ACloudCenter commited on
Commit
dd76c58
·
1 Parent(s): ac30457

Exclude backend_modal from Hugging Face Space deployment

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +48 -2
  2. backend_modal/configs/qwen2.5_1.5b_64k.json +0 -112
  3. backend_modal/configs/qwen2.5_7b_32k.json +0 -113
  4. backend_modal/example/1p_EN2CH.mp4 +0 -3
  5. backend_modal/example/2p_see_u_again.mp4 +0 -3
  6. backend_modal/example/4p_climate_45min.mp4 +0 -3
  7. backend_modal/modal_runner.py +0 -230
  8. backend_modal/modular/__init__.py +0 -0
  9. backend_modal/modular/configuration_vibevoice.py +0 -248
  10. backend_modal/modular/modeling_vibevoice.py +0 -488
  11. backend_modal/modular/modeling_vibevoice_inference.py +0 -715
  12. backend_modal/modular/modular_vibevoice_diffusion_head.py +0 -287
  13. backend_modal/modular/modular_vibevoice_text_tokenizer.py +0 -214
  14. backend_modal/modular/modular_vibevoice_tokenizer.py +0 -1195
  15. backend_modal/modular/streamer.py +0 -264
  16. backend_modal/packages.txt +0 -1
  17. backend_modal/processor/__init__.py +0 -0
  18. backend_modal/processor/vibevoice_processor.py +0 -677
  19. backend_modal/processor/vibevoice_tokenizer_processor.py +0 -483
  20. backend_modal/schedule/__init__.py +0 -0
  21. backend_modal/schedule/dpm_solver.py +0 -1065
  22. backend_modal/schedule/timestep_sampler.py +0 -19
  23. backend_modal/scripts/__init__.py +0 -0
  24. backend_modal/scripts/convert_nnscaler_checkpoint_to_transformers.py +0 -166
  25. backend_modal/setup_voices.sh +0 -21
  26. backend_modal/text_examples/1p_ai_tedtalk.txt +0 -1
  27. backend_modal/text_examples/1p_ai_tedtalk_natural.txt +0 -1
  28. backend_modal/text_examples/1p_politcal_speech.txt +0 -1
  29. backend_modal/text_examples/1p_politcal_speech_natural.txt +0 -1
  30. backend_modal/text_examples/2p_financeipo_meeting.txt +0 -35
  31. backend_modal/text_examples/2p_financeipo_meeting_natural.txt +0 -35
  32. backend_modal/text_examples/2p_telehealth_meeting.txt +0 -33
  33. backend_modal/text_examples/2p_telehealth_meeting_natural.txt +0 -33
  34. backend_modal/text_examples/3p_military_meeting.txt +0 -51
  35. backend_modal/text_examples/3p_military_meeting_natural.txt +0 -51
  36. backend_modal/text_examples/3p_oil_meeting.txt +0 -49
  37. backend_modal/text_examples/3p_oil_meeting_natural.txt +0 -49
  38. backend_modal/text_examples/4p_gamecreation_meeting.txt +0 -69
  39. backend_modal/text_examples/4p_gamecreation_meeting_natural.txt +0 -69
  40. backend_modal/text_examples/4p_product_meeting.txt +0 -35
  41. backend_modal/text_examples/4p_product_meeting_natural.txt +0 -35
  42. backend_modal/voices/en-Alice_woman.wav +0 -3
  43. backend_modal/voices/en-Alice_woman_bgm.wav +0 -3
  44. backend_modal/voices/en-Carter_man.wav +0 -3
  45. backend_modal/voices/en-Frank_man.wav +0 -3
  46. backend_modal/voices/en-Maya_woman.wav +0 -3
  47. backend_modal/voices/en-Yasser_man.wav +0 -3
  48. backend_modal/voices/in-Samuel_man.wav +0 -3
  49. backend_modal/voices/zh-Anchen_man_bgm.wav +0 -3
  50. backend_modal/voices/zh-Bowen_man.wav +0 -3
.gitignore CHANGED
@@ -1,3 +1,49 @@
1
- *.pyc
 
2
  __pycache__/
3
- .env
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Gitignore for Conference-Generator-VibeVoice
2
+ # Ignore common build/dependency directories
3
  __pycache__/
4
+ *.pyc
5
+ *.pyo
6
+ *.pyd
7
+ .Python
8
+ env/
9
+ venv/
10
+ .venv/
11
+ build/
12
+ dist/
13
+ *.egg-info/
14
+ .tox/
15
+ .mypy_cache/
16
+ .pytest_cache/
17
+ .ruff_cache/
18
+
19
+ # Ignore editor/IDE files
20
+ .vscode/
21
+ .idea/
22
+ *.swp
23
+ *~
24
+ .DS_Store
25
+
26
+ # Ignore Modal-specific files
27
+ .modal.json
28
+ .modalignore
29
+ .modal/
30
+
31
+ # Ignore local data/logs
32
+ *.log
33
+ data/
34
+ tmp/
35
+
36
+ # Ignore sensitive files
37
+ .env
38
+ .env.*
39
+ *.pem
40
+ *.key
41
+ *.crt
42
+ *.p12
43
+ *.pfx
44
+ *.jks
45
+ *.secret
46
+ *.token
47
+
48
+ # Ignore backend_modal directory for Hugging Face Space deployment
49
+ backend_modal/
backend_modal/configs/qwen2.5_1.5b_64k.json DELETED
@@ -1,112 +0,0 @@
1
- {
2
- "_attn_implementation_autoset": true,
3
- "acoustic_vae_dim": 64,
4
- "acoustic_tokenizer_config": {
5
- "causal": true,
6
- "channels": 1,
7
- "conv_bias": true,
8
- "conv_norm": "none",
9
- "corpus_normalize": 0.0,
10
- "decoder_depths": null,
11
- "decoder_n_filters": 32,
12
- "decoder_ratios": [
13
- 8,
14
- 5,
15
- 5,
16
- 4,
17
- 2,
18
- 2
19
- ],
20
- "disable_last_norm": true,
21
- "encoder_depths": "3-3-3-3-3-3-8",
22
- "encoder_n_filters": 32,
23
- "encoder_ratios": [
24
- 8,
25
- 5,
26
- 5,
27
- 4,
28
- 2,
29
- 2
30
- ],
31
- "fix_std": 0.5,
32
- "layer_scale_init_value": 1e-06,
33
- "layernorm": "RMSNorm",
34
- "layernorm_elementwise_affine": true,
35
- "layernorm_eps": 1e-05,
36
- "mixer_layer": "depthwise_conv",
37
- "model_type": "vibepod_acoustic_tokenizer",
38
- "pad_mode": "constant",
39
- "std_dist_type": "gaussian",
40
- "vae_dim": 64,
41
- "weight_init_value": 0.01
42
- },
43
- "decoder_config": {
44
- "attention_dropout": 0.0,
45
- "hidden_act": "silu",
46
- "hidden_size": 1536,
47
- "initializer_range": 0.02,
48
- "intermediate_size": 8960,
49
- "max_position_embeddings": 65536,
50
- "max_window_layers": 28,
51
- "model_type": "qwen2",
52
- "num_attention_heads": 12,
53
- "num_hidden_layers": 28,
54
- "num_key_value_heads": 2,
55
- "rms_norm_eps": 1e-06,
56
- "rope_scaling": null,
57
- "rope_theta": 1000000.0,
58
- "sliding_window": null,
59
- "tie_word_embeddings": true,
60
- "torch_dtype": "bfloat16",
61
- "use_cache": true,
62
- "use_sliding_window": false,
63
- "vocab_size": 151936
64
- },
65
- "diffusion_head_config": {
66
- "ddpm_batch_mul": 4,
67
- "ddpm_beta_schedule": "cosine",
68
- "ddpm_num_inference_steps": 20,
69
- "ddpm_num_steps": 1000,
70
- "diffusion_type": "ddpm",
71
- "head_ffn_ratio": 3.0,
72
- "head_layers": 4,
73
- "hidden_size": 1536,
74
- "latent_size": 64,
75
- "model_type": "vibepod_diffusion_head",
76
- "prediction_type": "v_prediction",
77
- "rms_norm_eps": 1e-05,
78
- "speech_vae_dim": 64
79
- },
80
- "model_type": "vibepod",
81
- "semantic_tokenizer_config": {
82
- "causal": true,
83
- "channels": 1,
84
- "conv_bias": true,
85
- "conv_norm": "none",
86
- "corpus_normalize": 0.0,
87
- "disable_last_norm": true,
88
- "encoder_depths": "3-3-3-3-3-3-8",
89
- "encoder_n_filters": 32,
90
- "encoder_ratios": [
91
- 8,
92
- 5,
93
- 5,
94
- 4,
95
- 2,
96
- 2
97
- ],
98
- "fix_std": 0,
99
- "layer_scale_init_value": 1e-06,
100
- "layernorm": "RMSNorm",
101
- "layernorm_elementwise_affine": true,
102
- "layernorm_eps": 1e-05,
103
- "mixer_layer": "depthwise_conv",
104
- "model_type": "vibepod_semantic_tokenizer",
105
- "pad_mode": "constant",
106
- "std_dist_type": "none",
107
- "vae_dim": 128,
108
- "weight_init_value": 0.01
109
- },
110
- "semantic_vae_dim": 128,
111
- "torch_dtype": "bfloat16"
112
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/configs/qwen2.5_7b_32k.json DELETED
@@ -1,113 +0,0 @@
1
- {
2
- "_attn_implementation_autoset": true,
3
- "acoustic_vae_dim": 64,
4
- "acoustic_tokenizer_config": {
5
- "causal": true,
6
- "channels": 1,
7
- "conv_bias": true,
8
- "conv_norm": "none",
9
- "corpus_normalize": 0.0,
10
- "decoder_depths": null,
11
- "decoder_n_filters": 32,
12
- "decoder_ratios": [
13
- 8,
14
- 5,
15
- 5,
16
- 4,
17
- 2,
18
- 2
19
- ],
20
- "disable_last_norm": true,
21
- "encoder_depths": "3-3-3-3-3-3-8",
22
- "encoder_n_filters": 32,
23
- "encoder_ratios": [
24
- 8,
25
- 5,
26
- 5,
27
- 4,
28
- 2,
29
- 2
30
- ],
31
- "fix_std": 0.5,
32
- "layer_scale_init_value": 1e-06,
33
- "layernorm": "RMSNorm",
34
- "layernorm_elementwise_affine": true,
35
- "layernorm_eps": 1e-05,
36
- "mixer_layer": "depthwise_conv",
37
- "model_type": "vibepod_acoustic_tokenizer",
38
- "pad_mode": "constant",
39
- "std_dist_type": "gaussian",
40
- "vae_dim": 64,
41
- "weight_init_value": 0.01
42
- },
43
- "decoder_config": {
44
- "attention_dropout": 0.0,
45
- "hidden_act": "silu",
46
- "hidden_size": 3584,
47
- "initializer_range": 0.02,
48
- "intermediate_size": 18944,
49
- "max_position_embeddings": 32768,
50
- "max_window_layers": 28,
51
- "model_type": "qwen2",
52
- "num_attention_heads": 28,
53
- "num_hidden_layers": 28,
54
- "num_key_value_heads": 4,
55
- "rms_norm_eps": 1e-06,
56
- "rope_theta": 1000000.0,
57
- "sliding_window": null,
58
- "tie_word_embeddings": false,
59
- "torch_dtype": "bfloat16",
60
- "transformers_version": "4.40.1",
61
- "use_cache": true,
62
- "use_mrope": false,
63
- "use_sliding_window": false,
64
- "vocab_size": 152064
65
- },
66
- "diffusion_head_config": {
67
- "ddpm_batch_mul": 4,
68
- "ddpm_beta_schedule": "cosine",
69
- "ddpm_num_inference_steps": 20,
70
- "ddpm_num_steps": 1000,
71
- "diffusion_type": "ddpm",
72
- "head_ffn_ratio": 3.0,
73
- "head_layers": 4,
74
- "hidden_size": 3584,
75
- "latent_size": 64,
76
- "model_type": "vibepod_diffusion_head",
77
- "prediction_type": "v_prediction",
78
- "rms_norm_eps": 1e-05,
79
- "speech_vae_dim": 64
80
- },
81
- "model_type": "vibepod",
82
- "semantic_tokenizer_config": {
83
- "causal": true,
84
- "channels": 1,
85
- "conv_bias": true,
86
- "conv_norm": "none",
87
- "corpus_normalize": 0.0,
88
- "disable_last_norm": true,
89
- "encoder_depths": "3-3-3-3-3-3-8",
90
- "encoder_n_filters": 32,
91
- "encoder_ratios": [
92
- 8,
93
- 5,
94
- 5,
95
- 4,
96
- 2,
97
- 2
98
- ],
99
- "fix_std": 0,
100
- "layer_scale_init_value": 1e-06,
101
- "layernorm": "RMSNorm",
102
- "layernorm_elementwise_affine": true,
103
- "layernorm_eps": 1e-05,
104
- "mixer_layer": "depthwise_conv",
105
- "model_type": "vibepod_semantic_tokenizer",
106
- "pad_mode": "constant",
107
- "std_dist_type": "none",
108
- "vae_dim": 128,
109
- "weight_init_value": 0.01
110
- },
111
- "semantic_vae_dim": 128,
112
- "torch_dtype": "bfloat16"
113
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/example/1p_EN2CH.mp4 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:309bb904d14fd9eb8c4d1fdd0555ef0cca3622592adeeae36b325a16b5f5c79c
3
- size 1150931
 
 
 
 
backend_modal/example/2p_see_u_again.mp4 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b1eeb3819a31591d3d1c13dad4ec0c220dc22af20abd04f1f3699f6e30a8663e
3
- size 514352
 
 
 
 
backend_modal/example/4p_climate_45min.mp4 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8f74874c9ea49d1f9e7c3b9d40d556fc729d9d828ac3d7fa10a504d4f68a0b80
3
- size 24147667
 
 
 
