
- -12.611359596252441
- ],
- [
- "blaze",
- -12.611381530761719
- ],
- [
- "Adv",
- -12.61139965057373
- ],
- [
- "Line",
- -12.611671447753906
- ],
- [
- "▁financiare",
- -12.61184310913086
- ],
- [
- "▁chauffage",
- -12.611919403076172
- ],
- [
- "мо",
- -12.61192512512207
- ],
- [
- "schuhe",
- -12.612035751342773
- ],
- [
- "blé",
- -12.612040519714355
- ],
- [
- "▁Echo",
- -12.612468719482422
- ],
- [
- "▁remarks",
- -12.61253547668457
- ],
- [
- "scriu",
- -12.612629890441895
- ],
- [
- "Vir",
- -12.612701416015625
- ],
- [
- "War",
- -12.61271858215332
- ],
- [
- "atifs",
- -12.613006591796875
- ],
- [
- "RING",
- -12.613082885742188
- ],
- [
- "▁Instruction",
- -12.613150596618652
- ],
- [
- "▁verlassen",
- -12.613155364990234
- ],
- [
- "▁ergänz",
- -12.613234519958496
- ],
- [
- "▁Emil",
- -12.613248825073242
- ],
- [
- "▁empire",
- -12.613263130187988
- ],
- [
- "▁Einkauf",
- -12.613306999206543
- ],
- [
- "utigen",
- -12.613329887390137
- ],
- [
- "▁audition",
- -12.613390922546387
- ],
- [
- "travelled",
- -12.61347484588623
- ],
- [
- "ло",
- -12.613579750061035
- ],
- [
- "▁infinite",
- -12.613720893859863
- ],
- [
- "▁Lieblings",
- -12.613749504089355
- ],
- [
- "▁vân",
- -12.613754272460938
- ],
- [
- "▁spinning",
- -12.613778114318848
- ],
- [
- "converting",
- -12.614031791687012
- ],
- [
- "▁uncertain",
- -12.61415958404541
- ],
- [
- "restul",
- -12.614168167114258
- ],
- [
- "▁colourful",
- -12.61420726776123
- ],
- [
- "▁accountant",
- -12.614338874816895
- ],
- [
- "bourg",
- -12.614532470703125
- ],
- [
- "▁structuri",
- -12.614538192749023
- ],
- [
- "▁Booking",
- -12.61465835571289
- ],
- [
- "intéresse",
- -12.614683151245117
- ],
- [
- "▁coordinated",
- -12.614753723144531
- ],
- [
- "▁precaution",
- -12.61497688293457
- ],
- [
- "▁Cheese",
- -12.615015983581543
- ],
- [
- "▁surfing",
- -12.615192413330078
- ],
- [
- "▁souffr",
- -12.61524486541748
- ],
- [
- "▁Menu",
- -12.615447998046875
- ],
- [
- "▁arthritis",
- -12.615593910217285
- ],
- [
- "▁headphones",
- -12.615601539611816
- ],
- [
- "▁upgrading",
- -12.615602493286133
- ],
- [
- "▁apparel",
- -12.615653038024902
- ],
- [
- "▁Haushalt",
- -12.61572551727295
- ],
- [
- "▁Personally",
- -12.615815162658691
- ],
- [
- "▁insane",
- -12.615950584411621
- ],
- [
- "▁fonduri",
- -12.616083145141602
- ],
- [
- "▁entier",
- -12.616239547729492
- ],
- [
- "▁Herbst",
- -12.616264343261719
- ],
- [
- "▁cyclist",
- -12.616331100463867
- ],
- [
- "▁filmmaker",
- -12.616741180419922
- ],
- [
- "▁Portuguese",
- -12.616829872131348
- ],
- [
- "▁nominee",
- -12.616851806640625
- ],
- [
- "▁Yang",
- -12.616857528686523
- ],
- [
- "▁slate",
- -12.616943359375
- ],
- [
- "▁entièrement",
- -12.616974830627441
- ],
- [
- "▁Umgang",
- -12.617049217224121
- ],
- [
- "shifted",
- -12.617135047912598
- ],
- [
- "▁défaut",
- -12.617138862609863
- ],
- [
- "heiz",
- -12.617246627807617
- ],
- [
- "▁Seal",
- -12.617379188537598
- ],
- [
- "▁servicing",
- -12.617451667785645
- ],
- [
- "marketing",
- -12.617562294006348
- ],
- [
- "▁demandé",
- -12.617755889892578
- ],
- [
- "TING",
- -12.617841720581055
- ],
- [
- "▁modifier",
- -12.617907524108887
- ],
- [
- "lysis",
- -12.617966651916504
- ],
- [
- "▁suplimentare",
- -12.618117332458496
- ],
- [
- "OTHER",
- -12.618359565734863
- ],
- [
- "Graph",
- -12.618379592895508
- ],
- [
- "▁coincide",
- -12.618448257446289
- ],
- [
- "governed",
- -12.618598937988281
- ],
- [
- "▁locking",
- -12.618638038635254
- ],
- [
- "▁Properties",
- -12.618685722351074
- ],
- [
- "▁Panama",
- -12.61876392364502
- ],
- [
- "▁Coupe",
- -12.618846893310547
- ],
- [
- "songwriter",
- -12.618978500366211
- ],
- [
- "exhibited",
- -12.618988990783691
- ],
- [
- "▁semnificativ",
- -12.618995666503906
- ],
- [
- "▁purchaser",
- -12.619004249572754
- ],
- [
- "▁puff",
- -12.619097709655762
- ],
- [
- "Back",
- -12.619105339050293
- ],
- [
- "fragt",
- -12.61919116973877
- ],
- [
- "▁deputy",
- -12.619362831115723
- ],
- [
- "▁revien",
- -12.619556427001953
- ],
- [
- "▁Christine",
- -12.619558334350586
- ],
- [
- "▁Cities",
- -12.619573593139648
- ],
- [
- "▁Charakter",
- -12.61961555480957
- ],
- [
- "atteindre",
- -12.619625091552734
- ],
- [
- "▁fou",
- -12.619635581970215
- ],
- [
- "▁obligatoire",
- -12.619643211364746
- ],
- [
- "INA",
- -12.619791030883789
- ],
- [
- "etc",
- -12.6198148727417
- ],
- [
- "▁newborn",
- -12.620091438293457
- ],
- [
- "▁explicitly",
- -12.620116233825684
- ],
- [
- "simplest",
- -12.620203018188477
- ],
- [
- "▁plateforme",
- -12.62023639678955
- ],
- [
- "ordinate",
- -12.620291709899902
- ],
- [
- "displaying",
- -12.620346069335938
- ],
- [
- "▁messy",
- -12.620464324951172
- ],
- [
- "gespielt",
- -12.620466232299805
- ],
- [
- "▁electron",
- -12.62061882019043
- ],
- [
- "▁Dreh",
- -12.620796203613281
- ],
- [
- "▁ambient",
- -12.620976448059082
- ],
- [
- "340",
- -12.620979309082031
- ],
- [
- "▁directive",
- -12.62109375
- ],
- [
- "▁Vall",
- -12.621152877807617
- ],
- [
- "ookie",
- -12.621206283569336
- ],
- [
- "▁wasted",
- -12.621304512023926
- ],
- [
- "CIS",
- -12.621367454528809
- ],
- [
- "lude",
- -12.621378898620605
- ],
- [
- "rach",
- -12.621472358703613
- ],
- [
- "▁gasest",
- -12.62150764465332
- ],
- [
- "▁miros",
- -12.62150764465332
- ],
- [
- "transforming",
- -12.621536254882812
- ],
- [
- "▁Milwaukee",
- -12.621787071228027
- ],
- [
- "▁uncommon",
- -12.621789932250977
- ],
- [
- "▁tableau",
- -12.621841430664062
- ],
- [
- "geräte",
- -12.621952056884766
- ],
- [
- "ophil",
- -12.622139930725098
- ],
- [
- "▁Jeep",
- -12.62220287322998
- ],
- [
- "▁wreck",
- -12.622422218322754
- ],
- [
- "LAND",
- -12.622434616088867
- ],
- [
- "attach",
- -12.622566223144531
- ],
- [
- "▁Panther",
- -12.622634887695312
- ],
- [
- "9:30",
- -12.622777938842773
- ],
- [
- "▁induce",
- -12.622974395751953
- ],
- [
- "▁privest",
- -12.623006820678711
- ],
- [
- "Ident",
- -12.623047828674316
- ],
- [
- "▁illnesses",
- -12.623076438903809
- ],
- [
- "▁inhabitants",
- -12.623138427734375
- ],
- [
- "▁fehlen",
- -12.623357772827148
- ],
- [
- "obtenu",
- -12.623391151428223
- ],
- [
- "▁gegründet",
- -12.623655319213867
- ],
- [
- "ARA",
- -12.623711585998535
- ],
- [
- "3-2",
- -12.623835563659668
- ],
- [
- "▁milliards",
- -12.623968124389648
- ],
- [
- "▁Bü",
- -12.624001502990723
- ],
- [
- "▁angegeben",
- -12.624102592468262
- ],
- [
- "TUR",
- -12.624143600463867
- ],
- [
- "▁arab",
- -12.624166488647461
- ],
- [
- "▁Scientist",
- -12.624275207519531
- ],
- [
- "▁minut",
- -12.624394416809082
- ],
- [
- "▁beast",
- -12.624481201171875
- ],
- [
- "▁accidentally",
- -12.624573707580566
- ],
- [
- "WN",
- -12.624579429626465
- ],
- [
- "▁Ralph",
- -12.624588966369629
- ],
- [
- "hängt",
- -12.62462329864502
- ],
- [
- "▁Erik",
- -12.624639511108398
- ],
- [
- "▁différent",
- -12.624711990356445
- ],
- [
- "▁conformitate",
- -12.624842643737793
- ],
- [
- "thriving",
- -12.624900817871094
- ],
- [
- "▁Piece",
- -12.625123023986816
- ],
- [
- "plasm",
- -12.625152587890625
- ],
- [
- "▁erwarten",
- -12.62520980834961
- ],
- [
- "owski",
- -12.62523365020752
- ],
- [
- "prayed",
- -12.625293731689453
- ],
- [
- "three",
- -12.625542640686035
- ],
- [
- "▁soundtrack",
- -12.625651359558105
- ],
- [
- "guru",
- -12.625709533691406
- ],
- [
- "▁cracked",
- -12.625710487365723
- ],
- [
- "▁adh",
- -12.625823020935059
- ],
- [
- "▁maître",
- -12.625834465026855
- ],
- [
- "▁Oberfläche",
- -12.62585735321045
- ],
- [
- "▁crab",
- -12.625886917114258
- ],
- [
- "▁Foster",
- -12.625944137573242
- ],
- [
- "▁gemütlich",
- -12.626145362854004
- ],
- [
- "SIC",
- -12.626226425170898
- ],
- [
- "ième",
- -12.626298904418945
- ],
- [
- "▁Few",
- -12.626330375671387
- ],
- [
- "gérer",
- -12.626360893249512
- ],
- [
- "2006",
- -12.626456260681152
- ],
- [
- "cool",
- -12.626498222351074
- ],
- [
- "▁dispune",
- -12.626523971557617
- ],
- [
- "recevoir",
- -12.626577377319336
- ],
- [
- "▁Bak",
- -12.626585960388184
- ],
- [
- "▁steer",
- -12.62659740447998
- ],
- [
- "ICS",
- -12.626733779907227
- ],
- [
- "▁Brett",
- -12.626733779907227
- ],
- [
- "▁downside",
- -12.626751899719238
- ],
- [
- "▁residency",
- -12.62678050994873
- ],
- [
- "important",
- -12.626991271972656
- ],
- [
- "ubb",
- -12.627073287963867
- ],
- [
- "mony",
- -12.627259254455566
- ],
- [
- "▁leasing",
- -12.627341270446777
- ],
- [
- "▁Gir",
- -12.62735366821289
- ],
- [
- "▁Biology",
- -12.627364158630371
- ],
- [
- "▁Colin",
- -12.627463340759277
- ],
- [
- "▁complicat",
- -12.627775192260742
- ],
- [
- "▁regroup",
- -12.627899169921875
- ],
- [
- "SPA",
- -12.627950668334961
- ],
- [
- "▁Veranstaltungen",
- -12.627986907958984
- ],
- [
- "convicted",
- -12.628019332885742
- ],
- [
- "▁Wonderful",
- -12.628636360168457
- ],
- [
- "züge",
- -12.628799438476562
- ],
- [
- "yton",
- -12.628813743591309
- ],
- [
- "EMENT",
- -12.628887176513672
- ],
- [
- "▁bent",
- -12.62893009185791
- ],
- [
- "heben",
- -12.629231452941895
- ],
- [
- "▁Sustainable",
- -12.62926959991455
- ],
- [
- "▁Newcastle",
- -12.629276275634766
- ],
- [
- "mother",
- -12.629507064819336
- ],
- [
- "▁eighth",
- -12.629572868347168
- ],
- [
- "▁atmosfer",
- -12.629582405090332
- ],
- [
- "expériment",
- -12.629584312438965
- ],
- [
- "▁Interest",
- -12.629608154296875
- ],
- [
- "▁successes",
- -12.62964153289795
- ],
- [
- "▁preschool",
- -12.629802703857422
- ],
- [
- "▁Funeral",
- -12.629900932312012
- ],
- [
- "blast",
- -12.630083084106445
- ],
- [
- "▁dimensiuni",
- -12.630125999450684
- ],
- [
- "▁Dow",
- -12.630167007446289
- ],
- [
- "▁pulp",
- -12.63022518157959
- ],
- [
- "▁Heather",
- -12.630356788635254
- ],
- [
- "▁erstellen",
- -12.63044261932373
- ],
- [
- "locating",
- -12.630470275878906
- ],
- [
- "direct",
- -12.630475997924805
- ],
- [
- "▁tractor",
- -12.630494117736816
- ],
- [
- "growing",
- -12.630576133728027
- ],
- [
- "▁inventor",
- -12.630587577819824
- ],
- [
- "ASA",
- -12.63060188293457
- ],
- [
- "insta",
- -12.630732536315918
- ],
- [
- "yana",
- -12.63082504272461
- ],
- [
- "▁squash",
- -12.630839347839355
- ],
- [
- "▁Basketball",
- -12.630853652954102
- ],
- [
- "AMA",
- -12.631041526794434
- ],
- [
- "insel",
- -12.631093978881836
- ],
- [
- "▁Fisch",
- -12.631138801574707
- ],
- [
- "▁metaphor",
- -12.631221771240234
- ],
- [
- "TES",
- -12.631304740905762
- ],
- [
- "▁conduce",
- -12.631308555603027
- ],
- [
- "stehende",
- -12.631370544433594
- ],
- [
- "▁FAQ",
- -12.631475448608398
- ],
- [
- "▁bezeichnet",
- -12.631658554077148
- ],
- [
- "wendung",
- -12.631706237792969
- ],
- [
- "▁Commonwealth",
- -12.631776809692383
- ],
- [
- "▁bait",
- -12.631793975830078
- ],
- [
- "▁Umsetzung",
- -12.631834030151367
- ],
- [
- "▁Equi",
- -12.632063865661621
- ],
- [
- "▁validity",
- -12.632109642028809
- ],
- [
- "Off",
- -12.63222599029541
- ],
- [
- "▁produsul",
- -12.632314682006836
- ],
- [
- "▁sensory",
- -12.632363319396973
- ],
- [
- "▁Imperial",
- -12.632501602172852
- ],
- [
- "▁Dick",
- -12.632542610168457
- ],
- [
- "kampf",
- -12.632596969604492
- ],
- [
- "▁Arzt",
- -12.63267993927002
- ],
- [
- "▁Reason",
- -12.63267993927002
- ],
- [
- "ITS",
- -12.63270092010498
- ],
- [
- "URL",
- -12.632720947265625
- ],
- [
- "demonstrates",
- -12.632725715637207
- ],
- [
- "▁dépend",
- -12.632753372192383
- ],
- [
- "NAS",
- -12.632970809936523
- ],
- [
- "▁funcți",
- -12.633031845092773
- ],
- [
- "▁vulnerability",
- -12.633085250854492
- ],
- [
- "2.7",
- -12.633143424987793
- ],
- [
- "layered",
- -12.633152961730957
- ],
- [
- "escence",
- -12.633206367492676
- ],
- [
- "▁République",
- -12.633346557617188
- ],
- [
- "▁Lust",
- -12.633377075195312
- ],
- [
- "▁sute",
- -12.633381843566895
- ],
- [
- "▁autonomous",
- -12.633661270141602
- ],
- [
- "Biserica",
- -12.633662223815918
- ],
- [
- "▁Chuck",
- -12.633749961853027
- ],
- [
- "▁protéger",
- -12.6339750289917
- ],
- [
- "rrell",
- -12.634061813354492
- ],
- [
- "▁Schaden",
- -12.634062767028809
- ],
- [
- "prennent",
- -12.634100914001465
- ],
- [
- "maß",
- -12.6343412399292
- ],
- [
- "OV",
- -12.634453773498535
- ],
- [
- "▁Wake",
- -12.63450813293457
- ],
- [
- "produire",
- -12.634635925292969
- ],
- [
- "▁Elder",
- -12.634749412536621
- ],
- [
- "Max",
- -12.634839057922363
- ],
- [
- "▁Chemistry",
- -12.634918212890625
- ],
- [
- "▁gourmet",
- -12.634918212890625
- ],
- [
- "erri",
- -12.634967803955078
- ],
- [
- "ени",
- -12.635085105895996
- ],
- [
- "▁Gru",
- -12.635147094726562
- ],
- [
- "▁vorbit",
- -12.635408401489258
- ],
- [
- "▁precede",
- -12.635455131530762
- ],
- [
- "▁randomly",
- -12.635489463806152
- ],
- [
- "▁efecte",
- -12.63563060760498
- ],
- [
- "▁calatori",
- -12.635668754577637
- ],
- [
- "▁Poor",
- -12.635765075683594
- ],
- [
- "List",
- -12.635781288146973
- ],
- [
- "▁regula",
- -12.635964393615723
- ],
- [
- "▁organisé",
- -12.636028289794922
- ],
- [
- "Div",
- -12.636076927185059
- ],
- [
- "▁volunteering",
- -12.636423110961914
- ],
- [
- "▁horr",
- -12.636449813842773
- ],
- [
- "9.99",
- -12.636487007141113
- ],
- [
- "▁UPS",
- -12.636513710021973
- ],
- [
- "▁englez",
- -12.63652229309082
- ],
- [
- "▁Eden",
- -12.636523246765137
- ],
- [
- "GG",
- -12.63659954071045
- ],
- [
- "▁typing",
- -12.63664722442627
- ],
- [
- "Likewise",
- -12.636700630187988
- ],
- [
- "▁stabilize",
- -12.636737823486328
- ],
- [
- "physio",
- -12.636747360229492
- ],
- [
- "ми",
- -12.636785507202148
- ],
- [
- "▁protagonist",
- -12.636808395385742
- ],
- [
- "▁velvet",
- -12.636812210083008
- ],
- [
- "schrank",
- -12.636861801147461
- ],
- [
- "▁Allah",
- -12.63693618774414
- ],
- [
- "▁forefront",
- -12.636968612670898
- ],
- [
- "▁salaries",
- -12.637001037597656
- ],
- [
- "▁prediction",
- -12.637041091918945
- ],
- [
- "▁Advent",
- -12.637182235717773
- ],
- [
- "politik",
- -12.637280464172363
- ],
- [
- "▁Heimat",
- -12.637350082397461
- ],
- [
- "ducted",
- -12.637380599975586
- ],
- [
- "ASH",
- -12.637386322021484
- ],
- [
- "▁Mold",
- -12.637773513793945
- ],
- [
- "▁publi",
- -12.63784122467041
- ],
- [
- "▁Vil",
- -12.637892723083496
- ],
- [
- "▁stu",
- -12.637925148010254
- ],
- [
- "INTE",
- -12.638032913208008
- ],
- [
- "▁fave",
- -12.638151168823242
- ],
- [
- "▁grounded",
- -12.638175010681152
- ],
- [
- "▁Anything",
- -12.638184547424316
- ],
- [
- "vik",
- -12.638481140136719
- ],
- [
- "Bank",
- -12.63853645324707
- ],
- [
- "deserved",
- -12.638550758361816
- ],
- [
- "machen",
- -12.63874626159668
- ],
- [
- "▁rugged",
- -12.638751029968262
- ],
- [
- "▁Nest",
- -12.638901710510254
- ],
- [
- "▁profund",
- -12.639043807983398
- ],
- [
- "▁quantum",
- -12.639067649841309
- ],
- [
- "▁funcționa",
- -12.639118194580078
- ],
- [
- "klu",
- -12.639158248901367
- ],
- [
- "▁consulter",
- -12.63917350769043
- ],
- [
- "MED",
- -12.639286994934082
- ],
- [
- "▁câştig",
- -12.639334678649902
- ],
- [
- "▁săptămâni",
- -12.639334678649902
- ],
- [
- "questioned",
- -12.639517784118652
- ],
- [
- "▁Trop",
- -12.639530181884766
- ],
- [
- "▁convo",
- -12.639533042907715
- ],
- [
- "▁sparkling",
- -12.639533996582031
- ],
- [
- "▁specialise",
- -12.639566421508789
- ],
- [
- "▁pancake",
- -12.639726638793945
- ],
- [
- "habitude",
- -12.639727592468262
- ],
- [
- "phal",
- -12.640009880065918
- ],
- [
- "▁Roche",
- -12.640158653259277
- ],
- [
- "▁personalities",
- -12.640250205993652
- ],
- [
- "▁Venice",
- -12.640308380126953
- ],
- [
- "▁comerciale",
- -12.640379905700684
- ],
- [
- "▁wounded",
- -12.64075756072998
- ],
- [
- "▁oraş",
- -12.640864372253418
- ],
- [
- "▁Pepper",
- -12.641044616699219
- ],
- [
- "▁Tourist",
- -12.641094207763672
- ],
- [
- "▁Mull",
- -12.64116382598877
- ],
- [
- "▁dignity",
- -12.641234397888184
- ],
- [
- "▁Fixed",
- -12.641291618347168
- ],
- [
- "çant",
- -12.64130687713623
- ],
- [
- "▁spectator",
- -12.641402244567871
- ],
- [
- "▁somn",
- -12.641685485839844
- ],
- [
- "▁ständig",
- -12.641820907592773
- ],
- [
- "▁resilience",
- -12.641866683959961
- ],
- [
- "▁Malta",
- -12.642251014709473
- ],
- [
- "▁problemele",
- -12.642253875732422
- ],
- [
- "▁Martha",
- -12.642254829406738
- ],
- [
- "▁extern",
- -12.642267227172852
- ],
- [
- "embre",
- -12.642379760742188
- ],
- [
- "▁médical",
- -12.642526626586914
- ],
- [
- "fordern",
- -12.64256477355957
- ],
- [
- "nji",
- -12.642592430114746
- ],
- [
- "▁aboard",
- -12.642740249633789
- ],
- [
- "▁sidewalk",
- -12.642759323120117
- ],
- [
- "WIN",
- -12.642775535583496
- ],
- [
- "▁Bobby",
- -12.642842292785645
- ],
- [
- "▁umfangreiche",
- -12.642876625061035
- ],
- [
- "leid",
- -12.64292049407959
- ],
- [
- "▁compens",
- -12.642967224121094
- ],
- [
- "▁juge",
- -12.64299488067627
- ],
- [
- "gerufen",
- -12.64311408996582
- ],
- [
- "▁médicament",
- -12.643135070800781
- ],
- [
- "▁1918",
- -12.643155097961426
- ],
- [
- "▁blanche",
- -12.643163681030273
- ],
- [
- "▁pleasing",
- -12.643220901489258
- ],
- [
- "▁propria",
- -12.643471717834473
- ],
- [
- "ergebnisse",
- -12.643503189086914
- ],
- [
- "▁retrouv",
- -12.643571853637695
- ],
- [
- "urteil",
- -12.643592834472656
- ],
- [
- "▁Draft",
- -12.64361572265625
- ],
- [
- "▁concluzi",
- -12.643671035766602
- ],
- [
- "centralized",
- -12.643789291381836
- ],
- [
- "▁Hannah",
- -12.64382266998291
- ],
- [
- "grija",
- -12.64392375946045
- ],
- [
- "▁Exercise",
- -12.643972396850586
- ],
- [
- "RAL",
- -12.644001960754395
- ],
- [
- "creme",
- -12.64408016204834
- ],
- [
- "High",
- -12.644126892089844
- ],
- [
- "clude",
- -12.644131660461426
- ],
- [
- "Considering",
- -12.644208908081055
- ],
- [
- "▁Guarantee",
- -12.644404411315918
- ],
- [
- "▁cuptor",
- -12.644436836242676
- ],
- [
- "ivität",
- -12.64468002319336
- ],
- [
- "▁Southwest",
- -12.644882202148438
- ],
- [
- "▁vivant",
- -12.644890785217285
- ],
- [
- "Your",
- -12.64498519897461
- ],
- [
- "▁Stunde",
- -12.645003318786621
- ],
- [
- "▁Ethernet",
- -12.645040512084961
- ],
- [
- "angebote",
- -12.645078659057617
- ],
- [
- "▁Sage",
- -12.645271301269531
- ],
- [
- "▁Boeing",
- -12.645295143127441
- ],
- [
- "▁$300",
- -12.645381927490234
- ],
- [
- "2-4",
- -12.64546012878418
- ],
- [
- "▁nécessit",
- -12.645516395568848
- ],
- [
- "▁ferment",
- -12.645599365234375
- ],
- [
- "▁Anmeldung",
- -12.64567756652832
- ],
- [
- "▁exhausted",
- -12.645758628845215
- ],
- [
- "▁Schloss",
- -12.645772933959961
- ],
- [
- "▁Replacement",
- -12.645859718322754
- ],
- [
- "▁Aussi",
- -12.645933151245117
- ],
- [
- "jection",
- -12.646127700805664
- ],
- [
- "978",
- -12.64615535736084
- ],
- [
- "▁siège",
- -12.646258354187012
- ],
- [
- "crest",
- -12.646310806274414
- ],
- [
- "▁jumatate",
- -12.646312713623047
- ],
- [
- "effizient",
- -12.646317481994629
- ],
- [
- "▁colaborare",
- -12.6464262008667
- ],
- [
- "HQ",
- -12.646615028381348
- ],
- [
- "130",
- -12.646695137023926
- ],
- [
- "culaire",
- -12.646907806396484
- ],
- [
- "▁Jamaica",
- -12.646952629089355
- ],
- [
- "▁cardboard",
- -12.64731216430664
- ],
- [
- "▁technische",
- -12.64731502532959
- ],
- [
- "▁cereri",
- -12.647507667541504
- ],
- [
- "▁contradict",
- -12.647570610046387
- ],
- [
- "▁irrigation",
- -12.647586822509766
- ],
- [
- "Nume",
- -12.64765739440918
- ],
- [
- "▁Bier",
- -12.647714614868164
- ],
- [
- "▁livrare",
- -12.647903442382812
- ],
- [
- "▁reservoir",
- -12.647906303405762
- ],
- [
- "vâr",
- -12.648130416870117
- ],
- [
- "▁galben",
- -12.648213386535645
- ],
- [
- "▁Geneva",
- -12.648303985595703
- ],
- [
- "▁lightning",
- -12.648418426513672
- ],
- [
- "wished",
- -12.64842414855957
- ],
- [
- "▁Blind",
- -12.648481369018555
- ],
- [
- "Interested",
- -12.648499488830566
- ],
- [
- "▁Primări",
- -12.648627281188965
- ],
- [
- "anthropo",
- -12.648954391479492
- ],
- [
- "▁Transaction",
- -12.648961067199707
- ],
- [
- "▁marcat",
- -12.648971557617188
- ],
- [
- "▁gelegen",
- -12.649077415466309
- ],
- [
- "▁contemporain",
- -12.649182319641113
- ],
- [
- "▁politică",
- -12.649182319641113
- ],
- [
- "▁1948",
- -12.64928150177002
- ],
- [
- "▁Mik",
- -12.649287223815918
- ],
- [
- "▁preţ",
- -12.649310111999512
- ],
- [
- "moor",
- -12.649312973022461
- ],
- [
- "ANN",
- -12.649432182312012
- ],
- [
- "▁constructive",
- -12.649454116821289
- ],
- [
- "konzept",
- -12.649502754211426
- ],
- [
- "▁entendu",
- -12.649511337280273
- ],
- [
- "▁Genesis",
- -12.649541854858398
- ],
- [
- "arzt",
- -12.649581909179688
- ],
- [
- "▁Allgemein",
- -12.64970874786377
- ],
- [
- "▁Derby",
- -12.649725914001465
- ],
- [
- "Class",
- -12.649762153625488
- ],
- [
- "▁$12",
- -12.649770736694336
- ],
- [
- "▁Tube",
- -12.6498441696167
- ],
- [
- "▁Contribu",
- -12.649847030639648
- ],
- [
- "▁HAVE",
- -12.649860382080078
- ],
- [
- "▁oxide",
- -12.64986515045166
- ],
- [
- "▁producator",
- -12.649941444396973
- ],
- [
- "▁Bench",
- -12.650132179260254
- ],
- [
- "▁comprehend",
- -12.650139808654785
- ],
- [
- "▁Damen",
- -12.650494575500488
- ],
- [
- "▁Garant",
- -12.65056037902832
- ],
- [
- "▁disappointing",
- -12.650614738464355
- ],
- [
- "▁réalisée",
- -12.650693893432617
- ],
- [
- "▁comportement",
- -12.65072250366211
- ],
- [
- "▁clash",
- -12.650753021240234
- ],
- [
- "▁curry",
- -12.65076732635498
- ],
- [
- "▁Lebanon",
- -12.65078067779541
- ],
- [
- "▁Romaniei",
- -12.650784492492676
- ],
- [
- "▁reprise",
- -12.650840759277344
- ],
- [
- "▁perceive",
- -12.65095329284668
- ],
- [
- "▁weaknesses",
- -12.65101146697998
- ],
- [
- "▁aminti",
- -12.651057243347168
- ],
- [
- "▁Concern",
- -12.651103973388672
- ],
- [
- "shadow",
- -12.651310920715332
- ],
- [
- "▁basin",
- -12.651311874389648
- ],
- [
- "moral",
- -12.652063369750977
- ],
- [
- "▁Hughes",
- -12.652101516723633
- ],
- [
- "Psych",
- -12.652266502380371
- ],
- [
- "▁Lieferung",
- -12.65227222442627
- ],
- [
- "▁serrurier",
- -12.652379035949707
- ],
- [
- "ussi",
- -12.652386665344238
- ],
- [
- "▁timpului",
- -12.6524658203125
- ],
- [
- "üm",
- -12.652629852294922
- ],
- [
- "▁Vladimir",
- -12.652701377868652
- ],
- [
- "▁Jag",
- -12.65279483795166
- ],
- [
- "▁verific",
- -12.652849197387695
- ],
- [
- "▁Pru",
- -12.652894020080566
- ],
- [
- "▁Laut",
- -12.653285026550293
- ],
- [
- "ITA",
- -12.653287887573242
- ],
- [
- "usually",
- -12.653294563293457
- ],
- [
- "▁carrière",
- -12.65341854095459
- ],
- [
- "▁extracted",
- -12.653663635253906
- ],
- [
- "kultur",
- -12.653679847717285
- ],
- [
- "öpfe",
- -12.653932571411133
- ],
- [
- "▁rejection",
- -12.654016494750977
- ],
- [
- "▁Hydr",
- -12.654062271118164
- ],
- [
- "▁informaţii",
- -12.654098510742188
- ],
- [
- "▁tolerate",
- -12.654122352600098
- ],
- [
- "▁cinéma",
- -12.654302597045898
- ],
- [
- "traumatic",
- -12.654305458068848
- ],
- [
- "produkt",
- -12.654450416564941
- ],
- [
- "▁Contest",
- -12.654560089111328
- ],
- [
- "lotte",
- -12.654570579528809
- ],
- [
- "▁Pension",
- -12.65461254119873
- ],
- [
- "▁Advertising",
- -12.654623985290527
- ],
- [
- "▁payout",
- -12.654772758483887
- ],
- [
- "▁Amanda",
- -12.65481185913086
- ],
- [
- "Elect",
- -12.65485668182373
- ],
- [
- "▁interiorul",
- -12.654996871948242
- ],
- [
- "stay",
- -12.655348777770996
- ],
- [
- "▁feminine",
- -12.655352592468262
- ],
- [
- "▁întâmplă",
- -12.655437469482422
- ],
- [
- "▁insult",
- -12.65562915802002
- ],
- [
- "▁chocolat",
- -12.65567398071289
- ],
- [
- "▁noroc",
- -12.655750274658203
- ],
- [
- "▁centr",
- -12.655781745910645
- ],
- [
- "▁Bühne",
- -12.655858039855957
- ],
- [
- "mighty",
- -12.6558837890625
- ],
- [
- "▁Buddha",
- -12.655908584594727
- ],
- [
- "▁parental",
- -12.655997276306152
- ],
- [
- "storm",
- -12.656451225280762
- ],
- [
- "recurring",
- -12.6565523147583
- ],
- [
- "▁luxe",
- -12.656588554382324
- ],
- [
- "niște",
- -12.656728744506836
- ],
- [
- "cuit",
- -12.656839370727539
- ],
- [
- "▁ausgewählt",
- -12.656880378723145
- ],
- [
- "▁dumb",
- -12.657047271728516
- ],
- [
- "IPS",
- -12.657127380371094
- ],
- [
- "▁Thir",
- -12.65717887878418
- ],
- [
- "Definitely",
- -12.657195091247559
- ],
- [
- "▁hilarious",
- -12.657195091247559
- ],
- [
- "▁rainbow",
- -12.657231330871582
- ],
- [
- "▁Bravo",
- -12.657251358032227
- ],
- [
- "▁entstanden",
- -12.657259941101074
- ],
- [
- "itorul",
- -12.657269477844238
- ],
- [
- "▁prosperity",
- -12.657299041748047
- ],
- [
- "▁Bord",
- -12.657336235046387
- ],
- [
- "▁familiei",
- -12.657363891601562
- ],
- [
- "▁scade",
- -12.657425880432129
- ],
- [
- "wöhn",
- -12.657426834106445
- ],
- [
- "▁ingrediente",
- -12.65743637084961
- ],
- [
- "RAD",
- -12.657441139221191
- ],
- [
- "▁tăi",
- -12.657472610473633
- ],
- [
- "bours",
- -12.65747356414795
- ],
- [
- "ATI",
- -12.657540321350098
- ],
- [
- "▁Blake",
- -12.65761661529541
- ],
- [
- "▁Implement",
- -12.657712936401367
- ],
- [
- "▁Beziehung",
- -12.657838821411133
- ],
- [
- "finanz",
- -12.657953262329102
- ],
- [
- "intestin",
- -12.658513069152832
- ],
- [
- "ließen",
- -12.658535957336426
- ],
- [
- "▁récent",
- -12.658594131469727
- ],
- [
- "▁laminate",
- -12.658692359924316
- ],
- [
- "▁Hör",
- -12.65876579284668
- ],
- [
- "▁personnalisé",
- -12.658804893493652
- ],
- [
- "edel",
- -12.65890121459961
- ],
- [
- "▁advertisement",
- -12.658902168273926
- ],
- [
- "▁pinterest",
- -12.658921241760254
- ],
- [
- "185",
- -12.659058570861816
- ],
- [
- "identité",
- -12.65938949584961
- ],
- [
- "▁Brick",
- -12.659408569335938
- ],
- [
- "Glu",
- -12.65941047668457
- ],
- [
- "▁attendant",
- -12.659571647644043
- ],
- [
- "▁Flip",
- -12.659614562988281
- ],
- [
- "attracting",
- -12.659662246704102
- ],
- [
- "functional",
- -12.659703254699707
- ],
- [
- "conceived",
- -12.659772872924805
- ],
- [
- "▁summarize",
- -12.659773826599121
- ],
- [
- "adjusting",
- -12.659809112548828
- ],
- [
- "CAL",
- -12.660041809082031
- ],
- [
- "▁Operating",
- -12.660076141357422
- ],
- [
- "zzi",
- -12.66008472442627
- ],
- [
- "▁Rover",
- -12.6603364944458
- ],
- [
- "▁versuchen",
- -12.6603364944458
- ],
- [
- "▁articulate",
- -12.660600662231445
- ],
- [
- "▁privé",
- -12.660614013671875
- ],
- [
- "▁consequent",
- -12.660663604736328
- ],
- [
- "EAT",
- -12.660690307617188
- ],
- [
- "▁Marsh",
- -12.660696983337402
- ],
- [
- "▁teenage",
- -12.660717964172363
- ],
- [
- "▁Renaissance",
- -12.660740852355957
- ],
- [
- "▁furnizor",
- -12.660883903503418
- ],
- [
- "▁Desert",
- -12.660894393920898
- ],
- [
- "unicipiului",
- -12.66104793548584
- ],
- [
- "▁ulterior",
- -12.661065101623535
- ],
- [
- "▁Ebene",
- -12.661280632019043
- ],
- [
- "▁monkey",
- -12.661351203918457
- ],
- [
- "▁enclosed",
- -12.661389350891113
- ],
- [
- "▁profitability",
- -12.66139030456543
- ],
- [
- "▁Evolution",
- -12.661628723144531
- ],
- [
- "▁adica",
- -12.661670684814453
- ],
- [
- "▁Structure",
- -12.661709785461426
- ],
- [
- "▁primer",
- -12.661761283874512
- ],
- [
- "▁asigură",
- -12.662001609802246
- ],
- [
- "▁Manuel",
- -12.662220001220703
- ],
- [
- "polita",
- -12.662267684936523
- ],
- [
- "▁Portable",
- -12.662286758422852
- ],
- [
- "fecți",
- -12.662413597106934
- ],
- [
- "▁obscure",
- -12.662424087524414
- ],
- [
- "▁Atlas",
- -12.662436485290527
- ],
- [
- "fährt",
- -12.662679672241211
- ],
- [
- "▁clinician",
- -12.662837982177734
- ],
- [
- "fuhr",
- -12.66310977935791
- ],
- [
- "▁matériaux",
- -12.663113594055176
- ],
- [
- "écrire",
- -12.663142204284668
- ],
- [
- "▁suspicious",
- -12.6632080078125
- ],
- [
- "pore",
- -12.663263320922852
- ],
- [
- "▁outdated",
- -12.663304328918457
- ],
- [
- "▁Mädchen",
- -12.663328170776367
- ],
- [
- "rcis",
- -12.663420677185059
- ],
- [
- "nicht",
- -12.663463592529297
- ],
- [
- "holding",
- -12.663561820983887
- ],
- [
- "▁heavier",
- -12.66366195678711
- ],
- [
- "ezimal",
- -12.663960456848145
- ],
- [
- "▁silicone",
- -12.66397476196289
- ],
- [
- "punerea",
- -12.664108276367188
- ],
- [
- "▁begeistert",
- -12.664237976074219
- ],
- [
- "2004",
- -12.664283752441406
- ],
- [
- "▁predecessor",
- -12.664299011230469
- ],
- [
- "▁overlap",
- -12.664369583129883
- ],
- [
- "▁digging",
- -12.664376258850098
- ],
- [
- "▁Upgrade",
- -12.664407730102539
- ],
- [
- "▁interesat",
- -12.664543151855469
- ],
- [
- "▁spinach",
- -12.66456127166748
- ],
- [
- "▁politice",
- -12.664626121520996
- ],
- [
- "activity",
- -12.664831161499023
- ],
- [
- "▁Rating",
- -12.66484546661377
- ],
- [
- "▁serrure",
- -12.664846420288086
- ],
- [
- "▁tânăr",
- -12.664959907531738
- ],
- [
- "▁WHAT",
- -12.664970397949219
- ],
- [
- "▁railroad",
- -12.664989471435547
- ],
- [
- "▁avid",
- -12.665081024169922
- ],
- [
- "▁Sophie",
- -12.665084838867188
- ],
- [
- "preferably",
- -12.665173530578613
- ],
- [
- "▁Fourth",
- -12.665431022644043
- ],
- [
- "kommenden",
- -12.665452003479004
- ],
- [
- "QUI",
- -12.665478706359863
- ],
- [
- "lohn",
- -12.665505409240723
- ],
- [
- "▁promis",
- -12.665611267089844
- ],
- [
- "▁shrub",
- -12.665621757507324
- ],
- [
- "nummer",
- -12.66579818725586
- ],
- [
- "▁dinosaur",
- -12.665922164916992
- ],
- [
- "▁Lucky",
- -12.665937423706055
- ],
- [
- "relates",
- -12.666038513183594
- ],
- [
- "▁FROM",
- -12.666049003601074
- ],
- [
- "▁racism",
- -12.66610336303711
- ],
- [
- "physical",
- -12.66611385345459
- ],
- [
- "alcoholic",
- -12.666119575500488
- ],
- [
- "▁reef",
- -12.666126251220703
- ],
- [
- "▁centru",
- -12.66618824005127
- ],
- [
- "université",
- -12.66622257232666
- ],
- [
- "▁visage",
- -12.666232109069824
- ],
- [
- "ităţile",
- -12.666253089904785
- ],
- [
- "▁Gent",
- -12.666345596313477
- ],
- [
- "zugeben",
- -12.66643238067627
- ],
- [
- "▁paradise",
- -12.66646957397461
- ],
- [
- "fuel",
- -12.666505813598633
- ],
- [
- "ografie",
- -12.666568756103516
- ],
- [
- "▁TIP",
- -12.666730880737305
- ],
- [
- "schreibung",
- -12.66683292388916
- ],
- [
- "▁bark",
- -12.666840553283691
- ],
- [
- "accéder",
- -12.666895866394043
- ],
- [
- "▁contamination",
- -12.666937828063965
- ],
- [
- "▁swelling",
- -12.666950225830078
- ],
- [
- "▁optimistic",
- -12.666974067687988
- ],
- [
- "▁differential",
- -12.667015075683594
- ],
- [
- "▁Arad",
- -12.667030334472656
- ],
- [
- "toxins",
- -12.667075157165527
- ],
- [
- "▁übernehmen",
- -12.667091369628906
- ],
- [
- "▁anime",
- -12.667143821716309
- ],
- [
- "actuel",
- -12.667462348937988
- ],
- [
- "▁bientôt",
- -12.667525291442871
- ],
- [
- "▁Patio",
- -12.66761302947998
- ],
- [
- "▁baisse",
- -12.667630195617676
- ],
- [
- "▁sprint",
- -12.66773796081543
- ],
- [
- "▁bilden",
- -12.66811466217041
- ],
- [
- "VAL",
- -12.668132781982422
- ],
- [
- "▁réflexion",
- -12.668220520019531
- ],
- [
- "hopping",
- -12.668242454528809
- ],
- [
- "genesis",
- -12.66834545135498
- ],
- [
- "achtet",
- -12.668435096740723
- ],
- [
- "▁chinois",
- -12.668525695800781
- ],
- [
- "▁dezvoltat",
- -12.668795585632324
- ],
- [
- "arguably",
- -12.66884708404541
- ],
- [
- "▁Protocol",
- -12.66884708404541
- ],
- [
- "▁Sterling",
- -12.668862342834473
- ],
- [
- "▁Cave",
- -12.668975830078125
- ],
- [
- "▁Condo",
- -12.66921615600586
- ],
- [
- "▁erhöht",
- -12.669235229492188
- ],
- [
- "typische",
- -12.669416427612305
- ],
- [
- "merged",
- -12.669439315795898
- ],
- [
- "▁accumulation",
- -12.669560432434082
- ],
- [
- "sicherlich",
- -12.669569969177246
- ],
- [
- "kW",
- -12.669620513916016
- ],
- [
- "▁schriftlich",
- -12.669757843017578
- ],
- [
- "▁Vorteile",
- -12.669918060302734
- ],
- [
- "▁Northeast",
- -12.669922828674316
- ],
- [
- "frunt",
- -12.669941902160645
- ],
- [
- "istik",
- -12.670003890991211
- ],
- [
- "erster",
- -12.670035362243652
- ],
- [
- "▁Assistance",
- -12.670150756835938
- ],
- [
- "▁Fantastic",
- -12.670150756835938
- ],
- [
- "▁bărbat",
- -12.670150756835938
- ],
- [
- "▁Grinding",
- -12.670151710510254
- ],
- [
- "▁diffusion",
- -12.670161247253418
- ],
- [
- "▁vreun",
- -12.670331954956055
- ],
- [
- "▁Butler",
- -12.670342445373535
- ],
- [
- "▁Cherry",
- -12.670352935791016
- ],
- [
- "▁visualization",
- -12.670540809631348
- ],
- [
- "Paket",
- -12.670572280883789
- ],
- [
- "blin",
- -12.670619010925293
- ],
- [
- "▁cadou",
- -12.670705795288086
- ],
- [
- "▁Celtic",
- -12.670754432678223
- ],
- [
- "alegerea",
- -12.670894622802734
- ],
- [
- "▁Dorf",
- -12.671035766601562
- ],
- [
- "▁Noir",
- -12.671185493469238
- ],
- [
- "payment",
- -12.67126750946045
- ],
- [
- "▁Caroline",
- -12.671334266662598
- ],
- [
- "▁Berry",
- -12.671359062194824
- ],
- [
- "▁professeur",
- -12.67147445678711
- ],
- [
- "▁gratuitement",
- -12.671503067016602
- ],
- [
- "Suntem",
- -12.671523094177246
- ],
- [
- "IAN",
- -12.671738624572754
- ],
- [
- "▁fingerprint",
- -12.671780586242676
- ],
- [
- "▁controversy",
- -12.671781539916992
- ],
- [
- "▁fled",
- -12.671875
- ],
- [
- "▁Pokémon",
- -12.67210865020752
- ],
- [
- "excluding",
- -12.67211627960205
- ],
- [
- "▁friction",
- -12.672161102294922
- ],
- [
- "therapie",
- -12.67225456237793
- ],
- [
- "/7",
- -12.672398567199707
- ],
- [
- "▁designation",
- -12.672442436218262
- ],
- [
- "▁Belgia",
- -12.672704696655273
- ],
- [
- "▁cursuri",
- -12.672836303710938
- ],
- [
- "model",
- -12.672840118408203
- ],
- [
- "super",
- -12.672987937927246
- ],
- [
- "▁réduit",
- -12.673028945922852
- ],
- [
- "▁implicit",
- -12.673177719116211
- ],
- [
- "athlon",
- -12.673227310180664
- ],
- [
- "anniversaire",
- -12.673416137695312
- ],
- [
- "▁teaspoon",
- -12.673416137695312
- ],
- [
- "▁corrosion",
- -12.673418998718262
- ],
- [
- "▁überzeugt",
- -12.673418998718262
- ],
- [
- "▁flawless",
- -12.673421859741211
- ],
- [
- "▁vegetation",
- -12.673477172851562
- ],
- [
- "▁iarna",
- -12.673507690429688
- ],
- [
- "▁psychologist",
- -12.673591613769531
- ],
- [
- "hora",
- -12.673625946044922
- ],
- [
- "gab",
- -12.67387580871582
- ],
- [
- "▁soothing",
- -12.674084663391113
- ],
- [
- "▁stew",
- -12.674141883850098
- ],
- [
- "▁wager",
- -12.674172401428223
- ],
- [
- "▁tinere",
- -12.674322128295898
- ],
- [
- "▁baut",
- -12.674323081970215
- ],
- [
- "ecunoscut",
- -12.674352645874023
- ],
- [
- "gearbeitet",
- -12.674422264099121
- ],
- [
- "▁functi",
- -12.674480438232422
- ],
- [
- "▁dürfte",
- -12.674724578857422
- ],
- [
- "▁média",
- -12.674724578857422
- ],
- [
- "▁campanie",
- -12.67475700378418
- ],
- [
- "▁Distribu",
- -12.674817085266113
- ],
- [
- "▁mentoring",
- -12.674959182739258
- ],
- [
- "▁criz",
- -12.675020217895508
- ],
- [
- "findest",
- -12.675056457519531
- ],
- [
- "▁Vasile",
- -12.675058364868164
- ],
- [
- "▁compassionate",
- -12.675115585327148
- ],
- [
- "▁Tudor",
- -12.675140380859375
- ],
- [
- "▁flare",
- -12.675260543823242
- ],
- [
- "intreaga",
- -12.675283432006836
- ],
- [
- "gaz",
- -12.6753511428833
- ],
- [
- "▁porcelain",
- -12.675379753112793
- ],
- [
- "▁expedition",
- -12.675520896911621
- ],
- [
- "▁Azure",
- -12.67553997039795
- ],
- [
- "räumen",
- -12.675549507141113
- ],
- [
- "eiro",
- -12.675567626953125
- ],
- [
- "variante",
- -12.675804138183594
- ],
- [
- "▁Lucy",
- -12.675825119018555
- ],
- [
- "ôle",
- -12.675909996032715
- ],
- [
- "▁revenir",
- -12.67602252960205
- ],
- [
- "▁stained",
- -12.676040649414062
- ],
- [
- "▁falsch",
- -12.676166534423828
- ],
- [
- "▁incorpor",
- -12.676166534423828
- ],
- [
- "merkt",
- -12.676187515258789
- ],
- [
- "▁achten",
- -12.6762056350708
- ],
- [
- "▁hello",
- -12.676290512084961
- ],
- [
- "selben",
- -12.676422119140625
- ],
- [
- "ifty",
- -12.676525115966797
- ],
- [
- "▁Feier",
- -12.67653751373291
- ],
- [
- "1.000",
- -12.676557540893555
- ],
- [
- "▁Patch",
- -12.676583290100098
- ],
- [
- "peptid",
- -12.676846504211426
- ],
- [
- "▁recovering",
- -12.676898956298828
- ],
- [
- "Symptom",
- -12.677020072937012
- ],
- [
- "▁Auckland",
- -12.677020072937012
- ],
- [
- "▁retrieve",
- -12.677328109741211
- ],
- [
- "▁800-",
- -12.67733097076416
- ],
- [
- "schlagen",
- -12.677473068237305
- ],
- [
- "▁lourd",
- -12.677562713623047
- ],
- [
- "▁Purple",
- -12.67760181427002
- ],
- [
- "▁mittels",
- -12.677776336669922
- ],
- [
- "▁Düsseldorf",
- -12.67800521850586
- ],
- [
- "▁getaway",
- -12.67803955078125
- ],
- [
- "▁Cedar",
- -12.678061485290527
- ],
- [
- "▁Function",
- -12.678241729736328
- ],
- [
- "▁bizarre",
- -12.67833423614502
- ],
- [
- "4.3",
- -12.67849063873291
- ],
- [
- "▁fundraiser",
- -12.67866325378418
- ],
- [
- "geared",
- -12.678780555725098
- ],
- [
- "▁privée",
- -12.678781509399414
- ],
- [
- "▁Bonjour",
- -12.67894458770752
- ],
- [
- "Gar",
- -12.67895793914795
- ],
- [
- "▁Lloyd",
- -12.678991317749023
- ],
- [
- "▁Reinigung",
- -12.6790132522583
- ],
- [
- "▁Geno",
- -12.679155349731445
- ],
- [
- "▁Teilnahme",
- -12.67919635772705
- ],
- [
- "pian",
- -12.679362297058105
- ],
- [
- "sammelt",
- -12.679368019104004
- ],
- [
- "Pad",
- -12.679755210876465
- ],
- [
- "▁Troy",
- -12.67976188659668
- ],
- [
- "HG",
- -12.679943084716797
- ],
- [
- "▁klein",
- -12.679962158203125
- ],
- [
- "▁lettuce",
- -12.679978370666504
- ],
- [
- "▁patrimoine",
- -12.679978370666504
- ],
- [
- "▁cooker",
- -12.680055618286133
- ],
- [
- "▁accesibil",
- -12.680137634277344
- ],
- [
- "▁Spray",
- -12.680201530456543
- ],
- [
- "▁negotiation",
- -12.68047046661377
- ],
- [
- "▁jewel",
- -12.680480003356934
- ],
- [
- "▁dynamique",
- -12.68063735961914
- ],
- [
- "▁plastique",
- -12.68067741394043
- ],
- [
- "▁Limo",
- -12.680682182312012
- ],
- [
- "▁Funk",
- -12.68069076538086
- ],
- [
- "▁omului",
- -12.680702209472656
- ],
- [
- "title",
- -12.680768013000488
- ],
- [
- "curved",
- -12.68082046508789
- ],
- [
- "▁Lemon",
- -12.680851936340332
- ],
- [
- "förder",
- -12.680891990661621
- ],
- [
- "▁bewusst",
- -12.681112289428711
- ],
- [
- "inevitably",
- -12.681296348571777
- ],
- [
- "▁derivative",
- -12.681297302246094
- ],
- [
- "2:30",
- -12.681300163269043
- ],
- [
- "komfort",
- -12.681305885314941
- ],
- [
- "original",
- -12.681480407714844
- ],
- [
- "sanct",
- -12.681540489196777
- ],
- [
- "▁matte",
- -12.6815767288208
- ],
- [
- "empêche",
- -12.681628227233887
- ],
- [
- "▁jucător",
- -12.681634902954102
- ],
- [
- "▁attentive",
- -12.681640625
- ],
- [
- "▁recunoscut",
- -12.681674003601074
- ],
- [
- "▁Brush",
- -12.68167495727539
- ],
- [
- "▁consommateur",
- -12.68183422088623
- ],
- [
- "érence",
- -12.682063102722168
- ],
- [
- "typical",
- -12.682084083557129
- ],
- [
- "strategie",
- -12.682205200195312
- ],
- [
- "Effekt",
- -12.682290077209473
- ],
- [
- "▁Alcohol",
- -12.682292938232422
- ],
- [
- "oji",
- -12.682333946228027
- ],
- [
- "▁ruler",
- -12.682357788085938
- ],
- [
- "▁Norwegian",
- -12.682615280151367
- ],
- [
- "▁PlayStation",
- -12.682615280151367
- ],
- [
- "▁Hook",
- -12.682747840881348
- ],
- [
- "▁viewpoint",
- -12.682759284973145
- ],
- [
- "THER",
- -12.682841300964355
- ],
- [
- "420",
- -12.682888984680176
- ],
- [
- "Consequently",
- -12.68294620513916
- ],
- [
- "▁entschieden",
- -12.68294620513916
- ],
- [
- "▁Trag",
- -12.68295669555664
- ],
- [
- "▁Dawn",
- -12.683003425598145
- ],
- [
- "▁fuss",
- -12.68301773071289
- ],
- [
- "*****",
- -12.683040618896484
- ],
- [
- "▁Bullet",
- -12.683140754699707
- ],
- [
- "CAM",
- -12.683155059814453
- ],
- [
- "▁wonderfully",
- -12.683201789855957
- ],
- [
- "▁parlamentar",
- -12.683263778686523
- ],
- [
- "▁geometric",
- -12.683307647705078
- ],
- [
- "talement",
- -12.683321952819824
- ],
- [
- "/2018",
- -12.683577537536621
- ],
- [
- "▁oversight",
- -12.684036254882812
- ],
- [
- "kindly",
- -12.684080123901367
- ],
- [
- "therm",
- -12.684305191040039
- ],
- [
- "▁treaba",
- -12.6846342086792
- ],
- [
- "▁Trim",
- -12.68471908569336
- ],
- [
- "▁intelege",
- -12.684842109680176
- ],
- [
- "cino",
- -12.685032844543457
- ],
- [
- "▁straw",
- -12.68508529663086
- ],
- [
- "Tru",
- -12.685251235961914
- ],
- [
- "▁Television",
- -12.68530559539795
- ],
- [
- "Trader",
- -12.68538761138916
- ],
- [
- "▁Passion",
- -12.685394287109375
- ],
- [
- "rescu",
- -12.685622215270996
- ],
- [
- "Nicol",
- -12.685635566711426
- ],
- [
- "luj",
- -12.685805320739746
- ],
- [
- "▁mijloace",
- -12.685921669006348
- ],
- [
- "▁Removal",
- -12.685922622680664
- ],
- [
- "▁1944",
- -12.686034202575684
- ],
- [
- "▁shortcut",
- -12.686159133911133
- ],
- [
- "▁Fett",
- -12.686258316040039
- ],
- [
- "largement",
- -12.686371803283691
- ],
- [
- "▁altern",
- -12.686446189880371
- ],
- [
- "▁cleansing",
- -12.686562538146973
- ],
- [
- "▁Qatar",
- -12.686692237854004
- ],
- [
- "▁Ceci",
- -12.686826705932617
- ],
- [
- "▁weave",
- -12.686848640441895
- ],
- [
- "schmerz",
- -12.686878204345703
- ],
- [
- "▁dots",
- -12.686888694763184
- ],
- [
- "Télécharger",
- -12.68691635131836
- ],
- [
- "▁Conduct",
- -12.686944007873535
- ],
- [
- "bekannten",
- -12.687325477600098
- ],
- [
- "▁lungime",
- -12.687344551086426
- ],
- [
- "▁Ferrari",
- -12.687390327453613
- ],
- [
- "▁totusi",
- -12.687605857849121
- ],
- [
- "▁Anniversary",
- -12.687911033630371
- ],
- [
- "▁wilderness",
- -12.687911987304688
- ],
- [
- "▁Christoph",
- -12.687939643859863
- ],
- [
- "▁Nikon",
- -12.688112258911133
- ],
- [
- "▁Digi",
- -12.68818473815918
- ],
- [
- "▁Blumen",
- -12.688190460205078
- ],
- [
- "▁altul",
- -12.688249588012695
- ],
- [
- "▁Parish",
- -12.688321113586426
- ],
- [
- "czy",
- -12.688393592834473
- ],
- [
- "▁temper",
- -12.688401222229004
- ],
- [
- "▁Powder",
- -12.688576698303223
- ],
- [
- "▁Arnold",
- -12.688577651977539
- ],
- [
- "capacitatea",
- -12.688687324523926
- ],
- [
- "nderungen",
- -12.688787460327148
- ],
- [
- "▁utilization",
- -12.688859939575195
- ],
- [
- "99%",
- -12.688942909240723
- ],
- [
- "▁Fear",
- -12.689099311828613
- ],
- [
- "JE",
- -12.689165115356445
- ],
- [
- "▁Simpson",
- -12.689239501953125
- ],
- [
- "▁Podcast",
- -12.68924617767334
- ],
- [
- "▁Cardinal",
- -12.689290046691895
- ],
- [
- "▁Distribution",
- -12.689315795898438
- ],
- [
- "▁Drawing",
- -12.689373970031738
- ],
- [
- "▁tint",
- -12.689412117004395
- ],
- [
- "▁hran",
- -12.68945598602295
- ],
- [
- "▁Slide",
- -12.68960189819336
- ],
- [
- "▁Vertrauen",
- -12.689654350280762
- ],
- [
- "cloth",
- -12.68971061706543
- ],
- [
- "▁redirect",
- -12.689728736877441
- ],
- [
- "126",
- -12.689842224121094
- ],
- [
- "▁constituie",
- -12.68985652923584
- ],
- [
- "Mai",
- -12.690070152282715
- ],
- [
- "▁idol",
- -12.690088272094727
- ],
- [
- "▁tehnice",
- -12.690163612365723
- ],
- [
- "dip",
- -12.690393447875977
- ],
- [
- "▁soldier",
- -12.690400123596191
- ],
- [
- "▁Ordin",
- -12.690409660339355
- ],
- [
- "wobe",
- -12.69050407409668
- ],
- [
- "▁Brent",
- -12.69058895111084
- ],
- [
- "▁Sudan",
- -12.690597534179688
- ],
- [
- "6000",
- -12.690619468688965
- ],
- [
- "turism",
- -12.690689086914062
- ],
- [
- "▁Rocky",
- -12.690744400024414
- ],
- [
- "naming",
- -12.69092082977295
- ],
- [
- "▁entrepreneurial",
- -12.690925598144531
- ],
- [
- "hearted",
- -12.690962791442871
- ],
- [
- "ayne",
- -12.69097900390625
- ],
- [
- "▁hover",
- -12.691081047058105
- ],
- [
- "▁skull",
- -12.691279411315918
- ],
- [
- "▁tribal",
- -12.691407203674316
- ],
- [
- "▁crafting",
- -12.691543579101562
- ],
- [
- "bewertungen",
- -12.691569328308105
- ],
- [
- "▁decizii",
- -12.691625595092773
- ],
- [
- "obwohl",
- -12.691655158996582
- ],
- [
- "▁compromised",
- -12.691875457763672
- ],
- [
- "▁quelqu",
- -12.69195556640625
- ],
- [
- "▁Hilton",
- -12.692075729370117
- ],
- [
- "▁maturity",
- -12.692095756530762
- ],
- [
- "gelesen",
- -12.692100524902344
- ],
- [
- "▁harbor",
- -12.69210433959961
- ],
- [
- "▁maple",
- -12.692326545715332
- ],
- [
- "▁développ",
- -12.6924409866333
- ],
- [
- "▁Nobody",
- -12.692517280578613
- ],
- [
- "équipement",
- -12.69255542755127
- ],
- [
- "121",
- -12.69274616241455
- ],
- [
- "140",
- -12.692827224731445
- ],
- [
- "▁artistes",
- -12.692914962768555
- ],
- [
- "▁depune",
- -12.692941665649414
- ],
- [
- "▁erase",
- -12.693129539489746
- ],
- [
- "▁erzählt",
- -12.693197250366211
- ],
- [
- "▁Hyundai",
- -12.69323444366455
- ],
- [
- "▁impairment",
- -12.69323444366455
- ],
- [
- "▁conving",
- -12.693279266357422
- ],
- [
- "chasing",
- -12.693426132202148
- ],
- [
- "▁Claus",
- -12.693438529968262
- ],
- [
- "▁adaptée",
- -12.693687438964844
- ],
- [
- "▁Raz",
- -12.693740844726562
- ],
- [
- "rugs",
- -12.693796157836914
- ],
- [
- "▁urme",
- -12.69387435913086
- ],
- [
- "Nonetheless",
- -12.693902015686035
- ],
- [
- "▁Cemetery",
- -12.693902969360352
- ],
- [
- "umps",
- -12.693906784057617
- ],
- [
- "ACA",
- -12.694003105163574
- ],
- [
- "▁perioade",
- -12.694235801696777
- ],
- [
- "▁slogan",
- -12.694263458251953
- ],
- [
- "▁downward",
- -12.694441795349121
- ],
- [
- "eidig",
- -12.694446563720703
- ],
- [
- "RAC",
- -12.69444751739502
- ],
- [
- "▁inaugur",
- -12.694496154785156
- ],
- [
- "се",
- -12.694588661193848
- ],
- [
- "▁înțeleg",
- -12.694608688354492
- ],
- [
- "▁hopeful",
- -12.694635391235352
- ],
- [
- "▁customization",
- -12.6946439743042
- ],
- [
- "▁prisoners",
- -12.694708824157715
- ],
- [
- "▁Rau",
- -12.695270538330078
- ],
- [
- "▁Pitt",
- -12.695389747619629
- ],
- [
- "ături",
- -12.695542335510254
- ],
- [
- "▁metabolic",
- -12.695842742919922
- ],
- [
- "▁Zach",
- -12.695868492126465
- ],
- [
- "▁umfassende",
- -12.695914268493652
- ],
- [
- "▁révél",
- -12.695950508117676
- ],
- [
- "131",
- -12.696052551269531
- ],
- [
- "ismului",
- -12.696062088012695
- ],
- [
- "▁Sac",
- -12.696076393127441
- ],
- [
- "efficacité",
- -12.69624137878418
- ],
- [
- "cruci",
- -12.69625473022461
- ],
- [
- "bisschen",
- -12.69632339477539
- ],
- [
- "▁Oster",
- -12.696324348449707
- ],
- [
- "lowered",
- -12.6964693069458
- ],
- [
- "▁Ausland",
- -12.69674015045166
- ],
- [
- "▁Pub",
- -12.696794509887695
- ],
- [
- "▁Marseille",
- -12.696925163269043
- ],
- [
- "▁Charter",
- -12.696959495544434
- ],
- [
- "howcasing",
- -12.697010040283203
- ],
- [
- "risti",
- -12.6971435546875
- ],
- [
- "▁thermostat",
- -12.697151184082031
- ],
- [
- "▁Clin",
- -12.697233200073242
- ],
- [
- "▁entsteht",
- -12.697246551513672
- ],
- [
- "Choosing",
- -12.697248458862305
- ],
- [
- "▁Schmerz",
- -12.697284698486328
- ],
- [
- "▁Till",
- -12.697307586669922
- ],
- [
- "▁Polo",
- -12.697399139404297
- ],
- [
- "▁proceduri",
- -12.697402000427246
- ],
- [
- "▁Believe",
- -12.697444915771484
- ],
- [
- "▁playful",
- -12.697514533996582
- ],
- [
- "▁verändert",
- -12.697588920593262
- ],
- [
- "▁pairing",
- -12.697654724121094
- ],
- [
- "MAG",
- -12.69784927368164
- ],
- [
- "leiste",
- -12.69788932800293
- ],
- [
- "▁testimonial",
- -12.697916030883789
- ],
- [
- "▁Economy",
- -12.697916984558105
- ],
- [
- "▁Wechsel",
- -12.697918891906738
- ],
- [
- "wirkung",
- -12.69801139831543
- ],
- [
- "▁exceeded",
- -12.698030471801758
- ],
- [
- "South",
- -12.698067665100098
- ],
- [
- "create",
- -12.698221206665039
- ],
- [
- "▁davantage",
- -12.698270797729492
- ],
- [
- "Log",
- -12.69831657409668
- ],
- [
- "▁irregular",
- -12.698587417602539
- ],
- [
- "VB",
- -12.698691368103027
- ],
- [
- "▁Rö",
- -12.698741912841797
- ],
- [
- "▁intreb",
- -12.698881149291992
- ],
- [
- "▁penser",
- -12.698920249938965
- ],
- [
- "▁déclaré",
- -12.698923110961914
- ],
- [
- "▁Tommy",
- -12.699026107788086
- ],
- [
- "2,500",
- -12.699163436889648
- ],
- [
- "▁Uganda",
- -12.699260711669922
- ],
- [
- "contacting",
- -12.699445724487305
- ],
- [
- "▁apreciat",
- -12.699485778808594
- ],
- [
- "▁beginnen",
- -12.6995210647583
- ],
- [
- "▁Gain",
- -12.699580192565918
- ],
- [
- "Office",
- -12.69969654083252
- ],
- [
- "ermittlung",
- -12.699710845947266
- ],
- [
- "▁Admission",
- -12.699727058410645
- ],
- [
- "▁Earl",
- -12.6997652053833
- ],
- [
- "▁Aviation",
- -12.699833869934082
- ],
- [
- "▁apologize",
- -12.699929237365723
- ],
- [
- "▁enclosure",
- -12.699929237365723
- ],
- [
- "▁Lack",
- -12.69998836517334
- ],
- [
- "wife",
- -12.699995994567871
- ],
- [
- "▁rotating",
- -12.700016975402832
- ],
- [
- "▁hergestellt",
- -12.700020790100098
- ],
- [
- "▁repository",
- -12.70002269744873
- ],
- [
- "TK",
- -12.700149536132812
- ],
- [
- "▁lectur",
- -12.700190544128418
- ],
- [
- "▁reflex",
- -12.700286865234375
- ],
- [
- "▁Harmon",
- -12.700401306152344
- ],
- [
- "▁vrem",
- -12.700479507446289
- ],
- [
- "▁Strange",
- -12.70055103302002
- ],
- [
- "▁champagne",
- -12.700615882873535
- ],
- [
- "▁oscil",
- -12.700647354125977
- ],
- [
- "sensitive",
- -12.700677871704102
- ],
- [
- "▁Sheriff",
- -12.700841903686523
- ],
- [
- "PRES",
- -12.700956344604492
- ],
- [
- "▁vow",
- -12.70123291015625
- ],
- [
- "▁dioxide",
- -12.701276779174805
- ],
- [
- "ен",
- -12.701374053955078
- ],
- [
- "▁corpului",
- -12.701376914978027
- ],
- [
- "▁prevăzut",
- -12.70160961151123
- ],
- [
- "India",
- -12.701827049255371
- ],
- [
- "hausse",
- -12.70189094543457
- ],
- [
- "▁clienți",
- -12.701957702636719
- ],
- [
- "▁entour",
- -12.70202350616455
- ],
- [
- "▁Sharp",
- -12.70209789276123
- ],
- [
- "▁teatru",
- -12.702285766601562
- ],
- [
- "▁Grow",
- -12.702327728271484
- ],
- [
- "▁caravan",
- -12.70234203338623
- ],
- [
- "▁sieben",
- -12.702420234680176
- ],
- [
- "▁cunosc",
- -12.702502250671387
- ],
- [
- "Bereichen",
- -12.702527046203613
- ],
- [
- "▁Benutzer",
- -12.702619552612305
- ],
- [
- "▁Ethiopia",
- -12.702619552612305
- ],
- [
- "▁Physics",
- -12.702619552612305
- ],
- [
- "preserving",
- -12.70263385772705
- ],
- [
- "ал",
- -12.702712059020996
- ],
- [
- "▁aerial",
- -12.70272159576416
- ],
- [
- "▁nouvel",
- -12.702741622924805
- ],
- [
- "▁stamped",
- -12.702954292297363
- ],
- [
- "▁inaugural",
- -12.702970504760742
- ],
- [
- "▁medicinal",
- -12.702999114990234
- ],
- [
- "Quite",
- -12.703028678894043
- ],
- [
- "accumulated",
- -12.703165054321289
- ],
- [
- "register",
- -12.703271865844727
- ],
- [
- "▁Falcon",
- -12.70327377319336
- ],
- [
- "▁boiling",
- -12.703301429748535
- ],
- [
- "▁advertised",
- -12.703339576721191
- ],
- [
- "collect",
- -12.703362464904785
- ],
- [
- "albeit",
- -12.703418731689453
- ],
- [
- "▁Organis",
- -12.703473091125488
- ],
- [
- "luate",
- -12.703536033630371
- ],
- [
- "▁préféré",
- -12.70369815826416
- ],
- [
- "▁frumoasa",
- -12.703968048095703
- ],
- [
- "▁truc",
- -12.704092979431152
- ],
- [
- "▁Fä",
- -12.704154968261719
- ],
- [
- "▁dome",
- -12.704180717468262
- ],
- [
- "Mobile",
- -12.704191207885742
- ],
- [
- "▁redeem",
- -12.704198837280273
- ],
- [
- "IONS",
- -12.70422077178955
- ],
- [
- "▁țări",
- -12.704235076904297
- ],
- [
- "▁singular",
- -12.704385757446289
- ],
- [
- "▁livestock",
- -12.704425811767578
- ],
- [
- "▁démont",
- -12.704427719116211
- ],
- [
- "clés",
- -12.704527854919434
- ],
- [
- "music",
- -12.704561233520508
- ],
- [
- "▁explicat",
- -12.704602241516113
- ],
- [
- "▁Fellowship",
- -12.704703330993652
- ],
- [
- "▁electrode",
- -12.704760551452637
- ],
- [
- "129",
- -12.704977035522461
- ],
- [
- "▁Rescue",
- -12.704983711242676
- ],
- [
- "▁Rocket",
- -12.705159187316895
- ],
- [
- "OSE",
- -12.705301284790039
- ],
- [
- "▁Sacramento",
- -12.705317497253418
- ],
- [
- "▁Haiti",
- -12.705357551574707
- ],
- [
- "▁Erwachsene",
- -12.705390930175781
- ],
- [
- "▁Terminal",
- -12.70541000366211
- ],
- [
- "URI",
- -12.705453872680664
- ],
- [
- "▁Rural",
- -12.70549201965332
- ],
- [
- "▁achizitiona",
- -12.70552921295166
- ],
- [
- "▁identifiable",
- -12.705655097961426
- ],
- [
- "▁gekauft",
- -12.705659866333008
- ],
- [
- "▁improper",
- -12.705673217773438
- ],
- [
- "lashes",
- -12.705751419067383
- ],
- [
- "vorbim",
- -12.705751419067383
- ],
- [
- "▁hinder",
- -12.705862045288086
- ],
- [
- "▁Grenz",
- -12.705878257751465
- ],
- [
- "Nav",
- -12.705955505371094
- ],
- [
- "alimentation",
- -12.705972671508789
- ],
- [
- "▁Cottage",
- -12.7059965133667
- ],
- [
- "▁nötig",
- -12.706197738647461
- ],
- [
- "▁cuprinde",
- -12.70622444152832
- ],
- [
- "session",
- -12.706256866455078
- ],
- [
- "▁Separat",
- -12.70634651184082
- ],
- [
- "▁besuchen",
- -12.706672668457031
- ],
- [
- "▁noodles",
- -12.706684112548828
- ],
- [
- "▁ballet",
- -12.706696510314941
- ],
- [
- "WG",
- -12.706731796264648
- ],
- [
- "▁Duty",
- -12.706871032714844
- ],
- [
- "▁porc",
- -12.706944465637207
- ],
- [
- "▁booster",
- -12.70698356628418
- ],
- [
- "galerie",
- -12.707056045532227
- ],
- [
- "▁Lance",
- -12.707119941711426
- ],
- [
- "▁déplac",
- -12.707178115844727
- ],
- [
- "▁rugby",
- -12.707240104675293
- ],
- [
- "▁upholstery",
- -12.707345962524414
- ],
- [
- "▁bustl",
- -12.70736312866211
- ],
- [
- "▁Dealer",
- -12.70740032196045
- ],
- [
- "▁genome",
- -12.707414627075195
- ],
- [
- "▁citizenship",
- -12.707466125488281
- ],
- [
- "rora",
- -12.707515716552734
- ],
- [
- "ARK",
- -12.707776069641113
- ],
- [
- "▁Semi",
- -12.707820892333984
- ],
- [
- "▁Improvement",
- -12.707892417907715
- ],
- [
- "▁negru",
- -12.708142280578613
- ],
- [
- "▁Bruxelles",
- -12.70836067199707
- ],
- [
- "flüge",
- -12.70837688446045
- ],
- [
- "▁Technique",
- -12.708392143249512
- ],
- [
- "▁Obst",
- -12.708413124084473
- ],
- [
- "2020",
- -12.708560943603516
- ],
- [
- "▁gek",
- -12.708593368530273
- ],
- [
- "▁drepturi",
- -12.708600997924805
- ],
- [
- "▁Logan",
- -12.708605766296387
- ],
- [
- "gelöst",
- -12.70863151550293
- ],
- [
- "▁grandparents",
- -12.708702087402344
- ],
- [
- "phin",
- -12.708950996398926
- ],
- [
- "▁dwell",
- -12.709037780761719
- ],
- [
- "▁Nobel",
- -12.709151268005371
- ],
- [
- "dial",
- -12.70927906036377
- ],
- [
- "▁spontan",
- -12.709344863891602
- ],
- [
- "advancing",
- -12.70937728881836
- ],
- [
- "starring",
- -12.70947551727295
- ],
- [
- "▁astea",
- -12.709498405456543
- ],
- [
- "igueur",
- -12.709638595581055
- ],
- [
- "▁Ancient",
- -12.709700584411621
- ],
- [
- "filter",
- -12.70971965789795
- ],
- [
- "Doar",
- -12.709758758544922
- ],
- [
- "▁Workers",
- -12.709759712219238
- ],
- [
- "Certainly",
- -12.709906578063965
- ],
- [
- "▁commencé",
- -12.709914207458496
- ],
- [
- "▁zipper",
- -12.710001945495605
- ],
- [
- "▁Selection",
- -12.710070610046387
- ],
- [
- "▁succ",
- -12.710280418395996
- ],
- [
- "headed",
- -12.710345268249512
- ],
- [
- "RIA",
- -12.710350036621094
- ],
- [
- "▁papa",
- -12.710366249084473
- ],
- [
- "▁profesionale",
- -12.710394859313965
- ],
- [
- "▁Zeichen",
- -12.710402488708496
- ],
- [
- "▁artisans",
- -12.710489273071289
- ],
- [
- "▁Geist",
- -12.710585594177246
- ],
- [
- "practic",
- -12.710741996765137
- ],
- [
- "▁ministrul",
- -12.71076488494873
- ],
- [
- "viens",
- -12.710912704467773
- ],
- [
- "prezintă",
- -12.710919380187988
- ],
- [
- "Integrated",
- -12.710981369018555
- ],
- [
- "▁rooftop",
- -12.710989952087402
- ],
- [
- "▁successor",
- -12.710991859436035
- ],
- [
- "OTO",
- -12.711012840270996
- ],
- [
- "liés",
- -12.711027145385742
- ],
- [
- "▁Diver",
- -12.71121597290039
- ],
- [
- "Specifically",
- -12.711297988891602
- ],
- [
- "▁calibr",
- -12.711301803588867
- ],
- [
- "KK",
- -12.711341857910156
- ],
- [
- "▁défense",
- -12.711414337158203
- ],
- [
- "▁english",
- -12.711414337158203
- ],
- [
- "verbrauch",
- -12.711418151855469
- ],
- [
- "▁attire",
- -12.711433410644531
- ],
- [
- "▁Recipe",
- -12.711441040039062
- ],
- [
- "équilibre",
- -12.711457252502441
- ],
- [
- "accumul",
- -12.71157169342041
- ],
- [
- "▁financement",
- -12.71169662475586
- ],
- [
- "rij",
- -12.711962699890137
- ],
- [
- "▁prince",
- -12.711999893188477
- ],
- [
- "▁préparer",
- -12.7120361328125
- ],
- [
- "surviving",
- -12.71211051940918
- ],
- [
- "operation",
- -12.712233543395996
- ],
- [
- "▁judet",
- -12.71242904663086
- ],
- [
- "▁Verantwortung",
- -12.712433815002441
- ],
- [
- "▁Vinyl",
- -12.712536811828613
- ],
- [
- "DEN",
- -12.712584495544434
- ],
- [
- "▁Tail",
- -12.712589263916016
- ],
- [
- "yearly",
- -12.712590217590332
- ],
- [
- "▁comisi",
- -12.712613105773926
- ],
- [
- "lava",
- -12.71261978149414
- ],
- [
- "▁succession",
- -12.71264934539795
- ],
- [
- "▁Whisk",
- -12.713030815124512
- ],
- [
- "▁precizat",
- -12.713096618652344
- ],
- [
- "▁unmittelbar",
- -12.713117599487305
- ],
- [
- "ICH",
- -12.713139533996582
- ],
- [
- "▁atteint",
- -12.713199615478516
- ],
- [
- "▁hometown",
- -12.713268280029297
- ],
- [
- "▁Zip",
- -12.71328353881836
- ],
- [
- "▁Weekly",
- -12.71336841583252
- ],
- [
- "▁crashes",
- -12.713401794433594
- ],
- [
- "▁Turbo",
- -12.713421821594238
- ],
- [
- "▁susține",
- -12.713468551635742
- ],
- [
- "▁Venus",
- -12.713587760925293
- ],
- [
- "▁finalement",
- -12.713595390319824
- ],
- [
- "rewarded",
- -12.713693618774414
- ],
- [
- "▁principau",
- -12.713899612426758
- ],
- [
- "▁régional",
- -12.713979721069336
- ],
- [
- "▁1958",
- -12.714178085327148
- ],
- [
- "▁Musical",
- -12.714189529418945
- ],
- [
- "▁stylist",
- -12.714251518249512
- ],
- [
- "cetate",
- -12.714282035827637
- ],
- [
- "gorge",
- -12.71433162689209
- ],
- [
- "▁espresso",
- -12.714493751525879
- ],
- [
- "überall",
- -12.714576721191406
- ],
- [
- "▁NHL",
- -12.714593887329102
- ],
- [
- "▁Dock",
- -12.71472454071045
- ],
- [
- "▁mosquito",
- -12.71481704711914
- ],
- [
- "▁forthcoming",
- -12.714852333068848
- ],
- [
- "▁Visitors",
- -12.714881896972656
- ],
- [
- "kro",
- -12.714882850646973
- ],
- [
- "_______",
- -12.715048789978027
- ],
- [
- "▁STEM",
- -12.715105056762695
- ],
- [
- "9.5",
- -12.715141296386719
- ],
- [
- "accompagne",
- -12.715177536010742
- ],
- [
- "▁Trick",
- -12.715202331542969
- ],
- [
- "▁endorsement",
- -12.715400695800781
- ],
- [
- "▁amplifier",
- -12.715498924255371
- ],
- [
- "▁malicious",
- -12.715499877929688
- ],
- [
- "▁roam",
- -12.71552848815918
- ],
- [
- "▁kennt",
- -12.715635299682617
- ],
- [
- "Connor",
- -12.715690612792969
- ],
- [
- "▁dysfunction",
- -12.715828895568848
- ],
- [
- "▁zuverlässig",
- -12.715840339660645
- ],
- [
- "▁corpul",
- -12.71595573425293
- ],
- [
- "▁boule",
- -12.715967178344727
- ],
- [
- "otti",
- -12.715991973876953
- ],
- [
- "440",
- -12.716050148010254
- ],
- [
- "▁mimic",
- -12.716056823730469
- ],
- [
- "farben",
- -12.716129302978516
- ],
- [
- "▁Wagner",
- -12.716214179992676
- ],
- [
- "Kom",
- -12.7162504196167
- ],
- [
- "▁miteinander",
- -12.716269493103027
- ],
- [
- "▁String",
- -12.716296195983887
- ],
- [
- "▁Ellis",
- -12.716313362121582
- ],
- [
- "▁Perth",
- -12.716337203979492
- ],
- [
- "▁temperatura",
- -12.716381072998047
- ],
- [
- "umbling",
- -12.716397285461426
- ],
- [
- "▁Medizin",
- -12.716554641723633
- ],
- [
- "▁KY",
- -12.71660327911377
- ],
- [
- "apei",
- -12.716642379760742
- ],
- [
- "counter",
- -12.716647148132324
- ],
- [
- "strich",
- -12.71665096282959
- ],
- [
- "▁Între",
- -12.716652870178223
- ],
- [
- "▁Cliff",
- -12.716785430908203
- ],
- [
- "▁foreclosure",
- -12.716864585876465
- ],
- [
- "................",
- -12.716878890991211
- ],
- [
- "Clearly",
- -12.717028617858887
- ],
- [
- "AJ",
- -12.717057228088379
- ],
- [
- "ndro",
- -12.717180252075195
- ],
- [
- "▁Arsenal",
- -12.717206001281738
- ],
- [
- "▁Recherche",
- -12.717216491699219
- ],
- [
- "Guests",
- -12.717225074768066
- ],
- [
- "▁besucht",
- -12.717242240905762
- ],
- [
- "wissen",
- -12.717266082763672
- ],
- [
- "fekt",
- -12.717414855957031
- ],
- [
- "hottest",
- -12.717414855957031
- ],
- [
- "▁Tomorrow",
- -12.717547416687012
- ],
- [
- "▁Signature",
- -12.717557907104492
- ],
- [
- "127",
- -12.717583656311035
- ],
- [
- "▁competence",
- -12.71766471862793
- ],
- [
- "Einige",
- -12.717686653137207
- ],
- [
- "patented",
- -12.71782112121582
- ],
- [
- "▁Exhibition",
- -12.717889785766602
- ],
- [
- "▁verbessern",
- -12.717889785766602
- ],
- [
- "▁Garcia",
- -12.718043327331543
- ],
- [
- "▁inquire",
- -12.718278884887695
- ],
- [
- "coping",
- -12.718353271484375
- ],
- [
- "▁linguri",
- -12.71842098236084
- ],
- [
- "▁trivia",
- -12.718433380126953
- ],
- [
- "▁începutul",
- -12.718489646911621
- ],
- [
- "▁parteneriat",
- -12.7186279296875
- ],
- [
- "tagen",
- -12.718636512756348
- ],
- [
- "▁engagé",
- -12.718916893005371
- ],
- [
- "▁chalk",
- -12.718944549560547
- ],
- [
- "▁fashionable",
- -12.719416618347168
- ],
- [
- "0.8",
- -12.719635009765625
- ],
- [
- "▁sticker",
- -12.719751358032227
- ],
- [
- "▁desperately",
- -12.719765663146973
- ],
- [
- "höhe",
- -12.719903945922852
- ],
- [
- "▁fericire",
- -12.71994400024414
- ],
- [
- "évaluation",
- -12.719948768615723
- ],
- [
- "▁Divide",
- -12.719959259033203
- ],
- [
- "▁indulge",
- -12.719979286193848
- ],
- [
- "fett",
- -12.720014572143555
- ],
- [
- "▁communal",
- -12.72017765045166
- ],
- [
- "▁mindful",
- -12.720187187194824
- ],
- [
- "dauert",
- -12.720192909240723
- ],
- [
- "▁veille",
- -12.720263481140137
- ],
- [
- "▁vér",
- -12.720330238342285
- ],
- [
- "▁Baseball",
- -12.720373153686523
- ],
- [
- "▁succeeded",
- -12.720418930053711
- ],
- [
- "▁Terrasse",
- -12.720420837402344
- ],
- [
- "irgend",
- -12.720500946044922
- ],
- [
- "▁Munich",
- -12.720556259155273
- ],
- [
- "weisung",
- -12.72067642211914
- ],
- [
- "metre",
- -12.720916748046875
- ],
- [
- "▁Raymond",
- -12.721015930175781
- ],
- [
- "▁chute",
- -12.72102165222168
- ],
- [
- "▁Accounting",
- -12.721075057983398
- ],
- [
- "▁pantry",
- -12.721122741699219
