#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'src'))) import argparse import torch import re import json import os import warnings import numpy as np from pathlib import Path from transformers import EsmTokenizer, EsmModel, BertModel, BertTokenizer, AutoModelForMaskedLM from transformers import T5Tokenizer, T5EncoderModel, AutoTokenizer, AutoModel from transformers import logging from peft import PeftModel # Import project modules from models.adapter_model import AdapterModel from models.lora_model import LoraModel from models.pooling import MeanPooling, Attention1dPoolingHead, LightAttentionPoolingHead # Ignore warning information logging.set_verbosity_error() warnings.filterwarnings("ignore") def parse_args(): parser = argparse.ArgumentParser(description="Predict protein function for a single sequence") # Model parameters parser.add_argument('--eval_method', type=str, default="freeze", choices=["freeze", "plm-lora", "plm-qlora", "ses-adapter"], help="Evaluation method") parser.add_argument('--model_path', type=str, required=True, help="Path to the trained model") parser.add_argument('--plm_model', type=str, required=True, help="Pretrained language model name or path") parser.add_argument('--pooling_method', type=str, default="mean", choices=["mean", "attention1d", "light_attention"], help="Pooling method") parser.add_argument('--problem_type', type=str, default="single_label_classification", choices=["single_label_classification", "multi_label_classification", "regression"], help="Problem type") parser.add_argument('--num_labels', type=int, default=2, help="Number of labels") parser.add_argument('--hidden_size', type=int, default=None, help="Embedding hidden size of the model") parser.add_argument('--num_attention_head', type=int, default=8, help="Number of attention heads") parser.add_argument('--attention_probs_dropout', type=float, default=0, help="Attention probs dropout prob") parser.add_argument('--pooling_dropout', type=float, default=0.25, help="Pooling dropout") # Input sequence parameters parser.add_argument('--aa_seq', type=str, required=True, help="Amino acid sequence") parser.add_argument('--foldseek_seq', type=str, default="", help="Foldseek sequence (optional)") parser.add_argument('--ss8_seq', type=str, default="", help="Secondary structure sequence (optional)") parser.add_argument('--dataset', type=str, default="single", help="Dataset name (optional)") parser.add_argument('--use_foldseek', action='store_true', help="Use foldseek sequence") parser.add_argument('--use_ss8', action='store_true', help="Use secondary structure sequence") parser.add_argument('--structure_seq', type=str, default=None, help="Structure sequence types to use (comma-separated)") # Other parameters parser.add_argument('--max_seq_len', type=int, default=1024, help="Maximum sequence length") args = parser.parse_args() # Automatically determine whether to use structure sequences based on input args.use_foldseek = bool(args.foldseek_seq) args.use_ss8 = bool(args.ss8_seq) return args def load_model_and_tokenizer(args): print("---------- Loading Model and Tokenizer ----------") device = "cuda" if torch.cuda.is_available() else "cpu" # Check if model file exists if not os.path.exists(args.model_path): raise FileNotFoundError(f"Model file not found: {args.model_path}") # Load model configuration if available config_path = os.path.join(os.path.dirname(args.model_path), "config.json") try: with open(config_path, "r") as f: config = json.load(f) print(f"Loaded configuration from {config_path}") # Update args with config values if they exist if "pooling_method" in config: args.pooling_method = config["pooling_method"] if "problem_type" in config: args.problem_type = config["problem_type"] if "num_labels" in config: args.num_labels = config["num_labels"] if "num_attention_head" in config: args.num_attention_head = config["num_attention_head"] if "attention_probs_dropout" in config: args.attention_probs_dropout = config["attention_probs_dropout"] if "pooling_dropout" in config: args.pooling_dropout = config["pooling_dropout"] except FileNotFoundError: print(f"Model config not found at {config_path}. Using command line arguments.") # Build tokenizer and protein language model if "esm" in args.plm_model: tokenizer = EsmTokenizer.from_pretrained(args.plm_model) plm_model = EsmModel.from_pretrained(args.plm_model) args.hidden_size = plm_model.config.hidden_size elif "bert" in args.plm_model: tokenizer = BertTokenizer.from_pretrained(args.plm_model, do_lower_case=False) plm_model = BertModel.from_pretrained(args.plm_model) args.hidden_size = plm_model.config.hidden_size elif "prot_t5" in args.plm_model: tokenizer = T5Tokenizer.from_pretrained(args.plm_model, do_lower_case=False) plm_model = T5EncoderModel.from_pretrained(args.plm_model) args.hidden_size = plm_model.config.d_model elif "ankh" in args.plm_model: tokenizer = AutoTokenizer.from_pretrained(args.plm_model, do_lower_case=False) plm_model = T5EncoderModel.from_pretrained(args.plm_model) args.hidden_size = plm_model.config.d_model elif "ProSST" in args.plm_model: tokenizer = AutoTokenizer.from_pretrained(args.plm_model, do_lower_case=False) plm_model = AutoModelForMaskedLM.from_pretrained(args.plm_model).to(device).eval() args.hidden_size = plm_model.config.hidden_size elif "Prime" in args.plm_model: tokenizer = AutoTokenizer.from_pretrained(args.plm_model, do_lower_case=False) plm_model = AutoModelForMaskedLM.from_pretrained(args.plm_model).to(device).eval() args.hidden_size = plm_model.config.hidden_size else: tokenizer = AutoTokenizer.from_pretrained(args.plm_model) plm_model = AutoModel.from_pretrained(args.plm_model) args.hidden_size = plm_model.config.hidden_size args.vocab_size = plm_model.config.vocab_size # Determine structure sequence types if args.structure_seq is None: args.structure_seq = "" print("Warning: structure_seq was None, setting to empty string") # Auto-set structure sequence flags based on structure_seq parameter if 'foldseek_seq' in args.structure_seq: args.use_foldseek = True print("Enabled foldseek_seq based on structure_seq parameter") if 'ss8_seq' in args.structure_seq: args.use_ss8 = True print("Enabled ss8_seq based on structure_seq parameter") # If flags are set but structure_seq is not, update structure_seq structure_seq_list = [] if args.use_foldseek and 'foldseek_seq' not in args.structure_seq: structure_seq_list.append("foldseek_seq") if args.use_ss8 and 'ss8_seq' not in args.structure_seq: structure_seq_list.append("ss8_seq") if structure_seq_list and not args.structure_seq: args.structure_seq = ",".join(structure_seq_list) print(f"Training method: {args.eval_method}") # Default for prediction print(f"Structure sequence: {args.structure_seq}") print(f"Use foldseek: {args.use_foldseek}") print(f"Use ss8: {args.use_ss8}") print(f"Problem type: {args.problem_type}") print(f"Number of labels: {args.num_labels}") print(f"Number of attention heads: {args.num_attention_head}") # Create and load model try: if args.eval_method in ["full", "ses-adapter", "freeze"]: model = AdapterModel(args) # ! lora/ qlora elif args.eval_method in ['plm-lora', 'plm-qlora', 'plm-dora', 'plm-adalora', 'plm-ia3']: model = LoraModel(args) if args.model_path is not None: model_path = args.model_path else: model_path = f"{args.output_root}/{args.output_dir}/{args.output_model_name}" model.load_state_dict(torch.load(model_path)) model.to(device).eval() # ! lora/ qlora if args.eval_method == 'plm-lora': lora_path = model_path.replace(".pt", "_lora") plm_model = PeftModel.from_pretrained(plm_model,lora_path) plm_model = plm_model.merge_and_unload() elif args.eval_method == 'plm-qlora': lora_path = model_path.replace(".pt", "_qlora") plm_model = PeftModel.from_pretrained(plm_model,lora_path) plm_model = plm_model.merge_and_unload() elif args.eval_method == "plm-dora": dora_path = model_path.replace(".pt", "_dora") plm_model = PeftModel.from_pretrained(plm_model, dora_path) plm_model = plm_model.merge_and_unload() elif args.eval_method == "plm-adalora": adalora_path = model_path.replace(".pt", "_adalora") plm_model = PeftModel.from_pretrained(plm_model, adalora_path) plm_model = plm_model.merge_and_unload() elif args.eval_method == "plm-ia3": ia3_path = model_path.replace(".pt", "_ia3") plm_model = PeftModel.from_pretrained(plm_model, ia3_path) plm_model = plm_model.merge_and_unload() plm_model.to(device).eval() plm_model.to(device).eval() return model, plm_model, tokenizer, device except Exception as e: print(f"Error: {str(e)}") raise def process_sequences(args, tokenizer, plm_model_name): """Process and prepare input sequences for prediction""" print("---------- Processing Input Sequences ----------") # Process amino acid sequence aa_seq = args.aa_seq.strip() if not aa_seq: raise ValueError("Amino acid sequence is empty") # Process structure sequences if needed foldseek_seq = args.foldseek_seq.strip() if args.foldseek_seq else "" ss8_seq = args.ss8_seq.strip() if args.ss8_seq else "" # Check if structure sequences are required but not provided if args.use_foldseek and not foldseek_seq: print("Warning: Foldseek sequence is required but not provided.") if args.use_ss8 and not ss8_seq: print("Warning: SS8 sequence is required but not provided.") # Format sequences based on model type if 'prot_bert' in plm_model_name or "prot_t5" in plm_model_name: aa_seq = " ".join(list(aa_seq)) aa_seq = re.sub(r"[UZOB]", "X", aa_seq) if args.use_foldseek and foldseek_seq: foldseek_seq = " ".join(list(foldseek_seq)) if args.use_ss8 and ss8_seq: ss8_seq = " ".join(list(ss8_seq)) elif 'ankh' in plm_model_name: aa_seq = list(aa_seq) if args.use_foldseek and foldseek_seq: foldseek_seq = list(foldseek_seq) if args.use_ss8 and ss8_seq: ss8_seq = list(ss8_seq) # Truncate sequences if needed if args.max_seq_len: aa_seq = aa_seq[:args.max_seq_len] if args.use_foldseek and foldseek_seq: foldseek_seq = foldseek_seq[:args.max_seq_len] if args.use_ss8 and ss8_seq: ss8_seq = ss8_seq[:args.max_seq_len] # Tokenize sequences if 'ankh' in plm_model_name: aa_inputs = tokenizer.batch_encode_plus([aa_seq], add_special_tokens=True, padding=True, is_split_into_words=True, return_tensors="pt") if args.use_foldseek and foldseek_seq: foldseek_inputs = tokenizer.batch_encode_plus([foldseek_seq], add_special_tokens=True, padding=True, is_split_into_words=True, return_tensors="pt") if args.use_ss8 and ss8_seq: ss8_inputs = tokenizer.batch_encode_plus([ss8_seq], add_special_tokens=True, padding=True, is_split_into_words=True, return_tensors="pt") else: aa_inputs = tokenizer([aa_seq], return_tensors="pt", padding=True, truncation=True) if args.use_foldseek and foldseek_seq: foldseek_inputs = tokenizer([foldseek_seq], return_tensors="pt", padding=True, truncation=True) if args.use_ss8 and ss8_seq: ss8_inputs = tokenizer([ss8_seq], return_tensors="pt", padding=True, truncation=True) # Prepare data dictionary data_dict = { "aa_seq_input_ids": aa_inputs["input_ids"], "aa_seq_attention_mask": aa_inputs["attention_mask"], } # 只有 ProSST 模型需要结构标记 if "ProSST" in plm_model_name and hasattr(args, 'prosst_stru_token') and args.prosst_stru_token: try: # 处理 ProSST 结构标记 if isinstance(args.prosst_stru_token, str): seq_clean = args.prosst_stru_token.strip("[]").replace(" ","") tokens = list(map(int, seq_clean.split(','))) if seq_clean else [] elif isinstance(args.prosst_stru_token, (list, tuple)): tokens = [int(x) for x in args.prosst_stru_token] else: tokens = [] # 添加到数据字典 if tokens: stru_tokens = torch.tensor([tokens], dtype=torch.long) data_dict["aa_seq_stru_tokens"] = stru_tokens else: # 如果没有标记,则使用零填充 data_dict["aa_seq_stru_tokens"] = torch.zeros_like(aa_inputs["input_ids"], dtype=torch.long) except Exception as e: print(f"Warning: Failed to process ProSST structure tokens: {e}") # 使用零填充 data_dict["aa_seq_stru_tokens"] = torch.zeros_like(aa_inputs["input_ids"], dtype=torch.long) if args.use_foldseek and foldseek_seq: data_dict["foldseek_seq_input_ids"] = foldseek_inputs["input_ids"] if args.use_ss8 and ss8_seq: data_dict["ss8_seq_input_ids"] = ss8_inputs["input_ids"] print("Processed input sequences with keys:", data_dict.keys()) return data_dict def predict(model, data_dict, device, args, plm_model): """Run prediction on the processed input data""" print("---------- Running Prediction ----------") # Move data to device for k, v in data_dict.items(): data_dict[k] = v.to(device) # Run model inference with torch.no_grad(): outputs = model(plm_model, data_dict) # Pass the actual plm_model instead of None # Process outputs based on problem type if args.problem_type == "regression": predictions = outputs.squeeze().item() print(f"Prediction result: {predictions}") return {"prediction": predictions} elif args.problem_type == "single_label_classification": probabilities = torch.nn.functional.softmax(outputs, dim=1) predicted_class = torch.argmax(probabilities, dim=1).item() class_probs = probabilities.squeeze().tolist() # Ensure class_probs is a list if not isinstance(class_probs, list): class_probs = [class_probs] print(f"Predicted class: {predicted_class}") print(f"Class probabilities: {class_probs}") return { "predicted_class": predicted_class, "probabilities": class_probs } elif args.problem_type == "multi_label_classification": sigmoid_outputs = torch.sigmoid(outputs) predictions = (sigmoid_outputs > 0.5).int().squeeze().tolist() probabilities = sigmoid_outputs.squeeze().tolist() # Ensure predictions and probabilities are lists if not isinstance(predictions, list): predictions = [predictions] if not isinstance(probabilities, list): probabilities = [probabilities] print(f"Predicted labels: {predictions}") print(f"Label probabilities: {probabilities}") return { "predictions": predictions, "probabilities": probabilities } def main(): try: # Parse arguments args = parse_args() # Load model, tokenizer and get device model, plm_model, tokenizer, device = load_model_and_tokenizer(args) # Process input sequences data_dict = process_sequences(args, tokenizer, args.plm_model) # Run prediction results = predict(model, data_dict, device, args, plm_model) # Output results print("\n---------- Prediction Results ----------") print(json.dumps(results, indent=2)) return 0 except Exception as e: print(f"Error: {str(e)}") import traceback traceback.print_exc() return 1 if __name__ == "__main__": sys.exit(main())