# Copyright (c) Meta Platforms, Inc. and affiliates. # # Contents of this file were adapted from the open source fairseq repository. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import math from typing import Dict, List, Optional import torch import torch.nn as nn from torch import Tensor print("gvp1_transformer_encoder") from esm.modules import SinusoidalPositionalEmbedding print("gvp2_transformer_encoder") from .features import GVPInputFeaturizer, DihedralFeatures print("gvp3_transformer_encoder") from .gvp_encoder import GVPEncoder print("gvp4_transformer_encoder") from .transformer_layer import TransformerEncoderLayer print("gvp5_transformer_encoder") from .util import nan_to_num, get_rotation_frames, rotate, rbf print("gvp6_transformer_encoder") class GVPTransformerEncoder(nn.Module): """ Transformer encoder consisting of *args.encoder.layers* layers. Each layer is a :class:`TransformerEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, args, dictionary, embed_tokens): super().__init__() self.args = args self.dictionary = dictionary self.dropout_module = nn.Dropout(args.dropout) embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) self.embed_positions = SinusoidalPositionalEmbedding( embed_dim, self.padding_idx, ) self.embed_gvp_input_features = nn.Linear(15, embed_dim) self.embed_confidence = nn.Linear(16, embed_dim) self.embed_dihedrals = DihedralFeatures(embed_dim) gvp_args = argparse.Namespace() for k, v in vars(args).items(): if k.startswith("gvp_"): setattr(gvp_args, k[4:], v) self.gvp_encoder = GVPEncoder(gvp_args) gvp_out_dim = gvp_args.node_hidden_dim_scalar + (3 * gvp_args.node_hidden_dim_vector) self.embed_gvp_output = nn.Linear(gvp_out_dim, embed_dim) self.layers = nn.ModuleList([]) self.layers.extend( [self.build_encoder_layer(args) for i in range(args.encoder_layers)] ) self.num_layers = len(self.layers) self.layer_norm = nn.LayerNorm(embed_dim) def build_encoder_layer(self, args): return TransformerEncoderLayer(args) def forward_embedding(self, coords, padding_mask, confidence): """ Args: coords: N, CA, C backbone coordinates in shape length x 3 (atoms) x 3 padding_mask: boolean Tensor (true for padding) of shape length confidence: confidence scores between 0 and 1 of shape length """ components = dict() coord_mask = torch.all(torch.all(torch.isfinite(coords), dim=-1), dim=-1) coords = nan_to_num(coords) mask_tokens = ( padding_mask * self.dictionary.padding_idx + ~padding_mask * self.dictionary.get_idx("") ) components["tokens"] = self.embed_tokens(mask_tokens) * self.embed_scale components["diherals"] = self.embed_dihedrals(coords) # GVP encoder gvp_out_scalars, gvp_out_vectors = self.gvp_encoder(coords, coord_mask, padding_mask, confidence) R = get_rotation_frames(coords) # Rotate to local rotation frame for rotation-invariance gvp_out_features = torch.cat([ gvp_out_scalars, rotate(gvp_out_vectors, R.transpose(-2, -1)).flatten(-2, -1), ], dim=-1) components["gvp_out"] = self.embed_gvp_output(gvp_out_features) components["confidence"] = self.embed_confidence( rbf(confidence, 0., 1.)) # In addition to GVP encoder outputs, also directly embed GVP input node # features to the Transformer scalar_features, vector_features = GVPInputFeaturizer.get_node_features( coords, coord_mask, with_coord_mask=False) features = torch.cat([ scalar_features, rotate(vector_features, R.transpose(-2, -1)).flatten(-2, -1), ], dim=-1) components["gvp_input_features"] = self.embed_gvp_input_features(features) embed = sum(components.values()) # for k, v in components.items(): # print(k, torch.mean(v, dim=(0,1)), torch.std(v, dim=(0,1))) x = embed x = x + self.embed_positions(mask_tokens) x = self.dropout_module(x) return x, components def forward( self, coords, encoder_padding_mask, confidence, return_all_hiddens: bool = False, ): """ Args: coords (Tensor): backbone coordinates shape batch_size x num_residues x num_atoms (3 for N, CA, C) x 3 encoder_padding_mask (ByteTensor): the positions of padding elements of shape `(batch_size x num_residues)` confidence (Tensor): the confidence score of shape (batch_size x num_residues). The value is between 0. and 1. for each residue coordinate, or -1. if no coordinate is given return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(num_residues, batch_size, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch_size, num_residues)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch_size, num_residues, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(num_residues, batch_size, embed_dim)`. Only populated if *return_all_hiddens* is True. """ x, encoder_embedding = self.forward_embedding(coords, encoder_padding_mask, confidence) # account for padding while computing the representation x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x)) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_states = [] if return_all_hiddens: encoder_states.append(x) # encoder layers for layer in self.layers: x = layer( x, encoder_padding_mask=encoder_padding_mask ) if return_all_hiddens: assert encoder_states is not None encoder_states.append(x) if self.layer_norm is not None: x = self.layer_norm(x) return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask], # B x T "encoder_embedding": [encoder_embedding], # dictionary "encoder_states": encoder_states, # List[T x B x C] }