- ],
- [
- "▁underwater",
- -12.721181869506836
- ],
- [
- "ARI",
- -12.721222877502441
- ],
- [
- "lowed",
- -12.721245765686035
- ],
- [
- "numbered",
- -12.721430778503418
- ],
- [
- "REN",
- -12.72148609161377
- ],
- [
- "▁industriel",
- -12.721489906311035
- ],
- [
- "wäh",
- -12.721531867980957
- ],
- [
- "kenntnis",
- -12.721631050109863
- ],
- [
- "▁govern",
- -12.721635818481445
- ],
- [
- "strained",
- -12.721661567687988
- ],
- [
- "▁rythme",
- -12.721689224243164
- ],
- [
- "ин",
- -12.72169303894043
- ],
- [
- "▁burner",
- -12.721723556518555
- ],
- [
- "▁zählt",
- -12.721790313720703
- ],
- [
- "▁verte",
- -12.721883773803711
- ],
- [
- "▁Catalog",
- -12.721896171569824
- ],
- [
- "▁Bruno",
- -12.721988677978516
- ],
- [
- "0.7",
- -12.721997261047363
- ],
- [
- "▁litig",
- -12.72207260131836
- ],
- [
- "▁greet",
- -12.722129821777344
- ],
- [
- "▁stool",
- -12.722393035888672
- ],
- [
- "gression",
- -12.722457885742188
- ],
- [
- "▁Klassen",
- -12.722491264343262
- ],
- [
- "▁neon",
- -12.722661018371582
- ],
- [
- "▁Tall",
- -12.722734451293945
- ],
- [
- "▁satin",
- -12.722895622253418
- ],
- [
- "▁Bend",
- -12.722915649414062
- ],
- [
- "▁soluţi",
- -12.723077774047852
- ],
- [
- "▁styl",
- -12.723196983337402
- ],
- [
- "▁Siri",
- -12.723358154296875
- ],
- [
- "▁Sanders",
- -12.723464012145996
- ],
- [
- "▁spike",
- -12.723499298095703
- ],
- [
- "pinion",
- -12.723854064941406
- ],
- [
- "▁purta",
- -12.724122047424316
- ],
- [
- "CARE",
- -12.724224090576172
- ],
- [
- "▁creştere",
- -12.724311828613281
- ],
- [
- "▁fry",
- -12.724374771118164
- ],
- [
- "▁Schweizer",
- -12.724400520324707
- ],
- [
- "durchschnittlich",
- -12.724411010742188
- ],
- [
- "celaşi",
- -12.724446296691895
- ],
- [
- "▁deceased",
- -12.724474906921387
- ],
- [
- "▁Nerv",
- -12.724668502807617
- ],
- [
- "2-2",
- -12.7247314453125
- ],
- [
- "▁Stahl",
- -12.724753379821777
- ],
- [
- "▁workload",
- -12.724834442138672
- ],
- [
- "erhielt",
- -12.724984169006348
- ],
- [
- "▁hypothesis",
- -12.725103378295898
- ],
- [
- "bib",
- -12.725110054016113
- ],
- [
- "▁ţară",
- -12.725116729736328
- ],
- [
- "vaut",
- -12.725122451782227
- ],
- [
- "prehensi",
- -12.725184440612793
- ],
- [
- "▁Offering",
- -12.725188255310059
- ],
- [
- "▁dislike",
- -12.725252151489258
- ],
- [
- "▁firewall",
- -12.725252151489258
- ],
- [
- "mania",
- -12.725255966186523
- ],
- [
- "195",
- -12.725278854370117
- ],
- [
- "▁Champ",
- -12.725324630737305
- ],
- [
- "▁philosophical",
- -12.725343704223633
- ],
- [
- "länge",
- -12.72553539276123
- ],
- [
- "advisable",
- -12.725785255432129
- ],
- [
- "negotiating",
- -12.725785255432129
- ],
- [
- "Providing",
- -12.725791931152344
- ],
- [
- "▁1959",
- -12.725801467895508
- ],
- [
- "▁spyware",
- -12.725831031799316
- ],
- [
- "sharing",
- -12.725837707519531
- ],
- [
- "▁prévoi",
- -12.725905418395996
- ],
- [
- "▁jaune",
- -12.7260103225708
- ],
- [
- "schoss",
- -12.726028442382812
- ],
- [
- "▁obține",
- -12.726129531860352
- ],
- [
- "▁attraktiv",
- -12.726489067077637
- ],
- [
- "gemeinschaft",
- -12.7265043258667
- ],
- [
- "BV",
- -12.726505279541016
- ],
- [
- "Top",
- -12.726617813110352
- ],
- [
- "▁Sharon",
- -12.726625442504883
- ],
- [
- "bok",
- -12.726675033569336
- ],
- [
- "▁résist",
- -12.726811408996582
- ],
- [
- "Napoca",
- -12.726822853088379
- ],
- [
- "▁Uncategorized",
- -12.726898193359375
- ],
- [
- "▁trustee",
- -12.726936340332031
- ],
- [
- "▁remise",
- -12.727025985717773
- ],
- [
- "▁aştept",
- -12.727165222167969
- ],
- [
- "▁allergic",
- -12.727206230163574
- ],
- [
- "èvre",
- -12.727211952209473
- ],
- [
- "LAR",
- -12.72734546661377
- ],
- [
- "1.9",
- -12.727497100830078
- ],
- [
- "▁outbreak",
- -12.727520942687988
- ],
- [
- "▁trocken",
- -12.727568626403809
- ],
- [
- "▁laughter",
- -12.727724075317383
- ],
- [
- "▁Attend",
- -12.727785110473633
- ],
- [
- "jung",
- -12.727822303771973
- ],
- [
- "racking",
- -12.727934837341309
- ],
- [
- "ORS",
- -12.728178024291992
- ],
- [
- "▁rasp",
- -12.728527069091797
- ],
- [
- "VF",
- -12.728551864624023
- ],
- [
- "▁Tamil",
- -12.72860050201416
- ],
- [
- "124",
- -12.728602409362793
- ],
- [
- "▁Fiber",
- -12.728714942932129
- ],
- [
- "▁launches",
- -12.728755950927734
- ],
- [
- "Post",
- -12.728777885437012
- ],
- [
- "▁bucks",
- -12.729072570800781
- ],
- [
- "▁Nicholas",
- -12.72923755645752
- ],
- [
- "▁cărți",
- -12.729255676269531
- ],
- [
- "emper",
- -12.729681968688965
- ],
- [
- "Point",
- -12.729689598083496
- ],
- [
- "fraction",
- -12.729753494262695
- ],
- [
- "▁BIG",
- -12.729804992675781
- ],
- [
- "▁lancer",
- -12.729829788208008
- ],
- [
- "EVER",
- -12.72997760772705
- ],
- [
- "trend",
- -12.73000431060791
- ],
- [
- "▁remerci",
- -12.730076789855957
- ],
- [
- "▁prevalent",
- -12.730168342590332
- ],
- [
- "370",
- -12.730290412902832
- ],
- [
- "▁bestellen",
- -12.730327606201172
- ],
- [
- "Buying",
- -12.730341911315918
- ],
- [
- "▁Aufbau",
- -12.730416297912598
- ],
- [
- "▁opini",
- -12.730416297912598
- ],
- [
- "▁regiune",
- -12.730663299560547
- ],
- [
- "▁martial",
- -12.73069953918457
- ],
- [
- "LK",
- -12.730754852294922
- ],
- [
- "▁Feuerwehr",
- -12.730974197387695
- ],
- [
- "screened",
- -12.73099422454834
- ],
- [
- "Blue",
- -12.73120403289795
- ],
- [
- "▁analize",
- -12.731237411499023
- ],
- [
- "▁lure",
- -12.731247901916504
- ],
- [
- "▁internally",
- -12.731283187866211
- ],
- [
- "father",
- -12.731322288513184
- ],
- [
- "▁diplomatic",
- -12.731343269348145
- ],
- [
- "▁Activity",
- -12.731464385986328
- ],
- [
- "▁cliqu",
- -12.73156452178955
- ],
- [
- "▁adequately",
- -12.731809616088867
- ],
- [
- "▁Elena",
- -12.73183822631836
- ],
- [
- "▁Citizens",
- -12.732102394104004
- ],
- [
- "▁Länge",
- -12.732295989990234
- ],
- [
- "▁respectful",
- -12.732300758361816
- ],
- [
- "▁zuständig",
- -12.73248291015625
- ],
- [
- "▁réception",
- -12.732584953308105
- ],
- [
- "▁headset",
- -12.732686996459961
- ],
- [
- "▁awhile",
- -12.732705116271973
- ],
- [
- "▁speculation",
- -12.732707977294922
- ],
- [
- "▁WhatsApp",
- -12.732714653015137
- ],
- [
- "▁tulbur",
- -12.732731819152832
- ],
- [
- "▁voluntar",
- -12.732758522033691
- ],
- [
- "▁Studium",
- -12.73277473449707
- ],
- [
- "▁protector",
- -12.732833862304688
- ],
- [
- "▁Wrap",
- -12.732840538024902
- ],
- [
- "staat",
- -12.732951164245605
- ],
- [
- "▁judgement",
- -12.733396530151367
- ],
- [
- "unauthorized",
- -12.733397483825684
- ],
- [
- "Rank",
- -12.733487129211426
- ],
- [
- "pră",
- -12.733503341674805
- ],
- [
- "▁Paw",
- -12.733627319335938
- ],
- [
- "▁relev",
- -12.733664512634277
- ],
- [
- "▁arbor",
- -12.733830451965332
- ],
- [
- "stretches",
- -12.733885765075684
- ],
- [
- "nook",
- -12.733906745910645
- ],
- [
- "▁Tunis",
- -12.733907699584961
- ],
- [
- "▁shocking",
- -12.734036445617676
- ],
- [
- "▁oppress",
- -12.73414421081543
- ],
- [
- "10.1",
- -12.7341890335083
- ],
- [
- "▁ERP",
- -12.734310150146484
- ],
- [
- "wolle",
- -12.7343168258667
- ],
- [
- "▁Catch",
- -12.734352111816406
- ],
- [
- "Plus",
- -12.734368324279785
- ],
- [
- "Market",
- -12.734445571899414
- ],
- [
- "scribed",
- -12.734536170959473
- ],
- [
- "▁décoration",
- -12.734594345092773
- ],
- [
- "▁chanson",
- -12.734607696533203
- ],
- [
- "▁Midwest",
- -12.734763145446777
- ],
- [
- "▁Spencer",
- -12.734795570373535
- ],
- [
- "▁societate",
- -12.734807968139648
- ],
- [
- "curated",
- -12.735087394714355
- ],
- [
- "▁canopy",
- -12.735135078430176
- ],
- [
- "ат",
- -12.735142707824707
- ],
- [
- "Sig",
- -12.73514461517334
- ],
- [
- "▁witch",
- -12.735153198242188
- ],
- [
- "envoyer",
- -12.735175132751465
- ],
- [
- "▁$1,000",
- -12.735230445861816
- ],
- [
- "▁peripheral",
- -12.735482215881348
- ],
- [
- "nnouncing",
- -12.735509872436523
- ],
- [
- "perfect",
- -12.73559284210205
- ],
- [
- "▁warten",
- -12.735748291015625
- ],
- [
- "ELI",
- -12.735822677612305
- ],
- [
- "▁recap",
- -12.735912322998047
- ],
- [
- "dün",
- -12.735978126525879
- ],
- [
- "▁Spre",
- -12.736029624938965
- ],
- [
- "2005",
- -12.736153602600098
- ],
- [
- "▁réparation",
- -12.73617935180664
- ],
- [
- "▁extraordinar",
- -12.736196517944336
- ],
- [
- "existence",
- -12.736337661743164
- ],
- [
- "oanele",
- -12.736467361450195
- ],
- [
- "▁reprezentant",
- -12.736474990844727
- ],
- [
- "▁attacker",
- -12.736490249633789
- ],
- [
- "▁Berliner",
- -12.73657512664795
- ],
- [
- "experience",
- -12.736649513244629
- ],
- [
- "▁Monde",
- -12.736800193786621
- ],
- [
- "intervention",
- -12.736956596374512
- ],
- [
- "▁Einstellung",
- -12.736977577209473
- ],
- [
- "▁Valentin",
- -12.737011909484863
- ],
- [
- "▁zonă",
- -12.737200736999512
- ],
- [
- "occupant",
- -12.737223625183105
- ],
- [
- "▁mobilis",
- -12.737260818481445
- ],
- [
- "metall",
- -12.737261772155762
- ],
- [
- "evangeli",
- -12.73729133605957
- ],
- [
- "Adding",
- -12.737326622009277
- ],
- [
- "▁Roland",
- -12.73735237121582
- ],
- [
- "ENCE",
- -12.737462043762207
- ],
- [
- "▁Insul",
- -12.737478256225586
- ],
- [
- "tellement",
- -12.737497329711914
- ],
- [
- "▁Blogger",
- -12.737499237060547
- ],
- [
- "▁prote",
- -12.737504005432129
- ],
- [
- "▁Minimum",
- -12.737574577331543
- ],
- [
- "▁termic",
- -12.737624168395996
- ],
- [
- "▁Sachen",
- -12.737859725952148
- ],
- [
- "▁Maschinen",
- -12.737863540649414
- ],
- [
- "▁Dragnea",
- -12.737926483154297
- ],
- [
- "▁overtime",
- -12.737967491149902
- ],
- [
- "calorie",
- -12.737968444824219
- ],
- [
- "▁jene",
- -12.73814868927002
- ],
- [
- "▁Satan",
- -12.738153457641602
- ],
- [
- "▁currencies",
- -12.73827075958252
- ],
- [
- "▁echipamente",
- -12.738329887390137
- ],
- [
- "▁forgiveness",
- -12.73843765258789
- ],
- [
- "▁Pause",
- -12.738479614257812
- ],
- [
- "▁Witt",
- -12.738529205322266
- ],
- [
- "STOR",
- -12.738632202148438
- ],
- [
- "▁actuelle",
- -12.738703727722168
- ],
- [
- "▁Ard",
- -12.738853454589844
- ],
- [
- "▁Constitu",
- -12.738880157470703
- ],
- [
- "ghan",
- -12.7388916015625
- ],
- [
- "Make",
- -12.738906860351562
- ],
- [
- "▁garne",
- -12.738947868347168
- ],
- [
- "▁Hitler",
- -12.738956451416016
- ],
- [
- "▁rubbish",
- -12.738973617553711
- ],
- [
- "6.0",
- -12.739025115966797
- ],
- [
- "▁Giving",
- -12.739177703857422
- ],
- [
- "▁persever",
- -12.73937702178955
- ],
- [
- "wirk",
- -12.7394380569458
- ],
- [
- "liegenden",
- -12.739455223083496
- ],
- [
- "▁morceau",
- -12.73946762084961
- ],
- [
- "atty",
- -12.73961067199707
- ],
- [
- "▁Quebec",
- -12.739669799804688
- ],
- [
- "harmonie",
- -12.739705085754395
- ],
- [
- "Nummer",
- -12.739721298217773
- ],
- [
- "▁splendid",
- -12.739747047424316
- ],
- [
- "▁halfway",
- -12.739808082580566
- ],
- [
- "▁periodically",
- -12.740071296691895
- ],
- [
- "▁Ländern",
- -12.740077018737793
- ],
- [
- "▁AAA",
- -12.740083694458008
- ],
- [
- "▁Frost",
- -12.740198135375977
- ],
- [
- "▁heroin",
- -12.740289688110352
- ],
- [
- "▁bucurie",
- -12.7403564453125
- ],
- [
- "▁Pradesh",
- -12.74036693572998
- ],
- [
- "zusetzen",
- -12.740405082702637
- ],
- [
- "raising",
- -12.740425109863281
- ],
- [
- "▁furniz",
- -12.740567207336426
- ],
- [
- "▁convi",
- -12.740575790405273
- ],
- [
- "pictured",
- -12.740911483764648
- ],
- [
- "▁inadequate",
- -12.741065979003906
- ],
- [
- "▁aprobat",
- -12.741069793701172
- ],
- [
- "▁exercising",
- -12.741083145141602
- ],
- [
- "▁faisai",
- -12.741138458251953
- ],
- [
- "▁prosecution",
- -12.741231918334961
- ],
- [
- "380",
- -12.741402626037598
- ],
- [
- "▁Potential",
- -12.74145793914795
- ],
- [
- "▁Magi",
- -12.741523742675781
- ],
- [
- "From",
- -12.741752624511719
- ],
- [
- "batterie",
- -12.74181079864502
- ],
- [
- "▁poisson",
- -12.74185562133789
- ],
- [
- "▁Probe",
- -12.741950988769531
- ],
- [
- "▁pastel",
- -12.741998672485352
- ],
- [
- "▁tracked",
- -12.742410659790039
- ],
- [
- "▁advertisers",
- -12.74251937866211
- ],
- [
- "adevar",
- -12.742537498474121
- ],
- [
- "ит",
- -12.742776870727539
- ],
- [
- "▁Herren",
- -12.742815971374512
- ],
- [
- "EAM",
- -12.742820739746094
- ],
- [
- "▁scooter",
- -12.742822647094727
- ],
- [
- "requesting",
- -12.742841720581055
- ],
- [
- "dynamis",
- -12.742949485778809
- ],
- [
- "▁dahin",
- -12.742961883544922
- ],
- [
- "▁tweak",
- -12.743061065673828
- ],
- [
- "▁hail",
- -12.743101119995117
- ],
- [
- "▁întotdeauna",
- -12.743160247802734
- ],
- [
- "▁Publikum",
- -12.743167877197266
- ],
- [
- "▁panoramic",
- -12.743167877197266
- ],
- [
- "▁PRE",
- -12.74331283569336
- ],
- [
- "▁thrill",
- -12.743361473083496
- ],
- [
- "Open",
- -12.743366241455078
- ],
- [
- "▁Layer",
- -12.74345588684082
- ],
- [
- "▁Bosch",
- -12.743459701538086
- ],
- [
- "hull",
- -12.743511199951172
- ],
- [
- "▁născut",
- -12.743518829345703
- ],
- [
- "tausch",
- -12.743559837341309
- ],
- [
- "▁autoturism",
- -12.743577003479004
- ],
- [
- "▁crank",
- -12.743701934814453
- ],
- [
- "CLE",
- -12.743735313415527
- ],
- [
- "▁Frederick",
- -12.74386978149414
- ],
- [
- "mog",
- -12.743887901306152
- ],
- [
- "behalten",
- -12.74396800994873
- ],
- [
- "▁aunt",
- -12.744050979614258
- ],
- [
- "▁Triple",
- -12.744141578674316
- ],
- [
- "▁Ark",
- -12.744242668151855
- ],
- [
- "AUD",
- -12.744440078735352
- ],
- [
- "▁Candy",
- -12.744505882263184
- ],
- [
- "tama",
- -12.744515419006348
- ],
- [
- "▁Evaluation",
- -12.744571685791016
- ],
- [
- "▁Memphis",
- -12.744571685791016
- ],
- [
- "▁stellar",
- -12.74457836151123
- ],
- [
- "▁fabricat",
- -12.744632720947266
- ],
- [
- "▁terminat",
- -12.744868278503418
- ],
- [
- "▁domnul",
- -12.744913101196289
- ],
- [
- "▁keynote",
- -12.744925498962402
- ],
- [
- "▁dentistry",
- -12.744951248168945
- ],
- [
- "rift",
- -12.745052337646484
- ],
- [
- "▁bilan",
- -12.745119094848633
- ],
- [
- "2.6",
- -12.745125770568848
- ],
- [
- "undergoing",
- -12.745210647583008
- ],
- [
- "▁pseudo",
- -12.745274543762207
- ],
- [
- "▁maşin",
- -12.745280265808105
- ],
- [
- "▁munte",
- -12.74555492401123
- ],
- [
- "▁VW",
- -12.745932579040527
- ],
- [
- "▁Rab",
- -12.74593448638916
- ],
- [
- "▁sustine",
- -12.745972633361816
- ],
- [
- "▁Bedingungen",
- -12.745977401733398
- ],
- [
- "▁învăţ",
- -12.745980262756348
- ],
- [
- "▁pyramid",
- -12.745983123779297
- ],
- [
- "HEN",
- -12.746020317077637
- ],
- [
- "▁citrus",
- -12.746058464050293
- ],
- [
- "Code",
- -12.746064186096191
- ],
- [
- "▁Beginning",
- -12.746164321899414
- ],
- [
- "▁discourse",
- -12.746249198913574
- ],
- [
- "▁miercuri",
- -12.746329307556152
- ],
- [
- "▁producător",
- -12.74637508392334
- ],
- [
- "▁analys",
- -12.746397972106934
- ],
- [
- "▁Evan",
- -12.7467041015625
- ],
- [
- "138",
- -12.746987342834473
- ],
- [
- "▁târziu",
- -12.74703311920166
- ],
- [
- "▁relocation",
- -12.747052192687988
- ],
- [
- "decizia",
- -12.74708080291748
- ],
- [
- "tollen",
- -12.74714183807373
- ],
- [
- "TRO",
- -12.747180938720703
- ],
- [
- "▁runway",
- -12.74719524383545
- ],
- [
- "illet",
- -12.747270584106445
- ],
- [
- "▁serveur",
- -12.747387886047363
- ],
- [
- "bezogen",
- -12.747427940368652
- ],
- [
- "▁believers",
- -12.747668266296387
- ],
- [
- "determined",
- -12.747711181640625
- ],
- [
- "▁reinforced",
- -12.74791431427002
- ],
- [
- "▁wedge",
- -12.748006820678711
- ],
- [
- "methyl",
- -12.74807357788086
- ],
- [
- "MES",
- -12.748188018798828
- ],
- [
- "vpn",
- -12.748374938964844
- ],
- [
- "▁consta",
- -12.74837875366211
- ],
- [
- "▁vizitat",
- -12.748420715332031
- ],
- [
- "modul",
- -12.748455047607422
- ],
- [
- "▁routing",
- -12.748528480529785
- ],
- [
- "tempted",
- -12.748540878295898
- ],
- [
- "URS",
- -12.748785018920898
- ],
- [
- "apprentissage",
- -12.748795509338379
- ],
- [
- "▁Hungary",
- -12.748796463012695
- ],
- [
- "Previously",
- -12.74880313873291
- ],
- [
- "▁translator",
- -12.748804092407227
- ],
- [
- "▁resonate",
- -12.748830795288086
- ],
- [
- "201",
- -12.748851776123047
- ],
- [
- "3-0",
- -12.749029159545898
- ],
- [
- "▁reunion",
- -12.749090194702148
- ],
- [
- "▁palate",
- -12.749096870422363
- ],
- [
- "0.4",
- -12.749171257019043
- ],
- [
- "reheat",
- -12.74924373626709
- ],
- [
- "Roo",
- -12.749261856079102
- ],
- [
- "200,000",
- -12.74940013885498
- ],
- [
- "Bro",
- -12.749431610107422
- ],
- [
- "▁estimation",
- -12.749468803405762
- ],
- [
- "schneiden",
- -12.749499320983887
- ],
- [
- "▁Inspired",
- -12.749506950378418
- ],
- [
- "▁lottery",
- -12.749539375305176
- ],
- [
- "▁Friedrich",
- -12.749887466430664
- ],
- [
- "FIT",
- -12.749913215637207
- ],
- [
- "0.6",
- -12.7499418258667
- ],
- [
- "▁dagegen",
- -12.74997615814209
- ],
- [
- "▁Reb",
- -12.750115394592285
- ],
- [
- "▁Eigenschaften",
- -12.75020694732666
- ],
- [
- "▁molding",
- -12.750361442565918
- ],
- [
- "▁Harper",
- -12.750548362731934
- ],
- [
- "verwaltung",
- -12.75055980682373
- ],
- [
- "▁Schlüssel",
- -12.75055980682373
- ],
- [
- "▁desfasura",
- -12.75055980682373
- ],
- [
- "▁rencontrer",
- -12.75055980682373
- ],
- [
- "▁negoci",
- -12.750581741333008
- ],
- [
- "▁Leading",
- -12.750615119934082
- ],
- [
- "▁necesita",
- -12.750652313232422
- ],
- [
- "▁biking",
- -12.750683784484863
- ],
- [
- "▁jointly",
- -12.75069808959961
- ],
- [
- "▁crush",
- -12.750702857971191
- ],
- [
- "Vol",
- -12.750768661499023
- ],
- [
- "▁ebay",
- -12.750836372375488
- ],
- [
- "▁Shri",
- -12.750991821289062
- ],
- [
- "▁AMD",
- -12.751029968261719
- ],
- [
- "FG",
- -12.751032829284668
- ],
- [
- "Argentin",
- -12.75120735168457
- ],
- [
- "▁incercat",
- -12.751431465148926
- ],
- [
- "▁tidy",
- -12.751628875732422
- ],
- [
- "▁provoqu",
- -12.751635551452637
- ],
- [
- "▁Written",
- -12.751649856567383
- ],
- [
- "▁Kooperation",
- -12.751666069030762
- ],
- [
- "▁scripture",
- -12.751952171325684
- ],
- [
- "▁Pflicht",
- -12.751974105834961
- ],
- [
- "ficial",
- -12.752013206481934
- ],
- [
- "vremea",
- -12.752013206481934
- ],
- [
- "▁Growing",
- -12.752115249633789
- ],
- [
- "▁redesign",
- -12.752119064331055
- ],
- [
- "▁obstacle",
- -12.752214431762695
- ],
- [
- "▁rugam",
- -12.752235412597656
- ],
- [
- "▁SPD",
- -12.752243995666504
- ],
- [
- "165",
- -12.752270698547363
- ],
- [
- "fiz",
- -12.752284049987793
- ],
- [
- "▁startet",
- -12.752326011657715
- ],
- [
- "▁Principle",
- -12.752327919006348
- ],
- [
- "▁abdominal",
- -12.752327919006348
- ],
- [
- "▁podium",
- -12.752528190612793
- ],
- [
- "duty",
- -12.752616882324219
- ],
- [
- "bonne",
- -12.752679824829102
- ],
- [
- "▁Serbia",
- -12.752687454223633
- ],
- [
- "▁brunch",
- -12.752839088439941
- ],
- [
- "▁Personne",
- -12.752975463867188
- ],
- [
- "▁Idea",
- -12.753034591674805
- ],
- [
- "forementioned",
- -12.753036499023438
- ],
- [
- "▁chassis",
- -12.753037452697754
- ],
- [
- "gebühr",
- -12.753050804138184
- ],
- [
- "ucun",
- -12.753061294555664
- ],
- [
- "▁Maz",
- -12.7531156539917
- ],
- [
- "1-4",
- -12.75318431854248
- ],
- [
- "kleid",
- -12.753273963928223
- ],
- [
- "▁Volvo",
- -12.753337860107422
- ],
- [
- "brechen",
- -12.753378868103027
- ],
- [
- "▁homepage",
- -12.753472328186035
- ],
- [
- "fuz",
- -12.753509521484375
- ],
- [
- "▁abgeschlossen",
- -12.753595352172852
- ],
- [
- "▁gelungen",
- -12.753658294677734
- ],
- [
- "▁booklet",
- -12.753711700439453
- ],
- [
- "▁Ukrainian",
- -12.753745079040527
- ],
- [
- "▁Melissa",
- -12.753746032714844
- ],
- [
- "CENT",
- -12.75379467010498
- ],
- [
- "▁intégré",
- -12.753806114196777
- ],
- [
- "weighing",
- -12.753827095031738
- ],
- [
- "▁crumbl",
- -12.753894805908203
- ],
- [
- "▁bunk",
- -12.754167556762695
- ],
- [
- "krieg",
- -12.754207611083984
- ],
- [
- "▁freshman",
- -12.754307746887207
- ],
- [
- "alaya",
- -12.754339218139648
- ],
- [
- "Avem",
- -12.754353523254395
- ],
- [
- "▁Kne",
- -12.754423141479492
- ],
- [
- "▁upstairs",
- -12.75448226928711
- ],
- [
- "AIL",
- -12.754508972167969
- ],
- [
- "țul",
- -12.75478744506836
- ],
- [
- "▁Lecture",
- -12.754817962646484
- ],
- [
- "▁entdecken",
- -12.754843711853027
- ],
- [
- "▁GMT",
- -12.754912376403809
- ],
- [
- "▁Leitung",
- -12.754937171936035
- ],
- [
- "▁inclined",
- -12.755170822143555
- ],
- [
- "▁skillet",
- -12.75555419921875
- ],
- [
- "FN",
- -12.755742073059082
- ],
- [
- "▁Perform",
- -12.755821228027344
- ],
- [
- "shift",
- -12.75583267211914
- ],
- [
- "recognizing",
- -12.755873680114746
- ],
- [
- "▁concise",
- -12.755873680114746
- ],
- [
- "▁obsessed",
- -12.755873680114746
- ],
- [
- "▁removable",
- -12.755873680114746
- ],
- [
- "▁Relax",
- -12.755888938903809
- ],
- [
- "delegates",
- -12.75605583190918
- ],
- [
- "▁expedi",
- -12.756074905395508
- ],
- [
- "▁Schä",
- -12.756138801574707
- ],
- [
- "iete",
- -12.756211280822754
- ],
- [
- "▁reciproc",
- -12.756229400634766
- ],
- [
- "▁neutr",
- -12.75625228881836
- ],
- [
- "lactic",
- -12.756314277648926
- ],
- [
- "▁Nah",
- -12.756328582763672
- ],
- [
- "scene",
- -12.7565279006958
- ],
- [
- "▁Helm",
- -12.756563186645508
- ],
- [
- "▁Bewerbung",
- -12.756671905517578
- ],
- [
- "▁Cassi",
- -12.75667953491211
- ],
- [
- "▁Gelegenheit",
- -12.756939888000488
- ],
- [
- "▁reflective",
- -12.757140159606934
- ],
- [
- "▁încredere",
- -12.757149696350098
- ],
- [
- "▁cigarettes",
- -12.75717544555664
- ],
- [
- "▁Zusätzlich",
- -12.757295608520508
- ],
- [
- "▁intercept",
- -12.75731372833252
- ],
- [
- "▁Finn",
- -12.757468223571777
- ],
- [
- "▁ignor",
- -12.757661819458008
- ],
- [
- "gian",
- -12.75766372680664
- ],
- [
- "BRA",
- -12.757740020751953
- ],
- [
- "leader",
- -12.757957458496094
- ],
- [
- "nius",
- -12.757981300354004
- ],
- [
- "▁skies",
- -12.757987022399902
- ],
- [
- "▁nunta",
- -12.758023262023926
- ],
- [
- "▁grec",
- -12.758041381835938
- ],
- [
- "arranging",
- -12.75816822052002
- ],
- [
- "wartet",
- -12.758231163024902
- ],
- [
- "▁kostet",
- -12.758377075195312
- ],
- [
- "▁Entre",
- -12.758541107177734
- ],
- [
- "Mag",
- -12.758575439453125
- ],
- [
- "▁radiator",
- -12.758598327636719
- ],
- [
- "übrigens",
- -12.758689880371094
- ],
- [
- "Internet",
- -12.758706092834473
- ],
- [
- "▁connexion",
- -12.758718490600586
- ],
- [
- "▁prolonged",
- -12.758854866027832
- ],
- [
- "▁capabil",
- -12.75914192199707
- ],
- [
- "▁feeder",
- -12.759217262268066
- ],
- [
- "Initially",
- -12.759223937988281
- ],
- [
- "Green",
- -12.75926685333252
- ],
- [
- "▁passiert",
- -12.759272575378418
- ],
- [
- "▁courtyard",
- -12.759299278259277
- ],
- [
- "▁judeţ",
- -12.759320259094238
- ],
- [
- "▁Coalition",
- -12.759431838989258
- ],
- [
- "▁atmospheric",
- -12.759431838989258
- ],
- [
- "▁velocity",
- -12.759431838989258
- ],
- [
- "▁Frühstück",
- -12.759432792663574
- ],
- [
- "vacancies",
- -12.759438514709473
- ],
- [
- "unified",
- -12.759538650512695
- ],
- [
- "▁Ahmed",
- -12.759538650512695
- ],
- [
- "poured",
- -12.759550094604492
- ],
- [
- "▁Mikro",
- -12.75959587097168
- ],
- [
- "▁Klar",
- -12.759661674499512
- ],
- [
- "kommt",
- -12.759681701660156
- ],
- [
- "seated",
- -12.759744644165039
- ],
- [
- "musik",
- -12.75976848602295
- ],
- [
- "▁stimulation",
- -12.759841918945312
- ],
- [
- "▁solicitat",
- -12.759880065917969
- ],
- [
- "▁politically",
- -12.760165214538574
- ],
- [
- "restoring",
- -12.760322570800781
- ],
- [
- "▁Rag",
- -12.760435104370117
- ],
- [
- "▁officielle",
- -12.760468482971191
- ],
- [
- "▁Annie",
- -12.760479927062988
- ],
- [
- "▁tourne",
- -12.760634422302246
- ],
- [
- "▁Joel",
- -12.760642051696777
- ],
- [
- "blieben",
- -12.760666847229004
- ],
- [
- "▁repayment",
- -12.760736465454102
- ],
- [
- "▁Strategi",
- -12.760781288146973
- ],
- [
- "▁prietenii",
- -12.760804176330566
- ],
- [
- "▁Montgomery",
- -12.760858535766602
- ],
- [
- "▁résidence",
- -12.760858535766602
- ],
- [
- "▁sunglasses",
- -12.760858535766602
- ],
- [
- "▁1956",
- -12.760882377624512
- ],
- [
- "MEN",
- -12.76093578338623
- ],
- [
- "pouvant",
- -12.760997772216797
- ],
- [
- "375",
- -12.761061668395996
- ],
- [
- "directed",
- -12.761173248291016
- ],
- [
- "▁grinder",
- -12.76120662689209
- ],
- [
- "rträge",
- -12.761279106140137
- ],
- [
- "▁nickel",
- -12.761299133300781
- ],
- [
- "▁Maintain",
- -12.761313438415527
- ],
- [
- "▁Holmes",
- -12.761392593383789
- ],
- [
- "▁obtinut",
- -12.76157283782959
- ],
- [
- "▁walnut",
- -12.761585235595703
- ],
- [
- "▁consultancy",
- -12.761640548706055
- ],
- [
- "cooled",
- -12.761651039123535
- ],
- [
- "▁Brig",
- -12.761711120605469
- ],
- [
- "▁Produc",
- -12.761873245239258
- ],
- [
- "street",
- -12.76187515258789
- ],
- [
- "▁Einfach",
- -12.761897087097168
- ],
- [
- "North",
- -12.762149810791016
- ],
- [
- "▁PET",
- -12.76220989227295
- ],
- [
- "▁Président",
- -12.762288093566895
- ],
- [
- "▁produsului",
- -12.762457847595215
- ],
- [
- "literatur",
- -12.762483596801758
- ],
- [
- "133",
- -12.762561798095703
- ],
- [
- "▁recours",
- -12.762591361999512
- ],
- [
- "▁verpflichtet",
- -12.76264476776123
- ],
- [
- "▁Wur",
- -12.762733459472656
- ],
- [
- "▁psiholog",
- -12.762796401977539
- ],
- [
- "Veg",
- -12.762871742248535
- ],
- [
- "▁hype",
- -12.762930870056152
- ],
- [
- "augmenter",
- -12.762974739074707
- ],
- [
- "▁Welsh",
- -12.763012886047363
- ],
- [
- "mounted",
- -12.763158798217773
- ],
- [
- "▁Wann",
- -12.763425827026367
- ],
- [
- "▁gezeigt",
- -12.763620376586914
- ],
- [
- "▁memo",
- -12.763631820678711
- ],
- [
- "veterinary",
- -12.763717651367188
- ],
- [
- "▁Olympia",
- -12.763717651367188
- ],
- [
- "▁handsome",
- -12.763871192932129
- ],
- [
- "yama",
- -12.763911247253418
- ],
- [
- "studio",
- -12.763912200927734
- ],
- [
- "sozial",
- -12.764020919799805
- ],
- [
- "▁reap",
- -12.764104843139648
- ],
- [
- "▁didactic",
- -12.764111518859863
- ],
- [
- "▁Cookie",
- -12.764126777648926
- ],
- [
- "▁cooper",
- -12.764230728149414
- ],
- [
- "▁discern",
- -12.76441478729248
- ],
- [
- "▁Ubuntu",
- -12.764433860778809
- ],
- [
- "domain",
- -12.76443862915039
- ],
- [
- "▁plasa",
- -12.764460563659668
- ],
- [
- "hong",
- -12.764585494995117
- ],
- [
- "▁Freiheit",
- -12.764662742614746
- ],
- [
- "▁Gateway",
- -12.764678001403809
- ],
- [
- "▁poke",
- -12.764796257019043
- ],
- [
- "▁niedrig",
- -12.76484203338623
- ],
- [
- "▁corrected",
- -12.764899253845215
- ],
- [
- "▁predator",
- -12.76490306854248
- ],
- [
- "QA",
- -12.76507568359375
- ],
- [
- "Physio",
- -12.765101432800293
- ],
- [
- "MAS",
- -12.765108108520508
- ],
- [
- "▁sanctuary",
- -12.765151023864746
- ],
- [
- "▁aferent",
- -12.76523494720459
- ],
- [
- "▁perdre",
- -12.765268325805664
- ],
- [
- "▁recherch",
- -12.765397071838379
- ],
- [
- "ready",
- -12.76559829711914
- ],
- [
- "without",
- -12.76560115814209
- ],
- [
- "▁locuitori",
- -12.765628814697266
- ],
- [
- "▁Memo",
- -12.765636444091797
- ],
- [
- "▁Laden",
- -12.765646934509277
- ],
- [
- "danken",
- -12.76577377319336
- ],
- [
- "▁CNC",
- -12.765861511230469
- ],
- [
- "▁jealous",
- -12.765881538391113
- ],
- [
- "▁Background",
- -12.765951156616211
- ],
- [
- "▁Marx",
- -12.765999794006348
- ],
- [
- "▁Heli",
- -12.766039848327637
- ],
- [
- "▁osteo",
- -12.766057968139648
- ],
- [
- "▁rassembl",
- -12.766162872314453
- ],
- [
- "▁altceva",
- -12.766226768493652
- ],
- [
- "▁beschäftigt",
- -12.766226768493652
- ],
- [
- "▁accru",
- -12.766266822814941
- ],
- [
- "üft",
- -12.766273498535156
- ],
- [
- "▁sprout",
- -12.766288757324219
- ],
- [
- "endorf",
- -12.76647663116455
- ],
- [
- "▁specialitate",
- -12.766483306884766
- ],
- [
- "éanmoins",
- -12.766586303710938
- ],
- [
- "▁poign",
- -12.766663551330566
- ],
- [
- "▁mânca",
- -12.766668319702148
- ],
- [
- "▁stretched",
- -12.766752243041992
- ],
- [
- "fensiv",
- -12.76677131652832
- ],
- [
- "▁Auction",
- -12.76683235168457
- ],
- [
- "hints",
- -12.766944885253906
- ],
- [
- "▁typo",
- -12.766983032226562
- ],
- [
- "▁Rare",
- -12.767003059387207
- ],
- [
- "▁interruption",
- -12.767043113708496
- ],
- [
- "▁Mean",
- -12.76709270477295
- ],
- [
- "privileged",
- -12.767108917236328
- ],
- [
- "▁purtat",
- -12.767129898071289
- ],
- [
- "studie",
- -12.767229080200195
- ],
- [
- "offres",
- -12.767248153686523
- ],
- [
- "▁flap",
- -12.76729679107666
- ],
- [
- "▁rhetoric",
- -12.767304420471191
- ],
- [
- "▁snapshot",
- -12.767325401306152
- ],
- [
- "▁Conservative",
- -12.767367362976074
- ],
- [
- "▁taie",
- -12.767416954040527
- ],
- [
- "Game",
- -12.767499923706055
- ],
- [
- "▁naissance",
- -12.767663955688477
- ],
- [
- "Prof",
- -12.767704963684082
- ],
- [
- "qualified",
- -12.767745971679688
- ],
- [
- "▁suppression",
- -12.767749786376953
- ],
- [
- "▁răspunde",
- -12.767765045166016
- ],
- [
- "▁1/3",
- -12.767803192138672
- ],
- [
- "▁lieben",
- -12.767858505249023
- ],
- [
- "ù",
- -12.767898559570312
- ],
- [
- "america",
- -12.767955780029297
- ],
- [
- "▁Mum",
- -12.768182754516602
- ],
- [
- "▁Researchers",
- -12.76827335357666
- ],
- [
- "quip",
- -12.768308639526367
- ],
- [
- "▁fenomen",
- -12.768383026123047
- ],
- [
- "stools",
- -12.768387794494629
- ],
- [
- "▁commodity",
- -12.768742561340332
- ],
- [
- "▁rejuvenat",
- -12.768745422363281
- ],
- [
- "▁ausgezeichnet",
- -12.76876449584961
- ],
- [
- "▁păcate",
- -12.768784523010254
- ],
- [
- "3.6",
- -12.76882553100586
- ],
- [
- "zwei",
- -12.768904685974121
- ],
- [
- "accounted",
- -12.768982887268066
- ],
- [
- "▁Cycle",
- -12.76900863647461
- ],
- [
- "politischen",
- -12.769031524658203
- ],
- [
- "Normally",
- -12.76904010772705
- ],
- [
- "▁transcend",
- -12.769158363342285
- ],
- [
- "▁Classes",
- -12.769268989562988
- ],
- [
- "▁vene",
- -12.769363403320312
- ],
- [
- "protein",
- -12.76942253112793
- ],
- [
- "formulaire",
- -12.76944351196289
- ],
- [
- "▁endurance",
- -12.769463539123535
- ],
- [
- "▁Census",
- -12.769464492797852
- ],
- [
- "▁census",
- -12.7694673538208
- ],
- [
- "▁conțin",
- -12.76952838897705
- ],
- [
- "▁multinational",
- -12.769563674926758
- ],
- [
- "▁consomm",
- -12.769572257995605
- ],
- [
- "▁Porter",
- -12.769762992858887
- ],
- [
- "▁marvel",
- -12.769777297973633
- ],
- [
- "▁probable",
- -12.769824028015137
- ],
- [
- "dependable",
- -12.770044326782227
- ],
- [
- "▁crore",
- -12.77015495300293
- ],
- [
- "▁6:30",
- -12.770224571228027
- ],
- [
- "▁Bradley",
- -12.77032470703125
- ],
- [
- "molecule",
- -12.770400047302246
- ],
- [
- "inclusiv",
- -12.770516395568848
- ],
- [
- "▁privilégi",
- -12.770543098449707
- ],
- [
- "▁cerere",
- -12.770611763000488
- ],
- [
- "ouille",
- -12.770696640014648
- ],
- [
- "▁âgé",
- -12.770787239074707
- ],
- [
- "▁ghid",
- -12.770801544189453
- ],
- [
- "▁Controller",
- -12.77082347869873
- ],
- [
- "▁incredere",
- -12.770988464355469
- ],
- [
- "▁hostel",
- -12.771015167236328
- ],
- [
- "wissenschaft",
- -12.771121978759766
- ],
- [
- "▁cooperate",
- -12.771183967590332
- ],
- [
- "ки",
- -12.771202087402344
- ],
- [
- "▁Küchen",
- -12.771384239196777
- ],
- [
- "▁BIO",
- -12.771406173706055
- ],
- [
- "▁deliveries",
- -12.771458625793457
- ],
- [
- "▁urmări",
- -12.771553993225098
- ],
- [
- "▁überzeugen",
- -12.771631240844727
- ],
- [
- "Roofing",
- -12.771703720092773
- ],
- [
- "▁Adel",
- -12.771737098693848
- ],
- [
- "▁navy",
- -12.77181339263916
- ],
- [
- "▁cider",
- -12.772101402282715
- ],
- [
- "▁dulce",
- -12.772109985351562
- ],
- [
- "▁inspirat",
- -12.772163391113281
- ],
- [
- "allez",
- -12.772164344787598
- ],
- [
- "HH",
- -12.77221965789795
- ],
- [
- "▁Danish",
- -12.7722749710083
- ],
- [
- "CDC",
- -12.7722806930542
- ],
- [
- "▁Milch",
- -12.772303581237793
- ],
- [
- "▁Hockey",
- -12.772346496582031
- ],
- [
- "▁Smooth",
- -12.772347450256348
- ],
- [
- "▁FIFA",
- -12.772361755371094
- ],
- [
- "▁Devon",
- -12.772364616394043
- ],
- [
- "chung",
- -12.772379875183105
- ],
- [
- "▁villain",
- -12.772420883178711
- ],
- [
- "▁musée",
- -12.772441864013672
- ],
- [
- "tiennent",
- -12.772557258605957
- ],
- [
- "chou",
- -12.772732734680176
- ],
- [
- "kopf",
- -12.772809982299805
- ],
- [
- "printed",
- -12.77281379699707
- ],
- [
- "▁Depression",
- -12.773076057434082
- ],
- [
- "▁opioid",
- -12.773082733154297
- ],
- [
- "nomie",
- -12.773098945617676
- ],
- [
- "▁footwear",
- -12.773211479187012
- ],
- [
- "▁Cause",
- -12.773260116577148
- ],
- [
- "SEL",
- -12.773515701293945
- ],
- [
- "▁Roller",
- -12.773523330688477
- ],
- [
- "▁einzigartige",
- -12.773589134216309
- ],
- [
- "desea",
- -12.773597717285156
- ],
- [
- "▁nasty",
- -12.773792266845703
- ],
- [
- "formulated",
- -12.773877143859863
- ],
- [
- "breaker",
- -12.773958206176758
- ],
- [
- "▁goodies",
- -12.773961067199707
- ],
- [
- "▁sandy",
- -12.774189949035645
- ],
- [
- "method",
- -12.77425479888916
- ],
- [
- "▁Maple",
- -12.774308204650879
- ],
- [
- "gefragt",
- -12.774435997009277
- ],
- [
- "▁decreasing",
- -12.774515151977539
- ],
- [
- "ceşti",
- -12.774555206298828
- ],
- [
- "▁DUI",
- -12.774563789367676
- ],
- [
- "▁pierdere",
- -12.774574279785156
- ],
- [
- "▁brushes",
- -12.77466869354248
- ],
- [
- "▁Fully",
- -12.774712562561035
- ],
- [
- "filtered",
- -12.774789810180664
- ],
- [
- "ruins",
- -12.774988174438477
- ],
- [
- "Save",
- -12.775114059448242
- ],
- [
- "sweeping",
- -12.7752046585083
- ],
- [
- "PCR",
- -12.775334358215332
- ],
- [
- "▁folded",
- -12.775337219238281
- ],
- [
- "▁urca",
- -12.775444030761719
- ],
- [
- "▁clic",
- -12.775484085083008
- ],
- [
- "▁spécialiste",
- -12.775614738464355
- ],
- [
- "▁durfte",
- -12.775686264038086
- ],
- [
- "tuși",
- -12.775871276855469
- ],
- [
- "▁diligent",
- -12.77596378326416
- ],
- [
- "▁verdict",
- -12.775972366333008
- ],
- [
- "▁chaise",
- -12.776039123535156
- ],
- [
- "▁cleanup",
- -12.776068687438965
- ],
- [
- "▁Guitar",
- -12.776076316833496
- ],
- [
- "▁Dip",
- -12.776142120361328
- ],
- [
- "vru",
- -12.776260375976562
- ],
- [
- "▁cogn",
- -12.776373863220215
- ],
- [
- "something",
- -12.776529312133789
- ],
- [
- "hidr",
- -12.776535034179688
- ],
- [
- "ENG",
- -12.776607513427734
- ],
- [
- "Paul",
- -12.776679039001465
- ],
- [
- "▁reboot",
- -12.776687622070312
- ],
- [
- "savvy",
- -12.776688575744629
- ],
- [
- "▁Macron",
- -12.776710510253906
- ],
- [
- "▁Kino",
- -12.77682876586914
- ],
- [
- "232",
- -12.776832580566406
- ],
- [
- "▁gravit",
- -12.776861190795898
- ],
- [
- "ANC",
- -12.776883125305176
- ],
- [
- "▁petrecut",
- -12.776944160461426
- ],
- [
- "▁signage",
- -12.776959419250488
- ],
- [
- "odia",
- -12.776987075805664
- ],
- [
- "▁GRA",
- -12.77712631225586
- ],
- [
- "▁alegeril",
- -12.777129173278809
- ],
- [
- "leger",
- -12.77717399597168
- ],
- [
- "▁medicamente",
- -12.777174949645996
- ],
- [
- "pentru",
- -12.777249336242676
- ],
- [
- "▁collectif",
- -12.777251243591309
- ],
- [
- "▁Sohn",
- -12.777298927307129
- ],
- [
- "205",
- -12.777313232421875
- ],
- [
- "▁Reach",
- -12.77733039855957
- ],
- [
- "RAM",
- -12.777400970458984
- ],
- [
- "3.4",
- -12.777405738830566
- ],
- [
- "▁bleach",
- -12.777409553527832
- ],
- [
- "▁diligence",
- -12.777414321899414
- ],
- [
- "▁MORE",
- -12.777440071105957
- ],
- [
- "▁Critical",
- -12.777471542358398
- ],
- [
- "▁singură",
- -12.77767276763916
- ],
- [
- "▁adversar",
- -12.777791023254395
- ],
- [
- "▁Buzz",
- -12.7778902053833
- ],
- [
- "▁demeure",
- -12.778063774108887
- ],
- [
- "▁nephew",
- -12.778141021728516
- ],
- [
- "▁Boom",
- -12.77817440032959
- ],
- [
- "▁shining",
- -12.77819538116455
- ],
- [
- "▁sponge",
- -12.778206825256348
- ],
- [
- "liest",
- -12.77841854095459
- ],
- [
- "rseits",
- -12.778690338134766
- ],
- [
- "▁capita",
- -12.778823852539062
- ],
- [
- "esthesia",
- -12.778867721557617
- ],
- [
- "500,000",
- -12.77895736694336
- ],
- [
- "▁Pressure",
- -12.77898120880127
- ],
- [
- "ifikation",
- -12.779021263122559
- ],
- [
- "▁acceleration",
- -12.779181480407715
- ],
- [
- "▁Pfarr",
- -12.779282569885254
- ],
- [
- "▁imobil",
- -12.779304504394531
- ],
- [
- "▁pericol",
- -12.779326438903809
- ],
- [
- "▁flock",
- -12.779454231262207
- ],
- [
- "▁Scholar",
- -12.77962875366211
- ],
- [
- "▁Fusion",
- -12.779630661010742
- ],
- [
- "▁revolve",
- -12.779637336730957
- ],
- [
- "Plugin",
- -12.779664993286133
- ],
- [
- "▁Ruf",
- -12.779691696166992
- ],
- [
- "▁tehnici",
- -12.780024528503418
- ],
- [
- "voice",
- -12.78005313873291
- ],
- [
- "▁anomal",
- -12.780203819274902
- ],
- [
- "▁gefallen",
- -12.780252456665039
- ],
- [
- "▁Wyoming",
- -12.780322074890137
- ],
- [
- "▁9:00",
- -12.780354499816895
- ],
- [
- "packed",
- -12.780461311340332
- ],
- [
- "▁Zimbabwe",
- -12.780686378479004
- ],
- [
- "▁glücklich",
- -12.780766487121582
- ],
- [
- "ethanol",
- -12.78077220916748
- ],
- [
- "▁effektiv",
- -12.780936241149902
- ],
- [
- "▁saptamani",
- -12.781049728393555
- ],
- [
- "▁umfasst",
- -12.781052589416504
- ],
- [
- "▁Werbung",
- -12.781103134155273
- ],
- [
- "▁undermine",
- -12.781164169311523
- ],
- [
- "▁Lego",
- -12.781322479248047
- ],
- [
- "▁Rac",
- -12.781323432922363
- ],
- [
- "educating",
- -12.781441688537598
- ],
- [
- "leiten",
- -12.781451225280762
- ],
- [
- "derma",
- -12.781518936157227
- ],
- [
- "hängen",
- -12.781597137451172
- ],
- [
- "Lumin",
- -12.781846046447754
- ],
- [
- "▁PNL",
- -12.781913757324219
- ],
- [
- "▁volcano",
- -12.782064437866211
- ],
- [
- "▁Anfrage",
- -12.782066345214844
- ],
- [
- "▁resp",
- -12.782124519348145
- ],
- [
- "leigh",
- -12.78217601776123
- ],
- [
- "▁addict",
- -12.782176971435547
- ],
- [
- "WORK",
- -12.782312393188477
- ],
- [
- "▁FY",
- -12.782322883605957
- ],
- [
- "▁maneuver",
- -12.782513618469238
- ],
- [
- "flächen",
- -12.782525062561035
- ],
- [
- "zweck",
- -12.782527923583984
- ],
- [
- "tolerant",
- -12.782609939575195
- ],
- [
- "Davidson",
- -12.78272533416748
- ],
- [
- "▁meteor",
- -12.782849311828613
- ],
- [
- "▁Stephanie",
- -12.78291130065918
- ],
- [
- "▁plafon",
- -12.783126831054688
- ],
- [
- "technischen",
- -12.78316879272461
- ],
- [
- "unused",
- -12.783193588256836
- ],
- [
- "▁voulai",
- -12.783228874206543
- ],
- [
- "▁fehlt",
- -12.783447265625
- ],
- [
- "möglichen",
- -12.783955574035645
- ],
- [
- "▁Twenty",
- -12.783968925476074
- ],
- [
- "composing",
- -12.783979415893555
- ],
- [
- "▁rebate",
- -12.78400707244873
- ],
- [
- "Italie",
- -12.784036636352539
- ],
- [
- "▁goodbye",
- -12.784058570861816
- ],
- [
- "wild",
- -12.784061431884766
- ],
- [
- "▁lancé",
- -12.784077644348145
- ],
- [
- "▁wunderschöne",
- -12.784083366394043
- ],
- [
- "▁Frontier",
- -12.784139633178711
- ],
- [
- "▁murit",
- -12.784313201904297
- ],
- [
- "▁scump",
- -12.78464412689209
- ],
- [
- "OVER",
- -12.784682273864746
- ],
- [
- "▁meme",
- -12.784709930419922
- ],
- [
- "Super",
- -12.784733772277832
- ],
- [
- "▁Crack",
- -12.784849166870117
- ],
- [
- "rennen",
- -12.784907341003418
- ],
- [
- "▁interessiert",
- -12.784941673278809
- ],
- [
- "▁relaţi",
- -12.784942626953125
- ],
- [
- "▁factories",
- -12.784975051879883
- ],
- [
- "▁[...]",
- -12.785066604614258
- ],
- [
- "▁vizite",
- -12.785075187683105
- ],
- [
- "▁erfolgen",
- -12.785199165344238
- ],
- [
- "▁Hosting",
- -12.785244941711426
- ],
- [
- "▁localitate",
- -12.78528118133545
- ],
- [
- "▁chasse",
- -12.785415649414062
- ],
- [
- "▁Meadow",
- -12.785465240478516
- ],
- [
- "▁expansive",
- -12.785513877868652
- ],
- [
- "hov",
- -12.785874366760254
- ],
- [
- "Phil",
- -12.785978317260742
- ],
- [
- "illian",
- -12.786107063293457
- ],
- [
- "▁manipulate",
- -12.786107063293457
- ],
- [
- "informationen",
- -12.786130905151367
- ],
- [
- "▁profesionist",
- -12.786162376403809
- ],
- [
- "risen",
- -12.786252975463867
- ],
- [
- "frem",
- -12.786300659179688
- ],
- [
- "Act",
- -12.78640079498291
- ],
- [
- "supervised",
- -12.786491394042969
- ],
- [
- "▁capul",
- -12.786506652832031
- ],
- [
- "▁Craiova",
- -12.786528587341309
- ],
- [
- "▁victoire",
- -12.786528587341309
- ],
- [
- "▁guitarist",
- -12.786680221557617
- ],
- [
- "▁identific",
- -12.786684036254883
- ],
- [
- "democrat",
- -12.786864280700684
- ],
- [
- "Authentic",
- -12.786894798278809
- ],
- [
- "▁Autumn",
- -12.786894798278809
- ],
- [
- "▁bodi",
- -12.787014961242676
- ],
- [
- "April",
- -12.787044525146484
- ],
- [
- "▁Burger",
- -12.787049293518066
- ],
- [
- "▁BEST",
- -12.787490844726562
- ],
- [
- "▁torrent",
- -12.78749942779541
- ],
- [
- "UV",
- -12.787567138671875
- ],
- [
- "▁renal",
- -12.787676811218262
- ],
- [
- "founded",
- -12.787693977355957
- ],
- [
- "203",
- -12.787956237792969
- ],
- [
- "▁Flooring",
- -12.78799057006836
- ],
- [
- "▁kilogram",
- -12.787994384765625
- ],
- [
- "▁garantiert",
- -12.788139343261719
- ],
- [
- "▁fulfil",
- -12.788204193115234
- ],
- [
- "303",
- -12.788330078125
- ],
- [
- "▁schafft",
- -12.788363456726074
- ],
- [
- "▁butterfly",
- -12.788365364074707
- ],
- [
- "▁Stuart",
- -12.788382530212402
- ],
- [
- "▁Versuch",
- -12.788392066955566
- ],
- [
- "▁liking",
- -12.788412094116211
- ],
- [
- "▁chercher",
- -12.788508415222168
- ],
- [
- "▁wrapping",
- -12.788527488708496
- ],
- [
- "schrieb",
- -12.788652420043945
- ],
- [
- "▁abuz",
- -12.788718223571777
- ],
- [
- "▁maîtrise",
- -12.788772583007812
- ],
- [
- "EQ",
- -12.788887977600098
- ],
- [
- "▁Erinnerung",
- -12.789095878601074
- ],
- [
- "▁bridal",
- -12.78909969329834
- ],
- [
- "Rock",
- -12.789118766784668
- ],
- [
- "▁copied",
- -12.789193153381348
- ],
- [
- "Met",
- -12.789206504821777
- ],
- [
- "▁incep",
- -12.789233207702637
- ],
- [
- "▁sinus",
- -12.789336204528809
- ],
- [
- "▁Felix",
- -12.789831161499023
- ],
- [
- "▁Deluxe",
- -12.789837837219238
- ],
- [
- "▁GPU",
- -12.789848327636719
- ],
- [
- "Sie",
- -12.790164947509766
- ],
- [
- "lowering",
- -12.790262222290039
- ],
- [
- "▁Trotz",
- -12.790282249450684
- ],
- [
- "333",
- -12.790417671203613
- ],
- [
- "withstand",
- -12.79055118560791
- ],
- [
- "▁Aufenthalt",
- -12.790566444396973
- ],
- [
- "▁unhealthy",
- -12.790567398071289
- ],
- [
- "▁urbain",
- -12.790573120117188
- ],
- [
- "▁LOL",
- -12.790702819824219
- ],
- [
- "▁Ballet",
- -12.79074478149414
- ],
- [
- "▁Decoration",
- -12.79083251953125
- ],
- [
- "weist",
- -12.790839195251465
- ],
- [
- "▁Residence",
- -12.790932655334473
- ],
- [
- "▁Leeds",
- -12.791055679321289
- ],
- [
- "▁Genau",
- -12.791084289550781
- ],
- [
- "Imagin",
- -12.791136741638184
- ],
- [
- "▁suspicion",
- -12.791300773620605
- ],
- [
- "▁pêche",
- -12.791301727294922
- ],
- [
- "▁Soccer",
- -12.791306495666504
- ],
- [
- "▁protectie",
- -12.791553497314453
- ],
- [
- "ATS",
- -12.791796684265137
- ],
- [
- "stocked",
- -12.791838645935059
- ],
- [
- "▁gymnas",
- -12.79184627532959
- ],
- [
- "ASP",
- -12.792027473449707
- ],
- [
- "▁Independence",
- -12.792037010192871
- ],
- [
- "▁Wizard",
- -12.792037963867188
- ],
- [
- "▁nitrogen",
- -12.79204273223877
- ],
- [
- "amerikanische",
- -12.7920503616333
- ],
- [
- "▁Indianapolis",
- -12.79205322265625
- ],
- [
- "catches",
- -12.792131423950195
- ],
- [
- "stria",
- -12.792275428771973
- ],
- [
- "schätze",
- -12.79235553741455
- ],
- [
- "▁Räume",
- -12.792387962341309
- ],
- [
- "▁Interesting",
- -12.792403221130371
- ],
- [
- "bürger",
- -12.79240608215332
- ],
- [
- "sweet",
- -12.792410850524902
- ],
- [
- "Identify",
- -12.792632102966309
- ],
- [
- "EEN",
- -12.792651176452637
- ],
- [
- "▁£3",
- -12.792654991149902
- ],
- [
- "interacting",
- -12.7926664352417
- ],
- [
- "NYSE",
- -12.792762756347656
- ],
- [
- "▁Dynamics",
- -12.79277515411377
- ],
- [
- "▁modificări",
- -12.792777061462402
- ],
- [
- "▁Kumar",
- -12.792936325073242
- ],
- [
- "chette",
- -12.79313850402832
- ],
- [
- "▁presiune",
- -12.79316234588623
- ],
- [
- "arni",
- -12.793164253234863
- ],
- [
- "▁vielfältig",
- -12.793221473693848
- ],
- [
- "KC",
- -12.793259620666504
- ],
- [
- "▁Cuisine",
- -12.793513298034668
- ],
- [
- "▁australia",
- -12.793885231018066
- ],
- [
- "▁încet",
- -12.794026374816895
- ],
- [
- "▁caracteristic",
- -12.794257164001465
- ],
- [
- "▁cookbook",
- -12.794501304626465
- ],
- [
- "▁douleur",
- -12.79453182220459
- ],
- [
- "AVI",
- -12.794593811035156
- ],
- [
- "artikel",
- -12.794740676879883
- ],
- [
- "feta",
- -12.79493522644043
- ],
- [
- "▁fréquent",
- -12.794987678527832
- ],
- [
- "▁Prophet",
- -12.795051574707031
- ],
- [
- "▁dépense",
- -12.795202255249023
- ],
- [
- "▁Smile",
- -12.795235633850098
- ],
- [
- "▁lawmakers",
- -12.79525375366211
- ],
- [
- "▁Kollegen",
- -12.795391082763672
- ],
- [
- "▁Pir",
- -12.79555606842041
- ],
- [
- "serez",
- -12.79561710357666
- ],
- [
- "▁consumator",
- -12.795656204223633
- ],
- [
- "▁playlist",
- -12.795730590820312
- ],
- [
- "▁envisage",
- -12.795733451843262
- ],
- [
- "swept",
- -12.795780181884766
- ],
- [
- "▁Grim",
- -12.795825004577637
- ],
- [
- "▁widow",
- -12.795836448669434
- ],
- [
- "authorised",
- -12.795886039733887
- ],
- [
- "▁(...)",
- -12.796035766601562
- ],
- [
- "▁photographic",
- -12.796060562133789
- ],
- [
- "▁libertate",
- -12.796173095703125
- ],
- [
- "▁principalement",
- -12.796201705932617
- ],
- [
- "umming",
- -12.796260833740234
- ],
- [
- "▁Montréal",
- -12.796465873718262
- ],
- [
- "▁compilation",
- -12.796468734741211
- ],
- [
- "▁erlaubt",
- -12.79647159576416
- ],
- [
- "▁biblical",
- -12.796518325805664
- ],
- [
- "volume",
- -12.796561241149902
- ],
- [
- "5-7",
- -12.796809196472168
- ],
- [
- "▁Versch",
- -12.79689884185791
- ],
- [
- "▁Shark",
- -12.796957015991211
- ],
- [
- "ologne",
- -12.796969413757324
- ],
- [
- "4.4",
- -12.797086715698242
- ],
- [
- "decken",
- -12.797112464904785
- ],
- [
- "▁frequencies",
- -12.797205924987793
- ],
- [
- "▁inferior",
- -12.79720687866211
- ],
- [
- "visible",
- -12.797321319580078
- ],
- [
- "▁educator",
- -12.797394752502441
- ],
- [
- "▁soziale",
- -12.797420501708984
- ],
- [
- "▁billet",
- -12.797523498535156
- ],
- [
- "folosirea",
- -12.797574996948242
- ],
- [
- "▁aufgenommen",
- -12.797590255737305
- ],
- [
- "▁Thread",
- -12.797649383544922
- ],
- [
- "registering",
- -12.797694206237793
- ],
- [
- "▁Loop",
- -12.797747611999512
- ],
- [
- "innovation",
- -12.79783821105957
- ],
- [
- "▁elimination",
- -12.797857284545898
- ],
- [
- "136",
- -12.797883987426758
- ],
- [
- "▁fluctu",
- -12.797892570495605
- ],
- [
- "▁Mercury",
- -12.79794692993164
- ],
- [
- "▁bouche",
- -12.797955513000488
- ],
- [
- "▁hurdle",
- -12.7979736328125
- ],
- [
- "▁Bennett",
- -12.798040390014648
- ],
- [
- "STI",
- -12.79818344116211
- ],
- [
- "▁théâtre",
- -12.798316955566406
- ],
- [
- "▁confortable",
- -12.798359870910645
- ],
- [
- "▁Automobil",
- -12.79838752746582
- ],
- [
- "▁Donna",
- -12.798399925231934
- ],
- [
- "▁foyer",
- -12.79841136932373
- ],
- [
- "▁hollow",
- -12.798465728759766
- ],
- [
- "▁règlement",
- -12.79861068725586
- ],
- [
- "effi",
- -12.798616409301758
- ],
- [
- "▁sediment",
- -12.79869270324707
- ],
- [
- "▁Mä",
- -12.798774719238281
- ],
- [
- "▁faint",
- -12.798833847045898
- ],
- [
- "feti",
- -12.79890251159668
- ],
- [
- "▁Concord",
- -12.798959732055664
- ],
- [
- "▁Ladies",
- -12.798990249633789
- ],
- [
- "▁pregatit",
- -12.799052238464355
- ],
- [
- "▁Ensemble",
- -12.79905891418457
- ],
- [
- "▁Ingredient",
- -12.79905891418457
- ],
- [
- "▁Respond",
- -12.79914379119873
- ],
- [
- "▁impaired",
- -12.799356460571289
- ],
- [
- "▁Feedback",
- -12.799430847167969
- ],
- [
- "▁ultrasound",
- -12.799461364746094
- ],
- [
- "▁Guvernului",
- -12.799617767333984
- ],
- [
- "▁Unterricht",
- -12.799654006958008
- ],
- [
- "▁prosecut",
- -12.799662590026855
- ],
- [
- "spend",
- -12.799732208251953
- ],
- [
- "▁capitol",
- -12.799800872802734
- ],
- [
- "USD",
- -12.799822807312012
- ],
- [
- "observing",
- -12.799947738647461
- ],
- [
- "▁effortlessly",
- -12.800045013427734
- ],
- [
- "▁Setting",
- -12.80010986328125
- ],
- [
- "▁spontaneous",
- -12.80020809173584
- ],
- [
- "▁LEGO",
- -12.800238609313965
- ],
- [
- "initiative",
- -12.800299644470215
- ],
- [
- "▁Sak",
- -12.800299644470215
- ],
- [
- "Interestingly",
- -12.800326347351074
- ],
- [
- "▁Yale",
- -12.800352096557617
- ],
- [
- "▁größer",
- -12.80038070678711
- ],
- [
- "RIC",
- -12.800406455993652
- ],
- [
- "▁distracted",
- -12.800436973571777
- ],
- [
- "drafted",
- -12.800484657287598
- ],
- [
- "▁Brenda",
- -12.800522804260254
- ],
- [
- "monopol",
- -12.800551414489746
- ],
- [
- "städt",
- -12.800580024719238
- ],
- [
- "▁altar",
- -12.80058765411377
- ],
- [
- "▁Hannover",
- -12.800596237182617
- ],
- [
- "▁Spiritual",
- -12.800702095031738
- ],
- [
- "▁thriller",
- -12.800747871398926
- ],
- [
- "▁Schneider",
- -12.800760269165039
- ],
- [
- "▁accumulate",
- -12.800817489624023
- ],
- [
- "▁mediului",
- -12.800822257995605
- ],
- [
- "▁Mathematics",
- -12.800914764404297
- ],
- [
- "▁paradox",
- -12.800986289978027
- ],
- [
- "▁Sham",
- -12.801230430603027
- ],
- [
- "▁SITE",
- -12.801375389099121
- ],
- [
- "▁echipei",
- -12.801508903503418
- ],
- [
- "▁staircase",
- -12.801660537719727
- ],
- [
- "▁întrebări",
- -12.801705360412598
- ],
- [
- "Commerce",
- -12.802020072937012
- ],
- [
- "▁selfie",
- -12.802353858947754
- ],
- [
- "▁Pocket",
- -12.802404403686523
- ],
- [
- "▁niemand",
- -12.80263614654541
- ],
- [
- "Tool",
- -12.802678108215332
- ],
- [
- "igma",
- -12.802695274353027
- ],
- [
- "utilisant",
- -12.802915573120117
- ],
- [
- "▁negatively",
- -12.80295181274414
- ],
- [
- "Secondly",
- -12.802955627441406
- ],
- [
- "▁ROI",
- -12.8030366897583
- ],
- [
- "Arch",
- -12.803121566772461
- ],
- [
- "▁continuity",
- -12.80318546295166
- ],
- [
- "▁Prayer",
- -12.803235054016113
- ],
- [
- "inverse",
- -12.803241729736328
- ],
- [
- "▁Himmel",
- -12.803336143493652
- ],
- [
- "prinz",
- -12.803478240966797
- ],
- [
- "wichtigen",
- -12.803496360778809
- ],
- [
- "étage",
- -12.803522109985352
- ],
- [
- "summe",
- -12.8036527633667
- ],
- [
- "▁Zeitung",
- -12.80366039276123
- ],
- [
- "▁realization",
- -12.803897857666016
- ],
- [
- "▁influent",
- -12.804291725158691
- ],
- [
- "▁Valid",
- -12.804357528686523
- ],
- [
- "▁publicity",
- -12.804439544677734
- ],
- [
- "▁vertreten",
- -12.804447174072266
- ],
- [
- "▁Shoes",
- -12.804609298706055
- ],
- [
- "▁Diabetes",
- -12.80463695526123
- ],
- [
- "▁anticipation",
- -12.804670333862305
- ],
- [
- "▁Blank",
- -12.8047456741333
- ],
- [
- "asked",
- -12.804899215698242
- ],
- [
- "Power",
- -12.804938316345215
- ],
- [
- "arrelage",
- -12.805140495300293
- ],
- [
- "▁appraisal",
- -12.80538272857666
- ],
- [
- "▁harassment",
- -12.805542945861816
- ],
- [
- "Anzeige",
- -12.805682182312012
- ],
- [
- "liners",
- -12.80584716796875
- ],
- [
- "Firstly",
- -12.805851936340332
- ],
- [
- "transferring",
- -12.805951118469238
- ],
- [
- "▁Diane",
- -12.806012153625488
- ],
- [
- "▁1/2\"",
- -12.80606746673584
- ],
- [
- "▁adrenal",
- -12.806131362915039
- ],
- [
- "▁Prague",
- -12.806208610534668
- ],
- [
- "insertion",
- -12.80635929107666
- ],
- [
- "▁Fahrer",
- -12.806465148925781
- ],
- [
- "▁divin",
- -12.806585311889648
- ],
- [
- "▁douche",
- -12.80673885345459
- ],
- [
- "▁meticulous",
- -12.806879043579102
- ],
- [
- "▁IEEE",
- -12.806981086730957
- ],
- [
- "▁Rabatt",
- -12.807259559631348
- ],
- [
- "Runner",
- -12.807342529296875
- ],
- [
- "▁Leder",
- -12.807429313659668
- ],
- [
- "project",
- -12.80745792388916
- ],
- [
- "▁Split",
- -12.807562828063965
- ],
- [
- "Gold",
- -12.807600021362305
- ],
- [
- "5.00",
- -12.807629585266113
- ],
- [
- "iola",
- -12.807655334472656
- ],
- [
- "standardized",
- -12.807890892028809
- ],
- [
- "ordination",
- -12.807984352111816
- ],
- [
- "▁Egal",
- -12.808158874511719
- ],
- [
- "▁ruhig",
- -12.808241844177246
- ],
- [
- "▁judiciar",
- -12.80837345123291
- ],
- [
- "▁Nowadays",
- -12.808374404907227
- ],
- [
- "▁whistle",
- -12.808374404907227
- ],
- [
- "▁superhero",
- -12.808379173278809
- ],
- [
- "▁PowerPoint",
- -12.808408737182617
- ],
- [
- "flop",
- -12.808420181274414
- ],
- [
- "olph",
- -12.808460235595703
- ],
- [
- "▁pallet",
- -12.808916091918945
- ],
- [
- "posons",
- -12.809005737304688
- ],
- [
- "▁Listing",
- -12.809032440185547
- ],
- [
- "Tag",
- -12.809075355529785
- ],
- [
- "introductory",
- -12.809122085571289
- ],
- [
- "▁Profil",
- -12.809123992919922
- ],
- [
- "symmetric",
- -12.809126853942871
- ],
- [
- "▁aisle",
- -12.809138298034668
- ],
- [
- "▁ajouté",
- -12.809147834777832
- ],
- [
- "opathy",
- -12.809149742126465
- ],
- [
- "prezentate",
- -12.809155464172363
- ],
- [
- "▁hurry",
- -12.809165000915527
- ],
- [
- "Auth",
- -12.809310913085938
- ],
- [
- "▁Homepage",
- -12.809435844421387
- ],
- [
- "ashes",
- -12.809489250183105
- ],
- [
- "▁inklusive",
- -12.809496879577637
- ],
- [
- "populated",
- -12.809502601623535
- ],
- [
- "▁nein",
- -12.809554100036621
- ],
- [
- "▁syndicat",
- -12.809690475463867
- ],
- [
- "▁développé",
- -12.809842109680176
- ],
- [
- "▁Domestic",
- -12.809877395629883
- ],
- [
- "essay",
- -12.809967994689941
- ],
- [
- "Atelier",
- -12.809980392456055
- ],
- [
- "▁proceeding",
- -12.810006141662598
- ],
- [
- "▁SAS",
- -12.810038566589355
- ],
- [
- "task",
- -12.810063362121582
- ],
- [
- "▁blackjack",
- -12.810114860534668
- ],
- [
- "Key",
- -12.810186386108398
- ],
- [
- "thérapie",
- -12.810247421264648
- ],
- [
- "▁Cohen",
- -12.810397148132324
- ],
- [
- "Direct",
- -12.810510635375977
- ],
- [
- "▁Estimat",
- -12.810517311096191
- ],
- [
- "élève",
- -12.810616493225098
- ],
- [
- "cind",
- -12.810640335083008
- ],
- [
- "▁prezenț",
- -12.810701370239258
- ],
- [
- "▁notorious",
- -12.810725212097168
- ],
- [
- "climbed",
- -12.810816764831543
- ],
- [
- "▁flexibil",
- -12.810830116271973
- ],
- [
- "▁entlang",
- -12.810855865478516
- ],
- [
- "longed",
- -12.81103515625
- ],
- [
- "▁elbow",
- -12.811078071594238
- ],
- [
- "BH",
- -12.811296463012695
- ],
- [
- "▁Radu",
- -12.811376571655273
- ],
- [
- "▁lonely",
- -12.811378479003906
- ],
- [
- "ALA",
- -12.811405181884766
- ],
- [
- "Variante",
- -12.811639785766602
- ],
- [
- "▁Influen",
- -12.81169319152832
- ],
- [
- "▁Budapest",
- -12.811747550964355
- ],
- [
- "▁Gemüse",
- -12.811747550964355
- ],
- [
- "▁continental",
- -12.811750411987305
- ],
- [
- "ippo",
- -12.811771392822266
- ],
- [
- "▁Affordable",
- -12.81212329864502
- ],
- [
- "▁niece",
- -12.812187194824219
- ],
- [
- "oscopic",
- -12.812190055847168
- ],
- [
- "▁Grid",
- -12.81222152709961
- ],
- [
- "sliced",
- -12.812270164489746
- ],
- [
- "▁voici",
- -12.812294006347656
- ],
- [
- "aveam",
- -12.812471389770508
- ],
- [
- "▁Lars",
- -12.812612533569336
- ],
- [
- "APA",
- -12.812657356262207
- ],
- [
- "▁particulière",
- -12.812858581542969
- ],
- [
- "sorb",
- -12.8128662109375
- ],
- [
- "▁1955",
- -12.812887191772461
- ],
- [
- "▁solutii",
- -12.812942504882812
- ],
- [
- "loch",
- -12.812960624694824
- ],
- [
- "▁summon",
- -12.813212394714355
- ],
- [
- "wurf",
- -12.813271522521973
- ],
- [
- "▁protecți",
- -12.813288688659668
- ],
- [
- "2001",
- -12.813499450683594
- ],
- [
- "▁sophomore",
- -12.813627243041992
- ],
- [
- "▁Schwerpunkt",
- -12.813628196716309
- ],
- [
- "▁diplomat",
- -12.813687324523926
- ],
- [
- "▁artistique",
- -12.813726425170898
- ],
- [
- "▁accueille",
- -12.813739776611328
- ],
- [
- "Disp",
- -12.813746452331543
- ],
- [
- "inherited",
- -12.813764572143555
- ],
- [
- "▁COMP",
- -12.813889503479004
- ],
- [
- "▁envoyé",
- -12.814046859741211
- ],
- [
- "▁tuning",
- -12.814056396484375
- ],
- [
- "▁entspricht",
- -12.814062118530273
- ],
- [
- "▁exerc",
- -12.81406307220459
- ],
- [
- "▁accessoires",
- -12.8140869140625
- ],
- [
- "▁Automat",
- -12.814348220825195
- ],
- [
- "importance",
- -12.814408302307129
- ],
- [
- "▁travellers",
- -12.814432144165039
- ],
- [
- "seiten",
- -12.814474105834961
- ],
- [
- "▁slider",
- -12.814481735229492
- ],
- [
- "effect",
- -12.814591407775879
- ],
- [
- "▁siding",
- -12.814669609069824
- ],
- [
- "▁Crit",
- -12.814780235290527
- ],
- [
- "▁sportif",
- -12.814827919006348
- ],
- [
- "▁Accessories",
- -12.81513500213623
- ],
- [
- "▁Anteil",
- -12.815184593200684
- ],
- [
- "▁limbi",
- -12.81519603729248
- ],
- [
- "▁vendre",
- -12.815269470214844
- ],
- [
- "borg",
- -12.815435409545898
- ],
- [
- "▁Deposit",
- -12.815508842468262
- ],
- [
- "▁Hö",
- -12.815717697143555
- ],
- [
- "employé",
- -12.8157320022583
- ],
- [
- "▁Bangalore",
- -12.815887451171875
- ],
- [
- "▁itinerary",
- -12.815888404846191
- ],
- [
- "▁Deliver",
- -12.816008567810059
- ],
- [
- "dik",
- -12.816024780273438
- ],
- [
- "▁advent",
- -12.816100120544434
- ],
- [
- "▁Turk",
- -12.81614875793457
- ],
- [
- "▁Nico",
- -12.816154479980469
- ],
- [
- "organizarea",
- -12.816161155700684
- ],
- [
- "▁remport",
- -12.816166877746582
- ],
- [
- "▁tribunal",
- -12.816266059875488
- ],
- [
- "▁Rusia",
- -12.8162841796875
- ],
- [
- "glazed",
- -12.816339492797852
- ],
- [
- "▁destiné",
- -12.816502571105957
- ],
- [
- "304",
- -12.816533088684082
- ],
- [
- "album",
- -12.816650390625
- ],
- [
- "▁junction",
- -12.81665325164795
- ],
- [
- "▁Fleet",
- -12.816664695739746
- ],
- [
- "venant",
- -12.81667423248291
- ],
- [
- "▁buddy",
- -12.816694259643555
- ],
- [
- "▁neglected",
- -12.816694259643555
- ],
- [
- "▁Mask",
- -12.816783905029297
- ],
- [
- "▁testament",
- -12.816844940185547
- ],
- [
- "▁Basil",
- -12.81690788269043
- ],
- [
- "masă",
- -12.816922187805176
- ],
- [
- "▁racist",
- -12.81692886352539
- ],
- [
- "640",
- -12.816990852355957
- ],
- [
- "▁Standing",
- -12.817028045654297
- ],
- [
- "▁MUST",
- -12.817266464233398
- ],
- [
- "situation",
- -12.817327499389648
- ],
- [
- "▁informiert",
- -12.817337036132812
- ],
- [
- "ABA",
- -12.817353248596191
- ],
- [
- "▁Timothy",
- -12.817397117614746
- ],
- [
- "▁generosity",
- -12.817397117614746
- ],
- [
- "▁erscheint",
- -12.817402839660645
- ],
- [
- "▁verarbeitet",
- -12.81740665435791
- ],
- [
- "▁burial",
- -12.817444801330566
- ],
- [
- "▁limestone",
- -12.817458152770996
- ],
- [
- "▁1953",
- -12.817480087280273
- ],
- [
- "▁Lucr",
- -12.817506790161133
- ],
- [
- "small",
- -12.817633628845215
- ],
- [
- "aveau",
- -12.81763744354248
- ],
- [
- "versiune",
- -12.81773567199707
- ],
- [
- "▁inkl",
- -12.81775951385498
- ],
- [
- "▁Minneapolis",
- -12.81777572631836
- ],
- [
- "Spiel",
- -12.81781005859375
- ],
- [
- "▁encode",
- -12.817895889282227
- ],
- [
- "▁beforehand",
- -12.818021774291992
- ],
- [
- "▁Vital",
- -12.818086624145508
- ],
- [
- "▁socialist",
- -12.818228721618652
- ],
- [
- "inho",
- -12.81824779510498
- ],
- [
- "▁chapel",
- -12.81825065612793
- ],
- [
- "▁Monitoring",
- -12.81838607788086
- ],
- [
- "▁quotidienne",
- -12.818404197692871
- ],
- [
- "cloud",
- -12.818506240844727
- ],
- [
- "▁desfăşur",
- -12.818531036376953
- ],
- [
- "▁1952",
- -12.818638801574707
- ],
- [
- "▁Rü",
- -12.818690299987793
- ],
- [
- "▁Sigma",
- -12.818804740905762
- ],
- [
- "134",
- -12.818835258483887
- ],
- [
- "Sullivan",
- -12.818909645080566
- ],
- [
- "▁Bevölkerung",
- -12.818909645080566
- ],
- [
- "▁sufficiently",
- -12.818953514099121
- ],
- [
- "Check",
- -12.818992614746094
- ],
- [
- "rnie",
- -12.8190336227417
- ],
- [
- "contamin",
- -12.819132804870605
- ],
- [
- "▁gewonnen",
- -12.81928825378418
- ],
- [
- "▁bugetul",
- -12.819376945495605
- ],
- [
- "▁mustard",
- -12.819414138793945
- ],
- [
- "132",
- -12.819478988647461
- ],
- [
- "0.9",
- -12.819535255432129
- ],
- [
- "▁tratat",
- -12.81957721710205
- ],
- [
- "▁dilemma",
- -12.819666862487793
- ],
- [
- "▁versatility",
- -12.819666862487793
- ],
- [
- "▁clutter",
- -12.819670677185059
- ],
- [
- "▁Musk",
- -12.81973934173584
- ],
- [
- "▁Beide",
- -12.819750785827637
- ],
- [
- "hurst",
- -12.819758415222168
- ],
- [
- "atsu",
- -12.819767951965332
- ],
- [
- "absence",
- -12.819784164428711
- ],
- [
- "rebounds",
- -12.819881439208984
- ],
- [
- "6.1",
- -12.820029258728027
- ],
- [
- "Dia",
- -12.820046424865723
- ],
- [
- "▁siguranță",
- -12.820060729980469
- ],
- [
- "▁Blade",
- -12.820072174072266
- ],
- [
- "▁disrupt",
- -12.820074081420898
- ],
- [
- "▁visiteurs",
- -12.820169448852539
- ],
- [
- "tested",
- -12.820282936096191
- ],
- [
- "▁Lup",
- -12.820353507995605
- ],
- [
- "▁Rouge",
- -12.820371627807617
- ],
- [
- "▁asbestos",
- -12.82042407989502
- ],
- [
- "▁moisturize",
- -12.820427894592285
- ],
- [
- "▁acknowledg",
- -12.82045841217041
- ],
- [
- "▁procent",
- -12.820467948913574
- ],
- [
- "▁swear",
- -12.82050895690918
- ],
- [
- "▁911",
- -12.820647239685059
- ],
- [
- "präsent",
- -12.820724487304688
- ],
- [
- "▁cohort",
- -12.82072639465332
- ],
- [
- "▁intimid",
- -12.820830345153809
- ],
- [
- "JS",
- -12.820849418640137
- ],
- [
- "îm",
- -12.82096004486084
- ],
- [
- "▁Kunststoff",
- -12.820963859558105
- ],
- [
- "rison",
- -12.820972442626953
- ],
- [
- "▁praf",
- -12.82097339630127
- ],
- [
- "▁convient",
- -12.821019172668457
- ],
- [
- "▁partenaire",
- -12.821088790893555
- ],
- [
- "▁Verantwortlich",
- -12.821182250976562
- ],
- [
- "▁semiconductor",
- -12.821182250976562
- ],
- [
- "▁kürz",
- -12.821187019348145
- ],
- [
- "▁Bottom",
- -12.821187973022461
- ],
- [
- "▁tratamentul",
- -12.82127571105957
- ],
- [
- "Source",
- -12.821331024169922
- ],
- [
