import os import random from threading import Thread from typing import Iterable import torch from huggingface_hub import HfApi from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer ground_truth = "" TOKEN = os.environ.get("HF_TOKEN", None) type2dataset = { "re2text-easy": load_dataset('3B-Group/ConvRe', "en-re2text", token=TOKEN, split="prompt1"), "re2text-hard": load_dataset('3B-Group/ConvRe', "en-re2text", token=TOKEN, split="prompt4"), "text2re-easy": load_dataset('3B-Group/ConvRe', "en-text2re", token=TOKEN, split="prompt1"), "text2re-hard": load_dataset('3B-Group/ConvRe', "en-text2re", token=TOKEN, split="prompt3") } model_id = "meta-llama/Llama-2-7b-chat-hf" tokenizer = AutoTokenizer.from_pretrained(model_id, token=TOKEN) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, token=TOKEN, device_map="auto").eval() # model_id = "google/flan-t5-base" # tokenizer = T5Tokenizer.from_pretrained(model_id) # model = T5ForConditionalGeneration.from_pretrained(model_id, device_map="auto") # type2dataset = {} def generate(input_text, sys_prompt, temperature, max_new_tokens) -> str: sys_prompt = f'''[INST] <> {sys_prompt} <> ''' input_str = sys_prompt + input_text + " [/INST]" input_ids = tokenizer(input_str, return_tensors="pt").to('cuda') streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=float(temperature) ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Pull the generated text from the streamer, and update the model output. model_output = "" for new_text in streamer: model_output += new_text yield model_output return model_output def random_examples(dataset_key) -> str: # target_dataset = type2dataset[f"{task.lower()}-{type.lower()}"] target_dataset = type2dataset[dataset_key] idx = random.randint(0, len(target_dataset) - 1) item = target_dataset[idx] global ground_truth ground_truth = item['answer'] return item['query'] def return_ground_truth() -> str: correct_answer = ground_truth return correct_answer