model_3ed0k4 / src /train.py
3ed0k4's picture
Upload 12 files
65224b2 verified
raw
history blame
4.28 kB
# src/train.py
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import json
from model import TransformerModel
from utils import load_vocab, tokenize
from tqdm import tqdm
import os
import subprocess
class TextDataset(Dataset):
def __init__(self, data_path, vocab, seq_length=50):
with open(data_path, 'r', encoding='utf-8') as f:
self.data = json.load(f)
self.vocab = vocab
self.seq_length = seq_length
def __len__(self):
return len(self.data)
def numericalize(self, tokens):
return [self.vocab.get(token, self.vocab['<UNK>']) for token in tokens]
def __getitem__(self, idx):
tokens = self.data[idx]
numericalized = self.numericalize(tokens)
if len(numericalized) < self.seq_length + 1:
numericalized += [self.vocab['<PAD>']] * (self.seq_length + 1 - len(numericalized))
else:
numericalized = numericalized[:self.seq_length + 1]
input_seq = torch.tensor(numericalized[:-1], dtype=torch.long)
target_seq = torch.tensor(numericalized[1:], dtype=torch.long)
return input_seq, target_seq
def collate_fn(batch):
inputs, targets = zip(*batch)
inputs = torch.stack(inputs)
targets = torch.stack(targets)
return inputs, targets
def get_dataloader(data_path, vocab, batch_size=64, seq_length=50):
dataset = TextDataset(data_path, vocab, seq_length)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
return dataloader
def train_model(config):
# Check if vocab.json exists
if not os.path.exists(config['vocab_path']):
print("vocab.json not found. Running data_processing.py...")
subprocess.run(['python', 'src/data_processing.py'], check=True)
# Load vocabulary
vocab = load_vocab(config['vocab_path'])
vocab_size = len(vocab)
# Initialize model
model = TransformerModel(
vocab_size=vocab_size,
embed_size=config['embed_size'],
num_heads=config['num_heads'],
hidden_dim=config['hidden_dim'],
num_layers=config['num_layers'],
dropout=config['dropout']
)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss(ignore_index=vocab['<PAD>'])
optimizer = optim.Adam(model.parameters(), lr=config['learning_rate'])
# DataLoader
dataloader = get_dataloader(
data_path=config['data_path'],
vocab=vocab,
batch_size=config['batch_size'],
seq_length=config['seq_length']
)
# Training loop
model.train()
for epoch in range(1, config['epochs'] + 1):
epoch_loss = 0
progress = tqdm(dataloader, desc=f"Epoch {epoch}/{config['epochs']}")
for inputs, targets in progress:
inputs = inputs.to(device)
targets = targets.to(device)
optimizer.zero_grad()
src_mask = model.generate_square_subsequent_mask(inputs.size(1)).to(device)
outputs = model(inputs, src_mask)
loss = criterion(outputs.view(-1, vocab_size), targets.view(-1))
loss.backward()
optimizer.step()
epoch_loss += loss.item()
progress.set_postfix(loss=loss.item())
avg_loss = epoch_loss / len(dataloader)
print(f"Epoch {epoch} completed. Average Loss: {avg_loss:.4f}")
# Save model after each epoch
os.makedirs('models', exist_ok=True)
torch.save(model.state_dict(), f"models/3ed0k4_model_epoch{epoch}.pth")
print(f"Model saved at models/3ed0k4_model_epoch{epoch}.pth")
if __name__ == "__main__":
config = {
'vocab_path': 'vocab.json',
'data_path': 'data/processed/tokenized_data.json',
'embed_size': 256,
'num_heads': 8,
'hidden_dim': 512,
'num_layers': 4,
'dropout': 0.1,
'learning_rate': 0.001,
'batch_size': 64,
'seq_length': 50,
'epochs': 10
}
train_model(config)