- "authored",
- -12.82172679901123
- ],
- [
- "robo",
- -12.821867942810059
- ],
- [
- "▁turf",
- -12.82194709777832
- ],
- [
- "▁liebe",
- -12.821971893310547
- ],
- [
- "▁Fotografi",
- -12.821995735168457
- ],
- [
- "Big",
- -12.822064399719238
- ],
- [
- "▁fireworks",
- -12.822081565856934
- ],
- [
- "▁presă",
- -12.822135925292969
- ],
- [
- "▁conceal",
- -12.822269439697266
- ],
- [
- "▁originated",
- -12.82227897644043
- ],
- [
- "▁biciclet",
- -12.822319984436035
- ],
- [
- "acești",
- -12.822577476501465
- ],
- [
- "▁mortar",
- -12.822585105895996
- ],
- [
- "▁Wunder",
- -12.822626113891602
- ],
- [
- "ionist",
- -12.822696685791016
- ],
- [
- "KM",
- -12.822871208190918
- ],
- [
- "▁Marion",
- -12.822918891906738
- ],
- [
- "produkte",
- -12.822933197021484
- ],
- [
- "▁Sprint",
- -12.822999000549316
- ],
- [
- "▁Nachde",
- -12.8230619430542
- ],
- [
- "▁verfüge",
- -12.823100090026855
- ],
- [
- "Marea",
- -12.823177337646484
- ],
- [
- "▁compressor",
- -12.823253631591797
- ],
- [
- "Arm",
- -12.823290824890137
- ],
- [
- "Auf",
- -12.823311805725098
- ],
- [
- "▁Polyester",
- -12.823461532592773
- ],
- [
- "▁Sheffield",
- -12.823461532592773
- ],
- [
- "illiard",
- -12.823494911193848
- ],
- [
- "▁misleading",
- -12.82353401184082
- ],
- [
- "multi",
- -12.823749542236328
- ],
- [
- "ripped",
- -12.82381820678711
- ],
- [
- "▁Cosmetic",
- -12.82383918762207
- ],
- [
- "▁Regal",
- -12.823890686035156
- ],
- [
- "▁authenticity",
- -12.82414436340332
- ],
- [
- "▁customizable",
- -12.824219703674316
- ],
- [
- "▁bathtub",
- -12.824275016784668
- ],
- [
- "▁Average",
- -12.824292182922363
- ],
- [
- "▁Muster",
- -12.824522018432617
- ],
- [
- "290",
- -12.824529647827148
- ],
- [
- "▁Ersatz",
- -12.824570655822754
- ],
- [
- "▁Might",
- -12.824588775634766
- ],
- [
- "published",
- -12.82461929321289
- ],
- [
- "▁Interpret",
- -12.824640274047852
- ],
- [
- "▁încep",
- -12.82480239868164
- ],
- [
- "▁proto",
- -12.824851036071777
- ],
- [
- "▁disque",
- -12.824889183044434
- ],
- [
- "▁Palestine",
- -12.824980735778809
- ],
- [
- "Over",
- -12.824981689453125
- ],
- [
- "▁verbessert",
- -12.824983596801758
- ],
- [
- "▁liefern",
- -12.825017929077148
- ],
- [
- "▁Handlung",
- -12.825095176696777
- ],
- [
- "▁Handels",
- -12.825150489807129
- ],
- [
- "▁eater",
- -12.825201988220215
- ],
- [
- "▁$40",
- -12.825251579284668
- ],
- [
- "illard",
- -12.825334548950195
- ],
- [
- "▁apariti",
- -12.825413703918457
- ],
- [
- "▁gag",
- -12.825422286987305
- ],
- [
- "▁chimic",
- -12.825541496276855
- ],
- [
- "▁Guru",
- -12.825594902038574
- ],
- [
- "▁Toilet",
- -12.82571792602539
- ],
- [
- "▁Tochter",
- -12.825748443603516
- ],
- [
- "▁Aurora",
- -12.82579231262207
- ],
- [
- "contro",
- -12.825922966003418
- ],
- [
- "▁GOP",
- -12.825995445251465
- ],
- [
- "Provence",
- -12.826130867004395
- ],
- [
- "▁Frieden",
- -12.82614803314209
- ],
- [
- "ăci",
- -12.826216697692871
- ],
- [
- "portée",
- -12.826268196105957
- ],
- [
- "▁upright",
- -12.826300621032715
- ],
- [
- "▁Physician",
- -12.82650375366211
- ],
- [
- "▁juridique",
- -12.82650375366211
- ],
- [
- "▁territorial",
- -12.82650375366211
- ],
- [
- "▁kindergarten",
- -12.826505661010742
- ],
- [
- "aéroport",
- -12.826510429382324
- ],
- [
- "▁whisper",
- -12.826513290405273
- ],
- [
- "▁capacities",
- -12.826562881469727
- ],
- [
- "dichte",
- -12.826641082763672
- ],
- [
- "▁Grenzen",
- -12.826822280883789
- ],
- [
- "▁Riv",
- -12.82710075378418
- ],
- [
- "épreuve",
- -12.827266693115234
- ],
- [
- "▁Scheme",
- -12.827290534973145
- ],
- [
- "mesures",
- -12.827330589294434
- ],
- [
- "▁Einfluss",
- -12.827333450317383
- ],
- [
- "appui",
- -12.827713966369629
- ],
- [
- "▁apuc",
- -12.827827453613281
- ],
- [
- "▁radiat",
- -12.82794189453125
- ],
- [
- "▁allergy",
- -12.828035354614258
- ],
- [
- "▁spear",
- -12.828038215637207
- ],
- [
- "▁Luxembourg",
- -12.828086853027344
- ],
- [
- "▁Registered",
- -12.828115463256836
- ],
- [
- "▁Shape",
- -12.828198432922363
- ],
- [
- "genie",
- -12.828328132629395
- ],
- [
- "nsonsten",
- -12.828385353088379
- ],
- [
- "▁Symposium",
- -12.828412055969238
- ],
- [
- "forderung",
- -12.828474998474121
- ],
- [
- "▁personalizat",
- -12.82866096496582
- ],
- [
- "▁ştiu",
- -12.82875919342041
- ],
- [
- "blatt",
- -12.828804016113281
- ],
- [
- "▁geometry",
- -12.828807830810547
- ],
- [
- "▁8:30",
- -12.828831672668457
- ],
- [
- "▁Fahrrad",
- -12.828861236572266
- ],
- [
- "After",
- -12.828927040100098
- ],
- [
- "▁ventilat",
- -12.829072952270508
- ],
- [
- "▁nylon",
- -12.829190254211426
- ],
- [
- "▁verkauft",
- -12.829304695129395
- ],
- [
- "öß",
- -12.829345703125
- ],
- [
- "▁Kath",
- -12.829523086547852
- ],
- [
- "▁Nuclear",
- -12.829558372497559
- ],
- [
- "▁Verizon",
- -12.829560279846191
- ],
- [
- "▁spokesperson",
- -12.829560279846191
- ],
- [
- "▁vietii",
- -12.829560279846191
- ],
- [
- "▁prescri",
- -12.829629898071289
- ],
- [
- "ру",
- -12.829666137695312
- ],
- [
- "6.2",
- -12.829801559448242
- ],
- [
- "▁spațiu",
- -12.830018997192383
- ],
- [
- "▁solvent",
- -12.83006763458252
- ],
- [
- ",000,000",
- -12.830142974853516
- ],
- [
- "reuen",
- -12.830185890197754
- ],
- [
- "plast",
- -12.830245018005371
- ],
- [
- "▁Activities",
- -12.830334663391113
- ],
- [
- "▁domni",
- -12.83056926727295
- ],
- [
- "▁trophy",
- -12.830572128295898
- ],
- [
- "▁saddle",
- -12.830657958984375
- ],
- [
- "▁renovat",
- -12.830708503723145
- ],
- [
- "▁bumper",
- -12.830717086791992
- ],
- [
- "▁penny",
- -12.830741882324219
- ],
- [
- "omato",
- -12.830743789672852
- ],
- [
- "AQ",
- -12.83083438873291
- ],
- [
- "kunst",
- -12.830843925476074
- ],
- [
- "hydrat",
- -12.830860137939453
- ],
- [
- "minder",
- -12.830931663513184
- ],
- [
- "trecerea",
- -12.830949783325195
- ],
- [
- "brush",
- -12.831185340881348
- ],
- [
- "TEC",
- -12.83121395111084
- ],
- [
- "Please",
- -12.831253051757812
- ],
- [
- "hydrated",
- -12.831483840942383
- ],
- [
- "ICAL",
- -12.831636428833008
- ],
- [
- "trauen",
- -12.831639289855957
- ],
- [
- "9,000",
- -12.83175277709961
- ],
- [
- "▁2030",
- -12.831830024719238
- ],
- [
- "▁Chennai",
- -12.831854820251465
- ],
- [
- "▁empirical",
- -12.831854820251465
- ],
- [
- "▁Subscribe",
- -12.83206844329834
- ],
- [
- "▁vorgestellt",
- -12.832120895385742
- ],
- [
- "▁Springfield",
- -12.832159996032715
- ],
- [
- "▁continuu",
- -12.832311630249023
- ],
- [
- "208",
- -12.832351684570312
- ],
- [
- "▁Bearing",
- -12.83240795135498
- ],
- [
- "2003",
- -12.832572937011719
- ],
- [
- "cheta",
- -12.832608222961426
- ],
- [
- "▁empathy",
- -12.832623481750488
- ],
- [
- "▁Alert",
- -12.832817077636719
- ],
- [
- "▁recreate",
- -12.832879066467285
- ],
- [
- "PJ",
- -12.833159446716309
- ],
- [
- "Name",
- -12.83323860168457
- ],
- [
- "▁Mouse",
- -12.833405494689941
- ],
- [
- "▁disturbing",
- -12.833443641662598
- ],
- [
- "▁leichter",
- -12.83344841003418
- ],
- [
- "▁cruel",
- -12.833507537841797
- ],
- [
- "▁detective",
- -12.833531379699707
- ],
- [
- "▁reimbursement",
- -12.833626747131348
- ],
- [
- "▁Gemeinschaft",
- -12.833772659301758
- ],
- [
- "▁adolescents",
- -12.833772659301758
- ],
- [
- "▁Reality",
- -12.833954811096191
- ],
- [
- "▁Stockholm",
- -12.83415699005127
- ],
- [
- "▁Gründen",
- -12.834304809570312
- ],
- [
- "▁Reflect",
- -12.83432388305664
- ],
- [
- "▁Palmer",
- -12.834336280822754
- ],
- [
- "▁treac",
- -12.8343505859375
- ],
- [
- "▁tentative",
- -12.834497451782227
- ],
- [
- "▁surrender",
- -12.834677696228027
- ],
- [
- "▁broadly",
- -12.834734916687012
- ],
- [
- "▁județ",
- -12.834814071655273
- ],
- [
- "▁Thu",
- -12.834845542907715
- ],
- [
- "wärts",
- -12.834961891174316
- ],
- [
- "▁crește",
- -12.835074424743652
- ],
- [
- "▁déplacement",
- -12.835208892822266
- ],
- [
- "blanc",
- -12.835268020629883
- ],
- [
- "▁£5",
- -12.835308074951172
- ],
- [
- "▁confidentiality",
- -12.835320472717285
- ],
- [
- "veraging",
- -12.835444450378418
- ],
- [
- "unité",
- -12.835609436035156
- ],
- [
- "clar",
- -12.83564567565918
- ],
- [
- "rigg",
- -12.835693359375
- ],
- [
- "honneur",
- -12.835694313049316
- ],
- [
- "▁adventurous",
- -12.835694313049316
- ],
- [
- "▁Nutzen",
- -12.835758209228516
- ],
- [
- "▁Kabel",
- -12.835800170898438
- ],
- [
- "empowering",
- -12.836040496826172
- ],
- [
- "verhalten",
- -12.836042404174805
- ],
- [
- "▁prevail",
- -12.8361234664917
- ],
- [
- "mashed",
- -12.836138725280762
- ],
- [
- "▁1947",
- -12.83616828918457
- ],
- [
- "function",
- -12.836292266845703
- ],
- [
- "niveaux",
- -12.83633041381836
- ],
- [
- "▁territories",
- -12.836463928222656
- ],
- [
- "▁Permanent",
- -12.836465835571289
- ],
- [
- "▁christmas",
- -12.836471557617188
- ],
- [
- "arguing",
- -12.836490631103516
- ],
- [
- "zukünftig",
- -12.836654663085938
- ],
- [
- "▁Eindruck",
- -12.836817741394043
- ],
- [
- "personalised",
- -12.836854934692383
- ],
- [
- "▁vecin",
- -12.837211608886719
- ],
- [
- "▁Affiliate",
- -12.837234497070312
- ],
- [
- "▁Silk",
- -12.837249755859375
- ],
- [
- "▁Tub",
- -12.837440490722656
- ],
- [
- "▁remont",
- -12.837493896484375
- ],
- [
- "▁sauber",
- -12.837530136108398
- ],
- [
- "gehörig",
- -12.837562561035156
- ],
- [
- "Maritime",
- -12.83771800994873
- ],
- [
- "▁Bö",
- -12.837973594665527
- ],
- [
- "▁1957",
- -12.83800220489502
- ],
- [
- "▁unparalleled",
- -12.838005065917969
- ],
- [
- "▁fulfillment",
- -12.838042259216309
- ],
- [
- "▁collage",
- -12.838179588317871
- ],
- [
- "fenders",
- -12.838248252868652
- ],
- [
- "▁neige",
- -12.838275909423828
- ],
- [
- "▁gamers",
- -12.838325500488281
- ],
- [
- "tefan",
- -12.838339805603027
- ],
- [
- "▁wifi",
- -12.838349342346191
- ],
- [
- "▁leisten",
- -12.83835506439209
- ],
- [
- "▁Verbesserung",
- -12.838390350341797
- ],
- [
- "▁composant",
- -12.838400840759277
- ],
- [
- "▁LORD",
- -12.8384370803833
- ],
- [
- "arrive",
- -12.838472366333008
- ],
- [
- "▁conquer",
- -12.838562965393066
- ],
- [
- "▁lentil",
- -12.838767051696777
- ],
- [
- "▁Sprech",
- -12.838995933532715
- ],
- [
- "▁substitution",
- -12.839015007019043
- ],
- [
- ".05.",
- -12.839020729064941
- ],
- [
- "FORM",
- -12.839144706726074
- ],
- [
- "cădere",
- -12.839154243469238
- ],
- [
- "▁canyon",
- -12.839430809020996
- ],
- [
- "▁capacitate",
- -12.839442253112793
- ],
- [
- "▁menace",
- -12.839461326599121
- ],
- [
- "▁Antique",
- -12.839519500732422
- ],
- [
- "▁dizaine",
- -12.839550971984863
- ],
- [
- "▁Saturn",
- -12.839578628540039
- ],
- [
- "▁gastro",
- -12.83962631225586
- ],
- [
- "▁Vand",
- -12.839641571044922
- ],
- [
- "▁africa",
- -12.839682579040527
- ],
- [
- "▁hackers",
- -12.839702606201172
- ],
- [
- "▁Bailey",
- -12.839736938476562
- ],
- [
- "ouette",
- -12.839822769165039
- ],
- [
- "hoch",
- -12.839885711669922
- ],
- [
- "étudiant",
- -12.839973449707031
- ],
- [
- "▁1600",
- -12.840004920959473
- ],
- [
- "utiliz",
- -12.840167999267578
- ],
- [
- "reinigung",
- -12.840263366699219
- ],
- [
- "▁mileage",
- -12.84029483795166
- ],
- [
- "▁consacré",
- -12.840309143066406
- ],
- [
- "▁Norfolk",
- -12.840327262878418
- ],
- [
- "stacked",
- -12.840659141540527
- ],
- [
- "anbieter",
- -12.840731620788574
- ],
- [
- "▁gewünschte",
- -12.84073543548584
- ],
- [
- "▁silicon",
- -12.840761184692383
- ],
- [
- "Ensuite",
- -12.840794563293457
- ],
- [
- "▁vendu",
- -12.840850830078125
- ],
- [
- "▁viteza",
- -12.840851783752441
- ],
- [
- "▁evaluare",
- -12.840913772583008
- ],
- [
- "▁contient",
- -12.841036796569824
- ],
- [
- "▁Viagra",
- -12.841100692749023
- ],
- [
- "▁circumstance",
- -12.841283798217773
- ],
- [
- "walker",
- -12.841383934020996
- ],
- [
- "▁Aluminium",
- -12.84148120880127
- ],
- [
- "ço",
- -12.841556549072266
- ],
- [
- "▁Kli",
- -12.841643333435059
- ],
- [
- "▁deliberately",
- -12.841649055480957
- ],
- [
- "▁gamble",
- -12.841893196105957
- ],
- [
- "▁nourri",
- -12.841903686523438
- ],
- [
- "▁sealing",
- -12.84194278717041
- ],
- [
- "▁Atmosphäre",
- -12.842255592346191
- ],
- [
- "▁erschien",
- -12.842260360717773
- ],
- [
- "▁brightness",
- -12.842340469360352
- ],
- [
- "autonomie",
- -12.84251594543457
- ],
- [
- "▁propel",
- -12.842525482177734
- ],
- [
- "▁Infrastructure",
- -12.842642784118652
- ],
- [
- "▁război",
- -12.842642784118652
- ],
- [
- "▁jelly",
- -12.842684745788574
- ],
- [
- "scalable",
- -12.84280776977539
- ],
- [
- "regal",
- -12.84296703338623
- ],
- [
- "▁sarcini",
- -12.843031883239746
- ],
- [
- "▁Dienstag",
- -12.84304428100586
- ],
- [
- "▁Receive",
- -12.8430814743042
- ],
- [
- "▁mango",
- -12.843356132507324
- ],
- [
- "▁compétition",
- -12.84341812133789
- ],
- [
- "▁Monument",
- -12.843428611755371
- ],
- [
- "▁mast",
- -12.844159126281738
- ],
- [
- "▁instructed",
- -12.84425163269043
- ],
- [
- "▁aventur",
- -12.844277381896973
- ],
- [
- "139",
- -12.844298362731934
- ],
- [
- "▁Parmi",
- -12.84435749053955
- ],
- [
- "confined",
- -12.844416618347168
- ],
- [
- "acious",
- -12.844441413879395
- ],
- [
- "▁simptome",
- -12.844581604003906
- ],
- [
- "▁Fischer",
- -12.844897270202637
- ],
- [
- "störung",
- -12.844985008239746
- ],
- [
- "▁bilateral",
- -12.84504508972168
- ],
- [
- "preşedintele",
- -12.845274925231934
- ],
- [
- "accueillir",
- -12.845357894897461
- ],
- [
- "▁Schmidt",
- -12.845359802246094
- ],
- [
- "litis",
- -12.845373153686523
- ],
- [
- "WL",
- -12.8454008102417
- ],
- [
- "▁Rise",
- -12.845436096191406
- ],
- [
- "▁streamline",
- -12.845556259155273
- ],
- [
- "sozialen",
- -12.845585823059082
- ],
- [
- "▁Emirates",
- -12.845746040344238
- ],
- [
- "▁encrypted",
- -12.845746040344238
- ],
- [
- "▁unfamiliar",
- -12.845746040344238
- ],
- [
- "established",
- -12.84577751159668
- ],
- [
- "▁Tätigkeit",
- -12.845818519592285
- ],
- [
- "▁unaware",
- -12.845913887023926
- ],
- [
- "2:00",
- -12.8460054397583
- ],
- [
- "macher",
- -12.846013069152832
- ],
- [
- "NSA",
- -12.8461275100708
- ],
- [
- "▁rutier",
- -12.846177101135254
- ],
- [
- "▁Trent",
- -12.846212387084961
- ],
- [
- "▁sickness",
- -12.846277236938477
- ],
- [
- "▁advert",
- -12.846417427062988
- ],
- [
- "▁Kranken",
- -12.846426963806152
- ],
- [
- "▁Sandra",
- -12.846443176269531
- ],
- [
- "▁Recreation",
- -12.846449851989746
- ],
- [
- "▁Evidence",
- -12.846524238586426
- ],
- [
- "▁Immigration",
- -12.846524238586426
- ],
- [
- "▁carriage",
- -12.846524238586426
- ],
- [
- "▁justified",
- -12.84655475616455
- ],
- [
- "▁veche",
- -12.846579551696777
- ],
- [
- "PGA",
- -12.846604347229004
- ],
- [
- "▁Carmen",
- -12.846735000610352
- ],
- [
- "▁Faites",
- -12.846750259399414
- ],
- [
- "▁erfüllt",
- -12.84691333770752
- ],
- [
- "▁voilà",
- -12.846931457519531
- ],
- [
- "▁împlin",
- -12.846959114074707
- ],
- [
- "deposited",
- -12.84721565246582
- ],
- [
- "▁decisiv",
- -12.847241401672363
- ],
- [
- "CSA",
- -12.847249031066895
- ],
- [
- "pathy",
- -12.84726619720459
- ],
- [
- "▁erweitert",
- -12.847302436828613
- ],
- [
- "▁liquor",
- -12.847302436828613
- ],
- [
- "▁resilient",
- -12.847302436828613
- ],
- [
- "▁walmart",
- -12.847302436828613
- ],
- [
- "▁fencing",
- -12.847308158874512
- ],
- [
- "▁dépasse",
- -12.84731388092041
- ],
- [
- "KT",
- -12.847354888916016
- ],
- [
- "▁fries",
- -12.847368240356445
- ],
- [
- "vadă",
- -12.847421646118164
- ],
- [
- "▁Spania",
- -12.847478866577148
- ],
- [
- "▁complètement",
- -12.847725868225098
- ],
- [
- "▁lucrari",
- -12.84777545928955
- ],
- [
- "▁Lieb",
- -12.847908973693848
- ],
- [
- "leistungen",
- -12.847943305969238
- ],
- [
- "198",
- -12.847979545593262
- ],
- [
- "▁Schnell",
- -12.847997665405273
- ],
- [
- "▁radius",
- -12.84814453125
- ],
- [
- "▁beneficiaries",
- -12.848151206970215
- ],
- [
- "▁northwest",
- -12.848174095153809
- ],
- [
- "▁#4",
- -12.848223686218262
- ],
- [
- "▁embryo",
- -12.848492622375488
- ],
- [
- "▁ditch",
- -12.848791122436523
- ],
- [
- "▁Seriously",
- -12.848859786987305
- ],
- [
- "oppel",
- -12.848941802978516
- ],
- [
- "▁stalk",
- -12.849053382873535
- ],
- [
- "écriture",
- -12.849066734313965
- ],
- [
- "512",
- -12.84912109375
- ],
- [
- "wiesen",
- -12.849271774291992
- ],
- [
- "▁Consum",
- -12.849321365356445
- ],
- [
- "▁lună",
- -12.849405288696289
- ],
- [
- "▁lantern",
- -12.849441528320312
- ],
- [
- "▁italian",
- -12.849629402160645
- ],
- [
- "▁achiziți",
- -12.849639892578125
- ],
- [
- "▁catalyst",
- -12.849639892578125
- ],
- [
- "▁Arbeitgeber",
- -12.849662780761719
- ],
- [
- "▁researched",
- -12.8496675491333
- ],
- [
- "▁drastically",
- -12.849679946899414
- ],
- [
- "versammlung",
- -12.849735260009766
- ],
- [
- "410",
- -12.849800109863281
- ],
- [
- "▁impus",
- -12.850153923034668
- ],
- [
- "▁interchange",
- -12.850173950195312
- ],
- [
- "▁pharmacie",
- -12.850215911865234
- ],
- [
- "Live",
- -12.850354194641113
- ],
- [
- "dents",
- -12.850384712219238
- ],
- [
- "▁charcoal",
- -12.850419998168945
- ],
- [
- "▁odihn",
- -12.850420951843262
- ],
- [
- "▁pistol",
- -12.850444793701172
- ],
- [
- "▁complaining",
- -12.850576400756836
- ],
- [
- "manager",
- -12.850578308105469
- ],
- [
- "themed",
- -12.850578308105469
- ],
- [
- "▁Chang",
- -12.850650787353516
- ],
- [
- "▁rookie",
- -12.85070514678955
- ],
- [
- "Great",
- -12.850706100463867
- ],
- [
- "▁smoker",
- -12.850733757019043
- ],
- [
- "▁Container",
- -12.850812911987305
- ],
- [
- "▁bancaire",
- -12.850852966308594
- ],
- [
- "▁Actual",
- -12.850966453552246
- ],
- [
- "füllen",
- -12.850982666015625
- ],
- [
- "forum",
- -12.850985527038574
- ],
- [
- "bleib",
- -12.851073265075684
- ],
- [
- "▁combi",
- -12.851079940795898
- ],
- [
- "smoked",
- -12.851137161254883
- ],
- [
- "difficultés",
- -12.851161003112793
- ],
- [
- "▁tactical",
- -12.851240158081055
- ],
- [
- "▁sichtbar",
- -12.851483345031738
- ],
- [
- "▁dreptate",
- -12.851598739624023
- ],
- [
- "ERT",
- -12.85168743133545
- ],
- [
- "▁Pond",
- -12.85177993774414
- ],
- [
- "▁Holly",
- -12.851844787597656
- ],
- [
- "erfolg",
- -12.8518705368042
- ],
- [
- "▁Nordic",
- -12.851896286010742
- ],
- [
- "évènement",
- -12.851983070373535
- ],
- [
- "embracing",
- -12.851984024047852
- ],
- [
- "▁Maximum",
- -12.851984024047852
- ],
- [
- "▁défend",
- -12.85205078125
- ],
- [
- "▁fruct",
- -12.852056503295898
- ],
- [
- "▁Conditioning",
- -12.852099418640137
- ],
- [
- "LG",
- -12.852127075195312
- ],
- [
- "exigence",
- -12.852166175842285
- ],
- [
- "amide",
- -12.852187156677246
- ],
- [
- "▁darunter",
- -12.852208137512207
- ],
- [
- "▁EVERY",
- -12.852420806884766
- ],
- [
- "▁comparat",
- -12.85244083404541
- ],
- [
- "boosting",
- -12.852452278137207
- ],
- [
- "▁Hawaiian",
- -12.852553367614746
- ],
- [
- "▁Geburt",
- -12.852752685546875
- ],
- [
- "deci",
- -12.852782249450684
- ],
- [
- "▁Apollo",
- -12.852803230285645
- ],
- [
- "▁schützen",
- -12.852821350097656
- ],
- [
- "tragere",
- -12.852893829345703
- ],
- [
- "Online",
- -12.852904319763184
- ],
- [
- "▁neural",
- -12.852913856506348
- ],
- [
- "▁lucrez",
- -12.853188514709473
- ],
- [
- "▁phenomenal",
- -12.853253364562988
- ],
- [
- "▁Height",
- -12.853368759155273
- ],
- [
- "coordinating",
- -12.853548049926758
- ],
- [
- "geschnitten",
- -12.853631019592285
- ],
- [
- "auront",
- -12.853641510009766
- ],
- [
- "▁administer",
- -12.853644371032715
- ],
- [
- "▁contend",
- -12.853707313537598
- ],
- [
- "▁crispy",
- -12.853784561157227
- ],
- [
- "chuck",
- -12.854011535644531
- ],
- [
- "▁Condition",
- -12.8540678024292
- ],
- [
- "gestaltung",
- -12.854324340820312
- ],
- [
- "▁Blvd",
- -12.854331970214844
- ],
- [
- "▁subjective",
- -12.854470252990723
- ],
- [
- "▁événements",
- -12.854708671569824
- ],
- [
- "▁Jenny",
- -12.855131149291992
- ],
- [
- "▁cumpăra",
- -12.85519027709961
- ],
- [
- "constructing",
- -12.855262756347656
- ],
- [
- "▁instructional",
- -12.85539436340332
- ],
- [
- "▁sterling",
- -12.855446815490723
- ],
- [
- "scrise",
- -12.855470657348633
- ],
- [
- "▁Boulevard",
- -12.855551719665527
- ],
- [
- "pipe",
- -12.855620384216309
- ],
- [
- "▁Pride",
- -12.855748176574707
- ],
- [
- "▁Kau",
- -12.855751991271973
- ],
- [
- "▁overhaul",
- -12.855924606323242
- ],
- [
- "▁Recruitment",
- -12.855925559997559
- ],
- [
- "▁thrilling",
- -12.856218338012695
- ],
- [
- "living",
- -12.856302261352539
- ],
- [
- "▁rămân",
- -12.85645866394043
- ],
- [
- "▁MOD",
- -12.85661792755127
- ],
- [
- "▁Newport",
- -12.856675148010254
- ],
- [
- "▁infectious",
- -12.856688499450684
- ],
- [
- "6-3",
- -12.856860160827637
- ],
- [
- "▁Apache",
- -12.856976509094238
- ],
- [
- "▁dependence",
- -12.85698413848877
- ],
- [
- "nutzung",
- -12.857199668884277
- ],
- [
- "praised",
- -12.857211112976074
- ],
- [
- "▁craving",
- -12.857346534729004
- ],
- [
- "▁cramp",
- -12.857397079467773
- ],
- [
- "▁mancare",
- -12.857455253601074
- ],
- [
- "▁entdeckt",
- -12.857474327087402
- ],
- [
- "▁Pioneer",
- -12.857484817504883
- ],
- [
- "▁Adelaide",
- -12.857490539550781
- ],
- [
- "2.0",
- -12.857503890991211
- ],
- [
- "168",
- -12.857526779174805
- ],
- [
- "▁Decorating",
- -12.857611656188965
- ],
- [
- "▁unpleasant",
- -12.857854843139648
- ],
- [
- "▁déclaration",
- -12.857865333557129
- ],
- [
- "▁Grafik",
- -12.857908248901367
- ],
- [
- "5-2",
- -12.857937812805176
- ],
- [
- "căci",
- -12.857940673828125
- ],
- [
- "▁invade",
- -12.858171463012695
- ],
- [
- "▁internaţional",
- -12.858259201049805
- ],
- [
- "▁fraudulent",
- -12.858281135559082
- ],
- [
- "▁crestere",
- -12.858441352844238
- ],
- [
- "ografic",
- -12.858729362487793
- ],
- [
- "plină",
- -12.859140396118164
- ],
- [
- "sunteti",
- -12.859150886535645
- ],
- [
- "/04",
- -12.859176635742188
- ],
- [
- "▁admis",
- -12.85935115814209
- ],
- [
- "▁mediation",
- -12.859403610229492
- ],
- [
- "ICC",
- -12.859424591064453
- ],
- [
- "roș",
- -12.859660148620605
- ],
- [
- "▁Aroma",
- -12.8596773147583
- ],
- [
- "1:00",
- -12.859792709350586
- ],
- [
- "gasesc",
- -12.859822273254395
- ],
- [
- "▁Defence",
- -12.859850883483887
- ],
- [
- "▁dictionary",
- -12.859856605529785
- ],
- [
- "▁Batterie",
- -12.859865188598633
- ],
- [
- "▁gesunde",
- -12.85997486114502
- ],
- [
- "146",
- -12.860099792480469
- ],
- [
- "▁mortal",
- -12.860129356384277
- ],
- [
- "▁Flughafen",
- -12.860230445861816
- ],
- [
- "hhh",
- -12.860284805297852
- ],
- [
- "▁novice",
- -12.860342025756836
- ],
- [
- "▁Develop",
- -12.86043930053711
- ],
- [
- "▁accidental",
- -12.860516548156738
- ],
- [
- "Muzeul",
- -12.86054515838623
- ],
- [
- "▁Jupiter",
- -12.86062240600586
- ],
- [
- "supposedly",
- -12.860662460327148
- ],
- [
- "energy",
- -12.860758781433105
- ],
- [
- "▁montrer",
- -12.860764503479004
- ],
- [
- "recalled",
- -12.860795021057129
- ],
- [
- "Press",
- -12.860801696777344
- ],
- [
- "▁postcard",
- -12.86080265045166
- ],
- [
- "target",
- -12.86081600189209
- ],
- [
- "▁vêtements",
- -12.860881805419922
- ],
- [
- "▁particle",
- -12.860888481140137
- ],
- [
- "professional",
- -12.8608980178833
- ],
- [
- "▁1949",
- -12.860917091369629
- ],
- [
- "yah",
- -12.860980033874512
- ],
- [
- "▁Spiegel",
- -12.861017227172852
- ],
- [
- "▁Jeffrey",
- -12.861023902893066
- ],
- [
- "fahrzeug",
- -12.861027717590332
- ],
- [
- "▁Plug",
- -12.861051559448242
- ],
- [
- "▁violin",
- -12.861150741577148
- ],
- [
- "▁condemn",
- -12.861381530761719
- ],
- [
- "▁conducere",
- -12.861398696899414
- ],
- [
- "▁Chevrolet",
- -12.861412048339844
- ],
- [
- "▁conceput",
- -12.861461639404297
- ],
- [
- "▁Merri",
- -12.861493110656738
- ],
- [
- "judging",
- -12.861559867858887
- ],
- [
- "embraced",
- -12.86168098449707
- ],
- [
- "▁Compact",
- -12.861715316772461
- ],
- [
- "▁château",
- -12.861807823181152
- ],
- [
- "etch",
- -12.861945152282715
- ],
- [
- "bedroom",
- -12.861995697021484
- ],
- [
- "People",
- -12.862038612365723
- ],
- [
- "25,000",
- -12.86209774017334
- ],
- [
- "ocyte",
- -12.862146377563477
- ],
- [
- "▁Lenovo",
- -12.862205505371094
- ],
- [
- "▁Hampton",
- -12.862241744995117
- ],
- [
- "5.2",
- -12.862244606018066
- ],
- [
- "▁progres",
- -12.862266540527344
- ],
- [
- "hoc",
- -12.862288475036621
- ],
- [
- "▁complementary",
- -12.86241340637207
- ],
- [
- "turned",
- -12.862485885620117
- ],
- [
- "mangel",
- -12.862508773803711
- ],
- [
- "▁Drew",
- -12.862592697143555
- ],
- [
- "épisode",
- -12.86259651184082
- ],
- [
- "▁Versorgung",
- -12.86259651184082
- ],
- [
- "▁ausdrücklich",
- -12.86259651184082
- ],
- [
- "ciune",
- -12.862788200378418
- ],
- [
- "▁sfârșit",
- -12.862990379333496
- ],
- [
- "Agricultural",
- -12.862991333007812
- ],
- [
- "▁caffeine",
- -12.862991333007812
- ],
- [
- "▁emergencies",
- -12.862991333007812
- ],
- [
- "▁unhappy",
- -12.862991333007812
- ],
- [
- "(7)",
- -12.863043785095215
- ],
- [
- "▁inlocui",
- -12.863059043884277
- ],
- [
- "▁Rochester",
- -12.863153457641602
- ],
- [
- "183",
- -12.863155364990234
- ],
- [
- "niz",
- -12.863285064697266
- ],
- [
- "tasche",
- -12.863462448120117
- ],
- [
- "▁Salle",
- -12.86347484588623
- ],
- [
- "cît",
- -12.863478660583496
- ],
- [
- "▁Singer",
- -12.863489151000977
- ],
- [
- "▁economically",
- -12.863506317138672
- ],
- [
- "▁ieși",
- -12.863525390625
- ],
- [
- "▁façade",
- -12.86378288269043
- ],
- [
- "Ohne",
- -12.863801956176758
- ],
- [
- "▁edible",
- -12.863842964172363
- ],
- [
- "Rob",
- -12.863851547241211
- ],
- [
- "▁(2014)",
- -12.863859176635742
- ],
- [
- "▁Zar",
- -12.863919258117676
- ],
- [
- "▁obey",
- -12.863995552062988
- ],
- [
- "Pack",
- -12.864087104797363
- ],
- [
- "▁Omni",
- -12.864198684692383
- ],
- [
- "▁Gilbert",
- -12.864212036132812
- ],
- [
- "▁Vlad",
- -12.86429500579834
- ],
- [
- "▁pauvre",
- -12.864333152770996
- ],
- [
- "▁secular",
- -12.864383697509766
- ],
- [
- "Center",
- -12.864415168762207
- ],
- [
- "▁Prospect",
- -12.864457130432129
- ],
- [
- "▁Noah",
- -12.86450481414795
- ],
- [
- "▁Interactive",
- -12.86471176147461
- ],
- [
- "▁centaine",
- -12.86485767364502
- ],
- [
- "▁cerebral",
- -12.864971160888672
- ],
- [
- "▁Novel",
- -12.865013122558594
- ],
- [
- "▁Käufer",
- -12.865039825439453
- ],
- [
- "werfen",
- -12.865056991577148
- ],
- [
- "▁reluctant",
- -12.865143775939941
- ],
- [
- "ес",
- -12.86520004272461
- ],
- [
- "Look",
- -12.86521053314209
- ],
- [
- "Erkrankung",
- -12.86536693572998
- ],
- [
- "▁cucumber",
- -12.86536693572998
- ],
- [
- "/2017",
- -12.865399360656738
- ],
- [
- "▁flank",
- -12.865405082702637
- ],
- [
- "opportunité",
- -12.865667343139648
- ],
- [
- "zugleich",
- -12.865766525268555
- ],
- [
- "RAT",
- -12.865840911865234
- ],
- [
- "▁avantages",
- -12.865880012512207
- ],
- [
- "▁außer",
- -12.866008758544922
- ],
- [
- "GV",
- -12.866090774536133
- ],
- [
- "▁Continental",
- -12.866159439086914
- ],
- [
- "▁affiliation",
- -12.866159439086914
- ],
- [
- "▁ursprünglich",
- -12.86618423461914
- ],
- [
- "▁hardship",
- -12.866349220275879
- ],
- [
- "âme",
- -12.86647891998291
- ],
- [
- "▁hallway",
- -12.866576194763184
- ],
- [
- "▁afară",
- -12.866578102111816
- ],
- [
- "western",
- -12.866714477539062
- ],
- [
- "▁Jacket",
- -12.866802215576172
- ],
- [
- "▁culturelle",
- -12.866876602172852
- ],
- [
- "▁glaci",
- -12.866995811462402
- ],
- [
- "metoda",
- -12.867036819458008
- ],
- [
- "▁clerk",
- -12.867045402526855
- ],
- [
- "▁ordinance",
- -12.867185592651367
- ],
- [
- "▁Initial",
- -12.867197036743164
- ],
- [
- "waking",
- -12.86722469329834
- ],
- [
- "▁Secondary",
- -12.867366790771484
- ],
- [
- "▁Solomon",
- -12.867411613464355
- ],
- [
- "glomer",
- -12.867488861083984
- ],
- [
- "SYS",
- -12.867530822753906
- ],
- [
- "▁Florin",
- -12.867596626281738
- ],
- [
- "ffentlich",
- -12.867670059204102
- ],
- [
- "▁Printer",
- -12.867674827575684
- ],
- [
- "▁dimineata",
- -12.86774730682373
- ],
- [
- "▁stripes",
- -12.867748260498047
- ],
- [
- "plugged",
- -12.86776065826416
- ],
- [
- "öhl",
- -12.867836952209473
- ],
- [
- "infused",
- -12.867875099182129
- ],
- [
- "▁Rubber",
- -12.867895126342773
- ],
- [
- "paved",
- -12.867898941040039
- ],
- [
- "▁Devi",
- -12.867995262145996
- ],
- [
- "▁subway",
- -12.8681640625
- ],
- [
- "▁gases",
- -12.868306159973145
- ],
- [
- "▁reguli",
- -12.868371963500977
- ],
- [
- "▁Rebel",
- -12.868413925170898
- ],
- [
- "▁destructive",
- -12.868546485900879
- ],
- [
- "▁oferind",
- -12.868664741516113
- ],
- [
- "9001",
- -12.868876457214355
- ],
- [
- "CRA",
- -12.868912696838379
- ],
- [
- "why",
- -12.868932723999023
- ],
- [
- "sensul",
- -12.869036674499512
- ],
- [
- "guter",
- -12.869277000427246
- ],
- [
- "Empfehlung",
- -12.869338035583496
- ],
- [
- "▁convertible",
- -12.86953353881836
- ],
- [
- "▁predominantly",
- -12.869637489318848
- ],
- [
- "▁Mentor",
- -12.869649887084961
- ],
- [
- "Practic",
- -12.869720458984375
- ],
- [
- "▁echipă",
- -12.869754791259766
- ],
- [
- "onsite",
- -12.869853019714355
- ],
- [
- "▁zunehmend",
- -12.86994743347168
- ],
- [
- "▁Harbour",
- -12.870016098022461
- ],
- [
- "▁pineapple",
- -12.870133399963379
- ],
- [
- "▁gasoline",
- -12.870139122009277
- ],
- [
- "▁Jaguar",
- -12.870158195495605
- ],
- [
- "kno",
- -12.870259284973145
- ],
- [
- "▁heap",
- -12.870448112487793
- ],
- [
- "▁fictional",
- -12.870481491088867
- ],
- [
- "fiinta",
- -12.870753288269043
- ],
- [
- "▁Amber",
- -12.87081241607666
- ],
- [
- "▁Exclusive",
- -12.870929718017578
- ],
- [
- "▁Pharmaceutical",
- -12.870929718017578
- ],
- [
- "▁unterscheide",
- -12.871044158935547
- ],
- [
- "▁1942",
- -12.871116638183594
- ],
- [
- "▁Ceiling",
- -12.87115478515625
- ],
- [
- "developed",
- -12.871228218078613
- ],
- [
- "▁consacr",
- -12.87132453918457
- ],
- [
- "▁Membr",
- -12.871411323547363
- ],
- [
- "erton",
- -12.871447563171387
- ],
- [
- "habitation",
- -12.871685981750488
- ],
- [
- "▁longevity",
- -12.871726989746094
- ],
- [
- "▁Starbucks",
- -12.871728897094727
- ],
- [
- "▁poat",
- -12.871771812438965
- ],
- [
- "▁commissioner",
- -12.871794700622559
- ],
- [
- "pedia",
- -12.871938705444336
- ],
- [
- "popped",
- -12.872468948364258
- ],
- [
- "versorgung",
- -12.872525215148926
- ],
- [
- "▁Aktivitäten",
- -12.872525215148926
- ],
- [
- "▁Betreuung",
- -12.872525215148926
- ],
- [
- "▁afacere",
- -12.872968673706055
- ],
- [
- "▁Mechanical",
- -12.873323440551758
- ],
- [
- "▁Leiter",
- -12.873346328735352
- ],
- [
- "▁scaling",
- -12.873427391052246
- ],
- [
- "▁Slim",
- -12.87350082397461
- ],
- [
- "▁temperaturi",
- -12.873516082763672
- ],
- [
- "ACH",
- -12.873558044433594
- ],
- [
- "▁jährlich",
- -12.873682022094727
- ],
- [
- "▁photographie",
- -12.873722076416016
- ],
- [
- "▁préalable",
- -12.873725891113281
- ],
- [
- "▁părinți",
- -12.87372875213623
- ],
- [
- "▁Farmers",
- -12.873873710632324
- ],
- [
- "▁Printable",
- -12.873905181884766
- ],
- [
- "Früh",
- -12.873908996582031
- ],
- [
- "approved",
- -12.87398624420166
- ],
- [
- "otro",
- -12.874094009399414
- ],
- [
- "▁veneer",
- -12.874099731445312
- ],
- [
- "▁Warriors",
- -12.874122619628906
- ],
- [
- "▁Approach",
- -12.874149322509766
- ],
- [
- "Share",
- -12.874238967895508
- ],
- [
- "▁buds",
- -12.874252319335938
- ],
- [
- "▁Într",
- -12.874330520629883
- ],
- [
- "glichen",
- -12.87452507019043
- ],
- [
- "▁anbieten",
- -12.87452507019043
- ],
- [
- "MET",
- -12.874539375305176
- ],
- [
- "amélioration",
- -12.87468147277832
- ],
- [
- "ländische",
- -12.87468433380127
- ],
- [
- "nsgesamt",
- -12.874764442443848
- ],
- [
- "einiger",
- -12.874822616577148
- ],
- [
- "▁Förderung",
- -12.874876022338867
- ],
- [
- "destroying",
- -12.874910354614258
- ],
- [
- "▁accreditation",
- -12.874922752380371
- ],
- [
- "reminiscent",
- -12.875094413757324
- ],
- [
- "▁retriev",
- -12.87528133392334
- ],
- [
- "▁Flü",
- -12.875306129455566
- ],
- [
- "▁Monsieur",
- -12.875322341918945
- ],
- [
- "German",
- -12.87536334991455
- ],
- [
- "Orice",
- -12.875443458557129
- ],
- [
- "künftig",
- -12.875523567199707
- ],
- [
- "▁vorbi",
- -12.875639915466309
- ],
- [
- "▁intentionally",
- -12.875733375549316
- ],
- [
- "▁îngrij",
- -12.875743865966797
- ],
- [
- "▁laughed",
- -12.875850677490234
- ],
- [
- "▁Fiction",
- -12.875913619995117
- ],
- [
- "▁inteligent",
- -12.875914573669434
- ],
- [
- "▁Translation",
- -12.875953674316406
- ],
- [
- "greete",
- -12.875983238220215
- ],
- [
- "▁énergétique",
- -12.876123428344727
- ],
- [
- "uncovered",
- -12.876248359680176
- ],
- [
- "▁évidemment",
- -12.876523971557617
- ],
- [
- "▁Vietnamese",
- -12.876535415649414
- ],
- [
- "▁Libya",
- -12.876675605773926
- ],
- [
- "▁Trailer",
- -12.876734733581543
- ],
- [
- "▁Wohl",
- -12.876871109008789
- ],
- [
- "▁Congo",
- -12.87698745727539
- ],
- [
- "▁freut",
- -12.877002716064453
- ],
- [
- "zauber",
- -12.877090454101562
- ],
- [
- "▁Pân",
- -12.877142906188965
- ],
- [
- "▁mentine",
- -12.877333641052246
- ],
- [
- "▁welding",
- -12.877335548400879
- ],
- [
- "▁Mircea",
- -12.8773775100708
- ],
- [
- "▁optimism",
- -12.877455711364746
- ],
- [
- "VEL",
- -12.877504348754883
- ],
- [
- "oilea",
- -12.877540588378906
- ],
- [
- "▁thereafter",
- -12.877612113952637
- ],
- [
- "▁André",
- -12.877710342407227
- ],
- [
- "forschung",
- -12.877799987792969
- ],
- [
- "running",
- -12.878022193908691
- ],
- [
- "▁hostile",
- -12.878059387207031
- ],
- [
- "Homme",
- -12.87811279296875
- ],
- [
- "▁Satellite",
- -12.878129005432129
- ],
- [
- "▁collagen",
- -12.87841796875
- ],
- [
- "▁concedi",
- -12.878518104553223
- ],
- [
- "▁produziert",
- -12.87852954864502
- ],
- [
- "▁virgin",
- -12.878540992736816
- ],
- [
- "frant",
- -12.87857723236084
- ],
- [
- "▁teammates",
- -12.878744125366211
- ],
- [
- "▁faceti",
- -12.878802299499512
- ],
- [
- "▁Restoration",
- -12.87893295288086
- ],
- [
- "▁detached",
- -12.878935813903809
- ],
- [
- "▁Instructor",
- -12.878950119018555
- ],
- [
- "montag",
- -12.879227638244629
- ],
- [
- "▁borrowing",
- -12.879375457763672
- ],
- [
- "▁Retro",
- -12.879446983337402
- ],
- [
- "▁behandelt",
- -12.879536628723145
- ],
- [
- "▁Aussage",
- -12.879715919494629
- ],
- [
- "▁snorkel",
- -12.879734992980957
- ],
- [
- "▁Proceedings",
- -12.879754066467285
- ],
- [
- "▁Judy",
- -12.879776000976562
- ],
- [
- "▁Wendy",
- -12.879783630371094
- ],
- [
- "artă",
- -12.879920959472656
- ],
- [
- "▁Vergangenheit",
- -12.88013744354248
- ],
- [
- "▁Gegner",
- -12.880139350891113
- ],
- [
- "▁ulcer",
- -12.880166053771973
- ],
- [
- "wirksam",
- -12.880553245544434
- ],
- [
- "▁închis",
- -12.880560874938965
- ],
- [
- "▁emission",
- -12.88068962097168
- ],
- [
- "ulescu",
- -12.880754470825195
- ],
- [
- "▁bancar",
- -12.880819320678711
- ],
- [
- "compromising",
- -12.880924224853516
- ],
- [
- "▁Priest",
- -12.881156921386719
- ],
- [
- "▁Progress",
- -12.881318092346191
- ],
- [
- "▁punish",
- -12.88144588470459
- ],
- [
- "▁Afin",
- -12.881450653076172
- ],
- [
- "▁Bog",
- -12.881514549255371
- ],
- [
- "lunii",
- -12.881525039672852
- ],
- [
- "▁ressembl",
- -12.881570816040039
- ],
- [
- "▁Creation",
- -12.881644248962402
- ],
- [
- "effet",
- -12.881668090820312
- ],
- [
- "Versicherung",
- -12.881671905517578
- ],
- [
- "médias",
- -12.881672859191895
- ],
- [
- "▁Kritik",
- -12.881793975830078
- ],
- [
- "idia",
- -12.881896018981934
- ],
- [
- "▁Wasch",
- -12.881929397583008
- ],
- [
- "UAL",
- -12.882059097290039
- ],
- [
- "Approximately",
- -12.882149696350098
- ],
- [
- "izari",
- -12.882152557373047
- ],
- [
- "▁Dortmund",
- -12.882152557373047
- ],
- [
- "▁contul",
- -12.882343292236328
- ],
- [
- "▁Airways",
- -12.882408142089844
- ],
- [
- "sicherung",
- -12.882535934448242
- ],
- [
- "échelle",
- -12.882560729980469
- ],
- [
- "ADD",
- -12.882582664489746
- ],
- [
- "DIA",
- -12.88259506225586
- ],
- [
- "kabel",
- -12.882621765136719
- ],
- [
- "Media",
- -12.88268756866455
- ],
- [
- "ampli",
- -12.882894515991211
- ],
- [
- "▁quarry",
- -12.88295841217041
- ],
- [
- "▁acoper",
- -12.883072853088379
- ],
- [
- "halter",
- -12.883326530456543
- ],
- [
- "▁solicitor",
- -12.883684158325195
- ],
- [
- "phosphat",
- -12.883763313293457
- ],
- [
- "▁drown",
- -12.883773803710938
- ],
- [
- "congratulat",
- -12.884047508239746
- ],
- [
- "▁uneven",
- -12.884087562561035
- ],
- [
- "▁rupe",
- -12.884154319763184
- ],
- [
- "▁heureux",
- -12.88417911529541
- ],
- [
- "caractéristiques",
- -12.884221076965332
- ],
- [
- "60,000",
- -12.884283065795898
- ],
- [
- "ambigu",
- -12.884340286254883
- ],
- [
- "224",
- -12.884417533874512
- ],
- [
- "dov",
- -12.88454532623291
- ],
- [
- "▁Naturally",
- -12.884629249572754
- ],
- [
- "▁Ernst",
- -12.884634017944336
- ],
- [
- "Camp",
- -12.884757995605469
- ],
- [
- "▁Worldwide",
- -12.884909629821777
- ],
- [
- "▁antrenament",
- -12.885042190551758
- ],
- [
- "▁jocul",
- -12.88521671295166
- ],
- [
- "▁broccoli",
- -12.88537883758545
- ],
- [
- "▁fascinated",
- -12.88537883758545
- ],
- [
- "▁Abbey",
- -12.885387420654297
- ],
- [
- "▁aquarium",
- -12.885390281677246
- ],
- [
- "HAN",
- -12.885458946228027
- ],
- [
- "chaffung",
- -12.885480880737305
- ],
- [
- "137",
- -12.885503768920898
- ],
- [
- "rumors",
- -12.885515213012695
- ],
- [
- "reliance",
- -12.885557174682617
- ],
- [
- "▁vaccination",
- -12.8856782913208
- ],
- [
- "responsabilitate",
- -12.885777473449707
- ],
- [
- "▁legislati",
- -12.885782241821289
- ],
- [
- "ATT",
- -12.885826110839844
- ],
- [
- "206",
- -12.885896682739258
- ],
- [
- "▁miere",
- -12.885967254638672
- ],
- [
- "▁rezultatul",
- -12.885988235473633
- ],
- [
- "părea",
- -12.88599681854248
- ],
- [
- "zuführen",
- -12.886159896850586
- ],
- [
- "▁Kompetenz",
- -12.886187553405762
- ],
- [
- "▁nickname",
- -12.886195182800293
- ],
- [
- "pilot",
- -12.88620376586914
- ],
- [
- "▁ninth",
- -12.886252403259277
- ],
- [
- "▁Tyr",
- -12.886446952819824
- ],
- [
- "▁misuse",
- -12.886469841003418
- ],
- [
- "▁SUP",
- -12.886514663696289
- ],
- [
- "▁Attack",
- -12.88667106628418
- ],
- [
- "Smart",
- -12.88669490814209
- ],
- [
- "▁Philosoph",
- -12.886930465698242
- ],
- [
- "▁Alege",
- -12.886931419372559
- ],
- [
- "▁femeile",
- -12.886967658996582
- ],
- [
- "▁Heating",
- -12.88698673248291
- ],
- [
- "▁Cricket",
- -12.886999130249023
- ],
- [
- "▁scholar",
- -12.887049674987793
- ],
- [
- "Model",
- -12.887073516845703
- ],
- [
- "▁stimulating",
- -12.887182235717773
- ],
- [
- "▁industrielle",
- -12.887189865112305
- ],
- [
- "▁phenomena",
- -12.887303352355957
- ],
- [
- "▁Nahrung",
- -12.887414932250977
- ],
- [
- "▁Conditioner",
- -12.887433052062988
- ],
- [
- "führ",
- -12.887489318847656
- ],
- [
- "▁révolution",
- -12.88757610321045
- ],
- [
- "plastic",
- -12.887595176696777
- ],
- [
- "▁approximate",
- -12.887596130371094
- ],
- [
- "▁dienen",
- -12.887624740600586
- ],
- [
- "▁obsession",
- -12.887807846069336
- ],
- [
- "▁rectangular",
- -12.887807846069336
- ],
- [
- "Allemagne",
- -12.887808799743652
- ],
- [
- "▁Tanzania",
- -12.887824058532715
- ],
- [
- "border",
- -12.887884140014648
- ],
- [
- "▁crashed",
- -12.887958526611328
- ],
- [
- "visor",
- -12.887974739074707
- ],
- [
- "▁autorizat",
- -12.888072967529297
- ],
- [
- "▁Champagne",
- -12.888222694396973
- ],
- [
- "längst",
- -12.888238906860352
- ],
- [
- "▁realities",
- -12.888314247131348
- ],
- [
- "▁Keyword",
- -12.88831615447998
- ],
- [
- "▁GUI",
- -12.888495445251465
- ],
- [
- "▁simplified",
- -12.88865852355957
- ],
- [
- "▁Rack",
- -12.888681411743164
- ],
- [
- "▁Zahlen",
- -12.888693809509277
- ],
- [
- "growth",
- -12.888897895812988
- ],
- [
- "▁rehearsal",
- -12.888991355895996
- ],
- [
- "▁Epic",
- -12.888999938964844
- ],
- [
- "▁réussite",
- -12.889195442199707
- ],
- [
- "▁politician",
- -12.889263153076172
- ],
- [
- "▁emoți",
- -12.889378547668457
- ],
- [
- "▁delegation",
- -12.889449119567871
- ],
- [
- "▁со",
- -12.889464378356934
- ],
- [
- "oversized",
- -12.889477729797363
- ],
- [
- "▁Motto",
- -12.889481544494629
- ],
- [
- "1860",
- -12.889788627624512
- ],
- [
- "▁defective",
- -12.889803886413574
- ],
- [
- "brewing",
- -12.889852523803711
- ],
- [
- "linguistic",
- -12.890243530273438
- ],
- [
- "▁Hopkins",
- -12.890265464782715
- ],
- [
- "▁(2012)",
- -12.89030933380127
- ],
- [
- "crease",
- -12.890436172485352
- ],
- [
- "▁Versicherungs",
- -12.89052677154541
- ],
- [
- "▁Noble",
- -12.890752792358398
- ],
- [
- "▁Bekannt",
- -12.890896797180176
- ],
- [
- "▁vorstellen",
- -12.89095401763916
- ],
- [
- "▁suburban",
- -12.890970230102539
- ],
- [
- "DAC",
- -12.890995025634766
- ],
- [
- "▁scatter",
- -12.89103889465332
- ],
- [
- "▁Artificial",
- -12.8910551071167
- ],
- [
- "▁reactor",
- -12.891073226928711
- ],
- [
- "▁modelling",
- -12.89108943939209
- ],
- [
- "▁Holder",
- -12.891148567199707
- ],
- [
- "athon",
- -12.891149520874023
- ],
- [
- "147",
- -12.891190528869629
- ],
- [
- "▁stagn",
- -12.891257286071777
- ],
- [
- "ARY",
- -12.891261100769043
- ],
- [
- "Space",
- -12.89126968383789
- ],
- [
- "▁Gibson",
- -12.891718864440918
- ],
- [
- "▁Investigator",
- -12.89173698425293
- ],
- [
- "▁1914",
- -12.891818046569824
- ],
- [
- "▁Muhammad",
- -12.891868591308594
- ],
- [
- "▁shove",
- -12.892073631286621
- ],
- [
- "▁erklären",
- -12.892276763916016
- ],
- [
- "▁abdomen",
- -12.892277717590332
- ],
- [
- "▁Mazda",
- -12.892349243164062
- ],
- [
- "▁hemo",
- -12.892364501953125
- ],
- [
- "National",
- -12.892455101013184
- ],
- [
- "starken",
- -12.89267635345459
- ],
- [
- "▁Cyprus",
- -12.892683982849121
- ],
- [
- "▁tread",
- -12.892721176147461
- ],
- [
- "▁sweetness",
- -12.892725944519043
- ],
- [
- "stunden",
- -12.892790794372559
- ],
- [
- "▁couverture",
- -12.893059730529785
- ],
- [
- "▁Successful",
- -12.893060684204102
- ],
- [
- "▁oublier",
- -12.893171310424805
- ],
- [
- "▁esential",
- -12.893203735351562
- ],
- [
- "estival",
- -12.89321231842041
- ],
- [
- "gnac",
- -12.893280029296875
- ],
- [
- "▁Basement",
- -12.893457412719727
- ],
- [
- "presumably",
- -12.893497467041016
- ],
- [
- "▁mourn",
- -12.893561363220215
- ],
- [
- "armée",
- -12.893677711486816
- ],
- [
- "148",
- -12.893845558166504
- ],
- [
- "▁residue",
- -12.894006729125977
- ],
- [
- "▁metalic",
- -12.89404296875
- ],
- [
- "▁Zell",
- -12.89425277709961
- ],
- [
- "Build",
- -12.894280433654785
- ],
- [
- "▁prevalence",
- -12.894312858581543
- ],
- [
- "▁wrestling",
- -12.894312858581543
- ],
- [
- "▁ascuns",
- -12.894325256347656
- ],
- [
- "Sacred",
- -12.894340515136719
- ],
- [
- "Tec",
- -12.89438533782959
- ],
- [
- "▁Kindergarten",
- -12.894389152526855
- ],
- [
- "bindung",
- -12.894464492797852
- ],
- [
- "▁ritm",
- -12.894545555114746
- ],
- [
- "▁triste",
- -12.894651412963867
- ],
- [
- "▁introdus",
- -12.894758224487305
- ],
- [
- "/2016",
- -12.894824028015137
- ],
- [
- "▁română",
- -12.894899368286133
- ],
- [
- "▁bibli",
- -12.89490032196045
- ],
- [
- "▁cigar",
- -12.894913673400879
- ],
- [
- "Rie",
- -12.894990921020508
- ],
- [
- "▁intentional",
- -12.894999504089355
- ],
- [
- "▁cuprins",
- -12.895098686218262
- ],
- [
- "remarkably",
- -12.895129203796387
- ],
- [
- "▁printemps",
- -12.895133972167969
- ],
- [
- "▁declining",
- -12.895171165466309
- ],
- [
- "Magazin",
- -12.89552116394043
- ],
- [
- "▁săptămână",
- -12.895537376403809
- ],
- [
- "▁vérifier",
- -12.895549774169922
- ],
- [
- "▁Speise",
- -12.895584106445312
- ],
- [
- "▁reteta",
- -12.8956298828125
- ],
- [
- "heed",
- -12.895772933959961
- ],
- [
- "▁Compliance",
- -12.895946502685547
- ],
- [
- "▁embroidery",
- -12.895946502685547
- ],
- [
- "cried",
- -12.896025657653809
- ],
- [
- "▁(„",
- -12.896282196044922
- ],
- [
- "▁heck",
- -12.89629077911377
- ],
- [
- "▁sadness",
- -12.896501541137695
- ],
- [
- "▁impulse",
- -12.896585464477539
- ],
- [
- "ATH",
- -12.896740913391113
- ],
- [
- "▁lavender",
- -12.896773338317871
- ],
- [
- "uiesc",
- -12.896790504455566
- ],
- [
- "▁Disorder",
- -12.896876335144043
- ],
- [
- "stroke",
- -12.896991729736328
- ],
- [
- "▁piaţ",
- -12.8970365524292
- ],
- [
- "ournée",
- -12.897049903869629
- ],
- [
- "▁Barnes",
- -12.8971586227417
- ],
- [
- "▁scăzut",
- -12.897172927856445
- ],
- [
- "▁équipements",
- -12.89725112915039
- ],
- [
- "OND",
- -12.897375106811523
- ],
- [
- "▁Compet",
- -12.897424697875977
- ],
- [
- "▁Bestell",
- -12.89748477935791
- ],
- [
- "▁immédiatement",
- -12.897587776184082
- ],
- [
- "aparut",
- -12.89759635925293
- ],
- [
- "▁rainfall",
- -12.897882461547852
- ],
- [
- "oreille",
- -12.89797306060791
- ],
- [
- "▁ministère",
- -12.898014068603516
- ],
- [
- "iris",
- -12.898140907287598
- ],
- [
- "dyna",
- -12.898279190063477
- ],
- [
- "drücken",
- -12.898343086242676
- ],
- [
- "▁détect",
- -12.89834976196289
- ],
- [
- "▁fonctionnalité",
- -12.89840030670166
- ],
- [
- "▁imbalance",
- -12.89840030670166
- ],
- [
- "▁unpredictable",
- -12.89840030670166
- ],
- [
- "▁literar",
- -12.89846134185791
- ],
- [
- "▁Windsor",
- -12.898472785949707
- ],
- [
- "▁Unlimited",
- -12.898481369018555
- ],
- [
- "colour",
- -12.898674964904785
- ],
- [
- "▁Portfolio",
- -12.898810386657715
- ],
- [
- "149",
- -12.898883819580078
- ],
- [
- "volution",
- -12.898890495300293
- ],
- [
- "▁folgende",
- -12.899078369140625
- ],
- [
- "▁arbitration",
- -12.899105072021484
- ],
- [
- "kicking",
- -12.89913558959961
- ],
- [
- "zügig",
- -12.89923095703125
- ],
- [
- "▁1941",
- -12.899311065673828
- ],
- [
- "▁Drake",
- -12.89955997467041
- ],
- [
- "▁ausführlich",
- -12.899630546569824
- ],
- [
- "▁chaussure",
- -12.899630546569824
- ],
- [
- "▁intestinal",
- -12.89976692199707
- ],
- [
- "▁pilgrim",
- -12.900040626525879
- ],
- [
- "▁Bark",
- -12.900142669677734
- ],
- [
- "between",
- -12.900157928466797
- ],
- [
- "disposed",
- -12.900175094604492
- ],
- [
- "▁Dylan",
- -12.900218963623047
- ],
- [
- "ств",
- -12.900253295898438
- ],
- [
- "NOR",
- -12.900287628173828
- ],
- [
- "traces",
- -12.90038776397705
- ],
- [
- "▁moindre",
- -12.900500297546387
- ],
- [
- "▁$10,000",
- -12.900552749633789
- ],
- [
- "212",
- -12.900599479675293
- ],
- [
- "wusste",
- -12.900659561157227
- ],
- [
- "▁predictable",
- -12.900671005249023
- ],
- [
- "poţi",
- -12.900679588317871
- ],
- [
- "▁Celsius",
- -12.900860786437988
- ],
- [
- "gebunden",
- -12.90086841583252
- ],
- [
- "▁Legacy",
- -12.900891304016113
- ],
- [
- "movers",
- -12.90090274810791
- ],
- [
- "▁concret",
- -12.90098762512207
- ],
- [
- "▁simpla",
- -12.901050567626953
- ],
- [
- "rechnet",
- -12.901103973388672
- ],
- [
- "▁certainty",
- -12.901144981384277
- ],
- [
- "entrepreneurship",
- -12.901153564453125
- ],
- [
- "kohl",
- -12.901289939880371
- ],
- [
- "▁curte",
- -12.901311874389648
- ],
- [
- "▁Forbes",
- -12.901411056518555
- ],
- [
- "▁Zusatz",
- -12.901535987854004
- ],
- [
- "blending",
- -12.90163803100586
- ],
- [
- "▁variat",
- -12.901642799377441
- ],
- [
- "▁galaxy",
- -12.90168285369873
- ],
- [
- "▁safari",
- -12.90168571472168
- ],
- [
- "▁municipalities",
- -12.9017972946167
- ],
- [
- "▁Drept",
- -12.90180778503418
- ],
- [
- "aufnahme",
- -12.902128219604492
- ],
- [
- "▁endorse",
- -12.902223587036133
- ],
- [
- "einrichtung",
- -12.902244567871094
- ],
- [
- "Sync",
- -12.902270317077637
- ],
- [
- "abide",
- -12.902323722839355
- ],
- [
- "brushed",
- -12.902350425720215
- ],
- [
- "▁actiune",
- -12.902410507202148
- ],
- [
- "quaint",
- -12.902498245239258
- ],
- [
- "▁volatility",
- -12.902504920959473
- ],
- [
- "▁repetitive",
- -12.902505874633789
- ],
- [
- "▁découvr",
- -12.902560234069824
- ],
- [
- "Totodat",
- -12.902585983276367
- ],
- [
- "▁românesc",
- -12.902682304382324
- ],
- [
- "▁tempting",
- -12.902772903442383
- ],
- [
- "thesis",
- -12.902947425842285
- ],
- [
- "secure",
- -12.903013229370117
- ],
- [
- "delt",
- -12.903019905090332
- ],
- [
- "▁şef",
- -12.903167724609375
- ],
- [
- "▁epidemic",
- -12.903326988220215
- ],
- [
- "▁Appliance",
- -12.903327941894531
- ],
- [
- "cearcă",
- -12.903331756591797
- ],
- [
- "▁lodging",
- -12.903361320495605
- ],
- [
- "▁photographed",
- -12.903507232666016
- ],
- [
- "geschlagen",
- -12.903794288635254
- ],
- [
- "▁Methodist",
- -12.90380859375
- ],
- [
- "▁Transit",
- -12.90389347076416
- ],
- [
- "▁Länder",
- -12.903934478759766
- ],
- [
- "villa",
- -12.903986930847168
- ],
- [
- "▁toilette",
- -12.904031753540039
- ],
- [
- "anno",
- -12.904074668884277
- ],
- [
- "▁Aufnahme",
- -12.904091835021973
- ],
- [
- "▁Coral",
- -12.904099464416504
- ],
- [
- "pourraient",
- -12.904129981994629
- ],
- [
- "▁digestion",
- -12.904245376586914
- ],
- [
- "▁Vacation",
- -12.904274940490723
- ],
- [
- "▁Rugby",
- -12.904275894165039
- ],
- [
- "MIC",
- -12.904311180114746
- ],
- [
- "▁choc",
- -12.904417991638184
- ],
- [
- "2002",
- -12.904492378234863
- ],
- [
- "gestion",
- -12.904674530029297
- ],
- [
- "▁Zoom",
- -12.904745101928711
- ],
- [
- "essor",
- -12.904763221740723
- ],
- [
- "weighed",
- -12.904793739318848
- ],
- [
- "▁dispus",
- -12.904987335205078
- ],
- [
- "▁redemption",
- -12.90502643585205
- ],
- [
- "▁plaster",
- -12.905071258544922
- ],
- [
- "▁Quilt",
- -12.90507698059082
- ],
- [
- "▁teritoriul",
- -12.905088424682617
- ],
- [
- "ndern",
- -12.905097961425781
- ],
- [
- "▁expired",
- -12.905105590820312
- ],
- [
- "▁Tribunal",
- -12.905122756958008
- ],
- [
- "occupation",
- -12.9052152633667
- ],
- [
- "▁woodland",
- -12.905248641967773
- ],
- [
- "vieux",
- -12.905254364013672
- ],
- [
- "▁Midland",
- -12.905465126037598
- ],
- [
- "gât",
- -12.90571117401123
- ],
- [
- "électricité",
- -12.905800819396973
- ],
- [
- "▁vanzare",
- -12.905811309814453
- ],
- [
- "biologi",
- -12.905961036682129
- ],
- [
- "▁vive",
- -12.906060218811035
- ],
- [
- "▁Alarm",
- -12.906097412109375
- ],
- [
- "▁experiență",
- -12.9061279296875
- ],
- [
- "▁Loch",
- -12.906133651733398
- ],
- [
- "▁Pedro",
- -12.906194686889648
- ],
- [
- "▁detergent",
- -12.906217575073242
- ],
- [
- "language",
- -12.906554222106934
- ],
- [
- "▁sedan",
- -12.906655311584473
- ],
- [
- "▁Brady",
- -12.906736373901367
- ],
- [
- "▁compus",
- -12.906976699829102
- ],
- [
- "▁landfill",
- -12.906982421875
- ],
- [
- "giu",
- -12.907039642333984
- ],
- [
- "beziehung",
- -12.9070405960083
- ],
- [
- "▁picior",
- -12.907184600830078
- ],
- [
- "ALI",
- -12.907235145568848
- ],
- [
- "▁Commander",
- -12.907256126403809
- ],
- [
- "EPS",
- -12.907303810119629
- ],
- [
- "▁Textil",
- -12.907320022583008
- ],
- [
- "▁industria",
- -12.907339096069336
- ],
- [
- "lox",
- -12.907365798950195
- ],
- [
- "▁eclectic",
- -12.907453536987305
- ],
- [
- "▁gracious",
- -12.907477378845215
- ],
- [
- "Uniunea",
- -12.907525062561035
- ],
- [
- "bps",
- -12.90754222869873
- ],
- [
- "▁entertained",
- -12.907634735107422
- ],
- [
- "depinde",
- -12.907767295837402
- ],
- [
- "▁daylight",
- -12.907893180847168
- ],
- [
- "▁résistance",
- -12.907995223999023
- ],
- [
- "ARN",
- -12.908194541931152
- ],
- [
- "▁unavailable",
- -12.908201217651367
- ],
- [
- "Curtea",
- -12.908390045166016
- ],
- [
- "▁pores",
- -12.908502578735352
- ],
- [
- "▁Tonight",
- -12.908649444580078
- ],
- [
- "▁datori",
- -12.90869426727295
- ],
- [
- "▁gezielt",
- -12.908703804016113
- ],
- [
- "▁rupture",
- -12.90875244140625
- ],
- [
- "▁disput",
- -12.908848762512207
- ],
- [
- "▁sonstige",
- -12.908895492553711
- ],
- [
- "▁Ordnung",
- -12.90910816192627
- ],
- [
- "▁beschrieben",
- -12.909114837646484
- ],
- [
- "▁Rainbow",
- -12.90911865234375
- ],
- [
- "▁Werkzeug",
- -12.909136772155762
- ],
- [
- "GIN",
- -12.909354209899902
- ],
- [
- "facilitating",
- -12.909490585327148
- ],
- [
- "hunt",
- -12.90955638885498
- ],
- [
- "▁Serving",
- -12.909673690795898
- ],
- [
- "Writ",
- -12.909692764282227
- ],
- [
- "requisite",
- -12.909798622131348
- ],
- [
- "▁Kerry",
- -12.90989875793457
- ],
- [
- "▁riesig",
- -12.909957885742188
- ],
- [
- "▁Healing",
- -12.91030502319336
- ],
- [
- "▁1954",
- -12.910365104675293
- ],
- [
- "▁mousse",
- -12.910428047180176
- ],
- [
- "▁Positive",
- -12.910764694213867
- ],
- [
- "embodie",
- -12.910772323608398
- ],
- [
- "▁penetrate",
- -12.910774230957031
- ],
- [
- "endorsed",
- -12.910882949829102
- ],
- [
- "▁situatia",
- -12.910927772521973
- ],
- [
- "▁Unity",
- -12.911083221435547
- ],
- [
- "142",
- -12.911102294921875
- ],
- [
- "▁farmhouse",
- -12.911138534545898
- ],
- [
- "▁Handbook",
- -12.911368370056152
- ],
- [
- "▁symbolic",
- -12.911378860473633
- ],
- [
- "pristine",
- -12.911439895629883
- ],
- [
- "moitié",
- -12.911595344543457
- ],
- [
- "▁Sessions",
- -12.912017822265625
- ],
- [
- "technisch",
- -12.912116050720215
- ],
- [
- "▁lesquel",
- -12.912148475646973
- ],
- [
- "▁electronically",
- -12.912208557128906
- ],
- [
- "▁modificat",
- -12.912240982055664
- ],
- [
- "▁adjoin",
- -12.912242889404297
- ],
- [
- "actualité",
- -12.912256240844727
- ],
- [
- "vati",
- -12.91229248046875
- ],
- [
- "VENT",
- -12.912299156188965
- ],
- [
- "▁salsa",
- -12.912333488464355
- ],
- [
- "acupunctur",
- -12.912424087524414
- ],
- [
- "▁Opportunity",
- -12.912424087524414
- ],
- [
- "▁Inspection",
- -12.912425994873047
- ],
- [
- "▁vereinbart",
- -12.912425994873047
- ],
- [
- "▁Residents",
- -12.912426948547363
- ],
- [
- "▁perennial",
- -12.91242790222168
- ],
- [
- "CHAN",
- -12.912555694580078
- ],
- [
- "Search",
- -12.912572860717773
- ],
- [
- "UTE",
- -12.912696838378906
- ],
- [
- "▁Lens",
- -12.912703514099121
- ],
- [
- "▁Banner",
- -12.91281509399414
- ],
- [
- "aménagement",
- -12.912839889526367
- ],
- [
- "▁Decision",
- -12.91286849975586
- ],
- [
- "▁ferr",
- -12.912869453430176
- ],
- [
- "▁Transformation",
- -12.912878036499023
- ],
- [
- "▁Stamm",
- -12.912955284118652
- ],
- [
- "▁Galerie",
- -12.913003921508789
- ],
- [
- "onny",
- -12.913126945495605
- ],
- [
- "▁caption",
- -12.913195610046387
- ],
- [
- "▁viitorul",
- -12.91323471069336
- ],
- [
- "▁professionelle",
- -12.913281440734863
- ],
- [
- "drepturile",
- -12.913294792175293
- ],
- [
- "ylon",
- -12.913345336914062
- ],
- [
- "Société",
- -12.913387298583984
- ],
- [
- "AIS",
- -12.913456916809082
- ],
- [
- "March",
- -12.91350269317627
- ],
- [
- "▁Rav",
- -12.91357707977295
- ],
- [
- "▁1946",
- -12.913691520690918
- ],
- [
- "accompagnement",
- -12.913713455200195
- ],
- [
- "Liviu",
- -12.913716316223145
- ],
- [
- "▁Appeal",
- -12.913826942443848
- ],
- [
- "▁sentir",
- -12.913952827453613
- ],
- [
- "▁Indigenous",
- -12.914087295532227
- ],
- [
- "▁wizard",
- -12.914087295532227
- ],
- [
- "▁collateral",
- -12.914127349853516
- ],
- [
- "▁Proof",
- -12.914324760437012
- ],
- [
- "▁prze",
- -12.914398193359375
- ],
- [
- "▁obținut",
- -12.91450309753418
- ],
- [
- "COP",
- -12.914629936218262
- ],
- [
- "▁obiect",
- -12.914681434631348
- ],
- [
- "▁isolate",
- -12.914685249328613
- ],
- [
- "▁nieder",
- -12.914793014526367
- ],
- [
- "TECH",
- -12.914953231811523
- ],
- [
- "▁Sharing",
- -12.914998054504395
- ],
- [
- "Ideally",
- -12.915008544921875
- ],
- [
- "▁naked",
- -12.915059089660645
- ],
- [
- "horaire",
- -12.915130615234375
- ],
- [
- "▁prelucrare",
- -12.915180206298828
- ],
- [
- "▁forcément",
- -12.915349006652832
- ],
- [
- "▁ESPN",
- -12.915403366088867
- ],
- [
- "▁southwest",
- -12.9154634475708
- ],
- [
- "▁Timber",
- -12.915682792663574
- ],
- [
- "kleidung",
- -12.915748596191406
- ],
- [
- "MJ",
- -12.915854454040527
- ],
- [
- "Ped",
- -12.915889739990234
- ],
- [
- "▁lymph",
- -12.916181564331055
- ],
- [
- "wärme",
- -12.916399002075195
- ],
- [
- "▁Olivia",
- -12.916610717773438
- ],
- [
- "Ziua",
- -12.916705131530762
- ],
- [
- "reihe",
- -12.916747093200684
- ],
- [
- "▁selfish",
- -12.916752815246582
- ],
- [
- "▁geography",
- -12.916814804077148
- ],
- [
- "▁etaj",
- -12.916924476623535
- ],
- [
- "▁acquis",
- -12.91698932647705
- ],
- [
- "▁rejoin",
- -12.91701602935791
- ],
- [
- "7.1",
- -12.917097091674805
- ],
- [
- "▁paix",
- -12.91713809967041
- ],
- [
- "tirer",
- -12.917284965515137
- ],
- [
- "▁clase",
- -12.91745662689209
- ],
- [
- "▁blink",
- -12.917572021484375
- ],
- [
- "▁Interface",
- -12.917611122131348
- ],
- [
- "nado",
- -12.917655944824219
- ],
- [
- "RIT",
- -12.91777515411377
- ],
- [
- "ESC",
- -12.918120384216309
- ],
- [
- "▁carving",
- -12.918190002441406
- ],
- [
- "▁articolul",
- -12.918194770812988
- ],
- [
- "▁wreath",
- -12.918258666992188
- ],
- [
- "▁propaganda",
- -12.918266296386719
- ],
- [
- "▁Pair",
- -12.918267250061035
- ],
- [
- "▁pamant",
- -12.91831111907959
- ],
- [
- "▁venituri",
- -12.918357849121094
- ],
- [
- "rtz",
- -12.91835880279541
- ],
- [
- "uddle",
- -12.918529510498047
- ],
- [
- "uille",
- -12.918543815612793
- ],
- [
- "▁embed",
- -12.918654441833496
- ],
- [
- "0.05",
- -12.918655395507812
- ],
- [
- "▁Brighton",
- -12.918718338012695
- ],
- [
- "estens",
- -12.918742179870605
- ],
- [
- "▁occupational",
- -12.918862342834473
- ],
- [
- "ем",
- -12.918890953063965
- ],
- [
- "wünsche",
- -12.919081687927246
- ],
- [
- "▁Poetry",
- -12.91909408569336
- ],
- [
- "▁visualize",
- -12.919109344482422
- ],
- [
- "Across",
- -12.919121742248535
- ],
- [
- "▁essentielle",
- -12.919123649597168
- ],
- [
- "beratung",
- -12.919143676757812
- ],
- [
- "▁Guidelines",
- -12.91919231414795
- ],
- [
- "▁Fehl",
- -12.919198036193848
- ],
- [
- "▁liberty",
- -12.91921329498291
- ],
- [
- "▁Investigation",
- -12.91922378540039
- ],
- [
- "▁sunrise",
- -12.919266700744629
- ],
- [
- "▁12:00",
- -12.919541358947754
- ],
- [
- "venind",
- -12.919583320617676
- ],
- [
- "▁lotion",
- -12.919655799865723
- ],
- [
- "conscious",
- -12.91968822479248
- ],
- [
- "logists",
- -12.91973876953125
- ],
- [
- "▁judecător",
- -12.919893264770508
- ],
- [
- "▁Ecuador",
- -12.919928550720215
- ],
- [
- "▁ambulance",
- -12.91994857788086
- ],
- [
- "▁Already",
- -12.920026779174805
- ],
- [
- "▁eröffnet",
- -12.920090675354004
- ],
- [
- "▁naval",
- -12.92010498046875
- ],
- [
- "▁imposibil",
- -12.92011547088623
- ],
- [
- "▁Merry",
- -12.92011833190918
- ],
- [
- "▁Duncan",
- -12.920272827148438
- ],
- [
- "▁léger",
- -12.9203519821167
- ],
- [
- "▁delta",
- -12.920391082763672
- ],
- [
- "▁Machinery",
- -12.920578002929688
- ],
- [
- "▁craftsmanship",
- -12.920766830444336
- ],
- [
- "▁angezeigt",
- -12.9207763671875
- ],
- [
- "▁formidable",
- -12.9207763671875
- ],
- [
- "▁Startup",
- -12.920878410339355
- ],
- [
- "venus",
- -12.920969009399414
- ],
- [
- "▁tannin",
- -12.921019554138184
- ],
- [
- "collaborating",
- -12.921128273010254
- ],
- [
- "▁abrupt",
- -12.921152114868164
- ],
- [
- "emergence",
- -12.921171188354492
- ],
- [
- "Dienstleistungen",
- -12.921197891235352
- ],
- [
- "▁liefert",
- -12.921217918395996
- ],
- [
- "engagement",
- -12.921222686767578
- ],
- [
- "▁maximise",
- -12.921304702758789
- ],
- [
- "modeled",
- -12.9214448928833
- ],
- [
- "▁crane",
- -12.92148208618164
- ],
- [
- "▁effortless",
- -12.921540260314941
- ],
- [
- "▁Buffet",
- -12.92160701751709
- ],
- [
- "8000",
- -12.921648979187012
- ],
- [
- "▁Überblick",
- -12.921687126159668
- ],
- [
- "micro",
- -12.921981811523438
- ],
- [
- "▁vergleichen",
- -12.92204475402832
- ],
- [
- "143",
- -12.922080993652344
- ],
- [
- "5.6",
- -12.922094345092773
- ],
- [
- "▁odata",
- -12.922131538391113
- ],
- [
- "▁interviu",
- -12.922162055969238
- ],
- [
- "▁poliţi",
- -12.922375679016113
- ],
- [
- "plated",
- -12.922383308410645
- ],
- [
- "Roman",
- -12.922406196594238
- ],
- [
- "▁satisfactory",
- -12.922453880310059
- ],
- [
- "▁unanimous",
- -12.922459602355957
- ],
- [
- "▁întâln",
- -12.922464370727539
- ],
- [
- "nonsense",
- -12.922558784484863
- ],
- [
- "▁HOW",
- -12.922616004943848
- ],
- [
- "prezinta",
- -12.922639846801758
- ],
- [
- "▁măsura",
- -12.9226655960083
- ],
- [
- "▁Fuji",
- -12.92275619506836
- ],
- [
- "▁Meaning",
- -12.92278003692627
- ],
- [
- "aspiring",
- -12.922850608825684
- ],
- [
- "▁Suceava",
- -12.922863006591797
- ],
- [
- "arba",
- -12.922983169555664
- ],
- [
- "pressive",
- -12.922988891601562
- ],
- [
- "▁creek",
- -12.92301082611084
- ],
- [
- "trakt",
- -12.923023223876953
- ],
- [
- "▁fluffy",
- -12.923303604125977
- ],
- [
- "▁bateau",
- -12.923371315002441
- ],
- [
- "ме",
- -12.923545837402344
- ],
- [
- "UNG",
- -12.923609733581543
- ],
- [
- "motifs",
- -12.923907279968262
- ],
- [
- "Type",
- -12.923958778381348
- ],
- [
- "perçu",
- -12.924132347106934
- ],
- [
- "singurul",
- -12.924139022827148
- ],
- [
- "▁(2011)",
- -12.92418384552002
- ],
- [
- "▁hemp",
- -12.924263954162598
- ],
- [
- "betroffenen",
- -12.92431640625
- ],
- [
- "▁sermon",
- -12.924369812011719
- ],
- [
- "AID",
- -12.924545288085938
- ],
- [
- "3.7",
- -12.924627304077148
- ],
- [
- "▁heiß",
- -12.92463207244873
- ],
- [
- "▁bolnav",
- -12.924982070922852
- ],
- [
- "First",
- -12.924995422363281
- ],
- [
- "▁interrupt",
- -12.925040245056152
- ],
- [
- "phag",
- -12.925106048583984
- ],
- [
- "235",
- -12.925201416015625
- ],
- [
- "▁discoveries",
- -12.925262451171875
- ],
- [
- "▁Wellington",
- -12.925263404846191
- ],
- [
- "▁wechseln",
- -12.925298690795898
- ],
- [
- "▁strategically",
- -12.925379753112793
- ],
- [
- "▁iphone",
- -12.925440788269043
- ],
- [
- "geteilt",
- -12.925646781921387
- ],
- [
- "generative",
- -12.925748825073242
