# Copyright (c) 2024-2025, The Alibaba 3DAIGC Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 import sys import base64 import subprocess import gradio as gr import numpy as np from PIL import Image import argparse from omegaconf import OmegaConf import torch import zipfile from glob import glob import moviepy.editor as mpy from tools.flame_tracking_single_image import FlameTrackingSingleImage from lam.runners.infer.head_utils import prepare_motion_seqs, preprocess_image try: import spaces except: pass h5_rendering = True from gradio_gaussian_render import gaussian_render def launch_env_not_compile_with_cuda(): os.system('pip install chumpy') os.system('pip install numpy==1.23.0') os.system( 'pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt251/download.html' ) def assert_input_image(input_image): if input_image is None: raise gr.Error('No image selected or uploaded!') def prepare_working_dir(): import tempfile working_dir = tempfile.TemporaryDirectory() return working_dir def init_preprocessor(): from lam.utils.preprocess import Preprocessor global preprocessor preprocessor = Preprocessor() def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir): image_raw = os.path.join(working_dir.name, 'raw.png') with Image.fromarray(image_in) as img: img.save(image_raw) image_out = os.path.join(working_dir.name, 'rembg.png') success = preprocessor.preprocess(image_path=image_raw, save_path=image_out, rmbg=remove_bg, recenter=recenter) assert success, f'Failed under preprocess_fn!' return image_out def get_image_base64(path): with open(path, 'rb') as image_file: encoded_string = base64.b64encode(image_file.read()).decode() return f'data:image/png;base64,{encoded_string}' def do_softlink(working_dir, tgt_dir="./runtime_data"): os.system(f"rm {tgt_dir}") cmd = f"ln -s {working_dir} ./runtime_data" os.system(cmd) return cmd def doRender(working_dir): working_dir = working_dir.name cmd = do_softlink(working_dir) print('='*100, "\n"+cmd, '\ndo render', "\n"+"="*100) def save_images2video(img_lst, v_pth, fps): from moviepy.editor import ImageSequenceClip # Ensure all images are in uint8 format images = [image.astype(np.uint8) for image in img_lst] # Create an ImageSequenceClip from the list of images clip = ImageSequenceClip(images, fps=fps) # Write the clip to a video file clip.write_videofile(v_pth, codec='libx264') print(f"Video saved successfully at {v_pth}") def add_audio_to_video(video_path, out_path, audio_path, fps=30): # Import necessary modules from moviepy from moviepy.editor import VideoFileClip, AudioFileClip # Load video file into VideoFileClip object video_clip = VideoFileClip(video_path) # Load audio file into AudioFileClip object audio_clip = AudioFileClip(audio_path) # Hard code clip audio """ if audio_clip.duration > 10: audio_clip = audio_clip.subclip(0, 10) """ # Attach audio clip to video clip (replaces existing audio) video_clip_with_audio = video_clip.set_audio(audio_clip) # Export final video with audio using standard codecs video_clip_with_audio.write_videofile(out_path, codec='libx264', audio_codec='aac', fps=fps) print(f"Audio added successfully at {out_path}") def parse_configs(): parser = argparse.ArgumentParser() parser.add_argument("--config", type=str) parser.add_argument("--infer", type=str) args, unknown = parser.parse_known_args() cfg = OmegaConf.create() cli_cfg = OmegaConf.from_cli(unknown) # parse from ENV if os.environ.get("APP_INFER") is not None: args.infer = os.environ.get("APP_INFER") if os.environ.get("APP_MODEL_NAME") is not None: cli_cfg.model_name = os.environ.get("APP_MODEL_NAME") args.config = args.infer if