Spaces:
Sleeping
Sleeping
import gradio as gr | |
from llama_cpp import Llama | |
# Load the Mistral model | |
llm = Llama.from_pretrained( | |
repo_id="bartowski/Mistral-Small-Instruct-2409-GGUF", | |
filename="Mistral-Small-Instruct-2409-Q5_K_L.gguf", | |
) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message or "You are a friendly Chatbot."}] | |
# Add history to messages, ensuring no None values | |
for val in history: | |
user_message = val[0] if val[0] is not None else "" | |
assistant_message = val[1] if val[1] is not None else "" | |
if user_message: | |
messages.append({"role": "user", "content": user_message}) | |
if assistant_message: | |
messages.append({"role": "assistant", "content": assistant_message}) | |
# Add the current user message, ensure it's not None | |
if message: | |
messages.append({"role": "user", "content": message}) | |
# Generate the response using the Mistral model | |
response = llm.create_chat_completion(messages=messages) | |
print("response:", response) | |
return response["choices"][0]["message"]["content"] # Adjust based on your model's output format | |
# Set up Gradio Chat Interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |