/* * Copyright (C) 2023, Inria * GRAPHDECO research group, https://team.inria.fr/graphdeco * All rights reserved. * * This software is free for non-commercial, research and evaluation use * under the terms of the LICENSE.md file. * * For inquiries contact george.drettakis@inria.fr */ #include "backward.h" #include "auxiliary.h" #include #include namespace cg = cooperative_groups; // Backward pass for conversion of spherical harmonics to RGB for // each Gaussian. __device__ void computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3* means, glm::vec3 campos, const float* shs, const bool* clamped, const glm::vec3* dL_dcolor, glm::vec3* dL_dmeans, glm::vec3* dL_dshs) { // Compute intermediate values, as it is done during forward glm::vec3 pos = means[idx]; glm::vec3 dir_orig = pos - campos; glm::vec3 dir = dir_orig / glm::length(dir_orig); glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs; // Use PyTorch rule for clamping: if clamping was applied, // gradient becomes 0. glm::vec3 dL_dRGB = dL_dcolor[idx]; dL_dRGB.x *= clamped[3 * idx + 0] ? 0 : 1; dL_dRGB.y *= clamped[3 * idx + 1] ? 0 : 1; dL_dRGB.z *= clamped[3 * idx + 2] ? 0 : 1; glm::vec3 dRGBdx(0, 0, 0); glm::vec3 dRGBdy(0, 0, 0); glm::vec3 dRGBdz(0, 0, 0); float x = dir.x; float y = dir.y; float z = dir.z; // Target location for this Gaussian to write SH gradients to glm::vec3* dL_dsh = dL_dshs + idx * max_coeffs; // No tricks here, just high school-level calculus. float dRGBdsh0 = SH_C0; dL_dsh[0] = dRGBdsh0 * dL_dRGB; if (deg > 0) { float dRGBdsh1 = -SH_C1 * y; float dRGBdsh2 = SH_C1 * z; float dRGBdsh3 = -SH_C1 * x; dL_dsh[1] = dRGBdsh1 * dL_dRGB; dL_dsh[2] = dRGBdsh2 * dL_dRGB; dL_dsh[3] = dRGBdsh3 * dL_dRGB; dRGBdx = -SH_C1 * sh[3]; dRGBdy = -SH_C1 * sh[1]; dRGBdz = SH_C1 * sh[2]; if (deg > 1) { float xx = x * x, yy = y * y, zz = z * z; float xy = x * y, yz = y * z, xz = x * z; float dRGBdsh4 = SH_C2[0] * xy; float dRGBdsh5 = SH_C2[1] * yz; float dRGBdsh6 = SH_C2[2] * (2.f * zz - xx - yy); float dRGBdsh7 = SH_C2[3] * xz; float dRGBdsh8 = SH_C2[4] * (xx - yy); dL_dsh[4] = dRGBdsh4 * dL_dRGB; dL_dsh[5] = dRGBdsh5 * dL_dRGB; dL_dsh[6] = dRGBdsh6 * dL_dRGB; dL_dsh[7] = dRGBdsh7 * dL_dRGB; dL_dsh[8] = dRGBdsh8 * dL_dRGB; dRGBdx += SH_C2[0] * y * sh[4] + SH_C2[2] * 2.f * -x * sh[6] + SH_C2[3] * z * sh[7] + SH_C2[4] * 2.f * x * sh[8]; dRGBdy += SH_C2[0] * x * sh[4] + SH_C2[1] * z * sh[5] + SH_C2[2] * 2.f * -y * sh[6] + SH_C2[4] * 2.f * -y * sh[8]; dRGBdz += SH_C2[1] * y * sh[5] + SH_C2[2] * 2.f * 2.f * z * sh[6] + SH_C2[3] * x * sh[7]; if (deg > 2) { float dRGBdsh9 = SH_C3[0] * y * (3.f * xx - yy); float dRGBdsh10 = SH_C3[1] * xy * z; float dRGBdsh11 = SH_C3[2] * y * (4.f * zz - xx - yy); float dRGBdsh12 = SH_C3[3] * z * (2.f * zz - 3.f * xx - 3.f * yy); float dRGBdsh13 = SH_C3[4] * x * (4.f * zz - xx - yy); float dRGBdsh14 = SH_C3[5] * z * (xx - yy); float dRGBdsh15 = SH_C3[6] * x * (xx - 3.f * yy); dL_dsh[9] = dRGBdsh9 * dL_dRGB; dL_dsh[10] = dRGBdsh10 * dL_dRGB; dL_dsh[11] = dRGBdsh11 * dL_dRGB; dL_dsh[12] = dRGBdsh12 * dL_dRGB; dL_dsh[13] = dRGBdsh13 * dL_dRGB; dL_dsh[14] = dRGBdsh14 * dL_dRGB; dL_dsh[15] = dRGBdsh15 * dL_dRGB; dRGBdx += ( SH_C3[0] * sh[9] * 3.f * 2.f * xy + SH_C3[1] * sh[10] * yz + SH_C3[2] * sh[11] * -2.f * xy + SH_C3[3] * sh[12] * -3.f * 2.f * xz + SH_C3[4] * sh[13] * (-3.f * xx + 4.f * zz - yy) + SH_C3[5] * sh[14] * 2.f * xz + SH_C3[6] * sh[15] * 3.f * (xx - yy)); dRGBdy += ( SH_C3[0] * sh[9] * 3.f * (xx - yy) + SH_C3[1] * sh[10] * xz + SH_C3[2] * sh[11] * (-3.f * yy + 4.f * zz - xx) + SH_C3[3] * sh[12] * -3.f * 2.f * yz + SH_C3[4] * sh[13] * -2.f * xy + SH_C3[5] * sh[14] * -2.f * yz + SH_C3[6] * sh[15] * -3.f * 2.f * xy); dRGBdz += ( SH_C3[1] * sh[10] * xy + SH_C3[2] * sh[11] * 4.f * 2.f * yz + SH_C3[3] * sh[12] * 3.f * (2.f * zz - xx - yy) + SH_C3[4] * sh[13] * 4.f * 2.f * xz + SH_C3[5] * sh[14] * (xx - yy)); } } } // The view direction is an input to the computation. View direction // is influenced by the Gaussian's mean, so SHs gradients // must propagate back into 3D position. glm::vec3 dL_ddir(glm::dot(dRGBdx, dL_dRGB), glm::dot(dRGBdy, dL_dRGB), glm::dot(dRGBdz, dL_dRGB)); // Account for normalization of direction float3 dL_dmean = dnormvdv(float3{ dir_orig.x, dir_orig.y, dir_orig.z }, float3{ dL_ddir.x, dL_ddir.y, dL_ddir.z }); // Gradients of loss w.r.t. Gaussian means, but only the portion // that is caused because the mean affects the view-dependent color. // Additional mean gradient is accumulated in below methods. dL_dmeans[idx] += glm::vec3(dL_dmean.x, dL_dmean.y, dL_dmean.z); } // Backward version of INVERSE 2D covariance matrix computation // (due to length launched as separate kernel before other // backward steps contained in preprocess) __global__ void computeCov2DCUDA(int P, const float3* means, const int* radii, const float* cov3Ds, const float h_x, float h_y, const float tan_fovx, float tan_fovy, const float* view_matrix, const float* dL_dconics, float3* dL_dmeans, float* dL_dcov) { auto idx = cg::this_grid().thread_rank(); if (idx >= P || !(radii[idx] > 0)) return; // Reading location of 3D covariance for this Gaussian const float* cov3D = cov3Ds + 6 * idx; // Fetch gradients, recompute 2D covariance and relevant // intermediate forward results needed in the backward. float3 mean = means[idx]; float3 dL_dconic = { dL_dconics[4 * idx], dL_dconics[4 * idx + 1], dL_dconics[4 * idx + 3] }; float3 t = transformPoint4x3(mean, view_matrix); const float limx = 1.3f * tan_fovx; const float limy = 1.3f * tan_fovy; const float txtz = t.x / t.z; const float tytz = t.y / t.z; t.x = min(limx, max(-limx, txtz)) * t.z; t.y = min(limy, max(-limy, tytz)) * t.z; const float x_grad_mul = txtz < -limx || txtz > limx ? 