args.config is None else args.config if args.config is not None: cfg_train = OmegaConf.load(args.config) cfg.source_size = cfg_train.dataset.source_image_res try: cfg.src_head_size = cfg_train.dataset.src_head_size except: cfg.src_head_size = 112 cfg.render_size = cfg_train.dataset.render_image.high _relative_path = os.path.join( cfg_train.experiment.parent, cfg_train.experiment.child, os.path.basename(cli_cfg.model_name).split("_")[-1], ) cfg.save_tmp_dump = os.path.join("exps", "save_tmp", _relative_path) cfg.image_dump = os.path.join("exps", "images", _relative_path) cfg.video_dump = os.path.join("exps", "videos", _relative_path) # output path if args.infer is not None: cfg_infer = OmegaConf.load(args.infer) cfg.merge_with(cfg_infer) cfg.setdefault( "save_tmp_dump", os.path.join("exps", cli_cfg.model_name, "save_tmp") ) cfg.setdefault("image_dump", os.path.join("exps", cli_cfg.model_name, "images")) cfg.setdefault( "video_dump", os.path.join("dumps", cli_cfg.model_name, "videos") ) cfg.setdefault("mesh_dump", os.path.join("dumps", cli_cfg.model_name, "meshes")) cfg.motion_video_read_fps = 30 cfg.merge_with(cli_cfg) cfg.setdefault("logger", "INFO") assert cfg.model_name is not None, "model_name is required" return cfg, cfg_train def create_zip_archive(output_zip='runtime_data/h5_render_data.zip', base_vid="nice", in_fd="./runtime_data"): flame_params_pth = os.path.join("./assets/sample_motion/export", base_vid, "flame_params.json") file_lst = [ f'{in_fd}/lbs_weight_20k.json', f'{in_fd}/offset.ply', f'{in_fd}/skin.glb', f'{in_fd}/vertex_order.json', f'{in_fd}/bone_tree.json', flame_params_pth ] try: # Create a new ZIP file in write mode with zipfile.ZipFile(output_zip, 'w') as zipf: # List all files in the specified directory for file_path in file_lst: zipf.write(file_path, arcname=os.path.join("h5_render_data", os.path.basename(file_path))) print(f"Archive created successfully: {output_zip}") except Exception as e: print(f"An error occurred: {e}") def demo_lam(flametracking, lam, cfg): # @spaces.GPU(duration=80) def core_fn(image_path: str, video_params, working_dir): image_raw = os.path.join(working_dir.name, "raw.png") with Image.open(image_path).convert('RGB') as img: img.save(image_raw) base_vid = os.path.basename(video_params).split(".")[0] flame_params_dir = os.path.join("./assets/sample_motion/export", base_vid, "flame_param") base_iid = os.path.basename(image_path).split('.')[0] image_path = os.path.join("./assets/sample_input", base_iid, "images/00000_00.png") dump_video_path = os.path.join(working_dir.name, "output.mp4") dump_image_path = os.path.join(working_dir.name, "output.png") # prepare dump paths omit_prefix = os.path.dirname(image_raw) image_name = os.path.basename(image_raw) uid = image_name.split(".")[0] subdir_path = os.path.dirname(image_raw).replace(omit_prefix, "") subdir_path = ( subdir_path[1:] if subdir_path.startswith("/") else subdir_path ) print("subdir_path and uid:", subdir_path, uid) motion_seqs_dir = flame_params_dir dump_image_dir = os.path.dirname(dump_image_path) os.makedirs(dump_image_dir, exist_ok=True) print(image_raw, motion_seqs_dir, dump_image_dir, dump_video_path) dump_tmp_dir = dump_image_dir if os.path.exists(dump_video_path): return dump_image_path, dump_video_path motion_img_need_mask = cfg.get("motion_img_need_mask", False) # False vis_motion = cfg.get("vis_motion", False) # False # preprocess input image: segmentation, flame params estimation return_code = flametracking.preprocess(image_raw) assert (return_code == 0), "flametracking preprocess failed!" return_code = flametracking.optimize() assert (return_code == 0), "flametracking optimize failed!" return_code, output_dir = flametracking.export() assert (return_code == 0), "flametracking export failed!" image_path = os.path.join(output_dir, "images/00000_00.png") mask_path = os.path.join(output_dir, "fg_masks/00000_00.png") print("image_path:", image_path, "\n"+"mask_path:", mask_path) aspect_standard = 1.0/1.0 source_size = cfg.source_size render_size = cfg.render_size render_fps = 30 # prepare reference image image, _, _, shape_param = preprocess_image(image_path, mask_path=mask_path, intr=None, pad_ratio=0, bg_color=1., max_tgt_size=None, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1.0], render_tgt_size=source_size, multiply=14, need_mask=True, get_shape_param=True) # save masked image for vis save_ref_img_path = os.path.join(dump_tmp_dir, "output.png") vis_ref_img = (image[0].permute(1, 2, 0).cpu().detach().numpy() * 255).astype(np.uint8) Image.fromarray(vis_ref_img).save(save_ref_img_path) # prepare motion seq src = image_path.split('/')[-3] driven = motion_seqs_dir.split('/')[-2] src_driven = [src, driven] motion_seq = prepare_motion_seqs(motion_seqs_dir, None, save_root=dump_tmp_dir, fps=render_fps, bg_color=1., aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1,0], render_image_res=render_size, multiply=16, need_mask=motion_img_need_mask, vis_motion=vis_motion, shape_param=shape_param, test_sample=False, cross_id=False, src_driven=src_driven) # start inference motion_seq["flame_params"]["betas"] = shape_param.unsqueeze(0) device, dtype = "cuda", torch.float32 print("start to inference...................") with torch.no_grad(): # TODO check device and dtype res = lam.infer_single_view(image.unsqueeze(0).to(device, dtype), None, None, render_c2ws=motion_seq["render_c2ws"].to(device), render_intrs=motion_seq["render_intrs"].to(device), render_bg_colors=motion_seq["render_bg_colors"].to(device), flame_params={k:v.to(device) for k, v in motion_seq["flame_params"].items()}) # save h5 rendering info if h5_rendering: res['cano_gs_lst'][0].save_ply(os.path.join(working_dir.name, "offset.ply"), rgb2sh=False, offset2xyz=True) h5_fd = working_dir.name lam.renderer.flame_model.save_h5_info(shape_param.unsqueeze(0).cuda(), fd=h5_fd) res['cano_gs_lst'][0].save_ply(os.path.join(h5_fd, "offset.ply"), rgb2sh=False, offset2xyz=True) cmd = do_softlink(h5_fd) cmd = "thirdparties/blender/blender --background --python 'tools/generateGLBWithBlender_v2.py'" os.system(cmd) output_zip = os.path.join(h5_fd, "h5_render_data.zip") create_zip_archive(output_zip=output_zip, base_vid=base_vid, in_fd=h5_fd) rgb = res["comp_rgb"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1 mask = res["comp_mask"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1 mask[mask < 0.5] = 0.0 rgb = rgb * mask + (1 - mask) * 1 rgb = (np.clip(rgb, 0, 1.0) * 255).astype(np.uint8) if vis_motion: vis_ref_img = np.tile( cv2.resize(vis_ref_img, (rgb[0].shape[1], rgb[0].shape[0]), interpolation=cv2.INTER_AREA)[None, :, :, :], (rgb.shape[0], 1, 1, 1), ) rgb = np.concatenate([vis_ref_img, rgb, motion_seq["vis_motion_render"]], axis=2) os.makedirs(os.path.dirname(dump_video_path), exist_ok=True) save_images2video(rgb, dump_video_path, render_fps) audio_path = os.path.join("./assets/sample_motion/export", base_vid, base_vid+".wav") dump_video_path_wa = dump_video_path.replace(".mp4", "_audio.mp4") add_audio_to_video(dump_video_path, dump_video_path_wa, audio_path) return dump_image_path, dump_video_path_wa with gr.Blocks(analytics_enabled=False) as demo: logo_url = './assets/images/logo.jpeg' logo_base64 = get_image_base64(logo_url) gr.HTML(f"""