# step1. set TRAIN_CONFIG path to config file TRAIN_CONFIG="configs/inference/lam-20k-8gpu.yaml" MODEL_NAME="model_zoo/lam_models/releases/lam/lam-20k/step_045500/" IMAGE_INPUT="assets/sample_input/status.png" MOTION_SEQS_DIR="assets/sample_motion/export/Look_In_My_Eyes/" TRAIN_CONFIG=${1:-$TRAIN_CONFIG} MODEL_NAME=${2:-$MODEL_NAME} IMAGE_INPUT=${3:-$IMAGE_INPUT} MOTION_SEQS_DIR=${4:-$MOTION_SEQS_DIR} echo "TRAIN_CONFIG: $TRAIN_CONFIG" echo "IMAGE_INPUT: $IMAGE_INPUT" echo "MODEL_NAME: $MODEL_NAME" echo "MOTION_SEQS_DIR: $MOTION_SEQS_DIR" MOTION_IMG_DIR=null SAVE_PLY=false SAVE_IMG=false VIS_MOTION=false MOTION_IMG_NEED_MASK=true RENDER_FPS=30 MOTION_VIDEO_READ_FPS=30 EXPORT_VIDEO=true CROSS_ID=false TEST_SAMPLE=false GAGA_TRACK_TYPE="" device=0 nodes=0 export PYTHONPATH=$PYTHONPATH:$pwd CUDA_VISIBLE_DEVICES=$device python -m lam.launch infer.lam --config $TRAIN_CONFIG \ model_name=$MODEL_NAME image_input=$IMAGE_INPUT \ export_video=$EXPORT_VIDEO export_mesh=$EXPORT_MESH \ motion_seqs_dir=$MOTION_SEQS_DIR motion_img_dir=$MOTION_IMG_DIR \ vis_motion=$VIS_MOTION motion_img_need_mask=$MOTION_IMG_NEED_MASK \ render_fps=$RENDER_FPS motion_video_read_fps=$MOTION_VIDEO_READ_FPS \ save_ply=$SAVE_PLY save_img=$SAVE_IMG \ gaga_track_type=$GAGA_TRACK_TYPE cross_id=$CROSS_ID \ test_sample=$TEST_SAMPLE rank=$device nodes=$nodes