0 : 1; const float y_grad_mul = tytz < -limy || tytz > limy ? 0 : 1; glm::mat3 J = glm::mat3(h_x / t.z, 0.0f, -(h_x * t.x) / (t.z * t.z), 0.0f, h_y / t.z, -(h_y * t.y) / (t.z * t.z), 0, 0, 0); glm::mat3 W = glm::mat3( view_matrix[0], view_matrix[4], view_matrix[8], view_matrix[1], view_matrix[5], view_matrix[9], view_matrix[2], view_matrix[6], view_matrix[10]); glm::mat3 Vrk = glm::mat3( cov3D[0], cov3D[1], cov3D[2], cov3D[1], cov3D[3], cov3D[4], cov3D[2], cov3D[4], cov3D[5]); glm::mat3 T = W * J; glm::mat3 cov2D = glm::transpose(T) * glm::transpose(Vrk) * T; // Use helper variables for 2D covariance entries. More compact. float a = cov2D[0][0] += 0.3f; float b = cov2D[0][1]; float c = cov2D[1][1] += 0.3f; float denom = a * c - b * b; float dL_da = 0, dL_db = 0, dL_dc = 0; float denom2inv = 1.0f / ((denom * denom) + 0.0000001f); if (denom2inv != 0) { // Gradients of loss w.r.t. entries of 2D covariance matrix, // given gradients of loss w.r.t. conic matrix (inverse covariance matrix). // e.g., dL / da = dL / d_conic_a * d_conic_a / d_a dL_da = denom2inv * (-c * c * dL_dconic.x + 2 * b * c * dL_dconic.y + (denom - a * c) * dL_dconic.z); dL_dc = denom2inv * (-a * a * dL_dconic.z + 2 * a * b * dL_dconic.y + (denom - a * c) * dL_dconic.x); dL_db = denom2inv * 2 * (b * c * dL_dconic.x - (denom + 2 * b * b) * dL_dconic.y + a * b * dL_dconic.z); // Gradients of loss L w.r.t. each 3D covariance matrix (Vrk) entry, // given gradients w.r.t. 2D covariance matrix (diagonal). // cov2D = transpose(T) * transpose(Vrk) * T; dL_dcov[6 * idx + 0] = (T[0][0] * T[0][0] * dL_da + T[0][0] * T[1][0] * dL_db + T[1][0] * T[1][0] * dL_dc); dL_dcov[6 * idx + 3] = (T[0][1] * T[0][1] * dL_da + T[0][1] * T[1][1] * dL_db + T[1][1] * T[1][1] * dL_dc); dL_dcov[6 * idx + 5] = (T[0][2] * T[0][2] * dL_da + T[0][2] * T[1][2] * dL_db + T[1][2] * T[1][2] * dL_dc); // Gradients of loss L w.r.t. each 3D covariance matrix (Vrk) entry, // given gradients w.r.t. 2D covariance matrix (off-diagonal). // Off-diagonal elements appear twice --> double the gradient. // cov2D = transpose(T) * transpose(Vrk) * T; dL_dcov[6 * idx + 1] = 2 * T[0][0] * T[0][1] * dL_da + (T[0][0] * T[1][1] + T[0][1] * T[1][0]) * dL_db + 2 * T[1][0] * T[1][1] * dL_dc; dL_dcov[6 * idx + 2] = 2 * T[0][0] * T[0][2] * dL_da + (T[0][0] * T[1][2] + T[0][2] * T[1][0]) * dL_db + 2 * T[1][0] * T[1][2] * dL_dc; dL_dcov[6 * idx + 4] = 2 * T[0][2] * T[0][1] * dL_da + (T[0][1] * T[1][2] + T[0][2] * T[1][1]) * dL_db + 2 * T[1][1] * T[1][2] * dL_dc; } else { for (int i = 0; i < 6; i++) dL_dcov[6 * idx + i] = 0; } // Gradients of loss w.r.t. upper 2x3 portion of intermediate matrix T // cov2D = transpose(T) * transpose(Vrk) * T; float dL_dT00 = 2 * (T[0][0] * Vrk[0][0] + T[0][1] * Vrk[0][1] + T[0][2] * Vrk[0][2]) * dL_da + (T[1][0] * Vrk[0][0] + T[1][1] * Vrk[0][1] + T[1][2] * Vrk[0][2]) * dL_db; float