import torch from torch.utils.data import Dataset, DataLoader from transformers import BertTokenizer, BertForSequenceClassification, AdamW, get_linear_schedule_with_warmup from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score import numpy as np # Load the dataset chat_transcripts = ["chat transcript 1", "chat transcript 2", ...] survey_responses = [3.5, 4.2, ...] # Numerical survey responses # Split the data into training, validation, and testing sets train_texts, temp_texts, train_labels, temp_labels = train_test_split(chat_transcripts, survey_responses, test_size=0.3, random_state=42) val_texts, test_texts, val_labels, test_labels = train_test_split(temp_texts, temp_labels, test_size=0.5, random_state=42) # Pre-process the data using BERT tokenizer tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") train_encodings = tokenizer(train_texts, truncation=True, padding=True) val_encodings = tokenizer(val_texts, truncation=True, padding=True) test_encodings = tokenizer(test_texts, truncation=True, padding=True) class SurveyDataset(Dataset): def __init__(self, encodings, labels): self.encodings = encodings self.labels = labels def __getitem__(self, idx): item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()} item['labels'] = torch.tensor(self.labels[idx], dtype=torch.float) return item def __len__(self): return len(self.labels) train_dataset = SurveyDataset(train_encodings, train_labels) val_dataset = SurveyDataset(val_encodings, val_labels) test_dataset = SurveyDataset(test_encodings, test_labels) # Fine-tune the BERT model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=1).to(device) train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False) test_loader = DataLoader(test_dataset, batch_size=8, shuffle=False) optim = AdamW(model.parameters(), lr=2e-5) num_epochs = 3 num_training_steps = num_epochs * len(train_loader) lr_scheduler = get_linear_schedule_with_warmup(optim, num_warmup_steps=0, num_training_steps=num_training_steps) for epoch in range(num_epochs): model.train() for batch in train_loader: optim.zero_grad() input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) labels = batch["labels"].unsqueeze(1).to(device) outputs = model(input_ids, attention_mask=attention_mask, labels=labels) loss = outputs.loss loss.backward() optim.step() lr_scheduler.step() # Evaluate the model model.eval() preds = [] with torch.no_grad(): for batch in test_loader: input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) outputs = model(input_ids, attention_mask=attention_mask) logits = outputs.logits preds.extend(logits.squeeze().tolist()) mse = mean_squared_error(test_labels, preds) r2 = r2_score(test_labels, preds) print("Mean Squared Error:", mse) print("R-squared Score:", r2) def predict_survey_response(chat_transcript, model, tokenizer, device): # Preprocess the chat transcript encoding = tokenizer(chat_transcript, truncation=True, padding=True, return_tensors="pt") # Move tensors to the device input_ids = encoding["input_ids"].to(device) attention_mask = encoding["attention_mask"].to(device) # Predict the survey response using the fine-tuned model model.eval() with torch.no_grad(): outputs = model(input_ids, attention_mask=attention_mask) logits = outputs.logits predicted_response = logits.squeeze().item() return predicted_response # Example usage new_chat_transcript = "A new chat transcript" predicted_response = predict_survey_response(new_chat_transcript, model, tokenizer, device) print("Predicted survey response:", predicted_response)