from transformers import AutoModelForCausalLM, AutoTokenizer import torch import gradio as gr tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") def chat_with_history(message, chat_history=None): # Initialize chat history if not provided if chat_history is None: chat_history = [] # Encode the new user input, add the eos_token, and return a tensor in PyTorch new_user_input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors='pt') # Append the new user input tokens to the chat history bot_input_ids = torch.cat([tokenizer.encode(pair[0] + tokenizer.eos_token, return_tensors='pt') for pair in chat_history] + [new_user_input_ids], dim=-1) # Generate a response while limiting the total chat history to 1000 tokens chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # Decode the last output tokens from bot response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) # Update the chat history with the new user message and bot response chat_history.append([message, response]) return response, chat_history demo = gr.ChatInterface( fn=chat_with_history, examples=["hey how are you ?", "hola", "Yo!"], title="Multi Chat Bot" ) demo.launch()