dL_dT01 = 2 * (T[0][0] * Vrk[1][0] + T[0][1] * Vrk[1][1] + T[0][2] * Vrk[1][2]) * dL_da + (T[1][0] * Vrk[1][0] + T[1][1] * Vrk[1][1] + T[1][2] * Vrk[1][2]) * dL_db; float dL_dT02 = 2 * (T[0][0] * Vrk[2][0] + T[0][1] * Vrk[2][1] + T[0][2] * Vrk[2][2]) * dL_da + (T[1][0] * Vrk[2][0] + T[1][1] * Vrk[2][1] + T[1][2] * Vrk[2][2]) * dL_db; float dL_dT10 = 2 * (T[1][0] * Vrk[0][0] + T[1][1] * Vrk[0][1] + T[1][2] * Vrk[0][2]) * dL_dc + (T[0][0] * Vrk[0][0] + T[0][1] * Vrk[0][1] + T[0][2] * Vrk[0][2]) * dL_db; float dL_dT11 = 2 * (T[1][0] * Vrk[1][0] + T[1][1] * Vrk[1][1] + T[1][2] * Vrk[1][2]) * dL_dc + (T[0][0] * Vrk[1][0] + T[0][1] * Vrk[1][1] + T[0][2] * Vrk[1][2]) * dL_db; float dL_dT12 = 2 * (T[1][0] * Vrk[2][0] + T[1][1] * Vrk[2][1] + T[1][2] * Vrk[2][2]) * dL_dc + (T[0][0] * Vrk[2][0] + T[0][1] * Vrk[2][1] + T[0][2] * Vrk[2][2]) * dL_db; // Gradients of loss w.r.t. upper 3x2 non-zero entries of Jacobian matrix // T = W * J float dL_dJ00 = W[0][0] * dL_dT00 + W[0][1] * dL_dT01 + W[0][2] * dL_dT02; float dL_dJ02 = W[2][0] * dL_dT00 + W[2][1] * dL_dT01 + W[2][2] * dL_dT02; float dL_dJ11 = W[1][0] * dL_dT10 + W[1][1] * dL_dT11 + W[1][2] * dL_dT12; float dL_dJ12 = W[2][0] * dL_dT10 + W[2][1] * dL_dT11 + W[2][2] * dL_dT12; float tz = 1.f / t.z; float tz2 = tz * tz; float tz3 = tz2 * tz; // Gradients of loss w.r.t. transformed Gaussian mean t float dL_dtx = x_grad_mul * -h_x * tz2 * dL_dJ02; float dL_dty = y_grad_mul * -h_y * tz2 * dL_dJ12; float dL_dtz = -h_x * tz2 * dL_dJ00 - h_y * tz2 * dL_dJ11 + (2 * h_x * t.x) * tz3 * dL_dJ02 + (2 * h_y * t.y) * tz3 * dL_dJ12; // Account for transformation of mean to t // t = transformPoint4x3(mean, view_matrix); float3 dL_dmean = transformVec4x3Transpose({ dL_dtx, dL_dty, dL_dtz }, view_matrix); // Gradients of loss w.r.t. Gaussian means, but only the portion // that is caused because the mean affects the covariance matrix. // Additional mean gradient is accumulated in BACKWARD::preprocess. dL_dmeans[idx] = dL_dmean; } // Backward pass for the conversion of scale and rotation to a // 3D covariance matrix for each Gaussian. __device__ void computeCov3D(int idx, const glm::vec3 scale, float mod, const glm::vec4 rot, const float* dL_dcov3Ds, glm::vec3* dL_dscales, glm::vec4* dL_drots) { // Recompute (intermediate) results for the 3D covariance computation. glm::vec4 q = rot;// / glm::length(rot); float r = q.x; float x = q.y; float y = q.z; float z = q.w; glm::mat3 R = glm::mat3( 1.f - 2.f * (y * y + z * z), 2.f * (x * y - r * z), 2.f * (x * z + r * y), 2.f * (x * y + r * z), 1.f - 2.f * (x * x + z * z), 2.f * (y * z - r * x), 2.f * (x * z - r * y), 2.f * (y * z + r * x), 1.f - 2.f * (x * x + y * y) ); glm::mat3 S = glm::mat3(1.0f); glm::vec3 s = mod * scale; S[0][0] = s.x; S[1][1] = s.y; S[2][2] = s.z; glm::mat3 M = S * R; const