 
backend_modal/modal_runner.py DELETED
@@ -1,230 +0,0 @@
1
- import os
2
- import time
3
- import numpy as np
4
- import librosa
5
- import soundfile as sf
6
- import torch
7
- from datetime import datetime
8
-
9
- # Modal-specific imports
10
- import modal
11
-
12
- # Define the Modal Stub
13
- image = (
14
- modal.Image.debian_slim(python_version="3.10")
15
- .pip_install(
16
- "torch",
17
- "accelerate==1.6.0",
18
- "transformers==4.51.3",
19
- "diffusers",
20
- "tqdm",
21
- "numpy",
22
- "scipy",
23
- "ml-collections",
24
- "absl-py",
25
- "soundfile",
26
- "librosa",
27
- "pydub",
28
- )
29
- .add_local_dir("./modular", remote_path="/root/modular")
30
- .add_local_dir("./processor", remote_path="/root/processor")
31
- .add_local_dir("./voices", remote_path="/root/voices")
32
- .add_local_dir("./text_examples", remote_path="/root/text_examples")
33
- .add_local_dir("./schedule", remote_path="/root/schedule")
34
- )
35
-
36
- app = modal.App(
37
- name="vibevoice-generator",
38
- image=image,
39
- )
40
-
41
-
42
- @app.cls(gpu="T4", scaledown_window=300, secrets=[modal.Secret.from_name("hf-secret")])
43
- class VibeVoiceModel:
44
- def __init__(self, model_paths: dict = None):
45
- if model_paths is None:
46
- self.model_paths = {
47
- "VibeVoice-1.5B": "microsoft/VibeVoice-1.5B",
48
- "VibeVoice-7B": "vibevoice/VibeVoice-7B",
49
- }
50
- else:
51
- self.model_paths = model_paths
52
-
53
- self.device = "cuda"
54
- self.inference_steps = 5
55
-
56
- @modal.enter()
57
- def load_models(self):
58
- """
59
- This method is run once when the container starts.
60
- It downloads and loads all models onto the GPU.
61
- """
62
- # Project-specific imports are moved here to run inside the container
63
- from modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
64
- from processor.vibevoice_processor import VibeVoiceProcessor
65
-
66
- print("Entering container and loading models to GPU...")
67
-
68
- # Set compiler flags for better performance
69
- if torch.cuda.is_available() and hasattr(torch, '_inductor'):
70
- if hasattr(torch._inductor, 'config'):
71
- torch._inductor.config.conv_1x1_as_mm = True
72
- torch._inductor.config.coordinate_descent_tuning = True
73
- torch._inductor.config.epilogue_fusion = False
74
- torch._inductor.config.coordinate_descent_check_all_directions = True
75
-
76
- self.models = {}
77
- self.processors = {}
78
-
79
- for name, path in self.model_paths.items():
80
- print(f" - Loading {name} from {path}")
81
- proc = VibeVoiceProcessor.from_pretrained(path)
82
- mdl = VibeVoiceForConditionalGenerationInference.from_pretrained(
83
- path,
84
- torch_dtype=torch.bfloat16,
85
- attn_implementation="sdpa"
86
- ).to(self.device)
87
- mdl.eval()
88
- print(f" {name} loaded to {self.device}")
89
- self.processors[name] = proc
90
- self.models[name] = mdl
91
-
92
- self.setup_voice_presets()
93
- print("Model loading complete.")
94
-
95
- def setup_voice_presets(self):
96
- self.available_voices = {}
97
- voices_dir = "/root/voices" # Using remote path from Mount
98
- if not os.path.exists(voices_dir):
99
- print(f"Warning: Voices directory not found at {voices_dir}")
100
- return
101
- wav_files = [f for f in os.listdir(voices_dir)
102
- if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac'))]
103
- for wav_file in wav_files:
104
- name = os.path.splitext(wav_file)[0]
105
- self.available_voices[name] = os.path.join(voices_dir, wav_file)
106
- print(f"Voices loaded: {list(self.available_voices.keys())}")
107
-
108
- def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
109
- try:
110
- wav, sr = sf.read(audio_path)
111
- if len(wav.shape) > 1:
112
- wav = np.mean(wav, axis=1)
113
- if sr != target_sr:
114
- wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
115
- return wav
116
- except Exception as e:
117
- print(f"Error reading audio {audio_path}: {e}")
118
- return np.array([])
119
-
120
- @modal.method()
121
- def generate_podcast(self,
122
- num_speakers: int,
123
- script: str,
124
- model_name: str,
125
- cfg_scale: float,
126
- speaker_1: str = None,
127
- speaker_2: str = None,
128
- speaker_3: str = None,
129
- speaker_4: str = None):
130
- """
131
- This is the main inference function that will be called from the Gradio app.
132
- """
133
- try:
134
- if model_name not in self.models:
135
- raise ValueError(f"Unknown model: {model_name}")
136
-
137
- model = self.models[model_name]
138
- processor = self.processors[model_name]
139
- model.set_ddpm_inference_steps(num_steps=self.inference_steps)
140
-
141
- print(f"Generating with model {model_name} on {self.device}")
142
-
143
- if not script.strip():
144
- raise ValueError("Error: Please provide a script.")
145
-
146
- script = script.replace("’", "'")
147
-
148
- if not 1 <= num_speakers <= 4:
149
- raise ValueError("Error: Number of speakers must be between 1 and 4.")
150
-
151
- selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
152
- for i, speaker_name in enumerate(selected_speakers):
153
- if not speaker_name or speaker_name not in self.available_voices:
154
- raise ValueError(f"Error: Please select a valid speaker for Speaker {i+1}.")
155
-
156
- log = f"Generating conference with {num_speakers} speakers\n"
157
- log += f"Model: {model_name}\n"
158
- log += f"Parameters: CFG Scale={cfg_scale}\n"
159
- log += f"Speakers: {', '.join(selected_speakers)}\n"
160
-
161
- voice_samples = []
162
- for speaker_name in selected_speakers:
163
- audio_path = self.available_voices[speaker_name]
164
- audio_data = self.read_audio(audio_path)
165
- if len(audio_data) == 0:
166
- raise ValueError(f"Error: Failed to load audio for {speaker_name}")
167
- voice_samples.append(audio_data)
168
-
169
- log += f"Loaded {len(voice_samples)} voice samples\n"
170
-
171
- lines = script.strip().split('\n')
172
- formatted_script_lines = []
173
- for line in lines:
174
- line = line.strip()
175
- if not line: continue
176
- if line.startswith('Speaker ') and ':' in line:
177
- formatted_script_lines.append(line)
178
- else:
179
- speaker_id = len(formatted_script_lines) % num_speakers
180
- formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
181
-
182
- formatted_script = '\n'.join(formatted_script_lines)
183
- log += f"Formatted script with {len(formatted_script_lines)} turns\n"
184
- log += "Processing with VibeVoice...\n"
185
-
186
- inputs = processor(
187
- text=[formatted_script],
188
- voice_samples=[voice_samples],
189
- padding=True,
190
- return_tensors="pt",
191
- return_attention_mask=True,
192
- ).to(self.device)
193
-
194
- start_time = time.time()
195
-
196
- with torch.inference_mode():
197
- outputs = model.generate(
198
- **inputs,
199
- max_new_tokens=None,
200
- cfg_scale=cfg_scale,
201
- tokenizer=processor.tokenizer,
202
- generation_config={'do_sample': False},
203
- verbose=False,
204
- )
205
- generation_time = time.time() - start_time
206
-
207
- if hasattr(outputs, 'speech_outputs') and outputs.speech_outputs[0] is not None:
208
- audio_tensor = outputs.speech_outputs[0]
209
- audio = audio_tensor.cpu().float().numpy()
210
- else:
211
- raise RuntimeError("Error: No audio was generated by the model.")
212
-
213
- if audio.ndim > 1:
214
- audio = audio.squeeze()
215
-
216
- sample_rate = 24000
217
- total_duration = len(audio) / sample_rate
218
- log += f"Generation completed in {generation_time:.2f} seconds\n"
219
- log += f"Final audio duration: {total_duration:.2f} seconds\n"
220
-
221
- # Return the raw audio data and sample rate, Gradio will handle the rest
222
- return (sample_rate, audio), log
223
-
224
- except Exception as e:
225
- import traceback
226
- error_msg = f"An unexpected error occurred on Modal: {str(e)}\n{traceback.format_exc()}"
227
- print(error_msg)
228
- # Return a special value or raise an exception that the client can handle
229
- # For Gradio, returning a log message is often best.
230
- return None, error_msg
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/modular/__init__.py DELETED
File without changes
backend_modal/modular/configuration_vibevoice.py DELETED
@@ -1,248 +0,0 @@
1
- """ VibeVoice_AcousticTokenizer model configuration"""
2
-
3
- from typing import Dict, List, Optional, Tuple
4
-
5
- from transformers.configuration_utils import PretrainedConfig
6
- from transformers.utils import logging
7
-
8
- from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
9
-
10
- logger = logging.get_logger(__name__)
11
-
12
-
13
- class VibeVoiceAcousticTokenizerConfig(PretrainedConfig):
14
- model_type = "vibevoice_acoustic_tokenizer"
15
-
16
- def __init__(
17
- self,
18
- channels: int = 1,
19
- corpus_normalize: float = 0.0,
20
- causal: bool = True,
21
- vae_dim: int = 64,
22
- fix_std: float = 0.5,
23
- std_dist_type: str = 'gaussian',
24
- # common
25
- mixer_layer: str = 'depthwise_conv',
26
- conv_norm: str = 'none',
27
- pad_mode: str = 'constant',
28
- disable_last_norm: bool = True,
29
- layernorm: str = 'RMSNorm',
30
- layernorm_eps: float = 1e-5,
31
- layernorm_elementwise_affine: bool = True,
32
- conv_bias: bool = True,
33
- layer_scale_init_value: float = 1e-6,
34
- weight_init_value: float = 1e-2,
35
- # encoder specific
36
- encoder_n_filters: int = 32,
37
- encoder_ratios: Optional[List[int]] = [8,5,5,4,2,2],
38
- encoder_depths: str = "3-3-3-3-3-3-8",
39
- # decoder specific
40
- decoder_n_filters: int = 32,
41
- decoder_ratios: Optional[List[int]] = None, # if None, same as encoder
42
- decoder_depths: Optional[str] = None,
43
- **kwargs
44
- ):
45
- super().__init__(**kwargs)
46
- self.channels = channels
47
- self.corpus_normalize = corpus_normalize
48
- self.causal = causal
49
- self.vae_dim = vae_dim
50
- self.fix_std = fix_std
51
- self.std_dist_type = std_dist_type
52
-
53
- # common parameters
54
- self.conv_norm = conv_norm
55
- self.pad_mode = pad_mode
56
- self.layernorm_eps = layernorm_eps
57
- self.disable_last_norm = disable_last_norm
58
- self.layernorm = layernorm
59
- self.layernorm_elementwise_affine = layernorm_elementwise_affine
60
- self.conv_bias = conv_bias
61
- self.layer_scale_init_value = layer_scale_init_value
62
- self.weight_init_value = weight_init_value
63
- self.mixer_layer = mixer_layer
64
-
65
- # encoder specific parameters
66
- self.encoder_n_filters = encoder_n_filters
67
- self.encoder_ratios = encoder_ratios
68
- self.encoder_depths = encoder_depths
69
-
70
- # decoder specific parameters
71
- self.decoder_ratios = decoder_ratios if decoder_ratios is not None else encoder_ratios
72
- self.decoder_n_filters = decoder_n_filters
73
- self.decoder_depths = decoder_depths
74
-
75
-
76
- class VibeVoiceSemanticTokenizerConfig(PretrainedConfig):
77
- model_type = "vibevoice_semantic_tokenizer"
78
-
79
- def __init__(
80
- self,
81
- channels: int = 1,
82
- corpus_normalize: float = 0.0,
83
- causal: bool = True,
84
- vae_dim: int = 64,
85
- fix_std: float = 0,
86
- std_dist_type: str = 'none',
87
- # common
88
- mixer_layer: str = 'depthwise_conv',
89
- conv_norm: str = 'none',
90
- pad_mode: str = 'constant',
91
- disable_last_norm: bool = True,
92
- layernorm: str = 'RMSNorm',
93
- layernorm_eps: float = 1e-5,
94
- layernorm_elementwise_affine: bool = True,
95
- conv_bias: bool = True,
96
- layer_scale_init_value: float = 1e-6,
97
- weight_init_value: float = 1e-2,
98
- # encoder specific
99
- encoder_n_filters: int = 32,
100
- encoder_ratios: Optional[List[int]] = [8,5,5,4,2,2],
101
- encoder_depths: str = "3-3-3-3-3-3-8",
102
- **kwargs
103
- ):
104
- super().__init__(**kwargs)
105
- self.channels = channels
106
- self.corpus_normalize = corpus_normalize
107
- self.causal = causal
108
- self.vae_dim = vae_dim
109
- self.fix_std = fix_std
110
- self.std_dist_type = std_dist_type
111
-
112
- # common parameters
113
- self.conv_norm = conv_norm
114
- self.pad_mode = pad_mode
115
- self.layernorm_eps = layernorm_eps
116
- self.disable_last_norm = disable_last_norm
117
- self.layernorm = layernorm
118
- self.layernorm_elementwise_affine = layernorm_elementwise_affine
119
- self.conv_bias = conv_bias
120
- self.layer_scale_init_value = layer_scale_init_value
121
- self.weight_init_value = weight_init_value
122
- self.mixer_layer = mixer_layer
123
-
124
- # encoder specific parameters
125
- self.encoder_n_filters = encoder_n_filters
126
- self.encoder_ratios = encoder_ratios
127
- self.encoder_depths = encoder_depths
128
-
129
-
130
- class VibeVoiceDiffusionHeadConfig(PretrainedConfig):
131
- model_type = "vibevoice_diffusion_head"
132
-
133
- def __init__(
134
- self,
135
- hidden_size=768,
136
- head_layers=4,
137
- head_ffn_ratio=3.0,
138
- rms_norm_eps=1e-5,
139
- latent_size=64,
140
- speech_vae_dim=None,
141
- prediction_type="v_prediction",
142
- diffusion_type="ddpm",
143
- ddpm_num_steps=1000,
144
- ddpm_num_inference_steps=20,
145
- ddpm_beta_schedule="cosine",
146
- ddpm_batch_mul=4,
147
- **kwargs
148
- ):
149
- self.hidden_size = hidden_size
150
- self.head_layers = head_layers
151
- self.head_ffn_ratio = head_ffn_ratio
152
- self.rms_norm_eps = rms_norm_eps
153
- self.latent_size = latent_size
154
- self.speech_vae_dim = speech_vae_dim
155
- self.prediction_type = prediction_type
156
- self.diffusion_type = diffusion_type
157
- self.ddpm_num_steps = ddpm_num_steps
158
- self.ddpm_num_inference_steps = ddpm_num_inference_steps
159
- self.ddpm_beta_schedule = ddpm_beta_schedule
160
- self.ddpm_batch_mul = ddpm_batch_mul
161
-
162
- super().__init__(**kwargs)
163
-
164
- class VibeVoiceConfig(PretrainedConfig):
165
- model_type = "vibevoice"
166
- is_composition = True
167
- sub_configs = {
168
- "acoustic_tokenizer_config": VibeVoiceAcousticTokenizerConfig,
169
- "semantic_tokenizer_config": VibeVoiceSemanticTokenizerConfig,
170
- "decoder_config": Qwen2Config,
171
- "diffusion_head_config": VibeVoiceDiffusionHeadConfig,
172
- }
173
- # keys_to_ignore_at_inference = ["past_key_values"]
174
- # Default tensor parallel plan for base model `Qwen2`
175
- base_model_tp_plan = {
176
- "layers.*.self_attn.q_proj": "colwise",
177
- "layers.*.self_attn.k_proj": "colwise",
178
- "layers.*.self_attn.v_proj": "colwise",
179
- "layers.*.self_attn.o_proj": "rowwise",
180
- "layers.*.mlp.gate_proj": "colwise",
181
- "layers.*.mlp.up_proj": "colwise",
182
- "layers.*.mlp.down_proj": "rowwise",
183
- }
184
-
185
- def __init__(
186
- self,
187
- acoustic_tokenizer_config=None,
188
- semantic_tokenizer_config=None,
189
- decoder_config=None,
190
- diffusion_head_config=None,
191
- **kwargs
192
- ):
193
-
194
- # kwargs["_attn_implementation"] = "flash_attention_2"
195
- kwargs["_attn_implementation_autoset"] = False
196
-
197
- if acoustic_tokenizer_config is None:
198
- self.acoustic_tokenizer_config = self.sub_configs["acoustic_tokenizer_config"]()
199
- elif isinstance(acoustic_tokenizer_config, dict):
200
- acoustic_tokenizer_config["model_type"] = "vibevoice_acoustic_tokenizer"
201
- self.acoustic_tokenizer_config = self.sub_configs["acoustic_tokenizer_config"](**acoustic_tokenizer_config)
202
- elif isinstance(acoustic_tokenizer_config, VibeVoiceAcousticTokenizerConfig):
203
- # If an instance of the config class is provided
204
- self.acoustic_tokenizer_config = acoustic_tokenizer_config
205
-
206
- if semantic_tokenizer_config is None:
207
- self.semantic_tokenizer_config = self.sub_configs["semantic_tokenizer_config"]()
208
- elif isinstance(semantic_tokenizer_config, dict):
209
- semantic_tokenizer_config["model_type"] = "vibevoice_semantic_tokenizer"
210
- self.semantic_tokenizer_config = self.sub_configs["semantic_tokenizer_config"](**semantic_tokenizer_config)
211
- elif isinstance(semantic_tokenizer_config, VibeVoiceSemanticTokenizerConfig):
212
- # If an instance of the config class is provided
213
- self.semantic_tokenizer_config = semantic_tokenizer_config
214
-
215
- if decoder_config is None:
216
- self.decoder_config = self.sub_configs["decoder_config"]()
217
- elif isinstance(decoder_config, dict):
218
- # If a dictionary is provided, instantiate the config class with it
219
- # self.decoder_config = self.sub_configs["decoder_config"](**decoder_config)
220
- if decoder_config.get("model_type", '') == "qwen2":
221
- self.decoder_config = Qwen2Config(**decoder_config)
222
- else:
223
- raise ValueError(f"Unsupported decoder model type: {decoder_config.get('model_type', '')}")
224
- elif isinstance(decoder_config, (Qwen2Config,)):
225
- # If an instance of the config class is provided
226
- self.decoder_config = decoder_config
227
-
228
- if diffusion_head_config is None:
229
- self.diffusion_head_config = self.sub_configs["diffusion_head_config"]()
230
- elif isinstance(diffusion_head_config, dict):
231
- diffusion_head_config["model_type"] = "vibevoice_diffusion_head"
232
- self.diffusion_head_config = self.sub_configs["diffusion_head_config"](**diffusion_head_config)
233
- elif isinstance(diffusion_head_config, VibeVoiceDiffusionHeadConfig):
234
- # If an instance of the config class is provided
235
- self.diffusion_head_config = diffusion_head_config
236
-
237
- # other parameters
238
- self.acoustic_vae_dim = getattr(self.acoustic_tokenizer_config, 'vae_dim', 64)
239
- self.semantic_vae_dim = getattr(self.semantic_tokenizer_config, 'vae_dim', 128)
240
-
241
- super().__init__(**kwargs)
242
-
243
- __all__ = [
244
- "VibeVoiceAcousticTokenizerConfig",
245
- "VibeVoiceSemanticTokenizerConfig",
246
- "VibeVoiceDiffusionHeadConfig",
247
- "VibeVoiceConfig"
248
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/modular/modeling_vibevoice.py DELETED
@@ -1,488 +0,0 @@
1
- from dataclasses import dataclass
2
- from typing import Dict, List, Optional, Tuple, Union, Callable
3
- from tqdm import tqdm
4
- import torch
5
- import torch.nn as nn
6
- import torch.nn.functional as F
7
- import torch.distributed as dist
8
-
9
- from transformers.models.auto import AutoModel, AutoModelForCausalLM
10
-
11
- from transformers.activations import ACT2FN
12
- from transformers.modeling_outputs import CausalLMOutput, BaseModelOutputWithPast, ModelOutput
13
- from transformers.models.llama.modeling_llama import LlamaRMSNorm
14
- from transformers import modeling_utils
15
- from transformers.modeling_utils import PreTrainedModel
16
- from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
17
- from transformers.utils import logging
18
-
19
-
20
- from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache, VibeVoiceAcousticTokenizerModel, VibeVoiceSemanticTokenizerModel
21
- from .modular_vibevoice_diffusion_head import VibeVoiceDiffusionHead
22
- from schedule.dpm_solver import DPMSolverMultistepScheduler
23
-
24
- from .configuration_vibevoice import VibeVoiceConfig
25
-
26
-
27
- logger = logging.get_logger(__name__)
28
-
29
- if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
30
- modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"]
31
-
32
- @dataclass
33
- class VibeVoiceCausalLMOutputWithPast(ModelOutput):
34
- loss: Optional[torch.FloatTensor] = None
35
- diffusion_loss: Optional[torch.FloatTensor] = None
36
- speech_token_num: Optional[int] = None
37
- logits: torch.FloatTensor = None
38
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
39
- hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
40
- attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
41
-
42
-
43
- @dataclass
44
- class VibeVoiceGenerationOutput(ModelOutput):
45
- """
46
- Output type for VibeVoice generation.
47
-
48
- Args:
49
- sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
50
- The generated sequences.
51
- speech_outputs (`List[torch.FloatTensor]`, *optional*):
52
- List of generated speech waveforms or latents for each speech segment.
53
- """
54
- sequences: torch.LongTensor = None
55
- speech_outputs: Optional[List[torch.FloatTensor]] = None
56
-
57
-
58
- class SpeechConnector(nn.Module):
59
- def __init__(self, input_dim, output_dim):
60
- super().__init__()
61
- self.fc1 = nn.Linear(input_dim, output_dim)
62
- self.norm = LlamaRMSNorm(output_dim, eps=1e-6)
63
- self.fc2 = nn.Linear(output_dim, output_dim)
64
-
65
- def forward(self, features, **kwargs):
66
- x = self.fc1(features)
67
- x = self.norm(x)
68
- x = self.fc2(x)
69
- return x
70
-
71
-
72
- # @auto_docstring
73
- class VibeVoicePreTrainedModel(PreTrainedModel):
74
- config_class = VibeVoiceConfig
75
- base_model_prefix = "model"
76
- supports_gradient_checkpointing = True
77
- _skip_keys_device_placement = "past_key_values"
78
- _supports_cache_class = True
79
- _supports_flash_attn_2 = True
80
- _supports_sdpa = True
81
- _supports_quantized_cache = True
82
- _supports_static_cache = True
83
- _supports_attention_backend = True
84
-
85
- def _init_weights(self, module):
86
- if isinstance(module, VibeVoiceDiffusionHead):
87
- module.initialize_weights()
88
- return
89
-
90
- # Use the language model's initializer_range if available
91
- if hasattr(self.config, 'language_model_config') and hasattr(self.config.language_model_config, 'initializer_range'):
92
- std = self.config.language_model_config.initializer_range
93
- elif hasattr(self.config, 'decoder_config') and hasattr(self.config.decoder_config, 'initializer_range'):
94
- std = self.config.decoder_config.initializer_range
95
- else:
96
- std = 0.02 # Default value
97
-
98
- if isinstance(module, nn.Linear):
99
- module.weight.data.normal_(mean=0.0, std=std)
100
- if module.bias is not None:
101
- module.bias.data.zero_()
102
- elif isinstance(module, nn.LayerNorm):
103
- module.weight.data.fill_(1.0)
104
- module.bias.data.zero_()
105
-
106
- # @auto_docstring
107
- class VibeVoiceModel(VibeVoicePreTrainedModel):
108
- def __init__(self, config):
109
- super().__init__(config)
110
-
111
- if hasattr(config, 'torch_dtype') and config.torch_dtype is not None:
112
- if isinstance(config.torch_dtype, str):
113
- dtype = getattr(torch, config.torch_dtype)
114
- else:
115
- dtype = config.torch_dtype
116
- else:
117
- dtype = torch.float32
118
-
119
- # Initialize Qwen2 model for language modeling
120
- lm_config = config.decoder_config
121
- self.language_model = AutoModel.from_config(lm_config)
122
-
123
- # Initialize speech components if needed
124
- self.acoustic_tokenizer = AutoModel.from_config(config.acoustic_tokenizer_config).to(dtype)
125
- self.semantic_tokenizer = AutoModel.from_config(config.semantic_tokenizer_config).to(dtype)
126
-
127
- self.acoustic_connector = SpeechConnector(config.acoustic_vae_dim, lm_config.hidden_size).to(dtype)
128
- self.semantic_connector = SpeechConnector(config.semantic_vae_dim, lm_config.hidden_size).to(dtype)
129
-
130
- # Register scaling factors as buffers - use 1D tensors for FSDP compatibility
131
- self.register_buffer('speech_scaling_factor', torch.tensor(float('nan')))
132
- self.register_buffer('speech_bias_factor', torch.tensor(float('nan')))
133
-
134
- # Initialize prediction head for speech generation
135
- self.prediction_head = AutoModel.from_config(config.diffusion_head_config).to(dtype)
136
-
137
- # Initialize noise scheduler
138
- self.noise_scheduler = DPMSolverMultistepScheduler(
139
- num_train_timesteps=config.diffusion_head_config.ddpm_num_steps,
140
- beta_schedule=config.diffusion_head_config.ddpm_beta_schedule,
141
- prediction_type=config.diffusion_head_config.prediction_type
142
- )
143
-
144
- def get_input_embeddings(self):
145
- if hasattr(self.language_model, 'embed_tokens'):
146
- # If the language model has an embed_tokens attribute, return it
147
- return self.language_model.embed_tokens
148
-
149
- for name, attr in self.language_model.fullmap.items(): # parallel by nnscaler, the name is changed
150
- if attr.orig_name == 'embed_tokens.weight':
151
- return getattr(self.language_model, name)
152
- assert False, 'should not arrive here'
153
-
154
- def set_input_embeddings(self, value):
155
- self.language_model.embed_tokens = value
156
-
157
- def set_speech_tokenizers(self, acoustic_tokenizer=None, semantic_tokenizer=None):
158
- """Set the speech tokenizers used for encoding and decoding speech."""
159
- self.acoustic_tokenizer = acoustic_tokenizer
160
- self.semantic_tokenizer = semantic_tokenizer
161
-
162
- # Reset the encoder to evaluation mode
163
- if self.acoustic_tokenizer is not None:
164
- self.acoustic_tokenizer.eval()
165
-
166
- if self.semantic_tokenizer is not None:
167
- self.semantic_tokenizer.eval()
168
-
169
- def forward(
170
- self,
171
- input_ids: torch.LongTensor = None,
172
- attention_mask: Optional[torch.Tensor] = None,
173
- position_ids: Optional[torch.LongTensor] = None,
174
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
175
- inputs_embeds: Optional[torch.FloatTensor] = None,
176
- use_cache: Optional[bool] = None,
177
- output_attentions: Optional[bool] = None,
178
- output_hidden_states: Optional[bool] = None,
179
- return_dict: Optional[bool] = None,
180
- cache_position: Optional[torch.LongTensor] = None,
181
- **kwargs,
182
- ) -> Union[Tuple, BaseModelOutputWithPast]:
183
-
184
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
185
-
186
- # Forward through language model
187
- outputs = self.language_model(
188
- input_ids=input_ids,
189
- attention_mask=attention_mask,
190
- position_ids=position_ids,
191
- past_key_values=past_key_values,
192
- inputs_embeds=inputs_embeds,
193
- use_cache=use_cache,
194
- output_attentions=output_attentions,
195
- output_hidden_states=output_hidden_states,
196
- return_dict=return_dict,
197
- cache_position=cache_position,
198
- **kwargs,
199
- )
200
-
201
- if not return_dict:
202
- return outputs
203
-
204
- return BaseModelOutputWithPast(
205
- last_hidden_state=outputs.last_hidden_state,
206
- past_key_values=outputs.past_key_values,
207
- hidden_states=outputs.hidden_states,
208
- attentions=outputs.attentions,
209
- )
210
-
211
-
212
- class VibeVoiceForConditionalGeneration(VibeVoicePreTrainedModel):
213
- _tied_weights_keys = ["lm_head.weight"]
214
- _tp_plan = {"lm_head": "colwise_rep"}
215
-
216
- def __init__(self, config):
217
- super().__init__(config)
218
- self.model = VibeVoiceModel(config)
219
- self.vocab_size = config.decoder_config.vocab_size
220
- self.lm_head = nn.Linear(config.decoder_config.hidden_size, self.vocab_size, bias=False)
221
-
222
- self.post_init()
223
-
224
- def get_input_embeddings(self):
225
- return self.model.get_input_embeddings()
226
-
227
- def set_input_embeddings(self, value):
228
- self.model.set_input_embeddings(value)
229
-
230
- def get_output_embeddings(self):
231
- return self.lm_head
232
-
233
- def set_decoder(self, decoder):
234
- self.model.language_model = decoder
235
-
236
- def get_decoder(self):
237
- return self.model.language_model
238
-
239
- def tie_weights(self):
240
- """
241
- Tie the weights between the input embeddings and the output embeddings.
242
- """
243
- if getattr(self.config.decoder_config, 'tie_word_embeddings', False):
244
- # The standard PreTrainedModel method will handle the tying.
245
- # It typically does a simple parameter object assignment, which is
246
- # CORRECT to do BEFORE FSDP wraps the model.
247
- output_embeddings = self.get_output_embeddings()
248
- input_embeddings = self.get_input_embeddings()
249
- if hasattr(input_embeddings, 'weight'):
250
- output_embeddings.weight = input_embeddings.weight
251
- else:
252
- # maybe returned input_embeddings a tensor directly
253
- output_embeddings.weight = input_embeddings
254
-
255
- if getattr(output_embeddings, "bias", None) is not None:
256
- output_embeddings.bias.data = nn.functional.pad(
257
- output_embeddings.bias.data,
258
- (0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0]),
259
- "constant",
260
- 0,
261
- )
262
- print("✅ Tied input and output embeddings using standard assignment.")
263
- else:
264
- print("ℹ️ tie_word_embeddings is False, not tying weights.")
265
-
266
- # Also, ensure set_output_embeddings is safe, though your implementation looks okay.
267
- # The key is to avoid calling it after accelerator.prepare().
268
- def set_output_embeddings(self, new_embeddings):
269
- # Your current implementation using data.copy_ is good practice,
270
- # but the best way is to not call this after prepare().
271
- self.lm_head = new_embeddings
272
-
273
- def forward_speech_features(
274
- self,
275
- speech_tensors=None,
276
- speech_masks=None,
277
- speech_type="audio",
278
- return_unmask=False
279
- ):
280
- if speech_tensors is None:
281
- # Use config to get vae_dim instead of non-existent self.args
282
- vae_dim = self.config.acoustic_tokenizer_config.vae_dim
283
- audio_features = torch.zeros(1, 1, vae_dim).to(self.get_input_embeddings().weight)
284
- connect_features = self.model.acoustic_connector(audio_features)
285
- return audio_features, connect_features
286
- else:
287
- with torch.no_grad():
288
- if speech_type == "audio":
289
- with torch.no_grad():
290
- frames = self.model.acoustic_tokenizer.encode(speech_tensors.unsqueeze(1))[0][0]
291
- audio_tokens = frames.sample(self.model.acoustic_tokenizer.std_dist_type)[0]
292
-
293
- elif speech_type == "vae":
294
- # Use config to get vae_dim instead of non-existent self.args
295
- vae_dim = self.config.acoustic_tokenizer_config.vae_dim
296
- speech_mode = speech_tensors.reshape(speech_tensors.size(0), -1, vae_dim)
297
-
298
- # gaussian sample from the speech_mode
299
- batch_size = speech_mode.size(0)
300
- value = self.model.acoustic_tokenizer.fix_std / 0.8
301
- std = torch.randn(batch_size, dtype=speech_mode.dtype, device=speech_mode.device) * value
302
- std = std.view(-1, *[1] * (speech_mode.dim() - 1))
303
- audio_tokens = speech_mode + std * torch.randn(speech_mode.shape).to(speech_mode)
304
- else:
305
- raise NotImplementedError(f"Speech type {speech_type} not implemented")
306
-
307
- if torch.isnan(self.model.speech_scaling_factor) or torch.isnan(self.model.speech_bias_factor):
308
- scaling_factor = 1. / audio_tokens[speech_masks].flatten().std()
309
- bias_factor = -audio_tokens[speech_masks].flatten().mean()
310
-
311
- # Only use distributed operations if the process group is initialized
312
- if dist.is_available() and dist.is_initialized():
313
- dist.all_reduce(scaling_factor, op=dist.ReduceOp.SUM)
314
- dist.all_reduce(bias_factor, op=dist.ReduceOp.SUM)
315
- world_size = dist.get_world_size()
316
- self.model.speech_scaling_factor.copy_(scaling_factor / world_size)
317
- self.model.speech_bias_factor.copy_(bias_factor / world_size)
318
- print(f"Speech scaling factor (distributed): {self.model.speech_scaling_factor}, bias factor: {self.model.speech_bias_factor}", flush=True)
319
- else:
320
- # Single process case
321
- self.model.speech_scaling_factor.copy_(scaling_factor)
322
- self.model.speech_bias_factor.copy_(bias_factor)
323
- print(f"Speech scaling factor (single process): {self.model.speech_scaling_factor}, bias factor: {self.model.speech_bias_factor}", flush=True)
324
-
325
- audio_features = (audio_tokens + self.model.speech_bias_factor) * self.model.speech_scaling_factor
326
-
327
- connect_features = self.model.acoustic_connector(audio_features)
328
- if return_unmask:
329
- return audio_features, connect_features
330
- return audio_features[speech_masks], connect_features[speech_masks]
331
-
332
- def forward(
333
- self,
334
- input_ids: torch.LongTensor = None,
335
- attention_mask: Optional[torch.Tensor] = None,
336
- position_ids: Optional[torch.LongTensor] = None,
337
- past_key_values: Optional[List[torch.FloatTensor]] = None,
338
- inputs_embeds: Optional[torch.FloatTensor] = None,
339
- labels: Optional[torch.LongTensor] = None,
340
- use_cache: Optional[bool] = False,
341
- output_attentions: Optional[bool] = None,
342
- output_hidden_states: Optional[bool] = None,
343
- return_dict: Optional[bool] = None,
344
- cache_position: Optional[torch.LongTensor] = None,
345
- # New arguments for speech processing and loss calculation
346
- speech_tensors: Optional[torch.FloatTensor] = None,
347
- speech_masks: Optional[torch.BoolTensor] = None,
348
- speeches_loss_input: Optional[torch.FloatTensor] = None,
349
- speech_semantic_tensors: Optional[torch.FloatTensor] = None,
350
- acoustic_input_mask: Optional[torch.BoolTensor] = None,
351
- acoustic_loss_mask: Optional[torch.BoolTensor] = None,
352
- ddpm_batch_mul: int = 1,
353
- **kwargs: Optional[Dict[str, Union[torch.Tensor, str]]],
354
- ) -> Union[Tuple, VibeVoiceCausalLMOutputWithPast]:
355
-
356
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
357
-
358
- x = self.get_input_embeddings()(input_ids)
359
-
360
- semantic_speech_all_connect_features = self.model.semantic_connector(speech_semantic_tensors)
361
- if speeches_loss_input is not None:
362
- # only part audio need diffuse
363
- speech_all_features, speech_all_connect_features = self.forward_speech_features(
364
- speech_tensors=speech_tensors.type_as(x) if speech_tensors is not None else None,
365
- speech_masks=speech_masks,
366
- speech_type=kwargs.get("speech_type", "audio"),
367
- return_unmask=True
368
- )
369
- if speech_tensors is not None:
370
- if semantic_speech_all_connect_features is not None:
371
- x[acoustic_input_mask] = speech_all_connect_features[speech_masks] + semantic_speech_all_connect_features[speech_masks]
372
- else:
373
- x[acoustic_input_mask] = speech_all_connect_features[speech_masks]
374
- speech_features = speech_all_features[speeches_loss_input.unsqueeze(-1) & speech_masks] # only part audio need diffuse
375
- speech_connect_features = speech_all_connect_features[speeches_loss_input.unsqueeze(-1) & speech_masks]
376
- else:
377
- speech_features, speech_connect_features = self.forward_speech_features(
378
- speech_tensors=speech_tensors.type_as(x) if speech_tensors is not None else None,
379
- speech_masks=speech_masks,
380
- speech_type=kwargs.get("speech_type", "audio"),
381
- )
382
- if speech_tensors is not None:
383
- x[acoustic_input_mask] = speech_connect_features
384
-
385
- outputs = self.model(
386
- input_ids=None,
387
- attention_mask=attention_mask,
388
- position_ids=position_ids,
389
- past_key_values=past_key_values,
390
- inputs_embeds=x,
391
- use_cache=use_cache,
392
- output_attentions=output_attentions,
393
- output_hidden_states=False,
394
- return_dict=return_dict,
395
- cache_position=cache_position,
396
- )
397
-
398
- hidden_states = outputs.last_hidden_state
399
- logits = self.lm_head(hidden_states)
400
- # logits = logits.float()
401
-
402
- loss = None
403
- if labels is not None:
404
- # The custom CE loss with masking is calculated in the training script.
405
- # We leave the standard loss calculation here as None.
406
- pass
407
-
408
- # --- Diffusion Loss Calculation ---
409
- diffusion_loss = None
410
- # This block is executed only if we are in a context that involves speech.
411
- if speech_tensors is not None and acoustic_loss_mask.sum().item() > 0:
412
- condition_features = hidden_states[acoustic_loss_mask]
413
-
414
- speech_len, latent_size = speech_features.shape
415
-
416
- noise = torch.randn(
417
- (speech_len * ddpm_batch_mul, latent_size),
418
- device=hidden_states.device,
419
- dtype=hidden_states.dtype
420
- )
421
-
422
- timesteps = torch.multinomial(
423
- torch.ones(self.config.diffusion_head_config.ddpm_num_steps),
424
- speech_len * ddpm_batch_mul,
425
- replacement=True,
426
- ).to(hidden_states.device)
427
-
428
- speech_features_repeated = speech_features.repeat_interleave(ddpm_batch_mul, dim=0)
429
- condition_features_repeated = condition_features.repeat_interleave(ddpm_batch_mul, dim=0)
430
-
431
- noisy_speech_features = self.model.noise_scheduler.add_noise(
432
- speech_features_repeated, noise, timesteps
433
- )
434
-
435
- model_output = self.model.prediction_head(
436
- noisy_speech_features,
437
- timesteps.type_as(x),
438
- condition_features_repeated
439
- )
440
-
441
- prediction_type = self.config.diffusion_head_config.prediction_type
442
- if prediction_type == "epsilon":
443
- target_for_loss = noise
444
- elif prediction_type == "v_prediction":
445
- target_for_loss = self.model.noise_scheduler.get_velocity(
446
- speech_features_repeated, noise, timesteps
447
- )
448
- else:
449
- raise NotImplementedError(f"Prediction type {prediction_type} not implemented")
450
-
451
- diffusion_loss = F.mse_loss(model_output.float(), target_for_loss.float(), reduction='sum')
452
- if latent_size > 0 and ddpm_batch_mul > 0:
453
- diffusion_loss = diffusion_loss / latent_size / ddpm_batch_mul
454
- else:
455
- diffusion_loss = torch.tensor(0.0, device=diffusion_loss.device)
456
-
457
- else:
458
- # Dummy loss for DDP to work when there are no speech samples in a batch,
459
- # but we are in a speech context.
460
- diffusion_loss = sum(p.sum() for p in self.model.prediction_head.parameters()) * 0.0
461
- diffusion_loss += sum(p.sum() for p in self.model.acoustic_connector.parameters()) * 0.0
462
- diffusion_loss += sum(p.sum() for p in self.model.semantic_connector.parameters()) * 0.0
463
- # --- End Diffusion Loss Calculation ---
464
-
465
- if not return_dict:
466
- output = (logits, speech_len) + outputs.to_tuple()[1:]
467
- return (loss, diffusion_loss) + output
468
-
469
- return VibeVoiceCausalLMOutputWithPast(
470
- loss=loss,
471
- diffusion_loss=diffusion_loss,
472
- speech_token_num=speech_len if speech_tensors is not None else 0,
473
- logits=logits,
474
- past_key_values=outputs.past_key_values,
475
- hidden_states=outputs.hidden_states,
476
- attentions=outputs.attentions,
477
- )
478
-
479
- AutoModel.register(VibeVoiceConfig, VibeVoiceModel)
480
- AutoModelForCausalLM.register(VibeVoiceConfig, VibeVoiceForConditionalGeneration)
481
-
482
- __all__ = [
483
- "VibeVoiceModel",
484
- "VibeVoicePreTrainedModel",
485
- "VibeVoiceForConditionalGeneration",
486
- "VibeVoiceCausalLMOutputWithPast",
487
- "VibeVoiceGenerationOutput",
488
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/modular/modeling_vibevoice_inference.py DELETED
@@ -1,715 +0,0 @@
1
- from dataclasses import dataclass
2
- from typing import Dict, List, Optional, Tuple, Union, Callable
3
- from tqdm import tqdm
4
- import torch
5
- import torch.nn as nn
6
-
7
- from transformers.models.auto import AutoModel, AutoModelForCausalLM
8
-
9
- from transformers.generation import GenerationMixin, GenerationConfig, LogitsProcessor, LogitsProcessorList, StoppingCriteriaList
10
- from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
11
- from transformers import modeling_utils
12
- from transformers.modeling_utils import PreTrainedModel
13
- from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
14
- from transformers.utils import logging
15
-
16
-
17
- # from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache, VibeVoiceAcousticTokenizerModel, VibeVoiceSemanticTokenizerModel
18
- from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache, VibeVoiceTokenizerEncoderOutput
19
- from .modular_vibevoice_diffusion_head import VibeVoiceDiffusionHead
20
- from schedule.dpm_solver import DPMSolverMultistepScheduler
21
-
22
- from .configuration_vibevoice import VibeVoiceConfig
23
-
24
- from .modular_vibevoice_text_tokenizer import VibeVoiceTextTokenizer, VibeVoiceTextTokenizerFast
25
-
26
- from .modeling_vibevoice import VibeVoiceModel, VibeVoicePreTrainedModel
27
- from .streamer import AudioStreamer, AsyncAudioStreamer
28
-
29
- logger = logging.get_logger(__name__)
30
-
31
- if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
32
- modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"]
33
-
34
- @dataclass
35
- class VibeVoiceCausalLMOutputWithPast(BaseModelOutputWithPast):
36
- logits: Optional[torch.FloatTensor] = None
37
-
38
- @dataclass
39
- class VibeVoiceGenerationOutput(ModelOutput):
40
- """
41
- Output type for VibeVoice generation.
42
-
43
- Args:
44
- sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
45
- The generated sequences.
46
- speech_outputs (`List[torch.FloatTensor]`, *optional*):
47
- List of generated speech waveforms or latents for each speech segment.
48
- """
49
- sequences: torch.LongTensor = None
50
- speech_outputs: Optional[List[torch.FloatTensor]] = None
51
- reach_max_step_sample: Optional[torch.BoolTensor] = None
52
-
53
- class VibeVoiceTokenConstraintProcessor(LogitsProcessor):
54
- """Constrains token generation to only valid tokens during speech generation."""
55
-
56
- def __init__(self, valid_token_ids: List[int], device: torch.device = None):
57
- self.valid_token_ids = torch.tensor(valid_token_ids, dtype=torch.long, device=device)
58
-
59
- def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
60
- # Create a mask for valid tokens
61
- mask = torch.full_like(scores, float('-inf'))
62
- mask[:, self.valid_token_ids] = 0
63
-
64
- # Apply mask to scores
65
- scores = scores + mask
66
- return scores
67
-
68
- class VibeVoiceForConditionalGenerationInference(VibeVoicePreTrainedModel, GenerationMixin):
69
- _tied_weights_keys = ["lm_head.weight"]
70
- _tp_plan = {"lm_head": "colwise_rep"}
71
-
72
- def __init__(self, config):
73
- super().__init__(config)
74
-
75
- # Initialize the base model
76
- self.model = VibeVoiceModel(config)
77
-
78
- # LM head for text generation
79
- self.lm_head = nn.Linear(config.decoder_config.hidden_size, config.decoder_config.vocab_size, bias=False)
80
-
81
- # inference configuration
82
- self.ddpm_inference_steps = config.diffusion_head_config.ddpm_num_inference_steps
83
-
84
- # Initialize weights and apply final processing
85
- self.post_init()
86
-
87
- @property
88
- def noise_scheduler(self):
89
- return self.model.noise_scheduler
90
-
91
- @property
92
- def prediction_head(self):
93
- return self.model.prediction_head
94
-
95
- @property
96
- def speech_scaling_factor(self):
97
- return self.model.speech_scaling_factor
98
-
99
- @property
100
- def speech_bias_factor(self):
101
- return self.model.speech_bias_factor
102
-
103
- @property
104
- def acoustic_tokenizer(self):
105
- return self.model.acoustic_tokenizer
106
-
107
- @property
108
- def semantic_tokenizer(self):
109
- return self.model.semantic_tokenizer
110
-
111
- @property
112
- def acoustic_connector(self):
113
- return self.model.acoustic_connector
114
-
115
- @property
116
- def semantic_connector(self):
117
- return self.model.semantic_connector
118
-
119
- def tie_weights(self):
120
- """
121
- Tie the weights between the input embeddings and the output embeddings.
122
- """
123
- # Tie lm_head.weight to language_model.embed_tokens.weight
124
- if not getattr(self.config, 'tie_word_embeddings', False):
125
- return
126
-
127
- if hasattr(self, 'lm_head') and hasattr(self.model.language_model, 'embed_tokens'):
128
- self.lm_head.weight = self.model.language_model.embed_tokens.weight
129
-
130
- def get_input_embeddings(self):
131
- return self.model.get_input_embeddings()
132
-
133
- def set_input_embeddings(self, value):
134
- self.model.set_input_embeddings(value)
135
-
136
- def get_output_embeddings(self):
137
- return self.lm_head
138
-
139
- def set_output_embeddings(self, new_embeddings):
140
- self.lm_head = new_embeddings
141
-
142
- def set_speech_tokenizers(self, acoustic_tokenizer=None, semantic_tokenizer=None):
143
- """Set the speech tokenizers used for encoding and decoding speech."""
144
- self.model.set_speech_tokenizers(acoustic_tokenizer, semantic_tokenizer)
145
-
146
- def set_ddpm_inference_steps(self, num_steps=None):
147
- self.ddpm_inference_steps = num_steps or self.config.diffusion_head_config.ddpm_num_inference_steps
148
-
149
- def _process_speech_inputs(self, speech_tensors, speech_masks, speech_type="audio"):
150
- """Process speech inputs through tokenizers and connectors."""
151
- with torch.no_grad():
152
- if speech_type == "audio":
153
- # Encode audio to acoustic latents
154
- encoder_output = self.model.acoustic_tokenizer.encode(speech_tensors.unsqueeze(1))
155
- acoustic_latents = encoder_output.sample(dist_type=self.model.acoustic_tokenizer.std_dist_type)[0]
156
-
157
- # Apply scaling and bias
158
- acoustic_features = (acoustic_latents + self.model.speech_bias_factor.to(acoustic_latents.device)) * self.model.speech_scaling_factor.to(acoustic_latents.device)
159
-
160
- # Connect to language model space
161
- acoustic_connected = self.model.acoustic_connector(acoustic_features)[speech_masks.cpu()]
162
-
163
- return acoustic_features, acoustic_connected
164
- elif speech_type == "pt":
165
- encoder_output = VibeVoiceTokenizerEncoderOutput(mean=speech_tensors, std=self.acoustic_tokenizer.config.fix_std)
166
- acoustic_latents = encoder_output.sample(dist_type=self.model.acoustic_tokenizer.std_dist_type)[0]
167
-
168
- # Apply scaling and bias
169
- acoustic_features = (acoustic_latents + self.model.speech_bias_factor.to(acoustic_latents.device)) * self.model.speech_scaling_factor.to(acoustic_latents.device)
170
-
171
- # Connect to language model space
172
- acoustic_connected = self.model.acoustic_connector(acoustic_features)[speech_masks.cpu()]
173
-
174
- return acoustic_features, acoustic_connected
175
- else:
176
- raise NotImplementedError(f"Speech type {speech_type} not implemented")
177
-
178
- # @can_return_tuple
179
- def forward(
180
- self,
181
- input_ids: torch.LongTensor = None,
182
- attention_mask: Optional[torch.Tensor] = None,
183
- position_ids: Optional[torch.LongTensor] = None,
184
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
185
- inputs_embeds: Optional[torch.FloatTensor] = None,
186
- labels: Optional[torch.LongTensor] = None,
187
- use_cache: Optional[bool] = None,
188
- output_attentions: Optional[bool] = None,
189
- output_hidden_states: Optional[bool] = None,
190
- return_dict: Optional[bool] = None,
191
- cache_position: Optional[torch.LongTensor] = None,
192
- speech_tensors: Optional[torch.FloatTensor] = None,
193
- speech_masks: Optional[torch.BoolTensor] = None,
194
- speech_input_mask: Optional[torch.BoolTensor] = None,
195
- logits_to_keep: Union[int, slice] = 0,
196
- **kwargs,
197
- ) -> Union[Tuple, VibeVoiceCausalLMOutputWithPast]:
198
- """
199
- Args:
200
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
201
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
202
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
203
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
204
- speech_tensors (`torch.FloatTensor`, *optional*):
205
- Input speech waveforms for voice cloning or speech understanding.
206
- speech_masks (`torch.BoolTensor`, *optional*):
207
- Masks indicating valid speech frames.
208
- speech_input_mask (`torch.BoolTensor`, *optional*):
209
- Positions in the input sequence where speech embeddings should be inserted.
210
-
211
- Returns:
212
- `VibeVoiceCausalLMOutputWithPast` or tuple
213
- """
214
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
215
-
216
- # Get embeddings
217
- if inputs_embeds is None:
218
- inputs_embeds = self.model.get_input_embeddings()(input_ids)
219
-
220
- # Process speech inputs if provided
221
- if speech_tensors is not None and speech_masks is not None:
222
- acoustic_features, speech_embeds = self._process_speech_inputs(speech_tensors.to(self.dtype), speech_masks)
223
- if speech_input_mask is not None:
224
- inputs_embeds[speech_input_mask] = speech_embeds
225
-
226
- outputs = self.model(
227
- inputs_embeds=inputs_embeds,
228
- attention_mask=attention_mask,
229
- position_ids=position_ids,
230
- past_key_values=past_key_values,
231
- use_cache=use_cache,
232
- output_attentions=output_attentions,
233
- output_hidden_states=output_hidden_states,
234
- return_dict=return_dict,
235
- cache_position=cache_position,
236
- **kwargs,
237
- )
238
-
239
- hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state
240
- # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
241
- slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
242
- logits = self.lm_head(hidden_states[:, slice_indices, :])
243
-
244
- if labels is not None:
245
- raise NotImplementedError("Loss computation is not implemented in this version.")
246
-
247
- return VibeVoiceCausalLMOutputWithPast(
248
- logits=logits,
249
- past_key_values=outputs.past_key_values,
250
- last_hidden_state=hidden_states,
251
- attentions=outputs.attentions,
252
- )
253
-
254
- def _build_generate_config_model_kwargs(self, generation_config, inputs, tokenizer, return_processors=False, **kwargs):
255
- if generation_config is None:
256
- generation_config = GenerationConfig(
257
- bos_token_id=tokenizer.bos_token_id,
258
- eos_token_id=tokenizer.eos_token_id,
259
- pad_token_id = tokenizer.pad_token_id
260
- )
261
- else:
262
- generation_config = GenerationConfig(
263
- **generation_config,
264
- bos_token_id=tokenizer.bos_token_id,
265
- eos_token_id=tokenizer.eos_token_id,
266
- pad_token_id = tokenizer.pad_token_id
267
- )
268
-
269
- generation_config, model_kwargs = self._prepare_generation_config(
270
- generation_config,
271
- True,
272
- speech_start_id=tokenizer.speech_start_id,
273
- speech_end_id=tokenizer.speech_end_id,
274
- speech_diffusion_id=tokenizer.speech_diffusion_id,
275
- **kwargs
276
- )
277
- generation_config.speech_start_id = tokenizer.speech_start_id
278
- generation_config.speech_end_id = tokenizer.speech_end_id
279
- generation_config.speech_diffusion_id = tokenizer.speech_diffusion_id
280
-
281
- inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(inputs, generation_config.bos_token_id, model_kwargs)
282
- batch_size = inputs_tensor.shape[0]
283
- device = self.device
284
-
285
- self._prepare_special_tokens(generation_config, True, device=device)
286
- generation_config.use_cache = True
287
- model_kwargs["use_cache"] = generation_config.use_cache
288
- input_ids = inputs_tensor.to(self.device)
289
-
290
- input_ids_length = input_ids.shape[1]
291
- has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
292
- has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
293
- generation_config = self._prepare_generated_length(
294
- generation_config=generation_config,
295
- has_default_max_length=has_default_max_length,
296
- has_default_min_length=has_default_min_length,
297
- model_input_name=model_input_name,
298
- inputs_tensor=inputs_tensor,
299
- input_ids_length=input_ids_length,
300
- )
301
-
302
- max_cache_length = generation_config.max_length - 1
303
- self._prepare_cache_for_generation(generation_config, model_kwargs, None, batch_size, max_cache_length, device)
304
- model_kwargs['cache_position'] = torch.arange(input_ids_length, device=device, dtype=torch.long)
305
- for k, v in model_kwargs.items():
306
- if isinstance(v, torch.Tensor):
307
- model_kwargs[k] = v.to(device=device)
308
-
309
- if return_processors:
310
- logits_processor = self._get_logits_processor(
311
- generation_config=generation_config,
312
- input_ids_seq_length=input_ids_length,
313
- encoder_input_ids=inputs_tensor,
314
- prefix_allowed_tokens_fn=None,
315
- logits_processor=LogitsProcessorList(),
316
- device=inputs_tensor.device,
317
- model_kwargs=model_kwargs,
318
- )
319
-
320
- stopping_criteria = self._get_stopping_criteria(generation_config=generation_config, stopping_criteria=StoppingCriteriaList())
321
-
322
- return generation_config, model_kwargs, input_ids, logits_processor, stopping_criteria
323
- else:
324
- return generation_config, model_kwargs, input_ids
325
-
326
- @torch.no_grad()
327
- def generate(
328
- self,
329
- inputs: Optional[torch.Tensor] = None,
330
- generation_config: Optional[GenerationConfig] = None,
331
- logits_processor: Optional[LogitsProcessorList] = None,
332
- stopping_criteria: Optional[StoppingCriteriaList] = None,
333
- prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
334
- synced_gpus: Optional[bool] = None,
335
- assistant_model: Optional["PreTrainedModel"] = None,
336
- audio_streamer: Optional[Union[AudioStreamer, AsyncAudioStreamer]] = None,
337
- negative_prompt_ids: Optional[torch.Tensor] = None,
338
- negative_prompt_attention_mask: Optional[torch.Tensor] = None,
339
- speech_tensors: Optional[torch.FloatTensor] = None,
340
- speech_masks: Optional[torch.BoolTensor] = None,
341
- speech_input_mask: Optional[torch.BoolTensor] = None,
342
- return_speech: bool = True,
343
- cfg_scale: float = 1.0,
344
- stop_check_fn: Optional[Callable[[], bool]] = None,
345
- **kwargs,
346
- ) -> Union[torch.LongTensor, VibeVoiceGenerationOutput]:
347
- """
348
- Generates sequences of token ids and optionally speech outputs.
349
-
350
- Args:
351
- All standard generation arguments from GenerationMixin
352
- negative_prompt_ids: Negative prompt for CFG in speech generation
353
- negative_prompt_attention_mask: Attention mask for negative prompt
354
- speech_tensors: Input speech for voice cloning
355
- speech_masks: Masks for speech tensors
356
- speech_input_mask: Positions to insert speech embeddings
357
- return_speech: Whether to decode and return speech outputs
358
- cfg_scale: CFG scale for speech generation
359
- stop_check_fn: Optional callable that returns True if generation should stop
360
-
361
- Returns:
362
- Generated token sequences and optionally speech outputs
363
- """
364
- # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
365
- tokenizer = kwargs.pop("tokenizer", None) # Pull this out first, we only use it for stopping criteria
366
- parsed_scripts = kwargs.pop("parsed_scripts", None)
367
- all_speakers_list = kwargs.pop("all_speakers_list", None)
368
- max_length_times = kwargs.pop("max_length_times", 2)
369
-
370
- if kwargs.get('max_new_tokens', None) is None:
371
- kwargs['max_new_tokens'] = self.config.decoder_config.max_position_embeddings - kwargs['input_ids'].shape[-1]
372
-
373
- generation_config, model_kwargs, input_ids, logits_processor, stopping_criteria = self._build_generate_config_model_kwargs(
374
- generation_config, inputs, tokenizer, return_processors=True, **kwargs
375
- )
376
-
377
- negative_kwargs = {
378
- 'input_ids': torch.full((kwargs['input_ids'].shape[0], 1), tokenizer.speech_start_id, dtype=torch.long, device=kwargs['input_ids'].device),
379
- 'attention_mask': torch.ones((kwargs['input_ids'].shape[0], 1), dtype=torch.long, device=kwargs['input_ids'].device),
380
- 'max_new_tokens': kwargs.get('max_new_tokens', 100)
381
- }
382
- negative_generation_config, negative_model_kwargs, negative_input_ids = self._build_generate_config_model_kwargs(
383
- None, None, tokenizer, return_processors=False, **negative_kwargs
384
- )
385
-
386
- acoustic_cache = VibeVoiceTokenizerStreamingCache()
387
- semantic_cache = VibeVoiceTokenizerStreamingCache()
388
-
389
- batch_size = input_ids.shape[0]
390
- device = input_ids.device
391
- finished_tags = torch.zeros(batch_size, dtype=torch.bool, device=device)
392
- correct_cnt = torch.zeros(batch_size, dtype=torch.long, device=device)
393
- is_prefill = True
394
- inputs_embeds = None
395
- verbose = kwargs.get("verbose", False)
396
-
397
- # Initialize audio chunks storage for each sample
398
- audio_chunks = [[] for _ in range(batch_size)]
399
-
400
- initial_length = input_ids.shape[-1]
401
- initial_length_per_sample = model_kwargs['attention_mask'].sum(dim=-1)
402
-
403
- # Define all valid tokens that can be generated
404
- valid_tokens = [
405
- generation_config.speech_start_id,
406
- generation_config.speech_end_id,
407
- generation_config.speech_diffusion_id,
408
- generation_config.eos_token_id
409
- ]
410
- # Add bos_token_id if it exists
411
- if hasattr(generation_config, 'bos_token_id') and generation_config.bos_token_id is not None:
412
- valid_tokens.append(generation_config.bos_token_id)
413
-
414
- # Add custom processor to constrain token generation
415
- token_constraint_processor = VibeVoiceTokenConstraintProcessor(valid_tokens, device=device)
416
- if logits_processor is None:
417
- logits_processor = LogitsProcessorList()
418
- logits_processor.append(token_constraint_processor)
419
-
420
- max_steps = min(generation_config.max_length - initial_length, int(max_length_times * initial_length))
421
- max_step_per_sample = torch.min(generation_config.max_length - initial_length_per_sample, (max_length_times * initial_length_per_sample).long())
422
- reach_max_step_sample = torch.zeros(batch_size, dtype=torch.bool, device=device)
423
-
424
- # Create progress iterator if verbose
425
- if kwargs.get("show_progress_bar", True):
426
- progress_bar = tqdm(range(max_steps), desc="Generating", leave=False)
427
- else:
428
- progress_bar = range(max_steps)
429
-
430
- for step in progress_bar:
431
- # Check for external stop signal
432
- if stop_check_fn is not None and stop_check_fn():
433
- if verbose:
434
- print(f"Generation stopped externally at step {step + 1}")
435
- # End the audio streamer if it exists
436
- if audio_streamer is not None:
437
- audio_streamer.end()
438
- break
439
-
440
- # Check if audio_streamer has been ended (stopped externally)
441
- if audio_streamer is not None and hasattr(audio_streamer, 'finished_flags'):
442
- if any(audio_streamer.finished_flags):
443
- if verbose:
444
- print(f"Audio generation stopped externally at step {step + 1}")
445
- break
446
-
447
- if finished_tags.all():
448
- if hasattr(progress_bar, 'set_description'):
449
- progress_bar.set_description("Generation complete")
450
- break
451
-
452
- if input_ids.shape[-1] >= generation_config.max_length:
453
- print(f"Reached maximum generation length {generation_config.max_length}, stopped it.")
454
- reached_samples = torch.arange(batch_size, device=device)[~finished_tags]
455
- if reached_samples.numel() > 0:
456
- reach_max_step_sample[reached_samples] = True
457
- break
458
-
459
- # Update progress bar description with active samples
460
- if hasattr(progress_bar, 'set_description'):
461
- active_samples = (~finished_tags).sum().item()
462
- progress_bar.set_description(f"Generating (active: {active_samples}/{batch_size})")
463
-
464
- model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
465
- if is_prefill:
466
- # we process the speech inputs only during the first generation step
467
- prefill_inputs = {
468
- "speech_tensors": speech_tensors.to(device=device),
469
- "speech_masks": speech_masks.to(device),
470
- "speech_input_mask": speech_input_mask.to(device),
471
- }
472
- is_prefill = False
473
- else:
474
- _ = model_inputs.pop('inputs_embeds', None)
475
- prefill_inputs = {'inputs_embeds': inputs_embeds}
476
-
477
- # Forward pass through the model
478
- outputs = self(
479
- **model_inputs, **prefill_inputs, logits_to_keep=1, return_dict=True, output_attentions=False, output_hidden_states=False,
480
- )
481
- model_kwargs = self._update_model_kwargs_for_generation(
482
- outputs, model_kwargs, is_encoder_decoder=False,
483
- )
484
-
485
- # Get logits and apply logits processor
486
- next_token_logits = outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32, device=input_ids.device)
487
- # next_token_logits = outputs.logits[:, -1, :].to(copy=True, device=input_ids.device)
488
- next_token_scores = logits_processor(input_ids, next_token_logits)
489
-
490
- # token selection
491
- if generation_config.do_sample:
492
- probs = nn.functional.softmax(next_token_scores, dim=-1)
493
- # TODO (joao): this OP throws "skipping cudagraphs due to ['incompatible ops']", find solution
494
- next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
495
- else:
496
- next_tokens = torch.argmax(next_token_scores, dim=-1)
497
-
498
- next_tokens[finished_tags] = generation_config.eos_token_id
499
- input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
500
-
501
- if not kwargs.get('refresh_negative', True):
502
- negative_model_inputs = self.prepare_inputs_for_generation(negative_input_ids, **negative_model_kwargs)
503
- # Forward negative pass through the model
504
- if negative_model_inputs['inputs_embeds'] is None and inputs_embeds is not None:
505
- negative_model_inputs['inputs_embeds'] = inputs_embeds
506
- negative_model_inputs['input_ids'] = None
507
-
508
- negative_outputs = self(
509
- **negative_model_inputs, logits_to_keep=0, return_dict=True, output_attentions=False, output_hidden_states=False,
510
- )
511
- negative_model_kwargs = self._update_model_kwargs_for_generation(
512
- negative_outputs, negative_model_kwargs, is_encoder_decoder=False,
513
- )
514
- negative_input_ids = torch.cat([negative_input_ids, next_tokens[:, None]], dim=-1)
515
-
516
- # reached end of generation
517
- if (next_tokens == generation_config.eos_token_id).any():
518
- eos_indices = (next_tokens == generation_config.eos_token_id).nonzero(as_tuple=False).squeeze(1)
519
- # Only print for samples that are newly finished (not already marked as finished)
520
- new_eos_indices = eos_indices[~finished_tags[eos_indices]]
521
- if new_eos_indices.numel() > 0:
522
- finished_tags[new_eos_indices] = True
523
- if verbose:
524
- print(f"Samples {new_eos_indices.tolist()} reached EOS token at step {step + 1}.", flush=True)
525
- if audio_streamer is not None:
526
- audio_streamer.end(new_eos_indices)
527
-
528
- # Check if any sample reached its maximum generation length
529
- max_length_reached = step >= max_step_per_sample
530
- new_max_length_indices = torch.nonzero(max_length_reached & ~finished_tags, as_tuple=False).squeeze(1)
531
- if new_max_length_indices.numel() > 0:
532
- finished_tags[new_max_length_indices] = True
533
- reach_max_step_sample[new_max_length_indices] = True
534
- if verbose:
535
- print(f"Samples {new_max_length_indices.tolist()} reached max generation length at step {step + 1}.", flush=True)
536
- if audio_streamer is not None:
537
- audio_streamer.end(new_max_length_indices)
538
-
539
- # speech_end
540
- diffusion_end_indices = (next_tokens == generation_config.speech_end_id).nonzero(as_tuple=False).squeeze(1)
541
- if diffusion_end_indices.numel() > 0:
542
- # Clear tokenizer caches for samples that reached speech end
543
- acoustic_cache.set_to_zero(diffusion_end_indices)
544
- semantic_cache.set_to_zero(diffusion_end_indices)
545
-
546
- # speech_begin
547
- diffusion_start_indices = torch.arange(batch_size, device=device)[~finished_tags & (next_tokens == generation_config.speech_start_id)]
548
- if diffusion_start_indices.numel() > 0 and kwargs.get('refresh_negative', True):
549
- # update attention mask
550
- for i, sample_idx in enumerate(diffusion_start_indices.tolist()):
551
- negative_model_kwargs['attention_mask'][sample_idx, :] = 0
552
- negative_model_kwargs['attention_mask'][sample_idx, -1] = 1
553
- # update past key values
554
- for layer_idx, (k_cache, v_cache) in enumerate(zip(negative_model_kwargs['past_key_values'].key_cache,
555
- negative_model_kwargs['past_key_values'].value_cache)):
556
- # Process each non-diffusion sample
557
- for sample_idx in diffusion_start_indices.tolist():
558
- # Shift cache for this sample
559
- k_cache[sample_idx, :, -1, :] = k_cache[sample_idx, :, 0, :].clone()
560
- v_cache[sample_idx, :, -1, :] = v_cache[sample_idx, :, 0, :].clone()
561
- # update negative_input_ids
562
- for sample_idx in diffusion_start_indices.tolist():
563
- negative_input_ids[sample_idx, -1] = generation_config.speech_start_id
564
-
565
- # Prepare inputs_embeds for next iteration
566
- # Initialize with default embeddings for all tokens
567
- next_inputs_embeds = self.model.get_input_embeddings()(next_tokens).unsqueeze(1) # [batch_size, 1, hidden_size]
568
-
569
- # forward diffusion
570
- # Diffusion indices are those that are not finished and not special tokens
571
- diffusion_indices = torch.arange(batch_size, device=device)[~finished_tags & (next_tokens == generation_config.speech_diffusion_id)]
572
-
573
- if diffusion_indices.numel() > 0:
574
- if kwargs.get('refresh_negative', True):
575
- negative_model_inputs = self.prepare_inputs_for_generation(negative_input_ids, **negative_model_kwargs)
576
- # Forward negative pass through the model
577
- if negative_model_inputs['inputs_embeds'] is None and inputs_embeds is not None:
578
- negative_model_inputs['inputs_embeds'] = inputs_embeds
579
- negative_model_inputs['input_ids'] = None
580
-
581
- negative_outputs = self(
582
- **negative_model_inputs, logits_to_keep=0, return_dict=True, output_attentions=False, output_hidden_states=False,
583
- )
584
- negative_model_kwargs = self._update_model_kwargs_for_generation(
585
- negative_outputs, negative_model_kwargs, is_encoder_decoder=False,
586
- )
587
- negative_input_ids = torch.cat([negative_input_ids, next_tokens[:, None]], dim=-1)
588
- # correct the non-diffusion indices
589
- # we forward all samples' negative outputs even if
590
- # they are not in diffusion mode to keep the cache consistent
591
- # So we need to correct the kv cache of non-diffusion samples
592
- non_diffusion_mask = ~finished_tags & (next_tokens != generation_config.speech_diffusion_id)
593
- if non_diffusion_mask.any():
594
- non_diffusion_indices = torch.arange(batch_size, device=device)[non_diffusion_mask]
595
- start_indices = correct_cnt[non_diffusion_indices]
596
-
597
- # 1. Update attention_mask - need to handle each sample separately
598
- seq_len = negative_model_kwargs['attention_mask'].shape[1]
599
- for i, (sample_idx, start_idx) in enumerate(zip(non_diffusion_indices.tolist(), start_indices.tolist())):
600
- # Shift the attention mask for this sample
601
- if start_idx + 1 < seq_len - 1:
602
- negative_model_kwargs['attention_mask'][sample_idx, start_idx+1:] = \
603
- negative_model_kwargs['attention_mask'][sample_idx, start_idx:-1].clone()
604
- negative_model_kwargs['attention_mask'][sample_idx, start_idx] = 0
605
-
606
- # 2. Update past_key_values
607
- for layer_idx, (k_cache, v_cache) in enumerate(zip(negative_model_kwargs['past_key_values'].key_cache,
608
- negative_model_kwargs['past_key_values'].value_cache)):
609
- # Process each non-diffusion sample
610
- for sample_idx, start_idx in zip(non_diffusion_indices.tolist(), start_indices.tolist()):
611
- if start_idx + 1 < k_cache.shape[2] - 1:
612
- # Shift cache for this sample
613
- k_cache[sample_idx, :, start_idx+1:, :] = k_cache[sample_idx, :, start_idx:-1, :].clone()
614
- v_cache[sample_idx, :, start_idx+1:, :] = v_cache[sample_idx, :, start_idx:-1, :].clone()
615
-
616
- # 3. Update negative_input_ids
617
- for sample_idx, start_idx in zip(non_diffusion_indices.tolist(), start_indices.tolist()):
618
- if start_idx + 1 < negative_input_ids.shape[1] - 1:
619
- negative_input_ids[sample_idx, start_idx+1:] = \
620
- negative_input_ids[sample_idx, start_idx:-1].clone()
621
-
622
- correct_cnt[non_diffusion_indices] += 1
623
-
624
- positive_condition = outputs.last_hidden_state[diffusion_indices, -1, :]
625
- negative_condition = negative_outputs.last_hidden_state[diffusion_indices, -1, :]
626
-
627
- speech_latent = self.sample_speech_tokens(
628
- positive_condition,
629
- negative_condition,
630
- cfg_scale=cfg_scale,
631
- ).unsqueeze(1)
632
-
633
- # Decode acoustic latent to audio using acoustic streaming cache
634
- scaled_latent = speech_latent / self.model.speech_scaling_factor.to(speech_latent.device) - self.model.speech_bias_factor.to(speech_latent.device)
635
- audio_chunk = self.model.acoustic_tokenizer.decode(
636
- scaled_latent.to(self.model.acoustic_tokenizer.device),
637
- cache=acoustic_cache, # Use acoustic-specific cache
638
- sample_indices=diffusion_indices.to(self.model.acoustic_tokenizer.device),
639
- use_cache=True,
640
- debug=False
641
- )
642
-
643
- # Store audio chunks for each sample
644
- for i, sample_idx in enumerate(diffusion_indices):
645
- idx = sample_idx.item()
646
- # Only append audio chunk if the sample is not finished
647
- if not finished_tags[idx]:
648
- audio_chunks[idx].append(audio_chunk[i])
649
-
650
- # Add streaming support here
651
- if audio_streamer is not None:
652
- # Stream the audio chunks immediately
653
- audio_streamer.put(audio_chunk, diffusion_indices)
654
-
655
- # Encode audio to semantic features using semantic streaming cache
656
- semantic_features = self.model.semantic_tokenizer.encode(
657
- audio_chunk,
658
- cache=semantic_cache, # Use semantic-specific cache
659
- sample_indices=diffusion_indices,
660
- use_cache=True,
661
- debug=False
662
- ).mean # semantic tokenizer has no VAE.
663
-
664
- # Combine acoustic and semantic features for next input
665
- acoustic_embed = self.model.acoustic_connector(speech_latent)
666
- semantic_embed = self.model.semantic_connector(semantic_features)
667
- diffusion_embeds = acoustic_embed + semantic_embed
668
-
669
- # Update embeddings for diffusion indices
670
- next_inputs_embeds[diffusion_indices] = diffusion_embeds
671
-
672
- # Set inputs_embeds for next iteration
673
- inputs_embeds = next_inputs_embeds
674
-
675
- if audio_streamer is not None:
676
- audio_streamer.end()
677
-
678
- # Concatenate audio chunks for each sample
679
- final_audio_outputs = []
680
- for sample_chunks in audio_chunks:
681
- if sample_chunks:
682
- # Concatenate all chunks along the time dimension (assumed to be the last dimension)
683
- concatenated_audio = torch.cat(sample_chunks, dim=-1)
684
- final_audio_outputs.append(concatenated_audio)
685
- else:
686
- # If no audio was generated for this sample, append None
687
- final_audio_outputs.append(None)
688
-
689
- return VibeVoiceGenerationOutput(
690
- sequences=input_ids,
691
- speech_outputs=final_audio_outputs if return_speech else None,
692
- reach_max_step_sample=reach_max_step_sample,
693
- )
694
-
695
- @torch.no_grad()
696
- def sample_speech_tokens(self, condition, neg_condition, cfg_scale=3.0):
697
- self.model.noise_scheduler.set_timesteps(self.ddpm_inference_steps)
698
- condition = torch.cat([condition, neg_condition], dim=0).to(self.model.prediction_head.device)
699
- speech = torch.randn(condition.shape[0], self.config.acoustic_vae_dim).to(condition)
700
- for t in self.model.noise_scheduler.timesteps:
701
- half = speech[: len(speech) // 2]
702
- combined = torch.cat([half, half], dim=0)
703
- eps = self.model.prediction_head(combined, t.repeat(combined.shape[0]).to(combined), condition=condition)
704
- cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
705
- half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
706
- eps = torch.cat([half_eps, half_eps], dim=0)
707
- speech = self.model.noise_scheduler.step(eps, t, speech).prev_sample
708
- return speech[: len(speech) // 2]
709
-
710
-
711
- AutoModelForCausalLM.register(VibeVoiceConfig, VibeVoiceForConditionalGenerationInference)
712
-
713
- __all__ = [
714
- "VibeVoiceForConditionalGenerationInference",
715
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/modular/modular_vibevoice_diffusion_head.py DELETED
@@ -1,287 +0,0 @@
1
- import math
2
- from typing import Optional, Tuple, Union
3
-
4
- import torch
5
- import torch.nn as nn
6
- import torch.nn.functional as F
7
-
8
- from transformers.models.auto import AutoModel
9
- from transformers.modeling_utils import PreTrainedModel
10
- # from transformers.modeling_layers import GradientCheckpointingLayer
11
- from transformers.activations import ACT2FN
12
- from transformers.utils import logging
13
-
14
- from .configuration_vibevoice import VibeVoiceDiffusionHeadConfig
15
-
16
-
17
- logger = logging.get_logger(__name__)
18
-
19
-
20
- class RMSNorm(nn.Module):
21
- def __init__(self, dim: int, eps: float = 1e-6, elementwise_affine=True, memory_efficient=False):
22
- super().__init__()
23
- self.dim = dim
24
- self.eps = eps
25
- self.elementwise_affine = elementwise_affine
26
- if self.elementwise_affine:
27
- self.weight = nn.Parameter(torch.ones(dim))
28
- else:
29
- self.register_parameter('weight', None)
30
-
31
- def _norm(self, x):
32
- return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
33
-
34
- def forward(self, x):
35
- output = self._norm(x.float()).type_as(x)
36
- if self.weight is not None:
37
- output = output * self.weight
38
- return output
39
-
40
- def extra_repr(self) -> str:
41
- return f'dim={self.dim}, eps={self.eps}, elementwise_affine={self.elementwise_affine}'
42
-
43
- def modulate(x, shift, scale):
44
- """Apply modulation to input tensor."""
45
- return x * (1 + scale) + shift
46
-
47
-
48
- class TimestepEmbedder(nn.Module):
49
- """
50
- Embeds scalar timesteps into vector representations.
51
-
52
- Args:
53
- hidden_size (`int`): Size of the output embedding
54
- frequency_embedding_size (`int`, optional): Size of the intermediate frequency embedding
55
- """
56
- def __init__(self, hidden_size, frequency_embedding_size=256):
57
- super().__init__()
58
- self.mlp = nn.Sequential(
59
- nn.Linear(frequency_embedding_size, hidden_size, bias=False),
60
- # nn.SiLU(),
61
- ACT2FN['silu'],
62
- nn.Linear(hidden_size, hidden_size, bias=False),
63
- )
64
- self.frequency_embedding_size = frequency_embedding_size
65
-
66
- @staticmethod
67
- def timestep_embedding(t, dim, max_period=10000):
68
- """
69
- Create sinusoidal timestep embeddings.
70
-
71
- Args:
72
- t (`torch.Tensor`): A 1-D Tensor of N indices, one per batch element.
73
- These may be fractional.
74
- dim (`int`): The dimension of the output.
75
- max_period (`int`, optional): Controls the minimum frequency of the embeddings.
76
-
77
- Returns:
78
- `torch.Tensor`: An [N, D] Tensor of positional embeddings.
79
- """
80
- half = dim // 2
81
- freqs = torch.exp(
82
- -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
83
- ).to(t.device)
84
- args = t[:, None].float() * freqs[None]
85
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
86
- if dim % 2:
87
- embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
88
- return embedding.to(t.dtype)
89
-
90
- def forward(self, t):
91
- t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
92
- t_emb = self.mlp(t_freq)
93
- return t_emb
94
-
95
-
96
- class FeedForwardNetwork(nn.Module):
97
- """
98
- Standard feed-forward network with SwiGLU activation.
99
-
100
- Args:
101
- embed_dim (`int`): Input dimension
102
- ffn_dim (`int`): Hidden dimension
103
- """
104
- def __init__(
105
- self,
106
- embed_dim,
107
- ffn_dim,
108
- ):
109
- super().__init__()
110
- self.embed_dim = embed_dim
111
- self.gate_proj = nn.Linear(self.embed_dim, ffn_dim, bias=False)
112
- self.up_proj = nn.Linear(self.embed_dim, ffn_dim, bias=False)
113
- self.down_proj = nn.Linear(ffn_dim, self.embed_dim, bias=False)
114
- self.act_fn = ACT2FN['silu'] # Using SiLU as the activation function
115
-
116
- def forward(self, x):
117
- gate = self.gate_proj(x)
118
- up = self.up_proj(x)
119
-
120
- # SwiGLU activation
121
- # gate = F.silu(gate)
122
- gate = self.act_fn(gate)
123
- return self.down_proj(gate * up)
124
-
125
-
126
- class HeadLayer(nn.Module):
127
- """
128
- A layer in the diffusion head.
129
-
130
- Args:
131
- embed_dim (`int`): Input dimension
132
- ffn_dim (`int`): Hidden dimension
133
- cond_dim (`int`): Condition embedding dimension
134
- norm_eps (`float`, optional): Epsilon for normalization
135
- """
136
- def __init__(
137
- self,
138
- embed_dim,
139
- ffn_dim,
140
- cond_dim,
141
- norm_eps=1e-5,
142
- ):
143
- super().__init__()
144
- self.embed_dim = embed_dim
145
- self.cond_dim = cond_dim
146
- self.ffn_dim = ffn_dim
147
- self.ffn = FeedForwardNetwork(
148
- self.embed_dim,
149
- self.ffn_dim,
150
- )
151
- self.norm = RMSNorm(self.embed_dim, eps=norm_eps)
152
- self.adaLN_modulation = nn.Sequential(
153
- # nn.SiLU(),
154
- ACT2FN['silu'],
155
- nn.Linear(cond_dim, 3 * self.embed_dim, bias=False)
156
- )
157
-
158
- def forward(self, x, c):
159
- shift_ffn, scale_ffn, gate_ffn = self.adaLN_modulation(c).chunk(3, dim=-1)
160
- x = x + gate_ffn * self.ffn(modulate(self.norm(x), shift_ffn, scale_ffn))
161
- return x
162
-
163
-
164
- class FinalLayer(nn.Module):
165
- """
166
- Final layer in the diffusion head.
167
-
168
- Args:
169
- hidden_size (`int`): Input dimension
170
- output_size (`int`): Output dimension
171
- cond_size (`int`): Condition embedding dimension
172
- norm_eps (`float`, optional): Epsilon for normalization
173
- """
174
- def __init__(self, hidden_size, output_size, cond_size, norm_eps=1e-5):
175
- super().__init__()
176
- self.norm_final = RMSNorm(hidden_size, eps=norm_eps, elementwise_affine=False)
177
- self.linear = nn.Linear(hidden_size, output_size, bias=False)
178
- self.adaLN_modulation = nn.Sequential(
179
- # nn.SiLU(),
180
- ACT2FN['silu'],
181
- nn.Linear(cond_size, 2 * hidden_size, bias=False)
182
- )
183
-
184
- def forward(self, x, c):
185
- shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
186
- x = modulate(self.norm_final(x), shift, scale)
187
- x = self.linear(x)
188
- return x
189
-
190
-
191
- class VibeVoiceDiffusionHead(PreTrainedModel):
192
- """
193
- Diffusion head model for vibevoice.
194
-
195
- Args:
196
- config (`VibeVoiceDiffusionHeadConfig`): Model configuration
197
- latent_size (`int`, optional): Size of the latent space. If not provided, uses `config.latent_size`.
198
- """
199
- config_class = VibeVoiceDiffusionHeadConfig
200
- supports_gradient_checkpointing = True
201
- _supports_flash_attn_2 = True
202
- _supports_sdpa = True
203
-
204
- def __init__(
205
- self,
206
- config,
207
- ):
208
- super().__init__(config)
209
- self.config = config
210
- self.cond_dim = config.hidden_size
211
- latent_size = config.latent_size
212
-
213
- self.noisy_images_proj = nn.Linear(latent_size, config.hidden_size, bias=False)
214
- self.cond_proj = nn.Linear(config.hidden_size, self.cond_dim, bias=False)
215
- self.t_embedder = TimestepEmbedder(self.cond_dim)
216
-
217
- ffn_dim = int(config.hidden_size * config.head_ffn_ratio)
218
-
219
- # Create the intermediate layers
220
- self.layers = nn.ModuleList([
221
- HeadLayer(
222
- embed_dim=config.hidden_size,
223
- ffn_dim=ffn_dim,
224
- cond_dim=self.cond_dim,
225
- norm_eps=config.rms_norm_eps
226
- )
227
- for _ in range(config.head_layers)
228
- ])
229
-
230
- # Final layer for output
231
- self.final_layer = FinalLayer(
232
- hidden_size=config.hidden_size,
233
- output_size=latent_size,
234
- cond_size=self.cond_dim,
235
- norm_eps=config.rms_norm_eps
236
- )
237
-
238
- self.initialize_weights()
239
-
240
- def initialize_weights(self):
241
- """Initialize the weights of the model."""
242
- # Initialize timestep embedder
243
- nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
244
- nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
245
-
246
- # Zero-out adaLN modulation layers
247
- for layer in self.layers:
248
- nn.init.constant_(layer.adaLN_modulation[-1].weight, 0)
249
-
250
- # Zero-out output layers
251
- nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
252
- nn.init.constant_(self.final_layer.linear.weight, 0)
253
-
254
- def forward(
255
- self,
256
- noisy_images,
257
- timesteps,
258
- condition,
259
- ):
260
- """
261
- Forward pass of the prediction head.
262
-
263
- Args:
264
- noisy_images (`torch.Tensor`): Noisy images/latents to denoise
265
- timesteps (`torch.Tensor`): Timesteps for diffusion
266
- condition (`torch.Tensor`): Conditioning information
267
-
268
- Returns:
269
- `torch.Tensor`: The predicted noise/velocity
270
- """
271
- x = self.noisy_images_proj(noisy_images)
272
- t = self.t_embedder(timesteps)
273
- condition = self.cond_proj(condition)
274
- c = condition + t
275
-
276
- for layer in self.layers:
277
- x = layer(x, c)
278
-
279
- x = self.final_layer(x, c)
280
- return x
281
-
282
-
283
- AutoModel.register(VibeVoiceDiffusionHeadConfig, VibeVoiceDiffusionHead)
284
-
285
- __all__ = [
286
- "VibeVoiceDiffusionHead",
287
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/modular/modular_vibevoice_text_tokenizer.py DELETED
@@ -1,214 +0,0 @@
1
- """Tokenization classes for vibevoice."""
2
-
3
- from typing import List, Optional, Union
4
-
5
- from transformers.utils import logging
6
- from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer
7
- from transformers.models.qwen2.tokenization_qwen2_fast import Qwen2TokenizerFast
8
-
9
- logger = logging.get_logger(__name__)
10
-
11
-
12
- class VibeVoiceTextTokenizer(Qwen2Tokenizer):
13
- """
14
- Construct a VibeVoice tokenizer. Based on the Qwen2 tokenizer with additional special tokens for speech.
15
-
16
- Args:
17
- vocab_file (`str`):
18
- Path to the vocabulary file.
19
- merges_file (`str`):
20
- Path to the merges file.
21
- errors (`str`, *optional*, defaults to `"replace"`):
22
- Paradigm to follow when decoding bytes to UTF-8.
23
- unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
24
- The unknown token.
25
- bos_token (`str`, *optional*):
26
- The beginning of sequence token. Not used for vibevoice.
27
- eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
28
- The end of sequence token.
29
- pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
30
- The token used for padding.
31
- add_special_tokens (`bool`, *optional*, defaults to `True`):
32
- Whether or not to add special tokens when encoding.
33
- """
34
-
35
- model_input_names = ["input_ids", "attention_mask"]
36
-
37
- def __init__(
38
- self,
39
- vocab_file,
40
- merges_file,
41
- errors="replace",
42
- unk_token="<|endoftext|>",
43
- bos_token=None,
44
- eos_token="<|endoftext|>",
45
- pad_token="<|endoftext|>",
46
- add_prefix_space=False,
47
- add_special_tokens=True,
48
- **kwargs,
49
- ):
50
- super().__init__(
51
- vocab_file=vocab_file,
52
- merges_file=merges_file,
53
- errors=errors,
54
- unk_token=unk_token,
55
- bos_token=bos_token,
56
- eos_token=eos_token,
57
- pad_token=pad_token,
58
- add_prefix_space=add_prefix_space,
59
- add_special_tokens=add_special_tokens,
60
- **kwargs,
61
- )
62
-
63
- # Add VibeVoice-specific special tokens
64
- self._add_vibevoice_special_tokens()
65
-
66
- def _add_vibevoice_special_tokens(self):
67
- """Add VibeVoice-specific special tokens."""
68
- special_tokens = {
69
- "additional_special_tokens": [
70
- "<|vision_start|>", # Speech start (reusing vision tokens)
71
- "<|vision_end|>", # Speech end
72
- "<|vision_pad|>", # Speech diffusion pad
73
- ]
74
- }
75
- num_added = self.add_special_tokens(special_tokens)
76
-
77
- # Cache special token IDs
78
- self._speech_start_id = self.convert_tokens_to_ids("<|vision_start|>")
79
- self._speech_end_id = self.convert_tokens_to_ids("<|vision_end|>")
80
- self._speech_diffusion_id = self.convert_tokens_to_ids("<|vision_pad|>")
81
-
82
- self._eos_id = self.convert_tokens_to_ids('<|endoftext|>')
83
-
84
- return num_added
85
-
86
- @property
87
- def eos_id(self) -> int:
88
- """Id of the end of sequence token."""
89
- return self._eos_id
90
-
91
- @property
92
- def speech_start_id(self) -> int:
93
- """Id of the speech start token."""
94
- return self._speech_start_id
95
-
96
- @property
97
- def speech_end_id(self) -> int:
98
- """Id of the speech end token."""
99
- return self._speech_end_id
100
-
101
- @property
102
- def speech_diffusion_id(self) -> int:
103
- """Id of the speech diffusion token."""
104
- return self._speech_diffusion_id
105
-
106
- @property
107
- def pad_id(self) -> int:
108
- """Id used for padding (returns -100 for loss masking)."""
109
- return -100
110
-
111
-
112
- class VibeVoiceTextTokenizerFast(Qwen2TokenizerFast):
113
- """
114
- Construct a "fast" VibeVoice tokenizer (backed by HuggingFace's *tokenizers* library).
115
- Based on the Qwen2 tokenizer with additional special tokens for speech.
116
-
117
- Args:
118
- vocab_file (`str`, *optional*):
119
- Path to the vocabulary file.
120
- merges_file (`str`, *optional*):
121
- Path to the merges file.
122
- tokenizer_file (`str`, *optional*):
123
- Path to [tokenizers](https://github.com/huggingface/tokenizers) file.
124
- unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
125
- The unknown token.
126
- bos_token (`str`, *optional*):
127
- The beginning of sequence token. Not used for vibevoice.
128
- eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
129
- The end of sequence token.
130
- pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
131
- The token used for padding.
132
- """
133
-
134
- model_input_names = ["input_ids", "attention_mask"]
135
-
136
- def __init__(
137
- self,
138
- vocab_file=None,
139
- merges_file=None,
140
- tokenizer_file=None,
141
- unk_token="<|endoftext|>",
142
- bos_token=None,
143
- eos_token="<|endoftext|>",
144
- pad_token="<|endoftext|>",
145
- add_prefix_space=False,
146
- **kwargs,
147
- ):
148
- super().__init__(
149
- vocab_file=vocab_file,
150
- merges_file=merges_file,
151
- tokenizer_file=tokenizer_file,
152
- unk_token=unk_token,
153
- bos_token=bos_token,
154
- eos_token=eos_token,
155
- pad_token=pad_token,
156
- add_prefix_space=add_prefix_space,
157
- **kwargs,
158
- )
159
-
160
- # Add VibeVoice-specific special tokens
161
- self._add_vibevoice_special_tokens()
162
-
163
- def _add_vibevoice_special_tokens(self):
164
- """Add VibeVoice-specific special tokens."""
165
- special_tokens = {
166
- "additional_special_tokens": [
167
- "<|vision_start|>", # Speech start (reusing vision tokens)
168
- "<|vision_end|>", # Speech end
169
- "<|vision_pad|>", # Speech diffusion pad
170
- ]
171
- }
172
- num_added = self.add_special_tokens(special_tokens)
173
-
174
- # Cache special token IDs
175
- self._speech_start_id = self.convert_tokens_to_ids("<|vision_start|>")
176
- self._speech_end_id = self.convert_tokens_to_ids("<|vision_end|>")
177
- self._speech_diffusion_id = self.convert_tokens_to_ids("<|vision_pad|>")
178
-
179
- # self._eos_id = self.convert_tokens_to_ids('<|endoftext|>')
180
- self._eos_id = self.eos_token_id # qwen2 / qwen3
181
- self._pad_id = self.convert_tokens_to_ids('<|image_pad|>')
182
-
183
- return num_added
184
-
185
- @property
186
- def eos_id(self) -> int:
187
- """Id of the end of sequence token."""
188
- return self._eos_id
189
-
190
- @property
191
- def speech_start_id(self) -> int:
192
- """Id of the speech start token."""
193
- return self._speech_start_id
194
-
195
- @property
196
- def speech_end_id(self) -> int:
197
- """Id of the speech end token."""
198
- return self._speech_end_id
199
-
200
- @property
201
- def speech_diffusion_id(self) -> int:
202
- """Id of the speech diffusion token."""
203
- return self._speech_diffusion_id
204
-
205
- @property
206
- def pad_id(self) -> int:
207
- """Id used for padding (returns -100 for loss masking)."""
208
- return self._pad_id
209
-
210
-
211
- __all__ = [
212
- "VibeVoiceTextTokenizer",
213
- "VibeVoiceTextTokenizerFast",
214
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/modular/modular_vibevoice_tokenizer.py DELETED
@@ -1,1195 +0,0 @@
1
- import math
2
- import typing as tp
3
- from functools import partial
4
- from dataclasses import dataclass, field
5
- from typing import Dict, List, Optional, Tuple, Union
6
- import copy
7
-
8
- import numpy as np
9
- import torch
10
- import torch.nn as nn
11
- import torch.nn.functional as F
12
-
13
- from transformers.models.auto import AutoModel
14
-
15
- from transformers.configuration_utils import PretrainedConfig
16
- from transformers.utils import logging
17
- from transformers.modeling_utils import PreTrainedModel
18
- from transformers.activations import ACT2FN
19
-
20
- from .configuration_vibevoice import VibeVoiceAcousticTokenizerConfig, VibeVoiceSemanticTokenizerConfig
21
-
22
- logger = logging.get_logger(__name__)
23
-
24
- import os
25
- # Try to import APEX FusedRMSNorm
26
- try:
27
- from apex.normalization.fused_layer_norm import fused_rms_norm_affine
28
- APEX_AVAILABLE = True
29
- logger.info("APEX FusedRMSNorm is available and will be used for optimization")
30
- if int(os.getenv("OPTIMIZE_FOR_SPEED", "0")) == 0:
31
- APEX_AVAILABLE = False
32
- logger.warning("APEX FusedRMSNorm is disabled by environment variable OPTIMIZE_FOR_SPEED=0")
33
- except ImportError:
34
- APEX_AVAILABLE = False
35
- logger.warning("APEX FusedRMSNorm not available, using native implementation")
36
- # APEX_AVAILABLE=False
37
-
38
- # Normalization modules
39
- class ConvLayerNorm(nn.LayerNorm):
40
- """
41
- Convolution-friendly LayerNorm that moves channels to last dimensions
42
- before running the normalization and moves them back to original position right after.
43
- """
44
- def __init__(self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs):
45
- super().__init__(normalized_shape, **kwargs)
46
-
47
- def forward(self, x):
48
- x = x.transpose(1, 2) # b ... t -> b t ...
49
- x = nn.functional.layer_norm(x.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps).type_as(x)
50
- x = x.transpose(1, 2) # b t ... -> b ... t
51
- return x
52
-
53
- class RMSNorm(nn.Module):
54
- def __init__(self, dim: int, eps: float = 1e-5, elementwise_affine=True, weight_shape=None):
55
- super().__init__()
56
- self.dim = dim
57
- self.eps = eps
58
- self.elementwise_affine = elementwise_affine
59
- if self.elementwise_affine:
60
- weight_shape = (dim,) if weight_shape is None else weight_shape
61
- self.weight = nn.Parameter(torch.ones(weight_shape))
62
- else:
63
- self.register_parameter('weight', None)
64
-
65
- def _norm(self, x):
66
- return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
67
-
68
- def forward(self, x):
69
- output = self._norm(x.float()).type_as(x)
70
- if self.weight is not None:
71
- output = output * self.weight
72
- return output
73
-
74
- def extra_repr(self) -> str:
75
- return f'dim={self.dim}, eps={self.eps}, elementwise_affine={self.elementwise_affine}'
76
-
77
- class ConvRMSNorm(RMSNorm):
78
- def __init__(self, dim: int, eps: float = 1e-5, elementwise_affine=True, weight_shape=None):
79
- super().__init__(dim, eps, elementwise_affine, weight_shape)
80
-
81
- def forward(self, x):
82
- x = x.transpose(1, 2) # b ... t -> b t ...
83
- if (not APEX_AVAILABLE) or (not self.elementwise_affine):
84
- # Fallback to native implementation
85
- output = self._norm(x.float()).type_as(x)
86
- if self.weight is not None:
87
- output = output * self.weight
88
- else:
89
- output = fused_rms_norm_affine(x, self.weight, self.weight.shape, self.eps)
90
- output = output.transpose(1, 2) # b t ... -> b ... t
91
- return output
92
-
93
- # Convolutional layers and utilities
94
- CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
95
- 'time_layer_norm', 'layer_norm', 'time_group_norm'])
96
-
97
-
98
- def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module:
99
- assert norm in CONV_NORMALIZATIONS
100
- if norm == 'weight_norm':
101
- return nn.utils.weight_norm(module)
102
- elif norm == 'spectral_norm':
103
- return nn.utils.spectral_norm(module)
104
- else:
105
- # We already check was in CONV_NORMALIZATION, so any other choice
106
- # doesn't need reparametrization.
107
- return module
108
-
109
-
110
- def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module:
111
- """Return the proper normalization module. If causal is True, this will ensure the returned
112
- module is causal, or return an error if the normalization doesn't support causal evaluation.
113
- """
114
- assert norm in CONV_NORMALIZATIONS
115
- if norm == 'layer_norm':
116
- assert isinstance(module, nn.modules.conv._ConvNd)
117
- return ConvLayerNorm(module.out_channels, **norm_kwargs)
118
- elif norm == 'time_group_norm':
119
- if causal:
120
- raise ValueError("GroupNorm doesn't support causal evaluation.")
121
- assert isinstance(module, nn.modules.conv._ConvNd)
122
- return nn.GroupNorm(1, module.out_channels, **norm_kwargs)
123
- else:
124
- return nn.Identity()
125
-
126
-
127
- def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
128
- padding_total: int = 0) -> int:
129
- """Calculate extra padding needed for convolution to have the same output length"""
130
- length = x.shape[-1]
131
- n_frames = (length - kernel_size + padding_total) / stride + 1
132
- ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
133
- return ideal_length - length
134
-
135
-
136
- def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.):
137
- """Pad 1D input with handling for small inputs in reflect mode"""
138
- length = x.shape[-1]
139
- padding_left, padding_right = paddings
140
- assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
141
- if mode == 'reflect':
142
- max_pad = max(padding_left, padding_right)
143
- extra_pad = 0
144
- if length <= max_pad:
145
- extra_pad = max_pad - length + 1
146
- x = F.pad(x, (0, extra_pad))
147
- padded = F.pad(x, paddings, mode, value)
148
- end = padded.shape[-1] - extra_pad
149
- return padded[..., :end]
150
- else:
151
- return F.pad(x, paddings, mode, value)
152
-
153
-
154
- def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
155
- """Remove padding from x, handling properly zero padding. Only for 1d!"""
156
- padding_left, padding_right = paddings
157
- assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
158
- assert (padding_left + padding_right) <= x.shape[-1]
159
- end = x.shape[-1] - padding_right
160
- return x[..., padding_left: end]
161
-
162
-
163
- class NormConv1d(nn.Module):
164
- """Wrapper around Conv1d and normalization applied to this conv"""
165
- def __init__(self, *args, causal: bool = False, norm: str = 'none',
166
- norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
167
- super().__init__()
168
- self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm)
169
- self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs)
170
- self.norm_type = norm
171
-
172
- def forward(self, x):
173
- x = self.conv(x)
174
- x = self.norm(x)
175
- return x
176
-
177
-
178
- class NormConvTranspose1d(nn.Module):
179
- """Wrapper around ConvTranspose1d and normalization applied to this conv"""
180
- def __init__(self, *args, causal: bool = False, norm: str = 'none',
181
- norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
182
- super().__init__()
183
- self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm)
184
- self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs)
185
- self.norm_type = norm
186
-
187
- def forward(self, x):
188
- x = self.convtr(x)
189
- x = self.norm(x)
190
- return x
191
-
192
-
193
- class VibeVoiceTokenizerStreamingCache:
194
- """Cache for streaming convolution, similar to KV cache in attention"""
195
- def __init__(self):
196
- self.cache = {} # Dict mapping (layer_id, sample_idx) to state tensor
197
-
198
- def get(self, layer_id: str, sample_indices: torch.Tensor) -> Optional[torch.Tensor]:
199
- """Get cached states for given layer and sample indices"""
200
- states = []
201
- max_length = 0
202
-
203
- # First pass: collect states and find max length
204
- for idx in sample_indices.tolist():
205
- key = (layer_id, idx)
206
- if key not in self.cache:
207
- return None # If any sample is missing, return None
208
- state = self.cache[key]
209
- states.append(state)
210
- max_length = max(max_length, state.shape[-1])
211
-
212
- # Second pass: pad states to max length if needed
213
- if len(states) > 0 and states[0].dim() >= 2:
214
- padded_states = []
215
- for state in states:
216
- if state.shape[-1] < max_length:
217
- # Pad on the time dimension (last dimension)
218
- pad_size = max_length - state.shape[-1]
219
- # Pad with zeros on the LEFT to align the most recent samples
220
- padded_state = F.pad(state, (pad_size, 0), mode='constant', value=0)
221
- padded_states.append(padded_state)
222
- else:
223
- padded_states.append(state)
224
- return torch.stack(padded_states, dim=0)
225
- else:
226
- return torch.stack(states, dim=0)
227
-
228
- def set(self, layer_id: str, sample_indices: torch.Tensor, states: torch.Tensor):
229
- """Set cached states for given layer and sample indices"""
230
- for i, idx in enumerate(sample_indices.tolist()):
231
- key = (layer_id, idx)
232
- self.cache[key] = states[i].detach()
233
-
234
- def set_to_zero(self, sample_indices: torch.Tensor):
235
- """Set all cached states to zero for given sample indices"""
236
- for key in list(self.cache.keys()):
237
- layer_id, sample_idx = key
238
- if sample_idx in sample_indices.tolist():
239
- # Create zero tensor with same shape and dtype as cached tensor
240
- cached_tensor = self.cache[key]
241
- self.cache[key] = torch.zeros_like(cached_tensor)
242
-
243
- def clear(self, layer_id: Optional[str] = None, sample_indices: Optional[torch.Tensor] = None):
244
- """Clear cache for specific layer/samples or everything"""
245
- if layer_id is None and sample_indices is None:
246
- self.cache.clear()
247
- elif layer_id is not None and sample_indices is None:
248
- # Clear all samples for a specific layer
249
- keys_to_remove = [k for k in self.cache.keys() if k[0] == layer_id]
250
- for k in keys_to_remove:
251
- del self.cache[k]
252
- elif layer_id is not None and sample_indices is not None:
253
- # Clear specific samples for a specific layer
254
- for idx in sample_indices.tolist():
255
- key = (layer_id, idx)
256
- self.cache.pop(key, None)
257
-
258
- class SConv1d(nn.Module):
259
- """Conv1d with built-in handling of asymmetric or causal padding and normalization."""
260
- def __init__(self, in_channels: int, out_channels: int,
261
- kernel_size: int, stride: int = 1, dilation: int = 1,
262
- groups: int = 1, bias: bool = True, causal: bool = False,
263
- norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {},
264
- pad_mode: str = 'reflect'):
265
- super().__init__()
266
- self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
267
- dilation=dilation, groups=groups, bias=bias, causal=causal,
268
- norm=norm, norm_kwargs=norm_kwargs)
269
- self.causal = causal
270
- self.pad_mode = pad_mode
271
-
272
- # Store configuration
273
- self.kernel_size = kernel_size
274
- self.dilation = dilation
275
- self.stride = stride
276
- self.in_channels = in_channels
277
- self.out_channels = out_channels
278
-
279
- # For causal convolution, we need to maintain kernel_size - 1 samples as context
280
- # need to check use which context_size is more suitable
281
- # self.context_size = (kernel_size - 1) * dilation
282
- self.context_size = (kernel_size - 1) * dilation - (stride - 1)
283
-
284
- # For non-streaming mode, calculate padding
285
- self.padding_total = (kernel_size - 1) * dilation - (stride - 1)
286
-
287
- # Create a unique layer ID for cache management
288
- self._layer_id = None
289
-
290
- @property
291
- def layer_id(self):
292
- if self._layer_id is None:
293
- self._layer_id = f"sconv1d_{id(self)}"
294
- return self._layer_id
295
-
296
- def forward(self, x: torch.Tensor,
297
- cache: Optional[VibeVoiceTokenizerStreamingCache] = None,
298
- sample_indices: Optional[torch.Tensor] = None,
299
- use_cache: bool = False,
300
- debug: bool = False) -> torch.Tensor:
301
- """
302
- Forward pass with optional streaming support via cache.
303
-
304
- Args:
305
- x: Input tensor [batch_size, channels, time]
306
- cache: VibeVoiceTokenizerStreamingCache object for maintaining states
307
- sample_indices: Indices identifying each sample for cache management
308
- use_cache: Whether to use cached states for streaming
309
- debug: Whether to print debug information
310
-
311
- Returns:
312
- Output tensor
313
- """
314
- B, C, T = x.shape
315
-
316
- # Non-streaming mode
317
- if not use_cache or cache is None:
318
- return self._forward_non_streaming(x, debug=debug)
319
-
320
- # Streaming mode
321
- assert self.causal, "Streaming mode is only supported for causal convolutions"
322
- assert sample_indices is not None, "sample_indices must be provided for streaming mode"
323
- assert len(sample_indices) == B, "sample_indices must match batch size"
324
-
325
- return self._forward_streaming(x, cache, sample_indices, debug)
326
-
327
- def _forward_streaming(self, x: torch.Tensor,
328
- cache: VibeVoiceTokenizerStreamingCache,
329
- sample_indices: torch.Tensor,
330
- debug: bool = False) -> torch.Tensor:
331
- """Streaming forward pass with cache operations kept separate from compiled code"""
332
- B, C, T = x.shape
333
-
334
- # Cache operations (not compiled)
335
- cached_states = cache.get(self.layer_id, sample_indices)
336
-
337
- if cached_states is None:
338
- # First chunk - initialize with zeros for context
339
- if self.context_size > 0:
340
- cached_states = torch.zeros(B, C, self.context_size, device=x.device, dtype=x.dtype)
341
- if debug:
342
- print(f"[DEBUG] Initialized cache with shape: {cached_states.shape}, context_size={self.context_size}")
343
- else:
344
- cached_states = torch.zeros(B, C, 0, device=x.device, dtype=x.dtype)
345
- if debug:
346
- print(f"[DEBUG] No context needed (kernel_size=stride)")
347
-
348
- # Concatenate cached states with input
349
- if cached_states.shape[2] > 0:
350
- input_with_context = torch.cat([cached_states, x], dim=2)
351
- else:
352
- input_with_context = x
353
-
354
- if debug:
355
- print(f"[DEBUG] Input shape: {x.shape}, Cache shape: {cached_states.shape}, Combined: {input_with_context.shape}")
356
-
357
- # Apply convolution directly - no extra padding in streaming mode
358
- # The conv layer will handle its own padding internally
359
- output = self.conv(input_with_context)
360
-
361
- if debug:
362
- print(f"[DEBUG] Output shape: {output.shape}")
363
-
364
- # Update cache for next chunk
365
- if self.context_size > 0:
366
- # Calculate how many samples to keep
367
- total_input_length = input_with_context.shape[2]
368
-
369
- # Keep the last context_size samples
370
- if total_input_length >= self.context_size:
371
- new_cache_start = total_input_length - self.context_size
372
- new_cache = input_with_context[:, :, new_cache_start:]
373
- else:
374
- # If we have less than context_size samples, keep everything
375
- new_cache = input_with_context
376
-
377
- if debug:
378
- print(f"[DEBUG] New cache shape: {new_cache.shape}")
379
-
380
- cache.set(self.layer_id, sample_indices, new_cache)
381
-
382
- return output
383
-
384
- def _forward_non_streaming(self, x: torch.Tensor, debug: bool = False) -> torch.Tensor:
385
- """Standard forward pass without streaming"""
386
- B, C, T = x.shape
387
- kernel_size = self.kernel_size
388
- stride = self.stride
389
- dilation = self.dilation
390
- padding_total = self.padding_total
391
-
392
- # Compute extra padding for stride alignment
393
- extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
394
-
395
- if debug:
396
- print(f"[DEBUG NON-STREAMING] Input shape: {x.shape}, padding_total={padding_total}, extra_padding={extra_padding}")
397
-
398
- if self.causal:
399
- # Left padding for causal
400
- if self.pad_mode == 'constant':
401
- x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode, value=0)
402
- else:
403
- x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
404
- else:
405
- # Symmetric padding for non-causal
406
- padding_right = padding_total // 2
407
- padding_left = padding_total - padding_right
408
- x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
409
-
410
- if debug:
411
- print(f"[DEBUG NON-STREAMING] After padding: {x.shape}")
412
-
413
- output = self.conv(x)
414
-
415
- if debug:
416
- print(f"[DEBUG NON-STREAMING] Output shape: {output.shape}")
417
-
418
- return output
419
-
420
-
421
- class SConvTranspose1d(nn.Module):
422
- """ConvTranspose1d with built-in handling of asymmetric or causal padding and normalization."""
423
- def __init__(self, in_channels: int, out_channels: int,
424
- kernel_size: int, stride: int = 1, causal: bool = False,
425
- norm: str = 'none', trim_right_ratio: float = 1.,
426
- norm_kwargs: tp.Dict[str, tp.Any] = {}, bias: bool = True):
427
- super().__init__()
428
- self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride,
429
- causal=causal, norm=norm, norm_kwargs=norm_kwargs, bias=bias)
430
- self.causal = causal
431
- self.trim_right_ratio = trim_right_ratio
432
- assert self.causal or self.trim_right_ratio == 1., \
433
- "`trim_right_ratio` != 1.0 only makes sense for causal convolutions"
434
- assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1.
435
-
436
- # Store configuration
437
- self.kernel_size = kernel_size
438
- self.stride = stride
439
- self.in_channels = in_channels
440
- self.out_channels = out_channels
441
-
442
- # For transposed convolution, padding calculation is different
443
- self.padding_total = kernel_size - stride
444
-
445
- # For streaming, we need to keep track of input history
446
- # Transposed conv needs to see multiple input samples to produce correct output
447
- self.context_size = kernel_size - 1
448
-
449
- # Create a unique layer ID for cache management
450
- self._layer_id = None
451
-
452
- @property
453
- def layer_id(self):
454
- if self._layer_id is None:
455
- self._layer_id = f"sconvtr1d_{id(self)}"
456
- return self._layer_id
457
-
458
- def forward(self, x: torch.Tensor,
459
- cache: Optional[VibeVoiceTokenizerStreamingCache] = None,
460
- sample_indices: Optional[torch.Tensor] = None,
461
- use_cache: bool = False,
462
- debug: bool = False) -> torch.Tensor:
463
- """
464
- Forward pass with optional streaming support via cache.
465
- """
466
- B, C, T = x.shape
467
-
468
- # Non-streaming mode
469
- if not use_cache or cache is None:
470
- return self._forward_non_streaming(x, debug=debug)
471
-
472
- # Streaming mode
473
- assert sample_indices is not None, "sample_indices must be provided for streaming mode"
474
- assert len(sample_indices) == B, "sample_indices must match batch size"
475
-
476
- return self._forward_streaming(x, cache, sample_indices, debug)
477
-
478
- def _forward_streaming(self, x: torch.Tensor,
479
- cache: VibeVoiceTokenizerStreamingCache,
480
- sample_indices: torch.Tensor,
481
- debug: bool = False) -> torch.Tensor:
482
- """Streaming forward pass with cache operations kept separate from compiled code"""
483
- B, C, T = x.shape
484
-
485
- # Cache operations (not compiled)
486
- cached_input = cache.get(self.layer_id, sample_indices)
487
-
488
- if cached_input is None:
489
- # First chunk - no history yet
490
- cached_input = torch.zeros(B, C, 0, device=x.device, dtype=x.dtype)
491
- if debug:
492
- print(f"[DEBUG] Initialized empty cache for transposed conv")
493
-
494
- # Concatenate cached input with new input
495
- full_input = torch.cat([cached_input, x], dim=2)
496
-
497
- if debug:
498
- print(f"[DEBUG] Input shape: {x.shape}, Cache shape: {cached_input.shape}, Combined: {full_input.shape}")
499
-
500
- # First chunk or debug mode - use uncompiled version
501
- full_output = self.convtr(full_input)
502
-
503
- if debug:
504
- print(f"[DEBUG] Full transposed conv output shape: {full_output.shape}")
505
-
506
- # Calculate padding to remove
507
- if self.causal:
508
- padding_right = math.ceil(self.padding_total * self.trim_right_ratio)
509
- padding_left = self.padding_total - padding_right
510
- else:
511
- padding_right = self.padding_total // 2
512
- padding_left = self.padding_total - padding_right
513
-
514
- # Remove padding
515
- if padding_left + padding_right > 0:
516
- full_output = unpad1d(full_output, (padding_left, padding_right))
517
-
518
- if debug:
519
- print(f"[DEBUG] After unpadding: {full_output.shape}")
520
-
521
- # Determine which part of the output corresponds to the new input
522
- if cached_input.shape[2] == 0:
523
- # First chunk - return all output
524
- output = full_output
525
- else:
526
- # Subsequent chunks - return only the new output
527
- expected_new_output = T * self.stride
528
-
529
- # Take the last expected_new_output samples
530
- if full_output.shape[2] >= expected_new_output:
531
- output = full_output[:, :, -expected_new_output:]
532
- else:
533
- output = full_output
534
-
535
- if debug:
536
- print(f"[DEBUG] Final streaming output shape: {output.shape}")
537
-
538
- # Update cache
539
- if full_input.shape[2] > self.context_size:
540
- new_cache = full_input[:, :, -self.context_size:]
541
- else:
542
- new_cache = full_input
543
-
544
- if debug:
545
- print(f"[DEBUG] New cache shape: {new_cache.shape}")
546
-
547
- cache.set(self.layer_id, sample_indices, new_cache)
548
-
549
- return output
550
-
551
- def _forward_non_streaming(self, x: torch.Tensor, debug: bool = False) -> torch.Tensor:
552
- """Standard forward pass without streaming"""
553
- if debug:
554
- print(f"[DEBUG NON-STREAMING] Input shape: {x.shape}")
555
-
556
- # Apply transposed convolution
557
- y = self.convtr(x)
558
-
559
- if debug:
560
- print(f"[DEBUG NON-STREAMING] After transposed conv: {y.shape}")
561
-
562
- # Calculate and remove padding
563
- if self.causal:
564
- padding_right = math.ceil(self.padding_total * self.trim_right_ratio)
565
- padding_left = self.padding_total - padding_right
566
- else:
567
- padding_right = self.padding_total // 2
568
- padding_left = self.padding_total - padding_right
569
-
570
- if padding_left + padding_right > 0:
571
- y = unpad1d(y, (padding_left, padding_right))
572
-
573
- if debug:
574
- print(f"[DEBUG NON-STREAMING] Final output shape: {y.shape}")
575
-
576
- return y
577
-
578
- # FFN
579
- class FFN(nn.Module):
580
- def __init__(
581
- self,
582
- embed_dim,
583
- ffn_dim,
584
- bias=False,
585
- ):
586
- super().__init__()
587
- self.embed_dim = embed_dim
588
- self.linear1 = nn.Linear(self.embed_dim, ffn_dim, bias=bias)
589
- self.gelu = ACT2FN["gelu"]
590
- self.linear2 = nn.Linear(ffn_dim, self.embed_dim, bias=bias)
591
-
592
- def forward(self, x):
593
- x = self.linear1(x)
594
- x = self.gelu(x)
595
- x = self.linear2(x)
596
- return x
597
-
598
-
599
- class Convlayer(nn.Module):
600
- def __init__(
601
- self,
602
- in_channels,
603
- out_channels,
604
- kernel_size,
605
- stride=1,
606
- dilation=1,
607
- groups=1,
608
- bias=True,
609
- pad_mode='zeros',
610
- norm='weight_norm',
611
- causal=True,
612
- ):
613
- super().__init__()
614
- self.conv = SConv1d(in_channels, out_channels, kernel_size, stride=stride, dilation=dilation,
615
- groups=groups, bias=bias, pad_mode=pad_mode, norm=norm, causal=causal)
616
-
617
- def forward(self, x):
618
- return self.conv(x)
619
-
620
- class Block1D(nn.Module):
621
- def __init__(self, dim, kernel_size=7, drop_path=0., mixer_layer='conv',
622
- layer_scale_init_value=1e-6, **kwargs):
623
- super().__init__()
624
-
625
- if kwargs.get('layernorm', 'LN') == 'LN':
626
- self.norm = ConvLayerNorm(dim, eps=kwargs.get('eps', 1e-6))
627
- self.ffn_norm = ConvLayerNorm(dim, eps=kwargs.get('eps', 1e-6))
628
- elif kwargs.get('layernorm', 'RMSNorm') == 'RMSNorm':
629
- self.norm = ConvRMSNorm(dim, eps=kwargs.get('eps', 1e-6))
630
- self.ffn_norm = ConvRMSNorm(dim, eps=kwargs.get('eps', 1e-6))
631
-
632
- if mixer_layer == 'conv':
633
- self.mixer = Convlayer(dim, dim, groups=kwargs.get('groups', 1),
634
- kernel_size=kernel_size,
635
- pad_mode=kwargs.get('pad_mode', 'reflect'),
636
- norm=kwargs.get('norm', 'none'),
637
- causal=kwargs.get('causal', True),
638
- bias=kwargs.get('bias', True),
639
- )
640
- elif mixer_layer == 'depthwise_conv':
641
- self.mixer = Convlayer(dim, dim, groups=dim,
642
- kernel_size=kernel_size,
643
- pad_mode=kwargs.get('pad_mode', 'reflect'),
644
- norm=kwargs.get('norm', 'none'),
645
- causal=kwargs.get('causal', True),
646
- bias=kwargs.get('bias', True),
647
- )
648
- else:
649
- raise ValueError(f"Unsupported mixer layer: {mixer_layer}")
650
-
651
- self.ffn = FFN(
652
- dim,
653
- kwargs.get('ffn_expansion', 4) * dim,
654
- bias=kwargs.get('bias', False),
655
- )
656
- self.drop_path = nn.Identity() if drop_path <= 0. else nn.modules.DropPath(drop_path)
657
-
658
- if layer_scale_init_value > 0:
659
- self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
660
- self.ffn_gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
661
- else:
662
- self.gamma = None
663
- self.ffn_gamma = None
664
-
665
- def forward(self, x):
666
- # mixer
667
- residual = x
668
- x = self.norm(x)
669
- x = self.mixer(x)
670
- if self.gamma is not None:
671
- x = x * self.gamma.unsqueeze(-1)
672
- x = residual + self.drop_path(x)
673
-
674
- # ffn
675
- residual = x
676
- x = self.ffn_norm(x)
677
- x = x.permute(0, 2, 1)
678
- x = self.ffn(x)
679
- x = x.permute(0, 2, 1)
680
- if self.ffn_gamma is not None:
681
- x = x * self.ffn_gamma.unsqueeze(-1)
682
- x = residual + self.drop_path(x)
683
-
684
- return x
685
-
686
-
687
- class TokenizerEncoder(nn.Module):
688
- """
689
- Encoder component for the VibeVoice tokenizer that converts audio to latent representations.
690
-
691
- Args:
692
- config: Configuration object with model parameters
693
- """
694
- def __init__(self, config):
695
- super().__init__()
696
-
697
- # Extract parameters from config
698
- self.channels = config.channels
699
- self.dimension = config.dimension
700
- self.n_filters = config.n_filters
701
- self.ratios = list(reversed(config.ratios))
702
- self.depths = config.depths
703
- self.n_residual_layers = getattr(config, "n_residual_layers", 1)
704
- self.hop_length = np.prod(self.ratios)
705
- self.causal = config.causal
706
-
707
- # Additional config parameters with defaults
708
- kernel_size = getattr(config, "kernel_size", 7)
709
- last_kernel_size = getattr(config, "last_kernel_size", 7)
710
- norm = getattr(config, "norm", "none")
711
- norm_params = getattr(config, "norm_params", {})
712
- pad_mode = getattr(config, "pad_mode", "reflect")
713
- bias = getattr(config, "bias", True)
714
- layernorm = getattr(config, "layernorm", "LN")
715
- layernorm_eps = getattr(config, "layernorm_eps", 1e-6)
716
- layernorm_elementwise_affine = getattr(config, "layernorm_elementwise_affine", True)
717
- drop_path_rate = getattr(config, "drop_path_rate", 0.0)
718
- mixer_layer = getattr(config, "mixer_layer", "conv")
719
- layer_scale_init_value = getattr(config, "layer_scale_init_value", 0)
720
- disable_last_norm = getattr(config, "disable_last_norm", False)
721
-
722
- # determine the norm type based on layernorm
723
- if layernorm == 'LN':
724
- norm_type = ConvLayerNorm
725
- elif layernorm == 'RMSNorm':
726
- norm_type = partial(ConvRMSNorm, elementwise_affine=layernorm_elementwise_affine)
727
- else:
728
- raise ValueError(f"Unsupported norm type: {layernorm}")
729
-
730
- # stem and intermediate downsampling conv layers
731
- stem = nn.Sequential(
732
- SConv1d(self.channels, self.n_filters, kernel_size, norm=norm, norm_kwargs=norm_params, causal=self.causal, pad_mode=pad_mode, bias=bias),
733
- )
734
-
735
- self.downsample_layers = nn.ModuleList()
736
- self.downsample_layers.append(stem)
737
- for i in range(len(self.ratios)):
738
- in_ch = self.n_filters * (2 ** i)
739
- out_ch = self.n_filters * (2 ** (i + 1))
740
- downsample_layer = nn.Sequential(
741
- SConv1d(in_ch, out_ch, kernel_size=self.ratios[i] * 2, stride=self.ratios[i], causal=self.causal, pad_mode=pad_mode, norm=norm, bias=bias)
742
- )
743
- self.downsample_layers.append(downsample_layer)
744
-
745
- # configure the transformer blocks
746
- layer_type = partial(
747
- Block1D,
748
- mixer_layer=mixer_layer,
749
- layernorm=layernorm,
750
- eps=layernorm_eps,
751
- causal=self.causal,
752
- pad_mode=pad_mode,
753
- norm=norm,
754
- bias=bias,
755
- layer_scale_init_value=layer_scale_init_value,
756
- )
757
-
758
- self.stages = nn.ModuleList()
759
- dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
760
- cur = 0
761
-
762
- for i in range(len(self.depths)):
763
- in_ch = self.n_filters * (2 ** i)
764
- stage = nn.Sequential(
765
- *[layer_type(dim=in_ch, drop_path=dp_rates[cur + j]) for j in range(self.depths[i])]
766
- )
767
- self.stages.append(stage)
768
- cur += self.depths[i]
769
-
770
- if not disable_last_norm:
771
- self.norm = norm_type(in_ch, eps=layernorm_eps)
772
- else:
773
- self.norm = nn.Identity()
774
- self.head = SConv1d(in_ch, self.dimension, kernel_size=last_kernel_size, causal=self.causal, pad_mode=pad_mode, norm=norm, bias=bias)
775
-
776
- def forward_features(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
777
- for i in range(len(self.depths)):
778
- # Apply downsampling
779
- for layer in self.downsample_layers[i]:
780
- if isinstance(layer, SConv1d):
781
- x = layer(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
782
- else:
783
- x = layer(x)
784
-
785
- # Apply stage (Block1D contains Convlayer which contains SConv1d)
786
- for block in self.stages[i]:
787
- if hasattr(block, 'mixer') and hasattr(block.mixer, 'conv') and isinstance(block.mixer.conv, SConv1d):
788
- # Block1D forward with cache support
789
- residual = x
790
- x = block.norm(x)
791
- x = block.mixer.conv(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
792
- if block.gamma is not None:
793
- x = x * block.gamma.unsqueeze(-1)
794
- x = residual + x
795
-
796
- # FFN part
797
- residual = x
798
- x = block.ffn_norm(x)
799
- x = x.permute(0, 2, 1)
800
- x = block.ffn(x)
801
- x = x.permute(0, 2, 1)
802
- if block.ffn_gamma is not None:
803
- x = x * block.ffn_gamma.unsqueeze(-1)
804
- x = residual + x
805
- else:
806
- x = block(x)
807
-
808
- return self.norm(x)
809
-
810
- def forward(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
811
- x = self.forward_features(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
812
- x = self.head(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
813
- return x
814
-
815
-
816
- class TokenizerDecoder(nn.Module):
817
- """
818
- Decoder component for the VibeVoice tokenizer that converts latent representations back to audio.
819
-
820
- Args:
821
- config: Configuration object with model parameters
822
- """
823
- def __init__(self, config):
824
- super().__init__()
825
-
826
- # Extract parameters from config
827
- self.dimension = config.dimension
828
- self.channels = config.channels
829
- self.n_filters = config.n_filters
830
- self.ratios = config.ratios
831
-
832
- # IMPORTANT CHANGE: Don't reverse depths again since they're already reversed in VibeVoiceAcousticTokenizerModel
833
- self.depths = config.depths # Changed from list(reversed(config.depths))
834
-
835
- self.n_residual_layers = getattr(config, "n_residual_layers", 1)
836
- self.hop_length = np.prod(self.ratios)
837
- self.causal = config.causal
838
-
839
- # Additional config parameters with defaults
840
- kernel_size = getattr(config, "kernel_size", 7)
841
- last_kernel_size = getattr(config, "last_kernel_size", 7)
842
- norm = getattr(config, "norm", "none")
843
- norm_params = getattr(config, "norm_params", {})
844
- pad_mode = getattr(config, "pad_mode", "reflect")
845
- bias = getattr(config, "bias", True)
846
- layernorm = getattr(config, "layernorm", "LN")
847
- layernorm_eps = getattr(config, "layernorm_eps", 1e-6)
848
- trim_right_ratio = getattr(config, "trim_right_ratio", 1.0)
849
- layernorm_elementwise_affine = getattr(config, "layernorm_elementwise_affine", True)
850
- drop_path_rate = getattr(config, "drop_path_rate", 0.0)
851
- mixer_layer = getattr(config, "mixer_layer", "conv")
852
- layer_scale_init_value = getattr(config, "layer_scale_init_value", 0)
853
- disable_last_norm = getattr(config, "disable_last_norm", False)
854
-
855
- # determine the norm type based on layernorm
856
- if layernorm == 'LN':
857
- norm_type = ConvLayerNorm
858
- elif layernorm == 'RMSNorm':
859
- norm_type = partial(ConvRMSNorm, elementwise_affine=layernorm_elementwise_affine)
860
- else:
861
- raise ValueError(f"Unsupported norm type: {layernorm}")
862
-
863
- # stem and upsampling layers
864
- stem = nn.Sequential(
865
- SConv1d(self.dimension, self.n_filters * 2 ** (len(self.depths) - 1), kernel_size, norm=norm,
866
- norm_kwargs=norm_params, causal=self.causal, pad_mode=pad_mode, bias=bias),
867
- )
868
-
869
- self.upsample_layers = nn.ModuleList()
870
- self.upsample_layers.append(stem)
871
- for i in range(len(self.ratios)):
872
- in_ch = self.n_filters * (2 ** (len(self.depths) - 1 - i))
873
- out_ch = self.n_filters * (2 ** (len(self.depths) - 1 - i - 1))
874
- upsample_layer = nn.Sequential(
875
- SConvTranspose1d(in_ch, out_ch,
876
- kernel_size=self.ratios[i] * 2, stride=self.ratios[i],
877
- norm=norm, norm_kwargs=norm_params, bias=bias,
878
- causal=self.causal, trim_right_ratio=trim_right_ratio),
879
- )
880
- self.upsample_layers.append(upsample_layer)
881
-
882
- # configure transformer blocks
883
- layer_type = partial(
884
- Block1D,
885
- mixer_layer=mixer_layer,
886
- layernorm=layernorm,
887
- eps=layernorm_eps,
888
- causal=self.causal,
889
- pad_mode=pad_mode,
890
- norm=norm,
891
- bias=bias,
892
- layer_scale_init_value=layer_scale_init_value,
893
- )
894
-
895
- self.stages = nn.ModuleList()
896
- dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
897
- cur = 0
898
-
899
- # Create stages in the same order as the original model
900
- for i in range(len(self.depths)):
901
- in_ch = self.n_filters * (2 ** (len(self.depths) - 1 - i))
902
- stage = nn.Sequential(
903
- *[layer_type(dim=in_ch, drop_path=dp_rates[cur + j]) for j in range(self.depths[i])]
904
- )
905
- self.stages.append(stage)
906
- cur += self.depths[i]
907
-
908
- if not disable_last_norm:
909
- self.norm = norm_type(in_ch, eps=layernorm_eps)
910
- else:
911
- self.norm = nn.Identity()
912
- self.head = SConv1d(in_ch, self.channels, kernel_size=last_kernel_size, causal=self.causal, pad_mode=pad_mode, norm=norm, bias=bias)
913
-
914
- def forward_features(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
915
- for i in range(len(self.depths)):
916
- # Apply upsampling
917
- for layer in self.upsample_layers[i]:
918
- if isinstance(layer, (SConv1d, SConvTranspose1d)):
919
- x = layer(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
920
- else:
921
- x = layer(x)
922
-
923
- # Apply stage (Block1D contains Convlayer which contains SConv1d)
924
- for block in self.stages[i]:
925
- if hasattr(block, 'mixer') and hasattr(block.mixer, 'conv') and isinstance(block.mixer.conv, SConv1d):
926
- # Block1D forward with cache support
927
- residual = x
928
- x = block.norm(x)
929
- x = block.mixer.conv(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
930
- if block.gamma is not None:
931
- x = x * block.gamma.unsqueeze(-1)
932
- x = residual + x
933
-
934
- # FFN part
935
- residual = x
936
- x = block.ffn_norm(x)
937
- x = x.permute(0, 2, 1)
938
- x = block.ffn(x)
939
- x = x.permute(0, 2, 1)
940
- if block.ffn_gamma is not None:
941
- x = x * block.ffn_gamma.unsqueeze(-1)
942
- x = residual + x
943
- else:
944
- x = block(x)
945
-
946
- return self.norm(x)
947
-
948
- def forward(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
949
- x = self.forward_features(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
950
- x = self.head(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
951
- return x
952
-
953
-
954
- @dataclass
955
- class VibeVoiceTokenizerEncoderOutput:
956
- """
957
- Output of VibeVoice tokenizer encoder, representing a Gaussian distribution with fixed variance.
958
-
959
- Args:
960
- mean (`torch.FloatTensor`): The mean parameters of the distribution.
961
- std (`float` or `torch.FloatTensor`): Fixed standard deviation value.
962
- """
963
- mean: torch.Tensor
964
- std: Optional[Union[float, torch.Tensor]] = None
965
-
966
- def sample(self, dist_type='fix'):
967
- """
968
- Sample from the distribution.
969
-
970
- Args:
971
- dist_type (`str`): Sampling method, either 'fix' or 'gaussian'.
972
-
973
- Returns:
974
- `torch.FloatTensor`: Sampled values.
975
- `torch.FloatTensor` (optional): Standard deviation used (only when dist_type='gaussian').
976
- """
977
- if dist_type == 'fix':
978
- x = self.mean + self.std * torch.randn_like(self.mean)
979
- return x, self.std
980
- elif dist_type == 'gaussian':
981
- batch_size = self.mean.size(0)
982
- value = self.std / 0.8
983
- std = torch.randn(batch_size, device=self.mean.device, dtype=self.mean.dtype) * value
984
-
985
- while std.dim() < self.mean.dim():
986
- std = std.unsqueeze(-1)
987
-
988
- x = self.mean + std * torch.randn_like(self.mean)
989
- return x, std
990
- else:
991
- return self.mean, self.std
992
-
993
- def kl(self):
994
- """Compute KL divergence between this distribution and a standard normal."""
995
- target = torch.zeros_like(self.mean)
996
- return F.mse_loss(self.mean, target, reduction='none')
997
-
998
- def mode(self):
999
- """Return the distribution mode (which is the mean for Gaussian)."""
1000
- return self.mean
1001
-
1002
- class VibeVoiceAcousticTokenizerModel(PreTrainedModel):
1003
- """VibeVoice speech tokenizer model combining encoder and decoder for acoustic tokens"""
1004
-
1005
- config_class = VibeVoiceAcousticTokenizerConfig
1006
- base_model_prefix = "vibevoice_acoustic_tokenizer"
1007
- _supports_flash_attn_2 = True
1008
- _supports_sdpa = True
1009
- _no_split_modules = ["TokenizerEncoder", "TokenizerDecoder"]
1010
-
1011
- def __init__(self, config):
1012
- super().__init__(config)
1013
-
1014
- self.register_buffer('fix_std', torch.tensor(config.fix_std), persistent=False)
1015
- self.std_dist_type = getattr(config, "std_dist_type", "fix")
1016
-
1017
- # Parse encoder depths
1018
- if isinstance(config.encoder_depths, str):
1019
- encoder_depths = [int(d) for d in config.encoder_depths.split('-')]
1020
- else:
1021
- encoder_depths = config.encoder_depths
1022
-
1023
- # Parse decoder depths if provided
1024
- if config.decoder_depths is not None and isinstance(config.decoder_depths, str):
1025
- decoder_depths = [int(d) for d in config.decoder_depths.split('-')]
1026
- else:
1027
- # Default: use reversed encoder depths if decoder_depths is None
1028
- decoder_depths = list(reversed(encoder_depths))
1029
-
1030
- # Create encoder config
1031
- encoder_config = copy.deepcopy(config)
1032
- encoder_config.dimension = config.vae_dim
1033
- encoder_config.n_filters = config.encoder_n_filters
1034
- encoder_config.ratios = config.encoder_ratios
1035
- encoder_config.depths = encoder_depths
1036
- encoder_config.norm = config.conv_norm
1037
- encoder_config.pad_mode = config.pad_mode
1038
- encoder_config.bias = config.conv_bias
1039
- encoder_config.layernorm_eps = config.layernorm_eps
1040
- encoder_config.layernorm_elementwise_affine = config.layernorm_elementwise_affine
1041
- encoder_config.mixer_layer = config.mixer_layer
1042
- encoder_config.layer_scale_init_value = config.layer_scale_init_value
1043
- encoder_config.disable_last_norm = config.disable_last_norm
1044
-
1045
- # Create decoder config
1046
- decoder_config = copy.deepcopy(config)
1047
- decoder_config.dimension = config.vae_dim
1048
- decoder_config.n_filters = config.decoder_n_filters
1049
- decoder_config.ratios = config.decoder_ratios
1050
- decoder_config.depths = decoder_depths
1051
- decoder_config.norm = config.conv_norm
1052
- decoder_config.pad_mode = config.pad_mode
1053
- decoder_config.bias = config.conv_bias
1054
- decoder_config.layernorm_eps = config.layernorm_eps
1055
- decoder_config.layernorm_elementwise_affine = config.layernorm_elementwise_affine
1056
- decoder_config.mixer_layer = config.mixer_layer
1057
- decoder_config.layer_scale_init_value = config.layer_scale_init_value
1058
- decoder_config.disable_last_norm = config.disable_last_norm
1059
-
1060
- # Initialize encoder and decoder
1061
- self.encoder = TokenizerEncoder(encoder_config)
1062
- self.decoder = TokenizerDecoder(decoder_config)
1063
-
1064
- # Initialize weights
1065
- self.apply(self._init_weights)
1066
-
1067
- def _init_weights(self, module):
1068
- """Initialize weights for the model"""
1069
- if isinstance(module, nn.Linear):
1070
- nn.init.normal_(module.weight, std=self.config.weight_init_value)
1071
- if module.bias is not None:
1072
- nn.init.zeros_(module.bias)
1073
- elif isinstance(module, nn.LayerNorm):
1074
- nn.init.ones_(module.weight)
1075
- nn.init.zeros_(module.bias)
1076
- elif isinstance(module, nn.Conv1d):
1077
- nn.init.normal_(module.weight, std=self.config.weight_init_value)
1078
- if module.bias is not None:
1079
- nn.init.zeros_(module.bias)
1080
-
1081
- @torch.no_grad()
1082
- def encode(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
1083
- """Convert audio to latent representations"""
1084
- latents = self.encoder(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
1085
- return VibeVoiceTokenizerEncoderOutput(mean=latents.permute(0, 2, 1), std=self.fix_std)
1086
-
1087
- @torch.no_grad()
1088
- def sampling(self, encoder_output, dist_type=None):
1089
- """Sample from the encoder output distribution"""
1090
- dist_type = dist_type or self.std_dist_type
1091
-
1092
- if dist_type == 'fix':
1093
- return encoder_output.sample(dist_type='fix')
1094
- elif dist_type == 'gaussian':
1095
- return encoder_output.sample(dist_type='gaussian')
1096
- else:
1097
- raise ValueError(f"Unsupported dist_type: {dist_type}, expected 'fix' or 'gaussian'")
1098
-
1099
- @torch.no_grad()
1100
- def decode(self, latents, cache=None, sample_indices=None, use_cache=False, debug=False):
1101
- """Convert latent representations back to audio"""
1102
- if latents.shape[1] == self.config.vae_dim:
1103
- pass
1104
- else:
1105
- latents = latents.permute(0, 2, 1)
1106
-
1107
- audio = self.decoder(latents, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
1108
- return audio
1109
-
1110
- def forward(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
1111
- """Full forward pass: encode audio to latents, then decode back to audio"""
1112
- encoder_output = self.encode(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
1113
- sampled_latents, _ = self.sampling(encoder_output)
1114
- reconstructed = self.decode(sampled_latents, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
1115
- return reconstructed, sampled_latents
1116
-
1117
-
1118
- class VibeVoiceSemanticTokenizerModel(PreTrainedModel):
1119
- """VibeVoice speech tokenizer model with only encoder for semantic tokens"""
1120
-
1121
- config_class = VibeVoiceSemanticTokenizerConfig
1122
- base_model_prefix = "vibevoice_semantic_tokenizer"
1123
- _supports_flash_attn_2 = True
1124
- _supports_sdpa = True
1125
- _no_split_modules = ["TokenizerEncoder"]
1126
-
1127
- def __init__(self, config):
1128
- super().__init__(config)
1129
-
1130
- # Parse encoder depths
1131
- if isinstance(config.encoder_depths, str):
1132
- encoder_depths = [int(d) for d in config.encoder_depths.split('-')]
1133
- else:
1134
- encoder_depths = config.encoder_depths
1135
-
1136
- # Create encoder config
1137
- encoder_config = copy.deepcopy(config)
1138
- encoder_config.dimension = config.vae_dim
1139
- encoder_config.n_filters = config.encoder_n_filters
1140
- encoder_config.ratios = config.encoder_ratios
1141
- encoder_config.depths = encoder_depths
1142
- encoder_config.norm = config.conv_norm
1143
- encoder_config.pad_mode = config.pad_mode
1144
- encoder_config.bias = config.conv_bias
1145
- encoder_config.layernorm_eps = config.layernorm_eps
1146
- encoder_config.layernorm_elementwise_affine = config.layernorm_elementwise_affine
1147
- encoder_config.mixer_layer = config.mixer_layer
1148
- encoder_config.layer_scale_init_value = config.layer_scale_init_value
1149
- encoder_config.disable_last_norm = config.disable_last_norm
1150
-
1151
- # Initialize encoder and decoder
1152
- self.encoder = TokenizerEncoder(encoder_config)
1153
-
1154
- # Initialize weights
1155
- self.apply(self._init_weights)
1156
-
1157
- def _init_weights(self, module):
1158
- """Initialize weights for the model"""
1159
- if isinstance(module, nn.Linear):
1160
- nn.init.normal_(module.weight, std=self.config.weight_init_value)
1161
- if module.bias is not None:
1162
- nn.init.zeros_(module.bias)
1163
- elif isinstance(module, nn.LayerNorm):
1164
- nn.init.ones_(module.weight)
1165
- nn.init.zeros_(module.bias)
1166
- elif isinstance(module, nn.Conv1d):
1167
- nn.init.normal_(module.weight, std=self.config.weight_init_value)
1168
- if module.bias is not None:
1169
- nn.init.zeros_(module.bias)
1170
-
1171
- @torch.no_grad()
1172
- def encode(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
1173
- """Convert audio to latent representations"""
1174
- latents = self.encoder(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
1175
- return VibeVoiceTokenizerEncoderOutput(mean=latents.permute(0, 2, 1))
1176
-
1177
- @torch.no_grad()
1178
- def sampling(self, encoder_output, dist_type=None):
1179
- """Sample from the encoder output distribution"""
1180
- return encoder_output.sample(dist_type='none')
1181
-
1182
- def forward(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
1183
- """Full forward pass: encode audio to latents, then decode back to audio"""
1184
- encoder_output = self.encode(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
1185
- sampled_latents, _ = self.sampling(encoder_output, dist_type='none')
1186
- return None, sampled_latents
1187
-
1188
- AutoModel.register(VibeVoiceAcousticTokenizerConfig, VibeVoiceAcousticTokenizerModel)
1189
- AutoModel.register(VibeVoiceSemanticTokenizerConfig, VibeVoiceSemanticTokenizerModel)
1190
-
1191
- __all__ = [
1192
- "VibeVoiceTokenizerStreamingCache",
1193
- "VibeVoiceAcousticTokenizerModel",
1194
- "VibeVoiceSemanticTokenizerModel",
1195
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/modular/streamer.py DELETED
@@ -1,264 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import torch
4
-
5
- import asyncio
6
- from queue import Queue
7
- from typing import TYPE_CHECKING, Optional
8
-
9
-
10
- from transformers.generation import BaseStreamer
11
-
12
-
13
- class AudioStreamer(BaseStreamer):
14
- """
15
- Audio streamer that stores audio chunks in queues for each sample in the batch.
16
- This allows streaming audio generation for multiple samples simultaneously.
17
-
18
- Parameters:
19
- batch_size (`int`):
20
- The batch size for generation
21
- stop_signal (`any`, *optional*):
22
- The signal to put in the queue when generation ends. Defaults to None.
23
- timeout (`float`, *optional*):
24
- The timeout for the audio queue. If `None`, the queue will block indefinitely.
25
- """
26
-
27
- def __init__(
28
- self,
29
- batch_size: int,
30
- stop_signal: Optional[any] = None,
31
- timeout: Optional[float] = None,
32
- ):
33
- self.batch_size = batch_size
34
- self.stop_signal = stop_signal
35
- self.timeout = timeout
36
-
37
- # Create a queue for each sample in the batch
38
- self.audio_queues = [Queue() for _ in range(batch_size)]
39
- self.finished_flags = [False for _ in range(batch_size)]
40
- self.sample_indices_map = {} # Maps from sample index to queue index
41
-
42
- def put(self, audio_chunks: torch.Tensor, sample_indices: torch.Tensor):
43
- """
44
- Receives audio chunks and puts them in the appropriate queues.
45
-
46
- Args:
47
- audio_chunks: Tensor of shape (num_samples, ...) containing audio chunks
48
- sample_indices: Tensor indicating which samples these chunks belong to
49
- """
50
- for i, sample_idx in enumerate(sample_indices):
51
- idx = sample_idx.item()
52
- if idx < self.batch_size and not self.finished_flags[idx]:
53
- # Convert to numpy or keep as tensor based on preference
54
- audio_chunk = audio_chunks[i].detach().cpu()
55
- self.audio_queues[idx].put(audio_chunk, timeout=self.timeout)
56
-
57
- def end(self, sample_indices: Optional[torch.Tensor] = None):
58
- """
59
- Signals the end of generation for specified samples or all samples.
60
-
61
- Args:
62
- sample_indices: Optional tensor of sample indices to end. If None, ends all.
63
- """
64
- if sample_indices is None:
65
- # End all samples
66
- for idx in range(self.batch_size):
67
- if not self.finished_flags[idx]:
68
- self.audio_queues[idx].put(self.stop_signal, timeout=self.timeout)
69
- self.finished_flags[idx] = True
70
- else:
71
- # End specific samples
72
- for sample_idx in sample_indices:
73
- idx = sample_idx.item() if torch.is_tensor(sample_idx) else sample_idx
74
- if idx < self.batch_size and not self.finished_flags[idx]:
75
- self.audio_queues[idx].put(self.stop_signal, timeout=self.timeout)
76
- self.finished_flags[idx] = True
77
-
78
- def __iter__(self):
79
- """Returns an iterator over the batch of audio streams."""
80
- return AudioBatchIterator(self)
81
-
82
- def get_stream(self, sample_idx: int):
83
- """Get the audio stream for a specific sample."""
84
- if sample_idx >= self.batch_size:
85
- raise ValueError(f"Sample index {sample_idx} exceeds batch size {self.batch_size}")
86
- return AudioSampleIterator(self, sample_idx)
87
-
88
-
89
- class AudioSampleIterator:
90
- """Iterator for a single audio stream from the batch."""
91
-
92
- def __init__(self, streamer: AudioStreamer, sample_idx: int):
93
- self.streamer = streamer
94
- self.sample_idx = sample_idx
95
-
96
- def __iter__(self):
97
- return self
98
-
99
- def __next__(self):
100
- value = self.streamer.audio_queues[self.sample_idx].get(timeout=self.streamer.timeout)
101
- if value == self.streamer.stop_signal:
102
- raise StopIteration()
103
- return value
104
-
105
-
106
- class AudioBatchIterator:
107
- """Iterator that yields audio chunks for all samples in the batch."""
108
-
109
- def __init__(self, streamer: AudioStreamer):
110
- self.streamer = streamer
111
- self.active_samples = set(range(streamer.batch_size))
112
-
113
- def __iter__(self):
114
- return self
115
-
116
- def __next__(self):
117
- if not self.active_samples:
118
- raise StopIteration()
119
-
120
- batch_chunks = {}
121
- samples_to_remove = set()
122
-
123
- # Try to get chunks from all active samples
124
- for idx in self.active_samples:
125
- try:
126
- value = self.streamer.audio_queues[idx].get(block=False)
127
- if value == self.streamer.stop_signal:
128
- samples_to_remove.add(idx)
129
- else:
130
- batch_chunks[idx] = value
131
- except:
132
- # Queue is empty for this sample, skip it this iteration
133
- pass
134
-
135
- # Remove finished samples
136
- self.active_samples -= samples_to_remove
137
-
138
- if batch_chunks:
139
- return batch_chunks
140
- elif self.active_samples:
141
- # If no chunks were ready but we still have active samples,
142
- # wait a bit and try again
143
- import time
144
- time.sleep(0.01)
145
- return self.__next__()
146
- else:
147
- raise StopIteration()
148
-
149
-
150
- class AsyncAudioStreamer(AudioStreamer):
151
- """
152
- Async version of AudioStreamer for use in async contexts.
153
- """
154
-
155
- def __init__(
156
- self,
157
- batch_size: int,
158
- stop_signal: Optional[any] = None,
159
- timeout: Optional[float] = None,
160
- ):
161
- super().__init__(batch_size, stop_signal, timeout)
162
- # Replace regular queues with async queues
163
- self.audio_queues = [asyncio.Queue() for _ in range(batch_size)]
164
- self.loop = asyncio.get_running_loop()
165
-
166
- def put(self, audio_chunks: torch.Tensor, sample_indices: torch.Tensor):
167
- """Put audio chunks in the appropriate async queues."""
168
- for i, sample_idx in enumerate(sample_indices):
169
- idx = sample_idx.item()
170
- if idx < self.batch_size and not self.finished_flags[idx]:
171
- audio_chunk = audio_chunks[i].detach().cpu()
172
- self.loop.call_soon_threadsafe(
173
- self.audio_queues[idx].put_nowait, audio_chunk
174
- )
175
-
176
- def end(self, sample_indices: Optional[torch.Tensor] = None):
177
- """Signal the end of generation for specified samples."""
178
- if sample_indices is None:
179
- indices_to_end = range(self.batch_size)
180
- else:
181
- indices_to_end = [s.item() if torch.is_tensor(s) else s for s in sample_indices]
182
-
183
- for idx in indices_to_end:
184
- if idx < self.batch_size and not self.finished_flags[idx]:
185
- self.loop.call_soon_threadsafe(
186
- self.audio_queues[idx].put_nowait, self.stop_signal
187
- )
188
- self.finished_flags[idx] = True
189
-
190
- async def get_stream(self, sample_idx: int):
191
- """Get async iterator for a specific sample's audio stream."""
192
- if sample_idx >= self.batch_size:
193
- raise ValueError(f"Sample index {sample_idx} exceeds batch size {self.batch_size}")
194
-
195
- while True:
196
- value = await self.audio_queues[sample_idx].get()
197
- if value == self.stop_signal:
198
- break
199
- yield value
200
-
201
- def __aiter__(self):
202
- """Returns an async iterator over all audio streams."""
203
- return AsyncAudioBatchIterator(self)
204
-
205
-
206
- class AsyncAudioBatchIterator:
207
- """Async iterator for batch audio streaming."""
208
-
209
- def __init__(self, streamer: AsyncAudioStreamer):
210
- self.streamer = streamer
211
- self.active_samples = set(range(streamer.batch_size))
212
-
213
- def __aiter__(self):
214
- return self
215
-
216
- async def __anext__(self):
217
- if not self.active_samples:
218
- raise StopAsyncIteration()
219
-
220
- batch_chunks = {}
221
- samples_to_remove = set()
222
-
223
- # Create tasks for all active samples
224
- tasks = {
225
- idx: asyncio.create_task(self._get_chunk(idx))
226
- for idx in self.active_samples
227
- }
228
-
229
- # Wait for at least one chunk to be ready
230
- done, pending = await asyncio.wait(
231
- tasks.values(),
232
- return_when=asyncio.FIRST_COMPLETED,
233
- timeout=self.streamer.timeout
234
- )
235
-
236
- # Cancel pending tasks
237
- for task in pending:
238
- task.cancel()
239
-
240
- # Process completed tasks
241
- for idx, task in tasks.items():
242
- if task in done:
243
- try:
244
- value = await task
245
- if value == self.streamer.stop_signal:
246
- samples_to_remove.add(idx)
247
- else:
248
- batch_chunks[idx] = value
249
- except asyncio.CancelledError:
250
- pass
251
-
252
- self.active_samples -= samples_to_remove
253
-
254
- if batch_chunks:
255
- return batch_chunks
256
- elif self.active_samples:
257
- # Try again if we still have active samples
258
- return await self.__anext__()
259
- else:
260
- raise StopAsyncIteration()
261
-
262
- async def _get_chunk(self, idx):
263
- """Helper to get a chunk from a specific queue."""
264
- return await self.streamer.audio_queues[idx].get()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/packages.txt DELETED
@@ -1 +0,0 @@
1
- ffmpeg
 
