import pandas as pd import numpy as np from IPython.display import display from sklearn import preprocessing from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import OneHotEncoder from pickle import dump, load from sklearn.metrics import top_k_accuracy_score # load the model mlp_model = load(open('mlp_classifier.pkl', 'rb')) # load the scaler my_scaler = load(open('scaler.pkl', 'rb')) hot_enc_scaler = load(open('hot_enc.pkl', 'rb')) my_label_enc = load(open('label_enc.pkl', 'rb')) import gradio as gr team_list = ["China" , "Saudi Arabia", "United States", "Finland"] description = ''' This small prototype uses Big Data and AI to guide beginner athletes in choosing the most suitable sport based on their bio info. ''' def classify_sport(Sex,Age,Height,Weight,Team): #pre-processing: numerical_features = [[Age,Height,Weight]] catagorical_features = [[Sex,Team]] numerical_features = my_scaler.transform(numerical_features) catagorical_features = hot_enc_scaler.transform(catagorical_features).toarray() sample_player = np.concatenate((numerical_features[0], catagorical_features[0]), axis=0) #predict: mlp_predicted = mlp_model.predict_proba(sample_player.reshape(1, -1)) k = 5 mlp_predicted_topk_proba = np.sort(mlp_predicted[0])[-k:] top_k_indicies = np.array(mlp_predicted[0].argsort()[-k:]) top_k_classes = my_label_enc.inverse_transform(top_k_indicies) output_dict = {top_k_classes[i]: float(mlp_predicted_topk_proba[i]) for i in range(k)} #advice: advice = "Your Profile looks very promising!\nBased on your Bio, we suggest pursuing {} as a professional player.\nWe also believe that the following sports are very suitable for you: {}"\ .format(top_k_classes[-1], top_k_classes[:-1]) return output_dict, advice demo = gr.Interface( fn=classify_sport, inputs=[gr.inputs.Dropdown(["M" , "F"]),gr.Slider(15, 80),gr.Slider(100, 200),gr.Slider(30, 200), gr.inputs.Dropdown(team_list)], outputs=[gr.outputs.Label(num_top_classes=5), gr.Text(label='Advice')], title= "TalentAI - Suggest Suitable Sport", description= description, article= "Abdulaziz Alakooz developed this prototype as part of Thkaa AI in sports contest - August 2022.") demo.launch()