import streamlit as st import pandas as pd import torch import requests import os from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import login HF_TOKEN = os.getenv("Allie") or "" if HF_TOKEN: login(HF_TOKEN) # Define model map model_map = { "InvestLM": {"id": "yixuantt/InvestLM-mistral-AWQ", "local": False}, "FinLLaMA": {"id": "us4/fin-llama3.1-8b", "local": False}, "FinanceConnect": {"id": "ceadar-ie/FinanceConnect-13B", "local": True}, "Sujet-Finance": {"id": "sujet-ai/Sujet-Finance-8B-v0.1", "local": True}, "FinGPT (LoRA)": {"id": "FinGPT/fingpt-mt_llama2-7b_lora", "local": True} # Placeholder, special handling below } # Load question list @st.cache_data def load_questions(): df = pd.read_csv("questions.csv") return df["Question"].dropna().tolist() # Load local models @st.cache_resource def load_local_model(model_id): tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=HF_TOKEN) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float32, device_map="auto", use_auth_token=HF_TOKEN ) return model, tokenizer # Prompt template PROMPT_TEMPLATE = ( "You are FinGPT, a highly knowledgeable and reliable financial assistant.\n" "Explain the following finance/tax/controlling question clearly, including formulas, examples, and reasons why it matters.\n" "\n" "Question: {question}\n" "Answer:" ) # Local generation def query_local_model(model_id, prompt): model, tokenizer = load_local_model(model_id) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=400, temperature=0.7, top_p=0.9, top_k=40, repetition_penalty=1.2, do_sample=True, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Remote HF inference def query_remote_model(model_id, prompt): headers = {"Authorization": f"Bearer {HF_TOKEN}"} payload = {"inputs": prompt, "parameters": {"max_new_tokens": 400}} response = requests.post( f"https://api-inference.huggingface.co/models/{model_id}", headers=headers, json=payload ) result = response.json() return result[0]["generated_text"] if isinstance(result, list) else result.get("generated_text", "ERROR") # Route to appropriate model def query_model(model_entry, question): prompt = PROMPT_TEMPLATE.format(question=question) if model_entry["id"] == "FinGPT/fingpt-mt_llama2-7b_lora": return "⚠️ FinGPT (LoRA) integration requires manual loading with PEFT and is not available via HF API." elif model_entry["local"]: return query_local_model(model_entry["id"], prompt) else: return query_remote_model(model_entry["id"], prompt) # === UI === st.set_page_config(page_title="Finanzmodell Tester", layout="centered") st.title("📊 Finanzmodell Vergleichs-Interface") questions = load_questions() question_choice = st.selectbox("Wähle eine Frage", questions) model_choice = st.selectbox("Wähle ein Modell", list(model_map.keys())) if st.button("Antwort generieren"): with st.spinner("Antwort wird generiert..."): model_entry = model_map[model_choice] try: answer = query_model(model_entry, question_choice) except Exception as e: answer = f"[Fehler: {str(e)}]" st.text_area("💬 Antwort des Modells:", value=answer, height=400, disabled=True)