import streamlit as st import json import pandas as pd import plotly.express as px import seaborn as sns import matplotlib.pyplot as plt # Function to load JSONL file into a DataFrame def load_jsonl(file_path): data = [] with open(file_path, 'r') as f: for line in f: data.append(json.loads(line)) return pd.DataFrame(data) # Function to filter DataFrame by keyword def filter_by_keyword(df, keyword): return df[df.apply(lambda row: row.astype(str).str.contains(keyword).any(), axis=1)] # Load the data small_data = load_jsonl("small_file.jsonl") large_data = load_jsonl("large_file.jsonl") # Streamlit App st.title("EDA with Plotly and Seaborn 📊") # Dropdown for file selection file_option = st.selectbox("Select file:", ["small_file.jsonl", "large_file.jsonl"]) st.write(f"You selected: {file_option}") # Show filtered data grid if file_option == "small_file.jsonl": data = small_data else: data = large_data # Text input for search keyword search_keyword = st.text_input("Enter a keyword to filter data (e.g., Heart, Lung, Pain, Memory):") # Button to trigger search if st.button("Search"): filtered_data = filter_by_keyword(data, search_keyword) st.write(f"Filtered Dataset by '{search_keyword}'") st.dataframe(filtered_data) # Plotly and Seaborn charts for EDA if st.button("Generate Charts"): st.subheader("Plotly Charts 📈") # 1. Scatter Plot fig = px.scatter(data, x=data.columns[0], y=data.columns[1]) st.plotly_chart(fig) # 2. Line Plot fig = px.line(data, x=data.columns[0], y=data.columns[1]) st.plotly_chart(fig) # 3. Bar Plot fig = px.bar(data, x=data.columns[0], y=data.columns[1]) st.plotly_chart(fig) # 4. Histogram fig = px.histogram(data, x=data.columns[0]) st.plotly_chart(fig) # 5. Box Plot fig = px.box(data, x=data.columns[0], y=data.columns[1]) st.plotly_chart(fig) st.subheader("Seaborn Charts 📊") # 6. Violin Plot fig, ax = plt.subplots() sns.violinplot(x=data.columns[0], y=data.columns[1], data=data) st.pyplot(fig) # 7. Swarm Plot fig, ax = plt.subplots() sns.swarmplot(x=data.columns[0], y=data.columns[1], data=data) st.pyplot(fig) # 8. Pair Plot fig = sns.pairplot(data) st.pyplot(fig) # 9. Heatmap fig, ax = plt.subplots() sns.heatmap(data.corr(), annot=True) st.pyplot(fig) # 10. Regplot (Regression Plot) fig, ax = plt.subplots() sns.regplot(x=data.columns[0], y=data.columns[1], data=data) st.pyplot(fig)