import torch import torchvision.transforms.functional as TF import torch.nn.functional as F from PIL import Image import cv2 import os from skimage import img_as_ubyte from tqdm import tqdm from natsort import natsorted import glob import argparse from model_arch.SRMNet_SWFF import SRMNet_SWFF from model_arch.SRMNet import SRMNet tasks = ['Deblurring_motionblur', 'Dehaze_realworld', 'Denoise_gaussian', 'Denoise_realworld', 'Deraining_raindrop', 'Deraining_rainstreak', 'LLEnhancement', 'Retouching'] def main(): parser = argparse.ArgumentParser(description='Quick demo Image Restoration') parser.add_argument('--input_dir', default='./test/', type=str, help='Input images root') parser.add_argument('--result_dir', default='./result/', type=str, help='Results images root') parser.add_argument('--weights_root', default='experiments/pretrained_models', type=str, help='Weights root') parser.add_argument('--task', default='Retouching', type=str, help='Restoration task (Above task list)') args = parser.parse_args() # Prepare testing data files = natsorted(glob.glob(os.path.join(args.input_dir, '*'))) if len(files) == 0: raise Exception(f"No files found at {args.input_dir}") os.makedirs(args.result_dir, exist_ok=True) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Build model model = define_model(args) model.eval() model = model.to(device) print('restoring images......') mul = 16 for i, file_ in enumerate(tqdm(files)): img = Image.open(file_).convert('RGB') input_ = TF.to_tensor(img).unsqueeze(0).to(device) # Pad the input if not_multiple_of 8 h, w = input_.shape[2], input_.shape[3] H, W = ((h + mul) // mul) * mul, ((w + mul) // mul) * mul padh = H - h if h % mul != 0 else 0 padw = W - w if w % mul != 0 else 0 input_ = F.pad(input_, (0, padw, 0, padh), 'reflect') with torch.no_grad(): restored = model(input_) restored = torch.clamp(restored, 0, 1) restored = restored[:, :, :h, :w] restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy() restored = img_as_ubyte(restored[0]) f = os.path.splitext(os.path.split(file_)[-1])[0] save_img((os.path.join(args.result_dir, f + '.png')), restored) print('{}'.format(os.path.join(args.result_dir, f + '.png'))) clean_folder(args.input_dir) print('finish !') def define_model(args): # Enhance models if args.task in ['LLEnhancement', 'Retouching']: model = SRMNet(in_chn=3, wf=96, depth=4) weight_path = os.path.join(args.weights_root, args.task + '.pth') load_checkpoint(model, weight_path) # Restored models else: model = SRMNet_SWFF(in_chn=3, wf=96, depth=4) weight_path = os.path.join(args.weights_root, args.task + '.pth') load_checkpoint(model, weight_path) return model def save_img(filepath, img): cv2.imwrite(filepath, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) def load_checkpoint(model, weights): checkpoint = torch.load(weights, map_location=torch.device('cpu')) try: model.load_state_dict(checkpoint["state_dict"]) except: state_dict = checkpoint["state_dict"] new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] # remove `module.` new_state_dict[name] = v model.load_state_dict(new_state_dict) def clean_folder(folder): for filename in os.listdir(folder): file_path = os.path.join(folder, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: print('Failed to delete %s. Reason: %s' % (file_path, e)) if __name__ == '__main__': main()