import argparse import os import random import sys import time import tqdm sys.path.insert(0, "..") import numpy as np import torch import torch.backends.cudnn as cudnn from minigpt4.common.config import Config from minigpt4.common.dist_utils import get_rank from minigpt4.common.registry import registry from minigpt4.conversation.conversation_esm import Chat, CONV_VISION # imports modules for registration from minigpt4.datasets.builders import * from minigpt4.models import * from minigpt4.processors import * from minigpt4.runners import * from minigpt4.tasks import * import sys import esm import json DATASET_SPEC = "/home/ubuntu/proteinchat/dataset.json" ANN_PATH = "/home/ubuntu/proteinchat/data/qa_all.json" PDB_PATH = "/home/ubuntu/pt" SEQ_PATH = "/home/ubuntu/seq" OUTPUT_SAVE_PATH = "/home/ubuntu/proteinchat/eval/results/outputs" annotation = open(ANN_PATH, "r") annotation = json.load(annotation) dataset = open(DATASET_SPEC, "r") dataset = json.load(dataset) all_prots = dataset["test"] def parse_args(): parser = argparse.ArgumentParser(description="Demo") parser.add_argument("--cfg-path", required=True, help="path to configuration file.") parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.") parser.add_argument("--model", type=str, required=True, help="specify the model to load the model.") parser.add_argument( "--options", nargs="+", help="override some settings in the used config, the key-value pair " "in xxx=yyy format will be merged into config file (deprecate), " "change to --cfg-options instead.", ) args = parser.parse_args() return args def setup_seeds(config): seed = config.run_cfg.seed + get_rank() random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) cudnn.benchmark = False cudnn.deterministic = True print('Initializing Chat') args = parse_args() cfg = Config(args) model_config = cfg.model_cfg model_config.device_8bit = args.gpu_id model_cls = registry.get_model_class(model_config.arch) model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id)) vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id)) print('Initialization Finished') raw_output = {} score_output = {} START_SAMPLES = 0 # END_SAMPLES = 8806 END_SAMPLES = 160 all_prots = all_prots[START_SAMPLES : END_SAMPLES] for prot in tqdm.tqdm(all_prots): curr_prot_ann = annotation[prot] pdb_path = os.path.join(PDB_PATH, f"{prot}.pt") seq_path = os.path.join(SEQ_PATH, f"{prot}.pt") seq_embedding = torch.load(seq_path, map_location=torch.device('cpu')) sample_seq = seq_embedding.to('cuda:{}'.format(args.gpu_id)) if (seq_embedding.shape[1] > 384): continue raw_output[prot] = [] pdb_embedding = torch.load(pdb_path, map_location=torch.device('cpu')) sample_pdb = pdb_embedding.to('cuda:{}'.format(args.gpu_id)) for ann in curr_prot_ann: d = {} d["Q"] = ann["Q"] chat_state = CONV_VISION.copy() img_list = [] llm_message = chat.upload_protein(sample_pdb, sample_seq, chat_state, img_list) img_list = [mat.half() for mat in img_list] chat.ask(ann["Q"], chat_state) ans = chat.answer(conv=chat_state, img_list=img_list, num_beams=1, temperature=0.7, max_new_tokens=384, max_length=2048)[0] d["A"] = ans raw_output[prot].append(d) with open(os.path.join(OUTPUT_SAVE_PATH, f"{args.model}_eval_output.json"), 'w') as fp: json.dump(raw_output, fp, indent=4)