- ],
- [
- "▁Monroe",
- -12.925806045532227
- ],
- [
- "▁Execut",
- -12.925863265991211
- ],
- [
- "▁knitting",
- -12.925931930541992
- ],
- [
- "▁Couple",
- -12.925939559936523
- ],
- [
- "▁Shade",
- -12.926020622253418
- ],
- [
- "▁Taj",
- -12.926060676574707
- ],
- [
- "950",
- -12.926077842712402
- ],
- [
- "boiled",
- -12.92609977722168
- ],
- [
- "▁mixes",
- -12.926130294799805
- ],
- [
- "betroffene",
- -12.926156044006348
- ],
- [
- "▁continuation",
- -12.926169395446777
- ],
- [
- "▁begleitet",
- -12.926226615905762
- ],
- [
- "▁numerical",
- -12.926281929016113
- ],
- [
- "▁(2013)",
- -12.92630386352539
- ],
- [
- "▁nourish",
- -12.926399230957031
- ],
- [
- "oricar",
- -12.926485061645508
- ],
- [
- "focus",
- -12.926486015319824
- ],
- [
- "▁Crazy",
- -12.926651000976562
- ],
- [
- "▁ascend",
- -12.926671028137207
- ],
- [
- "▁vinde",
- -12.926855087280273
- ],
- [
- "roar",
- -12.926874160766602
- ],
- [
- "Vac",
- -12.926929473876953
- ],
- [
- "▁Zuschauer",
- -12.927068710327148
- ],
- [
- "izeze",
- -12.927179336547852
- ],
- [
- "▁Mindest",
- -12.92721939086914
- ],
- [
- "lingual",
- -12.927229881286621
- ],
- [
- "▁violet",
- -12.927264213562012
- ],
- [
- "▁Opfer",
- -12.927299499511719
- ],
- [
- "ARS",
- -12.927431106567383
- ],
- [
- "4.7",
- -12.92744255065918
- ],
- [
- "millennial",
- -12.927492141723633
- ],
- [
- "▁striv",
- -12.927639961242676
- ],
- [
- "▁bishop",
- -12.927680015563965
- ],
- [
- "▁Durham",
- -12.927708625793457
- ],
- [
- "opathic",
- -12.927817344665527
- ],
- [
- "Where",
- -12.927999496459961
- ],
- [
- "▁Rider",
- -12.928030014038086
- ],
- [
- "▁Reid",
- -12.928030967712402
- ],
- [
- "stumbled",
- -12.928156852722168
- ],
- [
- "deep",
- -12.92827320098877
- ],
- [
- "▁11:00",
- -12.928340911865234
- ],
- [
- "▁Essex",
- -12.928380966186523
- ],
- [
- "▁Analyst",
- -12.928397178649902
- ],
- [
- "feel",
- -12.928546905517578
- ],
- [
- "▁rave",
- -12.928601264953613
- ],
- [
- "▁Eddie",
- -12.928631782531738
- ],
- [
- "▁communiqué",
- -12.928756713867188
- ],
- [
- "[/",
- -12.928791046142578
- ],
- [
- "▁Tho",
- -12.929011344909668
- ],
- [
- "ffentlichkeit",
- -12.929019927978516
- ],
- [
- "instrument",
- -12.929126739501953
- ],
- [
- "▁metropolitan",
- -12.929179191589355
- ],
- [
- "▁experienţ",
- -12.929181098937988
- ],
- [
- "East",
- -12.929198265075684
- ],
- [
- "Compared",
- -12.929434776306152
- ],
- [
- "worn",
- -12.929484367370605
- ],
- [
- "berufliche",
- -12.92966365814209
- ],
- [
- "▁Umstände",
- -12.929710388183594
- ],
- [
- "individuellen",
- -12.929901123046875
- ],
- [
- "siehe",
- -12.929912567138672
- ],
- [
- "▁sfarsit",
- -12.929969787597656
- ],
- [
- "▁Strength",
- -12.929999351501465
- ],
- [
- "▁prejudice",
- -12.930024147033691
- ],
- [
- "▁shutdown",
- -12.930159568786621
- ],
- [
- "chatting",
- -12.93022346496582
- ],
- [
- "▁Gerne",
- -12.930227279663086
- ],
- [
- "▁Yum",
- -12.930305480957031
- ],
- [
- "▁coastline",
- -12.930387496948242
- ],
- [
- "▁headboard",
- -12.930623054504395
- ],
- [
- "▁politische",
- -12.930768966674805
- ],
- [
- "Sub",
- -12.930838584899902
- ],
- [
- "▁Henderson",
- -12.930870056152344
- ],
- [
- "▁astonishing",
- -12.930870056152344
- ],
- [
- "▁Dresden",
- -12.930871963500977
- ],
- [
- "▁strawberry",
- -12.93088436126709
- ],
- [
- "prenez",
- -12.930889129638672
- ],
- [
- "▁Monaco",
- -12.930912971496582
- ],
- [
- "▁empowered",
- -12.930953025817871
- ],
- [
- "fäl",
- -12.93109130859375
- ],
- [
- "▁creier",
- -12.931120872497559
- ],
- [
- "▁Equ",
- -12.931300163269043
- ],
- [
- "▁Selling",
- -12.931379318237305
- ],
- [
- "▁$35",
- -12.931483268737793
- ],
- [
- "konto",
- -12.931503295898438
- ],
- [
- "▁Procedure",
- -12.931715965270996
- ],
- [
- "▁reduziert",
- -12.931715965270996
- ],
- [
- "▁royalty",
- -12.931740760803223
- ],
- [
- "wyn",
- -12.931756019592285
- ],
- [
- "▁Unfall",
- -12.932141304016113
- ],
- [
- "NAT",
- -12.932161331176758
- ],
- [
- "▁grafic",
- -12.93251895904541
- ],
- [
- "▁Collective",
- -12.932563781738281
- ],
- [
- "▁Computing",
- -12.932564735412598
- ],
- [
- "▁Established",
- -12.932594299316406
- ],
- [
- "▁zest",
- -12.932598114013672
- ],
- [
- "venez",
- -12.932611465454102
- ],
- [
- "follow",
- -12.9326171875
- ],
- [
- "▁Motivation",
- -12.932640075683594
- ],
- [
- "▁dictator",
- -12.932755470275879
- ],
- [
- "whichever",
- -12.93281078338623
- ],
- [
- "▁întâmpl",
- -12.93293285369873
- ],
- [
- "Flüchtling",
- -12.932987213134766
- ],
- [
- "EMI",
- -12.933015823364258
- ],
- [
- "404",
- -12.933019638061523
- ],
- [
- "ICK",
- -12.93302059173584
- ],
- [
- "emplacement",
- -12.933191299438477
- ],
- [
- "complete",
- -12.933349609375
- ],
- [
- "advising",
- -12.933412551879883
- ],
- [
- "▁Administrative",
- -12.933481216430664
- ],
- [
- "▁deviation",
- -12.933496475219727
- ],
- [
- "▁experienț",
- -12.933500289916992
- ],
- [
- "lethor",
- -12.933996200561523
- ],
- [
- "▁compress",
- -12.934081077575684
- ],
- [
- "rival",
- -12.934173583984375
- ],
- [
- "reprendre",
- -12.934186935424805
- ],
- [
- "ugi",
- -12.934266090393066
- ],
- [
- "▁Invitation",
- -12.934267044067383
- ],
- [
- "▁retina",
- -12.934332847595215
- ],
- [
- "▁farther",
- -12.934335708618164
- ],
- [
- "▁fenêtre",
- -12.934799194335938
- ],
- [
- "6-7",
- -12.934815406799316
- ],
- [
- "zhou",
- -12.934834480285645
- ],
- [
- "▁Piano",
- -12.934840202331543
- ],
- [
- "▁Congrats",
- -12.935114860534668
- ],
- [
- "▁Configur",
- -12.935131072998047
- ],
- [
- "▁superficial",
- -12.935179710388184
- ],
- [
- "▁melting",
- -12.935315132141113
- ],
- [
- "▁raspunde",
- -12.935626983642578
- ],
- [
- "▁drip",
- -12.93564224243164
- ],
- [
- "östlich",
- -12.9358491897583
- ],
- [
- "189",
- -12.935925483703613
- ],
- [
- "▁Ludwig",
- -12.935959815979004
- ],
- [
- "▁keto",
- -12.935985565185547
- ],
- [
- "▁Bogdan",
- -12.936013221740723
- ],
- [
- "▁contracted",
- -12.936029434204102
- ],
- [
- "▁revive",
- -12.936100006103516
- ],
- [
- "▁cristal",
- -12.936232566833496
- ],
- [
- "▁mailbox",
- -12.936257362365723
- ],
- [
- "președintele",
- -12.936559677124023
- ],
- [
- "▁seekers",
- -12.936627388000488
- ],
- [
- "func",
- -12.936904907226562
- ],
- [
- "▁Markus",
- -12.93691349029541
- ],
- [
- "Unter",
- -12.936923027038574
- ],
- [
- "▁übertragen",
- -12.937003135681152
- ],
- [
- "▁adaptive",
- -12.937024116516113
- ],
- [
- "caster",
- -12.937051773071289
- ],
- [
- "▁geek",
- -12.937164306640625
- ],
- [
- "▁réservation",
- -12.937236785888672
- ],
- [
- "▁irritation",
- -12.937240600585938
- ],
- [
- "▁HDMI",
- -12.937346458435059
- ],
- [
- "Seeing",
- -12.937485694885254
- ],
- [
- "▁genul",
- -12.937569618225098
- ],
- [
- "▁catastrophe",
- -12.937662124633789
- ],
- [
- "▁Tweet",
- -12.937665939331055
- ],
- [
- "TZ",
- -12.937729835510254
- ],
- [
- "▁credible",
- -12.937946319580078
- ],
- [
- "▁cobor",
- -12.938064575195312
- ],
- [
- "▁realizeaz",
- -12.938159942626953
- ],
- [
- "journal",
- -12.938274383544922
- ],
- [
- "▁shaking",
- -12.938532829284668
- ],
- [
- "3-6",
- -12.938572883605957
- ],
- [
- "▁beneficiaz",
- -12.938605308532715
- ],
- [
- "▁Frankreich",
- -12.938633918762207
- ],
- [
- "committing",
- -12.9386568069458
- ],
- [
- "AMS",
- -12.938835144042969
- ],
- [
- "▁Feli",
- -12.939007759094238
- ],
- [
- "▁Producer",
- -12.939023971557617
- ],
- [
- "▁übrig",
- -12.93940544128418
- ],
- [
- "gemeinde",
- -12.939593315124512
- ],
- [
- "should",
- -12.939799308776855
- ],
- [
- "▁neurons",
- -12.939799308776855
- ],
- [
- "▁Agenda",
- -12.939833641052246
- ],
- [
- "▁hashtag",
- -12.939896583557129
- ],
- [
- "▁confortabil",
- -12.939897537231445
- ],
- [
- "520",
- -12.940008163452148
- ],
- [
- "bonded",
- -12.940033912658691
- ],
- [
- "▁următoare",
- -12.940191268920898
- ],
- [
- "▁volatile",
- -12.940223693847656
- ],
- [
- "infamous",
- -12.940225601196289
- ],
- [
- "seară",
- -12.940229415893555
- ],
- [
- "▁Sorge",
- -12.940346717834473
- ],
- [
- "▁Beiträge",
- -12.940420150756836
- ],
- [
- "▁îndeplin",
- -12.940449714660645
- ],
- [
- "gespräch",
- -12.940649032592773
- ],
- [
- "▁joueur",
- -12.940701484680176
- ],
- [
- "▁outsourcing",
- -12.940701484680176
- ],
- [
- "▁Guvernul",
- -12.940814018249512
- ],
- [
- "6-2",
- -12.940818786621094
- ],
- [
- "▁prioritize",
- -12.941068649291992
- ],
- [
- "▁duminică",
- -12.941076278686523
- ],
- [
- "▁resignation",
- -12.941076278686523
- ],
- [
- "▁Converter",
- -12.941079139709473
- ],
- [
- "hereby",
- -12.941155433654785
- ],
- [
- "▁stresses",
- -12.941299438476562
- ],
- [
- "▁brun",
- -12.941415786743164
- ],
- [
- "▁elev",
- -12.941423416137695
- ],
- [
- "▁Skip",
- -12.941479682922363
- ],
- [
- "540",
- -12.941499710083008
- ],
- [
- "TURE",
- -12.941603660583496
- ],
- [
- "▁Lynch",
- -12.941635131835938
- ],
- [
- "▁preveni",
- -12.941643714904785
- ],
- [
- "compatible",
- -12.941692352294922
- ],
- [
- "surveyed",
- -12.941702842712402
- ],
- [
- "▁Ausnahme",
- -12.941713333129883
- ],
- [
- "▁medicul",
- -12.941812515258789
- ],
- [
- "▁subtil",
- -12.941865921020508
- ],
- [
- "▁Quali",
- -12.941890716552734
- ],
- [
- "▁techno",
- -12.941900253295898
- ],
- [
- "presently",
- -12.94193172454834
- ],
- [
- "▁Müller",
- -12.941934585571289
- ],
- [
- "DIRECT",
- -12.941937446594238
- ],
- [
- "schuld",
- -12.941944122314453
- ],
- [
- "▁Bloomberg",
- -12.941994667053223
- ],
- [
- "feuer",
- -12.942181587219238
- ],
- [
- "▁Pharmacy",
- -12.942270278930664
- ],
- [
- "▁Schnitt",
- -12.942301750183105
- ],
- [
- "186",
- -12.942333221435547
- ],
- [
- "peaks",
- -12.942355155944824
- ],
- [
- "▁Gemeinsam",
- -12.94235897064209
- ],
- [
- "▁récemment",
- -12.94235897064209
- ],
- [
- "▁Pascal",
- -12.942490577697754
- ],
- [
- "filmed",
- -12.942523956298828
- ],
- [
- "RCA",
- -12.942548751831055
- ],
- [
- "▁virtuelle",
- -12.942622184753418
- ],
- [
- "▁dotat",
- -12.942630767822266
- ],
- [
- "logisch",
- -12.942717552185059
- ],
- [
- "▁Luck",
- -12.943005561828613
- ],
- [
- "cosy",
- -12.943132400512695
- ],
- [
- "▁Awareness",
- -12.943216323852539
- ],
- [
- "▁gesetzlich",
- -12.943263053894043
- ],
- [
- "padded",
- -12.943306922912598
- ],
- [
- "▁Lotus",
- -12.943395614624023
- ],
- [
- "urging",
- -12.9434175491333
- ],
- [
- "▁mushroom",
- -12.943426132202148
- ],
- [
- "▁adultes",
- -12.943527221679688
- ],
- [
- "▁Coca",
- -12.943571090698242
- ],
- [
- "▁recev",
- -12.943586349487305
- ],
- [
- "▁mantra",
- -12.943610191345215
- ],
- [
- "▁practise",
- -12.943644523620605
- ],
- [
- "▁acceler",
- -12.943663597106934
- ],
- [
- "bolster",
- -12.943756103515625
- ],
- [
- "▁compressed",
- -12.943818092346191
- ],
- [
- "TIN",
- -12.943899154663086
- ],
- [
- "▁aromatic",
- -12.944236755371094
- ],
- [
- "geleitet",
- -12.944408416748047
- ],
- [
- "▁fibr",
- -12.944443702697754
- ],
- [
- "exécut",
- -12.94444751739502
- ],
- [
- "▁unconscious",
- -12.94456958770752
- ],
- [
- "HAR",
- -12.944607734680176
- ],
- [
- "▁Gregory",
- -12.944661140441895
- ],
- [
- "▁Manila",
- -12.944738388061523
- ],
- [
- "ozitate",
- -12.944756507873535
- ],
- [
- "exemplary",
- -12.944803237915039
- ],
- [
- "éventuel",
- -12.944906234741211
- ],
- [
- "▁Craciun",
- -12.944930076599121
- ],
- [
- "▁tehnologii",
- -12.944931030273438
- ],
- [
- "▁Despre",
- -12.945138931274414
- ],
- [
- "▁1917",
- -12.945141792297363
- ],
- [
- "▁upfront",
- -12.945146560668945
- ],
- [
- "▁Iulia",
- -12.945280075073242
- ],
- [
- "▁erwähnt",
- -12.945359230041504
- ],
- [
- "▁magnesium",
- -12.945359230041504
- ],
- [
- "▁descriptive",
- -12.94536304473877
- ],
- [
- "▁consumul",
- -12.945364952087402
- ],
- [
- "▁10-15",
- -12.945423126220703
- ],
- [
- "▁erfüllen",
- -12.945611953735352
- ],
- [
- "gig",
- -12.945657730102539
- ],
- [
- "430",
- -12.945765495300293
- ],
- [
- "▁Migration",
- -12.945789337158203
- ],
- [
- "bră",
- -12.94579029083252
- ],
- [
- "▁réforme",
- -12.945863723754883
- ],
- [
- "▁york",
- -12.94610595703125
- ],
- [
- "dritten",
- -12.946109771728516
- ],
- [
- "cumva",
- -12.946182250976562
- ],
- [
- "▁Alumni",
- -12.946218490600586
- ],
- [
- "▁Ceramic",
- -12.946222305297852
- ],
- [
- "▁rappelle",
- -12.946236610412598
- ],
- [
- "▁pianist",
- -12.946248054504395
- ],
- [
- "twisted",
- -12.946306228637695
- ],
- [
- "earned",
- -12.946432113647461
- ],
- [
- "▁Hose",
- -12.946514129638672
- ],
- [
- "156",
- -12.946610450744629
- ],
- [
- "▁Salmon",
- -12.946687698364258
- ],
- [
- "Level",
- -12.946913719177246
- ],
- [
- "▁swirl",
- -12.947052001953125
- ],
- [
- "erfahrung",
- -12.947061538696289
- ],
- [
- "▁liabilities",
- -12.947078704833984
- ],
- [
- "praxis",
- -12.9470853805542
- ],
- [
- "IPO",
- -12.947089195251465
- ],
- [
- "▁screaming",
- -12.947092056274414
- ],
- [
- "emphasized",
- -12.947200775146484
- ],
- [
- "DEA",
- -12.947260856628418
- ],
- [
- "▁dermatolog",
- -12.947351455688477
- ],
- [
- "▁pacate",
- -12.947498321533203
- ],
- [
- "▁ansamblu",
- -12.947507858276367
- ],
- [
- "▁beteiligt",
- -12.947509765625
- ],
- [
- "▁Needles",
- -12.947574615478516
- ],
- [
- "▁organisiert",
- -12.947607040405273
- ],
- [
- "Pacific",
- -12.947639465332031
- ],
- [
- "actual",
- -12.947823524475098
- ],
- [
- "prindere",
- -12.94801139831543
- ],
- [
- "▁Indoor",
- -12.948348045349121
- ],
- [
- "▁Gewalt",
- -12.948431015014648
- ],
- [
- "▁rezid",
- -12.948507308959961
- ],
- [
- "censor",
- -12.948522567749023
- ],
- [
- "▁unlawful",
- -12.94882869720459
- ],
- [
- "▁Explain",
- -12.948873519897461
- ],
- [
- "▁Flame",
- -12.948897361755371
- ],
- [
- "▁brachte",
- -12.948941230773926
- ],
- [
- "▁Mustang",
- -12.94899845123291
- ],
- [
- "ectomy",
- -12.949044227600098
- ],
- [
- "▁deliberate",
- -12.949064254760742
- ],
- [
- "▁sparkle",
- -12.949225425720215
- ],
- [
- "▁inchis",
- -12.94926929473877
- ],
- [
- "▁Cristian",
- -12.949289321899414
- ],
- [
- "▁facture",
- -12.949291229248047
- ],
- [
- "▁Grundstück",
- -12.949292182922363
- ],
- [
- "außerhalb",
- -12.949300765991211
- ],
- [
- "coast",
- -12.949321746826172
- ],
- [
- "anilor",
- -12.949396133422852
- ],
- [
- "255",
- -12.94952392578125
- ],
- [
- "nterdisciplinary",
- -12.949576377868652
- ],
- [
- "▁Isabel",
- -12.949655532836914
- ],
- [
- "▁Städte",
- -12.949701309204102
- ],
- [
- "▁cicl",
- -12.949837684631348
- ],
- [
- "▁Zeug",
- -12.949905395507812
- ],
- [
- "▁Muskel",
- -12.949951171875
- ],
- [
- "▁indirectly",
- -12.950051307678223
- ],
- [
- "▁Vorbereitung",
- -12.950093269348145
- ],
- [
- "MMA",
- -12.95012378692627
- ],
- [
- "▁pudding",
- -12.950197219848633
- ],
- [
- "rax",
- -12.950389862060547
- ],
- [
- "▁Stimmung",
- -12.95052433013916
- ],
- [
- "▁hierarchy",
- -12.95052433013916
- ],
- [
- "partie",
- -12.950597763061523
- ],
- [
- "▁elevate",
- -12.950685501098633
- ],
- [
- "▁Persian",
- -12.950690269470215
- ],
- [
- "forensic",
- -12.95077896118164
- ],
- [
- "Become",
- -12.950854301452637
- ],
- [
- "leicht",
- -12.9508695602417
- ],
- [
- "▁staging",
- -12.950942039489746
- ],
- [
- "▁fühlt",
- -12.950965881347656
- ],
- [
- "fenster",
- -12.950979232788086
- ],
- [
- "▁unbelievable",
- -12.951089859008789
- ],
- [
- "„",
- -12.951260566711426
- ],
- [
- "▁Guatemala",
- -12.951387405395508
- ],
- [
- "LET",
- -12.95141315460205
- ],
- [
- "▁buff",
- -12.951454162597656
- ],
- [
- "▁Primul",
- -12.951626777648926
- ],
- [
- "▁mainland",
- -12.951702117919922
- ],
- [
- "campus",
- -12.951923370361328
- ],
- [
- "▁gefällt",
- -12.952075958251953
- ],
- [
- "BAN",
- -12.952153205871582
- ],
- [
- "finish",
- -12.952229499816895
- ],
- [
- "accustomed",
- -12.952251434326172
- ],
- [
- "▁Businesses",
- -12.95234203338623
- ],
- [
- "▁întreb",
- -12.95239543914795
- ],
- [
- "▁recomandă",
- -12.952425956726074
- ],
- [
- "▁pellet",
- -12.952474594116211
- ],
- [
- "▁GST",
- -12.952507972717285
- ],
- [
- "SEA",
- -12.952601432800293
- ],
- [
- "▁categorie",
- -12.952631950378418
- ],
- [
- "▁convainc",
- -12.95268440246582
- ],
- [
- "▁considéré",
- -12.952739715576172
- ],
- [
- "rois",
- -12.952853202819824
- ],
- [
- "▁thrust",
- -12.952898979187012
- ],
- [
- "ijk",
- -12.953001022338867
- ],
- [
- "gefüllt",
- -12.953118324279785
- ],
- [
- "▁situatii",
- -12.953327178955078
- ],
- [
- "▁Jacksonville",
- -12.95337200164795
- ],
- [
- "▁bakery",
- -12.953473091125488
- ],
- [
- "▁Accident",
- -12.953554153442383
- ],
- [
- "▁urmeaza",
- -12.953572273254395
- ],
- [
- "▁crib",
- -12.953593254089355
- ],
- [
- "getroffen",
- -12.953707695007324
- ],
- [
- "Based",
- -12.953877449035645
- ],
- [
- "Including",
- -12.95398235321045
- ],
- [
- "▁Morocco",
- -12.95398235321045
- ],
- [
- "▁casserole",
- -12.95398235321045
- ],
- [
- "▁enquiry",
- -12.953983306884766
- ],
- [
- "▁pahar",
- -12.954017639160156
- ],
- [
- "▁Unternehmer",
- -12.954025268554688
- ],
- [
- "électro",
- -12.954068183898926
- ],
- [
- "Marie",
- -12.95413589477539
- ],
- [
- "▁Sno",
- -12.954153060913086
- ],
- [
- "▁prostate",
- -12.954168319702148
- ],
- [
- "▁Wallace",
- -12.95426082611084
- ],
- [
- "empre",
- -12.954402923583984
- ],
- [
- "▁Multumesc",
- -12.954415321350098
- ],
- [
- "White",
- -12.954675674438477
- ],
- [
- "brief",
- -12.954751014709473
- ],
- [
- "▁kitten",
- -12.954751014709473
- ],
- [
- "füh",
- -12.954780578613281
- ],
- [
- "▁mankind",
- -12.954821586608887
- ],
- [
- "ENE",
- -12.95483112335205
- ],
- [
- "▁Ethics",
- -12.954848289489746
- ],
- [
- "▁Realty",
- -12.954946517944336
- ],
- [
- "▁Emerg",
- -12.954988479614258
- ],
- [
- "7-8",
- -12.955055236816406
- ],
- [
- "museum",
- -12.955096244812012
- ],
- [
- "BRE",
- -12.95518970489502
- ],
- [
- "▁kilometri",
- -12.955282211303711
- ],
- [
- "oyaume",
- -12.955286026000977
- ],
- [
- "▁Cambodia",
- -12.955288887023926
- ],
- [
- "▁bruit",
- -12.955304145812988
- ],
- [
- "▁sépar",
- -12.955334663391113
- ],
- [
- "mastered",
- -12.9554443359375
- ],
- [
- "shake",
- -12.955608367919922
- ],
- [
- "▁liaison",
- -12.955718994140625
- ],
- [
- "▁Boulder",
- -12.955719947814941
- ],
- [
- "▁tortilla",
- -12.955720901489258
- ],
- [
- "▁Fokus",
- -12.955731391906738
- ],
- [
- "▁Blair",
- -12.95573902130127
- ],
- [
- "▁disturbance",
- -12.955775260925293
- ],
- [
- "geladen",
- -12.955843925476074
- ],
- [
- "▁sunscreen",
- -12.955886840820312
- ],
- [
- "▁reuș",
- -12.955896377563477
- ],
- [
- "▁Braun",
- -12.956155776977539
- ],
- [
- "▁existente",
- -12.956157684326172
- ],
- [
- "stift",
- -12.956242561340332
- ],
- [
- "▁preot",
- -12.956387519836426
- ],
- [
- "▁doved",
- -12.956445693969727
- ],
- [
- "sexual",
- -12.956488609313965
- ],
- [
- "meanwhile",
- -12.956583976745605
- ],
- [
- "▁legislature",
- -12.956583976745605
- ],
- [
- "▁vermeiden",
- -12.956583976745605
- ],
- [
- "▁inequality",
- -12.95687484741211
- ],
- [
- "▁turc",
- -12.956881523132324
- ],
- [
- "ви",
- -12.95698070526123
- ],
- [
- "▁Kontrolle",
- -12.95702075958252
- ],
- [
- "▁Ursache",
- -12.95704174041748
- ],
- [
- "▁confess",
- -12.95704174041748
- ],
- [
- "▁poetic",
- -12.957109451293945
- ],
- [
- "attention",
- -12.957236289978027
- ],
- [
- "textured",
- -12.957386016845703
- ],
- [
- "GES",
- -12.957586288452148
- ],
- [
- "6-4",
- -12.957637786865234
- ],
- [
- "Ray",
- -12.957696914672852
- ],
- [
- "chromat",
- -12.957745552062988
- ],
- [
- "▁insightful",
- -12.957775115966797
- ],
- [
- "▁Navigation",
- -12.957887649536133
- ],
- [
- "▁destiny",
- -12.957887649536133
- ],
- [
- "▁ergeben",
- -12.957892417907715
- ],
- [
- "▁versteh",
- -12.958090782165527
- ],
- [
- "301",
- -12.958209037780762
- ],
- [
- "▁Exterior",
- -12.958321571350098
- ],
- [
- "église",
- -12.958322525024414
- ],
- [
- "▁Failure",
- -12.958322525024414
- ],
- [
- "▁Patricia",
- -12.958324432373047
- ],
- [
- "▁geschützt",
- -12.958328247070312
- ],
- [
- "intrarea",
- -12.95833969116211
- ],
- [
- "▁Forward",
- -12.958368301391602
- ],
- [
- "▁Portrait",
- -12.95844841003418
- ],
- [
- "▁enregistré",
- -12.958480834960938
- ],
- [
- "▁wagon",
- -12.958620071411133
- ],
- [
- "stealing",
- -12.958879470825195
- ],
- [
- "▁Numero",
- -12.958880424499512
- ],
- [
- "▁tradui",
- -12.958986282348633
- ],
- [
- "▁klassische",
- -12.959033966064453
- ],
- [
- "▁profitieren",
- -12.959043502807617
- ],
- [
- "▁laboratories",
- -12.95919132232666
- ],
- [
- "▁reconnaissance",
- -12.95919132232666
- ],
- [
- "ку",
- -12.959314346313477
- ],
- [
- "▁Petersburg",
- -12.959359169006348
- ],
- [
- "▁fertility",
- -12.959421157836914
- ],
- [
- "▁Understand",
- -12.959516525268555
- ],
- [
- "dehors",
- -12.959746360778809
- ],
- [
- "▁Knox",
- -12.959762573242188
- ],
- [
- "software",
- -12.959797859191895
- ],
- [
- "▁Celebration",
- -12.959823608398438
- ],
- [
- "4.6",
- -12.959897994995117
- ],
- [
- "quino",
- -12.959930419921875
- ],
- [
- "▁endeavour",
- -12.960073471069336
- ],
- [
- "▁temptation",
- -12.960136413574219
- ],
- [
- "▁Registry",
- -12.96035385131836
- ],
- [
- "IMP",
- -12.960502624511719
- ],
- [
- "bedingt",
- -12.960625648498535
- ],
- [
- "▁$60",
- -12.960846900939941
- ],
- [
- "▁Kriterien",
- -12.96093463897705
- ],
- [
- "▁strawberries",
- -12.960943222045898
- ],
- [
- "▁conspiracy",
- -12.96094799041748
- ],
- [
- "▁pouch",
- -12.960976600646973
- ],
- [
- "▁Alexandria",
- -12.961017608642578
- ],
- [
- "▁Mick",
- -12.961102485656738
- ],
- [
- "extra",
- -12.961114883422852
- ],
- [
- "▁Operator",
- -12.961151123046875
- ],
- [
- "enduring",
- -12.96132755279541
- ],
- [
- "▁smash",
- -12.961359024047852
- ],
- [
- "Euro",
- -12.961360931396484
- ],
- [
- "▁Nouvelle",
- -12.961370468139648
- ],
- [
- "▁Raspberry",
- -12.961370468139648
- ],
- [
- "▁präsentieren",
- -12.961380004882812
- ],
- [
- "▁electrician",
- -12.961404800415039
- ],
- [
- "▁cheerful",
- -12.961472511291504
- ],
- [
- "▁chargé",
- -12.961508750915527
- ],
- [
- "▁Diskussion",
- -12.961511611938477
- ],
- [
- "▁surpass",
- -12.961604118347168
- ],
- [
- "▁Acces",
- -12.961701393127441
- ],
- [
- "tausend",
- -12.961771011352539
- ],
- [
- "▁vigorous",
- -12.961808204650879
- ],
- [
- "▁tava",
- -12.961810111999512
- ],
- [
- "CHO",
- -12.96193790435791
- ],
- [
- "▁1951",
- -12.961941719055176
- ],
- [
- "▁Umsatz",
- -12.962019920349121
- ],
- [
- "▁slavery",
- -12.962055206298828
- ],
- [
- "travel",
- -12.962294578552246
- ],
- [
- "▁correspondent",
- -12.962297439575195
- ],
- [
- "▁$150",
- -12.962307929992676
- ],
- [
- "▁stärker",
- -12.962594985961914
- ],
- [
- "Alb",
- -12.96264362335205
- ],
- [
- "▁Lopez",
- -12.962682723999023
- ],
- [
- "▁longueur",
- -12.962767601013184
- ],
- [
- "▁successive",
- -12.962772369384766
- ],
- [
- "▁(2015)",
- -12.96278190612793
- ],
- [
- "teig",
- -12.962790489196777
- ],
- [
- "custom",
- -12.962944984436035
- ],
- [
- "TIM",
- -12.963099479675293
- ],
- [
- "▁Escape",
- -12.963174819946289
- ],
- [
- "▁Sekunden",
- -12.963349342346191
- ],
- [
- "tiré",
- -12.963444709777832
- ],
- [
- "▁chantier",
- -12.963489532470703
- ],
- [
- "▁saturated",
- -12.963555335998535
- ],
- [
- "▁confrontation",
- -12.963804244995117
- ],
- [
- "▁biography",
- -12.963805198669434
- ],
- [
- "zuerst",
- -12.9639892578125
- ],
- [
- "▁rencontré",
- -12.963991165161133
- ],
- [
- "▁harmless",
- -12.96412181854248
- ],
- [
- "Branche",
- -12.964139938354492
- ],
- [
- "▁QR",
- -12.964380264282227
- ],
- [
- "▁Ereignis",
- -12.964430809020996
- ],
- [
- "▁verkaufen",
- -12.96444320678711
- ],
- [
- "0:00",
- -12.96451187133789
- ],
- [
- "Association",
- -12.96469783782959
- ],
- [
- "▁Santiago",
- -12.964865684509277
- ],
- [
- "Control",
- -12.964993476867676
- ],
- [
- "▁Angriff",
- -12.9650297164917
- ],
- [
- "lase",
- -12.96505069732666
- ],
- [
- "▁sfaturi",
- -12.965224266052246
- ],
- [
- "▁Comprehensive",
- -12.965304374694824
- ],
- [
- "▁Shepherd",
- -12.965304374694824
- ],
- [
- "▁exponential",
- -12.965304374694824
- ],
- [
- "▁penetration",
- -12.965304374694824
- ],
- [
- "▁comble",
- -12.965394973754883
- ],
- [
- "ionar",
- -12.965557098388672
- ],
- [
- "slept",
- -12.965563774108887
- ],
- [
- "▁Spice",
- -12.965633392333984
- ],
- [
- "mAh",
- -12.965688705444336
- ],
- [
- "▁Vertreter",
- -12.965747833251953
- ],
- [
- "fehler",
- -12.965752601623535
- ],
- [
- "▁Scroll",
- -12.96599292755127
- ],
- [
- "▁WARRANT",
- -12.966179847717285
- ],
- [
- "▁minimise",
- -12.966326713562012
- ],
- [
- "▁Dept",
- -12.966474533081055
- ],
- [
- "▁urinar",
- -12.96661376953125
- ],
- [
- "établir",
- -12.966619491577148
- ],
- [
- "verhältnis",
- -12.966713905334473
- ],
- [
- "▁glowing",
- -12.966979026794434
- ],
- [
- "kulturelle",
- -12.966984748840332
- ],
- [
- "▁Pediatric",
- -12.967057228088379
- ],
- [
- "▁inconvenience",
- -12.967057228088379
- ],
- [
- "Antoine",
- -12.967121124267578
- ],
- [
- "▁Heck",
- -12.967164993286133
- ],
- [
- "▁couches",
- -12.967265129089355
- ],
- [
- "▁1938",
- -12.967331886291504
- ],
- [
- "maybe",
- -12.967333793640137
- ],
- [
- "ETA",
- -12.9673433303833
- ],
- [
- "▁solaire",
- -12.96748161315918
- ],
- [
- "▁Zürich",
- -12.967495918273926
- ],
- [
- "computer",
- -12.967545509338379
- ],
- [
- "milk",
- -12.96756362915039
- ],
- [
- "он",
- -12.967585563659668
- ],
- [
- "modalitate",
- -12.967608451843262
- ],
- [
- "spanning",
- -12.967655181884766
- ],
- [
- "▁Crypto",
- -12.96774959564209
- ],
- [
- "▁Spotify",
- -12.967935562133789
- ],
- [
- "mycin",
- -12.967944145202637
- ],
- [
- "▁similarities",
- -12.96811294555664
- ],
- [
- "▁eclipse",
- -12.968377113342285
- ],
- [
- "Map",
- -12.968610763549805
- ],
- [
- "double",
- -12.96861743927002
- ],
- [
- "corporate",
- -12.968734741210938
- ],
- [
- "▁Hindi",
- -12.968853950500488
- ],
- [
- "battling",
- -12.968866348266602
- ],
- [
- "▁habituel",
- -12.969098091125488
- ],
- [
- "▁Transition",
- -12.969196319580078
- ],
- [
- "▁luptă",
- -12.96920394897461
- ],
- [
- "▁trainee",
- -12.969219207763672
- ],
- [
- "LIS",
- -12.96922492980957
- ],
- [
- "▁Vatican",
- -12.969254493713379
- ],
- [
- "Archived",
- -12.9692964553833
- ],
- [
- "Connect",
- -12.969305038452148
- ],
- [
- "▁prealabil",
- -12.969307899475098
- ],
- [
- "▁Chambre",
- -12.969327926635742
- ],
- [
- "stuhl",
- -12.969440460205078
- ],
- [
- "▁arrivé",
- -12.969557762145996
- ],
- [
- "▁Urteil",
- -12.969575881958008
- ],
- [
- "▁scrutiny",
- -12.969818115234375
- ],
- [
- "▁memoir",
- -12.969854354858398
- ],
- [
- "▁innovant",
- -12.9699068069458
- ],
- [
- "▁sublime",
- -12.969943046569824
- ],
- [
- "children",
- -12.970004081726074
- ],
- [
- "▁Handwerk",
- -12.970056533813477
- ],
- [
- "▁campuses",
- -12.970268249511719
- ],
- [
- "▁durabil",
- -12.970502853393555
- ],
- [
- "▁immersive",
- -12.970632553100586
- ],
- [
- "▁Magnet",
- -12.970732688903809
- ],
- [
- "läufe",
- -12.970808029174805
- ],
- [
- "▁Techno",
- -12.970837593078613
- ],
- [
- "MAP",
- -12.9710693359375
- ],
- [
- "7.2",
- -12.971145629882812
- ],
- [
- "▁Schwimm",
- -12.971181869506836
- ],
- [
- "BOOK",
- -12.971186637878418
- ],
- [
- "188",
- -12.971441268920898
- ],
- [
- "▁Supervisor",
- -12.971498489379883
- ],
- [
- "prévue",
- -12.971691131591797
- ],
- [
- "needed",
- -12.971813201904297
- ],
- [
- "▁creditors",
- -12.971822738647461
- ],
- [
- "▁brin",
- -12.971837043762207
- ],
- [
- "▁Neck",
- -12.971900939941406
- ],
- [
- "▁Salut",
- -12.971988677978516
- ],
- [
- "▁despair",
- -12.972105979919434
- ],
- [
- "▁Sauce",
- -12.972261428833008
- ],
- [
- "▁Westminster",
- -12.972335815429688
- ],
- [
- "▁langfristig",
- -12.972335815429688
- ],
- [
- "▁northeast",
- -12.972365379333496
- ],
- [
- "▁încercat",
- -12.972399711608887
- ],
- [
- "▁nausea",
- -12.972408294677734
- ],
- [
- "▁Paypal",
- -12.972440719604492
- ],
- [
- "▁Arrow",
- -12.972469329833984
- ],
- [
- "▁Travis",
- -12.972633361816406
- ],
- [
- "(2009)",
- -12.972713470458984
- ],
- [
- "▁Rising",
- -12.972719192504883
- ],
- [
- "termes",
- -12.973097801208496
- ],
- [
- "Australie",
- -12.973154067993164
- ],
- [
- "▁scarf",
- -12.973187446594238
- ],
- [
- "klassischen",
- -12.97337818145752
- ],
- [
- "▁boug",
- -12.973466873168945
- ],
- [
- "DOT",
- -12.97360610961914
- ],
- [
- "▁Trink",
- -12.97361946105957
- ],
- [
- "▁bestätigt",
- -12.97365951538086
- ],
- [
- "▁officiel",
- -12.97370433807373
- ],
- [
- "Produkt",
- -12.973873138427734
- ],
- [
- "DNA",
- -12.974140167236328
- ],
- [
- "▁*******",
- -12.97426700592041
- ],
- [
- "GAR",
- -12.974271774291992
- ],
- [
- "therapeut",
- -12.974377632141113
- ],
- [
- "187",
- -12.974420547485352
- ],
- [
- "▁Louisville",
- -12.974493026733398
- ],
- [
- "▁geöffnet",
- -12.97462272644043
- ],
- [
- "Watch",
- -12.974640846252441
- ],
- [
- "85%",
- -12.974678993225098
- ],
- [
- "▁Candida",
- -12.974698066711426
- ],
- [
- "▁Kathy",
- -12.974703788757324
- ],
- [
- "▁Animation",
- -12.974711418151855
- ],
- [
- "planung",
- -12.974715232849121
- ],
- [
- "woche",
- -12.974730491638184
- ],
- [
- "Video",
- -12.974966049194336
- ],
- [
- "▁Automation",
- -12.97507095336914
- ],
- [
- "▁foliage",
- -12.97507381439209
- ],
- [
- "▁evenimentului",
- -12.975175857543945
- ],
- [
- "SEN",
- -12.975362777709961
- ],
- [
- "▁Dialog",
- -12.975372314453125
- ],
- [
- "▁ZIP",
- -12.975372314453125
- ],
- [
- "▁vieții",
- -12.97537612915039
- ],
- [
- "▁passionné",
- -12.975425720214844
- ],
- [
- "▁WOW",
- -12.97544002532959
- ],
- [
- "ectiv",
- -12.975464820861816
- ],
- [
- "▁vorbesc",
- -12.975482940673828
- ],
- [
- "▁computational",
- -12.975533485412598
- ],
- [
- "▁idiot",
- -12.97557258605957
- ],
- [
- "▁stigma",
- -12.97567081451416
- ],
- [
- "▁multumesc",
- -12.975870132446289
- ],
- [
- "▁sărbători",
- -12.975870132446289
- ],
- [
- "▁Advantage",
- -12.975906372070312
- ],
- [
- "▁alegeri",
- -12.976024627685547
- ],
- [
- "▁philosopher",
- -12.976031303405762
- ],
- [
- "RIE",
- -12.976117134094238
- ],
- [
- "refundable",
- -12.976221084594727
- ],
- [
- "▁Sofia",
- -12.97623348236084
- ],
- [
- "▁încheiat",
- -12.976313591003418
- ],
- [
- "meilleures",
- -12.976473808288574
- ],
- [
- "critical",
- -12.976744651794434
- ],
- [
- "▁cavity",
- -12.976766586303711
- ],
- [
- "▁ressort",
- -12.976792335510254
- ],
- [
- "strong",
- -12.976798057556152
- ],
- [
- "▁Backup",
- -12.976948738098145
- ],
- [
- "▁Zeitraum",
- -12.977023124694824
- ],
- [
- "▁Szene",
- -12.977027893066406
- ],
- [
- "▁Candle",
- -12.977173805236816
- ],
- [
- "▁ciocolat",
- -12.977198600769043
- ],
- [
- "etched",
- -12.977227210998535
- ],
- [
- "ан",
- -12.977302551269531
- ],
- [
- "▁Anchor",
- -12.977365493774414
- ],
- [
- "equate",
- -12.977470397949219
- ],
- [
- "▁bulg",
- -12.977476119995117
- ],
- [
- "▁motorist",
- -12.977524757385254
- ],
- [
- "träglich",
- -12.977736473083496
- ],
- [
- "please",
- -12.977936744689941
- ],
- [
- "different",
- -12.978011131286621
- ],
- [
- "▁Accel",
- -12.97813606262207
- ],
- [
- "Proiectul",
- -12.97829818725586
- ],
- [
- "▁cabbage",
- -12.97852897644043
- ],
- [
- "▁télécharger",
- -12.97852897644043
- ],
- [
- "▁Presentation",
- -12.97856330871582
- ],
- [
- "▁Struktur",
- -12.978621482849121
- ],
- [
- "bücher",
- -12.978650093078613
- ],
- [
- "▁flatter",
- -12.978672981262207
- ],
- [
- "emprunt",
- -12.979074478149414
- ],
- [
- "▁oriental",
- -12.979111671447754
- ],
- [
- "▁Turnier",
- -12.979166984558105
- ],
- [
- "brücke",
- -12.97917366027832
- ],
- [
- "▁légumes",
- -12.979416847229004
- ],
- [
- "gerechnet",
- -12.979595184326172
- ],
- [
- "flooded",
- -12.979621887207031
- ],
- [
- "LER",
- -12.979679107666016
- ],
- [
- "üben",
- -12.97973918914795
- ],
- [
- "internaute",
- -12.979888916015625
- ],
- [
- "▁Austausch",
- -12.979935646057129
- ],
- [
- "gefordert",
- -12.980034828186035
- ],
- [
- "▁adoptat",
- -12.980277061462402
- ],
- [
- "▁erinnern",
- -12.980305671691895
- ],
- [
- "▁dolphin",
- -12.980307579040527
- ],
- [
- "▁Parkinson",
- -12.980308532714844
- ],
- [
- "büro",
- -12.980310440063477
- ],
- [
- "▁Crest",
- -12.980368614196777
- ],
- [
- "▁Ikea",
- -12.980437278747559
- ],
- [
- "▁ecologic",
- -12.980470657348633
- ],
- [
- "mplă",
- -12.98065185546875
- ],
- [
- "▁șef",
- -12.980655670166016
- ],
- [
- "coop",
- -12.980868339538574
- ],
- [
- "▁Carson",
- -12.980900764465332
- ],
- [
- "▁uşor",
- -12.981054306030273
- ],
- [
- "▁exert",
- -12.981070518493652
- ],
- [
- "▁countertop",
- -12.981114387512207
- ],
- [
- "ntended",
- -12.981136322021484
- ],
- [
- "▁Civic",
- -12.981313705444336
- ],
- [
- "▁attentes",
- -12.98133373260498
- ],
- [
- "gesetzlichen",
- -12.981356620788574
- ],
- [
- "frischen",
- -12.981475830078125
- ],
- [
- "▁Bottle",
- -12.981636047363281
- ],
- [
- "▁cautare",
- -12.982080459594727
- ],
- [
- "▁waterfront",
- -12.982226371765137
- ],
- [
- "▁centerpiece",
- -12.982312202453613
- ],
- [
- "▁Castel",
- -12.982441902160645
- ],
- [
- "510",
- -12.98270034790039
- ],
- [
- "capped",
- -12.982709884643555
- ],
- [
- "▁mattresses",
- -12.982850074768066
- ],
- [
- "▁readiness",
- -12.982865333557129
- ],
- [
- "diag",
- -12.982970237731934
- ],
- [
- "▁geändert",
- -12.982980728149414
- ],
- [
- "▁complained",
- -12.983051300048828
- ],
- [
- "▁diary",
- -12.983073234558105
- ],
- [
- "▁ceremonies",
- -12.983144760131836
- ],
- [
- "▁următor",
- -12.983181953430176
- ],
- [
- "▁Engel",
- -12.983270645141602
- ],
- [
- "▁disconnect",
- -12.9832763671875
- ],
- [
- "▁Silvi",
- -12.983282089233398
- ],
- [
- "▁eingerichtet",
- -12.9834566116333
- ],
- [
- "medizin",
- -12.983512878417969
- ],
- [
- "▁majestic",
- -12.983869552612305
- ],
- [
- "▁Random",
- -12.983943939208984
- ],
- [
- "▁Equity",
- -12.984046936035156
- ],
- [
- "▁Echipa",
- -12.984111785888672
- ],
- [
- "са",
- -12.984163284301758
- ],
- [
- "316",
- -12.984179496765137
- ],
- [
- "▁Formation",
- -12.984183311462402
- ],
- [
- "inland",
- -12.98421859741211
- ],
- [
- "appuy",
- -12.984301567077637
- ],
- [
- "TAN",
- -12.984481811523438
- ],
- [
- "slipped",
- -12.984918594360352
- ],
- [
- "Certains",
- -12.985247611999512
- ],
- [
- "▁Silber",
- -12.98525333404541
- ],
- [
- "▁reçoi",
- -12.985257148742676
- ],
- [
- "▁Monthly",
- -12.985323905944824
- ],
- [
- "calculating",
- -12.985494613647461
- ],
- [
- "▁scratches",
- -12.98554515838623
- ],
- [
- "▁concurrence",
- -12.985654830932617
- ],
- [
- "▁Stärke",
- -12.985662460327148
- ],
- [
- "▁intermediar",
- -12.985751152038574
- ],
- [
- "▁erlebt",
- -12.98579216003418
- ],
- [
- "gesellschaftlich",
- -12.986037254333496
- ],
- [
- "▁Volk",
- -12.986041069030762
- ],
- [
- "▁Ansprüche",
- -12.986101150512695
- ],
- [
- "▁cumulative",
- -12.986103057861328
- ],
- [
- "▁Randy",
- -12.986183166503906
- ],
- [
- "▁instituții",
- -12.98622989654541
- ],
- [
- "together",
- -12.986489295959473
- ],
- [
- "▁Sap",
- -12.986539840698242
- ],
- [
- "▁modificari",
- -12.986551284790039
- ],
- [
- "▁erosion",
- -12.986572265625
- ],
- [
- "▁wicked",
- -12.986577033996582
- ],
- [
- "soaked",
- -12.986613273620605
- ],
- [
- "▁cellar",
- -12.9866361618042
- ],
- [
- "ignoring",
- -12.986726760864258
- ],
- [
- "▁scarce",
- -12.986815452575684
- ],
- [
- "ueuse",
- -12.98697280883789
- ],
- [
- "▁bibliothèque",
- -12.986995697021484
- ],
- [
- "critères",
- -12.987017631530762
- ],
- [
- "▁overlay",
- -12.987166404724121
- ],
- [
- "IPA",
- -12.98737907409668
- ],
- [
- "director",
- -12.987393379211426
- ],
- [
- "▁Krishna",
- -12.987444877624512
- ],
- [
- "▁methodologies",
- -12.987451553344727
- ],
- [
- "iocese",
- -12.987513542175293
- ],
- [
- "▁saucepan",
- -12.987713813781738
- ],
- [
- "184",
- -12.987948417663574
- ],
- [
- "275",
- -12.987981796264648
- ],
- [
- "▁précieu",
- -12.988165855407715
- ],
- [
- "▁academy",
- -12.9883394241333
- ],
- [
- "460",
- -12.988438606262207
- ],
- [
- "ERN",
- -12.988679885864258
- ],
- [
- "▁emoti",
- -12.988725662231445
- ],
- [
- "▁télévision",
- -12.988823890686035
- ],
- [
- "EDIT",
- -12.988901138305664
- ],
- [
- "▁Valeri",
- -12.989045143127441
- ],
- [
- "▁Charity",
- -12.98911190032959
- ],
- [
- "Voilà",
- -12.989297866821289
- ],
- [
- "▁lipsit",
- -12.989356994628906
- ],
- [
- "▁unleash",
- -12.989373207092285
- ],
- [
- "▁suferit",
- -12.989506721496582
- ],
- [
- "▁Lifestyle",
- -12.98953914642334
- ],
- [
- "▁Edel",
- -12.989603996276855
- ],
- [
- "▁Derek",
- -12.989643096923828
- ],
- [
- "▁Manga",
- -12.989801406860352
- ],
- [
- "▁increment",
- -12.989990234375
- ],
- [
- "▁plötzlich",
- -12.990133285522461
- ],
- [
- "▁5:30",
- -12.990208625793457
- ],
- [
- "▁Republicii",
- -12.990246772766113
- ],
- [
- "▁capitalism",
- -12.990293502807617
- ],
- [
- "ROW",
- -12.990510940551758
- ],
- [
- "▁Paar",
- -12.990523338317871
- ],
- [
- "allée",
- -12.99057674407959
- ],
- [
- "▁motto",
- -12.990610122680664
- ],
- [
- "Schäden",
- -12.990630149841309
- ],
- [
- "▁£10",
- -12.99063491821289
- ],
- [
- "RIP",
- -12.990728378295898
- ],
- [
- "courir",
- -12.990761756896973
- ],
- [
- "rocky",
- -12.990944862365723
- ],
- [
- "▁Sunshine",
- -12.991031646728516
- ],
- [
- "▁chimney",
- -12.991044998168945
- ],
- [
- "▁préfér",
- -12.991153717041016
- ],
- [
- "▁relaxare",
- -12.991189956665039
- ],
- [
- "▁colabora",
- -12.99134349822998
- ],
- [
- "liefer",
- -12.99142837524414
- ],
- [
- "▁ordentlich",
- -12.991486549377441
- ],
- [
- "▁dauerhaft",
- -12.991535186767578
- ],
- [
- "kammer",
- -12.991572380065918
- ],
- [
- "▁Basket",
- -12.991579055786133
- ],
- [
- "Site",
- -12.991657257080078
- ],
- [
- "▁Regina",
- -12.991716384887695
- ],
- [
- "▁simulate",
- -12.991868019104004
- ],
- [
- "▁wrestle",
- -12.991939544677734
- ],
- [
- "wertig",
- -12.991986274719238
- ],
- [
- "▁Christie",
- -12.992018699645996
- ],
- [
- "download",
- -12.992033004760742
- ],
- [
- "▁torch",
- -12.992213249206543
- ],
- [
- "riya",
- -12.992216110229492
- ],
- [
- "▁Grie",
- -12.992247581481934
- ],
- [
- "bitten",
- -12.992356300354004
- ],
- [
- "▁spezialisiert",
- -12.99238109588623
- ],
- [
- "▁Parade",
- -12.992408752441406
- ],
- [
- "▁migraine",
- -12.992830276489258
- ],
- [
- "▁Armstrong",
- -12.992846488952637
- ],
- [
- "▁cutie",
- -12.9928560256958
- ],
- [
- "▁bullying",
- -12.992889404296875
- ],
- [
- "▁Estonia",
- -12.99293041229248
- ],
- [
- "▁harvested",
- -12.992948532104492
- ],
- [
- "▁Hunger",
- -12.992971420288086
- ],
- [
- "▁frapp",
- -12.992999076843262
- ],
- [
- "REM",
- -12.993117332458496
- ],
- [
- "sensor",
- -12.993189811706543
- ],
- [
- "▁GREAT",
- -12.993293762207031
- ],
- [
- "▁thyroid",
- -12.993302345275879
- ],
- [
- "▁mărturi",
- -12.993335723876953
- ],
- [
- "ocupă",
- -12.993809700012207
- ],
- [
- "▁Wealth",
- -12.993812561035156
- ],
- [
- "▁convins",
- -12.993841171264648
- ],
- [
- "141",
- -12.993876457214355
- ],
- [
- "▁vingt",
- -12.993901252746582
- ],
- [
- "▁revel",
- -12.994054794311523
- ],
- [
- "▁Adri",
- -12.994083404541016
- ],
- [
- "▁remix",
- -12.994207382202148
- ],
- [
- "▁fermentation",
- -12.99425220489502
- ],
- [
- "▁achiziti",
- -12.994352340698242
- ],
- [
- "dream",
- -12.994426727294922
- ],
- [
- "▁contemporan",
- -12.994632720947266
- ],
- [
- "▁youngsters",
- -12.994685173034668
- ],
- [
- "▁Hartford",
- -12.994745254516602
- ],
- [
- "▁Wagen",
- -12.994988441467285
- ],
- [
- "▁Celebr",
- -12.995214462280273
- ],
- [
- "leveraging",
- -12.99527645111084
- ],
- [
- "▁Iasi",
- -12.99549674987793
- ],
- [
- "tackling",
- -12.9955415725708
- ],
- [
- "▁intrinsic",
- -12.995553970336914
- ],
- [
- "▁Macedon",
- -12.995603561401367
- ],
- [
- "NIA",
- -12.995784759521484
- ],
- [
- "▁bliss",
- -12.995905876159668
- ],
- [
- "▁gradual",
- -12.995908737182617
- ],
- [
- "▁inregistrat",
- -12.995981216430664
- ],
- [
- "▁volleyball",
- -12.995986938476562
- ],
- [
- "▁offiziell",
- -12.996054649353027
- ],
- [
- "▁carré",
- -12.99611759185791
- ],
- [
- "Mostly",
- -12.996174812316895
- ],
- [
- "▁Harley",
- -12.996193885803223
- ],
- [
- "▁locati",
- -12.996216773986816
- ],
- [
- "▁Klo",
- -12.996223449707031
- ],
- [
- "▁Equal",
- -12.996238708496094
- ],
- [
- "▁citat",
- -12.996369361877441
- ],
- [
- "▁argint",
- -12.996478080749512
- ],
- [
- "prüft",
- -12.996528625488281
- ],
- [
- "▁Fence",
- -12.996600151062012
- ],
- [
- "positive",
- -12.996988296508789
- ],
- [
- "▁Kaz",
- -12.997245788574219
- ],
- [
- "▁distortion",
- -12.997342109680176
- ],
- [
- "▁sâmbătă",
- -12.997342109680176
- ],
- [
- "▁frontière",
- -12.997346878051758
- ],
- [
- "▁revanch",
- -12.997394561767578
- ],
- [
- "▁Held",
- -12.997465133666992
- ],
- [
- "▁Hobb",
- -12.99776554107666
- ],
- [
- "▁reuşit",
- -12.997796058654785
- ],
- [
- "deem",
- -12.997880935668945
- ],
- [
- "▁dorint",
- -12.997902870178223
- ],
- [
- "▁Anlagen",
- -12.997908592224121
- ],
- [
- "▁cheval",
- -12.997973442077637
- ],
- [
- "630",
- -12.99806022644043
- ],
- [
- "▁implementare",
- -12.99808406829834
- ],
- [
- "▁curator",
- -12.99821662902832
- ],
- [
- "▁legislator",
- -12.998247146606445
- ],
- [
- "▁potassium",
- -12.998247146606445
- ],
- [
- "▁veterinarian",
- -12.998247146606445
- ],
- [
- "▁domenii",
- -12.998273849487305
- ],
- [
- "▁revue",
- -12.998310089111328
- ],
- [
- "Vielen",
- -12.998333930969238
- ],
- [
- "africain",
- -12.998570442199707
- ],
- [
- "before",
- -12.998680114746094
- ],
- [
- "▁Bestandteil",
- -12.998702049255371
- ],
- [
- "▁(2010)",
- -12.998767852783203
- ],
- [
- "▁Arlington",
- -12.999153137207031
- ],
- [
- "▁Gründung",
- -12.999153137207031
- ],
- [
- "▁Sprinkle",
- -12.999153137207031
- ],
- [
- "▁Princeton",
- -12.999186515808105
- ],
- [
- "chirurg",
- -12.999228477478027
- ],
- [
- "▁laissé",
- -12.999357223510742
- ],
- [
- "whoever",
- -12.999384880065918
- ],
- [
- "▁pasture",
- -12.999431610107422
- ],
- [
- "ajute",
- -12.999436378479004
- ],
- [
- "▁joyful",
- -12.999494552612305
- ],
- [
- "etapa",
- -12.999905586242676
- ],
- [
- "ESP",
- -13.000017166137695
- ],
- [
- "▁Iohannis",
- -13.000059127807617
- ],
- [
- "▁10:30",
- -13.000127792358398
- ],
- [
- "▁Kingston",
- -13.000140190124512
- ],
- [
- "▁contender",
- -13.000164031982422
- ],
- [
- "▁Damage",
- -13.000177383422852
- ],
- [
- "▁schreibt",
- -13.000482559204102
- ],
- [
- "sstisch",
- -13.000631332397461
- ],
- [
- "Associated",
- -13.00072956085205
- ],
- [
- "▁disposable",
- -13.000782012939453
- ],
- [
- "veranstaltung",
- -13.00096607208252
- ],
- [
- "▁puppet",
- -13.00100040435791
- ],
- [
- "pong",
- -13.001093864440918
- ],
- [
- "▁Chronicle",
- -13.001176834106445
- ],
- [
- "222",
- -13.001286506652832
- ],
- [
- "intuit",
- -13.001396179199219
- ],
- [
- "inscrire",
- -13.001429557800293
- ],
- [
- "▁speeches",
- -13.001431465148926
- ],
- [
- "▁Eingang",
- -13.001775741577148
- ],
- [
- "▁Adidas",
- -13.001875877380371
- ],
- [
- "▁cemetery",
- -13.001877784729004
- ],
- [
- "▁juicy",
- -13.001885414123535
- ],
- [
- "▁wertvolle",
- -13.0018892288208
- ],
- [
- "▁militari",
- -13.001917839050293
- ],
- [
- "China",
- -13.00196361541748
- ],
- [
- "ecția",
- -13.002041816711426
- ],
- [
- "luster",
- -13.002063751220703
- ],
- [
- "auftrag",
- -13.00234317779541
- ],
- [
- "▁Marius",
- -13.002523422241211
- ],
- [
- "▁crossover",
- -13.002555847167969
- ],
- [
- "▁enthusiast",
- -13.002555847167969
- ],
- [
- "▁cantitate",
- -13.002630233764648
- ],
- [
- "▁animat",
- -13.002634048461914
- ],
- [
- "Park",
- -13.002793312072754
- ],
- [
- "▁unchanged",
- -13.00279426574707
- ],
- [
- "russia",
- -13.00281810760498
- ],
- [
- "instant",
- -13.002833366394043
- ],
- [
- "ţiunea",
- -13.002835273742676
- ],
- [
- "▁franchi",
- -13.002920150756836
- ],
- [
- "▁mobiliz",
- -13.002963066101074
- ],
- [
- "athlet",
- -13.003013610839844
- ],
- [
- "▁Cardio",
- -13.0031099319458
- ],
- [
- "▁supus",
- -13.003119468688965
- ],
- [
- "▁Griff",
- -13.003137588500977
- ],
- [
- "flakes",
- -13.003217697143555
- ],
- [
- "soluble",
- -13.003250122070312
- ],
- [
- "Known",
- -13.003693580627441
- ],
- [
- "leaking",
- -13.003741264343262
- ],
- [
- "▁Holocaust",
- -13.004148483276367
- ],
- [
- "gift",
- -13.004197120666504
- ],
- [
- "▁tradiţi",
- -13.004359245300293
- ],
- [
- "▁southeast",
- -13.004498481750488
- ],
- [
- "▁correspondant",
- -13.00460147857666
- ],
- [
- "Isaiah",
- -13.004603385925293
- ],
- [
- "▁diagonal",
- -13.004606246948242
- ],
- [
- "▁Probabil",
- -13.004680633544922
- ],
- [
- "▁dégust",
- -13.004791259765625
- ],
- [
- "▁Naval",
- -13.004802703857422
- ],
- [
- "▁cultivation",
- -13.004839897155762
- ],
- [
- "▁Vertrieb",
- -13.004849433898926
- ],
- [
- "▁pony",
- -13.004854202270508
- ],
- [
- "▁Throw",
- -13.0050048828125
- ],
- [
- "little",
- -13.005010604858398
- ],
- [
- "▁remarque",
- -13.005074501037598
- ],
- [
- "▁parcare",
- -13.005085945129395
- ],
- [
- "3.8",
- -13.00518798828125
- ],
- [
- "▁renunt",
- -13.005330085754395
- ],
- [
- "▁Rewards",
- -13.005487442016602
- ],
- [
- "▁Thur",
- -13.005496978759766
- ],
- [
- "▁underestimate",
- -13.005515098571777
- ],
- [
- "▁frankly",
- -13.005516052246094
- ],
- [
- "Bretagne",
- -13.005517959594727
- ],
- [
- "axial",
- -13.005537986755371
- ],
- [
- "▁identities",
- -13.0055570602417
- ],
- [
- "▁Harvest",
- -13.00561237335205
- ],
- [
- "▁skippe",
- -13.00561237335205
- ],
- [
- "▁Boutique",
- -13.005670547485352
- ],
- [
- "▁intuition",
- -13.005746841430664
- ],
- [
- "▁Rotary",
- -13.00581169128418
- ],
- [
- "▁SERVICE",
- -13.005875587463379
- ],
- [
- "▁refill",
- -13.005915641784668
- ],
- [
- "▁arcade",
- -13.006060600280762
- ],
- [
- "▁komme",
- -13.006386756896973
- ],
- [
- "▁irrelevant",
- -13.006427764892578
- ],
- [
- "▁Sortiment",
- -13.006429672241211
- ],
- [
- "▁scriitor",
- -13.006488800048828
- ],
- [
- "▁clicked",
- -13.006516456604004
- ],
- [
- "▁ciel",
- -13.006610870361328
- ],
- [
- "▁Caesar",
- -13.00680160522461
- ],
- [
- "hound",
- -13.006803512573242
- ],
- [
- "whipped",
- -13.006843566894531
- ],
- [
- "licate",
- -13.006867408752441
- ],
- [
- "▁formatting",
- -13.006986618041992
- ],
- [
- "▁mosaic",
- -13.007028579711914
- ],
- [
- "(2017)",
- -13.007122039794922
- ],
- [
- "777",
- -13.007257461547852
- ],
- [
- "▁Messenger",
- -13.007342338562012
- ],
- [
- "dulci",
- -13.007369041442871
- ],
- [
- "▁(2016)",
- -13.007420539855957
- ],
- [
- "▁popcorn",
- -13.007425308227539
- ],
- [
- "▁Presidential",
- -13.007497787475586
- ],
- [
- "▁brokerage",
- -13.007564544677734
- ],
- [
- "dachte",
- -13.00762939453125
- ],
- [
- "verkauf",
- -13.00768756866455
- ],
- [
- "▁pomme",
- -13.007721900939941
- ],
- [
- "▁fret",
- -13.007822036743164
- ],
- [
- "▁revere",
- -13.007894515991211
- ],
- [
- "▁Canvas",
- -13.008092880249023
- ],
- [
- "▁Nottingham",
- -13.008255004882812
- ],
- [
- "▁Refuge",
- -13.008257865905762
- ],
- [
- "▁injustice",
- -13.008259773254395
- ],
- [
- "▁External",
- -13.008264541625977
- ],
- [
- "dincolo",
- -13.008304595947266
- ],
- [
- "directing",
- -13.008511543273926
- ],
- [
- "▁Toulouse",
- -13.008710861206055
- ],
- [
- "▁cheltuieli",
- -13.008746147155762
- ],
- [
- "▁distrus",
- -13.008816719055176
- ],
- [
- "impôt",
- -13.008912086486816
- ],
- [
- "landschaft",
- -13.008964538574219
- ],
- [
- "passion",
- -13.00897216796875
- ],
- [
- "▁Hobby",
- -13.009099006652832
- ],
- [
- "significant",
- -13.009115219116211
- ],
- [
- "▁Guinea",
- -13.009209632873535
- ],
- [
- "pecializing",
- -13.009237289428711
- ],
- [
- "pozitie",
- -13.009245872497559
- ],
- [
- "bourne",
- -13.009295463562012
- ],
- [
- "▁mâini",
- -13.00933837890625
- ],
- [
- "▁CFR",
- -13.009395599365234
- ],
- [
- "▁Konflikt",
- -13.009626388549805
- ],
- [
- "▁Vodafone",
- -13.009626388549805
- ],
- [
- "OUG",
- -13.009681701660156
- ],
- [
- "▁Übersicht",
- -13.009735107421875
- ],
- [
- "negotiated",
- -13.009903907775879
- ],
- [
- "▁gliss",
- -13.010042190551758
- ],
- [
- "▁Kapital",
- -13.010111808776855
- ],
- [
- "QC",
- -13.0101318359375
- ],
- [
- "▁gentleman",
- -13.01024341583252
- ],
- [
- "Inde",
- -13.010514259338379
- ],
- [
- "▁immensely",
- -13.010639190673828
- ],
- [
- "Business",
- -13.010702133178711
- ],
- [
- "▁04/2",
- -13.010882377624512
- ],
- [
- "societatea",
- -13.010973930358887
- ],
- [
- "fluoxetine",
- -13.011000633239746
- ],
- [
- "▁Wachstum",
- -13.011000633239746
- ],
- [
- "▁récit",
- -13.011011123657227
- ],
- [
- "▁Preisvergleich",
- -13.011034965515137
- ],
- [
- "▁Mohammed",
- -13.011460304260254
- ],
- [
- "gefangen",
- -13.011462211608887
- ],
- [
- "▁calibration",
- -13.011608123779297
- ],
- [
- "bekam",
- -13.011728286743164
- ],
- [
- "▁FUN",
- -13.011758804321289
- ],
- [
- "wasting",
- -13.011839866638184
- ],
- [
- "▁prosper",
- -13.011862754821777
- ],
- [
- "▁Afghan",
- -13.011919021606445
- ],
- [
- "▁Heroes",
- -13.011921882629395
- ],
- [
- "▁VMware",
- -13.011927604675293
- ],
- [
- "exception",
- -13.011969566345215
- ],
- [
- "▁înlocui",
- -13.01244831085205
- ],
- [
- "Neu",
- -13.01246452331543
- ],
- [
- "initiation",
- -13.01250171661377
- ],
- [
- "▁Peel",
- -13.01281452178955
- ],
- [
- "▁cunoaste",
- -13.012836456298828
- ],
- [
- "▁menschliche",
- -13.012849807739258
- ],
- [
- "▁poarta",
- -13.012852668762207
- ],
- [
- "▁congestion",
- -13.012930870056152
- ],
- [
- "▁îmbunătăț",
- -13.013103485107422
- ],
- [
- "EUR",
- -13.013171195983887
- ],
- [
- "▁sushi",
- -13.01326847076416
- ],
- [
- "Jährige",
- -13.01329517364502
- ],
- [
- "espoir",
- -13.013423919677734
- ],
- [
- "inspected",
- -13.013444900512695
- ],
- [
- "▁etape",
- -13.013677597045898
- ],
- [
- "▁pharmacist",
- -13.013754844665527
- ],
- [
- "flect",
- -13.013840675354004
- ],
- [
- "Changing",
- -13.013932228088379
- ],
- [
- "▁radiant",
- -13.014046669006348
- ],
- [
- "Daddy",
- -13.014275550842285
- ],
- [
- "▁categorii",
- -13.014360427856445
- ],
- [
- "quête",
- -13.014628410339355
- ],
- [
- "▁skincare",
- -13.014657020568848
- ],
- [
- "hébergement",
- -13.014674186706543
- ],
- [
- "840",
- -13.01477336883545
- ],
- [
- "awaiting",
- -13.014822006225586
- ],
- [
- "▁murdered",
- -13.014841079711914
- ],
- [
- "▁proficient",
- -13.014863967895508
- ],
- [
- "▁chauffe",
- -13.014899253845215
- ],
- [
- "▁contur",
- -13.014937400817871
- ],
- [
- "▁rejoindre",
- -13.015145301818848
- ],
- [
- "▁foloseste",
- -13.01521110534668
- ],
- [
- "▁Grup",
- -13.01535701751709
- ],
- [
- "152",
- -13.01541519165039
- ],
- [
- "▁workspace",
- -13.015438079833984
- ],
- [
- "▁primitive",
- -13.015546798706055
- ],
- [
- "▁Ginger",
- -13.015557289123535
- ],
- [
- "▁chemotherapy",
- -13.015595436096191
- ],
- [
- "▁platinum",
- -13.015596389770508
- ],
- [
- "▁sarcina",
- -13.01559829711914
- ],
- [
- "▁revival",
- -13.015820503234863
- ],
- [
- "▁Meditation",
- -13.016111373901367
- ],
- [
- "▁Vogel",
- -13.0161714553833
- ],
- [
- "IMA",
- -13.016359329223633
- ],
- [
- "▁handset",
- -13.016486167907715
- ],
- [
- "▁Nachmittag",
- -13.01651668548584
- ],
- [
- "▁déchets",
- -13.016517639160156
- ],
- [
- "▁Cornwall",
- -13.0165433883667
- ],
- [
- "▁Curry",
- -13.016605377197266
- ],
- [
- "▁cuplu",
- -13.016607284545898
- ],
- [
- "▁Birth",
- -13.016822814941406
- ],
- [
- "forward",
- -13.016936302185059
- ],
- [
- "Dezvoltare",
- -13.016977310180664
- ],
- [
- "▁irgendwie",
- -13.016980171203613
- ],
- [
- "▁erzielt",
- -13.016993522644043
- ],
- [
- "LOS",
- -13.01700496673584
- ],
- [
- "▁overload",
- -13.01708984375
- ],
- [
- "▁repay",
- -13.01713752746582
- ],
- [
- "urlaub",
- -13.017155647277832
- ],
- [
- "7.0",
- -13.01716423034668
- ],
- [
- "▁Wheat",
- -13.01748275756836
- ],
- [
- "▁degrab",
- -13.017488479614258
- ],
- [
- "▁Brock",
- -13.017491340637207
- ],
- [
- "▁inhabit",
- -13.0176362991333
- ],
- [
- "▁Speech",
- -13.017834663391113
- ],
- [
- "directional",
- -13.017862319946289
- ],
- [
- "▁Mandel",
- -13.017909049987793
- ],
- [
- "▁erscheinen",
- -13.01791763305664
- ],
- [
- "consciously",
- -13.018059730529785
- ],
- [
- "▁sunet",
- -13.0182523727417
- ],
- [
- "▁stole",
- -13.018259048461914
- ],
- [
- "▁Utilis",
- -13.018349647521973
- ],
- [
- "▁obstruction",
- -13.01852798461914
- ],
- [
- "▁mindfulness",
- -13.0186767578125
- ],
- [
- "partnering",
- -13.01868724822998
- ],
- [
- "CSI",
- -13.018819808959961
- ],
- [
- "204",
- -13.01905632019043
- ],
- [
- "▁squirrel",
- -13.019286155700684
- ],
- [
- "▁Rwanda",
- -13.01975154876709
- ],
- [
- "▁hunters",
- -13.019850730895996
- ],
- [
- "▁revitaliz",
- -13.02022647857666
- ],
- [
- "▁avansat",
- -13.020232200622559
- ],
- [
- "▁Yamaha",
- -13.020294189453125
- ],
- [
- "foto",
- -13.020435333251953
- ],
- [
- "▁Vegan",
- -13.020469665527344
- ],
- [
- "▁pitched",
- -13.02053165435791
- ],
- [
- "▁Vortrag",
- -13.020540237426758
- ],
- [
- "traditional",
- -13.020809173583984
- ],
- [
- "offrent",
- -13.021024703979492
- ],
- [
- "▁Expression",
- -13.021315574645996
- ],
- [
- "▁apprécié",
- -13.021354675292969
- ],
- [
- "▁Christina",
- -13.021408081054688
- ],
- [
- "eilig",
- -13.021464347839355
- ],
- [
- "▁verhindern",
- -13.021599769592285
- ],
- [
- "culturii",
- -13.021607398986816
- ],
- [
- "Aşa",
- -13.021703720092773
- ],
- [
- "▁enamel",
- -13.021756172180176
- ],
- [
- "▁fördern",
- -13.021771430969238
- ],
- [
- "▁acheté",
- -13.021798133850098
- ],
- [
- "▁eventuell",
- -13.021842956542969
- ],
- [
- "▁Sino",
- -13.021873474121094
- ],
- [
- "▁totodat",
- -13.022008895874023
- ],
- [
- "accelerated",
- -13.022202491760254
- ],
- [
- "▁strengthened",
- -13.02245044708252
- ],
- [
- "corro",
- -13.022482872009277
- ],
- [
- "4,5",
- -13.02253246307373
- ],
- [
- "▁Beverly",
- -13.022533416748047
- ],
- [
- "ulevard",
- -13.022615432739258
- ],
- [
- "▁hamper",
- -13.022644996643066
- ],
- [
- "▁Tempe",
- -13.02268123626709
- ],
- [
- "▁Yacht",
- -13.022799491882324
- ],
- [
- "▁LGBT",
- -13.022871017456055
- ],
- [
- "▁fingertips",
- -13.022991180419922
- ],
- [
- "▁Auftraggeber",
- -13.02299976348877
- ],
- [
- "▁harbour",
- -13.0230131149292
- ],
- [
- "blew",
- -13.0230712890625
- ],
- [
- "▁ideology",
- -13.023115158081055
- ],
- [
- "▁covenant",
- -13.023170471191406
- ],
- [
- "▁faction",
- -13.023419380187988
- ],
- [
- "▁animé",
- -13.023481369018555
- ],
- [
- "energie",
- -13.023515701293945
- ],
- [
- "iterführende",
- -13.02369499206543
- ],
- [
- "▁MAI",
- -13.023784637451172
- ],
- [
- "▁pluie",
- -13.023905754089355
- ],
- [
- "▁cathedral",
- -13.023919105529785
- ],
- [
- "▁chiropractic",
- -13.023919105529785
- ],
- [
- "monies",
- -13.023968696594238
- ],
- [
- "▁contraction",
- -13.024054527282715
- ],
- [
- "pvc",
- -13.024202346801758
- ],
- [
- "staff",
- -13.024209022521973
- ],
- [
- "BIT",
- -13.024216651916504
- ],
- [
- "EET",
- -13.024514198303223
- ],
- [
- "▁sanction",
- -13.024575233459473
- ],
- [
- "▁Reiki",
- -13.024709701538086
- ],
- [
- "Trying",
- -13.024772644042969
- ],
- [
- "▁endangered",
- -13.024847984313965
- ],
- [
- "▁Emperor",
- -13.024849891662598
- ],
- [
- "▁empfi",
- -13.024909973144531
- ],
- [
- "animation",
- -13.024998664855957
- ],
- [
- "207",
- -13.025029182434082
- ],
- [
- "separating",
- -13.02512264251709
- ],
- [
- "▁lucrative",
- -13.025148391723633
- ],
- [
- "▁ortho",
- -13.02524185180664
- ],
- [
- "variété",
- -13.025266647338867
- ],
- [
- "hésit",
- -13.025287628173828
- ],
- [
- "nuances",
- -13.025289535522461
- ],
- [
- "▁$250",
- -13.025394439697266
- ],
- [
- "▁drumuri",
- -13.025435447692871
- ],
- [
- "▁unsafe",
- -13.025446891784668
- ],
- [
- "▁1943",
- -13.025477409362793
- ],
- [
- "▁automatique",
- -13.025524139404297
- ],
- [
- "billed",
- -13.025585174560547
- ],
- [
- "▁rectangle",
- -13.02578067779541
- ],
- [
- "▁Spannung",
- -13.025781631469727
- ],
- [
- "▁dévoil",
- -13.025790214538574
- ],
- [
- "▁perimeter",
- -13.02580738067627
- ],
- [
- "▁imaginative",
- -13.02581787109375
- ],
- [
- "actifs",
- -13.025851249694824
- ],
- [
- "neuve",
- -13.0259428024292
- ],
- [
- "leagă",
- -13.026269912719727
- ],
- [
- "gehende",
- -13.026700973510742
- ],
- [
- "▁Gorgeous",
- -13.026708602905273
- ],
- [
- "▁impeccable",
- -13.026708602905273
- ],
- [
- "▁Curtain",
- -13.026718139648438
- ],
- [
- "▁presume",
- -13.026731491088867
- ],
- [
- "surpassed",
- -13.02687931060791
- ],
- [
- "schiff",
- -13.026927947998047
- ],
- [
- "Allied",
- -13.02699089050293
- ],
- [
- "fanden",
- -13.027080535888672
- ],
- [
- "▁célébr",
- -13.027174949645996
- ],
- [
- "▁phénomène",
- -13.027174949645996
- ],
- [
- "▁Powell",
- -13.027413368225098
- ],
- [
- "jean",
- -13.027631759643555
- ],
- [
- "▁peculiar",
- -13.027640342712402
- ],
- [
- "▁Antarctic",
- -13.027641296386719
- ],
- [
- "▁gradient",
- -13.027663230895996
- ],
- [
- "▁brainstorm",
- -13.027704238891602
- ],
- [
- "échapp",
- -13.027726173400879
- ],
- [
- "Bot",
- -13.027738571166992
- ],
- [
- "cita",
- -13.027743339538574
- ],
- [
- "▁lumber",
- -13.027752876281738
- ],
- [
- "weichen",
- -13.027852058410645
- ],
- [
- "▁Halte",
- -13.028024673461914
- ],
- [
- "▁noștri",
- -13.028107643127441
- ],
- [
- "construction",
- -13.028165817260742
- ],
- [
- "DOC",
- -13.028236389160156
- ],
- [
- "▁aluat",
- -13.028319358825684
- ],
- [
- "streamlined",
- -13.028462409973145
- ],
- [
- "Bio",
- -13.028494834899902
- ],
- [
- "▁nutritious",
- -13.028573036193848
- ],
- [
- "▁délicat",
- -13.0286283493042
- ],
- [
- "▁sticla",
- -13.028656959533691
- ],
- [
- "OVE",
- -13.028721809387207
- ],
- [
- "▁panneau",
- -13.028793334960938
- ],
- [
- "▁hetero",
- -13.028801918029785
- ],
- [
- "▁annul",
- -13.028839111328125
- ],
- [
- "IDA",
- -13.028935432434082
- ],
- [
- "▁pitches",
- -13.028960227966309
- ],
- [
- "▁Edmonton",
- -13.029040336608887
- ],
- [
- "mediated",
- -13.029136657714844
- ],
- [
- "AFP",
- -13.029139518737793
- ],
- [
- "▁Tibetan",
- -13.029228210449219
- ],
- [
- "intégration",
- -13.02934455871582
- ],
- [
- "▁Rox",
- -13.0294771194458
- ],
- [
- "energia",
- -13.02950668334961
- ],
- [
- "▁reconnaît",
- -13.029509544372559
- ],
- [
- "▁ține",
- -13.029525756835938
- ],
- [
- "▁ignition",
- -13.029534339904785
- ],
- [
- "Foarte",
- -13.029541015625
- ],
- [
- "▁HOME",
- -13.029545783996582
- ],
- [
- "▁MLB",
- -13.029545783996582
- ],
- [
- "▁Wähle",
- -13.029590606689453
- ],
- [
- "▁Merkel",
- -13.029658317565918
- ],
- [
- "poarte",
- -13.029664993286133
- ],
- [
- "ALT",
- -13.02979850769043
- ],
- [
- "jenigen",
- -13.029985427856445
- ],
- [
- "▁conflit",
- -13.029987335205078
- ],
- [
- "▁buckle",
- -13.029996871948242
- ],
- [
- "▁cacao",
- -13.030035018920898
- ],
- [
- "▁représentation",
- -13.030076026916504
- ],
- [
- "incepand",
- -13.030267715454102
- ],
- [
- "▁Carroll",
- -13.030306816101074
- ],
- [
- "▁clientilor",
- -13.030370712280273
- ],
- [
- "▁immunity",
- -13.030441284179688
- ],
- [
- "oût",
- -13.03044319152832
- ],
- [
- "▁Witch",
- -13.030488014221191
- ],
- [
- "▁Wolfgang",
- -13.030532836914062
- ],
- [
- "▁prudent",
- -13.030701637268066
- ],
- [
- "fotograf",
- -13.03084945678711
- ],
- [
- "paar",
- -13.030871391296387
- ],
- [
- "ergeti",
- -13.030927658081055
- ],
- [
- "▁empowerment",
- -13.031112670898438
- ],
- [
- "▁Admir",
- -13.03122329711914
- ],
- [
- "▁complémentaire",
- -13.031340599060059
- ],
- [
- "▁angepasst",
- -13.031376838684082
- ],
- [
- "▁flirt",
- -13.031376838684082
- ],
- [
- "▁elektronische",
- -13.031388282775879
- ],
- [
- "▁stereotype",
- -13.03140640258789
- ],
- [
- "SIL",
- -13.031465530395508
- ],
- [
- "▁Realtor",
- -13.031471252441406
- ],
- [
- "Edit",
- -13.031774520874023
- ],
- [
- "requête",
- -13.03181266784668
- ],
- [
- "▁Herstellung",
- -13.031815528869629
- ],
- [
- "▁cyst",
- -13.031947135925293
- ],
- [
- "syndic",
- -13.031994819641113
- ],
- [
- "leni",
- -13.032007217407227
- ],
- [
- "▁fringe",
- -13.032020568847656
- ],
- [
- "▁Jardin",
- -13.032032012939453
- ],
- [
- "▁Vezi",
- -13.032052993774414
- ],
- [
- "▁Ausstattung",
- -13.032312393188477
- ],
- [
- "▁glide",
- -13.032590866088867
- ],
- [
- "▁Andere",
- -13.032758712768555
- ],
- [
- "▁Haftung",
- -13.032781600952148
- ],
- [
- "maßnahmen",
- -13.032788276672363
- ],
- [
- "▁recommandé",
- -13.032790184020996
- ],
- [
- "▁nave",
- -13.032793998718262
- ],
- [
- "viziune",
- -13.033051490783691
- ],
- [
- "▁stimulus",
- -13.033098220825195
- ],
- [
- "faulty",
- -13.0331449508667
- ],
- [
- "▁vicinity",
- -13.033249855041504
- ],
- [
- "▁turnaround",
- -13.033445358276367
- ],
- [
- "stammt",
- -13.033846855163574
- ],
- [
- "▁problemlos",
- -13.033856391906738
- ],
- [
- "▁Establish",
- -13.03415298461914
- ],
- [
- "▁Silva",
- -13.034172058105469
- ],
- [
- "▁muzică",
- -13.034187316894531
- ],
- [
- "▁theatrical",
- -13.03421401977539
- ],
- [
- "▁braid",
- -13.034242630004883
- ],
- [
- "▁blieb",
- -13.034276962280273
- ],
- [
- "158",
- -13.034296989440918
- ],
- [
- "▁ignorance",
- -13.034330368041992
- ],
- [
- "onset",
- -13.034416198730469
- ],
- [
- "zeitlich",
- -13.034523963928223
- ],
- [
- "▁Sink",
- -13.034523963928223
- ],
- [
- "▁caractéris",
- -13.034594535827637
- ],
- [
- "▁kreative",
- -13.03465747833252