 
backend_modal/processor/__init__.py DELETED
File without changes
backend_modal/processor/vibevoice_processor.py DELETED
@@ -1,677 +0,0 @@
1
- import math
2
- import warnings
3
- from typing import List, Optional, Union, Dict, Any, Tuple
4
- import os
5
- import re
6
-
7
- import numpy as np
8
- import torch
9
-
10
- from transformers.tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
11
- from transformers.utils import TensorType, logging
12
- from .vibevoice_tokenizer_processor import AudioNormalizer
13
-
14
- logger = logging.get_logger(__name__)
15
-
16
-
17
- class VibeVoiceProcessor:
18
- r"""
19
- Constructs a VibeVoice processor which wraps a VibeVoice tokenizer and audio processor into a single processor.
20
-
21
- [`VibeVoiceProcessor`] offers all the functionalities of [`VibeVoiceTokenizer`] and [`VibeVoiceTokenizerProcessor`].
22
- See the [`~VibeVoiceProcessor.__call__`] and [`~VibeVoiceProcessor.decode`] for more information.
23
-
24
- Args:
25
- tokenizer (`VibeVoiceTextTokenizer` or `VibeVoiceTextTokenizerFast`):
26
- The tokenizer for text processing.
27
- audio_processor (`VibeVoiceTokenizerProcessor`):
28
- The audio processor for speech processing.
29
- speech_tok_compress_ratio (`int`, *optional*, defaults to 3200):
30
- The compression ratio for speech tokenization.
31
- db_normalize (`bool`, *optional*, defaults to True):
32
- Whether to apply decibel normalization to audio inputs.
33
- """
34
-
35
- def __init__(self, tokenizer=None, audio_processor=None, speech_tok_compress_ratio=3200, db_normalize=True, **kwargs):
36
- self.tokenizer = tokenizer
37
- self.audio_processor = audio_processor
38
- self.speech_tok_compress_ratio = speech_tok_compress_ratio
39
- self.db_normalize = db_normalize
40
- self.audio_normalizer = AudioNormalizer() if db_normalize else None
41
- self.system_prompt = " Transform the text provided by various speakers into speech output, utilizing the distinct voice of each respective speaker.\n"
42
-
43
- @classmethod
44
- def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
45
- """
46
- Instantiate a VibeVoiceProcessor from a pretrained VibeVoice processor.
47
-
48
- Args:
49
- pretrained_model_name_or_path (`str` or `os.PathLike`):
50
- This can be either:
51
- - a string, the *model id* of a pretrained model
52
- - a path to a *directory* containing processor config
53
-
54
- Returns:
55
- [`VibeVoiceProcessor`]: The processor object instantiated from pretrained model.
56
- """
57
- import os
58
- import json
59
- from .vibevoice_tokenizer_processor import VibeVoiceTokenizerProcessor
60
- from modular.modular_vibevoice_text_tokenizer import (
61
- VibeVoiceTextTokenizer,
62
- VibeVoiceTextTokenizerFast
63
- )
64
-
65
- # Load processor configuration
66
- config_path = os.path.join(pretrained_model_name_or_path, "preprocessor_config.json")
67
- if os.path.exists(config_path):
68
- with open(config_path, 'r') as f:
69
- config = json.load(f)
70
- else:
71
- logger.warning(f"No preprocessor_config.json found at {pretrained_model_name_or_path}, using defaults")
72
- config = {
73
- "speech_tok_compress_ratio": 3200,
74
- "db_normalize": True,
75
- }
76
-
77
- # Extract main processor parameters
78
- speech_tok_compress_ratio = config.get("speech_tok_compress_ratio", 3200)
79
- db_normalize = config.get("db_normalize", True)
80
-
81
- # Load tokenizer - try from model path first, then fallback to Qwen
82
- language_model_pretrained_name = config.get("language_model_pretrained_name", None) or kwargs.pop("language_model_pretrained_name", "Qwen/Qwen2.5-1.5B")
83
- logger.info(f"Loading tokenizer from {language_model_pretrained_name}")
84
- if 'qwen' in language_model_pretrained_name.lower():
85
- tokenizer = VibeVoiceTextTokenizerFast.from_pretrained(
86
- language_model_pretrained_name,
87
- **kwargs
88
- )
89
- else:
90
- raise ValueError(f"Unsupported tokenizer type for {language_model_pretrained_name}. Supported types: Qwen, Llama, Gemma.")
91
-
92
- # Load audio processor
93
- if "audio_processor" in config:
94
- # Create audio processor from config
95
- audio_config = config["audio_processor"]
96
- audio_processor = VibeVoiceTokenizerProcessor(
97
- sampling_rate=audio_config.get("sampling_rate", 24000),
98
- normalize_audio=audio_config.get("normalize_audio", True),
99
- target_dB_FS=audio_config.get("target_dB_FS", -25),
100
- eps=audio_config.get("eps", 1e-6),
101
- )
102
- else:
103
- # Create default audio processor
104
- audio_processor = VibeVoiceTokenizerProcessor()
105
-
106
- # Create and return the processor
107
- return cls(
108
- tokenizer=tokenizer,
109
- audio_processor=audio_processor,
110
- speech_tok_compress_ratio=speech_tok_compress_ratio,
111
- db_normalize=db_normalize,
112
- )
113
-
114
- def save_pretrained(self, save_directory: Union[str, os.PathLike], **kwargs):
115
- """
116
- Save a processor to a directory, so that it can be re-loaded using the
117
- [`~VibeVoiceProcessor.from_pretrained`] class method.
118
-
119
- Args:
120
- save_directory (`str` or `os.PathLike`):
121
- Directory where the processor will be saved.
122
- """
123
- import os
124
- import json
125
-
126
- os.makedirs(save_directory, exist_ok=True)
127
-
128
- # Save processor configuration
129
- processor_config = {
130
- "processor_class": "VibeVoiceProcessor",
131
- "speech_tok_compress_ratio": self.speech_tok_compress_ratio,
132
- "db_normalize": self.db_normalize,
133
- "audio_processor": {
134
- "feature_extractor_type": "VibeVoiceTokenizerProcessor",
135
- "sampling_rate": getattr(self.audio_processor, 'sampling_rate', 24000),
136
- "normalize_audio": getattr(self.audio_processor, 'normalize_audio', True),
137
- "target_dB_FS": getattr(self.audio_processor, 'target_dB_FS', -25),
138
- "eps": getattr(self.audio_processor, 'eps', 1e-6),
139
- }
140
- }
141
-
142
- config_path = os.path.join(save_directory, "preprocessor_config.json")
143
- with open(config_path, 'w') as f:
144
- json.dump(processor_config, f, indent=2)
145
-
146
- logger.info(f"Processor configuration saved in {config_path}")
147
-
148
- def __call__(
149
- self,
150
- text: Optional[Union[str, List[str], TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
151
- voice_samples: Optional[Union[List[Union[str, np.ndarray]], List[List[Union[str, np.ndarray]]]]] = None,
152
- padding: Union[bool, str, PaddingStrategy] = True,
153
- truncation: Union[bool, str, TruncationStrategy] = False,
154
- max_length: Optional[int] = None,
155
- return_tensors: Optional[Union[str, TensorType]] = None,
156
- return_attention_mask: bool = True,
157
- **kwargs,
158
- ) -> BatchEncoding:
159
- """
160
- Main method to process one or more podcast scripts with optional voice samples.
161
-
162
- Args:
163
- text (`str`, `List[str]`):
164
- The input text(s) to process. Can be:
165
- - A single script string
166
- - A list of script strings for batch processing
167
- - A path to a .json or .txt file
168
- - A list of paths
169
- voice_samples (`List[Union[str, np.ndarray]]`, `List[List[Union[str, np.ndarray]]]`, *optional*):
170
- Voice samples for each script. Can be:
171
- - A list of samples for a single script
172
- - A list of lists for batch processing
173
- padding (`bool`, `str` or `PaddingStrategy`, defaults to `True`):
174
- Whether to pad sequences to the same length
175
- truncation (`bool`, `str` or `TruncationStrategy`, defaults to `False`):
176
- Whether to truncate sequences
177
- max_length (`int`, *optional*):
178
- Maximum length of the returned sequences
179
- return_tensors (`str` or `TensorType`, *optional*):
180
- If set, will return tensors of a particular framework
181
- return_attention_mask (`bool`, defaults to `True`):
182
- Whether to return the attention mask
183
-
184
- Returns:
185
- `BatchEncoding`: A BatchEncoding with the following fields:
186
- - **input_ids** -- List of token id sequences or tensor
187
- - **attention_mask** -- List of attention masks or tensor
188
- - **speech_tensors** -- Padded speech inputs (if voice_samples provided)
189
- - **speech_masks** -- Speech masks (if voice_samples provided)
190
- - **speech_input_mask** -- Boolean masks indicating speech token positions
191
- """
192
- # Handle single vs batch input
193
- if isinstance(text, str) or (isinstance(text, list) and len(text) > 0 and not isinstance(text[0], str)):
194
- # Single input
195
- texts = [text]
196
- is_batched = False
197
- else:
198
- # Batch input
199
- texts = text
200
- is_batched = True
201
-
202
- # Handle voice samples
203
- if voice_samples is not None:
204
- if not is_batched or (isinstance(voice_samples[0], (str, np.ndarray))):
205
- # Single set of voice samples
206
- voice_samples_list = [voice_samples]
207
- else:
208
- # Batch of voice samples
209
- voice_samples_list = voice_samples
210
- else:
211
- voice_samples_list = [None] * len(texts)
212
-
213
- # Process each input
214
- all_encodings = []
215
- for text_input, voice_input in zip(texts, voice_samples_list):
216
- encoding = self._process_single(text_input, voice_input)
217
- all_encodings.append(encoding)
218
-
219
- # Combine batch
220
- batch_encoding = self._batch_encode(
221
- all_encodings,
222
- padding=padding,
223
- truncation=truncation,
224
- max_length=max_length,
225
- return_tensors=return_tensors,
226
- return_attention_mask=return_attention_mask,
227
- )
228
-
229
- return batch_encoding
230
-
231
- def _process_single(
232
- self,
233
- text: Union[str, TextInput],
234
- voice_samples: Optional[List[Union[str, np.ndarray]]] = None,
235
- ) -> Dict[str, Any]:
236
- """Process a single podcast script."""
237
- # Determine if text is a file path or direct script
238
- script = None
239
- if isinstance(text, str):
240
- # Check if it's a file path
241
- if text.endswith('.json') and os.path.exists(text):
242
- script = self._convert_json_to_script(text)
243
- elif text.endswith('.txt') and os.path.exists(text):
244
- script = self._convert_text_to_script(text)
245
- else:
246
- # Assume it's the script content directly
247
- script = text
248
-
249
- if script is None:
250
- raise ValueError(f"Could not process input text: {text}")
251
-
252
- # Parse the script
253
- parsed_lines = self._parse_script(script)
254
- all_speakers = list(set(speaker_id for speaker_id, _ in parsed_lines))
255
-
256
- # Create system prompt
257
- # system_tokens = self.tokenizer.encode(self.system_prompt, add_special_tokens=False)
258
- system_tokens = self.tokenizer.encode(self.system_prompt)
259
-
260
- # Process voice samples if provided
261
- if voice_samples:
262
- voice_tokens, voice_speech_inputs, voice_speech_masks = self._create_voice_prompt(voice_samples[:len(all_speakers)])
263
- else:
264
- voice_tokens, voice_speech_inputs, voice_speech_masks = [], [], []
265
-
266
- # Build full token sequence
267
- full_tokens = system_tokens + voice_tokens
268
- speech_input_mask = [False] * len(system_tokens) + voice_speech_masks
269
-
270
- # Add text input section
271
- full_tokens += self.tokenizer.encode(' Text input:\n', add_special_tokens=False)
272
- speech_input_mask += [False] * len(self.tokenizer.encode(' Text input:\n', add_special_tokens=False))
273
-
274
- for speaker_id, speaker_text in parsed_lines:
275
- speaker_text_tokens = self.tokenizer.encode(f" Speaker {speaker_id}:{speaker_text}\n", add_special_tokens=False)
276
- full_tokens += speaker_text_tokens
277
- speech_input_mask += [False] * len(speaker_text_tokens)
278
-
279
- # Add speech output section
280
- full_tokens += self.tokenizer.encode(' Speech output:\n', add_special_tokens=False) + [self.tokenizer.speech_start_id]
281
- speech_input_mask += [False] * (len(self.tokenizer.encode(' Speech output:\n', add_special_tokens=False)) + 1)
282
-
283
- return {
284
- "input_ids": full_tokens,
285
- "speech_inputs": voice_speech_inputs if voice_speech_inputs else None,
286
- "speech_input_mask": speech_input_mask,
287
- "parsed_script": parsed_lines,
288
- "all_speakers": all_speakers,
289
- }
290
-
291
- def _batch_encode(
292
- self,
293
- encodings: List[Dict[str, Any]],
294
- padding: Union[bool, str, PaddingStrategy] = True,
295
- truncation: Union[bool, str, TruncationStrategy] = False,
296
- max_length: Optional[int] = None,
297
- return_tensors: Optional[Union[str, TensorType]] = None,
298
- return_attention_mask: bool = True,
299
- ) -> BatchEncoding:
300
- """Combine multiple encodings into a batch with padding."""
301
- # Extract input_ids and create attention_mask
302
- input_ids_list = [enc["input_ids"] for enc in encodings]
303
- speech_input_masks_list = [enc["speech_input_mask"] for enc in encodings]
304
-
305
- # Determine padding strategy
306
- if isinstance(padding, bool):
307
- padding_strategy = PaddingStrategy.LONGEST if padding else PaddingStrategy.DO_NOT_PAD
308
- elif isinstance(padding, str):
309
- padding_strategy = PaddingStrategy(padding)
310
- else:
311
- padding_strategy = padding
312
-
313
- # Apply padding to input_ids
314
- if padding_strategy != PaddingStrategy.DO_NOT_PAD:
315
- if padding_strategy == PaddingStrategy.LONGEST:
316
- max_len = max(len(ids) for ids in input_ids_list)
317
- elif padding_strategy == PaddingStrategy.MAX_LENGTH and max_length is not None:
318
- max_len = max_length
319
- else:
320
- max_len = max(len(ids) for ids in input_ids_list)
321
-
322
- # Pad sequences
323
- padded_input_ids = []
324
- attention_masks = []
325
- padded_speech_input_masks = []
326
-
327
- for input_ids, speech_mask in zip(input_ids_list, speech_input_masks_list):
328
- # Truncate if needed
329
- if truncation and len(input_ids) > max_len:
330
- input_ids = input_ids[:max_len]
331
- speech_mask = speech_mask[:max_len]
332
-
333
- # Pad
334
- padding_length = max_len - len(input_ids)
335
- # padded_ids = [self.tokenizer.pad_token_id] * padding_length + input_ids
336
- padded_ids = [self.tokenizer.pad_id] * padding_length + input_ids
337
- attention_mask = [0] * padding_length + [1] * len(input_ids)
338
- padded_speech_mask = [False] * padding_length + speech_mask
339
-
340
- padded_input_ids.append(padded_ids)
341
- attention_masks.append(attention_mask)
342
- padded_speech_input_masks.append(padded_speech_mask)
343
-
344
- input_ids_list = padded_input_ids
345
- speech_input_masks_list = padded_speech_input_masks
346
- else:
347
- # No padding, just create attention masks
348
- attention_masks = [[1] * len(ids) for ids in input_ids_list] if return_attention_mask else None
349
-
350
- # Process speech inputs
351
- all_speech_inputs = []
352
- has_speech = False
353
- for enc in encodings:
354
- if enc["speech_inputs"] is not None:
355
- all_speech_inputs.extend(enc["speech_inputs"])
356
- has_speech = True
357
-
358
- # Prepare batch encoding
359
- batch_encoding = BatchEncoding()
360
-
361
- # Handle tensor conversion
362
- if return_tensors is not None:
363
- batch_encoding["input_ids"] = torch.tensor(input_ids_list, dtype=torch.long)
364
- if return_attention_mask and attention_masks is not None:
365
- batch_encoding["attention_mask"] = torch.tensor(attention_masks, dtype=torch.long)
366
- batch_encoding["speech_input_mask"] = torch.tensor(speech_input_masks_list, dtype=torch.bool)
367
- else:
368
- batch_encoding["input_ids"] = input_ids_list
369
- if return_attention_mask and attention_masks is not None:
370
- batch_encoding["attention_mask"] = attention_masks
371
- batch_encoding["speech_input_mask"] = speech_input_masks_list
372
-
373
- # Process speech tensors if present
374
- if has_speech:
375
- speech_dict = self.prepare_speech_inputs(
376
- all_speech_inputs,
377
- return_tensors=return_tensors,
378
- )
379
- batch_encoding["speech_tensors"] = speech_dict["padded_speeches"]
380
- batch_encoding["speech_masks"] = speech_dict["speech_masks"]
381
- else:
382
- batch_encoding["speech_tensors"] = None
383
- batch_encoding["speech_masks"] = None
384
-
385
- # Add metadata
386
- batch_encoding["parsed_scripts"] = [enc["parsed_script"] for enc in encodings]
387
- batch_encoding["all_speakers_list"] = [enc["all_speakers"] for enc in encodings]
388
-
389
- return batch_encoding
390
-
391
- def _create_voice_prompt(
392
- self,
393
- speaker_samples: List[Union[str, np.ndarray]]
394
- ) -> Tuple[List[int], List[np.ndarray], List[bool]]:
395
- """
396
- Create voice prompt tokens and process audio samples.
397
-
398
- Returns:
399
- tuple: (voice_tokens, voice_speech_inputs, voice_speech_masks)
400
- """
401
- vae_token_id = self.tokenizer.speech_diffusion_id
402
-
403
- voice_full_tokens = self.tokenizer.encode(' Voice input:\n', add_special_tokens=False)
404
- voice_speech_inputs = []
405
- voice_speech_masks = [False] * len(voice_full_tokens)
406
-
407
- for speaker_id, speaker_audio in enumerate(speaker_samples):
408
- prefix_tokens = self.tokenizer.encode(f" Speaker {speaker_id}:", add_special_tokens=False)
409
-
410
- # Process audio
411
- if isinstance(speaker_audio, str):
412
- # Load audio from file
413
- wav = self.audio_processor._load_audio_from_path(speaker_audio)
414
- else:
415
- wav = np.array(speaker_audio, dtype=np.float32)
416
-
417
- # Apply normalization if needed
418
- if self.db_normalize and self.audio_normalizer:
419
- wav = self.audio_normalizer(wav)
420
-
421
- # Calculate token length based on compression ratio
422
- # if speaker_audio.endswith('.pt') or speaker_audio.endswith('.npy'):
423
- # vae_tok_len = wav.shape[0]
424
- # else:
425
- vae_tok_len = math.ceil(wav.shape[0] / self.speech_tok_compress_ratio)
426
-
427
- # Build tokens and masks
428
- speaker_tokens = (prefix_tokens +
429
- [self.tokenizer.speech_start_id] +
430
- [vae_token_id] * vae_tok_len +
431
- [self.tokenizer.speech_end_id] +
432
- self.tokenizer.encode('\n', add_special_tokens=False))
433
-
434
- vae_input_mask = ([False] * len(prefix_tokens) +
435
- [False] +
436
- [True] * vae_tok_len +
437
- [False] +
438
- [False])
439
-
440
- voice_full_tokens.extend(speaker_tokens)
441
- voice_speech_masks.extend(vae_input_mask)
442
- voice_speech_inputs.append(wav)
443
-
444
- return voice_full_tokens, voice_speech_inputs, voice_speech_masks
445
-
446
- def prepare_speech_inputs(
447
- self,
448
- speech_inputs: List[np.ndarray],
449
- return_tensors: Optional[Union[str, TensorType]] = None,
450
- device: Optional[Union[str, torch.device]] = None,
451
- dtype: Optional[torch.dtype] = None,
452
- ) -> Dict[str, Any]:
453
- """
454
- Prepare speech inputs for model consumption.
455
-
456
- Args:
457
- speech_inputs: List of speech arrays
458
- return_tensors: Output tensor type
459
- device: Device to place tensors on
460
- dtype: Data type for tensors
461
-
462
- Returns:
463
- Dictionary with padded_speeches and speech_masks
464
- """
465
- if not speech_inputs:
466
- return {"padded_speeches": None, "speech_masks": None}
467
-
468
- # Calculate sequence lengths
469
- vae_tok_seqlens = [math.ceil(s.shape[0] / self.speech_tok_compress_ratio) for s in speech_inputs]
470
- # vae_tok_seqlens = [math.ceil(s.shape[0] / self.speech_tok_compress_ratio) if s.ndim == 1 else s.shape[0] for s in speech_inputs]
471
- max_speech_length = max(s.shape[0] for s in speech_inputs)
472
-
473
- # Pad speeches
474
- if speech_inputs[0].ndim == 1:
475
- padded_speeches = np.full((len(speech_inputs), max_speech_length), fill_value=0, dtype=np.float32)
476
- else:
477
- padded_speeches = np.full((len(speech_inputs), max_speech_length, speech_inputs[0].shape[-1]), fill_value=0, dtype=np.float32)
478
- speech_masks = np.zeros((len(speech_inputs), max(vae_tok_seqlens)), dtype=np.bool_)
479
-
480
- for i, (speech, vae_tok_length) in enumerate(zip(speech_inputs, vae_tok_seqlens)):
481
- padded_speeches[i, :len(speech)] = speech
482
- speech_masks[i, :vae_tok_length] = True
483
-
484
- result = {
485
- "padded_speeches": padded_speeches,
486
- "speech_masks": speech_masks,
487
- }
488
-
489
- # Convert to tensors if requested
490
- if return_tensors == "pt":
491
- result["padded_speeches"] = torch.tensor(padded_speeches, device=device, dtype=dtype or torch.float32)
492
- result["speech_masks"] = torch.tensor(speech_masks, device=device, dtype=torch.bool)
493
-
494
- return result
495
-
496
- def _convert_json_to_script(self, json_file: str) -> str:
497
- """
498
- Convert JSON format to script format.
499
- Expected JSON format:
500
- [
501
- {"speaker": "1", "text": "Hello everyone..."},
502
- {"speaker": "2", "text": "Great to be here..."}
503
- ]
504
- """
505
- import json
506
-
507
- with open(json_file, 'r', encoding='utf-8') as f:
508
- data = json.load(f)
509
-
510
- if not isinstance(data, list):
511
- raise ValueError("JSON file must contain a list of speaker entries")
512
-
513
- script_lines = []
514
- for item in data:
515
- if not isinstance(item, dict):
516
- logger.warning(f"Skipping non-dict entry: {item}")
517
- continue
518
-
519
- speaker = item.get('speaker')
520
- text = item.get('text')
521
-
522
- if speaker is None or text is None:
523
- logger.warning(f"Skipping entry missing speaker or text: {item}")
524
- continue
525
-
526
- # Ensure speaker ID is valid
527
- try:
528
- speaker_id = int(speaker)
529
- except (ValueError, TypeError):
530
- logger.warning(f"Invalid speaker ID: {speaker}, skipping entry")
531
- continue
532
-
533
- # Clean up text
534
- text = text.strip()
535
- if text:
536
- script_lines.append(f"Speaker {speaker_id}: {text}")
537
-
538
- if not script_lines:
539
- raise ValueError("No valid entries found in JSON file")
540
-
541
- return "\n".join(script_lines)
542
-
543
- def _convert_text_to_script(self, text_file: str) -> str:
544
- """
545
- Convert text file to script format.
546
- Handles multiple formats:
547
- 1. Already formatted as "Speaker X: text"
548
- 2. Plain text (assigns to Speaker 1)
549
-
550
- Handles edge cases like multiple colons in a line.
551
- """
552
- with open(text_file, 'r', encoding='utf-8') as f:
553
- lines = f.readlines()
554
-
555
- script_lines = []
556
- current_speaker = 1
557
-
558
- for line in lines:
559
- line = line.strip()
560
- if not line:
561
- continue
562
-
563
- # Try to parse as "Speaker X: text" format
564
- # Use regex to be more robust
565
- speaker_match = re.match(r'^Speaker\s+(\d+)\s*:\s*(.*)$', line, re.IGNORECASE)
566
-
567
- if speaker_match:
568
- speaker_id = int(speaker_match.group(1))
569
- text = speaker_match.group(2).strip()
570
- if text:
571
- script_lines.append(f"Speaker {speaker_id}: {text}")
572
- else:
573
- # Treat as plain text - assign to current speaker
574
- script_lines.append(f"Speaker {current_speaker}: {line}")
575
-
576
- if not script_lines:
577
- raise ValueError("No valid content found in text file")
578
-
579
- return "\n".join(script_lines)
580
-
581
- def _parse_script(self, script: str) -> List[Tuple[int, str]]:
582
- """Parse script into list of (speaker_id, text) tuples."""
583
- lines = script.strip().split("\n")
584
- parsed_lines = []
585
- speaker_ids = []
586
-
587
- # First pass: parse all lines and collect speaker IDs
588
- for line in lines:
589
- if not line.strip():
590
- continue
591
-
592
- # Use regex to handle edge cases like multiple colons
593
- match = re.match(r'^Speaker\s+(\d+)\s*:\s*(.*)$', line.strip(), re.IGNORECASE)
594
-
595
- if match:
596
- speaker_id = int(match.group(1))
597
- text = ' ' + match.group(2).strip()
598
- parsed_lines.append((speaker_id, text))
599
- speaker_ids.append(speaker_id)
600
- else:
601
- logger.warning(f"Could not parse line: '{line}'")
602
-
603
- if not parsed_lines:
604
- raise ValueError("No valid speaker lines found in script")
605
-
606
- # Check if we need to normalize speaker IDs (only if all are > 0)
607
- min_speaker_id = min(speaker_ids)
608
- if min_speaker_id > 0:
609
- # Normalize to start from 0
610
- normalized_lines = []
611
- for speaker_id, text in parsed_lines:
612
- normalized_lines.append((speaker_id - 1, text))
613
- return normalized_lines
614
- else:
615
- # Keep original IDs
616
- return parsed_lines
617
-
618
- def _merge_inputs(self, text_inputs: BatchEncoding, audio_inputs: Dict) -> BatchEncoding:
619
- """Merge text and audio inputs into a single BatchEncoding."""
620
- # Start with text inputs
621
- merged = BatchEncoding(text_inputs)
622
-
623
- # Add audio-specific fields
624
- if "audio" in audio_inputs:
625
- merged["speech_inputs"] = audio_inputs["audio"]
626
- if "streaming" in audio_inputs:
627
- merged["streaming"] = audio_inputs["streaming"]
628
-
629
- return merged
630
-
631
- def batch_decode(self, *args, **kwargs):
632
- """
633
- This method forwards all its arguments to VibeVoiceTextTokenizer's [`~PreTrainedTokenizer.batch_decode`].
634
- Please refer to the docstring of this method for more information.
635
- """
636
- return self.tokenizer.batch_decode(*args, **kwargs)
637
-
638
- def decode(self, *args, **kwargs):
639
- """
640
- This method forwards all its arguments to VibeVoiceTextTokenizer's [`~PreTrainedTokenizer.decode`].
641
- Please refer to the docstring of this method for more information.
642
- """
643
- return self.tokenizer.decode(*args, **kwargs)
644
-
645
- @property
646
- def model_input_names(self):
647
- """
648
- Return the list of inputs accepted by the model.
649
- """
650
- tokenizer_input_names = self.tokenizer.model_input_names
651
- audio_processor_input_names = self.audio_processor.model_input_names
652
- return list(dict.fromkeys(tokenizer_input_names + audio_processor_input_names + ["speech_inputs", "speech_input_mask"]))
653
-
654
- def save_audio(self,
655
- audio: Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]],
656
- output_path: str = "output.wav",
657
- sampling_rate: Optional[int] = None,
658
- normalize: bool = False,
659
- batch_prefix: str = "audio_",
660
- ) -> str:
661
- """
662
- Save audio data to a file.
663
- Args:
664
- audio (Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]]):
665
- The audio data to save. Can be a single tensor/array or a list of them.
666
- output_path (str, optional): Path to save the audio file. Defaults to "output.wav".
667
- sampling_rate (int, optional): Sampling rate for the audio. If None, uses the processor's default.
668
- normalize (bool, optional): Whether to normalize the audio before saving. Defaults to False.
669
- batch_prefix (str, optional): Prefix for batch audio files. Defaults to "audio_".
670
- Returns:
671
- str: The path to the saved audio file.
672
- """
673
- return self.audio_processor.save_audio(audio, output_path=output_path, sampling_rate=sampling_rate, normalize=normalize, batch_prefix=batch_prefix)
674
-
675
- __all__ = [
676
- "VibeVoiceProcessor",
677
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/processor/vibevoice_tokenizer_processor.py DELETED
@@ -1,483 +0,0 @@
1
- """
2
- Processor class for VibeVoice models.
3
- """
4
-
5
- import os
6
- import json
7
- import warnings
8
- from typing import List, Optional, Union, Dict, Any
9
-
10
- import numpy as np
11
- import torch
12
-
13
- from transformers.feature_extraction_utils import FeatureExtractionMixin
14
- from transformers.utils import logging
15
-
16
- logger = logging.get_logger(__name__)
17
-
18
-
19
- class AudioNormalizer:
20
- """
21
- Audio normalization class for VibeVoice tokenizer.
22
-
23
- This class provides audio normalization to ensure consistent input levels
24
- for the VibeVoice tokenizer while maintaining audio quality.
25
- """
26
-
27
- def __init__(self, target_dB_FS: float = -25, eps: float = 1e-6):
28
- """
29
- Initialize the audio normalizer.
30
-
31
- Args:
32
- target_dB_FS (float): Target dB FS level for the audio. Default: -25
33
- eps (float): Small value to avoid division by zero. Default: 1e-6
34
- """
35
- self.target_dB_FS = target_dB_FS
36
- self.eps = eps
37
-
38
- def tailor_dB_FS(self, audio: np.ndarray) -> tuple:
39
- """
40
- Adjust the audio to the target dB FS level.
41
-
42
- Args:
43
- audio (np.ndarray): Input audio signal
44
-
45
- Returns:
46
- tuple: (normalized_audio, rms, scalar)
47
- """
48
- rms = np.sqrt(np.mean(audio**2))
49
- scalar = 10 ** (self.target_dB_FS / 20) / (rms + self.eps)
50
- normalized_audio = audio * scalar
51
- return normalized_audio, rms, scalar
52
-
53
- def avoid_clipping(self, audio: np.ndarray, scalar: Optional[float] = None) -> tuple:
54
- """
55
- Avoid clipping by scaling down if necessary.
56
-
57
- Args:
58
- audio (np.ndarray): Input audio signal
59
- scalar (float, optional): Explicit scaling factor
60
-
61
- Returns:
62
- tuple: (normalized_audio, scalar)
63
- """
64
- if scalar is None:
65
- max_val = np.max(np.abs(audio))
66
- if max_val > 1.0:
67
- scalar = max_val + self.eps
68
- else:
69
- scalar = 1.0
70
-
71
- return audio / scalar, scalar
72
-
73
- def __call__(self, audio: np.ndarray) -> np.ndarray:
74
- """
75
- Normalize the audio by adjusting to target dB FS and avoiding clipping.
76
-
77
- Args:
78
- audio (np.ndarray): Input audio signal
79
-
80
- Returns:
81
- np.ndarray: Normalized audio signal
82
- """
83
- # First adjust to target dB FS
84
- audio, _, _ = self.tailor_dB_FS(audio)
85
- # Then avoid clipping
86
- audio, _ = self.avoid_clipping(audio)
87
- return audio
88
-
89
-
90
- # Change from ProcessorMixin to FeatureExtractionMixin which is designed for single components
91
- class VibeVoiceTokenizerProcessor(FeatureExtractionMixin):
92
- """
93
- Processor for VibeVoice acoustic tokenizer models.
94
-
95
- This processor handles audio preprocessing for VibeVoice models, including:
96
- - Audio format conversion (stereo to mono)
97
- - Optional audio normalization
98
- - Streaming support for infinite-length audio
99
-
100
- Args:
101
- sampling_rate (int, optional): Expected sampling rate. Defaults to 24000.
102
- normalize_audio (bool, optional): Whether to normalize audio. Defaults to True.
103
- target_dB_FS (float, optional): Target dB FS for normalization. Defaults to -25.
104
- eps (float, optional): Small value for numerical stability. Defaults to 1e-6.
105
- """
106
- model_input_names = ["input_features"]
107
-
108
- def __init__(
109
- self,
110
- sampling_rate: int = 24000,
111
- normalize_audio: bool = True,
112
- target_dB_FS: float = -25,
113
- eps: float = 1e-6,
114
- **kwargs,
115
- ):
116
- super().__init__(**kwargs)
117
-
118
- self.sampling_rate = sampling_rate
119
- self.normalize_audio = normalize_audio
120
-
121
- # Initialize audio normalizer if needed
122
- if self.normalize_audio:
123
- self.normalizer = AudioNormalizer(target_dB_FS=target_dB_FS, eps=eps)
124
- else:
125
- self.normalizer = None
126
-
127
- # Save config
128
- self.feature_extractor_dict = {
129
- "sampling_rate": sampling_rate,
130
- "normalize_audio": normalize_audio,
131
- "target_dB_FS": target_dB_FS,
132
- "eps": eps,
133
- }
134
-
135
- def _ensure_mono(self, audio: np.ndarray) -> np.ndarray:
136
- """
137
- Convert stereo audio to mono if needed.
138
-
139
- Args:
140
- audio (np.ndarray): Input audio array
141
-
142
- Returns:
143
- np.ndarray: Mono audio array
144
- """
145
- if len(audio.shape) == 1:
146
- return audio
147
- elif len(audio.shape) == 2:
148
- if audio.shape[0] == 2: # (2, time)
149
- return np.mean(audio, axis=0)
150
- elif audio.shape[1] == 2: # (time, 2)
151
- return np.mean(audio, axis=1)
152
- else:
153
- # If one dimension is 1, squeeze it
154
- if audio.shape[0] == 1:
155
- return audio.squeeze(0)
156
- elif audio.shape[1] == 1:
157
- return audio.squeeze(1)
158
- else:
159
- raise ValueError(f"Unexpected audio shape: {audio.shape}")
160
- else:
161
- raise ValueError(f"Audio should be 1D or 2D, got shape: {audio.shape}")
162
-
163
- def _process_single_audio(self, audio: Union[np.ndarray, List[float]]) -> np.ndarray:
164
- """
165
- Process a single audio array.
166
-
167
- Args:
168
- audio: Single audio input
169
-
170
- Returns:
171
- np.ndarray: Processed audio
172
- """
173
- # Convert to numpy array
174
- if not isinstance(audio, np.ndarray):
175
- audio = np.array(audio, dtype=np.float32)
176
- else:
177
- audio = audio.astype(np.float32)
178
-
179
- # Ensure mono
180
- audio = self._ensure_mono(audio)
181
-
182
- # Normalize if requested
183
- if self.normalize_audio and self.normalizer is not None:
184
- audio = self.normalizer(audio)
185
-
186
- return audio
187
-
188
- def __call__(
189
- self,
190
- audio: Union[str, np.ndarray, List[float], List[np.ndarray], List[List[float]], List[str]] = None,
191
- sampling_rate: Optional[int] = None,
192
- return_tensors: Optional[str] = None,
193
- **kwargs,
194
- ):
195
- """
196
- Process audio for VibeVoice models.
197
-
198
- Args:
199
- audio: Audio input(s) to process. Can be:
200
- - str: Path to audio file
201
- - np.ndarray: Audio array
202
- - List[float]: Audio as list of floats
203
- - List[np.ndarray]: Batch of audio arrays
204
- - List[str]: Batch of audio file paths
205
- sampling_rate (int, optional): Sampling rate of the input audio
206
- return_tensors (str, optional): Return format ('pt' for PyTorch, 'np' for NumPy)
207
-
208
- Returns:
209
- dict: Processed audio inputs with keys:
210
- - input_features: Audio tensor(s) ready for the model
211
- """
212
- if audio is None:
213
- raise ValueError("Audio input is required")
214
-
215
- # Validate sampling rate
216
- if sampling_rate is not None and sampling_rate != self.sampling_rate:
217
- logger.warning(
218
- f"Input sampling rate ({sampling_rate}) differs from expected "
219
- f"sampling rate ({self.sampling_rate}). Please resample your audio."
220
- )
221
-
222
- # Handle different input types
223
- if isinstance(audio, str):
224
- # Single audio file path
225
- audio = self._load_audio_from_path(audio)
226
- is_batched = False
227
- elif isinstance(audio, list):
228
- if len(audio) == 0:
229
- raise ValueError("Empty audio list provided")
230
-
231
- # Check if it's a list of file paths
232
- if all(isinstance(item, str) for item in audio):
233
- # Batch of audio file paths
234
- audio = [self._load_audio_from_path(path) for path in audio]
235
- is_batched = True
236
- else:
237
- # Check if it's batched audio arrays
238
- is_batched = isinstance(audio[0], (np.ndarray, list))
239
- else:
240
- # Single audio array or list
241
- is_batched = False
242
-
243
- # Process audio
244
- if is_batched:
245
- processed_audio = [self._process_single_audio(a) for a in audio]
246
- else:
247
- processed_audio = [self._process_single_audio(audio)]
248
-
249
- # Convert to tensors if requested
250
- if return_tensors == "pt":
251
- if len(processed_audio) == 1:
252
- # Create a proper batch dimension (B, T)
253
- input_features = torch.from_numpy(processed_audio[0]).unsqueeze(0).unsqueeze(1)
254
- else:
255
- # For batched input with different lengths, create a batch properly
256
- input_features = torch.stack([torch.from_numpy(a) for a in processed_audio]).unsqueeze(1)
257
- elif return_tensors == "np":
258
- if len(processed_audio) == 1:
259
- input_features = processed_audio[0][np.newaxis, np.newaxis, :]
260
- else:
261
- input_features = np.stack(processed_audio)[:, np.newaxis, :]
262
- else:
263
- input_features = processed_audio[0] if len(processed_audio) == 1 else processed_audio
264
-
265
- outputs = {
266
- "audio": input_features, # Use "audio" instead of "input_features"
267
- }
268
-
269
- return outputs
270
-
271
- def _load_audio_from_path(self, audio_path: str) -> np.ndarray:
272
- """
273
- Load audio from file path.
274
-
275
- Args:
276
- audio_path (str): Path to audio file
277
-
278
- Returns:
279
- np.ndarray: Loaded audio array
280
- """
281
- # Get file extension to determine loading method
282
- file_ext = os.path.splitext(audio_path)[1].lower()
283
-
284
- if file_ext in ['.wav', '.mp3', '.flac', '.m4a', '.ogg']:
285
- # Audio file - use librosa
286
- import librosa
287
- audio_array, sr = librosa.load(
288
- audio_path,
289
- sr=self.sampling_rate,
290
- mono=True
291
- )
292
- return audio_array
293
- elif file_ext == '.pt':
294
- # PyTorch tensor file
295
- audio_tensor = torch.load(audio_path, map_location='cpu').squeeze()
296
- if isinstance(audio_tensor, torch.Tensor):
297
- audio_array = audio_tensor.numpy()
298
- else:
299
- audio_array = np.array(audio_tensor)
300
- return audio_array.astype(np.float32)
301
- elif file_ext == '.npy':
302
- # NumPy file
303
- audio_array = np.load(audio_path)
304
- return audio_array.astype(np.float32)
305
- else:
306
- raise ValueError(
307
- f"Unsupported file format: {file_ext}. "
308
- f"Supported formats: .wav, .mp3, .flac, .m4a, .ogg, .pt, .npy, .npz"
309
- )
310
-
311
- def preprocess_audio(
312
- self,
313
- audio_path_or_array: Union[str, np.ndarray],
314
- normalize: Optional[bool] = None,
315
- ) -> np.ndarray:
316
- """
317
- Convenience method to preprocess audio from file path or array.
318
- This method is kept for backward compatibility but __call__ is recommended.
319
-
320
- Args:
321
- audio_path_or_array: Path to audio file or numpy array
322
- normalize: Whether to normalize (overrides default setting)
323
-
324
- Returns:
325
- np.ndarray: Preprocessed audio array
326
- """
327
- if isinstance(audio_path_or_array, str):
328
- audio_array = self._load_audio_from_path(audio_path_or_array)
329
- else:
330
- audio_array = np.array(audio_path_or_array, dtype=np.float32)
331
-
332
- # Override normalization setting if specified
333
- original_normalize = self.normalize_audio
334
- if normalize is not None:
335
- self.normalize_audio = normalize
336
-
337
- try:
338
- processed = self._process_single_audio(audio_array)
339
- finally:
340
- # Restore original setting
341
- self.normalize_audio = original_normalize
342
-
343
- return processed
344
-
345
- # Override to_dict method for configuration saving
346
- def to_dict(self) -> Dict[str, Any]:
347
- """
348
- Convert the object to a dict containing all attributes needed for serialization.
349
- """
350
- return self.feature_extractor_dict
351
-
352
- def save_audio(
353
- self,
354
- audio: Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]],
355
- output_path: str = "output.wav",
356
- sampling_rate: Optional[int] = None,
357
- normalize: bool = False,
358
- batch_prefix: str = "audio_",
359
- ):
360
- """
361
- Save audio data to WAV file(s).
362
-
363
- Args:
364
- audio: Audio data to save. Can be:
365
- - torch.Tensor: PyTorch tensor with shape (B, C, T) or (B, T) or (T)
366
- - np.ndarray: NumPy array with shape (B, C, T) or (B, T) or (T)
367
- - List of tensors or arrays
368
- output_path: Path where to save the audio. If saving multiple files,
369
- this is treated as a directory and individual files will be saved inside.
370
- sampling_rate: Sampling rate for the saved audio. Defaults to the processor's rate.
371
- normalize: Whether to normalize audio before saving.
372
- batch_prefix: Prefix for batch files when saving multiple audios.
373
-
374
- Returns:
375
- List[str]: Paths to the saved audio files.
376
- """
377
- if sampling_rate is None:
378
- sampling_rate = self.sampling_rate
379
-
380
- try:
381
- import soundfile as sf
382
- except ImportError:
383
- raise ImportError(
384
- "soundfile is required to save audio files. "
385
- "Install it with: pip install soundfile"
386
- )
387
-
388
- # Ensure audio is in the right format
389
- if isinstance(audio, torch.Tensor):
390
- # Convert PyTorch tensor to numpy
391
- audio_np = audio.float().detach().cpu().numpy()
392
- elif isinstance(audio, np.ndarray):
393
- audio_np = audio
394
- elif isinstance(audio, list):
395
- # Handle list of tensors or arrays
396
- if all(isinstance(a, torch.Tensor) for a in audio):
397
- audio_np = [a.float().detach().cpu().numpy() for a in audio]
398
- else:
399
- audio_np = audio
400
- else:
401
- raise ValueError(f"Unsupported audio type: {type(audio)}")
402
-
403
- saved_paths = []
404
-
405
- # Handle based on shape or type
406
- if isinstance(audio_np, list):
407
- # Multiple separate audios to save
408
- output_dir = output_path
409
-
410
- # Ensure output directory exists
411
- os.makedirs(output_dir, exist_ok=True)
412
-
413
- # Save each audio
414
- for i, audio_item in enumerate(audio_np):
415
- audio_item = self._prepare_audio_for_save(audio_item, normalize)
416
- file_path = os.path.join(output_dir, f"{batch_prefix}{i}.wav")
417
- sf.write(file_path, audio_item, sampling_rate)
418
- saved_paths.append(file_path)
419
-
420
- else:
421
- # Handle different dimensions
422
- if len(audio_np.shape) >= 3: # (B, C, T) or similar
423
- # Get batch size
424
- batch_size = audio_np.shape[0]
425
-
426
- if batch_size > 1:
427
- # Multiple audios in a batch
428
- output_dir = output_path
429
-
430
- # Ensure output directory exists
431
- os.makedirs(output_dir, exist_ok=True)
432
-
433
- # Save each audio in the batch
434
- for i in range(batch_size):
435
- # Extract single audio and remove channel dim if present
436
- single_audio = audio_np[i]
437
- if len(single_audio.shape) > 1:
438
- if single_audio.shape[0] == 1: # (1, T)
439
- single_audio = single_audio.squeeze(0)
440
-
441
- single_audio = self._prepare_audio_for_save(single_audio, normalize)
442
- file_path = os.path.join(output_dir, f"{batch_prefix}{i}.wav")
443
- sf.write(file_path, single_audio, sampling_rate)
444
- saved_paths.append(file_path)
445
- else:
446
- # Single audio with batch and channel dims
447
- audio_item = audio_np.squeeze() # Remove batch and channel dimensions
448
- audio_item = self._prepare_audio_for_save(audio_item, normalize)
449
- sf.write(output_path, audio_item, sampling_rate)
450
- saved_paths.append(output_path)
451
- else:
452
- # Single audio without batch dimension
453
- audio_item = self._prepare_audio_for_save(audio_np, normalize)
454
- sf.write(output_path, audio_item, sampling_rate)
455
- saved_paths.append(output_path)
456
-
457
- return saved_paths
458
-
459
- def _prepare_audio_for_save(self, audio: np.ndarray, normalize: bool) -> np.ndarray:
460
- """
461
- Prepare audio for saving by ensuring it's the right shape and optionally normalizing.
462
-
463
- Args:
464
- audio: Audio data as numpy array
465
- normalize: Whether to normalize audio
466
-
467
- Returns:
468
- np.ndarray: Processed audio ready for saving
469
- """
470
- # Ensure right dimensionality
471
- if len(audio.shape) > 1 and audio.shape[0] == 1: # (1, T)
472
- audio = audio.squeeze(0)
473
-
474
- # Normalize if requested
475
- if normalize:
476
- max_val = np.abs(audio).max()
477
- if max_val > 0:
478
- audio = audio / max_val
479
-
480
- return audio
481
-
482
-
483
- __all__ = ["VibeVoiceTokenizerProcessor", "AudioNormalizer"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/schedule/__init__.py DELETED
File without changes
backend_modal/schedule/dpm_solver.py DELETED
@@ -1,1065 +0,0 @@
1
- # Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- # DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver
16
-
17
- import math
18
- from typing import List, Optional, Tuple, Union
19
-
20
- import numpy as np
21
- import torch
22
-
23
- from diffusers.configuration_utils import ConfigMixin, register_to_config
24
- from diffusers.utils import deprecate
25
- from diffusers.utils.torch_utils import randn_tensor
26
- from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
-
28
- def betas_for_alpha_bar(
29
- num_diffusion_timesteps,
30
- max_beta=0.999,
31
- alpha_transform_type="cosine",
32
- ):
33
- """
34
- Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
35
- (1-beta) over time from t = [0,1].
36
-
37
- Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
38
- to that part of the diffusion process.
39
-
40
-
41
- Args:
42
- num_diffusion_timesteps (`int`): the number of betas to produce.
43
- max_beta (`float`): the maximum beta to use; use values lower than 1 to
44
- prevent singularities.
45
- alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
46
- Choose from `cosine` or `exp`
47
-
48
- Returns:
49
- betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
50
- """
51
- if alpha_transform_type == "cosine":
52
-
53
- def alpha_bar_fn(t):
54
- return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
55
- # return math.cos(t * math.pi / 2 * 0.95) ** 2
56
-
57
- elif alpha_transform_type == "exp":
58
-
59
- def alpha_bar_fn(t):
60
- return math.exp(t * -12.0)
61
-
62
- elif alpha_transform_type == "cauchy":
63
- # µ + γ tan (π (0.5 - x)) γ = 1, µ = 3
64
- # alpha^2 = 1-1/(exp(λ)+1)
65
- def alpha_bar_fn(t, gamma=1, mu=3):
66
- snr = mu + gamma * math.tan(math.pi * (0.5 - t) * 0.9)
67
- return 1 - 1 / (math.exp(snr) + 1.1)
68
-
69
- elif alpha_transform_type == "laplace":
70
- # µ − bsgn(0.5 − t) log(1 − 2|t − 0.5|) µ = 0, b = 1
71
- def alpha_bar_fn(t, mu=0, b=1):
72
- snr = mu - b * math.copysign(1, 0.5 - t) * math.log(1 - 2 * abs(t - 0.5) * 0.98)
73
- return 1 - 1 / (math.exp(snr) + 1.02)
74
-
75
- else:
76
- raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
77
-
78
- betas = []
79
- for i in range(num_diffusion_timesteps):
80
- t1 = i / num_diffusion_timesteps
81
- t2 = (i + 1) / num_diffusion_timesteps
82
- betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
83
- return torch.tensor(betas, dtype=torch.float32)
84
-
85
-
86
- # Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
87
- def rescale_zero_terminal_snr(betas):
88
- """
89
- Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
90
-
91
-
92
- Args:
93
- betas (`torch.Tensor`):
94
- the betas that the scheduler is being initialized with.
95
-
96
- Returns:
97
- `torch.Tensor`: rescaled betas with zero terminal SNR
98
- """
99
- # Convert betas to alphas_bar_sqrt
100
- alphas = 1.0 - betas
101
- alphas_cumprod = torch.cumprod(alphas, dim=0)
102
- alphas_bar_sqrt = alphas_cumprod.sqrt()
103
-
104
- # Store old values.
105
- alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
106
- alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
107
-
108
- # Shift so the last timestep is zero.
109
- alphas_bar_sqrt -= alphas_bar_sqrt_T
110
-
111
- # Scale so the first timestep is back to the old value.
112
- alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
113
-
114
- # Convert alphas_bar_sqrt to betas
115
- alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
116
- alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
117
- alphas = torch.cat([alphas_bar[0:1], alphas])
118
- betas = 1 - alphas
119
-
120
- return betas
121
-
122
- class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
123
- """
124
- `DPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
125
-
126
- This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
127
- methods the library implements for all schedulers such as loading and saving.
128
-
129
- Args:
130
- num_train_timesteps (`int`, defaults to 1000):
131
- The number of diffusion steps to train the model.
132
- beta_start (`float`, defaults to 0.0001):
133
- The starting `beta` value of inference.
134
- beta_end (`float`, defaults to 0.02):
135
- The final `beta` value.
136
- beta_schedule (`str`, defaults to `"linear"`):
137
- The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
138
- `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
139
- trained_betas (`np.ndarray`, *optional*):
140
- Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
141
- solver_order (`int`, defaults to 2):
142
- The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
143
- sampling, and `solver_order=3` for unconditional sampling.
144
- prediction_type (`str`, defaults to `epsilon`, *optional*):
145
- Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
146
- `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
147
- Video](https://imagen.research.google/video/paper.pdf) paper).
148
- thresholding (`bool`, defaults to `False`):
149
- Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
150
- as Stable Diffusion.
151
- dynamic_thresholding_ratio (`float`, defaults to 0.995):
152
- The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
153
- sample_max_value (`float`, defaults to 1.0):
154
- The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
155
- `algorithm_type="dpmsolver++"`.
156
- algorithm_type (`str`, defaults to `dpmsolver++`):
157
- Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The
158
- `dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
159
- paper, and the `dpmsolver++` type implements the algorithms in the
160
- [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
161
- `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
162
- solver_type (`str`, defaults to `midpoint`):
163
- Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
164
- sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
165
- lower_order_final (`bool`, defaults to `True`):
166
- Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
167
- stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
168
- euler_at_final (`bool`, defaults to `False`):
169
- Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
170
- richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
171
- steps, but sometimes may result in blurring.
172
- use_karras_sigmas (`bool`, *optional*, defaults to `False`):
173
- Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
174
- the sigmas are determined according to a sequence of noise levels {σi}.
175
- use_lu_lambdas (`bool`, *optional*, defaults to `False`):
176
- Whether to use the uniform-logSNR for step sizes proposed by Lu's DPM-Solver in the noise schedule during
177
- the sampling process. If `True`, the sigmas and time steps are determined according to a sequence of
178
- `lambda(t)`.
179
- final_sigmas_type (`str`, defaults to `"zero"`):
180
- The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
181
- sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
182
- lambda_min_clipped (`float`, defaults to `-inf`):
183
- Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
184
- cosine (`squaredcos_cap_v2`) noise schedule.
185
- variance_type (`str`, *optional*):
186
- Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
187
- contains the predicted Gaussian variance.
188
- timestep_spacing (`str`, defaults to `"linspace"`):
189
- The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
190
- Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
191
- steps_offset (`int`, defaults to 0):
192
- An offset added to the inference steps, as required by some model families.
193
- rescale_betas_zero_snr (`bool`, defaults to `False`):
194
- Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
195
- dark samples instead of limiting it to samples with medium brightness. Loosely related to
196
- [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
197
- """
198
-
199
- _compatibles = [e.name for e in KarrasDiffusionSchedulers]
200
- order = 1
201
-
202
- @register_to_config
203
- def __init__(
204
- self,
205
- num_train_timesteps: int = 1000,
206
- beta_start: float = 0.0001,
207
- beta_end: float = 0.02,
208
- beta_schedule: str = "linear",
209
- trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
210
- solver_order: int = 2,
211
- prediction_type: str = "epsilon",
212
- thresholding: bool = False,
213
- dynamic_thresholding_ratio: float = 0.995,
214
- sample_max_value: float = 1.0,
215
- algorithm_type: str = "dpmsolver++",
216
- solver_type: str = "midpoint",
217
- lower_order_final: bool = True,
218
- euler_at_final: bool = False,
219
- use_karras_sigmas: Optional[bool] = False,
220
- use_lu_lambdas: Optional[bool] = False,
221
- final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
222
- lambda_min_clipped: float = -float("inf"),
223
- variance_type: Optional[str] = None,
224
- timestep_spacing: str = "linspace",
225
- steps_offset: int = 0,
226
- rescale_betas_zero_snr: bool = False,
227
- ):
228
- if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
229
- deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
230
- deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
231
-
232
- if trained_betas is not None:
233
- self.betas = torch.tensor(trained_betas, dtype=torch.float32)
234
- elif beta_schedule == "linear":
235
- self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
236
- elif beta_schedule == "scaled_linear":
237
- # this schedule is very specific to the latent diffusion model.
238
- self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
239
- elif beta_schedule == "squaredcos_cap_v2" or beta_schedule == "cosine":
240
- # Glide cosine schedule
241
- self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="cosine")
242
- elif beta_schedule == "cauchy":
243
- self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="cauchy")
244
- elif beta_schedule == "laplace":
245
- self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="laplace")
246
- else:
247
- raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
248
-
249
- if rescale_betas_zero_snr:
250
- self.betas = rescale_zero_terminal_snr(self.betas)
251
-
252
- self.alphas = 1.0 - self.betas
253
- self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
254
-
255
- if rescale_betas_zero_snr:
256
- # Close to 0 without being 0 so first sigma is not inf
257
- # FP16 smallest positive subnormal works well here
258
- self.alphas_cumprod[-1] = 2**-24
259
-
260
- # Currently we only support VP-type noise schedule
261
- self.alpha_t = torch.sqrt(self.alphas_cumprod)
262
- self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
263
- self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
264
- self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
265
-
266
- # standard deviation of the initial noise distribution
267
- self.init_noise_sigma = 1.0
268
-
269
- # settings for DPM-Solver
270
- if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
271
- if algorithm_type == "deis":
272
- self.register_to_config(algorithm_type="dpmsolver++")
273
- else:
274
- raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
275
-
276
- if solver_type not in ["midpoint", "heun"]:
277
- if solver_type in ["logrho", "bh1", "bh2"]:
278
- self.register_to_config(solver_type="midpoint")
279
- else:
280
- raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
281
-
282
- if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
283
- raise ValueError(
284
- f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead."
285
- )
286
-
287
- # setable values
288
- self.num_inference_steps = None
289
- timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
290
- self.timesteps = torch.from_numpy(timesteps)
291
- self.model_outputs = [None] * solver_order
292
- self.lower_order_nums = 0
293
- self._step_index = None
294
- self._begin_index = None
295
- self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
296
-
297
- @property
298
- def step_index(self):
299
- """
300
- The index counter for current timestep. It will increase 1 after each scheduler step.
301
- """
302
- return self._step_index
303
-
304
- @property
305
- def begin_index(self):
306
- """
307
- The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
308
- """
309
- return self._begin_index
310
-
311
- def set_begin_index(self, begin_index: int = 0):
312
- """
313
- Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
314
-
315
- Args:
316
- begin_index (`int`):
317
- The begin index for the scheduler.
318
- """
319
- self._begin_index = begin_index
320
-
321
- def set_timesteps(
322
- self,
323
- num_inference_steps: int = None,
324
- device: Union[str, torch.device] = None,
325
- timesteps: Optional[List[int]] = None,
326
- ):
327
- """
328
- Sets the discrete timesteps used for the diffusion chain (to be run before inference).
329
-
330
- Args:
331
- num_inference_steps (`int`):
332
- The number of diffusion steps used when generating samples with a pre-trained model.
333
- device (`str` or `torch.device`, *optional*):
334
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
335
- timesteps (`List[int]`, *optional*):
336
- Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated
337
- based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas`
338
- must be `None`, and `timestep_spacing` attribute will be ignored.
339
- """
340
- if num_inference_steps is None and timesteps is None:
341
- raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps`.")
342
- if num_inference_steps is not None and timesteps is not None:
343
- raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
344
- if timesteps is not None and self.config.use_karras_sigmas:
345
- raise ValueError("Cannot use `timesteps` with `config.use_karras_sigmas = True`")
346
- if timesteps is not None and self.config.use_lu_lambdas:
347
- raise ValueError("Cannot use `timesteps` with `config.use_lu_lambdas = True`")
348
-
349
- if timesteps is not None:
350
- timesteps = np.array(timesteps).astype(np.int64)
351
- else:
352
- # Clipping the minimum of all lambda(t) for numerical stability.
353
- # This is critical for cosine (squaredcos_cap_v2) noise schedule.
354
- clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
355
- last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item()
356
-
357
- # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
358
- if self.config.timestep_spacing == "linspace":
359
- timesteps = (
360
- np.linspace(0, last_timestep - 1, num_inference_steps + 1)
361
- .round()[::-1][:-1]
362
- .copy()
363
- .astype(np.int64)
364
- )
365
- elif self.config.timestep_spacing == "leading":
366
- step_ratio = last_timestep // (num_inference_steps + 1)
367
- # creates integer timesteps by multiplying by ratio
368
- # casting to int to avoid issues when num_inference_step is power of 3
369
- timesteps = (
370
- (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
371
- )
372
- timesteps += self.config.steps_offset
373
- elif self.config.timestep_spacing == "trailing":
374
- step_ratio = self.config.num_train_timesteps / num_inference_steps
375
- # creates integer timesteps by multiplying by ratio
376
- # casting to int to avoid issues when num_inference_step is power of 3
377
- timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64)
378
- timesteps -= 1
379
- else:
380
- raise ValueError(
381
- f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
382
- )
383
-
384
- sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
385
- log_sigmas = np.log(sigmas)
386
-
387
- if self.config.use_karras_sigmas:
388
- sigmas = np.flip(sigmas).copy()
389
- sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
390
- timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
391
- elif self.config.use_lu_lambdas:
392
- lambdas = np.flip(log_sigmas.copy())
393
- lambdas = self._convert_to_lu(in_lambdas=lambdas, num_inference_steps=num_inference_steps)
394
- sigmas = np.exp(lambdas)
395
- timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
396
- else:
397
- sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
398
-
399
- if self.config.final_sigmas_type == "sigma_min":
400
- sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
401
- elif self.config.final_sigmas_type == "zero":
402
- sigma_last = 0
403
- else:
404
- raise ValueError(
405
- f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
406
- )
407
-
408
- sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
409
-
410
- self.sigmas = torch.from_numpy(sigmas)
411
- self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
412
-
413
- self.num_inference_steps = len(timesteps)
414
-
415
- self.model_outputs = [
416
- None,
417
- ] * self.config.solver_order
418
- self.lower_order_nums = 0
419
-
420
- # add an index counter for schedulers that allow duplicated timesteps
421
- self._step_index = None
422
- self._begin_index = None
423
- self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
424
-
425
- # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
426
- def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
427
- """
428
- "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
429
- prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
430
- s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
431
- pixels from saturation at each step. We find that dynamic thresholding results in significantly better
432
- photorealism as well as better image-text alignment, especially when using very large guidance weights."
433
-
434
- https://arxiv.org/abs/2205.11487
435
- """
436
- dtype = sample.dtype
437
- batch_size, channels, *remaining_dims = sample.shape
438
-
439
- if dtype not in (torch.float32, torch.float64):
440
- sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
441
-
442
- # Flatten sample for doing quantile calculation along each image
443
- sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
444
-
445
- abs_sample = sample.abs() # "a certain percentile absolute pixel value"
446
-
447
- s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
448
- s = torch.clamp(
449
- s, min=1, max=self.config.sample_max_value
450
- ) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
451
- s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
452
- sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
453
-
454
- sample = sample.reshape(batch_size, channels, *remaining_dims)
455
- sample = sample.to(dtype)
456
-
457
- return sample
458
-
459
- # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
460
- def _sigma_to_t(self, sigma, log_sigmas):
461
- # get log sigma
462
- log_sigma = np.log(np.maximum(sigma, 1e-10))
463
-
464
- # get distribution
465
- dists = log_sigma - log_sigmas[:, np.newaxis]
466
-
467
- # get sigmas range
468
- low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
469
- high_idx = low_idx + 1
470
-
471
- low = log_sigmas[low_idx]
472
- high = log_sigmas[high_idx]
473
-
474
- # interpolate sigmas
475
- w = (low - log_sigma) / (low - high)
476
- w = np.clip(w, 0, 1)
477
-
478
- # transform interpolation to time range
479
- t = (1 - w) * low_idx + w * high_idx
480
- t = t.reshape(sigma.shape)
481
- return t
482
-
483
- def _sigma_to_alpha_sigma_t(self, sigma):
484
- alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
485
- sigma_t = sigma * alpha_t
486
-
487
- return alpha_t, sigma_t
488
-
489
- # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
490
- def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
491
- """Constructs the noise schedule of Karras et al. (2022)."""
492
-
493
- # Hack to make sure that other schedulers which copy this function don't break
494
- # TODO: Add this logic to the other schedulers
495
- if hasattr(self.config, "sigma_min"):
496
- sigma_min = self.config.sigma_min
497
- else:
498
- sigma_min = None
499
-
500
- if hasattr(self.config, "sigma_max"):
501
- sigma_max = self.config.sigma_max
502
- else:
503
- sigma_max = None
504
-
505
- sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
506
- sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
507
-
508
- rho = 7.0 # 7.0 is the value used in the paper
509
- ramp = np.linspace(0, 1, num_inference_steps)
510
- min_inv_rho = sigma_min ** (1 / rho)
511
- max_inv_rho = sigma_max ** (1 / rho)
512
- sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
513
- return sigmas
514
-
515
- def _convert_to_lu(self, in_lambdas: torch.Tensor, num_inference_steps) -> torch.Tensor:
516
- """Constructs the noise schedule of Lu et al. (2022)."""
517
-
518
- lambda_min: float = in_lambdas[-1].item()
519
- lambda_max: float = in_lambdas[0].item()
520
-
521
- rho = 1.0 # 1.0 is the value used in the paper
522
- ramp = np.linspace(0, 1, num_inference_steps)
523
- min_inv_rho = lambda_min ** (1 / rho)
524
- max_inv_rho = lambda_max ** (1 / rho)
525
- lambdas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
526
- return lambdas
527
-
528
- def convert_model_output(
529
- self,
530
- model_output: torch.Tensor,
531
- *args,
532
- sample: torch.Tensor = None,
533
- **kwargs,
534
- ) -> torch.Tensor:
535
- """
536
- Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
537
- designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
538
- integral of the data prediction model.
539
-
540
- <Tip>
541
-
542
- The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
543
- prediction and data prediction models.
544
-
545
- </Tip>
546
-
547
- Args:
548
- model_output (`torch.Tensor`):
549
- The direct output from the learned diffusion model.
550
- sample (`torch.Tensor`):
551
- A current instance of a sample created by the diffusion process.
552
-
553
- Returns:
554
- `torch.Tensor`:
555
- The converted model output.
556
- """
557
- timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
558
- if sample is None:
559
- if len(args) > 1:
560
- sample = args[1]
561
- else:
562
- raise ValueError("missing `sample` as a required keyward argument")
563
- if timestep is not None:
564
- deprecate(
565
- "timesteps",
566
- "1.0.0",
567
- "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
568
- )
569
-
570
- # DPM-Solver++ needs to solve an integral of the data prediction model.
571
- if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
572
- if self.config.prediction_type == "epsilon":
573
- # DPM-Solver and DPM-Solver++ only need the "mean" output.
574
- if self.config.variance_type in ["learned", "learned_range"]:
575
- model_output = model_output[:, :3]
576
- sigma = self.sigmas[self.step_index]
577
- alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
578
- x0_pred = (sample - sigma_t * model_output) / alpha_t
579
- elif self.config.prediction_type == "sample":
580
- x0_pred = model_output
581
- elif self.config.prediction_type == "v_prediction":
582
- sigma = self.sigmas[self.step_index]
583
- alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
584
- x0_pred = alpha_t * sample - sigma_t * model_output
585
- else:
586
- raise ValueError(
587
- f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
588
- " `v_prediction` for the DPMSolverMultistepScheduler."
589
- )
590
-
591
- if self.config.thresholding:
592
- x0_pred = self._threshold_sample(x0_pred)
593
-
594
- return x0_pred
595
-
596
- # DPM-Solver needs to solve an integral of the noise prediction model.
597
- elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
598
- if self.config.prediction_type == "epsilon":
599
- # DPM-Solver and DPM-Solver++ only need the "mean" output.
600
- if self.config.variance_type in ["learned", "learned_range"]:
601
- epsilon = model_output[:, :3]
602
- else:
603
- epsilon = model_output
604
- elif self.config.prediction_type == "sample":
605
- sigma = self.sigmas[self.step_index]
606
- alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
607
- epsilon = (sample - alpha_t * model_output) / sigma_t
608
- elif self.config.prediction_type == "v_prediction":
609
- sigma = self.sigmas[self.step_index]
610
- alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
611
- epsilon = alpha_t * model_output + sigma_t * sample
612
- else:
613
- raise ValueError(
614
- f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
615
- " `v_prediction` for the DPMSolverMultistepScheduler."
616
- )
617
-
618
- if self.config.thresholding:
619
- sigma = self.sigmas[self.step_index]
620
- alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
621
- x0_pred = (sample - sigma_t * epsilon) / alpha_t
622
- x0_pred = self._threshold_sample(x0_pred)
623
- epsilon = (sample - alpha_t * x0_pred) / sigma_t
624
-
625
- return epsilon
626
-
627
- def dpm_solver_first_order_update(
628
- self,
629
- model_output: torch.Tensor,
630
- *args,
631
- sample: torch.Tensor = None,
632
- noise: Optional[torch.Tensor] = None,
633
- **kwargs,
634
- ) -> torch.Tensor:
635
- """
636
- One step for the first-order DPMSolver (equivalent to DDIM).
637
-
638
- Args:
639
- model_output (`torch.Tensor`):
640
- The direct output from the learned diffusion model.
641
- sample (`torch.Tensor`):
642
- A current instance of a sample created by the diffusion process.
643
-
644
- Returns:
645
- `torch.Tensor`:
646
- The sample tensor at the previous timestep.
647
- """
648
- timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
649
- prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
650
- if sample is None:
651
- if len(args) > 2:
652
- sample = args[2]
653
- else:
654
- raise ValueError(" missing `sample` as a required keyward argument")
655
- if timestep is not None:
656
- deprecate(
657
- "timesteps",
658
- "1.0.0",
659
- "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
660
- )
661
-
662
- if prev_timestep is not None:
663
- deprecate(
664
- "prev_timestep",
665
- "1.0.0",
666
- "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
667
- )
668
-
669
- sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
670
- alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
671
- alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
672
- lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
673
- lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
674
-
675
- h = lambda_t - lambda_s
676
- if self.config.algorithm_type == "dpmsolver++":
677
- x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
678
- elif self.config.algorithm_type == "dpmsolver":
679
- x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
680
- elif self.config.algorithm_type == "sde-dpmsolver++":
681
- assert noise is not None
682
- x_t = (
683
- (sigma_t / sigma_s * torch.exp(-h)) * sample
684
- + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
685
- + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
686
- )
687
- elif self.config.algorithm_type == "sde-dpmsolver":
688
- assert noise is not None
689
- x_t = (
690
- (alpha_t / alpha_s) * sample
691
- - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output
692
- + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
693
- )
694
- return x_t
695
-
696
- def multistep_dpm_solver_second_order_update(
697
- self,
698
- model_output_list: List[torch.Tensor],
699
- *args,
700
- sample: torch.Tensor = None,
701
- noise: Optional[torch.Tensor] = None,
702
- **kwargs,
703
- ) -> torch.Tensor:
704
- """
705
- One step for the second-order multistep DPMSolver.
706
-
707
- Args:
708
- model_output_list (`List[torch.Tensor]`):
709
- The direct outputs from learned diffusion model at current and latter timesteps.
710
- sample (`torch.Tensor`):
711
- A current instance of a sample created by the diffusion process.
712
-
713
- Returns:
714
- `torch.Tensor`:
715
- The sample tensor at the previous timestep.
716
- """
717
- timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
718
- prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
719
- if sample is None:
720
- if len(args) > 2:
721
- sample = args[2]
722
- else:
723
- raise ValueError(" missing `sample` as a required keyward argument")
724
- if timestep_list is not None:
725
- deprecate(
726
- "timestep_list",
727
- "1.0.0",
728
- "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
729
- )
730
-
731
- if prev_timestep is not None:
732
- deprecate(
733
- "prev_timestep",
734
- "1.0.0",
735
- "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
736
- )
737
-
738
- sigma_t, sigma_s0, sigma_s1 = (
739
- self.sigmas[self.step_index + 1],
740
- self.sigmas[self.step_index],
741
- self.sigmas[self.step_index - 1],
742
- )
743
-
744
- alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
745
- alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
746
- alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
747
-
748
- lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
749
- lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
750
- lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
751
-
752
- m0, m1 = model_output_list[-1], model_output_list[-2]
753
-
754
- h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
755
- r0 = h_0 / h
756
- D0, D1 = m0, (1.0 / r0) * (m0 - m1)
757
- if self.config.algorithm_type == "dpmsolver++":
758
- # See https://arxiv.org/abs/2211.01095 for detailed derivations
759
- if self.config.solver_type == "midpoint":
760
- x_t = (
761
- (sigma_t / sigma_s0) * sample
762
- - (alpha_t * (torch.exp(-h) - 1.0)) * D0
763
- - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
764
- )
765
- elif self.config.solver_type == "heun":
766
- x_t = (
767
- (sigma_t / sigma_s0) * sample
768
- - (alpha_t * (torch.exp(-h) - 1.0)) * D0
769
- + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
770
- )
771
- elif self.config.algorithm_type == "dpmsolver":
772
- # See https://arxiv.org/abs/2206.00927 for detailed derivations
773
- if self.config.solver_type == "midpoint":
774
- x_t = (
775
- (alpha_t / alpha_s0) * sample
776
- - (sigma_t * (torch.exp(h) - 1.0)) * D0
777
- - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
778
- )
779
- elif self.config.solver_type == "heun":
780
- x_t = (
781
- (alpha_t / alpha_s0) * sample
782
- - (sigma_t * (torch.exp(h) - 1.0)) * D0
783
- - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
784
- )
785
- elif self.config.algorithm_type == "sde-dpmsolver++":
786
- assert noise is not None
787
- if self.config.solver_type == "midpoint":
788
- x_t = (
789
- (sigma_t / sigma_s0 * torch.exp(-h)) * sample
790
- + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
791
- + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
792
- + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
793
- )
794
- elif self.config.solver_type == "heun":
795
- x_t = (
796
- (sigma_t / sigma_s0 * torch.exp(-h)) * sample
797
- + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
798
- + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
799
- + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
800
- )
801
- elif self.config.algorithm_type == "sde-dpmsolver":
802
- assert noise is not None
803
- if self.config.solver_type == "midpoint":
804
- x_t = (
805
- (alpha_t / alpha_s0) * sample
806
- - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
807
- - (sigma_t * (torch.exp(h) - 1.0)) * D1
808
- + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
809
- )
810
- elif self.config.solver_type == "heun":
811
- x_t = (
812
- (alpha_t / alpha_s0) * sample
813
- - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
814
- - 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
815
- + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
816
- )
817
- return x_t
818
-
819
- def multistep_dpm_solver_third_order_update(
820
- self,
821
- model_output_list: List[torch.Tensor],
822
- *args,
823
- sample: torch.Tensor = None,
824
- **kwargs,
825
- ) -> torch.Tensor:
826
- """
827
- One step for the third-order multistep DPMSolver.
828
-
829
- Args:
830
- model_output_list (`List[torch.Tensor]`):
831
- The direct outputs from learned diffusion model at current and latter timesteps.
832
- sample (`torch.Tensor`):
833
- A current instance of a sample created by diffusion process.
834
-
835
- Returns:
836
- `torch.Tensor`:
837
- The sample tensor at the previous timestep.
838
- """
839
-
840
- timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
841
- prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
842
- if sample is None:
843
- if len(args) > 2:
844
- sample = args[2]
845
- else:
846
- raise ValueError(" missing`sample` as a required keyward argument")
847
- if timestep_list is not None:
848
- deprecate(
849
- "timestep_list",
850
- "1.0.0",
851
- "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
852
- )
853
-
854
- if prev_timestep is not None:
855
- deprecate(
856
- "prev_timestep",
857
- "1.0.0",
858
- "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
859
- )
860
-
861
- sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
862
- self.sigmas[self.step_index + 1],
863
- self.sigmas[self.step_index],
864
- self.sigmas[self.step_index - 1],
865
- self.sigmas[self.step_index - 2],
866
- )
867
-
868
- alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
869
- alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
870
- alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
871
- alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)
872
-
873
- lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
874
- lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
875
- lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
876
- lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)
877
-
878
- m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
879
-
880
- h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
881
- r0, r1 = h_0 / h, h_1 / h
882
- D0 = m0
883
- D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
884
- D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
885
- D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
886
- if self.config.algorithm_type == "dpmsolver++":
887
- # See https://arxiv.org/abs/2206.00927 for detailed derivations
888
- x_t = (
889
- (sigma_t / sigma_s0) * sample
890
- - (alpha_t * (torch.exp(-h) - 1.0)) * D0
891
- + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
892
- - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
893
- )
894
- elif self.config.algorithm_type == "dpmsolver":
895
- # See https://arxiv.org/abs/2206.00927 for detailed derivations
896
- x_t = (
897
- (alpha_t / alpha_s0) * sample
898
- - (sigma_t * (torch.exp(h) - 1.0)) * D0
899
- - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
900
- - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
901
- )
902
- return x_t
903
-
904
- def index_for_timestep(self, timestep, schedule_timesteps=None):
905
- if schedule_timesteps is None:
906
- schedule_timesteps = self.timesteps
907
-
908
- index_candidates = (schedule_timesteps == timestep).nonzero()
909
-
910
- if len(index_candidates) == 0:
911
- step_index = len(self.timesteps) - 1
912
- # The sigma index that is taken for the **very** first `step`
913
- # is always the second index (or the last index if there is only 1)
914
- # This way we can ensure we don't accidentally skip a sigma in
915
- # case we start in the middle of the denoising schedule (e.g. for image-to-image)
916
- elif len(index_candidates) > 1:
917
- step_index = index_candidates[1].item()
918
- else:
919
- step_index = index_candidates[0].item()
920
-
921
- return step_index
922
-
923
- def _init_step_index(self, timestep):
924
- """
925
- Initialize the step_index counter for the scheduler.
926
- """
927
-
928
- if self.begin_index is None:
929
- if isinstance(timestep, torch.Tensor):
930
- timestep = timestep.to(self.timesteps.device)
931
- self._step_index = self.index_for_timestep(timestep)
932
- else:
933
- self._step_index = self._begin_index
934
-
935
- def step(
936
- self,
937
- model_output: torch.Tensor,
938
- timestep: int,
939
- sample: torch.Tensor,
940
- generator=None,
941
- variance_noise: Optional[torch.Tensor] = None,
942
- return_dict: bool = True,
943
- ) -> Union[SchedulerOutput, Tuple]:
944
- """
945
- Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
946
- the multistep DPMSolver.
947
-
948
- Args:
949
- model_output (`torch.Tensor`):
950
- The direct output from learned diffusion model.
951
- timestep (`int`):
952
- The current discrete timestep in the diffusion chain.
953
- sample (`torch.Tensor`):
954
- A current instance of a sample created by the diffusion process.
955
- generator (`torch.Generator`, *optional*):
956
- A random number generator.
957
- variance_noise (`torch.Tensor`):
958
- Alternative to generating noise with `generator` by directly providing the noise for the variance
959
- itself. Useful for methods such as [`LEdits++`].
960
- return_dict (`bool`):
961
- Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
962
-
963
- Returns:
964
- [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
965
- If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
966
- tuple is returned where the first element is the sample tensor.
967
-
968
- """
969
- if self.num_inference_steps is None:
970
- raise ValueError(
971
- "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
972
- )
973
-
974
- if self.step_index is None:
975
- self._init_step_index(timestep)
976
-
977
- # Improve numerical stability for small number of steps
978
- lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
979
- self.config.euler_at_final
980
- or (self.config.lower_order_final and len(self.timesteps) < 15)
981
- or self.config.final_sigmas_type == "zero"
982
- )
983
- lower_order_second = (
984
- (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
985
- )
986
-
987
- model_output = self.convert_model_output(model_output, sample=sample)
988
- for i in range(self.config.solver_order - 1):
989
- self.model_outputs[i] = self.model_outputs[i + 1]
990
- self.model_outputs[-1] = model_output
991
-
992
- # Upcast to avoid precision issues when computing prev_sample
993
- sample = sample.to(torch.float32)
994
- if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
995
- noise = randn_tensor(
996
- model_output.shape, generator=generator, device=model_output.device, dtype=torch.float32
997
- )
998
- elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
999
- noise = variance_noise.to(device=model_output.device, dtype=torch.float32)
1000
- else:
1001
- noise = None
1002
-
1003
- if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
1004
- prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
1005
- elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
1006
- prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
1007
- else:
1008
- prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample)
1009
-
1010
- if self.lower_order_nums < self.config.solver_order:
1011
- self.lower_order_nums += 1
1012
-
1013
- # Cast sample back to expected dtype
1014
- prev_sample = prev_sample.to(model_output.dtype)
1015
-
1016
- # upon completion increase step index by one
1017
- self._step_index += 1
1018
-
1019
- if not return_dict:
1020
- return (prev_sample,)
1021
-
1022
- return SchedulerOutput(prev_sample=prev_sample)
1023
-
1024
- def add_noise(
1025
- self,
1026
- original_samples: torch.Tensor,
1027
- noise: torch.Tensor,
1028
- timesteps: torch.IntTensor,
1029
- ) -> torch.Tensor:
1030
- # Make sure sigmas and timesteps have the same device and dtype as original_samples
1031
- # alpha_t = self.alpha_t.to(device=original_samples.device, dtype=original_samples.dtype)
1032
- # sigma_t = self.sigma_t.to(device=original_samples.device, dtype=original_samples.dtype)
1033
- alpha_t = self.alpha_t.to(original_samples.device).to(original_samples.dtype)
1034
- sigma_t = self.sigma_t.to(original_samples.device).to(original_samples.dtype)
1035
- timesteps = timesteps.to(original_samples.device)
1036
- alpha_t = alpha_t[timesteps].flatten()
1037
- while len(alpha_t.shape) < len(original_samples.shape):
1038
- alpha_t = alpha_t.unsqueeze(-1)
1039
-
1040
- sigma_t = sigma_t[timesteps].flatten()
1041
- while len(sigma_t.shape) < len(original_samples.shape):
1042
- sigma_t = sigma_t.unsqueeze(-1)
1043
- noisy_samples = alpha_t * original_samples + sigma_t * noise
1044
- return noisy_samples
1045
-
1046
- def get_velocity(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
1047
- # alpha_t = self.alpha_t.to(device=original_samples.device, dtype=original_samples.dtype)
1048
- # sigma_t = self.sigma_t.to(device=original_samples.device, dtype=original_samples.dtype)
1049
- alpha_t = self.alpha_t.to(original_samples.device).to(original_samples.dtype)
1050
- sigma_t = self.sigma_t.to(original_samples.device).to(original_samples.dtype)
1051
-
1052
- timesteps = timesteps.to(original_samples.device)
1053
- alpha_t = alpha_t[timesteps].flatten()
1054
- while len(alpha_t.shape) < len(original_samples.shape):
1055
- alpha_t = alpha_t.unsqueeze(-1)
1056
-
1057
- sigma_t = sigma_t[timesteps].flatten()
1058
- while len(sigma_t.shape) < len(original_samples.shape):
1059
- sigma_t = sigma_t.unsqueeze(-1)
1060
-
1061
- velocity = alpha_t * noise - sigma_t * original_samples
1062
- return velocity
1063
-
1064
- def __len__(self):
1065
- return self.config.num_train_timesteps
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/schedule/timestep_sampler.py DELETED
@@ -1,19 +0,0 @@
1
- import math
2
- import torch
3
-
4
-
5
- class UniformSampler:
6
- def __init__(self, timesteps = 1000):
7
- self.timesteps = timesteps
8
- def sample(self, batch_size, device):
9
- return torch.randint(0, self.timesteps, (batch_size,), device=device)
10
-
11
- class LogitNormalSampler:
12
- def __init__(self, timesteps = 1000, m = 0, s = 1):
13
- self.timesteps = timesteps
14
- timesteps = torch.linspace(0, 1, timesteps)
15
- logit = torch.log(timesteps / (1 - timesteps))
16
- self.prob = torch.exp(-0.5 * (logit - m) ** 2 / s ** 2) / (s * math.sqrt(2 * math.pi))
17
- def sample(self, batch_size, device):
18
- return torch.multinomial(self.prob, batch_size, replacement=True).to(device)
19
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/scripts/__init__.py DELETED
File without changes
backend_modal/scripts/convert_nnscaler_checkpoint_to_transformers.py DELETED
@@ -1,166 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding=utf-8
3
-
4
- import argparse
5
- import json
6
- import os
7
- from pathlib import Path
8
- import re
9
- import torch
10
- from typing import Dict, List, Tuple
11
-
12
- from modular.configuration_vibevoice import (
13
- VibeVoiceConfig
14
- )
15
- from modular.modeling_vibevoice import VibeVoiceForConditionalGeneration
16
- from transformers.utils import logging
17
-
18
- logger = logging.get_logger(__name__)
19
-
20
- def convert_vibevoice_nnscaler_checkpoint_to_hf(
21
- checkpoint_path: str,
22
- pytorch_dump_folder_path: str,
23
- config_path: str = None,
24
- ):
25
- """
26
- Convert a nnscaler VibeVoice checkpoint to HuggingFace format.
27
- Supports both regular checkpoints and tensor parallel checkpoints.
28
- """
29
-
30
- # Load regular checkpoint
31
- logger.info(f"Loading regular checkpoint from {checkpoint_path}")
32
- checkpoint = torch.load(checkpoint_path, map_location="cpu") # ['model', 'optimizer', 'lr_scheduler', 'train_status', 'train_args', 'rng_states', 'nnscaler', 'dataloader']
33
-
34
- # config = checkpoint['train_args']
35
- init_config_name = checkpoint['train_args']['vars']['model_args']['config_path']['relative_path']
36
- pretrained_name = checkpoint['train_args']['vars']['data_args']['tokenizer_path']
37
-
38
- init_config_path = Path(__file__).parent.parent / 'configs' / init_config_name.split('/')[-1]
39
- if init_config_path.exists():
40
- logger.info(f"Loading initial config from {init_config_path}")
41
- with open(init_config_path, 'r') as f:
42
- init_config = json.load(f)
43
- else:
44
- raise FileNotFoundError(f"Initial config file {init_config_path} not found. Please provide a valid path.")
45
-
46
- tie_word_embeddings = init_config['decoder_config'].get('tie_word_embeddings', True)
47
- logger.info(f"Tie word embeddings: {tie_word_embeddings}")
48
-
49
- init_config['decoder_config']['use_cache'] = True
50
- config = VibeVoiceConfig(**init_config, tie_word_embeddings=tie_word_embeddings)
51
-
52
- # # Extract the model state dict
53
- model_state_dict = {k.replace('model.model.', 'model.'): v for k, v in checkpoint["model"].items() if k.startswith('model.model.')}
54
- if not tie_word_embeddings and 'model.lm_head.weight' in checkpoint["model"].keys():
55
- # If not tying weights, we need to add the lm_head weight separately
56
- model_state_dict['lm_head.weight'] = checkpoint["model"]['model.lm_head.weight']
57
-
58
- # Override with provided config if available
59
- if config_path:
60
- logger.info(f"Loading config from {config_path}")
61
- with open(config_path, 'r') as f:
62
- config_dict = json.load(f)
63
- config = VibeVoiceConfig.from_dict(config_dict)
64
-
65
- # Set the default dtype to bfloat16 before creating the model
66
- original_dtype = torch.get_default_dtype()
67
- torch.set_default_dtype(torch.bfloat16)
68
-
69
- # Create the HuggingFace model
70
- logger.info("Creating HuggingFace VibeVoiceForConditionalGeneration model")
71
- model = VibeVoiceForConditionalGeneration(config)
72
-
73
- # Restore original dtype
74
- torch.set_default_dtype(original_dtype)
75
-
76
- # Load the state dict
77
- logger.info("Loading weights into model")
78
- missing_keys, unexpected_keys = model.load_state_dict(model_state_dict, strict=False)
79
-
80
- if missing_keys:
81
- logger.warning(f"Missing keys: {missing_keys}")
82
- if unexpected_keys:
83
- logger.warning(f"Unexpected keys: {unexpected_keys}")
84
-
85
- # Create output directory
86
- os.makedirs(pytorch_dump_folder_path, exist_ok=True)
87
-
88
- # Save the model and config
89
- logger.info(f"Saving model to {pytorch_dump_folder_path}")
90
-
91
- # Save config
92
- config.save_pretrained(pytorch_dump_folder_path)
93
-
94
- # Save VibeVoiceProcessor configuration
95
- logger.info("Saving VibeVoiceProcessor configuration")
96
- processor_config = {
97
- "processor_class": "VibeVoiceProcessor",
98
- "speech_tok_compress_ratio": 3200,
99
- "db_normalize": True,
100
- # Audio processor configuration
101
- "audio_processor": {
102
- "feature_extractor_type": "VibeVoiceTokenizerProcessor",
103
- "sampling_rate": 24000,
104
- "normalize_audio": True,
105
- "target_dB_FS": -25,
106
- "eps": 1e-6,
107
- },
108
- "language_model_pretrained_name": pretrained_name,
109
- }
110
-
111
- processor_config_path = os.path.join(pytorch_dump_folder_path, "preprocessor_config.json")
112
- with open(processor_config_path, 'w') as f:
113
- json.dump(processor_config, f, indent=2)
114
- logger.info(f"Saved processor config to {processor_config_path}")
115
-
116
- # Save model with sharding
117
- # save_pretrained handles tied weights automatically
118
- logger.info("Saving model weights with sharding...")
119
- model.save_pretrained(
120
- pytorch_dump_folder_path,
121
- max_shard_size="2GB", # Set maximum size for each shard
122
- safe_serialization=True # Ensure saving in .safetensors format
123
- )
124
- logger.info(f"Model weights saved to {pytorch_dump_folder_path}")
125
-
126
- logger.info("Conversion complete!")
127
-
128
- # Verify the saved model can be loaded
129
- logger.info("Verifying saved model...")
130
- loaded_model = VibeVoiceForConditionalGeneration.from_pretrained(pytorch_dump_folder_path)
131
- logger.info("Model successfully loaded from saved checkpoint!")
132
-
133
- def main():
134
- parser = argparse.ArgumentParser()
135
- parser.add_argument(
136
- "--nnscaler_checkpoint_path",
137
- type=str,
138
- required=True,
139
- help="Path to the fairseq checkpoint (.pt file). For tensor parallel checkpoints, "
140
- "provide any one of the part files (e.g., checkpoint_1_5000-model_part-0.pt), "
141
- "and the script will automatically detect and merge all parts.",
142
- )
143
- parser.add_argument(
144
- "--pytorch_dump_folder_path",
145
- type=str,
146
- required=True,
147
- help="Path to the output PyTorch model directory",
148
- )
149
- parser.add_argument(
150
- "--config_path",
151
- type=str,
152
- default=None,
153
- help="Optional path to a config JSON file to override extracted config",
154
- )
155
-
156
- args = parser.parse_args()
157
-
158
- convert_vibevoice_nnscaler_checkpoint_to_hf(
159
- args.nnscaler_checkpoint_path,
160
- args.pytorch_dump_folder_path,
161
- args.config_path,
162
- )
163
-
164
-
165
- if __name__ == "__main__":
166
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/setup_voices.sh DELETED
@@ -1,21 +0,0 @@
1
- #!/bin/bash
2
- # Script to copy voice files to VibeVoice demo directory
3
-
4
- echo "Setting up voice files..."
5
-
6
- # Create the target directory if it doesn't exist
7
- mkdir -p VibeVoice/demo/voices
8
-
9
- # Copy voice files from root voices directory if it exists
10
- if [ -d "voices" ]; then
11
- echo "Copying voice files from voices/ to VibeVoice/demo/voices/"
12
- cp voices/*.mp3 VibeVoice/demo/voices/ 2>/dev/null
13
- cp voices/*.wav VibeVoice/demo/voices/ 2>/dev/null
14
- echo "Voice files copied successfully!"
15
- else
16
- echo "No voices directory found in root"
17
- fi
18
-
19
- # List the voice files
20
- echo "Available voice files:"
21
- ls -la VibeVoice/demo/voices/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/text_examples/1p_ai_tedtalk.txt DELETED
@@ -1 +0,0 @@
1
- Speaker 1: Good evening everyone. I'm Dr. Rachel Thompson, and I've spent the last fifteen years working in artificial intelligence research. Today I want to talk about why open sourcing AI models isn't just beneficial, it's absolutely essential for our future. Right now, the most powerful AI systems are locked behind corporate walls, controlled by a handful of companies. But imagine if the internet had been proprietary, if only Microsoft could build websites, or if only Google could create search engines. We'd have missed decades of innovation. The same principle applies to AI. When we open source AI models, we democratize intelligence itself. Small startups in developing countries can build healthcare applications that diagnose diseases. Researchers at universities can study AI safety without needing billion dollar budgets. Teachers can create personalized learning tools for their students. Open source AI accelerates scientific discovery because thousands of researchers can collaborate instead of duplicating work in isolation. It also makes AI safer. When models are transparent, we can identify biases, understand decision making processes, and build better safeguards. Proprietary AI is like medicine without ingredient labels, we're asked to trust without understanding. But open source AI invites scrutiny, encourages improvement, and builds collective wisdom. The companies hoarding AI today will tell you it's too dangerous to share. But the real danger is concentrating this transformative technology in the hands of a few. Open source AI doesn't just benefit developers, it benefits humanity. It ensures that the most important technology of our time serves everyone, not just those who can afford premium subscriptions. The future of AI should be written by all of us, not just a select few. Thank you.
 