float* dL_dcov3D = dL_dcov3Ds + 6 * idx; glm::vec3 dunc(dL_dcov3D[0], dL_dcov3D[3], dL_dcov3D[5]); glm::vec3 ounc = 0.5f * glm::vec3(dL_dcov3D[1], dL_dcov3D[2], dL_dcov3D[4]); // Convert per-element covariance loss gradients to matrix form glm::mat3 dL_dSigma = glm::mat3( dL_dcov3D[0], 0.5f * dL_dcov3D[1], 0.5f * dL_dcov3D[2], 0.5f * dL_dcov3D[1], dL_dcov3D[3], 0.5f * dL_dcov3D[4], 0.5f * dL_dcov3D[2], 0.5f * dL_dcov3D[4], dL_dcov3D[5] ); // Compute loss gradient w.r.t. matrix M // dSigma_dM = 2 * M glm::mat3 dL_dM = 2.0f * M * dL_dSigma; glm::mat3 Rt = glm::transpose(R); glm::mat3 dL_dMt = glm::transpose(dL_dM); // Gradients of loss w.r.t. scale glm::vec3* dL_dscale = dL_dscales + idx; dL_dscale->x = glm::dot(Rt[0], dL_dMt[0]); dL_dscale->y = glm::dot(Rt[1], dL_dMt[1]); dL_dscale->z = glm::dot(Rt[2], dL_dMt[2]); dL_dMt[0] *= s.x; dL_dMt[1] *= s.y; dL_dMt[2] *= s.z; // Gradients of loss w.r.t. normalized quaternion glm::vec4 dL_dq; dL_dq.x = 2 * z * (dL_dMt[0][1] - dL_dMt[1][0]) + 2 * y * (dL_dMt[2][0] - dL_dMt[0][2]) + 2 * x * (dL_dMt[1][2] - dL_dMt[2][1]); dL_dq.y = 2 * y * (dL_dMt[1][0] + dL_dMt[0][1]) + 2 * z * (dL_dMt[2][0] + dL_dMt[0][2]) + 2 * r * (dL_dMt[1][2] - dL_dMt[2][1]) - 4 * x * (dL_dMt[2][2] + dL_dMt[1][1]); dL_dq.z = 2 * x * (dL_dMt[1][0] + dL_dMt[0][1]) + 2 * r * (dL_dMt[2][0] - dL_dMt[0][2]) + 2 * z * (dL_dMt[1][2] + dL_dMt[2][1]) - 4 * y * (dL_dMt[2][2] + dL_dMt[0][0]); dL_dq.w = 2 * r * (dL_dMt[0][1] - dL_dMt[1][0]) + 2 * x * (dL_dMt[2][0] + dL_dMt[0][2]) + 2 * y * (dL_dMt[1][2] + dL_dMt[2][1]) - 4 * z * (dL_dMt[1][1] + dL_dMt[0][0]); // Gradients of loss w.r.t. unnormalized quaternion float4* dL_drot = (float4*)(dL_drots + idx); *dL_drot = float4{ dL_dq.x, dL_dq.y, dL_dq.z, dL_dq.w };//dnormvdv(float4{ rot.x, rot.y, rot.z, rot.w }, float4{ dL_dq.x, dL_dq.y, dL_dq.z, dL_dq.w }); } // Backward pass of the preprocessing steps, except // for the covariance computation and inversion // (those are handled by a previous kernel call) template __global__ void preprocessCUDA( int P, int D, int M, const float3* means, const int* radii, const float* shs, const bool* clamped, const glm::vec3* scales, const glm::vec4* rotations, const float scale_modifier, const float* proj, const glm::vec3* campos, const float3* dL_dmean2D, glm::vec3* dL_dmeans, float* dL_dcolor, float* dL_dcov3D, float* dL_dsh, glm::vec3* dL_dscale, glm::vec4* dL_drot) { auto idx = cg::this_grid().thread_rank(); if (idx >= P || !