import numpy as np import av import torch from transformers import AutoImageProcessor, AutoModelForVideoClassification import streamlit as st import torch.nn as nn from streamlit_navigation_bar import st_navbar def read_video_pyav(container, indices): ''' Decode the video with PyAV decoder. Args: container (`av.container.input.InputContainer`): PyAV container. indices (`List[int]`): List of frame indices to decode. Returns: result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ''' frames = [] container.seek(0) start_index = indices[0] end_index = indices[-1] for i, frame in enumerate(container.decode(video=0)): if i > end_index: break if i >= start_index and i in indices: frames.append(frame) return np.stack([x.to_ndarray(format="rgb24") for x in frames]) def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ''' Sample a given number of frame indices from the video. Args: clip_len (`int`): Total number of frames to sample. frame_sample_rate (`int`): Sample every n-th frame. seg_len (`int`): Maximum allowed index of sample's last frame. Returns: indices (`List[int]`): List of sampled frame indices ''' converted_len = int(clip_len * frame_sample_rate) end_idx = np.random.randint(converted_len, seg_len) start_idx = end_idx - converted_len indices = np.linspace(start_idx, end_idx, num=clip_len) indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) return indices def victoire(): gif_url = "https://i.postimg.cc/rDp7xRJY/Happy-Birthday-Confetti.gif" html_gif = f"""
""" st.markdown(html_gif, unsafe_allow_html=True) def classify(model_maneuver,model_Surf_notSurf,file): container = av.open(file) # sample 16 frames indices = sample_frame_indices(clip_len=16, frame_sample_rate=4, seg_len=container.streams.video[0].frames) video = read_video_pyav(container, indices) inputs = image_processor(list(video), return_tensors="pt") with torch.no_grad(): outputs = model_Surf_notSurf(**inputs) logits = outputs.logits predicted_label = logits.argmax(-1).item() print(model_Surf_notSurf.config.id2label[predicted_label]) if model_Surf_notSurf.config.id2label[predicted_label]!='Surfing': return model_Surf_notSurf.config.id2label[predicted_label] else: with torch.no_grad(): outputs = model_maneuver(**inputs) logits = outputs.logits predicted_label = logits.argmax(-1).item() print(model_maneuver.config.id2label[predicted_label]) # st.write(f'Les labels: {model_maneuver.config.id2label}') # st.write(f'répartiton des probilités {logits}') # st.write(f'répartiton des probilités {nn.Softmax(dim=-1)(logits)}') return model_maneuver.config.id2label[predicted_label] model_maneuver = '2nzi/videomae-surf-analytics' model_Surf_notSurf = '2nzi/videomae-surf-analytics-surfNOTsurf' image_processor = AutoImageProcessor.from_pretrained(model_maneuver) model_maneuver = AutoModelForVideoClassification.from_pretrained(model_maneuver) model_Surf_notSurf = AutoModelForVideoClassification.from_pretrained(model_Surf_notSurf) # Define the navigation bar and its pages page = st_navbar(["Home", "Documentation", "Examples", "About Us"]) # Main application code if page == "Home": st.subheader("Surf Analytics") st.markdown(""" Bienvenue sur le projet Surf Analytics réalisé par Walid, Guillaume, Valentine, et Antoine. @Surf-Analytics-Github. """, unsafe_allow_html=True) st.title("Surf Maneuver Classification") uploaded_file = st.file_uploader("Upload a video file", type=["mp4"]) if uploaded_file is not None: video_bytes = uploaded_file.read() st.video(video_bytes) predicted_label = classify(model_maneuver, model_Surf_notSurf, uploaded_file) st.success(f"Predicted Label: {predicted_label}") victoire() elif page == "Documentation": st.title("Documentation") st.markdown("Here you can add your documentation content.") elif page == "Examples": st.title("Examples") st.markdown("Here you can add examples related to your project.") elif page == "About Us": st.title("About") st.markdown("Here you can add information about the project and the team.")