- ],
- [
- "behörde",
- -13.034677505493164
- ],
- [
- "repairing",
- -13.034680366516113
- ],
- [
- "▁tumble",
- -13.034757614135742
- ],
- [
- "zione",
- -13.034871101379395
- ],
- [
- "▁Evil",
- -13.03494644165039
- ],
- [
- "▁popping",
- -13.034952163696289
- ],
- [
- "▁mutant",
- -13.035025596618652
- ],
- [
- "emme",
- -13.035030364990234
- ],
- [
- "▁Pleasant",
- -13.035125732421875
- ],
- [
- "▁appetizer",
- -13.035125732421875
- ],
- [
- "▁PLEASE",
- -13.035126686096191
- ],
- [
- "▁physiological",
- -13.035128593444824
- ],
- [
- "▁Facility",
- -13.035131454467773
- ],
- [
- "▁quirky",
- -13.035131454467773
- ],
- [
- "▁colectiv",
- -13.035154342651367
- ],
- [
- "151",
- -13.035181999206543
- ],
- [
- "August",
- -13.03531551361084
- ],
- [
- "▁Jewelry",
- -13.035327911376953
- ],
- [
- "▁ziar",
- -13.035481452941895
- ],
- [
- "▁puissant",
- -13.035489082336426
- ],
- [
- "▁Argument",
- -13.035595893859863
- ],
- [
- "▁Betracht",
- -13.035621643066406
- ],
- [
- "▁TRANS",
- -13.035636901855469
- ],
- [
- "Exception",
- -13.036011695861816
- ],
- [
- "nosti",
- -13.036083221435547
- ],
- [
- "▁Geographic",
- -13.036155700683594
- ],
- [
- "amazingly",
- -13.036173820495605
- ],
- [
- "▁météo",
- -13.036181449890137
- ],
- [
- "streit",
- -13.036314010620117
- ],
- [
- "▁idle",
- -13.036439895629883
- ],
- [
- "179",
- -13.036441802978516
- ],
- [
- "▁Bremen",
- -13.036534309387207
- ],
- [
- "▁Kläger",
- -13.03653621673584
- ],
- [
- "▁Grammy",
- -13.036598205566406
- ],
- [
- "▁Philosophy",
- -13.036613464355469
- ],
- [
- "▁utilizeaz",
- -13.036779403686523
- ],
- [
- "Accord",
- -13.036897659301758
- ],
- [
- "▁USDA",
- -13.036986351013184
- ],
- [
- "Continuing",
- -13.037010192871094
- ],
- [
- "geschenk",
- -13.037178039550781
- ],
- [
- "kredit",
- -13.037248611450195
- ],
- [
- "Laugh",
- -13.037297248840332
- ],
- [
- "oaring",
- -13.037406921386719
- ],
- [
- "▁Richter",
- -13.037460327148438
- ],
- [
- "▁Figur",
- -13.037938117980957
- ],
- [
- "▁inconsistent",
- -13.037947654724121
- ],
- [
- "cresterea",
- -13.038069725036621
- ],
- [
- "▁regeneration",
- -13.038130760192871
- ],
- [
- "speaking",
- -13.03818416595459
- ],
- [
- "▁nasal",
- -13.03824234008789
- ],
- [
- "▁partagé",
- -13.038259506225586
- ],
- [
- "▁Warranty",
- -13.038419723510742
- ],
- [
- "▁Mueller",
- -13.038501739501953
- ],
- [
- "formează",
- -13.038734436035156
- ],
- [
- "hundert",
- -13.038745880126953
- ],
- [
- "gemeldet",
- -13.038893699645996
- ],
- [
- "▁excursions",
- -13.038912773132324
- ],
- [
- "▁linii",
- -13.039066314697266
- ],
- [
- "gefährlich",
- -13.039067268371582
- ],
- [
- "▁schema",
- -13.03907299041748
- ],
- [
- "nişte",
- -13.039131164550781
- ],
- [
- "▁roadway",
- -13.039132118225098
- ],
- [
- "▁regression",
- -13.039135932922363
- ],
- [
- "▁mână",
- -13.039366722106934
- ],
- [
- "5.3",
- -13.039373397827148
- ],
- [
- "▁Spät",
- -13.039734840393066
- ],
- [
- "▁stubborn",
- -13.039833068847656
- ],
- [
- "efectele",
- -13.040030479431152
- ],
- [
- "▁atenţi",
- -13.040136337280273
- ],
- [
- "▁dovedit",
- -13.04018497467041
- ],
- [
- "▁Agile",
- -13.040190696716309
- ],
- [
- "denying",
- -13.04023265838623
- ],
- [
- "fluss",
- -13.040620803833008
- ],
- [
- "▁Calvin",
- -13.04066276550293
- ],
- [
- "Sculpt",
- -13.04083251953125
- ],
- [
- "égalité",
- -13.040884971618652
- ],
- [
- "ticket",
- -13.040977478027344
- ],
- [
- "marketed",
- -13.041044235229492
- ],
- [
- "holic",
- -13.041173934936523
- ],
- [
- "▁eCommerce",
- -13.041346549987793
- ],
- [
- "▁Slip",
- -13.041369438171387
- ],
- [
- "▁degradation",
- -13.041736602783203
- ],
- [
- "écart",
- -13.041742324829102
- ],
- [
- "AGR",
- -13.041807174682617
- ],
- [
- "▁burglar",
- -13.041837692260742
- ],
- [
- "▁conjug",
- -13.041903495788574
- ],
- [
- "LLP",
- -13.04194164276123
- ],
- [
- "couvrir",
- -13.041997909545898
- ],
- [
- "▁Hearing",
- -13.042001724243164
- ],
- [
- "▁canton",
- -13.042006492614746
- ],
- [
- "▁sixteen",
- -13.042068481445312
- ],
- [
- "▁Verlust",
- -13.042097091674805
- ],
- [
- "allied",
- -13.042268753051758
- ],
- [
- "Performing",
- -13.042393684387207
- ],
- [
- "▁évoqu",
- -13.042519569396973
- ],
- [
- "▁bookstore",
- -13.042574882507324
- ],
- [
- "▁intrebari",
- -13.042627334594727
- ],
- [
- "▁Hyderabad",
- -13.042668342590332
- ],
- [
- "▁repertoire",
- -13.042668342590332
- ],
- [
- "▁cablu",
- -13.042678833007812
- ],
- [
- "▁Costume",
- -13.04269790649414
- ],
- [
- "▁Shannon",
- -13.042713165283203
- ],
- [
- "▁glossy",
- -13.042800903320312
- ],
- [
- "▁cible",
- -13.042876243591309
- ],
- [
- "Saint",
- -13.042984008789062
- ],
- [
- "▁Ultima",
- -13.043042182922363
- ],
- [
- "▁teint",
- -13.0432767868042
- ],
- [
- "▁envision",
- -13.043477058410645
- ],
- [
- "▁thinner",
- -13.043478965759277
- ],
- [
- "ис",
- -13.043609619140625
- ],
- [
- "▁bladder",
- -13.043615341186523
- ],
- [
- "▁Prairie",
- -13.043618202209473
- ],
- [
- "▁puppies",
- -13.043633460998535
- ],
- [
- "▁overweight",
- -13.043729782104492
- ],
- [
- "destined",
- -13.043925285339355
- ],
- [
- "▁addictive",
- -13.043935775756836
- ],
- [
- "▁posé",
- -13.043993949890137
- ],
- [
- "▁mecanism",
- -13.044112205505371
- ],
- [
- "▁chorus",
- -13.044466972351074
- ],
- [
- "weder",
- -13.044528007507324
- ],
- [
- "▁begrüß",
- -13.044562339782715
- ],
- [
- "▁unsuccessful",
- -13.044562339782715
- ],
- [
- "executing",
- -13.044564247131348
- ],
- [
- "▁metadata",
- -13.044611930847168
- ],
- [
- "traiter",
- -13.044620513916016
- ],
- [
- "▁borrowed",
- -13.044649124145508
- ],
- [
- "▁aeroport",
- -13.044679641723633
- ],
- [
- "▁Bibli",
- -13.044761657714844
- ],
- [
- "▁youthful",
- -13.044902801513672
- ],
- [
- "▁Herbert",
- -13.044913291931152
- ],
- [
- "client",
- -13.04500961303711
- ],
- [
- "merci",
- -13.04520034790039
- ],
- [
- "▁Beast",
- -13.045210838317871
- ],
- [
- "▁Entrepreneur",
- -13.045230865478516
- ],
- [
- "▁Gelände",
- -13.045256614685059
- ],
- [
- "▁Packers",
- -13.045268058776855
- ],
- [
- "formarea",
- -13.045469284057617
- ],
- [
- "▁Kündigung",
- -13.045511245727539
- ],
- [
- "▁verdient",
- -13.045515060424805
- ],
- [
- "▁solutie",
- -13.045530319213867
- ],
- [
- "figuration",
- -13.045611381530762
- ],
- [
- "voluntarily",
- -13.045622825622559
- ],
- [
- "Gregor",
- -13.045742988586426
- ],
- [
- "▁Uncle",
- -13.04589557647705
- ],
- [
- "tarifs",
- -13.045907020568848
- ],
- [
- "▁écologique",
- -13.045987129211426
- ],
- [
- "▁Investition",
- -13.045991897583008
- ],
- [
- "exemplar",
- -13.046127319335938
- ],
- [
- "▁prevede",
- -13.046144485473633
- ],
- [
- "▁waive",
- -13.046147346496582
- ],
- [
- "▁Legion",
- -13.046156883239746
- ],
- [
- "similar",
- -13.046247482299805
- ],
- [
- "▁shareholder",
- -13.04626750946045
- ],
- [
- "▁oyster",
- -13.046476364135742
- ],
- [
- "▁Lightning",
- -13.046530723571777
- ],
- [
- "experimenting",
- -13.04662799835205
- ],
- [
- "▁replies",
- -13.04663372039795
- ],
- [
- "80,000",
- -13.046757698059082
- ],
- [
- "▁adept",
- -13.04692554473877
- ],
- [
- "▁Crăciun",
- -13.046935081481934
- ],
- [
- "▁sanatos",
- -13.046935081481934
- ],
- [
- "305",
- -13.04699993133545
- ],
- [
- "specialised",
- -13.047069549560547
- ],
- [
- "▁drummer",
- -13.047189712524414
- ],
- [
- "Applicants",
- -13.04741096496582
- ],
- [
- "objekt",
- -13.04741096496582
- ],
- [
- "▁Fifth",
- -13.047446250915527
- ],
- [
- "rgic",
- -13.047567367553711
- ],
- [
- "theater",
- -13.047635078430176
- ],
- [
- "▁terminé",
- -13.047852516174316
- ],
- [
- "▁Englisch",
- -13.047894477844238
- ],
- [
- "▁Oradea",
- -13.047898292541504
- ],
- [
- "possesses",
- -13.0479097366333
- ],
- [
- "illiers",
- -13.047986030578613
- ],
- [
- "▁refurbish",
- -13.048110961914062
- ],
- [
- "graphie",
- -13.04814338684082
- ],
- [
- "▁Booth",
- -13.048174858093262
- ],
- [
- "▁Ausdruck",
- -13.048192977905273
- ],
- [
- "▁Marriage",
- -13.048361778259277
- ],
- [
- "▁knives",
- -13.048362731933594
- ],
- [
- "▁Relief",
- -13.048368453979492
- ],
- [
- "▁Clerk",
- -13.048392295837402
- ],
- [
- "wait",
- -13.048501014709473
- ],
- [
- "▁probablement",
- -13.048698425292969
- ],
- [
- "▁suplimentar",
- -13.048701286315918
- ],
- [
- "dollar",
- -13.048797607421875
- ],
- [
- "English",
- -13.04898452758789
- ],
- [
- "866",
- -13.049300193786621
- ],
- [
- "▁Savannah",
- -13.049314498901367
- ],
- [
- "▁aftermath",
- -13.049318313598633
- ],
- [
- "phé",
- -13.04932689666748
- ],
- [
- "▁Plum",
- -13.049417495727539
- ],
- [
- "264",
- -13.049566268920898
- ],
- [
- "2.000",
- -13.049582481384277
- ],
- [
- "niei",
- -13.049603462219238
- ],
- [
- "ATP",
- -13.049803733825684
- ],
- [
- "mila",
- -13.04985523223877
- ],
- [
- "▁glut",
- -13.049887657165527
- ],
- [
- "gotta",
- -13.049891471862793
- ],
- [
- "schütt",
- -13.049893379211426
- ],
- [
- "klick",
- -13.049996376037598
- ],
- [
- "whether",
- -13.050090789794922
- ],
- [
- "▁Wade",
- -13.050163269042969
- ],
- [
- "▁Riley",
- -13.050280570983887
- ],
- [
- "Chancellor",
- -13.050288200378418
- ],
- [
- "▁nebun",
- -13.050300598144531
- ],
- [
- "▁aufgebaut",
- -13.050374984741211
- ],
- [
- "steigt",
- -13.050423622131348
- ],
- [
- "▁entirety",
- -13.050494194030762
- ],
- [
- "▁telefoane",
- -13.05074691772461
- ],
- [
- "▁Roulette",
- -13.050763130187988
- ],
- [
- "1700",
- -13.050787925720215
- ],
- [
- "▁lycée",
- -13.050856590270996
- ],
- [
- "rotary",
- -13.051128387451172
- ],
- [
- "benefited",
- -13.051170349121094
- ],
- [
- "▁Bisericii",
- -13.051220893859863
- ],
- [
- "▁Rehabilitation",
- -13.051220893859863
- ],
- [
- "▁lithium",
- -13.051228523254395
- ],
- [
- "imposing",
- -13.051279067993164
- ],
- [
- "176",
- -13.051329612731934
- ],
- [
- "▁thunder",
- -13.051527976989746
- ],
- [
- "ăsesc",
- -13.052000045776367
- ],
- [
- "▁Einblick",
- -13.052010536193848
- ],
- [
- "oiled",
- -13.052151679992676
- ],
- [
- "SSA",
- -13.052181243896484
- ],
- [
- "apparition",
- -13.05224609375
- ],
- [
- "▁Impress",
- -13.052273750305176
- ],
- [
- "▁Aboriginal",
- -13.052297592163086
- ],
- [
- "loos",
- -13.052383422851562
- ],
- [
- "▁Bread",
- -13.052440643310547
- ],
- [
- "177",
- -13.052619934082031
- ],
- [
- "VERS",
- -13.052638053894043
- ],
- [
- "▁Respect",
- -13.05271053314209
- ],
- [
- "▁Practical",
- -13.053047180175781
- ],
- [
- "drafting",
- -13.05306339263916
- ],
- [
- "си",
- -13.053099632263184
- ],
- [
- "▁faza",
- -13.053109169006348
- ],
- [
- "▁sovereign",
- -13.053123474121094
- ],
- [
- "▁Untersuchung",
- -13.05314826965332
- ],
- [
- "▁Niveau",
- -13.053154945373535
- ],
- [
- "transport",
- -13.053182601928711
- ],
- [
- "▁downstream",
- -13.053293228149414
- ],
- [
- "▁Milton",
- -13.053383827209473
- ],
- [
- "▁knob",
- -13.053390502929688
- ],
- [
- "employeur",
- -13.053499221801758
- ],
- [
- "▁furnish",
- -13.053544044494629
- ],
- [
- "weather",
- -13.053564071655273
- ],
- [
- "LAB",
- -13.053646087646484
- ],
- [
- "166",
- -13.053853988647461
- ],
- [
- "▁salaire",
- -13.053937911987305
- ],
- [
- "▁Carnival",
- -13.054088592529297
- ],
- [
- "4-0",
- -13.054168701171875
- ],
- [
- "▁Angle",
- -13.054291725158691
- ],
- [
- "▁José",
- -13.054399490356445
- ],
- [
- "architecture",
- -13.054475784301758
- ],
- [
- "▁Sunset",
- -13.054574966430664
- ],
- [
- "▁Absolut",
- -13.054694175720215
- ],
- [
- "▁herrlich",
- -13.05470085144043
- ],
- [
- "12%",
- -13.054703712463379
- ],
- [
- "▁Indo",
- -13.054823875427246
- ],
- [
- "▁Komfort",
- -13.055049896240234
- ],
- [
- "▁acțiuni",
- -13.05505084991455
- ],
- [
- "energize",
- -13.055085182189941
- ],
- [
- "▁Warning",
- -13.055171966552734
- ],
- [
- "▁Sunny",
- -13.055216789245605
- ],
- [
- "▁razor",
- -13.055489540100098
- ],
- [
- "▁psychic",
- -13.055490493774414
- ],
- [
- "▁convivial",
- -13.055525779724121
- ],
- [
- "Voraussetzungen",
- -13.05555534362793
- ],
- [
- "IMO",
- -13.055622100830078
- ],
- [
- "opérateur",
- -13.055743217468262
- ],
- [
- "▁langjährige",
- -13.05575942993164
- ],
- [
- "▁Spanie",
- -13.055901527404785
- ],
- [
- "pulmonary",
- -13.056004524230957
- ],
- [
- "▁Bingo",
- -13.056050300598145
- ],
- [
- "▁confession",
- -13.056096076965332
- ],
- [
- "▁Petru",
- -13.056100845336914
- ],
- [
- "▁prerequisite",
- -13.056164741516113
- ],
- [
- "▁dodge",
- -13.056352615356445
- ],
- [
- "▁McN",
- -13.056436538696289
- ],
- [
- "▁originate",
- -13.056577682495117
- ],
- [
- "▁nettoy",
- -13.056612014770508
- ],
- [
- "▁$14",
- -13.056645393371582
- ],
- [
- "▁Bride",
- -13.05669116973877
- ],
- [
- "▁noisy",
- -13.05673885345459
- ],
- [
- "▁Worcester",
- -13.056963920593262
- ],
- [
- "▁Surrey",
- -13.056982040405273
- ],
- [
- "harmonis",
- -13.057110786437988
- ],
- [
- "▁représentant",
- -13.057304382324219
- ],
- [
- "organisée",
- -13.057475090026855
- ],
- [
- "truction",
- -13.057513236999512
- ],
- [
- "injected",
- -13.057597160339355
- ],
- [
- "▁Suzuki",
- -13.057924270629883
- ],
- [
- "▁japonais",
- -13.057924270629883
- ],
- [
- "▁turquoise",
- -13.057924270629883
- ],
- [
- "▁Peut",
- -13.058004379272461
- ],
- [
- "▁Sequ",
- -13.058028221130371
- ],
- [
- "slated",
- -13.058037757873535
- ],
- [
- "▁Alma",
- -13.058215141296387
- ],
- [
- "▁gebraucht",
- -13.05827522277832
- ],
- [
- "gängig",
- -13.058281898498535
- ],
- [
- "▁commis",
- -13.058377265930176
- ],
- [
- "ACS",
- -13.05856990814209
- ],
- [
- "pressure",
- -13.058664321899414
- ],
- [
- "cured",
- -13.05874252319336
- ],
- [
- "▁Jackie",
- -13.058757781982422
- ],
- [
- "▁Kashmir",
- -13.05888557434082
- ],
- [
- "▁recruited",
- -13.059000968933105
- ],
- [
- "▁vécu",
- -13.059011459350586
- ],
- [
- "▁opus",
- -13.059052467346191
- ],
- [
- "kWh",
- -13.05927562713623
- ],
- [
- "▁tapping",
- -13.059292793273926
- ],
- [
- "▁tehnologie",
- -13.05931282043457
- ],
- [
- "▁Gentle",
- -13.059365272521973
- ],
- [
- "▁bombard",
- -13.059372901916504
- ],
- [
- "▁caméra",
- -13.059427261352539
- ],
- [
- "züglich",
- -13.059431076049805
- ],
- [
- "▁bingo",
- -13.059453010559082
- ],
- [
- "private",
- -13.059496879577637
- ],
- [
- "▁mediator",
- -13.059642791748047
- ],
- [
- "▁carbohydrates",
- -13.059847831726074
- ],
- [
- "▁workmanship",
- -13.059849739074707
- ],
- [
- "▁Combat",
- -13.059853553771973
- ],
- [
- "▁Mickey",
- -13.059901237487793
- ],
- [
- "▁distressed",
- -13.059908866882324
- ],
- [
- "lucrează",
- -13.059924125671387
- ],
- [
- "treatment",
- -13.06007194519043
- ],
- [
- "▁Einwohner",
- -13.060330390930176
- ],
- [
- "▁glaze",
- -13.060386657714844
- ],
- [
- "scholarly",
- -13.06043529510498
- ],
- [
- "ROC",
- -13.060750007629395
- ],
- [
- "▁Darwin",
- -13.060774803161621
- ],
- [
- "drückt",
- -13.060775756835938
- ],
- [
- "▁treadmill",
- -13.060819625854492
- ],
- [
- "ntz",
- -13.060830116271973
- ],
- [
- "620",
- -13.061087608337402
- ],
- [
- "surface",
- -13.061148643493652
- ],
- [
- "▁vieţii",
- -13.0612211227417
- ],
- [
- "990",
- -13.061296463012695
- ],
- [
- "▁doigt",
- -13.061341285705566
- ],
- [
- "▁explor",
- -13.061450004577637
- ],
- [
- "▁asistent",
- -13.061670303344727
- ],
- [
- "coloriage",
- -13.061734199523926
- ],
- [
- "▁Martinez",
- -13.061758041381836
- ],
- [
- "▁antibodies",
- -13.061775207519531
- ],
- [
- "Schülerinnen",
- -13.061779975891113
- ],
- [
- "Honestly",
- -13.06178092956543
- ],
- [
- "grabbing",
- -13.061871528625488
- ],
- [
- "▁Cardiff",
- -13.061897277832031
- ],
- [
- "▁Trophy",
- -13.062084197998047
- ],
- [
- "▁pupil",
- -13.062117576599121
- ],
- [
- "▁invoke",
- -13.062161445617676
- ],
- [
- "bezüglich",
- -13.062193870544434
- ],
- [
- "Anschließend",
- -13.062275886535645
- ],
- [
- "perks",
- -13.062360763549805
- ],
- [
- "530",
- -13.062373161315918
- ],
- [
- "▁emblem",
- -13.062431335449219
- ],
- [
- "770",
- -13.062543869018555
- ],
- [
- "clairement",
- -13.062590599060059
- ],
- [
- "▁sublinia",
- -13.062597274780273
- ],
- [
- "▁1910",
- -13.062719345092773
- ],
- [
- "▁Embassy",
- -13.062740325927734
- ],
- [
- "▁Valencia",
- -13.062740325927734
- ],
- [
- "▁catastrophic",
- -13.062740325927734
- ],
- [
- "▁simulator",
- -13.06274700164795
- ],
- [
- "Pierre",
- -13.062766075134277
- ],
- [
- "▁doorstep",
- -13.062806129455566
- ],
- [
- "▁rallie",
- -13.062881469726562
- ],
- [
- "▁șans",
- -13.062891960144043
- ],
- [
- "▁crosses",
- -13.06300163269043
- ],
- [
- "▁zodi",
- -13.06312084197998
- ],
- [
- "Next",
- -13.06314754486084
- ],
- [
- "▁rebuilt",
- -13.063152313232422
- ],
- [
- "▁panorama",
- -13.063222885131836
- ],
- [
- "196",
- -13.06324291229248
- ],
- [
- "▁erinnert",
- -13.06370735168457
- ],
- [
- "lism",
- -13.06371784210205
- ],
- [
- "opened",
- -13.06383228302002
- ],
- [
- "▁breakout",
- -13.064126014709473
- ],
- [
- "▁mosque",
- -13.064153671264648
- ],
- [
- "boc",
- -13.064507484436035
- ],
- [
- "▁grout",
- -13.064568519592285
- ],
- [
- "▁Gather",
- -13.064582824707031
- ],
- [
- "▁vampire",
- -13.06467342376709
- ],
- [
- "▁tandem",
- -13.064684867858887
- ],
- [
- "▁pastra",
- -13.064702033996582
- ],
- [
- "▁lösen",
- -13.064794540405273
- ],
- [
- "▁discontinu",
- -13.064826965332031
- ],
- [
- "fuses",
- -13.064885139465332
- ],
- [
- "▁identitate",
- -13.064947128295898
- ],
- [
- "BAC",
- -13.064964294433594
- ],
- [
- "▁$100,000",
- -13.065122604370117
- ],
- [
- "Finder",
- -13.06515121459961
- ],
- [
- "▁Leicester",
- -13.065157890319824
- ],
- [
- "▁1933",
- -13.065159797668457
- ],
- [
- "informatiile",
- -13.065234184265137
- ],
- [
- "lädt",
- -13.065309524536133
- ],
- [
- "iggle",
- -13.065399169921875
- ],
- [
- "▁Discuss",
- -13.065462112426758
- ],
- [
- "distributing",
- -13.065470695495605
- ],
- [
- "▁disappoint",
- -13.065475463867188
- ],
- [
- "ecţia",
- -13.065611839294434
- ],
- [
- "▁condiment",
- -13.065640449523926
- ],
- [
- "▁Marriott",
- -13.065642356872559
- ],
- [
- "▁entspannt",
- -13.065644264221191
- ],
- [
- "arbitrary",
- -13.06564998626709
- ],
- [
- "rühren",
- -13.06574821472168
- ],
- [
- "Intensiv",
- -13.065771102905273
- ],
- [
- "eliminare",
- -13.065895080566406
- ],
- [
- "muster",
- -13.06594467163086
- ],
- [
- "▁komplexe",
- -13.066130638122559
- ],
- [
- "▁(2008)",
- -13.066184997558594
- ],
- [
- "absolument",
- -13.066349029541016
- ],
- [
- "aloo",
- -13.066420555114746
- ],
- [
- "cererea",
- -13.06655216217041
- ],
- [
- "▁imobiliar",
- -13.066696166992188
- ],
- [
- "▁paramount",
- -13.066705703735352
- ],
- [
- "▁Vince",
- -13.066723823547363
- ],
- [
- "pov",
- -13.067076683044434
- ],
- [
- "▁conveyor",
- -13.067549705505371
- ],
- [
- "▁Natalie",
- -13.067583084106445
- ],
- [
- "▁Comedy",
- -13.067623138427734
- ],
- [
- "Developing",
- -13.0678129196167
- ],
- [
- "disputed",
- -13.067878723144531
- ],
- [
- "164",
- -13.067911148071289
- ],
- [
- "▁Communist",
- -13.067949295043945
- ],
- [
- "▁Bahnhof",
- -13.06806468963623
- ],
- [
- "dokument",
- -13.068145751953125
- ],
- [
- "▁Somali",
- -13.06828498840332
- ],
- [
- "▁Strasbourg",
- -13.068503379821777
- ],
- [
- "▁Technician",
- -13.068550109863281
- ],
- [
- "▁subsidies",
- -13.068633079528809
- ],
- [
- "judeţul",
- -13.068723678588867
- ],
- [
- "▁bible",
- -13.068769454956055
- ],
- [
- "gefahren",
- -13.068855285644531
- ],
- [
- "▁literal",
- -13.068882942199707
- ],
- [
- "▁diminish",
- -13.068940162658691
- ],
- [
- "Sfântul",
- -13.0689697265625
- ],
- [
- "▁doreșt",
- -13.068978309631348
- ],
- [
- "▁Xiaomi",
- -13.069036483764648
- ],
- [
- "▁planète",
- -13.069130897521973
- ],
- [
- "▁LTD",
- -13.069175720214844
- ],
- [
- "▁Zugriff",
- -13.069196701049805
- ],
- [
- "beginn",
- -13.06921672821045
- ],
- [
- "▁Einführung",
- -13.069294929504395
- ],
- [
- "▁coronar",
- -13.069393157958984
- ],
- [
- "lomi",
- -13.0693941116333
- ],
- [
- "▁Accueil",
- -13.0695219039917
- ],
- [
- "scanned",
- -13.069528579711914
- ],
- [
- "▁Banque",
- -13.06952953338623
- ],
- [
- "▁réaction",
- -13.069531440734863
- ],
- [
- "▁Hoffman",
- -13.069546699523926
- ],
- [
- "▁merveille",
- -13.069637298583984
- ],
- [
- "navigating",
- -13.069719314575195
- ],
- [
- "schalten",
- -13.06984806060791
- ],
- [
- "▁ieşi",
- -13.070136070251465
- ],
- [
- "1-6",
- -13.070175170898438
- ],
- [
- "▁frustr",
- -13.070670127868652
- ],
- [
- "▁réfléchi",
- -13.0709810256958
- ],
- [
- "▁difuz",
- -13.071100234985352
- ],
- [
- "▁freue",
- -13.07121753692627
- ],
- [
- "besuch",
- -13.071349143981934
- ],
- [
- "153",
- -13.071386337280273
- ],
- [
- "▁butterflies",
- -13.071467399597168
- ],
- [
- "▁terrifying",
- -13.071467399597168
- ],
- [
- "▁încuraj",
- -13.071468353271484
- ],
- [
- "▁Château",
- -13.071470260620117
- ],
- [
- "▁contingent",
- -13.071474075317383
- ],
- [
- "▁abusive",
- -13.0714750289917
- ],
- [
- "▁SharePoint",
- -13.07148551940918
- ],
- [
- "▁skating",
- -13.071573257446289
- ],
- [
- "▁militaire",
- -13.07166576385498
- ],
- [
- "▁Vig",
- -13.071690559387207
- ],
- [
- "omics",
- -13.071840286254883
- ],
- [
- "▁Blockchain",
- -13.07197093963623
- ],
- [
- "▁principii",
- -13.071975708007812
- ],
- [
- "▁permitting",
- -13.071979522705078
- ],
- [
- "optimisation",
- -13.072270393371582
- ],
- [
- "▁maintien",
- -13.072328567504883
- ],
- [
- "▁Aluminum",
- -13.072442054748535
- ],
- [
- "▁Plymouth",
- -13.072443008422852
- ],
- [
- "▁Weiterbildung",
- -13.072457313537598
- ],
- [
- "▁Finanzierung",
- -13.072505950927734
- ],
- [
- "▁Kerala",
- -13.072514533996582
- ],
- [
- "insulated",
- -13.072668075561523
- ],
- [
- "▁loaf",
- -13.072802543640137
- ],
- [
- "▁Sammlung",
- -13.072929382324219
- ],
- [
- "▁îndepărt",
- -13.072930335998535
- ],
- [
- "▁Gewerbe",
- -13.072942733764648
- ],
- [
- "udel",
- -13.072988510131836
- ],
- [
- "▁coursework",
- -13.073104858398438
- ],
- [
- "▁Darstellung",
- -13.073246002197266
- ],
- [
- "▁indeplin",
- -13.073433876037598
- ],
- [
- "▁Gandhi",
- -13.073434829711914
- ],
- [
- "tossed",
- -13.07361888885498
- ],
- [
- "ewed",
- -13.073844909667969
- ],
- [
- "▁classement",
- -13.073884963989258
- ],
- [
- "▁Protestant",
- -13.073905944824219
- ],
- [
- "▁frumoasă",
- -13.073905944824219
- ],
- [
- "▁pantalon",
- -13.073906898498535
- ],
- [
- "▁rivet",
- -13.073966979980469
- ],
- [
- "▁Echt",
- -13.0741605758667
- ],
- [
- "erviciului",
- -13.07421588897705
- ],
- [
- "fabricated",
- -13.074322700500488
- ],
- [
- "Compania",
- -13.074372291564941
- ],
- [
- "▁juvenile",
- -13.074394226074219
- ],
- [
- "▁souligne",
- -13.07444953918457
- ],
- [
- "▁chrono",
- -13.07447338104248
- ],
- [
- "▁VII",
- -13.074594497680664
- ],
- [
- "▁Kirch",
- -13.074714660644531
- ],
- [
- "catcher",
- -13.075014114379883
- ],
- [
- "salv",
- -13.075263023376465
- ],
- [
- "▁Enforcement",
- -13.075370788574219
- ],
- [
- "▁Penguin",
- -13.075410842895508
- ],
- [
- "kowski",
- -13.075465202331543
- ],
- [
- "▁2:1",
- -13.075470924377441
- ],
- [
- "gesundheit",
- -13.075475692749023
- ],
- [
- "▁unveil",
- -13.075519561767578
- ],
- [
- "bending",
- -13.075531959533691
- ],
- [
- "▁conecta",
- -13.075579643249512
- ],
- [
- "▁faim",
- -13.075885772705078
- ],
- [
- "▁MacBook",
- -13.075969696044922
- ],
- [
- "versuch",
- -13.07600212097168
- ],
- [
- "▁regiuni",
- -13.076029777526855
- ],
- [
- "▁Willow",
- -13.076184272766113
- ],
- [
- "▁finanziell",
- -13.076303482055664
- ],
- [
- "▁nurturing",
- -13.076354026794434
- ],
- [
- "impuls",
- -13.076370239257812
- ],
- [
- "▁funktionieren",
- -13.076371192932129
- ],
- [
- "▁rezult",
- -13.076554298400879
- ],
- [
- "▁spui",
- -13.076593399047852
- ],
- [
- "▁walkway",
- -13.076653480529785
- ],
- [
- "▁Rauch",
- -13.076708793640137
- ],
- [
- "169",
- -13.076793670654297
- ],
- [
- "610",
- -13.076863288879395
- ],
- [
- "▁scazut",
- -13.0773286819458
- ],
- [
- "▁Garrett",
- -13.077329635620117
- ],
- [
- "▁necesită",
- -13.077352523803711
- ],
- [
- "Articolul",
- -13.077364921569824
- ],
- [
- "numită",
- -13.077371597290039
- ],
- [
- "Coastal",
- -13.077383041381836
- ],
- [
- "▁canned",
- -13.077421188354492
- ],
- [
- "▁Friendly",
- -13.077499389648438
- ],
- [
- "dissolved",
- -13.0775728225708
- ],
- [
- "seid",
- -13.077674865722656
- ],
- [
- "▁feminin",
- -13.077685356140137
- ],
- [
- "▁fetch",
- -13.077710151672363
- ],
- [
- "▁Accent",
- -13.077767372131348
- ],
- [
- "phrase",
- -13.077771186828613
- ],
- [
- "effekt",
- -13.077775955200195
- ],
- [
- "▁Progressive",
- -13.077777862548828
- ],
- [
- "▁canadien",
- -13.077820777893066
- ],
- [
- "iety",
- -13.077839851379395
- ],
- [
- "eignen",
- -13.077984809875488
- ],
- [
- "paraître",
- -13.07812213897705
- ],
- [
- "▁asylum",
- -13.07833194732666
- ],
- [
- "▁Albany",
- -13.078362464904785
- ],
- [
- "▁remis",
- -13.078386306762695
- ],
- [
- "▁Joyce",
- -13.078664779663086
- ],
- [
- "schätzt",
- -13.078784942626953
- ],
- [
- "▁begleiten",
- -13.078801155090332
- ],
- [
- "▁Siemens",
- -13.079007148742676
- ],
- [
- "▁schlimm",
- -13.079061508178711
- ],
- [
- "▁Libra",
- -13.079254150390625
- ],
- [
- "▁Composite",
- -13.079290390014648
- ],
- [
- "▁écr",
- -13.079315185546875
- ],
- [
- "disciplina",
- -13.079379081726074
- ],
- [
- "▁premature",
- -13.079630851745605
- ],
- [
- "▁scopuri",
- -13.079681396484375
- ],
- [
- "ffnung",
- -13.079715728759766
- ],
- [
- "7000",
- -13.079726219177246
- ],
- [
- "▁conséquent",
- -13.079780578613281
- ],
- [
- "▁côte",
- -13.079787254333496
- ],
- [
- "celul",
- -13.079872131347656
- ],
- [
- "▁fourteen",
- -13.079940795898438
- ],
- [
- "▁Riverside",
- -13.080077171325684
- ],
- [
- "gemacht",
- -13.08013916015625
- ],
- [
- "▁volcanic",
- -13.080272674560547
- ],
- [
- "▁Salesforce",
- -13.080315589904785
- ],
- [
- "▁Granite",
- -13.080317497253418
- ],
- [
- "▁Zentral",
- -13.080329895019531
- ],
- [
- "▁Female",
- -13.080341339111328
- ],
- [
- "▁culmin",
- -13.08047103881836
- ],
- [
- "▁urmatoare",
- -13.080547332763672
- ],
- [
- "toxicity",
- -13.080560684204102
- ],
- [
- "▁mâna",
- -13.080678939819336
- ],
- [
- "▁Umfang",
- -13.080764770507812
- ],
- [
- "▁Encore",
- -13.08077621459961
- ],
- [
- "▁Edgar",
- -13.080831527709961
- ],
- [
- "▁négoci",
- -13.080852508544922
- ],
- [
- "njeux",
- -13.080873489379883
- ],
- [
- "▁variance",
- -13.080917358398438
- ],
- [
- "▁Functional",
- -13.080973625183105
- ],
- [
- "172",
- -13.081046104431152
- ],
- [
- "▁dissolve",
- -13.0811185836792
- ],
- [
- "förderung",
- -13.081188201904297
- ],
- [
- "▁Brilliant",
- -13.081254959106445
- ],
- [
- "▁comprehension",
- -13.081254959106445
- ],
- [
- "▁soybean",
- -13.081254959106445
- ],
- [
- "▁standalone",
- -13.081255912780762
- ],
- [
- "▁Communi",
- -13.081303596496582
- ],
- [
- "▁ajut",
- -13.081313133239746
- ],
- [
- "▁lavish",
- -13.081338882446289
- ],
- [
- "Ouest",
- -13.081384658813477
- ],
- [
- "▁Maggie",
- -13.081385612487793
- ],
- [
- "▁evolutionary",
- -13.081550598144531
- ],
- [
- "bowel",
- -13.081575393676758
- ],
- [
- "▁glyco",
- -13.081626892089844
- ],
- [
- "▁Happi",
- -13.081706047058105
- ],
- [
- "organising",
- -13.081710815429688
- ],
- [
- "▁übernimm",
- -13.081727027893066
- ],
- [
- "▁snowboard",
- -13.081793785095215
- ],
- [
- "▁prévention",
- -13.081830024719238
- ],
- [
- "▁Celebrate",
- -13.082160949707031
- ],
- [
- "▁pottery",
- -13.082254409790039
- ],
- [
- "▁Outstanding",
- -13.082328796386719
- ],
- [
- "▁toamna",
- -13.082331657409668
- ],
- [
- "▁graceful",
- -13.082548141479492
- ],
- [
- "197",
- -13.082559585571289
- ],
- [
- "strecke",
- -13.082598686218262
- ],
- [
- "▁medizinische",
- -13.082733154296875
- ],
- [
- "216",
- -13.082839965820312
- ],
- [
- "▁prune",
- -13.082868576049805
- ],
- [
- "Pourtant",
- -13.083000183105469
- ],
- [
- "▁Difference",
- -13.083224296569824
- ],
- [
- "▁factura",
- -13.083830833435059
- ],
- [
- "Mass",
- -13.084161758422852
- ],
- [
- "▁Enhanc",
- -13.084190368652344
- ],
- [
- "upholstered",
- -13.084209442138672
- ],
- [
- "▁übernommen",
- -13.084209442138672
- ],
- [
- "▁mitigation",
- -13.084210395812988
- ],
- [
- "▁Hidden",
- -13.084219932556152
- ],
- [
- "▁Häuser",
- -13.084234237670898
- ],
- [
- "▁Pavel",
- -13.084403991699219
- ],
- [
- "▁congress",
- -13.084512710571289
- ],
- [
- "▁antibody",
- -13.084598541259766
- ],
- [
- "▁stitches",
- -13.084811210632324
- ],
- [
- "▁colonies",
- -13.084820747375488
- ],
- [
- "Into",
- -13.084900856018066
- ],
- [
- "▁démo",
- -13.084924697875977
- ],
- [
- "▁MVP",
- -13.085041046142578
- ],
- [
- "▁replay",
- -13.085062026977539
- ],
- [
- "▁usoara",
- -13.08522891998291
- ],
- [
- "▁Breast",
- -13.085278511047363
- ],
- [
- "ooney",
- -13.085336685180664
- ],
- [
- "▁außen",
- -13.085663795471191
- ],
- [
- "▁Motorola",
- -13.085695266723633
- ],
- [
- "▁spalat",
- -13.08578109741211
- ],
- [
- "euillez",
- -13.086088180541992
- ],
- [
- "▁jeunesse",
- -13.086170196533203
- ],
- [
- "▁pastoral",
- -13.086174011230469
- ],
- [
- "▁Sussex",
- -13.086185455322266
- ],
- [
- "▁stencil",
- -13.08619213104248
- ],
- [
- "▁organismului",
- -13.086504936218262
- ],
- [
- "seized",
- -13.086649894714355
- ],
- [
- "▁întrebare",
- -13.086865425109863
- ],
- [
- "cliquez",
- -13.086874961853027
- ],
- [
- "5.7",
- -13.086984634399414
- ],
- [
- "▁Yama",
- -13.087080955505371
- ],
- [
- "painted",
- -13.08708667755127
- ],
- [
- "▁Swimming",
- -13.087176322937012
- ],
- [
- "Rhythm",
- -13.087202072143555
- ],
- [
- "▁sorrow",
- -13.087210655212402
- ],
- [
- "▁Movers",
- -13.08731460571289
- ],
- [
- "renforcer",
- -13.08735466003418
- ],
- [
- "▁Wach",
- -13.087381362915039
- ],
- [
- "0,00",
- -13.087390899658203
- ],
- [
- "▁glove",
- -13.08753490447998
- ],
- [
- "▁stâng",
- -13.087669372558594
- ],
- [
- "rgendwann",
- -13.087687492370605
- ],
- [
- "▁Philippine",
- -13.08769416809082
- ],
- [
- "▁anunțat",
- -13.087716102600098
- ],
- [
- "▁Coleman",
- -13.087723731994629
- ],
- [
- "affir",
- -13.087918281555176
- ],
- [
- "uleiul",
- -13.08808422088623
- ],
- [
- "▁Coconut",
- -13.088197708129883
- ],
- [
- "▁Supplement",
- -13.088210105895996
- ],
- [
- "haudiere",
- -13.088293075561523
- ],
- [
- "▁kettle",
- -13.088313102722168
- ],
- [
- "▁3,5",
- -13.088370323181152
- ],
- [
- "refurbished",
- -13.088425636291504
- ],
- [
- "esthétique",
- -13.088665962219238
- ],
- [
- "performing",
- -13.088667869567871
- ],
- [
- "▁Engag",
- -13.088762283325195
- ],
- [
- "Group",
- -13.088801383972168
- ],
- [
- "▁viande",
- -13.088887214660645
- ],
- [
- "▁oricum",
- -13.088888168334961
- ],
- [
- "Spitalul",
- -13.089093208312988
- ],
- [
- "▁cesse",
- -13.089110374450684
- ],
- [
- "▁contradiction",
- -13.089130401611328
- ],
- [
- "▁Chrysler",
- -13.089154243469238
- ],
- [
- "▁poultry",
- -13.089154243469238
- ],
- [
- "▁thirteen",
- -13.089154243469238
- ],
- [
- "▁sightseeing",
- -13.089155197143555
- ],
- [
- "▁Miguel",
- -13.089158058166504
- ],
- [
- "▁terminology",
- -13.089334487915039
- ],
- [
- "▁Genetic",
- -13.089553833007812
- ],
- [
- "commercial",
- -13.08963394165039
- ],
- [
- "gehoben",
- -13.08965015411377
- ],
- [
- "RIGHT",
- -13.08995532989502
- ],
- [
- "▁proprietate",
- -13.089990615844727
- ],
- [
- "▁Cannes",
- -13.090012550354004
- ],
- [
- "▁klicken",
- -13.090023040771484
- ],
- [
- "▁Belgique",
- -13.0901460647583
- ],
- [
- "tapped",
- -13.09034538269043
- ],
- [
- "kinetic",
- -13.090569496154785
- ],
- [
- "▁feuilles",
- -13.090673446655273
- ],
- [
- "whitening",
- -13.090760231018066
- ],
- [
- "Any",
- -13.090946197509766
- ],
- [
- "Manager",
- -13.091099739074707
- ],
- [
- "▁constatat",
- -13.091106414794922
- ],
- [
- "▁Myanmar",
- -13.091140747070312
- ],
- [
- "▁Examination",
- -13.091142654418945
- ],
- [
- "▁règle",
- -13.091208457946777
- ],
- [
- "▁umgesetzt",
- -13.09128475189209
- ],
- [
- "211",
- -13.091336250305176
- ],
- [
- "▁Herald",
- -13.091449737548828
- ],
- [
- "Alex",
- -13.091680526733398
- ],
- [
- "▁drauf",
- -13.091707229614258
- ],
- [
- "logger",
- -13.091714859008789
- ],
- [
- "▁pictur",
- -13.09186840057373
- ],
- [
- "▁Divi",
- -13.09196949005127
- ],
- [
- "▁furnizat",
- -13.092089653015137
- ],
- [
- "▁verzichten",
- -13.092132568359375
- ],
- [
- "▁Sergi",
- -13.092199325561523
- ],
- [
- "contaminated",
- -13.09223747253418
- ],
- [
- "▁Buddy",
- -13.092243194580078
- ],
- [
- "▁chilled",
- -13.092268943786621
- ],
- [
- "▁vorlieg",
- -13.092317581176758
- ],
- [
- "▁Claudia",
- -13.092632293701172
- ],
- [
- "▁miserable",
- -13.092653274536133
- ],
- [
- "▁sketches",
- -13.092683792114258
- ],
- [
- "schicken",
- -13.092814445495605
- ],
- [
- "since",
- -13.0928373336792
- ],
- [
- "2.9",
- -13.092840194702148
- ],
- [
- "▁sitzen",
- -13.092928886413574
- ],
- [
- "ceapa",
- -13.093396186828613
- ],
- [
- "respectarea",
- -13.093438148498535
- ],
- [
- "▁handheld",
- -13.093448638916016
- ],
- [
- "popular",
- -13.093527793884277
- ],
- [
- "calming",
- -13.093603134155273
- ],
- [
- "Govern",
- -13.093632698059082
- ],
- [
- "▁omega",
- -13.093645095825195
- ],
- [
- "▁Planner",
- -13.093791007995605
- ],
- [
- "enriched",
- -13.093850135803223
- ],
- [
- "154",
- -13.093976974487305
- ],
- [
- "▁autorisé",
- -13.093989372253418
- ],
- [
- "▁cadouri",
- -13.09407901763916
- ],
- [
- "▁vulnerabilities",
- -13.094143867492676
- ],
- [
- "▁Arbeitnehmer",
- -13.094158172607422
- ],
- [
- "éditeur",
- -13.094234466552734
- ],
- [
- "▁Anleitung",
- -13.094317436218262
- ],
- [
- "rubbing",
- -13.094343185424805
- ],
- [
- "▁autovehicul",
- -13.094621658325195
- ],
- [
- "▁öffnen",
- -13.094621658325195
- ],
- [
- "▁Napoleon",
- -13.094622611999512
- ],
- [
- "▁cliché",
- -13.094637870788574
- ],
- [
- "▁Schaf",
- -13.09469985961914
- ],
- [
- "regulating",
- -13.094894409179688
- ],
- [
- "▁Kühl",
- -13.09490966796875
- ],
- [
- "▁blush",
- -13.094913482666016
- ],
- [
- "▁discard",
- -13.094992637634277
- ],
- [
- "▁confine",
- -13.095027923583984
- ],
- [
- "▁Rodriguez",
- -13.09511947631836
- ],
- [
- "▁ADHD",
- -13.095165252685547
- ],
- [
- "▁Madame",
- -13.09516716003418
- ],
- [
- "▁résolution",
- -13.095319747924805
- ],
- [
- "▁flair",
- -13.095369338989258
- ],
- [
- "▁claw",
- -13.095422744750977
- ],
- [
- "▁1929",
- -13.095643043518066
- ],
- [
- "ETH",
- -13.095672607421875
- ],
- [
- "nähe",
- -13.095804214477539
- ],
- [
- "▁soothe",
- -13.0958251953125
- ],
- [
- "4.9",
- -13.095833778381348
- ],
- [
- "montée",
- -13.095925331115723
- ],
- [
- "confirming",
- -13.095989227294922
- ],
- [
- "continent",
- -13.09613037109375
- ],
- [
- "reiz",
- -13.09643840789795
- ],
- [
- "john",
- -13.096577644348145
- ],
- [
- "IONAL",
- -13.096588134765625
- ],
- [
- "▁exported",
- -13.0966215133667
- ],
- [
- "▁Prison",
- -13.096651077270508
- ],
- [
- "possessed",
- -13.096952438354492
- ],
- [
- "▁placebo",
- -13.096991539001465
- ],
- [
- "▁biodiversity",
- -13.097116470336914
- ],
- [
- "▁combustion",
- -13.097116470336914
- ],
- [
- "▁Plumbing",
- -13.09711742401123
- ],
- [
- "ixie",
- -13.097124099731445
- ],
- [
- "▁repetition",
- -13.09715461730957
- ],
- [
- "▁soumis",
- -13.097372055053711
- ],
- [
- "▁reduc",
- -13.097671508789062
- ],
- [
- "▁constrain",
- -13.097759246826172
- ],
- [
- "Anti",
- -13.097760200500488
- ],
- [
- "consolidated",
- -13.097817420959473
- ],
- [
- "214",
- -13.098095893859863
- ],
- [
- "▁breaches",
- -13.098108291625977
- ],
- [
- "infringement",
- -13.098115921020508
- ],
- [
- "▁drizzle",
- -13.098115921020508
- ],
- [
- "▁erhöhen",
- -13.098116874694824
- ],
- [
- "▁Somerset",
- -13.098118782043457
- ],
- [
- "▁blonde",
- -13.098132133483887
- ],
- [
- "▁Funny",
- -13.09813404083252
- ],
- [
- "tuşi",
- -13.098149299621582
- ],
- [
- "▁reinvent",
- -13.098162651062012
- ],
- [
- "▁sérieux",
- -13.098247528076172
- ],
- [
- "▁croire",
- -13.098308563232422
- ],
- [
- "general",
- -13.098315238952637
- ],
- [
- "▁Distance",
- -13.098319053649902
- ],
- [
- "▁VoIP",
- -13.098348617553711
- ],
- [
- "▁adăugat",
- -13.098406791687012
- ],
- [
- "matik",
- -13.098546028137207
- ],
- [
- "▁avatar",
- -13.098647117614746
- ],
- [
- "▁superstar",
- -13.098804473876953
- ],
- [
- "8.0",
- -13.098814010620117
- ],
- [
- "lusieurs",
- -13.098982810974121
- ],
- [
- "▁Judeţean",
- -13.099117279052734
- ],
- [
- "offenen",
- -13.099128723144531
- ],
- [
- "RAF",
- -13.099133491516113
- ],
- [
- "▁restroom",
- -13.099207878112793
- ],
- [
- "enfance",
- -13.099348068237305
- ],
- [
- "▁garnish",
- -13.099499702453613
- ],
- [
- "▁vermittelt",
- -13.099631309509277
- ],
- [
- "Histoire",
- -13.099634170532227
- ],
- [
- "cyan",
- -13.100628852844238
- ],
- [
- "Talk",
- -13.100666046142578
- ],
- [
- "▁Varianten",
- -13.10069465637207
- ],
- [
- "▁Lille",
- -13.10085678100586
- ],
- [
- "▁offenbar",
- -13.10098934173584
- ],
- [
- "▁rénovation",
- -13.10112190246582
- ],
- [
- "▁comentarii",
- -13.101249694824219
- ],
- [
- "▁Bedford",
- -13.10130500793457
- ],
- [
- "▁cercetări",
- -13.101325988769531
- ],
- [
- "▁précision",
- -13.101337432861328
- ],
- [
- "MRC",
- -13.101358413696289
- ],
- [
- "alterations",
- -13.101476669311523
- ],
- [
- "▁discours",
- -13.101531028747559
- ],
- [
- "äger",
- -13.101577758789062
- ],
- [
- "▁antreprenor",
- -13.101622581481934
- ],
- [
- "▁Oriental",
- -13.101849555969238
- ],
- [
- "conducerea",
- -13.101868629455566
- ],
- [
- "CBC",
- -13.101932525634766
- ],
- [
- "▁mince",
- -13.101985931396484
- ],
- [
- "▁presidency",
- -13.10212516784668
- ],
- [
- "▁lipstick",
- -13.102167129516602
- ],
- [
- "▁SERVICES",
- -13.102237701416016
- ],
- [
- "productive",
- -13.10237979888916
- ],
- [
- "Assad",
- -13.102400779724121
- ],
- [
- "▁efectiv",
- -13.102540969848633
- ],
- [
- "▁gestern",
- -13.102596282958984
- ],
- [
- "▁RGB",
- -13.102606773376465
- ],
- [
- "▁Transilvania",
- -13.102627754211426
- ],
- [
- "▁Raleigh",
- -13.102670669555664
- ],
- [
- "DOM",
- -13.102702140808105
- ],
- [
- "▁iesit",
- -13.102806091308594
- ],
- [
- "▁anuntat",
- -13.102810859680176
- ],
- [
- "▁automatiquement",
- -13.102901458740234
- ],
- [
- "▁proliferation",
- -13.103130340576172
- ],
- [
- "▁Maroc",
- -13.103156089782715
- ],
- [
- "▁prezenţ",
- -13.10323429107666
- ],
- [
- "▁Filipino",
- -13.103296279907227
- ],
- [
- "▁Traian",
- -13.103351593017578
- ],
- [
- "▁swimmer",
- -13.10356616973877
- ],
- [
- "▁Slovenia",
- -13.103632926940918
- ],
- [
- "phobia",
- -13.103724479675293
- ],
- [
- "curricular",
- -13.103734016418457
- ],
- [
- "jurnal",
- -13.103825569152832
- ],
- [
- "▁vorne",
- -13.103870391845703
- ],
- [
- "▁asuma",
- -13.103875160217285
- ],
- [
- "defended",
- -13.104104995727539
- ],
- [
- "▁imminent",
- -13.104140281677246
- ],
- [
- "favored",
- -13.10417366027832
- ],
- [
- "▁innovator",
- -13.104179382324219
- ],
- [
- "▁Salzburg",
- -13.104289054870605
- ],
- [
- "5.4",
- -13.104452133178711
- ],
- [
- "Safe",
- -13.104597091674805
- ],
- [
- "▁inteleg",
- -13.104744911193848
- ],
- [
- "▁charisma",
- -13.104781150817871
- ],
- [
- "nature",
- -13.104784965515137
- ],
- [
- "4.8",
- -13.104942321777344
- ],
- [
- "argues",
- -13.105104446411133
- ],
- [
- "▁dimensiune",
- -13.105142593383789
- ],
- [
- "▁subdivision",
- -13.105142593383789
- ],
- [
- "▁embarrassing",
- -13.105144500732422
- ],
- [
- "▁confuse",
- -13.105207443237305
- ],
- [
- "DIC",
- -13.105460166931152
- ],
- [
- "rubrique",
- -13.10549545288086
- ],
- [
- "dépendance",
- -13.105598449707031
- ],
- [
- "INCLUD",
- -13.10565185546875
- ],
- [
- "▁Griffin",
- -13.10574722290039
- ],
- [
- "157",
- -13.105751037597656
- ],
- [
- "▁revamp",
- -13.105839729309082
- ],
- [
- "▁umgehen",
- -13.10595989227295
- ],
- [
- "▁mențin",
- -13.106231689453125
- ],
- [
- "▁1937",
- -13.106695175170898
- ],
- [
- "eklagte",
- -13.106766700744629
- ],
- [
- "▁clientèle",
- -13.106801986694336
- ],
- [
- "▁campsite",
- -13.10708999633789
- ],
- [
- "▁florist",
- -13.107144355773926
- ],
- [
- "▁Ferguson",
- -13.107159614562988
- ],
- [
- "▁demolition",
- -13.107160568237305
- ],
- [
- "▁McCain",
- -13.107254981994629
- ],
- [
- "▁reckon",
- -13.10733413696289
- ],
- [
- "striped",
- -13.107414245605469
- ],
- [
- "▁sonore",
- -13.107481002807617
- ],
- [
- "migrated",
- -13.107548713684082
- ],
- [
- "▁fluorescent",
- -13.107664108276367
- ],
- [
- "▁Colegi",
- -13.107762336730957
- ],
- [
- "ianu",
- -13.107860565185547
- ],
- [
- "cruising",
- -13.107882499694824
- ],
- [
- "LINK",
- -13.107965469360352
- ],
- [
- "▁Cutting",
- -13.108001708984375
- ],
- [
- "ABILITY",
- -13.108168601989746
- ],
- [
- "▁Categories",
- -13.108168601989746
- ],
- [
- "▁erhoben",
- -13.108168601989746
- ],
- [
- "▁Cocktail",
- -13.108169555664062
- ],
- [
- "▁Generator",
- -13.108177185058594
- ],
- [
- "▁gesucht",
- -13.108186721801758
- ],
- [
- "▁telescope",
- -13.10818862915039
- ],
- [
- "KET",
- -13.108192443847656
- ],
- [
- "▁hilfreich",
- -13.108192443847656
- ],
- [
- "▁beneficiary",
- -13.108585357666016
- ],
- [
- "▁Winston",
- -13.108636856079102
- ],
- [
- "Auswirkungen",
- -13.108675956726074
- ],
- [
- "portrayed",
- -13.108705520629883
- ],
- [
- "▁Aspekte",
- -13.108743667602539
- ],
- [
- "ffected",
- -13.108901023864746
- ],
- [
- "eutic",
- -13.108905792236328
- ],
- [
- "International",
- -13.109021186828613
- ],
- [
- "attente",
- -13.109078407287598
- ],
- [
- "mentioning",
- -13.109119415283203
- ],
- [
- "launch",
- -13.109129905700684
- ],
- [
- "▁EURO",
- -13.109152793884277
- ],
- [
- "▁Fraser",
- -13.109344482421875
- ],
- [
- "▁Johannes",
- -13.109408378601074
- ],
- [
- "▁felicit",
- -13.109477043151855
- ],
- [
- "▁plâng",
- -13.109522819519043
- ],
- [
- "izant",
- -13.10971736907959
- ],
- [
- "▁reţe",
- -13.109846115112305
- ],
- [
- "Mech",
- -13.109954833984375
- ],
- [
- "▁algebra",
- -13.110193252563477
- ],
- [
- "▁surgeries",
- -13.110257148742676
- ],
- [
- "▁semifinal",
- -13.110262870788574
- ],
- [
- "▁intimidating",
- -13.110288619995117
- ],
- [
- "▁exkl",
- -13.110604286193848
- ],
- [
- "asigurarea",
- -13.110918998718262
- ],
- [
- "Tek",
- -13.111136436462402
- ],
- [
- "▁Einladung",
- -13.111205101013184
- ],
- [
- "▁similaire",
- -13.111205101013184
- ],
- [
- "▁bebelus",
- -13.111221313476562
- ],
- [
- "▁déclin",
- -13.111400604248047
- ],
- [
- "▁Console",
- -13.111495018005371
- ],
- [
- "RET",
- -13.111573219299316
- ],
- [
- "appli",
- -13.111586570739746
- ],
- [
- "45%",
- -13.111663818359375
- ],
- [
- "Evenimentul",
- -13.111811637878418
- ],
- [
- "sincerely",
- -13.111812591552734
- ],
- [
- "sammlung",
- -13.112098693847656
- ],
- [
- "Amérique",
- -13.112220764160156
- ],
- [
- "▁1919",
- -13.112326622009277
- ],
- [
- "regulation",
- -13.112367630004883
- ],
- [
- "gebäude",
- -13.112726211547852
- ],
- [
- "▁Perspektive",
- -13.112726211547852
- ],
- [
- "Espagne",
- -13.112744331359863
- ],
- [
- "▁Underground",
- -13.11283016204834
- ],
- [
- "secret",
- -13.112833976745605
- ],
- [
- "▁Aussicht",
- -13.112874031066895
- ],
- [
- "Photo",
- -13.112977027893066
- ],
- [
- "▁Brust",
- -13.113144874572754
- ],
- [
- "▁Sustainability",
- -13.11323356628418
- ],
- [
- "▁clădiri",
- -13.11323356628418
- ],
- [
- "▁librarian",
- -13.11323356628418
- ],
- [
- "▁HBO",
- -13.113235473632812
- ],
- [
- "▁Parallel",
- -13.113240242004395
- ],
- [
- "▁shimmer",
- -13.113283157348633
- ],
- [
- "▁schlicht",
- -13.113292694091797
- ],
- [
- "▁anticipat",
- -13.113311767578125
- ],
- [
- "▁foolish",
- -13.11335563659668
- ],
- [
- "▁Ability",
- -13.11347484588623
- ],
- [
- "▁ceremoni",
- -13.11358642578125
- ],
- [
- "▁Ablauf",
- -13.11359977722168
- ],
- [
- "icrobial",
- -13.113606452941895
- ],
- [
- "▁actiuni",
- -13.11362361907959
- ],
- [
- "▁Wilhelm",
- -13.113761901855469
- ],
- [
- "▁nennen",
- -13.113775253295898
- ],
- [
- "▁botez",
- -13.113832473754883
- ],
- [
- "Alpes",
- -13.113912582397461
- ],
- [
- "▁libér",
- -13.11392593383789
- ],
- [
- "▁sneakers",
- -13.114052772521973
- ],
- [
- "geschafft",
- -13.114252090454102
- ],
- [
- "▁downstairs",
- -13.114261627197266
- ],
- [
- "▁wrench",
- -13.114294052124023
- ],
- [
- "▁erheblich",
- -13.11442756652832
- ],
- [
- "▁alimentar",
- -13.114710807800293
- ],
- [
- "▁suger",
- -13.11474323272705
- ],
- [
- "analysis",
- -13.114883422851562
- ],
- [
- "öhn",
- -13.114891052246094
- ],
- [
- "▁Nantes",
- -13.114895820617676
- ],
- [
- "▁Arbor",
- -13.114899635314941
- ],
- [
- "ooze",
- -13.115150451660156
- ],
- [
- "▁facade",
- -13.115229606628418
- ],
- [
- "▁MySQL",
- -13.115266799926758
- ],
- [
- "▁Salvador",
- -13.115266799926758
- ],
- [
- "▁Schlafzimmer",
- -13.115279197692871
- ],
- [
- "▁autentic",
- -13.115320205688477
- ],
- [
- "▁prezint",
- -13.115348815917969
- ],
- [
- "▁campground",
- -13.115397453308105
- ],
- [
- "Query",
- -13.11540412902832
- ],
- [
- "bekannt",
- -13.115598678588867
- ],
- [
- "arcinia",
- -13.115632057189941
- ],
- [
- "▁stunt",
- -13.115825653076172
- ],
- [
- "▁informare",
- -13.115830421447754
- ],
- [
- "▁interzis",
- -13.11584186553955
- ],
- [
- "▁Burke",
- -13.115995407104492
- ],
- [
- "certified",
- -13.11601734161377
- ],
- [
- "▁clove",
- -13.11605167388916
- ],
- [
- "java",
- -13.116271018981934
- ],
- [
- "▁Vielfalt",
- -13.116284370422363
- ],
- [
- "gebung",
- -13.116329193115234
- ],
- [
- "▁9/11",
- -13.116497993469238
- ],
- [
- "▁disruptive",
- -13.11650562286377
- ],
- [
- "visual",
- -13.116693496704102
- ],
- [
- "▁anunţat",
- -13.11679458618164
- ],
- [
- "▁Plätze",
- -13.116799354553223
- ],
- [
- "▁reduceri",
- -13.116920471191406
- ],
- [
- "autorisation",
- -13.116950035095215
- ],
- [
- "▁ligament",
- -13.11705207824707
- ],
- [
- "▁învăța",
- -13.117081642150879
- ],
- [
- "läufig",
- -13.117303848266602
- ],
- [
- "▁Copenhagen",
- -13.117303848266602
- ],
- [
- "▁commodities",
- -13.117303848266602
- ],
- [
- "▁eindeutig",
- -13.117313385009766
- ],
- [
- "▁catheter",
- -13.117321014404297
- ],
- [
- "erklärung",
- -13.117720603942871
- ],
- [
- "▁intelectual",
- -13.117814064025879
- ],
- [
- "▁municipality",
- -13.117891311645508
- ],
- [
- "▁1936",
- -13.11798095703125
- ],
- [
- "rruption",
- -13.118217468261719
- ],
- [
- "▁Lafayette",
- -13.118324279785156
- ],
- [
- "▁berühmte",
- -13.118324279785156
- ],
- [
- "▁idylli",
- -13.118325233459473
- ],
- [
- "▁caldura",
- -13.118447303771973
- ],
- [
- "▁tablette",
- -13.118535995483398
- ],
- [
- "▁liquidity",
- -13.118728637695312
- ],
- [
- "NGOs",
- -13.118885040283203
- ],
- [
- "▁supliment",
- -13.11889934539795
- ],
- [
- "contact",
- -13.119075775146484
- ],
- [
- "lustig",
- -13.119219779968262
- ],
- [
- "▁watercolor",
- -13.119319915771484
- ],
- [
- "▁Tiffany",
- -13.119344711303711
- ],
- [
- "▁Glauben",
- -13.119365692138672
- ],
- [
- "Immobilie",
- -13.119406700134277
- ],
- [
- "▁stripped",
- -13.119549751281738
- ],
- [
- "▁Beatles",
- -13.119601249694824
- ],
- [
- "ани",
- -13.119770050048828
- ],
- [
- "▁lifespan",
- -13.119986534118652
- ],
- [
- "▁profondeur",
- -13.120251655578613
- ],
- [
- "▁durere",
- -13.120329856872559
- ],
- [
- "▁Lithuania",
- -13.120367050170898
- ],
- [
- "▁resurrection",
- -13.120367050170898
- ],
- [
- "▁suitcase",
- -13.120535850524902
- ],
- [
- "▁Plumber",
- -13.120545387268066
- ],
- [
- "criticized",
- -13.120595932006836
- ],
- [
- "feared",
- -13.120756149291992
- ],
- [
- "▁Aunt",
- -13.120929718017578
- ],
- [
- "otwithstanding",
- -13.121068000793457
- ],
- [
- "verständlich",
- -13.12115478515625
- ],
- [
- "fiber",
- -13.121248245239258
- ],
- [
- "headquartered",
- -13.121390342712402
- ],
- [
- "▁Perspective",
- -13.121391296386719
- ],
- [
- "▁semantic",
- -13.121413230895996
- ],
- [
- "VIEW",
- -13.121431350708008
- ],
- [
- "▁Ersatzteile",
- -13.121567726135254
- ],
- [
- "▁disgust",
- -13.121685981750488
- ],
- [
- "rrington",
- -13.121834754943848
- ],
- [
- "ässe",
- -13.121922492980957
- ],
- [
- "▁anerkannt",
- -13.121956825256348
- ],
- [
- "meaning",
- -13.12203598022461
- ],
- [
- "178",
- -13.122039794921875
- ],
- [
- "▁grupuri",
- -13.1221284866333
- ],
- [
- "ciones",
- -13.122267723083496
- ],
- [
- "▁Mobility",
- -13.122414588928223
- ],
- [
- "▁unstable",
- -13.122422218322754
- ],
- [
- "▁FULL",
- -13.122456550598145
- ],
- [
- "austausch",
- -13.122491836547852
- ],
- [
- "▁culminat",
- -13.122549057006836
- ],
- [
- "▁Roast",
- -13.122742652893066
- ],
- [
- "existant",
- -13.122940063476562
- ],
- [
- "167",
- -13.123008728027344
- ],
- [
- "tinerii",
- -13.123040199279785
- ],
- [
- "September",
- -13.123115539550781
- ],
- [
- "▁haircut",
- -13.123274803161621
- ],
- [
- "▁Tutorial",
- -13.123440742492676
- ],
- [
- "▁enquiries",
- -13.123440742492676
- ],
- [
- "▁livelihood",
- -13.123440742492676
- ],
- [
- "▁proficiency",
- -13.123440742492676
- ],
- [
- "▁pavement",
- -13.123443603515625
- ],
- [
- "▁Reservation",
- -13.123445510864258
- ],
- [
- "aimerai",
- -13.123491287231445
- ],
- [
- "▁laboratoire",
- -13.123492240905762
- ],
- [
- "leihen",
- -13.123501777648926
- ],
- [
- "ministerium",
- -13.123518943786621
- ],
- [
- "▁Concentr",
- -13.12366008758545
- ],
- [
- "▁swipe",
- -13.12368106842041
- ],
- [
- "extrêmement",
- -13.123687744140625
- ],
- [
- "cultivated",
- -13.123708724975586
- ],
- [
- "▁Converse",
- -13.123845100402832
- ],
- [
- "▁paycheck",
- -13.123863220214844
- ],
- [
- "olltest",
- -13.123995780944824
- ],
- [
- "▁Bauch",
- -13.124022483825684
- ],
- [
- "▁autobuz",
- -13.124067306518555
- ],
- [
- "attack",
- -13.124094009399414
- ],
- [
- "While",
- -13.124311447143555
- ],
- [
- "Retrouvez",
- -13.124320983886719
- ],
- [
- "▁Dolphin",
- -13.124466896057129
- ],
- [
- "▁Shelby",
- -13.124480247497559
- ],
- [
- "▁Diagnostic",
- -13.124486923217773
- ],
- [
- "▁reconcil",
- -13.124558448791504
- ],
- [
- "▁Iaşi",
- -13.124733924865723
- ],
- [
- "▁iubesc",
- -13.124979972839355
- ],
- [
- "▁Bestseller",
- -13.124985694885254
- ],
- [
- "▁antrenor",
- -13.125035285949707
- ],
- [
- "▁Imaging",
- -13.125089645385742
- ],
- [
- "▁priorité",
- -13.125295639038086
- ],
- [
- "▁brewery",
- -13.125494003295898
- ],
- [
- "▁residual",
- -13.125494003295898
- ],
- [
- "▁intermittent",
- -13.125494956970215
- ],
- [
- "Kollekt",
- -13.125585556030273
- ],
- [
- "▁Walsh",
- -13.12558650970459
- ],
- [
- "▁marvelous",
- -13.125653266906738
- ],
- [
- "canceled",
- -13.125686645507812
- ],
- [
- "174",
- -13.125761985778809
- ],
- [
- "normes",
- -13.125837326049805
- ],
- [
- "▁Tempo",
- -13.125996589660645
- ],
- [
- "▁Târgu",
- -13.126008987426758
- ],
- [
- "877",
- -13.126165390014648
- ],
- [
- "5-8",
- -13.126190185546875
- ],
- [
- "960",
- -13.126486778259277
- ],
- [
- "▁Scandinavia",
- -13.1265230178833
- ],
- [
- "▁prolific",
- -13.126526832580566
- ],
- [
- "lasi",
- -13.126916885375977
- ],
- [
- "glück",
- -13.127097129821777
- ],
- [
- "▁immersion",
- -13.127204895019531
- ],
- [
- "RSA",
- -13.127323150634766
- ],
- [
- "▁Polk",
- -13.127340316772461
- ],
- [
- "▁transmitter",
- -13.12747859954834
- ],
- [
- "▁Kleidung",
- -13.12755298614502
- ],
- [
- "▁Cosmo",
- -13.127676963806152
- ],
- [
- "▁1935",
- -13.127788543701172
- ],
- [
- "höhere",
- -13.127906799316406
- ],
- [
- "▁Tatsache",
- -13.128074645996094
- ],
- [
- "▁Outlet",
- -13.1282377243042
- ],
- [
- "▁canalisation",
- -13.12824821472168
- ],
- [
- "Mbps",
- -13.128433227539062
- ],
- [
- "▁skeptical",
- -13.128582954406738
- ],
- [
- "mplification",
- -13.128617286682129
- ],
- [
- "▁Advice",
- -13.128618240356445
- ],
- [
- "▁détaillé",
- -13.128676414489746
- ],
- [
- "660",
- -13.128701210021973
- ],
- [
- "▁eyebrow",
- -13.128722190856934
- ],
- [
- "▁HIGH",
- -13.128898620605469
- ],
- [
- "hnlich",
- -13.129073143005371
- ],
- [
- "▁depăș",
- -13.12910270690918
- ],
- [
- "▁procurori",
- -13.129140853881836
- ],
- [
- "▁refrain",
- -13.129212379455566
- ],
- [
- "▁geschaffen",
- -13.12952995300293
- ],
- [
- "justement",
- -13.129663467407227
- ],
- [
- "exposing",
- -13.129700660705566
- ],
- [
- "243",
- -13.1298828125
- ],
- [
- "sectorul",
- -13.130104064941406
- ],
- [
- "▁courrier",
- -13.130180358886719
- ],
- [
- "▁carcas",
- -13.130199432373047
- ],
- [
- "sitter",
- -13.13022518157959
- ],
- [
- "▁Schreiben",
- -13.130335807800293
- ],
- [
- "▁malfunction",
- -13.130358695983887
- ],
- [
- "poartă",
- -13.130522727966309
- ],
- [
- "raisons",
- -13.130565643310547
- ],
- [
- "▁HOT",
- -13.130650520324707
- ],
- [
- "▁refreshed",
- -13.130730628967285
- ],
- [
- "mânt",
- -13.130744934082031
- ],
- [
- "▁coefficient",
- -13.13097858428955
- ],
- [
- "▁instituţii",
- -13.131194114685059
- ],
- [
- "▁sanguin",
- -13.131202697753906
- ],
- [
- "▁ceci",
- -13.131213188171387
- ],
- [
- "▁garçon",
- -13.131232261657715
- ],
- [
- "deluxe",
- -13.131237030029297
- ],
- [
- "▁rectif",
- -13.131311416625977
- ],
- [
- "920",
- -13.131364822387695
- ],
- [
- "Exista",
- -13.131428718566895
- ],
- [
- "▁magnif",
- -13.131568908691406
- ],
- [
- "efficiencies",
- -13.131681442260742
- ],
- [
- "▁Mitsubishi",
- -13.131681442260742
- ],
- [
- "▁consortium",
- -13.131681442260742
- ],
- [
- "▁baggage",
- -13.131683349609375
- ],
- [
- "▁guild",
- -13.131736755371094
- ],
- [
- "▁sixty",
- -13.13193130493164
- ],
- [
- "▁Retreat",
- -13.13245677947998
- ],
- [
- "batting",
- -13.132473945617676
- ],
- [
- "470",
- -13.132708549499512
- ],
- [
- "▁Britanie",
- -13.132718086242676
- ],
- [
- "displaced",
- -13.132734298706055
- ],
- [
- "▁spați",
- -13.132794380187988
- ],
- [
- "▁exceptionnelle",
- -13.13281536102295
- ],
- [
- "▁authorize",
- -13.132906913757324
- ],
- [
- "▁prescribe",
- -13.133187294006348
- ],
- [
- "▁dépannage",
- -13.133234024047852
- ],
- [
- "▁sexuelle",
- -13.133234024047852
- ],
- [
- "valid",
- -13.133275032043457
- ],
- [
- "▁hymn",
- -13.133752822875977
- ],
- [
- "▁histories",
- -13.133757591247559
- ],
- [
- "▁oriunde",
- -13.133764266967773
- ],
- [
- "Pop",
- -13.133785247802734
- ],
- [
- "▁dispoziţi",
- -13.133800506591797
- ],
- [
- "ADI",
- -13.133819580078125
- ],
- [
- "Google",
- -13.133830070495605
- ],
- [
- "▁Autism",
- -13.133918762207031
- ],
- [
- "▁aggr",
- -13.134354591369629
- ],
- [
- "bleed",
- -13.134618759155273
- ],
- [
- "▁displacement",
- -13.13478946685791
- ],
- [
- "▁hobbies",
- -13.13478946685791
- ],
- [
- "▁anatomy",
- -13.134799003601074
- ],
- [
- "▁Klinik",
- -13.134821891784668
- ],
- [
- "▁CCTV",
- -13.1348237991333
- ],
- [
- "readable",
- -13.134886741638184
- ],
- [
- "ulph",
- -13.134982109069824
- ],
- [
- "metabol",
- -13.135035514831543
- ],
- [
- "▁rugăm",
- -13.135037422180176
- ],
- [
- "▁Scotia",
- -13.135087013244629
- ],
- [
- "▁Einheit",
- -13.135211944580078
- ],
- [
- "▁troupe",
- -13.13581371307373
- ],
- [
- "▁Practitioner",
- -13.135828018188477
- ],
- [
- "▁oarec",
- -13.135909080505371
- ],
- [
- "Appel",
- -13.135998725891113
- ],
- [
- "situația",
- -13.136096000671387
- ],
- [
- "▁Yemen",
- -13.136353492736816
- ],
- [
- "piping",
- -13.136515617370605
- ],
- [
- "blood",
- -13.136772155761719
- ],
- [
- "engraved",
- -13.136866569519043
- ],
- [
- "▁Cristina",
- -13.136866569519043
- ],
- [
- "▁inaccurate",
- -13.136866569519043
- ],
- [
- "savory",
- -13.136878967285156
- ],
- [
- "atism",
- -13.136919021606445
- ],
- [
- "▁dependency",
- -13.137007713317871
- ],
- [
- "▁assertion",
- -13.137015342712402
- ],
- [
- "▁intersect",
- -13.137201309204102
- ],
- [
- "DATA",
- -13.137224197387695
- ],
- [
- "▁britanic",
- -13.1373872756958
- ],
- [
- "▁sanitaire",
- -13.137393951416016
- ],
- [
- "▁PLUS",
- -13.137436866760254
- ],
- [
- "▁platter",
- -13.137730598449707
- ],
- [
- "▁reconsider",
- -13.137802124023438
- ],
- [
- "▁Swim",
- -13.13786792755127
- ],
- [
- "▁Scene",
- -13.137896537780762
- ],
- [
- "▁Reynolds",
- -13.137907028198242
- ],
- [
- "▁gesund",
- -13.137922286987305
- ],
- [
- "international",
- -13.137959480285645
- ],
- [
- "government",
- -13.13804817199707
- ],
- [
- "▁gemstone",
- -13.138052940368652
- ],
- [
- "▁reproductive",
- -13.1381196975708
- ],
- [
- "▁expressive",
- -13.13820743560791
- ],
- [
- "▁tranche",
- -13.13842487335205
- ],
- [
- "▁Niagara",
- -13.138427734375
- ],
- [
- "▁Studierende",
- -13.138434410095215
- ],
- [
- "▁crave",
- -13.138607025146484
- ],
- [
- "pathetic",
- -13.138739585876465
- ],
- [
- "▁1916",
- -13.138858795166016
- ],
- [
- "▁Thousand",
- -13.138873100280762
- ],
- [
- "uffed",
- -13.138893127441406
- ],
- [
- "▁Lancaster",
- -13.138960838317871
- ],
- [
- "▁revenge",
- -13.138972282409668
- ],
- [
- "▁melody",
- -13.1389741897583
- ],
- [
- "Suitable",
- -13.138991355895996
- ],
- [
- "▁beacon",
- -13.139082908630371
- ],
- [
- "▁MAY",
- -13.139205932617188
- ],
- [
- "livré",
- -13.139216423034668
- ],
- [
- "Virus",
- -13.139391899108887
- ],
- [
- "▁collaborator",
- -13.139413833618164
- ],
- [
- "produktion",
- -13.139480590820312
- ],
- [
- "▁iluminat",
- -13.139593124389648
- ],
- [
- "facets",
- -13.13975715637207
- ],
- [
- "▁expus",
- -13.139784812927246
- ],
- [
- "▁baptism",
- -13.13999080657959
- ],
- [
- "▁urgency",
- -13.140016555786133
- ],
- [
- "artery",
- -13.14030647277832
- ],
- [
- "▁eingeladen",
- -13.14043140411377
- ],
- [
- "▁entfernen",
- -13.14051342010498
- ],
- [
- "soaking",
- -13.140555381774902
- ],
- [
- "▁irré",
- -13.140557289123535
- ],
- [
- "▁purity",
- -13.140700340270996
- ],
- [
- "▁adăug",
- -13.140731811523438
- ],
- [
- "historischen",
- -13.140777587890625
- ],
- [
- "crezi",
- -13.140793800354004
- ],
- [
- "▁tarziu",
- -13.141035079956055
- ],
- [
- "▁Mozart",
- -13.141040802001953
- ],
- [
- "▁trimming",
- -13.141056060791016
- ],
- [
- "▁violat",
- -13.141056060791016
- ],
- [
- "▁Vermögen",
- -13.14108943939209
- ],
- [
- "▁Theorie",
- -13.141114234924316
- ],
- [
- "scheibe",
- -13.14114761352539
- ],
- [
- "Partidul",
- -13.141324996948242
- ],
- [
- "▁childcare",
- -13.14133071899414
- ],
- [
- "ajele",
- -13.141345977783203
- ],
- [
- "▁Punjab",
- -13.141390800476074
- ],
- [
- "6.3",
- -13.14156436920166
- ],
- [
- "▁recount",
- -13.141571044921875
- ],
- [
- "▁repel",
- -13.141799926757812
- ],
- [
- "vantage",
- -13.1419095993042
- ],
- [
- "6.4",
- -13.141953468322754
- ],
- [
- "▁comedian",
- -13.142087936401367
- ],
- [
- "▁snappe",
- -13.142256736755371
- ],
- [
- "PLE",
- -13.142271041870117
- ],
- [
- "▁rapper",
- -13.142439842224121
- ],
- [
- "▁Belfast",
- -13.142657279968262
- ],
- [
- "▁predictive",
- -13.14271068572998
- ],
- [
- "dépôt",
- -13.1427583694458
- ],
- [
- "flavored",
- -13.142769813537598
- ],
- [
- "chließlich",
- -13.14293098449707
- ],
- [
- "▁stump",
- -13.142955780029297
- ],
- [
- "▁lakh",
- -13.142963409423828
- ],
- [
- "3:30",
- -13.143021583557129
- ],
- [
- "▁cetățeni",
- -13.1431245803833
- ],
- [
- "▁Milliarden",
- -13.143125534057617
- ],
- [
- "Assurance",
- -13.143128395080566
- ],
- [
- "▁Marketplace",
- -13.143329620361328
- ],
- [
- "equipped",
- -13.143423080444336
- ],
- [
- "▁russe",
- -13.143462181091309
- ],
- [
- "Exactly",
- -13.143651008605957
- ],
- [
- "▁Venez",
- -13.144125938415527
- ],
- [
- "▁Pavilion",
- -13.144171714782715
- ],
- [
- "▁incontournable",
- -13.144171714782715
- ],
- [
- "▁slaughter",
- -13.14417839050293
- ],
- [
- "asteptam",
- -13.144190788269043
- ],
- [
- "▁Fighter",
- -13.144196510314941
- ],
- [
- "▁Landkreis",
- -13.144278526306152
- ],
- [
- "▁lumini",
- -13.144312858581543
- ],
- [
- "▁connaît",
- -13.144615173339844
- ],
- [
- "▁Breite",
- -13.144674301147461
- ],
- [
- "▁Disability",
- -13.144774436950684
- ],
- [
- "▁Alfa",
- -13.144786834716797
- ],
- [
- "▁poise",
- -13.144895553588867
- ],
- [
- "▁Alpen",
- -13.144898414611816
- ],
- [
- "betont",
- -13.145031929016113
- ],
- [
- "159",
- -13.145161628723145
- ],
- [
- "▁geprägt",
- -13.145219802856445
- ],
- [
- "▁intrigued",
- -13.145219802856445
- ],
- [
- "▁sympathy",
- -13.145220756530762
- ],
- [
- "societal",
- -13.145225524902344
- ],
- [
- "▁sédui",
- -13.145243644714355
- ],
- [
- "▁differentiation",
- -13.145384788513184
- ],
- [
- "▁aprobare",
- -13.145744323730469
- ],
- [
- "schirm",
- -13.14585018157959
- ],
- [
- "sagt",
- -13.145956039428711
- ],
- [
- "7.3",
- -13.146101951599121
- ],
- [
- "Bib",
- -13.146263122558594
- ],
- [
- "europäischen",
- -13.146268844604492
- ],
- [
- "▁Innovative",
- -13.146268844604492
- ],
- [
- "▁autonome",
- -13.146330833435059
- ],
- [
- "▁Objective",
- -13.146400451660156
- ],
- [
- "▁refusal",
- -13.146551132202148
- ],
- [
- "▁exposé",
- -13.146719932556152
- ],
- [
- "▁cetăţeni",
- -13.146793365478516
- ],
- [
- "▁stimmt",
- -13.146798133850098
- ],
- [
- "acordul",
- -13.147162437438965
- ],
- [
- "▁hormonal",
- -13.147254943847656
- ],
- [
- "intermédiaire",
- -13.147319793701172
- ],
- [
- "▁doubl",
- -13.147374153137207
- ],
- [
- "▁flute",
- -13.147509574890137
- ],
- [
- "▁Balkon",
- -13.147523880004883
- ],
- [
- "▁Florian",
- -13.147607803344727
- ],
- [
- "737",
- -13.147614479064941
- ],
- [
- "▁dritte",
- -13.147639274597168
- ],
- [
- "spitze",
- -13.147685050964355
- ],
- [
- "donnent",
- -13.14778995513916
- ],
- [
- "▁Zuhause",
- -13.147850036621094
- ],
- [
- "▁VIII",
- -13.147852897644043
