import os import torch import gradio as gr from huggingface_hub import InferenceClient from model import predict_params, AudioDataset # TODO: Que no diga lo de que no hay 1s_normal al predecir token = os.getenv("HF_TOKEN") client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct", token=token) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_class, id2label_class = predict_params( model_path="A-POR-LOS-8000/distilhubert-finetuned-mixed-data", dataset_path="data/mixed_data", filter_white_noise=True, undersample_normal=True ) model_mon, id2label_mon = predict_params( model_path="A-POR-LOS-8000/distilhubert-finetuned-cry-detector", dataset_path="data/baby_cry_detection", filter_white_noise=False, undersample_normal=False ) def call(audiopath, model, dataset_path, filter_white_noise, undersample_normal=False): model.to(device) model.eval() audio_dataset = AudioDataset(dataset_path, {}, filter_white_noise, undersample_normal) processed_audio = audio_dataset.preprocess_audio(audiopath) inputs = {"input_values": processed_audio.to(device).unsqueeze(0)} with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits return logits def predict(audio_path_pred): with torch.no_grad(): logits = call(audio_path_pred, model=model_class, dataset_path="data/mixed_data", filter_white_noise=True, undersample_normal=False) predicted_class_ids_class = torch.argmax(logits, dim=-1).item() label_class = id2label_class[predicted_class_ids_class] label_mapping = {0: 'Cansancio/Incomodidad', 1: 'Dolor', 2: 'Hambre', 3: 'Problemas para respirar'} label_class = label_mapping.get(predicted_class_ids_class, label_class) return label_class def predict_stream(audio_path_stream): with torch.no_grad(): logits = call(audio_path_stream, model=model_mon, dataset_path="data/baby_cry_detection", filter_white_noise=False, undersample_normal=False) probabilities = torch.nn.functional.softmax(logits, dim=-1) crying_probabilities = probabilities[:, 1] avg_crying_probability = crying_probabilities.mean()*100 if avg_crying_probability < 15: label_class = predict(audio_path_stream) return "Está llorando por:", f"{label_class}. Probabilidad: {avg_crying_probability:.1f}%" else: return "No está llorando.", f"Probabilidad: {avg_crying_probability:.1f}%" def decibelios(audio_path_stream): with torch.no_grad(): logits = call(audio_path_stream, model=model_mon, dataset_path="data/baby_cry_detection", filter_white_noise=False, undersample_normal=False) rms = torch.sqrt(torch.mean(torch.square(logits))) db_level = 20 * torch.log10(rms + 1e-6).item() return db_level def mostrar_decibelios(audio_path_stream, visual_threshold): db_level = decibelios(audio_path_stream) if db_level > visual_threshold: return f"Prediciendo... Decibelios: {db_level:.2f}" elif db_level < visual_threshold: return "Esperando..." def predict_stream_decib(audio_path_stream, visual_threshold): db_level = decibelios(audio_path_stream) if db_level > visual_threshold: llorando, probabilidad = predict_stream(audio_path_stream) return f"{llorando}" else: return "" def chatbot_config(message, history: list[tuple[str, str]]): system_message = "You are a Chatbot specialized in baby health and care." max_tokens = 512 temperature = 0.5 top_p = 0.95 messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message_response in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p): token = message_response.choices[0].delta.content response += token yield response def cambiar_pestaña(): return gr.update(visible=False), gr.update(visible=True) my_theme = gr.themes.Soft( primary_hue="emerald", secondary_hue="green", neutral_hue="slate", text_size="sm", spacing_size="sm", font=[gr.themes.GoogleFont('Nunito'), 'ui-sans-serif', 'system-ui', 'sans-serif'], font_mono=[gr.themes.GoogleFont('Nunito'), 'ui-monospace', 'Consolas', 'monospace'], ).set( body_background_fill='*neutral_50', body_text_color='*neutral_600', body_text_size='*text_sm', embed_radius='*radius_md', shadow_drop='*shadow_spread', shadow_spread='*button_shadow_active' ) with gr.Blocks(theme=my_theme) as demo: with gr.Column(visible=True) as inicial: gr.HTML( """
Iremia es un proyecto llevado a cabo por un grupo de estudiantes interesados en el desarrollo de modelos de inteligencia artificial, enfocados específicamente en casos de uso relevantes para ayudar a cuidar a los más pequeños de la casa.
" "Sabemos que la paternidad puede suponer un gran desafío. Nuestra misión es brindarles a todos los padres unas herramientas de última tecnología que los ayuden a navegar esos primeros meses de vida tan cruciales en el desarrollo de sus pequeños.
" "Chatbot: Pregunta a nuestro asistente que te ayudará con cualquier duda que tengas sobre el cuidado de tu bebé.
" "Analizador: Con nuestro modelo de inteligencia artificial somos capaces de predecir por qué tu hijo de menos de 2 años está llorando.
" "Monitor: Nuestro monitor no es como otros que hay en el mercado, ya que es capaz de reconocer si un sonido es un llanto del bebé o no; y si está llorando, predice automáticamente la causa. Dándote la tranquilidad de saber siempre qué pasa con tu pequeño, ahorrándote tiempo y horas de sueño.
" ) boton_inicial = gr.Button("¡Prueba nuestros modelos!") with gr.Column(visible=False) as chatbot: gr.Markdown("