 
backend_modal/text_examples/1p_ai_tedtalk_natural.txt DELETED
@@ -1 +0,0 @@
1
- Speaker 1: Good evening everyone. I'm, uh, Dr. Rachel Thompson, and I've spent the last fifteen years working in artificial intelligence research. Today I want to talk about why open sourcing AI models isn't just beneficial, it's, um, absolutely essential for our future. So right now, the most powerful AI systems are locked behind corporate walls, controlled by a handful of companies. But, uh, imagine if the internet had been proprietary, if only Microsoft could build websites, or if only Google could create search engines. We'd have missed, um, decades of innovation. The same principle applies to AI. When we open source AI models, we, uh, we democratize intelligence itself. Small startups in developing countries can build healthcare applications that diagnose diseases. Researchers at universities can study AI safety without needing, um, billion dollar budgets. Teachers can create personalized learning tools for their students. Open source AI accelerates scientific discovery because, uh, thousands of researchers can collaborate instead of duplicating work in isolation. It also makes AI safer. When models are transparent, we can identify biases, understand decision making processes, and, um, build better safeguards. Proprietary AI is like, uh, medicine without ingredient labels, we're asked to trust without understanding. But open source AI invites scrutiny, encourages improvement, and, um, builds collective wisdom. Now, the companies hoarding AI today will tell you it's too dangerous to share. But, uh, the real danger is concentrating this transformative technology in the hands of a few. Open source AI doesn't just benefit developers, it, um, it benefits humanity. It ensures that the most important technology of our time serves everyone, not just those who can afford premium subscriptions. The future of AI should be written by, uh, all of us, not just a select few. Thank you.
 