- ],
- [
- "familien",
- -13.148151397705078
- ],
- [
- "▁sécurisé",
- -13.148313522338867
- ],
- [
- "▁glamour",
- -13.148370742797852
- ],
- [
- "▁societati",
- -13.148370742797852
- ],
- [
- "typique",
- -13.1483793258667
- ],
- [
- "▁addicted",
- -13.148421287536621
- ],
- [
- "▁Providence",
- -13.148500442504883
- ],
- [
- "▁Extended",
- -13.148506164550781
- ],
- [
- "▁Barbie",
- -13.148513793945312
- ],
- [
- "zustand",
- -13.148516654968262
- ],
- [
- "▁Sauna",
- -13.148638725280762
- ],
- [
- "▁propane",
- -13.148663520812988
- ],
- [
- "europa",
- -13.148894309997559
- ],
- [
- "glued",
- -13.148940086364746
- ],
- [
- "▁Mystery",
- -13.148941993713379
- ],
- [
- "▁travaillé",
- -13.149106979370117
- ],
- [
- "riol",
- -13.149251937866211
- ],
- [
- "fleisch",
- -13.149288177490234
- ],
- [
- "▁Eintritt",
- -13.149327278137207
- ],
- [
- "▁Syndrome",
- -13.149422645568848
- ],
- [
- "▁petroleum",
- -13.149426460266113
- ],
- [
- "▁genial",
- -13.149433135986328
- ],
- [
- "sponsored",
- -13.149436950683594
- ],
- [
- "▁Cindy",
- -13.149436950683594
- ],
- [
- "▁courier",
- -13.149600982666016
- ],
- [
- "▁Scrap",
- -13.149640083312988
- ],
- [
- "▁conţin",
- -13.149724006652832
- ],
- [
- "(2007)",
- -13.149764060974121
- ],
- [
- "▁gewährleisten",
- -13.149949073791504
- ],
- [
- "▁proprietor",
- -13.15011215209961
- ],
- [
- "▁cheque",
- -13.15046215057373
- ],
- [
- "maternity",
- -13.150477409362793
- ],
- [
- "▁Gustav",
- -13.15048599243164
- ],
- [
- "▁arterial",
- -13.150497436523438
- ],
- [
- "▁whiskey",
- -13.150510787963867
- ],
- [
- "▁concealed",
- -13.150525093078613
- ],
- [
- "thèque",
- -13.150553703308105
- ],
- [
- "felony",
- -13.150579452514648
- ],
- [
- "▁tweeted",
- -13.150613784790039
- ],
- [
- "OTA",
- -13.150619506835938
- ],
- [
- "nsel",
- -13.150664329528809
- ],
- [
- "▁coarse",
- -13.150664329528809
- ],
- [
- "▁identificat",
- -13.150707244873047
- ],
- [
- "▁variability",
- -13.150716781616211
- ],
- [
- "civ",
- -13.150843620300293
- ],
- [
- "▁drastic",
- -13.150956153869629
- ],
- [
- "▁hatred",
- -13.151090621948242
- ],
- [
- "▁Bürgermeister",
- -13.151237487792969
- ],
- [
- "▁utilizatorilor",
- -13.15124225616455
- ],
- [
- "OULD",
- -13.15137004852295
- ],
- [
- "rmaßen",
- -13.151383399963379
- ],
- [
- "▁windshield",
- -13.151530265808105
- ],
- [
- "▁Particular",
- -13.151531219482422
- ],
- [
- "▁Tunnel",
- -13.151638984680176
- ],
- [
- "▁litri",
- -13.15164852142334
- ],
- [
- "extrême",
- -13.15180492401123
- ],
- [
- "▁Schalt",
- -13.151944160461426
- ],
- [
- "paket",
- -13.152159690856934
- ],
- [
- "berlin",
- -13.152169227600098
- ],
- [
- "▁slujb",
- -13.152193069458008
- ],
- [
- "facilitated",
- -13.152206420898438
- ],
- [
- "Congressional",
- -13.152510643005371
- ],
- [
- "▁honeymoon",
- -13.152585983276367
- ],
- [
- "▁Provision",
- -13.152697563171387
- ],
- [
- "▁Outfit",
- -13.152779579162598
- ],
- [
- "udder",
- -13.152814865112305
- ],
- [
- "▁chandelier",
- -13.153002738952637
- ],
- [
- "donating",
- -13.153132438659668
- ],
- [
- "historic",
- -13.15333080291748
- ],
- [
- "organized",
- -13.153508186340332
- ],
- [
- "(8)",
- -13.15356731414795
- ],
- [
- "▁touristique",
- -13.153610229492188
- ],
- [
- "▁Roosevelt",
- -13.153643608093262
- ],
- [
- "▁Verständnis",
- -13.153643608093262
- ],
- [
- "▁prilej",
- -13.153655052185059
- ],
- [
- "Vanity",
- -13.153806686401367
- ],
- [
- "chilly",
- -13.153964042663574
- ],
- [
- "loyer",
- -13.154031753540039
- ],
- [
- "▁Zhang",
- -13.154053688049316
- ],
- [
- "▁Nouveau",
- -13.154193878173828
- ],
- [
- "Soft",
- -13.154326438903809
- ],
- [
- "▁motherboard",
- -13.15441608428955
- ],
- [
- "▁Erklärung",
- -13.154701232910156
- ],
- [
- "▁Tasmania",
- -13.154702186584473
- ],
- [
- "▁verändern",
- -13.154703140258789
- ],
- [
- "▁seldom",
- -13.154711723327637
- ],
- [
- "▁Karriere",
- -13.154714584350586
- ],
- [
- "▁Mixed",
- -13.154902458190918
- ],
- [
- "umfang",
- -13.154970169067383
- ],
- [
- "▁Strategies",
- -13.155035972595215
- ],
- [
- "CHAR",
- -13.155051231384277
- ],
- [
- "olitary",
- -13.155075073242188
- ],
- [
- "▁Persoan",
- -13.1550874710083
- ],
- [
- "bewegung",
- -13.155242919921875
- ],
- [
- "▁Ernest",
- -13.155367851257324
- ],
- [
- "withdrawn",
- -13.155855178833008
- ],
- [
- "▁stationary",
- -13.155881881713867
- ],
- [
- "▁bland",
- -13.155939102172852
- ],
- [
- "▁Replace",
- -13.156059265136719
- ],
- [
- "▁Londres",
- -13.156290054321289
- ],
- [
- "▁plural",
- -13.156290054321289
- ],
- [
- "▁concentrat",
- -13.156515121459961
- ],
- [
- "Maschine",
- -13.156675338745117
- ],
- [
- "▁Advocate",
- -13.156820297241211
- ],
- [
- "▁vermitteln",
- -13.156824111938477
- ],
- [
- "▁dispenser",
- -13.156827926635742
- ],
- [
- "▁tedious",
- -13.15695858001709
- ],
- [
- "▁Straight",
- -13.15705394744873
- ],
- [
- "▁Corona",
- -13.157061576843262
- ],
- [
- "▁monumental",
- -13.157073020935059
- ],
- [
- "▁migrate",
- -13.15720272064209
- ],
- [
- "▁verlieren",
- -13.157366752624512
- ],
- [
- "▁Lub",
- -13.157482147216797
- ],
- [
- "▁reinforcement",
- -13.157827377319336
- ],
- [
- "▁cherish",
- -13.157843589782715
- ],
- [
- "Veterinary",
- -13.157881736755371
- ],
- [
- "geschwindigkeit",
- -13.157881736755371
- ],
- [
- "▁féminin",
- -13.157881736755371
- ],
- [
- "▁Facilities",
- -13.157964706420898
- ],
- [
- "▁urmari",
- -13.158050537109375
- ],
- [
- "▁Vertical",
- -13.158098220825195
- ],
- [
- "echoe",
- -13.158188819885254
- ],
- [
- "toured",
- -13.158548355102539
- ],
- [
- "Served",
- -13.158772468566895
- ],
- [
- "más",
- -13.158853530883789
- ],
- [
- "license",
- -13.158893585205078
- ],
- [
- "misunderstanding",
- -13.158944129943848
- ],
- [
- "▁glamorous",
- -13.158944129943848
- ],
- [
- "BJP",
- -13.158973693847656
- ],
- [
- "▁découvert",
- -13.159173965454102
- ],
- [
- "schönsten",
- -13.159517288208008
- ],
- [
- "▁(2018)",
- -13.159577369689941
- ],
- [
- "▁orasului",
- -13.159581184387207
- ],
- [
- "328",
- -13.159674644470215
- ],
- [
- "thighs",
- -13.159801483154297
- ],
- [
- "éclairage",
- -13.160008430480957
- ],
- [
- "Oamenii",
- -13.160009384155273
- ],
- [
- "▁Transmission",
- -13.16014575958252
- ],
- [
- "▁transpir",
- -13.16015911102295
- ],
- [
- "▁președinte",
- -13.160321235656738
- ],
- [
- "finalists",
- -13.160327911376953
- ],
- [
- "genügend",
- -13.160524368286133
- ],
- [
- "▁Aufmerksamkeit",
- -13.160539627075195
- ],
- [
- "▁unglaublich",
- -13.160539627075195
- ],
- [
- "▁descarc",
- -13.160604476928711
- ],
- [
- "▁Couch",
- -13.160683631896973
- ],
- [
- "eaucoup",
- -13.160788536071777
- ],
- [
- "▁adidas",
- -13.161075592041016
- ],
- [
- "▁1-800-",
- -13.161077499389648
- ],
- [
- "▁Communities",
- -13.161102294921875
- ],
- [
- "▁Einkommen",
- -13.161102294921875
- ],
- [
- "▁Reagan",
- -13.16114330291748
- ],
- [
- "▁Stoke",
- -13.161260604858398
- ],
- [
- "▁Snapchat",
- -13.161269187927246
- ],
- [
- "éclat",
- -13.161272048950195
- ],
- [
- "▁auseinander",
- -13.161367416381836
- ],
- [
- "▁richesse",
- -13.16137409210205
- ],
- [
- "▁toggle",
- -13.161396026611328
- ],
- [
- "▁Zutaten",
- -13.161606788635254
- ],
- [
- "▁député",
- -13.16161060333252
- ],
- [
- "▁battlefield",
- -13.161611557006836
- ],
- [
- "▁spirituel",
- -13.161611557006836
- ],
- [
- "▁Shuttle",
- -13.161632537841797
- ],
- [
- "▁Aktien",
- -13.161665916442871
- ],
- [
- "hormon",
- -13.161819458007812
- ],
- [
- "connection",
- -13.16187858581543
- ],
- [
- "▁vizitatori",
- -13.16191577911377
- ],
- [
- "érité",
- -13.161971092224121
- ],
- [
- "truck",
- -13.1619873046875
- ],
- [
- "▁yourselves",
- -13.162139892578125
- ],
- [
- "▁Logistics",
- -13.162140846252441
- ],
- [
- "coveted",
- -13.16215705871582
- ],
- [
- "▁şedinţ",
- -13.162671089172363
- ],
- [
- "▁messenger",
- -13.162703514099121
- ],
- [
- "▁țar",
- -13.162918090820312
- ],
- [
- "▁Grau",
- -13.163025856018066
- ],
- [
- "chirurgie",
- -13.163138389587402
- ],
- [
- "▁Ressourcen",
- -13.16320514678955
- ],
- [
- "▁Jésus",
- -13.163207054138184
- ],
- [
- "▁acțiune",
- -13.163208961486816
- ],
- [
- "▁Bundesliga",
- -13.163249015808105
- ],
- [
- "Lizenz",
- -13.163379669189453
- ],
- [
- "ELLE",
- -13.163908958435059
- ],
- [
- "vraie",
- -13.1639986038208
- ],
- [
- "ruined",
- -13.164018630981445
- ],
- [
- "▁Marble",
- -13.164109230041504
- ],
- [
- "▁Zambia",
- -13.164308547973633
- ],
- [
- "▁Finnish",
- -13.164366722106934
- ],
- [
- "▁trackback",
- -13.164488792419434
- ],
- [
- "héros",
- -13.16451644897461
- ],
- [
- "▁réclam",
- -13.164534568786621
- ],
- [
- "locurile",
- -13.164706230163574
- ],
- [
- "tägliche",
- -13.164753913879395
- ],
- [
- "IFF",
- -13.164824485778809
- ],
- [
- "▁contextual",
- -13.164938926696777
- ],
- [
- "▁Elvis",
- -13.165084838867188
- ],
- [
- "▁Batch",
- -13.165183067321777
- ],
- [
- "▁appris",
- -13.16519546508789
- ],
- [
- "intensive",
- -13.165404319763184
- ],
- [
- "▁întâmplat",
- -13.16565990447998
- ],
- [
- "▁prelucr",
- -13.16576099395752
- ],
- [
- "flore",
- -13.165873527526855
- ],
- [
- "▁Alkohol",
- -13.165877342224121
- ],
- [
- "Konzern",
- -13.165895462036133
- ],
- [
- "Delete",
- -13.166082382202148
- ],
- [
- "öck",
- -13.16612720489502
- ],
- [
- "▁clientii",
- -13.16614818572998
- ],
- [
- "▁innovate",
- -13.166224479675293
- ],
- [
- "▁ASAP",
- -13.166345596313477
- ],
- [
- "crumbs",
- -13.166425704956055
- ],
- [
- "reusable",
- -13.166489601135254
- ],
- [
- "▁Beaver",
- -13.166507720947266
- ],
- [
- "▁rosii",
- -13.166643142700195
- ],
- [
- "Arr",
- -13.166704177856445
- ],
- [
- "▁Zubehör",
- -13.166948318481445
- ],
- [
- "▁stolz",
- -13.166952133178711
- ],
- [
- "▁$75",
- -13.16695499420166
- ],
- [
- "▁Frühling",
- -13.166967391967773
- ],
- [
- "▁disagreement",
- -13.166988372802734
- ],
- [
- "▁formulate",
- -13.167381286621094
- ],
- [
- "braking",
- -13.167522430419922
- ],
- [
- "▁submarine",
- -13.167535781860352
- ],
- [
- "▁identificare",
- -13.167652130126953
- ],
- [
- "lansarea",
- -13.167659759521484
- ],
- [
- "covered",
- -13.167753219604492
- ],
- [
- "benso",
- -13.167859077453613
- ],
- [
- "▁situatie",
- -13.167989730834961
- ],
- [
- "hilf",
- -13.1681547164917
- ],
- [
- "▁Southampton",
- -13.168557167053223
- ],
- [
- "▁intéressé",
- -13.168557167053223
- ],
- [
- "▁congressional",
- -13.168572425842285
- ],
- [
- "65%",
- -13.168595314025879
- ],
- [
- "▁Allison",
- -13.168627738952637
- ],
- [
- "Mainland",
- -13.168726921081543
- ],
- [
- "▁touchscreen",
- -13.16882038116455
- ],
- [
- "leitet",
- -13.168922424316406
- ],
- [
- "mnului",
- -13.16958999633789
- ],
- [
- "▁engagiert",
- -13.169631004333496
- ],
- [
- "joacă",
- -13.16964340209961
- ],
- [
- "▁$5,000",
- -13.169652938842773
- ],
- [
- "upscale",
- -13.1697359085083
- ],
- [
- "▁vérité",
- -13.16983413696289
- ],
- [
- "flüssig",
- -13.170167922973633
- ],
- [
- "Richtlinie",
- -13.170169830322266
- ],
- [
- "▁positif",
- -13.170169830322266
- ],
- [
- "▁diferenta",
- -13.170175552368164
- ],
- [
- "▁întâi",
- -13.170707702636719
- ],
- [
- "ethylene",
- -13.170791625976562
- ],
- [
- "kreuz",
- -13.170913696289062
- ],
- [
- "Surely",
- -13.170990943908691
- ],
- [
- "puneti",
- -13.171002388000488
- ],
- [
- "europe",
- -13.171142578125
- ],
- [
- "▁comunist",
- -13.171271324157715
- ],
- [
- "unterricht",
- -13.171302795410156
- ],
- [
- "▁Füll",
- -13.171304702758789
- ],
- [
- "▁Aberdeen",
- -13.171792030334473
- ],
- [
- "▁DSLR",
- -13.171792030334473
- ],
- [
- "▁functioneaza",
- -13.171799659729004
- ],
- [
- "▁benches",
- -13.171807289123535
- ],
- [
- "▁Alpine",
- -13.171866416931152
- ],
- [
- "phthal",
- -13.172003746032715
- ],
- [
- "▁counselling",
- -13.17219066619873
- ],
- [
- "▁erzielen",
- -13.172323226928711
- ],
- [
- "▁părinţi",
- -13.172329902648926
- ],
- [
- "▁besitzen",
- -13.17236614227295
- ],
- [
- "heavenly",
- -13.172389030456543
- ],
- [
- "▁masque",
- -13.17281723022461
- ],
- [
- "▁Legislature",
- -13.172859191894531
- ],
- [
- "▁Recycling",
- -13.172861099243164
- ],
- [
- "▁Derma",
- -13.172883987426758
- ],
- [
- "reunite",
- -13.172926902770996
- ],
- [
- "recettes",
- -13.17310619354248
- ],
- [
- "converge",
- -13.173262596130371
- ],
- [
- "▁compoziti",
- -13.17327880859375
- ],
- [
- "▁Nürnberg",
- -13.173398971557617
- ],
- [
- "760",
- -13.173545837402344
- ],
- [
- "▁entière",
- -13.173674583435059
- ],
- [
- "▁parchment",
- -13.173944473266602
- ],
- [
- "▁Aufwand",
- -13.173945426940918
- ],
- [
- "▁antivirus",
- -13.174087524414062
- ],
- [
- "▁remettr",
- -13.17409610748291
- ],
- [
- "▁NEVER",
- -13.174243927001953
- ],
- [
- "▁restrictive",
- -13.174266815185547
- ],
- [
- "▁beurre",
- -13.174283027648926
- ],
- [
- "▁frigider",
- -13.174478530883789
- ],
- [
- "acquisition",
- -13.174642562866211
- ],
- [
- "▁Correct",
- -13.174866676330566
- ],
- [
- "▁immortal",
- -13.175017356872559
- ],
- [
- "▁occupancy",
- -13.175017356872559
- ],
- [
- "▁Tucson",
- -13.175019264221191
- ],
- [
- "▁Dhabi",
- -13.175025939941406
- ],
- [
- "obligation",
- -13.175033569335938
- ],
- [
- "▁warfare",
- -13.175037384033203
- ],
- [
- "▁syntax",
- -13.175045013427734
- ],
- [
- "APS",
- -13.175106048583984
- ],
- [
- "мен",
- -13.175209999084473
- ],
- [
- "▁diferenț",
- -13.175251960754395
- ],
- [
- "wordpress",
- -13.17549991607666
- ],
- [
- "▁Wohnzimmer",
- -13.175593376159668
- ],
- [
- "oppo",
- -13.175736427307129
- ],
- [
- "▁miscare",
- -13.175762176513672
- ],
- [
- "companiilor",
- -13.17581558227539
- ],
- [
- "▁bezahlt",
- -13.17584228515625
- ],
- [
- "Sterne",
- -13.175864219665527
- ],
- [
- "inability",
- -13.175898551940918
- ],
- [
- "▁Hoffnung",
- -13.176156044006348
- ],
- [
- "▁românească",
- -13.176176071166992
- ],
- [
- "document",
- -13.176177024841309
- ],
- [
- "borrowers",
- -13.17625904083252
- ],
- [
- "▁rasa",
- -13.176301956176758
- ],
- [
- "▁bénéfice",
- -13.176445960998535
- ],
- [
- "▁Panda",
- -13.17645263671875
- ],
- [
- "▁cărţi",
- -13.176730155944824
- ],
- [
- "▁Vorgehen",
- -13.17690658569336
- ],
- [
- "▁afecteaz",
- -13.176956176757812
- ],
- [
- "▁diagnos",
- -13.177050590515137
- ],
- [
- "▁Dentistry",
- -13.177180290222168
- ],
- [
- "▁staggering",
- -13.177180290222168
- ],
- [
- "präsident",
- -13.177181243896484
- ],
- [
- "▁vocational",
- -13.177239418029785
- ],
- [
- "Combined",
- -13.177287101745605
- ],
- [
- "stère",
- -13.177306175231934
- ],
- [
- "▁frunze",
- -13.177478790283203
- ],
- [
- "OLI",
- -13.177525520324707
- ],
- [
- "▁răc",
- -13.177752494812012
- ],
- [
- "▁changé",
- -13.177754402160645
- ],
- [
- "▁reprezentanți",
- -13.177757263183594
- ],
- [
- "▁ausgeschlossen",
- -13.177777290344238
- ],
- [
- "Windows",
- -13.177891731262207
- ],
- [
- "sometimes",
- -13.177898406982422
- ],
- [
- "▁dargestellt",
- -13.178120613098145
- ],
- [
- "provoking",
- -13.178263664245605
- ],
- [
- "terribly",
- -13.178264617919922
- ],
- [
- "▁speculate",
- -13.178274154663086
- ],
- [
- "▁complément",
- -13.178305625915527
- ],
- [
- "▁(2006)",
- -13.178306579589844
- ],
- [
- "zulegen",
- -13.178668022155762
- ],
- [
- "▁définitive",
- -13.178876876831055
- ],
- [
- "considerare",
- -13.17911148071289
- ],
- [
- "▁Subaru",
- -13.179354667663574
- ],
- [
- "WAN",
- -13.179390907287598
- ],
- [
- "guessed",
- -13.179417610168457
- ],
- [
- "spannung",
- -13.179479598999023
- ],
- [
- "▁supernatural",
- -13.179515838623047
- ],
- [
- "▁Interstate",
- -13.17957878112793
- ],
- [
- "▁redundant",
- -13.179891586303711
- ],
- [
- "▁HUG",
- -13.179893493652344
- ],
- [
- "▁restauration",
- -13.180006980895996
- ],
- [
- "repute",
- -13.180011749267578
- ],
- [
- "coagul",
- -13.180028915405273
- ],
- [
- "tehnologia",
- -13.18043327331543
- ],
- [
- "warded",
- -13.180444717407227
- ],
- [
- "▁lobster",
- -13.180469512939453
- ],
- [
- "▁Hafen",
- -13.180542945861816
- ],
- [
- "▁Guess",
- -13.18056583404541
- ],
- [
- "seraient",
- -13.181038856506348
- ],
- [
- "▁trench",
- -13.181156158447266
- ],
- [
- "▁piept",
- -13.181283950805664
- ],
- [
- "categorized",
- -13.181396484375
- ],
- [
- "softer",
- -13.1815185546875
- ],
- [
- "▁feasibility",
- -13.181519508361816
- ],
- [
- "▁restructuring",
- -13.181519508361816
- ],
- [
- "▁GOOD",
- -13.181537628173828
- ],
- [
- "▁inspiré",
- -13.181610107421875
- ],
- [
- "▁spéci",
- -13.18163013458252
- ],
- [
- "▁Mattress",
- -13.181686401367188
- ],
- [
- "▁biologique",
- -13.181702613830566
- ],
- [
- "▁Crema",
- -13.182043075561523
- ],
- [
- "▁korrekt",
- -13.182063102722168
- ],
- [
- "▁imperfect",
- -13.182205200195312
- ],
- [
- "▁advantageous",
- -13.182329177856445
- ],
- [
- "9.00",
- -13.182390213012695
- ],
- [
- "PAL",
- -13.182557106018066
- ],
- [
- "▁Illustration",
- -13.182607650756836
- ],
- [
- "▁Katherine",
- -13.182607650756836
- ],
- [
- "▁cervical",
- -13.182607650756836
- ],
- [
- "▁hectic",
- -13.182611465454102
- ],
- [
- "▁Belastung",
- -13.182615280151367
- ],
- [
- "▁Laguna",
- -13.182628631591797
- ],
- [
- "▁Burton",
- -13.182761192321777
- ],
- [
- "nettoyage",
- -13.182875633239746
- ],
- [
- "Toward",
- -13.183072090148926
- ],
- [
- "continuare",
- -13.183072090148926
- ],
- [
- "▁acumulat",
- -13.183106422424316
- ],
- [
- "▁déposé",
- -13.183216094970703
- ],
- [
- "▁prestige",
- -13.183269500732422
- ],
- [
- "▁LNG",
- -13.183525085449219
- ],
- [
- "▁Dacia",
- -13.183662414550781
- ],
- [
- "▁concede",
- -13.183691024780273
- ],
- [
- "▁reconciliation",
- -13.183822631835938
- ],
- [
- "Sistemul",
- -13.183877944946289
- ],
- [
- "Speed",
- -13.183937072753906
- ],
- [
- "▁Implant",
- -13.183977127075195
- ],
- [
- "▁möchtest",
- -13.184020042419434
- ],
- [
- "▁Norton",
- -13.184064865112305
- ],
- [
- "▁cosmic",
- -13.184181213378906
- ],
- [
- "enregistrement",
- -13.184247016906738
- ],
- [
- "țării",
- -13.18433952331543
- ],
- [
- "Veröffentlichung",
- -13.184786796569824
- ],
- [
- "erlebnis",
- -13.184786796569824
- ],
- [
- "▁Carpenter",
- -13.184786796569824
- ],
- [
- "▁INFORMATION",
- -13.184786796569824
- ],
- [
- "invites",
- -13.18481731414795
- ],
- [
- "▁gewan",
- -13.1849365234375
- ],
- [
- "▁réservé",
- -13.184986114501953
- ],
- [
- "▁aquatic",
- -13.184988021850586
- ],
- [
- "▁Seoul",
- -13.18507194519043
- ],
- [
- "▁älter",
- -13.185185432434082
- ],
- [
- "▁classmates",
- -13.185223579406738
- ],
- [
- "gelangen",
- -13.185253143310547
- ],
- [
- "▁Camill",
- -13.185285568237305
- ],
- [
- "simo",
- -13.185291290283203
- ],
- [
- "▁dormitor",
- -13.185333251953125
- ],
- [
- "wahren",
- -13.185354232788086
- ],
- [
- "▁incremental",
- -13.185357093811035
- ],
- [
- "▁caci",
- -13.185494422912598
- ],
- [
- "mittlere",
- -13.185752868652344
- ],
- [
- "▁condominium",
- -13.185877799987793
- ],
- [
- "▁rainforest",
- -13.185877799987793
- ],
- [
- "▁championnat",
- -13.185891151428223
- ],
- [
- "▁interrupted",
- -13.185921669006348
- ],
- [
- "▁tactile",
- -13.185930252075195
- ],
- [
- "▁unconditional",
- -13.185945510864258
- ],
- [
- "▁reactive",
- -13.186041831970215
- ],
- [
- "▁Stretch",
- -13.1861572265625
- ],
- [
- "▁serene",
- -13.18624210357666
- ],
- [
- "570",
- -13.186318397521973
- ],
- [
- "igte",
- -13.186376571655273
- ],
- [
- "Louis",
- -13.186410903930664
- ],
- [
- "▁Mittelpunkt",
- -13.186493873596191
- ],
- [
- "EEP",
- -13.18651294708252
- ],
- [
- "▁vault",
- -13.186552047729492
- ],
- [
- "absolu",
- -13.186893463134766
- ],
- [
- "▁solidarity",
- -13.186971664428711
- ],
- [
- "CLICK",
- -13.18708324432373
- ],
- [
- "▁hustle",
- -13.187090873718262
- ],
- [
- "▁microscope",
- -13.187105178833008
- ],
- [
- "▁Recommended",
- -13.187111854553223
- ],
- [
- "âche",
- -13.18716812133789
- ],
- [
- "▁flashlight",
- -13.187286376953125
- ],
- [
- "modificarea",
- -13.18754768371582
- ],
- [
- "izaţi",
- -13.18773078918457
- ],
- [
- "planned",
- -13.187899589538574
- ],
- [
- "Download",
- -13.187906265258789
- ],
- [
- "▁gourmand",
- -13.188064575195312
- ],
- [
- "▁subsidiaries",
- -13.188064575195312
- ],
- [
- "orthodox",
- -13.188135147094727
- ],
- [
- "▁Auburn",
- -13.188323020935059
- ],
- [
- "▁exprimat",
- -13.188336372375488
- ],
- [
- "procédé",
- -13.18861198425293
- ],
- [
- "▁ressenti",
- -13.188648223876953
- ],
- [
- "▁stint",
- -13.188678741455078
- ],
- [
- "Essentially",
- -13.189072608947754
- ],
- [
- "▁Savior",
- -13.189164161682129
- ],
- [
- "▁Flood",
- -13.189168930053711
- ],
- [
- "▁neurological",
- -13.189249038696289
- ],
- [
- "▁strig",
- -13.189340591430664
- ],
- [
- "scended",
- -13.189421653747559
- ],
- [
- "▁Shiva",
- -13.189483642578125
- ],
- [
- "▁Sketch",
- -13.189544677734375
- ],
- [
- "▁monarch",
- -13.18956184387207
- ],
- [
- "▁Preview",
- -13.189632415771484
- ],
- [
- "▁bewegt",
- -13.189811706542969
- ],
- [
- "mapped",
- -13.189818382263184
- ],
- [
- "énorme",
- -13.189962387084961
- ],
- [
- "▁définition",
- -13.189963340759277
- ],
- [
- "▁nécessité",
- -13.189984321594238
- ],
- [
- "▁antren",
- -13.190027236938477
- ],
- [
- "▁Infant",
- -13.190072059631348
- ],
- [
- "▁incumbent",
- -13.190255165100098
- ],
- [
- "▁pavilion",
- -13.190255165100098
- ],
- [
- "▁Taliban",
- -13.19025707244873
- ],
- [
- "Easily",
- -13.19025993347168
- ],
- [
- "▁verteilt",
- -13.19030475616455
- ],
- [
- "▁Biblical",
- -13.190320014953613
- ],
- [
- "Christian",
- -13.190333366394043
- ],
- [
- "județul",
- -13.190436363220215
- ],
- [
- "Learning",
- -13.19046688079834
- ],
- [
- "▁Expand",
- -13.19054126739502
- ],
- [
- "▁Attach",
- -13.19056224822998
- ],
- [
- "consideră",
- -13.190573692321777
- ],
- [
- "einsatz",
- -13.190574645996094
- ],
- [
- "Numai",
- -13.190585136413574
- ],
- [
- "▁Eintrag",
- -13.190597534179688
- ],
- [
- "▁üblich",
- -13.190607070922852
- ],
- [
- "▁cumpără",
- -13.19062614440918
- ],
- [
- "escaped",
- -13.190693855285645
- ],
- [
- "▁Ortodox",
- -13.190804481506348
- ],
- [
- "▁obţinut",
- -13.190805435180664
- ],
- [
- "ecluded",
- -13.191036224365234
- ],
- [
- "▁brownie",
- -13.191089630126953
- ],
- [
- "▁regulament",
- -13.191253662109375
- ],
- [
- "▁Chaos",
- -13.191302299499512
- ],
- [
- "▁masiv",
- -13.19132137298584
- ],
- [
- "▁Gerald",
- -13.191376686096191
- ],
- [
- "▁Sigur",
- -13.191380500793457
- ],
- [
- "▁wavelength",
- -13.191380500793457
- ],
- [
- "▁retiring",
- -13.191396713256836
- ],
- [
- "▁exactement",
- -13.191819190979004
- ],
- [
- "ntino",
- -13.191823959350586
- ],
- [
- "▁Krebs",
- -13.19194221496582
- ],
- [
- "▁monatlich",
- -13.191956520080566
- ],
- [
- "▁aranj",
- -13.192011833190918
- ],
- [
- "▁priveşt",
- -13.192099571228027
- ],
- [
- "▁mecanic",
- -13.192109107971191
- ],
- [
- "money",
- -13.192233085632324
- ],
- [
- "parliamentary",
- -13.1922607421875
- ],
- [
- "▁probation",
- -13.192427635192871
- ],
- [
- "embroidered",
- -13.192451477050781
- ],
- [
- "▁amenajat",
- -13.192451477050781
- ],
- [
- "▁remnant",
- -13.192451477050781
- ],
- [
- "▁senzati",
- -13.192472457885742
- ],
- [
- "▁Declaration",
- -13.192483901977539
- ],
- [
- "farbe",
- -13.192506790161133
- ],
- [
- "▁skinny",
- -13.19260311126709
- ],
- [
- "Energi",
- -13.192648887634277
- ],
- [
- "verhältnisse",
- -13.19288158416748
- ],
- [
- "Recruit",
- -13.192972183227539
- ],
- [
- "frying",
- -13.193161010742188
- ],
- [
- "925",
- -13.193294525146484
- ],
- [
- "nstruire",
- -13.193302154541016
- ],
- [
- "toasted",
- -13.193424224853516
- ],
- [
- "▁nicotine",
- -13.193551063537598
- ],
- [
- "recessed",
- -13.193570137023926
- ],
- [
- "▁dialect",
- -13.193572044372559
- ],
- [
- "▁confisc",
- -13.193575859069824
- ],
- [
- "▁bubbl",
- -13.193643569946289
- ],
- [
- "▁Precision",
- -13.193682670593262
- ],
- [
- "▁sollicit",
- -13.193842887878418
- ],
- [
- "▁Moral",
- -13.193977355957031
- ],
- [
- "▁renseignements",
- -13.194112777709961
- ],
- [
- "UMP",
- -13.194116592407227
- ],
- [
- "ijn",
- -13.194183349609375
- ],
- [
- "▁fermeture",
- -13.194320678710938
- ],
- [
- "▁blueprint",
- -13.19462776184082
- ],
- [
- "▁groceries",
- -13.194652557373047
- ],
- [
- "möbel",
- -13.194655418395996
- ],
- [
- "▁Plenty",
- -13.194657325744629
- ],
- [
- "▁forfeit",
- -13.194719314575195
- ],
- [
- "méthodes",
- -13.194915771484375
- ],
- [
- "paving",
- -13.19493293762207
- ],
- [
- "outheastern",
- -13.194979667663574
- ],
- [
- "▁Overview",
- -13.19503116607666
- ],
- [
- "▁observers",
- -13.195171356201172
- ],
- [
- "▁Timișoara",
- -13.19520378112793
- ],
- [
- "noticing",
- -13.195332527160645
- ],
- [
- "▁Owl",
- -13.195381164550781
- ],
- [
- "▁1925",
- -13.195517539978027
- ],
- [
- "▁prüfen",
- -13.195755004882812
- ],
- [
- "▁Bewohner",
- -13.195756912231445
- ],
- [
- "▁Latvia",
- -13.195770263671875
- ],
- [
- "▁Tuscan",
- -13.19577407836914
- ],
- [
- "▁apprenticeship",
- -13.195789337158203
- ],
- [
- "▁courteous",
- -13.1958646774292
- ],
- [
- "adult",
- -13.196023941040039
- ],
- [
- "Licensed",
- -13.196029663085938
- ],
- [
- "abused",
- -13.196762084960938
- ],
- [
- "confidence",
- -13.19678020477295
- ],
- [
- "▁revolt",
- -13.196782112121582
- ],
- [
- "conference",
- -13.196861267089844
- ],
- [
- "genoss",
- -13.196914672851562
- ],
- [
- "▁răni",
- -13.196944236755371
- ],
- [
- "▁Intervention",
- -13.196949005126953
- ],
- [
- "▁primesc",
- -13.196969985961914
- ],
- [
- "trays",
- -13.197041511535645
- ],
- [
- "nozzle",
- -13.197216033935547
- ],
- [
- "▁splitting",
- -13.197443962097168
- ],
- [
- "▁könne",
- -13.197507858276367
- ],
- [
- "▁peisaj",
- -13.197943687438965
- ],
- [
- "▁academia",
- -13.197962760925293
- ],
- [
- "▁chakra",
- -13.197979927062988
- ],
- [
- "▁Abdul",
- -13.1981201171875
- ],
- [
- "▁Beschreibung",
- -13.198225021362305
- ],
- [
- "Regeln",
- -13.19831371307373
- ],
- [
- "eezy",
- -13.198314666748047
- ],
- [
- "▁problématique",
- -13.198515892028809
- ],
- [
- "▁Ausführung",
- -13.198524475097656
- ],
- [
- "▁reconnect",
- -13.19868278503418
- ],
- [
- "▁telefonic",
- -13.198966026306152
- ],
- [
- "▁Ethereum",
- -13.199069023132324
- ],
- [
- "▁Winnipeg",
- -13.199069023132324
- ],
- [
- "▁misconception",
- -13.199069023132324
- ],
- [
- "▁Verpackung",
- -13.199070930480957
- ],
- [
- "▁erzeugt",
- -13.199097633361816
- ],
- [
- "▁Identity",
- -13.199104309082031
- ],
- [
- "▁dunkle",
- -13.199109077453613
- ],
- [
- "sustaining",
- -13.19916820526123
- ],
- [
- "▁pereche",
- -13.199178695678711
- ],
- [
- "▁neîn",
- -13.199239730834961
- ],
- [
- "directorul",
- -13.199291229248047
- ],
- [
- "▁élabor",
- -13.199584007263184
- ],
- [
- "▁Hollow",
- -13.19960880279541
- ],
- [
- "▁getestet",
- -13.199751853942871
- ],
- [
- "▁Promote",
- -13.199797630310059
- ],
- [
- "agriculture",
- -13.199920654296875
- ],
- [
- "▁deosebir",
- -13.199934005737305
- ],
- [
- "▁neam",
- -13.199999809265137
- ],
- [
- "aufbau",
- -13.200042724609375
- ],
- [
- "▁susținut",
- -13.200079917907715
- ],
- [
- "fueled",
- -13.200119018554688
- ],
- [
- "▁impresionant",
- -13.200177192687988
- ],
- [
- "innate",
- -13.20026969909668
- ],
- [
- "grenzt",
- -13.200340270996094
- ],
- [
- "rescued",
- -13.200514793395996
- ],
- [
- "bestand",
- -13.200559616088867
- ],
- [
- "▁adjunct",
- -13.200729370117188
- ],
- [
- "▁Mischung",
- -13.200754165649414
- ],
- [
- "▁Lease",
- -13.201258659362793
- ],
- [
- "espagnol",
- -13.201284408569336
- ],
- [
- "▁Kickstarter",
- -13.201284408569336
- ],
- [
- "▁buzunar",
- -13.201284408569336
- ],
- [
- "▁buddies",
- -13.20129108428955
- ],
- [
- "käufe",
- -13.201485633850098
- ],
- [
- "cevoir",
- -13.201582908630371
- ],
- [
- "▁creşte",
- -13.201675415039062
- ],
- [
- "▁Cluster",
- -13.201825141906738
- ],
- [
- "▁obișnui",
- -13.201838493347168
- ],
- [
- "▁cassette",
- -13.201889038085938
- ],
- [
- "▁optisch",
- -13.201947212219238
- ],
- [
- "manned",
- -13.20200252532959
- ],
- [
- "schneid",
- -13.202362060546875
- ],
- [
- "Württemberg",
- -13.202393531799316
- ],
- [
- "shredded",
- -13.202393531799316
- ],
- [
- "▁botanical",
- -13.20239543914795
- ],
- [
- "characterization",
- -13.202445983886719
- ],
- [
- "▁Durchführung",
- -13.202452659606934
- ],
- [
- "▁tireless",
- -13.20250129699707
- ],
- [
- "lässlich",
- -13.20254135131836
- ],
- [
- "▁Merchant",
- -13.202570915222168
- ],
- [
- "joutez",
- -13.20259952545166
- ],
- [
- "▁amélior",
- -13.202676773071289
- ],
- [
- "fixed",
- -13.202741622924805
- ],
- [
- "kho",
- -13.202760696411133
- ],
- [
- "▁televizor",
- -13.202948570251465
- ],
- [
- "▁Davies",
- -13.202964782714844
- ],
- [
- "enceinte",
- -13.203118324279785
- ],
- [
- "▁Panorama",
- -13.20350456237793
- ],
- [
- "▁maternal",
- -13.203507423400879
- ],
- [
- "diversified",
- -13.203513145446777
- ],
- [
- "▁Jü",
- -13.203570365905762
- ],
- [
- "▁naz",
- -13.203730583190918
- ],
- [
- "▁plonge",
- -13.2039213180542
- ],
- [
- "geschickt",
- -13.203944206237793
- ],
- [
- "MIS",
- -13.204215049743652
- ],
- [
- "ragged",
- -13.204553604125977
- ],
- [
- "▁diarrhea",
- -13.20461654663086
- ],
- [
- "▁tsunami",
- -13.20461654663086
- ],
- [
- "▁Nikola",
- -13.204625129699707
- ],
- [
- "▁festivities",
- -13.20464038848877
- ],
- [
- "potting",
- -13.20479965209961
- ],
- [
- "▁telefonisch",
- -13.204874038696289
- ],
- [
- "TAR",
- -13.204971313476562
- ],
- [
- "▁schimbări",
- -13.205023765563965
- ],
- [
- "▁occidental",
- -13.205172538757324
- ],
- [
- "schloss",
- -13.205179214477539
- ],
- [
- "Print",
- -13.205284118652344
- ],
- [
- "▁autoritățil",
- -13.205361366271973
- ],
- [
- "idos",
- -13.20556640625
- ],
- [
- "mediocr",
- -13.20559310913086
- ],
- [
- "▁Decla",
- -13.205686569213867
- ],
- [
- "▁Elliott",
- -13.205729484558105
- ],
- [
- "▁pinpoint",
- -13.205734252929688
- ],
- [
- "▁disciple",
- -13.20579719543457
- ],
- [
- "▁Cairo",
- -13.2058744430542
- ],
- [
- "▁15-20",
- -13.2059326171875
- ],
- [
- "▁limbaj",
- -13.20611572265625
- ],
- [
- "▁retenu",
- -13.206154823303223
- ],
- [
- "▁Blüte",
- -13.20628833770752
- ],
- [
- "▁MINI",
- -13.206467628479004
- ],
- [
- "▁lumină",
- -13.206567764282227
- ],
- [
- "▁flawed",
- -13.206846237182617
- ],
- [
- "▁Belarus",
- -13.207067489624023
- ],
- [
- "Totul",
- -13.207207679748535
- ],
- [
- "hôte",
- -13.207273483276367
- ],
- [
- "▁verbringen",
- -13.207315444946289
- ],
- [
- "▁simultaneous",
- -13.207344055175781
- ],
- [
- "▁competiți",
- -13.207402229309082
- ],
- [
- "▁lancement",
- -13.207413673400879
- ],
- [
- "▁proprietati",
- -13.207432746887207
- ],
- [
- "▁angajator",
- -13.207465171813965
- ],
- [
- "▁ignorant",
- -13.207674026489258
- ],
- [
- "▁indicative",
- -13.207700729370117
- ],
- [
- "▁Bearbeitung",
- -13.207961082458496
- ],
- [
- "▁Ungaria",
- -13.207961082458496
- ],
- [
- "▁Sfint",
- -13.208015441894531
- ],
- [
- "▁Trojan",
- -13.20804214477539
- ],
- [
- "▁1911",
- -13.208100318908691
- ],
- [
- "▁reliabl",
- -13.2081937789917
- ],
- [
- "6-0",
- -13.20827865600586
- ],
- [
- "obst",
- -13.208523750305176
- ],
- [
- "▁relève",
- -13.208579063415527
- ],
- [
- "▁standpoint",
- -13.208874702453613
- ],
- [
- "ridden",
- -13.208918571472168
- ],
- [
- "▁Pdf",
- -13.209005355834961
- ],
- [
- "tatewide",
- -13.209051132202148
- ],
- [
- "Water",
- -13.209062576293945
- ],
- [
- "▁Pricing",
- -13.209089279174805
- ],
- [
- "▁protecţi",
- -13.209168434143066
- ],
- [
- "November",
- -13.209615707397461
- ],
- [
- "▁televiziune",
- -13.20964241027832
- ],
- [
- "Sodium",
- -13.209881782531738
- ],
- [
- "douceur",
- -13.209942817687988
- ],
- [
- "▁Flasche",
- -13.210183143615723
- ],
- [
- "3.9",
- -13.210193634033203
- ],
- [
- "▁electromagnetic",
- -13.210195541381836
- ],
- [
- "▁mitochondria",
- -13.210195541381836
- ],
- [
- "Suddenly",
- -13.210199356079102
- ],
- [
- "▁Drupal",
- -13.210201263427734
- ],
- [
- "▁supraveghere",
- -13.210211753845215
- ],
- [
- "▁cornea",
- -13.210288047790527
- ],
- [
- "räumt",
- -13.210309982299805
- ],
- [
- "▁healed",
- -13.210410118103027
- ],
- [
- "Roc",
- -13.210649490356445
- ],
- [
- "▁temporar",
- -13.210707664489746
- ],
- [
- "▁amaze",
- -13.210770606994629
- ],
- [
- "▁confrunta",
- -13.210833549499512
- ],
- [
- "Afterward",
- -13.210836410522461
- ],
- [
- "▁festgelegt",
- -13.21084213256836
- ],
- [
- "▁Kuchen",
- -13.210844993591309
- ],
- [
- "▁perpetual",
- -13.210858345031738
- ],
- [
- "systematically",
- -13.211000442504883
- ],
- [
- "▁coloan",
- -13.211006164550781
- ],
- [
- "▁extensi",
- -13.211058616638184
- ],
- [
- "▁Județean",
- -13.211315155029297
- ],
- [
- "▁amelior",
- -13.211315155029297
- ],
- [
- "▁illustrator",
- -13.211315155029297
- ],
- [
- "▁titanium",
- -13.211344718933105
- ],
- [
- "SMEs",
- -13.211384773254395
- ],
- [
- "taxable",
- -13.211578369140625
- ],
- [
- "▁Borough",
- -13.211607933044434
- ],
- [
- "verlust",
- -13.211772918701172
- ],
- [
- "ductive",
- -13.21233081817627
- ],
- [
- "▁Küste",
- -13.212335586547852
- ],
- [
- "▁végétal",
- -13.212410926818848
- ],
- [
- "▁breastfeeding",
- -13.212435722351074
- ],
- [
- "▁captivating",
- -13.212435722351074
- ],
- [
- "▁Chevy",
- -13.212443351745605
- ],
- [
- "▁aerospace",
- -13.212469100952148
- ],
- [
- "pozitia",
- -13.213095664978027
- ],
- [
- "Tutor",
- -13.213199615478516
- ],
- [
- "▁spum",
- -13.213312149047852
- ],
- [
- "curând",
- -13.213419914245605
- ],
- [
- "iscus",
- -13.213458061218262
- ],
- [
- "October",
- -13.213495254516602
- ],
- [
- "▁Reparatur",
- -13.213557243347168
- ],
- [
- "▁Servicii",
- -13.213574409484863
- ],
- [
- "▁Gonz",
- -13.21357536315918
- ],
- [
- "▁cybersecurity",
- -13.21357536315918
- ],
- [
- "▁UCLA",
- -13.213678359985352
- ],
- [
- "rissa",
- -13.213835716247559
- ],
- [
- "▁Kemp",
- -13.213850021362305
- ],
- [
- "▁piston",
- -13.214046478271484
- ],
- [
- "▁révèle",
- -13.214118957519531
- ],
- [
- "▁posséd",
- -13.21412181854248
- ],
- [
- "▁versehen",
- -13.214129447937012
- ],
- [
- "▁scrutin",
- -13.214226722717285
- ],
- [
- "donnant",
- -13.21436882019043
- ],
- [
- "▁Geschwindigkeit",
- -13.214680671691895
- ],
- [
- "▁Panasonic",
- -13.214680671691895
- ],
- [
- "audio",
- -13.214700698852539
- ],
- [
- "▁Packaging",
- -13.214771270751953
- ],
- [
- "phra",
- -13.2147798538208
- ],
- [
- "▁Letzte",
- -13.214954376220703
- ],
- [
- "insicht",
- -13.215141296386719
- ],
- [
- "▁sammeln",
- -13.215243339538574
- ],
- [
- "▁extins",
- -13.215259552001953
- ],
- [
- "▁collège",
- -13.215266227722168
- ],
- [
- "ancies",
- -13.215343475341797
- ],
- [
- "▁întâlnit",
- -13.215350151062012
- ],
- [
- "▁Servi",
- -13.215392112731934
- ],
- [
- "stattet",
- -13.215493202209473
- ],
- [
- "▁abstraction",
- -13.215566635131836
- ],
- [
- "▁candidature",
- -13.215592384338379
- ],
- [
- "ONU",
- -13.215676307678223
- ],
- [
- "▁raffle",
- -13.215826988220215
- ],
- [
- "▁Soldier",
- -13.215834617614746
- ],
- [
- "▁stipulate",
- -13.215883255004883
- ],
- [
- "▁vizual",
- -13.215950012207031
- ],
- [
- "lucht",
- -13.216007232666016
- ],
- [
- "▁circus",
- -13.216068267822266
- ],
- [
- "▁decree",
- -13.216259002685547
- ],
- [
- "immeuble",
- -13.216367721557617
- ],
- [
- "Store",
- -13.216426849365234
- ],
- [
- "randul",
- -13.216622352600098
- ],
- [
- "▁narration",
- -13.216933250427246
- ],
- [
- "implication",
- -13.216958045959473
- ],
- [
- "▁discontinued",
- -13.216971397399902
- ],
- [
- "▁Pilates",
- -13.216989517211914
- ],
- [
- "▁biais",
- -13.21701431274414
- ],
- [
- "panel",
- -13.217325210571289
- ],
- [
- "▁mower",
- -13.217458724975586
- ],
- [
- "▁Castro",
- -13.21753978729248
- ],
- [
- "pregătire",
- -13.217641830444336
- ],
- [
- "▁denomination",
- -13.218062400817871
- ],
- [
- "▁throttle",
- -13.21806526184082
- ],
- [
- "▁finition",
- -13.218086242675781
- ],
- [
- "▁clarification",
- -13.218286514282227
- ],
- [
- "laut",
- -13.218366622924805
- ],
- [
- "▁wastewater",
- -13.2184419631958
- ],
- [
- "▁Sanchez",
- -13.218770980834961
- ],
- [
- "▁Umfeld",
- -13.2189359664917
- ],
- [
- "▁consili",
- -13.218997955322266
- ],
- [
- "extrait",
- -13.219013214111328
- ],
- [
- "ionism",
- -13.2190523147583
- ],
- [
- "▁Cannabis",
- -13.219186782836914
- ],
- [
- "▁misconduct",
- -13.219186782836914
- ],
- [
- "▁shepherd",
- -13.219186782836914
- ],
- [
- "▁feminist",
- -13.21919059753418
- ],
- [
- "▁criterii",
- -13.219212532043457
- ],
- [
- "America",
- -13.219219207763672
- ],
- [
- "▁Telephone",
- -13.219270706176758
- ],
- [
- "▁Fritz",
- -13.219438552856445
- ],
- [
- "▁cheltui",
- -13.219794273376465
- ],
- [
- "▁Übung",
- -13.219857215881348
- ],
- [
- "făcută",
- -13.22006893157959
- ],
- [
- "▁străzi",
- -13.220170021057129
- ],
- [
- "influencing",
- -13.220315933227539
- ],
- [
- "▁Democracy",
- -13.220321655273438
- ],
- [
- "atorium",
- -13.220376014709473
- ],
- [
- "▁Stufe",
- -13.220465660095215
- ],
- [
- "▁Cornell",
- -13.220660209655762
- ],
- [
- "zugehen",
- -13.22074031829834
- ],
- [
- "▁coton",
- -13.220804214477539
- ],
- [
- "▁beinhaltet",
- -13.220881462097168
- ],
- [
- "▁kritisch",
- -13.220884323120117
- ],
- [
- "▁Kalender",
- -13.22105884552002
- ],
- [
- "▁Teig",
- -13.221253395080566
- ],
- [
- "cooked",
- -13.221264839172363
- ],
- [
- "▁diversité",
- -13.221390724182129
- ],
- [
- "recognizable",
- -13.221446990966797
- ],
- [
- "▁Dictionary",
- -13.221446990966797
- ],
- [
- "attribution",
- -13.22145938873291
- ],
- [
- "▁Teresa",
- -13.221471786499023
- ],
- [
- "▁Ahmad",
- -13.221487998962402
- ],
- [
- "HAM",
- -13.221627235412598
- ],
- [
- "▁floss",
- -13.221668243408203
- ],
- [
- "génie",
- -13.2218599319458
- ],
- [
- "▁Espa",
- -13.221989631652832
- ],
- [
- "hersteller",
- -13.221993446350098
- ],
- [
- "Musée",
- -13.222001075744629
- ],
- [
- "▁Crawford",
- -13.222579002380371
- ],
- [
- "▁Phantom",
- -13.222579002380371
- ],
- [
- "▁Jenkins",
- -13.222640037536621
- ],
- [
- "genauer",
- -13.222774505615234
- ],
- [
- "▁acţiuni",
- -13.222885131835938
- ],
- [
- "▁meciuri",
- -13.22322940826416
- ],
- [
- "▁verstärkt",
- -13.22326374053955
- ],
- [
- "▁troop",
- -13.22341251373291
- ],
- [
- "räder",
- -13.223483085632324
- ],
- [
- "Putting",
- -13.223536491394043
- ],
- [
- "NASDAQ",
- -13.223712921142578
- ],
- [
- "▁Buddhism",
- -13.223712921142578
- ],
- [
- "▁Religious",
- -13.223712921142578
- ],
- [
- "▁accommodating",
- -13.223712921142578
- ],
- [
- "▁lendemain",
- -13.223712921142578
- ],
- [
- "▁plywood",
- -13.223714828491211
- ],
- [
- "▁inflatable",
- -13.223724365234375
- ],
- [
- "▁sèche",
- -13.223731994628906
- ],
- [
- "▁fragil",
- -13.223845481872559
- ],
- [
- "▁Filip",
- -13.224115371704102
- ],
- [
- "▁Terrace",
- -13.224274635314941
- ],
- [
- "Biblio",
- -13.22432804107666
- ],
- [
- "resides",
- -13.22448444366455
- ],
- [
- "▁varf",
- -13.22451114654541
- ],
- [
- "Bildern",
- -13.224528312683105
- ],
- [
- "loß",
- -13.224685668945312
- ],
- [
- "555",
- -13.224702835083008
- ],
- [
- "▁astounding",
- -13.224847793579102
- ],
- [
- "▁brillant",
- -13.224857330322266
- ],
- [
- "▁Railroad",
- -13.224871635437012
- ],
- [
- "minimizing",
- -13.224907875061035
- ],
- [
- "▁Benedict",
- -13.225019454956055
- ],
- [
- "▁$400",
- -13.225068092346191
- ],
- [
- "▁schematic",
- -13.225217819213867
- ],
- [
- "Canada",
- -13.225371360778809
- ],
- [
- "▁psihic",
- -13.225415229797363
- ],
- [
- "▁avertiz",
- -13.225497245788574
- ],
- [
- "▁Breed",
- -13.225550651550293
- ],
- [
- "▁gradina",
- -13.225606918334961
- ],
- [
- "▁Liege",
- -13.225822448730469
- ],
- [
- "▁Retirement",
- -13.225983619689941
- ],
- [
- "▁pergola",
- -13.226005554199219
- ],
- [
- "▁Kuwait",
- -13.2260103225708
- ],
- [
- "▁logistic",
- -13.22629451751709
- ],
- [
- "▁captive",
- -13.22651481628418
- ],
- [
- "prepared",
- -13.226568222045898
- ],
- [
- "▁prononc",
- -13.226568222045898
- ],
- [
- "Celui",
- -13.226676940917969
- ],
- [
- "deutschland",
- -13.227120399475098
- ],
- [
- "▁devreme",
- -13.227124214172363
- ],
- [
- "▁părți",
- -13.227270126342773
- ],
- [
- "▁1934",
- -13.227517127990723
- ],
- [
- "▁ersetzt",
- -13.227560997009277
- ],
- [
- "▁frightening",
- -13.227689743041992
- ],
- [
- "▁fiecărui",
- -13.227819442749023
- ],
- [
- "correct",
- -13.22799015045166
- ],
- [
- "6.6",
- -13.228057861328125
- ],
- [
- "▁Manitoba",
- -13.228259086608887
- ],
- [
- "Chartered",
- -13.228416442871094
- ],
- [
- "▁părăs",
- -13.228543281555176
- ],
- [
- "Powered",
- -13.228697776794434
- ],
- [
- "impede",
- -13.22876262664795
- ],
- [
- "agonist",
- -13.22878646850586
- ],
- [
- "▁stratégique",
- -13.228829383850098
- ],
- [
- "▁vigilant",
- -13.228830337524414
- ],
- [
- "faceted",
- -13.228930473327637
- ],
- [
- "available",
- -13.229308128356934
- ],
- [
- "▁Promise",
- -13.229388236999512
- ],
- [
- "▁humorous",
- -13.229446411132812
- ],
- [
- "treibt",
- -13.229449272155762
- ],
- [
- "▁Patrol",
- -13.229514122009277
- ],
- [
- "huh",
- -13.229523658752441
- ],
- [
- "ztlich",
- -13.229804039001465
- ],
- [
- "▁rejet",
- -13.2299165725708
- ],
- [
- "odeur",
- -13.229935646057129
- ],
- [
- "usziehbar",
- -13.22996997833252
- ],
- [
- "▁gespannt",
- -13.229972839355469
- ],
- [
- "church",
- -13.230018615722656
- ],
- [
- "▁Popescu",
- -13.230109214782715
- ],
- [
- "▁einmalig",
- -13.230518341064453
- ],
- [
- "diluted",
- -13.230551719665527
- ],
- [
- "lighted",
- -13.231070518493652
- ],
- [
- "▁stattfinden",
- -13.23111343383789
- ],
- [
- "▁Reaktion",
- -13.231183052062988
- ],
- [
- "▁délivr",
- -13.23134994506836
- ],
- [
- "▁Helfer",
- -13.231407165527344
- ],
- [
- "Fiind",
- -13.23142147064209
- ],
- [
- "rmând",
- -13.231507301330566
- ],
- [
- "▁Beweis",
- -13.231671333312988
- ],
- [
- "▁Violet",
- -13.231733322143555
- ],
- [
- "kamera",
- -13.231764793395996
- ],
- [
- "▁Romney",
- -13.231779098510742
- ],
- [
- "▁Bradford",
- -13.231800079345703
- ],
- [
- "stellbar",
- -13.231852531433105
- ],
- [
- "▁roadmap",
- -13.231921195983887
- ],
- [
- "▁subconscious",
- -13.23204231262207
- ],
- [
- "contrasting",
- -13.232138633728027
- ],
- [
- "mécanisme",
- -13.232254981994629
- ],
- [
- "kämpft",
- -13.232255935668945
- ],
- [
- "▁Preston",
- -13.232719421386719
- ],
- [
- "▁Anliegen",
- -13.232802391052246
- ],
- [
- "▁necessities",
- -13.232827186584473
- ],
- [
- "▁detrimental",
- -13.232828140258789
- ],
- [
- "▁sprawl",
- -13.232830047607422
- ],
- [
- "▁Erfüllung",
- -13.23287582397461
- ],
- [
- "▁massacre",
- -13.2329683303833
- ],
- [
- "▁pietre",
- -13.232987403869629
- ],
- [
- "▁situații",
- -13.233027458190918
- ],
- [
- "vêtement",
- -13.233080863952637
- ],
- [
- "Listed",
- -13.233144760131836
- ],
- [
- "▁extravagant",
- -13.233399391174316
- ],
- [
- "▁axle",
- -13.233525276184082
- ],
- [
- "OTT",
- -13.233663558959961
- ],
- [
- "wildly",
- -13.233744621276855
- ],
- [
- "70,000",
- -13.233797073364258
- ],
- [
- "▁chauffeur",
- -13.23384952545166
- ],
- [
- "▁Brasov",
- -13.233972549438477
- ],
- [
- "▁Fähigkeiten",
- -13.233972549438477
- ],
- [
- "▁staatlich",
- -13.234025001525879
- ],
- [
- "outlines",
- -13.234034538269043
- ],
- [
- "▁aufmerksam",
- -13.234545707702637
- ],
- [
- "▁Relation",
- -13.234749794006348
- ],
- [
- "▁Stephan",
- -13.234947204589844
- ],
- [
- "yland",
- -13.23494815826416
- ],
- [
- "proclaimed",
- -13.235086441040039
- ],
- [
- "Wallet",
- -13.235100746154785
- ],
- [
- "verarbeitung",
- -13.235118865966797
- ],
- [
- "▁überraschen",
- -13.235118865966797
- ],
- [
- "▁Injury",
- -13.235125541687012
- ],
- [
- "▁horsepower",
- -13.235237121582031
- ],
- [
- "▁Tropical",
- -13.23523998260498
- ],
- [
- "▁wives",
- -13.235459327697754
- ],
- [
- "adherence",
- -13.235677719116211
- ],
- [
- "schätzung",
- -13.235692977905273
- ],
- [
- "▁coherent",
- -13.235708236694336
- ],
- [
- "parlament",
- -13.23574161529541
- ],
- [
- "▁stup",
- -13.235852241516113
- ],
- [
- "▁resonance",
- -13.23626708984375
- ],
- [
- "▁inheritance",
- -13.236355781555176
- ],
- [
- "commenced",
- -13.23645305633545
- ],
- [
- "▁supervise",
- -13.236475944519043
- ],
- [
- "▁facilitator",
- -13.236488342285156
- ],
- [
- "fares",
- -13.236678123474121
- ],
- [
- "▁Tibet",
- -13.23672866821289
- ],
- [
- "communication",
- -13.236787796020508
- ],
- [
- "yog",
- -13.236806869506836
- ],
- [
- "▁WLAN",
- -13.236842155456543
- ],
- [
- "▁Chili",
- -13.23685073852539
- ],
- [
- "▁Harold",
- -13.2369966506958
- ],
- [
- "▁Guerre",
- -13.237005233764648
- ],
- [
- "▁Femme",
- -13.237146377563477
- ],
- [
- "▁Lisbon",
- -13.237231254577637
- ],
- [
- "▁mulțumi",
- -13.237415313720703
- ],
- [
- "▁vorbereitet",
- -13.237415313720703
- ],
- [
- "▁aperture",
- -13.237422943115234
- ],
- [
- "▁Universities",
- -13.237442016601562
- ],
- [
- "▁reckless",
- -13.237471580505371
- ],
- [
- "▁Botschaft",
- -13.237533569335938
- ],
- [
- "▁Squad",
- -13.238022804260254
- ],
- [
- "▁buoy",
- -13.238061904907227
- ],
- [
- "participarea",
- -13.238236427307129
- ],
- [
- "stiinta",
- -13.238389015197754
- ],
- [
- "▁repeal",
- -13.238415718078613
- ],
- [
- "drilled",
- -13.238489151000977
- ],
- [
- "▁Conversation",
- -13.238567352294922
- ],
- [
- "▁subsid",
- -13.238615036010742
- ],
- [
- "anstalt",
- -13.238741874694824
- ],
- [
- "faktor",
- -13.23874282836914
- ],
- [
- "▁swamp",
- -13.238790512084961
- ],
- [
- "pflichtig",
- -13.238921165466309
- ],
- [
- "▁camion",
- -13.238970756530762
- ],
- [
- "▁gouvern",
- -13.239032745361328
- ],
- [
- "▁archaeological",
- -13.239141464233398
- ],
- [
- "▁glitch",
- -13.239198684692383
- ],
- [
- "average",
- -13.239294052124023
- ],
- [
- "▁coffre",
- -13.239481925964355
- ],
- [
- "▁Insert",
- -13.239513397216797
- ],
- [
- "▁colonne",
- -13.2395601272583
- ],
- [
- "▁Assess",
- -13.23962116241455
- ],
- [
- "▁batches",
- -13.239716529846191
- ],
- [
- "▁ammunition",
- -13.239717483520508
- ],
- [
- "▁scissors",
- -13.239717483520508
- ],
- [
- "▁Locksmith",
- -13.239740371704102
- ],
- [
- "▁Bollywood",
- -13.239991188049316
- ],
- [
- "expédi",
- -13.240288734436035
- ],
- [
- "▁descendants",
- -13.24039363861084
- ],
- [
- "▁unwilling",
- -13.240506172180176
- ],
- [
- "▁Noise",
- -13.240649223327637
- ],
- [
- "▁Directive",
- -13.240660667419434
- ],
- [
- "ATOR",
- -13.240765571594238
- ],
- [
- "▁Rajasthan",
- -13.240870475769043
- ],
- [
- "▁chaotic",
- -13.240888595581055
- ],
- [
- "▁NEED",
- -13.24093246459961
- ],
- [
- "▁părere",
- -13.24095344543457
- ],
- [
- "▁begonnen",
- -13.241448402404785
- ],
- [
- "▁Reef",
- -13.241504669189453
- ],
- [
- "▁vorgesehen",
- -13.24161434173584
- ],
- [
- "▁allocate",
- -13.241826057434082
- ],
- [
- "▁exceptionnel",
- -13.241936683654785
- ],
- [
- "▁gefertigt",
- -13.24203872680664
- ],
- [
- "fading",
- -13.242072105407715
- ],
- [
- "▁interpersonal",
- -13.242178916931152
- ],
- [
- "▁occupie",
- -13.242204666137695
- ],
- [
- "▁Teatr",
- -13.242579460144043
- ],
- [
- "▁kilomètres",
- -13.242603302001953
- ],
- [
- "▁verbinden",
- -13.242608070373535
- ],
- [
- "▁Frucht",
- -13.242643356323242
- ],
- [
- "augmented",
- -13.242720603942871
- ],
- [
- "▁twentieth",
- -13.243181228637695
- ],
- [
- "▁aggression",
- -13.243183135986328
- ],
- [
- "▁Miracle",
- -13.243184089660645
- ],
- [
- "▁peninsula",
- -13.243184089660645
- ],
- [
- "▁Fernando",
- -13.243185043334961
- ],
- [
- "▁autorităţil",
- -13.243203163146973
- ],
- [
- "▁Iisus",
- -13.243217468261719
- ],
- [
- "▁puck",
- -13.243423461914062
- ],
- [
- "titel",
- -13.243454933166504
- ],
- [
- "▁remake",
- -13.243562698364258
- ],
- [
- "freiheit",
- -13.243563652038574
- ],
- [
- "▁Belize",
- -13.243590354919434
- ],
- [
- "▁secundar",
- -13.243779182434082
- ],
- [
- "▁perpetrat",
- -13.243786811828613
- ],
- [
- "jedenfalls",
- -13.243797302246094
- ],
- [
- "linked",
- -13.243820190429688
- ],
- [
- "▁dégag",
- -13.243918418884277
- ],
- [
- "LAY",
- -13.243926048278809
- ],
- [
- "behandlung",
- -13.244172096252441
- ],
- [
- "▁1928",
- -13.244193077087402
- ],
- [
- "▁Nickel",
- -13.244205474853516
- ],
- [
- "rophy",
- -13.244256973266602
- ],
- [
- "▁autonomy",
- -13.244338989257812
- ],
- [
- "▁Treffen",
- -13.244402885437012
- ],
- [
- "▁groundbreaking",
- -13.24445915222168
- ],
- [
- "politisch",
- -13.244484901428223
- ],
- [
- "▁Vector",
- -13.244553565979004
- ],
- [
- "oricine",
- -13.244684219360352
- ],
- [
- "utilisées",
- -13.244684219360352
- ],
- [
- "plete",
- -13.244771003723145
- ],
- [
- "droht",
- -13.244918823242188
- ],
- [
- "▁alternativ",
- -13.245104789733887
- ],
- [
- "▁Bernie",
- -13.245213508605957
- ],
- [
- "▁embellish",
- -13.245260238647461
- ],
- [
- "▁Curriculum",
- -13.24549674987793
- ],
- [
- "herrscht",
- -13.245525360107422
- ],
- [
- "escalier",
- -13.246126174926758
- ],
- [
- "hian",
- -13.246333122253418
- ],
- [
- "ertaining",
- -13.246387481689453
- ],
- [
- "hitter",
- -13.246430397033691
- ],
- [
- "▁kompetente",
- -13.24665641784668
- ],
- [
- "▁trekking",
- -13.246760368347168
- ],
- [
- "EACH",
- -13.246841430664062
- ],
- [
- "▁Bedien",
- -13.2470703125
- ],
- [
- "starred",
- -13.247169494628906
- ],
- [
- "▁săptămâna",
- -13.247236251831055
- ],
- [
- "▁Gratuit",
- -13.247239112854004
- ],
- [
- "▁Jahrzehnte",
- -13.247241020202637
- ],
- [
- "ingénieur",
- -13.24731731414795
- ],
- [
- "▁Huang",
- -13.24736213684082
- ],
- [
- "Music",
- -13.247401237487793
- ],
- [
- "misiei",
- -13.247544288635254
- ],
- [
- "▁masuri",
- -13.247733116149902
- ],
- [
- "▁Achievement",
- -13.247817039489746
- ],
- [
- "▁Dorothy",
- -13.247817039489746
- ],
- [
- "blätter",
- -13.247817993164062
- ],
- [
- "éloign",
- -13.247817993164062
- ],
- [
- "▁Anglia",
- -13.247990608215332
- ],
- [
- "brach",
- -13.248013496398926
- ],
- [
- "▁Optimization",
- -13.248085021972656
- ],
- [
- "6.7",
- -13.248170852661133
- ],
- [
- "winkel",
- -13.248210906982422
- ],
- [
- "contenan",
- -13.248347282409668
- ],
- [
- "Astăzi",
- -13.248398780822754
- ],
- [
- "wiped",
- -13.248441696166992
- ],
- [
- "granting",
- -13.248665809631348
- ],
- [
- "▁plăti",
- -13.248859405517578
- ],
- [
- "▁Compensation",
- -13.248979568481445
- ],
- [
- "▁Verkäufer",
- -13.248979568481445
- ],
- [
- "▁angajați",
- -13.248980522155762
- ],
- [
- "▁diminished",
- -13.24902057647705
- ],
- [
- "employment",
- -13.249250411987305
- ],
- [
- "yahoo",
- -13.249435424804688
- ],
- [
- "▁détrui",
- -13.249698638916016
- ],
- [
- "▁suffisant",
- -13.24982738494873
- ],
- [
- "▁Moldovei",
- -13.250144004821777
- ],
- [
- "▁Pokemon",
- -13.250144004821777
- ],
- [
- "▁Malcolm",
- -13.250144958496094
- ],
- [
- "▁mysteries",
- -13.250147819519043
- ],
- [
- "▁Diversity",
- -13.250149726867676
- ],
- [
- "▁clinique",
- -13.250327110290527
- ],
- [
- "landais",
- -13.250344276428223
- ],
- [
- "▁campanii",
- -13.250399589538574
- ],
- [
- "▁témoignage",
- -13.250439643859863
- ],
- [
- "▁paralel",
- -13.250467300415039
- ],
- [
- "▁travailleurs",
- -13.250576972961426
- ],
- [
- "▁salvage",
- -13.250580787658691
- ],
- [
- "▁crayon",
- -13.250732421875
- ],
- [
- "immédiat",
- -13.25085163116455
- ],
- [
- "hopped",
- -13.250958442687988
- ],
- [
- "▁senzor",
- -13.25102710723877
- ],
- [
- "▁imbunatati",
- -13.251073837280273
- ],
- [
- "▁capitalize",
- -13.2511568069458
- ],
- [
- "▁Elephant",
- -13.25130844116211
- ],
- [
- "▁insomnia",
- -13.25131607055664
- ],
- [
- "▁Ansicht",
- -13.251325607299805
- ],
- [
- "▁lupte",
- -13.251556396484375
- ],
- [
- "▁genomic",
- -13.251557350158691
- ],
- [
- "▁Grape",
- -13.251769065856934
- ],
- [
- "MONT",
- -13.25197982788086
- ],
- [
- "métiers",
- -13.252004623413086
- ],
- [
- "▁Pierce",
- -13.252123832702637
- ],
- [
- "consulted",
- -13.252388954162598
- ],
- [
- "▁Responsible",
- -13.252474784851074
- ],
- [
- "symmetry",
- -13.252476692199707
- ],
- [
- "▁sulfur",
- -13.252487182617188
- ],
- [
- "▁înapoi",
- -13.252510070800781
- ],
- [
- "▁Junction",
- -13.252549171447754
- ],
- [
- "▁trilogy",
- -13.252622604370117
- ],
- [
- "▁unkompliziert",
- -13.253059387207031
- ],
- [
- "▁zugänglich",
- -13.253059387207031
- ],
- [
- "▁préfèr",
- -13.253153800964355
- ],
- [
- "oarelor",
- -13.253361701965332
- ],
- [
- "langage",
- -13.253460884094238
- ],
- [
- "admired",
- -13.253589630126953
- ],
- [
- "platform",
- -13.253595352172852
- ],
- [
- "▁pluralit",
- -13.253616333007812
- ],
- [
- "▁betrachtet",
- -13.253643035888672
- ],
- [
- "▁reproduc",
- -13.253790855407715
- ],
- [
- "exemple",
- -13.25385570526123
- ],
- [
- "▁conspir",
- -13.254347801208496
- ],
- [
- "▁pelvi",
- -13.25437068939209
- ],
- [
- "leased",
- -13.254551887512207
- ],
- [
- "▁souffle",
- -13.254570960998535
- ],
- [
- "▁approprié",
- -13.254705429077148
- ],
- [
- "absorbing",
- -13.254817962646484
- ],
- [
- "dividing",
- -13.254855155944824
- ],
- [
- "herently",
- -13.255147933959961
- ],
- [
- "▁blister",
- -13.255179405212402
- ],
- [
- "löst",
- -13.255182266235352
- ],
- [
- "Apotheke",
- -13.255398750305176
- ],
- [
- "▁Asociaţi",
- -13.255424499511719
- ],
- [
- "education",
- -13.255904197692871
- ],
- [
- "▁retract",
- -13.255982398986816
- ],
- [
- "▁appraise",
- -13.255990982055664
- ],
- [
- "▁Debbie",
- -13.256075859069824
- ],
- [
- "▁arhitect",
- -13.256193161010742
- ],
- [
- "▁Mohamed",
- -13.256568908691406
- ],
- [
- "▁îndrept",
- -13.256568908691406
- ],
- [
- "▁exhaustive",
- -13.256753921508789
- ],
- [
- "▁Notebook",
- -13.257004737854004
- ],
- [
- "crashing",
- -13.257068634033203
- ],
- [
- "▁Betreiber",
- -13.257155418395996
- ],
- [
- "▁présidentielle",
- -13.257159233093262
- ],
- [
- "▁Träger",
- -13.257172584533691
- ],
- [
- "▁noteworthy",
- -13.257259368896484
- ],
- [
- "▁séparé",
- -13.257729530334473
- ],
- [
- "▁doppelt",
- -13.257795333862305
- ],
- [
- "tină",
- -13.258066177368164
- ],
- [
- "Quelques",
- -13.258085250854492
- ],
- [
- "culoarea",
- -13.258100509643555
- ],
- [
- "▁ethic",
- -13.258166313171387
- ],
- [
- "▁cohesive",
- -13.258329391479492
- ],
- [
- "▁congratulations",
- -13.258334159851074
- ],
- [
- "▁sovereignty",
- -13.25833797454834
- ],
- [
- "▁Aplica",
- -13.258413314819336
- ],
- [
- "▁Covenant",
- -13.25851058959961
- ],
- [
- "▁multicultural",
- -13.258591651916504
- ],
- [
- "assemblée",
- -13.258955001831055
- ],
- [
- "▁petals",
- -13.258974075317383
- ],
- [
- "erode",
- -13.259026527404785
- ],
- [
- "▁porumb",
- -13.259035110473633
- ],
- [
- "▁Barrier",
- -13.259050369262695
- ],
- [
- "▁WWE",
- -13.259085655212402
- ],
- [
- "Etwa",
- -13.259175300598145
- ],
- [
- "▁recunosc",
- -13.259271621704102
- ],
- [
- "▁turtle",
- -13.259415626525879
- ],
- [
- "▁vârf",
- -13.259444236755371
- ],
- [
- "▁Ranking",
- -13.259448051452637
- ],
- [
- "▁sympathetic",
- -13.259514808654785
- ],
- [
- "exploded",
- -13.2595796585083
- ],
- [
- "▁influenț",
- -13.259591102600098
- ],
- [
- "▁Fireplace",
- -13.25972843170166
- ],
- [
- "▁Nachwuchs",
- -13.260090827941895
- ],
- [
- "▁empfohlen",
- -13.260090827941895
- ],
- [
- "Voir",
- -13.260661125183105
- ],
- [
- "▁Vimeo",
- -13.26069164276123
- ],
- [
- "▁weaving",
- -13.260967254638672
- ],
- [
- "beneficiar",
- -13.261198043823242
- ],
- [
- "▁balade",
- -13.261216163635254
- ],
- [
- "▁Mercy",
- -13.261566162109375
- ],
- [
- "3.000",
- -13.26181697845459
- ],
- [
- "Immediately",
- -13.261857032775879
- ],
- [
- "▁frosting",
- -13.261868476867676
- ],
- [
- "▁Fiscal",
- -13.261882781982422
- ],
- [
- "downloadable",
- -13.26188850402832
- ],
- [
- "▁Hwy",
- -13.261902809143066
- ],
- [
- "évoluer",
- -13.261951446533203
- ],
- [
- "▁vieille",
- -13.2620210647583
- ],
- [
- "heißen",
- -13.262436866760254
- ],
- [
- "▁étrangère",
- -13.262446403503418
- ],
- [
- "▁incapable",
- -13.262490272521973
- ],
- [
- "volunteered",
- -13.262520790100098
- ],
- [
- "fortunately",
- -13.262564659118652
- ],
- [
- "company",
- -13.262738227844238
- ],
- [
- "denkt",
- -13.2627592086792
- ],
- [
- "▁citesc",
- -13.262818336486816
- ],
- [
- "▁intrebare",
- -13.262896537780762
- ],
- [
- "pleasantly",
- -13.262990951538086
- ],
- [
- "▁Minecraft",
- -13.263079643249512
- ],
- [
- "▁Schmuck",
- -13.26308536529541
- ],
- [
- "▁maghiar",
- -13.263099670410156
- ],
- [
- "conductive",
- -13.263339042663574
- ],
- [
- "décrit",
- -13.263534545898438
- ],
- [
- "provide",
- -13.26353931427002
- ],
- [
- "▁depăş",
- -13.263628959655762
- ],
- [
- "ituated",
- -13.263657569885254
- ],
- [
- "▁trumpet",
- -13.264216423034668
- ],
- [
- "▁nastere",
- -13.2642240524292
- ],
- [
- "▁Région",
- -13.264245986938477
- ],
- [
- "Occupational",
- -13.264411926269531
- ],
- [
- "▁Grecia",
- -13.264415740966797
- ],
- [
- "▁Conclusion",
- -13.26449203491211
- ],
- [
- "▁collaborateurs",
- -13.264927864074707
- ],
- [
- "▁Alibaba",
- -13.265398025512695
- ],
- [
- "▁amplasat",
- -13.265398979187012
- ],
- [
- "▁Plastik",
- -13.265992164611816
- ],
- [
- "▁stash",
- -13.266023635864258
- ],
- [
- "▁Bonnie",
- -13.266045570373535
- ],
- [
- "▁ehrlich",
- -13.266156196594238
- ],
- [
- "▁contention",
- -13.266193389892578
- ],
- [
- "▁Oslo",
- -13.266263008117676
- ],
- [
- "englische",
- -13.266319274902344
- ],
- [
- "measurable",
- -13.266439437866211
- ],
- [
- "loppy",
- -13.266470909118652
- ],
- [
- "▁Refrigerat",
- -13.266579627990723
- ],
- [
- "▁remboursement",
- -13.266580581665039
- ],
- [
- "▁societăţi",
- -13.266580581665039
- ],
- [
- "translates",
- -13.266607284545898
- ],
- [
- "ichtigkeit",
- -13.266685485839844
- ],
- [
- "agentur",
- -13.266741752624512
- ],
- [
- "▁compute",
- -13.266800880432129
- ],
- [
- "berater",
- -13.266921043395996
- ],
- [
- "▁Georgetown",
- -13.266945838928223
- ],
- [
- "wolves",
- -13.266951560974121
- ],
- [
- "ceased",
- -13.266959190368652
- ],
- [
- "▁Binary",
- -13.267030715942383
- ],
- [
- "▁kontrolliert",
- -13.267172813415527
- ],
- [
- "informer",
- -13.267416000366211
- ],
- [
- "lehrer",
- -13.267578125
- ],
- [
- "lieferung",
- -13.267709732055664
- ],
- [
- "▁definit",
- -13.267742156982422
- ],
- [
- "chèque",
- -13.267765045166016
- ],
- [
- "▁clergy",
- -13.267765045166016
- ],
- [
- "▁ministries",
- -13.267767906188965
- ],
- [
- "▁plague",
- -13.267779350280762
- ],
- [
- "▁Jedi",
- -13.267805099487305
- ],
- [
- "▁Blackjack",
- -13.268025398254395
- ],
- [
- "▁subsection",
- -13.26807689666748
- ],
- [
- "▁Sachsen",
- -13.268121719360352
- ],
- [
- "valorile",
- -13.268146514892578
- ],
- [
- "molded",
- -13.26816463470459
- ],
- [
- "▁betroffen",
- -13.268183708190918
- ],
- [
- "▁adecvat",
- -13.268229484558105
- ],
- [
- "▁collègue",
- -13.26835823059082
- ],
- [
- "▁chinez",
- -13.268392562866211
- ],
- [
- "emelle",
- -13.268695831298828
- ],
- [
- "▁körperliche",
- -13.268902778625488
- ],
- [
- "▁titan",
- -13.26891040802002
- ],
- [
- "▁sophistication",
- -13.268951416015625
- ],
- [
- "▁provoke",
- -13.268957138061523
- ],
- [
- "▁pensii",
- -13.269042015075684
- ],
- [
- "▁Tucker",
- -13.269377708435059
- ],
- [
- "▁motoare",
- -13.26943302154541
- ],
- [
- "supported",
- -13.269536972045898
- ],
- [
- "▁Sicil",
- -13.269697189331055
- ],
- [
- "▁Ausgangs",
- -13.26987361907959
- ],
- [
- "▁verletzt",
- -13.269908905029297
- ],
- [
- "Ligue",
- -13.269996643066406
- ],
- [
- "▁organizatori",
- -13.270026206970215
- ],
- [
- "▁apprentice",
- -13.270099639892578
- ],
- [
- "▁Potato",
- -13.270183563232422
- ],
- [
- "▁Duft",
- -13.27039623260498
- ],
- [
- "▁medicament",
- -13.270566940307617
- ],
- [
- "Hôtel",
- -13.270740509033203
- ],
- [
- "▁Triangle",
- -13.270842552185059
- ],
- [
- "buted",
- -13.271100044250488
- ],
- [
- "▁Bentley",
- -13.271336555480957
- ],
- [
- "următoarele",
- -13.271389961242676
- ],
- [
- "animate",
- -13.271404266357422
- ],
- [
- "megapixel",
- -13.271404266357422
- ],
- [
- "einfachen",
- -13.271514892578125
- ],
- [
- "▁performanț",
- -13.271544456481934
- ],
- [
- "lurry",
- -13.27184009552002
- ],
- [
- "suffisamment",
- -13.27192211151123
- ],
- [
- "▁Weihnachten",
- -13.27192211151123
- ],
- [
- "▁Detective",
- -13.27194595336914
- ],
- [
- "▁lovit",
- -13.272049903869629
- ],
- [
- "▁blouse",
- -13.27213191986084
- ],
- [
- "▁hartie",
- -13.272163391113281
- ],
- [
- "vro",
- -13.27225112915039
- ],
- [
- "▁disastrous",
- -13.272517204284668
- ],
- [
- "vermutlich",
- -13.2725191116333
- ],
- [
- "▁Stafford",
- -13.272527694702148
- ],
- [
- "ehlt",
- -13.272628784179688
- ],
- [
- "▁vielseitig",
- -13.272643089294434
- ],
- [
- "Manifest",
- -13.273274421691895
- ],
- [
- "homage",
- -13.27354907989502
- ],
- [
- "menée",
- -13.273566246032715
- ],
- [
- "▁erläuter",
- -13.27370834350586
- ],
- [
- "▁volontaire",
- -13.273709297180176
- ],
- [
- "wrought",
- -13.27371597290039
- ],
- [
- "▁Naples",
- -13.273719787597656
- ],
- [
- "recommending",
- -13.273759841918945
- ],
- [
- "▁thermique",
- -13.273774147033691
- ],
- [
- "▁subtitle",
- -13.273787498474121
- ],
- [
- "▁Slam",
- -13.273809432983398
- ],
- [
- "▁necesitate",
- -13.273809432983398
- ],
- [
- "trimmed",
- -13.274099349975586
- ],
- [
- "urmatoarele",
- -13.274178504943848
- ],
- [
- "▁Sorin",
- -13.274245262145996
- ],
- [
- "▁compromis",
- -13.274300575256348
- ],
- [
- "overcoming",
- -13.274477005004883
- ],
- [
- "▁Samantha",
- -13.274901390075684
