import pandas as pd import numpy as np from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, mean_absolute_error # Read your data file datafile_path = "data/chat_transcripts_with_embeddings_and_scores.csv" df = pd.read_csv(datafile_path) # Convert embeddings to numpy arrays df['embedding'] = df['embedding'].apply(lambda x: [float(num) for num in x.strip('[]').split(',')]) # Split the data into features (X) and labels (y) X = list(df.embedding.values) y = df[['avoide', 'avoida', 'avoidb', 'avoidc', 'avoidd', 'anxietye', 'anxietya', 'anxietyb', 'anxietyc', 'anxietyd']].values # Split data into training, validation, and testing sets X_train, X_val_test, y_train, y_val_test = train_test_split(X, y, test_size=0.3, random_state=42) X_val, X_test, y_val, y_test = train_test_split(X_val_test, y_val_test, test_size=0.5, random_state=42) # Train your regression model rfr = RandomForestRegressor(n_estimators=100) rfr.fit(X_train, y_train) # Make predictions on the validation data and adjust your model parameters accordingly val_preds = rfr.predict(X_val) val_mse = mean_squared_error(y_val, val_preds) val_mae = mean_absolute_error(y_val, val_preds) print(f"Validation MSE: {val_mse:.2f}, Validation MAE: {val_mae:.2f}") # After adjusting your model parameters, make predictions on the test data test_preds = rfr.predict(X_test) # Evaluate your model test_mse = mean_squared_error(y_test, test_preds) test_mae = mean_absolute_error(y_test, test_preds) print(f"Test MSE: {test_mse:.2f}, Test MAE: {test_mae:.2f}") # The validation set is used during the model building process to assess how well the model is performing. # It helps tune the model's hyperparameters, prevent overfitting and select the best performing model. # A lower Mean Squared Error (MSE) and Mean Absolute Error (MAE) on the validation set indicate a better fit of the model. # These metrics measure the difference between the predicted and actual values. # Validation MSE: The average of the squares of the differences between the predicted and actual values in the validation set. # Validation MAE: The average of the absolute differences between the predicted and actual values in the validation set. # Once we are confident about our model's parameters and performance, we test it on unseen data - the test set. # The test set provides the final measure of the model's performance. # It helps us understand how the model will generalize to new, unseen data. # A lower Mean Squared Error (MSE) and Mean Absolute Error (MAE) on the test set also indicate a better fit of the model. # Test MSE: The average of the squares of the differences between the predicted and actual values in the test set. # Test MAE: The average of the absolute differences between the predicted and actual values in the test set. # Note that if the model's performance on the test set is significantly worse than on the training set, it may be an indication of overfitting.