 
backend_modal/text_examples/1p_politcal_speech.txt DELETED
@@ -1 +0,0 @@
1
- Speaker 1: My fellow citizens, I stand before you today to speak about the most fundamental truth of our shared humanity: that every person, regardless of race, religion, gender, or origin, deserves equal dignity and equal rights. This isn't just a political ideal, it's a moral imperative that defines who we are as a civilization. Throughout history, our greatest progress has come when we've expanded the circle of human dignity, when we've recognized that the rights we cherish for ourselves must be extended to all. Yet today, millions still face discrimination, persecution, and inequality simply for being who they are. We cannot call ourselves truly free while others remain oppressed. Making the world better starts with each of us choosing empathy over indifference, justice over convenience. It means standing up when we witness injustice, even when it's easier to look away. It means supporting policies that lift up the marginalized, that provide equal access to education, healthcare, and opportunity. It means building bridges across our differences instead of walls. The path forward requires courage. We must confront uncomfortable truths about inequality and commit to systematic change. We must invest in communities that have been left behind, reform systems that perpetuate discrimination, and create opportunities for everyone to reach their full potential. This isn't about charity, it's about justice. It's about recognizing that our own freedom is incomplete while others suffer. When we guarantee equal rights for all, we don't diminish our own liberty, we strengthen it. We create a world where everyone can contribute their talents, where innovation flourishes, and where peace becomes possible. The moral arc of the universe bends toward justice, but only when we choose to bend it. Let us choose hope over fear, unity over division, and equality over prejudice. Together, we can build a world worthy of our highest ideals. Thank you.
 
