# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # # Portions of this file were adapted from the open source code for the following # two papers: # # Ingraham, J., Garg, V., Barzilay, R., & Jaakkola, T. (2019). Generative # models for graph-based protein design. Advances in Neural Information # Processing Systems, 32. # # Jing, B., Eismann, S., Suriana, P., Townshend, R. J. L., & Dror, R. (2020). # Learning from Protein Structure with Geometric Vector Perceptrons. In # International Conference on Learning Representations. # # MIT License # # Copyright (c) 2020 Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael Townshend, Ron Dror # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # ================================================================ # The below license applies to the portions of the code (parts of # src/datasets.py and src/models.py) adapted from Ingraham, et al. # ================================================================ # # MIT License # # Copyright (c) 2019 John Ingraham, Vikas Garg, Regina Barzilay, Tommi Jaakkola # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F print("features1") from .gvp_utils import flatten_graph print("features2") from .gvp_modules import GVP, LayerNorm print("features3") from .util import normalize, norm, nan_to_num, rbf print("features4") class GVPInputFeaturizer(nn.Module): @staticmethod def get_node_features(coords, coord_mask, with_coord_mask=True): # scalar features node_scalar_features = GVPInputFeaturizer._dihedrals(coords) if with_coord_mask: node_scalar_features = torch.cat([ node_scalar_features, coord_mask.float().unsqueeze(-1) ], dim=-1) # vector features X_ca = coords[:, :, 1] orientations = GVPInputFeaturizer._orientations(X_ca) sidechains = GVPInputFeaturizer._sidechains(coords) node_vector_features = torch.cat([orientations, sidechains.unsqueeze(-2)], dim=-2) return node_scalar_features, node_vector_features @staticmethod def _orientations(X): forward = normalize(X[:, 1:] - X[:, :-1]) backward = normalize(X[:, :-1] - X[:, 1:]) forward = F.pad(forward, [0, 0, 0, 1]) backward = F.pad(backward, [0, 0, 1, 0]) return torch.cat([forward.unsqueeze(-2), backward.unsqueeze(-2)], -2) @staticmethod def _sidechains(X): n, origin, c = X[:, :, 0], X[:, :, 1], X[:, :, 2] c, n = normalize(c - origin), normalize(n - origin) bisector = normalize(c + n) perp = normalize(torch.cross(c, n, dim=-1)) vec = -bisector * math.sqrt(1 / 3) - perp * math.sqrt(2 / 3) return vec @staticmethod def _dihedrals(X, eps=1e-7): X = torch.flatten(X[:, :, :3], 1, 2) bsz = X.shape[0] dX = X[:, 1:] - X[:, :-1] U = normalize(dX, dim=-1) u_2 = U[:, :-2] u_1 = U[:, 1:-1] u_0 = U[:, 2:] # Backbone normals n_2 = normalize(torch.cross(u_2, u_1, dim=-1), dim=-1) n_1 = normalize(torch.cross(u_1, u_0, dim=-1), dim=-1) # Angle between normals cosD = torch.sum(n_2 * n_1, -1) cosD = torch.clamp(cosD, -1 + eps, 1 - eps) D = torch.sign(torch.sum(u_2 * n_1, -1)) * torch.acos(cosD) # This scheme will remove phi[0], psi[-1], omega[-1] D = F.pad(D, [1, 2]) D = torch.reshape(D, [bsz, -1, 3]) # Lift angle representations to the circle D_features = torch.cat([torch.cos(D), torch.sin(D)], -1) return D_features @staticmethod def _positional_embeddings(edge_index, num_embeddings=None, num_positional_embeddings=16, period_range=[2, 1000]): # From https://github.com/jingraham/neurips19-graph-protein-design num_embeddings = num_embeddings or num_positional_embeddings d = edge_index[0] - edge_index[1] frequency = torch.exp( torch.arange(0, num_embeddings, 2, dtype=torch.float32, device=edge_index.device) * -(np.log(10000.0) / num_embeddings) ) angles = d.unsqueeze(-1) * frequency E = torch.cat((torch.cos(angles), torch.sin(angles)), -1) return E @staticmethod def _dist(X, coord_mask, padding_mask, top_k_neighbors, eps=1e-8): """ Pairwise euclidean distances """ bsz, maxlen = X.size(0), X.size(1) coord_mask_2D = torch.unsqueeze(coord_mask,1) * torch.unsqueeze(coord_mask,2) residue_mask = ~padding_mask residue_mask_2D = torch.unsqueeze(residue_mask,1) * torch.unsqueeze(residue_mask,2) dX = torch.unsqueeze(X,1) - torch.unsqueeze(X,2) D = coord_mask_2D * norm(dX, dim=-1) # sorting preference: first those with coords, then among the residues that # exist but are masked use distance in sequence as tie breaker, and then the # residues that came from padding are last seqpos = torch.arange(maxlen, device=X.device) Dseq = torch.abs(seqpos.unsqueeze(1) - seqpos.unsqueeze(0)).repeat(bsz, 1, 1) D_adjust = nan_to_num(D) + (~coord_mask_2D) * (1e8 + Dseq*1e6) + ( ~residue_mask_2D) * (1e10) if top_k_neighbors == -1: D_neighbors = D_adjust E_idx = seqpos.repeat( *D_neighbors.shape[:-1], 1) else: # Identify k nearest neighbors (including self) k = min(top_k_neighbors, X.size(1)) D_neighbors, E_idx = torch.topk(D_adjust, k, dim=-1, largest=False) coord_mask_neighbors = (D_neighbors < 5e7) residue_mask_neighbors = (D_neighbors < 5e9) return D_neighbors, E_idx, coord_mask_neighbors, residue_mask_neighbors class Normalize(nn.Module): def __init__(self, features, epsilon=1e-6): super(Normalize, self).__init__() self.gain = nn.Parameter(torch.ones(features)) self.bias = nn.Parameter(torch.zeros(features)) self.epsilon = epsilon def forward(self, x, dim=-1): mu = x.mean(dim, keepdim=True) sigma = torch.sqrt(x.var(dim, keepdim=True) + self.epsilon) gain = self.gain bias = self.bias # Reshape if dim != -1: shape = [1] * len(mu.size()) shape[dim] = self.gain.size()[0] gain = gain.view(shape) bias = bias.view(shape) return gain * (x - mu) / (sigma + self.epsilon) + bias class DihedralFeatures(nn.Module): def __init__(self, node_embed_dim): """ Embed dihedral angle features. """ super(DihedralFeatures, self).__init__() # 3 dihedral angles; sin and cos of each angle node_in = 6 # Normalization and embedding self.node_embedding = nn.Linear(node_in, node_embed_dim, bias=True) self.norm_nodes = Normalize(node_embed_dim) def forward(self, X): """ Featurize coordinates as an attributed graph """ V = self._dihedrals(X) V = self.node_embedding(V) V = self.norm_nodes(V) return V @staticmethod def _dihedrals(X, eps=1e-7, return_angles=False): # First 3 coordinates are N, CA, C X = X[:,:,:3,:].reshape(X.shape[0], 3*X.shape[1], 3) # Shifted slices of unit vectors dX = X[:,1:,:] - X[:,:-1,:] U = F.normalize(dX, dim=-1) u_2 = U[:,:-2,:] u_1 = U[:,1:-1,:] u_0 = U[:,2:,:] # Backbone normals n_2 = F.normalize(torch.cross(u_2, u_1, dim=-1), dim=-1) n_1 = F.normalize(torch.cross(u_1, u_0, dim=-1), dim=-1) # Angle between normals cosD = (n_2 * n_1).sum(-1) cosD = torch.clamp(cosD, -1+eps, 1-eps) D = torch.sign((u_2 * n_1).sum(-1)) * torch.acos(cosD) # This scheme will remove phi[0], psi[-1], omega[-1] D = F.pad(D, (1,2), 'constant', 0) D = D.view((D.size(0), int(D.size(1)/3), 3)) phi, psi, omega = torch.unbind(D,-1) if return_angles: return phi, psi, omega # Lift angle representations to the circle D_features = torch.cat((torch.cos(D), torch.sin(D)), 2) return D_features class GVPGraphEmbedding(GVPInputFeaturizer): def __init__(self, args): super().