File size: 8,303 Bytes
74ffc36
 
 
dbf2aa5
74ffc36
 
 
dbf2aa5
74ffc36
 
75b1a69
 
74ffc36
 
 
 
 
 
75b1a69
74ffc36
 
 
 
 
 
dbf2aa5
c6e8ef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74ffc36
c6e8ef5
 
74ffc36
2569b24
 
 
 
 
 
 
74ffc36
 
 
c6e8ef5
 
74ffc36
2569b24
 
 
 
 
 
 
74ffc36
 
dbf2aa5
74ffc36
 
dbf2aa5
74ffc36
 
dbf2aa5
74ffc36
 
dbf2aa5
74ffc36
 
 
 
dbf2aa5
74ffc36
 
 
 
 
c6e8ef5
 
 
75b1a69
 
 
 
 
 
 
 
 
 
 
74ffc36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbf2aa5
 
74ffc36
 
dbf2aa5
74ffc36
 
dbf2aa5
74ffc36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbf2aa5
 
74ffc36
 
 
 
7977c5d
74ffc36
 
 
 
 
 
 
 
 
 
 
7977c5d
74ffc36
 
 
 
 
 
 
 
 
 
 
 
dbf2aa5
 
74ffc36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
import gradio as gr
import logging
from huggingface_hub import login
import os

from threading import Thread

# Status: Breaks during generation

logging.basicConfig(level=logging.DEBUG)

HF_TOKEN = os.environ.get("HF_TOKEN", None)
login(token=HF_TOKEN)

models_available = [
    "NousResearch/Meta-Llama-3.1-8B-Instruct",
    "mistralai/Mistral-7B-Instruct-v0.3",
]

tokenizer_a, model_a = None, None
tokenizer_b, model_b = None, None
torch_dtype = torch.bfloat16

def apply_chat_template(messages, add_generation_prompt=False):
    """
    Function to apply the chat template manually for each message in a list.
    messages: List of dictionaries, each containing a 'role' and 'content'.
    """
    pharia_template = """<|begin_of_text|>"""
    role_map = {
        "system": "<|start_header_id|>system<|end_header_id|>\n",
        "user": "<|start_header_id|>user<|end_header_id|>\n",
        "assistant": "<|start_header_id|>assistant<|end_header_id|>\n",
    }
    
    # Iterate through the messages and apply the template for each role
    for message in messages:
        role = message["role"]
        content = message["content"]
        pharia_template += role_map.get(role, "") + content + "<|eot_id|>\n"
    
    # Add the assistant generation prompt if required
    if add_generation_prompt:
        pharia_template += "<|start_header_id|>assistant<|end_header_id|>\n"
    
    return pharia_template


def load_model_a(model_id):
    global tokenizer_a, model_a, model_id_a
    model_id_a = model_id # need to access model_id with tokenizer
    tokenizer_a = AutoTokenizer.from_pretrained(model_id)
    logging.debug(f"***** model A eos_token: {tokenizer_a.eos_token}")
    model_a = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch_dtype,
        device_map="auto",
        trust_remote_code=True,
    ).eval()
    return gr.update(label=model_id)
    
def load_model_b(model_id):
    global tokenizer_b, model_b, model_id_b
    model_id_b = model_id
    tokenizer_b = AutoTokenizer.from_pretrained(model_id)
    logging.debug(f"***** model B eos_token: {tokenizer_b.eos_token}")
    model_b = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch_dtype,
        device_map="auto",
        trust_remote_code=True,
    ).eval()
    model_b.tie_weights()
    return gr.update(label=model_id)