 
backend_modal/text_examples/1p_politcal_speech_natural.txt DELETED
@@ -1 +0,0 @@
1
- Speaker 1: My fellow citizens, I, uh, I stand before you today to speak about the most fundamental truth of our shared humanity: that every person, regardless of race, religion, gender, or origin, deserves, um, equal dignity and equal rights. This isn't just a political ideal, it's, uh, it's a moral imperative that defines who we are as a civilization. Throughout history, our greatest progress has come when we've expanded the circle of human dignity, when we've, um, recognized that the rights we cherish for ourselves must be extended to all. Yet today, millions still face discrimination, persecution, and, uh, inequality simply for being who they are. We cannot, um, we cannot call ourselves truly free while others remain oppressed. Making the world better starts with, uh, each of us choosing empathy over indifference, justice over convenience. It means standing up when we witness injustice, even when it's, um, easier to look away. It means supporting policies that lift up the marginalized, that provide equal access to education, healthcare, and, uh, opportunity. It means building bridges across our differences instead of walls. The path forward requires, um, courage. We must confront uncomfortable truths about inequality and commit to systematic change. We must invest in communities that have been, uh, left behind, reform systems that perpetuate discrimination, and create opportunities for everyone to reach their full potential. This isn't about charity, it's, um, it's about justice. It's about recognizing that our own freedom is incomplete while others suffer. When we guarantee equal rights for all, we don't, uh, diminish our own liberty, we strengthen it. We create a world where everyone can contribute their talents, where innovation flourishes, and where, um, peace becomes possible. The moral arc of the universe bends toward justice, but only when we, uh, choose to bend it. Let us choose hope over fear, unity over division, and, um, equality over prejudice. Together, we can build a world worthy of our highest ideals. Thank you.
 