__init__() self.top_k_neighbors = args.top_k_neighbors self.num_positional_embeddings = 16 self.remove_edges_without_coords = True node_input_dim = (7, 3) edge_input_dim = (34, 1) node_hidden_dim = (args.node_hidden_dim_scalar, args.node_hidden_dim_vector) edge_hidden_dim = (args.edge_hidden_dim_scalar, args.edge_hidden_dim_vector) self.embed_node = nn.Sequential( GVP(node_input_dim, node_hidden_dim, activations=(None, None)), LayerNorm(node_hidden_dim, eps=1e-4) ) self.embed_edge = nn.Sequential( GVP(edge_input_dim, edge_hidden_dim, activations=(None, None)), LayerNorm(edge_hidden_dim, eps=1e-4) ) self.embed_confidence = nn.Linear(16, args.node_hidden_dim_scalar) def forward(self, coords, coord_mask, padding_mask, confidence): with torch.no_grad(): node_features = self.get_node_features(coords, coord_mask) edge_features, edge_index = self.get_edge_features( coords, coord_mask, padding_mask) node_embeddings_scalar, node_embeddings_vector = self.embed_node(node_features) edge_embeddings = self.embed_edge(edge_features) rbf_rep = rbf(confidence, 0., 1.) node_embeddings = ( node_embeddings_scalar + self.embed_confidence(rbf_rep), node_embeddings_vector ) node_embeddings, edge_embeddings, edge_index = flatten_graph( node_embeddings, edge_embeddings, edge_index) return node_embeddings, edge_embeddings, edge_index def get_edge_features(self, coords, coord_mask, padding_mask): X_ca = coords[:, :, 1] # Get distances to the top k neighbors E_dist, E_idx, E_coord_mask, E_residue_mask = GVPInputFeaturizer._dist( X_ca, coord_mask, padding_mask, self.top_k_neighbors) # Flatten the graph to be batch size 1 for torch_geometric package dest = E_idx B, L, k = E_idx.shape[:3] src = torch.arange(L, device=E_idx.device).view([1, L, 1]).expand(B, L, k) # After flattening, [2, B, E] edge_index = torch.stack([src, dest], dim=0).flatten(2, 3) # After flattening, [B, E] E_dist = E_dist.flatten(1, 2) E_coord_mask = E_coord_mask.flatten(1, 2).unsqueeze(-1) E_residue_mask = E_residue_mask.flatten(1, 2) # Calculate relative positional embeddings and distance RBF pos_embeddings = GVPInputFeaturizer._positional_embeddings( edge_index, num_positional_embeddings=self.num_positional_embeddings, ) D_rbf = rbf(E_dist, 0., 20.) # Calculate relative orientation X_src = X_ca.unsqueeze(2).expand(-1, -1, k, -1).flatten(1, 2) X_dest = torch.gather( X_ca, 1, edge_index[1, :, :].unsqueeze(-1).expand([B, L*k, 3]) ) coord_mask_src = coord_mask.unsqueeze(2).expand(-1, -1, k).flatten(1, 2) coord_mask_dest = torch.gather( coord_mask, 1, edge_index[1, :, :].expand([B, L*k]) ) E_vectors = X_src - X_dest # For the ones without coordinates, substitute in the average vector E_vector_mean = torch.sum(E_vectors * E_coord_mask, dim=1, keepdims=True) / torch.sum(E_coord_mask, dim=1, keepdims=True) E_vectors = E_vectors * E_coord_mask + E_vector_mean * ~(E_coord_mask) # Normalize and remove nans edge_s = torch.cat([D_rbf, pos_embeddings], dim=-1) edge_v = normalize(E_vectors).unsqueeze(-2) edge_s, edge_v = map(nan_to_num, (edge_s, edge_v)) # Also add indications of whether the coordinates are present edge_s = torch.cat([ edge_s, (~coord_mask_src).float().unsqueeze(-1), (~coord_mask_dest).float().unsqueeze(-1), ], dim=-1) edge_index[:, ~E_residue_mask] = -1 if self.remove_edges_without_coords: edge_index[:, ~E_coord_mask.squeeze(-1)] = -1 return (edge_s, edge_v), edge_index.transpose(0, 1)