import pandas as pd import numpy as np import xgboost as xgb # for data visualization: import matplotlib.pyplot as plt import seaborn as sns # for regression: from sklearn.multioutput import MultiOutputRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, mean_absolute_error datafile_path = "data/chat_transcripts_with_embeddings_and_scores.csv" df = pd.read_csv(datafile_path) df['embedding'] = df['embedding'].apply(lambda x: [float(num) for num in x.strip('[]').split(',')]) y_columns = ['avoide', 'avoida', 'avoidb', 'avoidc', 'avoidd', 'anxietye', 'anxietya', 'anxietyb', 'anxietyc', 'anxietyd'] y = df[y_columns].values X_train, X_test, y_train, y_test = train_test_split(list(df.embedding.values), y, test_size=0.2, random_state=42) xg_reg = xgb.XGBRegressor(objective ='reg:squarederror', colsample_bytree = 0.3, learning_rate = 0.1, max_depth = 5, alpha = 10, n_estimators = 10) multioutput_reg = MultiOutputRegressor(xg_reg) multioutput_reg.fit(np.array(X_train).tolist(), y_train) preds = multioutput_reg.predict(np.array(X_test).tolist()) mse = mean_squared_error(y_test, preds) mae = mean_absolute_error(y_test, preds) print(f"ada-002 embedding performance on chat transcripts: mse={mse:.2f}, mae={mae:.2f}") # The mean squared error (MSE) and mean absolute error (MAE) are both metrics for assessing the performance of our regression model. # MSE is calculated by taking the average of the squared differences between the predicted and actual values. It gives more weight to larger errors because they are squared in the calculation. This means that a model could have a relatively high MSE due to a few large errors, even if it made smaller errors on a majority of the instances. # MAE, on the other hand, is calculated by taking the average of the absolute differences between the predicted and actual values. This metric gives equal weight to all errors and is less sensitive to outliers than MSE. column_names = ['avoide', 'avoida', 'avoidb', 'avoidc', 'avoidd', 'anxietye', 'anxietya', 'anxietyb', 'anxietyc', 'anxietyd'] # Create a DataFrame for the predictions preds_df = pd.DataFrame(preds, columns=column_names) # Create a DataFrame for the actual values y_test_df = pd.DataFrame(y_test, columns=column_names) # Create a 2x5 subplot grid fig, axes = plt.subplots(2, 5, figsize=(20, 10)) # Loop over each column for idx, col in enumerate(column_names): # Plot the actual values on the left column sns.histplot(y_test_df[col], bins=10, ax=axes[idx//5, idx%5], color='blue', kde=True) # Plot the predicted values on the right column sns.histplot(preds_df[col], bins=10, ax=axes[idx//5, idx%5], color='red', kde=True) # Set the title of the subplot axes[idx//5, idx%5].set_title(f"{col} - actual vs predicted") # Add a legend plt.legend(labels=['actual', 'predicted']) # Show the plot plt.show()