@spaces.GPU()
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):

    text_streamer_a = TextIteratorStreamer(tokenizer_a, skip_prompt=True)
    text_streamer_b = TextIteratorStreamer(tokenizer_b, skip_prompt=True)

    system_prompt_list = [{"role": "system", "content": system_prompt}] if system_prompt else []
    input_text_list = [{"role": "user", "content": input_text}]

    chat_history_a = []
    for user, assistant in chatbot_a:
        chat_history_a.append({"role": "user", "content": user})
        chat_history_a.append({"role": "assistant", "content": assistant})

    chat_history_b = []
    for user, assistant in chatbot_b:
        chat_history_b.append({"role": "user", "content": user})
        chat_history_b.append({"role": "assistant", "content": assistant})
    
    new_messages_a = system_prompt_list + chat_history_a + input_text_list
    new_messages_b = system_prompt_list + chat_history_b + input_text_list

    input_ids_a = tokenizer_a.apply_chat_template(
        new_messages_a,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model_a.device)

    input_ids_b = tokenizer_b.apply_chat_template(
        new_messages_b,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model_b.device)

    generation_kwargs_a = dict(
        input_ids=input_ids_a,
        streamer=text_streamer_a,
        max_new_tokens=max_new_tokens,
        pad_token_id=tokenizer_a.eos_token_id,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
    )
    generation_kwargs_b = dict(
        input_ids=input_ids_b,
        streamer=text_streamer_b,
        max_new_tokens=max_new_tokens,
        pad_token_id=tokenizer_b.eos_token_id,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
    )

    thread_a = Thread(target=model_a.generate, kwargs=generation_kwargs_a)
    thread_b = Thread(target=model_b.generate, kwargs=generation_kwargs_b)

    thread_a.start()
    thread_b.start()

    chatbot_a.append([input_text, ""])
    chatbot_b.append([input_text, ""])

    finished_a = False
    finished_b = False

    while not (finished_a and finished_b):
        if not finished_a:
            try:
                text_a = next(text_streamer_a)
                if tokenizer_a.eos_token in text_a:
                    eot_location = text_a.find(tokenizer_a.eos_token)
                    text_a = text_a[:eot_location]
                    finished_a = True
                chatbot_a[-1][-1] += text_a
                yield chatbot_a, chatbot_b
            except StopIteration:
                finished_a = True

        if not finished_b:
            try:
                text_b = next(text_streamer_b)
                if tokenizer_b.eos_token in text_b:
                    eot_location = text_b.find(tokenizer_b.eos_token)
                    text_b = text_b[:eot_location]
                    finished_b = True
                chatbot_b[-1][-1] += text_b
                yield chatbot_a, chatbot_b
            except StopIteration:
                finished_b = True

    return chatbot_a, chatbot_b

def clear():
    return [], []

arena_notes = """## Important Notes:
- Sometimes an error may occur when generating the response, in this case, please try again.
"""

with gr.Blocks() as demo:
    with gr.Column():
        gr.HTML("<center><h1>🤖le Royale</h1></center>")
        gr.Markdown(arena_notes)
        system_prompt = gr.Textbox(lines=1, label="System Prompt", value="You are a helpful chatbot. Write a Nike style ad headline about the shame of being second best", show_copy_button=True)
        with gr.Row(variant="panel"):
            with gr.Column():
                model_dropdown_a = gr.Dropdown(label="Model A", choices=models_available, value=None)
                chatbot_a = gr.Chatbot(label="Model A", rtl=True, likeable=True, show_copy_button=True, height=500)
            with gr.Column():
                model_dropdown_b = gr.Dropdown(label="Model B", choices=models_available, value=None)
                chatbot_b = gr.Chatbot(label="Model B", rtl=True, likeable=True, show_copy_button=True, height=500)
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                submit_btn = gr.Button(value="Generate", variant="primary")
                clear_btn = gr.Button(value="Clear", variant="secondary")
            input_text = gr.Textbox(lines=1, label="Output", value="", scale=3, show_copy_button=True)
        with gr.Accordion(label="Generation Configurations", open=False):
            max_new_tokens = gr.Slider(minimum=128, maximum=4096, value=2048, label="Max New Tokens", step=128)
            temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature", step=0.01)
            top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top-p", step=0.01)
            repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)

    model_dropdown_a.change(load_model_a, inputs=[model_dropdown_a], outputs=[chatbot_a])
    model_dropdown_b.change(load_model_b, inputs=[model_dropdown_b], outputs=[chatbot_b])

    input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
    submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
    clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])

if __name__ == "__main__":
    demo.queue().launch()