- ],
- [
- "dazzling",
- -13.27490234375
- ],
- [
- "▁Pearson",
- -13.274903297424316
- ],
- [
- "▁glazing",
- -13.274911880493164
- ],
- [
- "Revelation",
- -13.274921417236328
- ],
- [
- "destinée",
- -13.275156021118164
- ],
- [
- "öffnet",
- -13.27515983581543
- ],
- [
- "CERT",
- -13.275327682495117
- ],
- [
- "▁Sneak",
- -13.275503158569336
- ],
- [
- "proiectele",
- -13.275605201721191
- ],
- [
- "▁longitudinal",
- -13.27609634399414
- ],
- [
- "▁cocaine",
- -13.276098251342773
- ],
- [
- "▁universitar",
- -13.276108741760254
- ],
- [
- "▁refreshments",
- -13.276166915893555
- ],
- [
- "▁instanţ",
- -13.276243209838867
- ],
- [
- "▁kostenfrei",
- -13.276397705078125
- ],
- [
- "▁comédie",
- -13.276451110839844
- ],
- [
- "▁Locat",
- -13.276725769042969
- ],
- [
- "▁Albania",
- -13.276732444763184
- ],
- [
- "▁mécanique",
- -13.276776313781738
- ],
- [
- "messung",
- -13.27683162689209
- ],
- [
- "issus",
- -13.277260780334473
- ],
- [
- "pinned",
- -13.277328491210938
- ],
- [
- "▁sanft",
- -13.277335166931152
- ],
- [
- "▁geprüft",
- -13.277435302734375
- ],
- [
- "▁procè",
- -13.277442932128906
- ],
- [
- "▁Üb",
- -13.277765274047852
- ],
- [
- "5-0",
- -13.277802467346191
- ],
- [
- "▁Catering",
- -13.277957916259766
- ],
- [
- "▁prosperous",
- -13.27801513671875
- ],
- [
- "▁replication",
- -13.278098106384277
- ],
- [
- "▁obese",
- -13.278441429138184
- ],
- [
- "clerosis",
- -13.278489112854004
- ],
- [
- "▁Carnegie",
- -13.278489112854004
- ],
- [
- "▁Incredible",
- -13.278489112854004
- ],
- [
- "▁Teppich",
- -13.278489112854004
- ],
- [
- "▁crunchy",
- -13.278489112854004
- ],
- [
- "▁vomiting",
- -13.278529167175293
- ],
- [
- "▁sourire",
- -13.278619766235352
- ],
- [
- "publish",
- -13.278948783874512
- ],
- [
- "▁exterioar",
- -13.279094696044922
- ],
- [
- "▁forehead",
- -13.279107093811035
- ],
- [
- "▁climatique",
- -13.279313087463379
- ],
- [
- "▁conservator",
- -13.279458999633789
- ],
- [
- "▁Russland",
- -13.279687881469727
- ],
- [
- "▁kombiniert",
- -13.279687881469727
- ],
- [
- "▁Thrones",
- -13.279688835144043
- ],
- [
- "▁Griffith",
- -13.27968978881836
- ],
- [
- "▁fragrant",
- -13.279695510864258
- ],
- [
- "▁RSVP",
- -13.279698371887207
- ],
- [
- "klima",
- -13.279751777648926
- ],
- [
- "▁situație",
- -13.279808044433594
- ],
- [
- "deschiderea",
- -13.280009269714355
- ],
- [
- "▁moale",
- -13.280033111572266
- ],
- [
- "▁Trevor",
- -13.280112266540527
- ],
- [
- "ménager",
- -13.28011417388916
- ],
- [
- "deploying",
- -13.280428886413574
- ],
- [
- "▁Loft",
- -13.280500411987305
- ],
- [
- "▁Willkommen",
- -13.28059196472168
- ],
- [
- "▁Bezirks",
- -13.280887603759766
- ],
- [
- "▁Himself",
- -13.280975341796875
- ],
- [
- "▁quarant",
- -13.28101634979248
- ],
- [
- "▁1901",
- -13.281079292297363
- ],
- [
- "▁tripod",
- -13.28136920928955
- ],
- [
- "▁récolt",
- -13.281553268432617
- ],
- [
- "natură",
- -13.281631469726562
- ],
- [
- "School",
- -13.281649589538574
- ],
- [
- "contested",
- -13.281773567199707
- ],
- [
- "bwohl",
- -13.281784057617188
- ],
- [
- "Darren",
- -13.281830787658691
- ],
- [
- "medicine",
- -13.281903266906738
- ],
- [
- "▁Impuls",
- -13.282041549682617
- ],
- [
- "prevailing",
- -13.282057762145996
- ],
- [
- "▁orthodontic",
- -13.282089233398438
- ],
- [
- "▁sequential",
- -13.282089233398438
- ],
- [
- "▁Kolkata",
- -13.28209114074707
- ],
- [
- "▁séch",
- -13.282100677490234
- ],
- [
- "▁diaper",
- -13.28212833404541
- ],
- [
- "▁simplifie",
- -13.282144546508789
- ],
- [
- "▁reflux",
- -13.282163619995117
- ],
- [
- "▁Hypo",
- -13.282242774963379
- ],
- [
- "imprimer",
- -13.282251358032227
- ],
- [
- "▁Folosi",
- -13.282401084899902
- ],
- [
- "Info",
- -13.282570838928223
- ],
- [
- "▁Investiga",
- -13.282801628112793
- ],
- [
- "stabilirea",
- -13.282845497131348
- ],
- [
- "élis",
- -13.283149719238281
- ],
- [
- "ccessed",
- -13.28320026397705
- ],
- [
- "▁recyclable",
- -13.283293724060059
- ],
- [
- "▁forbidden",
- -13.283295631408691
- ],
- [
- "▁Colonel",
- -13.283297538757324
- ],
- [
- "▁nisip",
- -13.28330135345459
- ],
- [
- "▁Fundamental",
- -13.283303260803223
- ],
- [
- "▁nouveauté",
- -13.283308029174805
- ],
- [
- "khi",
- -13.283357620239258
- ],
- [
- "▁ecology",
- -13.28339672088623
- ],
- [
- "▁filament",
- -13.283540725708008
- ],
- [
- "▁relentless",
- -13.283559799194336
- ],
- [
- "▁Behavior",
- -13.283669471740723
- ],
- [
- "titulaire",
- -13.283900260925293
- ],
- [
- "▁administrativ",
- -13.28404426574707
- ],
- [
- "▁Vorlage",
- -13.284209251403809
- ],
- [
- "zeigte",
- -13.28427791595459
- ],
- [
- "▁Bäume",
- -13.284497261047363
- ],
- [
- "▁Kartoffel",
- -13.284497261047363
- ],
- [
- "▁Possible",
- -13.284500122070312
- ],
- [
- "▁perturb",
- -13.28466510772705
- ],
- [
- "▁Grigor",
- -13.284717559814453
- ],
- [
- "▁streng",
- -13.284759521484375
- ],
- [
- "▁vânzare",
- -13.285101890563965
- ],
- [
- "concentrating",
- -13.285698890686035
- ],
- [
- "▁rechtzeitig",
- -13.2857027053833
- ],
- [
- "▁eternity",
- -13.28570556640625
- ],
- [
- "▁Puzzle",
- -13.28575611114502
- ],
- [
- "▁malade",
- -13.285775184631348
- ],
- [
- "▁Metallic",
- -13.285776138305664
- ],
- [
- "▁Unterhaltung",
- -13.285783767700195
- ],
- [
- "▁4:00",
- -13.285820960998535
- ],
- [
- "▁magique",
- -13.285908699035645
- ],
- [
- "▁cellphone",
- -13.285975456237793
- ],
- [
- "▁inhibition",
- -13.286023139953613
- ],
- [
- "▁remplacement",
- -13.286025047302246
- ],
- [
- "▁WWII",
- -13.286089897155762
- ],
- [
- "Eff",
- -13.286258697509766
- ],
- [
- "kontakt",
- -13.286832809448242
- ],
- [
- "Update",
- -13.286869049072266
- ],
- [
- "▁Emerald",
- -13.286910057067871
- ],
- [
- "▁hammock",
- -13.286910057067871
- ],
- [
- "POWER",
- -13.286917686462402
- ],
- [
- "automne",
- -13.286917686462402
- ],
- [
- "▁(2004)",
- -13.286961555480957
- ],
- [
- "▁participanți",
- -13.287012100219727
- ],
- [
- "1998)",
- -13.287014961242676
- ],
- [
- "▁deletion",
- -13.287186622619629
- ],
- [
- "▁Proiect",
- -13.287226676940918
- ],
- [
- "IDENT",
- -13.287504196166992
- ],
- [
- "▁precis",
- -13.287623405456543
- ],
- [
- "▁limp",
- -13.287676811218262
- ],
- [
- "▁Pompe",
- -13.287686347961426
- ],
- [
- "▁ménage",
- -13.28780746459961
- ],
- [
- "▁Wahrheit",
- -13.288119316101074
- ],
- [
- "▁Intelligent",
- -13.28812026977539
- ],
- [
- "▁instability",
- -13.2881441116333
- ],
- [
- "insurance",
- -13.288346290588379
- ],
- [
- "▁Nursery",
- -13.288352966308594
- ],
- [
- "▁synonym",
- -13.288427352905273
- ],
- [
- "▁ignite",
- -13.28848934173584
- ],
- [
- "▁Vernon",
- -13.28849983215332
- ],
- [
- "purchase",
- -13.288524627685547
- ],
- [
- "▁disponibilité",
- -13.288662910461426
- ],
- [
- "▁producţi",
- -13.28909969329834
- ],
- [
- "▁Pentagon",
- -13.289329528808594
- ],
- [
- "▁illumination",
- -13.289329528808594
- ],
- [
- "▁obsolete",
- -13.289329528808594
- ],
- [
- "▁unacceptable",
- -13.28933048248291
- ],
- [
- "Gleichzeitig",
- -13.289938926696777
- ],
- [
- "rutsch",
- -13.290071487426758
- ],
- [
- "viziuni",
- -13.290409088134766
- ],
- [
- "▁Nicaragua",
- -13.29054069519043
- ],
- [
- "▁hesitation",
- -13.290541648864746
- ],
- [
- "▁nascut",
- -13.290545463562012
- ],
- [
- "▁Warehouse",
- -13.29055404663086
- ],
- [
- "geboten",
- -13.290558815002441
- ],
- [
- "▁Lagos",
- -13.290844917297363
- ],
- [
- "produced",
- -13.290874481201172
- ],
- [
- "cativa",
- -13.291309356689453
- ],
- [
- "▁Tracy",
- -13.291326522827148
- ],
- [
- "Projekt",
- -13.291468620300293
- ],
- [
- "▁malaria",
- -13.291692733764648
- ],
- [
- "▁Baldwin",
- -13.291755676269531
- ],
- [
- "Take",
- -13.291791915893555
- ],
- [
- "▁fluctuations",
- -13.291844367980957
- ],
- [
- "▁titular",
- -13.29194450378418
- ],
- [
- "bmw",
- -13.291976928710938
- ],
- [
- "▁brevet",
- -13.29202651977539
- ],
- [
- "étapes",
- -13.292173385620117
- ],
- [
- "wikipedia",
- -13.292373657226562
- ],
- [
- "▁corporal",
- -13.292424201965332
- ],
- [
- "▁Schönheit",
- -13.2926664352417
- ],
- [
- "utilizatorii",
- -13.292695999145508
- ],
- [
- "INFO",
- -13.292807579040527
- ],
- [
- "▁formularul",
- -13.292900085449219
- ],
- [
- "femi",
- -13.292959213256836
- ],
- [
- "Konferenz",
- -13.29296875
- ],
- [
- "▁carnival",
- -13.29296875
- ],
- [
- "▁Kräuter",
- -13.292969703674316
- ],
- [
- "▁gelernt",
- -13.292981147766113
- ],
- [
- "▁Sherman",
- -13.293017387390137
- ],
- [
- "▁persistence",
- -13.293289184570312
- ],
- [
- "▁Behörden",
- -13.293577194213867
- ],
- [
- "▁Frühjahr",
- -13.293578147888184
- ],
- [
- "▁Guvern",
- -13.293649673461914
- ],
- [
- "interpreting",
- -13.293878555297852
- ],
- [
- "▁nommé",
- -13.294021606445312
- ],
- [
- "consult",
- -13.294035911560059
- ],
- [
- "▁obligaţi",
- -13.294184684753418
- ],
- [
- "▁Newspaper",
- -13.2942476272583
- ],
- [
- "(2005)",
- -13.294515609741211
- ],
- [
- "pumped",
- -13.294614791870117
- ],
- [
- "▁autoritati",
- -13.294634819030762
- ],
- [
- "▁aplicatii",
- -13.294644355773926
- ],
- [
- "▁verhindert",
- -13.294794082641602
- ],
- [
- "▁évident",
- -13.294794082641602
- ],
- [
- "▁getrennt",
- -13.294795036315918
- ],
- [
- "▁Encourage",
- -13.295403480529785
- ],
- [
- "▁lurk",
- -13.295432090759277
- ],
- [
- "▁condemned",
- -13.295455932617188
- ],
- [
- "▁4:30",
- -13.295502662658691
- ],
- [
- "labelled",
- -13.29576587677002
- ],
- [
- "ordinea",
- -13.295899391174316
- ],
- [
- "▁pantofi",
- -13.296012878417969
- ],
- [
- "Default",
- -13.296042442321777
- ],
- [
- "▁beruh",
- -13.296120643615723
- ],
- [
- "/01/",
- -13.296268463134766
- ],
- [
- "league",
- -13.296503067016602
- ],
- [
- "▁couvert",
- -13.296524047851562
- ],
- [
- "▁competencies",
- -13.296622276306152
- ],
- [
- "▁mozzarella",
- -13.296622276306152
- ],
- [
- "jihad",
- -13.29662799835205
- ],
- [
- "▁gossip",
- -13.29662799835205
- ],
- [
- "▁Omaha",
- -13.296628952026367
- ],
- [
- "▁coincidence",
- -13.296669960021973
- ],
- [
- "▁Pinot",
- -13.296710968017578
- ],
- [
- "dotted",
- -13.296789169311523
- ],
- [
- "schilder",
- -13.297197341918945
- ],
- [
- "▁Munte",
- -13.297224998474121
- ],
- [
- "▁Vermieter",
- -13.297232627868652
- ],
- [
- "▁britannique",
- -13.297232627868652
- ],
- [
- "▁comentariu",
- -13.297235488891602
- ],
- [
- "abonnement",
- -13.29725456237793
- ],
- [
- "▁inventive",
- -13.29727840423584
- ],
- [
- "complie",
- -13.297279357910156
- ],
- [
- "composée",
- -13.29734992980957
- ],
- [
- "▁glatt",
- -13.297684669494629
- ],
- [
- "adorned",
- -13.297842979431152
- ],
- [
- "▁Opportunities",
- -13.297842979431152
- ],
- [
- "▁equilibrium",
- -13.297842979431152
- ],
- [
- "▁persuasive",
- -13.297842979431152
- ],
- [
- "▁achiziţi",
- -13.297843933105469
- ],
- [
- "▁déterminer",
- -13.297843933105469
- ],
- [
- "▁fleece",
- -13.297857284545898
- ],
- [
- "▁ivory",
- -13.29786205291748
- ],
- [
- "▁Genuss",
- -13.297900199890137
- ],
- [
- "Thousands",
- -13.297930717468262
- ],
- [
- "▁izolat",
- -13.297965049743652
- ],
- [
- "▁symbolize",
- -13.298033714294434
- ],
- [
- "gâteau",
- -13.298051834106445
- ],
- [
- "▁relații",
- -13.298062324523926
- ],
- [
- "▁Classroom",
- -13.298144340515137
- ],
- [
- "settlers",
- -13.298155784606934
- ],
- [
- "▁vremuri",
- -13.298195838928223
- ],
- [
- "▁Serial",
- -13.29838752746582
- ],
- [
- "▁boite",
- -13.298399925231934
- ],
- [
- "équivalent",
- -13.298453330993652
- ],
- [
- "▁benutzen",
- -13.298454284667969
- ],
- [
- "▁Recomand",
- -13.298462867736816
- ],
- [
- "▁Sinai",
- -13.298968315124512
- ],
- [
- "▁Advertise",
- -13.29906940460205
- ],
- [
- "▁Thermal",
- -13.299206733703613
- ],
- [
- "fiance",
- -13.299471855163574
- ],
- [
- "▁universitaire",
- -13.299683570861816
- ],
- [
- "▁rivière",
- -13.299793243408203
- ],
- [
- "▁reimburse",
- -13.299907684326172
- ],
- [
- "ţara",
- -13.299932479858398
- ],
- [
- "tician",
- -13.30002498626709
- ],
- [
- "intelligence",
- -13.300041198730469
- ],
- [
- "▁abgestimmt",
- -13.300288200378418
- ],
- [
- "▁compliqué",
- -13.300288200378418
- ],
- [
- "▁succulent",
- -13.300297737121582
- ],
- [
- "opéra",
- -13.300395011901855
- ],
- [
- "7-9",
- -13.300456047058105
- ],
- [
- "▁pierderi",
- -13.300654411315918
- ],
- [
- "extinction",
- -13.30090045928955
- ],
- [
- "▁Zweifel",
- -13.30103874206543
- ],
- [
- "ATCH",
- -13.30112361907959
- ],
- [
- "10,000",
- -13.301222801208496
- ],
- [
- "▁uninterrupted",
- -13.301513671875
- ],
- [
- "▁Eigentum",
- -13.301517486572266
- ],
- [
- "▁Utility",
- -13.301517486572266
- ],
- [
- "ско",
- -13.301529884338379
- ],
- [
- "▁tornado",
- -13.301544189453125
- ],
- [
- "▁Güte",
- -13.301727294921875
- ],
- [
- "▁pertain",
- -13.301923751831055
- ],
- [
- "painters",
- -13.301993370056152
- ],
- [
- "Help",
- -13.3021240234375
- ],
- [
- "▁străinătate",
- -13.30212688446045
- ],
- [
- "▁stammen",
- -13.302170753479004
- ],
- [
- "opposition",
- -13.302229881286621
- ],
- [
- "▁rhino",
- -13.302233695983887
- ],
- [
- "intervenir",
- -13.302427291870117
- ],
- [
- "▁hyperlink",
- -13.302441596984863
- ],
- [
- "höchst",
- -13.302518844604492
- ],
- [
- "roach",
- -13.302627563476562
- ],
- [
- "wSt",
- -13.302687644958496
- ],
- [
- "▁monastery",
- -13.302740097045898
- ],
- [
- "▁algae",
- -13.302754402160645
- ],
- [
- "▁shaving",
- -13.302757263183594
- ],
- [
- "présentent",
- -13.302804946899414
- ],
- [
- "Africa",
- -13.302860260009766
- ],
- [
- "eigener",
- -13.303047180175781
- ],
- [
- "▁glace",
- -13.303153991699219
- ],
- [
- "▁discurs",
- -13.303179740905762
- ],
- [
- "▁autograph",
- -13.303204536437988
- ],
- [
- "▁Conflict",
- -13.303359031677246
- ],
- [
- "▁școli",
- -13.303411483764648
- ],
- [
- "▁excerpt",
- -13.303617477416992
- ],
- [
- "correlated",
- -13.303628921508789
- ],
- [
- "empel",
- -13.303841590881348
- ],
- [
- "cryptocurrencies",
- -13.30396842956543
- ],
- [
- "▁symposium",
- -13.30396842956543
- ],
- [
- "▁gewohnt",
- -13.303994178771973
- ],
- [
- "PTSD",
- -13.304070472717285
- ],
- [
- "▁harmonic",
- -13.304166793823242
- ],
- [
- "discarded",
- -13.304282188415527
- ],
- [
- "▁Flint",
- -13.304359436035156
- ],
- [
- "Russia",
- -13.304422378540039
- ],
- [
- "▁ședinț",
- -13.304583549499512
- ],
- [
- "▁accusations",
- -13.304727554321289
- ],
- [
- "▁încălc",
- -13.304827690124512
- ],
- [
- "sendung",
- -13.305152893066406
- ],
- [
- "▁Chiropractic",
- -13.305197715759277
- ],
- [
- "▁excepți",
- -13.305201530456543
- ],
- [
- "▁proclaim",
- -13.305201530456543
- ],
- [
- "▁Flexible",
- -13.305295944213867
- ],
- [
- "▁Hüt",
- -13.30538272857666
- ],
- [
- "▁Baltic",
- -13.30539608001709
- ],
- [
- "▁inaltime",
- -13.30553913116455
- ],
- [
- "▁montré",
- -13.305868148803711
- ],
- [
- "exécution",
- -13.305898666381836
- ],
- [
- "partei",
- -13.305961608886719
- ],
- [
- "▁specifie",
- -13.306072235107422
- ],
- [
- "▁Jackpot",
- -13.306105613708496
- ],
- [
- "▁stumble",
- -13.306134223937988
- ],
- [
- "▁individuel",
- -13.306161880493164
- ],
- [
- "▁Veteran",
- -13.306217193603516
- ],
- [
- "▁Supplies",
- -13.306428909301758
- ],
- [
- "▁excavation",
- -13.306428909301758
- ],
- [
- "▁Libraries",
- -13.306469917297363
- ],
- [
- "▁prénom",
- -13.306476593017578
- ],
- [
- "WOOD",
- -13.30650806427002
- ],
- [
- "meciul",
- -13.306917190551758
- ],
- [
- "Chef",
- -13.306938171386719
- ],
- [
- "▁SUPER",
- -13.306940078735352
- ],
- [
- "Appeals",
- -13.30696964263916
- ],
- [
- "terapia",
- -13.307113647460938
- ],
- [
- "▁relatii",
- -13.30713939666748
- ],
- [
- "modifying",
- -13.30748462677002
- ],
- [
- "▁Regulament",
- -13.307662010192871
- ],
- [
- "▁bănci",
- -13.307662963867188
- ],
- [
- "▁agility",
- -13.307666778564453
- ],
- [
- "▁Magnetic",
- -13.307674407958984
- ],
- [
- "▁piatra",
- -13.30767822265625
- ],
- [
- "▁Governance",
- -13.307680130004883
- ],
- [
- "▁clown",
- -13.30772876739502
- ],
- [
- "▁Choir",
- -13.308337211608887
- ],
- [
- "aujourd",
- -13.308548927307129
- ],
- [
- "▁vendeur",
- -13.308732032775879
- ],
- [
- "ndererseits",
- -13.308859825134277
- ],
- [
- "▁Bahrain",
- -13.3088960647583
- ],
- [
- "▁Timisoara",
- -13.3088960647583
- ],
- [
- "▁exklusive",
- -13.3088960647583
- ],
- [
- "▁Population",
- -13.309001922607422
- ],
- [
- "▁nepo",
- -13.309073448181152
- ],
- [
- "▁relish",
- -13.309085845947266
- ],
- [
- "▁Pumpkin",
- -13.309571266174316
- ],
- [
- "▁détente",
- -13.309784889221191
- ],
- [
- "▁episcop",
- -13.309860229492188
- ],
- [
- "patterned",
- -13.309929847717285
- ],
- [
- "▁THANK",
- -13.310132026672363
- ],
- [
- "▁Widerspruch",
- -13.310132026672363
- ],
- [
- "▁Crisis",
- -13.310189247131348
- ],
- [
- "▁goose",
- -13.310226440429688
- ],
- [
- "▁couture",
- -13.310307502746582
- ],
- [
- "▁hinweg",
- -13.310446739196777
- ],
- [
- "supplemental",
- -13.310486793518066
- ],
- [
- "shingles",
- -13.31060791015625
- ],
- [
- "investir",
- -13.310635566711426
- ],
- [
- "▁steriliz",
- -13.310759544372559
- ],
- [
- "tractors",
- -13.310761451721191
- ],
- [
- "cellules",
- -13.31078815460205
- ],
- [
- "▁Gloria",
- -13.310888290405273
- ],
- [
- "▁teilnehmen",
- -13.311092376708984
- ],
- [
- "companiile",
- -13.311248779296875
- ],
- [
- "surfacing",
- -13.311279296875
- ],
- [
- "▁nostalgic",
- -13.311368942260742
- ],
- [
- "▁Badezimmer",
- -13.311369895935059
- ],
- [
- "▁conjoint",
- -13.311370849609375
- ],
- [
- "vacancy",
- -13.31145191192627
- ],
- [
- "▁homeland",
- -13.311582565307617
- ],
- [
- "▁Abschnitt",
- -13.311625480651855
- ],
- [
- "Cartea",
- -13.311653137207031
- ],
- [
- "SIA",
- -13.311782836914062
- ],
- [
- "▁explode",
- -13.311786651611328
- ],
- [
- "fostering",
- -13.311959266662598
- ],
- [
- "▁ceilalti",
- -13.31198787689209
- ],
- [
- "▁gentil",
- -13.31214714050293
- ],
- [
- "oplasty",
- -13.31218433380127
- ],
- [
- "bodied",
- -13.312424659729004
- ],
- [
- "▁1906",
- -13.312499046325684
- ],
- [
- "▁BlackBerry",
- -13.312607765197754
- ],
- [
- "▁Presbyterian",
- -13.312607765197754
- ],
- [
- "▁berücksichtigt",
- -13.312607765197754
- ],
- [
- "▁compartiment",
- -13.312607765197754
- ],
- [
- "▁compulsory",
- -13.312607765197754
- ],
- [
- "Millennial",
- -13.312609672546387
- ],
- [
- "▁sanitar",
- -13.312638282775879
- ],
- [
- "▁stink",
- -13.312975883483887
- ],
- [
- "lius",
- -13.313047409057617
- ],
- [
- "thankfully",
- -13.313136100769043
- ],
- [
- "modalité",
- -13.313173294067383
- ],
- [
- "▁cunoaște",
- -13.313226699829102
- ],
- [
- "Infrastruktur",
- -13.313227653503418
- ],
- [
- "▁studenți",
- -13.313253402709961
- ],
- [
- "Bref",
- -13.313270568847656
- ],
- [
- "London",
- -13.31360149383545
- ],
- [
- "▁Arduino",
- -13.313847541809082
- ],
- [
- "▁cilantro",
- -13.313847541809082
- ],
- [
- "▁Rafael",
- -13.313848495483398
- ],
- [
- "▁untersucht",
- -13.313861846923828
- ],
- [
- "▁martyr",
- -13.31389331817627
- ],
- [
- "▁Mormon",
- -13.313984870910645
- ],
- [
- "▁wicket",
- -13.313996315002441
- ],
- [
- "cherished",
- -13.314335823059082
- ],
- [
- "liquid",
- -13.314417839050293
- ],
- [
- "▁dorinț",
- -13.314571380615234
- ],
- [
- "lehnt",
- -13.314717292785645
- ],
- [
- "meisterschaft",
- -13.31493091583252
- ],
- [
- "fondateur",
- -13.314971923828125
- ],
- [
- "câble",
- -13.315078735351562
- ],
- [
- "▁erreichbar",
- -13.315091133117676
- ],
- [
- "▁footsteps",
- -13.315094947814941
- ],
- [
- "▁Kloster",
- -13.31519889831543
- ],
- [
- "▁multiplayer",
- -13.315218925476074
- ],
- [
- "▁substitu",
- -13.315276145935059
- ],
- [
- "▁Frisch",
- -13.315526962280273
- ],
- [
- "▁arsenal",
- -13.315712928771973
- ],
- [
- "explication",
- -13.315866470336914
- ],
- [
- "▁conexiun",
- -13.315986633300781
- ],
- [
- "muddy",
- -13.316045761108398
- ],
- [
- "▁Reifen",
- -13.316120147705078
- ],
- [
- "auraient",
- -13.316132545471191
- ],
- [
- "▁biologic",
- -13.316136360168457
- ],
- [
- "▁acquainted",
- -13.316332817077637
- ],
- [
- "▁shelving",
- -13.316341400146484
- ],
- [
- "Stunning",
- -13.316373825073242
- ],
- [
- "▁Clothing",
- -13.316394805908203
- ],
- [
- "▁kidding",
- -13.316431999206543
- ],
- [
- "excellent",
- -13.316452026367188
- ],
- [
- "▁susțin",
- -13.316487312316895
- ],
- [
- "bătut",
- -13.316502571105957
- ],
- [
- "elusive",
- -13.3165283203125
- ],
- [
- "werbung",
- -13.316743850708008
- ],
- [
- "slipping",
- -13.316813468933105
- ],
- [
- "▁configura",
- -13.316926956176758
- ],
- [
- "▁proaspat",
- -13.31695556640625
- ],
- [
- "▁apporté",
- -13.317120552062988
- ],
- [
- "▁démarr",
- -13.317328453063965
- ],
- [
- "Spezialist",
- -13.317578315734863
- ],
- [
- "▁obligați",
- -13.317578315734863
- ],
- [
- "▁societăți",
- -13.317578315734863
- ],
- [
- "▁malpractice",
- -13.31757926940918
- ],
- [
- "Hundreds",
- -13.317609786987305
- ],
- [
- "▁3:1",
- -13.318138122558594
- ],
- [
- "▁computation",
- -13.31817626953125
- ],
- [
- "▁Heilig",
- -13.318528175354004
- ],
- [
- "▁Helsinki",
- -13.318824768066406
- ],
- [
- "▁firefighters",
- -13.318824768066406
- ],
- [
- "▁obedience",
- -13.318824768066406
- ],
- [
- "▁evacuate",
- -13.318825721740723
- ],
- [
- "▁Floyd",
- -13.318840026855469
- ],
- [
- "▁Disneyland",
- -13.318859100341797
- ],
- [
- "Cathy",
- -13.319069862365723
- ],
- [
- "▁Broken",
- -13.319278717041016
- ],
- [
- "cript",
- -13.319952011108398
- ],
- [
- "▁Gewähr",
- -13.320073127746582
- ],
- [
- "▁embarrassed",
- -13.320073127746582
- ],
- [
- "▁Leicht",
- -13.32007884979248
- ],
- [
- "▁témoign",
- -13.320379257202148
- ],
- [
- "▁viteze",
- -13.3206148147583
- ],
- [
- "▁hallmark",
- -13.320731163024902
- ],
- [
- "uploads",
- -13.32082462310791
- ],
- [
- "▁Submission",
- -13.320929527282715
- ],
- [
- "▁croissant",
- -13.321049690246582
- ],
- [
- "awning",
- -13.32105827331543
- ],
- [
- "detecting",
- -13.321198463439941
- ],
- [
- "▁Bahamas",
- -13.321322441101074
- ],
- [
- "▁Kathleen",
- -13.321325302124023
- ],
- [
- "▁latch",
- -13.321377754211426
- ],
- [
- "▁pronounce",
- -13.321380615234375
- ],
- [
- "▁choke",
- -13.321428298950195
- ],
- [
- "▁$50,000",
- -13.3215970993042
- ],
- [
- "▁historische",
- -13.321642875671387
- ],
- [
- "jugé",
- -13.321829795837402
- ],
- [
- "▁MasterCard",
- -13.321949005126953
- ],
- [
- "▁Horror",
- -13.321955680847168
- ],
- [
- "spoiled",
- -13.321958541870117
- ],
- [
- "▁apariți",
- -13.32202434539795
- ],
- [
- "geschaltet",
- -13.3225736618042
- ],
- [
- "▁Londra",
- -13.322578430175781
- ],
- [
- "viction",
- -13.322580337524414
- ],
- [
- "▁Disaster",
- -13.322593688964844
- ],
- [
- "▁desigur",
- -13.322601318359375
- ],
- [
- "▁substanț",
- -13.322601318359375
- ],
- [
- "▁compiler",
- -13.322613716125488
- ],
- [
- "▁vanzari",
- -13.32262897491455
- ],
- [
- "▁Simulation",
- -13.322669982910156
- ],
- [
- "Occasionally",
- -13.322842597961426
- ],
- [
- "Seite",
- -13.322884559631348
- ],
- [
- "Linked",
- -13.322938919067383
- ],
- [
- "Roll",
- -13.323015213012695
- ],
- [
- "▁trajet",
- -13.323244094848633
- ],
- [
- "Molecular",
- -13.323834419250488
- ],
- [
- "▁pragmatic",
- -13.323843002319336
- ],
- [
- "judecată",
- -13.323915481567383
- ],
- [
- "ров",
- -13.32400894165039
- ],
- [
- "serrurerie",
- -13.324024200439453
- ],
- [
- "▁reconstruct",
- -13.324129104614258
- ],
- [
- "▁heureuse",
- -13.324179649353027
- ],
- [
- "▁knight",
- -13.32422924041748
- ],
- [
- "knowingly",
- -13.324431419372559
- ],
- [
- "▁perspectiva",
- -13.324453353881836
- ],
- [
- "ordinary",
- -13.324604034423828
- ],
- [
- "▁chaudière",
- -13.324721336364746
- ],
- [
- "Neill",
- -13.324727058410645
- ],
- [
- "cellulose",
- -13.325080871582031
- ],
- [
- "▁Delicious",
- -13.325080871582031
- ],
- [
- "▁incearca",
- -13.325080871582031
- ],
- [
- "▁retrospective",
- -13.325080871582031
- ],
- [
- "▁mundane",
- -13.325081825256348
- ],
- [
- "▁definiert",
- -13.32508659362793
- ],
- [
- "▁cockpit",
- -13.325088500976562
- ],
- [
- "Aktionen",
- -13.325363159179688
- ],
- [
- "▁distanț",
- -13.325654029846191
- ],
- [
- "▁diplôme",
- -13.325708389282227
- ],
- [
- "prepaid",
- -13.325737953186035
- ],
- [
- "▁Tabellen",
- -13.325758934020996
- ],
- [
- "▁economie",
- -13.325770378112793
- ],
- [
- "December",
- -13.325826644897461
- ],
- [
- "Punkten",
- -13.32613754272461
- ],
- [
- "▁Punch",
- -13.32614517211914
- ],
- [
- "Martin",
- -13.326154708862305
- ],
- [
- "▁Espresso",
- -13.326314926147461
- ],
- [
- "▁ubiquitous",
- -13.326335906982422
- ],
- [
- "▁Mongolia",
- -13.326337814331055
- ],
- [
- "▁collabor",
- -13.326635360717773
- ],
- [
- "▁Vordergrund",
- -13.32696533203125
- ],
- [
- "cameră",
- -13.327091217041016
- ],
- [
- "represented",
- -13.327268600463867
- ],
- [
- "▁AUTO",
- -13.327446937561035
- ],
- [
- "▁Ofert",
- -13.327542304992676
- ],
- [
- "neig",
- -13.327593803405762
- ],
- [
- "▁Hazard",
- -13.327595710754395
- ],
- [
- "▁Constanta",
- -13.327596664428711
- ],
- [
- "▁tumour",
- -13.32759952545166
- ],
- [
- "▁Neighborhood",
- -13.327603340148926
- ],
- [
- "▁detaliat",
- -13.327619552612305
- ],
- [
- "▁extraordinaire",
- -13.327665328979492
- ],
- [
- "▁Therapeutic",
- -13.327686309814453
- ],
- [
- "predicting",
- -13.327693939208984
- ],
- [
- "▁institutii",
- -13.32776165008545
- ],
- [
- "ifizierung",
- -13.327797889709473
- ],
- [
- "wählt",
- -13.328207015991211
- ],
- [
- "▁remarquable",
- -13.32822322845459
- ],
- [
- "Invent",
- -13.328512191772461
- ],
- [
- "▁foloseșt",
- -13.328514099121094
- ],
- [
- "öfte",
- -13.328703880310059
- ],
- [
- "▁discreet",
- -13.328853607177734
- ],
- [
- "▁Flickr",
- -13.32885456085205
- ],
- [
- "▁trésor",
- -13.328856468200684
- ],
- [
- "▁steroids",
- -13.328872680664062
- ],
- [
- "▁personnalité",
- -13.328953742980957
- ],
- [
- "▁Krankenhaus",
- -13.32901668548584
- ],
- [
- "▁affordability",
- -13.329218864440918
- ],
- [
- "deuten",
- -13.329398155212402
- ],
- [
- "Detailed",
- -13.329412460327148
- ],
- [
- "Walk",
- -13.329444885253906
- ],
- [
- "▁parallèle",
- -13.329483032226562
- ],
- [
- "thèse",
- -13.329649925231934
- ],
- [
- "▁gefördert",
- -13.330117225646973
- ],
- [
- "Greeting",
- -13.33014965057373
- ],
- [
- "gelistet",
- -13.330172538757324
- ],
- [
- "▁chlorine",
- -13.330392837524414
- ],
- [
- "behält",
- -13.33039665222168
- ],
- [
- "emption",
- -13.330435752868652
- ],
- [
- "▁mobilité",
- -13.330601692199707
- ],
- [
- "▁randonnée",
- -13.330668449401855
- ],
- [
- "habitant",
- -13.330718040466309
- ],
- [
- "zilla",
- -13.331082344055176
- ],
- [
- "▁Lili",
- -13.331160545349121
- ],
- [
- "▁répét",
- -13.331341743469238
- ],
- [
- "trucât",
- -13.331376075744629
- ],
- [
- "▁Hospice",
- -13.331376075744629
- ],
- [
- "▁grassroots",
- -13.331377029418945
- ],
- [
- "▁affiché",
- -13.331393241882324
- ],
- [
- "pears",
- -13.331470489501953
- ],
- [
- "▁linistit",
- -13.331497192382812
- ],
- [
- "▁Patron",
- -13.331552505493164
- ],
- [
- "▁Stalin",
- -13.331626892089844
- ],
- [
- "▁închiri",
- -13.331751823425293
- ],
- [
- "▁Apostol",
- -13.332018852233887
- ],
- [
- "▁poudre",
- -13.332246780395508
- ],
- [
- "▁piscin",
- -13.332419395446777
- ],
- [
- "merlin",
- -13.33259391784668
- ],
- [
- "limited",
- -13.33260726928711
- ],
- [
- "▁métallique",
- -13.332639694213867
- ],
- [
- "gazebo",
- -13.33267879486084
- ],
- [
- "weilige",
- -13.332718849182129
- ],
- [
- "prosecutors",
- -13.33278751373291
- ],
- [
- "Expert",
- -13.33314323425293
- ],
- [
- "Assemblée",
- -13.333271980285645
- ],
- [
- "▁fauna",
- -13.333285331726074
- ],
- [
- "▁Turtle",
- -13.333353996276855
- ],
- [
- "▁Consortium",
- -13.333905220031738
- ],
- [
- "▁assemblies",
- -13.333905220031738
- ],
- [
- "▁trajectory",
- -13.333905220031738
- ],
- [
- "▁Vineyard",
- -13.333906173706055
- ],
- [
- "▁Mehrwert",
- -13.334037780761719
- ],
- [
- "▁sunflower",
- -13.334043502807617
- ],
- [
- "develop",
- -13.334060668945312
- ],
- [
- "▁heroic",
- -13.334100723266602
- ],
- [
- "▁riscuri",
- -13.334151268005371
- ],
- [
- "oeuf",
- -13.334300994873047
- ],
- [
- "influence",
- -13.334452629089355
- ],
- [
- "▁Voraussetzung",
- -13.334500312805176
- ],
- [
- "utoritatea",
- -13.334518432617188
- ],
- [
- "Produsul",
- -13.334654808044434
- ],
- [
- "▁gewährleistet",
- -13.335171699523926
- ],
- [
- "▁brûl",
- -13.335175514221191
- ],
- [
- "▁Column",
- -13.335184097290039
- ],
- [
- "▁trousers",
- -13.335209846496582
- ],
- [
- "▁posterior",
- -13.33521556854248
- ],
- [
- "glyph",
- -13.335251808166504
- ],
- [
- "▁Happen",
- -13.335280418395996
- ],
- [
- "▁créateur",
- -13.335667610168457
- ],
- [
- "▁apostle",
- -13.335898399353027
- ],
- [
- "▁padding",
- -13.335907936096191
- ],
- [
- "▁Digitalisierung",
- -13.335908889770508
- ],
- [
- "▁Laurie",
- -13.335915565490723
- ],
- [
- "▁Erwerb",
- -13.336065292358398
- ],
- [
- "▁bătrân",
- -13.336440086364746
- ],
- [
- "▁harmonious",
- -13.336441040039062
- ],
- [
- "▁ailments",
- -13.336456298828125
- ],
- [
- "▁Venue",
- -13.33650016784668
- ],
- [
- "▁Motorcycle",
- -13.336523056030273
- ],
- [
- "▁cortex",
- -13.336551666259766
- ],
- [
- "▁Sunrise",
- -13.336636543273926
- ],
- [
- "Software",
- -13.336775779724121
- ],
- [
- "▁advocat",
- -13.336934089660645
- ],
- [
- "essentiellement",
- -13.337422370910645
- ],
- [
- "•",
- -13.337494850158691
- ],
- [
- "părut",
- -13.337522506713867
- ],
- [
- "▁Suffolk",
- -13.337711334228516
- ],
- [
- "▁righteousness",
- -13.337711334228516
- ],
- [
- "▁Shirley",
- -13.337712287902832
- ],
- [
- "▁Famous",
- -13.337749481201172
- ],
- [
- "▁emulate",
- -13.337788581848145
- ],
- [
- "vermögen",
- -13.33788776397705
- ],
- [
- "generated",
- -13.337963104248047
- ],
- [
- "Ecole",
- -13.337977409362793
- ],
- [
- "▁managerial",
- -13.338086128234863
- ],
- [
- "believe",
- -13.338091850280762
- ],
- [
- "▁récupére",
- -13.338348388671875
- ],
- [
- "▁recens",
- -13.338531494140625
- ],
- [
- "▁Barrett",
- -13.338778495788574
- ],
- [
- "▁courageous",
- -13.338814735412598
- ],
- [
- "9.95",
- -13.338961601257324
- ],
- [
- "▁Odyssey",
- -13.338982582092285
- ],
- [
- "▁Violence",
- -13.338982582092285
- ],
- [
- "▁concasseur",
- -13.338982582092285
- ],
- [
- "▁evacuation",
- -13.338982582092285
- ],
- [
- "▁kontinuierlich",
- -13.338982582092285
- ],
- [
- "▁epidemi",
- -13.3389892578125
- ],
- [
- "▁disconnected",
- -13.339197158813477
- ],
- [
- "frucht",
- -13.339339256286621
- ],
- [
- "Trustees",
- -13.339348793029785
- ],
- [
- "▁Massiv",
- -13.339459419250488
- ],
- [
- "gebucht",
- -13.339473724365234
- ],
- [
- "stütze",
- -13.339526176452637
- ],
- [
- "▁febr",
- -13.339741706848145
- ],
- [
- "honoured",
- -13.339743614196777
- ],
- [
- "▁digitiz",
- -13.340079307556152
- ],
- [
- "Image",
- -13.34021282196045
- ],
- [
- "▁Brunswick",
- -13.34025764465332
- ],
- [
- "▁Therapist",
- -13.34026050567627
- ],
- [
- "accessoire",
- -13.340264320373535
- ],
- [
- "▁croqu",
- -13.340291023254395
- ],
- [
- "Pflanz",
- -13.34052848815918
- ],
- [
- "dragging",
- -13.340536117553711
- ],
- [
- "▁Facilit",
- -13.340750694274902
- ],
- [
- "soucis",
- -13.340765953063965
- ],
- [
- "Asadar",
- -13.34081745147705
- ],
- [
- "▁Thames",
- -13.341021537780762
- ],
- [
- "▁cariera",
- -13.341116905212402
- ],
- [
- "▁mercury",
- -13.341530799865723
- ],
- [
- "▁Blessed",
- -13.341533660888672
- ],
- [
- "▁Whitney",
- -13.341630935668945
- ],
- [
- "▁géant",
- -13.341926574707031
- ],
- [
- "▁coordonnée",
- -13.342217445373535
- ],
- [
- "oidal",
- -13.342623710632324
- ],
- [
- "Wohnungen",
- -13.342696189880371
- ],
- [
- "▁Spectrum",
- -13.34280776977539
- ],
- [
- "▁Avengers",
- -13.342808723449707
- ],
- [
- "▁Gloucester",
- -13.342808723449707
- ],
- [
- "▁nützlich",
- -13.342811584472656
- ],
- [
- "▁toothbrush",
- -13.342830657958984
- ],
- [
- "▁Vanessa",
- -13.342843055725098
- ],
- [
- "Saxon",
- -13.342947959899902
- ],
- [
- "▁comunități",
- -13.343165397644043
- ],
- [
- "reprezentanţi",
- -13.343175888061523
- ],
- [
- "▁întâlnire",
- -13.343225479125977
- ],
- [
- "delve",
- -13.343234062194824
- ],
- [
- "▁technologique",
- -13.343452453613281
- ],
- [
- "Describe",
- -13.343466758728027
- ],
- [
- "▁constient",
- -13.343501091003418
- ],
- [
- "gestalt",
- -13.343600273132324
- ],
- [
- "▁Tribune",
- -13.344090461730957
- ],
- [
- "▁fiberglass",
- -13.34412956237793
- ],
- [
- "verbindung",
- -13.344210624694824
- ],
- [
- "sacrificing",
- -13.344351768493652
- ],
- [
- "▁Pablo",
- -13.344470024108887
- ],
- [
- "▁adanc",
- -13.34525203704834
- ],
- [
- "omia",
- -13.345309257507324
- ],
- [
- "hâte",
- -13.345317840576172
- ],
- [
- "▁Sanctuary",
- -13.345366477966309
- ],
- [
- "▁accolade",
- -13.345368385314941
- ],
- [
- "▁Wurzel",
- -13.345398902893066
- ],
- [
- "▁spacing",
- -13.345433235168457
- ],
- [
- "▁bedeutend",
- -13.345481872558594
- ],
- [
- "▁biased",
- -13.345499992370605
- ],
- [
- "randomized",
- -13.345747947692871
- ],
- [
- "▁agenți",
- -13.345856666564941
- ],
- [
- "▁excepţi",
- -13.346012115478516
- ],
- [
- "▁fișier",
- -13.346028327941895
- ],
- [
- "▁fisier",
- -13.34664535522461
- ],
- [
- "irrespective",
- -13.346648216247559
- ],
- [
- "▁Gardner",
- -13.34665584564209
- ],
- [
- "▁aprecia",
- -13.346884727478027
- ],
- [
- "▁Klu",
- -13.347082138061523
- ],
- [
- "▁apropie",
- -13.347535133361816
- ],
- [
- "▁echival",
- -13.347784042358398
- ],
- [
- "tauchen",
- -13.347862243652344
- ],
- [
- "▁hauptsächlich",
- -13.347930908203125
- ],
- [
- "▁pollutants",
- -13.347930908203125
- ],
- [
- "▁mammals",
- -13.347931861877441
- ],
- [
- "▁Landwirtschaft",
- -13.347936630249023
- ],
- [
- "▁stăpân",
- -13.34793758392334
- ],
- [
- "▁Prüf",
- -13.347990989685059
- ],
- [
- "▁Motorsport",
- -13.34807300567627
- ],
- [
- "Leaving",
- -13.348352432250977
- ],
- [
- "schädigung",
- -13.348573684692383
- ],
- [
- "▁calendrier",
- -13.348573684692383
- ],
- [
- "plikation",
- -13.348655700683594
- ],
- [
- "▁DOE",
- -13.348655700683594
- ],
- [
- "ред",
- -13.348966598510742
- ],
- [
- "Jahr",
- -13.34913444519043
- ],
- [
- "▁entitlement",
- -13.34921646118164
- ],
- [
- "schuldig",
- -13.349217414855957
- ],
- [
- "▁Münster",
- -13.349218368530273
- ],
- [
- "pository",
- -13.349451065063477
- ],
- [
- "▁numero",
- -13.350220680236816
- ],
- [
- "▁entsprechen",
- -13.350383758544922
- ],
- [
- "▁astronaut",
- -13.350502967834473
- ],
- [
- "▁hexagon",
- -13.350502967834473
- ],
- [
- "▁DAMAGE",
- -13.350503921508789
- ],
- [
- "▁Quartz",
- -13.350504875183105
- ],
- [
- "▁rédaction",
- -13.350504875183105
- ],
- [
- "▁replenish",
- -13.350508689880371
- ],
- [
- "▁amoureux",
- -13.350523948669434
- ],
- [
- "▁opțiun",
- -13.350616455078125
- ],
- [
- "Custom",
- -13.350622177124023
- ],
- [
- "▁Telekom",
- -13.350639343261719
- ],
- [
- "▁RFID",
- -13.351163864135742
- ],
- [
- "▁Scorpio",
- -13.351264953613281
- ],
- [
- "▁thirst",
- -13.35152816772461
- ],
- [
- "▁Kosovo",
- -13.351791381835938
- ],
- [
- "▁precursor",
- -13.351794242858887
- ],
- [
- "▁sarbatori",
- -13.351810455322266
- ],
- [
- "▁Daisy",
- -13.351828575134277
- ],
- [
- "▁Dropbox",
- -13.351898193359375
- ],
- [
- "Smith",
- -13.351949691772461
- ],
- [
- "contabil",
- -13.352191925048828
- ],
- [
- "▁monnaie",
- -13.352437973022461
- ],
- [
- "capsul",
- -13.352577209472656
- ],
- [
- "treff",
- -13.352760314941406
- ],
- [
- "beauftragte",
- -13.352761268615723
- ],
- [
- "industrial",
- -13.353006362915039
- ],
- [
- "responsables",
- -13.353010177612305
- ],
- [
- "▁FIRST",
- -13.353080749511719
- ],
- [
- "▁crezut",
- -13.35308837890625
- ],
- [
- "▁reseller",
- -13.353107452392578
- ],
- [
- "▁direcți",
- -13.353154182434082
- ],
- [
- "mouvoir",
- -13.353294372558594
- ],
- [
- "▁Invite",
- -13.353431701660156
- ],
- [
- "▁constructii",
- -13.353440284729004
- ],
- [
- "▁oublié",
- -13.353577613830566
- ],
- [
- "găseșt",
- -13.353687286376953
- ],
- [
- "▁végét",
- -13.353755950927734
- ],
- [
- "idine",
- -13.35385799407959
- ],
- [
- "▁Ajout",
- -13.353951454162598
- ],
- [
- "▁Shelf",
- -13.354195594787598
- ],
- [
- "HALL",
- -13.35422420501709
- ],
- [
- "▁nostalgia",
- -13.35437297821045
- ],
- [
- "▁ottoman",
- -13.35437297821045
- ],
- [
- "▁ambalaj",
- -13.354398727416992
- ],
- [
- "municipiul",
- -13.354405403137207
- ],
- [
- "NOVA",
- -13.354500770568848
- ],
- [
- "▁disregard",
- -13.354997634887695
- ],
- [
- "▁bijuterii",
- -13.355018615722656
- ],
- [
- "▁sorgfältig",
- -13.355018615722656
- ],
- [
- "vraient",
- -13.355307579040527
- ],
- [
- "▁backsplash",
- -13.355669975280762
- ],
- [
- "▁nuisance",
- -13.355679512023926
- ],
- [
- "▁Territory",
- -13.35568618774414
- ],
- [
- "▁surprins",
- -13.355693817138672
- ],
- [
- "enchanting",
- -13.35571002960205
- ],
- [
- "trospecti",
- -13.355847358703613
- ],
- [
- "▁dvd",
- -13.356199264526367
- ],
- [
- "Totally",
- -13.356329917907715
- ],
- [
- "▁Edelstahl",
- -13.35696029663086
- ],
- [
- "▁sequencing",
- -13.356961250305176
- ],
- [
- "▁Circus",
- -13.35696792602539
- ],
- [
- "▁ashamed",
- -13.35696792602539
- ],
- [
- "▁horrific",
- -13.357028007507324
- ],
- [
- "▁taiat",
- -13.357033729553223
- ],
- [
- "▁Angehörige",
- -13.357125282287598
- ],
- [
- "Michel",
- -13.357256889343262
- ],
- [
- "▁communion",
- -13.357298851013184
- ],
- [
- "▁psiho",
- -13.357378959655762
- ],
- [
- "losigkeit",
- -13.357405662536621
- ],
- [
- "dipping",
- -13.357512474060059
- ],
- [
- "▁profesională",
- -13.357608795166016
- ],
- [
- "Indiferent",
- -13.357609748840332
- ],
- [
- "▁crestin",
- -13.357723236083984
- ],
- [
- "wholesome",
- -13.357796669006348
- ],
- [
- "▁Welfare",
- -13.358257293701172
- ],
- [
- "▁plentiful",
- -13.358257293701172
- ],
- [
- "▁Triumph",
- -13.358258247375488
- ],
- [
- "▁fascination",
- -13.358260154724121
- ],
- [
- "▁vicious",
- -13.358291625976562
- ],
- [
- "▁Höchst",
- -13.358294486999512
- ],
- [
- "▁Dunkel",
- -13.358386039733887
- ],
- [
- "▁harass",
- -13.358406066894531
- ],
- [
- "ambogia",
- -13.358475685119629
- ],
- [
- "▁synonymous",
- -13.358598709106445
- ],
- [
- "bottom",
- -13.35879898071289
- ],
- [
- "▁bénévole",
- -13.358906745910645
- ],
- [
- "▁suprafaț",
- -13.358906745910645
- ],
- [
- "▁umplut",
- -13.358997344970703
- ],
- [
- "▁Teddy",
- -13.359162330627441
- ],
- [
- "breathable",
- -13.359292984008789
- ],
- [
- "▁Toshiba",
- -13.3595552444458
- ],
- [
- "▁seismic",
- -13.359569549560547
- ],
- [
- "▁dringend",
- -13.359583854675293
- ],
- [
- "▁cultură",
- -13.359585762023926
- ],
- [
- "▁Waffen",
- -13.359665870666504
- ],
- [
- "▁Bubble",
- -13.359702110290527
- ],
- [
- "▁Brigade",
- -13.359759330749512
- ],
- [
- "▁Blatt",
- -13.36012077331543
- ],
- [
- "▁scénario",
- -13.36020565032959
- ],
- [
- "allah",
- -13.360396385192871
- ],
- [
- "▁superintendent",
- -13.360855102539062
- ],
- [
- "pflanzen",
- -13.360856056213379
- ],
- [
- "▁kurzfristig",
- -13.360856056213379
- ],
- [
- "▁raspberry",
- -13.360876083374023
- ],
- [
- "▁Evident",
- -13.360904693603516
- ],
- [
- "▁inutile",
- -13.361076354980469
- ],
- [
- "prouvé",
- -13.361104011535645
- ],
- [
- "▁obtien",
- -13.36141300201416
- ],
- [
- "▁Matthias",
- -13.361506462097168
- ],
- [
- "▁déclench",
- -13.361506462097168
- ],
- [
- "Situationen",
- -13.361529350280762
- ],
- [
- "▁Disclaimer",
- -13.362156867980957
- ],
- [
- "▁loneliness",
- -13.362156867980957
- ],
- [
- "▁Gothic",
- -13.362164497375488
- ],
- [
- "▁humility",
- -13.362165451049805
- ],
- [
- "▁machiaj",
- -13.362175941467285
- ],
- [
- "▁Sophia",
- -13.362178802490234
- ],
- [
- "▁Forecast",
- -13.362265586853027
- ],
- [
- "IBLE",
- -13.362456321716309
- ],
- [
- "ivism",
- -13.362480163574219
- ],
- [
- "israel",
- -13.36278247833252
- ],
- [
- "▁kümmern",
- -13.362809181213379
- ],
- [
- "▁verbreitet",
- -13.362825393676758
- ],
- [
- "▁capacitor",
- -13.362832069396973
- ],
- [
- "deprived",
- -13.3634614944458
- ],
- [
- "unbiased",
- -13.3634614944458
- ],
- [
- "▁Dominique",
- -13.3634614944458
- ],
- [
- "▁Bamboo",
- -13.363462448120117
- ],
- [
- "▁Heinrich",
- -13.363465309143066
- ],
- [
- "individualized",
- -13.363550186157227
- ],
- [
- "▁ansprechen",
- -13.363776206970215
- ],
- [
- "ordinaire",
- -13.363801002502441
- ],
- [
- "▁Ucraina",
- -13.364112854003906
- ],
- [
- "▁militare",
- -13.364115715026855
- ],
- [
- "massif",
- -13.364352226257324
- ],
- [
- "▁emisiuni",
- -13.364501953125
- ],
- [
- "maladies",
- -13.364622116088867
- ],
- [
- "▁pneumonia",
- -13.364765167236328
- ],
- [
- "▁graffiti",
- -13.364767074584961
- ],
- [
- "▁Determine",
- -13.3648099899292
- ],
- [
- "▁Northwestern",
- -13.364893913269043
- ],
- [
- "▁grasimi",
- -13.364897727966309
- ],
- [
- "▁lebendig",
- -13.364920616149902
- ],
- [
- "▁cifre",
- -13.364946365356445
- ],
- [
- "▁accelerator",
- -13.36533260345459
- ],
- [
- "▁nib",
- -13.365374565124512
- ],
- [
- "▁Jocuri",
- -13.365400314331055
- ],
- [
- "▁außergewöhnlich",
- -13.365402221679688
- ],
- [
- "▁orchid",
- -13.36542797088623
- ],
- [
- "zugreifen",
- -13.365530967712402
- ],
- [
- "utilisent",
- -13.365662574768066
- ],
- [
- "▁nineteenth",
- -13.366071701049805
- ],
- [
- "improvisation",
- -13.366072654724121
- ],
- [
- "▁Disclosure",
- -13.366072654724121
- ],
- [
- "▁Überraschung",
- -13.366072654724121
- ],
- [
- "▁Casual",
- -13.366093635559082
- ],
- [
- "▁Witness",
- -13.366093635559082
- ],
- [
- "teacher",
- -13.366125106811523
- ],
- [
- "Printed",
- -13.366129875183105
- ],
- [
- "▁prețuri",
- -13.366189956665039
- ],
- [
- "rues",
- -13.366216659545898
- ],
- [
- "▁cerinte",
- -13.366338729858398
- ],
- [
- "rouvent",
- -13.36662483215332
- ],
- [
- "assembling",
- -13.36673355102539
- ],
- [
- "▁atenție",
- -13.366769790649414
- ],
- [
- "▁amintiri",
- -13.366782188415527
- ],
- [
- "▁sustinut",
- -13.366805076599121
- ],
- [
- "Digital",
- -13.367257118225098
- ],
- [
- "▁Deborah",
- -13.36738109588623
- ],
- [
- "gesichts",
- -13.367382049560547
- ],
- [
- "▁temperament",
- -13.367440223693848
- ],
- [
- "▁competency",
- -13.367447853088379
- ],
- [
- "▁dwarf",
- -13.367515563964844
- ],
- [
- "▁dureaz",
- -13.367539405822754
- ],
- [
- "habilit",
- -13.367764472961426
- ],
- [
- "leaned",
- -13.3679838180542
- ],
- [
- "▁illicit",
- -13.368348121643066
- ],
- [
- "Availability",
- -13.368691444396973
- ],
- [
- "▁Brașov",
- -13.368691444396973
- ],
- [
- "▁Pyramid",
- -13.368691444396973
- ],
- [
- "▁achievable",
- -13.368691444396973
- ],
- [
- "▁judiciaire",
- -13.368691444396973
- ],
- [
- "Übrigen",
- -13.368693351745605
- ],
- [
- "▁activism",
- -13.368795394897461
- ],
- [
- "▁boycott",
- -13.368839263916016
- ],
- [
- "Desigur",
- -13.368927001953125
- ],
- [
- "klingt",
- -13.369264602661133
- ],
- [
- "▁Leidenschaft",
- -13.369346618652344
- ],
- [
- "▁Richtig",
- -13.369701385498047
- ],
- [
- "▁Airbnb",
- -13.370002746582031
- ],
- [
- "▁învățământ",
- -13.370002746582031
- ],
- [
- "Kampagne",
- -13.370004653930664
- ],
- [
- "▁thumbnail",
- -13.370014190673828
- ],
- [
- "Bestimmungen",
- -13.370016098022461
- ],
- [
- "▁vollkommen",
- -13.37001895904541
- ],
- [
- "▁biomass",
- -13.370027542114258
- ],
- [
- "▁escalate",
- -13.370030403137207
- ],
- [
- "wächst",
- -13.370085716247559
- ],
- [
- "▁scăpa",
- -13.370098114013672
- ],
- [
- "▁résult",
- -13.37014389038086
- ],
- [
- "▁shrine",
- -13.370217323303223
- ],
- [
- "maximizing",
- -13.370370864868164
- ],
- [
- "avoue",
- -13.370492935180664
- ],
- [
- "dirigeants",
- -13.370665550231934
- ],
- [
- "▁cerveau",
- -13.370672225952148
- ],
- [
- "▁proast",
- -13.370955467224121
- ],
- [
- "▁contaminants",
- -13.371325492858887
- ],
- [
- "effectue",
- -13.37151050567627
- ],
- [
- "ediție",
- -13.371539115905762
- ],
- [
- "monetiz",
- -13.371772766113281
- ],
- [
- "▁deplasare",
- -13.371976852416992
- ],
- [
- "▁Sfant",
- -13.37209415435791
- ],
- [
- "ROOM",
- -13.372113227844238
- ],
- [
- "bushes",
- -13.372151374816895
- ],
- [
- "mairie",
- -13.37251091003418
- ],
- [
- "obligate",
- -13.372528076171875
- ],
- [
- "▁tug",
- -13.372573852539062
- ],
- [
- "▁Collector",
- -13.372632026672363
- ],
- [
- "▁annoyed",
- -13.372633934020996
- ],
- [
- "▁aerobic",
- -13.372654914855957
- ],
- [
- "▁integer",
- -13.372830390930176
- ],
- [
- "▁Upload",
- -13.373249053955078
- ],
- [
- "▁impartial",
- -13.37346076965332
- ],
- [
- "▁discuţi",
- -13.373623847961426
- ],
- [
- "gastrointestinal",
- -13.37394905090332
- ],
- [
- "▁chiropractor",
- -13.37394905090332
- ],
- [
- "▁treptat",
- -13.373950004577637
- ],
- [
- "▁fishermen",
- -13.37395191192627
- ],
- [
- "levitra",
- -13.3739595413208
- ],
- [
- "Gruppe",
- -13.373964309692383
- ],
- [
- "▁Apostle",
- -13.373970985412598
- ],
- [
- "▁conseillé",
- -13.374068260192871
- ],
- [
- "Isra",
- -13.37421703338623
- ],
- [
- "▁Persönlichkeit",
- -13.374431610107422
- ],
- [
- "▁cantitati",
- -13.374459266662598
- ],
- [
- "▁incredibil",
- -13.374614715576172
- ],
- [
- "▁Berater",
- -13.374800682067871
- ],
- [
- "▁propuneri",
- -13.374835014343262
- ],
- [
- "MEDIA",
- -13.375236511230469
- ],
- [
- "▁opaque",
- -13.37526798248291
- ],
- [
- "▁Nielsen",
- -13.375269889831543
- ],
- [
- "▁cartofi",
- -13.375277519226074
- ],
- [
- "▁Whale",
- -13.37533950805664
- ],
- [
- "erzeugen",
- -13.375890731811523
- ],
- [
- "▁knack",
- -13.375931739807129
- ],
- [
- "Kandidat",
- -13.375936508178711
- ],
- [
- "▁tradițional",
- -13.375937461853027
- ],
- [
- "zählige",
- -13.375983238220215
- ],
- [
- "▁Petroleum",
- -13.376588821411133
- ],
- [
- "▁deficiencies",
- -13.376588821411133
- ],
- [
- "▁persecution",
- -13.376588821411133
- ],
- [
- "▁zgomot",
- -13.376588821411133
- ],
- [
- "▁reiterate",
- -13.376592636108398
- ],
- [
- "▁Slice",
- -13.376670837402344
- ],
- [
- "▁envy",
- -13.376704216003418
- ],
- [
- "▁stomac",
- -13.376851081848145
- ],
- [
- "Donnell",
- -13.376914978027344
- ],
- [
- "▁primordial",
- -13.377249717712402
- ],
- [
- "reclining",
- -13.377274513244629
- ],
- [
- "PASS",
- -13.377861976623535
- ],
- [
- "▁Resistance",
- -13.377910614013672
- ],
- [
- "▁Widerruf",
- -13.377911567687988
- ],
- [
- "▁vodka",
- -13.377911567687988
- ],
- [
- "▁yolk",
- -13.377912521362305
- ],
- [
- "ollywood",
- -13.377915382385254
- ],
- [
- "▁truffle",
- -13.377933502197266
- ],
- [
- "▁Sänger",
- -13.377955436706543
- ],
- [
- "▁Kenntnis",
- -13.377968788146973
- ],
- [
- "▁Kiel",
- -13.37803840637207
- ],
- [
- "▁Mutual",
- -13.378044128417969
- ],
- [
- "▁saliva",
- -13.37816047668457
- ],
- [
- "▁renforce",
- -13.378411293029785
- ],
- [
- "▁mulch",
- -13.378680229187012
- ],
- [
- "▁reviste",
- -13.378875732421875
- ],
- [
- "lucrarea",
- -13.378978729248047
- ],
- [
- "▁multiply",
- -13.379130363464355
- ],
- [
- "▁marshmallow",
- -13.379234313964844
- ],
- [
- "▁Durchschnitt",
- -13.379288673400879
- ],
- [
- "▁Authorities",
- -13.379426002502441
- ],
- [
- "▁greed",
- -13.379521369934082
- ],
- [
- "Visiting",
- -13.379638671875
- ],
- [
- "Carlton",
- -13.379727363586426
- ],
- [
- "▁splend",
- -13.37975025177002
- ],
- [
- "▁Erkenntnisse",
- -13.379898071289062
- ],
- [
- "▁Russie",
- -13.379916191101074
- ],
- [
- "Agence",
- -13.38007926940918
- ],
- [
- "schickt",
- -13.380288124084473
- ],
- [
- "##",
- -13.3804931640625
- ],
- [
- "▁Erweiterung",
- -13.380560874938965
- ],
- [
- "▁Franchise",
- -13.380560874938965
- ],
- [
- "Dedicated",
- -13.380563735961914
- ],
- [
- "▁Wisdom",
- -13.380569458007812
- ],
- [
- "▁gagnant",
- -13.380592346191406
- ],
- [
- "planetary",
- -13.380598068237305
- ],
- [
- "▁affinity",
- -13.380619049072266
- ],
- [
- "▁préférence",
- -13.380739212036133
- ],
- [
- "▁intellect",
- -13.380810737609863
- ],
- [
- "▁Translat",
- -13.380830764770508
- ],
- [
- "▁Sultan",
- -13.38089370727539
- ],
- [
- "▁birouri",
- -13.38101577758789
- ],
- [
- "▁Academie",
- -13.381224632263184
- ],
- [
- "▁consequential",
- -13.38138484954834
- ],
- [
- "▁festgestellt",
- -13.381402015686035
- ],
- [
- "▁Chanel",
- -13.381444931030273
- ],
- [
- "▁soutenu",
- -13.381875038146973
- ],
- [
- "▁Montessori",
- -13.381888389587402
- ],
- [
- "▁equitable",
- -13.381892204284668
- ],
- [
- "▁théorie",
- -13.381893157958984
- ],
- [
- "▁primavara",
- -13.3818941116333
- ],
- [
- "▁Daughter",
- -13.38189697265625
- ],
- [
- "▁Dixon",
- -13.381898880004883
- ],
- [
- "▁unravel",
- -13.38190746307373
- ],
- [
- "Olimp",
- -13.381915092468262
- ],
- [
- "▁disturbed",
- -13.381916999816895
- ],
- [
- "▁novelty",
- -13.382004737854004
- ],
- [
- "synchronous",
- -13.382113456726074
- ],
- [
- "relevant",
- -13.382166862487793
- ],
- [
- "bourgeois",
- -13.38251781463623
- ],
- [
- "▁Parfum",
- -13.38255500793457
- ],
- [
- "▁Polonia",
- -13.382563591003418
- ],
- [
- "▁monoton",
- -13.382781028747559
- ],
- [
- "tratare",
- -13.38302230834961
- ],
- [
- "dumping",
- -13.38318157196045
- ],
- [
- "▁Bibliothek",
- -13.383217811584473
- ],
- [
- "▁Saskatchewan",
- -13.383217811584473
- ],
- [
- "▁experiential",
- -13.383217811584473
- ],
- [
- "▁verursacht",
- -13.383217811584473
- ],
- [
- "intègre",
- -13.383218765258789
- ],
- [
- "▁Intermediate",
- -13.383275032043457
- ],
- [
- "Israel",
- -13.383476257324219
- ],
- [
- "lucreaza",
- -13.383495330810547
- ],
- [
- "▁quantify",
- -13.383862495422363
- ],
- [
- "▁zahăr",
- -13.383882522583008
- ],
- [
- "▁încadr",
- -13.383902549743652
- ],
- [
- "Personalized",
- -13.383946418762207
- ],
- [
- "▁Chronic",
- -13.384309768676758
- ],
- [
- "hôpital",
- -13.384549140930176
- ],
- [
- "▁diskutiert",
- -13.384549140930176
- ],
- [
- "electrique",
- -13.3848876953125
- ],
- [
- "ethos",
- -13.384978294372559
- ],
- [
- "Nase",
- -13.385059356689453
- ],
- [
- "atmosphère",
- -13.385214805603027
- ],
- [
- "▁ungefähr",
- -13.385215759277344
- ],
- [
- "évaluer",
- -13.385251998901367
- ],
- [
- "▁scuz",
- -13.385321617126465
- ],
- [
- "haltige",
- -13.38533878326416
- ],
- [
- "January",
- -13.38557243347168
- ],
- [
- "▁Sharma",
- -13.385603904724121
- ],
- [
- "▁seizures",
- -13.385881423950195
- ],
- [
- "▁zucchini",
- -13.385881423950195
- ],
- [
- "▁Stadi",
- -13.385885238647461
- ],
- [
- "▁eccentric",
- -13.385885238647461
- ],
- [
- "▁offensichtlich",
- -13.385909080505371
- ],
- [
- "▁Irvine",
- -13.385920524597168
- ],
- [
- "cuprinse",
- -13.38601303100586
- ],
- [
- "▁Arbitr",
- -13.386157035827637
- ],
- [
- "Buenos",
- -13.386183738708496
- ],
- [
- "▁Shelter",
- -13.386210441589355
- ],
- [
- "CEPT",
- -13.386454582214355
- ],
- [
- "ouvri",
- -13.386455535888672
- ],
- [
- "acryl",
- -13.386539459228516
- ],
- [
- "▁Gourmet",
- -13.38654899597168
- ],
- [
- "scented",
- -13.386595726013184
- ],
- [
- "doubling",
- -13.38659954071045
- ],
- [
- "▁rafina",
- -13.386608123779297
- ],
- [
- "▁Vereinbarung",
- -13.38721752166748
- ],
- [
- "▁Dashboard",
- -13.387218475341797
- ],
- [
- "▁Sandwich",
- -13.387218475341797
- ],
- [
- "▁Riviera",
- -13.387226104736328
- ],
- [
- "échec",
- -13.387237548828125
- ],
- [
- "Giro",
- -13.387253761291504
- ],
- [
- "▁oasis",
- -13.38725757598877
- ],
- [
- "▁apology",
- -13.3872709274292
- ],
- [
- "▁YEAR",
- -13.387272834777832
- ],
- [
- "▁realtor",
- -13.387504577636719
- ],
- [
- "acheteur",
- -13.38754653930664
- ],
- [
- "▁larva",
- -13.387613296508789
- ],
- [
- "▁invitați",
- -13.388097763061523
- ],
- [
- "exhibiting",
- -13.38830852508545
- ],
- [
- "modernen",
- -13.388331413269043
- ],
- [
- "▁Collaboration",
- -13.38855266571045
- ],
- [
- "▁dezvălui",
- -13.38855266571045
- ],
- [
- "▁kiosk",
- -13.38855266571045
- ],
- [
- "▁Bermuda",
- -13.388553619384766
- ],
- [
- "Copiii",
- -13.388564109802246
- ],
- [
- "▁goddess",
- -13.388581275939941
- ],
- [
- "uplifting",
- -13.388609886169434
- ],
- [
- "▁simultan",
- -13.388808250427246
- ],
- [
- "▁episod",
- -13.388884544372559
- ],
- [
- "▁Braşov",
- -13.38922119140625
- ],
- [
- "cunoscută",
- -13.389634132385254
- ],
- [
- "▁Cherokee",
- -13.389890670776367
- ],
- [
- "▁Kazakhstan",
- -13.389890670776367
- ],
- [
- "▁Lauderdale",
- -13.389890670776367
- ],
- [
- "▁închisoare",
- -13.389898300170898
- ],
- [
- "▁Christchurch",
- -13.389934539794922
- ],
- [
- "▁influenţ",
- -13.389982223510742
- ],
- [
- "▁Meghan",
- -13.390019416809082
- ],
- [
- "▁Dienstleistung",
- -13.390557289123535
- ],
- [
- "▁cladiri",
- -13.390564918518066
- ],
- [
- "▁evrei",
- -13.391148567199707
- ],
- [
- "▁oatmeal",
- -13.391230583190918
- ],
- [
- "▁chronique",
- -13.3912353515625
- ],
- [
- "▁associée",
- -13.391264915466309
- ],
- [
- "▁Goose",
- -13.391283988952637
- ],
- [
- "gänz",
- -13.391855239868164
- ],
- [
- "▁Blätter",
- -13.391901969909668
- ],
- [
- "▁jurnalist",
- -13.392212867736816
- ],
- [
- "cedat",
- -13.392263412475586
- ],
- [
- "nommée",
- -13.392315864562988
- ],
- [
- "écrivain",
- -13.392572402954102
- ],
- [
- "▁epoxy",
- -13.392577171325684
- ],
- [
- "▁verlangt",
- -13.392590522766113
- ],
- [
- "Störung",
- -13.392708778381348
- ],
- [
- "▁Doyle",
- -13.392729759216309
- ],
- [
- "▁Philharmoni",
- -13.392844200134277
- ],
- [
- "▁déclare",
- -13.393044471740723
- ],
- [
- "effort",
- -13.393045425415039
- ],
- [
- "ström",
- -13.393118858337402
- ],
- [
- "▁cunoaşte",
- -13.393244743347168
- ],
- [
- "▁gigantic",
- -13.3932466506958
- ],
- [
- "któ",
- -13.393378257751465
- ],
- [
- "▁ilustr",
- -13.393529891967773
- ],
- [
- "▁frec",
- -13.39371109008789
- ],
- [
- "▁Syracuse",
- -13.393916130065918
- ],
- [
- "▁Einwilligung",
- -13.393917083740234
- ],
- [
- "▁miraculous",
- -13.393917083740234
- ],
- [
- "▁ökologisch",
- -13.393917083740234
- ],
- [
- "▁Simmons",
- -13.393922805786133
- ],
- [
- "▁albastru",
- -13.393926620483398
- ],
- [
- "besser",
- -13.393962860107422
- ],
- [
- "▁interioare",
- -13.394006729125977
- ],
- [
- "▁Trocken",
- -13.394068717956543
- ],
- [
- "niveau",
- -13.39406967163086
- ],
- [
- "▁Torah",
- -13.394122123718262
- ],
- [
- "▁beobachten",
- -13.3945894241333
- ],
- [
- "▁behandeln",
- -13.394637107849121
- ],
- [
- "staffed",
- -13.394742965698242
- ],
- [
- "hütte",
- -13.394824028015137
- ],
- [
- "Central",
- -13.394939422607422
- ],
- [
- "▁Freiburg",
- -13.395198822021484
- ],
- [
- "▁Netanyahu",
- -13.395261764526367
- ],
- [
- "▁Lexington",
- -13.395302772521973
- ],
- [
- "▁insotit",
- -13.395492553710938
- ],
- [
- "▁depasi",
- -13.39560604095459
- ],
- [
- "sewage",
- -13.395853996276855
- ],
- [
- "erkrankung",
- -13.395951271057129
- ],
- [
- "▁părţi",
- -13.396234512329102
- ],
- [
- "▁Nixon",
- -13.39661693572998
- ],
- [
- "Byron",
- -13.396905899047852
- ],
- [
- "▁varietat",
- -13.39724063873291
- ],
- [
- "▁Bildschirm",
- -13.397299766540527
- ],
- [
- "▁accompli",
- -13.397424697875977
- ],
- [
- "affirmed",
- -13.397525787353516
- ],
- [
- "▁phyto",
- -13.397533416748047
- ],
- [
- "sectiune",
- -13.397592544555664
- ],
- [
- "abteilung",
- -13.397932052612305
- ],
- [
- "▁voastre",
- -13.397957801818848
- ],
- [
- "GitHub",
- -13.397958755493164
- ],
- [
- "▁Jorge",
- -13.39796257019043
- ],
- [
- "ACTION",
- -13.397972106933594
- ],
- [
- "voastra",
- -13.397984504699707
- ],
- [
- "▁Peanut",
- -13.397987365722656
- ],
- [
- "▁bilingual",
- -13.398011207580566
- ],
- [
- "▁nourriture",
- -13.39803695678711
- ],
- [
- "▁Asphalt",
- -13.398640632629395
- ],
- [
- "emballage",
- -13.399310111999512
- ],
- [
- "▁sanitation",
- -13.399310111999512
- ],
- [
- "▁Dessert",
- -13.399313926696777
- ],
- [
- "intitulé",
- -13.399322509765625
- ],
- [
- "▁acţiune",
- -13.399374008178711
- ],
- [
- "▁Übersetzung",
- -13.399402618408203
- ],
- [
- "destinate",
- -13.39941692352295
- ],
- [
- "▁Goddess",
- -13.399504661560059
- ],
- [
- "poziție",
- -13.399576187133789
- ],
- [
- "denumirea",
- -13.400002479553223
- ],
- [
- "cantitatea",
- -13.40002727508545
- ],
- [
- "▁Stereo",
- -13.400223731994629
- ],
- [
- "object",
- -13.400373458862305
- ],
- [
- "▁décè",
- -13.40058708190918
- ],
- [
- "▁Handeln",
- -13.400665283203125
- ],
- [
- "▁ambience",
- -13.400697708129883
- ],
- [
- "▁Lindsay",
- -13.4006986618042
- ],
- [
- "▁tensiune",
- -13.400781631469727
- ],
- [
- "▁thrift",
- -13.400788307189941
- ],
- [
- "▁Optimiz",
- -13.400843620300293
- ],
- [
- "▁beantworten",
- -13.401338577270508
- ],
- [
- "▁magistrat",
- -13.401342391967773
- ],
- [
- "évidence",
- -13.402016639709473
- ],
- [
- "▁Eclipse",
- -13.402016639709473
- ],
- [
- "▁Ribbon",
- -13.402016639709473
- ],
- [
- "▁condensation",
- -13.402016639709473
- ],
- [
- "▁innocence",
- -13.402018547058105
- ],
- [
- "▁mascara",
- -13.402023315429688
- ],
- [
- "▁seventeen",
- -13.402290344238281
- ],
- [
- "▁compétent",
- -13.402694702148438
- ],
- [
- "bewertet",
- -13.402717590332031
- ],
- [
- "▁Muzic",
- -13.40285587310791
- ],
- [
- "complexities",
- -13.402928352355957
- ],
- [
- "ddington",
- -13.403324127197266
- ],
- [
- "Entwickler",
- -13.403372764587402
- ],
- [
- "masonry",
- -13.4033784866333
- ],
- [
- "Führer",
- -13.403386116027832
- ],
- [
- "▁awakening",
- -13.403388977050781
- ],
- [
- "▁lovitur",
- -13.403806686401367
- ],
- [
- "gebrochen",
- -13.404068946838379
- ],
- [
- "indexed",
- -13.404478073120117
- ],
- [
- "campania",
- -13.404515266418457
- ],
- [
- "▁Fountain",
- -13.404730796813965
- ],
- [
- "▁Joomla",
- -13.404730796813965
- ],
- [
- "▁Superintendent",
- -13.404730796813965
- ],
- [
- "▁Dahl",
- -13.404742240905762
- ],
- [
- "▁Benefici",
- -13.404863357543945
- ],
- [
- "optimiser",
- -13.404919624328613
- ],
- [
- "bursting",
- -13.405380249023438
- ],
- [
- "diplom",
- -13.405427932739258
- ],
- [
- "microsoft",
- -13.405621528625488
- ],
- [
- "▁correlate",
- -13.405776977539062
- ],
- [
- "▁arhitectura",
- -13.405848503112793
- ],
- [
- "▁lunette",
- -13.40611743927002
- ],
- [
- "Statistical",
- -13.406147003173828
- ],
- [
- "▁iarnă",
- -13.406201362609863
- ],
- [
- "▁importanț",
- -13.406932830810547
- ],
- [
- "sistence",
- -13.407366752624512
- ],
- [
- "associated",
- -13.407402992248535
- ],
- [
- "Occident",
- -13.407452583312988
- ],
- [
- "▁Heidelberg",
- -13.407452583312988
- ],
- [
- "▁acquaintance",
- -13.407452583312988
- ],
- [
- "Introducing",
- -13.407453536987305
- ],
- [
- "▁ripple",
- -13.407480239868164
- ],
- [
- "▁Childhood",
- -13.407563209533691
- ],
- [
- "drywall",
- -13.407577514648438
- ],
- [
- "Vreau",
- -13.40771770477295
- ],
- [
- "▁compétence",
- -13.407967567443848
- ],
- [
- "▁asteapta",
- -13.408135414123535
- ],
- [
- "▁duhovnic",
- -13.408135414123535
- ],
- [
- "▁învăţământ",
- -13.408141136169434
- ],
- [
- "encompassing",
- -13.40829849243164
- ],
- [
- "1997)",
- -13.408370018005371
- ],
- [
- "▁atractiv",
- -13.408515930175781
- ],
- [
- "Majoritatea",
- -13.408775329589844
- ],
- [
- "▁bungalow",
- -13.40881633758545
- ],
- [
- "▁Introduce",
- -13.408817291259766
- ],
- [
- "▁culprit",
- -13.408817291259766
- ],
- [
- "▁malheureusement",
- -13.408817291259766
- ],
- [
- "▁voudrai",
- -13.408817291259766
- ],
- [
- "Europäische",
- -13.408825874328613
- ],
- [
- "wunsch",
- -13.408880233764648
- ],
- [
- "▁înțeles",
- -13.408892631530762
- ],
- [
- "▁infestation",
- -13.40889835357666
- ],
- [
- "Bringing",
- -13.409186363220215
- ],
- [
- "▁Mehrheit",
- -13.409229278564453
- ],
- [
- "ски",
- -13.409456253051758
- ],
- [
- "▁procéder",
- -13.409499168395996
- ],
- [
- "grupului",
- -13.409504890441895
- ],
- [
- "▁dispoziti",
- -13.40964412689209
- ],
- [
- "▁snug",
- -13.409950256347656
- ],
- [
- "▁Afrika",
- -13.41018295288086
- ],
- [
- "▁Madagascar",
- -13.41018295288086
- ],
- [
- "Părinte",
- -13.410195350646973
- ],
- [
- "▁Clayton",
- -13.410223960876465
- ],
- [
- "▁antagonist",
- -13.410239219665527
- ],
- [
- "termeni",
- -13.410250663757324
- ],
- [
- "▁Literary",
- -13.410391807556152
- ],
- [
- "▁Babylon",
- -13.410452842712402
- ],
- [
- "▁überprüfen",
- -13.410865783691406
- ],
- [
- "▁duminica",
- -13.410879135131836
- ],
- [
- "farbig",
- -13.410970687866211
- ],
- [
- "nennt",
- -13.411064147949219
- ],
- [
- "annual",
- -13.411487579345703
- ],
- [
- "▁Qualcomm",
- -13.41154956817627
- ],
- [
- "▁Slovakia",
- -13.41154956817627
- ],
- [
- "▁plictis",
- -13.411552429199219
- ],
- [
- "▁prairie",
- -13.411554336547852
- ],
- [
- "▁Schatten",
- -13.411622047424316
- ],
- [
- "▁compléter",
- -13.41223430633545
- ],
- [
- "inauguration",
- -13.412376403808594
- ],
- [
- "▁apărare",
- -13.412407875061035
- ],
- [
- "▁întăr",
- -13.412412643432617
- ],
- [
- "▁pronunciation",
- -13.412919044494629
- ],
- [
- "▁bewährt",
- -13.412919998168945
- ],
- [
- "▁Viertel",
- -13.413084983825684
- ],
- [
- "▁Heidi",
- -13.413252830505371
- ],
- [
- "▁Gummi",
- -13.413507461547852
- ],
- [
- "▁veggie",
- -13.413552284240723
- ],
- [
- "▁monsieur",
- -13.413604736328125
- ],
- [
- "éveil",
- -13.413630485534668
- ],
- [
- "shipments",
- -13.413928985595703
- ],
- [
- "▁Medikamente",
- -13.414290428161621
- ],
- [
- "▁Johannesburg",
- -13.414314270019531
- ],
- [
- "▁ermittelt",
- -13.414321899414062
- ],
- [
- "▁bataille",
- -13.414440155029297
- ],
- [
- "extrem",
- -13.414609909057617
- ],
- [
- "▁1:2",
- -13.414671897888184
- ],
- [
- "Array",
- -13.414725303649902
- ],
- [
- "▁portail",
- -13.414857864379883
- ],
- [
