Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
import time | |
from diffusers import DiffusionPipeline | |
from custom_pipeline import FLUXPipelineWithIntermediateOutputs | |
# Constants | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
DEFAULT_WIDTH = 1024 | |
DEFAULT_HEIGHT = 1024 | |
DEFAULT_INFERENCE_STEPS = 1 | |
# Device and model setup | |
dtype = torch.float16 | |
pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype | |
).to("cuda") | |
torch.cuda.empty_cache() | |
# Inference function | |
def generate_image(prompt, seed=42, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device="cuda").manual_seed(int(float(seed))) | |
start_time = time.time() | |
# Only generate the last image in the sequence | |
img = pipe.generate_images( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator | |
) | |
latency = f"Latency: {(time.time()-start_time):.2f} seconds" | |
return img, seed, latency | |
# Example prompts | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cute white cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
"Create mage of Modern house in minecraft style", | |
"Imagine steve jobs as Star Wars movie character", | |
"Lion", | |
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.", | |
] | |
# --- Gradio UI --- | |
with gr.Blocks() as demo: | |
with gr.Column(elem_id="app-container"): | |
gr.Markdown("# 🎨 Realtime FLUX Image Generator") | |
gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.") | |
gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>") | |
with gr.Row(): | |
with gr.Column(scale=2.5): | |
result = gr.Image(label="Generated Image", show_label=False, interactive=False) | |
with gr.Column(scale=1): | |
prompt = gr.Text( | |
label="Prompt", | |
placeholder="Describe the image you want to generate...", | |
lines=3, | |
show_label=False, | |
container=False, | |
) | |
generateBtn = gr.Button("🖼️ Generate Image") | |
enhanceBtn = gr.Button("🚀 Enhance Image") | |
with gr.Column("Advanced Options"): | |
with gr.Row(): | |
realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False) | |
latency = gr.Text(label="Latency") | |
with gr.Row(): | |
seed = gr.Number(label="Seed", value=42) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT) | |
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS) | |
with gr.Row(): | |
gr.Markdown("### 🌟 Inspiration Gallery") | |
with gr.Row(): | |
gr.Examples( | |
examples=examples, | |
fn=generate_image, | |
inputs=[prompt], | |
outputs=[result, seed, latency], | |
cache_examples="lazy" | |
) | |
def enhance_image(*args): | |
gr.Info("Enhancing Image") # currently just runs optimized pipeline for 2 steps. Further implementations later. | |
return next(generate_image(*args)) | |
enhanceBtn.click( | |
fn=enhance_image, | |
inputs=[prompt, seed, width, height], | |
outputs=[result, seed, latency], | |
show_progress="hidden", | |
queue=False, | |
concurrency_limit=None | |
) | |
generateBtn.click( | |
fn=generate_image, | |
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], | |
outputs=[result, seed, latency], | |
show_progress="full", | |
api_name="RealtimeFlux", | |
queue=False | |
) | |
def update_ui(realtime_enabled): | |
return { | |
prompt: gr.update(interactive=True), | |
generateBtn: gr.update(visible=not realtime_enabled) | |
} | |
realtime.change( | |
fn=update_ui, | |
inputs=[realtime], | |
outputs=[prompt, generateBtn], | |
queue=False, | |
concurrency_limit=None | |
) | |
def realtime_generation(*args): | |
if args[0]: # If realtime is enabled | |
return next(generate_image(*args[1:])) | |
prompt.submit( | |
fn=generate_image, | |
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], | |
outputs=[result, seed, latency], | |
show_progress="full", | |
queue=False, | |
concurrency_limit=None | |
) | |
for component in [prompt, width, height, num_inference_steps]: | |
component.input( | |
fn=realtime_generation, | |
inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps], | |
outputs=[result, seed, latency], | |
show_progress="hidden", | |
trigger_mode="always_last", | |
queue=False, | |
concurrency_limit=None | |
) | |
# Launch the app | |
demo.launch() | |