 
backend_modal/text_examples/2p_financeipo_meeting.txt DELETED
@@ -1,35 +0,0 @@
1
- Speaker 1: Good morning, Patricia. Thanks for making time to discuss our IPO strategy. I'm James Harrison, Chief Financial Officer at Nexus Technologies. As you know, we've been privately held for eight years now, and our board is seriously considering going public within the next eighteen months. I wanted to get your perspective as our lead investment advisor on the timing and structure.
2
-
3
- Speaker 2: Good morning, James. I'm excited to dive into this with you. Patricia Wells here, Managing Director at Capital Growth Partners. Based on the financials you sent over last week, Nexus is in an excellent position for a public offering. Your revenue growth of forty-two percent year over year and EBITDA margins of twenty-eight percent are exactly what institutional investors want to see right now. The tech IPO market has been particularly strong this quarter, with companies like yours achieving valuations of eight to twelve times revenue.
4
-
5
- Speaker 1: Those multiples sound very encouraging. We're projecting revenues of two hundred fifty million for this fiscal year, so that could put us in the two to three billion dollar valuation range. Our current private investors, including Venture Capital Associates and Growth Equity Fund, are definitely interested in liquidity events. They've been with us since our Series C round three years ago when we raised eighty million at a six hundred million valuation.
6
-
7
- Speaker 2: Exactly, and that progression shows healthy growth in valuation. For the IPO structure, I'm recommending we target raising approximately four hundred million in new capital. That would allow you to fund your expansion into European markets, invest in your AI development platform, and provide some secondary shares for existing investors who want to realize gains. We should plan for approximately thirty percent of the offering to be secondary shares from current shareholders.
8
-
9
- Speaker 1: That secondary component is important for employee retention too. Many of our key engineers and executives have significant equity stakes from our early employee stock option plan. Being able to offer them some liquidity while keeping them incentivized with remaining shares will be crucial for maintaining our talent base post-IPO.
10
-
11
- Speaker 2: Absolutely. Now, timing is critical here. The IPO window has been favorable, but we need to be strategic. I'm suggesting we begin the S-1 filing process in Q2 of next year, targeting a public debut in Q3. That gives us time to complete two more quarters of strong financial performance and avoid any potential market volatility around earnings seasons. We'll want at least six consecutive quarters of growth to present to investors.
12
-
13
- Speaker 1: What about our choice of underwriters? I assume we'll need a syndicate of investment banks to handle an offering of this size.
14
-
15
- Speaker 2: I'm recommending Goldman Sachs as lead underwriter, with Morgan Stanley and JPMorgan as co-leads. For our sector focus, we should also include a tech-specialist boutique like Needham or William Blair. The syndicate should be able to handle the full four hundred million dollar offering while ensuring broad distribution to both institutional and retail investors. Underwriting fees will typically run about six to seven percent of the total raise.
16
-
17
- Speaker 1: Let's talk about financial preparation. What do we need to clean up before we can file our registration statement?
18
-
19
- Speaker 2: Your audited financials look solid, but we'll need to ensure full SOX compliance infrastructure is in place. That means upgrading your internal controls, formalizing your audit committee, and probably adding a few independent board members with public company experience. I'd also recommend bringing in a seasoned CFO team member who's been through IPO processes before to help manage investor relations post-offering.
20
-
21
- Speaker 1: We've already started conversations with two potential board candidates who have public company experience in our industry. One is the former CEO of DataStream Solutions, and the other is the current CFO of CloudTech Enterprises. Both understand our market dynamics and growth trajectory.
22
-
23
- Speaker 2: Those sound like excellent additions. Now, let's discuss the roadshow strategy. We'll want to target institutional investors in major financial centers. I'm thinking a two-week roadshow hitting New York, Boston, San Francisco, Los Angeles, and Chicago. We should also include some virtual presentations for international investors in London and Hong Kong who might be interested in our global expansion plans.
24
-
25
- Speaker 1: What kind of investor interest are you anticipating based on current market conditions?
26
-
27
- Speaker 2: Given your growth metrics and market position, I expect strong demand from both growth-focused mutual funds and technology-specialist investors. Your recurring revenue model and enterprise customer base make you particularly attractive to institutional investors looking for stable, scalable businesses. We might even see some strategic interest from larger tech companies, though we'd want to be careful about how that affects the valuation process.
28
-
29
- Speaker 1: That's all very encouraging, Patricia. What are the next concrete steps we need to take to move this forward?
30
-
31
- Speaker 2: First, let's get formal board approval to proceed with IPO preparations. Then we'll need to select and engage our legal counsel, typically a firm like Wilson Sonsini or Cooley that specializes in tech IPOs. We should also begin the auditing and compliance work immediately since that often takes longer than anticipated. I'll prepare a detailed timeline and cost analysis for the entire process to present to your board next week.
32
-
33
- Speaker 1: Perfect. I'll schedule a board meeting for next Friday to discuss the formal authorization. This is an exciting milestone for Nexus Technologies, and I appreciate your guidance through this complex process. Let's make sure we execute this flawlessly and maximize value for all our stakeholders.
34
-
35
- Speaker 2: Absolutely, James. This is going to be a tremendous success story. I'll have all the documentation ready for your board presentation, and we can begin engaging the underwriting syndicate as soon as we get board approval. Congratulations on reaching this significant milestone.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/text_examples/2p_financeipo_meeting_natural.txt DELETED
@@ -1,35 +0,0 @@
1
- Speaker 1: Good morning, Patricia. Thanks for, uh, making time to discuss our IPO strategy. I'm James Harrison, Chief Financial Officer at Nexus Technologies. As you know, we've been privately held for, um, eight years now, and our board is seriously considering going public within the next eighteen months. I wanted to get your perspective as our lead investment advisor on the, uh, timing and structure.
2
-
3
- Speaker 2: Good morning, James. I'm, um, excited to dive into this with you. Patricia Wells here, Managing Director at Capital Growth Partners. Based on the financials you sent over last week, Nexus is in an excellent position for a public offering. Your revenue growth of, uh, forty-two percent year over year and EBITDA margins of twenty-eight percent are exactly what institutional investors want to see right now. The tech IPO market has been, um, particularly strong this quarter, with companies like yours achieving valuations of eight to twelve times revenue.
4
-
5
- Speaker 1: Those multiples sound, uh, very encouraging. We're projecting revenues of two hundred fifty million for this fiscal year, so that could put us in the, um, two to three billion dollar valuation range. Our current private investors, including Venture Capital Associates and Growth Equity Fund, are definitely interested in liquidity events. They've been with us since our Series C round three years ago when we raised, uh, eighty million at a six hundred million valuation.
6
-
7
- Speaker 2: Exactly, and that progression shows, um, healthy growth in valuation. For the IPO structure, I'm recommending we target raising approximately four hundred million in new capital. That would allow you to fund your expansion into European markets, invest in your, uh, AI development platform, and provide some secondary shares for existing investors who want to realize gains. We should plan for approximately, um, thirty percent of the offering to be secondary shares from current shareholders.
8
-
9
- Speaker 1: That secondary component is, uh, important for employee retention too. Many of our key engineers and executives have significant equity stakes from our early employee stock option plan. Being able to offer them some liquidity while keeping them incentivized with remaining shares will be, um, crucial for maintaining our talent base post-IPO.
10
-
11
- Speaker 2: Absolutely. Now, timing is, uh, critical here. The IPO window has been favorable, but we need to be strategic. I'm suggesting we begin the S-1 filing process in Q2 of next year, targeting a public debut in, um, Q3. That gives us time to complete two more quarters of strong financial performance and avoid any potential market volatility around earnings seasons. We'll want at least, uh, six consecutive quarters of growth to present to investors.
12
-
13
- Speaker 1: What about our choice of underwriters? I assume we'll need a, um, syndicate of investment banks to handle an offering of this size.
14
-
15
- Speaker 2: So, I'm recommending Goldman Sachs as lead underwriter, with Morgan Stanley and, uh, JPMorgan as co-leads. For our sector focus, we should also include a tech-specialist boutique like Needham or, um, William Blair. The syndicate should be able to handle the full four hundred million dollar offering while ensuring broad distribution to both institutional and, uh, retail investors. Underwriting fees will typically run about six to seven percent of the total raise.
16
-
17
- Speaker 1: Let's, um, let's talk about financial preparation. What do we need to clean up before we can file our registration statement?
18
-
19
- Speaker 2: Your audited financials look solid, but, uh, we'll need to ensure full SOX compliance infrastructure is in place. That means upgrading your internal controls, formalizing your audit committee, and, um, probably adding a few independent board members with public company experience. I'd also recommend bringing in a seasoned CFO team member who's been through IPO processes before to help manage investor relations, uh, post-offering.
20
-
21
- Speaker 1: We've already started conversations with, um, two potential board candidates who have public company experience in our industry. One is the former CEO of DataStream Solutions, and the other is the current CFO of CloudTech Enterprises. Both understand our, uh, market dynamics and growth trajectory.
22
-
23
- Speaker 2: Those sound like excellent additions. Now, let's discuss the roadshow strategy. We'll want to target institutional investors in major financial centers. I'm thinking a, um, two-week roadshow hitting New York, Boston, San Francisco, Los Angeles, and Chicago. We should also include some virtual presentations for international investors in London and, uh, Hong Kong who might be interested in our global expansion plans.
24
-
25
- Speaker 1: So, what kind of investor interest are you anticipating based on current market conditions?
26
-
27
- Speaker 2: Given your growth metrics and market position, I expect, um, strong demand from both growth-focused mutual funds and technology-specialist investors. Your recurring revenue model and enterprise customer base make you particularly attractive to institutional investors looking for, uh, stable, scalable businesses. We might even see some strategic interest from larger tech companies, though we'd want to be careful about how that affects the, um, valuation process.
28
-
29
- Speaker 1: That's all very encouraging, Patricia. What are the, uh, next concrete steps we need to take to move this forward?
30
-
31
- Speaker 2: First, let's get formal board approval to proceed with IPO preparations. Then we'll need to select and engage our legal counsel, typically a firm like Wilson Sonsini or, um, Cooley that specializes in tech IPOs. We should also begin the auditing and compliance work immediately since that often takes, uh, longer than anticipated. I'll prepare a detailed timeline and cost analysis for the entire process to present to your board next week.
32
-
33
- Speaker 1: Perfect. I'll schedule a board meeting for next Friday to, um, discuss the formal authorization. This is an exciting milestone for Nexus Technologies, and I appreciate your guidance through this complex process. Let's make sure we execute this flawlessly and, uh, maximize value for all our stakeholders.
34
-
35
- Speaker 2: Absolutely, James. This is going to be a, um, tremendous success story. I'll have all the documentation ready for your board presentation, and we can begin engaging the underwriting syndicate as soon as we get, uh, board approval. Congratulations on reaching this significant milestone.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/text_examples/2p_telehealth_meeting.txt DELETED
@@ -1,33 +0,0 @@
1
- Speaker 1: Good morning, this is Dr. Jennifer Martinez with HealthConnect Telehealth. I'm speaking with my patient, Tom Wilson, for his scheduled virtual appointment today. Tom, I can see you're joining us from home. How are you feeling this morning, and what symptoms have you been experiencing?
2
-
3
- Speaker 2: Good morning, Dr. Martinez. Thanks for fitting me in on short notice. I've been feeling pretty awful since Tuesday. It started with a really bad headache and chills, and now I have a high fever, body aches, and this dry cough that won't go away. My temperature was one hundred and two point four when I checked it about an hour ago. I also feel completely exhausted, like I can barely get out of bed.
4
-
5
- Speaker 1: I'm sorry you're feeling so unwell, Tom. Those symptoms are very consistent with influenza, especially given that we're in peak flu season right now. The sudden onset of fever, body aches, and fatigue are classic flu symptoms. How long have you had the cough, and are you experiencing any shortness of breath or chest pain?
6
-
7
- Speaker 2: The cough started yesterday evening and it's been getting worse. It's mostly dry but occasionally I'm coughing up a little bit of clear mucus. I haven't had any chest pain, but I do feel a little short of breath when I try to move around too much. My throat is also really sore, especially when I swallow. I've been trying to stay hydrated but it's been difficult because everything tastes awful.
8
-
9
- Speaker 1: Those are all typical flu symptoms, Tom. The loss of taste and appetite is very common with influenza. Let me ask about your recent activities. Have you been around anyone who was sick recently, and have you received your flu vaccination this year?
10
-
11
- Speaker 2: Now that you mention it, my coworker came into the office last week complaining about feeling sick, but he insisted it was just allergies. Several people in my department have called in sick this week actually. As for the flu shot, I have to admit I kept putting it off and never got around to getting it this year. I know I should have, but work has been so busy and I just kept forgetting.
12
-
13
- Speaker 1: That explains the exposure source, and unfortunately not having the vaccination does put you at higher risk for getting the flu and having more severe symptoms. Based on what you're describing and the timing, I'm confident this is influenza. The good news is that we caught it early enough that antiviral medication can help reduce the severity and duration of your symptoms.
14
-
15
- Speaker 2: That's a relief to hear. What kind of medication are you thinking, and how long should I expect to feel this sick? I have some important meetings next week that I really don't want to miss if possible.
16
-
17
- Speaker 1: I'm going to prescribe Tamiflu, which is an antiviral medication that works best when started within the first forty-eight hours of symptom onset. You'll take it twice daily for five days. It should help reduce your symptoms by one to two days and make you feel less severe overall. However, Tom, I need to stress that you should plan to be out of work for at least the rest of this week, possibly into early next week.
18
-
19
- Speaker 2: Okay, I understand about missing work. How should I be taking care of myself at home? And what symptoms should I watch for that might indicate I need to come to the emergency room or see you again?
20
-
21
- Speaker 1: For home care, rest is absolutely critical. Stay in bed as much as possible and sleep whenever you can. Drink plenty of fluids, especially water, clear broths, and herbal teas. You can take acetaminophen or ibuprofen for the fever and body aches, but don't exceed the recommended dosages. Use a humidifier or breathe steam from a hot shower to help with congestion. As for warning signs, you should seek immediate medical attention if you develop severe chest pain, difficulty breathing, persistent high fever above one hundred and three degrees, signs of dehydration like dizziness or decreased urination, or if you start feeling confused or disoriented.
22
-
23
- Speaker 2: That all makes sense. How long should I stay isolated from my family? My wife and kids are healthy right now and I don't want to get them sick too.
24
-
25
- Speaker 1: You're contagious from about one day before symptoms started until about five to seven days after becoming sick, or until you've been fever-free for twenty-four hours without fever-reducing medication, whichever is longer. Stay in a separate room from your family as much as possible, wear a mask when you have to be around them, wash your hands frequently, and avoid sharing utensils or personal items. Your family members should also consider getting tested if they develop any symptoms.
26
-
27
- Speaker 2: Got it. Should I schedule a follow-up appointment, or just call if I'm not feeling better?
28
-
29
- Speaker 1: Let's plan for a follow-up call in three to four days to check on your progress with the Tamiflu. If you're not seeing improvement by then, or if any of those warning symptoms I mentioned develop sooner, don't hesitate to contact our office immediately. I'm sending the Tamiflu prescription to your usual pharmacy right now, and they should have it ready for pickup within the hour. Do you have someone who can pick it up for you so you don't have to go out while you're contagious?
30
-
31
- Speaker 2: Yes, my wife can pick up the prescription on her way home from work. Thank you so much, Dr. Martinez. I feel better just knowing what I'm dealing with and having a treatment plan. I'll make sure to rest and follow all your instructions.
32
-
33
- Speaker 1: You're very welcome, Tom. The flu is miserable but you should start feeling better in a few days with the medication and proper rest. Don't try to push through this, your body needs time to fight off the virus. I'll check in with you later this week, and remember to call immediately if you have any concerning symptoms. Take care and get plenty of rest.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/text_examples/2p_telehealth_meeting_natural.txt DELETED
@@ -1,33 +0,0 @@
1
- Speaker 1: Good morning, this is Dr. Jennifer Martinez with HealthConnect Telehealth. I'm speaking with my patient, Tom Wilson, for his, uh, scheduled virtual appointment today. Tom, I can see you're joining us from home. How are you feeling this morning, and, um, what symptoms have you been experiencing?
2
-
3
- Speaker 2: Good morning, Dr. Martinez. Thanks for fitting me in on, uh, short notice. I've been feeling pretty awful since Tuesday. It started with a really bad headache and chills, and now I have a high fever, body aches, and this, um, dry cough that won't go away. My temperature was one hundred and two point four when I checked it about an hour ago. I also feel completely exhausted, like I can barely, uh, get out of bed.
4
-
5
- Speaker 1: I'm sorry you're feeling so unwell, Tom. Those symptoms are very consistent with influenza, especially given that we're in, um, peak flu season right now. The sudden onset of fever, body aches, and fatigue are classic flu symptoms. How long have you had the cough, and are you experiencing any, uh, shortness of breath or chest pain?
6
-
7
- Speaker 2: The cough started yesterday evening and it's been getting worse. It's mostly dry but occasionally I'm coughing up a little bit of, um, clear mucus. I haven't had any chest pain, but I do feel a little short of breath when I try to move around too much. My throat is also really sore, especially when I swallow. I've been trying to stay hydrated but it's been difficult because, uh, everything tastes awful.
8
-
9
- Speaker 1: Those are all typical flu symptoms, Tom. The loss of taste and appetite is very common with influenza. Let me ask about your recent activities. Have you been around anyone who was sick recently, and have you, um, received your flu vaccination this year?
10
-
11
- Speaker 2: Now that you mention it, my coworker came into the office last week complaining about feeling sick, but he insisted it was just allergies. Several people in my department have called in sick this week actually. As for the flu shot, I have to admit I kept putting it off and never got around to, uh, getting it this year. I know I should have, but work has been so busy and I just kept, um, forgetting.
12
-
13
- Speaker 1: That explains the exposure source, and unfortunately not having the vaccination does put you at higher risk for getting the flu and having more, uh, severe symptoms. Based on what you're describing and the timing, I'm confident this is influenza. The good news is that we caught it early enough that antiviral medication can help reduce the severity and, um, duration of your symptoms.
14
-
15
- Speaker 2: That's a relief to hear. What kind of medication are you thinking, and, uh, how long should I expect to feel this sick? I have some important meetings next week that I really don't want to miss if possible.
16
-
17
- Speaker 1: I'm going to prescribe Tamiflu, which is an antiviral medication that works best when started within the first forty-eight hours of symptom onset. You'll take it twice daily for five days. It should help reduce your symptoms by one to two days and make you feel, um, less severe overall. However, Tom, I need to stress that you should plan to be out of work for at least the rest of this week, possibly into, uh, early next week.
18
-
19
- Speaker 2: Okay, I understand about missing work. How should I be taking care of myself at home? And what symptoms should I watch for that might indicate I need to come to the emergency room or, uh, see you again?
20
-
21
- Speaker 1: For home care, rest is absolutely critical. Stay in bed as much as possible and sleep whenever you can. Drink plenty of fluids, especially water, clear broths, and, um, herbal teas. You can take acetaminophen or ibuprofen for the fever and body aches, but don't exceed the recommended dosages. Use a humidifier or breathe steam from a hot shower to help with, uh, congestion. As for warning signs, you should seek immediate medical attention if you develop severe chest pain, difficulty breathing, persistent high fever above one hundred and three degrees, signs of dehydration like dizziness or decreased urination, or if you start feeling, um, confused or disoriented.
22
-
23
- Speaker 2: That all makes sense. How long should I stay isolated from my family? My wife and kids are healthy right now and I don't want to, uh, get them sick too.
24
-
25
- Speaker 1: You're contagious from about one day before symptoms started until about five to seven days after becoming sick, or until you've been fever-free for twenty-four hours without fever-reducing medication, whichever is, um, longer. Stay in a separate room from your family as much as possible, wear a mask when you have to be around them, wash your hands frequently, and avoid sharing utensils or, uh, personal items. Your family members should also consider getting tested if they develop any symptoms.
26
-
27
- Speaker 2: Got it. Should I schedule a follow-up appointment, or just call if I'm not, uh, feeling better?
28
-
29
- Speaker 1: Let's plan for a follow-up call in three to four days to check on your progress with the Tamiflu. If you're not seeing improvement by then, or if any of those warning symptoms I mentioned develop sooner, don't hesitate to contact our office immediately. I'm sending the Tamiflu prescription to your usual pharmacy right now, and they should have it ready for pickup within the hour. Do you have someone who can pick it up for you so you don't have to go out while you're, um, contagious?
30
-
31
- Speaker 2: Yes, my wife can pick up the prescription on her way home from work. Thank you so much, Dr. Martinez. I feel better just knowing what I'm dealing with and having a, uh, treatment plan. I'll make sure to rest and follow all your instructions.
32
-
33
- Speaker 1: You're very welcome, Tom. The flu is miserable but you should start feeling better in a few days with the medication and proper rest. Don't try to push through this, your body needs time to, um, fight off the virus. I'll check in with you later this week, and remember to call immediately if you have any, uh, concerning symptoms. Take care and get plenty of rest.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/text_examples/3p_military_meeting.txt DELETED
@@ -1,51 +0,0 @@
1
- Speaker 1: Good morning, this is Colonel Sarah Mitchell, Joint Operations Command. We're convening today to discuss the deployment of our new Falcon series reconnaissance drones for dual-purpose operations in active conflict zones. Joining me are Major David Chen, our Unmanned Systems Operations Officer, and Captain Lisa Rodriguez, who leads our Humanitarian Assistance Coordination Unit. Major Chen, can you start by briefing us on the technical capabilities of these new drone systems?
2
-
3
- Speaker 2: Certainly, Colonel. The Falcon series represents a significant advancement in our reconnaissance capabilities. These drones have an operational range of eight hundred kilometers with a flight endurance of eighteen hours. They're equipped with high-resolution electro-optical cameras, infrared thermal imaging, and signals intelligence gathering equipment. What makes them particularly valuable for humanitarian operations is their ability to carry up to fifty pounds of medical supplies or emergency communication equipment while maintaining full surveillance capabilities.
4
-
5
- Speaker 1: That dual capability is exactly what makes this program so promising. Captain Rodriguez, from a humanitarian perspective, how do you see these systems being integrated into our disaster response and civilian assistance protocols?
6
-
7
- Speaker 3: Colonel, the potential is enormous. In conflict zones where traditional ground-based humanitarian convoys can't safely operate, these drones can provide critical medical supplies to isolated populations. We can deliver emergency medications, blood products, and communication devices to civilians trapped in contested areas. The reconnaissance capability also allows us to assess humanitarian needs in real-time, identifying displaced persons, evaluating infrastructure damage, and locating civilians who need immediate assistance.
8
-
9
- Speaker 2: The intelligence gathering aspect is crucial for both mission planning and safety. Before any humanitarian drops, we can use the surveillance systems to ensure the area is secure and that civilians are actually present at the target location. The thermal imaging is particularly useful for locating survivors in damaged buildings or identifying gathering points where people need assistance.
10
-
11
- Speaker 1: Major Chen, what are the operational parameters we're working within? I assume there are specific protocols for when these systems can be deployed in contested areas.
12
-
13
- Speaker 2: Absolutely, Colonel. All deployments require coordination with higher command and adherence to international humanitarian law. The drones operate at altitudes that minimize detection while maximizing surveillance coverage. For reconnaissance missions, they can loiter over target areas for extended periods, providing continuous intelligence to ground forces. When configured for humanitarian drops, we coordinate with international aid organizations to ensure supplies reach the intended recipients.
14
-
15
- Speaker 3: The coordination aspect is critical, Colonel. We work closely with non-governmental organizations and international relief agencies to identify priority locations for humanitarian assistance. The drones allow us to verify delivery and document that supplies reached civilians rather than combatants. This transparency is essential for maintaining the humanitarian nature of these operations.
16
-
17
- Speaker 1: Captain Rodriguez, what types of humanitarian supplies are we prioritizing for these drone deliveries?
18
-
19
- Speaker 3: We focus on high-value, low-weight items that can make an immediate impact. Medical supplies like antibiotics, pain medications, and surgical equipment are top priorities. Water purification tablets and emergency nutrition packets for children are also critical. We can deliver satellite communication devices that allow isolated communities to coordinate with relief organizations. Blood products for emergency medical treatment are particularly valuable since they can't be transported through traditional supply chains in active conflict zones.
20
-
21
- Speaker 2: From a technical standpoint, we've developed specialized drop containers that protect medical supplies during parachute delivery. The containers are equipped with GPS beacons so recipients can locate them easily, and they're designed to be opened without tools. We can also program precise drop coordinates to ensure supplies land in safe areas away from potential combatants.
22
-
23
- Speaker 1: What about the intelligence value for protecting civilian populations? How does the reconnaissance capability support our broader mission objectives?
24
-
25
- Speaker 2: The persistent surveillance capability allows us to monitor population movements and identify when civilian areas are under threat. We can track the movement of displaced persons and coordinate with ground forces to establish safe corridors for evacuation. The real-time intelligence also helps us distinguish between civilian and military targets, reducing the risk of accidental harm to non-combatants.
26
-
27
- Speaker 3: The reconnaissance data also supports post-conflict reconstruction efforts, Colonel. We can assess damage to schools, hospitals, and essential infrastructure, providing valuable information for planning humanitarian assistance and rebuilding efforts. The documentation helps international organizations prioritize their response and allocate resources effectively.
28
-
29
- Speaker 1: Major Chen, what are the current limitations of this system that we need to work around?
30
-
31
- Speaker 2: Weather conditions can limit operations, particularly in areas with heavy cloud cover or high winds that could affect supply drops. The drones also have limited payload capacity, so we can't deliver large quantities of supplies in a single mission. Battery life constrains operational range, though we're working on extended endurance variants. Communication range can also be an issue in mountainous terrain where satellite links are obstructed.
32
-
33
- Speaker 3: From the humanitarian side, we face challenges with language barriers and cultural differences that can affect how civilians respond to drone deliveries. Some populations may be suspicious of unmarked aircraft, so we're developing identification protocols and working with local community leaders to build trust and ensure successful delivery of aid.
34
-
35
- Speaker 1: What about training requirements for personnel operating these dual-mission systems?
36
-
37
- Speaker 2: Operators need specialized training in both reconnaissance techniques and humanitarian protocols. Standard drone pilot certification takes about six months, but the dual-mission capability requires additional training in international humanitarian law, civilian protection protocols, and coordination with relief organizations. We're developing simulation training programs that allow operators to practice both surveillance and humanitarian drop missions.
38
-
39
- Speaker 3: We also train our personnel to recognize signs of humanitarian crisis from aerial surveillance, including displacement camps, destroyed infrastructure, and areas where civilians may be trapped or in need of assistance. This cross-training ensures that reconnaissance missions can also identify humanitarian needs that might otherwise be overlooked.
40
-
41
- Speaker 1: Captain Rodriguez, how do we measure the success of these humanitarian operations?
42
-
43
- Speaker 3: Success metrics include delivery confirmation through ground spotters or communication with recipients, documented impact on civilian welfare, and coordination effectiveness with international relief organizations. We track the number of civilians reached, types of assistance provided, and follow-up reports from aid agencies. The goal is demonstrable improvement in civilian conditions and successful coordination between military and humanitarian efforts.
44
-
45
- Speaker 1: Excellent briefing from both of you. This dual-capability system represents an important evolution in how we approach operations in complex environments where military objectives and humanitarian needs intersect. Major Chen, I want you to finalize the operational protocols for reconnaissance missions. Captain Rodriguez, work with our international partners to establish coordination procedures for humanitarian operations. We'll reconvene next week to review the deployment timeline and ensure all personnel are properly trained before field operations begin.
46
-
47
- Speaker 2: Understood, Colonel. I'll have the reconnaissance protocols ready for your review by Friday.
48
-
49
- Speaker 3: I'll coordinate with our partner organizations and have the humanitarian operation procedures documented by end of week as well.
50
-
51
- Speaker 1: Outstanding work, both of you. These systems have the potential to save lives while providing critical intelligence capabilities. Let's ensure we implement them with the highest standards of professionalism and adherence to international humanitarian principles.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/text_examples/3p_military_meeting_natural.txt DELETED
@@ -1,51 +0,0 @@
1
- Speaker 1: Good morning, this is Colonel Sarah Mitchell, Joint Operations Command. We're convening today to discuss the deployment of our new Falcon series reconnaissance drones for, um, dual-purpose operations in active conflict zones. Joining me are Major David Chen, our Unmanned Systems Operations Officer, and Captain Lisa Rodriguez, who leads our, uh, Humanitarian Assistance Coordination Unit. Major Chen, can you start by briefing us on the technical capabilities of these, um, new drone systems?
2
-
3
- Speaker 2: Certainly, Colonel. The Falcon series represents a significant advancement in our reconnaissance capabilities. These drones have an operational range of eight hundred kilometers with a flight endurance of, uh, eighteen hours. They're equipped with high-resolution electro-optical cameras, infrared thermal imaging, and, um, signals intelligence gathering equipment. What makes them particularly valuable for humanitarian operations is their ability to carry up to fifty pounds of medical supplies or emergency communication equipment while maintaining, uh, full surveillance capabilities.
4
-
5
- Speaker 1: That dual capability is exactly what makes this program so promising. Captain Rodriguez, from a humanitarian perspective, how do you see these systems being integrated into our, um, disaster response and civilian assistance protocols?
6
-
7
- Speaker 3: Colonel, the potential is enormous. In conflict zones where traditional ground-based humanitarian convoys can't safely operate, these drones can provide, um, critical medical supplies to isolated populations. We can deliver emergency medications, blood products, and communication devices to civilians trapped in contested areas. The reconnaissance capability also allows us to assess humanitarian needs in real-time, identifying displaced persons, evaluating infrastructure damage, and, uh, locating civilians who need immediate assistance.
8
-
9
- Speaker 2: The intelligence gathering aspect is crucial for both mission planning and safety. Before any humanitarian drops, we can use the surveillance systems to ensure the area is secure and that civilians are actually present at the, um, target location. The thermal imaging is particularly useful for locating survivors in damaged buildings or identifying gathering points where people need, uh, assistance.
10
-
11
- Speaker 1: Major Chen, what are the operational parameters we're working within? I assume there are specific protocols for when these systems can be deployed in, um, contested areas.
12
-
13
- Speaker 2: Absolutely, Colonel. All deployments require coordination with higher command and adherence to international humanitarian law. The drones operate at altitudes that minimize detection while maximizing, um, surveillance coverage. For reconnaissance missions, they can loiter over target areas for extended periods, providing continuous intelligence to ground forces. When configured for humanitarian drops, we coordinate with international aid organizations to ensure supplies reach the, uh, intended recipients.
14
-
15
- Speaker 3: The coordination aspect is critical, Colonel. We work closely with non-governmental organizations and international relief agencies to identify priority locations for, um, humanitarian assistance. The drones allow us to verify delivery and document that supplies reached civilians rather than combatants. This transparency is essential for maintaining the, uh, humanitarian nature of these operations.
16
-
17
- Speaker 1: Captain Rodriguez, what types of humanitarian supplies are we prioritizing for these, um, drone deliveries?
18
-
19
- Speaker 3: We focus on high-value, low-weight items that can make an immediate impact. Medical supplies like antibiotics, pain medications, and, uh, surgical equipment are top priorities. Water purification tablets and emergency nutrition packets for children are also critical. We can deliver satellite communication devices that allow isolated communities to coordinate with, um, relief organizations. Blood products for emergency medical treatment are particularly valuable since they can't be transported through traditional supply chains in, uh, active conflict zones.
20
-
21
- Speaker 2: From a technical standpoint, we've developed specialized drop containers that protect medical supplies during parachute delivery. The containers are equipped with GPS beacons so recipients can locate them easily, and they're designed to be opened without tools. We can also program precise drop coordinates to ensure supplies land in, um, safe areas away from potential combatants.
22
-
23
- Speaker 1: What about the intelligence value for protecting civilian populations? How does the reconnaissance capability support our, uh, broader mission objectives?
24
-
25
- Speaker 2: The persistent surveillance capability allows us to monitor population movements and identify when civilian areas are under threat. We can track the movement of displaced persons and coordinate with ground forces to establish, um, safe corridors for evacuation. The real-time intelligence also helps us distinguish between civilian and military targets, reducing the risk of accidental harm to, uh, non-combatants.
26
-
27
- Speaker 3: The reconnaissance data also supports post-conflict reconstruction efforts, Colonel. We can assess damage to schools, hospitals, and essential infrastructure, providing valuable information for planning humanitarian assistance and, um, rebuilding efforts. The documentation helps international organizations prioritize their response and allocate resources, uh, effectively.
28
-
29
- Speaker 1: Major Chen, what are the current limitations of this system that we need to, um, work around?
30
-
31
- Speaker 2: Weather conditions can limit operations, particularly in areas with heavy cloud cover or high winds that could affect supply drops. The drones also have limited payload capacity, so we can't deliver large quantities of supplies in a, um, single mission. Battery life constrains operational range, though we're working on extended endurance variants. Communication range can also be an issue in mountainous terrain where satellite links are, uh, obstructed.
32
-
33
- Speaker 3: From the humanitarian side, we face challenges with language barriers and cultural differences that can affect how civilians respond to, um, drone deliveries. Some populations may be suspicious of unmarked aircraft, so we're developing identification protocols and working with local community leaders to build trust and ensure, uh, successful delivery of aid.
34
-
35
- Speaker 1: What about training requirements for personnel operating these, um, dual-mission systems?
36
-
37
- Speaker 2: Operators need specialized training in both reconnaissance techniques and humanitarian protocols. Standard drone pilot certification takes about six months, but the dual-mission capability requires additional training in international humanitarian law, civilian protection protocols, and coordination with, um, relief organizations. We're developing simulation training programs that allow operators to practice both surveillance and, uh, humanitarian drop missions.
38
-
39
- Speaker 3: We also train our personnel to recognize signs of humanitarian crisis from aerial surveillance, including displacement camps, destroyed infrastructure, and areas where civilians may be trapped or in need of assistance. This cross-training ensures that reconnaissance missions can also identify humanitarian needs that might otherwise be, um, overlooked.
40
-
41
- Speaker 1: Captain Rodriguez, how do we measure the success of these, uh, humanitarian operations?
42
-
43
- Speaker 3: Success metrics include delivery confirmation through ground spotters or communication with recipients, documented impact on civilian welfare, and coordination effectiveness with international relief organizations. We track the number of civilians reached, types of assistance provided, and follow-up reports from, um, aid agencies. The goal is demonstrable improvement in civilian conditions and successful coordination between military and, uh, humanitarian efforts.
44
-
45
- Speaker 1: Excellent briefing from both of you. This dual-capability system represents an important evolution in how we approach operations in complex environments where military objectives and humanitarian needs, um, intersect. Major Chen, I want you to finalize the operational protocols for reconnaissance missions. Captain Rodriguez, work with our international partners to establish coordination procedures for, uh, humanitarian operations. We'll reconvene next week to review the deployment timeline and ensure all personnel are properly trained before, um, field operations begin.
46
-
47
- Speaker 2: Understood, Colonel. I'll have the reconnaissance protocols ready for your review by, uh, Friday.
48
-
49
- Speaker 3: I'll coordinate with our partner organizations and have the humanitarian operation procedures documented by end of week as well.
50
-
51
- Speaker 1: Outstanding work, both of you. These systems have the potential to save lives while providing critical intelligence capabilities. Let's ensure we implement them with the highest standards of professionalism and adherence to, um, international humanitarian principles.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/text_examples/3p_oil_meeting.txt DELETED
@@ -1,49 +0,0 @@
1
- Speaker 1: Good morning everyone. I'm calling this meeting to discuss our upcoming deepwater drilling project in the Gulf of Mexico. I'm Robert Martinez, Operations Director at Gulf Stream Energy. With me today are Lisa Thompson, our Chief Engineer, and Michael Davis, our Environmental Compliance Manager. Lisa, can you start by giving us an overview of the Poseidon Seven project?
2
-
3
- Speaker 2: Absolutely, Robert. The Poseidon Seven site is located approximately one hundred twenty miles southeast of Louisiana in about four thousand feet of water. Our geological surveys indicate we're looking at potentially eight hundred million barrels of recoverable oil reserves. The reservoir sits at approximately eighteen thousand feet below the seafloor, which puts this in the ultra-deepwater category. We're planning to use our newest drilling platform, the Titan Explorer, which has the capacity to drill to depths of thirty thousand feet.
4
-
5
- Speaker 1: Those are impressive numbers, Lisa. Michael, I know environmental compliance is critical for a project of this scope. What's our regulatory status?
6
-
7
- Speaker 3: We're making good progress on the regulatory front, Robert. We submitted our Environmental Impact Assessment to the Bureau of Ocean Energy Management three months ago. The public comment period closed last week with generally positive feedback from stakeholder groups. We're expecting final approval within the next sixty days. Our Environmental Management Plan addresses everything from marine life protection to oil spill response protocols. We've also completed baseline studies on local fish populations and coral reef systems to ensure we can monitor any environmental impacts throughout the drilling operation.
8
-
9
- Speaker 2: From a technical standpoint, we're implementing some cutting-edge drilling technologies for this project. We'll be using managed pressure drilling techniques to maintain optimal wellbore pressure and reduce the risk of blowouts. Our new drilling fluid system is designed to minimize environmental impact while maximizing drilling efficiency. The estimated drilling time is approximately one hundred eighty days from spud to completion.
10
-
11
- Speaker 1: What about the economic projections for Poseidon Seven? I know the board is very interested in the financial outlook.
12
-
13
- Speaker 2: The economics are very favorable, Robert. With current oil prices hovering around eighty-five dollars per barrel, we're projecting a break-even cost of approximately fifty-two dollars per barrel. Total development costs are estimated at two point eight billion dollars, including the drilling platform, subsea infrastructure, and pipeline connections to existing facilities. At peak production, we expect to produce approximately one hundred twenty thousand barrels per day.
14
-
15
- Speaker 3: I should mention that our environmental compliance costs are built into those projections. We're investing heavily in double-hull pipeline systems and real-time environmental monitoring equipment. The additional safety measures add about fifteen percent to our overall project costs, but they're essential for maintaining our environmental stewardship commitments and avoiding potential regulatory penalties.
16
-
17
- Speaker 1: Lisa, what's our timeline looking like for getting this project operational?
18
-
19
- Speaker 2: We're targeting mobilization of the Titan Explorer for early February, assuming we receive final regulatory approval by mid-January. Drilling operations should commence by March first. If everything goes according to plan, we should reach the target reservoir by late August. Production testing will begin immediately after that, with first oil delivery expected by November of next year.
20
-
21
- Speaker 3: One important consideration is hurricane season. We'll need to suspend operations and evacuate the platform if any Category Three or higher storms threaten the area. Based on historical weather patterns, we might face two to three weather-related shutdowns during the drilling phase. We've built those delays into our timeline and budget projections.
22
-
23
- Speaker 1: What about staffing requirements for this operation?
24
-
25
- Speaker 2: The drilling phase will require a crew of one hundred forty-five personnel working twelve-hour shifts on a fourteen-day rotation schedule. Once we transition to production, we'll scale back to about sixty full-time staff. We're working with our Houston training facility to ensure all crew members are certified for deepwater operations and emergency response procedures.
26
-
27
- Speaker 3: From a safety perspective, all personnel will complete our enhanced deepwater safety training program before deployment. This includes underwater escape training, helicopter safety, and specialized emergency response protocols. We're also stationing two supply vessels and a standby rescue vessel at the site throughout the drilling operation.
28
-
29
- Speaker 1: Excellent. What about our partnerships and contracting strategy?
30
-
31
- Speaker 2: We've already signed contracts with Oceanic Drilling Services for the platform lease and drilling services. Subsea equipment will be provided by Deep Sea Technologies, and we're working with Coastal Pipeline Solutions for the transportation infrastructure. Total contracted services represent about sixty percent of the project budget, with the remainder being our internal costs and contingency reserves.
32
-
33
- Speaker 3: We've also established partnerships with three environmental monitoring organizations to provide independent oversight throughout the project. This demonstrates our commitment to transparency and environmental responsibility. These partnerships also help us stay ahead of any potential regulatory changes or community concerns.
34
-
35
- Speaker 1: This sounds like a well-planned operation. What are the biggest risks we're monitoring?
36
-
37
- Speaker 2: Weather is always our primary concern with deepwater operations. Equipment failure is another significant risk, which is why we maintain redundant systems for all critical operations. We're also closely watching global oil price volatility, though our break-even analysis shows we remain profitable even if prices drop to sixty dollars per barrel.
38
-
39
- Speaker 3: Environmental risks are obviously a major focus. We have comprehensive spill response plans and equipment staged at multiple locations. Our drilling mud system is designed to minimize any potential impact on marine life, and we're using acoustic monitoring to track whale migration patterns and adjust operations accordingly.
40
-
41
- Speaker 1: Sounds like we have all the major elements covered. Lisa, when do you need final crew assignments locked in?
42
-
43
- Speaker 2: I'll need the complete crew roster by January fifteenth to allow time for final training and certifications. We're already in discussions with several experienced offshore personnel, and we expect to fill all positions without difficulty.
44
-
45
- Speaker 1: Perfect. Michael, any final regulatory hurdles we need to address?
46
-
47
- Speaker 3: Just the final BOEM approval, which we're confident about receiving on schedule. Our legal team is also reviewing the latest Coast Guard regulations to ensure full compliance with all maritime safety requirements.
48
-
49
- Speaker 1: Excellent work, everyone. The Poseidon Seven project represents a significant opportunity for Gulf Stream Energy. Let's maintain our focus on safety, environmental responsibility, and operational excellence. I'll schedule our next review meeting for early January to finalize preparations for mobilization. Thank you both for your thorough preparation and commitment to this project.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/text_examples/3p_oil_meeting_natural.txt DELETED
@@ -1,49 +0,0 @@
1
- Speaker 1: Good morning everyone. I'm calling this meeting to discuss our upcoming deepwater drilling project in the, uh, Gulf of Mexico. I'm Robert Martinez, Operations Director at Gulf Stream Energy. With me today are Lisa Thompson, our Chief Engineer, and Michael Davis, our, um, Environmental Compliance Manager. Lisa, can you start by giving us an overview of the, uh, Poseidon Seven project?
2
-
3
- Speaker 2: Absolutely, Robert. The Poseidon Seven site is located approximately one hundred twenty miles southeast of Louisiana in about, um, four thousand feet of water. Our geological surveys indicate we're looking at potentially eight hundred million barrels of recoverable oil reserves. The reservoir sits at approximately eighteen thousand feet below the seafloor, which puts this in the, uh, ultra-deepwater category. We're planning to use our newest drilling platform, the Titan Explorer, which has the capacity to drill to depths of, um, thirty thousand feet.
4
-
5
- Speaker 1: Those are impressive numbers, Lisa. Michael, I know environmental compliance is critical for a project of this scope. What's our, uh, regulatory status?
6
-
7
- Speaker 3: We're making good progress on the regulatory front, Robert. We submitted our Environmental Impact Assessment to the Bureau of Ocean Energy Management three months ago. The public comment period closed last week with, um, generally positive feedback from stakeholder groups. We're expecting final approval within the next sixty days. Our Environmental Management Plan addresses everything from marine life protection to oil spill response protocols. We've also completed baseline studies on local fish populations and, uh, coral reef systems to ensure we can monitor any environmental impacts throughout the drilling operation.
8
-
9
- Speaker 2: From a technical standpoint, we're implementing some cutting-edge drilling technologies for this project. We'll be using managed pressure drilling techniques to maintain optimal wellbore pressure and reduce the risk of, um, blowouts. Our new drilling fluid system is designed to minimize environmental impact while maximizing drilling efficiency. The estimated drilling time is approximately, uh, one hundred eighty days from spud to completion.
10
-
11
- Speaker 1: What about the economic projections for Poseidon Seven? I know the board is very interested in the, um, financial outlook.
12
-
13
- Speaker 2: The economics are very favorable, Robert. With current oil prices hovering around eighty-five dollars per barrel, we're projecting a break-even cost of approximately, uh, fifty-two dollars per barrel. Total development costs are estimated at two point eight billion dollars, including the drilling platform, subsea infrastructure, and, um, pipeline connections to existing facilities. At peak production, we expect to produce approximately, uh, one hundred twenty thousand barrels per day.
14
-
15
- Speaker 3: I should mention that our environmental compliance costs are built into those projections. We're investing heavily in double-hull pipeline systems and real-time environmental monitoring equipment. The additional safety measures add about fifteen percent to our overall project costs, but they're essential for maintaining our environmental stewardship commitments and avoiding potential, um, regulatory penalties.
16
-
17
- Speaker 1: Lisa, what's our timeline looking like for getting this project, uh, operational?
18
-
19
- Speaker 2: We're targeting mobilization of the Titan Explorer for early February, assuming we receive final regulatory approval by, um, mid-January. Drilling operations should commence by March first. If everything goes according to plan, we should reach the target reservoir by late August. Production testing will begin immediately after that, with first oil delivery expected by, uh, November of next year.
20
-
21
- Speaker 3: One important consideration is hurricane season. We'll need to suspend operations and evacuate the platform if any Category Three or higher storms threaten the area. Based on historical weather patterns, we might face two to three weather-related shutdowns during the drilling phase. We've built those delays into our timeline and, um, budget projections.
22
-
23
- Speaker 1: What about staffing requirements for this, uh, operation?
24
-
25
- Speaker 2: The drilling phase will require a crew of one hundred forty-five personnel working twelve-hour shifts on a, um, fourteen-day rotation schedule. Once we transition to production, we'll scale back to about sixty full-time staff. We're working with our Houston training facility to ensure all crew members are certified for deepwater operations and, uh, emergency response procedures.
26
-
27
- Speaker 3: From a safety perspective, all personnel will complete our enhanced deepwater safety training program before deployment. This includes underwater escape training, helicopter safety, and specialized emergency response protocols. We're also stationing two supply vessels and a standby rescue vessel at the site throughout the, um, drilling operation.
28
-
29
- Speaker 1: Excellent. What about our partnerships and, uh, contracting strategy?
30
-
31
- Speaker 2: We've already signed contracts with Oceanic Drilling Services for the platform lease and drilling services. Subsea equipment will be provided by Deep Sea Technologies, and we're working with Coastal Pipeline Solutions for the, um, transportation infrastructure. Total contracted services represent about sixty percent of the project budget, with the remainder being our internal costs and, uh, contingency reserves.
32
-
33
- Speaker 3: We've also established partnerships with three environmental monitoring organizations to provide independent oversight throughout the project. This demonstrates our commitment to transparency and, um, environmental responsibility. These partnerships also help us stay ahead of any potential regulatory changes or, uh, community concerns.
34
-
35
- Speaker 1: This sounds like a well-planned operation. What are the biggest risks we're, uh, monitoring?
36
-
37
- Speaker 2: Weather is always our primary concern with deepwater operations. Equipment failure is another significant risk, which is why we maintain redundant systems for all critical operations. We're also closely watching global oil price volatility, though our break-even analysis shows we remain profitable even if prices drop to, um, sixty dollars per barrel.
38
-
39
- Speaker 3: Environmental risks are obviously a major focus. We have comprehensive spill response plans and equipment staged at multiple locations. Our drilling mud system is designed to minimize any potential impact on marine life, and we're using acoustic monitoring to track whale migration patterns and adjust operations, um, accordingly.
40
-
41
- Speaker 1: Sounds like we have all the major elements covered. Lisa, when do you need final crew assignments, uh, locked in?
42
-
43
- Speaker 2: I'll need the complete crew roster by January fifteenth to allow time for final training and certifications. We're already in discussions with several experienced offshore personnel, and we expect to fill all positions without, um, difficulty.
44
-
45
- Speaker 1: Perfect. Michael, any final regulatory hurdles we need to, uh, address?
46
-
47
- Speaker 3: Just the final BOEM approval, which we're confident about receiving on schedule. Our legal team is also reviewing the latest Coast Guard regulations to ensure full compliance with all, um, maritime safety requirements.
48
-
49
- Speaker 1: Excellent work, everyone. The Poseidon Seven project represents a significant opportunity for Gulf Stream Energy. Let's maintain our focus on safety, environmental responsibility, and, um, operational excellence. I'll schedule our next review meeting for early January to finalize preparations for mobilization. Thank you both for your thorough preparation and, uh, commitment to this project.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/text_examples/4p_gamecreation_meeting.txt DELETED
@@ -1,69 +0,0 @@
1
- Speaker 1: Good morning everyone and welcome to our kickoff meeting for Project Starfall. I'm Alex Rivera, Creative Director at Nebula Studios. We're here to discuss our ambitious new RPG set in a post-apocalyptic space environment. Joining me today are Sarah Kim, our Lead Game Designer, Marcus Chen, Technical Director, and Emma Wilson, Art Director. This project represents our biggest undertaking yet, and I'm excited to dive into the creative vision. Sarah, can you start by outlining the core gameplay concept?
2
-
3
- Speaker 2: Absolutely, Alex. We're designing an open-world RPG where players explore a shattered galaxy after a catastrophic event called the Great Collapse. Think Fallout meets Mass Effect with our own unique twist. Players start as survivors on a derelict space station and must scavenge resources, build alliances, and uncover the mystery behind what destroyed galactic civilization. The core loop involves exploration, crafting, faction management, and deep character progression across multiple star systems.
4
-
5
- Speaker 1: That sounds fantastic. Marcus, from a technical perspective, what engine are we using and what are the key technical challenges we're anticipating?
6
-
7
- Speaker 3: We've decided to build on Unreal Engine 5 to take advantage of Nanite virtualized geometry and Lumen dynamic lighting. This will be crucial for creating the massive scale we need for space environments while maintaining detailed interiors on derelict ships and stations. The biggest technical challenge will be seamless transitions between space flight, station exploration, and planetary surfaces without loading screens. We're looking at a persistent universe with up to thirty-two players in cooperative multiplayer mode.
8
-
9
- Speaker 4: From an art standpoint, we're going for a gritty, lived-in aesthetic that shows the decay of once-great civilizations. Think abandoned megastructures slowly being reclaimed by space vegetation, jury-rigged technology, and makeshift settlements built from salvaged ship parts. We're drawing inspiration from industrial design, brutalist architecture, and biopunk elements. The color palette will contrast the cold emptiness of space with warm, organic lighting in inhabited areas.
10
-
11
- Speaker 1: Emma, that artistic vision sounds perfect for the tone we're aiming for. Sarah, let's talk about the RPG progression systems. How are we differentiating ourselves from other space RPGs?
12
-
13
- Speaker 2: Our progression system focuses on survival skills rather than traditional combat classes. Players develop expertise in areas like engineering, xenobiology, diplomacy, and resource management. Instead of leveling up through combat, advancement comes from discovering ancient technologies, forming successful trade relationships, and solving environmental puzzles. We're also implementing a reputation system where your actions with different survivor factions have lasting consequences across the galaxy.
14
-
15
- Speaker 3: The faction system ties directly into our persistent world technology. Player choices in one star system can affect trade routes, resource availability, and even hostile encounters in completely different regions. We're building dynamic event systems that respond to collective player actions, so the galaxy actually evolves based on community decisions.
16
-
17
- Speaker 1: That emergent gameplay sounds incredible. What's our target scope for launch? How many star systems and hours of content are we planning?
18
-
19
- Speaker 2: We're targeting twelve fully realized star systems at launch, each with multiple explorable locations including derelict ships, abandoned colonies, asteroid mining facilities, and mysterious alien structures. Main story content should provide about forty hours of gameplay, but with side quests, exploration, and faction storylines, we're aiming for over one hundred hours of total content. The procedural encounter system will provide additional replayability.
20
-
21
- Speaker 4: Each star system will have its own distinct visual identity reflecting different stages of the apocalypse. Some regions show recent destruction with floating debris and emergency beacons still broadcasting. Others have been abandoned so long that nature is reclaiming the structures. We're planning some systems that are actively dangerous with environmental hazards like radiation storms and unstable wormholes.
22
-
23
- Speaker 1: Marcus, what's our development timeline looking like? When are we targeting for alpha and beta phases?
24
-
25
- Speaker 3: We're planning an eighteen-month development cycle. Alpha build with core systems functional should be ready in eight months. That'll include basic space flight, one complete star system, and the foundation progression mechanics. Closed beta with invited community members starts at month twelve, featuring six star systems and multiplayer functionality. Open beta launches at month sixteen, just two months before our targeted release date.
26
-
27
- Speaker 2: For the alpha milestone, we'll focus on the core gameplay loop in our primary star system, Haven Sector. This includes the starting space station, two derelict ships to explore, a small trading outpost, and one major faction questline. Players should be able to experience the full cycle of exploration, scavenging, crafting, and story progression.
28
-
29
- Speaker 1: What about our monetization strategy? Are we going with a traditional purchase model or considering live service elements?
30
-
31
- Speaker 3: We're planning a premium purchase at sixty dollars with optional cosmetic DLC and major content expansions. No pay-to-win mechanics or loot boxes. Post-launch, we want to release quarterly content updates adding new star systems, storylines, and gameplay features. The goal is to build a loyal community that grows organically through word-of-mouth rather than aggressive monetization.
32
-
33
- Speaker 4: The cosmetic DLC will focus on ship customization options, unique space suits, and decorative items for player bases. We're also considering partnerships with science fiction authors to create limited-edition content inspired by classic space opera novels. All gameplay-affecting content will be earnable through in-game progression.
34
-
35
- Speaker 1: Sarah, let's discuss our narrative themes. What story are we trying to tell with this post-apocalyptic setting?
36
-
37
- Speaker 2: The core theme is resilience and rebuilding in the face of overwhelming loss. The Great Collapse wasn't just a single catastrophic event, but a cascade of failures including resource depletion, political upheaval, and a mysterious alien phenomenon. Players discover that survival isn't just about individual strength, but about rebuilding connections and communities. The mystery of what caused the collapse drives the main narrative, but the real story is about hope emerging from despair.
38
-
39
- Speaker 4: Visually, we're supporting that theme by showing nature and life persisting in unexpected places. Players might find gardens growing in abandoned ship corridors or discover that some alien species are actually helping ecosystems recover. The contrast between decay and renewal will be a constant visual motif throughout the game.
40
-
41
- Speaker 1: Marcus, what's our target platform strategy?
42
-
43
- Speaker 3: Primary launch on PC through Steam and Epic Games Store. We're also targeting PlayStation 5 and Xbox Series X versions to launch simultaneously. The technical demands are too high for last-generation consoles, but the next-gen hardware can handle our ambitions. We're also investigating a potential Nintendo Switch cloud gaming version, though that would come later if demand supports it.
44
-
45
- Speaker 2: Cross-platform multiplayer is essential for building our community. Whether someone's on PC or console, they should be able to explore the galaxy with their friends. We're designing the UI and controls to work seamlessly across all platforms without compromising the PC experience.
46
-
47
- Speaker 1: What about our competitive landscape? How are we positioning against other space RPGs currently in development?
48
-
49
- Speaker 3: Our main differentiation is the focus on survival and rebuilding rather than combat and conquest. While games like Starfield focus on exploration and empire building, we're emphasizing the human stories of survivors trying to rebuild civilization. The cooperative multiplayer aspect also sets us apart from single-player space RPGs.
50
-
51
- Speaker 4: Artistically, we're going for a more grounded, realistic take on post-apocalyptic space rather than the clean, idealistic future many games portray. Our universe feels lived-in and weathered, with technology that's been repaired and jury-rigged countless times.
52
-
53
- Speaker 1: Excellent points all around. Emma, what's our art production pipeline looking like?
54
-
55
- Speaker 4: We're building a comprehensive art bible over the next six weeks covering everything from ship design principles to alien flora concepts. The environment team will start with the Haven Sector hub area while character artists develop the various survivor faction looks. We're using photogrammetry for realistic texturing and working with concept artists to establish the visual language for different regions of the galaxy.
56
-
57
- Speaker 1: Sarah, any final thoughts on the core pillars we want to focus on during development?
58
-
59
- Speaker 2: Our three pillars are exploration, community, and consequence. Every design decision should support meaningful exploration of both physical spaces and narrative mysteries. The community aspect means both multiplayer cooperation and the single-player experience of building relationships with NPCs and factions. Consequence means that player choices matter and create lasting changes in the game world.
60
-
61
- Speaker 1: Perfect. This is exactly the kind of ambitious, meaningful project that Nebula Studios should be creating. Let's schedule weekly check-ins to track progress against our milestones. Marcus, I'll need technical requirement documents by next Friday. Emma, let's see the first art bible sections by the end of next week. Sarah, can you have the detailed design document for Haven Sector ready for review in ten days?
62
-
63
- Speaker 3: Absolutely, Alex. I'll have the technical specifications and platform requirements ready for review.
64
-
65
- Speaker 4: The art bible sections will be ready on schedule, and I'll include some early concept pieces to help visualize the direction.
66
-
67
- Speaker 2: The Haven Sector design doc will be comprehensive and ready for team review. I'm excited to start building this universe.
68
-
69
- Speaker 1: Fantastic. Project Starfall is officially underway. This is going to be an incredible journey, and I can't wait to see what we create together. Thank you all for your passion and commitment to this vision.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/text_examples/4p_gamecreation_meeting_natural.txt DELETED
@@ -1,69 +0,0 @@
1
- Speaker 1: Good morning everyone and welcome to our kickoff meeting for Project Starfall. I'm Alex Rivera, Creative Director at Nebula Studios. We're here to discuss our ambitious new RPG set in a, um, post-apocalyptic space environment. Joining me today are Sarah Kim, our Lead Game Designer, Marcus Chen, Technical Director, and Emma Wilson, our Art Director. This project represents our biggest undertaking yet, and I'm excited to, uh, dive into the creative vision. Sarah, can you start by outlining the core gameplay concept?
2
-
3
- Speaker 2: Absolutely, Alex. We're designing an open-world RPG where players explore a shattered galaxy after a catastrophic event called the Great Collapse. Think Fallout meets Mass Effect with our own, um, unique twist. Players start as survivors on a derelict space station and must scavenge resources, build alliances, and uncover the mystery behind what destroyed galactic civilization. The core loop involves exploration, crafting, faction management, and, uh, deep character progression across multiple star systems.
4
-
5
- Speaker 1: That sounds fantastic. Marcus, from a technical perspective, what engine are we using and what are the key technical challenges we're, um, anticipating?
6
-
7
- Speaker 3: We've decided to build on Unreal Engine 5 to take advantage of Nanite virtualized geometry and, uh, Lumen dynamic lighting. This will be crucial for creating the massive scale we need for space environments while maintaining detailed interiors on derelict ships and stations. The biggest technical challenge will be seamless transitions between space flight, station exploration, and planetary surfaces without, um, loading screens. We're looking at a persistent universe with up to thirty-two players in, uh, cooperative multiplayer mode.
8
-
9
- Speaker 4: From an art standpoint, we're going for a gritty, lived-in aesthetic that shows the decay of once-great civilizations. Think abandoned megastructures slowly being reclaimed by space vegetation, jury-rigged technology, and makeshift settlements built from, um, salvaged ship parts. We're drawing inspiration from industrial design, brutalist architecture, and biopunk elements. The color palette will contrast the cold emptiness of space with warm, organic lighting in, uh, inhabited areas.
10
-
11
- Speaker 1: Emma, that artistic vision sounds perfect for the tone we're aiming for. Sarah, let's talk about the RPG progression systems. How are we differentiating ourselves from other, um, space RPGs?
12
-
13
- Speaker 2: Our progression system focuses on survival skills rather than traditional combat classes. Players develop expertise in areas like engineering, xenobiology, diplomacy, and, um, resource management. Instead of leveling up through combat, advancement comes from discovering ancient technologies, forming successful trade relationships, and solving environmental puzzles. We're also implementing a reputation system where your actions with different survivor factions have, uh, lasting consequences across the galaxy.
14
-
15
- Speaker 3: The faction system ties directly into our persistent world technology. Player choices in one star system can affect trade routes, resource availability, and even hostile encounters in completely different regions. We're building dynamic event systems that respond to collective player actions, so the galaxy actually evolves based on, um, community decisions.
16
-
17
- Speaker 1: That emergent gameplay sounds incredible. What's our target scope for launch? How many star systems and hours of content are we, uh, planning?
18
-
19
- Speaker 2: We're targeting twelve fully realized star systems at launch, each with multiple explorable locations including derelict ships, abandoned colonies, asteroid mining facilities, and, um, mysterious alien structures. Main story content should provide about forty hours of gameplay, but with side quests, exploration, and faction storylines, we're aiming for over one hundred hours of, uh, total content. The procedural encounter system will provide additional replayability.
20
-
21
- Speaker 4: Each star system will have its own distinct visual identity reflecting different stages of the apocalypse. Some regions show recent destruction with floating debris and emergency beacons still broadcasting. Others have been abandoned so long that nature is reclaiming the structures. We're planning some systems that are actively dangerous with environmental hazards like radiation storms and, um, unstable wormholes.
22
-
23
- Speaker 1: Marcus, what's our development timeline looking like? When are we targeting for, uh, alpha and beta phases?
24
-
25
- Speaker 3: We're planning an eighteen-month development cycle. Alpha build with core systems functional should be ready in, um, eight months. That'll include basic space flight, one complete star system, and the foundation progression mechanics. Closed beta with invited community members starts at month twelve, featuring six star systems and, uh, multiplayer functionality. Open beta launches at month sixteen, just two months before our targeted, um, release date.
26
-
27
- Speaker 2: For the alpha milestone, we'll focus on the core gameplay loop in our primary star system, Haven Sector. This includes the starting space station, two derelict ships to explore, a small trading outpost, and, um, one major faction questline. Players should be able to experience the full cycle of exploration, scavenging, crafting, and, uh, story progression.
28
-
29
- Speaker 1: What about our monetization strategy? Are we going with a traditional purchase model or considering, um, live service elements?
30
-
31
- Speaker 3: We're planning a premium purchase at sixty dollars with optional cosmetic DLC and major content expansions. No pay-to-win mechanics or loot boxes. Post-launch, we want to release quarterly content updates adding new star systems, storylines, and, um, gameplay features. The goal is to build a loyal community that grows organically through word-of-mouth rather than, uh, aggressive monetization.
32
-
33
- Speaker 4: The cosmetic DLC will focus on ship customization options, unique space suits, and decorative items for player bases. We're also considering partnerships with science fiction authors to create limited-edition content inspired by, um, classic space opera novels. All gameplay-affecting content will be earnable through, uh, in-game progression.
34
-
35
- Speaker 1: Sarah, let's discuss our narrative themes. What story are we trying to tell with this, um, post-apocalyptic setting?
36
-
37
- Speaker 2: The core theme is resilience and rebuilding in the face of overwhelming loss. The Great Collapse wasn't just a single catastrophic event, but a cascade of failures including resource depletion, political upheaval, and a, um, mysterious alien phenomenon. Players discover that survival isn't just about individual strength, but about rebuilding connections and communities. The mystery of what caused the collapse drives the main narrative, but the real story is about hope emerging from, uh, despair.
38
-
39
- Speaker 4: Visually, we're supporting that theme by showing nature and life persisting in unexpected places. Players might find gardens growing in abandoned ship corridors or discover that some alien species are actually helping ecosystems recover. The contrast between decay and renewal will be a constant visual motif throughout the, um, game.
40
-
41
- Speaker 1: Marcus, what's our target platform, uh, strategy?
42
-
43
- Speaker 3: Primary launch on PC through Steam and Epic Games Store. We're also targeting PlayStation 5 and Xbox Series X versions to, um, launch simultaneously. The technical demands are too high for last-generation consoles, but the next-gen hardware can handle our ambitions. We're also investigating a potential Nintendo Switch cloud gaming version, though that would come later if, uh, demand supports it.
44
-
45
- Speaker 2: Cross-platform multiplayer is essential for building our community. Whether someone's on PC or console, they should be able to explore the galaxy with their friends. We're designing the UI and controls to work seamlessly across all platforms without compromising the, um, PC experience.
46
-
47
- Speaker 1: What about our competitive landscape? How are we positioning against other space RPGs currently in, uh, development?
48
-
49
- Speaker 3: Our main differentiation is the focus on survival and rebuilding rather than combat and conquest. While games like Starfield focus on exploration and empire building, we're emphasizing the human stories of survivors trying to, um, rebuild civilization. The cooperative multiplayer aspect also sets us apart from, uh, single-player space RPGs.
50
-
51
- Speaker 4: Artistically, we're going for a more grounded, realistic take on post-apocalyptic space rather than the clean, idealistic future many games portray. Our universe feels lived-in and weathered, with technology that's been repaired and, um, jury-rigged countless times.
52
-
53
- Speaker 1: Excellent points all around. Emma, what's our art production pipeline, uh, looking like?
54
-
55
- Speaker 4: We're building a comprehensive art bible over the next six weeks covering everything from ship design principles to, um, alien flora concepts. The environment team will start with the Haven Sector hub area while character artists develop the various survivor faction looks. We're using photogrammetry for realistic texturing and working with concept artists to establish the visual language for different regions of the, uh, galaxy.
56
-
57
- Speaker 1: Sarah, any final thoughts on the core pillars we want to focus on during, um, development?
58
-
59
- Speaker 2: Our three pillars are exploration, community, and consequence. Every design decision should support meaningful exploration of both physical spaces and narrative mysteries. The community aspect means both multiplayer cooperation and the single-player experience of building relationships with NPCs and factions. Consequence means that player choices matter and create, um, lasting changes in the game world.
60
-
61
- Speaker 1: Perfect. This is exactly the kind of ambitious, meaningful project that Nebula Studios should be creating. Let's schedule weekly check-ins to track progress against our milestones. Marcus, I'll need technical requirement documents by next Friday. Emma, let's see the first art bible sections by the end of next week. Sarah, can you have the detailed design document for Haven Sector ready for review in, uh, ten days?
62
-
63
- Speaker 3: Absolutely, Alex. I'll have the technical specifications and platform requirements ready for, uh, review.
64
-
65
- Speaker 4: The art bible sections will be ready on schedule, and I'll include some early concept pieces to help, um, visualize the direction.
66
-
67
- Speaker 2: The Haven Sector design doc will be comprehensive and ready for team review. I'm excited to start building this, uh, universe.
68
-
69
- Speaker 1: Fantastic. Project Starfall is officially underway. This is going to be an incredible journey, and I can't wait to see what we create together. Thank you all for your passion and commitment to this, um, vision.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/text_examples/4p_product_meeting.txt DELETED
@@ -1,35 +0,0 @@
1
- Speaker 1: Good morning everyone, and welcome to our Q4 product launch meeting. I'm Sarah Chen, VP of Product Strategy at A Cloud Centers. We're here to discuss our exciting new AI software suite and the tremendous value it's going to bring to our customers. Let me introduce our team. We have Marcus Thompson, our Head of Sales, Jennifer Rodriguez, our Technical Product Manager, and David Kim, our Customer Success Director. Marcus, would you like to start us off with the market opportunity?
2
-
3
- Speaker 2: Absolutely, Sarah. Thanks for having me on this call. The AI transcription and voice agent market is exploding right now. We're seeing unprecedented demand from enterprises looking to automate their customer service operations and streamline their documentation processes. Our research shows companies are spending an average of forty-two percent of their operational budget on manual transcription and basic customer support tasks. That's where our new product suite comes in to deliver massive cost savings and efficiency gains.
4
-
5
- Speaker 1: That's exactly right, Marcus. Jennifer, can you walk us through our three core products and their key capabilities?
6
-
7
- Speaker 3: Of course, Sarah. We're launching three integrated products under our A Cloud Centers AI Suite. First is TranscribeMax Pro, our enterprise-grade transcription software that delivers ninety-eight point five percent accuracy across forty-seven languages with real-time processing. Second is VoiceAgent Enterprise, our intelligent voice assistant platform that can handle complex customer inquiries, schedule appointments, and process transactions autonomously. And third is ChatBot Intelligence, our conversational AI that integrates seamlessly with existing CRM systems and can handle up to eighty percent of routine customer support tickets without human intervention.
8
-
9
- Speaker 1: Excellent overview, Jennifer. David, from a customer success perspective, what kind of ROI are we projecting for our clients?
10
-
11
- Speaker 4: Sarah, the numbers are really compelling. Our beta customers are seeing an average of sixty-five percent reduction in transcription costs within the first quarter of implementation. For voice agents, we're seeing customer service response times cut by seventy-two percent while maintaining customer satisfaction scores above ninety percent. One of our pilot customers, a major insurance company, calculated they'll save approximately two point four million dollars annually just by implementing our full suite. The productivity gains are transformational.
12
-
13
- Speaker 2: And David, those cost savings directly translate to our pricing advantage in the market. Let me break down our MSRP subscription tiers. For TranscribeMax Pro, we're offering three levels. The Starter plan is seventy-nine dollars per month for up to fifty hours of transcription. The Professional plan is one hundred ninety-nine dollars monthly for unlimited transcription plus advanced features like speaker identification and custom vocabularies. The Enterprise plan is four hundred ninety-nine dollars monthly and includes priority processing, dedicated support, and API access.
14
-
15
- Speaker 3: For VoiceAgent Enterprise, our pricing reflects the sophisticated technology we're delivering. The Basic tier starts at two hundred forty-nine dollars per month for up to five hundred customer interactions. The Advanced tier is five hundred ninety-nine dollars monthly for unlimited interactions plus advanced analytics and custom voice training. The Premium tier is nine hundred ninety-nine dollars monthly and includes white-label options, advanced integrations, and dedicated account management.
16
-
17
- Speaker 4: And for ChatBot Intelligence, we've structured pricing to scale with customer needs. The Essential plan is one hundred twenty-nine dollars per month supporting up to one thousand conversations. The Growth plan is three hundred forty-nine dollars monthly for unlimited conversations plus sentiment analysis and multilingual support. The Enterprise plan is six hundred ninety-nine dollars monthly with full customization, advanced reporting, and integration with enterprise systems like Salesforce and Microsoft Dynamics.
18
-
19
- Speaker 1: Those pricing tiers position us very competitively in the market. Marcus, how are you seeing customer reception during our early sales conversations?
20
-
21
- Speaker 2: The reception has been outstanding, Sarah. We're already seeing strong interest from healthcare systems for transcription services, financial services companies for voice agents, and e-commerce businesses for our chatbot solutions. The integrated nature of our suite is a major differentiator. Customers love that they can get transcription, voice agents, and chatbots from a single vendor with unified billing and support. We're tracking toward exceeding our Q4 sales targets by at least thirty percent.
22
-
23
- Speaker 3: What's particularly exciting from a technical standpoint is how our AI models continue to improve with usage. The more conversations and transcriptions we process, the smarter our systems become for all customers. We're leveraging federated learning to enhance accuracy while maintaining strict data privacy and security standards. Our enterprise customers especially appreciate that their sensitive data never leaves their designated cloud environment.
24
-
25
- Speaker 4: From a customer onboarding perspective, we've streamlined the implementation process significantly. Most customers can be fully operational within two weeks, and our success team provides comprehensive training and ongoing optimization support. We're also offering a thirty-day money-back guarantee on all plans, which has been removing the last barriers for hesitant prospects.
26
-
27
- Speaker 1: That's fantastic to hear across all fronts. Before we wrap up, let's talk about our go-to-market strategy. Marcus, what's our approach for the next quarter?
28
-
29
- Speaker 2: We're focusing on three key verticals initially. Healthcare organizations need transcription for patient notes and telemedicine calls. Financial services companies want voice agents for basic account inquiries and appointment scheduling. And retail companies are looking for chatbots to handle customer support during peak seasons. We're also partnering with major systems integrators who can bundle our solutions with their existing service offerings. The partner channel represents about forty percent of our projected revenue for next year.
30
-
31
- Speaker 3: On the product side, we're already working on our next major release scheduled for Q2 next year. We're adding video transcription capabilities, multilingual voice agents, and advanced conversation analytics. The feedback from our current customers is directly driving our product roadmap, which keeps us laser-focused on delivering real business value.
32
-
33
- Speaker 4: And we're building out our customer success organization to support the growth we're expecting. We're hiring additional technical specialists and expanding our training programs. Customer retention is going to be critical as we scale, so we're investing heavily in ensuring every customer achieves their expected ROI within their first six months.
34
-
35
- Speaker 1: Excellent work everyone. This product suite represents a major milestone for A Cloud Centers, and I'm confident we're positioned to capture significant market share in the AI automation space. Our combination of advanced technology, competitive pricing, and comprehensive customer support gives us a strong competitive advantage. Let's execute on these plans and make Q4 our strongest quarter yet. Thank you all for your time today, and let's make this launch a tremendous success.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/text_examples/4p_product_meeting_natural.txt DELETED
@@ -1,35 +0,0 @@
1
- Speaker 1: Good morning everyone, and welcome to our, uh, Q4 product launch meeting. I'm Sarah Chen, VP of Product Strategy at A Cloud Centers. We're here to discuss our exciting new AI software suite and, um, the tremendous value it's going to bring to our customers. Let me introduce our team. We have Marcus Thompson, our Head of Sales, Jennifer Rodriguez, our Technical Product Manager, and David Kim, our Customer Success Director. Marcus, would you like to start us off with the, uh, market opportunity?
2
-
3
- Speaker 2: Absolutely, Sarah. Thanks for having me on this call. The AI transcription and voice agent market is, um, exploding right now. We're seeing unprecedented demand from enterprises looking to automate their customer service operations and, uh, streamline their documentation processes. Our research shows companies are spending an average of forty-two percent of their operational budget on manual transcription and basic customer support tasks. That's where our new product suite comes in to deliver, um, massive cost savings and efficiency gains.
4
-
5
- Speaker 1: That's exactly right, Marcus. Jennifer, can you walk us through our three core products and their, uh, key capabilities?
6
-
7
- Speaker 3: Of course, Sarah. We're launching three integrated products under our A Cloud Centers AI Suite. First is TranscribeMax Pro, our enterprise-grade transcription software that delivers, um, ninety-eight point five percent accuracy across forty-seven languages with real-time processing. Second is VoiceAgent Enterprise, our intelligent voice assistant platform that can handle complex customer inquiries, schedule appointments, and, uh, process transactions autonomously. And third is ChatBot Intelligence, our conversational AI that integrates seamlessly with existing CRM systems and can handle up to, um, eighty percent of routine customer support tickets without human intervention.
8
-
9
- Speaker 1: Excellent overview, Jennifer. David, from a customer success perspective, what kind of ROI are we, uh, projecting for our clients?
10
-
11
- Speaker 4: Sarah, the numbers are really compelling. Our beta customers are seeing an average of sixty-five percent reduction in transcription costs within the first quarter of implementation. For voice agents, we're seeing customer service response times cut by, um, seventy-two percent while maintaining customer satisfaction scores above ninety percent. One of our pilot customers, a major insurance company, calculated they'll save approximately, uh, two point four million dollars annually just by implementing our full suite. The productivity gains are, um, transformational.
12
-
13
- Speaker 2: And David, those cost savings directly translate to our pricing advantage in the market. Let me break down our MSRP subscription tiers. For TranscribeMax Pro, we're offering three levels. The Starter plan is, uh, seventy-nine dollars per month for up to fifty hours of transcription. The Professional plan is one hundred ninety-nine dollars monthly for unlimited transcription plus advanced features like speaker identification and, um, custom vocabularies. The Enterprise plan is four hundred ninety-nine dollars monthly and includes priority processing, dedicated support, and, uh, API access.
14
-
15
- Speaker 3: For VoiceAgent Enterprise, our pricing reflects the sophisticated technology we're delivering. The Basic tier starts at, um, two hundred forty-nine dollars per month for up to five hundred customer interactions. The Advanced tier is five hundred ninety-nine dollars monthly for unlimited interactions plus advanced analytics and, uh, custom voice training. The Premium tier is nine hundred ninety-nine dollars monthly and includes white-label options, advanced integrations, and, um, dedicated account management.
16
-
17
- Speaker 4: And for ChatBot Intelligence, we've structured pricing to scale with customer needs. The Essential plan is, um, one hundred twenty-nine dollars per month supporting up to one thousand conversations. The Growth plan is three hundred forty-nine dollars monthly for unlimited conversations plus sentiment analysis and, uh, multilingual support. The Enterprise plan is six hundred ninety-nine dollars monthly with full customization, advanced reporting, and, um, integration with enterprise systems like Salesforce and Microsoft Dynamics.
18
-
19
- Speaker 1: Those pricing tiers position us very competitively in the market. Marcus, how are you seeing customer reception during our, uh, early sales conversations?
20
-
21
- Speaker 2: The reception has been outstanding, Sarah. We're already seeing strong interest from healthcare systems for transcription services, financial services companies for voice agents, and, um, e-commerce businesses for our chatbot solutions. The integrated nature of our suite is a major differentiator. Customers love that they can get transcription, voice agents, and chatbots from a single vendor with, uh, unified billing and support. We're tracking toward exceeding our Q4 sales targets by at least, um, thirty percent.
22
-
23
- Speaker 3: What's particularly exciting from a technical standpoint is how our AI models continue to improve with usage. The more conversations and transcriptions we process, the smarter our systems become for all customers. We're leveraging federated learning to enhance accuracy while maintaining, um, strict data privacy and security standards. Our enterprise customers especially appreciate that their sensitive data never leaves their, uh, designated cloud environment.
24
-
25
- Speaker 4: From a customer onboarding perspective, we've, um, streamlined the implementation process significantly. Most customers can be fully operational within two weeks, and our success team provides comprehensive training and, uh, ongoing optimization support. We're also offering a thirty-day money-back guarantee on all plans, which has been removing the last barriers for, um, hesitant prospects.
26
-
27
- Speaker 1: That's fantastic to hear across all fronts. Before we wrap up, let's talk about our, uh, go-to-market strategy. Marcus, what's our approach for the next quarter?
28
-
29
- Speaker 2: We're focusing on three key verticals initially. Healthcare organizations need transcription for patient notes and, um, telemedicine calls. Financial services companies want voice agents for basic account inquiries and appointment scheduling. And retail companies are looking for chatbots to handle customer support during, uh, peak seasons. We're also partnering with major systems integrators who can bundle our solutions with their existing service offerings. The partner channel represents about, um, forty percent of our projected revenue for next year.
30
-
31
- Speaker 3: On the product side, we're already working on our next major release scheduled for, uh, Q2 next year. We're adding video transcription capabilities, multilingual voice agents, and advanced conversation analytics. The feedback from our current customers is directly driving our product roadmap, which keeps us, um, laser-focused on delivering real business value.
32
-
33
- Speaker 4: And we're building out our customer success organization to support the growth we're expecting. We're hiring additional technical specialists and, um, expanding our training programs. Customer retention is going to be critical as we scale, so we're investing heavily in ensuring every customer achieves their expected ROI within their, uh, first six months.
34
-
35
- Speaker 1: Excellent work everyone. This product suite represents a major milestone for A Cloud Centers, and I'm confident we're positioned to capture significant market share in the, um, AI automation space. Our combination of advanced technology, competitive pricing, and comprehensive customer support gives us a, uh, strong competitive advantage. Let's execute on these plans and make Q4 our strongest quarter yet. Thank you all for your time today, and let's make this launch a, um, tremendous success.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backend_modal/voices/en-Alice_woman.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e8b5651dd96e72dfaa1e06d16243c762e5a97f5c14d15601a298e6812b4070a2
3
- size 1292844
 