- "▁găzdui",
- -13.414977073669434
- ],
- [
- "▁Calcium",
- -13.41497802734375
- ],
- [
- "▁Correction",
- -13.415104866027832
- ],
- [
- "bureaux",
- -13.41528034210205
- ],
- [
- "bestselling",
- -13.415338516235352
- ],
- [
- "Übungen",
- -13.415420532226562
- ],
- [
- "paramètres",
- -13.415633201599121
- ],
- [
- "▁Provincial",
- -13.415663719177246
- ],
- [
- "▁outrageous",
- -13.415680885314941
- ],
- [
- "▁Giveaway",
- -13.415775299072266
- ],
- [
- "▁LGBTQ",
- -13.41589641571045
- ],
- [
- "geklärt",
- -13.416854858398438
- ],
- [
- "▁Karlsruhe",
- -13.417038917541504
- ],
- [
- "▁esențial",
- -13.417038917541504
- ],
- [
- "avancée",
- -13.41703987121582
- ],
- [
- "hesitant",
- -13.417040824890137
- ],
- [
- "enlarged",
- -13.417069435119629
- ],
- [
- "▁inherit",
- -13.417121887207031
- ],
- [
- "Food",
- -13.4171724319458
- ],
- [
- "bucuria",
- -13.417181015014648
- ],
- [
- "▁BTW",
- -13.417400360107422
- ],
- [
- "associe",
- -13.417579650878906
- ],
- [
- "▁Möchte",
- -13.417742729187012
- ],
- [
- "demokrat",
- -13.417789459228516
- ],
- [
- "Turcia",
- -13.417964935302734
- ],
- [
- "forged",
- -13.418370246887207
- ],
- [
- "▁Zhao",
- -13.418442726135254
- ],
- [
- "▁cherries",
- -13.418556213378906
- ],
- [
- "▁evangelical",
- -13.418631553649902
- ],
- [
- "▁jüng",
- -13.418792724609375
- ],
- [
- "spans",
- -13.41880989074707
- ],
- [
- "▁străluc",
- -13.41888427734375
- ],
- [
- "▁geschie",
- -13.41893196105957
- ],
- [
- "▁Tattoo",
- -13.419112205505371
- ],
- [
- "sanitary",
- -13.419114112854004
- ],
- [
- "▁biopsy",
- -13.419353485107422
- ],
- [
- "▁imprumut",
- -13.419795036315918
- ],
- [
- "▁unreasonable",
- -13.419795036315918
- ],
- [
- "Funktion",
- -13.419800758361816
- ],
- [
- "▁prohibition",
- -13.419904708862305
- ],
- [
- "▁Prezent",
- -13.419939041137695
- ],
- [
- "boosted",
- -13.419967651367188
- ],
- [
- "▁chalet",
- -13.420382499694824
- ],
- [
- "▁tanar",
- -13.420450210571289
- ],
- [
- "Faktoren",
- -13.420489311218262
- ],
- [
- "▁Mozilla",
- -13.420550346374512
- ],
- [
- "▁Lambert",
- -13.420760154724121
- ],
- [
- "▁Cruci",
- -13.420927047729492
- ],
- [
- "▁Flugzeug",
- -13.421198844909668
- ],
- [
- "reassure",
- -13.421205520629883
- ],
- [
- "envisioned",
- -13.421542167663574
- ],
- [
- "Traditionally",
- -13.421773910522461
- ],
- [
- "▁parametri",
- -13.42185115814209
- ],
- [
- "▁unicorn",
- -13.421891212463379
- ],
- [
- "▁adéquat",
- -13.421894073486328
- ],
- [
- "▁Colonial",
- -13.421915054321289
- ],
- [
- "▁Kwa",
- -13.422097206115723
- ],
- [
- "▁SERV",
- -13.422333717346191
- ],
- [
- "tourism",
- -13.422627449035645
- ],
- [
- "▁Kiev",
- -13.422974586486816
- ],
- [
- "heightened",
- -13.42309284210205
- ],
- [
- "circulating",
- -13.423099517822266
- ],
- [
- "▁Kreditkarte",
- -13.42310619354248
- ],
- [
- "gedruckt",
- -13.423110008239746
- ],
- [
- "▁Depend",
- -13.423120498657227
- ],
- [
- "Style",
- -13.423196792602539
- ],
- [
- "▁Rettungs",
- -13.42325496673584
- ],
- [
- "wrongful",
- -13.423418998718262
- ],
- [
- "▁devour",
- -13.423453330993652
- ],
- [
- "▁manevr",
- -13.423582077026367
- ],
- [
- "carora",
- -13.423628807067871
- ],
- [
- "erfolgreichen",
- -13.423723220825195
- ],
- [
- "überwiegend",
- -13.423942565917969
- ],
- [
- "▁Sauvignon",
- -13.423942565917969
- ],
- [
- "händler",
- -13.423944473266602
- ],
- [
- "▁annotation",
- -13.424009323120117
- ],
- [
- "▁expans",
- -13.424020767211914
- ],
- [
- "▁recital",
- -13.424080848693848
- ],
- [
- "inhabited",
- -13.424367904663086
- ],
- [
- "OnePlus",
- -13.424549102783203
- ],
- [
- "Gästen",
- -13.424588203430176
- ],
- [
- "beliebig",
- -13.424613952636719
- ],
- [
- "▁Anonymous",
- -13.424635887145996
- ],
- [
- "▁Ansprechpartner",
- -13.424635887145996
- ],
- [
- "▁tamb",
- -13.42464542388916
- ],
- [
- "estimating",
- -13.424670219421387
- ],
- [
- "frequent",
- -13.424769401550293
- ],
- [
- "▁disciplin",
- -13.425241470336914
- ],
- [
- "▁plombier",
- -13.425329208374023
- ],
- [
- "▁teoretic",
- -13.42533016204834
- ],
- [
- "greift",
- -13.425339698791504
- ],
- [
- "▁Einschränkung",
- -13.42537784576416
- ],
- [
- "obscur",
- -13.426115989685059
- ],
- [
- "architecte",
- -13.426233291625977
- ],
- [
- "▁détour",
- -13.42647647857666
- ],
- [
- "▁spaghetti",
- -13.426717758178711
- ],
- [
- "croft",
- -13.42693042755127
- ],
- [
- "▁Grammar",
- -13.426953315734863
- ],
- [
- "▁investitii",
- -13.427062034606934
- ],
- [
- "▁glorif",
- -13.427067756652832
- ],
- [
- "architekt",
- -13.427412033081055
- ],
- [
- "Oricum",
- -13.427451133728027
- ],
- [
- "▁bruise",
- -13.427692413330078
- ],
- [
- "▁McCarthy",
- -13.428107261657715
- ],
- [
- "▁Uruguay",
- -13.428107261657715
- ],
- [
- "Produsele",
- -13.428109169006348
- ],
- [
- "▁Comparison",
- -13.42811107635498
- ],
- [
- "▁fondamental",
- -13.42811107635498
- ],
- [
- "▁stradă",
- -13.428115844726562
- ],
- [
- "▁Countries",
- -13.428131103515625
- ],
- [
- "▁guéri",
- -13.42825698852539
- ],
- [
- "▁bâti",
- -13.428339004516602
- ],
- [
- "▁blunt",
- -13.428515434265137
- ],
- [
- "▁Sistem",
- -13.428645133972168
- ],
- [
- "▁Betroffenen",
- -13.428803443908691
- ],
- [
- "efectuare",
- -13.428823471069336
- ],
- [
- "▁scharf",
- -13.428899765014648
- ],
- [
- "naps",
- -13.429057121276855
- ],
- [
- "▁plaid",
- -13.429163932800293
- ],
- [
- "▁investiții",
- -13.429367065429688
- ],
- [
- "evenimentele",
- -13.42948055267334
- ],
- [
- "▁Phuket",
- -13.429499626159668
- ],
- [
- "▁testosterone",
- -13.429499626159668
- ],
- [
- "▁scaffold",
- -13.429500579833984
- ],
- [
- "▁rasch",
- -13.430022239685059
- ],
- [
- "▁adânc",
- -13.430076599121094
- ],
- [
- "atteinte",
- -13.430228233337402
- ],
- [
- "▁educație",
- -13.430320739746094
- ],
- [
- "▁leopard",
- -13.430893898010254
- ],
- [
- "▁superioare",
- -13.430893898010254
- ],
- [
- "▁téléchargement",
- -13.430893898010254
- ],
- [
- "▁Weapon",
- -13.431103706359863
- ],
- [
- "favourable",
- -13.431336402893066
- ],
- [
- "nourishing",
- -13.43143367767334
- ],
- [
- "▁verfolgt",
- -13.43160629272461
- ],
- [
- "▁tablou",
- -13.431633949279785
- ],
- [
- "Algérie",
- -13.431657791137695
- ],
- [
- "Islam",
- -13.431700706481934
- ],
- [
- "faser",
- -13.431825637817383
- ],
- [
- "rhythm",
- -13.432214736938477
- ],
- [
- "▁Anthropolog",
- -13.432291030883789
- ],
- [
- "▁clôtur",
- -13.432291030883789
- ],
- [
- "spüren",
- -13.432291984558105
- ],
- [
- "▁Architectural",
- -13.432294845581055
- ],
- [
- "▁imaginary",
- -13.432368278503418
- ],
- [
- "cône",
- -13.432456016540527
- ],
- [
- "▁snuggl",
- -13.432744026184082
- ],
- [
- "disadvantaged",
- -13.432745933532715
- ],
- [
- "radically",
- -13.4329195022583
- ],
- [
- "Première",
- -13.433011054992676
- ],
- [
- "▁combinaison",
- -13.433027267456055
- ],
- [
- "▁Algeria",
- -13.43303108215332
- ],
- [
- "▁Wände",
- -13.43317985534668
- ],
- [
- "aesthetically",
- -13.43336009979248
- ],
- [
- "▁McKe",
- -13.433368682861328
- ],
- [
- "interroge",
- -13.433473587036133
- ],
- [
- "exclusive",
- -13.433475494384766
- ],
- [
- "▁Thomson",
- -13.433688163757324
- ],
- [
- "▁Gujarat",
- -13.43368911743164
- ],
- [
- "irgendwo",
- -13.433690071105957
- ],
- [
- "Severin",
- -13.433767318725586
- ],
- [
- "▁imitation",
- -13.433926582336426
- ],
- [
- "constructed",
- -13.434194564819336
- ],
- [
- "▁Montpellier",
- -13.434388160705566
- ],
- [
- "cedent",
- -13.434539794921875
- ],
- [
- "accelerating",
- -13.434563636779785
- ],
- [
- "dommages",
- -13.4346284866333
- ],
- [
- "lideri",
- -13.434730529785156
- ],
- [
- "▁Millennium",
- -13.435089111328125
- ],
- [
- "▁imprisonment",
- -13.435089111328125
- ],
- [
- "machining",
- -13.435111999511719
- ],
- [
- "▁anxiet",
- -13.43521499633789
- ],
- [
- "Contains",
- -13.435298919677734
- ],
- [
- "pleade",
- -13.435563087463379
- ],
- [
- "DOWN",
- -13.43564510345459
- ],
- [
- "geschehen",
- -13.435797691345215
- ],
- [
- "restaurant",
- -13.435811996459961
- ],
- [
- "Totusi",
- -13.435839653015137
- ],
- [
- "amintesc",
- -13.436158180236816
- ],
- [
- "▁Crisp",
- -13.436233520507812
- ],
- [
- "aduse",
- -13.436278343200684
- ],
- [
- "▁imposé",
- -13.436351776123047
- ],
- [
- "Jubiläum",
- -13.436490058898926
- ],
- [
- "▁Plaintiff",
- -13.436491012573242
- ],
- [
- "▁authoritative",
- -13.436491966247559
- ],
- [
- "▁rendition",
- -13.436633110046387
- ],
- [
- "Royce",
- -13.436707496643066
- ],
- [
- "1996)",
- -13.436724662780762
- ],
- [
- "Asociația",
- -13.437192916870117
- ],
- [
- "▁Gluten",
- -13.437264442443848
- ],
- [
- "feature",
- -13.43741226196289
- ],
- [
- "Behavioral",
- -13.437454223632812
- ],
- [
- "tearing",
- -13.437763214111328
- ],
- [
- "▁Entfernung",
- -13.437894821166992
- ],
- [
- "▁Responsibility",
- -13.437894821166992
- ],
- [
- "▁negligent",
- -13.437894821166992
- ],
- [
- "▁syllabus",
- -13.437894821166992
- ],
- [
- "▁Cycling",
- -13.437895774841309
- ],
- [
- "generell",
- -13.438114166259766
- ],
- [
- "customised",
- -13.438392639160156
- ],
- [
- "Management",
- -13.43850326538086
- ],
- [
- "▁timid",
- -13.438518524169922
- ],
- [
- "Tagged",
- -13.438730239868164
- ],
- [
- "▁susţinut",
- -13.438809394836426
- ],
- [
- "anchored",
- -13.43892765045166
- ],
- [
- "alternating",
- -13.439055442810059
- ],
- [
- "▁obligatoriu",
- -13.439300537109375
- ],
- [
- "▁reinstate",
- -13.439456939697266
- ],
- [
- "Können",
- -13.43946361541748
- ],
- [
- "▁Paol",
- -13.439596176147461
- ],
- [
- "öhr",
- -13.439603805541992
- ],
- [
- "▁Asociati",
- -13.439876556396484
- ],
- [
- "▁commenc",
- -13.440285682678223
- ],
- [
- "reinigt",
- -13.440293312072754
- ],
- [
- "commended",
- -13.440350532531738
- ],
- [
- "▁Proceed",
- -13.440675735473633
- ],
- [
- "beutel",
- -13.440702438354492
- ],
- [
- "▁Experimental",
- -13.44070816040039
- ],
- [
- "▁constellation",
- -13.44070816040039
- ],
- [
- "▁gepflegt",
- -13.44070816040039
- ],
- [
- "▁Ergänzung",
- -13.440709114074707
- ],
- [
- "Judith",
- -13.440713882446289
- ],
- [
- "▁Quartet",
- -13.440720558166504
- ],
- [
- "complemented",
- -13.440742492675781
- ],
- [
- "ausbildung",
- -13.440750122070312
- ],
- [
- "▁uncertainties",
- -13.44077205657959
- ],
- [
- "▁humiliat",
- -13.440914154052734
- ],
- [
- "luta",
- -13.441121101379395
- ],
- [
- "▁complexion",
- -13.441482543945312
- ],
- [
- "Serviciul",
- -13.441612243652344
- ],
- [
- "▁Toast",
- -13.441722869873047
- ],
- [
- "ummies",
- -13.442425727844238
- ],
- [
- "▁irit",
- -13.442463874816895
- ],
- [
- "producing",
- -13.442585945129395
- ],
- [
- "amenajare",
- -13.442825317382812
- ],
- [
- "▁béton",
- -13.442828178405762
- ],
- [
- "▁serpent",
- -13.442851066589355
- ],
- [
- "▁vizită",
- -13.442996978759766
- ],
- [
- "▁Beamte",
- -13.443017959594727
- ],
- [
- "▁Füße",
- -13.443166732788086
- ],
- [
- "▁Norwich",
- -13.443531036376953
- ],
- [
- "▁acronym",
- -13.443531036376953
- ],
- [
- "▁eradicate",
- -13.443531036376953
- ],
- [
- "▁solidarité",
- -13.44353199005127
- ],
- [
- "▁eggplant",
- -13.443582534790039
- ],
- [
- "▁sailors",
- -13.443619728088379
- ],
- [
- "waschen",
- -13.444538116455078
- ],
- [
- "Editura",
- -13.444757461547852
- ],
- [
- "▁erwerben",
- -13.444944381713867
- ],
- [
- "▁unconventional",
- -13.444944381713867
- ],
- [
- "▁boulder",
- -13.444948196411133
- ],
- [
- "Diplom",
- -13.445013046264648
- ],
- [
- "influx",
- -13.446162223815918
- ],
- [
- "▁Twelve",
- -13.446361541748047
- ],
- [
- "▁Sexual",
- -13.44636344909668
- ],
- [
- "numite",
- -13.446369171142578
- ],
- [
- "▁kontaktieren",
- -13.446370124816895
- ],
- [
- "▁strâns",
- -13.44637680053711
- ],
- [
- "▁précisément",
- -13.446382522583008
- ],
- [
- "empfindlich",
- -13.446405410766602
- ],
- [
- "▁divulg",
- -13.446490287780762
- ],
- [
- "▁delicat",
- -13.446539878845215
- ],
- [
- "compete",
- -13.446542739868164
- ],
- [
- "▁implique",
- -13.446616172790527
- ],
- [
- "implantation",
- -13.44672966003418
- ],
- [
- "frères",
- -13.447328567504883
- ],
- [
- "shedding",
- -13.44758415222168
- ],
- [
- "découvrez",
- -13.447657585144043
- ],
- [
- "rith",
- -13.447735786437988
- ],
- [
- "▁réglementation",
- -13.447778701782227
- ],
- [
- "▁transistor",
- -13.447785377502441
- ],
- [
- "inflated",
- -13.447792053222656
- ],
- [
- "▁Bluff",
- -13.447887420654297
- ],
- [
- "▁Aquarium",
- -13.448526382446289
- ],
- [
- "▁mananc",
- -13.448638916015625
- ],
- [
- "▁disinfect",
- -13.448700904846191
- ],
- [
- "tuft",
- -13.448740005493164
- ],
- [
- "Public",
- -13.449081420898438
- ],
- [
- "conceivabl",
- -13.449197769165039
- ],
- [
- "▁Cadillac",
- -13.449197769165039
- ],
- [
- "Assassin",
- -13.449199676513672
- ],
- [
- "issuance",
- -13.449252128601074
- ],
- [
- "▁Achtung",
- -13.449287414550781
- ],
- [
- "▁grundlegend",
- -13.449909210205078
- ],
- [
- "▁Băsescu",
- -13.449910163879395
- ],
- [
- "schaden",
- -13.45014476776123
- ],
- [
- "coached",
- -13.450409889221191
- ],
- [
- "▁betreffend",
- -13.45046329498291
- ],
- [
- "ergebnis",
- -13.450541496276855
- ],
- [
- "▁Lieutenant",
- -13.4506196975708
- ],
- [
- "WORLD",
- -13.450620651245117
- ],
- [
- "▁Moroccan",
- -13.450620651245117
- ],
- [
- "▁Butterfly",
- -13.450621604919434
- ],
- [
- "would",
- -13.450737953186035
- ],
- [
- "▁Metropol",
- -13.451025009155273
- ],
- [
- "lexic",
- -13.451192855834961
- ],
- [
- "comunitatea",
- -13.45124340057373
- ],
- [
- "vapeur",
- -13.451456069946289
- ],
- [
- "4.000",
- -13.451559066772461
- ],
- [
- "Pentru",
- -13.451581954956055
- ],
- [
- "üblichen",
- -13.451613426208496
- ],
- [
- "▁Général",
- -13.451770782470703
- ],
- [
- "▁Versailles",
- -13.452046394348145
- ],
- [
- "▁engraving",
- -13.452046394348145
- ],
- [
- "▁pédagogique",
- -13.452192306518555
- ],
- [
- "▁Policies",
- -13.452759742736816
- ],
- [
- "descending",
- -13.453235626220703
- ],
- [
- "stärkt",
- -13.453349113464355
- ],
- [
- "▁démocratie",
- -13.453470230102539
- ],
- [
- "▁granddaughter",
- -13.453470230102539
- ],
- [
- "▁buffalo",
- -13.453474998474121
- ],
- [
- "Datorita",
- -13.45347785949707
- ],
- [
- "hydroxy",
- -13.453537940979004
- ],
- [
- "▁ganduri",
- -13.453566551208496
- ],
- [
- "▁hijack",
- -13.453624725341797
- ],
- [
- "zahn",
- -13.453699111938477
- ],
- [
- "poziția",
- -13.45406436920166
- ],
- [
- "▁Zähne",
- -13.454184532165527
- ],
- [
- "▁grossesse",
- -13.454296112060547
- ],
- [
- "embassy",
- -13.4548978805542
- ],
- [
- "▁cérémonie",
- -13.4548978805542
- ],
- [
- "Rhône",
- -13.454898834228516
- ],
- [
- "▁Cabernet",
- -13.454898834228516
- ],
- [
- "▁Namibia",
- -13.454902648925781
- ],
- [
- "▁pedestal",
- -13.454902648925781
- ],
- [
- "▁Fighting",
- -13.45490550994873
- ],
- [
- "▁Threat",
- -13.454962730407715
- ],
- [
- "▁ideological",
- -13.455047607421875
- ],
- [
- "▁restitu",
- -13.455183029174805
- ],
- [
- "gelangt",
- -13.455510139465332
- ],
- [
- "Mitgliedern",
- -13.455537796020508
- ],
- [
- "acquérir",
- -13.455613136291504
- ],
- [
- "▁inferioar",
- -13.45561695098877
- ],
- [
- "Thierry",
- -13.455619812011719
- ],
- [
- "▁Entspannung",
- -13.455638885498047
- ],
- [
- "frequency",
- -13.45566177368164
- ],
- [
- "▁Fluid",
- -13.455686569213867
- ],
- [
- "▁betreut",
- -13.455901145935059
- ],
- [
- "Biological",
- -13.455965995788574
- ],
- [
- "▁Constanţa",
- -13.456328392028809
- ],
- [
- "▁beschäftigen",
- -13.456328392028809
- ],
- [
- "▁undesirable",
- -13.456328392028809
- ],
- [
- "▁protégé",
- -13.456365585327148
- ],
- [
- "▁nautical",
- -13.456474304199219
- ],
- [
- "▁sniff",
- -13.456507682800293
- ],
- [
- "Decizi",
- -13.456510543823242
- ],
- [
- "▁căldur",
- -13.45706558227539
- ],
- [
- "▁ideologi",
- -13.457335472106934
- ],
- [
- "Fraktion",
- -13.457545280456543
- ],
- [
- "collegiate",
- -13.45776081085205
- ],
- [
- "▁sănătos",
- -13.45776081085205
- ],
- [
- "▁Observatory",
- -13.45776653289795
- ],
- [
- "▁saturation",
- -13.457769393920898
- ],
- [
- "organizate",
- -13.457771301269531
- ],
- [
- "mergem",
- -13.458321571350098
- ],
- [
- "Publish",
- -13.458451271057129
- ],
- [
- "▁rattle",
- -13.458460807800293
- ],
- [
- "▁întâlniri",
- -13.458663940429688
- ],
- [
- "emporte",
- -13.458741188049316
- ],
- [
- "▁înscris",
- -13.459046363830566
- ],
- [
- "▁Patterson",
- -13.459195137023926
- ],
- [
- "▁ehrenamtlich",
- -13.459195137023926
- ],
- [
- "linux",
- -13.459213256835938
- ],
- [
- "conduire",
- -13.45921802520752
- ],
- [
- "▁absolven",
- -13.459223747253418
- ],
- [
- "▁einzigartig",
- -13.459598541259766
- ],
- [
- "▁_____",
- -13.459803581237793
- ],
- [
- "▁Beschäftigung",
- -13.459912300109863
- ],
- [
- "▁erfasst",
- -13.459927558898926
- ],
- [
- "▁Datum",
- -13.459992408752441
- ],
- [
- "raportul",
- -13.460284233093262
- ],
- [
- "ennemi",
- -13.460460662841797
- ],
- [
- "default",
- -13.460643768310547
- ],
- [
- "icillin",
- -13.46066951751709
- ],
- [
- "▁diamant",
- -13.460671424865723
- ],
- [
- "amerika",
- -13.460684776306152
- ],
- [
- "▁pescuit",
- -13.46070384979248
- ],
- [
- "▁grappl",
- -13.460797309875488
- ],
- [
- "▁Homeland",
- -13.46082592010498
- ],
- [
- "▁tromb",
- -13.46112060546875
- ],
- [
- "▁reduzieren",
- -13.461349487304688
- ],
- [
- "▁Statut",
- -13.461593627929688
- ],
- [
- "booming",
- -13.461670875549316
- ],
- [
- "fenced",
- -13.461723327636719
- ],
- [
- "measure",
- -13.461888313293457
- ],
- [
- "témoin",
- -13.462069511413574
- ],
- [
- "▁Inventory",
- -13.462069511413574
- ],
- [
- "▁circonstance",
- -13.462069511413574
- ],
- [
- "▁téléphonique",
- -13.462069511413574
- ],
- [
- "▁împiedic",
- -13.46207046508789
- ],
- [
- "▁Settlement",
- -13.462072372436523
- ],
- [
- "kannte",
- -13.462076187133789
- ],
- [
- "▁substantive",
- -13.462385177612305
- ],
- [
- "miterea",
- -13.462642669677734
- ],
- [
- "▁noştri",
- -13.462790489196777
- ],
- [
- "▁plăcere",
- -13.462791442871094
- ],
- [
- "▁eticheta",
- -13.462823867797852
- ],
- [
- "quickest",
- -13.462993621826172
- ],
- [
- "▁pasageri",
- -13.463089942932129
- ],
- [
- "▁Publi",
- -13.463495254516602
- ],
- [
- "▁Suzanne",
- -13.463509559631348
- ],
- [
- "▁bucătări",
- -13.463509559631348
- ],
- [
- "Regulatory",
- -13.463510513305664
- ],
- [
- "▁Mandarin",
- -13.463647842407227
- ],
- [
- "surgical",
- -13.463947296142578
- ],
- [
- "▁Smash",
- -13.463950157165527
- ],
- [
- "▁mândr",
- -13.46403694152832
- ],
- [
- "▁Unterkunft",
- -13.464315414428711
- ],
- [
- "moos",
- -13.464374542236328
- ],
- [
- "Camere",
- -13.464510917663574
- ],
- [
- "/03/",
- -13.464651107788086
- ],
- [
- "▁ethno",
- -13.464677810668945
- ],
- [
- "▁Eröffnung",
- -13.46495246887207
- ],
- [
- "▁Snyder",
- -13.46495246887207
- ],
- [
- "▁Wilmington",
- -13.46495246887207
- ],
- [
- "▁Canberra",
- -13.464953422546387
- ],
- [
- "▁Tahoe",
- -13.464953422546387
- ],
- [
- "▁slippery",
- -13.464953422546387
- ],
- [
- "▁Snake",
- -13.464957237243652
- ],
- [
- "▁turmeric",
- -13.464963912963867
- ],
- [
- "▁Cartoon",
- -13.46499252319336
- ],
- [
- "▁scrisoare",
- -13.46500015258789
- ],
- [
- "▁reprend",
- -13.465425491333008
- ],
- [
- "▁Konkurrenz",
- -13.46567440032959
- ],
- [
- "▁raisins",
- -13.465693473815918
- ],
- [
- "▁Werkstatt",
- -13.465713500976562
- ],
- [
- "▁agresiv",
- -13.465795516967773
- ],
- [
- "hugs",
- -13.46615219116211
- ],
- [
- "cazurile",
- -13.46618938446045
- ],
- [
- "spirited",
- -13.466232299804688
- ],
- [
- "▁britisch",
- -13.466307640075684
- ],
- [
- "spritz",
- -13.466367721557617
- ],
- [
- "auxiliary",
- -13.46639633178711
- ],
- [
- "interprétation",
- -13.46639633178711
- ],
- [
- "▁verbindet",
- -13.46639633178711
- ],
- [
- "▁fuzzy",
- -13.466429710388184
- ],
- [
- "▁turmoil",
- -13.466432571411133
- ],
- [
- "▁redefine",
- -13.466819763183594
- ],
- [
- "▁Kiwi",
- -13.466890335083008
- ],
- [
- "oiseaux",
- -13.46712875366211
- ],
- [
- "▁pamper",
- -13.467146873474121
- ],
- [
- "▁desfaso",
- -13.46719741821289
- ],
- [
- "▁pragu",
- -13.467576026916504
- ],
- [
- "prevenirea",
- -13.467730522155762
- ],
- [
- "▁convergence",
- -13.467846870422363
- ],
- [
- "tufted",
- -13.467878341674805
- ],
- [
- "brewed",
- -13.467981338500977
- ],
- [
- "villagers",
- -13.468003273010254
- ],
- [
- "▁Irving",
- -13.468170166015625
- ],
- [
- "nigsten",
- -13.468660354614258
- ],
- [
- "▁embod",
- -13.468742370605469
- ],
- [
- "Alicia",
- -13.468938827514648
- ],
- [
- "probably",
- -13.469009399414062
- ],
- [
- "divider",
- -13.46904468536377
- ],
- [
- "Attempt",
- -13.469223022460938
- ],
- [
- "▁Cognitive",
- -13.469292640686035
- ],
- [
- "▁Recognition",
- -13.469292640686035
- ],
- [
- "▁concierge",
- -13.469292640686035
- ],
- [
- "▁Semester",
- -13.4692964553833
- ],
- [
- "Economie",
- -13.469417572021484
- ],
- [
- "sortiment",
- -13.469460487365723
- ],
- [
- "shortest",
- -13.46961498260498
- ],
- [
- "üchtig",
- -13.469650268554688
- ],
- [
- "▁conveyanc",
- -13.469978332519531
- ],
- [
- "▁Ferdinand",
- -13.470017433166504
- ],
- [
- "▁permanence",
- -13.470019340515137
- ],
- [
- "▁incadr",
- -13.470145225524902
- ],
- [
- "▁estrogen",
- -13.470290184020996
- ],
- [
- "February",
- -13.470661163330078
- ],
- [
- "gedeckt",
- -13.470704078674316
- ],
- [
- "▁reagieren",
- -13.470743179321289
- ],
- [
- "▁meditate",
- -13.470980644226074
- ],
- [
- "simulated",
- -13.471010208129883
- ],
- [
- "▁supprimer",
- -13.471468925476074
- ],
- [
- "▁bumbac",
- -13.47146987915039
- ],
- [
- "▁vânzări",
- -13.471477508544922
- ],
- [
- "▁Kapitel",
- -13.471478462219238
- ],
- [
- "▁Weltkrieg",
- -13.471513748168945
- ],
- [
- "déposer",
- -13.471674919128418
- ],
- [
- "Asus",
- -13.4718017578125
- ],
- [
- "▁Communicat",
- -13.471851348876953
- ],
- [
- "Finished",
- -13.47188949584961
- ],
- [
- "▁Telegraph",
- -13.472054481506348
- ],
- [
- "▁Competitive",
- -13.472196578979492
- ],
- [
- "▁collectivités",
- -13.472197532653809
- ],
- [
- "▁protège",
- -13.472199440002441
- ],
- [
- "▁scallop",
- -13.472219467163086
- ],
- [
- "Happy",
- -13.472335815429688
- ],
- [
- "tehnică",
- -13.472352981567383
- ],
- [
- "▁Gestalt",
- -13.47270393371582
- ],
- [
- "▁benign",
- -13.47295093536377
- ],
- [
- "kraut",
- -13.473149299621582
- ],
- [
- "louer",
- -13.473221778869629
- ],
- [
- "▁Printr",
- -13.47326946258545
- ],
- [
- "mputation",
- -13.473346710205078
- ],
- [
- "▁dicke",
- -13.473429679870605
- ],
- [
- "▁Halifax",
- -13.473650932312012
- ],
- [
- "▁bounty",
- -13.473650932312012
- ],
- [
- "▁cauliflower",
- -13.473650932312012
- ],
- [
- "▁Survival",
- -13.473654747009277
- ],
- [
- "▁Chandler",
- -13.473684310913086
- ],
- [
- "▁bemüh",
- -13.473760604858398
- ],
- [
- "phro",
- -13.473855972290039
- ],
- [
- "Friday",
- -13.474018096923828
- ],
- [
- "particularly",
- -13.474032402038574
- ],
- [
- "arteries",
- -13.474197387695312
- ],
- [
- "Lösung",
- -13.474771499633789
- ],
- [
- "▁causal",
- -13.474817276000977
- ],
- [
- "▁recueilli",
- -13.475075721740723
- ],
- [
- "Stylish",
- -13.47510814666748
- ],
- [
- "schränke",
- -13.47510814666748
- ],
- [
- "▁francophone",
- -13.47510814666748
- ],
- [
- "▁limousine",
- -13.47510814666748
- ],
- [
- "▁statistiques",
- -13.47510814666748
- ],
- [
- "▁Kleider",
- -13.475111961364746
- ],
- [
- "▁dunkel",
- -13.475127220153809
- ],
- [
- "tätigkeit",
- -13.475190162658691
- ],
- [
- "▁punished",
- -13.475257873535156
- ],
- [
- "▁implică",
- -13.475539207458496
- ],
- [
- "▁inițial",
- -13.475568771362305
- ],
- [
- "▁Eminescu",
- -13.475837707519531
- ],
- [
- "▁expliqué",
- -13.475837707519531
- ],
- [
- "▁Eduard",
- -13.475839614868164
- ],
- [
- "▁psychologique",
- -13.475870132446289
- ],
- [
- "▁protejeaz",
- -13.476580619812012
- ],
- [
- "spül",
- -13.476709365844727
- ],
- [
- "▁Virtu",
- -13.477021217346191
- ],
- [
- "▁régulière",
- -13.477044105529785
- ],
- [
- "▁Outreach",
- -13.477130889892578
- ],
- [
- "▁Apprentice",
- -13.47729778289795
- ],
- [
- "▁compréhension",
- -13.47729778289795
- ],
- [
- "▁zwölf",
- -13.47729778289795
- ],
- [
- "Surgical",
- -13.477315902709961
- ],
- [
- "latéral",
- -13.477417945861816
- ],
- [
- "▁Ceremony",
- -13.47803020477295
- ],
- [
- "▁Shampoo",
- -13.47803783416748
- ],
- [
- "Global",
- -13.478239059448242
- ],
- [
- "▁paradis",
- -13.478302955627441
- ],
- [
- "Developed",
- -13.478493690490723
- ],
- [
- "▁figurine",
- -13.478549003601074
- ],
- [
- "sujets",
- -13.478574752807617
- ],
- [
- "▁Naomi",
- -13.478772163391113
- ],
- [
- "financed",
- -13.478838920593262
- ],
- [
- "forestry",
- -13.478896141052246
- ],
- [
- "▁Anregung",
- -13.479494094848633
- ],
- [
- "▁spectateur",
- -13.479804039001465
- ],
- [
- "▁exercitii",
- -13.479815483093262
- ],
- [
- "▁russisch",
- -13.479888916015625
- ],
- [
- "gefunden",
- -13.479988098144531
- ],
- [
- "schleunig",
- -13.480225563049316
- ],
- [
- "▁géographique",
- -13.480225563049316
- ],
- [
- "▁Delphi",
- -13.480317115783691
- ],
- [
- "Freddie",
- -13.4806489944458
- ],
- [
- "▁muzici",
- -13.480958938598633
- ],
- [
- "▁Edmund",
- -13.48095989227295
- ],
- [
- "finanzielle",
- -13.481032371520996
- ],
- [
- "(2003)",
- -13.481319427490234
- ],
- [
- "accentuate",
- -13.481437683105469
- ],
- [
- "overlapping",
- -13.48151969909668
- ],
- [
- "▁Pluto",
- -13.481595993041992
- ],
- [
- "românii",
- -13.481683731079102
- ],
- [
- "▁Timişoara",
- -13.48169231414795
- ],
- [
- "▁poivr",
- -13.481754302978516
- ],
- [
- "▁repris",
- -13.481852531433105
- ],
- [
- "▁Geschlecht",
- -13.482426643371582
- ],
- [
- "▁thieves",
- -13.482426643371582
- ],
- [
- "▁Transformer",
- -13.482431411743164
- ],
- [
- "▁shortcomings",
- -13.482438087463379
- ],
- [
- "▁aptitude",
- -13.48244571685791
- ],
- [
- "pitfalls",
- -13.482468605041504
- ],
- [
- "▁manicure",
- -13.482577323913574
- ],
- [
- "mystical",
- -13.482723236083984
- ],
- [
- "▁abolish",
- -13.482833862304688
- ],
- [
- "▁Zielgruppe",
- -13.482873916625977
- ],
- [
- "▁naţionale",
- -13.483160972595215
- ],
- [
- "▁trandafir",
- -13.483160972595215
- ],
- [
- "▁matematic",
- -13.483193397521973
- ],
- [
- "▁Hirsch",
- -13.483257293701172
- ],
- [
- "Fahr",
- -13.483458518981934
- ],
- [
- "connaissent",
- -13.483476638793945
- ],
- [
- "browned",
- -13.483846664428711
- ],
- [
- "▁bearbeitet",
- -13.483881950378418
- ],
- [
- "▁usturoi",
- -13.483896255493164
- ],
- [
- "▁Surprise",
- -13.48389720916748
- ],
- [
- "▁Tehran",
- -13.483899116516113
- ],
- [
- "▁BLACK",
- -13.483901023864746
- ],
- [
- "▁abonament",
- -13.483904838562012
- ],
- [
- "▁mêl",
- -13.483972549438477
- ],
- [
- "Angebot",
- -13.484091758728027
- ],
- [
- "ajungi",
- -13.48410415649414
- ],
- [
- "▁Woodland",
- -13.48420524597168
- ],
- [
- "▁gradini",
- -13.484305381774902
- ],
- [
- "▁Marilyn",
- -13.48464584350586
- ],
- [
- "kilometer",
- -13.484880447387695
- ],
- [
- "tempered",
- -13.485230445861816
- ],
- [
- "▁intimacy",
- -13.485371589660645
- ],
- [
- "▁thunderstorm",
- -13.485373497009277
- ],
- [
- "▁Uttar",
- -13.485413551330566
- ],
- [
- "▁varnish",
- -13.485535621643066
- ],
- [
- "opathie",
- -13.485982894897461
- ],
- [
- "▁școlar",
- -13.48611068725586
- ],
- [
- "▁raisonnable",
- -13.486114501953125
- ],
- [
- "proactively",
- -13.486490249633789
- ],
- [
- "▁gib",
- -13.486536979675293
- ],
- [
- "▁hospice",
- -13.48684310913086
- ],
- [
- "▁constă",
- -13.486896514892578
- ],
- [
- "▁Crescent",
- -13.48690128326416
- ],
- [
- "▁ambasad",
- -13.486933708190918
- ],
- [
- "hotărâre",
- -13.486969947814941
- ],
- [
- "▁fraîche",
- -13.48709774017334
- ],
- [
- "▁bundesweit",
- -13.487581253051758
- ],
- [
- "nsbesondere",
- -13.487812042236328
- ],
- [
- "▁intoarce",
- -13.487863540649414
- ],
- [
- "▁Schokolade",
- -13.488319396972656
- ],
- [
- "▁adjective",
- -13.488319396972656
- ],
- [
- "▁incalzire",
- -13.488319396972656
- ],
- [
- "▁Qualification",
- -13.488320350646973
- ],
- [
- "▁Bolivia",
- -13.488324165344238
- ],
- [
- "▁cruelty",
- -13.488334655761719
- ],
- [
- "pläne",
- -13.48834228515625
- ],
- [
- "▁solitude",
- -13.488354682922363
- ],
- [
- "▁Bosnia",
- -13.488568305969238
- ],
- [
- "rohr",
- -13.488643646240234
- ],
- [
- "▁regrette",
- -13.48877239227295
- ],
- [
- "zusammengestellt",
- -13.48924732208252
- ],
- [
- "▁Kardashian",
- -13.489798545837402
- ],
- [
- "▁Picasso",
- -13.489798545837402
- ],
- [
- "▁unverbindlich",
- -13.489798545837402
- ],
- [
- "▁Headquarters",
- -13.489799499511719
- ],
- [
- "métrage",
- -13.4898099899292
- ],
- [
- "▁Magento",
- -13.489816665649414
- ],
- [
- "▁exhibitors",
- -13.489898681640625
- ],
- [
- "utty",
- -13.490381240844727
- ],
- [
- "▁Fünf",
- -13.490538597106934
- ],
- [
- "▁Peugeot",
- -13.490538597106934
- ],
- [
- "▁verdienen",
- -13.490538597106934
- ],
- [
- "▁absolviert",
- -13.49053955078125
- ],
- [
- "schutzerklärung",
- -13.490679740905762
- ],
- [
- "sistemele",
- -13.49089241027832
- ],
- [
- "▁concrète",
- -13.491279602050781
- ],
- [
- "▁rhyme",
- -13.491279602050781
- ],
- [
- "▁Continuous",
- -13.49128246307373
- ],
- [
- "versprechen",
- -13.491312026977539
- ],
- [
- "▁Melanie",
- -13.49202823638916
- ],
- [
- "▁clienţi",
- -13.492046356201172
- ],
- [
- "luckily",
- -13.492205619812012
- ],
- [
- "▁counterfeit",
- -13.492762565612793
- ],
- [
- "▁locomotive",
- -13.492889404296875
- ],
- [
- "▁reacți",
- -13.492908477783203
- ],
- [
- "ampered",
- -13.493005752563477
- ],
- [
- "atenția",
- -13.493011474609375
- ],
- [
- "Suppose",
- -13.493062973022461
- ],
- [
- "hinweis",
- -13.493464469909668
- ],
- [
- "verletzung",
- -13.493504524230957
- ],
- [
- "▁mănânc",
- -13.493504524230957
- ],
- [
- "▁provoac",
- -13.493507385253906
- ],
- [
- "▁regizor",
- -13.493511199951172
- ],
- [
- "kundig",
- -13.49352741241455
- ],
- [
- "embarqu",
- -13.493584632873535
- ],
- [
- "Radio",
- -13.493690490722656
- ],
- [
- "Ministrul",
- -13.493896484375
- ],
- [
- "weakened",
- -13.494214057922363
- ],
- [
- "▁translucent",
- -13.494247436523438
- ],
- [
- "George",
- -13.494380950927734
- ],
- [
- "▁bacterii",
- -13.494402885437012
- ],
- [
- "intervalul",
- -13.494803428649902
- ],
- [
- "▁vizualiz",
- -13.494832038879395
- ],
- [
- "▁Feuchtigkeit",
- -13.494991302490234
- ],
- [
- "▁choisissez",
- -13.494991302490234
- ],
- [
- "▁plausible",
- -13.494991302490234
- ],
- [
- "▁perpetu",
- -13.495122909545898
- ],
- [
- "▁bucati",
- -13.495194435119629
- ],
- [
- "▁Giovanni",
- -13.495735168457031
- ],
- [
- "▁bluetooth",
- -13.495736122131348
- ],
- [
- "▁translating",
- -13.49573802947998
- ],
- [
- "▁Kyoto",
- -13.495739936828613
- ],
- [
- "▁homosexual",
- -13.495745658874512
- ],
- [
- "treabă",
- -13.495820045471191
- ],
- [
- "ntrepid",
- -13.495983123779297
- ],
- [
- "▁fachlich",
- -13.496664047241211
- ],
- [
- "Vaccin",
- -13.496774673461914
- ],
- [
- "▁Treib",
- -13.497248649597168
- ],
- [
- "varsity",
- -13.497272491455078
- ],
- [
- "▁Tavern",
- -13.497278213500977
- ],
- [
- "▁ensue",
- -13.497330665588379
- ],
- [
- "flexibel",
- -13.497971534729004
- ],
- [
- "retrieved",
- -13.498102188110352
- ],
- [
- "traditionellen",
- -13.498230934143066
- ],
- [
- "▁circulati",
- -13.498546600341797
- ],
- [
- "▁Diagnose",
- -13.498717308044434
- ],
- [
- "▁Strawberry",
- -13.498717308044434
- ],
- [
- "Societatea",
- -13.49871826171875
- ],
- [
- "expertise",
- -13.498849868774414
- ],
- [
- "▁naturii",
- -13.499464988708496
- ],
- [
- "▁4:1",
- -13.499515533447266
- ],
- [
- "Frequently",
- -13.500210762023926
- ],
- [
- "disproportionate",
- -13.500210762023926
- ],
- [
- "▁LIMITED",
- -13.500210762023926
- ],
- [
- "▁ancestral",
- -13.500227928161621
- ],
- [
- "▁Logistik",
- -13.500237464904785
- ],
- [
- "▁recolt",
- -13.50042724609375
- ],
- [
- "▁liebevoll",
- -13.500436782836914
- ],
- [
- "importing",
- -13.500452041625977
- ],
- [
- "aparatul",
- -13.500458717346191
- ],
- [
- "poziţia",
- -13.500564575195312
- ],
- [
- "facerilor",
- -13.500658988952637
- ],
- [
- "Submitted",
- -13.50086784362793
- ],
- [
- "ografia",
- -13.501221656799316
- ],
- [
- "onformément",
- -13.50168228149414
- ],
- [
- "▁dissemination",
- -13.501708030700684
- ],
- [
- "afli",
- -13.501834869384766
- ],
- [
- "luminous",
- -13.502154350280762
- ],
- [
- "▁draußen",
- -13.502456665039062
- ],
- [
- "▁Zauber",
- -13.502535820007324
- ],
- [
- "▁Ibrahim",
- -13.503207206726074
- ],
- [
- "▁eruption",
- -13.503216743469238
- ],
- [
- "écrite",
- -13.50357723236084
- ],
- [
- "avril",
- -13.503898620605469
- ],
- [
- "Increasing",
- -13.504171371459961
- ],
- [
- "hingeg",
- -13.504411697387695
- ],
- [
- "fidelity",
- -13.504707336425781
- ],
- [
- "étonnant",
- -13.504707336425781
- ],
- [
- "▁créativité",
- -13.504707336425781
- ],
- [
- "▁Required",
- -13.504708290100098
- ],
- [
- "▁Edison",
- -13.504719734191895
- ],
- [
- "▁Stuhl",
- -13.504719734191895
- ],
- [
- "outhwestern",
- -13.506060600280762
- ],
- [
- "▁Beschwerden",
- -13.506210327148438
- ],
- [
- "▁angajaţi",
- -13.506210327148438
- ],
- [
- "▁Currency",
- -13.506211280822754
- ],
- [
- "▁reagiert",
- -13.506214141845703
- ],
- [
- "Science",
- -13.506229400634766
- ],
- [
- "hospital",
- -13.506253242492676
- ],
- [
- "professionellen",
- -13.50649356842041
- ],
- [
- "▁Trouve",
- -13.506768226623535
- ],
- [
- "▁utopi",
- -13.50683307647705
- ],
- [
- "gypte",
- -13.506928443908691
- ],
- [
- "▁Konsequenz",
- -13.506962776184082
- ],
- [
- "▁pacienți",
- -13.506962776184082
- ],
- [
- "▁orizont",
- -13.506988525390625
- ],
- [
- "Corey",
- -13.506999015808105
- ],
- [
- "▁quartet",
- -13.507009506225586
- ],
- [
- "▁Sherlock",
- -13.50710678100586
- ],
- [
- "▁gagné",
- -13.507237434387207
- ],
- [
- "▁Jusqu",
- -13.50732707977295
- ],
- [
- "▁Clickfunnel",
- -13.507465362548828
- ],
- [
- "Survivor",
- -13.507716178894043
- ],
- [
- "▁Beethoven",
- -13.507716178894043
- ],
- [
- "▁Exemplar",
- -13.507716178894043
- ],
- [
- "▁Gonzalez",
- -13.507716178894043
- ],
- [
- "▁Illustrator",
- -13.507716178894043
- ],
- [
- "▁Verpflichtung",
- -13.507718086242676
- ],
- [
- "Possibly",
- -13.507719993591309
- ],
- [
- "Maintenant",
- -13.507721900939941
- ],
- [
- "▁incendiu",
- -13.507721900939941
- ],
- [
- "▁poêl",
- -13.507747650146484
- ],
- [
- "▁aşez",
- -13.507757186889648
- ],
- [
- "phenol",
- -13.508248329162598
- ],
- [
- "▁magician",
- -13.508421897888184
- ],
- [
- "éventuellement",
- -13.508512496948242
- ],
- [
- "▁amortiz",
- -13.508736610412598
- ],
- [
- "bouchage",
- -13.50873851776123
- ],
- [
- "▁Accommodation",
- -13.509223937988281
- ],
- [
- "▁Significant",
- -13.509223937988281
- ],
- [
- "▁rejoice",
- -13.509223937988281
- ],
- [
- "▁Lorraine",
- -13.509224891662598
- ],
- [
- "▁Necklace",
- -13.509234428405762
- ],
- [
- "▁hamburger",
- -13.509273529052734
- ],
- [
- "Enhanced",
- -13.5095796585083
- ],
- [
- "▁Audrey",
- -13.509978294372559
- ],
- [
- "▁considère",
- -13.509986877441406
- ],
- [
- "hafen",
- -13.51050853729248
- ],
- [
- "acordare",
- -13.510509490966797
- ],
- [
- "▁ediți",
- -13.51075553894043
- ],
- [
- "▁militia",
- -13.510767936706543
- ],
- [
- "captivate",
- -13.510771751403809
- ],
- [
- "▁rebellion",
- -13.510777473449707
- ],
- [
- "▁veranstalte",
- -13.510844230651855
- ],
- [
- "▁matelas",
- -13.510859489440918
- ],
- [
- "originating",
- -13.510873794555664
- ],
- [
- "Typical",
- -13.51092529296875
- ],
- [
- "▁législat",
- -13.511360168457031
- ],
- [
- "▁Kräfte",
- -13.511488914489746
- ],
- [
- "▁Eigentümer",
- -13.511489868164062
- ],
- [
- "▁gonfl",
- -13.511608123779297
- ],
- [
- "dispoziție",
- -13.512028694152832
- ],
- [
- "▁Fabulous",
- -13.512246131896973
- ],
- [
- "▁Guillaume",
- -13.512246131896973
- ],
- [
- "▁Genuine",
- -13.512247085571289
- ],
- [
- "selbe",
- -13.512449264526367
- ],
- [
- "(2002)",
- -13.512616157531738
- ],
- [
- "Einen",
- -13.512908935546875
- ],
- [
- "▁Snapdragon",
- -13.513002395629883
- ],
- [
- "▁plagiarism",
- -13.513002395629883
- ],
- [
- "▁Rendez",
- -13.513019561767578
- ],
- [
- "▁înregistrare",
- -13.513033866882324
- ],
- [
- "probiert",
- -13.513081550598145
- ],
- [
- "gestiegen",
- -13.513153076171875
- ],
- [
- "Teatrul",
- -13.513370513916016
- ],
- [
- "trove",
- -13.513469696044922
- ],
- [
- "ntsprechend",
- -13.513566017150879
- ],
- [
- "Städten",
- -13.513691902160645
- ],
- [
- "unforeseen",
- -13.513760566711426
- ],
- [
- "▁Meridian",
- -13.513761520385742
- ],
- [
- "▁Ministries",
- -13.513763427734375
- ],
- [
- "plaît",
- -13.513769149780273
- ],
- [
- "▁Telefonnummer",
- -13.513772010803223
- ],
- [
- "welded",
- -13.513788223266602
- ],
- [
- "pondere",
- -13.513976097106934
- ],
- [
- "▁funcţiona",
- -13.514012336730957
- ],
- [
- "▁politicieni",
- -13.514187812805176
- ],
- [
- "fleck",
- -13.514240264892578
- ],
- [
- "▁Nitro",
- -13.514264106750488
- ],
- [
- "wettbewerb",
- -13.514518737792969
- ],
- [
- "▁ingrijire",
- -13.514518737792969
- ],
- [
- "▁Gehirn",
- -13.514521598815918
- ],
- [
- "sigură",
- -13.514904022216797
- ],
- [
- "400,000",
- -13.515237808227539
- ],
- [
- "▁cataract",
- -13.515277862548828
- ],
- [
- "outskirt",
- -13.515280723571777
- ],
- [
- "▁Identification",
- -13.515287399291992
- ],
- [
- "▁imperfections",
- -13.515317916870117
- ],
- [
- "▁Dokumentation",
- -13.515474319458008
- ],
- [
- "Engine",
- -13.515851974487305
- ],
- [
- "extindere",
- -13.516046524047852
- ],
- [
- "bijoux",
- -13.516797065734863
- ],
- [
- "▁dărui",
- -13.516802787780762
- ],
- [
- "▁Moderator",
- -13.516913414001465
- ],
- [
- "biblio",
- -13.517024040222168
- ],
- [
- "енн",
- -13.517024040222168
- ],
- [
- "▁Relevan",
- -13.51728630065918
- ],
- [
- "ansprüche",
- -13.517557144165039
- ],
- [
- "épaisseur",
- -13.517580032348633
- ],
- [
- "▁emoţi",
- -13.517677307128906
- ],
- [
- "exacerbate",
- -13.518318176269531
- ],
- [
- "▁Wimbledon",
- -13.518318176269531
- ],
- [
- "▁Pandora",
- -13.518319129943848
- ],
- [
- "perhaps",
- -13.518725395202637
- ],
- [
- "certify",
- -13.518762588500977
- ],
- [
- "Strukturen",
- -13.5189208984375
- ],
- [
- "▁Kreativität",
- -13.519079208374023
- ],
- [
- "schlägt",
- -13.51908016204834
- ],
- [
- "▁certifié",
- -13.51911735534668
- ],
- [
- "/09/",
- -13.519211769104004
- ],
- [
- "▁suprafaţ",
- -13.519493103027344
- ],
- [
- "verständnis",
- -13.519841194152832
- ],
- [
- "presedintele",
- -13.519842147827148
- ],
- [
- "▁orthopedic",
- -13.519842147827148
- ],
- [
- "▁superioara",
- -13.519843101501465
- ],
- [
- "älteste",
- -13.519903182983398
- ],
- [
- "▁conducător",
- -13.520153999328613
- ],
- [
- "supplementary",
- -13.520243644714355
- ],
- [
- "wetlands",
- -13.520438194274902
- ],
- [
- "▁suprafete",
- -13.520605087280273
- ],
- [
- "▁aparțin",
- -13.520951271057129
- ],
- [
- "analiză",
- -13.521014213562012
- ],
- [
- "Uneori",
- -13.52115535736084
- ],
- [
- "Toujours",
- -13.521368026733398
- ],
- [
- "▁Nairobi",
- -13.521368026733398
- ],
- [
- "▁asparagus",
- -13.521368026733398
- ],
- [
- "▁crowdfunding",
- -13.521368026733398
- ],
- [
- "gutachten",
- -13.521369934082031
- ],
- [
- "smelling",
- -13.521659851074219
- ],
- [
- "▁elektrisch",
- -13.521718978881836
- ],
- [
- "begging",
- -13.522055625915527
- ],
- [
- "▁Renewable",
- -13.522896766662598
- ],
- [
- "▁Trouble",
- -13.522896766662598
- ],
- [
- "▁devastated",
- -13.522896766662598
- ],
- [
- "▁remplacé",
- -13.522896766662598
- ],
- [
- "▁schmeckt",
- -13.522896766662598
- ],
- [
- "▁exerciți",
- -13.523005485534668
- ],
- [
- "▁vermute",
- -13.523650169372559
- ],
- [
- "▁Constanța",
- -13.523661613464355
- ],
- [
- "expunere",
- -13.523693084716797
- ],
- [
- "▁Fitzgerald",
- -13.52442741394043
- ],
- [
- "▁Mechanism",
- -13.524429321289062
- ],
- [
- "▁underscore",
- -13.524484634399414
- ],
- [
- "poziţie",
- -13.524901390075684
- ],
- [
- "stöbern",
- -13.525193214416504
- ],
- [
- "▁littérature",
- -13.525193214416504
- ],
- [
- "▁împrumut",
- -13.525193214416504
- ],
- [
- "Vision",
- -13.525771141052246
- ],
- [
- "▁overwhelm",
- -13.525773048400879
- ],
- [
- "▁erweitern",
- -13.525959968566895
- ],
- [
- "skeletal",
- -13.525960922241211
- ],
- [
- "▁terrified",
- -13.525960922241211
- ],
- [
- "aggravate",
- -13.525962829589844
- ],
- [
- "▁Malawi",
- -13.525969505310059
- ],
- [
- "▁neuroscience",
- -13.526009559631348
- ],
- [
- "trecută",
- -13.526097297668457
- ],
- [
- "▁maestr",
- -13.52634334564209
- ],
- [
- "нов",
- -13.526555061340332
- ],
- [
- "▁Cobb",
- -13.52667236328125
- ],
- [
- "▁Schwangerschaft",
- -13.526727676391602
- ],
- [
- "▁internationaux",
- -13.526727676391602
- ],
- [
- "▁entspannen",
- -13.526729583740234
- ],
- [
- "▁Früchte",
- -13.52676773071289
- ],
- [
- "mâine",
- -13.526805877685547
- ],
- [
- "stützt",
- -13.526938438415527
- ],
- [
- "flipped",
- -13.527076721191406
- ],
- [
- "Palatul",
- -13.527252197265625
- ],
- [
- "▁Gérard",
- -13.527496337890625
- ],
- [
- "▁Kensington",
- -13.527498245239258
- ],
- [
- "chargée",
- -13.52807331085205
- ],
- [
- "iolo",
- -13.528203964233398
- ],
- [
- "▁excesiv",
- -13.52904987335205
- ],
- [
- "▁Gymnas",
- -13.52962875366211
- ],
- [
- "▁optimise",
- -13.529678344726562
- ],
- [
- "possibilités",
- -13.529717445373535
- ],
- [
- "▁periculoas",
- -13.529810905456543
- ],
- [
- "mechanical",
- -13.529839515686035
- ],
- [
- "▁confruntă",
- -13.529868125915527
- ],
- [
- "quatrième",
- -13.530573844909668
- ],
- [
- "▁Preservation",
- -13.530573844909668
- ],
- [
- "▁Juventus",
- -13.530574798583984
- ],
- [
- "vorsitzende",
- -13.5305757522583
- ],
- [
- "électora",
- -13.530586242675781
- ],
- [
- "▁fascinant",
- -13.53061580657959
- ],
- [
- "▁lagoon",
- -13.530671119689941
- ],
- [
- "referencing",
- -13.53079605102539
- ],
- [
- "appointed",
- -13.530988693237305
- ],
- [
- "Audible",
- -13.531112670898438
- ],
- [
- "sighted",
- -13.531612396240234
- ],
- [
- "▁gewünscht",
- -13.532061576843262
- ],
- [
- "▁Expedition",
- -13.532115936279297
- ],
- [
- "▁genunchi",
- -13.532115936279297
- ],
- [
- "▁PROVIDE",
- -13.53211784362793
- ],
- [
- "▁rosemary",
- -13.532118797302246
- ],
- [
- "▁cleanliness",
- -13.532130241394043
- ],
- [
- "commanded",
- -13.53223991394043
- ],
- [
- "ältere",
- -13.532530784606934
- ],
- [
- "ност",
- -13.532547950744629
- ],
- [
- "kühlen",
- -13.532917976379395
- ],
- [
- "mettez",
- -13.533548355102539
- ],
- [
- "connaitre",
- -13.533661842346191
- ],
- [
- "Qaeda",
- -13.533662796020508
- ],
- [
- "▁traumhaft",
- -13.53366470336914
- ],
- [
- "kommst",
- -13.533666610717773
- ],
- [
- "▁Abbott",
- -13.533669471740723
- ],
- [
- "▁Fool",
- -13.533686637878418
- ],
- [
- "▁médaill",
- -13.533687591552734
- ],
- [
- "▁genotyp",
- -13.533693313598633
- ],
- [
- "▁Fälle",
- -13.53375244140625
- ],
- [
- "▁actuator",
- -13.533843994140625
- ],
- [
- "CLASS",
- -13.534042358398438
- ],
- [
- "progressively",
- -13.534421920776367
- ],
- [
- "negative",
- -13.53469467163086
- ],
- [
- "bundled",
- -13.535009384155273
- ],
- [
- "▁dezbatere",
- -13.535208702087402
- ],
- [
- "kamagra",
- -13.535237312316895
- ],
- [
- "gardinen",
- -13.535250663757324
- ],
- [
- "unsecured",
- -13.535271644592285
- ],
- [
- "Assisted",
- -13.535298347473145
- ],
- [
- "Gymnasium",
- -13.535386085510254
- ],
- [
- "▁brusc",
- -13.535591125488281
- ],
- [
- "prinzip",
- -13.535655975341797
- ],
- [
- "Torrent",
- -13.535964965820312
- ],
- [
- "Presented",
- -13.535967826843262
- ],
- [
- "▁impressionnant",
- -13.53628921508789
- ],
- [
- "charakter",
- -13.536758422851562
- ],
- [
- "▁Acoustic",
- -13.536762237548828
- ],
- [
- "▁appartient",
- -13.536763191223145
- ],
- [
- "gesteuert",
- -13.536879539489746
- ],
- [
- "▁condiți",
- -13.537089347839355
- ],
- [
- "authentic",
- -13.537313461303711
- ],
- [
- "▁Erholung",
- -13.537534713745117
- ],
- [
- "▁Veranstalter",
- -13.537534713745117
- ],
- [
- "▁Filial",
- -13.537665367126465
- ],
- [
- "ruhigen",
- -13.537714958190918
- ],
- [
- "symptôme",
- -13.538311004638672
- ],
- [
- "▁Efficiency",
- -13.538311004638672
- ],
- [
- "▁stunned",
- -13.538311004638672
- ],
- [
- "▁sympathique",
- -13.538311004638672
- ],
- [
- "Uploaded",
- -13.538352966308594
- ],
- [
- "▁geistig",
- -13.538453102111816
- ],
- [
- "Pläne",
- -13.538509368896484
- ],
- [
- "▁Apartament",
- -13.53855037689209
- ],
- [
- "▁ușoar",
- -13.539119720458984
- ],
- [
- "▁locuinț",
- -13.539122581481934
- ],
- [
- "épouse",
- -13.539166450500488
- ],
- [
- "îngrijire",
- -13.539215087890625
- ],
- [
- "Obtain",
- -13.539261817932129
- ],
- [
- "Detect",
- -13.539590835571289
- ],
- [
- "▁Dumitru",
- -13.539865493774414
- ],
- [
- "▁refrigeration",
- -13.539865493774414
- ],
- [
- "ärztliche",
- -13.539881706237793
- ],
- [
- "efficiency",
- -13.540032386779785
- ],
- [
- "▁snail",
- -13.540328979492188
- ],
- [
- "gelände",
- -13.540419578552246
- ],
- [
- "expected",
- -13.540620803833008
- ],
- [
- "kompetenz",
- -13.540643692016602
- ],
- [
- "▁sfânt",
- -13.540643692016602
- ],
- [
- "océan",
- -13.540685653686523
- ],
- [
- "▁Plasma",
- -13.540717124938965
- ],
- [
- "▁vulgar",
- -13.54075813293457
- ],
- [
- "▁slump",
- -13.541083335876465
- ],
- [
- "autoimmune",
- -13.541422843933105
- ],
- [
- "▁Cynthia",
- -13.541422843933105
- ],
- [
- "▁dimineaţ",
- -13.541422843933105
- ],
- [
- "▁whimsical",
- -13.541422843933105
- ],
- [
- "▁evaporate",
- -13.541488647460938
- ],
- [
- "▁calorii",
- -13.54186725616455
- ],
- [
- "portion",
- -13.54187297821045
- ],
- [
- "crowned",
- -13.5419282913208
- ],
- [
- "▁întâmpin",
- -13.54220199584961
- ],
- [
- "▁Centenar",
- -13.542620658874512
- ],
- [
- "▁Genehmigung",
- -13.54298210144043
- ],
- [
- "▁Wahrscheinlich",
- -13.54298210144043
- ],
- [
- "▁accompaniment",
- -13.54298210144043
- ],
- [
- "▁Negoti",
- -13.542984962463379
- ],
- [
- "▁Vanilla",
- -13.543000221252441
- ],
- [
- "▁Receiv",
- -13.543014526367188
- ],
- [
- "▁bestseller",
- -13.543052673339844
- ],
- [
- "tendons",
- -13.543069839477539
- ],
- [
- "Reilly",
- -13.543192863464355
- ],
- [
- "▁refroidi",
- -13.543731689453125
- ],
- [
- "▁überrascht",
- -13.543763160705566
- ],
- [
- "Gitarre",
- -13.543828964233398
- ],
- [
- "wände",
- -13.544173240661621
- ],
- [
- "veniturile",
- -13.544321060180664
- ],
- [
- "▁portofoliu",
- -13.54454517364502
- ],
- [
- "▁temporaire",
- -13.54454517364502
- ],
- [
- "▁Dawson",
- -13.544546127319336
- ],
- [
- "foreseeable",
- -13.544547080993652
- ],
- [
- "▁Gastgeber",
- -13.545344352722168
- ],
- [
- "Access",
- -13.545432090759277
- ],
- [
- "▁Defender",
- -13.545537948608398
- ],
- [
- "▁Quarry",
- -13.546109199523926
- ],
- [
- "▁trolley",
- -13.546110153198242
- ],
- [
- "▁carburant",
- -13.546111106872559
- ],
- [
- "▁titluri",
- -13.54631233215332
- ],
- [
- "comparatively",
- -13.546327590942383
- ],
- [
- "nachfolgend",
- -13.54659652709961
- ],
- [
- "anfang",
- -13.546740531921387
- ],
- [
- "▁faszinieren",
- -13.546891212463379
- ],
- [
- "trăiesc",
- -13.547082901000977
- ],
- [
- "▁Travail",
- -13.547159194946289
- ],
- [
- "Contact",
- -13.547235488891602
- ],
- [
- "fashion",
- -13.547245025634766
- ],
- [
- "▁épais",
- -13.547585487365723
- ],
- [
- "plattform",
- -13.547676086425781
- ],
- [
- "ventricular",
- -13.547677040100098
- ],
- [
- "▁Portsmouth",
- -13.547677993774414
- ],
- [
- "▁împărat",
- -13.54767894744873
- ],
- [
- "▁vândut",
- -13.547698020935059
- ],
- [
- "▁evidenț",
- -13.547708511352539
- ],
- [
- "Purchasing",
- -13.547877311706543
- ],
- [
- "discerning",
- -13.54804801940918
- ],
- [
- "odonti",
- -13.548080444335938
- ],
- [
- "distilled",
- -13.548316955566406
- ],
- [
- "saveur",
- -13.548447608947754
- ],
- [
- "▁récompense",
- -13.54845905303955
- ],
- [
- "confortul",
- -13.548552513122559
- ],
- [
- "arbeitete",
- -13.548787117004395
- ],
- [
- "partenerii",
- -13.549064636230469
- ],
- [
- "mirrored",
- -13.54908561706543
- ],
- [
- "Dienstleister",
- -13.549243927001953
- ],
- [
- "▁Jakarta",
- -13.549243927001953
- ],
- [
- "▁WEBSITE",
- -13.549243927001953
- ],
- [
- "▁Acquisition",
- -13.549262046813965
- ],
- [
- "▁Miranda",
- -13.549287796020508
- ],
- [
- "Syndic",
- -13.549356460571289
- ],
- [
- "▁stadiu",
- -13.549450874328613
- ],
- [
- "▁Parchet",
- -13.549498558044434
- ],
- [
- "Générale",
- -13.54954719543457
- ],
- [
- "▁jpl",
- -13.549579620361328
- ],
- [
- "attainable",
- -13.549949645996094
- ],
- [
- "École",
- -13.550041198730469
- ],
- [
- "Sphere",
- -13.550538063049316
- ],
- [
- "obtainable",
- -13.550592422485352
- ],
- [
- "▁Sapphire",
- -13.55081558227539
- ],
- [
- "▁aérienne",
- -13.55081558227539
- ],
- [
- "▁bărbați",
- -13.55081558227539
- ],
- [
- "▁irritating",
- -13.55081558227539
- ],
- [
- "▁ultraviolet",
- -13.550816535949707
- ],
- [
- "untouched",
- -13.550817489624023
- ],
- [
- "▁Ramsey",
- -13.550819396972656
- ],
- [
- "titres",
- -13.551087379455566
- ],
- [
- "▁Coordinat",
- -13.551218032836914
- ],
- [
- "believable",
- -13.551358222961426
- ],
- [
- "▁Grundsätzlich",
- -13.551602363586426
- ],
- [
- "▁konsequent",
- -13.551602363586426
- ],
- [
- "▁Cerceta",
- -13.551909446716309
- ],
- [
- "dirigé",
- -13.552116394042969
- ],
- [
- "▁disturb",
- -13.552151679992676
- ],
- [
- "conciliation",
- -13.552210807800293
- ],
- [
- "▁gelöscht",
- -13.552390098571777
- ],
- [
- "▁sauvegarde",
- -13.552391052246094
- ],
- [
- "▁cavities",
- -13.552393913269043
- ],
- [
- "stunde",
- -13.55241584777832
- ],
- [
- "▁foloseasc",
- -13.552430152893066
- ],
- [
- "▁simpati",
- -13.552873611450195
- ],
- [
- "Chacun",
- -13.553032875061035
- ],
- [
- "adversaire",
- -13.553178787231445
- ],
- [
- "Eigentlich",
- -13.55319881439209
- ],
- [
- "defense",
- -13.553593635559082
- ],
- [
- "consider",
- -13.553672790527344
- ],
- [
- "▁Trinidad",
- -13.553966522216797
- ],
- [
- "▁strategist",
- -13.553966522216797
- ],
- [
- "distorted",
- -13.553967475891113
- ],
- [
- "▁hypothetical",
- -13.553967475891113
- ],
- [
- "▁ramburs",
- -13.55396842956543
- ],
- [
- "▁Mallorca",
- -13.553970336914062
- ],
- [
- "▁Domino",
- -13.554018020629883
- ],
- [
- "arrondissement",
- -13.554756164550781
- ],
- [
- "konferenz",
- -13.554756164550781
- ],
- [
- "▁Beleuchtung",
- -13.554756164550781
- ],
- [
- "aggregat",
- -13.55484676361084
- ],
- [
- "subsidize",
- -13.554896354675293
- ],
- [
- "shri",
- -13.555503845214844
- ],
- [
- "Kaufentscheidung",
- -13.555545806884766
- ],
- [
- "▁Hernandez",
- -13.555545806884766
- ],
- [
- "▁Upholster",
- -13.555546760559082
- ],
- [
- "atlantic",
- -13.555614471435547
- ],
- [
- "▁locuinte",
- -13.555652618408203
- ],
- [
- "integrates",
- -13.55583381652832
- ],
- [
- "ewusst",
- -13.555878639221191
- ],
- [
- "▁Avocado",
- -13.556337356567383
- ],
- [
- "Decorative",
- -13.557014465332031
- ],
- [
- "▁Corinthians",
- -13.557127952575684
- ],
- [
- "▁clădire",
- -13.557127952575684
- ],
- [
- "▁plomberie",
- -13.557127952575684
- ],
- [
- "vases",
- -13.557143211364746
- ],
- [
- "▁crippl",
- -13.557247161865234
- ],
- [
- "cluttered",
- -13.557487487792969
- ],
- [
- "departed",
- -13.557807922363281
- ],
- [
- "▁entscheidet",
- -13.5579195022583
- ],
- [
- "Certaine",
- -13.558243751525879
- ],
- [
- "honda",
- -13.558294296264648
- ],
- [
- "triggering",
- -13.558527946472168
- ],
- [
- "▁Erdogan",
- -13.558712005615234
- ],
- [
- "▁Widerstand",
- -13.558712005615234
- ],
- [
- "▁Bhutan",
- -13.558713912963867
- ],
- [
- "▁ascunde",
- -13.558736801147461
- ],
- [
- "▁shading",
- -13.558748245239258
- ],
- [
- "behavioural",
- -13.559172630310059
- ],
- [
- "▁transfér",
- -13.55960750579834
- ],
- [
- "versichert",
- -13.559623718261719
- ],
- [
- "▁vinovat",
- -13.559646606445312
- ],
- [
- "▁airfare",
- -13.560142517089844
- ],
- [
- "▁simplistic",
- -13.56030559539795
- ],
- [
- "▁Asigura",
- -13.560320854187012
- ],
- [
- "Chauffe",
- -13.560480117797852
- ],
- [
- "scrisă",
- -13.560585975646973
- ],
- [
- "trouvez",
- -13.560702323913574
- ],
- [
- "greasy",
- -13.560709953308105
- ],
- [
- "bottled",
- -13.560809135437012
- ],
- [
- "grouped",
- -13.560934066772461
- ],
- [
- "▁beeinflussen",
- -13.561092376708984
- ],
- [
- "▁chronological",
- -13.561114311218262
- ],
- [
- "(2000)",
- -13.56127643585205
- ],
- [
- "sheltered",
- -13.561298370361328
- ],
- [
- "Historically",
- -13.561931610107422
- ],
- [
- "piled",
- -13.562012672424316
- ],
- [
- "publicate",
- -13.562378883361816
- ],
- [
- "▁étudié",
- -13.56268310546875
- ],
- [
- "▁vertraut",
- -13.562688827514648
- ],
- [
- "▁Anpassung",
- -13.562697410583496
- ],
- [
- "cifra",
- -13.562705993652344
- ],
- [
- "▁recueil",
- -13.562762260437012
- ],
- [
- "enforceable",
- -13.563183784484863
- ],
- [
- "Distinguished",
- -13.56347942352295
- ],
- [
- "Empfänger",
- -13.56347942352295
- ],
- [
- "▁Acrylic",
- -13.56347942352295
- ],
- [
- "▁Encyclopedia",
- -13.56347942352295
- ],
- [
- "▁proaspete",
- -13.56347942352295
- ],
- [
- "▁unrealistic",
- -13.56347942352295
- ],
- [
- "▁Assignment",
- -13.563481330871582
- ],
- [
- "▁incubator",
- -13.563491821289062
- ],
- [
- "▁unilateral",
- -13.563501358032227
- ],
- [
- "elasticity",
- -13.564398765563965
- ],
- [
- "amintim",
- -13.564475059509277
- ],
- [
- "fournit",
- -13.564553260803223
- ],
- [
- "semblent",
- -13.564763069152832
- ],
- [
- "▁$69.",
- -13.56496524810791
- ],
- [
- "▁prominence",
- -13.56507396697998
- ],
- [
- "Übertragung",
- -13.565075874328613
- ],
- [
- "▁2014-11-",
- -13.565075874328613
- ],
- [
- "▁Giurgiu",
- -13.565104484558105
- ],
- [
- "étendue",
- -13.565123558044434
- ],
- [
- "ceputul",
- -13.565187454223633
- ],
- [
- "Schwierigkeiten",
- -13.565872192382812
- ],
- [
- "▁subtract",
- -13.565881729125977
- ],
- [
- "▁gesichert",
- -13.56589126586914
- ],
- [
- "▁uimit",
- -13.565925598144531
- ],
- [
- "▁mensuel",
- -13.565967559814453
- ],
- [
- "Vorgaben",
- -13.566215515136719
- ],
- [
- "▁legitimacy",
- -13.566670417785645
- ],
- [
- "▁Kendall",
- -13.566673278808594
- ],
- [
- "▁détach",
- -13.566790580749512
- ],
- [
- "▁kennenlernen",
- -13.567469596862793
- ],
- [
- "▁gewöhnlich",
- -13.56747055053711
- ],
- [
- "Octav",
- -13.567917823791504
- ],
- [
- "responsive",
- -13.568169593811035
- ],
- [
- "▁Mängel",
- -13.568269729614258
- ],
- [
- "▁mișcare",
- -13.568269729614258
- ],
- [
- "▁ludique",
- -13.568270683288574
- ],
- [
- "▁Exeter",
- -13.568324089050293
- ],
- [
- "▁respins",
- -13.569114685058594
- ],
- [
- "oraşului",
- -13.569173812866211
- ],
- [
- "▁sfârşit",
- -13.56949520111084
- ],
- [
- "BUSINESS",
- -13.56987190246582
- ],
- [
- "illustrating",
- -13.56987190246582
- ],
- [
- "▁Tottenham",
- -13.56987190246582
- ],
- [
- "▁pruning",
- -13.569886207580566
- ],
- [
- "▁Înainte",
- -13.569904327392578
- ],
- [
- "▁interesel",
- -13.570096969604492
- ],
- [
- "discovered",
- -13.57031536102295
- ],
- [
- "(0)",
- -13.570572853088379
- ],
- [
- "▁Bewerber",
- -13.570673942565918
- ],
- [
- "▁DESIGN",
- -13.570673942565918
- ],
- [
- "▁Orientierung",
- -13.570686340332031
- ],
- [
- "library",
- -13.571041107177734
- ],
- [
- "cheltuielile",
- -13.571419715881348
- ],
- [
- "▁Canterbury",
- -13.571475982666016
- ],
- [
- "▁intellectuelle",
- -13.571477890014648
- ],
- [
- "▁amalgam",
- -13.571497917175293
- ],
- [
- "▁Toledo",
- -13.57150650024414
- ],
- [
- "gezahlt",
- -13.571531295776367
- ],
- [
- "Veronica",
- -13.571659088134766
- ],
- [
- "deleting",
- -13.571946144104004
- ],
- [
- "▁Merlin",
- -13.572442054748535
- ],
- [
- "▁opérationnel",
- -13.572554588317871
- ],
- [
- "schmutz",
- -13.572568893432617
- ],
- [
- "hyroid",
- -13.57279109954834
- ],
- [
- "▁Compatible",
- -13.57308292388916
- ],
- [
- "▁Leopard",
- -13.57308292388916
- ],
- [
- "▁cylindrical",
- -13.57308292388916
- ],
- [
- "▁terrestrial",
- -13.57308292388916
- ],
- [
- "conferencing",
- -13.573088645935059
- ],
- [
- "▁Variety",
- -13.573097229003906
- ],
- [
- "▁Screw",
- -13.573164939880371
- ],
- [
- "character",
- -13.573637962341309
- ],
- [
- "shortened",
- -13.573643684387207
- ],
- [
- "▁întrerup",
- -13.573736190795898
- ],
- [
- "freude",
- -13.573884010314941
- ],
- [
- "▁dezbateri",
- -13.573887825012207
- ],
- [
- "viteză",
- -13.574563026428223
- ],
- [
- "formațiile",
- -13.574600219726562
- ],
- [
- "▁responsibly",
- -13.574692726135254
- ],
- [
- "Dimensiuni",
- -13.574695587158203
- ],
- [
- "Arrangement",
- -13.57469654083252
- ],
- [
- "▁Leisure",
- -13.574712753295898
- ],
- [
- "escaping",
- -13.5750732421875
- ],
- [
- "flexion",
- -13.575104713439941
- ],
- [
- "▁religieuse",
- -13.575308799743652
- ],
- [
- "crystalline",
- -13.575457572937012
- ],
- [
- "▁clasp",
- -13.575520515441895
- ],
- [
- "festigt",
- -13.57554817199707
- ],
- [
- "▁trouvai",
- -13.57596206665039
- ],
- [
- "cutaneous",
- -13.576305389404297
- ],
- [
- "▁carcinoma",
- -13.576305389404297
- ],
- [
- "▁juxtapos",
- -13.576305389404297
- ],
- [
- "assemblage",
- -13.576306343078613
- ],
- [
- "▁Messiah",
- -13.576306343078613
- ],
- [
- "▁Sleeve",
- -13.576306343078613
- ],
- [
- "▁șofer",
- -13.576386451721191
- ],
- [
- "/05/",
- -13.57666301727295
- ],
- [
- "▁expoziți",
- -13.576703071594238
- ],
- [
- "▁pătrun",
- -13.577343940734863
- ],
- [
- "▁Lydia",
- -13.57739543914795
- ],
- [
- "▁grădini",
- -13.577919006347656
- ],
- [
- "▁toothpaste",
- -13.577919960021973
- ],
- [
- "ordained",
- -13.577921867370605
- ],
- [
- "▁Renovation",
- -13.577922821044922
- ],
- [
- "voicing",
- -13.578327178955078
- ],
- [
- "président",
- -13.578595161437988
- ],
- [
- "▁gestartet",
- -13.578728675842285
- ],
- [
- "Multi",
- -13.579121589660645
- ],
- [
- "itinéraire",
- -13.579537391662598
- ],
- [
- "▁influenza",
- -13.579537391662598
- ],
- [
- "▁psychiatrist",
- -13.579537391662598
- ],
- [
- "▁schizophrenia",
- -13.579537391662598
- ],
- [
- "▁Magnolia",
- -13.57953929901123
- ],
- [
- "▁Scottsdale",
- -13.579541206359863
- ],
- [
- "▁interessieren",
- -13.579548835754395
- ],
- [
- "▁asfalt",
- -13.579643249511719
- ],
- [
- "▁Journalism",
- -13.57977294921875
- ],
- [
- "Multe",
- -13.580089569091797
- ],
- [
- "Westfalen",
- -13.580347061157227
- ],
- [
- "▁Vorschriften",
- -13.580348014831543
- ],
- [
- "Angleterre",
- -13.58034896850586
- ],
- [
- "sustainable",
- -13.580354690551758
- ],
- [
- "▁Retour",
- -13.580589294433594
- ],
- [
- "▁pâr",
- -13.5809965133667
- ],
- [
- "steigert",
- -13.581120491027832
- ],
- [
- "▁AMAZING",
- -13.581157684326172
- ],
- [
- "▁turbulent",
- -13.581157684326172
- ],
- [
- "costing",
- -13.58155345916748
- ],
- [
- "▁Carolyn",
- -13.581634521484375
- ],
- [
- "utti",
- -13.581802368164062
- ],
- [
- "dürftig",
- -13.581968307495117
- ],
- [
- "Keep",
- -13.582038879394531
- ],
- [
- "▁Théâtre",
- -13.582780838012695
- ],
- [
- "▁combustibil",
- -13.582780838012695
- ],
- [
- "▁halloween",
- -13.582780838012695
- ],
- [
- "▁emulator",
- -13.582785606384277
- ],
- [
- "▁povești",
- -13.582785606384277
- ],
- [
- "broyeur",
- -13.582810401916504
- ],
- [
- "▁émerg",
- -13.582927703857422
- ],
- [
- "overwhelmingly",
- -13.583025932312012
- ],
- [
- "regulă",
- -13.583124160766602
- ],
- [
- "goutte",
- -13.583125114440918
- ],
- [
- "▁Fertigung",
- -13.583593368530273
- ],
- [
- "constituted",
- -13.584304809570312
- ],
- [
- "▁QuickBooks",
- -13.584406852722168
- ],
- [
- "▁genealogy",
- -13.584407806396484
- ],
- [
- "▁laundering",
- -13.584432601928711
- ],
- [
- "▁échéan",
- -13.584491729736328
- ],
- [
- "Account",
- -13.584601402282715
- ],
- [
- "oyons",
- -13.584792137145996
- ],
- [
- "nitro",
- -13.584905624389648
- ],
- [
- "▁corespund",
- -13.585219383239746
- ],
- [
- "▁suggér",
- -13.58527660369873
- ],
- [
- "manipulated",
- -13.585348129272461
- ],
- [
- "deseori",
- -13.585817337036133
- ],
- [
- "permeabil",
- -13.585912704467773
- ],
- [
- "Australia",
- -13.58594799041748
- ],
- [
- "▁Erasmus",
- -13.586034774780273
- ],
- [
- "▁disrespect",
- -13.586034774780273
- ],
- [
- "▁trimestre",
- -13.586038589477539
- ],
- [
- "▁emanat",
- -13.586103439331055
- ],
- [
- "Schraub",
- -13.58624267578125
- ],
- [
- "distinctly",
- -13.586319923400879
- ],
- [
- "Germain",
- -13.586637496948242
- ],
- [
- "▁pedepse",
- -13.5868501663208
- ],
- [
- "réglage",
- -13.5868558883667
- ],
- [
- "făcute",
- -13.587308883666992
- ],
- [
- "▁garanteaz",
- -13.587434768676758
- ],
- [
- "▁unterlieg",
- -13.587701797485352
- ],
- [
- "▁cheddar",
- -13.587712287902832
- ],
- [
- "▁refugi",
- -13.587756156921387
- ],
- [
- "▁inférieur",
- -13.587836265563965
- ],
- [
- "dimension",
- -13.588440895080566
- ],
- [
- "▁erkennt",
- -13.588570594787598
- ],
- [
- "amitié",
- -13.588632583618164
- ],
- [
- "▁predominant",
- -13.588680267333984
- ],
- [
- "nourishe",
- -13.588800430297852
- ],
- [
- "exerce",
- -13.588907241821289
- ],
- [
- "▁disguise",
- -13.589225769042969
- ],
- [
- "▁traditi",
- -13.589289665222168
- ],
- [
- "▁Intellectual",
- -13.5892972946167
- ],
- [
- "▁imunitar",
- -13.589299201965332
- ],
- [
- "▁Cushion",
- -13.589300155639648
- ],
- [
- "▁erwachsene",
- -13.589517593383789
- ],
- [
- "▁Internațional",
- -13.590115547180176
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "",
- 0.0
- ],
- [
- "