(radii[idx] > 0)) return; float3 m = means[idx]; // Taking care of gradients from the screenspace points float4 m_hom = transformPoint4x4(m, proj); float m_w = 1.0f / (m_hom.w + 0.0000001f); // Compute loss gradient w.r.t. 3D means due to gradients of 2D means // from rendering procedure glm::vec3 dL_dmean; float mul1 = (proj[0] * m.x + proj[4] * m.y + proj[8] * m.z + proj[12]) * m_w * m_w; float mul2 = (proj[1] * m.x + proj[5] * m.y + proj[9] * m.z + proj[13]) * m_w * m_w; dL_dmean.x = (proj[0] * m_w - proj[3] * mul1) * dL_dmean2D[idx].x + (proj[1] * m_w - proj[3] * mul2) * dL_dmean2D[idx].y; dL_dmean.y = (proj[4] * m_w - proj[7] * mul1) * dL_dmean2D[idx].x + (proj[5] * m_w - proj[7] * mul2) * dL_dmean2D[idx].y; dL_dmean.z = (proj[8] * m_w - proj[11] * mul1) * dL_dmean2D[idx].x + (proj[9] * m_w - proj[11] * mul2) * dL_dmean2D[idx].y; // That's the second part of the mean gradient. Previous computation // of cov2D and following SH conversion also affects it. dL_dmeans[idx] += dL_dmean; // Compute gradient updates due to computing colors from SHs if (shs) computeColorFromSH(idx, D, M, (glm::vec3*)means, *campos, shs, clamped, (glm::vec3*)dL_dcolor, (glm::vec3*)dL_dmeans, (glm::vec3*)dL_dsh); // Compute gradient updates due to computing covariance from scale/rotation if (scales) computeCov3D(idx, scales[idx], scale_modifier, rotations[idx], dL_dcov3D, dL_dscale, dL_drot); } // Backward version of the rendering procedure. template __global__ void __launch_bounds__(BLOCK_X * BLOCK_Y) renderCUDA( const uint2* __restrict__ ranges, const uint32_t* __restrict__ point_list, int W, int H, const float* __restrict__ bg_color, const float2* __restrict__ points_xy_image, const float4* __restrict__ conic_opacity, const float* __restrict__ colors, const float* __restrict__ final_Ts, const uint32_t* __restrict__ n_contrib, const float* __restrict__ dL_dpixels, float3* __restrict__ dL_dmean2D, float4* __restrict__ dL_dconic2D, float* __restrict__ dL_dopacity, float* __restrict__ dL_dcolors) { // We rasterize again. Compute necessary block info. auto block = cg::this_thread_block(); const uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X; const uint2 pix_min = { block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y }; const uint2 pix_max = { min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y , H) }; const uint2 pix = { pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y }; const uint32_t pix_id = W * pix.y + pix.x; const float2 pixf = { (float)pix.x, (float)pix.y }; const bool inside = pix.x < W&& pix.y < H; const uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x]; const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE); bool done = !inside; int toDo = range.y - range.x; __shared__ int collected_id[BLOCK_SIZE]; __shared__ float2 collected_xy[BLOCK_SIZE]; __shared__ float4 collected_conic_opacity[BLOCK_SIZE]; __shared__ float collected_colors[C * BLOCK_SIZE]; // In the forward, we stored the final value for T, the // product of all (1 - alpha) factors. const float T_final = inside ? final_Ts[pix_id] : 0; float T = T_final; // We start from the back. The ID of the last contributing // Gaussian is known from each pixel from the forward. uint32_t contributor = toDo; const int last_contributor = inside ? n_contrib[pix_id] : 0; float accum_rec[C] = { 0 }; float dL_dpixel[C]; if (inside) for (int i = 0; i < C; i++) dL_dpixel[i] = dL_dpixels[i * H * W + pix_id]; float last_alpha = 0; float last_color[C] = { 0 }; // Gradient of pixel coordinate w.r.t. normalized // screen-space viewport corrdinates (-1 to 1) const float ddelx_dx = 0.5 * W; const float ddely_dy = 0.5 * H; // Traverse all Gaussians for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE) { // Load auxiliary data into shared memory, start in the BACK // and load them in revers order. block.sync(); const int progress = i * BLOCK_SIZE + block.thread_rank(); if (range.x + progress < range.y) { const int coll_id = point_list[range.y - progress - 1]; collected_id[block.thread_rank()] = coll_id; collected_xy[block.thread_rank()] = points_xy_image[coll_id]; collected_conic_opacity[block.thread_rank()] = conic_opacity[coll_id]; for (int i = 0; i < C; i++) collected_colors[i * BLOCK_SIZE + block.thread_rank()] = colors[coll_id * C + i]; } block.sync(); // Iterate over Gaussians for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++) { // Keep track of current Gaussian ID. Skip, if this one // is behind the last contributor for this pixel. contributor--; if (contributor >= last_contributor) continue; // Compute blending values, as before. const float2 xy = collected_xy[j]; const float2 d = { xy.x - pixf.x, xy.y - pixf.y }; const float4 con_o = collected_conic_opacity[j]; const float power = -0.5f * (con_o.x * d.x * d.x + con_o.z * d.y * d.y) - con_o.y * d.x * d.y; if (power > 0.0f) continue; const float G = exp(power); const float alpha = min(0.99f, con_o.w * G); if (alpha < 1.0f / 255.0f) continue; T = T / (1.f - alpha); const float dchannel_dcolor = alpha * T; // Propagate gradients to per-Gaussian colors and keep // gradients w.r.t. alpha (blending factor for a Gaussian/pixel // pair). float dL_dalpha = 0.0f; const int global_id = collected_id[j]; for (int ch = 0; ch < C; ch++) { const float c = collected_colors[ch * BLOCK_SIZE + j]; // Update last color (to be used in the next iteration) accum_rec[ch] = last_alpha * last_color[ch] + (1.f - last_alpha) * accum_rec[ch]; last_color[ch] = c; const float dL_dchannel = dL_dpixel[ch]; dL_dalpha += (c - accum_rec[ch]) * dL_dchannel; // Update the gradients w.r.t. color of the Gaussian. // Atomic, since this pixel is just one of potentially // many that were affected by this Gaussian. atomicAdd(&(dL_dcolors[global_id * C + ch]), dchannel_dcolor * dL_dchannel); } dL_dalpha *= T; // Update last alpha (to be used in the next iteration) last_alpha = alpha; // Account for fact that alpha also influences how much of // the background color is added if nothing left to blend float bg_dot_dpixel = 0; for (int i = 0; i < C; i++) bg_dot_dpixel += bg_color[i] * dL_dpixel[i]; dL_dalpha += (-T_final / (1.f - alpha)) * bg_dot_dpixel; // Helpful reusable temporary variables const float dL_dG = con_o.w * dL_dalpha; const float gdx = G * d.x; const float gdy = G * d.y; const float dG_ddelx = -gdx * con_o.x - gdy * con_o.y; const float dG_ddely = -gdy * con_o.z - gdx * con_o.y; // Update gradients w.r.t. 2D mean position of the Gaussian atomicAdd(&dL_dmean2D[global_id].x, dL_dG * dG_ddelx * ddelx_dx); atomicAdd(&dL_dmean2D[global_id].y, dL_dG * dG_ddely * ddely_dy); // Update gradients w.r.t. 2D covariance (2x2 matrix, symmetric) atomicAdd(&dL_dconic2D[global_id].x, -0.5f * gdx * d.x * dL_dG); atomicAdd(&dL_dconic2D[global_id].y, -0.5f * gdx * d.y * dL_dG); atomicAdd(&dL_dconic2D[global_id].w, -0.5f * gdy * d.y * dL_dG); // Update gradients w.r.t. opacity of the Gaussian atomicAdd(&(dL_dopacity[global_id]), G * dL_dalpha); } } } void BACKWARD::preprocess( int P, int D, int M, const float3* means3D, const int* radii, const float* shs, const bool* clamped, const glm::vec3* scales, const glm::vec4* rotations, const float scale_modifier, const float* cov3Ds, const float* viewmatrix, const float* projmatrix, const float focal_x, float focal_y, const float tan_fovx, float tan_fovy, const glm::vec3* campos, const float3* dL_dmean2D, const float* dL_dconic, glm::vec3* dL_dmean3D, float* dL_dcolor, float* dL_dcov3D, float* dL_dsh, glm::vec3* dL_dscale, glm::vec4* dL_drot) { // Propagate gradients for the path of 2D conic matrix computation. // Somewhat long, thus it is its own kernel rather than being part of // "preprocess". When done, loss gradient w.r.t. 3D means has been // modified and gradient w.r.t. 3D covariance matrix has been computed. computeCov2DCUDA << <(P + 255) / 256, 256 >> > ( P, means3D, radii, cov3Ds, focal_x, focal_y, tan_fovx, tan_fovy, viewmatrix, dL_dconic, (float3*)dL_dmean3D, dL_dcov3D); // Propagate gradients for remaining steps: finish 3D mean gradients, // propagate color gradients to SH (if desireD), propagate 3D covariance // matrix gradients to scale and rotation. preprocessCUDA << < (P + 255) / 256, 256 >> > ( P, D, M, (float3*)means3D, radii, shs, clamped, (glm::vec3*)scales, (glm::vec4*)rotations, scale_modifier, projmatrix, campos, (float3*)dL_dmean2D, (glm::vec3*)dL_dmean3D, dL_dcolor, dL_dcov3D, dL_dsh, dL_dscale, dL_drot); } void BACKWARD::render( const dim3 grid, const dim3 block, const uint2* ranges, const uint32_t* point_list, int W, int H, const float* bg_color, const float2* means2D, const float4* conic_opacity, const float* colors, const float* final_Ts, const uint32_t* n_contrib, const float* dL_dpixels, float3* dL_dmean2D, float4* dL_dconic2D, float* dL_dopacity, float* dL_dcolors) { renderCUDA << > >( ranges, point_list, W, H, bg_color, means2D, conic_opacity, colors, final_Ts, n_contrib, dL_dpixels, dL_dmean2D, dL_dconic2D, dL_dopacity, dL_dcolors ); }