from pydantic import NoneStr import os from langchain.chains.question_answering import load_qa_chain from langchain.document_loaders import UnstructuredFileLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.llms import OpenAI from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain import gradio as gr import openai from langchain import PromptTemplate, OpenAI, LLMChain import validators import requests import mimetypes import tempfile class Chatbot: def __init__(self): openai.api_key = os.getenv("OPENAI_API_KEY") def get_empty_state(self): """ Create empty Knowledge base""" return {"knowledge_base": None} def create_knowledge_base(self,docs): """Create a knowledge base from the given documents. Args: docs (List[str]): List of documents. Returns: FAISS: Knowledge base built from the documents. """ # Initialize a CharacterTextSplitter to split the documents into chunks # Each chunk has a maximum length of 500 characters # There is no overlap between the chunks text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) # Split the documents into chunks using the text_splitter chunks = text_splitter.split_documents(docs) # Initialize an OpenAIEmbeddings model to compute embeddings of the chunks embeddings = OpenAIEmbeddings() # Build a knowledge base using FAISS from the chunks and their embeddings knowledge_base = Chroma.from_documents(chunks, embeddings) # Return the resulting knowledge base return knowledge_base def upload_file(self,file_paths): """Upload a file and create a knowledge base from its contents. Args: file_paths : The files to uploaded. Returns: tuple: A tuple containing the file name and the knowledge base. """ file_paths = [i.name for i in file_paths] print(file_paths) loaders = [UnstructuredFileLoader(file_obj, strategy="fast") for file_obj in file_paths] # Load the contents of the file using the loader docs = [] for loader in loaders: docs.extend(loader.load()) # Create a knowledge base from the loaded documents using the create_knowledge_base() method knowledge_base = self.create_knowledge_base(docs) # Return a tuple containing the file name and the knowledge base return file_paths, {"knowledge_base": knowledge_base} def add_text(self,history, text): history = history + [(text, None)] return history, gr.update(value="", interactive=False) def upload_multiple_urls(self,urls): urlss = [url.strip() for url in urls.split(',')] all_docs = [] file_paths = [] for url in urlss: if validators.url(url): headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',} r = requests.get(url,headers=headers) if r.status_code != 200: raise ValueError( "Check the url of your file; returned status code %s" % r.status_code ) content_type = r.headers.get("content-type") file_extension = mimetypes.guess_extension(content_type) temp_file = tempfile.NamedTemporaryFile(suffix=file_extension, delete=False) temp_file.write(r.content) file_path = temp_file.name file_paths.append(file_path) loaders = [UnstructuredFileLoader(file_obj, strategy="fast") for file_obj in file_paths] # Load the contents of the file using the loader docs = [] for loader in loaders: docs.extend(loader.load()) # Create a knowledge base from the loaded documents using the create_knowledge_base() method knowledge_base = self.create_knowledge_base(docs) return file_paths,{"knowledge_base":knowledge_base} def answer_question(self, question,history,state): """Answer a question based on the current knowledge base. Args: state (dict): The current state containing the knowledge base. Returns: str: The answer to the question. """ # Retrieve the knowledge base from the state dictionary knowledge_base = state["knowledge_base"] retriever = knowledge_base.as_retriever() qa = ConversationalRetrievalChain.from_llm( llm=OpenAI(temperature=0.5), retriever=retriever, return_source_documents=False) # Set the question for which we want to find the answer res = [] question = history[-1][0] for human, ai in history[:-1]: pair = (human, ai) res.append(pair) chat_history = res #print(chat_history) query = question result = qa({"question": query, "chat_history": chat_history}) # Perform a similarity search on the knowledge base to retrieve relevant documents response = result["answer"] # Return the response as the answer to the question history[-1][1] = response return history def extract_excel_data(self,file_path): # Read the Excel file df = pd.read_excel(file_path) # Flatten the data to a single list data_list = [] for _, row in df.iterrows(): data_list.extend(row.tolist()) return data_list def comparing_chemicals(self,excel_file_path,chemicals): chemistry_capability = self.extract_excel_data(excel_file_path.name) response = openai.Completion.create( engine="text-davinci-003", prompt= f"""Analyse the following text delimited by triple backticks to return the comman chemicals. text : ```{chemicals} {chemistry_capability}```. result should be in bullet points format. """, max_tokens=100, n=1, stop=None, temperature=0, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) result = response.choices[0].text.strip() return result def clear_function(self,state): state.clear() # state = gr.State(self.get_empty_state()) def gradio_interface(self): """Create the Gradio interface for the Chemical Identifier.""" with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as demo: state = gr.State(self.get_empty_state()) with gr.Column(elem_id="col-container"): gr.HTML( """
""" ) gr.HTML( """

ADOPLE AI

""" ) gr.HTML( """

Multi URL and Doc Chatbot

""" ) gr.HTML( """
""" ) gr.Markdown("**Upload your URL,Documents**") with gr.Accordion("Upload Files", open = False): with gr.Row(elem_id="row-flex"): with gr.Row(elem_id="row-flex"): with gr.Column(scale=1,): file_url = gr.Textbox(label='file url :',show_label=True,lines=10, placeholder="") with gr.Row(elem_id="row-flex"): with gr.Column(scale=1): file_output = gr.File() with gr.Column(scale=1): upload_button = gr.UploadButton( "Browse File", file_types=[".txt", ".pdf", ".doc", ".docx"], file_count = "multiple") with gr.Row(): chatbot = gr.Chatbot([], elem_id="chatbot") with gr.Row(): txt = gr.Textbox( label = "Question", show_label=True, lines=2, placeholder="Enter text and press shift+enter", ) with gr.Row(): clear_btn = gr.Button(value="Clear") txt_msg = txt.submit(self.add_text, [chatbot, txt], [chatbot, txt], queue=False).then( self.answer_question, [txt,chatbot,state], chatbot ) txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False) file_url.submit(self.upload_multiple_urls, file_url, [file_output, state]) clear_btn.click(self.clear_function,[state],[]) clear_btn.click(lambda: None, None, chatbot, queue=False) upload_button.upload(self.upload_file, upload_button, [file_output,state]) demo.queue().launch(debug=True) if __name__=="__main__": chatbot = Chatbot() chatbot.gradio_interface()