pebble-pal / app.py
2001kaye's picture
Update app.py
76748ec verified
import gradio as gr
from llama_cpp import Llama
# Load the Mistral model
llm = Llama.from_pretrained(
repo_id="bartowski/Mistral-Small-Instruct-2409-GGUF",
filename="Mistral-Small-Instruct-2409-Q5_K_L.gguf",
)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message or "You are a friendly Chatbot."}]
# Add history to messages, ensuring no None values
for val in history:
user_message = val[0] if val[0] is not None else ""
assistant_message = val[1] if val[1] is not None else ""
if user_message:
messages.append({"role": "user", "content": user_message})
if assistant_message:
messages.append({"role": "assistant", "content": assistant_message})
# Add the current user message, ensure it's not None
if message:
messages.append({"role": "user", "content": message})
# Generate the response using the Mistral model
response = llm.create_chat_completion(messages=messages)
print("response:", response)
return response["choices"][0]["message"]["content"] # Adjust based on your model's output format
# Set up Gradio Chat Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()