 
 
 
backend_modal/voices/en-Alice_woman_bgm.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c421eeab1af5b3ddae8d14cfcf6b65e496047ad2228325d61d1b6967fca11700
3
- size 1292878
 
 
 
 
backend_modal/voices/en-Carter_man.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9dd7b12f25bf279d878a9f7a3125f64bff2b312a189959090acff9138a55e8dd
3
- size 1331244
 
 
 
 
backend_modal/voices/en-Frank_man.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:aa77c4794a005c4b05a52bbce5f30e77f0d28987b9a9e737401a5d30fd1ebcb5
3
- size 1158444
 
 
 
 
backend_modal/voices/en-Maya_woman.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:eb1288bc02546c7f1117698fb78e994f060e623af148be8ccbf93dd0bea79e32
3
- size 1305644
 
 
 
 
backend_modal/voices/en-Yasser_man.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:93649459f186603360554627f71dc93d6f23d0a50e4a084b27221c8d224fdaf0
3
- size 1919282
 
 
 
 
backend_modal/voices/in-Samuel_man.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:76b07b5a12ca0b24a1e4a88100c4e2e47a2552ebb96807d52f116cf05fc46b50
3
- size 1273644
 
 
 
 
backend_modal/voices/zh-Anchen_man_bgm.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f71aeb33ed66c449dedb75d8a505478d86d47ec49e0e4c33c1fd0f8324d781fb
3
- size 1177644
 
 
 
 
backend_modal/voices/zh-Bowen_man.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0cef6c018e73e9fb6a1269fd61ded08144ae6380cdec242eebb1cc8aca49fed1
3
- size 1419940